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Preface

This thesis is an accumulation of projects during my time as a PhD student under
the supervision of Niklas Pfister at the University of Copenhagen and Jonas Peters,
who is now at ETH Zurich. The thesis presents three individual manuscripts, each
related to a specific complex data structure revolving around two aspects of causal
inference: intervention and invariance. Some differences may exist between each chapter
and its corresponding publicly available paper which are indicated in “Contributions and
Structure”. All typographical or mathematical errors are solely my responsibility.
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Abstract

This thesis explores and develops causality-related methodology through three indi-
vidual projects, each focusing on a specific complex data structure. While the problems
investigated are diverse, they all center around the concepts of intervention and (causal)
invariance. Chapter 1 introduces these foundational ideas, which pervade the remainder
of the thesis. Brief introductions of the data structures addressed in the subsequent
chapters are also provided in this chapter.

Chapter 2 dives into the first complex data structure, compositional data, where ob-
servations lie on a simplex (i.e., each observation is constrained to sum to one). This
project is motivated by microbiome research, in which compositions of microbial strains
are typically observed. We examine how to define interpretable statistical targets to
quantify the effects of the components on a response when the predictor is composi-
tional in regression or classification problems. We develop non-parametric estimators of
these effects based on kernels that are specifically suited for compositional data. Our
estimators are evaluated on 33 publicly available microbiome datasets and are shown
to achieve comparable or superior performance compared to state-of-the-art machine
learning methods.

In Chapter 3, we consider sequential data and introduce a new type of change point,
termed causal change points, which indicate changes in the causal mechanism relative to
a response variable under appropriate assumptions. We propose methods to detect and
localize these change points without requiring prior knowledge of the causal structure in
the data. These methods leverage the reverse concept of causal invariance—the property
that the conditional distribution of the response, given its parents, remains fixed under
interventions that do not directly target the response. We demonstrate our methods
using two real-world datasets, one on air quality and the other on macroeconomic policy.

The final chapter, Chapter 4, considers sparse causal effects estimation using two-
sample summary statistics, a type of summary-level data commonly used in genetics
research. In a two-sample summary statistics setting, one does not have access to
individual-level data but only to the marginal associations obtained from two samples:
one containing paired observations of instruments and covariates, and the other con-
taining paired observations of instruments and the response. We propose a generalized,
two-sample summary statistics version of the test statistic considered in spaceIV [Pfis-
ter and Peters, 2022], and prove that our proposed test is uniformly asymptotically
level. We apply our method, spaceTSIV, to real proteomic and gene-expression data for
discovering possible drug targets for coronary artery disease.
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Sammenfatning

Denne afhandling undersøger og udvikler kausalitetsrelateret metodologi gennem tre
selvstændige projekter som hver især fokuserer p̊a en specifik kompleks datastruktur.
Selvom de undersøgte problemstillinger er forskellige er de alle bygget op omkring be-
greberne intervention og (kausal) invarians. Kapitel 1 introducerer disse grundlæggende
idéer som er centrale for resten af afhandlingen. I dette kapitel gives der ogs̊a korte
introduktioner til de datastrukturer der behandles i de efterfølgende kapitler.

Kapitel 2 omhandler den første komplekse datastruktur, kompositionelle data, hvor
observationerne ligger p̊a en simplex (dvs. hver observation summerer til én). Dette pro-
jekt er motiveret af mikrobiomforskning hvor man typisk observerer sammensætninger af
microbial strains. Vi undersøger hvordan man definerer fortolkelige statistiske m̊al for at
kvantificere effekten af komponenterne p̊a et respons n̊ar prædiktoren er kompositionel i
regressions- eller klassifikationsproblemer. Vi udvikler ikke-parametriske estimatorer af
disse effekter, baseret p̊a kernels der er særligt egnede til kompositionelle data. Vores
estimatorer evalueres p̊a 33 offentligt tilgængelige mikrobiomdatasæt og de viser sig
at opn̊a sammenlignelig eller overlegen præstation i forhold til de bedste eksisterende
metoder inden for machine learning.

I Kapitel 3 undersøger vi sekventielle data og introducerer en ny type change points,
kaldet causal change points, som indikerer ændringer i den kausale mekanisme for re-
sponsvariablen under passende antagelser. Vi foresl̊ar metoder til at detektere og lokalis-
ere disse change points uden at kræve forudg̊aende viden om kausale strukturer i data.
Disse metoder udnytter pendanten til kausal invarians – at den betingede fordeling af
responsen givet dens forældre forbliver uændret under interventioner der ikke direkte ret-
ter sig mod responsen. Vi demonstrerer vores metoder ved hjælp af to virkelige datasæt,
det ene om luftkvalitet og det andet om makroøkonomisk politik.

Det sidste kapitel Kapitel 4 omhandler estimation af sparse causal effects ved hjælp
af two-sample summary statistics, en type opsummerede statistik der ofte anvendes i
genetisk forskning. I et two-sample summary statistics setup har man ikke adgang til
individdata men kun til marginale associationer opn̊aet fra to stikprøver: en der in-
deholder sammenkoblede observationer af instrumenter og kovariater, og en anden der
indeholder sammenkoblede observationer af instrumenter og respons. Vi foresl̊ar en
generaliseret two-sample summary statistics version af den teststatistik der overvejes i
spaceIV [Pfister and Peters, 2022] og beviser at vores foresl̊aede test har uniformt asymp-
totisk niveau. Vi anvender vores metode spaceTSIV p̊a virkelige data for proteomics
og genekspression med henblik p̊a at opdage mulige angrebspunkter for lægemidler for
iskæmisk hjertesygdom.
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Contributions and Structure

This thesis contains one introductory chapter and three main chapters, each of which
corresponds to a paper. Chapter 1 introduces the complex data structures considered
in the main chapters, the causal questions of interest, their challenges, and summarizes
my and my co-authors’ contributions. An overview of the contributions of Chapters 2
to 4 are listed below, along with acronyms of the papers which are used in this thesis.

Chapter 2 proposes a kernel-based non-parametric regression and classification frame-
work for compositional data, corresponding to the paper:

[KernelBiome][Huang et al., 2023]. S. Huang, E. Ailer, N. Kilbertus, and N. Pfister.
Supervised Learning and Model Analysis with Compositional Data. PLOS Computa-
tional Biology, 19(6):e1011240, 2023.

Chapter 3 introduces the concept of causal change points (CCPs) and studies the
problems of detecting and estimating CCPs. This chapter contains a partial revision of
the following paper, including a new real data application and with minor typos and
errors corrected. The status of this paper is currently ‘reject with resubmission’ at
Biometrika and we are currently preparing to resubmit:

[CausalCP][Huang et al., 2024a]. S. Huang, J. Peters, and N. Pfister. Causal Change
Point Detection and Localization. arXiv Preprint arXiv:2403.12677, 2024a.

Chapter 4 formulates sparse causal effect estimation with instrumental variables un-
der the two-sample summary statistics setting, and corresponds to the following paper
which was submitted to the 28th International Conference on Artificial Intelligence and
Statistics (AISTATS 2025):

[SpaceTSIV][Huang et al., 2024b]. S. Huang, N. Pfister, and J. Bowden. Sparse
Causal Effect Estimation Using Two-Sample Summary Statistics in the Presence of
Unmeasured Confounding. arXiv Preprint arXiv:2410.12300, 2024b.
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1 Introduction

In this thesis, we consider three specific complex data structures, and for each data struc-
ture, a causality-related question is investigated. As we will see in the following sections,
these research topics are inspired by biological and economic problems. Although the
three topics are diverse, they are all centered around the ideas of intervention and causal
invariance, which are described in more detail in Section 1.1. The rest of this chapter
describes the three specific data structures along with the causal questions, and high-
lights the solutions I have worked on. Section 1.2 introduces compositional data, where
one is interested in the causal effects of intervening on the components. Section 1.3
considers sequential data where causal relationships may change at certain time points.
Section 1.4 describes two-sample summary statistics data and how instrumental variable
methods can be applied to estimate causal effects under unobserved confounding. At
the end of Sections 1.2 to 1.4, we provide concise summaries of the data structures and
causal questions in colored boxes.

1.1 Intervention, causal models, and invariance

This thesis approaches causality from an interventional perspective. Interventions pro-
vide an intuitive way to define causality in the physical world. A well-known quote
attributed to Paul Holland and Don Rubin states, “no causation without manipulation”
[Holland, 1986].

One prominent example of using intervention to infer causality is randomized con-
trolled trials (RCTs), which remain the gold standard for establishing causality in clin-
ical and biomedical research [e.g., Rubin, 1974]. Due to practical or ethical reasons,
RCTs are not always possible, and observational data are often the only data source
for answering causal questions. If all relevant confounders are assumed to be observed
between a set of covariates and a response, one may pursue an adjustment method such
as the frontdoor or backdoor adjustment [Pearl, 2009], generalized adjustment [Perković
et al., 2015, 2018, Shpitser et al., 2010], or efficient adjustment [Witte et al., 2020].
When there are potential unobserved confounders, instrumental variable (IV) methods
[Angrist and Imbens, 1994] may be employed to infer causal effects, which leverages the
randomness in the IVs as pseudo-interventions on the covariates.

From a modeling point of view, interventions also distinguish a causal model from a
statistical one: while a statistical model specifies a set of distributions over the observed
variables in a system, a causal model specifies mappings of well-defined (observed or
hypothetical) interventions on some or all of the variables in the system to distributions
over the observed variables. That is, for a sample space X , a statistical model specifies

1



1 Introduction

a set of distributions

P ⊆
{
P
∣∣P is a probability distribution on X

}
.

A causal model extends the statistical model and can be described in the following way
[Pfister, 2024]. For a fixed index set I, the set of interventions, a causal model specifies
a set of functions with domain I

PI ⊆
{
f
∣∣ f : I → P

}
,

such that f(i) is a probability distribution on X corresponding to the intervention i ∈ I.
The observational distribution can be thought of as corresponding to the “do nothing”
intervention.

Over the past decades, many specific causal models have been proposed, such as poten-
tial outcome models [Rubin, 1974, 2005, Imbens and Rubin, 2015], graphical causal mod-
els [Pearl, 2009], and structural causal models (SCM) [Bollen, 1989, Spirtes et al., 2000,
Pearl, 2009, Peters et al., 2017, Bongers et al., 2021], each having pros and cons. A more
detailed summary of those approaches can be found in Pfister [2024]. In [CausalCP]
(Chapter 3) and [SpaceTSIV] (Chapter 4) where causal models are employed, we focus
on linear SCMs.

The abstract notion of a causal model defined above, PI , imposes no constraints on
how interventions are mapped to joint distributions of the observed variables, or on
the relationship between the observational and interventional distributions. In many
applications, however, it is natural to introduce certain constraints on these mappings.
One particular example is the assumption of modularity, or invariance [e.g., Haavelmo,
1943, Aldrich, 1989], which posits that interventions are local, meaning they affect only a
subset of variables while leaving the rest of the system unchanged. This means that parts
of an interventional distribution can resemble parts of the observational distribution.
SCMs formalize this intuition by postulating that the interventional distribution under
do(X = x) is the distribution induced by the SCM in which the structural assignment
for X is replaced by x and the rest of the model remains unaltered [Peters et al., 2017].

Causal invariance allows us to discover (part of) the causal mechanism in a system
and enables us to achieve robustness and generalization in a statistical model. This
includes invariant causal prediction [Peters et al., 2016] and its sequential counterpart
[Pfister et al., 2019], which use heterogeneous environments (or time intervals) to dis-
cover the causal parents of a response, assuming causal sufficiency. Anchor regression
[Rothenhäusler et al., 2021] on the other hand, proposes a loss function that balances
between prediction accuracy and invariance, allowing hidden confounding between the
covariates and the response. A nice summary of the above and related works is given by
Bühlmann [2020].

1.2 Interventions on a simplex

The description of a causal model in Section 1.1 advocates an explicit treatment of
interventions. This is an aspect of causal models that is often treated implicitly in
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1.2 Interventions on a simplex

causal methodology research and applications, especially under Pearlian graphical mod-
els [also known as graphical causal models, Pearl, 2009], as discussed by Dawid [2002].
[KernelBiome] (Chapter 2) provides an example where defining interventions is not as
straightforward as one might think. In this case, the difficulty arises from the nature of
the predictor, which is compositional, such that one cannot intervene on one component
without simultaneously intervening on the other components.

Compositional data is a data structure that commonly occurs in geology, ecology, and
microbiome studies, where the proportions of a collection of components are measured.
A p-dimensional observation in compositional data can be represented by a point on a
simplex

Sp−1 := {x ∈ [0, 1]p
∣∣ p∑
j=1

xj = 1}.

In many applications, an associated response, such as a disease indicator, is also mea-
sured. A real example of such data is given in Figure 1. As in this dataset, compositional
data in microbiome studies is often very sparse and high-dimensional. Two common ob-
jectives of these applications are: 1) use the compositional predictor to predict the
response, and 2) infer how changes in the composition affect the response.

X =

0.0

0.1

0.2

0.3

0.4

0.5

y =


1
0
...
1


Figure 1: Heatmap of microbiome composition, where each row represents a subject and

each column corresponds to a bacterial species, along with an associated binary
response variable indicating whether the person is cirrhotic.

The sum-to-one constraint of compositional data poses challenges to statistical meth-
ods that consider data in the Euclidean space, as this constraint induces non-trivial
dependencies between the components. As we shall see in [KernelBiome], ignoring
this simplex constraint can lead to wrong conclusions. A popular method in compo-
sitional data analysis is the log-contrast model by Aitchison and Bacon-Shone [1984],
which is easy to fit and interpret. However, it usually requires adding a small (arbitrary)
positive number to the large number of zero components so that the compositional data
can be log-transformed. This method is also not capable of handling complex signals or
including prior knowledge of the relations between the components.

In [KernelBiome], we consider estimating the conditional mean of the response based
on kernels, due to their flexibility to capture complex signals, the availability of kernels
that are targeted to the simplex, and the possibility of integrating prior knowledge. The
log-contrast model can also be shown to be a special case of our method. Moreover,
the estimated embeddings can be used for post-analyses that take the compositionality
into account, such as visualizing the observations on a lower dimensional space, and

3



1 Introduction

measuring diversity in the compositional samples due to the connection between kernels
and distances.

For interpreting the contribution of a component, we start from interpretable targets
of inference by defining two specific interventions on the simplex—the space in which
compositional data lies—and, based on these interventions, we can properly describe each
component’s “contribution” to a response. From this angle, we can see that interventions
are also connected to variable importance, in the sense that the importance of a variable
(or component) can be assessed by how much it affects the response upon an intervention.

It is worth noting that the targets of inference considered in [KernelBiome] are by
themselves purely observational, and any causal interpretations may require additional
assumptions and adaptations. The specific interventions considered in this work are fur-
ther generalized by Lundborg and Pfister [2023] to arbitrary, well-defined interventions
on the simplex, called “perturbations”, to distinguish them from the usual concept of
intervention on the data-generating mechanism. Their use in causal inference is also
discussed therein.

We developed a python library KernelBiome in this work which aims to provide a user-
friendly framework for regression and classification tasks using compositional features.
As a future work, we can extend the current framework to combine both compositional
and other metadata features using multi-kernel learning [Gönen and Alpaydın, 2011]1.

Data structure: Identically and independently distributed (i.i.d) n observations
{Xi, Yi}ni=1 of a random variable (X,Y ) where X ∈ Sp−1 is a compositional predictor
and Y ∈ R is a univariate response.

Causal question: How to define an intervention on a simplex? How to estimate
the effect of an intervention on a simplex to a response variable?

1.3 Sequential data with unstable causal mechanisms

We discussed at the end of Section 1.1 that causal invariance allows us to obtain certain
desirable properties. If the response variable was directly intervened on, the assumption
of causal invariance no longer holds. This motivates the problem studied in [CausalCP]
(Chapter 3), if we have data collected sequentially, can we find out whether and when
causal invariance does not hold?

The problem we are looking at is the reverse of invariance, where, under certain
causal assumptions, we hope to detect and localize changes in the causal mechanism of
the response variable without knowing the causal structure, given data observed over
time. Figure 2 illustrates some examples of this type of change point, based on causal
diagrams.

1Thanks to a question in the GitHub repository https://github.com/shimenghuang/KernelBiome/

issues/2.
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1.3 Sequential data with unstable causal mechanisms
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Figure 2: Two examples where the causal mechanism of Y changes (left and middle):
one causal parent of Y is removed, the relationship between Y and one of its
causal parent changes changes (indicated by the color change of the arrow).
One example where the causal mechanism of Y does not change (right): the
distributions of X1 and X3 are modified.

Change point detection and localization have been studied extensively, especially in the
econometrics literature, spanning from univariate changes, multivariate changes, struc-
tural changes, and also in various aspects such as changes in mean, variance (covariance),
or the regression coefficients, as well as different types, online or offline. Reviews can be
found in Niu et al. [2016], Truong et al. [2020], and Bardet et al. [2020].

One of the main contributions of [CausalCP] is to introduce a new type of change
point, termed causal change point (CCP), which has not been discussed previously. The
closest concept in the literature is “structural change points”, referring to changes in the
conditional distribution of Y given all covariates. In [CausalCP], we refer to structural
change points based on linear models as “regression change points” (RCPs), and CCPs
form a subset of RCPs.

Although we named this new type of change point “causal change points”, its definition
is also purely observational and does not refer to an underlying causal model. The
causal name stems from the motivating idea of causal invariance, as well as its causal
meaning when additional assumptions are satisfied. In [CausalCP], we discuss the
causal meaning of CCP in the context of SCMs. A general form of sequential SCM is
given in Definition 1.3.1, where the key difference compared to a usual SCM is that the
function generating a variable also depends on the time index.

Definition 1.3.1 (Sequential SCM). Let n ∈ N+ and assume that for each i ∈ {1, . . . , n}
and j ∈ {1, . . . , d}, there exists a function f ji : R|PA(Xj

i )| → R such that Xi ∈ Rd+1

satisfies the following equation

Xj
i := f ji (X

PA(Xj
i )

i , εji ) (1)

5



1 Introduction

where PA(Xj
i ) ⊆ {X1

i , . . . , X
d
i } \ {Xj} denotes the set of parent nodes of Xj

i in the

corresponding directed graph, and (εji )j∈{1,...,d} are jointly independent noise variables
with a joint distribution Pεi at time i. ♣

In [CausalCP], we focus our attention on linear sequential SCMs, where the function
fi is linear in the parents and noise variables. A key assumption for a CCP to have its
causal meaning under linear sequential SCMs is that there is no unobserved confounding
between the covariates and the response. This is indeed a strong assumption, but we
show that when unobserved confounding exists, CCPs may still be interpreted as changes
in the observed causal mechanisms.

CCP detection can be formulated as testing a null hypothesis that there is no CCP
in a time period. Intuitively, under the null hypothesis, no matter how we split the
data into sub-intervals, we should be able to see that there is always an invariant set—a
subset of the covariates such that the conditional distribution of Y given this subset is
the same across different sub-intervals.

Time interval

Layer 1 intervals

Layer 2 intervals

Figure 3: A simple illustration of seeded intervals. Each layer is assigned a different color
for clarity. Intervals in each layer overlap and are of the same length.

CCP localization shares a similar intuition, to this end, two directions may be con-
sidered. First, as CCPs are a subset of RCPs, if RCPs are available, one can choose to
detect the CCPs among them. The drawback of this approach is that, if RCPs need to
be estimated, the RCP localization method needs to be powerful enough to capture all
RCPs, and any estimation error would be passed on to the estimation error or CCPs.

Secondly, one can consider minimizing a suitable loss function. In [CausalCP], we
propose a loss function called causal stability loss (CSL), such that if there is exactly
one CCP in a time interval, the CCP is a minimizer of CSL. In order to localize multi-
ple CCPs, we can combine CSL with existing multiple change point localization meth-
ods, such as the seeded binary segmentation algorithm [Kovács et al., 2023, SBS] with
narrowest-over-threshold [Baranowski et al., 2019, NOT]. Compared to the standard
top-down binary segmentation [Vostrikova, 1981], the advantage of SBS with NOT is
that it is suitable for loss functions such as CSL whose minimizer may not be a CCP
when there are multiple CCPs in an interval. The basic idea is to first generate “layers”
of intervals, as illustrated in Figure 3, such that each layer contains overlapping inter-
vals of a particular length. This way, one can ensure that each of the smallest intervals
contains at most one change point. One can then estimate change points using a loss
function starting from the shortest layer of intervals, and eliminate all longer intervals
that contain the estimates estimated from the current layer.
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1.4 Causal inference with summary-level data

Data structure: A sequence of n independent observations {Xi, Yi}ni=1 of a random
variable (X,Y ) where X ∈ Rd are covariates and Y ∈ R is a univariate response.

Causal question: Are there changes in the causal relationship between X and Y ?
If so, at which time points do the changes occur?

1.4 Causal inference with summary-level data

In the past decade, being able to work with summary-level data instead of individual-level
data has become a very important feature of a statistical method in genetics research.
On the one hand, due to privacy reasons, individual-level genetic datasets are not al-
lowed to be made public without careful anonymization. On the other hand, there is a
vast amount of summary-level data available from many international consortia such as
biobanks [e.g., UK Biobank, 2024, Japan Biobank, 2024] and other sources [e.g., GWAS
Catalog, 2024, FinnGen, 2024, All of Us, 2024].

Summary-level data commonly refers to the estimated marginal associations and stan-
dard errors between genetic variants and traits obtained from large-scale genome-wide
association studies (GWAS). These summary-level data are also known as summary
statistics. IV methods, referred to as Mendelian randomization (MR) in genetics re-
search [see Sanderson et al., 2022, for an overview], can be adapted to work with sum-
mary statistics in the linear case. In fact, MR has become one of the most popular
causal inference frameworks in genetic epidemiology, with using two-sample data (in-
cluding two-sample summary statistics and two-sample individual-level data) being a
more and more prominent data source in recent years (see Figure 4).
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Figure 4: Total numbers of publications on PubMed containing the keyword “Mendelian
randomization”, along with counts of two-sample studies and those based on
two-sample summary statistics, between 2010 and 2024. This figure is adapted
from Hartwig et al. [2016, Figure 1] and updated with more recent data.

The two-sample setting here refers to when one has access to two separate datasets,
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Y

Figure 5: Illustration of IV settings. If the dashed arrow exists, the exclusion restriction
criterion is violated.

often (assumed to be) collected from independent individuals, where one contains obser-
vations of the instruments Z and the covariates X, and the other contains observations of
the instruments Z response Y . When only the summary statistics of these two datasets
are available, this setting is referred to as the two-sample summary statistics setting.
In [SpaceTSIV] (Chapter 4), we define (two-sample) summary statistics more formally
based on the ordinary least squares (OLS) estimator, which is how summary statistics
are normally computed in GWAS.

There are three classical assumptions of IV regularly mentioned in both economics and
biomedical applications, namely, relevance, exchangeability, and the exclusion restriction
criterion. Relevance relates to the strength of the instruments, and weak instruments
are well-known to cause bias in IV methods such as two-stage least squares [Wooldridge,
2010]. This assumption is often tested in practice (where there are possibly multiple
endogenous variables) by various under-identification and weak instrument tests such as
the Cragg-Donald test [Cragg and Donald, 1993], Kleibergen-Paap test [Kleibergen and
Paap, 2006], and conditional F test [Angrist and Pischke, 2009, Sanderson and Wind-
meijer, 2016]. On the contrary, the other two assumptions are in general untestable and
often justified by domain knowledge. An equivalent way to express the exclusion restric-
tion criterion is based on conditional independence: given instruments Z, covariates X,
a response Y , and unobserved variables H, the following conditional independence holds
if Z are valid instruments

Z ⊥⊥Y
∣∣X,H,

where we can also see that this condition cannot be tested as the variables H are unob-
served. Nevertheless, there are ways to falsify this assumption by testing its implications
on the observables. For example, Sargan’s test [Sargan, 1958] tries to falsify the validity
of instruments in the over-identified setting, illustrated in the right plot of Figure 5. The
intuition is the following. Consider the simplest case where there is a single covariate X,
if the instruments are all valid, then the estimated causal effects based on each of these
instruments should be similar; if an instrument is invalid, then the estimated causal
effects based on those would appear to be “abnormal” compared to the others.

The majority of linear IV methods assume that there are at least as many instruments
as the covariates in order to identify the causal effects. One exception was recently made
by Pfister and Peters [2022], who show that under certain conditions, the causal parents
(as well as their causal effects) are identifiable even when there are fewer instruments
than covariates. The key assumption here is that the causal effects are sparse. In
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1.4 Causal inference with summary-level data

[SpaceTSIV], we generalize this approach to the two-sample summary statistics setting.
We now discuss some specific features and challenges of MR applications that are

beyond the scope of [SpaceTSIV], but could be of interest to investigate in the future.
Firstly, the number of genetic variants is large, typically in millions. Genetic variants
are also often highly correlated, known as linkage disequilibrium (LD), due to how we
inherit our genes from our parents. This means selecting valid instruments among genetic
variants can be very challenging [Garfield et al., 2023, Paz et al., 2023]. If genetic variants
included in an MR analysis are highly correlated, it can lead to the causal effects being
under- (or weakly-)identified, even though the number of instruments is larger than the
number of covariates.

Secondly, when using two-sample summary statistics, it is often assumed that the two
sets of individuals are similar. It is possible to address certain heterogeneity when the
individual-level data is available [Zhao et al., 2019], but it has not been investigated
given only summary statistics.

Thirdly, genetic variants that exist in only a very low percentage of the population,
commonly referred to as “rare variants”, may violate the positivity assumption, and
whether rare variants are useful in MR is still under debate [Gibson, 2012, Zuk et al.,
2014].

Lastly, the genetic variants are commonly coded as 0, 1, and 2, representing no muta-
tion, mutation on one strand, and mutation on both strands in each location. This means
that with linear MR, it is implicitly assumed that the incremental effect of the mutation
is constant, which may be inadequate if the underlying relationship is non-linear.

Data structure: Individual-level data of a set of instrumental variables Z ∈ Rm,
a set of covariates X ∈ Rd, and a univariate response Y ∈ R are inaccessible, but
marginal OLS estimates and standard error of association between Z and X as well
between Z and Y are. The correlation matrices of Z and X are also available.

Causal question: How to identify the direct causes of Y among a set of (upstream)
covariates X and estimate their causal effects, where unobserved confounding exists
between X and Y , without access to individual level data?
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2 Supervised learning and model analysis
with compositional data

Shimeng Huang, Elisabeth Ailer, Niki Kilbertus, and Niklas Pfis-
ter

Abstract
Supervised learning, such as regression and classification, is an essential tool for

analyzing modern high-throughput sequencing data, for example in microbiome
research. However, due to the compositionality and sparsity, existing techniques
are often inadequate. Either they rely on extensions of the linear log-contrast
model (which adjust for compositionality but cannot account for complex signals
or sparsity) or they are based on black-box machine learning methods (which may
capture useful signals, but lack interpretability due to the compositionality). We
propose KernelBiome, a kernel-based nonparametric regression and classification
framework for compositional data. It is tailored to sparse compositional data and
is able to incorporate prior knowledge, such as phylogenetic structure.
KernelBiome captures complex signals, including in the zero-structure, while

automatically adapting model complexity. We demonstrate on par or improved
predictive performance compared with state-of-the-art machine learning methods
on 33 publicly available microbiome datasets. Additionally, our framework pro-
vides two key advantages: (i) We propose two novel quantities to interpret con-
tributions of individual components and prove that they consistently estimate
average perturbation effects of the conditional mean, extending the interpretabil-
ity of linear log-contrast coefficients to nonparametric models. (ii) We show that
the connection between kernels and distances aids interpretability and provides a
data-driven embedding that can augment further analysis. KernelBiome is avail-
able as an open-source Python package on PyPI and at https://github.com/

shimenghuang/KernelBiome.

Author summary

In recent years, advances in gene sequencing technology have allowed scientists to ex-
amine entire microbial communities within genetic samples. These communities interact
with their surroundings in complex ways, potentially benefiting or harming the host they
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2 KernelBiome

inhabit. However, analyzing the microbiome – the measured microbial community – is
challenging due to the compositionality and sparsity of the data.

In this study, we developed a statistical framework called KernelBiome to model the
relationship between the microbiome and a target of interest, such as the host’s disease
status. We utilized a type of machine learning model called kernel methods and adapted
them to handle the compositional and sparse nature of the data, while also incorporating
prior expert knowledge.

Additionally, we introduced two new measures to help interpret the contributions
of individual compositional components. Our approach also demonstrated that kernel
methods increase interpretability in analyzing microbiome data. To make KernelBiome

as accessible as possible, we have created an easy-to-use software package for researchers
and practitioners to apply in their work.

2.1 Introduction

Compositional data, that is, measurements of parts of a whole, are common in many sci-
entific disciplines. For example, mineral compositions in geology [Buccianti et al., 2006],
element concentrations in chemistry [Pesenson et al., 2015], species compositions in ecol-
ogy [Jackson, 1997] and more recently high-throughput sequencing reads in microbiome
science [Li, 2015].

Mathematically, any p-dimensional composition—by appropriate normalization—can
be represented as a point on the simplex

Sp−1 := {x ∈ [0, 1]p |∑p
j=1 x

j = 1}.

This complicates the statistical analysis, because the sum-to-one constraint of the
simplex induces non-trivial dependencies between the components that may lead to
false conclusions, if not appropriately taken into account.

The statistics community has developed a substantial collection of parametric anal-
ysis techniques to account for the simplex structure. The most basic is the family of
Dirichlet distributions. However, as pointed out already by Aitchison [1982], Dirichlet
distributions cannot capture non-trivial dependence structures between the composition
components and are thus too restrictive. Aitchison [1982] therefore introduced the log-
ratio approach. It generates a family of distributions by projecting multivariate normal
distributions into Sp−1 via an appropriate log-ratio transformation (e.g., the additive log-
ratio, centered log-ratio [Aitchison, 1982], or isometric log-ratio [Egozcue et al., 2003]).
The resulting family of distributions results in parametric models on the simplex that are
rich enough to capture non-trivial dependencies between the components (i.e., beyond
those induced by the sum-to-one constraint). The log-ratio approach has been extended
and adapted to a range of statistical problems [e.g., Aitchison, 1985, Tsagris et al., 2011,
Aitchison, 1983, Aitchison and Greenacre, 2002, Friedman and Alm, 2012].

For supervised learning tasks the log-ratio approach leads to the log-contrast model
[Aitchison and Bacon-Shone, 1984]. An attractive property of the log-contrast model is
that its coefficients quantify the effect of a multiplicative perturbation (i.e., fractionally
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2.1 Introduction

increasing one component while adjusting the others) on the response. While several ex-
tensions of the log-contrast model exist [e.g., Lin et al., 2014, Shi et al., 2016, Combettes
and Müller, 2021, Simpson et al., 2021, Ailer et al., 2024], its parametric approach to
supervised learning has two major shortcomings that become particularly severe when
applied to high-dimensional and zero-inflated high-throughput sequencing data [Tsilim-
igras and Fodor, 2016, Gloor et al., 2017]. Firstly, since the logarithm is not defined at
zero, the log-contrast model cannot be directly applied. A common fix is to add so-called
pseudo-counts, a small non-zero constant, to all (zero) entries [Kaul et al., 2017, Lin and
Peddada, 2020]. More sophisticated replacements exist as well [e.g., Mart́ın-Fernández
et al., 2003, Fernandes et al., 2013, De La Cruz and Kreft, 2018], however, they often
rely on knowing the nature of the zeros (e.g., whether they are structural or random),
which is typically not available in practice and difficult to estimate. In any case, the
downstream analysis will strongly depend on the selected zero imputation scheme [Park
et al., 2022]. Secondly, the relationships between individual components (e.g., species)
and the response are generally complex. For example, in human microbiome settings,
a health outcome may depend on interactions or on the presence or absence of species.
Both cannot be captured by the linear structure of the log-contrast model.

We propose to solve the supervised learning task using a nonparametric kernel ap-
proach, which is able to handle complex signals and avoid arbitrary zero-imputation. To
be of use in biological applications, there are two components to a supervised analysis:
(i) estimating a predictive model that accurately captures signals in the data and (ii)
extracting meaningful and interpretable information from the estimated model. For (i),
it has been shown that modern machine learning methods are capable of creating highly
predictive models by using microbiome data as covariates and phenotypes as responses
[e.g., Pasolli et al., 2016, Knight et al., 2018, Zhou and Gallins, 2019, Cammarota et al.,
2020]. In particular, several approaches have been proposed where kernels are used to
incorporate prior information [Chen and Li, 2013, Randolph et al., 2018], as a way to
utilize the compositional structure [Ramon et al., 2021, Di Marzio et al., 2015, Tsagris
and Athineou, 2021] and to construct association tests [Zhao et al., 2015a, Wilson et al.,
2021, Huang et al., 2022]. Our proposed framework extends these works by providing
new post-analysis techniques (e.g., the compositional feature influence) that respect the
compositional structure. Recently, Park et al. [2022], Li et al. [2023] used the radial
transformation to argue that kernels on the sphere provide a natural way of analyzing
compositions with zeros and similar to our work suggest using the kernel embeddings
in a subsequent analysis. Part (ii) is related to the fields of explainable artificial intelli-
gence[Samek et al., 2019] and interpretable machine learning [Molnar, 2020], which focus
on extracting information from predictive models. These types of approaches have also
received growing attention in the context of microbiome data [Topçuoğlu et al., 2020,
Gou et al., 2021, Ruaud et al., 2022]. However, to the best of our knowledge, none of
these procedures have been adjusted to account for the compositional structure. As we
show in Section 2.2.1, not accounting for the compositionality may invalidate the results.
KernelBiome, see Fig 2.1.1, addresses both (i) by providing a regression and clas-

sification procedure based on kernels targeted to the simplex and (ii) by providing a
principled way of analyzing the estimated models. Our contributions are fourfold: (1)
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2 KernelBiome

We develop a theoretical framework for using kernels on compositional data. While
using kernels to analyze various aspects of compositional data is not a new idea, a com-
prehensive analysis and its connection to existing approaches has been missing. In this
work, we provide a range of kernels that each capture different aspects of the simplex
structure, many of which have not been previously applied to compositional data. For
all kernels, we derive novel, positive-definite weighted versions that allow incorporating
prior information between the components. Additionally, we show that the distance as-
sociated with each kernel can be used to define a kernel-based scalar summary statistic.
(2) We propose a theoretically justified analysis of kernel-based models that accounts
for compositionality. Firstly, we introduce two novel quantities for measuring the effects
of individual features that explicitly take the compositionality into account and prove
that these can be consistently estimated. Secondly, we build on known connections be-
tween kernels and distance measures to advocate for using the kernel embedding from
the estimated model to create visualizations and perform follow-up distance-based anal-
yses that respect the compositionality. (3) We draw connections between KernelBiome

and log-contrast-based analysis techniques. More specifically, we connect the Aitchison
kernel to the log-contrast model, prove that the proposed compositional feature influ-
ence in this case reduces to the log-contrast coefficients, and show that our proposed
weighted Aitchison kernel is related to the recently proposed tree-aggregation method
of log-contrast coefficients [Bien et al., 2021]. Importantly, these connections ensure
that KernelBiome reduces to standard log-contrast analysis techniques whenever simple
log-contrast models are capable of capturing most of the signal. This is also illustrated
by our experimental results. (4) We propose a data-adaptive selection framework that
allows to compare different kernels in a principled fashion.

Input

compositional predictor & response

X1

X2 ...
Xn

Y1

Y2...
Yn

+
prior knowledge (optional)

e.g. phylogenetic tree
•

• • · · · • •

• • • · · · · · · • •

Supervised Learning

data-driven

model

selection

Kernels on Sp−1

Euclidean
Aitchison

geometry

Probability

distribution

Riemannian

manifold

model fit SVM/Kernel Ridge

Output:

Regression function Feature embedding

f̂ : Sp−1 −→ R x 7→ k̂(x, ·)

Model Analysis

Interpreting individual features

Xj

C
P

D

X1

X4

X3
X2

2.00 X1

-1.00 X2

-1.00 X3

-0.00 X4

CFI

Distance-based analysis

component 1

co
m

p
on

en
t

2

A B

A B A B

K
er

ne
l

he
al

th
sc

or
e S

im
pson

diversity

Figure 2.1.1: Overview of KernelBiome. We start from a paired dataset with a compo-
sitional predictor X and a response Y and optional prior knowledge on the
relation between components in the compositions (e.g., via a phylogenetic
tree). We then select a model among a large class of kernels which best fits
the data. This results in an estimated model f̂ and embedding k̂. Finally,
these can be analyzed while accounting for the compositional structure.

The paper is structured as follows. In Section 2.2, we introduce the supervised learning

14
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task, define two quantities for analyzing individual components (Section 2.2.1), give a
short introduction to kernel methods and how to apply our methodology (Section 2.2.2),
and present the full KernelBiome framework (Section 2.2.3). Finally, we illustrate the
advantages of KernelBiome in the experiments in Section 2.3.

2.2 Methods

We consider the setting in which we observe n independent and identically distributed
(i.i.d.) observations (X1, Y1), . . . , (Xn, Yn) of a random variable (X,Y ) with X ∈ Sp−1 a
compositional predictor and Y ∈ R a real-valued response variable (by which we include
categorical responses). Supervised learning attempts to learn a relationship between the
response Y and the dependent predictors X. In this work, we focus on conditional mean
relationships. More specifically, we are interested in estimating the conditional mean of
Y , that is, the function

f∗ : x 7→ E[Y | X = x]. (2.2.1)

We assume that f∗ ∈ F ⊆ {f | f : Sp−1 → R}, where F is a function class determined
by the regression (or classification) procedure.

While estimating and analyzing the conditional mean is well established for predictors
in Euclidean space, there are two factors that complicate the analysis when the predic-
tors are compositional. (i) While it is possible to directly apply most standard regression
procedures designed for X ∈ Rp also for X ∈ Sp−1, it turns out that many approaches are
ill-suited to approximate functions on the simplex. (ii) Even if one accurately estimates
the conditional mean function f∗, the simplex constraint complicates any direct assess-
ment of the influence and importance of individual components of the compositional
predictor. In this work, we address both issues and propose a nonparametric framework
for regression and classification analysis for compositional data.

2.2.1 Interpreting individual features

Our goal when estimating the conditional mean f∗ given in (2.2.1) is to gain insight
into the relationship between the response Y and predictors X. For example, when
fitting a log-contrast model (see Example 2.2.2), the estimated coefficients provide a
useful tool to generate hypotheses about which features affect the response and thereby
inform follow-up experiments. For more complex models, such as the nonparametric
methods proposed in this work, direct interpretation of a fitted model f̂ is difficult.
Two widely applicable measures due to Friedman [2001] are the following: (i) Relative
influence, which assigns each coordinate j a scalar influence value given by the expected
partial derivative E[ d

dxj
f̂(X)] and (ii) partial dependence plots, which are constructed by

plotting, for each coordinate j, the function z 7→ E[f̂(X1, . . . , Xj−1, z,Xj+1, . . . , Xp)].
However, directly applying these measures on the simplex is not possible as we illustrate
in Fig 2.D.2 in Appendix 2.D. The intuition is that both measures evaluate the function
f̂ outside the simplex. An adaptation of the relative influence (or elasticity in the
econometrics literature) to compositions based on the Aitchison geometry has recently
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been proposed by Morais and Thomas-Agnan [2021]. We adapt the relative influence
without relying on the log-ratio transform and hence allow for more general function
classes.

Our approach is based on two coordinate-wise perturbations on the simplex. For any
j ∈ {1, . . . , p} and x ∈ Sp−1, define (i) for c ∈ [0,∞) the function ψj(x, c) ∈ Sp−1 to be
the composition resulting from multiplying the j-th component by c and then scaling
the entire vector back into the simplex, and (ii) for c ∈ [0, 1] the function ϕj(x, c) ∈
Sp−1 to be the composition that consists of fixing the j-th coordinate to c and then
rescaling all remaining coordinates such that the resulting vector lies in the simplex.
Each perturbation can be seen as a different way of intervening on a single coordinate
while preserving the simplex structure. More details are given in Appendix 2.A. Based on
the first perturbation, we define the compositional feature influence (CFI) of component
j ∈ {1, . . . , p} for any differentiable function f : Sp−1 → R by

(CFI) Ijf := E
[
d
dcf(ψj(X, c))

∣∣
c=1

]
. (2.2.2)

Similarly, we adapt partial dependence plots using the second perturbation. Define the
compositional feature dependence (CPD) of component j ∈ {1, . . . , p} for any function
f : Sp−1 → R by

(CPD) Sjf : z 7→ E[f(ϕj(X, z))]− E[f(X)]. (2.2.3)

In practice, we can compute Monte Carlo estimates of both quantities by replacing
expectations with empirical means. We denote the corresponding estimators by Îjf and

Ŝjf , respectively (see Appendix 2.A for details).
The following proposition connects the CFI and CPD to the coefficients in a log-

contrast function.

Proposition 2.2.1 (CFI and CPD in the log-contrast model). Let f : x 7→ βT log(x)
with

∑p
j=1 βj = 0, then the CFI and CPD are given by

Ijf = βj and Sjf : z 7→ βj log
(

zj

1−zj
)

+ c,

respectively, where c ∈ R is a constant depending on the distribution of X but not on z
and satisfies c = 0 if βj = 0.

A proof is given in Appendix 2.F. The proposition shows that the CFI and CPD are
generalizations of the β-coefficients in the log-contrast model. The following example
provides further intuition.

Example 2.2.2 (CFI and CPD in a log-contrast model). Consider a log-contrast model
Y = f(X) + ε with f : x 7→ 2 log(x1)− log(x2)− log(x3).

The CFI and CPD for the true function f — estimated based on n = 100 i.i.d. samples
(X1, Y1), . . . , (Xn, Yn) with Xi compositional log-normal — are shown in Fig 2.2.2. ♠

The following theorem highlights the usefulness of the CFI and CPD by establishing
when they can be consistently estimated from data.
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Figure 2.2.2: Visualization of the CPD (left) and CFI (right) based on n = 100 samples
and the true function f . Since β4 = 0 in this example the 4-th component
has no effect on the value of f resulting in a CFI of zero and a flat CPD.
Since we are not estimating f , the CFI values exactly correspond to the
β-coefficients in this example.

Theorem 2.2.3 (Consistency). Assume f̂n is an estimator of the conditional mean f∗

given in (2.2.1) based on (X1, Y1), . . . , (Xn, Yn) i.i.d..

(i) If 1
n

∑n
i=1

∥∥∇f̂n(Xi)−∇f∗(Xi)
∥∥

2

P−→ 0 as n→∞ and E[(∇f∗(Xi))
2] <∞, then

it holds for all j ∈ {1, . . . , p} that

Îj
f̂n

P−→ Ijf∗ as n→∞.

(ii) If supx∈supp(X) |f̂n(x)− f∗(x)| P−→ 0 as n→∞ and supp(X) = {w/(∑j w
j) | w ∈

supp(X1) × · · · × supp(Xp)}, then it holds for all j ∈ {1, . . . , p} and all z ∈ [0, 1]
with z/(1− z) ∈ supp(Xj/

∑
`6=j X

`) that

Ŝj
f̂n

(z)
P−→ Sjf∗(z) as n→∞.

A proof is given in Appendix 2.F.1 and the result is demonstrated on simulated data in
Fig 2.D.1 in Appendix 2.D. The theorem shows that the CFI is consistently estimated as
long as the derivative of f∗ is consistently estimated, which can be ensured for example
for the kernel methods discussed in Section 2.2.2. In contrast, the CPD only requires the
function f∗ itself to be consistently estimated. The additional assumption on the support
ensures that the perturbation ϕj used in the CPD remains within the support. If this
assumption is not satisfied one needs to ensure that the estimated function extrapolates
beyond the sample support. Interpreting the CPD therefore requires caution.

2.2.2 Kernel methods for compositional data analysis

Before presenting our proposed weighted and unweighted kernels, we briefly review the
necessary background on kernels and their connection to distances. Kernel methods are
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a powerful class of nonparametric statistical methods that are particularly useful for data
from non-standard (i.e., non-Euclidean) domains X . The starting point is a symmetric,
positive definite function k : X × X → R, called kernel. Kernels encode similarities
between points in X , i.e., large values of k correspond to points that are similar and
small values to points that are less similar. Instead of directly analyzing the data on X ,
kernel methods map it into a well-behaved feature space Hk ⊆ {f | f : X → R} called
reproducing kernel Hilbert space (RKHS), whose inner product preserves the kernel
induced similarity.

Here, we consider kernels on the simplex, that is, X = Sp−1. The conditional mean
function f∗ given in (2.2.1) can then be estimated by optimizing a loss over Hk, for an
appropriate kernel k for which Hk is sufficiently rich, i.e., f∗ ∈ Hk. The representer
theorem [e.g., Schölkopf et al., 2002] states that such an optimization over Hk can be
performed efficiently. Formally, it states that the minimizer of an arbitrary convex loss
function L : Rn × Rn → [0,∞) of the form

f̂ = arg min
f∈Hk

L
(
(Y1, f(X1)), . . . , (Yn, f(Xn))

)
+ λ||f ||2Hk ,

with λ > 0 a penalty parameter, has the form f̂(·) =
∑n

i=1 α̂ik(Xi, ·) for some α̂ ∈ Rn.
This means that instead of optimizing over a potentially infinite-dimensional space Hk,
it is sufficient to optimize over the n-dimensional parameter α̂. Depending on the loss
function, this allows to construct efficient regression and classification procedures, such
as kernel ridge regression and support vector machines [e.g., Schölkopf et al., 2002].

The performance of the resulting prediction model depends on the choice of kernel
as this determines the function space Hk. A useful way of thinking about kernels is
via their connection to distances. In short, any kernel k induces a unique semi-metric
dk and vice versa. More details are given in Appendix 2.E. This connection has two
important implications. Firstly, it provides a natural way for constructing kernels based
on established distances on the simplex. The intuition being that a distance, which is
large for observations with vastly different responses and small otherwise, leads to an
informative feature space Hk. Secondly, it motivates using the kernel-induced distance,
see Section 2.2.3.2.

2.2.2.1 Kernels on the simplex

We consider four types of kernels on the simplex, each related to different types of dis-
tances. A full list with all kernels and induced distances is provided in Appendix 2.G.
While most kernels have previously appeared in the literature, we have adapted many
of the kernels to fit into the framework provided here, e.g., added zero-imputation for
Aitchison kernels and updated the parametrization for the probability distribution ker-
nels.

Euclidean: These are kernels that are constructed by restricting kernels on Rp to the
simplex. Any such restriction immediately guarantees that the restricted kernel is again
a kernel. However, the induced distances are not targeted to the simplex and therefore
can be unnatural choices. In KernelBiome, we have included the linear kernel and the
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radial basis function (RBF) kernel. The RBF kernel is Lp-universal [e.g., Sriperumbudur
et al., 2011] which means that it can approximate any integrable function (in the large
sample limit). However, this does not necessarily imply good performance for finite
sample sizes.

Aitchison geometry: One way of incorporating the simplex structure is to use the
Aitchison geometry. Essentially, this corresponds to mapping points from the interior of
the simplex via the centered log-ratio transform into Rp and then using the Euclidean
geometry. This results in the Aitchison kernel for which the induced RKHS is equal
to the log-contrast functions. In particular, applying kernel ridge regression with an
Aitchison kernel corresponds to fitting a log-contrast model with a penalty on the co-
efficients. As the centered log-ratio transform is only defined for interior points in the
simplex, we add a hyperparameter to the kernels that shift them away from zero. From
this perspective, the commonly added pseudo-count constant added to all components
becomes a tuneable hyperparameter of our method, rather than a fixed ad-hoc choice
during data pre-processing. Thereby, our modified Aitchison kernel respects the fact
that current approaches to zero-replacement or imputation are often not biologically
justified, yet may impact predictive performance. Our proposed zero-imputed Aitchison
kernel comes with two advantages over standard log-contrast modelling: (1) A principled
adjustment for zeros and (2) an efficient form of high-dimensional regularization that
performs well across a large range of our experiments. In KernelBiome, we include the
Aitchison kernel and the Aitchison-RBF kernel which combines the Aitchison and RBF
kernels.

Probability distributions: Another approach to incorporate the simplex structure
into the kernel is to view points in the simplex as discrete probability distributions.
This allows us to make use of the extensive literature on distances between probability
distributions to construct kernels. In KernelBiome, we have adapted two classes of such
kernels: (1) A parametric class based on generalized Jensen-Shannon distances due to
Topsøe [2003], which we call generalized-JS, and (2) a parametric class based on the
work by Hein and Bousquet [2005], which we call Hilbertian. Together they contain
many well-established distances such as the total variation, Hellinger, Chi-squared, and
Jensen-Shannon distance. All resulting kernels allow for zeros in the components of
compositions.

Riemannian manifold: Finally, the simplex structure can be incorporated by using
a multinomial distribution which has a parameter in the simplex. Lafferty et al. [2005]
show that the geometry of multinomial statistical models can be exploited by using
kernels based on the heat equation on a Riemannian manifold. The resulting kernel is
known as the heat-diffusion kernel and has been observed to work well with sparse data.

2.2.2.2 Including prior information into kernels

All kernels introduced in the previous section (and described in detail in Appendix 2.G.1
are invariant under permutations of the compositional components. They therefore do
not take into account any relation between the components. In many applications, one
may however have prior knowledge about the relation between the components. For ex-
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ample, if the compositional predictor consists of relative abundances of microbial species,
information about the genetic relation between different species encoded in a phyloge-
netic tree may be available. Therefore, we provide the following way to incorporate such
relations. Assume the prior information has been expressed as a positive semi-definite
weight matrix W ∈ Rp×p with non-negative entries (e.g., using the UniFrac-Distance
[Lozupone and Knight, 2005] as shown in Appendix 2.B.3, where the ij-th entry cor-
responds to the strength of the relation between components i and j. We can then
incorporate W directly into our kernels. To see how this works, consider the special
case where the kernel k can be written as k(x, y) =

∑p
i=1 k0(xi, yi) for a positive definite

kernel k0 : [0, 1]× [0, 1]→ R. Then, the weighted kernel

kW (x, y) :=
∑p

i,j=1Wi,j · k0(xi, yj) (2.2.4)

is positive definite and incorporates the prior information in a natural way. If two
components i and j are known to be related (corresponding to large values of Wi,j), the
kernel kW takes the similarity across these components into account. In Appendix 2.B.2,
we show that the probability distribution kernels and the linear kernel can be expressed
in this way and propose similar weighted versions for the remaining kernels.

An advantage of our framework is that it defaults to the log-contrast model when more
complex models fail to improve the prediction (due to the zero-shift in our proposed
Aitchison kernel and the kernel-based regularization, this correspondence is however not
exact). We now show that for the weighted Aitchison kernel, the RKHS consists of
log-contrast functions with equal coefficients across the weighted blocks, this is similar
to how Bien et al. [2021] incorporate prior information into log-contrast models.

Proposition 2.2.4 (weighted Aitchison kernel RKHS). Let P1, . . . , Pm ⊆ {1, . . . , p} be
a disjoint partition and W ∈ Rp×p the weight matrix defined for all i, j ∈ {1, . . . , p}
by Wi,j :=

∑m
`=1

1
|P`|1{i,j∈P`}. Let kW be the weighted Aitchison kernel given in Ap-

pendix 2.G.2 (but without zero imputation and on the open simplex). Then, it holds
that

f ∈ HkW ⇔ f = β> log(·)
for some β ∈ Rp satisfying (1)

∑p
j=1 βj = 0 and (2) for all ` ∈ {1, . . . ,m} and i, j ∈ P`

it holds βi = βj

A proof is given in Appendix 2.F.2. Combined with Proposition 2.2.1, this implies
that the CFI values are equal across the equally weighted blocks P1, . . . , Pm, which is
demonstrated empirically in Section 2.3.2 and Section 2.3.4.

2.2.3 KernelBiome framework

For a given i.i.d. dataset (X1, Y1), . . . , (Xn, Yn), KernelBiome first runs a data-driven
model selection, resulting in an estimated regression function f̂ and a specific kernel
k̂ (see Fig 2.1.1). Then, the feature influence properties (CFI, CPD) and embedding
induced by k̂ are analyzed in a way that respects compositionality.
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2.2.3.1 Model selection

We propose the following two step data-driven selection procedure.

1. Select the best kernel k̂ with the following hierarchical CV:

• Fix a kernel k̃, i.e., a type of kernel and its kernel parameters.

• Split the sample into Nout random (or stratified) folds.

• For each fold, use all other folds to perform a Nin-fold CV to select the best
hyperparameter λ̃ and compute a CV score based on k̃ and λ̃ on the left-out
fold.

• Select the kernel k̂ with the best average CV score.

2. Select the best hyperparameter λ̂ for k̂ using a Nin-fold CV on the full data. The
final estimator f̂ is then given by the kernel predictor based on k̂ and λ̂.

This CV scheme ensures that all parameters are selected in a data adaptive way. Up to
a point, including more parameter settings into the CV makes the method more robust
at the cost of additional run time. We provide sensible default choices for all parameters
(see e.g., Table 2.B.1 in Appendix 2.B.1 for the default kernels), allowing practitioners to
directly apply the method. In the KernelBiome implementation, the parameter grids for
the kernel parameters and hyperparameters, as well as parameters of the CV including
the type of CV, number of CV folds, and scoring can also be be adjusted manually, for
example to reduce the run time.

2.2.3.2 Model analysis

Firstly, as discussed in Section 2.2.1, we propose to analyze the fitted model f̂ with
the CPD and CFI. Other methods developed for functions on Rp do not account for
compositionality and can be misleading. Secondly, the kernel embedding k̂ can be used
for the following two types of analyses.

Distance-based analysis: A key advantage of using kernels is that the fitted kernel
k̂ is itself helpful in the analysis. As discussed in Section 2.2.2, k̂ induces a distance on
the simplex that is well-suited to separate observations with different response values.
We therefore suggest to utilize this distance to investigate the data further. Essentially,
any statistical method based on distances can be applied. We specifically suggest using
kernel PCA to project the samples into a two-dimensional space. As we illustrate in
Section 2.3.3, such a projection can be used to detect specific groups or outliers in
the samples and can also help understand how the predictors are used by the prediction
model f̂ . As we are working with compositional data we need to be careful when looking
at how individual components contribute to each principle component. Fortunately,
the perturbation ψ defined in Section 2.2.1 can again be used to construct informative
component-wise measures. All details on kernel PCA and how to compute component-
wise contributions for each principle component are provided in Appendix 2.E.2.

Data-driven scalar summary statistics: Practitioners often work with scalar sum-
maries of the data as these are easy to communicate. A commonly used summary statistic
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in ecology is α-diversity which measures the variation within a community. The con-
nection between kernels and distances provides a useful tool to construct informative
scalar summary statistics by considering distances to a reference point u in the simplex.
Formally, for a fixed reference point u ∈ Sp−1 define for all x ∈ Sp−1 a correspond-
ing closeness measure by Dk(x) := −d2

k(x, u), where dk is the distance induced by the
kernel k. This provides an easily interpretable scalar quantity. For example, if Y is a
binary indicator taking values healthy and sick, we could select u to be the geometric
median (the observation that has the smallest total distance to all the other observa-
tions based on the pairwise kernel distance) of all Xi with Yi = healthy . Then, Dk

corresponds to a very simple health score (see Section 2.3.3 for a concrete example).
A further example is given by selecting u = (1/p, . . . , 1/p) and considering points on
the simplex as communities. Then, u can be interpreted as the most diverse point in
the simplex and Dk corresponds to a data-adaptive α-diversity measure. While such a
definition of diversity does not necessarily satisfy all desirable properties for diversities
[see e.g., Leinster and Cobbold, 2012], it is (1) symmetric with respect to switching of
coordinates, (2) has an intuitive interpretation and (3) is well-behaved when combined
with weighted kernels. Connections to established diversities also exist, for example,
the linear kernel corresponds to a shifted version of the Gini-Simpson diversity (i.e.,
Gini-Simpson(x) := 1−∑p

j=1(xj)2 = Dk(x) + p−2
p ).

2.2.3.3 Run time complexity

The run time complexity of KernelBiome depends on the number of kernels K, the size
of the hyperparameter grid H, and the number of inner CV folds Nin and outer CV
folds Nout. Since the run time complexity of kernel ridge regression and support vector
machines is O(n3) (based on a straightforward implementation, actual implementation
in available software libraries can achieve a more optimized run time), the total run time
complexity of KernelBiome is O(KHNinNoutn

3). For example, the default parameter
settings use 55 kernels, with 5-fold inner CV and 10-fold outer CV with a hyperparameter
grid of size 10, resulting in 27,500 model fits, each of complexity O(n3). To reduce the
run time we recommend reducing the number of kernels K, this can be particularly
useful for prototyping. However, if possible, we recommend using the full list of kernels
for a final analysis to avoid a decrease in predictive performance.

2.2.3.4 Implementation

KernelBiome is implemented as a Python [van Rossum and Drake, 2009] package that
takes advantage of the high-performance JAX [Bradbury et al., 2018] and scikit-learn

[Pedregosa et al., 2011] libraries. All kernels introduced are implemented with JAX’s
just-in-time compilation and automatically leverage accelerators such as GPU and TPU
whenever available. KernelBiome provides fast computation of all kernels and distance
metrics as well as easy-to-use procedures for model selection and comparison and pro-
cedures to estimate CPD and CFI, compute kernel PCA, and estimate scalar summary
statistics. An illustration script for the package’s usage can be found in the package
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repository.

2.3 Results

We evaluated KernelBiome on a total of 33 microbiome datasets. All datasets have been
previously published and final datasets used in our experiments can be fully reproduced
following the description in the GitHub repo https://github.com/shimenghuang/

KernelBiome. A summary of the datasets including on the pre-processing steps, pre-
diction task and references is provided in Table 2.C.1 in Appendix 2.C. First, in Sec-
tion 2.3.1, we show that KernelBiome performs on par or better than existing supervised
learning procedures for compositional data, while reducing to a powerfully regularized
version of the log-contrast model if the prediction task is simple. In Section 2.3.2, we
show on a semi-artificial dataset that including prior information can either improve or
harm the predictive performance depending on whether or not it is relevant for the pre-
diction. In Section 2.3.3, we illustrate the advantages of a full analysis with KernelBiome.
Finally, in Section 2.3.4, we demonstrate how KernelBiome can incorporate prior knowl-
edge, while preserving a theoretically justified interpretation.

2.3.1 State-of-the-art prediction performance

We compare the predictive performance of KernelBiome on all datasets with the follow-
ing competitors: (i) Baseline, a naive predictor that uses the training majority class
for classification and the training mean for regression as its prediction, (ii) SVM-RBF,
a support vector machine with the RBF kernel, (iii) Lin/Log-L1, a linear/logistic re-
gression with `1-penalty (iv) LogCont-L1, a log-contrast regression with `1 penalty with
a half of the minimum non-zero relative abundance added as pseudo-count to remove
zeros, and (v) RF, a random forest with 500 trees. For SVM-RBF, Lin/Log-L1 and RF we
use the scikit-learn implementations [Pedregosa et al., 2011] and choose the hyper-
parameters (bandwidth, max depth and all penalty parameters) based on a 5-fold CV.
For LogCont-L1, we use the c-lasso package [Simpson et al., 2021] and the default CV
scheme to chose the penalty parameter. We apply two versions of KernelBiome: (1)
The standard version that adaptively chooses the kernel using Nin = 5, Nout = 10 (de-
noted KernelBiome), and (2) a version with fixed Aitchison kernel with c equal to half
of the minimum non-zero relative abundance (denoted KB-Aitchison). Both methods
use a default hyperparameter grid of size 40, and we use kernel ridge regression as the
estimator. We compared with using support vector regression instead of kernel ridge
regression and the results are similar.

For the comparison we perform 20 random (stratified) 10-fold train/test splits and
record the predictive performance (balanced accuracy for classification and root-mean-
squared error (RMSE) for regression) on each test set. Fig 2.3.3 contains the summary
results for the 33 datasets. Fig 2.3.3(a) gives an overview of the predictive performance.
To make the comparison easier, the median test scores are normalized to between 0 and
1 based on the minimum and maximum scores of each dataset. More details of the pre-
dictive performance results including boxplots of scores for all tasks and precision-recall
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2 KernelBiome

curves for all classification tasks are provided in Figs 2.C.2 and 2.C.3 in Appendix 2.C.
Moreover, we perform a Wilcoxon signed-rank test [Wilcoxon, 1992] on the test scores
and the percentage of times a method is significantly outperformed by another is given
in Fig 2.3.3(b). Lastly, run times of each method on the 33 datasets are shown in
Fig 2.3.3(c).
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Figure 2.3.3: (a) Comparison of predictive performance on 33 public datasets (9 regres-
sion and 24 classification tasks, separated by the grey vertical line in the
figure) based on 20 random 10-fold CV. On the two datasets with grey
tick labels no method significantly outperforms the baseline based on the
Wilcoxon signed-rank test, meaning that there is little signal in the data.
The ones in green are the datasets where KernelBiome significantly out-
performs the baseline, while it does not on the single dataset with the black
label. The corresponding p-values are provided in brackets. (b) Percent-
age of time a method is significantly outperformed by another based on the
Wilcoxon signed-rank test. (c) Average run time of each method on each
dataset. A significance level of 0.05 is used.

On all datasets KernelBiome achieves the best or close to best performance and (al-
most) always captures useful information (green labels in Fig 2.3.3(a)), indicating that
the proposed procedure is well-adapted to microbiome data. The kernel which was se-
lected most often by KernelBiome and the frequency with which it was selected are
shown in Table 2.C.2 in Appendix 2.C. There are several interesting observations: (1)
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Even though KernelBiome selects mostly the Aitchison kernel on rmp, it outperforms
KB-Aitchison, we attribute this to the advantage of the data-driven zero-imputation.
(2) On datasets were the top kernel is selected consistently (e.g., uk, hiv and tara)
KernelBiome generally performs very well and in these cases strongly outperformed
both log-contrast based methods KB-Aitchison and LogCont-L1. (3) The predictive
performance is substantially different between KB-Aitchison and LogCont-L1 which we
see as an indication that the type of regularization (kernel-based vs `1-regularization,
respectively) is crucial in microbiome datasets.

2.3.2 Predictive performance given prior information

In many applications, in particular in biology, prior information about a system is avail-
able and should be incorporated into the data analysis. As we show in Section 2.2.2.2,
KernelBiome allows for incorporating prior knowledge on the relation between individ-
ual components (e.g., taxa). We will illustrate in this section that given informative
prior knowledge, the predictive performance of KernelBiome can be improved, while if
the prior knowledge is uninformative or incorrect, the predictive performance can be
harmed. We conduct a semi-synthetic experiment based on the uk dataset. The dataset
has 327 species and n = 882 samples. We generate the response Y based on two pro-
cesses: (DGP1) a linear log-contrast model where species under phylum Bacteroidetes
all have coefficient βB, species under phylum Proteobacteria all have coefficient βP , and
all coefficients corresponding to other species are set to 0; (DGP2) a linear log-contrast
model where the first half of the species under Bacteroidetes are given coefficient −βB
while the second half are given coefficient βB, similarly for Proteobacteria.

We construct a weight matrix based on the phylum each species belongs to (similar
as in Prop. 2.2.4). By construction these weights are informative if the data are gen-
erated from DGP1, but not if the data are generated from DGP2. For each DGP, we
sample 100 data points for training and another 100 data points for testing, repeated
for 200 times. We compare the predictive performance of all methods mentioned in Sec-
tion 2.3.1 and weighted KernelBiome (KB-Weighted) in Fig 2.3.4. The results show that
when the weights are indeed informative, KB-Weighted achieves the best performance
and is significantly better than the unweighted version (p-value 2.34 × 10−18 based on
Wilcoxon signed-rank test). On the other hand, when the weights do not align with
the underlying generating mechanism, the predictive performance of KB-Weighted can
be significantly worse than the unweighted one (p-value 1.25× 10−9 based on Wilcoxon
signed-rank test). A table containing the number of other methods a method is signifi-
cantly outperformed by under the two DGPs is also provided in Fig 2.3.4. All methods
significantly outperform the baseline in this example, and the corresponding p-values
are all below 2× 10−17.

2.3.3 Model analysis with KernelBiome

As shown in the previous section, KernelBiome results in fitted models with state-of-
the-art prediction performance. This is useful because supervised learning procedures
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Baseline 7 7
SVM-RBF 5 4
Lin/Log-L1 6 5
RF 4 0
LogCont-L1 3 3
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Figure 2.3.4: Left and middle: predictive performance of weighted KernelBiome when
the given weights are informative (DGP1) and adversarial (DGP2) based
on 200 repetitions. Right: the number of other methods each method is
significantly outperformed by based on Wilcoxon signed-rank test (siginif-
icance level 0.05), under DGP1 and DGP2.

can be used in two types of applications: (1) To learn a prediction model that has a
direct application, e.g., as a diagnostic tool, or (2) to learn a predictive model as an
intermediate step of an exploratory analysis to find out what factors could be driving
the response. As discussed above (2) requires us to take the compositional nature of the
predictors into account to avoid misleading conclusions. We show how the KernelBiome

framework can be used to achieve this based on two datasets: (i) cirrhosis, based on a
study analyzing the differences in microbial compositions between n = 130 healthy and
cirrhotic patients [Qin et al., 2014] and (ii) centralparksoil, based on a study analyzing
the pH concentration using microbial compositions from n = 580 soil samples [Ramirez
et al., 2014]. Our aim is not do draw novel biological conclusions, but rather to showcase
how KernelBiome can be used in this type of analysis.

To reduce the complexity, we screen the data using KernelBiome with the Aitchi-
son kernel and only keep the 50 taxa with the highest absolute CFIs. (As the analysis
described here is only an illustration and we are not trying to compare methods, over-
fitting in this screening step is not a concern. In practice, however, it may be relevant
to validate the sensitivity of the results using for example subsampling). We then fit
KernelBiome with default parameter grid. For cirrhosis this results in the Aitchison ker-
nel and for centralparksoil in the Aitchison-RBF kernel. As outlined in Section 2.2.3.2,
we can then apply a kernel PCA with a compositionally adjusted component influence.
The result for centralparksoil is given in Fig 2.3.5(a) (for cirrhosis see Fig 2.C.4 in Ap-
pendix 2.C). This provides some direct information on which perturbations affects each
principle component (e.g., “[g]DA101[s]98” affects the first component the most pos-
itively and “Sphingobacterium[s]multivorum” affects the second component the most
negatively). Moreover, it also directly provides a tool to detect groupings or outliers of
the samples. For example, the samples in the top middle (i.e., center of the U-shape) in
Fig 2.3.5(a) could be investigated further as they behave different to the rest.

A further useful quantity is the CFI, which for cirrhosis is given in Fig 2.3.5(b)
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-1.0 -0.5 0.0

Positive CFI
0.0 0.5 1.0

Negative CFI

a b

c
unweighted phylum-weighted UniFrac-weighted

Figure 2.3.5: (a) shows a kernel PCA for the centralparksoil dataset with 2 principle
components. On the right, the contribution of the species to each of the
two components is given (see Appendix 2.E.2 for details). (b) and (c)
are both based on the cirrhosis dataset. In (b) the CFI values are shown
on the left and the right plot compares the proposed kernel health score
with Simpson diversity. In (c) the scaled CFI values for are illustrated for
different weightings. A darker color shade of the (shortened) name of the
microbiota signifies a stronger (positive resp. negative) CFI.

(left) (for centralparksoil see Fig E in S3 Appendix). They explicitly take the com-
positional structure into account and have an easy interpretation. For example, “Pre-
votella timonensis” has a CFI of 0.07 which implies that on average solely increasing
“Prevotella timonensis” will lead to a larger predicted response. We therefore believe
that CFIs are more trustworthy than relying on for example Gini-importance for random
forests, which does not have a clear interpretation due to the compositional constraint.

Lastly, one can also use the connection between kernels and distances to construct
useful scalar summary statistics. In Fig 2.3.5(b) (right), we use the kernel-distance to the
geometric median in the healthy subpopulation as a scalar indicator for the healthiness
of the microbiome. In comparison with more standard scalar summary statistics such
as the Simpson diversity, it is targeted to distinguish the two groups.
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2 KernelBiome

2.3.4 Model analysis given prior information

Including prior information in KernelBiome can be used to improve the interpretation
of the model analysis step. To illustrate how this works in practice, we again consider
the screened cirrhosis dataset. We apply KernelBiome with an Aitchison-kernel and
c equal to half the minimum non-zero relative abundance without weighting, with a
phylum-weighting and with a UniFrac-weighting. The resulting scaled CFI values for
each are visualized in Fig 2.3.5(c). The phylum-weighting corresponds to giving all taxa
within the same phylum the same weights and the UniFrac-weighting is a weighting that
incorporates the phylogenetic structure based on the UniFrac-distance and is described
in Appendix 2.B.3. As can bee seen in Fig 2.3.5(c), the phylum weighting assigns
approximately the same CFI to each variable in the same phylum, this is expected
given that the phylum weighting has exactly the structure given in Proposition 2.2.4.
Moreover, the UniFrac-weighting leads to CFI values that lie in-between the unweighted
and phylum-weighted versions. Similar effects are seen for different kernels as well. The
same plots for the generalized-JS kernel are provided in Fig 2.C.7 in Appendix 2.C.

2.4 Discussion and conclusions

In this work, we propose the KernelBiome framework for supervised learning with com-
positional covariates consisting of two main ingredients: data-driven model selection and
model interpretation. Our approach is based on a flexible family of kernels targeting the
structure of microbiome data, and is able to work with different kernel-based algorithms
such as SVM and kernel ridge regression. One can also incorporate prior knowledge,
which is crucial in microbiome data analysis. We compare KernelBiome with other state-
of-the-art approaches on 33 microbiome datasets and show that KernelBiome achieves
improved or comparable results. Moreover, KernelBiome provides multiple ways to ex-
tract interpretable information from the fitted model. Two novel measures, CFI and
CPD, can be used to analyze how each component affects the response. We prove the
consistency of these two measures and illustrate them on simulated and real datasets.
KernelBiome also leverages the connection between kernels and distances to conduct
distance-based analysis in a lower-dimensional space.
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Vandeputte for making their raw data available.

28



2.4 Discussion and conclusions

Supporting information for “Supervised learning and model
analysis with compositional data”

Appendix 2.A Details on CFI and CPD. Formal definitions of perturbations and
estimators related to CFI and CPD.

Appendix 2.B Details on kernels included in KernelBiome. Overview of different
kernel types, details on how they connect to distances and description of weighted kernels.

Appendix 2.C Details and additional results for experiments in Section 2.3.
Datasets pre-processing, parameter setup, construction of the weighting matrices with
UniFrac-distance and further experiment results based on the cirrhosis and centralpark-
soil datasets.

Appendix 2.D Additional experiments with simulated data. Consistency of CFI
and CPD and comparison of CFI and CPD with their non-simplex counterparts.

Appendix 2.E Background on kernels. Mathematical background on kernels and
details on dimensionality and visualization with kernels.

Appendix 2.F Proofs. Proof of theorems and propositions.

Appendix 2.G List of kernels implemented in KernelBiome.

2.A. Details on CFI and CPD

2.A.1 Perturbations

Formally, the multiplicative perturbation ψ and the fixed coordinate perturbation ϕ are
defined as follows.

• For all j ∈ {1, . . . , p}, x ∈ Sp−1 with xj 6= 1 and c ∈ [0,∞), define

ψj(x, c) := sc(x
1, · · · , xj−1, cxj , xj+1, · · · , xp) ∈ Sp−1,

where sc = 1/(
∑p

` 6=j x
` + cxj).

• For all j ∈ {1, . . . , p}, x ∈ Sp−1 with
∑p

`6=j x
` > 0 and c ∈ [0, 1], define the

intervened composition by

ϕj(x, c) := (sx1, · · · , sxj−1, c, sxj+1, · · · , sxp) ∈ Sp−1,

where s = (1− c)/(∑p
6̀=j x

`).
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2 KernelBiome

2.A.2 Estimators

We propose to estimate CFI and CPD with the following two estimators.

• For i.i.d. observations X1, . . . , Xn and a differentiable function f : Sp−1 → R, we
estimate the CFI for all j ∈ {1, . . . , p} as

Îjf =
1

n

n∑
i=1

d
dcf(ψ(Xi, c))

∣∣
c=1

.

• For i.i.d. observations X1, . . . , Xn and a function function f : Sp−1 → R, we esti-
mate the CPD for all j ∈ {1, . . . , p} and z ∈ [0, 1] as

Ŝjf (z) =
1

n

n∑
i=1

f(ϕ(Xi, z))−
1

n

n∑
i=1

f(Xi).

2.B. Details on kernels included in KernelBiome

2.B.1 Overview of kernels in KernelBiome

In this section, we give additional details on the kernels used in KernelBiome. A full
list of all kernels and their corresponding metrics together with a visualization on S2 is
given in Appendix 2.G.

As discussed in the main paper, we consider four types of kernels.

• Euclidean These are kernels that are used on Euclidean space but restricted to
the simplex. This includes the linear kernel and the RBF kernel.

• Probability distribution These are kernels that are constructed from metrics
between probability distributions. KernelBiome includes two parametric classes
of kernels, the Hilbertian kernel and the generalized-JS kernel. These kernels cor-
respond to multiple well-known metrics on probabilities such as the chi-squared
metric, the total-variation metric, the Hellinger metric and the Jensen-Shannon
metric.

• Aitchison geometry These are kernels that are constructed by using the centered
log-ratio transform to project data on the simplex into Euclidean space and then
combining it with a Euclidean kernel. KernelBiome includes the Aitchison kernel
and the Aitchison RBF kernel. In order to allow for zeros, a small positive number
c is added to each coordinate for all observations before applying the centered
log-ratio transformation.

• Riemannian manifold These kernels are connected to the simplex via multino-
mial distributions and have been shown to empirically perform well on sparse text
data mapped into the simplex. KernelBiome contains the heat-diffusion kernels.
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2.4 Discussion and conclusions

For each type of kernel there are multiple parameter settings. Although users of
the KernelBiome package can freely change the parameters, the default settings for
KernelBiome for each type of kernel are provided by the package and are given in Ta-
ble 2.B.1.

Geometry Kernel Parameters Number of kernels

Euclidean

linear none 1

RBF
σ2 ∈ {10−2 ·m1, 10−1 ·m1,m1, 10 ·m1,

7
102 ·m1, 103 ·m1, 104 ·m1}

Probability distribution

generalized-JS
(a, b) ∈ {(1, 0.5), (1, 1), (10, 0.5), (10, 1), (10, 10),

9
(∞, 0.5), (∞, 1), (∞, 10), (∞,∞)}

Hilbertian
(a, b) ∈ {(1,−1), (1,−10), (1,−∞), (10,−1),

8
(10,−10), (10,−∞), (∞,−1), (∞,−10)}

Aitchison geometry

Aitchison c ∈ {µX/2 · 10−4, . . . ,min(µX/2 · 104, 10−2)} 9

Aitchison-RBF
c ∈ {µX/2 · 10−4, . . . ,min(µX/2 · 104, 10−2)},

15
σ ∈ {c ·m2 · 10−1, c ·m2, c ·m2 · 10}

Riemannian manifold heat-diffusion t = x
2

n−1 1
4π for x ∈ {10−20, . . . , 10} 6

Table 2.B.1: Default parameter grid in KernelBiome. m1 and m2 are the median heuris-
tic for the RBF and Aitchison-RBF kernel, respectively, which depend on
the data. µX is the minimal non-zero value in X. The zero grids for the
Aitchison geometry kernels have an even logarithmic spacing and contain 9
and 5 parameters for the Aitchison and Aitchison-RBF, respectively. Sim-
ilarly, the grid for x for the heat-diffusion kernel has an even logarithmic
spacing with 6 values. There are a total of 55 kernels.

2.B.2 Connecting positive definite kernels to metrics

A semi-metric d satisfies all properties of a metric, except that d(x, y) = 0 does not
imply x = y. This can happen because a kernel can map two different points in X to
the same point in Hk. Any fixed kernel k on X induces a semi-metric dk on X defined
for all x, y ∈ X by

d2
k(x, y) = k(x, x) + k(y, y)− 2k(x, y). (2.B.1)

This holds for all positive-definite kernels by Theorem 2.E.7 in Appendix 2.E. In partic-
ular, this corresponds to the distance between the embedded points in the RKHS Hk,
that is,

‖k(x, ·)− k(y, ·)‖Hk = dk(x, y).

The feature embedding x 7→ k(x, ·) induced by a kernel therefore preserves the distances
dk. A useful aspect of kernel methods, is that they allow a post-analysis based on the
embedded features, see also Section 2 in S5 Appendix.

A partial reverse implication is also true. For a particular type of semi-metric d on
X (these metrics are called Hilbertian, see Appendix 2.E) it is possible to construct a
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2 KernelBiome

kernel k on X defined for all x, y ∈ X by

k(x, y) = −1
2d

2(x, y) + 1
2d

2(x, x0) + 1
2d

2(x0, y),

where x0 ∈ X is an arbitrary reference point, such that the distance in the corresponding
RKHS Hk is d.

Kernels can be shifted in such a way that the origin in the induced RKHS changes but
the metric in (2.B.1) remains fixed (see Lemma 2.E.6 in S5 Appendix). A natural origin
in the simplex is given by the point u = (1

p , . . . ,
1
p), therefore we have shifted all kernels

such that k(u, ·) ≡ 0 and hence correspond to the origin in Hk. In S5 Appendix, we
provide a short overview of the mathematical results that connect kernels and metrics.

2.B.3 Weighted kernels - including prior information

In this section, we discuss how to include prior knowledge, e.g. phylogenetic information,
into the simplex kernels. We assume the information is encoded in a matrix W ∈ Rp×p
where each element corresponds to a measure of similarity between components. That
is, Wi,j is large if components i and j are similar (or related) and small otherwise. We
assume that W is symmetric, positive semi-definite and all entries in W are non-negative.

The linear kernel and all kernels based on probability distributions have the form

k(x, y) =
∑p

i=1 k0(xi, yi) (2.B.2)

and we therefore define the weighted version by

kW (x, y) =

p∑
j,`=1

Wj,` · k0(xj , y`). (2.B.3)

The weighted versions of the remaining kernels are defined individually. A full list of the
weighted kernels is given in Appendix 2.G.2.

2.B.3.1 Validity of weighted kernels

In order to use the proposed weighted kernels, we need to ensure that they are indeed
positive definite. In the following, we prove this for the weighted versions of the lin-
ear kernel, the Hilbertian kernel, the Generalized-JS kernel, the RBF kernel and the
Aitchison kernel. We do not prove it for the Aitchison RBF kernel and the Heat Dif-
fusion kernel and only note that they appear to be positive definite from our empirical
evaluations.

We begin by showing that the kernel defined in (2.B.3) is positive definite whenever
k0 : [0, 1]× [0, 1]→ R is positive definite. To see this, fix x1, . . . , xn ∈ Sp−1 and α ∈ Rn
and denote by KW ∈ Rn×n the kernel Gram-matrix based on x1, . . . , xn and kernel kW .
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2.4 Discussion and conclusions

Then,

α>KWα =
n∑

i,r=1

p∑
j,`=1

αiαrWj,`k0(xji , x
`
r)

=

p∑
j,`=1

Wj,`

 n∑
i,r=1

αiαrk0(xji , x
`
r)

 .

Since k0 is positive definite, it holds that
∑

i,r αiαrk0(xji , x
`
r) ≥ 0 and hence α>KWα ≥ 0

since all entries in W are non-negative.
We now go over the individual weighted kernels and argue that they are positive

definite.

• Linear kernel Since R is a Hilbert space with the inner product xy which induces
the |x−y| it follows that the squared distance d2

Linear(x, y) := (x−y)2 is Hilbertian
as well. Applying Theorem 2.E.3 in Appendix 2.E we know that the distance is of
negative type. Thus, based on the one-dimensional squared linear distance d2

Linear,
we apply Theorem 1.2 in Appendix 2.E with x0 = 1

p to construct the following
positive definite kernel k0 defined for all x, y ∈ [0, 1] by

k0(x, y) := −1
2(x− y)2 + 1

2(x− 1
p)2 + 1

2(1
p − y)2 = xy − x

p −
y
p + 1

p2
.

Comparing this with our weighted linear kernel in Appendix 2.G.2, we see that
the weighted linear kernel has the form (2.B.3) and is therefore positive definite
by the above argument.

• Hilbertian kernel As shown by Hein and Bousquet [2005] the distance dHilbert :
R+ × R+ → R defined for all x, y ∈ R+ by

d2
Hilbert(x, y) =

2
1
b

[
xa + ya

] 1
a − 2

1
a

[
xb + yb

] 1
b

2
1
a − 2

1
b

is a Hilbertian metric on R+. Applying Theorem 2.E.7 in Appendix 2.E with
x0 = 1

p results in a positive definite kernel k0 that when combined as in (2.B.3)
results in the proposed weighted Hilbertian kernels in Appendix 2.G.2. Therefore,
we have shown that the weighted Hilbertian kernels are positive definite as long as
W has non-negative entries.

• Generalized-JS kernel Similarly the weighted Generalized-JS kernels in Ap-
pendix 2.G.2x can all be decomposed as in (2.B.3) with a one-dimensional kernels
k0 on [0, 1]. Topsøe [2003] show that all these k0 can be generated using Theo-
rem 2.E.7 in Appendix 2.E with x0 = 1

p based on Hilbertian metrics. Hence, all
weighted Generalized-JS kernels are positive definite as long as W has non-negative
entries.
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2 KernelBiome

• Aitchison kernel To show that the weighted Aitchison kernel (defined in Ap-
pendix 2.G.2) is positive definite, we first define the mapping Φ : Sp−1 → Rp by
Φ(x) := x+c

g(x+c) . Then, the weighted Aitchison kernel is given by

k(x, y) = Φ(x)>WΦ(y).

Since W is symmetric and positive semi-definite there exists M ∈ Rp×p such that
W = M>M . Therefore, for any α ∈ Rn and x1, . . . , xn ∈ Sp−1 it holds that∑

i,r

αiαrk(xi, xr) =
∑
i,r

αiαr(MΦ(xi))
>MΦ(xr) ≥ 0.

Hence, k is positive definite.

• RBF kernel Using the symmetry of W the weighted RBF kernel can be expressed
as follows

k(x, y) = exp
(
− 1

σ2

p∑
j,`=1

Wj,`(x
j − y`)2

)
= exp

(
− 1

σ2

p∑
j,`=1

Wj,`(x
j)2
)

exp
(
− 1

σ2

p∑
j,`=1

Wj,`(y
j)2
)

︸ ︷︷ ︸
=:A(x,y)

· exp
( 2

σ2

p∑
j,`=1

Wj,`x
jy`
)

︸ ︷︷ ︸
=:B(x,y)

The function A is a positive definite kernel since it is the inner-product of a feature
mapping. The function B can be shown to be a kernel by considering the Taylor
expansion of the exponential function and using that sums and limits of positive
definite kernels are again positive definite together with the fact that W is positive
semi-definite. Therefore, the weighted RBF kernel is positive definite.

2.B.4 UniFrac-Weighting

In this section, we show how prior information based on the UniFrac-Distance [Lozupone
and Knight, 2005] can be encoded into a weight matrix W ∈ Rp×p. Depending on the
application at hand different distances can be used in a similar way. The UniFrac-
Distance is a β-diversity measure that uses phylogenetic information to compare two
compositional samples x, y ∈ Sp−1. Each element of the sample is hereby placed on a
phylogenetic tree. The distance between both samples is computed via quantification of
overlapping branch length, that is,

UniFrac-Distance(x, y) =
sum of unshared branch length of x and y

sum of all tree branch length of x and y
∈ [0, 1].
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2.4 Discussion and conclusions

Based on the UniFrac-Distance, we define two similarity matrices MA,MB ∈ [0, 1]p×p

for all i, j ∈ {1, . . . , p} by

MA
i,j := 1−UniFrac-Distance(ei, ej),

MB
i,j :=

p∑
`=1

UniFrac-Distance(ei, e`) ·UniFrac-Distance(ej , e`),

where ei, ej ∈ Sp−1 with 1 on the i-th and j-th coordinate, respectively. MA and MB

are two options of encoding the UniFrac-Distance as a similarity. MB is positive semi-
definite by construction, while this is not true for MA and should be checked empirically.
We recommend using MA whenever it is positive semi-definite.

We then construct the weight matrix WUniFrac ∈ Rp×p by scaling M∗ such that the
diagonal entries are one, that is,

WUniFrac := DM∗D,

where D = diag(σ1, . . . , σp), with σi = 1/
√
M∗i,i. Since by construction the matrix M∗

has its largest values on the diagonal, this weight matrix takes values in [0, 1]. Moreoever,
by construction it remains symmetric and positive semi-definite.

2.C. Details and additional results for experiments

2.C.1 List of datasets

Dataset Reference Prediction tasks Dim
(n× d)

Additional
preprocessing

rmp Vandeputte
et al. [2017]

classification:
- Crohn’s disease vs healthy

95× 351 none

camp Berry et al.
[2020]

classification:
- parasite infected vs
healthy

270× 622 none

cirrhosis Qin et al. [2014] classification:
- cirrhosis vs healthy

130× 444 aggregated to
species &
prev./abun.
filtering

cancer Baxter et al.
[2016]

classification:
- cancer vs non-cancer

490× 335 none

impaired-
diabetes

Karlsson et al.
[2013]

classification:
- impaired vs type 2 dia-
betes

101×3758 none

nugent-
category

Ravel et al.
[2011]

classification:
- nugent score high vs low

342× 305 none

gastro-oral Human Micro-
biome Project
Consortium
[2012]

classification:
- gastrointestinal vs oral

2070 ×
1218

none
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2 KernelBiome

healthy-cd Morgan et al.
[2012]

classification:
- healthy vs Crohn’s disease

74× 367 none

kostic Kostic et al.
[2012]

classification:
- healthy vs tumor

172× 409 none

malawi-
venezuela

Yatsunenko
et al. [2012]

classification:
- Malawi vs Venezuela

54× 1544 none

black-
hispanic

Ravel et al.
[2011]

classification:
- black vs Hispanic

199× 305 none

ss-paired Human Micro-
biome Project
Consortium
[2012]

classification:
- sub vs supragingival
plaque

408×1218 none

usa-malawi Yatsunenko
et al. [2012]

classification:
- US vs Malawi

150×1544 none

st-paired Human Micro-
biome Project
Consortium
[2012]

classification:
- stool vs tongue dorsum

404×1218 none

gevers ileum Gevers et al. classification:
- Crohn’s disease vs healthy

140× 446 none

yatsunenko sexYatsunenko
et al. [2012]

classification:
male vs female

129×1544 none

normal-
diabetes

Karlsson et al.
[2013]

classification:
- normal vs type 2 diabetes

96× 3758 none

healthy-uc Morgan et al.
[2012]

classification:
- healthy vs Ulcerative coli-
tis

59× 367 none

hmp sex Human Micro-
biome Project
Consortium
[2012]

classification:
- female vs male

180×1218 none

qin2012 Qin et al. [2012] classification:
- healthy vs type 2 diabetes

124×2526 none

turnbaugh Turnbaugh
et al. [2007]

classification:
- lean vs obese

142× 232 none

gevers rectum Gevers et al. classification:
- Crohn’s disease vs health

160× 446 none

qin2014 Qin et al. [2014] classification:
- cirrhosis vs healthy

130×2579 none

white-black Ravel et al.
[2011]

classification:
- white vs black

200× 305 none

centralparksoil Ramirez et al.
[2014]

regression:
- ph level of soil

580×1498 prev./abun.
filtering

uk McDonald
et al. [2018]

regression:
- BMI

882× 327 UK subpop-
ulation &
prev./abun.
filtering

hiv Rivera-Pinto
et al. [2018]

regression:
- CD4+ cell counts

152× 282 none

tara Sunagawa et al.
[2020]

regression:
- ocean salinity

136×2407 prev./abun.
filtering

ravel ph Ravel et al.
[2011]

regression:
- vaginal pH

388× 305 none
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pcdai-
rectum

Gevers et al. regression:
- PCDAI scores

51× 446 none

pcdai-ileum Gevers et al. regression:
- PCDAI scores

67× 446 none

baby-age Yatsunenko
et al. [2012]

regression:
- infant age

49× 1544 none

nugent-
score

Ravel et al.
[2011]

regression:
- nugent score

388× 305 none

Table 2.C.1: List of microbiome datasets used to benchmark KernelBiome. The cirrhosis
dataset is a processed version of qin2014. Whenever prevalence/abundance
filtering (prev./abun. filtering) is applied it means that only taxa that ap-
pear in 25% of the samples and with a median non-zero count of 5. Datasets
other than the following ones are taken from the MLRepo [Vangay et al.,
2019] are taken directly without further processing: uk, camp, centralpark-
soil, cirrosis, cancer, hiv, rmp, tara.

2.C.2 Weighting matrix for weighted KernelBiome

The weight matrix WUniFrac for the cirrhosis dataset [Qin et al., 2014] and the central-
parksoil dataset [Ramirez et al., 2014] are presented as heatmaps in Fig 2.C.1. Using our
proposed weighted kernels (see Appendix 2.G.2) with the UniFrac-based weight matrix
WUniFrac is different from incorporating the UniFrac-distance via kernel convolution as
proposed by Zhao et al. [2015b].
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Figure 2.C.1: Visualization of the phylum-weights and the two UniFrac-weights WA =
DMAD for WB = DMBD, based on the 50 pre-screened species (see Ap-
pendix 2.C). Upper panel: cirrhosis dataset. Lower panel: centralparksoil
dataset.

2.C.3 Detailed experiment results on public datasets

2.C.3.1 Prediction performance

Here we provide more details on the the prediction performance evaluation. Boxplots
of prediction scores for all 33 datasets as in Fig 2.3.3 in the main text are given in
Fig 2.C.2, and PR curves accompanying the boxplots can be found in Fig 2.C.3. We can
see that KernelBiome achieves the best results for most of the tasks. For classification
tasks, KernelBiome performs competitively both in terms of balanced accuracy and
PR curves. (For SVM-RBF, KB-Aitchison and KernelBiome, the PR curves are based
on the estimated probabilities computed in the sklearn-package. We observed a slight
mismatch between these predicted probabilities and predicted classes in some of the
examples, which is due to a bug https://github.com/scikit-learn/scikit-learn/

issues/13211. We therefore recommend putting more emphasis on the accuracy plots.)
The frequency of kernels selected the most often by KernelBiome is given in Table. 2.C.2.
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2.4 Discussion and conclusions

Dataset (short name) Kernel Frequency (%)

rmp aitchison 59.5
camp aitchison-rbf 44.5
cirrhosis aitchison-rbf 65.5
cancer aitchison 73.5
impaired-diabetes aitchison 54.0
nugent-category aitchison-rbf 63.0
gastro-oral aitchison 100.0
healthy-cd aitchison-rbf 46.0
kostic aitchison-rbf 55.5
malawi-venezuela aitchison 100.0
black-hispanic aitchison 55.5
ss-paired aitchison-rbf 78.5
usa-malawi aitchison 100.0
st-paired aitchison 100.0
gevers ileum generalized-js 29.5
yatsunenko sex aitchison-rbf 70.5
normal-diabetes aitchison-rbf 48.0
healthy-uc aitchison-rbf 48.5
hmp sex aitchison-rbf 35.5
qin2012 aitchison 53.0
turnbaugh aitchison 56.5
gevers rectum aitchison-rbf 53.5
qin2014 aitchison-rbf 81.5
white-black aitchison 50.0
centralparksoil generalized-js 45.0
uk aitchison-rbf 100.0
hiv aitchison-rbf 97.0
tara aitchison-rbf 93.0
ravel ph heat-diffusion 61.0
pcdai-rectum rbf 67.0
pcdai-ileum rbf 40.0
baby-age aitchison 91.0
nugent-score aitchison-rbf 99.5

Table 2.C.2: Kernels selected most frequently by KernelBiome for all 33 datasets.
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Figure 2.C.2: Comparison of predictive performance on the 33 public datasets based on
a 10-fold train/test split.
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Figure 2.C.3: PR curves for the 24 classification datasets. The solid curve is the average
curve from the 20 random 10-fold CV, and the shaded area is the 95%
confidence band.
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2.C.3.2 Model analysis

Here we include the remaining model analysis results for the cirrhosis and centralparksoil
datasets. As in the main paper, we screened both data sets to only include the 50 taxa
with the highest absolute CFIs by KernelBiome with Aitchison kernel. Kernel PCA plots
for the cirrhosis dataset is given in Fig 2.C.4 and the CFI values for the centralparksoil
dataset are given in Fig 2.C.5.

Furthermore, we also provide the missing circle plots here. The extended version of
Fig 5C in the main text with long labels is given in Fig 2.C.6. Fig 2.C.7 is the circle plot
for the cirrhosis dataset based on the generlized-JS kernel. Fig 2.C.8is the circle plot for
the centralparksoil dataset based on the Aitchison kernel.
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2.D. Additional experiments with simulated data

2.D.1 Consistency of CPD and CFI

We illustrate the consistency of CPD and CFI from Theorem 2.1 in the main text based
on KernelBiome with the following example. Let ktv be the total variation kernel and
consider the function

f : x 7→ 100 · ktv(z, x)

with

z = (0.06544714, 0.08760064, 0.17203408, 0.07502236, 0.1642615,

0.03761901, 0.18255478, 0.13099514, 0.08446536) ∈ S8

being a fixed and randomly selected point. Furthermore, we generate an i.i.d. dataset
(X1, Y1), . . . , (Xn, Yn) based on the following 2 step generative model.

• Step 1: Generate a random variable X̃ = (X̃1, . . . , X̃9) such that the three blocks
(X̃1, X̃2, X̃3), (X̃4, X̃5, X̃6), and (X̃7, X̃8, X̃9) are i.i.d. from LogNormal(0,Σ),

where Σ =

 1 0.25 −0.25
0.25 1 0.25
−0.25 0.25 1

. Then, Xi is constructed by normalizing X̃,

that is, Xi = X̃/
∑9

j=1 X̃
j . The block structure adds non-trivial correlation struc-

ture between the compositional components.

• Step 2: Generate Yi based on Xi by

Yi = f(Xi) + εi

with εi
iid∼ N (0, 1).

Based on one such dataset, we estimate the CFI and CPD for a fitted KernelBiome

estimator (using kernel ridge regression and default settings), and compare the estimates
against the population CFI and CPD calculated from the true function f . In Fig 2.D.1,
we report the mean squared deviations (MSD) for both CFI and CPD based on 100 such
datasets for each sample size.

2.D.2 Comparing CFI and CPD with permutation importance and partial
dependence plots

Two common approaches to assess the importance of individual features are permu-
tation importance (PI) and partial dependency plot (PDP). PI of the j-th feature is
defined as the mean difference between the baseline mean squared error of a fitted
model and the average mean squared error after permuting the j-th feature column a
certain number of times. PDP is used to describe how individual features contribute
to a fitted model. For the j-th feature, it describes its contribution by the function
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f1 f2

x1 x2 x3 x1 x2 x3

CFI 0.85 0.87 -1.72 1.94 -1.94 0.00
RI 3.76 2.99 0.00 0.00 -4.72 -4.40
PI 11.66 5.76 0.00 0.00 28.98 24.72

Table 2.D.1: CFI, RI and PI for the two functions f1 and f2 defined in (2.D.1). Only
CFI correctly attributes the effect of x3 (marked in bold).

z 7→ E[f̂(X1, . . . , Xj−1, z,Xj , . . . , Xp)], where f̂ is the fitted model. Both PI and PDP
can be misleading when used with compositional covariates.

In this section, we illustrate this based on two examples. In both cases, the proposed
adjusted measures CFI and CPD remain correct, while the PI and PDP are incorrect.
Consider the two functions

f1 : x 7→ 10x1 + 10x2

f2 : x 7→ 1− x2 − x3

1− x3
.

(2.D.1)

For f1, changes in all coordinates affect the function value due to the simplex constraint.
For f2, only changes in x1 and x2 affect the function value but not changes in x3. This
is because on the simplex f2(x) = x1

x1+x2
. An importance measure should therefore

associate a non-zero value to x3 for f1 and zero to x3 for f2.

We generate 200 i.i.d. observations X1 . . . , X100 with Xi
d
= X̃i/

∑3
j=1 X̃

j
i for X̃i

i.i.d.∼
LogNormal(0, Id3) (LogNormal(µ,Σ) denotes the log-normal distribution with location
parameter µ and scale parameter Σ. Id3 denotes the 3-dimensional identity matrix.) and
compute PI, PDP, CFI and CPD for each of the two functions. The results are given in
Table 2.D.1 and Fig 2.D.2.

As expected, the CFI and also CPD correctly capture the behavior of the two func-
tions. However, PI and PDP are incorrect in both cases: For f1 the variable x3 shows
no effect both with PI and PDP and for f2 the variable x3 is falsely assigned a strong
negative effect even though it does not affect the function value at all. In Table 2.D.1,
we have additionally computed the relative influence (RI) given by E[ d

dxj
f̂(X)] due to

Friedman [2001]. It has the same problems as PI as it does not take into account the
simplex structure.

44



2.4 Discussion and conclusions

Firmicutes Bacteroidetes Proteobacteria Actinobacteria

Spirochaetes dsDNA viruses no RNA stage Fusobacteria

-1.0 -0.5 0.0

Positive CFI
0.0 0.5 1.0

Negative CFI

[Clostridium]_citroniae

[Clostridium]_asparagiforme[Clostridium]_symbiosum
Roseburia_intestinalis

Clostrid
ium_celatum

Clostr
idium_perfr

ingens

Clo
st

rid
iu

m
_b

ar
at

ii

[E
ub

ac
te

riu
m

]_
si
ra

eu
m

[C
lo

st
rid

iu
m

]_
sp

or
os

ph
ae

ro
id

es

A
n
a
e
ro

tr
u
n
cu

s_
sp

._
G

3
_
2
0
1
2
_

[C
lo

st
ri
d
iu

m
]_

d
a
ka

re
n
se

S
tr

e
p
to

co
c
cu

s_
a
n
g
in

o
su

s

S
tr

e
p
to

c
o
c
cu

s_
g
a
llo

ly
tic

u
s

S
tre

p
to

c
o
c
cu

s_
p
a
ra

sa
n
g
u
in

is

L
a
cto

b
a
cillu

s_
m

u
co

sa
e

L
a
cto

b
a
cillu

s_
sa

liva
riu

s

Le
u
co

n
o
sto

c_
citre

u
m

G
ranulicatella_adiacens

Veillonella_parvula

Veillonella_m
ontpellierensis

Megasphaera_micronuciformis

Dialister_invisus

Selenomonas_bovisSelenomonas_noxiaErysipelatoclostridium_ramosum

Eggerthia_catenaformis

Candidatus_Stoquefichus_sp._SB1

Bacteroides_vulgatus

Bacteroides_stercoris

Bacteroides_barnesiae

Bacte
ro

ides_
neonati

Bac
te

ro
id

es
_s

al
an

itr
on

is

P
re

vo
te

lla
_c

op
ri

P
re

vo
te

lla
_t

im
on

en
si

s

P
re

vo
te

lla
_
b
u
cc

a
e

P
re

vo
te

lla
_
d
e
n
ta

lis
A

lis
tip

e
s_

in
d
is

tin
ct

u
s

B
u
ty

ri
ci

m
o
n
a
s_

sy
n
e
rg

is
tic

a

R
o
d
e
n
tib

a
c
te

r_
p
n
e
u
m

o
tro

p
icu

s
H

a
e
m

o
p
h
ilu

s_
in

flu
e
n
za

e
A

cin
e
to

b
a
cte

r_
ju

n
ii

C
itro

b
a
cte

r_
a
m

a
lo

n
aticu

s

O
xalobacter_form

igenes

S
utterella_w

adsw
orthensis

Neisseria_m
ucosa

Bifidobacterium_longum

Bifidobacterium_adolescentis

Fusobacterium_nucleatum

Treponema_succinifaciens

49

[Clostridium]_citroniae

[Clostridium]_asparagiforme[Clostridium]_symbiosum
Roseburia_intestinalis

Clostrid
ium_celatum

Clostr
idium_perfr

ingens

Clo
st

rid
iu

m
_b

ar
at

ii

[E
ub

ac
te

riu
m

]_
si
ra

eu
m

[C
lo

st
rid

iu
m

]_
sp

or
os

ph
ae

ro
id

es

A
n
a
e
ro

tr
u
n
cu

s_
sp

._
G

3
_
2
0
1
2
_

[C
lo

st
ri
d
iu

m
]_

d
a
ka

re
n
se

S
tr

e
p
to

co
c
cu

s_
a
n
g
in

o
su

s

S
tr

e
p
to

c
o
c
cu

s_
g
a
llo

ly
tic

u
s

S
tre

p
to

c
o
c
cu

s_
p
a
ra

sa
n
g
u
in

is

L
a
cto

b
a
cillu

s_
m

u
co

sa
e

L
a
cto

b
a
cillu

s_
sa

liva
riu

s

Le
u
co

n
o
sto

c_
citre

u
m

G
ranulicatella_adiacens

Veillonella_parvula

Veillonella_m
ontpellierensis

Megasphaera_micronuciformis

Dialister_invisus

Selenomonas_bovisSelenomonas_noxiaErysipelatoclostridium_ramosum

Eggerthia_catenaformis

Candidatus_Stoquefichus_sp._SB1

Bacteroides_vulgatus

Bacteroides_stercoris

Bacteroides_barnesiae

Bacte
ro

ides_
neonati

Bac
te

ro
id

es
_s

al
an

itr
on

is

P
re

vo
te

lla
_c

op
ri

P
re

vo
te

lla
_t

im
on

en
si

s

P
re

vo
te

lla
_
b
u
cc

a
e

P
re

vo
te

lla
_
d
e
n
ta

lis
A

lis
tip

e
s_

in
d
is

tin
ct

u
s

B
u
ty

ri
ci

m
o
n
a
s_

sy
n
e
rg

is
tic

a

R
o
d
e
n
tib

a
c
te

r_
p
n
e
u
m

o
tro

p
icu

s
H

a
e
m

o
p
h
ilu

s_
in

flu
e
n
za

e
A

cin
e
to

b
a
cte

r_
ju

n
ii

C
itro

b
a
cte

r_
a
m

a
lo

n
aticu

s

O
xalobacter_form

igenes

S
utterella_w

adsw
orthensis

Neisseria_m
ucosa

Bifidobacterium_longum

Bifidobacterium_adolescentis

Fusobacterium_nucleatum

Treponema_succinifaciens

49

[Clostridium]_citroniae

[Clostridium]_asparagiforme[Clostridium]_symbiosum
Roseburia_intestinalis

Clostrid
ium_celatum

Clostr
idium_perfr

ingens

Clo
st

rid
iu

m
_b

ar
at

ii

[E
ub

ac
te

riu
m

]_
si
ra

eu
m

[C
lo

st
rid

iu
m

]_
sp

or
os

ph
ae

ro
id

es

A
n
a
e
ro

tr
u
n
cu

s_
sp

._
G

3
_
2
0
1
2
_

[C
lo

st
ri
d
iu

m
]_

d
a
ka

re
n
se

S
tr

e
p
to

co
c
cu

s_
a
n
g
in

o
su

s

S
tr

e
p
to

c
o
c
cu

s_
g
a
llo

ly
tic

u
s

S
tre

p
to

c
o
c
cu

s_
p
a
ra

sa
n
g
u
in

is

L
a
cto

b
a
cillu

s_
m

u
co

sa
e

L
a
cto

b
a
cillu

s_
sa

liva
riu

s

Le
u
co

n
o
sto

c_
citre

u
m

G
ranulicatella_adiacens

Veillonella_parvula

Veillonella_m
ontpellierensis

Megasphaera_micronuciformis

Dialister_invisus

Selenomonas_bovisSelenomonas_noxiaErysipelatoclostridium_ramosum

Eggerthia_catenaformis

Candidatus_Stoquefichus_sp._SB1

Bacteroides_vulgatus

Bacteroides_stercoris

Bacteroides_barnesiae

Bacte
ro

ides_
neonati

Bac
te

ro
id

es
_s

al
an

itr
on

is

P
re

vo
te

lla
_c

op
ri

P
re

vo
te

lla
_t

im
on

en
si

s

P
re

vo
te

lla
_
b
u
cc

a
e

P
re

vo
te

lla
_
d
e
n
ta

lis
A

lis
tip

e
s_

in
d
is

tin
ct

u
s

B
u
ty

ri
ci

m
o
n
a
s_

sy
n
e
rg

is
tic

a

R
o
d
e
n
tib

a
c
te

r_
p
n
e
u
m

o
tro

p
icu

s
H

a
e
m

o
p
h
ilu

s_
in

flu
e
n
za

e
A

cin
e
to

b
a
cte

r_
ju

n
ii

C
itro

b
a
cte

r_
a
m

a
lo

n
aticu

s

O
xalobacter_form

igenes

S
utterella_w

adsw
orthensis

Neisseria_m
ucosa

Bifidobacterium_longum

Bifidobacterium_adolescentis

Fusobacterium_nucleatum

Treponema_succinifaciens

49

[Clostridium]_citroniae

[Clostridium]_asparagiforme[Clostridium]_symbiosum
Roseburia_intestinalis

Clostrid
ium_celatum

Clostr
idium_perfr

ingens

Clo
st

rid
iu

m
_b

ar
at

ii

[E
ub

ac
te

riu
m

]_
si
ra

eu
m

[C
lo

st
rid

iu
m

]_
sp

or
os

ph
ae

ro
id

es

A
n
a
e
ro

tr
u
n
cu

s_
sp

._
G

3
_
2
0
1
2
_

[C
lo

st
ri
d
iu

m
]_

d
a
ka

re
n
se

S
tr

e
p
to

co
c
cu

s_
a
n
g
in

o
su

s

S
tr

e
p
to

c
o
c
cu

s_
g
a
llo

ly
tic

u
s

S
tre

p
to

c
o
c
cu

s_
p
a
ra

sa
n
g
u
in

is

L
a
cto

b
a
cillu

s_
m

u
co

sa
e

L
a
cto

b
a
cillu

s_
sa

liva
riu

s

Le
u
co

n
o
sto

c_
citre

u
m

G
ranulicatella_adiacens

Veillonella_parvula

Veillonella_m
ontpellierensis

Megasphaera_micronuciformis

Dialister_invisus

Selenomonas_bovisSelenomonas_noxiaErysipelatoclostridium_ramosum

Eggerthia_catenaformis

Candidatus_Stoquefichus_sp._SB1

Bacteroides_vulgatus

Bacteroides_stercoris

Bacteroides_barnesiae

Bacte
ro

ides_
neonati

Bac
te

ro
id

es
_s

al
an

itr
on

is

P
re

vo
te

lla
_c

op
ri

P
re

vo
te

lla
_t

im
on

en
si

s

P
re

vo
te

lla
_
b
u
cc

a
e

P
re

vo
te

lla
_
d
e
n
ta

lis
A

lis
tip

e
s_

in
d
is

tin
ct

u
s

B
u
ty

ri
ci

m
o
n
a
s_

sy
n
e
rg

is
tic

a

R
o
d
e
n
tib

a
c
te

r_
p
n
e
u
m

o
tro

p
icu

s
H

a
e
m

o
p
h
ilu

s_
in

flu
e
n
za

e
A

cin
e
to

b
a
cte

r_
ju

n
ii

C
itro

b
a
cte

r_
a
m

a
lo

n
aticu

s

O
xalobacter_form

igenes

S
utterella_w

adsw
orthensis

Neisseria_m
ucosa

Bifidobacterium_longum

Bifidobacterium_adolescentis

Fusobacterium_nucleatum

Treponema_succinifaciens

49

unweighted phylum-weighted

UniFrac-weighted WB UniFrac-weighted WA

Figure 2.C.6: Scaled CFI values for cirrhosis dataset where a darker color shade of the
name of the microbiota signifies a stronger (positive resp. negative) feature
influence (Aitchison Kernel).
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Figure 2.C.7: Scaled CFI values for cirrhosis dataset where a darker color shade of the
name of the microbiota signifies a stronger (positive resp. negative) feature
influence (Generalized JS Kernel).
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Figure 2.C.8: Scaled CFI values for centralparksoil dataset where a darker color shade
of the name of the microbiota signifies a stronger (positive resp. negative)
feature influence (Aitchison Kernel).
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Figure 2.D.1: MSD of estimated CFI and CPD using KernelBiome estimator based on
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2.4 Discussion and conclusions

2.E. Background on kernels

2.E.1 Connection between metrics and kernels

Definition 2.E.1 (Metric, semi-metric, and quasi-metric). A function d : X × X → R
is called a metric if it satisfies

(a) d(x, x) = 0,

(b) d(x, y) = d(y, x) ≥ 0,

(c) d(x, y) ≤ d(x, z) + d(y, z),

(d) d(x, y) = 0⇒ x = y.

It is called a semi-metric if it satisfies (a)-(c), and a quasi-metric if it satisfies (a)-(b). ♣

Definition 2.E.2 (Function of negative type and Hilbertian metric). A quasi-metric
d : X × X → R is called of negative-type if for all n ∈ N, all x1, · · · , xn ∈ X , and all
c1, · · · , cn ∈ R with

∑n
i=1 ci = 0, it holds that

n∑
i,j=1

cicjd
2(xi, xj) ≤ 0. (2.E.1)

If d is a (semi-)metric, then d is also called Hilbertian. ♣

Theorem 2.E.3 (Sufficient and necessary conditions for isometric embeddings). A
quasi-metric space (X, d) can be isometrically embedded in a Hilbert space if and only if
d is of negative type.

Proof. See [Wells and Williams, 2012, Theorem 2.4].

Definition 2.E.4 ((conditionally) positive definite kernels). A symmetric function k :
X × X → R (i.e., ∀x, y ∈ X , k(x, y) = k(y, x)) is called a positive definite kernel if and
only if for all n ∈ N, all x1, · · · , xn ∈ X , and all c1, · · · , cn ∈ R, it holds that

n∑
i,j=1

cicjk(xi, xj) ≥ 0 (2.E.2)

It is called a conditional positive definite kernel if instead of for all c1, · · · , cn ∈ R
condition (2.E.2) only holds for all c1, · · · , cn ∈ R with

∑n
i=1 ci = 0. ♣

Lemma 2.E.5. Let X be a non-empty set, fix x0 ∈ X and let k, k̃ : X × X → R be
symmetric functions satisfying for all x, y ∈ X that

k(x, y) = k̃(x, y)− k̃(x, x0)− k̃(y, x0) + k̃(x0, x0) (2.E.3)

Then k is positive definite if and only if k̃ is conditionally positive definite.
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2 KernelBiome

Proof. Fix n ∈ N, c1, · · · , cn ∈ R, and x0, x1, · · · , xn ∈ X . Let c0 = −∑n
i=1 ci, then we

have

n∑
i,j=0

cicj k̃(xi, xj) =
n∑

i,j=1

cicj k̃(xi, xj) +
n∑
i=1

cic0k̃(xi, x0)

+

n∑
j=1

c0cj k̃(xj , x0) + c0c0k̃(x0, x0)

=

n∑
i,j=1

cicj k̃(xi, xj)−
n∑

i,j=1

cicj k̃(xi, x0)

−
n∑

i,j=1

cicj k̃(xj , x0) +
n∑

i,j=1

cicj k̃(x0, x0)

=
n∑

i,j=1

cicj [k̃(x, y)− k̃(x, x0)− k̃(y, x0) + k̃(x0, x0)]

=
n∑

i,j=1

cicjk(xi, xj).

(2.E.4)

Now, if k̃ is conditionally positive definite, then (2.E.4) implies that∑n
i,j=1 cicjk(xi, xj) ≥ 0, so k is positive definite; if k is positive definite, (2.E.4)

implies that
∑n

i,j=0 cicj k̃(xi, xj ≥ 0 so k̃ is conditionally positive definite. This
completes the proof of Lemma 2.E.5.

Lemma 2.E.6 (Shifted conditionally positive definite). Let X be a non-empty set and
let k : X × X → R be a positive definite kernel, then

k̃(x, y) = k(x, y) + f(x) + f(y)

is a conditionally positive definite kernel for all f : X → R.

Proof. The proof follows the exact same argument as the proof of Lemma 2.E.5.

Theorem 2.E.7 (Connection between Hilbertian semi-metrics and positive definite ker-
nels). Let k : X ×X → R and d : X ×X → [0,∞) be functions. If k is a positive definite
kernel and d satisfies d2(x, y) = k(x, x) + k(y, y)− 2k(x, y), then d is a Hilbertian semi-
metric. On the other hand, for any x0 ∈ X , if d is a Hilbertian semi-metric and and k
satisfies k(x, y) = −1

2d
2(x, y) + 1

2d
2(x, x0) + 1

2d
2(x0, y), then k is a pd kernel.

The result is due to Schoenberg [1938].

Proof. We start with the first part. Assume that k is a positive definite kernel and d
satisfies d2(x, y) = k(x, x) + k(y, y) − 2k(x, y). Then, d is indeed a semi-metric by the
following arguments:

(a) d(x, x) =
√
k(x, x) + k(x, x)− 2k(x, x) = 0,
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2.4 Discussion and conclusions

(b) d(x, y) = d(y, x), and since k is positive definite, let c1 = 1, c2 = −1, x1 = x, and
x2 = y,

0 ≤
n∑

i,j=1

cicjk(xi, xj) = k(x1, x1)− k(x1, x2)− k(x2, x1) + k(x2, x2)

= k(x, x) + k(y, y)− 2k(x, y)

= d(x, y)

(c) Since k is a positive definite kernel, there exists a feature map ϕk from X to an
RKHS Hk, and we have

||ϕk(x)− ϕk(y)||2Hk = 〈ϕk(x)− ϕk(y), ϕk(x)− ϕk(y)〉Hk
= 〈ϕk(x), ϕk(x)〉Hk + 〈ϕk(y), ϕk(y)〉Hk − 2〈ϕk(x), ϕk(y)〉Hk
= k(x, x) + k(y, y)− 2k(x, y)

= d2(x, y)

Therefore, d(x, z) ≤ d(x, y)+d(y, z) follows from the triangle inequality of a norm.

To show d is also Hilbertian, take any n ∈ N, any x1, · · · , xn ∈ X , and any c1, · · · , cn ∈ R,
we have

n∑
i,j=1

cicjd(xi, xj) =
n∑
i=1

cik(xi, xi)
n∑
j=1

cj +
n∑
j=1

cik(xj , xj)
n∑
i=1

ci

− 2

n∑
i,j=1

cicjk(xi, xj)

= −2

n∑
i,j=1

cicjk(xi, xj) ≤ 0 (since k is positive definite).

This proves the first part of the theorem.
For the second part, assume that d is a Hilbertian semi-metric and k satisfies

k(x, y) = −1
2d

2(x, y) + 1
2d

2(x, x0) + 1
2d

2(x0, y). Then, since d is Hilbertian, −d2 sat-
isfies the requirement of a conditionally positive definite kernel (with the additional
property that −d2(x, x) = 0). Hence, by Lemma 2.E.5, k is indeed positive definite.
This completes the proof of Theorem 2.E.7.

2.E.2 Dimensionality reduction and visualization with kernels

One important benefit of using the kernel approach is that we can leverage the kernels
for dimensionality reduction and visualization, so that one can identify outliers in the
data and further investigate them. In this section, we provide a short introduction on
how to use kernels for multi-dimensional scaling and connect it to kernel PCA [Schölkopf
et al., 2002].
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Kernel methods project the compositional data into a (potentially) high-dimensional
RKHS Hk, which we now want to project into the low dimensional Euclidean space
R` (with ` � p) such that the lower dimensional representation preserves information
that helps separate the observations of different traits in the RKHS. That is, given
observations x1, · · · , xn ∈ Sp−1 and a kernel k, we would like to define a map Φ : Hk → R`
such that

n∑
i,j=1

‖〈k(xi, ·), k(xj , ·)〉Hk − 〈Φ(k(xi, ·)),Φ(k(xj , ·))〉R`‖2

is minimized. In matrix notation, this corresponds to solving

arg min
Z∈Rn×`

‖K − ZZ>‖2,

where the rows of Z are zi = Φ(k(xi, ·)) ∈ R` for all i ∈ {1 · · · , n} and K ∈ Rn×n is
the kernel Gram-matrix. This is similar to the classical multidimensional scaling (MDS)
but measuring the similarity in the RKHS instead of in Euclidean space. By the Eckart-
Young theorem [Eckart and Young, 1936], this minimization problem can be solved via
the eigendecomposition of the matrix K = V ΣV >, and the optimal solution is

Zopt = (V1, . . . , V`)(Σ:`)
1
2 ,

where V1, . . . , V` are the first ` columns of V and Σ:` is the upper-left (`× `)-submatrix
of Σ. The optimal projection Φopt is then given for all f ∈ Hk by

Φopt(f) = (Σ:`)
− 1

2 (V1, . . . , V`)
>

〈f, k(x1, ·)〉Hk
...

〈f, k(xn, ·)〉Hk

 . (2.E.5)

This in particular allows to project a new observations w ∈ Sp−1 with the same projection
that is w 7→ Φopt(k(w, ·)).

The projection in (2.E.5) depends on the origin of the RKHS Hk. To remove this
dependence, it may therefore be desirable to consider a centered version of the optimal
projection. This can be achieved by considering the RKHS H̃k consisting of the functions
f̃(·) = f(·)− 1

n

∑n
i=1 k(xi, ·) with f ∈ Hk. To compute the optimal centered projection

(2.E.5) for the RKHS H̃k, we only need to perform double centering on the kernel
matrix K, i.e., K̃ = HKH, where H = I − 1

n11T and replace k(x, ·) by k̃(x, ·) =
k(x, ·)− 1

n

∑n
i=1 k(xi, ·). With the centering step, this procedure is equivalent to kernel

PCA [Schölkopf et al., 2002]. The steps to obtain the lower-dimensional representation
in matrix form are given in Algorithm 1.
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Algorithm 1: Dimensionality reduction with kernels

Input: Training data X1, . . . , Xn ∈ Sp−1, visualization data
Xnew

1 , . . . , Xnew
m ∈ Sp−1 (can be same as training data), kernel function

k, dimension l ∈ {1, . . . , p}, indicator whether to use centering
CenterK ∈ {True, False}

1 Function CenterKernelMatrix(K, K̃):

2 Kcenter ← K̃ − 1
n11>K − 1

nK̃11> + 1
n2 11>K11>

3 return Kcenter

4

5 for i, j ∈ {1, . . . , n} do
6 Kij ← k(Xi, Xj)

7

8 for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} do
9 Knew

ij ← k(Xnew
i , Xj)

10

11 if CenterK then
12 Knew ← CenterKernelMatrix(K, Knew)

13 K ← CenterKernelMatrix(K, K)

14

15 V,Σ← eigen decomposition of K

16 Z ← Knew(V1, . . . , Vl)(Σ:l)
−1/2

Output: l-dimensional representation Z = (Z1, . . . , Zm)> ∈ Rm×l
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2 KernelBiome

2.E.3 Compositionally adjusted coordinate-wise contribution to each
principle component

Given the optimal projection function Φopt, define the function F : Sp−1 → R` for all
x ∈ Sp−1 by F (x) = Φopt(k(x, ·)). We then call the components F 1, . . . , F ` the principle
components. Our goal is now to understand how each principle component is affected by
changes in the different components of its arguments. For this, fix a principle component
r ∈ {1, . . . , `} and consider for each j ∈ {1, . . . , p} the quantities

E[F r(ψj(X, c))− F r(X)],

where c ∈ (0, 1) and ψj the perturbation defined in Appendix 2.A. This is very similar
in spirit as the CFI but with the derivative replaced by a difference and measures how
much a perturbation of size c in the j-th component effects the value of the r-th principle
component. It is easily estimated by

1

n

n∑
i=1

F r(ψj(Xi, c))− F r(Xi).

2.F. Proofs

2.F.1 Proof of Proposition 2.1

Proof. We start with the CFI. Fix j ∈ {1, . . . , p} and x ∈ Sp−1, then we can compute
the derivative using the chain rule and the explicit form of the perturbation ψ as follows

d
dcf(ψj(x, c)) =

〈
∇f(ψj(x, c)),

d
dcψj(x, c)

〉
=
〈
∇f(ψj(x, c)),

d
dcsc(x

1, · · · , xj−1, cxj , xj+1, · · · , xp)>
〉

=

〈
∇f(ψj(x, c)),

d
dc

1∑p
`6=j x

` + cxj
(x1, · · · , xj−1, cxj , xj+1, · · · , xp)>

〉

=

〈
∇f(ψj(x, c)),

−xj
(
∑p
6̀=j x

` + cxj)2

(
x1, · · · , xj−1, cxjxj − xj(∑p

`6=j x
` + cxj), xj+1, · · · , xp

)>〉
.

Evaluating, the derivative at c = 1 leads to

d
dcf(ψj(x, c))|c=1 =

〈
∇f(x), xj(ej − x)

〉
, (2.F.1)

where we used that ψj(x, 1) = x. Moreover, the gradient of f in the case of the log-
contrast model is given by

∇f(x) =

(
β1

x1
, . . . ,

βp
xp

)>
. (2.F.2)
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Combining (2.F.1) and (2.F.2) together with the constraint
∑p

k=1 βk = 0 implies that

d
dcf(ψj(x, c))|c=1 = −xj

∑
k 6=j

βk + βj(1− xj) = βj .

Hence, taking the expectation leads to

Ijj = E[ ddcf(ψj(X, c))|c=1] = βj ,

which proves the first part of the proposition.
Next, we show the result for the CPD. Fix j ∈ {1, . . . , p} and z ∈ [0, 1]. Then Sjf (z)

for the log-contrast model can be computed as follows

Sjf (z) = E[f(ϕj(X, z))]− E[f(X)]

=

p∑
`=1

β`E[log(ϕj(X, z)
`)]− E[f(X)]

=

p∑
6̀=j
β`E[log(sX`)] + βj log(z)− E[f(X)]

= βj log(z) +

p∑
6̀=j
β`E[log(s)] +

p∑
` 6=j

β`E[log(X`)]− E[f(X)],

where s = (1−z)/(∑p
6̀=j X

`). Using βj = −∑p
`6=j β` (which follows from the log-contrast

model constraint on β) we can simplify this further and get

Sjf (z) = βj log(z) +

p∑
6̀=j
β`E[log(1− z)]−

p∑
`6=j

β`E[log(
∑p

k 6=j X
k)] +

∑p
` 6=j β`E[log(X`)]− E[f(X)]

= βj log(z)− βjE[log(1− z)] + βjE[log(
∑p

k 6=j X
k)] +

∑p
` 6=j β`E[log(X`)]− E[f(X)]

= βj log

(
z

1− z

)
+ βjE[log(

∑p
k 6=j X

k)] +
∑p

`6=j β`E[log(X`)]−∑p
`=1 β`E[log(X`)]

= βj log

(
z

1− z

)
+ c,

with c = βjE[log(
∑p

k 6=j X
k)] +

∑p
` 6=j β`E[log(X`)]−∑p

`=1 β`E[log(X`)]. Finally, assume

βj = 0, then it holds that

c =

p∑
6̀=j
β`E[log(X`)]−

p∑
` 6=j

β`E[log(X`)] = 0.

This completes the proof of Proposition 2.1.
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2.F.2 Proof of Theorem 2.1

Proof. We first prove (i). To see this, we apply the triangle inequality to get that

|Îj
f̂n
− Ijf∗ | ≤ |Î

j

f̂n
− Îjf∗ |︸ ︷︷ ︸

=:An

+ |Îjf∗ − I
j
f∗ |︸ ︷︷ ︸

=:Bn

. (2.F.3)

Next, we consider the two terms An and Bn separately. We begin with An, by using the
definition of the CFI together with (2.F.1) from the proof of Proposition 2.1. This leads
to

An =

∣∣∣∣∣ 1n
n∑
i=1

(
d
dc f̂n(ψ(Xi, c)|c=1 − d

dcf
∗(ψ(Xi, c)|c=1

)∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

〈
∇f̂n(Xi)−∇f∗(Xi), X

j
i (ej −Xi)

〉∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣〈∇f̂n(Xi)−∇f∗(Xi), X
j
i (ej −Xi)

〉∣∣∣
≤ 1

n

n∑
i=1

∥∥∇f̂n(Xi)−∇f∗(Xi)
∥∥

2

∥∥Xj
i (ej −Xi)

∥∥
2

≤ 1

n

n∑
i=1

∥∥∇f̂n(Xi)−∇f∗(Xi)
∥∥

2
,

where for the last three steps we used the triangle inequality, the Cauchy-Schwartz
inequality and that ‖Xj

i (ej −Xi)‖2 ≤ 1 since Xi ∈ Sp−1, respectively. By assumption,
it therefore holds that An → 0 in probability as n→∞. For the Bn term, observe that
using the same bounds it holds that

E
[(

d
dcf
∗(ψ(Xi, c)|c=1

)2]
= E

[(〈
∇f∗(Xi), X

j
i (ej −Xi)

〉)2
]
≤ E

[
‖∇f∗(Xi)‖22

]
.

By assumption that E
[
‖∇f∗(Xi)‖22

]
< ∞ this implies we can apply the weak law of

large numbers to get for n→∞ that

Îjf∗ =
1

n

n∑
i=1

d
dcf
∗(ψ(Xi, c)|c=1

P−→ E
[
d
dcf
∗(ψ(Xi, c)|c=1

]
= Ijf∗ .

This immediately implies that Bn → 0 in probability as n→∞. Combining the conver-
gence of An and Bn in (2.F.3) completes the proof of (i).

Next, we prove (ii). Fix j ∈ {1, . . . , p} and z ∈ [0, 1] such that z/(1 − z) ∈
supp(Xj/

∑
6̀=j X

`). By the definition of the perturbation ϕj we get that

ϕj(X, z) = s(X1, · · · , Xj−1, z
1−z

∑
`6=j X

`, Xj+1, · · · , Xp) (2.F.4)
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where s = (1 − z)/(
∑p
6̀=j X

`). Next, using the assumption that supp(X) = {x ∈
Sp−1 | x = w/(

∑
j w

j) with w ∈ supp(X1) × · · · × supp(Xp)} and that z/(1 − z) ∈
supp(Xj/

∑
6̀=j X

`) we get that

ϕj(X, z) ∈ supp(Xj) (2.F.5)

almost surely.
By the triangle inequality it holds that

|Ŝj
f̂n

(z)− Sjf∗(z)| ≤ |Ŝ
j

f̂n
(z)− Ŝjf∗(z)|︸ ︷︷ ︸

=:Cn

+ |Ŝjf∗(z)− S
j
f∗(z)|︸ ︷︷ ︸

=:Dn

. (2.F.6)

We now consider the two terms Cn and Dn separately. First, we apply the triangle
inequality to bound the Cn term as follows.

Cn =

∣∣∣∣∣ 1n
n∑
i=1

(f̂n(ϕj(Xi, z))− f∗(ϕj(Xi, z))) +
1

n

n∑
i=1

(f̂n(Xi)− f∗(Xi))

∣∣∣∣∣
≤ 1

n

n∑
i=1

∣∣∣f̂n(ϕj(Xi, z))− f∗(ϕj(Xi, z))
∣∣∣+

1

n

n∑
i=1

∣∣∣f̂n(Xi)− f∗(Xi)
∣∣∣

≤ 2 sup
x∈supp(X)

∣∣∣f̂n(x)− f∗(x)
∣∣∣ ,

where for the last step we used a supremum bound together with (2.F.4). Hence, using

the assumption that supx∈supp(X) |f̂n(x) − f∗(x)| P→ 0 as n → ∞, we get that Cn → ∞
in probability as n→∞. Similarly, for the Dn term we get that

Dn =

∣∣∣∣∣ 1n
n∑
i=1

f∗(ϕj(Xi, z))− E[f∗(ϕj(Xi, z))] +
1

n

n∑
i=1

f∗(Xi)− E[f∗(Xi)]

∣∣∣∣∣
≤
∣∣∣∣∣ 1n

n∑
i=1

f∗(ϕj(Xi, z))− E[f∗(ϕj(Xi, z))]

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

f∗(Xi)− E[f∗(Xi)]

∣∣∣∣∣ .
Since the X1, . . . , Xn and hence ϕj(X1, z), . . . , ϕj(Xn, z) are i.i.d. and bounded we can
apply the weak law of large numbers to get that Dn → 0 in probability as n→∞.

Finally, combining the convergence of Cn and Dn with (2.F.6) proves (ii) and hence
completes the proof of Theorem 2.1.

2.F.3 Proof of Proposition 2.2

Proof. For this proof, we denote by Sp−1 the open instead of the closed simplex.
First, since kW is a positive definite kernel (see Section 2.1 in Appendix 2.B for a

proof), it holds that the RKHS HkW can be expressed as the closure of

F :=
{
f : Sp−1×Sp−1 → R

∣∣∣∃n ∈ N, z1, . . . , zn ∈ Sp−1, α1, . . . , αn ∈ R : f(·) =
∑n

i=1 αikW (zi, ·)
}
.
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2 KernelBiome

We now show that any function in F has the expression given in the statement of the
proposition. Let f ∈ F be arbitrary with the expansion

f(·) =
n∑
i=1

αikW (zi, ·).

Then, for all x ∈ Sp−1 it holds that

f(x) =
n∑
i=1

αi

p∑
j,`=1

W`,j log
( z`i
g(zi)

)
log
( xj

g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j

n∑
i=1

αi log
( z`i
g(zi)

))
log
( xj

g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j β̃`

)
log
( xj

g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j β̃`

)
log
(
xj
)
−
( p∑
j,`=1

W`,j β̃`

)
log
(
g(x)

)
=

p∑
j=1

( p∑
`=1

W`,j β̃`

)
log
(
xj
)
−
( p∑
`=1

β̃`

)
log
(
g(x)

)
, (2.F.7)

where in the third line we defined β̃` :=
∑n

i=1 αi log
(

z`i
g(zi)

)
and in the last equation we

used that
∑p

j=1W`,j = 1 for all ` ∈ {1, . . . , p} by construction of W . Furthermore, we
get that

p∑
j=1

β̃j =

n∑
i=1

αi

( p∑
j=1

log
(
zji
)
− p log(g(zi))

)
=

n∑
i=1

αi

( p∑
j=1

log
(
zji
)
−

p∑
j=1

log
(
zji
))

= 0.

(2.F.8)
Now, combining this with (2.F.7) and setting βj :=

∑p
`=1W`,j β̃` implies that

f(x) = β> log(x),

where β does not depend on x.
It remains to show that β satisfies (i)

∑p
j=1 βj = 0 and (ii) for all ` ∈ {1, . . . ,m} it

holds for all i, j ∈ P` that βi = βj . For (i), we can use (2.F.8) and directly compute

p∑
j=1

βj =

p∑
j=1

p∑
`=1

W`,j β̃` =

p∑
`=1

β̃` = 0.
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2.4 Discussion and conclusions

Finally for (ii), fix k ∈ {1, . . . ,m} and i, j ∈ Pk, then it holds that

βj =

p∑
`=1

W`,j β̃`

=

p∑
`=1

m∑
r=1

1

|Pr|
1{`,j∈Pr}β̃`

=

p∑
`=1

1

|Pk|
β̃`

=

p∑
`=1

m∑
r=1

1

|Pr|
1{`,i∈Pr}β̃`

=

p∑
`=1

W`,iβ̃`

= βi.

This completes the proof of Proposition 2.2.

2.G. List of kernels implemented in KernelBiome

2.G.1 List of unweighted kernels

In this section we summarize the all kernels implemented in KernelBiome and visualize
the metrics and kernels via heatmaps when p = 3. The reference points are the neutral
point u = (1

3 ,
1
3 ,

1
3), a vertex v = (1, 0, 0), a midpoint on a boundary m = (1

2 ,
1
2 , 0), and

an interior point z = (1
4 ,

1
4 ,

1
2) of the simplex. For kernels we omit the neutral point,

since k(x, u) = 0 for any x ∈ S2, as we centered our kernels at u.

Linear metric & kernel

d2(x, y) =

p∑
j=1

(xj − yj)2

k(x, y) =
( p∑
j=1

xjyj
)
− 1

p

d(x, z) k(x, z) d(x,m) k(x,m)
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2 KernelBiome

RBF metric & kernel

d2(x, y) = 2− 2 exp
( p∑
j=1

(xj − yj)2

2σ2

)

k(x, y) = exp
(
−

p∑
j=1

(xj − yj)2

2σ2

)

dσ= 1√
2
(x, z) kσ= 1√

2
(x, z) dσ= 1√

2
(x,m) kσ= 1√

2
(x,m)

Generalized-JS metric & kernel (a <∞, b ∈ [0.5, a))

d2(x, y) =
ab

a− b

p∑
j=1

2
1
b

[
(xj)a + (yj)a

] 1
a − 2

1
a

[
(xj)b + (yj)b

] 1
b

2
1
a

+ 1
b

k(x, y) = − ab

a− b · 2
−(1+ 1

a
+ 1
b
)

p∑
j=1

{
2

1
b

([
(xj)a + (yj)a

] 1
a −

[
(xj)a + (1

p)a
] 1
a

−
[
(1
p)a + (yj)a

] 1
a
)
− 2

1
a

([
(xj)b + (yj)b

] 1
b −

[
(xj)b + (1

p)b
] 1
b

−
[
(1
p)b + (yj)b

] 1
b
)}

da=10,b=1(x, z) ka=10,b=1(x, z) da=10,b=1(x, z) ka=10,b=1(x, z)
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2.4 Discussion and conclusions

Generalized-JS metric & kernel (a→∞, b <∞)

d2(x, y) =

p∑
j=1

b

{
2

1
b ·max{xj , yj} −

[
(xj)b + (yj)b

] 1
b

}

k(x, y) = − b
2

p∑
j=1

{
2

1
b

(
max{xj , yj} −max{xj , 1

p} −max{yj , 1
p}
)

−
[
(xj)b + (yj)b

] 1
b

+
[
(xj)b + (1

p)b
] 1
b

+
[
(yj)b + (1

p)b
] 1
b

}

da=∞,b=0.5(x, z) ka=∞,b=0.5(x, z) da=∞,b=0.5(x,m) ka=∞,b=0.5(x,m)
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Generalized-JS metric & kernel (a <∞, b→ a)

d2(x, y) =

p∑
j=1

[
(xj)b + (yj)b

2

] 1
b

·
[

(xj)b

(xj)b + (yj)b
· log

2(xj)b

(xj)b + (yj)b

+
(yj)b

(xj)b + (yj)b
· log

2(yj)b

(xj)b + (yj)b

]

k(x, y) = − 1

2
1
b
+1

p∑
j=1

{[
(xj)b + (yj)b

] 1
b
−1
·
(

(xj)b · log
[
2(xj)b

]
+ (yj)b log

[
2(yj)b

]
−
[
(xj)b + (yj)b

]
· log

[
(xj)b + (yj)b

])
−
[
(xj)b + 1

pb

] 1
b
−1
·
(
−
[
(xj)b + ( 1

pb
)
]
· log

[
(xj)b + 1

pb

]
+ (xj)b · log

[
2(xj)b

]
+ 1

pb
· log

[
2
pb

])
−
[
(yj)b + 1

pb

]1
b−1
·
(
−
[
(yj)b + ( 1

pb
)
]
· log

[
(yj)b + 1

pb

]
+ (yj)b · log

[
2(yj)b

]
+ 1

pb
· log

[
2
pb

])}

da=b=10(x, z) ka=b=10(x, z) da=b=10(x,m) ka=b=10(x,m)
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Generalized-JS metric & kernel (a = b→∞)

d2(x, y) =

p∑
j=1

max{xj , yj} ·
[

log(2)1{xj 6= yj}
]

k(x, y) = − log(2)

2
·

p∑
j=1

{
max{xj , yj} · 1{xj 6= yj}

−max{xj , 1
p} · 1{xj 6= 1

p} −max{yj , 1
p} · 1{yj 6= 1

p}
}

da=b=∞(x, z) ka=b=∞(x, z) da=b=∞(x,m) ka=b=∞(x,m)

Special Case: Hellinger - Generalized-JS metric & kernel (a = 1, b = 1
2)

d2(x, y) =

√
2

2

p∑
j=1

(√
xj −

√
yj
)2

k(x, y) =

√
2

4
+

√
2

4

p∑
j=1

{√
xjyj −

√
xj +

√
yj√

p

}

This corresponds to
√

2
2 times the Hellinger metric and kernel.

da=1,b=0.5(x, z) ka=1,b=0.5(x, z) da=1,b=0.5(x,m) ka=1,b=0.5(x,m)
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Special Case: Jenson-Shannon - Generalized-JS metric & kernel (a = 1, b = 1)

d2(x, y) =
1

2

p∑
j=1

xj log
2xj

xj + yj
+ yj log

2yj

xj + yj

k(x, y) = −1

4

p∑
j=1

{
xj log

xj + 1
p

xj + yj
+ yj log

yj + 1
p

xj + yj
− 1

p log
4

p2(xj + 1
p)(yj + 1

p)

}
This corresponds to the Jenson-Shannon metric and kernel.

da=b=1(x, z) ka=b=1(x, z) da=b=1(x, z) ka=b=1(x, z)

Special Case: Total Variation - Generalized-JS metric & kernel (a =∞, b = 1)

d2(x, y) =

p∑
j=1

|xj − yj |

k(x, y) = −1

2

p∑
j=1

{
|xj − yj | − |xj − 1

p | − |yj − 1
p |
}

This corresponds to 2 times the total variation metric and kernel.

da=∞,b=1(x, z) ka=∞,b=1(x, z) da=∞,b=1(x, z) ka=∞,b=1(x, z)
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Hilbertian metric & kernel (a <∞, b > −∞)

d2(x, y) =

p∑
j=1

2
1
b

[
(xj)a + (yj)a

] 1
a − 2

1
a

[
(xj)b + (yj)b

] 1
b

2
1
a − 2

1
b

k(x, y) = − 1

2(2
1
a − 2

1
b )

p∑
j=1

{
2

1
b

([
(xj)a + (yj)a

] 1
a −

[
(xj)a + (1

p)a
] 1
a

−
[
(yj)a + (1

p)a
] 1
a
)
− 2

1
a

([
(xj)b + (yj)b

] 1
b −

[
(xj)b + (1

p)b
] 1
b

−
[
(yj)b + (1

p)b
] 1
b
)}

da=10,b=−1(x, z) ka=10,b=−1(x, z) da=10,b=−1(x,m) ka=10,b=−1(x,m)

Hilbertian metric & kernel (a→∞, b > −∞)

d2(x, y) =

p∑
j=1

b

{
2

1
b ·max{xj , yj} −

[
(xj)b + (yj)b

] 1
b

}

k(x, y) = − 1

2(1− 2
1
b )

p∑
j=1

{
2

1
b

(
max{xj , yj} −max{xj , 1

p} −max{yj , 1
p}
)

−
[
(xj)b + (yj)b

] 1
b

+
[
(xj)b + (1

p)b
] 1
b

+
[
(yj)b + (1

p)b
] 1
β

}

da=∞,b=−10(x, z) ka=∞,b=−10(x, z) da=∞,b=−10(x,m) ka=∞,b=−10(x,m)
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Hilbertian metric & kernel (a <∞, b→ −∞)

d2(x, y) =
1

2
1
a − 1

p∑
j=1

{[
(xj)a + (yj)a

] 1
a − 2

1
a ·min{xj , yj}

}

k(x, y) = − 1

2(2
1
a − 1)

p∑
j=1

{[
(xj)a + (yj)a

] 1
a −

[
(xj)a + (1

p)a
] 1
a −

[
(yj)a + (1

p)a
] 1
a

− 2
1
a

[
min{xj , yj} −min{xj , 1

p} −min{yj , 1
p}
]}

da=10,b=−∞(x, z) ka=10,b=−∞(x, z) da=10,b=−∞(x,m) ka=10,b=−∞(x,m)

Special Case: Chi-square - Hilbertian metric & kernel (a = 1, b = −1)

d2(x, y) =
1

3

p∑
j=1

(xj − yj)2

xj + yj

k(x, y) = −1

6

p∑
j=1

{
(xj − yj)2

xj + yj
−

(xj − 1
p)2

xj + 1
p

−
(yj − 1

p)2

yj + 1
p

}

This corresponds to 1
3 of the chi-square metric and kernel.

da=1,b=−1(x, z) ka=1,b=−1(x, z) da=1,b=−1(x,m) ka=1,b=−1(x,m)
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Special Case: Total Variation - Hilbertian metric & kernel (a = 1, b = −∞)

d2(x, y) =
1

2

p∑
j=1

|xj − yj |

k(x, y) = −1

4

p∑
j=1

{
|xj − yj | − |xj − 1

p | − |yj − 1
p |
}

This corresponds to the total variation metric and kernel.

da=1,b=−∞(x, z) ka=1,b=−∞(x, z) da=1,b=−∞(x,m) ka=1,b=−∞(x,m)

Aitchison metric & kernel

d2(x, y) =

p∑
j=1

(
log

xj + c

g(x+ c)
− log

yj + c

g(y + c)

)2

k(x, y) =

p∑
j=1

log
xj + c

g(x+ c)
log

yj + c

g(y + c)

where g(x) = p

√∏p
j=1x

j is the geometric mean of x.

dc=0.01(x, z) kc=0.01(x, z) dc=0.01(x,m) kc=0.01(x,m)
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Aitchison-RBF metric & kernel

d2(x, y) = 2− 2 exp
(
− 1

2σ2

p∑
j=1

[
log

xj + c

g(x+ c)
− log

yj + c

g(y + c)

]2)

k(x, y) = exp
(
− 1

2σ2

p∑
j=1

[
log

xj + c

g(x+ c)
− log

yj + c

g(y + c)

]2)
where g(x) = p

√∏p
j=1x

j is the geometric mean of x.

dσ= 1√
2
,c=0.01(x, z) kσ= 1√

2
,c=0.01(x, z) dσ= 1√

2
,c=0.01(x,m) kσ= 1√

2
,c=0.01(x,m)

Heat diffusion metric & kernel

d2(x, y) = 2 · (4πt)− p2 ·
[
1− exp

(
− 1

t arccos2(

p∑
j=1

√
xjyj)

)]

k(x, y) = (4πt)−p/2 · exp
(
− 1

t arccos2(

p∑
j=1

√
xjyj)

)

dt=0.1(x, z) kt=0.1(x, z) dt=0.1(x,m) kt=0.1(x,m)

2.G.2 List of weighted kernels

As discussed in Appendix 2.B, all kernels can also be modified to include a weight
matrix W ∈ Rp×p. Below, we list the explicit forms of all weighted kernels as they are

implemented in KernelBiome package. As before, let g(x) = p

√∏p
j=1x

j be the geometric

mean of x.
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Linear kernel

k(x, y) =

p∑
j,`=1

Wj,`

(
xjy` − xj

p −
y`

p + 1
p2

)
RBF kernel

k(x, y) = exp
(
−

p∑
j,`=1

Wj,`(x
j − y`)2

2σ2

)
Generalized-JS kernel (a <∞, b ∈ [0.5, a])

k(x, y) = − ab

a− b · 2
−(1+ 1

a
+ 1
b
)

p∑
j,`=1

Wj,`

{
2

1
b

([
(xj)a + (y`)a

] 1
a −

[
(xj)a + (1

p)a
] 1
a

−
[
(1
p)a + (y`)a

] 1
a
)
− 2

1
a

([
(xj)b + (y`)b

] 1
b −

[
(xj)b + (1

p)b
] 1
b

−
[
(1
p)b + (y`)b

] 1
b
)}

Generalized-JS kernel (a→∞, b <∞)

k(x, y) = − b
2

p∑
j,`=1

Wj,`

{
2

1
b

(
max{xj , y`} −max{xj , 1

p} −max{y`, 1
p}
)

−
[
(xj)b + (y`)b

] 1
b

+
[
(xj)b + (1

p)b
] 1
b

+
[
(y`)b + (1

p)b
] 1
b

}

Generalized-JS kernel (a <∞, b→ a)

k(x, y) = − 1

2
1
b
+1

p∑
j,`=1

Wj,`

{[
(xj)b + (y`)b

] 1
b
−1
·
(

(xj)b · log
[
2(xj)b

]
+ (y`)b log

[
2(y`)b

]
−
[
(xj)b + (y`)b

]
· log

[
(xj)b + (y`)b

])
−
[
(xj)b + 1

pb

] 1
b
−1
·
(
−
[
(xj)b + ( 1

pb
)
]
· log

[
(xj)b + 1

pb

]
+ (xj)b · log

[
2(xj)b

]
+ 1

pb
· log

[
2
pb

])
−
[
(y`)b + 1

pb

] 1
b
−1
·
(
−
[
(y`)b + ( 1

pb
)
]
· log

[
(y`)b + 1

pb

]
+ (y`)b · log

[
2(y`)b

]
+ 1

pb
· log

[
2
pb

])}
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Generalized-JS kernel (a = b→∞)

k(x, y) = − log(2)

2
·

p∑
j,`=1

Wj,`

{
max{xj , y`} · 1{xj 6= y`}

−max{xj , 1
p} · 1{xj 6= 1

p} −max{y`, 1
p} · 1{y` 6= 1

p}
}

Hilbertian kernel (a <∞, b > −∞)

k(x, y) = − 1

2(2
1
a − 2

1
b )

p∑
j,`=1

Wj,`

{
2

1
b

([
(xj)a + (y`)a

] 1
a −

[
(xj)a + (1

p)a
] 1
a

−
[
(y`)a + (1

p)a
] 1
a
)
− 2

1
a

([
(xj)b + (y`)b

] 1
b −

[
(xj)b + (1

p)b
] 1
b

−
[
(y`)b + (1

p)b
] 1
b
)}

Hilbertian kernel (a→∞, b > −∞)

k(x, y) = − 1

2(1− 2
1
b )

p∑
j,`=1

Wj,`

{
2

1
b

(
max{xj , y`} −max{xj , 1

p} −max{y`, 1
p}
)

−
[
(xj)b + (y`)b

] 1
b

+
[
(xj)b + (1

p)b
] 1
b

+
[
(y`)b + (1

p)b
] 1
b

}
Hilbertian kernel (a <∞, b→ −∞)

k(x, y) = − 1

2(2
1
a − 1)

p∑
j,`=1

Wj,`

{[
(xj)a + (y`)a

] 1
a −

[
(xj)a + (1

p)a
] 1
a −

[
(y`)a + (1

p)a
] 1
a

− 2
1
a

[
min{xj , y`} −min{xj , 1

p} −min{y`, 1
p}
]}

Aitchison kernel

k(x, y) =

p∑
j,`=1

Wj,` log
xj + c

g(x+ c)
log

y` + c

g(y + c)

Aitchison RBF kernel

k(x, y) = exp
(
− 1

2σ2

p∑
j,`=1

Wj,`

[
log

xj + c

g(x+ c)
− log

y` + c

g(y + c)

]2)
Heat diffusion kernel

k(x, y) = (4πt)−p/2 · exp

(
− 1

t arccos2
( p∑
j,`=1

Wj,`

√
xjy`

))
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3 Causal change point detection and
localization

Shimeng Huang, Jonas Peters, Niklas Pfister

Abstract
Detecting and localizing change points in sequential data is of interest in many

areas of application. Various notions of change points have been proposed, such
as changes in mean, variance, or the linear regression coefficient. In this work,
we consider settings in which a response variable Y and a set of covariates X =
(X1, . . . , Xd+1) are observed over time and aim to find changes in the causal
mechanism generating Y from X. More specifically, we assume Y depends linearly
on a subset of the covariates and aim to determine at what time points either
the dependency on the subset or the subset itself changes. We call these time
points causal change points (CCPs) and show that they form a subset of the
commonly studied regression change points. We propose general methodology to
both detect and localize CCPs. Although motivated by causality, we define CCPs
without referencing an underlying causal model. The proposed definition of CCPs
exploits a notion of invariance, which is a purely observational quantity but –
under additional assumptions – has a causal meaning. For CCP localization, we
propose a loss function that can be combined with existing multiple change point
algorithms to localize multiple CCPs efficiently. We evaluate and illustrate our
methods on simulated datasets and two real datasets on Beijing air quality and
Swiss monetary policy, respectively.

3.1 Introduction

Change point detection (i.e., testing the existence of change points) and localization (i.e.,
estimating the location of change points) have been of interest for several decades dating
back to Page [1954, 1955]. We consider an offline setting where we have a sequence
of independent observations (X1, Y1), . . . , (Xn, Yn) with covariates Xi ∈ Rd+1 and a
response Yi ∈ R. For all i ∈ {1, . . . , n}, denote by PX,Yi the joint distribution of (Xi, Yi),
which may change across i. We call a time point k ∈ {2, . . . , n} a change point if the
joint distributions at time points k and k − 1 differ, that is, if PX,Yk 6= PX,Yk−1 [see also
Brodsky and Darkhovsky, 1993]. Instead of considering general change points as defined
above, one may consider a more restrictive definition of change points, e.g., time points
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3 CausalCP

where there is a change in mean, variance or conditional distribution. Depending on the
application at hand, certain types of change points may be more relevant than others. In
many applications, the goal is to detect or localize changes in the relationship between
the covariates and the response.

In economics and other fields, “structural changes”, that is, changes in regression
models, have been extensively studied over the last few decades. These include linear
and nonlinear regression models, as well as non-parametric regression models. Under
linear regression settings, Bai [1996] and Perron et al. [2020] propose tests for detecting
changes in the regression parameter and the residual distribution; Hansen [2000] proposes
a test that detects changes in the regression parameter while allowing for changes in the
marginal distribution of the covariates; Bai [1997b] considers localizing one structural
change while allowing lagged and trending covariates, and Bai [1997a] and Bai and Perron
[1998, 2003] analyze the estimation of multiple change points. Andrews [1993] considers
testing an unknown change point in part of the parameter vector in nonlinear regression
models. Testing for changes in nonparametric regression models has been considered by,
e.g., Orváth and Kokoszka [2002]. In recent years, structural changes in high-dimensional
regression models have also been studied [e.g., Leonardi and Bühlmann, 2016, Wang
et al., 2021a]. Reviews are provided by Aue and Horváth [2013], for example, who focus
on methods detecting structural change that allow for serial dependence; Truong et al.
[2020] consider algorithms that can be characterized by a cost function, a search method,
and a constraint on the number of changes.

By definition, structural changes refer to changes in the conditional distribution of Y
given all covariates X. While in many applications such changes are useful, it may also
be of interest to have some type of mechanistic understanding of the changes in order
to assess their relevance. For example, if we assume there is an underlying causal model
generating the distribution over the variables (X,Y ), then a structural change, that is,
a change in the conditional distribution of Y given X, can have different causal expla-
nations: It could either indicate a change in causal relationship between Y and X, or it
could merely correspond to shifts in the distribution of X that do not affect the causal
dependence of Y on X. The ability to distinguish between such changes can be useful
in many applications as it allows practitioners to pay particular attention to the more
fundamental changes. In this work, we characterize these changes based on reversing the
idea of causal invariance — also known as autonomy or modularity [e.g., Haavelmo, 1943,
Aldrich, 1989] — which gives the change points a causal interpretation under a causal
model but is still meaningful otherwise. The idea of causal invariance has been used
in invariant causal prediction proposed by Peters et al. [2016] and its sequential coun-
terpart [Pfister et al., 2019] for discovering the causal predictors of a response variable,
where the conditional distribution of the response variable given its causal predictors is
assumed to be unchanged across environments (respectively, time). Our paper shows
that this idea also proves useful when detecting and localizing change points. To our
knowledge, detecting or localizing change points that can have a causal interpretation
have not been studied with one exception on detecting local causal mechanism changes
in directed acyclic graphs (DAGs) in Huang et al. [2020], where the definition of the
causal mechanism is different from ours, specifically they assume that the parent set of
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3.2 Regression change points and causal change points

each node is fixed.

Notation 3.1.1. We observe a sequence of independent observations
(X1, Y1), . . . , (Xn, Yn) with covariates Xi ∈ Rd+1 and a response Yi ∈ R. To
avoid explicitly stating intercepts, we assume Xd+1

i = 1 for all i ∈ {1, . . . , n}, and
let S :=

{
S ⊆ {1, . . . , d + 1} | d + 1 ∈ S

}
. We let I be the set of all subsets of

{1, . . . , n} that are sequences of consecutive indices of length greater than or equal to
2 which we refer to as “intervals”. For all S ∈ S we denote XS

i ∈ R|S| as the column

vector of covariates (Xj
i )j∈S (sorted in ascending order of the indices). We denote

by X := (X1, . . . , Xn)> ∈ Rn×d and Y := (Y1, . . . , Yn)> ∈ Rn×1 the design matrix of
the covariates and the matrix of responses, respectively. For all I ∈ I, we denote by
XI and YI the submatrices formed by the rows of X and Y indexed by I, respectively
(sorted in ascending order of the indices), and additionally for all S ∈ S, XS

I denotes
the submatrix of X formed by the rows indexed by I and columns indexed by S.

This paper is organized as follows. In Section 3.2, we define regression change points
and causal change points. Section 3.3 focuses on the detection problem and introduces
a simple procedure. In Section 3.4, we consider the localization problem and propose
two different methods: one that tests candidates and one that minimizes a loss function.
Numerical experiments and a real data application are given in Section 3.5.

3.2 Regression change points and causal change points

To distinguish between structural and causal changes, we first formally define the time
points of structural changes below, which we call regression change points.

Definition 3.2.1 (Regression change point (RCP)). For all i ∈ {1, . . . , n}, assume that
E[XiX

>
i ] is invertible and define the population ordinary least squares (OLS) coefficient

as βOLS
i := E[XiX

>
i ]−1E[XiYi] and the corresponding residual as εi := Yi − X>i βOLS

i .
Then, a time point k ∈ {2, . . . , n} is called a regression change point (RCP) if

either βOLS
k 6= βOLS

k−1 or εk
d
6= εk−1.

♣

While we do not assume that the conditional mean of Y given X is linear, the definition
of RCPs implies that if I ∈ I is an interval without an RCP, then there exists a vector
β ∈ Rd+1 and a distribution Fε such that for all i ∈ I it holds that

Yi = X>i β + εi and E[Xiεi] = 0,

with εi ∼ Fε and βOLS
i = β.

RCPs characterize changes in the conditional mean model. However, even though
these changes are sometimes interpreted as a proxy for a change in causality, it is well-
known that this interpretation can be misleading. The following example illustrates
this.
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Figure 3.2.1: Illustration of the data generating model in Example 3.2.2 rolled out over
time. The model remains fixed between 1 and k1 − 1, between k1 and
k2 − 1 and between k2 and n. We intervene at two time points k1 and
k2, and the hammers indicate on which node these interventions act with
respect to the previous time interval. The population OLS coefficient βOLS

i

changes at both time points k1 and k2 due to the interventions (see details
in Appendix 3.A). However, only at k2 the causal mechanism of Y changes
(at k1 the causal mechanism of Y remains unchanged).

Example 3.2.2 (RCPs in linear SCMs). Let {1, . . . , n} be partitioned into three disjoint
time intervals I1 = {1, . . . , k1 − 1}, I2 = {k1, . . . , k2 − 1} and I3 = {k2, . . . , n}. For all
i ∈ {1, . . . , n} consider the linear structural causal model (SCM), see also Section 3.2.1,
over the variables (X1

i , X
2
i , X

3
i , X

4
i , Yi) given by X4

i := 1 as the intercept and

XS
i := AiXi + αiY + εXi (3.2.1a)

Yi := β>i Xi + εYi , (3.2.1b)

where S = {1, 2, 3}, εXi = (εX
1

i , εX
2

i , εX
3

i ) and εYi are jointly independent noise vectors
with mean zero, Ai ∈ R3×4, βi ∈ R4 and αi ∈ R3 are parameters such that the SCM
induces the graphs in Figure 3.2.1 (the intercept variable X4

i is omitted). The specific
values for the parameters Ai, βi and αi, as well as the variances of εXi and εYi for
i ∈ {1, . . . , n} are given in Appendix 3.A.

In this example, at both time points k1 and k2, the joint distribution of (Xi, Yi) and in
particular the population OLS parameter βOLS

i changes (i.e., k1 and k2 are both RCPs
by Definition 3.2.1). However, the causal mechanism of the response Y with respect to
X as specified in (3.2.1b) only changes at k2. Our proposed notion of causal change
points defined in Definition 3.2.4 below is able to capture this distinction. This example
also highlights the invariance property of causal models: Interventions that do not act

directly on the response Yi may change Yi | Xi but they keep Yi | XPA(Yi)
i invariant,

where PA(Yi) ⊆ {1, . . . , 4} denotes the causal parents of Yi. A more formal treatment
of causal models is provided in Section 3.2.1.

♠
Example 3.2.2 shows that it is possible that the conditional expectation of Y given

X can change even though the causal mechanism of how Y is affected by X remains
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3.2 Regression change points and causal change points

fixed. We propose to distinguish between changes only in the full conditional expectation
of Y given X and changes that manifest in differences in the conditional expectations
of Y given XS for all S ∈ S. Arguably, the second notion of change is of a more
fundamental nature and indicates a more drastic shift in the data generating process.
To formalize this notion which we call causal change points (see Definition 3.2.4 below)
we first define the population OLS coefficient and the corresponding residuals based on
subsets of covariates.

Definition 3.2.3 (Population OLS given subsets of covariates). Assume that E[XiX
>
i ]

is invertible for all i ∈ {1, . . . , n}. For all S ∈ S and all i ∈ {1, . . . , n}, the population
OLS coefficient given S is defined as βOLS

i (S) ∈ Rd+1 satisfying

βOLS
i (S)S = E

[
XS
i (XS

i )>
]−1

E
[
XS
i Yi
]

and βOLS
i (S)j = 0 for all j ∈ {1, . . . , d + 1} \ S. The corresponding population OLS

residual given S is defined as εi(S) := Yi − X>i βOLS
i (S). We use the convention that

βOLS
i = βOLS

i ({1, . . . , d+ 1}) and εi = εi({1, . . . , d+ 1}). ♣

Using this definition, we can now define what we call causal change points, the time
points at which for all subsets of covariates S ∈ S, either the population OLS coefficient
given S or the distribution of the population OLS residual given S differs from previous
time points (see Definition 3.2.4). Even though we call these changes “causal”, the defi-
nition does not rely on an underlying causal model. Nevertheless, the definition of causal
change points is motivated by the fact that under additional causal assumptions, they
correspond to changes in the causal mechanism of Y on X. We discuss this connection
in Section 3.2.1.

Definition 3.2.4 (Causal change point (CCP)). A time point k ∈ {2, . . . , n} is called a
causal change point (CCP) if for all S ∈ S

either βOLS
k (S) 6= βOLS

k−1 (S) or εk(S)
d
6= εk−1(S).

♣

By definition, CCPs form a subset of RCPs. We refer to RCPs that are not CCPs
as non-causal change points (NCCPs). An alternative way to characterize CCPs is via
sets S ∈ S for which the population OLS coefficient and residual distribution given S
remain unchanged within a time interval.

Definition 3.2.5 (Invariant set). For a time interval I ∈ I, a set S ∈ S is called an
I-invariant set if there exists a vector β ∈ Rd+1 and a distribution F such that for all
i ∈ I,

βOLS
i (S) = β and εi(S)

iid∼ F.

♣
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3 CausalCP

The following proposition characterizes CCPs in terms of invariant sets. The proof,
given in Appendix 3.D for completeness, follows directly from the definitions.

Proposition 3.2.6 (Alternative characterization of CCP). A time point k ∈ {2, . . . , n}
is a CCP if and only if there does not exist a {k − 1, k}-invariant set S ∈ S.

In the following section, we discuss how CCPs relate to changes of causal mechanism
when assuming an underlying causal model.

3.2.1 Causal models as data generating models

We now formalize changes in causal mechanisms and relate them to CCPs. To this
end, we introduce a class of SCMs [e.g., Pearl, 2009] that satisfy the assumptions of
our sequential model, and discuss under which additional causal assumptions, CCPs
correspond to causal mechanism changes. Furthermore, we argue in Example 3.2.8 that
even if these assumptions are not satisfied, CCPs capture meaningful changes.

Setting 1 (Sequential linear SCM with hidden variables). Let (X1, Y1), . . . , (Xn, Yn) ∈
Rd+1 × R be a sequence of observed variables and (H1, . . . ,Hn) ∈ Rq a sequence of
unobserved variables. For all i ∈ {1, . . . , n} consider an SCM over (Hi, Xi, Yi) given by
Xd+1
i := 1 as intercept and

XS?

i := AiXi + αiYi + hi(Hi, ε
X
i ) (3.2.2a)

Yi := β>i Xi + gi(Hi, ε
Y
i ), (3.2.2b)

where S? = {1, . . . , d}, Hi, ε
X
i and εYi are jointly independent, gi and hi are arbitrary

measurable functions such that E[hi(Hi, ε
Y
i )] = E[gi(Hi, ε

Y
i )] = 0. Furthermore, the

parameters in (3.2.2a) and (3.2.2b) are such that for all i ∈ {1, . . . , n} the induced
graph1 is directed and acyclic. For all i ∈ {2, . . . , n − 1} the set of (observed) parent
variables of Yi is given by PA(Yi) = {j ∈ {1, . . . , d+ 1} | βji 6= 0}.

Given such a causal model, we can characterize what CCPs correspond to under
certain conditions. In Proposition 3.2.7, we show that as long as the noise term of Y
remains uncorrelated with its parents, a CCP indicates a change in either the causal
coefficient βi or in the noise term gi(Hi, ε

Y
i ).

Proposition 3.2.7. Assume Setting 1, let k ∈ {2, . . . , n} be a fixed time point and
assume that for all i ∈ {k − 1, k} it holds that

E[X
PA(Yi)
i gi(Hi, ε

Y
i )] = 0. (3.2.3)

Then, it holds that

k is a CCP =⇒ βk 6= βk−1 or gk(Hk, ε
Y
k )

d
6= gk−1(Hk−1, ε

Y
k−1).

1For all time points i ∈ {1, . . . , n} the graph is constructed by taking the observed variables
X1
i , . . . , X

4
i , Yi as nodes and adding a directed edge from node V to W if variable V appears with a

non-zero coefficient in the structural equation of variable W .
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Figure 3.2.2: Illustration of the data generating model in Example 3.2.8 rolled out over
time. The model remains fixed between 1 and k1−1, between k1 and k2−1
and between k2 and n. We intervene at two time points k1 and k2, and
the hammers indicate on which node these interventions act with respect
to the previous time interval. Even though both k1 and k2 are CCPs, the
causal mechanism of Y with respect to X only changes at k1 (the noise
term Hi + εYi changes in distribution) but not at k2 (neither the causal
coefficient nor the noise term’s distribution changes).

A proof is given in Appendix 3.D. In the following example, we illustrate that the
statement of Proposition 3.2.7 may be false if there is hidden confounding in the sense
that (3.2.3) is violated.

Example 3.2.8 (CCPs with hidden confounding). For all i ∈ {1, . . . , n}, consider the
linear SCM over the variables (Hi, X

1
i , X

2
i , Yi) given by X2

i := 1 as the intercept and

X1
i := αiHi + εX

1

i (3.2.4a)

Yi := X1
i +Hi + εYi , (3.2.4b)

where εX
1

i , εYi
iid∼ N (0, 1) for all i ∈ {1, . . . , n}, Hi

iid∼ N (0, 1) for all i ∈ {1, . . . , k1 − 1},
Hi

iid∼ N (0, 2) for all i ∈ {k1, . . . , n}, αi = 1 for all i ∈ {1, . . . , k2 − 1}, and αi = 0 for all
i ∈ {k2, . . . , n}. For all i ∈ {1, . . . , n}, the variable Hi is unobserved. Define the intervals
I1 = {1, . . . , k1 − 1}, I2 = {k1, . . . , k2 − 1}, and I3 = {k2, . . . , n}. The corresponding
DAGs are shown in Figure 3.2.2.

Here, both k1 and k2 are CCPs. To see this, consider the population OLS parameter
given S1 = {1, 2} which is equal to βOLS

i (S1) = (ci, 0)>, where

ci =
Cov(X1

i , Yi)

V(X1
i )

=


3/2 i ∈ I1

5/3 i ∈ I2

1 i ∈ I3.

Hence, for all k ∈ {k1, k2} the set S1 is not {k−1, k}-invariant. Moreover, the population
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OLS residual given S2 = {2} is given by

εi(S2) ∼


N (0, 6) i ∈ I1

N (0, 10) i ∈ I2

N (0, 4) i ∈ I3.

Again this implies that for all k ∈ {k1, k2} the set S2 is not {k − 1, k}-invariant. By
Proposition 3.2.6, both k1 and k2 are CCPs. This shows that in the case of hidden con-
founding between Y and XPA(Y ), it is no longer true that the existence of a CCP implies
a change in the causal mechanism of Y (as specified in (3.2.4b)) as in the unconfounded
case considered in Proposition 3.2.7. Nevertheless, we consider time points like k1 and
k2 as conceptually different from other RCPs in that they represent changes in what can
be thought of as the observed causal mechanism. ♠

3.3 Causal change point detection

We now consider how to detect CCPs, that is, given a time interval I ∈ I, we would like
to decide whether there exists a CCP k ∈ I. For a fixed time interval I ∈ I, the absence
of CCPs in I is equivalent (see Proposition 3.2.6) to the null hypothesis

HI0 : ∃S ∈ S s.t. S is I-invariant. (3.3.5)

The goal is to construct a (possibly randomized) hypothesis test φI : R|I|×(d+1)×R|I| →
{0, 1} for HI0. The test φI is a function of the data (XI ,YI) and rejects the null
hypothesis HI0 if φI(XI ,YI) = 1 and does not reject it if φI(XI ,YI) = 0. φI is said
to be level α ∈ (0, 1) if supP∈HI0 PP (φI(XI ,YI) = 1) ≤ α, and it is said to have power

β ∈ (0, 1) against an alternative P 6∈ HI0 if PP (φI(XI ,YI) = 1) = β.
Testing HI0 can be split up into a multiple testing problem by considering for all S ∈ S

the null hypothesis
HI0,S : S is I-invariant. (3.3.6)

This null hypothesis equals the hypothesis that the population OLS coefficient and resid-
uals given S do not change. For such settings, tests have been derived previously (see
Section 3.3.1). Given a collection of tests (φSI )S∈S for the null hypotheses (HI0,S)S∈S
that are at level α, we can combine them to a test for HI0 as follows.

Proposition 3.3.1. Let (φSI )S∈S be a family of tests for the hypotheses (HI0,S)S∈S where

for all S ∈ S, φSI : R|I|×|S| × R|I| → {0, 1}, and φSI is level α ∈ (0, 1). Then the test
φI : R|I|×(d+1) × R|I| → {0, 1} defined for all x ∈ R|I|×(d+1) and all y ∈ R|I| by

φI(x, y) :=

{
1 if minS∈S φSI (xS , y) = 1

0 otherwise

is level α for HI0.

The proof of this proposition is straightforward and is included in Appendix 3.D.
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3.4 Causal change point localization

3.3.1 Tests for HI
0,S

We first introduce the following definition of population OLS parameter and residuals
over a time interval given a subset of covariates.

Definition 3.3.2 (Population OLS over an interval given a subset of covariates). Let
I ∈ I and assume

∑
i∈I E[XiX

>
i ] is invertible. For all S ∈ S, the population OLS

parameter given S over I is the vector βOLS
I (S) ∈ Rd+1 where(

βOLS
I (S)

)S
=
[∑
i∈I

E[XS
i (XS

i )>]
]−1∑

i∈I
E(XS

i Yi)

and
(
βOLS
I (S)

)j
= 0 for all j ∈ {1, . . . , d+ 1} \ S. For all ` ∈ {1, . . . , n}, the population

OLS residual at ` given S over I is given by εI` (S) := Y`−X>` βOLS
I (S) with the convention

that εI(S) =
(
Y` −X>` βOLS

I (S)
)
`∈I
∈ R|I|. ♣

One way to test the null hypothesis HI0,S is to first divide the interval I into two sub-

intervals I1 := {min(I), . . . ,min(I) + b |I|2 c − 1} and I2 := {min(I) + b |I|2 c, . . . ,max(I)}.
Then, HI0,S in (3.3.5) implies

HI1,I20,S : βOLS
I1 (S) = βOLS

I2 (S) and εI1(S)
d
= εI2(S). (3.3.7)

The reverse implication, however, is not true in general: HI1,I20,S does not generally imply

HI0,S . This means that a test that is level for HI1,I20,S is level for HI0,S , however, power

against some of the alternatives of HI0,S could be reduced. (3.3.7) can be tested by
e.g., the Chow test [Chow, 1960]. Details of the Chow test are given in Appendix 3.F
and we refer to applying the Chow test after splitting an interval into two as the split
Chow test. A version of this test has also been suggested for Invariant Causal Prediction
[Peters et al., 2016]. As an alternative, one can use the procedure proposed by Pfister
et al. [2019]: instead of two sub-intervals, one considers a pre-defined grid over the time
indices and combines test statistics computed based on resampling scaled versions of the
residuals.

3.4 Causal change point localization

We now discuss two approaches for estimating the locations of CCPs. The first approach
is based on testing candidates. By Definition 3.2.4, CCPs are a subset of RCPs. Thus, if
we are given the set of RCPs, we can use the detection method described in Section 3.3
to identify the CCPs among them. An alternative approach is based on a loss function
that aims to detect the CCPs directly. For localizing multiple CCPs, we can combine
the proposed loss function (see Definition 3.4.4) with existing multiple change point
localization algorithms. Popular multiple change point localization algorithms are often
of two types: algorithms based on dynamic programming [e.g., Hawkins, 1976, Killick
et al., 2012] and greedy algorithms [e.g., Vostrikova, 1981, Fryzlewicz, 2014].
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In order to estimate the locations of all CCPs, both approaches rely on statistical
methods for detecting changes in both regression parameters and the residual distribu-
tions.

Throughout this section, we assume there exists a set of q ∈ {1, . . . , n − 2} CCPs
T := {τ1, . . . , τq}, where τi < τi+1 for all i ∈ {1, . . . , q − 1} and we use the convention
that τ0 := 1 and τq+1 := n+ 1.

3.4.1 Causal change point localization by pruning candidates

Assume we are given a candidate set K = {k1, . . . , kl} ⊆ {2, . . . , n − 1} of potential
CCPs. This could, for example, be the set of RCPs or a superset of the RCPs (see
Definition 3.2.1). For the purpose of this section, we assume that the true CCPs are
contained in K but in practice one would estimate the set K using existing methods for
localizing RCPs [e.g., Bai, 1997a], which may lead to violations of this assumption. We
can then prune the candidate set K by testing whether a candidate kj is indeed a causal
change point considering the interval Ij = {kj−1, . . . , kj+1−1} (with the convention that

k0 = 1 and kl+1 = n+ 1) and using a test for HIj0 discussed in Section 3.3. The detailed
procedure is provided in Algorithm 2 in Appendix 3.B.

Proposition 3.4.1 gives lower bounds (which are functions of the properties of the test)
of the probability that Algorithm 2 localizes only the true CCPs and the probability that
Algorithm 2 localizes all the true CCPs when the candidate set is a superset of the true
CCPs.

Proposition 3.4.1. Denote by T ⊆ {2, . . . , n} the set of CCPs and by K =
{k1, . . . , kL} ⊆ {2, . . . , n}, for L ≥ 1, a candidate set of CCPs satisfying T ⊆ K. More-
over, denote for all ` ∈ {1, . . . , L}, the intervals Ik` := {k`−1, . . . , k`+1−1}, where k0 = 1

and kL+1 = n + 1. Let T̂ be the CCP estimator defined in Algorithm 2 and let (φI)I∈I
be a collection of tests for (HI0)I∈I . Then, the following two statements hold:

(i) Let α ∈ (0, 1). If for all k ∈ K it holds that φIk is level α, then

P(T̂ ⊆ T ) ≥ 1− (|K| − |T |) · α.

(ii) Let β ∈ (0, 1). If for all ` ∈ {1, . . . , L} with k` ∈ T it holds that P(φIk` = 1) ≥ β,
then

P(T ⊆ T̂ ) ≥ 1− |T | · (1− β).

A proof can be found in Appendix 3.D. Following Proposition 3.4.1, one may adjust
α by a factor c ≤ 1/(|K| − |T |) which ensures that P(T̂ ⊆ T ) ≥ 1 − α. One special
case is the Bonferroni correction, which corresponds to c = 1/|K| and always preserves
coverage at level α but might be conservative if there are many CCPs. In practice, the
candidate set may not be a superset of the true CCPs, i.e., the candidate set may not
contain all the true CCPs, or some candidates are time points that slightly deviate from
the true CCPs, or a combination of both. If this is the case, the resulting CCP estimates
can be arbitrarily biased. To check the validity of the estimates, one can test each of
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3.4 Causal change point localization

the sub-intervals separated by T̂ : if there is no invariant set in a sub-interval, it means
that there exist at least one CCP that is not in the candidate set, or the candidates
surrounding the sub-interval are not true CCPs. We illustrate this in Appendix 3.C.1.

3.4.2 Causal change point localization via a loss function

An alternative approach to localizing causal change points is by finding the minima of
a loss function. Here, we propose a loss function that assesses the level of causal non-
invariance at each time point. Ideally, the loss function should achieve its minimal value
in an interval with a single CCP at the true CCP. In Section 3.4.2.1, we introduce the
loss function and discuss its properties at population level given a single CCP. We discuss
how to estimate the location of one CCP using an empirical version of the loss function
in Section 3.4.2.2. Localization of multiple CCPs is discussed in Section 3.4.2.3, where
we leverage modified versions of existing multiple change point detection algorithms
[Vostrikova, 1981, Baranowski et al., 2019, Kovács et al., 2023] to localize each of them.

3.4.2.1 Causal stability loss at population level

In this section, we introduce a loss function to capture the change in causal mechanism
of the response Y . Intuitively, for an interval I ∈ I, the loss at a time point i ∈ I sums
up the level of non-invariance over the two sub-intervals of I to the left and right of i.
Suppose there exists exactly one CCP in I, this loss function achieves its minimum value
at the true CCP at population level. To formally introduce the loss function, we require
the following notation.

Notation 3.4.1. Let s ∈ N be a minimal segmentation length. For all intervals I ∈ I
with |I| ≥ 2s, let ms(I) := b |I|s c and let P1(I), . . . , Pms(I)(I) be a partition of I into
ms(I) intervals such that |Pr(I)| = s for r ∈ {1, . . . ,ms(I) − 1} and |Pms(I)(I)| =
|I| −

(
ms(I) − 1

)
· s. For all r ∈ {1, . . . ,ms(I)}, we denote the complement of Pr(I)

as P cr (I) := I \ Pr(I). For all I ∈ I with |I| < 2s, we let ms(I) = 1, P1(I) = I, and
with a slight abuse of notation, P c1 (I) = I. An illustration of this notation is given in

Figure 3.4.3. For all I, J ∈ I, we define VI,J(S) =
1

|I|
∑
`∈I

E
[(
εJ` (S)

)2]
where εJ` (S) is

the population OLS residual at ` given S over J (see Definition 3.3.2).

min(I) min(I) + s min(I) + 2s max(I)

︷ ︸︸ ︷P1(I) ︷ ︸︸ ︷P2(I) ︷ ︸︸ ︷P3(I)

Figure 3.4.3: Illustration of the partition of an interval I with 3s ≤ |I| ≤ 4s − 1 into
3 sub-intervals. The ticks min(I), min(I) + s and min(I) + 2s mark the
beginning of the three intervals and max(I) marks the end of the third
interval.
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If there is no CCP in I ∈ I, then there exists S ∈ S and c ∈ R such that for all
J ⊆ I, VI\J,J(S) = VJ,J(S) = c. This motivates the following definition of minimal
OLS instability (Definition 3.4.2) which serves as the basis of our causal stability loss
(Definition 3.4.4).

Definition 3.4.2 (Minimal OLS instability). Let I ∈ I and let s ∈ N be a minimal
segmentation length. The minimal OLS instability over the interval I is defined as

Cs(I) := min
S∈S

ms(I)∑
r=1

(
VP cr (I),Pr(I)(S)− VPr(I),Pr(I)(S)

)2
.

♣

It satisfies the following property.

Proposition 3.4.3. Let I ∈ I and s ∈ N. Suppose there is no CCP in I, then Cs(I) = 0.

A proof is given in Appendix 3.D. We then define the causal stability loss at a time
point i in an interval I as the sum of minimal OLS instability over the sub-intervals to
the left and right of the time point i.

Definition 3.4.4 (Causal stability loss). Let I ∈ I and let s ∈ N be a minimal segmen-
tation length. For all i ∈ I \ {min(I),max(I)}, we define Ii− := {min(I), . . . , i− 1} and
Ii+ := {i, . . . ,max(I)}, then we define the causal stability loss as

LI,s(i) =
Cs(Ii−) + Cs(Ii+)

ms(Ii−) +ms(Ii+)
,

where Cs(Ii−) and Cs(Ii+) are as defined in Definition 3.4.2. ♣

The following property of the causal stability loss follows directly from Proposi-
tion 3.4.3.

Corollary 3.4.5. Let I ∈ I and s ∈ N. If there is no CCP in I, then for all i ∈ I
LI,s(i) = 0; if τ ∈ {min(I) + 1, . . . ,max(I)− 1} is the only CCP in I, then LI,s(τ) = 0.

3.4.2.2 Localizing a single causal change point

The loss function LI,s can be estimated by replacing the population quantities with their
empirical counterparts. The OLS coefficient given S ∈ S over an interval I ∈ I can be
estimated by the vector β̂OLS

I (S) ∈ Rd+1 where(
β̂OLS
I (S)

)S
= arg min

βS∈R|S|

∑
`∈I

(
Y` − (XS

` )>βS
)2

and
(
β̂OLS
I (S)

)j
= 0 for all j ∈ {1, . . . , d + 1} \ S. For all I ∈ I, let β̂OLS

I (S) be the
estimated OLS coefficient given S over I. For all ` ∈ {1, . . . , n}, the estimated OLS
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residual at ` given S over I is given by ε̂`(S) = Y` − X>` β̂OLS
I (S) with the convention

that ε̂I(S) =
(
Y` − X>` β̂

OLS
I (S)

)
`∈I
∈ R|I|. Lastly, for all I, J ∈ I, let V̂ 2

I,J(S) :=

1
|I|
∑

`∈I
(
ε̂J` (S)

)2
. Then the minimal OLS instability over I can be estimated by

Ĉs(I) := min
S∈S

m(I)∑
r=1

(
V̂P cr (I),Pr(I)(S)− V̂Pr(I),Pr(I)(S)

)2

and the causal stability loss can be estimated by

L̂I,s(i) :=
Ĉs(Ii−) + Ĉs(Ii+)

m(Ii−) +m(Ii+)
.

3.4.2.3 Localizing multiple causal change points

We propose two general approaches to localize multiple CCPs. The first approach uses
the standard binary segmentation algorithm proposed by Vostrikova [1981] (see Algo-
rithm 3 in Appendix 3.B) and then prunes the resulting estimates by Algorithm 2 in
Appendix 3.B. The pruning step is necessary since even at population level, the causal
stability loss does not necessarily achieve its minimum at one of the true CCPs in an
interval that contains multiple CCPs, although it does so when only one CCP exists in
an interval.

As a second approach, we consider a different greedy algorithm which instead of
searching for change points in a top-down order as the standard binary segmentation, it
searches for change points in a bottom-up order, namely the seeded binary segmentation
algorithm [Kovács et al., 2023] with the narrowest-over-threshold selection procedure
[Baranowski et al., 2019]. The idea is to first generate a collection of sets of intervals
with increasing lengths2. Among the narrowest intervals for which HI0 is rejected, we es-
timate one CCP in the interval that has the smallest p-value, and eliminate all intervals
that contain the estimated CCP. We then repeat the procedure among the remaining
sets of intervals from the narrowest to the widest until HI0 is not rejected for any re-
maining intervals. The bottom-up order aims to ensure that each interval only contains
at most one CCP, which is suitable when the loss function may not achieve its minimum
at a CCP given multiple CCPs in an interval. The procedure of obtaining the seeded
intervals [Definition 1, Kovács et al., 2023] is given in Algorithm 4 in Appendix 3.B.
Algorithm 5 in Appendix 3.B describes the overall procedure of the second approach.
We compare the above approaches in Section 3.5.1.

3.5 Numerical Experiments

We demonstrate the performance of our proposed methods based on both simulated
datasets and two real datasets. In Section 3.5.1 we describe the data generating process

2The seeded intervals can be seen as generated layer by layer, as described in Algorithm 4. The intervals
on the same layer are considered to have the same length, despite the small differences caused by
rounding.

83
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that the simulated experiments are based on. For CCP detection, we show the level and
power given differet true locations of one CCP with the Chow test for testing HI0,S , as
described in Section 3.3.1. For CCP localization, we consider both the case where it is
known that there is exactly one CCP and the case where there are multiple CCPs, and
compare the methods proposed in Section 3.4. Additional numerical experiments can be
found in Appendix 3.C.1. All numerical experiments can be reproduced using the code
available at https://github.com/shimenghuang/CausalCP.

3.5.1 Simulated experiments

In this section, we consider the following data generating process given for all i ∈
{1, . . . , n} by

X1
i := ε1i

X2
i := α12

i X
1
i + ε2i

Yi := β15
i X

1
i + β25

i X
2
i + εYi

X4
i := ε4i

X3
i := α53

i Yi + α43
i X

4
i + ε3i ,

(3.5.8)

where εji ∼ N (µji , (σ
j
i )

2) for j ∈ {1, 2, 3, 4, Y }. The induced DAG for all i ∈ {1, . . . , n} is
shown in Figure 3.5.4. There are in total 15 parameters in this data generating process
which can be divided into two sets: 4 parameters that are related to the causal mechanism
of Y with respect to X (β15

i , β25
i , µYi , and σYi ), and 11 parameters that are not related

to causal mechanism of Y with respect to X (α12
i , α53

i , α43
i , µji for j ∈ {1, 2, 3, 4},

and σji for j ∈ {1, 2, 3, 4}). Throughout this section, we refer to the set of parameters
that are related to the causal mechanism of Y as the causal parameters, and the set
of parameters thar are not related to causal mechanism of Y as non-causal parameters.
In the following experiments, parameters are chosen such that changes in the causal
parameters are CCPs (see Definition 3.2.4) and changes in the non-causal parameters
are NCCPs (we have verified this using straight-forward computations). More details of
the data generating process can be found in the Appendix 3.C.2. All experiments are
based on 200 repetitions.

Yi

X1
i

X2
i

X3
i X4

i

Figure 3.5.4: DAG induced by (3.5.8) for all i ∈ {1, . . . , n}.
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3.5 Numerical Experiments

3.5.1.1 CCP detection

We demonstrate the power to detect CCPs where changes happen in the causal param-
eters β15

i and β25
i in (3.5.8) of the split Chow test described in Section 3.3.1 and show

that it holds the correct level. We fix α to be 0.05 in this experiment. Figure 3.5.5
shows that the procedure has the most power when the true CCP is in the middle of
the interval while it has least power when the true relative location of one single CCP
is close to the boundaries of the interval. A possible explanation is that the Chow test
is applied on the two sub-intervals to the left and right of the midpoint. When the true
CCP is to the left of the midpoint, the left half of the interval contains data from a
mixture of two distributions before and after the change, and the right half contains
data only from the distribution after the change, similarly when the true CCP is to the
right of the midpoint. Only when the true CCP coincides with the midpoint, the two
sides both contain data from a single distribution which leads to a higher power with the
Chow test. The “no CCP” label on the x-axis corresponds to when the interval does not
contain a CCP. In that case a valid method should control the type-I error of wrongly
detecting a CCP at the pre-specified level (5% in this case).

no CCP 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 3.5.5: Empirical investigation of level and power of the testing procedure de-
scribed in Section 3.3.1 with increasing sample sizes. The x-axis corre-
sponds to the relative location of a single CCP (and no CCP). The error
bars are binomial confidence intervals and the red dashed line is at 0.05.

3.5.1.2 CCP localization

We compare the proposed methods for localizing CCPs described in Section 3.4 and
the method BP which uses the ‘breakpoints’ method for localizing structural changes in
linear models due to Bai and Perron [2003] implemented in the R package ‘strucchange’
[Zeileis et al., 2002]. In Experiment 1 and Experiment 2, which consider datasets with a
single true CCP, we apply the pruning approach described in Section 3.4.1 assuming the
set of true RCPs is known (Prune-Oracle) and assuming that they are unknown then
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using breakpoints to estimate the RCPs (Prune-BP). These approaches are compared
with the causal stability loss (LossCS) approach described in Section 3.4.2 and using
breakpoints to estimate a single change point (BP-1). In Experiment 3 where there
are two true CCPs, we apply the following methods: (i) using breakpoints to estimate
two change points (BP-2), (ii) using breakpoints to estimate all change points up to
a specified minimal segment length (BP), (iii) using seeded binary segmentation with
the causal stability loss as in Algorithm 5 in Appendix 3.B (LossCS-SeededBS), (iv)
using LossCS-SeededBS combined with a pruning step (LossCS-SeededBS-Prune), (v)
using standard binary segmentation with the causal stability loss as in Algorithm 3 in
Appendix 3.B (LossCS-StdBS), and (vi) using LossCS-StdBS combined with a pruning
step (LossCS-StdBS-Prune).

Experiment 1: Fixed relative locations of one CCP and two NCCPs with increasing
n For a total number of time points n, one true CCP is fixed at 0.5n+ 1 and two true
NCCPs are fixed at d0.25n+1e and d0.75n+1e, respectively. The minimal segmentation
length for all methods is set to be 0.1n. For LossCS, we evaluate the loss at every
0.05n time points starting from d0.05n + 1e and ending at d0.95n + 1e. We compare
the different methods for sample sizes n ∈ {250, 1000, 4000}. In Figure 3.5.6, we see
that under this setup, all methods except BP-1 give estimates concentrating around
the true value with increasing sample size, while estimates based on BP-1 concentrate
around the second NCCP. Moreover, LossCS performs better than the two pruning
approaches Prune-Oracle and Prune-BP which both end up not detecting any CCPs
in many simulations. Lastly, the results of Prune-Oracle and Prune-BP are similar for
large sample sizes, indicating that estimating RCPs from data and using these estimates
as candidates can indeed perform well.

Experiment 2: Different relative locations of a single CCP For n = 2000, two true
NCCPs are fixed at 0.25n + 1 and 0.75n + 1, respectively. We evaluate the perfor-
mance of LossCS when the relative location of a single CCP is fixed at νn + 1 for
ν ∈ {0.1, 0.2, . . . , 0.9}. We fix the minimum segmentation length to be 0.1n and for
LossCS we evaluate the loss at every 0.1n points. Figure 3.5.7 shows the estimated
versus true relative locations of the CCP. The points are jittered horizontally for visual
clarity. We can see that LossCS performs well when the true CCP is relatively close
to the center of the interval, but when the true CCP is close to the left (respectively,
right) boundary of the interval, LossCS tends to over- (respectively, under-) estimate
the location.

Experiment 3: Fixed relative locations of two CCPs and one NCCP with increasing
n For a total number of time points n, two CCPs are fixed at 0.2n+1 and 0.8n+1, and
one NCCP is fixed at 0.5n+ 1. We fix the minimum segmentation length for all meth-
ods to be 0.2n and for LossCS we evaluate the loss at every time point other than the
max(d0.1|I|e, 10) points at the beginning and end of each seeded interval I. We compare
the different methods for sample sizes n ∈ {1000, 2000, 4000}. Bonferroni correction is
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Figure 3.5.6: Relative locations of the estimated CCP using different methods with vary-
ing number of time points n. The red vertical dashed line indicates the true
relative location of the CCP and the two grey vertical dashed lines corre-
spond to the true relative locations of the NCCPs. With increasing sample
size, estimates from all methods except BP-1 concentrate around the true
CCP, but Prune-Oracle and Prune-BP both detect no CCP in many of
the 200 repetitions.

applied in the pruning step when there is more than one candidate. Figure 3.5.8 contains
the histogram of the estimates based on each approach under this setting. As can be
seen, using BP-2 to estimate two CCPs is not a valid method as it might detect NCCPs as
in this example. With a large enough sample size, Prune-BP performs best based on the
number of false and true positives, followed by LossCS-SeedBS-Prune, LossCS-SeedBS,
and LossCS-StdBS-Prune. When the sample size is small, LossCS-SeedBS-Prune per-
forms best in the sense that it has the least number of false positives and the most
number of true positives. The pruning step after LossCS-SeedBS does not seem to im-
prove the estimation much especially when the sample size is large, as the number of
false positives is already low. However, for LossCS-StdBS the pruning step is crucial in
this example, as it tends to first split on the NCCP hence leading to many false positives.

In summary, both families of LossCS-* and Prune-* can be helpful when localizing
CCPs. The LossCS-* methods can be used in combination with many existing change
point localization schemes. The Prune-* methods come with the usual guarantees of a
test, which may be beneficial for small sample sizes (where it may be better to remain
conservative and not make any decision). If the set of candidates is incorrect in that it
does not contain all true CCPs, the output of these methods may be incorrect; however,
in some scenarios it may be possible to realize that, see Experiment 4 in Appendix 3.C.1.
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Figure 3.5.7: Estimated relative locations the CCP given different true relative locations
of the CCP and n = 2000. The two vertical dashed lines indicate the (fixed)
true relative locations of the NCCPs. LossCS tends to over- (respectively,
under-) estimate the location of CCP when the CCP is close to the left
(respectively, right) boundary.

3.5.2 Real data application

We now consider two real datasets and use them to illustrate the differences between
CCPs and other types of change points. The first dataset, which we use to illustrate
CCP detection and localization, pertains to air quality in Beijing during February 2014
and March 2017. It is taken from the UCI Machine Learning Repository [Chen, 2017]
and was previously analyzed by Zhang et al. [2017]. The second dataset, which we use
to illustrate CCP detection, is the monetary policy example discussed by Pfister et al.
[2019]. The purpose of these examples is only to illustrate possible scenarios that our
methods can be applied to, rather than to provide new subject-matter insights based on
the two datasets.

To account for time dependence and detect and localize changes in the instantaneous
causal effects, we adopt the approach proposed in Pfister et al. [2019], which relies on
linear autoregressive models. To be more precise, this means that (3.2.2b) in Setting 1
is replaced by the following:

Yi = X>i βi +
∑̀
l=1

(Yi−l, X
>
i−l)bl + gi(Hi, ε

Y
i ),

where ` ∈ {1, . . . , n − 2} is a fixed number of lags3, and bl ∈ Rd+1 for l ∈ {1, . . . , `}.
3We consider ` to be at least 1 because 0 lag reduces to the case without any time dependence.
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Figure 3.5.8: Histogram of the estimated CCPs using different methods. The two red
dashed lines correspond to the relative location of the true CCPs. The
grey dashed line corresponds to the relative location of the true NCCP.
When the sample size is large, Prune-BP performs best in terms of both
the number of false positives and true positives while at a relatively small
sample size LossCS-SeedBS-Prune performs best.

This modified setting is satisfied, for example, if {(Xi, Yi)}ni=1 follows a structural vector
autoregressive process [see e.g., Lütkepohl, 2005].

In terms of methodology, this requires only an augmentation of the covariates X.
Given a set of observations {(Yi, Xi)}ni=1, our CCP detection and localization meth-
ods are consequently adapted as follows: for a set S ∈ S and an interval I ∈ I,
instead of regressing Yi on XS

i , we regress Yi on the augmented predictors ZSi :=(
(XS

i )>, Yi−1, X
>
i−1, . . . , Yi−l, X

>
i−l
)>

for a fixed number of lags ` ∈ {1, . . . , |I| − 2}. In
the following applications, we report the results using different numbers of lags.

3.5.2.1 Air quality example

The air quality dataset comprises hourly observations of variables related to air pollu-
tants and meteorological conditions in Beijing. Our analysis focuses on a monitoring
site located in the city center of Beijing. We aggregate the hourly data for PM2.5, SO2,
NO2, and CO concentrations, as well as meteorological variables DEWP and WSPM,
into daily averages over the period from January 1, 2014, to January 1, 2017. A brief
description of these variables is provided in Appendix 3.C.3.

PM2.5 is an air pollutant that poses a serious health risk to the population, as particles
and droplets of this size can penetrate deep into the lungs and even enter the bloodstream
[see e.g., Thangavel et al., 2022]. Since 2013, Beijing has established an air pollution
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monitoring network as part of its efforts to address air quality issues [Cheng et al., 2019].
The analysis by Zhang et al. [2017] shows that although the average PM2.5 concentration
decreased in 2015 both marginally and after adjusting for meteorological factors, in 2016,
it only decreased marginally but not after adjusting for meteorological factors. On the
other hand, the analysis by Cheng et al. [2019] shows that although the meteorological
factors influence the PM2.5 level to a large extent, the emission reduction measures
during 2013 to 2017 do contribute to controlling the PM2.5 level. We apply our CCP
detection method to investigate whether there is a change in how PM2.5 causally depends
on the covariates—which may indicate a significant intervention in the PM2.5 emission
mechanism—and compare it with marginal change point (MCP) and RCP detection
results.

We log-transform the four pollutant concentration variables. The log PM2.5 con-
centration is considered as the response, and the log concentration of the other three
pollutants, two meteorological variables, and one heating indicator are taken as the co-
variates. We take heating into account as coal and gas are used to provide winter heating
in Beijing, which likely contributes to the seasonal pattern in the concentration of air
pollutants. The heating indicator is set to 1 during November 15 to March 15 each year
according to Beijing’s heating schedule [Beijing Municipal Government, 2009]. As time
dependence is expected, we include 1 to 7 lags of all covariates and the response in the
linear autoregressive model. MCP detection is conducted by the CUSUM test [Page,
1955] and RCP detection is done using the Chow test [Chow, 1960].

The marginal distribution of log-transformed PM2.5 is shown in the left plot of Fig-
ure 3.5.9. We can see the distinct patterns of PM2.5 concentration during the winter
heating season compared to other times of the year. This is consistent with MCP de-
tection results in the right plot of Figure 3.5.9. For RCP and CCP, we first consider
including all six covariates in the model. From the top plot in Figure 3.5.9, we see that
the hypotheses of no MCP and no RCP are rejected at a 5% level for all 1 to 7 lags,
while no CCP is not rejected for any lags, showing that the data provides evidence for
the existence of MCPs and RCPs but not for CCPs. We do detect all three types of
change points, however, if we only include the two meteorological variables as covariates,
as shown in the bottom plot in Figure 3.5.9. This indicates that the omitted variables
possibly have a causal effect on the concentration of PM2.5, and their distributions
might have changed during the time interval. We apply our CCP localization method
(LossCS-SeedBS) to localize the CCPs with the meteorological-variable-only model, and
compare with RCP and MCP localization results using the ‘breakpoints’ method (BP)
in the ‘strucchange’ R package [Zeileis et al., 2002, Bai and Perron, 2003], and wild
binary segmentation (WBS) by Fryzlewicz [2014], respectively. The localized change
points (dates) are given in Table 3.5.1. We can see that although the CCP estimates
are not exactly the same when including different numbers of lags, the estimated dates
are consistently around the start or end of the winter heating period. This suggests that
winter heating, which is not accounted for in the meteorological-variable-only model and
alternates on and off each year, appears (as one would expect) to lead to causal changes
in the PM2.5 concentration. In contrast, RCP and MCP localization methods result in
many more change points throughout the years.
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Figure 3.5.9: Left: Marginal distribution of log PM2.5 concentration, colored by whether
the date is during winter heating or not. Right: p-values obtained from
MCP, RCP, and CCP detection tests. 1 to 7 lags of the covariates and
response are included in the regression model. The red dashed lines indicate
the rejection threshold at log(0.05).

Number of lags
1 2 3 4 5 6 7

2014-11-05 2014-11-02 2014-11-03 2014-11-11 2015-04-13 2014-11-11 2014-11-10
2015-03-05 2016-04-22 2015-03-18 2015-10-24 2015-10-20 2015-04-28 2015-04-27
2016-04-26 2015-11-04 2016-04-21 2016-04-27 2015-10-23 2016-04-25

2016-04-22 2016-04-26

Table 3.5.1: Localized CCPs using LossCS-SeedBS based on the meteorological-variable-
only model when including 1 to 7 lags. All CCPs are localized around the
beginning and end of winter heating period. In contrast, we detect 43 MCPs
based on WBS (for MCPs, we do not regress on the past, so no lags are
involved), and for all lags, we detect 8 RCPs. We report the dates of the
estimated MCPs and RCPs in Appendix 3.C.3.

3.5.2.2 Monetary policy example

The monetary policy dataset consists of monthly observations of 10 variables related to
the monetary policy of the Swiss National Bank (SNB) from January 1999 to January
2017. As response Y , we consider the Swiss franc (CHF)/Euro (EUR) exchange rate,
which is driven by economic factors and the monetary policy of the SNB both of which are
at least partially captured by the remaining 9 variables X1, . . . , X9. A short description
of all variables and their preprocessing is provided in Appendix 3.C.3. In the observed
time frame there were two major events that affected the exchange rate: (i) The SNB
enforced a cap on the value of the Swiss franc of 1.2 CHF/EUR between September 2011
and January 2015 by trading the necessary amount of foreign currency. This change in
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the policy is captured in variable X2, the log returns of end of month proportion of
foreign currency investments from total assets on the balance sheet of the SNB. (ii) The
2009 Greek debt crisis negatively affected the value of the Euro and increased the value
of the Swiss franc. The inflow of money into Switzerland during this crisis is captured
(at least to some degree) by the Swiss gross domestic product measured by X7. To fully
model both events, the additional variables both on the economy (X8) and the policy of
the SNB (all remaining variables) are likely to be useful.

We now apply our CCP detection method to determine whether there is a CCP in how
the exchange rate depends on the explanatory variables. The resulting p-values for a
CCP and RCP detection test with ` ∈ {2, 3, 4} lags are shown in Table 3.5.2 (under ‘All
covariates’). From the discussion above, we do not expect a CCP to be present because
the model contains all factors relevant to the response. The CCP detection algorithm
(using the ‘variance’ invariance test proposed in Pfister et al. [2019]) indeed does not
reject the null hypothesis of no CCP at a 5% level. Furthermore, if we instead test for

the existence of an RCP using the same procedure but only testing H
{1,...,d+1}
0 , we reject

the null hypothesis at a 5% level, indicating the existence of an RCP.
To further illustrate the difference between CCPs and RCPs, we now consider the

same data but remove X2, X7, or both X2 and X7 from the analysis. As discussed
above, we believe that these are relevant factors for explaining the Greek debt crisis and
the exchange rate cap. The results are again shown in Table 3.5.2 (under ‘Without X2’,
‘Without X7’, and ‘Without X2 and X7’). As expected, the CCP detection test now
rejects the null hypothesis of no CCPs in all three cases, indicating that there was a shift
that cannot be explained by the covariates used in the model.

p-values All covariates Without X2 Without X7 Without X2 and X7

Lags 2 3 4 2 3 4 2 3 4 2 3 4

no RCP 0.015 0.015 0.020 0.006 0.002 0.005 0.001 0.001 0.001 0.001 0.001 0.001
no CCP 0.045 0.104 0.090 0.014 0.014 0.019 0.001 0.001 0.001 0.001 0.001 0.001

Table 3.5.2: p-values for testing the null hypotheses that there is no RCP and there is
no CCP using all covariates and using all covariates except X2, X7, or X2

and X7. With all covariates and given sufficiently many lags we only detect
RCPs. When omitting variables X2 and X7 we detect both RCPs and CCPs
at level α = 0.05.

3.6 Discussion

We introduce a notion of causal changes which, under additional causal assumptions,
captures changes in the underlying causal mechanism, but which is still meaningful
without referencing an underlying causal model. We consider the problems of detecting
and localizing these changes in an offline sequential setting. For detection, we propose
a testing procedure that combines several invariance tests. For localization, we propose
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two approaches based on pruning a set of candidate CCPs and based on minimizing a
loss function, respectively. The first approach Prune-* is directly applicable if a superset
of all CCPs is known. If this is not the case, one can first estimate the RCPs using a
method that can localize both changes in the regression parameter and changes in the
residual distribution. If the candidates are imprecise, an NCCP may be mistaken as
a CCP in the final estimates. The second approach LossCS-* avoids this problem by
targeting the CCPs directly without estimating the RCPs first.

In the Beijing air quality and monetary policy examples, we demonstrate the possi-
bility to apply our CCP detection method to detect instantaneous causal changes with
time dependencies. One potential future direction is to consider also the causal mech-
anism relating the response and the covariates’ past such as detecting and localizing
changes in the number of lags of the covariates. Moreover, we have focused on linear
regression models, but the ideas can potentially be generalized to semi-parametric or
non-parametric regression models. In those settings, we may rely on a notion of in-
variant functions [e.g., Christiansen et al., 2021] rather than invariant sets. Lastly, it
may also be of interest to quantify uncertainty for the CCP localization problem, see for
example, Fryzlewicz [2024].

Acknowledgement

SH and NP are supported by a research grant (0069071) from Novo Nordisk Fonden. We
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Supplementary material for “Causal change point detection
and localization”

• Section 3.A: Additional examples and details on examples.

• Section 3.B: Algorithms

• Section 3.C: Additional numerical experiments and experiment details

• Section 3.D: Proofs

• Section 3.E: Auxiliary results

• Section 3.F: Chow test

3.A. Additional examples and details on examples

3.A.1 Details of Example 3.2.2

For all j ∈ {X1, X2, X3, Y }, denote the variance of εji as (σji )
2. For all i ∈ {1, . . . , n},

α = (0, 0, 1)>; for all i ∈ I1 ∪ I2, Ai = 03×4 and βi = (1, 1, 0, 0)>, and for all i ∈ I3,

Ai =

0 0 0 0
0 0 0 0
1 0 0 0

 and βi = (0, 1, 0, 0)>. For all i ∈ I1 and for all j ∈ {X1, X2, X3, Y },

σji = 1, and for all i ∈ I2 ∪ I3, σX
1

i = σYi = 1 and σX
2

i = σX
3

i = 2. This means that
the population OLS coefficient for all i ∈ I1 is βOLS = (0.5, 0.5, 0.5, 0)>, for all i ∈ I2 is
βOLS = (0.8, 0.8, 0.2, 0)>, and for all i ∈ I3 is βOLS = (−0.2, 0.8, 0.2, 0)>.

3.A.2 Example where the reverse implication of Proposition 3.2.7 does not
hold

For all i ∈ {1, . . . , n} consider an SCM over (Xi, Yi) given by X3
i := 1 as intercept and

X1
i := εX

1

i ,

Yi := βiX
1
i + εYi ,

X2
i := αiYi + εX

2

i ,

where εji ∼ N
(

0, (σji )
2
)

for all j ∈ {X1, X2, Y }. Let k ∈ {1, . . . , n} with 1 < k < n.

For all i ∈ {1, . . . , k − 1}, βi = 2, αi = 3, and for all j ∈ {X1, X2, Y }, σji = 1. For all

i ∈ {k, . . . , n}, βi = 1, αi = 8/3, σX
1

i = 1, σX
2

i =
√

2, and σYi = 3
√

2/4 . Then, for all
i ∈ {1, . . . , n}, β̂OLS

i = (0.2, 0.3, 0)>. Thus, k is not a CCP even though βk 6= βk−1 and

εYk
d
6= εYk−1.
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3.B. Algorithms

The procedure of testing candidates described in Section 3.4.1 is given in Algo-
rithm 2. Other algorithms mentioned in Section 3.4: the standard binary segmentation
[Vostrikova, 1981] is given in Algorithm 3, the construction of seeded intervals is given
in Algorithm 4, and the seeded binary segmentation is given in Algorithm 5.

Algorithm 2: Pruning: CCP localization given candidates

input: data (X,Y), CCP candidates {k1, . . . , kL} with ki < kj if i < j, and
tests (φI)I∈I for (HI0)I∈I

1 k0 ← 1; kL+1 ← n+ 1; T̂ ← ∅
2 for ` ∈ {1, . . . , L} do
3 I ← {k`−1, . . . , k`+1 − 1}
4 if φI(XI ,YI) = 1 then

5 T̂ ← T̂ ∪ {k`}

output: T̂

Algorithm 3: Binary segmentation

input: data (X,Y), tests (φI)I∈I for (HI0)I∈I
tuning : a minimal segmentation length s

1 function BinSeg(X,Y, b, e, s):
2 Let I := {b, . . . , e}
3 if |I| > h and φI = 1 then

4 k := arg min
i∈I

L̂I,s(i)

5 G := BinSeg(X,Y, b, k − 1, s)
6 D := BinSeg(X,Y, k, e, s)
7 return G ∪ {d} ∪D
8 else
9 return ∅

10 Let D̂ := BinSeg(X,Y, 1, n, s).

output: D̂

3.C. Additional numerical experiments and experiment details

3.C.1 Additional numerical experiments

Further details on the following experiments can be found in Appendix 3.C.2.

95



3 CausalCP

Algorithm 4: Seeded intervals

input: Total number of time points n
tuning : a decay number a ∈ [1/2, 1), and a minimal segmentation length s

1 Let B1 := {{1, . . . , n}} and L := b1 + log 1
a

n
s c // L is the number of

levels

2 for ` ∈ {2, . . . , L} do

3 Let h` := na`−1, s` := n−h`
q`−1 , and q` := 2d 1

a`−1 e
4 for j ∈ {1, . . . , q`} do
5 Ij :=

{
b(j − 1)s`c+ 1, . . . , d(j − 1)s` + h`e

}
6 B` :=

{
I1, . . . , Iq`

}
// B` denotes level `, which is a set of

intervals

output: L levels of intervals B1, · · · ,BL

Algorithm 5: Seeded binary segmentation (with narrowest-over-threshold)

input: data (X,Y), tests (φI)I∈I for (HI0)I∈I , and levels of intervals
B1, . . . ,BL obtained from Algorithm 4

1 Let T̂ := ∅ and i := 0
2 while i < L do
3 if there exists I ∈ BL−i such that φI = 1 then
4 Let I be the interval in BL−i that has the smallest p-value

5 Let k := arg mini∈I L̂I,s(i) and T̂ := T̂ ∪ {k}
6 Update B1, . . . ,BL by removing all intervals in all B1, . . . ,BL that

contain k
7 else
8 Remove Bi
9 i := i+ 1

output: T̂
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3.6 Discussion

Experiment 4: Pruning when the candidate set is a subset of the true CCPs For a
total number of time points n, two CCPs are fixed at d0.25n+ 1e and d0.75n+ 1e. We
illustrate the performance of pruning described in Section 3.4.1 when the candidate set
contains only one of the two CCPs. Figure 3.C.1 shows the power of detecting all CCPs
contained in the candidate set when the candidate set contains only the first CCP (k1),
only the second CCP (k2), or contains both CCPs (k1, k2). In this setting, we observe
that when the candidate set contains only one of the two true CCPs, the detection of
this CCP is not affected for a large enough sample size.
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1.00

250 1000 4000
sample size

po
w
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relative location

0.25

0.75

candidate set

k1

k2
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Figure 3.C.1: Power of detecting all CCPs contained in the candidate set when the can-
didate set contains only one true CCP or both of the true CCPs.

Experiment 5: Pruning when the candidate deviates from the true CCP For n =
4000, one true CCP is fixed at 0.5n. We let the candidate equal (0.5 + δ)n for different
δ. Figure 3.C.2 shows (with the marker ‘×’) the percentage of repetitions for which the
method (incorrectly for δ 6= 0) outputs the candidate as a CCP, i.e., the test that the
candidate is not a CCP is rejected (with α = 0.05). If the method does output the
candidate as a CCP, we test whether there exists an invariant set over the sub-intervals
to the left and right of the candidate. The percentages of repetitions where the test is
rejected in at least one of the sub-intervals versus not rejected in both sub-intervals given
different δ’s are also shown with bar charts in Figure 3.C.2. Even though an inaccurate
candidate can be output as an estimated CCP, it is possible to invalidate the output by
testing for the existence of invariant sets over the sub-intervals divided by the candidate.

3.C.2 Experiment details

For each of the experiments we first choose the parameters of the SCMs (3.5.8) for all
i ∈ {1, . . . , n}, and then generate one dataset accordingly for each of the 200 repeti-
tions. As before, the parameters are chosen such that changes in the causal parameters
are CCPs and changes in the non-causal parameters are NCCPs (we have verified this
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Figure 3.C.2: When the candidate deviates from the true CCP by a relative error δ ∈
{−0.2,−0.15, . . . , 0.2}, the percentages of cases where ‘the candidate is not
a CCP’ is rejected, are almost all at 1 (when δ = 0 the rejection is correct
while when δ 6= 0 the rejection is incorrect). However, we can test whether
there is an invariant set in the two sub-intervals to the left or right of the
candidate that is output as a CCP. If we reject that there is an invariant
set in one of the two sub-intervals to the left or right of this candidate, it
indicates that classifying the candidate as a CCP may be incorrect.

using straight-forward computations). The specific values of these parameters for each
experiment in Section 3.5.1.2 are given below.

• CCP detection in Section 3.5.1.1: Table 3.C.1.

• CCP localization Experiment 1 in Section 3.5.1.2: Table 3.C.2.

• CCP localization Experiment 2 in Section 3.5.1.2: Table 3.C.3.

• CCP localization Experiment 3 in Section 3.5.1.2: Table 3.C.4.

• CCP localization Experiment 4 in Appendix 3.C.1: Table 3.C.5.

• CCP localization Experiment 5 in Appendix 3.C.1: Table 3.C.6.

i µ1
i µ2

i µ3
i µ4

i µYi σ1
i σ2

i σ3
i σ4

i σYi a12
i a53

i a43
i b15

i b25
i

1, . . . , nν 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nν + 1, . . . , n 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00

Table 3.C.1: Parameter values of CCP detection experiment in Section 3.5.1.1 where

ν =
τ − 1

n
is the relative location of the single CCP, ν ∈ {0.1, . . . , 0.9}.
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i µ1
i µ2

i µ3
i µ4

i µYi σ1
i σ2

i σ3
i σ4

i σYi a12
i a53

i a43
i b15

i b25
i

1, . . . , 0.25n 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25n+ 1, . . . , 0.5n 1.50 0.50 0.50 1.50 1.00 0.71 0.71 1.22 1.22 1.00 1.50 1.50 0.50 1.00 1.00
0.5n+ 1, . . . , 0.75n 1.50 0.50 0.50 1.50 0.50 0.71 0.71 1.22 1.22 1.22 1.50 1.50 0.50 1.50 0.50

0.75n+ 1, . . . , n 0.75 0.75 0.25 0.75 0.50 0.50 0.50 1.50 0.87 1.22 2.25 0.75 0.25 1.50 0.50

Table 3.C.2: Parameter values of CCP localization Experiment 1 in Section 3.5.1.2 where
0.5n is the location of the single CCP, and 0.25n and 0.75n are the locations
of two NCCPs. The changes at the CCP and the NCCPs are such that each
causal (respectively, non-causal) parameter either increase or decrease (with
probability 0.5) by 50% of its value at the previous time point (for σji where
j ∈ {1, 2, 3, Y }, the changes are 50% in their squared values).

i µ1
i µ2

i µ3
i µ4

i µYi σ1
i σ2

i σ3
i σ4

i σYi a12
i a53

i a43
i b15

i b25
i

1, . . . , 200 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
201, . . . , 500 1.00 1.00 1.00 1.00 1.50 1.00 1.00 1.00 1.00 1.22 1.00 1.00 1.00 1.50 1.50

501, . . . , 1500 1.50 1.50 1.50 1.50 1.50 1.22 1.22 1.22 1.22 1.22 1.50 1.50 1.50 1.50 1.50
1501, . . . , 2000 2.25 2.25 2.25 2.25 1.50 1.50 1.50 1.50 1.50 1.22 2.25 2.25 2.25 1.50 1.50

Table 3.C.3: An example of the parameter values of CCP localization experiment in
Section 3.5.1.2 with ν = 0.1. In this experiment, n = 2000, two fixed
NCCPs are located at 501 and 1501, and one CCP is located at τ = nν +
1. The changes at the CCP and the NCCPs are such that each causal
parameter (respectively, non-causal) increases by 50% of its value at the
previous time point (for σji where j ∈ {1, 2, 3, Y }, the changes are 50%
in their squared values). The parameter values for ν ∈ {0.2, . . . , 0.9} are
constructed in the same way.

i µ1
i µ2

i µ3
i µ4

i µYi σ1
i σ2

i σ3
i σ4

i σYi a12
i a53

i a43
i b15

i b25
i

1, . . . , 0.25n 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25n+ 1, . . . , 0.5n 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
0.5n+ 1, . . . , 0.75n 1.00 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 0.00

0.75n+ 1, . . . , n 1.00 1.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 2.00 1.00 0.00 1.00

Table 3.C.4: Parameter values of CCP localization experiment Experiment 1 in Sec-
tion 3.5.1.2 where 0.5n is the location of the single CCP, and 0.25n and
0.75n are the locations of two NCCPs.

3.C.3 Real data details and additional results

A description of all variables in the Beijing air quality example is given in Table 3.C.7.
We also include the variable description of the monetary policy example from Pfister
et al. [2019] in Table 3.C.8 for completeness. All variables are scaled to have mean 0 and
variance 1 before applying any change point detection and localization methods. The
estimated RCP and MCP dates in Section 3.5.2.1 (Table 3.5.1) are given in Table 3.C.9.
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i µ1
i µ2

i µ3
i µ4

i µYi σ1
i σ2

i σ3
i σ4

i σYi a12
i a53

i a43
i b15

i b25
i

1, . . . , 0.25n 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.25n+ 1, . . . , 0.75n 1.00 1.00 1.00 1.00 1.50 1.00 1.00 1.00 1.00 1.22 1.00 1.00 1.00 1.50 1.50

0.75n+ 1, . . . , n 1.00 1.00 1.00 1.00 2.25 1.00 1.00 1.00 1.00 1.50 1.00 1.00 1.00 2.25 2.25

Table 3.C.5: Parameter values of CCP localization experiment Experiment 4 in Ap-
pendix 3.C.1 where 0.25n and 0.75n are the locations of two CCPs. The
changes at the CCP are such that each causal parameter increases by 50%
of its value at the previous time point (for σYi the changes are 50% in its
squared value).

i µ1
i µ2

i µ3
i µ4

i µYi σ1
i σ2

i σ3
i σ4

i σYi a12
i a53

i a43
i b15

i b25
i

1, . . . , 2000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000, . . . , 4000 1.00 1.00 1.00 1.00 1.50 1.00 1.00 1.00 1.00 1.22 1.00 1.00 1.00 1.50 1.50

Table 3.C.6: Parameter values of CCP localization experiment Experiment 5 in Ap-
pendix 3.C.1 where 2000 is the location of the single CCP. The changes
at the CCP are such that each causal parameter increases by 50% of its
value at the previous time point (for σYi the change is 50% in its squared
value).

Variable Description

Y log daily average of PM2.5 concentration
X1 log daily average of SO2 concentration
X2 log daily average of NO2 concentration
X3 log daily average of CO concentration
X4 daily average drew point temperature (DEWP)
X5 daily average wind speed (WSPM)
X6 heating indicator (1 if during heating period and 0 otherwise)

Table 3.C.7: Variable description of the Beijing air quality dataset.
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Variable Description

Y log returns of end of month exchange rate Euro to Swiss Francs
X1 change in average call money rate (no log transform as part of the values are negative)

X2 log returns of end of month proportion of foreign currency investments from total assets on
the balance sheet of the SNB

X3 log returns of end of month proportion of reserve positions at International Monetary Fund
(IMF) from total assets on the balance sheet of the SNB

X4 log returns of end of month proportion of monetary assistance loans from total assets on the
balance sheet of the SNB

X5 log returns of end of month proportion of Swiss Franc securities from total assets on the bal-
ance sheet of the SNB

X6 log returns of end of month proportion of remaining assets from total assets on the balance
sheet of the SNB

X7 log returns of Swiss GDP (in Euro) resulting from interpolation of quarterly (seasonally ad-
justed) data and adjusted using the monthly average exchange rate

X8 log returns of Euro zone GDP resulting from an interpolation of quarterly (seasonally ad-
justed) GDP data

X9 inflation rate for Switzerland computed from the monthly consumer price index (CPI)

Table 3.C.8: Variable description of the monetary policy dataset from Pfister et al. [2019]
Table 2.

Method
Number of lags

1 2 3 4 5 6 7

RCP

2014-05-24 2014-05-23 2014-05-22 2014-05-24 2014-05-23 2014-05-21 2014-05-24
2014-11-11 2014-11-15 2014-11-11 2014-11-10 2014-11-12 2014-11-08 2014-11-07
2015-03-03 2015-03-03 2015-02-28 2015-02-28 2015-02-28 2015-02-26 2015-02-25
2015-06-20 2015-06-19 2015-06-16 2015-06-16 2015-06-16 2015-06-14 2015-06-13
2015-10-06 2015-10-05 2015-10-02 2015-10-02 2015-10-02 2015-09-30 2015-09-29
2016-01-27 2016-01-26 2016-01-18 2016-01-19 2016-01-18 2016-01-17 2016-01-16
2016-05-20 2016-05-19 2016-05-18 2016-05-17 2016-05-16 2016-05-15 2016-05-14
2016-09-11 2016-09-10 2016-09-09 2016-09-08 2016-09-07 2016-09-07 2016-09-06

MCP

2014-02-05, 2014-02-16, 2014-03-15, 2014-03-21, 2014-07-01, 2014-09-29, 2014-10-04, 2014-10-06,
2014-11-11, 2014-11-23, 2014-12-18, 2015-01-19, 2015-03-01, 2015-04-24, 2015-06-13, 2015-08-13,
2015-09-06, 2015-09-26, 2015-09-30, 2015-10-05, 2015-11-01, 2015-11-08, 2015-11-19, 2015-11-24,
2015-11-27, 2015-12-07, 2015-12-11, 2015-12-27,2016-01-31, 2016-02-05, 2016-02-22, 2016-02-28,
2016-03-04, 2016-03-15, 2016-03-27, 2016-08-17, 2016-09-05, 2016-10-13, 2016-10-25, 2016-11-13,
2016-11-16, 2016-12-08, 2016-12-14

Table 3.C.9: Estimated dates of RCPs and MCPs in the Beijing air quality application
based on the meteorological-variable-only model. The MCPs are estimated
by WBS using random intervals. With different random seeds, we obtain
similar estimates. The RCPs are estimated by BP, with the number of
RCPs selected by minimizing the residual sum of squares.
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3.D. Proofs

3.D.1 Proof of Proposition 3.2.6

Proof. We show both directions separately.
(⇒) Assume k is a CCP and fix an arbitrary S ∈ S. Then, since k is a CCP it

holds that either βOLS
k (S) 6= βOLS

k−1 (S) or εk(S)
d
6= εk−1(S). This implies, that S is not a

{k − 1, k}-invariant set. Since S was arbitrary this implies the result.
(⇐) Assume there does not exist a {k − 1, k}-invariant set S ∈ S. Then, it holds for

all S ∈ S that either βOLS
k (S) 6= βOLS

k−1 (S) or εk(S)
d
6= εk−1(S), which implies that k is a

CCP.
This completes the proof of Proposition 3.2.6.

3.D.2 Proof of Proposition 3.2.7

Proof. We begin by connecting the causal coefficient and residual with the corresponding
population OLS coefficient and residual given the parents of Y . By the definitions
of the causal and population OLS coefficients it holds for all i ∈ {k − 1, k} and all
j ∈ {1, . . . , d+ 1} \ PA(Yi), that (βOLS

i (PA(Yi)))
j = βji = 0 and(

βOLS
i (PA(Yi))

)PA(Yi)
= E

[
X

PA(Yi)
i (X

PA(Yi)
i )>

]−1
E
[
X

PA(Yi)
i Yi

]
= E

[
X

PA(Yi)
i (X

PA(Yi)
i )>

]−1
E
[
X

PA(Yi)
i (X

PA(Yi)
i )>βPA(Yi)

i

+X
PA(Yi)
i gi(Hi, ε

Y
i )
]

= β
PA(Yi)
i + E

[
X

PA(Yi)
i (X

PA(Yi)
i )>

]−1
E
[
X

PA(Yi)
i gi(Hi, ε

Y
i )
]

= β
PA(Yi)
i , (3.D.1)

where the last equality follows from the assumption that for all i ∈ {k − 1, k},
E[X

PA(Yi)
i gi(Hi, ε

Y
i )] = 0. Thus, we get for all i ∈ {k − 1, k} that

βOLS
i (PA(Yi)) = βi. (3.D.2)

Moreover, using this result and the definition of the population OLS residual given
PA(Yi) we also obtain that

εi(PA(Yi)) = Yi −X>i βOLS
i (PA(Yi))

= Yi −X>i βi
= gi(Hi, ε

Y
i ). (3.D.3)

Now, we can prove the result. To this end, assume k ∈ {2, . . . , n} satisfies that

βk = βk−1 and gk(Hk, ε
Y
k )

d
= gk−1(Hk−1, ε

Y
k−1). This implies that PA(Yk−1) = PA(Yk)

and hence, using (3.D.2) and (3.D.3), the set PA(Yk) is {k − 1, k}-invariant. Therefore,
by Proposition 3.2.6, k is not a CCP. This completes the proof of Proposition 3.2.7.
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3.6 Discussion

3.D.3 Proof of Proposition 3.3.1

Proof. Suppose (XI ,YI) ∼ P ∈ HI0 and let S ∈ S be s.t. S is I-invariant. We then have

PP (φI = 1) ≤ PP (φSI = 1) ≤ α.

3.D.4 Proof of Proposition 3.4.1

Proof. For (i), assume that for all k ∈ K the test φIk is level α. Then, using a union
bound we get

P(T̂ ⊆ T ) = 1− P(∃k ∈ T̂ : k 6∈ T )

≥ 1−
∑

k∈K\T
P(k ∈ T̂ )

≥ 1−
∑

k∈K\T
P(φIk = 1)

≥ 1− (|K| − |T |) · α,

where in the last step we used that HIk0 is true for all k ∈ K \ T .
Similarly, for (ii), assume that for all ` ∈ {1, . . . , L} with k` ∈ T it holds that P(φIk` =

1) ≤ β, then

P(T̂ ⊇ T ) = 1− P(∃k ∈ T : k 6∈ T̂ )

≥ 1−
∑
k∈T

P(k 6∈ T̂ )

= 1−
∑
k∈T

P(φIk = 0)

≥ 1− |T | · (1− β).

This concludes the proof.

3.D.5 Proof of Proposition 3.4.3

Proof. Suppose there is no CCP in I. Then, there exists a set S ∈ S, a parameter
β ∈ Rd+1 and a distribution Fε such that for all i ∈ I it holds that βOLS

i (S) = β and

εi(S)
iid∼ Fε. Moreover, by Lemma 1 it holds for all J ⊆ I and all i ∈ I that εJi (S)

iid∼ Fε.
Hence, we get for all J, J ′ ⊆ I that

VJ ′,J(S) =
1

|J ′|
∑
`∈J ′

E
[
εJ` (S)2

]
=

1

|J ′|
∑
`∈J ′

Eν∼Fε
[
ν2
]

= Eν∼Fε
[
ν2
]
.
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Therefore, for s ∈ N, we get

Cs(I) = min
S̃∈S

ms(I)∑
r=1

(
VP cr (I),Pr(I)(S̃)− VPr(I),Pr(I)(S̃)

)2

≤
ms(I)∑
r=1

(
VP cr (I),Pr(I)(S)− VPr(I),Pr(I)(S)

)2

=

ms(I)∑
r=1

(
Eν∼Fε

[
ν2
]
− Eν∼Fε

[
ν2
])

= 0.

Now, since Cs(I) ≥ 0, we have that Cs(I) = 0. This completes the proof of Proposi-
tion 3.4.3.

3.E. Auxiliary results

Lemma 1. Let I ∈ I and S ∈ S is an I-invariant set. Then, for all J ⊆ I and all
i ∈ I, it holds that βOLS

J (S) = βOLS
i (S), and that there exists a distribution Fε such that

εJi (S) = εi(S)
iid∼ Fε.

Proof. Since S is I-invariant, there exists β ∈ Rd+1 and distribution Fε on R such that for

all i ∈ I it holds that βOLS
i (S) = β and εi(S)

iid∼ Fε. Moreover, since the population OLS
coefficient satisfies for all i ∈ I that E

[
XS
i Yi
]

= E
[
XS
i (XS

i )>
]
βOLS
i (S)S , it immediately

follows for all J ⊆ I that(
βOLS
J (S)

)S
=
[∑
`∈J

E[XS
` (XS

` )>]
]−1∑

`∈J
E[XS

` Y`]

=
[∑
`∈J

E[XS
` (XS

` )>]
]−1∑

`∈J
E
[
XS
` (XS

` )>
]
βOLS
` (S)S

=
[∑
`∈J

E[XS
` (XS

` )>]
]−1∑

`∈J
E
[
XS
` (XS

` )>
]
βS

= βS .

Since, for all j ∈ {1, . . . , d+ 1} \ S it also holds that
(
βOLS
J (S)

)j
= βj = 0, we get that

βOLS
J (S) = β. Moreover, this further implies for all i ∈ I that

εJi (S) = Yi −X>i βOLS
J (S) = Yi −X>i β = Yi −X>i βOLS

i (S) = εi(S)
iid∼ Fε,

this completes the proof of Lemma 1.
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3.6 Discussion

3.F. Chow test

Here we review the Chow test [Chow, 1960] where we adapted the setup and notations
to this paper.

Let I = {t1, . . . , tl} ∈ I where l > d, and consider an arbitrary k ∈ I, I1
k := {t1, . . . , k},

and I2
k := {k + 1, . . . , tl} be the two non-overlapping subsets splitting I at k. Denote

l1 := |I1
k | and l2 := l − l1.

Assume that l1 > d, and for all m ∈ {1, 2} and i ∈ Imk ,

Yi = XS
i βm + εi and E[εi | XS

i ] = 0 (3.F.1)

with εi
iid∼ N (0, σ2). Then, the null hypothesis

HS0 (I, k) : β1 = β2 (3.F.2)

holds if (3.3.6) holds. The Chow test [Chow, 1960] described below can be used for
testing (3.F.2).

Proposition 1 (Chow test). Let β̂I1k
:= (X>

I1k
XI1k

)−1XI1k
YI1k

, β̂I2k
:=

(X>
I2k

XI2k
)−1XI2k

YI2k
, and β̂I := (X>I XI)

−1XIYI . Denote the residuals by

RI1k
:= YI1k

− XI1k
β̂I1k

and RI2k
:= YI2k

− XI2k
β̂I2k

. Then, under the null hypothesis

HS0 (I, k) the following two statements hold;

• if l2 > d,

||XI1k
β̂I1k
−XI2k

β̂I ||2 + ||XI2k
β̂I2k
−XI2k

β̂I ||2

||RI1k ||
2 + ||RI2k ||

2
· l − 2d

d
∼ F (d, l − 2d) (3.F.3)

• if l2 ≤ d,

(YI2k
−XI2k

β̂I1k
)>[Il2 + XI2k

(X>
I1k

XI1k
)−1X>

I2k
]−1(YI2k

−XI2k
β̂I1k

)

||RI1k ||
2

· l1 − d
l2

=
||XI1k

β̂I1k
−XI2k

β̂I ||2 + ||YI2k
−XI2k

β̂I ||2

||RI1k ||
2

· l1 − d
l2

∼F (l2, l1 − d),

(3.F.4)

where Il denotes the identity matrix of dimension l.

Proof. See Chow [1960].
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4 Sparse causal effect estimation using
two-sample summary statistics in the
presence of unmeasured confounding

Shimeng Huang, Niklas Pfister, and Jack Bowden

Abstract
Observational genome-wide association studies are now widely used for causal

inference in genetic epidemiology. To maintain privacy, such data is often only
publicly available as summary statistics, and often studies for the endogenous
covariates and the outcome are available separately. This has necessitated meth-
ods tailored to two-sample summary statistics. Current state-of-the-art meth-
ods modify linear instrumental variable (IV) regression—with genetic variants as
instruments—to account for unmeasured confounding. However, since the endoge-
nous covariates can be high dimensional, standard IV assumptions are generally
insufficient to identify all causal effects simultaneously. We ensure identifiability by
assuming the causal effects are sparse and propose a sparse causal effect two-sample
IV estimator, spaceTSIV, adapting the spaceIV estimator by Pfister and Peters
[2022] for two-sample summary statistics. We provide two methods, based on L0-
and L1-penalization, respectively. We prove identifiability of the sparse causal ef-
fects in the two-sample setting and consistency of spaceTSIV. The performance
of spaceTSIV is compared with existing two-sample IV methods in simulations.
Finally, we showcase our methods using real proteomic and gene-expression data
for drug-target discovery.

4.1 Introduction

The use of observational data to study the causal effects of covariate interventions on
an outcome has seen a surge in popularity in many scientific areas. A primary example
is genetic epidemiology, where a common research topic is to study the causal effects of
genetically predictive phenotypic traits, such as a person’s body mass index or their low
density lipoprotein cholesterol, on downstream disease outcomes. This is often based on
Mendelian randomization (MR)—that is, instrumental variable estimation (IV) with ge-
netic variants being the instruments—to account for unmeasured confounding between
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the endogenous covariates and the outcome. However, due to privacy concerns, ac-
cess to individual-level genetic data is highly regulated. To both preserve privacy and
enable data sharing, public data repositories of genetic summary statistics are made
available by various international genome-wide association study (GWAS) consortia.
These summary statistics usually contain marginal effect estimates of single nucleotide
polymorphisms (SNPs) on the phenotypic traits and disease outcomes, along with their
standard errors, which are often themselves obtained from two separate GWAS. This is
referred to as the “two-sample summary statistics” setting. Zhao et al. [2019] discuss
sufficient assumptions that enable consistent estimation under two-sample IV, specifi-
cally the homogeneity of the two samples. When the number of endogenous covariates
under investigation is high dimensional or the instruments are highly correlated, a case
in point being human gene expression phenotypes and genetic variants, there may be an
insufficient number of strong and valid instruments to ensure the identifiability of the
multivariable causal effects.

Lack of identifiability leads to poor estimation, or weak instrument bias. In the uni-
variable two-sample summary statistics setting, Bowden et al. [2019] develop heuristic
weak-instrument robust inference strategies based on heterogeneity statistic estimating
equations. Under the same setting, Wang and Kang [2022] further clarify the connec-
tion between these approaches and summary statistics analogues of the Anderson-Rubin
(AR) test statistic [Anderson and Rubin, 1949] and Limited Information Maximum Like-
lihood (LIML). Wang et al. [2021b] further extend weak-instrument robust models to
the multivariable case. Another way to circumvent the weak instrument problem is
to employ principal component analysis (PCA). Building on the work of Batool et al.
[2022], Patel et al. [2024] show how many individually weak variants could be fashioned
into PCA scores with improved instrument strength.

An alternative strategy to tackle the lack of identifiability is to introduce sparsity as-
sumption on the causal effects. This is often a reasonable assumption in MR studies, as
it is usually the case that many endogenous traits do not have direct causal effects on the
outcome. Under the assumptions of independent instruments and the number of instru-
ments is no less than the number of covariates, Grant and Burgess [2022] consider the use
of L1 penalization on the causal effects in multivariable MR models where one covariate
is of special interest but the others are allowed to be penalized. In related works, Rees
et al. [2019], Zhao et al. [2020] and Grant and Burgess [2021] consider L1 penalization
for individual instruments suspected to be invalid due to exclusion restriction violation,
rather than penalization on the number of causal effects.

In the one sample individual-level data setting, the identifiability conditions for sparse
causal effects have been studied by Pfister and Peters [2022], and they propose a sparse
causal effect estimator, spaceIV. Tang et al. [2023] also consider sparse causal effect
identification and estimation under assumptions on the sparsity level and propose a
synthetic two-stage regularized regression approach.

We propose spaceTSIV, adapting the spaceIV estimator for two-sample summary
statistics. We allow the IVs to be correlated by extending the adjustment method in
Wang and Kang [2022]. Two specific approaches based on L0- and L1-penalization,
respectively, are provided. We prove identifiability of the sparse causal effects and con-
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sistency of spaceTSIV under the two-sample summary statistics setting. We evaluate
the performance of spaceTSIV with simulated data and compare it with existing (non-
sparse) methods that work with two-sample summary statistics. Finally, we showcase
our methods using proteomic and gene-expression data within the context of a drug-
target discovery analysis. Notation is summarized below and all proofs are provided in
Supplementary Material 4.C.

Notation 4.1.1. For all k ∈ N, we define [k] := {1, . . . , k} and for all β ∈ Rd, we denote
by supp(β) :=

{
j ∈ [d] : βj 6= 0

}
the set of non-zero components of β. For an arbitrary

matrix A ∈ Rn×m, we denote for all i ∈ [n] and j ∈ [m], the i-th row of A by Ai, the
j-th column of A by Aj, and the ij-th entry of A by Aji . If A is a square block matrix
containing k × k square matrices of dimension l × l, then A[ij] for all i, j ∈ [k] denotes
the ij-th block of A.

4.2 Reduced form IV model and summary statistics

We start from the conventional one-sample individual-level data setting and assume we
observe n independently and identically distributed (iid) observations {(Xi, Yi, Zi)}ni=1 ⊆
Rd ×R×Rm, where Y is a response variable, X a vector of endogenous covariates, and
Z a vector of instruments. The IV model assumptions can then be expressed as a linear
structural causal model (SCM) over these variables.1 Formally, for all i ∈ [n], we assume,

Xi := AZi +BXi + g(Hi, ν
X
i )

Yi := X>i β
∗ + h(Hi, ν

Y
i ),

(4.2.1)

where Hi ∈ Rq is a vector of unobserved variables, g and h are arbitrary measur-
able functions, Zi, h(Hi, ν

X
i ), and g(Hi, ν

Y
i ) have mean 0 and finite variance, and{

Zi, Hi, ν
X
i , ν

Y
i

}n
i=1

are jointly independent. The coefficient β∗ ∈ Rd denotes the true

causal effect of the covariates on the response, and the matrices A ∈ Rd×m and B ∈ Rd×d
encode the other causal relations in the SCM, with B being a strictly lower triangular
matrix. The matrix Id − B is assumed to be invertible, where Id is the identity matrix
of dimension d. Finally, we call the support of β∗ the parent set of Y and denote it as
PA(Y ), that is, PA(Y ) := supp(β∗). The SCM (4.2.1) can also be expressed in what
is called its reduced form by only considering how the instruments affect the covariates
and the response. Formally, for all i ∈ [n] the reduced form is given by

Xi := Z>i Π + uXi

Yi := Z>i π + uYi ,
(4.2.2)

where Π := A>(Id − B)−> ∈ Rm×d, π := Πβ∗ ∈ Rm, uXi := g(Hi, ν
X
i )>(Id − B)−>, and

uYi := (uXi )>β∗ + h(Hi, νi).

1The required assumptions can also be expressed via other causal models (e.g., potential outcomes).
Not all causal implications of the model introduced here are strictly necessary, but to keep the
presentation concise we avoid presenting the most general assumptions.
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In this work, we assume that we do not directly observe the individual-level data and
instead only have access to summary statistics of partially observed paired data from
two independent samples {(Yai, Zai)}nai=1 and {(Xbi, Zbi)}nbi=1 of the SCM (4.2.1).

As discussed in Section 4.1, this is often the case in MR studies utilizing summary
statistics from two GWAS, one contains the associations between genetic variants and
endogenous traits (such as gene expression levels), and the other contains the associations
between genetic variants and an outcome trait (such as a disease), are used to study the
causal relationship between the endogenous traits and the outcome trait with genetic
variants being the IVs.

There are two types of summary statistics that we focus on here. Firstly, the two-
sample joint OLS summary statistics, which consist of estimates of the reduced form
parameters in (4.2.2) and are formally defined as follows.

Definition 4.2.1 (Two-sample joint OLS summary statistics). Given two independent
samples of observations {(Yai, Zai)}nai=1 and {(Xbi, Zbi)}nbi=1, the two-sample joint OLS
summary statistics (joint summary statistics) are defined as the set of estimates

Djoint
a,b :=

{
π̂, Σ̂π, Π̂, Σ̂Π

}
,

where π̂ := (Z>a Za)
−1Z>a Ya ∈ Rm, Σ̂π := ε̂>a ε̂a(Z

>
a Za)

−1 ∈ Rm×m with ε̂a := Ya − Zaπ̂,
Π̂ := (Z>b Zb)

−1Z>b Xb ∈ Rm×d, and Σ̂Π ∈ Rmd×md consists of d × d blocks of dimension

m×m defined for all k, l ∈ [d] by Σ̂
[kl]
Π := (ε̂kb )

>ε̂lb(Z
>
b Zb)

−1 with ε̂kb := Xk
b − ZbΠ̂

k. ♣

Secondly, the two-sample marginal OLS summary statistics, which instead of capturing
the joint effects described by the parameters in (4.2.2), only contain marginal univariate
effects.

Definition 4.2.2 (Two-sample marginal OLS summary statistics). Given two indepen-
dent samples of observations {(Yai, Zai)}nai=1 and {(Xbi, Zbi)}nbi=1, the two-sample marginal
OLS summary statistics (marginal summary statistics) are defined as the set of estimates

Dmarginal
a,b :=

{
η̂, σ̂2

η, Ĥ, σ̂
2
H , M̂Za , M̂Zb , M̂X

}
,

where η̂ ∈ Rm, σ̂2
η ∈ Rm, Ĥ ∈ Rm×d, σ̂2

H ∈ Rm×d, and for all j ∈ [m] and all k ∈ [d],

η̂j := (Zja)>Ya/(Z
j
a)>Zja, σ̂2

η,j := (ε̂ja)>ε̂
j
a/
(

(Zja)>Zja
)

with ε̂ja := Ya − η̂jZ
j
a, Ĥk

j :=

(Zjb)
>Xk

b/(Z
j
b)
>Zjb, and (σ̂kH,j)

2 := (ε̂kbj)
>ε̂kbj/

(
(Zjb)

>Zjb

)
with ε̂kbj := Xk

b − Ĥk
j Zjb. For

both s ∈ {a, b}, let DZs be the diagonal matrix containing the diagonal elements of

Z>s Zs, then M̂Zs := D
−1/2
Zs

Z>s ZsD
−1/2
Zs

∈ Rm×m are the sample correlation matrices
of Zs respectively. Similarly, let DX be the diagonal matrix containing the diagonal

elements of X>b Xb, then M̂X := D
−1/2
X X>b XbD

−1/2
X ∈ Rd×d is the sample correlation

matrix of Xb. ♣

Due to the close relation of the joint summary statistics with the reduced form model
(4.2.2) it is easier to develop methods for the joint summary statistics. However, in
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most publicly available data (e.g., UK Biobank [2024] and GWAS Catalog [2024]) only
the marginal summary statistics are available. Fortunately, it is possible to transform
marginal summary statistics into joint summary statistics. This means that any theoret-
ical developments that apply to one also apply to the other. The exact correspondence
is given in the following proposition.

Proposition 4.2.3 (Marginal to joint summary statistics). Assume we are

given Dmarginal
a,b = {η̂, σ̂2

η, Ĥ, σ̂
2
H , M̂Za , M̂Zb , M̂X}. Define diagonal matrices

Da, D
(1)
b , . . . , D

(m)
b ∈ Rm×m such that for all k, i ∈ [m], (Da)

i
i := (σ̂2

η,i + (η̂i)
2)1/2

and (D
(k)
b )ii := ((σ̂kH,i)

2 + (Ĥk
i )2)1/2. Then it holds for all k, l ∈ [d] that

• π̂ = Da(Da M̂Za)−1 η̂,

• Σ̂π = (1− η̂>DaM̂
−1
Za
Daη̂)DaM̂

−1
Za
Da,

• Π̂k = D
(k)
b (D

(k)
b M̂Zb)

−1 Ĥk, and

• Σ̂
[kl]
Π = (M̂ l

X,k − Ĥk>D(k)
b M̂−1

Zb
D

(l)
b Ĥ

l)D
(k)
b M̂−1

Zb
D

(l)
b .

In practice, one often does not observe both M̂Za and M̂Zb and instead only observes
a single estimate that converges to the correlation of Z. In such cases, it can be shown
that using the same transformation as in Proposition 4.2.3 is asymptotically equivalent
to working with the joint summary statistics.

4.2.1 Identifiability via sparsity under the reduced IV model

For the causal effect β∗ to be identified, the number of instruments is usually required to
be no less than the number of covariates. In the one-sample individual-level data setting,
this can be seen from the solution space based on the IV moment condition under the
SCM (4.2.1),

Bind =
{
β ∈ Rd : E(Z Y ) = E(ZX>)β)

}
. (4.2.3)

This space is in general non-degenerate if the dimension of the instruments is larger than
the number of covariates. When the causal effect is sparse, however, it is possible to
allow more covariates than instruments.
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Figure 4.2.1: An example of two-sample IV scenario that is considered as underidentified
in the usual sense. Hidden confounders between X and Y are omitted for
clarity. While the two DAGs have the same structure, in sample a (left)
the covariates X are not observed and in sample b (right) the outcome Y
is not observed, these unobserved variables are represented by gray nodes.
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Pfister and Peters [2022] study in detail the identifiability conditions under the SCM
(4.2.1). In the following, we describe the identifiability conditions under the reduced
model (4.2.2) which is compatible with the two-sample summary statistics scenario.
Lemma 4.2.4 describes the solution space of the causal effects with the reduced form
model.

Lemma 4.2.4. If E[ZZ>] has full rank, the solution space of the causal effects based on
the IV moment condition can be written as

Bsum =
{
β ∈ Rd : π −Πβ = 0

}
. (4.2.4)

We will focus on the case where the instruments do not have direct effects on the
response, which is implied by the SCMs (4.2.1) and its reduced form (4.2.2). This
is usually referred to as the exclusion restriction criteria of IV. In genetics research,
such a direct effect is also referred to as pleiotropy [see e.g., Hemani et al., 2018]. We
demonstrate empirically with additional simulations in Supplementary Material 4.E that
the proposed methods still perform well under small violations of this assumption. An
example of the possible scenario represented by directed acyclic graphs (DAGs) is given
in Figure 4.2.1. As we will see shortly, although the number of instrument is less than the
number of covariates in this case, the causal effect from X to Y may still be identified.

Under the two-sample summary statistic setting, the identifiability conditions in Pfis-
ter and Peters [2022] can be written as follows.2

Assumption 1. For all S ⊆ [d], let ΠS be the submatrix of Π containing the columns
in S. We assume the following regarding the true parameter Π

(a) rank(ΠPA(Y )) = |PA(Y )|.

(b) ∀S ⊆ [d], it holds that rank(ΠS) ≤ rank(ΠPA(Y )) and Im(ΠS) 6= Im(ΠPA(Y )) imply
that ∀w ∈ R|S|, ΠSw 6= ΠPA(Y )(β∗)PA(Y ).

(c) ∀S ⊆ [d] with |S| = |PA(Y )| and S 6= PA(Y ), Im(ΠS) 6= Im(ΠPA(Y )).

To obtain a sparse solution, it is natural to consider the following optimization problem

min
β∈Bsum

||β||0. (4.2.5)

Theorem 4.2.5 shows that under Assumption 1, β∗ is a unique solution to (4.2.5). The
proof follows similarly as in Pfister and Peters [2022, Theorem 3].

Theorem 4.2.5 (Identifiability of sparse causal effect with reduced form model). If As-
sumption 1 (a) and (b) hold, then β∗ is a solution to (4.2.5). If in addition Assumption 1
(c) holds, then β∗ is the unique solution.

2For a matrix A, Im(A) denotes the image of A.
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4.2.2 Anderson-Rubin test for two-sample summary statistics

The AR test is a well-known weak-instrument robust test for the causal effect, and the
LIML estimator is known to minimize the AR statistic [e.g., Dhrymes, 2012]. Wang
and Kang [2022] consider the two-sample summary statistic version of the AR test when
there is a single covariate, which can be seen as a a generalization of the the modified Q
statistic proposed by Bowden et al. [2019] for independent instruments. The following
result is a generalization of Wang and Kang [2022] in the presence of multiple covariates3,
which will be referred to as the Q statistic.

Theorem 4.2.6 (Q statistic). Assume Assumption 4.5.1 holds. For all β ∈ Rd, define
the Q statistic as

Q(β) := (π̂ − Π̂β)>( 1
na

Σ̂π + 1
nb

Σ̂Π(β))−1(π̂ − Π̂β), (4.2.6)

where Σ̂Π(β) := ξ(β)Σ̂Πξ
>(β) with ξ(β) := β> ⊗ Im. Then it holds for all β ∈ Rd and

all r ∈ (0,∞) that

lim
na,nb→∞
na/nb→r

sup
t∈R

sup
P∈P:

β∈Bsum(P )

|PP (Q(β) ≤ t)− κm(t)| = 0,

where κm is the CDF of the chi-squared distribution with m-degrees of freedom.

The Q statistic is the two-sample counterpart of the one-sample AR statistic, we
present their connections in Supplementary Material 4.A.1. Its minimizer can also be
viewed as a generalized method of moments (GMM) estimator [Hansen, 1982], and it is
related to the J statistic in economics literature. See Remark 4.5.1 in the Supplementary
Material for additional comments on the definition of Σ̂Π(β).

4.3 Estimating sparse causal effects with spaceTSIV

We describe two estimation procedures to the optimization problem (4.2.5). The first
procedure is the two-sample summary statistics counterpart of spaceIV by Pfister and
Peters [2022], and the second procedure employs L1-penalization to replace subset se-
lection which has the advantage of faster computational speed. For both procedures, we
will use the following estimator, which is the minimizer of the Q statistic constrained on
a specific support. For all S ⊆ {1, . . . , d}, define

β̂Q(S) := arg min
β∈Rd: supp(β)=S

Q(β). (4.3.7)

In order to provide precise theoretical results, we further let P denote a family of dis-
tributions for (X,Y, Z) generated by (4.2.1) which is assumed to be sufficiently regular
(see Assumption 4.5.1 for details). For all P ∈ P, we let β∗(P ) denote the causal effect
and Bsum(P ) be the subset Bsum induced by the distribution P (both of which are fully
identified from the observational distribution P ).

3A related result is also considered by Patel et al. [2024] where a dispersion parameter is included
and the principal components of the instruments are used. Here we focus on the case where the
instruments are valid.
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4.3.1 Sparsity by subset selection

For all s ∈ [d], let

β̂Q(s) := β̂Q
(

arg minS⊆{1,...,d}:|S|=sQ
(
β̂Q(S)

))
.

Moreover, following Theorem 4.2.6, for all s ∈ [d] and for all α ∈ (0, 1), the hypothesis
test

φαs (Djoint
a,b ) := 1

(
Q(β̂Q(s)) > κ−1

m (1− α)
)

has uniform asymptotic level for the null hypothesis

H0(s) := {P ∈ P | ∃β ∈ Bsum(P ) : ‖β‖0 = s},

that is, for α ∈ (0, 1), it holds that

lim
na,nb→∞

sup
P∈H0(s)

PP (φαs (Djoint
a,b ) = 1) ≤ α.

An algorithm defining the spaceTSIV estimator using subset selection is given in Algo-
rithm 6. Theorem 4.3.1 shows that it is consistent.

Theorem 4.3.1. Assume Assumption 4.5.1 holds. Let Djoint
a,b be the joint summary

statistics based on two independent samples of size na and nb respectively. Let P ∈ P
and smax ∈ N such that smax ≥ ‖β∗(P )‖0. If Assumption 1 (a) and (b) holds, then for
all r ∈ (0,∞)

lim
na,nb→∞
na/nb→r

PP
(
‖β̂≤smax‖0 = ‖β∗‖0

)
≥ 1− α;

if in addition Assumption 1 (c) also holds, then for all ε > 0 and all r ∈ (0,∞)

lim
na,nb→∞
na/nb→r

PP
(
‖β̂≤smax − β∗‖2 < ε

)
≥ 1− α.

4.3.2 Sparsity by L1 penalty

The subset selection approach introduced in Section 4.3.1 becomes computationally in-
feasible when the number of covariates is large. We therefore propose a faster approach
that uses L1 penalization to estimate the support of β∗ and then adapt the testing pro-
cedure from the previous section. More specifically, for a penalty parameter λ > 0, we
first minimize the following L1-loss

LTSIV-L1
λ (β) =

1

2
‖π̂ − Π̂β‖22 + λ‖β‖1. (4.3.8)

Define β̂(λ) := arg minβ∈Rd LTSIV-L1
λ (β) and Ŝλ := supp(β̂(λ)). We then propose to refit

the parameter as in (4.3.7) using the set Ŝλ and performing the hypothesis test defined
by

φαλ(Djoint
na,nb

) := 1

(
Q(β̂Q(Ŝλ)) > κ−1

m (1− α)
)
.
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Algorithm 6: spaceTSIV with L0 penalization

Input: Joint summary statistics Djoint
a,b , maximum support size smax,

significance level α ∈ (0, 1)
1 Initialize s← 1 and ϕ← 1
2 while s ≤ smax and ϕ = 1 do
3 Set Ss to the set of all subsets of [d] of size s
4 for S ∈ Ss do

5 Compute β̂Q(S)

6 Compute Q(β̂Q(S))

7 Sbest ← arg minS∈Ss Q(β̂Q(S))

8 β̂(s)← β̂Q(Sbest)

9 ϕ← φαs (Djoint
a,b )

10 s← s+ 1

11 β̂≤smax ← β̂(s)

Output: Final estimate β̂≤smax and test result ϕ

By similar arguments as in Section 4.3.1 this test for S = Ŝλ has uniform asymptotic
level for the null hypothesis

H0(S) := {P ∈ P | ∃β ∈ Bsum(P ) : supp(β) = S}.

Under sufficient regularity conditions and assuming that β∗ is indeed sparse, one can
hope—based on similar results for high-dimensional linear models [e.g., Bühlmann and
Van De Geer, 2011]—that for appropriately chosen λ it holds that Ŝλ converges to
supp(β∗). This motivates the following estimator, spaceTSIV with L1 penalization,
defined in Algorithm 7.

Algorithm 7: spaceTSIV with L1 penalization

Input: Joint summary statistics Djoint
a,b , a vector of penalty values in decreasing

order {λ1, . . . , λ`}, significance level α ∈ (0, 1)
1 Initialize l← 1 and ϕ← 1
2 while l ≤ ` and ϕ = 1 do
3 λ← λl

4 Ŝλ ← supp
(
arg minβ∈Rd LTSIV-L1

λ (β)
)

5 Compute β̂Q(Ŝλ)

6 ϕ← φαλ(Djoint
a,b )

7 l← l + 1

8 β̂≤λmax ← β̂(Ŝλ)

Output: Final estimate β̂≤λmax and test result ϕ
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Intuitively, if the subset selection is indeed correct (i.e., it recovers the support of
β∗) for the first accepted set, then this procedure should correctly estimate β∗. A full
theoretical analysis, however, goes beyond the scope of this work and we propose this
procedure only as a heuristic computational speed up.

4.3.3 Practical considerations

When using the subset selection approach in practice, it can happen that there are
multiple estimates with different support of the same (smallest) size not being rejected
by φαs . This indicates, that at least in finite sample, the causal effect β∗ is not fully
identified. We recommend reporting all subsets of the smallest size that are not rejected
by φαs as possible effects.

Moreover, since the estimator spaceTSIV is based on optimizing a test statistics, one
immediate approach to construct confidence intervals (CIs) is by inverting the test. In
the real application, we construct the CIs for the non-zero causal effects by inverting
φαs or φαλ and projecting onto each non-zero coordinate. We choose this approach for its
practicality, but other approaches exist which may be more suitable [e.g., Londschien
and Bühlmann, 2024], and one should also take into account the effect of post-selection
inference [e.g., Lee et al., 2016]. One of the advantages of inverting the test is that
is takes into account the strength of the instruments (and hence identifiability). So if
the resulting CIs are unbounded this generally indicates that there is limited identifia-
bility. This is well known property for the AR test [e.g., Dufour, 1997, Davidson and
MacKinnon, 2014].

4.4 Experiments

Code for reproducing the simulations and the real-data application along with the data
are available in the GitHub repository https://github.com/shimenghuang/spacetsiv.
All experiments were run on a MacBook Pro laptop with M1 chip.

4.4.1 Simulations

We present simulation results for two data generating processes (DGPs) summarized
below in this section. Further simulation results are provided in Supplementary Mate-
rial 4.E. The first, DGP1, is a low dimensional example taken from Pfister and Peters
[2022, Figure 3]. We compare the subset selection and the L1-penalization versions of
spaceTSIV, denoted as spaceTSIV-L0 and spaceTSIV-L1 respectively, as well as the
TSIV estimator (defined as the minimizer of (4.3.8) with λ = 0, in which case the
generalized inverse is used). The second, DGP2, illustrates the scenario with higher di-
mensional covariates, sparser causal effects, and correlated instruments. In this setting
we omit spaceTSIV-L0 from the comparison due its high computational cost. Overview
of the simulation setup is given below and more details can be found in Supplementary
Material 4.E.1.
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4.4 Experiments

DGP1 overview: m = 3 and d = 5 and ‖β∗‖0 = 2. For increasing n = na = nb, we
generate iid {(Yi, Zi)}nai=1 and {(Xi, Zi)}nbi=1 according to a linear SCM with Gaussian
errors and then compute the summary statistics using seemingly unrelated regression.
DGP2 overview: m = 5, d = 100, and ‖β∗‖0 = 2. With fixed values of π, Π, Σπ, and
ΣΠ, and increasing n = na = nb, we generate π̂na ∼ N (π, 1

na
Σπ) and Π̂nb ∼ N (Π, 1

nb
ΣΠ),

and set Σ̂π,na = Σπ and Σ̂Π,nb = ΣΠ.
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Figure 4.4.2: Results using data generated by DGP1 (top) and DGP2 (bottom) based on
100 repetitions. Left: Bias and rmse of the estimators. The y-axis is on log
scale for clarity. Right: Average Jaccard similarity between the selected
covariates and the true causal covariates (error bars indicate confidence
intervals constructed by mean plus/minus one standard error), and per-
centage of estimates that have the correct support size (error bars indicate
95% binomial confidence intervals).

We evaluate spaceTSIV based on both its variable selection and estimation perfor-
mances. The results are shown in Figure 4.4.2. We can see that the bias and rmse of
spaceTSIV shrinks with increasing sample size with either L0 or L1 penalization, which
is not the case for the non-sparse estimator TSIV. In terms of variable selection, we see
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4 SpaceTSIV

that for both DGPs as the sample sizes increase, the Jaccard similarity4 increases to
around 1, and the percentage of estimates having the correct support size also increases
to around 100%, empirically confirming the consistency results in Theorem 4.3.1. The
performance of spaceTSIV-L0 and spaceTSIV-L1 are similar in terms of both estimation
and variable selection for DGP1.

4.4.2 Application

We apply our methods to summary statistics of SNP-level associations where the covari-
ates and the outcome come from two separate GWAS sources. The covariates’ summary
statistics come from the GTEX consortium, which measure levels of expression of pro-
tein coding genes across multiple tissue types in the human body. Gene expression is
a convenient and reliable upstream marker of protein production, which would be the
natural target of a future drug. We specifically focus on expression of the GLP1R gene
in 10 tissue types that are relevant to the treatment of cardio-metabolic disease. These
are brain caudate, hypothalamus, atrial appendage, left ventricle, lung, nerve, pancreas,
stomach, testis, and thyroid. The SNP-outcome summary statistics measure the genetic
association with coronary artery disease (CAD) risk, and are obtained from the CAR-
DIoGRAMplusC4D consortium. These data were first analysed in in Patel et al. [2024],
who proposed a novel principle component analysis (PCA) method for constructing or-
thogonal composite instruments from 851 SNPs in the GLP1R gene region. For this
analysis, they use 23 principle components (PCs) as IVs for the 10 covariates. The anal-
ysis by Patel et al. [2024] suggests that GLP1R expression only has a significant effect
on CAD risk in 2 of the 10 tissues, although this was based on 95% confidence intervals
using a normal approximation which, unlike the test-inversion method we use, does not
always reliably capture the true uncertainty of IV estimates when the instruments are
weak.

Based on the analysis of Patel et al. [2024], it is reasonable to believe that the causal
effects are sparse in this application. Rather than opting for PCA pre-processing of the
genetic summary statistics, we consider the selection of individual SNPs instruments
based on the more conventional approach using the first-stage F-statistics5 of the gene
expression summary statistics. We keep the top two genetic variants with the largest
first-stage F-statistics for each of the 10 covariates. Since some SNPs are most strongly
associated with multiple covariates, we eventually keep 17 of the 851 genetic variants
in the original data. Moreover, since the summary statistic data contains only the
marginal associations along with their standard errors, we use the adjustment method in
Proposition 4.2.3 to obtain the estimated joint effects and variance-covariance matrices.

The analysis results based on spaceTSIV with L0 and L1 penalization and regular TSIV
are reported in Figure 4.4.3, where the 90% CIs are obtained from inverting φαs and φαλ as
described in Section 4.3.3. They show that the CIs for TSIV are all of infinite length. This

4For two sets A and B, the Jaccard similarity is defined as Jaccard(A,B) :=
|A ∩B|
|A ∪B| .

5Given a marginal OLS coefficient γ̂ ∈ R and its corresponding standard error σ̂ ∈ R, the first-stage
F-statistic is defined as γ̂2/σ̂2.
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Figure 4.4.3: Estimated effects of the GLP1R expression in 10 tissues using the selected
17 genetic variants as instruments. Error bars represent 90% confidence
intervals (CIs) constructed by inverting φαs and φαλ respectively, and pro-
jecting onto each coordinate.

demonstrates that, even though there are more instruments than covariates, the causal
effects are still under-identified due to weak instruments. Moreover, the spaceTSIV

with L0 penalization yields a single set of size 1 while with L1 penalization we obtain
a set of size 2. The significant negative effect of brain caudate aligns with the analysis
result in Patel et al. [2024] and is biologically meaningful. The different result from
spaceTSIV-L1 could be due to the high correlation of the SNPs, which may result in
the L1 relaxation of the L0 minimization problem not achieving the same estimate. In
general we recommend using the L0 procedure whenever computationally feasible as it
comes with clear theoretical guarantees.

4.5 Discussion

We propose spaceTSIV for sparse multivariable causal effect estimation under unob-
served confounding, which is applicable to the two-sample summary statistics setting.
Two methods using subset selection and L1-penalization respectively are provided. We
prove consistency for the subset selection approach and illustrate the results in simula-
tions. We also show in simulations that the L1-penalization approach, which is much
more computational efficient, can achieve similar performance as the subset selection
approach in terms of bias and consistency. To focus on the main idea of this work,
we have assumed that the summary statistics utilized in the analysis are obtained from
two independent and homogeneous samples, which is commonly assumed in genetic epi-
demiology. However, it would be interesting to generalize the methods to heterogeneous
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samples similar to results by Zhao et al. [2019] in the non-sparse setting. Moreover, if
the summary statistics are obtained from two samples with overlapping observations,
additional correlations should be taken into account.
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Supplementary material for “Sparse causal effect estimation
using two-sample summary statistics in the presence of
unmeasured confounding”

4.A. Details of test statistics and test-based estimators

4.A.1 Connection between Anderson-Rubin statistic and Q statistic

Suppose we observe one set of iid samples {(Xi, Yi, Zi)}ni=1. The AR statistic is given by

AR(β) :=
n−m
m

· (Y −Xβ)>PZ(Y −Xβ)

(Y −Xβ)>MZ(Y −Xβ)
, (4.A.1)

where PZ = Z(Z>Z)−1Z> and MZ = Id − PZ . When the true causal effect β∗ is

identified, m · AR(β∗) d→ χ2
m [Anderson and Rubin, 1949, Londschien and Bühlmann,

2024].
We can rewrite the AR statistic in terms of (joint) OLS estimates and their respective

estimated variance-covariance matrices. Specifically, let π̂ = (Z>Z)−1ZY and Π̂ =
(Z>Z)−1ZX, we have that

(Y −Xβ)>PZ(Y −Xβ) = (π̂ − Π̂β)>(Z>Z)(π̂ − Π̂β).

Moreover, for all β ∈ Rd define

Σ̂π = (Y − Zπ̂)>(Y − Zπ̂)(Z>Z)−1,

Σ̂Π(β) = β>(X− ZΠ̂)>(X− ZΠ̂)β(Z>Z)−1, and

Σ̂π,Π(β) = (Y − Zπ̂)>(X− ZΠ̂)β(Z>Z)−1.

Then, we can expand the denominator in (4.A.1) as follows

(Y −Xβ)>MZ(Y −Xβ)

= (MZY −MZXβ)>(MZY −MZXβ)

= (Y − Zπ̂ − (X−XΠ̂β))>(Y − Zπ̂ − (X−XΠ̂)β)

= (Y − Zπ̂)>(Y − Zπ̂) + β>(X−XΠ̂)>(X−XΠ̂)β − 2(Y − Zπ̂)>(X−XΠ̂)β,

which implies

(Y −Xβ)>MZ(Y −Xβ)(Z>Z)−1 = Σ̂π + Σ̂Π(β)− 2Σ̂π,Π(β).

Therefore,

AR(β) =
(π̂ − Π̂β)>(Z>Z)(π̂ − Π̂β)

(Y −Xβ)>MZ(Y −Xβ)

=
1

m
(π̂ − Π̂β)>

(
1

n−m Σ̂π +
1

n−m Σ̂Π(β)− 2

n−m Σ̂π,Π(β)

)−1

(π̂ − Π̂β).
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From this expression, we can see the connection between the AR statistic and the Q
statistic. Specifically, for a fixed m and large n, the difference between mAR(β) and
Q(β) is the term Σ̂π,Π, which is related to the covariance between the residuals of a Y
on Z and a X on Z regression. In the two sample setting this covariance is zero because
the two regressions are performed on independent samples and therefore it is not needed
in the the Q statistic.

4.A.2 Coordinate descent for minimizing the TSIV-L1 loss

We describe the coordinate descent procedure for minimizing (4.3.8). Let

LTSIV(β) =
1

2
‖π̂ − Π̂β‖22.

For a matrix A, denote A−j as the matrix removing A’s j-th column. The derivative of
LTSIV(β) w.r.t βj is

∂LTSIV(β)

βj
= −(Π̂j)>(π̂ − Π̂β)

= −(Π̂j)>π̂ + (Π̂j)>Π̂−jβ−j + (Π̂j)>Π̂jβj

= −ρj + ηjβj

(4.A.2)

where ρj := (Π̂j)>π̂+ (Π̂j)>Π̂−jβ−j and ηj := (Π̂j)>Π̂j . The subgradient of λ||β||1 w.r.t
βj is

∂λ||β||1
βj

=
∂λ|βj |
βj


{−λ} βj < 0

[−λ, λ] βj = 0

{−λ} βj > 0

(4.A.3)

Combining (4.A.2) and (4.A.3), we have that the subgradient of LTSIV-L1
λ (β) w.r.t. βj is

∂LTSIV
λ (β)

∂βj
=


−ρj + ηjβj − λ βj < 0

[−ρj − λ,−ρj + λ] βj = 0

−ρj + ηjβj + λ βj > 0.

(4.A.4)

Starting from an initial value of β̂, we loop through j ∈ [J ] and update the value of β̂j
by solving the equation resulting from setting (4.A.4) to 0, which gives

β̂j =


ρj+λ
ηj

ρj < −λ
0 −λ < ρj < λ
ρj−λ
ηj

ρj > λ.
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4.B. Regularity conditions

Assumption 4.5.1 (Regularity conditions). Let P be a family of distributions for
(X,Y, Z) ∈ Rd ×R×Rm generated by (4.2.1) and additionally satisfies that there exists
C1, C2, c, η > 0 such that

• supP∈P
(
EP [‖X‖4+η] + E[‖Y ‖4+η] + EP [‖Z‖4+η]

)
≤ c

• infP∈P min
(
λmin(EP [ZZ>]), λmin(EP [XX>])

)
≥ C1.

• supP∈P max
(
λmax(EP [ZZ>]), λmax(EP [XX>])

)
≤ C2.

4.C. Proofs

4.C.1 Proof of Lemma 4.2.4

Proof. The following equivalences hold

β ∈ Bind ⇐⇒ E(Z Y ) = E(ZX>)β

⇐⇒ E(ZZ>)π = E(ZZ>)Πβ since following (4.2.2), we have E(Z Y ) = E(ZZ>)π

and E(ZX>)β = E(ZZ>)Πβ

⇐⇒ π = Πβ since E[ZZ>] is full rank.

4.C.2 Proof of Proposition 4.2.3

Proof. We only prove the result for Π̂ and Σ̂Π. π̂ and Σ̂π can be viewed as a special case
of the former, with d = 1.

We first express D
(k)
b in terms of the design matrices. To this end, observe that for all

j ∈ [m] and all k ∈ [d], we have from the marginal OLS summary statistics that

(
σ̂kη,j

)2
=

(Xk
b − Ĥk

j Zjb)
>(Xk

b − Ĥk
j Zjb)

(Zjb)
>Zjb

=
(Xk

b )
>Xk

b − 2Ĥk
j (Xk

b )
>Zjb + (Ĥk

j )2(Zjb)
>Zjb

(Zjb)
>Zjb

=
(Xk

b )
>Xk

b − 2(Ĥk
j )2(Zjb)

>Zjb + (Ĥk
j )2(Zjb)

>Zjb

(Zjb)
>Zjb

=
(Xk

b )
>Xk

b − (Ĥk
j )2(Zjb)

>Zjb

(Zjb)
>Zjb

=
(Xk

b )
>Xk

b

(Zjb)
>Zjb

− (Ĥk
j )2.
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This further implies that (Zjb)
>Zjb =

(Xk
b )
>Xk

b(
σ̂kη,j

)2
+ (Ĥk

j )2

, and hence

((
σ̂kη,j

)2
+ (Ĥk

j )2

)−1

Ĥk
j =

(Zjb)
>Zjb

(Xk
b )
>Xk

b

Ĥk
j =

(Xk
b )
>Zjb

(Xk
b )
>Xk

b

. Therefore, if we define

the diagonal matrix DZb for all i ∈ [m] by (DZb)
i
i := (Zib)

>Zib, it holds that

D
(k)
b = D

−1/2
Zb

(
(Xk

b )
>Xk

b

)1/2
.

Using this result, for all k ∈ [d], we can expand the joint OLS estimate Π̂k as follows

Π̂k =
(
Z>b Zb

)−1
Z>b Xk

b

=
(
Z>b Zb

)−1
DZbĤ

k

= D
−1/2
Zb

M̂−1
Zb
D
−1/2
Zb

DZbĤ
k

= D
−1/2
Zb

M̂−1
Zb
D

1/2
Zb
Ĥk

= D
(k)
b

(
D̂

(k)
b MZb

)−1
Ĥk

Similarly, for all k, l ∈ [d], the variance-covariance matrix between Π̂k and Π̂l, can be
expanded as follows.

Σ̂
[kl]
Π =

(
Xk
b − ZbΠ̂

k
)> (

Xl
b − ZbΠ̂

l
)

(Z>b Zb)
−1

=
(

(Xk
b )
>Xl

b − (Xk
b )
>ZbΠ̂

l − (Π̂k)>(Zb)
>Xl

b + (Π̂k)>Z>b ZbΠ̂
l
)

(Z>b Zb)
−1

=
(

(Xk
b )
>Xl

b − 2(Π̂k)>Z>b ZbΠ̂
l + (Π̂k)>Z>b ZbΠ̂

l
)

(Z>b Zb)
−1

=
(

(Xk
b )
>Xl

b − (Π̂k)>Z>b ZbΠ̂
l
)

(Z>b Zb)
−1

=

M̂ l
X,k −

Z>b Xk
b

(Xk)>Xk
b

 Z>b Zb√
(Xk)>Xk

b

√
(Xl

b)
>Xl

b

−1

Z>b Xk
b

(Xl
b)
>Xl

b


·

 Z>b Zb√
(Xk

b )
>Xk

b

√
(Xl

b)
>Xl

b

−1

=
(
M̂ l
X,k − (Ĥk)>D(k)

b M̂−1
Zb
D

(l)
b Ĥ

l
)
D

(k)
b M̂−1

Zb
D

(l)
b .
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4.C.3 Proof of Theorem 4.2.5

Proof. (First statement) Assume Assumption 1 (a) and (b) hold. We would like to show
that

β∗ ∈ arg min
β∈Bsum

‖β‖0.

Since β∗ ∈ Bsum, it suffices to show that for all β̃ ∈ Bsum, we have ‖β̃‖0 ≥ |PA(Y )|. Fix
a β̃ ∈ Bsum. Since β̃ ∈ Bsum, it holds that π = Πβ̃ = Πβ∗. Let S := supp(β̃). Since
∀j ∈ [d] \ PA(Y ), (β∗)j = 0, Πβ̃ = Πβ∗ implies that

ΠS β̃S = ΠPA(Y )(β∗)PA(Y ). (4.C.1)

For the sake of contradiction, suppose that |S| < |PA(Y )|. Then by Assumption 1 (a),
we have that

rank(ΠPA(Y )) = dim
(

Im(ΠPA(Y )
)

= |PA(Y )| > |S| ≥ dim
(
Im(ΠS)

)
= rank(ΠS).

This gives rank(ΠPA(Y )) > rank(ΠS) which implies Im(ΠPA(Y )) 6= Im(ΠS). Then by
Assumption 1 (b), we have that ∀w ∈ R|S|, ΠSw 6= ΠPA(Y )(β∗)PA(Y ), but this contradicts
(4.C.1). This concludes the proof of the first statement.

(Second statement) It remains to show that there is no other solutions than β∗ when
Assumption 1 (c) holds. Suppose for the sake of contradiction that there exists β̃ ∈ Bsum

with S := supp(β̃) = |PA(Y )| and S 6= PA(Y ). Similarly as above, since β̃ ∈ Bsum,
(4.C.1) holds. Then by Assumption 1 (c) we have Im(ΠS) 6= Im(PA(Y )). Moreover, by
Assumption 1 (a) it holds that

rank(ΠPA(Y )) = |PA(Y )| = |S| ≥ rank(ΠS).

Therefore, by Assumption 1 (b) ∀w ∈ R|S|, ΠSw 6= ΠPA(Y )(β∗)PA(Y ), which again con-
tradicts (4.C.1). This concludes the proof of the second statement.

4.C.4 Proof of Theorem 4.2.6

Proof. First, observe that using Sna,nb as defined in Lemma 4.D.2, we can express the
Q statistic for all β ∈ Rd as

Q(β) = Sna,nb(β)>Sna,nb(β).

Moreover, for all β ∈ Bsum it holds by definition that µna,nb = 0, hence Lemma 4.D.2
implies that Sna,nb(β) converges uniformly to a standard Gaussian distribution as na, nb
tend to infinity and na/nb → r for r ∈ (0,∞). Hence, by the continuous mapping
theorem it holds that

lim
na,nb→∞
na/nb→r

sup
P∈P:

β∈Bsum(P )

sup
t∈R
|PP (Q(β) ≤ t)− κm(t)| = 0,

which completes the proof of Theorem 4.2.6.
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4.C.5 Proof of Theorem 4.3.1

Proof. Let r ∈ (0,∞) and assume that na/nb → r throughout the proof. Using Sna,nb
as defined in Lemma 4.D.2, we can express the Q statistic for all β ∈ Rd as

Q(β) = Sna,nb(β)>Sna,nb(β).

Furthermore, let B ⊆ Rd be a compact set and choose β ∈ B such that
infβ∈B ‖Sna,nb(β)‖22 = ‖Sna,nb(β∗)‖22. Then, using standard probability bounds and drop-
ping the na, nb from the notation for simplicity, we get for all P ∈ P and all t ∈ [0,∞)
that

PP
(

inf
β∈B
‖S(β)‖22 ≤ t

)
(4.C.2)

= PP
(
‖S(β)− µ(β) + µ(β)‖2 ≤

√
t
)

≤ PP
(∣∣‖S(β)− µ(β)‖2 − ‖µ(β)‖2

∣∣ ≤ √t)
= PP

(
‖S(β)− µ(β)‖2 − ‖µ(β)‖2 ≤

√
t, ‖S(β)− µ(β)‖ ≥ ‖µ(β)‖

)
+ PP

(
‖µ(β)‖2 − ‖S(β)− µ(β)‖2 ≤

√
t, ‖S(β)− µ(β)‖ ≤ ‖µ(β)‖

)
≤ PP

(
‖S(β)− µ(β)‖ ≥ ‖µ(β)‖

)
+ PP

(
‖µ(β)‖2 − ‖S(β)− µ(β)‖2 ≤

√
t
)

≤ 2PP
(
‖S(β)− µ(β)‖2 ≥ ‖µ(β)‖2 −

√
t
)

≤ 2PP

(
sup
β∈B
‖S(β)− µ(β)‖2 ≥ inf

β∈B
‖µ(β)‖2 −

√
t

)
. (4.C.3)

Next, observe that

S(β) =
√
nb

(
nb
na

Σ̂π + β>Σ̂XβΣ̂−1
Zb

)−1/2
(π −Πβ)

=
√
nb

(
nb
na

Σ̂π + (β/‖β‖2)>Σ̂X(β/‖β‖2)Σ̂−1
Zb

)−1/2
(π −Π(β/‖β‖2)) ,

where Σ̂X := 1
nb

∑nb
i=1(Xbi − Π̂>Zbi)(Xbi − Π̂>Zbi)>. This in particular implies that S

and hence Q does not depend on the norm of β. Moreover, for all β ∈ Rd with ‖β‖2 = 1
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it holds that

‖S(β)− µ(β)‖2 =
√
nb‖( nbna Σ̂π + β>Σ̂XβΣ̂−1

Zb
)−1/2((π −Πβ)− (π̂ − Π̂β))‖2

≤ √nb‖ nbna Σ̂π + β>Σ̂XβΣ̂−1
Zb
‖−1/2

op (‖π − π̂‖2 + ‖Πβ − Π̂β‖2)

≤
(
λmin( nbna Σ̂π) + λmax(β>Σ̂XβΣ̂−1

Zb
)
)−1/2

(
√
nb‖π − π̂‖2 +

√
nb‖Π− Π̂‖op)

≤
(
λmin(Σ̂X)λmax(Σ̂−1

Zb
)
)−1/2

(
√
nb‖π − π̂‖2 +

√
nb‖Π− Π̂‖op)

≤
(
λmin(Σ̂Zb )

λmin(Σ̂X)

)1/2

(
√
nb‖π − π̂‖2 +

√
nb‖Π− Π̂‖op).

where ‖ · ‖op denotes the operator norm, and we used Weyl’s inequality for the second
inequality and that β has norm one for the last inequality. Hence, using the bounds on
the minimal eigenvalues of ΣX and ΣZb in Assumption 4.5.1, it holds that

sup
β∈Rd:‖β‖2=1

‖S(β)− µ(β)‖2 = OP(1) (4.C.4)

as na, nb tend to infinity, where OP(1) denotes a uniformly bounded random variable
with respect to P. Finally, for all s ∈ [d] define Bs := {β ∈ Rd | ‖β‖0 = s and ‖β‖2 = 1}.
Then, using that Q does not depend on the scale of β and (4.C.3) we get that

PP
(

inf
β:‖β‖0=s

Q(β) ≤ t
)

= PP
(

inf
β∈Bs

Q(β) ≤ t
)

≤ 2PP

(
sup

β∈Rd:‖β‖2=1

‖S(β)− µ(β)‖2 ≥ inf
β∈Bs

‖µ(β)‖2 −
√
t

)
.

(4.C.5)

Now for the first statement of Theorem 4.3.1, fix s ∈ N such that s < ‖β∗‖0 = |PA(Y )|.
It follows from Theorem 4.2.5 that for all β ∈ Rd with ‖β‖0 = s, π−Πβ 6= 0. Therefore,
there exists ε > 0 such that for all β ∈ Rd with ‖β‖0 = s, it holds that ‖π − Πβ‖2 > ε.
Therefore, by (4.C.5) it holds that

lim
na,nb→∞

PP
(
φs(Djoint

a,b ) = 1
)

= lim
na,nb→∞

PP
(

inf
β:‖β‖0=s

Q(β) > κm(1− α)

)
≥ 1− lim

na,nb→∞
2PP

(
sup

β∈Rd:‖β‖2=1

‖S(β)− µ(β)‖2 ≥ inf
β∈Bs

‖µna,nb(β)‖2 −
√
κm(1− α)

)
= 1,
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where we used (4.C.4) together with

lim
na,nb→∞

inf
β∈Bs

‖µna,nb(β)‖2 ≥ lim
na,nb→∞

inf
β∈Bs

√
nb‖ nbna Σ̂π + β>Σ̂XβΣ̂−1

Zb
‖−1/2

op ε

≥ lim
na,nb→∞

inf
β∈Bs

(
1

na
λmax(Σ̂π) + 1

nb

λmax(Σ̂X)

λmin(Σ̂Zb )

)−1/2

ε

=∞,

where we again used the bounds on the minimal eigenvalues of ΣX and ΣZb in Assump-
tion 4.5.1. Since this holds for all s ∈ [d] with s < ‖β∗‖0, we further get

lim
na,nb→∞

PP
(
‖β≤smax‖0 = ‖β∗‖0

)
= lim

na,nb→∞
PP
(

min
s<‖β∗‖0

φs = 1 and φ‖β∗‖0 = 0

)
= lim

na,nb→∞
PP
(
φ‖β∗‖0 = 0

)
≥ 1− α.

For the second statement of Theorem 4.3.1, we can use the same argument. In this
case, Theorem 4.2.5 implies that for all c > 0 there exists ε > 0 such that for all
β ∈ Rd with either ‖β‖0 < ‖β∗‖0 or ‖β − β∗‖ > ε and ‖β‖0 = ‖β∗‖0 it holds that
‖π − Πβ‖2 > ε. Therefore, µna,nb(β) again diverges and the arguments above remain
valid. This completes the proof of Theorem 4.3.1.

4.D. Additional results

Remark 4.5.1. In the definition of the (empirical) Q statistic in Theorem 4.2.6, we used

Σ̂Π(β) := ξ(β)Σ̂Πξ
>(β) (4.D.1)

where ξ(β) := β>⊗ Im. It follows from the properties of Kronecker product that (4.D.1)
is equivalent to

Σ̂Π(β) := (β>(Xb − ZbΠ̂)>(Xb − ZbΠ̂)β)(Z>b Zb)
−1, (4.D.2)

which aligns with its population quantity ΣΠ(β) := (β>E[uXb (uXb )>]β)E[ZbZ
>
b ]−1 used in

Lemma 4.D.2, where uXb is the population residual in (4.2.2). The reason why (4.D.1) is
used instead of (4.D.2) in the Q statistic is that (4.D.1) only relies on the joint summary
statistics, as the individual-level data is not available under the two-sample summary
statistics setting. ♦

Lemma 4.D.2. Assume Assumption 4.5.1. Let Djoint
a,b =

{
π̂, Σ̂π, Π̂, Σ̂Π

}
be the joint

summary statistics based on two independent samples of sizes na and nb, respectively.
For all β ∈ Rd, define

Sna,nb(β) :=
(

1
na

Σ̂π + 1
nb

Σ̂Π(β)
)−1/2

(π̂ − Π̂β)
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and

µna,nb(β) :=
(

1
na

Σ̂π + 1
nb

Σ̂Π(β)
)−1/2

(π −Πβ).

Then, for all β ∈ Rd and all r ∈ (0,∞) it holds that

lim
na,nb→∞
na/nb→r

sup
P∈P

sup
t∈Rm

|PP (Sna,nb(β)− µna,nb(β) ≤ t)− Φm(t)| = 0.

Proof. Fix an arbitrary β ∈ Rd. Using by standard uniform convergence results for the
OLS estimator [e.g., Lundborg et al., 2022, Lemma S10] it holds that

√
naΣ

−1/2
π (π̂ − π)

with Σπ := E[(uYa )2]E[ZaZ
>
a ]−1 (where uYa are the population residuals in (4.2.2) for

sample a) converges uniformly w.r.t. P to a standard m-variate Gaussian distribution
as na tends to infinity. Similarly, when considering the regression of β>X on Z, it holds
that √

nbΣΠ(β)−1/2(Π̂−Π)β

with ΣΠ(β) := (β>E[uXb (uXb )>]β)E[ZbZ
>
b ]−1 (where uXb are the residuals in (4.2.2) for

sample b) converges uniformly w.r.t. P to a standard m-variate Gaussian distribution
as nb tends to infinity. Combining these results and using that na/nb → r and π̂ and Π̂
are estimated based on independent samples, we further have that

√
nb
(

1
rΣπ + ΣΠ(β)

)−1/2
(

(π̂ − Π̂β)− (π −Πβ)
)

(4.D.3)

converges uniformly w.r.t. P to a standard m-variate Gaussian distribution as na and
nb tend to infinity.

Next, we show for all ε > 0 that

lim
na→∞

sup
P∈P

PP
(
‖Σ̂π − Σπ‖op > ε

)
= 0 and lim

nb→∞
sup
P∈P

PP
(
‖Σ̂Π(β)− ΣΠ(β)‖op > ε

)
= 0.

(4.D.4)
As the proofs for both results are the same we only show it for Σ̂π. First, we express
the estimator as

Σ̂π =
1

na

na∑
i=1

(Yai − π̂>Zai)2

(
1

na

na∑
i=1

ZaiZ
>
ai

)−1

.

We now consider the two product terms separately. Using the uniform law of large
numbers [e.g., Klyne and Shah, 2023, Lemma 9] on each component, it holds for all
ε > 0 that

lim
na→∞

sup
P∈P

PP

∥∥∥∥∥ 1

na

na∑
i=1

ZaiZ
>
ai − E[ZaZ

>
a ]

∥∥∥∥∥
op

> ε

 = 0. (4.D.5)
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Moreover, we can expand the residual variance part as follows

1

na

na∑
i=1

(Yai − π̂>Zai)2 =
1

na

na∑
i=1

(Yai − π>Zai)2

+
1√
na

(
2

na

na∑
i=1

(Yai − π>Zai)
√
na(π̂ − π)>Zai

)

+
1

na

(
√
na(π̂ − π)

(
1

na

na∑
i=1

ZaiZ
>
ai

)
√
na(π̂ − π)

)
.

Then, by the uniform asymptotic normality, the bounded moments of Z and Y and a
further application of the law of large numbers [e.g., Klyne and Shah, 2023, Lemma 9]
it follows for all ε > 0 that

lim
na→∞

sup
P∈P

PP

(∣∣∣∣∣ 1

na

na∑
i=1

(Yai − π̂>Zai)2 − E[(uYa )2]

∣∣∣∣∣ > ε

)
= 0. (4.D.6)

Finally, denote Wn := 1
na

∑na
i=1(Yai− π̂>Zai)2, W := E[(uYa )2], Vn := 1

na

∑na
i=1 ZaiZ

>
ai and

V := E[ZaZ
>
a ]. Then, by combining (4.D.5) and (4.D.6) it follows for all ε > 0 that

sup
P∈P

PP (‖WnV
−1
n −WV −1‖op > ε)

≤ sup
P∈P

PP (‖WnV
−1
n −WnV

−1‖op >
ε
2) + sup

P∈P
PP (‖WnV

−1 −WV −1‖op >
ε
2)

≤ sup
P∈P

PP (‖WnV
−1
n −WnV

−1‖op >
ε
2) + sup

P∈P
PP (‖WnV

−1 −WV −1‖op >
ε
2)

≤ sup
P∈P

PP (‖V −1
n − V −1‖op‖Wn‖op >

ε
2) + sup

P∈P
PP (‖Wn −W‖op‖V −1‖op >

ε
2)

≤ sup
P∈P

PP (‖V −1
n − V −1‖op‖Wn‖op >

ε
2) + sup

P∈P
PP (‖Wn −W‖opC > ε

2)

By standard arguments and using the lower bound on the minimal eigenvalue of V =
E[ZZ>] from Assumption 4.5.1, this proves (4.D.4) (left).

Combining the two convergence results in (4.D.4) and using that na/nb → r shows
that for all ε > 0 it holds that

lim
na,nb→∞
na/nb→r

sup
P∈P

PP
(
‖( nbna Σ̂π + Σ̂Π(β))− (1

rΣπ + ΣΠ(β))‖op > ε
)

= 0. (4.D.7)

Furthermore, we can apply Johnson and Horn [1985, eq. (7.2.13)] to get that

‖( nbna Σ̂π + Σ̂Π(β))1/2 − (1
rΣπ + ΣΠ(β))1/2‖op

≤ ‖(1
rΣπ + ΣΠ(β))−1/2‖op‖( nbna Σ̂π + Σ̂Π(β))− (1

rΣπ + ΣΠ(β))‖op,
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which together with (4.D.7) and since Assumption 4.5.1 implies that infP∈P λmin(1
rΣπ +

ΣΠ(β)) > 0, implies for all ε > 0 that

lim
na,nb→∞
na/nb→r

sup
P∈P

PP (‖( nbna Σ̂π + Σ̂Π(β))1/2 − (1
rΣπ + ΣΠ(β))1/2‖op > ε) = 0.

Together with (4.D.3) this implies by Klyne and Shah [2023, Lemma 10 (b)] that

lim
na,nb→∞
na/nb→r

sup
P∈P

sup
t∈Rm

|PP (Sna,nb(β)− µna,nb(β) ≤ t)− Φm(t)| = 0,

where we in particular used that

Sna,nb(β)− µna,nb(β)

= ( 1
na

Σ̂π + 1
nb

Σ̂Π(β))−1/2((π̂ − Π̂β)− (π −Πβ))

=
(

(1
rΣπ + ΣΠ(β))−1/2( nbna Σ̂π + Σ̂Π(β))1/2

)−1

· √nb(1
rΣπ + ΣΠ(β))−1/2((π̂ − Π̂β)− (π −Πβ))

=
(
I + (1

rΣπ + ΣΠ(β))−1/2{( nbna Σ̂π + Σ̂Π(β))1/2 − (1
rΣπ + ΣΠ(β))1/2}

)−1

· √nb(1
rΣπ + ΣΠ(β))−1/2((π̂ − Π̂β)− (π −Πβ)).

This completes the proof of Lemma 4.D.2.

4.E. Experiment details and additional simulation results

4.E.1 Details of the simulated experiments in Section 4.4.1

DGP1: The individual-level data are generated from an SCM (4.2.1) with the following
parameters

A :=


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 and B :=


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
0 1 0 0 0,


Z

iid∼ Nm(0, Im), H
iid∼ Nd(0, Id) and νX , νY

iid∼ N (0, 1) with g(H, νX) := H + νX and
h(H, νY ) := H>1d + νY . The true causal effect β∗ = (1, 2, 0, 0, 0).
DGP2: Let

A :=


0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 , B :=


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
0 2 0 0 0

 ,Var(Z) :=


1 0.05 −0.1 0.075 0.025

0.05 1 0 0 0
−0.1 0 1 0 0
0.075 0 0 1 0
0.025 0 0 0 1

 ,
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4 SpaceTSIV

Var(νX) := WW> + Id where W ∈ Rd×d with W j
i

iid∼ Unif(−0.3, 0.5) for all i, j ∈ [d],
Var(νY ) := 1, and Cov(νX , νY ) ∈ R100 such that Cov(νX , νY )j is uniformly sampled
from the set {0.2, 0.4, 0.6, 0.8} for all j ∈ {1, . . . , 100}.

Then using β∗ ∈ R100 with (β∗)1 := 1, (β∗)2 := 2, and (β∗)j := 0 for all
j ∈ {3, . . . , 100}, we define Π := A>(Id − B)−1 and π := Πβ∗. Moreover, based on
the linear SCM and with V := (Id −B)−1β∗ we have

Σπ =
(
V >Var(νX)V + Var(νY ) + 2V >Cov(νX , νY )

)
Var(Z)−1 and

ΣΠ = Var(νX)>(Id −B)−1 ⊗Var(Z)−1.

We then generated π̂, Π̂ from the following multivariate Gaussian distributions for a
specific sample size n:

π̂n ∼ N (π,
1

n
Σπ) and Π̂n ∼ N (Π,

1

n
ΣΠ).

4.E.2 Additional simulated experiments

We provide additional simulation results of a setting that the exclusion restriction criteria
of IV is violated. The DGP is described below and the corresponding DAG is given in
Figure 4.E.1.

DGP3: m = 5 and d = 5 and ‖β∗‖0 = 2. For increasing n := n1 = n2, we generate iid
{(Yi, Zi)}n1

i=1 and {(Xi, Zi)}n2
i=1 according to the following SCM

Xi := AZi +BXi +Hi + νXi

Yi := X>i β
∗ + Z>i γ +H>i 15 + νYi ,

(4.E.1)

with the following parameters:

A = I5, B :=


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
0 1 0 0 0

 , γ = (0.1, 0.1), β∗ = (1, 2, 0, 0, 0),

Hi
iid∼ N (0, I5), and νXi , ν

Y
i

iid∼ N (0, 1). Then we compute the summary statistics using
seemingly unrelated regression. The results are shown in Figure 4.E.2. The γ parameter
in (4.E.1) represents the violation of the exclusion restriction criteria. We see that as
sample size goes larger, the bias and rmse continue to decrease. Although the Jaccard
similarity and percentage of correct size start to decline, the average true positive rate
(tpr) still stays around 100%. In this example, due to the invalid instruments, the esti-
mated causal parents tend to be a superset of the true causal parent, but the estimated
effects of the non-parent covaraites are relatively small.
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Figure 4.E.1: DAG for DGP3 which contains two invalid instruments violating the ex-
clusion restriction criteria (dashed arrows).
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Figure 4.E.2: Results using data generated by DGP3 based on 100 repetitions. Left:
Bias and rmse of the estimators. The y-axis is on log scale for clarity.
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true causal covariates (error bars indicate confidence intervals constructed
by mean plus/minus one standard error), percentage of estimates that
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B. D. Topçuoğlu, N. A. Lesniak, M. Ruffin IV, J. Wiens, and P. D. Schloss. A Frame-
work for Effective Application of Machine Learning to Microbiome-Based Classifica-
tion Problems. MBio, 11(3):e00434–20, 2020.

C. Truong, L. Oudre, and N. Vayatis. Selective Review of Offline Change Point Detection
Methods. Signal Processing, 167:107299, 2020.

M. Tsagris and G. Athineou. Compositional: Compositional Data Analysis, 2021. URL
https://CRAN.R-project.org/package=Compositional. R package version 4.5.

M. T. Tsagris, S. Preston, and A. T. Wood. A data-based power transformation for
compositional data. In Proceedings of CoDaWork’11: 4th international workshop on
Compositional Data Analysis, Egozcue, JJ, Tolosana-Delgado, R. and Ortego, MI
(eds.) 2011. CIMNE, 2011.

M. C. Tsilimigras and A. A. Fodor. Compositional data analysis of the microbiome:
Fundamentals, tools, and challenges. Annals of Epidemiology, 26(5):330–335, 2016.

P. J. Turnbaugh, R. E. Ley, M. Hamady, C. M. Fraser-Liggett, R. Knight, and J. I.
Gordon. The Human Microbiome Project. Nature, 449(7164):804–810, 2007.

UK Biobank. URL https://www.ukbiobank.ac.uk/, accessed 2024-10-02, 2024.

G. van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, 2009.

D. Vandeputte, G. Kathagen, K. D’hoe, S. Vieira-Silva, M. Valles-Colomer, J. Sabino,
J. Wang, R. Y. Tito, L. De Commer, Y. Darzi, et al. Quantitative Microbiome Profiling
Links Gut Community Variation to Microbial Load. Nature, 551(7681):507–511, 2017.

P. Vangay, B. M. Hillmann, and D. Knights. Microbiome Learning Repo (ML Repo): A
Public Repository of Microbiome Regression and Classification Tasks. Gigascience, 8
(5):giz042, 2019.

146

https://CRAN.R-project.org/package=Compositional
https://www.ukbiobank.ac.uk/


Bibliography

L. Y. Vostrikova. Detecting “disorder” in Multidimensional Random Processes. In
Doklady Akademii Nauk, volume 259, pages 270–274. Russian Academy of Sciences,
1981.

D. Wang, Z. Zhao, K. Z. Lin, and R. Willett. Statistically and Computationally Effi-
cient Change Point Localization in Regression Settings. Journal of Machine Learning
Research, 22(1):11255–11300, 2021a.

J. Wang, Q. Zhao, J. Bowden, G. Hemani, G. Davey Smith, D. S. Small, and N. R.
Zhang. Causal Inference for Heritable Phenotypic Risk Factors Using Heterogeneous
Genetic Instruments. PLOS Genetics, 17(6):1–24, 2021b.

S. Wang and H. Kang. Weak-Instrument Robust Tests in Two-Sample Summary-Data
Mendelian Randomization. Biometrics, 78(4):1699–1713, 2022.

J. H. Wells and L. R. Williams. Embeddings and Extensions in Analysis, volume 84.
Springer-Verlag, 2012.

F. Wilcoxon. Individual Comparisons by Ranking Methods. Springer-Verlag, 1992.

N. Wilson, N. Zhao, X. Zhan, H. Koh, W. Fu, J. Chen, H. Li, M. C. Wu, and A. M.
Plantinga. MiRKAT: Kernel Machine Regression-Based Global Association Tests for
the Microbiome. Bioinformatics, 37(11):1595–1597, 2021.

J. Witte, L. Henckel, M. H. Maathuis, and V. Didelez. On Efficient Adjustment in
Causal Graphs. Journal of Machine Learning Research, 21(246):1–45, 2020. URL
http://jmlr.org/papers/v21/20-175.html.

J. M. Wooldridge. Econometric Analysis of Cross Section and Panel Data. MIT press,
2010.

T. Yatsunenko, F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Con-
treras, M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, et al. Human Gut
Microbiome Viewed across Age and Geography. Nature, 486(7402):222–227, 2012.

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber. Strucchange: An R Package for Testing
for Structural Change in Linear Regression Models. Journal of Statistical Software, 7:
1–38, 2002.

S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, and S. X. Chen. Cautionary Tales on Air-
Quality Improvement in Beijing. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 473(2205):20170457, 2017.

N. Zhao, J. Chen, I. M. Carroll, T. Ringel-Kulka, M. P. Epstein, H. Zhou, J. J. Zhou,
Y. Ringel, H. Li, and M. C. Wu. Testing in Microbiome-Profiling Studies with
MiRKAT, the Microbiome Regression-Based Kernel Association Test. The Ameri-
can Journal of Human Genetics, 96(5):797–807, 2015a.

147

http://jmlr.org/papers/v21/20-175.html


Bibliography

N. Zhao, J. Chen, I. M. Carroll, T. Ringel-Kulka, M. P. Epstein, H. Zhou, J. J. Zhou,
Y. Ringel, H. Li, and M. C. Wu. Testing in Microbiome-Profiling Studies with
MiRKAT, the Microbiome Regression-Based Kernel Association Test. The Ameri-
can Journal of Human Genetics, 96(5):797–807, 2015b.

Q. Zhao, J. Wang, W. Spiller, J. Bowden, and D. S. Small. Two-Sample Instrumental
Variable Analyses Using Heterogeneous Samples. Statistical Science, 34(2):317–333,
2019.

Q. Zhao, J. Wang, G. Hemani, J. Bowden, and D. S. Small. Statistical Inference in
Two-Sample Summary-Data Mendelian Randomization Using Robust Adjusted Pro-
file Score. The Annals of Statistics, 48(3):1742–1769, 2020.

Y.-H. Zhou and P. Gallins. A Review and Tutorial of Machine Learning Methods for
Microbiome Host Trait Prediction. Frontiers in Genetics, page 579, 2019.

O. Zuk, S. F. Schaffner, K. Samocha, R. Do, E. Hechter, S. Kathiresan, M. J. Daly,
B. M. Neale, S. R. Sunyaev, and E. S. Lander. Searching for Missing Heritability:
Designing Rare Variant Association Studies. Proceedings of the National Academy of
Sciences of the United States of America, 111(4):E455–E464, 2014.

148



Bibliography

149


	Preface
	Abstract
	Contributions and Structure
	Introduction
	Intervention, causal models, and invariance
	Interventions on a simplex
	Sequential data with unstable causal mechanisms
	Causal inference with summary-level data

	Supervised learning and model analysis with compositional data
	Introduction
	Methods
	Results
	Discussion and conclusions
	?? Details on CFI and CPD
	?? Details on kernels included in KernelBiome
	?? Details and additional results for experiments
	?? Additional experiments with simulated data
	?? Background on kernels
	?? Proofs
	?? List of kernels implemented in KernelBiome

	Causal change point detection and localization
	Introduction
	Regression change points and causal change points
	Causal change point detection
	Causal change point localization
	Numerical Experiments
	Discussion
	?? Additional examples and details on examples 
	?? Algorithms
	?? Additional numerical experiments and experiment details
	?? Proofs
	?? Auxiliary results
	?? Chow test

	Sparse causal effect estimation using two-sample summary statistics in the presence of unmeasured confounding
	Introduction
	Reduced form IV model and summary statistics
	Estimating sparse causal effects with spaceTSIV
	Experiments
	Discussion
	?? Details of test statistics and test-based estimators
	?? Regularity conditions
	?? Proofs
	?? Additional results
	?? Experiment details and additional simulation results

	Bibliography

