
Matthieu Bulté
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mb@math.ku.dk

Department of Mathematical Sciences
University of Copenhagen
2100 Copenhagen, Denmark
matthieu.bulte@uni-bielefeld.de

Bielefeld Graduate School of Economics and Management
University of Bielefeld
33501 Bielefeld, Germany

Thesis title:

Supervisor:

Assessment
Committee:

Date of
Submission:

Date of
Defense:

ISBN:

From Points to Objects: Statistical
Inference Beyond Euclidean Spaces

Professor Helle Sørensen
University of Copenhagen

Professor Christiane Fuchs
University of Bielefeld

Professor Bo Markussen (chair)
University of Copenhagen

Professor Dietmar Bauer
University of Bielefeld

Professor Victor Panaretos
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À vous, Maman, Margaux.

iii





Preface

Foreword

This PhD thesis presents research conducted as part of the Marie Sk lodowska-Curie Ac-
tions Innovative Training Networks, Economic Policy in Complex Environments (EPOC).
The thesis contains the results of two years of research at the Department of Mathe-
matical Sciences at the University of Copenhagen (KU) and one year at the Faculty of
Business Administration and Economics at the University of Bielefeld (UNIBI) as part
of a double degree program between the two institutions. The research in this thesis
was conducted under the supervision of Helle Sørensen (KU) as the main supervisor and
Christiane Fuchs (UNIBI) as co-supervisor. Additionally, EPOC involved a two-month
non-academic secondment which I spent at the Greenland Institute of Natural Resources
(GINR) under the supervision of Mads-Peter Heide-Jørgensen (GINR).

v



Acknowledgments

It’s a little bit funny to look back, thinking about all the people who have been part of
my life in meaningful ways. I have been lucky to have met so many great people, and I
am grateful to all of them.

I would like to start by thanking my supervisor Helle Sørensen. I will miss our weekly
meetings, which have been a fun mix of chatting about our lives and intense project
discussions. Helle has been a fantastic supervisor, allowing me to grow by trusting and
encouraging my intuitions while providing the right amount of guidance.

The Statistics and Probability Section at the University of Copenhagen has been
a fantastic place to do my PhD. This department is filled with fun and interesting
people, many of whom have become friends. Thank you for being there: Anton, Cecilie,
Christian, Frederik, Leonard, Margherita, Myrto, and Ulises. Particular mentions to
Alex, Pedja, and Shimeng with whom I had the chance to share this entire experience,
starting with our early days in the corner office 4.3.21.

I feel immensely grateful for having met so many amazing people in my life, with
whom I connected not only intellectually but also on a much more personal level. To
Flo, Johannes, Laurent, Lea, Lucy, Martin, Nicola, and Pedja: thank you for always
being there for me, for being an inspiration, and for being such great people to be
around. And to all the many others that I am not able to mention, thank you.

This wouldn’t be an acknowledgments section without thanking my family which is
and has always been a central part of my life, even in times when I haven’t been able to
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Abstract

Random variables taking values in metric spaces, called random objects, have recently
received additional attention in the statistical litterature. The abstraction, only requiring
the definition of a notion of distance between data points, allows for the development of
statistical methodology that can be applied to a wide range of complex data types. In
particular, this includes types of data not typically covered by existing works. Just like
in classical statistics, practitioners encountering such complex data might be interested
in answering a wide range of questions. In this thesis, we present the results of three
independent projects, each addressing a typical statistical task.

The first chapter provides an introduction to the thesis; it consists of a motivation for
the work carried out, together with an attempt at providing the necessary background in
metric spaces and their statistical study in order to make this manuscript self-contained.
This includes a brief introduction to metric spaces and to relevant geometric concepts.
Then, we introduce the notion of random objects together with a generalization of ex-
pected value central to this thesis: the Fréchet mean of a random object. Each of the
remaining chapters corresponds to one of the projects of the thesis, to which we provide
a brief introduction consisting of a motivation and presentation of the main contribution.

In the second chapter, we are concerned with regressing a random object on a vector
of real numbers, that is, we attempt to learn from an independent and identically dis-
tributed sample the conditional expectation of a random object given a vector of real
numbers. To that end, we present an adaptation of random forest together with an ap-
proximate tree construction algorithm. Our approximation algorithm allows to perform
regression in metric spaces where Fréchet means are expensive to compute. We show
that the proposed method, the Metric Random Forest (MRF), is pointwise consistent
and we provide a simulation study to illustrate its performance.

Time series data, where observations are collected sequentially over time, naturally
raise questions about temporal dependence between successive measurements. In the
third chapter, we use the additional structure present in Hadamard spaces to extend the
classical autoregressive process of order one, introducing the Geodesic Autoregressive
Model (GAR). We provide estimators for its parameters, and propose a statistical test for
the absence of temporal dependence. Furthermore, we study the asymptotic properties
of the estimators and the test. We illustrate the methodology in a simulation study and
in an application to economic surveys of consumer expectations.

Finally, in the fourth chapter, we consider the more elementary problem of testing
the Fréchet mean of a random object. We introduce a test based on the empirical
Fréchet variance of the sample and introduce a randomization methodology exploiting
the symmetries of the metric space. We illustrate the methodology in various kinds of
metric spaces and investigate the performance of the test under various conditions. We
provide a simulation study to illustrate the performance of the test and apply it to a
data set of wind data in Denmark.
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Sammenfatning

Stokastiske variable, der antager værdier i metriske rum, kaldet stokastiske objekter,
har for nylig f̊aet øget opmærksomhed i den statistiske litteratur. Abstraktionen, der kun
kræver definitionen af en afstand mellem datapunkter, muliggør udviklingen af statistisk
metodologi, der kan anvendes p̊a en bred vifte af komplekse datatyper. Dette omfatter
især datatyper, der typisk ikke dækkes af eksisterende værker. Ligesom i klassisk statistik
kan praktikere, der møder s̊adanne komplekse data, være interesserede i at besvare en
bred vifte af spørgsm̊al. I denne afhandling præsenterer vi resultaterne af tre uafhængige
projekter, der hver behandler en typisk statistisk opgave.

Det første kapitel giver en introduktion til afhandlingen; det best̊ar af en motivation
for det udførte arbejde sammen med et forsøg p̊a at give den nødvendige baggrund i
metriske rum og deres statistiske studie for at gøre dette manuskript selvstændigt. Dette
inkluderer en kort introduktion til metriske rum og relevante geometriske koncepter.
Derefter introducerer vi begrebet stokastiske objekter sammen med en generalisering
af forventet værdi, der er central for denne afhandling: Fréchet-middelværdien af et
stokastisk objekt. Hvert af de resterende kapitler svarer til et af afhandlingens projekter,
hvortil vi giver en kort introduktion best̊aende af en motivation og præsentation af
hovedbidraget.

I det andet kapitel beskæftiger vi os med regression af et stokastisk objekt p̊a en vektor
af reelle tal, det vil sige, vi forsøger at lære fra en i.i.d. stikprøve den betingede forvent-
ning af et stokastisk objekt givet en vektor af reelle tal. Til dette form̊al præsenterer vi en
tilpasning af random forest sammen med en approksimativ træ-konstruktionsalgoritme.
Vores approksimationsalgoritme gør det muligt at udføre regression i metriske rum,
hvor Fréchet-middelværdier er beregningsmæssigt krævende. Vi viser, at den foresl̊aede
metode, Metric Random Forest (MRF), er punktvist konsistent, og vi præsenterer et
simulationsstudie for at illustrere dens ydeevne.

Tidsseriedata, hvor observationer indsamles sekventielt over tid, rejser naturligt spørgs-
m̊al om tidsmæssig afhængighed mellem p̊a hinanden følgende m̊alinger. I det tredje
kapitel bruger vi den yderligere struktur i Hadamard-rum til at udvide den klassiske
AR(1)-model og introducerer den Geodætiske Autoregressive Model (GAR). Vi leverer
estimatorer for dens parametre og foresl̊ar en statistisk test for fravær af tidsmæssig
afhængighed. Desuden studerer vi estimatorernes og testens asymptotiske egenskaber.
Vi illustrerer metodologien i et simulationsstudie og i en anvendelse p̊a økonomiske un-
dersøgelser af forbrugerforventninger.

Endelig behandler vi i det fjerde kapitel det mere elementære problem med at teste
Fréchet-middelværdien af et stokastisk objekt. Vi introducerer en test baseret p̊a stik-
prøvens empiriske Fréchet-varians og introducerer en randomiseringsmetodologi, der ud-
nytter det metriske rums symmetrier. Vi illustrerer metodologien i forskellige typer af
metriske rum og undersøger testens ydeevne under forskellige betingelser. Vi præsen-
terer et simulationsstudie for at illustrere testens ydeevne og anvender den p̊a et datasæt
med vinddata i Danmark.
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Contributions and Structure

The first chapter provides an introduction to the thesis; it consists of a motivation to
the work presented in this thesis together with an attempt at providing the necessary
background in metric spaces and their statistical study in order to make the thesis self-
contained. Each remaining chapter corresponds to one of the projects of the thesis, to
which we provide a brief introduction, its status and the main contributions, followed by
the paper itself. Chapter 2 presents our work in [MRF] on adapting random forest to
the problem of regression in metric spaces. Chapter 3 contains the paper [GAR] which
introduces assumptions on the metric space allowing to define a simple autoregressive
model for random objects. Finally, Chapter 4 consists of the paper [ISO] which is
concerned with the problem of testing the mean of a random object.

Chapter 2 (Constructing regressors in metric spaces)

[MRF] [Bulté and Sørensen, 2024b]. Bulté, M. and Sørensen, H. (2024b). Medoid splits
for efficient random forests in metric spaces. Computational Statistics & Data
Analysis, 198:107995.

Chapter 3 (Modeling time series without linearity)

[GAR] [Bulté and Sørensen, 2024a] Bulté, M. and Sørensen, H. (2024a). An Autoregres-
sive Model for Time Series of Random Objects. arXiv:2405.03778.

Paper status: Under review at Electronic Journal of Statistics.

Chapter 4 (Exploiting symmetries for testing the mean)

[ISO] [Bulté and Sørensen, 2025] Bulté, M. and Sørensen, H. (2025). Isotropic random-
ization for one-sample testing in metric spaces. arXiv:2501.15945 [stat].

Paper status: working paper.
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1 Introduction

1.1 A Playful Tale

Consider Ben1, a PhD student working hard in the last months prior to submitting his
thesis. Worried about the impact of his work on his sleep, he decides to start tracking
the time at which he goes to bed over a week. On Monday, Ben went to bed at 10:30 PM,
followed by 11:30 PM on Tuesday and 12:30 AM on Wednesday. As the week progressed
and his deadline loomed closer, Ben’s bedtime gradually shifted: 1:00 AM on Thursday
and 2:30 AM on Friday when he decided to finish one last simulation. Exhausted but
not done, he decides to recover over the weekend and ends the week by going to bed at
8:30 PM and 9:00 PM on Saturday and Sunday.
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The first question Ben tries to answer in order to better under-

stand his sleep is “At what time do I go to bed on average?”. He
starts by converting the recorded bedtimes to a 24-hour format on a
continuous scale (e.g., 11:45 PM becomes 23.75) giving the numbers
22.5, 23.5, 0.5, 1.0, 2.5, 20.5, 21.0 ∈ R. As he proceeds to taking the arith-
metic mean, giving approximately 13.07 — that is, 1:04 PM — Ben
pauses, “This can’t be right”, he thinks. Looking at these times on a
line, he sees the problem clearly: while all his bedtimes cluster within a
few night hours, their arithmetic mean falls on the opposite side of the
clock.
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Seeking illumination, Ben shares his dilemma with Mau-
ricette, a fellow graduate student. Instead of offering a solution,
she asks him a simple question: “When you tell someone how
much time passes between two events, how do you calculate it?”
Ben thinks about it. “Well, if I went to bed at 11:00 PM yes-
terday and 1:00 AM today, I’d say that’s... two hours apart.”
“Exactly!” Mauricette responds, “You naturally measure time

differences by following the circle of the clock, taking the shorter path. Maybe your
average should respect this same structure?”.

Following this insight, they compute a new kind of average — one that respects how
we naturally measure distances in time. They find the point on the circle that minimizes
the average squared distance to all bedtimes, measuring distance along the clock’s arc.
This time, their result lands at 11:22 PM, marked as a red star in the illustration, exactly
where intuition suggests — in the middle of Ben’s nighttime sleep schedule.

1A similar version of this example was presented by C. Schötz in his talk A Law of Large Numbers for
Fréchet Mean Sets

1



1 Introduction

1.2 Metric Spaces and Elementary Properties

While Ben’s dilemma might seem specific to circular data, it illustrates a fundamental
challenge in modern statistics: how to properly analyze data that lives in non-Euclidean
spaces. The bedtime example shows that even seemingly simple statistical tasks, like
computing an average, require careful consideration of the underlying space’s geometry.
To develop a systematic approach to such problems, we need a mathematical framework
that can accommodate various types of non-Euclidean data while maintaining enough
structure for meaningful statistical analysis. This leads us to the theory of metric spaces
which we will present in this section.

The fundamental mathematical abstraction underlying our work is that of metric
spaces. This structure provides a general framework that can accommodate a wide
variety of data types while retaining enough mathematical expressiveness to develop
meaningful statistical procedures. For an in-depth treatment of metric spaces, we refer
the reader to [Burago et al., 2001].

Definition 1 (Metric Space). A metric space is a pair (Ω, d) where Ω is a set and
d : Ω × Ω → R+ is a distance function satisfying three properties: for all x, y, z ∈ Ω,

1. d(x, y) ≥ 0 with equality if and only if x = y (positivity)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

In the remaining of the thesis, we loosely use the terms distance and metric inter-
changeably. The generality of this framework is to be noted: metric spaces can be
anything from finite discrete sets to infinite-dimensional function spaces, from smooth
manifolds to fractal sets. This flexibility allows us to develop statistical methods that
can handle diverse types of data while maintaining mathematical rigor. However, this
generality comes at a cost: without additional structure, the tools available for statistical
analysis are limited. This motivates the study of specific assumptions and properties of
the metric spaces. One common assumption is that of boundedness which is defined via
the diameter of the space.

Definition 2 (Diameter of a metric space). Let (Ω, d) be a metric space. The diameter
of Ω is defined as:

diam(Ω) = sup
x,y∈Ω

d(x, y).

We now show that boundedness is a useful property that allows us to derive stronger
results. In particular, the following lemmas show that boundedness implies Lipschitz
continuity of the distance function. This plays a central role in many of our theoretical
developments and for which proofs can be found in the Appendix of Chapter 2

Lemma 1 (Lipschitz Continuity of Distance). In any metric space (Ω, d), the distance
function d(·, ·) is 1-Lipschitz in both arguments with respect to itself. That is, for all
x, y, z ∈ Ω:

|d(x, z) − d(y, z)| ≤ d(x, y).

2



1.2 Metric Spaces and Elementary Properties

When working with bounded metric spaces, we obtain stronger properties for the
squared distance:

Lemma 2 (Lipschitz Continuity of Squared Distance). In a bounded metric space (Ω, d)
with diameter D = diam(Ω), the squared distance function d2(·, ·) is 2D-Lipschitz in
both arguments. That is, for all x, y, z ∈ Ω:

∣∣d(x, z)2 − d(y, z)2
∣∣ ≤ 2Dd(x, y).

1.2.1 Familiar Metric Spaces

Before presenting more abstract metric spaces, it is worthwhile to recall the structure of
Hilbert spaces, as they provide a familiar setting where many geometric intuitions from
Rn remain valid. A Hilbert space (H, ⟨·, ·⟩) is a complete inner product space, where the
distance between two points is induced by the inner product:

d(x, y) =
√
⟨x− y, x− y⟩.

Remark 1. The key feature that makes Hilbert spaces particularly amenable to sta-
tistical analysis is that they allow for vector space operations while preserving geo-
metric structure. For instance, the notion of mean can be defined through standard
arithmetic averaging:

x̄ =
1

n

n∑

i=1

xi

This operation is well-defined and coincides with the geometric notion of center that
we will later generalize to metric spaces.

Another familiar example of a metric space is the d−dimensional sphere equipped
with its intrinsic metric.

Example 1 (Sphere). Let Sd =
{
x ∈ Rd+1 : ∥x∥2 = 1

}
be the d−dimensional sphere.

The distance between two points x, y ∈ Sd is given by the great circle distance:

dSd(x, y) = arccos(x⊤y).

A space of particular interest in statistics is the space of probability measures equipped
with the Wasserstein metric [Ambrosio et al., 2005, Panaretos and Zemel, 2020]. This
metric, which measures the “cost” of transforming one probability distribution into
another, has found numerous applications in statistics, machine learning. Apart from its
theoretical interest, it also finds practical applications in modeling situation where each
individual presents a distribution, see for instance [GAR] for an application in time
series analysis.

3



1 Introduction

Example 2 (Wasserstein Spaces). Let (Ω, d) be a metric space and P(Ω) be the set of
Borel probability measures on Ω. The p−Wasserstein distance between two measures
µ, ν ∈ P(Ω) is defined as:

dWp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫

Ω×Ω
d(x, y)pdπ(x, y)

)1/p

,

where Π(µ, ν) is the set of all joint distributions on Ω × Ω with marginals µ and ν.
The p−Wasserstein distance is a metric on P(Ω). Most commonly, the 2−Wasserstein
distance is used and is referred to as the Wasserstein distance. The special case of prob-
ability measures on the real line equipped with the Wasserstein distance is of particular
interest, both in terms of application as in terms of theoretical properties. There, for
two probability measure µ and ν with quantile functions Qµ and Qν , the Wasserstein
distance is given by:

dW2(µ, ν) =

(∫ 1

0
(Qµ(u) −Qν(u))2du

)1/2

1.2.2 Building Metric Spaces

While Hilbert spaces provide a comfortable setting for statistical analysis, many datasets
naturally live in spaces with more complex geometric structure. We now present several
fundamental ways to construct such spaces while preserving metric properties.

A first simple way to construct a valid distance on an arbitrary set Ω is by combining
an existing metric space (Ω′, d) and an injective map ϕ : Ω → Ω′.

Example 3. Let Ω be a set, (Ω′, d) be a metric space and ϕ : Ω → Ω′ be an injective
map. The distance dϕ on Ω induced by ϕ is defined as:

dϕ(x, y) = d(ϕ(x), ϕ(y)).

Then, (Ω, dϕ) is a metric space.

This way of constructing metric spaces corresponds to the notion of induced metric.
We can see that the Wasserstein distance on probability measures on the real line can be
seen as a metric induced by the L2 distance and function mapping distributions to their
quantile function. Furthermore, metric spaces can be combined to form new spaces. The
following example provides two common ways of doing this.

Example 4 (Product Metric Space). Given two metric spaces (Ω1, d1) and (Ω2, d2), the
following distances on the product Ω1 × Ω2 are valid distances,

1. The product metric: dp((x1, x2), (y1, y2)) =
√

d1(x1, y1)2 + d2(x2, y2)2

2. The maximum metric: dmax((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}
Another useful way of constructing a metric space is through the use of cones. A cone

over a metric space (Ω, d) is the quotient Ω × R+ obtained by gluing together all the
points in Ω × {0}.

4



1.2 Metric Spaces and Elementary Properties

Example 5 (Cone Metric). Let (Ω, d) be a bounded metric space diam(Ω) < π, define
the cone over Ω as Con(Ω) = Ω × R+/ ∼ where (ω, s) ∼ (ω′, t) if and only if s = t = 0.
It is a metric space equipped with the distance

dc((ω, s), (ω
′, t)) =

√
s2 + t2 − 2st cos(d(ω, ω′)).

Interestingly, it can be shown [Takatsu and Yokota, 2012] that the 2-Wasserstein space
of distributions over a space X is a cone if and only if X is a cone.

1.2.3 Geodesics and Curvature

A large class of metric spaces for which a geometrical intuition is easier to develop are
those in which points can be connected by special curves, called geodesics. Roughly
speaking, geodesics generalize the notion of straight lines in Euclidean space to more
general metric spaces. More formally, geodesics can be defined via the notion of length-
minimization

Definition 3 (Length and Geodesics). Let (Ω, d) be a metric space and γ : [a, b] → Ω
be a continuous map from an interval [a, b] ⊂ R to Ω. The length of γ is defined as

L(γ) = sup
n∑

i=1

d(γ(ti), γ(ti−1)), (1.1)

where the supremum is taken over all partitions a = t0 < t1 < . . . < tn = b. A curve
γ is a geodesic if for all t1, t2 ∈ [a, b], d(γ(t1), γ(t2)) = L(γ|[t1,t2]) where γ|[t1,t2] is the
restriction of γ to the interval [t1, t2].

The endpoints γ(a) and γ(b) of a curve γ : [a, b] → Ω are said to be connected by γ.
By the definition of length provided in Equation (1.1), a curve cannot be shorter than
the distance between the two points it connects, that is, L(γ) ≥ d(γ(a), γ(b)). Spaces
in which the distance between two points is equal to the infimum of the lengths of all
curves connecting them are called length spaces. If the distance between two points is
achieved by a unique curve, called geodesic, the space is then a geodesic space.

Geodesics can be used to provide a generalized notion of convexity in geodesic spaces
which is used throughout the thesis.

Definition 4 (Convexity). Let (Ω, d) be a geodesic space. A function f : Ω → R is
convex if for every two elements x, y ∈ Ω with connecting geodesic γ : [0, 1] → Ω, the
function f ◦ γ : [0, 1] → R is convex, that is for all t ∈ [0, 1],

f(γ(t)) ≤ (1 − t)f(x) + tf(y). (1.2)

If the inequality is strict, the function is said to be strictly convex. If furthermore there
exists a strictly increasing function η : R → R such that the following always holds

f(γ(t)) ≤ (1 − t)f(x) + tf(y) − t(1 − t)η(d(x, y)), (1.3)

then f is called uniformly convex.

5



1 Introduction

(a) nonpositive curvature (b) zero curvature (c) nonnegative curvature

Figure 1.1: Illustration of triangles in spaces of different curvatures. For triangles with
same side lengths in spaces of negative, zero, and positive curvature, the
distance from each vertex to the opposite side is respectively smaller, equal,
and larger than in their comparison triangle.

To better understand the behavior of random objects in geodesic spaces, it is helpful
to examine a geometric notion of curvature which provide a characterization of the
convexity or concavity of the distance function. The notion of curvature can be defined
in several equivalent ways, see Chapter 4 of [Burago et al., 2001]. While a numerical
notion of curvature can be introduced, it is often sufficient to consider this qualitative
definition. Here, we chose to present the concept through comparison triangles. Let
(Ω, d) be a geodesic space and x, y, z ∈ Ω be three points. A triangle △xyz is the set
formed by the three geodesics connecting the pairs of points (x, y), (y, z), and (z, x),
which we denote by [xy], [yz] and [xz]. The comparison triangle △x̄ȳz̄ is the triangle in
R2 formed by the points x̄, ȳ, z̄ ∈ R2 such that

∥x̄− ȳ∥2 = d(x, y), ∥ȳ − z̄∥2 = d(y, z), ∥z̄ − x̄∥2 = d(z, x).

The existence of this triangle in R2 follows for the triangle inequality. Considering the
distance between vertices of a triangle to their opposite sides leads to the classification of
geodesic spaces in three categories: nonpositive curvature, zero curvature, and positive
curvature.

Definition 5 (Curvature). A geodesic space (Ω, d) is a space of nonpositive (respectively
nonnegative) curvature if the following holds in every neighborhood of Ω: for every △xyz
in Ω and p ∈ [xy], the equivalent point p̄ with d(x, p) = ∥x̄− p̄∥2 in the comparison
triangle △x̄ȳz̄ satisfies

d(z, p) ≤ ∥z̄ − p̄∥2 (respectively d(z, p) ≥ ∥z̄ − p̄∥2).

The space is said to have zero curvature if the above inequality is an equality for all
△xyz and p ∈ [xy].

This motivates the intuition of “thickness” of triangles in a space: in spaces of non-
positive curvature, triangles are “thin” in the sense that the distance from a vertex to
the opposite side is smaller than it would be in the plane R2. In spaces of nonnegative
curvature, triangles are “fat” in the sense that the distance is larger than in the plane.
This intuition is illustrated in Figure 1.1.
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1.3 Statistical Analysis in Metric Spaces

The concept of curvature, plays an important role in determining the behavior of
statistical procedures. For instance, as mentioned earlier, one can show that the notion
of curvature relates to the convexity of the distance and squared distance functions as
we show in the following lemma.

Lemma 3. Let (Ω, d) be a geodesic space and x ∈ Ω. If Ω has nonpositive curvature
then the function dx(y) = d(x, y)2 is uniformly convex with η(t) = t2.

Proof. Let x, y, z ∈ Ω be distinct and γ be the geodesic connecting x and y. It is
sufficient to show that Equation (1.3) holds for t = 1/2. Let p = 1/2 and x̄, ȳ, z̄, p̄ ∈ R2

be defined as the definition of the comparison triangle. We then have p̄ = (x̄+ ȳ)/2 and
hence since Ω has nonpositive curvature, we obtain

d(z, p)2 ≤ ∥z̄ − p̄∥22 = ∥z̄∥22 + ∥p̄∥22 − 2⟨z̄, p̄⟩

=
1

2
∥x̄− z̄∥22 +

1

2
∥ȳ − z̄∥22 −

1

4
∥x̄− ȳ∥22

=
1

2
d(x, z)2 +

1

2
d(y, z)2 − 1

4
d(x, y)2.

We will see in the next section how this property can be useful in the study of random
objects.

In Euclidean minimization problems, convex functions are particularly advantageous
due to their desirable properties. Similarly, in the context of geodesic spaces, numerous
results — such as existence and uniqueness of a minimizer — are available for minimizing
geodesically convex functions; see Section 1 of [Sturm, 2003]. In particular, [Sturm, 2003,
Proposition 1.7] establishes that in a complete geodesic space, lower-semicontinuous and
uniformly convex functions admit a unique minimizer.

1.3 Statistical Analysis in Metric Spaces

1.3.1 Population quantities

Now that we have defined the theoretical quantities defining the types of objects we will
study, we can approach the question: What does it mean to compute an average? When
working with real numbers, the arithmetic mean provides a natural measure of central
tendency—a single value that represents an entire distribution. However, when working
with data in more general metric spaces, the notion of an average becomes more subtle.
How does one average shapes, probability distributions, or, as seen in the illustrative
example in Section 1.1, times on a clock?

In his seminal work in the late 1940s [Fréchet, 1948], Maurice Fréchet lays the theoret-
ical foundations for the study of random variables in metrics spaces. This includes the
question of finding representative elements in these spaces. Building on the observation
that the arithmetic mean minimizes the sum of squared deviations, Fréchet proposed a
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1 Introduction

general framework for defining means in metric spaces through a minimization principle.
This approach has become the foundation of statistical analysis in metric spaces.

To extend classical statistical concepts to metric spaces, we must first address a fun-
damental question: What does it mean to be a “random element” in such spaces? In
Euclidean space, random vectors are defined through their coordinates, but metric spaces
generally lack such a coordinate system. Instead, we need to build the theory from the
metric structure itself. This leads us to the following definition:

Definition 6 (Random objects). Let (Ω, d) be a metric space equipped with its Borel
σ-algebra B(Ω), that is, the σ-algebra generated by open sets in the metric topology.
A random object X taking values in Ω is a measurable function from some probability
space (X ,A,P) to (Ω,B(Ω)).

To develop meaningful statistical theory, we need to ensure that certain moments of
our random object exist. This leads to the definition of Lp spaces via the moments of
the distance function.

Definition 7 (Lp spaces of random objects). For p ≥ 1, we define Lp(Ω) as the space
of random objects X in Ω such that

E[d(X,ω)p] < ∞ (1.4)

for some (and hence all) ω ∈ Ω. The expectation in (1.4) is called the p-th distance
moment of X.

The parenthetical “and hence all” in the above definition is justified by the following.
If Equation (1.4) holds for some ω ∈ Ω, then it holds for all ω′ ∈ Ω. Indeed, by the
triangle inequality and Jensen’s inequality:

E
[
d(X,ω′)p

]
≤ E

[
(d(X,ω) + d(ω, ω′))p

]
≤ 2p−1E[d(X,ω)p] + 2p−1d(ω, ω′)p < ∞.

With these foundations in place, we can now consider how to define a notion of cen-
trality for random objects. In Euclidean spaces, the expectation E[X] of a random vector
X can be characterized as the vector minimizing the expected squared distance to X.
This minimization principle, recognized by Maurice Fréchet in [Fréchet, 1948], provides
a natural path to generalizing means to metric spaces.

Definition 8 (Fréchet function). Let (Ω, d) be a metric space and X be a random object
in L2(Ω). The Fréchet function FX : Ω → R+ is defined as

FX(ω) = E[d(X,ω)2]. (1.5)

Using this function, we can define the generalized notion of mean of a random object
X, called the Fréchet mean.

Definition 9 (Fréchet mean and Fréchet Variance). Let (Ω, d) be a metric space and
X be a random object in L2(Ω). Any element µ ∈ Ω minimizing the Fréchet function,

µ ∈ arg min
ω∈Ω

FX(ω), (1.6)

8



1.3 Statistical Analysis in Metric Spaces

is called a Fréchet mean of X and is denoted by E[X]. The Fréchet variance of X is
defined as the minimum value of the Fréchet function,

Var[X] = min
ω∈Ω

FX(ω). (1.7)

Note that this approach can be readily extended to the problem of regression, as
introduced in [Petersen and Muller, 2019]. Given a random object Y ∈ L2(Ω) and a
random vector X ∈ Rd, the Fréchet regression of Y on X is the Fréchet mean of Y
conditional on X = x. This quantity is defined as the minimizer of the conditional
Fréchet function

FY |X(x;ω) = E
[
d(Y, ω)2 | X = x

]
.

The minimizer of this function is called the Fréchet regression of Y on X and is denoted
by E[Y | X = x]. This is the setting we consider in [MRF].

While assuming X ∈ L2(Ω) and defining the Fréchet function via the second distance
moment is convenient, this assumption can be relaxed without altering the resulting
quantities.

Remark 2. Assume that the random object X is now in L1(Ω) and fix an arbitrary
point o ∈ Ω. Then define the function

GX(ω) = E
[
d(X,ω)2 − d(X, o)2

]
. (1.8)

We have that GX is well-defined and finite for all ω ∈ Ω since by Jensen’s inequality
together with the Lipschitz continuity of distances mentioned in Lemma 1, we have

|GX(ω)| =
∣∣E
[
d(X,ω)2 − d(X, o)2

]∣∣
= |E[(d(X,ω) − d(X, o))(d(X,ω) + d(X, o))]|
≤ E[|d(X,ω) − d(X, o)|(d(X,ω) + d(X, o))]

≤ d(ω, o)E[d(X,ω) + d(X, o)] < ∞.

Furthermore, when X ∈ L2(Ω), both GX and FX are well-defined and one can see
that they both achieve their minimum in the same points. This definition of the
Fréchet mean can be found for instance in Proposition 4.3 of [Sturm, 2003].

With these definitions in place, one can come back to the illustrative example used in
Section 1.1 and compute the Fréchet mean of the random object X representing Ben’s
bedtime. There, the metric space is the circle S1 and the distance is the angular distance
defined in Example 1. The Fréchet mean of X is then the point on the circle minimizing
the expected squared angular distance to X, as defined in Definition 9. A careful reader
could have asked: what if we had chosen a different reference point on the circle and
taken the Euclidean mean of the angles, wouldn’t that have solved the problem? The
following remark addresses this question.

9
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Remark 3. A natural approach would be to construct a mapping ϕµ : S1 → R
that “unwraps” the circle into the real line by measuring oriented distances from
a reference point µ. If X has Fréchet mean µ, one has that ϕ−1

µ (E[ϕµ(X)]) = µ.
However, this approach fails for two fundamental reasons:

1. The construction of ϕµ requires prior knowledge of the Fréchet mean µ, which
is precisely what one aims to estimate.

2. No single unwrapping can correctly handle all distributions. Consider, for
instance, a mixture of two point masses:

X ∼ 1

2
(δµ+π−ε + δµ+π+ε), ε ∈ (0, π/2)

While X has Fréchet mean µ + π, the unwrapping gives ϕ−1
µ (E[ϕµ(X)]) = µ

instead.

As mentioned in the previous section, the behavior of the Fréchet mean can be better
understood by considering the geometry of the space in which the random object lives.
In particular, the Fréchet mean in spaces of nonpositive curvature has been extensively
studied. In these spaces, as shown in Lemma 3, the squared distance is a convex function,
which is inherited by the Fréchet function. This convexity property is sufficient to
prove the existence and uniqueness of the Fréchet mean, see [Sturm, 2003] for a detailed
presentation and review of results.

While spaces of nonpositive curvature provide a rich and convenient setting for study-
ing Fréchet means through convexity, the situation in positively curved spaces is more
delicate. A simple example illustrating this phenomenon is the uniform distribution on
the circle S1. In this case, every point on the circle is a Fréchet mean of the distribution.

In some of the spaces presented in Section 1.2.2, the Fréchet mean has a more explicit
form, in terms of the underlying metric spaces used. For instance in the case of Example
3, if the map ϕ : Ω → Ω′ is invertible, it is straightforward to show that the Fréchet
mean of a random object X ∈ Ω can be computed as E[X] = ϕ−1(E[ϕ(X)]). Similarly,
in the case of the product metric dp in Example 4, the Fréchet mean of a random object
X = (X1, X2) ∈ Ω1 × Ω2 can be computed as E[X] = (E[X1],E[X2]).

A useful way to understand how the Fréchet mean ties to the geometry of the space
is through its connection to geodesics. Indeed, let (Ω, d) be a geodesic space, x, y ∈ Ω
and Xp ∼ (1 − p)δx + pδy for p ∈ (0, 1). The following lemma shows that the curve of
Fréchet means p 7→ E[Xp] coincides with the geodesic γ connecting x to y.

Lemma 4. In the above scenario, the Fréchet mean of Xp is given by γ(p).

Proof. Let Fp(ω) = FXp(ω) = (1 − p)d(ω, x)2 + pd(ω, y)2 be the Fréchet function of Xp.
For any ω ∈ Ω, the triangle inequality yields d(y, ω) ≥ d(x, y) − d(x, ω). This inequality
leads to a lower bound Fp(ω) ≥ h(ω), where h(s) = (1− p)s2 + p(d(x, y)− s)2 for s > 0.
The quadratic function h attains its minimum at s = pd(x, y) = d(x, γ(p)). Substituting

10



1.3 Statistical Analysis in Metric Spaces

this value into the lower bound of the Fréchet function gives

Fp(ω) ≥ h(d(x, γ(p))) = (1 − p)d(x, γ(p))2 + p(d(x, y) − d(x, γ(p)))2 = Fp(γ(p)).

Thus, γ(p) minimizes Fp and is therefore the Fréchet mean of Xp.

While this approach does not fully capture the behavior of the Fréchet mean in a
given space, it provides insights into its behavior in geodesic spaces. In practice, one
can explore the impact of the choice of metric on the analysis by a visual exploration of
how geodesics interpolate between points in the space.

1.3.2 Estimation of the Fréchet mean

The theoretical framework developed in the previous sections naturally leads to questions

of statistical estimation. Given observations X1, ..., Xn
iid∼ P in a metric space (Ω, d),

the goal is to estimate the Fréchet mean E[X] of the underlying distribution P . This
is typically done by considering the empirical counterparts to the quantities described
in the previous section. This estimation approach falls within the broader statistical
framework of M -estimation, see for instance [van der Vaart and Wellner, 2023, Chapter
3.2].

Definition 10 (Empirical Fréchet Function). Let (Ω, d) be a metric space and X1, ..., Xn

be random objects in Ω. Define the empirical Fréchet function F̂n, the empirical version
of the Fréchet function in Equation (1.5), as

F̂n(ω) =
1

n

n∑

i=1

d(Xi, ω)2. (1.9)

Minimization of the empirical Fréchet function F̂n yields the empirical Fréchet mean
µ̂n and the empirical Fréchet variance V̂n.

Definition 11 (Empirical Fréchet mean and variance). Let (Ω, d) be a metric space and
X1, ..., Xn be random objects in Ω. The empirical Fréchet mean µ̂n ∈ Ω is defined as
any element minimizing the empirical Fréchet function,

µ̂n ∈ arg min
ω∈Ω

F̂n(ω). (1.10)

Similarly, the empirical Fréchet variance V̂n is defined as the minimum value of the
empirical Fréchet function,

V̂n = min
ω∈Ω

F̂n(ω). (1.11)

While the minimizer of the Fréchet function in Euclidean spaces has a closed-form
solution, the arithmetic average, computing the Fréchet mean generally requires resort-
ing to numerical optimization. Furthermore, in positively curved spaces, the empirical
Fréchet mean may not be unique, even when the population Fréchet mean is. This

11



1 Introduction

phenomenon of non-uniqueness poses challenges both for computation and theoretical
analysis.

The consistency of empirical Fréchet means has been extensively studied in the lit-
erature, with results of increasing generality. In the most structured case of Rieman-
nian manifolds, [Eltzner and Huckemann, 2018] and [Bhattacharya and Lin, 2017] es-
tablish both consistency and asymptotic normality of empirical Fréchet means, with
limiting distributions characterized via the tangent space. For bounded metric spaces,
[Petersen and Muller, 2019] proves consistency under conditions controlling the space
complexity — via entropy integrals — while [Dubey and Müller, 2019] establishes a cen-
tral limit theorem for the empirical Fréchet variance.

The extension to unbounded spaces requires additional care since the squared distance
might not be Lipschitz anymore, see the proof of Lemma 1. In [Schötz, 2019], a Lipschitz-
type condition on the squared distance — which is satisfied for instance in Hadamard
spaces — to prove convergence of empirical Fréchet means. The most general setting,
where Fréchet means may not be unique, is addressed in [Schötz, 2022] through a strong
law of large numbers for Fréchet mean sets in general metric spaces. Some of these
results form the basis for the theoretical analysis in [MRF] and [ISO].
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1.4 Conclusion

1.4 Conclusion

In perhaps our boldest cross-disciplinary leap yet, let us examine the opening story of Ben
in Section 1.1 through Dante’s four levels of interpretation [Alighieri, 1307] – a reading
that, while deliberately overwrought, reveals the unifying principles and motivation of
the research presented in this thesis.

Literal. Our tale follows a graduate student tracking his bedtimes over a week. At-
tempting to make sense of his shifting sleep schedule, he naturally computes their arith-
metic mean, only to arrive at the nonsensical result of 1:04 PM. Through a conversation
with a fellow student about how we intuitively measure time differences, he discovers
that measuring distances along the circle as a basis for his average calculation yields
11:22 PM, capturing the center of his nighttime schedule.

Allegorical. Ben’s struggle exemplifies a broader phenomenon: as measurement tech-
niques and data collection become increasingly sophisticated, we encounter observations
that naturally live in non-Euclidean spaces. From shape analysis in medical imaging
to probability distributions in the study of populations, straightforward application of
classical statistical methods — designed with Euclidean geometry in mind — can lead
to misleading or meaningless results.

Moral. This story emphasizes a fundamental principle in statistical thinking: the im-
portance of aligning methodology with the structure of our data. Just as Ben discovered
that meaningful averages emerge from respecting the circle’s geometry, the path to valid
statistical methodology lies in careful consideration of mathematical structure, whether
this manifests in explicit geometric constraints or in the examination of model assump-
tions.

Anagogical. At its most abstract level, this work points to the rich mathematical struc-
tures that emerge when we step beyond Euclidean spaces. While our methods are mo-
tivated by practical statistical problems, they lead us to explore geometric structures
and their interactions with randomness that hold intrinsic mathematical interest be-
yond their immediate practical applications.

This thesis contributes to this broader program by developing statistical methodology
in metric spaces across three fundamental tasks: testing, time series analysis, and re-
gression. Each chapter considers how classical statistical tools can be adapted while
preserving their essential properties and computational feasibility. Throughout, we at-
tempt to maintain a balance between theoretical guarantees and practical applicability,
demonstrating the utility of our proposed methods through both theoretical results and
empirical studies.
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2 Constructing regressors in metric spaces

This chapter contains the following paper:

[MRF] [Bulté and Sørensen, 2024b]. Bulté, M. and Sørensen, H. (2024b). Medoid splits
for efficient random forests in metric spaces. Computational Statistics & Data
Analysis, 198:107995.

The initial motivation for this paper stemmed from an attempt to extend the asymp-
totic normality results for random forests of [Wager and Athey, 2018] to the Wasser-
stein space setting. However, as detailed in Section 2.2, we identified an error in
their central limit theorem proof. This led us to broaden our investigation to address
random forests in general metric spaces, building upon the weight-combination frame-
work presented in [Athey et al., 2019] and adapting the pointwise convergence results of
[Wager and Athey, 2018] for the Fréchet regression setting. During this process, we dis-
covered the recent work of [Qiu et al., 2024], which had developed similar methodology
and theoretical results. This discovery prompted us to refocus our contribution on the
computational aspects of the problem. Specifically, we identified that the calculation of
Fréchet means within the splitting procedure created a significant computational bot-
tleneck. Our key contribution thus became the development of a medoid-based splitting
criterion that maintains theoretical guarantees while substantially improving computa-
tional efficiency.
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Medoid splits for efficient random forests in metric

spaces

Matthieu Bultéa, Helle Sørensena

aDepartment of Mathematical Sciences, University of Copenhagen,

Abstract

This paper revisits an adaptation of the random forest algorithm for Fréchet
regression, addressing the challenge of regression in the context of random
objects in metric spaces. Recognizing the limitations of previous approaches,
we introduce a new splitting rule that circumvents the computationally ex-
pensive operation of Fréchet means by substituting with a medoid-based
approach. We validate this approach by demonstrating its asymptotic equiv-
alence to Fréchet mean-based procedures and establish the consistency of
the associated regression estimator. The paper provides a sound theoretical
framework and a more efficient computational approach to Fréchet regres-
sion, broadening its application to non-standard data types and complex use
cases.

Keywords: Least squares regression, Medoid, Metric spaces, Random
forest, Random objects

1. Introduction

We study the extension of random forest to regression situations where
the response takes values in a metric space. The usual expectation is replaced
by the Fréchet mean, which can be be very computationally intensive with
restrictions on possible applications to follow. Emphasis is therefore on a new
medoid-based splitting rule used in the individual trees. Application of this
new splitting rule speeds up computations without compromising consistency

Email addresses: mb@math.ku.dk (Matthieu Bulté), helle@math.ku.dk (Helle
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or finite-sample prediction quality and makes it possible to analyzer larger
datasets in terms of sample size and dimension.

Random forest is a statistical learning method introduced by Breiman
(2001) for classification and regression. It constructs predictions by averaging
the predictions from a randomized ensemble of regression trees fitted on a
training dataset. Random forests have proven to perform well in practice on
complex and high-dimensional datasets with little parameter tuning, making
them an ubiquitous method in the machine learning toolset.

With the success of statistical analysis, more domains are being analyzed,
leading to the study of more complex use cases and non-standard data types.
A first generalization that has emerged from this need is the study of random
variables taking values in manifolds. More recently, a further generalization
has started to be studied, in which the random variables, referred to as
random objects, take values in a metric space. This general setting does not
require anything more than a distance function, and does not require common
algebraic structures such as those found in vector spaces or on manifolds. A
core quantity in the study of random objects is the Fréchet mean, as defined
by Fréchet (1948), which generalizes the concept of the expected value to
metric spaces by defining it as the minimizer of the expected squared loss.
This notion allows to generalize the definition of the variance and further
construct tools to study the variability of random objects.

The lack of algebraic structure in the study of random objects makes
the development of regression algorithms particularly challenging. Efforts in
adapting regression algorithms to non-Euclidean objects have mainly been
done for the case where the response takes values in finite-dimensional dif-
ferentiable Riemannian manifolds. This has led to the development and
analysis of parametric models exploiting the local structure of the space,
such as geodesic regression approaches (Thomas Fletcher, 2013), but also
fully non-parametric approaches via adaptations of the Nadaraya-Watson
estimator (Davis et al., 2010; Hinkle et al., 2012; Pelletier, 2006; Yuan et al.,
2012; Hein, 2009). More recently, Petersen and Müller (2019) proposed a
general framework for regression in metric spaces with Euclidean covariates
in which the regression method specifies a weighting scheme. For a given
input, the training samples are reweighted following that scheme and the
prediction is formed by computing the weighted Fréchet mean. They then
define a global weighting scheme generalizing the classical linear regression
and a local scheme which generalizes local linear regression. This original
work paved the way to the construction and study of more flexible regression
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techniques adapted to Fréchet regression.
Random forest is a well-suited candidate for adaptation to Fréchet regres-

sion. Several authors have already used random forests outside the classical
setup of Euclidean response, for example for function spaces (Nerini and
Ghattas, 2007; Fu et al., 2021) by either working directly in the Hilbert
space L2 or via a transformation to L2, but these methods lack a theoreti-
cal analysis and their adaptation to metric space data is unclear. Another
attempt was made by Capitaine et al. (2020) by direct translation of the
random forest algorithm via a two-stage approach in which the forest predic-
tion is constructed as the Fréchet mean of the prediction of the trees. Their
approach has been successfully applied to general settings in which both the
covariates and response are allowed to be in a metric space and proposes a
novel splitting rule that reduces the computational cost of the tree-fitting
procedure. Unfortunately, this two-stage procedure complicates theoretical
analysis, and to our knowledge, no consistency result for their method has
been developed.

Another route for adapting random forest to Fréchet regression is to fit
a random forest and aggregate the trees into weights for the observations,
which can be used to construct a prediction. This approach was developed by
Meinshausen (2006) for quantile regression, and Athey et al. (2019) for condi-
tional Z-estimation under the name of Generalized Random Forest (GRF). It
has been exploited by Qiu et al. (2022) to construct a random forest adapted
to Fréchet regression. The authors combined this with the splitting rule
proposed by Capitaine et al. (2020) to alleviate some of the computational
burden of tree fitting. The paper presents results about asymptotic prop-
erties of the estimator, but proofs are not provided. Moreover, the results
regarding rates of convergence and a central limit theorem depend on strong
assumptions regarding the random forest algorithm itself.

One essential ingredient in the adaptation of a random forest algorithm is
the construction of a suitable splitting rule used to recursively partition the
covariate space in the fitting of individual trees. In their work, Athey et al.
(2019) propose a general splitting rule for Z-estimation relying on gradients
of the objective function to build splits capturing the heterogeneity of the re-
sponse. This approach cannot be used for Fréchet regression since it requires
a differentiability structure which is not available. A possible approach in
Fréchet regression is to use the standard splitting rule when the response
is in R, namely by finding the splitting position that results in the highest
reduction in variance in the subgroups. However, for each split, this requires
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computing a large number of Fréchet variances and hence Fréchet means. In
many cases, computing the Fréchet mean is expensive, making this approach
unusable. The approach proposed by Capitaine et al. (2020) and used in Qiu
et al. (2022) based on 2-means clustering for efficient splitting reduces the
number of Fréchet means required to a great extent but, as highlighted by
the authors, is still computationally intensive.

In this article, we revisit the algorithm proposed by Qiu et al. (2022),
which implements GRF for Fréchet regression. Our main contribution is a
new splitting rule which replaces the computation of Fréchet means with
medoids, i.e., sample members. This, after the computation of a distances
matrix, allows to find splits as efficiently as in the Euclidean case. We denote
the adapted procedure Metric Random Forest (MRF). We prove that the
new splitting rule is asymptotically equivalent to using the Fréchet mean-
based procedure. Furthermore, we prove the consistency of the MRF based
on classical M-estimation results from van der Vaart (1998) and following
the proof strategy presented in Wager and Athey (2018), and illustrate the
benefit of the new splitting rule with numerical experiments.

The paper is organized as follows: Section 2 includes background material
on Fréchet regression and existing work on random forest in metric spaces.
The new medoid-based splitting rule is introduced in Section 3, and the
consistency result for the MRF estimator is stated in Section 4. We present
simulations from three scenarios in Section 5 and conclude in Section 6.
Proofs are presented in the appendix.

2. Background

2.1. Fréchet regression

Let (Ω, d) be a compact metric space. Consider a pair of random vari-
ables (X, Y ), where X is a vector of predictors taking value in [0, 1]d with
density bounded away from 0 and ∞, and Y is a response taking value in Ω.
Following the idea of Fréchet (1948), the notions of mean and variance can
be generalized to random objects to obtain the Fréchet mean and Fréchet
variance,

ω⊕ = argmin
ω∈Ω

E
[
d(Y, ω)2

]
, V⊕ = E

[
d(Y, ω⊕)2

]
. (1)

Building upon these generalized concepts of mean and variance, Müller (2016)
define the Fréchet regression function, denoted m, in terms of the conditional
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distribution of Y given X = x,

m(x) = argmin
ω∈Ω

M(ω;x), M(ω;x) = E
[
d(Y, ω)2 | X = x

]
, (2)

where M is called the conditional Fréchet function.
We are interested in fitting a regression model with response Y and pre-

dictors X. Given a dataset D = {(Xi, Yi)}ni=1 of independent random pairs
following the same distribution as the prototypical pair (X, Y ) and a point
x ∈ [0, 1]d for which a prediction is to be obtained, the goal is to construct an
estimator mn(x) of the Fréchet regression function m(x). One generally ap-
plicable solution to this problem is to estimate the conditional Fréchet func-
tion M(·;x) with a data-dependent objective function Mn(·;x) converging to
M(·;x) in such a way that the maximizer mn(x) of Mn(·;x) also converges
to m(x). A natural approach consists in using a re-weighting strategy to
approximate the conditional expectation in (2), yielding an estimator of the
form

Mn(ω;x) =
n∑

i=1

wi(x)d(ω, Yi)
2, (3)

where the weights {wi(x)}ni=1 depend on the data and the point x for which
the prediction is being made. The construction of such weights has been
the subject of a large corpus of literature. A common and well studied
method is the Nadaraya-Watson estimator weights which defines weights
through a kernel function K and a bandwidth parameter h ∈ (0,∞), giving
wi(x) = Kh(Xi−x) with Kh(·) = h−1K(·/h). This method is well understood
and easy to implement, but it requires a crucial tuning of the bandwidth
parameter h, suffers from the curse of dimensionality and is not adaptive, in
the sense that the weights are invariant to the part of the covariate space
where the prediction is made. This lack of adaptivity makes the Nadaraya-
Watson estimator practically ill-suited in case of heteroskedasticity of the
response for different values of the predictors.

2.2. Random forest in metric spaces

The original and commonly used random forest algorithm for regression
proposed by Breiman (2001) relies on constructing an ensemble of random-
ized regression trees. A prediction at a given point is then formed by aver-
aging the predictions across the ensemble of trees. The fitting of the trees is
randomized by bootstrap aggregation, meaning that each regression tree is
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fitted on a random subset of size s of the training data. Each tree is built
greedily from a recursion of splits, each attempting to partition the train-
ing sample available at the node into two subsets of minimal prediction error
(Breiman et al., 1984). The procedure results in a partitioning of the space of
predictors into a collection of rectangles called leaves. The resulting random
forest estimator then takes the form

RF(x) =
1

B

B∑

b=1

Tb(x) with Tb(x) =
n∑

i=1

1{Xi ∈ Lb(x)}
#{j : Xj ∈ Lb(x)}Yi, (4)

where B is the size of the ensemble, Tb is the b-th regression tree and Lb(x)
is the subset of training points used for fitting Tb falling in the same leaf as
x.

In order to generalize this idea to the context of Fréchet regression, Cap-
itaine et al. (2020) directly translate the average-of-averages construction of
the random forest by replacing averages with Fréchet means. The resulting
estimator, called the Fréchet Random Forest (FRF), is constructed as the
Fréchet mean of an ensemble of randomized Fréchet trees (FTs) in which
each tree is built to minimize the prediction error, as done in the Euclidean
regression setup.

In this manuscript, a different approach, first proposed in Qiu et al.
(2022), is followed to constructing a random forest prediction. It does not
aggregate the prediction of each individual tree; instead the results of the
fitted ensemble are aggregated following the idea presented in Meinshausen
(2006) and Athey et al. (2019). For a given x, each tree contributes with
a weighting of the observations reflecting the partitioning of the predictor
space fitted by the tree. Consider a source of auxiliary randomness ξ and a
subset of the data D ⊂ D, we denote by {wi(·; ξ,D)}ni=1 the set of weights
resulting from fitting a single tree on D. These weights take the form

wi(x; ξ,D) =
1{Xi ∈ L(x; ξ,D)}
N(L(x; ξ,D))

, (5)

where N(C) = #{j : Xj ∈ C} for any C ⊂ [0, 1]d, and L(x; ξ,D) represents
the observations in D falling in the same leaf as x. Note that for observations
(Xi, Yi) ∈ D\D, the associated weight function wi(·; ξ,D) is zero. Given B
random subsets {Db}Bb=1 of D and auxiliary randomness {ξb}Bb=1, the weights
constructed by the individual trees are averaged within the ensemble to con-
struct an adaptive set of weights {wi}ni=1 for a given prediction point x given
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by

wi(x) =
1

B

B∑

b=1

wi(x; ξb, Db). (6)

These weights are then used to form an estimator of the conditional Fréchet
function defined in (2),

Mn(ω;x) =
n∑

i=1

wi(x)d(ω, Yi)
2. (7)

Minimizing this adaptively weighted sum yields our Metric Random Forest
(MRF) estimator of the Fréchet regression function in (2),

mn(x) = argmin
ω∈Ω

Mn(ω;x). (8)

It is important to note that, in general, this optimization problem needs not
have a unique solution. In practice, a user of the MRF must provide a solver
for (8) that can return a unique solution based on any preferred heuristic
implemented by the user (e.g., minimal norm, first in lexicographic order).
Since this technicality does not influence the implementation or analysis of
the MRF algorithm, we can safely assume that mn(x) exists and is unique.
Note that we later assume in Assumption 1 that the population version of
this quantity exists and is unique.

3. Splitting criterion in metric spaces

The recursive partitioning used to construct each individual tree is driven
by the choice of a splitting criterion. Considering an arbitrary cell C ⊂ [0, 1]d,
the goal at each partitioning step is to find the feature index j ∈ {1, . . . , d}
and cut position z ∈ [0, 1] defining an axis-aligned plane along which to split
the cell into two subcells, Cl and Cr, given by

Cl =
{
x ∈ A : x(j) ≤ z

}
and Cr =

{
x ∈ A : x(j) > z

}
,

where x(j) is the jth coordinate of x. Intuitively, each splitting pair (j, z)
should be chosen as to improve the estimation of the Fréchet regression func-
tion m. This is done by minimizing the CART splitting criterion of Breiman
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et al. (1984). Let us denote by ω̂⊕(C) and V̂⊕(C) the empirical Fréchet mean
and variance computed on the observations with X contained in C,

ω̂⊕(C) = argmin
ω∈Ω

n∑

i=1

1{Xi ∈ C}d(Yi, ω)2,

V̂⊕(C) =
n∑

i=1

1{Xi ∈ C}
N(C)

d(Yi, ω̂⊕(C))2.

The CART splitting criterion is then given by

err(j, z) =
N(Cl)

N(C)
V̂⊕(Cl) +

N(Cr)

N(C)
V̂⊕(Cr). (9)

Note that minimizing this criterion corresponds to finding a split that max-
imizes the decrease in the weighted average of Fréchet variance accross the
splitted subcells. A splitting pair (j⋆, z⋆) can be found by iterating over the

feature index j ∈ {1, . . . , d} and possible threshold values z ∈ {X(j)
i : Xi ∈

C} determined from values of coordinate j taken by the samples present in
the cell C.

As highlighted by Athey et al. (2019) and Capitaine et al. (2020), this
greedy search algorithm may be computationally prohibitively expensive
since it requires for each split and candidate threshold to compute Fréchet
means m̂l and m̂r, which overall requires O(dn2) computations of Fréchet
means. In many cases, computing a Fréchet mean can only be done approx-
imately through computationally expensive algorithms. This is the case for
computation of Fréchet means in Wasserstein spaces (Panaretos and Zemel,
2020), in function spaces equipped with the amplitude and phase variation
distances (Srivastava and Klassen, 2016) or in Riemannian manifolds.

To overcome this computational limitation, Athey et al. (2019) introduce
the gradient tree algorithm. This algorithm utilizes an alternative splitting
criterion based on a linearization of the target optimization problem in re-
gression and enables faster calculation of the relevant quantities in each can-
didate subcell. However, this approach cannot be applied to general metric
spaces where no vector space structure is available for differentiability. In
Capitaine et al. (2020), an alternative splitting criterion is proposed which
offers computational advantages over the CART splitting criterion and is
also usable in metric spaces. This approach, which is also used in Qiu et al.
(2022), reduces the number of Fréchet mean computations by testing a single
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possible partitioning for each coordinate, where the partitioning is found by
performing a 2-means clustering of the observations in the cell based on the
tested coordinate. This allows to compute only 2d Fréchet means per split.
However, this still results in O(dn) computations of Fréchet means which
renders the algorithm unusable in situations where the Fréchet mean is ex-
pensive to compute. Notice that trees are fitted to subsamples of D of size
s, but the abovementioned computational complexities are still valid with n
replaced by the size of the subsamples.

We propose a solution that is usable in any metric space and completely
avoids the need to compute Fréchet means during the fitting of the tree. To
do that, we replace the minimization of the Fréchet function over the entire
metric space by a minimization over the available sample. Denoting by Ωn

the set of observed responses, Ωn = {Y1, . . . , Yn}, we define an approximation
to the empirical Fréchet mean ω̂⊕(C), the Fréchet medoid estimator ω̃⊕(C) ∈
Ωn, by

ω̃⊕(C) = argmin
ω∈Ωn

n∑

i=1

d(ω, Yi)
2
1{Xi ∈ C}.

Computation of distances between all pairs of elements in the training data is
requires, but once these distances have been computed, the Fréchet medoid is
straightforward to find. Using the Fréchet medoid hence provides an efficient
alternative to the empirical Fréchet mean in the computation of the CART
splitting criterion (9).

The algorithm we propose to fit the random forest is based on replacing
the computation of the empirical Fréchet mean by the Fréchet medoid in
the split-finding procedure. As a first step, we pre-compute the pairwise
distances matrix ∆ ∈ Rn×n with ∆ij = d(Yi, Yj). Then, at each step, we find
the split (j, z) minimizing the approximate splitting criterion

ẽrr(j, z) =
1

Nn(C)

n∑

i=1

∆2
i,i⋆(Cl)

1{Xi ∈ Cl} + ∆2
i,i⋆(Cr)1{Xi ∈ Cr},

where i⋆ is the index of the Fréchet medoid, ω̃⊕(C) = Yi⋆(C).
Provided that the discrete set Ωn grows dense in Ω and further tech-

nical conditions, the Fréchet medoid ω̃⊕(C) consistently estimates the true
Fréchet mean (Proposition 1), and furthermore the associated splitting cri-
terion ẽrr(j, z) inherits this consistency. Notice that Assumption 1 is stated
in Section 4, and that a proof for the proposition is given in the appendix.
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Proposition 1. Let Y1, . . . , Yn be independent copies of a prototypical ran-
dom variable Y taking values in a compact metric space (Ω, d) with Fréchet
mean ω⊕. Assume that the Fréchet mean is well-separated as defined in As-
sumption 1, and that the Fréchet mean is a possible value for Y , in the sense
that for every ε > 0,

P [d(Y, ω⊕) < ε] > 0.

Then, the Fréchet medoid estimator is a consistent estimator of the Fréchet
mean, that is, d(ω̃⊕, ω⊕) = oP (1).

Together with the Lipschitz continuity of the squared distance function
(Lemma 1 in the appendix), one can see that for some constant K > 0
independent of n,

|ẽrr(j, z) − err(j, z)| ≤ K{d(ω̂⊕(Cl), ω̃⊕(Cl)) + d(ω̂⊕(Cr), ω̃⊕(Cr))}.

Since ω̃⊕ and ω̂⊕ are both consistent estimators of ω⊕, this implies that the
proposed splitting criterion converges to the CART splitting criterion.

4. Asymptotic Theory

We now consider the pointwise consistency of the MRF. We show that for
a fixed vector of covariates x ∈ [0, 1]d, the MRF (8) converges in probability
to the output of the regression function (2). Consistency of the random
forest estimators have been established in various settings: for simplified
forest models Breiman (2004); Biau et al. (2008); Scornet (2016), forest with
real number responses (Wager and Athey, 2018; Scornet, 2016) and also in
the more general Z-estimator setting (Athey et al., 2019). However, due to
the reliance on the outcome taking values in an Euclidean space, both in the
assumptions and in the proofs of their theoretical results, existing asymptotic
analysis, in particular that of the GRF, cannot be directly applied to the
MRF setting.

Instead, we develop a proof combining results from standard M-estimation
theory and existing results of pointwise consistency of the classical Euclidean
random forest algorithm. Based on standard results in M-estimation theory
(see van der Vaart (1998)), the first step to establishing pointwise consistency
of the MRF is showing the convergence of the approximate objective function
Mn given in (7) to the conditional Fréchet function M from (2) uniformly in
ω ∈ Ω. We show this based on results from Newey (1991) and the pointwise
convergence of the MRF objective function based on the proof presented in
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Wager and Athey (2018). Their proof combines the Lipschitz continuity of
the objective function with an assumption on the construction of the trees
which implies that the diameter of the leaves of the tree shrinks as more
datapoints become available (Specification 1 from Athey et al. (2019), see
below).

Similarly to Wager and Athey (2018), we study in our analysis a theo-
retical construction of the random forest in which the bagging procedure is
replaced by fitting trees on each possible subsets D of size s of the dataset
D. The effect of using an approximation of (11) based on a finite number of
subsamples of D is ignored here, but a detailed investigation by Mentch and
Hooker (2016) and Wager et al. (2014) suggest using B = O(n).

The set of weights {wi(·; ξ,D)}ni=1 given in (5) can be used to define the
contribution of a single tree to the forest objective function

T (ω, x; ξ,D) =
n∑

i=1

wi(x; ξ,D)d(ω, Yi)
2. (10)

The tree-level weights are then combined to form the theoretical random
forest weights

w⋆i (x) =

(
n

s

)−1 ∑

D⊂D
|D|=s

Eξ [wi(x; ξ,D)] . (11)

Based on these weights, we can define the theoretical objective function and
regression function studied in this section

M⋆
n(ω;x) =

n∑

i=1

w⋆i (x)d(ω, Yi)
2 and m⋆

n(x) = argmin
ω∈Ω

M⋆
n(ω;x). (12)

We further consider that the forest is implemented in a way that satisfies
Specification 1 of Athey et al. (2019): All trees in the forest are symmetric,
meaning that the order of the input is not relevant to the fitting of each tree.
The splits are balanced in that each split separates the observations on two
subsets, each with a proportion of at least α > 0 of the parent. Additionally,
each tree is grown to depth k, for some k ∈ N and each leaf contains between
k and 2k − 1 observations. The forest is honest as described in Wager and
Athey (2018), and each tree is built on a subsample of the data of size s < n
satisfying s/n→ 0 and s→ ∞.

11



The following assumption is common in M-estimation, see for instance
Assumption (P0) in Müller (2016), and is used in most proofs of consistency
of Fréchet regression methods.

Assumption 1 (Existence of a population solution). For every x ∈ [0, 1]d,
the conditional Fréchet regression function m(x) given in (2) exists and is
a well-separated solution to the conditional Fréchet function M(·;x), that is
for every ε > 0,

inf
ω:d(ω,m(x))>ε

M(ω;x) > M(m(x);x).

We further require the conditional Fréchet function to be Lipschitz con-
tinuous in x. This assumption is also common in Fréchet regression, and is
used here to exploit the shrinkage of the tree leaves to show the convergence
of the approximate Fréchet function defined by the random forest.

Assumption 2 (x-Lipschitz Fréchet function). For any fixed ω ∈ Ω, the
function x 7→ M(ω;x) is Lipschitz continuous with Lipschitz contant C(ω)
possibly depending on ω.

As indicated, we first state a theorem saying that the objective function
M⋆

n(·;x) defined by the random forest algorithm converges uniformly to the
true Fréchet conditional Fréchet function M . This is a necessary element in
consistency proofs of M-estimators and thus used to prove consistency of the
random forest algorithm (Theorem 2). Proofs are given in the appendix.

Theorem 1. Under Assumption 2, the random forest objective function
M⋆

n(·;x) converges uniformly in ω to M(·;x), that is, for all x ∈ [0, 1]d

sup
ω∈Ω

|M⋆
n(ω;x) −M(ω;x)| = oP (1).

Theorem 2. Under Assumptions 1 and 2, the random forest regressor de-
fined in (12) is a pointwise consistent estimator of the conditional Fréchet
regression function, that is, for each x ∈ [0, 1]d,

d(m⋆
n(x),m(x)) = oP (1).

5. Numerical experiments

In the following, we perform a simulation study in order to evaluate the
benefit of our medoid approach (MRF) as compared to the random forest
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weighted local constant Fréchet regression (RFWLCFR) algorithm presented
in Qiu et al. (2022). The main difference between the two algorithms is the
choice of splitting criterion, cf. Section 3, and we will compare them in terms
of computational efficiency and prediction quality.

We study three scenarios with similar data generation processes in three
different metric spaces with different computational costs associated with the
computation of empirical Fréchet means. The first example is that of one-
dimensional density functions over the real line R in the Wasserstein space.
This space is isomorphic to a convex subspace of L2 in which computations
of distances and Fréchet means are straightforward. In a second example,
we study data lying on a Riemannian manifold, the sphere S2 ⊂ R3. In this
example distances are straightforward to compute but Fréchet means can
only be computed through a more expensive gradient descent algorithm. In
a last example, we study functional data presenting phase variability through
the study of their warping functions as described in Srivastava and Klassen
(2016), in which both the evaluation of distances and of the Fréchet mean
are computationally demanding.

In each of the three metric spaces, we generate datasets of different
training sample sizes N ∈ {100, 200, 400} and covariate dimension d ∈
{2, 5, 10, 20}. For each combination of a metric space, a training sample
size and a covariate dimension, we generate 100 random datasets with the
desired properties. In order to generate a dataset with covariate dimension
d, two parameters α ∈ R and β ∈ Rd are sampled with independent standard
normal components. The Fréchet regression function is then generated from
a single index regression model

m(x) = g(η) with η = α + (x− 0.5)⊤
β√
d

(13)

for some function g : R → Ω, which is fixed and specific to each metric space.
The scaling 1/

√
d has been chosen to ensure that the distribution of η does

not change too much as the number of parameters increases, thus keeping the
different simulation settings comparable. Each observation (Xi, Yi) is finally
constructed by first sampling Xi ∼ Unif[0, 1]d, computing the conditional
expectation m(Xi), and applying an independently sampled noise function
Ti : Ω → Ω, Yi = Ti(m(Yi)). Note that m varies is fixed within each dataset
but varies between datasets.

In a given experiment, we fit the MFR and RFWLCFR algorithms to
the same training dataset and evaluate them on an independently generated
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test dataset of size Ntest = 100 with the same parameters α, β as in the
training set. We measure the training time of each algorithm and evaluate
the performance of the algorithm using the mean squared error (MSE). For
a test set {(Xi, Yi)}Ntest

i=1 and a fitted regressor m̂, the MSE of the algorithm
is given by

MSE(m̂) =
1

Ntest

Ntest∑

i=1

d(m̂(Xi),m(Xi))
2.

The focus of our comparison is the runtime of the algorithms, while mean
squared errors are used to assess whether the approximation in MRF has a
negative impact on the quality of the predictions. The simulations show the
MFR provides significant performance gains over RFWLCFR, yet without
compromising the quality of the predictions, and therefore enables us to
analyze larger datasets in terms of sample size and dimension.

All simulations and analysis are done in Python. The implementation of
both methods, together with the code to reproduce the results is available at
https://github.com/matthieubulte/MetricRandomForest.

5.1. Univariate distributions

We consider the 2-Wasserstein metric space Ω = W2 = W2(R), the space
of probability distributions over the real line with finite second moment en-
dowed with the 2-Wasserstein metric dW2 . Specifically, for P,Q ∈ W2 with
cumulative distribution functions FP and FQ, the 2-Wasserstein distance be-
tween P and Q is given by

dW2(P,Q) = dL2[0,1](F
−1
P , F−1

Q ) =

√∫ 1

0

∣∣F−1
P (u) − F−1

Q (u)
∣∣2 du.

As shown in existing literature on Wasserstein regression (Petersen and
Müller, 2019; Ghodrati and Panaretos, 2022), the solution to the weighted
Fréchet problem given via the sample {Pi}ni=1 ⊂ W2 and weights {wi}ni=1

can be found in a two-steps procedure: a pointwise weighted average of the
sample inverse cumulative distribution functions is first computed and then
projected onto the space of non-decreasing functions. This results in the
following optimization problem

argmin
Q∈W2

n∑

i=1

widW2(Q,Pi)2 = argmin
Q∈W2

∥∥∥∥∥F
−1
Q (·) −

n∑

i=1

wiF
−1
Pi

(·)
∥∥∥∥∥

2

L2[0,1]
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Figure 1: (a) shows the mean function m(X) for 10 sampled values of X. (b) and (c)
compare the runtime and MSE, respectively, of the MRF and RFWLCFR algorithms in
Wasserstein regression for N ∈ {100, 200, 400} and d ∈ {2, 5, 10, 20}.

In practice, each distribution is represented by a vector yi = (yi1, . . . , yiM) of
evaluations of its inverse cumulative distribution function on an equispaced
grid {um}Mm=1 on [0, 1]. The weighted Fréchet mean ȳ is then given by

F−1
ȳ = argmin

v∈RM

v1≤···≤vM

n∑

i=1

wi

M∑

m=1

|vm − yim|2 .

In our application, we chose M = 100. As highlighted in Ghodrati and
Panaretos (2022), this is an isotonic regression problem which can be effi-
ciently solved using scikit-learn’s implementation based on Pool Adjacent Vi-
olators Algorithm (PAVA), see Pedregosa et al. (2011); Best and Chakravarti
(1990).

Following the example in Petersen and Müller (2019) for data generation,
the conditional mean in this experiment maps a covariate vector to a normal
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distribution with variable mean and variance parameters,

F−1
m(x)(u) = µ(η) + σ(η)Φ−1(u).

Specifically, we use the following functions for the mean and variance com-
ponents,

µ(η) = η and σ(η) = σ0 + γlogit−1(η),

with σ0 = 1 and γ = 2.5. The random responses are generated by adding
random noise to the normal quantiles as described in Panaretos and Zemel
(2016). Given a continuous and non-decreasing random noise function ε :
R → R, the noise map T : Ω → Ω is defined via the composition of ε with
the quantile function of P, giving F−1

T (P) = ε ◦ F−1
P . The noise functions are

given by ε(x) = x−sin (πkx) / |πk|, where k is an integer frequency uniformly
sampled from {−4, . . . , 4}\{0}. The observation Y given X are thus given by
F−1
Y = ε ◦F−1

m(X). Note that adding randomness via composition with a non-
linear function results in random distributions outside the class of normal
distributions.

Figure 1 compares the time performance and MSE of the methods. Due
to the isomorphism of W2 to the subspace of L2[0, 1] of quantile functions,
the computation of Fréchet means is rather straightforward. However, the
2-means procedure adds an overhead to the RFWLCFR methodology which
makes the overall computation slower than our MRF. The methods have sim-
ilar MSE distributions in all setups showing that the medoid approximation
in the MRF does not affect the quality of the predictions.

5.2. Spherical data

We consider the example where Ω = Sq ⊂ Rq+1 is the q-dimensional
sphere equipped with the geodesic distance

dSq(x, y) = arccos⟨x, y⟩.

In this case, computing a weighted Fréchet mean is less straightforward and
one must resort to optimization method on manifolds. We do this using the
trust region algorithm implemented in Pymanopt (Townsend et al., 2016).

We focus on data lying on the sphere S2 ⊂ R3 generated as follows. First,
the mean function is given by the single index model described earlier, where
we first transform η to ν ∈ (0, 1) via ν = logit−1(η), and define

g(η) =
(√

1 − ν2 cos(πν),
√

1 − ν2 sin(πν), ν
)
. (14)
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Figure 2: (a) shows the mean curve on the sphere (solid line) as a function of ν in (14)
together with random observations (crosses). (b) and (c) compare the runtime and MSE,
respectively, of the MRF and RFWLCFR algorithms for regression on the sphere S2 for
N ∈ {100, 200, 400} and d ∈ {2, 5, 10, 20}.

Given a random X ∼ Unif[0, 1]d and its associated mean function m(X),
the response Y ∈ S2 is generated by transforming a bivariate random vec-
tor U from the tangent space Tm(X)S2 at m(X) through the corresponding
exponential map,

Y = Expm(X)(U) = cos(∥U∥)m(X) + sin(∥U∥)
U

∥U∥ .

The random noise U is sampled from a bivariate normal distribution with
independent components and variance σ2 = 0.1, that is U ∼ N (0, σ2

12×2).
The results of the experiment are displayed in Figure 2. The time perfor-

mance profile is similar to the one in the Wasserstein experiment with MRF
still providing a clear advantage over the RFWLCFR in terms of runtime. In
this example the higher cost of computing Fréchet means does not seem to
translate into further runtime improvements of MFR over RFWLCFR. The
two methods again yield estimators with similar error distribution.
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5.3. Space of warping functions

We now consider the study of functional data displaying phase variability,
with observations lying in a non-linear subset of L2[0, 1]. As described in
Tucker et al. (2013), and more generally Srivastava and Klassen (2016), the
variability of functional data can be decomposed in phase and amplitude
components. Intuitively, phase variation corresponds to variation on the x
axis and amplitude variation corresponds to variation along the y axis.

Let Γ be the set of boundary preserving diffeomorphisms on [0, 1], that
is, Γ = {γ : [0, 1] → [0, 1] | γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. For a
given function y0 ∈ L2[0, 1], we define the orbit of y0 as the set of functions
that only differ from y0 in their phase component, [y0] = {y0 ◦ γ | γ ∈ Γ}.
While y0 is not unique in this notation, whenever the starting point y0 of an
orbit [y0] is fixed in a context, we call it template function.

We consider a distribution for Y in which the observations are all part
of the same orbit Ω = [y0]. Such spaces of equivalence classes, which are all
equivalent to the space of warping functions Γ, form a non-linear infinite-
dimensional manifold which is difficult to analyze and work with when con-
sidering the L2 distance.

Instead, a warping function can be represented by its square-root ve-
locity function ψγ =

√
γ̇. Since the warpings γ are boundary preserving

diffeomorphisms on [0, 1] we have that γ̇ exists and is positive, making
ψγ a well defined quantity. Furthermore γ(0) = 0 and γ(1) = 1, hence

∥ψ∥2L2
=
∫ 1

0
ψ(t)2dt =

∫ 1

0
γ̇(t)dt = 1 making ψ an element of the L2[0, 1]

sphere, S∞ =
{
f ∈ L2[0, 1] | ∥f∥L2[0,1]

= 1
}

, and more specifically on the

positive hemisphere of S∞ since ψ > 0. This allows to define a distance on Γ
via the intrinsic distance on S∞. Let γ1, γ2 be two warpings with square-root
velocity functions ψ1, ψ2, then the distance between γ1 and γ2 is given by

dΓ(γ1, γ2) = dS∞(ψ1, ψ2) = arccos⟨ψ1, ψ2⟩L2 .

See Chapter 4 of Srivastava and Klassen (2016) for more details on this metric
space. Let now y1, y2 ∈ [y0] be two functions within a same orbit, then these
functions can be represented by their warpings from the template y0, denoted
γ1, γ2, with yi = y0 ◦ γi and we can define

d[y0](y1, y2) = dΓ(γ1, γ2).

The computation of quantities required to evaluate distances and the Fréchet
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Figure 3: (a) shows the template curve y0 (solid) and a randomly sampled curve (dashed).
(b) and (c) compare the runtime and MSE, respectively, of the MRF and RFWLCFR
algorithms for regression in Γ for N ∈ {100, 200, 400} and d ∈ {2, 5, 10, 20}.

mean are based on implementations provided in scikit-fda (Ramos-Carreño
et al., 2019) and fdasrsf (Tucker et al., 2013).

Next, we turn to the data generating process for our experiment. The
template function is chosen as y0(u) = (1− (u− 0.5)2) sin(9πu), see the solid
curve in panel (a) of Figure 3. For a given random vector of covariates X,
one obtains the linear component η as defined in (13) and the mean warping
response is γ is given for all u ∈ [0, 1] by

γ(u) = (exp(4au) − 1)/(exp(4a) − 1),

where a = 3(logit−1(η) − 0.5). The warping is perturbed by adding noise
to its square-root velocity function ψ ∈ S∞ by sampling a random Gaussian
process V with exponential covariance kernel from the tangent space TψS∞,
and applying the exponential map at ψ,

ExpψV = cos(∥V ∥)ψ + sin(∥V ∥)
V

∥V ∥ .
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The response Y is then obtained by warping the template y0 with the warping
function obtained by taking the inverse square-root velocity transform of
ExpψV . An example of a sample is displayed in panel (a) of Figure 3 (dashed
curve).

The results of the experiment are displayed in Figure 3. Computing a
single empirical Fréchet mean can take up to several seconds and computing
Fréchet variance is thus a very expensive operation. The benefit of the 2-
means approach implemented in RFWLCFR is dominated by the high cost
of computing Fréchet variances. On the other hand, the runtime of MFR
remains low in all scenarios. Runtime ratios are 1 to 50 in the N = 100
and d = 20 scenario and 1 to 30 for N = 200 and d = 20. Similarly to the
previous two experiments, the runtime gain does not impact the fitting of
the forest and the MSE distributions stay similar for the two methods.

6. Discussion

Defining non-parametric regression method for general metric spaces that
are performant and work well in complex setups is a challenge. We have
proposed a new version of the random forest Fréchet regression that allows
practitioners to perform a random forest regression in high-dimensional prob-
lems and in metric spaces where computation of Fréchet means is expensive.
We achieved this by replacing the classic computation of the Fréchet means
in random forest splits with a computation based on the Fréchet medoid.
We proved both the consistency of the random forest Fréchet regression as
well as the consistency of our medoid-based approximation. Furthermore,
a set of numerical experiments in metric spaces of different characteristics
demonstrated important reduction in the time required to fit a random for-
est without showing any impact on the mean squared error of the method.

One possible extension of this work could be to study rates of convergence,
at best based on assumptions on the data generating process only. This,
combined with a further investigation of the medoid approximation, could
refine the understanding of the asymptotic behaviour of the metric random
forest. Our work also paves the way to exploring further approximations to
random forest regression in metric spaces. This could be through the use
of algorithmic improvements generally applicable to random forests, such as
the improvement proposed in Tiwari et al. (2022), or new approximations
specific to the use of metric spaces. One could for instance study the use of
approximate distance computations or other approximations to the Fréchet
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variance, and incorporate such approximations in the theoretical analysis as
well as in the implementation.
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Appendix A. Proofs

Appendix A.1. Statement of useful theorems

We start by stating two theorems that will be used in the proof of con-
sistency. First, Corollary 2.2 of Newey (1991) provides the conditions under
which pointwise convergence of a sequence of random functions can be trans-
lated to uniform convergence.

Theorem 3. Let (Ω, d) be a compact metric space, Mn : Ω → R be a
sequence of random functions and M : Ω → R be a fixed function such that

1. (Continuity): M is continuous.

2. (Stochastic equicontinuity): There exist some Bn = OP (1) such that
for all ω, ω′ ∈ Ω, |Mn(ω) −Mn(ω′)| ≤ Bnd(ω, ω′).

3. (Pointwise convergence): For every ω ∈ Ω, Mn(ω) −M(ω) = oP (1).

Then
sup
ω∈Ω

|Mn(ω) −M(ω)| = oP (1).

Further, Theorem 5.7 of van der Vaart (1998) can be used to translate
uniform convergence of a sequence of objective functions to convergence of
the minimizers.

Theorem 4. Let (Ω, d) be a metric space, Mn : Ω → R be a sequence of
random functions and M : Ω → R be a fixed function such that for every
ε > 0,

sup
ω∈Ω

|Mn(ω) −M(ω)| = oP (1)

inf
ω:d(ω0,ω)>ε

M(ω) > M(ω0).
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Then any sequence of estimators ω̂n with Mn(ω̂n) ≤Mn(ω0)+oP (1) converges
in probability to ω0.

The first condition of this theorem states that Mn converges uniformly
to M while the second condition states that there exists a well-separated
minimizer ω0 of M .

Appendix A.2. Consistency of the MRF estimator

We start with a lemma regarding Lipschitz continuity of the distance and
squared distance functions.

Lemma 1. Let (Ω, d) be a compact metric space and ω0 ∈ Ω, then the maps
ω 7→ d(ω0, ω) and ω 7→ d(ω0, ω)2 are Lipshitz continuous.

Proof. Starting with the first map, let ω, ω′ ∈ Ω, then we have by the triangle
inequality that

d(ω0, ω) ≤ d(ω0, ω
′) + d(ω′, ω) ⇒ d(ω0, ω) − d(ω0, ω

′) ≤ d(ω′, ω)

d(ω0, ω
′) ≤ d(ω0, ω) + d(ω′, ω) ⇒ − (d(ω0, ω) − d(ω0, ω

′)) ≤ d(ω′, ω),

and hence
|d(ω0, ω) − d(ω0, ω

′)| ≤ d(ω′, ω).

For the second map, we have

∣∣d(ω0, ω)2 − d(ω0, ω
′)2
∣∣ = |d(ω0, ω) + d(ω0, ω

′)| |d(ω0, ω) − d(ω0, ω
′)|

≤ 2diam Ω d(ω, ω′),

where the first term was bounded by the diameter of Ω and we used the
Lipshitz continuity of ω 7→ d(ω0, ω) for the second term.

Next, we prove that the random forest objective function converges uni-
formly in Ω to the conditional variance. Recall definitions (12) of M⋆

n(ω;x)
and (2) of M(ω;x).

Proof of Theorem 1. This proof is done by verifying that for a fixed x ∈
[0, 1]d, the maps ω 7→ M⋆

n(ω;x) and ω 7→ M(ω;x) respect the conditions of
Theorem 3.
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Continuity. This follows directly from Lemma 1 since for ω, ω′ ∈ Ω,

|M(ω;x) −M(ω′;x)| =
∣∣E
[
d(ω, Y )2 | X = x

]
− E

[
d(ω′, Y )2 | X = x

]∣∣
≤ E

[∣∣d(ω, Y )2 − d(ω′, Y )2
∣∣ | X = x

]

≤ 2diam Ω d(ω, ω′)

Stochastic Equicontinuity. Similarly to the continuity of M , the stochastic
equicontinuity of M⋆

n is inherited. Let ω, ω′ ∈ Ω,

|M⋆
n(ω;x) −M⋆

n(ω′;x)| =

∣∣∣∣∣
n∑

i=1

w⋆i (x)d(ω, Yi)
2 −

n∑

i=1

w⋆i (x)d(ω′, Yi)
2

∣∣∣∣∣

≤
n∑

i=1

w⋆i (x)
∣∣d(ω, Yi)

2 − d(ω′, Yi)
2
∣∣

≤
n∑

i=1

w⋆i (x)2diam Ω d(ω, ω′)

= 2diam Ω d(ω, ω′).

Pointwise convergence. Let ω ∈ Ω be fixed. We need to show that M⋆
n−M =

oP (1). Recall the contribution of a single fitted tree (10) to the theoretical
random forest objective function M⋆

n,

T (ω, x; ξ,D) =
n∑

i=1

wi(x; ξ,D)d(ω;Yi)
2.

We simplify the notation and remove references to x, ω, ξ and D in the re-

maining of this sub-proof. We now define the Hájek projection
◦
M⋆

n of M⋆
n,

◦
M⋆

n = E [M⋆
n] +

n∑

i=1

E [M⋆
n | (Xi, Yi)] − E [M⋆

n] .

This can be rewritten in terms of expectations of the individual trees as

◦
M⋆

n = E [T ] +
s

n

n∑

i=1

E [T | (Xi, Yi)] − E [T ] .

We proceed with the proof of pointwise convergence by showing the stronger
result of L2 convergence of M⋆

n, that is E
[
(M⋆

n −M)2
]

= o(1). We do this via
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the convergence of the Hájek projection of the forest weights Mn, in a similar
fashion to the analysis in Wager and Athey (2018). The mean squared error
E
[
(M⋆

n −M)2
]

can be upper bounded by the following sum in which each
term is more amenable to analysis:

E
[(
M⋆

n −
◦
M⋆

n

)2]
+ E

[( ◦
M⋆

n − E [M⋆
n]
)2]

+ (E [M⋆
n] −M)2 .

By the specification of the construction of the random forest, we have
that Lemma 7 in Wager and Athey (2018) applies and we can bound the
first summand as

E
[(
M⋆

n −
◦
M⋆

n

)2]
≤ s2

n2
Var [T ] .

As shown in the proof of Theorem 5 from Wager and Athey (2018), the
variance of a single tree is asymptotically bounded

Var [T ] ≲ kVar
[
d(ω, Y )2 | X = x

]
<∞,

where k is the depth at which the trees are grown, as specified in Section 4.
Hence

E
[(
M⋆

n −
◦
M⋆

n

)2]
≲ s2

n2
= o(1)

For the second summand, we note that E [M⋆
n] = E

[ ◦
M⋆

n

]
and hence the

second term is the variance of the Hájek projection. We can again use the
fact that the variance of a single tree is asymptotically bounded to obtain

Var
[ ◦
M⋆

n

]
=
s2

n
Var [E [T | Z1]] ≤

s

n
Var [T ] ≲ s

n
= o(1)

Consider at last the third summand. Since M⋆
n is constructed as the

mean of identically distributed trees, we have that E [M⋆
n] = E [T ]. We thus

analyze instead the quantity

E [T ] − E
[
d(ω, Y )2 | X = x

]
.

As done in the proof of Theorem 3 in Wager and Athey (2018), we have by
honesty that

E [T ] − E
[
d(ω, Y )2 | X = x

]

=E
[
E
[
d(ω, Y )2 | X ∈ L(x)

]
− E

[
d(ω, Y )2 | X = x

]]
,
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where L(x) = L(x; ξ,D). Using Assumption 2, M is Lipschitz continuous
with constant C(ω) and we get

∣∣E
[
d(ω, Y )2 | X ∈ L(x)

]
− E

[
d(ω, Y )2 | X = x

]∣∣ ≤ C(ω)diamL(x).

Using now that the trees are constructed following Specification 1 of Athey
et al. (2019), Lemma 2 of Wager and Athey (2018) applies, implying that
the size of the leaves are oP (1). Hence

∣∣E
[
T − E

[
d(ω, Y )2 | X = x

]]∣∣ ≤ E [C(ω)L(x)] = E [oP (1)] = o(1)

Altogether, we thus have that E
[
(M⋆

n −M)2
]

= o(1) and hence we have
for any fixed (ω, x) the converge M⋆

n(ω;x) −M(ω;x) = oP (1).

We can now prove that the random forest estimator is a pointwise con-
stistent estimator of the Fréchet mean.

Proof of Theorem 2. Since Ω is compact and m⋆
n(x) minimizes M⋆

n(·;x), we
have by definition that M⋆

n(m⋆
n(x);x) ≤M⋆

n(m(x);x). Furthermore, by The-
orem 1, the random forest objective function M⋆

n converges uniformly to M .
Together with the assumption that the Fréchet mean is well-separated, we
have by Theorem 4 that m⋆

n(x) is a consistent estimator of m(x).

Appendix A.3. Consistency of the splitting rule

We finally prove consistency of our medoid-based splitting rule. The proof
follows a similar structure as the proof of Theorem 2.

Proof of Proposition 1. Let Ωn = {Y1, . . . , Yn} and ε > 0. By assumption,
there exists an α > 0 such that P [d(Y, ω⊕) < ε] > α. We then have by
independence that

P [d(Ωn, ω⊕) > ε] = P [d(Y, ω⊕) > ε]n < (1 − α)n → 0,

showing that d(Ωn, ω⊕) → 0 in probability.
Let M(ω) = E [d(ω, Y )2] be the unweighted population Fréchet function,

minimized by ω⊕, and Mn(ω) = 1
n

∑n
i=1 d(ω, Yi)

2 be the unweighted empirical
Fréchet functions with a sequence of minimizers {ω̂n}. We start by showing
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that M is continuous, which follows directly from the Lipschitz continuity of
the squared distance since for ω, ω′ ∈ Ω,

|M(ω) −M(ω′)| =
∣∣E
[
d(ω, Y )2

]
− E

[
d(ω′, Y )2

]∣∣
≤ E

[∣∣d(ω, Y )2 − d(ω′, Y )2
∣∣]

≤ 2diam Ω d(ω, ω′).

Furthermore, we can also use the Lipschitz continuity of the squared
distance to show that Mn is stochastic equicontinuous since for each ω, ω′ ∈
Ω,

|Mn(ω) −Mn(ω′)| =

∣∣∣∣∣
n∑

i=1

d(ω, Yi)
2 −

n∑

i=1

d(ω′, Yi)
2

∣∣∣∣∣

≤
n∑

i=1

∣∣d(ω, Yi)
2 − d(ω′, Yi)

2
∣∣

≤
n∑

i=1

2diam Ω d(ω, ω′)

= 2diam Ω d(ω, ω′).

Finally, by the weak law of large numbers, Mn converges pointwise to M ,
which verifies the conditions of Theorem 3. This shows that ∥Mn −M∥Ω =
oP (1). Together with the assumption of well-separatedness of ω⊕, this shows
that Mn fulfills the conditions of Theorem 4, giving that d(ω̂n, ω⊕) = oP (1).

Let ε > 0 and K = 2diam Ω, under the event En = {d(Ωn, ω⊕) ≤ ε/2K}∩
{d(ω̂n, ω⊕) ≤ ε/2K}, there exists for each n ∈ N an ω†

n ∈ Ωn such that
d(ω†

n, ω⊕) ≤ ε/2K. Hence,

min
ω∈Ωn

Mn(ω) − min
ω∈Ω

Mn(ω) = Mn(ω̃n) −Mn(ω̂n) ≤Mn(ω†
n) −Mn(ω̂n)

≤ Kd(ω†
n, ω̂n) ≤ K(d(ω†

n, ω⊕) + d(ω⊕, ω̂n)) ≤ ε.

By the two first results in this proof, P [En] → 1 and we obtain that Mn(ω̃n)−
Mn(ω̂n) = oP (1), and therefore

Mn(ω̃n) = Mn(ω̂n) + oP (1) ≤Mn(ω⊕) + oP (1).

This shows that the sequence of minimizers {ω̃n} fulfills the third condition
of Theorem 4, hence d(ω̃n, ω⊕) = oP (1).
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with Euclidean predictors. The Annals of Statistics 47, 691–719. URL:
https://doi.org/10.1214/17-AOS1624, doi:10.1214/17-AOS1624.

Qiu, R., Yu, Z., Zhu, R., 2022. Random Forests Weighted Local Fréchet Re-
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2.2 Notes

2.2 Notes

As mentioned in the introduction of this chapter, the initial goal of this project was
to adapt the modified random forest algorithm of [Wager and Athey, 2018] to the case
where the target variable Y is a random element of the Wasserstein space W2(R). The
hope being to adapt the central limit theorem result of Theorem 3.4 to a central limit
theorem in the tangent space of W2(R). In the process, we identified a mistake in the
proof of Theorem 3.4.

The proof of Theorem 3.4 in [Wager and Athey, 2018] is based on several components:
a control of the size of the weights constructed in the procedure, a Hájek projection
argument, and an application of Lyapunov’s central limit theorem. The mistake lies in
verifying the Lyapunov condition where the following inequality is claimed to hold:

Var

[
E

[
n∑

i=1

SiE[Yi | Xi] | Z1

]]
≤ 2u2

(
E
[
E[S1 | Z1]

2
]

+ Var[(n− 1)E[S2 | Z1]]
)
. (2.1)

To reach this inequality, the authors implicitly use the following derivation 1:

Var

[
E

[
n∑

i=1

SiE[Yi | Xi] | Z1

]]

= Var

[
E[E[Y1 | X1] | Z1] + E

[
n∑

i=2

SiE[Yi | Xi] | Z1

]]

≤ 2Var[E[E[Y1 | X1] | Z1]] + 2Var

[
E

[
n∑

i=2

SiE[Yi | Xi] | Z1

]]

= 2Var[E[E[Y1 | X1] | Z1]] + 2Var[(n− 1)E[S2E[Y2 | X2] | Z1]]

≤ 2u2E
[
E[S1 | Z1]

2
]

+ 2Var[(n− 1)E[S2E[Y2 | X2] | Z1]],

where the last inequality follows from Lipschitz assumptions made in the statement of
the theorem. However, to obtain the inequality in Equation (2.1), the authors attempt
to use that |E[Y | X]| ≤ u to bound the variance term

Var[(n− 1)E[S2E[Y2 | X2] | Z1]] ≤ u2Var[(n− 1)E[S2 | Z1]].

This inequality is akin to applying the bound Var[XY ] ≤ ∥Y ∥2∞Var[X], which is not
true in general2. While the authors suggested a possible alternative approach to the
proof based on checking a Lindeberg condition instead, we have not been able to verify
this claim.

1This was confirmed by the authors in private communications.
2A simple counterexample is P[Y = 1] = P[Y = −1] = 1/2 and X ∼ N(1, 1)
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3 Modeling time series without linearity

This chapter contains the following paper:

[GAR] [Bulté and Sørensen, 2024a] Bulté, M. and Sørensen, H. (2024a). An Autoregres-
sive Model for Time Series of Random Objects. arXiv:2405.03778.

This chapter presents our work on modeling time series of random objects. While the
nonparametric nature of most existing work on random objects is well-justified given
their generality, we identified an opportunity to develop a simple, yet interesting, para-
metric model for time series in this context. The key insight was to reinterpret the
classical autoregressive model as a noisy weighted averaging, or linear interpolation, be-
tween the process mean and the previous observation. To enable theoretical analysis,
additional assumptions on the structure of the space beyond the geodesic space set-
ting had to be imposed. This led us to focus on Hadamard spaces, where geodesics
are well-defined and can naturally replace linear interpolation between points, and ben-
efiting from the convexity properties of squared distances. Our theoretical analysis
was grounded in the framework of iterated random functions of [Wu and Shao, 2004],
which has been used by other recent works to study time series in Wasserstein spaces
[Ghodrati and Panaretos, 2024, Zhu and Müller, 2023]. In Section 3.2, we provide a re-
sult on the convergence rate for the estimator of the concentration parameter of the
model, which was derived after the submission of the paper as well as a note on a
mistake in the proof of a result in [Wu and Shao, 2004].
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1. Introduction

Random variables in general metric spaces, also called random objects,
have been receiving increasing attention in recent statistical research. The
generality of the metric space setup does not require any algebraic structure
to exist and is only based on the definition of a distance function. This al-
lows the methods developed to be applied in domains ranging from classical
setups to more complex use cases on non-standard data. This includes the
study of functional data (Ramsay and Silverman, 2005), data lying on Rie-
mannian manifolds, correlation matrices and applications thereof to fMRI
data (Petersen and Müller, 2019) or adjacency matrices and social networks
(Dubey and Müller, 2020) among others.

One example of particular interest due to its wide range of applications is
that of data comprising of probability density functions. Probability distri-
butions are a challenging example of a space that is both functional, and thus
infinite-dimensional, but also non-Euclidean because of the constraints char-
acterizing density functions. This leads to a number of different approaches
to studying these objects: they have been studied as the image of Hilbert
spaces under transformations (Petersen and Müller, 2016), as specific Hilbert
spaces with specific addition and scalar multiplication operators (van den
Boogaart et al., 2014), as well as metric spaces with stylized distances con-
structed to expose certain properties or invariances (Panaretos and Zemel,
2020; Srivastava and Klassen, 2016). See Petersen et al. (2022) for a review
of such methodologies. Distributions can be found in many applications, for
instance the distribution of socioeconomic factors within a population such as
income (Yoshiyuki, 2017), fertility (Mazzuco and Scarpa, 2015) or mortality
data (Chen et al., 2021). They are also useful when considering belief dis-
tributions of economic factors (Meeks and Monti, 2023), allowing economic
analyses to consider entire distributions rather than empirical expectations.

The study of random objects has received recent attention with work
on hypothesis testing and inference (Dubey and Müller, 2019, 2020; McCor-
mack and Hoff, 2023, 2022; Köstenberger and Stark, 2023) as well as various
approaches to regression (Petersen and Müller, 2019; Bulté and Sørensen,
2024; Hanneke et al., 2021). Since the setup of general metric spaces offers
little structure, part of the literature considers additional assumptions on the
space in order for standard statistical quantities to be well-defined. This is
often done by assuming that the metric space is a Hadamard space, see for
instance Sturm (2003) for a detailed review of results in Hadamard spaces
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and Bačák (2014) for computation of Fréchet means in such spaces.
In many of the applications mentioned above, the data might be naturally

observed repeatedly on a regular time grid, forming a time series. In this
case, the observations might not be independent and the models and analyses
require additional care to take this dependency into account. The existing
literature in this setup has mainly been carried out in a non-parametric
setting, with classical weak dependence assumptions. This has been done
for instance for testing serial dependence (Jiang et al., 2023) or for proving
the consistency of the Fréchet mean estimator (Caner, 2006). While this line
of work can be broadly applied, they rely on non-parametric assumptions
rather than proposing specific models.

On the other hand, time series models have been developed for specific
non-Euclidean random objects by exploiting the structure of the space under
study. One popular class of models is that of autoregressive models, which
have been defined using the linear structure of functional spaces (Bosq, 2000;
Caponera and Marinucci, 2021) or exploiting a tangent space structure of
the space (Zhu and Müller, 2024; Xavier and Manton, 2006; Ghodrati and
Panaretos, 2024; Zhu and Müller, 2023; Jiang, 2023) to name a few.

Inspired by existing autoregressive models, we propose an autoregressive
model for random objects. Relying on an interpretation of iteration in the
linear autoregressive model as a noisy weighted sum to the mean, we de-
fine a model parametrized by a mean and a concentration parameter. For
this to be possible, we assume additional structure and require the space to
be a Hadamard space, and exploit the geometry of the space to define the
time series iteration through geodesics. We develop the methodology and
associated theory for estimation and hypothesis testing in this model. This
includes estimators for the mean and the concentration parameter, and we
propose a test statistic for testing for no autocorrelation, corresponding to
observing an i.i.d. sample, of which we characterize the asymptotic behavior
under the null hypothesis and the alternative of a non-zero concentration
parameter.

The paper is organized as follows: Section 2 gives a presentation of useful
concepts and results in Hadamard spaces for the rest of the article. In Sec-
tion 3, we present our autoregressive model and present a theorem providing
a sufficient condition for the existence of a stationary solution of the iterated
system of equations associated with the model, and prove the identifiability
of the model parameters. We propose in Section 4 estimators for these pa-
rameters and prove convergence results for those estimators. In Section 5,
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we present our hypothesis test of independence. Finally, we illustrate our
theoretical results with a numerical study in Section 6 and an application to
real data in Section 7.

2. Preliminaries

Let (Ω, d) be a metric space and X a random variable, a Borel measurable
function from some probability space to Ω. We say that X ∈ Lp(Ω) if
E[d(X,ω)p] < ∞ for some (and hence by the triangle inequality all) ω ∈
Ω. In the study of random objects, the concepts of mean and variance are
generalized following the ideas of Fréchet (1948). Given a random variable
X ∈ L2(Ω), the Fréchet mean and variance of X are defined as

E[X] = arg min
ω∈Ω

E
[
d(X,ω)2

]
Var[X] = inf

ω∈Ω
E
[
d(X,ω)2

]
. (1)

While the existence of the variance in Euclidean spaces implies the existence
of a mean, this is not necessarily the case in general metric spaces. Further-
more, on its own, a metric space offers very little to define parametric models.
We now present the additional structure that will be used in this work to
construct models for time series of random objects following the presentation
in Burago et al. (2001) and Sturm (2003).

We call a map γ : [0, 1] → Ω a path if it continuously maps the unit
interval to Ω. A path γ such that d(γ(r), γ(t)) = d(γ(r), γ(s)) + d(γ(s), γ(t))
for every r < s < t ∈ [0, 1] is called a geodesic. Given two elements ω, ω′ ∈ Ω,
a path γ is said to connect ω and ω′ if γ(0) = ω and γ(1) = ω′. The set of all
such paths is denoted by Γ(ω, ω′). The distance function d induces a length
on the set of paths, defined for each γ by

Lp(γ) = sup

{
k∑

i=1

d(γ(ti−1), γ(ti)) | 0 = t0 ≤ . . . ≤ tk = 1, k ≥ 1

}
.

By definition, d(γ(0), γ(1)) ≤ Lp(γ), and hence d(ω, ω′) ≤ infγ∈Γ(ω,ω′) Lp(γ)
for every ω, ω′ ∈ Ω. A metric space in which the previous inequality always
holds as an equality is called a length space. Furthermore, if there exists a
geodesic γ connecting each pair ω, ω′ ∈ Ω, then we see that the infimum is
attained by γ, and Ω is called a geodesic space.

A class of metric spaces of special interest are Hadamard spaces. A metric
space (Ω, d) is called Hadamard space if it is complete and satisfies the Non-
Positive Curvature (NPC) inequality : for each pair ω0, ω1 ∈ Ω, there exists
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γ(t)

γ(0)

γ(1)

z

Figure 1: Illustration of the NPC inequality: the distance from any point on a side of
the triangle to the opposite vertex is shorter than it would be in an equivalent Euclidean
triangle.

an ω1/2 ∈ Ω such that for every z,

d(z, ω1/2)
2 ≤ 1

2
d(z, ω0)

2 +
1

2
d(z, ω1)

2 − 1

4
d(ω0, ω1)

2. (2)

As illustrated in Figure 1, this inequality means that triangles in Hadamard
spaces are thin. This interpretation can be used equivalently to define of
Hadamard spaces via comparison triangles, see Chapter 4 of Burago et al.
(2001). The following proposition from Sturm (2003) shows that Hadamard
spaces are geodesic spaces, and that (2) holds along geodesics.

Proposition 2.1 (Proposition 2.3 in Sturm (2003)). If (Ω, d) is a Hadamard
space then it is a geodesic space. Moreover, for any pair of points ω0, ω1 ∈ Ω
there exists a unique geodesic connecting them, denoted γω1

ω0
. For t ∈ [0, 1]

the intermediate point γ(t) depends continuously on the endpoints ω0, ω1.
Finally, for any z ∈ Ω and t ∈ [0, 1],

d(z, γ(t))2 ≤ (1 − t)d(z, γ(0))2 + td(z, γ(1))2 − t(1 − t)d(γ(0), γ(1))2. (3)

Since (2) is a special case of (3), we will also refer to the latter as the
NPC inequality. Hadamard spaces and the NPC inequality provide a rich
context for the study of random objects. One important result is that for
any X ∈ L1(Ω), the function ω 7→ E[d(X,ω)2 − d(X, z)2] is continuous and
uniformly convex, and hence by completeness of the space, has a unique
minimizer, see Proposition 4.3 in Sturm (2003). Since z only enters through
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an additive term which does not depend on ω, the minimizer of this function
is independent of z. This implies an alternative definition of the Fréchet
mean for any Hadamard-value random variable in L1(Ω) via an arbitrary
z ∈ Ω,

E[X] = arg min
ω∈Ω

E
[
d(X,ω)2 − d(X, z)2

]
.

We mention some further useful results in Appendix C and refer the reader
to Sturm (2003) for a thorough review of the subject.

We now present a few examples from Sturm (2003) of Hadamard spaces
and ways of building Hadamard spaces out of existing ones. The most well-
known case of Hadamard space are Hilbert spaces. Since Functional Data
Analysis (FDA) is typically carried out in the L2 Hilbert spaces (see Ram-
say and Silverman (2005)), considering Hadamard spaces allows to approach
FDA tasks from a random object perspective.

Example 2.1 (Hilbert spaces). Let H be a Hilbert space with induced norm
∥·∥H, then (H, d) with d(x, y) = ∥x− y∥H is a Hadamard space. In Hilbert
spaces, the Fréchet mean of X corresponds to the Bochner integral with re-
spect to the probability measure P of X, E[X] =

∫
XdP (see Hsing and

Eubank (2015)). In Hilbert spaces, the NPC inequality (3) holds to equality.

Example 2.2 (Constructed Spaces). Let (Ω, d) be a Hadamard space. Then

1. Any subset O ⊂ Ω is a Hadamard space if and only if it is closed and
convex.

2. Let Θ be an arbitrary set and ω : Θ → Ω be a bijection. Then, Θ is a
Hadamard space equipped with the distance dω(θ, θ′) = d(ω(θ), ω(θ′)).
Furthermore, E[X] = ω−1(E[ω(X)]) holds for any X ∈ L1(Θ).

One specific example of Hadamard space of particular interest is the space
of one-dimensional density functions over an interval equipped with the 2-
Wasserstein distance.

Example 2.3 (2-Wasserstein Space). Let W2(I) be the space of probability
measures on I ⊂ R with finite second moment. This space, endowed with the
2-Wasserstein distance, is a metric space, see Panaretos and Zemel (2020).
Consider the subset D(I) ⊂ W2(I) of distributions having a density with
respect to the Lebesgues measure. For two distributions P,Q ∈ D(I) with
quantile functions F−1

P , F−1
Q , the 2-Wasserstein distance between P and Q is

given by
dW2(P,Q) =

∥∥F−1
P − F−1

Q

∥∥
L2[0,1]

.
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The space of quantile functions being a closed and convex subspace of L2[0, 1],
it is also a Hadamard space. Hence, (D(I), dW2) falls under the second case
described in Example 2.2 and is also a Hadamard space.

Another useful example of a constructed Hadamard space is that of sym-
metric positive definite (SPD) matrices together with the Log-Cholesky dis-
tance.

Example 2.4 (Log-Cholesky distance). Let S+
p be the space of SPD matrices

of dimension p and L+
p be the space of p × p lower-triangular matrices with

positive diagonal elements. Given a matrixM ∈ S+
p , the Cholesky decomposi-

tion of M is well defined, meaning that there exists a lower-triangular matrix
with positive diagonal elements L ∈ L+

p such that M = LL⊤. Let ⌊M⌋ be
the p× p matrix such that ⌊M⌋ij = Mij if i < j and 0 otherwise and D(M)
be the p × p diagonal matrix with diagonal entries D(M)ii = Mii. While
simply using the Froebenius distance between Cholesky factors of SPD ma-
trices yields a valid distance, Lin (2019) argues that it leads to an unwanted
swelling effect in geodesics and proposes another distance dS+

p
treating the di-

agonal and strictly lower triangular parts of L differently. Let M1,M2 ∈ S+
p

with Cholesky factors L1 and L2, then the distance dS+
p

(M1,M2) is given by

dS+
p

(M1,M2)
2 = ∥⌊L1⌋ − ⌊L2⌋∥2F + ∥logD(L1) − logD(L2)∥2F ,

where ∥·∥F is the Froebenius norm. As a case of Example 2.2, this is a
Hadamard space, which is also shown in Lin (2019), together with other
properties of the space.

3. The GAR(1) Model

3.1. Model and stationary solution

Let us consider first a time series {Xt}t∈N in R with constant mean
E[Xt] = µ for all t ∈ N. Then, {Xt}t∈N follows a first-order autoregres-
sive model, denoted AR(1), with concentration parameter φ if it satisfies the
following relation

Xt+1 − µ = φ(Xt − µ) + εt+1, (4)

where the noise terms {εt}t∈N are i.i.d random variables with mean 0. With-
out the structure of a vector space, this model cannot be directly formulated
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Xt

Xt+1

γ
Xt

µ (ϕ)

εt+1

Figure 2: Illustration of the iterated equation (6).

in general metric spaces. A key insight towards a more general definition of
AR(1) models is that (4) can be rewritten as

Xt+1 = (1 − φ)µ+ φXt + εt+1.

This shows that each random variable of the time series can be written as a
weighted sum of the overall mean of the time series and the previous obser-
vation, perturbed by a centered random noise. For φ ∈ [0, 1], this weighted
sum corresponds to the point along the geodesic from µ to Xt at φ. This
interpretation can be used to define an autoregressive process only using
geodesics.

Let now (Ω, d) be a Hadamard space. In this context, we consider a broad
class of noise models represented by random maps ε : Ω → Ω. We say that
a random map ε is unbiased if for all ω ∈ Ω, the random variable ε(ω) is in
L1(Ω) and E[ε(ω)] = ω. Note that the expectation is the Fréchet mean in Ω,
hence by (1), the previous statement can be written as

E
[
d(ε(ω), ω)2 − d(ε(ω), ω′)2

]
< 0 for all ω, ω′ ∈ Ω withω ̸= ω′. (5)

We say that a sequence of random variables {Xt}t∈N ⊂ L1(Ω) with com-
mon mean µ follows the geodesic autoregressive model of order 1, GAR(1),
with concentration parameter φ ∈ [0, 1] if it satisfies the following iterated
system of equations

Xt+1 = εt+1(γ
Xt
µ (φ)), (6)

where {εt}t∈N are i.i.d unbiased noise maps and γXt
µ , we recall, is the (random)

geodesic connecting µ to Xt. The data generating process is illustrated in
Figure 2.
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This relation opens the question of whether the condition of a shared
Fréchet mean E[Xt] = µ and equation (6) can mutually be fulfilled. Us-
ing that {εt}t∈N are unbiased and assuming that E[Xt] = µ, the condition
becomes

E
[
γXt

E[Xt]
(φ)
]

= E[Xt].

Unfortunately, this condition does not hold in every Hadamard space. Thus,
we will assume the following.

Assumption 3.1. For every X ∈ L1(Ω) and φ ∈ [0, 1], E
[
γXE[X](φ)

]
= E[X].

Assumption 3.1 holds for some of the examples mentioned in the previous
section. For any Hilbert space H, this condition holds by linearity of the
expectation since for any X ∈ L1(H),

E
[
γXE[X](φ)

]
= E[(1 − φ)E[X] + φX] = (1 − φ)E[X] + φE[X] = E[X].

Furthermore, if the condition holds for a Hadamard space (Ω, d), then it also
holds for a Hadamard space constructed by taking the image of a bijection
ω as described in the second part of Example 2.2.

Lemma 3.1. Let (Ω, d) be a Hadamard space and (Θ, dω) be a constructed
Hadamard space based on the bijection ω. If (Ω, d) satisfies Assumption 3.1,
then so does (Θ, dω).

Lemma 3.1 shows that Assumption 3.1 holds for a large class of Hadamard
spaces, in particular for the subspace D(I) of W2(I) of distributions having
a density function, as described in Example 2.3.

To show the existence of a stationary solution to Equation (6), we use the
framework of iterated random function systems presented in Wu and Shao
(2004). Let us first introduce some notation. Given the i.i.d noise maps
{εt}t∈N, define for all t ∈ N the random functions Ft : Ω → Ω,

Ft(x) = εt(γ
x
µ(φ)).

Then, Equation (6) can be rewritten as an iterated random function system,

Xt+1 = Ft+1(Xt).

Further, for any t ∈ N and x ∈ Ω, the following random variable will be
useful in expressing the condition of existence of a stationary solution,

Xt(x) = Ft ◦ Ft−1 ◦ . . . ◦ F1(x), (7)
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then, Xt = Xt(X0), and the construct also allows to study a coupled ver-

sion Xt(X
′
0) of Xt for X ′

0
D
= X0. The following theorem provides a suffi-

cient condition for the existence of a stationary solution to (7) based on a
geometric-moment contracting condition on the iteration maps {Ft}t∈N.

Theorem 3.1 (Theorem 2 of Wu and Shao (2004)). Suppose there exists
x0 ∈ Ω, α > 0, r ∈ (0, 1) and C > 0 such that

E[d(Xt(x), Xt(x0))
α] ≤ Crtd(x, x0)

α (8)

holds for all x ∈ Ω, t ∈ N. Then, for all x ∈ Ω

X⋆
t = lim

m→∞
Ft ◦ Ft−1 ◦ . . . ◦ Ft−m+1(x)

exists and does not depend on x. Moreover, {X⋆
t }t∈N is a stationary solution

of Equation (6).

As noted in Wu and Shao (2004), if condition 8 holds for some α ≥ 1,
then Hölder’s inequality can be directly use to show that it also holds for any
β ∈ (0, α). While the GAR(1) model can be defined for φ = 1, it is unlikely
that the process will have a stationary solution in this case. This is due to
the fact that the noise maps {εt}t∈N are unbiased, and the iterated system
of equations will not converge to a stationary solution if the noise maps are
not contracting.

If we assume that the noise maps {εt}t∈N are Lipschitz with random
Lipschitz constants Kt ∈ Lα(R+) with K := E[Kα

t ], we have by using the
Geodesic Comparison Inequality (see C.2) on d(γxµ(φ), γx0µ (φ))2

E[d(X1(x), X1(x0))
α] = E

[
d(ε1(γ

x
µ(φ)), ε1(γ

x0
µ (φ)))α

]

≤ Kd(γxµ(φ), γx0µ (φ))α

≤ Kφα/2d(x, x0)
α.

By induction, this implies E[d(Xt(x), Xt(x0))
α] ≤

(
Kφα/2

)t
d(x, x0)

α, which

shows that condition (8) holds if r = Kφα/2 < 1.

3.2. Identifiability

Under the conditions of Theorem 3.1, Equation (6) has a stationary so-
lution and the model features two quantities of interest: the time-invariant
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Fréchet mean of the time series µ ∈ Ω, and the concentration parameter
φ ∈ [0, 1]. Before considering the estimation of these quantities, we show
that both are identifiable. The identifiability of the Fréchet mean follows di-
rectly from the stationarity of the time series and the definition and existence
of the Fréchet mean in a Hadamard space.

Theorem 3.2. Let {Xt}t∈N ⊂ Ω and assume that {Xt}t∈N satisfies the con-
ditions of Theorem 3.1. Then, the Fréchet mean µ = E[Xt] is identifiable.

As for the concentration parameter, we can consider the mean squared
error

L(u) = E
[
d
(
Xt+1, γ

Xt
µ (u)

)2]
. (9)

Then, assuming that the noise maps are unbiased, we can show that this loss
is uniquely minimized by the true concentration parameter φ.

Theorem 3.3. Let {Xt}t∈N ⊂ Ω, assume that {Xt}t∈N is in L2(Ω) and
satisfies Equation (6) with true concentration parameter φ ∈ [0, 1]. Assume
further that the noise maps {εt}t∈N are unbiased. Then, φ is the unique
minimizer of L.

Proof. Since γXt
µ (φ) is the Fréchet mean ofXt+1 givenXt and εt+1 is unbiased,

for all φ′ ∈ [0, 1], with φ′ ̸= φ, we have

L(φ′) = E
[
d
(
Xt+1, γ

Xt
µ (φ′)

)2]
= E

[
d
(
εt+1(γ

Xt
µ (φ)), γXt

µ (φ′)
)2]

= E
[
E
[
d
(
εt+1(γ

Xt
µ (φ)), γXt

µ (φ′)
)2 | Xt

]]

> E
[
E
[
d
(
εt+1(γ

Xt
µ (φ)), γXt

µ (φ)
)2 | Xt

]]
= L(φ)

where the inequality follows from the unbiasedness of εt+1 as defined in Equa-
tion (5).

4. Estimation of model parameters

Now that the identifiability of the Fréchet mean and the concentration
parameter have been established, we show that empirical estimation of the
associated risks produces consistent estimators. Furthermore, we show that
the Fréchet mean can be estimated at a

√
T -rate.
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4.1. Fréchet mean

For simplicity, we assume that the {Xt}t∈N are L2(Ω). Then, the Fréchet
function M(ω) = E[d(X,ω)2] has a natural empirical version based on the
observations X1, . . . , XT .

MT (ω) =
1

T

T∑

t=1

d(Xt, ω)2. (10)

We define the estimator µ̂T as the minimizer of MT , which is well-defined by
strict convexity of the squared distance in Hadamard spaces. The asymptotic
behavior of µ̂T is described by the theory of M-estimation, see for instance
van der Vaart and Wellner (1996), where consistency and rates of conver-
gence are readily available for i.i.d data. Here, we adapt results on iterated
random function system from Wu and Shao (2004) to verify the general as-
sumptions for M-estimation presented in van der Vaart and Wellner (1996).
One assumption which is standard in the study of random objects, concerns
the covering number of (Ω, d).

Assumption 4.1. Let B(µ, δ) be the ball in Ω of size δ centered in µ and
N(ε, Bδ(µ)) be the covering number of Bδ(µ) using balls of size ε. Assume

∫ 1

0

√
1 + logN(εδ, Bδ(µ)) dε = O(1) as δ → 0.

In the following theorem, we show that this assumption, together with
the assumptions required for stationary of the sequence {Xt}t∈N, are enough

to obtain the
√
T consistency of the mean estimator. Note that this result

is of more general interest since it does not assume that the data follows our
GAR(1) model but only requires control on the dependency of the sequence
{Xt}t∈N.

Theorem 4.1. Let (Ω, d) be a Hadamard space and {Xt}t∈N be an L2(Ω) se-
quence of random variables satisfying Equation (8) for some α ≥ 1. Suppose
that Assumption 4.1 holds around the Fréchet mean µ = E[Xt]. Then, the
minimizer µ̂T of MT is a consistent estimator of µ and satisfies

√
Td(µ, µ̂T ) = OP (1). (11)

The proof of Theorem 4.1 can be found in Appendix B.
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4.2. Concentration parameter

Similarly to the Fréchet mean, we construct an estimator of the con-
centration parameter by minimizing an empirical version of L in Equation
(9). We estimate the expectation with the available sample and replace the
Fréchet mean µ by the estimator µ̂T , giving the following risk function

LT (u) =
1

T − 1

T−1∑

t=1

d(Xt+1, γ
Xt
µ̂T

(u))2. (12)

We prove the consistency of the resulting estimator based on results from
Newey (1991) relying on the compactness of the domain [0, 1] and continuity
results about L and LT . The consistency result is the following.

Theorem 4.2. Assume that (Ω, d) and {Xt}t∈N satisfy the conditions of
Theorem 4.1. Then, the minimizer φ̂T of LT is a consistent estimator of φ.

Proof. By Proposition B.2, we have that ∥LT − L∥∞ = oP (1). Together
with the identifiability result in Theorem 3.3, we have that L has a unique
minimizer. By Corollary 3.2.3 in van der Vaart and Wellner (1996), any
sequence of minimizers φ̂T of LT satisfies |φ̂T − φ| = oP (1).

Furthermore, we show in Lemma C.1 in the Appendix that L, and hence
LT , is strongly convex. This makes it possible to use generic convex solvers
to find the minimizer of LT .

5. Test for serial independence

One hypothesis test of interest is whether the random variables {Xt}t∈N
are independent, which corresponds in the GAR(1) model to testing H0 : φ =
0 vs.H1 : φ > 0. Since no strong results are available about the asymptotic
distribution of φ̂T , another test statistic must be considered. To that end,
let us consider the statistic

DT =
1

T − 1

T−1∑

t=1

d(Xt, Xt+1)
2. (13)

We proceed to show that DT is asymptotically normal with mean and vari-
ance depending on the value of the concentration parameter φ, with smaller
values of DT taken for larger values of φ. This allows us to build a test that
asymptotically has correct level and power.
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Theorem 5.1. Let X1, X2, X3 be i.i.d copies of ε(µ), then, under H0 and as
T → ∞, √

T (DT − E
[
d(X1, X2)

2
]
) → N(0, σ2

0),

where σ2
0 = Var[d(X1, X2)

2] + 2Cov[d(X1, X2)
2, d(X1, X3)

2].

Proof. Under H0, the sequence {Xt}t∈N is formed of i.i.d random variables.
We consider the centered summands, Yt = d(Xt, Xt+1)

2−E[d(X1, X2)
2]. The

sequence {Yt}t∈N is then m-dependent with m = 1. We obtain the desired re-
sult by the Central Limit Theorem for m-dependent sequences, see Theorem
2 in Hoeffding and Robbins (1948).

To study the behavior of this test statistic under H1 : φ ̸= 0, we base our
analysis on Theorem 3 of Wu and Shao (2004) which provides conditions for
the asymptotic normality of sums of the form of DT . Under the assumptions
required for the existence of a stationary solution, we obtain the result.

Theorem 5.2. Assume that {Xt}t∈N satisfies the conditions of Theorem 3.1
with φ > 0, then there exists a σφ ≥ 0 such that

√
T (DT − E

[
d(X1, X2)

2
]
) → N(0, σ2

φ).

In general, it is not clear whether Eφ=0[DT ] ̸= Eφ=φ⋆ [DT ] for an arbi-
trary φ⋆ ̸= 0, and whether the test described above has asymptotic power.
One possible way to avoid this issue is to require the following monotonicity
condition on the noise maps.

Assumption 5.1. For all x, y, z ∈ Ω, then the noise maps ε satisfy the
following monotonicity condition

d(x, z) < d(y, z) ⇒ E
[
d(ε(x), z)2

]
< E

[
d(ε(y), z)2

]
. (14)

For any φ > 0, d(γXt
µ (φ), Xt) = (1 − φ)d(µ,Xt) < d(µ,Xt). Together

with Assumption 5.1, this gives

Eφ=φ⋆ [DT ] = E
[
d(εt+1(γ

Xt
µ (φ⋆)), Xt)

2
]
< E

[
d(εt+1(µ), Xt)

2
]

= Eφ=0[DT ],

which implies that the asymptotic power of the test is 1.
To construct a level α hypothesis test for H0 : φ = 0 vs.H1 : φ > 0,

one could reject H0 if the absolute deviation of DT from its asymptotic
mean exceeds a certain threshold qα based on the result in Theorem 5.1.
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However, the asymptotic mean and variance of DT required for this test
depend on the underlying data distribution and are unknown. Alternatively,
one could attempt to center DT , for instance by considering the randomized
statistic D̃T = 1

T−1

∑T−1
t=1 d(Xt, Xt+1)

2 − d(Xt, Xπ(t))
2, where π is a random

permutation. Similar theoretical arguments as for DT shows that D̃T is
asymptotically normal under H0, with zero mean and a variance estimable
from data. This enables normalization of D̃T and the construction of a test
based on the asymptotic approximation.

Instead, we use a permutation procedure to compute approximate p-
values under H0 for better finite sample properties. Specifically, let B ∈ N
be the number of permutations used for constructing the approximate p-
value and let π1, . . . , πB be random permutations of {1, . . . , T}. For each
permutation π, we denote by Dπ

T the test statistic computed based on the
permuted sample

(
Xπ(1), . . . , Xπ(T )

)
and define the approximated p-value,

p̂B = 1
B

∑B
b=1 1{DT ≥ Dπb

T }. Under the null hypothesis of independence, we

have that Dπ
T

D
= DT , and shuffling the observations under the alternative

allows to loosen the dependency between consecutive observations, giving an
approximate sample under H0. The resulting level α test is then constructed
by rejecting H0 if p̂B ≤ α, see Hemerik and Goeman (2018).

6. Numerical experiments

In the following, we illustrate our theoretical results with numerical ex-
periments taking place in different Hadamard spaces. We empirically verify
the convergence rate of µ̂T proved in Theorem 4.1, verify the consistency of
φ̂T proved in Theorem 4.2 and show that the test constructed via the boot-
strapping procedure described in Section 5 has the desired size and increasing
power as T grows.

We study three scenarios of time series following the GAR(1) model. The
first example is that of the real line R equipped with the standard Euclidean
distance, with a multiplicative noise model. For the second example, we
consider the space of density distributions over the real line equipped with the
2-Wasserstein distance, with a geodesic noise model. For the last example,
we consider SPD matrices with the Log-Cholesky metric with a noise model
based on a Lie group structure defined in Lin (2019).

In each of these scenarios, we generate time series of different lengths T ∈
{40, 80, 160, 320, 640} and for different values of the concentration parameter
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φ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 1}. Naturally, φ = 0 and φ = 1 are special
cases that we will consider with care in the evaluation of our results. For
each combination of metric space, number of observations and concentration
parameter, we generate 1000 datasets. For each dataset, we compute the
estimators µ̂T and φ̂T , and run the permutation-based hypothesis test at
level α = 0.05. We report for each combination of a metric space, T and φ,
the average estimation errors d(µ̂T , µ) and |φ̂T − φ|, as well as properties of
the hypothesis test, all calculated over the 1000 runs.

Additional results can be found in Appendix A where we compare our
permutation test for DT to three other tests: another permutation test based
on the φ̂T estimator and the two tests developed in Jiang et al. (2023). This
appendix shows that the test based on DT is better calibrated and achieves
considerably higher power than all other evaluated in all simulation scenarios
considered.

All simulations and analyses are done in Python. The code to reproduce
the experiments and figures is available online1.

6.1. R with multiplicative noise

In the first experimental setup, we investigate the simple case of (Ω, d) be-
ing the real line line R equipped with the Euclidean distance d(x, y) = |x− y|.
Here, the Fréchet mean corresponds to the ordinary mean and geodesics are
given by straight lines, γyx(t) = (1− t)x+ ty. Furthermore, Assumption 4.1 is
verified since N(εδ, Bδ(µ)) = ε−1, thus the entropy integral is bounded and
does not depend on δ.

One can see that the unconstrained minimizer of Equation (12) is the
sample autocorrelation. Using the convexity of LT , the estimator φ̂T of
the concentration parameter is still available in closed form by clipping the
autocorrelation to positive numbers, giving

φ̂T = max

{
0,

∑T−1
t=1 (Xt+1 − X̄)(Xt − X̄)∑T−1

t=1 (Xt − X̄)2

}
, (15)

where X̄ is the sample mean of the time series.
We consider multiplicative noise maps εi(x) = (1 + ηi)x where ηi ∼

N(0, σ2). Then, the noise maps {εt}t∈N are unbiased and the condition of

1https://github.com/matthieubulte/GAR
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Figure 3: Panel (a) depicts a trajectory of 200 time steps from the GAR(1) process
described in Section 6.1. Panel (b) illustrates the

√
T convergence of the mean estimator

µ̂T . Panel (c) shows the convergence of the concentration parameter estimator φ̂T . Panel
(d) shows the rejection rate of the independence test described in Section 5 with target
level 0.05 for different values of φ.

Theorem 3.1 is satisfied for φ < (1 + σ2)−1/2 since

E
[
(Xt(x0) −Xt(x))2

]
=
[
φ2(1 + σ2)

]t
(x0 − x)2.

In our simulation setup, we work with σ2 = 0.252 which gives an upper bound
φ < (1 + σ2)−1/2 ≈ 0.97.

The theoretical results presented in the previous sections are illustrated
in Figure 3. The

√
T convergence of the Fréchet mean estimator holds for

φ < 1 with a reasonably stable value at the tested sample sizes, see panel (b).
Panel (c) indicates that the estimator φ̂T also converges at the parametric√
T rate to φ for φ < 1. We can see that for φ = 0, the error is lower

which can be explained by the fact the the sample is i.i.d. in this case. In the
non-i.i.d. case, the estimation error seems smaller for the larger values of φ
considered. Finally, the rejection rates for the independence test presented
in Section 5 show that the test is well calibrated and achieves high power for
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Figure 4: Panel (a) shows six consecutive densities sampled from the GAR(1) process
described in Section 6.2. Panels (b), (c) and (d) are generated in the same way as in
Figure 3.

moderate sample sizes, see panel (d).

6.2. Univariate distributions with a density

In this second experiment, we consider time series in the space D([0, 1])
of density functions over [0, 1] equipped with the 2-Wasserstein distance, as
described in Example 2.3. Since the support of the distributions is bounded,
the space D([0, 1]) is bounded as well. Geodesics are given by linear interpo-
lation of the corresponding quantile function: given two distributions P,Q ∈
D([0, 1]) with quantile functions F−1

P , F−1
Q , the quantile function of any point

on the connection geodesic γQP is F−1

γQP (t)
(u) = (1 − t)F−1

P (u) + tF−1
Q (u).

We generate the time series with the standard normal distribution N(0, 1)
truncated to [0, 1] as the Fréchet mean. Then, the data is generated according
to Equation (6). The noise sampling is based on sampling a random optimal
transport η : [0, 1] → [0, 1] and applying it by quantile composition, which
corresponds to computing the pushforward under η: given a distribution
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P ∈ D([0, 1]) with quantile function F−1
P , the noise map ε is then given by

F−1
ε(P) = η ◦ F−1

P . To generate the transport maps η, we follow the procedure

described in Panaretos and Zemel (2016). First, a random integer frequency
is uniformly sampled from {−4, . . . , 4}\{0}, then, the maps are given by
η(x) = x−sin(πkx)/|πk|. The random maps η are smooth, strictly increasing
and satisfy η(0) = 0 and η(1) = 1. By symmetry of the random parameter k,
one can see that for any x ∈ [0, 1], we have E[η(x)] = x, and this property is
inherited by the noise maps ε. While the noise maps have a Lipschitz constant
of 2, meaning that the condition of Theorem 3.1 is satisfied for φ < 0.5, we
observe empirically that the estimators seem to still be consistent even for
values of φ ∈ [0.5, 1).

The results in Figure 4 match those observed in the previous experiment.
The scaled error curves displayed in panel (b) confirm the convergence rate
proved in Theorem 4.1. Similarly to the previous experiment, the conditions
of Theorem 3.1 are not satisfied for φ = 1, and the estimator µ̂T fails to
converge; to improve readability, we did not include the associated curve.
Similarly to the previous experiment, the estimator φ̂T seems to converge
at a

√
T rate. The error does not seem to improve for i.i.d. observations,

but the monotonicity as a function of φ observed in the previous experiment
approximately holds as seen in panel (c). We also observe in panel (d) that
the hypothesis test behaves as expected. The blue curve, corresponding to
the null hypothesis, demonstrates that the empirical size of the test is correct
for all sample sizes considered.

6.3. SPD matrices

In this last experiment we investigate the properties of the GAR(1) model
in the space S+

10 of 10×10 SPD matrices with the Log-Cholesky distance de-
scribed in Example 2.4. In this space, matrices M0,M1 ∈ S+

10 are uniquely
identified by their Cholesky factors L0, L1. Points on the geodesic line be-
tween these matrices are given by linearly interpolating off-diagonal entries
of the Cholesky factors and geometrically interpolating the diagonal ele-
ments. That is, for t ∈ [0, 1], the Cholesky factor Lt of γM1

M0
(t) is given

via ⌊Lt⌋ = (1 − t)⌊L0⌋ + t⌊Lt⌋ and D(Lt) = D(L0)
1−tD(L1)

t.
We generate time series with the identity matrix 110 as the Fréchet mean.

Each noise map in this experiment applies a random congruent transfor-
mation of the input with a random lower-triangular matrix Lε ∈ R10×10

with ε(X) = LεXL
⊤
ε . The lower-triangular entries of Lε are i.i.d. follow-

ing a normal distribution ⌊Lε⌋ij ∼ N(0, 0.52), and the diagonal entries are
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Figure 5: Panel (a) displays 10 consecutive covariance ellipses corresponding to the top-left
2× 2 submatrix of the covariances sampled from the GAR(1) process described in Section
6.2. Each ellipse is the application of a covariance submatrix to a unit circle. Panels (b),
(c) and (d) are generated in the same way as in Figure 3.

i.i.d. following a log-normal distribution logD(Lε)ii ∼ N(0, 0.22). For a ma-
trix X ∈ S+

10 with Cholesky decomposition X = LL⊤, the matrix ε(X) is also
S+
10 and has Cholesky decomposition ε(X) = LεL, implying E[ε(X)] = X.

Figure 5 shows similar results as in the other two experimental settings.
The convergence rate proved in Theorem 4.1 is confirmed in panel (b). In this
setting, the stability of the error curves indicates an early attainment of the
asymptotic regime. Panel (c) suggests a convergence rate of φ̂T faster than√
T , but additional simulations for larger sample sizes rejects this conjecture.

We observe in panel (d) that the test exposes the correct level and high power
already at small sample sizes for all non-zero tested values of φ.
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Figure 6: Left: smoothed densities of the monthly 12-months-ahead inflation expectation.
The empirical Fréchet mean of these densities is displayed in dashed black. Right: display
of the monthly 12-months-ahead inflation expectation densities. In both panels, we only
show the [−10, 20] range of the data.

7. Application: Inflation expectation

Analysis of consumer inflation expectations brings insights into how the
general populations perceives broader economic trends (Dietrich et al., 2022;
Meeks and Monti, 2023). The Survey of Consumer Expectations (SCE) is a
monthly survey maintained by the Federal Reserve Bank of New York collect-
ing information on households’ expectations on a broad variety of economic
topics between June 2013 and May 2023, see Armantier et al. (2017).

We focus our attention on the inflation expectation question, in which
each consumer is asked to provide a distribution representing their belief for
the 12-months ahead inflation. The survey respondents are presented with
pre-defined bins over which they can distribute percentage points, defining
a histogram of their beliefs. The bins are given by the nodes −36%, −12%,
−8%, −4%, −2%, 0%, 2%, 4%, 8%, 12% and 36%. Each month, an average
of approximately 1293 response histograms are available. We aggregate the
histograms monthly by first taking the median belief of each histogram (which
is already present in the dataset) and approximate the monthly median belief
density via kernel density estimator with a Gaussian kernel and using Scott’s
rule (Scott, 1992) for the choice of the bandwidth. This results in a time-
series of T = 114 elements in D([−36, 36]) displayed in Figure 6.

We fit the parameters of the GAR(1) model as described in Section 4 and
obtain an empirical Fréchet mean µ̂T displayed in the left panel of Figure
6 (dashed black) and a concentration parameter φ̂T = 0.85 indicating a
strong sequential dependence of the densities. The hypothesis test presented
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Figure 7: Left: Histogram of the distribution of DT under the null hypothesis together
with the computed value of DT on the observed data. Right, top: Empirical cumulative
distribution function of the residuals for the GAR(1) model (full line) and null model
(dashed line). Right, bottom: Residuals of both models over time.

in Section 5 rejects the hypothesis of independence at level at a 5% level
with a test statistic DT ≈ 0.76 and estimated p-value p̂B ≈ 10−3 with B =
1000 permutations. The left panel of Figure 7 displays the histogram of the
bootstrapped values of DT , illustrating the approximate normal distribution
of DT under H0.

To further highlight the auto-regressive aspect of the data, we compare
the residuals of the GAR(1) model with those obtained under the null model,
Xt = εt(µ). Using fitted parameters, we generate predictions for each time
step under the GAR(1) model as X̂t+1 = γXt

µ̂T
(φ̂T ), and under the null model

as X̂0
t+1 = µ̂T . We then consider the squared residuals d(Xt+1, X̂t+1)

2 and
d(Xt+1, µ̂T )2, respectively. To asses the model’s performance, we compute a
metric space adaptation of the coefficient of determination, as proposed by
Petersen and Müller (2019). The empirical estimator R2

⊕ of R2
⊕ is given by

R̂2
⊕ = 1 −

∑T−1
t=1 d(Xt+1, γ

Xt
µ̂T

(φ̂T ))2
∑T−1

t=1 d(Xt, µ̂T )2
.

In this analysis, we find an empirical coefficient of determination of R̂2
⊕ =

0.72 indicating that the GAR(1) model is able to explain a significant portion
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of the variability present in the data. The right panel of Figure 7 shows that
the residuals of the GAR(1) fit are smaller than for the fit under the null
model, as shown in the upper graph. Furthermore, as shown in the lower-
right panel, the residuals under the null model residuals increase and are high
during the years 2021 and 2022 while the GAR(1) residuals stay stable over
time. This is consistent with the data as shown in the right panel of Figure
6 where it is visible that there is a shift in inflation expectation from 2021
onwards, possibly due to the economical impact of the COVID 19 pandemic
and the escalation of the Russo-Ukranian war in early 2022. While this shift
results in unexplained deviations from the mean in the null model starting
in 2021, the time dependence of the GAR(1) model allows for a better fit in
these years.

8. Discussion

This paper proposed a first-order autoregressive model for time series
of random variable residing in metric spaces. The model is parametrized
by a Fréchet mean and a concentration parameter which we proved can be
consistently estimated under mild assumptions. This paper also presents a
test for serial dependence under the GAR(1) model, allowing to test it against
a null hypothesis of repeated i.i.d. measurements. Monte Carlo experiments
as well as a real data analysis demonstrated the theoretical properties of the
model as well as its practical relevance.

Several directions could be taken to extend the results of this paper. First,
as observed in the experiments in Section 6, a

√
T rate of convergence of the

estimator of the concentration parameter φ appears to hold. This rate, as
well as other stronger results about the asymptotic behavior of φ̂T , might be
obtained using moment assumptions on the subderivates of L, see Niemiro
(1992), or by assuming differentiability, see results from Haberman (1989).
On the modeling side, two directions could be interesting to explore. A useful
extension would be to adapt the model to allow for a negative relationship
to the previous time step, with φ < 0. This can be done naturally in some
specific cases by using an existing tangent space structure of the metric space,
as done in Ghodrati and Panaretos (2024); Zhu and Müller (2023), but it is
not necessarily clear how to define the notion of a negative direction in a
more general case. Furthermore, the model presented here only allows for
a first-order auto-regressive structure. One possible extension would be to
consider higher-order autoregressive models by applying the same principle,
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this time replacing the one geodesic update in Equation (6) with multiple
updates using previous time steps. However, we expect this approach to be
challenging to analyze. Instead, it could be of interest to propose another
auto-regressive model sharing the similarity to the AR(1) model on the real
line, but which could be more easily extended to a higher number of lags.
Finally, one could develop other classical tests found in time series analyses
to this model class, for instance a test to detect change-points in the Fréchet
mean or concentration parameter, see Jiang et al. (2024).
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Petersen, A., Müller, H.G., 2019. Fréchet regression for random objects with
euclidean predictors. The Annals of Statistics 47, 691–719.

Petersen, A., Müller, H.G., 2016. Functional data analysis for density func-
tions by transformation to a hilbert space. The Annals of Statistics 44,
183–218. URL: http://www.jstor.org/stable/43818904.

Petersen, A., Zhang, C., Kokoszka, P., 2022. Modeling Probabil-
ity Density Functions as Data Objects. Econometrics and Statistics
21, 159–178. URL: https://linkinghub.elsevier.com/retrieve/pii/
S245230622100054X, doi:10.1016/j.ecosta.2021.04.004.

Raginsky, M., Sason, I., 2013. Concentration of Measure Inequalities in
Information Theory, Communications, and Coding. Foundations and
Trends in Communications and Information Theory 10, 1–246. URL:
https://www.nowpublishers.com/article/Details/CIT-064, doi:10.
1561/0100000064. publisher: Now Publishers, Inc.

Ramsay, J.O., Silverman, B.W., 2005. Functional data analysis. Springer
series in statistics. 2nd ed ed., Springer, New York.

Scott, D.W., 1992. Multivariate Density Estimation: Theory, Prac-
tice, and Visualization. Wiley. URL: http://dx.doi.org/10.1002/

9780470316849, doi:10.1002/9780470316849. iSSN: 1940-6347 Publica-
tion Title: Wiley Series in Probability and Statistics.

Srivastava, A., Klassen, E.P., 2016. Functional and Shape Data Anal-
ysis. Springer Series in Statistics, Springer New York, New York,
NY. URL: http://link.springer.com/10.1007/978-1-4939-4020-2,
doi:10.1007/978-1-4939-4020-2.

Sturm, K.T., 2003. Probability measures on metric spaces of nonpositive
curvature, in: Auscher, P., Coulhon, T., Grigor’yan, A. (Eds.), Contem-
porary Mathematics. American Mathematical Society, Providence, Rhode
Island. volume 338, pp. 357–390. URL: http://www.ams.org/conm/338/,
doi:10.1090/conm/338/06080.

29



van der Vaart, A.W., Wellner, J.A., 1996. Weak Convergence and Empirical
Processes. Springer Series in Statistics, Springer New York, New York,
NY. URL: http://link.springer.com/10.1007/978-1-4757-2545-2,
doi:10.1007/978-1-4757-2545-2.

Wu, W.B., Shao, X., 2004. Limit theorems for iterated random func-
tions. Journal of Applied Probability 41, 425–436. URL: https://www.
cambridge.org/core/journals/journal-of-applied-probability/

article/abs/limit-theorems-for-iterated-random-functions/

9CA522B1DE090C02B7374ED8212739AB#, doi:10.1239/jap/1082999076.
publisher: Cambridge University Press.

Xavier, J., Manton, J., 2006. On the Generalization of AR Processes To
Riemannian Manifolds, in: 2006 IEEE International Conference on Acous-
tics Speed and Signal Processing Proceedings, IEEE, Toulouse, France.
pp. V–1005–V–1008. URL: http://ieeexplore.ieee.org/document/

1661448/, doi:10.1109/ICASSP.2006.1661448.

Yoshiyuki, A., 2017. A Functional Linear Regression Model in the Space of
Probability Density Functions. Discussion papers URL: https://ideas.
repec.org//p/eti/dpaper/17015.html. number: 17015 Publisher: Re-
search Institute of Economy, Trade and Industry (RIETI).

Zhu, C., Müller, H.G., 2023. Autoregressive optimal transport models.
Journal of the Royal Statistical Society Series B: Statistical Methodol-
ogy 85, 1012–1033. URL: https://doi.org/10.1093/jrsssb/qkad051,
doi:10.1093/jrsssb/qkad051.

Zhu, C., Müller, H.G., 2024. Spherical autoregressive models, with
application to distributional and compositional time series. Journal
of Econometrics 239, 105389. URL: https://www.sciencedirect.

com/science/article/pii/S0304407623000209, doi:https://doi.org/
10.1016/j.jeconom.2022.12.008.

30



Appendix A. Comparison to other approaches

In this section, we compare the test presented in this paper to the serial
independence test proposed in Jiang et al. (2023) as well as a test for serial
independence constructed by testing φ = 0 via the estimator φ̂T . We com-
pare the rejection rate of the different tests at level α = 0.05 for different
simulation setups, values of φ and sample sizes in the same three scenarios
as in Section 6: R with multiplicative noise, univariate distributions with the
2-Wasserstein distance and SPD matrices with the Log-Cholesky metric.

The first alternative test uses φ̂T as the test statistic. Similarly to the
test constructed via the statistic DT , to construct a level α hypothesis test
for H0 : φ = 0 vs.H1 : φ > 0, we use a permutation procedure to compute
approximate p-values under H0. With the same notation as in Section 5,
let φ̂πT be the estimator of φ computed on the randomly permuted sample
(Xπ(1), . . . , Xπ(T )). The approximate p-value using a bootstrapped sample of

B ∈ N replicas is p̂B = 1
B

∑B
b=1 1{φ̂T ≤ φ̂πT}. We reject the null hypothesis

if p̂B ≤ α to construct a level α test. While we do not have theoretical
results about the asymptotic distribution of φ̂T justifying this test, it is still
of interest to empirically analyze the result of this procedure.

We also compare our test to the methodology presented in Jiang et al.
(2023). The authors propose a generalization of the spectral density function
to metric spaces based on the distance covariance, see Lyons (2013). Based
on this, the define two test statistics, CvMT and KST . Similarly to our DT ,
their test statistics are non-pivotal and a wild bootstrap is proposed to obtain
the critical values of their test statistics.

The summary of the results can be found in Table A.1. We observe that
the tests based on DT or φ̂T seem to almost uniformly outperform the tests
proposed by Jiang et al. (2023). This could partially be explained by the
fact that our tests are tailored for the data generating process considered,
while the tests in Jiang et al. (2023) do not assume any structure on the
autoregressive data generating process. We observe that the tests based on
φ̂T and DT expose approximately similar performance in the first scenario of
real numbers with multiplicative noise. For the other two scenarios, the two
tests seem to be equally well calibrated, up to stochastic difference, while the
test based on DT achieves considerably higher power compared uniformly
over every alternative and sample size we considered.
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CvMT KST φ̂T DT

R

n = 40 0.112 0.090 0.058 0.050
H0 : φ = 0 n = 80 0.076 0.076 0.052 0.034

n = 160 0.090 0.074 0.044 0.048

φ = 0.1
n = 40 0.120 0.106 0.166 0.142
n = 80 0.160 0.106 0.228 0.236
n = 160 0.144 0.066 0.312 0.312

φ = 0.3
n = 40 0.238 0.108 0.492 0.478
n = 80 0.434 0.116 0.800 0.806
n = 160 0.664 0.118 0.936 0.972

D

n = 40 0.156 0.092 0.056 0.036
H0 : φ = 0 n = 80 0.158 0.092 0.042 0.040

n = 160 0.146 0.114 0.048 0.044

φ = 0.1
n = 40 0.206 0.114 0.132 0.180
n = 80 0.218 0.096 0.186 0.276
n = 160 0.248 0.098 0.150 0.530

φ = 0.3
n = 40 0.336 0.138 0.596 0.798
n = 80 0.446 0.146 0.732 0.982
n = 160 0.616 0.122 0.818 1

S+
10

n = 40 0.850 0.344 0.012 0.012
H0 : φ = 0 n = 80 0.966 0.426 0.018 0.014

n = 160 0.986 0.430 0.016 0.042

φ = 0.1
n = 40 0.882 0.320 0.524 0.984
n = 80 0.978 0.368 0.618 1
n = 160 0.980 0.444 0.654 1

φ = 0.3
n = 40 0.824 0.332 1 1
n = 80 0.980 0.390 1 1
n = 160 0.992 0.396 1 1

Table A.1: Empirical rejection rate for each test at level α = 0.05. Each rejection rate is
based on 1000 simulations, as described in the introduction to Section 6. In each line, the
number in bold corresponds to the rejection rate closest to the desired test level α = 0.05
for the rows with φ = 0 and with the highest rejection rate for the rows with φ > 0.
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Appendix B. Proofs of theorems

Consistency of the mean estimator

We start by defining the following function which will be useful in the
proofs presented in this section. Let ω, ω0 ∈ Ω, we define for all x ∈ Ω the
function

gωω0
(x) = d(x, ω)2 − d(x, ω0)

2.

In a Hadamard space, gωω0
has the following Lipschitz property holding both

in x and in the pair (ω, ω0).

Lemma B.1. Let (Ω, d) be a Hadamard space and ω, ω0, x, x
′ ∈ Ω, then

∣∣gωω0
(x) − gωω0

(x′)
∣∣ ≤ 2d(ω, ω0)d(x, x′).

Proof. By Reshetnyak’s Quadruple Comparison (see Proposition C.1),

d(x′, ω0)
2 + d(x, ω)2 ≤ d(x, ω0)

2 + d(x′, ω)2 + 2d(x, x′)d(ω, ω0)

⇒ d(x, ω)2 − d(x′, ω)2 −
(
d(x, ω0)

2 − d(x′, ω0)
2
)
≤ 2d(x, x′)d(ω, ω0)

⇒ gωω0
(x) − gωω0

(x′) ≤ 2d(ω, ω0)d(x, x′)

By inverting the role of x and x′ we obtain the same upper bound on gωω0
(x′)−

gωω0
(x) which completes the proof.

In order to study the asymptotic behavior of the minimizer µ̂T of MT , we
need to quantify the deviations of the empirical loss function MT from its
population limit M . To that end, given some ω0 ∈ Ω, we define the process
ω 7→ Hω

ω0
by

Hω
ω0

=
1√
T

T∑

t=1

gωω0
(Xt) − E

[
gωω0

(X)
]
. (B.1)

We start with the following proposition showing that Hω
ω0

is sub-Gaussian.

Proposition B.1. Under the assumptions of Theorem 4.1, there exists con-
stants c1, c2 > 0 such that for all λ > 0,

P
[∣∣Hω

ω0

∣∣ ≥ λ
]
≤ c1 exp

{
− λ2

c2d(ω, ω0)2

}
. (B.2)
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Proof. Following Wu and Shao (2004) and Gordin and Lif̌sic (1978), we study
the asymptotic behavior of the scaled process

√
THω

ω0
by considering the

solution h ∈ L2(Ω) to Poisson’s equation

h(x) − E[h(Xt+1) | Xt = x] = gωω0
(x) − E

[
gωω0

(X)
]
. (B.3)

A solution to this equation exists and can be written as

h(x) =
∞∑

t=0

(
E
[
gωω0

(Xt) | X0 = x
]
− E

[
gωω0

(X)
])
.

Using (B.3), we can decompose
√
THω

ω0
as

√
THω

ω0
=

T∑

t=1

gωω0
(Xt) − E

[
gωω0

(X)
]

=
T∑

t=1

h(Xt) − E[h(Xt+1) | Xt]

= E[h(X1) | X0] − E[h(XT+1) | XT ] +
T∑

t=1

h(Xt) − E[h(Xt) | Xt−1]

:= RT +
T∑

t=1

Dt,

where we introduced RT = E[h(X1) | X0] − E[h(XT+1) | XT ] and Dt =
h(Xt) − E[h(Xt) | Xt−1]. Note that Dt is a martingale-difference and that
RT = OP (1). To show that this decomposition is valid, we start by showing
that h is absolutely summable. That is, we show

∞∑

t=0

∣∣E
[
gωω0

(Xt) | X0 = x
]
− E

[
gωω0

(X)
]∣∣ <∞.

Using Lemma B.1 and the independence of {εt}t∈N, along with the assump-
tion that condition (8) holds for some α > 1 (and hence also for α = 1), we
have
∣∣E
[
gωω0

(Xt) | X0 = x
]
− E

[
gωω0

(X)
]∣∣ ≤ 2d(ω, ω0)EXt [EX [d(Xt, X)] | X0 = x]

= 2d(ω, ω0)E
[
d(Xt(x), Xt(X̃0))

]
≤ 2d(ω, ω0)Cr

t.

Using this bound in the infinite sum, we obtain

∞∑

t=0

∣∣E
[
gωω0

(Xt) | X0 = x
]
− E

[
gωω0

(X)
]∣∣ ≤ 2d(ω, ω0)C

∞∑

t=0

rt = C̃d(ω, ω0).
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Hence, limT→∞
√
THω

ω0
exists and is almost surely bounded implying that

the decomposition presented above is valid and that both Dt and Rt are also
almost surely bounded with |Dt| < C and |RT | < C. In particular, we have
that |Dt| ≤ C̃d(ω, ω0) for some C̃ > 0, since

Dt = h(Xt) − E[h(Xt) | Xt−1]

=
∞∑

k=0

E
[
gωω0

(Xk) | Xt

]
− E

[
E
[
gωω0

(Xk) | Xt

]
| Xt−1

]

=
∞∑

k=0

E
[
gωω0

(Xk) | Xt

]
− E

[
gωω0

(Xk) | Xt−1

]
(Tower rule)

=
∞∑

k=t

E
[
gωω0

(Xk) | Xt

]
− E

[
gωω0

(Xk) | Xt−1

]
. (k ≤ t− 1 ⇒ σ(Xk) ⊂ σ(Xt−1))

We can use the function notation in Equation (7) to get Xk = Xk:t+1(Xt)
and rewrite

E
[
gωω0

(Xk) | Xt

]
− E

[
gωω0

(Xk) | Xt−1

]

= E
[
gωω0

(Xk:t+1(Xt)) | Xt

]
− E

[
gωω0

(Xk:t+1(Xt)) | Xt−1

]

where Xk:t+1 is random in both conditional expectations, but Xt is only
random in the second conditional expectation. Taking absolute values and
using Lemma B.1 together with (2) in Wu and Shao (2004) gives

∣∣E
[
gωω0

(Xk) | Xt

]
− E

[
gωω0

(Xk) | Xt−1

]∣∣ ≤ 2d(ω, ω0)Cr
k−(t+1).

Using this bound in the sum gives

|Dt| ≤
∞∑

k=t

2d(ω, ω0)Cr
k−(t+1) = 2Cd(ω, ω0)

∞∑

k=0

rk = C̃d(ω, ω0).

We now show the following result, which is equivalent to (B.2)

P

[∣∣∣∣∣RT +
T∑

t=1

Dt

∣∣∣∣∣ ≥ Tλ

]
≤ e2 exp

{
− Tλ2

4Cd(ω, ω0)2

}
. (B.4)

To do this, we consider two cases. If
√
Tλ < 4C, the bound is vacuous.

Otherwise, for
√
Tλ ≥ 4C, we have

P

[∣∣∣∣∣RT +
T∑

t=1

Dt

∣∣∣∣∣ ≥ Tλ

]
≤ P

[
|RT | ≥

Tλ

4

]
+ P

[∣∣∣∣∣
T∑

t=1

Dt

∣∣∣∣∣ ≥
3Tλ

4

]
.
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Since
√
Tλ ≥ 4C and |Rt| ≤ C, we have that

{
|RT | ≥ Tλ

4

}
is a probability

zero event. We can thus focus on bounding the martingal difference sum. By
Chernoff’s bounding technique, we have for all λ > 0

P

[
T∑

t=1

Dt ≥
3Tλ

4

]
= P

[
1√
T

T∑

t=1

Dt ≥
3
√
Tλ

4

]

≤ min
u>0

exp

(
−u3

√
Tλ

4

)
E

[
exp

(
u

1√
T

T∑

t=1

Dt

)]
.

Using the bound |Dt| ≤ C̃d(ω, ω0) and following the proof of Azuma-Hoeffding’s
inequality (see Theorem 2.2.1 in Raginsky and Sason (2013)) we can bound
the martingale-difference sum,

P

[
T∑

t=1

Dt ≥
3Tλ

4

]
≤ min

u>0
exp

(
−u3

√
Tλ

4
+
u2

2
C̃2d(ω, ω0)

2

)

≤ exp

(
− λ2T

4C̃2d(ω, ω0)2

)
.

Where the last inequality comes from taking u = λ
√
T/(C̃2d(ω, ω0)

2). By
symmetry the arguments can be repeated on the mirrored inequality to obtain

a bound on P
[∣∣∣
∑T

t=1Dt

∣∣∣ ≥ 3Tλ
4

]
. Together with the previous argument, this

gives

P

[∣∣∣∣∣RT +
T∑

t=1

Dt

∣∣∣∣∣ ≥ Tλ

]
≤ e2 exp

(
− λ2T

4C̃2d(ω, ω0)2

)
.

Using the fact that the empirical process applied to gωω0
is sub-Gaussian,

we can use standard M-estimation theory to provide a proof of Theorem 4.1.

Proof of Theorem 4.1. Noting that (MT−M)(ω)−(MT−M)(µ) = T−1/2Hω
µ

we have by Proposition B.1 that

P
[√

T |(MT −M)(ω) − (MT −M)(µ)| ≥ λ
]
≤ c1 exp

{
− λ2

c2d(ω, ω0)2

}
.
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So
{√

T (MT −M)(ω)
}
ω∈Ω

is sub-Gaussian. By Corollary 2.2.8 in van der

Vaart and Wellner (1996), we have

E

[
sup

d(ω,µ)<δ

√
T |(MT −M)(ω) − (MT −M)(µ)|

]
≲
∫ δ

0

√
log(1 +D(ε, d))dε

= δ

∫ 1

0

√
log(1 +D(δε, d))dε.

Since by assumption the entropy integral is bounded and O(1) for δ → 0, we
bound (up to a multiplicative constant) the modulus of continuity by T−1/2δ.
Additionally, by the variance inequality in Hadamard spaces (see Proposi-
tion 4.4 in Sturm (2003)), we have that the condition M(ω) − M(µ⋆) ≥
d(ω, µ⋆)2 holds. Thus by Theorem 3.2.5 in van der Vaart and Wellner (1996),
d(µ̂T , µ

⋆) = OP (T−1/2).

Uniform convergence of LT

Proposition B.2. Under the conditions of Theorem 4.2, we have that
∥LT − L∥∞ = oP (1).

Proof. We show this result by verifying the conditions of Corollary 2.2 of
Newey (1991). Namely, we need to show that:

1. L is continuous;

2. LT converges pointwise to L;

3. There exists a sequence Ct = OP (1) such that for all φ, φ′ ∈ (0, 1),
|LT (φ) − LT (φ′)| ≤ CT |φ− φ′|.

We proceed to verify these conditions.
1. Continuity of L. By definition ω 7→ d(ω0, ω)2 is continous. Since Ω is

a Hadamard space, we also have that geodesics are continuous in t ∈ [0, 1],
hence for all xt, xt+1 ∈ Ω and φ0 ∈ [0, 1], d(xt+1, γ

xt
µ φn) → d(xt+1, γ

xt
µ φ0) for

any sequence φn → φ0. Furthermore, by geodesic convexity of the squared
distance, we have that d(xt+1, γ

xt
µ φ)2 ≤ (1 − φ)d(xt+1, µ)2 + φd(xt+1, xt)

2

which is integrable with respect to (Xt, Xt+1) since Xt and Xt+1 have second
moments. By dominated convergence, this shows that L(φ) → L(φ0) as
φn → φ0 for a ny sequence φn → φ0, and hence L is continuous.

2. Pointwise convergence. Let φ0 ∈ (0, 1). Using the fact that Xt+1 =
εt+1(γ

Xt
µ (φ)), we can decompose the pointwise deviation of LT from L as
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follows,

|LT (φ0) − L(φ0)|

=

∣∣∣∣∣
1

T − 1

T−1∑

t=1

d
(
Xt+1, γ

Xt
µ̂T

(φ0)
)2 − E

[
d
(
εt+1(γ

Xt
µ (φ)), γXt

µ (φ0)
)2]
∣∣∣∣∣

≤
∣∣∣∣∣

1

T − 1

T−1∑

t=1

d
(
Xt+1, γ

Xt
µ̂T

(φ0)
)2 − d

(
Xt+1, γ

Xt
µ (φ0)

)2
∣∣∣∣∣

+

∣∣∣∣∣
1

T − 1

T−1∑

t=1

d
(
Xt+1, γ

Xt
µ (φ0)

)2 − E
[
d
(
εt+1(γ

Xt
µ (φ)), γXt

µ (φ0)
)2]
∣∣∣∣∣.

By Lipschitz continuity of the squared distance in a bounded metric space,
together with its geodesic convexity in Hadamard spaces and the fact that
d(µ, µ̂T ) = OP (T−1/2), we have that the first sum in the upper bound is
OP (T−1/2).

∣∣∣d
(
Xt+1, γ

Xt
µ̂T

(φ0)
)2 − d

(
Xt+1, γ

Xt
µ (φ0)

)2∣∣∣
≤ C1d

(
γXt
µ̂T

(φ0), γ
Xt
µ (φ0)

)∣∣d
(
Xt+1, γ

Xt
µ̂T

(φ0)
)

+ d
(
Xt+1, γ

Xt
µ (φ0)

)∣∣.
By the geodesic comparison inequality, d

(
γXt
µ̂T

(φ0), γ
Xt
µ (φ0)

)
≤ φ0d(µ, µ̂T ),

and using that x 7→ d(x0, x) is geodesically convex, we get

d(Xt+1, γ
Xt
µ̂T

(φ0)) ≤ φ0d(Xt+1, µ̂T ) + (1 − φ0)d(Xt+1, Xt)

≤ d(Xt+1, µ̂T ) + d(Xt+1, Xt)

≤ 2d(Xt+1, µ) + d(Xt, µ) + d(µ, µ̂T ).

Similarly, d
(
Xt+1, γ

Xt
µ (φ0)

)
≤ 2d(Xt+1, µ) + d(Xt, µ), giving

∣∣∣d
(
Xt+1, γ

Xt
µ̂T

(φ0)
)2 − d

(
Xt+1, γ

Xt
µ (φ0)

)2∣∣∣
≤ C2d(µ, µ̂T )[d(Xt+1, µ) + d(Xt, µ) + d(µ, µ̂T )]

Taking the average over t = 1, . . . , T − 1, we get
∣∣∣∣∣

1

T − 1

T−1∑

t=1

d
(
Xt+1, γ

Xt
µ̂T

(φ0)
)2 − d

(
Xt+1, γ

Xt
µ (φ0)

)2
∣∣∣∣∣

≤̇d(µ, µ̂T )2 + d(µ, µ̂T )
1

T − 1

T−1∑

t=1

d(Xt+1, µ) + d(Xt, µ).
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We now show that the second term is OP (T−1/2) as well. We do this using
Theorem 3 in Wu and Shao (2004) with Yt = (Xt, Xt+1) and g(Xt, Xt+1) =

d
(
Xt+1, γ

Xt
µ (φ0)

)2 − E
[
d
(
εt+1(γ

Xt
µ (φ)), γXt

µ (φ0)
)2]

. Let ρ be the product

metric on Ω × Ω, ρ((x1, x2), (y1, y2)) =
√
d(x1, y1)2 + d(x2, y2)2. Let Yt =

(Xt, Xt+1) and Ỹt = (X̃t, X̃t+1) be pairs in Ω × Ω such that ρ(Yt, Ỹt) ≤ δ,
then

∣∣∣g(Yt) − g(Ỹt)
∣∣∣ =

∣∣∣∣d
(
Xt+1, γ

Xt
µ (φ0)

)2 − d
(
X̃t+1, γ

X̃t
µ (φ0)

)2∣∣∣∣

≤
∣∣∣∣d
(
Xt+1, γ

Xt
µ (φ0)

)2 − d
(
X̃t+1, γ

Xt
µ (φ0)

)2∣∣∣∣

+

∣∣∣∣d
(
X̃t+1, γ

Xt
µ (φ0)

)2
− d
(
X̃t+1, γ

X̃t
µ (φ0)

)2∣∣∣∣

≤ Cd(Xt+1, X̃t+1) + Cd
(
γXt
µ (φ0), γ

X̃t
µ (φ0)

)

= Cd(Xt+1, X̃t+1) + Cφ0d(Xt, X̃t)

Since ρ(Yt, Ỹt) ≤ δ, we have that max
{
d(Xt+1, X̃t+1), d(Xt, X̃t)

}
≤ δ and

hence
∣∣∣g(Yt) − g(Ỹt)

∣∣∣ ≤ Cδ, showing that g is Dini continuous and also

stochastically Dini continuous. Theorem 3 in Wu and Shao (2004) gives
that the second term in the above equation converges to a Brownian motion
when scaled by

√
T and hence is OP (T−1/2) which completes the proof of

pointwise convergence.
3. Stochastic Lipschitz Continuity of LT . Let φ, φ′ ∈ (0, 1), then using

that Ω is bounded and thus the squared distance is Lipschitz, we have that

|LT (φ) − LT (φ′)| ≤ 1

T − 1

T−1∑

t=1

∣∣∣d
(
Xt+1, γ

Xt
µ̂T

(φ)
)2 − d

(
Xt+1, γ

Xt
µ̂T

(φ′)
)2∣∣∣

≤ C
1

T − 1

T−1∑

t=1

d(γXt
µ̂T

(φ), γXt
µ̂T

(φ′))

= |φ− φ′|C 1

T − 1

T−1∑

t=1

d(µ̂T , Xt).

Again using that Ω is bounded, the average is also bounded and we obtain
the desired result.
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Appendix C. Auxiliary theoretical results

General results in Hadamard spaces

We start by stating results available in Hadamard spaces that will be used
in the rest of the Appendix.

Proposition C.1 (Reshetnyak’s Quadruple Comparison; Proposition 2.4 in
Sturm (2003)). Let (Ω, d) be a Hadamard space. For all x1, x2, x3, x4 ∈ Ω,

d(x1, x3)
2 + d(x2, x4)

2 ≤ d(x2, x3)
2 + d(x4, x1)

2 + 2d(x1, x2)d(x3, x4).

Specializing this inequality to geodesics yields the following

Proposition C.2 (Geodesic Comparison Inequality; Corollary 2.5 in Sturm
(2003)). Let (Ω, d) be a Hadamard space, γ, η : [0, 1] → Ω be geodesics and
t ∈ [0, 1]. Then

d(γ(t), η(t))2 ≤(1 − t)d(γ(0), η(0))2 + td(γ(1), η(1))2

− t(1 − t)[d(γ(0), γ(1) − d(η(0), η(1))]2.

Strong convexity of L

It is possible to extend the identifiability result in Theorem 3.3 and show
that L does not only have a unique minimizer, but is also strongly convex.
This, as we show in the following lemma is a consequence of the geodesic
convexity of the squared distance in Hadamard spaces.

Lemma C.1. Let {Xt}t∈N ⊂ Ω, assume that {Xt}t∈N are L2(Ω) and satisfies
Equation (6) with true concentration parameter φ ∈ [0, 1]. Then, the function
L is strongly convex.

Proof. We show that the strong convexity of L is inherited from the geodesic
convexity of the squared distance in Hadamard spaces. Indeed, let φ1, φ2 ∈
[0, 1], wlog φ1 < φ2. Let t ∈ [0, 1] and define φt = (1− t)φ1 + tφ2. Then, γXt

µ

restricted to [φ1, φ2] and reparametrized on [0, 1] gives the geodesic connect-
ing γXt

µ (φ1) to γXt
µ (φ2) and hence

L(φt) = E
[
d
(
Xt+1, γ

Xt
µ ((1 − t)φ1 + tφ2)

)2]
= E

[
d

(
Xt+1, γ

γ
Xt
µ (φ2)

γ
Xt
µ (φ1)

(t)

)2
]
.
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Using Proposition 2.1 we get

L(φt) ≤ E
[
(1 − t)d(Xt+1, γ

Xt
µ (φ1))

2 + td(Xt+1, γ
Xt
µ (φ2))

2
]

− E
[
t(1 − t)d(γXt

µ (φ1), γ
Xt
µ (φ2))

2
]

= (1 − t)L(φ1) + tL(φ2) − t(1 − t)|φ1 − φ2|2E
[
d(Xt+1, µ)2

]
.

Since Xt+1 is L2(Ω), we have that E[d(Xt+1, µ)2] < ∞, showing that L is
strongly convex.
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3.2 Notes

3.2 Notes

A convergence rate for the concentration parameter

Between the submission of [GAR] and the writing of this thesis, we were able to derive
the convergence rate of the estimator φ̂T of the concentration parameter φ. We provide
the proof here for completeness.

Theorem 1. Assume that (Ω, d) and {Xt}t∈N satisfy the assumptions of Theorem 4.1
in [Bulté and Sørensen, 2024a]. Then, the minimizer φ̂T of LT is a consistent estimator
of φ with rate OP (T−1/4).

Proof. To start, we introduce the oracle empirical loss that, had the true Fréchet mean
µ been known,

LoT (u) =
1

T − 1

T−1∑

t=1

d(γXt
µ u,Xt+1)

2.

Further, we introduce the loss function fuµ (Xt, Xt+1) = d(γXt
µ u,Xt+1)

2. As a func-
tion of u, it is strongly convex and thus has a non-empty sub-gradient and we write
guµ(Xt, Xt+1) ∈ ∂uf

u
µ (Xt, Xt+1) for an arbitrary element of the sub-gradient in u. Using

a sub-gradient expansion of LoT around the true φ and the strong convexity of fuµ , see
[Nesterov, 2018, Corollary 3.2.1] we have

LoT (φ̂T ) ≥ LoT (φ) +
1

T − 1

T−1∑

t=1

gφµ (Xt, Xt+1)(φ̂T − φ) + C(φ̂T − φ)2, (3.1)

where C = Var
[
d(X,µ)2

]
. Combining the

√
T convergence of µ̂T to the Lipschitz conti-

nuity of squared distances and the geodesic comparison inequality on Hadamard spaces,
see [Sturm, 2003, Corollary 2.5], we have that ∥LoT − LT ∥∞ = OP (1/

√
T ) since for all

u ∈ [0, 1]

|LoT (u) − LT (u)| ≤ 1

T − 1

T−1∑

t=1

∣∣∣d(γXt
µ u,Xt+1)

2 − d(γXt
µ̂T

u,Xt+1)
2
∣∣∣

≤ 1

T − 1

T−1∑

t=1

d(γXt
µ u, γXt

µ̂T
u) ≤ 1

T − 1

T−1∑

t=1

(1 − u)d(µ, µ̂T )

≤ d(µ, µ̂T ) = OP (1/
√
T ).

Thus, for all u ∈ [0, 1], LoT (u) = LT (u) + Op(1/
√
T ). Using this in expansion (3.1)

together with the fact that φ̂T minimizes LT , we have

LT (φ̂T ) + Op(1/
√
T )

≥ LT (φ) + Op(1/
√
T ) +

1

T − 1

T−1∑

t=1

gφµ (Xt, Xt+1)(φ̂T − φ) + C(φ̂T − φ)2

≥ LT (φ̂T ) + Op(1/
√
T ) + ZT (µ)(φ̂T − φ) + C(φ̂T − φ)2,
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3 Modeling time series without linearity

where ZT (µ) = 1
T−1

∑T−1
i=1 gφµ (Xt, Xt+1). Since φ⋆ is the minimizer of L, we have that

ZT (µ) is mean-zero and hence by a similar central limit theorem for m-dependent
processes as used in the proof of [Bulté and Sørensen, 2024a, Theorem 5.1], ZT (µ) =
OP (1/

√
T ). Hence, the inequality above yields OP (1/

√
T ) ≥ OP (1/

√
T )(φ̂T − φ) +

C(φ̂T − φ)2. Matching the convergence rates on both sides of the inequality results in
the convergence rate |φ̂T − φ| = OP (T−1/4).

On bounding tails in the framework of iterated random functions

The proof of [Bulté and Sørensen, 2024a, Proposition B.1] in this chapter is in part an
adaptation of the following result, which we leave in its original formulation.

Proposition 1 (Proposition 1 in [Wu and Shao, 2004]). Let g be a bounded function,
E[g(Yn)] = 0 and

C := sup
x∈X

∞∑

n=0

|E[g(Yn) | Y0 = x]| < ∞.

Then, there exists c1, c2 > 0 which only depend on {Yn} and g such that for all λ > 0,

P[|Sn(g)| > nλ] ≤ c1 exp
(
−nc2λ

2
)
. (3.2)

In the process, we discovered the following mistake. Specifically, based on |Rn| ≤ r
and the standard exponential inequality for bounded martingales, the authors claim in
the first equation of the proof that

E

[
exp

{
β

(
n∑

i=1

Di + Rn

)}]
≤ exp(r + nI(βd)).

However, the right hand side should be exp(βr + nI(βd)). This difference propagates
through a standard argument omitted in the original proof, resulting in a bound of the
form of

P[|Sn(g)| > nλ] ≤ c1 exp

{
−
(
n +

1

2

)
c2λ

2

}
.

This bound is insufficient for the sub-Gaussian properties needed in the proof of Propo-
sition B.1 of [Bulté and Sørensen, 2024a]. The authors provided the following corrected
proof.

Proof. Consider the sum Sn(g) = Mn +Rn where Mn =
∑n

i=1Di is the martingale part
of the sum. Define C such that |Rn| < 2C and |Dn| ≤ 2C. We will prove that this
proposition holds for c1 = e2 and c2 = 1

8C2 . Using Azuma’s inequality to bound Mn, we
obtain for any n ∈ N and λ > 0,

P
[
|Mn| >

nλ

2

]
≤ 2 exp

{
−nλ2

8C2

}
.

To obtain a concentration inequality for Sn(g), consider the two cases:
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3.2 Notes

Case (A) If
√
nλ > 4C, it holds that 2C <

√
nλ
2 < nλ

2 . Since |Rn| ≤ 2C, this implies

that P
[
|Rn| > nλ

2

]
= 0. Together with the concentration inequality for Mn, we get

P[|Sn(g)| > nλ] ≤ P
[
|Mn| >

nλ

2

]
+ P

[
|Rn| >

nλ

2

]
≤ 2 exp

{
−nλ2

8C2

}
.

Case (B) If
√
nλ ≤ 4C, inequality (3.2) yields a vacuous bound since

c1 exp
(
−nc2λ

2
)

= e2 exp

(
−nλ2

8C2

)
≥ exp

(
2 − 16C2

8C2

)
= 1.
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4 Exploiting symmetries for testing the
mean

This chapter contains the paper:

[ISO] [Bulté and Sørensen, 2025] Bulté, M. and Sørensen, H. (2025). Isotropic random-
ization for one-sample testing in metric spaces. arXiv:2501.15945 [stat].

In this project, we aim to introduce ideas, principles, and theoretical results for testing
the Fréchet mean of a random object. Rather than providing an explicit test, we focus on
presenting a testing methodology based on combining the classical randomization testing
ideas from [Lehmann and Romano, 2022] and exploiting symmetries of the metric space
through its isotropy groups. The key insight is to exploit the invariance of the Fréchet
mean and variance under the action of the isotropy group of the Fréchet mean, which
allows us to construct a test statistic that is invariant at the population level under
the null hypothesis. This led us to explore the connections between the Fréchet mean
and isotropy groups in more detail and consider cases in which intuition from Euclidean
spaces does not directly extend to general metric spaces.
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Isotropic randomization for one-sample testing
in metric spaces

Matthieu Bulté1,2 and Helle Sørensen1

1Department of Mathematical Sciences, University of Copenhagen
2Faculty of Business Administration and Economics, Bielefeld University

Abstract

We address the fundamental problem of testing hypotheses about
the Fréchet mean in metric spaces, extending classical mean testing
from Euclidean spaces to more general settings. We extend an Eu-
clidean testing procedure progresively, starting with test construction
in Riemannian manifolds, leveraging their natural geometric structure
through exponential and logarithm maps, and then extends to general
metric spaces through the introduction of admissible randomization
techniques. This approach preserves essential geometric properties
required for valid statistical inference while maintaining broad appli-
cability. We establish theoretical guarantees for our testing proce-
dure and demonstrate its effectiveness through numerical experiments
across different metric spaces and distributional settings. The practi-
cal utility of our method is further illustrated through an application
to wind data in western Denmark, showcasing its relevance for real-
world statistical analysis.

1 Introduction

The statistical analysis of non-standard data types has gained increasing
attention as new methods of measurement and data collection emerge across
various fields. This has led to the development of methods for analyzing
random variables taking values in metric spaces, also called random objects,
where only a notion of distance between points is available rather than the
rich structure of a vector space.

1



The study of random objects spans multiple application domains. In
functional data analysis, methods have been developed for analyzing curve
data [28]. Random objects also appear in neuroimaging through the analysis
of correlation matrices from fMRI data [26, 9, 32], and in network science
through the study of adjacency matrices representing social networks [11].
The analysis of probability distributions is another important example, where
different metrics can be used such as the Wasserstein distance [25].

Probability distributions are a particularly well-studied example of ran-
dom objects and various approaches have been developed for their analysis.
They have been studied as images of Hilbert spaces under transformations
[27], as specific Hilbert spaces with tailored addition and scalar multiplica-
tion operators [34], as well as metric spaces with distances constructed to
expose certain properties or invariances [25, 30].

The statistical theory for random objects has seen substantial develop-
ment in recent years. Fundamental work has addressed hypothesis testing
and inference [10, 11, 24, 19], alongside various approaches to regression
[26, 7, 14] and time series models [17, 6]. Since metric spaces offer limited in-
herent structure, additional assumptions are often introduced to ensure well-
defined statistical quantities. A common approach is to assume the metric
space is a Hadamard space, which provides a rich geometric framework while
maintaining generality [31, 1].

The Fréchet mean, a generalization of the expected value to metric spaces,
has been the subject of extensive theoretical investigation. Recent work has
examined its concentration properties [5], asymptotic distributional behavior
[4, 35], or more fundamental properties of the quantity itself in various sce-
narios [23, 24, 16]. One phenomenon of interest highlighting the difference
with estimating the mean in Euclidean spaces is that of of smeariness [12],
where the Fréchet mean can exhibit unusual asymptotic behavior.

In this paper, we focus on the problem of testing whether the Fréchet
mean of a distribution on a metric space equals a hypothesized value. This
extends the classical problem of testing the mean in Euclidean space to the
more general setting of metric spaces. We start by considering the case of
Riemannian manifolds, where the exponential and logarithm maps provide
natural tools for constructing tests. We then extend our framework to general
metric spaces through the introduction of admissible randomization, which
preserve key geometric properties needed for valid inference. We demonstrate
the practical utility of our approach through numerical experiments and a
case study of circular data.
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The paper is organized as follows: Section 2 provides an introduction to
Fréchet means in metric spaces and to the mean testing problem. It pre-
vents a gradually more general solution to the mean testing problem up to
an approach in Riemannian manifolds. Section 3 introduces the main con-
tribution of the paper, a general approach to mean testing in metric spaces.
Section 4 illustrates the performance of the test on a series of numerical ex-
periments in various metric spaces and distributional setups. Finally, Section
5 demonstrates the use of the method to a real dataset.

2 Background

2.1 Fréchet mean and metric spaces

Let (Ω, d) be a metric space equipped with the Borel σ−algebra induced
from the metric topology on Ω. A random variable X over Ω is a Borel
measurable function from some probability space to Ω. For p ≥ 1, the space
Lp(Ω) contains all random variables X such that the p−th moment of the
distance function is defined, that is, E[d(X,ω)p] < ∞ for some ω ∈ Ω – and
hence for all ω′ ∈ Ω since by the triangle inequality and Jensen’s inequality
E[d(ω′, X)p] ≤ 2p−1E[d(ω,X)p] + 2p−1d(ω, ω′)p < ∞. A notion of centrality
of random variable X ∈ L2(Ω) can be defined by considering the expected
value of the square distance function

FX(ω) = E
[
d(X,ω)2

]
. (1)

Fréchet [13] proposes the minimizer of this quantity as a generalization of
the expectation in the Euclidean case. This minimizer, together with the
minimal value attained by FX , are commonly called the Fréchet mean and
Fréchet variance of X

E[X] = arg min
ω∈Ω

FX(ω) Var[X] = FX(E[X]). (2)

The Fréchet mean generalizes the expected value to metric spaces, and, simi-
larily to Euclidean space, provides a notion of center of the distribution. This
stems from the fact that for a random variable X ∼ P , the integral

∫
xP (dx)

is the minimizer of the Fréchet function. However, unlike the Euclidean case,
the Fréchet mean is not guaranteed to exist for any random variable in L2(Ω),
and when it does, it is not necessarily unique. Consider for example the case
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where the space Ω is the d−dimensional sphere Sd =
{
x ∈ Rd+1 : ∥x∥ = 1

}

and X being uniformly distributed. Then FX(ω) is constant and hence a
unique minimizer does not exist. In the rest of the paper, it will be assumed
that the Fréchet mean uniquely exists.

In this work, we will be concerned with the problem of using a sample
X1, . . . , Xn of copies of X ∈ L2(Ω) to test whether Fréchet mean of X takes
a specific hypothesized value µ ∈ Ω,

H0 : E[X] = µ vs. H1 : E[X] ̸= µ. (3)

The test developed here is based on the Fréchet mean and variance of X and
their sample counterparts constructed through minimization of the empirical
Fréchet function,

µ̂n = arg min
ω∈Ω

1

n

n∑

i=1

d(Xi, ω)2 V̂n =
1

n

n∑

i=1

d(Xi, µ̂n)2. (4)

To study the behavior of our final test statistic based on the Fréchet
mean and variance, we will rely on asymptotic properties of these quantities.
The following assumptions will be made throughout the paper. The first
assumption is a standard assumption coming from the study of M-estimators
providing a form of control of the complexity of the metric space, see for
instance [33]. It is commonly found in various forms in the study of random
objects and Fréchet means, see [10, 29].

Assumption 2.1. Let N(ε, U) be the covering number of U ⊂ Ω with balls
of size ε. Then

1. For any ω ∈ Ω,
∫ 1

0

√
1 + logN(εδ/2, Bδ(µ)) dε→ 0 as δ → 0.

2. The entropy integral
∫ 1

0

√
1 + logN(ε,Ω) dε is finite.

The second assumption, also common in the study of random objects
and more generally M-estimators, requires that the theoretical and empirical
Fréchet means uniquely exist. It is a central assumption in proving that the
empirical Fréchet mean is consistent, that is that d(µ, µ̂n) = oP (1), see for
instance [33, Corrolary 3.2.3].

Assumption 2.2. The random variable X has a unique Fréchet mean µ ∈ Ω
and its sample estimator µ̂n exists almost surely, and for any ε > 0, the
population Fréchet mean satisfies infd(ω,µ)>ε FX(ω) > FX(µ).
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Our test relies on the asymptotic behavior of the empirical Fréchet mean
and variance under the null hypothesis, based on the results in [10]. The
contribution of this work lies in proposing an approach to randomization
suitable for the testing problem in general metric spaces and finite sample.
We first present the testing problem and randomization approach in the con-
text of Euclidean spaces, then progressively extend the testing methodology
to Riemannian manifolds and later to general metric spaces.

2.2 Mean test on the real line

Suppose that we observe X1, . . . , Xn
iid∼ P be independent and identically

distributed random variables in R. Given a µ ∈ R, we would like to design a
testing procedure for hypothesis (3) without parametric assumptions on P .
For simplicity, we restrict the model class to distributions symmetric around
µ, which is equivalent to saying that the law of X is invariant under the
reflection map gµ : x 7→ 2µ− x,

P[X ∈ A] = P[gµ ·X ∈ A] ∀A ∈ B(R).

Following the approach presented in Chapter 17 of [21], the symmetry of
X can be used to construct a randomization that preserves the distribution
of X under the null hypothesis. Given a z ∈ {0, 1}, define the randomized
variable

gzµ ·X :=

{
X if z = 0,

gµ ·X if z = 1.
(5)

By symmetry, under the null hypothesis, gzµ · X has the same distribution
as X for any z ∈ {0, 1}. This properties carries on to the distribution of
any test statistic T evaluated on a randomized sample. That is, under the
assumption of symmetry and an arbitrary binary vector z ∈ {0, 1}n, the
randomized statistic T (gz1µ · X1, . . . , g

zn
µ · Xn) has the same distribution as

T (X1, . . . , Xn). Consider now all 2n binary randomization vectors and let
T(1), . . . , T(2n) be the associated evaluations of the test statistic, sorted. For
a nominal level α ∈ (0, 1), a level-α hypothesis test for H0 : E[X] = µ can
be constructed by rejecting the null hypothesis if the observed test statistic
T (X1, . . . , Xn) is too large compared to the randomized sampple, that is, if
T (X1, . . . , Xn) ≥ T(k) with k = 2n − ⌊α2n⌋. Since the randomization gµ is
self-inverse, the set {id, gµ} is a group, and the randomization procedure,
together with the symmetry of X, fits into the Randomization Hypothesis
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framework of [21]. By Theorem 17.2.1 of the same manuscript, this test has
the desired level α.

In practice though, applying the 2n randomizations to construct the test is
computationally infeasible for large n. Instead, one recognized that the test-
ing procedure can be linked to an expected value with respect to the uniform
distribution over the product group {id, gµ}n, which can be approximated
via Monte Carlo techniques by sampling a large number of randomizations
and computing the test statistic for each of them. For a given number of

replicates B and a significance level α, one can sample Z1, . . . , Zn
iid∼ B(1/2)

and compute the test statistic Tb = T (gZ1
µ ·X1, . . . , g

Zn
µ ·Xn). Then, the level-

α hypothesis test is constructed following the same procedure as outlined
above, applied to the sorted statistics T(1), . . . , T(B). A natural choice for the
test statistic T (X1, . . . , Xn) is the empirical variance of the sample, given by

V̂n(X1, . . . , Xn) =
1

n

n∑

i=1

(Xi − X̄n)2. (6)

The construction above provides a principled approach to testing sym-
metry on the real line using randomization techniques, without requiring
parametric assumptions beyond symmetry itself. The choice of empirical
variance as the test statistic is particularly natural: under symmetry around
µ, we expect the spread of observations to be balanced on either side of µ.
When the true mean differs from the hypothesized value µ, the empirical
variance tends to increase as observations are shifted away from µ, making
it sensitive to departures from the null hypothesis. Moreover, the empiri-
cal variance has the advantage of being invariant under the reflection map
gµ, ensuring that the randomization procedure maintains consistent power
across different samples.

The extension of these ideas to Riemannian manifolds presents several
challenges. First, the notion of reflection needs to be appropriately general-
ized to account for the manifold’s geometry. Second, the test statistic must
be adapted to capture meaningful deviations from the null hypothesis while
respecting the manifold structure. In particular, we will need to carefully
consider how to define a variance-like quantity that preserves the desirable
properties of sensitivity to asymmetry and invariance under the appropriate
generalization of reflection. The following section develops these extensions,
showing how the fundamental principles of randomization testing can be
preserved in the more general setting.
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2.3 Extension to Riemannian manifolds

As a first generalization step, we will see how the intuition of the ran-
domization procedure on the real line extends naturally to directional data
on the unit circle S1 = {x ∈ R2 : ∥x∥ = 1}. The distance between two
points x, y ∈ S1 is given by dS1(x, y) = arccos(⟨x, y⟩). Since ⟨x, y⟩ =
∥x∥∥y∥ cos(∠(x, y)) = cos(∠(x, y)), the distance between two points on the
circle corresponds to the angle between the two vectors. For a point x ∈ S1,
denote by θx ∈ [0, 2π) its angular representation with θ(1,0) = 0. Directly gen-
eralizing the randomization procedure from the real line, define the reflection
map in angular representation with

gµ · θx = 2θµ − θx mod 2π (7)

Without loss of generality, assume that µ = (0, 1), which can be achieved
without affecting distances via a rotation. The reflection map gµ then corre-
sponds to a sign flip of the angle or equivalently a the reflection of y through
the x-axis in the vector representation. This transformation does not change
distances between points and is thus an isometry.

To generalize this construct to complete connected d−dimensional Rie-
mannian manifolds, we need to introduce the notions of geodesics, exponen-
tial map and the logarithm maps. We will illustrate each of these concepts
using the circle as a concrete example. Geodesics are curves γ : (a, b) → M
that are locally length-minimizing, playing the role that straight lines do
in Euclidean space. At any point p ∈ M , the tangent space TpM is a
d−dimensional vector space that can be thought of as containing all pos-
sible velocities of curves passing through p. For the circle, the tangent space
at any point is simply a line – isomorphic to R – tangent to the circle at
that point. The exponential map expp : TpM → M takes a tangent vector
v ∈ TpM and follows the geodesic starting at p with initial velocity v for one
unit of time, i.e., expp(v) = γ(1) where γ is the unique geodesic such that
γ(0) = p and γ′(0) = v. On the circle, expp(v) corresponds to starting at
p and moving counterclockwise by an angle of |v| radians if v is positive, or
clockwise if v is negative. We call the cut locus of p the boundary of the set{
v ∈ TpM | dM(expp v, p) = ∥v∥

}
and denote it by cut(p). The distance of a

point q to the cut locus is called the injectivity radius of p and is denoted
by inj(p). On the circle, the cut locus of any point p is its antipodal point,
cut(p) = {−p}, and hence the injectivity radius at any point is inj(p) = π.
Within the injectivity radius of p, the exponential map is a diffeomorphism
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between TpM and a neighborhood of p in M with inverse logp. That is, for
any point q ∈ M with d(p, q) < inj(p), it holds that expp(logp q) = q. For a
more thorough and rigorous introduction to Riemannian geometry, we refer
the reader to [8].

Given a point µ ∈ S1, we can now define the map gµ in terms of the
exponential and logarithm maps. For any point x ∈ S1, the reflection gµ · x
provided in (7) as

gµ · x =

{
x if x ∈ cut(µ),

expµ(− logµ(x)) otherwise.
(8)

This map is also refered to in the literature as the geodesic symmetry since gµ·
x = γ−(1) where γ− is the geodesic with γ−(0) = µ and γ′−(0) = − logµ x. The
randomization procedure in (5) can be written on the circle more generically
as first sampling a transformation g from the set Gµ = {id, gµ} and setting
X⋆ = g ·X. The set of mappings Gµ corresponds to the set of all isometries
preserving 0 in the tangent space of S1 in µ.

For tangent space of dimension d > 1, alternative transformations of the
vector space can be possible. Consider a d−dimensional Riemannian mani-
fold M , then for any point p ∈ M , the tangent space TanpM is isomorphic
to Rd and we can consider any isometry on Rd mapping the 0 vector to itself
as candidates for the randomization maps: this is the orthonormal group
O(d) containing the rotations and reflections. This allows to define a set of
mapping on M preserving the test mean µ ∈ M via Gµ =

{
gQµ : Q ∈ O(d)

}

where

gQµ · x =

{
x if x ∈ cut(µ),

expµ(Q logµ(x)) otherwise.

In general Riemannian manifold, even with further standard regularity
conditions, this set of maps is not as well-behaved as on the real line or on
the circle. The maps gQµ still map µ to itself but are not always an isometries
themselves – even if Q is. Furthermore, even if the random variable X
is symmetric around its Fréchet mean µ and is almost surely within the
injectivity radius of µ, the maps gQµ do not necessarily preserve the Fréchet
mean. However, if the Fréchet function of X is convex, an adjacent concept
of mean preservation still holds. Assuming that X is almost surely contained
within the injectivity radius of µ and that the Fréchet function FX defined
in Equation (1) is convex, the gradient of FX in a point p ∈ inj(µ) is given
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Figure 1: In both panels, the different plots display the behavior of a random
variable and its variance under the reflective randomization proposed in (8).
In Panel (a), the random variable follows a normal distribution N(5, 1) and is
randomized around its true mean (green) as well as other hypothesised points
µ on the real line (orange, red). Panel (b) considers a random variable on the
circle S1 following a von Mises distribution VM(π/2, 0.3). As in panel (a), we
show the result of the randomization with respect to the true mean (green) as
well as randomizations with respect to other points µ on the circle (orange,
red). In both panels, the top plot displays the probability density functions
of each variable, while the bottom plot shows their Fréchet variance as a
function of the randomization point µ. The colored points on the variance
curves correspond to the specific distributions displayed above.

by gradFX(p) = −2E
[
logp(X)

]
and the Fréchet mean of X exists and solves

the score equation E
[
logµ(X)

]
= 0, see [18, 20, 12]. In this situation, any

gQµ ∈ Gµ preserves the Fréchet mean µ by convexity together with

E
[
logµ(gQµ ·X)

]
= E

[
logµ(expµ(Q logµ(X)))

]
= QE

[
logµ(X)

]
= 0.
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While this support restriction may appear to be rather restrictive, we will
show in the next generalization that for a large class of Riemannian manifolds,
the maps gQµ can be used to construct a valid randomization without having
to assume that X is almost surely within the injectivity radius of µ.

While the previous discussion focused on manifolds where the cut locus
plays a crucial role in defining our randomization maps, there exist impor-
tant manifolds in statistical applications where the cut locus is empty. This
simplifies the construction of the randomization procedure significantly, as il-
lustrated by the following example of the space of symmetric positive definite
(SPD) matrices equiped with the Bures-Wasserstein distance.

Example 2.1 (Bures-Wasserstein). Let D2(Rp) be the set of probability mea-
sures on Rp with finite second moment and admit a density. The Wasserstein
distance [25] of order 2 between two measures µ, ν ∈ D2(Rp) is defined as

d2W2
(µ, ν) = inf

γ∈Π(µ,ν)
E(X,Y )∼γ

[
∥x− y∥22

]

where Π(µ, ν) is the set of all joint distributions on Rp×Rp with marginals µ
and ν. The Wasserstein distance can be used to define a distance dB on the
set of covariance matrices Sp+ via centered Gaussian distributions, resulting
in the Bures-Wasserstein distance dB(A,B) = dW2(N (0, A),N (0, B)). The
metric space (Sp+, dB) is a Riemannian manifold called the Bures-Wasserstein
space, and the distance function has the following closed form expression

dB(A,B)2 = trA+ trB − 2tr(A1/2BA1/2)1/2.

See [3, 9] for more details on Bures-Wasserstein spaces. In this space, the
cut loci are empty sets and the exponential map is a non-isomorphic diffeo-
morphism over the whole space.

This generalization demonstrates how the basic reflection principle from R
extends naturally to Riemannian manifolds through three key steps: (1) first
extending to the circle S1 where reflections correspond to angle reversals,
(2) generalizing to arbitrary Riemannian manifolds using the exponential
and logarithm maps to define geodesic symmetries, and (3) incorporating
the full orthogonal group O(d) as a richer example of transformations to
capture all possible isometries of Rd. While additional technical conditions
are needed compared to the Euclidean case - particularly regarding the cut
locus and convexity of the Fréchet function - the fundamental principle of
constructing randomization maps that preserve both the test mean and the
metric structure remains the same.
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3 Isotropic randomizaton

The randomization tests developed for Euclidean and Riemannian manifolds
rely heavily on the existence of exponential and logarithm maps to transport
data points. However, many interesting metric spaces, such as graphs, trees,
or stratified spaces, lack these differential geometric tools. In this section, we
develop a general framework for randomization tests based on isometries that
preserves the key properties of the Euclidean approach while being applicable
to any metric space with sufficient symmetries. This generalization allows
us to extend mean testing procedures to a broader class of spaces while
maintaining theoretical guarantees on test validity and power.

Let (Ω, d) be a metric space and denote by Iso(Ω) the set of all bijec-
tive isometries from Ω onto itself. This set is a group under composition,
called the isometry group of Ω, and acts on Ω by g · x = g(x). For any
µ ∈ Ω, the isotropy group of µ is the subgroup Gµ of Iso(Ω) of isometries
mapping µ to itself, Gµ = {g ∈ Iso(Ω) : g · µ = µ}. A relevant property of
the Fréchet mean is that it is invariant under the action of an isometry and
as the next proposition shows, the isotropy group of the Fréchet mean of a
random variable X preserves all the distance moments of X.

Proposition 3.1. Let (Ω, d) be a metric space, p ≥ 2 and X ∈ Lp(Ω) be a
random variable in Ω with Fréchet mean µ. Then, for any random isometry
g independent of X with support equal to a subgroup of Gµ, the variable g ·X
has the same Fréchet mean and distance moments as X, that is

E[g ·X] = µ and E
[
d(g ·X,µ)k

]
= E

[
d(X,µ)k

]
,

for all k ≤ p.

Proof. We will first prove that µ is the minimizer of the Fréchet function of
g ·X. Let ω ∈ Ω, we have using that g is an isometry that

E
[
d(g ·X,ω)2

]
= E

[
d((g−1 ◦ g) ·X,g−1 · ω)2

]

= E
[
d(X,g−1 · ω)2

]

= Eg

[
EX
[
d(X,g−1 · ω)2

]]

Since µ minimizes ω 7→ E[d(X,ω)2], we have that the inner expectation can
be lower bounded by E[d(X,µ)2]. Using this bound and reversing the above
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computations we get

E
[
d(g ·X,ω)2

]
≥ E

[
d(X,µ)2

]

= E
[
d(g ·X,g · µ)2

]
(by isometry)

= E
[
d(g ·X,µ)2

]
(since g ∈ Gµ)

Therefore, E[d(g ·X,µ)2] ≤ E[d(g ·X,ω)2] for all ω ∈ Ω proving the mean
invariance E[g ·X] = µ. The claim concerning the distance moments is also
a direct consequence of the fact that g ∈ Gµ,

E
[
d(g ·X,µ)k

]
= E

[
d((g−1 ◦ g) ·X,g−1 · µ)k

]
= E

[
d(X,µ)k

]
.

This suggest that the isotropy group of the Fréchet mean of X is a natural
candidate for the set maps to use for the randomization procedure. Given a
random variable g ∼ Pg over Gµ, possibly with support equal to a subgroup
of Gµ, we define the isotropic randomized variable X⋆ = g ·X. An example of
metric spaces with an isotropy group allowing for a randomization procedure
similar to the one presented previously are the globally symmetric spaces, a
certain kind of Riemmanian manifolds in which the reflection map acts as an
isomorphism.

Example 3.1 (Globally symmetric spaces). Let M be a Riemannian mani-
fold; M is called Riemannian globally symmetric if each p ∈M is an isolated
fixed point of an involutive isometry sp, see [15, Chapter IV]. Hence the def-
inition of a symmetric space directly corresponds to assuming that for any
µ ∈ M , the set Rµ = {id, sµ} is a subgroup of the isotropy group Gµ. Ex-
amples of globally symmetric spaces include the sphere Sd and the hyperbolic
space Hd. In these spaces, a randomization procedure can thus be constructed
by sampling g uniformly from Rµ.

Proposition 3.1 ensures that under the null hypothesis H0 : E[X] = µ,
the randomized random variable X⋆ has the same Fréchet mean and distance
moments as X. Under the alternative hypothesis H1 : E[X] ̸= µ, we can
expect that transforming X via the isotropy group of µ will not preserve the
Fréchet mean and distance moments of X. This, together with the following
theorem, suggests that the empirical Fréchet variance of X⋆ can be used as
a test statistic for the hypothesis (3).
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Theorem 3.1 (Theorem 1 in [10]). Suppose that the metric space (Ω, d) is
bounded and satisfies Assumption 2.1. If additionally the random variable
X ∈ Ω satisfies Assuption 2.2, then

√
n(V̂ − Var[X]) → N (0, σ2

d) (9)

where σ2
d = Var[d(X,E[X])2]

Since our goal is to construct a test based on the empirical variance of
X⋆, we also need to make sure that it will have power against alternatives
to the null hypothesis.

Let us consider two simple cases to illustrate where the variance alone
might not be sufficient. First, let Ω be the Euclidean space R2; here, for any
x ∈ R2 the isotropy group Gx is given by the rotations and reflections, up to a
conjugation with the translation to x. For any direction x ∈ R2, the reflection

rx with respect to the line spanned by x is rµ(x) = Sµx with Sµ = 2µµ
⊤

µ⊤µ− id2.
As a reflection rµ is an involutive isotropy of x, and hence the set Rx =
{id, rx} is a subgroup of Gx. For ease of computation and implementation
we might consider restricting the support of the randomization group action
to Rµ where µ is the tested mean. However now µ ∈ R2 and X ∼ N (0, id2)
be the standard normal distribution in R2. By elementary properties of the
multivariate normal distribution, Var[g · (X + λµ)] = Var[g · (X + µ)] for all
λ ∈ R and g ∈ Rµ. Hence, the variance alone does not have power against
colinear alternatives when restricting the support of g too much.

While the previous example might seem artificial, there exist spaces in
which the entire isotropy group in a point does not identiify the point itself.
For instance on the example of the circle S1 considered above, the isotropy
group in any point x ∈ S1 is Gx = {id, gx}, where gµ is the angular reflection
given in Equation (7). There, we have that the antipodal point x− of x has
the exact same isotropy group Gx− = Gx. Thus, whether the randomization
is done to test the null H0 : E[X] = x or H0 : E[X] = x−, the testing
procedure will randomize the data in the exact same way making the two
situations indistiguishable. This shows that for the circle, and the same
argument can be extended to higher dimensional spheres, only considering
the variance of the distribtuion randomized via the isotropy group will have
no power against certain alternatives.

These two examples motivate the notion of an admissible randomization
for constructing a test based only on the empirical Fréchet variance. In simple
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Algorithm 1 Isotropic Randomization Test for Fréchet Mean

Require: Sample X1, . . . , Xn, hypothesized mean µ, randomization distri-
bution Pg, number of replicates B, significance level α

1: for b = 1, . . . , B do

2: Sample independently g1, . . . ,gn
iid∼ Pg

3: Construct randomized sample X⋆
i = gi ·Xi for i = 1, . . . , n

4: Compute test statistic Vb = V̂n(X⋆
1 , . . . , X

⋆
n)

5: end for
6: Sort the test statistics: V(1) ≤ · · · ≤ V(B)

7: return Reject H0 if V̂n(X1, . . . , Xn) > V(⌊αB⌋)

words, an admissible randomization should make it possible to distinguish
between the null hypothesis and any other point in the space.

Definition 3.1. Let (Ω, d) be a metric space and µ ∈ Ω. A random group
action g over Ω is called µ−admissible randomization if the support of g is
a subgroup of isotropy group Gµ and there exists no points x ∈ Ω\{µ} such
that g · x is almost surely constant.

With this definition, the following proposition shows that the admissible
randomizations result in a test with power against alternatives.

Proposition 3.2. Let X ∈ L2(Ω) be a random variable satisfying Assump-
tion 2.2. For any µ ∈ Ω and µ−admissible randomization g, let X⋆ = g ·X.
Then, Var[X⋆] ≥ Var[X] with equality if and only if E[X] = µ.

Proof. Let µ⋆ = E[X⋆] and µX = E[X]. By definition of X⋆ and the admis-
sibility of g, we have that

Var[X⋆] = E
[
d(g ·X,µ⋆)2

]
= E

[
d((g−1 ◦ g) ·X,g−1 · µ⋆)2

]

= E
[
d(X,g−1 · µ⋆)2

]
= Eg

[
EX
[
d(X,g−1 · µ⋆)2

]]

By definition of the Fréchet mean, we have that E[d(X,ω)2] ≥ E[d(X,µX)2]
for all ω ∈ Ω and hence

Var[X⋆] ≥ E
[
d(X,µX)2

]
= Var[X],

Since E[d(X,µX)2] lower bounds the Fréchet function and by Assumption 2.2
the Fréchet mean is well separated, equality holds if and only if g−1 ·µ⋆ = µX ,
or equivalently µ⋆ = g ·µX holds almost surely. Since g is µ−admissible, this
can only hold if µX = µ.
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Hence, if an admissible randomization exists, the empirical variance V̂n
defined in (6) can be used as a test statistic for the hypothesis (3). We
formalize this testing procedure in Algorithm 1.

The practical implementation of Algorithm 1 requires constructing isome-
tries that form an admissible randomization. While these arise naturally in
globally symmetric spaces, more complex spaces that lack global symme-
try require careful consideration of the local geometry. We now examine an
example of such a space - a stratified space formed by gluing together Eu-
clidean halfspaces, which naturally arises in applications involving branching
structures or networks.

Example 3.2 (Booklets). Let k ∈ N, we define the d-dimensional booklet Bk
d

as k copies of halfspaces R+ × Rd−1 glued together along {0} × Rd−1. Each
point is then represented by a tuple (z, x, y) where z ∈ {1, . . . , k}, x ∈ R+ and
y ∈ Rd−1. The distance between two points (z, x, y) and (z′, x′, y′) is given by

d((z, x, y), (z′, x′, y′))2 =

{
(x− x′)2 + ∥y − y′∥22 if z = z′,

(x+ x′)2 + ∥y − y′∥22 otherwise.

For a point µ = (z, x, y), one can construct a reflection map with two ingre-
dients: an y−isotropy gy ∈ Gy; an involutive permutation πz on {1, . . . , k}
with πzz = z. The reflection map gµ is then defined as

gµ(z′, x′, y′) = (πzz
′, x′, gyy

′).

The framework developed above provides a general approach for testing
hypotheses about Fréchet means in metric spaces. A natural question is
whether we can identify classes of distributions where this approach is par-
ticularly well-suited. Radially symmetric distributions, which we examine
next, form such a class - their inherent symmetry properties align naturally
with the isometric randomization procedure, making them an ideal setting
for applying these tests. Moreover, studying these distributions helps us bet-
ter understand the relationship between geometric symmetry and statistical
inference in metric spaces.

3.1 Application to radially symmetric distributions

The framework is particularly well-suited for radially symmetric distributions
on metric spaces. We define a metric space radially symmetric distribution
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with the goal of generalizing the definition in Euclidean sapces. Recall that
for µ ∈ Rd, a distribution Pµ with density f with respect to the Lebesgue
measure is called radially symmetric around µ if its density can be written
as f(x) = h(d(x, µ)) for some h : R → R. This definition naturally extends
to Riemmanian manifolds by assuming a radial density with respect to the
Riemannian volume measure. A common example of such a distribution
is the von Mises-Fisher distribution on the d−dimensional sphere Sd with
location and concentration parameters µ ∈ Sd and κ > 0. The density of this
distribution with respect to the volume measure is fµ,κ(x) ∝ exp(κx⊤µ) =
exp(κd(x, µ)), which is invariant under isotropies of µ. It can then be shown
[23, Theorem 2] that in homogeneous Riemannian manifolds, the Fréchet
mean is the same as the point of symmetry µ. In order to avoid having to
work with the technicalities of generalizing the measure volume, we define
the notion of radially symmetric distributions on metric spaces via the group
action of the isometry group.

Definition 3.2. A random variable X on Ω is called radially symmetric
around µ ∈ Ω if it is invariant under the action of any g ∈ Gµ. That is,

g ·X D
= X for every g ∈ Gµ.

Consider a random variable X ∼ Pµ, radially symmetric around µ ∈ Rd,
with density f(x) = h(d(µ, x)) with respect to the Lebegues measure. For
any g ∈ Gµ a change of variable argument shows that the random variable
g ·X has density fg(y) = h(d(g−1 · y, µ)). By the fact that g ∈ Gµ, this gives

fg(y) = h(d(y, g(µ))) = h(d(y, µ)) and hence g · X D
= X. Hence the new

definition of radially symmetric distributions is consistent with the previous
one in Euclidean spaces.

Example 3.3 (Normal distribution on the spider). Consider the booklet of
1 dimension with k branches defined in Example 3.2, also called spider, con-
structed by gluing together k ∈ N copies of the real line through the origin.
There, given a point µ = (j, x), a simple radially symmetric distribution
can be constructed by considering mixture of normal distributions Pµ on the
real line. Sample the branch index J uniformly from {1, . . . , k} and sample
X | J = j ∼ N(x, 1) and X | J ̸= j ∼ N(0, 1). The isotropy group of µ is
only composed of transformations that map the branch j to itself and, when
applied to the other branches, applies a permutation to the branch index and
a reflection on the position. By construction, Pµ is thus invariant under all
isotropies of µ and is thus symmetric in µ.
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It is not clear whether the Fréchet mean of a radially symmetric distri-
bution is the point of symmetry as in the case of homogeneous Riemannian
manifolds. This stems from the same reason as why some randomizations
are not admissible: if two points share the same isotropy group, a random
variable will either be radially symmetric around both points or neither.
However, the following lemma shows that the Fréchet variance of a radially
symmetric distribution is invariant under the action of the isotropy group.
However, the following lemma shows that if this problem doesn not occur, the
Fréchet mean of a radially symmetric distribution is the point of symmetry.

Lemma 3.1. Let X ∈ L2(Ω) be a radially symmetric distribution around
µ ∈ Ω with Fréchet mean µX . If the isotropy group Gµ is not contained in
the isotropy group of any other point in Ω, then µX = µ.

Proof. This is a direct consequence of the equivariance of the Fréchet mean
described in [23]: for any g ∈ Iso(Ω), we have that E[g ·X] = g ·E[X]. Hence,

by symmetry of X around µ we have for all g ∈ Gµ that g ·X D
= X and hence

E[g ·X] = µX . Therefore by equivariance µX = E[g ·X] = g · µX implying
that g ∈ GµX and hence Gµ ⊂ GµX . Since Gµ is not contained in the isotropy
group of any other point, this implies that µX = µ.

4 Numerical experiments

In this section, we illustrate our theoretical results with numerical experi-
ments taking place in different metric spaces. We consider the example of
the circle, with a both a symmetric distribution and a non-symmetric mixture
distribution. In the second example, we explore the behavior of the test on
a bounded subspace of the 2−dimensional booklet described in Example 3.2.
Finally, we consider the space of symmetric positive definite (SPD) matrices
equipped with the Bures-Wasserstein distance. Each space present different
metric space properties and challenges for the test.

In each of these scenarios, we consider a fixed µ0 ∈ Ω to test for and
generate datasets of size n = 200 with true Fréchet mean µ, where the
values of µ are elements on the geodesic ray connecting µ0 and a chosen µ1.
This allows us to consider the performance of the test as a function of the
distance between µ0 and µ. Additionally, we evaluate the power of the test
as a function of n for n ∈ {100, 200, 400, 600}. For each metric space, we
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Figure 2: Panel (a) shows a sample (light gray rays) from the VM(π/2, 1)
distribution. The density of the mixture (red curve) and the Fréchet mean
(solid black ray) are also represented. Panels (b) and (c) are generated in
the same way as in figure 3

generate 500 datasets. For each dataset, we run the isotropic test at level
α = 0.05 with B = 1000 resampling replicates and record the rejection rate.

All simulations and analyses are done in Python. The code to reproduce
the experiments and figures is available online1.

4.1 Directional data

In the first experimental setup, we consider the space of directions on the
circle Ω = S1. We generate data from two different distributions: a von
Mises distribution VM(0, 0.3) and a mixture P = (1 − p)VM(π/2, 0.3) +
pVM(0, 0.3) with mixing proportion p = 1/3. In both cases, for a given
tested Fréchet mean µ0, we construct the randomization based on the sub-
group of Gµ0 consisting of the identity and the reflection map described in
Equation (7) and sample the isotropy g uniformly over this subgroup. In
terms of the randomized sample, this corresponds with equal probability to
either the original sample or the sample reflected around µ0.

In the first case, the distribution is radially symmetric around its mean
π/2, as discussed in Section 3.1. The alternativce hypotheses H1 are ex-
pressed in terms of the angle difference δ with µδ = µ0 + δ. For testing the
power of the test against local alternative, we sample according to the von

1https://github.com/matthieubulte/meantesting
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Figure 3: Panel (a) shows a sample (light gray rays) from the mixture de-
scribed in Section 4.1. The density of the mixture (red curve) and the Fréchet
mean (solid black ray) are also represented. Panel (b) displays the rejection
rate of the mean test based on the randomization described in Section 4.
The rejection rate is shown as a function of the deviation δ from the null
hypothesis for n = 100 (dash-dotted), n = 200 (dashed) and n = 400 (solid).
Finally, Panel (c) illustrates the power of the test against

√
n−alternatives.

Mises distribution with mean µ0 + 0.2n−1/2 for different n considered. The
visualization of the data, sample and resulting size and power are shown
in Figure 2. Panel (b) shows that the test has correct size 0.05 under the
null hypothesys (δ = 0) and rapidely converges to 1 as |δ| increases. While
not proved in the previous sections, Panel (c) shows that the test has power
against

√
n−alternatives in this scenario.

In the second case of the mixture of von Mises, the true Fréchet mean
of is µ = π/3 but the unequal weighting of the two mixture components
renders the distribution non-symmetric around its mean. Here, alternative
distributions are generated by shifting the mean of both component of the
mixture, giving Pδ = (1 − p)VM(π/2 + δ, 0.3) + pVM(δ, 0.3). The data
space and distribution along with experiment results are displayed in Figure
3. While the distribution is not symmetric, the experimental results show a
similar behavior as in the symmetric case, and the test has both correct size
under the null and power against local alternatives.

19



a b

0.2 0.1 0.0 0.1 0.2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ej

ec
tio

n 
ra

te

c

100 200 300 400 500 600

n
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
ej

ec
tio

n 
ra

te

Figure 4: Panel (a) displays a visualization of 20 covariance matrices samples
according to the sampling process described in Section 4.2. Each ellipse
is the application of a covariance matrix to the unit circle. The Fréchet
mean is also displayed (dashed unit circle). Panel (b) and (c) are generated
similarly to Figure 3. However, since the test does not have power against√
n-alternatives Panel (c) here illustrates the asymptotic power of the test

against a fixed alternatives.

4.2 Bures-Wasserstein distance on SPD matrices

We now consider the space of 2x2 SPD matrices Ω = S2
+ equipped with

the Bures-Wasserstein distance, described in Example 2.1. To construct a
distribution with a given a mean µ ∈ S2

+ on the Bures-Wasserstein manifold,
we first sample a random element in the tangent space Tanµ and push it
forward through expµ. Using that the tangent space at a point µ ∈ S2

+ is the
set of symmetric matrices [2], we sample the element of the tangent space in
µ by first sampling a 2x2 matrix M with i.i.d. standard normal entries and
symmetrize it via V = (M +M.T )/2. The sample point is then constructed
by applying the exponential map, giving X = expµ V . An explicit form of
the exponential map can be written in terms of the Lyapunov operator [22].
In the examples, we chose µ = 12 giving closed forms for the exponential and
logarithm maps, expµ V = (V/2 + 12)(V/2 + 12) and logµM = 2M1/2 − 212.
Similarly to the previous example, the randomization is done by sampling g
uniformly over {id, gµ} where gµ is the reflection defined in Equation (8) in
terms of the exponential and logarithm maps.

To assess the power and size of our test, we sample under alternative dis-
tributions generated by sampling from the same process, with a Fréchet mean
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Figure 5: Panel (a) displays a visualization of the booklet space B4
1 along

with the sampling mechanism described in Equation (10). Panel (b) and (c)
are generated similarly to Figure 3.

µδ lying on the geodesic ray passing through µ0 = 12 and µ1 =
(
4 1
1 3

)
, where

δ ∈ [−1, 1]. A similar display of the experiment as in the previous numerical
experiments is found in Figure 4. The experiment shows that the isotropic
test is able to detect the change in the mean of the distribution for |delta| > 0
and maintain level, corresponding to δ = 0. While the power increases with
sample size for a fixed alternative, shown in Panel (c), our numerical results
suggest that the test lacks power against

√
n-local alternatives.

4.3 Booklet

In this final experiment, we consider the space of booklets B4
1 described in

Example 3.2. As a reminder, the space B4
1 is constructed by gluing together

4 branches of which are copies of the positive line R+ via the origin 0, a
4−spider, and attaching to each point on this structure a copy of the real
line R. Hence each point in B4

1 can be represented via three coordinates
(z, x, y): the index of the branch z ∈ {1, 2, 3, 4}, the position on the branch
x ∈ R+, and the position on the real line y ∈ R. A visualization of this space
can be found in Panel (a) of Figure 5.

To generate a distribution on B4
1 , we consider the following hierarchical

model where the distribution of X is determined the branch Z on which the
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point lies and Y is independent of X and Z,

X | Z ∼
{

Beta(20, 5) ifZ = 1,

Beta(5, 20) ifZ ∈ {2, 3, 4}
Y ∼ N (1, 1)

Z ∼ Categorical

(
4

7
,
1

7
,
1

7
,
1

7

)
.

(10)

Minimizing the Fréchet function over these distributions yields that the
Fréchet mean of this distribution has µz0 = 1, µx0 = 0 and µy0 = 1. The
random isotropy g is chosen as described in Example 3.2. First, a random
permutation gz over {1, 2, 3, 4} is drawn uniformly over the set of random-
izations with fixed point µz. Given the geometry of the spider, there is no
isotropy on the spider that modifies the x component. The y component is
changed via gy uniformly sampled over

{
id, gµy

}
where gµy is the reflection

on the real line defined in Section 2.2. All in all, we get that for a random
X ∈ B4

1 , it’s randomization is given by g ·X = (gz ·Xz, Xx,gy ·Xy).
In this scenario, the data sampling process is not changed but rather the

null hypothesis considered and the test is run for H0 : µ = µδ where µδ is
on the geodesic between the true µ0 of the data generating process and µ1 =
(2, 1, 0). The results of the experiment are displayed in Figure 5. Similarly to
the previous experiments, we observe that the isotropic test is able to detect
the change in the mean of the distribution for δ > 0 and maintain level.
Panel (c) suggests that the test here has power against

√
n−alternatives.

5 Application: Wind in Western Denmark

As an illustrative example of how the methodology developed here might
be used, we analyze wind direction data from the Danish Meteorological
Institute (DMI). We are interesting in testing whether the mean wind di-
rection aligns with the documented south-westerly pattern in the region,
µ0 = 5π/4 = 225◦. The data is obtained at the Bl̊avandshuk Fyr station, on
the western coast of Denmark. The station records the wind direction hourly,
with direction measured in degrees from North, represented by elements on
the circle S1. Each measurement consists of a single reading from a wind
vane, with values ranging from 0 to 359 degrees, representing the direction
from which the wind is blowing, meaning that a wind blowing from North to
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Figure 6: Panel (a) displays the dataset of wind directions collected from
the weather station (gray rays) and their empirical Fréchet mean (black
ray). Panel (b) shows displays a kernel estimator of the density of the an-
gles ∠(µ0, X) (solid) and of ∠(µ0, g

µ0 · X) (dashed), after reflection around
µ0, hinting that the wind directions are not radially symmetrical around µ0.
Panel (c) displays the result of isotropic test with the empirical CDF of the
test statistic Tb under randomization displayed along with the observed value
of the statistic on the original sample T (vertical, dashed).

the South would correspond to a measurement of π/2. In order to extract a
sample as close as possible to being identically distributed with independent
observations, we only consider a subset of the data consisting of measure-
ments taken at 12pm every day in from June to November 2024, resulting in
152 observations.

The dataset is displayed in Panel (a) of Figure 6, where the wind di-
rections appear to be evenly distributed around the empirical Fréchet mean
µ̂n ≈ 3.944 ≈ 225.98◦. The proximity of the empirical Fréchet mean to the
hypothesized mean µ0 provides initial qualitative evidence supporting the
hypothesis. We further investigate whether the data is symmetrically dis-
tributed around µ0. Panel (b) shows kernel density estimates of the signed
angles from µ0 to X and µ0 to gµ0 ·X (after reflection around µ0). The non-
overlap of these densities indicates that X is not invariant under isotropies
of µ0, suggesting a lack of radial symmetry around µ0.

We proceed to test the null hypothesis H0 : µ = µ0 against the alter-
native H1 : µ ̸= µ0. We use the isotropic test specialized to the circle S1

described in Section 2.3 with B = 1000 randomizations. The result of the
test is displayed in Panel (c) of Figure 6. The empirical CDF of the test
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statistic under randomization is displayed, along with the observed value of
the statistic T on the original sample. The observed value of the test statistic
is T ≈ 1.743, corresponding to an approximated p-value of p̂n ≈ 0.64 which
is not significant at the 5% level. This result provides evidence against the
alternative hypothesis, suggesting that the wind directions at Bl̊avandshuk
Fyr are not significantly different from the south-westerly pattern.

6 Conclusion

In this paper, we have developed a general framework for testing whether a
hypothesized value is the Fréchet mean of a distribution on a metric space.
Our approach relies on constructing isotropic randomizations that preserve
key geometric properties under the null hypothesis while having power to
detect deviations from it. We began by examining the case of the real line,
generalizing to the circle S1 and further to Riemannian manifolds, where the
exponential and logarithm maps provide natural tools for constructing such
randomizations. Building on these insights, we extended the methodology to
general metric spaces through the introduction of admissible reflections.

A key contribution is the characterization of admissible randomizations,
which ensures that the resulting test has both correct size and power against
alternatives. We have shown that for radially symmetric distributions, our
test is particularly well-suited as the randomization preserves distributional
properties under the null hypothesis. Our numerical experiments across dif-
ferent metric spaces demonstrate that the test maintains the desired level
while achieving good power against alternatives, even in finite samples. The
application to wind direction data illustrates the practical utility of our ap-
proach in a real-world setting where traditional Euclidean methods are not
applicable.

Several directions for future work emerge from this study. First, it re-
mains to prove that the randomization scheme is consistent under the null
hypothesis, which would provide a theoretical guarantee that the test has
the correct size. Additionally, the development of optimal randomization
schemes, particularly for spaces where the isotropy group is rich, presents
an interesting theoretical challenge. Finally, further investigation could be
brought to the connection between the power of our test and the geometric
properties of the underlying metric space.
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for random objects. Biometrika, 106(4):803–821, December 2019.

[11] Paromita Dubey and Hans-Georg Müller. Fréchet change-point detec-
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