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Preface

These lecture notes have been developed for the course Stochastic Pro-
cesses at Department of Mathematical Sciences, University of Copen-
hagen during the teaching years 2010-2016. The material covers as-
pects of the theory for time-homogeneous Markov chains in discrete
and continuous time on finite or countable state spaces.

The back bone of this work is the collection of examples and exer-
cises in Chapters 2 and 3. It is my hope that all mathematical results
and tools required to solve the exercises are contained in Chapters
2 and 3 and in Appendix B. The manuscript was never intended to
provide complete mathematical proofs of all the main results since
these may be found elsewhere in the literature. Further, inclusion of
(even more) long and technical proofs would remove focus from the
main goal which is to learn how to solve problems. However, any
lecturer using these lecture notes should spend part of the lectures on
(sketches of) proofs in order to illustrate how to work with Markov
chains in a formally correct way. This may include adding a number
of formal arguments not present in the lecture notes. Some exercises
in Appendix C are formulated as step-by-step instructions on how
to construct formal proofs of selected theoretical results. It is defi-
nitely advisable (and probably necessary) to consult other textbooks
on Markov chains in order to be able to solve all of the exercises in
Appendix C. I advise students to postpone these exercises until they
feel familiar with the exercises in Chapters 2 and 3.

For further reading I can recommend the books by Asmussen
[2003, Chap. 1-2], Brémaud [1999] and Lawler [2006, Chap. 1-3]. My
own introduction to the topic was the lecture notes (in Danish) by
Jacobsen and Keiding [1985].

Many of the exercises presented in Chapter 3 are greatly inspired
by examples in Ragner Nordberg’s lecture notes on Basic Life Insur-
ance Mathematics (Version: September 2002). The presentation of the
mathematical results on Markov chains have many similarities to var-
ious lecture notes by Jacobsen and Keiding [1985], by Nielsen, S. F.,
and by Jensen, S. T.
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Part of this material has been used for Stochastic Processes 2010/2011-
2015/2016 at University of Copenhagen. I thank Massimiliano Tam-
borrino, Ketil Biering Tvermosegaard, Nina Munkholt, Rene Aakjær
Jensen, Niels Olsen, Frederik Riis Mikkelsen, Mads Rystok Bisgaard,
Anne Helby Pedersen, Martin Jakobsen, Camilla Nicole Schaldemose,
Susanne Ditlevsen, and the students for many useful comments
to this revised version. A special thanks goes to Christian Duffau-
Rasmussen, Andreas Bjerre-Nielsen, Mathias Luidor Heltberg, Fred-
erik Sørensen, Gitte Lerche Aalborg, Line Rosendahl Meldgaard
Pedersen and Søren Wengel Mogensen who agreed to spend a few
hours to provide me with useful feedback on the very first version of
the lecture notes.

Copenhagen, Octorber 2016

Anders Tolver
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1
Introduction

Motivation and some examples of Markov chains

When my first child started in daycare, I started to register the out-
come of a stochastic variable with two possible outcomes

ill: meaning that the child is not ready for daycare

ok: meaning that the child is ready for daycare

Consecutive recordings of the health state of a child made every
morning is an excellent example of a sample of a discrete-time
stochastic process. The sampling regime is discrete because I do not
register the health state continuously at any time point but only once
a day. The process is stochastic (in contrast to deterministic) because I
never know with certainty whether the child will be ill or healthy on
the following morning.

The sample of the health state on the first 17 days (also referred to
as the sample path) is given below

ok, ok ,ok ,ok ,ok ,ill ,ill ,ill ,ill ,ill ,ok ,ok ,ok ,ok ,ok ,ok ,ill ,...

A stochastic process is a mathematical model for a sequence of
random variables. The model should allow us to compute the proba-
bility of various events associated to a random phenomena. Person-
ally, I was particularly interested in the following type of questions

• Will the child be ready for daycare tomorrow permitting me to go
to work?

• Will the child be ready for daycare on Friday, where I have a meet-
ing that can not be cancelled?

• Will the child be ready for daycare for all days during the next
week?

• What is the average time between two periods of illness?
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• How many days should I expect to be off work to take care of a
sick child within the next year?

One of the aims of this course is to learn how to build mathematical
models for random events that allows us to compute the answer to
the type of questions listed above.
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Figure 1.1: The trajectory of a symmet-
ric random walk on Z×Z observed
at times n = 5, 10, 100 when it starts in
state (0, 0) at time n = 0. Note that the
figure does not allow us to reconstruct
the entire sample path (=sequence of
visited states). It turns out that the
random walk returned to state (0, 0) at
time n = 15. If you do Exercise 2.4.3
you will know the probability that it
will ever return to state (0, 0).

We are only going to deal with a very simple class of mathematical
models for random events namely the class of Markov chains on a
finite or countable state space. The state space is the set of possible
values for the observations. Thus, for the example above the state
space consists of two states: ill and ok. Below you will find an ex-
ample of a Markov chain on a countably infinite state space, but first
we want to discuss what kind of restrictions are put on a model by
assuming that it is a Markov chain.

Within the class of stochastic processes one could say that Markov
chains are characterised by the dynamical property that they never
look back. The way a Markov chain continues tomorrow is affected
by where it is today but independent of where it was yesterday or
the day before yesterday. As long as we know the (present) value
of a Markov chain, our prediction about the future behaviour of the
process does not change if we get additional information about past
recordings of the process.

It is clear that many random processes from real life do not satisfy
the assumption imposed by a Markov chain. When we want to guess
whether a child will be ready for daycare tomorrow, it probably
influences our prediction whether the child has only been ill today
or whether it has been ill for the past 5 days. This suggests that a
Markov chain might not be a reasonable mathematical model to
describe the health state of a child.

We shall now give an example of a Markov chain on an countably
infinite state space. The outcome of the stochastic process is gener-
ated in a way such that the Markov property clearly holds. The state
space consists of the grid of points labeled by pairs of integers. We
assume that the process starts at time zero in state (0, 0) and that
(every day) the process moves one step in one of the four directions:
up, down, left, right. Each direction is chosen with equal probability
(= 1/4).

This stochastic process is called the (symmetric) random walk on
the state space

Z×Z = {(i, j)|i, j ∈ Z}.

The process satisfies the Markov property because (by construction!)
the next state is always constructed by moving one step in a random



MOTIVATION AND SOME EXAMPLES OF MARKOV CHAINS 9

direction from the current state no matter how the process arrived at
the current state.

The fact that the state space of the symmetric random walk on
Z×Z is infinite makes it a more complicated but at the same time
more interesting mathematical object to study. We may still (with
some work) answer simple questions of the form

• What is the probability that the random walk is in state (2, 2) at
time n = 10?

• What is the probability that the random walk does not return to
state (0, 0) for the next time period of length 5?

However, as the state space is infinite there are a number of events
that may or may not occur even if we consider an infinite time hori-
zon. In particular, it is not obviuos

• if the random walk will ever reach (i.e. hit) state (2, 2)

• if the random walk will ever return to state (0, 0)

• what will be the average number of visits to state (0, 0) if we con-
sider at very long time horizon up to time n = 1000?

The last three questions have to do with the recurrence properties
of the random walk. Much of our work on this course are cen-
tered around mathematical tools to study the long run behaviour
of Markov chains on countably infinite state spaces.

So far we have only discussed mathematical models for random
events that are observed at discrete time points - for instance once
every day. During this course we shall also consider stochastic pro-
cesses in continuous time, where the value of a random experiment is
available at any time point.

The windows of my office offer an excellent view to all the cars
and busses driving on Nørre Allé. The first example of a continuous-
time stochastic process that comes to my mind is the number of
yellow busses that have passed since I started writing this paragraph
of the lecture notes (so far I have counted four!). Clearly, as I have
kept my eyes fixed on Nørre Allé at any time, the value of the pro-
cess is available at any time. My collected data is an example of a
continous-time stochastic process. The possible values of the process
is N0 = {0, 1, 2, . . .} hence the state space is countably infinite. The
jump structure of the process is, however, very simple as only jump
(upwards) of size 1 may occur. In the literature this is refered to as a
counting process.
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A mathematical model for the counting process of busses on Nørre
Allé must describe the probability distribution for the passage times.
Formally, a stochastic process includes the description of a proba-
bility space (Ω,F , P) and a family of random variables (indexed by
t ∈ [0, ∞))

X(t) : ω → X(t)(ω) ∈N0.

For the stochastic process to be a Markov chain the distribution of
{X(t)}t≥0 must satisfy some mathematical conditions that it is hard
to state and verify formally. In this course we therefore restrict our
attention to continuous-time Markov chains with the property that
the sample paths

t→ X(t)(ω)

are piecewise constant. It turns out that the class of piecewise con-
stant Markov chains on a countable state space have a nice descrip-
tion in terms of transition intensities.

Returning to our recordings of busses on Nørre Allé a Markov
model include the describtion of the intensity, qj, of bus arrivals given
that we have already seen j busses, j ∈ N0. The interpretation of
the intensity qj is that the probability of observing the next bus (i.e.
number j + 1) within a small time interval ∆t is approximately equal
to qj · ∆t.

A very simple (-but probably too simple) model for the number of
busses on Nørre Allé would be to assume that the intensity of future
arrivals is given by the same parameter λ > 0 no matter the number
of busses we have seen so far. This model is known as the Poisson
process with intensity λ or as a pure birth process with intensity λ.

During the course we shall extend our study from the very simple
Poisson process to Markov chains with a more complicated structure
of the jumps. One of our prime examples will be the class of birth-
and-death processes. A birth-and-death process is a mathematical
model for a stochastic process in continuous-time that may move one
step up or one step down at any time. This class of models is flexible
enough to cover many interesting examples (population dynamics,
queueing systems) but at the same time simple enough to allow a
mathematical characterization of various important properties.

About these lecture notes

The main purpose of developing the present manuscript has been
to collect a number of problems providing an easy introduction to
the most basic theory of Markov chains on finite or countable state
spaces. The exposition differs from most textbooks on Markov chains
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in that the problems take up most of the space while only a limited
number of pages are devoted to the presentation of the mathematical
results. This reflects my personal point of view that you should learn
the stuff by working with the problems.

The core of this book is the chapters entitled Markov chains in
discrete-time and Markov chains in continuous-time. They cover the main
results on Markov chains on finite or countable state spaces. It is my
hope that you can always easily go back to these chapters to find rel-
evant definitions and results that hold for Markov chains. The last
part of Chapters 2 and 3 present a number of problems divided into
various subsections according to the size of the state space for the
Markov chain. Whenever possible we have tried to put the exercises
into a practical context if they deal with models that have reasonable
interpretations in the real world. As the present course preceeds a
course on life insurance mathematics a great number of the exercises
are motivated by this particular application. However, other impor-
tant examples from the vast area of applications of Markov chains
have found their way to the present collection of problem, most no-
tably from the field of queueing theory.

Clearly, the exercises vary in their difficulty and probably also in
their relevance to a student just wanting to pass the course. We have
made an effort to ensure that most exercises contains a mixture of
(very) simple and more complicated questions. This is done because
we know how frustrating it feels not to be able to get anywhere when
trying to do the exercises at home. On the other hand this also im-
plies that everyone should be able to prepare something before the
exercise classes. If you show up at the exercise classes without having
prepared any question for any exercise then the teaching assistant
will not believe that you gave it a try. It is more likely that you will
be regarded as a lazy and unambitious student ;-) If I am mistaken
on this point please let me know.

I want you to remember that you are supposed to do a written
exam to pass this course. Therefore my general advice to you is to
use one of the problems or examples as offset anytime you work with
the course. Use the questions in the problems to figure out what part
of Chapters 2 or 3 that might be relevant to answer the question. Use
the problems to find relevant pages from the slides used for the lec-
tures. Do not expect it to work the other way around. It will probably
take you a lot of time to read and understand the definitions and
theorems of Chapters 2 or 3 and every tiny mathematical argument
presented at the lectures. Even if you do manage to digest all the
mathematics you will probably not find it straightforward to apply it
to solve the problems. There is a huge discrepancy between reading
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(about) probability theory and being able to solve problems involving
probability theory. In my opinion this is the main reason why courses
on Markov chains (as they are often taught) have a reputation for
being very difficult.

Work with the problems if you want to do well at the exam!

If you are a student who wants to learn how to answer standard
questions related to Markov chains then you should read the two
main chapters and do a selection of the exercises given as cross ref-
erences therein. Most of the exercises are fairly easy and repetitive in
their nature and you will easily be comfortable about applying the
main results and definitions. For most students this will be a shot-
proof way to pass the exam on an introductory course on Markov
chains.

Fortunately, some students have much higher ambitions. They
want to understand the mathematics behind the results in the two
main chapters. They have a strong feeling that this is absolutely nec-
essary for them in order to build up some intuition and understand-
ing of what is really a Markov chain. Personally, I believe that the key
to a succesfull introductory course on stochastic processes lies in not
spending too much time on given rigorous mathematical proofs. It is
lengthly and boring and does not as easily build up your intuition as
if you work with some interesting examples. This point of view may
not be shared by all of you. For that reason I have tried to indicate
throughout the book what you should do to get a comprehensive and
rigorous exposition of the mathematics. In order not to destroy the
flow of the book for those who prefer the light way I have made the
following choices

• short mathematical proofs and arguments are usually included in
the two main chapters

• some proofs are left as exercises with a clear indication of a proof
strategy

• some proofs are given in the appendices

• some proofs are not given in the lecture notes but references to
secondary literature are provided

The result should be a book that you can use both as a soft and easy
introduction to Markov chains or as a source to learn more of the
mathematics and probability theory behind this appealing class of
stochastic processes.
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Transition diagrams

We advocate for visualising the dynamics of a Markov chain when-
ever possible. This will be done using transition graphs with nodes
(or vertices) representing the states of the Markov chains and edges
representing transitions.

For a discrete time Markov chain (at least on a finite state space)
the dynamics of the chain is given by the matrix of transition probabil-
ities. On the graph the transition probabilities are given as labels to
the arrow representing the individual transitions. Usually, we use the
convention that an edge corresponding to a zero of the transition ma-
trix need not be drawn on the graph. Remember that a discrete-time
Markov chain need not jump to a new state at every transition. This
is indicated by a circular arrow on the transition diagram. As the
transition probabilities for arrows pointing out from a state should
always sum to one we will occationally omit the arrows from a state
pointing to itself putting our faith in the readers ability to add the
remaining arrows to the transition diagram. To illustrate this point
complete and lazy examples of transition diagrams for the same three
state discrete-time Markov chain are displayed below.

3 2

1 1

2 31/2
1/2

1/3

1/3 1/3

1/3

1/3

1/2
1

Figure 1.2: Two different versions
of a transition diagram for the same
discrete-time Markov chain with three
states.

For a continuous-time Markov chain the dynamics is given by
the time spent in each state and the distribution of the jumps when-
ever they occur. For a finite state space Markov chain everything is
summarized in the transition intensity matrix with non-negative off di-
agonal entries and diagonals adjusted to make all rows sum to zero.
The chain may be visualized by a transition diagram with nodes rep-
resenting individual states and edges representing transitions. The
correspondence between the transition intensity matrix and the tran-
sition diagram is obtained by labeling edges by the corresponding
entry of the transition intensity matrix. In contrast to the discrete
time case we (always!) omit edges of transition intensity zero. Fur-
ther, there are no circular arrows from any state pointing to itself. An
example of a transition diagram for a continuous-time Markov chain
is given below.
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3 2

1 1

2 3
1

3

1 1/4

3/4

2

Figure 1.3: Transition diagram for a
continuous time Markov chain with
three states (left) and transition diagram
for the corresponding discrete-time
Markov chain of jumps (right).

Overview of exercises

Below we have listed some important concepts related to Markov
chains and corresponding Exercises dealing with the concept. The list
is not complete, in particular for Exercises covering several topics.

Communication classes
Exercises: 2.2.1, 2.3.1, 2.3.7, 3.4.2

Transience or recurrence
Exercises: 2.2.1, 2.3.7

Null-recurrence or positive recurrence
Exercises: 2.4.2, 2.4.3, 2.4.4, 2.4.6, 3.2.4, 3.4.2, 3.4.4

Periodicity
Exercises: 2.3.2, 2.3.7

Absorption probabilities
Exercises: 2.3.7, 2.3.8, 3.2.4

Invariant distribution
Exercises: 2.2.2, 2.2.4, 2.3.3, 2.3.4, 2.3.7, 2.4.1, 3.2.1, 3.2.5, 3.3.4, 3.4.3

Recurrence (=return) time
Exercises: 2.1.2, 2.3.2, 2.4.6

Markov property
Exercises: 2.2.4, 2.3.6, 3.3.1

Kolmogorov’s differential equation
Exercises: 3.2.2, 3.2.3, 3.3.3

Transition probabilities
Exercises: 2.1.4, 2.3.4, 3.1.3, 3.2.1

Poisson process
Exercises: 3.1.2, 3.2.4, 3.2.6, 3.4.1, 3.5.1, 3.5.2
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Markov chains in discrete time

Definition of a Markov chain

A stochastic process in discrete-time is a family, (X(n))n∈N0 , of ran-
dom variables indexed by the numbers N0 = {0, 1, 2, . . .}. The possi-
ble values, S, of X(n) are referred to as the state space of the process.
In this course we consider only stochastic processes with values in a
finite or countable state space. The mathematician may then think of
a random variable , X, on S as a measurable map 1 1 For a brief discussion of random

variables you are referred to Appendix
A.X : (Ω,F )→ (S,P(S))

where P(S) is the family of all subsets of S.

The distribution of a discrete-time stochastic process 2 with at 2 For more details on how to formally
define the distribution of a stochastic
process have a look at Appendix A.

most countable state space, S, is characterised by the point probabili-
ties

P(X(n) = in, X(n− 1) = in−1, . . . , X(0) = i0)

for in, in−1, . . . , i0 ∈ S and n ∈ N0. From the definition of elementary
conditional probabilities it follows that

P(X(n) = in, . . . , X(0) = i0)

= P(X(n) = in|X(n− 1) = in−1, . . . , X(0) = i0)

× P(X(n− 1) = in−1|X(n− 2) = in−2, . . . , X(0) = i0)

× . . .

× P(X(1) = i1|X(0) = i0)× P(X(0) = i0).

This is a general identity that holds for any discrete-time stochastic
process on a countable state space. In these lecture notes we are only
going to discuss the class of Markov chains to be defined below.

A discrete-time Markov chain on a countable set, S, is a stochastic
process satisfying the Markov property

P(X(n) = in|X(n− 1) = in−1, . . . , X(0) = i0)

= P(X(n) = in|X(n− 1) = in−1) (2.1)
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for any in, . . . , i0 ∈ S and n ∈N. Introducing the notation

Pi,j(n− 1) = P(X(n) = j|X(n− 1) = i)

we immediately observe that for a Markov chain the formula for the
point probabilities simplifies to

P(X(n) = in, X(n− 1) = in−1, . . . , X(0) = i0)

= Pin−1,in(n− 1) · Pin−2,in−1(n− 2) · . . . · Pi0,i1(0) · P(X(0) = i0).

We shall make a final simplification by considering only time-homo-
-geneous Markov chains for which the transition probabilities
Pi,j(n) = Pi,j do not depend on the time index n ∈ N. For a discrete-
time and time-homogeneous Markov chain on S we thus have that

P(X(n) = in, . . . , X(0) = i0) = Pin−1,in · . . . · Pi0,i1 · φ(i0) (2.2)

where we use the notation

φ(i0) = P(X(0) = i0)

for the initial distribution of X(0).

Definition 1 (Homogeneous Markov chain in discrete-time) A
time-homogeneous Markov chain on a finite or countable set S is a family of
random variables, (X(n))n∈N0 , on a probability space (Ω,F , P) such that

P(X(n + 1) = j|X(n) = i, X(n− 1) = in−1, . . . , X(0) = i0) = Pi,j

for j, i, in−1, . . . , i0 ∈ S and n ∈ N0. The distribution of the Markov
chain is uniquely determined by the initial distribution and the transition
probabilities

φ(i) = P(X(0) = i) ← initial distribution

Pi,j = P(X(n + 1) = j|X(n) = i) ← transition probabilities.

�

Any probability vector φ = (φ(i))i∈S and two-dimensional array
of probabilities P = (Pi,j)i,j∈S with ∑j∈S Pi,j = 1 for all i ∈ S defines
the distribution of a time-homogeneous Markov chain on S through
the identity (2.2). When the state space is finite we speak of the tran-
sition matrix P. As we will consider only time-homogeneous Markov
chains we will throughout these lecture notes omit the phrase time-
homogeneous and refer to the process simply as a Markov chain.

The dynamics of a discrete-time Markov chain with state space
S is given by the array (or matrix), P, of transition probabilities. A
similar representation is given by a directed graph (the transition
diagram ) with nodes representing the individual states of the chain
and directed edges labeled by the probability of possible transitions.
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1

2 3

1/3

1/3

1/3

1/2
1/2

1

Figure 2.1: Transition diagram for
a discrete-time Markov chain with
three states. From state 1 there is a
probability 1/3 of jumping to either of
the states 1,2 or 3.

The probability of any event involving the values X(0), . . . , X(n) of
a Markov chain up to time n may be obtained by splitting the event
into disjoint sets of the form

(X(0) = i0, . . . , X(n) = in)

and summing up point probabilities of the form given by (2.2). For
finite state space Markov chains the computation of the probabil-
ity of certain events have simple representations in terms of matrix
operations.

Theorem 2 (n-step transition probabilities) For a Markov chain on a
finite state space, S = {1, . . . , N}, with transition probability matrix P and
initial distribution φ = (φ(1), . . . , φ(N)) (row vector) then the distribution
of X(n) is given by

(P(X(n) = 1), . . . , P(X(n) = N)) = φPn. (2.3)

Proof: The proof goes by induction. For n = 1 we have

P(X(1) = j) = ∑
i∈S

P(X(0) = i, X(1) = j)

= ∑
i∈S

P(X(0) = i) · P(X(1) = j|X(0) = i) = ∑
i∈S

φ(i)Pi,j, (2.4)

where we use the definition of the transition probabilities to obtain
the third equality. Note that the right hand side of (2.4) is exactly the
j-th element of the row vector given by the matrix product φP.

Using the Markov property we get for arbitrary n + 1 that

P(X(n + 1) = j) = ∑
i∈S

P(X(n) = i, X(n + 1) = j)

= ∑
i∈S

P(X(n) = i) · P(X(n + 1) = j|X(n) = i)

= ∑
i∈S

P(X(n) = i) · Pi,j.

Assuming that P(X(n) = i) is given as the i-th element of the row
vector φPn we observe that the j-th coordinate of the row vector
(φPn)P coincides with the expression for P(X(n + 1) = j) obtained
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above. In particular, by induction we deduce that the distribution of
X(n + 1) is given by (φPn)P = φPn+1. �

Example 3 Consider the discrete-time Markov chain with three states
corresponding to the transition diagram on Figure 2.2. Assume that the
initial distribution of X(0) is given by

φ(1) = φ(2) = 1/2.
1

2 3

1/3
1/3

1/3

1/2
1/2

1

Figure 2.2: Transition diagram for
Markov chain considered in Example 3.

Compute the following

1. P(X(0) = 1, X(1) = 2, X(2) = 3).

2. P(X(2) = i), for i = 1, 2, 3.

3. P(T3 = 2) where

T3 = inf{n > 0|X(n) = 3}

is the time of the first visit to state 3.

The probability in question 1. may be computed using formula (2.2) for the
point probabilities of a discrete-time Markov chain. We get

P(X(0) = 1, X(1) = 2, X(2) = 3) = φ(1) · P1,2 · P2,3 = 1
2 ·

1
3 ·

1
2 = 1

12 .

The distribution of X(2) from question 2. is easily computed using the
matrix formula (2.3) from Theorem 2. In particular

(P(X(2) = 1), P(X(2) = 2), P(X(2) = 3))

= (1/2, 1/2, 0)

 1/3 1/3 1/3
0 1/2 1/2
0 0 1


2

= ( 1
18 , 19

72 , 49
72 ).

To answer question 3. note that there are three possibilities 3 for the values of 3 The event (T3 = 2) expresses that the
first visit to state 3 must happen exactly
at time n = 2.

X(0), X(1), X(2) for which the first visit to state 3 happens at time 2

(X(0) = 1, X(1) = 1, X(2) = 3)

(X(0) = 1, X(1) = 2, X(2) = 3)

(X(0) = 2, X(1) = 2, X(2) = 3).

Using formula (2.2) we get

P(T3 = 2) = P(X(0) = 1, X(1) = 1, X(2) = 3)

+ P(X(0) = 1, X(1) = 2, X(2) = 3)

+ P(X(0) = 2, X(1) = 2, X(2) = 3)

= φ(1) · P1,1 · P1,3 + φ(1) · P1,2 · P2,3 + φ(2) · P2,2 · P2,3

= 1
2 ·

1
3 ·

1
3 + 1

2 ·
1
3 ·

1
2 + 1

2 ·
1
2 ·

1
2 = 1

18 + 1
12 + 1

8 = 19
72 .

�
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Classification of states

For a discrete-time Markov chain with state space S and transition
probabilities P = (Pi,j)i,j∈S we say that there is a possible path from
state i to state j if there is a sequence of states

i = i0 → i1 → . . .→ in = j

such that for all transitions along the path we have Pil−1,il > 0, l =

1, . . . , n. We will also use the phrase that state j is accessible from
state i.

We say that two states i, j ∈ S communicate if there is a possible
path from i to j and from j to i. We use the notation i ↔ j when the
two states i and j communicate. If we use the convention that i ↔ i
(i.e. that a state always communicates with itself) then the relation↔
partitions the state space, S, into disjoint communication classes.

A Markov chain is said to be irreducible if there is only one com-
munication class.

Example 4 For the Markov chain given by the transition diagram in Fig-
ure 2.2 above (-see page 18) it is not possible to go to state 1 from states 2 or
3. In particular, no other state communicate with state 1. From state 2 the
Markov chain may jump to state 3 but it is impossible to get back to state
2 once the chain has jumped to state 3. We conclude that states 2 and 3 do
not communicate. We conclude that the Markov chain is not irreducible as it
may be partitioned into three communication classes {1}, {2} and {3}. Try
to give some examples of how the transition probabilities on Figure 2.1 may
be modified such that we get an irreducible Markov chain.

For more exercises on irreducibility and communication classes you are
encouraged to do Exercises 2.2.1 and 2.3.1. �

Definition 5 (Closed communication classes ) A communication class,
C, for a Markov chain is said to be closed if for all i ∈ C it holds that

∑
j∈C

Pi,j = 1.

If C has only finitely many elements then C is closed if the submatrix of
transition probabilities restricted to C has all row sums equal to 1. �

Example 6 The Markov chain on Figure 2.3 has three different communi-
cation classes: C1 = {1}, C2 = {2, 3} and C3 = {4, 5}.

To see this observe that it is possible to make transitions between states
2 and 3 and between states 4 and 5. Further, note that no other pair of
states communicate. Since transitions away from C2 or C3 are not possible
it follows that these classes are closed. The class C1 is not closed since the
probability of staying in the class is 1/2 which is strictly less than 1. �
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1

2 3

4 5

1/4

1/4

1/2

1/2

1/2

1

1

1

Figure 2.3: Transition diagram for a
discrete-time Markov chain with five
states and three communication classes.

Remark 7 (On closed classes) The restriction of a Markov chain to a
closed communication class is an irreducible Markov chain. Most results
in these lecture notes are formulated for irreducible Markov chains. This
means that you should just break down the analysis of a Markov chain by
restricting the analysis to each closed class. �

For any state i ∈ S we define the hitting time of i by

Ti = inf{n > 0|X(n) = i}.

When the Markov chain is assumed to start in state i we will often
refer to Ti above as the return time or the recurrence time to state i.

If two states i and j communicate according to the definition above
then we know that

P(Ti < +∞|X(0) = j) > 0 and P(Tj < +∞|X(0) = i) > 0.

More informally: i and j communicate if it is possible (with positive
probability!) to get from i to j and from j to i.

To fully understand and describe the dynamics and the long-run
behaviour of a Markov chain a much more relevant question will be
whether we can be sure (i.e. with probability equal to one!) that the
Markov chain will move from i to j and from j to i. This leads us to
the definition of transient and recurrent states (or communication
classes).

Definition 8 (Recurrence and transience) For a discrete-time Markov
chain on S we say that a state i ∈ S is recurrent if and only if

P(Ti < +∞|X(0) = i) = 1. (2.5)

If P(Ti < +∞|X(0) = i) < 1 then i is said to be a transient state. �
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In clear text the meaning of (2.5) is that state i is recurrent if and only
if the probability of ever returning to state i is one given that the
Markov chain starts in state i at time n = 0.

Example 9 Consider again the Markov chain from Example 6 given by the
transition diagram in Figure 2.3. If the Markov chain is started in state 1 it
may perform a jump away from state 1 (-with probability 1/2) and in this
case it will never return to state 1. This shows that

P(T1 = +∞|X(0) = 1) ≥ 1/2 > 0

(-or equivalently that P(T1 < +∞|X(0) = 1) ≤ 1/2 < 1) and we get from
Definition 8 that state 1 is transient.

For X(0) = 4 or X(0) = 5 we know for sure that the Markov chain will
be back again to the initial state after two steps i.e.

P(Ti < +∞|X(0) = i) ≥ P(Ti = 2|X(0) = i) = 1

for i = 4, 5 and we have by Defintion 8 that states 4 and 5 are recurrent.

For X(0) = 2 we have that

P(T2 = 1|X(0) = 2) = 1/2

and
P(T2 = 2|X(0) = 2) = 1/2

(-corresponding to a jump from 2 to 3 followed by a jump from 3 to 2). Thus

P(T2 < +∞|X(0) = 2)

=
∞

∑
n=1

P(T2 = n|X(0) = 2)

≥ P(T2 = 1|X(0) = 2) + P(T2 = 2|X(0) = 2) = 1

showing that state 2 is recurrent.

If the Markov chain is started in state 3 a little more work is required.
Intuitively, the Markov chain will first jump to state 2 and eventually it will
jump back to the state 3. Therefore state 3 is recurrent. However, a formal
argument requires that we show that

P(T3 < +∞|X(0) = 3) = 1.

To get used to the notation let us illustrate how to do this in details.

If the Markov chain is started at X(0) = 3 then the event (T3 = n)
expresses that the first visit to state 3 (after time 0!) happens at time n.
Referring to the transition diagram of the Markov chain this is only possible
if the Markov chain makes a jump from state 3 to 2 (-which happens with
probability P3,2 = 1), followed by n − 2 transitions from 2 to 2 (each
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with transition probabiliy = 1/2) and finally a jump from state 2 to 3
(P2,3 = 1/2). In particular, we get that

P(T3 = n|X(0) = 3) = 1 ·
(

1
2

)n−2
· 1

2 =
(

1
2

)n−1
, n ≥ 2.

and hence

P(T3 < +∞|X(0) = 3) =
∞

∑
n=1

P(T3 = n|X(0) = 3) =
∞

∑
n=2

(
1
2

)n−1
= 1

demonstrating that state 3 is recurrent according to Definition 8. �

Example 9 represents a simple situation where it is possible to
apply Definition 8 to verify if a state is recurrent or transient. It re-
quires that one can compute (or at least have some control over) the
probability

P(Ti = n|X(0) = i)

that the first return of the Markov chain to state i happens exactly at
time n. Another instructive example is given in Exercise 2.4.6 where
the structure of possible jumps is particularly simple. We shall now
give two results (Theorems 10 and 15) that turn out to be more useful
for Markov chains with a more complicated jump structure.

Theorem 10 (Recurrence criterion 1) For a discrete-time Markov chain
with n-step transition probabilities Pn = (Pn)i,j∈S then state i is recurrent
if and only if ∑∞

n=1(Pn)i,i = +∞.

Sketch of proof: The following proof of Theorem 10 is reproduced
based on Jacobsen and Keiding [1985]. Let

Tj = inf{n > 0|X(n) = j}

be the time of the first visit to state j. Introduce the notation

f (n)ij = P(Tj = n|X(0) = i)

for the probabilty that the first visit to state j happens at time n when
the Markov chain is started at state X(0) = i. Using the elementary
identity

fij :=
∞

∑
n=1

f (n)ij =
∞

∑
n=1

P(Tj = n|X(0) = i) = P(Tj < +∞|X(0) = i)

we have from Definition 8 that state i is recurrent if and only if fii =

1.

The technical part of the proof establishes the following formula

fij = lim
N→∞

∑N
n=1(Pn)i,j

1 + ∑N
n=1(Pn)j,j

(2.6)
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where (Pn)i,j is the n-step transition probability from state i to j. The
identity holds even when the infinite sum takes the value +∞ and
the conclusion from Theorem 10 follows by letting i = j.

For the full proof of Theorem 10 4 we need to establish (2.6). First 4 The full proof is included for com-
pleteness of the exposition. You can just
skip it and continue to read on after the
proof.

note that by splitting the event (X(n) = j) according to the time of
the first visit to state j then

(Pn)i,j = P(X(n) = j|X(0) = i) =
n

∑
m=1

P(X(n) = j, Tj = m|X(0) = i)

=
n

∑
m=1

P(X(n) = j|Tj = m) · P(Tj = m|X(0) = i)

=
n

∑
m=1

P(X(n) = j|X(m) = j) · P(Tj = m|X(0) = i)

=
n

∑
m=1

(Pn−m)j,j f (m)
ij

where we have used the Markov property to get the second last
equality.

Summing over n = 1, . . . , N we get

N

∑
n=1

(Pn)i,j =
N

∑
n=1

n

∑
m=1

(Pn−m)j,j f (m)
ij

=
N

∑
m=1

N

∑
n=m

(Pn−m)j,j f (m)
ij

=
N

∑
m=1

f (m)
ij

N−m

∑
k=0

(Pk)j,j.

This gives us an upper bound

N

∑
n=1

(Pn)i,j ≤
N

∑
m=1

f (m)
ij ·

N

∑
k=0

(Pk)j,j︸ ︷︷ ︸
independent of m

and for any M < N we have a lower bound

N

∑
n=1

(Pn)i,j ≥
M

∑
m=1

f (m)
ij

N−m

∑
k=0

(Pk)j,j ≥
M

∑
m=1

f (m)
ij

N−M

∑
k=0

(Pk)j,j.

Dividing by ∑N
n=0(Pk)j,j we get that for any M < N

M

∑
m=1

f (m)
ij ·

∑N−M
k=0 (Pk)j,j

∑N
k=0(Pk)j,j

≤
∑N

n=1(Pn)i,j

∑N
k=0(Pk)j,j

≤
N

∑
m=1

f (k)ij ⇔

M

∑
m=1

f (m)
ij ·

(
1−

∑N
k=N−M+1(Pk)j,j

∑N
k=0(Pk)j,j

)
≤

∑N
n=1(Pn)i,j

1 + ∑N
k=1(Pk)j,j

≤
N

∑
m=1

f (k)ij .
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The right hand side tends to fij = P(Tj < ∞|X(0) = i) for N → ∞
and since ∑N

k=N−M+1(Pk)j,j ≤ M (there are M terms of size ≤ 1!) it
follows that

∑N
k=N−M+1(Pk)j,j

∑N
k=0(Pk)j,j

N→∞→ 0

no matter if ∑∞
k=0(Pk)j,j is = +∞ or < +∞. 5 In particular we get for 5 For ∑∞

k=0(Pk)j,j < +∞ the conclusion
follows from the fact that the tail of the
infinite sum converges to zero.

any M that

M

∑
m=1

f (m)
ij ≤ lim inf

N→∞

∑N
n=1(Pn)i,j

1 + ∑N
k=1(Pk)j,j

≤ lim sup
N→∞

∑N
n=1(Pn)i,j

1 + ∑N
k=1(Pk)j,j

≤
∞

∑
m=1

f (k)ij = fij.

Taking the limit as M→ ∞ we conclude that for any i, j ∈ S then

fij = lim
N→∞

∑N
n=1(Pn)i,j

1 + ∑N
n=1(Pn)j,j

.

For i = j this gives

P(Ti < ∞|X(0) = i) = fii =

{
∑∞

n=1(Pn)i,i
1+∑∞

n=1(Pn)i,i
< 1 , if ∑∞

n=1(Pn)i,i < +∞

1 , if ∑∞
n=1(Pn)i,i = +∞.

�

It turns out that if j is accessible (i.e. may be reached) from a recur-
rent state i then j must communicate with i (i ↔ j) 6. Furthermore, j 6 To see this note that if Pn

i,j > 0 then
there is a path from i to j of length
k ≤ n not containing j. Clearly, it would
be possible to leave state i for good
through state j unless Pm

j,i for some
m ∈N0.

will also be recurrent. The last observation is stated more formally in
the following Theorem 11. The proof of Theorem 11 is fairly simple
but instructive and builds on Theorem 10 above.

Theorem 11 (Recurrence is a class property) All states in a communi-
cation class are either all recurrent or all transient.

Proof: Assume that states i and j communicate. Then there exist
l, m ∈ N such that Pl

i,j, Pm
j,i > 0. Note that by the Markov property

we observe that for any k ≥ 1 then Pl
i,jP

k
j,jP

m
j,i describes the probability

of a loop of length l + k + m from state i that visits state j after l and
l + k steps. Clearly, this is smaller than or equal to the probability of
having a loop of length l + k + m from state i which equals Pl+k+m

i,i .
We therefore get the inequality

∞

∑
n=1

Pn
i,i ≥

∞

∑
k=1

Pl+k+m
i,i ≥

∞

∑
k=1

Pl
i,jP

k
j,jP

m
j,i = Pl

i,j ·
(

∞

∑
k=1

Pk
j,j

)
· Pm

j,i

Either both states i, j are transient or we may assume (by symmetry)
that j is recurrent and hence by Theorem 10 that ∑∞

n=1 Pn
j,j = +∞. In
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the latter case the inequality above shows that also ∑∞
n=1 Pn

i,i = +∞
and we deduce from Theorem 10 that state i is recurrent. �

Theorem 11 suggests that we first find the communication classes
and then consider only one element from each class for classification
into either recurrent or transient groups of states.

The interpretation of recurrence is very important: if the Markov
chain is started in a recurrent state i then with probability one it will
eventually return to state i. On the contrary, if a Markov chain starts
in a transient state i then the probability of returning to state i is
strictly less than one 7. 7 Suppose that there is a possible

loop of length k from state i to i then
(Pk)i,i > 0. This does not imply that
state i is recurrent! Instead try to use
Definition 8 or more likely Theorems 10

and 15.

Note carefully the difference between an irreducible and a recur-
rent Markov chain. For an irreducible Markov chain there is a path
with positive probability between any two states i 6= j while (as we
shall see) for a recurrent Markov chain there will eventually be a
transition between any two states i 6= j with probability one!

As stated below it is possible to extract a bit more information
from the definition of recurrence.

Theorem 12 (Number of visits to state i) For a discrete-time Markov
chain on S with initial distribution P(X(0) = i) = 1 consider the total
number of visits to state i

Ni =
∞

∑
n=1

1(X(n) = i).

If i is a recurrent state then Ni = +∞ with probability one. If i is a tran- In fact it may be demonstrated that if a
recurrent state j is accessible from i then

P(Nj = +∞|X(0) = i) = fij

where the notation fij is explained in
Theorem 10. Further, for i is accessible
from j then both fij = f ji = 1 (-see also
Jacobsen and Keiding [1985, Sætning 2.2
and 2.3]).

sient state then Ni follows a geometric distribution

P(Ni = k) = (1− q)kq, k ∈N0

where q = P(Ti = +∞|X(0) = i) is the probability that the Markov chain
never returns to state i.

A formal proof of Theorem 12 may be constructed along the lines
of Exercise C.2. Intuitively, the idea is to exploit that a Markov chain
restarts itself any time it returns to state i. It therefore either returns
infinitely often (recurrent), or it returns k times (with probability
(1− q)k) before it fails to return (with probability q). �

As explained in the following result it is easy to determine if a
finite communication class is recurrent or transient.

Theorem 13 (Finite communication classes and recurrence) A finite
communication class is recurrent if and only if it is closed.
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Proof: For a closed communication class C we have for any i ∈ C, k ∈
N that ∑j∈C Pk

i,j = 1. By interchanging the order of summation we
therefore get that

+∞ =
∞

∑
k=1

∑
j∈C

Pk
i,j︸ ︷︷ ︸

=1

= ∑
j∈C

∞

∑
k=1

Pk
i,j.

Since C is finite this allows us to conclude that ∑∞
k=1 Pk

i,j = +∞ for
some j ∈ C. Using that i and j communicate we may choose an
m ∈N such that Pm

j,i > 0 and we conclude that

∞

∑
n=1

Pn
i,i ≥

∞

∑
k=1

Pk+m
i,i

≥
∞

∑
k=1

Pk
i,jP

m
j,i =

(
∞

∑
k=1

Pk
i,j

)
Pm

j,i = +∞.

It follows from Theorem 10 that state i is recurrent.

If C is not closed there exists an i ∈ C such that ∑j∈C Pi,j < 1. Let
l /∈ C be any state of the Markov chain with Pi,l > 0. For X(0) = i
then we conclude that the probability of ever returning to state i will
be less than or equal to 1− Pi,l < 1. It follows from Definition 8 and
Theorem 11 that if the class C is not closed then it must be transient
since it contains the transient state i. �

The last part of the proof of Theorem 13 shows that if a commu-
nication class is not closed then it must be transient. Note that this
implication also holds for classes with infinitely many elements.

. . . -1 0 1 . . .

p p

1− p

p

1− p

p

1− p 1− p

Figure 2.4: The random walk on Z is a
famous example of a Markov chain on
a countably infinite state space. It plays
a central role in these lecture notes - see
Example 14 and Exercise 2.4.2

Example 14 (Random walk on Z) The random walk on Z given by
the transition diagram in Figure 2.4 is an example of a Markov chain on
an infinite state space. The jump structure is very simple: from state i a
jump to state i + 1 happens with probability p, while jumps to state i − 1
occur with probability 1 − p. Clearly, for 0 < p < 1 there is only one
communication class, i.e. the Markov chain is irreducible.

Trying to apply Definition 8 to determine if the random walk is recurrent
or transient is not easy. The first step would be to write the left hand side of
(2.5) as

P(Ti < +∞|X(0) = i) =
∞

∑
n=1

P(Ti = n|X(0) = i)
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where P(Ti = n|X(0) = i) is the probability that the first visit to state i
happens at time n given that we start the random walk at X(0) = i. Taking
i = 0 then we get that P(Ti = n|X(0) = i) = 0 for n odd since is requires
an even number of steps to return to state 0.

For n = 2 observe that if X(0) = 0 then there are two possible paths
of length 2 starting and ending at state i = 0, namely 0 → 1 → 0 and
0→ −1→ 0. Since both paths have probabily p(1− p) (why?) then

P(T0 = 2|X(0) = 0) = 2p(1− p).

For n = 4 there are six different paths of length 4 starting and ending at
state i = 0

0 → 1→ 2→ 1→ 0

0 → 1→ 0→ 1→ 0

0 → 1→ 0→ −1→ 0

0 → −1→ 0→ 1→ 0

0 → −1→ 0→ −1→ 0

0 → −1→ −2→ −1→ 0.

To compute the probability P(T0 = 4|X(0) = 0) we should only include
the paths where the first visit to state 0 happens at time 4 implying that only
two paths contribute to the computation (which?). We get that

P(T0 = 4|X(0) = 0) = 2p2(1− p)2.

It is not easy to find a general formula for P(T0 = 2k|X(0) = 0). However,
this is required if we want to compute P(T0 < +∞|X(0) = 0) and
apply directly Definition 8 to determine if the random walk is recurrent or
transient.

If we instead want to use Theorem 10 then we need expressions for

Pn
i,i = P(X(n) = i|X(0) = i).

Choosing i = 0 then we again conclude that Pn
0,0 = 0 for n odd 8. Further 8 Try to use Example 14 to really

understand the difference be-
tween P(T0 = 4|X(0) = 0) and
P(X(4) = 0|X(0) = 0).

P2
0,0 = 2p(1− p) and it turns out that P4

0,0 is obtained by summing all six
possible loops of length 4 from 0 such that we get

P4
0,0 = 6p2(1− p)2.

In Exercise 2.4.2 it is shown that for general k ∈N then

P2k
0,0 =

(
2k
k

)
pk(1− p)k.



28 CHAPTER 2. MARKOV CHAINS IN DISCRETE TIME

From Theorem 10 we therefore conclude that the random walk on Z is recur-
rent if and only if

∞

∑
n=1

Pn
0,0 =

∞

∑
k=1

P2k
0,0 =

∞

∑
k=1

(
2k
k

)
pk(1− p)k = +∞.

It follows (-see Exercise 2.4.2) that the random walk is recurrent if p = 1/2
and transient for p 6= 1/2.

Note that for 0 < p < 1 there is only one closed communication class (i.e.
the Markov chain is irreducible). However, the Markov chain is transient
unless p = 1/2. This example shows that for communication classes with
an infinite number of states then closed classes are not always recurrent.9 � 9 Example 14 shows that closed com-

munication classes with infinitely many
elements can be transient. Conse-
quently, Theorem 13 does not hold for
countably infinite classes.

In many cases it is not possible to get explicit formulaes for the
n-step transition probability, (Pn)i,i, allowing us to evaluate the sum
from Theorem 10. The following result gives another way to demon-
strate recurrence of a state without reference to n-step transition
probabilities.

Theorem 15 (Recurrence criterion 2) Let (X(n))n≥0 be an irreducible
Markov chain on S with transition probability P = (Pi,j)i,j∈S. Consider the
system of equations

α(j) = ∑
k 6=i

Pj,kα(k), j ∈ S, j 6= i, (2.7)

where i ∈ S is a fixed (but arbitrary) state.

The Markov chain is recurrent if and only if the only bounded solution to
(2.7) is given by α(j) = 0, j 6= i.

Partial proof of Theorem 15: For fixed (but arbitrary) i ∈ S define

α(j) = P(Ti = +∞|X(0) = j) where Ti = inf{n ≥ 0|X(n) = i}.

Note that α(j) is the probability of never visiting state i given that the
Markov chain starts in state j. By splitting the event (Ti = +∞) ac-
cording to the state of the first jump from X(0) = j then it is straight-
forward to show that {α(j)}j∈S\{i} is a bounded solution to (2.7). One
deduces that if α(j) = 0 is the only bounded solution then we must
have for all j 6= i that

P(Ti < ∞|X(0) = j) = 1.

In particular, state i is recurrent since we may deduce from the
Markov property that

P(Ti < ∞|X(0) = i) = Pi,i + ∑
j 6=i

Pi,j · P(Ti < ∞|X(0) = j)

= Pi,i + ∑
j 6=i

Pi,j · 1 = 1.
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The non-trivial part of Theorem 15 is to show that if any non-zero
bounded solution to (2.7) exists then we must also have

P(Ti = +∞|X(0) = j) > 0

for at least one j 6= i implying (trivally) that the irreducible Markov
chain is not recurrent. The proof of this implication may be found in
Jacobsen and Keiding [1985] . �
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Figure 2.5: In Example 16 we study the
recurrence properties of a Markov chain
on Z which is a simple modification of
the random walk from Example 14.

Example 16 (Modified random walk on Z) Consider the modified
random walk with transition diagram given in Figure 2.5. For p, q > 0
(-and p + q ≤ 1) the Markov chain is irreducible and we shall try to use
Theorem 15 to determine the recurrence properties of the Markov chain 10 . 10 You are encouraged to try to write

down closed form expressions for the
n-step transition probabilities (Pn)i,i .
You may use some of the same ideas as
in Example 14 or Exercise 2.4.2. Then
try to see if you can use the recurrence
criterion from Theorem 10 by determin-
ing exactly when ∑∞

n=1(Pn)i,i = +∞.
This may require some work!

Step 1: First we need to choose some arbitrary state, i, and write down
the system of equations given by (2.7) in Theorem 15. Since the transition
probabilities are symmetric in all states we just use i = 0 and get the
following system of equations

α(j) = qα(j− 1) + (1− p− q)α(j) + pα(j + 1), |j| > 1,

α(−1) = qα(−2) + (1− p− q)α(−1)

α(1) = (1− p− q)α(1) + pα(2).

Note that in accordance with (2.7) we are a bit careful when we write out the
equations corresponding to α(j) where Pj,0 > 0.

Step 2: The next step is to solve the system of equations from Step 1.
Since there are infinitely many equations (-one for each j 6= 0) this is only
possible if the structure of the equations is very simple. Rearranging the
terms we get that

α(j) =
q

p + q
α(j− 1) +

p
p + q

α(j + 1), |j| > 1,

which is a so-called second order linear difference equation . The general
solution to equations of this form is well known and may be found using the
result in Appendix B.5. In the remaining part of the Example we consider
only the case p = q 11. From Appendix B.5 we get that the general solution 11 It is a useful exercise to repeat Step

1-4 in Example 16 for the case q 6= p.(-using only the equations for α(j), |j| > 1) must have the form

α(j) = c1 + c2 j, j ≥ 1

α(j) = c3 + c4 j, j ≤ −1.
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Step 3: To apply Theorem 15 we are only interested in bounded so-
lutions to the system of equations from Step 1. From the general form
of the solution found in Step 2 we must have c2 = c4 = 0 to obtain a
bounded solution. Plugging the resulting solution (α(j) = c1, j ≥ 1 and
α(j) = c3, j ≤ −1) into the equations for α(1) and α(−1) we get

c3 = qc3 + (1− p− q)c3

c1 = (1− p− q)c1 + pc1.

Since 0 < p, q the only possible values for c1 and c3 are zero.
Step 4: In Step 1-3 we have shown that the only bounded solution to

(2.7) is given by α(j) = 0, j 6= 0. In particular, it follows from Theorem 15
that for 0 < p = q the modified random walk is recurrent. �

Limit results and invariant probabilities

The aim of this section is to study the limiting (also called the long-
run) behaviour of a Markov chain. More precisely we want to study
P(X(n) = j) as n→ ∞ which due to the identity

P(X(n) = j) = ∑
i∈S

P(X(n) = j|X(0) = i)P(X(0) = i)

= ∑
i∈S

P(X(0) = i)Pn
i,j

boils down to understanding the behaviour of the n-step transition
probabilities Pn

i,j as n→ ∞.

In order to discuss the long-run behaviour of a Markov chain
we need to introduce the period of a state. To motivate the defini-
tion consider the random walk from Example 14. Assuming that the
Markov chain starts in state 0 at time 0 let us consider the probabili-
ties P(X(n) = 0|X(0) = 0) of being back in state 0 after n steps.

Clearly, P(X(1) = 0|X(0) = 0) = 0 and by adding up the probabi-
lity of all paths leading to (X(2) = 0), we see that

P(X(2) = 0|X(0) = 0) = 2p(1− p).

It turns out that in general we have

P(X(n) = 0|X(0) = 0) = 0

for n = 1, 3, 5, . . . since any closed path starting and ending at state 0
must have an even number of jumps.

If we define the period of a state i ∈ S as the greatest common
divisor of the length of all possible loops starting and ending in state
i, then we have demonstrated that for the random walk on Z then
state 0 has period 2 .
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The period of a Markov chain is important for the long term be-
haviour of X(n). For the random walk on Z the only possible limit
of

lim
n→∞

P(X(n) = 0|X(0) = 0)

is zero since every second element of the sequence is zero. Note,
however, that it requires an argument to show that the limit actually
exists. More generally, the period of state j turns out to be important
for the study of the n-step transition probabilities Pn

i,j as n→ ∞.

Definition 17 (Period of a Markov chain) For a discrete-time Markov
chain on S a loop of length n is a sequence of states i0, i1, . . . , in ∈ S with
i0 = in. We will speak of a possible loop if

Pi0,i1 · Pi1,i2 · . . . · Pin−1,in > 0.

Introduce

Di = {n ∈N| there exists a possible loop of length n with i0 = in = i}

and define per(i) (-the period of state i) as the largest number dividing all
numbers in the set Di. �

Theorem 18 All states of a communication class have the same period and
we shall use the term aperiodic about a class of period 1. An irreducible,
aperiodic Markov chain is a Markov-chain with one communication class of
period 1.

Proof: For i and j in the same communication class choose k, l ∈ N

such that Pk
i,j > 0 and Pl

j,i > 0. It follows from Definition 17 that
m = l + k belongs to both of the sets Di and Dj. If n ∈ Di (i.e. if
there is a loop of length n from i to i), then there is a loop of length
l + n + k from j to j showing that also n + m ∈ Dj. By definition per(j)
divides all numbers in Dj and since both m, n + m ∈ Dj we conclude
that per(j) also divides n. We have thus shown that per(j) is a number
that divides all n ∈ Di. Since per(i) is the greatest number dividing
all n ∈ Di we conclude that per(i) ≥ per(j). The opposite inequality
follows by symmetry and we conclude that per(i) = per(j). �

1

2 3
1/2

1/21

1

Figure 2.6: Transition diagram for
a discrete-time Markov chain with
three states and period 2. Direct com-
putations in Example 19 show that
limn→∞ P(X(n) = j) only exists un-
der certain conditions on the initial
distribution P(X(0) = i).

Example 19 Figure 2.6 shows an irreducible Markov chain with period 2.
For an arbitrary initial distribution

P(X(0) = i) = φ(i)

we find that

P(X(n) = 1) =

{
φ(1) , n even

φ(2) + φ(3) , n odd

P(X(n) = 2) =

{
1
2 · φ(1) , n odd

1
2 · (φ(2) + φ(3)) , n even

.
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This shows that limn→∞ P(X(n) = j) exists if and only if

φ(1) = φ(2) + φ(3).

�

In Example 19 above we saw that the initial distribution may influ-
ence the long run behaviour for a (periodic) Markov chain. The main
result on the limiting behaviour for discrete time Markov chains
(Theorem 20) states that for aperiodic, recurrent Markov chains then
the limit limn→∞ P(X(n) = j) exists and do not depend on the initial
distribution.

Theorem 20 For an irreducible, recurrent and aperiodic discrete-time
Markov chain then for any state i and any initial distribution it holds that

lim
n→∞

P(X(n) = i) = 1
E[Ti |X(0)=i] .

If E[Ti|X(0) = i] = +∞ the limit on the right hand side is defined to be 0.

Comments on the proof: The proof of the main result may be based
on the renewal theorem (-see Appendix C or Asmussen [2003, Chap-
ter 1.2]). �

The limit in Theorem 20 involves the expectation of the return time

Ti = inf{n > 0|X(n) = i}

to state i that was introduced just before Defintion 8 on page 20 in
Chapter 2

12. The formal definition of the expectation in Theorem 20
12 We adopt the usual convention that
inf ∅ = +∞ corresponding to letting
Ti = +∞ if X(n) never hits state i.

is

E[Ti|X(0) = i] =
∞

∑
n=1

n · P(Ti = n|X(0) = i)

+ (+∞) · P(Ti = +∞|X(0) = i)

where
P(Ti = +∞|X(0) = i)

describes the probability that the Markov chain never returns to state
i.

If i belongs to a recurrent communication class then we know that

P(Ti = +∞|X(0) = i) = 0

implying that we are sure to get back to state i. Note, however, that
even in this case the mean return time

E[Ti|X(0) = i] =
∞

∑
n=1

n · P(Ti = n|X(0) = i)

may or may not be finite.
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Definition 21 (Positive recurrence and null-recurrence) A recurrent
state i is said to be positive recurrent if and only if the mean return time to
state i is finite

E[Ti|X(0) = i] < +∞.

Otherwise the recurrent state is said to be null-recurrent . It can be shown
that all states belonging to the same recurrent class are either positive recur-
rent or null-recurrent 13. � 13 A formal argument is given after the

proof of Theorem 22 below.

It follows from Theorem 20 and Definition 21 that for an irre-
ducible, positive recurrent and aperiodic Markov chain then the
distribution of X(n) has a nonzero limit. In the current formulation
the result is not very useful because we are rarely able to compute
E[Ti|X(0) = i] implying that we can not determine if the Markov
chain is positive recurrent (and much less find the limit in Theorem
20!).

From a more practical point of view we might note that by using
the initial distribution P(X(0) = i) = 1 then Theorem 20 implies that
if the Markov chain is positive recurrent then the n-step transition
probabilities

(Pn)i,j = P(X(n) = j|X(0) = i)

should have a limit as n → ∞. Using numerical methods it might
be possible to compute (Pn)i,j for large values of n to get an idea of
the value of the limit (and whether it exists). For Markov chains on a
finite state space you may use that n-step transition probabilities are
obtained by multiplication of the transition matrix P by itself n times
(-see Theorem 2).

It turns out that we can give a useful characterization of the limit
in Theorem 20 in terms of the solution to a system of equations in-
volving the transition probabilities. To motivative the relevant defini-
tion consider the following identity

P(X(n + 1) = j|X(0) = i)

= ∑
l∈S

P(X(n + 1) = j, X(n) = l|X(0) = i)

= ∑
l∈S

P(X(n + 1) = j|X(n) = l) · P(X(n) = l|X(0) = i)

= ∑
l∈S

P(X(n) = l|X(0) = i) · Pl,j

which follows from the Markov property (2.1) on page 15. Assuming
that the limits limn→∞ P(X(n) = j|X(0) = i) exist then it is tempting
to interchange limit and summation 14 to get 14 The argument at least holds for

Markov chains on a finite state space.
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π(j) = lim
n→∞

P(X(n + 1) = j|X(0) = i)

= ∑
l∈S

{
lim

n→∞
P(X(n) = l|X(0) = i)

}
· Pl,j

= ∑
l∈S

π(l)Pl,j. (2.8)

A non-negative vector, π = (π(j))j∈S, solving the system of equations
(2.8) for all j ∈ S is called an invariant measure for the transition
probabilities, P = (Pi,j)i,j∈S. If π is a probability (i.e. if all π(j) ≥ 0
and ∑j∈S π(j) = 1) we will speak of an invariant distribution for P.

We have demonstrated that (at least in certain cases) the limit of
Theorem 20 must be found among the solutions to the equation (2.8)
(i.e. among the class of invariant measures for P). Note that if π

solves (2.8) then any vector obtained by multiplying π (coordinate
wise) by a constant will also be a solution. Further there might be
multiple invariant measures (not proportional!) in which case we
have to be careful because only one of these can be related to the
limit limn→∞ P(X(n) = i).

The following result states that for irreducible and recurrent
Markov chains then there is a unique invariant measure 15. 15 For a Markov chain on a finite state

space, |S| < +∞, then the vector
(1, . . . , 1)T is a (right) eigenvector with
eigenvalue 1 for the transition matrix
P. In particular, the transposed matrix
PT has a (right) eigenvector ν with
eigenvalue 1 satisfying the equation
PTν = ν. With π = νT we conclude
that πP = π. If π(i) > 0 and state j is
accessible from i (i.e. Pm

i,j > 0 for som
m > 0) then

π(j) = ∑
l

π(l)Pm
l,j ≥ π(i)Pm

i,j > 0.

It follows that for irreducible finite
state Markov chains then we can find
a solution to (2.9) with π(j) > 0 for
all j ∈ S. After normalisation we have
an invariant probability vector. Now,
by Theorem 22 all invariant measures
are proportional in particular they will
all have finite mass. Consequently,
irreducible, recurrent Markov chains
on a finite state space will always be
positive recurrent.

Theorem 22 (Existence and uniqueness of invariant measures) For
an irreducible, recurrent Markov chain, (X(n))n≥0, there is a unique (up to
multiplication!) invariant measure solving the equations

ν(j) = ∑
i∈S

ν(i)Pi,j, j ∈ S. (2.9)

The unique solution (up to multiplication) is given by

ν(j) = E

[
Ti−1

∑
n=0

1(X(n) = j)|X(0) = i

]
(2.10)

where i ∈ S is any fixed state. The solution can be normalized into an
unique invariant probability if and only if E[Ti|X(0) = i] < +∞ i.e. if and
only if the Markov chain is positive recurrent. .

Sketch of proof: Note that since i is recurrent then

P(Ti < +∞|X(0) = i) = 1.

Consequently

ν(j) = E

[
Ti−1

∑
n=0

1(X(n) = j)|X(0) = i

]

= E

[
Ti

∑
n=1

1(X(n) = j)|X(0) = i

]

= E

[
∞

∑
n=1

1(X(n) = j, X(n− 1), . . . , X(1) 6= i|X(0) = i

]
.
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Taking the sum outside the expectation and using the Markov pro-
perty it now follows that (ν(j))j∈S is a solution to (2.9). The same
trick (-interchanging sum and expection) shows that the total mass of

∑
j∈S

ν(j) = E[Ti|X(0) = i]

in particular positive recurrence (c.f. Definition 21) of i implies that
the invariant measure {ν(i)}i∈S can be normalized into an invariant
distribution.

We skip the proof of the uniqueness part, however, more details
may be found in questions 6.-10. of Exercise C.3 in Appendix C. �

We are allowed to use two different
fixed states i, ĩ ∈ S to construct the
invariant measures in Theorem 22.
The total mass of the measures are
E [Ti |X(0) = i] and E

[
Tĩ |X(0) = ĩ

]
.

Since the measures are unique up to
multiplication we conclude that either
both measures are finite or both mea-
sures are infinite. This demonstrates
that states in a recurrent commu-
nication class are either all positive
recurrent or all null-recurrent which
was postulated in Definition 21.

We are now in a position to gather and reformulate the above
results into the main result concerning the limiting behaviour for
discrete time Markov chains.

Theorem 23 For an irreducible, aperiodic and positive recurrent Markov
chain it holds that

lim
n→∞

P(X(n) = j) = π(j) =
1

E[Tj|X(0) = j]

where π = (π(j))j∈S is the unique invariant probability vector solving the
system of equations

π(j) = ∑
i∈S

π(i)Pi,j.

Proof: We know from Theorem 22 that there exists an invariant
distribution π if and only if E[Ti|X(0) = i] < +∞ for some state i and
that the solution is unique. The unique invariant probability may be
represented as

π(j) =
ν(j)

E[Ti|X(0) = i]

where i is any fixed state in S. In particular, choosing i = j then we
have ν(j) = 1 implying that π(j) = 1

E[Tj |X(0)=j] . The result now

follows from Theorem 20. �

The results above cover the limiting behaviour of P(X(n) = j) for
aperiodic and positive recurrent states j 16 A little more can be said 16 Exercises 2.3.2 and 2.4.6 demonstrate

the use of Theorem 23.concerning the limit for null-recurrent or transient states.

Theorem 24 (Limit result for null-recurrent states) For a null-
recurrent state j it holds that

lim
n→∞

P(X(n) = j) = 0

for any choice of initial distribution.

Proof: The proof may be found in Asmussen [2003, Chapter 1]. �
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Theorem 25 (Limit result for transient states) For a transient state j it
holds that The identity (2.8) may be iterated to

π(j) = ∑
l∈S

π(l)(Pn)l j

allowing us to conclude (use dominated
convergence!) that π(j) = 0 for a
null-recurrent or transient state j for
any invariant probability vector. In
particular, you can just put π(j) = 0
when you write down the system of
equations for an invariant proabability
which may save you a lot of time.

lim
n→∞

P(X(n) = j) = 0

for any choice of initial distribution.

Proof: Since j is transient it follows from (2.6) on page 22 in the proof
of Theorem 10 that ∑∞

n=1(Pn)i,j < +∞. In particular, for any i ∈ S it
holds that

P(X(n) = j|X(0) = i) = (Pn)i,j
n→∞→ 0.

For an arbitrary initial distribution φ(i) = P(X(0) = i) we therefore
get by dominated convergence that

P(X(n) = j) = ∑
i∈S

P(X(n) = j|X(0) = i)φ(i)→ 0,

for n→ ∞. �

We finally state a result explaining the limiting behaviour of irre-
ducible Markov chains with period larger than one (i.e. not aperiodic
Markov chains).

Theorem 26 (Limit result for periodic states) For an irreducible
Markov chain with period d > 1 the limit limn→∞ P(X(n) = i) does not
exist for an arbitrary initial distribution. However, the average distribution
over a period of length d has a limit

lim
n→∞

P(X(n) = i) + P(X(n + 1) = i) + . . . + P(X(n + d− 1) = i)
d

.

If the limit (-denoted π(i)) describes a probability distribution (i.e. if
∑i∈S π(i) = 1) then π = (π(i))i∈S is a unique invariant distribution
for the Markov chain.

Proof: The proof may be found in Jacobsen and Keiding [1985]. �

Example 27 (Example 19 continued) The three state Markov chain
in Example 19 (-see Figure 2.6) has period 2 and we saw that existence of
a limit limn→∞ P(X(n) = j) depends strongly on the choice of initial
distribution P(X(0) = j). It may be shown (try!) that the Markov chain
has an invariant distribution given by π = (1/2, 1/4, 1/4). In particular,
it follows from Theorem 26 that

lim
n→∞

P(X(n) = j) + P(X(n + 1) = j)
2

= π(j)

for an arbitrary initial distribution. The message here is that to obtain a
limit for a Markov chain with period d we have to average the distribution
of {X(n)}n∈N0 over d consecutive time points, if the result should hold
independently of the initial distribution. Note however also that Example 19
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demonstrates that even for periodic Markov chains there may be other initial
distributions than the invariant for which the limit limn→∞ P(X(n) = j)
does exists. �

If the Markov chain is not irreducible then we may apply the re-
sults of this section to each recurrent communication class. For each
of the positive recurrent classes there exists a unique invariant dis-
tribution with positive probabilities only for the states in the class.
However, any convex combination of the invariant distribution on
the positive recurrent subclasses constitutes an invariant probability
on the entire state space of the Markov chain. In particular, in this
case the invariant probability distribution is no longer unique (-see
Exercise 2.3.1).

Absorption probabilities

Recurrent classes are closed: once the Markov chain enters a re-
current class then it stays there forever. Transient classes may or
may not be closed but in either case we know from Theorem 25 that
limn→∞ P(X(n) = j) = 0 for any transient state j. If a transient class
is not closed then the Markov chain is not irreducible and there can
be several other recurrent or transient classes 17. 17 The random walk on Z with pa-

rameter p 6= 1/2 is an example of
a Markov chain containing only one
closed transient class. In this case the
interpretation of Theorem 25 is that
the probability mass gets spread out
over infinitely many transient states as
n→ ∞.

This naturally raises the following questions: if a Markov chain
with multiple communication classes (i.e. not irreducible) is started
in a transient state i in class T , how many times will it visit state i
before it leaves the state for good, and what is the probability that
it will leave class T by jumping to any of the other communication
classes of the Markov chain?

Theorem 28 (Absorption probabilities - finite state space) Consider
a finite state Markov chain with transition matrix P. Suppose that the states
are ordered such that P can be decomposed as a block matrix

P =

(
P̃ 0
S Q

)

where P̃ is the transition matrix restricted to the recurrent states. Similarly,
Q is the submatrix of P restricted to the transient states, and S describes
transition probabilities from transient to recurrent states. The 0 block in
the upper right part of P reflects the fact that transitions from recurrent to
transient states are not possible.

The ij-th entry of the matrix M = (I − Q)−1 describes the expected
number of visits to the transient state j before the Markov chain reaches one
of the recurrent states given that the Markov chain starts in the transient
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state i (i.e. P(X(0) = i) = 1). Here, I denotes the identity matrix with zero
off-diagonal and a diagonal of ones.

The ij-th entry of
A = (I −Q)−1S

is the probability that j is the first recurrent state reached by the Markov
chain when started in the transient state i (i.e. P(X(0) = i) = 1).

Proof: Let C be the set of recurrent states and let

τ = inf{n > 0|X(n) ∈ C}

be the time of the first visit to a recurrent state. Let (X̃(n))n≥0 be
an auxiliary Markov chain with a modified transition matrix, Pmod,
obtained by letting all recurrent states be absorbing (i.e. Pi,i = 1 for
all i ∈ C). Note that for any event that does only involve the time
before and including τ then we may substitute the original Markov
chain with (X̃(n))n≥0.

The number, Nj, of visits to a transient state j before τ may be
expressed as 18 18 There is a slight abuse of notation

below, which you may notice if you are
familiar with the notation of random
variables.Nj =

∞

∑
n=0

1(X̃(n) = j, X̃(n− 1), . . . , X̃(0) /∈ C) =
∞

∑
n=0

1(X̃(n) = j),

where the last equality follows from the fact that we can only have
X̃(n) = j if the Markov chain stays in the transient states from time 0
to n− 1.

Now, by direct computation we have

Pmod =

(
I 0
S Q

)
⇒ Pn

mod =

(
I 0
S Q

)n

=

(
I 0(

∑n−1
i=0 Qi

)
S Qn

)

where we use the notation Q0 = I. Taking expectations and using the
formula (2.3) on page 17 for the distribution of X̃(n) we get that

E[Nj|X(0) = i] =
∞

∑
n=0

P(X̃(n) = j|X̃(0) = i)

=
∞

∑
n=0

(Pn
mod)i,j =

∞

∑
n=0

(Qn)i,j.

Introducing the notation R = ∑∞
n=0(Q

n) then we observe that 19 19 It requires a formal argument to
show that all entries of R are finite: use
Theorem 10 to deduce that since j is
transient then ∑∞

n=0(Q
n)j,j < +∞. Then

look carefully into the proof of Theorem
10 to locate an inequality ensuring that
also ∑∞

n=0(Q
n)i,j < +∞ for any other

state i.

R = I + Q(
∞

∑
n=0

Qn) = I + QR

in particular we have that R = (I − Q)−1. This demonstrates that
given X(0) = i then the expected number of visits to state j before
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absorption in a recurrent class may be found as the ij-th entry of
M = (I −Q)−1.

For a recurrent state j ∈ C then the event (X(τ) = j) involves only
the behaviour of the Markov chain up to time τ. In particular, we
may compute the probability P(X(τ) = j) by substituting (X(n))n≥0

with (X̃(n))n≥0. Consequently we have for any recurrent state j ∈ C
that

P(X(τ) = j|X(0) = i)

= P(X̃(τ) = j|X̃(0) = i)

=
∞

∑
n=0

∑
l /∈C

P(X̃(n) = l, X̃(n + 1) = j|X̃(0) = i)

=
∞

∑
n=0

∑
l /∈C

P(X̃(n) = l|X̃(0) = i)P(X̃(n + 1) = j|X̃(n) = l)

=
∞

∑
n=0

∑
l /∈C

(Pn
mod)i,l (Pmod)l,j

=
∞

∑
n=0

∑
l /∈C

(Qn)i,l Sl,j = (RS)i,j =
(
(I −Q)−1S

)
i,j

.

�

Theorem 28 is often applied to the situation where all recurrent
classes are sets with only one element. In this situation all recurrent
states are absorbing states and we have P̃ = I. The result then gives
us the absorption probabilities for each of the absorbing states.

If the Markov chain contains more than one recurrent class then
Theorem 28 may be used to compute the probability that the Markov
chain will end its life in each of the recurrent classes. Note that in
the long-run the total probability of being absorbed in a particular
recurrent class will be redistributed on individual states according to
the invariant distribution restricted to the relevant class (at least if the
class is aperiodic).

Example 29 (Absorption probabilities) The purpose of the present
example is to illustrate various applications of Theorem 28 on a Markov
chain, (X(n))n≥0, with a finite state space S = {1, 2, 3, 4, 5, 6} 20. The 20 To get some practice using Theorem

28 try to do Exercise 2.3.8transition diagram for the Markov chain is displayed in Figure 2.7.
We want to answer the following questions

1. Find the communication classes for (X(n))n≥0.

We assume that the Markov chain starts in state 5 and define the time

τ = inf{n > 0|X(n) 6= 3, 4, 5}

of the first exit from states 3, 4, 5.
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1 2 3

4

5

6

1/2

1/2

1 1/3

1/3

1/3

1/2

1/2

1/2

1/2

1 Figure 2.7: Transition diagram for the
discrete-time Markov chain with six
states considered in Example 29.

2. Find P(X(τ) = i) for i = 1, 2, 6.

3. Compute the mean number of visits to state 4 before τ.

4. Find the probability that the first visit to state 6 happens before the first
visit to state 4.

5. Find the probability that the first visit to state 6 happens before the first
visit to state 3.

There are three communication classes given by C1 = {1, 2}, C2 = {3, 4, 5}
and C3 = {6}. C1 and C3 are finite, closed classes and hence positive
recurrent according to the note in the margin of page 34. C2 is transient
since there is a positive probability of leaving class C2 without ever getting
back.

The solution to questions 2. and 3. may be obtained by straightforward
application of Theorem 28. We reorder the states in the order {1, 2, 6, 3, 4, 5}
and decompose the transtion matrix as

P =

(
P̃ 0
S Q

)

where

P̃ =

 1/2 1/2 0
1 0 0
0 0 1

 S =

 0 1/3 0
0 0 0
0 0 1/2

 Q =

 0 1/3 1/3
1/2 0 1/2

0 1/2 0

 .

Then we compute the matrices

A = (I−Q)−1S =

 0 1/2 1/2
0 1/3 2/3
0 1/6 5/6

 M = (I−Q)−1 =

 3/2 1 1
1 2 4/3

1/2 1 5/3

 .
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From the row of A corresponding to the initial state 5 we get that

P(X(τ) = i) =


0 , i = 1

1/6 , i = 2
5/6 , i = 6

.

The (3, 2)-th entry of M (-corresponding to states (5, 4)) gives the answer to
question 3. The expected number of visits to state 4 before τ is 1 given that
we start the Markov chain at X(0) = 5.

By looking at the transition diagram on Figure 2.7 we see that the only
way that state 4 may be reached before state 6 is if the first jump goes from
state 5 to state 4. Thus the answer to question 4. is 1/2.

The answer to question 5. requires a little more work. One possibility is
to write down all possible paths of the Markov chain for which the chain will
visit state 3 before state 6 and add up the probabilities for all these paths.
Another way to get the solution to question 5. is to consider a modified
version of the Markov chain that follows the original chain (X(n))n≥0 until
the first visit of either state 3 or state 6. This may be done by changing the
transition matrix

P =



1/2 1/2 0 0 0 0
1 0 0 0 0 0
0 1/3 0 1/3 1/3 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 0 0 0 0 1


to Pmod as follows

Pmod =



1/2 1/2 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 1/2 0 1/2 0
0 0 0 1/2 0 1/2
0 0 0 0 0 1


such that states 3 and 6 become absorbing. Using the decompostion in The-
orem 28 on Pmod (-after reordering the states as {1, 2, 3, 6, 4, 5} ) we get
that

Smod =

(
0 0 1/2 0
0 0 0 1/2

)
Qmod =

(
0 1/2

1/2 0

)
.

The 2-th row (-corresponding to state 5) of

Amod = (I −Qmod)
−1Smod =

(
0 0 2/3 1/3
0 0 1/3 2/3

)
describes the distribution of the value of the Markov chain at the time of the
first visit to the set {1, 2, 3, 6}. �
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Theorem 28 is stated in terms of matrix operations and is therefore
restricted to Markov chains on a finite state space. For Markov chains
on a countable state space absorption probabilities may be found
by solving a countably infinite system of equations as explained in
Theorem 30.

Theorem 30 (Absorption probabilities - countable state space) For a
Markov chain on S let C be a recurrent class. The probabilities

α(j) = P(X(n) ∈ C for some n ≥ 0|X(0) = j), j ∈ C ′ ← transient states

that the chain will ever visit class C (and stay there forever) then solves the
system of equations

α(j) = ∑
l∈C ′

Pj,lα(l) + ∑
l∈C

Pj,l . (2.11)

The absorption probability (α(j))j∈C ′ is the smallest non-negative solution
to (2.11). There is a unique bounded solution to (2.11) if and only if there is
zero probability that the Markov chain stays in the transient states forever.

Comments on the proof: The first part of the theorem has a rather
intuitive content. Given that the Markov chain starts at some tran-
sient state X(0) = j then it may enter the closed recurrent class C
in two different ways. It may either jump directly to a state l ∈ C
(with probability Pj,l), or it may jump to another transient state l ∈ C ′
(with probability Pj,l) and then eventually move from state l to the
class C (with probability α(l)). Due to the Markov property the latter
probabilities may be multiplied yielding the identity (2.11) 21. 21 Note the we do not need to consider

the possibility that the Markov chain
jumps from the initial state j to some
(recurrent) state l 6= C ∪ C ′ since
then α(l) = 0 and there will be no
contribution to (2.11).

The difficult part of the proof is to characterize the absorption
probability as the smallest non-negative solution to (2.11). Example
31 below describes a situation where there are multiple non-negative
solutions. In particular, the latter part of the theorem is crucial if we
want to compute absorption probabilities for Markov chains with
infinitely many transient states.

The complete proof of Theorem 30 may be found in Jacobsen and
Keiding [1985]. �

Example 31 (Random walk with absorption at zero) In this example
we consider a Markov chain, (X(n))n≥0, on N0 with transition probabili-
ties given by

Pi,i+1 = 1− Pi,i−1 = pi ∈ (0, 1), i ≥ 1, P0,0 = 1.

Note that the Markov chain has two communication classes given by N

and {0} where the latter is an absorbing state. If we define the first hitting
time of state i by

Ti = inf{n > 0|X(n) = i}



ABSORPTION PROBABILITIES 43

0 1 2 3 . . .1

p1

1− p1

p2

1− p2

p3

1− p3

Figure 2.8: The absorption probabilities
for the absorbing random walk on
N0 considered in Example 31 may be
computed using Theorem 30.

then we have for i ≥ 1 that

P(Ti = +∞|X(0) = i) ≥ (1− pi)(1− pi−1) · . . . · (1− p1) > 0

which shows that state i is transient according to Definition 8.

We consider the probability

α(i) := P(T0 < +∞|X(0) = i)

that the Markov chain will ever be absorbed in state 0 given that X(0) = i.
Using Theorem 30 then (a(i))i≥1 may be characterised as the smallest,
nonnegative solution to the system of equations given by

α(i) = Pi,0 + ∑
j 6=0

Pi,jα(j) =

{
(1− p1) + p1 · α(2) , i = 1

(1− pi) · α(i− 1) + pi · α(i + 1) , i > 1.

One has to be very careful to get all steps of the argumentation correct
when applying Theorem 30. Therefore you are encouraged to go very slowly
through the remaining part of this example.

We restrict our attention to the case where all pi = p ∈ (0, 1) (constant).
In this case (2.11) writes out as

α(j) = (1− p)α(j− 1) + pα(j + 1), j ≥ 2

α(1) = pα(2) + 1− p,

and we may use the result on linear recurrence equations in Appendix B.5
to find the set of solutions. Referring to the notation in the Appendix B.5 we
get

α1 =
1 +

√
1− 4p(1− p)

2p
, α2 =

1−
√

1− 4p(1− p)
2p

.

The square root is zero for p = 1/2 and for p 6= 1/2 the two solutions turn
out to be 1 and 1−p

p .

For p = 1/2 the set of solutions is given by

α(i) = c1 + c2 · i, i ≥ 1,

with the boundary condition (corresponding to j = 1)

c1 + c2 · 1 = 1/2 + 1/2(c1 + c2 · 2)
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implying that c1 = 1. For the solution

α(i) = 1 + c2 · i, i ≥ 1,

to be nonnegative we must have c2 ≥ 0 and the smallest solution is obtained
by letting c2 = 0. We conclude from Theorem 30 that for p = 1/2 then
α(i) = 1, i ≥ 1, that is the Markov chain will be absorbed at 0 with
probability 1.

For p 6= 1/2 we get from Appendix B.5 that any solution must have the
form

α(i) = c1 + c2 ·
(

1− p
p

)i
, i ≥ 1,

with the additional boundary condition that α(1) = (1− p) + pα(2) from
where one may deduce that c1 = 1− c2. The resulting expression for α(i)
now looks like

α(i) = (1− c2) · 1 + c2 ·
(

1− p
p

)i
, i ≥ 1.

For 1−p
p > 1 then the solution will only be nonnegative for c2 ≥ 0 and we

see that the smallest solution is actually obtained for c2 = 0 where we have
that α(i) = 1, i ≥ 1. We conclude from Theorem 30 that the Markov chain
will be absorbed in state 0 with probability 1 if 1−p

p > 1.

For the remaining case 1−p
p < 1 we observe that α(i) → 1 − c2 for

i → ∞ hence the solution will be nonnegative only if 1− c2 ≥ 0. On the
other hand from the formula

α(i) = (1− c2) · 1 + c2

(
1−p

p

)i

we observe that the smallest, nonnegative solution is obtained for c2 = 1.
We conclude that for 1−p

p < 1 then the probability that the Markov chain
will ever be absorbed in state 0 given that X(0) = i becomes

α(i) =
(

1−p
p

)i
, i ≥ 1.

�

We end this chapter by discussing how to determine the limiting
behaviour for Markov chains that are not irreducible. We know from
Theorem 25 that limn→∞ P(X(n) = j) = 0 for any transient state
j ∈ T . For a recurrent state j (∈ C1 say) then we may denote by

τ = inf{n ≥ 0|X(n) ∈ C1}

the time of the first visit to class C1. By splitting the event (X(n) = j)
according to the time k = 0, . . . , n and the state X(τ) = i ∈ C1 of the
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T (transient)

C1 (recurrent) C2 (recurrent)

Figure 2.9: Generic picture of a Markov
chain with two recurrent classes C1
and C2. The set of transient states
are denoted by T and may consist of
several communication classes.

first visit to class C1 then we get (j is fixed below!)

P(X(n) = j)

=
n

∑
k=0

∑
i∈C1

P(X(n) = j, τ = k, X(τ) = i)

=
∞

∑
k=0

1(k ≤ n) ∑
i∈C1

P(X(n) = j, X(k) = i, X(k− 1), . . . , X(0) /∈ C1)

=
∞

∑
k=0

1(k ≤ n) ∑
i∈C1

{P(X(n) = j|X(k) = i, X(k− 1), . . . , X(0) /∈ C1)

×P(X(k) = i, X(k− 1), . . . , X(0) /∈ C1)}

=
∞

∑
k=0

1(k ≤ n) ∑
i∈C1

P(X(n) = j|X(k) = i)P(X(k) = i, X(k− 1), . . . , X(0) /∈ C1)

=
∞

∑
k=0

1(k ≤ n) ∑
i∈C1

Pn−k
i,j P(X(k) = i, X(k− 1), . . . , X(0) /∈ C1)

=
∞

∑
k=0

∑
i∈C1

1(k ≤ n)Pn−k
i,j︸ ︷︷ ︸

:= fn(k,i)

P(X(τ) = i, τ = k).

If we let ν denote the measure on the discrete set N0 × C1 with den-
sity

ν({(k, i)}) = P(X(τ) = i, τ = k)

then the formula above may be written as

P(x(n) = j) = ∑
(k,i)∈N0×C1

fn(k, i)v({(k, i)}) =
∫

fndν. (2.12)

Now, if C1 is null-recurrent then we know from Theorem 24 that
limn→∞ Pn

i,j = 0 for all i, j ∈ C1. In particular we have that

lim
n→∞

fn(k, i) = 0, (k, i) ∈N0 × C1.
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Similarly, by Theorem 20 for C1 aperiodic and positive recurrent then

lim
n→∞

fn(k, i) = π(j), (k, i) ∈N0 × C1,

where π = (π(j))j∈C1 is the unique invariant distribution on C1.

Interchanging limit and summation in (2.12) (formally using domi-
nated convergence) then we get

lim
n→∞

P(X(n) = j) = 0

if j is null-recurrent and

lim
n→∞

P(X(n) = j) = π(j) ∑
(k,i)∈N0×C1

ν({(k, i)}) = π(j)P(τ < +∞)

if j is aperiodic and positive recurrent. The interpretation of the lat-
ter expression is that if the Markov chain gets absorbed in class C1

then the absorption probability P(τ < +∞) will in the long run be
distributed on C1 according to the invariant probability π on C1.

We emphasize that for a positive recurrent class with period larger
than one then no general limit result holds.



Exercises on Markov chains in discrete time

Markov chains with two states

2.1.1 General two state Markov chain

We consider a Markov chain on S = {1, 2} with transition diagram
given on Figure 2.10. We assume that X(0) = 1.

1 2

1/3

1/2

Figure 2.10: Transition diagram for
Markov chain in Exercise 2.1.1 and
2.1.2. Note that loops are sometimes
omitted from a transition diagram. You
are supposed to deduce from the figure
that P1,1 = 2/3 and P2,2 = 1/2.

1. Write down the transition matrix P of the Markov chain.

2. Compute P(X(1) = 1) and P(X(1) = 2).

3. Find the distribution of X(2) and X(3).

4. Compute P2 and P3 and compare with the results of questions
2.-3.

5. Compute also P10.

Assume in the following that the initial distribution of X(0) is given
by φ(1) = φ(2) = 1/2.

6. Compute the distribution of X(1).

7. Let φ = (φ(1), φ(2)) and compute φP, φP2, and φP3. What did you
actually compute?

8. Find the distribution of X(5).

9. Find the invariant probability vector π = (π1, π2) of the Markov
chain by solving the matrix equation πP = π that may be written
out as

π1P11 + π2P21 = π1 and π1P12 + π2P22 = π2.

10. Compare the results of questions 5., 8., and 9.
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2.1.2 Recurrence times

We consider again the Markov chain of Exercise 2.1.1 given by Figure
2.10. Assume that X(0) = 1 and define the recurrence time to state 1
by

T1 = inf{n > 0|X(n) = 1}.

The purpose of this exercise is to study the distribution of the recur-
rence time and its relation to the invariant probability vector of the
Markov chain.

1. Find P(T1 = 1).

2. Compute P(T1 = 2), P(T1 = 3) and find the general expression for
P(T1 = n), n ≥ 2.

3. Find the mean recurrence time µ1 = E[T1] to state 1.

Assume that X(0) = 2 and define the recurrence time to state 2 by

T2 = inf{n > 0|X(n) = 2}.

4. Compute P(T2 = n), n ≥ 2 and the mean µ2 = E[T2].

5. Find 1/µ1 and 1/µ2.

6. Compare the results of question 5. with the invariant probability
vector π found in question 9. of exercise 2.1.1.

2.1.3 Two state absorbing Markov chain

We consider in this exercise the two-state Markov chain, (X(n))n≥0,
given by the transition diagram on Figure 2.11. When discussing the
Markov chain further we refer to the states through the following
recoding: 1=alive,0=dead.

1 0
p

1− p

Figure 2.11: Transition diagram for
Markov chain in Exercise 2.1.3

1. Write down the transition matrix for the Markov chain.

2. Assuming that X(0) = alive find the probabilities P(X(n) = alive)
for n ≥ 1.

Define the survival time, T, as the time of absorption in the state dead

T = inf{n > 0|X(n) = dead}.

3. Argue that P(T ≤ n) = P(X(n) = dead).

4. Find the distribution of T, i.e. P(T = n) for n ≥ 1. What is the
name of the distribution of T?

Hint: What is the name of the distribution of T̃ = T − 1?

5. Compute the expected survival time E[T].
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2.1.4 Transition probabilities for the two-state chain

1 2

p

1− p

q

1− q

Figure 2.12: Transition diagram of a
general Markov chain with two states
as in Exercise 2.1.4.

Consider the general two-state Markov chain given by transition
matrix

P =

(
1− p p

q 1− q

)

for p, q ∈ [0, 1]. The purpose of the exercise is to derive closed form
expressions for the n step transition probabilities given by the matrix
Pn.

1. Draw the transition diagram for the Markov chain.

2. Compute the characteristic polynomial for P given by

g(λ) = det(P− λI)

where I is the 2× 2 identity matrix.

3. Argue that the equation g(λ) = 0 has two solutions

λ1 = 1 and λ2 = 1− p− q.

4. Find a (right) eigenvector v = (v1, v2)
t for P associated with the

eigenvalue λ2. This means that you should solve the system of
equations Pv = (1− p− q)v.

5. Show that u = (u1, u2)
t = (1, 1) is a (right) eigenvector for P with

eigenvalue 1.

6. Verify that the matrix

O =

(
u1 v1

u2 v2

)

satisfies the matrix equation

PO = O

(
λ1 0
0 λ2

)
︸ ︷︷ ︸

=D

.

7. Find the inverse matrix O−1.

8. Use that P = ODO−1 to find a closed form expression for Pn and
discuss the result.
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Markov chains with three states

2.2.1 Classification of states

Consider a general three-state Markov chain as given by the transi-
tion diagram of Figure 2.13.

1

23

P1,2

P1,3

P1,1

P2,3

P2,1

P2,2

P3,1

P3,2
P3,3

Figure 2.13: Transition diagram for a
general three-state Markov chain.

1. Argue that the chain is irreducible if Pi,j > 0, for all i 6= j.

2. Give examples of irreducible three-state Markov chains for which
Pi,j = 0 for at least one pair (i, j) of states.

3. Give examples of a three-state Markov chain with two communi-
cation classes.

4. Describe the relation between zero entries of the transition matrix
P and the communication classes of the Markov chain. In each
case determine if the communication classes are transient or recur-
rent.

2.2.2 General three state Markov chain

Consider a Markov chain given by the transition diagram on Figure
2.14. Assume that X(0) = 1 and let

τ = inf{n > 0|X(n) 6= 1}

be the time of the first jump away from state 1.

1

23

1/4

1/4

1/2

1/3

1/3

1/3

1/2

1/4
1/4

Figure 2.14: Transition diagram for the
Markov chain considered in Exercise
2.2.2.

1. Find the transition matrix, P, of the chain.

2. Compute P(X(1) = 1) and P(X(2) = 1).

3. Use P3, P4, P5 to find P(X(n) = 1) for n = 3, 4, 5.

4. Find P(τ = 1), P(τ = 2), and P(τ = 3). What is the name of the
distribution of τ − 1?

5. Write down the system of equations for the invariant distribution
π and find π.

2.2.3 The one-way Markov chain

We consider in this exercise a Markov chain given by transition dia-
gram on Figure 2.15 under the assumption that X(0) = 1.

1

2

3

p1

1− p1

p2

1− p2

1
Figure 2.15: Transition diagram on the
one-way Markov chain of Exercise 2.2.3.

1. Find the probabilities P(X(1) = j) for j = 1, 2, 3.

2. Find the probabilities P(X(2) = j) for j = 1, 2, 3.
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Denote by
τ1 := inf{n > 0|X(n) = 2}

the time of the jump between states 1 and 2. Similarly let

τ2 = inf{n > τ1|X(n) = 3}

between the time of the jump from state 2 to state 3.

3. Find the probabilities P(τ1 = k) for k ≥ 1. What is the name of the
distribution of τ1?

4. Find the probabilities P(τ2 = k) for k = 1, 2, 3.

5. Try to find the general formula for P(τ2 = k) for k ≥ 1.

6. Assuming that p1 = p2 verify that τ2 − 2 follows a negative
binomial distribution.

2.2.4 Markov property under aggregation of states

Consider a Markov chain given by the transition diagram on Figure
2.16.

2

AB

1/2

1/4

1/4

1

0

0

1/3

1/3
1/3

Figure 2.16: Transition diagram for the
Markov chain in Exercise 2.2.4.

1. Find the transition matrix, P, for the Markov chain.

2. Write down the system of equations for the invariant distribution
π and find π.

Assume that the initial distribution is given by

P(X(0) = A) = P(X(0) = B) = P(X(0) = 2) = 1/3.

Use the transition matrix, P, of the chain to compute the following
probabilities

3. P(X(1) = A, X(0) = i) for i ∈ {A, B, 2}.

4. P(X(1) = B, X(0) = i) for i ∈ {A, B, 2}.

5. P(X(2) = 2, X(1) = A, X(0) = i) for i ∈ {A, B, 2}.

6. P(X(2) = 2, X(1) = B, X(0) = i) for i ∈ {A, B, 2}.

Suppose that for some reason we are not able to distinguish between
states A and B such that we only observe the process defined by

Y(n) =

{
2 , X(n) = 2
1 , X(n) ∈ {A, B}

with state space S = {1, 2}

7. Use questions 3.-6. to compute P(Y(2) = 2|Y(1) = 1, Y(0) = 1).
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8. Use questions 3.-6. to compute P(Y(2) = 2|Y(1) = 1, Y(0) = 2).

9. Argue that (Y(n))n∈N0 is not a Markov chain.

10. Show by an example that for certain choices of the transition
probabilities for (X(n))n≥0 it holds that (Y(n))n≥0 is a Markov
chain on S = {1, 2}.

Finite state space

2.3.1 Find the communication classes

In this Exercise we consider the Markov chain given by the transition
diagram in Figure 2.17.

7

68 59

41 32

1/2

1/2 1

1/3

1/3

1/3

1

1/3

1/3
1/3

1/2

1/2

1
1/3

1/3

1/3

1/2

1/2

Figure 2.17: Transition diagram for the
discrete-time Markov chain with seven
states considered in Exercise 2.3.1.

1. Argue that 7 and 8 belong to the same communication class.

2. Show that P2
2,9 > 0 and argue that 2 and 9 belong to the same

communication class.

3. Find out if states 3 and 7 communicate.

4. Determine the communication class containing state 5.

5. Find all communication classes and determine if each class is
recurrent or transient.

6. Is the chain irreducible?

The loop trick is a useful observation to speed up the process of
determining the communication classes of a Markov chain. The basic
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observation is that if we can find a closed path of states

i0 → i1 → . . .→ ik → i0

such that all transition probabilities along the path are positive then
all states in the path belong to the same communication class.

7. Use the loop trick to find the communication classes of the Markov
chain.

8. Argue that there does exist an invariant probability vector, π, for
the chain and find it.

9. Suppose that we change the transition probabilities such that

P7,6 = 0, P7,8 = 1, P2,3 = 0, P2,1 = 1, P8,7 = 1/2, P8,9 = 1/2, P8,6 = 0.

Show that the modified version of the Markov chain has two recur-
rent subclasses.

10. Find an invariant probability vector, π, for the Markov chain
described in question 9. and discuss if π is uniquely determined.

2.3.2 A numeric example

Consider the Markov chain given by the transition diagram on Figure
2.18 and assume that X(0) = 3.

5

4

3

21

1

1/2

1/2

1/2

1/2

1

1

Figure 2.18: Transition diagram for
Markov chain in Exercise 2.3.2.

1. Write down the transition matrix, P, of the Markov chain.

2. Find P(X(k) = 3) for k = 1, 2, 3, 4.

3. What is the period of all recurrent communication classes of the
Markov chain?

4. Compute P2, P4, P8, and P16.

5. Argue that the Markov chain has an invariant distribution, π, and
find this.

6. Let T3 := inf{k ≥ 1|X(k) = 3} be the first time the Markov chain
visits state 3. Compute P(T3 = k), k = 1, 2, 3, 4 and try to find the
entire distribution of T3.

7. Compute the mean, E[T3], of the return time to state 3 and com-
pare with the invariant distribution π of question 5.
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2.3.3 Two component repair system

Consider a technical device with two states broken and functioning.
Suppose that every day there is a fixed probability p that the device
breaks down. Every morning the state of the device is inspected and
if it is broken it is replaced the following morning. Denote by X(n)
the state of the device on day n. Clearly, the process (X(n))n≥0 is a
Markov chain.

1. Find the state space and the transition matrix P and draw the
transition diagram.

2. Compute the invariant probability distribution π and find the
long term fraction of time where the device is broken.

Consider now a system consisiting of two devices (working inde-
pendently of each other) that can both take the values broken and
functioning. Every day there is probability p1 and p2 of the individual
devices breaking down. Every morning the system is inspected and
the following morning the broken devices (if any) are replaced. The
state of the system on the morning of day n can be described by a
Markov chain with the four states

(broken,broken),(broken,funct.),(funct.,broken),(funct.,funct.)

Assume throughout the exercise that no device is broken on the
morning of day n = 0. To ease notation we recode the state space as
0=broken,1=functioning.

3. Find the possible transitions of the four state Markov chain and
draw the transition diagram of the chain without transition proba-
bilities.

4. Compute the distribution of X(1) i.e. find P(X(1) = (i, j)), i, j =
0, 1.

5. Find the transition matrix of the Markov chain.

6. Let πi,j = limn→∞ P(X(n) = (i, j)), i, j = 0, 1, be the limiting
distribution of X(n). Show that

π0,0 = p1 p2π1,1.

7. Write down a similar equation as the one in question 6. for each of
the probabilities π1,0, π0,1, π1,1.

8. Show that the solution to the system of equations in question 6.-7.
is given by

πi,j =
p1−i

1 p1−j
2

(1+p1)(1+p2)
, i, j = 0, 1.
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9. Suppose that it is criticial to a production company that at least
one of the individual devices is functioning since otherwise the
production of the company ceases and all workers are sent home.
What is the long run probability that the production must be
stopped and how often does it happen (on average) that both
devices break down and workers are sent home?

The company now changes its policy and decides no longer to re-
place a broken device as long as the other is still working.

10. Draw the transition diagram (with transition probabilities) corre-
sponding to the new replacement strategy.

11. Write down an equation for the invariant probability π1,1 and
show that π0,0 = (p1 + p2 − p1 p2)π1,1.

12. Write down a similar equation as the one in question 11. for each
of the probabilities π0,0, π1,0, π0,1.

13. Solve the system of equations in question 11.-12.

14. Answer question 9. for the Markov chain corresponding to the
new replacement strategy of the company.

2.3.4 Random walk reflected at two barriers

In this exercise we consider a Markov chain, (X(n)), on the state
space {0, 1, . . . , N} where only transitions between neighbouring
states i and i + 1 or i and i− 1 are possible. When the Markov chain
reaches the boundary 0 it stays there with probability 1− p and is
otherwise reflected to state 1. At the upper boundary N the chain
stays with probability p as is reflected to state N − 1 with probability
1− p. The transition diagram is given by Figure 2.19 and we assume
that X(0) = 0.

0

1

2

. . .

N − 1

N

p

1− p

p

1− p

p

1− p

p

1− p

p

1− p

1− p

p

Figure 2.19: Transition diagram for the
Random walk reflected at two barriers
considered in Exercise 2.3.4.

1. Find the transition matrix, P, of the Markov chain.

2. Compute P(X(1) = 0) and P(X(1) = 1). What is the name of the
distribution of X(1)?

3. Compute P(X(2) = k), for k = 0, 1, . . . , N.

4. Argue that there exists an invariant probability vector, π, and
write down the system of equations that should be satisfied by
π = (π0, π1, . . . , πN).

5. Argue that a vector of the form

πi = c
(

p
1− p

)i
, i = 0, 1, . . . , N,
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satisfies the system of equations from question 4. and find the
constant c that turns π into a probability.

The purpose of the following questions is to find a simple expression
for the n step transition matrix Pn for the case of N = 2 where the
state space is S = {0, 1, 2}. For this particular case the transition
matrix takes the form

P =

 1− p p 0
1− p 0 p

0 1− p p

 .

It might be that you can guess the formula for Pn by looking at the
expressions for P2, P3, and P4. Another possibility is to follow the
strategy outlined below.

6. Compute the characteristic polynomial g(λ) = det(P− λI) of P.

7. Verify that g(λ) = 0 has three real valued solutions λ1, λ2, and λ3.

8. For each of the eigenvalues λk, k = 1, 2, 3, above find an eigenvec-
tor, vk, for P with eigenvalue λk.

9. Let O be the 3× 3 matrix with rows v1, v2, v3 and verify that

OP =

 λ1 0 0
0 λ2 0
0 0 λ3


︸ ︷︷ ︸

=D

O.

10. Show that Pn = O−1DnO and try to get a closed form expression
of P(X(n) = k) for k ≥ 1 under the initial condition that P(X(0) =
0) = 1.

Warning: maybe it is not worth spending too much time finding a closed
form expression for O−1.

2.3.5 Yahtzee

Yathzee is a dice game. The objective of the game is to score the most
points by rolling five dice to make certain combinations. The dice
can be rolled up to three times in a turn. After the first two rolls the
player can save any dice that are needed to complete a combination
and then re-roll the other dice. A Yahtzee is five-of-a-kind and holds
the game’s highest point value of 50.

The purpose of the present exercise is to compute the probability
of ending up with a Yahtzee given that we use the strategy that max-
imizes the number-of-a-kind after each roll. To simplify the problem
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we consider initially in questions 1.-8. the probability of obtaining a
Yathzee of five sixes. We deal with the general problem in questions
9.-17.

The problem may be put into the framework of Markov chains by
defining a stochastic process as follows

• Let X(0) = 0, i.e. P(X(0) = 0) = 1.

• Roll five dice and let X(1) denote the number of sixes.

• Define X(n + 1) recursively by the following rule.

– If X(n) = 5 then X(n + 1) = 5.

– If X(n) < 5 then we let Y be the number of sixes after re-rolling
the 5− X(n) dice and the value at time n + 1 may be expressed
as X(n + 1) = X(n) + Y.

1. Argue briefly that (X(n))n∈N0 is a Markov chain and write down
the set, S, of possible states for the chain.

2. Find the distribution of X(1) and explain which entries of the
transition matrix P that correspond to the probabilities

P(X(1) = k), k ∈ S.

3. Find the distribution of X(2) given that X(1) = 4.

4. Find the distribution of X(2) given that X(1) = 3.

5. Write down the entire transition matrix, P, of the Markov chain.

6. Compute P2 and the probability P(X(2) = 5).

7. Find the probability P(X(3) = 5).

8. Use P, P2, P3, . . . to compute a numerical approximation to the
expected number of rolls, Eτ5, where

τ5 = inf{n > 0|X(n) = 5}

denotes the time before the Markov chain is absorbed in state 5.

The solve the original problem posed above not restricting our selves
to a Yathzee of sixes we need to modify the definition of the Markov
chain above. More precisely after each roll we need to allow the
player to switch from saving only dice with face six to dice with
another number of eyes if this is more favorable. For example if we
have two-of-a-kind after n rolls (i.e. X(n) = 2) and the next roll
results in 5− 2 = 3 three dice of a different kind then we let X(n +

1) = 3 and only 2 dice are re-rolled.
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The purpose of the following questions is to compute the transi-
tion matrix for the modified version, P̃, of the game. For all questions
below compare the result to the relevant entry of the transition ma-
trix for the original version of the game. Questions 13.-15. below are
probably the most difficult.

9. Find the probabilities P(X(1) = k), k = 3, 4, 5.

10. Find the probabilities P(X(2) = k|X(1) = j), k ∈ S, for j = 3, 4, 5.

11. Find the probabilities P(X(2) = k|X(1) = 2), k = 4, 5.

12. Find the probabilities P(X(2) = 5|X(1) = 1).

13. Find the probabilities P(X(1) = k), k = 0, 1, 2.

14. Find the probabilities P(X(2) = k|X(1) = 2), k = 2, 3.

15. Find the probabilities P(X(2) = k|X(1) = 1), k = 1, 2, 3, 4.

16. Write down the entire transition matrix P̃ and compute P̃2 and
P̃3.

17. Find P(X(2) = 5), P(X(3) = 5), and the mean Eτ5 and compare
with the results in questions 6.-8.

2.3.6 Markov chain with two regimes

Consider the 5 state Markov chain, (X(n))n∈N0 , with transition dia-
gram given by Figure 2.20 where pA, pB ∈ (0, 1).

A1

A2

A3

B1B2

pA pA

pA

pB

pB

Figure 2.20: Transition diagram for
the Markov chain with two regimes
considered in Exercise 2.3.6. States
A1, A2, A3 constitute one regime and
states B1, B2 is another regime.

We further define the stochastic process (Y(n))n∈N0 defined by

Y(n) =

{
A , X(n) = A1,A2,A3

B , X(n) = B1,B2.

In the following we will study the properties of the stochastic process
{Y(n)}n∈N0 on the state space S = {A, B} that keeps track of the
regime.

1. Find the conditional distribution of Y(n + 1) given that Y(n) = B
and Y(n− 1) = A.

2. Argue that the conditional distribtuion of Y(n + 1) given that
Y(n) = Y(n− 1) = B is different from the result of question 1.

Assume that we know that P(Y(0) = A) = 1. Clearly

P(Y(0) = A) = P(X(0) = A1)︸ ︷︷ ︸
=φA1

+ P(X(0) = A2)︸ ︷︷ ︸
=φA2

+ P(X(0) = A3)︸ ︷︷ ︸
=φA3

but if we only observe (Y(n))n∈N0 we do not know φA1, φA2, φA3.
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3. Let

τB = inf{n > 0|Y(n) = B}

be the time of the first jump to state B. Express the probabilities
P(τB = k) for k = 1, 2, 3 in terms of pA, pB and φA1, φA2, φA3.

4. What should be the distribution of τB if (Y(n))n∈N0 was a Markov
chain on {A, B} with initial distribution P(Y(0) = A) = 1 and
transition matrix

P =

(
1− qA qA

qB 1− qB

)
?

5. Use questions 1.-4. to discuss whether (Y(n))n∈N0 is a Markov
chain on S = {A, B}.

1 2

3

4

5 6

7 8 9

10 11

12

1

1

1

1/2

1/2

1/2

1/2

1

1

1/2

1/2

1

1/2

1/2

1/2

1/2

1

Figure 2.21: Transition diagram for
questions 1.-11. of Exercise 2.3.7.

2.3.7 Periodicity of a Markov chain

1. Show that states 1-3 belong to the same communication class (-see
Figure 2.21 on page 59).

2. Show that states 10-12 belong to the same communication class.

3. Determine the communication class containing state 12.

4. Argue that states 1 and 6 do not belong to the same communica-
tion class.

5. Find all the disjoint communication classes in the partition of the
state space. For each class determine whether the class is recurrent
or transient.

6. Find the period of each communication class.

7. How would the communication classes be and what would be the
period of the chain under the following changes: P12,11 = 1/2 =

P12,12

8. How would the communication classes be and what would be the
period of the chain under the following changes: P9,8 = 1/2 = P9,6

10. How would the communication classes be and what would be
the period of the chain under the following changes: P8,5 = P8,7 =

P8,11 = 1/3

11. Does there exist a unique invariant probability distribution for
Markov chain on Figure 2.21?
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For the rest of the exercise we modify the Markov chain in Figure
2.21 by changing the following transition probabilities:

P1,1 = P1,3 = 1/2 = P12,11 = P12,12.

12. Argue that with the modified transition probabilities then all
recurrent subclasses are aperiodic.

13. Find an invariant probability vector that is concentrated on each
of the recurrent subclasses.

14. Assuming that the initial distribution of the chain is given by
P(X(0) = 1) = 1 find the limiting distribution of X(n) that is find

lim
n→∞

P(X(n) = i), i = 1, . . . , 12.

15. Find the limiting distribution of X(n) for the initial distribution
P(X(0) = 12) = 1.

16. Find the limiting distribution of X(n) for the initial distribution
P(X(0) = 6) = 1.

Hint: start by computing the probability that the first jump from state 4
to 3 occurs before the first jump between states 5 and 7.

2.3.8 More about absorption probabilities

Consider a Markov chain on S = {0, 1, 2, 3, 4, 5, 6} with transition
probabilities

P0,0 = 3/4, P0,1 = 1/4

P1,0 = 1/2, P1,1 = P1,2 = 1/4

Pj,0 = Pj,j−1 = Pj,j = Pj,j+1 = 1/4, j = 2, 3, 4, 5

P6,0 = 1/4, P6,5 = 1/4, P6,6 = 1/2

1. Is the Markov chain irreducible?

2. Is the Markov chain aperiodic?

3. What is the long-run probability of observing the sequence of
states 4→ 5→ 0?

4. For X(0) = 1 what is the probability of reaching state 6 before
state 0?

5. For X(0) = 3 what is the expected number of steps until the chain
is in state 3 again?

6. For X(0) = 0 what is the expected number of steps until the chain
is in state 6?
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Figure 2.22: Transition diagram for the
discrete-time Markov chain with seven
states considered in Exercise 2.3.8.

Countable state space

2.4.1 Queueing system

Markov chains are very popular as models for the number of cus-
tomers in a queueing system. In this exercise we consider the so-
called single server queue. Assume that no customers are present in
the queue at time 0 i.e. P(X(0) = 0) = 1. In each time period (=step)
there is probability p ∈ (0, 1) that a new customer arrives and prob-
ability q ∈ (0, 1) that the service of the customer at the service desk
is completed. We denote by X(n) the total number of customers in
the queueing system at time n and note that this is a Markov chain
on N0. The transition probabilities of the chain is given by the infinite
transition matrix P = (Pi,j)i,j≥0.

1. Find P0,1 and P0,0.

2. Argue that P1,1 = pq + (1− p)(1− q) and find P1,0, P1,2.

3. Use question 2. to find Pi,i−1, Pi,i, Pi,i+1 for i > 1 and draw the
transition diagram of the Markov chain.

4. Find the communication classes.

5. For a vector π = (π0, π1, π2, . . .) to be an invariant distribution it
must satisfy the system of equations πj = ∑∞

i=0 πiPi,j, j ≥ 0. Write
out the equation for j = 0 and deduce that π1 = p

q(1−p)π0.

6. Write down the equations for πj, j ≥ 1.

In the following questions 7.-10. we assume that p = q.

7. Show that for p = q then πj = c0 + c1 · j, j ≥ 1, (c0, c1 constants)
solves the system of equations from question 6 (for j ≥ 2). [One
may show that any solution takes this form.]
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8. Find a condition on the constants c0, c1 that ensures that the solu-
tion πj from question 7. is bounded for j ≥ 1.

9. Does there exist an invariant probability vector for the chain if
p = q?

10. Discuss whether we have showed that the chain is positive recur-
rent, null recurrent, or transient for p = q?

For the remaining part of the exercise we consider the general case
where p 6= q.

11. Argue that πj = c0 + c1 ·
(

p(1−q)
q(1−p)

)j
, j ≥ 1, solve the system

of equations from question 6. (for j ≥ 2) for any choice of the
constants c0, c1.

12. Use the equation from question 5. to express π0 in terms of p, q,
and the two constants c0, c1.

13. Determine when the chain is positive recurrent and find the
invariant probability vector π.

15. Give a complete description of when (i.e. for what conditions on
p and q) the chain is transient, null recurrent, or positive recurrent.

Warning: this probably requires a little work!

2.4.2 Random walk on Z

Consider the random walk, (X(n))n≥0, on Z = {. . . ,−2,−1, 0, 1, 2, . . .}
given by the transition diagram 22 22 Note that the random walk on Z is

also discussed in Example 14.

. . . -1 0 1 . . .

p p

1− p

p

1− p

p

1− p 1− p

Figure 2.23: Transition diagram for a
random walk on Z from Exercise 2.4.2.Assume that X(0) = 0.

1. What is the period of the chain?

2. Find the distribution of X(1) and X(2).

3. Compute P(X(2) = 0), P(X(3) = 0), and P(X(4) = 0).

Note that (X(2k) = 0) if and only if there is exactly k upward jumps
and k downward jumps among the first 2k jumps.

4. Argue that P(X(2k) = 0) = (2k
k )pk(1− p)k, k ≥ 1.

5. Determine if ∑∞
n=1 P(X(n) = 0) is convergent and use this to

decide if the random walk on Z is recurrent or transient.
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2.4.3 Random walk on Z2

We now generalise Exercise 2.4.2 above and consider the symmetric
random walk on the pairs of integers Z×Z. More precisely, if the
chain is in state (i, j) at time n then it jumps to either of the states

(i, j + 1), (i, j− 1), (i− 1, j), (i + 1, j)

with equal probabilities (= 1/4) in step n + 1.

1. Draw (a part of) the transition diagram.

2. Argue that state (0, 0) communicates with any other state and
deduce that there is only one communication class.

3. Assuming that P(X(0) = (0, 0)) = 1 compute P(X(n) = (0, 0)) for
n = 1, 2, 3, 4.

4. What is the period of the Markov chain.

5. Still assuming that P(X(0) = (0, 0)) = 1 argue that

P(X(2n) = 0) =
n

∑
k=0

(2n)!
(n− k)! · (n− k)! · k! · k!

4−2n.

6. Use question 5. to determine if ∑∞
n=0 P(X(2n) = 0) is convergent

and deduce if the random walk on Z×Z is recurrent or transient.

Hint: Use Stirling’s formula to determine the asymptotic behaviour of the
terms in the sum.

2.4.4 Random walk on Zd

It is a challenging exercise to determine if the extension of the ran-
dom walk in the previous exercise to Zd is recurrent or transient.
The dynamics of the d−dimensional random walk is desribed by
the fact that the process moves from state (i1, . . . , id) to any of the 2d
neighbouring states given by

(i1, . . . , il−1, il + j, il+1, . . . , id)

where j ∈ {−1, 1} with equal probability (= 1/(2d)).

1. Argue that the symmetric random walk on Zd has period 2.

2. Assuming that the random walk starts in state (0, . . . , 0) at time 0
argue that

P(X(2n) = (0, . . . , 0)) = ∑
k1,...,kd∈N0 :k1+...+kd=n

(2n)!
(k1! · . . . · kd!)2 (2d)−2n.
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3. Show that ∑∞
n=1 P(X(n) = (0, . . . , 0)) < ∞ for d > 2.

Hint: This is hard. A possible solution strategy is to obtain an upper
bound for the multinomial coefficient and then apply Stirling’s formula.

4. Deduce from question 3. that the symmetric random walk on Zd

is transient for d > 2.

2.4.5 Branching processes

In this exercise we consider a model for the number, X(n), of indi-
viduals in a population at time n. During each time interval (gen-
eration) each individual (independently of each other) produces a
number, Z, of offsprings described by a probability distribution on
N0 = {0, 1, 2, . . .} with density P(Z = k) = pk. Note that it is also
possible for an individual to die without giving birth to any offspring
if Z = 0. The total number of individuals born in n−th generation,
(X(n))n≥0, is a Markov chain on N0

The important parameter for the large-time term behaviour of a
branching process is the mean number of offsprings produced by an
individual

µ =
∞

∑
k=0

kpk =
∞

∑
k=1

kpk.

Not surprisingly one can prove that if µ > 1 then the expected pop-
ulation size increases to infinity and that µ < 1 implies that the
population will eventually die out.

In this exercise we consider the (rather trivial) branching process
with offspring distribution given by

p1 = p, p0 = 1− p,

with probability parameter p ∈ (0, 1). The interpretation is that each
individual gives birth to one offspring with probability p while there
is a probability of 1− p that no offspring is generated. Assume that
we start out with a population of size X(0) = N > 0.

1. Find the probability P(X(1) = N) and P(X(1) = N − 1).

2. Argue that X(1) follows a binomial distribution and find the
integral parameter and the probability parameter.

3. Use 1.-2. to find the transition probabilities

PN,j = P(X(n + 1) = j|X(n) = N), j = 0, 1, . . . , N.

4. Find an expression for the transition probability Pi,j, i, j ∈N0.
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5. Compute EX(1) and give a (heuristic) argument that the popula-
tion will eventually die out.

6. Show that ∑∞
n=1(Pn)i,i < +∞ for i = 1, . . . , n, and deduce that

limn→∞ P(X(n) = 0) = 1.

Hint: Find the communication classes and conclude that state i, i =

1, . . . , n, (and its communication class) is transient.

2.4.6 Positive recurrence and null-recurrence

The following exercise is greatly inspired by Exercise 2.2 in Lawler
[2006].

We consider a Markov chain, (X(n))n≥0, on S = {0, 1, 2, . . .} with
transition probabilities

P0,i = pi > 0, i > 0, Pi+1,i = 1, i ≥ 0, Pi,j = 0 otherwise

where (pi)i∈S is a probability vector (i.e. ∑i pi = 1). Define the return
time to state 0

T = inf{n > 0|X(n) = 0}.

1. Draw the transition diagram of the Markov chain.

2. Find the communication classes. Is the chain irreducible?

3. Compute
P(T = k|X(0) = 0), k ≥ 0

and argue that the Markov chain is recurrent.

4. What is the condition for the Markov chain to be null-recurrent or
positive recurrent?

5. Find the invariant probability vector assuming that the Markov
chain is positive recurrent.

6. Consider the time of the first visit to state 10

T10 = inf{n > 0|X(n) = 10}.

What is the expected return time to state 10

E[T10|X(0) = 10]

given that the Markov chain starts in state 10?





3
Markov chains in continuous time

The purpose of this chapter is to present the theory for continuous-
time Markov chains on finite or countable state spaces. The result
is a compromise trying to keep as many mathematical details as
possible while still keeping the technical level at a suitable level for
an introductory course on stochastic processes 1. You should try to 1 For a more formal and complete

exposition of the theory for continuous-
time Markov chains we can recommend
the lecture notes by Jacobsen and
Keiding [1985]. Grown up students
may benefit from reading the first two
chapters in Asmussen [2003].

keep focus on trying to learn how to use the theory on examples
and exercises and not so much on which mathematical aspects of the
theory that have been left out.

Definition and the minimal construction of a Markov chain

A stochastic process in continuous time is a family, (X(t))t≥0, of ran-
dom variables indexed by the positive real line [0, ∞). The possible
values of (X(t))t≥0, are referred to as the state space, S, of the pro-
cess. In these lecture notes we shall only consider continuous-time
processes on finite or countable state spaces.

Definition 32 (Homogeneous Markov chain in continuous time) 2A 2 In Definition 32 the word ho-
mogeneous refers to the fact
that the transition probabilities
P(X(tn+1) = j|X(tn) = i) are as-
sumed to depend only on the time
difference tn+1 − tn. In more advanced
courses you will find that for many
applications of the theory it is much
more flexible to allow the transition
probabilities to depend on both tn+1
and tn. The interpretation of the general
case is that the time dynamics of the
stochastic process changes (or evolves)
with time.

continuous-time Markov chain on a finite or countable set, S, is a family of
random variables, (X(t))t≥0, on a probability space (Ω,F , P) such that

P(X(tn+1) = j|X(tn) = i, X(tn−1) = in−1, . . . , X(t0) = i0)

= P(X(tn+1) = j|X(tn) = i) (3.1)

= Pi,j(tn+1 − tn)

for j, i, in−1, . . . , i0 ∈ S and tn+1 > tn > . . . > t0 ≥ 0. The distribution of
the Markov chain is determined by

φ(i) = P(X(0) = i) ← initial distribution

Pi,j(t) = P(X(t + s) = j|X(s) = i) ← transition probabilities
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through the identity

P(X(tn+1) = j, X(tn) = i, X(tn−1) = in−1, . . . , X(t0) = i0)

= Pi,j(tn+1 − tn) · Pin−1,i(tn − tn−1) · . . . · Pi0,i1(t1 − t0) · φ(i0)(3.2)

�

It takes some time to digest the notation used in Definition 32. The
condition (3.1) is the natural generalization of the Markov property
(2.1) from Chapter 2 to stochastic processes indexed by the conti-
nuous set [0, ∞). It is a consequence of more general properties of
infinite product measures (-see Appendix A) that the distribution
of a Markov chain in continuous time is completely determined by
the initial distribution and the transition probabilities3 given in 3 Note that for a continuous-time

Markov chain then a transition proba-
bility, Pi,j(t), is something that depends
on time. For Markov chains in discrete
time discussed in Chapter 2 then the
term transition probability just refers to
transitions one step ahead.

Definition 32. Note however, that Definition 32 does not tell us what
conditions the transition probabilities (Pi,j(t))i,j∈S for t ≥ 0 must
satisfy in order to define a Markov chain. This is one of the main
problems with the construction of continuous-time Markov chains.
We will briefly return to this discussion in Theorem 38.

Instead we continue by presenting a dynamical construction of
a class of stochastic processes in continuous time that turns out to
satisfy the Markov property in Definition 32. This construction (the
minimal construction ) establishes a unique parametrization of a
continuous-time Markov chain by transition intensities . Throughout
these lecture notes you should think of a continuous-time Markov
chain as described in terms of an initial distribution and transition
intensities with sample paths constructed from the minimal construc-
tion described in Definition 33

4. 4 When we refer to a continuous-time
Markov chain with transition intensities
Q = {qi,j}i,j∈S we always think of the
corresponding jump process given by
the minimal construction in Definition
33.

Definition 33 (The minimal construction) Let φ = (φ(i))i∈S be a
probability vector and let Q = (qi,j)i,j∈S be real numbers with the following
properties 5

5 We shall use the notation

qi = ∑
j 6=i

qi,j

for the sum of the off-diagonal elements
of the transition intensities. Note that
due to the constraints in Definition 33

we have qi ≥ 0 and qi = −qi,i .

qi,j ≥ 0 i 6= j, i, j ∈ S

qi,i = −∑
j 6=i

qi,j.

The time-homogeneous continuous-time Markov chain with initial dis-
tribution φ and transition intensity Q is the stochastic process (X(t))t≥0

given by the following construction

• choose Y(0) according to the initial distribution such that

P(Y(0) = i) = φ(i)

• given Y(0) let τ1 := W1 follow an exponential distribution with rate
parameter 6 −qY(0),Y(0) and define X(t) = Y(0), t ∈ [0, W1) 6 The exponential distribution with rate

parameter λ > 0 has mean 1/λ - see
also Appendix B.1.
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• given Y(0) and W1 choose Y(1) such that

P(Y(1) = i|Y(0)) =
qY(0),i

−qY(0),Y(0)
, i 6= Y(0)

Recursively, given Y(0), . . . , Y(n), W1, . . . , Wn
7 7 Note that the recursive construction of

Wn+1 and Y(n + 1) given past values
only makes use of the present state
Y(n). This is necessary for the resulting
process (X(t))t≥0 to satisfy the Markov
property (3.1) from Definition 32. It
is less obvious that the additional
requirement of exponential waiting
times between jumps is sufficient to get
a Markov chain.

• choose Wn+1 according to an exponential distribution with rate parame-
ter −qY(n),Y(n), let τn+1 = τn + Wn+1 and define

X(t) = Y(n), t ∈ [τn, τn+1)

• choose Y(n + 1) such that

P(Y(n+ 1) = i|Y(0), . . . , Y(n), W1, . . . , Wn+1) =
qY(n),i

−qY(n),Y(n)
, i 6= Y(n).

�
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Figure 3.1: Transition diagram for
Markov chain of Example 34 and
Exercise 3.2.6.

Example 34 Consider the continuous-time Markov chain on S = {1, 2, 3}
with transition intensity matrix

Q =

 −4 2 2
1 −4 3
3 1 −4


given by the transition diagram on Figure 3.1. Let us try to mimick the
minimal construction of the Markov chain assuming that the Markov chain
starts in state 1 (- see Figure 3.2).
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Figure 3.2: Sample path of the
continuous-time Markov chain with
three states in Example 34. The se-
quence of states, {Y(n)}n≥0, turns out
to be a discrete-time Markov chain with
transition probabilities given by Defi-
nition 35. The waiting time τn+1 − τn
between jump n and n + 1 follows
an exponential distribution with rate
parameter qY(n) = −qY(n),Y(n).

Assuming that the initial distribution is given by the vector φ = (1, 0, 0)
we have that Y(0) = 1 and that the waiting time, τ1, to first jump follows
an exponential distribution with rate parameter −q1,1 = 4 (i.e. mean
waiting time 1/4). At time τ1 the Markov chain jumps to state 2 or 3 with
probabilities

P(Y(1) = 2|Y(0), W1) =
q1,2

−q1,1
=

2
4

P(Y(1) = 3|Y(0), W1) =
q1,3

−q1,1
=

2
4

.

The waiting time, W2, between the first and the second jump follows an
exponential distribution with a parameter given by −qY(1),Y(1). In this
particular example the rate parameter turns out to be 4 regardless of the
value of Y(1). The second jump arrives at time τ2 = τ1 + W2. The target,
Y(2), of the second jump is chosen according to the formula

P(Y(2) = i|Y(0), Y(1), W1, W2) =
qY(1),i

−qY(1),Y(1)
, i 6= Y(1).

�
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There are two potential problems with the minimal construction in
Defintion 33 that require further attention.

Absorption If the Markov chain of the minimal construction at time
τn jumps to a state Y(n) = i with −qi,i = 0 then we let

X(t) = Y(n), t ≥ τn

and we say that the Markov chain is absorbed at state i. Note that
the construction in Definition 33 still makes sense in this case if
we interpret an exponential distribution with rate parameter 0 as a
random variable with probability mass 1 at +∞.

Explosion There may be infinitely many jumps in finite time such
that the random variable, τ∞ := limn→∞ τn

8, is finite with positive 8 For the sequence of jump times we
have that τ1 ≤ τ2 ≤ . . . in particular
the limit τ∞ := limn→∞ τn exists as a
random variable taking values in [0, ∞].

probability
P(τ∞ < +∞) > 0.

In this case the minimal construction does not assign a value to
X(t) for t ≥ τ∞. To ensure that the minimal construction always
define a stochastic process for all t ≥ 0 we introduce an extra state
∆ and let X(t) = ∆ for t ≥ τ∞. We shall refer to τ∞ as the time of
explosion.

Time

S
ta

te
0

10
20

30
40

Figure 3.3: Different sample paths for
a continuous-time Markov chain with
state space N0 for which explosion is
possible (-see also Examples 37 and 61).
Times of explosion, τ∞, are diplayed as
dotted vertical lines.

Using the conventions above to handle the case of absorption or
explosion then the minimal construction of Definition 33 always
defines a continuous-time process (X(t))t≥0 on the extended state
space S = S ∪ {∆}. However, the minimal construction also defines
a discrete time process Y(0), Y(1), Y(2), . . . that keeps track of the
sequence of states visited by (X(t))t≥0. Strictly speaking, if (X(t))t≥0

is absorbed in some state i at the time, τm, of the m-th jump then

Y(m + 1), Y(m + 2), . . .

are not defined. We shall apply the convention that in this case we let

Y(m + 1) = Y(m + 2) = . . . = i

since then we have the following result

Theorem 35 (Embedded Markov chain of jumps) For a continuous-
time Markov chain with transition intensity Q = (qi,j)i,j∈S given by the
minimal construction in Definition 33 then the sequence (Y(n))n∈N0 of
visited states is a discrete-time Markov chain with transition probabilities 9 9 The dynamics of the embedded

Markov chain should strictly speaking
be given by a transition matrix on the
extended state space S ∪ {∆}. To obtain
this let P∆,∆ = 1 and P∆,j = 0 for j 6= ∆.Pi,j =


− qi,j

qi,i
=

qi,j
qi

i ∈ S\A, j /∈ {i, ∆}
0 i ∈ S\A, j ∈ {i, ∆}
0 i ∈ A, j 6= i
1 i ∈ A, j = i

where A = {i ∈ S|qi,i = 0} is the subset of absorbing states. �
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Example 36 For the Markov chain in Example 34 corresponding to Figure
3.1 the embedded Markov chain of jumps has state space S = {1, 2, 3} and
transition probability matrix given by

P =

 0 1/2 1/2
1/4 0 3/4
3/4 1/4 0

 .

�

Example 37 (Explosion) For the continuous time Markov chain on N0

with initial distribution P(X(0) = 0) = 1 and transition intensities

qi,i+1 = (i + 1)2, i ∈N0 and qi,j = 0, j 6= i, i + 1,

one may show that explosion occurs with probability one. Three examples
of samples paths simulated from this Markov chain is shown in Figure 3.3.
This is an example of a pure birth process (-see also Example 61).

Since we have qi,i 6= 0 for all i ∈ N0 then there are no absorbing states.
We get from Theorem 35 that the embedded Markov chain of jumps has
transition probabilities

Pi,i+1 = − qi,i+1

qi,i
= − (i + 1)2

−(i + 1)2 = 1

and consequently Pi,j = 0 for j 6= i + 1.

Because explosion is possible the transition intensities do not define the
value of the Markov chain after the explosion time τ∞. The recommendation
above is to let X(t) = ∆ for t ≥ τ∞ where ∆ is some arbitrary state we
just introduce for completeness of the construction. With the introduction
of ∆ then the embedded Markov chain of jumps should also be defined on
N0 ∪ {∆}. From a practical point of view this is unimportant, but we may
handle this purely technical issue by letting P∆,∆ = 1, and P∆,j = 0 for
j 6= ∆. �

Properties of the transition probabilities

The main ingredient in Definition 32 is the family of transition proba-
bilities (Pi,j(t))i,j∈S for t ≥ 0. Clearly, the transition probabilities must
be non-negative

Pi,j(t) = P(X(t + s) = j|X(s) = i) ≥ 0

and if explosion is not possible 10 (!) then 10 If we consider a Markov chain where
explosion is possible then

∑
j∈S

Pi,j(t) = 1− Pi,∆(t) < 1.

Fix this by replacing S with the ex-
tended state space S = S ∪ {∆}.

∑
j∈S

Pi,j(t) = ∑
j∈S

P(X(t + s) = j|X(s) = i)

= P(X(t + s) ∈ S|X(s) = i) = 1.
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In particular, for any fixed t ≥ 0 then (Pi,j(t))i,j∈S must be a transition
probability in the sense introduced for discrete-time Markov chains
11. However, the transition probabilities for different time arguments 11 For fixed t > 0 then the process

X(t), X(2t), X(3t), . . .

is a discrete-time Markov chain with
transition probabilities

Pi,j = Pi,j(t).

must fit together in accordance with the Chapman-Kolmogorov
equations given below.

Theorem 38 (Chapman-Kolmogorov equations) The transition prob-
abilities for a homogeneous continuous-time Markov chain satisfy the
Chapman-Kolmogorov equations

∀s, t ≥ 0, ∀i, j ∈ S : Pi,j(t + s) = ∑
l∈S

Pi,l(t) · Pl,j(s).

If the state space is finite (|S| < ∞) then P(t) = (Pi,j(t))i,j∈S may be
regarded as a matrix for any fixed t ≥ 0 and the Chapman-Kolmogorov
equations may be written as a matrix equation

P(t + s) = P(t) · P(s).

Proof: For i, j ∈ S, 0 ≤ s, t and any 0 ≤ u we have

Pi,j(t + s)

= P(X(t + s + u) = j|X(u) = i)

= ∑
l∈S

P(X(t + s + u) = j, X(t + u) = l|X(u) = i)

= ∑
l∈S

P(X(t + s + u) = j|X(t + u) = l, X(u) = i) · P(X(t + u) = l|X(u) = i)

= ∑
l∈S

P(X(t + s + u) = j|X(t + u) = l) · P(X(t + u) = l|X(u) = i)

= ∑
l∈S

Pl,j((t + s + u)− (t + u))Pi,l((t + u)− u)

= ∑
l∈S

Pi,l(t) · Pl,j(s)

�
On this course Markov chains are usually defined in terms of

the transition intensities , Q = (qij)i,j∈S, used in the minimal con-
struction of a Markov chain (-see Definition 33). However, for many
applications we are more interested in computing the transition prob-
abilities

P(X(t + s) = j|X(s) = i) := Pi,j(t), i, j ∈ S, t ≥ 0

In the following pages we discuss various results relating the transi-
tion intensity, Q, of a continuous-time Markov chain and the transi-
tion probabilities P(t) = (Pi,j(t))i,j∈S.

Theorem 39 (Infinitesimal generator of a Markov chain) For a con-
tinuous-time Markov chain, (X(t))t≥0, the transition intensities may be
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obtained from transition probabilities P(t) = (Pi,j(t))i,j∈S as the limits

lim
t→0+

Pi,i(t)− 1
t

= qi,i (3.3)

lim
t→0+

Pi,j(t)
t

= qi,j, i 6= j. (3.4)

Proof: The case qi,i = 0 (i absorbing) follows immediately by observ-
ing that in this case Pi,i(t) = 1 for t ≥ 0.

For qi,i 6= 0 we first establish a result concerning the probability of
observing at least two jumps on [0, t] for t → 0+. Denote by τ2 the
time of the second jump from the minimal construction in Definition
33. Splitting the event (τ2 ≤ t) according to the time and target state
of the first jump we get

P(τ2 ≤ t|X(0) = i)

= ∑
j 6=i

P(τ2 ≤ t, Y(1) = j|X(0) = i)

= ∑
j 6=i

∫ t

0
(−qi,i) exp(qi,is)

qi,j

−qi,i
(1− exp(qj,j(t− s)))ds

≤ ∑
j 6=i

qi,j(1− exp(qj,jt))
∫ t

0
exp(qi,is)ds

≤ (1− exp(qi,it))∑
j 6=i

qi,j

−qi,i
(1− exp(qj,jt)).

For t > 0 the function ft(j) =
qi,j
−qi,i

(1− exp(qj,jt)) is dominated by

f (j) =
qi,j
−qi,i

which is integrable (-with sum one!) with respect to the
counting measure on S\{i}. In particular, dominated convergence
gives that

∑
j 6=i

qi,j

−qi,i
(1− exp(qj,jt))→ 0

for t→ 0+ and the computations above show that

P(τ2 ≤ t|X(0) = i)
t

→ 0 (3.5)

for t→ 0+.

Note that for X(0) = i then the event (X(t) = i) requires that we
make either zero jumps or at least two jumps on the interval [0, t].
Consequently, we get

Pi,i(t)
t

=
P(X(t) = i|X(0) = i)

t

=
P(X(t) = i, τ1 > t|X(0) = i)

t
+

P(X(t) = i, τ2 ≤ t|X(0) = i)
t

.
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Using (3.5) and that P(X(t) = i, τ1 > t|X(0) = i) = exp(qi,it) we
conclude that

Pi,i(t)− 1
t

→ qi,i

for t→ 0+.

For j 6= i we have

Pi,j(t)
t

=
P(X(t) = j|X(0) = i)

t

=
P(X(t) = j, τ2 > t|X(0) = i)

t
+

P(X(t) = j, τ2 ≤ t|X(0) = i)
t

=

∫ t
0 exp(qi,is)qi,j exp(qj,j(t− s))ds

t

+
P(X(t) = j, τ2 ≤ t|X(0) = i)

t

By continuity of the integrand the first term may be bounded by
(1− ε)qi,j and qi,j for any ε > 0 provided that we choose t sufficiently
small. From (3.5) the last term tends to zero as t → 0 completing the
proof of (3.4). �

More generally, the transition probabilities and the transition in-
tensities are related through the backward differential equations
(also referred to as Kolmogorov’s differential equation ).

Theorem 40 (Backward differential equations) For a continuous-time
Markov chain, (X(t))t≥0, with transition intensity, Q = (qi,j)i,j∈S, and
transition probabilities (Pi,j(t))i,j∈S it always holds that

DPi,j(t) = P′i,j(t) = qi,iPi,j(t) + ∑
k 6=i

qi,kPk,j(t) (3.6)

Proof: An intermediate step in deriving the backward differential
equations of Theorem 40 is the set of backward integral equations
(3.7) below which may be of interest in itself. The idea is to compute
Pi,j(t) = P(X(t + s) = j|X(s) = i) by conditioning on the time of
the first jump in [s, t + s] and the target state k ∈ S of this first jump.
Since X(s) = i then by the minimal construction in Definition 33

the waiting time to the first jump follows an exponential distribution
with rate parameter qi = −qi,i. We therefore get

Pi,j(t) = δi,j exp(qi,it) +
∫ t

0
∑
k 6=i

(−qi,i)
qi,k

−qi,i
exp(qi,i(v))Pk,j(t− v)dv

= δi,j exp(qi,it) +
∫ t

0
∑
k 6=i

qi,k exp(qi,i(t− u))Pk,j(u)du, (3.7)

where δi,j = 0, i 6= j, and δi,i = 1. The contribution of the first term in
(3.7) reflects the situation, where there is no jump on [s, s + t].
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Rewrite (3.7) as

Pi,j(t) = exp(qi,it)

(
δi,j +

∫ t

0
∑
k 6=i

qi,k exp(qi,i(−u))Pk,j(u)du

)
(3.8)

to see that t→ Pi,j(t) is continuous. In order to deduce that∫ t

0
∑
k 6=i

qi,k exp(qi,i(−u))Pk,j(u)du

is differentiable we need

u→ ∑
k 6=i

qi,k exp(qi,i(−u))Pk,j(u)

to be a continuous function. This may be verified formally by using
dominated convergence. Basic rules for differentiation now yields

P′i,j(t) = qi,i exp(qi,it)

(
δi,j +

∫ t

0
∑
k 6=i

qi,k exp(qi,i(−u))Pk,j(u)du

)
+ exp(qi,it) ∑

k 6=i
qi,k exp(qi,i(−t))Pk,j(t)

= qi,iPi,j(t) + ∑
k 6=i

qi,kPk,j(t).

�

There also exist sets of forward differential and integral equa-
tions for continuous-time Markov chains.

Theorem 41 (Forward differential and integral equations ) For a
continuous-time Markov chain, (X(t))t≥0, with transition intensities,
Q = (qi,j)i,j∈S, and transition probabilities P(t) = (Pi,j(t))i,j∈S it holds
that

Pi,j(t) = δi,j exp(qj,jt) +
∫ t

0
∑
l 6=j

Pi,l(u)ql,j exp(qj,j(t− u))du

and

DPi,j(t) = Pi,j(t)qj,j + ∑
l 6=j

Pi,l(t)ql,j.

�

Comments to the proof: The full proof of the forward differential
equations is not trivial. A simpler version of the proof may be given
under the assumption that

∑
j∈S

Pi,j(t)(−qj,j) < ∞,

but the proof is omitted here. �
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Remark 42 We have previously discussed continuous-time Markov chains
where explosion may occur. Explosion refers to the fact that there may be
infinitely many jumps in finite time. One can show that explosion does not
happen if the condition above is satisfied, i.e. if

∑
j∈S

Pi,j(t)(−qj,j) < ∞.

It turns out that if explosion is not possible then the differential equations
of Theorems 40 and 41 uniquely determines the transition probabilities
P(t) = (Pi,j(t))i,j∈S subject to the initial conditions P(0) = I. If explosion
is possible then there is no unique solution to the differential equations. The
minimal solution will give the transition probabilities corresponding to the
process described by the minimal construction of a Markov jump process. �

Theorem 43 (Transition probabilities for finite state space) For a
continuous-time Markov chain on a finite state space the backward differen-
tial equation may be expressed in matrix form as

DP(t) = P′(t) = QP(t)

where P(t) = (Pi,j(t))i,j∈S. Using the boundary condition P(0) = I it
turns out that the transition probabilities may expressed in terms of expo-
nential matrices 12 as 12 You may find the definition of an

exponential matrix on page 135 in
Appendix B. Formally, exp(A) is
defined as the result of replacing a real
(or complex!) number x by a matrix
A in the series representation of the
exponential function exp(x) = ∑∞

n=0
xn

n! .

P(t) = exp(Qt), t ≥ 0.

�

Using the forward and backward differential equations it may be
possible to find closed form expressions for some of the transition
probabilities, Pi,j(t), for certain values of i, j. Though Theorem 43

gives a general formula for P(t) = {Pi,j(t)}i,j∈S it only leads to ex-
plicit formulaes in very nice examples. There are plenty of opportu-
nities to get familiar with applying Theorems 40, 41 and 43 if you do
some of the Exercises 3.1.3, 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.3.3
and 3.3.4.
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Figure 3.4: Transition diagram for
a Markov chain with four states in
Example 44.

Example 44 (Transition probabilities for a four state Markov chain)
We consider a continuous-time Markov chain with four states S = {0, 1, 2, 3}
and transition intensities given by

Q =


−1 1 0 0
1 −3 2 0
0 0 −1 1
0 1 0 −1

 .

According to Theorem 40 the backward differential equations

QP(t) = P′(t)
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for Pi,0(t), i = 0, 1, 2, 3, may be written out as

(−1) · P0,0(t) + 1 · P1,0(t) = P′0,0(t)

1 · P0,0(t) + (−3) · P1,0(t) + 2 · P2,0(t) = P′1,0(t)

(−1) · P2,0(t) + 1 · P3,0(t) = P′2,0(t)

1 · P1,0(t) + (−1) · P3,0(t) = P′3,0(t).

It is easy to give similar expressions for P′i,j(t), j 6= 0 but it seems difficult to
find (or guess) the formula for a general solution to the system of first order
differential equations.

The solution, however, is given in Theorem 43 in the form of an expo-
nential matrix as P(t) = exp(Qt). For this particular example it should
actually be possible to obtain closed analytic formulaes for the exponential
matrix exp(Q). The characteristic polynomium for Q becomes

g(λ) = det(Q− λI) = det


−1− λ 1 0 0

1 −3− λ 2 0
0 0 −1− λ 1
0 1 0 −1− λ


= (−1)1+1(−1− λ)det

 −3− λ 2 0
0 −1− λ 1
1 0 −1− λ


+ (−1)1+21 det

 1 2 0
0 −1− λ 1
0 0 −1− λ


= (−1− λ) ·

{
−(3 + λ)(1 + λ)2 + 2

}
− 1(1 + λ)2

= (−1− λ) ·
{
−3− 6λ− 3λ2 − λ− 2λ2 − λ3 + 2 + 1 + λ

}
= −(1 + λ)λ ·

{
−6− 5λ− λ2

}
= λ(1 + λ)(2 + λ)(3 + λ).

Since the 4 × 4 transition matrix Q has four distinct (real) eigenvalues
(given as solutions to g(λ) = 0), there exists an invertible matrix O such
that O−1QO is the diagonal matrix with entries 0,−1,−2,−3 13. It fol- 13 The matrix

O =


1/2 −2/

√
5 −1/2 −2/5

1/2 0 1/2 4/5
1/2 1/

√
5 1/2 1/5

1/2 0 −1/2 −2/5


composed of normalised eigenvectors
for Q as columns does the job. For
more details see page 135 in Appendix
B.

lows that all transition probabilities Pi,j(t) will be linear combinations of
1, exp(−t), exp(−2t) and exp(−3t). �

As demonstrated in Example 60 below the forward differential
equations from Theorem 41 may be useful even when the state space
S is not finite.

Invariant probabilities and absorption

The present section is devoted to the study of long run properties of
a continuous-time Markov chain (X(t))t≥0. Using the identity (split



78 CHAPTER 3. MARKOV CHAINS IN CONTINUOUS TIME

according to initial state)

P(X(t) = j) = ∑
i∈S

φ(i)Pi,j(t)

the problem reduces to studying the behaviour of Pi,j(t) as t → ∞.
The strategy will be to borrow as much as possible from Chapter 2.
The key steps are the following

• Find conditions to ensure that for arbitrary h > 0 then (X(nh))n∈N0

is an irreducible, aperiodic and positive recurrent Markov chain in
discrete time with transition probabilities P(h) = (Pi,j(h))i,j∈S.

• Use Theorem 23 in Chapter 2 to deduce that

Pi,j(nh)→ π(j) for n→ ∞

where πP(h) = π is the unique invariant probability for P(h).

• Argue that since h > 0 is arbitrary then also

lim
t→∞

Pi,j(t) = π(j).

The formal proof of the last step is straight-forward and may be
found in Theorem 49 and Lemma 50 below. More work is required
to get behind the first step listed above. A central point is to show
that the conclusion holds provided we can find one h0 > 0 such
that (X(nh0))n∈N0 is irreducible and has an invariant probability π.
This is established in Theorem 48. We then continue the exposition
by discussing various results related to exsistence of an invariant
distribution for a continuous-time Markov chain. We finally discuss
how to determine the limiting behaviour of continuous-time Markov
chains with multiple communication classes.

Definition 45 (Communication classes and irreducibility) Two states
i, j ∈ S are said to communicate if there exists s, t > 0 such that

Pi,j(s) > 0 and Pj,i(t) > 0.

This definition partitions the state space, S, into (disjoint) communication
classes 14. A continuous-time Markov chain is irreducible if there is only 14 What do we need to show in order to

formally verify this?one communication class. �

You are allowed to use15 that for a continuous-time Markov chain 15 Part of the argument goes like this:
Given X(0) = i the event (X(t) = j)
may be split into a countable number of
disjoint sets according to the number, n,
of jumps on [0, t] and the sequence of
visited states along the path of length n
connecting i and j. Given that Pi,j(t) > 0
at least one of these sets may have a
strictly positive probability implying
the existence of i1, . . . , in with in = j and
qi,i1 , qi1 ,i2 , . . . , qin−1 ,in > 0.

two states i 6= j communicate, if and only if there exists a sequence of
states i1, i2, . . . , in ∈ S containing state j such that

qi,i1 · qi1,i2 · . . . · qin−1,in · qin ,i > 0.
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This observation implies that the communication classes of a conti-
nuous-time Markov chain are the same as the communication classes
of the embedded Markov chain of jumps with transition probabilities
given in Theorem 35.

Since Pi,i(t) > 0 (why?) we always have that i communicate with
itself. Further, it may be demonstrated that if Pi,j(t0) > 0 for some
t0 > 0 then Pi,j(t) > 0 for any t > 0 16. In particular, we have that 16 This requires an argument. The

Chapman-Kolmogorov equations from
Theorem 38 is an essential part here.

Pi,j(h) > 0 for all h > 0 if i and j belong to the same communication
class C. It is tempting to conclude that the restriction of (X(nh))n∈N0

to a closed communication class 17 is an aperiodic 18 discrete-time 17 Closed is defined in terms of the
embedded Markov chain of jumps.
18 It does not make sense to speak
of the period of a Markov chain in
continuous-time!

Markov chain with transition probabilities P(h) = (Pi,j(h))i,j∈C and
that the communication classes coincide with those of (X(t))t≥0.
Note however, that even for a closed class C then we will have that
∑j∈S Pi,j(h) < 1 for all h > 0 and i ∈ C if explosion is possible.

Definition 46 (Recurrence and transience ) We give two different (but
equivalent) definitions of recurrence for continuous-time Markov chains.

1. An irreducible continuous-time Markov chain is recurrent if and only
if the embedded discrete-time process of jumps (-see Theorem 35) is re-
current. It is transient if and only if the embedded discrete-time Markov
chain of jumps is transient.

2. State i is transient if and only if the total time spent in state i

Vi =
∫ ∞

0
1(X(t) = i)dt

is bounded with probability 1 (i.e. if P(Vi < +∞|X(0) = i) = 1). For a
recurrent state i then Vi = +∞ with probability one.

If the continuous-time Markov chain is not irreducible the definitions of
recurrence and transience apply seperately to each communication class.
Note that an absorbing state will always be recurrent. �

As a consequence of Definition 46 to determine if a continuous-time
Markov chain is recurrent or transient we only need to study the em-
bedded discrete-time Markov chain of jumps and use the criterions
for recurrence given in Definition 8, Theorem 10, and Theorem 15 of
Chapter 2 on discrete-time Markov chains.

Let us briefly discuss the equivalence between the two criterions
stated in Definition 46. From the minimal construction (Definition 33)
it follows that the total time, Vi, spend in state i may be expressed as

Vi =
Ni

∑
n=1

Wn
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where Ni is the total number of visits to state i for the embedded
Markov chain of jumps and W1, W2, . . . are the time spent in state i at
each visit. We know from Theorem 12 that

P(Ni = +∞|Y(0) = i) = 1

if the embedded Markov chain is recurrent also implying that

P(Vi = +∞|X(0) = i) = 1

19. If the embedded Markov chain of jumps is transient we know that 19 The formal argument relies on the
fact that W1, W2, . . . are independent
and exponentially distributed even
when we condition on the total number,
Ni , of visits to state i.

Ni follows a geometric distribution and we deduce 20 that

20 In the transient case let q denote the
probability that the embedded Markov
chain of jumps never returns to state i.
Then we actually have a closed formula
for

P(Vi ≤ v|X(0) = i)

given by

q + (1− q)(1− exp(qvqi,i))

which is a truncated exponential
distribution with probability mass q at
zero.

P(Vi < +∞|X(0) = i) = 1.

As indicated in the beginning of this section then the limiting
behaviour of continuous-time Markov chains is intimately related to
invariant probabilities.

Definition 47 (Invariant distribution) A probability vector, π =

(π(i))i∈S, is an invariant (or stationary ) distribution for a continuous-
time Markov chain if for all t ≥ 0 and j ∈ S

π(j) = ∑
i∈S

π(i)Pi,j(t). (3.9)

�

It is a simple consequence of the Markov property that if π is an
invariant distribution for a continuous-time Markov chain (X(t))t≥0

then
P(X(t) = j) = π(j),

for all t ≥ 0 if we let P(X(0) = j) = π(j). We say that (X(t))t≥0

is a stationary process provided that it is started according to the
invariant distribution.

Theorem 48 (Uniqueness of invariant distribution) For an irreducible
continuous-time Markov chain then the invariant distribution is unique if it
exists.

If for some t0 > 0 there is a probability π = (π(i))i∈S such that

∀j ∈ S : π(j) = ∑
i∈S

π(i)Pi,j(t0)

then we may conclude that

1. ∀i ∈ S : π(i) > 0

2. P(t0) is a transition probability, i.e.

∀i ∈ S : ∑
j∈S

Pi,j(t0) = 1
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3. π is an invariant distribution for the Markov chain, i.e.

∀t ≥ 0, ∀j ∈ S : π(j) = ∑
i∈S

π(i)Pi,j(t).

Proof: The proof of Theorem 48 may be constructed along the lines of
Exercise C.4. �

The previous result (Theorem 48) is important. Firstly, it estab-
lishes the uniqueness of invariant distributions, and secondly it
shows that we only need to find a solution to (3.9) for one t0 > 0.
Finally, it shows that ∑j∈S Pi,j(h) = 1 for all h ≥ 0 if an invariant dis-
tribution exists. In particular, explosion is not possible and we have
that (X(nh))n∈N0 is a discrete-time Markov chain for all h > 0.

By combining the results above we have shown the following.
Suppose that (X(t))t≥0 is an irreducible Markov chain and that we
can find a solution to (3.9) for some t0 > 0. Then (X(nh))n∈N0 is an
irreducible, aperiodic and positive recurrent (=existence of invariant
distribution) Markov chain in discrete time. The following result
(known as the ergodic theorem for Markov chains) determines the
limiting behaviour of an irreducible Markov chain given the existence
of an invariant distibution.

Theorem 49 (Limit results for transition probabilities) For an irre-
ducible Markov chain, (X(t))t≥0, with invariant distribution (π(i))i∈S it
holds for all i, j ∈ S that

lim
t→∞

Pi,j(t) = π(j).

Further, for any initial distribution φ = (φ(i))i∈S and j ∈ S it holds that

lim
t→∞

P(X(t) = j) = π(j).

If no invariant distribution exists then

lim
t→∞

Pi,j(t) = 0.

�

For the proof of Theorem 49 we need a result concerning uniform
continuity of the transition probabilities Pi,j(t) over i ∈ S.

Lemma 50 For all i, j ∈ S and 0 ≤ t, h it holds that

|Pi,j(t + h)− Pi,j(t)| ≤ 2(1− Pi,i(h)).
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Proof: Use the Chapman-Kolmogorov equations from Theorem 38

and the triangle inequality to get

|Pi,j(t + h)− Pi,j(t)| ≤ |∑
l∈S

Pi,l(h)Pl,j(t)− Pi,j(t)|

= |∑
l 6=i

Pi,l(h)Pl,j(t) + (Pi,i(h)− 1)Pi,j(t)|

≤ ∑
l 6=i

Pi,l(h)Pl,j(t) + |Pi,i(h)− 1|Pi,j(t)

≤ ∑
l 6=i

Pi,l(h) · 1 + (1− Pi,i(h)) = 2(1− Pi,i(h)).

�

Proof of Theorem 49: By Definition 47 then for any h > 0 we
have that π is invariant for P(h) := (Pi,j(h))i,j∈S. Since P(h) is the
transition probability for the irreducible, aperiodic 21 discrete-time 21 It follows from 2. in Theorem 48

that P(h) is a transition matrix, and
aperiodicity follows from the fact that
for irreducible continuous-time Markov
chains then Pi,j(t) > 0 for any t > 0 and
i, j ∈ S.

Markov chain, (X(nh))n∈N0 , obtained by sampling (X(t))t≥0 at grid
points h, 2h, 3h, . . . then we get from Theorem 20 in Chapter 2 that

lim
n→∞

Pi,j(nh) = π(j). (3.10)

For ε > 0 use that Pi,i(t)→ 1 for t→ 0+ to choose h > 0 such that

sup
t≤h

2(1− Pi,i(t)) < ε.

For any 0 < t < ∞ choose an integer n(t) ∈ N such that t ∈
[n(t)h, (n(t) + 1)h) and note that by Lemma 50

Pi,j(t) = Pi,j(n(t)h) + Pi,j(t)− Pi,j(n(t)h)

≤ Pi,j(n(t)h) + supt≤h2(1− Pi,i(t)) < Pi,j(n(t)h) + ε.

Since t > 0 was arbitrary and as n(t) → ∞ for t → ∞ we conclude by
referring to (3.10) that

lim sup
t→∞

Pi,j(t) ≤ π(j) + ε.

Letting ε → 0 we obtain lim supt→∞ Pi,j(t) ≤ π(j) and a similar
approach may be used to show that lim inft→∞ Pi,j(t) ≥ π(j).

For an arbitrary initial distribution it follows by dominated conver-
gence that

lim
t→∞

P(X(t) = j) = lim
t→∞ ∑

i∈S
P(X(t) = j, X(0) = i)

= lim
t→∞ ∑

i∈S
P(X(0) = i)P(X(t) = j|X(0) = i)

= ∑
i∈S

P(X(0) = i) lim
t→∞

Pi,j(t)

= π(j) ·∑
i∈S

P(X(0) = i) = π(j).
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We conclude the proof by considering the case where no invariant
distribution exists. If explosion is not possible then the Markov
chain (X(nh))n∈N0 is either null-recurrent or transient implying
that limn→∞ Pi,j(nh) = 0 according to Theorem 24 and 25 in Chapter
2. Similar arguments as in the positive recurrent case above may be
used to show that then also limt→∞ Pi,j(t) = 0.

When explosion is possible 22 and we decide to let X(t) = ∆ 22 You may skip this part!

after explosion, then (X(nh))n∈N0 may be regarded as a discrete-
time Markov chain on an extended state space with ∆ as an ex-
tra absorbing state. Here Pi,∆(h) > 0 for all i ∈ S implying that
limt→∞ Pi,j(t) = 0. �

Comments to the proof: Digging into the proof of Theorem 49 it is
possible to show that limt→∞ Pij(t) = 0 even if the Markov chain is
not irreducible as long as j does not belong to a positive recurrent
communication class. �

Since Markov chains are usually specified in terms of the transi-
tion intensities we can rarely apply Definition 47 directly to find the
invariant distribution. The following result gives a necessary condi-
tion for a stationary distribution expressed in terms of the transition
intensities.

Theorem 51 (Necessary condition for a stationary distribution)
For a continuous-time Markov chain with transition intensities, Q =

(qi,j)i,j∈S, an invariant probability, π = (π(i))i∈S, must satisfy the system
of equations

∀j ∈ S : ∑
i∈S

π(i)qi,j = 0 (3.11)

or equivalently

∀j ∈ S : ∑
i 6=j

π(i)qi,j = π(j)(−qj,j) = π(j)qj.

Thinking of π as a row vector and of Q as a matrix the system of equations
has a more compact formulation as

πQ = 0.

Proof: Assuming that π is an invariant distribution for a continuous-
time Markov chain we get from the forward integral equations (-see
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Theorem 41) that for j ∈ S with qj,j 6= 0 then

π(j) = ∑
i∈S

π(i)Pi,j(t)

= ∑
i∈S

π(i)

(
δi,j exp(qj,jt) +

∫ t

0
∑
l 6=j

Pi,l(u)ql,j exp(qj,j(t− u))du

)

= π(j) exp(qj,jt) +
∫ t

0
∑
l 6=j

∑
i∈S

π(i)Pi,l(u)ql,j exp(qj,j(t− u))du

= π(j) exp(qj,jt) +
∫ t

0
∑
l 6=j

π(l)ql,j exp(qj,j(t− u))du

= π(j) exp(qj,jt) + ∑
l 6=j

π(l)ql,j

[
exp(qj,j(t− u))

−qj,j

]t

0

= π(j) exp(qj,jt) + ∑
l 6=j

π(l)ql,j
(1− exp(qj,jt))

−qj,j
.

Multiplying both sides with −qj,j and rearranging terms we get

−qj,jπ(j)(1− exp(qj,jt)) = ∑
l 6=j

π(l)ql,j(1− exp(qj,jt))

and we have the desired identity

−qj,jπ(j) = ∑
l 6=j

π(l)ql,j.

�
From a practical point of view to find an invariant distribution

for a continuous-time Markov chain start by solving the system of
equations from Theorem 51. If a non-trivial solution exists (i.e. not
zero in all coordinates) there will always be infinitely many solu-
tions since multiplication by a constant does not alter the system of
equations (3.11). Therefore, an important step is to check the exis-
tence of a solution that can be normalized into a probability vector of
non-negative coordinates with sum one. It is very common that the
coordinates of any non-zero solution sum to +∞ so that no normal-
ized solution may be found.

A probability distribution solving the system of equations from
Theorem 51 will be a good candidate for an invariant distribution.
However, it turns out that for Markov chains with an infinite state
space additional conditions are required to ensure that we have in-
deed found an invariant probability. Note that the condition of the
following Theorem 52 is trivially satisfied for Markov chains on a
finite state space.
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Theorem 52 (Sufficient condition for a stationary distribution) If
π = (π(i))i∈S is a probability satisfying the condition

∀j ∈ S : ∑
i 6=j

π(i)qi,j = π(j)(−qj,j) = π(j)qj (3.12)

of Theorem 51 and furthermore

∑
j∈S

π(j)(−qj,j) < ∞ (3.13)

then π = (π(i))i∈S is a unique invariant distribution for an irreducible
Markov chain.

Sketch of proof: For any fixed state j ∈ S consider the function
µ(t) := ∑i∈S π(i)Pi,j(t) and note that µ(0) = π(j). Use the backward
differential equations (Theorem 40) and the assumption (3.12) to
show that µ′(t) = 0 and conclude that ∑i∈S π(i)Pi,j(t) = µ(t) =

µ(0) = π(j). �

Example 53 Let us try to find the invariant distribution for the Markov
chain in Example 34. The system of equations πQ = 0 from Theorem 51
becomes

π(1) · (−4) + π(2) · 1 + π(3) · 3 = 0

π(1) · 2 + π(2) · (−4) + π(3) · 1 = 0

π(1) · 2 + π(2) · 3 + π(3) · (−4) = 0.

Solving the system by expressing all coordinates in terms of π(1) we get
that π(2) = 10/13 · π(1) and π(3) = 14/13 · π(1). Looking for a solution
with

1 = π(1) + π(2) + π(3) = π(1)
(

1 + 10
13 + 14

13

)
we get that π = (π(1), π(2), π(3)) = 1

37 (13, 10, 14).

Note that just because there is a probability vector, π, solving the sys-
tem of equations πQ = 0 then we can not be sure that π is an invariant
distribution for the Markov chain. However, since the Markov chain has a
finite state space it is trivial to see that the additional condition (3.13) from
Theorem 52 holds. We conclude that π is an invariant distribution for the
Markov chain. Further, since the Markov chain is irreducible we get from
Theorem 49 that for any initial distribution then

lim
t→∞

P(X(t) = j) = π(j), j = 1, 2, 3.

�

It might be a bit difficult to understand the role of the additional
sufficient condition given in Theorem 52

23. The main purpose is to 23 It is possible to give examples demon-
strating that the assumptions in The-
orem 51 are not sufficient and that
the assumptions in Theorem 52 are
not necessary for π to be an invariant
probability.



86 CHAPTER 3. MARKOV CHAINS IN CONTINUOUS TIME

rule out the possibility of explosion. Note that the condition stated in
Theorem 52 always holds if there is a probability vector solving (3.11)
and if (qj,j) is bounded. Below we give a necessary and sufficient
condition for a probability π = (π(i))i∈S to be an invariant distribu-
tion for a continuous-time Markov chain. This can only be done with
reference to the embedded discrete-time Markov chain of jumps.

Theorem 54 The continuous-time irreducible Markov chain (X(t))t≥0

has an invariant (or stationary) distribution 24 if and only if the embedded 24 Theorems 54 or 52 may be used for
finding invariant distributions for
continuous time Markov chains. Note
that for finite communication classes
you only have to solve the system of
equations given by (3.11) since the
additional condition (3.13) of Theorem
52 always holds.

discrete-time Markov chain of jumps is recurrent and there exists a prob-
ability vector π = (π(i))i∈S such that (3.11) holds or written in a more
compact notation such that πQ = 0.

The proof of Theorem 54 may be found in Asmussen [2003, Chapter
2] �

The following result characterizes the invariant distribution for an
irreducible Markov chains in terms of mean recurrence (or mean re-
turn) times. The result may be regarded as a continuous-time analog
to Theorem 22 in Chapter 2.

Theorem 55 (Existence of invariant distributions and positive recurrence)
For an irreducible, recurrent continuous-time Markov chain 25 (X(t))t≥0 25 Formally, the result does not hold

in the trivial case of a continuous-
time Markov chain consisting of one
(absorbing) state.

define the escape time from state i

Wi = inf{t ≥ 0|X(t) 6= i}

and the return time to state i

Time
Wi Ri

iS
ta

te

Ri = inf{t > Wi|X(t) = i}.

Then an invariant probability π = (π(i))i∈S exists if and only if

E[Ri|X(0) = i] < +∞

and we have that

π(i) =
E[Wi|X(0) = i]
E[Ri|X(0) = i]

=
1

qiE[Ri|X(0) = i]
.

is the unique invariant probability 26. 26 It may be demonstrated that if the
mean return time is finite for some
i then it is finite for any other state
in the same communication class. In
particular, positive recurrence is a class
property.

The result is also valid when all expectations E[Ri|X(0) = i] = +∞ if
we take π(i) = 0 to mean that no invariant distribution exists.

We say that a communication class is positive recurrent if

E[Ri|X(0) = i] < ∞

and note that this is equivalent to existence of an invariant distribution.

�
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Example 56 (Continuous-time Random Walk) The symmetric random
walk on Z was introduced in Example 14 as a discrete time Markov chain
with transition probabilities Pi,i+1 = Pi,i−1 = 1/2, i ∈ Z. A possible
extension to a continuous-time Markov chain has transition intensities
given by

qi,i+1 = qi,i−1 = λ|i|,

where λi > 0, i ∈ N0. Note that the embedded Markov chain of jumps
is exactly the symmetric random walk in discrete-time. Further, to obtain
true symmetry around state 0 we have insisted that the transition intensities
from states i and −i are given by the same parameter λ|i|.

Since the symmetric random walk in discrete-time is recurrent (-see
Exercise 2.4.2) it follows by Definition 46 that the symmetric continuous-
time Markov chain is recurrent regardless of the value of the parameters
λj, j ∈N0.

According to Theorem 54 an invariant probability of the symmetric
random walk in continuous time exists if and only if there is a probability
vector π solving the system of equations

2 · λ|i|π(i) = λ|i−1|π(i− 1) + λ|i+1|π(i + 1).

Using that we must have π(i) = π(−i), i ∈ N, the equation for i = 0
yields that π(1) = λ0

λ1
π(0). By iteration it follows that in general

π(i) =
λ0

λ|i|
π(0), i ∈ Z.

It is possible to normalize the solution into a probability if π(0) may be
chosen such that

1 = ∑
j∈Z

π(j) = π(0)

(
1 + 2λ0

∞

∑
j=1

1
λj

)
.

We conclude that the continuous-time symmetric random walk on Z is
positive recurrent if and only if ∑j

1
λj

< +∞ 27. Since the mean waiting 27 Exercise: Given a symmetric discrete
probability on Z with point probabil-
ities p(z). Under what conditions can
we find a symmetric random walk in
continuous time with invariant proba-
bility π(i) = p(i)?

time to the next jump from state i is proportional to 1
λ|i|

we observe that
positive recurrence requires the mean waiting time between jump to decay
sufficiently fast with the distance to state 0. �

Example 56 shows that while the embedded Markov chain of
jumps is null-recurrent (symmetric random walk in discrete time),
then the continuous-time Markov chain can be either null-recurrent
or positive recurrent. In Exercise 3.4.4 we demonstrate that we can
also have that the embedded Markov chain of jumps is positive recur-
rent but that the continuous-time Markov chain is null recurrent.

The following result applies to the case of a positive recurrent
continuous-time Markov chain where the embedded Markov chain of
jumps is also positive recurrent.
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Theorem 57 (Time-invariant vs. event-invariant distribution)
Consider an irreducible continous-time Markov chain with transition in- An irreducible Markov chain (X(t))t≥0

on a finite state space |S| < +∞ has an
invariant probability. To see this note
that the embedded Markov chain of
jumps is irreducible (hence closed and
positive recurrent) and have a unique
invariant probability (π(i))i∈S. The
finite (!) vector of non-negative entries
given by ν(i) = π(i)

qi
may be normalised

to a probability vector that satisfies
the system of equations (3.12) and the
assumption (3.13) from Theorem 52.

tensity Q and assume that the invariant distribution ν = (ν(i))i∈S exists.
Suppose that we have also verified the existence of an invariant distribution
π = (π(i))i∈S for the embedded Markov chain of jumps. Then the following
relation holds

π(i) =
ν(i)qi

∑j∈S ν(j)qj
, i ∈ S. (3.14)

Sketch of proof: If ν is invariant for (X(t))t≥0 then by Theorem 51

ν(j)qj = ∑
i 6=j

ν(i)qij = ∑
i 6=j

ν(i)qi
qij

qi
.

This shows that π̃(i) = ν(i)qi defines an invariant measure for the em-
bedded Markov chain of jumps with transition probabilties Pij =

qij
qi

. By
Theorem 22 it follows that the unique invariant probability must be given by
(3.14). �

We shall conclude by discussing briefly the limiting behaviour of
continuous time Markov chains with more communication classes.
It is only relevant to discuss the situation where the Markov chain
started in a transient state will eventually enter a recurrent class.
Without loss of generality we can restrict our attention to the case
where all recurrent states are absorbing. An absorbing state is a state
from where the Markov chain cannot escape. State i ∈ S is absorbing
if qi,i = 0 or equivalently if ∑j 6=i qi,j = 0. A number of interesting
questions are related to an absorbing state. First of all we might
want to compute the probability that the Markov chain is eventually
absorbed in state i. Secondly, we could be interested in the behavior
of the Markov chain until absorption for example the average time
spend in any other state j 6= i before being caught in state i.

Theorem 58 (Time spent in state j before absorption) For a continuous-
time Markov chain the average number of periods (visits) spent in state j
before reaching an absorbing state i (i.e. with qi,i = 0) may be found by
studying the transition probabilities of the embedded discrete-time Markov
chain of jumps. For finite state space Markov chains this computation may
be carried out using Theorem 28 while you may use Theorem 30 for Markov
chains on countably infinite state spaces.

If Nj is the mean number of visits to state j before absorption in state i

then the average time spend in state j before absorption is given by
Nj
qj

. �

For another example illustrating the use
of Theorem 58 you may have a look at
Exercise 3.3.4.Example 59 Consider the Markov chain with state space S = {1, 2, 3, 4, 5}

and transition intensities given by Figure 3.5. By looking at the transition
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matrix, P, for the embedded Markov chain of jumps we immediately identify
three communication classes C1 = {1} (absorbing), C2 = {2, 3} (transient),
and C3 = {4, 5} (recurrent). Suppose that we start the Markov chain in
state 2 how do we find the limiting distribution limt→∞ P(X(t) = j) for
j ∈ S?

1

2 3

45

1
1

1

1

1

2

1

Figure 3.5: Transition diagram for the
Markov chain with three communica-
tion classes studied in Example 59.

To study the behaviour of the Markov chain until the first jump to a
recurrent class we consider the modified version, Pmod, of the transition
matrix for the embedded Markov chain of jumps where recurrent states are
turned into absorbing states

Pmod =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

1/3 0 1/3 0 1/3
0 1/2 0 1/2 0

 .

Note that we have reordered the states as {1, 4, 5, 2, 3} such that Pmod has a
block structure as in Theorem 28

Pmod =

(
I 0
S Q

)

with

S =

(
1/3 0 1/3

0 1/2 0

)
Q =

(
0 1/3

1/2 0

)
.

From the matrix

M = (I −Q)−1 =

(
6/5 2/5
3/5 6/5

)

we get that the Markov chain (started at state 2!) will on average visit state
2 a total of 6/5 times and state 3 a total of 2/5 times before absorption to
one of the recurrent classes. We conclude from Theorem 58 that the average
time spent in the transient states will be 6/5 · 1/3 = 2/5 for state 2 and
2/5 · 1/2 = 1/5 for state 3. In particular, the mean waiting time until the
Markov chain jumps to a recurrent class may be found as 2/5+ 1/5 = 3/5.

From the matrix of absorption probabilities

A = (I −Q)−1S =

(
2/5 1/5 2/5
1/5 3/5 1/5

)

we conclude that the probability that the Markov chain leaves the transient
class C2 through state 1 is 2/5. Since state 1 is absorbing it follows that
limt→∞ P(X(t) = 1) = 2/5 when X(0) = 2. The probability that the
Markov chain will end its life in the class C3 = {4, 5} is 1/5 + 2/5 = 3/5.
Note, however, that this probability mass will in the long run be distributed
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on states 4 and 5 according to the invariant distribution on C3. The unique
invariant distribution on C3 must satisfy the equation (3.11)

2π(4) = π(5)

and we conclude that π(5) = 2/3, π(4) = 1/3. The limiting distribution
of the Markov chain given that X(0) = 2 may thus be summarised as

lim
t→∞

P(X(t) = j) =



2/5, j = 1
0, j = 2
0, j = 3

3/5 · 1/3 = 1/5, j = 4
3/5 · 2/3 = 2/5, j = 5

�

Birth-and-death processes

In this section we discuss an important class of continuous-time
Markov chains on a countable state space. A birth-and-death process
is a Markov chain on S = N0 that allows only jumps (upwards
or downwards) of size one. Referring to our usual specification of
Markov chains in terms of transition intensities this means that we
assume that

qi,j = 0, i, j ∈N0, |i− j| > 1

while the only non-zero intensities (except for the diagonal) are

qi,i+1 = βi, i ∈N0 ← birth intensities

qi,i−1 = δi, i ∈N ← death intensities.

The dynamics of a birth-and-death process is very simple. If the pro-
cess is currently in state i then the waiting time to the next jump fol-
lows an exponential distribution with rate βi + δi (i.e. mean 1

βi+δi
). At

the time of the jump the process moves one step up with probability
βi/(βi + δi) and one step down with probability δi/(βi + δi).

Example 60 (Transition probabilities for pure birth processes) A
Markov chain (X(t))t≥0 on N0 with transition intensities

qi,i+1 = −qi,i = βi > 0, i ∈N0 and qi,j = 0, otherwise

is called a pure birth process . The most famous example of a pure birth
process is the Poisson process with constant birth intensities

qi,i+1 = λ, i ∈N0.

The waiting time between jumps constitute a sequence of independent iden-
tically distributed random variables from an exponential distribution with
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rate parameter λ. If (X(t))t≥0 is a Poisson process with intensity λ then
X(t) follows a Poisson distribution with parameter λt. In Exercise 3.5.1 and
3.5.2 we study various properties of the Poisson process.

For a general pure birth process the forward differential equations from
Theorem 41 take the form

P′0,n(t) = P0,n(t) · (−βn) + P0,n−1(t)βn−1, n ≥ 1.

Direct computation shows that

yn(t) = exp(βnt)P0,n(t)

satisfies the differential equation

y′n(t) = βn−1 exp(βnt)P0,n−1(t).

The solution is given by

yn(t) =
∫ t

0
βn−1 exp(βns)P0,n−1(s)ds + C

and from the initial condition

yn(0) = exp(βn · 0)P0,n(0) = 0, n ≥ 1,

we (conclude that C = 0 and) get the recursive formula

P0,n(t) = exp(−βnt)yn(t) = exp(−βnt)
∫ t

0
βn−1 exp(βns)P0,n−1(s)ds.

Using that P0,0(t) = exp(−β0t) the transition probabilities may be com-
puted iteratively. If all birth intensities are different (i.e. if βi 6= β j for i 6= j)
then

P0,n(t) = β0 · . . . · βn ·
n

∑
i=0

exp(−βit)
1

∏n
j=0,j 6=i(β j − βi)

.

For the linear birth process with immigration given by βn = βn + λ for
β, λ > 0 then the formula simplifies to

P0,n(t) =
( λ

β + n− 1
n

)
(exp(−βt))λ/β (1− exp(−βt))n .

In particular, for X(0) = 0 then X(t) follows a negative binomial distribu-
tion with parameter (λ/β, exp(−βt)). �

Consider the time, τn, of the n−th jump for a birth-and-death
process. If the process is absorbed before the n-th jump then we let
τn = +∞. Clearly, (τn)n≥0 is increasing

τ1 ≤ τ2 ≤ . . . ≤ τn
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and we may define the variable

τ∞ = lim
n→∞

τn

with values in [0,+∞]. From a mathematical point of view it is easy
to give examples of birth intensities, (βi)i∈N0 , and death intensities,
(δi)i∈N, such that

P(τ∞ = +∞) < 1

or in other words such that there is a strictly positive probability of
observing an infinite number of jumps in finite time. In this situation
we will say that explosion is possible or that the transition intensities
allow for explosion.

Example 61 (Pure birth process with explosion) Consider a pure birth
process with P(X(0) = 0) = 1. Then we know that the n−th jump will go
from state n− 1 to n with an expected waiting time of 1/βn−1. The expected
time of the n−th jump will hence be

E[τn|X(0) = 1] =
n−1

∑
i=0

1/βi

and by monotone convergence

E[τ∞|X(0) = 1] = lim
n→∞

E[τn|X(0) = 1] = lim
n→∞

n−1

∑
i=0

1/βi.

In particular, if ∑∞
i=0 1/βi < ∞ then τ∞ has finite mean and we conclude

that
P(τ∞ = +∞|X(0) = 1) = 0.

We conclude that for a pure birth process then ∑∞
i=0 1/βi < ∞ implies

that there will be infinitely many jumps in finite time (=explosion) with
probability 1! �

Using the recurrence criterion given in Theorem 15 we get a sim-
ple characterization of recurrent birth-and-death processes.

Theorem 62 (Birth-and-death processes: recurrence) A birth-and-
death process is recurrent if and only if

∞

∑
i=1

δi · . . . · δ1

βi · . . . · β1
= ∞. (3.15)

Equivalently, a birth-and-death process is transient if and only if

∞

∑
i=1

δi · . . . · δ1

βi · . . . · β1
< ∞. (3.16)
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Proof: We consider only the case where all βi, δi > 0. According to
Definition 46 the birth-and-death process is recurrent if and only if
the embedded Markov chain of jumps is recurrent. The jump chain
has transition probabilities

Pi,i+1 =
βi

βi + δi
, Pi,i−1 =

δi
βi + δi

, i ≥ 1, P0,1 = 1.

Take i = 0 in equation (2.7) for the recurrence criterion of Theorem 15

to get

α(1) = ∑
k 6=0

P1,kα(k) = P1,2 · α(2)

α(j) = ∑
k 6=0

Pj,kα(k) = Pj,j+1 · α(j + 1) + Pj,j−1 · α(j− 1), j > 1.

where the last equality follows from the fact that only jumps of size
one are possible. Using that α(j) = Pj,j+1α(j) + Pj,j−1α(j) we get by
iteration

α(j + 1)− α(j) =
Pj,j−1

Pj,j+1
(α(j)− α(j− 1))

=

(
j

∏
k=2

Pk,k−1

Pk,k+1

)
(α(2)− α(1))

=

 j

∏
k=2

δk
βk+δk

βk
βk+δk

 (α(2)− α(1))

=

(
j

∏
k=2

δk
βk

)
(α(2)− α(1)) , j > 1.

Summing over j = 2, ..., n and using the boundary condition α(1) =

P1,2α(2) we get

α(n + 1)− α(2) =
n

∑
j=2

(
j

∏
k=2

δk
βk

)
(α(2)− α(1))⇔

α(n + 1) =
n

∑
j=2

(
j

∏
k=2

δk
βk

)
(1− P1,2)α(2) + α(2).

By letting α(2) = 0 we see that α(i) = 0, i ≥ 1 is a solution to (2.7)
(-remember that we assume δ1, β1 > 0 which implies that P1,2 6= 1).
The only nonzero solution to (2.7) is obtained by α(2) 6= 0 and the
solution will be bounded if the coefficient

n

∑
j=2

(
j

∏
k=2

δk
βk

)
(P1,2 − 1)
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does not tend to +∞ for n → ∞. We conclude that nonzero bounded
solutions exist if and only if

∞

∑
j=2

(
j

∏
k=2

δk
βk

)
< +∞

which is equivalent to the sum in Theorem 62 being finite. Finally,
use that Theorem 15 states that a Markov chain is transient if and
only if nonzero bounded solutions to (2.7) exist. �

Theorem 63 (Birth-and-death processes: positive recurrence) A
birth-and-death process is positive recurrent if and only if

∞

∑
i=1

βi−1 · . . . · β0

δi · . . . · δ1
< ∞ and

∞

∑
i=1

δi · . . . · δ1

βi · . . . · β1
= ∞ (3.17)

Sketch of proof of Theorem 63 We know from equation (3.11)
of Theorem 51 that the invariant distribution of a continuous-time
Markov chain must satisfy the system of equations

∀j ∈ S : ∑
i 6=j

π(i)qi,j = π(j)(−qj,j) = π(j)qj.

For a birth-and-death process the system of equations takes the form

∀j ∈N : π(j− 1)β j−1 + π(j + 1)δj+1 = π(j)(β j + δj)

j = 0 : π(1)δ1 = π(0)β0

which turns out to have the solution

π(j) = π(0) ·
(

j

∏
i=1

βi−1

δi

)
(3.18)

that can be normalized into a probability vector provided that

∞

∑
i=1

βi−1 · . . . · β0

δi · . . . · δ1
< ∞.

You are reminded of Theorem 54 which tells us that positive re-
currence of a continuous-time Markov chain requires both a solution
to (3.11) and that the Markov chain is demonstrated to be recurrent.
This is the reason that two conditions must be given in Theorem 63.
�

From Example 61 we know that a pure birth process can have
infinitely many jumps on a finite time interval (i.e. explosion may
occur!). It is not possible to give a simple condition on the transi-
tion intensities for a continuous-time Markov chain that determines
exactly when explosion is possible. For birth-and-death processes
things are little easier as we have the following result.
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Theorem 64 (Explosion for a birth-and-death processes) For a birth-
and-death process with intensities

qi,i+1 = βi, qi+1,i = δi+1, qi+1,i+1 = −(δi+1 + βi+1)

and qi,j = 0 otherwise, i, j ∈ N0 then explosion is possible if and only if
28 28 From Theorem 62 we observe that if

(3.19) holds then the birth-and-death
process may be transient. Equivalently,
for a recurrent birth-and-death process
then explosion is not possible.

∞

∑
i=1

(
1
βi

+
δi

βiβi−1
+ . . . +

δi · . . . · δ1

βi · . . . · β0

)
< +∞. (3.19)

The inequality (3.19) is often referred to as Reuter’s criterion for explosion.
Proof: The proof of Reuter’s criterion may be found in Asmussen [2003]. �

Example 65 (Birth-and-death process) We consider the birth-and-death
process with birth intensities

βi = β · (1 + i)α, i ≥ 0,

and death intensities
δi = δ · iα, i ≥ 1,

for parameters α, β, δ > 0.

From Theorem 62 we have that the birth-and-death process is recurrent if
and only if

+∞ =
∞

∑
i=1

δi · . . . · δ1

βi · . . . · β1
=

∞

∑
i=1

δiiα · (i− 1)α · . . . · 1α

βi(i + 1)α · iα · . . . · 2α

=
∞

∑
i=1

(
δ

β

)i
(1 + i)−α.

Letting ai =
(

δ
β

)i
(1 + i)−α we get that

ai+1

ai
=

δ

β

(
i + 1
i + 2

)α
i→∞→


< 1 δ < β

1 δ = β

> 1 δ > β

From the ratio test 29 we conclude that for any value of α > 0 then the 29 See page 138 in Appendix B.6.

birth-and-death process is recurrent for δ > β and transient for β > δ. For
the special case where β = δ we have that

∞

∑
i=1

δi · . . . · δ1

βi · . . . · β1
=

∞

∑
i=1

(1 + i)−α.

Using the integral test 30 we conclude that for δ = β then the birth-and- 30 See page 138 in Appendix B.7.

death process is recurrent for α ≤ 1 and transient for α > 1.

For the birth-and-death process to be positive recurrent we get from
Theorem 63 that it must be recurrent and that we must have that

∞

∑
i=1

βi−1 · . . . · β0

δi · . . . · δ1
=

∞

∑
i=1

(
β

δ

)i
< +∞.
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We conclude that the birth-and-death process is positive recurrent for β < δ,
null recurrent for β = δ, α ≤ 1 and transient for β = δ, α > 1 or β > δ.

Finally, we use Theorem 64 to discuss if explosion is possible. We find
that

∞

∑
i=1

(
1
βi

+
δi

βi · βi−1
+ . . . +

δi · . . . · δ1

βi · . . . · β0

)
=

∞

∑
i=1

(
1

β · (1 + i)α
+

δ · iα

β · (1 + i)αβ · iα
+ . . . +

δ · iα · . . . · δ · 1α

β · (1 + i)α · . . . · β · 1α

)
=

∞

∑
i=1

1
β · (1 + i)α

(
1 +

δ

β
+ . . . +

δi

βi

)
.

Clearly, for δ > β the series is divergent (= +∞) since the terms do not
even go to zero as i→ ∞. For δ = β the series is

∑
i=1

1
β · (1 + i)α

(1 + i) =
∞

∑
i=1

1
β · (1 + i)α−1

which (according to the integral test) is convergent if and only if α− 1 > 1
i.e. if α > 2. We conclude that for β = δ and α > 2 then explosion is
possible.

For the case β > δ the i-th term, ai, of the series may be bounded as
follows

1
β · (1 + i)α

≤ ai =
1

β · (1 + i)α

i

∑
j=0

(
δ
β

)j

≤ 1
β · (1 + i)α

∞

∑
j=0

(
δ
β

)j
=

1
β · (1 + i)α

1

1−
(

δ
β

) .

Using the integral test we conclude that for β > δ then the series is finite
and hence explosion is possible exactly if α > 1. �



Exercises on Markov chains in continuous time

Markov chains with two states

3.1.1 Two state absorbing Markov chain

In life insurance mathematics a two state Markov chain with one
absorbing state is often used to model a single life with one cause of
death. This corresponds to the following transition diagram where
the states are labelled as alive or dead

alive dead
λ

Figure 3.6: Transition diagram for
Markov chain in Exercise 3.1.1.Let (X(t))t≥0 be the Markov chain given by the diagram above,

and assume that the person is alive at time t = 0.

1. What is (by definition) the distribution of the first (and only) jump
time, τ1?

2. Use the general formula for conditional probabilities

P(A|B) = P(A ∩ B)/P(B)

to compute P(τ1 > s + t|τ1 > t) for s, t > 0. Give an interpretation
of the result.

3. Assuming that this is a reasonable model for the life time of a
Danish woman and that the mean life duration is 80 years what is
then the probability of surpassing the age of 100 years given that
one has already passed the age of 80 years?

4. Find the distribution of X(t).

5. Consider n single lifes given by the absorping two-state Markov
chain above. Let N(t) = ∑n

i=1 1(Xi(t) = alive) be the number of
individuals alive at time t (i.e. Xi(t) is the state of i-th person at
time t). Find E(N(t)) and discuss what could be the distribution
of N(t).
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3.1.2 Two state Markov chain with equal intensities

Let (X(t))t≥0 be the Markov chain given by the transition diagram
on Figure 3.7, where we assume that the transition intensities λ1 =

λ2 ≡ λ are the same in both states. We further assume that the initial
distribution is given by P(X(0) = 1) = 1.

1 2

λ1

λ2

Figure 3.7: Transition diagram for
Markov chain in Exercise 3.1.2 and
3.1.3.

1. Find the distribution of the jump times τ1, τ2, τ3 . . . , by referring to
results from other exercises or from Appendix B.1.

2. Let N(t) denote the total number of jumps of the chain on the
time interval [0, t]. Express the distribution of X(t) (i.e. the proba-
bilities P(X(t) = 1) and P(X(t) = 2)) in terms of N(t).

3. Find the distribution of N(t) by referring to results from other
exercises or from Appendix B.1 and use this to obtain a formula
for the distribution of X(t).

4. Find the distribution of X(t) under an arbitrary initial distribution
given by P(X(0) = 1) = p ∈ [0, 1]. Does the distribution of X(t)
depend on t?

5. Show that for any initial distribution then the limits

ν1 := lim
t→∞

P(X(t) = 1) and ν2 := lim
t→∞

P(X(t) = 2)

exist. Do ν1 and ν2 depend on the initial distribution?

3.1.3 Transition probabilities for a two state chain

Consider the general two-state Markov chain, (X(t))t≥0, given by
transition diagram on Figure 3.7. The corresponding transition matrix
becomes

Q =

(
−λ1 λ1

λ2 −λ2

)
.

The general result says that for i, j ∈ {1, 2} then the transition proba-
bilities

Pi,j(s) := P(X(t + s) = j|X(t) = i), t, s ≥ 0,

are given by the entries of the exponential matrix

exp(Qt) =
∞

∑
n=0

(Qt)n

n!
,

where Qt is the matrix obtained by multiplying each entry of Q by
t. The purpose of this exercise is to find closed form expressions for
Pi,j(s) for the general two-state Markov chain.
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1. Suppose that we can find an invertible matrix U and a diagonal
matrix

D =

(
δ1 0
0 δ2

)
such that Q = UDU−1. Argue that (Qt)n = U(Dntn)U−1 and
deduce that

exp(Qt) = U

(
exp(δ1t) 0

0 exp(δ2t)

)
U−1.

2. If U has entries uij and U−1 has entries u−1
ij , i, j ∈ {1, 2} write

down the formula for Pi,j(t) which is given as the ij−th entry of
exp(Qt) from question 1. above.

The last two questions 3.-4. show that it is always possible to obtain
the representation Q = UDU−1 given in question 1. above. This
implies that for a two-state Markov chain then the transition proba-
bilities

P(X(t + s) = j|X(t) = i)

are given as linear combinations of two exponential functions exp(δis), i =
1, 2.

3. Find expressions for δ1, δ2 (given as the eigenvalues of Q) by solv-
ing the equation

0 = det(Q− δI) = det

(
−λ1 − δ λ1

λ2 −λ2 − δ

)
.

4. For each of the eigenvalues δ1, δ2 find the coordinates u1j, u2j, j =
1, 2, of (right) eigenvectors for Q with eigenvalues δj, by solving
the system of equations

Q

(
u1j

u2j

)
= δj

(
u1j

u2j

)

and verify that Q = UDU−1.
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Markov chains with three states

3.2.1 Model for interest rate

In this exercise we consider the three-state Markov chain with q1,3 =

q3,1 = 0 given by the transition diagram on Figure 3.8. Note that
the model does not allow jumps between states 1 and 3. The model
may for instance be used to describe an interest rate that may jump
between three different levels but where direct jumps from lowest to
highest level do not occur.

1

2

3

q1,2

q2,3

q2,1

q3,2

Figure 3.8: Transition diagram for the
Markov chain studied in Exercise 3.2.1.

1. Write down the transition matrix, Q, for the Markov chain.

2. Find the limit distribution, π(j) = limn→∞ P(X(t) = j), for the
Markov chain.

3. Write down the matrix of transition probabilities, P, for the
discrete-time Markov chain describing the jumps of the chain.

4. Find the invariant distribution for the discrete-time Markov chain
given by P, and discuss when the probabilities of questions 2. and
4. coincide.

Assume in the following that X(0) = 2 and that all non-zero entries
of Q are the same, i.e. q1,2 = q2,1 = q2,3 = q3,2 = q. Denote by
τn, n ≥ 1, the time of the n-th jump of the Markov chain and let N(t)
be the number of jumps of the Markov chain on the interval [0, t].

5. Argue that the distributions of τ1 and τ2 − τ1 are exponential and
find the rate parameters.

6. Using that τ2 is the sum of the two independent random variables
τ1 and τ2 − τ1 show by applying the formula of Exercise 3.5.1 that
τ2 has density

g2(t) = 2q(exp(−qt)− exp(−2qt)), t ≥ 0.

7. Express the event (X(t) = 2) in terms of events of the form
(N(t) = n).

8. Find a formula for the probabilities P(X(t) = 1), P(X(t) = 2), and
P(X(t) = 3) in terms of the (unknown) probabilities

pn = P(N(t) = n), n ∈N0.

Assume in the following that X(0) = 1 and that all non-zero entries
of Q are the same, i.e. q1,2 = q2,1 = q2,3 = q3,2 = q.

9. Use the ideas from questions 5.-8. to express P(X(t) = 2) in terms
of pn from question 8.
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The computations above give us expressions for

Pi,j(s) = P(X(t + s) = j|X(t) = i)

for certain values of i, j ∈ S = {1, 2, 3}. Remember that in general the
transition probability Pi,j(s) is given as the ij-th entry of the exponen-
tial matrix exp(Qs).

10. For what values of i, j ∈ S did we obtain expressions for Pi,j(s) in
terms of pn = P(N(t) = n) by the results of questions 7.-9?

11. Argue that v1 = (1, 1, 1)T , v2 = (1, 0,−1)T , and v3 = (1,−2, 1)T

are right eigenvectors for Q and find the corresponding eigenval-
ues λ1, λ2, and λ3.

12. Find a matrix, O, and a diagonal matrix D such that

QO = OD.

13. Find the transition probabilites Pi,j(s) by computing exp(Qs).

Hint: Argue first that exp(Qs) = O exp(Ds)O−1.

3.2.2 Model with two states of health and death

In this exercise we consider a model that may be used to describe
insurances with payments depending on the state of the insured.
We assume that the insured starts in state 0 (=active0). After a while
the insured enters a more favorable state 1 (=active1)where she or he
stays until death represented by state 2 (=dead). To put the model into
a more practical setting we might label the states as active0, active1,
and dead.

active0

active1

dead

λ

µ

Figure 3.9: Transition diagram on the
model with two states of health studied
in Exercise 3.2.2.

Assume that X(0) = 0 and denote by

T1 = inf{t > 0|X(t) = 1}

the time of the jump to state 1. Further, let

Pi,j(t) = P(X(t + s) = j|X(s) = i), s, t ≥ 0,

be the transition probabilities of the Markov chain.

1. Find the matrix, Q, of transition intensities and explain for what
i, j ∈ S = {0, 1, 2} it holds that Pi,j(t) = 0, t ≥ 0.

2. Write down the backward differential equation for P0,0(t) and
determine

P(X(t) = 0).
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3. Determine P(T1 > t) and the expectation E[T1] (You do not have
to redo the formal computations as the result should be known!).

The purpose of the following questions is to find a formula for the
transition probabilities P0,2(t).

4. Find P2,2(t).

5. Write down the backward differential equation for P1,1(t) and
determine P(X(t + s) = 1|X(s) = 1).

6. Find P1,2(t).

7. Argue that P′0,2(t) = −λP0,2(t) + λP1,2(t).

8. Define the function

h(t) = exp(λt)P0,2(t)

and deduce from question 7. that

h′(t) = λ exp(λt)P1,2(t).

9. Use the expression for P1,2(t) from question 6. and the boundary
condition h(0) = 0 to solve the differential equation from question
8. to get a formula for h(t).

10. Find a closed form expression for P0,2(t).

3.2.3 Model for disabilities, recoveries, and death

A model suitable for analysing insurances with payments depending
on the state of health of the insured may be given by the three state
Markov chain with transition intensities indicated in Figure 3.10.

dead

active invalid
σ

µ

ρ

ν

Figure 3.10: Transition diagram for
Markov chain of Exercise 3.2.3.

Consider a portfolio for a person with initial state X(0) = active
and denote by

τ = inf{t > 0|X(t) = dead}

the life length. To the insurance company it is important to know the
distribution of τ. Further, if the payments depend on the state of the
insured (active/invalid) it is important to study the duration of the
time spend in each of the states before absorption in the final state
dead.

To simplify the notation below we relabel the states such that
0 = active, 1 = invalid, and 2 = dead. As usual we denote by

Pi,j(s) = P(X(t + s) = j|X(t) = i), s, t ≥ 0,

the transition probabilities of the Markov chain.
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1. Write down the transition matrix, Q.

2. For what i, j does it hold that Pi,j(s) = 0?

3. Write down the forward differential equations for the transition
probabilities Pi,j(s) for i = 0 (=active).

Assume in the following questions 4.-9. that ν = µ.

4. Use question 3. and the fact that P0,0(t) + P0,1(t) + P0,2(t) = 1 to
obtain a simplified differential equation for P0,2(t) for ν = µ.

5. Find the distribution of the survival time, τ, for ν = µ.

Hint: First note that P(τ ≤ t) = P0,2(t) and then find (or guess!) the
solution to the differential equation of question 4.

6. Use question 3.+5. and that P0,0(t) + P0,1(t) + P0,2(t) = 1 to obtain
an equation for P′0,1(t) that involves P0,1(t) but no other transition
probabilities Pi,j(t). Solve the differential equation and find P0,1(t).

The total time spend in the active state (= 0) may formally be
expressed as

S0 =
∫ ∞

0
1(X(t) = 0)dt.

In a similar way we define

S1 =
∫ ∞

0
1(X(t) = 1)dt

that is the time spend in state 1 (=invalid). Note that we have the
following formula

E[Si] = E
[∫ ∞

0
1(X(t) = i)dt

]
=
∫ ∞

0
P0,i(t)dt

that may be useful for computing E[Si] when the transition probabili-
ties are known.

7. Use the results of questions 4.-6. to obtain an expression for
E[Si], i = 0, 1, (-still assuming that µ = ν).

8. Compute P(S1 = 0).

9. Use question 5. and 8. to obtain an expression for P(S1 = 0, τ ≤ t)
and compute the conditional probability

P(S1 = 0|τ ≤ t)

that a person dying before time t did not spend any time in the
state 1 =invalid.
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3.2.4 Model for single life with 2 causes of death

In the following questions let Pi,j(t) = P(X(t + s) = j|X(s) = i)
denote the transition probabilities and assume that X(0) = alive.
For simplicity we recode the state space, S, such that: 0 = alive, 1 =

dead 1, 2 = dead 2.

alive

dead1dead2

λ1

λ2

Figure 3.11: Transition diagram for
Markov chain used as a model for a
single life with with 2 causes of death
in Exercise 3.2.4.

1. Find the intensity matrix of the chain.

2. Determine the communication classes of the chain and argue for
each class whether it is recurrent or transient.

3. For which i, j ∈ S does it hold that Pi,j(t) = 0 or Pi,j(t) = 1?

4. Write down the backward equations for the non-constant transi-
tion probabilities.

5. Determine P0,0(t) (i.e. the probability of being alive at time t).

6. Find expressions for the remaining transition probabilities.

7. Assuming that X(0) = alive find the probability that the process
will eventually be absorbed in state dead1.

3.2.5 Model with one zero in the transition matrix

We consider a Markov chain (X(t))t≥0 with transition diagram given
by Figure 3.12 and assume that P(X(0) = 3) = 1.

1

23

2

4

4

1

1

Figure 3.12: Transition diagram for
Markov chain of Exercise 3.2.5.

To solve questions 6.+7. you might find it useful to know that the
equation

f ′(t) = α f (t) + β exp(γt) + δ

has a solution of the form

f (t) = c1 · exp(γt) + c2 · exp(αt) + c3

for γ 6= α and c1, c2, c3 suitable constants.

1. Find the infinitesimal generator, Q, (=intensity matrix) for the
chain.

2. Find the transition probability matrix for the Markov chain of
jumps.

3. Write down the system of equations for the invariant probability
π.

4. Compute π.

5. Write down the forward differential equations for P3,j(t), j = 1, 2, 3.

6. Use that P3,1(t) + P3,2(t) + P3,3(t) = 1 to find P3,3(t).
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7. Find P3,1(t) and P3,2(t).

8. Let τ1 = inf{t > 0|X(t) = 1} be the time of the first visit to state 1.
Determine Eτ1.

3.2.6 A numerical example

1

23

2

2

3

1

3

1

Figure 3.13: Transition diagram for
Markov chain of Exercise 3.2.6.

1. Suppose that the chain starts in state 1 and let

τ1 = inf{t > 0|X(t) 6= 1}

be the time of the first jump. What is the mean Eτ1 of τ1?

2. Find the matrix, Q, of transition intensities and the transition
matrix, P, for the jumps.

3. Argue (briefly) that P(X(τ1) = 2) = 1/2.

4. What is the distribution of the time between the first, τ1, and the
second, τ2, jump if X(τ1) = 2.

5. What is the distribution of the time between the first and the
second jump if X(τ1) = 3.

6. What is the distribution of τ2?

7. Give an argument that the time, τn, of the n-th jump follows a
Γ−distribution and find the parameters.

8. Find the equilibrium distribution π of the Markov chain.

The transition probabilities, P(t), are given as the entries of the ex-
ponential matrix exp(Qt). The following question and the comments
below give some more insight on the possible form of the transition
probabilities. This part may be skipped if you are not familiar with
complex numbers.

9. Find the characteristic polynomial g(λ) = det(Q− λI) and show
that g has one real root (= 0 of course!) and two complex roots
(=−6± i).

Remark: We might continue to find a matrix O of linearly independent
(column) eigenvectors for Q and compute the transition probabilities as

P(t) = O

 1 0 0
0 e−6t exp(it) 0
0 0 e−6t exp(−it)

O−1.

The eigenvectors will contain complex numbers but since we know that
Pi,j(t) are probabilities (in particular real numbers) all complex coefficients
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must cancel when we compute the matrix products. Consequently, since by
definition

exp(it) = cos(t) + i · sin(t)

we can immediately conclude that all transition probabilities take the form

Pi,j(t) = ai,j + bi,j exp(−6t) · cos(t) + ci,j exp(−6t) · sin(t),

for suitable real constants ai,j, bi,j, ci,j. We can actually use the fact that
Pi,j(t)→ πj for t→ ∞ to conclude that ai,j = πj. Further, we have that

1 = Pi,i(0) = ai,i + bi,i + ci,i = πi + bi,i + ci,i ⇒ bi,i = 1− πi − ci,i

0 = Pi,j(0) = ai,j + bi,j + ci,j = πj + bi,j + ci,j ⇒ bi,j = −πj − ci,j, i 6= j,

showing that only the constants ci,j need to be determined. Finally, using
that ∑j Pi,j(t) = 1 we get the additional constraint ∑j ci,j = 0 for any i. A
system of equations for the remaining (6!) undetermined constants, ci,j, may
be obtained by the forward or backward differential equations for P(t).
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Finite state space

3.3.1 Model for two lifes

Consider a Markov chain, (X(t))t≥0, with four states given by transi-
tion diagram

both alive husband dead

wife dead both dead

µ2

ν2 ν1

µ1

Figure 3.14: Transition diagram of
model for two lifes from Exercise 3.3.1.

One may think of the model as a description of the two lifes of
a married couple that wants to buy a combined life insurance and
widow’s pension policy.

In the following we assume that at both persons are alive at time
t = 0.

1. Write down the transition matrix of the Markov chain and find the
distribution of the first jump time, τ1.

2. Find the probability that the husband dies before the wife.

3. Find the expected time before the last person dies.

4. Write down the backward differential equations for the transition
probabilities needed to find the distribution of X(t).

Consider now the stochastic process obtained by collapsing the states
where one person of the couple is alive, i.e. define (X̃(t))t≥0 by

X̃(t) =


0, X(t) = both alive
1, X(t) ∈ {husband dead,wife dead}
2, X(t) = both dead

In general (X̃(t))t≥0 is not a Markov chain and we shall try to argue
why.



108 CHAPTER 3. MARKOV CHAINS IN CONTINUOUS TIME

5. Compute

P(X(3t) = both dead, X(2t) = wife dead, X(t) = wife dead)

and

P(X(3t) = both dead, X(2t) = husband dead, X(t) = husband dead)

using the formula

P(X(3t) = k, X(2t) = j, X(t) = i)

= P(X(t) = i) · P(X(2t) = j|X(t) = i) · P(X(3t) = k|X(2t) = j).

6. Compute P(X̃(3t) = 2, X̃(2t) = 1, X̃(t) = 1) by writing the event
as a disjoint union of the sets in question 5.

7. Use a similar trick as in questions 5.-6. to compute

P(X̃(3t) = 2, X̃(2t) = 1, X̃(t) = 0).

8. Write the set (X̃(2t) = 1, X̃(t) = 1) as a disjoint union of events
involving (X(t)) and use question 6. to compute

P(X̃(3t) = 2|X̃(2t) = 1, X̃(t) = 1).

9. Use question 7. and the ideas of question 8. to compute

P(X̃(3t) = 2|X̃(2t) = 1, X̃(t) = 0).

10. Argue that in general {X̃(t)}t≥0 is not a Markov chain on {0, 1, 2}.

11. Under what restriction of the model parameters does it hold that
{X̃(t)}t≥0 is a Markov chain.

3.3.3 Forward differential equations for four state chain

Consider the Markov chain on Figure 3.15 with state space S =

{1, 2, 3, 4}, where the initial distribution is given by P(X(0) = 1) = 1.

2

1

34

λ

λ

β

β

β

λ

λ

λ

λ

Figure 3.15: Transition diagram of four
state Markov chain of Exercise 3.3.3.

1. Find the intensity matrix Q of the chain.

2. Write down the system of equations for the invariant probability,
π, of the chain and find π.

3. Find the transition matrix P for the jumps of the chain.

4. Find the distribution of the first jump time and use this to find an
expression for P1,1(t).

5. Write down the forward differential equation, P′(t) = P(t)Q, for
the transition probability P1,2(t) = P(X(t) = 2|X(0) = 1).
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6. Solve the differential equation from question 5. by using the result
from question 4. and that by symmetry we must have

P1,2(t) = P1,3(t) = P1,4(t).

Try also to give an even simpler derivation of P1,2(t) refering only
to symmetry but without using the differential equation.

7. Write down the forward differential equation for P2,2(t).

8. Using that P2,1(t) = 0 and ∑j∈S P2,j(t) = 1 show that the equation
from question 7. has a solution of the form

P2,2(t) = c1 + c2 exp(−3λt)

and determine the constants c1, c2.

9. Find the remaining transition probabilities.

Hint: For an easy solution to this question start by listing transition
probabilities that are zero and transition probabilities that must be the
same due to symmetry. You will probably also find it useful to remember
that the rows of P(t) sum to one.

3.3.4 Time to absorption

Suppose that the Markov chain corresponding to Figure 3.16 starts in
state 1, i.e. P(X(0) = 1) = 1.

0

1

23

1

2
3

1

4

1
4

1

Figure 3.16: Transition diagram for the
Markov chain used for question 1.-4. of
Exercise 3.3.4.

1. Find the intensity matrix, Q, of the chain.

2. Write down the system of equations for the invariant probability π

of the chain and find π.

3. What is the distribution and the mean of the time to the first
jump?

4. Find the transition matrix, P, for the jumps of the chain.

In the rest of the exercise we exclude the possibility that the chain
can jump from state 0 to state 1. This situation corresponds to the
transition diagram on Figure 3.17.

0

1

23

2
3

1

4

1
4

1

Figure 3.17: Transition diagram for the
Markov chain used for question 5.-9. of
Exercise 3.3.4.

5. Write down the transition matrix for the jumps of the modified
version of the chain. By convention for an absorbing state i let us
put Pi,i = 1.

6. Considering only the Markov chain of jumps compute (using a
computer) the expected number of times the chain will visit state 2
before absorption in state 0. Answer the same question for state 3.
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7. Write down the matrix, Q, of transition intensities for the modified
version of the continuous-time Markov chain.

8. Verify that v1 = (1, 1, 1, 1)T and v2 = (0, 7/3, 2, 1)T are (right)
eigenvectors for Q with eigenvalues λ1 = 0 and λ2 = −3.

9. Verify that v3 = (0, 1, 0, 0)T and v4 = (0, 1,−2, 1)T are (right)
eigenvectors for Q and find the corresponding eigenvalues λ3 and
λ4.

10. Let O be the 4 × 4 matrix with columns given by vi (i.e. O =

(v1, v2, v3, v4)). Use the fact that the transition probabilities, P(t) =
(Pi,j(t))i,j∈S, are given by the exponential matrix

exp(Qt) = O


exp(λ1t) 0 0 0

0 exp(λ2t) 0 0
0 0 exp(λ3t) 0
0 0 0 exp(λ4t)

O−1

to compute the probability P1,0(t).

Hint: You can use without proof that

O−1 =


1 0 0 0
−3/4 0 1/4 1/2

1 1 −1/3 −5/3
−1/4 0 −1/4 1/2

 .

11. Define the time of the first visit to state 0

T = inf{t > 0|X(t) = 0}

and argue that P(T ≤ t) = P(X(t) = 0).

12. Use (without proof) that the expectation of the nonnegative ran-
dom variable T may be expressed as

E[T] =
∫ ∞

0
P(T > t)dt

to compute the expected time to absorption in state 0 when the
chain is started at state 1 (i.e. P(X(0) = 1) = 1).

13. Use the following heuristic argument to compute the expected
time to absorption in state 0 : First compute the expected number
of the time periods where the chain visits states 1, 2, and 3. Then
multiply the expected number of visits in each state with the aver-
age waiting time before the chain jump to another state. This gives
you the expected time spend in each state.

Hint: You already computed many of the necessary quantities in previous
questions.
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Countable state space

3.4.1 Pure death process with constant intensity

A birth-and-death process is a continuous time Markov chain on
N0 = {0, 1, 2, . . .} that moves only in jumps of size one. The process
may describe the size of a population and a jump between states
i and i + 1 is interpreted as a birth whereas jumps from i to i − 1
corresponds to a death.

Denoting by qi,j the transition intensities from state i to state j the
birth-and.death process has the following structure

qij =


βi , j = i + 1, i ≥ 0
δi , j = i− 1, i ≥ 1
0 , otherwise

for suitable nonnegative birth- and death intensities βi, δi ≥ 0. Many
important stochastic processes belong to the class of birth-and-death
processes and may be obtained by imposing various restrictions on
the birth- and death intensities.

Assume that the Markov chain (X(t))t≥0 is a birth- and death
process with initial distribution ρi = P(X(0) = i).

1. Draw a part of the transition diagram for the Markov chain under
the assumption that all βi, δi > 0.

2. Find under the assumption of question 1. the transition probabili-
ties for the corresponding discrete time Markov chain of jumps for
(X(t))t≥0.

3. What choice of initial distribution and birth- and death intensities
implies that (X(t))t≥0 is a Poisson process?

The pure death process is characterized by all the birth intensities,
βi, being equal to zero. In the following we consider a pure death
process with δk > 0, k ≥ 1, and initial distribution P(X(0) = k) = 1
for some k ≥ 2.

4. What is the distribution of the first jump time

τ1 = inf{t > 0|X(t) 6= k}?

5. Find P(X(t) = k).

6. Assuming that all death intensities are the same, δi = δ > 0, what
is then the distribution of the time, τ2, of the second jump of the
chain?
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7. Under the assumption of question 6. one may argue that (X(t))t≥0

behaves like a modified Poisson process (N(t))t≥0 with downward
jumps of intensity δ > 0 until the time of the k−th jump. Use this
to compute P(X(t) = j), j = 1, 2, . . . , k− 1.

8. Find P(X(t) = 0) under the assumption of question 6.

3.4.2 Linear birth-and-death process

The linear birth-and-death process is a continuous-time Markov
process on N0 with birth intensities βi = iβ and death intensities
δi = iδ. It may be thought of as a model for a population where at
any time an individual dies with intensity δ > 0 and gives rise to a
birth with intensity β > 0.

1. Find the communication classes of the linear birth-and-death
process.

2. Assume that P(X(0) = 1) = 1 and let

τ1 = inf{t > 0|X(t) 6= 1}

be the time of the first jump. Find the probability P(τ1 > 1) and
the distribution, P(X(τ1) = i), i ≥ 0, of the chain observed just
after the first jump.

3. Let T = inf{t > τ1|X(t) = 1) be the time of the first return to
state 1. Use the result of question 2. to get an upper bound for the
probability P(T < +∞|X(0) = 1). Discuss what you can conclude
from this observation.

4. Still assuming that P(X(0) = 1) = 1 argue that

P(X(1) = 0) > δ
δ+β (1− exp(−(δ + β))).

For the rest of the exercise we modify the birth intensities such that
βi = iβ + λ for some β, λ > 0. The resulting model has a very nice
interpretation as a linear birth-and-death process with immigration
intensity λ.

5. Argue that the linear birth-and-death process with immigration is
irreducible.

6. Let (Y(n))n≥0 be the discrete-time Markov chain of jumps. Find
the transition probabilities of (Y(n))n≥0.

The purpose of the following questions is to clarify for what values of
the parameters that a linear birth-and-death process is transient, null-
recurrent and positive recurrent. At the written exam you should
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directly apply the results in Chapter 3 from page 90 to answer ques-
tions 8., 11. and 12. below. Questions 7., 9. and 10. are only relevant
for those of you who want to understand better how to arrive at the
main results in the Section on Birth-and-death processes in Chapter 3.

7. Write down the system of equations in Theorem 15 from page 28

in Chapter 2 where you use i = 0 as fixed state.

It is rather technical to write down a complete solution to questions
8. and 11.-12. below covering all choices of the parameters β, δ, λ. To
make things a bit more easy try to consider first the cases β > δ and
β < δ.

8. Use the system of equations from question 7. (or some other argu-
ment) to determine for what choices of β, δ, λ > 0 that the linear
birth-and-death process with immigration is recurrent or transient.
The case β = δ < λ is particularly hard and may be skipped.

Hint: Use that the solution to the system of equations from question 7.
has the form

α(j + 1) = α(1)

{
1 +

j

∑
k=1

kδ · . . . · δ1

(λ + kβ) · . . . · 1β

}
, j ≥ 1.

A simpler approach is just to apply a suitable result in Chapter 3.

9. Show that an invariant probability vector π = (πi)i∈N0 for the
linear birth-and-death process with immigration must satisfy the
following system of equations

0 = δπ1 − λπ0

0 = ((i− 1)β + λ)πi−1 + (i + 1)δπi+1 − (iβ + iδ + λ)πi, i ≥ 1.

10. Verify that the vector ν = (νi)i∈N0 where

νi = ν0 ·
i

∏
k=1

(k−1)β+λ
kδ , i ≥ 1,

solves the system of equations from question 9.

11. Determine for what values of β, δ, λ > 0 that the solution , ν, of
question 10. can be normalized into a probability vector π.

12. For what choice of the parameters β, δ, λ is the birth-and-death
process with immigration null-recurrent?

Hint: If we already know that the chain is recurrent then the chain is
positive recurrent if and only if there exists a probability vector solving
the system of equations from question 9.
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Answer the following two questions 13.-14. for the three cases λ =

β = 2δ, λ = β = δ, and λ = β = δ/2.

13. Find limt→∞ P(X(t) = i) for i ≥ 0 under the assumption that
P(X(0) = 1) = 1.

3.4.3 Queueing systems

There is an entire branch of applied probability that deals with math-
ematical modeling of queueing systems. In this exercise we show
by an example how continuous-time Markov chains may be used to
model the number of customers in a queueing system. Throughout
the exercise we assume that new customers arrive to the system ac-
cording to a Poisson process with intensity β > 0 independently of
the state of the system.

We consider initially the single server queue where customers
are served according to the first-come-first-served queueing disci-
pline. Upon arrival at the service desk the service time distribu-
tion is assumed to be exponential with rate δ > 0 no matter how
many customers are waiting in line. One can show (but you are
not supposed to do so!) that under the given assumptions then the
number, (X(t))t≥0, of customers present in the system constitutes a
continuous-time Markov chain on N0 with transition intensities

qi,j =


β , j = i + 1, i ≥ 0
δ , j = i− 1, i ≥ 1
0 , otherwise

1. Argue that the chain is a birth-and-death process.

2. Write down the system of equations that must be satisfied for
an invariant probability vector π = (πi)i∈N0 . Find the invariant
distribution, π, of the chain for the case where β < δ.

3. Assuming that β < δ compute the (long run) average number of
customers in the queue.

4. What is the distribution of the waiting time before arrival to the
service desk if 4 customers are waiting in front of you when you
arrive to the queueing system? (You are not expected to do any
computations here!)

We now assume that the customers are served in their order of ar-
rival by two servers with exponentially distributed service time dis-
tributions of (possibly different) rates δ1, δ2 > 0. If a customer arrives
at an empty system she or he is by default served at service desk
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number 1. With some effort one can show that the system may be
regarded as a continuous-time Markov chain on the state space

S = {0, 1 : 0, 0 : 1, 2, 3, 4, . . .}.

This needs a little more explanation: state 0 means that no customers
are present, state 0 : 1 means that one customer is being served at
service desk 2 while service desk 1 is vacant. Similarly, state 1 : 0
represents the situation where service desk 1 is occupied and desk
2 is vacant. States 2, 3, 4, . . . refer to situations where at least two
customers are present of which two are currently being served at
service desks 1 and 2.

The transition diagram (without transition intensities) is given on
Figure 3.18

0

0:1

1:0

2 3 4 . . .

Figure 3.18: Transition diagram for the
Markov chain considered in questions
5.-14. of Exercise 3.4.3.

5. What is the intensity q0:1,0 of a jump from state 0 : 1 to 0?

6. What is the intensity q1:0,0 of a jump from state 1 : 0 to 0?

7. Find the intensities q0:1,2, q1:0,2, q0,0:1.

8. Argue that the intensity of a jump from state 3 to 2 equals δ1 + δ2.

9. Draw the transition diagram of the Markov chain with all intensi-
ties.

10. Argue very carefully that an invariant probability vector π =

(πi)i∈S must satisfy the system of equations

0 = δ1π1:0 + δ2π0:1 − βπ0

0 = βπ0 + δ2π2 − (β + δ1)π1:0

0 = δ1π2 − (β + δ2)π0:1

0 = βπ1:0 + βπ0:1 + (δ1 + δ2)π3 − (δ1 + δ2 + β)π2

0 = (δ1 + δ2)πi+1 + βπi−1 − (β + δ1 + δ2)πi, i ≥ 3.
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11. Show that for any constant c there is a vector, π = (πi)i∈S, with

πi = c
(

β
δ1+δ2

)i−2
, i ≥ 2

that solves the system of equations from 10 and derive expressions
for π0:1, π1:0, and π0.

12. For what values of the parameters β, δ1, δ2 can the solution in
question 11. be normalized into an invariant probability vector?
(You don’t need to find a closed form expression for c to answer
this question!)

13. Consider the case where δ1 = δ2 = δ and β = δ/2. Find the
invariant probability vector from questions 11.-12. and compute
the (long run) average number of customers for the two-server
queue.

Hint: You can use (or verify) that c = 3/40.

14. Still assuming that δ1 = δ2 = δ and β = δ/2 discuss how much
the (long run) average queue length decreased by the introduc-
tion of the second server compared to the single server system
(question 1.-4.).

We finally consider the case where arriving customers physically
lines up in two different queues. Upon arrival a customer enters the
shortest of the two lines. If there are the same number of customers
in each queue any customer by default enters the queue nearest
to the entrance of the building (let us call this queue number 1).
If at any time the difference between the length of two queues is
two the last customer in the longest queue will instantly switch to
the last position in the shorter queue. The purpose of the following
questions is to study the differences between the two-line queueing
disciplin and the one line first-come-first-served disciplin considered
in questions 5.-14.

It is possible to show that the joint number , ((X1(t), X2(t)))t≥0, of
customers in the two queues is a continuous-time Markov chain on
N0 ×N0.

15. Technically speaking the state space of the chain is much smaller
than N0 ×N0 because a large number of the states will never be
visited by the chain. What is the trimmed version, S, of the state
space that represents the truly possible states of the queueing
system?

16. Draw the transition diagram (with transition intensities) of the
Markov chain that displays only the trimmed state space, S, from
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question 15. You probably need to be careful to get all the transi-
tion intensities right in particular for jumps between states (i, i + 1)
and (i, i) or between states (i + 1, i) and (i, i).

17. Argue that an invariant probability vector π = (πi,j)(i,j)∈S must
satisfy the following system of equations

0 = δ2π0,1 + δ1π1,0 − βπ0,0

0 = βπ0,0 + δ2π1,1 − (δ1 + β)π1,0

0 = δ1π1,1 − (δ2 + β)π0,1

0 = β(πi−1,i + πi,i−1) + (δ1 + δ2)(πi+1,i + πi,i+1)− (β + δ1 + δ2)πi,i, i ≥ 1,

0 = βπi,i + δ2πi+1,i+1 − (β + δ1 + δ2)πi+1,i, i ≥ 1,

0 = δ1πi+1,i+1 − (β + δ1 + δ2)πi,i+1, i ≥ 1.

18. Verify that for any constant c there is a vector, π = {πi}i∈S, with

πi,i = c
(

β2

(δ1+δ2)2

)i
, i ≥ 1,

that solves the system of equations from question 17 and derive
expressions for the remaining coordinates of π.

Hint: Start by plugging in to the last equation of question 17. to get an
expression for πi,i+1 and do not try to find the constant c.

19. For what values of the parameters β, δ1, δ2 can the solution of
18. be normalized into an invariant probability vector? (You don’t
need to find a closed for expression for c to answer this question!)

20. Consider the case where δ1 = δ2 = δ and β = δ/2. Find the in-
variant probability vector from questions 17.-18. and compute the
(long run) average number of customers present in the queueing
system.

21. Are there any reason to prefer one of the two suggested two-
server queueing disciplines to the other from the customers point-
of-view? To answer the question you may find it useful to include
a discussion of your results from questions 13. and 20.

22. The total service capacity (per time unit) of a queueing system
with two servers is given by the sum δ1 + δ2. Which of the queue-
ing systems with two servers exploit the service capacity in the
must efficient way? (Don’t do any computations!)

23. Try to do some numerical computations to examine if there are
any differences betweeen the two suggested two-server queueing
systems when δ1 6= δ2. Look at the problemer from the customers
point-of-view.
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Comments: The results of this exercise do not carry over to real life
queueing systems for several reasons of which we shall mention a few: the
unrealistic assumption of exponentially (=memoryless) distributed service
times and intervals between arriving customers, the assumption of cus-
tomers arriving at the same rate at all times, and the independence of the
service distributions on both time and on the number of customers already
present in the queueing system.

It is trival that queues build up if the (average) service capacity is lower
than the average rate of arriving customers. Another important lecture you
may learn by digging further into the field of queueing theory is that even
for a sufficient average service capacity queues are caused by variation in
interarrival times and service times. The generel message is that inducing
more variation deteriorates the performance of a queueing system.

3.4.4 Positive recurrence and null-recurrence

We consider a Markov chain, (X(t))t≥0, on S = {0, 1, 2, . . .} with
transition intensities

q0,n = pn > 0, qn,n−1 = δn > 0, n > 0, qi,j = 0 for any other i 6= j

where ∑n pn = 1.

1. Find the transition probabilities for the embedded Markov chain
of jumps.

2. Argue that (X(t))t≥0 is recurrent.

So far we have demonstrated that the Markov chain (X(t))t≥0 and
the embedded Markov chain of jumps are always recurrent no matter
the values of pn > 0 and δn > 0. The purpose of the following is
to show that all four combinations of positive recurrence and null-
recurrence for (X(t))t≥0 and the embedded jump chain may occur.

NN (X(t))t≥0 and the embedded jump chain are null-recurrent.

NP (X(t))t≥0 is null-recurrent and the embedded jump chain is
postive recurrent.

PN (X(t))t≥0 is positive recurrent and the embedded jump chain is
null-recurrent.

PP (X(t))t≥0 and the embedded jump chain are positive recurrent.

Find out how the four cases listed above correspond to the four sets
of parameters described in questions 3.-6. below.

3. pn = (1− p)pn−1, 0 < p < 1, and δn = δ > 0

4. pn = c/n2 and δn = δ > 0
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5. pn = (1− p)pn−1 and δn = (1− p/2)−1(p/2)n where 0 < p < 1

6. pn = c/n2 and δn = n(n + 1)

Hint: We did already study the embedded Markov chain of jumps in
Exercise 2.4.6.

3.4.5 More examples of birth-and-death processes

We consider in this exercise four different birth-and-death processes.
The purpose of this exercise is to get some experience using the re-
sults stated in Chapter 3 on birth- and death processes.

1. Show that the birth-and-death process with intensities

qi,i+1 = βi = i + 1, qi+1,i = δi+1 = 1, i ≥ 0

is transient.

2. Show that the birth-and-death process with intensities

qi,i+1 = βi = i + 1, qi+1,i = δi+1 = i + 1, i ≥ 0

is null-recurrent.

3. Show that the birth-and-death process with intensities

qi,i+1 = βi = i + 1, qi+1,i = δi+1 = i + 3, i ≥ 0

is positive recurrent.

4. Show that for q < p < cq then the birth-and-death process with
intensities

qi,i+1 = βi = ci p, qi+1,i = δi+1 = ci+1q, i ≥ 0

is transient and there exists a probability vector π = (π(i))i∈S

solving the system

∑
i∈S

π(i)qi,j = 0, j ∈ S.

Hint: Use Appendix B.5 on linear recurrence equations.

Remark: Question 4. shows that there exists a probability vector satis-
fying the necessary condition of Theorem 51 for an invariant distribution.
However, since the Markov chain is transient the invariant distribution
does not exist. One can show using Reuter’s criterion from Theorem 64 that
explosion may occur for the birth-and-death process given in Question 4.
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The Poisson process

3.5.1 Basic properties of the Poisson process

The Poisson process with intensity λ is the continuous-time and time-
homogeneous Markov chain on N0, given by the transition diagram
in Figure 3.19.

0 1 2 3 . . .λ λ λ λ

Figure 3.19: Transition diagram for the
homogeneous Poisson process with
intensity λ.In particular the times between jumps are independent and expo-

nentially distributed with density function

f (s) = λ exp(−λs), s ≥ 0.

Further, we denote by τ1, τ2, . . . the jump times of (X(t)) and we
assume that X(0) = 0.

1. Compute E[τ1], P(X(t) = 0), and P(X(t) ≥ 1).

2. For 0 < s < t compute P(X(s) = 0, X(t) = 0)

For non-negative independent random variables V with density g
and W with density h then the density of the sum Y = V + W has
density given by

k(y) := h ∗ g(y) :=
∫ y

0
h(y− v)g(v)dv, y ≥ 0.

3. Find the distribution (=density) of τ2 by using that τ2 is the sum of
two independent exponential distributions with rate parameter λ.

4. Compute P(X(t) ≥ 2).

5. Verify by induction that the time, τn, of the jump to state n follows
a distribution with density

fn(s) =
λ(λs)n−1

(n− 1)!
exp(−λs), s ≥ 0.

6. Compute P(X(t) ≥ n) and P(X(t) = n).

Hint: Use without proof that

P(τn ≤ t) = 1−
n−1

∑
k=0

(λt)k

k! exp(−λt)

or you may even try to prove the formula by induction.

7. What is the name of the distribution of τn and X(t)?
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3.5.2 Advanced exercise involving the Poisson process

In this exercise we consider a Poisson process (X(t)) with intensity
λ. You may use that from Exercise 3.5.1 we know the distribution of
X(t) i.e. the probabilities P(X(t) = n), n ∈N.

The purpose of this exercise is to study further the times of the
jumps of the Poisson process which we will denote by τ1, τ2, τ3, . . . .
From the previous Exercise 3.5.1 we know the distribution of τn. In
this exercise we consider what can be said about the distribution
(=location) of the n first jump times given that we know that X(1) =
n i.e. that exactly n jumps occurred on the time interval [0, 1].

For simplicity we consider only the distribution of τ1 by asking the
following question: given that we know that exactly one jump hap-
pened before time 1 (i.e. X(1) = 1) when was the most likely time on
[0, 1] for the jump, τ1, to happen? Clearly, the conditional distribution
of the first jump time, τ1, given that X(1) = 1 is a distribution on
the interval [0, 1]. The purpose of the following questions 1.-8. is to
compute P(a < τ1 ≤ b|X(1) = 1) for 0 ≤ a ≤ b ≤ 1.

1. Try to argue, for instance on a suitable figure, that

(τ1 ≤ b, X(1) = 1) = (X(b) = 1, X(1) = 1), for 0 ≤ b ≤ 1.

2. Find the probability that P(X(a) = 1), a ≥ 0.

3. Explain how it follows from the Markov property (and the sta-
tionarity) of the Poisson process that for s, t ≥ 0 and i, j ∈ N0

then

P(X(t + s) = i + j|X(s) = i) =
(λt)j

j!
exp(−λt).

4. Find the probability that P(X(b) = 1, X(1) = 1), for 0 ≤ b ≤ 1.

5. Compute P(τ1 ≤ b|X(1) = 1) using questions 1.-4.

6. Argue that for 0 ≤ a ≤ b ≤ 1 then

(a < τ1 ≤ b, X(1) = 1) = (X(a) = 0, X(b) = 1, X(1) = 1).

7. Write P(a < τ1 ≤ b, X(1) = 1) as a product of three probabilities
that are known from questions 1.-6. above.

8. Compute the conditional probability P(a < τ1 ≤ b|X(1) = 1).

Remark: The result shows that if exactly one jump of a Poisson process oc-
curs on the interval [0, 1] then the (conditional) distribution of the jump
follows a uniform distribution on [0, 1]. The result generalises to the case
where we consider the conditional distribution of the n first jumps given
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that exactly n jumps occurred on the interval [0, t]. The location of the n
jumps will behave as if they had been uniformly scattered over the interval
[0, t] independently of each other. For that reason the event times of a Pois-
son process is often said to describe a completely random pattern of points.



A
Random variables and stochastic processes

Probability measures

It all begins with a probability measure P. You should think of a
probability measure, P, on a set Ω as a function assigning a number
P(A) ∈ [0, 1] to subsets A ⊂ Ω. If you are familiar with measure the-
ory you may correctly insist that a probability measure only assigns a
probability to subsets A ∈ F in a σ-algebra F on Ω 1but this point of 1 A σ-algebra on Ω is a class F of

subsets of Ω such that

1. Ω ∈ F
2. AC ∈ F if A ∈ F
3. ∪∞

n=1 An ∈ F if A1, A2, . . . ∈ F

view is not crucial for the story to come. Subsets of Ω are referred to
as events .

By definition a probability measure must have total mass equal to
one (i.e. P(Ω) = 1) and it must be additive over countable classes of
disjoint sets, i.e.

P(∪∞
n=1 An) =

∞

∑
n=1

P(An),

provided that Ai ∩ Aj = ∅, i 6= j.

It follows from the additivity above that a probability P on a
countable set Ω is determined by the values P({ω}) from the identity

P(A) = ∑
ω∈A

P({ω}).

In this case we will refer to P({ω}) as the point probability at ω.

For two events A, B with P(B) > 0 we define the elementary
conditional probability of A given B (notation: P(A|B)) as

P(A|B) = P(A ∩ B)
P(B)

.

Example 66 (Poisson distribution) The Poisson distribution with
parameter λ > 0 is a probability on (the countable set!) N0 given by point
probabilities

P({n}) = λn

n!
exp(−λ), n ∈N0.

�
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Example 67 (Exponential distribution) The exponential distribution
with rate parameter λ > 0 is a probability on [0, ∞). The exponential
distribution assigns probability

P(A) =
∫

A
λ exp(−λt)dt

to (Borel measurable) subsets A ⊂ [0, ∞). For an interval [a, b], 0 < a < b,
we have that

P([a, b]) =
∫ b

a
λ exp(−λt)dt = [− exp(−λt)]ba = exp(−λa)− exp(−λb).

�

More examples of probability distributions are given in Chapter
B.1.

Random variables

When we refer to a random experiment we want to emphasize that
we are in a situation where we are unable to predict the outcome
with certainty. There might be several reasons that we do not know
the exact result of an experiment: the outcome may be affected by
circumstances that we are unable to control or we may simply not
have complete information allowing us to determine the result of the
experiment.

The concept of a random variable or stochastic variable is used
for a mathematical model of a random experiment. Formally, a ran-
dom variable, X, is a function and we reflect the randomness by
saying that the argument ω ∈ Ω of the function is chosen according
to some probability distribution, P. The outcome of the experiment
is denoted by X(ω). Two different ω’s will potentially give different
results of the experiment reflecting the non-deterministic nature of
the experiment.

x

x

x

x

x

x

x

x

x

x

x
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X: Ω S

Figure A.1: Random variable with
P(X = j) = 1/6 for j = 1, 2, 3, 4, 5, 6
from Example 68.

Example 68 As a mathematical model for a random experiment we let Ω
consist of 12 elements. We use a uniform distribution assigning a probabil-
ity

P({w}) = 1
12

to all ω ∈ Ω and let the random variable X : Ω → S = {1, 2, 3, 4, 5, 6} be
given as illustrated in Figure A.

We use the notation P(X = 6) for the probability that the random
variable takes the value 6. We compute P(X = 6) by summing P({w}) for
all ω such that X(ω) = 6. Since there are exactly two ω with X(ω) = 6
and since P assigns probability 1

12 to all ω we conclude that P(X = 6) = 1
6 .

It is easily checked that
P(X = j) = 1

6
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for all j = 1, 2, 3, 4, 5, 6. In particular, under the suggested probability
measure P on Ω the random variable X provides a reasonable mathematical
description of the number of eyes when rolling a six-sided die.

�

It is natural if you are a little puzzled about our choice of random
variable from Example 68. Why didn’t we use a one-to-one random
variable X on a set Ω with only six elements and a uniform distribu-
tion, P, assigning equal probability 1

6 to each ω in Ω as our model for
the number of eyes of the die. An important point is that we certainly
could have used this (obviously!) simpler model. However, when
we are only interested in the distribution of the random variable X
then the two models are equal since we have P(X = j) = 1

6 in both
cases. Another way to put this is that two different random variables
(Xi : Ωi → S, i = 1, 2) can be very different and still describe the
same random experiment. We say that the two random variables are
different representations of the same experiment.

For students familiar with measure theory a random variable may
be defined (more formally) as a measurable map

X : (Ω,F )→ (S,G)

where F ,G are classes of subset satisfying the conditions of a σ-
algebra. For a subset A ⊂ S (-with A ∈ G) the probablity that the
random experiment gives a value in the set A is computed as

P(X ∈ A)
de f
= P({w ∈ Ω|X(ω) ∈ A}).

In fact, this defines a probability on S which we will call the distri-
bution of random variable X. Any computation that only involves the
distribution of a random variable X will give exactly the same result
if the computation is based on any other random variable X̃ with the
same distribution as X. For that reason it is common to formulate
results about distributions of random variables without reference to
the exact representation of the random variable. Anyone may answer
the following question without caring about the formal definition of
the random variable X occuring in the text.

Let X be a random variable with distribution P(X = j) = 1
6 , j =

1, . . . , 6. Compute the probability the X takes a value in the set A =

{2, 4, 6} of even numbers.

Remark 69 [Canonical representation of a random variable] Suppose that
we want to make a mathematical model of a random experiment with a
prespecified probability distribution Q on some set S. Can we then always
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define a random variable that has distribution Q? The answer is yes and the
solution is ridiculously simple: let Ω = S be equipped with the probability
P = Q and let X : Ω(= S)→ S be the identity mapping X(ω) = ω. �

Stochastic processes

We may consider several random variables

X(i) : Ω→ S, i = 1, . . . , N,

that are all defined on the same set Ω. If Ω is equipped with a prob-
ability P as described above, then we have a mathematical model for
the outcome of a random experiment resulting in N joint values from
the set S. We will speak of family of random variables, {X(i)}i∈I ,
with index set I = {1, 2, . . . , N}.

A stochastic process in discrete time with state space S is a family
{X(n)}n∈N0 of random variables X(n) : Ω → S with index set
I = N0 = {0, 1, 2, . . .}.

A stochastic process in continuous-time with state space S is a
family {X(t)}t∈[0,∞) of random variables X(t) : Ω → S with index set
I = [0, ∞).

Note that there is no reason to restrict the state space S to be the
same for all stochastic variables in the family.

Example 70 Lad P be the probability on the set

Ω = {(ω1, ω2)|ω1, ω2 = 1, 2, . . . , 6}

assigning probability 1
36 to all elements ω ∈ Ω. Define a family of two

random variables by

X(1)(ω) = X(1)(ω1, ω2) = ω1

X(2)(ω) = X(2)(ω1, ω2) = ω1 + ω2.

Note that X1 may be used as a model for the number of eyes of a die, while
X2 is a model for the sum of the number of eyes when rolling two dice.

The example may easily be generalized by letting P be the uniform distri-
bution with point probabilities 1

6k on any point {1, . . . , 6}k. We may then
consider the family of random variables

X(j)(ω) = X(j)(ω1 + . . . + ωk) = ω1 + . . . + ωj, j =, . . . , k,

representing the sum of the first j dice when rolling up to k six-sided dice.

We may compute the probability P(X(1) = 3, X(2) = 7) by sum-
ming the point probabilities P({ω}) of all ω such that X(1)(ω) = 3 and
X(2)(ω) = 7. Only one element (ω = (3, 4)) is contained in the set

(X(1) = 3, X(2) = 7) = {ω ∈ Ω|X(1)(ω) = 3, X(2)(ω) = 7}
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in particular we have that

P(X(1) = 3, X(2) = 7) = P((3, 4)) = 1
36 .

For a more challenging exercise try to use a similar technique to compute the
probability that you must roll a six-sided die three times before the sum of
the eyes equals or exceeds 6. �

Example 71 Example 70 involved a finite family of random variables.
In this example we consider an infinite family {X(n)}n∈N0

of random
variables on a set S indexed by N0. This is what we have previously referred
to as a discrete-time stochastic process with state space S. It is not trivial
what set Ω and what probability measure P on Ω that we should use and
how to define the random variables X(n) : Ω → S in order to define
stochastic process with some interesting properties. Therefore we may use a
more indirect approach.

Often we are more interested in the probability distribution of the stochas-
tic process which is a probability measure Q defined on the infinite product
set

SN0 = {(s0, s1, . . .)|sn ∈ S, n ∈N0}.

If we can come up with a probability measure Q on SN0 then we may use
the canonical representation from Remark 69. Formally, we define a discrete-
time stochastic process on Ω = SN0 equipped with the probability distribu-
tion P = Q by letting

X(n)({si}i) = sn.

Since {X(n)}n∈N0 is just the identity mapping on Ω then we get that

P(X(0) ∈ A0, X(1) ∈ A1, . . .) = Q(A0 × A1 × . . .)

for A0, A1, . . . being subsets of S.

The example shows that existence of a discrete-time stochastic process
on S with some prespecified properties of the distribution boils down to
verifying that the description characterizes a probability measure on the
infinite product space SN0 . �

Example 72 [Product measures] Consider a family of probability measures
µi on Si indexed by i ∈ I. For any finite subset I0 ⊂ I there is a unique
probability measure ⊗i∈I0 µi on the product space ×i∈I0 Si defined by

⊗i∈I0 µi(×i∈I0 Ai) = ∏
i∈I0

µi(Ai),

where Ai ⊂ Si. If the sets Si are sufficiently well-behaved then it follows
by the Kolmogorov extension theorem that there is a unique probability
measure on the infinite product set SI = {{si}i∈I |si ∈ Si, i ∈ I}. In
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particular, using the canonical representation of stochastic variables there
exists a stochastic process indexed by I such that

P(X(i1) ∈ Ai1 , . . . , X(in) ∈ Ain) = µi1(Ai1) · . . . · µin(Ain)

for any finite subset i1, . . . , in ∈ I and Aij ⊂ Sij . We say that the family
(Xi)i∈I of random variables are independent and that the marginal distribu-
tions of X(i) are given by µi. �

Example 73 [Poisson process] The exponential distribution with rate
parameter λ > 0 is a probability, µ, on [0, ∞) given by the density

f (x) = 1[0,∞)λ exp(−λx).

We may use Example 72 to construct a family {W(n)}n∈N of indepen-
dent identically distributed random variables all following an exponential
distribution with rate parameter λ.

The family {W(n)}n∈N may be used to define other stochastic processes
via transformation. In the following we explain in detail the construction of
the Poisson process. We think of W(n) as random waiting times between
the occurence a given type of event. The n-th event thus happens at time

T(n) = W(1) + . . . + W(n).

The Poisson process is the continuous-time stochastic process {N(t)}t≥0
where N(t) keeps track of the number of events that has happened up to
(and including) time t. Formally, we may write

N(t) =
∞

∑
n=1

1(T(n) ≤ t).

As a consequence of the representation of {N(t)}t≥0 in terms of the waiting
times {W(n)}n∈N we conclude that N0 = 0 and that the sample paths
defined as

t→ N(t)(ω)

are piecewise constant and moves upwards in jump of size one (-see Figure
B.7 on page 145). �

The following is rather technical but absolutely essential if you
want to get a deeper understanding of how to work with stochastic
processes. The construction in Example 73 made use of a family of
independent exponentially distributed waiting times to construct a
family of random variables {N(t)}t≥0 that we refer to as the Poisson
process. The Poisson process takes values in N0 and hence has a dis-
tribution Q on the (countably) infinite product set N

[0,∞)
0 . If we use

the canonical representation from Remark 69 we get another repre-
sentation of a stochastic process

(
Ñ(t)

)
t≥0 with the same distribution



STOCHASTIC PROCESSES 129

as the Poisson process. Any computation related to the distribution
of a Poisson process is redundant to the choice of representation.
Note however that by the construction in Example 73 we obtained
that the sample paths

t→ Nt(ω)

are piecewise constant. There is nothing to ensure that the canonical
representation

t→ Ñt(ω)

has similar nice properties. In general, sample path properties are not
determined solely by the distribution of a stochastic process. In many
situations its is convenient to work with specific representations of
stochastic processes. This may be required for a given mathematical
proof strategy to work even though the final result we are establish-
ing may be formulated entirely in terms of the distribution of the
stochastic process.





B
Mathematical tools

This chapter contains some mathematical results that might be useful
to solve the exercises on Markov chains from Chapters 2 and 3.

B.1 Elementary conditional probabilities

For two events (=sets) A, B with P(B) > 0 the conditional probability
of A|B is defined by the formula

P(A|B) = P(A∩B)
P(B) .

When working with Markov chains the events will often be ex-
pressed by random variables for example as A = (X(2) = j) and
B = (X(1) = i). One may show that for three sets A, B, C with
P(B ∩ C) > 0 then

P(A ∩ B ∩ C) = P(A|B ∩ C)P(B|C)P(C).

For Markov chains with three sets given as A = (X(2) = k), B =

(X(1) = j), and C = P(X(0) = i) this may be written out as

P(X(2) = k, X(1) = j, X(0) = i)

= P(X(2) = k|X(1) = j, X(0) = i) · P(X(1) = j|X(0) = i) · P(X(0) = i)

= P(X(2) = k|X(1) = j)P(X(1) = j|X(0) = i)P(X(0) = i)

= Pj,kPi,jφ(i),

where φ = (φ(i)) is the initial distribution and P = (Pi,j) the
matrix of transition probabilities for the Markov chain. Note that
only the second equality above explicitly makes use of the fact that
(X(n))n∈N0 is a Markov chain. Some probability distributions

The binomial distribution

The binomial distribution with integral parameter n and probability
parameter p has support on the set {0, 1, . . . , n} and the density is
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given by

pj =

(
n
j

)
pj(1− p)n−j, j = 0, 1, . . . , n.

The binomial distribution has mean np and variance np(1− p).
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Figure B.1: Binomial distribution
with integral parameter n = 20 and
probability parameter p = 1/4.

The binomial distribution describes the distribution of the number
of successes in n independent replications of an experiment with two
possible outcomes (success/failure) with probability of success equal
to p.

The Poisson distribution

The Poisson distribution with parameter λ has support on the set
N0 = {0, 1, 2, . . .} and the density is given by

pj =
λj

j!
e−λ, j ≥ 0.
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Figure B.2: Poisson distribution with
parameter λ = 5.

The Poisson distribution has mean λ and variance λ.

The geometric distribution

The geometric distribution with probability parameter p has support
on the set N0 = {0, 1, 2, . . .} and the density is given by

pj = (1− p)j p, j = 0, 1, 2, . . . .

The geometric distribution has mean 1−p
p and variance 1−p

p2 .
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Figure B.3: Geometric distribution with
probability parameter p = 1/6.

The geometric distribution describes the number of failures be-
fore the first success in a sequence of experiments with two possible
outcomes (success/failure) with probability of success equal to p.

The negative binomial distribution

The negative binomial distribution with integral parameter r and
probability parameter p has support on the set N0 = {0, 1, 2, . . .} and
the density is given by

pj =

(
r + j− 1

j

)
pr(1− p)j, j ≥ 0.

The negative binomial distribution has mean r(1−p)
p and variance

r(1−p)
p2 .

The negative binomial distribution with probability parameter p
and integer-valued integral parameter r ∈ N describes the distribu-
tion of the sum of r independent geometrically distributed random
variables with probability parameter p.
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Figure B.4: Negative binomial distribu-
tion with integral parameter r = 5 and
probability parameter p = 1/2.
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The exponential distribution

The exponential distribution with rate parameter µ > 0 is a continu-
ous distribution on [0, ∞) with density

f (t) = µ exp(−µt), t > 0,

and cumulative distribution function

F(t) =
∫ t

0
f (s)ds = 1− exp(−µt), t > 0.

The exponential distribution has mean 1/µ and variance 1/µ2.

For a continuous time Markov chain the distribution of the waiting
time to the next jump follows an exponential distribution.

The gamma distribution

The gamma distribution with shape parameter λ and rate parameter
µ > 0 is a continuous distribution on [0, ∞) with density

f (t) =
tλ−1µλ

Γ(λ)
exp(−µt), t > 0,

and cumulative distribution function

F(t) =
∫ t

0
f (s)ds, t > 0.

The normalising constant in the density for the gamma distribution is
given by the gamma integral

Γ(λ) =
∫ ∞

0
sλ−1 exp(−s)ds

and for integer-valued shape parameter λ it holds that Γ(λ) = (λ−
1)! The gamma distribution has mean λ/µ and variance λ/µ2.

The gamma distribution with rate parameter µ and integer-valued
shape parameter λ ∈ N is the distribution of the sum of λ indepen-
dent exponentially distributed random variables with rate parameter
µ.

B.2 Some formulaes for sums and series

In many of the exercises you are asked to compute the mean of the
invariant distribution for Markov chains on a finite or countable state
space, S. If the invariant probability vector is given as π = (πi) then
the mean is given as

µ = ∑
i∈S

iπi.
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For other exercises you have an unnormalized version ν = (νi) of an
invariant vector and you need to find out if ∑i∈S νi < ∞ such that you
can define the invariant probability as

πj =
νj

∑i∈S νi
.

Some of the frequently occuring sums or series in this connection are

N

∑
i=0

αβi = α
1−βN+1

1−β , α ∈ R, β 6= 1

∞

∑
i=0

αβi = α 1
1−β , α ∈ R, |β| < 1

∞

∑
i=0

αiβi = α
β

(1−β)2 , α ∈ R, |β| < 1

∞

∑
i=0

α
βi

i! = α exp(β), α, β ∈ R

∞

∑
i=0

αi βi

i! = αβ exp(β), α, β ∈ R.

B.3 Some results for matrices

Determinants of a square matrix

For a 2× 2 matrix

A =

(
a11 a12

a21 a22

)
the determinant is defined as det(A) = a11a22 − a12a21. For a higher
order square matrix A of dimension k the determinant may be de-
fined recursively as

det A =
k

∑
j=1

(−1)1+ja1j det A∗1j, ← expansion by first row

where

A∗1j =


a21 a22 . . . a2j−1 a2j+1 . . . a2k−1 a2k

a31 a32 . . . a3j−1 a3j+1 . . . a3k−1 a3k
...

...
...

...
...

. . .
...

...
ak1 ak2 . . . akj−1 akj+1 . . . akk−1 akk


is the (k− 1)× (k− 1) matrix obtained by removing from A all entries
from row 1 or column j.

For a 3× 3 matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33


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the definition leads to the following formula for the determinant

det A = a11a22a33 + a12a23a31 + a13a21a32− a13a22a31− a23a32a11− a33a12a21.

Diagonalisation of matrices

Let A be a k × k matrix. An eigenvalue for A is a (real or complex)
number λ such that there exists a nonzero eigenvector v with

Av = λv.

The eigenvalues of A are exactly the zeroes of the characteristic
polynomial

g(λ) = det(A− λI).

If λ1, . . . , λk are the k roots of the characteristic polynomial P and
v1, . . . , vk are corresponding eigenvectors then

A
(

v1 . . . vk

)
︸ ︷︷ ︸

:=O

=
(

v1 . . . vk

)
︸ ︷︷ ︸

:=O


λ1 0 . . . 0
0 λ2 . . . 0
... 0

. . .
...

0 0 . . . λk


︸ ︷︷ ︸

:=D

.

If O is invertible then we get the useful identity

A = ODO−1.

Note that above we consider socalled right eigenvectors. Similarly
one may consider left eigenvectors defined as row vectors v 6= 0
solving the equation

vA = λv.

For some of the exercises in Chapters 2 and 3 we consider right
eigenvectors.

Exponential matrices

For any k× k matrix A consider the matrices obtained by raising A to
higher powers An. It turns out that the finite sums

N

∑
n=0

An

n!
= I +

A
1!

+
A2

2!
+ . . . +

AN

N!

converge as N → ∞ (entry-by-entry). This allows us to define the
exponential matrix exp(A) as the limit

exp(A) :=
∞

∑
n=0

An

n!
.
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Note that for convenience we use the notation A0 for the identity
matrix.

It is very important to note that the exponential matrix does not
satisfy the same rules as the usual exponential function. In particular,
except for very special cases it holds that

exp(A + B) 6= exp(A) · exp(B).

Closed form expressions for exponential matrices are rarely available.
One important exception is the case where we can find an invertible
matrix O such that

O−1 AO = D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dk


is a diagonal matrix. Using that A = ODO−1 direct computations
show that

exp(A) = O−1


exp(d1) 0 0 . . . 0

0 exp(d2) 0 . . . 0
0 0 exp(d3) . . . 0
...

...
...

. . .
...

0 0 0 . . . exp(dk)

O.

B.4 First order differential equations

For a continuous-time Markov chain on S with transition intensities
Q = (qi,j)i,j∈S, the transition probabilties

Pi,j(t) = P(X(s + t) = j|X(s) = i), i, j ∈ S,

always satisfy the backward differential equations

P′i,j(t) = ∑
l∈S

qi,l · Pl,j(t), j ∈ S

with the boundary condition that Pi,j(0) = 0, i 6= j, and Pi,i(0) = 1.

The solution has an explicit solution given as

P(t) = exp(Qt), t ≥ 0,

when the state space, S, is finite but computation of the exponen-
tial matrix may be infeasible. For Markov chains on countable state
spaces no closed form formula for the transition probabilities exist.
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Sometimes we can get nice explicit formulas for some of the transi-
tion probabilities, Pi,j(t), by solving some of the backward or forward
differential equations. Remember that the forward differential equa-
tions take the form

P′i,j(t) = ∑
l∈S

Pi,l(t) · ql,j, j ∈ S.

To solve the differential equations you might find it useful to know
that

f ′(t) = α exp(βt) ⇒ f (t) = α
β exp(βt) + c

f ′(t) = β f (t) ⇒ f (t) = c exp(βt)

f ′(t) = α f (t) + β exp(γt) + δ ⇒ f (t) = β
γ−α exp(γt)− δ

α + c exp(αt)

where c is a constant. Note that the last expression is only valid for
γ 6= α.

B.5 Second order linear recurrence equations

Many of the deeper results on Markov chains in Chapters 2 and 3 are
stated in terms of the solution to a system of equations. For Markov
chains allowing only jumps of size one the system of equations will
occasionally take the following form

azi−1 + bzi+1 = zi, l < i < u, (B.1)

where l or u can be −∞ or +∞. 1 It is clear that if we know zj, zj+1
1 We emphasize that in many cases
we will get a system of equations like
(B.1), but where the coefficients a and b
depend on i. This case is not covered by
the solution strategy described in this
paragraph.

for some time index j (and if a, b 6= 0) then we may recursively de-
termine the values of zi for the remaining indicies i. In mathematical
terms one can formally show that the solution to (B.1) is a vector
space of dimension 2 and we shall below describe two linearly inde-
pendent solutions.

We express the solution in terms of the roots

α1 =
1 +
√

1− 4ab
2b

, α2 =
1−
√

1− 4ab
2b

to the characteristic equation for (B.1), which is given as

α = a + bα2.

We give the solution for the two cases depending on whether there
are two distinct roots.

(α1 6= α2) Any solution to (B.1) can be written on the form

zi = c1αi
1 + c2αi

2, l ≤ i ≤ u.
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(α1 = α2) Here α1 = α2 = 1
2b and any solution to (B.1) can be written

on the form

zi = c1

(
1
2b

)i
+ c2i

(
1
2b

)i
, l ≤ i ≤ u.

The constants c1, c2 can be found from boundary conditions imposed
by the relevant model.

B.6 The ratio test

Consider a series
∞

∑
n=1

an

of real or complex numbers an. The simplest form of the ratio test
suggests that we try to compute the limit

L = lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣
and

• if L < 1 then the series converges absolutely

• if L > 1 then the series do not converge.

If the limit (= L) does not exist or equals 1, then no conclusion may
be drawn from this formulation of the ratio test.

B.7 Integral test for convergence

For a non-negative (Lebesgue measurable), monotonely decreasing
function f on [1, ∞) then we have the upper and lower bounds∫ ∞

1
f (x)dx ≤

∞

∑
n=1

f (n) ≤ f (1) +
∫ ∞

1
f (x)dx.

Given a series ∑∞
n=1 an of non-negative terms an this implies that if

we can find a non-negative, monotonely descresing function f on
[1, ∞) with f (n) = an then

• the series converge if
∫ ∞

1 f (x)dx < +∞

• the series diverge if
∫ ∞

1 f (x)dx = +∞.

The integral test is often used in slightly modified setups. For
example, to demonstrate convergence of a series, we only need
f (n) ≥ an for n sufficiently large with f being integrable towards
+∞.
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B.8 How to do certain computations in R

Matrices and systems of linear equations

The following code defines a 4× 4 matrix P of transition probabilities
for a discrete time Markov chain.

P<-matrix(nrow=4, ncol=4)

P[1, ]<-c(0, 4/6 ,1/6 ,1/6)

P[2, ]<-c(0, 0 ,5/7 ,2/7)

P[3, ]<-c(0, 3/5 ,0 ,2/5)

P[4, ]<-c(0, 1/2 ,1/2 ,0)

P

## [,1] [,2] [,3] [,4]

## [1,] 0 0.6666667 0.1666667 0.1666667

## [2,] 0 0.0000000 0.7142857 0.2857143

## [3,] 0 0.6000000 0.0000000 0.4000000

## [4,] 0 0.5000000 0.5000000 0.0000000

To compute the n step probabilities given by Pn you need to know
how to do matrix multiplication. Below we demonstrate how to
compute P2, P4, and P8.

P2 <- P %*% P

P2

## [,1] [,2] [,3] [,4]

## [1,] 0 0.1833333 0.5595238 0.2571429

## [2,] 0 0.5714286 0.1428571 0.2857143

## [3,] 0 0.2000000 0.6285714 0.1714286

## [4,] 0 0.3000000 0.3571429 0.3428571

P4 <- P2 %*% P2

P4

## [,1] [,2] [,3] [,4]

## [1,] 0 0.2938095 0.4697279 0.2364626

## [2,] 0 0.4408163 0.2734694 0.2857143

## [3,] 0 0.2914286 0.4848980 0.2236735

## [4,] 0 0.3457143 0.3897959 0.2644898

P8 <- P4 %*% P4

P8

## [,1] [,2] [,3] [,4]

## [1,] 0 0.3481567 0.4002902 0.2515532
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## [2,] 0 0.3727913 0.3645248 0.2626839

## [3,] 0 0.3471067 0.4020098 0.2508835

## [4,] 0 0.3574321 0.3866506 0.2559174

The invariant distribution π = (π1, π2, π3, π4) for the Markov
chain must solve the equation πP = π. In other words the invariant
probability is a normalized left eigenvector of P associated with
eigenvalue 1. Below we demonstrate how to find left eigenvectors
and extract a normalized version of the eigenvector with eigenvalue
1.

lefteigen <- eigen(t(P))

lefteigen

## $values

## [1] 1.000000 -0.646385 -0.353615 0.000000

##

## $vectors

## [,1] [,2] [,3] [,4]

## [1,] 0.0000000 0.0000000 0.0000000 0.7467709

## [2,] 0.6133511 -0.5457060 -0.3294501 0.1633561

## [3,] 0.6571619 0.7988318 -0.4822656 -0.4278375

## [4,] 0.4381080 -0.2531258 0.8117158 -0.4822895

normInv <- lefteigen$vectors[, 1]/sum(lefteigen$vectors[, 1])

normInv

## [1] 0.0000000 0.3589744 0.3846154 0.2564103

Note that (in accordance with theory) the colums of Pn approaches
the invariant probability vector computed above as n→ ∞.

In Section B.8 below we define a transition matrix Q of a contin-
uous time Markov chain on four states. An invariant distribution π

for this chain must satisfy the matrix equation πQ = 0 as well as the
condition ∑i∈S πi = 1. One way to compute the invariant distribution
in R is to define the matrix Q obtained by adding to Q a column of
ones and then solve the equation πQ = (0, 0, 0, 0, 1). The code below
works to find the invariant distribution in any case where only one
recurrent class of states exist such that π is unique.

Q <- matrix(nrow = 4, ncol = 4)

Q[1, ] <- c(-6, 4, 1, 1)

Q[2, ] <- c(0, -7, 5, 2)

Q[3, ] <- c(0, 3, -5, 2)

Q[4, ] <- c(0, 0.5, 0.5, -1)
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Q1 <- cbind(Q, 1)

Q1

## [,1] [,2] [,3] [,4] [,5]

## [1,] -6 4.0 1.0 1 1

## [2,] 0 -7.0 5.0 2 1

## [3,] 0 3.0 -5.0 2 1

## [4,] 0 0.5 0.5 -1 1

lm.fit(t(Q1), c(0, 0, 0, 0, 1))$coefficients

## x1 x2 x3 x4

## -1.497024e-17 1.333333e-01 2.000000e-01 6.666667e-01

round(lm.fit(t(Q1), c(0 ,0 ,0 ,0 ,1))$coefficients, digits=6)

## x1 x2 x3 x4

## 0.000000 0.133333 0.200000 0.666667

Note that the last line of code rounds the solution down to 6 sig-
nificant digits showing that the invariant probability is given by
π = (0, 2/15, 1/5, 2/3).

Computing exponential matrices

For a continuous time Markov chain on a finite state space the transi-
tion probabilities

Pij(t) = P(X(t + s) = j|X(s) = i)

is given as the entries of the matrix exp(Qt), where Q is the inten-
sity matrix of the Markov chain. The MatrixExp function of the msm-
package may be used to compute exponential matrices in R. Below
we demonstrate how to compute the transition probabilities of the
four state Markov chain with transition intensity matrix

Q =


−6 4 1 1
0 −7 5 2
0 3 −5 2
0 0.5 0.5 −1

 .

Note that before running the following code on your computer you
must install the msm package. Initially we compute the matrix of
transition probabilities at time t = 0.1.

library(msm)

P_1 <- MatrixExp(Q, 0.1)

P_1
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## [,1] [,2] [,3] [,4]

## [1,] 0.5488116 0.22501400 0.11738870 0.1087857

## [2,] 0.0000000 0.54095713 0.28625502 0.1727879

## [3,] 0.0000000 0.17307769 0.65413446 0.1727879

## [4,] 0.0000000 0.03988527 0.04650866 0.9136061

You will often need to find the transition probabilities at several
values of the time argument for instance if you want to plot the
transtion probabilities as function of time. Below we compute the
transition probabilities at all time points between 0 and 1 in steps of
0.01. The result is stored as a three dimensional array and we demon-
strate how to plot the function t→ P12(t).

timearg <- seq(0,1,by=0.01)

res <- lapply(timearg, function(t){MatrixExp(Q, t)})

trprob <- array(unlist(res), dim=c(dim(res[[1]]), length(res)))

plot(timearg, trprob[1,2,], lwd=2, col="blue", type='l'

,xlab="Time", ylab="Probability")
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Figure B.5: Transition probability P1,2(t)
for a continuous-time Markov chain.
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Simulation of Markov chains

The sample path of a Markov chain may easily be simulation using
the dynamical description summarised in the transition diagram. The
following code defines a function that can simulate sample paths for
both discrete- and continuous-time Markov chains.

simMC<-function(tr, nJump = 10, phi0 = NULL){

nStates<-dim(tr)[1]

cont <- (sum(tr) == 0)

if(cont){

pJump <- matrix(data = 0, nrow = nStates, ncol = nStates)

for(i in 1:nStates){pJump[i, -i] <- (-tr[i, -i]/tr[i, i])}}

else{pJump<-tr}

if(is.null(phi0)){phi0 <- c(1, rep(0, nStates-1))}

states<-rep(0,nStates+1)

jumps<-rep(0,nStates+1)

states[1] <- sample(nStates, 1, prob = phi0)

tmax <- 0

for(i in 1:nJump){

if(cont){

jumps[i+1] <- (-rexp(1)/tr[states[i], states[i]]) + jumps[i]

}

else{jumps[i+1] <- i}

states[i+1] <- sample(nStates, 1, prob = pJump[states[i], ])

}

return(list(y=states,t=jumps))

}

The following code simulates and displays the sample path up to
step 25 for the discrete time Markov chain with transition matrix P of
Section B.8 and initial distribution φ = (1/4, 1/4, 1/4, 1/4).

mcDisc <- simMC(P, nJump = 25, phi0 = rep(0.25, 4))

mcDisc$y

## [1] 1 2 3 4 2 3 2 4 2 4 2 3 2 3 2 3 2 4 2 4 2 3 4 3 2 3

Below we simulate and plot the sample path for the first 10 jumps
of the continuous-time Markov chain with intensity matrix Q of
Section B.8 for initial distribution given by φ = (1, 0, 0, 0).

The function simMC does not apply for simulation of Markov
chains on countable state spaces. However, for the most common
examples discussed in these lecture notes it should be easy (or at
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set.seed(2013)

mcCont<-simMC(Q, nJump = 10, phi0 = c(1, 0, 0, 0))

plot(mcCont$t, mcCont$y, type = 's', xlab = "Time"

, ylab = "State", axes = F, col = "blue", lwd = 2)

axis(side = 1)

axis(side = 2, at = 1:4)
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Figure B.6: Simulated sample path of a
continuous-time Markov chain.
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least possible) to write simple functions for simulation of the sample
paths based on the transition diagram of the Markov chain.

The Poisson process is a continuous time Markov chain on N0

moving only in jumps of size 1 hence everything simplifies as we
only need to simulate the jump times. The waiting times between
jumps are independent and identically distributed exponential vari-
ables with rate parameter λ (-the intensity of the Poisson process).
Below we show how to simulate the first 50 jump times of a Poisson
process with intensity 1 and plot the resulting sample path.

set.seed(2013)

wait <- rexp(50, rate = 1)

t <- cumsum(c(0, wait))

plot(0:50, t, type = 's', lwd = 2, col = "blue"

, xlab = "Time", ylab = "Number of jumps")
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Figure B.7: Simulated sample path of a
Poisson process with intensity 1.





C
Proofs of selected results

C.1 Recurrence criterion 1

In this exercise we outline a strategy for proving the recurrence cri-
terion given in Theorem 10 on page 22 of Chapter 2. The complete
proof may be found on page 35-36 in Jacobsen and Keiding [1985].
We consider a discrete-time Markov chain (X(n))n≥0 on S and define
the time of the first visit to state j

Tj = inf{n > 0|X(n) = j}.

We further introduce the probability

f (n)ij = P(X(n) = j, X(n− 1), . . . , X(1) 6= j|X(0) = i)

that the first visit to state j happens at time n assuming that P(X(0) =
i) = 1. The quantity

fij =
∞

∑
n=1

f (n)ij

then describes the probability of ever reaching state j if P(X(0) =

i) = 1 and you are reminded that state i is recurrent if and only if
fii = 1.

1. By splitting the event (X(n) = j) according to the time of the first
visit to state j show that

(Pn)i,j =
n

∑
m=1

(Pn−m)j,j f (m)
ij .

2. Summing the expression of question 1. over n = 1, . . . , N verify
the following upper bound

N

∑
n=1

(Pn)i,j ≤
N

∑
m=1

f (m)
ij ·

N

∑
k=0

(Pk)j,j

for N > 0.
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3. Show that for any M < N then we have a lower bound

N

∑
n=1

(Pn)i,j ≥
M

∑
m=1

f (m)
ij ·

N−M

∑
k=0

(Pk)j,j.

4. Keeping M < N fixed divide the inequalities of 2. and 3. by
∑N

n=0(Pnn)jj to show that

M

∑
m=1

f (m)
ij ·

(
1−

∑N
n=N−M+1(Pn)j,j

∑N
n=0(Pn)j,j

)
≤

∑N
n=1(Pn)i,j

1 + ∑N
n=1(Pn)j,j

≤
N

∑
m=1

f (m)
ij .

5. Let N → ∞ in the expression of question 4. to get that for any
M > 0 then

M

∑
m=1

f (m)
ij ≤ lim inf

N→∞

∑N
n=1(Pn)i,j

1 + ∑N
n=1(Pn)j,j

≤ lim sup
N→∞

∑N
n=1(Pn)i,j

1 + ∑N
n=1(Pn)j,j

≤
∞

∑
m=1

f (k)ij = fij.

6. Finally, let M→ ∞ to get that

fij =
∑∞

n=1(Pn)i,j

1 + ∑∞
n=1(Pn)j,j

.

7. Consider the case i = j to get the result in Theorem 10 of Chapter
2.

C.2 Number of visits to state j

In this exercise we give a proof of Theorem 12 from Chapter 2. We
study the total number of visits to state j defined as

Nj =
∞

∑
n=1

1(X(n) = j).

More precisely, we show that

P(Nj = n|X(0) = j) = f n
jj(1− f jj), n ≥ 0, (C.1)

where we refer to Exercise C.1 for an explanation of the notation.

1. Split the event (Nj ≥ n + 1) into the time of the first visit to state j
and use the Markov property to obtain

P(Nj ≥ n + 1|X(0) = i)

=
∞

∑
k=1

P(Nj ≥ n|X(0) = j)P(Tj = k|X(0) = i)

= P(Nj ≥ n|X(0) = j) fij, n ≥ 1.
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2. Use question 1. combined with the identity

P(Nj = n|X(0) = j) = P(Nj ≥ n|X(0) = j)− P(Nj ≥ n+ 1|X(0) = j),

and the initial condition P(Nj ≥ 1|X(0) = j) = f jj to verify that

P(Nj = n|X(0) = j) = f n
jj(1− f jj), n ≥ 1.

If the following questions we discuss the implication of (C.1) a little
further. Remember that (by definition!) state j is recurrent if and only
if f jj = 1.

3. Argue that P(Nj = 0|X(0) = j) = 1− f jj.

4. Argue that if state j is transient then the numbers of visits to state
j follows a geometric distribution. Write down an expression for
the expected number, E[Nj|X(0) = j], of visits to state j.

5. Argue that if state j is recurrent then

P(Nj = +∞|X(0) = j) = 1.

6. Give a heuristic argument that for any initial state i 6= j it holds
that

P(Nj = 0|X(0) = i) = 1− fij

P(Nj = n|X(0) = i) = f n−1
jj (1− f jj) fij , n ∈N

P(Nj = +∞|X(0) = i) = fij · 1( f jj = 1).

Comment From questions 6. and 7. of Exercise C.1 it follows eas-
ily that for a transient state j then

∞

∑
n=0

(Pn)jj =
1

1− f jj
and

∞

∑
n=0

(Pn)ij =
fij

1− f jj
.

Since it is trivial to see that

E[Nj|X(0) = i] =
∞

∑
n=0

(Pn)ij

this gives us an expression for the expected number of visits to state
j. The present exercise, however, gives a complete description of the
distribution of Nj providing us with an expression for the density

P(Nj = n|X(0) = i).
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C.3 Invariant distribution

In this exercise we sketch the proof of Theorem 22 in Chapter 2. We
consider an irreducible, recurrent Markov chain on S and we shall
discuss the existence of solutions to the system of equations

ν(j) = ∑
i∈S

ν(i)Pi,j, j ∈ S. (C.2)

For any i ∈ S we introduce the return time to any fixed state i

Ti = inf{n > 0|X(n) = i}

and the expected number of visits to state j before first visit to state i

ν(i)( j) = E

[
Ti−1

∑
n=0

1(X(n) = j)|X(0) = i

]
.

1. Argue that ν(i)(i) = 1 and by recurrence of state i then that

ν(i)( j) = E

[
Ti−1

∑
n=0

1(X(n) = j)|X(0) = i

]

= E

[
Ti

∑
n=1

1(X(n) = j)|X(0) = i

]
.

2. Verify that

E

[
Ti

∑
n=1

1(X(n) = j)|X(0) = i

]

= E

[
∞

∑
n=1

1(X(n) = j, X(n − 1), . . . , X(1) 6= i|X(0) = i

]
.

3. Use the Markov property to show that for n ≥ 2 then

P(X(n) = j, X(n − 1), . . . , X(1) 6= i|X(0) = i)

= ∑
l 6=i

P(X(n) = j, X(n − 1) = l , X(n − 2), . . . , X(1) 6= i|X(0) = i)

= ∑
l 6=i

Pl , j · P(X(n − 1) = l , X(n − 2), . . . , X(1) 6= i|X(0) = i)

= ∑
l 6=i

Pl , j · E[1(X(n − 1) = l , X(n − 2), . . . , X(1) 6= i)|X(0) = i].
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4. Use questions 1.-3. to show that

ν(i)( j)

= P(X(1) = j|X(0) = i)

+
∞

∑
n=2

P(X(n) = j, X(n − 1), . . . , X(1) 6= i|X(0) = i)

= Pi, j + ∑
l 6=i

Pl , j ·
∞

∑
n=2

P(X(n − 1) = l , X(n − 2), . . . , X(1) 6= i|X(0) = i)

= Pi, j + ∑
l 6=i

Pl , j ·
∞

∑
n=2

E[1(X(n − 1) = l , X(n − 2), . . . , X(1) 6= i)|X(0) = i]

= Pi, j + ∑
l 6=i

Pl , j · E[
Ti

∑
n=1

1(X(n) = l)|X(0) = i]

= ∑
l∈S

Pl , j · E[
Ti

∑
n=1

1(X(n) = l)|X(0) = i]

= ∑
l∈S

ν(i)(l)Pl , j .

In questions 1.-4. we have demonstrated that for any i ∈ S then the
vector (ν(i)( j)) j∈S solves (C.2). Trivially, ν(i)( j) ≥ 0 and we shall
discuss when the total mass ∑ j∈S ν(i)( j) is finite.

5. Show that ∑ j∈S ν(i)( j) = E[Ti |X(0) = i] and argue that
(νi( j)) j∈S may be normalized into an invariant distribution
(=probability) exactly if state i is positive recurrent.

We have now showed the existence of an invariant distribution for
any irreducible, positive recurrent Markov chain in discrete time.
An almost complete proof of the uniqueness part of Theorem 22 in
Chapter 2 may be constructed along the lines given in the following
questions 6.-10.

6. Show that for any solution to (C.2) it holds for m ≥ 1 and any
l ∈ S that

ν( j) = ∑
i∈S

ν(i)(Pm)i, j ≥ ν(l)(Pm) l , j .

Deduce that for any non-negative solution (different from zero!)
we have that ν( j) > 0 for all j ∈ S.

7. Let ν = (ν( j)) j∈S be any non-zero solution to (C.2). Argue from
question 6. that we may assume that ν(i) = 1 where i is any fixed
state i ∈ S.

8. Use (without proof!) that for any solution to (C.2) with ν(i) = 1 it
holds that for all j ∈ S

ν( j) ≥ ν(i)( j).
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9. Use question 1., 7. and 8. to argue that the vector µ = (µ( j)) j∈S

defined by µ( j) = ν( j) − ν(i)( j) is a non-negative solution to (C.2)

10. Use question 6. and 9. to deduce that for all j ∈ S then

µ( j) = 0

and conclude that (ν(i)( j)) j∈S is the unique solution to (C.2) with
i-th coordinate equal to 1.

Note that once we have showed the uniqueness (up to multiplica-
tion!) of solutions to (C.2) then it follows from question 5. that if for
some i0 ∈ S E[Ti0 |X(0) = i0 ] < +∞ for some i0 ∈ S then for any
i ∈ S it holds that E[Ti |X(0) = i] < +∞. In particular, the states in
a recurrent class are either all positive recurrent or all null-recurrent.
This was postulated in Definiton 21.

Since the solution to (C.2) is unique (up to multiplication) we
further conclude that there is a unique solution, π = (π( j)) j∈S , to
(C.2)) with ∑ j∈S π( j) = 1 and that the solution may be represented
as

π( j) =
ν(i)( j)

E[Ti |X(0) = i]
=

E[∑Ti−1
n=0 1(X(n) = j)|X(0) = i]

E[Ti |X(0) = i]

for any fixed i ∈ S. Choosing j = i above we conclude that

π( j) =
1

E[Tj |X(0) = j]

hence the invariant probability mass in state j equals the inverse
mean return time to state j.

C.4 Uniqueness of invariant distribution

In this exercise we consider the proof of Theorem 48 on page 80 of
Chapter 3. Let (X(t))t≥0 be an irreducible continuous-time Markov
chain on S and let π = (π(i))i∈S be a probability. Assume that for
some t0 > 0 then

∀ j ∈ S : π( j) = ∑
i∈S

π(i)Pi, j(t0). (C.3)

1. Use that π(i0) > 0 and that for irreducible Markov chain then
Pi0 , j(t0) > 0 to verify from (C.3) that

∀ j ∈ S : π( j) > 0.

2. Sum (C.3) over j ∈ S to obtain

∑
j∈S

π( j) = ∑
j∈S

∑
i∈S

π(i)Pi, j(t0) = ∑
i∈S

π(i) ∑
j∈S

Pi, j(t0) ≤ ∑
i∈S

π(i)
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and conclude that

∀i ∈ S : ∑
j∈S

Pi, j(t0) = 1.

3. Argue that π is the unique invariant distribution for the discrete-
time Markov chain on S with transition probabilities P(t0) =

(Pi, j(t0))i, j∈S .

4. For an arbitrary t > 0 find n such that t < nt0 . Use that P(nt0) =

(P(t0))
n to deduce that P(t) is a transition matrix, i.e. that

∀i ∈ S : ∑
j∈S

Pi, j(t) = 1.

5. Verify that

πP(t)P(t0) = πP(t0)P(t) = πP(t)

and show that πP(t) is an invariant distribution for P(t0). Use
question 3. to conclude that π = πP(t).

C.5 On the ergodic theorem for discrete-time Markov chains

In this section we discuss a classical proof of the ergodic theorem
for discrete-time Markov chains (Theorem 20 on page 32). The proof
is based on the renewal theorem in discrete-time and follows the
exposition in Asmussen [2003, Chapter 1.2].

Example 74 The purpose of the present example is to motivate the formula-
tion of the main result (Theorem 20). We consider a very simple board game
where the player moves along spaces that are labelled 0, 1, 2, . . . .

0

1
2 3

.

.
.

.

.

n

Figure C.1: Figure for illustration of the
simple game discussed in Example 74.

In each round the player rolls a six sided dice and moves forward along
the board according to the number of eyes of the dice. We assume that the
game starts at field 0 and the goal is to compute the probability, un , that the
player will hit a trap that is hidden on the field labeled n for some n ∈ N.

Let us try to compute u1 , u2 , . . . by brute force. Clearly, we have that
u1 = 1/6 since we only hit field 1 if the first roll shows the face with
exactly one eye. Otherwise we will just pass field 1. We may hit field 2
either by moving 2 steps ahead in first roll with the dice or by rolling one eye
twice. In particular, we get that

u2 = 1/6 + 1/6 · 1/6 = 7/36.

Another way to decompose the computation is to say that field 2 may be
reached either by rolling two eyes or by rolling one eye and then hitting field
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2 given that we restart the game at state 1. Clearly, the latter probability is
exactly u1 and we may rewrite the computation of u2 as

u2 = 1/6 + 1/6 · u1 .

Exploiting a similar idea we may now write down

u3 = 1/6 + 1/6u1 + 1/6u2

u4 = 1/6 + 1/6u1 + 1/6u2 + 1/6u3

u5 = 1/6 + 1/6u1 + 1/6u2 + 1/6u3 + 1/6u4

u6 = 1/6 + 1/6u1 + 1/6u2 + 1/6u3 + 1/6u4 + 1/6u5

u7 = 1/6u1 + 1/6u2 + 1/6u3 + 1/6u4 + 1/6u5 + 1/6u6
...

un = 1/6un−6 + 1/6un−5 + 1/6un−4 + 1/6un−3 + 1/6un−2 + 1/6un−1 ,

allowing us to compute any un by recursion. We find that

u1 ≈ 0.1667, u5 ≈ 0.3088, u10 ≈ 0.2893, u20 ≈ 0.2856, u100 ≈ 0.2857.

It appears that the probability, un , of hitting a trap on field n tends to some
limit as n → ∞. Is this a coincidence? And can we give an interpretation of
the limit?

To further analyse the problem we introduce the notation fn for the prob-
ability of moving n steps ahead at each round. We have that

fn =

{
1/6 , n = 1, 2, 3, 4, 5, 6
0 , n ≥ 7

and the general expression for un may be given a more compact form

un = f6un−6 + f5un−5 + f4un−4 + f3un−3 + f2un−2 + f1un−1

=
n

∑
k=1

fk un−k ,

if we let u0 ≡ 1. It turns out that sequences satisfying the recursive equa-
tion above will have a limit under mild regularity conditions and that the
limit equals 1/µ where

µ =
∞

∑
k=1

k fk .

For our board game we have µ = 1/6(1 + 2 + 3 + 4 + 5 + 6) = 21/6 =

7/2 implying that un → 2/7 for n → ∞. Note that µ = 7/2 equals the
average number of eyes obtained by rolling a dice. �

The general framework covering the situation in Example 74 deals
with renewal sequences defined as solutions to the equation

un =
n

∑
k=1

fk un−k
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where ( fk)k∈N is a probability vector. We define the period of
( fk)k∈N as the greatest common divisor of

D f = {k ∈ N| fk > 0}.

We say that (un) is an aperiodic renewal sequence if ( fk) has period
1.

Theorem 75 (Renewal theorem in discrete-time) For an aperiodic
renewal sequence (un) generated by ( fk) it holds that

lim
n→∞

un =
1

∑∞
k=1 k fk

.

The Proof may be found in Asmussen [2003, Chapter 1.2]. �

Theorem 76 (Limit for discrete-time Markov chains) Let (X(n))n≥0

be an irreducible, positive recurrent and aperiodic Markov chain on a finite
or countable S. Then for any initial distribution φ and j ∈ S it holds that

lim
n→∞

P(X(n) = j) =
1

E[Tj |X(0) = j]

where
Tj = inf{n > 0|X(0) = i}.

Proof: For any fixed j ∈ S let fk = P(Tj = k|X(0) = j). By splitting
the event (X(n) = j) according to the time of the first visit to state j
on {0, 1, 2, . . . , n} we get from the Markov property that

un = P(X(n) = j|X(0) = j)

=
n

∑
k=1

P(Tj = k|X(0) = i)P(X(n − k) = j|X(0) = j)

=
n

∑
k=1

fk un−k .

Since state j is aperiodic it follows that that

(Pn) j, j = un →
1

∑∞
k=1 k fk

.

For arbitrary i we have

(Pn)i, j = P(X(n) = j|X(0) = i)

=
n

∑
k=1

P(Tj = k|X(0) = i)P(X(n − k) = j|X(0) = j)

=
n

∑
k=1

P(Tj = k|X(0) = i)un−k .

Dominated convergence now yields that also Pn
i, j →

1
∑∞

k=1 k fk
for arbi-

trary i. Yet another application of dominated convergence completes
the proof. �
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