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The thesis consists of an introduction and five manuscripts produced during my

studies. Each manuscript is a stand-alone scientific contribution and can be read

independently. Discrepancies in notation consequently appear across the chapters.
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Abstract

This thesis consists of a series of independent investigations related to multistate

modeling, unified by their relevance to actuarial modeling of disability insurance

policies. Chapter 1 sets the stage for the investigations in the subsequent chapters

and provides an overview of the thesis’s main contributions.

Chapter 2 complements the introduction, describing practical challenges and

opportunities for modeling and risk management of disability insurance portfolios.

It is highlighted that the presence of public benefits, claim settlement processes, and

prevention initiatives increases the complexity of the insurance business substantially

and that these aspects have received limited attention in the literature. Subsequently,

potential approaches and avenues for future research are outlined.

Chapters 3 and 4 are concerned with adapting multistate reserving models to

situations where the payments and information might not be fully up to date. In

Chapter 3, we consider a general formulation where the payments in real-time arise

as running payments based on the available information and backpay based on the

arrival of new information. In this setting, it is possible to link the present value

to the classic present value based on the contractual payments and to characterize

the dynamics of the reserve. However, it is in general not possible to link the

reserve to the classic multistate reserve, and this hence has to be investigated in

concrete models. Chapter 4 proposes a model for disability insurance schemes

and imposes relevant conditional independence assumptions in order to obtain

explicit expressions for the reserves as natural modifications of the classic multistate

reserves. The potential financial impact is illustrated by applying the methods to a

novel dataset LEC-DK19 which is based on real data that has been anonymized

and slightly altered. The estimation procedure developed in Chapter 5 is used to

operationalize the model.

In Chapter 5, the focus is on estimation of multistate models affected by various

forms of missingness including reporting delays and incomplete event adjudication.

An estimation procedure is proposed, accommodating reporting delays by thinning

and incomplete adjudication by imputation, making effective use of the available

data. The large sample properties of the estimator are established based on

M-estimation theory. We demonstrate the approach on simulated data and on

LEC-DK19.
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vi Abstract

The final chapter, Chapter 6, considers efficient and robust statistical inference in

the presence of right-censoring. A flexible nonparametric estimation procedure based

on pseudo-values and cross-fitting is proposed, allowing one to leverage prediction

methods from machine learning. Large sample properties of the procedure are

established, showing that the approach is doubly robust with respect to those

nuisance parameters that are needed to compute the pseudo-values. A simulation

study investigates the performance of the approach. Finally, we apply the estimation

procedure to conduct a regression discontinuity design using real data.



Resumé

Denne afhandling best̊ar af en række uafhængige studier relateret til flertilstands-

modellering med det til fælles, at de er relevante for aktuarmæssig modellering af

tab-af-erhvervsevne policer. Kapitel 1 sætter scenen for studierne i de efterfølgende

kapitler og giver et overblik over afhandlingens hovedbidrag.

Kapitel 2 supplerer indledningen ved at beskrive praktiske udfordringer og mu-

ligheder for modellering og risikostyring af tab-af-erhvervsevne forsikringsbestande.

Det fremhæves, at tilstedeværelsen af offentlige ydelser, skadesbehandlingsprocesser

og forebyggelsesinitiativer øger kompleksiteten af forsikringsforretningen betydeligt,

og at disse aspekter har f̊aet begrænset opmærksomhed i litteraturen. Herefter

skitseres potentielle tilgange og muligheder for fremtidig forskning.

Kapitel 3 og 4 omhandler tilpasning af flertilstandsreserveringsmodeller til situ-

ationer, hvor betalingerne og informationen muligvis ikke er fuldstændig ajour. I

Kapitel 3 betragter vi en generel formulering, hvor betalingerne i realtid fremkommer

som løbende betalinger baseret p̊a den tilgængelige information samt tilbagebetalin-

ger baseret p̊a nytilkommen information. I denne kontekst er det muligt at relatere

nutidsværdien til den klassiske nutidsværdi baseret p̊a de kontraktuelle betalinger

samt at karakterisere dynamikken af reserven. Det er dog generelt ikke muligt at

relatere reserven til den klassiske flertilstandsreserve, og det m̊a derfor undersøges i

konkrete modeller. Kapitel 4 foresl̊ar en model for tab-af-erhvervsevne ordninger og

indfører relevante betingede uafhængighedsantagelser for at opn̊a eksplicitte udtryk

for reserverne som naturlige modifikationer af de klassiske flertilstandsreserver. Den

potentielle økonomiske effekt illustreres ved at anvende metoderne p̊a et nyt datasæt

LEC-DK19, som er baseret p̊a rigtige data, der er blevet anonymiseret og ændret

en anelse. Estimationsproceduren udviklet i Kapitel 5 bruges til at operationalisere

modellen.

I Kapitel 5 er fokus p̊a estimation af flertilstandsmodeller, der er p̊avirket af

forskellige former for ufuldstændighed, herunder anmeldelsesforsinkelser og ufuld-

stændige afgørelser om hændelser. En estimationsprocedure foresl̊as, som tager

højde for anmeldelsesforsinkelser via udtynding og ufuldstændige afgørelser via

imputering, hvilket gør effektiv brug af de tilgængelige data. De asymptotiske egen-

skaber for estimatoren etableres baseret p̊a M-estimationsteori. Vi demonstrerer

tilgangen p̊a simulerede data og p̊a LEC-DK19.
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viii Resumé

Det sidste kapitel, Kapitel 6, omhandler efficient og robust statistisk inferens, n̊ar

der er højrecensurering. Vi foresl̊ar en fleksibel ikke-parametrisk estimationsproce-

dure baseret p̊a pseudo-værdier og cross-fitting, som tillader brugen af prædiktions-

metoder fra maskinlæring. De asymptotiske egenskaber for proceduren etableres,

hvilket viser at tilgangen er dobbelt-robust med hensyn til hjælpeparametre, der

er nødvendige for udregning af pseudo-værdierne. Et simulationsstudie udforsker,

hvordan tilgangen præsterer. Endeligt anvendes estimationsproceduren til at udføre

et regressionsdiskontinuitetsdesign ved brug af rigtige data.
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Chapter 1

Introduction

The purpose of this thesis is to develop techniques for reserving and estimation

motivated by challenges encountered in the actuarial modeling of disability insurance

policies. The introduction provides some background for the research, highlighting

concepts and results that are central to the investigations of the thesis in order to

set the stage for the subsequent chapters. Additionally, an overview of the main

contributions is presented.

1.1 Background

1.1.1 Classic multistate modeling

Life insurance policies are contractual agreements on the exchange of future premi-

ums and benefits contingent on certain events. These events are typically related to

the biometric state of the insured. Simple examples of policies could be 2 million

DKK is paid to those left behind in case the insured dies before age 67 or 30,000

DKK is paid to the insured every month if and when their earning capacity is reduced

by at least 50%. The insurance company is mandated by regulation to determine

and allocate the funds necessary to meet its obligations to the policyholders. This

is referred to as reserving. Accurate reserves are important for charging a suitable

premium, monitoring the portfolio gains and losses, and performing other risk

management operations needed to maintain solvency.

Reserving

Since money can be invested, the insurance company generally needs to set aside

less than 1 DKK today to cover a payment of 1 DKK in the future. More formally,

one monetary unit invested in a savings account at time 0 evolves to κ(t) by time t

where κ is called an accumulation function. Basic economic arguments then imply

that one monetary unit at time t evolves to κ(s)/κ(t) at time s for s ≥ t. Let B(t)

be the accumulated cash flow, defined as the benefits less premiums, at time t. The

1



2 Chapter 1. Introduction

present value of the future cash flow when standing at time t is then

P (t) =

∫
(t,∞)

κ(t)

κ(s)
dB(s).

This is the amount that the insurer would need at time t to meet all future obligations.

The present value is generally not known from the information available at time

t, so it cannot be used as a reserve. Motivated by diversification of insurance risk

and arbitrage-free pricing of financial risk, and assuming that the insurance and

financial risks are independent, a best estimate reserve can be defined as

V (t) = EP⊗Q [P (t) | Ft] ,

where Ft is a σ-algebra representing financial and insurance information available

at time t, P is the physical measure for insurance risk, and Q is a risk-neutral

measure for financial risk, see Brennan & Schwartz (1979a,b), Møller & Steffensen

(2007), and Article 77 in EIOPA (2009). Risk margins such as those defined by

the Solvency II regulatory framework can also be incorporated but are outside the

scope of this presentation.

The reserve thus depends on three components: the time value of money, the

cash flow, and the information. For this thesis, the financial component only plays

a minor role. A common and reasonable assumption that is employed throughout

is that the cash flow does not depend on financial risk and that the financial and

insurance risks are independent. In this case, the financial component can be dealt

with separately. One may even assume that κ is deterministic since the extension to

stochastic κ that is independent of the insurance risk is straightforward. To obtain

explicit expressions for the reserve, one further needs to impose assumptions on

the structure of the information and the cash flow. Multistate models provide a

natural and parsimonious way to do so. For an overview of the multistate modeling

literature, see the introduction in Furrer (2020).

Multistate modeling

Let the biometric state of the insured be represented by a stochastic process

Y = {Y (t)}t≥0 which is piecewise constant and takes values in a finite state space

J . A prominent example used to model disabilities is illustrated in Figure 1.1.

In the classic Markov multistate modeling setup, one assumes that Y is Markov,

that Ft = σ {Y (s) : s ≤ t}, and that the cash flow takes the form

dB(t) =
∑
j∈J

1{Y (t) = j}bj(t) dt+
∑

j,k∈J :j ̸=k

bjk(t)Njk(dt),

where Njk(t) is the number of transitions from j to k until and including time t.

One may interpret bj as sojourn payment rates and bjk as transition payments.
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Active 1 Disabled2

Dead 3

Figure 1.1: Classic disability multistate model where J = {1, 2, 3}. The arrows represent
the possible transitions.

When modeling disabilities, the Markov assumption is inadmissible since empirical

evidence shows that the probability of reactivating or dying as disabled greatly

depends on the duration spent in the disabled state. A common approach is then

instead to use a semi-Markov setup. Here, it is assumed that (Y,U) is Markov, that

the information is Ft = σ {Y (s) : s ≤ t}, and that the cash flow can be written as

dB(t) =
∑
j∈J

1{Y (t) = j}bj{t, U(t)} dt+
∑

j,k∈J :j ̸=k

bjk{t, U(t−)}Njk(dt),

where U = {U(t)}t≥0 given by U(t) = t − sup{s ∈ [0, t] : Y (s) ̸= Y (t)} is the

duration since the last jump. Lump sum payments can also be incorporated but

this requires slightly more involved notation, see Helwich (2008) and Adékambi &

Christiansen (2017). Extensions of the model to include incidental policyholder

behavior are also readily available, see Buchardt et al. (2015). In both the Markov

and semi-Markov setup it is possible to choose a regular version of V that permits

explicit integral expressions.

The introduction of a stochastic process Y generating the payments and in-

formation has several advantages. Firstly, one may incorporate structure about

the payments that is a priori known from the insurance contract, avoiding the

need to use data to rediscover this structure. Secondly, the strong intertemporal

dependencies of running payments can be captured by modeling the dynamics

of Y , where natural simplifying assumptions such as the Markov assumption are

available. Lastly, one may exploit the powerful techniques that have been developed

for actuarial and statistical modeling of multistate processes.

Information delays

Complexities arise in reserving when the process Y generating the contractual

payments can no longer be observed in real-time. The motivation for studying

this problem comes from disability insurance, where disabilities are affected by

reporting delays and lengthy adjudications. In this case, it is not operational to

choose Ft = σ{Y (s) : s ≤ t} since this information is not always available at time t.

Additionally, B(t) might not have been paid out at time t so P (t) is not always

the relevant present value. The methods developed in Chapters 3 and 4 seek to
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retain the desirable properties of multistate modeling while accommodating delayed

information about Y .

1.1.2 Marked point processes

In Section 1.1.1, the multistate model was represented with a piecewise constant

stochastic process Y . An alternative representation that is used frequently through-

out the thesis is that of a marked point process, which is often more convenient

for mathematical derivations. If (Tn)n∈N are the jump times of Y and (Yn)n∈N

are the jump marks given by Yn = Y (Tn) then (Tn, Yn)n∈N is a marked point

process. The marked point process and the initial state Y (0) together generate

the same information as the stochastic process Y , but the marked point process

has the technical advantage that the index set is countable while it is uncountable

for Y . Among other things, this makes it simpler to characterize its distribution,

which can be done by iteratively specifying the conditional distribution of the jump

times and jump marks. Marked point processes, despite their generality, admit

explicit representations for key objects such as the compensator, likelihood, and

infinitesimal generator.

Marked point processes also produce a comprehensive class of finite variation

stochastic processes called piecewise deterministic processes which consists of all

processes that at time t may be written as a function of t and the jump times and

jump marks that have occurred before time t. Examples of piecewise deterministic

processes are multistate models Y but also for example (Y,U). Properties of

piecewise deterministic processes follow from properties of the underlying marked

point process, so it is possible to take a marked point process as the starting point

and construct all relevant objects as mappings of the marked point process.

Distribution

Let Hn = (T1, Y1, . . . , Tn, Yn) be the first n jump times and jump marks, and assume

the initial state is some deterministic value y0 that is henceforth suppressed in the

notation. The Ionescu-Tulcea theorem implies that the distribution of a marked

point process can be specified by a sequence of Markov kernels which represent the

regular conditional distributions of Tn+1 | Hn = hn and Yn+1 | Hn = hn, Tn+1 = t

for n ≥ 0; we denote these P
(n)
hn

and π
(n)
hn,t

, respectively. Here we use the convention

that H0 generates the trivial σ-algebra and write hn = (t1, y1, . . . , tn, yn) for a

generic outcome of Hn. Regular conditional distributions are convenient to work

with when one conditions on events of probability zero such as (Y,U) = (y, u) for a

fixed duration u ≥ 0. In Chapter 3, they are used to obtain an expression for the

dynamics of the so-called transaction time reserve resembling Thiele’s differential

equation. Furthermore, in Chapter 4 they are used to obtain explicit expressions
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for the proposed reserves as natural modifications of the classic multistate reserves

described in Section 1.1.1.

In addition to information about the multistate model, one usually also has

access to information about external covariates, and it is often of interest to quantify

the effect of such covariates on the distribution of the multistate model. This can

be incorporated into the setup without much difficulty. Baseline covariates, which

are covariates that are registered at the start of an observation window and kept

fixed hereafter, can be incorporated by specifying an extended initial state (y0, w)

for some outcome w of a stochastic covariate W . Each value of w then leads to a

different collection of jump time and jump mark distributions. For time-dependent

covariates, one may extend the marked point process such that the jump times and

jump marks also include changes to the covariates.

Transition hazards

When the jump time distributions have density with respect to the Lesbesgue

measure, except for possibly a point mass at ∞, they may be parameterized via

their hazard functions. Denote by µyn•(s;hn) the hazard function of P
(n)
hn

which

means

P
(n)
hn

((t,∞]) = exp

{
−
∫
(tn,t]

µyn•(s;hn) ds

}
for t ≥ tn. If the jump marks belong to a countable space J then one may further

parameterize the mark distributions as

π
(n)
hn,t

({j}) = µynj(t;hn)

µyn•(t;hn)

for j ∈ J , where µjk are non-negative functions that satisfy
∑

k:k ̸=j µjk(t;h) =

µj•(t;h). Conversely, any set of non-negative functions µjk that are Lebesgue-

integrable on compact subsets characterize the distribution of a marked point

process via the above construction. The functions µjk are commonly referred to as

transition hazards, conditional hazards, or simply hazards. Hazards are intimately

connected with intensity processes; Theorem 4.5.2 of Jacobsen (2006) implies

that for a marked point process constructed as above, the intensity of Njk(t) =∑∞
n=1 1{Tn ≤ t}1{Yn−1 = j, Yn = k} is 1{Yn = j}µjk(t;Hn) for t ∈ (Tn, Tn+1]. It

is worth noting that one may generalize the above construction to allow for point

masses in the jump time distribution by working with hazard measures instead of

hazard functions. In this case, one recovers the distribution function via a product

integral, see Theorem 4.1.1. in Jacobsen (2006).

Transition hazards provide a convenient parameterization for the jump time and

jump mark distributions when they exist since the only restrictions on the hazards

are local integrability and non-negativity. Realistic choices for the hazards generally

satisfy local integrability, while non-negativity can be ensured by estimating logµij
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and subsequently applying the exponential function. This makes log hazards the

natural estimands. In reserving, hazards also naturally arise via the compensator

of the transition payments. Furthermore, reserves may be written as an integral

over transition probabilities, and these probabilities may be computed efficiently in

the semi-Markov case when hazards are available by solving differential equations,

see Buchardt et al. (2015).

Likelihood and estimation

For real-life problems, the underlying distribution is not known and has to be inferred

from data. The likelihood is a central object for many learning algorithms and it

has a special structure for marked point processes. Let Ft = σ{(Tm, Ym) : Tm ≤ t}
be the filtration generated by the marked point process. For elements P, P̃ ∈ P
of a statistical model P, let Pt and P̃t be the restriction to Ft and assume local

absolute continuity in the sense that Pt ≪ P̃t for all t ≥ 0. The likelihood process

L = (Lt)t≥0 is then defined as the process of Radon-Nikodym derivatives

Lt =
dPt

dP̃t

.

If the statistical model is on the form P = {Pθ : θ ∈ Θ} for Θ ⊆ Rk then the model

is said to be parametric otherwise it is said to be nonparametric. Classic statistical

theory motivates estimators to be constructed as the argmax of the average observed

log-likelihood where the argmax is over the set P.

Let P
(n)
hn

and π
(n)
hn,t

be the conditional jump time and jump mark distributions

for P and likewise use P̃
(n)
hn

and π̃
(n)
hn,t

for those generating P̃ . Assume that the

Radon-Nikodym derivatives dP
(n)
hn

/dP̃
(n)
hn

and dπ
(n)
hn,t

/dπ̃
(n)
hn,t

exist. Theorem 5.1.1

of Jacobsen (2006) then implies Pt ≪ P̃t for all t ≥ 0 and

Lt =


N(t)−1∏
n=0

dP
(n)
Hn

dP̃
(n)
Hn

(Tn+1)
dπ

(n)
Hn,Tn+1

dπ̃
(n)
Hn,Tn+1

(Yn+1)

 P
(N(t))
HN(t)

((t,∞])

P̃
(N(t))

HN(t)
((t,∞])

almost surely simultaneously for all t ≥ 0. Here, N(t) =
∑∞

n=1 1{Tn ≤ t} is the

number of jumps that have occurred by time t. The likelihood can alternatively

be written in terms of compensating measures by using the product integral, see

Section II.7.3 in Andersen et al. (1993).

When transition hazards exist, straightforward calculations give that the log-

likelihood is

logLt =
∑

j,k∈J :j ̸=k

∫ t

0

logµjk(s;HN(s−)) dNjk(s)−
∫ t

0

1{Y (s) = j}µjk(s;HN(s)) ds

up to an additive constant. By discretizing the integrals, the optimization problem

of computing the argmax becomes equivalent to the one for Poisson regression as
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noted in Friedman (1982) and Lindsey (1995). The form and properties of the

above expression are largely unchanged by the presence of covariate information and

various forms of missingness, including independent left-truncation and independent

right-censoring. In such cases, the expression is referred to as a partial likelihood to

distinguish it from the full likelihood which also contains the distribution of, for

example, the missingness mechanism, see Section II.7.3 in Andersen et al. (1993).

The partial likelihood is central to the estimation procedure developed in Chapter 5.

1.1.3 Causal inference

In addition to modeling the expected future losses, insurance companies may seek

to mitigate some of their losses by improving the underlying risks. This has become

increasingly topical in Denmark due to the sharp increase in the number of mental

health-related disability claims. For disability insurance, mitigating actions may

be taken to prevent disabilities or to reduce the duration or size of benefit payouts

with return-to-work initiatives.

It would be highly advantageous for insurers to be able to quantify the effectiveness

of their prevention and treatment initiatives. This would enable them to identify

where their efforts will have the greatest impact and how many resources should

be allocated to the initiatives, taking both costs and benefits into consideration.

These initiatives are analogous to treatments administered in clinical trials and

other types of interventional studies so the methodology developed there provides

a natural starting point for assessing the impact. The gold standard for inferring

a treatment effect is a randomized controlled trial. Insurers may however have

financial or ethical objections to randomizing the use of their initiatives, in which

case the treatment effect has to be inferred from observational data. This leads to

hard statistical and identifiability problems. A fictional example is presented to

help illustrate these challenges.

Example 1.1.1. (Max attempts impact evaluation.)

Max Risk is an actuary that has been tasked with assessing the impact of a recent

prevention initiative. For every insured in the portfolio, Max has data on the form

(Y,A,W ) where A ∈ {0, 1} is an indicator of whether they received the prevention

initiative, Y ∈ {0, 1} is an indicator of whether they reported a disability claim

within the coverage period, and W ∈ Rp is a high-dimensional baseline covariate

including age, gender, salary, marital status, address, etc.

Max is proficient with generalized linear models and hence posits a logistic

regression model for the outcome as follows

Y |W,A ∼ Bin{1, p(W,A)}, logit p(W,A) = α+ βA+ γTW.

They fit the model using their favorite statistical software and report the estimated

coefficient β̂ and a confidence interval as a summary of the treatment effect. The



8 Chapter 1. Introduction

estimate is large and significant leading Max to conclude that the initiative was a

success.

The Chief Actuary is skeptical of Max’s analysis: What if the treatment effect

depends on W? If so, the model is wrong; can the results be trusted? Since the

dimension of W is large, it is difficult to manually check for interactions, so Max

instead finds an old book on survey sampling and performs an alternative analysis

based on the inverse probability of treatment weights. Max posits a logistic model

for the treatment assignment as follows

A |W ∼ Bin{1, p(W )}, logit p(W ) = η + θTW

and estimates the average effect of the initiative as

τ̂ =
1

n

n∑
i=1

Yi
1{Ai = 1}
p̂(Wi)

− 1

n

n∑
i=1

Yi
1{Ai = 0}
1− p̂(Wi)

where n is the number of insured in the sample. The estimator τ̂ converges to

E[E[Y | W,A = 1] − E[Y | W,A = 0]] if p̂ is uniformly consistent and the true

function p is bounded away from 0 and 1. The estimated effect differs somewhat

from the corresponding estimate derived from the logistic model for Y | A,W ,

namely

τ̃ =
1

n

n∑
i=1

Ê[Y |W =Wi, A = 1]− Ê[Y |W =Wi, A = 0],

but it remains large and positive. Satisfied, the Chief Actuary recommends that

the insurer should expand the use of the prevention initiative starting next year.

Sometime during next year, Max is standing at the water cooler talking to the

person in charge of the prevention initiative. Max discovers that another factor

that played a role in the treatment assignment A was how motivated the insured

sounded when they were contacted. This information was however not registered in

the insurer’s database and was hence not included in the covariate W . This causes

Max to worry about the validity of their analysis; if those who appeared motivated

were also less likely to become disabled then they would perform better than the

group not receiving treatment even if the initiative had no effect. Max hopes that

this has not biased the analysis too severely. ◦

The scenario from Example 1.1.1 contains some common pitfalls associated with

performing causal inference. The situation at the end of the example is analogous to

the famous Simpson’s paradox, highlighting that identifiability of the treatment effect

requires additional knowledge about the data-generating mechanism beyond what

can be learned from the available data. This is because unmeasured confounding

variables may invalidate the causal interpretation of the results. This insight

naturally leads to the question:
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When is the treatment effect identifiable from ob-

servational data?

Answering this question requires causal models. The requirements for identifiability

of the treatment effect are strong, so in practice, if one deems it important to be

able to quantify the effects, one should design the initiatives in such a way that the

effect becomes identifiable.

Once identifiability holds, the causal effect is some function of the distribution of

the observational data, and it can therefore be estimated using purely statistical

methods. For example, under some conditions, the average treatment effect τ can

be identified as τ = E[E[Y |W,A = 1]−E[Y |W,A = 0]] which was the limit of τ̂ in

Example 1.1.1. The way the estimand depends on the data distribution is however

usually complicated and inference based on parametric maximum likelihood methods

is regarded as problematic since they often perform poorly for high-dimensional

covariates and since confidence bands and parameter values can be highly sensitive

to model misspecification. This leads to the question:

How can one perform inference for the estimands

coming from causal models in an efficient way with-

out imposing strong distributional assumptions?

The modern approach relies on semi-parametric efficiency theory with two popular

frameworks being targeted maximum likelihood estimation and double machine

learning as detailed in Van der Laan & Rose (2011) and Chernozhukov et al. (2018),

respectively.

In summary, causal inference can be regarded as a two-step procedure. The

initial step does not rely on data; rather, it involves leveraging subject-matter

expertise to propose a causal model. Such a model depends on assumptions that

are untestable from the observational data. The goal is to examine whether the

causal effect of interest is identifiable from the distribution of the observational

data under assumptions that are deemed reasonable. The second step consists of

using statistical techniques to obtain an estimate of the resulting estimand. These

two aspects are discussed in more detail below.

Identifiability

There exist several frameworks for causal modeling, with the most popular being

graphical models and the Neyman–Rubin model, see the classic references Rubin

(1974), Pearl (2009), and Hernán and Robins (2020). The causal framework used in

this thesis is the Neyman–Rubin model as it is more natural for describing time-

varying outcomes. Graphical models provide a natural way to identify treatment

effects when one has more detailed knowledge about the causal influences between

the treatment, outcome, and covariates. This is, however, rarely useful for insurance
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data which has an infamously low signal-to-noise ratio. In this thesis, causal models

are used to discuss impact evaluation for prevention initiatives in Chapter 2 and in

the data application of Chapter 6.

The Neyman–Rubin model is based on the notion of potential outcomes. When

the observed data is on the form (Y,A,W ) for a binary treatment variable A as in

Example 1.1.1, the Neyman–Rubin model posits the existence of potential outcomes

Y (1) and Y (0) corresponding to the value that Y would take if A had been 1 and 0,

respectively, implying Y = Y (A). The average treatment effect is then defined as

τ = E[Y (1) − Y (0)].

One way to make τ identifiable is to assume that the data arises as a randomized

experiment for each fixed value of W . More formally, one assumes (Y (1), Y (0)) ⊥⊥
A | W and that P(A = 1 | W ) is bounded away from 0 and 1. In Example 1.1.1,

the final paragraph indicates that the former assumption might be problematic;

those who were assigned treatment likely had a different distribution of (Y (1), Y (0))

compared to those that did not receive treatment, even for similar values of W .

When the assumptions hold, it is straightforward to show that τ = E[E[Y |W,A =

1]−E[Y |W,A = 0]]. In the data application of Chapter 6, identifiability is instead

achieved via a regression discontinuity design which assumes that the data was

generated as a local randomized controlled trial along one of the coordinates of W .

Both approaches boil down to having strata where people are exchangeable except

that some receive treatment and others do not.

Targeted estimation

Estimation procedures for causal estimands typically rely on the ability to estimate

related distributional quantities referred to as nuisance parameters. For example, as

seen in Example 1.1.1, the estimators τ̂ and τ̃ of τ depend on estimators of E[A |W ]

and E[Y |W,A], respectively. Estimating these conditional expectations can be done

using various regression methods including machine learning algorithms which do not

require strong distributional assumptions, can deal with high-dimensional covariates,

and routinely outperform classical regression methods in terms of predictive accuracy.

However, the regression estimators are tuned to have optimal performance for their

respective prediction tasks which may lead to suboptimal performance for the

estimand of interest. Influence functions may be used to construct estimators that

remove this plug-in bias and achieve asymptotic efficiency in a local minimax sense

as summarized in Kennedy (2022) and Hines et al. (2022).

An estimand can generally be represented as some functional ψ : P 7→ R for a

statistical family P. If this function is smooth, then it satisfies a distributional

Taylor expansion

ψ(P̂)− ψ(P) = −
∫
φ(x, P̂) dP(x) +R(P̂,P), (1.1.1)
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where φ is the efficient influence function for the estimand ψ and R is a second-order

remainder term. When the data consists of i.i.d. observations X1, . . . , Xn, this

expansion suggests defining a debiased estimator ψ̂ as ψ̂ = ψ(P̂)+n−1
∑n

i=1 φ(Xi, P̂)
referred to as the one-step estimator. There is a considerable body of theoretical and

numerical work suggesting that debiased estimators are, in many scenarios, superior

to plug-in estimators, see for example the references in Kennedy (2022). In fact,

the debiased estimator is asymptotically efficient if the remainder R convergences

sufficiently quickly to 0 and one uses cross-fitting such that P̂ and the average over φ

uses different parts of the sample. Cross-fitting is not necessary if {φ(x, P ) : P ∈ P}
is a Donsker class.

Importantly, the remainder term R typically only involves second-order errors of

the nuisance parameters. Since controlling R is the key to achieving asymptotic

efficiency of the debiased estimator, this estimator inherits a robustness to mis-

specification in the nuisance parameters. For example, when the estimand ψ is the

average treatment effect τ as in Example 1.1.1, one can show

R(P̂,P) =
1∑

a=0

(−1)a+1

∫ (
P(A = a |W = w)− P̂(A = a |W = w)

)
×
(
E[Y |W = w,A = a]− Ê[Y |W = w,A = a]

)
× P̂(A = a |W = w)−1 P(W ∈ dw)

which by the triangle and Cauchy-Schwarz inequalities is bounded by a constant

times the product of the error in the nuisance parameters. Furthermore, the one-step

estimator is found to be

ψ̂ =
1

n

n∑
i=1

Ê[Y |W =Wi, A = 1]− Ê[Y |W =Wi, A = 0]

+
Ai − P̂(A = 1 |W =Wi)

P̂(A = 1 |W =Wi)(1− P̂(A = 1 |W =Wi))
(Yi− Ê[Y |W =Wi, A = Ai]),

which is the celebrated augmented inverse probability weighted estimator. As

opposed to τ̂ and τ̃ which are based on estimators of E[A | W ] and E[Y | W,A],
respectively, the one-step estimator combines these estimators to gain efficiency

and robustness.

1.2 Contributions and overview

Here, we provide an overview of the thesis’s scientific contributions. The mathemat-

ical style of this section is informal and the emphasis is on concepts and intuition.

For a precise treatment, the reader is referred to the respective chapters. While

each chapter constitutes a stand-alone scientific contribution, some similar themes

permeate the thesis. In broad terms, the remaining chapters deal with ways of
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extending multistate methods to better meet the challenges faced in the actuarial

modeling of disability insurance policies. Another shared theme is the effort to

derive techniques that are rigorously grounded while remaining intuitive and of

similar computational complexity to current methods. The papers can be read

independently, but the recommended reading order follows the ordering of the

chapters.

Chapter 2 contains a review article that complements the introduction in that

it describes the complexities that disability insurance schemes give rise to and

how the contributions of this thesis address some of these challenges. However,

the discussion in Chapter 2 is broader and more oriented towards practice. The

chapter is mainly concerned with illustrating and systematizing the contemporary

Danish disability insurance landscape from an actuarial perspective to identify areas

where the current literature is underdeveloped and where actuarial researchers and

practitioners are well-positioned to contribute more and in turn meet the modern

needs of life insurance companies.

Chapters 3 and 4 are concerned with stochastic modeling of reserves, while

Chapters 5 and 6 focus on statistical aspects. The statistical papers differ signif-

icantly in both their approach and style, reflecting the differing demands of the

pricing/reserving and impact evaluation tasks. By extension, this also reflects

the different cultures of actuaries and statisticians. For pricing and reserving, in

addition to being accurate at an individual and portfolio level, the estimates should

be explainable to financial supervisory authorities, have limited computational

complexity as reserves are updated frequently, be suitable for forecasting, and be

simple and reliable to run in production. Altogether, this speaks for a parametric

model. For impact evaluation, the primary goal is usually inference for a small

selection of nonparametrically identifiable estimands, meaning that accurate quan-

tification of the uncertainty in the estimates is key and forecasting is not necessary.

Furthermore, since impact evaluations are typically updated less frequently than

reserves and are usually not reported to supervisory authorities, the computational

complexity of the methods can be higher. Altogether, this speaks for nonparametric

methods.

1.2.1 Reserving with transaction time information

In Chapters 3 and 4, we propose ways to extend the multistate reserving approach

to situations where information about the process driving the payments might

not be up to date. Chapter 3 explores the general structure of the problem while

Chapter 4 is concerned with obtaining explicit and operational expressions for

disability insurance schemes.

Assume that the accumulated contractual payments B = {B(t)}t≥0 are adapted

to the information generated by some stochastic process X = {X(t)}t≥0 and write
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B(t) = B(X, t) with a slight abuse of notation. If the insurer cannot observe X in

real-time, for example, due to reporting delays, then FX
t = σ{X(s) : s ≤ t} is not

available at time t and the insurer hence cannot ensure that B(t) is paid out by

time t. Instead, the insurer must through claim settlement processes retroactively

ensure that the insured receives the benefits that they were eligible for. In practice,

this is done via backpay which is a lump sum payment of overdue benefits that have

been delayed by reporting delays and claims processing. As a consequence, the

accumulated realized payments B may differ from B and the available information

FZ may differ from FX .

These complications will lead to a mismatch in timing between releasing reserves

and incoming losses if they are not accommodated in the actuarial reserving models.

The approach in Chapters 3 and 4 is to introduce a reserve V , which is based on B
and FZ , and to explore to which extent V can be linked to the classic reserve V

which is based on B and FX . Thus, we define

P (t) =

∫
(t,∞)

κ(t)

κ(s)
dB(s), P(t) =

∫
(t,∞)

κ(t)

κ(s)
dB(s),

V (t) = E[P (t) | FX
t ], V(t) = E[P(t) | FZ

t ],

for a deterministic accumulation function κ. We refer to the elements of V as the

transaction time model and the elements of V as the valid time model.

To have any hope of linking V and V , one must impose some additional relations

between the payments and/or the filtrations. The work in this thesis assumes that

B satisfies ∫
[0,t]

κ(t)

κ(s)
B(ds) =

∫
[0,t]

κ(t)

κ(s)
B(Xt,ds) (1.2.1)

where Xt = {Xt(s)}s≥0 is a stochastic process corresponding to X, but based on

the available transaction time information at time t, with the additional property

that it is piecewise constant as a function of t. Intuitively, Equation (1.2.1) says

that the transaction time cash flow is constructed such that the present value of

the past payments equals the present value of the cash flow that would have arisen

had payments been based on Xt which is the currently accepted version of X. A

representation of B(dt) is given in Section 4 of Chapter 3, showing that it consists

of running payments based on Xt as well as backpay, properly accumulated with

interest, whenever Xt and Xt− differ.

It is assumed that Xt converges to X as t goes to +∞, establishing a link between

the valid time and transaction time models. The main result of Chapter 3 is that

P(t) = P (t) +

∫
[0,t]

κ(t)

κ(s)
(B − B)(ds). (1.2.2)
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Thus, the transaction time present value equals the valid time present value plus

a term that corrects for erroneous payments before the current time. This is a

simple relation, but it does not generally carry over to a simple relation between the

reserves. Substituting Equation (1.2.2) in the definition of V , it becomes clear that

one should understand the distribution of X given FZ
t in order to obtain explicit

expressions for V(t). There seems to be no canonical assumption so this has to be

investigated in concrete models as in Chapter 4.

One could alternatively have started with Equation (1.2.2) as a definition of

P, but some properties come more naturally from the original definition. This

is the case for the derivation of the dynamics of V, which constitutes another

important result of Chapter 3. Assuming that FZ
t = σ{Z(s) : s ≤ t} for a piecewise

deterministic process Z, one obtains the representation

V(dt) = V(t−) κ(dt)
κ(t−) − B(dt) +

∫
R(t, ζ)M(dt,dζ), (1.2.3)

resembling a stochastic Thiele equation, compare with Norberg (1992) and Chris-

tiansen & Furrer (2021). This says that the transaction time reserve evolves due

to interest rate gains, realized payments, and a term related to the sums at risk

R. The final term may be used for model validation by exploiting that it is a

martingale if the model is correctly specified.

In Chapter 4, the approach is to assume a valid time semi-Markov setup and

specify state spaces for X and Z in a manner which is sufficiently general to

capture many disability insurance schemes encountered in practice. In order to

make the distribution of X given FZ
t tractable, and to ultimately link V to V ,

various conditional independence assumptions are imposed, specifying what valid

time information is sufficient for the transaction time information not to provide any

information about the future trajectory of X. The primary technical contribution of

the paper is a lemma which shows that a strong Markov property for a non-stopping

time G can be obtained via relevant independence assumptions, roughly stating

that if X is Markov and {X(s)}s≥t ⊥⊥ {X(s)}s≤t, G | X(t) on the event (G ≤ t)

for any t ≥ 0, then the distribution of {X(s)}s≥G given {X(s)}s≤G equals the

distribution of {X(s)}s≥g given {X(s)}s≤g evaluated in g = G.

Based on these assumptions, explicit expressions of V are derived, which is

the main contribution of Chapter 4. For ease of exposition, we drop some terms

which are of secondary importance, but the exact results may be found in the

aforementioned chapter. The covered-but-not-reported reserve is approximately

given by

V(t) = Va(t, t) +

∫
(0,t]

Vi(s, 0)P(Reporting delay > t− s)µai(s) ds, (1.2.4)

where Vj(t, u) is the valid time reserve for state j, time t, and duration u, and µai

is the valid time disability hazard. Let G(t) be the time from which the insured is
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eligible for disability benefits if the claim is (re)awarded when standing at time t

and let W (t) be the disability duration at time G(t). The reported-but-not-paid

reserve is then approximately

V(t) = P(Claim is awarded | FZ
t )Vi(G(t), 0), (1.2.5)

the paid-but-not-settled reserve for an insured currently receiving disability benefits

is

V(t) = Vi(t,W (t)), (1.2.6)

and the paid-but-not-settled reserve for those not currently receiving benefits is

approximately

V(t) = P(Claim is reawarded | Gt)Vi(G(t),W (t)). (1.2.7)

Defining V as a conditional expectation and deriving explicit expressions for the

different stages of claim settlement, instead of specifying reserves for each stage

separately, ensures that the reserves sum to a consistent portfolio reserve and that

the reserves satisfy the dynamics from Equation (1.2.3). For estimation of the model

constituents, it is argued that the statistical problem can be cast as a special case

of the one investigated in Chapter 5, so the estimation procedure and asymptotic

results carry over.

1.2.2 Estimation with transaction time information

In Chapter 5, we study the problem of parametric estimation and inference for

multistate models where the observational scheme is affected by left-truncation,

right-censoring, reporting delays, and incomplete event adjudication. We propose

an estimation procedure that makes effective use of all the available data and derive

large sample properties of the estimator.

Left-truncation and right-censoring together mean that the subject might only be

in the sample during some sub-interval of the full observation window. Reporting

delays have the effect that events that are not reported before the time of analysis

are not part of the sample. We assume that events are reported in the order in

which they occurred. This assumption is natural for individual modeling and is

essential for the tractability of our approach. Finally, incomplete event adjudication

has the effect that some reported events are removed from the sample after the

time of analysis as they do not satisfy the criteria for true events. Differently

from Chapter 4, no assumptions are imposed regarding how the hazards would be

affected by information about reporting delays and adjudication processes.

Let θ be a parameter that characterizes the distribution of the multistate model.

An estimation procedure for θ is derived based on the following line of reasoning.
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If the multistate model was only affected by left-truncation and right-censoring

and one had access to n i.i.d. observations, then an estimator could be defined

as argmaxθ n
−1
∑n

i=1 logLi(θ) where Li is the partial likelihood for subject i.

This follows because E[logL(θ)] is uniquely maximized in the true parameter θ0
under weak assumptions and the average converges to the expectation by the law

of large numbers. If the multistate model is also affected by reporting delays,

then it is still possible to obtain an explicit formula for the partial log-likelihood

L(θ, f) which now also depends on f that parameterizes the distribution of the

reporting delays. This is an important technical result for the approach in the paper.

Since E[L(θ, f)] is uniquely maximized in the true parameter (θ0, f0) under weak

assumptions, an estimator of θ could be obtained by argmaxθ n
−1
∑n

i=1 Li(θ, f̂n)

for an estimator f̂n of f0. To accommodate incomplete event adjudication, one may

define Eg[L(θ, f) | Z], where Z generates the information available at the time of

analysis and g parameterizes the distribution of the adjudication outcomes. Since

E[Eg0 [L(θ, f0) | Z]] = E[L(θ, f0)]

and the right-hand-side is uniquely maximized in θ0, one may define

θ̂n = argmax
θ

Eĝn [L(θ, f̂n) | Z]. (1.2.8)

The estimator ĝn of g0 can be based on classic event history analysis methods.

Subsequently, one can let f̂n = argmaxf Eĝn [logL(f) | Z] for a right-truncated

log-likelihood logL(f).

In total, the estimation procedure produces an estimator (ĝn, f̂n, θ̂n) of (g0, f0, θ0).

The formulation of this estimation procedure is the main conceptual contribution

of the paper. Another contribution is the introduction of an approximation which

reduces the computational complexity greatly and makes it so the estimation

procedure can be cast in terms of simple adjustments of the observed exposures

and occurrences.

One may recognize the estimation procedure as a so-called two-step M-estimation

procedure and properties of the estimator may hence be derived using well-known

methods. Under classic conditions, we show for n→∞ that

(ĝn, f̂n, θ̂n)→ (g0, f0, θ0)

in probability and

n1/2(θ̂n − θ0)→ N(0, V )

in distribution for a variance matrix V , and that the estimators may be bootstrapped.

This is the main result of Chapter 5.
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1.2.3 Efficient inference under censoring and causal effects

In Chapter 6, we study the problem of obtaining efficient and robust statistical

estimates in the presence of right-censoring. We propose a nonparametric estimation

procedure that is model-agnostic such that machine learning estimators may be

used to estimate relevant nuisance parameters. Subsequently, we establish large

sample properties of the procedure for the purposes of inference. Based on these

results, we extend the applicability of regression discontinuity designs to general

right-censored data structures.

Let X = {X(t)}t≥0 be a stochastic process, let Xu = {X(t ∧ u)}t≥0 be the

process stopped at u, and let (C,XC) be the observed data for the right-censoring

time C. The relevant outcome is Y (X) and the estimand of interest is E[Y (X) |W ]

for baseline covariatesW . There is a rich literature on efficient regression estimators

when i.i.d. data on the form (Y1,W1), . . . , (Yn,Wn) is available. Instead of tailoring

these methods to censored data, our approach is to transform the observed data into

some pseudo-outcomes Y ∗ to remove the effect of censoring and then use methods

designed for uncensored data.

For identifiability, let the time of analysis be η and assume Y (X) only depends

on Xη. Further, assume the censoring satisfies coarsening at random so that the

density of P(C ∈ du | X) with respect to a fixed reference measure µ only depends

on Xu. Finally, assume P(C ≥ η | X) is uniformly bounded away from 0. With

two candidate probability measures P1 and P2, define the pseudo-outcomes as

Y ∗
P1,P2

(C,XC) =
Y (X)1(C≥η)

P1(C ≥ η | X)

+

∫
[0,η)

E2[Y (X) | Xu]

P1(C > u | X)

{
d1(C≤u) − 1(C≥u)

P1(C ∈ du | X)

P1(C ≥ u | X)

}
,

where E2 is the expectation under P2. The motivation for this definition is that

n−1
∑n

i=1 Y
∗
P̂,P̂(Ci, X

Ci
i ) is the one-step estimator for E[Y (X)]. The estimand

E[Y (X) | W ] is not a smooth function of P and hence does not satisfy Equa-

tion (1.1.1), so it is not immediately clear from the general theory how to estimate

it efficiently. Since the efficient estimator of E[Y (X)] is obtained by averaging these

pseudo-values, the hope is that an efficient estimator of E[Y (X) |W ] is obtained

by regressing these pseudo-values on covariates.

A central result of the paper is the following product representation of the

conditional bias,

E[Y ∗
P1,P2

(C,XC)− Y (X) |W ]

= E
[ ∫

[0,η)

{E[Y (X) | Xu]− E2[Y (X) | Xu]}

× {γ1(u | X)− γ(u | X)} P(C ≥ u | X)

P1(C > u | X)
dµ(u) |W

]
,

(1.2.9)
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where γ is the hazard of C | X under P and γ1 is the same but under P1. The

conditional bias is important for deriving asymptotic results, and this product

representation is used to show that the estimator is robust to deviations in the

nuisance parameters E2[Y (X) | Xu] and γ1(u | X).

Building on the approach from Kennedy (2023), we propose a cross-fitting

estimation procedure and derive its large sample properties. We show under some

regularity conditions that if the regression method Ên converges at rate α to a

Gaussian distribution, meaning that

nα{Ên[Y
∗
P,P(C,X

C) |W = w]− E[Y ∗
P,P(C,X

C) |W = w]} → N(µ, σ2)

in distribution for n→∞, then the cross-fitted estimator based on the estimated

pseudo-outcomes Y ∗
P̂1,P̂2

also converges to a Gaussian at rate α whenever

∥γ1(u | X)− γ(u | X)∥ × ∥E2[Y (X) | Xu]− E[Y (X) | Xu]∥ = OP(n
−β)

for β > α. Here ∥·∥ is a specific weighted L2(P)-norm and stochastic boundedness

An = OP(an) roughly means that the probability of |An/an| being large becomes

small when n increases.

Finally, we extend regression discontinuity designs to our censored data setup.

Assume that the covariate W is one-dimensional and define the conditional average

treatment effect at w0 as

τ = E[Y (1) − Y (0) |W = w0]

where Y (a) = Y (X(a)) for the potential outcomes X(a). Inspired by the classic

assumptions for the validity of regression discontinuity designs, assume

(i) a+ := limw↓w0 P(A = 1 |W = w) and a− := limw↑w0 P(A = 1 |W = w) exist

and a+ ̸= a−,

(ii) E[Y (1) |W = w] and E[Y (0) |W = w] are continuous in w at w0,

(iii) A ⊥⊥ (Y (1) − Y (0)) |W = w in the limit for w → w0.

One then obtains the identification

τ =
y+ − y−
a+ − a−

and the estimation procedure of this chapter may be used to estimate each of

y+, y−, a+, and a−. Furthermore, the asymptotic distribution of the estimand

follows as a special case of our general results.



Chapter 2

Loss of earning capacity in Denmark – an

actuarial perspective

This chapter contains the manuscript Furrer & Sandqvist (2025).

Abstract

We describe challenges and opportunities related to risk assessment

and mitigation for loss of earning capacity insurance with a special focus

on Denmark. The presence of public benefits, claim settlement processes,

and prevention initiatives introduces significant intricacy to the risk

landscape. Accommodating this requires the development of innova-

tive approaches from researchers and practitioners alike. Actuaries are

uniquely positioned to lead the way, leveraging their domain knowledge

and mathematical-statistical expertise to develop equitable, data-driven

solutions that mitigate risk and enhance societal well-being.

Keywords: Disability insurance; Mitigation; Multistate; Prevention; Public bene-

fits

2.1 Introduction

The purpose of insurance is to protect against uncertain events that lead to financial

losses, which is first and foremost achieved by the pooling of diversifiable risks.

Disability benefits play a crucial role in ensuring income stability for individuals by

reducing financial vulnerability during periods with reduced earning capacity as well

as supporting part-time employment. The latter relates to the fundamental right

to work. This right may be found in the Declaration of Philadelphia (1948)1, in

Article 23 of the Universal Declaration of Human Rights (1948), in Article 10 of the

Valencia Declaration (1998)2, and in Article 15 of the EU Charter of Fundamental

1Declaration concerning the aims and purposes of the International Labour Organisation.
2Declaration of Human Duties and Responsibilities.
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Rights (2000). In a welfare state, the right to work is matched by a duty to work for

those that are able – and support for the disabled and disadvantaged. Such is the

situation in Denmark, where a well-rounded three-pillar system consisting of the

public sector, labour market pensions, and private insurers offers a rich interplay

between public benefits and insurance coverage (Kommissionen om tilbagetrækning

og nedslidning, 2022, Chapter 6). The insurance coverages play a vital role in

today’s society, with approximately one in five Danes expected to rely on disability

insurance at some point during their careers3.

For classic risks such as mortality and longevity, a wide range of proven modeling

approaches are available to the actuary. In comparison, disability insurance presents

unique challenges. Disabilities can very in form, degree, and duration, and in the

interplay with the public system, leading to complications in risk assessment and

management. There is untapped potential in this field – and this potential can be

harnessed by actuaries due to their unique combination of domain knowledge and

mathematical as well as statistical competence.

We attribute the relatively unrealized potential to historical reasons first and

foremost. Technological progress has just recently allowed the storage and processing

of much larger quantities of data than in the past, which combined with advances

in data analytics, machine learning, and task automation has greatly expanded

the actuaries’ and statisticians’ sphere of influence. This also leads to increased

competition in the market, both in relation to product design, pricing, and value

creation, which puts additional pressure on actuaries to fulfill the potential.

To keep the presentation concise and closely aligned with our practical experience,

we focus on the Nordic countries, especially Denmark. However, we expect the

discussions to also be relevant for actuaries in other regions. For a broad intro-

duction to the German health insurance landscape and actuarial practices, confer

with Milbrodt and Röhrs (2016).

The paper is structured as follows. In Section 2.2, we describe and characterize

the risk environment for loss of earning capacity. Subsequently, Section 2.3 contains

a formalization and comparison of existing insurance coverage designs with a focus

on the Danish disability insurance market. Based hereon, the next two sections

are devoted to the topics of risk assessment through prediction and risk mitigation

through prevention, respectively. In Section 2.4, the adequacy of current approaches

to stochastic modeling, pricing, and reserving of disability risk is assessed. Next, in

Section 2.5, methods for impact evaluation of prevention initiatives are discussed.

Throughout, we identify avenues for further research and improved actuarial practice.

Closing remarks are provided in Section 2.6.

3https://danicapension.dk/en/personal/your-insurances/all-insurance-options/los

s-of-earning-capacity (accessed 14/1/2025).

https://danicapension.dk/en/personal/your-insurances/all-insurance-options/loss-of-earning-capacity
https://danicapension.dk/en/personal/your-insurances/all-insurance-options/loss-of-earning-capacity
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2.2 Risks and agents

This section describes the different risks and agents involved in disability insurance,

highlighting the complex interplays that arise. The main purpose is to identify and

provide an overview of operational areas for which actuarial expertise is crucial

to ensure successful risk assessment and mitigation. For this reason, we mainly

place ourselves in the position of the insurer and the actuary. However, some of the

insights we provide could also be relevant in a broader context, for instance in the

design and implementation of public welfare reforms.

2.2.1 Background

Denmark is, like its northern neighbors, a welfare state with an elaborate social

safety net, universal healthcare, and collective bargaining (Pedersen & Kuhnle,

2017). The social safety net seeks to cultivate the economic and social well-being of

citizens with inadequate or no income, not least due to temporary or permanent

incapacity to work. The wide range of public benefit schemes reflects efforts to

balance measures that facilitate strengthened workforce participation with citizen

welfare. This is not to insinuate that these two objectives are necessarily opposed

to each other; on the contrary, there is a rich interplay between them. According

to Bratsberg et al. (2013), for example, in Norway job loss is a major cause of

disability program entry. In Denmark, public benefit schemes include temporary

sickness benefits, but also long-term benefits like so-called flexjob benefits as well as

early retirement pension. The system is widely recognized to be complex, frequently

attracts political attention, and is under continuous development (Ekspertgruppen

for fremtidens beskæftigelsesindsats, 2024).

Despite the extensive social safety net that characterizes the Nordic model, some

individuals who become partly or completely incapacitated to work experience a

considerable loss of income and inability to sustain their pension contributions.

This is especially the case for high earners, but is expected to become increasingly

relevant to the wider population. In Denmark, the increased privatization of welfare

benefits can be seen as part of a larger movement towards a perhaps fundamentally

different society characterized by its rich interplay between private and public actors

and mixed solutions. We refer to Fischer & Kvist (2023) for a recent in-depth

review and discussion of this trend.

In many ways, the key role of insurance is to ensure stability of an individual’s in-

come and consumption by risk-sharing through time and across individuals (Jensen

et al., 2019). It is therefore no surprise that the market for so-called loss of earning

capacity insurance (or for the sake of linguistic simplicity: disability insurance) has

been growing and continues to grow. In Denmark, this includes private individual

schemes managed by commercial insurance companies and supplements to company
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or occupational pension schemes offered by commercial or cooperative pension

providers. Here is also the statutory workers’ compensation insurance partly man-

aged by the so-called Labour Market Insurance (Arbejdsmarkedets Erhvervssikring,

AES) in accordance with the Workers’ Compensation Act. The fact that the insur-

ance schemes aim to ensure consumption smoothing entails an unfortunate spillover

effect of complexity. Given that the public benefits are supposed to and constitute

the main pillar, the design and appropriateness of insurance coverages must be

considered residual hereto and under penalization by offset rules as to not under-

or overcompensate the insured, see also Sections 3.1 and 5.2 in Jensen et al. (2019).

This has given rise to complicated insurance coverages that interact closely with the

public benefits, inheriting not least the complexities of the latter. For an overview

of the Danish disability insurance market, see also Chapter 6 in Kommissionen om

tilbagetrækning og nedslidning (2022).

Disability risk and insurance are also just from a purely biometric perspective

more intricate than, say, mortality risk and life insurance. They are both long-term

risks, but death is, after all, categorical, while disability comes in various forms and

degrees. Proper risk assessment therefore necessitates an effective collaboration

between case managers and medical professionals. Furthermore, while mortality risk

has developed in a rather stable way, at least disregarding pandemics, disability risk

has historically developed in a more volatile manner that directly affects disability

insurers. An example hereof is the major increase in mental health claims, with

the Danish insurer Velliv in 2022 reporting that 70 % of its payments to young

disability claimants were stress related4.

All in all, this paints a rather complicated picture of disability insurance in

Denmark and the other Nordic countries. To exemplify and systematize the

complexities, we introduce and study two realistic cases based on our actuarial

experience in the Danish insurance and pensions industry. The cases are intended

to reflect reality, while also bringing to light characteristics about the product and

its risks that are of particular significance from an actuarial perspective.

2.2.2 Alex and Charlie

In the following, we present two fictitious, but quite illustrative, disability cases.

The first case, about Alex, describes a possible trajectory in the public system and

underscores the raison d’être for disability insurance in Denmark. The second case,

about Charlie, focuses on the type of information that becomes available during

the insurer’s claims processing. The idea is to provide a better understanding of

the data that the actuary can actually access for dynamic decision making and for

actuarial and statistical modeling purposes.

4https://finanswatch.dk/Finansnyt/Pension/Velliv/article13748200.ece (accessed
14/1/2025).

https://finanswatch.dk/Finansnyt/Pension/Velliv/article13748200.ece
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Alex’s accident

Alex, 33 years, falls on their bike on the way home from work and hits

their head. In the first few weeks after the accident, they experience frequent

headaches, but their work life is not immediately affected. In the next two

months this changes as their condition deteriorates. They go on sick leave for

a couple of months during which they receive full pay from their employer; the

employer is partially compensated by the municipality. Alex’s family physician

assesses that their earning capacity has been reduced to one-third in their

current job.a

Alex attempts to continue to work at their current employer, but only

for 12 hours a week. However, this scheme is unsuccessful and they end

up being terminated. For a while, Alex’s only source of income is therefore

sickness benefits combined with savings. The sickness benefits are eventually

discontinued, at which time the municipality enrolls Alex in a vocational

assessment and resource clarification program. During this program, they

receive so-called resource benefits from the municipality.b

After about two years, Alex and the municipality identify a more appropriate

career choice for Alex. The new job pays less than their original job, but they

are able to work half of normal hours for full pay and they receive a so-called

flex job salary supplement from the municipality.c

Alex worries about the rising inflation and the size of their pension since

they had several years where they withheld pension contributions and are now

paying a lower amount than before. Alex still suffers from severe and crippling

headaches twice or thrice every month.d

aIf Alex had had disability insurance coverage, they could have applied for

disability benefits supported by their medical report. If awarded, their employer

would be additionally compensated by insurance benefits, however in such a way

that the total compensation does not exceed Alex’s original salary. This means

that it would be less expensive for the employer to retain Alex and, in the longer

term, uncover alternative work arrangements.

bResource benefits are generally lower than sickness benefits, so Alex’s financial

situation worsens as time passes, further negatively impacting their quality of life.

The public benefits could have been complemented by insurance benefits, would

Alex have been covered.

cNote that by this point, Alex has received three different types of public benefits,

each subject to differing criteria: sickness benefits, resource benefits, and flex job

salary supplement. Several other types of benefits exist, indicating the complexity

of the public system. Even if Alex had been able to work normal hours, a disability
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insurance could have continued to play some role, given the difference in salary

between the new and the original job. This is because disability insurance benefits

typically are based on the original salary just before disability.

dPremium exemption insurance, also known as premium waiver insurance, would

ensure the continuation of pension contributions at the original level in case of a

disability. This coverage aims to maintain the same level of welfare for the pensioner

regardless of their disability history before retirement. Both the premium exemption

insurance and the disability insurance may be subject to suitable indexation as to

mitigate the influence of inflation.

Charlie’s claim

The insurer receives a disability claim from Charlie, a 45 year old primary

school teacher, on the ground of their reduced earning capacity. Charlie has

recently returned from a three months sick leave due to work-related stress and

burnout, and is currently only working part time, around 16 hours a week.e

The insurer’s claims processing team reviews Charlie’s medical records

and rejects the claim, citing insufficient documentation of at least a 50 %

reduction in earning capacity, which is an eligibility requirement stipulated in

the insurance contract. The rejection is communicated to Charlie about four

weeks after they submitted their claim.f

Several months later, Charlie reapplies with new medical documentation

from their family physician as well as an independent psychiatrist, detailing

severe stress and early-stage depression, which has led Charlie to now only

working 12 hours a week. The insurer reassesses the claim and approves

benefits retroactively, starting three months after the first day of Charlie’

initial sick leave to take into account the waiting period stipulated in the

insurance contract.g

The insurer regularly reviews Charlie’s progress. After a doctor concludes

that Charlie can return to work full hours, the insurer ceases benefits. However,

a second medical opinion shows no improvement, and the insurer hence resumes

payments.h

Over time, Charlie’s condition worsens into a serious depression, and Charlie

continues to receive insurance benefits. The insurer eventually refers Charlie

to a vocational assessment. Charlie is reluctant to participate, citing a lack of

energy. However, the insurer informs Charlie that the program is a prerequisite

for receiving benefits, after which Charlie follows the recommendation.i

It is concluded that a job as a librarian at a nearby library would be optimal

for Charlie’s condition and Charlie fortunately manages to secure the job. The
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insurer regularly obtains updates from Charlie over the next 18 months as

their mental health and work hours increase. Finally, Charlie reports that they

feel much better and are now working full hours at the library, leading the

insurer to cease all benefits.j

The next time the insurer hears from Charlie is at their retirement age.

They are claiming their pension and look forward to spending more time with

their grandchildren.

eThere has thus been a reporting delay of more than three months since the onset

of illness. Long reporting delays are often observed for disabilities and for multiple

reasons, including the illness in itself, the need to collect medical documentation,

an inattentiveness or unawareness of the insurance coverage, and the lack of a

short-term monetary incentive due to the availability of sick leave.

fThis constitutes a rejection of the claim, however it turns out to only be a

temporary rejection given that Charlie later successfully reapplies. Temporary

rejections are common as it is difficult to precisely determine the degree of loss of

earning capacity. The involvement of medical professionals is required, and the

counterfactual nature of the question of how many hours the insured might be able

to work invokes an inevitable element of subjectivity.

gThe reapplication is approved. In addition to continuing benefits from the time

of adjudication, it also includes a backpay to take into account the claim history.

The backpay may be accumulated with interest, the motivation being that the

insurer should not have any monetary benefit from delaying the payout. The fact

that payments frequently are awarded retroactively implies that the insurer might

substantially under-reserve if backpay is ignored in the modeling.

hThis constitutes a temporary reactivation followed by another successful reappli-

cation resuming the benefits and likely also giving rise to another backpay related

to the months for which no benefits where paid. This is once again an example

of the complexity associated with adjudication of disabilities, in particular those

related to mental health.

iThe purpose with the vocational assessment is to identify other career choices

that could allow Charlie to work more hours and hence receive less benefits. Such

an assessment may be required both by the insurer and the municipality.

jThis constitutes a permanent reactivation. Disability benefits typically continue

until retirement, reactivation, or death, whichever occurs first.

2.2.3 Interplay between agents

The cases illustrate the main agents of disability insurance: the insured, the insurer,

the employer, and the public system. In fact, the cases are described in a simplifying
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way. In the first case, about Alex’s accident, an insurer was omitted from the

narrative to better illustrate what would happen in the absence of insurance coverage.

We may omit the insurer since the interplay between the insured and the public

system is not directly affected by insurance coverage. However, counseling and

financial support can have a significant impact on the trajectory of the insured’s

disability. In the second case, about Charlie’s claim, the role of the public system

was kept exogenous. This is because this system, from an insurer’s point of view,

is an external environment that they and the insured are adapting to. The case

is basically a description of how information about a claim arrives at the insurer,

which is via direct contact with the insured and the employer rather than the public

system, as well as how the insurer may respond to this information.

Figure 2.1 provides a schematic representation of the interactions between the

insured, the insurer, the employer, and the public system for disability insurance,

where by an interaction we refer to a direct exchange between two or more agents.

One central observation is that the graph is almost fully connected, which contributes

to the many-faceted complexity of the situation. The only exception is that exchange

between the public system and the insurer occurs indirectly, through the insured

and the insured’s employer.

Insured Insurer

Public system Employer

Figure 2.1: The types of agents involved in disability insurance (nodes) and their
interactions (edges). Gray outlines highlight the types of agents present in Alex’s case
(dashed) and Charlie’s case (dotted), respectively.

It should be mentioned in this context that the insurer may interact more or

less directly with the public system through, for example, political channels and in

order to influence the general conditions for disability insurance, but of course this

does not relate to the individual coverage and claim and is therefore not represented

in the figure. The insurer may also collect additional information, for instance from

public registries, which could influence the way in which they interact with the

insured. In general, the insurer plays a complementary role to the public system.

This characteristic also presents itself in the areas of prevention and treatment,

which we discuss next.
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2.2.4 Prevention

Broadly speaking, insurance and prevention are two distinct and often conflicting

responses to risks, and their successful integration is consequently deemed challeng-

ing (Dubois, 2011). Nonetheless, prevention has become a trendy topic in insurance,

not least in regards to human health (Gauchon et al., 2020b). This is perhaps not

too surprising; the dichotomy between insurance and prevention is less pronounced

for disability risk than for, say, many non-life risks. This is not least due to the

fact that injury and illness, besides the economic costs that loss of earning capacity

insurance might cover, has additional human and social costs – and this reduces

moral hazard; compare also with the discussion in Botzen et al. (2019).

In the context of disability insurance, prevention initiatives can take many

different shapes and be initiated by different agents. In the following, we focus

on the role of the insurer as a prevention (and not only insurance) provider. The

diversity of potential disability prevention initiatives can be explored by considering

various non-hierarchical taxonomies.

We can divide disability risk into two parts: frequency and severity risk. The

former encompasses the probability of injury or illness causing substantial loss of

earning capacity, while the latter describes the degree and duration of loss of earning

capacity. There is clearly some overlap between the risks, so the division should not

be considered strict. Prevention initiatives may target the frequency risk, severity

risk, or both simultaneously. Sometimes, the nomenclature primary prevention is

used for an initiative that predominantly targets frequency risk, while secondary

prevention is used for an initiative that predominantly targets severity risk (Dubois,

2011; Kenkel, 2000). There is also the concepts of self-protection and self-insurance,

see Ehrlich & Becker (1972), which we have seen used in place of primary and

secondary prevention. However, we would like to warn against such interchangeable

use. Self-protection and self-insurance also include initiatives that do not directly

or even indirectly reduce risk, such as risk retention. To us, prevention implies

affecting or intervening in the underlying risk environment. This is fundamentally

different from loss protection for the insurer due to product design or reinsurance.

The primary role of the actuary in connection with prevention initiatives lies in

using mathematical and statistical methods to perform impact evaluation, that is to

measure the causal effects of the initiatives. It is, after all, within the actuary’s role

to assess which initiatives are appropriate from a cost perspective. This necessitates,

however, that the actuary is involved in identifying potential prevention areas and

in the design of appropriate initiatives. Paraphrasing Ronald Fisher: To consult

the actuary after the initiative is completed is merely to ask them to conduct a

post mortem examination.

As mentioned, it is possible to imagine many different prevention initiatives
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in connection to disability insurance. However, they all fall within one of five

categories. There is the insurance coverage in itself, which provides peace of mind

for the insured upon disability and consequently might have a reducing effect on

the severity risk (Fischer & Kvist, 2023, p. 120). For occupational schemes, the

insurer and the employer can cooperate on initiatives to improve the physical

and psychological work environment and thereby reduce the frequency risk and,

potentially, but likely to a lesser degree, also the severity risk.

The remaining three categories of initiatives are of increased actuarial interest.

They encompass initiatives targeting the individual insured, but at different risk

stages. First, there are health promotion initiatives, such as wearables (Spender

et al., 2019), that aim to increase overall health and resilience. Second, prevention

initiatives may be initiated just before a potential disability based on early warning

indicators such as a health insurance claim or sick leave to either reduce the

likelihood of disability or reduce the degree and shorten the duration. For example,

the insurer may contact potential claimants and offer them additional short-term

health services, such as immediate access to physical therapists and psychologists.

Finally, prevention initiatives may be initialized during disability to improve the

recovery rate of the insured, possibly based on pre-existing public programs. For

example, the insurer might propose or even require that the insured completes a

vocational assessment.

Across all categories, measuring the preventive impact of an initiative is chal-

lenging. It is necessary to separate the effect of the intervention from all other

effects, including global health trends and local changes to underwriting and claims

processing practices. The gold standard would be some sort of randomized trial,

but this is often deemed ethically or practically undesirable. Instead, insurers

might target the initiative towards high-risk individuals, adopting a cut-off selection

rule. This, however, comes with additional challenges. The group subjected to

the initiative would no longer be comparable to the group not subjected. Further,

there is not necessarily a correlation between high-risk individuals and individuals

for whom the intervention would have the largest positive effect. Therefore, causal

insights are required to operationalize impact evaluations that are accurate and fit

for purpose. We return to and expand on this key insight in Section 2.5.

2.2.5 Systematic and unsystematic risks

The discussion up until this point shows that disability insurance is complicated and

subjects the insurer to many risks; this includes both systematic and idiosyncratic

(unsystematic) types of risks. Idiosyncratic risks are specific to the insured or the

insurance policy and thus manageable by diversification in accordance with the

central limit theorem. Systematic risks affect the whole portfolio, or substantial

segments of it, jointly and hence cannot be reduced by simply increasing the size of
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the portfolio. In Figure 2.2, we provide an overview of the main risks associated

with disability insurance.

 

Inflation and interest 

Erroneous data (processing) 

Changes in internal practices, including 

underwriting, claims processing, and 

fraud detection 

Estimation errors 

Randomness of events 

Model misspecifications 

Changes in disability incidence, 

reactivation, and mortality 

Changes in the social security 

system and to regulation 

Figure 2.2: Primary systematic and idiosyncratic (unsystematic) risks for disability
insurance.

The changes in the incidence of biometric events in particular, but also changes

to internal practices and the social security system, can be abrupt, in which case one

might speak of shocks. There is, however, also significant long-term risk, so-called

trend risk. To mitigate said risk, it is essential to monitor biometric, economic,

and societal trends and to adjust one’s models accordingly. Reinsurance could also

be an option, both in regards to biometric shocks and to counteract the interest

rate risk associated with the potentially long cash flows. In general, the models

should be well calibrated and supported by strong underwriting practices and fraud

detection programs. Finally, prevention initiatives may reduce both unsystematic

and systematic risk, confer with Subsection 2.2.4.

We should like to stress that actuaries are well-positioned to contribute to the

key activities involved: product design, risk modeling, and optimal prevention.

In the following three sections, we address each of these areas separately. The

emphasize will be on relevant recent developments in actuarial science and associated

opportunities for actuaries of the present and the future.

2.3 Product design

In this section, disability insurance coverages are formalized and compared with

a focus on the Danish market. Our approach is initially descriptive, seeking to

explore and understand the characteristics of existing products rather than discuss

optimal design. Further, we are looking for common instead of distinguishing design

trends, focusing on annuities. This simple-sounding task already reveals a number
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of challenges that hitherto have received limited to no attention in the actuarial

literature.

Fundamental to the product is the specification of what constitutes lost earning

capacity. The degree of lost earning capacity is usually taken to be the proportion

of hours the insured is able to work compared to a standard number of working

hours. The proportion may be based on the hours it is possible to work in the

insured’s own original occupation, a similar occupation, or any occupation. These

specifications play an important role not least because they may influence the

incidence rate, reactivation rate, and payment sizes considerably, which also has

implications for subsequent actuarial modeling. Due to the rich interplay with

the public system, it is often natural for the definition stipulated in the insurance

contract to be at least partly aligned with the one used in the public system,

which may result in the insurance coverages being subjected to the whims of

politics. In Denmark, three-fifths of the insured receiving disability benefits in 2020

were awarded benefits based on eligibility for early retirement pension, while the

remaining two-fifths were awarded based on the insurer’s internal health assessment

of the insured (Kommissionen om tilbagetrækning og nedslidning, 2022, Boks 6.4).

Having specified what constitutes loss of earning capacity, the product further

depends on the specification of the size of the compensation in case of a disability.

In Subsection 2.3.1, realistic contractual payments are formalized. Contractual pay-

ments are those that are stipulated in the insurance conditions. Further complexity

arises in ensuring that the insured receives the benefits they were eligible for due to

reporting delays and adjudications; this is the topic of Subsection 2.3.2.

2.3.1 Contractual payments

We here give a continuous time description of the contractual payments. This is a

natural approach since the underlying biometric events occur in continuous time. In

reality, payment streams feature lump-sum payments at discrete points in time, but

payment rates are mathematically convenient and offer a useful approximation when

the payment frequency is sufficiently high; this is the case for disability annuities

with monthly payments.

Simple disability annuity

Multistate models provide a parsimonious way to formalize the contractual payments.

Let Y = {Y (t)}t≥0 be a stochastic process that is piecewise constant and which

takes values in the state space J depicted in Figure 2.3. The definition of Disabled

in the model is to be understood as being eligible for disability benefits according

to the stipulations in the insurance conditions, and the contractual payments
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B = {B(t)}t≥ of a simple disability annuity may then be cast as

dB(t) = 1{Y (t) = 2}bdt, B(0) = π,

where π < 0 is the initial premium and b > 0 is the disability benefit rate. This

definition and corresponding mathematical expression hide the stipulations for

eligibility. The latter usually require the disability to have occurred within the

coverage period, which commonly spans one to three years, the proportion of lost

earning capacity to be sufficiently high, for example 50 %, and a deferred (waiting)

period of, say, three months to have passed.

Active 1 Disabled2

Dead 3

Figure 2.3: State space J for a classic disability model. The arrows represent the possible
transitions.

Defining the disabled state as being eligible for disability benefits has the effect

of placing the difficulty in modeling onto the probabilities of transitioning to and

from the disabled state, rather than placing it in the payment rates. This implies,

among other things, that the time of disablement and the transition probabilities

become product dependent. However, using a product-independent definition of the

time of disablement such as the first day of sickness leads to other complications in

formalizing the contractual payments. Taking the deferred period as an example,

one could add an indicator to the benefits that the duration in the disabled state has

exceeded the deferred period, but this might not correctly describe what happens

in practice since the deferred period is often annulled if the insured relapses after a

short reactivation.

Thus, even in this simple setting where benefits are constant and claim settlement

processes are not involved, the non-hierarchical nature of disability trajectories leads

to disability insurance having a high level of complexity compared to other types

of coverages. These complexities seem to be ignored in the classic literature on

actuarial multistate modeling. In the formulations of Example 3.2 in Christiansen

(2012) and Section 3.2.2 in Haberman & Pitacco (1998), it is for instance not

possible to receive payments when entering the disabled state after the end of the

coverage period and the deferred period resets after each entry to the disabled state.

This means that temporary reactivations for the same underlying disability event

are not accounted for. However, if temporary reactivations or multiple distinct

disabilities are disregarded, the added complexities disappear, and one may thus

give an approximate description of the contractual payments based on the classic



32 Chapter 2. Furrer & Sandqvist (2025)

literature by ignoring multiple disabilities and using the alternative state space

depicted in Figure 2.4.

Reactivated 3Disabled 2Active 1

Dead 4

Figure 2.4: State space for an alternative disability model with separate reactivated state.
The arrows represent the possible transitions.

When disability benefits are constant, underwriters should manually take people’s

financial situation into account and anticipate what benefits they will receive from

other sources such as the public system. If the insured’s total income would increase

substantially in the event of a disability, as they may receive income from several

sources, there is the potential for moral hazard as noted in Chapter 3 of Haberman

& Pitacco (1998), but this effect is likely limited due to the reasons outlined in

Subsection 2.2.4. Another downside, however, is that the insured has potentially

over-insured themselves and therefore pays a premium that is too high in relation

to the utility value of the coverage. On the other hand, if the insured’s income

substantially decreases in the event of a disability, then the insurance is not achieving

its purpose of ensuring that the individual can maintain a similar or only slightly

lower level of consumption. Accommodating these complications requires tailored

insurance coverages since the public benefits change as the disability progresses.

Such complicated coverages designed around the social security system, which are

by now rather common, are the focal point of the next subsection.

Disability annuity

Using the state space from Figure 2.3 with the same definition of the Disabled state,

a simple disability insurance product designed around the social security system

has contractual payments on the form

dB(t) = 1{Y (t) = 2}min{max{s− et − ct, 0}, d× s} dt, B(0) = π,

where d is the percentage of salary covered, for example two-thirds, s is the salary

just prior to the disability, et is the earning capacity at time t, and ct is the

compensation from social security and other insurance coverages at time t.

The Danish market also features more complicated coverages. Inflation regulation

is, for instance, a common feature; here s is scaled with an appropriate inflation

index as to maintain the purchasing power. Additionally, the deduction of benefits

from other insurance coverages may first take place when the total income exceeds
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some higher proportion of the previous salary than d, say 80 %. The benefit rate

might also be reduced whenever the insured is enrolled in public benefit programs

that deduct compensation from insurance coverages; an example hereof is the

resource clarification program. Furthermore, there is the entanglement with tax

rules, pension contributions, and labor market contributions. The intention behind

such modifications to the simple product is to stabilize the insured’s total income

level, while keeping the insurer’s expenses – and therefore the premium rate – as

low as possible.

These types of products are not well-studied in the actuarial literature. However,

they can and should be studied using well-known methods from event history

analysis and the mathematics of life insurance. It is worthwhile to note that it is

not necessary to explicitly forecast et and ct to calculate reserves and premiums;

it suffices to model the average payments at future times (by the law of iterated

expectations). This way of thinking might also be applied to incorporate some of

the complexities described in Subsection 2.3.1, rather than just placing it on the

transition probabilities. The actuarial community would benefit from more work in

these areas.

2.3.2 Claim settlement payments

While the insurance contract determines the payments that the insured is eligible

to, as described in Subsection 2.3.1, the actual process of awarding the insured

these benefits is complicated by the claim application process.

There is both a reporting delay incurred by the insured (from the occurrence

of the event until the insured notifies the insured) and a further delay incurred by

the insurer due to its adjudication process (from when the insurer is notified until

eligibility is determined). If the insurer determines that the insured is eligible for

benefits, the insurer has to ensure that the insured is compensated according to

the stipulations in the insurance contract. This is done by awarding backpay from

the end of the deferred period to the time where the decision to award benefits

is made – in addition to the annuity payments from that time until the insured

reactivates, dies, or reaches their retirement age. In determining the size of backpay,

the time value of money has to be taken into account. Therefore, backpay is

usually accumulated with interest matching the periods that the benefits pertain

to. A similar phenomenon occurs if benefits are stopped by the insurer, but the

insured reapplies and successfully demonstrates that the payments were wrongfully

stopped. The realized cash flow B = {B(t)}t≥0 for the simple disability annuity of

Subsection 2.3.1 consequently takes the form

dB(t) = 1{Z(t) = 2}bdt+ backpay(t) dN(t)

where Z is a stochastic process taking values in the same space as Y , but only
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visiting the state Disabled when the insured is actually receiving annuity benefits,

and where N(t) counts the number of times backpay has been awarded before time

t. The backpay takes the form

backpay(t) =

∫ β(t)

α(t)

exp

(∫ t

s

r(v) dv

)
bds

with α(t) and β(t) delimiting the relevant period and r denoting the interest rate.

These complications have only recently been addressed in the multistate mod-

eling literature on disability insurance, namely in Buchardt et al. (2023, 2025)

and Sandqvist (2025). One may therefore reasonably ask whether they can be

ignored. For pricing or reserving at the inception of the contract, the answer is to

a large degree ‘yes’, but for risk management and reserving during and after the

coverage period, the answer turns out to be a resounding ‘no’ unless the reporting

and adjudication delays are very short, see Subsection 2.4.4 for detailed explanations

as to why.

In the context of estimation, the presence of reporting delays as well as incom-

plete adjudications biases the sample. Fitting a model to have good predictive

performance on the observed data, for instance using out-of-sample-based methods,

leads to a biased model – because the sample is biased. Reporting delays result

in the sample containing too few observed disabilities, while later rejections upon

adjudication result in the sample containing too many observed disabilities. It is

therefore not even clear whether one over- or underestimates the disability inci-

dence rate. The actuary plays an important role in recognizing and taking these

effects into account when performing reserving and impact evaluations for disability

insurance. In fact, actuarial reserving as a field has in many ways evolved around

accommodating such sampling effects, which in addition to reporting delays and

incomplete adjudication encompasses left-truncation and right-censoring stemming

from the finite observation window and from insured entering and leaving the

portfolio.

2.4 Actuarial modeling

As seen in Section 2.3, formalizing the contractual payments for a single insured

is inherently difficult, and this also complicates the risk modeling. In this section,

we discuss and compare relevant actuarial models, providing new insights into the

adequacy of current stochastic modeling approaches when applied to disability

insurance coverages. The overall aim is to obtain sound actuarial models for risk

management, while maintaining as much simplicity as possible; they should have

predictive prowess, and it should be possible to validate them in- and out-of-sample.

This aim epitomizes the identity and role of the actuary since achieving it requires a

synthesis of insight about the design of the products, the associated biometric and
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financial risks, as well as the available data and its consequences for the probabilistic

and statistical aspects of the model.

2.4.1 Reserving and pricing

Premiums are said to be actuarially fair if they equal the expected expenses. From

a narrow mathematical standpoint, obtaining actuarially fair premiums is therefore

a special case of reserving. Reserves represent the value of the future cash flow,

with market-consistent valuation leading to reserves V on the form

V (t) = E [P (t) | Ft] , (2.4.1)

P (t) =

∫ ∞

t

exp

(
−
∫ s

t

r(v) dv

)
dB(s), (2.4.2)

where r is the interest rate, dB is the cash flow, Ft is the information that is known

at time t, and time is measured as the duration since the inception of the contract.

This is the (conditional) expectation of the present value of future benefits with

respect to some market-consistent (equivalent) probability measure. Actuarially

fair premiums are those for which V (0) +B(0) = 0, which in our setting implies an

initial premium π = −V (0).

In practice, however, pricing and reserving models usually have different targets.

For pricing, it is important to have precise premium sizes on an individual level to

avoid adverse selection. For reserving, both accurate size and timing are important.

The insurer has to charge enough money in the beginning to pay the later claims,

which favors prices that are accurate on a portfolio level. Regulation compels

the insurer to set aside additional capital to maintain solvency even in cases that

are considerably worse than current best estimates, which may be thought of as

accounting for the market price of risk. These are aspects related to the size of the

reserve. To have good timing, the reserve has to be close to the present value of

future benefits at each point over the duration of the contract period, not just at

the beginning. Otherwise, there will be a mismatch between the release of reserves

and incoming losses. This again leads to swings in the insurer’s financial results

and uncertainty about the insurer’s financial situation that makes it difficult to run

an efficient operation. Furthermore, the timing of the reserve is crucial for hedging

of the financial risks associated with the future cash flow. If possible, the insurer

would also want good timing on a more granular level to be able to monitor the

business on a sub-portfolio level.

In addition to size and timing, actuaries also care about model complexity and

statistical complexity. Model complexity comes in many forms. We here restrict our

attention to the complexity of the mathematical concepts involved in specifying the

model, and not for example the explainability of the model and its output. This

notion of model complexity is relevant for the time and skill needed to understand
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the model, but also influences the risk of implementation errors and the ease with

which the model may be communicated to non-experts. Statistical complexity

is taken to include the hardness of both the statistical learning problem and the

practical issues of modeling choices and implementation. In the following three

subsections, different model paradigms are discussed with these considerations in

mind; a comparison may be found in Subsection 2.4.5.

2.4.2 Non-life individual reserving models

Since formalizing the contractual payments is difficult, one may ask whether it

is more favorable to disregard the known structure of the cash flow dB and also

learn this from the data. This is similar to the individual reserving approach

from non-life insurance, and one could hence use recent methods from this area

such as Crevecoeur et al. (2022b) or Yang et al. (2024). Their approach is to

model the full real-time development of the claim and all time-varying covariates;

note, however, that Yang et al. (2024) assume the entire path of the time-varying

covariates to be known. A brief summary goes as follows. A high-dimensional

stochastic process X = {X(s) : s ≤ t}, which represents all available policy and

claim level information, is introduced, and the available information is specified as

Ft = σ{X(s) : s ≤ t}. The distinction between contractual and realized payments

is abandoned, meaning dB is taken to just be dB; compare to Subsections 2.3.1

and 2.3.2. This choice implies that B(t) is recoverable from the information

Ft, so the present value in (2.4.2) is indeed the relevant present value, and the

reserve of (2.4.1) is operational. However, the reserve does not admit a closed-form

expression, and since calculating them numerically via differential equations is

undesirable due to the high dimensionality of the model, Monte Carlo methods are

used.

This approach makes the probabilistic description of the model relatively simple,

but results in a learning problem with high statistical and computational complexity.

In particular, the curse of dimensionality implies that the appropriate amount of

data needed to estimate the model grows quickly with the dimensionality of the

model, not least since the signal-to-noise ratio is low in insurance applications.

Additionally, some of the assumptions that are made to reduce the dimensionality

of the model in these specific papers would be problematic for disability insurance.

More specifically, the Poisson assumption of Crevecoeur et al. (2022b) is unpleasant

since one can in reality only be compensated for at most one disability at any time.

Further, in Yang et al. (2024) it is assumed that the different payment sizes and

waiting times are independent given the settlement time, which does not describe

disability annuities well since payments occur monthly after the first payment and

the payment sizes are similar for payments that are temporally close.

Another challenge with the non-life approach is that the individual model compo-
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nents are tuned to be accurate for their separate regression problems, and this may

lead to substantial bias for the aggregate reserves due to plug-in bias. In Creve-

coeur et al. (2022a), it is suggested to remove this aggregate bias by rescaling

the predictions such that the aggregate predictions historically agree with the

aggregate observations. An alternative that does not seem to have been explored

in an actuarial context, but which might be useful, is to remove the plug-in bias

for the portfolio reserve using a so-called one-step estimator, confer with Section 4

of Kennedy (2022).

2.4.3 Aggregate reserving models

General considerations

A different approach, which also does not utilize the known structure of the

contractual payments, is to use aggregate models for which dB represents the

realized cash flow of the portfolio instead of a single individual, and for which

the information used for reserving, written F , is kept at portfolio level (even if

more granular information is available). Aggregate models have the advantage that

they target the portfolio level reserve and that they are comparatively simple to

implement.

However, aggregate models have four general disadvantages. First, they cannot

use granular data, which may impede their predictive performance. Second, they

are slow to capture shifts in the covariate composition of the portfolio or new trends

such as an increase in mental health-related claims. Third, they lack explainability

in the sense that the models offer little assistance in pinpointing underlying reasons

for deviations between observations and predictions. Together, these three points

make it difficult to monitor the business on a more granular level and to make

ad-hoc adjustments based on additional external expert information. Fourth, they

do not provide consistent estimates when used to impute right-censored claims

in order to obtain a regression sample for fitting pricing models as is often done

in non-life insurance; see the discussion in Crevecoeur et al. (2022b), especially

Section 3.1.

Application to disability insurance

There are also some additional challenges associated with using aggregate models

for disability insurance reserving. The aggregate reserving literature has generally

evolved around the assumption that the available data consists of payments occurring

in a run-off triangle consisting of accident years (rows) and development years

(columns). The run-off triangle is commonly, but not always, assumed to be

aggregated on some time grid, say monthly or yearly. Since disabilities frequently

lead to several decades of benefits, while the eligibility criteria change rather

frequently, one has in most situations too few years of data to be able to estimate
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the outstanding liabilities using chain-ladder, or variants thereof, since no complete

run-off is observed. It is hence almost always necessary to impose some structural

assumptions that allows one to extrapolate the future expenses for late development

years.

Individual-level data shows that insured who have received benefits for a couple

of years have very low reactivation and mortality rates, so claims that are open

after a couple of years generally run until the retirement age. Furthermore, in

Denmark, the social security benefits also tend to stabilize after some years since

insured who remain disabled find a suitable flex job or retire early. Therefore,

a pragmatic approach could be to first model the average age of insured who

have open claims after some fixed number of years, and then in a second step

to cast subsequent payments as constant until the retirement age subtracted the

aforementioned average age. This would likely lead to a reasonable size of the

reserves, but poor timing.

If data on individual ages is available, a perhaps preferable alternative is to

include age as a covariate in the aggregate model. Some approaches for incorporating

such individual information in chain-ladder models are given in Wüthrich (2018)

and Delong et al. (2021). It also seems like it would be possible to extend the

approach of Bischofberger et al. (2020) to include covariate information such as

age, but the setup comes with other strong assumptions that are undesirable for

modeling disability insurance, namely that payments are independent and all claims

consist of single payments. If portfolio reserving is the only objective, we expect

that the best size and timing can be obtained by leveraging granular data, but

using a model that targets the portfolio reserve as discussed here and at the end

of Subsection 2.4.2. This, however, comes at the cost of a significant increase in

complexity compared to traditional aggregate models.

2.4.4 Multistate individual reserving models

Literature and challenges

The actuarial literature on individual disability modeling using multistate method-

ology is substantial, confer with Taylor (1971), Segerer (1993), Haberman & Pitacco

(1998), Christiansen (2012), Djehiche & Löfdahl (2014), Aro et al. (2015), Sandqvist

(2025), and the references therein. Nonetheless, the increasing complexity outlined

in Subsection 2.3.1 arising from temporary reactivations and several distinct disabil-

ities has only just received some awareness, see Sandqvist (2025), and the situation

where payments are on the form described in Subsection 2.3.1 also warrants further

exploration. The latter situation can to some extent be compared to the situation

where the payment rate depends on the degree of disability as in Subsection 4.2

of Segerer (1993), so that the annuity formula is simply scaled with the mean degree

of disability. Further, this approach can be extended to model mean benefits in the
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face of deduction from social security benefits, confer with Remark 2.1 of Sandqvist

(2025). We believe that this is an important avenue for actuaries and actuarial

scientists to explore.

There is also the effect of the claim settlement process to take into account, confer

with Subsection 2.3.2. The implications of reporting delays on the estimation of dis-

ability incidents has been studied in Kaminsky (1987), König et al. (2011), and Aro

et al. (2015). In the context of reserving, it is noted in Segerer (1993) that insurers

can set up IBNR reserves if they have the data to support them, but additional

details are not provided. It is only recently in Buchardt et al. (2023) and Sandqvist

(2025) that the problem has been attempted to be tackled in a somewhat general

manner. The topic is, however, frequently explored in non-life insurance contexts

with approaches similar to those described in Subsection 2.4.2, see for example Nor-

berg (1993, 1999), Haastrup & Arjas (1996), Antonio & Plat (2014), Lopez et al.

(2019), Okine et al. (2022), Crevecoeur et al. (2022a,b), and Bücher & Rosenstock

(2024).

The classic multistate approaches to disability insurance modeling have focused

on reserves on the form (2.4.1) with the specifications that dB are the contractual

payments and the information Ft equals σ{Y (s) : s ≤ t} for the biometric state

process Y generating the contractual payments. This leads to two fundamental issues

for reserving whenever there are non-negligible reporting delays and adjudication

processes, and these challenges do not seem to have been discussed prior to Buchardt

et al. (2023) and Sandqvist (2025). The issues are as follows. First, if there are

reporting delays and adjudication processes then the choice Ft = σ{Y (s) : s ≤ t} is
not operational for reserving since this information might not be available at time t.

For example, the insured can become disabled before time t, but report this after

time t. Similarly, since {Y (s) : s ≤ t} might not have been observed at time t, the

insurer might not have paid B(t) at time t, so the present value in (2.4.2) is not the

relevant present value. For example, the insurer might not have paid any disability

benefits by time t, while the insured is disabled and eligible for benefits before time

t, which would then lead to backpay after time t.

Recent contributions

Recently, Buchardt et al. (2023) and Sandqvist (2025) introduced a multistate

framework that seeks to accommodate the challenges outlined in Subsection 2.4.4.

The idea is to keep V defined as in the classic multistate modeling framework, but

introduce another reserve V according to

V(t) = E [P(t) | Gt] ,

P(t) =
∫ ∞

t

exp

(
−
∫ s

t

r(v) dv

)
dB(s),
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where dB is the realized cash flow and G is the available policy- and claim-level

information. In other words, this is essentially the same reserve as used in non-life

insurance contexts, confer with Subsection 2.4.2, and hence uses the correct present

value with an operational information. The modeling paradigm, however, deviates

from the non-life approach by retaining the a priori known structure of dB and

introducing relevant structural assumptions regarding the relation between dB and

dB as well as between F and G. These assumptions allow one to express V in terms

of the classic reserve V with certain natural modifications.

In particular, as briefly mentioned at the end of Section 2.3, one has V(0) = V (0)

since G0 = F0 and P(0) = P (0). The former is because at policy initiation the

state of the insured is known and no additional claim settlement information is

available, while the latter follows from the fact that no backpay may relate to

events before policy initiation. Therefore, the effect of the claim settlement process

may be ignored at policy initiation. However, if there are significant reporting and

adjudication delays, then there may be substantial discrepancies between the two

filtrations and the two present values after time t. This cannot be ignored if the

reserves are to have good timing.

A disadvantage of this modeling paradigm is that it usually necessitates rather

strong independence assumptions which if violated may impair both the size and

timing of the reserves. It is possible to accommodate certain violations of the

assumptions, confer with Remark 3.9 and 3.10 of Sandqvist (2025), but only at the

cost of additional model complexity. Another disadvantage is the need for quite

granular data to be available to the actuary.

The statistical and computational complexity is comparable to current state-of-

the-art models in the multistate life insurance literature and therefore moderate.

Furthermore, the probabilistic description of the model is rather complicated, but

not substantially more demanding than for regular multistate models. This means

that if one is already using multistate models for reserving, it can be considerably

easier to adopt the methodology of Buchardt et al. (2023) and Sandqvist (2025)

compared to switching to a model inspired by non-life insurance methods. This

may be of particular interest to insurers based in Denmark, not least due to the

rich tradition for multistate modeling as reflected in the literature emanating from

Copenhagen.

In comparing the multistate paradigm to the non-life individual paradigm de-

scribed in Subsection 2.4.2, advantages are found to be that the structure of the

contractual payments is exploited, the dimension of the model is likely considerably

lower, and that the reserve may be calculated efficiently via differential equations

rather than Monte Carlo methods. Furthermore, the resulting reserve is composed

of modifications of classic reserves and hence, is easier to interpret and adjust on an

ad-hoc basis. Based on Theorem 3.4 in Sandqvist (2025), the reserve for an insured
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with no reported disability claim is approximately

V(t) = Va(t) +

∫ t

0

Vi(s, 0)P(Reporting delay > t− s)µai(s) ds,

where Va(t) is the classic reserve for an insured that is active at time t, Vi(s, u)

is the classic reserve for an insured that became disabled at time s − u, and µai

is the disability incidence rate. The first term corresponds to disabilities that are

covered but not incurred, while the second term corresponds to disabilities that

have occurred but have yet to be reported.

The situation of a reported disability claim is more involved, since one most

distinguish between three cases: reported-but-not-paid, currently eligible for disabil-

ity benefits, and previously eligible for disability benefits. Given the information

available at time t, let G(t) denote the time point from which the insured is eligible

for disability benefits if the claim is (re)awarded and let W (t) be the corresponding

disability duration at G(t). The reported-but-not-paid reserve then approximately

reads

V(t) = P(Claim is awarded | Gt)Vi(G(t), 0).

This follows from Theorem 3.7 in Sandqvist (2025). Furthermore, the reserve for

an insured currently eligible for disability benefits is

V(t) = Vi(t,W (t)),

confer with Theorem 3.8 in Sandqvist (2025). Finally, the reserve for an insured

previously eligible for disability benefits is approximately

V(t) = P(Claim is reawarded | Gt)Vi(G(t),W (t)).

For estimation of the parameters required to calculate V, in Sandqvist (2025) it is

established that this is a special case of the statistical problem studied in Buchardt

et al. (2025), so that their methods and results may be directly applied. Subject to

certain simplifications, this leads to the following solution for the estimation of the

disability and reactivation hazards. The exposures E(ti) =
∫ ti+1

ti
1{Y (s) = 1} ds for

the disability hazard have to be multiplied by P(Reporting delay ≤ t−ti), where t is
now the time of statistical analysis. Furthermore, reported-but-not-paid occurrences

qualify as disability occurrences, but only after scaling with P(Claim is awarded |
Gt), while (temporary) terminations of disability benefits qualify as (permanent)

reactivations, but only after scaling with 1− P(Claim is reawarded | Gt). Finally,
the scaling factors P(Claim is awarded | Gt) and P(Claim is reawarded | Gt) can be

estimated by somewhat standard event history analysis methods. Altogether, this

gives rise to a two-step estimation procedure in which estimation of the scaling

factors precedes estimation of the hazards.
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2.4.5 Comparison

Table 2.1 offers a summary of the points discussed in Subsections 2.4.2–2.4.4. It is

not intended to capture all nuances, but rather to indicate the expected relative

potential of the different modeling paradigms. For the prediction column, the

entries represent the performance on a portfolio and individual level, respectively.

Other aspects discussed but not represented in the table are explainability and

computational complexity. It is up to the actuary to determine which modeling

paradigms is best suited for risk assessment and management, including pricing

and reserving, taking into account the resources, challenges, and strategies that are

pertinent to their situation.

Prediction Complexity

Size Timing Model Statistical

Non-life poor/good poor/good moderate high

Aggregate decent/poor decent/poor low low

Multistate decent/decent decent/good high moderate

Table 2.1: Characteristics of the different actuarial modeling paradigms: non-life indi-
vidual reserving models, aggregate reserving models, and multistate individual reserving
models. The entries for size and timing are on the form portfolio/individual performance.
For example, aggregate models are expected to yield reserves with decent size on a portfolio
level and poor size on an individual level.

2.5 Impact evaluation for prevention

The actuary might not have to play a prominent role whenever a prevention

initiative merely constitutes an implementation of existing principles based on

empirical evidence from, for instance, the health sciences. In any case, it is natural

and advisable to base the design of initiatives not only on the insurer’s own data,

but also on the broader scientific literature. However, the situation of insurers’

often differs from those in the health sciences literature: They are a different kind

of health partner than, for example, an employer or care provider; their target

demographic may differ from, for example, the wider population; and their basis

and options for action may look different. It is therefore important to be aware

that empirical insights from the literature cannot necessarily be applied one-to-one

to the insurer’s situation. Consequently, insurers would benefit greatly from being

able to quantify the impact of prevention and treatment initiatives using their own

data.

Both portfolio-level and more granular impact evaluations are valuable. A

portfolio-level impact evaluation can reveal whether an initiative in force is cost

effective, in the sense that the health promotion (measured as a reduction in

disability benefit payout) exceeds the costs of administering the initiative. A more
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granular impact evaluation, on the other hand, could provide valuable feedback

regarding the optimal design of the initiative and its primary target group.

While prevention is a topical subject in insurance, there does not exist much

actuarial literature dedicated to it. In Gauchon et al. (2020b, 2021), a ruin theoretic

setup is considered, and the optimal amount to invest into prevention is studied

with prescience about how changes in investment affect the rate of claim arrivals.

To operationalize this theoretic contribution, a natural question is: How can one

infer the effect of investments into prevention on the claim arrivals and the claim

sizes? Furthermore, since the same monetary amount could be invested in many

different ways, further relevant question are: Which initiatives are most effective in

reducing the risks? Are these effects heterogeneous across different groups of insured

– and in which sense?

In Gauchon et al. (2020a) and to address the second and third question, it is

proposed to cluster insured in terms of their consumption of different health services,

for example psychiatry and radiology consultation, and then target prevention

programs to high-risk individuals. This is a good starting point: if the risk is high,

it may be easier to achieve a substantial risk reduction. However, this might not be

a cost-effective solution. For example, insured at moderate risk could perhaps be

relatively more receptive to the prevention initiative. There are clear parallels to

the following classic case from sales:

Consider a department of telemarketers selling insurance. At first,

the department makes calls at random. Over time, the department

identifies that young women in particular are inclined to buy insur-

ance during the call. The department therefore starts calling only

younger women, but this causes sales figures to drop. By conducting

interviews, it is found that almost all of the women who buy the

insurance would have bought it regardless of the phone call. On the

other hand, men, for example, are less likely to buy the insurance –

but may be convinced through a phone call. The company therefore

changes its strategy to never call young women, resulting in an

increase in sales.

The example shows that interventions should not necessarily target those with a

high likelihood of buying (high risk) or even a high likelihood of buying given they

receive the call (high risk given the intervention), but perhaps rather those for

which the likelihood of buying increases the most by receiving a call (high impact

given the intervention).

A systematic approach to impact evaluation, encompassing the three aforemen-

tioned questions, is causal inference – because the questions are inherently causal:

They ask what the impact of an intervention is on the claim frequency and the claim
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sizes, and how this effect varies depending on the covariates, henceforth denoted W .

In general, the causal effect of a prevention initiative (or treatment), henceforth

denoted A, on some function of the future cash flow (or outcome), henceforth

denoted Y , can only be inferred if there exist similar individuals and only some

receive the treatment, while the others do not. Situations with detailed knowledge

of the causal relationship between Y , A, and W constitute an exception; here

graphical models, for example, may provide other ways to infer the causal effect.

Insurance applications, on the other hand, typically fall outside this exception due

to the complexity of the underlying risks (life trajectories), the low signal-to-noise

ratio, and restrictions on the availability of relevant covariates to the insurer. For

an introduction to causal inference, we refer to the modern classics Pearl (2009)

and Hernán and Robins (2020).

One situation where causal inference, however, remains possible is when the

assumptions of no unmeasured confounding and positivity are satisfied. Assume

for simplicity that A is binary and that the outcome Y is fully observed and not

for instance subject to right-censoring. Further, let Y (1) and Y (0) correspond to

what the outcome would have been if A was set to 1 and 0, respectively, which are

the so-called potential outcomes. Then Y = Y (A), and no unmeasured confounding

states that

(Y (1), Y (0)) ⊥⊥ A |W,

so that treatment assignment and how the subject would react to treatment are

independent conditional onW . Positivity states that P(A = 1 |W = w) is uniformly

bounded away from both one and zero as a function of w. In other words, for each

possible realization of the covariates, there is a strictly positive probability both

receiving and not receiving treatment. Under these assumptions, the conditions

of a randomized controlled trial are satisfied for each possible realization of the

covariates. Therefore, the conditional average treatment effect (CATE) becomes

CATE := E[Y (1) |W ]− E[Y (0) |W ]

= E[Y |W,A = 1]− E[Y |W,A = 0].

Another situation in which causal inference is possible is if the condition for a

regression discontinuity design is satisfied, namely that there is a discontinuity in

w 7→ P(A = 1 | W = w), where W is now assumed to be one-dimensional. This

creates a local randomized trial for subjects with covariates close to the discontinuity.

If W is one-dimensional and the discontinuity is at w0, then the conditional average

treatment effect at w0 is identified as

CATE(w0) := E[Y (1) |W = w0]− E[Y (0) |W = w0]

=
limw↓w0

E[Y |W = w]− limw↑w0
E[Y |W = w]

limw↓w0 P(A = 1 |W = w)− limw↑w0 P(A = 1 |W = w)
.
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An efficient estimation approach that applies to both situations with no unmeasured

confounding and to regression discontinuity designs, and which allows the outcome

to be affected by right-censoring, is proposed in Sandqvist (2024).

It becomes apparent from the above discussion that the data-generating mecha-

nism has to admit a particular structure in order for causal inference to be possible.

This may happen as a coincidental consequence of internal practices at the insurer.

For example, if only subjects with an estimated risk over a certain threshold are

targeted by a prevention initiative, one is perhaps in the setting of a regression

discontinuity design. Similarly, if the assignment of treatment exclusively depends

on a combination of covariates already available to the insurer and exogenous

randomness, say how many claims were reported in the past month, no unmeasured

confounding and positivity may hold, and causal inference is again possible.

However, rather than just relying on happy accidents and pure luck, we advise

actuaries to be actively involved in the design of prevention initiatives and in such a

way that their impact becomes quantifiable and hence optimizable. Actuaries have

a unique opportunity in this regard due to their close connection to the management

of their organization, their knowledge of the insurance coverages’ properties and

functionalities, and their statistical expertise not least for data subject to sampling

effects.

2.6 Outlook

Our review confirms that disability insurance is an area of high practical complexity,

not least in Denmark, but also with great potential for meaningful insurance

mathematical innovation. To stimulate research and promote better practices, we

have sought to illustrate and systematize these complexities; to review and assess

the adequacy of current approaches; and to identify avenues for future research

and development. We find that modeling the interplay with public benefits and

the associated implications for product design constitute an underdeveloped and

promising topic for future research. Additionally, there is a need for empirical studies

related to the design and impact evaluation of prevention initiatives. Actuaries

must continue to play a crucial role in this context, embracing another dimension

to their role, while maintaining strong ethics and safeguarding fairness. We aptly

recall the message of Barabas et al. (2018): The core ethical debate surrounding

risk assessments is not simply one of bias or accuracy, but one of purpose: away

from prediction and towards prevention.
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Chapter 3

Transaction time models in multi-state life

insurance

This chapter contains the manuscript Buchardt, Furrer, and Sandqvist (2023).

Abstract

In life insurance contracts, benefits and premiums are typically paid

contingent on the biometric state of the insured. Due to delays between

the occurrence, reporting, and settlement of changes to the biometric

state, the state process is not fully observable in real-time. This fact

implies that the classic multi-state models for the biometric state of

the insured are not able to describe the development of the policy in

real-time, which encompasses handling of incurred-but-not-reported and

reported-but-not-settled claims. We give a fundamental treatment of the

problem in the setting of continuous-time multi-state life insurance by

introducing a new class of models: transaction time models. The relation

between the transaction time model and the classic model is studied

and a result linking the present values in the two models is derived.

The results and their practical implications are illustrated for disability

coverages, where we obtain explicit expressions for the transaction time

reserve in specific models.

Keywords: Prospective reserves; Disability insurance; Claims reserves; Valid and

real-time; Piecewise deterministic processes

3.1 Introduction

The payments stipulated in life insurance contracts are usually an agreement on

what payments are to be made for different possible outcomes of the biometric

state of the insured (e.g. whether the insured is active, disabled, dead, etc.). For

this reason, multi-state life insurance models take modeling of the biometric state

47



48 Chapter 3. Buchardt, Furrer, & Sandqvist (2023a)

of the insured as their starting point. The multi-state approach to life insurance

dates back to at least Hoem (1969). Here, the prospective reserve is defined as

the discounted probability-weighted future payments, which, as noted in Norberg

(1991), corresponds to the expected present value of future payments given the

information generated by the biometric state process. The introduction of an

underlying stochastic process generating the payments introduces structure to the

problem of predicting the cash flow at future points in time, due to the temporal

dependencies of the process. This added structure of the payments is not in itself an

assumption when the payments stipulated in the insurance contracts are formulated

in terms of the biometric state of the insured. It is rather a way to introduce more

a priori knowledge about the workings of the product into the mathematical model.

All other things being equal, this makes the models more powerful.

Consequently, multi-state modeling seems a natural approach to modeling life

insurance products. However, in the multi-state modeling literature, one also often

assumes that the biometric state process generating the payments equals the process

that generates the available information, see e.g. Norberg (1991), Buchardt et al.

(2015), Djehiche & Löfdahl (2016), Bladt et al. (2020), and Christiansen (2021a) to

name a few. This is rarely the case, since information about changes to the biometric

state can be delayed or erroneous. A simple example of this phenomenon is the

delay that occurs when an insured becomes disabled; it might take some time for the

insured to report the event to the insurer. Between the occurrence of the disability

and the time of reporting, the claim is an IBNR (Incurred-But-Not-Reported) claim.

As long as the insured has not reported the disability, the insurer will continue

believing that the insured is active. Hence, the information that the insurer has

is different from the full information about the biometric state of the insured. To

describe this phenomenon in more detail, and discuss how to approach reserving

under the insurer’s available information, we introduce the concepts of valid time

and transaction time in the next section: Essentially, the valid time of an event

is the time that it occurs, while the transaction time is the time that the event is

registered in the insurers records.

It turns out that these concepts are also useful in clarifying the similarities and

differences between life and non-life insurance products as well as between the

models employed in the respective fields. The fact that payments in life insurance

are deterministic functions of the biometric state process makes it so one does not

have to estimate a separate distribution for the payment sizes; once the distribution

of the state process is specified, the distribution of the payments follows. This is not

the case in non-life insurance, and one therefore resorts to modeling the distribution

of the observed payments directly. However, as will be explained, the biometric

state process is a valid time object, while the observed payments are transaction

time objects. This fact leads to key differences in the life and non-life insurance

models. One such key difference is that it is more straightforward to formulate
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IBNR and RBNS (Reported-But-Not-Settled) models in non-life insurance, as one

can construct the RBNS model entirely in transaction time. The IBNR model may

subsequently be constructed in two steps. First, one models the occurrence times of

claims, which are valid time objects, as well as the corresponding reporting delays.

Second, one leverages the RBNS model to find the expected cash flow of a claim

conditional on the time of occurrence and the reporting delay. In life insurance

models, one has to link the valid time payments to the transaction time concepts of

IBNR and RBNS, and it is not obvious how to do this.

Our main contributions are: the introduction of the basic bi-temporal structure

assumptions defined in Section 3.4, the derivation of Theorem 3.5.4 that links the

present values in valid and transaction time, and an application of this theorem,

namely Example 3.5.8. The first of these contributions establishes an explicit link

between transaction and valid time processes. The second utilizes this link to

obtain a tractable relation between the present values in valid and transaction

time. To further obtain a tractable relation between the valid and transaction

time reserves, more structure on how the transaction time information affects the

distribution of the valid time process needs to be imposed. This is exactly what is

explored in a simple example involving RBNS claims, culminating in Example 3.5.8,

which constitutes the third main contribution. The example is kept simple for

illustrative purposes, but our general framework also allows for the study of intricate

examples that provide a more complete picture of IBNR and RBNS reserving. Such

applications are the raison d’être of the framework.

The paper is structured as follows. In Section 3.2, the terms valid time and

transaction time are given more precise definitions and discussed in the context of

life insurance. An overview of the use of valid time and transaction time information

in the insurance literature is provided, and similarities and differences between the

situation in life insurance and non-life insurance are made explicit. The section

ends by defining the class of piecewise deterministic processes, which constitute the

basic building blocks for our model constructions. Section 3.3 constructs a model

for the insurance contract in valid time similarly to how the classic life insurance

multi-state models are constructed. Section 3.4 introduces the novel concept of a

transaction time model corresponding to a valid time model, and this transaction

time model is constructed. In Section 3.5, the valid and transaction time reserves

are defined, and a result relating the transaction time present value to the valid

time present value is derived. In a model for disability insurance where coverage

depends on the origin of the disability, we show how this relation can be utilized to

obtain a relation between the corresponding reserves. Finally, the dynamics of the

transaction time reserve is derived and discussed.
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3.2 Valid and transaction time

We now introduce the terms valid time and transaction time. These concepts are

used to describe data that arises from a time-varying process. We outline how these

types of data are currently being used in the life and non-life insurance literature.

Subsequently, we introduce a class of stochastic processes which we use to model

processes generating valid time and transaction time data.

Valid and transaction time data

The terms valid time and transaction time provide a natural terminology for de-

scribing information that is registered with delays and uncertainty. Valid time and

transaction time are concepts stemming from the design of databases, specifically

temporal databases, where time-varying information is recorded. The valid/trans-

action time taxonomy was developed in Snodgrass & Ahn (1985). There, valid

time is defined as the time that an event occurs in reality, while transaction time is

defined as the time when the data concerning the event was stored in the database.

Hence, valid time is concerned with when events occurred (historical information),

while transaction time is concerned with when events were observed (rollback

information).

As noted by Snodgrass & Ahn (1985), an important difference between valid time

and transaction time are the types of information updates that are permitted. A

transaction time may be added to the database, but is never allowed to be changed

after the fact due to the forward motion of time. In contrast, a valid time is always

subject to change, since discrepancies between the history as it actually occurred

and the representation of the history as stored in the database will often be detected

after the fact. The authors argue that both valid time and transaction time are

needed to fully capture time-varying behavior.

A database that contains both valid time and transaction time is called a bi-

temporal database. Such a database supplies both historical and rollback information.

Historical information e.g. “Where was Taylor employed during 2010?” is supplied

by valid time, while rollback information e.g. “In 2010, where did the database

believe Taylor was employed?” is supplied by transaction time. Since there may

have been changes to the database after 2010, the answers to these questions may be

different. The combination of valid time and transaction time supplies information

on the form “In 2015, where did the database believe Taylor was employed during

2010?”.

To further clarify the concepts introduced above, a detailed example for total

permanent disability insurance (or critical illness insurance) is given in Example 3.2.1,

while Example 3.2.2 is devoted to disability insurance with coverage that depends

on the origin of disability.
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Example 3.2.1. (Bi-temporal insurance data: Total permanent disability insur-

ance.)

Consider the following scenario: On 1/1/2020, Taylor buys a total permanent

disability insurance effective immediately with a risk period of one year, which pays

a sum b if they become disabled before the end of the risk period. For this, Taylor

agrees to pay premiums at a rate π during the risk period while active. Taylor

becomes disabled on 1/3/2020 and reports this to the insurer on 1/5/2020, two

months later. On 1/6/2020, one month later, the insurer has finished processing

the claim and awards Taylor disability benefits. Furthermore, Taylor is reimbursed

for the premiums paid between 1/3/2020 and 1/6/2020.

If the insurer uses a bi-temporal database (valid time and transaction time), the

database will at 1/6/2020 contain the following entries:

Name State Valid From Valid Till Entered Superseded

Taylor Active 1/1/2020 ∞ 1/1/2020 1/5/2020

Taylor Active 1/1/2020 1/3/2020 1/5/2020 ∞
Taylor RBNS 1/3/2020 ∞ 1/5/2020 1/6/2020

Taylor Disabled 1/3/2020 ∞ 1/6/2020 ∞

Hence we see that the database records not only what happened in the ‘real world’,

but also what was officially recorded at different times. Note that when it is not

known when the information is valid till, the database by convention records the

timestamp ∞. This is likewise the case when it is unknown when the entry will be

superseded. Hence, to acquire the most recent belief about when events occurred,

one would extract the rows where Superseded was ∞.

If the database was uni-temporal (valid time), the entries at 1/6/2020 would be:

Name State Valid From Valid Till

Taylor Active 1/1/2020 1/3/2020

Taylor Disabled 1/3/2020 ∞

Similarly, at 1/4/2020 the entries would be:

Name State Valid From Valid Till

Taylor Active 1/1/2020 ∞

even though Taylor is already disabled at this time, due to the fact that this has

not been reported to the insurer yet.

From these tables, we can see that, as described in Snodgrass & Ahn (1985),

different information updates are permitted for a bi-temporal and a uni-temporal

database. The uni-temporal database, in contrast to the bi-temporal database,
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only records what happened in the ‘real world’ based on the newest information.

Previous records are modified or deleted. ◦

Example 3.2.2. (Bi-temporal insurance data: Disability insurance with different

origins.)

Consider the following scenario: On 1/1/2020, Jessie buys a disability insurance

effective immediately, that pays a rate bi1 if they are affected by a work-related

disability (WD) and a rate bi2 if they are affected by a non-work-related disability

(NWD). For this, Jessie agrees to pay the premium rate π while active. Jessie

becomes disabled on 1/5/2020 and reports this to the insurer instantly. The insurer

immediately evaluates the disability to have its origin outside of the workplace

and therefore pays the rate bi2 starting 1/5/2020. At 1/7/2020, the decision is

reevaulated and it is concluded that the disability has its origin at the workplace.

Consequently, there is a payment between the insurer and Jessie corresponding to

the difference in rates between 1/5/2020 and 1/7/2020, and onward Jessie receives

the rate bi1 . Nothing else occurs before 1/1/2021.

If the insurer uses a bi-temporal database (valid time and transaction time), the

database will at 1/1/2021 contain the following entries:

Name State Valid From Valid Till Entered Superseded

Jessie Active 1/1/2020 ∞ 1/1/2020 1/5/2020

Jessie Active 1/1/2020 1/5/2020 1/5/2020 ∞
Jessie NWD 1/5/2020 ∞ 1/5/2020 1/7/2020

Jessie WD 1/5/2020 ∞ 1/7/2020 ∞

If the database was uni-temporal (valid time), the entries at 1/6/2020 would be:

Name State Valid From Valid Till

Jessie Active 1/1/2020 1/5/2020

Jessie NWD 1/5/2020 ∞

At 1/8/2020 the entries would be:

Name State Valid From Valid Till

Jessie Active 1/1/2020 1/5/2020

Jessie WD 1/5/2020 ∞

Similar to Example 3.2.1, we see a clear need for a bi-temporal database compared

to a uni-temporal database. ◦

In Example 3.2.1, the claim is first an IBNR and later an RBNS claim, while in

Example 3.2.2, the claim is an RBNS claim, but since reporting occurred with

no delay, it is not an IBNR claim beforehand. In the following, we illustrate
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our methods and results on the latter example. Our methods are, however, not

constrained to bi-temporal data on the above form, but may be applied to essentially

any kind of bi-temporal insurance data.

Practitioners should be well-acquainted with bi-temporal insurance data. Bi-

temporal data is important for internal use, as it is needed for reproducibility

of statistical analyses when these are based on queries to a database. This is

because reproducibility requires rollback information, since one has to recreate the

information that the database had at a previous point in time. It also enables one

to understand the difference between two otherwise identical analyses, performed

at two different points in time. It is also important for external use, since auditors

and regulatory authorities may inquire about financial reports from foregone years,

making it important for insurers to be able to recreate the prerequisites that a

given financial report was based on. As an example of this, Danish life insurance

companies are required by law to publish all figures in the balance sheet and income

statement of their financial reports for both the current and the previous year. Key

figures have to be reported for the past five years. If prior financial reports have

been affected by serious errors, the newest report has to publish figures for previous

years as if the error had not been committed, so long it is practically feasible, cf.

§ 86 of Erhvervsministeriet (2015).

Valid and transaction time information in insurance

Inspired by the valid and transaction time taxonomy introduced above, and with

a slight abuse of the terminology, we define a valid time process as a stochastic

process that represents the true historical information. We use the notation Xs

for the value of the valid time process at time s. With another slight abuse of the

terminology, we define a transaction time process as a bi-temporal stochastic process

that represents both historical and rollback information. We use the notation Xt
s

for the value of the process at time s based on the observations available at time t.

When referring to models based on valid time and transaction time processes, we

use the terms valid time model and transaction time model, respectively. Current

multi-state models for the biometric state of the insured are seen to be valid time

models, as they model a process that describes when events occur without regard

to when that information is observed by the insurer. However, in practice there is

typically at least some delay in information concerning occurrence, reporting and

settlement of claims. This necessitates additional model components, say in the

form of models for IBNR and RBNS claims. Such model components are called

claims reserving models or simply IBNR and RBNS models.

Claims reserving based on individual claims data have been subject to much

study in non-life insurance, see e.g. Norberg (1993, 1999), Haastrup & Arjas (1996),

Antonio & Plat (2014), Badescu et al. (2016, 2019), Lopez et al. (2019), Bischofberger
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et al. (2020), Delong et al. (2021), Crevecoeur et al. (2022a,b), and Okine et al.

(2022). Early research, including Norberg (1993, 1999), focuses on joint modeling

of all aspects of a claim and the subsequent computation of relevant conditional

expectations of future cash flows as high-dimensional integrals with respect to the

joint distribution. This may pose significant statistical and numerical challenges,

and initially only limited attention was given to practical implementation. Recent

research, including Crevecoeur et al. (2022a,b) and Okine et al. (2022), instead

focuses on how the expected future cash flows depend on previous observations,

typically payment times and payment sizes, and the corresponding factorization

of the joint distribution into conditional and marginal parts. In particular, this

improves interpretability and readily allows for dynamic reserving where current

information is incorporated into the best estimate of future liabilities. This research

has hitherto largely consisted of proposing statistical procedures and performing

data-driven investigations. Regarding the latter, one attempts to identify the

best predictive models by exploring which covariates are advantageous to include

(thereby also determining the degree of individualization/collectivization) as well as

exploring which statistical models to apply (e.g. parametric models such as GLMs,

non-parametric models such as empirical distributions, or machine learning methods

such as neural networks).

The primary reason that the life insurance literature has not been similarly

occupied with finding suitable statistical models is, as explained in Section 3.1,

that the payments stipulated in life insurance contracts are specified in terms of an

underlying valid time state process. This implies that the conditional distribution

of future jump times given previous observations can be obtained by estimating

the distribution of the valid time state process, and a model for the conditional

distribution of future payment sizes then follows automatically. Since the state

process may almost always be formulated as a piecewise deterministic process, a

point which we discuss in more detail later, the estimation may be performed using

standard methods from survival and event history analysis. The state process

formulation also allows for more explanatory models compared with the purely

predictive models of non-life insurance that result from modeling the transaction

time payment process directly.

The problem with the current approach in life insurance of ignoring the transaction

time state process is that the alternative state process, namely the valid time

state process, is not directly observable. In practice, one partly accounts for this

via improvised IBNR corrections and RBNS corrections (on an aggregate level).

Compared to the vast literature on IBNR and RBNS models in non-life insurance,

the corresponding problem of claims reserving in life insurance has received limited

attention. In the following, we seek to amend this.

Since the payments stipulated in a life insurance contract are generated by a
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valid time process, while the actually observed data is generated by a transaction

time process, it becomes essential to establish an in-depth understanding of the

relation between valid and transaction time processes in life insurance. The main

purpose of this paper is to develop a conceptual and mathematical framework where

this relation can be formulated and explored.

Piecewise deterministic processes

In order to achieve as much generality as possible, we take piecewise deterministic

processes (PDPs) as the starting point for our models. The data generated by a

stochastic process and recorded in a database only uniquely determines the path

of the stochastic process if the stochastic process is a PDP. Informally, these are

processes that have finitely many jumps on finite time intervals and which develop

deterministically between the random jump times. This is because the value of the

process is only recorded in the database at certain discrete times (e.g. daily, monthly,

or at jump times), from which the entire path of the process must be inferred. If the

data stems from e.g. a Brownian motion, which is not piecewise deterministic, then

the data can only provide an approximation of the path taken, and the gaps between

recorded values must be filled using some algorithm, e.g. modeling the process to

be linearly evolving between recorded values. In this sense, PDPs provide the most

general class of processes for which valid time and transaction time processes can

be constructed.

We now define piecewise deterministic processes following Subsection 3.3 in Ja-

cobsen (2006). To keep the exposition from becoming unnecessarily technical, we

omit some mathematical details such as the exact form of measurability for certain

functions. The interested reader may consult Section 3 of Jacobsen (2006) for an

explicit construction of the basic measurable spaces. In general, further mappings

from these spaces are taken to have the image of the mappings equipped with the

pushforward σ-algebra as the codomain space. Let the background probability

space be denoted by (Ω,F,P). Let (E, E) be a measurable space called the mark

space. Introduce the irrelevant mark ∇ denoting the mark of a jump that does not

occur in finite time, and set E = E ∪ {∇}.

Definition 3.2.3. (Simple point processes.)

A simple point process (SPP) is a sequence T = (Tn)n∈N of [0,∞]-valued random

variables defined on (Ω,F,P) such that

(i) P(0 < T1 ≤ T2 ≤ . . . ) = 1

(ii) P(Tn < Tn+1, Tn <∞) = P(Tn <∞)

(iii) P(limn→∞ Tn =∞) = 1. △
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If condition (iii) is removed, one obtains the class of simple point processes

allowing for explosion. In this paper, we limit the study to processes without

explosion.

Definition 3.2.4. (Marked point processes.)

A marked point process (MPP) with mark space E is a double-sequence (T ,Y) =
((Tn)n∈N, (Yn)n∈N) of (0,∞]-valued random variables Tn and E-valued random

variable Yn defined on (Ω,F,P) such that T = (Tn)n∈N is an SPP and such that

(i) P(Yn ∈ E, Tn <∞) = P(Tn <∞)

(ii) P(Yn = ∇, Tn =∞) = P(Tn =∞). △

For a given MPP (T ,Y), define

⟨t⟩ =
∞∑

n=1

1(Tn≤t)

being the number of events in the time interval [0, t], and define

Ht = (T1, ..., T⟨t⟩;Y1, ..., Y⟨t⟩)

being the jump times and marks observed up until and including time t. We refer

to Ht as the MPP history at time t.

Definition 3.2.5. (Piecewise deterministic process.)

A piecewise deterministic process with state space (E, E) is an E-valued stochastic

process X satisfying

Xt = f
⟨t⟩
Ht|x0

(t),

where X0 = x0 is non-random, and for every n ∈ N0, f
n
hn|x0

(t) is a measurable

E-valued function of hn = (t1, ..., tn; y1, ..., yn) with tn <∞, of t ≥ tn, and of x0,

satisfying the conditions

fnhn|x0
(tn) = yn

for all hn and f0|x0
(0) = x0. △

To ensure the existence of relevant conditional distributions going forward, we

henceforth assume that the mark space (E, E) is a Borel space. We refer to

the functions fnhn|x0
as evolution functions of X. The explicit dependence on

n is standard and serves to highlight that the functional relation may depend

on the cardinality of hn. However, to ease notation, we henceforth suppress x0
and n, writing for instance simply fhn

. It is easily seen that the class of piecewise

deterministic processes encompasses the usual choices for the biometric state process,

cf. Example 3.2.6, 3.2.7, 3.2.8, and 3.2.9.
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Example 3.2.6. (Pure jump process.)

Let (E, E) be a Borel space, and let X be a pure jump process taking values in E

which models the biometric state process of the insured. Assume that the initial

state of X is fixed, and denote this initial state by x0. A pure jump process is here

taken to mean a càdlàg stochastic process with only finitely many jumps in any

finite time interval satisfying

Xt =
∑

0<s≤t

∆Xs

for ∆Xs = Xs −Xs−. We define an MPP (T ,Y) = ((Tn)n∈N, (Yn)n∈N) from X by

letting Tn be the time of the n’th jump of X and setting Yn = XTn
. It is then easy

to show that X can be reconstructed from the MPP. To do this, let fhn(t) = yn,

and let H be the MPP history of (T ,Y). Then

fHt
(t) = Y⟨t⟩ = XT⟨t⟩ = Xt,

so X is a PDP. ◦

Example 3.2.7. (Pure jump Markov process.)

Following the previous example, let FX
t = σ(Xs, 0 ≤ s ≤ t) be the filtration

generated by X. For computational tractablility, one often assumes that X is a

Markov process, meaning for every s ≤ t and C ∈ E :

P(Xt ∈ C | FX
s ) = P(Xt ∈ C | Xs)

P-a.s., so that the behavior of the process at a future time point is only dependent

on the past behavior of the process through the current state of the process. This

is called the Markov property. Pure jump Markov processes X are a generalization

of the usual choices of the state process Z found in the multi-state life insurance

literature, as is shown in Example 3.2.8 and Example 3.2.9. ◦

Example 3.2.8. (Continuous-time Markov chain.)

A continuous-time Markov chain Z with fixed initial state is defined as a piece-

wise constant Markov process, see e.g. Chapter 2 of Norris (1998) or Section 7.2

of Jacobsen (2006). In the life insurance literature, the Markov chain is usually

assumed to take values in a finite state space, see e.g. Norberg (1991). A continuous-

time Markov chain Z on a finite state space {1, 2, ..., J} for J ∈ N can thus be

constructed from a pure jump Markov process X with E = {1, 2, ..., J} by simply

setting Z = X. ◦

Example 3.2.9. (Continuous-time semi-Markov process.)

In many applications, the most recent jump time contains valuable information and

hence it may be necessary to include it as a coordinate of X in order to ensure that
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the Markov property of X holds. For a pure jump process Z, define W as the time

of the last jump

Wt = sup{0 ≤ s ≤ t : Zs ̸= Zt}.

A continuous-time semi-Markov process Z is defined as a pure jump process on a

finite state space with the property that (Z,W ), equivalently (Z,U) with

Ut = t−Wt

the duration of sojourn in the current state, is a Markov process, see e.g. Section 2D

in Helwich (2008). Semi-Markov models were introduced to life insurance inde-

pendently by Janssen and Hoem, see Janssen (1966) and Hoem (1972). In the life

insurance literature, the parameterization (Z,U) is more common than (Z,W ).

For K ∈ N define the projection functions πk : RK 7→ R via πk(x1, x2, ..., xK) =

xk. If X is a pure jump Markov process with E = {1, 2, ..., J}× [0,∞) that satisfies

π2Xt = T⟨t⟩, then a continuous-time semi-Markov process Z may be constructed

from X by setting Z = π1X. ◦

3.3 Valid time model

We now introduce the classic multi-state life insurance models. These are valid time

models, cf. the discussion in Section 3.2. The valid time setup described below is

essentially standard in the multi-state life insurance literature, although it is usually

only formulated for Markov or semi-Markov processes, see the classics Hoem (1969),

Hoem (1972), and Norberg (1991).

State process

Let the valid time state process (Xt)t≥0 be an Rd-valued stochastic process for

d ∈ N. We assume that X is a PDP with fixed initial state x0. The jump times are

denoted by τn. Let

⟪t⟫ =
∞∑

n=1

1(τn≤t)

denote the number of jumps by time t and denote by

Ht = (τ1, ..., τ⟪t⟫;Xτ1 , ..., Xτ⟪t⟫)

the MPP history of the process X at time t. The symbols τn and ⟪t⟫ are used

here instead of Tn and ⟨t⟩ introduced in the PDP section as the latter are reserved

for the transaction time process introduced in Section 3.4. Further, let fhn
be the

evolution functions of X, so that

Xt = fHt(t).
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The information generated by complete observation of the valid time process is

given by the filtration FX
t = σ(Xs, 0 ≤ s ≤ t).

Cash flow

We now define the valid time cash flow that represents the contractual payments.

For later uses, especially to define the transaction time cash flow and to formulate

links between present values in valid and transaction time, we need the valid time

cash flow to be decoupled from the valid time state process. Denote by A ⊆ 2[0,∞)

some sufficiently regular collection of sets. For the purposes of this paper, it is

sufficient that A contains the intervals on [0,∞). Write xA for (xs)s∈A with A ∈ A.
We restrict our attention to xA for which there exist (xs)s∈Ac such that (xs)s≥0

lies in the image of X; here Ac denotes the complement of A. Similarly, write XA

for (Xs)s∈A. Assume the existence of measurable functions

(xA, t) 7→ B(xA, t) ∈ R

for t ≥ 0. We interpret B(xA, t) as the payments generated by the path x on A∩[0, t].
Assume that t 7→ B(xA, t) is a càdlàg finite variation function for any xA, so that

the measures B(xA,dt) are well-defined. We further assume that the composition

B(XA, t) is incrementally adapted to FX , meaning that B(XA, t) − B(XA, s) is

σ(Xv, v ∈ (s, t])-measurable for any interval (s, t] ⊆ [0,∞), cf. Definition 2.1

in Christiansen (2021b). For shorthand, we write B(dt) = B(X[0,∞),dt). The

assumption of incremental adaptedness states that the aggregated payments in (s, t]

only depends on the path of X on (s, t]. The property incremental adaptedness

does not have a critical technical function in this paper, but it clarifies the role of

the state process X as the process that determines the contractual payments at

a given instance in time. Therefore, we may discuss changes in information and

payments through changes to X, which allows for practical interpretations that are

more intuitive. From a purely mathematical point of view, one could also have

based the analysis on the underlying MPP. We name (B(t))t≥0 the accumulated

cash flow in valid time. Note the use of the symbol B for two different objects,

namely the stochastic process t 7→ B(t) and the deterministic function t 7→ B(xA, t).

It should always be clear from the context which object we are referring to.

To allow for the valuation of cash flows, we need the time value of money. A

detailed treatment of this financial constituent of the model may be found in Norberg

(1990). Let t 7→ κ(t) be some deterministic strictly positive càdlàg accumulation

function with initial value κ(0) = 1. The corresponding discount function is t 7→ 1
κ(t) .

We let xA 7→ B◦(xA) be the time 0 value of the accumulated payments for the path

xA, i.e. we set

B◦(xA) =

∫
(0,∞)

1

κ(v)
B(xA,dv),
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presupposing that this object exists (is finite).

Remark 3.3.1. (Cash flow terminology.)

In the life insurance literature, the stochastic process (B(t))t≥0 defined above is

sometimes also referred to as the payment function, the stream of net payments, the

payment process, or the stochastic cash flow, see e.g. Norberg (1991) and Buchardt

et al. (2015). We use the terminology that B(t) is the accumulated cash flow at

time t while the stochastic measure B(dt) is the cash flow. The latter should not be

confused with the expected cash flow Ax(t, ds) defined by Ax(t, s) = E[B(s)−B(t) |
X(t) = x], s ≥ t. In the literature, the expected cash flow is sometimes also

ambiguously referred to as the cash flow. ▽

Example 3.3.2. (Cash flow for the usual choices of state processes.)

For a set A on the form [0, v), [0, v], or [0,∞) for v ≥ 0 and a pure jump Markov

process X on a finite state space E = {1, 2, ..., J}, see also Example 3.2.8, one

usually specifies the payments as

B(xA,dt) =

J∑
j=1

1A(t)1(xt−=j)Bj(dt) +

J∑
j,k=1
j ̸=k

1A(t)bjk(t)njk(xA,dt),

where njk(xA, t) = #{s ∈ [0, t] ∩A : xs− = j, xs = k}, while t 7→ Bj(t) are càdlàg

finite variation functions modeling sojourn payments and t 7→ bjk(t) are finite-valued

Borel-measurable functions modeling transition payments. In this case,

B(dt) =

J∑
j=1

1(Xt−=j)Bj(dt) +

J∑
j,k=1
j ̸=k

bjk(t)Njk(dt)

for Njk(t) = njk(X[0,∞), t). In the semi-Markov case of Example 3.2.9, where

X = (Z,W ) is a pure Markov jump process (with W the time of the last jump),

one usually specifies the payments as

B(xA,dt) =

J∑
j=1

1A(t)1(zt−=j)Bj,wt−(dt) +

J∑
j,k=1
j ̸=k

1A(t)b(j,wt−)(k,t)(t)njk(zA,dt),

where xs = (zs, ws), while t 7→ Bj,w(t) and t 7→ b(j,w)(k,t)(t) satisfy the same

regularity conditions as in the Markov case. Then

B(dt) =

J∑
j=1

1(Zt−=j)Bj,Wt−(dt) +

J∑
j,k=1
j ̸=k

b(j,Wt−)(k,t)(t)Njk(dt)

for Njk(t) = njk(Z[0,∞), t). ◦
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Example 3.3.3. (Continuous compound interest.)

Under continuous compound interest with force of interest t 7→ r(t), a deposit of

one unit currency in a savings account at time 0 has at time t accumulated to

κ(t) = exp

(∫
(0,t]

r(s) ds

)
,

see e.g. Norberg (1990). ◦

Example 3.3.4. (Disability insurance with different origins: Valid time model.)

We construct a valid time model for the product described in Example 3.2.2.

The state of the insured is modeled as a semi-Markov process X = (Y, U), cf.

Example 3.2.9, where Y takes values in the state space depicted in Figure 3.1.

active nwd

wd

reactivated

dead

a i1

i2

r

d

Figure 3.1: The Y -component of the biometric state process X takes values in
{a, i1, i2, r, d}. The absence of an arrow between states indicates that a direct jump
between these states is impossible. To reduce clutter, the arrows into the dead state are
made semi-transparent.

The cash flow is assumed to consist of a premium rate π < 0 while active and a

disability rate bik > 0 while disabled in state ik:

B(xA,dt) = 1A(t)π1(yt−=a) dt+ 1A(t)

2∑
k=1

bik1(yt−=ik) dt,

so that

B(dt) = π1(Yt−=a) dt+

2∑
k=1

bik1(Yt−=ik) dt.

The deterministic valid time cash flow B(xA, dt) is used to specify the transaction

time cash flow in Example 3.4.3. Since there are no payments in the reactivated or

dead states, the semi-Markov assumption is, for valuation purposes, actually not a

restriction. ◦

3.4 Transaction time model

We now introduce the transaction time models corresponding to the valid time

models introduced in Section 3.3. The transaction time setup described below
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is novel, and it allows for cash flows that are tailored to describe the payments

that occur in real-time, like the ones that would result from the cases described in

Examples 3.2.1 and 3.2.2.

State process

Let (Zt)t≥0 be an Rq-valued pure jump process for q ∈ N. We think of Z as

describing the claim settlement process of the policy, which is observed in real-time

by the insurer. The process Z jumps to another state when new information is

made available to the insurer, for example through communication with the insured

or due to internal decisions from the insurer. The jump times are denoted by Tn.

We write

⟨t⟩ =
∞∑

n=1

1(Tn≤t)

for the number of jumps of Z that have happened at time t. We further introduce a

doubly indexed stochastic process Ht
s for 0 ≤ s ≤ t, which we name the transaction

time MPP history corresponding to Hs. The idea is to interpret Ht
s as the value

of Hs based on the transaction time information available at time t. We extend

the definition to s > t by letting Ht
s = Ht

t , akin to how in Example 3.2.1, the most

recent history is set to be valid until ∞. The role of Z is to contain transaction

time information that may not yet have resulted in a change to the transaction

time MPP. An example could be a reported claim occurrence that has yet to be

awarded or rejected. We briefly note that the main example contained of this paper

is sufficiently simple that one could have omitted Z in the formulation and simply

used Ht
s. This is, however, not possible in the general case. To imbue Ht

s and Z

with the desired interpretations outlined above, we specify the dependencies to the

corresponding valid time process:

(i) We only allow changes to the transaction time MPP history corresponding to

Hs to occur at jumps of Z, so the process Z is the driver of new transaction

time information arriving. This is formalized as

Ht
s = H

T⟨t⟩
s

for all t, s ≥ 0.

(ii) We assume that there is a finite time after which no new information arrives

(e.g. the time of death of the insured). This is formalized as

Zt = Zη

for all t ≥ η with P(η <∞) = 1. This condition is satisfied in any practical

application. We name η the absorption time.
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(iii) When there are no future changes to the transaction time MPP history

corresponding to Hs, the observations are taken to be the true historical

information. These observations constitute the finalized timeline that the

insurer will observe. This is formalized as

Ht
s = Hs

for all t ≥ η and s ≥ 0. This is the fundamental link between the valid time

and transaction time models.

We name these assumptions the basic bi-temporal structure assumptions.

The transaction time state process is then defined as the doubly indexed stochastic

process Xt
s satisfying

Xt
s = fHt

s
(s),

with the interpretation that Xt
s is the value of Xs based on the available transaction

time information at time t. At time t, the insurer has observed Hs
s and Zs for

all s ≤ t. The insurer’s available information is therefore generated by a process

(Zt)t≥0 given by

t 7→ Zt =
(
Zt, H

t
t

)
,

and we define the transaction time information to be the filtration FZ
t = σ(Zs, 0 ≤

s ≤ t). Note that Z is a PDP by Example 3.2.6, since it is a pure jump process

which furthermore can be embedded into the Borel space (R∞,B(R∞)).

Remark 3.4.1. (Transaction and valid time filtrations.)

Note that in general, it holds that FZ
t ̸⊆ FX

t and FX
t ̸⊆ FZ

t . This corresponds

to (Zs)0≤s≤t not being known from (Xs)0≤s≤t and vice versa. In other words, the

same valid time realizations can stem from different transaction time realizations,

and transaction time realizations in a period do not generally determine the valid

time realizations in that same period, due to the possibility of new information

arriving later. ▽

Cash flow

We now define the transaction time cash flow that represents the payments occurring

in real-time. We denote the accumulated cash flow in transaction time by (B(t))t≥0

and define it as

B(dt) = B(Xt
[0,∞),dt) + d

( ∑
0<s≤t

κ(s)
(
B◦(Xs

[0,s))−B◦(Xs−
[0,s))

))
, B(0) = B(0).

The first term is well-defined as it may be written as
∑∞

n=0 1(⟨t⟩=n)B(XTn

[0,∞),dt)

with the convention T0 = 0. Hence the cash flow in transaction time consists of
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running payments similar to the ones in the valid time model, but here determined

by Xt instead of X, as well as lump sum payments when some past X values are

changed based on the newest transaction time information. The lump sum payments

are commonly known as backpay. Backpay makes the accumulated historic payments

congruent with the latest MPP history. Furthermore, and closely connected to

the principle of no arbitrage, the backpay is accumulated to the time of payout

according to κ, so that the insured is no better or worse off than if the payment had

not been delayed and had been deposited in a savings account immediately after

payout. Note also that the transaction time cash flow is incrementally adapted to

FZ , meaning that Z is the process that determines the transaction time payments

at a given instance in time.

Note that since the first term of B is evaluated in Xt and not Xt−, the payment

at time t based on the most recent information is included in the first term and

should not be included in the backpay, which is why the right endpoint is excluded

in the interval [0, s) that appears in the second term. Note also that Xs
[0,s) = Xs−

[0,s)

unless Z jumps at time s. This implies that backpay can only be paid at jumps of

Z.

Remark 3.4.2. (Cash flow modeling in non-life insurance.)

As described in Section 3.2, using non-life insurance methods, one would model the

expected future payments arising from the real-time cash flow B by disregarding

the state process Xt
s and the structure it imposes on the cash flow, and instead find

suitable statistical models that predict B(dt) directly. ▽

In Example 3.4.3, we consider the situation where it could be difficult to determine

the origin or cause of a disability. This results in retroactive changes, which we can

describe using a transaction time model.

Example 3.4.3. (Disability insurance with different origins: Transaction time

model.)

We assume a simple transaction time model, namely that the Z-process takes values

in the state space illustrated in Figure 3.2.

active nwd

wd
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dead
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Figure 3.2: The Z-component of the transaction time process Z takes values in
{a, i1, i2, r, d}. To reduce clutter, the arrows into the dead state are made semi-transparent.
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We further assume that the transitions in the transaction time model equal those in

the valid time model, but that the origin of disability ik is not necessarily correctly

identified when the claim is reported. The presumed origin may change while the

insured is still disabled, but not after the insured has reactivated or died.

Let θj = inf{s ≥ 0 : Zs = j} be first hitting times, let θi = min{θi1 , θi2} be the

first hitting time of a disabled state, and write i(t) for the most recently visited

disabled state before time t. Define x ∧ y = min{x, y}. By the specification of the

model, Ht
s contains (θd, d) on (θd ≤ t ∧ s), it contains (θr, r) on (θr ≤ t ∧ s), and

it contains (θi, ik) on (θi ≤ t ∧ s, i(t) = ik). Finally, let NZ
jk(t) be the number of

transitions from state j to state k for the process Z on [0, t]. The transaction time

cash flow then reads

B(dt) = π1(Y t
t−=a) dt+

2∑
k=1

bik1(Y t
t−=ik) dt

+
∑

j,k∈{1,2}
j ̸=k

(∫
[θi,t)

κ(t)

κ(s)
(bik − bij ) ds

)
NZ

ijik
(dt).

◦

3.5 Reserving

Having defined the state process and cash flow in the valid and transaction time

models, we are now in a position to define the prospective present value and prospec-

tive reserve in the respective models. The main result of the paper, Theorem 3.5.4,

linking the present values in the two models, is deduced and discussed. Finally, the

dynamics of the transaction time reserve is derived and its role in model validation

is briefly considered.

Valid time reserve

Let the classic valid time prospective present value (P (t))t≥0 be defined by

P (t) =

∫
(t,∞)

κ(t)

κ(s)
B(ds).

We assume that P (t) is well-defined and belongs to L1(Ω,F,P) for every t ≥ 0.

Then we can define the corresponding expected present value by

V (t) = E
[
P (t) | FX

t

]
(3.5.1)

for any t ≥ 0. As a function of t, this is also known as the prospective reserve

in valid time. We consider a version of V presumed to be FX -adapted and P-a.s.
right-continuous.
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Remark 3.5.1. (Reserve for Markov state process.)

Note that P (t) is σ(Xs, t ≤ s < ∞)-measurable, so if X is a Markov-process, it

follows that

V (t) = E[P (t) | Xt]. ▽

For random variables Y1 and Y2, we say that Y1 = Y2 on A ∈ F if Y1(ω) = Y2(ω)

for P-almost all ω ∈ A. We immediately have the following representation of the

present value:

Proposition 3.5.2. (Valid time present value.)

For t ≥ 0, it holds that

P (t) = κ(t)
(
B◦(Xη

[0,∞))−B◦(Xη
[0,t])

)
on the event (η <∞).

Proof. Using the definitions introduced above, we find that

P (t) = κ(t)

∫
(t,∞)

1

κ(s)
B(ds)

= κ(t)

(∫
[0,∞)

1

κ(s)
B(ds)−

∫
[0,t]

1

κ(s)
B(ds)

)

= κ(t)

(∫
[0,∞)

1

κ(s)
B(X[0,∞),ds)−

∫
[0,t]

1

κ(s)
B(X[0,∞),ds)

)
= κ(t)

(
B◦(X[0,∞))−B◦(X[0,t])

)
.

Now on the event (η < ∞) we have that Xs = Xη
s for all s ≥ 0, from which the

result follows.

Transaction time reserve

The transaction time prospective present value (P(t))t≥0 is defined as

P(t) =
∫
(t,∞)

κ(t)

κ(s)
B(ds).

We assume P(t) is well-defined and belongs to L1(Ω,F,P) for any t ≥ 0. Let V be

the corresponding expected present value in the transaction time model

V(t) = E
[
P(t) | FZ

t

]
. (3.5.2)

Just as for V , we consider a version of V presumed to be FZ -adapted and P-a.s.
right-continuous. Since the backpay B◦(Xs

[0,s))−B◦(Xs−
[0,s)) telescopes, we also get

the following representation of the transaction time present value P:
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Proposition 3.5.3. (Transaction time present value.)

For t ≥ 0, it holds that

P(t) = κ(t)
(
B◦(Xη

[0,∞))−B◦(Xt
[0,t])

)
on the event (η <∞).

Proof. Note that the equality is trivially satisfied on (t ≥ η) by Proposition 3.5.2

and the observation that P (t) = P(t) on (t ≥ η) since Xt = Xη implies that the

running payments agree and there is no backpay after time t. Hence, what remains

to be shown is that the equality also holds on (t < η). We therefore let all the

remaining calculations be on (t < η). We re-index Tk = Tk+⟨t⟩ for k ∈ N, so Tk now

refers to the k’th jump of Z after time t. Let nη be a random variable P-a.s. taking
values in N, with the defining feature that Tnη

= η, so that nη is the number of

jumps after time t until Z is absorbed. For notational convenience, introduce

P◦(t) =
1

κ(t)
P(t)

and βs = B◦(Xs
[0,s))−B◦(Xs−

[0,s)). We then have on the event (η <∞):

P◦(t) =

∫
(t,∞)

1

κ(s)

∞∑
n=0

1(⟨s⟩=n)B(XTn

[0,∞),ds) +
∑

t<s<∞
βs

=

∫
(t,T1)

1

κ(s)
B(Xt

[0,∞),ds) + βT1

+

nη−1∑
n=1

(∫
[Tn,Tn+1)

1

κ(s)
B(XTn

[0,∞),ds) + βTn+1

)
+

∫
[η,∞)

1

κ(s)
B(Xη

[0,∞),ds)

by decomposing the integrals between jumps of Z and using that β is only non-zero

at jumps of Z. Hence we can write

P◦(t) = B◦(Xt
[0,T1)

)−B◦(Xt
[0,t]) +B◦(XT1

[0,T1)
)−B◦(Xt

[0,T1)
)

+

nη−1∑
n=1

(
B◦(XTn

[0,Tn+1)
)−B◦(XTn

[0,Tn)
) +B◦(X

Tn+1

[0,Tn+1)
)−B◦(XTn

[0,Tn+1)
)
)

+B◦(Xη
[0,∞))−B◦(Xη

[0,η))

= B◦(XT1

[0,T1)
)−B◦(Xt

[0,t]) +

nη−1∑
n=1

(
B◦(X

Tn+1

[0,Tn+1)
)−B◦(XTn

[0,Tn)
)
)

+B◦(Xη
[0,∞))−B◦(Xη

[0,η)).
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Observe that the sum telescopes, so we have

P◦(t) = B◦(XT1

[0,T1)
)−B◦(Xt

[0,t]) +B◦(Xη
[0,η))−B◦(XT1

[0,T1)
)

+B◦(Xη
[0,∞))−B◦(Xη

[0,η))

= B◦(Xη
[0,∞))−B◦(Xt

[0,t]).

Consequently,

P(t) = κ(t)P◦(t) = κ(t)
(
B◦(Xη

[0,∞))−B◦(Xt
[0,t])

)
as desired.

Relation between reserves

Using Proposition 3.5.2 and Proposition 3.5.3, the following theorem is now imme-

diate:

Theorem 3.5.4. (Representations of transaction time present value.)

For t ≥ 0, it holds that

P(t) = P (t) + κ(t)
(
B◦(Xη

[0,t])−B◦(Xt
[0,t])

)
= P (t) +

∑
t<s<∞

κ(t)
(
B◦(Xs

[0,t])−B◦(Xs−
[0,t])

)
on the event (η <∞).

Proof. From Propositions 3.5.2 and 3.5.3, it follows that on (η <∞):

P(t)− P (t) = κ(t)
(
B◦(Xη

[0,t])−B◦(Xt
[0,t])

)
,

which implies

P(t) = P (t) + κ(t)
(
B◦(Xη

[0,t])−B◦(Xt
[0,t])

)
.

This proves the first equality. The second equality corresponds to showing that

B◦(Xη
[0,t])−B◦(Xt

[0,t]) =
∑

t<s<∞

(
B◦(Xs

[0,t])−B◦(Xs−
[0,t])

)
.

This is trivially satisfied on (t ≥ η) since both the left- and right-hand side are

zero. Using the same notation as the proof of Proposition 3.5.3 and the convention

T0 = t, we see on (t < η):∑
t<s<∞

(
B◦(Xs

[0,t])−B◦(Xs−
[0,t])

)
=

nη∑
n=1

(
B◦(XTn

[0,t])−B◦(XTn−
[0,t] )

)

=

nη∑
n=1

(
B◦(XTn

[0,t])−B◦(X
Tn−1

[0,t] )
)

= B◦(Xη
[0,t])−B◦(Xt

[0,t])
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since the sum telescopes. This establishes the second equality and thus completes

the proof.

The assertion of Theorem 3.5.4 is quite intuitive, and one could alternatively

have formulated the setup by taking P(t) = P (t) + κ(t)(B◦(Xη
[0,t]) − B◦(Xt

[0,t]))

as a definition and proceeded from there. Defining the transaction time present

value through the cash flow as P(t) =
∫
(t,∞)

κ(t)
κ(s)B(ds) seems, however, the more

principled approach. Furthermore, the cash flow representation is easier to work

with in some situations; confer also with the proof of Theorem 3.5.10. Regardless,

the representation in Theorem 3.5.4 tends to be more convenient when linking the

transaction and valid time reserves as can be seen, for instance, in Example 3.5.8.

Remark 3.5.5. (Stylized illustration of Theorem 3.5.4.)

To better explain the contents of Theorem 3.5.4, we give a stylized example. Suppose

that one is situated at time t, that benefits have been paid in [0, t− 1], and that the

finalized payments consist of benefits during all of [0, t+1]. Suppose further that the

benefits concerning (t− 1, t+1] occur as backpay at time t+1. Then the payments

concerning (t, t+ 1] appear in P (t), while the payments concerning (t− 1, t] appear

in κ(t)
(
B◦(Xη

[0,t])−B◦(Xt
[0,t])

)
= κ(t)

(
B◦(Xt+1

[0,t])−B◦(Xt+1−
[0,t] )

)
. ▽

Remark 3.5.6. (Relation between reserves in valid and transaction time.)

By taking the conditional expectation given FZ
t of the expression from Theo-

rem 3.5.4, we conclude that the expected present value in transaction time V is

different from the classic expected present value in valid time V in two fundamental

ways:

1. It reserves additionally to previously wrongly settled payments, so it is no

longer strictly prospective in valid time, in the sense that payments may relate

to valid time events that lie before the current point in time.

2. It conditions on the filtration FZ , which is observable, compared to FX ,

which is only partially observable.

If there had been no previously wrongly settled payments, and if the conditional

expectations given the two filtrations had been equal, then the reserves would

also have been identical. Even though the relation between the present values is

relatively simple, this does not translate into a simple relation between V and V

in the general case. This is because we have so far imposed very little structure

on the model for Z, so how the conditional distribution of Zs given FZ
t for s ≥ t

depends on FZ
t can be almost arbitrarily complicated.

Note that another important consequence of Theorem 3.5.4 (or rather Proposi-

tion 3.5.3) is that one does not need the distribution of Z to calculate V(t). The
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conditional distribution of X[0,∞) given FZ
t is sufficient, since

V(t) = E
[
κ(t)B◦(X[0,∞)) | FZ

t

]
− κ(t)B◦(Xt

[0,t]).

Further, sinceX[0,∞) equalsX
η
[0,∞) almost surely with respect to P andXη

[0,∞) is FZ
∞-

measurable, the distribution of Z determines the conditional distribution of X[0,∞)

given FZ
t for any outcome of Z[0,t]. Consequently, the conditional distribution

might be the natural modeling object. ▽

Remark 3.5.7. (Non-monotone information.)

Write V (t) = g(X[0,t]) for a measurable function g, which exists by the Doob-Dynkin

lemma. Continuing the discussion from Remark 3.5.6, standard practice seems to

be to use the individual reserve V t(t) = g(Xt
[0,t]) at time t and use IBNR and RBNS

factors on an aggregate level to correct for the fact that typically X ≠ Xt. Note that

the information that one uses for reserving is then non-monotone, since for 0 ≤ s ≤ t,
it holds that Xs

[0,s] is generally unknown from Xt
[0,t] and vice versa. Reserves in the

presence of non-monotone information have been studied in Christiansen & Furrer

(2021). In this, stochastic Thiele differential equations for prospective reserves are

derived subject to information deletions, i.e. non-monotone information. These

might be useful for studying the properties of the reserves V t currently used in

practice. ▽

Example 3.5.8. (Disability insurance with different origins: Reserving.)

We here describe reserving in the transaction time model from Example 3.4.3 and

find explicit expressions for V. To obtain intuitive formulas, we impose additional

structure on the model for Z in the form of a conditional independence assumption.

Write Vj(t, u) = E[P (t) | Xt = (j, u)] for the state-wise valid time reserves

in the semi-Markov setup. These may be calculated using known methods, see

e.g. Christiansen (2012) and Buchardt et al. (2015). Note that on (Zt = a), we

have FX
t = FZ

t and P(t) = P (t) and thus V(t) = Va(t, t). On (Zt ∈ {r, d}), we
have P(t) = P (t) = 0 and thus V(t) = 0. Hence only the case (Zt ∈ {i1, i2})
corresponding to an RBNS claim requires consideration. Using Theorem 3.5.4, we

get

V(t) = E
[
P (t) + κ(t)

∫
[θi,t]

1

κ(s)
(bYs
− bZt

) ds

∣∣∣∣FZ
t

]
=

κ(t)

κ(θi)
E
[
P (θi) | FZ

t

]
−
∫
(θi,t]

κ(t)

κ(s)
bZt

ds.

Assume that

X[0,∞) ⊥⊥ FZ
t | FX

t .

In other words, if one had known the true value of the biometric state process,

additional transaction time information is superfluous. Then by the law of iterated
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expectations and the semi-Markov property,

E
[
P (θi) | FZ

t

]
=

2∑
k=1

P(Yθi = ik | FZ
t )

(
κ(θi)

κ(t)
Vik(t, t− θi) +

∫
(θi,t]

κ(θi)

κ(s)
bik ds

)
.

To conclude, on (Zt ∈ {i1, i2}) it holds that

V(t) =
2∑

k=1

P(Yθi = ik | FZ
t )

(
Vik(t, t− θi) +

∫
(θi,t]

κ(t)

κ(s)
(bik − bZt) ds

)
, (3.5.3)

which is an explicit expression for the RBNS reserve. The probabilities P(Yθi =
ik | FZ

t ) for k ∈ {1, 2} may be calculated as absorption probabilities by extending

the state space of the transaction time process to include separate reactivated and

dead states for each of the disability origins.

As noted in Remark 3.5.6, the transaction time reserves differ from the valid

time reserves through both the present values and the conditioning information. If

the payment rates in the two disabled states, that is bi1 and bi2 , are equal, then the

present values are equal, i.e. P(t) = P (t), and we obtain on (Zt ∈ {i1, i2}) that

V(t) =
2∑

k=1

P(Yθi = ik | FZ
t )Vik(t, t− θi).

If we additionally assume that the transition rates from states i1 and i2 are equal,

then the difference due to differing conditioning information also disappears, and

we get

V(t) = Vi1(t, t− θi) = V (t),

meaning that the valid and transaction time reserves agree.

Note that it is easy to extend the model to include n disabled states i1, . . . , in.

We may also extend the example to allow for transition between the disabled states

in the valid time model. The disabled states could then represent more diverse and

complex phenomena such as the degree of lost earning capacity or diagnoses. Such

a model is depicted in Figure 3.3.
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active disabled 1

...

disabled n

reactivated

dead

a i1

in

r

d

i

Figure 3.3: Valid time model from Figure 3.1 extended to n disabled states and allowing
for transition between the disabled states. To reduce clutter, transitions to and from the
disabled states {i1, . . . , in} are represented with a single dotted arrow.

Allowing for transition between the disabled states comes at a cost in the form of

increased complexity of the transaction time model, since the latter needs to be

able to generate the valid time process. One option is to let the Z-component take

values in the state space depicted in Figure 3.4.

active event type 1

...

event type m

reactivated

dead

a e1

em

r

d

e

Figure 3.4: The Z-component of a transaction time process Z that can generate the
extended valid time model of Figure 3.3. To reduce clutter, transitions to and from the
RBNS states {e1, . . . , em} are represented with a single dotted arrow.

As noted in Remark 3.5.6, we do not need to specify the full distribution of changes

in Ht
s at jumps of Z between states e1, . . . , em. This distribution only affects

the reserves through the distribution of the valid time process conditional on the

observed information, and it therefore suffices to model this. On (Zt ∈ {e1, . . . , em}),
corresponding to an RBNS claim, one may show that

V(t) =
n∑

k=1

(∫
[0,t]

Vik(t, u)P(Yt = ik, Ut ∈ du | FZ
t )

+

∫
(θi,t]

κ(t)

κ(s)
P(Ys = ik | FZ

t )(bik − bY t
s
) ds

)
.
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This identity is comparable to (3.5.3), but it is more complex and requires one to

model the path the insured takes through the disabled states between time θi and

time t. This may be seen from the dependence on Ut in the first term and the

dependence on Ys for s ∈ (θi, t] in the second term.

Finally, it is easy to extend the example to allow for general semi-Markov

payments of the form described in Example 3.3.2. This includes risk periods,

waiting periods, and transition payments. ◦

The above example serves as a simple theoretical demonstration of the potential of

our general framework. As there is no reporting delay, there is no IBNR reserve

in Example 3.5.8. The RBNS reserve of the example also only differs from the

valid time disability reserve due to the imperfect observation of the disability

type. To capture the full picture of IBNR and RBNS reserving, one would need

to explore more intricate transaction time models with both reporting delays and

claim adjudications. While this extension is outside the scope of this paper, our

general framework readily allows for such continued studies. We stress that such

applications are the main motivation for introducing the transaction time framework.

In addition to developing model extensions, it could also be relevant to develop

estimation procedures for the above example as well as for more complicated models.

Reserve dynamics

The study of reserve dynamics is of great importance, especially in relation to

model validation, Cantelli’s theorem and reserve-dependent payments, Hattendorff’s

theorem on non-correlation between losses, and the emergence and decomposition

of surplus as well as sensitivity analyses, cf. Section 1 in Christiansen & Furrer

(2021). We conclude this section by deriving the dynamics of the transaction

time reserve V and valid time reserve V following the same procedure as for the

classic reserve, see e.g. Christiansen & Djehiche (2020). Essentially, this amounts to

applying an explicit martingale representation theorem to V; the idea of applying

martingale representation techniques dates back to Norberg (1992). The dynamics

of the prospective reserves bears a resemblance to Thiele’s differential equation; one

might even say it constitutes a stochastic version of Thiele’s differential equation.

The literature, however, seems to reserve the term stochastic Thiele equation for

the stochastic differential equation related to the so-called state-wise prospective

reserves, see e.g. Christiansen & Furrer (2021).

Recall the definitions V(t) = E
[
P(t) | FZ

t

]
and Zt = (Zt, H

t
t ). Define a random

counting measure µZ corresponding to Z by

µZ(C) =

∞∑
n=1

1C(Tn,ZTn), C ∈ B([0,∞))⊗ B(R∞),
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and let ΛZ be its compensating measure, given in Definition 4.3.2 (iii) of Jacobsen

(2006). By Theorem 4.5.2 of Jacobsen (2006), if E[µZ([0, t]×D)] <∞ for all t ≥ 0

and D ∈ B(R∞), we have that

t 7→ µZ([0, t]×D)− ΛZ([0, t]×D)

is a martingale for any D ∈ B(R∞). Let ξn = (T1, ..., Tn;ZT1 , ...,ZTn) be the MPP

history of Z at time Tn.

Write ζ = (ζz, ζh) for a generic realization of Zt, where the coordinates ζz and ζh
pertain to Zt and H

t
t , respectively. Finally, define the sums at risk in the transaction

time model for a jump of Z to ζ at time t:

R(t, ζ) =
∞∑

n=1

1(Tn<t≤Tn+1)

(
κ(t)

(
B◦((fζh(s))0≤s≤t)−B◦(Xt−

[0,t])
)

+ E[P(t) | ξn, (Tn+1,ZTn+1
) = (t, ζ)]− E[P(t) | ξn, Tn+1 > t]

)
.

This is a difference in payments and reserves at time t between a jump-to-ζ and a

remain-in-Zt− scenario.

Remark 3.5.9. (Definition of non-standard conditional expectations.)

One should be careful about the definition of E[P(t) | ξn, Tn+1 > t] and similar

quantities outside (Tn+1 > t), confer with e.g. Christiansen & Furrer (2021). In

this paper, it corresponds to the version

E[P(t) | ξn, Tn+1 > t] =
E[P(t)1(Tn+1>t) | ξn]
E[1(Tn+1>t) | ξn]

under the convention 0/0 = 0 and where the expectations are the regular conditional

expectations constructed in Jacobsen (2006). That this version is the relevant one

follows from the proof of Theorem 3.5.10. ▽

We then have the following theorem:

Theorem 3.5.10. (Transaction time reserve dynamics.)

For t ≥ 0, it holds that

V(dt) = V(t−) κ(dt)
κ(t−) − B(dt) +

∫
R∞
R(t, ζ) (µZ − ΛZ)(dt,dζ). (3.5.4)

Proof. Introduce

P◦(t) =
1

κ(t)
P(t).
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We have that P◦(0) = P(0), which is assumed integrable, so we can define

t 7→Mt = E
[
P◦(0) | FZ

t

]
,

which is a martingale. Since V is presumed FZ -adapted and P-a.s. right-continuous,
the same holds for a version of M , since Mt =

1
κ(t)V(t) + P◦(0)− P◦(t). Then a

martingale representation theorem, namely Theorem 4.6.1 of Jacobsen (2006), gives

the existence of predictable processes Sζ
s such that

Mt =M0 +

∫
(0,t]×R∞

Sζ
s (µZ − ΛZ)(ds,dζ)

P-a.s. simultaneously over t. Using the adaptedness of M , we can, as in the proof

of the aforementioned Theorem 4.6.1, use Proposition 4.2.1(biii) of Jacobsen (2006)

to write

Mt =

∞∑
n=0

1(Tn≤t<Tn+1)g
n
ξn(t)

for measurable functions (hn, t) 7→ gnhn
(t). Due toM being a conditional expectation,

we can use Corollary 4.2.2 of Jacobsen (2006) to identify

gnξn(t) = E[P◦(0) | ξn, Tn+1 > t]

on (Tn ≤ t < Tn+1). To identify the function for all (hn, t), we first observe that

according to Remark 4.2.3 of Jacobsen (2006),

gnξn(t) =
E[P◦(0)1(Tn+1>t) | ξn]

E[1(Tn+1>t) | ξn]

on (Tn ≤ t < Tn+1). Define the functions (hn, t) 7→ gnhn
(t) as

gnhn
(t) =

E[P◦(0)1(Tn+1>t) | ξn = hn]

E[1(Tn+1>t) | ξn = hn]

on the set Dn = {(hn, t) : E[1(Tn+1>t) | ξn = hn] ̸= 0} and zero otherwise. These

functions are well-defined since the conditional expectations are regular and fixed.

By the above calculations, they satisfy the required identity of Proposition 4.2.1(biii)

in Jacobsen (2006). For the measurability condition, note first that E[1(Tn+1>t) |
ξn = hn] is measurable as a function of hn since it is a regular conditional expectation,

and that it is jointly measurable as a function of (hn, t) since it is right-continuous

as a function of t for any hn by the dominated convergence theorem. This implies

that Dn is measurable. By the same arguments, E[P◦(0)1(Tn+1>t) | ξn = hn] is

seen to be jointly measurable as a function of (hn, t). From this we may conclude

that (hn, t) 7→ gnhn
(t) is measurable, so it especially satisfies Proposition 4.2.1(biii)

in Jacobsen (2006). In the following, we write E[P◦(0) | ξn, Tn+1 > t] for gnξn(t),
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but this is merely notation; calculations with E[P◦(0) | ξn, Tn+1 > t] actually use

the properties of gnhn
(t).

The proof of the aforementioned Theorem 4.6.1 furthermore gives that

Sζ
t =

∞∑
n=0

1(Tn<t≤Tn+1)

(
gn+1
(ξn,(t,ζ))

(t)− gnξn(t)
)
,

so that

Sζ
t =

∞∑
n=0

1(Tn<t≤Tn+1)

(
E[P◦(0) | ξn, (Tn+1,ZTn+1

) = (t, ζ)]

− E[P◦(0) | ξn, Tn+1 > t]
)

=

∞∑
n=0

1(Tn<t≤Tn+1)

(
E[P◦(t−) | ξn, (Tn+1,ZTn+1

) = (t, ζ)]

− E[P◦(t−) | ξn, Tn+1 > t]
)

using that P◦(0)−P◦(t−) =
∫
(0,t)

1
κ(s)B(ds) are ξn-measurable on (Tn < t ≤ Tn+1).

Therefore, the dynamics of M is

dMt =

∫
R∞

Sζ
t (µZ − ΛZ)(dt,dζ)

=

∞∑
n=0

∫
R∞

1(Tn<t≤Tn+1)

(
E[P◦(t−) | ξn, (Tn+1,ZTn+1

) = (t, ζ)]

− E[P◦(t−) | ξn, Tn+1 > t]
)
(µZ − ΛZ)(dt, dζ).

Using that

P◦(t)− P◦(0) = −
∫
(0,t]

1

κ(s)
B(ds) (3.5.5)

is FZ -adapted, we get

E[P◦(0) | FZ
t ]− E[P◦(0) | FZ

0 ] = E[P◦(t) | FZ
t ]− E[P◦(0) | FZ

0 ]

− (P◦(t)− P◦(0)),

which upon rearrangement becomes

E[P◦(t) | FZ
t ]− E[P◦(0) | FZ

0 ] = P◦(t)− P◦(0) + E[P◦(0) | FZ
t ]− E[P◦(0) | FZ

0 ].

Introducing

V◦(t) =
1

κ(t)
V(t) = E[P◦(t) | FZ

t ],

we can write this as

V◦(t)− V◦(0) = P◦(t)− P◦(0) +Mt −M0.
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The identity (3.5.5) furthermore gives

P◦(dt) = − 1

κ(t)
B(dt).

The above calculations imply

V◦(dt) = dMt + P◦(dt)

=

∞∑
n=0

∫
R∞

1(Tn<t≤Tn+1)

(
E[P◦(t−) | ξn, (Tn+1,ZTn+1

) = (t, ζ)]

− E[P◦(t−) | ξn, Tn+1 > t]
)
(µZ − ΛZ)(dt,dζ)−

1

κ(t)
B(dt).

The time t payment 1
κ(t)B({t}) can be taken out of both intergrands, and this

amounts to B◦((fζh(s))0≤s≤t)−B◦(Xt−
[0,t]). It is the difference in the payment at

time t between a jump and a remain scenario when Z jumps to ζ. Taking out

the time t payment, we get P◦(t−) = 1
κ(t)B({t}) + P◦(t), and using integration by

parts, we finally have

V(dt) = d(κ(t)V◦(t))

= V◦(t−)κ(dt) + κ(t)V◦(dt)

= V(t−) κ(dt)
κ(t−) − B(dt)

+

∞∑
n=1

∫
R∞

1(Tn<t≤Tn+1)

(
B◦((fζh(s))0≤s≤t)−B◦(Xt−

[0,t])

+ E[P(t) | ξn, (Tn+1,ZTn+1) = (t, ζ)]

− E[P(t) | ξn, Tn+1 > t]
)
(µZ − ΛZ)(dt, dζ),

which yields the desired result by definition of the sums at risk.

Theorem 3.5.10 shows that the transaction time reserve V changes with interest

accrual V(t−) κ(dt)
κ(t−) , actual benefits less premiums B(dt) and a martingale term∫

R∞ R(t, ζ) (µZ − ΛZ)(dt, dζ), which is the sums at risk integrated with respect to

the underlying compensated random counting measure. The martingale term may

be interpreted as stochastic noise since it is a mean-zero process, and may thus

be used for model validation and back-testing purposes. Actual applications are

outside the scope of this paper.

One could alternatively have derived Theorem 3.5.10 from Theorem 7.1 in Chris-

tiansen (2021b), which is an explicit martingale representation theorem that holds

even when the information being conditioned on is non-monotone. The proof pre-

sented here is however more concise, as our information FZ is monotone, so more

standard results apply. Theorem 3.5.10 is similar to Proposition 3.2 in Christiansen
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& Djehiche (2020), but differs among other things by not being restricted to state

processes taking values in a finite space.

Remark 3.5.11. (Dynamics of valid time reserve.)

Define the random counting measure µX corresponding to X by

µX(C) =

∞∑
n=1

1C(τn, Xτn), C ∈ B([0,∞))⊗ B(Rd).

Let ΛX be the compensating measure for µX , and let γn = (τ1, ..., τn;Xτ1 , ..., Xτn)

be the MPP history of X at time τn. By the same calculations as for Theorem 3.5.10,

we find the dynamics of the valid time reserve V :

V (dt) = V (t−) κ(dt)
κ(t−) −B(dt) +

∫
Rd

R(t, y) (µX − ΛX)(dt,dy) (3.5.6)

for the sums at risk

R(t, y) =

∞∑
n=1

1(τn<t≤τn+1)

(
B
(
(f(Ht−,(t,y))(s))0≤s≤t, {t}

)
−B

(
(fHt−(s))0≤s≤t, {t}

)
+ E[P (t) | γn, (τn+1, Xτn+1

) = (t, y)]− E[P (t) | γn, τn+1 > t]
)
.

This result is again similar to Proposition 3.2 in Christiansen & Djehiche (2020),

but still differs among other things by not being restricted to state processes taking

values in a finite space. The conditional expectations are to be interpreted as in

Remark 3.5.9.

Suppose now that X is a pure Markov jump process on a finite state space

E = {1, 2, ..., J} with payments specified as in Example 3.3.2. In other words,

the valid time payments consist of deterministic sojourn payments t 7→ Bj(t) and

deterministic transition payments t 7→ bjk(t). Then

B
(
(f(Ht−,(t,y))(s))0≤s≤t, {t}

)
−B

(
(fHt−(s))0≤s≤t, {t}

)
= bXt−y(t).

Furthermore,

µX(dt, {k}) = NXt−k(dt)

and, since X is Markovian,

ΛX(dt, {k}) = ΛXt−k(dt)

for suitably regular cumulative transition rates t 7→ Λjk(t). Consequently, by

invoking the Markov property, the dynamics (3.5.6) read

V (dt) = V (t−) κ(dt)
κ(t−) −B(dt) +

J∑
j,k=1
j ̸=k

1(Xt−=j)

(
bjk(t) + E[P (t) |Xt = k]

− E[P (t) |Xt = j]
)(
Njk(dt)− Λjk(dt)

)
.

(3.5.7)

This constitutes a significant simplification. ▽
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In comparing (3.5.4) with (3.5.6), it is apparent that the transaction and valid time

reserves admit comparable dynamics. In both cases, there is a contribution due to

interest accrual, a contribution from benefits less premiums, and finally a martingale

term. In general, the dynamics of the transaction time reserve are more complicated

than that of the valid time reserve – for two reasons. First, the martingale term is

more involved, which stems from the fact that the model for Z is typically more

elaborate than that for X. Second, the accumulated cash flow in transaction time

B is a complicated function of, among other things, the accumulated cash flow

in valid time B. The difference might be particularly striking under the quite

common assumption that X is a pure Markov jump process on a finite state space

E = {1, 2, . . . , J} and the valid time payments consist of deterministic sojourn and

transition payments. In this case, the dynamics of the valid time reserve simplify,

cf. (3.5.7), but there is in general no reason why this simplification should carry

over to the transaction time reserve – unless further assumptions are imposed.
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Chapter 4

A multistate approach to disability

insurance reserving with information

delays

This chapter contains the manuscript Sandqvist (2025).

Abstract

Disability insurance claims are often affected by lengthy reporting

delays and adjudication processes. The classic multistate life insurance

modeling framework is ill-suited to handle such information delays since

the cash flow and available information can no longer be based on

the biometric multistate process determining the contractual payments.

We propose a new individual reserving model for disability insurance

schemes which describes the claim evolution in real-time. Under suitable

independence assumptions between the available information and the

underlying biometric multistate process, we show that these new reserves

may be calculated as natural modifications of the classic reserves. For

estimation of the model constituents, we employ the procedure proposed

in Buchardt et al. (2025). A real data application shows the practical

relevance of our concepts and results.

Keywords: Multistate life insurance; Claims reserving; Incurred-but-not-reported;

Reported-but-not-settled

4.1 Introduction

Reserves are fundamental to the insurance industry, and recently, reserving for

disability insurance schemes has become a topic of considerable interest for Danish

insurers due to new regulation, worsening risks, and heightened price competition.

Disability insurance and similar insurance schemes such as workers’ compensation

81
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insurance generally work by covering disabilities of an insured that occur in a

prespecified coverage period in exchange for a premium. Disabilities are covered in

the sense that benefits are paid out if the insured becomes disabled with a disability

that qualifies for a payout per the criteria specified in the insurance contract. The

most prominent schemes pay benefits as long as the insured is disabled and is below

the retirement age to compensate for lost wages. Usually, disability benefits will not

be paid starting from disablement, but only once the disability has lasted a period

of time called the qualifying period or waiting period. In fact, many disabilities

will start payout even later due to reporting and adjudication delays. Reporting

delays are defined as the time between the occurrence and reporting of an event.

For Danish insurance companies, disabilities generally have long reporting delays

compared to other insurance events such as deaths. The adjudication delay is

defined as the time between when a claim is reported and when it is adjudicated.

During the adjudication process, the insurance company evaluates whether the

insured is eligible for disability benefits or not. This can be a lengthy process when

there is a need to obtain further clinical assessments of the claimed disability.

These characteristics situate disability insurance somewhere between traditional

life and non-life insurance schemes: the long cash flows associated with the possibility

of paying benefits from disablement until retirement are similar to the characteristics

of other life insurance schemes, while information delays are features that have so

far primarily been explored in the non-life part of the insurance reserving literature.

In this paper, we propose a model that is tailored to accommodate both of these

features.

Our proposed model can in many ways be seen as an extension of the classic

semi-Markov models that have dominated the actuarial literature on disability

insurance, see for example Janssen (1966), Hoem (1972), Haberman & Pitacco

(1998), Helwich (2008), Christiansen (2012), and Buchardt et al. (2015). Such

models have also been used extensively in the biostatistical literature, see for

example Lagakos et al. (1978), Andersen et al. (1993), Dabrowska (1995), Hougaard

(2000), and Spitoni et al. (2012) as well as the references therein. The semi-Markov

models have been popular in the disability insurance literature for several reasons.

First and foremost, they allow the intensity of mortality and reactivation from a

disability to depend on the duration since disablement, which is crucial in practice.

In addition, the contractual payments in some cases depend on the duration since

the last jump, for example due to a qualifying period, which can be handled in

a semi-Markov setup. Finally, semi-Markov models, and multistate models more

generally, provide a natural and parsimonious way to represent the information

contained in an insurance contract and to capture the intertemporal dependencies

of the cash flow. We seek to retain these attractive properties while accommodating

the effects of reporting and adjudication delays.
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As noted in Buchardt et al. (2023), the fundamental challenge in this endeavor

is that contractual payments refer to when events occur (e.g. the time of death or

the time of disablement) without any regard to when this information is observed

by the insurer. On the other hand, the usual multistate life insurance modeling

literature assumes that one can observe the process driving the contractual payments

fully and in real-time. Therefore, when the information needed to determine the

contractual payments at a given time is not available to the insurer at that time due

to information delays, the problem falls outside the usual multistate life insurance

modeling framework.

The paper Buchardt et al. (2023) has established a framework intended to deal

with these complications, distinguishing between and linking the so-called valid

time model, which models when events occur, and the so-called transaction time

model, which models what is observed by the insurer. While some relations between

the models stay simple in all cases, the relation between the reserves can be almost

arbitrarily complicated and hence has to be investigated in specific models. In their

Example 5.8, they derive an explicit relation in a simple example, but remark: “To

capture the full picture of IBNR and RBNS reserving, one would need to explore more

intricate transaction time models with both reporting delays and claim adjudications”.

Here, IBNR stands for incurred-but-not-reported while RBNS stands for reported-

but-not-settled. In this paper, we do exactly this, applying the framework to

derive explicit and tractable expressions for the reserves of fairly general disability

insurance schemes under suitable assumptions. We also give detailed discussions on

the reasonableness of the assumptions and the practical relevance of the results. The

reserves are operationalized by employing the estimation procedure from Buchardt

et al. (2025) who has studied parametric estimation of multistate models subject to

reporting delays and adjudications. In addition to providing operational expressions

for disability insurance reserves, a main contribution of the paper is to provide

intuition for how transaction time information may affect the reserves in a realistic

setting, allowing one to adjust the models when certain assumptions are not met,

and serving as a basis for future work in this area.

The way reporting delays and adjudication processes are incorporated in our

model shares some similarities with parts of the non-life insurance literature on

individual reserving models, especially those formulated in the recent string of

papers Crevecoeur et al. (2019), Verbelen et al. (2022), Crevecoeur et al. (2022a),

and Crevecoeur et al. (2022b). The first two papers explore estimation of the claim

frequency subject to IBNR claims. Both assume an underlying Poisson process

driving the claim frequency and form a thinned version by deleting claims that are

unreported by the time of analysis. In the first paper, the maximum likelihood

estimator is obtained by assuming piecewise constant rates, while in the second

paper, one treats the deleted claims as missing under an EM-algorithm. The

third paper explores reserving and estimation of RBNS claims by modeling the



84 Chapter 4. Sandqvist (2023)

conditional distribution of the full claim development, consisting of all payments

and auxiliary characteristics of the claim, given the historical development. The

model is calibrated using (weighted) maximum likelihood estimation. The last

paper explores reserving and estimation of both IBNR and RBNS, using much of

the framework that had been developed in the previous papers. Their reserves do

not have closed-form solutions so Monte-Carlo simulation is used. All the models

are formulated in discrete time.

Comparing with our approach, a formal difference is that we formulate the

models in continuous time. The effect of IBNR on claim frequency is treated in

a similar manner, but additional survival probabilities appear in our multistate

approach compared to the Poisson model. The primary difference regarding IBNR

however stems from how the payments are treated. In the non-life insurance models,

the conditional expectation of the ultimate payment given the reporting delay is

computed using Monte-Carlo simulation of the full real-time development of the

claim while we instead are able to use the known form of the contractual payments.

For RBNS modeling, Crevecoeur et al. (2022a) and Crevecoeur et al. (2022b)

similarly propose to model the full real-time development of a claim conditional on

historical developments. Having to model the full development of a claim results

in a larger number of model elements, and thus a greater risk of misspecification.

This risk of bias accumulation is acknowledged in Crevecoeur et al. (2022a) where

it is suggested to re-scale each time layer of the model to ensure that the sum of

the predictions equals the sum of the observed values in the training data.

Our approach requires additional conditional independence assumptions between

the observed information and the underlying biometric state process driving the

contractual payments, but in return, one only needs two extra model elements in

addition to what is usually modeled in the multistate approach, namely the reporting

delay distribution and the adjudication probabilities. Furthermore, one obtains

relatively simple closed-form expressions for the reserves, eliminating the need

for Monte-Carlo simulation. The derivation of the reserves is based on stochastic

analysis that falls outside of existing results and techniques, because we are led to

analyze the biometric state process stopped at a random time that is not a stopping

time with respect to the filtration of interest, namely the filtration generated by

the biometric state process. Such complications did not arise in the simple model

from Example 5.8 of Buchardt et al. (2023), and the treatment of the resulting

mathematical complexities is another main contribution of the paper.

It is also relevant to consider whether the reserves could be based on aggregate

models (e.g., chain ladder Mack (1993, 1999)) rather than individual reserving

models given their popularity with practitioners, see e.g. Lopez et al. (2018) and the

references therein. For aggregate models to be applicable, steady-state assumptions

have to hold on an aggregate level. Steady-state assumptions at a portfolio level are
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unsuitable for disability insurance since disability claims frequently lead to several

decades of benefit payments causing the proportion of long-lasting disabilities in the

portfolio to rise for many decades. Assuming that an aggregate reserving model was

available, it would likely still suffer from certain robustness issues. For example, a

model based on chain ladder would be slow to capture trends such as the sharp rise

in mental health-related disabilities that has been observed in recent years, while it

is straightforward to include a calendar time effect in the proposed reserving models.

As another example, consider an IBNR reserve that arises as some transformation of

the classic semi-Markov reserves for the policies that are currently in the portfolio.

Then an influx of new policies would lead to an unwarranted increase in reserves;

the aggregate IBNR reserve should initially remain unchanged since disabilities that

occurred before entering the portfolio do not lead to disability benefits. Covariate

shifts in the portfolio would also violate steady-state assumptions, while individual

reserving models are robust to such shifts whenever the covariate is included in the

model.

A general disadvantage of individual models is that they often lead to higher

estimation risk since more elements have to be estimated. They may also lead to

higher model risk since more assumptions are needed to construct the models. In

this paper, we seek to accommodate the former by deriving models that do not

require many new model elements. To accommodate the latter, we provide detailed

discussions on how to adjust the models when central assumptions of the setup are

violated. Methods for detecting deviations between the models and the realized

outcomes are given in Remark 4.B.1 and Theorem 5.10 of Buchardt et al. (2023),

making it possible to monitor the estimation and model risk. The proposed models

thus possess many properties that could make them attractive for practitioners.

The paper is structured as follows. Section 4.2 describes our valid time and

transaction time model for disability insurance schemes. Section 4.3 concerns

reserving and contains the main results. Estimation is discussed in Section 4.4.

Section 4.5 contains a real data application. Section 4.6 concludes. Lengthy proofs

are deferred to Appendix 4.A and the straightforward extension to stochastic interest

rates is given in Appendix 4.B.

4.2 Setup

4.2.1 Disability insurance in valid time

Let (Ω,F , (Ft)t≥0,P) be a filtered background probability space. The biometric state

of the insured is governed by a non-explosive pure jump process Y : Ω× R+ 7→ J
on a finite state space J = {1, 2, ..., J} for J ∈ N with deterministic initial state

y0. Denote by N the corresponding multivariate counting process with components
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Njk : Ω× R+ 7→ N0 (j, k ∈ J , k ̸= j) given by

Njk(t) = #{s ∈ (0, t] : Ys− = j, Ys = k}.

For A ⊆ J , let τA : Ω→ R+ be the first hitting time of A such that τA = inf{t ≥
0 : Yt ∈ A}. The information generated by Y is represented by the filtration

FY
t = σ(Ys, s ≤ t). We shall also need the future information F t,Y = σ(Ys, s ≥ t).

Let U : Ω× R+ 7→ R+ be the duration in the current state,

Ut = t− sup{s ∈ (0, t] : Ys ̸= Yt}.

A life insurance contract between the insured and the insurer is stipulated by

the specification of the accumulated cash flow B : Ω× R+ 7→ R representing the

accumulated benefits less premiums. We refer to this as the valid time cash flow or

the contractual payments, and assume it is on the usual semi-Markov form,

B(dt) =

J∑
j=1

1(Yt−=j)Bj,t−Ut−(dt) +

J∑
j,k=1
j ̸=k

bjk(t, Ut−)Njk(dt), B(0) ∈ R,

where Bj,w : R+ 7→ R (j ∈ J , w ≥ 0) are measurable, càdlàg and of finite variation,

and bjk(t, u) (j, k ∈ J , j ̸= k) are measurable and bounded. Since t − Ut− is

piecewise constant, the above expression is well-defined. We bundle all the processes

that determine the payments into Xt = (t, Yt, Ut). Note that FX
t = FY

t since U is

constructed from the history of Y . Like Buchardt et al. (2023), we name the model

for X and B the valid time model. In this paper, we assume that the biometric

state process Y takes values in the state space J depicted in Figure 4.1.

active disabled 1

...

disabled m

reactivated

dead

a i1

im

r

d

I

Figure 4.1: The state process Y takes values in J = {a, i1, . . . , im, r, d}, being an illness-
death model with m disabled states I = {i1, . . . , im} and a separate reactivated state.
To reduce clutter, all transitions to and from I are illustrated as single dotted arrows.
Transition between the disabled states is not possible.

Note that we have here labeled the states with letters instead of integers to stay

consistent with the actuarial literature. This should cause no confusion in what
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follows. We assume y0 = a since only non-disabled are offered the insurance.

We assume that Y is a semi-Markov process with measurable transition hazards

µjk : R2
+ 7→ R+ (j, k ∈ J , j ≠ k) which are Lebesgue-integrable on compact subsets

of R2
+ so that the intensity process for Njk is given by λjk(t) = 1(Yt−=j)µjk(t, Ut−).

That Y is semi-Markov implies that X is Markov. The assumption regarding the

existence of transition hazards (as opposed to cumulative transition hazards) could

be removed using the techniques of Jacobsen (2006) or Helwich (2008) and it would

similarly not be difficult to allow for an uncountable number of disabled states

e.g. I = (0, 1] representing the degree of lost earning capacity. The choice and

implications of the chosen state space are discussed in Remark 4.2.1.

Remark 4.2.1. (Valid time state space for disability insurance contract.)

In the multistate modeling literature, one usually allows for a general finite state

space. We restrict our attention to the particular state space depicted in Figure 4.1

because, as was noted in the introduction, the relation between the valid time and

transaction time reserves can be highly model-specific. The state space is intended

to be general enough to capture most common disability insurance schemes. The

hierarchical structure is imposed to simplify the transaction time model construction

by making it so that there is only one disability and reactivation time to keep

track of, as well as making the implementation in Section 4.5 easier since one can

avoid implementing the semi-Markov Kolmogorov forward differential equations

known from Buchardt et al. (2015) and instead use Thiele’s differential equations

successively.

Modeling disability insurance contracts using the model from Figure 4.1 implies

that at most one disability can occur, that the disability type does not change after

disablement, and that a reactivation of this disability is permanent. For contracts

where it is important to model temporary reactivations, one might instead prefer

to use a non-hierarchical illness-death model where reactivations are modeled as

jumps back into state a instead of into the separate reactivated state r, see e.g.

Figure 3 in Helwich (2008) or Example 2.1 in Christiansen (2012).

When coverage periods are short, as is usually the case for disability insurance

schemes, and the disability hazard is small, ignoring the possibility of several

disabilities can be reasonable. Even if one uses the non-hierachical model, it can

be complicated to allow for several distinct disabilities if the insurance contract

includes a coverage period. To see this, consider the situation where the insured

becomes disabled within the coverage period of a disability annuity, reactivates,

and becomes disabled again outside of the coverage period. Whether the insured is

qualified for disability payments for the second disability depends on whether or

not it was caused by the disability event in the coverage period.

The most natural way to capture this is to choose the disability event times to

be those that lead to payout when estimating the disability hazard or to extend X
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such that it contains information about which disability event is causing the current

disablement. An alternative would be to let the payment rate in the disabled state

be the average payment rate conditional on the historical development of X, see

Remark 4.3.11 for more details. These approaches would all lead to models with an

intricate dependence on the past coverage periods and the historical development

of X. In Remark 4.3.11 we propose ways to obtain consistent reserves in situations

where there may be several disabilities and/or transition between the disability

types without having to use the non-hierarchical state space. ▽

In order to formulate the transaction time model in the next section, it is convenient

to introduce some marked point process notation. In general, all our processes are

assumed to be constructed according to the canonical approach of Jacobsen (2006),

which among other things implies a specific regular conditional distribution used in

the conditional distributions and conditional expectations. We note that X takes

values in a Borel-space which we denote (E, E). Write ∇ for the irrelevant mark

and E = E ∪ {∇}. Let
K = {((tn)n∈N, (xn)n∈N) ∈ RN

+ × E
N
: t1 ≤ t2 ≤ . . . ↑ ∞, tn < tn+1 if tn <∞,

and xn ∈ E iff tn <∞}
denote the space of sequences of jump times and jump marks and let this be

equipped with the σ-algebra K generated by the coordinate projections

T ◦
n((tk)k∈N, (xk)k∈N) = tn, X◦

n((tk)k∈N, (xk)k∈N) = xn

for n ∈ N. Let the stochastic process H : Ω × R+ 7→ K be the marked point

process history of X. The value Ht consists of the ordered sequences of jump times

(τ{j}× 1(τ{j}≤t))j∈J and corresponding jump marks (Xτ{j} × 1(τ{j}≤t))j∈J followed

by a sequence of ∞ and ∇ respectively. Note that this representation of the jump

times and jump marks only holds when the model is hierarchical. Since X is a

piecewise deterministic process, there exists a measurable function f : K×R+ 7→ E

with the property that Xt = fHt
(t).

4.2.2 Disability insurance in transaction time

As was pointed out in Buchardt et al. (2023), it may sometimes be unreasonable to

assume that the insurer has observed FX
t at time t, since there can be reporting

and processing delays for disability claims. In this case, we also cannot assume that

B(t) has been paid out at time t. Consequently, we introduce a stochastic process

Z : Ω×R+ 7→ S, where (S,S) is a Borel-space, which generates the insurer’s available

information FZ
t . We furthermore introduce the stochastic process B : Ω× R+ 7→ R

modeling the accumulated observed payments which by construction will be FZ -

adapted, measurable, càdlàg and of finite variation. We refer to it as the transaction

time cash flow. The model for Z and B, which we now specify, is called the

transaction time model.
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Information

As a first coordinate of Z we define the right-continuous pure jump process Z(1) :

Ω × R+ 7→ J (1) taking values in the state space J (1) = {1, 2, 3, 4, 5} depicted in

Figure 4.2.

never
disability
claim

1 processing
disability claim

2

no
disability
claim

3

ongoing
disability
payout

4

dead 5

Figure 4.2: State space J (1) for the process Z(1).

The process Z(1) represents the state of the claim settlement and it holds that

Z
(1)
0 = 1. We introduce another coordinate of Z denoted Z(2) : Ω × R+ 7→ R+

which represents the time of the disability event as reported by the insured in

connection with a claim. We require t 7→ Z
(2)
t to be increasing and piecewise

constant, and that its value can only increase upon a jump of Z(1) into state 2.

Furthermore, we require Z
(2)
t ≤ t and that Z

(2)
t stays constant after a nonzero

amount of disability benefits have been awarded. How disability benefits are

awarded is formalized later in this section. The interpretation is that when a

disability claim is reported, the insurer also reports at which past time the disability

occurred. Furthermore, different disability claims are allowed, but only until one

of the claims is awarded, and the claims must furthermore always be reported in

the same order as their chronological ordering. We let Z
(2)
0 = 0 as a convention.

We also introduce a coordinate Z(3) : Ω× R+ 7→ I which represents the disability

type that is reported in connection with a claim, assume that it only changes when

Z(2) changes, and set Z
(3)
0 = i1 as a convention. Finally, denote the counting

processes related to Z(1) by N
(1)
jk : Ω×R+ 7→ N0 (j, k ∈ J (1), j ≠ k) and denote by

T{j} = inf{s ∈ [0,∞) : Z
(1)
s = j} the first hitting time of state j by Z(1).

In addition to observing Z = (Z(1), Z(2), Z(3)), the insurer observes what is being

awarded to the insured; for example, whether a jump from state 2 to state 3 of Z(1)

was accompanied by a payout of disability benefits in the form of backpay or not.

The term backpay refers to a payout of overdue payments that have been delayed

by reporting and processing delays, and such payments appear in the transaction

time cash flow B constructed later in this section.
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Knowing what is awarded to the insured however contains more information

than simply knowing the realized payments since awarding disability benefits may

not immediately lead to the commencement of payments if the adjudication is

completed before the qualifying period ends. What is awarded to the insured is

encoded in the bi-temporal stochastic process H : Ω × R2
+ 7→ K, where Ht

s is

interpreted as the value of Hs based on the information available at time t. We

sometimes refer to t as the observational time and s as the historical time. We also

introduce X : Ω×R2
+ 7→ E given by Xt

s = (s, Y t
s , U

t
s) = fHt

s
(s), which is interpreted

as the value of Xs based on the available information at time t. Similarly, introduce

the bi-temporal counting processes Njk : Ω × R2
+ 7→ N0 which we denote N t

jk(s)

with analogous interpretation. In total, we let Zt = (Zt, H
t
t ).

To specify a model for Ht
s, we introduce an auxiliary stochastic process G :

Ω × R+ 7→ R+, where Gt marks the beginning of the period where the insured

would be eligible for additional disability when standing at time t, and which is

given by

dGt = dZ
(2)
t + 1

(Z
(1)
t =4)

dt+
∑

k∈{3,4,5}

δ2kt dN
(1)
2k (t), G0 = 0,

for stochastic processes δ2k : Ω×R+ 7→ R+ with k ∈ {3, 4, 5} satisfying δ24t = t−Gt−

and δ2kt ∈ [0, t − Gt−) when k ∈ {3, 5}. The fact that Z
(2)
t was required to be

constant after a non-zero amount of disability claims have been awarded corresponds

to saying that it stays constant after time t if Gt > Z
(2)
t . The interpretation of the

specification of G is that the insured is disabled if they have an ongoing disability

payout (in other words: the insurance company is not able to retract disability

benefits that have been paid out), which is captured by G increasing with a rate of

1 in state 4 as well as G jumping to the value t if a jump from state 2 to state 4

occurs at time t. If the insured was eligible for additional disability benefits but is

no longer disabled at the time of payout, this is captured by an increase in G upon

a jump from state 2 to state 3 or to state 5.

From G, we can create other processes of interest such as W : Ω × R+ 7→ R+,

being the number of time units the insured has been eligible for disability benefits

using the current information, which is given by

Wt = Gt − Z(2)
t .

We use W instead of writing expressions in terms of G whenever it eases inter-

pretation. Some immediate properties are that Gt and Wt are increasing and

Wt ≤ Gt ≤ t.

We now specify Ht
s. The bi-temporal process Ht

s contains (T{5}, d) on (T{5} ≤
s, T{5} ≤ t), (Z

(2)
t , Z

(3)
t ) on (Z

(2)
t ≤ s, 0 < Wt), and (Gt, r) on (Gt ≤ s, 0 <

Wt, Z
(1)
t ≠ 4, Gt ̸= T{5}). Thus, events enter Ht

s when the corresponding jump
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time exceeds s and some t-related criterion is satisfied: Death has to have occurred

before time t for the death event to be included, the insured has to have been

deemed eligible for disability benefits for a nonzero amount of time by time t for

the disability event to be included, and if it additionally holds that the payout

of disability benefits has been stopped at time t and this wasn’t due to death

then the reactivation event is also included. As detailed later in this section, the

transaction time cash flow B is constructed such that it is always in accordance with

Ht
s. Therefore, H

t
s determines the payments and its specification is consequently

essential to how the proposed transaction time model works.

To complete the modeling setup for the observations, we need to specify how

Z is related to X. Note that t 7→ Ht
s is constant between jumps of Z(1), and

assume T{5} is finite almost surely and that Ht
s = Hs for t ≥ T{5}. In other words,

Z(1) is the driver of new information arriving and the valid time process Xs is

the limit of the transaction time process Xt
s when the observation time t tends

to infinity. It follows that the basic bi-temporal structure assumptions introduced

in Buchardt et al. (2023) are satisfied, and we may hence use their results. Note that

with this specification of the transaction time model, once a disability claim has

triggered some benefits, everything that happens afterward relates to this disability

and no other disabilities can be reported. This is similar in spirit to how it was

assumed that at most one disability could occur in the valid time model depicted

in Figure 4.1.

Remark 4.2.2. (Granularity of the information.)

The above transaction time model presumes that the actuary has access to relatively

granular information. It might be that the actuary does not receive information

about reported claims, but is only notified about payouts. In that case, one may

work with alternative transaction time models such as the Z(1) model depicted in

Figure 4.3.

no event 2 event 1 3 event 2 4 ...

dead 1

Figure 4.3: Coarser state space for the process Z(1).

Here the different events could represent starting running payments, stopping

running payments, or awarding backpay. It would be natural to let Z(2) : Ω×R+ 7→
{0, 1} be an indicator of whether there is running payments in the current state, and

allow for a stochastic amount (including zero) of disability benefits to be awarded

when jumping from one state to the next. The methods presented in this paper for
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the granular case can be adapted to handle this coarser case as well. Our methods

do not apply if individual data is not available. ▽

Payments

We now specify how the transaction time cash flow B is related to the valid time

cash flow B. We first introduce the time value of money. A detailed treatment

may be found in Norberg (1990). Let κ : R+ 7→ R+ be some deterministic strictly

positive càdlàg accumulation function with initial value κ(0) = 1. A common choice

is κ(t) = exp
(∫

(0,t]
r(v) dv

)
for some deterministic integrable function r : R+ 7→ R

called the force of interest. The corresponding discount function is t 7→ 1/κ(t).

Introduce the auxiliary stochastic process B′ : Ω× R+ 7→ R satisfying

B′(t) =
J∑

j=1

∫
[0,t]

κ(t)

κ(s)
1(Y t

s−=j)Bj,s−Ut
s−
(ds) +

J∑
j,k=1
j ̸=k

∫
[0,t]

κ(t)

κ(s)
bjk(s, U

t
s−)N

t
jk(ds)

which is the time t value of the payments generated by (Xt
s)s≤t. We then specify

the transaction time cash flow B : Ω× R+ 7→ R such that∫
[0,t]

κ(t)

κ(s)
B(ds) = B′(t). (4.2.1)

The payments B are constructed such that the accumulated payments in real-time

are always congruent with the most recent marked point process history. The way

discounting is incorporated is closely connected to the notion of no arbitrage; the

insurance company should not be able to keep the additional interest that they

would earn by delaying the payout of benefits, so payments are accumulated with

interest from the relevant historical time to the current observational time.

An explicit construction of a B satisfying Equation (4.2.1) and further discus-

sions are given in Buchardt et al. (2023). That their definition of B satisfies

Equation (4.2.1) follows by using their Proposition 5.3 upon dividing with κ(t) on

both sides and taking the difference between evaluating in 0 and t to see∫
(0,t]

1

κ(s)
B(ds) = 1

κ(t)
B′(t)− B(0)

and then isolating B′(t).

In Appendix 4.B, we extend the results of Section 4.3 to stochastic interest rates

that are independent of the valid and transaction time models and furthermore

provide a way to validate the non-financial parts of the model. While these results

are important for practical applications, they are relatively straightforward to derive

and are somewhat orthogonal to the rest of the paper. Consequently, they have

been deferred to the appendix.
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4.3 Reserving

We now introduce the valid time and transaction time reserves, which are the

focal point of the remainder of the paper. The present value in the valid time

model P : Ω × R+ 7→ R and the present value in the transaction time model

P : Ω× R+ 7→ R are defined as

P (t) =

∫
(t,∞)

κ(t)

κ(s)
B(ds), P(t) =

∫
(t,∞)

κ(t)

κ(s)
B(ds),

respectively. We assume P (t) and P(t) are integrable for any t. The corresponding

valid time reserve V : Ω× R+ 7→ R and transaction time reserve V : Ω× R+ 7→ R
are then defined as

V (t) = E[P (t) | FX
t ], V(t) = E[P(t) | FZ

t ].

Since P (t) is F t,X -measurable and X is Markov, we get V (t) = E[P (t) | Xt]

almost surely. We also introduce the state-wise reserves Vj : R2
+ 7→ R given by

Vj(t, u) = E[P (t) | Xt = (t, j, u)] (t ≥ 0, j ∈ J , u ≥ 0), which are measurable

functions satisfying VYt
(t, Ut) = V (t) almost surely. The choice of Vj(t, u) is

not unique, but we follow the convention from the literature, which is to choose

the version where the transition probabilities satisfy the Chapmann-Kolmogorov

equations surely, confer with Jacobsen (2006) p. 158-159 for the construction of

such a version. In most applications, the specific choice of the state-wise reserves

will not matter, since they will always be evaluated in Xt. This is not the case in

our application, so we make this choice explicit. The choice is also important if

one is interested in path properties of V (t), see e.g. Christiansen & Furrer (2021).

Our choice of state-wise reserves agrees with that of Christiansen & Furrer (2021),

confer with the proof of Theorem 5.10 in Buchardt et al. (2023).

For K ∈ A we write

Vj(t, u;K) = E[P (t) | Xt = (t, j, u),K]

for the reserve when we additionally condition on the event K. It is defined as

Vj(t, u;K) = E[1KP (t) | Xt = (t, j, u)]/P(K | Xt = (t, j, u)) with the convention

0/0 = 0. This equals E[P (t) | Xt = (t, j, u), 1K ] on the event K.

Categorization

Using the setup introduced in Section 4.2.2, we can categorize the reserve at different

points in time according to the usual claims reserving terminology known from

e.g. Norberg (1993).

• On (Settledt) = (Z
(1)
t = 5), the claim and reserve are classified as settled,

because even if some payments may remain in the dead state, the total claim

size is known exactly.
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• On (RBNSt) = (Z
(1)
t ∈ {2, 3, 4}), the claim and reserve are reported-but-not-

settled.

• On (CBNRt) = (Z
(1)
t = 1), the claim and reserve are covered-but-not-reported.

In the latter case, we will have an IBNR contribution for policies where the

disability has already occurred, and a covered-but-not-incurred (CBNI) contribution

for policies where no disability has occurred yet. We therefore also introduce

the events (IBNRt) = (CBNRt, τI ≤ t) and (CBNIt) = (CBNRt, τI > t) which

are however not known from the information available at time t. We also define

(RBNSrt) = (RBNSt,Wt > 0) and (RBNSit) = (RBNSt,Wt = 0), being RBNS

where benefits have and have not been awarded respectively. In the former case,

the time of disability is known and the time of reactivation is not fully determined,

while in the latter case, both are not fully determined. The latter case is sometimes

referred to as reported-but-not-paid in the literature, see e.g. Bettonville et al.

(2021), and the former could consequently be called paid-but-not-settled, but these

terms are not used in the current paper.

Independence

For the reserves to be tractable, we need some restriction on the conditional

distribution of X given FZ
t . Conditional independence criteria provide a natural

way to impose such restrictions. We find it desirable to assume that the transaction

time information only affects the distribution of future values X by affecting the

probability that a certain valid time outcome was the true realization, and thus

provides no additional information if the true valid time outcome was known. This

leads to tractable reserves and is often a reasonable assumption, and even if it is

not, the violation can often be remedied by extending the valid time model, see

the discussion in Remark 4.3.10. When the insured is dead all is known and so no

independence assumption is needed. Formally, we thus assume:

Assumption 4.3.1. (Influence of transaction time information.)

On (CBNRt)

σ((Xs)s≥Gt
) ⊥⊥ FZ

t | 1(τ{d}≤t), XτI1(τI≤t).

On (RBNSt)

σ((Xs)s≥Gt) ⊥⊥ FZ
t | 1(τ{d}≤t), XGt . ⋄

Here XGt
is understood as the composite stochastic variable ω 7→ (XGt(ω))(ω).

Note that on both events, it holds that τ{d} > t and one could thus have replaced

1(τ{d}≤t) by the event (τ{d} > t) in the conditioning. This assumption states that the

distribution of the valid time behavior of two subjects after time Gt is exchangeable
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whenever the values of the variables in the conditioning agree for these subjects no

matter the rest of the transaction time information. The effect of this assumption

is that the transaction time information FZ
t only affects the distribution of the

variables entering in the conditioning and not the rest of the valid time process.

As Assumption 4.3.1 stands, there is still some transaction time information

remaining via XGt
in the second case; for example (XGt

= (Gt, i, 0)) for i ∈ I
implies that the disability starting at time Gt is not awarded at time t. What

is needed to remove this final piece of transaction time information is a strong

Markov-type property at the random time Gt. This situation is non-standard

since the random time where the process is stopped is not a stopping time, see

however Yackel (1968) where a random time change with a non-stopping time is

used to obtain a Markov process from a semi-Markov process. The phenomenon is

nevertheless similar to how left-truncated processes are usually studied conditional

on some event having occurred prior, where the event is measurable with respect

to an enlarged filtration stopped at the left-truncation time, but might not be

measurable with respect to the self-exciting filtration, see for example Section III.3

of Andersen et al. (1993). To obtain the strong Markov property at Gt, we impose

Assumption 4.3.2.

Assumption 4.3.2. (Conditional independence of stopped valid time process.)

∀v, t ≥ 0:

Fv,X ⊥⊥ FX
v ∨ σ(XGt) | 1(τ{d}≤t), Xv

on (Gt ≤ v,RBNSt). ⋄

This is analogous to how the Markov property allows one to discard (Xu)u≤v in the

conditional distribution of (Xs)s≥v when also conditioning on Xv. Here we however

need to keep the knowledge that death has not occurred. Under this assumption,

we get the following strong Markov property.

Lemma 4.3.3. (Strong Markov property at Gt.)

Under Assumption 4.3.2,

P((Xs)s≥Gt
∈ · | (Xs)s≤Gt

, 1(τ{d}≤t)) = P((Xs)s≥x1
∈ · | Xx1

= x, 1(τ{d}≤t))
∣∣∣
x=XGt

on (RBNSt) where x = (x1, x2, x3).

The proof of Lemma 4.3.3 is long and is hence deferred to the appendix. Lemma 4.3.3

states that there is no extra knowledge gained about the distribution of X knowing

that a path (Xs)s≤x1
came from a transaction time realization with x = XGt

compared with just conditioning on (Xs)s≤x1 when knowledge about survival until

time t is retained.
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4.3.1 CBNR reserve

We first consider being on (CBNRt) and calculate the transaction time reserve. This

is only of interest if P(CBNRt) > 0, so we assume that this is the case. Introduce

the IBNR-factor I : R2
+ × I 7→ [0, 1] defined as

Ii(s, t) = P(CBNRt | τI = s, YτI = i).

Note that this probability can also be expressed as the probability that the delay

between the disability event and the first disability claim is larger than t − s.

Introduce also the transition probabilities

pjk(s, t, u, z) = P(Yt = k, Ut ≤ z | Ys = j, Us = u).

The reserve for the CBNR case is given in Theorem 4.3.4.

Theorem 4.3.4. (CBNR reserve.)

On (CBNRt), we have

V(t) = Va(t, t)× P(τI > t | CBNRt)

+
∑
i∈I

∫
(0,t]

(
κ(t)

κ(s)
Vi(s, 0; (τ{d} > t)) +

κ(t)

κ(s)
bai(s, s)−

∫
(s,t]

κ(t)

κ(v)
Ba,0(dv)

)
× paa(0, s, 0,∞)

P(CBNRt)
Ii(s, t)µai(s, s) ds.

Furthermore,

P(τI > t | CBNRt) = 1−
∫
(0,t]×I

Ii(s, t)

P(CBNRt)
(τI , YτI )(P)(ds,di)

and

P(CBNRt) =

∫
(t,∞)×I Ii(s, t) (τI , YτI )(P)(ds,di)
1− P(τI =∞ | τI > t, τ{d} > t)

+

∫
(0,t]×I

Ii(s, t) (τI , YτI )(P)(ds,di).

Inserting (τI , YτI )(P)(ds,di) = paa(0, s, 0,∞)µai(s, s) ds for s ∈ (0,∞) and i ∈ I
as well as substituting

1− P(τI =∞ | τI > t, τ{d} > t) =
∑
i∈I

∫
(t,∞)

paa(t, s, t,∞)µai(s, s) ds,

and using Remark 4.3.6 to calculate Vi(s, 0; (τ{d} > t)), one sees that the reserve in

Theorem 4.3.4 is computable using only the usual valid time hazards and the new

model element Ii(s, t) for s <∞.
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Proof. Write

V(t) = E[1(τI>t)P(t) + 1(τI≤t)P(t) | FZ
t ]

= E[P(t) | FZ
t , τI > t]P(τI > t | FZ

t ) + E[1(τI≤t)P(t) | FZ
t ].

The first term is the CBNI reserve and the second term is the IBNR reserve.

We start by treating the CBNI reserve. Note that on (CBNRt, τI > t), it holds

that P(t) = P (t) by Theorem 5.4 of Buchardt et al. (2023), since it then holds that

(Xs)0≤s≤t = (Xt
s)0≤s≤t. This leads to

1(CBNRt)E[P(t) | FZ
t , τI > t] = 1(CBNRt)E[P (t) | τ{d} > t, τI > t]

= 1(CBNRt)Va(t, t),

by the first part of Assumption 4.3.1 and using that P (t) is σ((Xs)s≥Gt
)-measurable

since Gt ≤ t.

For the IBNR reserve, we find by Theorem 5.4 of Buchardt et al. (2023) that on

(CBNRt, τI ≤ t) it holds

P(t) = P (t) +

∫
[0,t]

κ(t)

κ(s)
(B − B)(ds)

=
κ(t)

κ(τI−)
P (τI−)−

∫
[τI ,t]

κ(t)

κ(s)
Ba,0(ds)

=
κ(t)

κ(τI)
P (τI) +

κ(t)

κ(τI)
baYτI

(τI , τI)−
∫
(τI ,t]

κ(t)

κ(s)
Ba,0(ds)

since the payments are at least equal until τI on this event. Hence

1(CBNRt)E[P(t)1(τI≤t) | FZ
t ]

= 1(CBNRt)E
[
1(τI≤t)

(
κ(t)

κ(τI)
P (τI) +

κ(t)

κ(τI)
baYτI

(τI , τI)

−
∫
(τI ,t]

κ(t)

κ(s)
Ba,0(ds)

) ∣∣∣ FZ
t

]
= 1(CBNRt)E

[
1(τI≤t)

(
κ(t)

κ(τI)
E
[
P (τI) | XτI ∨ FZ

t

]
+

κ(t)

κ(τI)
baYτI

(τI , τI)

−
∫
(τI ,t]

κ(t)

κ(s)
Ba,0(ds)

) ∣∣∣ FZ
t

]
by the tower property. Now note that on (CBNRt, τI ≤ t), we have

E
[
P (τI) | XτI ∨ FZ

t

]
= E

[
P (τI) | XτI , τ{d} > t

]
=

E
[
P (s)1(τ{d}>t) | Xs = (s, i, 0)

]
P(τ{d} > t | Xs = (s, i, 0))

∣∣∣∣∣
s=τI ,i=YτI

= VYτI
(τI , 0; (τ{d} > t))
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by the first part of Assumption 4.3.1 and the usual strong Markov property, see

Theorem 7.5.1 of Jacobsen (2006), using (τ{d} > t) ∈ σ(Xt). Hence we obtain

E[P(t)1(τI≤t) | FZ
t ]

=

∫
(0,t]×I

(
κ(t)

κ(s)
Vi(s, 0; (τ{d} > t))

+
κ(t)

κ(s)
bai(s, s)−

∫
(s,t]

κ(t)

κ(v)
Ba,0(dv)

)
(τI , YτI | FZ

t )(P)(ds,di)

on (CBNRt). Note that on (CBNRt), we have

(τI , YτI | FZ
t )(P)(ds,di) = (τI , YτI | CBNRt)(P)(ds,di).

Using Bayes’ theorem, see for example Theorem 1.31 in Schervish (1995), we can

write

(τI , YτI | CBNRt)(P)(ds,di) = P(CBNRt | τI = s, YτI = i)
(τI , YτI )(P)(ds,di)

P(CBNRt)

= Ii(s, t)µai(s, s)
paa(0, s, 0,∞)

P(CBNRt)
ds

for s ∈ [0,∞) and i ∈ I. This also implies

P(τI > t | CBNRt) = 1−
∑
i∈I

∫
(0,t]

Ii(s, t)µai(s, s)
paa(0, s, 0,∞)

P(CBNRt)
ds.

For the final part, note

P(CBNRt) = E[P(CBNRt | τI , YτI )]

=

∫
(0,∞)×I

Ii(s, t) (τI , YτI )(P)(ds,di) + P(CBNRt, τI =∞).

We have

P(CBNRt, τI =∞) = P(τI =∞ | CBNRt)P(CBNRt)

= P(τI =∞ | τI > t, τ{d} > t)P(τI > t | CBNRt)P(CBNRt)

using the first part of Assumption 4.3.1 in the second equality. Inserting these

expressions, isolating for P(CBNRt), and simplifying gives

P(CBNRt) =

∫
(t,∞)×I Ii(s, t) (τI , YτI )(P)(ds,di)
1− P(τI =∞ | τI > t, τ{d} > t)

+

∫
(0,t]×I

Ii(s, t) (τI , YτI )(P)(ds,di).

Collecting the results, we obtain the statement of the theorem.
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Remark 4.3.5. (Relation to non-life insurance Poisson models.)

For the IBNR term, the time s disability rate µai(s, s) has to be multiplied by the

IBNR-factor P(CBNRt | τI = s, YτI = i) similarly to the Poisson process model in

Norberg (1999). Heuristically, one has to hold a disability reserve for the expected

number of disabilities µai(s, s) ds at a prior time s times the proportion of insured

that have yet to report their claim by time t, which is P(CBNRt | τI = s, YτI = i).

The extra factor paa(0, s, 0,∞)/P(CBNRt) adjusts for the fact that there can be at

most one disability occurrence in this model as opposed to a Poisson process model

where there can be several occurrences. ▽

Remark 4.3.6. (Conditional semi-Markov model.)

In Section 6 of Hoem (1972), the author obtains an expression for the transition

probabilities and hazards of a semi-Markov process conditional on not having

entered a specific absorbing part of the state space before a given time. For our

purposes, choose the transient states to be J \{d}. Calculating the transition

probabilities that appear in Vi( ·, · ; (τ{d} > t)) can then be done as usual upon

switching to the hazards µℓj(s, u; t), where

µℓj(s, u; t) = µℓj(s, u)

∑
k∈J\{d} pjk(s, t, 0,∞)∑
k∈J\{d} pℓk(s, t, u,∞)

for s < t and

µℓj(s, u; t) = µℓj(s, u)

for s ≥ t. Consequently, the hazard of jumping to states where there is a higher

probability of remaining in J \{d} is increased and the hazard is decreased when

there is a lower probability of remaining in J \{d}. After time t, the conditioning

provides no additional information, and the hazards are equal to the hazards in the

unconditional model. ▽

Remark 4.3.7. (Benefits of modeling reporting delays stochastically.)

One could also have considered a simpler model where reporting delays were

deterministic. In the data application, the numerical value of such simple reserves

are compared with those obtained with the proposed methods, see also Remark 4.5.1.

A disadvantage of such an approach is that reporting delays are stochastic in reality,

so the validity of the model would be less clear. Similarly, one might overlook the

fact that the classic disability reserve is only the relevant ”claim size” in the IBNR

reserve if independence assumptions like Assumption 4.3.1 and 4.3.2 hold, see also

the discussion in Remark 4.3.10.

There are also some disadvantages related to the size and timing of the reserve

that might result from using a model with a deterministic reporting delay. A

first-order error is, as discussed at the end of the introduction and in Remark 4.5.1,

if the size of the portfolio increases by x% then the simple IBNR reserve becomes x%

too high and vice versa. Changes to the size of the portfolio are relatively common
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for disability insurance due to the short coverage periods, leading the insured to

have frequent opportunities to change their insurance provider. Second-order errors

arise since the timing of the disability and the covariate dependence are handled

slightly more imprecisely in the simple model. ▽

4.3.2 RBNS reserve

We now consider being on (RBNSt). The reserve for the RBNSi case is given in

Theorem 4.3.8.

Theorem 4.3.8. (RBNSi reserve.)

We have

V(t) = κ(t)

κ(Gt)
Va(Gt, Gt; (τ{d} > t))× (1− P(XGt

= (Gt, i, 0) | FZ
t ))

+

(
κ(t)

κ(Gt)
Vi(Gt, 0; (τ{d} > t)) +

κ(t)

κ(Gt)
bai(Gt, Gt)

)
× P(XGt

= (Gt, i, 0) | FZ
t )−

∫
(Gt,t]

κ(t)

κ(s)
Ba,0(ds)

on (RBNSit) with i = Z
(3)
t .

Utilizing Remark 4.3.6 to calculate Vi(Gt, 0; (τ{d} > t)), and analogously calculate

Va(Gt, Gt; (τ{d} > t)), we see that the RBNSi reserve may be calculated using the

usual valid time model and the new model element P(XGt
= (Gt, Z

(3)
t , 0) | FZ

t )

which we name the adjudication probability. This gives the probability that the

reported disability claim will ultimately be awarded.

Proof. By similar calculations to the IBNR-case, we find

P(t) = κ(t)

κ(Gt−)
P (Gt−)−

∫
[Gt,t]

κ(t)

κ(s)
B(ds).

The latter term is FZ
t -measurable and on (RBNSit) satisfies∫

[Gt,t]

κ(t)

κ(s)
B(ds) =

∫
[Gt,t]

κ(t)

κ(s)
Ba,0(ds)

so the interesting part is κ(t)/κ(Gt−)× P (Gt−). On (RBNSit) we have

κ(t)

κ(Gt−)
P (Gt−) =

κ(t)

κ(Gt)
P (Gt) + 1

(XGt=(Gt,Z
(3)
t ,0))

κ(t)

κ(Gt)
b
aZ

(3)
t

(Gt, Gt)

+
κ(t)

κ(Gt)
Ba,0({Gt}),
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which implies

V(t) = E
[
κ(t)

κ(Gt)
P (Gt) + 1

(XGt=(Gt,Z
(3)
t ,0))

κ(t)

κ(Gt)
b
aZ

(3)
t

(Gt, Gt) | FZ
t

]
−
∫
(Gt,t]

κ(t)

κ(s)
Ba,0(ds)

=
κ(t)

κ(Gt)
E[P (Gt) | FZ

t , XGt
= (Gt, a,Gt)]P(XGt

= (Gt, a,Gt) | FZ
t )

+
κ(t)

κ(Gt)
E[P (Gt) | FZ

t , XGt
= (Gt, Z

(3)
t , 0)]P(XGt

= (Gt, Z
(3)
t , 0) | FZ

t )

+
κ(t)

κ(Gt)
b
aZ

(3)
t

(Gt, Gt)P(XGt = (Gt, Z
(3)
t , 0) | FZ

t )−
∫
(Gt,t]

κ(t)

κ(s)
Ba,0(ds)

on (RBNSit). By the second part of Assumption 4.3.1 and Lemma 4.3.3, we get on

(RBNSit) that

E[P (Gt) | FZ
t , XGt

= (Gt, a,Gt)] = E[P (Gt) | τ{d} > t,XGt
= (Gt, a,Gt)]

= Va(Gt, Gt; (τ{d} > t))

and

E[P (Gt) | FZ
t , XGt

= (Gt, Z
(3)
t , 0)] = E[P (Gt) | τ{d} > t,XGt

= (Gt, Z
(3)
t , 0)]

= V
Z

(3)
t

(Gt, 0; (τ{d} > t))

using that all of (Xs)s≤Gt
is known in the conditioning for both cases. Collecting

the results, we arrive at the desired expression.

The reserve for the RBNSr case is given in Theorem 4.3.9.

Theorem 4.3.9. (RBNSr reserve.)

We have

V(t) = Vr(t, t−Gt)× (1− P(XGt
= (Gt, i,Wt) | FZ

t ))

+

(
κ(t)

κ(Gt)
Vi(Gt,Wt; (τ{d} > t))

− 1
(Z

(1)
t ̸=4)

( κ(t)

κ(Gt)
bir(Gt,Wt) +

∫
(Gt,t]

κ(t)

κ(s)
Br,Gt

(ds)
))

× P(XGt
= (Gt, i,Wt) | FZ

t )

on (RBNSrt) with i = Z
(3)
t .

Similarly to Theorem 4.3.8, one can use Remark 4.3.6 and the adjudication probabil-

ity P(XGt
= (Gt, Z

(3)
t ,Wt) | FZ

t ) to calculate the RBNSr transaction time reserve.

Note also that if Z
(1)
t = 4 then P(XGt

= (Gt, Z
(3)
t ,Wt) | FZ

t ) = 1 and furthermore

Gt = t, Z
(3)
t = Yt, and Wt = Ut. Thus, the expression collapses to V(t) = VYt(t, Ut)

which is the classic valid time disability reserve.
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Proof. As in the RBNSi-case, we find

P(t) = κ(t)

κ(Gt−)
P (Gt−)−

∫
[Gt,t]

κ(t)

κ(s)
B(ds).

The latter term is FZ
t -measurable and on (RBNSrt) satisfies∫

[Gt,t]

κ(t)

κ(s)
B(ds) = κ(t)

κ(Gt)
B

Z
(3)
t ,Gt−Wt

({Gt})

+ 1
(Z

(1)
t ̸=4)

( κ(t)

κ(Gt)
b
Z

(3)
t r

(Gt,Wt) +

∫
(Gt,t]

κ(t)

κ(s)
Br,Gt

(ds)
)

so the interesting part is κ(t)/κ(Gt−)× P (Gt−). Proceeding in a similar manner

as before, we see on (RBNSrt) that

κ(t)

κ(Gt−)
P (Gt−) =

κ(t)

κ(Gt)
P (Gt) + 1(XGt=(Gt,r,0))

κ(t)

κ(Gt)
b
Z

(3)
t r

(Gt,Wt)

+
κ(t)

κ(Gt)
B

Z
(3)
t ,Gt−Wt

({Gt}).

Now on (RBNSrt) we have

V(t) = κ(t)

κ(Gt)
E
[
P (Gt) | FZ

t , XGt = (Gt, Z
(3)
t ,Wt)

]
P(XGt = (Gt, Z

(3)
t ,Wt) | FZ

t )

+
κ(t)

κ(Gt)
E
[
P (Gt) | FZ

t , XGt
= (Gt, r, 0)

]
P(XGt

= (Gt, r, 0) | FZ
t )

− 1
(Z

(1)
t ̸=4)

(
κ(t)

κ(Gt)
b
Z

(3)
t r

(Gt,Wt)P(XGt = (Gt, Z
(3)
t ,Wt) | FZ

t )

+

∫
(Gt,t]

κ(t)

κ(s)
Br,Gt

(ds)

)
.

By the second part of Assumption 4.3.1 and Lemma 4.3.3, we see on (RBNSrt) that

E
[
P (Gt) | FZ

t , XGt
= (Gt, Z

(3)
t ,Wt)

]
= E

[
P (Gt) | τ{d} > t,XGt

= (Gt, Z
(3)
t ,Wt)

]
= V

Z
(3)
t

(Gt,Wt; (τ{d} > t))

and

E
[
P (Gt) | FZ

t , XGt
= (Gt, r, 0)

]
= E

[
P (Gt) | τ{d} > t,XGt

= (Gt, r, 0)
]

= Vr(Gt, 0; (τ{d} > t))

=
κ(Gt)

κ(t)
Vr(t, t−Gt) +

∫
(Gt,t]

κ(Gt)

κ(s)
Br,Gt(ds)

using that (Xs)s≤Gt
is known in the former case, and towering on (Xs)s<Gt

in the

latter case, observing that the expectation given (Xs)s≤Gt only depends on XGt

and not (Xs)s<Gt
. Putting everything together, we arrive at the claimed result.
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Remark 4.3.10. (Weakening the independence assumptions.)

In the absence of Assumption 4.3.1 and 4.3.2, the valid time hazards and reserves

could be influenced by additional transaction time information such as the disability

reporting delay UI . This could be relevant if e.g. longer reporting delays were

indicative of a more serious disability such that the intensity of Nir with respect

to the filtration t 7→ FX
t ∨ σ(UI) was λir(t) = 1(Yt−=i)µir(t, Ut−, UI) with µir

being decreasing as a function of the last argument. Imposing an assumption like

Assumption 4.3.1 when also conditioning on UI would then for example lead to the

award-term of the RBNSi reserve becoming

E[P (Gt) | FZ
t , XGt

= (Gt, i, 0)] = Vi(Gt, 0, UI ; (τ
d > t))

with obvious notation. We briefly note that it is not a priori clear whether one would

expect long reporting delays to be indicative of more or less severe disabilities. One

could hypothesize that people with severe disabilities would find it more demanding

to submit insurance claims. On the other hand, they might not need as much

time to collect medical evidence if it is self-evident that they will be approved for

disability benefits.

An alternative way to weaken Assumption 4.3.1 would be to incorporate more

of the transaction time information in the valid time model e.g. by using different

disabled states for different disability severities instead of a single disabled state. If

the reporting delays only affect our estimate of the future trajectory of the valid

time process X through the information they give us about the severity of the

disability, Assumption 4.3.1 would be satisfied in the larger valid time model that

incorporates information about severity of the disability. ▽

Remark 4.3.11. (On the simplifying assumptions.)

Some notable simplifications that have been made in order to arrive at tractable

transaction time reserves are the independence assumptions (which were discussed

in Remark 4.3.10), that there can be at most one disability event in the coverage

period which reaches the payout stage, that the time and type of the disability

event is completely known once benefits have started, and that the insurer cannot

retract disability benefits. While it is true that none of these assumptions fully hold

in practice, we believe that they are not seriously violated, and they only contribute

with second-order effects compared to the main effects that have been included.

For example, the probability of experiencing q disabilities with independent

causes is roughly equal to the disability hazard raised to the q’th power, so while

more than one disability may occur in reality it is very uncommon. Similarly, there

might be situations where the insurer and insured do not agree on the time of

disablement leading to the time of disablement being changed to an earlier date

after the insurer has started paying benefits. There may also be situations where

retraction of disability benefits occurs if the insured willfully withheld information
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about their reactivation. However, the changes to the event times are probably

sufficiently small and infrequent that the effect is negligible compared to other

sources of error stemming from modeling, estimation, and forecasting error related

to the biometric and financial model constituents. Accommodating transitions

between the disabled states could be important depending on what the disability

types represent. For example, they could represent different severities. If the

severity of a disability changes often and different severities lead to substantially

different payouts then this would be important to include in the model. We hence

discuss possible remedies in the next paragraph.

If the aforementioned effects are sufficiently large to warrant explicit modeling,

our models may still serve as a starting point. To accommodate the possibility

of the time of disability changing after benefits have been awarded, one could

for example add a term to the award-part of the RBNSi reserve equal to the the

probability that the insured will be awarded benefits from an earlier time than

Gt multiplied with the average additionally awarded amount for such cases. To

accommodate multiple disabilities, a pragmatic approach could be to place the

disability periods end-to-end in the estimation phase, such that an additional

disability was treated as an annulment of a reactivation. This skews the time value

of the cash flow but otherwise results in consistent reserves. It will however likely

make the individual predictions less precise since the duration dependence will stem

from a more heterogeneous population. For example, a long disability duration

could stem from a single disability from which the insured has not reactivated, or it

could be that they have reactivated from a long disability but then recently become

disabled again.

If transitions between the disabled states were possible in the valid time state

space one could formulate a transaction time model similar to the one specified

towards the end of Example 5.8 in Buchardt et al. (2023). This would however

result in a substantially more complicated model. We instead propose to let

disability type ik represent disabilities that start out as type ik and estimate the

reactivation, disabled mortality, and reactivated mortality hazards consistently with

this. If the valid time disability payments also depend on the disability type, we

propose to model these payments conditional on the initial disability type and the

disability duration. By the tower property, this leads to the same reserves but in

practice requires that one also estimates these conditional payments which brings

the approach closer to the non-life insurance literature where the benefit sizes also

have to be modeled. This approach may also be useful in other situations where

the benefit size depends on more than the state and duration process; it could for

example depend on whether the insured is receiving benefits from the government

or other insurance companies. Taking the conditional expectation of the payments

given the state and duration brings the problem back into something that can be

represented in the usual semi-Markov framework.
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As illustrated here, a benefit of having interpretable closed-form expressions for

the reserves is that it is possible to reason about how to adjust the model when the

underlying assumptions change. ▽

4.4 Estimation

To compute the transaction time reserves, one needs to estimate the valid time

transition hazards, the IBNR-factor, and the adjudication probabilities. The IBNR-

factor and adjudication probabilities are new model elements, and one hence needs

to find a suitable way to estimate these. In addition, standard estimation procedures

also do not apply for the valid time transition hazards since the data is contaminated

by reporting delays and incomplete event adjudication.

For simplicity, we limit the discussion to the situation where there is at most

one reported disability claim in the sense that Z(2) can increase only once. In this

case, the delay between the disability time τI and the time of the first reported

disability T{2} equals the reporting delay of the disability event, the latter being

the difference between τI and the last time where a disability is reported. This

is sufficient for the application in Section 4.5 and makes the statistical problem a

special case of the one studied in Buchardt et al. (2025). The methods however

easily generalize to the case where several distinct disabilities may be reported,

in which case both the IBNR-factor and disability reporting delay distribution

would need to be estimated in order to compute the IBNR reserve and estimate

the disability hazard, respectively.

The data structure in Buchardt et al. (2025) consists of events that are reported

with a delay and which may be confirmed or annulled upon adjudication. Their

proposed estimation algorithm is a two-step procedure, where the first step is to

estimate the adjudication probabilities and the reporting delay distribution, and

the second step uses these to estimate the valid time hazards while correcting for

contamination. Due to the assumed model for Z, the adjudication probability

P(XGt
= (Gt, Z

(3)
t ,Wt) | FZ

t ) can be calculated as an absorption probability for a

suitable multistate model as in Buchardt et al. (2025). We henceforth refer to the

transition hazards in the adjudication multistate model as adjudication hazards.

Furthermore, estimating the IBNR-factor is equivalent to estimating the disability

reporting delay distribution since

Ii(s, t) = P(CBNRt | τI = s, YτI = i) = P(T{2} − τI > t− s | τI = s, YτI = i).

Imposing a parametric model for all three model elements hence results in an

estimation problem that can be handled using Buchardt et al. (2025). More details

are given in Appendix 4.C.

The estimator of the valid time hazards described in Appendix 4.C and employed
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in the data application outlined in Section 4.5 corresponds to the Poisson approx-

imation from Buchardt et al. (2025) rather than the full estimator described in

Section 3.3 of that paper. The approximation has the advantage of being simpler to

implement and allowing one to estimate the different valid time hazards separately.

Because the data employed in Section 4.5 only contains deaths recorded during

the adjudication period, it is not possible to run the full estimation procedure

of Buchardt et al. (2025). The mortality rates are nevertheless needed in order

to calculate the reserves in the data application, so in Section 4.5 we employ the

hazards given in Table 4.1 which are inspired by those published by the Danish

Financial Supervisory Authority (FSA).

Remark 4.4.1. (Restricting the information used for adjudications.)

Note that Buchardt et al. (2025) allows one to reduce the information that the

adjudication hazards depend on e.g. such that the reactivation adjudication hazards

are not conditional on the disability reporting delay. In this paper, the adjudication

probabilities are however defined conditional on the full transaction time filtration

FZ , so to compute these, the adjudication hazards must also depend on all of FZ .

One can of course still impose structural assumptions on the adjudication hazards

such that they only depend on parts of FZ . ▽

Remark 4.4.2. (Estimation and independence assumptions.)

The independence imposed via Assumption 4.3.1 and 4.3.2 is not used in the

estimation procedure of Buchardt et al. (2025), and one hence still obtains consistent

and asymptotically normal estimators if these assumptions do not hold. We

conjecture that one could derive estimators that are more efficient than the ones

suggested here by exploiting these independence assumptions. ▽

4.5 Data application

To illustrate our methods, we calculate transaction time reserves at time η for a

subset of the LEC-DK19 (Loss of Earning Capacity – Denmark 2019) data set which

was introduced in Buchardt et al. (2025). The data includes information on disability

exposure and occurrences, reactivation exposure and occurrences, reporting delays

for disabilities, and adjudication exposure and occurrences related to both disabilities

and reactivations. The data window [0, η] is [31/01/2015, 01/09/2019]. Available

covariates are gender and age.

We note that the biometric data conforms with the valid time state space from

Figure 4.1 with a single disabled state i1 which we henceforth refer to as i for

notational convenience. Furthermore, the adjudication data conforms with the

adjudication multistate model described in Appendix 4.C. In the following we

estimate the relevant model elements using the method proposed in Section 4.4

and subsequently calculate the reserves using the results from Section 4.3. The

implementation is written in R (R Development Core Team, 2023) and is available



4.5. Data application 107

on GitHub (https://github.com/oliversandqvist/Web-appendix-disabilit

y-reserving).

For estimation of the hazards, we let all the covariates enter in a linear predictor

with log link and assume that all hazards are variationally independent such that

there is no overlap in parameters between different hazards. The disability hazard

is regressed on age, gender, and calendar time, while the reactivation hazard is

regressed on the same covariates but also the duration as disabled. As noted in

Section 4.C.5, the data does not permit a reasonable estimate of the death hazards,

and we thus simply employ the death hazards from Table 4.1 when calculating

reserves.

The adjudication hazards for an RBNSi claim are regressed on age, gender,

duration since the disability event, duration since the disability event was reported,

and whether or not the claim has been (temporarily) rejected previously. The

adjudication hazards for an RBNSr claim are regressed on age, gender, duration

since the disability event, and duration since the reactivation event. As noted

in Remark 4.4.1, these hazards should depend on all of FZ , so the fact that we

for example do not regress the reactivation adjudication hazards on the disability

reporting delay should be understood as the implicit assumption that the true value

of that regressor is known to be zero.

For the disability reporting delay, we impose a Weibull proportional reverse time

hazard distribution which has distribution function t 7→ (1− exp(−(λt)k))exp(WT β)

for covariates W and parameters (λ, k, β). For covariates, we use age at disability

onset and gender. The data does not contain observations of reactivation reporting

delays, but we take this to be an artifact of the data rather than a violation of

Assumption 4.3.2 and hence proceed as if this had not been the case, recalling that

the reactivation reporting delay distribution is only needed for estimation and not

for reserving.

With these specifications, we note that the estimation procedure becomes identical

to the one in Section 6 of Buchardt et al. (2025) and we may hence use their estimates;

confer with Section 6 and Section G of the supplementary material in Buchardt

et al. (2025) for the parameter values. We however keep the calendar time effect

fixed at its value at η so as to not overextrapolate the observed calendar time trend

when calculating the prospective reserves.

Age Male Female min{Duration, 5}
µad, µrd 0.09 -9.50 -9.80 -
µid 0.09 -6.40 -6.80 -0.25

Table 4.1: Death hazards based on estimates published by the Danish FSA.

For reserving, we sample 100 random insured at time η and compute reserves for

https://github.com/oliversandqvist/Web-appendix-disability-reserving
https://github.com/oliversandqvist/Web-appendix-disability-reserving
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each of the categories CBNR, RBNSi, and RBNSr. The data contains around

250,000 insured that are in the portfolio at time η, but it would take a long time

to compute the reserve for everyone using our proof-of-concept R implementation.

The terms that take the longest to compute are valid time active reserves and

IBNR reserves which for a single insured take a couple of seconds to evaluate

on a regular laptop. Insurance companies have access to optimized calculation

kernels and greater computing power with some presently relying on semi-Markov

models for their reserves, so this is not a limitation of our proposed approach but

rather of this specific implementation. Furthermore, it is possible to speed up

computations by finding suitable approximations of, for example, the IBNR reserve

given in Theorem 4.3.4. For CBNR and RBNSr, we sample the 100 insured without

replacement, but since there are only 59 insured in the RBNSi category at time η,

we sample these with replacement.

The transaction time reserves are compared with a naive approach where Xη
η

is plugged into the valid time reserves. The naive approach thus leads to reserves

that are sufficient to cover disabilities that have an ongoing payout at time η and

disabilities that occur after time η but ignores IBNR-claims, claims that are under

adjudication, and possible reapplications.

The transaction time reserves are further compared with a simple approach where

ad-hoc adjustments of the valid time reserves are made to adjust for IBNR and

incomplete adjudication. The simple approach takes the CBNR reserve to be a valid

time active reserve where the coverage period is extended with the average disability

reporting delay. The average delay d is found to be around 0.53 years when the

average is based on disabilities that occurred at least two years before time η to

limit the effect of right-truncation. The heuristic is that the insurance company

should cover disabilities that arrive up to d years after the end of the coverage

period since these disabilities occurred within the coverage period if the reporting

delay was deterministically equal to d. The RBNSi reserve is chosen to be a valid

time disability reserve with duration 0 since most claims get awarded. For the

RBNSr reserve, a valid time disability reserve is used if there are ongoing disability

payments and a valid time active reserve is used otherwise to accommodate those

who will apply for additional benefits in the future.

The same hazards are used in all of the approaches so the differences between

the results only reflect the reserving methodologies and not the estimation. Since

the data does not contain information about benefit type or size we set B(dt) =

1(Yt−=i)1(t−Ut−≤η+3)1(a+t≤67) dt, where a is the age at time 0, corresponding to

a unit disability annuity until retirement at age 67 with a coverage period of 3

years. Note that this specification of the cash flow also implies that the insured

are covered for disabilities occurring before time η. We finally assume a constant

force of interest r ≡ 0.02. The reserves are calculated by plugging in the estimated
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model elements into Theorem 4.3.4, 4.3.8, and 4.3.9. The state-wise valid time

reserves entering into these expressions are calculated by solving Thiele’s differential

equation iteratively over the states by exploiting the hierarchical structure of J .

Remark 4.5.1. (Alternative simple CBNR reserves.)

An alternative but similar simple approach for the CBNR category would be to

reserve Va(η, η) + Vi(η − d, 0)× µai(η − d, η − d)× d. Heuristically, with a constant

reporting delay d, the probability of having an unreported disability is the probability

of having a disability occur in (η − d, η] which is roughly µai(η − d, η − d)× d, and
for each of these one reserves Vi(η − d, 0). This can also be motivated by applying

relevant approximations to the expression in Theorem 4.3.4. The resulting reserve is

9.22, which brings the difference between the proposed and simple method down by a

factor of 2/3. Another alternative simple reserve could be exp(r×d)×Va(η−d, η−d)
which results in a reserve of 9.21.

The remaining difference can generally be attributed to the timing of the disability

and the covariate dependence being incorporated slightly more imprecisely in the

simple model. Since most disability claims are short, the backpay may constitute

a considerable part of the payment, making it important to correctly assess the

timing of the disability. Note that the performance of the simple methods would

likely deteriorate in more complicated situations with inflow/outflow of insured,

non-constant interest, and calendar time effects, confer with Remark 4.3.7. ▽

The results are given in Table 4.2. The settled category is not depicted since the

reserve is zero in all cases. The largest relative difference arises for the RBNSi

reserve. The naive method under-reserves since it ignores the reported disability

and reserves as if the insured was active because no disability benefits have been

awarded yet. Surprisingly, the proposed method also leads to larger reserves than

the simple method which always reserves the valid time disability reserve. This

happens because the adjudication probabilities are close to one (they have an average

of around 0.9) and there are many older insured where the effect of conditioning on

not having died and reserving from time Gt instead of t leads to moderately larger

reserves.

The second largest relative difference is seen for the CBNR reserve. Here, the

probability weighting of the active reserve is observed to be very close to one, so the

main difference between the proposed and naive method is the IBNR contribution.

Thus, the naive method under-reserves as it neglects this term. The simple method

much closer to the proposed method as expected, but there is still a sizeable relative

difference.

The smallest relative difference for the non-settled cases is seen for the RBNSr

reserve. This is because, in the data set, there are considerably more insured

receiving running benefits than are reactivated. In fact, only four reactivated
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insured were sampled and none of them had applied for additional benefits. As

the population mix shifts toward a higher proportion of reactivated subjects, the

difference between the proposed and naive method is likely to grow.

(CBNRη) (RBNSiη) (RBNSrη)

Proposed method 9.29 502.44 961.68
Simple method 8.98 481.20 945.66
Naive method 7.73 6.23 945.35
Simple method difference 0.32 (3.53%) 21.23 (4.41%) 16.02 (1.69%)
Naive method difference 1.56 (20.19%) 496.21 (7961.48%) 16.33 (1.73%)

Table 4.2: Reserves for 100 randomly sampled insured from each of the claims settlement
categories except the settled category where the reserve is identically zero.

To explore the practical implications of our results for a full insurance portfolio,

we approximate the average reserve in each of the categories for the wider insurance

portfolio by the average reserve of the 100 sampled insured. Multiplying the average

reserve in a given category with the total number of insured in that category, we

obtain the results depicted in Figure 4.4. Comparing with Table 4.2, we see that

despite the RBNSi category having the largest absolute and relative differences

for the 100 sampled insured, the difference on the portfolio level is comparable

with that of the RBNSr category, which had the smallest relative difference for

the 100 sampled insured. This is because there are considerably more insured

in the RBNSr category at time η. Similarly, the CBNR category, which showed

the smallest absolute difference in Table 4.2, leads to the largest difference on the

portfolio level due to this category being by far the largest. In total, the naive and

simple method leads to portfolio reserves that are around 11.1% and 2.7% smaller

than the proposed method, respectively.

To gain further insight into the financial implications, consider that in 2019,

the annual reports of two large Danish insurers showed portfolio reserves for

health and disability insurance obligations amounting to 9,351 and 17,606 million

DKK respectively. Therefore, a 2.7% increase in these reserves would equate to

approximately 250 million DKK for the former and 470 million DKK for the latter.

It would be highly relevant to compare the different reserves with observed claim

developments to see which best describe the data. This is however not possible with

the current data since the disability and reactivation occurrences and exposures

are available for a single valuation date only, and their values at different valuation

dates also cannot be inferred from the adjudication data since the same id does not

refer to the same insured across the individual data tables. This is therefore left as

a topic for future research.
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Figure 4.4: The approximated portfolio level reserve decomposed by category.

4.6 Conclusion

This paper develops an individual reserving model for disability insurance in the

presence of information delays caused by reporting delays and adjudication processes.

We have introduced suitable conditional independence assumptions that lead to

tractable and interpretable reserves, which may be calculated using the usual valid

time hazards, the IBNR-factor, and the adjudication probabilities. The reserves are

tailored to the features of disability insurance schemes by accommodating reporting

delays and adjudication processing while preserving the advantages offered by valid

time multistate models, namely that contractual payments are an a priori known

function of a multistate process whose intertemporal distribution is well-understood.

It is argued that the estimation procedure from Buchardt et al. (2025) may be used

to estimate the model constituents of the reserves. Finally, the practical potential

of our models is illustrated through an application to a real insurance data set.
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4.A Proof of Lemma 4.3.3

To state and prove Proposition 4.A.1, which immediately implies Lemma 4.3.3, we

first introduce some marked point process notation. Let (M,H, (Ht)t≥0) be the

canonical space of counting measures, see Section 2 and 4.2 in Jacobsen (2006). Let

µ ∈M be the underlying random counting measure for X. Write (Tn, Xn) for the

jump times and marks of µ. For a given random counting measure m, we let τn(m)

and ηn(m) be the n’th jump time and jump mark respectively implying Tn = τn(µ)

and Xn = ηn(µ). For any measurable random time R, define the truncated measure

θRµ : (R <∞)→M by

θRµ(ω) =
∑

n:R(ω)<Tn(ω)<∞

ε(Tn(ω),Xn(ω))

where ε(t,x) is the Dirac measure in (t, x). We write TR,n = τn(θRµ) and XR,n =

ηn(θRµ) for the jump times and jump marks determining θRµ. Thus, if R(ω) <∞,

θRµ(ω) =
∑

n:TR,n(ω)<∞

ε(TR,n(ω),XR,n(ω))

with R(ω) < TR,1(ω) ≤ TR,2(ω) ≤ . . . . Also let TR,0 = R and XR,0 = XR.

We denote by Qx the distribution of θx1µ given Xx1 = x constructed as the

time-inhomogeneous case in Jacobsen (2006) p. 157-158. Note that this actually

corresponds to Qx1,x in the notation of Jacobsen (2006). Even though X is time-

homogeneous, this is usually not the case when we condition on 1(τ{d}≤t) which

is why we employ the time-inhomogeneous construction. The function governing

the behavior of X between jumps is denoted ϕvs, meaning that if v ≤ s and no

jumps occurred in (v, s], one has Xs = ϕvs(Xv). The jump time and jump mark

Markov-kernels for Qx are denoted Ftn,yn
(v) and rt(ϕtnt(yn), C) respectively. The

interpretation is that Ftn,yn(v) gives the probability that the next jump has occurred

by time v given that the previous jump happened at time tn with mark yn, while

rt(y, C) gives the probability that an event occurring at time t from state y ends

up in the set C. Note F∞,∇(v) = 0 for any v ∈ [0,∞) and r∞(y, C) = 1(∇∈C).

We let t be fixed but arbitrary. Let Q̃x be constructed as Qx but according to the

modified Markov kernels where one additionally conditions on 1(τ{d}≤t), hence now

being stochastic. One could, of course, have removed this additional stochasticity

by replacing the indicator with the event (τ{d} > t) in the conditioning on the

relevant event (RBNSt). We however stick with this construction since it more

easily generalizes to other cases where one wants to keep additional information

that is not deterministically known on the relevant event. It holds that Q̃x(H) =

P(θx1
µ ∈ H | Xx1

= x, 1(τ{d}≤t)) almost surely for any H ∈ H. Note that for every

possible outcome of the conditioning information, the transition kernels of Q̃x stay

on the Markov form: either the conditioning is superfluous because it relates to

an event that occurred before the previous jump time, or it is future-measurable
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and one can hence use the formula for conditional probabilities in the jump time

and jump mark kernels, use the Markov property, and then use the formula for

conditional probabilities in reverse. This shows that the transition kernels indeed

only depend on (tn, yn) and not on t1, ..., tn−1 and y1, ..., yn−1. They will be denoted

r̃t(y, C) and F̃tn,yn(v). For notational convenience, we write 1(t) = 1(RBNSt). We

now state and prove Proposition 4.A.1, which immediately implies the statement in

Lemma 4.3.3.

Proposition 4.A.1. (Strong Markov type property at Gt.)

Under Assumption 4.3.2, one has

1(t)P(θGtµ ∈ · | (Xs)s≤Gt , 1(τ{d}≤t)) = 1(t)Q̃XGt (·) (4.A.1)

P-a.s.

This is an almost sure equality between probability measures on (M,H). We note

that the proof does not use many properties of our model for X and Gt, and similar

arguments may thus be used to show strong Markov properties for other Markov

processes and random times provided that an independence assumption similar to

Assumption 4.3.2 is imposed.

Proof. The proof is inspired by the proof of Theorem 7.5.1 in Jacobsen (2006) with

the necessary changes to adjust for the fact that Assumption 4.3.2 is different than

the usual Markov independence assumption.

As in Jacobsen (2006), we note that showing Equation (4.A.1) is equivalent to

showing for n ≥ 1 and all measurable and bounded function fi : (0,∞]× E → R
that the following holds:

1(t)E

[
n∏

i=1

fi(TGt,i, XGt,i) | (Xs)s≤Gt
, 1(τ{d}≤t)

]
= 1(t)ẼXGt

[
n∏

i=1

fi(τi, ηi)

]
(4.A.2)

which we will prove by induction on n. The proof consists of four steps:

(i) For a discretization of Gt to Gt(M) with M ∈ N, show the result (4.A.1) for

X stopped at TGt(M),n−1 for any n ≥ 1:

1(TGt(M),n−1<∞)1(t)P(θTGt(M),n−1
µ ∈ · | (Xs)s≤TGt(M),n−1

, XGt , 1(τ{d}≤t))

= 1(TGt(M),n−1<∞)1(t)Q̃
XTGt(M),n−1 (·).

(ii) Show convergence for M →∞:

lim
M→∞

1(TGt(M),n−1<∞)1(t)Ẽ
XTGt(M),n−1 [fn(τ1, η1)]

= 1(TGt,n−1<∞)1(t)Ẽ
XTGt,n−1 [fn(τ1, η1)].
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(iii) Discretize Gt to Gt(M) and use dominated convergence with (i) and (ii) to

conclude:

1(t)E[fn(TGt,n, XGt,n) | (Xs)s≤TGt,n−1
, XGt

, 1(τ{d}≤t)]

= 1(t)Ẽ
XTGt,n−1 [fn(τ1, η1)].

(iv) Use (iii) and induction over n to finish the proof.

(i) : Let H ∈ H be given. Define

Gt(M) =

∞∑
m=1

tMm1(tM(m−1)≤Gt<tMm)

for tMm = m2−M . Had we not known that Gt <∞ almost surely, one would have

to add ∞1(Gt=∞) here and show the result on (Gt <∞).

Take an F on the form

F = ((Xs)s≤TGt(M),n−1
∈ B) ∩ (XGt ∈ C) ∩ (1(τ{d}≤t) ∈ D)

and note that the collection of such sets constitutes an intersection-stable generator

for

σ((Xs)s≤TGt(M),n−1
) ∨ σ(XGt

) ∨ σ(1(τ{d}≤t))

containing Ω. Write FM,m = F ∩ (Gt(M) = tMm) and note that

FM,m ∈ σ((Xs)s≤TtMm,n−1
) ∨ σ(XGt

) ∨ σ(1(τ{d}≤t)).

Here we used thatGt(M) isGt-measurable and thatXGt containsGt as a coordinate.

Now we get∫
FM,m

1(TGt(M),n−1<∞)1(t)Q̃
XTGt(M),n−1 (H) dP

=

∫
FM,m

1(TtMm,n−1<∞)1(t)Q̃
XTtMm,n−1 (H) dP

=

∫
FM,m

1(TtMm,n−1<∞)1(t)P(θTtMm,n−1
µ ∈ H | (Xs)s≤TtMm,n−1

, XGt
, 1(τ{d}≤t)) dP

=

∫
FM,m

1(TtMm,n−1<∞)1(t)1(θTtMm,n−1
µ∈H) dP

= P
(
FM,m ∩ (TtMm,n−1 <∞) ∩ (RBNSt) ∩ (θTtMm,n−1

µ ∈ H)
)

= P
(
FM,m ∩ (TGt(M),n−1 <∞) ∩ (RBNSt) ∩ (θTGt(M),n−1

µ ∈ H)
)
,

where the second equality is Lemma 4.A.2 with T = TtMm,n−1. The third equality

uses FM,m∩(TtMm,n−1 <∞)∩(RBNSt) ∈ σ((Xs)s≤TtMm,n−1
)∨σ(XGt

)∨σ(1(τ{d}≤t));
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recall in particular that (RBNSt) = (T{2} ≤ t, T{5} > t) and (T{2} ≤ t) is known

from σ(XGt) since (T{2} ≤ t) = (Gt > 0). Summing overm ≥ 1 and using (Gt <∞)

almost surely gives∫
F

1(TGt(M),n−1<∞)1(t)Q̃
XTGt(M),n−1 (H) dP

= P
(
F ∩ (TGt(M),n−1 <∞) ∩ (RBNSt) ∩ (θTGt(M),n−1

µ ∈ H)
)
.

As the left- and right-hand side are finite measures, uniqueness of finite mea-

sures on intersection stable classes containing Ω gives that the equation holds

for any F ∈ σ((Xs)s≤TGt(M),n−1
) ∨ σ(XGt) ∨ σ(1(τ{d}≤t)). As it also holds that

1(TGt(M),n−1<∞)1(t)Q̃
XTGt(M),n−1 (H) is σ((Xs)s≤TGt(M),n−1

)∨σ(XGt)∨σ(1(τ{d}≤t))-

measurable, it satisfies the defining properties of

E[1(TGt(M),n−1<∞)1(RBNSt)1(θTGt(M),n−1
µ∈H) | (Xs)s≤TGt(M),n−1

, XGt , 1(τ{d}≤t)],

so we conclude

1(TGt(M),n−1<∞)1(t)P(θTGt(M),n−1
µ ∈ H | (Xs)s≤TGt(M),n−1

, XGt
, 1(τ{d}≤t))

= E[1(TGt(M),n−1<∞)1(RBNSt)1(θTGt(M),n−1
µ∈H) | (Xs)s≤TGt(M),n−1

, XGt , 1(τ{d}≤t)]

= 1(T(Gt)(M),n−1<∞)1(t)Q̃
XT(Gt)(M),n−1 (H).

(ii) : Note that we can write

1(TGt,n−1<∞)Ẽ
XTGt,n−1 [fn(τ1, η1)]

= 1(TGt,n−1<∞)

∫
(TGt,n−1,∞]

∫
E

fn(v, y) r̃v(ϕTGt,n−1v(XTGt,n−1
), dy)F̃XTGt

,n−1
(dv)

with a similar expression for 1(TGt(M),n−1<∞)Ẽ
XTGt(M),n−1 [fn(τ1, η1)].

On (NTGt,n−1
= NTGt(M),n−1

) and (TGt(M),n−1 <∞), it holds for v ≥ TGt(M),n−1,

since TGt(M),n−1 ≥ TGt,n−1, that

ϕTGt,n−1v(XTGt,n−1
) = ϕTGt(M),n−1v(ϕTGt,n−1TGt(M),n−1

(XTGt,n−1
))

= ϕTGt(M),n−1v(XTGt(M),n−1
)

and

F̃XTGt,n−1
(v) = F̃XTGt,n−1

(TGt(M),n−1)F̃XTGt(M),n−1
(v).
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Therefore, it holds on (NTGt,n−1
= NTGt(M),n−1

) that

1(TGt(M),n−1<∞)Ẽ
XTGt(M),n−1 [fn(τ1, η1)]

= 1(TGt(M),n−1<∞)×∫
(T(Gt(M),n−1,∞]

∫
E

fn(v, y) r̃v(ϕTGt(M),n−1v(XTGt(M),n−1
), dy)F̃TGt(M),n−1

(dv)

= 1(TGt(M),n−1<∞) ×
1

F̃XTGt,n−1
(TGt(M),n−1)

×

∫
(TGt(M),n−1,∞]

∫
E

fn(v, y) r̃v(ϕTGt,n−1v(XTGt,n−1
), dy)F̃TGt,n−1

(dv)

M→∞→ 1(TGt,n−1<∞)Ẽ
XTGt,n−1 [fn(τ1, η1)].

Note that

1(
NTGt,n−1

=NTGt(M),n−1

) M→∞→ 1,

since N is right-continuous and TGt(M),n−1 ↓ TGt,n−1. We thus get

lim
M→∞

1(TGt(M),n−1<∞)Ẽ
XTGt(M),n−1 [fn(τ1, η1)]

= lim
M→∞

1(
NTGt,n−1

=NTGt(M),n−1

)1(TGt(M),n−1<∞)Ẽ
XTGt(M),n−1 [fn(τ1, η1)]

= lim
M→∞

1(
NTGt,n−1

=NTGt(M),n−1

)1(TGt,n−1<∞)Ẽ
XTGt,n−1 [fn(τ1, η1)]

= 1(TGt,n−1<∞)Ẽ
XTGt,n−1 [fn(τ1, η1)].

We are now in a position to show the result using dominated convergence.

(iii) : Take F on the form

F = ((Xs)s≤TGt,n−1
∈ B) ∩ (XGt ∈ C) ∩ (1(τ{d}≤t) ∈ D).

Such sets constitute an intersection stable generator of σ((Xs)s≤TGt,n−1
)∨σ(XGt

)∨
σ(1(τ{d}≤t)) containing Ω. Now let

FM = ((Xs)s≤TGt(M),n−1
∈ B) ∩ (XGt

∈ C) ∩ (1(τ{d}≤t) ∈ D)

as then

FM ∈ σ((Xs)s≤TGt(M),n−1
) ∨ σ(XGt

) ∨ σ(1(τ{d}≤t))

and 1FM

M→∞→ 1F by using that X is right-continuous, that TGt(M),n−1 ≥ TGt,n−1,

and that limM→∞ TGt(M),n−1 = TGt,n−1. We now see using dominated convergence
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and the results of (i) and (ii):∫
F

1(TGt,n−1<∞)1(t)Ẽ
XTGt,n−1 [fn(τ1, η1)]dP

(ii)
= lim

M→∞

∫
FM

1(TGt(M),n−1<∞)1(t)Ẽ
XTGt(M),n−1 [fn(τ1, η1)]dP

(i)
= lim

M→∞

∫
FM

1(TGt(M),n−1<∞)1(t)

× E[fn(TGt(M),n, XGt(M),n) | (Xs)s≤TGt(M),n−1
, XGt

, 1(τ{d}≤t)]dP

= lim
M→∞

∫
FM

1(TGt(M),n−1<∞)1(t)fn(TGt(M),n, XGt(M),n)dP

=

∫
F

1(TGt,n−1<∞)1(t)fn(TGt,n, XGt,n)dP.

In the last equality, we used that (TGt(M),n, XGt(M),n)(ω) = (TGt,n, XGt,n)(ω)

for M = M(ω) sufficiently large. Now since the left-hand side and right-hand

side are finite measures, when seen as a function of F , that are equal on an

intersection stable generator including Ω, we can conclude that they are equal

on all of σ((Xs)s≤TGt,n−1
) ∨ σ(XGt

) ∨ σ(1(τ{d}≤t)). It is also easily seen that

1(TGt,n−1<∞)1(t)Ẽ
XTGt,n−1 [fn(τ1, η1)] is σ((Xs)s≤TGt,n−1

) ∨ σ(XGt
) ∨ σ(1(τ{d}≤t))-

measurable, so we may conclude

1(TGt,n−1<∞)1(t)E[fn(TGt,n, XGt,n) | (Xs)s≤TGt,n−1
, XGt , 1(τ{d}≤t)]

= E[1(TGt,n−1<∞)1(t)fn(TGt,n, XGt,n) | (Xs)s≤TGt,n−1
, XGt , 1(τ{d}≤t)]

= 1(TGt,n−1<∞)1(t)Ẽ
XTGt,n−1 [fn(τ1, η1)].

We can further strengthen this to

1(t)E[fn(TGt,n, XGt,n) | (Xs)s≤TGt,n−1
, XGt

, 1(τ{d}≤t)] = 1(t)Ẽ
XTGt,n−1 [fn(τ1, η1)]

(4.A.3)

since also

1(TGt,n−1=∞)E[fn(TGt,n, XGt,n) | (Xs)s≤TGt,n−1
, XGt , 1(τ{d}≤t)]

= 1(TGt,n−1=∞)fn(∞,∇)
= 1(TGt,n−1=∞)Ẽ

XTGt,n−1 [fn(τ1, η1)].

Now we are in a position to use induction over n in Equation (4.A.2).

(iv) : Using Equation (4.A.3) with n = 1 gives the result from Equation (4.A.2) for
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n = 1. For n ≥ 2, assume the result holds for n− 1 and observe

1(t)E

[
n∏

i=1

fi(TGt,i, XGt,i)
∣∣∣ (Xs)s≤Gt

, 1(τ{d}≤t)

]

= 1(t)E

[
E[fn(TGt,n, XGt,n) | (Xs)s≤TGt,n−1

, XGt , 1(τ{d}≤t)]

×
n−1∏
i=1

fi(TGt,i, XGt,i)
∣∣∣ (Xs)s≤Gt

, 1(τ{d}≤t)

]
(iii)
= 1(t)E

[
Ẽ

XTGt,n−1 [fn(τ1, η1)]×
n−1∏
i=1

fi(TGt,i, XGt,i)
∣∣∣ (Xs)s≤Gt , 1(τ{d}≤t)

]

= 1(t)ẼXGt

[
Ẽηn−1 [fn(τ1, η1)]×

n−1∏
i=1

fi(τi, ηi)

]

where the last equality follows by the induction hypothesis. Continuing the calcula-

tions, we see

1(t)ẼXGt

[
n−1∏
i=1

fi(τi, ηi)× Ẽηn−1 [fn(τ1, η1)]

]
= 1(t)ẼXGt

[
n∏

i=1

fi(τi, ηi)

]
,

by writing out the expectations using the Markov kernels. Hence we have shown

1(t)E

[
n∏

i=1

fi(TGt,i, XGt,i) | (Xs)s≤Gt
, 1(τ{d}≤t)

]
= 1(t)ẼXGt

[
n∏

i=1

fi(τi, ηi)

]

so Equation (4.A.2) hold for all n ∈ N by induction, which proves the desired

result.

For the proof of Proposition 4.A.1, we needed Lemma 4.A.2, which corresponds to

Proposition 4.A.1 if the random time Gt was replaced by a FX -stopping time in

some of the terms.

Lemma 4.A.2. (Strong Markov type property at stopping time.)

Under Assumption 4.3.2 it holds that

1(T<∞)1(Gt≤T )1(t)P(θTµ ∈ · | (Xs)s≤T , XGt
, 1(τ{d}≤t))

= 1(T<∞)1(Gt≤T )1(t)Q̃
XT (·)

(4.A.4)

for any FX-stopping time T .

The proof is very similar to the proof of Proposition 4.A.1.
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Proof. This is equivalent to showing for all n ≥ 1 and all measurable bounded

functions fi, 1 ≤ i ≤ n that

1(T<∞)1(Gt≤T )1(t)E

[
n∏

i=1

fi(TT,i, XT,i)
∣∣∣ (Xs)s≤T , XGt

, 1(τ{d}≤t)

]

= 1(T<∞)1(Gt≤T )1(t)Ẽ
XT

[
n∏

i=1

fi(τi, ηi)

]
.

Define

T (M) =

∞∑
m=1

tMm1(tM(m−1)≤T<tMm) +∞1(T=∞)

with tMm = m2−M . Note that (T (M) <∞) = (T <∞). We partition the proof

into four parts corresponding to the four parts of the proof of Proposition 4.A.1.

(i) : First we show the result (4.A.4) with the discrete random time T (M) in place

of T , i.e.

1(T<∞)1(Gt≤T (M))1(t)P(θT (M)µ ∈ · | (Xs)s≤T (M), XGt
, 1(τ{d}≤t))

= 1(T<∞)1(Gt≤T (M))1(t)Q̃
XT (M)(·).

(4.A.5)

Take H ∈ H and F on the form

F = ((Xs)s≤T (M) ∈ B) ∩ (XGt ∈ C) ∩ (1(τ{d}≤t) ∈ D).

Note that the collection of such sets constitutes an intersection-stable generator

for σ((Xs)s≤T (M)) ∨ σ(XGt
) ∨ σ(1(τ{d}≤t)) containing Ω. Write FM,m = F ∩

(T (M) = tMm), and note that FM,m ∈ FX
tMm

∨ σ(XGt) ∨ σ(1(τ{d}≤t)) and also

(RBNSt) ∩ (Gt ≤ tMm) ∈ FX
tMm
∨ σ(XGt

) ∨ σ(1(τ{d}≤t)). Then∫
FM,m

1(Gt≤T (M))1(t)Q̃
XT (M)(H)dP

=

∫
FM,m

1(Gt≤tMm)1(t)Q̃
XtMm (H)dP

=

∫
FM,m

1(Gt≤tMm)1(t)P(θtMm
µ ∈ H | XtMm

, 1(τ{d}≤t))dP

=

∫
FM,m

1(Gt≤tMm)1(t)P(θtMm
µ ∈ H | FX

tMm
∨ σ(XGt

) ∨ σ(1(τ{d}≤t)))dP

=

∫
FM,m

1(Gt≤tMm)1(t)1(θtMm
µ∈H)dP

= P(FM,m ∩ (Gt ≤ T (M)) ∩ (RBNSt) ∩ (θT (M)µ ∈ H)).
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The third equality is Assumption 4.3.2 with v = tMm. Summing over m ≥ 1 and

using uniqueness of finite measures on intersection-stable generators gives the result

for T (M) on (T (M) <∞) = (T <∞). This now gives Equation (4.A.5).

(ii) : Note that for any bounded measurable function f , we have

ẼXT [f(τ1, η1)] =

∫
(T,∞]

∫
E

f(v, y) r̃v(ϕTv(XT ),dy) F̃XT
(dv)

with a similar expression for ẼXT (M) [f(τ1, η1)]. On (NT = NT (M)), it holds for

v ≥ T (M), since also T (M) ≥ T , that

ϕTv(XT ) = ϕT (M)v(ϕTT (M)(XT ))

= ϕT (M)v(XT (M))

and

F̃XT
(v) = F̃XT

(T (M))F̃XT (M)
(v).

Hence, we have on (NT = NT (M)) ∩ (T <∞)

ẼXT (M) [f(τ1, η1)] =

∫
(T (M),∞]

∫
E

f(v, y) r̃v(ϕT (M)v(XT (M)),dy) F̃XT (M)
(dv)

=
1

F̃XT
(T (M))

∫
(T (M),∞]

∫
E

f(v, y) r̃v(ϕTv(XT ),dy) F̃XT
(dv)

M→∞→
∫
(T,∞]

∫
E

f(v, y) r̃v(ϕTv(XT ),dy) F̃XT
(dv)

= ẼXT [f(τ1, η1)].

Since also 1(NT (M)=NT ) → 1 for M →∞, we have

lim
M→∞

1(T<∞)Ẽ
XT (M) [f(τ1, η1)] = lim

M→∞
1(NT (M)=NT )1(T<∞)Ẽ

XT (M) [f(τ1, η1)]

= lim
M→∞

1(NT (M)=NT )1(T<∞)Ẽ
XT [f(τ1, η1)]

= 1(T<∞)Ẽ
XT [f(τ1, η1)].

We are now in a position to use dominated convergence.

(iii) : Take F on the form F = ((Xs)s≤T ∈ B) ∩ (XGt ∈ C) ∩ (1(τ{d}≤t) ∈ D) and

write

FM = ((Xs)s≤T (M) ∈ B) ∩ (XGt
∈ C) ∩ (1(τ{d}≤t) ∈ D).

Note that FM ∈ σ((Xs)s≤T (M))∨σ(XGt)∨σ(1(τ{d}≤t)) and limM→∞ 1FM
= 1F since

X is right-continuous and T (M) ↓ T . Similarly, limM→∞ 1(Gt≤T (M)) = 1(Gt≤T )
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since the indicator s 7→ 1(Gt≤s) is right-continuous and T (M) ↓ T . By dominated

convergence and the results from (i) and (ii), we obtain:

∫
F

1(T<∞)1(Gt≤T )1(t)Ẽ
XT [f(τ1, η1)]dP

(ii)
= lim

M→∞

∫
FM

1(T<∞)1(Gt≤T (M))1(t)Ẽ
XT (M) [f(τ1, η1)]dP

(i)
= lim

M→∞

∫
FM

1(T<∞)1(Gt≤T (M))1(t)

× E[f(TT (M),1, XT (M),1) | (Xs)s≤T (M), XGt
, 1(τ{d}≤t)]dP

= lim
M→∞

∫
FM

1(T<∞)1(Gt≤T (M))1(t)f(TT (M),1, XT (M),1)dP

=

∫
F

1(T<∞)1(Gt≤T )1(t)f(TT,1, XT,1)dP,

where the third equality follows by

FM ∩ (T <∞)∩ (Gt ≤ T (M))∩ (RBNSt) ∈ σ((Xs)s≤T (M) ∨ σ(XGt
)∨ σ(1(τ{d}≤t))

and the last equality follows since limM→∞ 1FM
= 1F . By uniqueness of finite

measures on intersection stable generators, this shows that

1(T<∞)1(Gt≤T )1(t)Ẽ
XT [f(τ1, η1)]

= E[1(T<∞)1(Gt≤T )1(t)f(TT,1, XT,1) | (Xs)s≤T , XGt
, 1(τ{d}≤t)]

= 1(T<∞)1(Gt≤T )1(t)E[f(TT,1, XT,1) | (Xs)s≤T , XGt
, 1(τ{d}≤t)].

The result also holds when removing the indicator 1(T<∞) since

1(T=∞)1(Gt≤T )1(t)Ẽ
XT [f(τ1, η1)]

= 1(T=∞)1(Gt≤T )1(t)f(∞,∇)
= 1(T=∞)1(Gt≤T )1(t)E[f(TT,1, XT,1) | (Xs)s≤T , XGt

, 1(τ{d}≤t)].

(iv) : Using the result of (iii) with f = f1 gives the base case of the induction. For
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n ≥ 2, assume that the result hold for n− 1. Observe then

1(T<∞)1(Gt≤T )1(t)E

[
n∏

i=1

fi(TT,i, XT,i) | (Xs)s≤T , XGt
, 1(τ{d}≤t)

]

= E

[
1(T<∞)1(Gt≤T )1(t)E[fn(TT,n, XT,n) | (Xs)s≤TT,n−1

, XGt
, 1(τ{d}≤t)]

×
n−1∏
i=1

fi(TT,i, XT,i) | (Xs)s≤T , XGt
, 1(τ{d}≤t)

]
(iii)
= E

[
1(T<∞)1(Gt≤T )1(t)Ẽ

XTT,n−1 [fn(τ1, η1)]

×
n−1∏
i=1

fi(TT,i, XT,i) | (Xs)s≤T , XGt , 1(τ{d}≤t)

]
= 1(T<∞)1(Gt≤T )1(t)E

[
ẼXTT,n−1 [fn(τ1, η1)]

×
n−1∏
i=1

fi(TT,i, XT,i) | (Xs)s≤T , XGt
, 1(τ{d}≤t)

]

= 1(T<∞)1(Gt≤T )1(t)Ẽ
XT

[
n−1∏
i=1

fi(τi, ηi)Ẽ
ηn−1 [fn(τ1, η1)]

]
where the first equality follows by the tower property and the second follows by (iii)

with f = fn and the FX -stopping time TT,n−1 using also that (Gt ≤ T ) ⊆ (Gt ≤
TT,n−1). The last equality follows by the induction hypothesis. We finally see,

1(T<∞)1(Gt≤T )1(t)Ẽ
XT

[
n−1∏
i=1

fi(τi, ηi)Ẽ
ηn−1 [fn(τ1, η1)]

]

= 1(T<∞)1(Gt≤T )1(t)Ẽ
XT

[
n∏

i=1

fi(τi, ηi)

]
by writing out the expectations using the Markov kernels. This concludes the

induction and the proof.

4.B Stochastic interest rate

We consider the extension of the results to models with stochastic interest rates.

Assume that κ(t) = exp
(∫

(0,t]
r(v) dv

)
with r : Ω × R+ 7→ R being a stochastic

process. We assume that there exists an equivalent martingale measure for the

financial market which we denote Q. Define the time-t forward interest rate as

f(t, s) = −∂ logP (t, s)
∂s
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where for 0 ≤ t ≤ s we have P (t, s) = EQ [κ(t)/κ(s) | Fr
t

]
is the price at time t of a

zero-coupon bond paying one unit at time s. Then P (t, s) = exp
(∫

(t,s]
f(t, v) dv

)
.

We introduce

κu(t) = exp

(∫
(0,t]

r(u, v) dv

)
for

r(u, v) :=

{
r(v), v ≤ u
f(u, v), v > u

being the realized interest rate before time u and the forward interest rate after

time u. Note for t ≤ u ≤ s that

EQ
[
κ(s)

κ(t)

∣∣∣ Fr
u

]
=
κ(u)

κ(t)
EQ
[
κ(s)

κ(u)

∣∣∣ Fr
u

]
= exp

(∫
(t,u]

r(v) dv

)
exp

(∫
(u,s]

f(u, v) dv

)

=
κu(s)

κu(t)
.

The extension of our results to a stochastic interest rate is simple if there is no

dependence or conditional dependence between the filtrations Fr and FZ . Redefine

the transaction time reserve as

V(t) = E[P(t) | FZ
t ∨ Fr

t ]

where now E = EP⊗Q. By Theorem 5.4 of Buchardt et al. (2023), we see

V(t) = E
[ ∫

[0,∞)

κ(t)

κ(s)
B(ds)

∣∣ FZ
t ∨ Fr

t

]
− E

[ J∑
j=1

∫
[0,t]

κ(t)

κ(s)
1(Y t

s−=j)Bj,s−Ut
s−
(ds)

+

J∑
j,k=1
j ̸=k

∫
[0,t]

κ(t)

κ(s)
bjk(s, U

t
s−)N

t
jk(ds)

∣∣ FZ
t ∨ Fr

t

]
.

Using the independence between Fr and FZ , standard arguments now give

V(t) = E
[ ∫

[0,∞)

κt(t)

κt(s)
B(ds)

∣∣ FZ
t ∨ Fr

t

]
− E

[ J∑
j=1

∫
[0,t]

κt(t)

κt(s)
1(Y t

s−=j)Bj,s−Ut
s−
(ds)

+

J∑
j,k=1
j ̸=k

∫
[0,t]

κt(t)

κt(s)
bjk(s, U

t
s−)N

t
jk(ds)

∣∣ FZ
t ∨ Fr

t

]
.
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This expression is identical to the expression for V in the case of a deterministic

interest rate, but where κ is replaced with κt. Now since Fr is completely exogeneous

to FZ , all the calculations in Section 4.3 remain valid with κ replaced by κt, and

hence we conclude that the results presented in Theorem 4.3.4, 4.3.8, and 4.3.9 still

hold true if one substitutes κt for κ in all terms.

Remark 4.B.1. (Run-off plots.)

Run-off plots are a common graphical tool used to validate the reserves. The intuition

is that if the reserves are correctly specified, the reserve should be converted to

payments such that the sum of the two stays constant over time, see Figure 4.5 for

an illustration. We show that if interest is handled appropriately, this approach is

justified.

Figure 4.5: Illustration of a run-off plot with origin at the end of the coverage period,
where reserves consist of only IBNR and RBNS contributions.

Assume that reserves are calculated with a fixed frequency (e.g. monthly) which

we take to be the unit of the time scale. Let Vpc(t) = E[P(t) | FZ
t ∨ Fr

t−1] be

the reserve calculated with the previous interest rate curve. Since increasing the

number of policies does not diversify the market risk, we focus on validating the

non-financial model elements. For one policy, straightforward calculations give

κt−1(t− 1)

κt−1(t)
Vpc(t)− V(t− 1)

= −
∫
(t−1,t]

κt−1(t− 1)

κt−1(s)
B(ds) + E[P(t− 1) | FZ

t ∨ Fr
t−1]− V(t− 1).

(4.B.1)

Hence, the change in the reserves where the interest rate curve is kept fixed at

the previous interest rate curve and discounted one time unit is equal to the

realized payments discounted to the previous time unit plus a term which has

mean zero conditional on FZ
t−1 ∨ Fr

t−1. In other words, the latter term has mean

zero if the non-financial part of the model is correctly specified no matter the

prior financial and non-financial developments. Since this non-financial risk can be

diversified away by increasing the size of the portfolio, it becomes negligible when

summing Equation (4.B.1) over many policies. Hence, the height of the stacked
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curves of t 7→ V(0) +∑t
m=1 κm−1(m − 1)/κm−1(m) × Vpc(m) − V(m − 1) and

t 7→ B(0) +∑t
m=1

∫
(m−1,m]

κm−1(m− 1)/κm−1(s) B(ds) summed over the policies

is excepted to stay constant throughout when the number of policies used in the

sample is sufficiently large. ▽

4.C Estimation

This section details how to embed the statistical problem of this paper into the

one from Buchardt et al. (2025) and provides a more accessible exposition of their

estimation procedure applied to the current setting.

4.C.1 Statistical model

The disability and reactivation events may both be affected by reporting delays,

but the death event is not. The disability reporting delay is UI : Ω 7→ R+ with

UI = 1(τI<∞)(T{2} − τI). Estimating the IBNR-factor Ii(s, t) when s < ∞ is

equivalent to estimating the disability reporting delay distribution since

Ii(s, t) = P(CBNRt | τI = s, YτI = i) = P(UI > t− s | τI = s, YτI = i).

Let R : Ω 7→ R+ with R = inf{s ≥ 0 : Gs = G∞} be the final time where payments

are stopped. The reactivation reporting delay Ur : Ω 7→ R+ is Ur = 1(τ{r}<∞)(R−
τ{r}). Note that there is no reporting delay when the insurer terminates the running

payments, but a jump of Z(1) from state 2 to state 3 or state 5 which triggers

backpay may lead to a reactivation reporting delay. Estimation of the reactivation

reporting delay distribution is not needed for reserve calculation but is needed for

our proposed estimator of the valid time hazards.

Both the disability and reactivation events also have non-trivial adjudications

while death events do not. One can calculate the adjudication probability P(XGt
=

(Gt, Z
(3)
t ,Wt) | FZ

t ) as an absorption probability for a multistate model on the

state space J ω = {1, 2, 3, 4, 5} depicted in Figure 4.6 with a set of FZ -predictable

transition intensities ωjk : Ω × R+ 7→ R+ (j, k ∈ J ω, j ̸= k). Disability benefits

are awarded if and only if the process is absorbed in state 3 or 5. The multistate

model of Figure 4.6 starts each time a disability or reactivation event is reported.

A disability adjudication starts in state 1, while a reactivation adjudication starts

in state 2. Note that since the adjudication hazards are FZ -predictable, they can

and will be different when the adjudication pertains to a disability or a reactivation

event. The shared notation for the adjudication hazards and the state space is

chosen for parsimony.

Let σ(t) = inf{v ≥ 0 :Wv > Wt} be the next time where disability benefits are

awarded after time t. The multistate model of Figure 4.6 corresponds to modeling

s 7→ Zs on the interval (t, σ(t)] using the self-exciting filtration FZ except that the
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mark at time σ(t) is the reduced mark (Zσ(t), 1(Wσ(t)>Wt)) as opposed to the full

mark Zσ(t). When the object of interest is the adjudication probability, there is no

need to model the full mark, which would entail modeling how much backpay was

awarded, and as a consequence also whether the insured receives running benefits

after the award or not.

3 1 2

45

ω13

ω12

ω21

ω14 ω24ω15

Figure 4.6: Multistate model for adjudications. Active report is 1, inactive report is 2,
awarded is 3, dead without award is 4, and dead with award is 5.

Let the observation window be [0, η] and let the valid time process X be subject to

independent left-truncation and right-censoring, hence being observed on a random

interval (V,C] ⊆ [0, η] even in the absence of reporting delays and adjudication

processes. Events that occurred in (V,C] can be reported and adjudicated up until

time η. Baseline covariates, meaning covariates that are known at time 0 in the

valid time and transaction time filtrations, can easily be incorporated here and in

the rest of the paper by conditioning on them throughout. Define the parameter

spaces G, F, and Θ being subsets of Euclidean spaces. The statistical model is

denoted P = {P(g,f,θ) : (g, f, θ) ∈ G× F×Θ}. The adjudication intensities under

P(g,f,θ) only depend on (g, f, θ) through g and are denoted t 7→ ωjk(t; g). The

reporting delay distributions under P(g,f,θ) only depend on (g, f, θ) through f and

are denoted t 7→ P(UI ≤ t | τI , YτI , f) and t 7→ P(Ur ≤ t | τI , YτI , τ{r}, f). The

valid time hazards under P(g,f,θ) only depend on (g, f, θ) through θ and are denoted

(t, u) 7→ µjk(t, u; θ). We now describe the proposed estimators.

4.C.2 Adjudication probabilities

Let Nω
jk : Ω× R+ 7→ N0 denote the counting processes on J ω where jumps due to

starting a new adjudication are excluded. The objective function is the log-likelihood,

which for one insured is

ℓω(g) =
∑

j,k∈Jω

j ̸=k

∫
(0,η]

log{ωjk(t; g)}Nω
jk(dt)−

∫
(0,η]

ωjk(t; g) dt.

For n i.i.d. insured, the log-likelihood which we denote ℓ
(n)
ω (g) is a sum over n such

terms. The estimator is the maximum likelihood estimator ĝn = argmaxg∈G ℓ
(n)
ω (g).

The argmax can be found using existing glm software packages, see Section D in

the supplementary material of Buchardt et al. (2025) for details.
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4.C.3 Reporting delay distribution

The reporting delays are right-truncated since only jumps reported before η are

part of the sample. We first discuss disability reporting delays and subsequently

reactivation reporting delays. Since we for disability reporting delays condition on

τI , only disability claims that will be awarded should be included in the estimation

of the reporting delay distribution for disability events. We accommodate this

by weighting the relevant objective function with the adjudication probability.

Assume that UI given (τI , YτI ) has density with respect to a common reference

measure across P. We informally denote this density evaluated at a point u by
d
duP(UI ≤ u | τI , YτI , f). For one subject, the objective function for an observed

disability reporting delay u is

ℓUI (f ; ĝn) = P(X
Z

(2)
η

= (Z(2)
η , Z(3)

η , 0) | FZ
η , ĝn)

× log

{ d
duP(UI ≤ u | τI = Z

(2)
η , YτI = Z

(3)
η , f)

P(UI ≤ η − τI | τI = Z
(2)
η , YτI = Z

(3)
η , f)

}
.

Here the first term is the adjudication probability P(XGη
= (Gη, Z

(3)
η , 0) | FZ

η , ĝn)

on (RBNSiη) and is 1 if the disability has been awarded. The objective function

for n i.i.d. subjects is a sum of n such terms and we denote this by ℓ
(n)
UI

(f ; ĝn).

Similarly, assume Ur given (τI , YτI , τ{r}) has density with respect to a common ref-

erence measure across P which we informally denote d
dwP(Ur ≤ w | τI , YτI , τ{r}, f).

For one subject, the objective function for an observed reactivation reporting delay

w is

ℓUr (f ; ĝn) = (1− P(XGη = (Gη, Z
(3)
η ,Wη) | FZ

η , ĝn))

× log

{ d
dwP(Ur ≤ w | τI = Z

(2)
η , YτI = Z

(3)
η , τ{r} = Gη, f)

P(Ur ≤ η − τ{r} | τI = Z
(2)
η , YτI = Z

(3)
η , τ{r} = Gη, f)

}
.

Let the objective function for n i.i.d. subjects be denoted ℓ
(n)
Ur

(f ; ĝn). The estimator

is then f̂n = argmaxf∈F ℓ
(n)
UI

(f ; ĝn) + ℓ
(n)
Ur

(f ; ĝn).

Remark 4.C.1. (Chain ladder estimator.)

The reporting delay distribution can alternatively be estimated using chain ladder,

see for example Section 5 in Bücher & Rosenstock (2024), but the large-sample

properties are then not a special case of Buchardt et al. (2025) since they consider

parametric estimators. Note that chain ladder in this case does not estimate a

reserve but rather an element of the individual reserve, namely the IBNR-factor.

As seen in Section 4.3, an assumption like Assumption 4.3.1 is needed for the

IBNR reserve to approximately decompose into an IBNR-factor-adjusted frequency

multiplied with a classic valid time disability reserve as the associated claim size. ▽
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4.C.4 Valid time hazards

Make a partition of the observation window 0 = t0 < t1 < · · · < tL = η and let

Ojk(ℓ) = Nη
jk(tℓ+1) − Nη

jk(tℓ) and Ej(ℓ) =
∫
(tℓ,tℓ+1]

1(Y η
s =j) ds (ℓ = 0, . . . , L − 1)

be the occurrences and exposures based on Hη for a single insured. To describe

how the duration process is affected by accepting or rejecting a disability claim, we

introduce the auxiliary durations Uj(ℓ) = Uη
tℓ

for j ∈ J . Note that there is initially

no dependence on j.

If there is an unadjudicated disability at time η, the occurrences, exposures, and

durations are modified:

Oai(ℓ)← P(XGη
= (Gη, i, 0) | FZ

η , ĝn), Gη ∈ (tℓ, tℓ+1],

Ea(ℓ)← (tℓ+1 − tℓ)× (1− P(XGη = (Gη, i, 0) | FZ
η , ĝn)), Gη ∈ (0, tℓ],

Ei(ℓ)← (tℓ+1 − tℓ)× P(XGη = (Gη, i, 0) | FZ
η , ĝn), Gη ∈ (0, tℓ],

Ui(ℓ)← tℓ −Gη, Gη ∈ (0, tℓ],

for i = Z
(3)
η . If there is an unadjudicated reactivation at time η, the occurrences,

exposures, and durations are modified:

Oir(ℓ)← (1− P(XGη
= (Gη, i,Wη) | FZ

η , ĝn)), Gη ∈ (tℓ, tℓ+1],

Ei(ℓ)← (tℓ+1 − tℓ)× P(XGη = (Gη, i,Wη) | FZ
η , ĝn), Gη ∈ (0, tℓ],

Er(ℓ)← (tℓ+1 − tℓ)× (1− P(XGη = (Gη, i,Wη) | FZ
η , ĝn)), Gη ∈ (0, tℓ],

Ui(ℓ)← tℓ − Z(2)
η , Gη ∈ (0, tℓ],

for i = Z
(3)
η . Finally, in all cases, the exposures are modified with the reporting

delay distribution:

Eai(ℓ)← Ea(ℓ)× P(UI ≤ η − τI | τI = tℓ, YτI = i, f̂n),

Eir(ℓ)← Ei(ℓ)× P(Ur ≤ η − τ{r} | τI = Z(2)
η , YτI = i, τ{r} = tℓ, f̂n),

for all i ∈ I. For the remaining transitions set Ejk(ℓ)← Ej(ℓ).

The objective function ℓ(θ; ĝn, f̂n) is the log-likelihood resulting from assuming

that (Ojk(ℓ))j,k,ℓ are independent Poisson distributed random variables with mean

values (µjk(tℓ, Uj(ℓ); θ)Ejk(ℓ))j,k,ℓ. Let the objective function for n i.i.d. subjects

be denoted ℓ(n)(θ; ĝn, f̂n). The estimator is θ̂n = argmaxθ∈Θ ℓ
(n)(θ; ĝn, f̂n), which

corresponds to the Poisson approximation from Buchardt et al. (2025). The argmax

can be found using existing glm software packages when the modified occurrences,

exposures, and durations have been constructed. Note that if two occurrences have

the same mean value, these occurrences and their corresponding exposures can

be summed without changing the objective function. This aggregation may save

memory and speed up computations.
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4.C.5 Asymptotic properties

The Poisson approximation introduces bias that does not vanish asymptotically,

but which is small when the hazards and reporting delays are small, see Section

3.3 of Buchardt et al. (2025) or Section B.2 of their supplementary material. The

approximation error for the disability hazard is expected to be negligible since

the hazard appears to be smaller than 10−2 by some margin. There is also a

small approximation bias coming from implementing the Poisson approximation via

occurrences and exposures, see Section D in the supplementary material of Buchardt

et al. (2025) for details. Denote by Bn = θ̂n − θ̂fulln the approximation bias,

where θ̂fulln is the estimator based on the full procedure. We use
a∼ to denote

asymptotic distribution. The asymptotic properties of the estimators are given in

Proposition 4.C.2.

Proposition 4.C.2. Under Assumptions 1-3 and 5-8 from Buchardt et al. (2025),

which are standard integrability and smoothness conditions,

(ĝn, f̂n, θ̂n)
a∼ N ((0, 0, Bn),Σ)

for a non-singular covariance matrix Σ.

Proof. This follows directly from Theorem 1 of Buchardt et al. (2025).





Chapter 5

Estimation for multistate models subject

to reporting delays and incomplete event

adjudication with application to disability

insurance

This chapter contains the manuscript Buchardt, Furrer, and Sandqvist (2025).

Abstract

Accurate forecasting of an insurer’s outstanding liabilities is vital

for the solvency of insurance companies and the financial stability of

the insurance sector. For health and disability insurance, the liabilities

are intimately linked with the biometric event history of the insured.

Complete observation of event histories is often impossible due to sam-

pling effects such as right-censoring and left-truncation, but also due

to reporting delays and incomplete event adjudication. In this paper,

we develop a parametric two-step M-estimation method that takes the

aforementioned effects into account, treating the latter two as partially

exogenous. The approach is valid under weak assumptions and allows for

complicated dependencies between the event history, reporting delays,

and adjudication while remaining relatively simple to implement. The

estimation approach has desirable properties which are demonstrated by

theoretical results and numerical experiments.

In the application, we introduce and consider a large portfolio of

disability insurance policies. We find that properly accounting for the

sampling effects has a large impact on the number of disabilities and

reactivations that an insurer would forecast, allowing for a more accurate

assessment of the insurer’s liabilities and improved risk management.

Keywords: Event history analysis; Health insurance; Incomplete event adjudica-

tion; Reporting delay; Two-step M-estimation
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5.1 Introduction

Health and disability insurance is a fundamental pillar of modern healthcare systems,

providing individuals with financial protection against the costs of medical treatment

and the loss of income due to injury or illness. In 2023, the health insurance

industry of the United States collected more than $1 trillion in premiums and paid

out hundreds of billions of dollars in medical claims according to the National

Association of Insurance Commissioners (2023). For insurers, managing future

liabilities such as outstanding disability benefits is crucial not only for their own

financial sustainability but also for the stability of the entire health insurance

market. Accurate forecasting of these liabilities, so-called reserving, is therefore

vital in ensuring that insurers can meet their obligations and maintain solvency.

Insurance benefits for health and disability insurance coverages are directly tied

to the insured’s biometric state, making it possible to focus on modeling this

underlying process. That approach is typically preferable to modeling individual

payments and their intertemporal dependencies directly; this is, on the other hand,

usually required for individual reserving models in non-life insurance, see e.g. Yang

et al. (2024). Multistate models provide a natural and parsimonious way to model

the biometric state process of an individual and are therefore the focus of this paper.

By modeling individual policies, the insurer may leverage granular data to predict

and forecast outstanding liabilities.

We develop estimation methods for multistate models that allow actuaries and

statisticians to employ all recently generated data while accommodating the con-

tamination induced by reporting delays and incomplete event adjudications. This

assists insurers in performing timely operational adjustment and risk mitigation

when faced with emerging health trends such as the major increase in claims related

to mental illnesses that has been observed in recent years, see for example Section 1

of Swiss Re (2022).

Longitudinal biometric data such as those arising from insurance policies consists

of records on the occurrence and timing of certain events. The analysis of such

data is typically referred to as event history analysis. Complete observation of the

event history is often rendered impossible due to sampling effects, encompassing

censoring and truncation as well as situations where information about individuals

under study is not up to date or correct; this may for example be due to periodic

sampling, reporting delays, or incomplete event adjudication. Incomplete event

adjudication refers to the situation where it is undetermined, at the time of analysis,

whether some reported events satisfy predetermined criteria for being true events.

Ignoring these mechanisms leads to misleading and biased analyses. Censoring and

truncation are most fundamental to the field of event history analysis and have so

far received the most attention.
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Our main focus is on handling reporting delays and incomplete event adjudication

in the estimation of the conditional hazards of a multistate model, but we also allow

for right-censoring and left-truncation. The goal is to use the available information

to obtain as reliable predictions as possible. The available information consists of

event dates and their corresponding event types, reporting delays, and adjudication

information, but only for those events that are reported before the time of analysis.

5.1.1 Relevant literature

A naive way to handle reporting delays is back-censoring, see Casper & Cook (2012).

Here, the right-censoring date is set back by some fixed amount, corresponding to

only using data that is older than a given date. The approach does not introduce

systematic bias if the right-censoring time is set back by an amount larger than

the longest delay but is inefficient in that it may discard many observations. Since

observations for later times are discarded, tail-estimates and trends may be especially

impaired. This impedes forecasting and hence the ability to predict outstanding

liabilities.

More efficient approaches have been proposed for survival models, see Hu &

Tsiatis (1996) and Van der Laan & Hubbard (1998), and recurrent event models,

see Kalbfleisch & Lawless (1989), Pagano et al. (1994), Becker & Cui (1997), Casper

& Cook (2012), and Verbelen et al. (2022). Most of these focus on non-parametric

estimation with inverse probability of censoring weighting being the most popular

approach, but other approaches include an EM-algorithm for a multinomial model

in Pagano et al. (1994), maximum likelihood via thinning of a Poisson process

in Kalbfleisch & Lawless (1989), and a mix of these in Verbelen et al. (2022). In

most of the aforementioned works, the marginal mean of the counting process is

modeled, except in Kalbfleisch & Lawless (1989) and Verbelen et al. (2022) where

hazards are modeled. Finally, some works take estimation of the reporting delay

distribution as the main focus and either forgo estimation of the event hazards, see

Lagakos et al. (1988) and Kalbfleisch & Lawless (1991), or use simple methods to

adjust the event rates after estimating the reporting delay distribution, see Esbjerg

et al. (1999).

The incorporation of reporting delays has, to the best of our knowledge, not

hitherto been studied for non-competing-risks multistate models such as the illness-

death models that are relevant for modeling disability insurance events. Additionally,

we are the first to explore estimation under a monotone reporting assumption, which

requires events to be reported in the same order in which they occurred. This

assumption is natural when modeling individuals. Recurrent event models in

the literature have so far been based on the assumption that reporting delays are

independent of the event process; this assumption only seems plausible for aggregate

models.
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For incomplete event adjudication, a simple but inefficient solution is to use only

confirmed events or all unrefuted events while back-censoring. For the method to be

unbiased, one has to back-censor by more than the maximal sum of the reporting

and processing delays, in which case the unrefuted and confirmed events are the

same. Other approaches are explored in Cook (2000), Cook & Kosorok (2004),

and Bladt & Furrer (2024), but only for single events without reporting delays and

using methods that do not easily generalize to hazard estimation for multistate

models, and where the adjudication outcome distribution is either exogeneously

given or is assumed to only depend on the information available at the event time.

In addition, limited attention was given to the estimation of the adjudication

probabilities: Cook (2000) and Cook & Kosorok (2004) suggest logistic regression

based on completed adjudications, while Bladt & Furrer (2024) relies on expert

judgments.

Both reporting delays and incomplete event adjudication are prevalent in health

and disability insurance. Disabilities only become known to the insurer when they

are reported by the insured, at which point the event date also becomes known,

as it determines the date from which the insured is eligible for disability benefits.

Adjudication is performed primarily by the insurer, who considers whether the

claim satisfies the criteria for disability benefits and determines at what stage the

insured has recovered sufficiently to terminate benefits. This is often complicated

by the need to obtain clinical assessments of the claimed disability.

5.1.2 Model considerations

In order to produce accurate predictions, actuarial forecasts should be dynamic

in the sense that they are updated as new information arrives. Hazard rates

provide a convenient way to parameterize all relevant conditional distributions, so

that insurance reserves and other conditional estimands may be calculated using

well-known integral or differential equations, see Hoem & Aalen (1978), Møller

(1993), Norberg (2005), and Adékambi & Christiansen (2017). Consequently, this

paper focuses on hazard estimation.

Baseline covariates and the event history may have a large effect on the dis-

tribution of future jumps, so we take a regression approach to incorporate these

effects. Furthermore, we find parametric models advantageous for several reasons.

Firstly, we need to extrapolate the estimates to times and durations that exceed

the observation window. This holds both for the parameters of interest, being those

related to the biometric events, and the nuisance parameters related to the reporting

delay and adjudication processes. This makes the otherwise popular Kaplan–Meier,

Aalen–Johansen, and Cox-type estimators less attractive.

Secondly, feature engineering can be used in combination with existing expert

knowledge to guide the parametric specification since the focus is on prediction
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rather than inference. This may be helpful in counteracting some of the challenging

characteristics of disability insurance data, such as the relative rareness of events,

the low signal-to-noise rate, and the moderate dimension of covariates. Many of

these characteristics are shared with nowcasting and forecasting of epidemics, see

for example Noufaily et al. (2016), Psotka et al. (2020), and Stoner et al. (2023),

which also constitutes a relevant area of application for our methods. As discussed

in Cook (2000), Cook & Kosorok (2004), and Casper & Cook (2012), another

possible area of application is interim stages of clinical trials, but here semi- and

non-parametric models may be preferred, given the focus is often on inference for

non-parametrically identifiable marginal estimands.

5.1.3 Our contribution

The contributions of this paper are twofold. Firstly, we develop a parametric

approach that encompasses both reporting delays and incomplete event adjudication

and which applies to hazard estimation for multistate models in general. The

approach has many properties that are desirable for insurance applications and

relaxes several assumptions from the literature. We also introduce an approximation

that simplifies the estimation procedure considerably and which performs well in

many situations encountered in practice. In addition, we show that our estimators

are consistent and asymptotically normal under suitable regularity conditions and

that they may be bootstrapped.

Secondly, the proposed methods are applied to a new data set based on a large

Danish disability insurance portfolio. This application is noteworthy for two reasons.

First, the data is unique in that it seems to be the first insurance data set to include

information on event adjudication and the first disability or health insurance data

set to contain information on reporting delays. Having access to such data and

accounting for the time of analysis is essential to ensure unbiased analyses. Second,

the analyses show that properly accommodating for reporting delays and incomplete

event adjudication has a substantial effect on the estimated level and calendar-

time dependence of the disability and reactivation hazards. This underscores the

importance of our concepts and results. The impact of our contribution is further

accentuated by taking the size and societal importance of the health and disability

insurance sector into account.

The paper is organized as follows. Section 5.2 introduces the model. Section 5.3

discusses estimation of the parameters. Section 5.4 presents theoretical large-sample

results. Section 5.5 contains numerical experiments, demonstrating desirable finite

sample performance and stability under misspecification. The data application is

presented in Section 5.6.
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5.2 Model Specification

We consider a time-continuous multistate model with states 1, . . . , J , which may

be represented by a marked point process (T ∗
m, Y

∗
m)m≥1, where T

∗
m ∈ (0,∞] are

jump times and Y ∗
m ∈ {1, . . . , J} are jump marks. Let J∗(t) denote the time t event

history, containing the events that have occurred up until and including time t.

The multistate model may equivalently be represented by a multivariate counting

process N∗ with components N∗
jk, so that N∗

jk(t) counts the number of transitions

from state j to state k in the interval [0, t]. Let X be baseline covariates, including

for instance the initial state, taking values in a subset of Rp. We suppose that N∗
jk

satisfies a general intensity model

Eθ{N∗
jk(dt) | F∗

t−} = λ∗jk(t;X,θ) dt = I∗j (t)µ
∗
jk{t;J∗(t−),X,θ} dt, (5.2.1)

where Eθ denotes expectation under the distribution with parameter θ ∈ Θ ⊆ Rd,

F∗ is the filtration generated by N∗ and X, and I∗j (t) is the indicator that the the

last mark in J∗(t−) is j or the initial state is j if J∗(t−) is empty. Assume that

the true parameter θ0 belongs to the parameter set Θ. We seek to estimate θ0, but

subject to various forms of missingness and contamination. First, the observation of

jumps is subject to delays. Second, not all jump times, jump marks, and delays are

observed due to random left-truncation and right-censoring. Finally, some reported

jumps are annulled due to event adjudication. In the following, we describe these

mechanisms in more detail.

Let η > 0 be the deterministic time where the statistical analysis is conducted.

Denote by U∗
m ∈ [0,∞) the random reporting delay associated with the m’th jump.

We form a new thinned marked point process (Tm, Ym)m≥1 from (T ∗
m, Y

∗
m)m≥1 by

deleting all jumps with T ∗
m+U∗

m > η. Let (Um)m≥1, J, and Njk be respectively the

reporting delays, event history and counting processes associated with (Tm, Ym)m≥1.

Throughout, we make the following assumption:

Assumption 5.2.1. Reporting is monotone, meaning T ∗
m + U∗

m ≤ T ∗
m+1 + U∗

m+1.

Assumption 5.2.1 is closely related to the concept of monotone missingness from

the missing data literature, confer with Little (2021). Dropping this assumption

would lead to a substantial increase in complexity, since even if Tm < ∞, there

might still be a disagreement between J∗(Tm) and J(Tm). This assumption is

natural when modeling individual subjects. Thinning has hitherto only been

used for aggregate models when this assumption is replaced by an independence

assumption. The true distribution function of U∗
m given J∗(T ∗

m) and X is denoted

t 7→ prU{t;J∗(T ∗
m),X, f0} for a parameter f0. That the components of (U∗

m)m≥1

may have different distributions is captured by J∗(T ∗
m) in the conditioning.

Observation of N is, as mentioned, also subject to left-truncation and right-

censoring. To be precise, there is a random right-censoring time C ≤ η, which could
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for example be the drop-out time of the subject, and a random left-truncation time

V < C where the subject enters the study if some event A has occurred prior to

V . As an example, V could be when the subject enters the insurance portfolio,

and the event A could be that the subject is still alive at that time. A comparable

situation would be one where subjects not satisfying A or with V > η were also

considered part of the study but with no exposure. For example, if one had access

to panel data, the current formulation would filter away subjects that are not in the

portfolio during the observation window while the alternative formulation would

keep the observations but let them have no exposure. In our applications, the event

A is redundant as it is contained in the relevant filtration, but we allow for this

extra generality which may be useful in other applications, confer with Section III.3

of Andersen et al. (1993).

Let (T c
m, Y

c
m)m≥1 be (Tm, Ym)m≥1 but where jumps outside of (V,C] are deleted

and let (U c
m)m≥1, N

c
jk, and Jc be the corresponding reporting delays, counting

processes, and event history, respectively. We introduce the filtrations Ft =

σ{X, (Tm, Ym) : Tm ≤ t} and Fc
t = σ{X,G, C ∧ t, (T c

m, Y
c
m) : T c

m ≤ t}, where G is

left-truncation information satisfying A ∈ G and V is G-measurable; the delays are

not included in these filtrations as the influence of prior delays on the intensities is

not of interest when estimation of µ∗
jk is the final goal. Also, these filtrations are

not directly observable (for instance, Tm is reported at time Tm + Um, but already

enters in the filtrations at time Tm), but they play a technical role in allowing us

to formulate a criterion function from which to construct estimators.

Note that we allow for jumps to be reported between the right-censoring time C

and the time of analysis η; this choice is appropriate for actuarial applications where

subjects may leave the portfolio and afterwards report claims for events that occurred

while they were still in the portfolio. In other applications, such as for medical

trials, thinning according to T ∗
m + U∗

m > C might be more appropriate, as patients

may be completely lost to follow-up at C. We stress that the results of this paper

then still apply upon changing η to C in the reporting delay distribution, but under

the additional assumption that C is independent of (T ∗
m, Y

∗
m)m≥1. Furthermore, in

some applications it might be relevant to also allow for periodic, but immediate,

ascertainment of the current state. This has been explored for a survival model

in Hu & Tsiatis (1996). We do not pursue this extension.

The following assumption, which we make throughout, is comparable with the

assumption of independent filtering, confer with Section III.4 in Andersen et al.

(1993).

Assumption 5.2.2. Left-truncation and right-censoring are independent in relation

to the marked point process (Tm, Ym)m≥1 in the sense that

Eθ,f{N c
jk(dt) | Fc

t−;A} = 1(V,C](t)Eθ,f{Njk(dt) | Ft−}
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for (θ, f) ∈ Θ×F, where the notation on the left-hand side signifies conditioning on

Fc
t− and A. Similarly, left-truncation and right-censoring are independent in relation

to the reporting delays in the sense that Pf (U
c
m ≤ t | Fc

T c
m
;A) = Pf (Uℓ ≤ t | FTℓ

)

where ℓ is the index satisfying Tℓ = T c
m. Here Pf denotes the probability under the

distribution with parameter f .

The third and final mechanism relates to incomplete event adjudication. The idea

is to think of (T c
m, Y

c
m)m≥1 as obtained by thinning another marked point process

(T̃m, Ỹm)m≥1 accompanied by delays (Ũm)m≥1 satisfying T̃m+Ũm ≤ η. To be precise,
if ξm ∈ {0, 1} is the adjudication outcome of the m’th event, then (T c

m, Y
c
m)m≥1 is

formed from (T̃m, Ỹm)m≥1 by deleting all jumps with ξm = 0. Incomplete event

adjudication thus becomes a missing data problem for the adjudication outcomes

(ξm)m≥1. The full available information is thus

Hobs
t = σ{X,G, C ∧ t, (T̃m, Ỹm, Ũm,Am,t) : T̃m + Ũm ≤ t},

where Am,t is a filtration representing adjudication information, such that when

σm is the time where ξm becomes known, then σm is an Am,t-stopping time and

ξm is Am,σm-measurable. Apart from σm and ξm, the filtration Am,t may contain

additional covariates that affect adjudication probabilities. It is possible to let the

left-truncation information in Hobs be a superset of G without any additional effort.

The following assumption serves to reduce the modeling task:

Assumption 5.2.3. Only the most recent jump of (T̃m, Ỹm)m≥1 may be unadjudi-

cated at any given time, meaning σm ≤ T̃m+1 + Ũm+1.

No mathematical issues would arise from removing this assumption, but one would

then need to find suitable estimators for the joint distribution of the adjudication

outcomes instead of for single outcomes.

We also introduce a restricted (non-monotone) information Ht ⊂ Hobs
t , which

we use as the conditioning information in the distribution of the adjudication

outcomes. The point is that it may sometimes be convenient to have the option

to use less information than all available information. It is important that the

restricted information contains the confirmed jumps so that they are not treated

as missing values, but which additional information one lets the adjudication

probabilities depend on is optional. As will be seen in Section 5.3, Ht is needed for

all t ≤ η to estimate the adjudication model, while Hη is sufficient to estimate the

reporting delays and biometric hazards. Denote by ⟨t⟩ the number reported jumps

of (T̃m, Ỹm)m≥1 before time C ∧ t. We find a natural choice of Ht to be

Ht = σ{X,G, C ∧ t, (T̃m, Ỹm), (T̃⟨t⟩, Ỹ⟨t⟩, Ũ⟨t⟩,A⟨t⟩,t)

: T̃m + Ũm ≤ t, ξm = 1,m < ⟨t⟩}
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consisting of the confirmed jumps by time t as well as the most recent reported

jump with its reporting delay and adjudication information; information about

prior reporting delays and adjudication processes is removed. We suppose that

the distribution of the adjudication outcome ξ⟨t⟩ given Ht is characterized by a

parameter g0. The parameter set for (f ,g) is assumed to be a product space F×G
containing (f0,g0).

It is worth noting that we place no distributional assumptions on (T̃m, Ỹm)m≥1

apart from those inherited from (T c
m, Y

c
m)m≥1. Likewise, we do not want to im-

pose criteria for how our process of interest (T ∗
m, Y

∗
m)m≥1 would be affected by

subsampling on adjudication information or reporting delays. We therefore choose

to treat incomplete event adjudication and reporting delays as partially exogenous

mechanisms. This naturally leads to a two-step method, where the first step con-

cerns incomplete event adjudication and reporting delays, while the second step

involves estimation of θ0. The method is outlined in Section 5.3, and the main

theoretical results, including weak consistency and asymptotic normality, are given

in Section 5.4. An alternative approach described in Section C of the Supplementary

material incorporates the delays in the second step; this improves efficiency, but

comes at the cost of additional independence assumptions.
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5.3 Estimation

5.3.1 General considerations

For our two-step method, we propose a two-step M-estimation procedure. Re-

sults on the asymptotics of such procedures may be found in Murphy & Topel

(1985) and Newey & McFadden (1994) for the parametric case and Ichimura & Lee

(2010), Kristensen & Salanié (2017), and Delsol & Van Keilegom (2020) for the semi-

parametric case. We treat f and g as nuisance parameters and θ as the parameter

of interest. Discussion of concrete estimators is postponed to Section 5.3.2.

For notational simplicity, we henceforward suppress the baseline covariates and

use the symbol • to signify summation over the corresponding index. Disregarding

for a moment incomplete event adjudication, in the sense that we work under a

filtration where the adjudication outcomes for all reported jumps are known, and

fixing the parameter of the distribution of the reporting delays at f , we obtain from

Assumption 5.2.2 and Section II.7.3 in Andersen et al. (1993) the partial likelihood

L(θ; f) for one subject under Fc
η as the following product integral

L(θ; f) =
C

R
t=V

J∏
j=1

{∏
k ̸=j

Λjk(dt;θ, f)
∆Njk(t)

}{
(1− Λj•(dt;θ, f))

1−∆Nj•(t)

}
,

where Λjk is the compensator of Njk i.e. Λjk(dt;θ, f) = Eθ,f{Njk(dt) | Ft−}.
Denote the corresponding log-likelihood by ℓ(θ; f) = logL(θ; f). We henceforth

assume that E[ℓ(θ; f)] is uniquely maximized in (θ0, f0) which enables the use

of M-estimation techniques. This holds under weak assumptions. For example,

Section II.7.2 in Andersen et al. (1993) implies, under some integrability and

smoothness conditions, that (θ0, f0) is a unique maximum of E[ℓ(θ; f)] as long as

the compensators are non-constant in each coordinate of (θ, f).

Seeking a tractable expression of L in terms of (5.2.1), we introduce the weighted

hazard

νjk{t;J(t−),θ, f} = µ∗
jk{t;J(t−),θ}prU

[
η − t; {J(t−), t, k}, f

]
with {J(t−), t, k} being the event history containing the jumps J(t−) and a jump

to state k at time t. Let Vt denote the duration since the most recent jump of

(Tm, Ym)m≥1 at time t, let Ij(t) be the indicator that the last mark in J(t−) is j
or the initial state is j if J(t−) is empty. Introduce the survival probability in the

current state P ∗{t;J(t−),θ} satisfying

Ij(t)P
∗{t;J(t−),θ} = Ij(t) exp

[
−
∫ t

t−Vt−

µ∗
j•{s;J(s−),θ}ds

]
.

In Section B of the Supplementary material, we derive the following result.
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Lemma 5.3.1. It holds that Λjk(dt;θ, f) = Ij(t)µjk{t;J(t−),θ, f}dt with

µjk{t;J(t−),θ, f} = γj(t)× νjk{t;J(t−),θ, f}

where γj(t) equals

1−
∫ t

t−Vt−
P ∗{s;J(s−),θ}µ∗

j•{s;J(s−),θ} ds
prU{η − (t− Vt−);J(t− Vt−), f} −

∫ t

t−Vt−
P ∗{s;J(s−),θ}νj•{s;J(s−),θ, f} ds

.

We now return to the problem that ℓ(θ; f) is actually not computable using the

available information Hobs
η due to incomplete event adjudication. Furthermore,

estimation of f based on ℓ(θ; f) is inefficient since it only utilizes (Tm, Ym)m≥1

and not (Um)m≥1. We therefore propose two-step M-estimation. Denote by Zobs
i

and Zi (i = 1, . . . , n) the subject i outcomes of Hobs
η and Hη respectively, and

let Zobs and Z be corresponding generic outcomes. Assume Zobs
i are independent

and identically distributed, which implies that the same holds for Zi. We specify

the objective function to be the imputed likelihood ℓ(Z,θ; f ,g) = Eg{ℓ(θ; f) | Z}.
For the relation to imputation, see Section A of the Supplementary material. Our

two-step procedure is:

1. Estimate (f0,g0) by (̂fn, ĝn) using suitable estimators based on (Zobs
i )ni=1.

2. Estimate θ0 by θ̂n = argmaxθ
∑n

i=1 ℓ(Zi,θ; f̂n, ĝn).

This is motivated by the observation E{ℓ(Z,θ; f0,g0)} = E{ℓ(θ; f0)}, which is

uniquely maximized in θ = θ0. Recall that Hobs
η and Hη are such that only ξ⟨η⟩

can be missing in ℓ(θ; f), and that we wish to use adjudication probabilities based

on the information Hη instead of Hobs
η , leading us to condition on Z instead of

Zobs in the objective function. We therefore let w(1,Z;g) = Eg{ξ⟨η⟩ | Z} and

w(0,Z;g) = 1 − w(1,Z;g). Write ℓ(θ; f) = ℓ(θ; f , ξ⟨η⟩), where the last argument

signifies whether the jump (T̃⟨η⟩, Ỹ⟨η⟩) is included in the likelihood or not. We thus

have

ℓ(Z,θ; f ,g) = w(0,Z;g)ℓ(θ; f , 0) + w(1,Z;g)ℓ(θ; f , 1). (5.3.1)

In Section 5.3.2, we outline the first step, while Section 5.3.3 is dedicated to the

second. The derivation of asymptotic properties is postponed to Section 5.4.

5.3.2 Estimation of f and g

Assumption 5.2.1 implies that Pf{Um ≤ t | J(Tm)} = prU{t;J(Tm), f}/prU{η −
Tm;J(Tm), f} on the event (Tm < ∞) for t ≤ η − Tm. Note that one is not

conditioning on J(Tm) on the right-hand side but rather inputting the values

into the regular conditional probability prU . Thus, the parameter f could be
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estimated if (Tm, Ym)m≥1 rather than (T̃m, Ỹm)m≥1 were available. We therefore

also employ two-step M-estimation for the nuisance parameters, first constructing

ĝn and subsequently using an imputed likelihood to construct f̂n. Practical aspects

of the implementation are discussed in Section D of the Supplementary material.

We first consider estimation of g. Since there is time dependence in adjudication

processing, and since we see no need for infinite-variation processes, we choose

to model the adjudication information Am,t of the m’th reported jump as being

generated by a marked point process (τm,ℓ, Ym,ℓ)ℓ≥1 with finite state space 1, . . . ,K.

The time σm is specified as a first hitting time of a subset of the states 1, . . . ,K,

and the value of ξm implied by hitting one of these states is non-random. The

corresponding counting processes are denoted Nm,jk and the indicator that the

process is in state j at time t− is denoted Im,j(t). This multistate model starts

when the corresponding jump is reported and ends when the next jump is reported,

meaning T̃m + Ũm < τm,ℓ ≤ T̃m+1 + Ũm+1 for all ℓ. We choose a log-likelihood type

objective function for g and parameterize via conditional hazards ωjk(t;Ht−,g)

given Ht−, that is

ℓξ(Z
obs,g) =

⟨η⟩∑
m=1

K∑
j,k=1

∫ η

0

logωjk(t;Ht−,g)Nm,jk(dt)

−
∫ η

0

Im,j(t)ωjk(t;Ht−,g) dt.

Note that the log-likelihood depends onHt for all t ≤ η; this information is contained

in Hobs
η but not in Hη. Estimation now proceeds by maximizing

∑n
i=1 ℓξ(Z

obs
i ,g)

with respect to g over a suitable parametric class. This maximization is standard.

Other modeling choices for g are possible, and while our proofs of the asymptotic

properties utilize this specific choice, they can easily be adapted to a wider range

of models.

We now consider estimation of f . Disregarding incomplete event adjudication for

a brief moment, Assumption 5.2.2 implies that the log-likelihood for the reporting

delays becomes

ℓU (f) =

Nc
••(η)∑

m=1

log [prU{dU c
m;Jc(T c

m), f}/prU{η − T c
m;Jc(T c

m), f}] .

Define the reverse time hazard

α{s;Jc(T c
m), f} ds = prU{ds;Jc(T c

m), f}/prU{s;Jc(T c
m), f}

similarly to Kalbfleisch & Lawless (1991) and write the distribution function in

terms of the reverse time hazard prU{t;Jc(T c
m), f} = exp

[
−
∫∞
t
α{s;Jc(T c

m), f} ds
]
.
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Then

ℓU (f) =

Nc
••(η)∑

m=1

logα{U c
m;Jc(T c

m), f} −
∫ η−T c

m

Uc
m

α{s;Jc(T c
m), f}ds.

Parameterizing in terms of reverse time hazards maintains the form of the likelihood

under right-truncation similarly to how hazards maintain the form of the likelihood

under right-censoring. Returning to incomplete event adjudication, we analogously

to ℓ(θ; f , ξ⟨η⟩) write ℓU (f) = ℓU (f ; ξ⟨η⟩) and let the objective function for f be the im-

puted likelihood ℓU (Z, f ;g) = Eg{ℓU (f) | Z} = w(0,Z;g)ℓU (f ; 0)+w(1,Z;g)ℓU (f ; 1).

For a given estimator ĝn, we let f̂n be the maximizer of
∑n

i=1 ℓU (Zi, f ; ĝn) with

respect to f over a suitable parametric class.

5.3.3 Estimation of θ

The estimator θ̂n was described in Section 5.3.1. Evaluating ℓ(θ; f) is costly due

to the repeated numerical integration required owing to γj . This would be further

compounded when evaluating the score, and we hence recommend derivative-free

maximization for example via quasi-Newton methods. For these algorithms to

perform well, one needs a good starting value for θ. We here describe one approach

to overcoming this problem.

Define γ̌j by replacing prU{η−(t−Vt−);J(t−Vt−), f} with one in the expression for

γj , effectively ignoring the reporting delay of the previous jump, and let µ̌jk = γ̌j ×
νjk. Note that the approximation is exact if there is never a reporting delay for the

prior jump or if there has been no prior jump. Note Ij(t)P
∗{t;J(t−),θ} ≤ γ̌j(t) ≤ 1

so µ̌jk ≈ νjk. Furthermore, under additional smoothness, we show in Section B

of the Supplementary material that µ̌jk{t;J(t−),θ, f} = νjk{t;J(t−),θ, f}+ err(t)

with |err(t)| ≤ Vt− × sups∈[t−Vt−,t] µ
∗
j•{s;J(s−),θ}2, so the error is a second order

term. We call the approximation µjk ≈ νjk a Poisson approximation, since the

approximate hazard νjk has a similar form to the one found in the Poisson process

setup of Kalbfleisch & Lawless (1989). The corresponding approximate likelihood

ℓapp(θ; f) reads

ℓapp(θ; f) =

K∑
j,k=1

∫ C

V

logµ∗
jk{t;J(t−),θ} dNjk(t)

−
∫ C

V

Ij(t)µ
∗
jk{t;J(t−),θ}prU [η − t; {J(t−), t, k}, f ] dt.

Analogously to Equation (5.3.1), we introduce the imputed version ℓapp(Z,θ; f̂n, ĝn).

Maximization of the approximate likelihood is significantly simpler than the true

likelihood; computationally, the approximate case is the same as a standard multi-

state likelihood, but where the contribution of a given path is weighted with a scalar

and where the exposure is reduced based on the closeness to the time of analysis
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via the reporting delay distribution. Practical aspects of the implementation are

discussed in Section D of the Supplementary material.

Remark 5.3.2. The framework could be extended to allow for time-dependent

covariates by using the associated partial likelihood. Note, however, that the

covariate paths then have to be included in H, meaning that the adjudication model

also needs to depend on these covariates. Since the adjudication model has to be

used prospectively, one would need a model for how the covariates evolve over time.

This is about as complicated as including the covariates in the marked point process

itself, which is also more natural when the goal is prediction rather than inference.

5.4 Asymptotic Properties

The large sample properties of θ̂n largely follow from the two-step M- and Z-

estimation results of Newey & McFadden (1994), Hahn (1996), and Delsol & Van

Keilegom (2020). We also show weak consistency and asymptotic normality of

a bootstrap procedure analogous to Efron’s simple nonparametric bootstrap as

studied in Gross & Lai (1996), where (Zobs
ni )

n
i=1 are drawn with replacement from

(Zobs
i )ni=1. The estimators based on the bootstrap sample are denoted ĝboot

n , f̂bootn ,

and θ̂bootn . The main result is:

Theorem 5.4.1.

(i) Consistency: Under Assumptions 1-3 and Assumptions 5-7 from Section E of

the Supplementary material, ĝn, f̂n, and θ̂n as well as ĝboot
n , f̂bootn , and θ̂bootn

are weakly consistent.

(ii) Asymptotic normality: Under Assumptions 1-3 and Assumptions 5-8 from

Section E of the Supplementary material, ĝn, f̂n, and θ̂n are asymptotically

normal. Furthermore n1/2(θ̂n − θ0) → N(0,V) and n1/2(θ̂bootn − θ̂n) →
N(0,V) in distribution.

The proof and the form of V are given in Section E of the Supplementary material.

Implementing confidence intervals via estimators for V is challenging since there

is no closed form for the score. However, Theorem 5.4.1 implies that a percentile

confidence interval based on a simple bootstrap procedure is valid. One may also

use an empirical bootstrap variance estimator for V if n1/2(θ̂bootn − θ̂n) is uniformly

integrable.

Remark 5.4.2. As may be seen from the proof of Theorem 5.4.1, the proposed

estimator can, under smoothness conditions, be cast as a generalized method of

moment estimator with weighting matrix equal to the identity by using score

equations as moment conditions. In the class of regular asymptotically linear

estimators that only restrict the statistical model through moment conditions,
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it is known from Hansen (1982), Chamberlain (1987), and Section 5 of Newey

& McFadden (1994) that generalized method of moment estimators satisfying

Equation (5.4) of Newey & McFadden (1994) are efficient. A sufficient condition

for this is that the weighting matrix is equal to the inverse of the variance of the

score, while for the maximum likelihood estimator, the identity weight matrix is

also efficient due to Bartlett’s identities. Despite using score-type equations as

moment conditions, our proposed estimator is not efficient, since an identity of

Barlett type is not generally satisfied. Hwang & Sun (2018), however, find that the

finite sample performance of the efficient estimator is often inferior to an a priori

chosen weighting matrix, since the uncertainty in estimating the weighting matrix is

ignored in the asymptotics. If the cost-benefit trade-off is unclear, they recommend

sticking to an a priori chosen weighting matrix, in line with our proposal of using

θ̂n. Compared to the efficient estimator, our proposal also has the computational

advantage that the score need not be computed.

5.5 Numerical Study

5.5.1 Data-generating process

We use the multistate event model and three stage adjudication model depicted in

Figure 5.1. A jump is confirmed if and when state 3 of the adjudication model is hit.

Multistate models are simulated using Lewis’ thinning algorithm from Ogata (1981).

We refer to Section F of the Supplementary material for additional figures, tables,

and details regarding the numerical study. We compare our approach with oracle

methods that use the filtration F∗, which is unavailable to the statistician, and

naive methods that either use all reported events without back-censoring (Naive

1) or back-censor by one year and delete reported events if they have been under

adjudication for over two years at time η (Naive 2).

1

2

3

µ∗
12

µ∗
13, U

µ∗
23, U , ξ

1 2 3
ω12 ω23

Figure 5.1: Event history model (left) and adjudication model (right). Symbols U and ξ
indicate the presence of reporting delays and adjudication processes, respectively.

A total of 400 samples of size n = 1500 with time-horizon η = 5 years are con-

sidered. For a given subject, the data is generated as follows: V ∼ Uniform(0, 1)

and C | V ∼ Uniform(V, η). Subjects enter in state 1 with no additional left-

truncation information. The baseline covariate is X ∼ Uniform(−4, 4). We let

θ = (log 0.15, 0.1, 0.4, log 0.1, 0.03,−0.3,−0.3) and generate events using the rates
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µ̃12(t;X) = exp{θ1+θ2× (t+X)+θ3× sin(0.5πX)}, µ̃13(t;X) = exp{θ4+θ5× t2+
θ6 × cos(0.5πX)}, and µ̃23(t; T̃1, X) = exp{θ7 × (t− T̃1)X2}, which upon deletion

of unreported jumps gives (T̃m, Ỹm)m≥1 or upon deletion of rejected jumps gives

(T ∗
m, Y

∗
m)m≥1. The rates are relatively large, and on average around 260 transitions

from 1 to 3, 415 transitions from 1 to 2, and 180 transitions from 2 to 3 are

generated.

To model reporting delays, impose a Weibull distribution with proportional re-

verse time hazards, that is α(t;X) = α0(t) exp(Xβ) for α0(t) =
kλktk−1

exp{(λt)k}−1
. This

results in a power model for the distribution function t 7→ [1− exp{−(λt)k}]exp(Xβ)

which we denote Weibull(λ, k, β). Let f = (2, 0.5, 0.1, 1, 1.5, 0.2). Reporting

delays are distributed as Weibull(f1, f2, f3) when coming from state 1 and as

Weibull(f4, f5, f6) when coming from state 2. The generated reporting delays

have means close to one and standard deviations around 0.15 and 0.05, respec-

tively. The adjudication rates are ω12(t;Ht−) = g1 × {X/(t− T̃2 − Ũ2 + 2)}2 and

ω23(t;Ht−) = exp{g2 × (t − τ1,1)} with g = (0.8,−1.2), leading to a long-term

confirmation rate of 37%. To go from µ̃jk to µ∗
jk, note that µ∗

12(t;X) = µ̃12(t;X)

and µ∗
13(t;X) = µ̃13(t;X), while an expression for µ∗

23(t, Vt;X) may be found in

Section F of the Supplementary material.

5.5.2 Finite sample performance

The regularity assumptions from Theorem 5.4.1 are easily seen to be satisfied,

and we hence expect the proposed estimators to be unbiased and asymptotically

normal. In Table 5.1 we report the bias and the empirical standard deviation (SD)

of the parameter estimators of θ using the different methods. A corresponding

table for the estimators ĝn and f̂n can be found in Section F of the Supplementary

material. The results are generally as expected. We find comparable bias for the

proposed method and oracle methods, with a higher SD for the proposed method.

The bias is slightly higher for the Poisson approximation with SD comparable to

the proposed method. The naive methods are slightly worse than the proposed

method for (θ1, θ2, θ3), moderately worse for (θ4, θ5, θ6), and substantially worse for

θ7. The naive methods generally have comparable performance except that Naive 1

is superior for θ4 and Naive 2 is superior for θ7. We conclude that our proposed

method works well.

The Poisson approximation is also expected to perform well since there is no

jump after the transition affected by reporting delays, confer with Section 5.3.3.

Since the hazards are relatively large, the decrease in bias when going from the

Poisson approximation to our proposed method is non-negligible. Depending on

the application, this reduction in bias might be worth the significantly longer

computation times. With our implementation and hardware setup, the Poisson

approximation for θℓ (ℓ = 1, . . . , 6) took only 7 seconds, while the proposed method
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took about 300 seconds.

We also seek to verify the bootstrap procedure outlined in Section 5.4. We

here focus on θ7 since its estimation is affected by both reporting delays and

incomplete event adjudication. Based on k = 400 estimates of θ7 with 1000

bootstrap resamples and confidence level 1−α = 0.90, 0.95, 0.99, we obtain coverage

rates of 89.5, 95.0, 98.7. We conclude that the bootstrap works well as the coverage

rates are close to the nominal level.

Table 5.1: Bias and empirical standard deviation (SD) of the estimator θ̂n based on 400
simulations of size n = 1500.

Proposed method Oracle Poisson approx. Naive 1 Naive 2

Parameter Bias SD Bias SD Bias SD Bias SD Bias SD

θ1 = log 0.15 -.004 .067 -.008 .031 -.010 .067 -.011 .066 -.010 .066

θ2 = 0.1 -.000 .020 -.001 .020 -.006 .020 -.006 .020 -.006 .021

θ3 = 0.4 .003 .078 .003 .078 -.002 .078 -.002 .078 -.000 .079

θ4 = log 0.1 .003 .084 .001 .083 .012 .091 -.041 .077 -.051 .082

θ5 = 0.03 .000 .012 -.000 .013 -.006 .016 -.018 .011 -.015 .014

θ6 = −0.3 -.000 .094 -.001 .088 .007 .094 -.009 .087 -.007 .090

θ7 = −0.3 -.011 .066 -.011 .054 -.012 .066 .157 .023 .148 .069

5.5.3 Robustness against misspecification

To investigate the performance of the proposed method under misspecification, we

use the same simulations but consider parameters estimated under a misspecified

parametric family for (T ∗
m, Y

∗
m)m≥1 characterized by the hazard rates

µmiss
12 (t;X) = exp{θ1 + θ2 × t+ θ3 ×X},
µmiss
13 (t;X) = exp{θ4 + θ5 × t+ θ6 ×X},

µmiss
23 (t; T̃1, X) = exp{θ7 + θ8 × (t− T̃1) + θ9 ×X}.

This misspecification is substantial since it disregards the non-linearities and inter-

actions present in the true hazards. We both consider the case where the reporting

delay and adjudication models are correctly specified, and a doubly misspecified

case where these are also misspecified via the following parametric families:

ωmiss
12 (t;Ht−) = exp{g1 ×X + g2 × (t− T̃2 − Ũ2)},
ωmiss
23 (t;Ht−) = exp{g3 ×X + g4 × (t− τ1,1)},

and α(t;X) = α0(t) exp(Xβ) with α0 being the reverse time hazard for a Gamma

distribution with shape parameter k and rate parameter λ.

Since it is no longer meaningful to compare parameter values, we instead compare

the performance of the different estimation approaches for the expected duration
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Figure 5.2: Plot of plug-in estimates of Va(t;x) averaged over 400 samples of size
n = 1500 with t = η on the left and t = 2η on the right.

spent in state 2 before time t, which is denoted Va(t;X) = E{
∫
[0,t]

I∗2 (s) ds | X}, with
t ∈ {η, 2η}. In actuarial contexts, this may be recognized as an active reserve for a

unit disability annuity. Note that the case t = 2η requires extrapolation which is not

inherently an issue for parametric models. The estimand Va is calculated by solving

the differential equation from Corollary 7.2 in Adékambi & Christiansen (2017)

using the fourth-order Runge-Kutta method. Since it was observed that the Poisson

approximation performed very well for this estimand, as illustrated in Figure 5.2,

we have chosen to only consider the misspecified model used in conjunction with

the Poisson approximation. The results are illustrated in Figure 5.2.

The oracle, proposed, and Poisson approximation approaches are all very close

to the true value of Va, with the Poisson approximation showing slight deviations

around X = 0 and X = 2. Naive 1 performs reasonably albeit with some noticeable

bias, while Naive 2 seems to be systematically biased upwards except for t = 2η and

X ≥ 2 where it is very close to the true value. The misspecified parametric model

captures the local x-dependence of Va(t;x) the worst, but identifies the correct

overall level for the estimand. This behavior is similar to how maximum likelihood

estimators behave under misspecification, see Halbert (1982). Including polynomial

or sinusoidal transformations of X in the parametric model would likely have led

to a better fit for the local behavior of Va, but including too many non-linear

terms could lead to high variance estimators due to overfitting. The performance is

comparable for t = η and t = 2η, showing that our method is able to capture the

general trends reasonably well even under substantial model misspecification.
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5.6 Data Application

5.6.1 Data characteristics

We introduce a new data set LEC-DK19 (Loss of Earning Capacity – Denmark

2019) collected by a large Danish insurer in the period 31/01/2015 to 01/09/2019

with time of analysis η = 01/09/2019 and apply our proposed estimation procedure

to this data. Observations are available on a monthly grid. Subjects enter into the

data when they enter the portfolio and are censored when they leave the portfolio.

Claims may be reported after censoring, meaning that information on reporting

delays and adjudication may arrive after censoring. A total of 416,483 insured are

included across five tables concerning disabilities, reactivations, disability delays,

disability adjudications, and reactivation adjudications. Of the 413,139 insured

in the disability data, 1,773 (0.43%) have an unrefuted disability; disabilities are

thus rare. Of the 3,011 insured in the reactivation data, 1,133 (37.63%) have an

unrefuted reactivation. The data is based on raw data that has been anonymized

and slightly altered so as not to reveal any confidential information about the

individual subjects or the insurance portfolio. Available baseline covariates are

gender and date of birth.

1 2 3
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23, ξ

µ∗
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ω14 ω24

Figure 5.3: Event history model (left) and adjudication model (right). For events, active
is 1, disabled is 2, reactivated is 3, and dead is 4. For adjudications, active report is 1,
inactive report is 2, adjudicated is 3, and dead is 4.

5.6.2 Model specification

We model the data with the multistate model depicted in Figure 5.3. Subjects

can become disabled, reactivate from disablement, and die. A disability starts in

the adjudication state 1, is confirmed if state 3 is hit, and otherwise rejected. A

reactivation starts in adjudication state 2 and the reactivation is annulled if state

3 is hit. Only disablements seem to exhibit reporting delay, likely because the

reactivations result from the insurer terminating payments.

We employ the Poisson approximation, which implies that the hazards can be

estimated separately. We here only estimate µ∗
12 and µ∗

23, partly because these are

of primary interest, but also because only deaths recorded during the adjudication

period are included in the data, impeding estimation of the full event history model.
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Via back-censoring, it is seen that the hazard µ∗
12 likely has order of magnitude 10−2,

which is one to two orders of magnitudes less than the hazards in the numerical

study of Section 5.5, so the incurred approximation error for µ∗
12 is expected to be

negligible. The lack of mortality data makes it difficult to assess the approximation

error for µ∗
23, however an alternative is to approximate the disabled mortality hazard

with zero.

The hazards are regressed on the baseline covariates and the time elapsed since

31/01/2015, and µ∗
23 is additionally regressed on the duration spent in the disabled

state. An adjudication hazard is estimated for each transition. Following the

form of Ht suggested in Section 5.2, the adjudication hazards for disabilities are

regressed on the duration since the disability occurred and the associated reporting

delay, and the adjudication hazards for reactivations are regressed on the time since

the disability and reactivation events. In addition, for disabilities we regress on

whether state 2 has previously been hit. For each adjudication and event hazard,

the covariates enter in a linear predictor with log link. The log link implies that the

hazards are always positive, so a disability rejection or reactivation confirmation

is only certain once the insured dies, but the probability of a confirmed jump

decreases towards zero as the duration of adjudication increases towards infinity.

For reporting delays, we employ the Weibull proportional reverse time hazards of

Section 5.5 with age entering as age at disability onset. Since the data set contains

monthly records, we employ the Poisson regression approach for implementation as

described in Section D of the Supplementary material.

5.6.3 Empirical results

In Table 5.2, we present the non-nuisance parameter estimates and percentile boot-

strap confidence intervals computed using 400 bootstrap samples. For comparison,

we additionally employ a naive estimation procedure consisting of using all reported

unrefuted events with no back-censoring. A corresponding table for the nuisance

parameters is provided in Section G of the Supplementary material. For this data,

we see that adjusting for reporting delays and incomplete event adjudication has

a substantial effect on the estimated level and calendar-time dependence of the

disability hazard. The effects on the parameter estimates of the reactivation hazard

are also noticeable, but contrary to the case for the disability hazard, the naive

estimates stay firmly within the confidence intervals except for the calendar-time

dependence. In Figure 5.4, predicted rates across the data set, using both the

proposed and naive procedure, are shown against the corresponding empirical rates

aggregated by yearly tenths. Since the naive empirical rates use all unrefuted events,

they are higher than the adjusted empirical rates for reactivations. For disabilities,

they are higher in the first years and lower in the later years, where the influence of

reporting delays is more substantial. Both rates show large calendar-time depen-
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dence, which is a distinct feature of the data set that implies an especially poor

forecasting performance of back-censoring and underscores the importance of our

proposed methods for disability insurance applications.

Table 5.2: Parameter estimates (Est.), Naive parameter estimates (Naive), and 95%
bootstrap percentile confidence interval (CI) for θ using the proposed method and 400
bootstrap resamples.

µ∗
12 µ∗

23

Parameter Est. Naive CI Est. Naive CI

Age .023 .022 (0.018, 0.027) -.012 -.012 (-0.018, -0.007)

Male -7.46 -7.11 (-7.65, -7.23) .334 .262 (0.073, 0.624)

Female -8.66 -8.25 (-8.87, -8.40) .756 .674 (0.456, 1.07)

Time .304 .098 (0.188, 0.357) -.125 -.068 (-0.168, -0.073)

Duration - - - -1.04 -1.03 (-1.15, -0.942)

Figure 5.4: Fitted rates (lines) and occurrence-exposure rates (points) for the proposed
method (black) and the naive method (gray). Disability rates are shown on the left and
reactivation rates on the right.

The alternative approach, where the Poisson approximation is not employed but

the disabled mortality is approximated with zero, leads to the estimated regressors

of µ∗
23 being (−0.011, 0.373, 0.840,−0.260,−0.907). Compared with the regressors

obtained when using the Poisson approximation, the main difference is that a portion

of the duration dependence is shifted to calendar-time dependence. This would have

a noticeable influence on the forecasted reactivation rates. For real applications, we

therefore recommend using the full estimation procedure with access to mortality

data when estimating the reactivation hazard. We also recommend validating the

models by comparing the original predictions with predictions obtained using the

same data but with different time of analyses. However, this is not possible with the

current data, as the disability and reactivation occurrences, along with exposures,
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are available only for a single valuation date. Moreover, their values at different

valuation dates cannot be inferred from the adjudication data, since the same ID

does not correspond to the same insured individual across the separate data tables.

Note also that usual out-of-sample validation is not applicable since the data itself

is biased.

In Figure 5.5, we use the link between reverse time hazard estimation and Poisson

regression, which is described in Section D of the Supplementary material, to plot

the fitted reverse time hazard rates against empirical occurrence-exposure rates.

The model shows no obvious lack of goodness-of-fit. Figure 5.6 contains similar plots

for the adjudication hazards as a function of the duration since the unadjudicated

event occurred and which also do not show no systematic deviations.

Figure 5.5: Fitted rate (line) and occurrence-exposure rate (points) for the reverse time
hazard of the reporting delay distribution.

Figure 5.6: Fitted rates (lines) and occurrence-exposure rates (points) for the adjudication
hazards graphed as a function of the duration since the unadjudicated event occurred.
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5.7 Closing Remarks

We have proposed a parametric two-step method to estimate hazards when data is

left-truncated, right-censored, and contaminated by reporting delays and incomplete

event adjudication. We proved that the estimators and their bootstrapped versions

are weakly consistent and asymptotically normal. The numerical study showed

favorable performance of the proposed method compared to other alternatives,

but also highlighted that for small hazards the Poisson approximation performs

reasonably while being considerably less computationally demanding. Our approach

overcomes the need for back-censoring, meaning that the most recent data may be

used. This feature is particularly useful in monitoring the emergence of new trends

on a population level, confer with the data application in Section 5.6.

The Supplementary material contains Section A–G which includes Tables and

Figures referenced in Sections 5.2-5.6. The R code and the LEC-DK19 data are

available on GitHub: https://github.com/oliversandqvist/Web-appendix-e

stimation-contamination.
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The supplementary material is organized as follows. Section 5.A provides a dis-

cussion of the link between the proposed estimation procedure and imputation. In

Section 5.B, we prove Lemma 5.3.1 and derive an error-bound for the Poisson ap-

proximation. In Section 5.C, we discuss the estimation procedure and its efficiency

under endogenous reporting delays. Section 5.D provides a way to implement parts

of the proposed estimation procedure via Poisson regression and explains how this

link may be used to construct goodness-of-fit plots. In Section 5.E, we derive the

large-sample behavior of our estimators and prove Theorem 5.4.1. Section 5.F con-

tains further details regarding the data-generating mechanism used in the numerical

study as well as additional figures and tables. Section 5.G contains additional

figures and tables for the data application.

https://github.com/oliversandqvist/Web-appendix-estimation-contamination
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5.A Relation to Imputation

The proposed estimation procedure corresponds to frequentist imputation when

the number of imputations b tends to infinity. With finite b, one may form a

single ‘clustered data’ objective function 1
b

∑b
j=1

1
n

∑n
i=1 ℓ(θ; f , kij), where kij is

the imputed value of the adjudication outcome for individual i in the imputed dataset

j. This procedure is described and analyzed in Wang & Robins (1998), Robins

& Wang (2000), and Kim (2011) for both finite b and in the limit b → ∞. An

approximate maximizer of
∑n

i=1 ℓ(Zi,θ; f ,g) could thus alternatively have been

based on a large but finite number of imputed datasets (simulating kij based on its

distribution under g conditional on Zi), where the user inputs the b×n observations

as ‘independent’ observations into a standard algorithm that is able to maximize

ℓ(θ; f). For finite b, one may alternatively use the multiple imputation approach

described on p. 76 of Rubin (1987), where an estimate θ̂nj (j = 1, . . . , b) is computed

for each of the b imputed datasets by generating the imputed values under the

posterior distribution of the missing values given the observed values under some

specified Bayesian model. A final estimate is then formed by θ̂n = 1
b

∑b
j=1 θ̂nj .

Under some regularity assumptions, p. 117 of Robins & Wang (2000) shows these

procedures to be n-asymptotically equivalent for b = ∞, while for finite b they

have the same asymptotic mean but the frequentist method has a strictly smaller

asymptotic variance.

5.B Distribution of the Thinned Marked Point Process

5.B.1 Proof of Lemma 5.3.1

We derive an operational expression for the hazard µjk, which in turn gives an

expression for the partial log-likelihood ℓ(θ; f). The calculations become straight-

forward by focusing on the jump time and jump mark distribution of the next

jump in (Tm, Ym)m≥1 given the previous jump times and jump marks. Let

J∗
m = (T ∗

ℓ , Y
∗
ℓ )1≤ℓ≤m and Jm = (Tℓ, Yℓ)1≤ℓ≤m denote the first m jump times

and jump marks. The baseline covariates are suppressed throughout.

Proof. Let P be the distribution under θ and f . All calculations hold on the event

(Tm <∞). For the jump time distribution, Assumption 5.2.1 implies that

P (Tm+1 ≤ t | Jm) = P (T ∗
m+1 ≤ t, T ∗

m+1 + U∗
m+1 ≤ η | J∗

m, T
∗
m + U∗

m ≤ η)

=

∫ t

0

∫ η−s

0

P (U∗
m+1 ∈ du | J∗

m, T
∗
m+1 = s)

P (T ∗
m + U∗

m ≤ η | J∗
m)

P (T ∗
m+1 ∈ ds | J∗

m).

For P (U∗
m+1 ∈ du | J∗

m, T
∗
m+1 = s), one may use the law of total probability with
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respect to Y ∗
m+1 to get

P (U∗
m+1 ∈ du | J∗

m, T
∗
m+1 = s) =

J∑
k=1

prU{du; (J∗
m, s, k), f}

µ∗
Y ∗
mk(s;J

∗
m,θ)

µ∗
Y ∗
m

•(s;J∗
m,θ)

.

Furthermore,

P (T ∗
m+1 ∈ ds | J∗

m) = 1(s≥T∗
m) exp

{
−
∫ s

Tm

µ∗
Y ∗
m

•(v;J
∗
m,θ) dv

}
µ∗
Y ∗
m

•(s;J
∗
m,θ) ds

by Assumption 5.2.1. Inserting these results gives

P (Tm+1 ≤ t | Jm) = prU (η − T ∗
m;J∗

m, f)
−1 ×

∫ t

T∗
m

exp

{
−
∫ s

Tm

µ∗
Y ∗
m

•(v;J
∗
m,θ) dv

}

×
J∑

k=1

prU{η − s; (J∗
m, s, k), f}µ∗

Y ∗
mk(s;J

∗
m,θ) ds.

We now move on to the jump mark distribution. For t ≤ η,

P (Ym+1 = k | Jm, Tm+1 = t) = P (Y ∗
m+1 = k | J∗

m, T
∗
m+1 = t, T ∗

m+1 + U∗
m+1 ≤ η)

=
P (Y ∗

m+1 = k, U∗
m+1 ≤ η − t | J∗

m, T
∗
m+1 = t)

P (U∗
m+1 ≤ η − t | J∗

m, T
∗
m+1 = t)

.

Similar factorizations to before lead to

P (Ym+1 = k | Jm, Tm+1 = t) =
prU{η − t; (J∗

m, t, k), f}µ∗
Y ∗
mk(t;J

∗
m,θ)∑J

ℓ=1 prU{η − t; (J∗
m, t, ℓ), f}µ∗

Y ∗
mℓ(t;J

∗
m,θ)

=
νY ∗

mk(t;J
∗
m,θ, f)

νY ∗
m

•(t;J∗
m,θ, f)

.

Therefore,

P (Tm+1 ∈ dt, Ym+1 = k | Jm)

P (Tm+1 ≥ t | Jm)

=
exp

{
−
∫ t

Tm
µ∗
Ym•(s;Jm,θ) ds

}
νYmk(t;Jm,θ, f)

prU (η − Tm;Jm, f)−
∫ t

Tm
exp

{
−
∫ s

Tm
µ∗
Ym•(v;Jm,θ) dv

}
νYm•(s;Jm,θ, f) ds

dt.

By Jacod’s formula for the intensity, see Proposition (3.1) of Jacod (1975), we

immediately get

µjk{t;J(t−),θ, f} = γ(t)× νjk{t;J(t−),θ, f}

on {Ij(t) = 1} using

exp

(
−
∫ t

Tm

µ∗
Ym•(s;Jm,θ) ds

)
= 1−

∫ t

Tm

exp

(
−
∫ s

Tm

µ∗
Ym•(v;Jm,θ) dv

)
µ∗
Ym•(s;Jm,θ) ds.
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Remark 5.B.1. Expressing the thinned hazard in terms of the original hazard allows

one to use observations in the thinned process to estimate the original hazard.

Usually one has some expert knowledge about the form of the underlying hazard,

while positing a reasonable model for the thinned hazard can be more challenging.

Therefore, it becomes natural to express the thinned hazard in terms of the original

hazard, as is our approach. If one had instead sought to use a data-adaptive method

to estimate the thinned hazard µ directly, it would have been more natural to invert

the above formula to obtain an expression for the original hazard µ∗ as a function

of µ. Under sufficient smoothness conditions, one can obtain a coupled system of

differential equations for the hazards µ∗
jk{s;J(s−),θ} in terms of µjk{s;J(s−),θ}.

We briefly sketch the argument. Note that, on (Tm <∞, Ym = j),

exp

{
−
∫ t

Tm

µj•(s;Jm,θ, f) ds

}
µjk(t;Jm,θ, f)

= exp

{
−
∫ t

Tm

µ∗
j•(s;Jm,θ) ds

}
µ∗
jk(t;Jm,θ)×

prU{η − t; (Jm, t, k), f}
prU (η − Tm;Jm, f)

.

This follows by casting P(Tm+1 ∈ dt | Jm)P(Ym+1 = k | Jm, Tm+1 = t) first in

terms of µ, invoking the definition of µjk, and secondly using the expressions

obtained above. Applying the logarithm and differentiating with respect to t gives

a differential equation for µ∗
jk. Together, these differential equations form a system

of nonlinear quadratic differential equations which may be solved numerically.

Remark 5.B.2. If instead of imposing a parametric model, one had assumed the

generalized Cox model of Dabrowska (1997), which allows for time-dependent

covariates, the derivation of the hazard in the thinned marked point process would

be unchanged, implying that µjk would no longer be on the proportional hazards

form. However, νjk stays on the proportional hazards form since the baseline

hazard absorbs the reporting delay distribution. When using the smoothed profile

likelihood of Dabrowska (1997) and the Poisson approximation, one may thus ignore

reporting delays for inference about the parametric part of a Cox model.

5.B.2 Approximating the hazard

Recall

γ̌(t) =
1−

∫ t

t−Vt−
P ∗{s;J(s−),θ}µ∗

j•{s;J(s−),θ} ds
1−

∫ t

t−Vt−
P ∗{s;J(s−),θ}νj•{s;J(s−),θ, f} ds

.

Since νjk{s;J(s−),θ, f} ≤ µ∗
jk{s;J(s−),θ}, it holds that γ̌(t) ≤ 1. Conversely, it

holds that νj•{s;J(s−),θ, f} ≥ 0 so γ̌(t) ≥ P ∗{t;J(t−),θ}. These are the bounds

reported in the main text. To show that µ̌jk and νjk only differ by a second order

term, impose Assumption 5.B.3.

Assumption 5.B.3. As a function of s, the hazards µjk(s;J,θ, f) and νjk(s;J,θ, f)

are continuous and almost everywhere continuously differentiable.
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Assumption 5.B.3 is not used elsewhere in the paper, but similar assumptions

are made when deriving asymptotic properties of the estimators. Assumption 5.B.3

implies that the hazards are almost everywhere continuously differentiable so Taylor’s

theorem with Lagrange remainder at the point t− Vt− and some straightforward

calculations yield that

γ̌(t) = 1 + Vt− × µ∗
j•{ζ;J(ζ−),θ} × P ∗{ζ;J(ζ−),θ}

×
(
νj•{ζ;J(ζ−),θ, f}
µ∗
j•{ζ;J(ζ−),θ}

[
1−

∫ ζ

t−Vt−

P ∗{s;J(s−),θ}µ∗
j•{s;J(s−),θ} ds

]
+

∫ ζ

t−Vt−

P ∗{s;J(s−),θ}νj•{s;J(s−),θ, f} ds− 1

)
×
[
1−

∫ ζ

t−Vt−

P ∗{s;J(s−),θ}νj•{s;J(s−),θ, f} ds
]−2

= 1 +R(t)

for some ζ between t−Vt− and t. Since γ̌ is bounded above by one, the term R(t) is

negative. The term νj•{ζ;J(ζ−),θ, f}/µ∗
j•{ζ;J(ζ−),θ}×

[
1−
∫ ζ

t−Vt−
P ∗{s;J(s−),θ}

×µ∗
j•{s;J(s−),θ} ds

]
is positive and R(t) thus necomes more negative by removing

this term. We thus get the following crude bound:

|R(t)| ≤ Vt− × µ∗
j•{ζ;J(ζ−),θ} × P ∗{ζ;J(ζ−),θ}

×
1−

∫ ζ

t−Vt−
P ∗{s;J(s−),θ}νj•{s;J(s−),θ, f}ds

[1−
∫ ζ

t−Vt−
P ∗{s;J(s−),θ}νj•{s;J(s−),θ, f} ds]2

= Vt− × µ∗
j•{ζ;J(ζ−),θ} × γ̌(ζ)

≤ Vt− × µ∗
j•{ζ;J(ζ−),θ}.

The bound in the main text now follows by using that

νjk{t;J(t−),θ, f} ≤ µ∗
j•{t;J(t−),θ} ≤ sup

s∈[t−Vt−,t]

µ∗
j•{s;J(s−),θ}.

5.C Fully Endogenous Reporting Delays

5.C.1 Estimation procedure

In the proposed method, adjudication enters exogenously while reporting delays enter

partially exogenously and partially endogenously with respect to the marked point

process of interest. Included jumps are on the form (T ∗
m, Y

∗
m)× 1(T∗

m+U∗
m≤η) instead

of the fully endogenous form (T ∗
m, Y

∗
m, U

∗
m)× 1(T∗

m+U∗
m≤η), while the adjudication

information A⟨η⟩,η only affects the imputation of ξ⟨η⟩. Here, we investigate what

happens if reporting delays instead are made fully endogenous. A result of this

is that one must describe how subsampling by prior reporting delays affects the
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intensity of future jumps. However, if one is able to specify this correctly, for example

through independence assumptions, there would be an efficiency gain in using the

resulting estimator. If Am,t is generated by a marked point process, one could

similarly make the adjudication information endogenous by extending with these

jump times and jump marks. However, it seems reasonable to retain adjudication

as exogeneous, as opposed to reporting delays, since the latter often stem from

the subject’s conduct, while adjudication likely results from the internal processes

of the data collector. This leads to a marked point process (T ∗
m, Y

∗
m, U

∗
m)m≥1. To

relate the hazards of this model to the hazards of (T ∗
m, Y

∗
m)m≥1, one has to posit a

model for how the hazards subsampled on reporting delays compare to the ones

where one does not condition on prior reporting delays. An example of such a model

could be the full independence (T ∗
m+1, Y

∗
m+1) ⊥⊥ U∗

1 , . . . , U
∗
m | J∗

m, meaning that

the hazards are unchanged by the additional information. Define JU (t) as the time

t event history of (Tm, Ym, Um)m≥1. Redoing the calculations of the distribution of

the thinned marked point process leads to the partial likelihood

ℓ(θ; f) =

J∑
j,k=1

∫ C

V

logµjk{t;X,JU (t−),θ, f}dNjk(t)

−
∫ C

V

Ij(t)µjk{t;X,JU (t−),θ, f} dt

+

∫ C

V

log

(
prU [dUN••(t); {JU (t−), t, k}, f ]
prU [η − t; {JU (t−), t, k}, f ]

)
dNjk(t).

In a slight abuse of notation, we have reused the previous notations ℓ(θ; f) and µjk,

where the latter now reads µjk{t;JU (t−),θ, f} = γ(t)× νjk{t;JU (t−),θ, f} for γ(t)
being

1−
∫ t

t−Vt−
P ∗{s;J(s−),θ}µ∗

j•{s;J(s−),θ} ds
prU{η − (t− Vt−);J(t− Vt−), f} −

∫ t

t−Vt−
P ∗{s;J(s−),θ}νj•{s;JU (s−),θ, f}ds

and νjk{t;JU (t−),θ, f} = µ∗
jk{t;J(t−),θ}prU

[
η − t; {JU (t−), t, k}, f

]
. Adjusting

for adjudication then leads us to introduce ℓ(Z,θ; f ,g) = Eg{ℓ(θ; f) | Z} =

w(0,Z;g)ℓ(θ; f , 0) + w(1,Z;g)ℓ(θ; f , 1). The estimation algorithm becomes more

involved, even under the Poisson approximation, since f in the optimizing step now

additionally enters into the first two terms of ℓ(θ, f). For fixed f , the estimation of

θ proceeds as in Section 5.3.3. This suggests to optimize ℓ(θ; f) by defining θ̂n(f)

as the estimated value of θ for a fixed value f , and then optimizing ℓ{θ̂n(f); f} over
f using some suitable numerical optimizer.

5.C.2 Efficiency

To discuss efficiency, we assume as in Section 5.4 that scores exist and we work

in a neighborhood of the true parameter where the score has a unique zero. We
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also impose certain regularity conditions such that θ̂n is asymptotically normal

in both cases. In principle, the efficiency gain or loss by making the reporting

delays endogenous can be inferred by comparing the expressions for the asymptotic

variance of θ̂n in the two cases. The relation between the covariance matrices,

however, appears unclear in the general case. Since the space of distributions

satisfying the moment conditions in the case where reporting delays are endogenous

is strictly contained in the space of distributions satisfying the moment conditions

in the partially endogenous case, the semiparametric efficiency bound in the fully

endogenous case is smaller or equal to the one in the partially endogenous case.

Consequently, when using the optimal weighting estimator as discussed in Section 5.4,

the estimator in the fully endogenous case is at least as efficient as the one in the

partially endogeneous case.

5.C.3 Admissibility in data application

The assumption of full independence is not admissible for the disability semi-

Markov application of Section 5.6. This is due to the fact that it is assumed that

death has no reporting delay, while monotone reporting remains imposed; this

has the effect that knowing (T ∗
m, U

∗
m) implies that a death cannot have occurred

in [T ∗
m, T

∗
m + U∗

m]. It might then instead be natural to say that the only extra

information gained by conditioning on reporting delays is that the subject has not

died before T ∗
m +U∗

m In Section 6 of Hoem (1972), the author obtains an expression

for the transition probabilities and rates of a semi-Markov process conditional

on the time of absorption not having occurred before a given time. Let Y be a

semi-Markov process with duration process V , and let the transition probabilities

be denoted p∗jk(s, t, u, z) = P(Yt = k, Vt ≤ z | Ys = j, Vs = u). Assume the state

space 1, . . . , J can be partitioned into two parts R1 and R2, where R2 is absorbing

in the sense that R1 cannot be reached from R2. The transition rates conditional

on being in R1 at time t are given by

µ∗
jk(s, u; t) = µ∗

jk(s, u)

∑
i∈R1

p∗ki(s, t, 0,∞)∑
i∈R1

p∗ji(s, t, u,∞)

for s < t and j ∈ R1, while µ
∗
jk(s, u; t) = µ∗

jk(s, u) for s ≥ t. So in principle,

this situation may also be handled by our approach. However, it would make

the estimation procedure considerably more computationally demanding since

the inclusion of the transition probabilities p∗jk adds another layer of numerical

integration that has to be performed separately for each candidate value of θ.

5.D Implementation of Estimation Procedure

A general approach to implementation of the estimation procedure for our parametric

models is to discretize the integrals and use Poisson regression. For counting process
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likelihoods written in terms of the usual hazards, this is well-known and has been

noted in, for instance, Lindsey (1995), but we see that this is also true for the

reporting delay distribution parameterized in terms of reverse time hazards, as

well as for the Poisson approximation of the likelihood. Contrary to the other

supplements, here the dependence on baseline covariates is made explicit.

Select a partition 0 = t0 < . . . < tA = η and discretize the likelihood according

to this partition. Then

ℓξ(Z
obs,g) =

⟨η⟩∑
m=1

K∑
j,k=1

A−1∑
a=0

logωjk(ta;Hta ,g)O
ξ
jk(a,m)

− ωjk(ta;Hta ,g)E
ξ
j (a,m) + εξ(A)

where Oξ
jk(a,m) = Nm,jk(ta+1)−Nm,jk(ta) and E

ξ
j (a,m) =

∫ ta+1

ta
Im,j(s) ds are the

adjudication occurrences and exposures, respectively, while εξ(A)→ 0 for A→∞.

Multiplying with the exposures inside the logarithm term, we recognize this as the

likelihood corresponding to the situation where Oξ
jk(a,m), (a = 0, . . . , A− 1;m =

1, . . . , ⟨η⟩; j, k = 1, . . . ,K), are mutually independent Poisson random variables

with mean log{ωjk(ta;Hta ,g)E
ξ
j (a,m)}. This further corresponds to a generalized

linear model with the Poisson family, log link, mean logωjk(ta;Hta ,g), and offset

logEξ
j (a,m). The discretization may either be seen as an approximation which

converges to the true criterion function for A → ∞, or it may be seen as the

true likelihood if the partition is chosen to be equal to the precision of the time

measurement.

Similarly for the reporting delays, let ta = (ta+1 + ta)/2 and note that

ℓU (f) =

Nc
••(η)∑

m=1

A−1∑
a=0

logα{ta;Jc(T c
m),X, f}OU (a,m)

− α{ta;Jc(T c
m),X, f}EU (a,m) + εU (A),

where OU (a,m) = 1(Uc
m∈(ta,ta+1]) and E

U (a,m) =
∫ ta+1

ta
1(Uc

m≤s≤η−T c
m) ds are the

reporting delay occurrences and exposures, while εU (A) → 0 for A → ∞. Note

that the partition here is allowed to differ from the one of ℓξ(Z
obs,g) despite using

the same notation. Here, the midpoints are chosen to take into account that the

reverse time hazard takes the value +∞ at time 0.

For the approximate likelihood of θ, we get

ℓapp(θ; f) =

J∑
j,k=1

A−1∑
a=0

logµ∗
jk{ta;J(ta),X,θ}Ojk(a)

− µ∗
jk{ta;J(ta),X,θ}PU [η − ta; {J(ta), ta, k},X, f ]Ej(a) + ε(A)

where Ojk(a) = N c
jk(ta+1) − N c

jk(ta) and Ej(a) =
∫ ta+1

ta
1(V,C](s)Ij(s) ds are the

occurrences and exposures, respectively, while ε(A) → 0 for A → ∞. When
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computing ℓapp(Z,θ; f ,g), the occurrence and exposure contributions have to be

weighted with the adjudication probabilities, but otherwise nothing changes. Most

generalized linear model software packages allow the user to specify such weights.

The link to Poisson regression simplifies practical implementation significantly.

Another useful consequence is that the link provides a natural way to construct

plots in which the fitted rates can be compared with empirical rates. If the hazards

are assumed to be piecewise constant, the maximum likelihood estimates become

the well-known occurrence-exposure rates. It is these occurrence-exposure rates

which we refer to as the empirical rates. The piecewise constant hazard assumption

can be imposed for any continuous covariate, for example calendar time, age, or the

duration since the occurrence of given event. By comparing the empirical rates with

the predicted rates from the fitted parametric model, one obtains a goodness-of-fit

plot.

In our numerical study, that data is on a jump time and jump mark format.

There we forego the Poisson regression, opting instead to utilize the specific choice

of parametric model to obtain a direct implementation; this includes the use of a

standard optimizer to maximize the resulting expressions. In our data application,

the data is on a monthly grid format, and there is considerably more data, which

leads us to use the Poisson regression approach outlined above, since estimation

might then exactly be based on aggregated data. When the number of observations

is significantly larger than the covariate space, which is the case in our data

application, this saves considerable amounts of storage and computation time.

5.E Asymptotics for the Parameters

Consistency of the nuisance parameter estimators f̂n and ĝn is needed in order

to achieve consistency of θ̂n and these estimators generally need a convergence

rate of a higher order than n1/4 in order to obtain asymptotic normality of θ̂n, see

e.g. Theorem 2 of Chen et al. (2003). In this framework, the convergence rate is

obtained with plenty to spare since parametric models under regularity conditions

and correct specifications admit n1/2-rates.

5.E.1 Consistency

Before showing asymptotic normality, we establish consistency. We focus on weak

consistency, as this suffices for asymptotic distribution theory. Showing strong

consistency of ĝn, f̂n, and θ̂n would, however, require almost no additional effort.

For Theorem 2.1 in Newey & McFadden (1994), one would change (iv) to hold

almost surely in order to obtain strong consistency. Similarly, for Theorem 1

in Delsol & Van Keilegom (2020), one could change (A1) such that the estimator

is required to be the actual maximizer of the objective function, which is satisfied
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for our estimators, and further impose that (A3) and (A4) hold almost surely

instead of in probability. Since we show (iv) and (A4) by a Glivenko–Cantelli

class argument, which implies almost sure convergence, we could equally well claim

strong consistency.

Our approach to showing consistency and asymptotic normality is not to find

minimal assumptions, but rather to formulate sufficient assumptions that are easy

to check in a given application and, in particular, are not too restrictive for our

applications.

Assumption 5.E.1.

(i) Different g give rise to ωjk that are not almost surely equal.

(ii) The g parameter space G is a compact subset of a Euclidean space, and g0

belongs to the interior.

(iii) The hazards ωjk(t;H,g) are continuous in g.

(iv) supg |ℓξ(Zobs,g)| has finite expectation and supg,H ωjk(t;H,g) are Lebesgue-

integrable on [0, η].

In the following, we use the usual stochastic order notation oP , that is we write

xn = oP (rn) if |xn|/rn → 0 in probability.

Proposition 5.E.2. Under Assumptions 5.2.1-5.2.3 and Assumption 5.E.1, it

holds that ∥ĝn − g0∥ = oP (1).

Proof. We verify the conditions of Theorem 2.1 in Newey & McFadden (1994).

Condition (i) is satisfied by non-negativity of the Kullback-Leibler divergence, also

known as Gibbs’ inequality or the information inequality, and the identifiability

of the model implied by Assumption 5.E.1(i); each contribution to the sum in ℓξ
is a usual log-likelihood of a marked point process which is maximized in g0 by

Gibbs’ inequality, and the identifiability ensures that a different g would lead to a

smaller value for at least one of the contributions using Gibbs’ inequality and the

one-to-one correspondence between compensators and distributions. Condition (ii)

is satisfied by Assumption 5.E.1(ii). We now consider Condition (iii). For a given

g ∈ G, take (gj)j≥1 with gj → g. By Assumption 5.E.1(iv), we may use domi-

nated convergence which implies limj→∞ E{ℓξ(Zobs,gj)} = E{limj→∞ ℓξ(Z
obs,gj)}.

Again by Assumption 5.E.1(iv), dominated convergence and Assumption 5.E.1(iii)

gives limj→∞ ℓξ(Z
obs,gj) = ℓξ(Z

obs,g). Thus, Condition (iii) holds. Condition (iv)

corresponds to showing that {ℓξ(·,g) : g ∈ G} is Glivenko–Cantelli. We will use

Example 19.8 of Van der Vaart (1998). We note that g 7→ ℓξ(Z
obs,g) is continuous

for any Zobs by previous observations and has an integrable envelope function by
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Assumption 5.E.1(iv). Hence the class is Glivenko–Cantelli and Condition (iv) is

satisfied.

Assumption 5.E.3.

(i) Different f gives rise to α that are not almost surely equal.

(ii) The f parameter set F is a compact subset of a Euclidean space, and f0 belongs

to the interior.

(iii) The reverse time hazard α(t;J,X, f) is continuous in f .

(iv) supf |ℓU (f ; k)| for k = 0, 1 has finite expectation and supf ,J,X α(t;J,X, f) is

Lebesgue-integrable on [0, η].

(v) The adjudication probabilities w(1,Z;g) are continuous in g.

Proposition 5.E.4. Under Assumptions 5.2.1-5.2.3, Assumption 5.E.3, and if

∥ĝn − g0∥ = oP (1), it holds that ∥̂fn − f0∥ = oP (1).

Proof. We verify the conditions in Theorem 1 of Delsol & Van Keilegom (2020).

Condition (A1) is satisfied by the specification of f̂n as the maximizer of the objective

function. By standard arguments, Condition (A2) is satisfied if E{ℓU (Z, f ;g0)}
is continuous in f since F is compact. This is because Fε = {f ∈ F : ∥f − f0∥ ≥
ε} is closed and hence compact, so in this case there exists fε which satisfies

supf∈Fε
E{ℓU (Z, f ;g0)} = E{ℓU (Z, fε;g0)} < E{ℓU (Z, f0;g0)} by uniqueness of

the maximum implied by Gibbs’ inequality and the identifiability implied by

Assumption 5.E.3(i). We show simultaneous continuity in f and g, as this is useful

for checking other regularity conditions. The continuity is a direct consequence

of Assumptions 5.E.3(iii)-(v) by two applications of dominated convergence since

supf ,g |ℓU (Z, f ;g)| ≤ supf |ℓU (f ; 1)|+ supf |ℓU (f ; 0)|. Condition (A3) follows by the

assumption that ĝn is weakly consistent. Condition (A4) follows if the class of

functions {ℓU (·, f ;g) : f ∈ F,g ∈ G} is Glivenko–Cantelli. We use Example 19.8

in Van der Vaart (1998). Continuity and the existence of an integrable envelope

function for the class follows by previous observations. Hence Condition (A4) is

satisfied. For Condition (A5), we take gj → g0 for j →∞. Note that by the triangle

inequality, |E{ℓU (Z, f ;gj)} − E{ℓU (Z, f ;g0)}| ≤ E{|w(0,Z;gj) − w(0,Z;g0)| ×
supf |ℓU (f ; 0)| + |w(1,Z;gj) − w(1,Z;g0)| × supf |ℓU (f ; 1)|}. The right-hand side

does not depend on f and converges to 0 for gj → g0 by dominated convergence

and Assumption 5.E.3(v), hence Condition (A5) holds.

Assumption 5.E.5.

(i) Different θ gives rise to µ∗
jk that are not almost surely equal.
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(ii) The θ parameter space Θ is compact, and θ0 belongs to the interior.

(iii) supθ,f ,g |ℓ(Z,θ; f ,g)| has finite expectation.

(iv) supθ,J,X µ
∗
jk(t;J,X,θ) is Lebesgue-integrable on [0, η].

(v) The hazards µ∗
jk(t;J,X,θ) are continuous in θ.

(vi) The partial derivatives of ℓ(Z,θ; f ,g) with respect to the coordinates of θ, f ,

and g all exist and are continuous. Furthermore, supθ,f ,g ∥∇(θ,f ,g)ℓ(Z,θ; f ,g)∥
has finite expectation.

Proposition 5.E.6. Under Assumptions 5.2.1-5.2.3, Assumption 5.E.5, and if

∥ĝn − g0∥ = oP (1) and ∥̂fn − f0∥ = oP (1), it holds that ∥θ̂n − θ0∥ = oP (1).

Proof. We verify the conditions in Theorem 1 of Delsol & Van Keilegom (2020).

Condition (A1) is satisfied by the specification of θ̂n as the maximizer of the

objective function. Similarly to Proposition 5.E.4, Condition (A2) is satisfied by

standard arguments if E{ℓ(Z,θ;g0, f0)} is continuous in θ since Θ is compact by

Assumption 5.E.5(ii) and the model is identifiable by Assumption 5.E.5(i). We

start by showing the Lipschitz-type property |ℓ(Z,θ1; f1,g1) − ℓ(Z,θ2; f2,g2)| ≤
b(Z) ∥(θ1, f1,g1)− (θ2, f2,g2)∥ with b being an integrable function, as this is useful

for showing other regularity conditions. If this holds, we see that∣∣∣E{ℓ(Z,θ1; f1,g1)} − E{ℓ(Z,θ2; f2,g2)}
∣∣∣ ≤ E{|ℓ(Z,θ1; f1,g1)− ℓ(Z,θ2; f2,g2)|}

≤ E{b(Z) ∥(θ1, f1,g1)− (θ2, f2,g2)∥}

and since b is integrable, dominated convergence implies that the right-hand side

converges to 0 for (θ1, f1,g1)→ (θ2, f2,g2), and hence E{ℓ(Z,θ; f ,g)} is continuous
in θ, f , and g. To show the Lipschitz-type property, note that Assumption 5.E.5(vi)

implies that ℓ(Z,θ; f ,g) is differentiable in (θ, f ,g) for any fixed Z. The mean-value

theorem thus implies

ℓ(Z,θ1; f1,g1)− ℓ(Z,θ2; f2,g2)

= ∇(θ,f ,g)ℓ[Z, {1− k(Z)}(θ1; f1,g1) + k(Z)(θ2; f2,g2)]
⊤{(θ1, f1,g1)− (θ2, f2,g2)}

for some k(Z) ∈ (0, 1). The Cauchy-Schwarz inequality now gives the Lipschitz-type

property, with the integrability condition holding due to Assumption 5.E.5(vi).

Hence Condition (A2) holds. Condition (A3) follows by the assumption that

ĝn and f̂n are weakly consistent. Condition (A4) follows if {ℓ(·,θ; f ,g) : f ∈
F,g ∈ G,θ ∈ Θ} is Glivenko–Cantelli. This is the case by Example 19.7 and

Theorem 19.4 in Van der Vaart (1998) due to the Lipchitz-type property. Hence

Condition (A4) follows. Condition (A5) also follows from the Lipchitz-type property

and Assumption 5.E.5(ii).
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We now also consider consistency of Efron’s ‘simple’ nonparametric bootstrap

introduced in Efron (1979) and described in Section 5.4. Based on the previous

results, we immediately get weak consistency of the bootstrap estimator. The

proposition is comparable with Proposition 1 in Hahn (1996).

Proposition 5.E.7. Under Assumptions 5.2.1-5.2.3 and Assumptions 5.E.1-5.E.5,

one has
∥∥ĝboot

n − g0

∥∥ = oP (1), ∥̂fbootn − f0∥ = oP (1), and ∥θ̂bootn − θ0∥ = oP (1).

Proof. By the Glivenko–Cantelli property shown in Propositions 5.E.2-5.E.6, each of

the function classes {ℓξ(·,g) : g ∈ G}, {ℓU (·, f ;g) : f ∈ F,g ∈ G}, and {ℓ(·,θ; f ,g) :
f ∈ F,g ∈ G,θ ∈ Θ} converge uniformly supq

∥∥n−1
∑n

i=1 q(Z
obs
i )− E[q(Zobs)]

∥∥ =

oP (1), where q runs over the function class in question. Furthermore, we have

shown that there exists an integrable envelope function for each of the classes. The

bootstrap Glivenko–Cantelli theorem, Theorem 2.6 in Giné & Zinn (1990), then

implies that

sup
q

∥∥∥∥∥n−1
n∑

i=1

q(Zobs
i )− n−1

n∑
i=1

q(Zobs
ni )

∥∥∥∥∥ = oP (1)

almost surely. Consequently, the bootstrap estimators maximize their respective

non-bootstrap empirical objective functions up to an oP (1)-term, which is sufficient

to invoke both Theorem 2.1 of Newey & McFadden (1994) and Theorem 1 of Delsol

& Van Keilegom (2020).

A different approach to proving Proposition 5.E.7 would be to verify the conditions

of Theorem 3.5 in Arcones & Giné (1992).

5.E.2 Asymptotic Normality

We now consider the stacked estimating equation

n−1
n∑

i=1

h(Zobs
i ,θ, f ,g) = 0

for h(Zobs,θ, f ,g) = { d
dg ℓξ(Z

obs,g), d
df ℓU (Z, f ;g),

d
dθ ℓ(Z,θ; f ,g)}⊤. For the nui-

sance parameters, define k(Zobs, f ,g) = { d
dg ℓξ(Z

obs,g), d
df ℓU (Z, f ;g)}⊤. The exis-

tence of the scores is ensured by Assumption 5.E.5(vi) and Assumption 5.E.8(i).

Introduce also

H1 = E{∇θh(Z
obs,θ0, f0,g0)}, H2 = E{∇(f ,g)h(Z

obs,θ0, f0,g0)},
K = E{∇(f ,g)k(Z

obs, f0,g0)}, ψ(Zobs) = −K−1k(Zobs, f0,g0).

Assumption 5.E.8.
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(i) There exists a neighborhood of the true parameter denoted (Θ × F × G)δ =

{(θ, f ,g) : ∥(θ, f ,g)− (θ0, f0,g0)∥ ≤ δ} such that both d
dg ℓξ(Z

obs,g) and
d
df ℓU (Z, f ;g) exist and such that E{h(Zobs,θ, f ,g)} = 0 has a unique solution

in this neighborhood.

(ii) The score h(Zobs,θ, f ,g) is dominated by a square-integrable function of Zobs.

(iii) The gradient of the score ∇(θ,f ,g)h(Z
obs,θ, f ,g) exists and is continuous in

the parameters. Furthermore, it is dominated by a square-integrable function

of Zobs.

(iv) (H1,H2)
T (H1,H2) is nonsingular.

We may now show asymptotic normality. For the ordinary estimator, one

could proceed via Theorem 6.1 in Newey & McFadden (1994), but we instead use

Theorem 1 of Hahn (1996) as this also gives asymptotic normality of the bootstrap

estimator. Similar conditions to those of Hahn (1996) are found in Arcones & Giné

(1992).

Proposition 5.E.9. Under Assumptions 5.2.1-5.2.3 and Assumptions 5.E.1-5.E.8,

it holds that

(i) The ordinary estimators ĝn, f̂n, and θ̂n are asymptotically normal.

(ii)
√
n(θ̂n − θ0)→ N(0,V) in distribution for

V = H−1
1 E[{h(Zobs,θ0, f0,g0) +H2ψ(Z

obs)}
× {h(Zobs,θ0, f0,g0) +H2ψ(Z

obs)}⊤](H−1
1 )⊤.

(iii) The bootstrap estimators ĝboot
n , f̂bootn , and θ̂bootn are asymptotically normal

and, in particular,
√
n(θ̂bootn − θ̂n)→ N(0,V) in distribution.

Proof. Due to Assumption 5.E.8(i), our estimator can be formulated as a generalized

method of moment estimator with identity weighting matrix and parameter space

(Θ×F×G)δ. Theorem 1 of Hahn (1996) therefore becomes applicable. Condition (i)

is satisfied since a) the score equation has the true parameters as its unique solution

by Assumption 5.E.8(i), b) our data (Zobs
i )ni=1 is assumed to be independent and

identically distributed, c) the solution is well-separated by standard arguments since

(Θ× F×G)δ is compact and E{h(Zobs,θ, f ,g)} is continuous in the parameters by

dominated convergence and Assumptions 5.E.8(ii)-(iii), d) Glivenko–Cantelli holds

for the class {h(·,θ; f ,g) : (θ, f ,g) ∈ (Θ×F×G)δ} by Example 19.8 of Van der Vaart

(1998) since h(Zobs,θ, f ,g) is continuous in the parameters by Assumption 5.E.8(iii)

and has an integrable envelope function by Assumption 5.E.8(ii), e) there is an

integrable envelope function for the class as noted before, and f) the weighting
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matrix is equal to the identity weighting matrix. Condition (ii) holds by specification

of the estimators. Condition (iii) holds by Assumptions 5.E.8(ii)-(iii) via dominated

convergence, since these assumptions imply that h is continuous in the parameters

and that the integrand is dominated by an integrable function, just use (a− b)2 ≤
2(a2 + b2). Note that an exponent of 2 seems to be missing in the Hahn (1996)

paper; for comparison, see Theorem 21 (functional central limit theorem) in Chapter

VII of Pollard (1984). Condition (iv) holds if the class {h(·,θ, f ,g) : (θ, f ,g) ∈
(Θ× F×G)δ} is Donsker since Condition (iii) holds at any parameter value, not

just the true value. This can be shown via Example 19.7 and Theorem 19.5 in Van

der Vaart (1998) in the same way as how the Lipschitz-type property was shown

in the proof of Proposition 5.E.6: It is sufficient that h is differentiable in the

parameters and that the norm of the gradient is dominated by a square-integrable

function, and these properties are ensured by Assumption 5.E.8(iii). Condition (v)

holds by Assumptions 5.E.8(iii)-(iv). The first part of Condition (vi) holds by

Assumption 5.E.8(ii) and the second part holds by Theorem 3.1 of Andersen &

Dobric (1987) and their following remark when setting p = 2 and with their function

f being the score h. This is due to the following observations. Their equation (3.1.2)

holds by Assumption 5.E.8(ii) and the triangle inequality, their equation (3.1.3)

holds since the scores are both bounded and uniformly continuous with probability

one by Assumptions 5.E.8(ii)-(iii) combined with the Heine-Cantor theorem, and

the parameter set is compact (and hence totally bounded) with respect to the

original Euclidean metric.

The variance matrix calculation is now identical to that of Theorem 6.1 in Newey

& McFadden (1994), which leads to the desired result.

Theorem 5.4.1 is now a consequence of Propositions 5.E.2-5.E.9. Note that the

proof can be adapted to the case where one uses the optimal weight matrix.

5.F Additional Details for Numerical Study

5.F.1 Data-generating Process

Let the marked point process generated by the rates µ̃jk be denoted (T †
m, Y

†
m)m≥1.

Deletion of unreported events from (T †
m, Y

†
m)m≥1 leads to (T̃m, Ỹm)m≥1, while

deleting events that will be rejected leads to (T ∗
m, Y

∗
m)m≥1. The data is generated

according to the following algorithm:

(i) Simulate X, V , and C.

(ii) Simulate events in (V,C] using the rates µ̃jk and initial state 1.



168 Chapter 5. Buchardt, Furrer, & Sandqvist (2023b)

(iii) For jumps to state 3, simulate corresponding reporting delays with a distri-

bution that depends on whether or not a transition to state 2 has occurred

previously.

(iv) For transitions from state 2 to state 3, simulate adjudication events in (T †
2 +

U†
2 , η] if this interval is nonempty using the rates ωjk and initial state 1.

Events that are reported after η are flagged and deleted except for when implement-

ing oracle methods. The adjudication outcome ξ⟨η⟩ is simulated from a Bernoulli

distribution with success probability equal to its expectation given Hη, and events

with adjudication outcome zero are deleted when implementing oracle methods.

For simulation of the reporting delays, we note that if U ∼Weibull(λ, k, β), then

[1 − exp{−(λU)k}]exp(Xβ) = W in distribution, where W ∼ Unif(0, 1). Trivial

calculations then show that U = λ−1 × [− log{1−W exp(−Xβ)}]1/k in distribution.

Contour plots of the hazards µ̃jk, reporting delay reverse time hazards on log-scale,

and adjudication hazards are depicted in Figure 5.7.

To obtain an expression for µ∗
23, we first let p(X) be the probability that a newly

reported jump becomes confirmed. We have

p(X) =

(
1− exp

[
−
∫ ∞

0

g1 × {X/(v + 2)}2 dv
])

×
[
1− exp

{
−
∫ ∞

0

exp(g2 × v) dv
}]

=
{
1− exp

(
−g1 ×X2/2

)}
{1− exp(1/g2)}.

Note that µ̃23(t; T̃1, X) only depends on t and T̃1 through t − T̃1, which equals

Vt due to the lack of reporting delays for the transition to state 2, so we write

µ̃23(t; T̃1, X) = µ̃23(Vt;X). Using that thinning (T †
m, Y

†
m)m≥1 with the adjudication

outcomes leads to (T ∗
m, Y

∗
m)m≥1, similar calculations to the ones found in Section 5.B

of the Supplementary material yield

P(T ∗
2 ≥ t | T ∗

1 , Y
∗
1 = 2) = 1− p(X)

[
1− exp

{
1− exp(θ7VtX

2)

θ7X2

}]
and hence by Jacod’s formula for the intensity, see Proposition (3.1) of Jacod (1975),

µ∗
23(t, Vt;X,θ) =

p(X) exp[{1− exp(θ7VtX
2)}/(θ7X2)]µ̃23(Vt;X)

1− p(X)(1− exp[{1− exp(θ7VtX2)}/(θ7X2)])
.

In order to speed up the computation time when calculating θ̂n, we use that∫
µ∗
1•(s; ∅,θ) ds = {π/(4θ5)}1/2 exp {θ4 + θ6 × cos(0.5πX)} × erfi(θ

1/2
5 × s)

+ θ−1
2 × exp{θ1 + θ2 ×X + θ3 × sin(0.5πX)} × exp(θ2 × s)
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Figure 5.7: Contour plots of the hazards from the numerical study. The first axis is time
or duration depending on whether the hazard depends on the time or the duration in the
current state; none of the hazards depend on both.

to calculate Y1(t)P
∗{t;J(t−),θ} efficiently, where erfi is the imaginary error function.

This function is implemented in many software packages, but we instead use the

following 15’th order Taylor expansion around 0 to further speed up calculations:

erfi(z) = π−1/2×(2z+ 2
3z

3+ 1
5z

5+ 1
21z

7+ 1
108z

9+ 1
660z

11+ 1
4680z

13+ 1
37800z

15)+O(z17).

The approximation error for Y1(t)P
∗{t;J(t−),θ} was found to be of the order 10−7

for parameter choices near the true values, hence negligible. We further note

that simple calculations gave analytical expressions for the exposure-terms of the

log-likelihoods for g and f as well as for the Poisson approximation to the transition

from state 1 to state 2.
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Table 5.3: Bias, empirical standard deviation (SD), and root mean squared error (RMSE)
of the estimators ĝn and f̂n based on 400 simulations of size n = 1500.

Parameter Bias SD RMSE

g1 = 0.8 -.008 .104 .105

g2 = −1.2 -.035 .294 .296

f1 = 2 .010 .465 .465

f2 = 0.5 .004 .037 .037

f3 = 0.1 -.000 .032 .032

f4 = 1 -.001 .089 .089

f5 = 1.5 .040 .170 .174

f6 = 0.2 .004 .060 .060

Table 5.4: Bias and root mean squared error (RMSE) of the estimator θ̂n based on 400
simulations of size n = 1500.

Proposed method Oracle Poisson approx. Naive 1 Naive 2

Parameter Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

θ1 = log 0.15 -.004 .067 -.008 .033 -.010 .067 -.011 .067 -.010 .067

θ2 = 0.1 -.000 .020 -.001 .020 -.006 .021 -.006 .021 -.006 .021

θ3 = 0.4 .003 .078 .003 .078 -.002 .078 -.002 .078 -.000 .079

θ4 = log 0.1 .003 .083 .001 .083 .012 .092 -.041 .087 -.051 .096

θ5 = 0.03 .000 .012 -.000 .013 -.006 .017 -.018 .022 -.015 .021

θ6 = −0.3 -.000 .094 -.001 .088 .007 .094 -.009 .087 -.007 .090

θ7 = −0.3 -.011 .067 -.011 .055 -.012 .067 .157 .158 .148 .163

5.F.2 Results

In Table 5.3 we report the bias, the SD, and the RMSE of the parameter estimators

of g and f . In Table 5.4 we report the bias and the RMSE of the estimators of θ.

The findings for SD and RMSE are highly comparable. Histograms of the obtained

estimators are shown in Figure 5.8 and generally show approximate Gaussianity

with varying degrees of skewness. The bootstrap results are shown in Table 5.5, and

are based on k = 50, 100, 200, 300, 400 estimates of θ7 and 1000 bootstrap resamples.

We report the coverage of the confidence bands for several values of the number of

bootstrap runs k and the confidence level 1− α.

5.G Additional Details for Data Application

In Table 5.7 and Table 5.6, we present the parameter estimates and percentile

bootstrap confidence intervals for f and g, respectively. The confidence intervals

are computed using 400 bootstrap resamples. The variable ‘rejected before’ is

an indicator of the event that adjudication state 2 has been entered previously.

This variable is trivial in adjudication state 2 and hence not included in that
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Table 5.5: Coverage (%) of percentile bootstrap confidence bands for θ7 with k =
50, 100, 200, 300, 400 as well as 1− α = 0.90, 0.95, 0.99.

k Coverage (%)

90 95 99

50 91.8 93.9 95.9

100 87.9 91.9 97.0

200 87.9 93.0 98.0

300 90.0 95.0 98.3

400 89.5 95.0 98.7

Figure 5.8: Histograms of ĝn, f̂n, and θ̂n based on 400 samples of size n = 1500 with
the true values indicated by dashed lines.
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regression. There are no deaths observed from adjudication state 2 for disablements,

and we hence estimate no parameters for this transition, letting the hazard be

identically zero. Similarly, only one death is observed from adjudication state 1 for

reactivations, causing the Poisson regression algorithm to diverge, and we hence also

let this hazard be identically zero. One could of course have changed the regression

model to a simple intercept model and obtained a small positive hazard, but its

effect on the adjudication probabilities would be negligible and we hence forego this

modification.



5.G. Additional Details for Data Application 173

ω
1
2

ω
1
3

ω
1
4

ω
2
1

ω
2
4

P
ar
am

et
er

T
y
p
e

E
st
.

C
I

E
st
.

C
I

E
st
.

C
I

E
st
.

C
I

E
st
.

C
I

A
ge

R
ea
ct
iv
at
io
n

.0
05

(-
0.
01

0,
0
.0
1
8
)

.0
1
5

(0
.0
0
7,

0
.0
2
6
)

-
-

.0
0
0

(-
0.
01

1
,
0
.0
1
0)

.0
23

(-
0.
0
59

,
0
.1
0
5)

M
al
e

R
ea
ct
iv
at
io
n

.9
73

(0
.2
95

,
1
.6
3
)

1
.2
9

(0
.7
52

,
1
.7
6
)

-
-

-.
20

8
(-
0.
7
03

,
0
.2
9
5)

-5
.9
4

(-
10

.4
5
,
-2
.8
7
)

F
em

al
e

R
ea
ct
iv
at
io
n

1.
18

(0
.5
24

,
1
.8
4)

.7
7
1

(0
.1
5
9
,
1.
3
1)

-
-

-.
05

3
(-
0
.7
9
3,

0.
62

6)
-2
1
.1
0

(-
26

.2
4,

-1
8
.1
7
)

D
is
ab

il
it
y
d
u
ra
ti
on

R
ea
ct
iv
at
io
n

-.
06

5
(-
0.
24

7
,
0
.1
5
3)

-.
1
98

(-
0
.3
8
0
,
0.
0
05

)
-

-
.2
0
6

(0
.1
01

,
0.
3
25

)
-.
4
64

(-
1.
8
6,

0.
1
36

)

R
ea
ct
iv
at
io
n
d
u
ra
ti
on

R
ea
ct
iv
at
io
n

-.
04

2
(-
0.
27

3,
0.
2
05

)
-.
49

0
(-
0.
8
0
3,

-0
.2
0
0
)

-
-

-1
.2
5

(-
1.
49

,
-1
.0
5
)

.1
48

(-
1.
29

,
1
.6
6
)

A
ge

D
is
ab

il
it
y

-.
00

5
(-
0.
01

5,
0.
0
05

)
.0
0
1

(-
0
.0
0
3
,
0.
0
04

)
.0
13

(-
0.
0
54

,
0
.1
0
1)

.0
0
3

(-
0
.0
0
8,

0.
01

4
)

-
-

M
al
e

D
is
ab

il
it
y

-.
80

0
(-
1.
27

,
-0
.3
1
0
)

1
.0
6

(0
.8
70

,
1
.2
5
)

-4
.8
5

(-
1
0.
0
4,

4.
52

)
1.
1
6

(0
.5
78

,
1
.7
4
)

-
-

F
em

al
e

D
is
ab

il
it
y

-.
80

6
(-
1.
30

,
-0
.3
1
6)

1
.1
9

(0
.9
8
8
,
1.
4
1)

-5
.2
9

(-
22

.0
6
,
3.
1
7)

1
.0
8

(0
.3
5
3,

1
.7
1
)

-
-

D
is
ab

il
it
y
d
u
ra
ti
on

D
is
ab

il
it
y

.0
77

(-
0.
19

0
,
0
.3
1
5)

-.
2
34

(-
0
.3
4
3
,
-0
.1
29

)
.1
69

(-
1.
45

,
1
.2
3
)

-.
25

5
(-
0
.6
1
0,

0.
06

3
)

-
-

R
ep

or
t
d
u
ra
ti
on

D
is
ab

il
it
y

-.
25

0
(-
0.
80

2,
0
.2
8
0
)

.4
7
0

(0
.3
0
7
,
0.
6
80

)
-.
5
3
2

(-
21

1.
8
5,

2.
1
2)

-.
0
90

(-
0.
5
25

,
0.
41

3
)

-
-

R
ej
ec
te
d
b
ef
or
e

D
is
ab

il
it
y

.9
82

(0
.5
72

,
1
.3
8
)

-.
1
1
8

(-
0.
3
6
0,

0
.0
7
2
)

-1
4.
6
8

(-
16

.7
0,

-1
1.
7
5)

-
-

-
-

Table 5.6: Parameter estimates (Est.) and 95% bootstrap percentile confidence interval
(CI) for the parameter g using the proposed method and 400 bootstrap resamples.
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Table 5.7: Parameter estimates (Est.) and 95% bootstrap percentile confidence interval
(CI) for the parameter f using the proposed method and 400 bootstrap resamples.

Parameter Est. CI

λ 2.23 (0.964, 2.78)

k 1.05 (0.931, 2.00)

Male .356 (-0.518, 0.682)

Female .113 (-0.672, 0.783)

Age at disability .001 (-0.027, 0.006)



Chapter 6

Doubly robust inference with censoring

unbiased transformations

This chapter contains the manuscript Sandqvist (2024).

Abstract

This paper extends doubly robust censoring unbiased transformations

to a broad class of censored data structures under the assumption of

coarsening at random and positivity. This includes the classic survival

and competing risks setting, but also encompasses multiple events. A

doubly robust representation for the conditional bias of the transformed

data is derived. This leads to rate double robustness and oracle effi-

ciency properties for estimating conditional expectations when combined

with cross-fitting and linear smoothers. Simulation studies demonstrate

favourable performance of the proposed method relative to existing ap-

proaches. An application of the methods to a regression discontinuity

design with censored data illustrates its practical utility.

Keywords: Censored data; Conditional effects; Machine learning; Nonparametric

regression; Pseudo-values; Regression discontinuity design

6.1 Introduction

In many situations, one is interested in modeling the effect of covariates W on

a variable Y . Powerful regression methods Ên[Y | W = w] based on i.i.d. ob-

servations (W1, Y1), . . . , (Wn, Yn) allows for flexible ways to estimate such effects

without imposing strong parametric assumptions. Examples include local polyno-

mial regression, neural networks, and tree-based methods. If Y1, . . . , Yn are not

fully observed due to censoring or other coarsening mechanisms, it is not possible

to form the regression estimator Ên[Y | W = w] directly, and sub-sampling on

complete-case data might lead to substantial biases in the estimates. In this paper,

175
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the observations are incomplete due to censoring, so one is interested in an outcome

on the form Y = Y (X) for X = {X(t)}t≥0 but only XC = {X(C ∧ t)}t≥0 and the

censoring time C are observed.

Instead of tailoring regression methods to censored data, one may construct

pseudo-outcomes Y ∗ = Y ∗(C,XC) by transforming (C,XC) using a censoring

unbiased transformation (CUT) and then run the regression method on the pseudo-

outcomes; see Rubin & Van der Laan (2007) for an overview of different censoring

unbiased transformations. The term ”unbiased” refers to the fact that the pseudo-

outcomes should satisfy E[Y ∗ |W = w] = E[Y |W = w]. A doubly robust censoring

unbiased transformation (DRCUT) was first introduced in Rubin & Van der Laan

(2007) for survival data X(t) = {W, 1(T≤t)} with Y (X) = T under independent

censoring C ⊥⊥ T | W . This transformation depends on both the conditional

mean outcome E[T | W = w, T > t] and the conditional censoring distribution

P(C ≤ t | W = w) but has the upside that it gives the correct conditional mean

if just one of these is correctly specified. A generalization of this transformation

has recently been introduced in Steingrimsson et al. (2016). They generalize the

DRCUT of Rubin & Van der Laan (2007) to arbitrary Y (X) for survival data.

DRCUTs for censored data have to the author’s knowledge not been explored

outside of the survival data setting.

The main contributions of this paper are as follows. The DRCUT and regression

discontinuity design (RDD) methodologies are generalized to any censored data

satisfying coarsening at random and positivity, extending results from the survival

setting. A doubly robust representation of the conditional bias of the DRCUT is

obtained. Using this representation and building on the framework of Kennedy

(2023), large sample properties of DRCUT-based estimators are established, includ-

ing rate double robustness and oracle efficiency results. In passing, the analysis

of Kennedy (2023) is extended from sample-splitting to cross-fitting and results on

cross-fitting are extended to estimands that converge slower than
√
n.

Double robustness was initially discovered as a property of efficient-influence-

function-based estimators for nonparametric and semiparametric models in cases

where the data-generating process is affected by a missingness mechanism. Such

estimators have been explored extensively for censored data, where the missingness

mechanism stems from the fact that subjects are unobserved after a random

censoring time, and in causal inference, where the missingness mechanism stems

from the fact that not all potential outcomes are observed, confer with Section 6.6

in Bickel et al. (1998), Van der Laan & Robins (2003), Bang & Robins (2005),

and Van der Laan & Rose (2011). For estimation in nonparametric models via

efficient influence functions more broadly, see the recent reviews Kennedy (2022)

and Hines et al. (2022).

As noted in Section 5.3 of Kennedy (2022), when the estimand is not an expec-
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tation but rather a regression function i.e. a conditional expectation, the efficient

influence function does generally not exist, and existing theory on efficient esti-

mation hence cannot be applied. One way to overcome this limitation is explored

in Kennedy (2023) for the conditional average treatment effect (CATE) in a poten-

tial outcome setting with no censoring. The idea is that semiparametrically efficient

estimators estimate a marginal estimand E[Y ] by averaging over the uncentered

efficient influence function of E[Y ], so a conditional estimand E[Y | W = w] may

be estimated by regressing the uncentered efficient influence function of E[Y ] on

covariates. One may recognize the DRCUTs of Rubin & Van der Laan (2007)

and Steingrimsson et al. (2016) as uncentered efficient influence functions, making

the efficient influence function of E[Y ] a natural candidate for a DRCUT in the

situation where only coarsening at random and positivity are imposed, and this

paper proves that this is indeed a DRCUT.

To facilitate desirable large sample properties, Kennedy (2023) suggested a

sample splitting approach, first estimating nuisance parameters needed for the

transformation on one sample and then regressing pseudo-outcomes on covariates in

the second sample. A motivation for this approach is that the conditional bias of the

pseudo-outcomes has a product structure. Sample splitting allows one to exploit this

product structure to show that estimators based on these pseudo-outcomes have a

rate double robustness property, meaning that the convergence rate depends on the

product of the convergence rate of each of the nuisance estimators. A main result

of this paper is to show that a similar product structure emerges for DRCUTs and

to exploit this to derive desirable large sample properties of the DRCUT estimators.

Large sample properties of DRCUT estimators have not been investigated in the

literature, but they are essential when the goal is inference rather than prediction.

Pseudo-outcomes which are based on the jack-knife rather than the efficient

influence function have also been explored for survival and competing risks data.

The jack-knife pseudo-outcomes were introduced in Andersen et al. (2003) and is an

area of continued study, see for example Jacobsen & Martinussen (2016), Andersen

et al. (2017), Overgaard et al. (2017), and Parner et al. (2023). The latter paper

proposes to use so-called infinitesimal jack-knife pseudo-outcomes, which turn out

to be exactly the uncentered efficient influence function for E[Y ]. The motivation in

that paper is that the jack-knife pseudo-outcomes were observed to be asymptotically

equivalent to the infinitesimal jack-knife pseudo-outcomes under suitable regularity

conditions, and the latter were found to be much faster to compute. Infinitesimal

jack-knife pseudo-outcomes and DRCUT pseudo-outcomes are thus identical, which

seems to have been overlooked by Parner et al. (2023).

It is fruitful to make this connection; an assumption that has been persistent

in all literature on jack-knife pseudo-outcomes is that the censoring is completely

random C ⊥⊥ (T,W ). This has been highlighted as a key assumption, but also
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as perhaps the most restrictive one, see e.g. Section 4 in Overgaard et al. (2017).

Instead of taking the jack-knife pseudo-outcomes as a starting point, the DRCUT,

or equivalently the infinitesimal jack-knife pseudo-outcomes, is here taken as the

starting point. With this point of view, it is not difficult to allow the censoring

distribution to depend on covariates and the past trajectory of X since the efficient

influence function is still well-known in this situation. Thus, this key independence

assumption is relaxed substantially.

The nuisance parameters become more complicated when they are allowed to

depend on covariates and the past trajectory for X. When they are simple e.g.

belonging to a Donsker class, they may usually be estimated in-sample without

adding asymptotic variance which is the case that has been explored in the jack-knife

pseudo-outcome literature so far, see e.g. Overgaard et al. (2017) and Parner et al.

(2023). This paper proposes a K-fold cross-fitting approach to allow for inference

in the presence of flexible nuisance estimators e.g. depending on hyperparameters

selected in data-adaptive ways.

The paper is structured as follows. In Section 6.2, the DRCUT is proposed and

a doubly robust representation for its conditional bias is presented. In Section 6.3,

the asymptotics of DRCUT-based estimators are studied. In Section 6.4, simulation

experiments are conducted which show favorable performance of the proposed

method relative to competing approaches. In Section 6.5, the approach is illustrated

via an application to the Longitudinal Study of Young People in England (LSYPE)

in the form of a regression discontinuity design (RDD) to infer a CATE. All

implementations are available on GitHub at https://github.com/oliversandq

vist/Web-appendix-drcut.

6.2 Doubly robust censoring unbiased transformation

Let the background probability space be (Ω,F ,P). The full data is the stochastic

process X = {X(t)}t≥0 indexed by a time-variable t ∈ [0,∞), which can refer to

calendar time, time since study entry etc. Assume that X is a stochastic process on

a metric space D equipped with its Borel σ-algebra B(D) and that the sample paths

t 7→ X(t)(ω) are càdlàg. One can thus alternatively consider X as a map from Ω

into X = D([0,∞),D) being the set of all functions z : [0,∞) 7→ D that are càdlàg.

This space is equipped with the projection σ-algebra generated by the projection

maps z 7→ z(t) from X to D which makes X a measurable map from Ω into X .

The process X stopped at a time u ≥ 0 is denoted Xu = {X(u ∧ t)}t≥0 and the

censoring variable is denoted C : Ω 7→ (0,∞), so the observed data is (C,XC). It is

assumed that X(0) contains some baseline covariates denoted W . The outcome of

interest is Y (X) with Y : X 7→ R. Vector-valued outcomes can be accommodated

by applying each result coordinate-wise. It is assumed throughout that Y is square

https://github.com/oliversandqvist/Web-appendix-drcut
https://github.com/oliversandqvist/Web-appendix-drcut
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integrable. In order for Y to be nonparametrically identifiable from the observed

data, it is assumed that Y (X) = Ỹ (Xη) for a suitable function Ỹ . The approach

in this paper fails when Y is not nonparametrically identifiable since the DRCUT

utilizes inverse probability of censoring weighting. In such cases, one might be able

to use the proposed methods to estimate the identifiable part of the estimand and

use other methods to estimate what remains.

6.2.1 Transformation

Let r(c | x) denote the conditional density of C given X with respect to a fixed

reference measure µ, which in most applications will be the Lebesgue measure λ.

For identifiability, it is standard to impose the assumption that the observed data

are a coarsening at random (CAR) of the full data. CAR extends the concept of

missing at random to situations where a many-to-one function of the complete

data is observed. For right-censored counting processes, CAR is closely related to

independent censoring defined as in Andersen et al. (1993), see Gill et al. (1997) or

Lemma 1 in Munch et al. (2023). Here, the CAR formulation from Van der Vaart

(2004) is used.

Assumption 6.2.1. (Coarsening at random.)

There is a measurable function r̃ : [0,∞)×X 7→ [0,∞) such that

r(c | x) = r̃(c, xc)

for xc = {x(c ∧ t)}t≥0 with x ∈ X . ⋄

Assume that there is a positive probability of observing the full data for any

realization of X. This is a standard assumption for nonparametric estimation with

censored data.

Assumption 6.2.2. (Positivity.)

It holds that P(C ≥ η | X) ≥ ϵ > 0 for some deterministic ϵ. ⋄

In the Supplementary material, it is shown that the efficient influence function of

E[Y (X)] is

IF(C,XC) = −E[Y (X)] +
Y (X)1(C≥η)

P(C ≥ η | X)

+

∫
[0,η)

E[Y (X) | Xu]

P(C > u | X)

{
d1(C≤u) − 1(C≥u)

P(C ∈ du | X)

P(C ≥ u | X)

}
.

Note that E[Y (X)] is the population version of the estimand of interest E[Y (X) |W ].

This motivates the DRCUT in Theorem 6.2.3. Define γ(u | X) = r(u | X)/P(C ≥
u | X) which is the Radon-Nykodym derivative of the hazard measure for C | X
with respect to µ under P, and define γ1 similarly but under a different measure P1.
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Theorem 6.2.3. (Doubly robust censoring unbiased transformation.)

Let P1 and P2 be two probability measures, which may be thought of as candidate

measures for P. Let

Y ∗
P1,P2

(C,XC) =
Y (X)1(C≥η)

P1(C ≥ η | X)

+

∫
[0,η)

E2[Y (X) | Xu]

P1(C > u | X)

{
d1(C≤u) − 1(C≥u)

P1(C ∈ du | X)

P1(C ≥ u | X)

}
.

When P and P1 satisfy Assumption 6.2.1 and 6.2.2 it holds that

E[Y ∗
P1,P2

(C,XC)− Y (X) |W ]

= E
[ ∫

[0,η)

{E[Y (X) | Xu]− E2[Y (X) | Xu]}

× {γ1(u | X)− γ(u | X)} P(C ≥ u | X)

P1(C > u | X)
dµ(u) |W

]
.

Furthermore, it holds that Var[Y ∗
P,P(C,X

C) | W ] ≥ Var[Y | W ] with equality only

in the degenerate case where Var[Y | Xu] = 0 almost surely for all u ∈ [0, η) where

P(C ∈ du | X) is non-zero.

The proof of Theorem 6.2.3 is deferred to the Supplementary material. The notation

E2 denotes expectation under P2. The outcome Y (X) is observed on (C ≥ η) since
Y (X) = Ỹ (Xη), so the first part of the transformation only uses complete case

data but corrects for the incurred bias by reweighing with the inverse probability of

censoring weights (IPCW). This is in itself a censoring unbiased transformation and

can hence be used to construct so-called IPCW pseudo-outcomes. The second term

includes the contributions for the partial observations thus making more efficient

use of the data. Note that the expression in Theorem 6.2.3 is not immediately

well-defined due to the uncountably many null sets associated with the conditional

expectations E2[Y (X) | Xu], and one should hence take fixed regular conditional

expectation throughout as in Van der Vaart (2004).

The transformation in Theorem 6.2.3 is a generalization of the ones found

in Rubin & Van der Laan (2007) and Steingrimsson et al. (2016), which only apply

to survival settings where C and the survival time T are continuously distributed.

That it simplifies to the known transformation in the survival setting may be seen

by noting that both P1(C ∈ du | X) and d1(C≤u) are zero on (T ≤ u). The variance
result appears to be new and shows that pseudo-outcomes have increased variance

even if the true nuisance parameters are used.

In Section 6.3, it is seen that E[Y ∗
P1,P2

(C,XC)− Y ∗
P,P(C,X

C) |W ], which is the

conditional bias of the pseudo-outcomes, is important for determining the asymptotic

behavior of DRCUT-based regression estimators. Theorem 6.2.3 immediately implies

a double robustness property as stated in Corollary 6.2.6, which in turn implies
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that Theorem 6.2.3 gives a doubly robust representation for the conditional bias.

The usefulness of Theorem 6.2.3 comes from these observations.

Remark 6.2.4. (Estimands with dynamical conditioning information.)

It is possible to use the proof of Theorem 6.2.3 to show that the transformation

Y ∗
P1,P2

(t, C,XC)

=
Y (X)1(C≥η)

P1(C ≥ η | X)
+

∫
[0,η)

E2[Y (X) | Xu∨t]

P1(C > u | X)

{
d1(C≤u) − 1(C≥u)

P1(C ∈ du | X)

P1(C ≥ u | X)

}
for any t ≥ 0 satisfies

E[Y ∗
P1,P2

(t, C,XC)− Y (X) | Xt]

= E

[∫
[0,η)

E[Y (X) | Xu∨t]− E2[Y (X) | Xu∨t] d

{
P(C > u | X)

P1(C > u | X)

}
| Xt

]
.

This extends the use case of doubly robust transformations to parameters on the

form E[Y (X) | Xt] which are often of interest. An example could be the total

duration spent as disabled in an illness-death model given the state and duration

at time t. The methods and results of this paper are straightforward to generalize

to such estimands. ▽

Remark 6.2.5. (Estimands with interventions.)

Let A be a coordinate of X denoting the observed treatment which for simplicity is

assumed to be binary. Let X(a) be the potential outcome corresponding to what

would have happened if A had been a ∈ {0, 1} and set X = X(A). Assume no

unmeasured confounding A ⊥⊥ X(a) |W which leads to the following identification

formula for the treatment-specific conditional mean

E[Y (X(a)) |W ] = E[Y (X(a)) |W,A = a] = E[Y (X) |W,A = a].

Impose treatment positivity P(A = a | W ) ≥ ϵ > 0. In this case, the uncentered

efficient influence function motivates the transformation

Y ∗
P1,P2,P3

(a,C,XC)

=
Y (X)1(C≥η)1(A=a)

P1(C ≥ η | X)P3(A = a |W )
− 1(A=a) − P3(A = a |W )

P3(A = a |W )
E2[Y (X) |W,A = a]

+
1(A=a)

P3(A = a |W )

∫
[0,η)

E2[Y (X) | Xu]

P1(C > u | X)

{
d1(C≤u) − 1(C≥u)

P1(C ∈ du | X)

P1(C ≥ u | X)

}
.

See the Supplementary material for details. Related results are Theorem 6.1 in Van

der Laan & Robins (2003) for the discrete-time case and Theorem 1 in Rytgaard

et al. (2022) for the continuous-time case where treatment starts strictly after time

0. By calculations similar to those in the proof of Theorem 6.2.3, one can show



182 Chapter 6. Sandqvist (2024)

E[Y ∗
P,P,P(a,C,X

C) |W ] = E[Y (X) |W,A = a]. This implies

E[Y ∗
P1,P2,P3

(a,C,XC)− Y ∗
P,P,P(a,C,X

C) |W ]

= E
[
Y ∗
P1,P2,P3

(a,C,XC)− Y (X)1(A=a)

P3(A = a |W )

−
(

1(A=a)

P(A = a |W )
− 1(A=a)

P3(A = a |W )

)
Y (X) |W

]
= E

[
1(A=a)

P3(A = a |W )

∫
[0,η)

E[Y (X) | Xu]− E2[Y (X) | Xu] d

{
P(C > u | X)

P1(C > u | X)

}
|W

]
+

P(A = a |W )− P3(A = a |W )

P3(A = a |W )
(E[Y (X) |W,A = a]− E2[Y (X) |W,A = a])

where the last equality follows from factoring out 1(A=a)/P3(A = a |W ) in the first

two terms of the transformation and then proceeding as in Theorem 6.2.3. This

is analogous to Theorem 6.2.3 and implies that the conditional mean is correct if

either P2 = P or P1 = P3 = P. The methods and results of this paper generalize

straightforwardly to such estimands. ▽

Corollary 6.2.6. (Double robustness.)

Under the same assumptions as in Theorem 6.2.3, P1 = P or P2 = P implies that

E[Y ∗
P1,P2

(C,XC) |W ] = E[Y (X) |W ].

Corollary 6.2.6 follows immediately from Theorem 6.2.3. In the case where P1 =

P2 = P, the pseudo-outcomes are referred to as oracle pseudo-outcomes. Note that

in this paper, the oracle knows the correct transformation but not the uncensored

data.

6.3 Asymptotics and inference

This section considers estimation and large sample properties of the proposed

DRCUT. A sample-splitting approach similar to Kennedy (2023) is used since this

allows one to exploit the product structure from Theorem 6.2.3 to prove a rate

double robustness property, permitting fast convergence rates for the estimand of

interest even in settings where estimating the nuisance parameters is hard such that

their individual convergence rates are slower. An example could be high dimensional

settings, where regularization is used to keep the variance of the estimator from

blowing up, which however makes the bias of the estimator decrease slower than it

otherwise would have. In addition, sample-splitting removes the need for Donsker

conditions. If Donsker conditions hold, meaning that the nuisance estimators belong

to sufficiently simple function classes, then the convergence happens uniformly over

that class, and the bias introduced by overfitting, i.e. by estimating the nuisance

estimators in-sample, vanishes asymptotically. Donsker conditions may fail when
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the function class becomes too big such as for models where the dimension of the

W is modeled as increasing with the sample size. For a more detailed discussion of

these points, confer with Chernozhukov et al. (2018).

Sample splitting also makes the proofs simple and model agnostic, allowing

for flexible nuisance estimators whose exact statistical properties may be difficult

to determine e.g. estimators that depend on hyperparameters selected in a data-

adaptive way. Finally, when using sample-splitting, many established asymptotic

results for the second-step regression method can be immediately lifted to asymptotic

results about the proposed two-step estimators. This in turn means that one can

leverage existing software packages for estimation and inference since the two-step

estimator then asymptotically behaves as the second-step regression but where the

pseudo-outcomes enter as if it was unmodified observed data, see Proposition 6.3.5

below. Sample-splitting however has the downside that only a subset of the data

is used for estimating the estimand of interest, but full-sample efficiency can be

regained using cross-fitting as shown in Section 6.3.2.

The proposed estimation algorithm is analogous to Algorithm 1 in Kennedy

(2023) and is described in Algorithm 1. Assume that the available data D2n consists

of 2n i.i.d. observations. Randomly partition the data into Dn
1 and Dn

2 of size

n each. Denote by (C,XC) a generic outcome not from Dn
1 and (Ci, X

Ci
i ) the

outcome for the i’th subject in Dn
2 .

Algorithm 1 Pseudo-algorithm for doubly robust learning with censored data.

Input: Data D2n split into Dn
1 and Dn

2 .

1: Nuisance estimation: Construct estimators P̂1,n and P̂2,n of P using Dn
1 .

2: Pseudo-outcome regression: In the sample Dn
2 , construct the pseudo-

outcomes

Ŷ ∗
P̂1,n,P̂2,n

(C,XC) =
Y (X)1(C≥η)

P̂1,n(C ≥ η | X)
+

∫
[0,η)

Ê2,n[Y (X) | Xu]

P̂1,n(C > u | Xu)

×
{
d1(C≤u) − 1(C≥u)

P̂1,n(C ∈ du | Xu)

P̂1,n(C ≥ u | Xu)

}

and regress them on covariates W , which results in a regression function

Ên[Ŷ
∗
P̂1,n,P̂2,n

(C,XC) | Dn
1 ,W = w].

3: Cross-fitting (optional): Repeat steps 1 and 2, swapping the roles of Dn
1

and Dn
2 . Average over the results as a the final estimate. K-fold cross-fitting is

also possible.

Output: Estimator of E[Y (X) |W = w].
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Remark 6.3.1. (Doubly robust random forests.)

Steingrimsson et al. (2016) and Steingrimsson et al. (2019) use a DRCUT for the

composite outcome Y (X) = L(T,W ) where L is a loss function. This is sufficient

for their purposes since the second-step estimator Ên is restricted to regression trees

and random forests, see Algorithm 1 and 2 of Steingrimsson et al. (2019), which

only depend on data through the loss of the individual observations. Differently

from Algorithm 1, it is proposed to estimate the nuisance parameters using all the

data, and then to fit the regression model on the full data set of pseudo-outcomes.

In Section 2.4 of Steingrimsson et al. (2016), the possibility of estimating nuisance

parameters in parallel with fitting the regression trees is discussed and it is stated to

impair performance. The possibility of using sample splitting is not discussed. On

the contrary, Steingrimsson et al. (2016) states that ”...it is not obvious why using

pre-computed estimators of these functions derived from the entire dataset should

lead to overly optimistic risk estimators”. Even if the approach does not lead to

overfitting when the goal is prediction, a nuisance estimation performed in-sample

can affect inference due to the added variability induced by estimating the nuisance

parameters. For valid inference, one would need to quantify this added variability

and adjust the standard errors coming from the second-step regression accordingly.

When nuisance estimation is performed using sample-splitting, Proposition 6.3.5

implies that the effect on inference is simple; the estimator behaves as if one had

access to the oracle pseudo-outcomes. ▽

6.3.1 Sample splitting estimator

For notational convenience, attention is initially restricted to the sample splitting

estimator, consisting of step 1 and 2 from Algorithm 1. The extension to cross-

fitting is given in Section 6.3.2. In order to use the results of Kennedy (2023), some

extra notation is introduced. Introduce the shorthand Ŷ ∗ = Y ∗
P̂1,n,P̂2,n

and write

Y ∗ = Y ∗
P,P for the oracle pseudo-outcomes. Introduce the conditional bias

b̂(w;Dn
1 ) = E[Ŷ ∗(C,XC)− Y ∗(C,XC) | Dn

1 ,W = w].

The effect of conditioning on Dn
1 is that P̂1,n and P̂2,n are fixed in the conditional

expectation. Define:

m(w) = E[Y ∗(C,XC) |W = w],

m̂(w) = Ên[Ŷ
∗(C,XC) | Dn

1 ,W = w],

m̃(w) = Ên[Y
∗(C,XC) |W = w].

Thus,m(w) is the oracle conditional expectation which also equals E[Y (X) |W = w],

m̂(w) is the regression estimator obtained from regressing Ŷ ∗(C,XC) on W in the

sample Dn
2 using a given regression estimator Ên, and m̃(w) is the oracle regression

estimator. To infer the asymptotics of m̂(w), decompose m̂(w) −m(w) into the
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sum of m̂(w) − m̃(w) and m̃(w) −m(w). The asymptotics of m̃(w) −m(w) can

often be inferred from known asymptotic theory for the chosen regression estimator

Ên. From hereon, it is assumed that the convergence rate is α.

Assumption 6.3.2. (Convergence rate of second-step regression method.)

It holds that m̃(w)−m(w) = OP(n
−α). ⋄

Remark 6.3.3. (Oracle mean squared error and convergence rates.)

In some situations, it might be more natural to take the convergence rate of the oracle

mean squared error R∗
n(w) = E[{m̃(w)−m(w)}2]1/2 as a starting point rather than

that of m̃(w)−m(w). Straightforward calculations show that if nα{m̃(w)−m(w)}
converges in distribution to some distribution with mean µ and variance σ2 and the

first and second moments also converge then nαR∗
n(w)→ (σ2 + µ2)1/2 for n→∞

implying R∗
n(w) = OP(n

−α). The convergence rates are hence the same whenever

one has sufficient integrability. ▽

Remark 6.3.4. (Pointwise estimation.)

In this paper, the focus is the pointwise problem of estimating E[Y (X) |W = w]

for any given w. This is the relevant estimand in the data application of Section 6.5

since RDDs utilize conditional expectations at a specific boundary value to estimate

a local causal effect. It is seen from Remark 6.3.3 that studying the pointwise

convergence rates is equivalent to studying the convergence rate of the mean squared

error. Hence, if the integrated MSE rather than the pointwise MSE is the relevant

performance metric, the approach in Rambachan et al. (2022) might be more

suitable. ▽

For the remaining terms, write

m̂(w)− m̃(w) = Ên[b̂(W ;Dn
1 ) | Dn

1 ,W = w]

+
(
m̂(w)− m̃(w)− Ên[b̂(W ;Dn

1 ) | Dn
1 ,W = w]

)
.

Theorem 6.2.3 gives a doubly robust representation for b̂(W ;Dn
1 ), so the first term

can usually be made oP(n
−α) by having the nuisance estimators converge sufficiently

fast. Following Definition 1 of Kennedy (2023), the regression method Ên is said to

be stable if the second term is oP(n
−α) whenever d(Ŷ ∗, Y ∗) = oP(1) for a suitable

stochastic distance d.

By Theorem 1 in Kennedy (2023), the class of linear smoothers

Ên[f(C,X
C ;Dn

1 ) | Dn
1 ,W = w] =

n∑
i=1

pi(w;W
n)f(Ci, X

Ci
i ;Dn

1 )

forWn = (Wk)1≤k≤n is stable under suitable regularity conditions. Some prominent

methods that belong to this class are listed in Kennedy (2023). Importantly, local

linear regression is a linear smoother, which is the de facto method used in RDDs
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and which is also employed in Section 6.4 and 6.5. It is also possible to force the

output of more flexible methods to be on this form to keep inference tractable

and enhance interpretability. This can for example be done following Verdinelli

and Wasserman (2021) which also relies on sample splitting, first fitting a random

forest and then using the resulting estimator to define a kernel used for local linear

regression in the second split.

To define the distance under which linear smoothers are stable, first introduce

the conditional L2(P)-norm

∥f(Z)∥w,Dn
1
= E[f(Z)2 | Dn

1 ,W = w]1/2.

Theorem 1 in Kennedy (2023) then implies that linear smoothers are stable at

W = w with respect to the stochastic distance dw,D2n given by

dw,D2n(g, f) =

n∑
i=1

{
pi(w;W

n)2∑n
j=1 pj(w;W

n)2
∥g(C,XC ;Dn

1 )− f(C,XC)∥2Wi,Dn
1

}

whenever dw,D2n(0,Var[Y ∗(C,XC) |W = • ])−1 = OP(1).

Thus, if dw,D2n(Ŷ ∗, Y ∗) = oP(1) and dw,D2n(0,Var[Y ∗(C,XC) | W = • ])−1 =

OP(1) then stability gives

m̂(w)− m̃(w) = Ên[b̂(W ;Dn
1 ) | Dn

1 ,W = w] + oP(n
−α).

One can thus focus on the asymptotics of the conditional bias. Due to its product

structure, one can obtain rate double robustness results like the one in Proposi-

tion 6.3.5. Define the stochastic norm ∥·∥2,w,D2n by

∥f(u,X;Dn
1 )∥22,w,D2n =

n∑
i=1

|pi(w;Wn)|∑n
j=1 |pj(w;Wn)|

∫
[0,η)

∥f(u,X;Dn
1 )∥2Wi,Dn

1
dµ(u).

Proposition 6.3.5. (Rate double robustness under weighted L2-rates.)

Impose the assumptions from Theorem 6.2.3, Assumption 6.3.2, and for a fixed w

(a) infz Var[Y (X) |W = z] > 0;

(b) dw,D2n(Ŷ ∗, Y ∗) = oP(1);

(c)
∑n

i=1 |pi(w;Wn)| = OP(1);

(d) ∥E[Y (X) | Xu]− Ê2,n[Y (X) | Xu]∥2,w,D2n = OP(n
−α1);

(e) ∥γ̂1,n(u | X)− γ(u | X)∥2,w,D2n = OP(n
−α2);

(f) α1 + α2 > α.

Then m̂(w)−m(w) = m̃(w)−m(w) + oP(n
−α) i.e. oracle efficiency is obtained.
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The proof of Proposition 6.3.5 is deferred to the Supplementary material. As

discussed in Remark 5 of Kennedy (2023), results like Proposition 6.3.5 are important

for inference since they imply that the asymptotic distribution when using estimated

and oracle pseudo-outcomes are identical. Confidence intervals for m(w) may

hence be constructed by treating the estimated pseudo-outcomes as if they were

observed outcomes and employing the usual asymptotic distributional approximation.

Standard implementations can therefore be used.

Local polynomial regression achieves the minimax optimal convergence rate

cf. Stone (1980, 1982), so the proposed methods do as well when Proposition 6.3.5

applies. The sample size used in the asymptotic approximation however becomes n,

which is half the number of observations that was originally available, leading to

an inferior constant in the minimax risk of the estimator. As shown in the next

section, cross-fitting may be used to regain full sample efficiency.

Remark 6.3.6. (On the regularity conditions in Proposition 6.3.5.)

Condition (a) is used to prove dw,D2n(0,Var[Y ∗(C,XC) |W = • ])−1 = OP(1) which

together with (b) implies stability of linear smoothers. As noted in Kennedy (2023),

many linear smoothers satisfy that
∑n

i=1 |pi(w;Wn)| is bounded by a fixed constant

with probability one (which is also implied by condition (1) in Theorem 1 of Stone

(1977) regarding universal weak consistency of linear smoothers). This would imply

(c). To obtain reasonable convergence rates in (d) and (e), one likely needs to

assume that the dependence on Xu can be captured by a d-dimensional stochastic

process Z(u) = f(u,Xu) taking values in a compact subset of Rd. Assuming that

the Lq(P) convergence rates results from Stone (1980, 1982) carry over to the

weighted L2(P)-norms ∥·∥2,w,D2n and that zu 7→ E[Y (X) | Z(u) = zu] is s-times

continuously differentiable, Theorem 1 in Stone (1980, 1982) implies that the optimal

convergence rate in a minimax sense is OP(n
−r) for r = 1/(2 + d/s) under some

regularity conditions. This rate can be obtained using e.g. series or local polynomial

estimators. Other structured assumptions such as sparsity or additivity are popular

alternatives when they are applicable, see for instance Yang & Tokdar (2015). ▽

Remark 6.3.7. (Extension to vector-valued outcomes.)

The results and proofs of Section 6.2.1 are unchanged if Y takes values in Rp

for some p ≥ 1 rather than p = 1. Similarly, if Proposition 6.3.5 holds for each

coordinate of Y , then also m̂(w) −m(w) = m̃(w) −m(w) + oP(n
−α) as random

vectors so in this case the joint asymptotic distribution are the same by Slutsky’s

lemma. ▽

Remark 6.3.8. (Oracle efficiency without sample splitting.)

If nuisance estimators converge sufficiently fast and uniformly, the added variance

from estimating nuisance parameters in-sample may become asymptotically neg-

ligible, see e.g. Lemma 19.24 in Van der Vaart (1998) and Lemma 2 in Cui et al.

(2023). In this case, sample-splitting is not necessary and the conditional bias is less
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relevant. Furthermore, that approach might generalize more easily to estimators

that are not linear smoothers. The present approach is chosen to allow for weaker

conditions on the convergence rates which exploit the product structure of the

conditional bias. ▽

6.3.2 Cross-fitted estimator

In this section, the arguments are extended to K-fold cross-fitting. Assume that

one has access to n observations and deterministically partition the data into folds

of size n/K. For notational simplicity, assume that Ên is asymptotically Gaussian

such that nα{m̃(w)−m(w)} → N (µ, σ2). Let m̃k(w) be the oracle estimator when

only data from fold k (k = 1, . . . ,K) is used. Let D−k be the data not in fold k.

Write Ŷ ∗
−k for the pseudo-outcomes with estimates based on D−k. Similarly, Êk is

the regression estimator based on the data in fold k. Denote by

m̂k(w) = Êk[Ŷ
∗
−k(C,X

C) | D−k,W = w]

the estimator obtained from estimating the nuisance parameters using D−k and

then regressing over the pseudo-outcomes from fold k. The proposed cross-fitted

estimator is then m̂CF(w) = 1/K
∑K

k=1 m̂k(w). This cross-fitting scheme is similar

to DML1 in Chernozhukov et al. (2018). An alternative not explored here could be

like DML2 to first compute all the pseudo-outcomes Ŷ ∗
−k(C,X

C) and then input

them simultaneously into Ên. The following proposition shows that the cross-fitted

estimator regains full-sample efficiency.

Proposition 6.3.9. (Asymptotic distribution of cross-fitting estimator.)

Under the assumptions from Proposition 6.3.5 it holds that

m̂k(w)−m(w) = m̃k(w)−m(w) + oP(n
−α)

and

nα{m̂CF(w)−m(w)} → N (Kαµ,K2α−1σ2)

in distribution.

The proof of Proposition 6.3.9 is deferred to the Supplementary material. Since

α ≤ 1/2, the asymptotic variance of the cross-fitted estimator is no larger than

that of the full-sample oracle estimator m̃(w) and is strictly less when α < 1/2,

while the bias is increased by a factor of Kα. In the special case where µ = 0 and

α = 1/2, the asymptotic distribution of m̃(w) and m̂CF(w) are identical which

agrees with previous results in the literature, see e.g. Remark 3.1 and Theorem 3.1

in Chernozhukov et al. (2018). Proposition 6.3.9 implies that the standard error of

m̂CF(w) can be estimated by averaging the estimated standard errors σ̂k/(n/K)α

of m̂k(w) (k = 1, . . . ,K) and scaling by K−1/2.



6.4. Simulations 189

Remark 6.3.10. (Bias-variance tradeoff with cross-fitting.)

It can be seen from the proof of Proposition 6.3.9 that the asymptotic distribution

comes from averaging m̃k(w) (k = 1, . . . ,K). We therefore conjecture that a DML2-

variant would, under similar regularity assumptions, have the same asymptotic

distribution as m̃(w). Thus, when α < 1/2, the estimator m̂CF(w) trades a decrease

in variance for an increase in bias compared to a DML2-variant. This phenomenon

seems to imply that an efficient estimator converging at a rate slower than
√
n

cannot have a non-zero asymptotic bias since splitting and averaging would then

decrease the asymptotic variance without a corresponding increase in bias. For an

asymptotically unbiased estimator converging at a sub-optimal rate e.g. univariate

local linear regression with undersmoothing, the variance reduction due to averaging

is analogous to increasing the proportionality constant in the bandwidth and can

hence be thought of as smoothing. ▽

6.4 Simulations

6.4.1 Data-generating process

To examine the finite sample predictive and inference performance of the proposed

estimator and to demonstrate the double robustness property, a numerical study

is conducted. The complete-case data is specified as X = (Z,W ) where Z follows

the irreversible illness-death model depicted in Figure 6.1 with a time-horizon of

η = 5 and initial state Z(0) = 1 and the baseline covariate is W ∼ Uniform(−4, 4).
The outcome of interest is the duration spent in the illness state before the end

of the observation window meaning Y (X) =
∫
[0,η)

1{Z(s) = 2}ds and E[Y (X) |
W ] =

∫
[0,η)

p2(s,W ) ds for the state-occupation probability p2(s,W ) = P{Z(s) =
2 | W}. The censored outcome (C,XC) is simulated by first simulating W and

then simulating (C,ZC) |W using Lewis’ thinning algorithm from Ogata (1981).

The R implementation (R Development Core Team, 2023) is available on GitHub

(https://github.com/oliversandqvist/Web-appendix-drcut). A total of

Healthy

Illness

Dead

1

2

3

µ12

µ13

µ23

Figure 6.1: The irreversible illness-death model for the process Z. Transitions from state
j to state k has the transition hazard µjk.

500 samples of sizes n ∈ {1000, 5000, 10000, 30000} are considered. For a given

subject, the data is generated as follows: The hazard γ of C | X is set to γ(t,W ) =

1{Z(t)=1} exp{log(0.2) + 0.6× 1(−2≤W<2)}, which results in a substantial amount of

right-censoring as well as highly state-dependent censoring. Subjects not censored

https://github.com/oliversandqvist/Web-appendix-drcut
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before time η are administratively censored. Events are simulated according to the

transition hazards

µ12(t,W ) = exp
{
log(0.3) + 0.15× cos(πW/2) + 0.15× 1(t>2.5)− 0.05×W

}
,

µ13(t,W ) = exp
{
log(0.1) + 0.3× sin(πW/2) + 0.05× t

}
,

µ23(t, S(t),W ) = exp
[
− 0.75×min{t− S(t), 3} × (1.07 + 0.09× W̄

− 0.024× W̄ 2 − 0.014× W̄ 3 + 0.001× W̄ 4 + 0.00065× W̄ 5)
]
,

where S(t) = sup{s ≤ t : Z(s) ̸= Z(t)} is the latest jump time and W̄ = min(W, 3).

With these specifications, Assumption 6.2.1 holds because the censoring intensity is

adapted to the filtration generated by X and Assumption 6.2.2 holds because the

largest probability of becoming censored before time η is obtained by remaining in

the Healthy state, and this leads to a censoring probability that is strictly less than

one. In addition, Y clearly has finite expectation. The required assumptions for

use of IPCW and doubly robust pseudo-outcomes are hence satisfied.

For computation of Y ∗ it is convenient to introduce the prospective illness dura-

tion Y (X, t) =
∫
(t,η)

1{Z(s)=2} ds and its conditional expectation VZ(t){t, S(t),W} =
E[Y (X, t) | Xt]. Then

E[Y (X) | Xt] =

∫
(0,t]

1{Z(s)=2} ds+ VZ(t){t, S(t),W}

and V may be calculated using differential equations whenever transition hazards

exist, see Corollary 7.2 in Adékambi & Christiansen (2017), giving

d

dt
V1(t, s, w) = {µ12(t, w) + µ13(t, w)} × V1(t, s, w)− µ12(t, s, w)× V2(t, t, w),

d

dt
V2(t, s, w) = −1 + µ23(t, s, w)× V2(t, s, w),

with V1(η, s, w) = V2(η, s, w) = 0. The fourth-order Runge-Kutta method is used to

solve these differential equations. Note that computing Vj(t, s, w) via this approach

also yields Vj(u, s, w) for all u ≥ t.
Remark 6.4.1. (Relevance of the estimand.)

This setup is motivated by disability insurance applications, where the length of

an illness is a key driver of expenses since insureds often receive disability benefits

as long as they are disabled to make up for lost wages. Since they receive large

benefits, subjects do not leave the portfolio while disabled, so there is no censoring

hazard while in the illness state. This could also be a relevant estimand in medical

applications where the length of an illness or a hospital stay could be an important

aspect to predict or to make inferences about. ▽

6.4.2 Estimators

The following estimators are considered:
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(a) A plug-in estimator with p2 estimated by the Conditional Aalen-Johansen

(CAJ) of Bladt & Furrer (2024) using the R-package AalenJohansen;

(b) A plug-in estimator with transition hazards µ12, µ13, and µ23 estimated by the

Highly Adaptive Lasso (HAL) of Benkeser & Van Der Laan (2016) and Munch

et al. (2024) using a custom implementation relying on the R-package glmnet;

(c) Two-fold cross-fitted doubly robust pseudo-outcomes with transition and

censoring hazards estimated by HAL;

(d) Two-fold cross-fitted doubly robust pseudo-outcomes with transition haz-

ards estimated by HAL and censoring hazards estimated by a misspecified

parametric model;

(e) Two-fold cross-fitted doubly robust oracle pseudo-outcomes;

(f) Estimators (c), (d), and (e) but with IPCW pseudo-outcomes.

For all pseudo-outcome-based methods, the second-step regression method is chosen

as a local linear regression using lprobust from the R-package nprobust with

accompanying paper Calonico et al. (2019) using default parameters except for

the bandwidth. With a one-dimensional covariate, the MSE and MISE optimal

bandwidths satisfy h ∝ n−1/5 and lead to reasonable finite sample performance.

However, to obtain a non-vanishing bias in the asymptotic Gaussian distribution,

one needs nh5 → 0 (undersmoothing) or an explicit bias correction. For further

details and discussions, see Calonico et al. (2019) and the references therein. We

proceed via undersmoothing, first using a separate simulation to find a bandwidth

with good performance when n = 5000 and then letting h ∝ n−1/4.5. In this case,

the convergence rate of Ên is
√
nh ∝ n7/18 so α = 7/18.

The custom implementation of HAL for hazard estimation is a modification

of the code from Rytgaard et al. (2022) and Rytgaard et al. (2023) allowing for

higher-order interactions than second-order which is needed for estimation of µ23.

HAL is chosen since it is a general-purpose estimator that in Benkeser & Van

Der Laan (2016) is demonstrated to have reasonable empirical performance both

in smooth and discontinuous settings and is shown to have desirable asymptotic

properties in Munch et al. (2024) whenever the true function is multivariate càdlàg.

With this choice of hazard rates, HAL is expected to estimate the censoring hazard

very closely since the true hazard is piecewise constant, while it is expected to have

a harder time estimating the transition hazards of the illness-death model since

these are more complicated.

The misspecified parametric family for the censoring hazard is chosen as the

parametric family where X | C has hazard γ(t,W ;β) = 1{Z(t)=1} exp(β1 + β2 × t+
β3 ×W ). This is expected to have poor performance due to the form of γ(t,W ).
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The CAJ estimator is expected to be biased since the model is non-Markovian

and the censoring is state-dependent, confer with Assumption 2 and Remark 2.1

in Bladt & Furrer (2024). Similarly to Munch et al. (2023) and Gunnes et al. (2007),

it was observed that highly non-Markovian behaviour as well as high degrees of

state-dependent censoring were required for the bias to be sizeable, and it further

seems that the effect of covariates has to be small compared to the non-Markovianity

of Z and the state-dependence of C | X.

Remark 6.4.2. (Marginal estimands for the irreversible illness-death model.)

The paper Munch et al. (2023) also uses efficient-influence-function-based estimators

of estimands formulated using multi-state models and employs HAL to estimate

nuisance parameters. Their results are however specialized to marginal state-

occupation probabilities in the illness state for an illness-death model. This paper

can be viewed as an extension of their approach to any square-integrable real-valued

outcome and, more importantly, an extension to estimands that may depend on

baseline covariates. Remark 2.8 further allows for conditioning on the history of

the multi-state process. ▽

6.4.3 Results

The results for the first simulation are depicted in Figure 6.2. The estimand is a

lower dimensional and smoother object than the individual hazards which makes it

possible to nonparametrically estimate at a faster rate than the hazards. Since the

pseudo-outcome methods use local linear regression as the second step estimator,

this additional structure is exploited and these methods are therefore expected to

perform well as long as the pseudo-outcomes are close to their oracle counterparts.

As seen on the left part of Figure 6.2, HAL captures the general shape of the

transition hazards reasonably well and the censoring hazard extremely well as

was expected. However, the right plot shows that the plug-in estimator based on

HAL-estimated transition hazards performs poorly. HAL employs regularization

to balance bias and variance to be optimal for the individual hazards, but this

bias-variance trade-off is seen to be suboptimal for the estimand of interest as the

estimate becomes too biased. The CAJ estimator is biased in this setting, and this

bias carries over to the plug-in estimator, but the estimator still performs better than

the plug-in HAL estimator. The HAL-based IPCW estimator performs well and

is almost indistinguishable from the oracle IPCW estimator which is unsurprising

since the estimated censoring hazard is very close to the true value. As expected, the

misspecified IPCW estimator performs poorly. The doubly robust pseudo-outcomes

perform well, resulting in values similar to those of the non-misspecified IPCW

pseudo-outcomes. For the HAL-based doubly robust pseudo-values, one might have

suspected that this was solely a consequence of the good performance of the IPCW

term, but then the doubly robust pseudo-values with a misspecified censoring hazard
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should have performed poorly which is not the case. For those pseudo-values, one

sees the remarkable phenomenon that although both the HAL-estimated transitions

hazards and the misspecified censoring hazard gave poor estimates by themselves,

the doubly robust property of the pseudo-values makes them perform well when

used jointly. In the Supplementary material, one sees that the true curve is always

contained in the pointwise 95% confidence bands albeit barely around W = 0.5.

Figure 6.2: Left Panel: Fitted HAL estimates and actual hazards at specific input values
indicated at the top right corner for a single simulation. Right Panel: Estimators and
true value of E[Y (X) | W ] as a function of W for a single simulation.

Similar patterns emerge across the 500 simulations. The reported performance

metrics are the L2([−4, 4], λ) error which is relevant for prediction, and the empirical

coverages of the confidence intervals for methods (c) and (e) which is relevant for

inference. Additional performance metrics for prediction were computed, but their

results were qualitatively highly similar and are hence not reported. Figure 6.3

leads to many of the same qualitative conclusions as Figure 6.2 regarding which

estimators perform well. Additionally, one can see that the average performance of

the plug-in CAJ, plug-in HAL, and misspecified IPCW estimator does not improve

noticeably after n = 5000 although the variability decreases. For the remaining

estimators, both the average performance and variability improves as n increases,

and their densities are similar.

Although the performance of the doubly robust pseudo-outcomes with a mis-

specified and HAL-estimated censoring hazard appear similar in terms of predictive

performance, it can be seen from the left plot in Figure 6.4 that the one using HAL

agrees better with the Gaussian distributional approximation obtained from the

oracle values and also with the true value of the estimand. The right plot shows

that the empirical coverages of the confidence intervals deviate somewhat from

their nominal values, but more importantly for this study is that the confidence

intervals for the oracle and estimated doubly robust pseudo-values are highly similar

especially for n ≥ 5 000 indicating that oracle efficiency is obtained. The coverages

are close to their nominal value when W is away from −2, 0, and 2, where the

curvature of the true estimand is the greatest, suggesting that the chosen bandwidth
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has led to too much smoothing for these values of W .

The choice of bandwidth greatly affects the validity of inference based on kernel

estimators, see for example Table I in Calonico et al. (2014), making bandwidth

selection important. In a setting resembling this numerical study, it would hence

be natural to select different bandwidths for different values of W . It would be

desirable to do this in some data-adaptive way, but then the resulting regression

estimator might fall outside the class of linear smoothers and hence also outside of

Proposition 6.3.5.

Figure 6.3: Violin plot of the L2([−4, 4], λ) error for different estimators and values of n
with Mean ± Standard deviation indicated as a point range using 500 simulations.

Figure 6.4: Left Panel: Histogram of estimates at the point W = −1 for the doubly
robust pseudo-outcomes with censoring estimated by HAL and a misspecified parametric
family. The Gaussian approximation is obtained from the oracle pseudo-values and the
dashed line is the true value of the estimand. Based on 500 simulations of size n = 30 000.
Right Panel: The empirical coverages of the 99%, 95%, and 90% confidence intervals
using a Gaussian approximation with standard errors obtained from lprobust using HAL-
estimated and oracle doubly robust pseudo-outcomes. Nominal values are shown with
dashed lines.
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6.5 Data application

The proposed method is demonstrated by an application to data from LSYPE,

Waves 1 to 5 (Centre for Longitudinal Studies (2024), Calderwood & Sanchez

(2016)). LSYPE is a panel survey of initially around 16 000 young people (YP) born

between September 1989 and August 1990 in England. Data was collected starting

in 2004 and the first five Waves consisted of annual interviews with the YP and

their carers. Thus, YP were in Year 9 during Wave 1. YP were allowed to leave

school after Year 11 with post-compulsory schooling consisting of Years 12 and 13.

We aim to estimate the impact of the Education Maintenance Allowance (EMA), a

conditional cash transfer program, on time spent in full-time education. This is

achieved by using the proposed methods to construct an RDD in the presence of

censored data.

6.5.1 Background

The EMA program was established in England to encourage YP to continue their

education after Year 11. It was piloted in September 1999, rolled out nationally in

2004, and abolished in September 2010. YP could apply for EMA during Year 11

and if EMA was awarded, YP would receive a weekly cash transfer during Year

12 and Year 13 provided they stayed in further education. EMA was awarded

based on a household’s annual income for the previous year submitted to the

EMA administration via a bank statement. YP in households with annual incomes

below £20,817 received £30, those between £20,818 and £25,521 received £20, and
those between £25,522 and £30,810 received £10. No EMA was given for incomes

over £30,810. The presence of these thresholds suggests that the causal effect of

EMA can be estimated using an RDD. An RDD estimates a local causal effect

by comparing groups just above and below a treatment threshold mimicking a

(local) randomized controlled trial, see e.g. Hahn et al. (2001), Imbens & Lemieux

(2008), and Cattaneo & Titiunik (2022). An RDD is therefore able to infer causal

effects under relatively weak assumptions, avoiding no unmeasured confounding and

similar graphical causal model based criteria, confer with Pearl (2009) and Hernán

and Robins (2020).

We restrict our attention to measuring the effect of receiving high EMA since

its effect is expected to be the highest and since 80% of YP receiving EMA were

paid the highest rate of £30, see Bolton (2011). Note that those not receiving high

EMA could still be receiving moderate or low rates, and the causal effect estimated

here is therefore only valid in environments where these rates are also present.

Under assumptions about how CATE changes as a function of salary, e.g. linear

dependence, one could exploit the multiple thresholds to infer the causal effect of

high EMA versus no EMA but this is not pursued here. For simplicity, we similarly

restrict attention to whether high EMA is received in Wave 4 making treatment
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binary. It would be of interest to extend this approach to dynamical treatments,

using the treatment status from both Wave 4 and Wave 5.

Studies based on self-reports indicated that ”only” 12% of recipients stayed in

education because of EMA which the government used as a key reason for abolishing

EMA, see Bolton (2011). This highlights the importance of statistical analyses

in evaluating the effectiveness of such programs to guide informed policymaking.

These numbers were consistent with other studies that used matching between

the pilot and control groups, see Maguire et al. (2001), Middleton et al. (2005),

and Dearden et al. (2009). An issue that was identified, but not controlled for, was

that students staying in full-time education seemed more likely to remain in the

survey, see e.g. Chapter 2.5.3 of Middleton et al. (2005). Additionally, the effect of

EMA in the pilot might have been different than the national effect.

Not many studies have explored the effect of EMA after it was rolled out

nationally. The only studies identified on the subject were Holford (2015), the

working paper McKendrick (2022), and the unpublished PhD Rahman (2014) that

employ panel regression, augmented inverse propensity weighted linear regression

and Causal Forests, and an RDD, respectively. Except for the RDD, all previous

studies hence rely on the assumption of no unmeasured confounding. The RDD

in Rahman (2014) had some methodological weaknesses which are improved upon

in this analysis. Firstly, observations in Wave 4 and Wave 5 were pooled such that

a YP interviewed in Wave 4 and Wave 5 would contribute with two observations.

Censored observations were discarded. This can create confounding over time e.g. if

YP that responded positively to EMA and stayed in education were more likely to

respond to the survey as was found in Middleton et al. (2005). Secondly, polynomial

regression was used to estimate the relevant conditional expectations and to perform

inference. As noted in Hahn et al. (1999), this is fragile to misspecification so

local linear regression might be preferred since it is nonparametric and has good

boundary properties.

Consequently, we find that an RDD based on observational data and utilizing

the proposed methods can be a valuable complementary study for measuring the

effect of EMA since it does not rely on no unmeasured confounding, allows the

censoring distribution to depend on whether YP stays in education or not, uses the

cohort is the one that emerged when EMA was well-established on a national level,

and allows for the use of flexible nonparametric estimators for inference. This leads

to both higher internal and external validity of the estimates.

6.5.2 Model and results

The present RDD is fuzzy since not all eligible YP apply for EMA and since the

income information in LSYPE could deviate from the one submitted to the EMA

administration. Additionally, the exact income is only available in Wave 1 and
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Wave 2 and in banded form in Wave 3 which was the year where EMA application

were submitted. The income in Wave 3 is thus estimated by taking the income from

Wave 2 if this is within the band and otherwise simulate uniformly over the band.

Fortunately, the bands align well with the EMA thresholds, so the risk of moving

an observation across a threshold is very low. A handful of seeds were tested for

the simulation and they all gave quantitatively similar results in terms of the final

estimate.

Let time 0 be Wave 3, and the outcome Y be the amount of years spent in

full-time education during Wave 4 and Wave 5. Censoring C takes the value 1 if

YP becomes censored in Wave 4, 2 if YP becomes censored in Wave 5, and 3 if

not censored in Wave 4 and 5. Let X be baseline covariates from Waves 1-3 as

well as a time-dependent coordinate which at the end of the year increases by 1 if

YP was in full-time education during that school year so that XC is observable

from the data and Y = Y (X). Similarly, let the treatment outcome be denoted A

and Z = {Z(t)}t≥0 be as X but where the time-dependent coordinate is 1 if YP

receives high EMA at the end of the year and 0 otherwise such that A = A(Z).

Assume (C,XC) is a CAR of X and (C,ZC) is a CAR of Z and that positivity

holds. Let W be income in Wave 3 and w0 = £20,817. Let Y (a) be the potential

outcome corresponding to treatment a ∈ {0, 1} and specify the causal estimand of

interest as the CATE

τ = E[Y (1) − Y (0) |W = w0].

For identification, assumptions analogous to those in Theorem 2 of Hahn et al.

(2001) are imposed.

Assumption 6.5.1. (RDD identification.)

(i) a+ = limw↓w0
P(A = 1 | W = w) and a− = limw↑w0

P(A = 1 | W = w) exist

and a+ ̸= a−.

(ii) E[Y (1) |W = w] and E[Y (0) |W = w] are continuous in w at w0.

(iii) A ⊥⊥ (Y (1) − Y (0)) |W = w in the limit for w → w0. ⋄

Theorem 2 in Hahn et al. (2001) then implies

τ =
y+ − y−
a+ − a−

where y+ = limw↓w0 E[Y | W = w] and y− = limw↑w0 E[Y | W = w]. Assume

oracle efficiency is obtained for each of y+, y−, a+, and a− when using cross-fitted

doubly robust pseudo-outcomes and local linear regression, which holds under

conditions given in Proposition 6.3.5 and 6.3.9. Then by Remark 6.3.7, oracle

efficiency is obtained for τ since this is determined by the asymptotic distribution
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of (ŷ+, ŷ−, â+, â−), confer with Hahn et al. (1999). Standard implementations

for inference based on asymptotic approximations may thus be used, treating the

pseudo-values as ordinary outcomes.

Estimation proceeds via Algorithm 1. Computation of the pseudo-outcomes can

be formulated as sequential classification problems. Estimation is performed using

the R-package xgboost where five-fold cross-validation with negative log-likelihood

and AUC loss functions were used to determine suitable hyperparameters. Since

xgboost is tree-based, it should be able to capture discontinuities caused by the

EMA thresholds well. For predicting censoring, even with a moderate amount of

hyperparameter optimization, it is hard to improve the performance of the model

using only the covariates identified as predictors of non-response in Section 4.4

of Collingwood et al. (2010) compared to using all available covariates. A high-

dimensional X may sometimes be desirable to make CAR more plausible, but since

this does not seem to be needed here, we proceed with the lower dimensional model

containing 14 covariates, even though the performance of the higher dimensional

model is substantially better for predicting education outcomes. The analysis was

also performed for the high-dimensional choice of X but is not reported as it lead

to highly similar results. The second-step estimator is a local-linear-regression-

based RDD implemented using the R-package rdrobust with standard parameters

except for the bandwidth which is set to h = 3500. This leads to around 860

and 720 observations to the left and right of the threshold, respectively. It is an

attractive feature of the approach that X can be made high-dimensional to make

CAR more plausible while keeping the final estimation as a low-dimensional local

linear regression which has desirable properties for inference.

The relationship between the estimated pseudo-outcomes and the income in

Wave 3 is depicted in the right panel of Figure 6.5. This shows a clear discontinuity

in treatment probability at w0 indicating that an RDD is indeed applicable. In the

left-panel, one sees that the expected outcome seems to increase with salary until

around £60,000 after which it appears constant. The level also appears constant

until around £30,000 which could be an indication that the level below £20,000 is

artificially high due to EMA. The middle panel focuses on a neighborhood of w0,

and also seems to indicate a discontinuity for the education outcomes although its

statistical significance is less clear. A desirable feature of using pseudo-outcomes for

RDD is that the regression discontinuity can still be plotted when data is censored.

Such graphical tools are important for RDD analyses, see Imbens & Lemieux (2008).

Algorithm 1 leads to the estimated value and standard error

τ̂ = 0.703, SE(τ̂) = 0.614,

resulting in a p-value of around 0.25 and thus not reaching statistical significance

at conventional significance levels.
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Figure 6.5: Left Panel: Binned-means over the pseudo-outcomes for Y and EMA
thresholds for income in Wave 3. Middle Panel: Binned-means of the pseudo-outcomes
for Y , estimate of the conditional mean, 95% confidence intervals, and EMA thresholds
for Wave 3 incomes around the threshold for receiving high EMA. Right Panel: The
same as the middle panel with pseudo-outcomes for A.

To get a feeling for the sensitivity of the result with respect to the bandwidth,

the estimation was repeated with b = 4704 and b = 2352 which is the distance

to the next EMA threshold and half that distance, respectively. The estimated

values are in this case {τ̂,SE(τ̂)} = (0.391, 0.588) and {τ̂,SE(τ̂)} = (1.197, 0.697),

respectively. Thus, the absolute size of the estimate changes considerably, but the

effect remains large and positive. Note that the 90% significance level is reached for

the smaller bandwidth. Making Figure 6.5 with these alternative bandwidths (not

shown) indicates over- and undersmooth, respectively, and the original estimate

hence seems to be the most reliable.

The proposed methods yield wider confidence intervals than those in Rahman

(2014), leading to statistically insignificant results. This likely better reflects the

uncertainty in the estimate since the assumptions imposed here are substantially

weaker. If the effect is genuine, an additional 0.7 years of education would be a

large effect and would be another piece of evidence that EMA was successful in

its initial aim of keeping YP in education. Transparency regarding uncertainty is

important for policymakers when assessing findings and deciding if more data is

needed before making decisions. The p-value suggests a larger sample could be

beneficial in clarifying the effect, or statistical power could be increased by using

data from the multiple EMA thresholds, as discussed, though at the cost of some

internal validity. This is left for future work.

Remark 6.5.2. (Model extensions.)

A slightly more sophisticated model would have accommodated the fact that

interviews took place over a few months rather than simultaneously, using that the

interview month is available from the data to model C on a monthly rather than
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yearly grid. The effect of this is however expected to be minor in the present study.

Additionally, one could have weakened the assumption that (C,XC) is a CAR of

X by including more outcomes from Wave 4 in X, but nuisance estimators would

then have to model the entire distribution of X at Wave 4 given X0. ▽

Remark 6.5.3. (RDD with survival data.)

The use of RDD for survival data has been studied in Adeleke et al. (2022) for an

accelerated failure time model. The methods proposed in this paper seem to be

the first that allow for nonparametric inference for an RDD when data is censored

even for the survival setting. Note that the outcome Y specified above cannot be

represented as survival data since some leave school in Wave 4 but return in Wave

5. ▽

Our approach generalizes the class of problems where an RDD is applicable. This

could be a valuable tool in exploring long-ranging consequences of policies in cases

where a longitudinal no unmeasured confounding assumption might be unsuitable

but coarsening at random for the censoring mechanism is believable. Many existing

datasets could likely be analyzed using methods similar to those employed in this

section, and the availability of the methods might also incentivize more studies to

be on a form where a longitudinal RDD could be applied. The LSYPE data for

example allows one to explore several long-term consequences of EMA. Waves 6-8

enable examination of university attendance and choice of subjects, and Wave 8

contains information on labour market outcomes. Other linked administrative data

are also available, though under stricter access requirements. Similar datasets are

however available during Covid-19 years (2020-2021), allowing one to explore the

long-term effect of EMA on self-reported health, amount of hours worked, trust in

the government etc. Here it might be natural to let time 0 be Wave 4 such that

treatment is a baseline covariate and Remark 6.2.5 may be used. This is left to

future work.
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6.A Derivation of the efficient influence function

Sample means of the IPCW pseudo-outcomes

Y ◦(C,XC) =
Y (X)1(C≥η)

P(C ≥ η | X)

provide an estimator of E[Y (X)]. Furthermore, this estimator is a regular and linear

(hence also asymptotically linear) estimator of E[Y (X)] with influence function

Y ◦(C,XC)− E[Y (X)], see e.g. Section 3 in Tsiatis (2006). The efficient influence

function is any influence function subtracted its projection in L2(Ω,F ,P) onto the

CAR tangent space which may be found using Van der Vaart (2004) or Section

3.4 of Van der Laan & Robins (2003). Let M(du) = d1(C≤u) − 1(C≥u)P1(C ∈ du |
X)/P1(C ≥ u | X). The aforementioned projection is then∫

E[Y ◦(u,Xu)− E[Y (X)] | C > u,Xu]

− E[Y ◦(C,XC)− E[Y (X)] | C > u,Xu]M(du)

when the conditional expectations are taken to be 0 if P(C > u | Xu) = 0. Thus,

there are only contributions on [0, η). The marginals expectations cancel and since

1(u≥η) = 0 for u ∈ [0, η) the only remaining term is −
∫
[0,η)

E[Y ◦(C,XC) | C >

u,Xu]M(du). Note

E[Y ◦(C,XC) | C > u,Xu] =
E[Y (X)1(C≥η)/P(C ≥ η | X) | Xu]

P(C > u | Xu)

since 1(C≥η)1(C>u) = 1(C≥η) for u ∈ [0, η). Using the tower-property when condi-

tioning on X in the numerator gives E[Y (X) | Xu]/P(C > u | Xu).

6.B Proof of Theorem 6.2.3

The proof proceeds in two parts.

6.B.1 Proof of conditional expectation result

Proof. Write

Y ∗
P1,P2

(C,XC) =
Y (X)1(C≥η)

P1(C ≥ η | X)
+

E2[Y (X) | Xu]

P1(C > u | X)

∣∣∣
u=C
× 1(C<η)

−
∫
[0,η)

1(C≥u)
E2[Y (X) | Xu]

P1(C > u | X)

P1(C ∈ du | X)

P1(C ≥ u | X)
.

The conditional expectation given W of each term is treated separately. The

strategy is to write the expectation in terms of X |W and C | X.

E
[
Y (X)1(C≥η)

P1(C ≥ η | X)
|W

]
= E

[
Y (X)P(C ≥ η | X)

P1(C ≥ η | X)
|W

]
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by the tower-property when conditioning on X. Similarly,

E
[
E2[Y (X) | Xu]

P1(C > u | X)

∣∣∣
u=C
× 1(C<η) |W

]
= E

[∫
[0,η)

E2[Y (X) | Xu]

P1(C > u | X)
P(C ∈ du | X) |W

]
and

E

[∫
[0,η)

1(C≥u)
E2[Y (X) | Xu]

P1(C > u | X)

P1(C ∈ du | X)

P1(C ≥ u | X)
|W

]

= E

[∫
[0,η)

P(C ≥ u | X)E2[Y (X) | Xu]

P1(C > u | X)

P1(C ∈ du | X)

P1(C ≥ u | X)
|W

]
.

Note that
P(C ∈ du | X)

P1(C > u | X)
= γ(u | X)

P(C ≥ u | X)

P1(C > u | X)
dµ(u)

and
P(C ≥ u | X)

P1(C > u | X)

P1(C ∈ du | X)

P1(C ≥ u | X)
= γ1(u | X)

P(C ≥ u | X)

P1(C > u | X)
dµ(u).

Thus,

E[Y ∗
P1,P2

(C,XC)− Y (X) |W ]

= E
[
P(C ≥ η | X)

P1(C ≥ η | X)
Y (X)− Y (X)

+

∫
[0,η)

E2[Y (X) | Xu]{γ(u | X)− γ1(u | X)} P(C ≥ u | X)

P1(C > u | X)
dµ(u) |W

]
.

Using p. 868 of Shorack & Wellner (1986), write

P(C ≥ η | X)

P1(C ≥ η | X)
Y (X)− Y (X) =

∫
[0,η)

Y (X) d

{
P(C > u | X)

P1(C > u | X)

}
.

Integration by parts for finite variation functions, see p. 868 of Shorack & Wellner

(1986), implies

d

{
P(C > u | X)

P1(C > u | X)

}
= −P(C ∈ du | X)

P1(C > u | X)

+
P(C ≥ u | X)

P1(C ≥ u | X)P1(C > u | X)
P1(C ∈ du | X)

using Assumption 6.2.2 for P1. By the previous calculations, one therefore obtains∫
[0,η)

Y (X) d

{
P(C > u | X)

P1(C > u | X)

}
= −

∫
[0,η)

Y (X){γ(u | X)− γ1(u | X)} P(C ≥ u | X)

P1(C > u | X)
dµ(u)
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Because of CAR, it holds that

P1(C > u | X) = 1−
∫
[0,u]

r1(s | X) dµ(s) = 1−
∫
[0,u]

r̃1(s,X
s) dµ(s)

so P1(C > u | X) = P1(C > u | Xu) by the tower property. Similar calculations

hold for P1(C ≥ u | X) and P(C ≥ u | X). Hence,

E

[∫
[0,η)

Y (X){γ(u | X)− γ1(u | X)} P(C ≥ u | X)

P1(C > u | X)
dµ(u) |W

]

= E

[∫
[0,η)

E[Y (X) | Xu]{γ(u | X)− γ1(u | X)} P(C ≥ u | X)

P1(C > u | X)
dµ(u) |W

]

using Fubini to take the expectation inside the integral, then tower with Xu and

use Fubini to take the expectation outside again. Collecting the results leads to the

desired expression.

6.B.2 Proof of conditional variance result

Proof. For shorthand, write Y ∗ = Y ∗
P,P(C,X

C) and Y ◦ = Y ◦(C,XC) recalling the

IPCW notation from Section 6.A of the Supplementary material. The first part of

the proof generalizes the calculations from Proposition 5 of Suzukawa (2004) and

S.5.3 in the Supplementary Material of Steingrimsson et al. (2019). Note

Var[Y ∗ |W ] = E[(Y ∗)2 |W ]− E[Y ∗ |W ]2.

By the first part of Theorem 6.2.3, it holds that E[Y ∗ | W ] = E[Y | W ]. For the

other term, expanding the square gives (Y ∗)2 = R(1) +R(2) +R(3) where

R(1) = (Y ◦)2,

R(2) =

[∫
[0,η)

E[Y | Xu]

P(C > u | X)

{
d1(C≤u) − 1(C≥u)

P(C ∈ du | X)

P(C ≥ u | X)

}]2
,

R(3) = 2Y ◦
∫
[0,η)

E[Y | Xu]

P(C > u | X)

{
d1(C≤u) − 1(C≥u)

P(C ∈ du | X)

P(C ≥ u | X)

}
.

Straigtforward calculations give

E[R(1) |W ] = E
[

Y 2

P(C ≥ η | X)
|W

]
,

E[R(3) |W ] = −2E
[
Y

∫
[0,η)

E[Y | Xu]

P(C > u | X)

P(C ∈ du | X)

P(C ≥ u | X)
|W

]
.
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Expanding the square gives R(2) = R(2.1) +R(2.2) +R(2.3) for

R(2.1) =

{∫
[0,η)

E[Y | Xu]

P(C > u | X)
d1(C≤u)

}2

,

R(2.2) =

{∫
[0,η)

E[Y | Xu]

P(C > u | X)
1(C≥u)

P(C ∈ du | X)

P(C ≥ u | X)

}2

,

R(2.3) = −2
∫
[0,η)

E[Y | Xu]

P(C > u | X)
d1(C≤u)

×
∫
[0,η)

E[Y | Xu]

P(C > u | X)
1(C≥u)

P(C ∈ du | X)

P(C ≥ u | X)
.

Note

E[R(2.2) |W ] = E
[ ∫

[0,η)2

E[Y | Xu]

P(C > u | X)

E[Y | Xv]

P(C > v | X)
1(C≥u∨v)

× P(C ∈ du | X)

P(C ≥ u | X)

P(C ∈ dv | X)

P(C ≥ v | X)
|W

]
by Fubini’s theorem. By symmetry, this is twice the contribution where the indicator

1(C≥v) is replaced by 1(u≥v). Inserting this and towering on X gives

E[R(2.2) |W ] = 2E
[ ∫

[0,η)

E[Y | Xu]

P(C > u | X)

×
{∫

[0,u]

E[Y | Xv]

P(C > v | X)

P(C ∈ dv | X)

P(C ≥ v | X)

}
P(C ∈ du | X) |W

]
.

Straightforward calculations thus imply E[R(2.2) | W ] = −E[R(2.3) | W ] so these

terms cancel. Finally, note

E[R(2.1) |W ] = E

[∫
[0,η)

E[Y | Xu]2

P(C > u | X)2
P(C ∈ du | X) |W

]

Collecting the results gives

Var[Y ∗ |W ] = E
[

Y 2

P(C ≥ η | X)
+

∫
[0,η)

E[Y | Xu]2

P(C > u | X)2
P(C ∈ du | X)

− 2Y

∫
[0,η)

E[Y | Xu]

P(C > u | X)

P(C ∈ du | X)

P(C ≥ u | X)
|W

]
− E[Y |W ]2.

Note that Y 2/P(C ≥ η | X) =
∫
[0,η)

Y 2 d {1/P(C > u | X)}+ Y 2 and integration

by parts implies

d

{
1

P(C > u | X)

}
=

P(C ∈ du | X)

P(C ≥ u | X)P(C > u | X)
.
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Inserting this and collecting the integral terms implies

Var[Y ∗ |W ]−Var[Y |W ] = E
[ ∫

[0,η)

{
Y 2

P(C ≥ u | X)
+

E[Y | Xu]2

P(C > u | X)

− 2E[Y | Xu]2

P(C ≥ u | X)

}
P(C ∈ du | X)

P(C > u | X)
|W

]
.

By writing P(C ∈ du | X) = r(u | X) dµ(u), one may take the expectation inside

the integral and can then tower on Xu and then take the expectation outside

the integral again, leading to Y 2 being replaced by E[Y 2 | Xu]. By bounding

E[Y | Xu]2/P(C > u | X) ≥ E[Y | Xu]2/P(C ≥ u | X) and using Jensen’s

inequality for conditional expectations to bound E[Y 2 | Xu] ≥ E[Y | Xu]2 gives the

desired conclusion.

Similarly to Theorem 3.1 in Steingrimsson et al. (2019), one could further have

shown that Var[Y ∗
P,P2

(C,XC) |W ] ≥ Var[Y ∗ |W ] so using a misspecified outcome

distribution leads to larger variance of the pseudo-outcomes. This result is however

not directly useful for our purposes and is hence omitted.

6.C Efficient influence function in Remark 6.2.5

The efficient influence function can be derived using similar arguments to those in

Section 6.A of the Supplementary material. Define the inverse probability weighted

pseudo-outcomes for treatment a as

Y ◦(a,C,XC) =
Y (X)1(C≥η)1(A=a)

P(C ≥ η | X)P(A = a |W )
.

Sample means of these pseudo-outcomes provide an estimator of E[E[Y (X) |W,A =

a]], which is the population version of the estimand of interest E[Y (X) |W,A = a].

For these estimands, (C,X(a), A) is the complete data and (C,XC) is the observed

data. Following the arguments in Rytgaard et al. (2022), the projection onto the

relevant tangent space is given by∫
[0,η)

E[Y ◦(a, u,XC) | C > u,Xu]− E[Y ◦(a,C,XC) | C > u,Xu]M(du)

+
∑

k∈{0,1}

(
E[Y ◦(a,C,XC) |W,A = k]− E[Y ◦(a,C,XC) |W ]

)
1(A=k)

= − 1(A=a)

P(A = a |W )

∫
[0,η)

E[Y (X) | Xu]

P(C > u | X)
M(du)

+
1(A=a) − P(A = a |W )

P(A = a |W )
E[Y (X) |W,A = a]

with M defined as in Section 6.A of the Supplementary material. This result also

appears in Section 6.4.3 of Van der Laan & Robins (2003) when Y (X) = 1(T≤t) for

a survival time T .
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6.D Proof of Proposition 6.3.5

Proof. Write

m̂(w)−m(w) = m̂(w)− m̃(w) + m̃(w)−m(w).

To show stability of linear smoothers, note that

dw,D2n(0,Var[Y ∗(C,XC) |W = • ])

=

n∑
i=1

{
pi(w;W

n)2∑n
j=1 pj(w;W

n)2
Var[Y ∗(C,XC) |W =Wi]

2

}
≥ inf

z∈{W1,...,Wn}
Var[Y ∗(C,XC) |W = z]2

≥ inf
z
Var[Y (X) |W = z]2.

where the last inequality follows from the second part of Theorem 6.2.3. It therefore

holds that dw,D2n(0,Var[Y ∗(C,XC) | W = • ])−1 is bounded and thus also OP(1).

This result combined with condition (ii) gives stability of the linear smoother.

Therefore m̂(w)− m̃(w) = Ên[b̂(W ;Dn
1 ) | Dn

1 ,W = w] + oP(n
−α).

Introduce the stochastic norm

∥f(u,X;Dn
1 )∥3,z,Dn

1
=

{∫
[0,η)

∥f(u,X;Dn
1 )∥2z,Dn

1
dµ(u)

}1/2

.

By the first part of Theorem 6.2.3,

b̂(z;Dn
1 ) =

∫
X×[0,η)

{
E[Y (X) | xu]− Ê2,n[Y (X) | xu]

}
{γ̂1,n(u | x)− γ(u | x)}

P(C ≥ u | x)
P̂1,n(C > u | x)

P(X ∈ dx |W = z)⊗ dµ(u)

so

|b̂(z;Dn
1 )| ≤ ε−1∥E[Y (X) | Xu]− Ê2,n[Y (X) | Xu]∥3,z,Dn

1

× ∥γ̂1,n(u | X)− γ(u | X)∥3,z,Dn
1

by taking the absolute value onto the integrand, using positivity, and then employing

the Cauchy-Schwarz inequality. Note∣∣Ên[b̂(W ;Dn
1 ) | Dn

1 ,W = w]
∣∣

≤
n∑

i=1

|pi(w;Wn)| × |b̂(Wi;D
n
1 )|

≤ ε−1
n∑

i=1

|pi(w;Wn)|1/2∥E[Y (X) | Xu]− Ê2,n[Y (X) | Xu]∥3,Wi,Dn
1

|pi(w;Wn)|1/2∥γ̂1,n(u | X)− γ(u | X)∥3,Wi,Dn
1
.
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By the Cauchy-Schwarz inequality∣∣Ên[b̂(W ;Dn
1 ) | Dn

1 ,W = w]
∣∣

≤ ε−1

{
n∑

i=1

|pi(w;Wn)| × ∥E[Y (X) | Xu]− Ê2,n[Y (X) | Xu]∥23,Wi,Dn
1

}1/2

×
{

n∑
i=1

|pi(w;Wn)| × ∥γ̂1,n(u | X)− γ(u | X)∥23,Wi,Dn
1

}1/2

=

n∑
i=1

|pi(w;Wn)|
ε

× ∥E[Y (X) | Xu]− Ê2,n[Y (X) | Xu]∥2,w,D2n

× ∥γ̂1,n(u | X)− γ(u | X)∥2,w,D2n

where the final equality follows from the definition of the norm.

Note that the sum of the absolute weights is OP(1) by (iii). By Assumption

(iv) and (v), the right hand side is thus OP(n
−α1−α2). To obtain the oracle rate,

this term should be oP(n
−α). This is satisfied if nα1+α2 > nα or equivalently

α1+α2 > α, which holds by (vi). It thus holds that m̂(w)− m̃(w) = oP(n
−α) which

implies m̂(w)−m(w) = OP(n
−α) as desired.

6.E Proof of Proposition 6.3.9

Proof. Note that

m̂CF(w)−m(w) =
1

K

K∑
k=1

{m̃k(w)−m(w)}+ 1

K

K∑
k=1

{m̂k(w)− m̃k(w)}.

Each m̃k(w)−m(w) can be analyzed analogously to m̃(w)−m(w) but just using

n/K observations instead of n. Therefore nα{m̃k(w)−m(w)} → N (Kαµ,K2ασ2)

in distribution since nα = Kα(n/K)α. Furthermore, since m̃k(w) − m(w) for

different values of k are independent, one obtains nα[K−1
∑K

k=1{m̃k(w)−m(w)}]→
N (Kαµ,K2α−1σ2) in distribution. For the second sum, note that each term

m̂k(w)−m̃k(w) can be analyzed analogously to the sample split version m̂(w)−m̃(w).

Under the assumptions from Proposition 6.3.5, it thus holds that m̂k(w)− m̃k(w) =

oP(n
−α) so also 1/K

∑K
k=1{m̂k(w) − m̃k(w)} = oP(n

−α). Slutsky’s lemma then

implies, still under the assumptions from Proposition 6.3.5, that

nα{m̂CF(w)−m(w)} → N (Kαµ,K2α−1σ2)

in distribution.
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6.F Figures

Figure 6.6: Estimates using two-fold cross-fitted doubly robust pseudo-outcomes with
nuisance parameters estimated by HAL, the true curve, and pointwise 95% confidence
bands outputted by lprobust for a single simulation.
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