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Abstract

Contrary to the standard setting of independent and identically distributed (i.i.d.)
data, stochastic processes may exhibit complex serial dependence structures and non-
stationarity. Both of these properties complicate the statistical analysis of such processes.
In this thesis, we study processes that are either non-stationary or solutions to differential
equations with event discontinuities.
Cointegration assumes that the observed p-dimensional process is a linear mixing of

k latent stationary components and p − k random walks. Inference is often predicated
on knowing the exact number of stationary components, i.e., the cointegration rank.
Crucially, this number is unknown in practice. In the first part of this thesis, we study
the asymptotic distribution of different estimators under rank uncertainty. In particular,
we establish central limit theorems for reduced rank estimators in the cointegrated vector
autoregressive model under misspecified rank and present a new class of weighted reduced
rank estimators that are arguably more robust to rank uncertainty. We then turn to
the problem of uniform inference in cointegrated vector autoregressive processes. That
is, we develop asymptotic approximations for two crucial covariance statistics that are
valid uniformly across a parameter space including arbitrary cointegration ranks.
In the second part of the thesis, we establish a nonlinear generalization of cointe-

gration. We derive identification results under varying assumptions on the class of
admissible mixing transformations and the non-stationary component. Then, we de-
velop a method for estimating that stationary component based on a single discretely
sub-sampled trajectory of the observable process, xt, and show consistency under certain
conditions.
Finally, in the last part of the paper, we consider the problem of deriving path-wise

gradients of solutions to rough differential equations with endogenously defined discon-
tinuities. Such discontinuities are termed event discontinuities. A canonical example is
the spiking neuron model where an event is triggered every time the membrane potential
of the neuron crosses a certain threshold upon which the potential is reset and the spike
propagated to neighboring neurons. Thus, our results enable us to train spiking neuron
models, where the inter-spike dynamics are governed by an SDE, using gradient-based
optimization methods.
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Sammenfatning

I modsætning til det klassiske tilfælde med uafhængig og identisk fordelt (i.i.d.) data
kan stokastiske processer udvise komplekse afhængighedsstrukturer og ikke-stationaritet.
Begge disse egenskaber komplicerer den statistiske analyse. I denne afhandling studerer
vi processer, der enten er ikke-stationære eller løsninger til differentialligninger med event
discontinuities.

Kointegration antager at den observerede p-dimensionelle process er en lineær blanding
af k latente stationære komponenter og p− k random walks. Inferens er ofte betinget af
at kende det præcise antal stationære komponenter, dvs. kointegrationsrangen. Dette tal
er imidlertid ukendt i praksis. I den første del af denne afhandling studerer vi den asymp-
totiske fordeling af forskellige estimatorer under rangusikkerhed. Vi etablerer centrale
grænseværdisætninger for en klasse af estimatorer bekendt som reduced rank estimators
i den kointegrerede vektor-autoregressive model under misspecificeret rang og præsen-
terer en ny klasse af estimatorer kaldet weighted reduced rank estimators, der er mere
robuste over for rangusikkerhed. Vi vender derefter blikket mod uniform inferens i koin-
tegrerede vektor-autoregressive processer. Vi etablerer asymptotiske approksimationer
for to afgørende kovariansstatistikker, der er gyldige uniformt over et parameteromr̊ade,
som inkluderer vilk̊arlige kointegrationsrange.
I den anden del af afhandlingen introducerer vi en ikke-lineær generalisering af kointe-

gration. Vi udleder resultater vedrørende identifaktion under varierende antagelser over
klassen af tilladte transformationer og den ikke-stationære komponent. Derefter udvikler
vi en metode til at estimere den stationære komponent baseret p̊a et enkelt diskret udsnit
af den observerbare proces, xt, og beviser konsistens under visse betingelser.

Til sidst i afhandlingen betragter vi udfordringerne ved at udlede gradienter af løsninger
til s̊akaldte rough differential equations med begivenhedsdrevne diskontinuiteter. S̊adanne
diskontinuiteter kaldes event discontinuities. Et kanonisk eksempel er diskontinuerte
neuronmodeller, hvor en begivenhed udløses hver gang neuronens membranpotentiale
krydser en bestemt tærskel, hvorefter potentialet nulstilles, og neuronens signal propageres
til naboneuronerne. Vores resultater tillader derfor kalibrering af diskontinuerte neu-
ronmodeller, hvor dynamikken styres af en stokastisk differentialligning, ved brug af
gradientbaserede optimeringsmetoder.
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Contributions and Structure

In the first chapter — an introduction to the thesis — we briefly motivate our work and
give a selective review of existing ideas. We then proceed with the main body of the thesis
which is split into three chapters. Chapter 2 considers the problem of rank uncertainty
in cointegration and contains two papers: [WRR] and [STEM]. Chapter 3 introduces
a nonlinear generalization of cointegration followed by a few applications. It consists
of the working paper [STEM]. Finally, Chapter 4 contains the paper [SSNN] which is
concerned with deriving path-wise gradients of differential equations with endogenously
defined jump discontinuities.

Chapter 2 (Beyond stationarity: Cointegration rank uncertainty)

[WRR] [Holberg and Ditlevsen, 2024a]. C. Holberg and S. Ditlevsen. Weighted reduced
rank estimators under cointegration rank uncertainty. Scandinavian Journal of
Statistics, 2024a. To appear.

[UIC] [Holberg and Ditlevsen, 2024b]. C. Holberg and S. Ditlevsen. Uniform inference
for cointegrated vector autoregressive processes. Journal of Econometrics, 2024b.
To appear.

Chapter 3 (Beyond stationarity: Nonlinear cointegration)

[STEM] [Holberg, 2024] C. Holberg. Stationary embeddings: A nonlinear generalization of
cointegration, 2024. Working paper.

Chapter 4 (Beyond continuity: Differential equations with events)

[SSNN] [Holberg and Salvi, 2024] C. Holberg and C. Salvi. Exact gradients for stochastic
spiking neural networks driven by rough signals. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.
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4.A Càdlàg rough paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.B Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.C Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.D Forward sensitivities for SLIF network . . . . . . . . . . . . . . . . . . . . 196
4.E Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Bibliography 201

x



1 Introduction

We will be concerned with the difficulties that arise when working with data where
observations tend to depend on each other. This is often the case in time series data
where observations are obtained from the same individual or system at different points
in time. In order to make inference feasible, some minimum set of assumptions must be
imposed on the data generating mechanism. Often, we can get away with treating the
data as if it were i.i.d. under an appropriate such set of assumptions. This means that
we can simply proceed ”as per usual”. However, caution is warranted. The data at hand
need not conform to our assumptions and many subtle violations will generally lead to
faulty conclusions. To illustrate this point, let us consider the simple phenomenon of
spurious regression [Granger and Newbold, 1974].

Example 1.0.1. Suppose we are given two univariate time series (xt)t≥1 and (yt)t≥1.
One may posit the linear regression model yt = βxt + εt, where εt is some sequence
of error terms, and then employ the well-known machinery of ordinary least squares
regression. That is, we obtain an estimate of β via the formula

β̂ =

∑n
t=1 xtyt∑n
t=1 x

2
t

.

If both xt and yt are stationary autoregressive processes and the errors are, for example,
i.i.d., all the classical asymptotic results hold. In particular, β̂− β converges at rate

√
n

in distribution to a normal distribution centered at 0 enabling us to construct confidence
intervals by using the standard procedure. In other words, we do not really have to worry
about the dependency structure of our data. The situation quickly changes, however,
if both xt and yt are non-stationary. Indeed, let xt and yt be independent random
walks initialized at x0 = y0 = 0 implying that β = 0. Then, β̂ no longer converges in
probability to 0, but instead converges in distribution to some non-degenerate random
variable [Phillips, 1986], i.e., in general we would find that β̂ ̸= 0 even though the two
time series are independent. ♠

The concept of spurious regression is by now well-studied in the context of persistent
time series (see, e.g., [Lee et al., 2005, Phillips, 2009, Tu and Wang, 2022]), but the
preceding example still highlights what can go wrong when handling time series data.
In this thesis, we will consider systems which are irregular in the sense that they

give rise to non-standard dependency structures that make straightforward application
of classical statistical or machine learning methods difficult. Broadly, the work can be
split into two strands. The first strand deals with non-stationary processes similar to
the example above. As it turns out, it is in fact possible to obtain valid results from
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1 Introduction

least squares regression even when xt and yt exhibit random-walk-like behavior as long
as they are cointegrated. In fact, this is more or less the definition of cointegration. The
second strand is of a different nature. Here, we study systems that can be described by
certain kinds of differential equations with jump discontinuities. Such jumps can occur
because some exogenous noise affects the system in a discontinuous manner, but they
could also occur due to some endogenously triggered mechanism. Think, for example,
of a bouncing ball whose velocity abruptly changes every time it hits the ground. The
jump is then triggered by its own position. We call such endogenous jumps events. Our
primary motivation for studying differential equations with events is their applicability
to neuron models where spikes are triggered by the membrane potential.
To start, we shall introduce a few concepts that are essential for both strands. Through-

out, continuous time stochastic processes and, specifically, those arising from stochastic
differential equations (SDEs), will play an important role either appearing as distribu-
tional limits or as the primary object of interest.

1.1 Stochastic Processes

Throughout this thesis, a stochastic process refers to a collection of random variables
taking values in a measurable space and indexed by some set T . For all our purposes,
we can think of T as representing time. That is, for some T ≥ 0 denoting the possibly
infinite final time, we assume that either T = (0 ≤ t1 < · · · < tn < T ) or T = [0, T ).
The former case corresponds to a discrete stochastic process or a time series while the
latter is a continuous time stochastic process. For the sake of being precise, let (E, E)
be a measurable state space and consider a probability space (Ω,F ,P). A stochastic
process is then simply a collection of E-valued random variables (xt)t∈T each defined
on the same underlying probability space, (Ω,F ,P). In most of the following, it suffices
to take E = Rp meaning that we shall mainly be concerned with Euclidean stochastic
processes. When we are sure to avoid confusion, we simply write xt or even x to refer
to the whole process. One may view x as a map from Ω to ET , the set of all functions
from T to E. The law of xt is then simply given by P◦x−1, the push-forward of P under
x.
Usually, the easiest way to construct a stochastic process is to specify its finite-

dimensional distributions. That means, for any n ≥ 1 and t1, . . . , tn ∈ T , we specify a
probability measure µt1,...,tn on En. As long as these finite-dimensional distributions are
compatible (which essentially means that they are well-behaved under marginalization),
the Kolmogorov extension theorem guarantees the existence of a unique stochastic pro-
cess whose law, when restricted to {t1, . . . , tn}, agrees with µt1,...,tn for any n ≥ 1 and
t1, . . . , tn ∈ T . At this point we note that stochastic processes subsume the i.i.d. set-
ting. Indeed, a sequence of i.i.d. random variables is simply a stochastic process whose
finite-dimensional distributions all factorize to powers of the same identical probability
measure. Allowing for dependency between subsequent observations of the sequence, the
finite dimensional distributions become more involved.
For a thorough introduction to stochastic processes, we refer to, e.g., Chapter 2 of

2



1.1 Stochastic Processes

Rogers and Williams [2000].

1.1.1 From discrete to continuous time

In practice, we will never encounter data that is continuous in time for the simple
reason that we can only measure a system a countable number of times. As a result, it
would appear that continuous time processes serve little purpose for any pragmatically
minded data scientist. This conclusion, however, would be a mistake. Continuous time
processes serve a range of useful purposes both on the level of modelling, but also as
convenient asymptotic approximations of many objects arising from time series data. On
the level of modelling, SDEs are an important tool. They are an extension of ordinary
differential equations where the state is also affected by some external highly irregular
and noisy control (usually Brownian motion). We shall describe these in more detail
in the subsequent section. For now, let us give two examples of how continuous time
processes naturally appear in many asymptotic results concerning time series data.

Example 1.1.1. Let xt = xt−1+εt be a univariate random walk with εt ∼ N(0, 1) i.i.d.
and define, for every n ≥ 1, the sample covariance, σ̂2n, given by

σ̂2n :=
1

n

n∑
t=1

x2t .

The variance of xt increases with time. In fact, Var(xt) = t. Naturally, then, the sample
covariance diverges as well. However, when normalized by n, it converges in distribution
to the Riemann integral of the square of a standard Brownian motion. To be precise, as
n→∞,

σ2n
n
→d

∫ 1

0
w2
t dt,

where wt is a standard Brownian motion. ♠

Example 1.1.2. In addition to the sample covariance of Example 1.1.1, define now, for
every n ≥ 1, the sample cross-covariance, γ̂n, given by

γ̂n :=
1

n

n∑
t=1

xtεt.

One might expect γ̂n to converge to 0, but this is not the case. Instead, it converges in
distribution to the Itô integral of wt against itself. That is, as n→∞,

γ̂n →d

∫ 1

0
wtdwt.

♠

Both of these asymptotic results, or at least their multivariate counterparts, play
an important role in cointegration, a concept that we shall define shortly. We study

3



1 Introduction

generalizations of these results particularly in [UIC]. As stated here, Example 1.1.1
and 1.1.2 are little more than an application of Donsker’s invariance principle (see,
e.g., Theorem 8.2 in Rogers and Williams [2000]) which itself has applications even in
the realm of i.i.d. data by yielding a central limit theorem for empirical distribution
functions.

1.1.2 Stochastic differential equations

Apart from the typical drift term, a stochastic differential equation has an additional
diffusion term corresponding to some exogenous noisy control. For two vector fields,
µ : Rp → Rp and σ : Rp → L(Rq,Rp), we say that xt ∈ Rp is the solution to the SDE
with drift µ, diffusion σ, and initial condition a ∈ Rp if

dxt = µ(xt)dt+ σ(xt)dwt, x0 = a (1)

where wt ∈ Rq is the exogenous noise. Often times, wt is taken to be the standard q-
dimensional Brownian motion. The differential notation is best understood in its integral
form, that is, integrating both side of the equality with the second integral on the right-
hand side defined as a stochastic integral. Multiple choices are possible with the two most
common by far being the Itô or Stratonovich integrals which give rise, respectively, to Itô
or Stratonovich SDEs. Although, we point out that when wt is a general semimartingale
(that might be discontinuous), there also exists another interpretation of (1) as a Marcus
SDE [Marcus, 1978, 1981]. We return to this latter interpretation in [SSNN].

Existence and uniqueness of the different kinds of SDEs can be established under
conditions similar to the ones familiar from the study of ODEs. For an introduction to
SDEs, we refer to Oksendal [2013] and for a more thorough exposition, see Karatzas and
Shreve [1991].
Interpreted as an Itô SDE, if xt is the solution to (1), at each point in time and for

δ > 0 small enough, xt+δ is approximately given by the drift at the current state, µ(xt)δ,
plus the diffusion at the current state applied to the incremental change of the control,
σ(xt)(wt − wt+δ). This is also known as the Euler approximation. Importantly, the
noisy term directly affects the state and therefore also the future dynamics. Note that
this is conceptually different from an ODE with noisy measurements where noise is only
introduced a posteriori.

Example 1.1.3. Perhaps the simplest non-trivial SDE is the Ornstein-Uhlenbeck pro-
cess which is the solution to (1) with µ(x) = Πx and σ(x) = σ for Π ∈ Rp×p and
σ ∈ Rp×q. This is one of the few SDEs that can be solved analytically, i.e., we have an
expression for xt that can be written completely in terms of the driving noise, wt. In
particular,

xt = aetΠ +

∫ t

0
e(t−s)Πσdws.

When wt is the standard Brownian motion, it follows that xt is a Gaussian process.
We also note that, for any fixed increment δ > 0, xt satisfies the recursive relation
xt+δ = eδΠxt+εt where εt is a centered Gaussian vector with covariance matrix given by

4



1.1 Stochastic Processes

∫ δ
0 e

tΠΣetΠdt and Σ = σσT . In other words, when discretizing an Ornstein-Uhlenbeck
process, one obtains a vector autoregressive process of order 1. In general, if we replace
the linear drift by any arbitrary nonlinear function, the discretization of the resulting
SDE will no longer necessarily be an autoregressive process. However, the Euler approx-
imation will. ♠

We emphasize that it is quite rare to be able to solve (1) analytically. More often
than not, we have to resort to numerical methods to approximate the solution. This
also means that, contrary to the Ornstein-Uhlenbeck process, we usually do not have
a nice way to express the distribution of a discrete sub-sample. Two questions then
naturally spring to mind if we want to learn the parameters of the SDE based on data.
Which objective should we minimize to find our estimates? And secondly, how do
we compute the gradient of this objective with respect to the model parameters? An
answer to the first question is to use the likelihood when possible and otherwise to use
an approximation (see, e.g., Pilipovic et al. [2024a,b]). Another way is to take a sort
of non-parametric approach and compare the observed discrete sample paths with the
ones generated by the SDE using some statistical discrepancy or score function. This is
the approach taken, for example, in Issa et al. [2023b] to train neural SDEs where the
authors use a score function based on the signature maximum mean discrepancy. This
discrepancy uses the signature which is a concept from rough path theory and can be
thought of as a feature map for path-valued data. We discuss the signature as well as
other useful concepts from rough path theory in the following section.
There are multiple answers to the second question. Let us focus on the problem of

obtaining path-wise gradients of solutions of (1) with respect to the initial condition, a,
since this enables us to compute the gradients of any objective used in practice. Note
that other parameters, call them θ ∈ Rpθ , can be included in the initial condition by
augmenting (1) with the additional constant state dθt = 0, θ0 = θ. The term path-wise
refers to the fact that we are interested in a random variable, g ∈ Rp×p, such that, for
almost every ω ∈ Ω, it holds that g(ω) = ∂axT (ω). Taking for granted the existence
of path-wise gradients, one approach to finding them does so by differentiating the
numerical solution of the SDE. That is, since most numerical SDE solvers are composed
of differential primitives, we can simply backpropagate through the solver to obtain the
gradients of the sample paths. This is here referred to as the discretize-then-optimize
approach. A second approach computes the gradients by solving a second related SDE
usually known as the adjoint equation. One can show that g = λ0 where λt is the
solution to the adjoint equation. Of course, the adjoint equation is usually as hard to
solve as the original SDE, so one would use a numerical solver also for this. This is
the optimize-then-discretize approach. The gradients obtained in each of these two ways
align if we use a reversible solver. We have borrowed the terminology from Kidger [2021]
where much more information on this topic can be found.

1.1.3 Some perspectives from rough path theory

Rather recently, a new way to interpret the SDE (1) has emerged seeming more natural
if one is coming at it from the direction of controlled differential equations. Indeed, one
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of the key contributions of rough path theory is that it allows us to define differential
equations driven by very irregular paths (think Brownian sample paths) with random-
ness acting as a fully separate component. To be more precise, on a set of measure
1, we can define path-wise solutions to (1) as solutions to a rough differential equation
(RDE), that is, given a sample of a Brownian rough path, we can solve the differential
equation deterministically. This, of course, should be contrasted against the classical
interpretation from stochastic calculus where the Itô integral — and, hence, the solution
to the SDE — is only defined probabilistically. To construct a Brownian rough path,
we need to enhance the sample paths with an additional level two tensor (or matrix)
for which multiple choices are possible. Two common choices correspond to Itô and
Stratonovich SDEs respectively. In fact, for SDEs driven by general semimartingales,
including discontinuous ones, it is possible to define a rough path such that solutions to
the corresponding RDE coincide a.s. with the SDE (regardless of the interpretation). A
more thorough introduction to RDEs driven by càdlàg rough paths is given in [SSNN].
An excellent exposition of rough path theory can be found in Friz and Victoir [2010] or,
for a more gentle introduction to the topic, in Lyons et al. [2007].
Another important object from rough path theory is the signature. In essence, for a

path of bounded variation, xt, the signature is an infinite sequence of tensors where the
terms are given by iterated integrals of the form∫

· · ·
∫
0<u1<···<uk<t

dxu1 ⊗ · · · ⊗ dxuk ∈ (Rp)⊗k.

Among other things, signatures serve as universal feature maps [Lemercier et al., 2021]
and characterize the law of stochastic processes [Chevyrev and Oberhauser, 2022]. They
are intimately related with Taylor expansions of controlled differential equations. As-
suming that the path xt takes values in some Hilbert space, the signature will also be
Hilbert space valued. Taking inner products of signatures results in the signature kernel
for which kernel tricks exist [Salvi et al., 2021b, Király and Oberhauser, 2019] circum-
venting the need to compute the signature explicitly. The signature kernel maximum
mean discrepancy then serves as a natural metric for probability distributions on path
space.

1.2 Beyond Stationarity

As touched upon above, if the data is stationary, we may get lucky in that inference
proceeds as if the data was i.d.d. Usually this requires some additional assumptions
such as ergodicity or certain mixing conditions, but these are not as important for now
and will follow for many classes of processes if just stationarity can be established. In
words, a process is stationary if it behaves the same no matter when we measure it.
There are multiple equivalent definitions of stationarity. We shall opt for the following:
For T = [0,∞) and any τ > 0, we define the shift operator θτ : ET → ET taking f(·)
into f(τ + ·). A stochastic process x ∈ ET is then stationary exactly when the law of
x and θτ (x) agree for all τ > 0. This definition is easily carried over to time series;
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simply replace [0,∞) with the natural numbers. Sometimes it makes sense to work with
a weaker notion of stationarity. We say that a process is weakly stationary if the mean
and variance does not depend on time.
Let us now return to the discretization of the Ornstein-Uhlenbeck process from Ex-

ample 1.1.3 or, more generally, to the vector autoregressive process of order 1 (VAR(1)),
xt = Γxt−1 + εt. We have already seen that xt is non-stationary when Γ = I, i.e., when
xt is a random walk. Note that this is equivalent to saying that all eigenvalues of Γ are
exactly 1. On the other hand, it is well-known that, if Γ has eigenvalues strictly bounded
in length by 1 (or if Π has eigenvalues with negative real part in the continuous time
analog), then xt is stationary and ergodic. Now a natural question is what happens if
only some eigenvalues are equal to 1. In this case, the process will still be non-stationary
and exhibit persistent behavior similar to that of a random walk, but there is a sense in
which it is also partly stationary; It will be cointegrated.
Being a little imprecise for now, we say that a time series, xt, is cointegrated of order

0 ≤ k ≤ p if it is non-stationary, but ∆xt := xt − xt−1 is stationary and there exists k
linearly independent linear combinations of the coordinates of xt that are stationary. For
the sake of exposition, we here restrict ourselves to cointegration for time series, but one
may just as well define it for continuous time processes. See, for example, Kessler and
Rahbek [2001, 2004]. In the cointegration literature stationarity is usually synonymous
with weak stationarity. The cointegration rank of a p-dimensional VAR(1) process like
the one above is exactly equal to p minus the number of eigenvalues equal to 1 (also
called unit roots). Cointegration was first introduced in the seminal work of Engle and
Granger [1987] with much of the theory for VAR processes then developed in Johansen
[1988, 1995]. Cointegrated VAR processes are best represented using the vector error
correction model (VECM),

∆xt = Πxt−1 + εt (2)

where Π = Γ − I and ∆xt = xt − xt−1. Γ having p − k unit roots is then exactly
equivalent to the rank of Π being k and estimating Π can be done using reduced rank
regression [Anderson, 2002b, Johansen, 1995]. Since Π is of rank k ≤ p, we can find
two matrices α, β ∈ Rp×k such that Π = αβT . As it turns out, under some minor
technical assumptions, the cointegration relations are given by the columns of β, i.e.,
yt := βTxt ∈ Rk is stationary.
Alternatively, taking a less parametric angle, cointegration can also be formulated

using the following model
xt = (A1, A2)(yt, zt) (3)

where A = (A1, A2) ∈ Rp×p is invertible with A1 ∈ Rp×k, A2 ∈ Rp×(p−k). A constitutes
the mixing transformation and yt ∈ Rk is the stationary latent component and zt ∈ Rp−k
is non-stationary with stationary first differences. The cointegration relations are then
given by the first k columns of the inverse mixing A−1. Under this formulation, the
problem is also sometimes referred to as stationary subspace analysis (SSA) [Von Bünau
et al., 2009]. We note that for this model, as well as for the previous one, there is an
issue of identifiability. For example, in the VECM, for any Q ∈ Rk×k invertible, we can
define α̃ = αQ and β̃ = βQ−1 so that α̃β̃T = Π = αβT . This issue is often resolved
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by imposing a specific normalization. For example, one can choose the following upper
triangular parameterization of A which is the framework employed in, e.g., Phillips
[1991],

A =

(
Ik B2

0 Ip−k

)
.

Furthermore, in either model, there is the question of picking the appropriate cointe-
gration rank. Having access only to the observed process xt, this is a non-trivial problem.
In practice, the most common approach estimates the rank by performing a nested se-
quence of reduced rank tests stopping at the first rank for which the null hypothesis
can no longer be rejected. Johansen [1988] developed likelihood ratio tests based on
Gaussian error terms for the null hypothesis H0 : rank(Π) = k against either of the
alternatives HA : rank(Π) = k + 1 or HA : rank(Π) = p in the VECM model.
Thus, cointegration presents a middle ground allowing us to handle non-stationary

data. Much of this thesis is devoted to studying cointegrated processes. Our work on
cointegration can roughly be split into two parts. The first part looks at how uncertainty
around the cointegration rank can affect inference. The second part gives a suggestion
for how to define a nonlinear extension of cointegration.

1.2.1 Rank uncertainty

Since we are estimating the cointegration rank from data, it should be clear that a
certain probability of error is to be expected. For example, if xt is high-dimensional,
there is a large probability that we stop our sequential testing procedure too early [Stærk-
Østergaard et al., 2023, Onatski and Wang, 2018]. On the other hand, Γ may have roots
that are arbitrarily close to unity and therefore impossible to detect with finite samples.
This can be modelled using the so-called local-to-unity setup [Phillips, 2009].
As such, it becomes essential to establish the asymptotic behavior of estimators un-

der rank uncertainty. In [WRR] we establish central limit theorems for reduced rank
estimators of Π under two regimes: 1) the chosen rank is greater than the true rank and
2) the chosen rank is less than the true rank. We compare the two asymptotic distribu-
tions to the classical case where one assumes that the rank is correctly specified. Similar
results have been shown in the i.i.d. setting in Anderson [2002a]. As one would have
perhaps expected, a bias is incurred if the rank is underestimated while the asymptotic
variance increases in the opposite case. We explore how these results manifest them-
selves in estimation and prediction. We also show that the reduced rank estimators are
part of a wider family of estimators which we call the weighted reduced rank estimators.
Based on empirical results, we argue that the flexibility of this new class of estimators is
beneficial in settings with rank uncertainty. The weighted reduced rank estimator can
be seen as a weighted average of the individual reduced rank estimators of each rank
from k = 0 to k = p. Surprisingly little work has been done on model averaging for
cointegrated VAR processes. The only reference we have been able to find doing work
in this direction is Lieb and Smeekes [2017].

As a corollary to the results in [WRR], we find that the least squares estimator of Γ,
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i.e.,

Γ̂ =

(
n∑
t=1

xtx
T
t

)−1 n∑
t=1

xtx
T
t−1,

is consistent regardless of the true rank. This is, of course, not a new result. But even
then, the coast is not clear since the asymptotic distribution still depends on the number
of unit roots. In fact, even in the univariate case where Γ is a scalar and therefore only
has one eigenvalue, it was shown in Elliott [1998] that the statistical analysis is heavily
dependent on whether Γ is close to 1. The need arises for methods of inference that are
robust to slight deviations from the unit root assumption. The sensible way to formalize
this is in terms of uniform inference, that is, we seek methods with asymptotic level
holding uniformly over a range of suitable parameters. This is the content of [UIC].

The local-to-unity regime models Γ as a sequence of parameters converging to I from
below at rate n. Specifically, it assumes that Γ = I − C/n for some diagonal C ∈ Rp×p
with positive real entries. Under this assumption the asymptotic distribution of the
least squares estimator, Γ̂, is different from either the stationary or the random walk
(Γ = I) case. In the local-to-unity regime, the asymptotic distribution will depend on
the latent parameter C which is not consistently estimable. Mikusheva [2007] show that,
for p = 1, varying the scalar C between 0 and∞, we obtain a family of distributions that
interpolate the classical normal asymptotics of the stationary univariate autoregressive
process and the non-standard asymptotics of the random walk. This results in another
family of distributions that, asymptotically, can uniformly approximate the least squares
estimator for Γ arbitrarily close to 1. Mikusheva [2007] then used this result to formally
verify which of the supposedly robust methods of inference did in fact yield uniformly
valid confidence intervals (or statistical tests).
Of course, the story is much more involved in the multivariate setting if not only for

the fact that we can no longer work with the simple parameter space Γ ∈ [1− δ, 1].1 We
note that, since

Γ̂− Γ =

(
n∑
t=1

xtx
T
t

)−1 n∑
t=1

xtε
T
t ,

the asymptotic distribution of (an appropriately normalized version of) Γ̂ − Γ is deter-
mined by the asymptotic behavior of the sample covariance matrices

Sxx =
1

n

n∑
t=1

xtx
T
t , Sxε =

1

n

n∑
t=1

xtε
T
t .

The reader may recognize these quantities as multivariate generalizations of the sample
covariance and cross-covariance from Example 1.1.1 and 1.1.2. In [UIC], we show that,
as was the case for p = 1, we can use the local-to-unity regime to obtain families of
distributions that, asymptotically, uniformly approximate Sxx and Sxε over a parameter

1Here δ > 0 is some small constant bounding Γ away from -1. For p ≥ 1, we only allow unit roots
(or eigenvalues of Γ with modulus 1) that are exactly 1 since this would otherwise imply that xt is
seasonally cointegrated.
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space that allows for the unit roots of Γ to be arbitrarily close to 1. Thus, we do for the
VAR process what Mikusheva [2007] did for the AR process.

1.2.2 Nonlinear cointegration

Coming up with a sensible notion of non-linear cointegration has proven difficult. We
refer to Tjøstheim [2020] for a review of some recent advances where the authors argue
that the problem, or at least a part of it, is that classical linear cointegration deals only
with non-stationarity in the form of integrated processes. Crucially, this property is
not preserved under arbitrary nonlinear transformation and therefore is ill-suited for a
nonlinear formulation of cointegration. We argue that one benefits from taking a wider
view and considering all forms of non-stationarity. That is, a nonlinear generalization
of cointegration requires that the stationary component be strictly stationary and that
the non-stationary components are just that, arbitrarily non-stationary.
As with the linear case, there are several ways to approach the problem. The formula-

tion one chooses ultimately depends on the problem at hand. Perhaps the most common
way to look at it is in the form of nonlinear regression, xt = f(zt) + yt, where xt and zt
are non-stationary and yt is stationary [Park and Phillips, 1999, 2001]. Another common
way is to consider nonlinear extension of the VECM [Bec and Rahbek, 2004]. None of
these suggestions are particularly satisfying, though, not in the least because they are
unnecessarily restrictive. For a truly general definition, we may take as our starting
point the model (3) which is reminiscent of linear blind source separation (BSS).

To obtain a nonlinear definition of cointegration is then as simple as replacing the
invertible linear map A with a general invertible smooth map d : Rp → Rp. Another
subtle point is that, as mentioned earlier, we initially only require that yt is stationary —
in the proper sense of that word — and that zt is non-stationary. In other words, no other
special assumptions are made about the distribution of yt and xt. Now, learning the
latent components from an observation of xt is hard. First, as in the linear case, there is
the question of identifiability. In the linear case we know that the stationary component is
identifiable up to invertible linear transformations while the non-stationary component
is not identifiable. This latter statement is essentially due to the fact that adding a
stationary process to a non-stationary one will yield another non-stationary process.
In [STEM] we show that a similar result holds in the nonlinear case. Specifically,
we can identify the stationary component up to invertible smooth transformations. If
e = (e1, e2) = d−1 so that yt = e1(xt), this means that ỹt = f(xt) ∈ Rk is stationary if,
and only if, f is equal to h ◦ e1 for some invertible smooth map h.
Our goal is to estimate e based on the observed process xt keeping in mind that our

identifiability results would then imply that we can only do so up to the resulting equiv-
alence class. We take inspiration from Schell and Oberhauser [2023] and construct an
objective, call it φ, that discriminates stationary from non-stationary stochastic pro-
cesses. Estimating e is then as easy as minimizing this statistic over a suitably flexible
function class. Of course, there are many small practical details to address when working
with actual data. We introduce a function based on signature kernels similar to Issa and
Horvath [2023] that acts as a test statistic for the null hypothesis of stationarity and
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discuss practical numerical implementations of the resulting procedure.

1.3 Beyond continuity

Returning now to the general SDE in (1), in many applications it is sensible to allow
the driving noise, wt, to be discontinuous. Think, for example, of a neuron in a network
where the effect of unobserved spike trains may be modelled as Poisson processes. An-
other example could be a financial time series that is subject to sudden big shocks in the
market. Now, there are many ways to interpret the SDE (1) (or the corresponding RDE)
in the presence of jumps, but what all of them have in common is that the solution, xt,
will be jump-discontinuous as well. In fact, its discontinuity points align exactly with
those of wt. We call such jumps exogenous since they are known a priori, i.e., their tim-
ing is completely determined by the driving noise wt. We contrast these types of jumps
with another kind of endogenous jump that is triggered by the state of the solution itself.
In order to determine the timing of these jumps, we would need to first solve (1). One
way to formalize this is to augment the differential equation with an additional object,
E : Rp → R, known as the event function. The endogenous jumps, which we call event
times, are then simply solutions to the stopping time problem inft>s{E(xt) = 0}. To
describe what happens once an event is triggered, we can define a transition function,
T : Rp → Rp. Upon triggering an event, the transition function then maps the current
state of the solution to a new state after which xt again behaves according to the dy-
namics given by (1). We call systems like these event SDEs (or event RDEs) and they
are rigorously defined in [SSNN]. Phrased in a slightly different way, event SDEs fall
under the umbrella of stochastic hybrid systems [Lygeros and Prandini, 2010] for which
a fair amount of literature exists, but we note that the extension to RDEs is new.
Consider now the differential equation (1) as a RDE, that is, wt is (possibly a sample

of) some rough path. For T ≥ 0, we can define the flow map Φ : Rp 7→ Rp that maps
an initial condition a to the value of the solution of (1) at time T . It is well-known
that this is a smooth function even when wt is discontinuous (or càdlàg, to be precise)
[Chevyrev and Friz, 2019]. The crucial question, then, is whether a similar result can
be shown to hold for event RDEs. When wt is smooth it has been known for some
time that the answer to this question is positive. See, e.g., Corner et al. [2019, 2020]
and, later, Chen et al. [2018] where the results are restated in the context of neural
differential equations. Specifically, one can use the implicit function theorem to prove
that the event times are differentiable from which smoothness of the flow follows as well.
This strategy, unfortunately, does not work if wt is rough. This is essentially due to the
fact that wt is then nowhere differentiable. What we show in [SSNN] is that, using a
limiting argument that is common in rough path theory, we can extend the result from
the smooth case to the rough case.
This result has important implications, for example, for calibration of spiking neural

networks. Using an extension of the signature kernel maximum mean discrepancy to
càdlàg paths, we show how that this enables training networks of stochastic spiking
neurons by minimizing the discrepancy with gradient descent.
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2 Beyond stationarity: Cointegration rank
uncertainty

This chapter contains the following two papers:

[WRR] [Holberg and Ditlevsen, 2024a]. C. Holberg and S. Ditlevsen. Weighted reduced
rank estimators under cointegration rank uncertainty. Scandinavian Journal of
Statistics, 2024a. To appear.

[UIC] [Holberg and Ditlevsen, 2024b]. C. Holberg and S. Ditlevsen. Uniform inference
for cointegrated vector autoregressive processes. Journal of Econometrics, 2024b.
To appear.

Throughout we are concerned with vector autoregressive processes of order p ≥ 1
(VAR(p) processes). In particular, we shall consider a time series (xt)t∈N generated
recursively by

xt = Γxt−1 + εt

where Γ ∈ Rp×p and εt is some sequence of errors. In [WRR] we shall assume that the
errors are i.i.d., but it is entirely possible to allow for serial dependence in the errors as in
[UIC] where εt is assumed to be a martingale difference sequence. The nice thing about
VAR processes is that cointegration is directly characterized by the eigenstructure of Γ.
In particular, if, for every eigenvalue, λ ∈ C, of Γ, it holds that |λ| ≤ 1 with equality if
and only if λ = 1, then the cointegration rank of xt is exactly p minus the number of
eigenvalues equal to 1. We call such eigenvalues unit roots. In [WRR] we consider what
happens if inference is conducted under a misspecified cointegration rank. On the other
hand, in [UIC] we focus solely on the least squares estimator, but let the parameters vary
freely. In particular, we develop uniformly (across the parameter space) valid asymptotic
approximations of the estimator.
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Weighted Reduced Rank Estimators Under
Cointegration Rank Uncertainty

Christian Holberg, Susanne Ditlevsen

Abstract
Cointegration analysis was developed for non-stationary linear processes that ex-

hibit stationary relationships between coordinates. Estimation of the cointegration
relationships in a multi-dimensional cointegrated process typically proceeds in two
steps. First the rank is estimated, then the auto-regression matrix is estimated,
conditionally on the estimated rank (reduced rank regression). The asymptotics
of the estimator is usually derived under the assumption of knowing the true rank.
In this paper, we quantify the asymptotic bias and find the asymptotic distribu-
tions of the cointegration estimator in case of misspecified rank. Furthermore, we
suggest a new class of weighted reduced rank estimators that allow for more flexi-
bility in settings where rank selection is hard. We show empirically that a proper
choice of weights can lead to increased predictive performance when there is rank
uncertainty. Finally, we illustrate the estimators on empirical EEG data from a
psychological experiment on visual processing.

2.1 Introduction

2.1.1 Motivation

Consider a p-dimensional autoregressive process Yt of order 1 (AR(1)) defined by a vector
error correction model (VECM)

∆Yt = ΠYt−1 + Zt (2.1.1)

where ∆Y = Yt − Yt−1 ∈ Rp, Π is the p× p autoregression matrix of fixed coefficients of
rank r ≤ p, and Z1, Z2 . . . are i.i.d. p-dimensional random vectors of mean zero.

In standard low-dimensional problems, the typical procedure to determine r is based
on sequential likelihood-ratio tests [Johansen, 1995]. The test statistics do not follow any
standard distributions, the critical values depend on p and they need to be calculated
numerically. Currently, critical values are available for dimension p ≤ 11. This can be
overcome by bootstrap methods. However, it is nontrivial to keep control over the type I
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2 Beyond stationarity: Cointegration rank uncertainty

error and the sequential testing can lead to severe bias, especially when the dimension p
of model (2.1.1) increases [Stærk-Østergaard et al., 2023, Onatski and Wang, 2018]. Once
the rank is fixed, a reduced rank regression [Anderson, 2002b] is performed assuming
that this rank is in fact the true rank.
In settings where rank estimation is hard or where the rank is fixed a priori, questions

arise regarding properties of the estimator. One such question is how to characterize
the asymptotic behaviour of reduced rank estimators where the rank is fixed at a value
not necessarily equal to the true rank. Furthermore, treating the rank obtained from
the sequential testing approach as fixed in the subsequent analysis neglects the added
uncertainty. Thus, there is a need for more flexible estimators that take the uncertainty
into account. We suggest a weighted average of reduced rank estimators where ranks are
weighted depending on the supporting evidence in the data. All the classical reduced
rank estimators are special cases of this more general class of estimators.

2.1.2 Literature Review

A lot of work has been done on the asymptotic behaviour of reduced rank estimators
under the true rank or assuming wrongly full rank r = p (see, for example, Johansen
[1988, 1995], Anderson [2002b] for the time series setting and Izenman [1975], Anderson
[1999] for the i.i.d setting). Less work has been done under the assumption of a mis-
specified rank, that is, cases where the rank of the reduced rank estimator is not equal
to the true rank of Π. For the i.i.d. setting we refer to [Anderson, 2002a].
The work closest to ours are Bernstein and Nielsen [2019] and Cavaliere et al. [2012].

Bernstein and Nielsen [2019] study the asymptotic distribution of likelihood ratio tests
on the cointegration matrix in the rank deficient case. Their results differ from ours in
that they consider the cointegration matrix instead of the full autoregression matrix Π.
Also, while their focus is on hypothesis testing specifically, our main results concern the
estimator. Lemma 1 in Cavaliere et al. [2012] contains a result on the consistency (in
the sense of convergence to certain ”pseudo parameters”) of the reduced rank estimators
when the rank is underestimated. The authors do not, however, provide an asymptotic
distribution. See also Remark 1 below.
Model averaging and weighted estimators for cointegrated VAR processes has also

received little attention. See Koop et al. [2006] for a review of Bayesian approaches.
Hansen [2010] deals with model averaging for one-dimensional processes with potential
unit root. Lieb and Smeekes [2017] is most closely related to our approach, but they
only consider one family of weights and their main concern is inference.
One approach that is often used when facing rank uncertainty (especially in high-

dimensional problems) is penalization. For a review of reduced rank estimators with a
fixed rank, using different types of penalizations, see Levakova and Ditlevsen [2023].

2.1.3 Our contribution

There are three main contributions of the present paper. The first is to determine the
asymptotic distribution of the reduced rank estimator of Π under misspecified rank r.
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This has important statistical implications since there is no guarantee of determining
even closely the true rank from finite sample sizes, especially for large p. To this end, we
first consider a linearly transformed version of the system given in (2.1.1) in which the
”stationary” and ”random walk” directions are separated. We show for this transformed
system that the reduced rank estimator is consistent but has increased variance when the
rank is overestimated, compared to a correctly specified rank. In the original coordinates,
that is, when inverting the transformation, this translates to an increase of variance in
the ”random walk” direction. However, asymptotically this increase vanishes on the

√
T

scale (see 4). If the rank is underestimated, an asymptotic bias is introduced. The bias
depends on the sizes of the eigenvalues of a certain eigenvalue problem. The main results
are Theorem 2 and 3. Especially the proof of Theorem 3 is interesting. It relies on the
delta method applied to a central limit theorem for a specific covariance matrix (Lemma
3) requiring us to carry out some novel computations involving matrix derivatives.
Our second contribution is the introduction of a new class of estimators which we call

weighted reduced rank estimators. We show how the classical reduced rank estimators
are special cases of this class and how Theorem 2 and 3 determine the asymptotic
behaviour for any particular weight w ∈ [0, 1]p. We argue why taking rank uncertainty
into account is appropriate and show empirically in a simulation experiment how the
predictive capabilities of the weighted reduced rank estimators outperform the classical
reduced rank estimator based on pre-selected rank.
Our third contribution is the application of the new estimator on an experimental

data set of Electroencephalography (EEG) measurements in a visual response study.
We then compare the performance with the fixed rank estimators. In this study, p = 59
with relatively small sample sizes, which is a typical setting where the rank is not well
determined. We show that the smaller the sample size, the better the weighted reduced
rank estimators perform compared to the fixed rank estimators, for any fixed rank,
measured on mean square prediction error. This is important in many neurobiological
studies, where the data dimension is high but sample size is restricted to a small time
interval if a response to a stimulus is of interest.
We emphasize that our analysis pertains to settings where the full autoregression

matrix Π is of interest. In particular, we do not focus on estimation of the cointegration
matrix β ∈ Rd×r where Π = αβT . Examples where estimating Π is relevant are for
forecasting or impulse response analysis. In a VAR(1) model, the impulse responses
at different periods are given by powers of Π [Lütkepohl, 2005]. Our results therefore
have direct relevance for impulse response estimation. For example, the asymptotics of
different estimators of Πk under varying ranks can be derived directly from our main
results and the delta method.

2.1.4 Organization

The paper is organized as follows. In Section 2.2 the model and assumptions for cointe-
gration are presented. In Section 2.3 the asymptotic distribution under correctly spec-
ified rank is recalled and the main results are presented, namely the asymptotic distri-
butions under misspecified rank. In Section 2.4 we introduce the weighted reduced rank
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estimators. Section 2.5 consists of two simulation experiments to verify our asymptotic
results and compare the different estimators. Section 2.6 compares different weighted
reduced rank estimators on a dataset of EEG signals and Section 2.7 concludes. All the
proofs are presented in Section 2.A. In the Appendix some auxiliary results are given.
We show how the framework extends to processes of higher lags and give some further
details regarding the simulations.

2.1.5 Notation

Ik denotes the k-dimensional identity matrix. Transposition is denoted by T . Conver-
gence in distribution is denoted by →w and convergence in probability by →p. The
Frobenius norm is denoted by || · ||F . For a matrix A ∈ Rn×m with n ≥ m of full column
rank m, we write A⊥ to denote the n× (n−m) matrix of full column rank (n−m) such

that span(A)⊥ = span(A⊥). If A is positive definite we write A
1
2 for the unique positive

definite matrix satisfying A
1
2A

1
2 = A. The vectorization operator is written as vec.

2.2 Preliminaries

Let {Yt}∞t=1 be defined by (2.1.1). Autoregressive processes of higher order, VAR(d) with
d > 1, are briefly treated in Appendix 2.B. Assume that Z1, Z2, ... are i.i.d. of mean zero,
with covariance matrix ΣZ := E(ZtZTt ), and a bounded fourth moment. Furthermore,
assume that the process satisfies the usual cointegration assumption for some 0 ≤ r ≤ p:
Assumption 1. The polynomial z 7→ |(1− z)Ip − Πz| has n = p− r unit roots and all
other roots are outside the unit circle.

This assumption implies that the rank of Π is p − n = r. Thus, we can decompose
Π into two matrices α, β ∈ Rp×r of rank r such that Π = αβT . Let α⊥ and β⊥ be
orthogonal complements of α and β. This leads to the second condition that is usually
assumed when working with cointegrated AR-processes [Johansen, 1995].

Assumption 2. The n× n matrix αT⊥β⊥ is non-singular.

Under these assumptions Granger’s representation theorem [Engle and Granger, 1987,
Johansen, 1991] states that Yt is integrated of order 1 (I(1)) and cointegrated of rank
r. The cointegration relations are given by βTYt. That is, Yt exhibits random walk like
behaviour with ∆Yt and β

TYt being stationary. Now define Q = (β, α⊥)
T and note that

Q−1 =
(
α(βTα)−1, β⊥(α

T
⊥β⊥)

−1
)
.

Then, with Xt = QYt, Ut = QZt, and

Γ = QΠQ−1 =

(
βTα 0
0 0

)
,

we get the Q-transformed version of model (2.1.1),

∆Xt = ΓXt−1 + Ut. (2.2.2)
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2.2 Preliminaries

We have effectively split up the original process Yt into a stationary part and a random
walk part. In particular, if X1t denotes the first r components of Xt and X2t the last n
components, we have the following relations

∆X1t = βTαX1t−1 + U1t (2.2.3)

∆X2t = U2t. (2.2.4)

We shall first study estimators of Γ from observations X0, X1, . . . , XT and then transfer
the results to the original parameter of interest, Π. The reason for taking this small
detour is that it will give more clarity to the limiting behaviour of different parts of the
estimator corresponding to either the random walk or the stationary part of the process.
Before describing the asymptotics of the estimators we need some results regarding

the cross-covariances. Specifically, define the empirical cross-covariances

SXX =
1

T

T∑
t=1

Xt−1X
T
t−1, SUX =

1

T

T∑
t=1

UtX
T
t−1,

S∆XX =
1

T

T∑
t=1

∆XXT
t−1, S∆X∆X =

1

T

T∑
t=1

∆X∆XT ,

and the covariance matrix ΣU = E(UtUTt ) = QΣZQ
T . We use the following block

matrix notation: For a p× p matrix M , let M11 denote the top left r× r block, M22 the
bottom right n× n block, and M12 and M21 the two off-diagonal blocks. For notational
convenience, we sometimes use a superscript instead. We implicitly assume that all the
limits considered in the following sections are for T →∞. For the stationary processes,
X1t−1 and ∆Xt, the law of large numbers yields

S11
XX →p Σ

11
X =

∞∑
s=0

(Ir + βTα)sΣ11
U (Ir + αTβ)s

S∆X∆X →p Σ∆X =

(
Σ11
U + βTαΣ11

Xα
Tβ Σ12

U

Σ21
U Σ22

U

)
.

To study the asymptotics of the random walk part of the process we introduce a standard
p-dimensional Brownian motion initiated at 0 denoted by {Ws}s∈[0,1]. We are now ready
to present the crucial Lemma. A proof can be found in e.g. Lemma 7.1 in Lütkepohl
[2005].

Lemma 1. Define the n × p matrix D = (0, In) and the random r × p matrix V T :=
(V T

11, V
T
21) satisfying vecV ∼ N (0,Σ11

X ⊗ ΣU ). The following converge jointly:

T−1S22
XX →w DΣ

1
2
U

(∫ 1

0
WsW

T
s ds

)
Σ

1
2
UD

T =: B (2.2.5)(
S12
UX

S22
UX

)
→w Σ

1
2
U

(∫ 1

0
Ws dW

T
s

)T
Σ

1
2
UD

T =:

(
J12
J22

)
(2.2.6)

T
1
2

(
S11
UX

S21
UX

)
→w V =

(
V11
V21

)
. (2.2.7)
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2 Beyond stationarity: Cointegration rank uncertainty

Furthermore,

S11
XX →p Σ

11
X (2.2.8)

S∆X∆X →p Σ∆X . (2.2.9)

A direct consequence of the above Lemma and summation by parts is that S12
∆XX →p

−Σ12
U (see section 3.1 in Anderson [2002b]). Thus, we have fully uncovered the asymp-

totic behaviour of S∆XX as well. Indeed, we can write(
S11
∆XX S12

∆XX

S21
∆XX S22

∆XX

)
=

(
βTαS11

XX βTαS12
XX

0 0

)
+

(
S11
UX S12

UX

S21
UX S22

UX

)
.

We have already established that the top right block converges in probability to −Σ12
U

and limits for the remaining three blocks follow easily from Lemma 1. Note that,
whereas S11

∆XX , S
12
∆XX , and S21

∆XX converge in probability, S22
∆XX = S22

UX converges
only weakly. From this it also follows that S12

XX and S21
XX are bounded in probability

whence T− 1
2S12

XX , T
− 1

2S21
XX →p 0.

2.3 Asymptotic Distributions of Reduced Rank Estimators

With Lemma 1 in our arsenal, we are ready to study the asymptotic behaviour of es-
timators of Γ. In particular, we shall focus on the standard cointegration estimators
[Johansen, 1995]. This is a collection of estimators that can be obtained by solving a
generalized eigenvalue problem. We consider

|SX∆X(S∆X∆X)
−1S∆XX − λ̂SXX | = 0

and order the solutions in decreasing order, λ̂1 ≥ λ̂2 ≥ ... ≥ λ̂p. With Λ̂ := diag(λ̂1, ..., λ̂p),
denote by Ĝ the p× p matrix solving

SX∆X(S∆X∆X)
−1S∆XXĜ = SXXĜΛ̂, (2.3.10)

ĜTSXXĜ = Ip. (2.3.11)

In column vector notation we write Ĝ = (ĝ1, ..., ĝp). For any m1×m2 matrixM we shall
write M :k for the m2 × k matrix consisting of the first k ≤ m2 columns of M . Keeping
in line with our previous block matrix notation, we write Ĝ11 and Ĝ22 for the top left
r× r block and the bottom right n× n block of Ĝ respectively and Ĝ21 and Ĝ12 for the
off diagonal blocks. The reduced rank estimators are given by

Γ̂k = S∆XXĜ
:k
(
Ĝ:k
)T

(2.3.12)

for k = 0, ..., p (where k = 0 is trivial). Γ̂k is called the reduced rank estimator of Γ for
rank k. One can show that Γ̂k is the maximum likelihood estimator of Γ under Gaussian
errors when the data generating process is given by (2.2.2) and the rank of Γ is fixed
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2.3 Asymptotic Distributions of Reduced Rank Estimators

at k [Johansen, 1995]. In our case the true rank is 0 ≤ r ≤ p and the reduced rank
estimator for a correctly specified rank is therefore Γ̂r. Another special case is the least
squares estimator Γ̂LS which is, in fact, equal to Γ̂p.
For future reference, we also define the (appropriately rescaled) population versions

of λ̂ and Ĝ. We let λ1 ≥ · · · ≥ λp be the ordered solutions to∣∣∣∣(Σ11
Xα

Tβ
(
Σ−1
∆X

)
11
βTαΣ11

X 0

0 J22

)
− λ

(
Σ11
X 0
0 B

)∣∣∣∣ = 0 (2.3.13)

with G = (g1, . . . , gp) the corresponding eigenvectors normalized so that

GT
(
Σ11
X 0
0 B

)
G = Ip.

The block diagonal structure implies that almost surely G12 and G21 are 0 with G11

and G22 solving the two seperate eigenvalue problems defined by the diagonal blocks
in (2.3.13). This furthermore implies that the first r eigenvalues and eigenvectors are
deterministic while the last n eigenvalues and eigenvectors are random. We let Λ =
diag(λ1, . . . , λp).
It makes sense to distinguish between three different situations and study them sep-

arately. First, the reduced rank estimator where the true rank is given a priori. In
this case we include exactly enough information and the resulting estimator is optimal,
among the estimators considered here, in the following sense: For all 0 ≤ k ≤ p for which
Γ̂k is consistent, Γ̂r has the lowest asymptotic variance.
Knowing the number of cointegrating relations, however, is often unrealistic. This

leads us to consider the estimators Γ̂k1 when 0 ≤ k1 < r and Γ̂k2 when r < k2 ≤ p.
The former has underestimated rank and we will show that it is asymptotically biased,
but under some circumstances the bias might be small enough to make it preferable in
a bias-variance trade-off. The latter has overestimated rank and we will show that it is
consistent, but its variance is inflated when compared to Γ̂r. We first recall the known
limiting behaviour of Γ̂r since this serves as an illustrating case and highlights many
of the ideas involved in the study of the other two cases. We then derive the limiting
behavior of the estimators with misspecified ranks, which is the first main contribution
of this paper.

2.3.1 Correctly Specified Rank

We start with a result due to Anderson [2002b]. The statement of the Theorem as well
as the proof are essentially the same as in Anderson [2002b]. A proof can be found in
Section 2.A.

Theorem 1. Define J̃12 := (J12 − Σ12
U (Σ22

U )−1J22) and let rank(Γ) = r. Then,(
T

1
2 (Γ̂11

r − Γ11) T (Γ̂12
r − Γ12)

T
1
2 (Γ̂21

r − Γ21) T (Γ̂22
r − Γ22)

)
→w

(
V11(Σ

11
X )−1 J̃12B

−1

V21(Σ
11
X )−1 0

)
, (2.3.14)

where J12, J22 and B are defined in Lemma 1.
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2 Beyond stationarity: Cointegration rank uncertainty

Note that the rate of convergence for the right two blocks is oP (T
−1) contrary to

the usual reduced rank regression setting of independent observations where the rate of
convergence is oP (T

− 1
2 ) for all blocks. This is because TĜ:r

21(Ĝ
:r
11)

T and T 2Ĝ:r
21(Ĝ

:r
21)

T

are convergent, where Ĝ is defined in (2.3.10)–(2.3.11), as can be seen in the proof.

2.3.2 Overestimated Rank

Let the true rank of Π be 0 ≤ r < p. We are interested in the reduced rank estimator
Γ̂r+m with r < r + m ≤ p. The above results for Γ̂r suggest that this estimator is
consistent and with a limiting behaviour somewhat close to that of Γ̂r depending on
m. To tackle this problem, we first analyze the asymptotics of the last n columns of Ĝ.
Unfortunately, we cannot directly adopt the methods from the previous section, but in
much the same way we start with (2.3.10) and (2.3.11).

Consider equation (2.3.11) in block matrix notation. Using that (Ir, T
1
2 In)Ĝ is bounded

in probability and that T
3
4 Ĝ21 converges in probability to 0 (see proof of Theorem 1),

we find that ĜT21S
21
XXĜ12, Ĝ

T
11S

12
XXĜ22, and ĜT21S

22
XXĜ22 are oP (T

− 1
4 ). The top-right

block of (2.3.11) then reduces to

ĜT11S
11
XXĜ12 + oP (T

− 1
4 ) = 0

so that Ĝ12 = oP (T
− 1

4 ). By an analogous argument we get Ĝ22S
22
XXĜ22 = In+oP (T

− 1
2 )

and therefore TĜ22Ĝ
T
22 = (T−1S22

XX)
−1+oP (T

− 1
2 ). Note that the least squares estimator

is given by
Γ̂LS = S∆XX(SXX)

−1 = S∆XXĜĜ
T = Γ̂p

corresponding to the case where m = n. Thus, we have obtained an asymptotic distri-
bution for the least squares estimator, albeit in a slightly indirect way. This will also be
a consequence of the following more general result.

Theorem 2. Assume that rank(Γ) = r < p and 1 ≤ m ≤ n = p− r. Then,(
T

1
2 (Γ̂11

r+m − Γ11) T (Γ̂12
r+m − Γ12)

T
1
2 (Γ̂21

r+m − Γ21) T (Γ̂22
r+m − Γ22)

)
→w

(
V11(Σ

11
X )−1 J̃12B

−1 + J̃22Pm
V21(Σ

11
X )−1 J22Pm

)
(2.3.15)

where J̃22 := Σ12
U (Σ22

U )−1J22 and Pm = G:m
22 (G

:m
22 )

T with G defined in (2.3.13).

It is instructive to compare the limiting distribution in (2.3.15) with (2.3.14). What
effectively happens when inflating the rank is that we are including columns of Ĝ
that are not relevant. This leads to an increased variance as illustrated by the terms
J̃22G

:m
22 (G

:m
22 )

T and J22G
:m
22 (G

:m
22 )

T . The higher m is, the more the variance increases.
For small m compared to p, there might not be any major issues. In line with our
intuition, it is thus advisable to get as close as possible to the true rank. Setting m = 0
corresponds to dropping all columns of G:m

22 and we end up with (2.3.14). For the least
squares estimator the above expression simplifies somewhat. Indeed, G:n

22 = G22 and thus
G:n

22(G
:n
22)

T = B−1. Plugging this into (2.3.15) yields J̃12B
−1 + J̃22G

:n
22(G

:n
22)

T = J12B
−1

and J22G
:n
22(G

:n
22)

T = J22B
−1.

22



2.3 Asymptotic Distributions of Reduced Rank Estimators

2.3.3 Underestimated Rank

For finite samples, we might just as well underestimate the true rank, especially if one
chooses the rank using the sequential testing approach that is usually applied in practice.
We now consider Γ̂m for 0 ≤ m < r. It is clear that the estimator will not be consistent
so all we can hope for is that the asymptotic bias is small in certain situations. Before
computing this bias and giving the main theorem of this section, we need an extra
assumption on the generalized eigenvalues in (2.3.13).

Assumption 3. The first r generalized eigenvalues in (2.3.13) are simple, i.e., λ1 >
... > λr.

This assumption is of a technical nature. It is needed for the smoothness results given
in Lemma 2 and 3 in the Appendix. To the extent in which we apply Lemma 2, it is
actually sufficient to assume λm > λm+1. It is clear that this assumption is necessary
since otherwise we would not be able to distinguish between the asymptotic eigenvectors.
Whether we need all the first r eigenvalues to be simple, however, is questionable. We
hypothesize that Theorem 3 holds without this assumption, but this would require a
different proof since the current proof relies on the delta method, which in turn requires
sufficient smoothness of a certain map of the generalized eigenvectors.
It immediately follows from Lemma 2 in Appendix 2.C and the proof of Theorem 1 that

Ĝ:m
11 (Ĝ

:m
11 )

T →p G
:m
11 (G

:m
11 )

T . Furthermore, we know that Γ̂11
m = βTαS11

XXĜ
:m
11 (Ĝ

:m
11 )

T +
oP (1). Then, since β

Tα = βTαΣ11
XG11G

T
11, we find that the asymptotic bias is given by

Γ̂11
m − Γ11 →p β

TαΣ11
X (G11G

T
11 −G:m

11 (G:m
11 )

T ) =: bm. (2.3.16)

We see that the asymptotic bias increases as eigenvalues are excluded and the bias is
larger for larger eigenvalues. In practice this means that we only incur a small bias when
underestimating the rank if the eigenvalues λm+1, ..., λr are small.

We obtain the following asymptotic distribution of the reduced rank estimator when
the rank is underestimated. A proof can be found in Section 2.A.

Theorem 3. Assume that 0 ≤ m < r = rank(Γ) and λ1 > · · · > λr. Let κijkl be the joint
cumulant of Ut,i, Ut,j , Ut,k, and Ut,l and assume furthermore that κijkl = 0 for all 1 ≤
i, j, k, l ≤ p. Let Ṽ T = (Ṽ T

11, Ṽ
T
21) be a random matrix such that vec(Ṽ ) ∼ N (0, ξΞξT ),

where Ξ is defined in (2.A.5) and ξ is defined in (2.A.7). Then,(
T

1
2 (Γ̂11

m − Γ11 − b) T (Γ̂12
m − Γ12)

T
1
2 (Γ̂21

m − Γ21) T (Γ̂22
m − Γ22)

)
→w

(
Ṽ11 CmJ̃12B

−1

Ṽ21 0

)
(2.3.17)

where Cm = βTαΣ11
XG

:m
11 (G

:m
11 )

T (βTα)−1. The covariance matrix of Ṽ21 is equal to
G:m

11 (G
:m
11 )

TΣ11
XG

:m
11 (G

:m
11 )

T ⊗ Σ22
U .

From G:r
11(G

:r
11)

T = (Σ11
X )−1 it follows that Cr = Ir. Comparing (2.3.17) with (2.3.14)

we see that the variances of the top right and bottom left blocks are reduced. The
bottom right block also converges in probability to 0. Comparison of the top left blocks
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2 Beyond stationarity: Cointegration rank uncertainty

is more involved. We could not find a straightforward answer to prefer one over the
other. Interestingly enough, simulations suggest that the variance may even increase in
certain parts when lowering the rank m.
When m = r the expression for ξ simplifies to the one derived in Theorem 1, see

Section 2.A.

2.3.4 Asymptotics in the Original Coordinates

Recall that Xt defined by (2.2.2) was a transformation of Yt defined by (2.1.1) into coor-
dinates where the stationary and random-walk parts of the process are separated. Our
original parameter of interest was Π. We now discuss how to derive central limit theo-
rems for a family of estimators of Π analogous to those discussed above. In particular, we
define for 0 ≤ k ≤ p the matrices L̂k = QT Ĝk and the estimators Π̂k = S∆Y Y L̂

:k(L̂:k)T .
Then L̂:k solves

SY∆Y (S∆Y∆Y )
−1S∆Y Y L̂

:k = SY Y L̂
:kΛ̂:k:k

(L̂:k)TSY Y L̂
:k = Ik

where Λ:k:k = diag(λ̂1, . . . , λ̂k) and the solutions to |SY∆Y (S∆Y∆Y )
−1S∆Y Y − λ̂SY Y | = 0

are the same as those for the Q-transformed cross-covariances. The columns of L̂
are thus the generalized eigenvectors for the generalized eigenvalue problem given by
SY∆Y (S∆Y∆Y )

−1S∆Y Y and SY Y . Furthermore, we have Π̂k = Q−1Γ̂kQ and, by defini-
tion, Π = Q−1ΓQ. Consequently, a central limit theorem for Π̂k is easily obtained from
Theorems 1, 2, and 3.

Theorem 4. Assume that 0 ≤ r = rank(Π) ≤ p. Then, if r ≤ k ≤ p,

T
1
2vec(Π̂k −Π)→ N (0, β(Σ11

X )−1βT ⊗ ΣZ).

If we furthermore assume that λ1 > ... > λr > 0 and that κijkl = 0 for all 1 ≤ i, j, k, l ≤
p, then, for 0 ≤ k < r,

T
1
2vec(Π̂k −Π− b̃)→ N (0, ξ̃Ξξ̃T )

where ξ̃ = (QT ⊗Q−1)ξ and b̃ = αΣ11
X (G11G

T
11 −G:m

11 (G
:m
11 )

T )βT is the asymptotic bias.

The T
1
2 terms dominate in the limiting behaviour of Π̂k, which is why, asymptotically,

we lose nothing by overestimating the rank. However, for finite samples the case might
be different. As suggested by Theorem 2, the variance in the random walk direction will
increase if we unnecessarily inflate the rank. See Anderson [2002b] regarding further
interpretation of the asymptotics of Π.

Remark 1. Often the cointegration matrix β is of interest and one might ask to what
extent the above results are then relevant. Since β is only identifiable up to post-
multiplication by an invertible matrix, one needs to impose further identifiability re-
strictions to be able to meaningfully discuss this. To directly utilize the above re-
sults, we take a non-standard approach. In particular, we assume (without loss of
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2.4 Estimation Under Rank Uncertainty

generality) that the j’th diagonal of L = QTG is non-zero for all j = 1, . . . , r and
take β = L:r(diag(L11, . . . , Lrr))

−1. By Assumption 3, L:r is identifiable up to post-
multiplication by a diagonal matrix and the given β is therefore identifiable. Our esti-
mator is then simply obtained by the same formula but replacing L with L̂ and r with the
given rank choice k. Then use the same argument as in the proof of Theorem 3 to show
that the individual columns of β̂ satisfy a central limit theorem. In particular, start from
Lemma 3 and then apply the delta method using that eigenvectors associated with sim-
ple eigenvalues are differentiable (Theorem 8.9 in Magnus and Neudecker [2019]). When
the rank is underestimated this corresponds to only taking the first k < r columns of β̂.
Then the estimator is clearly biased but estimates the cointegration space correspond-
ing to the k largest eigenvalues, that is, the first k columns of β. This generalizes the
consistency result obtained as part of Lemma 1 of Cavaliere et al. [2012].

2.4 Estimation Under Rank Uncertainty

The above results suggest that the choice of cointegration rank is crucial. While choosing
a rank that is too high still results in a consistent estimator, underestimating the rank
will result in an asymptotically biased estimator. The rank is usually found using a
sequential testing approach as described in Johansen [1995], which we briefly recall
here. While this approach consistently estimates the true rank (at least if the critical
values of the sequential tests go to infinity at an appropriate rate with increasing sample
size), disregarding the uncertainty involved in rank estimation from the corresponding
post-selection reduced rank estimator might be unfavourable in some cases, especially
for high dimension p. We therefore suggest a weighted estimator of Π, which can be
thought of as a weighted average of the estimators Π̂1, ..., Π̂p with either fixed pre-
specified weights or with weights inferred from the data. The post-selection estimator
obtained by considering the rank-estimate as fixed is a special case where all the weight
is assigned to Π̂r̂, r̂ being the rank-estimate.

2.4.1 Rank Selection

We start with the hypothesis H(0) that the cointegration rank is 0, that is, Π vanishes so
that the process is a random walk. This null-hypothesis is tested either against H(1) or
H(p), which are the hypotheses for cointegration rank 1 and p, respectively. The latter
hypothesis corresponds to Π having full rank and thus, under the current assumptions,
to a stationary process. If H(0) is rejected at, say, a 5% significance level, we move
on to the next hypothesis H(1) and, again, test it either against H(2) or H(p). This
process is repeated until reaching an r for which H(r) cannot be rejected. Assuming
that Z0 is Gaussian, we can directly compute the maximized likelihood function of each
hypothesis and thus also a likelihood ratio test statistic. For testing H(r) against H(p)
the likelihood ratio statistic, LR(H(r)|H(p)), is given by

−2 logLR(H(r)|H(p)) = −T
p∑

i=r+1

log(1− λ̂i).
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2 Beyond stationarity: Cointegration rank uncertainty

The likelihood ratio statistic for testing H(r) against H(r + 1) is given by

−2 logLR(H(r)|H(r + 1)) = −T log(1− λ̂r+1).

The two test statistics, depending on whether we test against H(p) or H(r+1), are usu-
ally called the trace and maximum eigenvalue test statistics, respectively. The asymp-
totics of either can be derived from our discussions above. Assuming that the true rank
is r0, both statistics tend to infinity in probability for r < r0. The null is therefore
rejected when the statistic is larger than a critical value c. In practice, we therefore ex-
pect to underestimate the rank in cases where one or more of the population eigenvalues
λ1, · · · , λr are close to 0. Recall that the bias is determined only by the smallest r −m
of these eigenvalues where m < r is the estimated rank and r the true rank.
Let lr = (lr0, lr1, ..., lrp−1) denote a sequence of test statistics with either lrk =
−2 log(H(k)|H(p)) or lrk = −2 log(H(k)|H(k + 1)) and let cT = (cT,0, ..., cT,p−1) ∈ Rp+
be a sequence of critical values. A rank estimate is then given by

r̂ = min (inf {0 ≤ k ≤ p|lrk ≤ cT,k} , p) (2.4.18)

where we use the convention inf ∅ = ∞. Usually cT,k is chosen to be the (1 − α)100%
quantile of the asymptotic distribution of either the trace or maximum eigenvalue test-
statistic for some small α ∈ (0, 1). Letting α approach 0 with growing sample size at an
appropriate rate ensures that r̂ is a consistent estimator of the true rank, r0.

2.4.2 Weighted Reduced Rank Estimator

The reduced rank estimators of Γ discussed thus far can all be considered as special cases
of a general family of estimators weighting the contribution of each of the eigenvectors
in (2.3.10). Indeed, for any 1 ≤ k ≤ p, we can write

Γ̂k = S∆XX

k∑
i=1

ĝiĝ
T
i = S∆XX

d∑
i=1

wiĝiĝ
T
i (2.4.19)

where wi = 1 if i ≤ k and wi = 0 otherwise. For a given vector of weights, w ∈ [0, 1]p,
with w1 ≤ w2 ≤ ... ≤ wp, we refer to the estimator given by (2.4.19) as the weighted
reduced rank estimator of Γ and write Γ̂w. It is also entirely possible to choose weights
that depend on the data. Thus, the post-selection estimator, Γ̂r̂, with r̂ as given in
(2.4.18), can be written as a weighted reduced rank estimator with weights

ŵi = 1{i≤r̂} = 1{lri−1>cT,i−1}. (2.4.20)

Furthermore, the weighted reduced rank estimator can be viewed as a weighted average
of all the individual reduced rank estimators. To see this, define the additional weights
w0 = 0 and wp+1 = 1 and let Wi = wi+1 − wi for i = 0, ..., p. Then W ∈ [0, 1]p+1 with∑
Wi = 1 and

Γ̂w =

p∑
k=0

WkΓ̂k
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2.4 Estimation Under Rank Uncertainty

with the convention Γ̂0 = 0.
Assuming that the true rank is 1 ≤ r0 ≤ p it is immediately clear from Section 2.3

that any weighting that does not asymptotically assign weight one to all eigenvectors,
ĝ1, ..., ĝr0 , will result in an asymptotically biased estimator. Conversely, if wi →p 1 for
all i = 1, ..., r0, then Γ̂w is consistent regardless of the asymptotic behaviour of the rest
of the weights. Now, for w ∈ [0, 1]p, let D = diag(w) and write D1 = (Di,j)i,j≤r and
D2 = (Di,j)i,j>r. We define the following quantities:

bw = βTαΣ11
XG11(Ir −D1)G

T
11,

C1w = βTαΣ11
XG11D1G

T
11

(
βTα

)−1
,

C2w = G22D2G
T
22,

ξw =
r∑
i=1

wi
((
0r×p Pi

)
⊗
(
Ip 0p×r

)
+ (Ir ⊗ Σ∆XX)ξi

)
where ξi is defined in (2.A.6) and Pi = G11ei(G11ei)

T with ei being the i’th unit vector,
that is, G11ei is the i’th column ofG11. The following result is a consequence of Theorems
1, 2 and 3.

Theorem 5. Assume that 1 ≤ r = rank(Γ) ≤ p and λ1 > · · · > λr. Let (wT )T∈N ⊂
[0, 1]p be a sequence of weights. Assume that wT,i →p 1 for all i = 1, ..., r. Then, for
T →∞,

Γ̂wT →p Γ.

Assume furthermore that T ||(wT − w)|| →p 0 for some w ∈ [0, 1]p and κijkl = 0 for
all 1 ≤ i, j, k, l ≤ p. Let V T

w = (Ṽ T
w,11, Ṽ

T
w,21) be a random matrix such that vec(Vw) ∼

N (0, ξwΞξ
T
w), where Ξ is defined in (2.A.5) and ξw is defined above. Then,(

T
1
2 (Γ̂11

wT
− Γ11 − bw) T (Γ̂12

wT
− Γ12)

T
1
2 (Γ̂21

wT
− Γ21) T (Γ̂22

wT
− Γ22)

)
→w

(
Vw,11 C1wJ̃12B

−1 + J̃22C2w

Vw,21 J22C2w

)
.

(2.4.21)

It follows from Theorem 5 that if a sequence of weights, (wT )T∈N, is such that T (wT,i−
1{i≤m}) →p 0 for some 1 ≤ m ≤ p, then Γ̂wT is asymptotically equivalent to Γ̂m. In
particular, for the post-selection estimator (2.4.18) with weights (2.4.20), for every ϵ > 0,
we have

P
(
T |ŵi − 1{i≤r}| > ϵ

)
≤ P (r̂ ̸= r)

= P (r̂ > r) + P (r̂ < r)

≤
r−1∑
i=0

P (lri ≤ cT,i) + P (lrr > cT,r)

where the last term goes to 0 for T →∞ if cT is chosen appropriately, since lri goes to
infinity for i < r and lrr converges in distribution and is therefore bounded in probability.
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2 Beyond stationarity: Cointegration rank uncertainty

Consequently, the post-selection estimator is asymptotically equivalent to Π̂r.
1 In finite

samples, however, the situation can be different. It is entirely possible that lri is close
to cT,i for multiple i = 0, ..., r, which would indicate that there is evidence for multiple
ranks in the observed data. Hard threshold weights like ŵ disregard this uncertainty
and for some samples the choice of rank can be far from the true rank (see Appendix
2.D.3). It might therefore be wise to explore weights that behave more smoothly. We
here give two examples of such weights both of which are based on the likelihood-ratio
test statistics, lr.

Example 2.4.1. The first weight-vector we consider is motivated by the fact that large
values of lri are strong evidence that the eigenvector ĝi+1 should be included. Indeed,
as stated above, if i < r, then T−alri goes to infinity for any a ∈ [0, 1). It is similar to
the weighting scheme considered in Lieb and Smeekes [2017]. For a1 > 0 and 0 ≤ a2 we
define

ŵ1(a1, a2) =
(
1− e−a1T−a2 lr0 , ..., 1− e−a1T−a2 lrp−1

)
. (2.4.22)

When convenient we shall omit the arguments and simply write ŵ1. The hyperparame-
ters a1 and a2 control how sensitive the weights are to the size of λ̂. If 1 > a2 > 0, then
T−a2 lri →p ∞ for i < r and T−a2 lri →p 0 for i ≥ r which implies that T (ŵ1−1{·≤r})→p

0 for T →∞, i.e., Π̂ŵ1 is asymptotically equivalent to Π̂r. ♠

Example 2.4.2. The second example is a soft threshold version of the categorical ŵ.
We simply replace the indicator function in ŵi = 1{lri−1 > cT,i} with a sigmoid function.
Specifically, let τ : R → [0, 1] be a sigmoid function, i.e., monotone and differentiable
with τ(0) = 0.5, τ(−∞) = 0, and τ(∞) = 1, and define for a > 0 and c = (c0, ..., cp−1)
the weights

ŵ2(a, c) = (τ (a(lr0 − c0)) , ..., τ (a(lrp−1 − cp−1))) . (2.4.23)

Similar to above, we will sometimes omit the arguments for notational simplicity. In
most applications it would make sense to just choose ci to be the (1− α)100% quantile
for the asymptotic distribution of the test statistic lri for some prespecified signifcance
level α ∈ (0, 1) in which case we shall write ŵ2(a, α). The hyperparameter a controls the
gradient of the sigmoid function with higher values resulting in a sharper separation. One
can choose a, c dependent on T such that a(lri−ci)→p ∞ if i < r and a(lri−ci)→p −∞
if i ≥ r in which case Π̂ŵ2 is also asymptotically equivalent to Π̂r. This weight works
well for moderate dimensions. Indeed, for very high p, choosing the appropriate vector
c ∈ Rp becomes prohibitive. ♠

Remark 2. For many choices of weights (as in the examples above) one needs to specify
a set of hyperparameters. This might be hard in practice and is perhaps the main
drawback of the general weighted reduced rank estimators. However, in many cases it

1This is only true in a pointwise sense. Indeed, the situation is very different if one considers sequences
of parameters ΠT with eigenvalues getting arbitrarily close to 0. See, for example, the discussion in
Elliott [1998] or the simulations in the following section. For uniform asymptotic inference in this
setting, see Holberg and Ditlevsen [2024b].
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2.5 Simulation study

suffices to chose a list of candidate parameters and then pick the best based on cross-
validation. For the weights given in Example 2.4.1 it often suffices to fix a1 = 1 and
then simply pick a2 so as to minimize, for example, the mean squared prediction error
over 10-fold cross-validation. Finally, in high dimensions, one might need to resort to
cross-validation to estimate the rank anyway since the usual sequential testing approach
outlined above quickly becomes infeasible.

2.5 Simulation study

In this section we perform two sets of simulation studies. First we compare different
weighted reduced rank estimators across a range of parameters. The second set of sim-
ulation experiments compares the empirical large-sample distribution of our estimators
with the asymptotic distributions derived in Section 2.3. This will not only confirm our
results, but also give an idea of how the distributions in (2.3.14), (2.3.15), and (2.3.17)
behave which is useful especially for the last case because of its complicated nature.
Details about the different simulation setups are given in Appendix 2.D.

2.5.1 Comparison of weighted reduced rank estimators

We compare different weighted reduced rank estimators for a handful of configurations.
We compare 4 different types of weights. The first type is given by wf (k) ∈ [0, 1]p with
(wf (k))i = 1 for i ≤ k and 0 otherwise. wf does not depend on the observed data but
simply chooses a fixed number of eigenvectors to include. It thus corresponds to the
simple reduced rank estimators of fixed rank, i.e., Γ̂wf (k) = Γ̂k. The second type is the
post-selection weight ŵ = wf (r̂) in (2.4.20). The last two types are ŵ1 and ŵ2 in eqs.
(2.4.22) and (2.4.23) for different values of hyperparameters. We consider w2(a, α) as
a function of the first parameter a and a significance level α ∈ (0, 1) as explained in
Example 2.4.2. We used the error function as the sigmoid function, i.e.,

τ(x) =
erf(x) + 1

2
, erf(x) =

2√
π

∫ x

0
e−t

2
dt.

We are interested in settings where there might be uncertainty regarding the choice of
rank. This simulation experiment therefore considers sequences of parameters Γc ∈ Rp×p
for which a third of the eigenvalues are stationary (fixed at −3/2), a third is exactly 0,
and the last third is given by −c/T for varying c ≥ 0. Throughout we fix T = 100. For
p = 3, 6, 9 and c ∈ [0, 30] we then compare all the estimators based on the mean squared
error (MSE) and the mean squared prediction error (MSPE), which, for an estimator Γ̂,
is given by TE||∆XT+1 − Γ̂XT ||2. For a detailed description, see Appendix 2.D.1. The
results for the MSPE given in Figure 2.5.1 are based 4 million simulations. The lines
in the figure are smooth versions of the actual results reported in Appendix 2.D. The
results for the MSE in Figure 2.5.2 are based on 50 thousand simulations and there was
no need to do any smoothing. For a decomposition of the MSE in terms of bias and
variance we refer to Figure 2.D.4 and 2.D.5 in Appendix 2.D.
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ŵ1(0.1, 0.5)
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Figure 2.5.1: Mean square prediction error (MSPE) of different weighted reduced rank estima-
tors for varying dimensions and c ∈ [0, 30] where the underlying autoregressive
matrix, Γc, has a third of its eigenvalues set to −c/T , a third set to 0 and a third
set to −3/2. Sample size is fixed at T = 100. The lines have been smoothed out
for better comprehension. See Figure 2.D.1 for the true graphs.

Figure 2.5.2: Mean square error (MSE) of different weighted reduced rank estimators for varying
dimensions and c ∈ [0, 30] where the underlying autoregressive matrix, Γc, has a
third of its eigenvalues set to −c/T , a third set to 0 and a third set to −3/2.
Sample size is fixed at T = 100. See Figure 2.D.4 and 2.D.5 for bias-variance
decomposition.

30



2.5 Simulation study

For the parameters considered here, the cointegration rank will always be equal to
two-thirds of the dimension p, although, for c close to 0, it will be practically p/3. Thus,
the least squares estimator is really overparameterized which results in a higher variance
(see Figure 2.D.5) and thus also a higher MSE in almost all cases. This is in line with the
asymptotic theory developed in Section 2.3. Interestingly, the reduced rank estimator
with k = 2p/3 has a very similar performance in terms of MSE in all cases. Much of this
can probably be attributed to the uncertainty in the ordering of eigenvalues for finite
samples. For c close to 0, the reduced rank estimator with k = p/3 tends to perform
the best for all dimensions considered here. This advantage quickly disappears, though,
when c increases as a result of the bias that is introduced (see also Figure 2.D.4). As
we have tried to emphasize, in practice one will not know the true rank so a more
realistic estimator of Γ to look at in this case is the post-selection estimator also taking
rank estimation into account. In all cases we see that the post-selection estimator is
outperformed by the weighted reduced rank estimators using the ŵ2 weights regardless
of the hyperparameters considered. For ŵ1 it seems that the choice of hyperparameters
plays a much larger role. While ŵ1(0.1, 0.5) is clearly the worst for p = 3, it actually
outperforms all others for p = 9 and for c larger than, say, 17.
In terms of MSPE we see similar results. The least squares estimator has the high-

est MSPE in almost all cases. For c small enough, the reduced rank estimator of rank
p/3 outperforms the reduced rank estimator of rank 2p/3 (the dashed and dash-dotted
black lines). Thus, choosing a rank smaller than the true rank is beneficial if the dis-
carded eigenvectors have eigenvalues close enough to 0. At some point, however, c is too
large and the bias induced by discarding these eigenvector will grow correspondingly at
which point the reduced rank estimator of rank 2p/3 is preferable (around c = 14, 19, 27
from left to right). All the data-dependent weights are attempting to detect this point
and act accordingly. For the estimators based on ŵ1 it seems as though the MSPE is
shifted depending on the dimension. In higher dimension ŵ1(0.1, 0.5) is a good choice
while ŵ1(1, 0.5) outperforms the other estimators most of the time for d = 3. Similarly,
smoothing the rank-selection weights increases the predictive performance of the esti-
mator. Indeed, the weighted reduced rank estimator with weights ŵ2(0.1, 0.1) clearly
outperforms the post-selection estimator in all cases. In Figures 2.D.2 and 2.D.3 in
Appendix 2.D.1 we have plotted the mean and standard deviation of all the weights
across all simulations for p = 3 which potentially explains a lot of the differences in
performance. Similar behaviour holds for p = 6 and p = 9.

2.5.2 Comparison of asymptotic and empirical distributions

We consider estimators of Γ, comparing each block separately. The dimension is p = 4,
the true rank is chosen to be r = 2 and we consider the estimators Γ̂1, Γ̂2, and Γ̂4

corresponding to the three cases of underestimated, correct and overestimated rank. We
let Zt be i.i.d. normal with Zt ∼ N (0,ΣZ). We generate α, β ∈ R4×2 and ΣZ ∈ R4×4

such that Assumptions 1, 2, and 3 are fulfilled. For explicit details on the simulation
setup, see Appendix 2.D.

In Fig. 2.5.3 we compare the empirical distributions and the asymptotic distributions

31



2 Beyond stationarity: Cointegration rank uncertainty

of the three estimators. That is, we compare the distributions on the left-hand sides
to the right-hand sides of (2.3.14), (2.3.15), and (2.3.17). For the estimators under
underestimated rank, we also subtracted the bias in eq. (2.3.16), which is why it appears
to be centered. Observe that the estimators for the true rank (red lines) are not visible
in most plots because they overlap with the other lines. This agrees with the theory. For
the two leftmost columns, the distribution of Γ̂·1

2 coincides with the distribution of Γ̂·1
4 .

For the bottom-right block, Γ̂22
2 and Γ̂22

1 are both singular around 0 which is why the
empirical distributions are highly concentrated compared to the empirical distribution
of Γ̂4.

For all three estimators, the large-sample empirical distribution is close to the asymp-
totic distribution which confirms our theoretical findings. Furthermore, as we hypothe-
sised, the variance of Γ̂1 is decreased in all blocks except the top-left block. The decrease
seems to be most visible in the bottom-left block. This is surprisingly not the case when
we compare Γ̂11

1 with Γ̂11
2 . It looks like the former has a higher variance in some of the

elements. In other simulations the results were also ambiguous making any quantitative
judgements hard. It should be noted, however, that in Fig. 2.5.3 the distribution of
each element of the estimated matrix is plotted separately, i.e., we do not consider the
covariance structure between different elements of the matrix.

2.6 Prediction of EEG Signals

We apply our weighted reduced rank estimators to EEG recordings obtained from an ex-
periment in which two participants were presented with a visual stimulus on a computer
screen. Each participant was first shown a cross on the screen on which to focus for a
random fixation period between 1.5 and 2.5 seconds. Then, two figures would briefly ap-
pear on the screen and the participant should indicate which stimulus had been shown.
For more information on the exact setup, see Levakova et al. [2022]. Here, we analyze
the trials from participant 1 which, after data clean-up, amount to 609 trials in total
with a sampling rate of 256 Hz. For each trial we only consider the period one second
prior to the onset of the visual stimulation. The psychological hypothesis is that the
brain state at stimulus onset is predictive of cognitive performance, and this short pre-
stimulus period is therefore of special interest. After data preprocessing and clean-up,
each EEG signal consists of 59 channels. The resulting data set has 609 observations of
59-dimensional time series of sample size 257. We represent the data by Xi

t ∈ R59 where
i = 1, . . . , 609 and t = 0, 1, . . . , 256. See Fig. 2.6.4 for a sample of Xi.

We analyze the predictive capabilities of the weighted reduced rank estimators for two
classes of weights on the given data. We consider the discrete weights given by wf (k),
k = 0, . . . , 59 as well as the smooth weights ŵ1(1, a2) for a2 = k/25, k = 0, . . . , 49.
The high dimension of the data makes any classical methods of rank selection as well
as methods based on bootstrap prohibitive. Similarly, the weights given in Example
2.4.2 are not well suited for problems in higher dimension due to the need to select the
thresholds c ∈ Rd. The methods proposed so far in this paper are in the setting of a
single observation of a long time series and under the assumption of zero drift. They are,
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Figure 2.5.3: Asymptotic and empirical distributions of Γ̂k − Γ for different choices of k. The
dimension is p = 4, the true rank is r = 2 and the three estimators are Γ̂1, Γ̂2, and
Γ̂4. For each estimator, the dotted line is the empirical distribution for T = 5000
and over 1000 simulations. The i, j’th plot corresponds to the distribution of the
i, j’th element of Γ̂k−Γ . We centered Γ̂1−Γ by subtracting the bias given in the
right hand side of (2.3.16) in Section 2.3. Note different scales in individual plots.
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Figure 2.6.4: Plot of a sample of 59 EEG channels from participant 1 ranging over a second
prior to stimulation onset and sampled at 256 Hz.

however, straightforwardly adapted to work in settings with multiple i.i.d. observations
of the same time series and to allow for the inclusion of a constant drift [Levakova et al.,
2022, Section 2].

In Fig. 2.6.5 we record the performance of each wf (k) and ŵ1(1, a2) in terms of MSPE.
For a test/train split Itrain, Itest ⊂ {1, . . . , 609} with Itrain ∩ Itest = ∅, the model was
fitted on the train set (Xi)i∈Itrain and the MSPE calculated on the test set (Xi)i∈Itest .
We compare the estimators for three different sample sizes of the training data. A train
size of q and test size of p means that |Itrain| = ⌊q609⌋ and |Itest| = ⌊p609⌋. Throughout
we fix the test size at 0.1, i.e., 10% of the observations are used to compute the MSPE.
The results reported in Fig. 2.6.5 are averaged across 40 random test/train splits of the
data for train sizes 0.1, 0.2 and 0.3.

Evidently, for both choices of weights, the fixed rank and the smoothed weights, the
hyperparameter, r or a2, strongly affects the performance of the corresponding estimator.
A similar pattern emerges in the left and right panel of Fig. 2.6.5. At certain thresholds
the predictive capabilities plateau around the same level, namely, for a2 ≤ 0.9 and r ≥ 25.
One way to interpret this is that, after a while, increasing the rank of the estimator does
not yield better results, i.e., we lose nothing by using a lower rank representation of the
underlying dynamics. Similarly, for a2 ≥ 1.5, ŵ1(1, a2) is practically 0 so that the MSPE
in the left panel plateaus at the same level as the MSPE for wf (0). Interestingly, whereas
the MSPE in the right panel seems to be almost monotone in the hyperparameter, this
is not the case in the left panel. Especially for the smallest train size, the MSPE of ŵ1

dips well below the lowest level achieved by wf . Thus, for small sample sizes, the new
estimator with smooth weights performs better. In practice, we do not know the optimal
choice of a2 or k, but this can be partly resolved by cross-validation. Fig. 2.6.6 depicts
the distribution of the MSPE corresponding to the reduced rank estimators with weights
wf (k̂cv) and ŵ1(1, â2,cv) where k̂cv and â2,cv were chosen to yield the lowest MSPE based
on cross-validation on the training data with 10 folds.
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Figure 2.6.5: Average mean square prediction error (MSPE) for chosen reduced rank estimators
over 40 random test/train splits of the data for three different choices of train size.
In each case the test size is fixed at 0.1.
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eters k̂cv and â2,cv were chosen by cross-validation on the training data.
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Figure 2.6.7: Average values of the weights wf (k̂cv)i for the classical fixed rank estimator (i.e.,

weights are 1 for i ≤ k̂cv and 0 otherwise) and ŵ1(1, â2,cv)i for the new proposed
weighted rank estimator, i = 1, . . . , 59, across 40 test/train splits for different

choices of train size. For each split, the hyperparameters k̂cv and â2,cv were chosen
by cross-validation on the training data.

For train sizes 0.2 and 0.3 the two estimators seem to do equally well. This in line
with the results in Fig. 2.6.5. However, the situation changes for the smallest train size
where the smooth weights clearly outperform the discrete weights. In Fig. 2.6.7 we can
see that the weights behave differently. The smooth weights tend rather quickly to 0 for
larger ranks as the sample size decreases, but the discrete weights are slower to react. In
particular, for the smallest sample the chosen rank varies a lot based on the particular
data split. This shows that smoothing the weights is beneficial in settings with large
rank uncertainty (in this case because of the high dimension and the small sample size).

2.7 Conclusion

We have characterised the asymptotic distribution of all reduced rank estimators of the
Π-matrix in a VECM as given by (2.1.1) assuming the cointegration rank, r, and the
dimension, p, are held fixed and the sample size T →∞. Previously, only the asymptotic
distribution of the reduced rank estimator with true rank has been studied. We showed
that similar results hold if the rank is respectively overestimated or underestimated. In
the first case, the Q-transformed estimator is still consistent albeit at the cost of an
increased variance. In particular, the bottom-right block of (2.3.15) no longer converges
in probability to zero. This is to be expected since we are effectively including more
parameters than necessary. In the original coordinates this increased variance appears
in the random walk direction and is not asymptotically relevant on the

√
T scale (see

Theorem 4). In the second case, the estimator is asymptotically biased and the size
of the bias is determined by how much the rank is underestimated. Simulation studies
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confirmed the theoretical findings.
We have introduced a new class of estimators that outperform the classical estimators

in settings where certain eigenvalues are close to zero. By choosing appropriate weights
that take rank uncertainty into account, the weighted reduced rank estimators have
several benefits. They are transparent regarding rank evidence, they have smaller mean
square prediction error and the resulting estimators have less variance when compared
to the post-selection estimator. When applied to high-dimensional EEG data we find
that the weighted reduced rank estimators perform favourably for small sample sizes.
In order to shine some light on this behaviour, an interesting avenue for future research
would be to study the asymptotics of the different quantities in a high-dimensional setup,
that is, asymptotic regimes where the dimension p diverges with the sample size.
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Appendix

2.A. Proofs

Proof of Theorem 1. For ease of notation we write A := SX∆X(S∆X∆X)
−1S∆XX . From

Lemma 1 we find that T− 1
2A12, T

− 1
2A22, T

− 1
2S21

XX , and T
− 1

2S12
XX are oP (1). Since S

11
XX

and T−1S22
XX are OP (1), from (2.3.11) we get that (Ĝ11, Ĝ12) and T

1
2 (Ĝ21, Ĝ22) are

bounded in probability for all j = 1, ..., p. It follows that A12Ĝ21, A22Ĝ21, and S
12
XXĜ21

are oP (1). Finally, note that Λ̂11 defined in (2.3.10) converges in probability to matrix
Λ11 and λ̂i = OP (T

−1) for i = r + 1, ..., p (see e.g. Johansen [1988]).
Writing (2.3.10) in block matrix notation we then have for Ĝ:r,

A11Ĝ11 + oP (1) = S11
XXĜ11Λ̂11 + oP (1) (2.A.1)

A21Ĝ11 + oP (1) = (S21
XXĜ11 + T−1S22

XXTĜ21)Λ̂11. (2.A.2)

With H1 =
(
1
T S

22
XX

)−1 (
A21(A11)

−1S11
XX − S21

XX

)
we compute TĜ21 = H1Ĝ11 + oP (1)

which, in particular, implies that TĜ21 is bounded in probability and therefore ĜT21S
22
XXĜ21,

ĜT21S
21
XXĜ11, and Ĝ

T
11S

12
XXĜ21 are all oP (T

− 1
2 ). Applying (2.3.11) then yields

ĜT11S
11
XXĜ11 = Ir + oP (T

− 1
2 ),

i.e., Ĝ11Ĝ
T
11 = (S11

XX)
−1+oP (T

− 1
2 ). Then we simply compute the estimator S∆XXĜ

:r(Ĝ:r)T

in (2.3.12) using the block expressions derived above. This gives us

Γ̂11
r = S11

∆XXĜ11Ĝ
T
11 + oP (T

− 1
2 ) = βTα+ S11

UX(S
11
XX)

−1 + oP (T
− 1

2 )

Γ̂21
r = S21

∆XXĜ11Ĝ
T
11 + oP (T

− 1
2 ) = S21

UX(S
11
XX)

−1 + oP (T
− 1

2 )

Γ̂12
r = T−1S11

∆XXĜ11Ĝ
T
11H

T
1 + oP (T

−1) = T−1βTαHT
1 + oP (T

−1)

Γ̂22
r = oP (T

−1)

Appealing to Lemma 1 we see that HT
1 →w (βTα)−1(J12 − Σ12

W (Σ22
W )−1J22)B

−1 jointly
with (2.2.5), (2.2.6), and (2.2.7). The result of Theorem 1 is then easily derived from
the above expressions.

Proof of Theorem 2. The main ideas of this proof are similar to those of Theorem 1 and
we shall proceed in the same manner. Slightly abusing the notation used so far we let
Ĝ·2 = (ĜT12, Ĝ

T
22)

T . Equation (2.3.10) translates to

AĜ·2 = SXXĜ·2Λ̂
:m:m
22 (2.A.3)

where Λ̂:m:m
22 = diag(λ̂r+1, ..., λ̂r+m). Recall that λ̂i = OP (T

−1) for i = r + 1, ..., p so

that Λ̂22 = OP (T
−1). Now since Ĝ·2 = oP (T

− 1
4 ) (see the comments made at the start of

Section 2.3.2) and S11
XX , S

12
XX = Op(1), it follows that (S

11
XX , S

12
XX)Ĝ·2Λ̂

:m:m
22 = oP (T

−1).
In block matrix notation the top part of eq. (2.A.3) simplifies to

A11Ĝ
:m
12 +A12Ĝ

:m
22 = oP (T

−1)
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2.7 Conclusion

which, with H2 = −(A11)
−1A12, can be rewritten as Ĝ:m

12 = H2Ĝ
:m
22 + oP (T

−1). Sub-

stituting this expression into the bottom part of eq. (2.A.3) and multiplying by T
1
2

gives

(A22 −A21(A11)
−1A12)T

1
2 Ĝ:m

22 = S22
XXT

1
2 Ĝ:m

22 Λ̂
:m:m
22 + oP (T

− 1
2 )

By the Davis-Kahan Theorem (see e.g. Theorem 4 in Yu et al. [2015]) there exists a
random matrix L solving

(A22 −A21(A11)
−1A12)L = T−1S22

XXLT Λ̂
:m:m
22 , LTT−1S22

XXL = In,

and such that T
1
2 Ĝ:m

22 = L + oP (T
− 1

2 ). We shall find the asymptotics of LLT and then

finish the proof by arguing that L is sufficiently close to T
1
2 Ĝ:m

22 . Using Lemma 1 we
compute

H2 →w (βTαΣ11
X )−1(Σ12

U +Σ12
U (Σ22

U )−1J22),

(A22 −A21(A11)
−1A12)→w J

T
22(Σ

22
U )−1J22

jointly with (2.2.5), (2.2.6), and (2.2.7). With probability 1 the generalized eigenvalues
on the diagonal of Λ22 are all distinct. Lemma 2 in Appendix 2.C along with the
continuous mapping theorem then gives LLT →w G:m

22 (G
:m
22 )

T jointly with H2 and the
expressions in Lemma 1. We now have all the tools needed to evaluate Γ̂r+m starting
with the expression

Γ̂r+m = S∆XX
(
Ĝ·1 Ĝ·2

)(ĜT·1
ĜT·2

)
= S∆XX(Ĝ·1Ĝ

T
·1 + Ĝ·2Ĝ

T
·2).

As mentioned above Ĝ·2 = oP (T
− 1

4 ) which implies that Ĝ:m
12 (Ĝ

:m
12 )

T and Ĝ:m
22 (Ĝ

:m
12 )

T are

oP (T
− 1

2 ) and so we immediately get Γ̂·1
r+m = Γ̂·1

r + oP (T
− 1

2 ). For the remaining two
blocks write(

Γ̂12
r+m

Γ̂22
r+m

)
−
(
Γ̂12
r

Γ̂22
r

)
=

(
S11
∆XXĜ

:m
12 (Ĝ

:m
22 )

T + S12
∆XXĜ

:m
22 (Ĝ

:m
22 )

T

S21
∆XXĜ

:m
12 (Ĝ

:m
22 )

T + S22
∆XXĜ

:m
22 (Ĝ

:m
22 )

T

)
=

(
T−1βTαS11

XXH2LL
T + T−1S12

∆XXLL
T

T−1S22
∆XXLL

T

)
+ oP (T

−1)

and the result follows from Theorem 1 and Lemma 1 in combination with the limits
derived above for H2 and LLT .

Note that the reasoning used to determine the limit of LLT can also be applied to
Λ̂:m:m
22 . In particular, Lemma 1 in the Appendix shows that T Λ̂:m:m

22 converges in distri-
bution to Λ:m:m

22 . There is nothing special about our choice of m here and in particular
T Λ̂22 →w Λ22. It is seen that

|JT22(Σ22
U )−1J22 −Bλ| =

|(Σ22
U )

1
2 ||(Σ22

U )−
1
2JT22(Σ

22
U )−1J22(Σ

22
U )−

1
2 − (Σ22

U )−
1
2B(Σ22

U )−
1
2λ||(Σ22

U )
1
2 |.
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2 Beyond stationarity: Cointegration rank uncertainty

Recalling the definition of J22 and B in Lemma 1 we get that the diagonal of Λ22 is, in
fact, equal to the ordered solutions of∣∣∣∣∣

(∫ 1

0
W2s dW

T
2s

)(∫ 1

0
W2s dW

T
2s

)T
− λ

∫ 1

0
W2sW

T
2s ds

∣∣∣∣∣ = 0

whereW2s are the last n components of the standard Brownian motionWs. Analogously,
we see from Lemma 1 and the proof of Theorem 1 that (λ̂1, ..., λ̂r) are asymptotically
equivalent to the ordered solutions of |A11 − S11

XXr|. In other words, Λ̂11 converges in
probability to Λ11 whose diagonal are the ordered solutions of

|Σ11
Xα

Tβ(Σ−1
∆X)11β

TαΣ11
X − Σ11

X λ| = 0. (2.A.4)

We have thus determined the asymptotics of Λ̂ as well. This is a well known result
in the cointegration literature from which one can derive the asymptotic distribution of
the so-called trace test statistic, which tests the hypothesis that the cointegration rank
is at most k < p [Johansen, 1988].
The asymptotics are a little more involved in the case where the true rank is underesti-

mated. Before the proof, we first show some intermediate lemmas. To study the limiting
distribution of T

1
2 (Γ̂11

m −Γ11−bm) we follow the strategy of Izenman [1975] which forces
us to set up more notation and introduce some ideas from matrix differential calculus.
We use the notation from Magnus and Neudecker [2019]. For a matrix valued function
Φ : Rm×n → Rk×l we let dΦ denote its differential. Similarly, we define the derivative
of Φ(A) with respect to A as the derivative of the vectorization of Φ(A) with respect to
the vectorization of A:

DΦ =
∂vecΦ(A)

∂vecAT
,

i.e., the Jacobian matrix of vec(Φ). One useful result we shall use is the following
[Neudecker, 1968]: If dΦ(A) =

∑
iMi(dA)Ni for suitable matrices Mi, Ni, then the

derivative is DΦ =
∑

iN
T
i ⊗Mi. We define the commutation matrix I(k,l) as the square

kl×kl block matrix partitioned into k× l blocks whose (i, j)’th block is 1 in the (j, i)’th
coordinate and 0 everywhere else. Our goal is to use the delta method to determine the
asymptotic distribution of the left side of Γ̂m.

Lemma 2 (Delta method). Let (xn)n∈N ⊂ Rd be a sequence of random vectors such
that

√
n(xn − x)→w N (0,Σ) for some x ∈ Rd and a positive definite covariance matrix

Σ ∈ Rd×d. Assume furthermore that h : Rd → Rp is a continuous function that is
continuously differentiable in a neighbourhood of x with Jacobian matrix J = ∂h

∂yT
|y=x.

Then,
√
n(h(xn)− h(x))→w N (0, JΣJT ).

Furthermore, we need the following results on the sample covariance matrix.

Lemma 3. Define X̃t =
(
∆XT

t XT
1t−1

)T
and consider the sample covariance matrix

SX̃X̃ . Then X̃t is stationary with,

SX̃X̃ →p ΣX̃ =

 Σ11
∆X Σ12

∆X βTαΣ11
X

Σ21
∆X Σ22

∆X 0
Σ11
Xα

Tβ 0 Σ11
X

 .
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2.7 Conclusion

Let κijkl be the joint cumulant of Ut,i, Ut,j , Ut,k, and Ut,l. If κijkl vanishes for all 1 ≤
i, j, k, l ≤ p, then

√
Tvec(SX̃X̃ − ΣX̃)→w N (0,Ξ), where

Ξ =

∞∑
k=−∞

γk ⊗ γk + I(p+r,p+r)

∞∑
k=−∞

γk ⊗ γk (2.A.5)

and γk = E(X̃0X̃
T
k ).

Note that the second part of Lemma 3 holds also if we replace X̃t with any multivariate
stationary linear process with vanishing fourth order cumulants. In fact, it is sufficient
to assume that the cumulants are finite, but this complicates the expression for the
asymptotic covariance somewhat so we keep the assumption. It holds specifically when
Ut is Gaussian.

Proof of Lemma 3. X̃t is clearly stationary since ∆Xt and X1t−1 are stationary. From
(2.2.3) and (2.2.4) we see that X̃t =

∑∞
s=0ΨsUt−s where

Ψ0 =

 Ir 0r×n
0n×r In
0r×r 0r×n

 , Ψs =

βTα(Ir + βTα)s−1 0r×n
0n×r 0n×n

(Ir + βTα)s−1 0r×n

 for s ≥ 1

and it is easily verified that
∑∞

s=0 ||Ψs|| < ∞. The first part of the statement then
follows from known results about linear processes (see e.g. Proposition C.12 in Lütkepohl
[2005]).
Under the assumptions of Lemma 3,

√
T (SX̃X̃−ΣX̃) converges in distribution to some

random matrix, N , with vec(N) normal and covariance given by (see e.g. Roy [1989])

Cov(Ni,j , Nk,l) =

∞∑
u=−∞

(γu)ik(γu)jl +

∞∑
u=−∞

(γu)jk(γu)il.

Now let η(i, j) = (p+ r)(j − 1) + i and observe that

(γu)ik(γu)jl = (γu ⊗ γu)η(i,j),η(k,l),
(γu)jk(γu)il =

(
(γu ⊗ γu)I(p+r,p+r)

)
η(i,j),η(k,l)

.

Since Ξη(i,j),η(k,l) = Cov(Ni,j , Nk,l), this is exactly what we need to show, keeping in
mind that I(p+r,p+r)(γu ⊗ γu) = (γu ⊗ γu)I(p+r,p+r) [Magnus and Neudecker, 1979].

We now have all the tools we need to derive the asymptotics of Γ̂·1
m. For a matrix

M ∈ R(p+r)×(p+r) write it in block form

M =

(
M11 M12

M21 M22

)
where M11 is p × p and M22 is r × r. Denote by ρ1 ≥ · · · ≥ ρr the generalized
eigenvalues sorted in decreasing order for the generalized eigenvalue problem given by
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2 Beyond stationarity: Cointegration rank uncertainty

M21(M11)
−1M12 and M22. Let v1, ..., vr be the corresponding generalized eigenvectors.

Define the function h : R(p+r)×(p+r) → Rr×r by h(M) =M12
∑m

k=1 vkv
T
k . We can write

dM11 = (Ip, 0p×r) dM

(
Ip

0r×p

)
, dM12 = (Ip, 0p×r) dM

(
0p×r
Ir

)
,

dM21 = (0r×p, Ir) dM

(
Ip

0r×p

)
, dM22 = (0r×p, Ir) dM

(
0p×r
Ir

)
.

Also, we have dM−1
11 = −M−1

11 (dM11)M
−1
11 (see e.g. Thm. 8.3 in Magnus and Neudecker

[2019]) whence

d(M21M
−1
11 M12) = (0r×p, Ir) dM

(
M−1

11 M12

0r×p

)
−
(
M21M

−1
11 , 0p×r

)
dM

(
M−1

11 M12

0r×p

)
+
(
M21M

−1
11 , 0p×r

)
dM

(
0p×r
Ir

)
.

For ease of notation we now write Pi = G11ei(G11ei)
T with ei being the i’th unit vector,

that is, G11ei is the i’th column of G11, ΣX∆X = (Σ11
Xα

Tβ, 0r×n), and Σ∆XX = ΣTX∆X .
Under Assumption 3, the map M 7→ viv

T
i is differentiable at M = ΣX̃ (see Appendix

2.C). Let ξi = D(viv
T
i )|M=ΣX̃

. Lemma 3 yields

ξi =
∑
j ̸=i

(λi − λj)−1(Pi ⊗ Pj + Pj ⊗ Pi)Fi − (0r×p, Pi)⊗ (0r×p, Pi) (2.A.6)

where

Fi =
(
ΣX∆XΣ

−1
∆X ⊗

(
−ΣX∆XΣ

−1
∆X , Ir

)
, Ir ⊗

(
ΣX∆XΣ

−1
∆X ,−λiIr

))
.

Then,

ξ = Dh|M=ΣX̃
=

m∑
i=1

(
0r×p Pi

)
⊗
(
Ip 0p×r

)
+ (Ir ⊗ Σ∆XX)ξi. (2.A.7)

Observe that (2.A.1) also holds with oP (1) replaced by oP (T
− 1

4 ) and a similar argu-
ment as that applied in the proof of Theorem 2 therefore shows that Ĝ:m

11 (Ĝ
:m
11 )

T =

G:m
11 (G

:m
11 )

T + oP (T
− 1

2 ). In particular,

√
T

(
Γ̂11
m − Γ11 − b
Γ̂21
m − Γ21

)
=
√
T (h(SX̃X̃)− h(ΣX̃)) + oP (T

− 1
2 )

and it is a straightforward application of Lemma 2 and Lemma 3 to prove that
√
Tvec(h(SX̃X̃)−

h(ΣX̃))→w N (0, ξΞξT ). Thus, we have identified the asymptotic distribution of the two
left blocks. As we shall see below there is a much simpler expression for the asymptotic
covariance matrix of

√
Tvec(Γ̂21

m − Γ21). We are now ready to prove Theorem 3.
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2.7 Conclusion

Proof of Theorem 3. Starting as in the proof of Theorem 1 and replacing Ĝ:m
11 (Ĝ

:m
11 )

T

with G:m
11 (G

:m
11 )

T in the appropriate places, we find that

Γ̂11
m = S11

∆XXG
:m
11 (G

:m
11 )

T + oP (T
− 1

2 )

Γ̂21
m = S21

UXG
:m
11 (G

:m
11 )

T + oP (T
− 1

2 )

Γ̂12
m = T−1βTαΣXXG

:m
11 (G

:m
11 )

THT
1 + oP (T

−1)

Γ̂22
m = oP (T

−1)

We derived the asymptotic distribution for the first two expressions above. The other
two follow directly from Lemma 1.
The second result is also an easy consequence of Lemma 1, since T

1
2vec(Γ̂21

m − Γ21)
converges in distribution to (G:m

11 (G
:m
11 )

T ⊗ In)vec(V21), which, of course, is normal with
mean 0 and covariance matrix as given in the theorem. Another way to arrive at the
same result is to first observe that

vec
(
Γ̂21
m − Γ21

)
= (Ir ⊗ (0n×r, In)) vec

(
Γ̂11
m − Γ11 − b
Γ̂21
m − Γ21

)
and the asymptotic covariance of

√
Tvec(Γ̂21

m − Γ21) must therefore equal ξ21Ξξ
T
21 where

ξ21 = (Ir ⊗ (0n×r, In))ξ. We compute

ξ21 =
(
0r×p, G

:m
11 (G

:m
11 )

T
)
⊗ (0n×r, In, 0n×r)

and thus ξ21(γk ⊗ γk) = (γk ⊗ γk)ξ
T
21 = 0 for all k ̸= 0. Furthermore, we find that

ξ21I(p+r,p+r)(γ0 ⊗ γ0)ξT21 = 0 and

ξ21(γ0 ⊗ γ0)ξT21 = ξ21(ΣX̃ ⊗ ΣX̃)ξ
T
21 = G:m

11 (G
:m
11 )

TΣ11
XG

:m
11 (G

:m
11 )

T ⊗ Σ22
U

which then results in the same covariance as before.

Whenm = r the expression for ξ simplifies significantly. Indeed, as noted after Lemma
3 in Appendix 2.C, we find that

∑r
i=1 ξi = −(Σ11

X )−1 ⊗ (Σ11
X )−1 and thus

ξ =
(
0r×p (Σ11

X )−1
)
⊗
(
Ip −Σ∆XX(Σ

11
X )−1

)
.

We then compute ξ(γk ⊗ γk)ξT = ξI(p+r,p+r)(γk ⊗ γk)ξT = 0 for k ̸= 0. For k = 0 we

have γ0 = ΣX̃ and ξI(p+r,p+r)(γ0 ⊗ γ0)ξT = 0. Thus,

ξΞξT = ξ(ΣX̃ ⊗ ΣX̃)ξ
T = (Σ11

X )−1 ⊗ ΣU

which is the covariance matrix of vec(V (Σ11
X )−1), i.e., our result is in line with the one

derived in Theorem 1.
The following proof is an easy consequence of the discussion in Section 2.3.4.
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2 Beyond stationarity: Cointegration rank uncertainty

Proof of Theorem 4. Assume that k ≥ r. The first statement is then a direct conse-
quence of (2.3.14), (2.3.15) and (2.3.17), and the fact that T

1
2vec(Π̂k − Π) = (QT ⊗

Q−1)T
1
2vec(Γ̂k − Γ), recalling that the two right blocks are oP (T

− 1
2 ).

For the second part, assume that 1 ≤ k < r. Then,

Π̂k −Π = Q−1(Γ̂− Γ)Q→p α(β
Tα)−1bβT = b̃.

Applying the same argument as above and referring to the proof of Theorem 2, we obtain
the desired distribution.

Proof of Theorem 5. To prove consistency simply observe that

Γ̂wT − Γ̂r = S∆XX

(
r∑
i=1

(wT,i − 1)ĝiĝ
T
i +

p∑
i=r+1

wT,iĝiĝ
T
i

)
.

S∆XX ĝiĝ
T
i is bounded in probability for i ≤ r and converges in probability to 0 for i > r

from which it follows that both terms on the right hand side converge in probability to
0 for T going to infinity. The result then follows since Γ̂r is consistent.

Now, for 0 ≤ k ≤ p, define the matrices

D =

(
T

1
2 Ir 0
0 TIn

)
, Bk =

(
bk 0
0 0

)
, Bw =

(
bw 0
0 0

)
where bk is the asymptotic bias of Γ̂k for 0 ≤ k ≤ p − 1 and 0 otherwise. Let WT,i =
wT,i+1 − wT,i for 1 ≤ i ≤ p − 1, WT,0 = wT,1, and WT,p = 1 − wT,p and define Wi

analogously for w instead of wT so that, by assumption, T (WT,i − Wi) converges in
probability to 0 for T →∞. Furthermore, define the random matrices Z0, ..., Zp ∈ Rp×p
such that Z0 = 0, Zk is the right-hand side of (2.3.17) for 1 ≤ k < r, Zr is the right-hand
side of (2.3.14), and Zk is the right-hand side of (2.3.15) for r < k ≤ p. It then follows
from Theorems 1, 2, and 3 along with the continuous mapping theorem that

(
Γ̂wT − Γ−Bw

)
D =

p∑
k=0

WT,k

(
Γ̂k − Γ−Bk

)
D →w

p∑
k=0

WkZk

for T → ∞. Upon rewriting the right-hand side of the above expression we obtain
(2.4.21).

2.B. Multiple Lags

In this section we consider processes of higher order. Let d ≥ 1 and {Yt}∞t=0 ⊂ Rp be an
AR(d)-process. Similar to (2.1.1), the dynamics of Yt can be expressed in VECM form
by

∆Yt = ΠYt−1 +

d−1∑
i=1

Ψi∆Yt−i + Zt
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2.7 Conclusion

where {Zt}∞t=0 is a sequence of i.i.d. copies of Z0 with 0 mean and finite fourth moment.
Define the processes X0t = ∆Yt, X1t = Yt−1, and X2t = (∆Yt−1, ...,∆Yt−d) as well as
the new parameter Ψ = (Ψ1, ...,Ψd−1). We can then rewrite the equation as

X0t = ΠX1t +ΨX2t

Assumptions similar to Assumptions 1 and 2 are needed to ensure a cointegrated process.
We assume that 1 ≤ r < p.

Assumption 4. The polynomial z 7→ |(1− z)Ip−Πz−∑d−1
i=1 Ψi(1− z)zi| has n = p− r

unit roots and all other roots are outside the unit circle.

As before, this assumption implies that the rank of Π is p−n = r so that we can write
Π = αβT for α, β ∈ Rp×r of full rank r.

Assumption 5. The matrix αT⊥(Ip −
∑d−1

i=1 ψi)β⊥ is non-singular.

The parameters are usually estimated as follows [Johansen, 1995]: First we find the
residuals obtained from regressing X0t, X1t, and Zt on X2t denoted by R0t, R1t, and Ut,
respectively. The reduced rank estimator, Π̂k of Π, is then obtained as above starting
with the equation

R0t = ΠR1t + Ut.

After finding Π̂k an estimator for Ψ is given by ordinary least squares, i.e., Ψ̂LS is
obtained by regressing X2t on X0t− Π̂kX1t. The asymptotics in this case can be derived
from the previous section. Indeed, as shown in Johansen [1995], similar limiting results
as those given in Lemma 1 exist for the empirical cross-covariances given by R0t and R1t

and the limiting behaviour of Ψ̂LS is studied in the usual way.

2.C. Auxiliary results

We state here some results from perturbation theory of linear operators. These will be
relevant especially for proving convergence of eigenvectors and eigenvalues. For more
information, see Kato [2013]. Let M,N ∈ Rp×p and denote by || · ||F the Frobenius-
norm. Define ρ(M,N) ∈ Cp to be the ordered p-tuple that contains the solutions to
M − ρN = 0 counted with multiplicity.

Lemma 1. Assume that N is non-singular. Then the map (M,N) 7→ ρ(M,N) is
continuous in the sense that for a sequence Mn, Nn ∈ Rp×p with ||M −Mn||F + ||N −
Nn||F → 0 it holds that

||ρ(M,N)− ρ(Mn, NN )|| → 0.

Proof. This is Theorem 5.14 in Kato [2013] after observing that for ρ ∈ ρ(M,N)

|N−1M − Iρ| = 0
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2 Beyond stationarity: Cointegration rank uncertainty

If M and N are real symmetric, then ρ(M,N) ∈ Rp. Writing ρ(M,N)i = ρi there
then exist real-valued vectors v1, ..., vp satisfying Mvi = ρiNvi and vTi Nvi = δij for
i, j = 1, ..., p. We call vi the generalized eigenvector corresponding to ρi. The generalized
eigenvectors are not unique, but we can define Pi(M,N) :=

∑
j:ρi=ρj

viv
T
i for i = 1, ..., p

which is then uniquely determined by M,N . Note that for ρi = ρj we will also have
Pi = Pj . If we denote by S the space of real symmetric p × p matrices, we are led to
define the maps from S × S to Rp×p given by Pi for i = 1, ..., p. The following two
lemmas concern the smoothness of these maps.

Lemma 2. Let S+ denote the space of real positive definite p × p matrices. Pi is con-
tinuous at points (M,N) ∈ S × S+. This means that if (Mn, Nn) ∈ Rp×p × Rp×p with
||Mn −M ||F + ||Nn −N ||F → 0 for n→∞, then

||Pi(Mn, Nn)− Pi(M,N)||F → 0.

Proof. We may assume for n large enough that Nn is positive definite since it converges

towards a positive definite matrix. Define S = N− 1
2MN− 1

2 and Sn = N
− 1

2
n MnN

− 1
2

n .
Clearly the eigenvalues of S are ρ1, ..., ρp with the corresponding orthonormal eigenvec-

tors given by ṽi = N
1
2 vi for i = 1, ..., p and similarly for Sn. The result then follows from

Theorem 2.23 and 3.16 in Kato [2013].

Lemma 3. Assume (M,N) ∈ S × S+ with simple eigenvalues, i.e., ρ1 > ... > ρp. Then
Pi and ρi are continously differentiable at (M,N). Furthermore, the differential of Pi is
given by

dPi = −Pi(dN)Pi − (M − ρiN)+(dM − ρidN)Pi − Pi(dM − ρidN)(M − ρi)+

where (M − ρiN)+ =
∑

j:ρj ̸=ρi(ρj − ρi)−1Pj.

Proof. The first statement follows directly by Theorem 8.9 in Magnus and Neudecker
[2019] after transforming the problem as above. To find the expression for the differential,
we start with the defining equations

MPi = ρiNPi, PiNPi = Pi.

The first equation yields (M − ρiN)dPi = −(dM − ρidN)Pi + (dρi)NPi. Note that
PjNPi = δijPi and that M − ρiN = (

∑p
j=1(ρj − ρi)NPj)N . Multiplying the above

differential equation by (M − ρiN)+ on each side therefore yields

(Ip − PiN)dPi = −(M − ρiN)+(dM − ρidN)Pi, (2.C.1)

(dPi)(Ip −NPi) = −Pi(dM − ρidN)(M − ρiN)+. (2.C.2)

Now after introducing differentials into the equation PiNPi = Pi we arrive at (Ip −
PiN)dPi+(dPi)(Ip−NPi) = dPi+Pi(dN)Pi. Plugging this into (2.C.1) + (2.C.2) gives
us exactly the equation stated in the Lemma.
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It is not too hard to show that

p∑
i=1

(M − ρiN)+(dM − ρidN)Pi = −
p∑
i=1

Pi(dM − ρidN)(M − ρiN)+

and from the previous Lemma we then obtain for P =
∑p

i=1 Pi that

dP = −
p∑
i=1

Pi(dN)Pi.

But we also have that P = N−1 from which it follows that dP = −P (dN)P and thus
−∑p

i=1 Pi(dN)Pi = −P (dN)P and so the differential of P simplifies significantly.

2.D. Simulation study

Here we describe in detail the simulation experiments from Section 2.5. The simulations
were run in Python 3.9.1 and the code can be found on GitHub.2

2.D.1 Comparison of Estimators

We consider an array of parameters Γc ∈ Rp×p for p = 3, 6, 9 and c ∈ {0, 0.2, 0.4, ..., 29.8, 30}.
For each c and p, we let Γc be the diagonal matrix given by

(Γc)ii =


−1.5 if i ≤ p/3,
−c/T if p/3 < i ≤ 2p/3

0 otherwise.

Throughout we fix T = 100. For each Γc we draw X1, ..., XT and XT+1 and compute
the MSPE across 4 million simulations. The results are given in Figure 2.D.1.
To gain some insight we also plotted the mean and standard deviation of the individual

weights across all simulations for p = 3 (see Figures 2.D.2 and 2.D.3). Clearly, choosing
smoother weights significantly reduces the variance of the weights for eigenvectors where
the corresponding eigenvalue is small. This is particularly apparent for ŵ2(0.1, 0.1).
While on average the weight is similar to ŵ, it is not as steep for increasing c and its
variance is significantly lower.
Finally, we decomposed the lines in Figure 2.5.2 into bias and variance, the results

are plotted in Figure 2.D.4 and 2.D.5. For an estimator Γ̂ of the true parameter Γ, bias
here refers to the real number ∥EΓ̂− Γ∥2 and the variance refers to tr(Var(Γ)).

2.D.2 Comparison of Distributions

We generated 1000 i.i.d. samples of length T = 5000 of the process Yt ∈ R4 given by
(2.1.1). For each sample, the errors are i.i.d. Zt ∼ N (0,ΣZ) where ΣZ is a random

2https://github.com/cholberg/coint_CLT
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Figure 2.D.1: Mean square prediction error (MSPE) of different weighted reduced rank estima-
tors for varying dimensions and c ∈ [0, 30] where the underlying autoregressive
matrix, Γc, has a third of its eigenvalues set to −c/T , a third set to 0 and a third
set to −3/2. Sample size is fixed at T = 100.
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ŵ1(0.1, 0.5)
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ŵ2(10.0, 0.1)
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Figure 2.D.2: Mean of weights across 4 million simulations for d = 3 and c ∈ [0, 1] where the
underlying autoregressive matrix, Γc, has a third of its eigenvalues set to −c/T ,
a third set to 0 and a third set to −3/2. Sample size is fixed at T = 100.
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Figure 2.D.3: Standard deviation of weights across 4 million simulations for d = 3 and c ∈ [0, 1]
where the underlying autoregressive matrix, Γc, has a third of its eigenvalues set
to −c/T , a third set to 0 and a third set to −3/2. Sample size is fixed at T = 100.

Figure 2.D.4: Bias of different weighted reduced rank estimators for varying dimensions and
c ∈ [0, 30] where the underlying autoregressive matrix, Γc, has a third of its
eigenvalues set to −c/T , a third set to 0 and a third set to −3/2. Sample size is
fixed at T = 100.
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Figure 2.D.5: Variance of different weighted reduced rank estimators for varying dimensions
and c ∈ [0, 30] where the underlying autoregressive matrix, Γc, has a third of its
eigenvalues set to −c/T , a third set to 0 and a third set to −3/2. Sample size is
fixed at T = 100.

positive definite matrix that is given by

I4 +
1

2
UUT

with Uij i.i.d. uniformly over [0, 1] for i, j = 1, ..., 4. The matrix Π ∈ R4×4 is of rank 2
and can be decomposed as Π = αβT where

α =


−0.7 0
0 −0.7
0 0
0 0

 , β =


1 0
−1 1
0 −1
0 0

 .

This ensures that Assumptions 1, 2, and 3 are fulfilled with probability 1 so that the
process is I(1) and cointegrated. The cointegration rank is equal to the rank of Π and
the cointegration relations are given by the columns of β. Each sample is Q-transformed
to get Xt as in (2.2.2) and we computed the estimators Γ̂1, Γ̂2 and Γ̂4 to obtain the
empirical large-sample distribution in the three different cases.

The asymptotic densities were obtained by generating 1000 samples from (2.3.14),
(2.3.15), and (2.3.17) with the parameters as given above.

2.D.3 Rank selection vs. Bias

We now turn to the relation between the r non-zero eigenvalues in (2.A.4) and rank-
selection. We consider a high-dimensional process Yt ∈ R40 generated by (2.1.1) under
different parameter settings. The parameters are chosen in such a way that ||Π||F
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remains fixed in all settings with cointegration rank r = 20. However, the sequence of
eigenvalues changes. For each setting, we consider different values of λmin and λmax such
that λmin < λmax correspond to the smallest and largest squared eigenvalue, respectively.
In order to keep ||Π||F fixed, an increase in λmin leads to a decrease in λmax so that
it suffices to only specify the value of λmin. Smaller values of λmin represent cases in
which there are many small eigenvalues so that we would expect the cointegration test
to be more prone to underestimate the true rank. To be precise for a given choice of
λmin ∈ {0.01, 0.03, 0.1, 0.3} the samples are generated as follows: For each sample the
errors are i.i.d. Zt ∼ N (0, I40). We fix

β =

(
I20

020×20

)
and let λmax = 0.81 − λmin. This choice may seem arbitrary, but it basically ensures
that the process is non-explosive and that the norm of Π does not depend on λmin as
argued below. Now define

λk = λmin +
(λmax − λmin)(k − 1)

19
, for k = 1, ..., 20.

Setting D = diag(
√
λ1, ...,

√
λ20) and letting

α =

(
−2D
020×20

)
then ensures that Assumptions 1, 2, and 3 are fulfilled with cointegration rank 20 and
the non-zero eigenvalues defined in (2.A.4) being exactly

√
λ1, ...,

√
λ20. Here, of course,

Π = αβT and ΣZ = I40. Observe that the process Yt is already split up into its stationary
and random walk part. By construction we also have that

||Π||2F =
20∑
i=k

λk = 20λmin +
λmax − λmin

19

20∑
k=1

(k − 1) = 10(λmin + λmax) = 8.1

so that ||Π||F does not depend on our choice of λmin.
Since the asymptotic distributions of the test statistics described in Section 2.4.1 are

non-standard and non-applicable in dimensions that much exceed p = 12 we will instead
use a bootstrap approach as described in Cavaliere et al. [2015] to estimate the rank. In
all simulations we used B = 299 bootstrap samples for each test.
In Fig. 2.D.6 we estimate the probability of choosing a given rank for different values

of λmin. For each choice, we simulate 200 samples of Yt of length T = 200 and estimate
the rank using the sequential testing approach described above. We used the trace
statistic and bootstrap to determine the asymptotic distribution under each hypothesis.
In line with our expectations, the rank tends to be underestimated for smaller values of
λmin. It appears that an increase in λmin causes a shift towards the true rank in the
distribution of estimated ranks.
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Figure 2.D.6: Distribution of the estimated rank under different parameter settings. The results
are based on 200 simulations of (Y0, ..., Y200). The vertical line at 20 illustrates
the true rank of Π. The dimension is p = 40.

Figure 2.D.7: Asymptotic bias of Π̂k for different values of k ∈ {2, ..., 20} and choices of λmin ∈
{0.01, 0.03, 0.1, 0.3}. We plot here the Frobenius norm of the bias b defined in
(2.3.16).

When studying the asymptotic bias in the different cases, we see an adverse effect. For
smaller values of λmin, the bias tends to be very small as long as we only underestimate
the true rank by a little. This is illustrated in Fig. 2.D.7. Choosing k = 14 in the case
where λmin = 0.01 leads to approximately the same asymptotic bias as choosing k = 18
in the case where λmin = 0.3 even though in the former case we are quite far off from
the true rank.
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Uniform Inference for Cointegrated Vector
Autoregressive Processes

Christian Holberg, Susanne Ditlevsen

Abstract
Uniformly valid inference for cointegrated vector autoregressive processes has so

far proven difficult due to certain discontinuities arising in the asymptotic distri-
bution of the least squares estimator. We extend asymptotic results from the uni-
variate case to multiple dimensions and show how inference can be based on these
results. Furthermore, we show that lag augmentation and a recent instrumental
variable procedure can also yield uniformly valid tests and confidence regions. We
verify the theoretical findings and investigate finite sample properties in simulation
experiments for two specific examples.

2.8 Introduction

Persistence, i.e., long term sensitivity to small shocks, appears to be a commonly occur-
ring characteristic of many stochastic systems encountered in practice. Such processes
are often modeled with cointegration where the persistence can be attributed to a number
of shared stochastic trends (random walks). Due to their relative simplicity, cointegra-
tion models are widely applied. Cointegration in vector-valued autoregressive processes
arises when the characteristic polynomial possesses at least one unit root [Johansen,
1988, 1991, 1995]. The asymptotic theory and, hence, inference is heavily reliant upon
the fact that a fixed number of roots can be assumed exactly one and the rest stay
sufficiently far away from one. This is the case even for simple regression methods such
as ordinary least squares. In practice, such assumptions are overly restrictive and more
flexible models are often needed for a better description of the empirical data. Slight
deviations from the unit root assumption can severely deteriorate the results of the sta-
tistical analysis [Elliott, 1998]. Thus, the need arises for inference methods that are
uniformly valid over a range of stationary and non-stationary behaviors.
So far, uniform guarantees have only been provided for methods of inference in the uni-

variate case. Bootstrap inference algorithms are presented in Andrews [1993], Hansen
[1999] with uniform guarantees given in Mikusheva [2007]. Furthermore, Mikusheva
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2 Beyond stationarity: Cointegration rank uncertainty

[2007] provides a uniform asymptotic framework for one-dimensional autoregressive pro-
cesses with potential unit roots, which served as an inspiration for much of the work in
this paper.
The problem is well-understood in one dimension, but less progress has been made

in multiple dimensions. This deficiency is certainly not due to a lack of methods being
proposed. Indeed, multiple methods which are supposedly robust against local devia-
tions to the unit root assumption exist in the literature. One prominent strand employs
lag augmentation [Dolado and Lütkepohl, 1996, Toda and Yamamoto, 1995]. The idea
is simple and easy to apply, but lacks efficiency since it essentially involves overfitting
the model. While these results are in a sense stated as uniform, this is never made
mathematically precise. In particular, it is not stated over which parameter space, the
procedures will yield tests of uniform size (or coverage probability in the case of confi-
dence intervals). Other methods, seeking to avoid the inefficiency problem, derive their
methods under specific configurations of parameters. The main approach is to assume
that the roots are all of a similar proximity to one. In particular, the autoregressive
matrix is modeled as a sequence of matrices that approach the identity matrix at some
given rate kn. This is, for example, the setup in the instrumental variable methodology
(IVX) developed in Kostakis et al. [2015], Magdalinos and Phillips [2020], Phillips et al.
[2009]. In these cases, however, asymptotic guarantees are only provided for the given
sequence of parameters. Furthermore, a lot of focus has been given to predictive regres-
sion problems in which the predictive power of the past of one process on the future of
another is assessed. Efficient tests are developed in Campbell and Yogo [2006], Jansson
and Moreira [2006] and, based on the ideas of uniform inference for univariate autore-
gressive processes, Phillips [2014] leverage these methods for uniformly valid inference.
Unfortunately, most of the work only covers the bivariate case in which the regressor
is a univariate autoregressive process so that the theory for one dimension directly ap-
plies. Another branch of research concerns inference on cointegrating relations robust
to deviations from the unit root assumption [Duffy and Simons, 2023, Franchi and Jo-
hansen, 2017], but, again, with asymptotic results only covering specific sequences of
parameters.3

Quite a bit of effort has gone into establishing asymptotic statements of the flavor
that we seek here. Generic results on uniform convergence are provided in Andrews
et al. [2020]. However, they hold only insofar as one can establish the right asymptotic
distributions under arbitrary sequences of parameters.4 While progress in this direction
has been made [Phillips and Lee, 2013, 2015], there has thus far been no general answer
to this problem. For example, these papers do not allow the process to have parts that

3In Duffy and Simons [2023], the general theory is developed without any restrictions other than a
fixed number of roots being bounded away from unity. However, to study the large sample behavior
of their proposed methods (Section 3.1.4), the authors impose the familiar local-to-unity framework
where the autoregressive matrix is modeled as a sequence of matrices drifting towards the identity
at rate n.

4Note that the definition of uniform convergence given in the present paper (see Def. 1) is equivalent
to convergence along all sequences of parameters. Thus, establishing the validity of the necessary
assumptions in Andrews et al. [2020] (in particular Assumption A1 and S) is essentially the goal of
the work presented here.
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remain stationary for all sample sizes, and only diagonal regression matrices are allowed.
The most general result in this direction is given in Phillips [1988] where asymptotic
approximations are established that hold generically for drifting autoregressive matrices
of the form Γ = exp(Cn−1) with no further structure assumed on the matrix C. This
setting, also called the local-to-unity setting, has received a lot of attention due to the
challenges arising on the inferential side. As might have been expected, similar to the
univariate case, considering the local-to-unity framework provides the link between the
limiting behavior of unit root processes and purely stationary processes.
Extending the theory in Mikusheva [2007] to multiple dimensions, as is our goal,

runs into several difficulties. Firstly, it is not clear what assumptions to put on the
autoregressive matrix to ensure that the asymptotic results hold uniformly while still
covering all relevant cases. In one dimension, the autoregressive parameter is a scalar
and it is sufficient that it is real, bounded in norm by 1, and bounded away from -1
by some small δ. We need to extend this idea to matrices. A simple approach is to
assume that at most one root is allowed to be close to unity as done in Mikusheva
[2012]. However, in some applications this is too restrictive and it would be useful to
allow for arbitrarily many roots close to one. Secondly, while many of the results on the
asymptotics of the sample covariance matrices generalize nicely to multiple dimensions,
the proofs are more involved. For example, Mikusheva [2007] uses Skorohod’s embedding,
which famously only works in one dimension, to prove that the errors can be assumed
to be Gaussian. The third and perhaps most profound difficulty is that the multivariate
setting allows for cointegrated systems (or almost cointegrated systems in the case where
the roots are only close to unity). This gives rise to certain asymptotic discontinuities.
In particular, it necessitates a proper normalization of the sample covariances. These
problems extend to the inferential side where, additionally, computational challenges
arise. Naively adapting, for example, the grid bootstrap approach of Hansen [1999] would
cause the computational complexity to explode. On the other hand, in many settings
one might have reason to believe that there is an upper bound to how many roots can
fall close to unity. Restricting, as in Mikusheva [2012], all but one root away from the
unit circle can simplify inference significantly (see also the remarks after Theorem 2).

What we seek here, then, is to precisely define the parameter space of interest, Θ,5

and establish the validity of inferential procedures not just for certain specific regions or
sequences in Θ, but uniformly over all of Θ. If we insist that this definition of the size
of a test, i.e., the highest probability of rejecting the null across the entire parameter
space, is the appropriate one, then the previous work has been insufficient in providing
such assurance. The missing piece, no doubt, is providing uniform approximations of the
two key covariance matrices given in (2.10.1), which is the main objective of the present
work. With this result in hand, our hope is that the validity of most of the proposed
methods can be established fairly easily. Indeed, a few initial steps in this direction are
made in the latter half of the paper.
The main contributions are the following. First, we show that the results in Phillips

5This space being one that includes exactly all the VAR processes that might be integrated of order 1
and cointegrated.
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[1988] can be proven to hold in the sense of uniform convergence (Definition 1) over an ap-
propriate parameter space, which generalizes the weak limit of a local-to-unity sequence
of parameters. Essentially, this means that the asymptotic distributions obtained under
the local-to-unity assumption can be used to uniformly approximate statistics arising
in the VAR model, under any arbitrary drifting sequences of parameters and even in
cases where the process is stationary. In this sense, we do for the multivariate AR model
what was done in Mikusheva [2007] for the scalar model.6 The main result is Theorem
1, stating that the asymptotic distributions of the relevant sample covariances can be
approximated by stochastic integrals of Ornstein-Uhlenbeck processes (a direct analog
to the univariate case). Both the result and the proof are interesting in their own rights.
As part of the proof we show that one can approximate the finite sample distribution of
crucial statistics by replacing the general error terms with Gaussian errors. We can sam-
ple from this approximation at a comparably low computational cost which facilitates
inference greatly.
Second, we give a few preliminary examples of how these results can be utilized to

prove uniform validity of simple confidence regions for the autoregressive matrix based
on the t-statistic. We also show that confidence regions constructed with IVX and lag
augmentation are uniformly valid.
Third, we show how these confidence regions can be used to answer more general

inference questions. The two main applications are confidence intervals for a single
coordinate and predictive regression testing with a multivariate regressor. To the best
of our knowledge, there have thus far been no attempts in the literature to deal with these
applications in a uniform fashion (apart from lag augmentation). We run Monte Carlo
experiments to verify the theoretical results and compare the finite sample properties of
the different methods.
Our last contribution is the development of efficient algorithms to solve these inferen-

tial tasks. We show how the Evaluation-Approximation-Maximization (EAM) algorithm
from Kaido et al. [2019] circumvents the exploding computational cost inherent in algo-
rithms relying on grid-like methods. Combined with the Gaussian approximation results,
this is what makes inference possible in our two main applications.
The paper is structured as follows. Section 2.9 introduces notation and relevant con-

cepts. In particular, it explains the concept of uniform convergence of random variables
and presents vector autoregressive processes. Section 2.10 is devoted to presenting and
proving the main asymptotic results under the VAR(1) model. We extend to the gen-
eral VAR(p) model in Section 2.11. Section 2.12 deals with inference and shows how
the results of Section 2.10 can be applied to obtain uniformly valid confidence regions.
Furthermore, it contains a section on predictive regression, lag augmentation, and IVX.
Section 2.13 contains the results of our Monte Carlo experiments. Finally, Section 2.14
concludes. The Appendix contains proofs and further technical details on martingale
limit results, the Gaussian approximation, the simulation experiments as well as the
EAM algorithm, and details on lag augmentation and IVX.

6We also show that uniformity holds over a family of martingale difference error processes which is an
additional generalization of Mikusheva [2007].
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2.9 Preliminaries

2.9 Preliminaries

Notation: For a matrix A ∈ Cd×d, AT denotes its conjugate transpose and its trace
is tr(A). We write σmax(A) (σmin(A)) for the largest (smallest) singular value of A,
and λmax(A) (λmin(A)) for the eigenvalue of A with the largest (smallest) magnitude.
||A|| is the Frobenius norm and ||A||2 is the spectral norm, i.e., ||A|| =

√
tr(ATA) and

||A||2 =
√
σmax(A). For vectors, || · || is the usual Euclidean norm. Define Sd to be

the set of d × d positive semidefinite matrices. We employ the usual big-O and little-o
notation and use op to denote convergence in probability and Op to denote boundedness
in probability.

2.9.1 Uniform convergence of random variables

The definitions of uniform convergence in probability and in distribution are essentially
the same as in Kasy [2019], Lundborg et al. [2022]. Assume some background probability
space, (Ω,F ,P), on which all future random variables are defined. For two random
vectors, X and Y , taking values in (Cd,B(Cd)), we denote by PX and PY the law

of X and Y and write X
L
= Y if they are equal in law. Let BL1 be the space of

functions f : Cd → [−1, 1] that are Lipschitz continuous with constant at most 1. Let
P(Cd,B(Cd)) be the set of probability measures on (Cd,B(Cd)). The bounded Lipschitz
metric on P(Cd,B(Cd)) is given by

dBL(µ, ν) := sup
f∈BL1

∣∣∣∣∫
Cd

fdµ−
∫
Cd

fdν

∣∣∣∣ , µ, ν ∈ P(Cd,B(Cd)).

We use the shorthand dBL(X,Y ) = dBL(PX , PY ) to denote the bounded Lipschitz metric
between the laws of two random variables, X and Y . It is well known that dBL metrizes
weak convergence which motivates the following definition of uniform convergence.

Definition 1 (Uniform convergence). Let (Xn,θ)n∈N,θ∈Θ and (Yn,θ)n∈N,θ∈Θ be two se-
quences of families of random d-dimensional vectors defined on (Ω,F ,P) and indexed by
some set Θ (of possibly infinite dimension).

1. We say that Xn,θ converges uniformly to Yn,θ over Θ in distribution (or, for short,
Xn,θ →w Yn,θ uniformly over Θ) if

lim
n→∞

sup
θ∈Θ

dBL (Xn,θ, Yn,θ) = 0.

2. We say that Xn,θ converges uniformly to Yn,θ over Θ in probability (or, for short,
Xn,θ →p Yn,θ uniformly over Θ) if, for every ϵ > 0,

lim
n→∞

sup
θ∈Θ

P (||Xn,θ − Yn,θ|| > ϵ) = 0.

Uniform convergence could also be stated as convergence along all sub-sequences
θn ⊂ Θ (see Definition 2 and Lemma 1 in Kasy [2019]). Additionally, we allow the
limiting distribution to be a sequence, since the results below are stated in terms of
an approximating sequence of random variables. We obtain the conventional notion by
letting Yn,θ = Yθ.
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2 Beyond stationarity: Cointegration rank uncertainty

2.9.2 Model

Consider some Θ ⊂ Rd×d × Sd × R+. For any θ ∈ Θ there exist Γθ,Σθ, and cθ such
that θ = (Γθ,Σθ, cθ). Let Nθ ∈ {1, ..., d} denote the number of distinct eigenvalues of Γθ
and λθ ∈ CNθ the corresponding vector of ordered eigenvalues, that is, |λθ,1| ≥ |λθ,2| ≥
... ≥ |λθ,Nθ

| with multiplicities mθ,1, ...,mθ,N ∈ {1, ..., d}. Where this does not cause
confusion, we omit the subscript θ. Let (Xt,θ)t∈N,θ∈Θ and (ϵt,θ)t∈N,θ∈Θ be two families
of Rd-valued stochastic processes and (Ft,θ)t∈N the filtration generated by (ϵt,θ)t∈N.

Assumption M. Xt,θ and ϵt,θ satisfy the following:

M.1. ϵt,θ is a stationary martingale difference sequence wrt. Ft,θ, that is,

sup
t∈N,θ∈Θ

E||ϵt,θ|| <∞

and E(ϵt,θ|Ft−1,θ) = Eϵ0,θ = 0 for all t ≥ 1, θ ∈ Θ.

M.2. For all θ ∈ Θ, the conditional covariance matrix of ϵt,θ exists and is given by
E(ϵt,θϵTt,θ|Ft−1,θ) = Eϵ0,θϵT0,θ = Σθ a.s. for all t ≥ 1.

M.3. There exists some small δ > 0 such that E||ϵt,θ||2+δ ≤ cθ a.s. for all t ∈ N, θ ∈
Θ.

M.4. Xt,θ is a VAR(1) process, that is, for all θ ∈ Θ,

Xt,θ = ΓθXt−1,θ + ϵt,θ

for t ≥ 1 and X0,θ = 0.

These assumptions ensure that Xt,θ is a VAR(1) process started at 0 with model
parameters given by the index θ. Assumptions M.1 and M.4 imply that Xt,θ is adapted
to Ft,θ.
For future reference let us define the following set of d×d matrices. For a given δ > 0,

let Jd(δ) ⊂ Cd×d be the set of upper triangular matrices such that every J ∈ Jd(δ) can
be decomposed as J = D+N with D diagonal such that |D11| ≥ |D22| ≥ · · · ≥ |Ddd| and
N equal to 0 everywhere except on the super-diagonal where it satisfies Ni,i+1 ∈ {0, 1}
if |Dii| ≤ δ and 0 otherwise for i = 1, . . . , d − 1. In other words, every J ∈ Jd(δ)
can be written as a block diagonal matrix where the upper left block is diagonal and
contains all eigenvalues greater than δ while the lower right block can have ones on the
super-diagonal and has eigenvalues less than δ. We call the matrices in Jd(δ) Jordan-like.
Remark 1. For any θ ∈ Θ, there exist matrices Fθ ∈ Cd×d and Jθ such that Jθ is a
Jordan matrix and Γθ = FθJθF

−1
θ . Up to reordering of the eigenvalues, the matrix Jθ is

unique and satisfies Jθ ∈ Jd(|λθ,1|). It is called the Jordan canonical form of Γθ.
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2.10 Asymptotic Properties

2.10 Asymptotic Properties

The key building blocks for inference are the two covariance matrices

SXX =
1

n

n∑
t=1

Xt−1,θX
T
t−1,θ, SXϵ =

1

n

n∑
t=1

Xt−1,θϵ
T
t,θ. (2.10.1)

Obviously, SXX and SXϵ are families of stochastic processes depending on n and θ,
which we suppress to avoid cluttering up the notation, but the dependence should be
kept in mind. We first need to determine what happens to SXX and SXϵ when n goes
to infinity and for varying θ. We cannot hope to say anything uniformly without further
assumptions on Θ. The following assumptions are sufficiently general to cover a wide
range of behaviours while still allowing for uniform asymptotic results.

Assumption U. Θ satisfies the following:

U.1. supθ∈Θ cθ <∞.

U.2. supθ∈Θ{σmax(Σθ) + σmin(Σθ)
−1} <∞.

U.3. There exists α ∈ (0, 1) small so that with rα = (1 − α)(2 − α)/α (see Fig.
2.10.1)

sup
θ∈Θ

{
max

1≤i≤Nθ

[
max

( ||λθ,i|(1− λθ,i)|
rα(1− |λθ,i|)

, |λθ,i|
)]}

≤ 1.

U.4. There exists Fθ ∈ Cd×d and Jθ ∈ Jd(1− α) such that F−1
θ ΓθFθ = Jθ and

sup
θ∈Θ

{
σmax (Fθ) + σmin (Fθ)

−1 + σmax (Jθ)
}
<∞.

Assumption U.1 is a moment condition on the error process which is needed for some
of the triangular array martingale difference limit results. It is implied by the other
conditions if the errors are i.i.d. Gaussian. Assumption U.2 states that ||Σθ|| and ||Σ−1

θ ||
are uniformly bounded for any matrix norm. In particular, Σθ is of full rank. This is
a natural condition when considering uniform convergence. The important assumptions
are U.3 and U.4. Both assumptions have clear interpretations and are sufficient if we
want to limit our attention to processes that are at most integrated of order 1 and
without seasonal cointegration. In particular, to avoid higher orders of integration, we
must restrict all eigenvalues to have magnitude less than 1 (ensured by Assumption U.3,
see Fig. 2.10.1). For eigenvalues with magnitude 1, the corresponding Jordan block must
be scalar [Archontakis, 1998] (ensured by Assumption U.4). Note that the matrices Jθ in
Assumption U.4 are not required to be Jordan matrices so that the assumption allows,
for example, for matrices of the form

Γ =

(
λ 1
0 λ′

)
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2 Beyond stationarity: Cointegration rank uncertainty

11 − αα

Img(λ)

Re(λ)

Figure 2.10.1: The region of the complex plane of allowed eigenvalues given by Assumption U.3.
The gray area includes all the eigenvalues allowed in the current setting. The
black circle enclosing the grey area is the unit circle. The smallest allowed real
eigenvalue is α − 1 and the only eigenvalue with magnitude 1 is real and equal
to 1.

for λ, λ′ ∈ R arbitrarily close together as long as |λ|, |λ′| ≤ 1− α.
To avoid seasonal cointegration, eigenvalues with magnitude 1 are restricted to be

exactly equal to 1. Specifically, as the magnitude of an eigenvalue approaches one, the
eigenvalue itself approaches 1. See Fig. 2.10.1 for the region of the complex plane
satisfying Assumption U.3 for some small α ∈ (0, 1). Since α can be chosen freely, the
parameter space can be made arbitrarily close to the unit circle.
To state our main result, define Mi =

∑
j≤imj and write ik = min{i ≥ 1|Mi ≥ k}.

As in the univariate case [Mikusheva, 2007], we unify the range of asymptotics with
an Ornstein-Uhlenbeck process. For any θ, we let Cn(θ) be the d × d diagonal matrix
whose i’th diagonal block is n log(|λi|)Imi with the convention that log(0) = −∞. For
convenience, we sometimes suppress the dependence on θ and n and just write C. In
what follows, uniform convergence of random matrices means uniform convergence of
the vectorization of these matrices so that Definition 1 applies directly.

Theorem 1 (Uniform convergence of covariance matrices). Under Assumptions M and
U and after possibly enlarging (Ω,F ,P), there exists a standard d-dimensional Brownian
motion, (Wt)t∈[0,1], and a family of processes, (Jt,C)t∈[0,1],n∈N,θ∈Θ, with

Jt,C =

∫ t

0
e(t−s)CFθΣ

1
2dWs, J0,C = 0, (2.10.2)

such that the following approximations hold for n→∞

H− 1
2FθSXXF

T
θ H

− 1
2 →w G

− 1
2

∫ 1

0
Jt,CJ

T
t,CdtG

− 1
2 , (2.10.3)
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√
nH− 1

2FθSXϵ →w G
− 1

2

∫ 1

0
Jt,CdW

T
t Σ

1
2 , (2.10.4)

uniformly over Θ where the covariance matrices are defined in (2.10.1) and the normal-
izing matrices are given by

H = FθE

(
1

n

n∑
t=1

Xt−1,θX
T
t−1,θ

)
F Tθ , G = FθE

(∫ 1

0
Jt,CJ

T
t,Cdt

)
F Tθ . (2.10.5)

We prove the uniform results for the special case of Fθ being the identity, i.e., under
the assumption that Γ ∈ Jd(1 − δ). Technically, this allows for complex-valued Γ,
thus, the proofs are more general than the real-valued case. Also, it is not hard to
generalize to any Fθ fulfilling Assumption U.4. Indeed, for Xt,θ generated by Γ ∈ Rd×d,
there exist F ∈ Cd×d and J ∈ Jd(1 − δ) such that F is invertible with F−1JF = Γ.
The transformed process X̃t,θ = FXt,θ is then of the required form with parameters
θ̃ = (J, FΣF T , ||F ||2+δc). Assuming that F is uniformly invertible and bounded in
norm then ensures that θ̃ satisfies Assumption U.

We prove Theorem 1 in several steps. The main idea is to split Θ into overlapping
regions and prove that Theorem 1 holds in each region. Consider

Rn,0 :=

{
θ ∈ Θ : |λ1| ≤ 1− log n

n

}
, Rn,d :=

{
θ ∈ Θ : |λN | ≥ 1− n−η

}
,

where η ∈ (0, 1) is to be specified later. The two regions correspond to the stationary
and local-to-unity (non-stationary) regimes, respectively, in the univariate case. Different
asymptotics arise depending on the region and, in particular, on how fast the eigenvalues
converge to unity. Throughout the rest of this section we assume that Assumptions M
and U hold with Fθ = I.

2.10.1 Non-stationary asymptotics

In this section we consider sequences of parameters in the non-stationary region Rn,d.
For simplicity we assume throughout this subsection that ϵt,θ is i.i.d. Gaussian with
mean 0 and covariance Σθ. In Appendix 2.H it is argued why this is not a restriction.
Indeed, all the relevant sample moments can be approximated by Gaussian counterparts.

Let (Wt)t∈[0,1] be a standard d-dimensional Brownian motion. Since Σ
1
2 (Wt/n −

W(t−1)/n)
L
= ϵt,θ/

√
n for all n ∈ N, 0 ≤ t ≤ n and θ ∈ Θ, we get

H− 1
2SXϵ

L
=

∫ 1

0

∫ t

0
f(t, s, n, θ)dWsdW

T
t Σ

1
2 , (2.10.6)

H− 1
2SXXH

− 1
2

L
=

∫ 1

0

(∫ t

0
f(t, s, n, θ)dWs

)(∫ t

0
f(t, s, n, θ)dWs

)T
dt, (2.10.7)

where H is defined in (2.10.5) and f(t, s, n, θ) =
√
nH− 1

2Γ⌊nt⌋−⌊ns⌋−1Σ
1
21{s ≤ ⌊nt⌋/n}.

We then see that the following Lemma is a direct consequence of Lemma 5 in Appendix
2.E.
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2 Beyond stationarity: Cointegration rank uncertainty

Lemma 1. For the covariance matrices (2.10.1) and H,G and JC,t given in (2.10.5)
and (2.10.2), the following hold

lim
n→∞

sup
θ∈Rn,d

dBL

(
H− 1

2SXXH
− 1

2 , G− 1
2

∫ 1

0
JC,tJ

T
C,tdtG

− 1
2

)
= 0, (2.10.8)

lim
n→∞

sup
θ∈Rn,d

dBL

(√
nH− 1

2SXϵ, G
− 1

2

∫ 1

0
JC,tdW

T
t Σ

1
2

)
= 0. (2.10.9)

2.10.2 Stationary asymptotics

In this section we consider sequences of parameters in the stationary region Rn,0. We first
show that the classical asymptotic theory for stationary VAR(1) processes applies. Since
Rn,0 and Rn,d overlap, we then prove that the right hand sides of (2.10.3) and (2.10.4)
converge to the standard stationary limiting distributions for the diagonal entries Cii
going to −∞.
The standard stationary theory in multiple dimensions mimics the univariate case. We

follow the same strategy as in Phillips and Magdalinos [2007], but allowing for multiple
dimensions and a family of error processes ϵt,θ. In this regime, we find that, when
properly normalized, SXX converges in probability to the identity matrix and vec(SXe)
converges in distribution to a d2-dimensional standard Gaussian.

Lemma 2. Let V ∼ N (0, Id2). For all ϵ > 0 and s ∈ [0, 1],

lim
n→∞

sup
θ∈Rn,0

P

∣∣∣∣∣∣
∣∣∣∣∣∣ 1nH− 1

2

⌊ns⌋∑
t=1

Xt−1,θX
T
t−1,θ

H− 1
2 − sI

∣∣∣∣∣∣
∣∣∣∣∣∣ > ϵ

 = 0 (2.10.10)

and
lim
n→∞

sup
θ∈Rn,0

dBL

(
vec
(√

nH− 1
2SXϵΣ

− 1
2

)
, V
)
= 0. (2.10.11)

For the special case s = 1, equation (2.10.10) shows that SXX converges in probability
to the identity matrix. By Lemma 2 and Proposition 8 in the supplementary material
of Lundborg et al. [2022], the proof of Theorem 1 in the stationary regime is complete
if we can show that, for any (θn ∈ Rn,0)n∈N,

G− 1
2

∫ 1

0
Jt,CJ

T
t,CdtG

− 1
2 →w I, (2.10.12)

G− 1
2

∫ 1

0
Jt,CdW

T
t →w N. (2.10.13)

We emphasize that G and C in eqs. (2.10.12)-(2.10.13) are functions of θn and therefore
they are sequences of matrices. In particular, Cii ≤ n log(1 − log(n)/n) → −∞ for
n → ∞ and 1 ≤ i ≤ d. Eqs. (2.10.12)-(2.10.13) are therefore a consequence of the
following.
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2.11 Higher order VAR processes

Lemma 3. Let (Cn)n∈N, (Ωn)n∈N ⊂ Rd×d be sequences of matrices such that Cn is di-
agonal, (Cn)ii → −∞ for n → ∞ and 1 ≤ i ≤ d, and Ωn is positive definite with
singular values bounded from below and above uniformly over n. Let (Wt)t∈[0,1] be a stan-
dard d-dimensional Brownian motion and define the family of d-dimensional Ornstein-
Uhlenbeck processes, (Jt,n)t∈[0,1],n∈N, given by

Jt,n =

∫ t

0
e(t−s)CnΩ

1
2
ndWs, J0,n = 0,

along with the normalizing matrices Gn = E
(∫ 1

0 Jt,nJ
T
t,ndt

)
. Then, for n→∞,

G
− 1

2
n

∫ 1

0
Jt,nJ

T
t,ndtG

− 1
2

n →p I,

vec

(
G

− 1
2

n

∫ 1

0
Jt,ndW

T
t

)
→w V,

where V ∼ N (0, Id2).

2.10.3 Mixed asymptotics

So far, all the eigenvalues were in the same regime. We have yet to explore what happens
when there are eigenvalues in both regimes. We call this case the mixed regime. Define
for 1 ≤ k ≤ d− 1 and some fixed γ ∈ (0, 1− η) the sets

Rn,k =
{
θ ∈ Θ :Mik = k, |λik | ≥ 1− n−η−γ , |λik+1

| ≤ 1− n−η−γ
}
.

Since 1 − n−η ≤ 1 − n−η−γ ≤ 1 − log(n)/n, then for θ ∈ Rn,k there are at least k
coordinates in the non-stationary regime and d− k coordinates in the stationary regime
(and some might be in both). Furthermore, for any n ∈ N, Θ =

⋃
0≤k≤dRn,k. Thus,

showing that (2.10.3) and (2.10.4) hold uniformly over Rn,k for any fixed 1 ≤ k ≤ d− 1
completes the proof of Theorem 1. This is the content of the following lemma proved in
Appendix 2.E.3.

Lemma 4. Let 1 ≤ k ≤ d− 1. We have

lim
n→∞

sup
θ∈Rn,k

dBL

(
H− 1

2SXXH
− 1

2 , G− 1
2

∫ 1

0
JC,tJ

T
C,tdtG

− 1
2

)
= 0, (2.10.14)

lim
n→∞

sup
θ∈Rn,k

dBL

(√
nH− 1

2SXϵ, G
− 1

2

∫ 1

0
JC,tdW

T
t Σ

1
2

)
= 0. (2.10.15)

2.11 Higher order VAR processes

The results from the VAR(1) case can be generalized to VAR(p) processes for general
p ≥ 1. First we need to specify exactly what class of models we are considering.
We extend the parameter space Θ ⊂ (Rd×d)p×Sd×R+ and write θ = (Γ1,θ, . . . ,Γp,θ,Σθ, cθ).

We sometimes omit the dependence on θ in the subscript.
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2 Beyond stationarity: Cointegration rank uncertainty

Assumption M(p). Xt,θ and ϵt,θ satisfy Assumptions M.1 - M.3 in addition to:

M(p).4. Xt,θ is a VAR(p) process, that is, for all θ ∈ Θ,

Xt,θ =

p∑
k=1

Γk,θXt−k,θ + ϵt,θ

for t ≥ 1 and X0,θ = · · · = X1−p,θ = 0.

It is well known that any VAR(p) process can reinterpreted as a VAR(1) process by
writing it in its companion form. That is, one can define a matrix Γθ ∈ Rpd×pd and
ϵ̃t,θ = (ϵt,θ, 0) ∈ Rpd such that, with Yt,θ = (XT

t,θ, . . . , X
T
t+1−p,θ)

T ,

Yt,θ = ΓθYt−1,θ + ϵ̃t,θ.

Restricting the eigenstructure of Γθ appropriately, we can ensure that Xt,θ is never
cointegrated of order more than 1 and never seasonally cointegrated. In particular, with
a slight abuse of notation, for any θ ∈ Θ, we now denote the ordered eigenvalues of Γθ
by |λθ,1| ≥ |λθ,2| ≥ ... ≥ |λθ,Nθ

| with multiplicities mθ,1, ...,mθ,N ∈ {1, ..., pd}. We define
Mi and ik as above.

Assumption U(p). Θ satisfies Assumptions U.1 - U.4 in addition to:

U(p).5. For α as in U.3, it holds that |λθ,id+1
| ≤ 1− α.

Assumption U.5 simply states that no more than d eigenvalues can be close to unity.
This ensures that ∆Xt,θ stays uniformly stationary over Θ or, in other words, that it is
not integrated of higher orders than 1. The main difficulty in generalizing Theorem 1 is
that the covariance matrix of ϵ̃t,θ is singular. The following Lemma then provides the
missing piece, a proof can be found in Appendix 2.E.4.

Lemma 5. Under Assumption U(p) the covariance ΣY,θ = EYp,θY T
p,θ is uniformly in-

vertible, i.e., infθ∈Θ σmin(ΣY,θ) > 0.

Lemma 5 ensures that the normalizing matrix H is still invertible even though the
noise is singular. Similar to above we define the diagonal d× d matrix C to be the one
whose diagonal is given by n log(|λik |) for k = 1, . . . , d. We also define the empirical
covariance matrices

SY Y =
1

n

n∑
t=1

YtY
T
t , SY ϵ =

1

n

∑
t=1

Ytϵ
T .

Corollary 1. Under Assumptions M(p) and U(p) and after possibly enlarging (Ω,F ,P),
there exists a standard d-dimensional Brownian motion, (Wt)t∈[0,1], a family of processes,
(Jt,C)t∈[0,1],n∈N,θ∈Θ, with

Jt,C =

∫ t

0
e(t−s)CF 11

θ Σ
1
2dWs, J0,C = 0,
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2.12 Uniform Inference

where F 11
θ is the upper left d × d block of Fθ, and a random matrix N ∈ R(p−1)d×d

independent of Wt with vec(N) ∼ N (0, I) such that the following approximations hold
for n→∞

H− 1
2FθSY Y F

T
θ H

− 1
2 →w

(
G− 1

2

∫ 1
0 Jt,CJ

T
t,CdtG

− 1
2 0

0 I

)
, (2.11.16)

√
nH− 1

2FθSY ϵΣ
− 1

2 →w

(
G− 1

2

∫ 1
0 Jt,CdW

T
t

N

)
, (2.11.17)

uniformly over Θ where H = FθE (SY Y )F
T
θ and G = F 11

θ E
(∫ 1

0 Jt,CJ
T
t,Cdt

)
(F 11

θ )T .

Remark 2. Note the differences with Theorem 1. Since we are assuming that there are
no more than d roots close to unity, we may split up the asymptotic expressions as
in (2.11.16) and (2.11.17). As a consequence of Lemma 3 we could have equivalently
phrased the result just in the way of (2.10.3) and (2.10.4), that is, without separating out
the blocks. We chose this form, however, to highlight that part of the system behaves
as in the stationary case.

2.12 Uniform Inference

Having established the asymptotic properties of SXX and SXϵ, we now seek to develop
uniformly valid methods of inference. We focus on two important cases in which uni-
formly valid inference has so far proven challenging: predictive regression testing and
coordinate confidence intervals. Inference in these settings can be hard even from a
point-wise perspective since the presence of exact unit roots makes it problematic to
construct test statistics with standard asymptotic distributions.

It is not trivial to conduct inference on Γ even in lieu of Theorem 1. The main problem
is the presence of the nuisance parameter Cn(θ) in (2.10.3)-(2.10.4), which cannot be
uniformly consistently estimated. Indeed, for a sequence Γn = I − C/n where the real
part of the eigenvalues of C ∈ Rd×d are all strictly negative, the problem is essentially
equivalent to estimating C = n(I − Γ). But it is well known that, in this setting, Γ can
only be estimated at rate O(n−1). One way to solve this is by the use of test inversion
or so-called grid bootstrap methods, which have been widely applied in the unitary case
(see Hansen [1999], Mikusheva [2007] for grid bootstrap and Campbell and Yogo [2006],
Phillips [2014] for an application to predictive regression). While this is fairly easy in
one dimension, adapting these methods to vector autoregressive processes is prohibitive
since the computational complexity quickly explodes. We now present an approach,
which keeps the computational burden to a minimum. We omit the dependence on θ in
the subscript of all random variables.
Consider the least squares estimator, Γ̂, given by

Γ̂ =
1

n

n∑
t=1

XtX
T
t−1

(
1

n

n∑
t=1

Xt−1X
T
t−1

)−1

= Γ + STXϵS
−1
XX .
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2 Beyond stationarity: Cointegration rank uncertainty

It follows from Theorem 1 that Γ̂ is a uniformly consistent estimator of Γ with a rate
of convergence depending on the proximity of the eigenvalues of Γ to one. Indeed, since√
n(Γ̂−Γ) = (

√
nSXϵ)

TS−1
XX , we find that n(Γ̂−Γ)SXX(Γ̂−Γ)T = Op(1) which implies

that
√
n(Γ̂− Γ) = Op(1). We define a uniformly consistent estimator of Σ by averaging

the squared residuals, i.e., with ϵ̂t = Xt − Γ̂Xt−1 we define Σ̂ = Sϵ̂ϵ̂ analogously to SXX
with Xt−1 replaced by ϵ̂t. Another consequence of Theorem 1 is a uniform approximation
of the t2-statistic. In particular,

t̂2Γ = tr

(
nΣ̂− 1

2

(
Γ̂− Γ

)
SXX

(
Γ̂− Γ

)T
Σ̂− 1

2

)
→w tr

((∫ 1

0
Ĵt,CdW

T
t

)T (∫ 1

0
Ĵt,C Ĵ

T
t,Cdt

)−1 ∫ 1

0
Ĵt,CdW

T
t

)
:= t2Γ (2.12.18)

uniformly over Θ where C = Cn(θ) is given in Section 2.10 and Ĵt,C is defined analogously

to Jt,C but with Σ replaced by the consistent estimator Σ̂. Thus, for a fixed significance
level, α ∈ (0, 1), a uniformly valid 100(1−α)% confidence region for Γ can be constructed
by test-inversion. Let qn,Γ(1− α) denote the 100(1− α)% quantile7 of t2Γ and define the
confidence region

CRa(α;Xθ) =
{
Γ : t̂2Γ ≤ qn,Γ(1− α)

}
(2.12.19)

where the dependence on the data X0,θ, . . . , Xn,θ is made explicit in the notation. We
shall sometimes omit this second argument and simply write CRa(α) when this does
not cause confusion. Note that the distribution of t2Γ is non-standard and, therefore,
computing the quantiles qn,Γ requires extensive simulations and can be quite expensive.

Another approach relies on the Gaussian approximations (Appendix 2.H). It is similar
to Andrew’s Method (see Mikusheva [2007]), and similar in spirit to grid bootstrap.
It was originally suggested by Andrews [1993] but has so far only been applied in the
univariate case. For a given Γ, define the VAR(1) process, (Yt)t∈N, by

Yt = ΓYt−1 + et, Y0 = 0

where et ∼ N (0, Σ̂) i.i.d. Let

t̃2Γ = tr
(
nΣ̂− 1

2SeY S
−1
Y Y S

T
eY Σ̂

− 1
2

)
and denote by q̃n,Γ(1− α) the 100(1− α)% quantile of t̃2Γ. A confidence region for Γ is
then obtained by

CRb(α;Xθ) =
{
Γ : t̂2Γ ≤ q̃n,Γ(1− α)

}
. (2.12.20)

The distribution of t̃2Γ is still non-standard, but the quantiles q̃n,Γ are much easier to
compute by simulation.8 The following Theorem states that both confidence regions are

7Note that the quantile depends on Γ (which is also made explicit in the notation) since the asymptotic
distribution depends on C which is a function of Γ and n.

8Simulating t2Γ requires numerical approximations of the stochastic integrals involved. While a small
step size is generally preferred for numerical accuracy, there is also a trade off in terms of computa-
tional demands. Note, however, that samples of t̃2Γ can be seen as a crude Euler approximation of t2Γ
with a large step size. In essence, our results state that this approximation is sufficient.
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2.12 Uniform Inference

uniformly asymptotically valid over the parameter space Θ. A proof can be found in
Appendix 2.F.

Theorem 2. Fix α ∈ (0, 1) and let CRa(α;Xθ) and CRb(α;Xθ) be as given in (2.12.19)
and (2.12.20). Under Assumptions M and U, both are asymptotically uniformly valid
over Θ in the sense that

lim inf
n→∞

inf
θ∈Θ

P (Γθ ∈ CRi(α;Xθ)) ≥ 1− α

for i = a, b.

Remark 3. One might be interested in a confidence interval for a specific element of
Γ. For example, testing whether Xi Granger causes Xj amounts to checking whether a
confidence interval of Γji contains 0. In more generality, say that we want a 100(1−α)%
confidence interval of gTΓf where g, f ∈ Rd are some arbitrary fixed vectors. Given
a uniformly valid confidence region CR(α) of Γ, a conservative interval is then simply
obtained by projection:

CI(α) =

(
inf

Γ∈CR(α)
gTΓf, sup

Γ∈CR(α)
gTΓf

)
.

Alternatively, one can first consider the t2-statistic for the null H0 : γ
T = gTΓ, call it

t̂2g,γ , with uniform approximations (for a given Γ)

t2g,Γ = gT
(∫ 1

0
Ĵt,CdW

T
t

)T (∫ 1

0
Ĵt,C Ĵ

T
t,Cdt

)−1 ∫ 1

0
Ĵt,CdW

T
t g,

t̃2g,Γ =
ngTSeY S

−1
Y Y S

T
eY g

gT Σ̂g
.

In general, the distributions of t2g,Γ and t̃2g,Γ will unfortunately depend on the entire
matrix Γ. We define qn,g,γ(1 − α) = supΓ:gTΓ=γ qn,g,Γ(1 − α) where qn,g,Γ(1 − α) is the
100(1 − α)% quantile of t2g,Γ and define q̃n,g,γ analogously. Uniformly valid confidence

regions for gTΓ are then given by CRa,g(α) = {γ : t̂2g,γ ≤ qn,g,γ} and CRb,g(α) =

{γ : t̂2g,γ ≤ q̃n,g,γ}. Finally, one can obtain uniformly valid confidence intervals for

gTΓf = γT f by projecting either of these confidence regions of γ.

Remark 4. In many settings it is plausible to assume that at most k < d roots are in
the vicinity of unity, say, θ ∈ Rk = {θ ∈ Θ : 1− |λik+1

| ≥ α}. This would then imply, by
Lemma 7 and Lemma 8, that a simpler uniform approximation exists. Indeed, define

A =

∫ 1

0
ĴC,tĴ

T
C,tdt, B =

∫ t

0
ĴC,tdW

T
t ,

and let Ak be the top left k × k block of A and Bk the first k rows of B. We then
find that t̂2Γ → tr(BT

k A
−1
k Bk) + χ2

d−k uniformly over Rk as n goes to infinity. This
suggests a sort of hybrid approach leading to significant savings in terms of computational
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2 Beyond stationarity: Cointegration rank uncertainty

requirements. Indeed, the only part that depends on Γ is the first term. Thus, if k is
small, approximating qn,Γ(1 − α) becomes much faster. This is best illustrated by the

case k = 1 where we can write A1 =
∫ 1
0 Ĵt(λ1, f1)

2dt and B1 =
∫ 1
0 Ĵt(λ1, f1)dW

T
t for

Ĵt(λ1, f1) =

∫ t

0
en(t−s) log |λ1|dŴt(f1)

where Ŵ (f1) = f1Σ̂
1
2Wt and f1 being the first row of Fθ. Now, since Ŵ (f1) is a

one dimensional brownian motion with variance σ̂(f1) = f1Σ̂f
T
1 , the distribution of

tr(BT
1 A

−1
1 B1) is essentially parameterized by a two-dimensional parameter (λ1, σ̂(f1)).

It is therefore possible to tabulate the quantiles of t̂2Γ for future reference. A smilar
argument can be applied to the Gaussian approximation.

Remark 5. As a special case of Remark 4, we consider the VAR(p) model discussed in
Section 2.11. It can be shown that inference for certain linear hypotheses can be handled
with standard asymptotic theory. This all follows from the fact that the least squares
estimator of the companion matrix Γ converges uniformly in distribution to a degenerate
Gaussian matrix. To fix ideas, define ΣΓ = limn→ F Tθ H

−1Fθ.
9 It follows directly from

Corollary 1 that

√
n(Γ̂− Γ)→w


Σ

1
2NΣ

1
2
Γ

0
...
0


uniformly over Θ where N ∈ Rd×pd with vec(N) ∼ N (0, I). Additionally, Assumption
U.5 ensures that rank(ΣΓ) ≥ (p − 1)d. Thus, for any P ∈ Rpd×k of rank k ≤ p(d − 1)
such that P TΣΓP is of rank k, we can test the linear hypothesis H0 : (Γ1, . . . ,Γp)P = C
using standard results from the stationary regime. In particular, if the kd+j’th diagonal
element of ΣΓ is strictly positive uniformly over Θ, we can construct uniformly valid
confidence intervals for (Γk)ij for any i = 1, . . . , d by using the standard normal quantiles
scaled with the appropriate standard error. An especially relevant case is when we have
reason to believe that the true data-generating process is only VAR(p − 1). Including
the extra lag in our model then makes standard inference possible on (Γ1, . . . ,Γp−1) (see
also Section 2.12.2).

2.12.1 Predictive Regression

One application is robust inference in the predictive regression model. For a deeper
discussion of why uniformly valid inference methods are important in this setting see
Campbell and Yogo [2006], Elliott and Stock [1994], which cover the case of a univariate
regressor, but the same considerations hold more generally. To fix ideas, consider

ΘP = {θ ∈ Θ : Γj1 = 0 ∀j = 1, ..., d} .
9This is a well-defined positive semidefinite matrix since lim infn→∞ infθ σmin(H) > 0 and H is a
monotonically increasing sequence of matrices in the sense that Hn − Hn−1 is positive semidefinite
for all n.
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2.12 Uniform Inference

If Xt is a VAR(1)-process satisfying Assumption M parameterized by θ ∈ ΘP , i.e.,
the first coordinate does not affect the others, then we can split Xt = (Yt, X̃

T
t )

T and
ϵt = (ρt, ϵ̃

T
t )
T into their first coordinate and their last d− 1 coordinates such that

Yt = γT X̃t−1 + ρt,

X̃t = Γ̃X̃t−1 + ϵ̃t,

where γT = (Γ1j)2≤j≤d and Γ̃ = (Γij)2≤i,j≤d. The parameter of interest is γ. The
standard approach is to compute the least squares estimator γ̂ and base inference on
the t2-statistic. Unfortunately, we encounter the same issues as described above. To see
this, let ΣY = Σ11, ΣX = (Σi,j)2≤i,j≤d, ΣY X = (Σ1,j)2≤j≤d, and ΣXY = ΣTY X and define
δ = Σ−1

X ΣXY . Then, adopting previous notation, Theorem 1 yields

t̂2γ →w

(∫ 1

0
J̃t,CdB1,t

)T (∫ 1

0
J̃t,C J̃

T
t,Cdt

)−1 ∫ 1

0
J̃t,CdB1,t =: t2γ

uniformly over ΘP where J̃t,C consists of the last d − 1 coordinates of Ĵt,C and B1,t is

the first coordinate and B2,t the last d − 1 coordinates of WtΣ̂
1
2 . Since B′

1,t = (ΣY −
δTΣXδ)

− 1
2 (B1,t−δB2,t) is a standard (d−1)-dimensional Brownian motion independent

of B2,t satisfying B1,t = δB2,t + (ΣY − δTΣXδ)
1
2B′

1,t, we find that

t2γ
L
=

∣∣∣∣∣∣∣∣(ΣY − δTΣXδ) 1
2 Z + ZΓ̃δ

∣∣∣∣∣∣∣∣2 , (2.12.21)

where ZΓ̃ = (
∫
J̃t,C J̃

T
t,Cdt)

− 1
2

∫
J̃t,CdB2,t, and Z is a (d−1)-dimensional standard normal

vector independent of ZΓ̃. The nuisance parameter, C = Cn(θ), is therefore also present
in the distribution of t2γ via ZΓ̃ necessitating alternative methods of inference. Using
the results of Theorem 2, we adopt the univariate Bonferroni approach of Campbell and
Yogo [2006] to obtain uniformly asymptotically valid confidence intervals. Say we want
to find a confidence region for γ with significance level α ∈ (0, 1). For α1, α2 ∈ (0, 1)
with α1 + α2 = α, the construction proceeds as follows: First construct a 100(1− α1)%
confidence region for Γ̃ using, e.g., either CR(α1) = CRa(α1) or CR(α1) = CRb(α1)
(suitably modified for d− 1 dimensions). Then, for each Γ̃ ∈ CR(α1), let CRγ|Γ̃(α2) be

a 100(1−α2)% confidence region for γ given Γ̃. A confidence region not depending on Γ̃
and with coverage of at least 100(1− α)% is then obtained via a Bonferroni correction:

CRγ(α1, α2;Xθ) =
⋃

Γ̃∈CR(α1;Xθ)

CRγ|Γ̃(α2;Xθ). (2.12.22)

Let γ̂Γ̃ be the estimator obtained by regressing YΓ̃,t = Yt − Σ̂Y XΣ̂
−1
X (X̃t − Γ̃X̃t−1) on

X̃t−1 with standard error σ̂2Y = Σ̂Y − Σ̂Y XΣ̂
−1
X Σ̂XY . A choice for CRγ|Γ̃(α2) is then

given by

CRγ|Γ̃(α2;Xθ) =
{
γ : σ̂−2

Y t̂2
γ|Γ̃ ≤ qd−1,1−α2

}
, (2.12.23)
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2 Beyond stationarity: Cointegration rank uncertainty

with qd−1,1−α2 denoting the 1 − α2 quantile of the χ2
d−1 distribution and t̂2

γ|Γ̃ the usual

t2-statistic for the estimator γ̂Γ̃ evaluated at γ. A proof of the following is given in
Appendix 2.F.

Lemma 6. For fixed significance levels α1, α2 ∈ (0, 1) with α1+α2 ∈ (0, 1), let CRγ(α1, α2;Xθ)
be the confidence interval given in (2.12.22) with CR(α1;Xθ) having uniform asymptotic
level and CRγ|Γ̃(α2;Xθ) as given in (2.12.23). Then, under Assumptions M and U,

lim inf
n→∞

inf
θ∈ΘP

P (γθ ∈ CRγ(α1, α2;Xθ)) ≥ 1− α1 − α2.

Remark 6. Lemma 6 is easy to extend to hypothesis testing. Say, e.g., that we want
to test the null of no predictive information in the regressor, H0 : γ = 0, versus the
alternative HA : γ ̸= 0. This is equivalent to checking whether 0 ∈ CRγ(α1, α2). Alter-

natively, the test φn : (Rd)n → {0, 1} given by φn = 1
(
inf Γ̃∈CR(α1)

σ̂−2
Y t̂2

0|Γ̃ ≤ qd−1,1−α2

)
has asymptotic uniform level and does not require the explicit computation of the con-
fidence regions CRγ|Γ̃(α2).

Remark 7. It is well known that the Bonferroni approach is sub-optimal in terms of
power yielding confidence regions that are too conservative. Although beyond the scope
of the present paper, improvements might be gained by adapting approaches similar to
the ones given in Jansson and Moreira [2006] or Elliott et al. [2015].

2.12.2 Lag agumentation

Other approaches have been suggested to be robust against deviations from exact unit
root assumptions. The first one is the lag-augmented VAR methodology proposed by
Dolado and Lütkepohl [1996], Toda and Yamamoto [1995]. In our setup of VAR(1)
processes this approach regresses Xt on Xt−1 and the additional augmented lag Xt−2

upon which standard inference methodology is valid. Say, for example, that we are
interested in testing the hypothesis H0 : A vec(Γ) = b for A ∈ Rk×d2 of rank k ≤ d2

and b ∈ Rk. Let Π̂LA ∈ Rd×2d denote the least squares estimator in the lag-augmented
regression of Xt on X̄t = (XT

t−1, X
T
t−2)

T . Denote D = (Id, 0)
T and define Γ̂LA = Π̂LAD

along with the Wald-statistic

t̂2LA,A,b = n(Avec(Γ̂LA)− b)T Σ̂−1
LA,A(Avec(Γ̂LA)− b), (2.12.24)

where Σ̂LA,A = AΣ̂LAA
T and Σ̂LA = Σ̂−1 ⊗ Σ̂. Then, under the null, t̂2LA,A,b converges

in distribution to χ2
k uniformly over Θ allowing for construction of uniformly valid con-

fidence intervals and tests (see Appendix 2.J). For example, a (1 − α)100% confidence
interval for Γij is given by

CILA,ij(α) = Γ̂LA,ij ± z1−α/2
Σ̂LA,ij√

n
, (2.12.25)

where z1−α/2 is the 1− α/2 standard normal quantile.

70



2.12 Uniform Inference

Remark 8. The key ingredient that facilitates standard inference is the fact that
√
n(Γ̂LA−

Γ) converges uniformly in distribution over Θ to a family of d-dimensional Gaussians
(see Lemma 1). In particular, there is no need for normalization, since all components
converge at the same rate O(

√
n). This is contrary to the limiting behaviour of Γ̂ which

needs to be normalized by the matrixH− 1
2 since the presence of roots close to unity make

certain parts of Γ̂ super efficient. This also suggests some loss of efficiency when using
lag augmentation, which does not come as a surprise since we are essentially overfitting
the model.

2.12.3 IVX

Another approach, known as IVX, that deals specifically with the potential presence of
unit roots uses endogenously constructed instrumental variables to slow down the rate of
convergence of the estimator enough to ensure mixed Gaussian limiting distributions. It
was first suggested by Phillips et al. [2009] and later extended in Kostakis et al. [2015],
Magdalinos and Phillips [2020]. The most general framework considered so far was
proposed in Magdalinos and Phillips [2020]. However, they make the crucial assumption
that all roots converge to unity at the same speed. While this allows for easy construction
of confidence intervals of general linear functions of Γ and simplifies the theory somewhat,
this is a significant restriction. In particular, it does not yield uniform guarantees as the
ones discussed in this paper. This excludes, for example, the mixed regime discussed in
Section 2.10.3 covering cases where parts of the process are stationary and others exhibit
random walk behaviour. In this section we detail how one may achieve truly uniform
results. This comes at the cost of less general confidence regions, which is essentially
because we need to employ different normalizations depending on how close the different
roots are to unity. This is akin to using t̂2Γ for inference.
The idea of IVX is simple. We achieve Gaussian asymptotics by constructing an

endogenously generated instrument that lies in the stationary regime and then perform
IV-regression. For some fixed β ∈ (1/2, 1), we define, for each n ∈ N, the instrument
(Zt)t∈N by

Zt = (1− n−β)Zt−1 +∆Xt, Z0 = 0,

where we have suppressed the dependence on n in the notation. For each n ∈ N, Zt is
a VAR(1) process with the error terms given by ∆Xt and the sequence of coefficients,
(1− n−β)I, fall inside the stationary regime. The IVX estimator is the IV estimator of
regressing Xt on Xt−1 and the instrumental variable Zt−1, i.e.,

Γ̂IV =
n∑
t=1

XtZ
T
t−1

(
n∑
t=1

Xt−1Z
T
t−1

)−1

.

The corresponding t2-statistic for testing the null H0 : Γ = Γ0 is then given by

t̂2IV,Γ0
= tr

(
nΣ̂− 1

2

(
Γ̂IV − Γ0

)
SXZS

−1
ZZSZX

(
Γ̂IV − Γ0

)T
Σ̂− 1

2

)
,
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2 Beyond stationarity: Cointegration rank uncertainty

where SXZ and SZZ are defined analogously to SXX . It turns out that inference based
on this statistic is standard. In particular, t̂2IV,Γ has the standard asymptotic χ2

d2 distri-
bution uniformly over the parameter space Θ (see Appendix 2.K for more details) and
therefore, for fixed α ∈ (0, 1), a confidence region with asymptotic uniform level is given
by

CRIV (α) =
{
Γ : t̂2IV,Γ ≤ qd2,1−α

}
.

Remark 9. The use of the instrumental variable Zt simplifies inference. Indeed, the
asymptotic distribution is standard and there is no need for extensive simulations. There
is, however, some loss of efficiency. The estimator Γ̂IV converges at rate of nβ or slower.
If β is close to one or if all the roots converge to unity at rate that is slower than nβ,
this will not be a problem, but in general Γ̂ is a more efficient estimator of Γ.

2.13 Simulations

In this section we investigate the finite sample properties of the methods described in the
preceding section. First, we consider the problem of constructing a confidence interval
for Γij . Testing whether Xj,t Granger causes Xi,t, which in this case amounts to testing
the null H0 : Γij = 0, is then equivalent to checking if 0 is contained in the confidence
interval. Since there is nothing special about the choice of i and j we choose to focus on
Γ11 for simplicity. The second problem we consider is that of testing H0 : γ = 0 in the
predictive regression model.

2.13.1 Confidence intervals

Throughout we fix the significance level at α = 0.05. We compare three different ways
of constructing confidence intervals for Γ11. The first is lag-augmentation yielding the
confidence interval CILA(α) = CILA,11(α), equation (2.12.25). The other two methods
first compute a confidence region for the entire matrix Γ and then find a confidence
interval for Γ11 by projecting the confidence region onto the first coordinate. That is,
for a given confidence region of Γ with (1 − α)100% coverage, CR(α), we obtain the
projected confidence interval

CI(α) =

(
inf

Γ∈CR(α)
Γ11, sup

Γ∈CR(α)
Γ11

)
.

We let CIb(α) (respectively CIIV (α)) be the confidence interval obtained by projecting
CRb(α) (respectively CRIV (α)). Of these, CIb is by far the most costly to compute
as the dimension increases. The constraint in the optimization problem is costly to
evaluate due to the need for simulations to compute the critical value q̃n,Γ(1−α) at each
Γ. This issue can, however, be partly resolved by the use of the EAM-algorithm [Kaido
et al., 2019]. See Appendix 2.I.3 for details. Furthermore, we are being quite agnostic
about the spectral structure of Γ. Imposing extra assumptions on the parameter space
such as limiting the number of possible roots that are allowed to be close to unity can
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2.13 Simulations

Table 2.13.1: Coverage and median length of Cb, CIV , and CILA.

Coverage Median Length

d CIb CIIV CILA CIb CIIV CILA

n = 50

3 0.996 0.999 0.962 0.716 0.706 0.861
4 0.999 1.000 0.971 1.090 1.075 0.948
5 0.999 0.999 0.950 1.445 1.426 1.014

n = 75

3 0.998 0.998 0.976 0.506 0.491 0.699
4 0.999 0.999 0.973 0.786 0.756 0.758
5 1.000 1.000 0.973 1.093 1.051 0.794

n = 100

3 1.000 1.000 0.975 0.404 0.386 0.597
4 0.999 0.999 0.971 0.653 0.620 0.648
5 0.996 0.997 0.970 0.910 0.862 0.681

lead to further computational gains (see Remark 4). CIIV also involves an optimization
problem, but the constraint is cheap to evaluate since the critical value in CRIV is fixed
and standard. CIIV can be computed by standard solvers. We let β = 0.9 in the IVX
regression.
To verify that the confidence intervals are truly uniform, we look at choices of Γ with

eigenvalues in different regimes. In particular, for a fixed dimension d and sample size
n, we consider Γ ∈ Rd×d with eigenvalues λ1(Γ) = 1 and λi(Γ) = 1 − (1/n)1/(i−1) for
i = 2, ..., d. For each simulation, we draw a new set of random eigenvectors and the errors
are i.i.d. Gaussian with non-diagonal covariance matrix. For a detailed explanation of
the setup, see Appendix 2.I.1. The results are recorded in Table 2.13.1.
All three confidence intervals have coverage greater than 0.95 in every case. As ex-

pected, both CIb and CIIV are conservative with practically a 100% coverage. This
is already apparent in 3 dimensions. Despite the loss of efficiency, however, both yield
shorter intervals than CILA in 3 dimensions for all three sample sizes. This can most
likely be attributed to Γ having multiple roots close to unity, implying that the lag-
augmented estimator converges at a rate slower than the IVX and the LS estimators.
This advantage more or less vanishes in 4 dimensions and in 5 dimensions CILA is the
clear winner. Intuitively, the dimension of the confidence regions is quadratic in d and
the loss suffered by projection methods therefore quickly sets in. Interestingly, this phe-
nomenon seems less pronounced for higher sample sizes. Another key result in Table
2.13.1 is that CIb is wider than CIIV in every case. This is counter to the fact that the
least squares estimator should be more efficient. One possible explanation is that Γ has
roots that converge to 1 at a slower rate than (1/n)β limiting the loss of efficiency of the
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2 Beyond stationarity: Cointegration rank uncertainty

Figure 2.13.2: Rejection rates under the null H0 : γ = 0 of the three tests at different sample
sizes and dimensions and under two different regimes. The significance level is
fixed at α = 0.1 for all n and d, given by the dotted line. The rejection rate is
the proportion of times the null was rejected over 1000 simulations.

IVX estimator. Another possible explanation is that finite sample behaviour of t̂2IV is
different from the asymptotic χ2-distribution for the sample sizes considered here, result-
ing in a confidence region for Γ with slightly lower coverage but still with conservative
coverage when projected onto the first coordinate.

2.13.2 Predictive regression testing

Fix α = 0.1. We compare three methods to test H0 : γ = 0 against the alternative
HA : γ ̸= 0 in the predictive regression model. The first one uses lag-augmentation and
is based on the test-statistic in equation (2.12.24). We denote this test by φLA. The
other two tests employ the Bonferroni strategy described in Section 2.12.1. In particular,
for α1 = 0.05, α2 = 0.05, and CR(α1) a confidence region for Γ̃ with uniform asymptotic
level α1, we define the test φn = 1(inf Γ̃∈CR(α1)

σ̂−2
Y t̂2

0|Γ̃ ≤ qd−1,1−α2). We consider

CR(α1) = CRb(α1) and CR(α1) = CRIV (α1) denoting the corresponding tests by φb
and φIV .

10 By Lemma 6, the tests will have uniform asymptotic level. Computing
the two latter test statistics involves an optimization problem. As in the case of the
projection confidence intervals, it is much costlier to compute φb and we employ the
EAM-algorithm described in Appendix 2.I.3 as a practically feasible solution. These
computational disadvantages can be reduced if one has reason to believe there are only
few potential unit roots as discussed earlier.
We perform two sets of simulation experiments for the three tests. To verify that the

uniform guarantees hold, we consider a sequence of Γ̃ in the mixed regime. Throughout,
we let d = 4, 5, 6 and Γ̃ ∈ R(d−1)×(d−1) is chosen as above. We also consider the case
Γ̃ = I so that X̃t is a random walk, i.e., Γ̃ is in the non-stationary regime. First we
investigate the size properties of the three tests for different sample sizes. The results

10Here, CRb(α1) and CRIV (α1) are confidence regions for Γ̃ and not the entire matrix Γ.
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2.13 Simulations

Figure 2.13.3: Rejection rates of the null H0 : γ = 0 with γ = δ1 under different dimensions,
regimes and for a sequence of alternatives. Sample size is fixed at n = 100, and
the significance level is α = 0.1. The rejection rate is the proportion of times the
null was rejected over 1000 simulations. The dimension refers to the dimension
of X̃t.

are depicted in Figure 2.13.2. Evidently, φb and φIV quickly achieve a rejection rate
well below the significance level for all three dimensions and in both regimes. This is
in line with the theory since the Bonferroni corrections inherent in these tests result in
tests with conservative sizes. For φLA the asymptotics take a little longer to set in. At
around n = 150 it achieves the correct size for 3 and 4 dimensions, but convergence is
slower in 5 dimensions.
To compare the power of the three tests at finite sample sizes we consider a se-

quence of alternatives increasingly closer to 0. In particular, we let γ = δ1 for δ ∈
{0.005, 0.01, ..., 0.1} and fix the sample size at n = 100. In both regimes and for all
three choices of d, φb and φIV vastly outperform φLA correctly rejecting the null around
90% of the time in the mixed regime for δ = 0.04 compared to a rejection rate of only
around 18% for φLA. It looks as though φb is slightly better than φIV especially as the
dimension increases, but the two are close overall. Interestingly, both tests seem to fare
better in the mixed regime than in the stationary regime, although we would expect the
LS and the IVX estimator to converge at a slower rate in the mixed regime. This might
be related to the Bonferroni correction and the shape of the confidence regions in the
different regimes. The power might be improved upon by using more efficient correc-
tions than Bonferroni, see e.g. Elliott et al. [2015], Jansson and Moreira [2006]. The
performance of φLA does not depend much on the regime, but it does seem to slightly
improve with the size of the dimension. The latter observation also holds for the other
two tests and is probably a reflection of the fact that the alternative is easier to detect
in larger dimensions.
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2.14 Conclusion

We proved two major uniform asymptotic results for the sample covariance matrices of
VAR(1) processes with potential unit roots. First we showed that SXX and SXϵ can be
uniformly approximated by their Gaussian counterparts SY Y and SY ρ. This result was
used to derive another uniform approximation involving integrals of Ornstein-Uhlenbeck
processes. While uniform asymptotic results akin to those presented here have been
given in the literature for specific sequences of Γ, this is the first time anything has been
proven that is truly uniform over the parameter space Θ.
As an application of the uniform approximation results, we showed how to construct

confidence regions for Γ with uniform asymptotic level. Similarly, we proved that the
IVX methodology and lag augmentation also lead to uniformly valid inference if done
properly.
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Appendix

2.E. Proofs

Before presenting the proofs we need some auxiliary results. We assume in this section
that Assumptions M and U are true with the restriction Fθ = I. The first lemma collects
some convergence results related to the normalizing matrix, H, defined in (2.10.5).

Lemma 1. We have

(a) lim infn→∞ infθ∈Θ σmin(H) > 0.

(b) supRn,d
σmin(H)−1 = O(n−η).

(c) supRn,0
sup1≤k≤j≤d(1− |λij |)|Hkj | = O(1).

(d) supRn,0
||Γt|| ≤ C(1− log(n)/n)t for a constant C ≥ 0 not depending on θ or n.

(e) supRn,0
||∑n−2

t=0 ΓtΣ(Γt)T || = O(n/ log n)

(f) supRn,0
||∑n−2

t=0 tΓ
tΣ(Γt)T || = O(n/ log n)

Proof. We start with the proof of (a). We have

H =
1

n

n∑
t=1

t−1∑
s=1

Γt−1−sΣ
(
Γt−1−s)T ≥ 1

n

n−1∑
t=1

Σ (2.E.1)

since every matrix in the summand is positive semidefinite. We get

inf
θ∈Θ

σmin(H) ≥ inf
θ∈Θ

1

n

n−1∑
t=1

σmin(Σ) =
n− 1

n
inf
θ∈Θ

σmin(Σ) >
n− 1

n
c

where c = infθ∈Θ σmin(Σ) > 0 by Assumption U.2.
For the proof of (b), note that, for any n large enough and θ ∈ Rn,d, Γ is diagonal by

Assumption U.4 and therefore we have from (2.E.1)

σmin(H) ≥ σmin(Σ)

n

n−1∑
t=1

t−1∑
s=0

|λmin(Γ)|2s

≥ σmin(Σ)

n

n−1∑
t=1

1− (1− n−η)2t
1− (1− n−η)2

=
σmin(Σ)

n(1− (1− n−η)2)

(
n− 1−

n−1∑
t=1

(1− n−η)2t
)

=
σmin(Σ)

n(1− (1− n−η)2)

(
n− 1− (1− n−η)2n

1− (1− n−η)2
)
.
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For n0 large enough, we get

1

n

(
n− 1− (1− n−η)2n

1− (1− n−η)2
)
≥ 1

2
, ∀n ≥ n0

and, thus, with C = 2 supθ∈Θ σmin(Σ)
−1 <∞, we have that, for all n ≥ n0,

sup
θ∈Rn,d

σmin(H)−1 ≤ C
(
1−

(
1− n−η

)2)
.

Since nη(1− (1− n−η)2)→ 2 for n→∞ and all η > 0, this proves (b).
To prove (c), fix some θ ∈ Rn,0 and note that for all 1 ≤ k ≤ j ≤ d∣∣∣∣(ΓtΣ (Γt)T)kj

∣∣∣∣ ≤ ∥∥Γt∥∥∞
∣∣∣∣∣
d∑
i=1

(
ΓtΣ

)
ki

∣∣∣∣∣ ≤ d2 ∥∥Γt∥∥∞ ∥Σ∥∞ max
k≤i≤d

∣∣(Γt)
ki

∣∣ .
Now define cn = d2 supθ∈Rn,0

maxt≤n ∥Γt∥∞∥Σ∥∞ and note that lim supn→∞ cn <∞. If
|λij | ≤ 1− α, since Γ is Jordan-like and |λij | ≤ 1, we find that

(
1−

∣∣λij ∣∣) max
k≤i≤d

∣∣(Γt)
ki

∣∣ ≤ ( t

d− 1

)
(1− α)t−d+1 (2.E.2)

for t ≥ d in which case (c) holds. So assume that |λij | ≥ 1 − α. Then it follows by
assumption U.4 that

|Hkj | ≤ cn
|Σkj |
n

n−1∑
t=1

t−1∑
s=0

|λij |s = cn
|Σkj |

n(1− |λij |)

(
n− 1− |λij |n

1− |λij |

)
so that (c) follows from the fact that 1− |λij | ≥ log(n)/n for any θ ∈ Rn,0.

We now prove (d). By the equivalence of the Frobenius norm and the sup norm there
exists some C ≥ 0 such that, for any θ ∈ Θ, it holds that

∥Γn∥ ≤ C∥Γn∥∞ ≤ C
d∑

k=1

max
k≤j≤d

∣∣∣(Γn)kj∣∣∣ .
Now, by eq. (2.E.2),

lim
n→∞

sup
|λik |≤1−α

max
k≤j≤d

∣∣∣(Γn)kj∣∣∣ = 0

and |Γnkj | = |λik |nδkj for |λik | > 1 − α. Thus, there exists a C ≥ 0 not depending on θ
and n and such that

||Γt|| ≤ C|λmax(Γ)|t

for all θ ∈ Θ. The result then follows from supθ∈Rn,0
|λmax(Γ)| ≤ 1− log(n)/n.
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For the proof of (e), part (d) and the fact that Σ is uniformly bounded yield

sup
θ∈Rn,0

∣∣∣∣∣
∣∣∣∣∣
n−2∑
t=0

ΓtΣ
(
Γt
)T ∣∣∣∣∣
∣∣∣∣∣ ≤ C

n−2∑
t=0

sup
θ∈Rn,0

||Γt||2 ≤ C
n−2∑
t=0

(
1− log n

n

)2t

≤ C
∞∑
t=0

(
1− log n

n

)2t

=
C

(1− (1− log(n)/n)2)

= O

(
n

log n

)
.

The proof of part (f) is almost the same. Indeed, by the same chain of inequalities,
we find that

sup
θ∈Rn,0

∣∣∣∣∣
∣∣∣∣∣
n−2∑
t=0

tΓtΣ
(
Γt
)T ∣∣∣∣∣
∣∣∣∣∣ ≤ C(1− log(n)/n)2

(1− (1− log(n)/n)2)2
= O

(
n

log n

)
.

Lemma 2. We have

lim
n→∞

sup
θ∈Rn,0

∣∣∣∣∣
∣∣∣∣∣H− 1

2

(
n−2∑
t=0

ΓtΣ
(
Γt
)T)

H− 1
2 − I

∣∣∣∣∣
∣∣∣∣∣ = 0.

Proof. Note that it suffices to prove that

lim
n→∞

sup
θ∈Rn,0

∣∣∣∣∣∣
∣∣∣∣∣∣
(
n−2∑
t=0

ΓtΣ
(
Γt
)T)− 1

2

H

(
n−2∑
t=0

ΓtΣ
(
Γt
)T)− 1

2

− I

∣∣∣∣∣∣
∣∣∣∣∣∣ = 0.

Indeed, for any two positive definite matrices A,B ∈ Rd×d, we have∥∥∥A− 1
2BA− 1

2 − I
∥∥∥ ≤ ∥∥∥A− 1

2B
1
2

∥∥∥2 ∥∥∥B− 1
2AB− 1

2 − I
∥∥∥

and so, if the second term on the right hand side goes to 0, by Lemma 3 below, the term
on the left hand side will also go to 0.
We have

H =
1

n

n∑
t=1

t−1∑
s=1

Γt−1−sΣ
(
Γt−1−s)T

=
1

n

n−2∑
t=0

(n− 1− t)ΓtΣ
(
Γt
)T

=
n− 1

n

n−2∑
t=0

ΓtΣ
(
Γt
)T − 1

n

n−2∑
t=1

tΓtΣ
(
Γt
)T
.
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and, as a result,(
n−2∑
t=0

ΓtΣ
(
Γt
)T)− 1

2

H

(
n−2∑
t=0

ΓtΣ
(
Γt
)T)− 1

2

=
n− 1

n
I −M

where

M =

(
n−2∑
t=0

ΓtΣ
(
Γt
)T)− 1

2
1

n

n−2∑
t=1

tΓtΣ
(
Γt
)T (n−2∑

t=0

ΓtΣ
(
Γt
)T)− 1

2

.

All that is left to show is therefore that M goes to 0 uniformly over Rn,0 for n going to
infinity. Since each term in the sum is positive definite, we have, by Assumption U.2,

lim inf
n→∞

inf
θ∈Θ

σmin

(
n−2∑
t=0

ΓtΣ
(
Γt
)T) ≥ lim inf

n→∞
inf
θ∈Θ

σmin(Σ) > 0

so that, by equivalence of the spectral norm and the Frobenius norm,

lim sup
n→∞

sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣
(
n−2∑
t=0

ΓtΣ
(
Γt
)T)− 1

2

∣∣∣∣∣∣
∣∣∣∣∣∣ <∞.

By part (f) of Lemma 1, we have

sup
θ∈Rn,0

∥∥∥∥∥ 1n
n−2∑
t=1

tΓtΣ
(
Γt
)T∥∥∥∥∥ = o(1).

Combining these results, we obtain

sup
θ∈Rn,0

||M || = o(1).

The next lemma says that checking whether AnBn converges to the identity matrix is
the same as checking whether AnB

2
nAn converges to the identity matrix where An and

Bn are positive semidefinite matrices of conforming dimension.

Lemma 3. Let I be some index set and consider two families of sequences of positive
semidefinite d× d matrices, (An,i)n∈N,i∈I and (Bn,i)n∈N,i∈I . Then, if

lim
n→∞

sup
i∈I

∣∣∣∣An,iB2
n,iAn,i − I

∣∣∣∣ = 0,

it also holds that
lim
n→∞

sup
i∈I
||An,iBn,i − I|| = 0.

80



2.14 Conclusion

Proof. First, note that

lim inf
n→∞

inf
i∈I

λmin(An,iBn,i) = c > 0.

Since An,iBn,i is similar to the positive definite matrix A
1
2
n,iBn,iA

1
2
n,i, the contrary would

imply the existence of a sequence (in)n∈N ⊂ I such that σmin(An,inBn,in)→ 0 and, thus,
σmin(An,inB

2
n,in

An,in)→ 0 for n→∞ which, of course, is a contradiction.
Now, let An,iBn,i = Un,iPn,i be a polar decomposition, i.e., Un,i is orthogonal and

Pn,i positive semidefinite. Then, since Pn,i = UTn,iAn,iBn,i, we have P 2
n,i = P Tn,iPn,i =

An,iB
2
n,iAn,i which implies that

lim
n→∞

sup
i∈I
||Pn,i − I|| = 0.

It therefore suffices to show that Un,i converges to the identity matrix uniformly over I.
Since Un,i is orthogonal, we get

||Un,i − I||2 = 2d− 2tr(Un,i) ≤ 2d sup
1≤j≤d

|1− λj (Un,i)| .

Let Un,i = Vn,iDn,iV
∗
n,i be an eigendecomposition with Dn,i diagonal and Vn,i unitary.

Define the Hermitian matrix Hn,i = V ∗
n,i (Pn,i − I)Vn,i. Denote by djn,i the j’th diagonal

of Dn,i and by hjkn,i the jk’th element of Hn,i. Since Hn,i → 0 uniformly over I, for fixed
ϵ > 0, we can pick n0 ∈ N such that

sup
i∈I

sup
1≤j,k≤d

|hjkn,i| < ϵ

and
inf
i∈I

λmin (An,iBn,i) >
c

2

for all n ≥ n0. We define the complex disk Dr(x) = {y ∈ C : |y − x| ≤ r} for any x ∈ C
and r > 0. The matrix Dn,i +Dn,iHn,i is simlar to An,iBn,i so, by the Gershgorin circle
theorem, for 1 ≤ k ≤ d, there exists 1 ≤ j ≤ d such that

λk (An,iBn,i) ∈ DRj

(
djn,i + djn,ih

jj
n,i

)
where Rj =

∑
k ̸=j |h

jk
n,i|. Recall that |djn,i| = 1. Using the fact that λk(An,iBn,i) > c/2

is real and that

sup
i∈I

λk (An,iBn,i)
2 ≤ sup

i∈I
σmax

(
An,iB

2
n,iAn,i

)
→ 1

for n→∞, we may therefore assume that n0 is large enough so that

sup
i∈I
|λk (An,iBn,i)− 1| ≤ sup

i∈I

∣∣∣djn,i − λk (An,iBn,i)∣∣∣+ ϵ
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2 Beyond stationarity: Cointegration rank uncertainty

for all n ≥ n0 which implies

sup
i∈I

∣∣∣djn,i − 1
∣∣∣ ≤ 2 sup

i∈I

∣∣∣djn,i − λj (An,iBn,i)∣∣∣+ ϵ ≤ 2 sup
i∈I

Rj + ϵ+ ϵ ≤ 2dϵ.

Thus,
sup
i∈I
||Un,i − I|| ≤ 4d2ϵ

for all n ≥ n0. This completes the proof.

Finally, we provide a lower bound for the minimum eigenvalue of a sum of two positive
semi-definite matrices of a special form.

Lemma 4. Let A ∈ Rd1×d1 and B ∈ Rd2×d2 be positive semidefinite. Let P ∈ Rd1×d2
and, with d = d1 + d2, define the d× d block-matrix

C =

(
A+ PBP T PB

BP T B

)
.

Then, C is positive definite and we have λmin(C) ≥ min{λmin(A), λmin(B)}(2+∥P∥2)−2.

Proof. Since B is positive definite, we can take the Schur complement of B in C, call it
S, and observe that

S = A+ PBP T − PBB−1BP T = A.

Then, since bothB and its schur complement are positive definite, it follows by Sylvester’s
Law of Inertia, that C is also positive definite. Now, to achieve the lower bound, define
the d× d block matrices

Q =

(
I −P
0 I

)
, S ⊕B =

(
S 0
0 B

)
which satisfy the well known equality QCQT = S ⊕ B. It then follows that λmin(C) ≥
min{λmin(S), λmin(B)}σmin(Q−1)2. But the result then follows, since S = A and

σmin(Q
−1) = σmax(Q)−1 ≥ (2 + ∥P∥2)−1.

2.E.1 Nonstationary asymptotics

Lemma 5. Let g(t, s, n, θ) = G− 1
2 e(t−s)CΣ

1
2 . We have

lim
n→∞

sup
θ∈Rn,d

E
∣∣∣∣∣∣∣∣∫ 1

0

∫ t

0
f(t, s, n, θ)− g(t, s, n, θ)dWsdW

T
t

∣∣∣∣∣∣∣∣2 = 0 (2.E.3)

and

lim
n→∞

sup
θ∈Rn,d

E

∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

(∫ t

0
f(t, s, n, θ)dWs

)(∫ t

0
f(t, s, n, θ)dWs

)T

−
(∫ t

0
g(t, s, n, θ)dWs

)(∫ t

0
g(t, s, n, θ)dWs

)T
dt

∣∣∣∣∣
∣∣∣∣∣
2

= 0. (2.E.4)
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Proof of Lemma 5. We first prove (2.E.3). Define

h1(t, s, n, θ) =
√
nH− 1

2Γ⌊nt⌋−⌊ns⌋−1Σ
1
2 , h2(t, s, n, θ) =

√
nH− 1

2 e(t−s)C̃Σ
1
2

h3(t, s, n, θ) =
√
nH− 1

2 e(t−s)CΣ
1
2 ,

where C̃ = n log Γ is well defined for all θ ∈ Rn,d. When it does not cause confusion, we
shall omit the arguments of functions and simply write f , g, h1, h2, and h3. By applying
the Itô isometry twice we find that the expectation in (2.E.3) is equal to∫ 1

0

∫ t

0
||f − g||2 dsdt

≤ 4

∫ 1

0

∫ t

0
||f − h1||2 + ||h1 − h2||2 + ||h2 − h3||2 + ||h3 − g||2 dsdt

where the inequality is Jensen’s inequality. For the first term, for any θ ∈ Rn,d,∫ 1

0

∫ t

0
||f − h1||2 dsdt =

∫ 1

0

∫ t

⌊nt⌋/n

∣∣∣∣∣∣√nH− 1
2Γ⌊nt⌋−⌊ns⌋−1Σ

1
2

∣∣∣∣∣∣2 dsdt
=

(
n

∫ 1

0
t− ⌊nt⌋

n
dt

) ∣∣∣∣∣∣H− 1
2Γ−1Σ

1
2

∣∣∣∣∣∣2
≤
∣∣∣∣∣∣H− 1

2Γ−1Σ
1
2

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣Γ−1Σ
1
2

∣∣∣∣∣∣2 tr (H−1
)
.

Here Γ−1 is well-defined since θ ∈ Rn,d. Thus,

lim
n→∞

sup
θ∈Rn,d

∫ 1

0

∫ t

0
||f − h1||2 dsdt ≤ lim

n→∞
sup
θ∈Rn,d

∣∣∣∣∣∣Γ−1Σ
1
2

∣∣∣∣∣∣2 tr (H−1
)
= 0

where we use that Γ−1Σ
1
2 is uniformly bounded on Rn,d in combination with Lemma 1.

For the second term, we first note that, due to Assumptions U.3 and U.4, for n large
enough, we may assume that ||Γ− I|| < 1 for any θ ∈ Rn,d. We then get Γ⌊nt⌋−⌊ns⌋−1 =
e(⌊nt⌋−⌊ns⌋−1) log Γ whence

||h1 − h2||2 =
∣∣∣∣∣∣√nH− 1

2 e(⌊nt⌋−⌊ns⌋−1) log Γ
(
I − e((t−s)n−(⌊nt⌋−⌊ns⌋−1)) log Γ

)
Σ

1
2

∣∣∣∣∣∣2
≤
∣∣∣∣∣∣√nH− 1

2Γ⌊nt⌋−⌊ns⌋−1
∣∣∣∣∣∣2 c(t, s, n, θ)2 ||log Γ||2

where

c(t, s, n, θ) = ((t− s)n− (⌊nt⌋ − ⌊ns⌋ − 1))
∣∣∣∣∣∣Σ 1

2

∣∣∣∣∣∣ e||((t−s)n−(⌊nt⌋−⌊ns⌋−1)) log Γ||

and the inequality follows from ||eA−eB|| ≤ ||A−B||emax{||A||,||B||} for any A,B ∈ Cd×d.
By assumptions U.3 and U.4, we have limn→∞ supθ∈Rn,d

|| log Γ||2 = 0 and

lim sup
n→∞

sup
θ∈Rn,d

sup
t∈[0,1]

sup
s∈[0,t]

c(t, s, n, θ)2 ≤ c0 <∞.
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We also have∫ 1

0

∫ ⌊nt⌋/n

0

∣∣∣∣∣∣√nH− 1
2Γ⌊nt⌋−⌊ns⌋−1

∣∣∣∣∣∣2 ds = 1

n

n∑
t=2

t−1∑
s=1

∣∣∣∣∣∣H− 1
2Γt−1−s

∣∣∣∣∣∣2
≤
∣∣∣∣Σ−1

∣∣∣∣ tr(H− 1
2E (SXX)H

− 1
2

)
= d

∣∣∣∣Σ−1
∣∣∣∣ .

As shown above

lim sup
n→∞

sup
θ∈Rn,d

∫ 1

0

∫ t

⌊nt⌋/n

∣∣∣∣∣∣√nH− 1
2Γ⌊nt⌋−⌊ns⌋−1

∣∣∣∣∣∣2 dsdt = 0

so that

lim sup
n→∞

sup
θ∈Rn,d

∫ 1

0

∫ t

0

∣∣∣∣∣∣√nH− 1
2Γ⌊nt⌋−⌊ns⌋−1

∣∣∣∣∣∣2 dsdt ≤ c1 <∞.
Combining these results then yields

lim
n→∞

sup
θ∈Rn,d

∫ 1

0

∫ t

0
||h1 − h2||2 dsdt ≤ c0c1 lim

n→∞
sup
θ∈Rn,d

||log Γ||2 = 0.

For the third term, note that C̃ and C commute. A similar argument as that applied to
the second term then yields

lim
n→∞

sup
θ∈Rn,d

∫ 1

0

∫ t

0
||h2 − h3|| = 0.

Finally, for the fourth term, it suffices to show that ||√nH− 1
2G

1
2−I|| converges uniformly

over Rn,b to 0 for n going to infinity. Indeed, since∫ 1

0

∫ t

0
||h2 − g||2 ≤

∣∣∣∣∣∣√nH− 1
2G

1
2 − I

∣∣∣∣∣∣2 ∫ 1

0

∫ t

0

∣∣∣∣∣∣G− 1
2 e(t−s)CΣ− 1

2

∣∣∣∣∣∣2 dsdt
=
∣∣∣∣∣∣√nH− 1

2G
1
2 − I

∣∣∣∣∣∣2 tr(G− 1
2E
(∫ 1

0
Jt,CJ

T
t,Cdt

)
G− 1

2

)
= d

∣∣∣∣∣∣√nH− 1
2G

1
2 − I

∣∣∣∣∣∣2 ,
this would imply

lim
n→∞

sup
θ∈Rn,d

∫ 1

0

∫ t

0
||h3 − g||2 ≤ c1 lim

n→∞
sup
θ∈Rn,d

||√nH− 1
2G

1
2 − I|| = 0.

To prove the claim, we first consider nH− 1
2GH− 1

2 . By the Itô isometry we have

nH− 1
2GH− 1

2 =

∫ 1

0

∫ t

0
h3h

T
3 dsdt.
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Also, similar to above,∫ 1

0

∫ t

0
ffTdsdt = H− 1

2
1

n

n∑
t=2

t−1∑
s=1

Γt−1−sΣ
(
Γt−1−s)T H− 1

2 = I.

Thus,∣∣∣∣∣∣nH− 1
2GH− 1

2 − I
∣∣∣∣∣∣ ≤ ∫ 1

0

∫ t

0

∣∣∣∣(h3 − f)hT3 ∣∣∣∣ dsdt+ ∫ 1

0

∫ t

0

∣∣∣∣∣∣f (h3 − f)T ∣∣∣∣∣∣ dsdt.
Now, since lim supn→∞ supθ∈Rn,d

∫ t
0 ||h3||2 + ||f ||2dsdt < ∞ and, as was shown above,

limn→∞ supθ∈Rn,d

∫ 1
0

∫ t
0 ||h3 − f ||2dsdt = 0, Hölder’s inequality yields

lim
n→∞

sup
θ∈Rn,d

∣∣∣∣∣∣nH− 1
2GH− 1

2 − I
∣∣∣∣∣∣ = 0.

By Lemma 3 this implies that ||√nH− 1
2G

1
2 − I|| converges uniformly over Rn,b to 0 for

n going to infinity.
For the proof of (2.E.4) we start with the following chain of inequalities∣∣∣∣∣

∣∣∣∣∣
∫ 1

0

∫ t

0
fdWs

(∫ t

0
fdWs

)T
−
∫ t

0
gdWs

(∫ t

0
gdWs

)T
dt

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

∫ t

0
fdWs

(∫ t

0
f − gdWs

)T
dt

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

∫ t

0
f − gdWs

(∫ t

0
gdWs

)T
dt

∣∣∣∣∣
∣∣∣∣∣

≤
∫ 1

0

(∣∣∣∣∣∣∣∣∫ t

0
fdWs

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∫ t

0
gdWs

∣∣∣∣∣∣∣∣) ∣∣∣∣∣∣∣∣∫ t

0
f − gdWs

∣∣∣∣∣∣∣∣ dt
≤
(∫ 1

0

(∣∣∣∣∣∣∣∣∫ t

0
fdWs

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣∫ t

0
gdWs

∣∣∣∣∣∣∣∣)2

dt

) 1
2
(∫ 1

0

∣∣∣∣∣∣∣∣∫ t

0
f − gdWs

∣∣∣∣∣∣∣∣2 dt
) 1

2

≤
(
2

∫ 1

0

∣∣∣∣∣∣∣∣∫ t

0
fdWs

∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∫ t

0
gdWs

∣∣∣∣∣∣∣∣2 dt
) 1

2
(∫ 1

0

∣∣∣∣∣∣∣∣∫ t

0
f − gdWs

∣∣∣∣∣∣∣∣2 dt
) 1

2

where the second to last inequality is Hölder’s inequality. By the Itô isometry and
Fubini’s theorem we have, for any θ ∈ Rn,d,

E

(∫ 1

0

∣∣∣∣∣∣∣∣∫ t

0
fdWs

∣∣∣∣∣∣∣∣2 + ∣∣∣∣∣∣∣∣∫ t

0
gdWs

∣∣∣∣∣∣∣∣2 dt
)

=

∫ 1

0

∫ t

0
||f ||2 + ||g||2dsdt = 2d

and

E

(∫ 1

0

∣∣∣∣∣∣∣∣∫ t

0
f − gdWs

∣∣∣∣∣∣∣∣2 dt
)

=

∫ 1

0

∫ t

0
||f − g||2dsdt

so that equation 2.E.4 follows by the same argument as in the proof of equation (2.E.3).
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2 Beyond stationarity: Cointegration rank uncertainty

2.E.2 Stationary asymptotics

Before proving Lemma 2 we need two auxiliary results on the rate of convergence of
Xt−1,nX

T
t−1,n and SXϵ akin to Lemma 3.1 in Phillips and Magdalinos [2007].

Lemma 6. For all s ∈ [0, 1], we have

sup
θ∈Rn,0

∣∣∣∣∣∣X⌊ns⌋,θX
T
⌊ns⌋,θ

∣∣∣∣∣∣ = op

(
n√
log n

)
(2.E.5)

and

sup
θ∈Rn,0

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

⌊ns⌋∑
t=1

Xt−1,θϵ
T
t,θ

∣∣∣∣∣∣
∣∣∣∣∣∣ = op

(
1√
log n

)
. (2.E.6)

Proof. We first prove (2.E.5). Since X⌊ns⌋,θX
T
⌊ns⌋,θ is positive semidefinite, it suffices to

show that supθ∈Rn,0
tr
(
E
(
X⌊ns⌋,θX

T
⌊ns⌋,θ

))
= o

(
n√
logn

)
for all s ∈ [0, 1]. Now, fix some

s ∈ [0, 1]. We have, for all θ ∈ Θ,

tr
(
E
(
X⌊ns⌋,θX

T
⌊ns⌋,θ

))
≤ tr

(
E
(
Xn,θX

T
n,θ

))
= tr

(
n−1∑
t=0

ΓtΣ
(
Γt
)T)

.

The result then follows directly from part (e) of Lemma 1.
For the proof of (2.E.6), fix some θ ∈ Θ and write

E

( n∑
t=1

Xt−1,θϵt,θ

)(
n∑
t=1

Xt−1,θϵt,θ

)T = tr (Σ)

n∑
t=1

t−1∑
s=1

Γt−1−sΣ
(
Γt−1−s)T

≤ tr (Σ)n
n∑
t=1

ΓtΣ
(
Γt
)T

so that another application of part (e) of Lemma 1 shows that

sup
θ∈Rn,0

E

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
t=1

Xt−1,θϵ
T
t,θ

∣∣∣∣∣
∣∣∣∣∣
2

= op

(
1

log n

)
.

The result then follows since E
∣∣∣∣∣∣ 1n∑⌊ns⌋

t=1 Xt−1,θϵ
T
t,θ

∣∣∣∣∣∣2 ≤ E
∣∣∣∣∣∣ 1n∑n

t=1Xt−1,θϵ
T
t,θ

∣∣∣∣∣∣2 for all

s ∈ [0, 1] and θ ∈ Θ.

Proof of Lemma 2. We shall first tackle the proof of (2.10.10). Fix some s ∈ [0, 1] and

define S̃XX = 1
n

∑⌊ns⌋
t=1 Xt−1,θX

T
t−1,θ for ease of notation. From the relation Xt,θ =

ΓXt−1,θ + ϵt,θ, it follows that

ΓXt−1,θX
T
t−1,θΓ

T −Xt−1,θX
T
t−1,θ − ϵt,θϵTt,θ
= Xt,θXt,θ −Xt−1,θX

T
t−1,θ − ΓXt−1,θϵ

T
t,θ − ϵt,θXT

t−1,θΓ
T .
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Summing over t and dividing by n then gives S̃XX = ΓS̃XXΓ
T + sΣ− Sn where

Sn =
1

n

Xn,θX
T
n,θ −

⌊ns⌋∑
t=1

(
ϵt,θϵ

T
t,θ − Σ

)
−

⌊ns⌋∑
t=1

ΓXt−1,θϵ
T
t,θ −

⌊ns⌋∑
t=1

ϵt,θX
T
t−1,θΓ

T

 .

We can iterate this identity to get

S̃XX =

⌊ns⌋−2∑
t=0

ΓtΣ
(
Γt
)T

+

⌊ns⌋−2∑
t=0

ΓtSn
(
Γt
)T

+ Γ⌊ns⌋−1S̃XX

(
Γ⌊ns⌋−1

)T
.

Now, define

An = H− 1
2

⌊ns⌋−2∑
t=0

ΓtSn
(
Γt
)T
H− 1

2 , Bn = Γ⌊ns⌋−1S̃XX

(
Γ⌊ns⌋−1

)T
.

By Lemma 2, it suffices to show that supθ∈Rn,0
||An||+ ||Bn|| = op(1). By Lemma 6 and

Lemma 2 we see that
√
log nSn converges uniformly to 0 over Rn,0. But then, since Σ

is uniformly bounded from below over Θ, for a fixed ϵ > 0, we can find n0 ∈ N large
enough so that

sup
θ∈Rn,0

P

∣∣∣∣∣∣√log nAn

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
∣∣∣∣∣∣H− 1

2

⌊ns⌋−2∑
t=0

ΓtΣ
(
Γt
)TH− 1

2

∣∣∣∣∣∣
∣∣∣∣∣∣
 < ϵ

for all n ≥ n0. It then follows from Lemma 2 that supθ∈Rn,0
||An|| = op(1). Next, we see

that EBn = Γ⌊ns⌋−1H̃(Γ⌊ns⌋−1)T where H̃ = E(S̃XX) and therefore supθ∈Rn,0
||EBn|| ≤

C
(
1− logn

n

)2(⌊ns⌋−1)
||H̃|| by part (d) of Lemma 1. Finally, from the inequality 1 −

n
logn ≤ 1

n1/n and part (c) of Lemma 1 we see that supθ∈Rn,0
||EBn|| = o(1). Since Bn is

positive semidefinite, this implies that Bn converges in probability to 0 uniformly over
Rn,0 and therefore concludes the proof of (2.10.10).
For the proof of (2.10.11), let (θn)n∈N ⊂ Θ be such that θn ∈ Rn,0 and define the

array (et,n)t≥1,n∈N by

et,n = vec

(
n−

1
2H− 1

2Xt−1,θnϵ
T
t,θnΣ

− 1
2

n

)
= n−

1
2Σ− 1

2 ϵt,θn ⊗H− 1
2Xt−1,θn .

Proving (2.10.11) is equivalent to proving
∑n

t=1 et,n →w N (0, I). Since Xt−1,θn is mea-
surable wrt. Ft−1, we see that et,n is a martingale difference array and, by (2.10.10),

n∑
t=1

E(et,neTt,n|Ft−1)→p I

for n→∞. Our aim is to apply the martingale difference array CLT given in Theorem 5

which amounts to checking that, for each γ > 0,
∑n

t=1 E
(
||et,n||2 1 (||et,n|| > γ) |Ft−1

)
=
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op(1). Now, fix some γ > 0 and note that ||et,n||2 = ||H− 1
2Xt−1,θn ||2||ϵt,θn ||2 so that

n∑
t=1

E
(
||et,n||2 1 (||et,n|| > γ) |Ft−1

)
≤ 1

n

n∑
t=1

∣∣∣∣∣∣H− 1
2Xt−1,θn

∣∣∣∣∣∣2 E(∣∣∣∣∣∣Σ− 1
2 ϵt,n

∣∣∣∣∣∣2 1 (||et,n|| > γ) |Ft−1

)
≤Cn max

1≤t≤n

{
E
(
||ϵt,n||2 1 (||et,n|| > γ) |Ft−1

)}
where Cn = supθ∈Rn,0

tr
(
H− 1

2SXXH
− 1

2

)
tr (Σ) = Op(1) because of (2.10.10). An ap-

plication of Hölder’s inequality and the Markov inequality gives us

E
(
||ϵt,n||2 1 (||et,n|| > γ) |Ft−1

)
≤E

(
||ϵt,θn ||2+δ |Ft−1,n

) 2
2+δ P (||et,n|| > γ|Ft−1,n)

δ
2+δ

≤E
(
||ϵt,θn ||2+δ |Ft−1,n

) 2
2+δ

(
E(||H− 1

2Xt−1,θn ||2||Σ− 1
2 ϵt,θn ||2|Ft−1)

nγ2

) δ
2+δ

≤Ctr
(
1

n
H− 1

2Xt−1,θnX
T
t−1,θnH

− 1
2

) δ
2+δ

where C = d
δ

2+δ supθ∈Θ E
(
||ϵt,θ||2+δ |Ft−1,n

) 2
2+δ

< ∞ because of Assumptions M.2 and

M.3. Thus, the proof is complete if we can show that

sup
θ∈Rn,0

max
1≤t≤n

tr

(
1

n
H− 1

2Xt−1,θnX
T
t−1,θnH

− 1
2

) δ
2+δ

= op(1).

This follows from the same argument as in the proof of equation (5) [Phillips and Mag-
dalinos, 2007]. (The multivariate case is essentially the same once (2.10.10) is estab-
lished.)

Proof of Lemma 3. Define the sequence (cn)n∈N ⊂ Rd given by cn,i = e(Cn)ii/n for 1 ≤
i ≤ d. By assumption, we have cn → 0 for n → ∞ so we can assume without loss
of generality that maxi cn,i ≤ 1 and mini cn,i > 0 and, by potentially passing to a sub
sequence, that cn is monotonically decreasing.
For each n, we can then find kn ∈ N such that

1− k−ηn ≤ min
i
eCn,ii/kn ≤ max

i
eCn,ii/kn ≤ 1− log kn

kn
.

Passing to another sub sequence if necessary, we may assume that kn is strictly increasing.
Now, define sequences (λk)k∈N ⊂ Cd and (Σk)k∈N ⊂ Rd×d such that |λk,i| = 1− log(k)/k
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and Σk = I for k < k0 and |λk,i| = eCn,ii/kn and Σk = Ωn for kn ≤ k < kn+1. We then
have

1− k−η ≤ 1− k−ηn ≤ min
i
|λn,i| ≤ max

i
|λn,i| ≤ 1− log kn

kn
≤ 1− log k

k
.

Define (θk)k∈N ⊂ Θ by θk = (Γk,Σk, c) where Γk is the diagonal matrix whose diagonal
entries are given by λk and c ∈ R+. The above inequalities together with the assumptions
on Ωn imply that θk ∈ Rk,0 ∩Rk,d for all k. Define

Sk =
1

k

k∑
t=1

Xt−1,θkX
T
t−1,θk

, Tk =
1

k

k∑
t=1

Xt−1,θkϵt,θk , and Hk = E (Sk) .

The result follows by the triangle inequality, equations (2.E.3), (2.E.4) and Lemma 2.

2.E.3 Mixed Asymptotics

This section is devoted to the proof of Lemma 4. Assume throughout Assumptions M
and U and consider the special case where Fθ = I. For ease of notation we define

A =

∫ 1

0
JC,tJ

T
C,tdt, B =

∫ 1

0
JC,tdW

T
t .

We hold 1 ≤ k ≤ d−1 fixed throughout and start by partitioning Rn,k. Let r = d−k ≥ 1
and define w(j, l) = (1− |λik+j

|)/(1− |λik+l
|) for 1 ≤ j < l ≤ r. We introduce the sets

Un,0 =
{
θ ∈ Rn,k : w(0, 1) ≤ n−

γ
r

}
, Un,r =

{
θ ∈ Rn,k : w(0, r) ≥ n−γ

}
,

Un,j =
{
θ ∈ Rn,k : w(0, j) ≥ n−

jγ
r , w(j, j + 1) ≤ n− γ

r

}
for j = 1, ..., r − 1. We have Rn,k =

⋃
j Un,j for all n ∈ N. Indeed, fix n and take some

θ ∈ Rn,k and define j0 = min
(
inf
{
0 ≤ j ≤ r − 1 : w(j, j + 1) ≤ n− γ

r

}
, r
)
, where we use

the convention inf ∅ = ∞. If j0 = 0, then clearly θ ∈ Un,0 = Un,j0 . Otherwise, we find
that

w(0, j0) =

j0−1∏
j=0

w(j, j + 1) ≥
j0−1∏
j=0

n−
γ
r = n−

j0γ
r

so that, again, θ ∈ Un,j0 . Fix some 0 ≤ j ≤ r. It therefore suffices to show that (2.10.14)
and (2.10.15) hold uniformly over Un,j . To do so, we need to split the covariance matrices
and the normalizing matrix into four blocks. In particular, we write

H =

(
H11 H12

H21 H22

)
whereH11 is (k+j)×(k+j) and the other blocks of conforming dimensions. Analogously,
SXX , SXϵ, G, A and B can be written as block matrices. Block coordinates are written
in the subscript when possible and otherwise in the superscript. For example, S12

XX and
A12 are the top right (k + j)× (d− k − j) blocks of SXX and A.
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2 Beyond stationarity: Cointegration rank uncertainty

Lemma 7. For fixed 1 ≤ k ≤ d − 1 and 0 ≤ j ≤ r, let N ∈ R(d−k−j)×d be a random
matrix on (Ω,F ,P) such that vec(N) ∼ N (0, I). We have the following block-wise limits

lim
n→∞

sup
θ∈Un,j

dBL

(
H

− 1
2

11 S
12
XXH

− 1
2

22 , 0

)
= 0 (2.E.7)

lim
n→∞

sup
θ∈Un,j

dBL

(
H

− 1
2

11 S
11
XXH

− 1
2

11 , G
− 1

2
11 A11G

− 1
2

11

)
= 0 (2.E.8)

lim
n→∞

sup
θ∈Un,j

dBL

(
H

− 1
2

22 S
22
XXH

− 1
2

22 , I

)
= 0. (2.E.9)

lim
n→∞

sup
θ∈Un,j

dBL

(√
nH

− 1
2

11

(
S11
Xϵ, S

12
Xϵ

)
, G

− 1
2

11 (B11, B12)

)
= 0 (2.E.10)

lim
n→∞

sup
θ∈Un,j

dBL

(√
nH

− 1
2

22

(
S21
Xϵ, S

22
Xϵ

)
, N

)
= 0 (2.E.11)

Proof. Fix some θ ∈ Un,j . For any i ≤ ik+j , we have |λi| ≥ |λik+j
| ≥ 1 − n−η−γn jγ

r ≥
1 − n−η and, for any i ≥ ik+j , |λi| ≤ |λik | ≤ 1 − n−η−γ ≤ 1 − logn

n . Equations (2.E.8),
(2.E.9), (2.E.10) and (2.E.11) then follow from the proofs in Sections 2.10.1 and 2.10.2.

For the proof of (2.E.7), note that S12
XX = Γn11S

12
XXΓ

n
22 +

∑n−1
t=0 Γt11Sn

(
Γt22
)T

, where

Sn = S12
ϵϵ +

1

n

(
Xn,θX

T
n,θ

)
12
− Γ11S

12
Xϵ −

(
S21
Xϵ

)T
ΓT22

and Sϵϵ = (
∑n

t=1 ϵt,θϵ
T
t,θ)/n. An application of Hölder’s inequality yields

∣∣∣∣∣∣∣∣H− 1
2

11 Γn11S
12
XX (Γn22)

T H−1
22

∣∣∣∣∣∣∣∣ ≤ tr

(
H

− 1
2

11 Γn11S
11
XX (Γn11)

T H
− 1

2
11

) 1
2

×

tr

(
H

− 1
2

22 Γn22S
22
XX (Γn22)

T H
− 1

2
22

) 1
2

and it follows from (2.E.8) and (2.E.9) along with the fact that supθ∈Un,j
||Γn22|| = o(1)

that

sup
θ∈Un,j

tr

(
H

− 1
2

11 Γn11S
11
XX (Γn11)

T H
− 1

2
11

)
= Op(1),

sup
θ∈Un,j

tr

(
H

− 1
2

22 Γn22S
22
XX (Γn22)

T H
− 1

2
22

)
= op(1)

so that supθ∈Un,j
||H− 1

2
11 Γn11S

12
XX (Γn22)

T H−1
22 || = op(1). For the second term, we have, for

all θ ∈ Un,j ,∣∣∣∣∣
∣∣∣∣∣H− 1

2
11

n−1∑
t=1

Γt11Sn
(
Γt22
)T
H

− 1
2

22

∣∣∣∣∣
∣∣∣∣∣ ≤ Cn

∣∣∣∣∣∣∣∣H− 1
2

22

∣∣∣∣∣∣∣∣ n−1∑
t=0

∣∣∣∣∣∣∣∣H− 1
2

11 Γt11Σ
− 1

2
11

∣∣∣∣∣∣∣∣

90



2.14 Conclusion

where Cn = supθ∈Un,j
supt≥1 ||Sn||||Σ

1
2
11||||Γt22||. Hölder’s inequality yields

n−1∑
t=0

∣∣∣∣∣∣∣∣H− 1
2

11 Γt11Σ
− 1

2
11

∣∣∣∣∣∣∣∣ ≤ tr

(
H

− 1
2

11

n−1∑
t=0

Γt11Σ11

(
Γt11
)T
H

− 1
2

11

)

so that, by part (b) of Lemma 1 and Lemma 2,

sup
θ∈Un,j

∣∣∣∣∣∣∣∣H− 1
2

22

∣∣∣∣∣∣∣∣ n−1∑
t=0

∣∣∣∣∣∣∣∣H− 1
2

11 Γt11Σ
− 1

2
11

∣∣∣∣∣∣∣∣ = op(1).

Since ||Σ
1
2
11|| and supt≥1 ||Γt22|| are uniformly bouded over Un,j , it therefore suffices to

show that supθ∈Un,j
||Sn|| = Op(1). From Lemma 2 and part (b) of Lemma 3 in the

Appendix we have supθ∈Un,j

∣∣∣∣Sϵϵ + 1
nXn,θXn,θ

∣∣∣∣ = Op(1) and it follows from (2.E.10) and
(2.E.11) along with the fact thatH11, H22 = O(n) uniformly over Θ that supθ∈Θ ||SXϵ|| =
Op(1) which completes the proof.

We now define H̃ as the block diagonal matrix obtained by deleting the off-diagonal
blocks of H. Lemma 7 determines the limiting behaviour of H̃− 1

2SXXH̃
− 1

2 . The next
lemma explains why this is sufficient.

Lemma 8. For fixed 1 ≤ k ≤ d − 1 and 0 ≤ j ≤ r, let H̃ and G̃ be the block-diagonal
matrices obtained by deleting the off-diagonal blocks of H and G, respectively. We then
have

sup
θ∈Un,j

{∣∣∣∣∣∣H− 1
2 H̃

1
2 − I

∣∣∣∣∣∣+ ∣∣∣∣∣∣G− 1
2 G̃

1
2 − I

∣∣∣∣∣∣} = o(1).

Proof. It suffices to show that supθ∈Un,j
||H− 1

2
11 H12H

− 1
2

22 || = o(1). To do so, we first note

that, arguing as in the proof of part (b) of Lemma 1, supθ∈Un,j
σmin(H

−1
11 ) = O(1−|λik+j

|)
and, consequently,

sup
θ∈Un,j

∣∣∣∣∣∣∣∣H− 1
2

11

(
1− |λik+j

|
)− 1

2

∣∣∣∣∣∣∣∣ = O(1).

Let Λ ∈ R(d−k−j)×(d−k−j) be the diagonal matrix satisfying Λll = 1− |λik+j+l
|. Then, by

part (c) of Lemma 1, we have

sup
θ∈Un,j

∣∣∣∣∣∣H12Λ
1
2

∣∣∣∣∣∣ = O
((

1− |λik+j+1
|
)− 1

2

)
.

Because of the Jordan-like nature of Γ and, for any θ ∈ Un,j ,

σmin

(
Λ

1
2H22Λ

1
2

)
≥ σmin(Σ22)

n

n−1∑
t=1

t−1∑
s=0

σmin

(
Λ

1
2Γs
)2

≥ σmin (Σ22) min
1≤l≤d−k−j

Λll
n

n−1∑
t=1

t−1∑
s=0

min
{∣∣λik+j+l

∣∣2s , 1}
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where the second inequality follows from Assumption U.4 and the fact that Γ0 = I. For
any 1 ≤ l ≤ d− k − j, it holds that

Λll
n

n−1∑
t=1

t−1∑
s=0

∣∣λik+j+l

∣∣2s = 1− |λik+j+l
|

n

n−1∑
t=1

t−1∑
s=0

∣∣λik+j+l

∣∣2s
=

1

1 + |λik+j+l
|

(
1−

1− |λik+j+l
|2n

n(1− |λik+j+l
|2)

)
.

Now, since supθ∈Un,j
|λik+j+l

|2n → 0 and infθ∈Un,j
n(1− |λik+j+l

|2)→∞ for n→∞ and
1 ≤ l ≤ d− k − j, we get that

sup
θ∈Un,j

σmax

(
Λ− 1

2H−1
22 Λ− 1

2

)
= sup

θ∈Un,j

σmin

(
Λ

1
2H22Λ

1
2

)−1
= O(1)

from which it follows that supθ∈Un,j
||Λ− 1

2H
− 1

2
22 || = O(1). Combining all these rates yields

sup
θ∈Un,j

∣∣∣∣∣∣∣∣H− 1
2

11 H12H
− 1

2
22

∣∣∣∣∣∣∣∣ = O

(
1− |λik+j

|
1− |λik+j+1

|

) 1
2

= O
(
n−

γ
2r

)
.

With these two lemmas we can complete the proof of (2.10.14) and (2.10.15). First,
for any θ ∈ Un,j , we have∣∣∣∣∣∣H− 1

2SXXH
− 1

2 − H̃− 1
2SXXH̃

− 1
2

∣∣∣∣∣∣ ≤ Cn ∣∣∣∣∣∣H̃− 1
2SXXH̃

− 1
2

∣∣∣∣∣∣
where, by Lemma 8, Cn = supθ∈Un,j

∣∣∣∣∣∣H̃ 1
2H− 1

2 − I
∣∣∣∣∣∣ (∣∣∣∣∣∣H̃ 1

2H− 1
2

∣∣∣∣∣∣+√d) = o(1). It then

follows from Lemma 7 that

sup
θ∈Un,j

∣∣∣∣∣∣H− 1
2SXXH

− 1
2 − H̃− 1

2SXXH̃
− 1

2

∣∣∣∣∣∣ = op(1)

and, similarly,

sup
θ∈Un,j

∣∣∣∣∣∣G− 1
2AG− 1

2 − G̃− 1
2AG̃− 1

2

∣∣∣∣∣∣ = op(1),

sup
θ∈Un,j

∣∣∣∣∣∣√nH− 1
2SXϵ −

√
nH̃− 1

2SXϵ

∣∣∣∣∣∣ = op(1),

sup
θ∈Un,j

∣∣∣∣∣∣G− 1
2B − G̃− 1

2B
∣∣∣∣∣∣ = op(1).
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Finally, arguing as in the proof of Lemma 3, we find

lim
n→∞

sup
θ∈Un,j

dBL

(
G

− 1
2

11 A12G
− 1

2
22 , 0

)
= 0

lim
n→∞

sup
θ∈Un,j

dBL

(
G

− 1
2

22 A22G
− 1

2
22 , I

)
= 0

lim
n→∞

sup
θ∈Un,j

dBL

(
G

− 1
2

11 (B11, B12) , N

)
= 0

so that (2.10.14) and (2.10.15) follow from Lemma 7.

2.E.4 Higher order VAR processes

Proof of Lemma 5. We assume throughout that p ≥ 2 (since the case for p = 1 is already
covered). For any k = 1, . . . , p and A ∈ Rdp×dp we shal write A(k) to denote the top-left
dk × dk block and we define the matrices ΣY,k =

∑
0≤t≤k−1 Γ(k)

tΣ̃(k)(Γ(k)t)T where Σ̃
denotes the covariance matrix of ϵ̃t. We note that ΣY = ΣY,p. Now, we claim that ΣY,k
satisfies the recursive relation,

ΣY,k =

(
ΣY,k−1 + PkΣP

T
k PkΣ

ΣP Tk Σ

)
, ΣY,0 = Σ (2.E.12)

where Pk = (Id(k−1), 0)Qk ∈ Rd(k−1)×d and Qk ∈ Rdp×d consists of the left-most dp × d
block of Γk−1. One can see this by first writing

ΣY,k =
k−2∑
t=0

Γ(k)tΣ̃(k)
(
Γ(k)t

)T
+ Γ(k)k−1Σ̃(k)

(
Γ(k)k−1

)T
.

Only the top-left d × d block of Σ̃ is non-zero and the bottom-left d × d block of Γ(k)t

is 0 for all t ≤ k − 2 by the special form of the companion matrix. Thus, the first term
of the sum above is given by (

ΣY,k−1 0
0 0

)
.

The left-most d(k − 1) × d block of Γ(k)k−1 equals (P Tk , I)
T and therefore the second

term is equal to (
Pk
I

)
Σ
(
P Tk I

)
=

(
PkΣP

T
k PkΣ

ΣP Tk Σ

)
from which the recursive relation (2.E.12) then follows.
Now to prove that ΣY is uniformly invertible across Θ, we shall use an induction

argument. In particular, note that by Assumption U.2, the fact that Γ is uniformly
bounded over Θ, and Lemma 4, infθ∈Θ σmin(ΣY,k−1) > 0 implies that the same holds
for ΣY,k for all k = 1, . . . , p − 1. But then the result follows if we can just show that
infθ∈ΘΣY,0 > 0 which of course holds under U.2 since ΣY,0 = Σ.
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2 Beyond stationarity: Cointegration rank uncertainty

Proof of Corollary 1. Since only d eigenvalues can be close to unity, we have Θ ⊂⋃d
k=0Rn,k and Rn,k =

⋃d−k
j=0 U

k
n,j where Rn,k and Ukn,j are as in the previous section

only now we make the dependence of Ukn,j on Rn,k explicit by adding the superscript k.
Fix some k ∈ {0, 1, . . . , d} and j ∈ {0, 1, . . . , d − k}. It then suffices to show that the
result holds uniformly over Ukn,j .

We split H, SY Y , and SY ϵ̃ into four blocks with the top left block being (k+j)×(k+j)
and the other blocks of conforming dimensions. One readily sees that, since k+j ≤ d and
Σ ∈ Rd×d is uniformly of full rank, Lemma 1.(b) holds for H11. Similarly, by Lemma
5 we find that Lemma 1.(a) and Lemma 2 hold for H22 (all other parts of Lemma 1
hold also without reference to the Lemma 5). Thus, the proof of Lemma 7 carries over
without any modifications. Defining

A =

∫ 1

0
JC,tJ

T
C,tdt, B =

∫ 1

0
JC,tdW

T
t ,

and N ∈ R(pd−j)×(pd−j) with vec(N) ∼ N (0, I) independent of A and B, we therefore
find that

H̃− 1
2FθSY Y F

T
θ H̃

− 1
2 →w

(
G

− 1
2

11 A11G
− 1

2
11 0

0 I

)
,

√
nH̃− 1

2FθSY ϵ̃ →w

(
G

− 1
2

11 (B11, B12)
N

)
,

uniformly over Un,j . Here, A11 denotes the upper left (k + j) × (k + j) block of A and
similarly for B11 and G11. H̃ is the block diagonal matrix obtained by deleting the
off-diagonal blocks of H. This is not quite the result we want. First, we replace H̃ with
H by virtue of Lemma 8. Second, to get the right hand sides of (2.11.16) and (2.11.17),
we need to show that

lim
n→∞

sup
θ∈Uk

n,j

dBL

((
G

− 1
2

11 A11G
− 1

2
11 0

0 Id−k

)
, G− 1

2AG− 1
2

)
= 0

lim
n→∞

sup
θ∈Uk

n,j

dBL

((
G

− 1
2

11 (B11, B12)
(Id−k, 0)N

)
, G− 1

2B

)
= 0.

This follows from first an application of Lemma 8 and then Lemma 3.

2.F. Confidence Regions

This section captures some of the more technical details omitted from Section 2.12.
Validity of CRa(α) and CRb(α) is a fairly straightforward consequence of the fact that t̂2Γ
can be uniformly approximated by t2Γ and t̃2Γ both of which have continuous distributions.

Proof of Theorem 2. The result follows from Proposition 13 in the supplementary mate-
rial of Lundborg et al. [2022] since t̂2Γ and t̃2Γ both converge in distribution to t2Γ uniformly
over Θ and the latter is uniformly absolutely continuous wrt. Lebesgue measure.
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2.F.1 Predictive regression

Proof of Lemma 6. For each θ ∈ ΘP with γ and Γ̃ the corresponding autoregressive
coefficients, define the events

Aθ =
{
ω ∈ Ω : Γ̃ /∈ CR(α1, ω)

}
, Bθ =

{
ω ∈ Ω : γ /∈ Cγ|Γ̃(α2, ω)

}
where the dependence of the confidence regions on ω is made explicit in the notation.
If ω ∈ Ω is such that γ /∈ CIγ(α1, α2, ω), then we must either have ω ∈ Aθ or ω ∈ Bθ
implying, by Bonferroni’s inequality, P (γ /∈ CIγ(α1, α2)) ≤ P(Aθ) +P(Bθ). It follows by
assumption that lim supn→∞ supθ∈ΘP

P(Aθ) ≤ α1 so that

lim inf
n→∞

inf
θ∈ΘP

P (γ ∈ CIγ(α1, α2)) ≥ 1− α1 − lim sup
n→∞

sup
θ∈ΘP

P(Bθ).

The proof is complete if we can show that σ̂−2
Y t̂2

γ|Γ̃ →w χ2
d−1 uniformly over ΘP since

this would imply that lim supn→∞ supθ∈ΘP
P(Bθ) ≤ α2 by the same argument as in

the proof of Theorem 2. Defining ρ̃t = ρt − ΣY XΣ
−1
X ϵ̃t, we have in obvious notation

t̂2
γ|Γ̃ = Sρ̃X̃S

−1
X̃X̃

SX̃ρ̃ +Rn, where

Rn = n
(
rnSϵ̃X̃SX̃X̃SX̃ϵ̃r

T
n + rnSϵ̃X̃SX̃X̃SX̃ρ̃ + Sρ̃X̃SX̃X̃SX̃ϵ̃r

T
n

)
with rn = Σ̂Y XΣ̂

−1
X − ΣY XΣ

−1
X . Since Σ̂ is uniformly consistent and Σ is uniformly

invertible over ΘP we see that rn →p 0 uniformly over ΘP . This follows from the
uniform versions of the continuous mapping theorem and Slutsky’s Lemma (see, e.g.,
Proposition 9 and Proposition 15 in the supplementary material for Lundborg et al.
[2022]). Furthermore, all the matrix products in the expression above converge uniformly
in distribution over ΘP by Theorem 1. Thus, Rn →p 0 uniformly over ΘP . Now,
let Σ̃ ∈ Rd×d be given by Σ̃11 = ΣY − δTΣXδ, (Σ̃1i)2≤i≤d = (Σ̃i1)2≤i≤d = 0, and
(Σ̃ij)2≤i,j≤d = ΣX . Similar to (2.12.21), we then find

Sρ̃X̃S
−1
X̃X̃

SX̃ρ̃ →w

∣∣∣∣∣∣∣∣(Σ̃Y − δ̃T Σ̃X δ̃) 1
2
Z

∣∣∣∣∣∣∣∣2
uniformly over ΘP with Z a (d− 1)-dimensional standard normal random variable. But
then, since Σ̃Y − δ̃T Σ̃X δ̃ = ΣY − δTΣXδ which, in turn, is uniformly estimated by σ̂2Y ,
this completes the proof.

2.G. Martingale Limit Theorems

We start by stating a strong invariance principle for stationary martingale difference
arrays due to Cuny et al. [2021]. A martingale difference array is a doubly infinite array,
(et,n)t,n∈N, along with an array of filtrations, (Ft,n)t,n∈N, such that, for each n, et,n is a
martingale difference sequence wrt. Ft,n.
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2 Beyond stationarity: Cointegration rank uncertainty

Theorem 3. Let (et,n)t,n∈N be a stationary Rd-valued martingale difference array wrt.
(Ft,n)t,n∈N such that E(et,neTt,n|Ft−1,n) = Ee0,neT0,n = I a.s. for all t ≥ 1, n ∈ N and as-

sume there exists some small δ > 0 such that supt,n∈N E||et,n||2+δ <∞. Then, after pos-
sibly enlarging (Ω,F ,P), there exist a triangular array of random variables, (ρt,n)t≥1,n∈N,
where each row, (ρt,n)t∈N, is i.i.d. standard normal and such that

E

(∣∣∣∣∣
∣∣∣∣∣ sup
1≤k≤n

||
k∑
t=1

et,n −
k∑
t=1

ρt,n||
∣∣∣∣∣
∣∣∣∣∣
)

= O
(
n

1
2+δ (log n)

1+δ
2(2+δ)

)
.

Proof. The proof is essentially the same as the proof of Theorem 2.1 in Cuny et al. [2021]
and we will not go into much detail here, but only mention the key steps and how they
generalize to the martingale difference array setting.
First, we note that under above assumptions, Lemma 4.1 in Cuny et al. [2021] holds

for triangular arrays as well. Indeed, the constant C depends only on δ, d and E||e1,n||2+δ
and the latter is uniformly bounded over n.
After possibly enlarging the initial probability space, we can assume that it is large

enough to contain a doubly infinite array (ut,n)t,n∈N and a sequence (ρ1,n)n∈N such
that, for each fixed n, ut,n is i.i.d. uniform on [0, 1] and independent of et,n and ρ1,n
is d-dimensional standard normal independent of et,n and ut,n. Now for each n, we
can follow the steps in the proof of Theorem 2.1 in Cuny et al. [2021] and construct a
sequence, (ρt,n)t≥1, of i.i.d. d-dimensional standard normal random variables satisfying
certain inequalities. Now define, for L ∈ N,

DL,n = sup
l≤2L

∣∣∣∣∣∣
∣∣∣∣∣∣

2L+l∑
i=2L+1

en,t − ρn,t

∣∣∣∣∣∣
∣∣∣∣∣∣ .

By the same arguments as in Cuny et al. [2021], we have, for any N ∈ N,

sup
1≤k≤2N+1

∣∣∣∣∣
∣∣∣∣∣
k∑
t=1

et,n −
k∑
t=1

ρt,n

∣∣∣∣∣
∣∣∣∣∣ ≤ ||e1,n − ρ1,n||+

N−1∑
L=0

DL,n +DN,n.

Furthermore, they show that the array, ρt,n, was constructed in such a way that there
exists a constant c0 depending only on δ, d and E||e1,n||2+δ such that

||DL,n||1 ≤ C2
L

2+δL
1+δ

2(2+δ)

for all L ∈ N. Since E||e1,n||2+δ is uniformly bounded in n, we may assume that c0
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depends only on δ and d. For 2N ≤ n < 2N+1, we have

N−1∑
L=1

2
L

2+δL
1+δ

2(2+δ) ≤
(
log n

log 2

) 1+δ
2(2+δ)

N−1∑
L=0

2
L

2+δ

=

(
log n

log 2

) 1+δ
2(2+δ) 1− 2

N
2+δ

1− 2
1

2+δ

≤ 1(
1− 2

1
2+δ

)
(log 2)

1+δ
2(2+δ)

(log n)
1+δ

2(2+δ)

(
n

1
2+δ + 1

)
≤ c1n

1
2+δ (log n)

1+δ
2(2+δ)

where c1 does not depend on n. Finally, under the assumptions of the theorem, there
exists a constant c2 not depending on n and such that

E ||e1,n − ρ1,n|| ≤ c2.

Putting all the pieces together, we find that

E

(∣∣∣∣∣
∣∣∣∣∣ sup
1≤k≤n

||
k∑
t=1

et,n −
k∑
t=1

ρt,n||
∣∣∣∣∣
∣∣∣∣∣
)
≤ c2 + c0(c1 + 1)n

1
2+δ (log n)

1+δ
2(2+δ)

which is the result we wanted.

Next we adapt the weak law of large numbers from Theorem 6 in De Jong [1998] to
the multidimensional setting.

Theorem 4. Let (et,n)t,n∈N be an Rd-valued martingale difference array wrt. (Ft,n)t,n∈N.
Assume there exists δ > 0 such that supt,n E||et,n||1+δ < ∞. Then, for any ϵ > 0, it
holds that ∣∣∣∣∣

∣∣∣∣∣ 1n
n∑
t=1

et,n

∣∣∣∣∣
∣∣∣∣∣ = op

(
n

1
1+δ

−1+ϵ
)
.

Proof. Fix ϵ > 0 and let a ∈ R and ẽt,n = aT et,n. By Cauchy-Schwartz, we have

sup
t,n∈N

|ẽt,n|1+δ ≤ ||a||1+δ sup
t,n∈N

||et,n||1+δ = C <∞.

Now, define kn = n
1

1+δ
+ϵ. Then, with p = 1 + δ,

k−pn

n∑
t=1

(E|ẽt,n|)p ≤ Ck−pn n = o(1)

and, by Theorem 6 in De Jong [1998],∣∣∣∣∣ 1n
n∑
t=1

ẽt,n

∣∣∣∣∣ = op

(
n

1
1+δ

−1+ϵ
)
.

The result then follows since a was arbitrary.
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Finally, we need the following well-known martingale difference array central limit
theorem (see, e.g., Theorem 1 of Chapter VIII in Pollard [1984]).

Theorem 5. Let (et,n)t,n∈N be an Rd-valued martingale difference array wrt. (Ft,n)t,n∈N.
Assume that

n∑
t=1

E
(
et,ne

T
t,n|Ft−1,n

)
→p I

and, for each γ > 0,

n∑
t=1

E
(
||et,n||2 1 (||et,n|| > γ) |Ft−1,n

)
→p 0

for n→∞. Then,
∑n

t=1 et,n →w N (0, I) for n→∞.

2.H. Gaussian Approximation

In this section we detail how the Gaussian approximation described in Section 3.1 is
achieved. Throughout we assume that Xt,θ and ϵt,θ satisfy Assumptions U and M with
Fθ = I. The key result is the strong invariance principle of Theorem 3. Although it is
stated in terms of martingale difference arrays, the version we need (Lemma 1 below)
follows easily from Proposition 8 in Lundborg et al. [2022] and Assumptions M.3, U.1,
and U.2.

Lemma 1. We can enlarge the initial probability space such that there exists a fam-
ily of stochastic processes (ρt,θ)t≥1,θ∈Θ where, for each θ, the sequence ρt,θ is i.i.d. d-
dimensional gaussian with mean 0 and covariance matrix Σ and such that

sup
θ∈Θ

sup
1≤k≤n

∣∣∣∣∣
∣∣∣∣∣
k∑
t=1

ϵt,θ −
k∑
t=1

ρt,θ

∣∣∣∣∣
∣∣∣∣∣ = op

(
n

1
2
−β
)
.

for some β > 0.

Lemma 2. For any ϵ > 0, we have

n−
1

1+δ
−ϵ

n∑
t=1

(
ϵt,θϵ

T
t,θ − Σ

)
→p 0

uniformly over Θ.

Proof. Fix a, b ∈ Rd and define ξt,θ = aT (ϵt,θϵ
T
t,θ − Σ)b so that ξt,θ is a one-dimensional

martingale difference sequence for each θ ∈ Θ. By Cauchy-Schwartz, we have, for all

t ∈ N and θ ∈ Θ, |ξt,θ| ≤ ||aΣ
1
2 ||||bΣ 1

2 ||
(
||Σ− 1

2 ϵt,θ||2 + 1
)
so that, by assumption,

sup
θ∈Θ

E|ξt,θ|1+
δ
2 <∞.

The result then follows from Theorem 4 in combination with Proposition 8 in Lundborg
et al. [2022].
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The following is similar to Lemma 4 in Mikusheva [2007]. It shows that many of the
important statistics can be replaced by their Gaussian counterpart.

Lemma 3. There exists β > 0 such that

(a) supθ∈Θ sup1≤t≤n ||Xt,θ/
√
n− Yt,θ/

√
n|| = op(n

−β),

(b) supθ∈Θ sup1≤t≤n{||Xt,θ/
√
n||+ ||Yt,θ/

√
n||} = Op(1),

(c) supθ∈Θ ||
∑n

t=1

∑t
s=1 ϵs,θϵ

T
t,θ/n− ρs,θρTt,θ/n|| = op(n

−β).

(d) supθ∈Rn,d
||H− 1

2 (SXX − SY Y )H− 1
2 || = op(n

1−η−β).

(e) supθ∈Rn,d
||√nH− 1

2 (SXϵ − SY ρ)|| = op(n
3
2
(1−η)−β).

Proof. For the proof of part (a) we use summation by parts to write

Xt,θ =

t∑
s=1

Γt−sϵs,θ =

t∑
s=1

ϵs,θ −
t−1∑
s=1

(
Γt−s+1 − Γt−s

) s+1∑
k=1

ϵk,θ

=
t∑

s=1

ϵs,θ − (Γ− I)
t−1∑
s=1

Γt−s
s+1∑
k=1

ϵk,θ

and a similar expression holds for Yt,θ. Thus,

sup
θ∈Θ

sup
1≤t≤n

1√
n
||Xt,θ − Yt,θ|| ≤ sup

θ∈Θ
sup

1≤t≤n

∣∣∣∣∣
∣∣∣∣∣(Γ− I)

t−1∑
s=1

Γt−s + I

∣∣∣∣∣
∣∣∣∣∣

× 1√
n
sup
θ∈Θ

sup
1≤t≤n

∣∣∣∣∣
∣∣∣∣∣
t∑

s=1

ϵs,θ −
t∑

s=1

ρs,θ

∣∣∣∣∣
∣∣∣∣∣ .

Since the first term on the right hand side is bounded by Assumptions U.3 and U.4,
Lemma 1 yields (a).
To prove (b), we start with the same expression for Yt,θ as above. This gives us

sup
θ∈Θ

sup
1≤t≤n

Yt,θ√
n
≤ sup

θ∈Θ
sup

1≤t≤n

∣∣∣∣∣
∣∣∣∣∣(Γ− I)

t−1∑
s=1

Γt−s + I

∣∣∣∣∣
∣∣∣∣∣ 1√

n
sup
θ∈Θ

sup
1≤t≤n

∣∣∣∣∣
∣∣∣∣∣
t∑

s=1

ρs,θ

∣∣∣∣∣
∣∣∣∣∣ .

Again, the first term on the right hand side is bounded uniformly over n. For the second
term, we have

1√
n
sup
θ∈Θ

sup
1≤t≤n

∣∣∣∣∣
∣∣∣∣∣
t∑

s=1

ρs,θ

∣∣∣∣∣
∣∣∣∣∣ ≤ sup

θ∈Θ

∣∣∣∣∣∣Σ 1
2

∣∣∣∣∣∣ sup
1≤t≤n

∣∣∣∣∣
∣∣∣∣∣ 1√
n

t∑
s=1

Σ− 1
2 ρs,θ

∣∣∣∣∣
∣∣∣∣∣

≤ C sup
θ∈Θ

sup
1≤t≤n

∣∣∣∣∣
∣∣∣∣∣ 1√
n

t∑
s=1

Σ− 1
2 ρs,θ

∣∣∣∣∣
∣∣∣∣∣ = Op(1)
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since Σ− 1
2 ρs,θ is i.i.d. standard normal for all θ ∈ Θ. The result then follows from (a).

For (c) we start with

1

n

n∑
t=1

t∑
s=1

ϵs,θϵ
T
t,θ =

1

2n

(
n∑
t=1

ϵt,θ

)(
n∑
t=1

ϵt,θ

)T
+

1

2n

n∑
t=1

(
ϵt,θϵ

T
t,θ − Σ

)
+

1

2
Σ.

Lemma 2 then yields

sup
θ∈Θ

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
t=1

t∑
s=1

ϵs,θϵ
T
t,θ −

1

2n

(
n∑
t=1

ϵt,θ

)(
n∑
t=1

ϵt,θ

)T
− 1

2
Σ

∣∣∣∣∣∣
∣∣∣∣∣∣ = op(n

−β)

and a similar argument holds for 1
n

∑n
t=1

∑t
s=1 ρs,θρ

T
t,θ. Thus,

sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
t=1

t∑
s=1

ϵs,θϵ
T
t,θ − ρs,θρTt,θ

∣∣∣∣∣
∣∣∣∣∣ = sup

θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
t=1

n∑
s=1

ϵs,θϵ
T
t,θ − ρs,θρTt,θ

∣∣∣∣∣
∣∣∣∣∣+ op(n

−β)

≤ Cn sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ 1√
n

n∑
t=1

ϵt,θ − ρt,θ
∣∣∣∣∣
∣∣∣∣∣+ op(n

−β)

where Cn = supθ∈Θ

{∣∣∣∣∣∣ 1√
n

∑n
t=1 ϵt,θ

∣∣∣∣∣∣+ ∣∣∣∣∣∣ 1√
n

∑n
t=1 ρt,θ

∣∣∣∣∣∣} . Since the law of 1√
n

∑n
t=1 ρt,θ

is equal to a d-dimensional Gaussian with mean 0 and covariance matrix Σ, Assumption

U.2 yields supθ∈Θ

∣∣∣∣∣∣ 1√
n

∑n
t=1 ρt,θ

∣∣∣∣∣∣ = Op(1) and, by Lemma 1, we get Cn = Op(1) and

therefore also the result in (c).
To prove (d), we first note that

sup
θ∈Θ

1

n
||SXX − SY Y || ≤ Cn sup

θ∈Θ
sup

1≤t≤n

1√
n
||Xt,θ − Yt,θ||

where Cn = supθ∈Θ
1√
n

(
sup1≤t≤n ||Xt,θ||+ sup1≤t≤n ||Yt,θ||

)
. From Lemma 1, we find

that
sup
θ∈Rn,d

σmax

(
H− 1

2

)
= sup

θ∈Rn,d

(σmin(H))−
1
2 = O(n−

η
2 ) (2.H.1)

so, by part (a) and (b), we get the result in (d).
For the proof of (e) we again use summation by parts to write

SXϵ =
1

n

(
Xn−1,θ

n∑
t=1

ϵTt,θ −
n−1∑
t=1

(Xt,θ −Xt−1,θ)
t∑

s=1

ϵTs,θ

)

=
1

n

(
Xn−1,θ

n∑
t=1

ϵTt,θ − (Γ− I)
n−1∑
t=1

t∑
s=1

Xt−1,θϵ
T
s,θ −

n−1∑
t=1

t∑
s=1

ϵt,θϵ
T
s,θ

)
,

100



2.14 Conclusion

and similarly for SY ρ. We have, for all 1 ≤ t ≤ n,

sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ 1n

t∑
s=1

Xt−1,θϵ
T
s,θ − Yt−1,θρ

T
s,θ

∣∣∣∣∣
∣∣∣∣∣

≤ Cn sup
θ∈Θ

{
sup

1≤k≤n

1√
n

(
||Xk,θ − Yk,θ||+

∣∣∣∣∣
∣∣∣∣∣
k∑
s=1

ϵs,θ − ρs,θ
∣∣∣∣∣
∣∣∣∣∣
)}

,

where Cn = supθ∈Θ

{
sup1≤k≤n || 1√

n
Xk,θ||+ sup1≤k≤n

∣∣∣∣∣∣ 1√
n

∑k
s=1 ρs,θ

∣∣∣∣∣∣} = Op(1) by part

(b). From part (a) and Lemma 1 it then follows that

sup
θ∈Θ

∣∣∣∣∣
∣∣∣∣∣ 1n

t∑
s=1

Xt−1,θϵ
T
s,θ − Yt−1,θρ

T
s,θ

∣∣∣∣∣
∣∣∣∣∣ = op

(
n−β

)
.

We also have supθ∈Rn,d
n||(Γ− I)|| = op(n

1−η) so that

sup
θ∈Rn,d

∣∣∣∣∣
∣∣∣∣∣ 1n (Γ− I)

n−1∑
t=1

t∑
s=1

Xt−1,θϵ
T
s,θ − Yt−1,θρs,θ

∣∣∣∣∣
∣∣∣∣∣ = op

(
n1−η−β

)
and, by part (c), supθ∈Rn,d

||SXϵ − SY ρ|| = op
(
n1−η−β

)
. The result then follows from

(2.H.1).

Lemma 1 allows us to assume that ϵt,θ is an i.i.d. Gaussian sequence with mean zero
and covariance matrix Σ for each θ ∈ Rn,d. Indeed, let ρt,θ be as given in the Lemma
and define the family (Yt,θ)t∈N,θ∈Θ by

Yt,θ = ΓYt−1,θ + ρt,θ, Y0,θ = 0

and define the corresponding sample covariances

SY Y =
1

n

n∑
t=1

Yt−1,θY
T
t−1,θ, SY ρ =

1

n

n∑
t=1

Yt−1,θρ
T
t,θ.

Then, by Lemma 3, we can pick η close enough to 1 such that

sup
θ∈Rn,d

{∣∣∣∣∣∣H− 1
2 (SXX − SY Y )H− 1

2

∣∣∣∣∣∣+ ∣∣∣∣∣∣√nH− 1
2 (SXϵ − SY ρ)

∣∣∣∣∣∣} = op(1). (2.H.2)

2.I. Simulations

2.I.1 Confidence intervals

For each n ∈ {50, 75, 100} and d ∈ {3, 4, 5} the simulation experiment is repeated 1000
times. In each repetition, for i, j = 1, ..., d, we draw Uij ∼ Unif([0, 1]) and set Γ =
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U−1ΛnU where Λn ∈ Rd×d is diagonal with Λn,11 = 1 and Λn,ii = 1 − (1/n)1/(i−1) for
i = 2, ..., d. We then sample ϵt ∼ N (0,Σ) i.i.d. for t = 1, ..., n with

Σ =
1

2

(
I + 11

T
)

where 1 = (1, ..., 1)T ∈ Rd and let

Xt = ΓXt−1 + ϵt for t = 1, ..., n, X0 = 0.

Xt is a sample from a VAR(1) process with θ = (Γ,Σ, ·). We then compute CIb, CIIV ,
and CILA for this sample and record the length of each confidence interval and whether
it contains Γ11.

2.I.2 Predictive regression testing

For both simulation experiments we fix d = 4 and α = 0.1. This implies that Γ̃ ∈ R3×3.
The two regimes correspond to two different choices of Γ̃:

• Mixed Regime: In this setting Γ̃ is chosen as above, that is, with roots of dif-
fering proximity to unity and with random eigenvectors sampled anew for every
simulation run.

• Non-stationary Regime: In this setting we set Γ̃ = I so that X̃t is a random walk.

In both regimes the errors are i.i.d. Gaussian with covariance matrix Σ as given above.
To obtain Figure 1, we do the following: For each n ∈ {10, 20, ..., 200}, we draw two

samples Xt from the VAR(1) processes given by the two choices of Γ̃ and under the null
H0 : γ = 0. We then compute the three tests on both samples recording whether the null
was rejected or not. This is repeated 1000 times and the rejection rate is the proportion
of times the null was rejected across all simulations.
For Figure 2, we do essentially the same thing except that we now fix n = 100 and

perform the experiment across different choices of γ ̸= 0. In particular, we run the
experiment for γ = δ1, δ ∈ {0.005, 0.01, ..., 0.1} and record the proportion of times the
null was rejected across all 1000 simulations.

2.I.3 EAM

We present a slightly generalized version of the EAM-algorithm. EAM stands for
Evaluation-Approximation-Maximization and the algorithm can more or less be split
into three steps. It is an algorithm for solving problems of the following form

sup f(x)

s.t. g(x) ≤ c(x)

over x ∈ X ⊂ Rp where f , g, and c are fixed scalar functions sufficiently smooth and
satisfying certain requirements. In Kaido et al. [2019] it is required that f(x) = vTx
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for some v ∈ Rp. Here we only require that f(x) is convex and twice continuously
differentiable on X . We assume that c is costly to evaluate. Without going into too
much detail, the algorithm proceeds as follows:

1. Initialization: Randomly sample initial points x(1), ..., x(k) from X and evaluate
c(x(i)) for i = 1, ..., k. Set L = k.

2. Iterate the following three steps until convergence:

a) E-step: Evaluate c(x(L)) and pick current optimum

y∗,L = max
{
f
(
x(i)
)
: g
(
x(i)
)
≤ c

(
x(i)
)
, i = 1, ..., L

}
b) A-step: Approximate x 7→ c(x) by a Gaussian process regression model,

with mean µ, constant variance σ2, and covariance kernel Kβ(x − x′) =
exp(−∑p

i=1 |xi − x′i|2/βi), fitted on (c(x(i)), x(i)), i = 1, ..., L. Fitting the
model yields the mean function cL(x) and the variance function sL(x) as well
as the fitted parameters µ̂L, σ̂L, β̂L.

c) M-step: With probability 1− ϵ, let

x(L+1) = argmax
x∈X

EIL(x)

and with probability ϵ draw x(L+1) randomly from X . Set L = L+ 1.

EIL(x) is the expected improvement function and it is given by

EIL(x) =
(
f(x)− y∗,L

)
+

(
1− Φ

(
g(x)− cL(x)
σ̂LsL(x)

))
where ·+ = max{·, 0} and Φ is the standard normal CDF. Note that the optimization
problem in the M-step can be reformulated as a constrained optimization problem with
smooth objective function and smooth constraints for which all derivatives are known
and it can therefore be solved with standard solvers. A key observation is that we only
evaluate c once per iteration. In practice this results in far fewer evaluations of c when
compared to, say, grid methods.
This algorithm was intended to compute confidence intervals that arise as projections

of confidence regions exactly as is the case for CIb. In this case we would simply take
x = Γ and let f(Γ) = Γ11, g(Γ) = t̂2Γ, and c(Γ) = q̃n,Γ(α). It does not really matter that
Γ is a matrix since we can just vectorize it and redefine all the functions correspondingly.
This would give us the upper bound of CIb and the lower bound can be found by taking
f(Γ) = −Γ11.
Similarly, the EAM-algorithm can be used to compute φb. This is done by letting

x = Γ̃ and then f(Γ̃) = t̂2
0|Γ̃ with g and c as before, but for Γ̃ instead of Γ. Note that

in both cases f and g are polynomials of vec(x) and are therefore smooth with known
derivatives of all orders.11

11All code used for the simulations can be found at https://github.com/cholberg/unif_inf_var. Our
implementation of the EAM-algorithm is based on Kaido et al. [2017].
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2.J. Lag augmentation

We shall prove that the lag augmented estimator converges in distribution to a normal
distribution uniformly over Θ upon which it follows that standard inference is uniformly
valid by the same arguments as applied in the proof of Theorem 2.

Lemma 1. ΓLA be defined as in Section 2.12.2. Assume U and M. Then, as n→∞,

√
nvec

(
Γ̂LA − Γ

)
→w N

(
0,Σ−1 ⊗ Σ

)
uniformly over Θ.

Proof. We write SϵX′ =
∑n

t=2 ϵtX
T
t−2/n, SX′X′ =

∑
t=2Xt−2X

T
t−2/n, Sϵ′X′ =

∑
t=2 ϵt−1X

T
t−2/n,

Sϵ′ϵ′ =
∑n

t=2 ϵt−1ϵ
T
t−1, and Sϵϵ′ =

∑n
t=2 ϵtϵ

T
t−1. Then,

Γ̂LA − Γ = SϵX̄S
−1
X̄X̄

D

=
(
SϵX − SϵX′S−1

X′X′
(
SX′X′ΓT + SX′ϵ′

)) (
Sϵ′ϵ′ − Sϵ′X′S−1

X′X′SX′ϵ′
)−1

=
(
Sϵϵ′ − SϵX′S−1

X′X′SX′ϵ′
) (
Sϵ′ϵ′ − Sϵ′X′S−1

X′X′SX′ϵ′
)−1

where we used the relation Xt−1 = ΓXt−2 + ϵt−1 multiple times. By Theorem 1,
SϵX′S−1

X′X′SX′ϵ′ →p 0 and Sϵ′X′S−1
X′X′SX′ϵ′ →p 0 for n → ∞ uniformly over Θ. Fur-

thermore, Theorem 4 and 5 in the Appendix yield Sϵ′ϵ′ →p Σ and
√
nvec(Sϵϵ′) →w

N (0,Σ ⊗ Σ) for n → ∞ uniformly over Θ. Finally, since Σ is uniformly invertible and
bounded on Θ, the uniform versions of the continuous mapping theorem and Slutsky’s
Lemma (Proposition 9 and Proposition 15 in Lundborg et al. [2022]), yield the desired
result.

2.K. IVX

We shall prove that the IVX t2-statistic converges in distribtuion to χ2
d2 uniformly over

Θ after which the rest follows by the same arguments as those applied in the proof of
Theorem 2.

Theorem 6. Assume that Assumptions M and U are true. Let Γ̂IV be the IVX estimator
and t̂2IV,Γ the corresponding t2-statistic as defined in Section 2.12.3. Then, for n→∞,

t̂2IV,Γ → χ2
d2

uniformly over Θ.

The proof of Theorem 6 that we present here is conceptually different from the proofs
presented so far. We rely on the theory developed in Magdalinos and Phillips [2020],
Phillips et al. [2009], but since we do not require that all roots approach unity at the
same rate, there are some extra difficulties that need to be dealt with. In particular,
we need to employ a different normalization in obtaining the asymptotics of SZZ and
SϵZ . Furthermore, Theorem 6 shows that the suggested IVX approach is truly uniformly
valid (at least over the suggested parameter space, Θ). The first lemma is of a technical
nature.
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Lemma 1. Let (θn)n∈N ⊂ Θ satisfy Assumptions M and U with Fθn = I and β ∈ (0, 1).
Then, there exist 0 ≤ r ≤ d, (kn)n∈N ⊂ N strictly increasing, and (θ̃)n∈N ⊂ Θ such that

(i) θkn = θ̃kn , ∀n ∈ N,

(ii) nβ(1− Γ̃n,ii)→ κi ∈ C, |κi| ∈ [0, 1], for 1 ≤ i ≤ r,

(iii) n−β(1− Γ̃n,ii)
−1 → κi ∈ C, |κi| ∈ [0, 1], for r + 1 ≤ i ≤ d,

(iv) θ̃n → θ ∈ Θ,

where θ̃n = (Γ̃n, Σ̃n, ·) and all limits are taken as n→∞.

Proof. Fix (θn)n∈N ⊂ Θ and β ∈ (0, 1). For each n ∈ N, let 0 ≤ rn ≤ d be such
that |nβ(1 − Γn,ii)| ≤ 1 for 1 ≤ i ≤ rn and |n−β(1 − Γn,ii)

−1| ≤ 1 otherwise. Then,
(rn)n∈N is a sequence in {0, 1, ..., d} so that, by compactness, it has a convergent sub-
sequence. In other words, there exists a sub-sequence, (θnk

)k∈N, and 0 ≤ r ≤ d such
that |(nk)β(1 − Γnk,ii)| ≤ 1 for 1 ≤ i ≤ r and |(nk)−β(1 − Γnk,ii)

−1| ≤ 1 otherwise.
By Bolzano-Weierstrass, we may assume without loss of generality (passing to another
sub-sequence if necessary) that there exists κ ∈ Cd with |κi| ≤ 1 and such that

(nk)
β (1− Γnk,ii)→ κi, for 1 ≤ i ≤ r

(nk)
−β (1− Γnk,ii)

−1 → κi, for r + 1 ≤ i ≤ d

for k → ∞. By another compactness argument, we can furthermore choose the sub-
sequence such that θnk

→ θ = (Γ,Σ, c) ∈ Θ. Now, take some δ ∈ (0, β), let 0 ≤ r1 ≤
r2 ≤ d be such that |κi| > 0 for r1 < i ≤ r2 and κi = 0 otherwise, and define the diagonal
matrix Cn ∈ Cd×d by

Cn,ii =


n−δ, if i ≤ r1,
κi, if r1 < i ≤ r,
κ−1
i , if r < i ≤ r2,
nδ, otherwise.

By Assumptions U.3 and U.4, we must have (Γi,j)1≤i,j≤r2 = Ir2 so we find that Γ′
n =

Γ−n−βCn satisfies (ii) and (iii) with Γ′
n → Γ for n→∞. Finally, let Γ̃n = Γnk

if n = nk
for some k ∈ N and Γ̃n = Γ′

n otherwise and Σ̃n = Σnk
and c̃n = cnk

for nk ≤ n < nk+1.
Then, θ̃n = (Γ̃n, Σ̃n, c̃n) satisfies all the conditions.

Sequences of parameters like θ̃n in the above Lemma fit nicely into the framework
of Magdalinos and Phillips [2020], Phillips et al. [2009]. We can adapt their results to
this more general setup. Fix some β ∈ (0, 1) and consider a sequence (θn)n∈N ⊂ Θ
such that conditions (ii) and (iii) are satisfied for some 0 ≤ r ≤ d and κ ∈ Cd with
|κi| ≤ 1. For such a sequence, we can define the integers 0 ≤ r1 ≤ r2 ≤ d as in the proof
above along with the diagonal matrices Dn ∈ Cd×d given by Dn,ii = n−β for 1 ≤ i ≤ r2
and Dn,ii = (1 − |Γn,ii|) otherwise. This normalization is sufficiently flexible to ensure
convergence of the relevant sample covariance matrices.
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Lemma 2. Let β ∈ (12 , 1) and (θn)n∈N ⊂ Θ be a sequence of parameters satisfying
Assumptions M and U with Fθn = I as well as (ii), (iii), and (iv) of Lemma 1 for
some 0 ≤ r ≤ d, κ ∈ Cd with |κi| ≤ 1, and θ ∈ Θ. For (Dn)n∈N as defined above and
vec(V ) ∼ N (0, I), there exists a sequence of positive definite matrices (ΣZ,n)n∈N such
that

lim sup
n→∞

{
σmin (ΣZ,n)

−1 + σmax (ΣZ,n)
}
<∞

and the following holds for any ϵ > 0

lim
n→∞

P
(∣∣∣∣∣∣∣∣D 1

2
nSZZD

1
2
n − ΣZ,n

∣∣∣∣∣∣∣∣ > ϵ

)
= 0, (2.K.1)

lim
n→∞

dBL

(√
nΣ

− 1
2

Z,nD
1
2
nSZϵΣ

− 1
2 , V

)
= 0. (2.K.2)

The following result is useful for the proof of Lemma 2. With a slight abuse of notation,
for any θ ∈ Θ, let (I − Γ)

1
2 be the diagonal matrix given by the principal square root of

the diagonal of I − Γ.

Lemma 3. Assume that Assumptions M and U hold with Fθ = I. Then,

sup
θ∈Θ

sup
t≥1

∣∣∣∣∣∣E((I − Γ)
1
2Xt,θX

T
t,θ(I − Γ)

1
2

)∣∣∣∣∣∣ <∞ (2.K.3)

and, furthermore,

lim
n→∞

sup
θ∈Rn,0

∣∣∣∣∣∣(I − Γ)
1
2H(I − Γ)

1
2 − ΣX

∣∣∣∣∣∣ = 0 (2.K.4)

where vec(ΣX) = (I − Γ)
1
2 ⊗ (I − Γ)

T
2 (I − Γ⊗ ΓT )−1vec(Σ) with

lim sup
n→∞

sup
θ∈Rn,0

{
σmin (ΣX)

−1 + σmax (ΣX)
}
<∞.

Proof. For any θ ∈ Θ we have

∣∣∣∣∣∣E((I − Γ)
1
2Xt,θX

T
t,θ(I − Γ)

T
2

)∣∣∣∣∣∣ = ∣∣∣∣∣
∣∣∣∣∣(I − Γ)

1
2

t−1∑
s=0

ΓsΣ (Γs)T (I − Γ)
T
2

∣∣∣∣∣
∣∣∣∣∣

≤ ||Σ||
t−1∑
s=0

∣∣∣∣∣∣(I − Γ)
1
2Γs
∣∣∣∣∣∣2

Due to the block diagonal structure of Γ (Assumption U.4) and Assumption U.2, there
exists some generic constant c0 > 0 such the last term in above inequality is bounded by

c0

(
sup

θ∈Θ : |λN |>1−α

t−1∑
s=0

∥∥∥(I − Γ)
1
2Γs
∥∥∥2 + sup

θ∈Θ : |λ1|≤1−α

t−1∑
s=0

∥∥∥(I − Γ)
1
2Γs
∥∥∥2) .
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By equation (2.12.24), the second term is converges for t → ∞. For the first term, we
use the fact that, for any θ ∈ Θ, the condition |λN | > 1 − α implies that Γ is diagonal
and, thus,

t−1∑
s=0

∥∥∥(I − Γ)
1
2Γs
∥∥∥2 ≤ N∑

i=1

t−1∑
s=0

mi|1− λi||λi|s ≤ d2rα
1− |λi|t
|λi|

≤ d2rα
1− α

where in the first inequality we used the fact that |λi|2s ≤ |λi|s since |λi| ≤ 1 and in the
second inequality we used Assumption U.3, the fact that N,mi ≤ d and that |λi| = 1
implies that λi = 1 and therefore |1 − λi||λi|s = 0 for all s = 0, . . . , t − 1 in this case.
This proves (2.K.3).
For the proof of (2.K.4), simply note that Lemma 2 and (2.K.3) imply that

lim
n→∞

sup
θ∈Rn,0

∣∣∣∣∣∣(I − Γ)
1
2
(
H − E(Xn−1,θX

T
n−1,θ)

)
(I − Γ)

T
2

∣∣∣∣∣∣ = 0

and

sup
θ∈Rn,0

∣∣∣∣∣∣(I − Γ)
1
2E(Xn−1,θX

T
n−1,θ)(I − Γ)

T
2 − ΣX

∣∣∣∣∣∣
= sup
θ∈Rn,0

∣∣∣∣∣
∣∣∣∣∣(I − Γ)

1
2

∞∑
s=n−1

ΓsΣ (Γs)T (I − Γ)
T
2

∣∣∣∣∣
∣∣∣∣∣→ 0

for n→∞. It remains to check that ΣX is uniformly bounded and invertible in the limit.
Since lim supn supθ∈Rn,0

σmax(ΣX) <∞ follows immediately from (2.K.3), we only need
to show the latter. For any θ ∈ Rn,0 diagonal, we have

σmin(ΣX) ≥ σmin(Σ)
∞∑
t=0

σmin

(
(I − Γ)

1
2Γt
)2

≥ σmin(Σ)
∞∑
t=0

min
1≤k≤d

(1− |λik |)|λik |2t

≥ σmin(Σ)
∞∑
t=0

log n

n

(
1− log n

n

)2t

= σmin(Σ)
log n

n

(
1−

(
1− log n

n

)2
)−1

≥ σmin(Σ)

2
.

If Γ is non-diagonal, the same bound holds since adding ones on the super-diagonal does
not decrease the minimum singular value. Because Σ is uniformly invertible over Θ, the
proof is then complete.
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2 Beyond stationarity: Cointegration rank uncertainty

Proof of Lemma 2. Throughout the proof we write matrices as 3×3 block matrices such
that the top-left block is r1×r1, the middle block is (r2−r1)×(r2−r1), and the bottom-
left block is (d−r2)× (d−r2). We use a superscript to denote the block index, e.g., S13

ZZ

denotes the top-right block of SZZ . Furthermore, for a diagonal matrix A with complex
values, we let A

1
2 denote the diagonal matrix obtained by taking the principal square

root of the diagonal of A. Let Z̃t =
∑t

s=1(1−n−β)t−sϵs and ψt =
∑t

s=1(1−n−β)t−sXs−1

so that
Zt = Z̃t + (Γn − I)ψt. (2.K.5)

Let Λn = (I − Γn)
1
2 be the diagonal matrix as defined in Lemma 3 above. Then, since

Γn and Λn commute, with c denoting some generic constant not depending on t or n,

E ||Λnψt||2 =
t∑

i,j=1

(1− n−β)2t−i−jtr
(
ΛnE

(
Xi−1X

T
j−1

)
Λn
)

≤ 2
∑

1≤j≤i≤t
(1− n−β)2t−i−j

∣∣tr (Γi−jn ΛnE
(
Xi−1X

T
j−1

)
Λn
)∣∣

≤ 2c

t∑
i,j=1

(1− n−β)2t−i−j
∥∥Γi−jΛn∥∥

≤ 2c
t−1∑
i=0

(1− n−β)i
t−i−1∑
j=0

∥∥∥∥((1− n−β)Γ)j Λn∥∥∥∥

(2.K.6)

where the second inequality follows from Lemma 3 in the Appendix and the Cauchy-
Schwartz inequality. This inequality yields a result equivalent to equation (40) in Phillips
et al. [2009]. In particular, we deduce that sup1≤t≤n E ||(Γn − I)ψt||2 = o(n) from which
it follows that

SZϵ = SZ̃ϵ + op(1). (2.K.7)

We first prove (2.K.1). For ease of notation, we write Sn = D
1
2
nSZZD

1
2
n . Since D11

n =
n−βIr1 , essentially the same proof as that of Lemma 3.1.(iii) in Phillips et al. [2009]
using (2.K.6) shows that

S11
n = n−βS11

Z̃Z̃
+ op(1) =

1

2
Σ11 + op(1),

where the latter equality follows from Lemma 2 and the fact that n−βE(SZ̃Z̃)→ Σ/2 for
n → ∞. Similarly, the proof of Lemma 3.5.(ii) in Phillips et al. [2009] can be adapted
to show that

S33
n =

(
D33
n

) 1
2 S33

XX

(
D33
n

) 1
2 + op(1) = Σ33

X,n + op(1),

where the latter equality follows from Lemma 2 and Lemma 3 in the Appendix and
Σ33
X,n is defined as in Lemma 3 in the Appendix but emphasizing the dependence on

n. For the middle block, using the recursive relations Zt = (1 − n−β)Zt−1 + ∆Xt and
∆Xt = (Γn − I)Xt−1 + ϵt, we can write(

1−
(
1− n−β

)2)
S22
ZZ = S22

∆XZ + S22
Z∆X + S22

∆X∆X + op(1).
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It follows from Lemma 2, that S22
∆X∆X = Σ22 + op(1). For the other two terms, we use

(2.K.7) and write S22
Z∆X = S22

Z̃ϵ
+ S22

ZX(Γ
22
n − I)T + op(1). Using the recursive relations

and (2.K.7) once more yields(
I −

(
1− n−β

)
Γ22
n

)
S22
XZ = S22

Xϵ + S22
ϵZ̃

+ S22
ϵϵ + S22

XX(Γ
22
n − I) + op(1)

It follows from Lemma 2 that the first two terms tend to 0 in probability for n → ∞
and S22

ϵϵ = Σ22 + op(1). If we define K ∈ C(r2−r1)×(r2−r1) diagonal with Kii = κi for

i ≤ r2 − r and Kii = κ−1
i otherwise, we get nβ

(
I − Γ22

n

)
→ K, nβΛ22

n → K
1
2 , and

nβ
(
I − (1− n−β)Γ22

n

)
→ K + I for n→∞. Lemma 3 in the Appendix then yields(

Γ22
n − I

)
S22
XZ = (K + I)−1

(
KΣ22 +K

1
2Σ22

X,nK
1
2

)
+ op(1).

and (Λ22
n )

1
2 ⊗ (Λ22

n )
T
2 (I −Γ22

n ⊗ (Γ22
n )T )−1 → (K ⊗KT )

1
2 (I ⊗KT +K ⊗ I)−1 for n→∞

so that (noting that Kii has strictly positive real part for all i)

Σ22
X,n → K

1
2

∫ ∞

0
e−sKΣ22e−sK

T
dsK

T
2 = K

1
2Ω22K

T
2 .

Then, using the relation Σ22 − Ω22K = KΩ22, the limiting expression simplifies to

(Γ22
n − I)S22

XZ = (K + I)−1K2Σ22.

Finally, since nβ(1− (1− n−β)2) = 2 + o(1) and D22
n = n−βIr2−r1 , we find

S22
n =

1

2

(
Σ22 + (K + I)−1K2Ω22 +Ω22(KT )2 (K + I)−T

)
+ op(1)

=
1

2

(
(K + I)−1KΩ22 +Ω22KT (K + I)−T

)
+ op(1)

=
1

2
(I +K)−1

(
2KΩ22KT +Σ

)
(I +K)−T + op(1).

We have yet to characterize the asymptotic behaviour of the off-diagonal blocks. First,
note that by (23) in Phillips et al. [2009] and (2.K.5), we get

S32
ZZ − S32

XZ = −n−β
(
S32
ψψ(Γ

22
n − I)T − S32

ψZ̃

)
so that (2.K.6) and Lemma 2 yield S32

n −
(
D33
n

) 1
2 S32

XZ

(
D22
n

) 1
2 = op(1). Similar to above,

we have (
I − (1− n−β)Γ33

n

)
S32
XZ = S32

XX

(
Γ22
n − I

)T
+ op(1).

But then, because n−β(I − Γ33
n ) = o(1), we find that

n−
β
2
(
Λ33
n

) 1
2

(
I −

(
1− n−β

)
Γ33
n

)−1
= o(1)
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and, by Lemma 3 in the Appendix and Lemma 2, S32
XX(Γ

22
n − I)T = op(1). Thus,

S32
n = op(1). A similar argument show that S31

n = op(1) so that the only block left is
S21
n . As a consequence of (2.K.5), we have

n−β
∣∣∣∣∣∣S12

ZZ − S12
Z̃Z

∣∣∣∣∣∣ = n−β
∣∣∣∣∣∣(Γ11

n − I)S12
ψψ(Γ

22
n − I)T + (Γ11

n − I)S12
ψZ̃

∣∣∣∣∣∣
and arguments like the one employed in the proof of Lemma 3.1 in Phillips et al. [2009]
in combination with (2.K.6) shows that the right hand side is op(1). Using the recursive
relations for Zt, Z̃t, and ∆Xt in combination with (2.K.7) and Lemma 2, we have(

1− (1− n−β)2
)
S12
Z̃Z

= S12
ϵZ + S12

Z̃∆X
+ S12

ϵ∆X + op(1)

= S12
Z̃X

(Γ22
n − I)T + S12

ϵϵ + op(1).

An application of Lemma 3 in the Appendix and Lemma 2 yields S12
Z̃X

= Ω12
n K

T
2 +op(1)

where

Ω12
n = Σ12

(
I − (1− n−β)Γ22

n

)T
n−

β
2
(
I − Λ22

n

)−T
2 → Σ12K

T
2 (I +K)−T

for n→∞. In conclusion, since D22
n = n−βIr2−r1 and D33

n = n−βIr1 , we get

S12
n =

1

2

(
Σ12 +Σ12KT (I +K)−T

)
+ op(1) =

1

2
Σ12 + op(1).

Collecting all the limiting expressions, we define

K̄ =

(
Ir1 0
0 K

)
, Ω =

∫ ∞

0
e−sK̄

(
Σ11 Σ12

Σ21 Σ22

)
e−sK̄

T
ds

and observe that

Σ11 =
(
(I + K̄)−1

(
2K̄ΩK̄T +Σ

)
(I + K̄)−T

)11
Σ12 =

(
(I + K̄)−1

(
2K̄ΩK̄T +Σ

)
(I + K̄)−T

)12
.

so that Sn = ΣZ,n + op(1) with

ΣZ,n =
1

2

(
(I + K̄)−1

(
2K̄ΩK̄T +Σ

)
(I + K̄)−T 0

0 Σ33
X,n

)
.

To see that ΣZ,n is asymptotically invertible and bounded simply note that the real part
of K̄ii is in [0, 1] for all 1 ≤ i ≤ r2 and Σ is positive definite. Therefore, the top left
block of ΣZ,n is some fixed positive definite matrix for all n ∈ N. The result then follows
from Lemma 3 in the Appendix.
Once (2.K.1) has been established, the proof of (2.K.2) is completely analogous to the

proof of equation (2.10.8).

Proof of Theorem 6. It follows from Lemma 1 and 2 in combination with Proposition 8
in the supplementary material for Lundborg et al. [2022] that t̂2IV,Γ →w χ2

d2 uniformly
over Θ.

110



3 Beyond stationarity: Nonlinear
cointegration

This chapter contains the following paper:

[STEM] [Holberg, 2024]. C. Holberg. Stationary embeddings: A nonlinear generalization
of cointegration, 2024. Working paper.

The paper is still only a manuscript. We emphasize that the results are preliminary
and mistakes might appear. Our main purpose is to introduce a sensible nonlinear
generalization of cointegration. We take as our starting point the blind source separation
formulation of cointegration. In other words, given an observable process xt, we assume
that we can write xt = d(yt, zt) where yt ∈ Rk is the stationary latent component,
zt ∈ Rp−k is the non-stationary latent component, and d : Rp → Rp is some invertible
smooth mixing. The goal is then to identify and estimate the stationary embedding
e = d−1 that maps xt back into its constituent parts. We discuss some applications at
the end of the paper. Notably, under suitable conditions, this definition of nonlinear
cointegration is closely related to manifold learning.
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Stationary Embeddings: A Nonlinear
Generalization of Cointegration

Christian Holberg

Abstract
Most signals arising in practice exhibit non-stationary behavior, but in many

cases such signals can be decoupled into a stationary and non-stationary com-
ponent via a smooth invertible transformation. We discuss in what sense these
component processes are identifiable and provide a method for estimating the de-
coupling transformation based on signature kernels. The resulting framework can
be seen as a nonlinear generalization of cointegration. Finally, we discuss some
important applications of the developed methodology and, in particular, how it
relates to manifold learning.

3.1 Introduction

A stochastic process is stationary if its law does not depend on time. This is in many
ways a desirable property. For one, it ensures that the future behaves more or less like
the present so that, intuitively, any inference we might make on the data we have at
hand today can be expected to hold also tomorrow. Another point, of a more technical
nature, is that a lot of the asymptotic theory for i.i.d. data carries over to the stationary
setting — sometimes under additional mixing and ergodicity assumptions. This enables
us to adapt many of the existing methods that are already prevalent in statistics and
machine learning. However, whatever preferences we may have, the so-called real world
need not conform to them. As is obvious to anyone who has spent a lot of time wrangling
with time-series data, it is rarely the case that it can be said to be stationary. At least
not without any further pre-processing. And why should it? Stationarity, for example,
precludes any trend in the mean or spread of the process. It also does not allow for a
data generating process whose distribution changes over different environments. All of
these are common characteristics of observed stochastic processes.
There is a sense in which non-stationary processes are actually the ones of interest

in that this is where the change happens. To illustrate this point, consider a process
xt that can be written as the sum of a stationary component, yt, and a non-stationary
component, zt: xt = zt+yt. If the mean of zt changes greatly over time (compared to the
variance of yt) or if it behaves like a martingale so that its variance increases over time,
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3 Beyond stationarity: Nonlinear cointegration

then it is clear that the behavior of xt is mostly determined by zt and yt can be viewed
as something like an error term. The focus of the present paper is exactly processes such
as xt. To be more precise, we consider settings in which one observes a non-stationary
process xt of some dimension p ≥ 2 that can be written as a mixture of two unobserved
processes yt ∈ Rk and zt ∈ Rp−k where the one is stationary and the other not, that is,
we have xt = d(yt, zt) for some smooth invertible map d : Rp → Rp. It turns out that,
under a certain Hölder-continuity assumption on the mixing transformation, d, xt will
stay close to a (p− k)-dimensional manifold with deviations governed by the stationary
process yt (see Proposition 1). If the variance of yt is not too large, learning this manifold
could prove advantageous and can be viewed as a dimensionality reduction technique.
On the other hand, there are many settings where we would instead be interested in the
stationary component. Indeed, before doing any analysis, the statistician will often start
by removing trends, seasonality, etc. so that the resulting process is stationary. Our
method can then be seen as a general non-parametric way of retrieving the stationary
component. Another example is if we wish to extrapolate beyond the observed time
frame; something that is especially relevant for classification or regression problems
where learning is done on a small initial window and prediction happens long after. We
return to these applications in more detail at the end of the paper.
In essence, given an observation of xt, our objective then lies in learning the inverse

mixing transformation e := d−1 that decomposes xt back into its two latent components.
We also call this map the stationary embedding. Readers familiar with cointegration will
realize the similarities. Indeed, if zt is integrated of order 11 with no linear combination
of its coordinates being stationary and d is an invertible linear transformation, this
corresponds exactly to the usual definition of cointegration (see, e.g., Engle and Granger
[1987]). Importantly, in the linear setting, the order of integration of xt corresponds to
that of the non-stationary component. This is no longer the case when d can be any
arbitrary transformation. Similarly, one usually only cares about weak stationarity of
the process yt which, of course, is also not preserved by most non-linear transformations
(if yt is non-stationary). Thus, in order to extend cointegration to the nonlinear setting,
we shall work with the strict definition of stationarity and consider general deviations
from it. Instead of assuming that all linear combinations of zt are integrated of order 1,
we shall assume that all invertible smooth transformations of zt are non-stationary (see
our Definition 4).
Two main difficulties arise as we try to define nonlinear cointegration. The first one

concerns identifiability. In the linear case, it is well-known that only the stationary
component is identifiable (see also Von Bünau et al. [2009] for the same result but under
the framing of stationary subspace analysis). Extending this result to our case would then
be equivalent to saying that we can identify yt up to smooth invertible transformations.
Once we have established what exactly is identifiable, the second difficulty we need
to resolve is then how one goes about estimating the inverse mixing, e. This time

1In the context of the present paper this shall simply mean that zt is non-stationary with stationary
first differences, i.e., zt+δ − zt is stationary for all δ > 0. One can keep in mind a Levy process as the
canonical example.
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we cannot draw inspiration from the linear case where one usually relies on the fact
that the empirical covariance matrix of the non-stationary component diverges as the
sample size increases (for a non-parametric method relying rather directly on this fact,
we refer to Zhang et al. [2019], but even the methods of Johansen [1988, 1991, 1995] and
Phillips [1991] would not be able to separate the stationary and non-stationary parts
otherwise). Instead we need a general way to distinguish stationary from non-stationary
processes. We do this by using feature map stemming from rough path theory known as
the signature. In particular, similar to Issa et al. [2023a], we measure the stationarity of
a process by comparing the distribution of different slices of its path using the signature
kernel maximum mean discrepancy.

3.1.1 Contributions

The main contributions of our work are the following. First, we establish clear conditions
on either the class of admissible mixings, d, or on the kind of non-stationarity of zt that
allow for identification results akin to those that hold in the linear case. In particular, we
find that, under either of these conditions, the stationary latent process, yt, is identifiable
up to smooth invertible transformations. The main result is encapsulated in Theorem
1. Along the way we also show that a wide class of multivariate processes exist that are
non-stationary under general invertible smooth transformations. Although all of these
results are stated for continuous time processes, they carry over to discrete time with no
major modifications.
Our second contribution lies in defining a statistic that allows for estimating the inverse

mixing. In the ideal setting where we have access to the underlying distribution, this
statistic is 0 if, and only if, the process is stationary. In practice one usually only observes
a single long discretely sub-sampled trajectory. We define an approximate objective and
establish under what conditions this objective yields consistent inference. This is the
statement of Theorem 3.
Finally, we develop feasible algorithms for computing the approximate objective (i.e.,

Algorithm 3 and 4) and thus estimating the stationary embedding up to its equivalence
class. We give a range of applications at the end of the paper one of them being manifold
learning for non-stationary stochastic processes.

3.1.2 Related work

Nonlinear ICA

Cointegration can be seen as a form of blind source separation (BSS) for which a rich
literature exists [Choi et al., 2005]. A particularly important strand is called independent
component analysis (ICA) where it is assumed that the observed process is an invertible
mixing of latent independent processes. Identifiability has been established under general
conditions [Hyvarinen et al., 2019, Hyvarinen and Morioka, 2017, Hyvarinen et al., 2019,
Schell and Oberhauser, 2023] and for different variants of the problem Khemakhem
et al. [2020a,b]. In particular, our definition of identifiability is close to the one of
block-identifiability given in Von Kügelgen et al. [2021]. A common way to estimate
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the de-mixing transformation utilizes contrastive learning approaches [Hyvarinen and
Morioka, 2016]. Our approach is more akin to that of [Schell and Oberhauser, 2023] who
show that the de-mixing transformation can be found by minimization of a function
characterizing independence.

Cointegration

By now cointegration is a very mature field. It started with the seminal work in Engle
and Granger [1987] with much of the theory developed in Johansen [1988, 1991, 1995] for
the vector autoregressive model and in Phillips [1991] in a more general setup. There is
also a part of the literature where many of the same ideas are explored under the nomen-
clature of stationary subspace analysis (SSA) [Von Bünau et al., 2009, Sundararajan and
Pourahmadi, 2018, Baktashmotlagh et al., 2014]. Quite a few attempts in the direction
of nonlinear cointegration have been made either by extending the vector error correction
model [Escribano, 2004, Kristensen and Rahbek, 2007, Balke and Fomby, 1997], in the
form of nonlinear regression with non-stationary predictor and target [Park and Phillips,
1999, 2001], or as non-stationary non-linear autoregressive Markov chains [Karlsen and
Tjøstheim, 2001, Karlsen et al., 2007, Li et al., 2016]. A recent review can be found
in Tjøstheim [2020]. Recently Duffy et al. [2022] presented a way in which nonlinear
cointegration relationships can arise in an autoregressive time series model under a very
specific type of nonlinearity. None of these works are fully satisfactory though because
they do not treat the problem of finding fully general nonlinear cointegration relations.

Change point detection

Change point detection methods also deal with non-stationary processes, although the
goal is slightly different. Usually one assumes that the process is piece-wise stationary.
The aim is then to find the points at which the distribution changes given a sampled
trajectory (offline detection) [Truong et al., 2020] or to detect a change point as the
data arrives (online detection) [Aminikhanghahi and Cook, 2017, Adams and MacKay,
2007]. Our statistic discriminating stationary from non-stationary processes (see Section
3.3) is similar in spirit to some of the kernel change point detection methods [Li et al.,
2015, Garreau and Arlot, 2018, Harchaoui et al., 2008]. In Issa and Horvath [2023]
the authors develop a method for online market regime detection based on the signature
kernel maximum mean discrepancy. Their test statistic is quite similar to the statistic for
determining stationarity discussed here. There are, however, two key differences. First,
they partition their data into so-called ensemble paths which is similar to our batching
protocol. Whereas we allow for very general partitions, in Issa and Horvath [2023] the
authors restrict themselves to sliding disjoint windows. The other big difference is that
we employ the discrete signature and, in particular, the Fourier approximation of Toth
et al. [2023]. Our main reason for doing so is that we need to evaluate our statistic as part
of an optimization problem necessitating computational efficiency. Efficient algorithms
are developed in Appendix 3.D.
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3.1.3 Notation

In this section we collect some notation that reappears throughout the thesis. Some of
the following will be reintroduced in the relevant places below, but use this section as a
glossary of sorts.
We use small letters to denote stochastic process. If confusion can be avoided, we

will often simply write xt when referring to the whole stochastic process (xt)t∈T . As
far as possible, we will be consistent and use T for the index set. T is then either
an interval of the form [s, t] or [s,∞) (usually with s = 0) or it will be a discrete
(possibly infinite) set of points T = (t0 < t1 < · · · < tn) also known as a time grid.
We generally reserve capital letters for Euclidean random variables. Thus, a discrete
stochastic process, or time series, of the form (xt)t∈T with T = (t0 < t1 < . . . ) may
equivalently be represented as a sequence of random variables X1, X2, . . . where Xk =
xtk . Overloading the notation, we use ∆ for two purposes: 1) denoting the first difference
of a time series, ∆xtk = xtk −xtk−1

, and 2) for the set of ordered k-tuples over some set,
that is, ∆k(I) := {(t1, . . . , tk) ∈ Ik | t1 < · · · < tk} where I ⊂ R. For any n ∈ N we define
[n] := {1, . . . , n}. Equality in law is expressed using =d. We reserve π for projections
adding a subscript to clarify the co-domain. For a p-dimensional vector space, V , and
1 ≤ i ≤ j ≤ p, we use πi:j to denote the projection onto the subspace spanned by the
basis vectors ei, . . . , ej of V (where we assume some standard fixed basis is in use). For
example, if V = Rp, then πi:j corresponds to the projection onto the coordinates between
i and j. Finally, we reserve θ for the shift operator. That is, for s ∈ R+ and some vector
space V , we define θs : RV+ → RV+ given by θsf(·) = f(s + ·). The shift operator is
defined analogously for sequences.

3.2 Stationary embeddings

This section lays the theoretical groundwork for the rest of the article. We will spend
most of it clarifying (in a mathematically rigorous way) what we mean by non-linear
cointegration and stationary embeddings. In the following we shall use the term cointe-
gration for both the linear and non-linear case. We acknowledge that this is an abuse of
terminology in the sense that, for the linear case, cointegration very specifically refers
to integrated processes that upon applying specific linear transformations are integrated
of a lower order. Here we are concerned with general non-stationary processes and we
are simply interested in finding a transformation (linear or not) taking this process to a
lower-dimensional stationary process. As such, our concept of cointegration, arguably,
is more akin to that considered in linear stationary subspace analysis (SSA) [Von Bünau
et al., 2009, Sundararajan and Pourahmadi, 2018, Baktashmotlagh et al., 2014]. How-
ever, the definition of cointegration seems to vary considerably in the existing literature
and it is not entirely clear what separates it from SSA apart from the algorithms em-
ployed.
First, let us define what exactly is meant by a stationary process. For an interval

J ⊂ R+, we let C(J,Rp) denote the space of continuous functions on J taking values in
Rp omitting the domain when it is clear from context. For some topological space X , we
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defineM1(X ) as the set of probability measures on X (equipped with its Borel sigma-
algebra). We define the shift operator θτ : C(Rp) → C(Rp) such that θτ : x· 7→ xτ+·.
Finally, for any µ ∈M1(C(Rp)) and 0 ≤ s ≤ t, we define µ[s,t] := µ ◦ π−1

[s,t].

Definition 1. For any t > 0 and p ≥ 1, we define the set of probability measures

Sp(t) :=
{
µ ∈M1(C([0,∞)),Rp) | µ[0,t] = µ[s,s+t] for all 0 ≤ s

}
.

We also define Sp := ⋂t≥0 Sp(t). Any process x ∼ µ with µ ∈ Sp is stationary. We shall
often abuse notation and simply write x ∈ Sp(t) or x ∈ Sp.
The definition of stationary processes given above agrees with the one involving

finite-dimensional distributions. Indeed, if x ∈ Sp, then, for any n ≥ 1 and 0 ≤
t1, . . . , tn, τ , we have x ∈ Sp(tn) which implies that the distributions of (xt1 , . . . , xtn)
and (xt1+τ , . . . , xtn+τ ) coincide. For ease of notation, we define JT = [0, T ] if T < ∞
and J∞ = R+. For a function f : Rp → Rq and some integers 1 ≤ i ≤ j ≤ q we define
fi:j = πi:j ◦ f : Rp → Rj−i+1. We also define the spatial support of a stochastic process.
We shall assume through out that the spatial support of the observed process x, call it
Dx, is path-connected and convex.

Definition 2 (Spatial support). For a stochastic process w ∈ C(JT ,Rq) we define the
spatial support of w to be the set

Dw =
⋃
t∈JT

supp(wt)

where supp denotes the usual support of a Euclidean random variable.

Before we give the main definition of this section, namely, that of stationary em-
beddings and cointegration, let us first recall the linear case. Loosely speaking, for a
non-stationary process xt ∈ Rp we say that it is cointegrated of order 0 ≤ k ≤ p if there
exists an invertible matrix Q ∈ Rp×p such that xt can be decomposed Qxt = (yt, zt)
with yt ∈ Rk stationary and zt ∈ Rp−k non-stationary and k being the largest num-
ber for which such a decomposition is possible. In other words, xt = Q−1(yt, zt) is a
mixture of two latent components distinguished by their degree of stationarity. Now,
a natural way to generalize this definition is to replace the mixing matrix Q−1 by a
general diffeomorphism. As we shall see, however, this function class is too big to obtain
meaningful identification results without any further assumptions on the underlying la-
tent non-stationary component. In the following we allow for different classes of mixing
transformations depending on which assumptions we put on zt. There are, however,
some common properties which any potential candidate class of mixing transformations
should satisfy. In particular, we want them to be invertible and closed under composition
and inversion.

Definition 3 (Admissible mixing). Let D be the class of piece-wise2 diffeomorphic
homeomorphisms and F a function class (see Def. 10). We say that F is a class of

2We refer to Def. 11 for a precise definition of what it means for a function to be of property P
piece-wise.
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3.2 Stationary embeddings

admissible mixings if F ⊂ D and, for any f ∈ F(U) and g ∈ F(f(U)), it holds that f is
invertible with f−1 ∈ F(f(U)) and g ◦ f ∈ F(U).

Notice that in our definition of cointegraiton we require that the non-stationary com-
ponent zt is not itself cointegrated. In order to obtain a sort of minimal (in terms of
the cointegration rank k) decomposition we shall therefore define a process to be strictly
non-stationary if it is not a mixing of a stationary and non-stationary component. This
is exactly the content of the next definition albeit phrased slightly differently.

Definition 4 (Strictly non-stationary). We say that a process w ∈ C(Rq) is strictly non-
stationary if there exists an open superset U ⊃ Dw such that the coordinate processes
of f(wt) are non-stationary for every f ∈ D(U).

An important question to ask oneself is then how big this class of processes actually
is. In order to obtain any meaningfully general notion of non-linear cointegration, we
should be able to show that many of the non-stationary processes used in practice are
actually strictly non-stationary. This would follow as an easy corollary to Conjecture 1
for which we unfortunately do not yet have a proof.
We are ready to introduce the main definition of this paper, namely, a nonlinear

generalization of cointegration or, equivalently, what we call stationary embeddings.3

Definition 5 (Stationary embedding). Given a class of admissible mixings, F , we call a
map e a stationary embedding of x ∈ C(Rp) of dimension 0 ≤ k ≤ p if there is some open
U ⊃ Dx such that e ∈ F(U) and k is the largest integer such that yt := e1:k(xt) ∈ Sk.
We say that xt is cointegrated of order k if it has a stationary embedding of dimension

k, and we call xt strictly cointegrated of order k (or CIk) if it is cointegrated of order k
and e(k+1):p(xt) is strictly non-stationary for every stationary embedding of dimension
k.

Remark 1. The definition of strict cointegration might seem a little strange at first
glance. In particular, it is not clear whether a process can be strictly cointegrated of
different orders, say 0 ≤ k < l ≤ p. We would really prefer for this not to be possible.
Indeed, our goal with defining the concept of strict cointegration was to achieve a minimal
decomposition, i.e., if xt is strictly cointegrated of order k, then k should be the smallest
dimension for which a stationary embedding exists. Luckily, for all relevant cases, namely
the ones where the stationary embedding is identifiable (see also Def. 6), there is only
one 0 ≤ k ≤ p for which x is CIk. We call this number the cointegration rank of xt.

For a stationary embedding e of dimension k we shall write e = (e1, e2) with e1 :
Rp → Rk and e2 : Rp → Rp−k. Comparing with linear cointegration, e1(xt) are the
cointegration relations and e2(xt) correspond to the shared stochastic trends. Also, with
yt := e1(xt) and zt := e2(xt), we find that x = d(yt, zt) with d := e−1 an admissible
mixing on some open superset U ⊃ D(y,z), i.e., requiring that e be admissible ensures
that we can write xt as the mixture of a stationary and non-stationary component under
an admissible mixing.

3The terminology is perhaps a little misleading. However, in a certain sense, as is made more precise
in Proposition 1, the map d indeed embeds a k-dimensional manifold in Rp playing a similar role as
invariant manifolds do for deterministic dynamical systems.
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3 Beyond stationarity: Nonlinear cointegration

3.2.1 Identifiablity

Let xt ∈ Rp be CIk and write xt = d(yt, zt). The problem of finding yt and zt (or,
equivalently, the stationary embedding, e) from an observation of xt can be viewed as
a blind source separation (BSS) problem [Choi et al., 2005]. At this point it is then
worth pondering to what extent the components are identifiable given that the only
thing available to use is the mixed process xt. It is well-known that in the linear case,
without any further assumptions on the underlying processes, the stationary component
can only be identified up to invertible linear transformations and the non-stationary
component remains unidentified. This is the same as saying that the non-stationary
subspace is identified while the stationary subspace is unidentified [Von Bünau et al.,
2009]. Below we find that a similar statement holds in the general non-linear setting.
The main result is Theorem 1.
The way in which we state our identifiability results may seem indirect. Our aim

is to end up at a result similar to the linear case; We want to be able to identify the
stationary transformation up to invertible transformations, that is. It is clear that there
are two levers to pull. On one hand, we can restrict the function class of admissible
mixings where the smallest extreme is that of analytic functions. On the other hand, we
can impose further assumptions on the latent non-stationary component, in particular,
the degree to which the non-stationary behavior happens locally (in the support) or
globally. We shall therefore first define what we exactly mean by identifiability and
subsequently give examples of pairs of function classes and non-stationary processes
which yield identifiability of the stationary embedding.

Definition 6. Let F be a function class of admissible mixings and z ∈ C(Rp).4 We say
that the pair (F , z) is identifiable if the following holds: Let k ∈ [p] and xt ∈ C(Rp)
be CIk with e ∈ F(U) a stationary embedding and (yt, π(k+1):p(zt)) = e(xt). For any
f ∈ F(U), we have

ỹt := f1:k(xt) ∈ Sk if and only if ỹt = h(yt) for some h ∈ F(e1(U)). (3.2.1)

Remark 2. This definition of identifiability is a natural generalization of the linear case.
Indeed, if we let the class of admissible mixings be given by all invertible linear transfor-
mations and z is a strictly second order non-stationary process, then Equation (3.2.1) is
exactly the well-known identification result from SSA. We also note that, by definition,
classes of admissible mixings are closed under inversion. Thus, we could just as well
have required e−1 := d ∈ F(e(U)).

In words, Definition 6 states that a pair (F , z) is identifiable if, given the observation
of any admissible mixing xt = d(yt, π(k+1):p(zt)), we are able to recover the stationary
embedding up to homeomorphisms in the function class F . We may define the equiva-
lence relation ∼F over F where (U, f) ∼F (V, g) if and only if g = h◦f and V = h◦f(U)
for some h ∈ F(f(U)). For the most part, we will admit a slight abuse of notation and

4The reader may be confused why we are using p to denote the dimension of the non-stationary
component all of a sudden contrary to p − k as above. We do this to allow the same definition of
identifiability across all cointegration ranks.
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3.2 Stationary embeddings

simply write f ∼F g. With e denoting the underlying stationary embedding e := d−1,
we can then define the equivalence class [e]F given by all f ∈ F(U) such that f1:k ∼F e1.
What we seek is the ability to be able to identify [e]F based on an observation of xt
alone.
Before we state the main theorem, we introduce a regularity assumption. In particular,

similar to Schell and Oberhauser [2023], we shall require that the latent non-stationary
component is sufficiently noisy so as to admit a continuous density wrt. Lebesgue mea-
sure for any colleciton of time points.

Definition 7 (Regular process). Let z ∈ C(Rp) with spatial support Dz. We say that z
is regular if, for everym ≥ 1 and t ∈ ∆m([0,∞)), the random variable zt = (zt1 , . . . , ztm)
admits a continuous density with respect to pm-dimenisonal Lebesgue measure.

We now give two canonical examples of identifiable pairs (F , z). First, if we let F be
the class of analytic functions with invertible Jacobian, then any strictly non-stationary
and regular process will do. On the other end of the spectrum, if we assume the kind
of non-stationarity of zt to be global in a certain sense, we can work with all of D, i.e.,
the class of piece-wise diffeomorphic homeomorphisms. Since the proof in both cases is
almost identical we provide both results as one theorem.

Theorem 1 (Identifiability). Let z ∈ C(Rp) be strictly non-stationary and regular and
F a class of admissible mixings. Then, the pair (F , z) is identifiable in the following two
cases:

(i) F only contains analytic functions.

(ii) The law of zt is strictly non-stationary when restricted to U for any open U ⊂ Dz.

Proof. Any one-to-one transformation of a stationary process is still stationary. It there-
fore suffices to prove the ”only if”-direction in (3.2.1). So suppose that ỹt is stationary
and define g := f1:k ◦ d : e(U) → Rk where f : F(U), U ⊃ Dx is open and e is the
stationary embedding of xt, i.e., d = e−1. We will prove the slightly stronger assertion

∂vg(u, v) = 0 for all (u, v) ∈ V and some some open dense V ⊂ e(U) (3.2.2)

from which the result then readily follows by continuity.
Part (i): Since zt is regular, we can find some open V ⊂ e(U), time points 0 ≤ t1 ≤
· · · ≤ tn, and a shift τ > 0 such that, for any measurable V ′ ⊂ V

P
(
(yt1 , zt1) ∈ V ′, . . . , (ytn , ztn) ∈ V ′) ̸= P

(
(yτ+t1 , zτ+t1) ∈ V ′, . . . , (yτ+tn , zτ+tn) ∈ V ′) .

Now, assume there exists some (u0, v0) ∈ V such that ∂vg(u0, v0) ̸= 0. By continuity, we
can then find some open neighborhood (u0, v0) ∈ V0 ⊂ V on which ∂vg is different from
0. But, by Lemma 2 it would then follow that ỹt = g(yt, zt) is non-stationary which
results in a contradiction. Thus, we must have ∂vg(u, v) = 0 for all (u, v) ∈ V . Then,
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3 Beyond stationarity: Nonlinear cointegration

since ∂vg is analytic, by the Identity Theorem (see, e.g., Krantz and Parks [2002]), it
follows that ∂vg = 0 everywhere as desired.
Part (ii): First note that f is a piece-wise diffeomorphic homeomorphism (see Lemma

1). In particular, there exists a countable collection of closed sets (Ui)i∈I covering D(y,z)

such that ∂Ui has Lebesgue measure 0 and f is diffeomorphic on int(Ui) for each i ∈ I
(Definition 11). Now, defining O :=

⋃
i∈I Ui we find that O|e(U) is dense in e(U). If

there exists some (u0, v0) ∈ O such that ∂vg(y0, v0) ̸= 0, then, by continuity, there is
some open neighborhood (u0, v0) ∈ V0 ⊂ Ui such that ∂vg is different from 0 on V0.
But then, since the law of zt is strictly non-stationary also when restricted to πz(V0),
Lemma 2 leads to a contradiction again. We therefore conclude that ∂vg(u, v) = 0 for
all (u, v) ∈ O.

While being small enough to yield identifiability for any strictly non-stationary and
regular process, zt, the class of analytic admissible mixings is still a significant gener-
alization of the purely linear case. Indeed, modulo invertibility constraints, it includes
affine functions, polynomials, neural networks with analytic activation functions, and
many other types of functions. If one wants access to more flexible functions such as, for
example, splines or neural networks with only piece-wise differentiable activation func-
tions (the prime example being, of course, piece-wise linear functions such as the leaky
ReLU activation function), then the class of analytic mixings no longer suffices. In other
words, in order to guarantee identifiability, we need to put stronger assumptions on zt.
A good example to keep in mind of what we here refer to as globally non-stationary
processes are non-stationary Gaussian processes such as Brownian motion.

3.3 Discerning stationarity using signatures

Having converged on a well-behaved definition of nonlinear cointegration, the natural
next step is asking how the stationary embedding might be estimated given an obser-
vation of (possibly sub-sampled) trajectories of x. Naturally, the best we can hope for
is being able to estimate [e]F , and (3.2.1) gives a suggestion for how to do so. It suf-
fices to find a de-mixing f such that f1:k(x) is stationary since (3.2.1) then guarantees
that f ∈ [e]F . Our approach, then, is similar to that of Schell and Oberhauser [2023]
in that we seek to define some statistic discriminating stationary from non-stationary
processes. In theory, one should be able to find a candidate for f by minimizing this
objective over the given class of admissible mixings. This approach is different from
another strand of BSS where one seeks to estimate the latent processes using contrastive
learning [Hyvarinen and Morioka, 2016, 2017].
What we are looking for, is a well-behaved map φ : M1(C(Rp)) → R+ such that

φ(µ) = 0 if, and only if, µ ∈ Sp(τ) (where τ > 0). Assuming, then, that we are
given such an oracle φ and that (F , z) is identifiable, by Lemma 1, we find that, for τ
sufficiently large,

argmin
f∈F(U)

φ (f1:k(x)) ⊂ [e]F . (3.3.3)
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This section is devoted to developing such an oracle. The basic idea is to start with
some way of discriminating laws of stochastic processes using a statistical divergence.
Given such a discriminator, call it Φ, we can then check if the law µ of a given stochastic
process x ∈ C(Rp) agrees with that of µ ◦ θt for all t > 0. This is encapsulated in the
following lemma.

Lemma 1. With τ > 0, let K ⊂ C(Rp) and Φ : R2
+ ×M1(K) → R+ such that, for all

µ ∈M1(K), the map (s, t) 7→ Φ(s, t, µ) is continuous and 0 if, and only if, (xs+r)r∈[0,τ ]
and (xt+r)r∈[0,τ ] are equal in law where x ∼ µ. Then,

φ(µ) := lim sup
T→∞

∫ T

0

∫ T

0
Φ(s, t, µ)dsdt (3.3.4)

satisfies φ(µ) = 0 if and only if x ∈ Sp(τ).
Proof. We shall prove the ”only if”-direction since the other direction follows by assump-
tion. Assume that x /∈ Sp(τ). Then, there exist some s0, t0 ∈ JT such that Φ(s, t, µ) > 0.
But, by continuity, this implies that we can take some open interval I ∋ s0 such that
I ∋ s 7→ Φ(s, t0, µ) is strictly positive which, in turn, must mean that φ(µ) > 0.

In line with previous notation, we shall often replace the law of a stochastic process
with the random variable itself, that is, we write Φ(s, t, x) (resp. φ(x)) instead of
Φ(s, t, µ) (resp. φ(µ)) when this does not otherwise cause any confusion.

3.3.1 Signature kernel divergence

To build our discriminator, Φ, we shall use a feature map stemming from rough path
theory known as the signature [Cass and Salvi, 2024]. Since signatures characterize the
law of stochastic processes, they will serve as a great tool in this endeavor. We can use
signature kernels to construct a metric for laws of path-valued random variables. This
metric is the signature kernel maximum mean discrepancy (MMD) [Salvi et al., 2021c].
We will lay out in detail how this can be done below. Suffice it to say for now that one
is free to substitute the signature kernel MMD with any suitable divergence.
For ease of exposition, we now restrict our attention to C1−var(Rp) ⊂ C(Rp), that is,

the space of paths of bounded variation5. On this space, we may define the signature S :
C1−var → C(T ((Rp))) which takes as input a bounded variation path and returns a con-
tinuous path taking values in the extended tensor algebra T ((Rp)) =

∏
n(Rp)⊗n (see also

Appendix 3.C). For x ∈ C1−var(JT ,Rd), the elements of S(x) are given by the iterated
tensor integrals of xt with respect to itself. To be precise, S(x) = (1, S1(x), S2(x), . . . )
where

Sk(x) =

∫
· · ·
∫
0<u1<···<uk<T

dxu1 ⊗ · · · ⊗ dxuk .

The signature can be viewed as a feature map playing the role of monomials on path-
valued data [Lyons, 2014]. It inherits many properties of real-valued monomials such as

5All of this can be extended to the space of geometric rough paths which includes, for example, solutions
to SDEs as the ones discussed below.
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3 Beyond stationarity: Nonlinear cointegration

universality and characteristicness [Chevyrev and Oberhauser, 2022]. In particular, it
distinguishes paths up to tree-like equivalence and translation, i.e., for two paths starting
at 0, S(x) = S(y) if and only if x ∼t y with ∼t being the equivalence relation given by
tree-like equivalence (see, e.g., Definition 1.3 in Hambly and Lyons [2010]). Equipping
the extended tensor algebra with the natural inner product we can also consider the
signature kernel k(x, y) = ⟨S(x), S(y)⟩ which is a kernel on path-space. This leads to
the signature kernel MMD,

MMDsig(x, y)
2 = ∥ES(x)− ES(y)∥2 = Ek(x, x′) + Ek(y, y′)− 2Ek(x, y)

where the pairs x, x′ and y, y′ are both i.i.d. We can then define φsig as in Eq. (3.3.4)
with MMDsig our choice of divergence. However, to ensure that MMDsig is actually
a metric, we make two minor modifications such that it is sensitive to translation by
both tree-like paths and constants. In particular, for a path x ∈ C1−var([s, t],Rp), we
let x̃ ∈ C1−var([s, t],Rp+1) be the path obtained by applying the ι-augmentation for
ι : [s, t] → [0, 1] the linear path connecting 0 and 1, i.e., x̃ = (x, ι) (see also Defini-
tion 14). Furthermore we replace the signature in the definition of MMDsig with the
I-augmented signature, i.e., SI(x) = exp(xs)⊗S(x) (see also Definition 15). We then let
Φsig(s, t, x)

2 = MMDsig(x̃ ◦ θs, x̃ ◦ θt)2. Theorem 5 ensures that (x, y) 7→ MMDsig(x̃, ỹ)
is a metric on any compact subset of C1−var(Jτ ,Rp) so that Φsig satisfies all the re-
quirements of Lemma 1. Combined with (3.2.1), we then obtain the following result
reminiscent of Theorem 4 in Schell and Oberhauser [2023] for free.

Theorem 2. Assume that the pair (F , z) is identifiable. Then, if xt is CIk with e2(xt) =
π(k+1):p(zt) and (e1, e2) ∈ F(U), we have that, for τ large enough,

argmin
g∈G

φsig(g1:k(x)) ⊂ [e]F (3.3.5)

for any G ⊂ F(U) such that G ∩ [e]F ̸= ∅.
Remark 3. In many applications, depending on the nature of the latent non-stationary
component, zt, it may or may not be advantageous to consider different modifications
of the signature. We applied the ι-augmentation and the I-augmentation above mainly
to provide the necessary theoretical guarantees, that is, to obtain (3.3.5). Another
often advantageous modification involves first lifting the path to some Hilbert space and
then computing the signature kernel on the resulting Hilbert space valued paths. If
one chooses this lift to be the feature map associated to a kernel function on Euclidean
space, then different kernel tricks can be employed such that we may circumvent actually
having to compute the lifted path. See, for example, Lee and Oberhauser [2023] or
Appendix 3.C. In subsequent sections, we discuss both numerical considerations and
perform empirical comparisons of different methods.

3.4 Estimating stationary embeddings

Rarely will we have access to the law of the stochastic process under consideration.
Instead, one is often presented with one of two cases: 1) Multiple independent discrete
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sub-samples or 2) a single long discretely sub-sampled trajectory. Noting that 2) is
effectively a generalization of 1), we shall mainly focus on the latter case. Specifically,
we observe the data xn = (xt)t∈Tn on a time grid Tn := {0 = tn0 < · · · < tnn = Tn}. We
shall make the following assumptions on the asymptotics of xn as n→∞:

• The final time Tn increases, Tn →∞.

• The mesh of Tn goes to 0, ∥Tn∥ := maxk≤n |tnk − tnk−1| → 0.

• Each time grid includes the previous one, Tn ⊂ Tn+1.

In words: We let the length (in unit time) of the observation go to infinity and the
fineness to 0. We note that not all three requirements are necessary for obtaining the
results that follow below. Versions of the main results, Lemma 2 and Theorem 3, still
hold with the according modifications. The focus of this section is finding an analog
of φsig(x) that works for streams such as xn. Towards this goal we define a batching
protocol. The main idea is that signatures take as input entire paths (or sequences for
the discrete signature). Thus, we need to consider the data at this level as well. We
identify an observation with a slice of the observed sequence and to estimate the expected
signature we then average a collection of such slices. Crucially, we need to make sure
that the order of observations is preserved. The idea is very similar to the approach
taken in Issa and Horvath [2023] where the authors use the signature kernel MMD for
change point detection. See also Figure 3.4.1 for an illustration.

Definition 8 (Batching protocol). Let T = {0 = t0 < · · · < tn = T} for some T > 0 be
a time grid. We make the following nested definitions:

(i) A window of size k > 0 of the time grid T is a subset b ⊂ T consisting of k
consecutive points in T , i.e., b = {tj , . . . , tj+k−1} for some 0 ≤ j ≤ n− k + 1.

(ii) A batch of size m > 0 of the time grid T is a set of windows b = {b1, . . . ,bm}
such that, for each 2 ≤ i ≤ m, minbi−1 < minbi and maxbi−1 < maxbi.

(iii) Finally, a batching protocol of size B > 0 of the time grid T is a set of batches
B = {b1, . . . , bB}.

Now let Bn = {bn1 , . . . , bnBn
} be a batching protocol of the time grid Tn where we write

bnk = {bn,k1 , . . . ,bn,kBn,k
} and #bn,kj = Bn,k,j , i.e., Bn denotes the size of the batching

protocol, Bn,k the size of the kth batch, and Bn,k,j the size of the jth window in the kth
batch. Note that we allow the batching protocol to depend on the sample size n. This is
crucial for deriving the asymptotic results presented in the subsequent section. For ease
of notation, given a window b, we write xb = (xt)t∈b and x[b] := x[minb,maxb]. For any
time series x = (xt)t∈T or stochastic process (xt)t∈JT and an appropriate function g, the
notation g(x) or g(x) is to be understood as the time series or process resulting from a
point-wise application of g. Furthermore, SIι,g(x) denotes the composition x 7→ g(x) 7→
x̃g 7→ SI(x̃g) where x̃g is the ι-augmentation of xg := g(x) for ι the simple linear path
connecting 0 and 1 as in the previous section. We use a similar notation when S(x) is
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3 Beyond stationarity: Nonlinear cointegration

Figure 3.4.1: A batching protocol with two batches, each consisting of four windows. The
i′th window contains the observations between τi−1 and τi. The batches in this
illustration contain windows from two disjoint intervals, but this need not be the
case in general.

replaced with the discrete signature (see Appendix 3.C.2) applied to xb, i.e., Ŝ
I
ι,g(xb).

6

We define the projection π(m) : T ((Rp)) → ⊕
k≤m(Rp)⊗k onto the first m levels of the

tensor algebra.

1. We only observe a discretely sub-sampled trajectory of xt and, consequently, can
not compute the exact signatures SIι,g(x[t,t+τ ]). We shall approximate it with the
discrete signature truncated of some order m ≥ 1. Specifically, for each window
bn,kj ,

SIι,g(x[t,t+τ ]) ≈ π(m) ◦ ŜIι,g(xbn,k
j

) := ŝm(g(xn);b
n,k
j ),

2. Next, since we do not have access to the distribution from which xn is sampled,
we are not able to compute Eŝ(g(xn);bn,kj ). An obvious choice is then to estimate
the mean by a sample average over a batch. In particular, for each batch bnk , we
make the further approximations

ESIι,g(x) ≈
1

Bn,k

∑
b∈bnk

ŝm(g(xn);b) := ŝm(g(xn); b
n
k),

3. For each combination of a pair of two batches, bnk and bnl , starting at snk and snl
respectively, this then yields an approximation

Φsig (s
n
l , s

n
k , g(x)) ≈ ∥ŝm(g(xn); bnk)− ŝm(g(xn); b

n
l )∥2 := Φ̂sig(g(xn); b

n
k , b

n
l ).

4. As the last step, we can then obtain a final approximation by aggregating over all
combinations of batches in the protocol, that is,

φsig(g(x)) ≈ B−2
n

∑
b,b′∈Bn

Φ̂sig(g(xn); b, b
′) := φ̂sig(g(xn);Bn).

It might not be immediately obvious how φ̂sig is related to φsig. Let us consider a
specific batching collection. The arguably simplest batching protocol is the one given in

6Note that, with z = g(x) and z = g(xb), Remark 9 ensures that z̃b = z̃.
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Fig. 3.4.1. We first split up the sequence xn into Bn windows of equal size n/Bn. We
then define two batches containing the first and last half of the windows respectively. Our
statistic then simply compares the average signature over the first batch and the second
batch, i.e., we are effectively testing if the distribution is the same on both halves of the
observed time frame. This is obviously different from checking whether the distribution
is the same at all times. For example, consider what would happen if the distribution of
xt changes back and forth each window. Then, this specific batching protocol would not
be able to detect the non-stationarity. Other, more complex batching protocols could,
though. In general, choosing a batching protocol depends on the application at hand
and can be seen as a sort of hyperparameter. Smaller window sizes mean that we can
fit more windows into a batch of fixed length, but this comes at the cost of not being
able to detect more complex long term changes in the distribution. Similarly, reducing
the number of windows in a batch means that we can fit more batches into a batching
protocol, but it will also lead to a higher variance in estimating the expected signature
and, therefore, the maximum mean discrepancy (steps 2 and 3 above).
What we will show in the following section is that the approximation converges to

its expectation if xt is stationary and satisfies certain mixing conditions. Of course,
when xt is stationary, the expectation of φ̂sig(xt) is 0 and therefore equal to the oracle
φsig(xt). Recall that our goal is to use φ̂sig as a way to discriminate non-stationary
processes. In particular, it will be enough to require that φ̂sig remains strictly positive
in the non-stationary case. This is harder to prove. We shall show that under specific
assumptions on the kind of non-stationarity, this will hold for every g(x) over a suitable
class of transformations.

Remark 4. In some cases it might be a better idea not to average over all pairs of batches
in our batching protocol. Actually, there is nothing in our formulation stopping us from
only taking the average over a subset of pairs. Even more generally, one may consider
an aggregator, An : RBn×Bn

+ → R+, and define

φ̂sig(g(xn);Bn, An) := An

(
Φ̂sig(g(xn); b, b

′)b,b′∈Bn

)
.

3.4.1 Consistency

This sections is devoted to studying the limiting behaviour of φ̂sig under mixing con-
ditions with and without stationarity. The main result concerns the average discrete
signatures ŝm(g(xn); b) over a batch b as estimators of ESIι,g(x). Most of the theory and
all of the proofs have been relegated to Appendix 3.B. Left here are the most impor-
tant results along with the appropriate underlying assumptions. We note that general
asymptotic results and concentration inequalities exist for the MMD even for dependent
data [Dehling and Wendler, 2010, Chérief-Abdellatif and Alquier, 2022], but in order to
study how φ̂sig behaves under the alternative of non-stationary data, Lemma 2 even will
be quite useful as it only requires a mixing condition and not stationarity.

As mentioned above, the consistency results that we introduce all presuppose some
sort of mixing conditions. These are universal in time series analysis since they allow us
to transfer many of the classical asymptotic results to dependent data. For a thorough
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3 Beyond stationarity: Nonlinear cointegration

introduction to this concept, we refer to Doukhan [2012]. For the sake of simplicity, we
here only introduce the notion of α-mixing.

Definition 9 (α-mixing). Let X = (X1, X2, . . . ) be a sequence of random variables (or
time-series) and define the σ-algebras Xts := σ(Xu : s ≤ u ≤ t). The α-mixing coefficient
of X for r ≥ 1 is defined as

αr(X) := sup
j∈N

sup
A∈Xj

1
B∈X∞

j+r

|P(A ∩B)− P(A)P(B)|.

We call a time-series array (Xn
t )n,t≥0 α-mixing or strongly mixing if the α-mixing

coefficients go uniformly to zero, i.e., supn αr(X
n)→ 0, as r →∞.

For a given batch, b, we define the average of the expected signatures

s(g(x); b) :=
1

#b

∑
b∈b

E
(
SIι,g(x[b])

)
,

We can now state our result on the consistency of ŝm(g(xn); bn) as estimators of s(g(x); bn)
where bn is some batch that also depends on the sample size. Since we are measuring
the stationarity of transformations of xn (recall (3.3.3)), we prove that consistency holds
uniformly over a suitable class of nice transformations.

Lemma 2 (Signature consistency). Let G ⊂ C(Rp,Rq) compact and xn = (xt)t∈Tn with
the time grids Tn as described in the beginning of the section. Assume that x, G and
τ > 0 satisfy the technical Assumption 2. Assume that xn is strongly mixing. Let bn be
a sequence batches of size Bn with Bn → ∞ as n increases and such that each window
is of length τ > 0. Then, for any ϵ > 0, there exists m0 ≥ 1 such that, for all m ≥ m0,

lim
n→∞

P

(
sup
g∈G
∥ŝm(g(xn); bn)− s(g(x); bn)∥ > ϵ

)
→ 0.

Remark 5. Here we imposed a strong mixing assumption. This assumption is exclusively
used to show that the discrete signature is in a sense ergodic, i.e., that taking the
time-average corresponds asymptotically to taking the spatial average (see also Lemma
5). One may be able to prove this without the mixing assumption, but under some
alternative condition. A particular avenue worthy of exploration that comes to mind is
to instead require that x is a (bijective transformation of a) recurrent Markov chain as
was done in, e.g., Karlsen et al. [2007]. We leave such efforts open for future work.

Recall that we are interested in solving (3.3.3) for some identifiable pair (F , z) with
our objective function being φsig. Not having access to φsig we must resort to using the
alternative objective φ̂sig(·;Bn) for an appropriate batching protocol Bn. Furthermore,
in practice we usually will not perform the minimization over the entire set F(U), but
only over some sufficiently flexible subset G ⊂ F(U). Thus, our estimate of the stationary
embedding, call it ê, solves

ê ∈ argmin
g∈G

φ̂sig(g1:k(xn)) (3.4.6)
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3.4 Estimating stationary embeddings

Now, proving consistency of this estimator would then amount to proving that d∞(ê, [e]F )
goes to 0 in probability as the sample size increases. Here d∞ denotes the uniform dis-
tance between two continuous functions and d∞(g,A) := inff∈A d∞(g, f) for any set of
continuous functions A. The consequence of Lemma 2 is not quite enough to ensure that
φ̂sig stays asymptotically positive in probability for non-stationary processes. Indeed,
once could imagine certain adversarial examples where ∥s(x; b) − s(x; b′)∥ = 0 for all
batches b, b′ ∈ Bn even if x is non-stationary. To rule out such cases we impose an
additional assumption.

Assumption 1. There exits some τ > 0 and sequences of batches bn and b′n of size
Bn →∞ such that each window is of length τ and, for every ϵ > 0, there is some cϵ > 0
such that, for all g ∈ G with d∞(g, [e]F ) ≥ ϵ,

lim
n→∞

P
(
Φ̂sig(g1:k(xn); bn, b

′
n) > cϵ

)
= 1.

This is a very high level assumption. We give some specific conditions under which
Assumption 1 holds in Appendix 3.B.6. Notably, Assumption 1 holds if zt is piece-wise
stationary (see also Example 3.6.1). This, then, includes a lot of interesting settings en-
countered in practice such as in, for example, change-point detection [Truong et al., 2020]
or independent component analysis [Hyvarinen and Morioka, 2016, Hyvarinen et al.,
2019]. However, as can be seen from our experiments in Section 3.5, the statistic φ̂sig
works well empirically for a number of applications going beyond the asymptotic setting
of piece-wise stationarity. We also note that in settings where we are given i.i.d. sample
trajectories of xt, we can make due without Assumption 1 since then we are able to
approximating φsig(x) is easy.
For G ⊂ C(Rp) we define the set [e1]G := π1:k([e]F ∩ G).

Theorem 3. Let xt be CIk with xt = d(yt, zt) and yn = (yt)t∈Tn strongly mixing with the
time grids Tn as described in the beginning of Section 3.4.1. For F a class of admissible
mixings with d ∈ F and Bn a batching protocol, assume that (F , z) is identifiable and
that xt satisfies Assumption 1 for τ > 0 and every b, b′n ∈ Bn. Finally, for G ⊂ C(Rp)
such that every g ∈ G is of full rank, assume that y, [e1]G, and τ satisfy the technical
Assumption 2. Then, for any ϵ > 0, there is a sufficiently large truncation level m ≥ 1
such that, for ê as in (3.4.6), we have

lim
n→∞

P (d∞ (ê, [e]F ) > ϵ) = 0.

Remark 6 (Numerics). The minimization in (3.4.6) will be solved numerically using some
variant of stochastic gradient descent. It therefore requires computing φ̂sig at each step
of the optimizer. Crucially, then, the computational complexity of our objective severely
impacts the feasibility of the current approach. Luckily, there are many ways to simplify
the computation of φ̂sig. In particular, we shall draw inspiration from the recent work in
Toth et al. [2023] and approximate the signature kernel with random fourier signature
features. Two specific algorithms depending on the choice of batching protocol are given
in Appendix 3.D.
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3 Beyond stationarity: Nonlinear cointegration

3.5 Applications

In this section we go through some applications of stationary embeddings and consider
a few special cases and extensions. This is by no means meant to be an exhaustive
exploration, but only to serve as a key showcase of the kind of problems that can be
tackled with this framework. First we consider the use of stationary embeddings for
dimensionality reduction (or manifold learning) of stochastic processes. As we shall dis-
cuss further down below, the stationary embedding can be likened to invariant manifolds
of deterministic dynamical systems. A special case is when the decoding is of the form
d(y, z) = ds(y)+dn(z) in which case a natural solution involves auto-encoders. Next, we
consider how stationary embeddings can be used in regression problems where the pre-
dictor is non-stationary. We distinguish between stationary and non-stationary target
variables. The former case lends itself well to a semi-supervised learning formulation.

3.5.1 Manifold learning

A canonical way to reduce the dimension of dynamical systems is via invariant manifolds.
For an ordinary differential equation of the form dxt = f(xt)dt, an invariant manifold
is a manifold M such that xs ∈ M implies that xt ∈ M for all t ≥ s. Data driven
methods seek to learn invariant manifolds from data and thereby significantly reduce the
complexity of the system [Cenedese et al., 2022]. As the following result makes clear,
nonlinear cointegration can serve as a natural generalization of invariant manifolds to
SDEs or, more generally, to any stochastic process.7 We note that invariant manifolds
are also defined for random dynamical systems (see, e.g., Arnold [2013]) and the current
view should therefore be considered as complementary to the existing dynamical systems
litterature.

Proposition 1. Let x ∈ C(Rp) be CIk with xt = d(yt, zt) and d diffeomorphic on some
open superset U ⊃ D(y,z). Define, for each u ∈ Dy, the open set Uu containing all
v ∈ π(k+1):p(U) such that (u, v) ∈ U along with Mu = d(u, Uu). Then, for each u ∈ Dy,
the set Mu is a k-dimensional manifold embedded in Rp and the map v 7→ d(u, v) is an
embedding.
If we further let a := E(y0) and assume that there exist C,α > 0 such that, for each

v ∈ Dz, the map u 7→ d(u, v) is α-Hölder continuous at u = a with constant bounded by
C, then, for any ϵ > 0 and t ≥ 0,

P
(

inf
x′∈Ma

∥xt − x′∥ > ϵ

)
≤
(
C

ϵ

)1/α

Var(y0). (3.5.7)

Proof. Since Uu is open it is, in particular, a submanifold of Rk. Then, since v 7→ d(u, v)
is an embedding (d being a diffeomorphism), we find that Mu = d(u, Uu) is indeed a
submanifold of Rp. The second part follows from the following chain of inequalities along

7It also partly justifies our terminology in calling e (or d = e−1) a stationary embedding.
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with Markov’s Inequality: With x′ = d(a, zt),

inf
x′∈Ma

∥xt − x′∥ ≤ ∥d(yt, zt)− d(a, zt)∥ ≤ C∥yt − a∥α.

The right-hand side of (3.5.7) does not depend on t. In particular, the equation implies
that xt, in probability, stays close to the manifold Ma embedded in Rp. Intuitively, this
means that the process xt lives close to a lower-dimensional manifold with deviations
governed by the stationary process yt = e1(xt). In a sense, this is the best we can
hope for when considering SDEs instead of ODEs since, supposing the diffusion term
non-degenerate, there is always some chance that the driving noise pushes the state
out of whatever manifold would have been invariant in the deterministic case. This is
also similar to the view of linear cointegration as representing an equilibrium and the
stationary component causing deviations from this equilibrium. Another important fact
is that (F , z) being identifiable is equivalent to saying that the manifoldMa is identifiable
up to diffeomorphisms. Of course, this is also in direct analogy to the linear case where
the non-stationary subspace is identifiable.

Example 3.5.1 (Stereographic projection). As our first example we consider the case
where xt ∈ R3 is given by xt = d(yt, zt) with (yt, zt) satisfying

dyt = −ytdt+ σydwt, dzt = −θ(t, zt)dt+ σzdwt, (3.5.8)

and θ : R+ × R2 → R2, σ = (σy, σz) ∈ R3, and wt ∈ R3×3 a standard Brownian motion.
We shall consider the case where θ(t, z) = −(z1,t, z2,t) for t ≤ T/2 and θ(t, z) = 4θ(0, z)
for t > T/2. In particular, yt is a stationary OU-process and zt is a non-stationary
process that is stationary on each of the intervals [0, T/2] and (T/2, T ]. We will keep
the mixing transformation fixed such that d(y, z1, z2) = (r − y)P−1(z1, z2). where r > 0
is some large number and P−1 is the inverse of the stereographic projection, i.e.,

P−1(z1, z2) =

(
2z1

1 + z21 + z22
,

2z2
1 + z21 + z22

,
z21 + z22 − 1

z21 + z22 + 1

)
In other words, we shall assume that xt stays close to the 2-dimensional sphere rS2 of
radius r embedded in R3. Finally, we note that a stationary embedding is known to be
x 7→ ∥x∥2, i.e., a simple polynomial. We will thus limit ourselves to the function class
G = {g : R3 → R | g is a second order polynomial}.
Given a sample x = (xt)t∈T with T a time-grid of 2048 evenly spaced points between

t0 = 10 and T = 100, we estimate e1 as in (3.4.6), resulting in ê1. We can then compare
samples from the estimated stationary components ŷ = ê1(x) with the true y. Similarly,
since Ma = {u ∈ Rp | e1(u)−a = 0}, we obtain an estimate for the manifold by replacing
e1 with ê1 and a with E(ŷ). The results are reported in Fig. 3.5.2. Evidently, we are
able to recover the underlying stationary component or, equivalently, the manifold Ma.
For a detailed discussion of this experiment we refer to Appendix 3.E.1.

♠
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3 Beyond stationarity: Nonlinear cointegration

Figure 3.5.2: Estimating the stationary embedding of 3-dimensional non-stationary process. On
the left are four samples of the true stationary component yt (orange) along with
the corresponding estimates ŷt = ê1(xt) (blue). All lines have been translated
to start at 0 and normalized to have range 1. On the right is the true lower-
dimensional manifold M = rS2 (orange) along with the estimate M̂ = {x ∈
R3 | ê1(x)−

√
µ̂ = 0} (blue) where µ̂ is the sample average of ŷ.

Example 3.5.2 (Additive mixings). A model under which the Hölder continuity condi-
tion simplifies is the class of additive mixings, i.e., assuming that d(y, z) = ds(y)+dn(z)
where ds : Rk → Rp and dn : Rp−k → Rp. In fact, we can then arrive at the following
inequality even without Hölder continuity,

P
(

inf
x′∈Ma

∥xt − x′∥ > ϵ

)
≤ ϵ+ CKK

ϵK
Var(y0) (3.5.9)

where K > 0 such that ∥a∥ ≤ K and CK is a constant such that ds is CK-Lipschitz on
the ball around the origin of radius K.8 Another nice property is that we can then write
ds(yt) = xt − dn(zt) = xt − dn(e2(xt)), that is, (3.3.3) amounts to solving the following
auto-encoder problem

d∗, e∗ ∈ argmin
f,g

φsig(x− f(g(x)). (3.5.10)

Consider now the same setup as in Example 3.5.1, that is, (yt, zt) are given by (3.5.8).
We consider three specific choices of θ:

1. θ1(t, z) = 0 so that zt is just a Brownian motion.

2. θ2(t, z) = sin(8tπ/T ) so that zt is a Brownian motion plus a periodic drift.

8We note that such a constant exists by compactness and the fact that ds is locally Lipschitz by Lemma
1.(i).

132



3.5 Applications

Figure 3.5.3: Left: The unit disk embedded in R3. Right: dn applied to the unit disk.

Figure 3.5.4: Estimating the stationary embedding of 3-dimensional non-stationary process. For
each choice of θ, we plot a sample of the true stationary component yt (orange)
along with the corresponding estimate ŷt = ê1(xt) (blue). All lines have been
translated to start at 0 and normalized to have range 1.

3. θ3(t, z) = −4z for t < T/2 and θ3(t, z) = −z/4 for t ≥ T/2, i.e., zt is a piece-wise
Ornstein-Uhlenbeck process.

We assume that ds and dn are random initializations of multi-layer perceptrons (MLPs)
with tanh activation functions and define M = d2(0,R2). We refer to Figure 3.5.3 to see
how the specific realization of d2 maps the unit disk into R3.
Given an observation x as above, but of length 1024, we then estimate ê1 = π1 ◦d∗ ◦e∗

where d∗, e∗ solve (3.5.10). As seen in Figure 3.5.4, we are also in this case able to
identify the stationary embedding (up to monotone transformations). We note that, for
θ2, flipping the sign of the ŷt would cause the two lines to overlap as in the other two
plots. This experiment was repeated for two other realizations of ds and dn with similar
results. For a more detailed explanation of this experiment along with extra results we
refer to Appendix 3.E.2.

♠

3.5.2 Regression with a non-stationary regressor

Another application is the problem of regressing some target process vt ∈ Rq on a non-
stationary process xt ∈ Rp both of which are observed. One may consider two different
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scenarios corresponding to whether the target process is stationary or not. We shall
treat each of these separately.

Example 3.5.3 (Spurious regression). In the case where vt is non-stationary one has
to be very careful in regressing vt on xt since this might result in a spurious relationship
[Lee et al., 2005, Phillips, 2009, Tu and Wang, 2022], i.e., we might conclude that there
is a strong connection between the two processes even though they are not related at
all. We can posit the non-linear cointegration model vt = f(xt) + ut with ut stationary
in which case a regression makes sense. To ensure that we avoid spurious relationships
we should then check whether this model is plausible. One naive way to do so would
be to check how large the minimum in (3.4.6) is over some suitably flexible function
class G. The closer to 0 the objective is, the more evidence there is for the nonlinear
cointegration model. ♠
Example 3.5.4 (Stationary target). For simplicity, we let p = q = 12. Assuming that
vt is stationary, we then find that f(xt) = vt − ut is stationary as the difference of two
stationary processes. Given sufficient regularity of f , it follows that xt is not strictly
non-stationary (see Definition 4) or, in other words, that xt is CIk of some order k < p
with xt = d(yt, zt). We may then write vt = g(yt) + ut for some suitable g : Rk → Rp.
Intuitively, this suggests that, in order to regress vt on xt, it might be beneficial to first
learn the stationary embedding e and then regress vt on yt = e1(xt). This is especially
true if we only have access to a few observations of vt, but more observations of xt. We
might then look at it as a problem of semi-supervised learning.

Consider then the following example: xt is CIk with xt = d(yt, zt) and vt = g(yt)+uk.
We consider different choices of k, but assume that it is known throughout. We assume
that yt is a stationary OU-process and that zt is either a Brownian motion (BM), a
Brownian motion plus a periodic drift (BM + P), or a stationary OU-process plus a
periodic drift (OU + P). We let d be a randomly initialized MLP with tanh activation
functions and g(y) = tanh(Ay+b) for some suitable A ∈ Rp×k and b ∈ Rp. Assuming now
that we have observations x = (xt)t∈T and v = (vt)t∈Tl where T = {t0 < · · · < tn = T}
and Tl ⊂ T is given by the first l time points in T , we seek to learn the map x 7→ g(e1(x))
in three different ways. The first way splits the problem in two. One uses all of x to learn
the stationary embedding (or the encoder) ê1 : x 7→ ŷ. We can then learn the decoder
ĝ : ŷ 7→ v̂ by using the learned stationary component ŷt as a proxy for the true latent
yt. This corresponds to the STEMd column in Table 3.5.1. The second method directly
learns an autoencoder, but penalizing the encoding over all of x with φ̂sig ensuring that
the learned encoding behaves like a stationary process. We call this approach STEMae in
Table 3.5.1. Finally, we learn a simple autoencoder by regressing z on the first l time
points of x. This last method does not use any of the information contained in T \ Tl.
We will denote it by autoencoder in Table 3.5.1. We also include a model that learns
the decoder directly on the true latent process yt as a point of reference noting that its
performance is unrealistic since we do not have access to yt. Throughout we let n = 1024
and l = 64, that is, l is much smaller than n. We report the mean squared error on the
unlabeled data T \Tl for all three methods and three different values of the cointegration
rank k in Table 3.5.1. We observe that STEMae outperforms the simple autoencoder in
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all cases. Furthermore, in many cases we obtain significant gains by first using all of x
for learning the stationary embedding indicating that the current framework can indeed
be employed for semi-supervised learning when regressing a stationary process on a non-
stationary process. For more details on the exact setup of this simulation experiment
we refer to Appendix 3.E.3.

STEMd STEMae autoencoder Oracle

k = 3
BM .0335 .0411 .0598 .0174
BM + P .0333 .0444 .0812 .0174
OU + P .0586 .0757 .0759 .0174

k = 2
BM .0291 0355 .0596 .0141
BM + P .0359 .0327 .1253 .0141
OU + P .0608 .0385 .0845 .0141

k = 1
BM .0217 .0222 .0309 .0133
BM + P .0218 .0228 .0280 .0133
OU + P .0254 .0183 .0497 .0133

Table 3.5.1: Mean squared test error in regressing vt on xt with and without learning of the
stationary embedding across different cointegration ranks k. A lower score is better.
For each row, the best-performing method is bold. The ”Oracle” corresponds to
knowing the true latent stationary component yt and serves as an unachievable
benchmark.

♠

3.6 Discussion

We have established a sensible notion of non-linear cointegration by viewing it as a blind
source separation problem. In particular, our definition generalizes cointegration rela-
tionships to include non-linear functions as well. We call such non-linear cointegration
relationships stationary embeddings. We have shown that similar identifiability guaran-
tees hold for stationary embeddings as hold in the linear setting. Thus, we have obtained
a well-defined target of inference.
Furthermore, we have discussed how one might go about estimating this target.

One way to do so is by minimizing a statistic that discriminates stationary from non-
stationary processes. Using the signature transform, a concept from rough path theory,
we have built such a statistic as well as an approximation that is consistent under the
null of stationarity. Consistency is derived under the asymptotic regime corresponding
to observing an increasingly long and fine discrete sub-sample.
Finally, we have given a range of applications and shown the usefulness of the present

framework through simulation experiments. In particular, similar to how linear cointe-
gration is an equilibrium relationship with stationary deviations, stationary embeddings
describe a lower dimensional manifold on which the process is supported up to deviations
given by the stationary component.
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Many questions are still unresolved. For one, we have not at all considered how to
choose the cointegration rank k. A possible way to do so would be relying on a test
similar to the linear case. Thus, deriving a test of nonlinear cointegration would be of
the utmost importance. It would seem possible to base such a test on the statistic φ̂sig,
but this would require determining the asymptotic distribution under the null. Related
to this, is the problem of verifying Assumption 1 under more diverse settings since
this would prove that the test has power to a wider range of alternatives. Empirically,
more exhaustive experiments are necessary and especially on non-simulated and high-
dimensional data. A possible avenue worthy of exploration is video data.
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Appendix

In this appendix we collect some of the more technical details of the paper. The first
section contains all the additional details related to the definition of stationary embed-
dings and identifiability. In Section 3.B we lay out the proof of the consistency results in
Lemma 2 and Theorem 3. Since these results rely on many of the properties of signatures
and their discrete counterpart, we dedicate Section 3.C to these questions. The section
also cotains a few new ideas related to discrete signatures. In Section 3.D we discuss
the numerical implementation of the proposed methodology. In particular, we introduce
the random Fourier signature features of Toth et al. [2023] and develop the two main
algorithms. Finally, in Section 3.5 we provide additional information on the simulation
experiments of Section 3.5.

3.A. Technical Details

We split this section into two parts. The first defines function classes and what it means
for a function to have a property only piece-wise. The second part deals directly with
some auxiliary results necessary for the proofs in Section 3.2 and 3.2.1. It contains some
quite general results regarding transformation of multivariate non-stationary processes.
Especially Conjecture 1 is of importance since it allows us to show that the class of
strictly non-stationary processes is quite general.

3.A.1 Function classes

Definition 10 (Function class). A function class F is a collection of pairs (U, f) where
U is an open subset of Rp (where p may differ across elements) and f is a function on
U of dimension p. We write F(U) to denote all functions f on U such that (U, f) ∈ F .
We say that F is of property P if for all (U, f) ∈ F the function f is of property P on
U .

Important kinds of function class that we revisit throughout are those satisfying some
property piece-wise. We now precisely define what it means for a function f : Rp → Rp
to have some property P piece-wise.

Definition 11 (Piece-wise P). Let V ⊂ Rp open and path-connected. We say that a
function f : V → Rp is piece-wise P for some property P, if there exists a countable
collection of path-connected closed sets (Ui)i∈I covering V such that the following holds:

(i) The property P holds on int(Ui) for all i ∈ I.

(ii) The boundary ∂Ui has Lebesgue measure 0 for all i ∈ I.

(iii) If K ⊂ V compact, then K only intersects Ui for finitely many i ∈ I.

This definition might seem somewhat convoluted, but it covers many (if not all) the
usual cases. For example, if p = 1 and f being piece-wise linear usually means that f
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is linear on a collection of non-empty open intervals whose closure contains the entire
domain. This falls under the framework of Def. 11. Note, in particular, that the last
condition implies that, for any x, y ∈ V and γ : [0, 1] → V smooth connecting x and y,
it holds that γ([0, 1]) only intersects Ui for finitely many i ∈ I.

Recall that a function class is a class of admissible mixings if it is closed under com-
position and inversion. The following lemma gives a general way to construct classes of
admissible mixings starting with a property P that only needs to hold piece-wise. In
particular, it shows that D is a class of admissible mixings.

Lemma 1. Let P be a property of functions that is closed under composition and inver-
sion. Let F ⊂ D denote the class of functions that are piece-wise P and U ⊂ Rp open
and path-connected. Then:

(i) F(U) is a subset of the set of locally Lipschitz functions on U .

(ii) If f ∈ F(U), then f−1 ∈ F(f(U)).

(iii) If f ∈ F(U) and g ∈ F(f(U)), then g ◦ f ∈ F(U).

Proof. Let f ∈ F(U). For (i) it suffices to show that f is Lipschitz on any compact convex
K ⊂ U . Take (Ui)i∈I as in Def. 11 and let Ui1 , . . . , Uin be such that Uij ∩K ̸= ∅ and
K ⊂ ⋃j Uij . We can then find L > 0 such that ∥Df(x)∥ ≤ L for any x ∈ int(Uij ∩K).
For x, y ∈ K let γ : [0, 1] → K be the straight line connecting x and y. Assume
without loss of generality that x ∈ Ui1 and define t1 := min{γ−1(∂Ui1 ∩ ∂K) ∩ (0, 1]}
and x2 = γ(t1) ∈ ∂Ui1 . Now, iteratively define tl := min{γ−1(

⋃
j ∂Uij ∩ ∂K) ∩ (tl−1, 1]}

and xl+1 = γ(tl) for l ≥ 2. Since γ([0, 1]) only intersects finitely many Uij , there is some
m ∈ N such that xm = y. The sequence x =: x1, . . . , xm = y then lies on the straight
line connecting x and y and satisfies xl, xl+1 ∈ Uijl for some jl ≤ n and all l ≤ m − 1.
But then, by the Fundamental Theorem of Calculus,

∥f(x)− f(y)∥ ≤ L
∑

1≤l≤m−1

∥xl+1 − xl∥ = L∥x− y∥

where the last equality follows from the fact that all xl lie on the same straight line.
This proves that f is Lipschitz on K as wanted.

For (ii), define the collection (Vi)i∈I where Vi := f(Ui). First note that as the image
under a homeomorphism of a closed path-connected set, Vi is itself closed and path-
connected. Since the property P is closed under inversion on int(Ui), we find that f−1

is also of property P on int(f(Ui)) (note that f is open since it is a homeomorphism).
Furthermore, since f is locally Lipschitz, it maps null-sets to null-sets. Thus, ∂Vi =
f(∂(Ui)) has Lebesgue measure 0 for all i ∈ I. Finally, let K ⊂ f(U) be compact. Then,
also f−1(K) is compact and therefore only intersects finitely many Ui. It follows that K
then also intersects Vi for only finitely many i ∈ I. This proves that f−1 is piece-wise
of property P and, hence, f−1 ∈ F(f(U)).

For (iii) first note that compositions of continuous (resp. invertible) functions are
continuous (resp. invertible). Thus, g ◦ f is continuous with continuous inverse. Now
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let Ui ⊂ U and Vj ⊂ f(U) be as in Def. 11. For all (i, j) ∈ I × J , we define Wi,j =
Ui ∩ f−1(Vj) and note that Wi,j is closed and path-connected. Since int(Wi,j) ⊂ int(Ui)
and f(int(Wi,j)) ⊂ int(Vj) we see that g ◦ f also satisfies P on Wi,j . Now, using the fact
that

∂Wi,j ⊂
(
∂Ui ∩ f−1(Vj)

)
∪
(
Ui ∩ f−1(∂Vj)

)
,

we see that the Lebesgue measure ∂Wi,j is 0 if we can show that f−1(∂Vj) is a Lebesgue
null-set. But this follows from the (i) and (ii) combined with the fact that locally
Lipschitz functions map null-sets into null-sets. Finally, let K be compact. Then, it
only intersects finitely many Ui. Also, since f(K ∩ Ui) is compact for every i ∈ I, it
only intersects finitely many Vj or, in other words, K ∩ Uj only intersects finitely many
f−1(Vj). Of course, this then implies that K ∩Wi,j ̸= ∅ for finitely many (i, j) ∈ I ×J .
This shows that g ◦ f is piece-wise P on U and, as a result, g ◦ f ∈ F(U).

Remark 7. For the proofs of part (ii) and (iii) above we neglected to show that the
inverse (resp. composition) is also piece-wise diffeomorphic (as would be necessary for
F ⊂ D). This, however follows readily upon a slight modification of the proof. Namely,
we can just replace the property P with the property P̃ of being both diffeomorphic and
P (inverse and composition of diffeomorphic functions being diffeomorphic).

3.A.2 Auxiliary results

First, a criterion yielding a wide range of strictly non-stationary processes.
DISCLAIMER: Another lemma originally stood in the place of the following conjec-

ture. Unfortunately, I discovered a mistake in the proof of that lemma and a coun-
terexample to the claim. This discovery was made only a couple of days prior to the
submission deadline and I have therefore not been able to give a proof of the new con-
jecture. In any case, this concerns only the existence of strictly non-stationary processes
which, admittedly, is quite a crucial part of the definition of stationary embeddings.

Conjecture 1. For any p ≥ 1 there exists some q ≥ 1 and random variables X1, . . . , Xq ∈
Rp supported on Dx1 , . . . , Dxq such that, for any open O ⊃ ⋃iDxi and differentiable
f : O → R of constant rank 1, it holds that f(X1) ̸=d f(Xi) for at least one i = 2, . . . , q.

A useful fact is that any strictly non-stationary process remains strictly non-stationary
when conditioning on a stationary process. This is what ensures that our definition of
strict cointegration is minimal in terms of the cointegration rank k. Before stating our
next result, a brief remark on questionable notation. In line with the convention we have
used so far, for two random variables X and Y , we shall write X|Y to indicate a regular
conditional probability distribution of X conditioned on Y . If X and Y have a joint
density, ρX,Y , wrt. Lebesgue measure, then X|Y can be characterized by the density
ρX|Y (x|y) = ρX,Y (x, y)/ρY (y) which is defined for PY -almost all y.

Lemma 2. Let z ∈ C(Rp) be strictly non-stationary and y ∈ C(Rq) stationary with
(yt, zt) regular. Then, for any open O ⊃ D(y,z) and continuous piece-wise differentiable
g : O → R such that ∂zg(u, v) ̸= 0 for almost all (u, v) ∈ D(y,z), it holds that wt :=
g(yt, zt) is non-stationary.
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3 Beyond stationarity: Nonlinear cointegration

Proof. Throughout, for some regular stochastic process x ∈ C(Rp) and t ∈ ∆m([0,∞)),
we let ρtX denote the density of the Euclidean random variable xt = (xt1 , . . . , xtm).
Since (yt, zt) is regular, (wt, yt) admits a density wrt. Lebesgue measure. For any

t ∈ ∆m([0,∞)), we may then define the conditional density

ρtW |Y (w|y) =
ρtW,Y (w,y)

ρtY (y)

and analogously, the conditional density ρtZ|Y (z|y). We note that ρtW |Y (·|y) is the trans-
formation of ρtZ|Y (·|y) under the map Gy : z 7→ (g(y1, z1), . . . , g(ym, zm)). But then, zt
being striclty non-stationary would imply that there exists some τ > 0 such that

ρtW |Y ̸= ρt+τW |Y .

This, in turn, by stationarity of yt, implies that the joint density ρtW,Y = ρtW |Y ρ
t
Y is

non-stationary which concludes the proof.

3.B. Consistency

This section is devoted to establishing the results in Section 3.4.1. Much of the following
relies rather directly on the results of Section 8 in Schell and Oberhauser [2023]. There
are a few key differences, however. The main one is that we are not considering the
signature of the linear interpolation of discretely sub-sampled path, but the discrete
signature (see Appendix 3.C.2). Although our main reasons for doing so are numerical,
it turns out that this simplifies the theory in some places, as well. Furthermore, their
ergodicity results rely on a stationarity assumption which we can not make in the present
setting for obvious reasons.
In establishing Theorem 3 the majority of our efforts will be spent on showing that

the average discretized signatures approximate the average expected signatures, i.e.,
establishing Lemma 2. By a simple triangle inequality, we find that, for all m ≥ 1,
g ∈ G, and batches bn,

∥s(g(x); bn)− ŝ(g(xn); bn)∥ ≤ ∥s(g(x); bn)− sm(g(x); bn)∥
+ ∥sm(g(x); bn)− Eŝm(g(xn); bn)∥+ ∥Eŝm(g(xn); bn)− ŝm(g(xn); bn)∥ (3.B.1)

Intuitively, we can split up the residual term in (3.B.1) into three components each
of which will be treated separately below. The first term corresponds to the truncation
error resulting from truncating the signature at some finite order m ≥ 1. The second
term is the discretization error of only observing a sub-sampled version of the true
underlying continuous time process. Finally, the third term is the finite sample error
resulting from the fact that we do not have access to the underlying data generating
process, but only a single long trajectory.
Throughout we require an assumption of a more technical nature regarding the class of

candidate stationary embeddings G ⊂ C(Rp) and x similar to Assumption 2 in Schell and
Oberhauser [2023].9 For a function g ∈ G, we define the map SIι,g : C1−var([s, t],Rp) →
9See also their Remark E.1 for a discussion.
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T ((Rq+1)) as the composition x 7→ g(x) 7→ x̃g 7→ SI(x̃g) where x̃g denotes the ι-
augmented version of g(x) for ι(r) = (r − s)/(t − s). ŜIι,g is defined analogously for
the discrete signature applied to some sub-sampled version x = xb.

Assumption 2. Let x ∈ C1−var(Rp) and, for some open O ⊃ Dx, G ⊂ C(O,Rp)
equipped with the topology of compact convergence. Let τ > 0. Then, we require that
g(x) ∈ C1−var(Rp) for all g ∈ G and10

lim
δ→0

sup
g∈G

sup
t≥0
∥g(x)∥[t,t+δ],1−var = 0. (3.B.2)

Furthermore, for all m ≥ 1, we shall assume the following moment bound

E

(
sup
g∈G

sup
0≤t

{
∥g(x)∥[t,t+τ ],1−var +

∥∥∥π(m) ◦ exp(g(xt))
∥∥∥}) <∞ (3.B.3)

On the level of the signature, we assume that, for all g ∈ G and t ≥ 0, the expected sig-
nature ESIι,g(x[t,t+τ ]) exists with some λ > 1 such that supg∈G sup0≤t E∥SIι,g(x[t,t+τ ])∥λ <
∞.

We note that, since the signature is Lipschitz continuous on sets of bounded 1-variation
(see, e.g., Proposition 7.66 in Friz and Victoir [2010]), (3.B.3) in particular implies that,
for all m ≥ 1,

E

(
sup
g∈G

sup
0≤t

∥∥∥π(m) ◦ SIι,g(x[t,t+τ ])
∥∥∥) <∞. (3.B.4)

3.B.1 Truncation error

Lemma 1. Assume that x, G and τ > 0 satisfy Assumption 2. Then, for any ϵ > 0,
there is some m0 ≥ 1 such that, for all m ≥ m0,

sup
g∈G

sup
0≤t

∥∥∥ESIι,g(x[t,t+τ ])− E
(
π(m) ◦ SIι,g(x[t,t+τ ])

)∥∥∥ < ϵ.

Proof. By Assumption 2, there is some M ≥ 0 such that ∥ESIι,g(x[t,t+τ ])∥λ ≤ M for all
g ∈ G and 0 ≤ t. But then, with BM := {v ∈ T ((Rq)) | ∥v∥λ ≤M}, by Lemma D.1.(vi)
in Schell and Oberhauser [2023] and linearity of the projection operator, we find that

sup
g∈G

sup
0≤t

∥∥∥ESIι,g(x[t,t+τ ])− E
(
π(m) ◦ SIι,g(x[t,t+τ ])

)∥∥∥ ≤ sup
v∈BM

∥v − π(m)(v)∥ → 0

for m→∞.

10This statement is to be interpreted as holding path-wise, i.e., for any realization of the path, x(ω).

141



3 Beyond stationarity: Nonlinear cointegration

3.B.2 Discretization error

Of the following two lemmas the first is little more than a straight-forward combination of
Corollary 4.4 in Király and Oberhauser [2019] and Definition 14. It gives a useful bound
on the difference between the continuous signature and the discrete signature of a sub-
sampled path in terms of the maximum 1-variation between sub-sampling increments.
With this bound we can quite easily prove the main approximation result bounding the
discretization error in Lemma 3.

Lemma 2. Let x ∈ C1−var([s, t],Rq) and b = (b1, . . . , bn) a window with b1 = s and
bn = t. Let δ = t − s. Then, for any g ∈ G, there exists some constant Cδ,g depending
on g(x) only through ∥g(x)∥1−var such that

∥SIι,g(x)− ŜIι,g(xb)∥ ≤ Cδ,g∥g(exp(xs))∥ max
i∈[n−1]

∥g(x)∥[bi,bi+1],1−var.

Proof. Define z = g(x) with the corresponding ι-augmentation denoted by z̃. Then,
with z = xb, by construction, we have z̃ = z̃b (see also Remark 9). We see immediately
from our definition of the I-augmented signature that

∥SIι,g(x)− ŜIι,g(xb)∥ ≤ ∥ exp(g(xs))∥∥S(z̃)− S(z̃b)∥.

Appealing to Remark 8 we know that ∥z̃∥1−var ≤ C(∥z∥1−var + ∥ι∥1−var) for some
generic constant C ≥ 1. Since ι is linear between every two points bi and bi+1 we find
that ∥ι∥[bi,bi+1],1−var = bi+1 − bi and ∥ι∥1−var =

∑
i |bi+1 − bi| = δ. But from Corollary

4.3 in Király and Oberhauser [2019], we then find that

∥S(z̃)− S(z̃b)∥ ≤ ∥z̃∥1−vare∥z̃∥1−var max
i∈[n−1]

∥z̃∥[bi,bi+1],1−var

≤ C2 (∥z∥1−var + δ) eC(∥z∥1−var+δ) max
i∈[n−1]

(
∥z∥[bi,bi+1],1−var + |bi+1 − bi|

)
≤ Cδ,g max

i∈[n−1]
∥z∥[bi,bi+1],1−var

which, when combined with the previous inequality, yields the statement of the lemma.

Lemma 3. Assume that x,G, and τ > 0 satisfy Assumption 2. For any ϵ > 0 and
m ≥ 1, there exists some δ > 0 such that, for any window b of length τ with ∥b∥ < δ,
we have

sup
g∈G

∥∥∥π(m) ◦
(
ESIι,g(x[b])− EŜIι,g(xb)

)∥∥∥ < ϵ.

Proof. Let b = (b1, . . . , bn) be some window such that bn = b1 + τ . We define ϱ(r, s) :=
∥g(x)∥[r,s],1−var so that, by Lemma 2, with Ct > 0 a constant depending only on τ and
∥g(x)∥[t,t+τ ],1−var, it holds that

∥π(m) ◦
(
SIι,g(x[b])− ŜIι,g(xb)

)
∥ ≤ sup

0≤t
Ct∥π(m) ◦ exp(g(xt))∥ max

i∈[n−1]
ϱ(bi, bi+1).
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By way of (3.B.2), for any ϵ > 0, we can find some δ > 0, such that maxi ϱ(bi, bi+1) < ϵ as
long as ∥b∥ < δ with the inequality holding uniformly over G and for almost every path.
Additionally, appealing to Hölder’s inequality and (3.B.3), we can find some C ′ > 0 such
that the expectation of supg∈G sup0≤tCt∥π(m) ◦ exp(xt)∥ is bounded by C ′. Putting all
of this together, we find that

E

(
sup
g∈G

sup
b:∥b∥<δ

∥π(m) ◦
(
SIι,g(x[b])− ŜIι,g(xb)

)
∥
)
< C ′ϵ

from which the statement of the lemma readily follows.

3.B.3 Finite sample error

First, a continuity result regarding ŜIι,g and SIι,g when viewed as functions of g ∈ G.

Lemma 4. Consider x ∈ C1−var([s, t],Rp) and x = xb for some window b ⊂ [s, t]. Let
G ⊂ C(O,Rp) be compact. Then, for all m ≥ 1,

(i) if x, G and τ := t− s > 0 satisfy Eq. (3.B.3), for any ι : [s, t]→ [0, 1] continuous
and increasing, the map G ∋ g 7→ π(m) ◦SIι,g(x) is continuous on a set of probability
1,

(ii) for any ι ∈ ∆n([0, 1]), on a set of probability 1, the map G ∋ g 7→ π(m) ◦ ŜIι,g(x) is
continuous.

Proof. Let (gn) ⊂ G converging to g∞ ∈ G. Now, note that by Proposition 7.66 in Friz
and Victoir [2010], for any η ∈ [1, 2),11 there exists some constant C1 > 0 depending on
m, supg∈G ∥g(x)∥1−var and supg∈G ∥π(m) ◦ exp(g(xs))∥ such that∥∥∥π(m) ◦

(
SIι,g∞(x)− SIι,gn(x)

)∥∥∥
≤ C1

(∥∥∥π(m) ◦ (exp(g∞(xs))− exp(gn(xs)))
∥∥∥+ ∥g∞(x)− gn(x)∥η−var

)
.

Next, appealing to Proposition 5.5 in Friz and Victoir [2010], we have

∥g∞(x)− gn(x)∥η−var ≤ (∥g∞(x)− gn(x)∥1−var)1/η (∥g∞(x)− gn(x)∥∞)1−1/η

≤
(
2 sup
g∈G
∥g(x)∥1−var

)1/η

(∥g∞(x)− gn(x)∥∞)1−1/η .

Now, It follows from (3.B.3) that, on a set of probability 1, both supg∈G ∥π(m)◦exp(g(xs))∥
and supg∈G ∥g(x)∥1−var are finite. This immediately implies that, on this set, also C1

is finite. Thus, part (i) follows if we can show that, for almost every value of the path
x, ∥g∞(x) − gn(x)∥∞ goes to 0 for n → ∞. But this follows from the fact that the

11For the sake of being precise, we note that the referenced proposition only covers the case where η = 1.
However, the proof works just as well for any η ∈ (1, 2).

143
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trace tr(x) =
⋃
s≤r≤t{xr} is almost surely compact (cf. Lemma C.1.(ii) in Schell and

Oberhauser [2023]) and gn converges to g∞ uniformly on compacts.
For part (ii), by Lemma 2 and Remark 8, and then Lemma 1.(ii), there is some

constant C2 > 0 depending only on m, supg∈G ∥g(x)∥∞ and supg∈G ∥π(m) ◦ exp(g(xs))∥
such that∥∥∥π(m) ◦

(
ŜIι,g∞(x)− ŜIι,gn(x)

)∥∥∥ ≤ C2∥g∞(x)− gn(x)∥∞ ≤ C2∥g∞(x)− gn(x)∥∞.

Since G is compact, we have that C2 is finite on a set of measure 1 for which, by the same
argument as above, we then have the the right-hand side above goes to 0 for n → ∞.
This completes the proof.

Lemma 5. Let xn = (xt)t∈Tn be a strongly mixing time-series with x, G and τ > 0
satisfying Assumption 2 and G compact. Then, if bn is a batch of size Bn →∞, for any
ϵ > 0, there exists some n0 ≥ 1 such that, for all m ≥ 1 and n ≥ n0,

P

(
sup
g∈G
∥Eŝm(g(xn); bn)− ŝm(g(xn); bn)∥ > ϵ

)
< ϵ.

Proof. Let l :
⊕m

k=0(Rq)⊗k → R be linear and define the map ξ : (Dx)
∞ × G → R given

by ξ : (x, g) 7→ l ◦ π(m) ◦ ŜIι,g(x).12 It then suffices to show that

sup
g∈G
∥ 1

Bn

∑
b∈bn

ξ(xb, g)− Eξ(xb, g)∥ → 0

in probability as n → ∞. We shall first prove pointwise convergence (i.e., for a fixed
g ∈ G) and then extend the result to hold uniformly over all of G using familiar arguments
from empirical process theory.
For the first part, fix some g ∈ G. By a similar argument to the one applied in

Lemma F.7 in Schell and Oberhauser [2023], we find that the time series (ξ(xb, g))b∈bn
is strongly mixing since xn is strongly mixing. Pointwise convergence then follows by
the Law of Large Numbers for strongly mixing time series, e.g., Theorem 7.15 in Van der
Vaart [2010].
We are then done if we can show that the bracketing number (see, for example, Section

6 in Wellner [2005] for a definition) N[](ϵ,Ξ, ∥ · ∥∞) is finite where Ξ := {ξ(·, g) | g ∈ G}.
But this follows immediately from Lemma 6.1 in Wellner [2005] noting that, by Lemma
4, the map g 7→ ξ(x, g) is continuous for all x, that, by Lemma 3 and (3.B.4), ξ is
uniformly bounded, and, finally, that G is compact by Assumption 2.

3.B.4 Proof of Lemma 2

For the purpose of readability, we recall the statement of Lemma 2.

12Here (Dx)
∞ denotes the space of all finite sequences with elements in Dx. We note that ξ is well

defined by first identifying an element x ∈ (Dx)
∞ with the corresponding vector in (Dx)

l (where l is
the smallest integer such that xj is 0 for all j > l) for which ŜI

ι,g(x) is defined as per usual.
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Lemma 6 (Lemma 2). Let G ⊂ C(Rp) compact and xn = (xt)t∈Tn with the time grids
Tn as described in the beginning of Section 3.4.1. Assume that x, G and τ > 0 satisfy
the technical Assumption 2. Assume that xn is strongly mixing. Let bn be a sequence
batches of size Bn with Bn →∞ as n increases and such that each window is of length
τ > 0. Then, for any ϵ > 0, there exists m0 ≥ 1 such that, for all m ≥ m0,

lim
n→∞

P

(
sup
g∈G
∥ŝm(g(xn); bn)− s(g(x); bn)∥ > ϵ

)
→ 0.

Proof. Fix some ϵ > 0. To prove the first part we start with (3.B.1) and bound each
term seperately. Let us call the respective terms (a), (b), and (c), i.e.,

(a) := sup
g∈G

∥∥∥s(g(x); bn)− π(m) ◦ sm(g(x); bn)
∥∥∥ ,

(b) := sup
g∈G

∥∥∥π(m) ◦ s(g(x); bn)− Eŝm(g(xn); bn)
∥∥∥

(c) := sup
g∈G
∥Eŝm(g(xn); bn)− ŝm(g(xn); bn)∥ .

(a): By Lemma 1, we can find some m0 ≥ 1 such that, for all m ≥ m0 and windows
b of length τ > 0, it holds that supg∈G

∥∥ESIι,g(x[b])− E
(
π(m) ◦ SIι,g(x[b])

)∥∥ < ϵ which
implies that

(a) ≤ 1

Bn

∑
b∈bn

sup
g∈G

∥∥∥ESIι,g(x[b])− E
(
π(m) ◦ SIι,g(x[b])

)∥∥∥ < ϵ

3
.

(b): Now, let m ≥ m0 with m0 as above and take δ > 0 such that

sup
g∈G

∥∥∥π(m) ◦
(
ESIι,g(x[b])− EŜIι,g(xb)

)∥∥∥ < ϵ

3

for all windows b with ∥b∥ < δ. We note that such a choice is possible due to Lemma 3.
Since we have assumed that the mesh of the time grid Tn goes to zero and each window
in bn is of fixed length τ , we must have ∥b∥ → 0 for all b ∈ bn. Then, pick n0 ≥ 1 large
enough so that maxb∈bn ∥b∥ < δ for all n ≥ n0 and, hence,

(b) ≤ 1

Bn

∑
∈bn

sup
g∈G

∥∥∥π(m) ◦
(
ESIι,g(x[b])− EŜIι,g(xb)

)∥∥∥ < ϵ

3
.

(c): It follows directly from Lemma 5 that, for any m ≥ m0, we can pick n1 ≥ n0
large enough so that P((c) > ϵ/3) < ϵ. Combining all three parts, we then obtain (for
our specific choice of m ≥ m0) that, for all n ≥ n1,

P

(
sup
g∈G
∥ŝm(g(xn); bn)− s(g(x); bn)∥ > ϵ

)
≤ P ((a) + (b) + (c) > ϵ) ≤ P

(
(c) >

ϵ

3

)
< ϵ

which completes the proof.
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3.B.5 Proof of Theorem 3

For convenience, we define the intermediate version of the oracle, φ̃sig, given by

φ̃sig(g(x);Bn) := B−2
n

∑
b,b′∈Bn

∥s(g(x); b)− s(g(x); b′)∥2.

In essence, the aim of the above was to prove that φ̂sig approximates φ̃sig uniformly
over G. Together with Assumption 1, the proof of Theorem 3 then follows easily. Recall
that, for e = (e1, e2) the ground truth stationary embedding and [e]F the identifiable
equivalence class of stationary embeddings, we define [e1]G as the set of all maps g1 ∈
π1:k([e]F ) such that (g1, g2) := g ∈ G for some suitable g2.

Theorem 4 (Theorem 3). Let x be CIk with x = d(y, z) and yn = (yt)t∈Tn strongly
mixing with the time grids Tn as described in the beginning of Section 3.4.1. For F a
class of admissible mixings with d ∈ F and Bn a batching protocol, assume that (F , z)
is identifiable with z satisfying Assumption 1 for τ > 0 and every b, b′n ∈ Bn. Finally,
for G ⊂ C(O,Rp), assume that x, [e1]G, and τ satisfy the technical Assumption 2. Then,
for any ϵ > 0, there is a sufficiently large truncation level m ≥ 1 such that, for ê1 as in
(3.4.6), we have

lim
n→∞

P (d∞ (ê, [e]F ) > ϵ) = 0.

Proof. Throughout, we let G1 := {g1:k | g ∈ G}. For some ϵ > 0 small enough we let
[e1]

ϵ
G ⊂ G1 be given by

[e1]
ϵ
G :=

⋃
g∈[e1]G

Bϵ(g).

By Assumption 1, there exists some cϵ > 0 and n0 ≥ 1 such that P(φ̂sig(g(xn);Bn) ≤
cϵ) < ϵ for all g ∈ G1 \ [e1]ϵG and n ≥ n0. Now take m0 ≥ 1 and n1 ≥ n0 (the latter
depending on m0) large enough so that, for all n ≥ n1,

P
(
min
g∈G1

φ̂sig(g(xn);Bn) ≥ cϵ
)
< ϵ.

Such a choice is possible due to Lemma 2 since φ̃sig(g(x)) = 0 and g(x) is strongly
mixing for any g ∈ [e1]G . Let Bn denote complement of the event inside the probability.
Combining these two inequalities, we find that

P (π1:k ◦ ê /∈ [e1]G) ≤ P (φ̂sig(π1:k(xn);Bn) ≤ cϵ | π1:k ◦ ê /∈ [e1]G)

+ P (φ̂sig(π1:k(xn);Bn) ≥ cϵ)
≤ 2ϵ.

Thus, for all n ≥ n1, the probability that d∞(ê, [e]F ) < ϵ is bounded from below by
1− 2ϵ. This completes the proof.
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3.B.6 Remarks on Assumption 1

As mentioned in the main body of text, Assumption 1 is a high level assumption and
not easily interpretable. The main difficulty will be to find classes of processes for which
this assumption holds. This is the purpose of the present section. Throughout, we shall
consider cases where also the non-stationary component is strongly mixing and satisfies
the technical Assumption 2. In particular, we consider the following setup: Let xt be
CIk with xt = d(yt, zt) and xn = (xt)t∈Tn strongly mixing. For F a class of admissible
mixings with d ∈ F and Bn a batching protocol, assume that (F , z) is identifiable with
zt satisfying Assumption 1 for τ > 0 and every b, b′n ∈ Bn. Finally, for G ⊂ C(O,Rp),
assume that x,G, and τ satisfy the technical Assumption 2. Lemma 2 then ensures that
the difference between φ̂sig and φ̃sig converges to 0 in probability as n → ∞ uniformly
over G1.

Example 3.6.1 (Piece-wise stationary). Consider two sequences of open sets In,Jn ⊂
[0,∞) such that In ∩ Jn = ∅ for all n. For any open U ⊂ [0,∞), let Nτ (U) denote the
largest number N ≥ 0 such we can fit N disjoint intervals of length τ into U . Now,
assume that N (In),N (Jn) → ∞ for n → ∞ and that for any two pairs of disjoint
(s1, s1 + τ) ∈ In1 , (t1, t1 + τ) ∈ In2 and (s2, s2 + τ) ∈ Jn3 , (t2, t2 + τ) ∈ Jn4 the
distributions of z[si,si+τ ] and z[ti,ti+τ ] agree for i = 1, 2 but the distributions of z[s1,s1+τ ]
and z[s2,s2+τ ] differ. In other words, there are two growing regions on which the zt is
stationary, however, the distribution of zt changes between these regions. An example
of such a process is given in Example 3.5.1. Then, Assumption 1 is satisfied. To see this,
first note that, since zt is strictly non-stationary, for any g /∈ [e1]G , we will have that
g(xt) is piecewise stationary and non-stationary with the regions In and Jn as above.
In particular, for any two windows bi ∈ In and bj ∈ Jn, we have∥∥∥ESIι,g(x[bi])− ESIι,g(x[bj ])

∥∥∥2 := cg > 0.

Now define two batches bIn and bJn such that bIn (resp. bIn) consists of N (In) (resp.
N (Jn)) disjoint windows of length τ > 0 in In (resp. Jn). With Bn = (bIn, b

J
n ), it is

then not hard to see that φ̃sig(g(x);Bn) = cg > 0. With φ̃msig defined analogously to
φ̃sig, but with the full signature replaced by the m-th order truncation, Lemma 3.B.1
then yields, for all g /∈ [e1]G ,

lim
m→∞

φ̃msig(g(x);Bn) = φ̃sig(g(x);Bn).

Now, by Lemma 4, φ̃msig is continuous as a map of g for every m ≥ 1 so that limn→∞ φ̃msig
is lower semi-continuous on G1. But then, by compactness, for any ϵ > 0 small enough,
we have

inf
g∈G1\[e1]ϵG

φ̃sig(g(x);Bn) := cϵ > 0

where the constant cϵ depends only on ϵ and not on n. The result then follows upon
realizing that, by Lemma 2, φ̃sig uniformly approximates φ̂sig in probability over G1. ♠
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3 Beyond stationarity: Nonlinear cointegration

3.C. Signatures

In this part of the appendix we introduce signatures and the corresponding kernel.
Similar to Király and Oberhauser [2019], we define a separate object for sequences which
we call the discrete signature. Much of the following is standard in the literature with a
few new ideas added along the way. We refer the interested reader to Lee and Oberhauser
[2023], Cass and Salvi [2024] for more information on signatures and their applications
in machine learning.
Throughout, we let H be some generic real Hilbert space (e.g., H = Rp). We define

the extended tensor algebra over H, also denoted T ((H)), to be the space of all formal
sequences a = (a0,a1, . . . ) where ak ∈ H⊗k for all k ≥ 0 and we use the convention
H⊗0 = R. We define addition and multiplication on T ((H)) as follows: For any two
elements a,b ∈ T ((H)) the sum c = a + b is just the formal series obtained by point-
wise addition and the product c = ab is the new formal series where the k’th element is
given by

∑
0≤j≤k aj⊗bk−j . The extended tensor algebra is then a real non-commutative

unital algebra. We observe that each H⊗k can naturally be viewed as a Hilbert space
by completion under the natural inner product

⟨f1 ⊗ · · · ⊗ fk, g1 ⊗ · · · ⊗ gk⟩H⊗k =
∏

1≤j≤k
⟨fj , gj⟩H .

Similarly, we can then view T ((H)) as a Hilbert space equipped with the inner product
⟨a,b⟩T ((H)) :=

∑
k≥0⟨ak,b⟩H⊗k . The truncated tensor algebra of order m ≥ 1, also

denoted T (m)(H), is the algebra given by
⊕m

k=0H
⊗k with addition and multiplaction

defined the same as above. For each m ≥ 1, we denote the canonical projection of
T ((H)) onto T (m)(H) by π(m).

Recall that C1−var([s, t], H) denotes the space of continuous paths form [s, t] into H
with finite 1-variation (see also Defintion 12). The (continuous) signature is a map
S : C1−var([s, t], H) → T ((H)) given by S(x) = (1, S1(x), S2(x), . . . ) with Sk(x) ∈ H⊗k

satisfying

Sk(x) =

∫
· · ·
∫
s<u1<···<uk<t

dxu1 ⊗ · · · ⊗ dxuk . (3.C.1)

The truncated signature of order m ≥ 1 is simply the projection of the signature onto
the truncated tensor algebra of order m, i.e., π(m) ◦ S. Finally, the signature kernel
is the kernel on C1−var([s, t], H) given by k(x, y) = ⟨S(x), S(y)⟩T ((H)). The truncated
signature kernel is then defined analogously for any m ≥ 1.

3.C.1 Variation norms

The following definition of the η-variation corresponds to the usual definition of what is
most commonly referred to as p-variation in the literature. We use a slightly different
terminology to avoid overloading the notation.13 We also define the natural adaptation
of η-variation for discrete sequences.

13Note that throughout we are using p to denote the dimension of the observable sample space.
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Definition 12 (η-variation). Let η ≥ 1. For a sequence x = (x1, . . . , xn) ∈ Hn, we
define the η-variation of x as

∥x∥η−var := max
k∈[n]

max
i∈∆k([n])

 ∑
j∈[k−1]

∥∆xij∥η
1/η

.

For a continuous path x ∈ C([s, t], H), we define the η-variation of x as

∥x∥[s,t],η−var := sup
T ⊂[s,t]

∥xT ∥η−var

where the supremum is taken over all partitions of [s, t].14 We shall sometimes omit the
subscript signifying the dependence on the interval [s, t] when this does not otherwise
cause confusion.

Lemma 1. Let x ∈ C([s, t], H) and x ∈ Hn. The following holds:

(i) Discretisation decreases the η-variation, i.e., if x = (xr)r∈T for some time grid
T = (s ≤ r1 < · · · < rk ≤ t), then

∥x∥η−var ≤ ∥x∥η−var.

(ii) There exists some Cn > 0 only depending on n, such that

∥x∥1−var ≤ Cn∥x∥∞.

(iii) For continuous paths, the definition agrees with the usual definition, i.e.,

∥x∥η−var = sup
T ⊂[s,t]

 ∑
(u,v)∈T

∥xv − xu∥η
1/η

,

where the supremum is taken over all partitions of [s, t].

Proof. The first part follows directly from the definition of η-variation noting simply
that x = xT .

The second part follows immediately from the observation that, for any k ∈ [n] and
i ∈ ∆k([n]), ∑

j∈[k−1]

∥∆xij∥ ≤ 2n∥x∥∞.

14A partition of [s, t] is a finite set of numbers P = (t0 < · · · < tn} such that t0 = s and tn = t. This
is slightly different from what we have called a time grid where the starting and end point need not
align with s and t, i.e., every partition is a time grid, but not vice-versa.
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3 Beyond stationarity: Nonlinear cointegration

For the third part, we observe that, since ∆n([n]) = [n], the ”≥”-direction is trivial.
To show the other direction, let Tn ⊂ [s, t] be some partition with n points. We write
Tn = (s = r1 < · · · < rn = t). For some k ∈ n and i ∈ ∆k([n]), let Tk ⊂ [s, t] be the
partition of at most k + 2 points that agrees with (ri1 , . . . , rik) up to adding s or t at
either end if i1 > 1 or ik < n. Then,∑

j∈[k−1]

∥∆xrij ∥
η ≤

∑
(u,v)∈Tk

∥xu − xv∥η ≤ sup
T ⊂[s,t]

∑
(u,v)∈T

∥xu − xv∥η.

The right hand side does not depend on Tn, k, or i. Therefore, taking the supremum
over all such choices we obtain the other inequality and the proof is done.

3.C.2 Discrete Signature

There are multiple ways to extend the continuous signature to cover sequences. Perhaps
the most natural way is to first embed the sequence in the space of paths of bounded
1-variation, e.g., by taking the linear interpolation, after which one can then use the
standard definition of the signature. Here we shall adapt the approach of Király and
Oberhauser [2019] and instead approximate the iterated integrals in (3.C.1) directly with
iterated sums. Our main reasons for doing so are exclusively computational. See also
Appendix 3.D.

Definition 13 (Discrete signature). Fix some n ≥ 0. The discrete signature is defined
as the map Ŝ : Hn → T ((H)) given by Ŝ(x) = (1, Ŝ1(x), . . . ) where, for k ≤ n− 1,

Ŝk(x) :=
∑

i∈∆k([n−1])

∆xi1 ⊗ · · · ⊗∆xik

and Ŝk(x) = 0 ∈ H⊗k for all k ≥ n. Here ∆xi := xi+1 − xi.
If we let H∞ denote the space of all finite sequences in H, we can naturally extend

the discrete signature to have all of H∞ as its domain. The discrete signature kernel,
call it k̂, is then the map k̂ : H∞ ×H∞ → R given by k̂(x,y) = ⟨Ŝ(x), Ŝ(y)⟩T ((H)).

The following bound is quite crude, but it is easy to show and suffices for the present
purposes. In particular, it shows that the discrete signature is Lipschitz continuous on
sets of bounded variation (provided the input sequences are of equal length).

Lemma 2. Let x,y ∈ Hn for n ≥ m ≥ 1. Then, there exists a constant Cn,m depending
on x and y only through ∥x∥1−var and ∥y∥1−var, such that∥∥∥π(m) ◦

(
Ŝ(x)− Ŝ(y)

)∥∥∥ ≤ Cn,m∥x− y∥1−var. (3.C.2)

Proof. By definition of the discrete signature, we observe that(
Ŝ(x)− Ŝ(y)

)
=

 ∑
i∈∆k([n])

∆xi1 ⊗ · · · ⊗∆xik −∆yi1 ⊗ · · · ⊗∆yik


k≥0

=

 ∑
i∈∆k([n])

∑
j∈[k]

∆xi1 ⊗ · · · ⊗∆xij−1
⊗∆(x− y)ij ⊗∆yij+1

⊗ · · · ⊗∆yik


k≥0
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from which it follows that∥∥∥π(m) ◦
(
Ŝ(x)− Ŝ(y)

)∥∥∥ ≤ ∑
k∈[m]

∑
i∈∆k([n])

∑
j∈[k]

∥∆xi1∥ · · · ∥∆xij−1
∥∥∆(x− y)ij∥∥∆yij+1

∥ · · · ∥∆yik∥

≤ ∥x− y∥1−var
∑
k∈[m]

∑
i∈∆k([n])

∑
j∈[k−1]

∥x∥j−1
1−var∥y∥k−j−1

1−var .

3.C.3 Signature Augmentations

As remarked in the main body of the text, the signature characterizes paths only up to
translations by tree-like or constant paths. We shall now define two ways to augment
the signature so that it becomes sensitive to either of these two cases. In particular,
with Theorem 5 we then obtain a metric for compactly supported probability measures
on the space of paths of bounded variation.

Definition 14 (ι-augmentation). Let x ∈ C1−var([s, t], H) and ι : [s, t] → [0, 1] contin-
uous and strictly increasing. The ι-augmentation of x is the path in H × R given by
x̃ = (x, ι). Similarly, for a sequence x ∈ Hn, we define the ι-augmentation for some
ι ∈ ∆n([0, 1]) as the sequence in H × R given by

x̃ = ((x1, ι1), . . . , (xn, ιn)) .

Remark 8. It follows immediately from Definition 14 that, for any two x, y ∈ C1−var([s, t], H),
we have ∥x̃ − ỹ∥1−var = ∥x − y∥1−var where x̃ and ỹ are the respective ι-augmentation
for a specific given ι. Furthermore, it is not hard to prove that ∥x̃∥1−var ≤ C(∥x∥1−var+
∥ι∥1−var) for some constant C > 0 not depending on x or ι. Finally, if x̃′ is the augmenta-
tion obtained from some alternative ι′, then ∥x̃− x̃′∥1−var = ∥ι−ι′∥1−var. Similar results
holds for the ι-augmentation of sequences with the continuous 1-variation replaced by
the discrete 1-variation.

Remark 9. Consider x ∈ C([s, t], H) and x := xb := (xt)t∈b for some window b ∈
∆n([s, t]). Then, for ι : [s, t] → [0, 1] continuous and increasing, we have (ι(b))b∈b ∈
∆n([0, 1]) and, abusing notation slightly, we shall write x̃ and x̃ for the respective ι-
augmentations. Note that this is perfectly consistent. Indeed, we have x̃b = x̃.

Adding a strictly increasing coordinate to the path x ensures that the signature dis-
tinguishes paths up to translation by a constant. Now, there are multiple approaches to
make the signature sensitive to translation by constants. The simple idea that we shall
follow is to add some information capturing the initial value of the path. Crucially, to
show universality of the signature as a feature map, we need to ensure that the image
of this augmented signature is still group-like (see, e.g., Definition 2.18 in Lyons et al.
[2007]). A simple way to achieve this is then simply to pre-multiply the signature by the
tensor exponential of the initial value xs. Recall that the tensor exponential is the map
exp : H → T ((H)) such that the k’th element of exp(f) is given by f⊗k/k!.
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3 Beyond stationarity: Nonlinear cointegration

Definition 15 (I-augmentaition). The I-augmentation of the signature is the map SI :
C1−var([s, t], H)→ T ((H)) given by SI(x) = exp(xs)S(x). Similarly, the I-augmentation
of the discrete signature is the map ŜI : H∞ → T ((H)) given by ŜI(x) = exp(x0)Ŝ(x).

Remark 10. In the continuous case, there is a clear interpretation of the I-augmentation
on the level of paths. Indeed, SI(x) is simply the signature of the path obtained by con-
catenating the straight line joining the origin to xs to the original path x. Unfortunately
there is no such interpretation in the discrete case. The natural counterpart would by
appending a 0 to the beginning of the sequence and then taking the discrete signature.
As can be readily checked, however, this would instead result in x0Ŝ(x).

For ι : [s, t] → [0, 1] continuous and strictly increasing, we shall write SIι for the
composition x 7→ x̃ 7→ SI(x̃) where x̃ is the ι-augmentation of x. In the following
we equip C1−var([s, t], H) with topology induced by the 1-variation norm defined by
∥x∥1 := ∥xs∥ + ∥x∥1−var under which it is a Banach space (see, e.g., Theorem 1.28 in
Friz and Victoir [2010], the proof of which works for general Banach-valued paths).

Lemma 3. Let ι : [s, t] → [0, 1] be continuous and strictly increasing. Then, the map
SIι : C1−var([s, t], H)→ T ((H)) is injective and continuous.

Proof. Let x, y ∈ C1−var([s, t], H). We note that

∥SIι (x)− SIι (y)∥ ≤ ∥ exp(xs)− exp(ys)∥∥Sι(x)∥+ ∥ exp(ys)∥∥Sι(x) + Sι(y)∥.

Now, the first term is 0 if, and only if, xs = ys and the second term is 0 if, and only if,
x = y+ c for some constant c ∈ H (see, for example, Proposition 1.2.4 in Cass and Salvi
[2024]). This proves injectivity.
For continuity, note that we have that, e.g., by Corollary 5.5 in Chevyrev and Lyons

[2016], the signature is continuous in 1-variation. It therefore suffices to show that the
tensor exponential is continuous. But this is easy to see. Indeed, since

∥x⊗ks − y⊗ks ∥ ≤ ∥xs∥k + ∥ys∥k,

the higher order terms of ∥ exp(xs)− exp(ys)∥ become negligible for k ≥ 1 large enough.
Continuity then follows directly from continuity of the maps a 7→ a⊗k.

Theorem 5 (Signature MMD). Let K ⊂ C1−var([s, t], H) be compact and ι : [s, t] →
[0, 1] continuous and strictly increasing. Then, for any two µ, ν ∈ M1(K), we have
µ = ν if, and only if,

Ex∼µSIι (x) = Ex∼νSIι (x).

Proof. We need to show that the map M1(K) ∋ µ 7→ Ex∼µSIι (x) is injective. This is
equivalent to showing (by, e.g., Theorem 7 in Chevyrev and Oberhauser [2022]) that
the augmented signature SIι is universal, i.e., that linear functions of the signature are
dense in C(K,R). We shall take the usual approach and prove this by an application
of the Stone-Weierstrass Theorem. To this end, we define Ω := {l ◦ SIι | l ∈ T ((H))∗}
where T ((H))∗ denotes the topological dual of T ((H)). It follows from Lemma 3 that
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Ω ⊂ C(K,R). Furthermore, we note that Ω is a subalgebra (see, e.g., section 2.2.3 of
Lyons et al. [2007])). Since SIι is also injective (referring again to Lemma 3), we find that
Ω separates points. Thus, by the Stone-Weierestrass Theorem, Ω is dense in C(K,R) as
desired.

3.D. Numerics

Before discussing the main two algorithms 3 and 4, we first present a way to approximate
the discrete signature kernels of sequences κγ(x, ·) where κγ(x, y) = exp(−∥x−y∥2/2γ2)
is the Gaussian kernel. The method was recently introduced in Toth et al. [2023] and
relies on the fact that any translation invariant kernel can be represented as the Fourier
transform of its spectral measure (see also Rahimi and Recht [2007]). As such, the same
ideas could, in principle, also be applied to other translation invariant kernels such as,
for example, the Matérn kernels. We will generally refer to the features obtained via
this approach as random Fourier signature features. To be precise, we shall approximate
the signature kernel using the diagonally projected random Fourier Signature features
(or RFSF-DP) truncated at some depth m ≥ 1 as given in Definition 3.4 of Toth et al.
[2023]. See also their Theorem 3.5 for concentration guarantees. Crucially, this will then
enable us to develop algorithms with run-times complexity scaling linearly in sequence
length n and dimension p. For readability, we restate the definition of RFSF-DP here.

Definition 16 (RFSF-DP). Let x = (x1, . . . , xnx) and y = (y1, . . . , yny) be sequences
in Rp, γ > 0 the variance of the Gaussian kernel, m ≥ 1 the depth, and Nf ≥ 1 and
the number of samples to use in the approximation. For l ∈ [m] and q ∈ [Nf ], draw the
i.i.d. p-dimensional weights wlq ∼ N (0, γIp). The RFSF-DP map truncated at depth m
is then given by

S̃
(m)
Nf ,γ

(x) =
1√
Nf


 ∑

i∈∆l(nx−1)

∆x̃1,qi1
⊗ · · · ⊗∆x̃l,qil


q∈[Nf ]


l∈[m]

∈
m⊕
l=0

((
R2
)⊗l)Nf

:= H̃(m)
Nf

where x̃l,qi = (cos(xTi w
l
q), sin(x

T
i w

l
q)) ∈ R2 and similarly defined for y. The RFSF-DP

kernel, call it k̃
(m)
Nf ,γ

, is then simply computed as the inner product in H̃(m)
Nf

, that is,

k̃
(m)
Nf ,γ

(x,y) = ⟨S̃(m)
Nf ,γ

(x), S̃
(m)
Nf ,γ

(y)⟩H̃(m)
Nf

=
1

Nf

∑
l∈[m]

∑
q∈Nf

∑
i∈∆l(nx−1)
j∈∆l(ny−1)

⟨∆x̃1,qi1
⊗ · · · ⊗∆x̃l,qil ,∆ỹ

1,q
i1
⊗ · · · ⊗∆ỹl,qjl ⟩(R2)⊗l

It shall be convenient to introduce some extra notation. Similar to the syntax in many
programming languages, we now use square brackets to denote indexing of tensors. For
example, ifA ∈ Rp×p and 1 ≤ i ≤ j ≤ p, thenA[i : j, i : j] refers to the (j−i+1)×(j−i+1)
sub-matrix consisting of the rows and columns from the i’th to the j’th index. We may
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also write A[i : j] to refer to the (j− i+1)×p sub-matrix consisting of the rows from the
i’th to the j’th index. When writing [:] we simply include all indices, that is, in order to
get the sub-matrix consisting of the columns from the i’th to the j’th index, we would
write A[:, i : j]. Note that this also implies that A[i : j] = A[i : j, :]. Thus, when we do
not specify a specific index selection for the trailing dimensions, it should be understood
as including all indices. We may also choose to select only a single index of a dimension,
in which case the result is a tensor of one less dimension. For example, A[i] corresponds
to the p-dimensional vector that is the i’th row of A and, similarly, A[:, j] corresponds to
the j’th column. Finally, sometimes when assigning new values to a sub-tensor, we shall
use ellipsis to make it clear that the new values are tensors themselves. So, if a ∈ Rp,
we would write A[i, . . . ]← a for the new matrix Ã ∈ Rp×p resulting from replacing the
i’th column of A with a.

3.D.1 Signature stream

Throughout, we fix some x = (x1, . . . , xn) and define x̃ as in Definition 16 (given some
sample of the weights and for arbitrary values of the hyperparameters Nf and γ). We
shall discuss an algorithm for computing the tensors

S(l)[k, q, t] :=
∑

i∈∆l(t)

∆x̃k,qi1
⊗ · · · ⊗∆x̃k+l,qil

for l ∈ [m], k ∈ [m − l], q ∈ [Nf ], and t ∈ [nx −m − 1]. Note that in order to compute
the RFSF-DP map we only require the terms corresponding to k = 1. However, as we
shall see, there are two main reasons for computing and storing the other terms as well.
The first reason is that it will allow us to calculate the signature stream in the reverse
direction using the exact same algorithm up to a simple reversal of terms. This point
will sound a little vague for now, but we elaborate on it in Remark 12. The second
reason is that it will allow us to compute the RFSF-DP map over sliding windows of the
sequence x at the same cost as it would take to compute a single application of the map
to the entire sequence. This is essentially the content of Algorithm 4.
Returning, for now, to the tensors S(l)[k, q, t], one quickly derives the recursive relation

S(l)[k, q, t+ 1] = S(l)[k, q, t] + S(l−1)[k, q, t]⊗∆x̃k+l,qt+1 . (3.D.1)

Thus, defining a[k, q, t] := S(l−1)[k, q, t − 1] for 2 ≤ t ≤ n − 1 and a[k, q, 1] := 0 ∈
(R2)⊗(l−1), we obtain the update rule in Algorithm 1 which computes S(l)[k, . . . ] given
a and ∆x̃. Given this update rule it is then easy to construct an algorithm computing
S(l) for all l ∈ [m] just taking care to treat the case l = 1 separately. Given these

tensors, one can then find S̃
(m)
Nf ,γ

(x[1 : t]) where x[s : t] = (xs, . . . , xt) simply by taking

S(l)[1, . . . ]/
√
Nf for all l ∈ [m]. See also Algorithm 2.

Remark 11. The initialization step of Algorithm 2 has a run-time complexity O(nNfmp).
For each level l ∈ [m], the update given in Algorithm 1 requires on the order of nNf2

l
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Algorithm 1 Update

Input: a, ∆x̃
for 1 ≤ q ≤ Nf do

Q[q, . . . ]← 0 ∈ ((R2)⊗l)n−1

Q[q, 1, . . . ]← a[q, 1]⊗∆x̃[q, 1]
for 2 ≤ t ≤ n− 1 do

Q[q, t, . . . ]← Q[q, t− 1, . . . ] + a[q, t]⊗∆x̃[q, t]
end for
a′[q, 1, . . . ]← 0 ∈ (R2)⊗l

a′[q, 2 : (n− 1), . . . ]← Q[q, 1 : (n− 2)] ∈ ((R2)⊗l)n−2

end for
Output: Q, a′

Algorithm 2 ForwardRFSF

Input: x, m, γ, Nf , flatten

# Initialize variables
for 1 ≤ l ≤ m do

for 1 ≤ q ≤ Nf do
w[l, q, . . . ]← N (0, γIp)
x̃[l, q, . . . ]← (cos(x.w[l, q], sin(x.w[l, q]) ∈ (R2)n

∆x̃[l, q, . . . ]← x̃[l, q, 2 : n]− x̃[l, q, 1 : (n− 1)] ∈ (R2)n−1

a[l, q, . . . ]← 1 ∈ Rn−1

end for
end for

# Compute the RFSF-DP map
for 1 ≤ l ≤ m do

for 1 ≤ k ≤ m− l do
Q, a′ ← Update(a[k],∆x̃[l + k])
S(l)[k, . . . ]← Q/

√
Nf

a[k, . . . ]← a′

end for
if flatten then

S(m) ← S(m)[1]
end if
a← a[1 : (m− l)]

end for

Output: [S(1), . . . , S(M)]
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3 Beyond stationarity: Nonlinear cointegration

computations. Thus, the two nested for-loops in the second block of Algorithm 2 requires
on the order of

m∑
l=1

m−l∑
k=1

nNf2
l = O(nNf2

m)

computations. In total, we find that Algorith 2 has asymptotic run-time complexity
O(nNf (mp + 2m)) which is exactly the same as Algorithm D.2 in Toth et al. [2023].
Note that it is linear in both the length of the sequence, n, and the dimension, p.

Remark 12. ForwardRFSF, as it is, computes the RFSF-DP map for (x1, . . . , xt) for
each t ∈ [n]. This is also sometimes referred to as the signature stream because the

output can then be viewed as a stream in H̃(m)
Nf

. One might only be interested in the

signature over the full sequence x = (x1, . . . , xn), but the point is that in computing the
full signature we get the whole stream for free. One might naturally ask if the stream
in the other direction can be computed in the same way. That is, the stream whose t’th
value corresponds to the RFSF-DP map of (xn−t+1, . . . , xn). Upon little consideration,
it is clear that the answer to this question must be yes. Indeed, let us define the tensors
(note the subscript is n− ij instead of ij)

S
(l)
− [k, q, t] =

∑
i∈∆l(t)

∆x̃k,qn−il
⊗ · · · ⊗∆x̃k+l,qn−i1

.

Then, similar to (3.D.1), one can derive the recursive relation

S
(l)
− [k, q, t+ 1] = S

(l)
− [k, q, t] + ∆x̃k,qn−t−1 ⊗ S

(l−1)
− [k − 1, q, t]. (3.D.2)

Comparing with (3.D.1), we note two differences. Firstly the tensor product on the right
hand side has ∆x̃ as the left term instead of the right term. The second difference is
that we now require the k− 1’th index of S(l−1) for computing the k’th index of S(l). As
briefly mentioned earlier, this is one of the reasons why we chose to compute S(l)[k, . . . ]
for all k ≤ m − l. Now, based on (3.D.2), one may then define an update rule like
Algorithm 1, but in the other direction, with only minor modifications. Furthermore,
we can then construct an algorithm, call it BackwardRFSF, for computing the signature
stream in the other direction completely analogous to ForwardRFSF.

3.D.2 First algorithm: Batched Signature MMD

We first present a very simple algorithm for computing (an approximate version of) φ̂sig.
We shall call this algorithm Batched Signature MMD (or BaS-MMD). As presented here
we assume that we are given a collection of an even number of windows (x1, . . . ,x2B) all
of which are of the same length L ≥ 1. BaS-MMD then first splits up the batch into its
two halves. On the first half it computes the average of the forward RFSF-DP stream
(obtained from ForwardRFSF) and one the second half it computes the average of the
backward RFSF-DP stream (obtained from BackwardRFSF). This yields two streams

of length L− 1 in H̃(m)
Nf

. For each t ∈ [L− 1] we then compute the distance between the
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3.6 Discussion

values of the two streams at time t upon which we will have a vector of L−1 non-negative
real numbers. One can then choose how to aggregate these numbers depending on the
application. To obtain φ̂sig, for example, one would only compare the last values in the
stream t = L− 1. We leave the choice of aggregator open. That is, the BaS-MMD takes
as its input some map agg : RL−1

+ → R+. One also has the option to first transform each

window using some map ξ : Rp → Rp′ . This could, for example, be an ι-augmentation
(see Def. 14). See Algorithm 3 for the specifics.
Both the run-time and the memory complexity are easily derived for BaS-MMD. In-

deed, most of the computations for each window happen inside the signature algorithms
ForwardRFSF and BackwardRFSF. Thus, referring to Remark 11, we see that the run-
time complexity is O(BLNf (mp+ 2m)).

3.D.3 Second algorithm: Sliding Window Signature MMD

The second algorithm we introduce is aptly named Sliding Window Signature MMD (or
SWiS-MMD). It is a bit more involved than BaS-MMD, but also offers much greater
flexibility in choosing the batching protocol. We shall no longer work on the level of
signature streams, but now simply consider the RFSF-DP map over arbitrary windows
of fixed length L ≥ 1 over x. Specifically, defining the tensors15

S
(l)
W,1[k, q, t] :=

∑
i∈∆l(L)

∆x̃k,qt+i1
⊗ · · · ⊗∆x̃k+l,qt+il

,

S
(l)
W,2[k, q, t] :=

∑
i∈∆l(L)

∆x̃k,qt+1+i1
⊗ · · · ⊗∆x̃k+l,qt+il

SWiS-MMD computes S
(l)
W,1[k, q, t] for all l ∈ [m], k ∈ [m− l], q ∈ [Nf ], and t ∈ [n− L]

and thus offers complete freedom in the choice of batching protocol. It relies on the key
observation that

S
(l)
W,1[k, q, t+ 1] = S

(l)
W,2[k, q, t] + S

(l−1)
W,2 [k, q, t]⊗∆x̃k+l,qt+L+1

S
(l)
W,2[k, q, t+ 1] = S

(l)
W,1[k, q, t+ 1]−∆x̃k,qt ⊗ S

(l−1)
W,2 [k + 1, q, t+ 1].

These two equations are exactly what gives the update rule in step 2 of Algorithm 4.16

Starting with S
(1)
W,1[:, :, 1] = S

(1)
− [:, :, L] and S

(1)
W,2[:, :, 1] = S

(2)
− [:, :, L−1], we can then

iterate over 2 ≤ l ≤ m and 2 ≤ t ≤ n−L to compute all the tensors. A subtle point here
is that we actually use BacwkardRFSF to compute the signature over the initializing
window since we need access to the RFSF-DP map over (x2, . . . , xL). The last detail
of SWiS-MMD (or Algorithm 4) is the handling of arbitrary batching protocols. This
can be done by specifying a batching map β. Assuming we have B1 different batches
each consisting of B2 windows, the batching map, β, is a map from [n− L] into [B1] so

15Note that the index t now specifies the starting point of the incoming slice of x and not the length as
for S(l).

16Note that, as with BackwardRFSF, computing the k’th index of the l’th level relies on having computed
the k + 1’th index of the (l − 1)’th level.
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3 Beyond stationarity: Nonlinear cointegration

Algorithm 3 BaS-MMD

Input: (x1, . . . ,x2B), ξ, m, γ, Nf , agg

# Step 1: Initialize variables
L← length(x1)
for 1 ≤ l ≤ m do

for 1 ≤ t ≤ L− 1 do
Φ(l)[t, . . . ]← 0 ∈ ((R2)⊗l)Nf

φ[t]← 0
end for

end for

# Step 2: Compute average signatures over each half
for 1 ≤ b ≤ B do

u,v← ξ(xb), ξ(xB+b)

[S
(1)
+ , . . . ,S

(m)
+ ]← ForwardRFSF(u,m, γ,Nf , True)

[S
(1)
− , . . . ,S

(m)
− ]← BackwardRFSF(u,m, γ,Nf , True)

for 1 ≤ l ≤ m do
for 1 ≤ t ≤ L− 1 do

s+ ← S
(l)
+ [:, t]/∥S(l)

+ [:, t]∥ ▷ Normalize signature

s− ← S
(l)
− [:, t]/∥S(l)

− [:, t]∥ ▷ Normalize signature

Φ(l)[t, . . . ]← Φ(l)[t] + (s+ − s−)/B
end for

end for
end for

# Step 3: Compute distance between average signatures and aggregate
for 1 ≤ t ≤ L− 1 do

for 1 ≤ l ≤ m do
φ[t]← φ[t] + ∥Φ(l)[t]∥2

end for
end for

Output: agg(φ)
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3.6 Discussion

that β(t) specifies to which batch the window starting at t belongs to. We also allow β
to return None in which case the window does not belong to any batch. In step 3, the
average signatures over each batch are then computed and stored in a B1 × B1 array
and a user-specified aggregator is called on this matrix, e.g., a simple average.17

We find that the run-time complexity of SWiS-MMD is O(nNf (mp+2m)+B2
12
m), i.e.,

if the number of batches is not too large, comparable to computing a single call of the
RFSF-DT map over the whole sequence and, in particular, linear in both sequence length
and dimension. Were one to compute the RFSF-DT map over each window naively by
calling ForwardRFSF (or BackwardRFSF) similar to BaS-MMD, the complexity would
be O(B1B2LNf (mp+2m)) which could potentially be much greater if there are a lot of
overlapping windows.

3.E. Experiments

Below we present some finer details of the numerical experiments from Section 3.5.
For more information on the exact implementation in JAX, we refer to (soon to be)
public repository github.com/cholberg/stem where a notebook for each experiment can
be found as well.

3.E.1 Example 3.5.1

The data was simulated as follows:

• For the diffusion matrix σ = (σy, σz) ∈ R3×3 we first randomly draw a 3 by 3
matrix with uniform entries between 0 and 1, call it σ̃. We then let σ = σ̃σ̃T + 2I
where I is the 3-dimensional identity matrix.

• We then simulate a solution trajectory of (3.5.8) from t0 = 0 to T = 100 using
diffrax [Kidger, 2021] with a Euler solver of step size δ = 0.1. Call (the linear
interpolation of) these trajectories ŷt and ẑt.

• Letting T = (10 = tburn < · · · < tn = T ) be a grid of n = 2048 equidistant points
between 10 and 100, we then take y = (ŷt)t∈T and z = (ẑt)t∈T . That is, we discard
all points before a burn-in period.

• Finally, a sample x is obtained by employing the mixing d as described in Example
3.5.1 point-wise to the pair (y, z) with a radius r = 10.

To estimate the stationary embedding we first split the sequence x into 128 equal sized
windows (of length L = 2048/128 = 16) x1, . . . ,x128 and then employ the BaS-MMD
(see Algorithm 3) with ξ a path-wise min-max scaler, m = 3, γ = .3, Nf = 64, and agg
being the simple average. Instead of calling BaS-MMD on the all the windows for each
step of optimizer, we subsample a subset of size 64, call it xb1 , . . . ,xb64 , for each step.

17We are being slightly imprecise in that Algorithm 4 also assume that we have access to the weights
wl

q from BackwardRFSF since we are computing ∆x̃k,q
t and ∆x̃k,q

t+L+1 for each window.
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3 Beyond stationarity: Nonlinear cointegration

Algorithm 4 SWiS-MMD

Input: x = (x1, . . . , xn), L, β, B1, B2, ξ, m, γ, Nf , agg

# Step 1: Initialize variables
xξ ← (ξ(xi))1≤i≤L

[S
(1)
− , . . . ,S

(m)
− ]← BackwardRFSF(xξ,m, γ,Nf , False)

for 1 ≤ l ≤ m do
a
(l)
1 ← S(l)[:, :, L]

a
(l)
2 ← S(l)[:, :, L− 1]

s← a
(l)
1 [1]

s← s/∥s∥ ▷ Normalize signature
for 1 ≤ t ≤ B1 do

Φ(l)[t, . . . ]← 0 ∈ ((R2)⊗l)Nf

end for
b← β(1)
if b is not None then

Φ(l)[b, . . . ]← Φ(l)[b] + s/B2

end if
end for

# Step 2: Compute signatures over sliding window of length L
for 2 ≤ t ≤ n− L−m do

b← β(t)
for 1 ≤ l ≤ m do

for 1 ≤ q ≤ pf do
for 1 ≤ k ≤ m− l do

a
(l)
1 [k, q, . . . ]← a

(l)
2 [k, q] + a

(l−1)
2 [k, q]⊗∆x̃[l + k, q, t+ L+ 1]

a
(l)
2 [k, q, . . . ]← a

(l)
1 [k, q]−∆x̃[k, q, t]⊗ a

(l−1)
2 [k + 1, q]

end for
end for
s← a

(l)
1 [1]

s← s/∥s∥ ▷ Normalize signature
if b is not None then

Φ(l)[b, . . . ]← Φ(l)[b] + s/B2

end if
end for

end for

# Step 3: Compute distance between average signatures for each pair of batches and
aggregate
for 1 ≤ b1, b2 ≤ B1 do

for 1 ≤ l ≤ m do
φ[b1, b2]← ∥Φ(l)[b1]− Φ(l)[b2]∥2

end for
end for

Output: agg(φ)
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For the optimizer we use RMSprop with a learning rate of 0.001. We run the optimizer
for 1000 epochs.
To compare trajectories of the estimated stationary component ŷ with trajectories of

the true latent process yt in Figure 3.5.2, we shift and scale each path so that it starts
at 0 and has a range of 1.

3.E.2 Example 3.5.2

The data was simulated as follows:

• For the diffusion matrix σ = (σy, σz) ∈ R3×3 we first randomly draw a 3 by 3 matrix
with uniform entries between 0 and 1, call it σ̃. We then let σ = (σ̃σ̃T + 2I)/4
where I is the 3-dimensional identity matrix.

• We then simulate a solution trajectory of (3.5.8) for each of the three choices
θ = θ1, θ2, θ3 from t0 = 0 to T = 100 using diffrax [Kidger, 2021] with a Euler
solver of step size δ = 0.1. Call (the linear interpolation of) these trajectories ŷit
and ẑit for i = 1, 2, 3.

• Letting T = (10 = tburn < · · · < tn = T ) be a grid of n = 1024 equidistant points
between 10 and 100, we then take yi = (ŷit)t∈T and zi = (ẑit)t∈T . That is, we
discard all points before a burn-in period.

• We consider three random initializations of d1, d2, d3. In each case, it is given by
dj = dj1 + dj2 where dj1 : R→ R3 is a randomly intialized MLP with 1 hidden layer

of width 256 and dj2 : R2 → R3 is defined similarly.

• Finally, we obtain the observations xi,j = dj(yi, zi) for all i, j = 1, 2, 3.

For each dataset xi,j we fit the stationary embedding in the same way as in Example
3.5.1. In particular, we split our observation up into 64 blocks of length L = 16 obtaining
xi,j1 , . . . ,x

i,j
64 . We then run stochastic gradient descent using the RMSprop optimizer from

optax with a learning rate of 0.001 and a batch size of 32 for 1000 epochs. As above,
to compare the estimated stationary processes to the true ones, we shift and normalize
yielding Figure 3.5.4 as well as Figure 3.E.1 for the other two realizations of d.

3.E.3 Example 3.5.4

The data was simulated as follows:

• For the diffusion matrix σ = (σy, σz) ∈ Rp×p we first randomly draw a p by pmatrix
with uniform entries between 0 and 1, call it σ̃. We then let σ = σ̃σ̃T /10 + 2I
where I is the p-dimensional identity matrix.
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3 Beyond stationarity: Nonlinear cointegration

Figure 3.E.1: Estimating the stationary embedding of 3-dimensional non-stationary process.
For each choice of θ, we plot a sample of the true stationary component yt (orange)
along with the corresponding estimate ŷt = ê1(xt) (blue). Each row in the plot
corresponds to a different realization of the mixing transformation d. All lines
have been translated to start at 0 and normalized to have range 1.

• We then simulate a solution trajectory of (3.5.8) for each of the three choices

θ1(t, z) = 0

θ2(t, z) = 4

(
sin

(
16πt

T

)
, . . . , sin

(
16πtk

T

))
θ3(t, z) = −z + t/4

from t0 = 0 to T = 64 using diffrax [Kidger, 2021] with a Euler solver of step
size δ = 0.1. Call (the linear interpolation of) these trajectories ŷit and ẑit for
i = 1, 2, 3. Similarly, we draw three trajectories from the p-dimensional OU-
process dut = −utdt+ dwut using the same procedure resulting in ûit for i = 1, 2, 3.
Here wut is a p-dimensional standard BM independent of wt in Eq. (3.5.8).

• Letting T = (10 = tburn < · · · < tn = T ) be a grid of n = 1024 equidistant points
between 10 and 100, we then take yi = (ŷit)t∈T , z

i = (ẑit)t∈T and ui = (ûit)t∈T .
That is, we discard all points before burn-in period. We scale each of the three
sequences so that all coordinates have range 1. We also shift ui so that it starts
at 0 and divide it by 2.

• We define the mixing transformation, d : Rp → Rp, as a random initialization of a
MLP with 1 hidden layer of width 128 and tanh activation function. Furthermore,
we let g be given by g(y) = tanh(Wy+b) forW ∈ Rp×(p−k) with elements uniformly
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drawn between -0.5 and 0.5 and b ∈ Rp with elements uniformly drawn between 0
and 1.

• We let xi = d(yi, zi) and vi = g(yi) + ui. We furthermore scale xi. We split up
vi into a training set, vitrain, consisting of the first 64 observations and a test set,
vitest, consisting of the last 1024− 64 observations.

For each of the three datasets (vitrain,x
i), we compare three different ways of esti-

mating the regression function f := g ◦ e1 : x 7→ g(y). The first approach, the one
we call STEMd (for STEM plus a decoder), first learns a stationary embedding ê1, then
computes ŷi = ê1(x

i), and finally estimates g by regressing vitest on the first 64 samples
of yi. To learn the stationary embedding we split up x into 64 blocks as above. We
then use the RMSprop optimizer form optax with a batch size of 32 and a learning
rate of 1e-3 for the first 300 epochs and a learning rate of 1e-4 for the last 300 epochs.
To ensure that the coordinates of ŷi are linearly independent, we add the penalty term
pen : RL×(p−k) → R+ given by

pen(w) =
3/10−4

det(w̄Tw̄)/
√
L+ 10−4

where w̄ is the shifted and scaled version of w starting at 0 and with range 1. We
estimate the embedding over the class of MLPs from p into p− k with one hidden layer
of size 128 and tanh activation functions. Finally, we scale and shift ŷi so that each
coordinate has range 1 and starts at 0. For Win ∈ Rp×(p−k), bin ∈ Rp and Wout ∈ Rp×p
and bout ∈ Rp, we define the function

g(y;Win, bin,Wout, bout) =Wout tanh (Winy + bin) + bout.

We estimate the decoder, g, by ĝ = g(·; Ŵin, b̂in, Ŵout, b̂out) where the parameters are
found by regressing vitrain on the first 64 values of ŷi using the RMSprop optimizer with
a batch size of 32 and a learning rate of 0.01 for the first 500 epochs and a learning
rate of 0.001 for the last 300 epochs to minimize the mean squared error. We also add
an L2-penalty term to the loss function penalizing Win and bin. This penalty term is
weigthed by λ = 0.1.
For the other two approaches, we learn both the encoder, ê1, and the decoder, ĝ, by

regressing vitrain on the first 64 values of xi. The procedure is exactly as for the first
approach and the encoder is optimized over MLPs with one hidden layer of size 128 and
tanh activation functions. For the approach which we denote STEMae (for auto-encoder
with a stationary embedding), we add another penalty term (apart from the L2-penalty)
to our loss function which penalizes encoders that are not stationary. In particular, for
each step of the optimizer we draw a batch of size 32 from (vitrain,x

i
train) and also a

batch of size 32 from (xi1, . . . ,x
i
64). The penalty term then evaluates BaS-MMD on the

second batch. We weight this penalty term by λstat = 0.01. Finally, for the approach
which we denote autoencoder, we simply fit the auto-encoder without the extra penalty
term. In particular this approach does not see all the data in xitest. We evaluate the
three approaches by using the estimates to predict vitest on xitest and measuring the mean
squared error. The results are reported in Table 3.5.1.
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4 Beyond continuity: Differential equations
with events

This chapter contains the paper:

[STEM] [Holberg and Salvi, 2024]. C. Holberg and C. Salvi. Exact gradients for stochastic
spiking neural networks driven by rough signals. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

This is the first and only paper of the thesis not concerned with non-stationarity.
Instead, it deals with the problem of deriving pathwise gradients of differential equation
with events (as shall be defined shortly). Of particular interest is the application to
spiking neural networks. Motivated by this goal, we define the Marcus signature kernel
maximum mean discrepancy, a general way to compare two samples of càdlàg paths.
This paper, then, presents a way to deal with another form of irregularity often present

in data: discontinuities.
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Exact Gradients for Stochastic Spiking
Neural Networks Driven by Rough Signals

Christian Holberg, Cristopher Salvi

Abstract
We introduce a mathematically rigorous framework based on rough path theory

to model stochastic spiking neural networks (SSNNs) as stochastic differential
equations with event discontinuities (Event SDEs) and driven by càdlàg rough
paths. Our formalism is general enough to allow for potential jumps to be present
both in the solution trajectories as well as in the driving noise. We then identify a
set of sufficient conditions ensuring the existence of pathwise gradients of solution
trajectories and event times with respect to the network’s parameters and show
how these gradients satisfy a recursive relation. Furthermore, we introduce a
general-purpose loss function defined by means of a new class of signature kernels
indexed on càdlàg rough paths and use it to train SSNNs as generative models.
We provide an end-to-end autodifferentiable solver for Event SDEs and make its
implementation available as part of the diffrax library. Our framework is, to our
knowledge, the first enabling gradient-based training of SSNNs with noise affecting
both the spike timing and the network’s dynamics.

4.1 Introduction

Stochastic differential equations exhibiting event discontinuities (Event SDEs) and driven
by noise processes with jumps are an important modelling tool in many areas of science.
One of the most notable examples of such systems is that of stochastic spiking neu-
ral networks (SSNNs). Several models for neuronal dynamics have been proposed in the
computational neuroscience literature with the stochastic leaky integrate-and-fire (SLIF)
model being among the most popular choices [Gerstner and Kistler, 2002, Wunderlich
and Pehle, 2021]. In its simplest form, given some continuous input current it on [0, T ],
the dynamics of a single SLIF neuron consist of an Ornstein-Uhlenbeck process describ-
ing the membrane potential as well as a threshold for spike triggering and a resetting
mechanism [Lansky and Ditlevsen, 2008]. In particular, between spikes, the dynamics
of the membrane potential vt is given by the following SDE

dvt = µ (it − vt) dt+ σdBt, (4.1.1)
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4 Beyond continuity: Differential equations with events

where µ > 0 is a parameter and Bt is a standard Brownian motion. The neuron spikes
whenever the membrane potential v hits the threshold ψ > 0 upon which v is reset
to 0. Alternatively, one can model the spike times as a Poisson process with intensity
λ : R → R+ depending on the membrane potential vt. A common choice is λ(v) =
exp((v−ψ)/β) [Pfister et al., 2006, Jimenez Rezende and Gerstner, 2014, Kajino, 2021,
Jang and Simeone, 2022].
A notorious issue for calibrating Event SDEs such as SSNNs is that the implicitly

defined event discontinuities, e.g., the spikes, make it difficult to define derivatives of
the solution trajectories and of the event times with respect to the network’s parameters
using classical calculus rules. This issue is exacerbated when the dynamics are stochastic
in which case the usual argument relying on the implicit function theorem, used for
instance in Chen et al. [2020], Jia and Benson [2019], is no longer valid.

4.1.1 Contributions

In this paper, we introduce a mathematically rigorous framework to model SSNNs as
SDEs with event discontinuities and driven by càdlàg rough paths, without any prior
knowledge of the timing of events. The mathematical formalism we adopt is that of
rough path theory Lyons [1998], a modern branch of stochastic analysis providing a robust
solution theory for stochastic dynamical systems driven by noisy, possibly discontinuous,
rough signals. Although Brownian motion is a prototypical example, these signals can
be far more irregular (or rougher) than semimartingales Friz and Victoir [2010], Friz and
Hairer [2020], Lyons et al. [2007].
Equipped with this formalism, we proceed to identify sufficient conditions under which

the solution trajectories and the event times are differentiable with respect to the net-
work’s parameters and obtain a recursive relation for the exact pathwise gradients in
Theorem 2. This is a strict generalization of the results presented in Chen et al. [2020]
and Jia and Benson [2019] which only deal with ordinary differential equations (ODEs).
Furthermore, we define Marcus signature kernels as extensions of continuous signature
kernels Salvi et al. [2021a] to càdlàg rough paths and show their characteristicness. We
then make use of this class of kernels indexed on discontinuous trajectories to define a
general-purpose loss function enabling the training of SSNNs as generative models. We
provide an end-to-end autodifferentiable solver for Event SDEs (Algorithm 1) and make
its implementation available as part of the diffrax library [Kidger, 2021].
Our framework is, to our knowledge, the first allowing for gradient-based training of

a large class of SSNNs where a noise process can be present in both the spike timing
and the network’s dynamics. In addition, we believe this work is the first enabling the
computation of exact gradients for classical SNNs whose solutions are approximated via
a numerical solver (not necessarily based on a Euler scheme). In fact, previous solutions
are based either on surrogate gradients [Neftci et al., 2019] or follow an optimise-then-
discretise approach deriving adjoint equations [Wunderlich and Pehle, 2021], the latter
yielding exact gradients only in the scenario where solutions are available in closed form
and not approximated via a numerical solver. Finally, we discuss how our results lead
to bioplausible learning algorithms akin to e-prop [Bellec et al., 2020].
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4.2 Related work

Neural stochastic differential equations (NSDEs) The intersection between differen-
tial equations and deep learning has become a topic of great interest in recent years.
A neural ordinary differential equation (NODE) is an ODE of the form dyt = fθ(yt)dt
started at y0 ∈ Re using a parametric Lipschitz vector field fθ : Re → Re, usually given
by a neural network Chen et al. [2018]. Similarly, a neural stochastic differential equa-
tion (NSDE) is an SDE of the form dyt = µθ(yt)dt+σθ(yt)dBt driven by a d-dimensional
Brownian motion B, started at y0 ∈ Re, and with parametric vector field µθ : Re → Re
and σθ : Re → Re×d that are Lip1 and Lip2+ϵ continuous respectively1. Rough path
theory offers a way of treating ODEs, SDEs, and more generally differential equations
driven by signals or arbitrary (ir)regularity, under the unified framework of rough dif-
ferential equations (RDEs) Morrill et al. [2021], Höglund et al. [2023]. For an account
on applications of rough path theory to machine learning see Cass and Salvi [2024],
Fermanian et al. [2023], Salvi [2021].

Training techniques for NSDEs Training a NSDE amounts to minimising over model
parameters an appropriate notion of statistical divergence between a distribution of con-
tinuous trajectories generated by the NSDE and an empirical distribution of observed
sample paths. Several approaches have been proposed in the literature, differing mostly
in the choice of discriminating divergence. SDE-GANs, introduced in Kidger et al.
[2021], use the 1-Wasserstein distance to train a NSDE as a Wasserstein-GAN Arjovsky
et al. [2017]. Latent SDEs Li et al. [2020] train a NSDE with respect to the KL diver-
gence via variational inference and can be interpreted as variational autoencoders. In
Issa et al. [2023a] the authors propose to train NSDEs non-adversarially using a class
of maximum mean discrepancies (MMD) endowed with signature kernels Király and
Oberhauser [2019], Salvi et al. [2021a]. Signature kernels are a class of characteristic
kernels indexed on continuous paths that have received increased attention in recent
years thanks to their efficiency for handling path-dependent problems [Lemercier et al.,
2021, Salvi et al., 2021c, Cochrane et al., 2021, Salvi et al., 2021b, Cirone et al., 2023,
Pannier and Salvi, 2024, Manten et al., 2024]. For a treatment of this topic we refer the
interested reader to [Cass and Salvi, 2024, Chapter 2]. These kernels are not applicable
to sample trajectories of SSNNs because of the lack of continuity.

Backpropagation through NSDEs Once a choice of discriminator has been made,
training NSDEs amounts to perform backpropagation through the SDE solver. There are
several ways to do this. The first option is simply to backpropagate through the solver’s
internal operations. This method is known as discretise-then-optimise; it is generally
speaking fast to evaluate and produces accurate gradients, but it is memory-inefficient,
as every internal operation of the solver must be recorded. A second approach, known as
optimise-then-discretise, computes gradients by deriving a backwards-in-time differential
equation, the adjoint equation, which is then solved numerically by another call to the

1These are standard regularity conditions to ensure existence and uniqueness of a strong solution.

169



4 Beyond continuity: Differential equations with events

solver. Not storing intermediate quantities during the forward pass enables model train-
ing at a memory cost that is constant in depth. Nonetheless, this approach produces
less accurate gradients and is usually slower to evaluate because it requires recalculating
the forward solutions to perform the backward pass. A third way of backpropagating
through NDEs is given by algebraically reversible solvers, offering both memory and
accuracy efficiency. We refer to Kidger [2021] for further details.

Differential equations with events Many systems are not adequately modelled by
continuous differential equations because they experience jump discontinuities triggered
by the internal state of the system. Examples include a bouncing ball or spiking neu-
rons. Such systems are often referred to as (stochastic) hybrid systems [Henzinger, 1996,
Lygeros and Prandini, 2010]. When the differential equation is an ODE, there is a rich
literature on sensitivity analysis aimed at computing derivatives using the implicit func-
tion theorem [Corner et al., 2019, 2020]. If, additionally, the vector fields describing
the hybrid system are neural networks, Chen et al. [2020] show that NODEs solved up
until first event time can be implemented as autodifferentiable blocks and Jia and Ben-
son [2019] derive the corresponding adjoint equations. Nonetheless, none of these works
cover the more general setting of SDEs. The only work, we are familiar with, dealing
with sensitivity analysis in this setting is Pakniyat and Caines [2016], although focused
on the problem of optimal control.

Training techniques for SNNs Roughly speaking, these works can be divided into two
strands. The first, usually referred to as backpropagation through time (BPTT), starts
with a Euler approximation of the SNN and does backpropagation by unrolling the com-
putational graph over time; it then uses surrogate gradients as smooth approximations
of the gradients of the non-differentiable terms. [Zenke and Vogels, 2021, Neftci et al.,
2019, Ma et al., 2023]. This approach is essentially analogous to discretise-then-optimise
where the backward pass uses custom gradients for the non-differentiable terms. The
second strand computes exact gradients of the spike times using the implicit function
theorem. These results are equivalent to optimise-then-discretise and can be used to
define adjoint equations as in Wunderlich and Pehle [2021] or to derive forward sensitiv-
ities Lee et al. [2023]. However, we note that, unless solution trajectories and spike times
of the SNN are computed exactly, neither method provides the actual gradients of the
implemented solver. Furthermore, the BPTT surrogate gradient approach only covers
the Euler approximation whereas many auto-differentiable differential equation solvers
are available nowadays, e.g. in diffrax. Finally, there is a lot of interest in developing
bioplausible learning algorithms where weights can be updated locally and in an online
fashion. Notable advances in this direction include [Bellec et al., 2020, Xiao et al., 2022].
To the best of our knowledge, none of these works cover the case of stochastic SNNs
where the neuronal dynamics are modeled as SDEs instead of ODEs.
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4.3 Stochastic spiking neural networks as Event SDEs

We shall in this paper be concerned with SDEs where solution trajectories experience
jumps triggered by implicitly defined events, dubbed Event SDEs. The prototypical
example that we come back to throughout is the SNN model composed of SLIF neurons.
Here the randomness appears both in the inter-spike dynamics as well as in the firing
mechanism. To motivate the general definitions and concepts we start with an informal
introduction of SSNNs.

4.3.1 Stochastic spiking neural networks

To achieve a more bioplausible model of neuronal behaviour, one can extend the simple
deterministic LIF model by adding two types of noise: a diffusion term in the differential
equation describing inter-spike behaviour [Lansky and Ditlevsen, 2008] and stochastic
firing [Pfister et al., 2006, Kajino, 2021]. That is, the potential is modelled by eq.
(4.1.1). Instead of firing exactly when the membrane potential hits a set threshold, we
model the spike times (event times) by an inhomogenous Poisson process with intensity
λ : Re → R+ which is assumed to be bounded by some constant C > 0. This can be
phrased as an Event SDE (note that this is essentially the reparameterisation trick) by
introducing the additional state variable st satisfying

dst = λ(vt−)dt, s0 = log u

where u ∼ Unif(0, 1). The neuron spikes whenever st hits 0 from below at which point
the membrane potential is reset to a resting level and we sample a new initial condition
for st. We can denote this first spike time by τ1 and repeat the procedure to generate a
sequence of spike times τ1 < τ2 < ... In practice, we reinitialize st at log u− α for some
α > 0. It can then be shown that

P (t < τn+1|Fτn) = min

{
1, exp

(
α−

∫ t

τn

λ(vt−)dt

)}
for t ∈ [τn, τn+1).

It follows that τn+1 − τn ≥ α/C a.s., i.e. α controls the refractory period after spikes, a
large value indicating a long resting period.

We can then build a SSNN by connecting such SLIF neurons in a network. In par-
ticular, apart from the membrane potential, we now also model the input current of
each neuron as affected by the other neurons in the network. Let K ≥ 1 denote the
total number of neurons. We model neuron k ∈ [K] be the three dimensional vector
yk = (vk, ik, sk) the dynamic of which in between spikes is given by

dvkt = µ1

(
ikt − vkt

)
dt+ σ1dB

k
t , dikt = −µ2ikt dt+ σ2dB

k
t , dskt = λ(vkt ; ξ)dt, (4.3.2)

where Bk is a standard two-dimensional Brownian motion, σ = (σ1, σ2) ∈ R2×2, µ =
(µ1, µ2) ∈ R2, and λ(·; ξ) : R→ R+ is an intensity function. As before, neuron k fires (or
spikes) whenever sk hits zero from below. Apart from resetting the membrane potential,
this event also causes spikes to propagate through the network in a such a way that a
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spike in neuron k will increment the input current of neuron j by wkj . Here w ∈ RK×K

is a matrix of weights representing the synaptic weights in the neural network. If one is
only interested in specific network architectures such as, e.g., feed-forward, this can be
achieved by fixing the appropriate entries in w at 0.
As presented here, there is no way to model information coming into the network.

But this would only require a minor change. Indeed, by adding a suitable control term
to eq. (4.3.2) we can model all relevant scenarios. Since this does not change the theory
in any meaningful way (the general theory in Appendix 4.B covers RDEs so an extra
smooth control is no issue), we only discuss the more simple model given without any
additional input currents.

4.3.2 Model definition

Definition 1 (Event SDE). Let N ∈ N be the number of events. Let y0 ∈ Re be
an initial condition. Let µ : Re → Re and σ : Re → Re×d be the drift and diffusion
vector fields. Let E : Re → R and T : Re → Re be an event and transition function
respectively. We say that

(
y, (τn)

N
n=1

)
is a solution to the Event SDE parameterised by

(y0, µ, σ, E , T , N) if yT = yNT ,

yt =

N∑
n=0

ynt 1[τn,τn+1)(t), τn = inf
{
t > τn−1 : E(yn−1

t ) = 0
}
, (4.3.3)

with E(ynτn) ̸= 0 and

dy0t = µ(y0t )dt+ σ(y0t )dBt, started at y00 = y0, (4.3.4)

dynt = µ(ynt )dt+ σ(ynt )dBt, started at ynτn = T
(
yn−1
τn

)
, (4.3.5)

where Bt is a d-dimensional Brownian motion and (4.3.4), (4.3.5) are Stratonovich SDEs.

In words, we initialize the system at y0, evolve it using (4.3.4) until the first time
τ1 at which an event happens E(y0τ1) = 0. We then transition the system according
to y1τ1 = T

(
y0τ1−

)
and evolve it according to (4.3.5) until the next event is triggered.

We note that Definition 1 can be generalised to multiple event and transition functions.
Also, the transition function can be randomised by allowing it to have an extra argument
u ∼ Unif([0, 1]). As part of the definition we require that there are only finitely many
events and that an event is not immediately triggered upon transitioning.

Existence of strong solutions to Event SDEs driven by continuous semimartingales
has been studied in [Krystul and Blom, 2005, Theorem 5.2] and [Krystul et al., 2006].
Under sufficient regularity of µ and σ, a unique solution to (4.3.4) exists. We need the
following additional assumptions:

Assumption 1. There exists c > 0 such that for all s ∈ (0, T ) and a ∈ im T it holds
that inf{t > s : E(yt) = 0} > c where yt is the solution to 4.3.4 started at ys = a

Assumption 2. It holds that T (ker E) ∩ E = ∅.
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Theorem 1 (Theorem 5.2, Krystul and Blom [2005]). Under Assumptions 1-2 and with
µ ∈ Lip1 and σ ∈ Lipγ for γ > 2, there exists a unique solution (y, (τn)

N
n=1) to the Event

SDE of Definition 1.

The definitions and results of this section can be extended to differential equations
driven by random rough paths, and in particular, to cases where the driving noise exhibits
jumps. In the latter case, it is important to note that the resulting Event SDE will
exhibit two types of jumps: the ones given apriori by the driving noise and the ones that
are implicitly defined through the solution (what we call events). In fact, we develop
the main theory of Event RDEs in Appendix 4.A in the more general setting of RDEs
driven by càdlàg rough paths. The rough path formalism enables a unified treatment
of differential equations driven by noise signals of arbitrary (ir)regularity, and makes
all proofs simple and systematic. In particular, it allows us to handle cases where the
diffusion term is driven by a finite activity Lévy process (e.g, a homogeneous Poisson
processes highly relevant in the context of SNNs).

4.3.3 Backpropagation

We are interested in optimizing a continuously differentiable loss function L whose input
is the solution of a parameterised Event SDE. As for Neural ODEs, the vector fields, µ, σ,
and the event and transition functions E , T , might depend on some learnable parameters
θ. We can move the parameters θ of the Event RDE inside the initial condition y0 by
augmenting the dynamics with the additional state variable θt satisfying dθt = 0 and
θ0 = θ. Thus, as long as we can compute gradients with respect to y0, these will include
gradients with respect to such parameters. We then require the gradients ∂y0L, if they
exist. For this, we need to be able to compute the Jacobians ∂ynt := ∂y0y

n
t of the inter-

event flows associated to the dynamics of ynt and the derivatives ∂τn := ∂y0τn. We
assume that the event and transition functions E and T are continuously differentiable.
Apriori, it is not clear under what conditions such quantities exist and even less how to

compute them. This shall be the focus of the present section. We will need the following
running assumptions.

Assumption 3. σ(T (y))−∇T (y)σ(y) = 0 for all y ∈ ker E.

Assumption 4. ∇E(y)σ(y) = 0 for all y ∈ ker E.

Assumption 5. ∇E(y)µ(y) ̸= 0 for all y ∈ ker E.

Assumption 4 and 5 ensure that the event times are differentiable. Intuitively, they
state that the event condition is hit only by the drift part of the solution. Assumption
4 holds for example if the event functions depend only on a smooth part of the system.
Assumption 3 is what allows us to differentiate through the event transitions.

Theorem 2. Let Assumptions 1-5 be satisfied and (y, (τn)
N
n=1) the solution to the Event

SDE parameterized by (y0, µ, σ, E , T , N). Then, almost surely, for any n ∈ [N ], the
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derivatives ∂τn and the Jacobians ∂ynt exist and admit the following recursive expressions

∂τn = − ∇E(y
n−1
τn )∂yn−1

τn

∇E(yn−1
τn )µ(yn−1

τn )
(4.3.6)

∂ynt = (∂ynτny
n
t )
[
∇T (yn−1

τn )∂yn−1
τn −

(
µ(ynτn)−∇T (yn−1

τn )µ(yn−1
τn )

)
∂τn
]
. (4.3.7)

where ∂ynt and ∂τn are the total derivatives of ytn and τn with respect to the initial
condition y0, ∂ynτny

n
t denotes the partial derivative of the flow map of eq. (4.3.5) with

respect to its intial condition, and ∇T ∈ Re×e and ∇E ∈ R1×e are the Jacobians of T
and E.

Remark 1. If the diffusion term is absent we recover the gradients in Chen et al. [2020].
In this case, the assumptions of the theorem are trivially satisfied. Note however, that
the result, as stated here, is slightly different since we are considering repeated events.

Remark 2. The recursive nature of (4.3.6) - (4.3.7) suggest a way to update gradients in
an online fashion by computing the forward sensitivity along with the state of the Event
SDE. In traditional machine learning applications (e.g. NDEs) forward mode automatic
differentiation is usually avoided due to the fact that the output dimension tends to be
orders of magnitude smaller than the number of parameters Kidger [2021]. However, for
(S)SNNs this issue can be partly avoided as discussed in Section 4.4.4.

Returning now to the SSNN model introduced in Section 4.3.1 we find that it is an
Event SDE with K different event functions given by Ek(y) = sk and corresponding
transition functions given by

Tk(y) =
(
T 1
k (y

1), . . . , T Kk (yK)
)

where T jk (yj) = (vj , ij + wkj , s
j) if j ̸= k and T kk (yk) = (vk − vreset, i

k, log u − α)
where vreset > 0 is a constant determining by what amount the membrane potential is
reset. The addition of the constant α > 0 controlling the refractory period ensures that
Assumption 2 and 2 are satisfied. Stochastic firing smoothes out the event triggering so
that Assumption 5 and 4 hold. Finally, one can check that the combination of constant
diffusion terms and the given transition functions satisfies Assumptions 3. Note that
setting vkt exactly to 0 upon spiking would break Assumption 3. If one is interested
in such a resetting mechanism it suffices to pick a diffusion term σ1(y

k) that satisfies
σ(0) = 0. To sum up, solutions (in the sense of Def. 1) of the SSNNs exist and are
unique. In addition, the trajectories and spike times are almost surely differentiable
satisfying (4.3.6) and (4.3.7).

4.3.4 Numerical solvers

Theorem 2 gives an expression for the gradients of the event times as well as the Event
SDE solution. In practice, analytical expressions for gradients are often not available
and one has to resort to numerical solvers. Three solutions suggest themselves:

174



4.3 Stochastic spiking neural networks as Event SDEs

1. There are multiple autodifferentiable differential equation solvers (such as diffrax
[Kidger, 2021]) that provide differentiable numerical approximations of the flows
∂ynτny

n
t . We shall write SDESolve(y0, µ, σ, s, t) for a generic choice of such a solver.

Furthermore, if RootFind(y0, f) is a differentiable root finding algorithm (here
f : (y, t) 7→ R should be differentiable in both arguments and RootFind(y0, f)
returns t∗ ∈ R such that f(y0, t

∗) = 0), then we can define a differentiable map
E : y0 7→ y∗ by

t∗ = RootFind (y0, E(SDESolve (·, µ, σ, s, ·))) , y∗ = SDESolve (y0, µ, σ, s, t
∗) .

Consequently, EventSDESolve(y0, µ, σ, E , T , N) can be implemented as subsequent
compositions of T ◦E (see Algorithm 1). This is a discretise-then-optimise approach
[Kidger, 2021].

2. Alternatively, one can use the formulas (4.3.6) and (4.3.7) directly as a replacement
of the derivatives. This is the approach taken in e.g. Chen et al. [2020]. To be
precise, one would replace all the derivatives of the flow map (terms of the sort
∂ynτny

n
t ) with the derivatives of the given numerical solver. This approach is a

solution between discretise-then-optimise and optimise-then-discretise.

3. Finally, one could apply the adjoint method (or optimise-then-discretise) as done
for deterministic SNNs in Wunderlich and Pehle [2021] by deriving the adjoint
equations. These adjoint equations define another SDE with jumps which is solved
backwards in time. Between events the dynamics are exactly as in the continuous
case so one just needs to specify the jumps of the adjoint process. This can be
done by referring to (4.3.6) and (4.3.7).

Remark 3. One thing to be careful of with the discretise-then-optimise approach is
that the SDE solver will compute time derivatives in the backward pass, although the
modelled process is not time differentiable. Assumptions 4 and 3 should in principle
guarantee that these derivatives cancel out (see Appendix 4.B), yet this might not nec-
essarily happen at the level of the numerical solver because of precision issues. This is
essentially due to the fact that approximate solutions provided by numerical solvers are
in general not flows. Thus, when the path driving the diffusion term is very irregular,
the gradients can become unstable. In practice we found this could be fixed by setting
the gradient with respect to time of the driving Brownian motion to 0 and picking a
step size sufficiently small.

Remark 4. In the context of SNNs, Algorithm 1 is actually a version of exact backprop-
agation through time (BPTT) of the unrolled numerical solution. Contrary to popular
belief, this illustrates that one can compute exact gradients of numerical approxima-
tions of SNNs without the need to resort to surrogate gradient functions. Of course,
this does not alleviate the so-called dead neuron problem. However, this ceases to be a
problem when stochastic firing is introduced. In fact, surrogate gradients can be related
to stochastic firing mechanisms and expected gradients Gygax and Zenke [2024].
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Algorithm 1 EventSDESolve

Input y0, µ, σ, E , T , N, t0,∆t, T
1: y ← y0
2: n← 0
3: e← E(y)
4: while n < N and t0 < T do
5: while e < 0 do ▷ We assume for simplicity that e ≤ 0
6: y0 ← y
7: y ← SDESolveStep(y0, µ, σ, t0,∆t)
8: t0 ← t0 +∆t
9: e← E(y) ▷ Update value of event function

10: end while
11: t∗n+1 ← RootFind (y0, E(SDESolveStep (·, µ, σ, t0 −∆t, ·))) ▷ Find exact event

time
12: y∗n+1 ← SDESolveStep(y0, µ, σ, t0 −∆t, t

∗
n+1) ▷ Compute state at event time

13: y ← T (y∗n+1) ▷ Apply transition function
14: n← n+ 1
15: end while

Return (t∗n)n≤N , y

4.4 Training stochastic spiking neural networks

4.4.1 A loss function based on signature kernels for càdlàg paths

To train SSNNs we will adopt a similar technique as in Issa et al. [2023a], where the
authors propose to train NSDEs non-adversarially using a class of maximum mean dis-
crepancies (MMD) endowed with signature kernels Salvi et al. [2021a] indexed on spaces
of continuous paths as discriminators. However, as we mentioned in the introduction,
classical signature kernels are not directly applicable to the setting of SSNNs as the
solution trajectories not continuous. To remedy this issue, in Appendix 4.C, we gener-
alise signature kernels to Marcus signature kernels indexed on discontinuous (or càdlàg)
paths. We note that our numerical experiments only concern learning from spike trains,
which are càdlàg paths of bounded variation. Yet, the Marcus signature kernel defined
in Appendix 4.C can handle more general càdlàg rough paths.
The main idea goes as follows. If x is a càdlàg path, one can define the Marcus

signature S(x) in the spirit of Marcus SDEs [Marcus, 1978, 1981] as the signature of
the Marcus interpolation of x. The general construction is given in Appendix 4.A. The
Marcus signature kernel is defined as the inner product k(x, y) = ⟨S(x), S(y)⟩ of Marcus
signatures S(x), S(y) of two càdlàg paths x, y. As stated in the first part of Theorem 5,
this kernel is characteristic on regular Borel measures supported on compact sets of
càdlàg paths. In particular, this implies that the resulting maximum mean discrepancy
(MMD)

dk(µ, ν)
2 = Ex,x′∼µk(x, x′)− 2Ex,y∼µ×νk(x, x′) + Ey,y′∼νk(y, y′)
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satisfies the property dk(µ, ν)
2 = 0 ⇐⇒ µ = ν for any two compactly supported

measures µ, ν.
Nonetheless, characteristicness ceases to hold when one considers measures on càdlàg

paths that are not compactly supported. In Chevyrev and Oberhauser [2022] the authors
address this issue for continuous paths by using the so-called robust signature. They
introduce a tensor normalization Λ ensuring that the range of the robust signature Λ◦S
remains bounded. The robust signature kernel is then defined as the inner product
kΛ(x, y) = ⟨Λ ◦ S(x),Λ ◦ S(y)⟩. This normalization can be applied analogously to the
Marcus signature resulting in a robust Marcus signature kernel. In the second part of
Theorem 5, we prove characteristicness of kΛ for possibly non-compactly supported Borel
measures on càdlàg paths. The resulting MMD is denoted by dkΛ .

There are several ways of evaluating signature kernels. The most naive is to simply
truncate the signatures at some finite level and then take their inner product. Another
amounts to solve a path-dependent wave equation Salvi et al. [2021a]. Our experiments
are compatible with both of these methods.
Given a collection of observed càdlàg trajectories {xi}mi=1 ∼ µtrue sampled from an

underlying unknown target measure µtrue, we can train an Event SDE by matching the
generated càdlàg trajectories {yi}ni=1 ∼ µθ using an unbiased empirical estimator of dk
(or dkΛ), i.e. minimising over the parameters θ of the Event SDE the following loss
function

L =
1

m(m− 1)

∑
j ̸=i

k(xi, xj)− 2

mn

∑
i,j

k(xi, yj) +
1

n(n− 1)

∑
j ̸=i

k(yi, yj).

In the context of SSNNs, the observed and generated trajectories xi’s and yi’s correspond
to spike trains, which are càdlàg paths of bounded variation.

4.4.2 Input current estimation

The first example is the simple problem of estimating the constant input current c > 0
based on a sample of spike trains in the single SLIF neuron model,

dvt = µ(c− vt)dt+ σdBt, dst = λ(vt)dt,

where λ(v) = exp(5(v − 1), µ = 15 and σ varies. Throughout we fix the true c = 1.5
and set vreset = 1.4 and α = 0.03. We run stochastic gradient descent for 1500 steps
for two choices of the diffusion constant σ. The loss function is the signature kernel
MMD between a simulated batch and the sample of spike trains.2. The test loss is the
mean absolute error between the first three average spike times. Results are given in
Fig. 4.4.1. For additional details regarding the experiments, we refer to Appendix 4.E.
In all cases backpropagation through Algorithm 1 is able to learn the underlying

input current after around 600 steps up to a small estimation error. In particular, the
convergence is fastest for the largest sample size and the true c is recovered for both
levels of noise.
2For simplicity we only compute an approximation of the true MMD by truncating the signatures at
depth 3 and taking the average across the batch/sample size.
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Figure 4.4.1: Test loss and c estimate across four sample sizes and for two levels of noise σ. On
the left: MAE for the three first average spike times on a hold out test set. On
the right: estimated value of c at the current step.

4.4.3 Synaptic weight estimation

Next we consider the problem of estimating the weight matrix in a feed-forward SSNN
with input dimension 4, 1 hidden layer of dimension 16, and output dimension 2. The
rest of the parameters are fixed throughout. We run stochastic gradient descent for 1500
steps with a batch size of 128 and for a sample size of 256, 512, and 1024 respectively.
Learning rate is decreased from 0.003 to 0.001 after 1000 steps. The results are given in
Fig. 4.E.1 in Appendix 4.E. For a sample size of 512 and 1024 we are able to reach a test
loss of practically 0, that is, samples from the learned model and the underlying model are
more or less indistinguishable. Also, in all cases the estimated weight matrix approaches
the true weight matrix. Interestingly, for the largest sample size, the model reaches the
same test loss as the model trained on a sample size of 512, but their estimated weight
matrices differ significantly.

4.4.4 Online learning

In the case of SSNNs, equations (4.3.6)-(4.3.7) lead to a formula for the forward sensi-
tivity where any propagation of gradients between neurons only happens at spike times
and only between connected neurons (see Proposition 1). Since the forward sensitivities
are computed forward in time together with the solution of the SNN, gradients can be
updated online as new data appears. As a result, between spikes of pre-synaptic neurons,
we can update the gradient flow of the membrane potential and input current of each
neuron using information exclusively from that neuron. For general network structures
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and loss functions, however, this implies that each neuron needs to store on the order of
K2 gradient flows (one for each weight in the network).

On the other hand, if the adjacency matrix of the weight matrix forms a directed
acyclic graph (DAG), three-factor Hebbian learning rules like those in Xiao et al. [2022],
Bellec et al. [2020] are easily derived from Proposition 1. For simplicity, consider the
SNN consisting of deterministic LIF neurons and let Nk

t denote the spike train of neuron
k, i.e., Nk

t is càdlàg path equal to the number of spikes of neuron k at time t. We let
τk(t) (or τk for short) denote the last spike of neuron k before time t. We shall assume
that the instantaneous loss function Lt depends only on the most recent spike times
τ1, . . . , τK . Then,

∂wjk
Lt = ∂τkLt

ajk
τk

µ1(vkτk − ikτk)

where ajkt is the eligibility trace and the first term can be viewed as a global modulator,
that is, a top-down learning signal propagting the error from the output neurons.3 The
eligibility trace satisfies

dajkt = µ1

(
bjkt − ajkt

)
dt+

vreseta
jk
t

µ1(ikt − vkt )
dNk

t , dbjkt = −µ2bjkt + dN j
t ,

where the dN terms are to be understood in the Riemann-Stieltjes sense. In other words,
the eligibility trace can be updated exclusively from the activity of the pre and post-
synaptic neurons. We note the similarity to the results derived in Bellec et al. [2020]
only our result gives the exact gradients with no need to introduce surrogate gradient
functions. For general network structures one can use the eligibility traces as proxies for
the the true derivatives ∂wijτ

k.

4.5 Conclusion

We introduced a mathematical framework based on rough path theory to model SSNNs
as SDEs exhibiting event discontinuities and driven by càdlàg rough paths. After iden-
tifying sufficient conditions for differentiability of solution trajectories and event times,
we obtained a recursive relation for the pathwise gradients in Theorem 2, generalising
the results presented in Chen et al. [2020] and Jia and Benson [2019] which only deal
with the case of ODEs. Next, we introduced Marcus signature kernels as extensions of
continuous signature kernels from Salvi et al. [2021a] to càdlàg rough paths and used
them to define a general-purpose loss function on the space of càdlàg rough paths to
train SSNNs where noise is present in both the spike timing and the network’s dynam-
ics. Based on these results, we also provided an end-to-end autodifferentiable solver for
SDEs with event discontinuities (Algorithm 1) and made its implementation available as
part of the diffrax repository. Finally, we discussed how our results lead to bioplausible

3Note that in the case of stochastic SNNs this term is not necessarily well-defined since semi-martingales
are in general not differentiable wrt. time.
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learning algorithms akin to e-prop [Bellec et al., 2020] but in the context of spike time
gradients.
Despite the encouraging results we obtained, we think there are still many interesting

research directions left to explore. For instance, we only made use of a discretise-then-
optimise approach in our numerical experiments. It would be of interest to implement
the adjoint equations or to use reversible solvers and compare the results. Similarly,
since our Algorithm 1 differs from the usual approach with surrogate gradients even in
the deterministic setting, questions remain on how these methods compare for training
SNNs. Furthermore, it would be interesting to understand to what extent the inclusion
of different types of driving noises in the dynamics of SSNNs would be beneficial for
learning tasks compared to deterministic SNNs. Finally, it remains to be seen whether
the discussion in Section 4.4.4 could lead to a bio-plausible learning algorithm with com-
parable performance to state-of-the-art backpropagation methods and implementable on
neuromorphic hardware.
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Appendix

The appendix is structured as follows. Section 4.A covers the basic concepts of càdlàg
rough paths based on [Chevyrev and Friz, 2019] extended with a few of our own defini-
tions and results. It culminates with the definition of Event RDEs which can be viewed
as generalizations of Event SDEs. Section 4.B covers the proof of the main result, The-
orem 2, but in the setting of Event RDEs as well as some preliminary technical lemmas
needed for the proof. Section 4.C gives a brief overview of the main concepts in kernel
learning and presents our results on Marcus signature kernels along with their proofs.
Section 4.D derives the forward sensitivities of a SSNN. Finally, Section 4.E covers all
the technical details of the simulation experiments that were not discussed in the main
body of the paper.

4.A. Càdlàg rough paths

Marcus integration developed in Chevyrev and Friz [2019] preserves the chain rule and
thus serves as an analog to Stratonovich integration for semi-martingales with jump
discontinuities. In particular, it allows to define a canonical lift under which càdlàg semi-
martingales are a.s. geometric rough paths and many of the results from the continuous
case, such as universal limit theorems and stability results, carry over under suitably
defined metrics.We briefly review some of the important concepts here by following the
same setup as in Chevyrev and Friz [2019].

Let C([0, T ], E) and D([0, T ], E) be the space of continuous and càdlàg paths respec-
tively on [0, T ] with values in a metric space (E, d). For p ≥ 1, let Cp([0, T ], E) and
Dp([0, T ], E) be the corresponding subspaces of paths with finite p-variation. For any
N ≥ 1, Let GN (Rd) be the step-N free nilpotent Lie group over Rd endowed with
the Carnot-Carathéodory metric d. Let ΩCp (Rd) := Cp([0, T ], G

⌊p⌋(Rd)) and ΩDp (Rd) :=
Dp([0, T ], G

⌊p⌋(Rd)) be the space of weakly geometric continuous and càdlàg p-rough
paths respectively with the homogeneous p-variation metric

dp(x,y) = max
1≤k≤⌊p⌋

sup
D⊂[0,T ]

(∑
D
d(xti,ti+1 ,yti,ti+1)

p
k

) k
p

.

Define the log-linear path function

φ : GN (Rd)×GN (Rd)→ C([0, 1], GN (Rd))
(a,b) 7→ exp((1− ·) log a+ · logb).

where log and exp are the (truncated) tensor logarithm and exponential maps onGN (Rd).
If N = 1, then GN (Rd) ∼= R⊕Rd and φ(a, b)t = (1, (1−t)a+tb) is a straight line connect-
ing a to b in unit time. For any x ∈ D([0, T ], GN (Rd)) we can construct a continuous
path x̂ ∈ C([0, T ], GN (Rd)) by adding fictitious time and interpolating through the
jumps using the log-linear path function according to the following definition.
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4 Beyond continuity: Differential equations with events

Definition 2 (Marcus interpolation). Let N ≥ 1. For x ∈ D([0, T ], GN (Rd)), let
τ1, τ2, . . . , τm be the jump times of x ordered such that d(xτ1−,xτ1) ≥ d(xτ2−,xτ2) ≥
· · · ≥ d(xτm−,xτm), where 0 ≤ m ≤ ∞ is the number of jumps. Let (rk) be a sequence
of positive scalars rk > 0 such that r =

∑m
k=1 rk < +∞. Define the discontinuous

reparameterization η : [0, T ]→ [0, T + r] by

η(t) = t+
m∑
k=1

rk1{τk≤t}.

The Marcus augmentation xM ∈ C([0, T + r], GN (Rd)) of x is the path

xMs =

{
xt, if s = η(t) for some t ∈ [0, T ],

φ(xτk−,xτk)(s−η(τk−))/rk , if s ∈ [η(τk−), η(τk)) for 1 ≤ k < m+ 1.

The Marcus interpolation x̂ ∈ C([0, T ], GN (Rd)) of x is the path x̂ = xM ◦ ηr where
ηr(t) = t(T + r)/T is a reparameterization from [0, T ] to [0, T + r]. We can recover x
from x̂ via x = x̂ ◦ ηx by considering the reparameterization ηx = η−1

r ◦ η.
Once the Marcus interpolation is defined we can state what we mean by a solution to

a differential equation driven by a geometric càdlàg rough path.

Definition 3 (Marcus RDE). Let x ∈ ΩDp (Rd) and f = (f1, . . . , fd) be Lip
γ vector fields

on Re with γ > p. For an initial condition a ∈ Re, let ŷ ∈ Cp([0, T ],Re) be the solution
to the classical RDE driven by the Marcus interpolation x̂ ∈ ΩCp (Rd)

dŷt = f(ŷt)dx̂t, ŷ0 = a.

Define the solution y ∈ Dp([0, T ],Re) to the Marcus RDE

dyt = f(yt) ⋄ dxt, y0 = a (4.A.1)

to be y = ŷ ◦ ηx, where ηx is the reparameterisation introduced in Definition 2.

4.A.1 Metrics on the space of càdlàg rough paths

Chevyrev and Friz [2019] introduce a metric αp on ΩDp (Rd) with respect to which 1)
geometric càdlàg rough paths can be approximated with a sequence of continuous paths
[Chevyrev and Friz, 2019, Section 3.2] and 2) the solution map (y0,x) 7→ (x, y) of the
Marcus RDE (4.A.1) is locally Lipschitz continuous [Chevyrev and Friz, 2019, Theorem
3.13].
We write Λ for the set of increasing bijections from [0, T ] to itself. For a λ ∈ Λ we let
|λ| = supt∈[0,T ] |λ(t) − t|. We first define the Skorokhod metric as well as a Skorokhod
version of the usual p-variation metric.

Definition 4. For p ≥ 1 and x,y ∈ Dp([0, T ], E), we define

σ∞(x,y) = inf
λ∈Λ

max

{
|λ|, sup

t∈[0,T ]
d((x ◦ λ)t,yt)

}
,

σp(x,y) = inf
λ∈Λ

max {|λ|, dp (x ◦ λ,y)} .

182



4.5 Conclusion

It turns out that the topology induced by σp is too strong. In particular, it is not
possible to approximate paths with jump discontinuities with a sequence of continuous
paths (see Section 3.2 in Chevyrev and Friz [2019]). For x ∈ ΩDp (Rd) and f = (f1, . . . , fd)

a family of vector fields in Lipγ−1(Re) with γ > p, let Φf (y, s, t;x) denote the solution
to the Marcus RDE dyt = f(yt) ⋄ dxt initialized at ys = y and evaluated at time t. We
define the set

Jf =
{
((a, b), (a′, b′)) | a,a′ ∈ G⌊p⌋(Re),Φf (b, 0, 1;φ(a,a′)) = b′

}
.

and, on it, the path function

φf ((a, b), (a
′, b′))t =

(
φ(a,a′),Φf (b, 0, 1;φ(a,a

′)t)
)
.

Finally, we let Df
p ([0, T ], G⌊p⌋(Rd) × Re) be the space of càdlàg paths z = (x, y) on

G⌊p⌋(Rd) × Re of bounded p-variation such that (zt−, zt) ∈ Jf for all jump times t of

z. To keep notation simple, we shall write Df
p when this does not cause any confusion.

Naturally, if y is the solution to the Marcus RDE dyt = f(yt)⋄dxt, we have (x, y) ∈ Df
p .

For a z = (x, y) ∈ Df
p we may define the Marcus interpolation by interpolating the

jumps using φf . Let ẑδ denote this interpolation but with rk replaced by δrk for δ > 0
and similarly for x̂δ with x ∈ ΩDp (Rd).

Definition 5. For f = (f1, . . . , fd) a family of vector fields in Lipγ−1(Re) with γ > p,

let z, z′ ∈ Df
p with z = (x, y) and z′ = (x′, y′) and define

αp(x,x
′) = lim

δ→0
σp(x̂

δ, x̂
′δ),

αp(z, z
′) = lim

δ→0
σp(ẑ

δ, ẑ
′δ).

Remark 5. It is proven in Chevyrev and Friz [2019] that in both cases the limit in αp
exists, is independent of the choice of rk, and that it is indeed a metric on ΩDp (Rd) resp.
Df
p .

Theorem 3 (Theorem 3.13 + Proposition 3.18, Chevyrev and Friz [2019]). Let f =
(f1, . . . , fd) be a family of vector fields in Lipγ−1(Re) with γ > p. Then,

1. The solution map

Re × (ΩDp (Rd), αp)→ (Df
p , αp)

(y0,x) 7→ z = (x, y)

of the Marcus RDE dyt = f(yt) ⋄ dxt initialized at y0 ∈ Re is locally Lipschitz.

2. On sets of bounded p-variation, the solution map

Re × (ΩDp (Rd), σ∞)→ (Dp([0, T ],Re), σ∞)

(y0,x) 7→ y

of the Marcus RDE dyt = f(yt) ⋄ dxt initialized at y0 ∈ Re is continuous.
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4 Beyond continuity: Differential equations with events

Now, let C1
0 (Rd) be the space of absolutely continuous functions on Rd.

Definition 6. We define the space of geometric càdlàg p-rough paths ΩD0,p(Rd) as the

closure of C1
0 (Rd) in ΩDp (Rd) under the metric αp.

Remark 6. A càdlàg semi-martingale x ∈ Dp([0, T ],Rd) can be canonically lifted to a
geometric càdlàg p-rough path, with p ∈ [2, 3), by enhancing it with its two-fold iterated
Marcus integrals, i.e.

xs,t = (1, xs,t,

∫
s,t
(xs − xu)⊗ ⋄dxu) ∈ G2(Rd)

where the integral is defined in a similar spirit to Definition 3 (see, for example, Friz and
Zhang [2018] for more information). The solution to the corresponding Marcus RDE
agrees a.s. with the solution to the usual càdlàg Marcus SDE which, in turn, if x has
a.s. continuous sample paths, agrees a.s. with the solution to the Stratonovich SDE.
See, e.g., Proposition 4.16 in Chevyrev and Friz [2019].

4.A.2 Signature

The extended tensor algebra over Rd is given by

T
((

Rd
))

=

∞∏
n=0

(
Rd
)⊗n

equipped with the usual addition + and tensor multiplication ⊗. An element a ∈
T
((
Rd
))

is a formal series of tensors a = (a0,a1, . . . ) such that an ∈ (Rd)⊗n. We define

the projections πn : T
((
Rd
))
→ (Rd)⊗n given by πn(a) = an. Let T̃ ((Rd)) be the subset

of T ((Rd)) such that the π0(a) = 1 for all a ∈ T̃ ((Rd)). Finally, we define the set of
group-like elements,

G(∗) =
{
a ∈ T̃

((
Rd
))
| πn(a) ∈ GN

(
Rd
)

for all n ≥ 0
}

Definition 7. Let p ≥ 1 and x ∈ ΩDp (Rd). The signature of x is the path S(x) : [0, T ] 7→
G(∗) such that, for each N ≥ 0,

dS(x)Nt = S(x)Nt ⊗ ⋄dxt, S(x)N0 = 1 ∈ GN
(
Rd
)
. (4.A.2)

Remark 7. Uniqueness and existence of the signature follow from the continuous analog.
Indeed, by definition, (4.A.2) is equivalent to a continuous linear RDE.

Remark 8. The signature, as defined here, is also known as the minimal jump extension
of x and was first introduced in Friz and Shekhar [2017]. It was further explored in
Cuchiero et al. [2022] where it was also shown that it acts as a universal feature map.
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4.5 Conclusion

In the continuous case, it is well known that the signature characterizes paths up to
tree-like equivalence. Two continuous paths x,y are said to be tree-like equivalent if
there exists a continuous non-negative map h : [0, T ]→ R+ such that h(0) = h(T ) and

∥xs,t − ys,t∥ ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u).

This can be generalized to càdlàg paths in the following way. We say that two càdlàg
paths x,y are tree-like equivalent, or x ∼t y, if their their Marcus interpolations (see
Def. 2), x̂ and ŷ, are tree-like equivalent. It is straightforward to check that this indeed is
an equivalence relation on ΩDp (Rd). Perhaps more interestingly, we obtain the following
result. For ease of notation we shall henceforth mean S(x)T when omitting the subscript
from the singature.

Proposition 1. Let p ≥ 1. The map S(·) : ΩDp (Rd) → G(∗) is injective up to tree-like
equivalence, i.e., S(x) = S(y) iff x ∼t y.
Proof. The result follows from the continuous case upon realizing that S(x) = S(x̂) and
analogously for y.

4.A.3 Young pairing

In many cases, given a geometric càdlàg rough path x ∈ ΩD0,p(Rd) with p ∈ [2, 3) and
a path h ∈ D1([0, T ],Re) of bounded variation one is interested in constructing a new
rough path y ∈ ΩD0,p(Rd+e) such that the first level of y is given by y = (x, h). In the

continuous case this can be done by using the level two information x2 and
∫
dh ⊗ dh

to fill in the corresponding terms in y2 and using the well-defined Young cross-integrals
to fill in the rest. The resulting level 2 rough path is called the Young pairing of x and
h and we will denote it by y = P (x, h). The canonical example to keep in the mind is
when ht = t, that is, we want to augment the rough path with an added time coordinate
(see Def. 9). In the càdlàg case one needs to be more careful in defining the appropriate
Marcus lift.

Definition 8 (Definition 3.21 [Chevyrev and Friz, 2019]). Let x ∈ ΩD0,p(Rd) with p ≥ 1
and h ∈ D1([0, T ],Re). Define the path z = (x, h) and the corresponding Marcus lift
ẑ = (x̂, ĥ). The Young pairing of x and h is the p-rough path P (x, h) ∈ ΩDp (Rd+e) such
that

P (x, h) = P (x̂, ĥ) ◦ ηz
where P (x̂, ĥ) is the usual Young pairing of a continuous rough path and a continuous
bounded variation path (see Def. 9.27 in Friz and Victoir [2010]).

We can then construct the time augmented rough path as the rough path obtained by
the Young pairing with the simple continuous bounded variation path ht = t. It turns
out that this pairing is continuous as a map from ΩD0,p(Rd) to ΩD0,p(Rd+1).

Definition 9. Let x ∈ ΩD0,p(Rd). The time augmented version of x is the unique rough

path x̃ ∈ ΩD0,p(Rd+1) obtained by the Young pairing P (x, h) of x with the continuous
bounded variation path ht = t.
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4 Beyond continuity: Differential equations with events

Proposition 2. Let p ∈ [1, 3). Then, the map x 7→ x̃ is continuous and injective as a
map from ΩD0,p(Rd) to ΩD0,p(Rd+1).

Proof. Let X = ΩD0,p(Rd) be a metric space when equipped with αp. Fix x ∈ X and
let xn be a sequence of absolutely continuous paths converging in X to x. We shall
first show that x̃n then converges to x̃. Since xn does not have any jumps and any
reparameterisation of xn is still absolutely continuous, we may assume that

αp(x, x
n) = lim

δ→0
dp(x̂

δ, xn)→ 0

for n → ∞. Define z = (x, h) and ẑd = (x̂δ, ĥδ) the Marcus interpolation with ηx,δ
the reparameterisation such that z = ẑδ ◦ ηx,δ. Furthermore, let P (x, h) be the Young
pairing of x and h. By definition,

αp (P (x, h), P (x
n, h)) = lim

δ→0
σp

(
P (x̂δ, ĥδ), P (xn, h)

)
≤ lim

δ→0
dp

(
P (x̂δ, ĥδ), P (xn, h)

)
≤ lim

δ→0
C
(
dp(x̂

δ, xn) + d1(ĥ
δ, h)

)
→ 0

for n → ∞ where C is just some generic constant depending only on p. The last
inequality follows from 9.32 in Friz and Victoir [2010]. Thus, if y ∈ X is such that
αp(x,y) < ϵ, we can choose another sequence yn of absolutely continuous paths and
N ≥ 1 large enough so that

αp (P (x, h), P (y, h)) ≤ 2ϵ+ αp(P (x
n, h), P (yn, h)),

αp(x
n, yn) ≤ 2ϵ

for all n ≥ N . By Remark 3.6 in Chevyrev and Friz [2019], we then have that, up to
choosing a large N , dp(x

n, yn) ≤ ϵ for all n ≥ N and therefore, once more appealing to
Theorem 9.32 in Friz and Victoir [2010],

αp (P (x
n, h), P (yn, h)) ≤ 2Cϵ.

In conclusion, αp (P (x, h), P (y, h)) ≤ 2(1 + C)ϵ which proves the result.
Injectivity follows from Cuchiero et al. [2022].

4.A.4 Event RDEs

The results of Section 4.3.3 hold in more generality. In fact, we can define Event RDEs
similar to Definition 1 where the inter-event dynamics are given by Marcus RDEs driven
by càdlàg rough paths. Utilizing the correspondence between solutions to Marcus RDEs
and Marcus SDEs, it then follows that the results in the main body of the paper are a
special case of the results given below.
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Definition 10 (Event RDE). Let p ≥ 1 and N ∈ N be the number of events. Let x ∈
ΩDp (Rd) and f = (f1, . . . , fd) be a family of Lipγ on Re with γ > p. Let E : Re → R and

T : Re → Re be an event and transition function respectively. We say that
(
y, (τn)

N
n=1

)
is a solution to the Event RDE parameterised by (y0,x, f, E , T , N) if yT = yNT ,

yt =
N∑
n=0

ynt 1[τn,τn+1)(t), τn = inf
{
t > τn−1 : E(yn−1

t− ) = 0
}
, (4.A.3)

with E(ynτn) ̸= 0 and

dy0t = f(y0t ) ⋄ dxt, started at y00 = y0, (4.A.4)

dynt = f(ynt ) ⋄ dxt, started at ynτn = T
(
yn−1
τn−
)
. (4.A.5)

Existence and uniqueness of solutions to Event RDEs is proven in the same way as
for Event SDEs. Indeed, under the usual assumption that the vector fields f are Lipγ ,
for γ > p, a unique solution to (4.A.4) exists. In fact, the solution map ys × (s, t) 7→ yt
is a diffeomorphism for every fixed 0 ≤ s < t ≤ T (see, e.g., Theorem 3.13 in Chevyrev
and Friz [2019]). It follows that we can iteratively define a unique sequence of solutions
yn ∈ Dp([tn, T ],Rd). Finally, as mentioned in Remark 6, if the driving rough path x is
the Marcus lift of a semi-martingale, the inter-event solutions agree almost surely with
the solutions to the corresponding Marcus SDE.

Theorem 4. Under Assumptions 1-2, there exists a unique solution (y, (τn)
N
n=1) to the

Event RDE of Definition 10. Furthermore, if x is the Marcus lift of a Brownian motion,
the solution coincides almost surely with the solution to the corresponding Event SDE as
given in Def. 1.

Hence, the Event SDEs considered in the main text are special cases of Event RDEs
driven by the Marcus lift of a Brownian motion. Yet, the more general formulation
of Event RDEs allows to treat, using the same mathematical machinery of rough path
theory a much larger family of driving noises such as fractional Brownian motion or
even smooth controls. Also, since the driving rough path is allowed to be càdlàg, the
model class given by Def. 10 includes cases where the inter-event dynamics are given by
Marcus SDEs driven by general semi-martingales.

4.B. Proof of Theorem 2

The proof of Theorem 2 presented below covers the case where (y, (τn)
N
n=1) is the solution

to an Event RDE. Throughout we consider vector fields µ ∈ Lip1, σ ∈ Lip2+ϵ and
specialise to Event RDEs where the inter-event dynamics are given by

dynt = µ(ynt )dt+ σ(ynt ) ⋄ dxt, (4.B.1)

where x ∈ ΩDp (Rd). The notation above deserves some clarification. One can define the

vector field f = (µ, σ) and the Young pairing x̃t of x and ht = t. Assuming µ ∈ Lip2+ϵ
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4 Beyond continuity: Differential equations with events

we can then view ynt as the unique solution to the Marcus RDE

dynt = f(ynt ) ⋄ x̃t.

Alternatively, if one is not ready to impose the added regularity on the drift µ, one can
view 4.B.1 as a RDE with drift as in Ch. 12 in Friz and Victoir [2010]. To accomodate
this more general case where the path driving the diffusion term might be 1) càdlàg and
2) is not restricted to be the rough path lift of a semi-martingale, we shall need the
following two additional assumptions:

Assumption 6. For any n ∈ [N ], there exists a non-empty interval In = (τn−δn, τn+δn)
such that x is continuous over In. In other words, the càdlàg rough path x, does not
jump in small intervals around the event times (τn).

Assumption 7. For all 0 ≤ n ≤ N we define sn = τn − δn/2 and tn = τn+1 + δn+1/2.
It holds that x ∈ ΩD0,p([sn, tn],Rd), i.e., x is a geometric p-rough path on the intervals
[sn, tn].

Remark 9. Note that Assumption 6 trivially holds if x is continuous. Otherwise, it
is enough to assume, e.g., that x is the Marcus lift of a finite activity Lèvy process.
Furthermore, by the properties of the metric αp, if x is the canonical Marcus lift of
a semi-martingale x ∈ Dp([s, t],Rd−1), then there exists a sequence (xm) of piece-wise
linear paths xm ∈ C1

0 ([0, T ],Rd−1) such that

αp,[sn,tn](x
m,x)→ 0 as m→∞ a.s.

See, e.g. [Chevyrev and Friz, 2019, Example 4.21]. The setting of Section 4.3.3 is
therefore a special case of the setting considered here and Theorem 2 follows from the
proof below.

We shall need two technical lemmas for the proof of 2

Lemma 1. Assume that Assumptions 1-5 and 6-7 are satisfied. Then, there exists an
open ball B0 ⊂ O such that the following holds:

1. For all a ∈ B0, |τ(a)| = N .

2. For any n ∈ [N ], the maps

B0 ∋ a 7→
(
τn(a), y

n−1
τn(a)

(a)
)

are continuous.

3. For the sequence (xm) as given in Assumption 7 and (ym, (τmn )Nn=1) the correspond-
ing Event RDE solution, for all n ∈ [N ], it holds that

lim
m→∞

sup
a∈B0

(
|τmn (a)− τn(a)|+

∣∣∣ym,n−1
τmn (a) (a)− y

n−1
τn(a)

(a)
∣∣∣) = 0.
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Proof. Recall that Φ(y, s, t;x) is the solution map or flow of the differential equation

dyu = f(yu) ⋄ dx̃u, ys = y

evaluated at time t. The first step will be to prove continuity at y0. In particular, let
ym0 ∈ O approach y0 form going to infinity and denote the solutions to the corresponding

Event RDEs by
(
ym, (τmn )Nm

n=1

)
. We claim that limm→∞Nm = N and

lim
m→∞

τmn = τn, lim
m→∞

ym,n−1
τmn

= ynτn .

To see this, note that, by Theorem 3, there exists a sequence λm ∈ Λ of continuous
reparameterizations such that |λm| → 0 and

sup
(s,t)∈∆T

|Φ(y0, s, t;x)− Φ(ym0 , λ
m(s), λm(t);x)| → 0 (4.B.2)

for m→∞. Note, furthermore, that Φ(ym0 , s, t;x ◦ λm) = Φ(ym0 , λm(s), λm(t);x) for all

(s, t) ∈ ∆T . We let
(
ỹm, (τ̃mn )Nm

n=1

)
be the solution to the Event RDE where (y0,x) is

replaced by (ym0 ,x ◦ λm). It suffices to prove that, for all 1 ≤ n ≤ N ,

lim
m→∞

τ̃mn = τn, lim
m→∞

ỹm,n−1
τ̃mn

= ynτn . (4.B.3)

Indeed, since τ̃mn = λ−1
m (τmn ) and |λm| → 0, it then follows that τmn → τn for m → ∞.

Furthermore, we have ỹm,n−1
τ̃mn

= ym,n−1
τmn

.
We shall proof (4.B.3) using an inductive argument. We have that

y0t = Φ(y0, 0, t;x), ∀t ∈ [0, τ1],

ỹm,0t = Φ(ym0 , 0, t;x ◦ λm), ∀t ∈ [0, τ̃m1 ].

Now fix some 0 < ϵ < δ1 where δ1 is given in Assumption 6. Note that |E(y0t )| > 0 for
all t ∈ [0, τ1 − ϵ] and therefore, by (4.B.2), it follows that there exists an m0 ∈ N such
that, for all m ≥ m0,

inf
t∈[0,τ1−ϵ]

|E(Φ(ym0 , 0, t;x ◦ λm))| > 0

so that τ̃m1 ≥ τ1− ϵ. Next, for some small 0 < η < ϵ, Assumption 4 and the Mean Value
Theorem imply the existence of a+η = r+η y

0
τ1 − (1 − r+η )y0τ1+η, and a−η = r−η y

0
τ1−η + (1 −

r−η )y
0
τ1 with r+η , r

−
η ∈ (0, 1) such that

E
(
y0τ1+η

)
= E

(
y0τ1
)
+∇E(a+η )

∫ τ1+η

τ1

µ(y0s)dys,

E
(
y0τ1−η

)
= E

(
y0τ1
)
−∇E(a−η )

∫ τ1

τ1−η
µ(y0s)dys,

But then, by Assumption 5 and the fact that E(y0τ1) = 0, for η small enough, E(y0τ1+η)
and E(y0τ1−η) must lie on different sides of 0. Assumption 6 and eq. (4.B.2) then yield
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4 Beyond continuity: Differential equations with events

the existence of a m1 ≥ m0 such that τ̃m1 ≤ τ1+ η ≤ τ1+ ϵ and inft∈[0,τ1+η] |E(ỹ
m,0
t )| > 0

for all m ≥ m1. It follows that τ̃
m
1 → τ1. Finally, note that∣∣∣ỹm,0τ̃m1

− y0τ1
∣∣∣ ≤ ∣∣∣ỹm,0τ̃m1

− y0τ̃m1
∣∣∣+ ∣∣∣y0τ̃m1 − y0τ1∣∣∣ .

Another application of (4.B.2) shows that the first term on the right hand side goes to
0 for m→∞ and second term vanishes by Assumption 6.

To prove the inductive step, assume that (4.B.3) holds for i ≤ n. For all t ∈ [τn, τn+1]
it holds that

ỹm,nt = Φ
(
T
(
ỹm,n−1
τ̃mn

)
, τ̃mn , t;x ◦ λm

)
, ynt = Φ

(
T
(
yn−1
τn

)
, τn, t;x

)
and, since ỹm,n−1

τ̃mn
→ yn−1

τn , τ̃mn → τn, and T is continuous,

lim
m→∞

sup
t∈[τn,T ]

∣∣∣Φ(T (ỹm,n−1
τ̃mn

)
, τ̃mn , t;x ◦ λm

)
− Φ

(
T
(
yn−1
τn

)
, τn, t;x

)∣∣∣ = 0

whence the same argument as above proves that (4.B.3) also holds for n + 1. This
completes the proof of the claim.
Now, by continuity at y0, it follows that there exists some small r > 0 such that for

all a ∈ Br(y0) it holds that |τ(a)| = N and τn(a) ∈ (τn− δn/2, τn+ δn/2) for all n ∈ [N ]
where δn is as in Assumption 6. Furthermore, since Assumption 1-5 and 6-7 still hold for
a ∈ Br(y0), the same argument as above can be applied to show that τn(a) and y

n−1
τn(a)

(a)
are continuous at a. This proves parts 1 and 2.

To prove part 3 we employ a similar induction argument to the one above. First, note
that, by Theorem 3, there exists a constant C > 0 not depending on x such that

αp,[0,t0]
(
ym,0(a), y0(a)

)
≤ Cαp,[0,t0] (xm,x) .

Since the latter term does not depend on y and goes to 0 for m going to infinity, we find
that

lim
m→∞

sup
a∈Br(y0)

αp,[0,t1]
(
ym,0(a), y0(a)

)
= 0. (4.B.4)

Recall, yδ,0(a) is the continuous path obtained by the Marcus interpolation with δrk
instead of rk and similarly for ym,δ,0(a). Note that ym,δ,0(a) = ym,0(a) by continuity.
Letting τm1 (a) and τ δ1 (a) denote the first event time of ym,0(a) and yδ,0(a) respectively,
we have, for all m ∈ N

sup
a∈Br(x0)

|τm1 (a)− τ1(a)| ≤ sup
a∈Br(y0)

lim
δ→0

(∣∣∣τm1 (a)− τ δ1 (a)
∣∣∣+ ∣∣∣τ δ1 (a)− τ1(a)∣∣∣) .

Now, let B0 = Br(y0). Since τ1(a) ∈ (τ1 − δ1/2, τ1 + δ1/2) for all a ∈ B0 and x is
continuous over this interval, it follows that

∣∣τ δ1 (a)− τ1(a)∣∣ goes to 0 as δ → 0 for each
a ∈ B0. Furthermore, by definition of the metric αp, eq. (4.B.4), and the fact that

ym,00 (a) = a = y00(a), for each a ∈ B0, a similar argument as the one employed in
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the beginning of the proof then shows that |τm1 (a) − τ δ1 (a)| → 0 as δ → 0 and, thus,
limm→∞ supa∈B0

|τm1 (a)− τ1(a)| = 0. Finally, starting from the inequality∣∣∣ym,0τm1 (a)(a)− y
0
τ1(a)

(a)
∣∣∣ ≤ ∣∣∣ym,0τm1 (a)(x)− y

δ,0

τδ1 (a)
(a)
∣∣∣+ ∣∣∣yδ,0

τδ1 (a)
(a)− y0τ1(a)(a)

∣∣∣
and taking the limit as δ → 0 and then the supremum over x ∈ B0 on both sides, we can
argue in exactly the same way to show that part 3 holds for n = 1. We can then argue
by induction, just as in the first part of the proof, to show that it holds for all subsequent
event times as well. Thus, the set B0 satisfies all the stated requirements.

Lemma 2. Let Assumption 6 hold and xm be as in Assumption 7. Then, for all n ∈ [N ]
and p′ > p,

lim
m→∞

dp′,[s,t] (x
m,x) = 0, for any τn − δn/2 ≤ s < t ≤ τn + δn/2.

Proof. Fix some n ∈ [N ], p′ > p and τn − δn/2 ≤ s < t ≤ τn + δn/2. Note that, for any
continuous reparameterization λ ∈ Λ, m ∈ N, and δ > 0, it holds that

dp′,[s,t](x
m,x) ≤ dp′,[s,t](xm, xm ◦ λ) + dp′,[sn,tn](x

m ◦ λ, x̂δ) + dp′,[s,t](x̂
δ,x),

where x̂δ is the Marcus interpolation of x over the interval [sn, tn]. Taking the infimum
over λ ∈ Λ and the limit as δ → 0 on both sides, we obtain

dp′,[s,t](x
m,x) ≤ αp′,[sn,tn](xm,x) + lim

δ→0
dp′,[s,t](x̂

δ,x).

The first term on the right hand side goes to 0 asm→∞ by Assumption 7. Furthermore,
since, by Assumption 6, x is continuous on (τn−δn, τn+δn), it follows that d∞,[s,t](x̂

δ,x)
goes to 0 for δ →∞. But the result then follows from Proposition 8.15 and Lemma 8.16
in Friz and Victoir [2010].

Proof of Theorem 2. Step 1: Assume that x ∈ C1([0, T ],Rd−1). By [Friz and Victoir,
2010, Theorem 4.4], the Jacobian ∂y0t exists and satisfies (4.3.7) for all t ∈ [0, τ1). We
shall prove that relations (4.3.6) and (4.3.7) hold for all n ∈ [N ] by induction. Thus,
assume that ∂ykt and ∂τk exist for all t ∈ [τk, τk+1) and k ≤ n− 1 and satisfy the stated
relations. To emphasise the dependence on the initial condition, we will sometimes use
the notation yn = yn(y0) and τn = τn(y0) for the solution of the Event RDE started at
y0. We want to show that, for arbitrary h ∈ Re, the following limits

lim
ϵ→0

τ ϵn − τn
ϵ

and lim
ϵ→0

yn,ϵt − ynt
ϵ

for t ∈ [τn, τn+1)

exist and satisfy the stated expressions, where τ ϵn = τn(y0 + hϵ) and yn,ϵ = yn(y0 + hϵ).
For any ϵ > 0, because E is continuously differentiable, the Mean Value Theorem

implies that there exists cϵ ∈ Re on the line connecting yn−1
τn to yn−1

τϵn
and another
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4 Beyond continuity: Differential equations with events

c′ϵ ∈ Re on the line connecting yn−1,ϵ
τϵn

to yn−1
τϵn

such that

E
(
yn−1
τn

)
= E

(
yn−1
τϵn

)
+∇E(cϵ)

(
yn−1
τn − yn−1

τϵn

)
= E

(
yn−1
τϵn

)
+∇E (cϵ)

(
µ(yn−1

τn )(τn − τ ϵn) + σ
(
yn−1
τn

)
(xτn − xτϵn) + o(|τn − τ ϵn|)

)
,

E
(
yn−1,ϵ
τϵn

)
= E

(
yn−1
τϵn

)
+∇E(c′ϵ)

(
yn−1,ϵ
τϵn

− yn−1
τϵn

)
= E

(
yn−1
τϵn

)
+∇E(c′ϵ)

(
ϵ
(
∂yn−1

τn

)
h+ o(ϵ)

)
,

where the last equality follows from the induction hypothesis. We have E(yn−1
τn ) = 0 =

E(yn−1,ϵ
τϵn

). Thus, by rearranging, we find that

τ ϵn − τn
ϵ

= − ∇E(yn−1
τn )∂yn−1

τn h

∇E(yn−1
τn )

(
µ(yn−1

τn ) + σ(yn−1
τn )

xτn−xτϵn
τn−τϵn

) + o(1)

= −∇E(y
n−1
τn )∂yn−1

τn h

∇E(yn−1
τn )µ(yn−1

τn )
+ o(1)

where the second equality follows from Assumptions 4 and 5.

Assume for now that τ ϵn < τn. By another application of the Mean Value Theorem,
there exists cϵ ∈ Re on the line connecting yn−1

τn to yn−1
τϵn

such that

yn,ϵτn − ynτn = yn,ϵτn − T
(
yn−1
τn

)
= yn,ϵτn − T

(
yn−1
τϵn

)
−∇T (cϵ)(yn−1

τn − yn−1
τϵn

)

= yn,ϵτϵn + µ(yn,ϵτn )(τn − τ ϵn) + σ
(
yn,ϵτn
)
(xτn − xτϵn)− T

(
yn−1
τϵn

)
−∇T (cϵ)

(
µ(yn−1

τn )(τn − τ ϵn) + σ
(
yn−1
τn

)
(xτn − xτϵn) + o(|τn − τ ϵn|)

)
= T

(
yn−1,ϵ
τϵn

)
− T

(
yn−1
τϵn

)
+
(
µ(yn,ϵτn )−∇T (cϵ)µ(yn−1

τn )
)
(τn − τ ϵn)

+
(
σ(ynτn)−∇T (cϵ)σ(yn−1

τn )
)
(xτn − xτϵn) + o(|τn − τ ϵn|)

Therefore

yn,ϵτn − ynτn
ϵ

= ∇T (yn−1
τn )∂yn−1

τn h+
(
µ(ynτn)−∇T (yn−1

τn )µ(yn−1
τn )

)
∂τnh+ o(1)

where we used Assumption 3, the chain rule and the existence of ∂τn. Finally, for any
t ∈ (τn, τn+1], equation (4.3.7) follows from the fact that we can write ynt = Φ(yns , s, t, x)
for all τn ≤ s < t. In particular, by the chain rule, we find that

∂ynt =
[
∂yns Φ(y

n
s , s, t)∂y

n
s

]
s=τn

= ∂ynτny
n
t [∂y

n
s ]s=τn .

Step 2: Consider now the general case of x ∈ Ωp(Re) and let (ym, (τmnm
)Nm
nm

) denote the
solution to the Event RDE where x is replaced by the piece-wise linear approximation
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xm. With ∂yn,mt and ∂τmn denoting the corresponding derivatives, we saw in the previous
step that both exist and satisfy (4.3.6)-(4.3.7). We let Rnt and ρn denote the right hand
side of (4.3.7) and (4.3.6) respectively. This step consists of proving that, for n ∈ [N ]
and t ∈ (τn, tn),

lim
m→∞

{|τmn − τn|+ |ym,nt − ynt |} = 0 (4.B.5)

and for some open ball B0 around y0

lim
m→∞

sup
a∈B0

{|∂τmn (a)− ρn(a)|+ ∥∂ym,nt (a)−Rnt (a)∥} = 0. (4.B.6)

By Lemma 1 and continuity of T we have that T (ym,n−1
τmn

) converges to T (yn−1
τn ) and

τmn converges to τn as m → +∞. Then, because ynt = Φ(T (yn−1
τn ), τn, t;x) and ym,nt =

Φ(T (ym,n−1
τmn

), τmn , t;x
m), equation (4.B.5) follows from, Lemma 2 and Corollary 11.16 in

Friz and Victoir [2010]. In fact, since B0 was constructed in Lemma 1 in such a way
that τn(a) < tn for all a ∈ B0 we also get that

lim
m→∞

sup
a∈B0

∥∥∥∂yn
τn(a)

(a)Φ
(
ynτn(a)(a), τn(a), t;x

)
− ∂ym,n

τmn (a)
(a)Φ

(
ym,nτmn (a)(a), τ

m
n (a), t;xm

)∥∥∥ = 0.

by the same corollary in Friz and Victoir [2010]. Thus, to prove (4.B.6), it suffices to
show that, for all n ∈ {1, ..., N},

lim
m→∞

sup
a∈B0

∥∥∥∂ym,n−1
τmn (a) (a)−R

n−1
τn(a)

(a)
∥∥∥ = 0.

We shall prove it using another inductive argument starting with n = 1. In this case it
suffices to show that

lim
m→∞

sup
a∈B0

∥∂aΦ (a, 0, τ1(a);x)− ∂aΦ (a, 0, τm1 (a);xm)∥ = 0.

By [Chevyrev and Friz, 2019, Theorem 3.3] we know that the above holds if τm1 (a) and
τ1(a) are replaced by τ1 + δ1/2. Now let Φ−1 be the reverse of the flow map Φ, that is,

Φ−1(a1, s, t;x) = a0 ⇔ Φ(a0, s, t;x) = a1.

From Lemma 1 it follows that y0τ1(a)(a) = Φ−1(y0t0(a), τ1(a), t0;x) and, for m large

enough, ym,0τm1 (a)(a) = Φ−1(ym,0t0
(a), τm1 (a), t0;x

m). But the result then follows from Lemma

2 and [Friz and Victoir, 2010, Corollary 11.16]. To prove the inductive step, assume that
(4.B.6) holds for all i ≤ n − 1. Again, by inspecting (4.3.6) and (4.3.7) and using the
inductive assumption, one finds that it is enough to show that

lim
m→∞

sup
a∈B0

∥∥∥∥∂yn−1
τn−1

Φ
(
yn−1
τn−1

, τn−1, τn;x
)
− ∂

ym,n−1
τmn−1

Φ
(
ym,n−1
τmn−1

, τmn−1, τ
m
n ;xm

)∥∥∥∥ = 0,

where we suppressed the dependence on a for notational simplicity. This is done exactly
as for y0 and completes the proof of Step 2.
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Step 3: The third and final step is to combine Step 1 and 2 to finish the proof. So
far we have proven that 1) the theorem holds for continuous paths of bounded variation
and 2) (τmn , y

m,n
t ) converges to (τn, y

n
t ) and (∂τmn (a), ∂ym,nt (a)) converges uniformly to

(ρn(a), R
n
t (a)) over a ∈ B0 for all t ∈ (τn, tn) and n ∈ [N ]. From these results it

immediately follows that (τn(a), y
n
t (a)) is differentiable at a = y0 with derivatives given

by (ρn(y0), Rt(y0)) for all t ∈ (τn, tn). What is left to show then, is that this also holds
for all other t. But this follows immediately from the chain rule upon realizing that, for
any τn < s < τn + δn/2 < t < τn+1,

ynt = Φ(yns , s, t;x)⇒ ∂ynt = ∂yns Φ(y
n
s , s, t;x)R

n
s (y0) = Rnt (y0).

4.C. Kernel methods

We give here a brief outline of some of the most central concepts related to kernel
methods. For a more in-depth introduction we refer the reader to Muandet et al. [2017],
Schölkopf and Smola [2002], Berlinet and Thomas-Agnan [2011]. Let X be a topological
space. We shall in this paper only be concerned with positive definite kernels, that is,
symmetric functions k : X × X → R for which the Gram matrix is positive definite. To
such a kernel one may associate a feature map X → RX such that x 7→ kx = k(x, ·).
A reproducing kernel Hilbert space (RKHS) is a Hilbert space H ⊂ RX such that the
evaluation functionals, evx : f 7→ f(x), are bounded for each x ∈ X . For all positive
definite kernels there is a unique RKHS H ⊂ RX such that f(x) = ⟨kx, f⟩H for all
f ∈ H and x ∈ X . This is also known as the reproducing property. Furthermore, with
H denoting the linear span of {kx | x ∈ X}, it holds that H̄ = H, i.e., H is dense in H.
Two important properties of kernels are characteristicness and universality.

Definition 11. Let k : X ×X → R be a positive definite kernel. Denote by H the linear
span of {kx | x ∈ X} and let F ⊂ RX be a topological vector space containing H and
such that the inclusion map ι : H → F is continuous.

• We say that k is universal to F if the embedding of ι : H → F is dense.

• We say that k is characteristic to F ′ if the embedding µ : F ′ → H ′, D 7→ D|H is
injective

Remark 10. This definition is the one used in Chevyrev and Oberhauser [2022] and is
more general then the one usually encountered. Note that in many cases (all the cases
considered here, in fact) F ′ will contain the set of probability measures on X in which
case k being characteristic implies that the kernel mean embedding µ 7→ EX∼µkX(·) is
injective.

Remark 11. Often times, instead of starting with the kernel function k and then obtain-
ing the RKHS, one starts with a feature map F : X → H into a RKHS and then defines
the kernel as the inner product in that Hilbert space, i.e., k(x, y) = ⟨F (x), F (y)⟩H. In
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such cases, it makes sense to ask whether there are equivalent notions of F being uni-
versal and characteristic. This is indeed the case and the definition is almost the same
as above. We refer to Definition 6 in Chevyrev and Oberhauser [2022] for a precise
statement.

4.C.1 Marcus signature kernel

The definition of the signature kernel requires an initial algebraic setup. Let ⟨·, ·⟩1
be the Euclidean inner product on Rd. Denote by ⊗ the standard outer product of
vector spaces. For any n ∈ N, we denote by ⟨·, ·⟩n on (Rd)⊗n the canonical Hilbert-
Schmidt inner product defined for any a = (a1, . . . , an) and b = (b1, . . . , bn) in (Rd)⊗n
as ⟨a,b⟩n =

∏n
i=1 ⟨ai, bi⟩1. The inner product ⟨·, ·⟩n on (Rd)⊗n can then be extended

by linearity to an inner product ⟨·, ·⟩ on T̃ ((Rd)) defined for any a = (1, a1, . . .) and
b = (1, b1, . . .) in T̃ ((Rd)) as ⟨a,b⟩ = 1 +

∑∞
n=1 ⟨an, bn⟩n.

To begin with, let X = D1([0, T ],Rd). If x ∈ X is càdlàg path, we can define the
Marcus signature in the spirit of Marcus SDEs [Marcus, 1978, 1981] as the signature of
the Marcus interpolation of x. This interpolation, denoted by x̂, is the continuous path
on [0, T ] obtained from x by linearly traversing the jumps of x over added fictitious time
r > 0 and then reparameterising so that the path runs over [0, T ] instead of [0, T+r]. The
general construction is given in Appendix 4.A. If x is continuous, x and x̂ coincide; thus,
without any ambiguity, we can define the Marcus signature S(x) of a general bounded
variation càdlàg path as the tensor series described above, but replacing x with x̂ (see
also the definition in 4.A.2).
Since the signature is invariant to certain reparameterisations (Propisition 1), it is not

an injective map. Injectivity is a crucial property required to ensure characteristicness
of the resulting signature kernel that we will introduce next. One way of overcome this
issue is to to augment a path x with a time coordinate resulting in the path x̃ = (x, t)4.
The Marcus signature kernel is then naturally defined as the map k : X × X → R such
that k(x, y) = ⟨S(x̃), S(ỹ)⟩ for any x, y ∈ X . As stated in Theorem 5, this kernel is
universal on compact subsets K ⊂ X and, equivalently, characteristic to the space of
regular Borel measures on K. However, these properties do not generalize to the whole
space Cb(X ,R) of bounded continuous functions from X to R.

In Chevyrev and Oberhauser [2022] the authors address this issue in the case of con-
tinuous paths by introducing the so-called robust signature. They define a tensor nor-
malization as a continuous injective map

Λ : T̃
((

Rd
))
→
{
a ∈ T̃

((
Rd
))
| ∥a∥ ≤ R

}
for some R > 0 and such that Λ(a) = (a0, λ(a)a1, λ(a)

2a2, . . . ) for some λ : T̃
((
Rd
))
→

(0,∞).
Now, let p ∈ [1, 3) and take C1

0 (Rd) to be the space of absolutely continuous functions
on Rd. Recall that ΩD0,p(Rd) is the closure of C1

0 (Rd) in ΩDp (Rd) under the metric αp.

4If x is a càdlàg rough path, this is done via a Young pairing which results in a càdlàg p-rough path,
x̃, where the first level is given by (xt, t). For more information, we refer to Appendix 4.A.3.
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Throughout we let X = ΩD0,p(Rd) be a metric space equipped with αp. Naturally, we
can then define the signature kernel on X by k(x,y) = ⟨S(x̃), S(ỹ)⟩ and, similarly, the
robust signature kernel kΛ(x,y) = ⟨Λ(S(x̃)),Λ(S(ỹ))⟩ where Λ is a tensor normalisation.

Theorem 5. Let p ≥ 1, Λ a tensor normalization, and K ⊂ X compact under αp.
Then,

(i) The signature kernel k is universal to F = C(K,R) equipped with the uniform
topology and characteristic to the dual F ′, the space of regular Borel measures on
K.

(ii) The robust signature kernel kΛ is universal to F = Cb(X ,R) equipped with the strict
topology and charactersitic to the dual F ′, the space of all finite Borel measures on
X .

Proof of Theorem 5. Part (i) follows directly from the proof of Proposition 3.6 in Cuchiero
et al. [2022]. For part (ii) we shall proof that the feature map F = Λ ◦ S is universal
and characteristic. The result then follows from Proposition 29 in Chevyrev and Ober-
hauser [2022]. We start by defining P = X/ ∼t where the equivalence relation ∼t is
defined in Appendix 4.A.2. We equip P with the topology induced by the embedding
S : P → T̃ ((Rd+1)). By Proposition 1, F is a continuous and injective map from P into a
bounded subset of T̃ ((Rd+1)). Thus, H = {⟨ℓ, F ⟩ | ℓ ∈ T ((Rd+1))′} is a subset of F that
seperates points. Furthermore, since F takes values in the set of group-like elements, H
is a subalgebra of F (under the shuffle product). It then follows from Theorem 7 and
Theorem 9 in Chevyrev and Oberhauser [2022] that F is universal and charecteristic.
The fact that F ′ is the space of all finite Borel measures on X is part (iii) of Theorem 9
in the same paper. Finally, as per Appendix 4.A.3, the map x 7→ x̃ is a continuous and
injective embedding of X into P from which the result then follows.

With dk denoting the MMD for a given kernel k : X ×X → R, the following is a direct
consequence of Theorem 5.

Corollary 1. Let p ≥ 1, Λ a tensor normalization, and K ⊂ X compact under αp.
Then, dk is a metric onM(K) and dkΛ is a metric onM(X ).

4.D. Forward sensitivities for SLIF network

In the general SSNN model, Theorem 2 gives the following result.

Proposition 1. Fix some weight wij ∈ w, a neuron k ∈ [K] and let Gkt denote the
gradient of (vk, ik) wrt. wij at time t. Furthermore, define γ : {0, 1} → R2 such that
γ0 = (µ1,−µ2)wlk, γ1 = (µ1, 0)vreset, and let Γ ∈ R2×2 be the drift matrix in the inter-
spike SDE of (vk, ik). Then,

Gkt = eΓ(t−s)
(
Gks − γδlk∂wijs+ δilδjke2

)
, (4.D.1)
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where en ∈ R2 is the n’th unit vector, l is the neuron in Pak ∪ {k} with the most recent
spike time before t, and we denote this spike time by s. If t is a spike time of neuron k
it therefore follows that

∂wij t =
λ(vktprev)∂wij tprev −

∫ t
tprev
∇λ(vkr )eT1 Gkr dr

λ(vkt )
, (4.D.2)

where tprev is the previous spike time of neuron k. In the case of a deterministic SNN,
formula (4.D.2) is replaced by

∂wij t = −
eT1 Gkt

µ1(ikt − vkt )
. (4.D.3)

Proof. Throughout we fix some t > 0 and let s < t denote most recent event time
preceding t with l the index of the neuron firing at time s. We define the process dwt =
0dt with w0 = wij and with a slight abuse of notation we shall write ykt = (vkt , i

k
t , s

k
t , wt).

We will leave out the event index n for notational simplicity. Since ykt depends on ys
only through yks and ∇Tl is block diagonal, a direct consequence of eq. (4.3.7) is

Gkt =
(
I 0

)
∂yks y

k
t

(
∇T lj (yks−)∂wijy

k
s− −

(
µ(yks )−∇T kl (yks−)µ(yks−)

)
∂wijs

)
where µ(v, i, s, w) = (µ1(i − v),−µ2i, λ(v), 0). If l ∈ Pak ∪ {k}, then T kl = id and
therefore Gkt =

(
I 0

)
∂yks y

k
t ∂wijy

k
s . One can then reapply the formula above until l ∈

Pak∪{k}. By the flow property, it follows that we may assume without loss of generality
that l ∈ Pak ∪ {k}. This leaves us with two cases. We define zkt = (vkt , i

k
t ) so that(

I 0
)
∂yks y

k
t = ∂zks z

k
t and ∂wijz

k
t = Gkt . Furthermore, let a = δilδjk.

Case 1, l ∈ Pak: In this case T kl (v, i, s, w) = (v, i + aw + (1 − a)c, s, w) where c is a
constant. As a result

∂zks z
k
t∇T kl (yks−)∂yks− = ∂zks z

k
t Gkt + a∂iks z

k
t ,

∂zks z
k
t

(
µ(yks )−∇T kl (yks−)µ(yks−)

)
= ∂zks z

k
t γ0,

In total,

Gkt = ∂zks z
k
t

(
Gkt − γ0∂wijs+ ae2

)
.

Case 2, l = k: In this case T kl (v, i, s, w) = (v − vreset, i, log u− α,w) so that

∂zks z
k
t∇T kl (yks−)∂yks− = ∂zks z

k
t Gkt ,

∂zks z
k
t

(
µ(yks )−∇T kl (yks−)µ(yks−)

)
= ∂zks z

k
t γ1,

and, thus,
Gkt = ∂zks z

k
t Gkt − ∂zks z

k
t γ0∂wijs.

Note that zkt is an Ornstein-Uhlenbeck process initialized at zks and with drift and
diffusion matrices

Γ =

(
−µ1 µ1
0 −µ2

)
, Σ =

(
σ1 0
0 σ2

)
.
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4 Beyond continuity: Differential equations with events

As a result, we can directly compute ∂zks z
k
t = e(t−s)Γ. This proves that eq. (4.D.1) holds.

Eq. (4.D.2) then follows directly from (4.3.6) and the fact that Ek(y) = sk.

From this the results of Section 4.4.4 follow since the terms ∂wijs vanish whenever s is
the spike time of a neuron l that is not a descendant of neuron j. Thus, equation (4.D.1)
only includes terms depending on the activity of the pre and post-synaptic neuron. In
particular, there is no need to store the gradient path Gkt for each combination of neuron
k and synapse ij, but each neuron only needs to keep track of the paths for its incoming
synapses. This reduces the memory requirements from the order of K3 to only K2

(which is needed anyway to store the weight matrix). In general, the gradient paths can
be approximated by simply omitting the terms ∂wijs.

4.E. Experiments

4.E.1 Input current estimation

For each combination of sample size and σ we sample a data set of spike trains using
Algorithm 1 with N = 3, i.e., up until the first three spikes are generated. We use
diffrax to solve the inter-Event SDE with a step size of 0.01 and the numerical solver is
the simple Euler-Maruyama method. We then sample an initial guess c ∼ Unif([0.5, 2.5])
and run stochastic gradient descent using the approach described in 4.4.1. That is, for
each step, we generate a batch of the same size as the sample size and use dk to compare
the generated batch to the data. For each step we also compare the absolute error
between the average spike time of the first three spikes of the generated sample to a
hold a out test set of the same size as the sample. We use the RMSProp algorithm with
a decay rate of 0.7 and a momentum of 0.3 which we found to work well in practice.
The learning rate is 0.001. The experiment was run locally on CPU with an Apple M1
Pro chip with 8 cores and 32 GB of ram. The entire experiment took approximately
3-6 hours to run. For the exact details of this experiment we refer to the notebook
snnax/notebooks/single neuron.ipynb in the supplementary material.

4.E.2 Synaptic weight estimation

As above, for each sample size D ∈ {256, 512, 1024} we sample a data set of spike trains
using Algorithm 1 with T = 1 and with the same differential equation solver setup as
above. Thus, in this case, the number of spikes varies across each sample path. The
parameters are chosen as follows:

• vreset = 1.2

• λ(v) = exp(5(v − 1)

• µ = (6, 5)

• σ = I2/4
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Figure 4.E.1: We estimate the synpatic weights w across three different sample sizes using the
signature kernel MMD truncated at depth 3 and stochastic gradient descent with
a batch size of 128. On the left we report the loss on a hold out test set. On the
right is the mean absolute error between the entries of the currently estimated
weight matrix ŵstep and the true weight matrix wtrue.

For each sample size the data was generated using the same randomly sampled weight
matrix w which represents a feed-forward network of the dimensions described in Section
4.4 and which was constructed as follows: for the weight matrix from layer l to layer
l + 1, say wl, we sample each entry from Unif([0.5, 1.5]) and then normalize by 3/Kl

where Kl is the number of neurons in layer l. The normalisation makes sure that the
spike rate for the neurons in each layer is appropriate.
For each data set (each sample size) we then train a spiking neural net of the same

network structure to match the observed spike trains. This is done using stochastic
gradient descent with a batch size of B = 128 and by computing dk on a generated
batch and a batch sampled from the data set at each step. In order to avoid local
minimums5 we match the number of spikes between the generated spike trains and the
ones sampled from the data set. Also, we sample from the data set without replacement
so that we loop through the whole data set every D/B steps. We run RMSProp for 1500
steps with a momentum of 0.3 and a learning rate of 0.003 for the first 1000 steps and
0.001 for the last 500 steps.
This experiment was run in the cloud using Azure AI Machine Learning Studio on

a NVIDIA Tesla V100 GPU with 6 cores and 112 GB of RAM. The entire experi-
ment took around 12-16 hours to run. For the exact details we refer to the notebook
snnax/notebooks/spiking neural net.ipynb in the supplementary material.

5Note that the loss landscape is inherently discontinuous since whenever the parameters are altered in
such a way that an additional spike appears, the expected signature will jump.
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B.-E. Chérief-Abdellatif and P. Alquier. Finite sample properties of parametric mmd
estimation: robustness to misspecification and dependence. Bernoulli, 28(1):181–213,
2022.

I. Chevyrev and P. K. Friz. Canonical rdes and general semimartingales as rough paths.
The Annals of Probability, 47(1):420–463, 2019.

I. Chevyrev and T. Lyons. Characteristic functions of measures on geometric rough
paths. The Annals of Probability, 44(6):4049 – 4082, 2016.

I. Chevyrev and H. Oberhauser. Signature moments to characterize laws of stochastic
processes. Journal of Machine Learning Research, 23(176):1–42, 2022.

S. Choi, A. Cichocki, H.-M. Park, and S.-Y. Lee. Blind source separation and inde-
pendent component analysis: A review. Neural Information Processing-Letters and
Reviews, 6(1):1–57, 2005.

202



Bibliography

N. M. Cirone, M. Lemercier, and C. Salvi. Neural signature kernels as infinite-width-
depth-limits of controlled resnets. In International Conference on Machine Learning,
pages 25358–25425. PMLR, 2023.

T. Cochrane, P. Foster, V. Chhabra, M. Lemercier, T. Lyons, and C. Salvi. Sk-tree: a
systematic malware detection algorithm on streaming trees via the signature kernel.
In 2021 IEEE international conference on cyber security and resilience (CSR), pages
35–40. IEEE, 2021.

S. Corner, C. Sandu, and A. Sandu. Modeling and sensitivity analysis methodology for
hybrid dynamical system. Nonlinear Analysis: Hybrid Systems, 31:19–40, 2019.

S. Corner, A. Sandu, and C. Sandu. Adjoint sensitivity analysis of hybrid multibody
dynamical systems. Multibody System Dynamics, 49:395–420, 2020.

C. Cuchiero, F. Primavera, and S. Svaluto-Ferro. Universal approximation theorems
for continuous functions of c\adl\ag paths and l\’evy-type signature models. arXiv
preprint arXiv:2208.02293, 2022.
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M. Höglund, E. Ferrucci, C. Hernández, A. M. Gonzalez, C. Salvi, L. Sánchez-
Betancourt, and Y. Zhang. A neural rde approach for continuous-time non-markovian
stochastic control problems. In ICML Workshop on New Frontiers in Learning, Con-
trol, and Dynamical Systems, 2023.

C. Holberg. Stationary embeddings: A nonlinear generalization of cointegration, 2024.
Working paper.

C. Holberg and S. Ditlevsen. Weighted reduced rank estimators under cointegration
rank uncertainty. Scandinavian Journal of Statistics, 2024a. To appear.

C. Holberg and S. Ditlevsen. Uniform inference for cointegrated vector autoregressive
processes. Journal of Econometrics, 2024b. To appear.

C. Holberg and C. Salvi. Exact gradients for stochastic spiking neural networks driven
by rough signals. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

A. Hyvarinen and H. Morioka. Unsupervised feature extraction by time-contrastive
learning and nonlinear ica. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

A. Hyvarinen and H. Morioka. Nonlinear ICA of Temporally Dependent Stationary
Sources. In A. Singh and J. Zhu, editors, Proceedings of the 20th International Con-
ference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 460–469. PMLR, 20–22 Apr 2017.

A. Hyvarinen, H. Sasaki, and R. Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 859–868. PMLR, 2019.

Z. Issa and B. Horvath. Non-parametric online market regime detection and regime
clustering for multidimensional and path-dependent data structures, 2023.

Z. Issa, B. Horvath, M. Lemercier, and C. Salvi. Non-adversarial training of neural sdes
with signature kernel scores. Advances in Neural Information Processing Systems,
2023a.

Z. Issa, B. Horvath, M. Lemercier, and C. Salvi. Non-adversarial training of neural
sdes with signature kernel scores. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems,
volume 36, pages 11102–11126. Curran Associates, Inc., 2023b.

A. J. Izenman. Reduced-rank regression for the multivariate linear model. Journal of
multivariate analysis, 5(2):248–264, 1975.

205



Bibliography

H. Jang and O. Simeone. Multisample online learning for probabilistic spiking neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 33(5):2034–
2044, 2022.

M. Jansson and M. J. Moreira. Optimal inference in regression models with nearly
integrated regressors. Econometrica, 74(3):681–714, 2006.

J. Jia and A. R. Benson. Neural jump stochastic differential equations. Advances in
Neural Information Processing Systems, 32, 2019.

D. Jimenez Rezende andW. Gerstner. Stochastic variational learning in recurrent spiking
networks. Frontiers in computational neuroscience, 8:38, 2014.

S. Johansen. Statistical analysis of cointegration vectors. Journal of economic dynamics
and control, 12(2-3):231–254, 1988.

S. Johansen. Estimation and hypothesis testing of cointegration vectors in gaussian
vector autoregressive models. Econometrica: journal of the Econometric Society, pages
1551–1580, 1991.

S. Johansen. Likelihood-based inference in cointegrated vector autoregressive models.
Oxford University Press on Demand, 1995.

H. Kaido, F. Molinari, J. Stoye, and M. Thirkettle. Calibrated projection in matlab:
Users’ manual. arXiv preprint arXiv:1710.09707, 2017.

H. Kaido, F. Molinari, and J. Stoye. Confidence intervals for projections of partially
identified parameters. Econometrica, 87(4):1397–1432, 2019.

H. Kajino. A differentiable point process with its application to spiking neural networks.
In International Conference on Machine Learning, pages 5226–5235. PMLR, 2021.

I. Karatzas and S. Shreve. Brownian motion and stochastic calculus, volume 113.
Springer Science & Business Media, 1991.

H. A. Karlsen and D. Tjøstheim. Nonparametric estimation in null recurrent time series.
Annals of Statistics, pages 372–416, 2001.

H. A. Karlsen, T. Myklebust, and D. Tjøstheim. Nonparametric estimation in a nonlinear
cointegration type model. The Annals of Statistics, pages 252–299, 2007.

M. Kasy. Uniformity and the delta method. Journal of Econometric Methods, 8(1),
2019.

T. Kato. Perturbation theory for linear operators, volume 132. Springer Science &
Business Media, 2013.

M. Kessler and A. Rahbek. Asymptotic likelihood based inference for co-integrated
homogenous gaussian diffusions. Scandinavian Journal of Statistics, 28(3):455–470,
2001.

206



Bibliography

M. Kessler and A. Rahbek. Identification and inference for multivariate cointegrated and
ergodic gaussian diffusions. Statistical inference for stochastic processes, 7:137–151,
2004.

I. Khemakhem, D. Kingma, R. Monti, and A. Hyvarinen. Variational autoencoders
and nonlinear ica: A unifying framework. In International conference on artificial
intelligence and statistics, pages 2207–2217. PMLR, 2020a.

I. Khemakhem, R. Monti, D. Kingma, and A. Hyvarinen. Ice-beem: Identifiable condi-
tional energy-based deep models based on nonlinear ica. Advances in Neural Infor-
mation Processing Systems, 33:12768–12778, 2020b.

P. Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

P. Kidger, J. Foster, X. Li, and T. J. Lyons. Neural sdes as infinite-dimensional gans. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
5453–5463. PMLR, 18–24 Jul 2021.
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