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Abstract

This thesis develops and analyzes advanced parameter estimation techniques for dis-
cretely observed nonlinear first- and second-order stochastic differential equations (SDEs),
focusing on splitting schemes and their applications.

Initially, new numerical properties of splitting schemes, specifically the Lie-Trotter and
Strang schemes, are established, enabling more accurate and robust parameter estimation
under less restrictive assumptions on the drift parameter. Theoretical advancements
include proving the Lp convergence of the Strang splitting scheme and demonstrating
the consistency and asymptotic efficiency of the associated estimator, confirmed in a
simulation study of the three-dimensional stochastic Lorenz system.

Expanding this work to second-order SDEs, we introduce and adapt the Strang split-
ting scheme to address hypoelliptic systems and scenarios involving partial observations
caused by the unobserved velocity variable. The proposed estimators are shown to be
both theoretically robust and computationally fast, with variations in the asymptotic
variance depending on the likelihood approach used. The theory is illustrated by apply-
ing the Kramers oscillator model to model paleoclimate data.

The thesis further extends to developing multivariate Pearson diffusion models, which
generalize existing univariate Pearson diffusion frameworks by incorporating linear drift
and a quadratic function in the diffusion structure. The Strang splitting scheme for
nonlinear processes with Pearson-type noise is proposed, and the closed-form solutions
for the first two moments are derived. The applicability of these models is demonstrated
through their appearance in genetic research and epidemiological modeling, as well as a
generalization of the Kramers model with the student-type noise. The simulation studies
validate the dominance of the proposed estimator in estimating diffusion parameters with
higher accuracy compared to existing methods.
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Sammenfatning

Denne afhandling udvikler og analyserer avancerede teknikker til at estimere parametre
i diskret observerede ikke-lineære første- og andenordens stokastiske differentialligninger
(SDE’er), med fokus på splitting schemes og deres anvendelser.

Indledningsvis etableres nye numeriske egenskaber for splitting schemes, specifikt Lie-
Trotter- og Strang-skemaerne. Dette muliggør mere nøjagtig og robust parameteresti-
mation under mindre restriktive antagelser om driftparameteren. Desuden bevises Lp-
konvergens af Strang-skemaet og konsistens og asymptotisk normalitet af estimatoren.
Resultaterne bekræftes i et simulationsstudie af det tredimensionelle stokastiske Lorenz-
system.

Vi generaliserer metoderne til andenordens SDE’er og introducerer og tilpasser Strang-
skemaet til hypoelliptiske systemer og scenarier, der involverer uobserverede variable,
da hastighedsvariablen ikke er observeret. De foreslåede estimatorer er både teoretisk
robuste og beregningsmæssigt hurtige, hvor den asymptotiske varians afhænger af hvilken
approximation til likelihood funktionen, man vælger. Teorien illustreres på Kramers
oscillatormodel, anvendt på palæoklimadata fra den Grønlandske indlandsis.

Afhandlingen udvider metoderne yderligere til multivariate Pearson diffusionsmodeller,
som generaliserer eksisterende univariate Pearson diffusioner ved at kombinere lineær
drift med en kvadratisk funktion i diffusionsstrukturen. Vi udvikler Strang-skemaet for
ikke-lineære processer med Pearson-type støj, og eksplicitte formler for de første to mo-
menter udledes. Anvendeligheden af disse modeller vises gennem eksempler i genetisk
forskning og epidemiologisk modellering, såvel som en generalisering af Kramers-modellen
med Pearson-type støj. Simulationsstudierne validerer fordelene ved den foreslåede es-
timator af diffusionsparametre med større nøjagtighed sammenlignet med eksisterende
metoder.
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Contributions and Structure

This PhD thesis consists of two parts.
The first part, which includes Chapters 1 to 5, outlines the problem and objectives

addressed in the thesis. It provides the necessary information to understand the included
papers and the additional work beyond them. Instead of serving as a literature review,
this part identifies and connects the common themes across the papers, placing them
within a unified framework.

Following the introduction, the second part consists of three chapters, each presenting
a paper with appendices. All theorems, sections, etc., are numbered according to the
paper in which they appear. The three papers are the following.

Paper I (Parameter Estimation in Nonlinear Multivariate SDEs with Additive Noise)
introduces the splitting schemes estimators for elliptic SDEs with additive noise. A new
asymptotic theory of the estimators is developed for SDEs with non-Lipschitz drift and
super-linear growth. The chapter contains the following paper:

• [Pilipovic et al., 2024a] P. Pilipovic, A. Samson, and S. Ditlevsen. Parameter es-
timation in nonlinear multivariate stochastic differential equations based on split-
ting schemes. The Annals of Statistics, 52(2):842 – 867, 2024a. doi: 10.1214/
24-AOS2371. URL https://doi.org/10.1214/24-AOS2371.

Paper II (Parameter Estimation in Nonlinear Multivariate Second-order SDEs with
Additive Noise) generalizes the splitting schemes estimators to a specific subclass of hy-
poelliptic diffusions induced by second-order stochastic differential equations. Moreover,
the methodology is adapted to work in case of partial observations. The chapter contains
the following paper:

• [Pilipovic et al., 2024b] P. Pilipovic, A. Samson, and S. Ditlevsen. Strang splitting
for parametric inference in second-order stochastic differential equations, 2024b.
Paper status: Submitted.

Paper III (Parameter Estimation in Nonlinear Multivariate SDEs with Pearson-type
Noise) introduces a new model class denoted as SDEs with Pearson-type Noise and pro-
poses a method for estimating parameters using Strang splitting together with Gaussian
approximation. The chapter contains the following paper:

• P. Pilipovic, A. Samson, and S. Ditlevsen. Strang splitting parameter estimator
for nonlinear multivariate stochastic differential equations with Pearson-type mul-
tiplicative noise, 2024.
Paper status: working paper.
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1 Introduction

Understanding the behavior of complex systems under the influence of random fluctu-
ations is a fundamental challenge in various scientific fields. Our research contributes
to this field, focusing on the parameter estimation problem in multivariate nonlinear
stochastic differential equations (SDEs) based on discrete observations.

To demonstrate the practical value of SDE-based models, we study in Paper II the
Dansgaard-Oeschger (DO) events — abrupt climatic shifts recorded during the last glacial
period. DO events are characterized by sudden warming followed by gradual cooling,
which takes decades to centuries to millennia. Relevant research questions about the DO
events include the mechanisms driving these rapid changes, the factors influencing their
occurrence, and the distribution of waiting times between such events. We investigate
whether we can fit models incorporating dynamical oscillations and stochastic resonance,
such as the Kramers oscillator (also known as the stochastic Duffing oscillator), to address
these questions and enhance our understanding of the underlying climate dynamics.

Despite the evident potential of SDE-based models, parameter estimation of such mod-
els presents three main challenges. First, a universal framework for parameter estimation
applicable to all SDE models is lacking. Most SDE models do not have a closed-form
likelihood function, a fundamental element of traditional statistical inference. Second,
hypoelliptic SDEs introduce additional complexities, as the noise does not directly affect
all system components but can influence them indirectly through the system’s dynamics.
Third, only partial observations are often available, meaning not all variables affecting
the system’s dynamics can be directly measured. In cases of partial observation, the
behavior of hidden variables must be inferred from the observed data, adding another
layer of complexity to parameter estimation in SDEs.

This thesis addresses these three problems by proposing to approximate the SDE using
splitting schemes. Splitting schemes are numerical methods that decompose the SDE into
simpler sub-problems, which are easier to solve and can be combined to approximate the
solution of the original SDE. Using these schemes, we can derive a pseudo-likelihood,
which facilitates the construction of estimators without a closed-form likelihood function.

We develop estimators for different setups and model classes using the pseudo-likelihood
obtained from the splitting schemes. We rigorously prove convergence properties for the
splitting schemes and the asymptotic properties of the obtained estimators, specifically
their consistency and asymptotic normality, allowing for standard inferential procedures.

We also conduct extensive numerical simulation studies to demonstrate the practi-
cal performance of the estimators. These studies show that our proposed methods can
accurately and quickly estimate parameters even in the presence of nonlinearities, hy-
poellipticity, and partial observations, thus providing a robust framework for analyzing
complex systems modeled by SDEs.
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1 Introduction

The rest of this part of the thesis is organized as follows. Chapter 2 introduces the
model class and discusses the assumptions. In Chapter 3, we recall the maximum likeli-
hood estimation (MLE) for SDEs and compare the most commonly applied approximated
MLE methods. In Chapter 4, we introduce the splitting schemes, first in the ordinary
differential equation (ODE) settings, followed by the extension to the SDE setup. Chap-
ter 5 discusses the computational tools used to make the implementation faster and more
robust.
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2 Stochastic Differential Equation Model

This chapter introduces and discusses the fundamental setup of models described by
SDEs. We consider the following SDE

dXt = F(t,Xt;θ
(1)) dt+Σ(t,Xt;θ

(2)) dWt, X0 = x0 ∈ X . (1)

Here, Xt ∈ X ⊂ Rd is a unique, strong solution defined on a complete probability
space (Ω,F ,Pθ) with a complete, right-continuous filtration (Ft)t≥0. The m-dimensional
Wiener process W = (Wt)t≥0 is adapted to Ft. The probability measure Pθ is param-
eterized by θ = (θ(1),θ(2)). The closure of the parameter space Θ is Θ = Θθ(1) ×Θθ(2) ,
where Θθ(1) and Θθ(2) are two open convex bounded subsets of Rr and Rs, respectively.
The initial value x0 can be either deterministic or random. The drift function and dif-
fusion matrix are defined as F : [0,∞)× X ×Θθ(1) → Rd and Σ : [0,∞)× X ×Θθ(2) →
Rd×m, respectively. The matrix-valued function ΣΣ⊤ : Rd × Θθ(1) → Rd×d defined as
ΣΣ⊤(t,x;θ(2)) = Σ(t,x;θ(2))Σ(t,x;θ(2))⊤ is assumed to be positive semidefinite.

This setup represents a general form of SDE models. However, certain conditions are
typically imposed on the drift F and diffusion function Σ to ensure the existence and
uniqueness of a strong solution. In the context of parameter estimation problems, these
conditions also help guarantee the theoretical and numerical properties of the estimators.

A unique, strong solution is one where the initial conditions and the driving noise
uniquely determine the path of the SDE. In contrast, a weak solution only requires that
the distribution of the paths matches the SDE. In Paper I, we are also interested in
the numerical aspects of discretization schemes, which is why we base our work on the
assumption of a strong solution. Moreover, we are interested in how the strong order of
convergence influences parameter estimation.

According to [Kloeden and Platen, 1992], approximation X̃ converges strongly with
order q to the strong solution X of SDE (1) at time T , if there exists a constant C that
does not depend on h, such that

E[∥XT − X̃T ∥] ≤ Chq,

where h is the time step size between two consecutive observations. Sometimes, the
strong order of convergence is defined by L2 instead of L1 norm as in Milstein [1988].
Then, the order of convergence is also called the mean-square convergence. In Paper
I, we further explore the Lp convergence of SDE approximations. In this context, Lp

convergence implies mean-square convergence when p = 2, and mean-square convergence
implies strong order convergence.

Additionally, we examine one-step convergence, which measures the accuracy of a single
discretization step. This can be expressed as

∥E[Xtk − Φ̃h(Xtk−1
) | Xtk−1

= x]∥ ≤ Chq,

3



2 Stochastic Differential Equation Model

where Φ̃h is the one-step approximation h-flow. While strong order convergence is im-
portant to simulate trajectories, the one-step approximation error has important impli-
cations for estimating process parameters. MLE relies on the distribution of a one-step
ahead state as described in Chapter 3. The exact distribution is usually unavailable, so
approximation methods are required. Thus, a better convergence rate for the one-step
approximation error leads to a better likelihood approximation.

In Paper I, we present novel results concerning the numerical properties of the Strang
splitting scheme, highlighting how these convergence aspects correlate with the non-
asymptotic accuracy of parameter estimation based on splitting schemes.

2.1 Common Assumptions

1. Lipschitz Continuity and Linear Growth. It is common to assume that both
drift function F : [0,∞)×X ×Θθ(1) → Rd and diffusion function Σ : [0,∞)×X ×
Θθ(2) → Rd×m satisfy the Lipschitz continuity (2) and linear growth (3) conditions.
Specifically, for all x,y ∈ X , and all t ≥ 0, there exist constants Lθ, Cθ ∈ (0,∞)
that do not depend on t, such that

∥F(t,x;θ(1))− F(t,y;θ(1))∥+ ∥Σ(t,x;θ(2))−Σ(t,y;θ(2))∥ ≤ Lθ∥x− y∥, (2)

and

∥F(t,x;θ(1))∥+ ∥Σ(t,x;θ(2))∥ ≤ Cθ(1 + ∥x∥). (3)

These conditions are widely adopted because they simplify the proofs of the exis-
tence and uniqueness of strong solutions and the estimators’ asymptotic properties.

2. Constant Diffusion Function. Another common assumption is that Σ does
not depend on state x, that is, Σ(t,x;θ(2)) = Σ(t). This assumption simplifies
the statistical inference significantly and makes different estimators well-defined.
Nonetheless, this assumption is often not realistic in practical applications.

3. Elliptic Diffusion. Another important assumption often made in the study of
SDEs is that the diffusion function Σ(t,x;θ(2)) is elliptic. This means that the
squared diffusion matrix ΣΣ⊤(t,x;θ(2)) is positive definite for all t and x. This
assumption ensures non-degeneracy of the diffusion term, which is crucial for some
discretization schemes and estimators, as they are well-defined only if the ellipticity
condition is satisfied.

These assumptions are simple. However, they limit the model’s applicability in real-
world scenarios requiring nonlinear growth and nonlinear state-dependent hypoelliptic
diffusion functions.
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2.2 Our Approach

2.2 Our Approach

In the three Papers I, II, and III, we assume an autonomous SDE, meaning that the
functions F and Σ do not depend on time t. This assumption simplifies the derivations,
but our approach can easily be extended to non-autonomous SDEs. Here, we provide
an overview of how to generalize the autonomous assumption to handle non-autonomous
SDEs. Additionally, we assume that the initial value x0 is deterministic. While this
assumption simplifies the analysis, our method can be adapted to accommodate a random
initial value. We maintain this assumption in the thesis for clarity and simplicity.

The following subsection discusses how our work relies upon and extends the three
Common Assumptions 2.1.

2.2.1 Non-Lipschitz and Polynomial Drift

We do not impose the strong conditions of linear growth and Lipschitz continuity on F.
Instead, we adopt weaker conditions:

1. One-Sided Lipschitz Condition. Function F is twice continuously differentiable
with respect to x and θ. Additionally, for all θ ∈ Θ t ≥ 0, for a sufficiently large
p ≥ 1, there is a constant Lθ > 0 such that:

(x− y)⊤ (F(t,x;θ(1))− F(t,y;θ(1)))

+
2p− 1

2

d∑

i=1

∥Σi(t,x;θ
(2))−Σi(t,y;θ

(2))∥2 ≤ Lθ∥x− y∥2, ∀x,y ∈ X .

2. Polynomial Growth. Function F grows at most polynomially in x, uniformly in
θ(1), i.e., there exist constants Cθ(1) > 0 and p ≥ 1 such that for t ≥ 0:

∥F(t,x;θ(1))−F(t,y;θ(1))∥2 ≤ Cθ(1)(1+∥x∥2p−2+∥y∥2p−2)∥x−y∥2, ∀x,y ∈ X .

Additionally, the derivatives of F are of polynomial growth in x, uniformly in θ(1).

These weaker conditions are sufficient for a unique, strong solution to exist [Tretyakov
and Zhang, 2013] and better reflect the needs in practical scenarios. We demonstrate
through numerical studies on the Lorenz system (an example that does not satisfy the
one-sided Lipschitz condition) that these conditions are sufficient but not necessary. The
primary requirement is a unique, strong solution to the SDE (1). By adopting these more
flexible assumptions, we aim to broaden the applicability of our methods while ensuring
mathematical rigor.

2.2.2 Constant and Pearson-type Diffusion Function

In Papers I and II we make the strong assumption of constant diffusion function, Σ(t,Xt;θ
(2)) =

Σ. We refer to SDEs with constant diffusion functions as SDEs with additive noise. On
the contrary, if the diffusion function depends on the state vector X, it is said that SDE

5



2 Stochastic Differential Equation Model

has multiplicative noise. The additive noise assumption is necessary for the splitting
schemes used in all three papers. While we formally introduce these schemes in Chapter
4, we intuitively go into the main idea here to explain why we need a constant diffusion.

Starting with SDE (1) with additive noise, we can split the drift function F into a sum
of linear and nonlinear functions. Then, we split the original SDE (1) into two differential
equations: a linear SDE with additive noise and a nonlinear ODE. Although this is not
the only way to split SDE (1) and might not be optimal, it is the most natural approach.
This is because then we obtain an Ornstein-Uhlenbeck (OU) process, which is the solution
of the linear SDE with additive noise. The OU process is well-studied and understood
with an explicit closed-form solution and known Gaussian transition probability. This
splitting strategy provides a pseudo-likelihood for statistical inference for SDEs using
splitting schemes. It can inspire new ideas and methods for further development of this
approximation method. For example, in Paper III, we generalize the constant diffusion
function assumption to allow quadratic functions of the state vector X in the squared
diffusion matrix ΣΣ⊤(t,x;θ(2)). We refer to SDEs with this type of diffusion matrices as
SDEs with Pearson-type noise as a generalization of Pearson diffusions, a standard and
powerful class of one-dimensional models. While allowing for non-constant diffusion, one
loses the well-defined properties of the OU process. However, we can still find closed-form
formulas for the first two moments of a linear SDE with this type of diffusion function.
These formulas allow for approximating the transition density of the linear SDE with a
Gaussian density with the first two correct moments.

2.2.3 Hypoelliptic Diffusion

The SDE (1) is said to be hypoelliptic if ΣΣ⊤(t,x;θ(2)) is not of full rank, while the solu-
tion admits a smooth transition density with respect to the Lebesgue measure. According
to Hörmander’s theorem [Nualart, 2006], this is fulfilled if the SDE in its Stratonovich
form satisfies the weak Hörmander condition.

The Stratonovich form of SDE (1) is given as

dXt =


F(t,Xt;θ

(1))− 1

2

d∑

k=1

m∑

j=1

∂kΣ·j(t,Xt;θ
(2))Σkj(t,Xt;θ

(2))


 dt

+Σ(t,Xt;θ
(2)) ◦ dWt,

(4)

where Σ·j is the jth column of Σ. Then, the Stratonovich SDE (4) has drift

G(t,Xt;θ) := F(t,Xt;θ
(1))− 1

2

d∑

k=1

m∑

j=1

∂kΣ·j(t,Xt;θ
(2))Σkj(t,Xt;θ

(2)). (5)

To describe the weak Hörmander condition, we start by introducing the Lie bracket. The
Lie bracket [f , g] of two smooth vector fields f , g : Rd → Rd is defined as

[f , g] := (Dxg(x))f(y)− (Dxf(x))g(y),

6



2.2 Our Approach

where Dxf is the Jacobian matrix of function f .
We define the set H of vector fields by initially including Σ·j , j = 1, 2, ..., d, and then

recursively adding Lie brackets

H ∈ H ⇒ [G, H], [Σ·1, H], . . . , [Σ·d, H] ∈ H.

The weak Hörmander condition is met if the vectors in H span Rd at every point (t,x;θ) ∈
[0,∞)×X ×Θ.

In Paper II, we work with second-order SDEs. We show that they are hypoelliptic
under the assumption of additive noise. In Paper III, we create a framework that includes
hypoelliptic SDEs, also with multiplicative noise.

Now that we set up the model class, we focus on parameter estimation.
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3 Parameter Estimation from Discrete
Observations

Parameter estimation is a common challenge in practical modeling with SDEs. While
collaboration with domain experts might provide us with the parametric form of the SDE,
the specific parameter values often remain unknown. Typically, we have experimental
data that we use to estimate these parameters. This section aims to give an overview of
solutions to these problems, focusing specifically on statistical likelihood-based inference
methods.

Working with SDEs with additive noise is much more manageable because many meth-
ods are designed explicitly for SDEs with constant diffusion coefficients. Additive noise
simplifies the SDE, making it more tractable for various methods and analyses. However,
many real-world systems exhibit state-dependent diffusion, leading to two possible ap-
proaches: 1) transforming the SDE to reduce the multiplicative noise to additive noise or
2) generalizing methods that work with additive noise to handle multiplicative noise. We
first discuss the transformation approach, as our initial focus is on models with additive
noise. In Section 3.4, we recall different estimation methods and discuss which methods
can work only with additive noise and which can be used or generalized to work with
multiplicative noise.

3.1 Lamperti Transform

The Lamperti transform converts an SDE with state-dependent diffusion into an SDE
with unit diffusion. This transformation is always possible for univariate SDEs. Some-
times, extending the univariate Lamperti transform to the multivariate setting is possible.
For example, the following theorem (Theorem 4 in [Møller and Madsen, 2010]) outlines
a possible multivariate Lamperti transform.

Theorem 1 (Multivariate Lamperti Transform). Let Xt be a solution of SDE (1), where
Σ(t,Xt;θ

(2)) ∈ Rd×d is a diagonal matrix with diagonal elements Σ(i,i)(t,Xt;θ
(2)) that

depend only on X
(i)
t , i.e.,

Σ(i,i)(t,Xt;θ
(2)) = Σ(i,i)(t,X

(i)
t ;θ(2)). (6)

Then, the ith element of the Lamperti transformation

Y
(i)
t = ψ(i)(t,X

(i)
t ;θ(2)) :=

∫
1

Σ(i,i)(t, x;θ(2))
dx

∣∣∣∣
x=X

(i)
t

, (7)

9
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is given by the following SDE

dY
(i)
t =

(
∂ψ(i)(t, x;θ(2))

∂t

∣∣∣∣
x=ψ(i)(t,Y

(i)
t ;θ(2))−1

+
F (i)(t, ψ(i)(t, Y

(i)
t ;θ(2))−1;θ(1))

Σ(i,i)(t, ψ(i)(t, Y
(i)
t ;θ(2))−1;θ(2))

)
dt

+
1

2

∂Σ(i,i)(t, x;θ(2))

∂t

∣∣∣∣
x=ψ(i)(t,Y

(i)
t ;θ(2))−1

dt+ dW
(i)
t .

Applying the Lamperti transform, we obtain a so-called reduced SDE with additive
noise with identity diffusion matrix

dYt = FY(t,Yt;θ) dt+ dWt, Y0 = y0. (8)

Here, the drift term FY is expressed as a function of the original drift F, diffusion Σ,
the transformation ψ, and the transformed state Yt. Sometimes, we apply a similar
transformation that leads to an SDE with additive noise but not necessarily with an
identity diffusion matrix. This can be useful to avoid a transformation depending on the
parameters we wish to estimate. We thus abuse the notation of the Lamperti transform
and refer to any transformation that converts an SDE with state-dependent diffusion
into an SDE with constant diffusion.

We note that the Lamperti transform is applicable in more general multivariate SDE
settings with a more complex structure of diffusion matrix Σ. See, for example, Aït-
Sahalia [2008] and his necessary and sufficient condition for a multivariate Lamperti
transform to exist.

In the next section, we assume that the SDE has additive noise, either by model
construction or, if possible, obtained from the Lamperti transform.

3.2 Stochastic Differential Equations with Additive Noise

To compare common parameter estimators in Section 3.4 and introduce the splitting
schemes in Chapter 4, we assume that SDE (1) has additive noise, that is,

dXt = F(t,Xt;θ
(1)) dt+Σ(t;θ(2)) dWt, X0 = x0 ∈ X . (9)

Instead of estimating θ(2) directly, we only estimate parameters in ΣΣ⊤(t;θ(2)) because
the covariance matrix of Xt depends on ΣΣ⊤. For any orthogonal matrix Q, Σ and
ΣQ induce the same distribution due to the properties of the Wiener process Wt. More
formally, any two matrices Σ1 and Σ2 that satisfy Σ1Σ

⊤
1 = Σ2Σ

⊤
2 generate the same

covariance structure for Xt. Hence, the matrix Σ is only identifiable up to orthogonal
transformations. That means that we cannot uniquely determine Σ itself, but rather we
can only estimate the equivalence class of Σ defined by ΣΣ⊤.

For that reason, we half-vectorize ΣΣ⊤ as

ς := vech(ΣΣ⊤) = ([ΣΣ⊤]11, [ΣΣ⊤]12, [ΣΣ⊤]22, ..., [ΣΣ⊤]1d, ..., [ΣΣ⊤]dd).

Since ΣΣ⊤ is a symmetric d×d matrix, ς is of dimension s = d(d+1)/2. For a diagonal
matrix, instead of a half-vectorization, we use ς := diag(ΣΣ⊤). Then, when we refer to
the diffusion parameter, θ(2), we refer to the parameter of ς(t;θ(2)).
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3.3 Maximum Likelihood Estimation

We might have a set of observations of the state Xt at a finite number of time points.
Alternatively, we might only have partial observations of the state possibly corrupted by
noise. In this thesis, we focus on the case where we observe the state Xt directly without
additional observational errors. When dealing with partial observations, we assume a
specific structure indicating which state components are observed and which are not.
This structure is motivated by the second-order SDE framework, which systematically
handles partial observations in the modeling process.

Assume we observe N + 1 values of the SDE, Xt0 ,Xt1 , . . . ,XtN . A classical method
for SDE parameter estimation is the MLE. We assume the observations are equidistant,
i.e., tk+1 − tk =: h for all k = 0, 1, . . . , N − 1. Additionally, we consider high-frequency
asymptotics where the number of observations N goes to infinity, the step size h goes to
zero, and the length of observed time interval T = Nh goes to infinity. This last condition
is necessary to prove the consistency of the drift parameter. Moreover, when proving
the estimator’s asymptotic normality, we require that Nh2 goes to zero, a condition
sometimes referred to as a rapidly increasing experimental design.

Due to the Markov property of SDEs, we can write down the likelihood of the observed
values given the parameters as follows

p(Xt1 , . . .XtN | θ) =
N−1∏

k=0

p(Xtk+1
| Xtk ;θ),

where p(Xtk+1
| Xtk ;θ) is the transition density of the SDE and can be obtained as a

solution to the Kolmogorov forward equation.
In the MLE method, we wish to maximize the preceding likelihood expression or,

equivalently, minimize the negative log-likelihood:

L(θ) = − log p(Xt1 , . . .XtN | θ) = −
N−1∑

k=0

log p(Xtk+1
| Xtk ;θ). (10)

Thus, the MLE of the parameters is obtained by finding the vector of parameters that
minimizes the negative log-likelihood L(θ), i.e.,

θ̂MLE = argmin
θ

L(θ).

The minimum can be computed analytically by setting derivatives to zero or using nu-
merical optimization methods. However, we need to evaluate the likelihood, which is
generally intractable because the transition densities are not available in closed form.
For linear SDEs, we know the transition densities, allowing explicit evaluation of the
likelihood. We cannot analytically solve the Kolmogorov forward equation in the mul-
tivariate nonlinear case, making the transition density intractable. In this situation, a
typical approach is to replace the SDE or its transition density with a tractable ap-
proximation. We can use various SDE discretization methods, such as Euler-Maruyama
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(EM), strong order 1.5 scheme, or local linearization (LL), to form an SDE approximation
whose transition density we can evaluate. Alternatively, we can directly approximate the
transition density of the SDE, for example, using Gaussian approximations or Hermite
expansions.

The following section briefly overviews different MLE approximation methods. It serves
as a literature review and a comparative analysis of other approaches. By examining these
methods, we can evaluate their effectiveness, understand the assumptions they rely on,
and determine how they can be generalized or adapted for specific classes of models.
This discussion highlights the similarities and differences between various approximation
techniques, their outcomes, and their practical implementations.

3.4 Approximate Maximum Likelihood Estimators

The intractability of the transition density challenges parameter estimation in nonlinear
SDEs. We use approximations for the likelihood or transition densities to facilitate eval-
uating the likelihood function. This section explores various methods for approximating
the solution of SDE or its transition density to enable maximum likelihood estimation.

In the rest of this section, we suppress the notation for the parameter, so for example,
F(t,x) stands for F(t,x;θ(1)), and so on.

3.4.1 Estimators Based on Approximated Solutions

One approach to parameter estimation in nonlinear SDEs is to approximate the solution
of the SDE with a continuous- or discrete-time system for which the transition density is
known or can be computed more easily. Below, we discuss three standard methods: the
EM, the strong order 1.5, and LL estimators.

3.4.1.1 Euler-Maruyama Estimator

The EM method is a straightforward discretization scheme used to approximate the
solution of SDEs. It originates from the Itô-Taylor expansion, which provides a framework
for approximating the solution of an SDE by expanding it in terms of the increments of
the Wiener process [Kloeden and Platen, 1992]. The EM method uses only the first-order
terms of the expansion.

The EM approximation of the SDE (1) is defined as follows

X̂tk+1
= X̂tk + hF(tk, X̂tk) +Σ(tk, X̂tk)∆Wk,

where ∆Wk ∼ N (0, h). The simplicity of this method makes it a versatile tool, as it does
not restrict the diffusion function Σ to be constant and can be easily applied to SDEs
of any dimension. Furthermore, the method avoids the need to compute the Jacobian,
making it computationally fast and easy to implement.
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The discrete process X̂tk has a Gaussian transition density, leading to the transition
density approximation:

p(xtk+1
| xtk ;θ) ≈ N

(
xtk+1

;µ
[EM]
h (tk,xtk ;θ

(1)),Ω
[EM]
h (tk,xtk ;θ

(2))
)
,

where

µ
[EM]
h (tk,xtk ;θ

(1)) = xtk + hF(tk,xtk),

Ω
[EM]
h (tk,xtk ;θ

(2)) = hΣΣ⊤(tk,xtk).

This results in the following approximation of the negative log-likelihood:

L[EM](X;θ) =
1

2

N−1∑

k=0

log det(2πΩ
[EM]
h (tk,Xtk))

+
1

2

N−1∑

k=0

(Xtk+1
− µ[EM]

h (tk,Xtk))
⊤Ω[EM]

h (tk,Xtk)
−1(Xtk+1

− µ[EM]
h (tk,Xtk)).

While the method is highly straightforward to implement and seemingly versatile with
a non-constant diffusion function, it does have some major limitations. For instance,
Hutzenthaler et al. [2010] proved that the EM discretization diverges from the true so-
lution of SDEs with super-linear drift terms. Moreover, it is unsuitable for hypoelliptic
SDEs, as it approximates the covariance by hΣΣ⊤, which is not of full rank.

Even for linear SDEs that have explicit transition densities, the EM approximation
does not have the correct covariance matrix since the true covariance is not hΣΣ⊤.

For all the previous reasons, the EM method can lead to significant bias in the param-
eter estimators.

3.4.1.2 Strong Order 1.5 Estimator

By taking more terms into the Itô-Taylor expansion, we can form methods of arbitrary
order. One such method is the strong order 1.5 scheme (SO1.5) [Kloeden and Platen,
1992], which includes noise terms up to order h3/2 and deterministic terms up to order h2.
The SO1.5 scheme can be used to discretize SDEs with non-constant noise because all
involved iterated Itô integrals have known distributions. However, higher-order iterated
Itô integrals in the SO1.5 scheme become challenging since the final noise distribution
consists of a summation of different distributions like Gaussian and chi-square, making
it impossible to find the closed-form likelihood.

Thus, we only consider the SO1.5 approximation for SDEs with additive noise:

X̂tk+1
= X̂tk + hF(tk, X̂tk) +Σ(tk)∆Wk

+
h2

2


∂tF(tk, X̂tk) +DxF(tk, X̂tk)F(tk, X̂tk) +

1

2

d∑

i,j=1

∂2i,jF(tk, X̂tk)[ΣΣ⊤(tk)]ij




+DxF(tk, X̂tk)Σ(tk)∆ζk +Σ′(tk)(h∆Wk −∆ζk),
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where ∆ζk and ∆Wk are jointly normally distributed as
[
∆ζk
∆Wk

]
∼ N

([
0
0

]
,

[
h3

3 I h2

2 Ih
h2

2 I hI

])
. (11)

This additional noise structure allows the method to capture more complex details of the
SDE’s dynamics, leading to a more accurate approximation.

The transition density is approximated as

p(xtk+1
| xtk ;θ) ≈ N

(
xtk+1

;µ
[SO1.5]
h (tk,xtk ;θ),Ω

[SO1.5]
h (tk,xtk ;θ)

)
,

where

µ
[SO1.5]
h (tk,xtk ;θ) = xtk + hF(tk,xtk) +

h2

2
(∂tF(tk,xtk) +DxF(tk,xtk)F(tk,xtk))

+
h2

4

d∑

i,j=1

∂2i,jF(tk,xtk)[ΣΣ⊤(tk)]ij ,

Ω
[SO1.5]
h (tk,xtk ;θ) = hΣΣ⊤(tk) +

h2

2

(
ΣΣ⊤(tk)D

⊤
xF(tk,xtk) +DxF(tk,xtk)ΣΣ⊤(tk)

)

+
h2

2
∂tΣΣ⊤(tk) +

h3

3

(
DxF(tk,xtk)ΣΣ⊤(tk)D

⊤
xF(tk,xtk) + ∂tΣΣ⊤(tk)

)

+
h3

6

(
Σ′(tk)Σ(tk)

⊤D⊤
xF(tk,xtk) +DxF(tk,xtk)Σ(tk)Σ

′(tk)
⊤
)
.

Under the assumption of a constant diffusion function, the SO1.5 method provides an
accurate MLE approximation even in hypoelliptic scenarios [Ditlevsen and Samson, 2019].
It offers significantly higher precision than the EM method. However, despite its increased
accuracy, this method has two practical issues. First, the covariance matrix Ω

[SO1.5]
h

might not be positive definite. This issue is more likely to occur for large step size h. A
common way to avoid this is to approximate log detΩ

[SO1.5]
h and (Ω

[SO1.5]
h )−1 around h =

0 using a Taylor expansion. Second, the SO1.5 method requires additional computations,
specifically the computation and implementation of the Jacobian and Hessian of the drift
function F and the derivative of Σ, making it computationally more complex and slower
than the EM method.

3.4.1.3 Local Linearization Estimator

The LL method offers an alternative approach to approximating solutions to SDEs with
constant diffusion functions [Ozaki, 1985, Shoji and Ozaki, 1998, Shoji, 1998, Ozaki et al.,
2000]. This method involves approximating the nonlinear SDE locally (between each two
consecutive points) with a linear one, allowing for a more tractable solution.

The basic idea behind the LL is to approximate SDE (8) in the interval [t, t + h) by
the following linear SDE

dX̂s = A(t, X̂t;θ
(1))X̂s ds+ a(s, t, X̂t,θ) ds+Σ(s) dWs, s ∈ [t, t+ h), (12)
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where functions A and a are derived by linearizing the drift F. The linear SDE (12) has
the following solution

X̂t+h = exp(A(t, X̂t)h)X̂t +

∫ t+h

t
exp(A(t, X̂t)(t+ h− u))a(u, t, X̂t;θ) du

+

∫ t+h

t
exp(A(t, X̂t)(t+ h− u))Σ(u) dWu.

To derive A and a, we start by linearizing F in each interval [t, t + h) using the Itô
formula. Specifically, we get

A(t, X̂t) = DxF(t, X̂t),

and

a(s, t, X̂t,θ) = F(t, X̂t)−DxF(t, X̂t)X̂t

+


∂tF(t, X̂t) +

1

2

d∑

i,j=1

∂2i,jF(t, X̂t)[ΣΣ⊤(t)]ij


 (s− t).

By construction, the LL yields a Gaussian transition density. After some algebraic ma-
nipulations, the approximation of the transition density becomes:

p(xtk+1
| xtk ;θ) ≈ N

(
xtk+1

;µ
[LL]
h (tk,xtk ;θ

(1)),Ω
[LL]
h (tk,xtk ;θ)

)
,

where

µ
[LL]
h (tk,xtk ;θ) = xtk + r0h(DxF(tk,xtk))F(tk,xtk)

+
(
hr0h(DxF(tk,xtk))− r1h(DxF(tk,xtk))

)

·


∂tF(tk,xtk) +

1

2

d∑

i,j=1

∂2i,jF(tk,xtk)[ΣΣ⊤(tk)]ij


 ,

Ω
[LL]
h (tk,xtk ;θ) =

∫ tk+1

tk

exp(DxF(tk,xtk)(tk+1 − u))ΣΣ⊤(u) (13)

exp(DxF
⊤(tk,xtk)(tk+1 − u)) du.

In the previous equation, we introduced the following notation

rnh(M) :=

∫ h

0
exp(Mu)un du, n = 0, 1. (14)

Integrals rnh can be computed in various ways, leading to different numerical implemen-
tations of the LL scheme. One approach is to solve the integrals analytically. However,
this involves finding the inverse of the Jacobian matrix, yielding numerical instability
because it depends on the data points and parameters, making it likely that the inverse
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does not exist. Alternatively, we can express these integrals using matrix exponentials,
resulting in a more stable numerical implementation.

If Σ does not depend on time t, the integral in the covariance matrix Ω
[LL]
h also

can be represented using only the matrix exponential, which enhances the stability and
efficiency of the computation. Chapter 5 discusses this approach in more detail. For
diffusion matrix Σ that depends on t, we can Taylor-expand it and then use the same
technique as in the case of constant Σ.

It is not hard to see that the LL discretization is of strong order 1.5 as proved in
[Jimenez and Biscay, 2002]. Namely, by taking the Taylor expansion of µ[LL]

h , we get

µ
[LL]
h (tk,xtk ;θ) = xtk + hF(tk,xtk) +

h2

2
(∂tF(tk,xtk) +DxF(tk,xtk)F(tk,xtk))

+
h2

4

d∑

i,j=1

∂2i,jF(tk,xtk)[ΣΣ⊤(tk)]ij +R(h3, tk,xtk ;θ),

where R(h3, tk,xtk ;θ
(1)) is a generic notation for residuals of order at least h3. We ob-

serve that it matches µ[SO1.5]
h up to order h3. Interestingly, the covariance matrices Ω[LL]

and Ω
[SO1.5]
h coincide only up to order h2 as it can be seen in the following approximation

Ω
[LL]
h (tk,xtk ;θ) = hΣΣ⊤(tk) +

h2

2

(
ΣΣ⊤(tk)D

⊤
xF(tk,xtk) +DxF(tk,xtk)ΣΣ⊤(tk)

)

+
h2

2
∂tΣΣ⊤(tk) +

h3

6

(
∂tΣΣ⊤(tk)D

⊤
xF(tk,xtk) +DxF(tk,xtk∂tΣΣ⊤(tk))

)

+
h3

6

(
∂2tΣΣ⊤(tk) + 2ΣΣ⊤(tk)D

⊤
xF(tk,xtk)D

⊤
xF(tk,xtk))

)

+
h3

6

(
ΣΣ⊤(tk)D

⊤
xF(tk,xtk)

2 +DxF(tk,xtk)
2ΣΣ⊤(tk)

)
+R(h4, tk,xtk ;θ).

The LL estimator performs well for SDEs with constant diffusion terms and nonlinear
drift, providing robust parameter estimation even in complex scenarios such as for hy-
poelliptic diffusions [Melnykova, 2020]. One notable advantage of the LL scheme is that
it produces the correct solution for linear SDEs, a property not shared by discretizations
based on the Itô-Taylor expansion. Moreover, unlike the SO1.5 scheme, the covariance
matrix is always positive definite within the parameter space, regardless of the data
points or step size h. Thus, the LL estimator is numerically stable and reliable across
various scenarios.

The need to compute the integrals rnh and the covariance matrix Ω
[LL]
h based on the

Jacobian matrix makes the LL scheme slower than more straightforward methods. This
increased computational intensity is a trade-off for the method’s improved precision and
robustness.

3.4.2 Estimators Based on Approximated Transition Densities

Directly approximating the SDE’s transition density is an alternative to discretizing it.
The most common methods include Gaussian approximations and Hermite expansions.
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3.4.2.1 Gaussian Approximated-Likelihood Estimator

Previous sections introduced three methods based on discretization methods that yield
Gaussian likelihoods. Alternatively, we can start by assuming that the transition density
is Gaussian and derive the likelihood from this premise. The method begins with a
Gaussian approximation (GA) of the transition density, expressed as

p(xtk+1
| xtk ;θ) ≈ N (xtk+1

;µ[GA](tk,xtk ;θ
(1)),Ω

[GA]
h (tk,xtk ;θ)).

Since the first and second moments of SDE (1) are generally unknown, we can approx-
imate them using a Taylor expansion [Kessler, 1997]1. We approximate the mean and
covariance functions using the Taylor series expansion of

h 7→ E [ϕ(t+ h,Xt+h;θ) | Xt = x]

for some function ϕ. Consider the Taylor series expansion centered at h = 0 for the
expectation of the function ϕ of the state variable X

E[ϕ(t+ h,Xt+h;θ)] =
∞∑

n=0

hn

n!

dn

dtn
E[ϕ(t,Xt;θ)].

Itô lemma yields

d

dt
E[ϕ(t,Xt;θ)] = E[Lϕ(t,Xt;θ)],

where L is the generalized2 infinitesimal generator of SDE (1)

Lϕ(t,x;θ) = ∂tϕ(t,Xt;θ) +Dxϕ(t,x;θ)F(t,x;θ)

+
1

2

d∑

i,j=1

∂2i,jϕ(t,x;θ)[ΣΣ⊤(t,x;θ(2))]ij .

Now, repeating the same idea, we derive second-order derivatives

d2

dt2
E[ϕ(t,Xt;θ)] =

d

dt

(
d

dt
E[ϕ(t,Xt;θ)]

)
=

d

dt
E[Lϕ(t,Xt;θ)] = E[L2ϕ(t,Xt;θ)].

Inductively,
dn

dtn
E[ϕ(t,Xt;θ)] = E[Lnϕ(t,Xt;θ)].

Thus, the Taylor series expansion centered at h = 0 becomes

E[ϕ(t+ h,Xt+h;θ)] =
∞∑

n=0

hn

n!
E[Lnϕ(t,Xt;θ)].

1In Papers I-III, we refer to the GA estimator as the Kessler (K) estimator.
2Infinitesimal generator plus the time derivative.
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Conditioning on Xt = x, the expectations in the series disappear and we get

E[ϕ(t+ h,Xt+h;θ) | Xt = x] =
∞∑

n=0

hn

n!
Lnϕ(t,x;θ).

To approximate the conditional mean, choose ϕ(t,x) = x and get the following approx-
imation up to order h2

µ
[GA2]
h (tk,xtk ;θ

(1)) = xtk + hF(tk,xtk) +
h2

2
(∂tF(tk,xtk) +DxF(tk,xtk)F(tk,xtk))

+
h2

4

d∑

i,j=1

∂2i,jF(tk,xtk)[ΣΣ⊤(tk,xtk)]ij .

Similarly, to approximate the covariance, choose ϕ(t,x) = xx⊤, and use the formula

Cov(Xt) = E[XtX
⊤
t ]− E[Xt]E[Xt]

⊤.

Then, the approximated conditional covariance matrix up to order h2 is

Ω
[GA2]
h (tk,xtk ;θ) = hΣΣ⊤(tk,xtk)

+
h2

2

(
DxF(t,xtk)ΣΣ⊤(tk,xtk) +ΣΣ⊤(tk,xtk)D

⊤
xF(t,xtk) + ∂tΣΣ⊤(tk,xtk)

)

+
h2

2




d∑

i=1

∂iΣΣ⊤(tk,xtk)F
(i)(tk,xtk) +

1

2

d∑

i,j=1

∂2i,jΣΣ⊤(tk,xtk)[ΣΣ⊤(tk,xtk)]ij


 .

Under the assumption of additive noise, the GA method up to order h2 provides the
same transition density as the SO1.5 scheme. This result illustrates how starting with
different ideas can produce the same results. However, unlike SO1.5, the GA method
can incorporate multiplicative noise. Additionally, we can add more terms to expand
the conditional mean and covariance at the price of increased derivation complexity.
Specifically, we advise using a symbolic computation tool like Mathematica Wolfram
Research, Inc. to derive higher-order GA approximation. The same issues encountered
with the SO1.5 method, such as possible non-positive definite covariance matrices, are
also the case of the GA method.

This idea of Gaussian approximation and expanding the first two moments of SDE (1)
solution inspired a lot of research and was foundational for estimators proposed among
others by [Uchida and Yoshida, 2012, Hurn et al., 2013, Gloter and Yoshida, 2020, Iguchi
and Beskos, 2023]. Moreover, this idea is vital in Paper III that combines the splitting
scheme with a Gaussian approximation.

3.4.2.2 Hermite Expansion Estimator

Another groundbreaking idea is the Hermite expansion (HE) method [Aït-Sahalia, 2002,
2008], which has motivated extensive research and the development of various parameter
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estimators for SDEs. This method approximates the transition density of SDE (1) by
Hermite series expansion. While the HE method can be applied in non-reducible cases,
i.e., for SDEs that cannot be reduced using the Lamperti transform (7), for illustrative
purposes, we only focus on scenarios where the SDE (1) can be reduced to a unit diffusion
process Yt (8). Moreover, this method can be applied to time-inhomogeneous SDEs
[Choi, 2013, 2015]. However, in this section, we assume that SDE (1) is autonomous,
i.e., the drift and the diffusion functions do not depend on time t.

The core idea is to transform the original SDE into a unit diffusion process, bringing
the transition density closer to a Gaussian distribution. This transformation is followed
by conditional standardization, which allows an approximation of the transition density
as a standard Gaussian. Adding terms in the Hermite expansion further improves the
accuracy of this approximation.

The HE method can be categorized into two primary types: the finite expansion,
which uses a limited number of Hermite polynomials, and the infinite expansion, where
the series of Hermite polynomials extends to infinity. In this discussion, we illustrate the
latter, demonstrating how an infinite series of Hermite polynomials can approximate the
transition density precisely.

When the SDE (1) is reducible to a unit diffusion process Yt (8), the negative log-
likelihood of Yt can be approximated up to order hJ as

L[HE](Y;θ) =
d

2

N−1∑

k=0

log(2πh) +
N−1∑

k=0

C
(−1)
Y (ytk+1

| ytk)
h

+
N−1∑

k=0

J∑

j=0

hj

j!
C

(j)
Y (ytk+1

| ytk),

where the coefficients C(j)
Y , j = −1, 0, 1, ..., J are obtained from the Kolmogorov backward

and forward equations as

C
(−1)
Y (ytk+1

| ytk) =
1

2
∥ytk+1

− yk∥2 =
1

2

d∑

i=1

(y
(i)
tk+1

− y
(i)
tk
)2,

C
(0)
Y (ytk+1

| ytk) =
d∑

i=1

(y
(i)
tk+1

− y
(i)
tk
)

∫ 1

0
F

(i)
Y (ytk + u(ytk+1

− ytk) | ytk) du,

C
(j)
Y (ytk+1

| ytk) = j

∫ 1

0
G

(j)
Y (ytk + u(ytk+1

− ytk) | ytk)uj−1 du, j = 1, 2, ...J.
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3 Parameter Estimation from Discrete Observations

The functions G(j)
Y are calculated as follows

G
(1)
Y (ytk+1

| ytk) =
d∑

i=1

∂F
(i)
Y (ytk+1

)

∂y(i)
+

d∑

i=1

F
(i)
Y (ytk+1

)
∂C

(0)
Y (ytk+1

| ytk)
∂y(i)

− 1

2

d∑

i=1


∂

2C
(0)
Y (ytk+1

| ytk)
∂(y(i))2

+

(
∂C

(0)
Y (ytk+1

| ytk)
∂y(i)

)2

 ,

G
(j)
Y (ytk+1

| ytk) =
d∑

i=1

F
(i)
Y (ytk+1

)
∂C

(j−1)
Y (ytk+1

| ytk)
∂y(i)

− 1

2

d∑

i=1

∂2C
(j−1)
Y (ytk+1

| ytk)
∂(y(i))2

− 1

2

d∑

i=1

j−1∑

m=0

(
j − 1

m

)
∂C

(m)
Y (ytk+1

| ytk)
∂y(i)

∂C
(j−1−m)
Y (ytk+1

| ytk)
∂y(i)

, j ≥ 2.

Finally, use the change of variable formula together with the Lamperti transform ψ (7)
to obtain the HE approximated negative log-likelihood based on Xt

L[HE](X;θ) =
1

2

N−1∑

k=0

log det
(
2πhΣΣ⊤(xtk ;θ)

)
+

1

2

N−1∑

k=0

∥ψ(xtk+1
;θ)−ψ(xtk ;θ)∥2

h

+

N−1∑

k=0

J∑

j=0

hj

j!
C

(j)
Y (ψ(xtk+1

;θ) | ψ(xtk ;θ);θ).

A general implementation of this method is highly complex due to iterative calculation
of coefficients C(j)

Y . In practice, the HE approximation is used up to order h2, and as
in the case of the GA method, it is highly advisable to use symbolic computation tools.
In Paper I, we compare our proposed method to the HE estimator and illustrate poor
performance for larger h of this method due to small order J = 2.
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4 Splitting Schemes

This section introduces splitting schemes and their induced estimators. It starts by
motivating splitting schemes in deterministic differential equations and then extends the
idea to SDEs with additive noise. It also compares the new estimators to those in Section
3.4. Finally, the section ends by extending the idea to SDEs with Pearson-type noise.

First, we assume that the diffusion matrix is zero, Σ ≡ 0, reducing the SDE (1) to a
deterministic ODE

dx(t)

dt
= F(t,x(t);θ(1)), x(t) = x0 ∈ X . (15)

The basic idea of splitting methods for the time integration of ODEs can be formulated
as follows. Given the ODE (15), suppose that function F can be expressed as a sum of
M functions F[i] : [0,∞)×X ×Θθ(1) → Rd

F =
M∑

m=1

F[m], (16)

such that each independent sub-ODE

dx(t)

dt
= F[m](t,x(t);θ(1)), x(t) = x0, m = 1, . . . ,M (17)

can be solved exactly. Their solutions are denoted by h-flows Φ
[m]
h (x0) at time step

t = h. A toy example of splitting a vector field into a sum of two vector fields where
each describes an ODE that can be solved explicitly is depicted in Figure 1.

F F[1] F[2]

+=

Figure 1: Two-dimensional vector field split into a sum of two uncoupled vector fields.

Having derived the explicit solutions of the sub-equations, we need to compose them
properly. Two common ways of composition are the Lie-Trotter (LT) and the Strang
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4 Splitting Schemes

(S) splitting. The Lie-Trotter splitting approximations are obtained by composing the
solutions of the sub-equations at time t = h and starting from x0. Specifically, the
Lie-Trotter composition of flows is

Φ
[LT]
h = Φ

[1]
h ◦ · · · ◦ Φ[M ]

h . (18)

Expanding Φ
[LT]
h into a Taylor series reveals that it approximates the exact solution

Φh(x0) to first-order accuracy, i.e., Φ[LT]
h (x0) = Φh(x0) +O(h2), where Φh is the correct

h-flow of ODE (15).
Higher-order approximations can be achieved by introducing additional intermediate

steps with appropriately chosen coefficients. An example of higher-order approximation
is the Strang splitting, given by

Φ
[S]
h = Φ

[M ]
h/2 ◦ · · · ◦ Φ

[2]
h/2 ◦ Φ

[1]
h ◦ Φ[2]

h/2 ◦ · · · ◦ Φ
[M ]
h/2. (19)

It turns out that the S splitting has one order higher accuracy compared to the LT, that
is Φ[S]

h (x0) = Φh(x0)+O(h3). It is possible to derive a splitting scheme for any arbitrary
order of convergence. However, there is a threshold between complexity and precision,
where the more precise splitting schemes are naturally more complex to work with. Thus,
in this thesis, we focus only on the LT and the S splitting and mainly work with the
latter due to its superiority.

Figure 2 illustrates the composition schematic for the LT and S splitting for the ex-
ample from Figure 1.

x[LT](tk+1)

x[LT](tk)
Φ

[2]
h

Φ
[LT]
h

Φ
[1]
h

x[S](tk+1)

x[S](tk)

Φ
[S]
h/2

Φ
[2]
h/2

Φ
[S]
h Φ

[1]
h

Figure 2: Schematic of the Lie-Trotter (left) and Strang (right) splitting approximations
in case of two vector fields F[1] and F[2].

Here, we mention just a few reasons why splitting methods are popular in the the-
ory and applications of dynamical systems. According to [Blanes et al., 2009], splitting
schemes are simple to implement, explicit, and require modest storage while preserving
structural properties of the exact solution, such as symplecticity, volume, and conserva-
tion of first integrals. These properties make splitting methods particularly valuable for
long-term and geometric numerical integration, where preserving the solution’s qualita-
tive features is important.

Before generalizing splitting schemes to the SDE setting, we note three primary am-
biguities regarding the splitting schemes.
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4.1 Stochastic Differential Equations with Additive Noise

First, it is not clear how to split a vector field F and into how many sub-vector fields.
To remove this ambiguity and to set up the foundation of splitting estimators in SDEs,
we start by splitting F into a sum of two sub-vector fields. This idea also relies on the
recent study of Buckwar et al. [2022] that motivated our first paper. Moreover, following
the same research, we decided that it is the most natural to split the drift into a sum of
a linear part and a nonlinear part. We mentioned this in the previous section, and the
following section explains the idea in detail.

Second, even after we decided to split the drift into linear and nonlinear parts, there
are infinitely many ways to do so. The question is, which one is the optimal strategy?
The immediate follow-up question is: what is an optimal strategy? We mentioned that
in the ODE setting, the generally defined LT and S splitting schemes have the order
of convergence h2 and h3, respectively, for any number of split vector fields and any
choice of splitting. Similar statements are confirmed in the SDE setting. Thus, the
order of convergence is the same independently of the splitting strategies, so in that
sense, every strategy is optimal. Moreover, in Paper I, we prove that the asymptotic
results for parameter estimators based on the LT and S splitting hold for any choice of
splitting into linear and nonlinear parts. Therefore, every splitting strategy leads to the
same asymptotic results. On the contrary, for a finite step size h and finite sample size
N , numerical properties of the splitting schemes and, based on them, induced estimators
differ based on the splitting strategy. We discuss this in the first paper, where we suggest,
without formal proof, to choose the linear part as the linearization of the drift F around
the system’s equilibrium, if it exists. Intuitively, this means that around the equilibrium,
the system is mainly governed by the linear part, while far from the equilibrium, the
system is governed by the nonlinear dynamics. If this splitting is not possible, we assume
the most straightforward possible strategy that can be implemented.

The third and last ambiguity is the order of composition. Given that we choose to split
the drift into linear and nonlinear parts and that we know how to choose the linear part,
there is still the question of whether we define the LT splitting as Φ[2]

h ◦Φ[1]
h or as Φ[1]

h ◦Φ[2]
h ,

and similarly for the S splitting. We show in Paper I that the order of splitting is not
important for the order of convergence of these two splitting approximations of an SDE.
Moreover, we discuss in the same paper why we choose a specific order of composition
to define the parameter estimators.

Now, we move on to the splitting schemes for SDEs with additive noise and the corre-
sponding parameter estimators.

4.1 Stochastic Differential Equations with Additive Noise

Following Buckwar et al. [2022], we begin by splitting the drift term F of SDE (1) into
linear and nonlinear components

F(t,x;θ(1)) = A(θ(1))(x− b(t;θ(1))) +N(t,x;θ(1)). (20)

Unlike in Buckwar et al. [2022], in our splitting strategy, we allow the intercept vector
−Ab. The intercept is a crucial part of the splitting strategy since it will enable linear
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4 Splitting Schemes

sub-SDE to have an equilibrium different from zero. Another important point is the
time-independent matrix A. This assumption is necessary to derive a solution for the
linear SDE. While time-dependent A is possible, we do not discuss this scenario here.

Next, we solve the resulting sub-equations independently. The first sub-equation in-
corporates the linear part and the noise term

dX
[1]
t = A(θ(1))(x− b(t;θ(1))) dt+Σ(t) dWt, (21)

while the second sub-equation deals with the nonlinear part

dX
[2]
t = N(t,x;θ(1)) dt. (22)

SDE (21) is linear, so we can solve it as

X
[1]
tk+1

= Φ
[1]
h (X

[1]
tk
) = µh(tk,X

[1]
tk
;θ(1)) + ξh,tk ,

where

ξh,tk =

∫ tk+1

tk

exp(A(tk+1 − u))Σ(u) dWu ∼ N (0,Ωh(tk;θ)), (23)

and

µh(tk,xtk ;θ
(1)) = exp(Ah)xtk −

∫ tk+1

tk

exp(A(tk+1 − u))Ab(u) du, (24)

Ωh(tk;θ) =

∫ tk+1

tk

exp(A(tk+1 − u))ΣΣ⊤(u) exp(A⊤(tk+1 − u)) du. (25)

We avoided writing parameter θ for clarity in the previous two equations. We see that
both µh and Ωh are not in closed form. To compute µh, we either need to split the
drift such that intercept b is time-independent like we do in Paper I, or we somehow
numerically compute the integral in µh.

On the other hand, calculating Ωh is discussed in the next section. Before that, notice
how Ωh is similar to Ω

[LL]
h (13), with the difference of A in Ωh instead of DxF(tk,xtk)

in Ω
[LL]
h , making Ωh much simpler to implement and faster. This similarity also suggests

that it is a good idea to choose A as a linearization of F around the equilibrium, that is,
A = DxF(tk,x

⋆), where x⋆ is the equilibrium.
For the second sub-equation, an ODE (22), we would ideally like to solve it analytically

X
[2]
tk+1

= Φ
[2]
h (X

[2]
tk
) = fh(tk,X

[2]
tk
;θ(1)).

Then, for all tk ≥ 0 and θ(1) ∈ Θθ(1) , the time h-flow fh fulfills the following semi-group
properties

f0(tk,xtk ;θ
(1)) = xtk ,

ft+s(tk,xtk ;θ
(1)) = ft(tk + s,fs(tk,xtk ;θ

(1));θ(1)), t, s ≥ 0.
(26)
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4.1 Stochastic Differential Equations with Additive Noise

Alternatively, we can use numerical methods such as the fourth-order Runge-Kutta
method to approximate fh. Then, the semi-group properties (26) will not hold, but
we can still use it as an approximation up to a certain order of convergence that will
depend on the approximation method.

The splitting approximations are obtained by composing the solutions Φ
[1]
h and Φ

[2]
h .

The LT splitting is given by

X
[LT]
tk+1

=
(
Φ
[1]
h ◦ Φ[2]

h

)
(X

[LT]
tk

) = µh(tk,fh(tk,X
[LT]
tk

;θ(1));θ(1)) + ξh,tk . (27)

If we define
µ
[LT]
h (tk,xtk ;θ

(1)) = µh(tk,fh(tk,xtk ;θ
(1));θ(1)),

then, the LT splitting becomes

X
[LT]
tk+1

:= µ
[LT]
h (tk,X

[LT]
tk

;θ(1)) + ξh,tk .

In Appendix A, we Taylor-expanded µ[LT]
h and Ω

[LT]
h := Ωh in case of additive noise as

µ
[LT]
h (xtk ;θ

(1)) = xtk + hF(xtk) +
h2

2
(AF(xtk) +DxF(xtk)N(xtk)) +R(h3,xtk ;θ

(1)),

Ω
[LT]
h (xtk ;θ) = hΣΣ⊤ +

h2

2
(ΣΣ⊤A⊤ +AΣΣ⊤) +R(h3,xtk ;θ).

Compared to methods in Section 3.4, such as SO1.5, it is clear that the LT method is of
strong order 1 due to the misalignment between coefficients in front of h2.

As in the majority of the methods discussed in Section 3.4, LT yields a Gaussian
transition density that approximates the negative log-likelihood as

L[LT](X;θ) =
1

2

N−1∑

k=0

log detΩh(tk)

+
1

2

N−1∑

k=0

(Xtk+1
− µ[LT]

h (tk,Xtk))
⊤Ωh(tk)

−1(Xtk+1
− µ[LT]

h (tk,Xtk)).

On the other hand, the Strang splitting is given by

X
[S]
tk+1

=
(
Φ
[2]
h/2 ◦ Φ

[1]
h ◦ Φ[2]

h/2

)
(X

[S]
tk
)

= fh/2

(
tk,µh(tk,fh/2(tk,X

[S]
tk
;θ(1));θ(1)) + ξh,tk ;θ

(1)
)
.

(28)

The Taylor expansion of Φ[2]
h/2 ◦ Φ

[1]
h ◦ Φ

[2]
h/2 obtained in Appendix A in case of additive

noise is

X
[S]
tk+1

= X
[S]
tk

+ hF(X
[S]
tk
) + ξh,tk +

h

2
DxN(X

[S]
tk
)ξh,tk +

h2

2
DxF(X

[S]
tk
)F(X

[S]
tk
)

+
h2

4

d∑

i,j=1

∂2i,jF(X
[S]
tk
)[ξh,tkξ

⊤
h,tk

]ij +R(h5/2,X
[S]
tk
, ξh,tk ;θ).

(29)
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Compared to all previous methods, the expansion is fundamentally different due to the
appearance of the random variables ξh,tk . If we also expend ξh,tk (23), then approximation
(29) becomes

X
[S]
tk+1

= X
[S]
tk

+ hF(X
[S]
tk
) +Σ∆Wk + h(A+

1

2
DxN(X

[S]
tk
))Σ∆Wk −AΣ∆ζk

+
h2

2
DxF(X

[S]
tk
)F(X

[S]
tk
) +

h2

4

d∑

i,j=1

∂2i,jF(X
[S]
tk
)[Σ∆Wk∆W⊤

k Σ
⊤]ij

+R(h5/2,X
[S]
tk
;θ),

(30)

where ∆ζk and ∆Wk are jointly normally distributed as in (11). From equation (30), we
see that the S splitting does not yield a Gaussian transition density. Moreover, we can
see that the conditional mean is correct up to order h3, matching the other higher-order
methods. This property of the S splitting implies that it has order 3 one-step error,
unlike the LT method, which has only order 2. In contrast, the conditional covariance
is correct only up to order h, making the S splitting have strong order 1 and not 1.5 as
other methods. These properties are formally proved in Paper I.

While the LT splitting (27) yields Gaussian transition density, the S splitting (28) is
a nonlinear transformation of a Gaussian. Therefore, we shall assume that the nonlinear
solution fh has an inverse f−1

h , or equivalently, the backward flow f−h. Then, we can
rewrite the Strang splitting approximation as

f−h/2(tk,X
[S]
tk+1

;θ(1)) = µh(tk,fh/2(tk,X
[S]
tk
;θ(1));θ(1)) + ξh,tk . (31)

Under the assumption of well definiteness of the backward flow f−h, the semigroup
property (26) yields

fh/2(tk,xtk) = fh(tk − h/2,f−h/2(tk,xtk)).

If we define

µ
[S]
h (tk,xtk ;θ

(1)) := µh(tk,fh(tk − h/2,xtk ;θ
(1));θ(1)),

Y
[S]
tk

:= f−h/2(tk,X
[S]
tk
;θ(1)), k = 0, 1, ..., N,

then the S splitting becomes

Y
[S]
tk+1

= µ
[S]
h (tk,Y

[S]
tk
;θ(1)) + ξh,tk . (32)

Notice that if ODE (22) is autonomous, then µ[S]
h (xtk ;θ

(1)) = µ
[LT]
h (xtk ;θ

(1)).
Finally, the Strang approximated negative log-likelihood is

L[S](Y;θ) =
1

2

N−1∑

k=0

log detΩh(tk)

+
1

2

N−1∑

k=0

(Ytk+1
− µ[S]

h (tk,Ytk))
⊤Ωh(tk)

−1(Ytk+1
− µ[S]

h (tk,Ytk)).
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4.1 Stochastic Differential Equations with Additive Noise

Since we do not observe Y, after the change of variable, the Strang approximated negative
log-likelihood becomes

L[S](X;θ) =
1

2

N−1∑

k=0

log detΩh(tk)

+
1

2

N−1∑

k=0

(f−h/2(tk+1,Xtk+1
)− µ[S]

h (tk,f−h/2(tk,Xtk)))
⊤Ωh(tk)

−1

(f−h/2(tk+1,Xtk+1
)− µ[S]

h (tk,f−h/2(tk,Xtk)))

−
N−1∑

k=0

log |detDxf−h/2(tk+1,Xtk+1
)|

(33)

We can slightly rewrite the previous log-likelihood in a more compact form. We start by
converting the last term in (33) from time tk+1 to tk by

N−1∑

k=0

log |detDxf−h/2(tk+1,Xtk+1
)| = − log | detDxf−h/2(t0,Xt0)|

+
N−1∑

k=0

log | detDxf−h/2(tk,Xtk)|

+ log | detDxf−h/2(tN ,XtN )|.

Notice then that properties of functions log, det, and fh yield

− log |detDxf−h/2(tk,Xtk)| = log | detDxfh/2(tk,Xtk)|

=
1

2
log(detDxfh/2(tk,Xtk))

2

=
1

2
log det(Dxfh/2(tk,Xtk))

2.

Then, combining the log det terms in (33) yields

1

2

N−1∑

k=0

(
log detΩh(tk)− 2 log |detDxf−h/2(tk+1,Xtk+1

)|
)

=
1

2

N−1∑

k=0

log det(Ωh(tk)(Dxfh/2(tk,Xtk))
2)

+ log |detDxfh/2(tN ,XtN ) detDxf−h/2(t0,Xt0)|.

(34)

The last term in equation (34) is irrelevant in the asymptotic case when N → ∞, so we
ignore it for now. Then, the previous derivations suggest to define

Ω
[S]
h (tk,xtk ;θ) := Dxfh/2(tk,xtk)Ωh(tk)Dxfh/2(tk,xtk)

⊤. (35)
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Matrix Ω
[S]
h is richer in information than Ω

[LT]
h since it includes data, but more impor-

tantly, it incorporates both the linear and nonlinear dynamics of the original SDE. The
previous argument implies that the Strang splitting yields a much better estimator than
the Lie-Trotter. Our Paper I confirms this statement.

Continuing with the previous derivation that is not investigated in other papers, equa-
tion (35) yields

Ωh(tk)
−1 = Dxfh/2(tk,xtk)

⊤Ω[S]
h (tk,xtk ;θ)

−1Dxfh/2(tk,xtk). (36)

Combining all the previous, we get the following representation of the Strang approxi-
mated negative log-likelihood

L[S](X;θ) = log |detDxfh/2(tN ,XtN ) detDxf−h/2(t0,Xt0)|+
1

2

N−1∑

k=0

log detΩ
[S]
h (tk,Xtk)

+
1

2

N−1∑

k=0

(
Dxfh/2(tk,Xtk)

(
f−h/2(tk+1,Xtk+1

)− µ[S]
h (tk,f−h/2(tk,Xtk))

))⊤

Ω
[S]
h (tk,Xtk)

−1Dxfh/2(tk,Xtk)
(
f−h/2(tk+1,Xtk+1

)− µ[S]
h (tk,f−h/2(tk,Xtk))

)
.

Thus, the Strang splitting also yields a Gaussian likelihood up to an asymptotically
negligible term, where the random variable

Dxfh/2(tk,Xtk)
(
f−h/2(tk+1,Xtk+1

)− µ[S]
h (tk,f−h/2(tk,Xtk))

)
(37)

is conditional zero-mean Gaussian with covariance matrix Ω
[S]
h (tk,xtk ;θ). The previous

derivations and conclusions give more intuition about the Strang splitting estimator and
are not mentioned or further analyzed in the three papers.

To conclude this section, we note that the LT and S splitting estimators are defined
fundamentally differently from the other estimators in Section 3.4, while the LT shares
more similarities with them than the S estimator. The S estimator is more complicated to
understand with more sophisticated assumptions, such as the existence of the backward
flow. This existence is needed only locally for h ≤ h0, where h0 is a known threshold.
The S estimator will perform poorly in the case of non-existing backward flow for h > h0.
We must approximate the backward flow to be well-defined to solve this issue. However,
if this assumption is fulfilled, the complexity of implementation and the computational
speed of the Strang splitting estimator will not increase compared to the Lie-Trotter.
Still, the accuracy increases drastically, as shown in Paper I.
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4.2 Stochastic Differential Equations with Pearson-type Noise

4.2 Stochastic Differential Equations with Pearson-type
Noise

In Paper III, we assume that the SDE (1) has the following coordinate-wise form of the
squared diffusion matrix ΣΣ⊤(t,Xt;θ

(2))

[ΣΣ⊤(t,x;θ(2))]ij = x⊤αij(t;θ(2))x+ x⊤βij(t;θ(2)) + γij(t;θ(2)), i, j = 1, 2, ..., d,
(38)

where αij : [0,∞)×Θθ(2) → Rd×d, βij : [0,∞)×Θθ(2) → Rd, and γij : [0,∞)×Θθ(2) → R
are such that, for all t ≥ 0, αij(t) are symmetric, and αij(t) = αji(t), βij(t) = βji(t),
γij(t) = γji(t), for all i, j = 1, . . . , d.

This way of defining the SDE (1) is implicit since we do not explicitly define the
diffusion matrix Σ(t,x;θ(2)). This leads to the possibility of different SDEs having the
same squared diffusion matrix, a problem of identifiability mentioned in Section 3.2,
which we do not address here.

In Paper III, we refer to SDEs with a diffusion matrix defined by (38) as SDEs with
Pearson-type noise. This term originates from the fact that, under the linear drift F, the
SDE (1) with a diffusion matrix defined by (38) can be seen as a multivariate general-
ization of Pearson diffusions, a univariate class of models with linear drift and squared
diffusion that is a quadratic function of the state variable.

In Paper III, we derive explicit formulas for calculating the covariance matrix for
multivariate Pearson diffusion. This allows us to combine the strategy of Gaussian ap-
proximation with splitting schemes. Specifically, consider the following splitting of (1)

dX
[1]
t = A(θ(1))(X

[1]
t − b(t;θ(1))) dt+Σ(t,Xt;θ

(2)) dWt, X
[1]
0 = x0, (39)

dX
[2]
t = N(t,X

[2]
t ;θ(1)) dt, X

[2]
0 = x0. (40)

Equation (39) describes a multivariate Pearson diffusion whose solution cannot be ex-
plicitly obtained in general. However, we can approximate it by assuming the transition
density is Gaussian, as seen in Section 3.4. For multivariate Pearson diffusions, the
mean and covariance can be calculated explicitly, as presented in Paper III, enabling the
approximation of (39) as

X
[1]
tk+1

= Ψ
[1]
h (X

[1]
tk
) = µh(tk,X

[1]
tk
;θ(1)) + ξh(tk,X

[1]
tk
;θ), (41)

where ξh(tk,Xtk ;θ)
i.i.d∼ Nd(0,Ωh(tk,Xtk ;θ)) for k = 0, . . . , N − 1. Note that Ψ[1]

h is not
the exact h-flow Φ

[1]
h of SDE (39), but rather an approximation based on the Gaussian

transition density assumption.
The function µh in (41) is the same as in (24). However, Ωh(tk,Xtk ;θ) is not equal

to that in (25), but is more complicated due to the quadratic term of the state variable
in (38). To calculate Ωh(tk,Xtk ;θ), we need the covariance of the multivariate Pearson
diffusion, calculated in Paper III for the autonomous case. In the non-autonomous case,
we need additional approximations, as discussed in the next section.
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This chapter focuses on the computational tools needed for parameter estimation. It
comprises two main parts.

The first part addresses the computations of integrals involving matrix exponentials.
They are required for the covariance matrices of the splitting and LL schemes and the
integrals necessary for implementing the mean vector of the LL scheme. It is also needed
to evaluate the covariance matrix of the multivariate Pearson-type diffusion introduced
in Paper III.

The second part discusses the implementation and optimization of objective functions
in the programming language R. Given that base R lacks automatic differentiation, we
use the torch package, which originates from PyTorch for Python and is implemented in
C++ for R. This part also briefly explains automatic differentiation, its importance, and
details on coding our estimator in R.

5.1 Integrals Involving Matrix Exponentials

Evaluating integrals involving the matrix exponential is fundamental in many areas of
control theory and systems analysis. Our workflow requires evaluating covariance ma-
trices such as (13) and (25), and integrals needed for the mean vectors such as (14) and
(24).

For now, we assume that we work with autonomous SDE; that is, the previously
mentioned integrals can be written as

∫ t

0
exp(B(t− s))A ds,

∫ t

0
exp(B(t− s))Asds (42)

and ∫ t

0
exp(B(t− s))C exp(B⊤(t− s)) ds, (43)

where A, B, and C are constant matrices of appropriate dimensions. When the matrix
B is invertible, the first integral in equation (42) can be simplified to

∫ t

0
exp(B(t− s))A ds = (exp(Bt)− I)B−1A. (44)

However, B usually depends on a current data point and parameters, so in the optimiza-
tion step, so it is likely that B will not be invertible. Moreover, other integrals do not
necessarily have a nice closed-form formula. Thus, we use Theorem 1 in Van Loan [1978]
to avoid these issues.
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Theorem 2 (Theorem 1 in Van Loan [1978]). Let n1, n2, n3, n4 be non-negative integers,
m = n1 + n2 + n3 + n4, and the m×m block triangular matrix

M =




A1 B1 C1 D1

0n2×n1 A2 B2 C2

0n3×n1 0n3×n2 A3 B3

0n4×n1 0n4×n2 0n4×n3 A4


 .

Then, for t ≥ 0

exp(Mt) =




F1(t) G1(t) H1(t) K1(t)
0 F2(t) G2(t) H2(t)
0 0 F3(t) G3(t)
0 0 0 F4(t)


 ,

where

Fj(t) = exp(Ajt), j = 1, 2, 3, 4,

Gj(t) =

∫ t

0
exp(Aj(t− s))Bj exp(Aj+1s) ds, j = 1, 2, 3,

Hj(t) =

∫ t

0
exp(Aj(t− s))Cj exp(Aj+2s) ds

+

∫ t

0

∫ s

0
exp(Aj(t− s))Bj exp(Aj+1(s− r))Bj+1 exp(Aj+2r) dr ds, j = 1, 2,

K1(t) =

∫ t

0
exp(A1(t− s))D1 exp(A4s) ds

+

∫ t

0

∫ s

0
exp(A1(t− s))C1 exp(A3(s− r))B3 exp(A4r) dr ds

+

∫ t

0

∫ s

0
exp(A1(t− s))B1 exp(A2(s− r))C2 exp(A4r) dr ds

+

∫ t

0

∫ s

0

∫ r

0
exp(A1(t− s))B1 exp(A2(s− r))B2 exp(A3(r − w))B3e

A4r dw dr ds.

To evaluate the integrals in (42), we start by constructing the following block matrices

M1 =

[
0 A
0 B

]
, M2 =



B A 0
0 0 I
0 0 0


 .

Then, the corresponding values G1(t,M1), and H1(t,M2) are given by the integrals
in (42) respectively. Here, notation G1(t,M1) denotes that G1 from Theorem 2 was
obtained by exponentiating block matrix M1.

Similarly, the integral in (43) equals G1(t,M3)F
⊤
1 (t,M3), where M3 is

M3 =

[
B C
0 −B⊤

]
.
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For a non-autonomous SDE, the target integrals become
∫ t

0
exp(B(t− s))A(s) ds, (45)

and ∫ t

0
exp(B(t− s))C(s) exp(B⊤(t− s)) ds, (46)

where B is a constant matrix, while A and C are sufficiently smooth, matrix-valued
functions with domain [0,∞) and appropriate co-domain dimensions. Following the
ideas from [Carbonell et al., 2008], they first generalize Theorem 2 to allow for an arbi-
trary number of block matrices within matrix M. Subsequently, they perform a Taylor
expansion of matrices A and C. For example,

C(s) ≈
p∑

i=0

si

i!
Ci = C0 +

∫ s

0
C1 dr +

∫ s

0

∫ r

0
C2 dw dr + . . . ,

where Ci is the ith derivative of C at s = 0. Then, the integral (46) is approximated as
∫ t

0
exp(B(t− s))C(s) exp(B⊤(t− s)) ds

≈
∫ t

0
exp(B(t− s))C0 exp(B

⊤(t− s)) +

∫ t

0

∫ s

0
exp(B(t− s))C1 exp(B

⊤(t− s)) dr ds

+

∫ t

0

∫ s

0

∫ r

0
exp(B(t− s))C2 exp(B

⊤(t− s)) dw dr ds . . . (47)

Finally, using the generalized version of Theorem 2, the approximation (47) can be
obtained by taking the exponential of

M =




B Cp Cp−1 . . . C2 C1 C0

0 −B⊤ I . . . 0 0 0
0 0 −B⊤ . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −B⊤ I 0
0 0 0 . . . 0 −B⊤ I
0 0 0 . . . 0 0 −B⊤




.

Namely, if N(t) = exp(Mt), then the solution is obtained by multiplying the upper right
corner block matrix of N by the transpose of the upper left corner block matrix. A
similar reasoning holds for calculating the integral (45).

The results above enable stable numerical implementations of the LL and splitting
schemes estimators. Furthermore, Theorem 2 facilitates the explicit derivation and im-
plementation of formulas for the covariance of multivariate Pearson diffusions, as demon-
strated in Paper III.

In the subsequent section, we explore the numerical challenges of estimating param-
eters by optimizing nonlinear multidimensional objective functions in R. Additionally,
we provide a brief overview of how the matrix exponential is implemented in the torch
package.
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5.2 Parameter Estimation Using the torch Package

In this section, we review different types of gradient-based optimization and discuss the
importance of using automatic differentiation over numerical differentiation. We then
introduce the torch package [Falbel and Luraschi, 2024] as a bridge between automatic
differentiation and the R programming language. Following this, we provide a subsection
on resilient propagation, a gradient descent algorithm used in our optimization process.
Finally, we discuss how to implement this estimator in R and briefly connect the imple-
mentation of the matrix exponential of the previous section, one of the key elements of
the log-likelihood objective functions.

5.2.1 Optimization

When doing parameter estimation in SDE models, the goal is to optimize an objective
function typically derived from the log-likelihood equation, as defined in (10). Whether
exact or approximate, this function requires optimization to estimate parameter values
that best fit the data.

Deterministic optimization techniques rely on differentiation to determine the direction
and rate of change in function values, mostly known as gradient descent. There are three
primary types of differentiation used in gradient descent optimization [Griewank and
Walther, 2008]:

1. Symbolic Differentiation involves solving derivatives analytically and providing
exact expressions. This method is exact and does not introduce numerical error.
However, symbolic differentiation can lead to expression swell, where derivatives
become increasingly complex, requiring more computational resources in terms
of time and memory. The complexity can scale factorially with the number of
operations, making it impractical for functions with many variables or complex
relationships.

2. Numerical Differentiation employs finite difference methods such as forward
and central differences to approximate derivatives. While straightforward, this
approach introduces two primary types of errors: truncation and round-off errors.
Truncation error occurs when the finite difference approximation does not precisely
replicate the true derivative, which becomes more pronounced with a larger step
size. The truncation error is of order O(h) for forward differences and of order
O(h2) for central differences. Conversely, round-off error arises from the limitations
of floating-point arithmetic, becoming more significant with a smaller step size.
Therefore, as the step size h decreases, the round-off error increases due to floating-
point precision limits. Thus, a balance between minimizing truncation and round-
off errors is needed. The computational cost for evaluating each derivative is low,
at O(1) per evaluation.

3. Automatic Differentiation (AD), unlike symbolic and numerical differentia-
tion, computes derivatives accurately to machine precision, avoiding truncation
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and round-off errors using the splitting of functions into elementary operations
and applying the chain rule through techniques known as forward and reverse ac-
cumulations. Forward accumulation is efficient for functions with more outputs
than inputs. In contrast, reverse accumulation, also known as backpropagation,
is suitable for functions with more inputs than outputs, which is common in opti-
mization problems with large parameter spaces and real-valued objective functions.
The costs for AD depend on the mode; reverse mode often requires more memory
to store intermediate results.

The base R programming environment does not support AD. However, R can be inte-
grated with other programming languages that support AD through the use of packages
such as TMB (Template Model Builder) [Kristensen et al., 2016] or RStan [Stan Develop-
ment Team, 2024], which handle AD efficiently for complex, high-dimensional models.

In our research, we employ the torch package for R, which is based on PyTorch,
originally a Python-based library that has been extended to R through C++. PyTorch
is a library mainly intended for deep learning, but its employment of AD is useful for
optimizing any objective functions efficiently, making it suitable for MLE.

The torch package in R offers a syntax that is similar to native R syntax, with slight
modifications to accommodate object-oriented programming principles. In torch, one
can apply methods directly to objects, which differs from the usual functional approach
in R. This design allows for a more intuitive workflow for complex data structures like
tensors, a primary data structure in torch and equivalent to arrays in R. This means
that one must convert numerical arrays into tensors to work effectively with torch. This
conversion is straightforward; for example, a numeric array par can be transformed into
a tensor using torch_tensor(par). This approach leverages the flexibility of object-
oriented programming while maintaining compatibility with R’s syntax, making torch
an accessible and powerful tool for statistical inference in R.

Using torch is not only useful for AD but also for many different optimizers imple-
mented in torch. In our study, we compared all available optimizers in torch to find the
most effective one for our needs. We chose optim_rprop because it consistently demon-
strated robustness across different models of interest. It also reliably converged to the
true values for different approximations of log-likelihood functions from Chapter 3.4 and
different initial parameter values. In the following subsection, we briefly describe this
optimization method.

5.2.2 Resilient Propagation

The Resilient Propagation (RProp) algorithm is a gradient-based optimization method
designed to improve the efficiency of backpropagation used in training neural networks.
Developed by Riedmiller and Braun [1993], RProp is particularly effective in address-
ing the limitations of traditional gradient descent methods, which can suffer from slow
convergence and instability due to issues like vanishing or exploding gradients.

The main innovation is RProp’s ability to adaptively adjust the size of the parameter
updates independently, allowing each parameter to be estimated based solely on the
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sign of the gradient rather than its magnitude. This feature distinguishes RProp from
other methods, as it mitigates the adverse effects caused by small or large gradients,
which can otherwise lead to inefficient optimization or numerical instability. Its ability
to dynamically adapt update sizes makes it particularly useful in parameter estimation
with highly nonlinear log-likelihoods, where traditional methods may struggle to achieve
robust convergence.

In the RProp algorithm, each parameter is associated with an individual update value.
This value is dynamically adjusted during optimization based on the gradient’s sign.
When the sign of the gradient for a particular weight remains consistent between succes-
sive iterations, RProp increases the update value, allowing the algorithm to take larger
steps in the direction of the minimum. Conversely, if the gradient’s sign changes, indi-
cating that the algorithm may have overshot the minimum, the update value is decreased
to prevent further divergence.

Furthermore, RProp is not only robust but also computationally efficient. It requires
less tuning of hyperparameters, such as learning rates, which can be a challenge in other
gradient-based methods. Despite these advantages, RProp is primarily suited for batch
updates rather than stochastic or mini-batch approaches. This limitation arises because
RProp relies on consistent gradient information from the entire dataset to adjust update
values effectively. However, this constraint does not affect our work since we focus on
parameter optimization in the context of statistical optimization, where batch processing
is more suitable and aligns with our goal of optimizing parameters with precision rather
than dealing with real-time data updates.

5.2.3 Implementing the Estimator in torch

In this subsection, we show the implementation of a parameter estimation step using
the torch package in R to minimize a negative log-likelihood objective function. The
estimator function, defined in Code 1, optimizes model parameters by minimizing the
objective function, which depends on the parameters, data, and step size h. The
optimization process involves initializing the parameters, setting up an optimizer, and
iteratively updating the parameters based on the gradient of the objective function.
This iterative process continues until the parameters converge or the maximum number
of iterations is reached. Through the torch package, we use AD, which significantly
improves the computation of gradients required for the optimization algorithm.

5.2.4 Implementing the Matrix Exponential in torch

Section 5.1 dealt with avoiding the direct computation of integrals involving matrix
exponentials by simply computing and manipulating matrix exponentials. Therefore,
having an efficient way to calculate the matrix exponential is essential. Here, we briefly
present the main idea behind implementing the matrix exponential in torch.

The function torch_matrix_exp is based on the method proposed by Bader et al.
[2019], which introduces an optimized approach to computing the Taylor polynomial for
the matrix exponential. Traditional methods like the Paterson-Stockmeyer technique re-
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1 estimator <- function(objective, data, h, par_star, num_iterations) {
2

3 # convert parameters to torch tensors with gradient tracking
4 par_star <- torch_tensor(par_star, requires_grad = TRUE)
5 # create a RProp optimizer
6 optimizer <- optim_rprop(par_star)
7

8 calc_loss <- function() {
9 # reset gradients

10 optimizer$zero_grad()
11 # calculate the objective function value
12 value <- objective(par_star, data, h)
13 # perform reverse accumulation to compute gradients
14 value$backward()
15 value
16 }
17

18 for (i in 1:num_iterations) {
19 # save current parameters for convergence check
20 par_old = as.matrix(par_star)
21 # perform an optimization step and update par_star
22 optimizer$step(calc_loss)
23 value_new <- calc_loss() # recompute the loss function
24 par_new = as.matrix(par_star) # update new parameters
25

26 if(norm(par_new - par_old) < 10^-5) break # convergence check
27 }
28 convergence <- 0
29 # check if the loop is completed without convergence
30 if(i == num_iterations) convergence <- 1
31

32 # return the optimized parameters, final value, and iterations
33 list(as.numeric(par_star), as.numeric(value_new), i)
34 }

Code 1: Estimator based on RProp optimization algorithm using torch in R
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quire many matrix multiplications, which can be computationally expensive. The method
of Bader et al. [2019] reduces the number of these multiplications, making the process
more efficient. The reduction is achieved by combining the optimized Taylor polynomial
approximation with the scaling and squaring technique.

The scaling and squaring technique works by first scaling down the matrix by a power
of two, computing the exponential of the smaller matrix, and then squaring the result
repeatedly to get the exponential of the original matrix. By optimizing the Taylor poly-
nomial, the proposed method further enhances the efficiency and accuracy of this process.

This approach improves performance and maintains high accuracy for a wide range of
matrix sizes and norms. Numerical experiments have shown that this method outper-
forms traditional Padé approximants, particularly in terms of computational efficiency.
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I Parameter Estimation in Nonlinear
Multivariate SDEs with Additive Noise

This chapter contains the following paper:
• [Pilipovic et al., 2024a] P. Pilipovic, A. Samson, and S. Ditlevsen. Parameter es-

timation in nonlinear multivariate stochastic differential equations based on split-
ting schemes. The Annals of Statistics, 52(2):842 – 867, 2024a. doi: 10.1214/
24-AOS2371. URL https://doi.org/10.1214/24-AOS2371.

This paper focuses on developing and analyzing efficient parameter estimation tech-
niques for discretely observed nonlinear SDEs. Specifically, we start with splitting
schemes for SDE discretization and prove a new numerical property regarding the order
of convergence under less restrictive assumptions on the drift parameter. Moreover, we
introduce estimators based on these discretization schemes and establish their asymptotic
properties.

To develop these new estimation techniques, we first outline the theoretical framework
in Section 2 of the paper, motivating and leveraging the use of the Lie–Trotter and
Strang splitting schemes and introducing the estimators. This section discusses how these
methods allow us to split the solution of the original SDE into an Ornstein-Uhlenbeck
process and a nonlinear part, facilitating more accurate and stable parameter estimation.
We then move on to prove the first key result of the paper. Section 3 establishes that the
Strang splitting scheme achieves an Lp convergence rate of order 1, a property already
known for the Lie–Trotter scheme. These proofs are non-trivial due to our assumption
of the one-sided Lipschitz condition on the drift parameter, which is less restrictive than
the global Lipschitz condition commonly used in the literature. This relaxation broadens
the applicability of our methods but also involves more complex proofs.

Following the numerical developments, Section 5 states the second main result of
the paper regarding the estimators’ consistency and asymptotic efficiency. This section
demonstrates that, under the one-sided Lipschitz assumption, the estimators perform re-
liably and provide robust parameter estimates. The theoretical results are complemented
by a numerical study on the three-dimensional stochastic Lorenz system presented in Sec-
tion 6. The numerical study shows that the Strang estimator performs well in terms of
both precision and computational speed, surpassing several state-of-the-art techniques.
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The likelihood functions for discretely observed nonlinear continuous
time models based on stochastic differential equations are not available ex-
cept for a few cases. Various parameter estimation techniques have been pro-
posed, each with advantages, disadvantages and limitations depending on
the application. Most applications still use the Euler–Maruyama discretiza-
tion, despite many proofs of its bias. More sophisticated methods, such as
Kessler’s Gaussian approximation, Ozaki’s local linearization, Aït–Sahalia’s
Hermite expansions or MCMC methods, might be complex to implement,
do not scale well with increasing model dimension or can be numerically
unstable. We propose two efficient and easy-to-implement likelihood-based
estimators based on the Lie–Trotter (LT) and the Strang (S) splitting schemes.
We prove that S has Lp convergence rate of order 1, a property already known
for LT. We show that the estimators are consistent and asymptotically efficient
under the less restrictive one-sided Lipschitz assumption. A numerical study
on the 3-dimensional stochastic Lorenz system complements our theoretical
findings. The simulation shows that the S estimator performs the best when
measured on precision and computational speed compared to the state-of-the-
art.

1. Introduction. Stochastic differential equations (SDEs) are popular models for physi-
cal, biological and socioeconomic processes. Some recent applications include tipping points
in the climate (Ditlevsen and Ditlevsen (2023)), the spread of COVID-19 (Arnst et al. (2022),
Kareem and Al-Azzawi (2021)), animal movements (Michelot et al. (2019, 2021)) and cryp-
tocurrency rates (Dipple et al. (2020)). The advantage of SDEs is their ability to capture and
quantify the randomness of the underlying dynamics. They are especially applicable when the
dynamics are not entirely understood, and the unknown parts act as random. The following
parametric form is common for an SDE model with additive noise:

dXt = F(Xt ;β) dt + � dWt , X0 = x0.(1)

We want to estimate the underlying drift parameter β and diffusion parameter � based on dis-
crete observations of Xt . The transition density is necessary for likelihood-based estimators,
and thus a closed-form solution to (1). However, the transition density is only available for
a few SDEs, including the Ornstein–Uhlenbeck (OU) process, which has a linear drift func-
tion F. Extensive literature exists on MCMC methods for the nonlinear case (Chopin and
Papaspiliopoulos (2020), Fuchs (2013)) however, these are often computationally intensive
and do not always converge to the correct values for complex models. Thus, we need a valid
approximation of the transition density to perform likelihood-based statistical inference.

Received January 2023; revised February 2024.
MSC2020 subject classifications. Primary 62F12, 62H12, 62M99; secondary 37M15, 60G65.
Key words and phrases. Asymptotic normality, consistency, Lp convergence, splitting schemes, stochastic dif-

ferential equations, stochastic Lorenz system.
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The most straightforward discretization scheme is the Euler–Maruyama (EM) (Kloeden
and Platen (1992)). Its main advantage is the easy-to-implement and intuitive Gaussian tran-
sition density. Both frequentist and Bayesian approaches extensively employ EM across theo-
retical and applied studies. However, the EM-based estimator has many disadvantages. First,
it exhibits pronounced bias as the discretization step increases (see Florens-Zmirou (1989)
for a theoretical study, or Gloaguen, Etienne and Le Corff (2018), Gu, Wu and Xue (2020)
for applied studies). Second, Hutzenthaler, Jentzen and Kloeden (2011) showed that it is not
mean-square convergent when the drift function F of (1) grows super-linearly. Consequently,
we should avoid EM for models with polynomial drift. Third, it often fails to preserve im-
portant structural properties, such as hypoellipticity, geometric ergodicity, and amplitudes,
frequencies and phases of oscillatory processes (Buckwar et al. (2022)).

Some pioneering papers on likelihood-based SDE estimators are Dacunha-Castelle and
Florens-Zmirou (1986), Dohnal (1987), Florens-Zmirou (1989), Genon-Catalot and Jacod
(1993), Kessler (1997). The first two only estimate the diffusion parameter. Florens-Zmirou
(1989) used EM to estimate both parameters and derived asymptotic properties. Genon-
Catalot and Jacod (1993) generalized to higher dimensions, nonequidistant discretization
step, and a generic form of the objective function, however, only estimating the diffusion
parameter. Kessler (1997) proposed an estimator (denoted K) approximating the unknown
transition density with a Gaussian density using the true conditional mean and covariance, or
approximations thereof using the infinitesimal generator. He proved consistency and asymp-
totic normality under the commonly used, but too restrictive, global Lipschitz assumption on
the drift function F.

A competitive likelihood-based approach relies on local linearization (LL), initially pro-
posed by Ozaki (1985) and later extended by Ozaki (1992), Shoji and Ozaki (1998). They
approximated the drift between two consecutive observations using a linear function. In the
case of additive noise, this corresponds to an OU process with a known Gaussian transition
density. Thus, the likelihood approximation is a product of Gaussian densities. Shoji (1998)
proved that LL discretization is one-step consistent and Lp convergent with order 1.5. Shoji
(2011), Jimenez, Mora and Selva (2017) extended the theory of LL for SDEs with multi-
plicative noise. Simulation studies show the superiority of the LL estimator compared to
other estimators (Gloaguen, Etienne and Le Corff (2018), Gu, Wu and Xue (2020), Hurn,
Jeisman and Lindsay (2007), Shoji and Ozaki (1998)). Until recently, the implementation of
the LL estimator was numerically ill-conditioned due to the possible singularity of the Jaco-
bian matrix of the drift function F. However, Gu, Wu and Xue (2020) proposed an efficient
implementation that overcomes this. The main disadvantage of the LL method is its slow
computational speed.

Aït-Sahalia (2002) proposed Hermite expansions (HE) to approximate the transition den-
sity, focusing on univariate time-homogeneous diffusions. This method, widely utilized in
finance, was later extended to both reducible and irreducible multivariate diffusions (Aït-
Sahalia (2008)). Chang and Chen (2011) found conditions under which the HE estimator has
the same asymptotic distribution as the exact maximum likelihood estimator (MLE). Choi
(2013, 2015) further broadened the technique to time-inhomogeneous settings. Picchini and
Ditlevsen (2011) used the method for multidimensional diffusions with random effects. When
an SDE is irreducible, Aït-Sahalia (2008) applied Kolmogorov’s backward and forward equa-
tions to develop a small-time expansion of the diffusion probability densities. Yang, Chen and
Wan (2019) introduced a delta expansion method, using Itô–Taylor expansions to derive an-
alytical approximations of the transition densities of multivariate diffusions inspired by Aït-
Sahalia (2002). While Aït-Sahalia’s approach allows for a broad class of drift and diffusion
functions, the implementation can be complex. To our knowledge, there have not been any
applications to models with more than four dimensions. Furthermore, computing coefficients
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even up to order two can be challenging, while higher-order approximations are often nec-
essary for nonlinear models. Hurn, Jeisman and Lindsay (2007) implemented HE up to third
order in univariate cases, emphasizing the importance of symbolic computation tools like
Mathematica or Maple. Their survey concluded that while LL is the best among discrete
maximum likelihood estimators, HE is the preferred overall choice. They highlighted that the
HE proposed by Aït-Sahalia (2002) has the best trade-off between speed and accuracy, prov-
ing more feasible than LL in most financial applications. Similar results are found in Jensen
and Poulsen (2002), López-Pérez, Febrero-Bande and González-Manteigav (2021). However,
LL’s broad applicability contrasts with the limitations of Hermite expansions, particularly for
high-dimensional multivariate models exceeding three dimensions.

Apart from the above-mentioned general methods, there are some specific setups. Sørensen
and Uchida (2003) investigated a small-diffusion estimator, Ditlevsen and Sørensen (2004),
Gloter (2006) worked with integrated diffusion, and Uchida and Yoshida (2012) used adap-
tive maximum likelihood estimation. Bibby and Sørensen (1995) and Forman and Sørensen
(2008) explored martingale estimation functions (EF) in one-dimensional diffusions, but they
are difficult to extend to multidimensional SDEs. Ditlevsen and Samson (2019) used the 1.5
scheme to solve the problem of hypoellipticity when the diffusion matrix is not of full rank.

More recently, contributions from Gloter and Yoshida (2021a, 2021b) have extended the
research of Uchida and Yoshida (2012). Gloter and Yoshida (2021a) introduced a nonadap-
tive approach and offered similar analytic asymptotic results as Ditlevsen and Samson (2019)
without imposing strict limitations on the model class. Iguchi, Beskos and Graham (2022)
proposed sampling schemes for elliptic and hypoelliptic models that often result in condition-
ally non-Gaussian integrals, distinguishing their approach from prior works. As the transition
density of their new scheme is typically complex, Iguchi, Beskos and Graham (2022) created
a closed-form density expansion using Malliavin calculus. They recommended a transition
density scheme that retained second-order precision through prudent truncation of the ex-
pansion. This closed-form expansion aligns with the works of Aït-Sahalia (2002, 2008) and
Li (2013) on elliptic SDEs, although with a different approach. Iguchi, Beskos and Graham
(2022) deliver asymptotic results with analytically available rates, beneficial for both elliptic
and hypoelliptic models.

Table 1 provides a comprehensive overview of estimator properties, finite sample per-
formance and required model assumptions for the most prominent state-of-the-art methods.
While asymptotic properties might be similar in most cases, the finite sample properties are
often different. The table also includes the Lie–Trotter (LT) and the Strang (S) splitting esti-
mators, which we propose in this paper. The comparison encompasses four key characteris-
tics: (1) Diffusion coefficient allowed in the model class, distinguishing between additive and
general noise; (2) Asymptotic regime, the conditions needed to prove the asymptotic proper-
ties; (3) Implementation, assessing the complexity of implementation, dependence on model
dimension and parameter optimization time and (4) Finite sample properties, evaluating per-
formance for fixed sample size N and discretization step size h.

An essential aspect of any estimator is the practical execution in real-world applications.
Although the previously mentioned research contributes significantly to the theoretical devel-
opment and broadens our understanding of inference for SDEs, its practical implementations
tend not to be user friendly. Except for precomputed models, applications by nonspecialists
can be challenging. Our main contribution is proposing estimators that are intuitive, easy to
implement, computationally efficient and scalable with increasing dimensions. These char-
acteristics make the estimators accessible to researchers in various applied sciences while
maintaining desirable statistical properties. Moreover, these estimators remain competitive
with the best state-of-the-art methods, particularly concerning estimation bias and variance.

We propose to use the LT or the S splitting schemes for statistical inference. These nu-
merical approximations were first suggested for ordinary differential equations (ODEs) (see,
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TABLE 1
Comparison of the proposed Lie–Trotter (LT) and Strang (S) splittings (in bold) with five state-of-the-art estimators: Euler–Maruyama (EM), Kessler (K), Estimating functions (EF),
Local linearization (LL) and Hermite expansion (HE). The comparison focuses on four key characteristics: (1) Noise type—additive or general, (2) Asymptotic regime—investigating
conditions where asymptotic properties align with the exact MLE, (3) Computational time and implementation—evaluating implementation and parameter optimization costs and

(4) Finite sample properties—assessing performance under fixed N and h. The finite sample properties of the estimators are likely influenced by specific experiment designs

Estimator Noise type Asymptotic regime Computational time and implementation Finite sample properties

EM General h → 0, Nh → ∞,
Nh2 → 0
(Florens-Zmirou (1989))

Fastest optimization and implementation.
Straightforward for any dimension.

Earliest bias exhibition with increasing h.

K up to
order J

General J fixed: h → 0, Nh → ∞,
Nhp → 0, for any p ∈ Na

 

(Kessler (1997))

Fast optimization.
Straightforward for J ≤ 3.

Unbiased if the exact mean is known.
For larger h, a higher order of J is needed.
Performance between EM and LL.

EF General h fixed: N → ∞ (Bibby
and Sørensen (1995))

Fast optimization.
Requires moments of the transition density.
Mainly suitable for univariate models.

Unbiased also for large h, but not efficient.
Good performance.

LL Additive (possible
generalization)
(Jimenez, Mora and
Selva (2017))

h → 0, Nh → ∞,
Nh2 → 0 (Ozaki (1992))

Slowest discrete ML approximations.
(Hurn, Jeisman and Lindsay (2007))
Straightforward for any dimension.

Best among all discrete ML approximations.
(Hurn, Jeisman and Lindsay (2007))

HE up to
order J

General h fixed: N → ∞, J → ∞,
Nh2J+2 → 0,
J ≥ 2 fixed: N → ∞,
h → 0, Nh3 → ∞,
Nh2J+1 → 0 (Chang and
Chen (2011))

Slower than LL in the univariate case.
Implementation becomes significantly more complex in higher
dimensions or for J ≥ 2. (Hurn, Jeisman and Lindsay (2007))

For larger h, a higher order of J is needed.
Better than LL in the univariate case.
(Hurn, Jeisman and Lindsay (2007))

LT
(proposed)

Additive (possible
generalization)

h → 0, Nh → ∞,
Nh2 → 0

Slower than K, but notably faster than LL.
Straightforward implementation for given nonlinear ODE solution.
Scales well with the increasing dimension.

Performance relative to EM varies based on
splitting strategy and model.

S
(proposed)

Additive (possible
generalization)

h → 0, Nh → ∞,
Nh2 → 0

Slower than LT, but notably faster than LL.
Straightforward implementation for given nonlinear ODE solution.
Scales well with the increasing dimension.

As good as LL.

aWhile Kessler (1997) did not explicitly explore the scenario of a fixed h, it is a reasonable assumption that the asymptotic results will hold as N → ∞ and J → ∞.
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e.g., Blanes, Casas and Murua (2008), McLachlan and Quispel (2002)), but their extension to
SDEs is straightforward. A few studies have investigated numerical properties (Ableidinger
and Buckwar (2016), Ableidinger, Buckwar and Hinterleitner (2017), Bensoussan, Glowinski
and Răşcanu (1992), Buckwar et al. (2022)). Barbu (1988) applied LT splitting on nonlinear
optimal control problems, while Hopkins and Wong (1986) used it for nonlinear filtering.
Abdulle, Vilmart and Zygalakis (2015), Bou-Rabee and Owhadi (2010) used LT splitting
to investigate conditions for preserving the measure of the ergodic nonlinear Langevin equa-
tions. Recently, Bréhier and Goudenǵe (2019) showed that LT splitting successfully preserved
positivity for a class of nonlinear stochastic heat equations with multiplicative space-time
white noise. Additional studies on the application of splitting schemes to SDEs include those
by Alamo and Sanz-Serna (2016), Leimkuhler and Matthews (2015), Milstein and Tretyakov
(2003), Misawa (2001), Bréhier and Goudenǵe (2019). Regarding statistical applications,
to the best of our knowledge, only Buckwar, Tamborrino and Tubikanec (2020), Ditlevsen,
Tamborrino and Tubikanec (2023) used splitting schemes for parametric inference in combi-
nation with Approximate Bayesian Computation, and Ditlevsen and Ditlevsen (2023) used it
for prediction of a forthcoming collapse in the climate.

This paper presents five main contributions:

1. We introduce two new efficient, easy-to-implement, and computationally fast estima-
tors for multidimensional nonlinear SDEs.

2. We establish Lp convergence of the S splitting scheme.
3. We prove consistency and asymptotic normality of the new estimators under the less

restrictive assumption of one-sided Lipschitz. This proof requires innovative approaches.
4. We demonstrate the estimators’ performance in a stochastic version of the chaotic

Lorenz system, in contrast to prior studies that primarily addressed the deterministic Lorenz
system.

5. We compare the new estimators to four discrete maximum likelihood estimators from
the literature in a simulation study, comparing the accuracy and computational speed.

The rest of this paper is structured as follows. In Section 2, we introduce the SDE model
class and define the splitting schemes and the estimators. In Section 3, we show that the S
splitting has better one-step predictions than the LT, and we prove that the S splitting is Lp

consistent with order 1.5 and Lp convergent with order 1. To the best of our knowledge, this
is a new result. Sections 4 and 5 establish the estimator asymptotics under the less restrictive
one-sided global Lipschitz assumption. We illustrate in Section 6 the theoretical results in
a simulation study on a model that is not globally Lipschitz, the 3-dimensional stochastic
Lorenz systems. Since the objective functions based on pseudo-likelihoods are multivariate
in both data and parameters, we use automatic differentiation (AD) to get faster and more
reliable estimators. We compare the precision and speed of the EM, K, LL, HE, LT and S
estimators. We show that the EM and LT estimators become biased before the others with in-
creasing discretization step h, HE (of order 2) works only for the smallest h in the simulation
study, and the LL and S perform the best. However, S is much faster than LL because LL
calculates a new covariance matrix for each combination of data points and parameter values.

Notation. We use capital bold letters for random vectors, vector-valued functions and ma-
trices, while lowercase bold letters denote deterministic vectors. ‖ · ‖ denotes both the L2

vector norm in Rd and the matrix norm induced by the L2 norm, defined as the square root
of the largest eigenvalue. Superscript (i) on a vector denotes the ith component, while on a
matrix it denotes the ith row. Double subscript ij on a matrix denotes the component in the
i-th row and j th column. If a matrix is a product of more matrices, square brackets with sub-
scripts denote a component inside the matrix. The transpose is denoted by �. Operator Tr(·)
returns the trace of a matrix and det(·) the determinant. Sometimes, we denote by [ai]di=1 a
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vector with coordinates ai , and by [bij ]di,j=1 a matrix with coordinates bij , for i, j = 1, . . . , d .

We denote with ∂ig(x) the partial derivative of a generic function g : Rd → R with respect
to x(i) and ∂2

ij g(x) the second partial derivative. The nabla operator ∇ denotes the gradient

vector of a function g, ∇g(x) = [∂ig(x)]di=1. The differential operator D denotes the Jaco-
bian matrix DF(x) = [∂iF

(j)(x)]di,j=1, for a vector-valued function F : Rd → Rd . H denotes

the Hessian matrix of a real-valued function g, Hg(x) = [∂ijg(x)]di,j=1. Let R represent a

vector (or a matrix) valued function defined on (0,1) × Rd , such that for some constant C,
‖R(a,x)‖ < aC(1 + ‖x‖)C for all a, x. When denoted R, it is a scalar.

The Kronecker delta function is denoted by δ
j
i . For an open set A, the bar A indicates

closure. We use θ= to indicate equality up to an additive constant that does not depend on θ .

We write
P−→,

d−→ and
P−a.s.−−−−→ for convergence in probability, distribution, and almost surely,

respectively. Id denotes the d-dimensional identity matrix, while 0d×d is a d-dimensional
zero square matrix. For an event E ∈ F , we denote by 1E the indicator function.

2. Problem setup. Let X in (1) be defined on a complete probability space (�,F,Pθ )

with a complete right-continuous filtration (Ft )t≥0, and let the d-dimensional Wiener pro-
cess W = (Wt )t≥0 be adapted to Ft . The probability measure Pθ is parameterized by the
parameter θ = (β,�). Rewrite equation (1) as follows:

dXt = A(β)
(
Xt − b(β)

)
dt + N(Xt ;β) dt + � dWt , X0 = x0,(2)

such that F(x;β) = A(β)(x − b(β)) + N(x;β). Let � = �β × �� be the parameter space
with �β and �� being two open convex bounded subsets of Rr and Rd×d , respectively.

Functions F,N : Rd ×�β → Rd are locally Lipschitz, and A, b are defined on �β and take
values in Rd×d and Rd , respectively. Parameter matrix � takes values in Rd×d . The matrix
��� is assumed to be positive definite and determines the variance of the process. Since any
square root of ��� induces the same distribution, � is only identifiable up to equivalence
classes. Thus, instead of estimating �, we estimate ���. The drift function F in (1) is split
up into a linear part given by matrix A and vector b and a nonlinear part given by N. This
decomposition is essential for defining the splitting schemes and the objective functions used
for estimating θ .

We denote the true parameter value by θ0 = (β0,�0) and assume that θ0 ∈ �. Sometimes
we write A0, b0, N0(x) and ���

0 instead of A(β0), b(β0), N(x;β0) and �0�
�
0 , when refer-

ring to the true parameters. We write A, b, N(x) and ��� for any parameter θ . Sometimes
we suppress the parameter to simplify notation, for example, E implicitly refers to Eθ .

REMARK 1. The drift function F(x) can always be rewritten as A(x − b) + N(x) for any
A, b by setting N(x) = F(x)−A(x−b), including choosing A and b to be zero. The splitting
proposed below will then result in a Brownian motion (3) and a nonlinear ODE (4).

REMARK 2. We assume additive noise, sometimes referred to as constant volatility,
meaning that the diffusion matrix does not depend on the current state. This assumption can
be restrictive and even rejected by the data in some applications. The proposed methodology
can be extended if the diffusion is reducible (Definition 1 in (Aït-Sahalia (2008))) by apply-
ing the Lamperti transform to obtain a unit diffusion coefficient. However, if the transform
depends on the parameter, estimation is not straightforward. In this paper, we only consider
additive noise.
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2.1. Assumptions. The main assumption is that (2) has a unique strong solution
X= (Xt )t∈[0,T ], adapted to (Ft )t∈[0,T ], which follows from the following first two assump-
tions (Theorem 2 in Alyushina (1987), Theorem 1 in Krylov (1990), Theorem 3.5 in Mao
(2007)). We need the last three assumptions to prove the properties of the estimators.

(A1) Function N is twice continuously differentiable with respect to x and θ , that is, N ∈
C2. Additionally, it is one-sided globally Lipschitz continuous with respect to x on Rd ×�β ,
that is, there exists a constant C > 0 such that

(x − y)�
(
N(x;β) − N(y;β)

)≤ C‖x − y‖2 ∀x,y ∈ Rd .

(A2) Function N grows at most polynomially in x, uniformly in θ , that is, there exist
constants C > 0 and χ ≥ 1 such that∥∥N(x;β) − N(y;β)

∥∥2 ≤ C
(
1 + ‖x‖2χ−2 + ‖y‖2χ−2)‖x − y‖2 ∀x,y ∈ Rd .

Additionally, its derivatives are of polynomial growth in x, uniformly in θ .
(A3) The solution X of SDE (1) has invariant probability ν0(dx).
(A4) ��� is invertible on �� .
(A5) Function F is identifiable in β , that is, if F(x,β1) = F(x,β2) for all x ∈ Rd , then

β1 = β2.

Assumption (A3) is required for the ergodic theorem to ensure convergence in distribution.
Assumption (A4) implies that model (1) is elliptic, which is not needed for the S estimator,
whereas the EM estimator breaks down in hypoelliptic models. We will treat the hypoelliptic
case in a separate paper where the proofs are more involved. Assumption (A5) ensures the
identifiability of the parameter.

Assume a sample (Xtk )
N
k=0 ≡ X0:tN from (2) at time steps 0 = t0 < t1 < · · · < tN = T . For

notational simplicity, we assume equidistant step size h = tk − tk−1.

2.2. Moments. Assumption (A1) ensures finiteness of the moments of the solution X
(Tretyakov and Zhang (2013)), that is,

E
[

sup
t∈[0,T ]

‖Xt‖2p
]
< C

(
1 + ‖x0‖2p) ∀p ≥ 1.

The infinitesimal generator L of (1) is defined on sufficiently smooth functions g : Rd ×� →
R given by

Lθ0g(x; θ) = F(x;β0)
�∇g(x; θ) + 1

2
Tr
(
���

0 Hg(x; θ)
)
.

The moments of (1) are expanded using the following lemma (Lemma 1.10 in Sørensen
(2012)).

LEMMA 2.1. Let Assumptions (A1)–(A2) hold. Let X be a solution of (1). Let g ∈
C(2l+2) be of polynomial growth and p ≥ 2. Then

Eθ0

[
g(Xtk ; θ)|Ftk−1

]= l∑
j=0

hj

j ! L
j
θ0

g(Xtk−1; θ) + R
(
hl+1,Xtk−1

)
.

We need terms up to order R(h3,Xtk−1). Applying Lθ on g(x) = x(i), Lemma 2.1 yields

E
[
X

(i)
tk

|Xtk−1 = x
]= x(i) + hF (i)(x) + h2

2

(
F(x)�∇F (i)(x) + 1

2
Tr
(
���HF (i)(x)

))
+ R

(
h3,x

)
.
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2.3. Splitting schemes. Consider the following splitting of (2):

dX[1]
t = A

(
X[1]

t −b
)

dt + � dWt , X[1]
0 = x0,(3)

dX[2]
t = N

(
X[2]

t

)
dt, X[2]

0 = x0.(4)

The solution of equation (3) is an OU process given by the following h-flow:

(5) X[1]
tk

= �
[1]
h

(
X[1]

tk−1

)= eAhX[1]
tk−1

+(I − eAh)b + ξh,k,

where ξh,k

i.i.d.∼ Nd(0,�h) for k = 1, . . . ,N (Vatiwutipong and Phewchean (2019)). The co-
variance matrix �h and the conditional mean of the OU process (5) are provided by

�h =
∫ h

0
eA(h−u)���eA�(h−u) du = h��� + h2

2

(
A��� + ���A�)

(6)
+ R(h,x0),

μh(x;β) := eA(β)hx + (I − eA(β)h)b(β).(7)

Assumptions (A1) and (A2) ensure the existence and uniqueness of the solution of (4)
(Theorem 1.2.17 in Humphries and Stuart (2002)). Thus, there exists a unique function
f h : Rd × �β → Rd , for h ≥ 0, such that

(8) X[2]
tk

= �
[2]
h

(
X[2]

tk−1

)= f h

(
X[2]

tk−1
;β).

For all β ∈ �β , the time flow f h fulfills the following semigroup properties:

f 0(x;β) = x, f t+s(x;β) = f t

(
f s(x;β);β), t, s ≥ 0.(9)

REMARK 3. Since only one-sided Lipschitz continuity is assumed, the solution to (4)
might not exist for all h < 0 and all x0 ∈ Rd , implying that the inverse f −1

h might not exist.
If it exists, then f −1

h = f −h. For the S estimator, we need a well-defined inverse. This is not
an issue when N is globally Lipschitz.

We, therefore, introduce the following and last assumption.

(A6) Function f −1
h (x;β) is defined asymptotically, for all x ∈ Rd , β ∈ �β , when h → 0.

Before defining the splitting schemes, we present a useful proposition for expanding the
nonlinear solution f h (Section 1.8 in (Hairer, Nørsett and Wanner (1993))).

PROPOSITION 2.2. Let Assumptions (A1)–(A2) hold. When h → 0, the h-flow of (4) is

f h(x) = x + hN(x) + h2

2

(
DN(x)

)
N(x) + R

(
h3,x

)
.

Now, we introduce the two most common splitting approximations, which serve as the
main building blocks for the proposed estimators.

DEFINITION 2.3. Let Assumptions (A1) and (A2) hold. The Lie–Trotter and Strang
splitting approximations of the solution of (2) are given by

X[LT]
tk

:= �
[LT]
h

(
X[LT]

tk−1

)= (
�

[1]
h ◦ �

[2]
h

)(
X[LT]

tk−1

)= μh

(
f h

(
X[LT]

tk−1

))+ ξh,k,(10)

X[S]
tk

:= �
[S]
h

(
X[S]

tk−1

)= (
�

[2]
h/2 ◦ �

[1]
h ◦ �

[2]
h/2

)(
X[S]

tk−1

)
(11)

= f h/2
(
μh

(
f h/2

(
X[S]

tk−1

))+ ξh,k

)
.
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REMARK 4. The order of composition in the splitting schemes is not unique. Changing
the order in the S splitting leads to a sum of 2 independent random variables, one Gaussian
and one non-Gaussian, whose likelihood is not trivial. Thus, we only use the splitting (11).
The reversed order in the LT splitting can be treated the same way as the S splitting.

REMARK 5. Splitting the drift F(x) into a linear and a nonlinear part is not unique.
However, all theorems and properties, particularly consistency and asymptotic normality of
the estimators, hold for any splitting choice. Yet, for fixed step size h and sample size N ,
certain splittings perform better than others. In this paper, we present two general and intu-
itive strategies. The first applies when the system has a fixed point; here, the linear part of
the splitting is the linearization around the fixed point. The linear OU performs accurately
near the fixed point, with the nonlinear part correcting for nonlinear deviations. Simulations
consistently show this approach to perform best. Another strategy is to linearize around the
measured average value for each coordinate. An in-depth analysis of the splitting strategies
for a specific example is provided in Section 2.5.

REMARK 6. Trajectories of S and LT splittings coincide up to the first h/2 and the last
h/2 steps of the flow �

[2]
h/2. Indeed, when applied k times, the S splitting can be written as(
�

[S]
h

)k
(x0) = (

�
[2]
h/2 ◦ (�[LT]

h

)k ◦ �
[2]
−h/2

)
(x0).

Thus, it is natural that LT and S have the same order of Lp convergence. We prove this in
Section 3. However, the LT and S trajectories differ in their output points (10) and (11). Strang
splitting outputs the middle points of the smooth steps of the deterministic flow (8), while LT
splitting outputs the stochastic increments in the rough steps. We conjecture that this is one
of the reasons why the S splitting has superior statistical properties.

2.4. Estimators. In this section, we first introduce two new estimators, LT and S, given
a sample X0:tN . Subsequently, we provide a brief overview of the estimators EM, K, LL and
HE, which will be compared in the simulation study.

2.4.1. Splitting estimators. The LT scheme (10) follows a Gaussian distribution. Conse-
quently, the objective function corresponds to (twice) the negative pseudo-log-likelihood:

L[LT](X0:tN ; θ)
θ= N log

(
det�h(θ)

)
+

N∑
k=1

(
Xtk − μh

(
f h(Xtk−1;β);β))��h(θ)−1

× (Xtk − μh

(
f h(Xtk−1;β);β)).

(12)

The S splitting (11) is a nonlinear transformation of the Gaussian random variable μh(f h/2 ×
(Xtk−1;β);β) + ξh,k . We first define

Ztk (β) := f −1
h/2(Xtk ;β) − μh

(
f h/2(Xtk−1;β);β).(13)

Afterwards, we apply a change of variables to derive the following objective function:

(14)

L[S](X0:tN ; θ)
θ= N log

(
det�h(θ)

)+ N∑
k=1

Ztk (β)��h(θ)−1Ztk (β)

− 2
N∑

k=1

log
∣∣detDf −1

h/2(Xtk ;β)
∣∣.
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The last term is due to the nonlinear transformation and is an extra term that does not
appear in commonly used pseudo-likelihoods.

The inverse function f −1
h may not exist for all parameters in the search domain of the

optimization algorithm. However, this problem can often be solved numerically. When f −1
h

is well defined, we use the identity − log |detDf −1
h (x;β)| = log |detDf h(x;β)| in (14) to

increase the speed and numerical stability.
Finally, we define the estimators as

(15) θ̂
[k]
N := arg min

θ
L[k](X0:tN ; θ), k ∈ {LT,S}.

2.4.2. Euler–Maruyama. The EM method uses first-order Taylor expansion of (1):

X[EM]
tk

:= X[EM]
tk−1

+ hF
(
X[EM]

tk−1
;β)+ ξ

[EM]
h,k ,(16)

where ξ
[EM]
h,k

i.i.d.∼ Nd(0, h���) for k = 1, . . . ,N (Kloeden and Platen (1992)). The transition
density p[EM](Xtk |Xtk−1; θ) is Gaussian, so the pseudo-likelihood follows trivially.

2.4.3. Kessler’s Gaussian approximation. The K estimator uses Gaussian transition den-
sities p[K](Xtk |Xtk−1; θ) with the true mean and covariance of the solution X (Kessler (1997)).
When the moments are unknown, they are approximated using the infinitesimal generator
(Lemma 2.1). We implement the estimator K based on the 2nd-order approximation:

(17)

X[K]
tk

:= X[K]
tk−1

+ hF
(
X[K]

tk−1
;β)+ ξ

[K]
h,k

(
X[K]

tk−1

)
+ h2

2

(
DF

(
X[K]

tk−1
;β)F(X[K]

tk−1
;β)+ 1

2

[
Tr
(
���HF (i)

(
X[K]

tk−1
;β))]di=1

)
,

where ξ
[K]
h,k(X

[K]
tk−1

) ∼ Nd(0,�
[K]
h,k(θ)), and �

[K]
h,k(θ) = h��� + h2

2 (DF(X[K]
tk−1

;β)��� +
���D�F(X[K]

tk−1
;β)). The covariance matrix is not constant, which makes the algorithm

slower for a larger sample size.

2.4.4. Ozaki’s local linearization. Ozaki’s LL method approximates the drift of (1) be-
tween consecutive observations by a linear function (Jimenez, Shoji and Ozaki (1999)). The
LL method consists of the following steps:

(1) Perform LL of the drift F in each time interval [t, t + h) by the Itô–Taylor series;
(2) Compute the analytic solution of the resulting linear SDE.

The approximation becomes

X[LL]
tk

:= X[LL]
tk−1

+ �
[LL]
h

(
X[LL]

tk−1
; θ)+ ξ

[LL]
h,k

(
X[LL]

tk−1

)
,(18)

where ξ
[LL]
h,k (X[LL]

tk−1
) ∼ Nd(0,�

[LL]
h,k (θ)), and

�
[LL]
h,k (θ) :=

∫ h

0
e
DF(X[LL]

tk−1
;β)(h−u)

���e
DF(X[LL]

tk−1
;β)�(h−u) du,

�
[LL]
h (x; θ) := Rh,0

(
DF(x;β)

)
F(x;β) + (hRh,0

(
DF(x;β)

)
− Rh,1

(
DF(x;β)

))
M(x; θ),

Rh,i

(
DF(x;β)

) := ∫ h

0
exp
(
DF(x;β)u

)
ui du, i = 0,1,
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M(x; θ) := 1

2

(
Tr H1(x; θ), . . . ,Tr Hd(x; θ)

)�
,

Hk(x; θ) :=
[[

���]
ij

∂2F (k)

∂x(i)∂x(j)
(x)

]d
i,j=1

.

We can efficiently compute Rh,i and �
[LL]
h,k (θ) using formulas from (Van Loan (1978)); see

(Gu, Wu and Xue (2020)). For more details, see the Supplementary Material (Pilipovic, Sam-
son and Ditlevsen (2024)).

Thus, p[LL](Xtk |Xtk−1; θ) is Gaussian and standard likelihood inference applies. Similar to

K, �
[LL]
h,k (θ) depends on the previous state X[LL]

tk−1
, which is a major downside since it is harder

to implement and slower to run due to the computation of N − 1 covariance matrices. Unlike
K, LL does not Taylor expand the approximated drift and covariance matrix, so the influence
of sample size N on computational times is much larger.

2.4.5. Aït-Sahalia’s infinite Hermite expansion. The HE method (Aït-Sahalia (2002,
2008)) approximates the likelihood using two transformations to make data resemble a nor-
mal distribution, facilitating corrections for finite samples. First, Xt is transformed to unit
diffusion Yt , using the Lamperti transform. Then Yt is transformed into a more normal-like
Zt . Finally, the objective function is a Hermite expansion in terms of convergent power series
in h, around this normal density before reverting back to Xt . The Lamperti transform can be
omitted for nonreducible diffusions (Aït-Sahalia (2008)). For additive noise, the HE objective
function of order J is given as

L[HE](X0:tN ; θ)
θ= N log

(
det���)

− 2
N∑

k=1

(
C

(−1)
Y (γ (Xtk )|γ (Xtk−1))

h
+

J∑
j=0

hj

j ! C
(j)
Y

(
γ (Xtk )|γ (Xtk−1)

))
.

(19)

Function γ is the Lamperti transform, and functions C
(j)
Y , for j = −1,0,1, . . . , J are calcu-

lated recursively according to Theorem 1 in (Aït-Sahalia (2008)).

2.5. An example: The stochastic Lorenz system. The Lorenz system is a 3D system intro-
duced by Lorenz (1963) to model atmospheric convection. The model is originally determin-
istic exhibiting deterministic chaos, that is, tiny differences in initial conditions lead to un-
predictable and widely diverging trajectories. The Lorenz system evolves around two strange
attractors, implying that trajectories remain within some bounded region, while points that
start in close proximity may eventually separate by arbitrary distances as time progresses
(Hilborn (1994)). We add noise to include unmodeled forces and randomness. The stochastic
Lorenz system is given by

dXt = p(Yt − Xt) dt + σ1 dW
(1)
t ,

dYt = (rXt − Yt − XtZt) dt + σ2 dW
(2)
t ,

dZt = (XtYt − cZt) dt + σ3 dW
(3)
t .

(20)

The variables Xt , Yt and Zt represent convective intensity, and horizontal and vertical temper-
ature differences, respectively. Parameters p, r and c denote the Prandtl number, the Rayleigh
number and a geometric factor, respectively (Tabor (1989)). Lorenz (1963) used the values
p = 10, r = 28 and c = 8/3, yielding chaotic behavior.

The system does not fulfill the global or the one-sided Lipschitz condition because it is
a second-order polynomial (Humphries and Stuart (1994)). However, it has a unique global
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FIG. 1. An example trajectory of the stochastic Lorenz system (20) starting at (0,1,0) for N = 10,000 and
h = 0.005. The first row shows the evolution of the individual components X, Y and Z. The second row shows
the evolution of component pairs: (Y,Z), (X,Z) and (X,Y ). Parameters are p = 10, r = 28, c = 8/3, σ 2

1 = 1,

σ 2
2 = 2 and σ 2

3 = 1.5.

solution and an invariant probability (Keller (1996)). Thus, all assumptions (A2)–(A5), except
(A1) hold. Even so, we show in Section 6 that the estimators work.

Different approaches for estimating parameters in the Lorenz system have been pro-
posed, mostly in the deterministic case. Zhuang et al. (2020) and Lazzús, Rivera and López-
Caraballo (2016) used sophisticated optimization algorithms to achieve better precision.
Dubois et al. (2020) and Ann et al. (2022) used deep neural networks in combination with
other machine learning algorithms. Ozaki, Jimenez and Haggan-Ozaki (2000) used Kalman
filtering based on LL on the stochastic Lorenz system.

Figure 1 shows an example trajectory of the stochastic Lorenz system. The trajectory was
generated by subsampling from an EM simulation, such that N = 10,000 and h = 0.05,
with parameter values p = 10, r = 28, c = 8/3, σ 2

1 = 1, σ 2
2 = 2 and σ 2

3 = 1.5. Even if the
trajectory had not been stochastic, the unpredictable jumps in the first row of Figure 1 would
still have been there due to the chaotic behavior.

We suggest to split SDE (20) by choosing the OU part (3) as the linearization around
one of the two fixed points (x, y, z) = (±√

c(r − 1),±√
c(r − 1), r − 1). For sim-

plicity, we exclude the fixed point (0,0,0) since X and Y spend little time around this
point; see Figure 1. Specifically, we apply a mixture of two splittings, linearizing around
(
√

c(r − 1),
√

c(r − 1), r − 1) when X > 0 and around (−√
c(r − 1),−√

c(r − 1), r − 1)

when X < 0. We denote these estimators by LTmix and Smix. The splitting is given by

Amix =
⎡⎣−p p 0

1 −1 −x

y x −c

⎤⎦ , bmix =
⎡⎣x

y

z

⎤⎦ , Nmix(x, y, z) =
⎡⎣ 0
−(x − x)(z − z)(
x − x)(y − y)

⎤⎦ .

The OU process is mean-reverting toward bmix = (x, y, z). The nonlinear solution is

f mix,h(x, y, z) =
⎡⎣ x(

y − y) cos
(
h
(
x − x))− (z − z) sin

(
h
(
x − x))+ y(

y − y) sin
(
h
(
x − x))+ (z − z) cos

(
h
(
x − x))+ z

⎤⎦ .

The solution is a composition of a 3D rotation and translation of (y, z) around the fixed point.
The inverse always exists, and thus, Assumption (A6) holds. Moreover, detDf −1

mix,h(·) = 1.
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The mixing strategy does not increase the complexity of the implementation significantly,
and it is straightforward to incorporate into the existing framework. Thus, this splitting strat-
egy is convenient when the model has several fixed points.

An alternative splitting linearizes around the average of the observations. Let (μx,μx,μz)

be the average of the data, where we put μx = μy since the difference of their averages is
small, around 10−3. We denote these estimators by LTavg and Savg. The splitting is given by

Aavg =
⎡⎣ −p p 0
r − μz −1 −μx

μx μx −c

⎤⎦ , bavg =
⎡⎣μx

μx

μz

⎤⎦ ,

Navg(x, y, z) =
⎡⎢⎣ 0
−(x − μx)(z − μz) + (r − 1 − μz)μx

(x − μx)(y − μx) + μ2
x − cμz

⎤⎥⎦ .

The nonlinear solution is

f avg,h(x, y, z) =
⎡⎣ μx

μx+ cμz−μ2
x

x−μx

μz+μx(r−1−μz)
x−μx

⎤⎦

+

⎡⎢⎢⎢⎣
x−μx(

y−μx− cμz−μ2
x

x−μx

)
cos
(
h(x−μx)

)
−
(

z−μz−μx(r−1−μz)
x−μx

)
sin
(
h(x−μx)

)
(

y−μx− cμz−μ2
x

x−μx

)
sin
(
h(x−μx)

)
+
(

z−μz−μx(r−1−μz)
x−μx

)
cos
(
h(x−μx)

)
⎤⎥⎥⎥⎦ ,

where f avg,h(μx, y, z) := (μx, y +hμx(r − 1 −μz), z+hμ2
x − cμz)

� and detDf −1
avg,h(·) =

1.

3. Order of one-step predictions and Lp convergence. In this section, we investigate
Lp convergence of the splitting schemes and the order of the one-step predictions. Theo-
rem 2.1 in Tretyakov and Zhang (2013) extends Milstein’s fundamental theorem on Lp con-
vergence for global Lipschitz coefficients (Milstein (1987)) to Assumptions (A1) and (A2).
This theorem provides the theoretical underpinning for our approach, drawing on the key
concepts of Lp consistency and boundedness of moments.

DEFINITION 3.1 (Lp consistency of a numerical scheme). The one-step approximation
�̃h of the solution X is Lp consistent, p ≥ 1, of order q2 − 1/2≥ 0, if for k = 1, . . . ,N and
some q1 ≥ q2 + 1/2: ∥∥E[Xtk − �̃h(Xtk−1)|Xtk−1 = x

]∥∥= R
(
hq1,x

)
,(

E
[∥∥Xtk − �̃h(Xtk−1)

∥∥2p|Xtk−1 = x
]) 1

2p = R
(
hq2,x

)
.

DEFINITION 3.2 (Bounded moments of a numerical scheme). A numerical approxima-
tion X̃ of the solution X has bounded moments, if for all p ≥ 1, there exists constant C > 0,
such that, for k = 1, . . . ,N :

E
[‖X̃tk‖2p]≤ C

(
1 + ‖x0‖2p).

The following theorem (Theorem 2.1 in Tretyakov and Zhang (2013)) gives sufficient
conditions for Lp convergence of a numerical scheme in a one-sided Lipschitz framework.
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THEOREM 3.3 (Lp convergence of a numerical scheme). Let Assumptions (A1) and
(A2) hold, and let X̃tk be a numerical approximation of the solution Xtk of (1) at time tk . If:

(1) The one-step approximation X̃tk = �̃h(X̃tk−1) is Lp consistent of order q2 − 1/2; and
(2) X̃ has bounded moments,

then X̃ is Lp convergent, p ≥ 1, of order q2 − 1/2, that is, for k = 1, . . . ,N , it holds:(
E
[‖Xtk − X̃tk‖2p]) 1

2p = R
(
hq2−1/2,x0

)
.

3.1. Lie–Trotter splitting. We first show that the one-step LT approximation is of or-
der R(h2,x0) in mean. The following proposition is proved in the Supplementary Material
(Pilipovic, Samson and Ditlevsen (2024)) for scheme (10), as well as for the reversed order
of composition. We demonstrate that the order of one-step prediction cannot be improved
unless the drift F is linear.

PROPOSITION 3.4 (One-step prediction of LT splitting). Assume (A1)–(A2), let X be the
solution to (1) and let �

[LT]
h be the LT approximation (10). Then, for k = 1, . . . ,N , it holds:∥∥E[Xtk − �

[LT]
h (Xtk−1)|Xtk−1 = x

]∥∥= R
(
h2,Xtk−1

)
.

Lp convergence of the LT splitting scheme is established in Theorem 2 in Buckwar et al.
(2022), which we repeat here for convenience.

THEOREM 3.5 (Lp convergence of the LT splitting). Assume (A1)–(A2), let X[LT] be the
LT approximation defined in (10) and let X be the solution of (1). Then there exists C ≥ 1
such that for all p ≥ 2, and k = 1, . . . ,N , it holds:(

E
[∥∥Xtk − X[LT]

tk

∥∥p]) 1
p = R(h,x0).

Now, we investigate the same properties for the S splitting.

3.2. Strang splitting. The following proposition states that the S splitting (11) has higher
order one-step predictions than the LT splitting (10). The proof can be found in the Supple-
mentary Material (Pilipovic, Samson and Ditlevsen (2024)).

PROPOSITION 3.6. Assume (A1)–(A2), let X be the solution to (1) and let �
[S]
h be the S

splitting approximation (11). Then, for k = 1, . . . ,N , it holds:∥∥E[Xtk − �
[S]
h (Xtk−1)|Xtk−1 = x

]∥∥= R
(
h3,Xtk−1

)
.(21)

REMARK 7. Even though LT and S have the same order of Lp convergence, the crucial
difference is in the one-step prediction. The approximated transition density between two
consecutive data points depends on the one-step approximation. Thus, the objective function
based on pseudo-likelihood from the S splitting is more precise than the one from the LT.

To prove Lp convergence of the S splitting scheme for (1) with one-sided Lipschitz drift,
we follow the same procedure as in Buckwar et al. (2022). The proof of the following theorem
is in the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).



856 P. PILIPOVIC, A. SAMSON AND S. DITLEVSEN

THEOREM 3.7 (Lp convergence of S splitting). Assume (A1), (A2) and (A6), let X[S] be
the S splitting defined in (11) and let X be the solution of (1). Then there exists C ≥ 1 such
that for all p ≥ 2 and k = 1, . . . ,N , it holds:(

E
[∥∥Xtk − X[S]

tk

∥∥p]) 1
p = R(h,x0).

Before we move to parameter estimation, we prove a useful corollary.

COROLLARY 3.8. Let all assumptions from Theorem 3.7 hold. Then (E[‖Ztk −
ξh,k‖p])1/p = R(h,x0).

PROOF. From the definition of Ztk in (13), it is enough to prove that(
E
[∥∥f −1

h/2(Xtk ) − μh

(
f h/2(Xtk−1)

)− ξh,k

∥∥p])1/p = R(h,x0).

From (11), we have that ξh,k = f −1
h/2(X

[S]
tk

) − μh(f h/2(X
[S]
tk−1

)). Then

E
[∥∥f −1

h/2(Xtk ) − μh

(
f h/2(Xtk−1)

)− ξh,k

∥∥p]1/p

≤ C
(
E
[‖f −1

h/2(Xtk ) − f −1
h/2

(
X[S]

tk

)‖p]+ E
[‖f h/2(Xtk−1) − f h/2

(
X[S]

tk−1

)‖p])1/p

≤ C
(
E
[∥∥Xtk − X[S]

tk

∥∥p]+ E
[∥∥Xtk−1 − X[S]

tk−1

∥∥p])1/p + R(h,x0).

We used Proposition 2.2 that X, X[S] have finite moments and f h/2, f −1
h/2 grow polynomially.

The result follows from Lp convergence of the S splitting scheme, Theorem 3.7. �

4. Auxiliary properties. This paper centers around proving the properties of the S es-
timator. There are two reasons for this. First, most numerical properties in the literature are
proved only for LT splitting because proofs for S splitting are more involved. Here, we estab-
lish both the numerical properties of the S splitting as well as the properties of the estimator.
Second, the S splitting introduces a new pseudo-likelihood that differs from the standard
Gaussian pseudo-likelihoods. Consequently, standard tools, like those proposed by Kessler
(1997), do not directly apply.

The asymptotic properties of the LT estimator are the same as for the S estimator. However,
the following auxiliary properties will be stated and proved only for the S estimator. They can
be reformulated for the LT estimator following the same logic.

Before presenting the central results for the estimator, we establish the groundwork with
two essential lemmas that rely on the model assumptions. Lemma 4.1 (Lemma 6 in Kessler
(1997)) deals with the pth moments of the SDE increments and also provides a moment
bound of a polynomial map of the solution. The proof of this lemma in the Supplementary
Material (Pilipovic, Samson and Ditlevsen (2024)) differs from that in Kessler (1997) due to
our relaxation of the global Lipschitz assumption of the drift F. Instead, we use a one-sided
Lipschitz condition in conjunction with the generalized Grönwall’s inequality (Lemma 2.3
in Tian and Fan (2020) to establish the result, see the Supplementary Material (Pilipovic,
Samson and Ditlevsen (2024))).

Lemma 4.2 (Lemma 8 in Kessler (1997), Lemma 2 in Sørensen and Uchida (2003)) con-
stitutes a central ergodic property that is essential for establishing the asymptotic behavior
of the estimator. The proof when the drift F is one-sided Lipschitz is identical to the one
presented in Kessler (1997), particularly when combined with Lemma 4.1.

LEMMA 4.1. Assume (A1)–(A2). Let X be the solution of (1). For tk ≥ t ≥ tk−1, where
h = tk − tk−1 < 1, the following two statements hold:



SDE PARAMETER ESTIMATION USING SPLITTING SCHEMES 857

(1) For p ≥ 1, there exists Cp > 0 that depends on p, such that

E
[‖Xt − Xtk−1‖p|Ftk−1

]≤ Cp(t − tk−1)
p/2(1 + ‖Xtk−1‖

)Cp .

(2) If g : Rd × � → R is of polynomial growth in x uniformly in θ , then there exist con-
stants C and Ct−tk−1 that depends on t − ttk−1 , such that

E
[∣∣g(Xt ; θ)

∣∣|Ftk−1

]≤ Ct−tk−1

(
1 + ‖Xtk−1‖

)C
.

LEMMA 4.2. Assume (A1), (A2), (A3) and let X be the solution to (1). Let g : Rd ×� →
R be a differentiable function with respect to x and θ with derivative of polynomial growth in
x, uniformly in θ . If h → 0 and Nh → ∞, then

1

N

N∑
k=1

g(Xtk , θ)
Pθ0−−−−→

Nh→∞
h→0

∫
g(x, θ) dν0(x),

uniformly in θ .

Lastly, we state the moment bounds needed for the estimator asymptotics. The proof is in
the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

PROPOSITION 4.3 (Moment bounds). Assume (A1), (A2), (A6). Let X be the solution of
(1), and Ztk as defined in (13). Let g(x;β) be a generic function with derivatives of polynomial
growth, and β ∈ �β . Then, for k = 1, . . . ,N , the following moment bounds hold:

(i) Eθ0[Ztk (β0)|Xtk−1 = x] = R(h3,Xtk−1)

(ii) Eθ0[Ztk (β0)g(Xtk ;β)�|Xtk = x] = h
2 (���

0 D�g(x;β) + Dg(x;β)���
0 ) +

R(h2,Xtk−1);
(iii) Eθ0[Ztk (β0)Ztk (β0)

�|Xtk−1 = x] = h���
0 + R(h2,Xtk−1).

5. Asymptotics. The estimators θ̂N are defined in (15). However, the full objective func-
tions (12) and (14) are not needed to prove consistency and asymptotic normality. It is enough
to approximate �h up to the second order by h��� + h2

2 (A��� + ���A�) (see equation
(6)). Indeed, after applying Taylor series on the inverse of �h, we get

�h(θ)−1= 1

h

(
���)−1

(
I + h

2

(
A(β) + ���A(β)�

(
���)−1)−1

)
+ R(h,x0)

= 1

h

(
���)−1

(I − h

2

(
A(β) + ���A(β)�

(
���)−1)+ R(h,x0)

= 1

h

(
���)−1 − 1

2

((
���)−1A(β) + A(β)�

(
���)−1)+ R(h,x0).

Similarly, we approximate the log-determinant as

log det�h(θ)= log det
(
h��� + h2

2

(
A(β)��� + ���A(β)�

))+ R
(
h2,x0

)
θ= log det���+ log det

(
I + h

2

(
A(β) + ���A(β)�

(
���)−1))+ R

(
h2,x0

)
= log det��� + h

2
Tr
(
A(β) + ���A(β)�

(
���)−1)+ R

(
h2,x0

)
= log det��� + hTr A(β) + R

(
h2,x0

)
.
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Using the same approximation, we obtain

2 log
∣∣detDf h/2(x;β)

∣∣= 2 log
∣∣∣∣det

(
I + h

2
DN(x;β)

)∣∣∣∣
= 2 log

∣∣∣∣1 + h

2
TrDN(x;β)

∣∣∣∣+ R(h,x)

= hTrDN(x;β) + R
(
h2,x0

)
.

Retaining terms up to order R(Nh2,x0) from (12) and (14), we establish the approximate
objective functions:

L[LT]
N (θ) := N log det���+NhTr A(β)

+ 1

h

N∑
k=1

(
Xtk − μh

(
f h(Xtk−1;β);β))�(���)−1

× (Xtk − μh

(
f h(Xtk−1;β);β))(22)

−
N∑

k=1

(
Xtk − μh

(
f h(Xtk−1;β);β))�(���)−1

× A(β)
(
Xtk − μh

(
f h(Xtk−1;β);β)),

L[S]
N (θ) := N log det���+NhTr A(β) + 1

h

N∑
k=1

Ztk (β)�
(
���)−1Ztk (β)

(23)

−
N∑

k=1

Ztk (β)�
(
���)−1A(β)Ztk (β) + h

N∑
k=1

TrDN(Xtk ;β).

Unlike other likelihood-based methods, such as Kessler (1997), Aït-Sahalia (2002, 2008),
Choi (2013, 2015), Yang, Chen and Wan (2019), our estimators do not involve expansions.
The objective functions are formulated in simple terms without hyperparameters, such as
the order of the expansions. Hence, our approach is robust and user friendly, as we directly
employ (12) and (14). The approximations (22) and (23) are only used for the proofs.

5.1. Consistency. Now, we state the consistency of β̂N and �̂�
�
N . The proof of Theo-

rem 5.1 is in the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

THEOREM 5.1. Assume (A1)–(A6). Let X be the solution of (1) and θ̂N = (β̂N, �̂�
�
N)

be the estimator that minimizes either (22) or (23). If h → 0 and Nh → ∞, then

β̂N

Pθ0−−→ β0, �̂�
�
N

Pθ0−−→ ���
0 .

5.2. Asymptotic normality. First, we need some preliminaries. Let ρ > 0 and Bρ(θ0) =
{θ ∈ �|‖θ − θ0‖ ≤ ρ} be a ball around θ0. Since θ0 ∈ �, for sufficiently small ρ > 0,
Bρ(θ0) ∈ �. Let LN be either (22) or (23). For θ̂N ∈ Bρ(θ0), the mean value theorem yields

(24)
(∫ 1

0
HLN

(
θ0 + t (θ̂N − θ0)

)
dt

)
(θ̂N − θ0) = −∇LN(θ0).

With ς := vech(���) = ([���]11, [���]12, [���]22, . . . , [���]1d, . . . , [���]dd), we
half-vectorize ��� to avoid working with tensors when computing derivatives with respect
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to ���. Since ��� is a symmetric d × d matrix, ς is of dimension s = d(d + 1)/2. For a
diagonal matrix, instead of a half-vectorization, we use ς := diag(���). Define

CN(θ) :=

⎡⎢⎢⎣
1

Nh
∂ββLN(θ)

1

N
√

h
∂βςLN(θ)

1

N
√

h
∂βςLN(θ)

1

N
∂ςςLN(θ)

⎤⎥⎥⎦ ,(25)

sN :=
⎡⎣√

Nh(β̂N − β0)√
N(ς̂N − ς0)

⎤⎦ , λN :=

⎡⎢⎢⎣− 1√
Nh

∂βLN(θ0)

− 1√
N

∂ςLN(θ0)

⎤⎥⎥⎦ ,(26)

and DN := ∫ 1
0 CN(θ0 + t (θ̂N − θ0)) dt . Then (24) is equivalent to DN sN = λN . Let

C(θ0) :=
[
Cβ(θ0) 0r×s

0s×r Cς (θ0)

]
,(27)

where[
Cβ(θ0)

]
i1,i2

:=
∫ (

∂βi1
F0(x)

)�(
���

0
)−1(

∂βi2
F0(x)

)
dν0(x), 1 ≤ i1, i2 ≤ r,

[
Cς (θ0)

]
j1,j2

:= 1

2
Tr
((

∂ςj1���
0
)(

���
0
)−1(

∂ςj2���
0
)(

���
0
)−1)

, 1 ≤ j1, j2 ≤ s.

Now, we state the theorem for asymptotic normality; the proof is in the Supplementary
Material (Pilipovic, Samson and Ditlevsen (2024)).

THEOREM 5.2. Assume (A1)–(A6). Let X be the solution of (1), and θ̂N = (β̂N, ς̂N) be
the estimator that minimizes either (22) or (23). If θ0 ∈ �, C(θ0) is positive definite, h → 0,
Nh → ∞ and Nh2 → 0, then under Pθ0 ,[√

Nh(β̂N − β0)√
N(ς̂N − ς0)

]
d−→ N (0,C−1(θ0)

)
.(28)

The estimator of the diffusion parameter converges faster than the estimator of the drift
parameter. Gobet (2002) showed that for a discretely sampled SDE model, the optimal con-
vergence rates for the drift and diffusion parameters are 1/

√
Nh and 1/

√
N , respectively.

Thus, our estimators reach optimal rates. Moreover, the estimators are asymptotically effi-
cient since C is the Fisher information matrix for the corresponding continuous-time dif-
fusion (see Kessler (1997), Gobet (2002)). Finally, since the asymptotic correlation is zero
between the drift and diffusion estimators, they are asymptotically independent.

6. Simulation study. This section presents the simulation study of the Lorenz system,
illustrating the theory and comparing the proposed estimators with other likelihood-based
estimators. We briefly recall the estimators, describe the simulation process and the opti-
mization in the programming language R (R Core Team (2022)), and present and analyze the
results.

6.1. Estimators used in the study. The EM transition distribution (16) for the Lorenz
system (20) is⎡⎣Xtk

Ytk

Ztk

⎤⎦∣∣∣∣∣∣
⎡⎣Xtk−1

Ytk−1

Ztk−1

⎤⎦=
⎡⎣x

y

z

⎤⎦∼ N

⎛⎜⎝
⎡⎣ x + hp(y − x)

y + h(rx − y − xz)

z + h(xy − cz)

⎤⎦ ,

⎡⎢⎣hσ 2
1 0 0

0 hσ 2
2 0

0 0 hσ 2
3

⎤⎥⎦
⎞⎟⎠ .
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We do not write the closed-form distributions for K (17), LL (18) and HE (19), but we use
the corresponding formulas to implement the likelihoods. We implement the two splitting
strategies proposed in Section 2.5, leading to four estimators: LTmix, LTavg, Smix and Savg.
To further speed up computation time, we use the same trick for calculating �h in (6) as for
calculating �

[LL]
h ; see the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

6.2. Trajectory simulation. To simulate sample paths, we use the EM discretization with
a step size of hsim = 0.0001, which is small enough for the EM discretization to perform
well. Then we subsample the trajectory to get a larger time step h, decreasing discretization
errors. We perform M = 1000 Monte Carlo repetitions.

6.3. Optimization in R. To optimize the objective functions, we use the R package
torch (Falbel and Luraschi (2022)), which uses AD instead of the traditional finite dif-
ferentiation used in optim. The two main advantages of AD are precision and speed. Finite
differentiation is subject to floating point precision errors and is slow in high dimensions
(Baydin et al. (2017)). Conversely, AD is exact and fast, and thus used in numerous applica-
tions, such as MLE or training neural networks.

We tried all available optimizers in the torch package and chose the resilient backpropa-
gation algorithm optim_rprop based on Riedmiller and Braun (1992). It performed faster
than the rest and was more precise in finding the global minimum. We used the default hyper-
parameters and set the optimization iterations to 200. We chose the precision of 10−5 between
the updated and the parameters from the previous iteration as the convergence criteria. For
starting values, we used (0.1,0.1,0.1,0.1,0.1,0.1). All estimators except HE converged af-
ter approximately 80 iterations. The HE estimator only converged with the smallest time step,
h = 0.005, achieving convergence in 43%–72% of cases across various sample sizes N . This
probably occurs due to a polynomial approximation of the likelihood that can be unstable at
the boundaries, especially for larger h. Incorporating higher-order approximations and adding
constraints in the optimization step might improve performance. For further analysis, see the
Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

6.4. Comparing criteria. We compare eight estimators based on their precision and
speed. We compute the absolute relative error (ARE) for each component θ̂

(i)
N of the esti-

mator θ̂N :

ARE
(
θ̂

(i)
N

)= 1

M

M∑
r=1

|θ̂ (i)
N,r − θ

(i)
0,r |

θ
(i)
0,r

.

For S and LL, we compare the distributions of θ̂N − θ0 more closely.
The running times are calculated using the tictoc package in R, measured from the

start of the optimization step until the convergence criterion is met. To avoid the influence of
running time outliers, we compute the median over M repetitions.

6.5. Results. In Figure 2, AREs are shown on log scale as a function of h. While most
estimators work well for a step size no greater than 0.01, only LL, Smix and Savg perform
well for h = 0.05. The LTavg is not competitive even for h = 0.005. The performance of
LTmix varies, sometimes approaching the performance of K, while other times performing
similarly to EM. Thus, LTmix is not a good choice for this specific model. The bias of EM
starts to show for h = 0.01 escalating for h = 0.05. The largest bias appears in the diffusion
parameters due to the poor approximation of �EM

h . K is less biased than EM except for p and
r when h = 0.05. The HE estimator converged only for h = 0.005. The ARE is calculated
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FIG. 2. Comparing the absolute relative error (ARE) as a function of increasing discretization step h for eight
estimators in the stochastic Lorenz system. The sample size is N = 10,000. The y-axis is on log scale. The HE
estimator (purple dot) converged only for h = 0.005, and only for 60% of the simulated data sets.

from the 601 simulations out of a total of 1000 in which convergence was achieved. For these,
the performance of HE in estimating drift parameters is comparable to the best estimators.
However, the diffusion parameters are not well estimated, with the estimation of σ 2

3 being the
least accurate. Drift parameters are generally estimated better for larger h for fixed N due to
a longer observation interval T = Nh, reflecting the

√
Nh rate of convergence.

We zoom in on the distributions of Smix, Savg, LL in Figure 3. We also include HE for
h = 0.005, based on the 60% converged estimates. For clarity, we removed some outliers
for σ 2

1 and σ 2
2 . This did not change the shape of the distributions, it only truncated the tails.

Estimators Smix, Savg and LL perform similarly, especially for the smallest h, where HE
performs slightly worse, particularly for p, σ 2

2 and σ 2
3 . For h = 0.05, the drift parameters are

underestimated by approximately 5–10%, while the diffusion parameters are overestimated
by up to 20%. Both S estimators performed better than LL, except for p and σ 2

1 .
While the LL and S estimators perform similarly in terms of precision, Figure 4 shows the

superiority of the S estimators over LL in computational costs. The LL becomes increasingly
computationally expensive for increasing N because it calculates N covariance matrices for
each parameter value. The next slowest estimators are Smix and HE, followed by LTmix,
Savg, K, LTavg and, finally, EM is the fastest. The speed of EM is almost constant in N.
Additionally, it seems that the running times do not depend on h. Thus, we recommend using
the S estimators, especially for large N .

Figures 5 and 6 show that the theoretical results hold for Smix and LTmix. We compare how
the distributions of θ̂N − θ0 change with sample size N and step size h. With increasing N ,
the variance decreases, whereas the mean does not change. For that, we need smaller h. To
obtain negligible bias for LTmix, we need a step size smaller than h = 0.005. However, Smix

is practically unbiased up to h = 0.01. This shows that LT estimators might not be a good
choice in practice, while the S estimators are.
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FIG. 3. Comparing the normalized distributions of (θ̂N −θ0)�θ0 (where � is the element-wise division) of the
Lorenz system for the Smix, Savg, LL and HE estimators for N = 10,000. Each column represents one parameter,
and each row represents one value of the discretization step h. The black dot with a vertical bar in each violin
plot represents the mean and the standard deviation. The HE estimator (purple) converged only for h = 0.005,
and only for 60% of the simulated data sets.

FIG. 4. Running times as a function of N for different estimators of the Lorenz system. Each column shows one
value of h. On the x-axis is the sample size N , and on the y-axis is the running time in seconds. The HE estimator
(purple) achieved convergence only for h = 0.005, and only in 43%–72% of cases across various sample sizes N .

FIG. 5. Comparing distributions of θ̂N −θ0 for the Smix estimator with theoretical asymptotic distributions (28)
for each parameter (columns), for h = 0.01 and N ∈ {1000,5000,10,000} (colors). The black lines correspond to
the theoretical asymptotic distributions computed from data and true parameters for N = 10,000 and h = 0.01.
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FIG. 6. Comparing distributions of θ̂N − θ0 for the LTmix estimator with theoretical asymptotic distributions
(28) for each parameter (columns), for h ∈ {0.005,0.01} (rows) and N ∈ {1000,5000,10,000} (colors). The
black lines correspond to the theoretical asymptotic distributions computed from data and true parameters for
N = 10,000 and corresponding h.

The solid black lines in Figures 5 and 6 represent the theoretical asymptotic distributions
computed from (28). For the Lorenz system (20), the precision matrix (27) is given by

C(θ0) = diag
(∫

(y − x)2

σ 2
1,0

dν0(x),

∫
x2

σ 2
2,0

dν0(x),

∫
z2

σ 2
3,0

dν0(x),
1

2σ 4
1,0

,
1

2σ 4
2,0

,
1

2σ 4
3,0

)
.

The integrals are approximated by taking the mean over all data points and all Monte Carlo
repetitions.

Some outliers of σ̂ 2
2 are removed from Figures 5 and 6 by truncating the tails.

7. Conclusion. We proposed two new estimators for nonlinear multivariate SDEs. They
are based on splitting schemes, a numerical approximation that preserves all important prop-
erties of the model. It was known that the LT splitting scheme has Lp convergence rate of
order 1. We proved that the same holds for the S splitting. This result was expected because
the overall trajectories of the S and LT splittings coincide up to the first h/2 and the last
h/2 move of the flow �

[2]
h/2. Nonetheless, S splitting is more precise in one-step predictions,

which is crucial for the estimators because the objective function consists of densities be-
tween consecutive data points. Therefore, the obtained S estimator is less biased than the
LT.

We proved that both estimators have optimal convergence rates for discrete observations of
the SDEs. These rates are

√
N for the diffusion parameter and

√
Nh for the drift parameter.

We also showed that the asymptotic variance of the estimators is the inverse of the Fisher
information for the continuous time model. Thus, the estimators are efficient.

In the simulation study of the stochastic Lorenz system, we show the superior performance
of the S estimators. We compared eight estimators based on different discretization schemes.
Estimators based on Ozaki’s LL and the S splitting schemes demonstrated the highest preci-
sion. However, the running time of LL is notably influenced by the sample size N , unlike the
S estimator, which experiences a more gradual increase in runtime with larger N . This makes
the S estimator more appropriate for large sample sizes. The LT, EM, K and HE estimators
perform well for small h, but for larger h the bias increases.

While the proposed estimators are versatile, they come with certain limitations. These in-
clude assumptions like additive noise and equidistant observations. However, under specific
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conditions, the Lamperti transformation can relax the constraint of additive noise. Equidis-
tant observations can easily be relaxed due to the continuous-time formulation. Furthermore,
we assumed that the diffusion parameter ��� is invertible. However, there are applications
where models with degenerate noise naturally arise, like second-order differential equations.

Acknowledgments. PP is also affiliated with the Bielefeld Graduate School of Eco-
nomics and Management at the University of Bielefeld in Germany.

We would like to thank three anonymous referees, an Associate Editor and the Editor for
their constructive comments that improved the paper. We are thankful to the third reviewer
for providing the HE method implementation for the Lorenz system.

Funding. The European Union’s Horizon 2020 research and innovation program under
the Marie Skłodowska–Curie grant agreement No 956107, “Economic Policy in Complex
Environments (EPOC)”; and Novo Nordisk Foundation NNF20OC0062958.

This work has been partially supported by MIAI@Grenoble Alpes, (ANR-19-P3IA-0003).

SUPPLEMENTARY MATERIAL

Supplementary article (DOI: 10.1214/24-AOS2371SUPPA; .pdf). The supplementary ar-
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II Parameter Estimation in Nonlinear
Multivariate Second-order SDEs with
Additive Noise

This chapter contains the following paper:

• [Pilipovic et al., 2024b] P. Pilipovic, A. Samson, and S. Ditlevsen. Strang splitting
for parametric inference in second-order stochastic differential equations, 2024b.
Paper status: Submitted.

In this paper, we generalize the splitting-scheme parameter estimation to second-order
SDEs. This class of models is interesting to analyze because they are typically converted
into first-order systems by introducing an auxiliary velocity variable, creating a first-
order hypoelliptic system. Moreover, the velocity variable is not observed, making these
models ideal for investigating different methodologies for both hypoelliptic systems and
partial observations.

To motivate this type of model, we describe paleoclimate data from the Greenland ice
core in Section 2 and attempt to model it using the Kramers oscillator. The Kramers
oscillator is a physical model that describes the motion of a particle in a double-well
potential with friction. It is used to reflect the switching between metastable states
during glacial periods. This application highlights the real-world relevance and potential
impact of our approach.

To address hypoellipticity, we propose an estimator based on the Strang splitting
scheme. Given that the velocity variable is unobserved in real-world data, we adapt the
Strang-based estimator to function under partial observation scenarios. This adaptation
leads to the development of two types of estimators: one that uses the full likelihood
based on the full hypoelliptic SDE and another that relies on the marginal probability
derived from the velocity coordinate. These estimators are not only theoretically robust
but also practical, being easy to implement and computationally fast. In Section 3, we
prove the main results and highlight the differences in the asymptotic variance of the
diffusion estimator, depending on the type of likelihood used.
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ABSTRACT

We address parameter estimation in second-order stochastic differential equations (SDEs), prevalent
in physics, biology, and ecology. Second-order SDE is converted to a first-order system by introducing
an auxiliary velocity variable raising two main challenges. First, the system is hypoelliptic since the
noise affects only the velocity, making the Euler-Maruyama estimator ill-conditioned. To overcome
that, we propose an estimator based on the Strang splitting scheme. Second, since the velocity is
rarely observed we adjust the estimator for partial observations. We present four estimators for
complete and partial observations, using full likelihood or only velocity marginal likelihood. These
estimators are intuitive, easy to implement, and computationally fast, and we prove their consistency
and asymptotic normality. Our analysis demonstrates that using full likelihood with complete
observations reduces the asymptotic variance of the diffusion estimator. With partial observations,
the asymptotic variance increases due to information loss but remains unaffected by the likelihood
choice. However, a numerical study on the Kramers oscillator reveals that using marginal likelihood
for partial observations yields less biased estimators. We apply our approach to paleoclimate data
from the Greenland ice core and fit it to the Kramers oscillator model, capturing transitions between
metastable states reflecting observed climatic conditions during glacial eras.

Keywords Second-order stochastic differential equations, Hypoellipticity, Partial observations, Strang splitting
estimator, Greenland ice core data, Kramers oscillator

1 Introduction

Second-order stochastic differential equations (SDEs) are an effective instrument for modeling complex systems
showcasing both deterministic and stochastic dynamics, which incorporate the second derivative of a variable - the
acceleration. These models are extensively applied in many fields, including physics [Rosenblum and Pikovsky, 2003],
molecular dynamics [Leimkuhler and Matthews, 2015], ecology [Johnson et al., 2008, Michelot and Blackwell, 2019],
paleoclimate research [Ditlevsen et al., 2002], and neuroscience [Ziv et al., 1994, Jansen and Rit, 1995].
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The general form of a second-order SDE in Langevin form is given as follows:

Ẍt = F(Xt, Ẋt,β) +Σξt. (1)

Here, Xt ∈ Rd denotes the variable of interest, the dot indicates derivative with respect to time t, drift F represents the
deterministic force, and ξt is a white noise representing the system’s random perturbations around the deterministic
force. We assume that Σ is constant, that is the noise is additive.

The main goal of this study is to estimate parameters in second-order SDEs. We first reformulate the d-dimensional
second-order SDE (1) into a 2d-dimensional SDE in Itô’s form. We define an auxiliary velocity variable, and express
the second-order SDE in terms of its position Xt and velocity Vt:

dXt = Vt dt, X0 = x0,

dVt = F (Xt,Vt;β) dt+ΣdWt, V0 = v0,
(2)

where Wt is a standard Wiener process. We refer to Xt and Vt as the smooth and rough coordinates, respectively.

A specific example of model (2) is F(x,v) = −c(x,v)v −∇U(x), for some function c(·) and potential U(·). Then,
model (2) is called a stochastic damping Hamiltonian system. This system describes the motion of a particle subjected
to potential, dissipative, and random forces [Wu, 2001]. An example of a stochastic damping Hamiltonian system is the
Kramers oscillator introduced in Section 2.1.

Let Yt = (X⊤
t ,V

⊤
t )

⊤, F̃(x,v;β) = (v⊤,F(x,v;β)⊤)⊤ and Σ̃ = (0⊤,Σ⊤)⊤. Then (2) is formulated as

dYt = F̃ (Yt;β) dt+ Σ̃dWt, Y0 = y0. (3)

The notation ˜ over an object indicates that it is associated with process Yt. Specifically, the object is of dimension 2d
or 2d× 2d.

When it exists, the unique solution of (3) is called a diffusion or diffusion process. System (3) is usually not fully
observed since the velocity Vt is not observable. Thus, our primary objective is to estimate the underlying drift
parameter β and the diffusion parameter Σ, based on discrete observations of either Yt (referred to as complete
observation case), or only Xt (referred to as partial observation case). Diffusion Yt is said to be hypoelliptic since the
matrix

Σ̃Σ̃⊤ =

[
0 0
0 ΣΣ⊤

]
(4)

is not of full rank, while Yt admits a smooth density. Thus, (2) is a subclass of a larger class of hypoelliptic diffusions.

Parametric estimation for hypoelliptic diffusions is an active area of research. Ditlevsen and Sørensen [2004] studied
discretely observed integrated diffusion processes. They proposed to use prediction-based estimating functions, which
are suitable for non-Markovian processes and which do not require access to the unobserved component. They proved
consistency and asymptotic normality of the estimators for N → ∞, but without any requirements on the sampling
interval h. Certain moment conditions are needed to obtain results for fixed h, which are often difficult to fulfill for
nonlinear drift functions. The estimator was applied to paleoclimate data in Ditlevsen et al. [2002], similar to the data
we analyze in Section 5.

Gloter [2006] also focused on parametric estimation for discretely observed integrated diffusion processes, introducing
a contrast function using the Euler-Maruyama discretization. He studied the asymptotic properties as the sampling
interval h → 0 and the sample size N → ∞, under the so-called rapidly increasing experimental design Nh → ∞
and Nh2 → 0. To address the ill-conditioned contrast from the Euler-Maruyama discretization, he suggested using
only the rough equations of the SDE. He proposed to recover the unobserved integrated component through the finite
difference approximation (Xtk+1

−Xtk)/h. This approximation makes the estimator biased and requires a correction
factor of 3/2 in one of the terms of the contrast function for partial observations. Consequently, the correction increases
the asymptotic variance of the estimator of the diffusion parameter. Samson and Thieullen [2012] expanded the ideas of
[Gloter, 2006] and proved the results of [Gloter, 2006] in more general models. Similar to [Gloter, 2006], their focus
was on contrasts using the Euler-Maruyama discretization limited to only the rough equations.

Pokern et al. [2009] proposed an Itô-Taylor expansion, adding a noise term of order h3/2 to the smooth component in
the numerical scheme. They argued against the use of finite differences for approximating unobserved components.
Instead, he suggested using the Itô-Taylor expansion leading to non-degenerate conditionally Gaussian approximations
of the transition density and using Markov Chain Monte Carlo (MCMC) Gibbs samplers for conditionally imputing
missing components based on the observations. They found out that this approach resulted in a biased estimator of the
drift parameter of the rough component.

2
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Ditlevsen and Samson [2019] focused on both filtering and inference methods for complete and partial observations.
They proposed a contrast estimator based on the strong order 1.5 scheme [Kloeden and Platen, 1992], which incorporates
noise of order h3/2 into the smooth component, similar to [Pokern et al., 2009]. Moreover, they retained terms of
order h2 in the mean, which removed the bias in the drift parameters noted in [Pokern et al., 2009]. They proved
consistency and asymptotic normality under complete observations, with the standard rapidly increasing experimental
design Nh→ ∞ and Nh2 → 0. They adopted an unconventional approach by using two separate contrast functions,
resulting in marginal asymptotic results rather than a joint central limit theorem. The model was limited to a scalar
smooth component and a diagonal diffusion coefficient matrix for the rough component.

Melnykova [2020] developed a contrast estimator using local linearization (LL) [Ozaki, 1985, Shoji and Ozaki, 1998,
Ozaki et al., 2000] and compared it to the least-squares estimator. She employed local linearization of the drift function,
providing a non-degenerate conditional Gaussian discretization scheme, enabling the construction of a contrast estimator
that achieves asymptotic normality under the standard conditions Nh→ ∞ and Nh2 → 0. She proved a joint central
limit theorem, bypassing the need for two separate contrasts as in Ditlevsen and Samson [2019]. The models in
Ditlevsen and Samson [2019] and Melnykova [2020] allow for parameters in the smooth component of the drift, in
contrast to models based on second-order differential equations.

Recent work by Gloter and Yoshida [2020, 2021] introduced adaptive and non-adaptive methods in hypoelliptic diffusion
models, proving asymptotic normality in the complete observation regime. In line with this work, we briefly review
their non-adaptive estimator. It is based on a higher-order Itô-Taylor expansion that introduces additional Gaussian
noise onto the smooth coordinates, accompanied by an appropriate higher-order mean approximation of the rough
coordinates. The resulting estimator was later termed the local Gaussian (LG), which should be differentiated from LL.
The LG estimator can be viewed as an extension of the estimator proposed in Ditlevsen and Samson [2019], with fewer
restrictions on the class of models. Gloter and Yoshida [2020, 2021] found that using the full SDE to create a contrast
reduces the asymptotic variance of the estimator of the diffusion parameter compared to methods using only rough
coordinates in the case of complete observations.

The most recent contributions are Iguchi et al. [2023a,b], Iguchi and Beskos [2023], building on the foundation of the
LG estimator and focusing on high-frequency regimes addressing limitations in earlier methods. Iguchi et al. [2023b]
presented a new closed-form contrast estimator for hypoelliptic SDEs (denoted as Hypo-I) based on Edgeworth-type
density expansion and Malliavin calculus that achieves asymptotic normality under the less restrictive condition of
Nh3 → 0. Iguchi et al. [2023a] focused on a highly degenerate class of SDEs (denoted as Hypo-II) where smooth
coordinates split into further sub-groups and proposed estimators for both complete and partial observation settings.
Iguchi and Beskos [2023] further refined the conditions for estimators asymptotic normality for both Hypo-I and
Hypo-II under a weak design Nhp → 0, for p ≥ 2.

The existing methods are generally based on approximations with varying degrees of refinements to correct for possible
nonlinearities. This implies that they quickly degrade for highly nonlinear models if the step size is increased. In
particular, this is the case for Hamiltonian systems. Instead, we propose to use splitting schemes, more precisely the
Strang splitting scheme.

Splitting schemes are established techniques initially developed for solving ordinary differential equations (ODEs)
and have proven to be effective also for SDEs [Ableidinger et al., 2017, Buckwar et al., 2022, Pilipovic et al., 2024].
These schemes yield accurate results in many practical applications since they incorporate nonlinearities in their
construction. This makes them particularly suitable for second-order SDEs, where they have been widely used. Early
work in dissipative particle dynamics [Shardlow, 2003, Serrano et al., 2006], applications to molecular dynamics
[Vanden-Eijnden and Ciccotti, 2006, Melchionna, 2007, Leimkuhler and Matthews, 2015] and studies on internal
particles [Pavliotis et al., 2009] all highlight the scheme’s versatility. Burrage et al. [2007], Bou-Rabee and Owhadi
[2010], and Abdulle et al. [2015] focused on the long-run statistical properties such as invariant measures. Bou-Rabee
[2017], Bréhier and Goudenège [2019] and Adams et al. [2022] used splitting schemes for stochastic partial differential
equations (SPDEs).

Despite the extensive use of splitting schemes in different areas, statistical applications have been lacking. We have
recently proposed statistical estimators for elliptic SDEs [Pilipovic et al., 2024]. The straightforward and intuitive
schemes lead to robust, easy-to-implement estimators, offering an advantage over more numerically intensive and less
user-friendly state-of-the-art methods. We use the Strang splitting scheme to approximate the transition density between
two consecutive observations and derive the pseudo-likelihood function since the exact likelihood function is often
unknown or intractable. Then, to estimate parameters, we employ maximum likelihood estimation (MLE). However,
two specific statistical problems arise due to hypoellipticity and partial observations.

First, hypoellipticity leads to degenerate Euler-Maruyama transition schemes, which can be addressed by constructing
the pseudo-likelihood solely from the rough equations of the SDE, referred to as the rough likelihood hereafter. The

3
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Strang splitting technique enables the estimator to incorporate both smooth and rough components (referred to as the
full likelihood). It is also possible to construct Strang splitting estimators using only the rough likelihood, raising
the question of which estimator performs better. Our results are in line with Gloter and Yoshida [2020, 2021] in
the complete observation setting, where we find that using the full likelihood reduces the asymptotic variance of the
diffusion estimator. We found the same results in the simulation study for the LL estimator proposed by Melnykova
[2020].

Second, we suggest to treat the unobserved velocity by approximating it using finite difference methods. While
Gloter [2006] and Samson and Thieullen [2012] exclusively use forward differences, we investigate also central and
backward differences. The forward difference approach leads to a biased estimator unless it is corrected. One of the
main contributions of this work is finding suitable corrections of the pseudo-likelihoods for different finite difference
approximations such that the Strang estimators are asymptotically unbiased. This also ensures consistency of the
diffusion parameter estimator, at the cost of increasing its asymptotic variance.

When only partial observations are available, we explore the impact of using the full likelihood versus the rough
likelihood and how different finite differentiation approximations influence the parametric inference. We find that the
choice of likelihood does not affect the asymptotic variance of the estimator. However, our simulation study on the
Kramers oscillator suggests that using the full likelihood in finite sample setups introduce more bias than using only the
rough marginal likelihood, which is the opposite of the complete observation setting. Finally, we analyze a paleoclimate
ice core dataset from Greenland using a second-order SDE.

The main contributions of this paper are:

1. We extend the Strang splitting estimator of [Pilipovic et al., 2024] to hypoelliptic models given by second-order
SDEs, including appropriate correction factors to obtain consistency.

2. When complete observations are available, we show that the asymptotic variance of the estimator of the
diffusion parameter is smaller when maximizing the full likelihood. In contrast, for partial observations, we
show that the asymptotic variance remains unchanged regardless of using the full or marginal likelihood of the
rough coordinates.

3. We discuss the influence on the statistical properties of using the forward difference approximation for imputing
the unobserved velocity variables compared to using the backward or the central difference.

4. We evaluate the performance of the estimators through a simulation study of a second-order SDE, the Kramers
oscillator. Additionally, we show numerically in a finite sample study that the marginal likelihood for partial
observations is more favorable than the full likelihood.

5. We fit the Kramers oscillator to a paleoclimate ice core dataset from Greenland and estimate the average time
needed to pass between two metastable states.

The structure of the paper is as follows. In Section 2, we introduce the class of SDE models, define hypoellipticity,
introduce the Kramers oscillator, and explain the Strang splitting scheme and its associated estimators. The asymptotic
properties of the estimator are established in Section 3. The theoretical results are illustrated in a simulation study on
the Kramers Oscillator in Section 4. Section 5 illustrates our methodology on the Greenland ice core data, while the
technical results and the proofs of the main theorems and properties are in Section 6 and Supplementary Material S1,
respectively.

Notation. We use capital bold letters for random vectors, vector-valued functions, and matrices, while lowercase
bold letters denote deterministic vectors. ∥ · ∥ denotes both the L2 vector norm in Rd. Superscript (i) on a vector
denotes the i-th component, while on a matrix it denotes the i-th column. Double subscript ij on a matrix denotes
the component in the i-th row and j-th column. The transpose is denoted by ⊤. Operator Tr(·) returns the trace of a
matrix and det(·) the determinant. Id denotes the d-dimensional identity matrix, while 0d×d is a d-dimensional zero
square matrix. We denote by [ai]

d
i=1 a vector with coordinates ai, and by [bij ]

d
i,j=1 a matrix with coordinates bij , for

i, j = 1, . . . , d. For a real-valued function g : Rd → R, ∂x(i)g(x) denotes the partial derivative with respect to x(i) and
∂2
x(i)x(j)g(x) denotes the second partial derivative with respect to x(i) and x(j). The nabla operator ∇x denotes the

gradient vector of g with respect of x, that is, ∇xg(x) = [∂x(i)g(x)]di=1. H denotes the Hessian matrix of function g,
Hg(x) = [∂x(i)x(j)g(x)]di,j=1. For a vector-valued function F : Rd → Rd, the differential operator Dx denotes the
Jacobian matrix DxF(x) = [∂x(i)F (j)(x)]di,j=1. Let R represent a vector (or a matrix) valued function defined on
(0, 1)×Rd (or (0, 1)×Rd×d), such that, for some constant C, ∥R(a,x)∥ < aC(1+ ∥x∥)C for all a,x. When denoted
by R, it refers to a scalar function. For an open set A, the bar A indicates closure. We write P−→ for convergence in
probability P.

4
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2 Problem setup

Let Y = (Yt)t≥0 in (3) be defined on a complete probability space (Ω,F ,Pθ) with a complete right-continuous
filtration F = (Ft)t≥0, and let the d-dimensional Wiener process W = (Wt)t≥0 be adapted to Ft. The probability
measure Pθ is parameterized by the parameter θ = (β,Σ). Rewrite equation (3) as follows:

dYt = Ã(β)(Yt − b̃(β)) dt+ Ñ (Yt;β) dt+ Σ̃dWt, (5)

where

Ã(β) =

[
0d×d Id
Ax(β) Av(β)

]
, b̃(β) =

[
b(β)
0d

]
, Ñ(x,v;β) =

[
0d

N(x,v;β)

]
. (6)

Function F in (2) is thus split as F(x,v;β) = Ax(β)(x− b(β)) +Av(β)v +N(x,v;β).

Let Θβ ×ΘΣ = Θ denote the closure of the parameter space with Θβ and ΘΣ being two convex open bounded subsets
of Rr and Rd×d, respectively. The function N : R2d ×Θβ → Rd is assumed locally Lipschitz; functions Ax and Av

are defined on Θβ and take values in Rd×d; and the parameter matrix Σ takes values in Rd×d. The matrix ΣΣ⊤ is
assumed to be positive definite, shaping the variance of the rough coordinates. As any square root of ΣΣ⊤ induces
the same distribution, Σ is identifiable only up to equivalence classes. Hence, estimation of the parameter Σ means
estimation of ΣΣ⊤. The drift function F̃ in (3) is divided into a linear part given by the matrix Ã and a nonlinear part
given by Ñ.

The true value of the parameter is denoted by θ0 = (β0,Σ0), and we assume that θ0 ∈ Θ. When referring to the
true parameters, we write Ax,0, Av,0, b0, N0(x), F0(x) and ΣΣ⊤

0 instead of Ax(β0), Av(β0), b(β0), N(x;β0),
F(x;β0) and Σ0Σ

⊤
0 , respectively. We write Ax, Av, b, N(x), F(x), and ΣΣ⊤ for any parameter θ.

2.1 Example: The Kramers oscillator

The abrupt temperature changes during the ice ages, known as the Dansgaard–Oeschger (DO) events, are essential
elements for understanding the climate [Dansgaard et al., 1993]. These events occurred during the last glacial era
spanning approximately the period from 115,000 to 12,000 years before present and are characterized by rapid
warming phases followed by gradual cooling periods, revealing colder (stadial) and warmer (interstadial) climate states
[Rasmussen et al., 2014].

To analyze the DO events in Section 5, we propose a stochastic model of the escape dynamics in metastable systems,
the Kramers oscillator [Kramers, 1940], originally formulated to model the escape rate of Brownian particles from
potential wells. The escape rate is related to the mean first passage time — the time needed for a particle to exceed the
potential’s local maximum for the first time, starting at a neighboring local minimum. This rate depends on variables
such as the damping coefficient, noise intensity, temperature, and specific potential features, including the barrier’s
height and curvature at the minima and maxima. We apply this framework to quantify the rate of climate transitions
between stadial and interstadial periods. This provides an estimate on the probability distribution of the ocurrence of
DO events, contributing to our understanding of the global climate system.

Following Arnold and Imkeller [2000], we introduce the Kramers oscillator as the stochastic Duffing oscillator - an
example of a second-order SDE and a stochastic damping Hamiltonian system. The Duffing oscillator [Duffing, 1918]
is a forced nonlinear oscillator, featuring a cubic stiffness term. The governing equation is given by:

ẍt + ηẋt +
d

dx
U(xt) = f(t), where U(x) = −ax

2

2
+ b

x4

4
, with a, b > 0, η ≥ 0. (7)

The parameter η in (7) indicates the damping level, a regulates the linear stiffness, and b determines the nonlinear
component of the restoring force. In the special case where b = 0, the equation simplifies to a damped harmonic
oscillator. Function f represents the driving force and is usually set to f(t) = η cos(ωt), which introduces deterministic
chaos [Korsch and Jodl, 1999].

When the driving force is f(t) =
√
2ηTξ(t), where ξ(t) is white noise, equation (7) characterizes the stochastic

movement of a particle within a bistable potential well, interpreting T > 0 as the temperature of a heat bath. Setting
σ =

√
2ηT, equation (7) can be reformulated as an Itô SDE for variables Xt and Vt = Ẋt, expressed as:

dXt = Vt dt,

dVt =

(
−ηVt −

d

dx
U(Xt)

)
dt+ σ dWt,

(8)

5
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where Wt denotes a standard Wiener process. The parameter set of SDE (8) is θ = {η, a, b, σ2}.

The existence and uniqueness of the invariant measure ν0(dx, dy) of (8) is proved in Theorem 3 in [Arnold and Imkeller,
2000]. The invariant measure ν0 is linked to the invariant density π0 through ν0(dx, dy) = π0(x, v) dxdy. Here we
write π0(x, v) instead of π(x, v;θ0), and π(x, v) instead of π(x, v;θ). The Fokker-Plank equation for π is given by

−v ∂
∂x
π(x, v) + ηπ(x, v) + ηv

∂

∂v
π(x, v) +

d

dx
U(x)

∂

∂v
π(x, v) +

σ2

2

∂2

∂v2
π(x, v) = 0. (9)

The invariant density that solves the Fokker-Plank equation is:

π(x, v) = C exp

(
−2η

σ2
U(x)

)
exp

(
− η

σ2
v2
)
, (10)

where C is the normalizing constant.

The marginal invariant probability of Vt is thus Gaussian with zero mean and variance σ2/(2η). The marginal invariant
probability of Xt is bimodal driven by the potential U(x):

π(x) = C exp

(
−2η

σ2
U(x)

)
. (11)

At steady state, for a particle moving in any potential U(x) and driven by random Gaussian noise, the position x
and velocity v are independent of each other. This is reflected by the decomposition of the joint density π(x, v) into
π(x)π(v).

Fokker-Plank equation (9) can also be used to derive the mean first passage time τ which is inversely related to Kramers’
escape rate κ [Kramers, 1940]:

τ =
1

κ
≈ 2π(√

1 + η2

4ω2 − η
2ω

)
Ω

exp

(
∆U

T

)
,

where xbarrier = 0 is the local maximum of U(x) and xwell = ±
√
a/b are the local minima, ω =

√
|U ′′(xbarrier)| =√

a, Ω =
√
U ′′(xwell) =

√
2a, and ∆U = U(xbarrier)− U(xwell) = a2/4b, . The formula is derived assuming strong

friction, or an over-damped system (η ≫ ω), and a small parameter T/∆U ≪ 1, indicating sufficiently deep potential
wells. For the potential defined in (7), the mean waiting time τ is then approximated by

τ ≈
√
2π√

a+ η2

4 − η
2

exp

(
a2η

2bσ2

)
. (12)

2.2 Hypoellipticity

The SDE (5) is said to be hypoelliptic if its quadratic diffusion matrix Σ̃Σ̃⊤ is not of full rank, while its solutions admit
a smooth transition density with respect to the Lebesgue measure. According to Hörmander’s theorem [Nualart, 2006],
this is fulfilled if the SDE in its Stratonovich form satisfies the weak Hörmander condition. Since Σ does not depend on
y, the Itô and Stratonovich forms coincide.

We begin by recalling the concept of Lie brackets: for smooth vector fields f , g : R2d → R2d, the i-th component of
the Lie bracket, [f , g](i), is defined as

[f , g](i) := D⊤
y g

(i)(y)f(y)−D⊤
y f

(i)(y)g(y).

We define the set H of vector fields by initially including Σ̃(i), i = 1, 2, ..., 2d, and then recursively adding Lie brackets

H ∈ H ⇒ [F̃, H], [Σ̃(1), H], . . . , [Σ̃(2d), H] ∈ H.
The weak Hörmander condition is met if the vectors in H span R2d at every point y ∈ R2d. The initial vectors span
{(0,v) ∈ R2d | v ∈ Rd}, a d-dimensional subspace. We therefore need to verify the existence of some H ∈ H with a
non-zero first element. The first iteration of the system yields

[F̃, Σ̃(i)](1) = −Σ(i),

[Σ̃(i), Σ̃(j)](1) = 0,

for i, j = 1, 2, ..., 2d. The first equation is non-zero, as are all subsequent iterations. Thus, the second-order SDE
defined in (5) is always hypoelliptic.

6
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2.3 Assumptions

The following assumptions are a generalization of those presented in [Pilipovic et al., 2024].

Let T > 0 be the length of the observed time interval. We assume that (5) has a unique strong solution Y = {Yt |
t ∈ [0, T ]}, adapted to F = {Ft | t ∈ [0, T ]}, which follows from the following first two assumptions (Theorem 2 in
Alyushina [1988], Theorem 1 in Krylov [1991], Theorem 3.5 in Mao [2007]). We need the last three assumptions to
prove the properties of the estimators.

(A1) Function N is twice continuously differentiable with respect to both y and θ, i.e., N ∈ C2. Moreover, it is
globally one-sided Lipschitz continuous with respect to y on R2d ×Θβ . That is, there exists a constant C > 0
such that for all y1,y2 ∈ R2d,

(y1 − y2)
⊤
(N(y1;β)−N(y2;β)) ≤ C∥y1 − y2∥2.

(A2) Function N exhibits at most polynomial growth in y, uniformly in θ. Specifically, there exist constants C > 0
and χ ≥ 1 such that for all y1,y2 ∈ R2d,

∥N (y1;β)−N (y2;β) ∥2 ≤ C
(
1 + ∥y1∥2χ−2 + ∥y2∥2χ−2

)
∥y1 − y2∥2.

Additionally, its derivatives exhibit polynomial growth in y, uniformly in θ.
(A3) The solution Y to SDE (5) has invariant probability ν0(dy).

(A4) ΣΣ⊤ is invertible on ΘΣ.
(A5) β is identifiable, that is, if F(y,β1) = F(y,β2) for all y ∈ R2d, then β1 = β2.

Assumption (A1) ensures finiteness of the moments of the solution X [Tretyakov and Zhang, 2013], i.e.,

E[ sup
t∈[0,T ]

∥Yt∥2p] < C(1 + ∥y0∥2p), ∀ p ≥ 1. (13)

Assumption (A3) is necessary for the ergodic theorem to ensure convergence in distribution. Assumption (A4) ensures
that the model (5) is hypoelliptic. Assumption (A5) ensures the identifiability of the drift parameter.

2.4 Strang splitting scheme

Consider the following splitting of (5):

dY
[1]
t = Ã(Y

[1]
t − b̃) dt+ Σ̃dWt, Y

[1]
0 = y0, (14)

dY
[2]
t = Ñ(Y

[2]
t ) dt, Y

[2]
0 = y0. (15)

There are no assumptions on the choice of Ã and b̃, and thus the nonlinear function Ñ. Indeed, we show that the
asymptotic results hold for any choice of Ã and b̃ in both the complete and the partial observation settings. This extends
the results in Pilipovic et al. [2024], where it is shown to hold in the elliptic complete observation case, as well. While
asymptotic results are invariant to the choice of Ã and b̃, finite sample properties of the scheme and the corresponding
estimators are very different, and it is important to choose the splitting wisely. Intuitively, when the process is close to a
fixed point of the drift, the linear dynamics are dominating, whereas far from the fixed points, the nonlinearities might
be dominating. If the drift has a fixed point y⋆, we therefore suggest setting Ã = DyF̃(y

⋆) and b̃ = y⋆. This choice is
confirmed in simulations (for more details see Pilipovic et al. [2024]).

Solution of SDE (14) is an Ornstein–Uhlenbeck (OU) process given by the following h-flow:

Y
[1]
tk

= Φ
[1]
h (Y

[1]
tk−1

) = µ̃h(Y
[1]
tk−1

;β) + ε̃h,k, (16)

µ̃h(y;β) := eÃh(y − b̃) + b̃, (17)

Ω̃h =

∫ h

0

eÃ(h−u)Σ̃Σ̃⊤eÃ
⊤(h−u) du, (18)

where ε̃h,k
i.i.d∼ N2d(0, Ω̃h) for k = 1, . . . , N . It is useful to rewrite Ω̃h in the following block matrix form,

Ω̃h =

[
Ω

[SS]
h Ω

[SR]
h

Ω
[RS]
h Ω

[RR]
h

]
, (19)

7
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where S in the superscript stands for smooth and R stands for rough. The Schur complement of Ω̃h with respect to
Ω

[RR]
h and the determinant of Ω̃h are given by:

Ω
[S|R]
h := Ω

[SS]
h −Ω

[SR]
h (Ω

[RR]
h )−1Ω

[RS]
h , det Ω̃h = detΩ

[RR]
h detΩ

[S|R]
h .

Assumptions (A1)-(A2) ensure the existence and uniqueness of the solution of (15) (Theorem 1.2.17 in Humphries and
Stuart [2002]). Thus, there exists a unique function f̃h : R2d ×Θβ → R2d, for h ≥ 0, such that

Y
[2]
tk

= Φ
[2]
h (Y

[2]
tk−1

) = f̃h(Y
[2]
tk−1

;β). (20)

For all β ∈ Θβ , the h-flow f̃h fulfills the following semi-group properties:

f̃0(y;β) = y, f̃t+s(y;β) = f̃t(f̃s(y;β);β), t, s ≥ 0.

For y = (x⊤,v⊤)⊤, we have:

f̃h(x,v;β) =

[
x

fh(x,v;β)

]
, (21)

where fh(x,v;β) is the solution of the ODE with vector field N(x,v;β).

We introduce another assumption needed to define the pseudo-likelihood based on the splitting scheme.

(A6) Inverse function f̃−1
h (y;β) is defined asymptotically for all y ∈ R2d and all β ∈ Θβ , when h→ 0.

Then, the inverse of f̃h can be decomposed as:

f̃−1
h (x,v;β) =

[
x

f⋆−1
h (x,v;β)

]
, (22)

where f⋆−1
h (x,v;β) is the rough part of the inverse of f̃−1

h . It does not equal f−1
h since the inverse does not propagate

through coordinates when fh depends on x.

We are now ready to define the Strang splitting scheme for model (5).

Definition 2.1 (Strang splitting) Let Assumptions (A1)-(A2) hold. The Strang approximation of the solution of (5) is
given by:

Φ
[str]
h (Y

[str]
tk−1

) = (Φ
[2]
h/2 ◦ Φ

[1]
h ◦ Φ[2]

h/2)(Y
[str]
tk−1

) = f̃h/2(µ̃h(f̃h/2(Y
[str]
tk−1

)) + ε̃h,k). (23)

Remark 1 The order of composition in the splitting schemes is not unique. Changing the order in the Strang splitting
leads to a sum of 2 independent random variables, one Gaussian and one non-Gaussian, whose likelihood is not trivial.
Thus, we only use the splitting (23).

2.5 Strang splitting estimators

In this section, we introduce four estimators, all based on the Strang splitting scheme. We distinguish between estimators
based on complete observations (denoted by C when both X and V are observed) and partial observations (denoted
by P when only X is observed). In applications, we typically only have access to partial observations, however, the
full observation estimator is used as a building block for the partial observation case. Additionally, we distinguish the
estimators based on the type of likelihood function employed. These are the full likelihood (denoted by F) and the
marginal likelihood of the rough component (denoted by R). We furthermore use the conditional likelihood based on
the smooth component given the rough part (denoted by S | R) to decompose the full likelihood.

2.5.1 Complete observations

Assume we observe the complete sample Y0:tN := (Ytk)
N
k=1 from (5) at time steps 0 = t0 < t1 < ... < tN = T .

For notational simplicity, we assume equidistant step size h = tk − tk−1. Strang splitting scheme (23) is a nonlinear
transformation of a Gaussian random variable µ̃h(f̃h/2(Y

[str]
tk−1

)) + ε̃h,k. We define:

Z̃k,k−1(β) := f̃
−1
h/2(Ytk ;β)− µ̃h(f̃h/2(Ytk−1

;β);β), (24)

8
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and apply change of variables to get:

p(ytk | ytk−1
) = pN (0,Ω̃h)

(z̃k,k−1 | ytk−1
)|detDyf̃

−1
h/2(ytk)|.

Using − log |detDyf̃
−1
h/2 (y;β) | = log |detDyf̃h/2 (y;β) | and detDyf̃h/2 (y;β) = detDvfh/2 (y;β), together

with the Markov property of Y0:tN , we get the following objective function based on the full log-likelihood:

L[CF](Y0:tN ;θ) :=
N∑

k=1

(
log det Ω̃h(θ) + Z̃k,k−1(β)

⊤Ω̃h(θ)
−1Z̃k,k−1(β) + 2 log |detDvfh/2(Ytk ;β)|

)
. (25)

Now, split Z̃k,k−1 from (24) into the smooth and rough parts Z̃k,k−1 = ((Z
[S]
k,k−1)

⊤, (Z[R]
k,k−1)

⊤)⊤ defined as:

Z
[S]
k,k−1(β) := [Z̃

(i)
k,k−1(β)]

d
i=1 = Xtk − µ[S]

h (f̃h/2(Ytk−1
;β);β), (26)

Z
[R]
k,k−1(β) := [Z̃

(i)
k,k−1(β)]

2d
i=d+1 = f⋆−1

h/2 (Ytk ;β)− µ
[R]
h (f̃h/2(Ytk−1

;β);β), (27)

where
µ

[S]
h (y;β) := [µ̃

(i)
h (y;β)]di=1, µ

[R]
h (y;β) := [µ̃

(i)
h (y;β)]2di=d+1. (28)

We also define the following sequence of vectors

Z
[S|R]
k,k−1(β) := Z

[S]
k,k−1(β)−Ω

[SR]
h (Ω

[RR]
h )−1Z

[R]
k,k−1(β). (29)

The formula for jointly normal distributions yields:

pN (0,Ω̃h)
(z̃k,k−1 | ytk−1

) = pN (0,Ω
[RR]
h )

(z
[R]
k,k−1 | ytk−1

)

· pN (Ω
[SR]
h (Ω

[RR]
h )−1z

[R]
k,k−1,Ω

[S|R]
h )

(z
[S]
k,k−1 | z[R]

k,k−1,ytk−1
).

This leads to dividing the full log-likelihood L[CF] into a sum of the marginal log-likelihood L[CR](Y0:tN ;θ) and the
smooth-given-rough log-likelihood L[CS|R](Y0:tN ;θ):

L[CF](Y0:tN ;θ) = L[CR](Y0:tN ;θ) + L[CS|R](Y0:tN ;θ),

where

L[CR] (Y0:tN ;θ) :=
N∑

k=1

(
log detΩ

[RR]
h (θ) + Z

[R]
k,k−1 (β)

⊤
Ω

[RR]
h (θ)−1Z

[R]
k,k−1 (β)

+ 2 log
∣∣detDvfh/2 (Ytk ;β)

∣∣
)
, (30)

L[CS|R] (Y0:tN ;θ) :=

N∑

k=1

(
log detΩ

[S|R]
h (θ) + Z

[S|R]
k,k−1(β)

⊤Ω[S|R]
h (θ)−1Z

[S|R]
k,k−1(β)

)
. (31)

The terms containing the drift parameter in L[CR] in (30) are of order h1/2, as in the elliptic case, whereas the terms
containing the drift parameter in L[CS|R] in (31) are of order h3/2. Consequently, under a rapidly increasing experimental
design where Nh → ∞ and Nh2 → 0, the objective function (31) is degenerate for estimating the drift parameter.
However, it contributes to the estimation of the diffusion parameter when the full objective function (25) is used. We
show in later sections that employing (25) results in a lower asymptotic variance for the diffusion parameter making it
more efficient in complete observation scenarios.

The estimators based on complete observations are then defined as:

θ̂
[obj]
N := argmin

θ
L[obj] (Y0:tN ;θ) , obj ∈ {[CF], [CR]}. (32)

Although the full objective function is based on twice as many equations as the marginal likelihood, its implementation
complexity, speed, and memory requirements are similar to the marginal objective function. Therefore, if the complete
observations are available, we recommend using the objective function (25) based on the full likelihood.

9
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2.5.2 Partial observations

Assume we only observe the smooth coordinates X0:tN := (Xtk)
N
k=0. The observed process Xt alone is not a Markov

process, although the complete process Yt is. To approximate Vtk , we define the backward difference process:

∆hXtk :=
Xtk −Xtk−1

h
. (33)

From SDE (2) it follows that

∆hXtk =
1

h

∫ tk

tk−1

Vt dt. (34)

We propose to approximate Vtk using ∆hXtk by any of the three approaches:

1. Backward difference approximation: Vtk ≈ ∆hXtk ;

2. Forward difference approximation: Vtk ≈ ∆hXtk+1
;

3. Central difference approximation: Vtk ≈ ∆hXtk
+∆hXtk+1

2 .

The forward difference approximation performs best in our simulation study, which is also the approximation method
employed in Gloter [2006] and Samson and Thieullen [2012].

In the field of numerical approximations of ODEs, backward and forward finite differences have the same order of
convergence, whereas the central difference has a higher convergence rate. However, the diffusion parameter estimator
based on the central difference (Xtk+1

−Xtk−1
)/2h is less suitable because this approximation skips a data point and

thus increases the estimator’s variance. For further discussion, see Remark 6.

Thus, we focus exclusively on forward differences, following Gloter [2006], Samson and Thieullen [2012], and all
proofs are done for this approximation. Similar results also hold for the backward difference, with some adjustments
needed in the conditional moments due to filtration issues.

We start by approximating Z̃ for the case of partial observations denoted by Z̃:

Z̃k+1,k,k−1(β) := f̃
−1
h/2(Xtk ,∆hXtk+1

;β)− µ̃h(f̃h/2(Xtk−1
,∆hXtk ;β);β). (35)

The smooth and rough parts of Z̃ are thus equal to:

Z
[S]

k,k−1(β) := Xtk − µ[S]
h (f̃h/2(Xtk−1

,∆hXtk ;β);β), (36)

Z
[R]

k+1,k,k−1(β) := f
⋆−1
h/2 (Xtk ,∆hXtk+1

;β)− µ[R]
h (f̃h/2(Xtk−1

,∆hXtk ;β);β), (37)

and
Z

[S|R]

k+1,k,k−1(β) := Z
[S]

k,k−1(β)−Ω
[SR]
h (Ω

[RR]
h )−1Z

[R]

k+1,k,k−1(β). (38)

Compared to Z
[R]
k,k−1 in (27), Z

[R]

k+1,k,k−1 in (37) depends on three consecutive data points, with the additional point

Xtk+1
entering through ∆hXtk+1

. Furthermore, Xtk enters both f⋆−1
h/2 and µ̃[R]

h , rending them coupled. This coupling
has a significant influence on later derivations of the estimator’s asymptotic properties, in contrast to the elliptic case
where the derivations simplify.

While it might seem straightforward to incorporate Z̃, Z
[S]

k,k−1 and Z
[R]

k,k−1 into the objective functions (25), (30) and
(31), it introduces bias in the estimators of the diffusion parameters, as also discussed in [Gloter, 2006, Samson and
Thieullen, 2012]. The bias arises because Xtk enters in both f⋆−1

h/2 and µ̃[R]
h , and the covariances of Z̃, Z

[S]

k,k−1, and

Z
[R]

k,k−1 differ from their complete observation counterparts. To eliminate this bias, Gloter [2006], Samson and Thieullen
[2012] applied a correction of 2/3 multiplied to log det of the covariance term in the objective functions, which is
log detΣΣ⊤ in the Euler-Maruyama discretization. We also need appropriate corrections to our objective functions
(25), (30) and (31), however, caution is necessary because log det Ω̃h(θ) depends on both drift and diffusion parameters.
To counterbalance this, we also incorporate an adjustment to h in Ωh. Moreover, we add the term 4 log |detDvfh/2|
to objective function (31) to obtain consistency of the drift estimator under partial observations. The detailed derivation
of these correction factors will be elaborated in the following sections.

10



Strang Splitting Parameter Estimator for Second-order SDEs A PREPRINT

We thus propose the following objective functions:

L[PF](X0:tN ;θ) :=
4

3
(N − 2) log det Ω̃3h/4(θ) (39)

+
N−1∑

k=1

(
Z̃k+1,k,k−1(β)

⊤Ω̃h(θ)
−1Z̃k+1,k,k−1(β) + 6 log |detDvfh/2(Xtk ,∆hXtk+1

;β)|
)
,

L[PR] (X0:tN ;θ) :=
2

3
(N − 2) log detΩ

[RR]
3h/2(θ) (40)

+
N−1∑

k=1

(
Z

[R]

k+1,k,k−1 (β)
⊤
Ω

[RR]
h (θ)−1Z

[R]

k+1,k,k−1 (β) + 2 log
∣∣detDvfh/2

(
Xtk ,∆hXtk+1

;β
)∣∣
)
,

L[PS|R] (X0:tN ;θ) := 2(N − 2) log detΩ
[S|R]
h (θ) (41)

+
N−1∑

k=1

(
Z

[S|R]

k+1,k,k−1(β)
⊤Ω[S|R]

h (θ)−1Z
[S|R]

k+1,k,k−1(β) + 4 log |detDvfh/2(Xtk ,∆hXtk+1
;β)|

)
. (42)

Remark 2 Due to the correction factors in the objective functions, we now have that

L[PF](X0:tN ;θ) ̸= L[PR](X0:tN ;θ) + L[PS|R](X0:tN ;θ). (43)

However, when expanding the objective functions (39)-(41) using Taylor series to the lowest necessary order in h, their
approximations will satisfy equality in (43), as shown in Section 6.

Remark 3 Adding the extra term 4 log |detDvfh/2| in (41) is necessary to keep the consistency of the drift parameter.
However, this term is not initially present in objective function (31), making this correction somehow artificial. This can
potentially make the objective function further from the true log-likelihood.

The estimators based on the partial sample are then defined as:

θ̂
[obj]
N := argmin

θ
L[obj] (X0:tN ;θ) , obj ∈ {[PF], [PR]}. (44)

In the partial observation case, the asymptotic variances of the diffusion estimators are identical whether using (39) or
(40), in contrast to the complete observation scenario. This variance is shown to be 9/4 times higher than the variance
of the estimator θ̂[CF]

N , and 9/8 times higher than that of the estimator based on the marginal likelihood θ̂[CR]
N .

The numerical study in Section 4 shows that the estimator based on the marginal objective function (40) is less biased
than the one based on the full objective function (39) in finite sample scenarios with partial observations. A potential
reason for this is discussed in Remark 3. Therefore, we recommend using the objective function (40) for partial
observations.

3 Main results

This section states the two main results – consistency and asymptotic normality of all four proposed estimators. The key
ideas for proofs are presented in Supplementary Materials S1.

First, we state the consistency of the estimators in both complete and partial observation cases. Let L[obj]
N be one of the

objective functions (25), (30), (39) or (40) and θ̂[obj]N the corresponding estimator. Thus,

obj ∈ {[CF], [CR], [PF], [PR]}.
We use superscript [C·] to refer to any objective function in the complete observation case. Likewise, [·R] stands for an
objective function based on the rough marginal likelihood either in the complete or the partial observation case.

Theorem 3.1 (Consistency of the estimators) Assume (A1)-(A6), h → 0, and Nh → ∞. Then under the complete
observation or partial observation case, it holds:

β̂
[obj]
N

Pθ0−−→ β0, Σ̂Σ
[obj]

N

Pθ0−−→ ΣΣ⊤
0 .
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Remark 4 We split the full objective function (25) into the sum of the rough marginal likelihood (30) and the conditional
smooth-given-rough likelihood (31). Even if (31) cannot identify the drift parameter β, it is an important intermediate
step in understanding the full objective function (25). This can be seen in the proof of Theorem 3.1, where we
first establish consistency of the diffusion estimator with a convergence rate of

√
N , which is faster than

√
Nh, the

convergence rate of the drift estimators. Then, under complete observations, we show that

1

Nh
(L[CR]

N (β,σ0)− L[CR]
N (β0,σ0))

Pθ0−−−−−→
Nh→∞
h→0

∫
(F0(y)− F(y))⊤(ΣΣ⊤)−1(F0(y)− F(y)) dν0(y). (45)

The right-hand side of (45) is non-negative, with a unique zero for F = F0. Conversely, for objective function (31), it
holds:

1

Nh
(L[CS|R]

N (β,σ)− L[CS|R]
N (β0,σ))

Pθ0−−−−−→
Nh→∞
h→0

0. (46)

Hence, (46) does not have a unique minimum, making the drift parameter unidentifiable. Similar conclusions are drawn
in the partial observation case.

Now, we state the asymptotic normality of the estimator. First, we need some preliminaries. Let ρ > 0 and Bρ (θ0) =
{θ ∈ Θ | ∥θ − θ0∥ ≤ ρ} be a ball around θ0. Since θ0 ∈ Θ, for sufficiently small ρ > 0, Bρ(θ0) ∈ Θ. For
θ̂
[obj]
N ∈ Bρ (θ0), the mean value theorem yields:

(∫ 1

0

HL[obj]
N

(θ0 + t(θ̂
[obj]
N − θ0)) dt

)
(θ̂

[obj]
N − θ0) = −∇θL[obj]

N (θ0) . (47)

Define:

C
[obj]
N (θ) :=




[
1

Nh∂
2
β(i1)β(i2)L[obj]

N (θ)
]r
i1,i2=1

[
1

N
√
h
∂2
β(i)σ(j)L[obj]

N (θ)
]r,s
i=1,j=1[

1
N

√
h
∂2
σ(j)β(i)L[obj]

N (θ)
]r,s
i=1,j=1

[
1
N ∂

2
σ(j1)σ(j2)L[obj]

N (θ)
]s
j1,j2=1


 , (48)

s
[obj]
N :=

[√
Nh(β̂

[obj]
N − β0)

√
N(σ̂

[obj]
N − σ0)

]
, λ

[obj]
N :=



− 1√

Nh
∇βL[obj]

N (θ0)

− 1√
N

∇σL[obj]
N (θ0)


 , (49)

and D
[obj]
N :=

∫ 1

0
C

[obj]
N (θ0 + t(θ̂

[obj]
N − θ0)) dt. Then, (47) is equivalent to D

[obj]
N s

[obj]
N = λ

[obj]
N . Let:

[Cβ(θ0)]i1,i2 :=

∫
(∂β(i1)F0(y))

⊤(ΣΣ⊤
0 )

−1(∂β(i2)F0(y)) dν0(y), 1 ≤ i1, i2 ≤ r, (50)

[Cσ(θ0)]j1,j2 := Tr((∂σ(j1)ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1(∂σ(j2)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1), 1 ≤ j1, j2 ≤ s. (51)

Theorem 3.2 Let assumptions (A1)-(A6) hold, and let h → 0, Nh → ∞, and Nh2 → 0. Then under complete
observations, it holds:

[√
Nh(β̂

[CR]
N − β0)√

N(σ̂
[CR]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r 2Cσ(θ0)
−1

])
,

[√
Nh(β̂

[CF]
N − β0)√

N(σ̂
[CF]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r Cσ(θ0)
−1

])
,

under Pθ0
. If only partial observations are available and the unobserved coordinates are approximated using the

forward or backward differences, then
[√

Nh(β̂
[PR]
N − β0)√

N(σ̂
[PR]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r
9
4Cσ(θ0)

−1

])
,

[√
Nh(β̂

[PF]
N − β0)√

N(σ̂
[PF]
N − σ0)

]
d−→ N

(
0,

[
Cβ(θ0)

−1 0r×s

0s×r
9
4Cσ(θ0)

−1

])
,

under Pθ0
.
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Here, we only outline the proof. According to Theorem 1 in Kessler [1997] or Theorem 1 in Sørensen and Uchida
[2003], Lemmas 3.3 and 3.4 below are enough for establishing asymptotic normality of θ̂N . For more details, see proof
of Theorem 1 in Sørensen and Uchida [2003].

Lemma 3.3 Let CN (θ0) be defined in (48). For h→ 0 and Nh→ ∞, it holds:

C
[CR]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r Cσ(θ0)

]
, C

[PR]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r
2
3Cσ(θ0)

]
,

C
[CF]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r 2Cσ(θ0)

]
, C

[PF]
N (θ0)

Pθ0−−→
[
2Cβ(θ0) 0r×s

0s×r
8
3Cσ(θ0)

]
.

Moreover, let ρN be a sequence such that ρN → 0, then in all cases it holds:

sup
∥θ∥≤ρN

∥C[obj]
N (θ0 + θ)−C

[obj]
N (θ0)∥

Pθ0−−→ 0.

Lemma 3.4 Let λN be defined (49). For h→ 0, Nh→ ∞ and Nh2 → 0, it holds:

λ
[CR]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r 2Cσ(θ0)

])
, λ

[PR]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r Cσ(θ0)

])
,

λ
[CF]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r 4Cσ(θ0)

])
, λ

[PF]
N

d−→ N
(
0,

[
4Cβ(θ0) 0r×s

0s×r 16Cσ(θ0)

])
,

under Pθ0
.

Now, the two previous lemmas suggest

s
[obj]
N = (D[obj]

n )−1λ
[obj]
N

d−→ C
[obj]
N (θ0)

−1λ
[obj]
N .

The previous line is not completely formal, but it gives the intuition. For more details on formally deriving the result,
see Section 7.4 in Pilipovic et al. [2024] or proof of Theorem 1 in Sørensen and Uchida [2003].

4 Simulation study

This Section illustrates the simulation study of the Kramers oscillator (8), demonstrating the theoretical aspects and
comparing our proposed estimators against estimators based on the EM and LL approximations. We chose to compare
our proposed estimators to these two, because the EM estimator is routinely used in applications, and the LL estimator
has shown to be one of the best state-of-the-art methods, see Pilipovic et al. [2024] for the elliptic case. The true
parameters are set to η0 = 6.5, a0 = 1, b0 = 0.6 and σ2

0 = 0.1. We outline the estimators specifically designed for the
Kramers oscillator, explain the simulation procedure, describe the optimization implemented in the R programming
language R Core Team [2022], and then present and interpret the results.

4.1 Estimators used in the study

For the Kramers oscillator (8), the EM transition distribution is:
[
Xtk
Vtk

]
|
[
Xtk−1

Vtk−1

]
=

[
x
v

]
∼ N

([
x+ hv

v + h
(
−ηv + ax− bx3

)
]
,

[
0 0
0 hσ2

])
.

The ill-conditioned variance of this discretization restricts us to an estimator that only uses the marginal likelihood of
the rough coordinate. The estimator for complete observations directly follows from the Gaussian distribution. The
estimator for partial observations is defined as [Samson and Thieullen, 2012]:

θ̂
[PR]
EM = argmin

θ

{
2

3
(N − 3) log σ2 +

1

hσ2

N−2∑

k=1

(∆hXtk+1
−∆hXtk − h(−η∆hXtk−1

+ aXtk−1
− bX3

tk−1
))2

}
.

To our knowledge, the LL estimator has not previously been applied to partial observations. Given the similar theoretical
and computational performance of the Strang and LL discretizations, we suggest (without formal proof) to adjust the LL
objective functions with the same correction factors as used in the Strang approach. The numerical evidence indicates
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that the LL estimator has the same asymptotic properties as those proved for the Strang estimator. We omit the definition
of the LL estimator due to its complexity (see Melnykova [2020], Pilipovic et al. [2024] and accompanying code).

To define S estimators based on the Strang splitting scheme, we first split SDE (8) as follows:

d

[
Xt

Vt

]
=

[
0 1

−2a −η
]

︸ ︷︷ ︸
A

([
Xt

Vt

]
−
[
x⋆±
0

]

︸ ︷︷ ︸
b

)
dt+

[
0

aXt − bX3
t + 2a(Xt − x⋆±)

]

︸ ︷︷ ︸
N(Xt,Vt)

dt+

[
0
σ

]
dWt,

where x⋆± = ±
√
a/b are the two stable points of the dynamics. Since there are two stable points, we suggest splitting

with x⋆+, when Xt > 0, and x⋆−, when Xt < 0. This splitting follows the guidelines from [Pilipovic et al., 2024]. Note
that the nonlinear ODE driven by N(x, v) has a trivial solution where x is a constant. To obtain Strang estimators, we
plug in the corresponding components in the objective functions (25), (30), (39) and (40).

4.2 Trajectory simulation

We simulate a sample path using the EM discretization with a step size of hsim = 0.0001 to ensure good performance.
To reduce discretization errors, we sub-sample from the path at wider intervals to get time step h = 0.1. The path has
N = 5000 data points. We repeat the simulations to obtain 250 data sets.

4.3 Optimization in R

For optimizing the objective functions, we proceed as in Pilipovic et al. [2024] using the R package torch [Falbel
and Luraschi, 2022], which allows automatic differentiation. The optimization employs the resilient backpropagation
algorithm, optim_rprop. We use the default hyperparameters and limit the number of optimization iterations to 2000.
The convergence criterion is set to a precision of 10−5 for the difference between estimators in consecutive iterations.
The initial parameter values are set to (−0.1,−0.1, 0.1, 0.1).

4.4 Results

The results of the simulation study are presented in Figure 1. Figure 1A) presents the distributions of the normalized
estimators in the complete and partial observation cases. The S and LL estimators exhibit nearly identical performance,
particularly in the complete observation scenario. In contrast, the EM method displays significant underperformance
and notable bias. The variances of the S and LL rough-likelihood estimators of σ2 are higher compared to those derived
from the full likelihood, aligning with theoretical expectations. Interestingly, in the partial observation scenario, Figure
1A) reveals that estimators employing the full likelihood display greater finite sample bias compared to those based on
the rough likelihood. Possible reasons for this bias are discussed in Remark 3. However, it is noteworthy that this bias is
eliminated for smaller time steps, e.g. h = 0.0001 (not shown), thus confirming the theoretical asymptotic results. This
observation suggests that the rough likelihood is preferable under partial observations due to its lower bias. Backward
finite difference approximations of the velocity variables perform similarly to the forward differences and are therefore
excluded from the figure for clarity.

We closely examine the variances of the S estimators of σ2 in Figure 1B). The LL estimators are omitted due to their
similarity to the S estimators, and because the computation times for the LL estimators are prohibitive. To align more
closely with the asymptotic predictions, we opt for h = 0.02 and conduct 1000 simulations. Additionally, we set
σ2
0 = 100 to test different noise levels. Atop each empirical distribution, we overlay theoretical normal densities that

match the variances as per Theorem 3.2. The theoretical variance is derived from Cσ2(θ0) in (51), which for the
Kramers oscillator in (8) is:

Cσ2(θ0) =
1

σ4
0

. (52)

Figure 1 illustrates that the lowest variance of the diffusion estimator is observed when using the full likelihood with
complete observations. The second lowest variance is achieved using the rough likelihood with complete observations.
The largest variance is observed in the partial observation case; however, it remains independent of whether the full or
rough likelihood is used. Once again, we observe that using the full likelihood introduces additional finite sample bias.

In Figure 1C), we compare running times calculated using the tictoc package in R. Running times are measured from
the start of the optimization step until convergence. The figure depicts the median over 250 repetitions to mitigate the
influence of outliers. The EM method is notably the fastest; however, the S estimators exhibit only slightly slower
performance. The LL estimators are 10-100 times slower than the S estimators, depending on whether complete or
partial observations are used and whether the full or rough likelihood is employed.
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Figure 1: Parameter estimates in a simulation study for the Kramers oscillator, eq. (8). The color code remains
consistent across all three figures. A) Normalized distributions of parameter estimation errors (θ̂N − θ0)⊘ θ0 in both
complete and partial observation cases, based on 250 simulated data sets with h = 0.1 and N = 5000. Each column
corresponds to a different parameter, while the color indicates the type of estimator. Estimators are distinguished
by superscripted objective functions (F for full and R for rough). B) Distribution of σ̂2

N estimators based on 1000
simulations with h = 0.02 and N = 5000 across different observation settings (complete or partial) and likelihood
choices (full or rough) using the Strang splitting scheme. The true value of σ2 is set to σ2

0 = 100. Theoretical normal
densities are overlaid for comparison. Theoretical variances are calculated based on Cσ2(θ0), eq. (52). C) Median
computing time in seconds for one estimation of various estimators based on 250 simulations with h = 0.1 and
N = 5000. Shaded color patterns represent times in the partial observation case, while no color pattern indicates times
in the complete observation case.
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Figure 2: Ice core data from Greenland. Left: Trajectories over time (in kilo years) of the centered negative logarithm
of the Ca2+ measurements (top) and forward difference approximations of its rate of change (bottom). The two vertical
dark red lines represent the estimated stable equilibria of the double-well potential function. Green points denote up-
and down-crossings of level ±0.6, conditioned on having crossed the other level. Green vertical lines indicate empirical
estimates of occupancy in either of the two metastable states. Right: Empirical densities (black) alongside estimated
invariant densities with confidence intervals (dark red), prediction intervals (light red), and the empirical density of a
simulated sample from the estimated model (blue).

5 Application to Greenland Ice Core Data

During the last glacial period, significant climatic shifts known as Dansgaard-Oeschger (DO) events have been
documented in paleoclimatic records [Dansgaard et al., 1993]. Proxy data from Greenland ice cores, particularly stable
water isotope composition (δ18O) and calcium ion concentrations (Ca2+), offer valuable insights into these past climate
variations [Boers et al., 2017, 2018, Boers, 2018, Ditlevsen et al., 2002, Lohmann and Ditlevsen, 2019, Hassanibesheli
et al., 2020].

The δ18O ratio, reflecting the relative abundance of 18O and 16O isotopes in ice, serves as a proxy for paleotemperatures
during snow deposition. Conversely, calcium ions, originating from dust deposition, exhibit a strong negative correlation
with δ18O, with higher calcium ion levels indicating colder conditions. Here, we prioritize Ca2+ time series due to its
finer temporal resolution.

In Greenland ice core records, the DO events manifest as abrupt transitions from colder climates (stadials) to approx-
imately 10 degrees warmer climates (interstadials) within a few decades. Although the waiting times between state
switches last a couple of thousand years, their spacing exhibits significant variability. The underlying mechanisms
driving these changes remain largely elusive, prompting discussions on whether they follow cyclic patterns, result from
external forcing, or emerge from noise-induced processes [Boers, 2018, Ditlevsen et al., 2007]. We aim to determine if
the observed data can be explained by noise-induced transitions of the Kramers oscillator.

The measurements were conducted at the summit of the Greenland ice sheet as part of the Greenland Icecore Project
(GRIP) [Anklin et al., 1993, Andersen et al., 2004]. Originally, the data were sampled at 5 cm intervals, resulting in a
non-equidistant time series due to ice compression at greater depths, where 5 cm of ice core spans longer time periods.
For our analysis, we use a version of the data transformed into a uniformly spaced series through 20-year binning and
averaging. This transformation simplifies the analysis and highlights significant climatic trends. The dataset is available
in the supplementary material of [Rasmussen et al., 2014, Seierstad et al., 2014].
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To address the large amplitudes and negative correlation with temperature, we transform the data to minus the logarithm
of Ca2+, where higher values of the transformed variable indicate warmer climates at the time of snow deposition.
Additionally, we center the transformed measurements around zero. With the 20-year binning, to obtain one point
per 20 years, we average across the bins, resulting in a time step of h = 0.02kyr (1kyr = 1000 years). Additionally,
we addressed a few missing values using the na.approx function from the zoo package. Following the approach of
Hassanibesheli et al. [2020], we analyze a subset of the data with a sufficiently good signal-to-noise ratio. Hassanibesheli
et al. [2020] examined the data from 30 to 60kyr before present. Here, we extend the analysis to cover 30kyr to
80kyr, resulting in a time interval of T = 50kyr and a sample size of N = 2500. We approximate the velocity of
the transformed Ca2+ by the forward difference method. The trajectories and empirical invariant distributions are
illustrated in Figure 2.

We fit the Kramers oscillator to the − logCa2+ time series and estimate parameters using the Strang estimator. Following
Theorem 3.2, we compute Cβ(θ0) from (50). Applying the invariant density π0(x, v) from (10), which decouples into
π0(x) (11) and a Gaussian zero-mean and σ2

0/(2η0) variance, leads us to:

Cβ(θ0) =




1
2η0

0 0

0 1
σ2
0

∫∞
−∞ x2π0(x) dx − 1

σ2
0

∫∞
−∞ x4π0(x) dx

0 − 1
σ2
0

∫∞
−∞ x4π0(x) dx

1
σ2
0

∫∞
−∞ x6π0(x) dx


 . (53)

Thus, to obtain 95% confidence intervals (CI) for the estimated parameters, we plug θ̂N into (52) and (53). The
estimators and confidence intervals are shown in Table 1. We also calculate the expected waiting time τ , eq. (12), of
crossing from one state to another, and its confidence interval using the Delta Method.

Parameter Estimate 95% CI
η 62.5 59.4− 65.6
a 296.7 293.6− 299.8
b 219.1 156.4− 281.7
σ2 9125 8589− 9662
τ 3.97 3.00− 4.94

Table 1: Estimated parameters of the Kramers oscillator from Greenland ice core data.

The model fit is assessed in the right panels of Figure 2. Here, we present the empirical distributions of the two
coordinates along with the fitted theoretical invariant distribution and a 95% confidence interval. Additionally, a
prediction interval for the distribution is provided by simulating 1000 datasets from the fitted model, matching the size
of the empirical data. We estimate the empirical distributions for each simulated dataset and construct a 95% prediction
interval using the pointwise 2.5th and 97.5th percentiles of these estimates. A single example trace is included in blue.
While the fitted distribution for − logCa2+ appears to fit well, even with this symmetric model, the velocity variables
are not adequately captured. This discrepancy is likely due to the presence of extreme values in the data that are not
effectively accounted for by additive Gaussian noise. Consequently, the model compensates by estimating a large
variance.

We estimate the waiting time between metastable states to be approximately 4000 years. However, this approximation
relies on certain assumptions, namely 62.5 ≈ η ≫ √

a ≈ 17.2 and 73 ≈ σ2/2η ≪ a2/4b ≈ 100. Thus, the accuracy
of the approximation may not be highly accurate.

Defining the current state of the process is not straightforward. One method involves identifying successive up- and
down-crossings of predefined thresholds within the smoothed data. However, the estimated occupancy time in each
state depends on the level of smoothing applied and the distance of crossing thresholds from zero. Using a smoothing
technique involving running averages within windows of 11 data points (equivalent to 220 years) and detecting down-
and up-crossings of levels ±0.6, we find an average occupancy time of 4058 years in stadial states and 3550 years in
interstadial states. Nevertheless, the actual occupancy times exhibit significant variability, ranging from 60 to 6900
years, with the central 50% of values falling between 665 and 2115 years. This classification of states is depicted in
green in Figure 2. Overall, the estimated mean occupancy time inferred from the Kramers oscillator appears reasonable.

6 Technical results

In this Section, we present all the necessary technical properties that are used to derive the main results of the paper.
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We start by expanding Ω̃h and its block components Ω[RR]
h (θ)−1,Ω

[S|R]
h (θ)−1, log detΩ[RR]

h (θ), log detΩ
[S|R]
h (θ)

and log |detDfh/2 (y;β) | when h goes to zero. Then, we expand Z̃k,k−1(β) and Z̃k+1,k,k−1(β) around Ytk−1
when

h goes to zero. The main tools used are Itô’s lemma, Taylor expansions, and Fubini’s theorem. The final result is
stated in Propositions 6.6 and 6.7. The approximations depend on the drift function F, the nonlinear part N, and some
correlated sequences of Gaussian random variables. Finally, we obtain approximations of the objective functions (25),
(30), (31) and (39) - (41). Proofs of all the stated propositions and lemmas in this section are in Supplementary Material
S1.

6.1 Covariance matrix Ω̃h

The covariance matrix Ω̃h is approximated by:

Ω̃h =

∫ h

0

eÃ(h−u)Σ̃Σ̃⊤eÃ
⊤(h−u) du

= hΣ̃Σ̃⊤ +
h2

2
(ÃΣ̃Σ̃⊤ + Σ̃Σ̃⊤Ã⊤) +

h3

6
(Ã2Σ̃Σ̃⊤ + 2ÃΣ̃Σ̃⊤Ã⊤ + Σ̃Σ̃⊤(Ã2)⊤)

+
h4

24
(Ã3Σ̃Σ̃⊤ + 3Ã2Σ̃Σ̃⊤Ã⊤ + 3ÃΣ̃Σ̃⊤(Ã2)⊤ + Σ̃Σ̃⊤(Ã3)⊤) +R(h5,y0). (54)

The following lemma approximates each block of Ω̃h up to the first two leading orders of h. The result follows directly
from equations (4), (6), and (54).

Lemma 6.1 The covariance matrix Ω̃h defined in (54)-(19) approximates block-wise as:

Ω
[SS]
h (θ) =

h3

3
ΣΣ⊤ +

h4

8
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h5,y0),

Ω
[SR]
h (θ) =

h2

2
ΣΣ⊤ +

h3

6
(Av(β)ΣΣ⊤ + 2ΣΣ⊤Av(β)

⊤) +R(h4,y0),

Ω
[RS]
h (θ) =

h2

2
ΣΣ⊤ +

h3

6
(2Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h4,y0),

Ω
[RR]
h (θ) = hΣΣ⊤ +

h2

2
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h3,y0).

Building on Lemma 6.1, we calculate products, inverses, and logarithms of the components of Ω̃h in the following
lemma.

Lemma 6.2 For the covariance matrix Ω̃h defined in (54) it holds:

(i) Ω
[RR]
h (θ)−1 = 1

h (ΣΣ⊤)−1 − 1
2 ((ΣΣ⊤)−1Av(β) +Av(β)

⊤(ΣΣ⊤)−1) +R(h,y0);

(ii) Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1 = h

2 I− h2

12 (Av −ΣΣ⊤Av(β)
⊤(ΣΣ⊤)−1) +R(h3,y0);

(iii) Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1Ω

[RS]
h (θ) = h3

4 ΣΣ⊤ + h4

8 (Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)
⊤) +R(h5,y0);

(iv) Ω
[S|R]
h (θ) = h3

12ΣΣ⊤ +R(h5,y0);

(v) log detΩ
[RR]
h (θ) = d log h+ log detΣΣ⊤ + hTrAv(β) +R(h2,y0);

(vi) log detΩ
[S|R]
h (θ) = 3d log h+ log detΣΣ⊤ +R(h2,y0);

(vii) log det Ω̃h(θ) = 4d log h+ 2 log detΣΣ⊤ + hTrAv(β) +R(h2,y0).

Remark 5 We adjusted the objective functions for partial observations using the term c log detΩ
[·]
h/c, where c is a

correction constant. This adjustment keeps the term hTrAv(β) in (v)-(vii) constant, not affecting the asymptotic
distribution of the drift parameter. There is no h4-term in Ω

[S|R]
h (θ) which simplifies the approximation of Ω[S|R]

h (θ)−1

and log detΩ
[S|R]
h (θ). Consequently, this makes (41) a bad choice for estimating the drift parameter.
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6.2 Nonlinear solution f̃h

We now state a useful proposition for the nonlinear solution f̃h (Section 1.8 in [Hairer et al., 1993]).

Proposition 6.3 Let Assumptions (A1), (A2) and (A6) hold. When h→ 0, the h-flow of (15) approximates as:

f̃h(y) = y + hÑ(y) +
h2

2
(DyÑ(y))Ñ(y) +R(h3,y), (55)

f̃−1
h (y) = y − hÑ(y) +

h2

2
(DyÑ(y))Ñ(y) +R(h3,y). (56)

Applying the previous proposition on (21) and (22), we get:

fh(y) = v + hN(y) +
h2

2
(DvN(y))N(y) +R(h3,y), (57)

f⋆−1
h (y) = v − hN(y) +

h2

2
(DvN(y))N(y) +R(h3,y). (58)

The following lemma approximates log |detDfh/2 (y;β) | in the objective functions and connects it with Lemma 6.2.

Lemma 6.4 Let f̃h be the function defined in (21). It holds:

2 log |detDfh/2 (Ytk ;β) | = hTrDvN(Ytk−1
;β) +R(h3/2,Ytk−1

),

2 log |detDfh/2
(
Xtk ,∆hXtk+1

;β
)
| = hTrDvN(Ytk−1

;β) +R(h3/2,Ytk−1
).

An immediate consequence of the previous lemma and that DvF(y;β) = Av(β) +DvN(y;β) is

log detΩ
[RR]
h (θ) + 2 log |detDfh/2 (Ytk ;β) | = log dethΣΣ⊤ + hTrDvF(Ytk−1

;β) +R(h3/2,Ytk−1
).

The same equality holds when Ytk is approximated by (Xtk ,∆hXtk+1
). The following lemma expands function

µh(f̃h/2(y)) up to the highest necessary order of h.

Lemma 6.5 For the functions f̃h in (21) and µ̃h in (28), it holds

µ
[S]
h (f̃h/2(y)) = x+ hv +

h2

2
F(y) +R(h3,y), (59)

µ
[R]
h (f̃h/2(y)) = v + h(F(y)− 1

2
N(y)) +R(h2,y). (60)

6.3 Random variables Z̃k,k−1 and Z̃k+1,k,k−1

To approximate the random variables Z[S]
k,k−1(β),Z

[R]
k,k−1(β), Z

[S]

k,k−1(β), and Z
[R]

k+1,k,k−1(β) around Ytk−1
, we start

by defining the following random sequences:

ηk−1 :=
1

h1/2

∫ tk

tk−1

dWt, (61)

ξk−1 :=
1

h3/2

∫ tk

tk−1

(t− tk−1) dWt, ξ′k :=
1

h3/2

∫ tk+1

tk

(tk+1 − t) dWt, (62)

ζk−1 :=
1

h5/2

∫ tk

tk−1

(t− tk−1)
2 dWt, ζ′k :=

1

h5/2

∫ tk+1

tk

(tk+1 − t)2 dWt. (63)

The random variables (61)-(63) are Gaussian with mean zero. Moreover, at time tk they are Ftk+1
measurable and

independent of Ftk . The following linear combinations of (61)-(63) appear in the expansions in the partial observation
case:

Uk,k−1 := ξ′k + ξk−1, (64)

Qk,k−1 := ζ′k + 2ηk−1 − ζk−1. (65)
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It is not hard to check that ξ′k + ηk−1 − ξ′k−1 = Uk,k−1. This alternative representation of Uk,k−1 will be used later
in proofs.

The Itô isometry yields:

Eθ0
[ηk−1η

⊤
k−1 | Ftk−1

] = I, Eθ0
[ηk−1ξ

⊤
k−1 | Ftk−1

] = Eθ0
[ηk−1ξ

′⊤
k−1 | Ftk−1

] =
1

2
I, (66)

Eθ0
[ξk−1ξ

′⊤
k−1 | Ftk−1

] =
1

6
I, Eθ0

[ξk−1ξ
⊤
k−1 | Ftk−1

] = Eθ0
[ξ′kξ

′⊤
k | Ftk−1

] =
1

3
I, (67)

Eθ0
[Uk,k−1U

⊤
k,k−1 | Ftk−1

] =
2

3
I, Eθ0

[Uk,k−1(Uk,k−1 + 2ξ′k−1)
⊤ | Ftk−1

] = I. (68)

The covariances of other combinations of the random variables (61)-(63) are not needed for the proofs. However, to
derive asymptotic properties, we need some fourth moments calculated in Supplementary Materials S1.

The following two propositions are the last building blocks for approximating the objective functions (30)-(31) and
(40)-(41).

Proposition 6.6 The random variables Z̃k,k−1(β) in (24) and Z̃k+1,k,k−1(β) in (35) are approximated by:

Z
[S]
k,k−1(β) = h3/2Σ0ξ

′
k−1 +

h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1 +R(h3,Ytk−1

),

Z
[R]
k,k−1(β) = h1/2Σ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0ηk−1

+ h3/2DvF0(Ytk−1
)Σ0ξ

′
k−1 +R(h2,Ytk−1

),

Z
[S]

k,k−1(β) = −h
2

2
F(Ytk−1

)− h5/2

2
DvF(Ytk−1

)Σ0ξ
′
k−1 +R(h3,Ytk−1

),

Z
[R]

k+1,k,k−1(β) = h1/2Σ0Uk,k−1 + h(F0(Ytk−1
)− F(Ytk−1

))− h3/2

2
DvN(Ytk−1

)Σ0Uk,k−1

− h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 +

h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h2,Ytk−1
).

Remark 6 Proposition 6.6 yield

Eθ0 [Z
[R]
k,k−1(β)Z

[R]
k,k−1(β)

⊤ | Ytk−1
] = hΣΣ⊤

0 +R(h2,Ytk−1
) = Ω

[RR]
h +R(h2,Ytk−1

),

Eθ0
[Z

[R]

k+1,k,k−1(β)Z
[R]

k+1,k,k−1(β)
⊤ | Ytk−1

] =
2

3
hΣΣ⊤

0 +R(h2,Ytk−1
) =

2

3
Ω

[RR]
h +R(h2,Ytk−1

).

Thus, the correction factor 2/3 in (40) compensates for the underestimation of the covariance of Z
[R]

k+1,k,k−1(β).
Similarly, it can be shown that the same underestimation happens when using the backward difference. On the other
hand, when using the central difference, it can be shown that

Eθ0
[Z

[R],central

k+1,k,k−1(β)Z
[R],central

k+1,k,k−1(β)
⊤ | Ytk−1

] =
5

12
hΣΣ⊤

0 +R(h2,Ytk−1
),

which is a larger deviation from Ω
[RR]
h , yielding a larger correcting factor and larger asymptotic variance of the

diffusion parameter estimator.

Proposition 6.7 Let Z̃k,k−1(β) and Z̃k+1,k,k−1(β) be defined in (24) and (35), respectively. Then,

Z
[S|R]
k,k−1(β) = −h

3/2

2
Σ0(ηk−1 − 2ξ′k−1) +

h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0ηk−1

+
h5/2

4
DvN(Ytk−1

)Σ0ηk−1 −
h5/2

2
DvF0(Ytk−1

)Σ0(ξ
′
k−1 − ζ′k−1) +R(h3,Ytk−1

),

Z
[S|R]

k+1,k,k−1(β) = −h
3/2

2
Σ0Uk,k−1 −

h2

2
F0(Ytk−1

) +
h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0Uk,k−1

+
h5/2

4
DvN(Ytk−1

)Σ0Uk,k−1 −
h5/2

4
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h3,Ytk−1
).
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6.4 Objective functions

Starting with the complete observation case, we approximate objective functions (30) and (31) up to order
R(h3/2,Ytk−1

) to prove the asymptotic properties of the estimators θ̂[CR]
N and θ̂[CS|R]

N . After omitting the terms
of order R(h,Ytk−1

) that do not depend on β, we obtain the following approximations:

L[CR]
N (Y0:tN ;θ) = (N − 1) log detΣΣ⊤ +

N∑

k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1Σ0ηk−1 (69)

+ 2
√
h

N∑

k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+ h

N∑

k=1

(F(Ytk−1
;β0)− F(Ytk−1

;β))⊤(ΣΣ⊤)−1(F(Ytk−1
;β0)− F(Ytk−1

;β))

− h
N∑

k=1

η⊤
k−1Σ

⊤
0 DvF(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0ηk−1 + h
N∑

k=1

TrDvF(Ytk ;β),

L[CS|R]
N (Y0:tN ;θ) = (N − 1) log detΣΣ⊤ + 3

N∑

k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1Σ0(ηk−1 − 2ξ′k−1) (70)

− 3h

N∑

k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1DvN(Ytk−1
;β)Σ0ηk−1

− h
N∑

k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1(Av(β)−ΣΣ⊤Av(β)
⊤(ΣΣ⊤)−1)Σ0ηk−1

L[CF]
N (Y0:tN ;θ) = L[CR]

N (Y0:tN ;θ) + L[CS|R]
N (Y0:tN ;θ) . (71)

The two last sums in (70) converge to zero because Eθ0 [(ηk−1 − 2ξ′k−1)η
⊤
k−1|Ftk−1

] = 0. Moreover, (70) lacks the
quadratic form of F(Ytk−1

)−F0(Ytk−1
), that is crucial for the asymptotic variance of the drift estimator. This implies

that the objective function L[CS|R]
N is not suitable for estimating the drift parameter. Conversely, (70) provides a correct

and consistent estimator of the diffusion parameter, indicating that the full objective function (the sum of L[CR]
N and

L[CS|R]
N ) consistently estimates θ.

Similarly, the approximated objective functions in the partial observation case are:

L[PR]
N (Y0:tN ;θ) =

2

3
(N − 2) log detΣΣ⊤ +

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1Σ0Uk,k−1 (72)

+ 2
√
h

N∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+ h
N−1∑

k=1

(F(Ytk−1
;β0)− F(Ytk−1

;β))⊤(ΣΣ⊤)−1(F(Ytk−1
;β0)− F(Ytk−1

;β))

− h
N−1∑

k=1

(Uk,k−1 + 2ξ′k−1)
⊤Σ⊤

0 DvF(Ytk−1
;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1 + h

N−1∑

k=1

TrDvF(Ytk ;β),

L[PS|R]
N (Y0:tN ;θ) = 2(N − 2) log detΣΣ⊤ + 3

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1Σ0Uk,k−1 (73)

+ 6
√
h

N∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1F(Ytk−1

;β0)

− 3h
N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 DvN(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1 + 2h
N−1∑

k=1

TrDvN(Ytk ;β),
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L[PF]
N (Y0:tN ;θ) = L[PR]

N (Y0:tN ;θ) + L[PS|R]
N (Y0:tN ;θ) . (74)

This time, the term with Av(β)−ΣΣ⊤Av(β)
⊤(ΣΣ⊤)−1 vanishes because

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(Av(β)−ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)) = 0

due to the symmetry of the matrices and the trace cyclic property.

Even though the partial observation objective function L[PR] (X0:tN ;θ) (40) depends only on X0:tN , we could
approximate it with L[PR]

N (Y0:tN ;θ) (72). This is useful for proving the asymptotic normality of the estimator since its
asymptotic distribution will depend on the invariant probability ν0 defined for the solution Y.

The absence of the quadratic form F(Ytk−1
)− F0(Ytk−1

) in (73) indicates that L[PS|R]
N is not suitable for estimating

the drift parameter. Additionally, the penultimate term in (73) does not vanish, needing an additional correction term of
2h
∑N−1

k=1 TrDvN(Ytk ;β) for consistency. This correction is represented as 4 log |detDvfh/2| in (41). Notably, this
term is absent in the complete objective function (31), making this adjustment somewhat artificial and could potentially
deviate further from the true log-likelihood. Consequently, the objective function based on the full likelihood (39)
inherits this characteristic from (73), suggesting that in the partial observation scenario, using only the rough likelihood
(72) may be more appropriate.

7 Conclusion

Many fundamental laws of physics and chemistry are formulated as second-order differential equations, a model class
important for understanding complex dynamical systems in various fields such as biology and economics. The extension
of these deterministic models to stochastic second-order differential equations represents a natural generalization,
allowing for the incorporation of uncertainties and variability inherent in real-world systems. However, robust statistical
methods for analyzing data generated from such stochastic models have been lacking, presenting a significant challenge
due to the inherent degeneracy of the noise and partial observation.

In this study, we propose estimating model parameters using a recently developed methodology of Strang splitting
estimator for SDEs. This estimator has demonstrated finite sample efficiency with relatively large sample time steps,
particularly in handling highly nonlinear models. We adjust the estimator to the partial observation setting and employ
either the full likelihood or only the marginal likelihood based on the rough coordinates. For all four obtained estimators,
we establish the consistency and asymptotic normality.

The application of the Strang estimator to a historical paleoclimate dataset obtained from ice cores in Greenland has
yielded valuable insights and analytical tools for comprehending abrupt climate shifts throughout history. Specifically,
we employed the stochastic Duffing oscillator, also known as the Kramers oscillator, to analyze the data.

While our focus in this paper has been primarily confined to second-order SDEs with no parameters in the smooth
components, we are confident that our findings can be extended to encompass models featuring parameters in the drift
of the smooth coordinates. This opens up directions for further exploration and application of our methodology to a
broader range of complex dynamical systems, promising deeper insights into their behavior and underlying mechanisms.

Acknowledgement

This work has received funding from the European Union’s Horizon 2020 research and innovation program under the
Marie Skłodowska-Curie grant agreement No 956107, "Economic Policy in Complex Environments (EPOC)"; and
Novo Nordisk Foundation NNF20OC0062958.

References
A. Abdulle, G. Vilmart, and K. C. Zygalakis. Long Time Accuracy of Lie–Trotter Splitting Methods for Langevin

Dynamics. SIAM Journal on Numerical Analysis, 53(1):1–16, 2015.
M. Ableidinger, E. Buckwar, and H. Hinterleitner. A stochastic version of the jansen and rit neural mass model:

Analysis and numerics. Journal of Mathematical Neuroscience, 7, 2017. ISSN 2190-8567.
D. Adams, M. H. Duong, and G. dos Reis. Operator-splitting schemes for degenerate, non-local, conservative-dissipative

systems. Discrete and Continuous Dynamical Systems, 42(11):5453–5486, 2022.
L. A. Alyushina. Euler Polygonal Lines for Itô Equations with Monotone Coefficients. Theory of Probability & Its

Applications, 32(2):340–345, 1988.

22



Strang Splitting Parameter Estimator for Second-order SDEs A PREPRINT

K. Andersen, N. Azuma, J. Barnola, M. Bigler, P. Biscaye, N. Caillon, J. Chappellaz, H. Clausen, D. Dahl-Jensen,
H. Fischer, J. Flückiger, D. Fritzsche, Y. Fujii, K. Goto-Azuma, K. Grønvold, N. Gundestrup, M. Hansson, C. Huber,
C. Hvidberg, and J. White. High-resolution record of northern hemisphere climate extending into the last interglacial
period. Nature, 431:147–51, 10 2004.

M. Anklin, J. M. Barnola, J. Beer, T. Blunier, J. Chappellaz, H. B. Clausen, D. Dahljensen, W. Dansgaard, M. Deangelis,
R. Delmas, P. Duval, M. Fratta, A. Fuchs, K. Fuhrer, N. Gundestrup, C. Hammer, P. Iversen, S. Johnsen, J. Jouzel,
and E. W. Wolff. Climate instability during the last interglacial period recorded in the grip ice core. Nature, 364:
203–207, 07 1993.

L. Arnold and P. Imkeller. The Kramers Oscillator Revisited. In J. A. Freund and T. Pöschel, editors, Stochastic
Processes in Physics, Chemistry, and Biology, pages 280–291. Springer Berlin Heidelberg, 2000.

N. Boers. Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record. Nature Communi-
cations, 9, 07 2018.

N. Boers, M. D. Chekroun, H. Liu, D. Kondrashov, D.-D. Rousseau, A. Svensson, M. Bigler, and M. Ghil. Inverse
stochastic–dynamic models for high-resolution Greenland ice core records. Earth System Dynamics, 8(4):1171–1190,
2017.

N. Boers, M. Ghil, and D.-D. Rousseau. Ocean circulation, ice shelf, and sea ice interactions explain Dans-
gaard–Oeschger cycles. Proceedings of the National Academy of Sciences, 115:E11005–E11014, 11 2018.

G. W. Bohrnstedt and A. S. Goldberger. On the Exact Covariance of Products of Random Variables. Journal of the
American Statistical Association, 64(328):1439–1442, 1969.

N. Bou-Rabee. Cayley splitting for second-order langevin stochastic partial differential equations. arXiv: Probability,
2017. URL https://api.semanticscholar.org/CorpusID:119132768.

N. Bou-Rabee and H. Owhadi. Long-Run Accuracy of Variational Integrators in the Stochastic Context. SIAM Journal
on Numerical Analysis, 48(1):278–297, Jan. 2010.

C.-E. Bréhier and L. Goudenège. Analysis of some splitting schemes for the stochastic Allen-Cahn equation. Discrete
and Continuous Dynamical Systems - B, 24(8):4169–4190, 2019.

E. Buckwar, A. Samson, M. Tamborrino, and I. Tubikanec. A splitting method for SDEs with locally Lipschitz drift:
Illustration on the FitzHugh-Nagumo model. Applied Numerical Mathematics, 179:191–220, 2022.

K. Burrage, I. Lenane, and G. Lythe. Numerical Methods for Second-Order Stochastic Differential Equations. SIAM
Journal on Scientific Computing, 29(1):245–264, 2007.

I. Crimaldi and L. Pratelli. Convergence results for multivariate martingales. Stochastic Processes and their Applications,
115(4):571–577, 2005.

W. Dansgaard, S. Johnsen, and H. e. a. Clausen. Evidence for general instability of past climate from a 250-kyr ice-core
record. Nature, 364:218–220, 1993.

P. D. Ditlevsen, S. Ditlevsen, and K. K. Andersen. The fast climate fluctuations during the stadial and interstadial
climate states. Annals of Glaciology, 35:457–462, 2002.

P. D. Ditlevsen, K. K. Andersen, and A. Svensson. The DO-climate events are probably noise induced: statistical
investigation of the claimed 1470 years cycle. Climate of the Past, 3(1):129–134, 2007.

S. Ditlevsen and A. Samson. Hypoelliptic diffusions: filtering and inference from complete and partial observations.
Journal of the Royal Statistical Society Series B-Statistical Methodology, 81(2):361–384, 2019.

S. Ditlevsen and M. Sørensen. Inference for observations of integrated diffusion processes. Scandinavian Journal of
Statistics, 31(3):417–429, 2004.

G. Duffing. Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Vieweg,
1918.

D. Falbel and J. Luraschi. torch: Tensors and Neural Networks with ’GPU’ Acceleration, 2022.
V. Genon-Catalot and J. Jacod. On the estimation of the diffusion coefficient for multi-dimensional diffusion processes.

Annales de l’I.H.P. Probabilités et statistiques, 29(1):119–151, 1993.
A. Gloter. Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient.

ESAIM: Probability and Statistics, 4:205–227, 2000.
A. Gloter. Parameter Estimation for a Discretely Observed Integrated Diffusion Process. Scandinavian Journal of

Statistics, 33(1):83–104, 2006.
A. Gloter and N. Yoshida. Adaptive and non-adaptive estimation for degenerate diffusion processes, 2020.

23



Strang Splitting Parameter Estimator for Second-order SDEs A PREPRINT

A. Gloter and N. Yoshida. Adaptive estimation for degenerate diffusion processes. Electronic Journal of Statistics, 15
(1):1424 – 1472, 2021.

E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I (2nd Revised. Ed.): Nonstiff Problems.
Springer-Verlag, Berlin, Heidelberg, 1993.

F. Hassanibesheli, N. Boers, and J. Kurths. Reconstructing complex system dynamics from time series: a method
comparison. New journal of physics, 2020.

A. R. Humphries and A. M. Stuart. Deterministic and random dynamical systems: theory and numerics, pages 211–254.
Springer Netherlands, Dordrecht, 2002.

Y. Iguchi and A. Beskos. Parameter inference for hypo-elliptic diffusions under a weak design condition, 2023.

Y. Iguchi, A. Beskos, and M. Graham. Parameter inference for degenerate diffusion processes, 2023a.

Y. Iguchi, A. Beskos, and M. M. Graham. Parameter Estimation with Increased Precision for Elliptic and Hypo-elliptic
Diffusions, 2023b.

B. H. Jansen and V. G. Rit. Electroencephalogram and visual evoked potential generation in a mathematical model of
coupled cortical columns. Biological cybernetics, 73(4):357–366, 1995.

D. S. Johnson, J. M. London, M.-A. Lea, and J. W. Durban. Continuous-time correlated random walk model for animal
telemetry data. Ecology, 89(5):1208–1215, 2008.

M. Kessler. Estimation of an Ergodic Diffusion from Discrete Observations. Scandinavian Journal of Statistics, 24(2):
211–229, 1997.

P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Stochastic Modelling and Applied
Probability. Springer Berlin Heidelberg, 1992.

H. Korsch and H. Jodl. Chaos: A Program Collection for the PC. Springer, 1999.

H. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica, 7(4):284 –
304, 1940.

N. V. Krylov. A Simple Proof of the Existence of a Solution of Itô’s Equation with Monotone Coefficients. Theory of
Probability & Its Applications, 35(3):583–587, 1991.

B. Leimkuhler and C. Matthews. Molecular dynamics. Interdisciplinary applied mathematics, 36, 2015.

J. Lohmann and P. Ditlevsen. A consistent statistical model selection for abrupt glacial climate changes. Climate
Dynamics, 52, 06 2019.

X. Mao. Stochastic differential equations and applications. Elsevier, 2007.

S. Melchionna. Design of quasisymplectic propagators for Langevin dynamics. The Journal of Chemical Physics, 127
(4):044108, 07 2007.

A. Melnykova. Parametric inference for hypoelliptic ergodic diffusions with full observations, 2020.

T. Michelot and P. G. Blackwell. State-switching continuous-time correlated random walks. Methods in Ecology and
Evolution, 10(5):637–649, 2019.

D. Nualart. The Malliavin Calculus and Related Topics. Probability and Its Applications. Springer Berlin Heidelberg,
2006. ISBN 9783540283294.

T. Ozaki. Statistical Identification of Storage Models with Application to Stochastic Hydrology. Journal of The
American Water Resources Association, 21:663–675, 1985.

T. Ozaki, J. C. Jimenez, and V. Haggan-Ozaki. The Role of the Likelihood Function in the Estimation of Chaos Models.
Journal of Time Series Analysis, 21(4):363–387, 2000.

G. Pavliotis, A. Stuart, and K. Zygalakis. Calculating effective diffusivities in the limit of vanishing molecular diffusion.
Journal of Computational Physics, 228(4):1030–1055, 2009.

P. Pilipovic, A. Samson, and S. Ditlevsen. Parameter estimation in nonlinear multivariate stochastic differential
equations based on splitting schemes. arXiv preprint arXiv:2211.11884, 2024. To appear in The Annals of Statistics.

Y. Pokern, A. M. Stuart, and P. Wiberg. Parameter Estimation for Partially Observed Hypoelliptic Diffusions. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 71(1):49–73, 01 2009.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria, 2022.

24



Strang Splitting Parameter Estimator for Second-order SDEs A PREPRINT

S. O. Rasmussen, M. Bigler, S. P. Blockley, T. Blunier, S. L. Buchardt, H. B. Clausen, I. Cvijanovic, D. Dahl-Jensen,
S. J. Johnsen, H. Fischer, V. Gkinis, M. Guillevic, W. Z. Hoek, J. J. Lowe, J. B. Pedro, T. Popp, I. K. Seierstad,
J. P. Steffensen, A. M. Svensson, P. Vallelonga, B. M. Vinther, M. J. Walker, J. J. Wheatley, and M. Winstrup. A
stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized
Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews,
106:14–28, 2014.

M. Rosenblum and A. Pikovsky. Synchronization: from pendulum clocks to chaotic lasers and chemical oscillators.
Contemporary Physics, 44(5):401–416, 2003.

A. Samson and M. Thieullen. Contrast estimator for completely or partially observed hypoelliptic diffusion. Stochastic
Processes and their Applications, 122(7):2521–2552, 2012.

I. Seierstad, P. Abbott, M. Bigler, T. Blunier, A. Bourne, E. Brook, S. L. Buchardt, C. Buizert, H. Clausen, E. Cook,
D. Dahl-Jensen, S. Davies, M. Guillevic, S. Johnsen, D. Pedersen, T. Popp, S. Rasmussen, J. Severinghaus,
A. Svensson, and B. Vinther. Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for
the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary
Science Reviews, 106, 11 2014.

M. Serrano, G. De Fabritiis, P. Español, and P. Coveney. A stochastic Trotter integration scheme for dissipative particle
dynamics. Mathematics and Computers in Simulation, 72(2):190–194, 2006.

T. Shardlow. Splitting for dissipative particle dynamics. SIAM Journal on Scientific Computing, 24(4):1267–1282, Dec.
2003.

I. Shoji and T. Ozaki. Estimation for nonlinear stochastic differential equations by a local linearization method.
Stochastic Analysis and Applications, 16(4):733–752, 1998.

M. Sørensen and M. Uchida. Small-diffusion asymptotics for discretely sampled stochastic differential equations.
Bernoulli, 9 (6):1051 – 1069, 2003. ISSN 1350-7265.

M. V. Tretyakov and Z. Zhang. A Fundamental Mean-Square Convergence Theorem for SDEs with Locally Lipschitz
Coefficients and Its Applications. SIAM Journal on Numerical Analysis, 51(6):3135–3162, 2013.

E. Vanden-Eijnden and G. Ciccotti. Second-order integrators for Langevin equations with holonomic constraints.
Chemical Physics Letters - CHEM PHYS LETT, 429, 09 2006.

L. Wu. Large and moderate deviations and exponential convergence for stochastic damping hamiltonian systems.
Stochastic Processes and their Applications, 91(2):205–238, 2001.

N. Yoshida. Asymptotic behavior of M-estimator and related random field for diffusion process. Annals of the Institute
of Statistical Mathematics, 42(2):221–251, June 1990.

I. Ziv, D. Baxter, and J. Byrne. Simulator for neural networks and action-potentials - description and application.
Journal of Neurophysiology, 71(1):294–308, 1994.

25



III Parameter Estimation in Nonlinear
Multivariate SDEs with Pearson-type
Noise

This chapter contains the following paper:

• P. Pilipovic, A. Samson, and S. Ditlevsen. Strang splitting parameter estimator
for nonlinear multivariate stochastic differential equations with Pearson-type mul-
tiplicative noise, 2024.
Paper status: working paper.

This paper introduces a new model class called multivariate Pearson diffusions. This
class features a linear drift and a quadratic function of the state vector in the squared
diffusion matrix. It can be viewed as a generalization of univariate Pearson diffusion,
where the noise structure allows for the explicit derivation of the first two moments.
Additionally, it can be seen as a generalization of a multivariate affine diffusion, which
is defined with a linear drift and a linear function of the state vector in the squared
diffusion matrix. We derive a closed-form expression for the mean and covariance matrix
for multivariate Pearson diffusions using a theorem for computing integrals involving
matrix exponentials (Theorem 2).

We also propose a splitting scheme for a nonlinear process with Pearson-type noise—a
process that shares the same diffusion structure as a multivariate Pearson diffusion but
has a nonlinear drift. We suggest splitting this nonlinear drift into linear and nonlinear
components and then obtaining a pseudo-likelihood from the Strang splitting scheme.
Unlike in the previous two papers, the linear sub-SDE in this context does not yield an
Ornstein-Uhlenbeck (OU) process due to the presence of multiplicative noise. To solve for
the multivariate Pearson diffusion, we recommend approximating the transition density
as Gaussian, with the correct first two moments.

The paper also discusses two existing models from the literature that fit within the
framework of nonlinear multivariate SDEs with Pearson-type noise. The first model is a
coupled multivariate Wright-Fisher diffusion, used in genetic research to describe allele
frequencies across multiple loci. The second model is the stochastic SIR model, which
describes the spread of disease within a population. This model can be considered a
special case of a generalized Lotka-Volterra model, which also falls under the category of
nonlinear multivariate SDEs with Pearson-type noise.

Finally, we introduce a new model called the student Kramers oscillator, a generaliza-
tion of the Kramers oscillator. We prove the existence and uniqueness of the solution to
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the governing SDE and use this model in a simulation study to illustrate the performance
of the Strang splitting estimator. The study demonstrates that the new estimator pro-
vides more accurate estimates of diffusion parameters than any other method evaluated.
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ABSTRACT

This paper extends the one-dimensional Pearson diffusion framework to multivariate models where
the squared diffusion coefficient is a quadratic function of the state Xt. It generalizes the multivariate
affine diffusion models, allowing for explicit computation of first and second moments despite the
unknown transition densities. We further allow the drift to be nonlinear, thus introducing multivariate
nonlinear diffusions with Pearson-type multiplicative noise. For example, we propose the Student
Kramers oscillator, which is the Kramers oscillator with a Pearson-type noise, which has the student’s
t-distribution as an invariant distribution, allowing for heavier tails than the usual additive noise. We
prove the existence and uniqueness of Student Kramers oscillator and the existence of its invariant
measure. We propose a novel approach for parameter estimation based on Strang splitting combined
with Gaussian transition density approximation. We start by splitting the nonlinear diffusion into a
linear multivariate Pearson diffusion and a nonlinear ordinary differential equation (ODE). We solve
the nonlinear ODE and approximate the flow of the multivariate Pearson diffusion using Gaussian
approximation, where the first two moments are exact. The Strang splitting approximation and the
corresponding estimator are obtained by composing the solutions of the split subsystems. A case
study using the Student Kramers oscillator demonstrates that our estimator performs comparably to
the Euler-Maruyama, Kessler, and local linearization estimators. Specifically, the results are similar
for drift parameters, while the proposed estimator outperforms the others for diffusion parameters.

Keywords Gaussian approximation, Multivariate Pearson diffusion, Nonlinear drift, Strang estimator, Strang splitting
scheme

1 Introduction

Pearson diffusions, introduced as a versatile class of tractable one-dimensional diffusion models, have found extensive
use in various fields due to their rich statistical properties and ease of parameter estimation [Forman and Sørensen,
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2008]. These models are particularly advantageous because moments and conditional moments are explicitly available,
making them an attractive choice for statistical inference. For instance, the Ornstein-Uhlenbeck (OU) and the Cox-
Ingersoll-Ross (CIR) processes, special cases of Pearson diffusions, are often used in practical applications due to
their mathematical tractability. Pearson diffusions, with their mean-reverting linear drift and diffusion coefficient
defined as a second-order polynomial, encompass a wide range of stationary distributions, namely the family of Pearson
distributions, including light-tailed and heavy-tailed distributions and with different state spaces.

The estimation of parameters in Pearson diffusions is facilitated by the use of optimal martingale estimating functions
using exact moments, found by use of eigenfunctions of the infinitesimal generator [Bibby and Sørensen, 1995, Kessler
and Sørensen, 1999, Forman and Sørensen, 2008]. This method simplifies the estimation process and ensures consistent
estimators in low-frequency sampling scenarios, often encountered in empirical data. Other estimation methods, such
as the generalized method of moments, quasi-likelihood, and non-linear weighted least squares, are also applicable to
Pearson diffusions, highlighting their flexibility and ease of implementation.

Despite the tractability and versatility of Pearson diffusions, there has been limited work on extending these models to
higher dimensions. Leonenko and Phillips [2012] employed a spectral high-order approximation of the Fokker–Planck
equations for Pearson diffusions. They suggested extending their method to the multivariate case defined by a quadratic
form without a linear term and intercept, similar to equation (3), but did not pursue this further. Thus, a significant gap
remains in the literature concerning the generalization of these models to multivariate settings. Only the OU process is
straightforwardly extended to arbitrary dimensions, following a multivariate Gaussian distribution. A generalization is
desired to model more complex dynamical systems with diverse types of stationary distributions shaped by the diffusion
function.

A Pearson diffusion [Forman and Sørensen, 2008] is a solution to a one-dimensional stochastic differential equation
(SDE) of the form

dXt = a(Xt − b) dt+
√
αX2

t + βXt + γ dWt, (1)

where a < 0, and α, β, and γ are such that the square root is well-defined when Xt is in the state space. The parameters
of (1) are θ = {a, b, α, β, γ}, where −a > 0 determines the speed of mean reversion, b is the mean of the invariant
distribution, and α, β, and γ shape the state space and the invariant distribution.

Pearson diffusions can be classified into six cases based on the form of the squared diffusion coefficient σ2(x) =
αx2 + βx + γ. Each case presents specific conditions for the existence and uniqueness of ergodic solutions and
corresponding invariant distributions. This classification is based on equivalence classes because the Pearson class of
diffusions is closed under translations and scale transformations. Specifically, if (Xt)t≥0 is an ergodic Pearson diffusion,
so is (X̃t)t≥0 where X̃t = ψXt + ϕ. Up to translation and scale transformations, the ergodic Pearson diffusions are
classified into six forms [Forman and Sørensen, 2008].

• For σ2(x) = γ, it is an OU process defined on the entire real line. The unique ergodic solution exists for all
b ∈ R, with the invariant distribution being normal with mean b and variance γ/(−2a).

• For σ2(x) = βx, it is a CIR process, also called a square-root process. The process is defined on the positive
half-line (0,∞). A unique ergodic solution exists for −2ab ≥ β. The invariant distribution is the gamma
distribution with scale parameter β/(−2a) and shape parameter −2ab/β. For 0 < −2ab < β, the boundary
at zero can be reached with positive probability, but with an instantaneous reflecting boundary, the process
remains stationary with the same gamma invariant distribution.

• For σ2(x) = αx2, it is a geometric Brownian motion type process, also called a GARCH diffusion. It is
defined on the positive half-line (0,∞). A unique ergodic solution exists for all α > 0 and b > 0. The
invariant distribution is an inverse gamma distribution with shape parameter 1− 2a/α and scale parameter
α/(−2ab). The variance only exists for α < −2a.

• For σ2(x) = α(x2 + 1), the diffusion is defined on the entire real line. A unique ergodic solution exists for all
α > 0 and b ∈ R. If b = 0, the invariant distribution is a scaled Student’s t-distribution with 1− 2a/α degrees
of freedom. For b ̸= 0, the invariant distribution is a skew t-distribution.

• For σ2(x) = αx(x + 1), the process is defined on the positive half-line (0,∞). A unique ergodic solution
exists for all α > 0 and b ≥ α/(−2a). The invariant distribution is a scaled F-distribution with −4ab/α and
2(1 − 2a/α) degrees of freedom. If 0 < b < α/(−2a), the boundary at zero can be reached, but with an
instantaneous reflecting boundary, the process remains stationary with the same F-distribution.

• For σ2(x) = αx(x − 1), the process is a Jacobi diffusion, defined on the interval (0, 1). A unique ergodic
solution exists for α < 0 and b such that min(b, 1 − b) ≥ α/(2a). The invariant distribution is a Beta
distribution with shape parameters 2ab/α and 2a(1− b)/α. If 0 < b < α/(2a), the boundary at zero can be
reached, and similar remarks apply to the boundary at one when 0 < 1− b < α/(2a).
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This classification illustrates the diverse applications of Pearson diffusions, allowing for explicit computation of
invariant distributions and parameter conditions across different state spaces and diffusion forms. An important feature
of Pearson diffusions is the ability to find explicit expressions for the marginal and conditional moments. The k-th
absolute moment, E|Xt|k, is finite if and only if α/(−2a) < 1/(k − 1). This implies that all moments exist if α ≤ 0.
However, for α > 0, only moments satisfying k < −2a/α+ 1 exist [Forman and Sørensen, 2008].

Generalizing Pearson diffusions to multivariate settings retains univariate Pearson diffusions’ tractability and statistical
convenience, such as deriving explicit forms for the first two moments and conditional moments. This generalization
allows for a specific Pearson-type invariant distribution for each coordinate of a high-dimensional process. For
example, a process could be defined in a d-dimensional hypercube [0, 1]d, with each coordinate having a Beta invariant
distribution. Alternatively, different combinations of Pearson-type noises could appear in various coordinates of the
quadratic diffusion matrix. Moreover, the quadratic diffusion matrix may be hypoelliptic, meaning it can be singular
while the diffusion still admits a smooth density. Furthermore, allowing the drift to be nonlinear opens new directions
for modeling complex systems in fields such as finance, biology, and physics, capturing dependencies and interactions
between multiple variables and providing a more realistic representation of underlying processes.

The motivation for this study is to develop efficient and accurate methods for parameter estimation in nonlinear SDEs
with Pearson-type multiplicative noise. Traditional estimation techniques often fall short in these scenarios due to the
complexity of the noise structure and nonlinearity in the drift function. Our goal is to create a robust framework for
parameter estimation that can be applied to a wide range of models, including hypoelliptic diffusions. Recent advances
have highlighted the potential of pseudo-likelihood approaches, which approximate the likelihood, simplifying the
estimation process while maintaining accuracy. By building on these advances, we aim to provide a more effective and
versatile method for parameter estimation in complex systems.

Parameter estimation for SDEs with non-constant or multiplicative noise has been extensively studied. These models
are characterized by the complexity added by the noise term, which depends on the state of the process itself. This
dependency complicates the estimation process and has led to the development of various specialized methods. Much
work has focused on methods that transform the SDE into another SDE with additive noise. For a review of likelihood-
based parameter estimation of SDEs with additive noise, see [Pilipovic et al., 2024a,b] and references therein. These
methods can be applied if the Lamperti transform is available.

Martingale estimating functions have emerged as a powerful tool for parameter estimation in SDEs. They exploit
the underlying process’s martingale property to construct consistent and asymptotically normal estimators. Kessler
and Sørensen [1999] introduced optimal martingale estimating functions based on eigenfunctions of the generator
for Pearson diffusions. This method simplifies estimation and ensures high efficiency, particularly in high-frequency
sampling scenarios often encountered in financial data. Sørensen [2008] further demonstrated that these optimal
estimating functions compare to maximum likelihood estimation under high-frequency asymptotics, offering a simpler
alternative.

Quasi-likelihood methods, which approximate the likelihood using a tractable form, have also been applied to SDEs
with non-constant noise. Kessler [1997] proposed an estimator, often referred to as the Kessler (K) estimator, which
approximates the unknown transition density of a diffusion process with a Gaussian density. This approximation is
achieved using the true conditional mean and covariance, or approximations derived from the infinitesimal generator of
the diffusion process.

Building on Kessler’s foundational work, Uchida and Yoshida [2012] extended the Kessler estimator to the setting of
multivariate elliptic diffusions. They developed an adaptive-type contrast estimator that also achieves a central limit
theorem under the same design condition proposed by Kessler, specifically Nhp → 0, for p ≥ 2.

More recently, Iguchi and Beskos [2023] further refined the conditions under which the K estimator achieves asymptotic
normality. They focused on hypoelliptic SDEs, which pose additional challenges due to the degeneracy of the diffusion
coefficient. They proposed a modified estimator that remains consistent and asymptotically normal under a weaker
design condition, specifically Nhp → 0 for p ≥ 2. This advancement addresses some of the limitations of previous
methods and enhances the robustness of the K-type estimators in more general settings.

Gloter [2006] developed a contrast function using the Euler-Maruyama (EM) discretization for integrated diffusion
processes, focusing on the asymptotic properties as the sampling interval approaches zero and the sample size approaches
infinity. By addressing the ill-conditioned nature of the contrast from the EM discretization, Gloter [2006] suggested
using rough equations of the SDE and recovering the unobserved components through finite difference approximations.
However, this approach introduced bias and required correction factors, affecting the estimator’s variance.

Like Kessler [1997], Hurn et al. [2013] developed a quasi-maximum likelihood procedure for parameter estimation
in multi-dimensional diffusions, where the transition density is approximated by a multivariate Gaussian distribution.

3
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Unlike Kessler [1997], Hurn et al. [2013] focused specifically on systems with affine drift and diffusion functions,
where both the drift and quadratic diffusion matrix are linear functions of the state variable. For such affine models,
they derive closed-form expressions for the first and second moments of the true transition density, which are exact due
to the affine structure. This explicit calculation of moments enables them to construct a Gaussian approximation that
provides consistent parameter estimates even when the true transition density is misspecified. This approach ensures
robustness in parameter estimation. For non-affine models, Hurn et al. [2013] showed that numerical methods can still
accurately compute the required moments of the transition distribution, ensuring that Gaussian approximations achieve
high computational precision in integral evaluations.

Recent advances in this field have continued to build on these foundational methods. For instance, Gloter and
Yoshida [2020, 2021] introduced adaptive and non-adaptive methods for hypoelliptic diffusion models, demonstrating
asymptotic normality in complete observation regimes. They used higher-order Itô-Taylor expansions to introduce
additional Gaussian noise into the smooth coordinates, accompanied by higher-order mean approximations for the
rough coordinates. These contributions have refined the conditions for the estimators’ asymptotic normality, extending
these methods’ applicability to a broader class of models.

In this paper, we extend the one-dimensional Pearson diffusion to a multivariate setting, where the quadratic diffusion
matrix is a quadratic function of the state variable. This generalization builds on the concept of affine diffusions as
used in [Hurn et al., 2013], where first and second moments can be explicitly computed despite the unknown transition
density. While Hurn et al. [2013] focused on the linear case, encompassing certain types of Pearson diffusions such as
the OU and CIR processes, our approach fully generalizes to all Pearson diffusions. We further extend this framework
from linear multivariate Pearson diffusions to nonlinear drifts. To illustrate our approach, we define the Student Kramers
oscillator and prove that its solution exists, is unique, and possesses an invariant measure. We propose a novel method
for parameter estimation in nonlinear multivariate Pearson diffusions that combines Strang splitting with Gaussian
transition density approximation. Specifically, we split the nonlinear drift into a multivariate Pearson diffusion and
a nonlinear ODE, then approximate the transition density of the linear component as Gaussian with the exact mean
and covariance matrix. We solve the nonlinear ODE and compose the solutions of the split subsystems to achieve the
Strang splitting approximation, upon which our Strang (S) estimator is based. We demonstrate its performance through
a detailed study of the Student Kramers oscillator.

The main contributions of this paper are:

1. We propose a new class of models based on multivariate Pearson diffusions, extending the univariate Pearson
diffusions to more complex systems with tractable properties.

2. We explicitly compute the first and second moments for the proposed multivariate Pearson diffusion models,
ensuring accurate and efficient parameter estimation.

3. We introduce the Student Kramers oscillator as a specific example of a nonlinear hypoelliptic multivariate
Pearson diffusion, demonstrating that its solution exists, is unique and admits an invariant density. This
example is also used for the simulation study.

4. We develop a new parameter estimation method based on a splitting scheme for nonlinear SDEs with a
multivariate Pearson-type diffusion matrix. Specifically, we split the nonlinear drift into a multivariate Pearson
diffusion and a nonlinear ODE. The solution of multivariate Pearson diffusion is approximated by Gaussian
transition density with the exact first two moments.

5. We conduct a simulation study including three other methods where our estimator performs similarly to the
others for the drift parameters but outperforms them for the diffusion parameters. The local linearization
(LL) estimator is designed only for additive noise SDEs. Nevertheless, we implemented it using the Lamperti
transform.

The structure of the paper is as follows. Section 2 presents the problem setup, illustrated with the coupled Wright-Fisher
diffusion, the stochastic SIR model, and the newly introduced Student Kramers oscillator. Section 3 introduces the class
of multivariate Pearson diffusion models and their theoretical properties and explicitly computes the first and second
moments. Section 4 describes the new parameter estimation method and briefly recalls the EM, K, and LL estimators,
including applying the Kessler method for Gaussian approximation. In Section 5, we conduct a simulation study to
evaluate the performance of the new estimator against existing methods. Finally, Section 6 provides concluding remarks
and potential directions for future research.

Notation. We use capital bold letters for random vectors, vector-valued functions, and matrices, while lowercase bold
letters denote deterministic vectors. ∥ · ∥ denotes both the L2 vector norm in Rd. Superscript (i) on a vector denotes the
i-th component. Double subscript ij on a matrix denotes the component in the i-th row and j-th column. The transpose
is denoted by ⊤. Operator Tr(·) returns the trace, det(·) the determinant and vec vectorization of a matrix. The
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Kronecker product and the sum of two matrices are ⊗ and ⊕, respectively. Id denotes the d-dimensional identity matrix,
while 0d×d is a d-dimensional zero square matrix. We denote by [ai]

d
i=1 a vector with coordinates ai, and by [bij ]

d
i,j=1

a matrix with coordinates bij , for i, j = 1, . . . , d. For a real-valued function g : Rd → R, ∂x(i)g(x) denotes the partial
derivative with respect to x(i) and ∂2

x(i)x(j)g(x) denotes the second partial derivative with respect to x(i) and x(j). The
nabla operator ∇x denotes the gradient vector of g with respect of x, that is, ∇xg(x) = [∂x(i)g(x)]di=1. For a vector-
valued function F : Rd → Rd, the differential operator Dx denotes the Jacobian matrix DxF(x) = [∂x(i)F (j)(x)]di,j=1.
Let R represent a vector (or a matrix) valued function defined on (0, 1)× Rd (or (0, 1)× Rd×d), such that, for some
constant C, ∥R(a,x)∥ < aC(1 + ∥x∥)C for all a,x. When denoted by R, it refers to a scalar function. For an open
set A, the bar A indicates closure. δij is the Kronecker delta function that equals one for i = j and zero otherwise. The
indicator function is denoted as 1.

2 Problem setup

We assume that the following SDE

dXt = F(Xt;θ
(1)) dt+Σ(Xt;θ

(2)) dWt (2)

has a unique strong solution Xt ∈ X ⊂ Rd defined on a complete probability space (Ω,F ,Pθ) with a complete
right-continuous filtration (Ft)t≥0, where W = (Wt)t≥0 is a d-dimensional Wiener process adapted to Ft. The
probability measure Pθ is parameterized by the parameter θ = (θ(1),θ(2)). Moreover, we assume that the squared
diffusion function Σ(Xt;θ

(2)) has the following form

[Σ(x;θ(2))Σ(x;θ(2))⊤]ij = x⊤αijx+ x⊤βij + γij , i, j = 1, 2, ..., d, (3)

where αij ∈ Rd×d,βij ∈ Rd, γij ∈ R are known or unknown parameters of the diffusion function such that αij are
symmetric, and αij = αji, βij = βji, γij = γji, for all i, j = 1, 2, . . . , d. The following section provides three
examples of SDEs that fit this setup.

Remark 1 Due to symmetry, each matrix αij has d(d+ 1)/2 parameters. Therefore, [Σ(x;θ(2))Σ(x;θ(2))⊤]ij has
(d+ 1)(d+ 2)/2 parameters. Since also Σ(x;θ(2))Σ(x;θ(2))⊤ is symmetric, it has d(d+ 1)2(d+ 2)/4 parameters,
which is of order d4. This setup thus assumes an over-parameterized quadratic diffusion matrix where each component
depends on all quadratic combinations of the state Xt. In most applications, the quadratic diffusion matrix will be
diagonal or nearly diagonal, as will αij , where most quadratic interactions between the state Xt are unnecessary.
Moreover, most diffusion parameters will be constants, i.e., known parameters. Consequently, αij , βij , and γij will
generally be sparse with few non-zero elements or with a few unknown parameters to be estimated. However, we do not
impose sparsity conditions to maximize generality and flexibility and work under an over-parameterized setup.

Rewrite (2) as follows

dXt = A(θ(1))(Xt − b(θ(1))) dt+N(Xt;θ
(1)) dt+Σ(Xt,θ

(2)) dWt, X0 = x0, (4)

such that F(x;θ(1)) = A(θ(1))(x − b(θ(1))) +N
(
x;θ(1)

)
. Let Θ = Θθ1 × Θθ2 be the parameter space with Θθ1

and Θθ2 being two open convex bounded subsets of Rr and Rd×d, respectively.

Functions F,N : Rd ×Θθ1 → Rd are assumed locally Lipschitz, and A, b are defined on Θθ1 and take values in Rd×d

and Rd, respectively. Matrix Σ takes values in Rd×m. The matrix function ΣΣ⊤ : Rd ×Θθ2 → Rd×d is assumed to
be positive semidefinite. From here after, we write ΣΣ⊤(x;θ(2)) instead of Σ(x;θ(2))Σ(x;θ(2))⊤. Since any square
root of ΣΣ⊤(x;θ(2)) induces the same distribution, Σ(x) is only identifiable up to equivalence classes. Thus, we work
only with ΣΣ⊤(x;θ(2)) and from now on, when we refer to θ(2) we mean parameters from {α,β,γ} from equation
(3). The drift function F in (2) is split up into a linear part given by matrix A and vector b and a nonlinear part given
by N. This splitting is essential for defining the splitting schemes and the objective functions for estimating θ.

We denote the true parameter value by θ0 = (θ
(1)
0 ,θ

(2)
0 ) and assume that θ0 ∈ Θ. Sometimes we write A0, b0, N0(x)

and ΣΣ⊤
0 (x) instead of A(θ

(1)
0 ), b(θ(1)0 ), N(x;θ

(1)
0 ) and ΣΣ(x;θ

(2)
0 )⊤, when referring to the true parameters. We

write A, b, N(x) and ΣΣ⊤(x) for any parameter θ. Sometimes, we suppress the parameter to simplify notation, e.g.,
E implicitly refers to Eθ.
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2.1 Examples

This section provides three examples of SDEs that fit the described framework. Two of these SDEs are standard models
from the literature, and the third one is a novel extension of the Kramers oscillator, which we denote as the Student
Kramers oscillator. For each of the three examples, we explicitly find diffusion parameters {α,β,γ}.

The first model is the coupled multivariate Wright-Fisher diffusion, which describes the evolution of allele frequencies at
multiple loci with Pearson-type multiplicative noise corresponding to Jacobi diffusions. This implies that the multivariate
Pearson diffusion with this noise type would have an invariant generalized multivariate beta distribution. The second
example is the Stochastic SIR model, a widely used epidemiological model that describes the spread of infectious
diseases within a population. It characterizes the transitions between susceptible, infectious, and recovered individuals.
The third example is the Student Kramer oscillator, a hypoelliptic model for processes with two quasi-stationary states.

2.1.1 Coupled multivariate Wright-Fisher diffusion

The coupled Wright-Fisher diffusion [Aurell et al., 2019] is a multidimensional model that describes the evolution of
genetic frequencies across multiple loci and alleles. It is formulated as the strong solution to a system of SDEs, with the
drift terms incorporating interactions between loci to account for inter-locus selection [Favero et al., 2021]. The model
presented in this section relies on both papers [Aurell et al., 2019] and [Favero et al., 2021].

LetL be the number of loci, and letMl be the number of alleles at locus l for l = 1, 2, . . . , L. The set of allele frequencies
at time t at each locus is denoted by the (

∑L
l=1Ml)-dimensional frequency vector Xt = (X

(1)⊤
t ,X

(2)⊤
t , . . . ,X

(L)⊤
t )⊤.

VectorX(l)
t = (X

(l1)
t , X

(l2)
t , . . . , X

(lMl)
t )⊤ represents the allele frequencies at locus l at time t, that is

X li
t ≥ 0 and

Ml∑

j=1

X lj
t = 1, (5)

for all i = 1, 2, . . . ,Ml and l = 1, 2, . . . L. The dynamics of Xt are governed by the following SDE

dXt = µ(Xt) dt+ΣΣ⊤(Xt)∇V (Xt) dt+Σ(Xt) dWt, (6)
where µ(X) is the mutation drift vector, Σ(X) is the diffusion matrix, and V (X) is a potential function encoding
selection and interaction effects.

The diffusion matrix ΣΣ⊤(X) for the multivariate Wright-Fisher process is block-diagonal, reflecting the independence
of loci

ΣΣ⊤(X) =




ΣΣ⊤
1 (X

(1)) 0 · · · 0
0 ΣΣ⊤

2 (X
(2)) · · · 0

...
...

. . .
...

0 0 · · · ΣΣ⊤
L (X

(L))


 , (7)

where each block ΣΣ⊤
l (X

(l)) for locus l is given by

[ΣΣ⊤
l (X

(l))]ij =

{
X(li)(1−X(li)) if i = j

−X(li)X(lj) if i ̸= j
; i, j = 1, . . . ,Ml (8)

Equivalently, this can be written as

ΣΣ⊤
l (X

(l)) = diag(X(l))−X(l)X(l)⊤. (9)

The drift parameter is a sum of two functions, µ(X) and ΣΣ⊤(X)∇V (X). The first function, µ, represents the
mutation dynamics. It is assumed that mutations occur independently at each locus. Specifically, for the l-th locus, the
mutation rate is θl, and the mutation probability matrix is

P (l) =




p
(l)
11 · · · p

(l)
1Ml

...
. . .

...
p
(l)
Ml1

· · · p
(l)
MlMl


 ,

Ml∑

j=1

p
(l)
ij = 1, i = 1, 2, . . . ,Ml. (10)

The transition rates of mutations from allele i to allele j at locus l are given by u(l)ij = θl
2 p

(l)
ij . Following the standard

Wright-Fisher model with parent-dependent mutations, the i-th component of function µ(l) is

µ(li)(X(l)) =

Ml∑

j=1

(u
(l)
ji X

(lj) − u
(l)
ij X

(li)). (11)

6
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The second term in the drift, ΣΣ⊤(X)∇V (X), represents selection for the current allele type at the current locus.
The fitness potential V (Xt) is explicitly constructed such that the coupled Wright-Fisher diffusion (6) treats the
effects of selection and mutation as independent mechanisms, ignoring their cross-effects. This means that the term
ΣΣ⊤(X)∇V (X) includes at most pairwise interactions between different loci and their allele types. Thus, V (X) is
given by

V (X) = X⊤h+
1

2
X⊤JX (12)

and represents the selection and interaction effects, where h is the locus selection parameter, and J is the interaction
matrix, a symmetric block matrix with the blocks on the diagonal equal to zero matrices. The gradient of V (X) is:

∇V (X) = h+ JX. (13)

Both components in the drift are structured to operate on individual loci without interaction.

The Wright-Fisher diffusion model described by (6) is a specific case of the general SDE presented in (2). Specifically,
the squared diffusion matrix (8) for each locus l conforms to the structure given in (3). The matrix α(l)ij is of size
Ml ×Ml and is entirely composed of zeros except at the positions (m,n) ∈ {(i, j), (j, i)}, which equal −1/2 and
positions (m,n) = {(i, i)} which equal −1. This can be expressed more compactly as

α(l)ij = [−1

2
(δmiδnj + δniδmj)]

Ml
m,n=1. (14)

The vector β(l)ij is zero everywhere except at the position m = i = j, where it takes the value 1. This can be formally
written as

β(l)ij = [δmiδmj ]
Ml
m=1. (15)

Finally, the parameter γij is always zero for this model.

Note that there are no parameters to estimate in the diffusion matrix. However, the model can be extended by adding a
parameter in front of ΣΣ⊤

l .

2.2 Stochastic SIR model

The Stochastic Susceptible-Infectious-Recovered (SIR) model is used in epidemiology to describe the spread of a
disease within a population. The model divides the population into three categories: susceptible (S), infectious (I), and
recovered (R). In the Stochastic SIR model, the transitions between categories are governed by probabilistic events,
reflecting the inherent randomness in disease transmission and recovery processes.

The following SDE describes the stochastic SIR model:

d

[
St

It

]
=

[
−αStIt

αStIt − βIt

]
dt+

1√
N

[ √
αStIt 0

−√
αStIt

√
βIt

]
dWt, (16)

where St, It are the fraction of susceptible and infectious individuals, respectively, at time t in a population of size N , α
is the transmission rate, β is the recovery rate, and Wt is a two-dimensional Wiener process representing the stochastic
noise. The fraction of recovered is given by Rt = 1− St − It.

This model also fits the setup in (2) since the square diffusion matrix is a second-order polynomial of the state vector,
that is,

ΣΣ⊤(s, i) =
1

N

[
αsi −αsi
−αsi αsi+ βi

]
. (17)

Thus, the matrices αij from (3) are

α11 = α22 =
α

N

[
0 1

2
1
2 0

]
, α12 = α21 =

α

N

[
0 − 1

2
− 1

2 0

]
, (18)

and βij are

β11 = β12 = β21 = 0, β22 =
β

N

[
0
1

]
. (19)

All γij are zeros.
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2.2.1 The Student Kramers oscillator

In Pilipovic et al. [2024b], we analyzed the Kramers oscillator with additive noise
dXt = Vt dt,

dVt =
(
−ηVt + aX3

t + cXt

)
dt+ σ dWt,

(20)

where a < 0 and c, σ > 0, and η ≥ 0. This oscillator is a second-order SDE and a stochastic damping Hamiltonian
system. The Kramers oscillator (20) characterizes the stochastic movement of a particle within a bistable potential

U(x) = −ax
4

4
− c

x2

2
. (21)

The parameter η in (20) indicates the damping level, c regulates the linear stiffness, and a determines the nonlinear
component of the restoring force. When a = 0, the equation simplifies to a damped harmonic oscillator.

In Pilipovic et al. [2024b], we fitted the Kramers oscillator (20) to Greenland Ice Core data [Rasmussen et al., 2014]
to understand the abrupt temperature changes during the ice ages, known as the Dansgaard–Oeschger (DO) events.
We found that this model only partially fits the data. Precisely, the velocity variable Vt did not adequately capture the
spread in the observed velocity. We conjecture that this discrepancy is likely due to extreme values in the data that are
not well accounted for by additive Gaussian noise. This paper proposes generalizing the model (20) to allow for more
heavy-tailed intrinsic noise.

Motivated by these heavy-tailed patterns, we extend the diffusion function to yield a stationary distribution that would
follow a Student’s t-distribution if the drift function were linear, in contrast to the Gaussian distribution for additive
noise. Specifically, the invariant distribution of Pearson diffusion (1) when α > 0, β2 − 4αγ ≤ 0, α < 2a is a
generalized Student’s t-distribution

f(x) =
Γ(ν+1

2 )

Γ(ν2 )
√
πνσ2

(
1 +

(x− µ)2

νσ2

)− ν+1
2

, x ∈ R, (22)

where Γ(·) is the gamma function and

ν = −2a

α
+ 1, µ = − β

2α
, σ2 =

γ

αν
− µ2.

The generalized Student t-distribution is peaked around the location parameter µ. If µ ̸= 0, it is a skewed distribution.
The peak width is determined by the scale parameter σ > 0. The shape parameter, or degrees of freedom, ν, influences
the heaviness of the tails.

We also generalize the potential function U(x) (21) to allow for asymmetries between the two modes of the distribution.
The generalized potential function is

U(x) = −ax
4

4
− b

x3

3
− c

x2

2
− dx. (23)

Finally, we define the Student Kramers oscillator (Figure 1) as a solution to
dXt = Vt dt,

dVt = (−ηVt − U ′(Xt)) dt+
√
αV 2

t + βVt + γ dWt,
(24)

where η ≥ 0, a < 0, α > 0, β2 − 4αγ < 0, α < 2η, and Xt, Vt are defined on R. These conditions are necessary to
have a non-exploding solution with Student-type noise. We denote any SDE for an SDE with Student-type noise if the
corresponding SDE with linear drift is a Student Pearson diffusion (see also Forman and Sørensen [2008], Leonenko
and Phillips [2012]). The condition α < 2η is sufficient for an invariant density to exist. Thus, the unknown parameters
are

θ(1) = {η, a, b, c, d}, and θ(2) = {α, β, γ}. (25)
The squared diffusion function of SDE (24) is

ΣΣ⊤(x, v) =

[
0 0
0 αv2 + βv + γ

]
, (26)

so it aligns with the structure given in (3). Namely, all α11,α12,α21 are zero matrices in R2×2, all β11,β12,β21 are
zero vectors in R2, and all γ11, γ12, γ21 = 0. Moreover,

α22 =

[
0 0
0 α

]
, β22 =

[
0
β

]
, γ22 = γ. (27)

Now, we state and prove the following theorem about the solution of SDE (24).

8
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Theorem 2.1 A unique, strong solution exists to the Student Kramers SDE (24), when η ≥ 0, a < 0, α > 0,
β2 − 4αγ < 0. An invariant probability measure exists for the system when α < 2η.

Proof To prove the existence and uniqueness of the solution to (24), we show that the diffusion function

Σ(x, v) =

[
0 0

0
√
αv2 + βv + γ

]

is Lipschitz and that the drift function

F(x, v) =

[
v

−ηv + ax3 + bx2 + cx+ d

]

is one-sided Lipschitz and of at most polynomial growth (see Assumptions (A2) and (A3) in Section 2.3).

To see that Σ(x, v) is Lipschitz, we show that the derivative of σ(v) =
√
αv2 + βv + γ is bounded for all v ∈ R. We

have

|σ′(v)| = |2αv + β|
2
√
αv2 + βv + γ

.

If v = 0, then |σ′(v)| = |β|
2
√
γ . Otherwise, for |v| > c1 > 0 and

√
1 + β/(αv) + γ/(αv2) > c2 > 0, we have

|σ′(v)| ≤ |αv|√
αv2 + βv + γ

+
|β|

2
√
αv2 + βv + γ

<

√
α

c2
+

|β|
2
√
αc1c2

.

To show that F is one-sided Lipschitz, we start by computing the Jacobian matrix of F as

DF(x, v) =

[
0 1

3ax2 + 2bx+ c −η

]
. (28)

Since a < 0 and η > 0, all components of DF(x, v) are upper bounded, so F is one-sided Lipschitz. By construction,
F has polynomial growth. Thus, a unique, strong solution exists to SDE (24).

Next, we prove that SDE (24) is hypoelliptic using Hörmander’s condition [Hörmander, 1967]. To apply this condition,
we first write SDE (24) in Stratonovich form:

dXt = Vt dt,

dVt =

(
−ηVt + aX3

t + bX2
t + cXt + d− 1

2

(
αVt +

1

2
β

))
dt+

√
αV 2

t + βVt + γ ◦ dWt.
(29)

Now, the associated drift and diffusion vector fields are

V0(x, v) =

[
v(

−η − 1
2α
)
v + ax3 + bx2 + cx+ d− 1

4β

]
, V1(x, v) =

[
0√

αv2 + βv + γ

]
. (30)

We recall that the Lie bracket of smooth vector fields f , g : Rd → Rd, defined as

[f , g] := Dg(x)f(x)−Df(x)g(x),

is used to verify Hörmander’s condition.

We define the set H of vector fields iteratively as

V1 ∈ H,
H ∈ H ⇒ [V0,H], [V1,H] ∈ H.

The weak Hörmander condition is met if the vectors in H span Rd at every point x ∈ Rd. Initially, vector V1 spans
{(0, y) ∈ R2 | y ∈ R}, a one-dimensional subspace. Therefore, we need to verify the existence of some H ∈ H with a
non-zero first element. It is easy to see that

[V0,V1]
(1) = −σ(v) < 0, ∀v ∈ R,

[V1,V0]
(1) = σ(v) ≥ 0, ∀v ∈ R.

Thus, the Student Kramers SDE defined in (24) is hypoelliptic, meaning it admits a smooth transition density.
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Figure 1: A trajectory of Student Kramers oscillator (24) simulated with the Milstein scheme with h = 0.001 and
N = 50000, and with true parameter η0 = 30, a0 = −125, b0 = 40, c0 = 150, d0 = −20, α0 = 20, β0 = −8, and
γ0 = 1280.8. The first and second rows show the evolution of the individual components Xt and Vt, respectively. The
last row shows the evolution of pair (Xt, Vt). The first two rows also depict the empirical invariant densities of Xt and
Vt in red, overlined by the approximated theoretical invariant densities.

Since SDE (24) is hypoelliptic and the drift and diffusion functions with their corresponding derivatives grow at most
polynomially, SDE (24) has the strong Feller property (see, for example, Theorem 1.2 in Hairer and Pillai [2011]).
Then, we use Theorem 4.5 from Meyn and Tweedie [1993] to prove that SDE (24) has an invariant measure. We choose
V (x, v) = 1

2v
2 + U(x) as a Lyapunov function. Since a < 0, lim

∥x∥→∞
V (x) = +∞.

For SDE (24), the infinitesimal generator is

Lϕ(x, v) = v
∂ϕ

∂x
+ (−ηv − U ′(x))

∂ϕ

∂v
+

1

2
(αv2 + βv + γ)

∂2ϕ

∂v2
.

Then,

LV (x, v) =
(α
2
− η
)
v2 +

β

2
v +

γ

2
. (31)

Since α < 2η, we can find a compact set K ⊂ R2 and constants c1 > 0, c2 ∈ R, such that
LV (x) ≤ −c1∥x∥2 + c21{x ∈ K}. (32)

According to Theorem 4.5 in Meyn and Tweedie [1993], an invariant measure π for SDE (24) exists.

2.3 Assumptions

The main assumption is that SDE (4) has a unique strong solution X= (Xt)t∈[0,T ], adapted to (Ft)t∈[0,T ]. We have
two alternative assumptions on the diffusion matrix Σ defined in (3) and the SDE (4), determining whether the process

10
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is elliptic (the diffusion matrix is of full rank) or hypoelliptic (the diffusion matrix is of reduced rank and the solution of
(4) admits a smooth density).

(A1) ΣΣ⊤ defined in (3) is positive definite on X ×Θθ2 .

(A1’) ΣΣ⊤ defined in (3) is positive semidefinite on X ×Θθ2 and SDE (2) is hypoelliptic.

The matrix Σ and thus Θθ2 define the state space. For example, for the scalar Pearson diffusion (1), the state space
can only be the entire real line, X = R, if α = β = 0 (normal distribution) or α ≥ 0 and the polynomial has no real
roots (t-distribution, possibly skewed). Here, we give a general framework assuming that the state and parameter space
are known and that the diffusion has a strong and unique solution. From a statistical point of view, X is known, so
assumptions (A1) or (A1’) define the parameter space Θθ2 .

We extend the first two assumptions in Pilipovic et al. [2024a], which are special cases of assumptions in Tretyakov
and Zhang [2013]. Now, following Tretyakov and Zhang [2013], the following two assumptions ensure that a unique,
strong solution exists on the state space X . These two assumptions are not necessary, but they are sufficient for a
unique solution to exist. We choose these assumptions as a natural continuation of our previous papers [Pilipovic et al.,
2024a,b].

(A2) Function N is twice continuously differentiable with respect to x and θ. Additionally, for all θ ∈ Θ, for a
sufficiently large p ≥ 1, there is a constant Cθ > 0 such that:

(x− y)
⊤
(N(x;θ(1))−N(y;θ(1)))+

2p− 1

2

d∑

i=1

∥Σi(x;θ
(2))−Σi(y;θ

(2))∥2 ≤ Cθ∥x−y∥2, ∀x,y ∈ X .

(A3) Function N grows at most polynomially in x, uniformly in θ(1), i.e., there exist constants Cθ(1) > 0 and p ≥ 1
such that:

∥N(x;θ(1))−N(y;θ(1))∥2 ≤ Cθ(1)(1 + ∥x∥2p−2 + ∥y∥2p−2)∥x− y∥2, ∀x,y ∈ X .
Additionally, its derivatives are of polynomial growth in x, uniformly in θ(1).

We need the following two assumptions to ensure the ergodicity and identifiability of the parameters.

(A4) The solution X of SDE (2) has invariant probability measure ν0(dx).

(A5) Functions F and ΣΣ⊤ are identifiable in θ(1) and θ(2), respectively. That is, if F(x,θ(1)) = F(x,θ
(1)
⋆ ) and

ΣΣ⊤(x,θ(2)) = ΣΣ⊤(x,θ(2)⋆ ) for all x ∈ Rd, then θ(1) = θ(1)⋆ and θ(2) = θ(2)⋆ .

We assume discrete observations (Xtk)
N
k=0 ≡ X0:tN of SDE (4) at time steps 0 = t0 < t1 < · · · < tN = T . For

notational simplicity, we assume equidistant step size h = tk − tk−1.

3 Multivariate Pearson diffusions

In this section, we give details on the extension of Pearson diffusions to a multivariate setting. While this introduces
additional complexity, we retain the desirable property of knowing first and second moments explicitly. A multivariate
Pearson diffusion is described by the SDE (4) with N = 0, that is

F(x) = A(x− b), (33)

[ΣΣ⊤(x)]ij = x⊤αijx+ x⊤βij + γij , i, j = 1, 2, ..., d, (34)

where it is impossible to represent ΣΣ⊤(x) in matrix form without using tensors, so we vectorize ΣΣ⊤(x).

In the following, we use standard properties of the vec operator and the Kronecker product ⊗ (for more details see
Magnus [2019]). We start by noticing that

[ΣΣ⊤(x)]ij = vec(x⊤αijx) + x⊤βij + γij

= vec(x⊤ ⊗ x⊤) vec(αij) + βij⊤x+ γij

= ((x⊗ x)⊤ vec(αij))⊤ + βij⊤x+ γij

= vec(αij)⊤ vec(xx⊤) + βij⊤x+ γij .
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Then, we express the vectorization of ΣΣ⊤(x) as

vec(ΣΣ⊤(x)) =




[ΣΣ⊤(x)]11
...

[ΣΣ⊤(x)]1d
...

[ΣΣ⊤(x)]dd



=




vec(α11)⊤

...
vec(α1d)⊤

...
vec(αdd)⊤



vec(xx⊤) +




β11⊤

...
β1d⊤

...
βdd⊤



x+




γ11

...
γ1d

...
γdd



= α̌ vec(xx⊤) + β̌x+ γ̌,

(35)

where we defined

α̌ := [vec(α11)⊤, . . . , vec(α1d)⊤, . . . , vec(αdd)⊤]⊤ ∈ Rd2×d2

,

β̌ := [β11⊤, . . . ,β1d⊤, . . . ,βdd⊤]⊤ ∈ Rd2×d,

γ̌ := (γ11⊤, . . . , γ1d⊤, . . . , γdd⊤)⊤ = vec(γ)⊤ ∈ Rd2

.

Now, we focus on computing the first two moments of SDE (2). If ϕ(t,x) is a sufficiently smooth function, then from
the Itô formula the expected value of ϕ(t,Xt) evolves according to

d

dt
E[ϕ(t,Xt)] = E

[
∂ϕ(t,Xt)

∂t

]
+

d∑

i=1

E
[
∂ϕ(t,Xt)

∂x(i)
F (i)(Xt)

]
+

1

2

d∑

i,j=1

E
[
∂2ϕ(t,Xt)

∂x(i)∂x(j)
[ΣΣ⊤(Xt)]ij

]
. (36)

To find the mean vector m(t) = E[Xt], we set ϕ(t,x) = x and obtain

dm(t)

dt
= E[F(Xt)] = A(m(t)− b). (37)

The solution of the linear ODE (37) is

m(t) = exp(At)(m(0)− b) + b, (38)

where m(0) is a given initial condition.

For the covariance matrix C(t) = E[(Xt −m(t))(Xt −m(t))⊤], setting ϕ(t,x) = xx⊤ −m(t)m(t)⊤, we derive:

dC(t)

dt
= E[F(Xt)(Xt −m(t))⊤] + E[(Xt −m(t))F(Xt)

⊤] + E[ΣΣ⊤(Xt)] (39)

= AC(t) +C(t)A⊤ + E[ΣΣ⊤(Xt)]. (40)

The previous equation is a matrix differential equation with a form of ΣΣ⊤(Xt) that can not be explicitly written
without using tensors. To solve it, we transform it into a linear ordinary differential equation. Using the linearity of
differentiation, vectorization, and expectation operators, we obtain

dvec(C(t))

dt
= vec(AC(t)) + vec(C(t)A⊤) + E[vec(ΣΣ⊤(Xt))]

= (I⊗A) vec(C(t)) + (A⊗ I) vec(C(t)) + α̌ vec(E[XtX
⊤
t ]) + β̌ vec(E[Xt]) + γ̌

= (A⊕A+ α̌) vec(C(t)) + α̌ vec(m(t)m(t)⊤) + β̌m(t) + γ̌

= (A⊕A+ α̌) vec(C(t)) + vec(ΣΣ⊤(m(t))).

The solution to this linear ODE, given initial condition C(0), is

vec(C(t)) = exp(A⊕A+ α̌) vec(C(0)) +

∫ t

0

exp((A⊕A+ α̌)(t− s)) vec(ΣΣ⊤(m(s))) ds. (41)

At least two methods exist to evaluate the integral in Eq. (41). First, we can expand vec(ΣΣ⊤(m(s))) in a Taylor
series around s→ 0 and apply Theorem 1 from Carbonell et al. [2008]. Second, we can substitute m(s) from Eq. (38)
into Eq. (41) and directly use Theorem 1 from Van Loan [1978]. Here, we opt for the second approach. We begin with

∫ t

0

exp((A⊕A+ α̌)(t− s)) vec(ΣΣ⊤(m(s))) ds

12
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=

∫ t

0

exp((A⊕A+ α̌)(t− s))(α̌ vec(m(s)m(s)⊤) + β̌m(s) + γ̌) ds

= I1(t,A, α̌) vec((m(0)− b)(m(0)− b)⊤) + I2(t,A, α̌) vec((m(0)− b)b⊤)

+ I3(t,A, α̌) vec(b(m(0)− b)⊤) + I4(t,A, α̌, β̌)(m(0)− b) + I5(t,A, α̌) vec(ΣΣ⊤(b)), (42)

where we define

I1(t,A, α̌) :=

∫ t

0

exp((A⊕A+ α̌)(t− s))α̌ exp((A⊕A)s) ds ∈ Rd2×d2

, (43)

I2(t,A, α̌) :=

∫ t

0

exp((A⊕A+ α̌)(t− s))α̌ exp((I⊕A)s) ds ∈ Rd2×d2

, (44)

I3(t,A, α̌) :=

∫ t

0

exp((A⊕A+ α̌)(t− s))α̌ exp((A⊕ I)s) ds ∈ Rd2×d2

, (45)

I4(t,A, α̌, β̌) :=

∫ t

0

exp((A⊕A+ α̌)(t− s))β̌ exp(As) ds ∈ Rd2×d, (46)

I5(t,A, α̌) :=

∫ t

0

exp((A⊕A+ α̌)(t− s)) ds ∈ Rd2×d2

. (47)

Each of these integrals (43)-(47) can be evaluated using Theorem 1 from Van Loan [1978]. For instance, if we define
the following block matrix

M1(A, α̌) =

[
A⊕A+ α̌ α̌

0 A⊕A

]
, (48)

then,

exp(M1(A, α̌)t) =

[
⋆ I1(t,A, α̌)
0 ⋆

]
, (49)

where ⋆ denotes a matrix of no particular interest. Similarly, we can compute the other integrals I2-I5.

Consequently, we are now equipped to explicitly compute vec(C(t)), from which, by reshaping, we can easily derive
C(t). It is important to note that while this algorithm explicitly calculates the covariance matrix of a multivariate
Pearson diffusion, it may be computationally intensive for large dimensions d due to the need to compute matrices of
size d2. This can be optimized by employing symmetric vectorization svec (cf. [de Klerk, 2002]) or half-vectorization
vech (cf. [Magnus, 2019]) instead of the vec operator.

3.1 Strang splitting scheme

Consider the following splitting of (4)

dX
[1]
t = A(X

[1]
t − b) dt+Σ(Xt;θ

(2)) dWt, X
[1]
0 = x0, (50)

dX
[2]
t = N(X

[2]
t ;θ(1)) dt, X

[2]
0 = x0. (51)

Equation (50) describes a multivariate Pearson diffusion whose solution cannot be explicitly obtained in general.
However, we can approximate it by approximating the transition density as Gaussian as suggested by Kessler [1997].
Kessler [1997] proposed approximating the transition density with a Gaussian distribution, matching the SDE’s mean
and variance. Generally, these two moments cannot be obtained without knowing the transition density, but they
can be approximated using the infinitesimal generator (for more details, see Kessler [1997]). For the multivariate
Pearson diffusions, mean and covariance can be calculated exactly as presented in the previous section, enabling us to
approximate the solution to (50) as

X
[1]
tk

= Ψ
[1]
h (X

[1]
tk−1

) = µh(X
[1]
tk−1

;θ(1)) + ξh(X
[1]
tk−1

;θ), (52)

where ξh(Xtk−1
;θ)

i.i.d∼ Nd(0,Ωh(Xtk−1
;θ)) for k = 1, . . . , N . We can find the functionµh by taking the conditional

expectation of X[1]
tk

given X
[1]
tk−1

= x, which is equivalent to setting m(0) = x in (38). Thus, we obtain that

µh(x;θ
(1)) = m(h) = exp(Ah)(x− b) + b. (53)

Similarly, conditioning on X
[1]
tk−1

= x is equivalent to setting C(0) = 0 in (41), since there is no randomness. Then,
we find the covariance Ωh(x;θ) of ξh(x) from (42) as

vec(Ωh(x;θ)) = vec(C(h)) = I1(h,A, α̌) vec((x− b)(x− b)⊤) + I2(h,A, α̌) vec((x− b)b⊤)

13
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+ I3(h,A, α̌) vec(b(x− b)⊤) + I4(h,A, α̌, β̌)(x− b) + I5(h,A, α̌) vec(ΣΣ⊤(b)). (54)

Assumptions (A2) and (A3) ensure the existence and uniqueness of the solution of (51) (Theorem 1.2.17 in Humphries
and Stuart [2002]). Thus, there exists a unique function fh : Rd ×Θθ(1) → Rd, for h ≥ 0, such that

X
[2]
tk

= Φ
[2]
h (X

[2]
tk−1

) = fh(X
[2]
tk−1

;θ(1)). (55)

Ideally, we would like to find an explicit function fh in (55). Still, sometimes we need to approximate it using standard
numerical tools, like Runge-Kutta algorithms. Here, we assume fh is readily available, but all the following results also
hold if we approximate fh up to order h2 (see Proposition 2.2 in Pilipovic et al. [2024a]).

For all θ(1) ∈ Θθ(1) , the time flow fh fulfills the following semi-group properties:

f0(x;θ
(1)) = x, ft+s(x;θ

(1)) = ft(fs(x;θ
(1));θ(1)), t, s ≥ 0. (56)

However, to define the estimator, we need the backward flow f−h = f−1
h , which might not be defined for all

h ≥ 0,x ∈ X ,θ(1) ∈ Θθ(1) . We, therefore, introduce the following and last assumption.

(A6) There exists h0 > 0 such that function f−1
h (x;θ(1)) is defined for all h ∈ [0, h0),x ∈ X ,θ(1) ∈ Θθ(1) .

Now, we are ready to define the Strang splitting approximation of SDE (4).

Definition 3.1 Let Assumptions (A1)-(A3) hold. The Strang splitting approximation of the solution of (4) is given by:

X
[S]
tk

:= Φ
[S]
h (X

[S]
tk−1

) = (Φ
[2]
h/2 ◦Ψ

[1]
h ◦ Φ[2]

h/2)(X
[S]
tk−1

) = fh/2(µh(fh/2(X
[S]
tk−1

)) + ξh,k(fh/2(X
[S]
tk−1

))). (57)

3.2 Taylor expanding Ωh

It may be useful to approximate Ωh for future proofs. However, it is important to note that we use the exact expressions
in the implementation of the estimators, with the approximations serving only as a tool for potential theoretical proofs.

To Taylor expand Ωh(x;θ) (54), we do not expand every integral (43)-(47) separately. Instead, we focus on the
covariance ODE from (39).

Recall that the solution of (50) is approximated such that its density is Gaussian

p[1](x, t) = N (x;m(t),C(t)). (58)

Recall the covariance ODE from (39)

dC(t)

dt
= AC(t) +C(t)A⊤ + E[1]

[
ΣΣ⊤(Xt)

]
, (59)

where E[1] is the expectation corresponding to probability density (58). Moreover, we denote by L[1] the infinitesimal
generator of SDE (50), that is, for sufficiently smooth function ϕ

L[1]ϕ(x) = Dxϕ(x)A(x− b) +
1

2

d∑

i,j=1

∂2i,jϕ(x)[ΣΣ⊤(x)]ij .

Now, we can Taylor expand C(t) around t = 0

C(t) =
∞∑

n=0

tn

n!

dn

dtn
C(0). (60)

Taking the derivative of ODE (59) with respect to t and using the definition of the infinitesimal generator L[1],
d
dtE

[1] [ϕ(Xt)] = E[1]
[
L[1]ϕ(Xt)

]
, we compute

d2C(t)

dt2
= A2C(t) + 2AC(t)A⊤ +C(t)(A⊤)2

+AE[1]
[
ΣΣ⊤(Xt)

]
+ E[1]

[
ΣΣ⊤(Xt)

]
A⊤ + E[1]

[
L[1]ΣΣ⊤(Xt)

]
.

(61)

Taking another derivative of (61) with respect to t yields

d3C(t)

dt3
= A3C(t) + 3A2C(t)A⊤ + 3AC(t)(A⊤)2 +C(t)(A⊤)3
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+A2E[1]
[
ΣΣ⊤(Xt)

]
+ 2AE[1]

[
ΣΣ⊤(Xt)

]
A⊤ + E[1]

[
ΣΣ⊤(Xt)

]
(A⊤)2 + E[1]

[
L[1]ΣΣ⊤(Xt)

]

+AE[1]
[
[L[1]ΣΣ⊤(Xt)

]
+ E[1]

[
[L[1]ΣΣ⊤(Xt)

]
A⊤ + E[1]

[
(L[1])2ΣΣ⊤(Xt)

]
.

Evaluating at time t = 0, we use that there is no randomness in the initial condition so that C(0) = 0. Conditioning on
X0 = x, we get

dC(0)

dt
= ΣΣ⊤(x), (62)

d2C(0)

dt2
= AΣΣ⊤(x) +ΣΣ⊤(x)A⊤ + L[1]ΣΣ⊤(x), (63)

d3C(0)

dt3
= A2ΣΣ⊤(x) + 2AΣΣ⊤(x)A⊤ +ΣΣ⊤(x)A2⊤ (64)

+AL[1]ΣΣ⊤(x) + L[1]ΣΣ⊤(x)A⊤ + L[1]2ΣΣ⊤(x). (65)
Finally, plugging back the previous results in (60), we get

Ωh(x;θ) = hΣΣ⊤(x) +
h2

2

(
AΣΣ⊤(x) +ΣΣ⊤(x)A⊤ + L[1]ΣΣ⊤(x)

)

+
h3

6

(
A2ΣΣ⊤(x) + 2AΣΣ⊤(x)A⊤ +ΣΣ⊤(x)A2⊤)

+
h3

6

(
AL[1]ΣΣ⊤(x) + L[1]ΣΣ⊤(x)A⊤ + L[1]2ΣΣ⊤(x)

)
+R(h4,x).

(66)

4 Estimators

This section introduces the new S estimator, given a sample X0:tN . Subsequently, we provide a brief overview of the
EM, K, and LL estimators. The LL estimator is defined only for SDEs with constant diffusion coefficients. However, it
is sometimes possible to transform the SDE using the Lamperti transform to obtain a new SDE with a constant diffusion
coefficient. These SDEs are referred to as reducible diffusions [Aït-Sahalia, 2008]. We, therefore, present the LL
estimator here because the Student Kramers oscillator treated in our simulation study in Section 5 is reducible, and the
LL estimator can thus also be used.

4.1 Strang splitting estimator

The S splitting (57) is a nonlinear transformation of the Gaussian random variable

µh(fh/2(Xtk−1
;θ(1));θ(1)) + ξh,k(fh/2(Xtk−1

;θ(1));θ).

We define
Ztk(θ

(1)) := f−1
h/2(Xtk ;θ

(1))− µh(fh/2(Xtk−1
;θ(1));θ(1)) (67)

and apply a change of variables to derive the following objective function

L[S](X0:tN ;θ) =
N∑

k=1

(
log(detΩh(fh/2(Xtk−1

;θ(1));θ)) + Ztk(θ
(1))⊤Ωh(fh/2(Xtk−1

;θ(1));θ)−1Ztk(θ
(1))
)

+ 2
N∑

k=1

log |detDfh/2(Xtk ;θ
(1))|.

(68)
The S estimator is then defined as

θ̂
[S]
N := argmin

θ
L[S] (X0:tN ;θ) . (69)

4.2 Euler-Maruyama estimator

The EM method uses a first-order Taylor expansion of the SDE (2)

X
[EM]
tk

:= X
[EM]
tk−1

+ hF(X
[EM]
tk−1

;θ(1)) + ξ
[EM]
h,k , (70)

where ξ[EM]
h,k

i.i.d.∼ Nd(0, hΣΣ⊤) [Kloeden and Platen, 1992]. The transition density p[EM](Xtk | Xtk−1
;θ) is

Gaussian, so the pseudo-likelihood follows trivially.
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4.3 Kessler estimator

The K estimator assumes Gaussian transition densities p[K](Xtk | Xtk−1
;θ) with the true mean and covariance of the

solution X [Kessler, 1997], that is, the density of SDE (2) is approximated by

p(x, t) ≈ N (x;m(t),C(t)),

where m(t) and C(t) are the mean and covariance of the solution of SDE (2). When the moments are unknown, they
are approximated using the infinitesimal generator L, that is, for sufficiently smooth functions ϕ

E[ϕ(Xt+h) | Xt = x] =
∞∑

n=0

hn

n!
Lnϕ(x). (71)

By setting ϕ(x) = x and ϕ(x) = xx⊤ in (71), we obtain approximations of the first and second moments of SDE (2),
respectively. Then, we find the covariance matrix indirectly by computing

E[Xt+hX
⊤
t+h | Xt = x]− E[Xt+h | Xt = x]E[Xt+h | Xt = x]⊤.

Then, the K second-order approximation becomes

X
[K]
tk

:= µ
[K]
h (X

[K]
tk−1

;θ) + ξ
[K]
h (X

[K]
tk−1

;θ), (72)

where ξ[K]
h (X

[K]
tk−1

;θ) ∼ Nd(0,Ω
[K]
h (X

[K]
tk−1

;θ)), and

µ
[K]
h (x;θ) = x+ hF(x;θ(1)) +

h2

2


DF(x;θ(1))F(x;θ(1)) +

1

2

d∑

i,j=1

∂2F(x;θ(1))

∂x(i)∂x(j)
[ΣΣ⊤(x,θ(2))]ij


 ,

Ω
[K]
h (x;θ) = hΣΣ⊤(x;θ(2)) +

h2

2

(
DF(x;θ(1))ΣΣ⊤(x;θ(2)) +ΣΣ⊤(x;θ(2))D⊤F(x;θ(1))

+
d∑

i=1

∂ΣΣ⊤(x;θ(2))

∂x(i)
F (i)(x;θ(1)) +

1

2

d∑

i,j=1

∂2ΣΣ⊤(x;θ(2))

∂x(i)∂x(j)
[ΣΣ⊤(x;θ(2))]ij

)
.

While this method is straightforward to implement, a few problems exist in practice.

First, obtaining closed-form formulas for µ[K]
h and Ω

[K]
h becomes more complex for higher-order approximations. Thus,

second-order approximation is the most commonly used in practice. However, for hypoelliptic systems, we need the
third-order approximation of Ω[K]

h . We do not provide a general formula for the third-order approximation using (65).
Still, we calculate Ω

[K]
h up to order h3 for Student Kramers oscillator in Section 5.

Second, Ω[K]
h does not need to be positive definite. To avoid this problem, Kessler [1997] suggested Taylor expanding

log detΩ
[K]
h and (Ω

[K]
h )−1 in h.

4.4 Ozaki’s local linearization estimator

Ozaki’s LL method assumes an SDE with additive noise, that is

dXt = F(Xt;θ
(1)) dt+ΣdWt. (73)

If the starting SDE (2) is reducible, that is, if there is a bijective transformation between (2) and (73), then we can use
the LL estimator. For SDE (73), the diffusion parameter θ(2) is the whole matrix ΣΣ⊤. Here, we briefly present the
estimator for SDE (73).

First, we approximate the drift of (2) between consecutive observations by a linear function and then we find the
closed-form solution of the resulting linear SDE (see, [Jimenez et al., 1999]). The approximation becomes

X
[LL]
tk

:= µ
[LL]
h (X

[LL]
tk−1

;θ) + ξ
[LL]
h (X

[LL]
tk−1

;θ), (74)

where ξ[LL]h (X
[LL]
tk−1

;θ) ∼ Nd(0,Ω
[LL]
h (X

[LL]
tk−1

;θ)), and

Ω
[LL]
h (x;θ) :=

∫ h

0

eDF(x;θ(1))(h−u)ΣΣ⊤eDF(x;θ(1))⊤(h−u) du,
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µ
[LL]
h (x;θ) := x+Rh,0(DF(x;θ(1)))F(x;θ(1)) + (hRh,0(DF(x;θ(1)))−Rh,1(DF(x;θ(1))))M(x;θ),

Rh,i(DF(x;θ(1))) :=

∫ h

0

exp(DF(x;θ(1))u)ui du, i = 0, 1,

M(x;θ) :=
1

2
(TrH1(x;θ), . . . ,TrHd(x;θ))

⊤, Hk(x;θ) :=

[
∂2F (k)(x;θ(1))

∂x(i)∂x(j)
[ΣΣ⊤]ij

]d

i,j=1

.

We can efficiently compute Rh,i and Ω
[LL]
h,k (θ) using formulas from [Van Loan, 1978]. For more details, see [Pilipovic

et al., 2024a]. Thus, p[LL](Xtk | Xtk−1
;θ) is Gaussian and standard likelihood inference applies.

While this method usually performs best in numerical studies, it is the slowest due to eDF(x;θ(1))h in Ω
[LL]
h . Moreover,

it can only be applied to reducible diffusions; even if possible, reducing a diffusion can be complicated.

5 Simulation study

In this section, we conduct a simulation study of the student Kramers oscillator (24), demonstrating its theoretical
aspects and comparing our proposed estimators against those based on the EM, K, and LL approximations. The choice
of these three methods for comparison is motivated by their widespread use and established performance: the EM
estimator is commonly applied in practice, our proposed method generalizes the K approximation, and the LL estimator
is recognized as a state-of-the-art method as shown in Pilipovic et al. [2024a,b].

The true parameters for the simulation are set as follows: η0 = 30, a0 = −125, b0 = 40, c0 = 150, d0 = −20,
α0 = 20, β0 = −8, and γ0 = 1280.8. The squared diffusion coefficient is thus (Σ(x, v))222 = 20(v − 0.2)2 + 1280
and strictly positive for all v ∈ R.

We begin by outlining the estimators tailored for the Student Kramers oscillator. We then detail the simulation procedure
and describe the optimization process implemented in the R programming language R Core Team [2022]. Finally, we
present and interpret the results of our study.

5.1 Strang splitting estimator

To define S estimators based on the Strang splitting scheme, we first split SDE (24) as follows

d

[
Xt

Vt

]
=

[
0 1
c −η

]

︸ ︷︷ ︸
A

([
Xt

Vt

]
−
[
−d/c
0

]

︸ ︷︷ ︸
b

)
dt+

[
0

aX3
t + bX2

t

]

︸ ︷︷ ︸
N(Xt,Vt)

dt+

[
0 0

0
√
αV 2

t + βVt + γ

]
dWt.

The nonlinear ODE driven by N(x, v) has a trivial solution where x is a constant. We incorporate these components
into the objective function (68) to obtain the S estimator.

5.2 Euler-Maruyama estimator

For the Kramers oscillator (24), the EM transition distribution is given by
[
Xtk
Vtk

]
|
[
Xtk−1

Vtk−1

]
=

[
x
v

]
∼ N

([
x+ hv

v − h(ηv + U ′(x))

]
,

[
0 0
0 h(αv2 + βv + γ)

])
.

Due to the ill-conditioned variance of this discretization, we use an estimator that relies solely on the marginal likelihood
of Vtk

θ̂
[EM]
N = argmin

θ

N∑

k=1

(
log(h(αV 2

tk−1
+ βVtk−1

+ γ)) +
(Vtk − Vtk−1

+ h(ηVtk−1
+ U ′(Xtk−1

)))2

h(αV 2
tk−1

+ βVtk−1
+ γ)

)
.

5.3 Kessler estimator

From (72), the transition distribution of the K approximation is
[
Xtk
Vtk

]
|
[
Xtk−1

Vtk−1

]
=

[
x
v

]
∼ N

(
µ

[K]
h (x, v),Ω

[K]
h (x, v)

)
,
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where

µ
[K]
h (x, v) =

[
x+ hv − h2

2 (ηv + U ′(x))
v − h(ηv + U ′(x)) + h2

2 (η2v + ηU ′(x)− U ′′(x)v)

]
. (75)

Here, we cannot use Ω
[K]
h from (72) directly because it is singular. Instead, we use formula (65) to add one more order

of h to Ω
[K]
h and obtain

Ω
[K]
h (x, v)(1,1) =

h3

3
(v (vα+ β) + γ) , (76)

Ω
[K]
h (x, v)(1,2) =

h2

2
(v (vα+ β) + γ) +

h3

6

(
2bvx2α+ 2avx3α+ v2α2 + bx2β + ax3β + vαβ + d (2vα+ β)

)

+
h3

6

(
cx (2vα+ β) + αγ −

(
5v2α+ 4vβ + 3γ

)
η
)
, (77)

Ω
[K]
h (x, v)(2,2) = h (v (vα+ β) + γ) +

h2

2

(
2bvx2α+ 2avx3α+ v2α2 + bx2β + ax3β + vαβ + d (2vα+ β)

)

+
h2

2

(
cx (2vα+ β) + αγ −

(
4v2α+ 3vβ + 2γ

)
η
)

+
h3

6

(
2d2α+ 8bv2xα+ 12av2x2α

)

+
h3

6

(
2b2x4α+ 4abx5α+ 2a2x6α+ 2bvx2α2 + 2avx3α2 + v2α3 + 6bvxβ + 9avx2β + bx2αβ

)

+
h3

6

(
ax3αβ + vα2β + dα (4x(c+ x(b+ ax)) + 2vα+ β) + 4bxγ + 6ax2γ + α2γ + 2c2x2α

)

+
h3

6

(
−d (10vα+ 3β) η −

(
bx2 (10vα+ 3β) + ax3 (10vα+ 3β) + α

(
6v2α+ 5vβ + 4γ

))
η
)

+
h3

6
c
(
4v2α+ 4x3(b+ ax)α+ 3vβ + xαβ + 2γ + 2vxα(α− 5η)− 3xβη

)

+
h3

6

(
12v2α+ 7vβ + 4γ

)
η2. (78)

Although we could trim Ω
[K]
h to include only the lowest order terms of h, leading to an estimator based on the strong

order 1.5 scheme in Ditlevsen and Samson [2019], we use the full approximation given by formulas (76)-(78). The K
estimator is defined as

θ̂
[K]
N = argmin

θ

N∑

k=1

(
log detΩ

[K]
h (Ytk−1

) + (Ytk − µ[K]
h (Ytk−1

))⊤Ω[K]
h (Ytk−1

)−1(Ytk − µ[K]
h (Ytk−1

))
)
,

where Ytk = (Xtk , Vtk) for k = 0, 1, . . . , N .

5.4 Ozaki’s local linearization estimator

To derive the LL estimator, we first need to transform the SDE (24) to one with a constant diffusion coefficient. We
achieve this by applying the Lamperti transform ψ, similar to the approach in Nagahara [1996] for a one-dimensional
nonlinear student-type Pearson diffusion. We have

Ut = ψ(Vt) =

∫ Vt dv√
αv2 + βv + γ

=
1√
α
arcsinh

(
2αVt + β√
4αγ − β2

)
.

Since we assume that α > 0 and 4αγ − β2 ≤ 0, then

Vt = ψ−1(Ut) =

√
4αγ − β2 sinh(

√
αUt)− β

2α
.

We transform SDE (24) by applying Itô’s lemma to ψ̃(Xt, Vt) = (Xt, ψ(Vt))

dXt = F (1)(ψ̃−1(Xt, Ut)) dt,
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dUt =

(
∂ψ

∂v
(ψ̃−1(Xt, Ut))F

(2)(ψ̃−1(Xt, Ut)) +
1

2

∂2ψ

∂v2
(ψ̃−1(Xt, Ut)σ

2(ψ−1(Ut)))

)
dt+ dWt.

The transformed SDE becomes

dXt =

(√
γ − β2

4α

sinh(
√
αUt)√
α

− β

2α

)
dt,

dUt =


−

(
η +

α

2

) tanh(
√
αUt)√
α

+
β
2αη − U ′(Xt)√

γ − β2

4α cosh(
√
αUt)


 dt+ dWt.

To implement the LL estimator, we need to find DF(x, u) for the corresponding drift function F, which is

DF(x, u) =




0
√
γ − β2

4α cosh(
√
αUt)

− U ′′(x)√
γ− β2

4α cosh(
√
αUt)

− η+α
2

cosh2(
√
αUt)

−
β
2αη−U ′(Xt)√

γ− β2

4α cosh(
√
αUt)

√
α tanh(

√
αUt)


 .

Then, the LL estimator for SDE (24) is given by

θ̂
[LL]
N = argmin

θ

{
N∑

k=1

(ψ̃(Ytk)− µ
[LL]
h (ψ̃(Ytk−1

)))⊤Ω[LL]
h (ψ̃(Ytk−1

))−1(ψ̃(Ytk)− µ
[LL]
h (ψ̃(Ytk−1

)))

+
N∑

k=1

log detΩ
[LL]
h (ψ̃(Ytk−1

)) +
N∑

k=1

log(ψ′(Vtk)
2)

}
, (79)

where µ[LL]
h and Ω

[LL]
h are defined in (74). The last term in (79) arises due to the change of variable formula.

5.5 Trajectory simulation

We simulate sample paths using the Milstein discretization scheme [Kloeden and Platen, 1992] with a step size of
hsim = 0.0001 to ensure high accuracy. To reduce discretization errors, we sub-sample the path at wider intervals to
obtain time steps h = 0.005, h = 0.01, and h = 0.02. We fix the time interval length to T = 50 and adjust the sample
sizes for each h accordingly. We repeat the simulations to obtain 1000 data sets.

5.6 Optimization in R

For optimizing the objective functions, we follow the approach in Pilipovic et al. [2024a] using the R package
torch [Falbel and Luraschi, 2024], which supports automatic differentiation. The optimization employs the resilient
backpropagation algorithm, optim_rprop. We use the default hyperparameters and limit the optimization iterations
to 1000. The convergence criterion is set to a precision of 10−5 for the difference between estimators in consecutive
iterations. The initial parameter values are set to (50,−200, 10, 100, 10, 30,−5, 1000).

5.7 Results

Figure 2 presents the simulation study results. It shows the distributions of the four normalized estimators EM, K, LL,
and S. The time interval T is fixed at 50, and the step size h varies from 0.02 to 0.005, where each h is half the size of
the previous. Consequently, the sample size doubles from N = 2500 to N = 10000 to keep the observation interval
constant. Figure 2A presents the estimators of the parameters of the potential U(x), while Figure 2B focuses on the
damping and diffusion parameters. All the estimators perform well for the potential parameters, with LL being the best
for the largest h. In contrast, all methods except S show significant bias for the damping and diffusion parameters.

6 Conclusion

This paper extends the Pearson diffusion framework to multivariate models with quadratic diffusion coefficients and
nonlinear drift. We provided a concrete example with the Student Kramers oscillator, a hypoelliptic two-dimensional
model with nonlinear drift and a t-distribution type noise, proving the existence, uniqueness, and invariant measure
of its solution. We also briefly described two other examples: a coupled multivariate Wright-Fisher diffusion of
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Figure 2: Normalized distributions of parameter estimation errors (θ̂N − θ0)⊘ θ0 based on 1000 simulated datasets
with a fixed time interval of length T = 50. Different colors indicate the type of estimator. Each column corresponds
to a different parameter, and each row corresponds to a different value of h, and consequently N . A) Distributions
of the estimators of the potential U(x). B) Distributions of the estimators of the damping parameter η and diffusion
parameters.
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arbitrary dimension (depending on the number of loci and alleles at each locus) and the stochastic SIR model. Through
comprehensive simulations, we illustrated the performance of our estimator, which is particularly suitable for diffusion
parameters.

This work’s implications are useful for the field of stochastic modeling. By broadening the scope of Pearson diffusions
to encompass multivariate and nonlinear drift scenarios, we enable more accurate and flexible modeling of complex
dynamical systems. Our estimator’s ability to handle these scenarios while maintaining computational efficiency
positions it as a valuable tool for researchers and practitioners dealing with multivariate data.

The Student Kramers oscillator example showcases the potential of our approach in real-world scenarios, offering
insights into the behavior of stochastic systems under various conditions.
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SUPPLEMENT TO "PARAMETER ESTIMATION IN NONLINEAR MULTIVARIATE
STOCHASTIC DIFFERENTIAL EQUATIONS BASED ON SPLITTING SCHEMES"

BY PREDRAG PILIPOVIC , ADELINE SAMSON AND SUSANNE DITLEVSEN

Section S1 provides proofs for all propositions, lemmas, and theorems. References to equations and sections that
do not begin with "S" refer to the main paper. The properties necessary for subsequent proofs are outlined in Section
S2. These properties encompass Grönwall’s and Rosenthal’s inequalities, as well as Central Limit Theorems for a
sum of triangular arrays. In Section S3 we discuss in more detail the LL and HE estimators.

If not stated, we assume the parameters are the true ones, and the expectations are taken under the probability
measure. Occasionally, we omit explicit parameter notation to enhance clarity. For instance, E implicitly denotes Eθ .

S1. Proofs. In Section S1.1, we provide the proof for the Lie-Trotter splitting (LT), while Section S1.2 contains
the proofs for the Strang splitting (S). Proof of Lp convergence of the splitting scheme is in Section S1.3. The proof
of Lemma 4.1 is in Section S1.4. Additionally, the proofs of moment bounds are detailed in Section S1.5. Sections
S1.6 and S1.7 present proofs of consistency and asymptotic normality of the estimators, respectively.

S1.1. Proof for the Lie-Trotter splitting.

PROOF OF PROPOSITION 3.4. To establish the proposition, we compare the actual first moment of the solution to
SDE (1), as obtained from Lemma 2.1, with the moment derived through Taylor expansion of the LT approximation.
First, we prove the proposition for LT splitting as defined in the paper. By performing the Taylor expansion of
E[Φ[LT]

h (x)] =µh(fh/2((x)) =e
Ahfh(x)+(I− eAh)b around h= 0, using Proposition 2.2, we arrive at:

µh(fh/2((x)) = x+ h(A(x−b) +N(x)) +
h2

2
(A2(x−b) + 2AN(x) + (DN(x))N(x)) +R(h3,x).(S1)

The coefficient of h in (S1) is F(x), which aligns with the coefficient of h in the theoretical moment of the solution
to (1) as provided in Lemma 2.1. However, in Lemma 2.1, Σ appears in the coefficient of h2, while it does not appear
in (S1). Consequently, to achieve the order of convergence R(h3,x), we need to make the following unrealistic
assumption.

(SA)
∑d

i=1

∑d
j=1[ΣΣ⊤]ij∂2ijF

(i)(x) = 0, for all k = 1, . . . , d.

Upon comparing expression (S1) with the true moments of the SDE solution under Assumption (SA), we arrive
at (DF(x))N(x) = (DN(x))F(x) to ensure equality of the coefficient at order h2. However, the last equation
holds true for all x ∈Rd only when N is linear. Therefore, achieving the order R(h3,x) one-step convergence is
feasible only if SDE (1) is linear.

We now aim to show that changing the composition order within the LT does not affect the one-step convergence
order. To demonstrate this, we define the reversed LT:

X
[LT]⋆
tk

:= Φ
[LT]⋆
h (X

[LT]⋆
tk−1

) = (Φ
[2]
h ◦Φ[1]

h )(X
[LT]⋆
tk−1

) = fh(µh(X
[LT]⋆
tk−1

) + ξh,k).

We compute E[fh(µh(Xtk−1
) + ξh,k) |Xtk−1

= x], which is equivalent to calculating E[fh(X
[1]
tk ) |X

[1]
tk−1

= x] =

E[fh(µh(X
[1]
tk−1

) + ξh,k) | X[1]
tk−1

= x]. The infinitesimal generator L[1] for SDE (3) is defined on the class of

sufficiently smooth functions g :Rd →R by L[1]g(x) = (A(x−b))⊤ ∂g(x)
∂x + 1

2 Tr(ΣΣ⊤Hg(x)). This yields:

(S2) E[g(X[1]
tk ) |X

[1]
tk−1

= x] = g(x) + hL[1]g(x) +
h2

2
L2
[1]g(x) +R(h3,x).

We apply (S2) to g(x) = f
(i)
h (x). For calculating L[1]f

(i)
h (x) and L2

[1]f
(i)
h (x), we use the Taylor expan-

sion of fh(x) around h = 0, as provided in Proposition 2.2. The partial derivatives are ∂jf
(i)
h (x) = δij +

1



2

h∂jN
(i)(x) +R(h2,x) and ∂2jkf

(i)
h (x) = h∂2jkN

(i)(x) +R(h2,x). Since L[1]f
(i)
h (x) is multiplied by h in (S2),

we only need to calculate it up to order R(h,x). We have L[1]f
(i)
h (x) = (A(x−b))(i) + h(A(x−b))⊤∇N (i)(x) +

h
2 Tr(ΣΣ⊤HN (i)(x)) + R(h2,x). Similarly, we have L2

[1]f
(i)
h (x) = (A(x−b))⊤∇(A(x−b))(i) + R(h,x) =

(A(x−b))⊤A(i) +R(h,x). Thus,

E[f (i)h (X
[1]
tk−1

) |X[1]
tk−1

= x] = x(i) + hN (i)(x) +
h2

2
(N(x))⊤∇N (i)(x)

(S3)

+ h(A(x−b))(i) + h2(A(x−b))⊤∇N (i)(x) +
h2

2
Tr(ΣΣ⊤HN (i)(x)) +

h2

2
(A(x−b))⊤A(i) +R(h3,x)

= x(i) + hF (i)(x) +
h2

2
((F(x))⊤(∇N (i)(x)) + (A(x−b))⊤∇F (i)(x) +Tr(ΣΣ⊤HN (i)(x))) +R(h3,x).

Using that F (i)(x) = (A(x−b))(i) + N (i)(x), ∂F (i)(x)
∂x = (A(i))⊤ + ∇N (i)(x) and HF (i)(x) = HN (i)(x), the

expectation of the true process rewrites as:

E[X(i)
tk |Xtk−1

= x] = x(i) + hF (i)(x)

+
h2

2
((N(x))⊤∇F (i)(x) + (A(x−b))⊤∇F (i)(x) +

1

2
Tr(ΣΣ⊤HN (i)(x))) +R(h3,x).

The final equation coincides with equation (S3) only up to order R(h,x). Despite the reversed LT has the
term with ΣΣ⊤ at the order h2, the coefficients do not match. Thus, to obtain order R(h2,x), the condition
(N(x))⊤∇F (i)(x)− 1

2 Tr(ΣΣ⊤HN (i)(x)) = (F(x))⊤∇N (i)(x), must hold for all i= 1, . . . , d. Given Assumption
(SA), the condition for achieving a higher one-step convergence order remains equivalent to the case of the original
LT.

S1.2. Proof for the Strang Splitting. We continue employing the Taylor expansion to establish the numerical
properties of the S approximation. To begin, we introduce a helpful Lemma S1.1 regarding the approximation of the
composition of the mean function µh and the nonlinear solution fh/2. Lemma S1.1 expands µh(fh/2(x)) around
h= 0 in various ways, each retaining the crucial terms necessary for the subsequent proofs.

LEMMA S1.1. For the mean function µh and the nonlinear solution fh/2 the following three identities hold:

1. µh(fh/2(x)) = fh/2(x) + hA(x−b) + h2

2 AF(x) +R(h3,x)

2. µh(fh/2(x)) = f
−1
h/2(x) + hF(x) + h2

2 AF(x) +R(h3,x).

3. µh(fh/2(x)) = x+ hA(x−b) + h
2N(x) + h2

2 (A
2(x− b) +AN(x) + 1

4(DN(x))N(x)) +R(h3,x).

PROOF. We prove only the first two identities, as the last one follows the same reasoning. Utilizing the
definition of µh, its Taylor expansion, and the expansion of fh/2, we obtain: µh(fh/2(x)) = (I + hA +
h2

2 A
2)(fh/2(x)−b) + b+R(h3,x) = fh/2(x) + hA(x−b) + h2

2 AF(x) +R(h3,x), which concludes the first
part.

For the second part, Proposition 2.2 gives fh/2(x)−f−1
h/2(x) = hN(x)+R(h3,x). This leads to: µh(fh/2(x)) =

f−1
h/2(x) + hF(x) + h2

2 AF(x) +R(h3,x).

PROOF OF PROPOSITION 3.6. We begin by introducing a new function of x, arising from the third property of
Lemma S1.1:

Qh(x) :=
h

2
(2A(x−b) +N(x)) +

h2

8
(4A2(x−b) + 4AN(x) + (DN(x))N(x)).

Then, for a generic random vector X we use Proposition 2.2 and Lemma S1.1 to write:

fh/2(µh(fh/2(X)) + ξh) = fh/2(X+Qh(X) + ξh +R(h3,X))
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=X+Qh(X) + ξh +
h

2
N(X+Qh(X) + ξh)

+
h2

8
(DN(X+Qh(X) + ξh))N(X+Qh(X) + ξh) +R(h3,X).(S4)

Consequently, we expand:

N(X+Qh(X) + ξh) =N(X) + (DN(X))(Qh(X) + ξh)

+
1

2
[(Qh(X) + ξh)

⊤HN (i)(X)(Qh(X) + ξh)]
d
i=1 +R(h2,X).(S5)

The term [Qh(X)⊤HN (i)(X)Qh(X)]di=1 is R(h2,X), while the terms with only one ξh have zero means. Thus,
(S6)

E[N(X+Qh(X) + ξh) |X= x] =N(x) + (DN(x))Qh(x) +
1

2
[E[ξ⊤hHN (i)(X)ξh |X= x]]di=1 +R(h2,x).

Lastly, we compute:

E[ξ⊤hHN (i)(X)ξh |X= x] = E[tr(ξ⊤hHN (i)(X)ξh) |X= x] = tr(HN (i)(X)E[ξhξ
⊤
h ])

=

d∑

j,k=1

∂2jkN
(i)(x)[var(ξh)]jk =

d∑

j,k=1

∂2jkF
(i)(x)[Ωh]jk.

We use the approximation of the variance of the random vector ξh to get E[N(X +Qh(X) + ξh) | X = x] =

N(x) + (DN(x))Qh(x) +
h
2 [
∑d

j,k=1[ΣΣ⊤]jk∂2jkF
(i)(x)]di=1 + R(h2,x). Taking the expectation of (S4) and

incorporating the previous equation completes the proof.

S1.3. Proof of Lp convergence of the splitting scheme. Now, we present the proof of Lp convergence stated in
Theorem 3.7.

PROOF OF THEOREM 3.7. We use Theorem 3.3 to prove Lp convergence. It is sufficient to prove the two
conditions (1) and (2). To prove condition (1), we need to prove the following property:

(E[∥Xtk −Φ
[S]
h (Xtk−1

)∥p |Xtk−1
= x])

1

p =R(hq2 ,x),

where q2 = 3/2. We start with ∥Xtk −Φ
[S]
h (Xtk−1

)∥p = ∥Xtk −Xtk−1
− hF(Xtk−1

)− ξh,k +R(h3/2,Xtk−1
)∥p.

For more details on the expansion of Φ[S]
h , see the previous proof. We approximate ξh,k =

∫ tk
tk−1

eA(tk−s)ΣdWs by:

ξh,k =

∫ tk

tk−1

(I+ (tk−s)A)ΣdWs +R(h2,Xtk−1
)

=Σ(Wtk −Wtk−1
) +AΣ

∫ tk

tk−1

(tk − s)dWs +R(h2,Xtk−1
).

Using the fact that
∫ tk
tk−1

(tk − s)dWs ∼N (0, h
3

3 I), we deduce that ξh,k =Σ(Wtk −Wtk−1
) +R(h3/2,Xtk−1

).
Then, Hölder’s inequality yields:

∥Xtk −Xtk−1
− hF(Xtk−1

)−Σ(Wtk −Wtk−1
)∥p

≤ hp−1

∫ tk

tk−1

∥(F(Xs)−F(Xtk−1
))∥p ds.

Assumption (A2), the integral norm inequality, Cauchy-Schwartz, and Hölder’s inequalities, together with the mean
value theorem yield:

E[∥Xtk −Φ
[S]
h (Xtk−1

)∥p |Xtk−1
= x]

≤C(E[hp−1

∫ tk

tk−1

∥F(Xs)−F(Xtk−1
)∥p ds |Xtk−1

= x])
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≤C(hp−1

∫ tk

tk−1

E[∥Xs −Xtk−1
∥p∥
∫ 1

0
DxF(Xs − u(Xs −Xtk−1

))du∥p |Xtk−1
= x] ds)

≤C

(
hp−1

∫ tk

tk−1

(E[∥Xs −Xtk−1
∥2p |Xtk−1

= x])
1

2

(E[∥
∫ 1

0
DxF(Xs − u(Xs −Xtk−1

))du∥2p |Xtk−1
= x])

1

2 ds

)

≤C(hp−1

∫ tk

tk−1

h
p

2 ds) =R(h3p/2,x).

In the last line, we used Lemma 4.1. This proves condition (1) of Theorem 3.3.
Now, we prove condition (2). We use (5) and (11) to write X

[S]
tk = fh/2(e

Ah(fh/2(X
[S]
tk−1

)−X
[1]
tk−1

) +X
[1]
tk ).

Define Rtk := eAh(fh/2(X
[S]
tk )−X

[1]
tk ), and use the associativity (9) to get Rtk = eAh(fh(Rtk−1

+X
[1]
tk )−X

[1]
tk ).

The proof of the boundness of the moments of Rtk is the same as in Lemma 2 in Buckwar et al. (2022). Finally, we
have X

[S]
tk = f−1

h/2(e
−AhRtk +X

[1]
tk ). Since f−1

h/2 grows polynomially and X
[1]
tk has finite moments, X[S]

tk must have
finite moments too. This concludes the proof.

S1.4. Proof of Lemma 4.1.

PROOF OF LEMMA 4.1. We first prove (1). In the following, C1 and C2 denote constants. We use the triangular
inequality and Hölder’s inequality to obtain:

∥Xt −Xtk−1
∥p ≤ 2p−1(∥

∫ t

tk−1

F(Xs;θ)ds∥p + ∥Σ(Wt −Wtk−1
)∥p)

≤ 2p−1((

∫ t

tk−1

C1(1 + ∥Xs∥)C1 ds)p + ∥Σ(Wt −Wtk−1
)∥p)

≤ 2p−1Cp1 (

∫ t

tk−1

(1 + ∥Xs −Xtk−1
∥+ ∥Xtk−1

∥)C1 ds)p + 2p−1∥Σ(Wt −Wtk−1
)∥p

≤ 2C1+2p−3Cp1 (t− tk−1)
p−1(

∫ t

tk−1

∥Xs −Xtk−1
∥pC1 ds+ (t− tk−1)

p(1 + ∥Xtk−1
∥)pC1)

+ 2p−1∥Σ(Wt −Wtk−1
)∥p.

In the second inequality, we used the polynomial growth (A2) of F. Furthermore, for some constant C2 that depends
on p, we have E[∥Σ(Wt −Wtk−1

)∥p | Ftk−1
] = (t− ttk−1

)p/2C2(p). Then, for h < 1, there exists a constant Cp
that depends on p, such that:

Cp(t− tk−1)
2p−1(1 + ∥Xtk−1

∥)Cp +Cp(t− ttk−1
)p/2 ≤Cp(t− tk−1)

p/2(1 + ∥Xtk−1
∥)Cp .

The last inequality holds because the term of order p/2 is dominating when t− tk−1 < 1. Denote m(t) = E[∥Xt −
Xtk−1

∥p | Ftk−1
]. Then, we have:

m(t)≤Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp +Cp

∫ t

tk−1

mC1(s)ds.(S7)

Now, we apply the generalized Grönwall’s inequality (Lemma 2.3 in Tian and Fan (2020), stated in Section S2) on
(S7). Since we consider a super-linear growth, we can assume that there exist C1 > 1 and Cp > 0, such that:

m(t)≤Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp + (κ1−C1(t)− (C1 − 1)2C1−1Cp(t− tk−1))
1

1−C1

≤Cp(t− tk−1)
p/2(1 + ∥Xtk−1

∥)Cp +Cκ(t),(S8)
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where κ(t) = Cp(t− tk−1)
C1p/2+1(1 + ∥Xtk−1

∥)Cp . The bound C in inequality (S8) makes sense, because the
term:

(1− (C1 − 1)2C1−1Cp(t− tk−1)κ
1

1−C1 (t))
1

1−C1

is positive by Lemma 2.3 from Tian and Fan (2020). Additionally, the same term reaches its maximum value of 1,
for t= tk−1. The constant C in (S8) includes some terms that depend on t− tk−1. However, these terms will not
change the dominating term of κ(t) since h < 1. Finally, the terms in κ(t) are of order p/2, thus for large enough
constant Cp, it holds m(t)≤Cp(t− tk−1)

p/2(1 + ∥Xtk−1
∥)Cp .

To prove (2), we use that g is of polynomial growth:

E[|g(Xt;θ)| | Ftk−1
]≤C1E[(1 + ∥Xtk−1

∥+ ∥Xt −Xtk−1
∥)C1 | Ftk−1

]

≤C2(1 + ∥Xtk−1
∥C1 + E[∥Xt −Xtk−1

∥C1 | Ftk−1
]).

Now, we apply the first part of the lemma, to get:

E[|g(Xt;θ)| | Ftk−1
]≤C2(1 + ∥Xtk−1

∥C1 +C ′
t−tk−1

(1 + ∥Xtk−1
∥)C3)

≤Ct−tk−1
(1 + ∥Xtk−1

∥)C .
That concludes the proof.

S1.5. Proofs of the Moment Bounds. Before proving the moment bounds, we first demonstrate in Lemma S1.2
how the infinitesimal generator L operates on a product of two functions.

LEMMA S1.2. Let L be the infinitesimal generator defined in the main text of SDE (1). For sufficiently smooth
functions α,β :Rd →R, it holds:

L(α(x)β(x)) = α(x)Lβ(x) + β(x)Lα(x) +
1

2
Tr(ΣΣ⊤(∇α(x)∇⊤β(x) +∇β(x)∇⊤α(x))).

PROOF. We use the generator L and the product rule to get:

L(α(x)β(x)) =F(x)⊤α(x)∇β(x) +F(x)⊤β(x)∇α(x) + 1

2
Tr(ΣΣ⊤(α(x)Hβ(x) + β(x)Hα(x)))

+
1

2
Tr(ΣΣ⊤(∇α(x)∇⊤β(x) +∇β(x)∇⊤α(x)))

= α(x)Lβ(x) + β(x)Lα(x) +
1

2
Tr(ΣΣ⊤(∇α(x)∇⊤β(x) +∇β(x)∇⊤α(x))).

This concludes the proof.

PROOF OF PROPOSITION 4.3. Proof of (i). Lemma S1.1 yields:

E[f−1
h/2(Xtk)−µh(fh/2(Xtk−1

)) |Xtk−1
= x] = E[f−1

h/2(Xtk) |Xtk−1
= x]−µh(fh/2(x))

= E[f−1
h/2(Xtk) |Xtk−1

= x]− f−1
h/2(x)− hF(x)

− h2

2
AF(x) +R(h3,x).

Now, we use the infinitesimal generator L to evaluate the expectation in the last line where the generator L is
applied to a vector-valued function. We have:

E[f−1
h/2(Xtk) |Xtk−1

= x] = f−1
h/2(x) + hLf−1

h/2(x) +
h2

2
L2f−1

h/2(x) +R(h3,x).

We use f−1
h/2(x) = f−h/2(x) and Proposition 2.2 to get:

Lf−1
h/2(x) = Lx− h

2
LN(x) +R(h2,x) =F(x)− h

2
LN(x) +R(h2,x),

L2f−1
h/2(x) = LA(x−b) +LN(x) +R(h,x) =AF(x) +LN(x) +R(h,x).
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It follows that E[f−1
h/2(Xtk)−µh(fh/2(Xtk−1

)) |Xtk−1
= x] =R(h3,x).

Proof of (ii). In this proof, we distinguish the true parameters θ0 from a generic parameter θ. We start with the
expansions of f−1

h and µh:

Eθ0
[(f−1

h/2(Xtk ;β0)−µh(fh/2(Xtk−1
;β0);β0))g(Xtk ;β)

⊤ |Xtk−1
= x]

= Eθ0
[Xtkg(Xtk ;β)

⊤ |Xtk−1
= x]− h

2
Eθ0

[N(Xtk ;β0)g(Xtk ;β)
⊤ |Xtk−1

= x]

− xEθ0
[g(Xtk ;β)

⊤ |Xtk−1
= x]− h

2
(2A0(x−b0) +N0(x))Eθ0

[g(Xtk ;β)
⊤ |Xtk−1

= x] +R(h2,x)

= xg(x;β)⊤ + hLθ0
(xg(x;β)⊤)− h

2
N0(x)g(x;β)

⊤

− xg(x;β)⊤ − hxLθ0
g(x;β)⊤ − hA0(x−b0)g(x;β)

⊤ − h

2
N0(x)g(x;β)

⊤ +R(h2,x)

= hLθ0
(xg(x;β)⊤)− hxLθ0

g(x;β)⊤ − hF0(x)g(x;β)
⊤ +R(h2,x).

Lastly, Lemma S1.2 and the definition of Lθ0
yield:

Lθ0
(xg(x;β)⊤) = xLθ0

g(x;β)⊤ + (Lθ0
x)g(x;β)⊤ +

1

2
(ΣΣ⊤

0 D
⊤g(x;β) +Dg(x;β)ΣΣ⊤

0 )

= xLθ0
g(x;β)⊤ +F(x;β0)g(x;β)

⊤ +
1

2
(ΣΣ⊤

0 D
⊤g(x;β) +Dg(x;β)ΣΣ⊤

0 ).

Proof of (iii). We introduce g(Xtk ;β0) = f
−1
h/2(Xtk ;β0) and use (ii) to show:

Eθ0
[(f−1

h/2(Xtk ;β0)−µh(fh/2(Xtk−1
;β0);β0))(f

−1
h/2(Xtk ;β0)−µh(fh/2(Xtk−1

;β0);β0))
⊤ |Xtk−1

= x]

=
h

2
(ΣΣ⊤

0 D
⊤g(x;β0) +Dg(x;β0)ΣΣ⊤

0 )

− Eθ0
[f−1
h/2(Xtk ;β0)−µh(fh/2(Xtk−1

;β0);β0) |Xtk−1
= x]µh(fh/2(x;β0);β0)

⊤ +R(h2,x).

The result follows from property (i) and
Dg(x;β0) = I+R(h,x).

S1.6. Proof of consistency of the estimator. The proof of consistency consists in studying the convergence of
the objective function that defines the estimators. The objective function LN (β, ς) (23) can be decomposed into
sums of martingale triangular arrays. We thus first state a lemma that proves the convergence of each triangular
array involved in the objective function. Then, we will focus on the proof of consistency.

LEMMA S1.3. Let Assumptions (A1)-(A6) hold, and X be the solution of (1). Let g,g1,g2 :Rd ×Θ×Θ→Rd

be differentiable functions with respect to x and θ, with derivatives of polynomial growth in x, uniformly in θ. If
h→ 0 and Nh→∞, then:

1. 1
Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)

Pθ0−−−−−→
Nh→∞
h→0

Tr((ΣΣ⊤)−1ΣΣ⊤
0 );

2. h
N

N∑
k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)

Pθ0−−−−−→
Nh→∞
h→0

0;

3. 1
N

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk−1

;β0,β)
Pθ0−−−−−→

Nh→∞
h→0

0;

4. 1
Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk−1

;β0,β)
Pθ0−−−−−→

Nh→∞
h→0

0;

5. 1
N

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β)

Pθ0−−−−−→
Nh→∞
h→0

0;
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6. 1
Nh

N∑
k=1

Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β)

Pθ0−−−−−→
Nh→∞
h→0∫

Tr(Dg(x;β0,β)ΣΣ⊤
0 (ΣΣ⊤)−1)dν0(x);

7. h
N

N∑
k=1

g1(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1g2(Xtk ;β0,β)
Pθ0−−−−−→

Nh→∞
h→0

0,

uniformly in θ.

Lemma S1.3 plays a central role in demonstrating the consistency and asymptotic normality of the proposed
estimators. The lemma deals with the uniform convergence of multiple triangular arrays, and proving various aspects
of it involves a range of technical tools and methods. Different parts of Lemma S1.3 require distinct strategies to
establish appropriate bounds, which can be intricate. Once these bounds are established, we leverage the properties
discussed in the preceding section.

For instance, when establishing point-wise convergence, we primarily rely on Lemma S2.2. On the other hand,
for proving uniform convergence, we utilize both Lemma S2.3 and Lemma S2.4. Throughout the proof of Lemma
S1.3, a recurring theme is to interpret quadratic forms as traces and exploit the cyclic property inherent to them.
Additionally, we employ fundamental mathematical tools like the mean value theorem, the Cauchy-Schwartz
inequality, and Hölder’s inequality in various instances.

Furthermore, there are occasions where we require inequality for norms, particularly the Frobenius norm. To
address this, we introduce the Frobenius inner product of matrices M1 and M2 in Rn×m as ⟨M1,M2⟩F :=
Tr(M⊤

1 M2). Leveraging Hölder’s inequality on Frobenius norm provides us with the following bound for the trace
of a matrix product: ∥Tr(M⊤

1 M2)∥ ≤ ∥Tr(M1)∥∥M2∥.

PROOF OF LEMMA S1.3. Proof of 1. As previously discussed, we introduce a martingale array that corresponds
to the limit outlined in point 1. We then utilize Lemma S2.2 to facilitate our analysis. We denote Y N

k (β0, ς) :=
1
NhZtk(β0)

⊤(ΣΣ⊤)−1Ztk(β0). We have:
N∑

k=1

Eθ0
[Y N
k (β0, ς) |Xtk−1

] =
1

Nh

N∑

k=1

Eθ0
[Tr(Ztk(β0)

⊤(ΣΣ⊤)−1Ztk(β0)) |Xtk−1
]

=
1

Nh

N∑

k=1

Tr((ΣΣ⊤)−1Eθ0
[Ztk(β0)Ztk(β0)

⊤ |Xtk−1
])

=
1

Nh

N∑

k=1

Tr((ΣΣ⊤)−1hΣΣ⊤
0 +R(h2,Xtk−1

))
Pθ0−−−−−→

Nh→∞
h→0

Tr((ΣΣ⊤)−1ΣΣ⊤
0 ).

To use the result of Lemma S2.2, we need to prove that covariance of Y N
k (β0, ς) goes to zero. To achieve this,

we leverage Corollary 3.8 and recall that if ρ is a Gaussian random vector ρ ∼ N (0,Π), then E[(ρTMρ)2] =
2Tr((MΠ)2) + (Tr(MΠ))2. This leads to:

N∑

k=1

Eθ0
[Y N
k (β0, ς)

2 |Xtk−1
] =

1

N2h2

N∑

k=1

(Eθ0
[(ξ⊤h,k(ΣΣ⊤)−1ξh,k)

2 |Xtk−1
] +R(h3/2,Xtk−1

))

=
1

Nh

1

N

N∑

k=1

(2Tr((ΣΣ⊤)−1Σ0Σ
⊤
0 )

2 + (Tr((ΣΣ⊤)−1Σ0Σ
⊤
0 ))

2 +R(h1/2,Xtk−1
))

Pθ0−−→ 0,

for Nh→ ∞, h→ 0. Then, by Lemma S2.2 1
Nh

∑N
k=1Ztk(β0)

⊤(ΣΣ⊤)−1Ztk(β0)
Pθ0−−→ Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),
for Nh→ ∞, h→ 0. To establish the uniformity of the limits with respect to ς , we turn to Lemma S2.3 and
introduce sets Θςj such that ς = (ς1, ς2, . . . , ςs) ∈Θς1 ×Θς2 × · · · ×Θςs =Θς . Then it is enough to show that for
all j = 1, . . . , s, it holds:

(S9) sup
N∈N

Eθ0
[ sup
ςj∈Θςj

|∂ςj
1

Nh

N∑

k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)|]<∞.
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We use the well-known rule of matrix differentiation ∂X(a⊤X−1a) =−X−1aa⊤X−1, where a is a vector and X
is a symmetric matrix, to get:

∂x(i) Tr(a⊤C−1(x)a) =−Tr(C−1(x)aa⊤C−1(x)∂x(i)C(x)) =−Tr(aa⊤C−1(x)(∂x(i)C(x))C−1(x)).

We omit writing β0 for ease of notation. Then, by using the trace bound, the norm inequality, and Assumption
(A4), we can deduce that:

sup
N∈N

Eθ0
[ sup
ςj∈Θςj

|∂ςj
1

Nh

N∑

k=1

Z⊤
tk(ΣΣ⊤)−1Ztk |]≤ sup

N∈N
Eθ0

[
1

Nh

N∑

k=1

sup
ςj∈Θςj

|∂ςj Tr(Z⊤
tk(ΣΣ⊤)−1Ztk)|]

≤ sup
N∈N

Eθ0
[
1

Nh

N∑

k=1

Tr(ZtkZ
⊤
tk) sup

ςj∈Θςj

∥(ΣΣ⊤)−1(∂ςjΣΣ⊤)(ΣΣ⊤)−1∥]

≤ sup
N∈N

Eθ0
[
1

Nh

N∑

k=1

Tr(ZtkZ
⊤
tk) sup

ςj∈Θςj

∥(ΣΣ⊤)−1∥2∥∂ςjΣΣ⊤∥]≤C sup
N∈N

Eθ0
[
1

Nh

N∑

k=1

Tr(ZtkZ
⊤
tk)]

=C sup
N∈N

Eθ0
[Eθ0

[
1

Nh

N∑

k=1

Tr(ZtkZ
⊤
tk) |Xtk−1

]] =C sup
N∈N

Eθ0
[
1

Nh

N∑

k=1

Tr(hΣΣ⊤
0 +R(h2,Xtk−1

))]<∞.

Proof of 2. We use Lemma 4.2 to deduce:

1

N

N∑

k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)

Pθ0−−→
∫

g(x;β0,β)
⊤(ΣΣ⊤)−1g(x;β0,β)dν0(x),

uniformly in θ, for Nh→∞, h→ 0. Then we use the bound of g to conclude the proof of 2.
Proof of 3. For Y N

k (β0,θ) :=
1
NZtk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β), the limit of

∑N
k=1 Eθ0

[Y N
k (β0,θ) |Xtk−1

]
rewrites as:

N∑

k=1

Eθ0
[Y N
k (β0,θ) |Xtk−1

] =
1

N

N∑

k=1

Eθ0
[Tr(Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)) |Xtk−1

]

=
1

N

N∑

k=1

Tr((ΣΣ⊤)−1g(Xtk−1
;β0,β)Eθ0

[Ztk(β0)
⊤ |Xtk−1

])

=
1

N

N∑

k=1

R(h3,Xtk−1
)

Pθ0−−→ 0,

for Nh→∞, h→ 0 . Then, we study the limit of
∑N

k=1 Eθ0
[Y N
k (β0,θ)

2 |Xtk−1
]:

N∑

k=1

Eθ0
[Y N
k (β0,θ)

2 |Xtk−1
]

=
1

N2

N∑

k=1

Eθ0
[g(Xtk−1

;β0,β)
⊤(ΣΣ⊤)−1Ztk(β0)Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β) |Xtk−1

]

=
1

N2

N∑

k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1Eθ0
[Ztk(β0)Ztk(β0)

⊤ |Xtk−1
](ΣΣ⊤)−1g(Xtk−1

;β0,β)

=
1

N

N∑

k=1

R(
h

N
,Xtk−1

)
Pθ0−−→ 0,



SUPPLEMENTARY MATERIAL 9

for Nh→∞, h→ 0. Lemma S2.2 yields that 1
N

∑N
k=1Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β)

Pθ0−−→ 0, for Nh→∞,
h→ 0. To show the uniformity of the limits with respect to θ, we leverage Lemma S2.4. It is sufficient to demonstrate
the existence of constants p≥ l > r+ s and C > 0 such that for all θ,θ1 and θ2 it holds:

Eθ0
[|

N∑

k=1

Y N
k (β0,θ)|p]≤C,(S10)

Eθ0
[|

N∑

k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]≤C∥θ1 − θ2∥l.(S11)

We begin by considering equation (S10). Based on the definition of Ztk(β0) and the assumptions made about N, as
well as the fact that h < 1, there exist constants C1 and C2 such that:

∥Ztk(β0)∥p ≤ ∥Xtk −Xtk−1
∥p +C1h

p(1 + ∥Xtk∥)C1 +C2h
p(1 + ∥Xtk−1

∥)C2 ,(S12)

Then, Lemma 4.1 yields:

(S13) Eθ0
[∥Ztk(β0)∥p |Xtk−1

]≤Chp/2(1 + ∥Xtk−1
∥)C .

Subsequently, we use the norm inequality, (S13) and both statements of Lemma 4.1 to get:

Eθ0
[|

N∑

k=1

Y N
k (β0,θ)|p]≤Np−1

N∑

k=1

Eθ0
[|Y N

k (β0,θ)|p]

=
1

N

N∑

k=1

Eθ0
[Eθ0

[|Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk−1

;β0,β)|p |Xtk−1
]]

≤ 1

N

N∑

k=1

Eθ0
[Eθ0

[∥Ztk(β0)∥p |Xtk−1
]∥(ΣΣ⊤)−1∥p∥g(Xtk−1

;β0,β)∥p]≤
1

N
·N ·C.(S14)

This completes the proof of (S10). Now, we focus on (S11). We use the triangular inequality and the Hölder’s
inequality to derive:

Eθ0
[|

N∑

k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]

≤ 2p−1

N

N∑

k=1

Eθ0
[|Ztk(β0)

⊤(Σ1Σ
⊤
1 )

−1(g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0))|p](S15)

+
2p−1

N

N∑

k=1

Eθ0
[|Ztk(β0)

⊤((Σ1Σ
⊤
1 )

−1 − (Σ2Σ
⊤
2 )

−1)g(Xtk−1
;β2,β0)|p].(S16)

First, we study sum (S15). We use the mean value theorem and the triangular inequalities to get:

1

N

N∑

k=1

Eθ0
[|Ztk(β0)

⊤(Σ1Σ
⊤
1 )

−1(g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0))|p]

≤ 1

N

N∑

k=1

Eθ0
[Eθ0

[∥Ztk(β0)∥p |Xtk−1
]∥(Σ1Σ

⊤
1 )

−1∥p∥g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0)∥p]

≤ 1

N

N∑

k=1

Eθ0
[Cp(1 + ∥Xtk−1

∥)Cp∥β1 −β2∥p∥
∫ 1

0
Dβg(Xtk−1

;β2 + t(β1 −β2),β0)dt∥p]

≤C∥β1 −β2∥p.(S17)
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To bound sum (S16), we introduce the following multivariate matrix-valued function G(ς) := (ΣΣ⊤)−1. Then, we
use the inequality between the operator 2-norm and Frobenius norm, and the definition of the Frobenius norm to get:

∥G(ς1)−G(ς2)∥ ≤ (

d∑

i,j=1

∥Gij(ς1)−Gij(ς2)∥2)
1

2 .

Now, apply the mean value theorem on each Gij and Assumption (A4) to get:

∥G(ς1)−G(ς2)∥ ≤ (

d∑

i,j=1

∥ς1 − ς2∥2∥
∫ t

0
∇ςGij(ς2 + t(ς1 −σ2))dt∥2)

1

2 ≤C∥ς1 − ς2∥.

Finally, combining the previous results, we conclude that:

Eθ0
[|

N∑

k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]≤C(∥β1 −β2∥p + ∥ς1 − ς2∥p)

≤C(∥β1 −β2∥2 + ∥ς1 − ς2∥2)p/2 =C∥θ1 − θ2∥p,
for p≥ 2. This concludes the proof of 3.

Proof of 4. For Y N
k (β0,θ) :=

1
NhZtk(β0)

⊤(ΣΣ⊤)−1g(Xtk−1
;β0,β), we repeat the same derivations as in the

proof of 3. to show that the limit of
∑N

k=1 Eθ0
[Y N
k (β0,θ) |Xtk−1

] satisfies:

N∑

k=1

Eθ0
[Y N
k (β0,θ) |Xtk−1

]

=
1

Nh

N∑

k=1

Tr((ΣΣ⊤)−1g(Xtk−1
;β0,β)Eθ0

[Ztk(β0)
⊤ |Xtk−1

]) =
1

N

N∑

k=1

R(h2,Xtk−1
)

Pθ0−−→ 0,

for h→ 0. Similarly we deduce that:

N∑

k=1

Eθ0
[Y N
k (β0,θ)

2 |Xtk−1
](S18)

=
1

N2h2

N∑

k=1

g(Xtk−1
;β0,β)

⊤(ΣΣ⊤)−1Eθ0
[Ztk(β0)Ztk(β0)

⊤ |Xtk−1
](ΣΣ⊤)−1g(Xtk−1

;β0,β)

=
1

N

N∑

k=1

R(
1

Nh
,Xtk−1

)
Pθ0−−→ 0,

for Nh→∞. To prove uniform convergence, we use Lemma S2.4 along with Rosenthal’s inequality from Theorem
S2.5, resulting in:

Eθ0
[|

N∑

k=1

Y N
k (β0,θ)|p]≤C(E[(

N∑

k=1

E[Y N
k (β0,θ)

2 |Xtk−1
])p/2] +

N∑

k=1

E[|Y N
k (β0,θ)|p]).

The first term is bounded because of (S18). To bound the second term on the right-hand side, we use (S14). Then,
for Nh→∞ and h→ 0 and p > 2 it holds:

N∑

k=1

E[|Y N
k (β0,θ)|p]≤

1

(Nh)p
·Nhp/2 ·C =

1

(Nh)p−1
· hp/2−1 ·C ≤C.
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To conclude the proof of uniform convergence, we once again apply Rosenthal’s inequality to get:

Eθ0
[|

N∑

k=1

(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]

≤CE[(
N∑

k=1

E[(Y N
k (β0,θ1)− Y N

k (β0,θ2))
2 |Xtk−1

])p/2] +C

N∑

k=1

E[|(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p].(S19)

To bound the first term in (S19), we follow the reasoning from (S17) and start with:

E[(Y N
k (β0,θ1)− Y N

k (β0,θ2))
2 |Xtk−1

]

≤ 2Eθ0
[(Ztk(β0)

⊤(Σ1Σ
⊤
1 )

−1(g(Xtk−1
;β1,β0)− g(Xtk−1

;β2,β0)))
2 |Xtk−1

]

+ 2Eθ0
[(Ztk(β0)

⊤((Σ1Σ
⊤
1 )

−1 − (Σ2Σ
⊤
2 )

−1)g(Xtk−1
;β2,β0))

2 |Xtk−1
].

Then, the rest is the same. Similarly, to bound the second term in (S19), we repeat derivations from (S17) to get:
N∑

k=1

E[|(Y N
k (β0,θ1)− Y N

k (β0,θ2))|p]≤
1

(Nh)p
·Nhp/2 ·C · ∥θ1 − θ2∥p ≤C∥θ1 − θ2∥p,

Finally, (S18) and conclusions after (S17) complete the proof of 4.
Proof of 5. We introduce Y N

k (β0,θ) :=
1
NZtk(β0)

⊤(ΣΣ⊤)−1g(Xtk ;β0,β). Proposition 4.3 yields that
E[Ztk(β0)g(Xtk ;β0,β)

⊤ | Xtk−1
] = R(h,Xtk−1

). Then, we conclude that
∑N

k=1 Eθ0
[Y N
k (β0,θ) | Xtk−1

] → 0

in Pθ0
, for Nh→∞, h→ 0. Moreover, to prove the convergence of

∑N
k=1 Eθ0

[Y N
k (β0,θ)

2 |Xtk−1
], it is enough to

bound 1
N2

∑N
k=1 E[Tr((Ztk(β0)

⊤(ΣΣ⊤)−1g(Xtk ;β0,β))
2) |Xtk−1

]. Hölder’s inequality, together with Cauchy-
Schwartz inequality, Lemma 4.1 and (S13), yield:

1

N2

N∑

k=1

E[Tr((Ztk(β0)
⊤(ΣΣ⊤)−1g(Xtk ;β0,β))

2) |Xtk−1
]

≤ 1

N2

N∑

k=1

E[∥Ztk(β0)∥2∥g(Xtk ;β0,β)∥2 |Xtk−1
]Tr((ΣΣ⊤)−1)∥(ΣΣ⊤)−1∥

≤ C

N2

N∑

k=1

(E[∥Ztk(β0)∥4 |Xtk−1
]E[∥g(Xtk ;β0,β)∥4 |Xtk−1

])
1

2 =
1

N

N∑

k=1

R(h/N,Xtk−1
)

Pθ0−−→ 0,(S20)

for Nh→∞, h→ 0. To prove the uniform convergence, we use Lemma S2.4. Again, it is enough to prove (S10)
and (S11). Repeating the same steps as in the proof of (S14) leads to (S10). Similarly, to prove (S11) we repeat the
same steps as in (S17) using Hölder’s inequality, Cauchy-Schwartz inequality, and Lemma 4.1 with (S13).

Proof of 6. We introduce Y N
k (β0,θ) :=

1
NhZtk(β0)

⊤(ΣΣ⊤)−1g(Xtk ;β0,β) and study
∑N

k=1 Eθ0
[Y N
k (β0,θ) |

Xtk−1
]. Proposition 4.3 yields:

N∑

k=1

Eθ0
[Y N
k (β0,θ) |Xtk−1

] =
1

Nh

N∑

k=1

Tr((ΣΣ⊤)−1Eθ0
[Ztk(β0)g(Xtk ;β0,β)

⊤ |Xtk−1
])

=
1

2N

N∑

k=1

Tr((ΣΣ⊤)−1(ΣΣ⊤
0 D

⊤g(Xtk−1
;β0,β) +Dg(Xtk−1

;β0,β)ΣΣ⊤
0 +R(h,Xtk−1

)))

Pθ0−−→
∫

Tr(Dg(x;β0,β)ΣΣ⊤
0 (ΣΣ⊤)−1)dν0(x),

for Nh→∞, h→ 0. On the other hand,
∑N

k=1 Eθ0
[Y N
k (β0,θ)

2 |Xtk−1
] = 1

N

∑N
k=1R(

1
Nh ,Xtk−1

)→ 0, in Pθ0
,

for Nh→∞, h→ 0, which follows from derivations in (S20). To prove uniform convergence, we repeat the same
approach as in the previous two proofs.
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Proof of 7. First, we use the fact that E[g(Xtk ;β0,β) | Xtk−1
= x] = g(x;β0,β) + R(h,x), for a generic

function g. Then, for Y N
k (β0,θ) :=

h
N g1(Xtk−1

;β0,β)
⊤(ΣΣ⊤)−1g2(Xtk ;β0,β) it follows

N∑

k=1

Eθ0
[Y N
k (β0,θ) |Xtk−1

]
Pθ0−−−−−→

Nh→∞
h→0

0,

N∑

k=1

Eθ0
[Y N
k (β0,θ)

2 |Xtk−1
]

Pθ0−−−−−→
Nh→∞
h→0

0.

Again, the proofs of (S10) and (S11) are the same as in property 3, with a distinction of rewriting:

g1(β1)
⊤(Σ1Σ

⊤
1 )

−1g2(β1)− g1(β2)
⊤(Σ2Σ

⊤
2 )

−1g2(β2)

= (g1(β1)− g1(β2))
⊤(Σ1Σ

⊤
1 )

−1g2(β1) + g1(β2)
⊤(Σ1Σ

⊤
1 )

−1(g2(β1)− g2(β2))

+ g1(β2)
⊤((Σ1Σ

⊤
1 )

−1 − (Σ2Σ
⊤
2 )

−1)g2(β2).

PROOF OF THEOREM 5.1. To establish consistency, we follow the proof of Theorem 1 in Kessler (1997) and
study the limit of L[S]

N (β, ς) from (23), rescaled by the correct rate of convergence. More precisely, the consistency
of the diffusion parameter is proved by studying the limit of 1

NL[S]
N (β, ς), while the consistency of the drift parameter

is proved by studying the limit of 1
Nh(L

[S]
N (β, ς) − L[S]

N (β0, ς)). We start with the consistency of the diffusion
parameter ς . We need to prove that:

(S21)
1

N
L[S]
N (β, ς)→ log(det(ΣΣ⊤)) +Tr((ΣΣ⊤)−1ΣΣ⊤

0 ) =:G1(ς, ς0),

in Pθ0
, for Nh→∞, h→ 0, uniformly in θ. To study the limit, we first decompose 1

NL[S]
N (β, ς) as follows:

(S22)
1

N
L[S]
N (β, ς) = logdetΣΣ⊤ + T1 + T2 + T3 + 2(T4 + T5 + T6) +R(h,x0).

The terms T1, . . . , T6 are derived from the quadratic form in (23) by adding and subtracting the corresponding terms
with β0, followed by rearrangements, resulting in the following expressions:

T1 :=
1

Nh

N∑

k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0),

T2 :=
1

Nh

N∑

k=1

(f−1
h/2,k(β)− f

−1
h/2,k(β0))

⊤(ΣΣ⊤)−1(f−1
h/2,k(β)− f

−1
h/2,k(β0)),

T3 :=
1

Nh

N∑

k=1

(µh,k−1(β0)−µh,k−1(β))
⊤(ΣΣ⊤)−1(µh,k−1(β0)−µh,k−1(β)),

T4 :=
1

Nh

N∑

k=1

Ztk(β0)
⊤(ΣΣ⊤)−1(µh,k−1(β0)−µh,k−1(β)),

T5 :=
1

Nh

N∑

k=1

(f−1
h/2,k(β)− f

−1
h/2,k(β0))

⊤(ΣΣ⊤)−1(µh,k−1(β0)−µh,k−1(β)),

T6 :=
1

Nh

N∑

k=1

(f−1
h/2,k(β)− f

−1
h/2,k(β0))

⊤(ΣΣ⊤)−1Ztk(β0).

Previously, we defined f−1
h/2,k(β) := f

−1
h/2(Xtk ;β) and µh,k−1(β) :=µh(fh/2(Xtk−1

;β);β). These terms will also
play a significant role in proving the asymptotic normality.

The first term of (S22) is a constant. Properties 1, 2, 3, 5, and 7 from Lemma S1.3 give the following limits T1 →
Tr((ΣΣ⊤)−1ΣΣ⊤

0 ) and for l = 2,3, ...,6, Tl → 0, uniformly in θ. The convergence in probability is equivalent
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to the existence of a subsequence converging almost surely. Thus, the convergence in (S21) is almost sure for a
subsequence (β̂Nl

, ς̂Nl
). This implies:

ς̂Nl

Pθ0−a.s.−−−−−→
Nh→∞
h→0

ς∞.

The compactness of Θ implies that (β̂Nl
, ς̂Nl

) converges to a limit (β∞, ς∞) almost surely. By continuity of the
mapping ς 7→G1(ς, ς0) we have 1

Nl
L[S]
Nl
(β̂Nl

, ς̂Nl
)→G1(ς

⊤
∞, ς0), in Pθ0

, for Nh→∞, h→ 0, uniformly in θ. By
the definition of the estimator, G1(ς∞, ς0)≤G1(ς0, ς0). We also have:

G1(ς∞, ς0)≥G1(ς0, ς0)

⇔ log(det(ΣΣ⊤
∞)) +Tr((ΣΣ⊤

∞)−1ΣΣ⊤
0 )≥ log(det(ΣΣ⊤

0 )) +Tr(Id)

⇔Tr((ΣΣ⊤
∞)−1ΣΣ⊤

0 )− log(det((ΣΣ⊤
∞)−1ΣΣ⊤

0 ))≥ d

⇔
d∑

i=1

λi − log

d∏

i=1

λi ≥
d∑

i=1

1⇔
d∑

i=1

(λi − 1− logλi)≥ 0,

where λi are the eigenvalues of (ΣΣ⊤
∞)−1ΣΣ⊤

0 , which is a positive definite matrix. The last inequality follows
since for any positive x, logx≤ x− 1. Thus, G1(ς∞, ς0) =G1(ς0.ς0). Then, all the eigenvalues λi must be equal
to 1, hence, ΣΣ⊤

∞ =ΣΣ⊤
0 . We proved that a convergent subsequence of ς̂N tends to ς0 almost surely. From there,

the consistency of the estimator of the diffusion coefficient follows.
We now focus on the consistency of the drift parameter. The objective is to prove that the following limit in Pθ0

,
for Nh→∞, h→ 0, uniformly with respect to θ:

1

Nh
(L[S]

N (β, ς)−L[S]
N (β0, ς))→G2(β0, ς0,β, ς),(S23)

where:

G2(β0, ς0,β, ς) :=

∫
(F0(x)−F(x))⊤(ΣΣ⊤)−1(F0(x)−F(x))dν0(x)

+

∫
Tr(D(F0(x)−F(x))(ΣΣ⊤

0 (ΣΣ⊤)−1 − I))dν0(x).

To prove it, we decompose 1
Nh(L

[S]
N (β, ς)−L[S]

N (β0, ς)) as follows:

1

Nh
(L[S]

N (β, ς)−L[S]
N (β0, ς)) = Tr(A(β)−A(β0)) +

1

h
(T2 + T3 + 2(T4 + T5 + T6))

+
1

Nh

N∑

k=1

(Ztk(β0)
⊤(ΣΣ⊤)−1A(β0)Ztk(β0)−Ztk(β)

⊤(ΣΣ⊤)−1A(β)Ztk(β))(S24)

+
1

N

N∑

k=1

TrD(N(Xtk ;β)−N(Xtk ;β0)) +R(h,x0).

The term 1
Nh

∑N
k=1(Ztk(β0)

⊤(ΣΣ⊤)−1A(β0)Ztk(β0)−Ztk(β)
⊤(ΣΣ⊤)−1A(β)Ztk(β)) converges to Tr(A(β0)−

A(β)), which thus cancels out with the first term in (34). Lemma 4.2 provides the uniform convergence of 1
hT2

with respect to θ:

1

h
T2 =

1

4N

N∑

k=1

(N0(Xtk)−N(Xtk))
⊤(ΣΣ⊤)−1(N0(Xtk)−N(Xtk)) +R(h,x0)

→ 1

4

∫
(N0(x)−N(x))⊤(ΣΣ⊤)−1(N0(x)−N(x))dν0(x).
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The limit of 1
hT3 computes analogously. To prove 1

hT4 → 0, we use Lemma 9 in Genon-Catalot and Jacob (1993)
and Property 4 from Lemma S1.3. Lemma 4.2 yields:

1

h
T5

Pθ0−−−−−→
Nh→∞
h→0

1

4

∫
(N0(x)−N(x))⊤(ΣΣ⊤)−1(N0(x)−N(x))dν0(x)

+
1

2

∫
(A0(x−b0)−A(x−b))⊤(ΣΣ⊤)−1(N0(x)−N(x))dν0(x).

Finally, 1
hT6 → 1

2

∫
Tr(D(N0(x)−N(x))⊤ΣΣ⊤

0 (ΣΣ⊤)−1)dν0(x) uniformly in θ, by Property 6 of Lemma S1.3.
Lemma 4.2 gives:

1

N

N∑

k=1

TrD(N(Xtk)−N0(Xtk))
Pθ0−−−−−→

Nh→∞
h→0

∫
TrD(N(x)−N0(x))dν0(x),

uniformly in θ. This proves (S23). Then, there exists a subsequence Nl such that (β̂Nl
, ς̂Nl

) converges to a limit
(β∞, ς∞), almost surely. By continuity of the mapping (β, ς) 7→G2(β0, ς0,β, ς), for Nlh→∞, h→ 0, we have
the following convergence in Pθ0

:

1

Nlh
(L[S]

Nl
(β̂Nl

, ς̂Nl
)−L[S]

Nl
(β0, ς̂Nl

))→G2(β0, ς0,β∞, ς∞).

Then, G2(β0, ς0,β∞, ς∞) ≥ 0 since ΣΣ⊤
∞ = ΣΣ⊤

0 . On the other hand, by the definition of the estimator
L[S]
Nl
(β̂Nl

, ς̂Nl
) − L[S]

Nl
(β0, ς̂Nl

) ≤ 0. Thus, the identifiability assumption (A5) concludes the proof for the S es-
timator.

To prove the same statement for the LT estimator, the representation of the objective function (S22) has to be
adapted. In the LT case, this representation is straightforward. There is no extra logarithmic term and only three
instead of six auxiliary T terms are used. This is due to the Gaussian transition density in the LT approximation.

S1.7. Proof of asymptotic normality of the estimator. In this section, we distinguish between the true parameter
θ0 and a generic parameter θ.

PROOF OF THEOREM 5.2. According to Theorem 1 in Kessler (1997) or Theorem 1 in Sørensen and Uchida
(2003), Lemmas S1.4 and S1.5 below are enough for establishing the asymptotic normality of θ̂N . Here, we only
present the outline of the proof. For more details, see proof of Theorem 1 in Sørensen and Uchida (2003).

LEMMA S1.4. Let CN (θ0) and C(θ0) be as defined in (25) and (27), respectively. If h→ 0, Nh→∞, and
ρN → 0, then:

CN (θ0)
Pθ0−−→ 2C(θ0), sup

∥θ∥≤ρN
∥CN (θ0 + θ)−CN (θ0)∥

Pθ0−−→ 0.

LEMMA S1.5. Let λN be as defined (26).If h→ 0, Nh→∞ and Nh2 → 0, then:

λN
d−→N (0,4C(θ0)),

under Pθ0
.

Lemma S1.4 states that CN (θ0) approaches 2C(θ0) as h→ 0 and Nh→∞. Moreover, the difference between
CN (θ0 + θ) and CN (θ0) approaches zero when θ approaches θ0, within a distance specified by balls BρN (θ0),
where ρN → 0. To ensure the asymptotic normality of θ̂N , Lemma S1.4 is employed to restrict the term ∥DN −
CN (θ0)∥ when θ̂N ∈Θ∩BρN (θ0) as follows:

∥DN −CN (θ0)∥1{θ̂N∈Θ∩BρN
(θ0)} ⩽ sup

θ∈BρN
(θ0)

∥CN (θ)−CN (θ0)∥
Pθ0−−−−−→

Nh→∞
h→0

0
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Applying again Lemma S1.4 on the previous line, we get DN → 2C(θ0) in Pθ0
, as h→ 0 and Nh→∞.

Lemma S1.5 establishes the convergence in distribution of λN to N (0,4C(θ0)), under Pθ0
, as h→ 0 and

Nh→ ∞. This result provides the groundwork for the asymptotic normality of θ̂N . Indeed, consider the set
DN composed of instances where DN is invertible. The probability, under θ0, of DN occurring approaches
1, as h → 0 and Nh → ∞. This implies that DN is almost surely invertible in this limit. Furthermore, we
define EN as the intersection of {θ̂N ∈ Θ} and DN . Then, it can be shown that 1EN

→ 1 in Pθ0
when h→ 0

and Nh→ ∞. For EN := DN on EN , we have EN → 2C(θ0) in Pθ0
as h→ 0 and Nh→ ∞. Given that

sN1EN
=E−1

N DNsN1EN
=E−1

N λN1EN
and according to Lemma S1.5, sN1EN

→N (0,C(θ0)
−1) in distribution

as h→ 0, Nh→∞ and Nh2 → 0.
In conclusion, under Pθ0

, as h→ 0, Nh→∞ and Nh2 → 0, sN1EN
is shown to converge in distribution to

N (0,C(θ0)
−1). The asymptotic normality for θ̂N is, thus, confirmed due to the convergence of 1EN

→ 1.

PROOF OF LEMMA S1.4. To prove the first part of the lemma, we aim to represent CN (θ0) from the objective
function (14). In doing so, we again employ the approximation (23), focusing solely on the terms that do not
converge to zero as Nh→∞ and h→ 0. We start as in the approximation (34) and compute the corresponding
derivatives to obtain the first block matrix of CN (25). We begin with ∂βi1

βi2
L[S]
N (β, ς):

1

Nh
∂βi1

βi2
L[S]
N (β, ς)= ∂βi1

βi2
TrA(β) +

1

N

N∑

k=1

∂βi1
βi2

TrDN(Xtk ;β)

+ ∂βi1βi2

1

h

(
T2(β0,β, ς) + T3(β0,β, ς) + 2(T4(β0,β, ς) + T5(β0,β, ς) + T6(β0,β, ς))

)

− 1

Nh

N∑

k=1

∂βi1
βi2

(Ztk(β)
⊤(ΣΣ⊤)−1A(β)Ztk(β))) +R(h,x0).

To determine the convergence of each of the previous terms, we use the definitions of the sums Tis and approximate
each Ti using Proposition 2.2 and the Taylor expansion of the function µh. As we apply the derivatives ∂βi1βi2 , the
order of h in each sum increases since terms of orderR(1,x0) are constant with respect to β. Finally, when evaluating
1
Nh∂βi1βi2

L[S]
N (β, ς) at θ = θ0, numerous terms will cancel out due to differences of the type g(β0;Xtk ,Xtk−1

)−
g(β;Xtk ,Xtk−1

). Using the results from Lemma S1.3 and the proof of Theorem 5.1, we get the following limits:

∂βi1
βi2

1

h
T2(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→ 1

2

∫
(∂βi1

N0(x))
⊤(ΣΣ⊤

0 )
−1∂βi2

N0(x)dν0(x),

∂βi1
βi2

1

h
T3(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→

1

2

∫
(∂βi1

N0(x) + 2∂βi1
A0(x−b0))

⊤(ΣΣ⊤
0 )

−1(∂βi2
N0(x) + 2∂βi2

A0(x−b0))dν0(x),

∂βi1
βi2

1

h
T5(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→ 1

2

∫
(∂βi1

F0(x))
⊤(ΣΣ⊤

0 )
−1∂βi2

N0(x)dν0(x)

+
1

2

∫
(∂βi2

A0(x−b0))
⊤(ΣΣ⊤

0 )
−1∂βi1

N0(x)dν0(x),

∂βi1
βi2

1

h
T6(β0,β, ς0)

∣∣∣
β=β0

Pθ0−−→−1

2

∫
Tr(D∂βi1

βi2
N0(x))dν0(x),

for Nh→∞, h→ 0. Since 1
hT4 → 0, the partial derivatives go to zero too. From Lemma 4.2, for Nh→∞, h→ 0,

we have:

1

N

N∑

k=1

∂βi1
βi2

TrDN(Xtk ;β)
Pθ0−−→

∫
Tr(D∂βi1

βi2
N0(x))dν0(x).
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Term 1
Nh

∑N
k=1 ∂βi1

βi2
(Ztk(β)

⊤(ΣΣ⊤)−1A(β)Ztk(β)), evaluated in θ = θ0, has only one term of order h:
1
Nh

∑N
k=1Ztk(β0)

⊤(ΣΣ⊤
0 )

−1∂βi1βi2
A(β0)Ztk(β0), which converges to ∂βi1βi2

TrA(β0) (Property 1 Lemma
S1.3).

Thus, 1
Nh∂βi1βi2

L[S]
N (β, ς0)|β=β0

→ 2
∫
(∂βi2

F0(x))
⊤(ΣΣ⊤

0 )
−1∂βi2

F0(x)dν0(x), in Pθ0
for Nh→∞, h→ 0.

Now, we prove 1
N
√
h
∂βςL[S]

N (β, ς)|β=β0,ς=ς0 → 0, in Pθ0
for Nh→∞, h→ 0. For a constant Ch, depending on

h, l= 2,3, ...,6, and generic functions g,g1, the following term is at most of order R(h,x0):

∂βi
Tl(β, ς) =Ch

N∑

k=1

(g(β0;Xtk ,Xtk−1
)− g(β;Xtk ,Xtk−1

))⊤(ΣΣ⊤)−1g1(β;Xtk ,Xtk−1
),

Then, term ∂βςL[S]
N (β, ς) still contains g(β0;Xtk ,Xtk−1

)− g(β;Xtk ,Xtk−1
) which is 0 for β = β0. Moreover, the

term 1
N

∑N
k=1 ∂βς(Ztk(β)

⊤(ΣΣ⊤)−1A(β)Ztk(β)) is at most of orderR(h,x0). Thus, 1
N
√
h
∂βςL[S]

N (β, ς)|β=β0,ς=ς0 =

0.
Finally, we compute 1

N ∂ςj1 ςj2L
[S]
N (β, ς). As before, it holds 1

N ∂ςj1 ςj2Tl(β, ς)|β=β0,ς=ς0 → 0, for l = 2,3, ...,6.
Similarly, we see that 1

N

∑N
k=1Ztk(β0)

⊤∂ςj1 ςj2 (ΣΣ⊤)−1A(β0)Ztk(β0) is at most of order R(h,x0). So, we need
to compute the following second derivatives ∂ςj1 ςj2 log(detΣΣ⊤) and ∂ςj1 ςj2

1
Nh

∑N
k=1Ztk(β0)

⊤(ΣΣ⊤)−1Ztk(β0).
The first one yields:

∂ςj1 ςj2 log(detΣΣ⊤)

= Tr((ΣΣ⊤)−1∂ςj1 ςj2ΣΣ⊤)−Tr((ΣΣ⊤)−1(∂ςj1ΣΣ⊤)(ΣΣ⊤)−1∂ςj2ΣΣ⊤).

On the other hand, we have:

∂ςj1 ςj2
1

Nh

N∑

k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)

=− 1

Nh

N∑

k=1

Tr(Ztk(β0)Ztk(β0)
⊤(ΣΣ⊤)−1(∂ςj1 ςj2ΣΣ⊤)(ΣΣ⊤)−1)

+
1

Nh

N∑

k=1

Tr(Ztk(β0)Ztk(β0)
⊤(ΣΣ⊤)−1(∂ςj1ΣΣ⊤)(ΣΣ⊤)−1(∂ςj2ΣΣ⊤)(ΣΣ⊤)−1)

+
1

Nh

N∑

k=1

Tr(Ztk(β0)Ztk(β0)
⊤(ΣΣ⊤)−1(∂ςj2ΣΣ⊤)(ΣΣ⊤)−1(∂ςj1ΣΣ⊤)(ΣΣ⊤)−1).

Then, from Property 1 of Lemma S1.3, we get:

∂ςj1 ςj2
1

Nh

N∑

k=1

Ztk(β0)
⊤(ΣΣ⊤)−1Ztk(β0)

∣∣∣
ς=ς0

Pθ0−−−−−→
Nh→∞
h→0

2Tr((ΣΣ⊤
0 )

−1(∂ςj1ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1∂ςj2ΣΣ⊤

0 )−Tr((ΣΣ⊤
0 )

−1∂ςj1 ςj2ΣΣ⊤
0 ).

Thus, 1
N ∂ςj1 ςj2L

[S]
N (β, ς)|β=β0,ς=ς0 → Tr((ΣΣ⊤

0 )
−1(∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1∂ςj2ΣΣ⊤
0 ). Since all the limits used in

this proof are uniform in θ, the first part of the lemma is proved. The second part is trivial, because all limits are
continuous in θ.

PROOF OF LEMMA S1.5. First, we compute the first derivatives. We start with:

∂βi
L[S]
N (β, ς) =−2

N∑

k=1

Tr(Dfh/2,k(β)Dx∂βi
f−1
h/2,k(β))
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+
2

h

N∑

k=1

(f−1
h/2,k(β)−µh,k−1(β))

⊤(ΣΣ⊤)−1(∂βi
f−1
h/2,k(β)− ∂βi

µh,k−1(β)).

The first derivative with respect to ς is:

∂ςjL[S]
N (β, ς) =N∂ςj log det(ΣΣ⊤)

+
1

h
∂ςj

N∑

k=1

(f−1
h/2,k(β)−µh,k−1(β))

⊤(ΣΣ⊤)−1(f−1
h/2,k(β)−µh,k−1(β))

=−1

h

N∑

k=1

(
Tr
(
(f−1
h/2,k(β)−µh,k−1(β))(f

−1
h/2,k(β)−µh,k−1(β))

⊤

(ΣΣ⊤)−1(∂ςjΣΣ⊤)(ΣΣ⊤)−1
)
+Tr((ΣΣ⊤)−1∂ςjΣΣ⊤)

)
.

Define:

η
(i)
N,k(θ) :=

2√
Nh

Tr(Dfh/2,k(β)Dx∂βi
f−1
h/2,k(β))(S25)

− 2√
Nhh

Ztk(β)
⊤(ΣΣ⊤)−1∂βi

(f−1
h/2,k(β)−µh,k−1(β))

ζ
(j)
N,k(θ) :=

1√
Nh

Tr(Ztk(β)Ztk(β)
⊤(ΣΣ⊤)−1(∂ςjΣΣ⊤)(ΣΣ⊤)−1)(S26)

− 1√
N

Tr((ΣΣ⊤)−1∂ςjΣΣ⊤),

and rewrite λN as λN =
∑N

k=1[η
(1)
N,k(θ0), . . . , η

(r)
N,k(θ0), ζ

(1)
N,k(θ0), . . . , ζ

(s)
N,k(θ0)]

⊤. Now, by Proposition 3.1 from
Crimaldi and Pratelli (2005), it is sufficient to prove Lemma S1.6.

LEMMA S1.6. Let η(i)N,k(θ) and ζ(j)N,k(θ) be defined as in (S25) and (S26), respectively. If h→ 0, Nh→∞,
and Nh2 → 0, then for and all i, i1, i2 = 1,2, ..., r, and j, j1, j2 = 1,2, ..., s, it holds:

(i) Eθ0
[sup1≤k≤N |η(i)N,k(θ0)|]−→ 0, and Eθ0

[sup1≤k≤N |ζ(j)N,k(θ0)|]−→ 0;

(ii)
∑N

k=1Eθ0
[η

(i)
N,k(θ0) |Xtk−1

]
Pθ0−−→ 0, and

∑N
k=1Eθ0

[ζ
(j)
N,k(θ0) |Xtk−1

]
Pθ0−−→ 0;

(iii)
∑N

k=1 Eθ0
[η

(i1)
N,k(θ0) |Xtk−1

]Eθ0
[η

(i2)
N,k(θ0) |Xtk−1

]
Pθ0−−→ 0;

(iv)
∑N

k=1 Eθ0
[ζ

(j1)
N,k (θ0) |Xtk−1

]Eθ0
[ζ

(j2)
N,k (θ0) |Xtk−1

]
Pθ0−−→ 0;

(v)
∑N

k=1 Eθ0
[η

(i)
N,k(θ0) |Xtk−1

]Eθ0
[ζ

(j)
N,k(θ0) |Xtk−1

]
Pθ0−−→ 0;

(vi)
∑N

k=1 Eθ0
[η

(i1)
N,k(θ0)η

(i2)
N,k(θ0) |Xtk−1

]
Pθ0−−→ 4[Cβ(θ0)]i1i2 ;

(vii)
∑N

k=1 Eθ0
[ζ

(j1)
N,k (θ0)ζ

(j2)
N,k (θ0) |Xtk−1

]
Pθ0−−→ 4[Cς(θ0)]j1j2 ;

(viii)
∑N

k=1 Eθ0
[η

(i)
N,k(θ0)ζ

(j)
N,k(θ0) |Xtk−1

]
Pθ0−−→ 0;

(ix)
∑N

k=1 Eθ0
[(η

(i1)
N,k(θ0)η

(i2)
N,k(θ0))

2 |Xtk−1
]

Pθ0−−→ 0;

(x)
∑N

k=1 Eθ0
[(ζ

(j1)
N,k (θ0)ζ

(j2)
N,k (θ0))

2 |Xtk−1
]

Pθ0−−→ 0;

(xi)
∑N

k=1 Eθ0
[(η

(i)
N,k(θ0)ζ

(j)
N,k(θ0)

2) |Xtk−1
]

Pθ0−−→ 0.

PROOF OF LEMMA S1.6. The proof of Lemma S1.6 is technical and involves bounding the sums of triangular
arrays in such a way that the bound converges to zero in probability Pθ0

as h→ 0, Nh→∞, and Nh2 → 0. Unlike
in the previous proof, this time we do not require uniform convergence.
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We begin by expanding η(i)k to differentiate between terms that vanish and those that do not in the limits:

η
(i)
N,k(θ0) =

2√
Nh

Tr((I+
h

2
DN0(Xtk))(−

h

2
Dx∂βi

N0(Xtk)))

− 2

h
√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1(−h

2
∂βi

N0(Xtk) +
h2

8
∂βi

(DN0(Xtk))N0(Xtk))

+
2

h
√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

µh(fh/2(Xtk−1
;β0);β0) +R(

√
h3/N,Xtk−1

)

=−
√
h

N
Tr(Dx∂βi

N0(Xtk)) +
1√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

N0(Xtk)

− 1

4

√
h

N
Ztk(β0)

⊤(ΣΣ⊤
0 )

−1∂βi
(DN0(Xtk))N0(Xtk)

+
2

h
√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

µh(fh/2(Xtk−1
;β0);β0) +R(

√
h3/N,Xtk−1

).(S27)

Proof of (i). Let us begin by examining the limit of the expectation of sup1≤k≤N |η(i)N,k(θ0)|. In equation
(S27), all the involved functions are bounded, and the term with the largest order is R(

√
Nh,Xtk−1

) because
∂βi
µh(fh/2(Xtk−1

;β0);β0) is R(h,Xtk−1
). The remaining terms converge to zero. Moreover, terms with coeffi-

cients 1√
Nh

take the form Ztk(β0)
⊤(ΣΣ⊤

0 )
−1g, where g is a vector-valued function of either Xtk−1

or Xtk . Their

expected values are bounded by R(h,Xtk−1
) at most. Thus, the dominant order becomes R(

√
h/N,Xtk−1

), which
indeed converges to zero.

We proceed to analyze the limit of the expectation of sup1≤k≤N |ζ(j)N,k(θ0)| . The leading term in ζ(j)N,k(θ0), as

defined in the paper, has an order R(1/
√
Nh2,Xtk−1

). Upon calculating its expected value, we obtain an order of
R(h,Xtk−1

). This concludes the proof of (i).
To establish limits (ii)-(v), we need to calculate the expectations of η(i)N,k and ζ(i)N,k. By analyzing (S27), we can

deduce that Eθ0
[η

(i)
N,k(θ0) |Xtk−1

] =R(
√
h3/N,Xtk−1

), since Proposition 4.3 gives:

Eθ0
[

1√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

N0(Xtk) |Xtk−1
] =

√
h

N
Tr(Dx∂βi

N0(Xtk)) +R(
√
h3/N,Xtk−1

),

Similarly, from:

Eθ0
[Tr(ZtkZ

⊤
tk(ΣΣ⊤

0 )
−1(∂ςjΣΣ⊤

0 )(ΣΣ⊤
0 )

−1) |Xtk−1
] = hTr((ΣΣ⊤

0 )
−1∂ςjΣΣ⊤

0 ) +R(h2,Xtk−1
)

we conclude that Eθ0
[ζ

(i)
N,k(θ0) |Xtk−1

] =R(h/
√
N,Xtk−1

). Then, combining the previous, we get:

N∑

k=1

Eθ0
[η

(i)
N,k(θ0) |Xtk−1

] =R(
√
Nh3,Xtk−1

)
Pθ0−−→ 0,

N∑

k=1

Eθ0
[ζ

(j)
N,k(θ0) |Xtk−1

] =R(
√
Nh2,Xtk−1

)
Pθ0−−→ 0,

N∑

k=1

Eθ0
[η

(i1)
N,k(θ0) |Xtk−1

]Eθ0
[η

(i2)
N,k(θ0) |Xtk−1

] =R(h3,Xtk−1
)

Pθ0−−→ 0,

N∑

k=1

Eθ0
[ζ

(j1)
N,k (θ0) |Xtk−1

]Eθ0
[ζ

(j2)
N,k (θ0) |Xtk−1

] =R(h2,Xtk−1
)

Pθ0−−→ 0,

N∑

k=1

Eθ0
[η

(i)
N,k(θ0) |Xtk−1

]Eθ0
[ζ

(j)
N,k(θ0) |Xtk−1

] =R(h5/2,Xtk−1
)

Pθ0−−−−→
N→∞

0.
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Now, we prove limit (vi). Here, we focus on the terms of order 1/
√
Nh in η(i)N,k which are the only ones that will

not converge to zero when multiplying η(i1)N,k and η(i2)N,k:

η
(i)
N,k(θ0) =

1√
Nh

Z⊤
tk(ΣΣ⊤

0 )
−1∂βi

N0(Xtk)

+
2

h
√
Nh

Z⊤
tk(ΣΣ⊤

0 )
−1∂βi

µh(fh/2(Xtk−1
;β0);β0) +R(

√
h

N
,Xtk−1

)

=
1√
Nh

Z⊤
tk(ΣΣ⊤

0 )
−1∂βi

N0(Xtk) +
1√
Nh

Z⊤
tk(ΣΣ⊤

0 )
−1∂βi

(N0(Xtk−1
)

+ 2A0(Xtk−1
−b0)) +R(

√
h

N
,Xtk−1

)

=
2√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1∂βi

F0(Xtk−1
) +

1√
Nh

Ztk(β0)
⊤(ΣΣ⊤

0 )
−1ψik,k−1(β0) +R(

√
h

N
,Xtk−1

),

In the previous calculations, we introduced a new notation ψik,k−1(β0) := ∂βi
(N0(Xtk)−N0(Xtk−1

)). Now, we

consider the product η(i1)N,k(θ0)η
(i2)
N,k(θ0) and again focus only on the terms with coefficient 1/Nh:

η
(i1)
N,k(θ0)η

(i2)
N,k(θ0) =

4

Nh
Z⊤
tk(ΣΣ⊤

0 )
−1∂βi1

F0(Xtk−1
)∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1Ztk

+
2

Nh
Z⊤
tk(ΣΣ⊤

0 )
−1ψi1k,k−1(β0)∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1Ztk

+
2

Nh
Z⊤
tk(ΣΣ⊤

0 )
−1∂βi1

F0(Xtk−1
)ψi2k,k−1(β0)

⊤(ΣΣ⊤
0 )

−1Ztk

+
1

Nh
Z⊤
tk(ΣΣ⊤

0 )
−1ψi1k,k−1(β0)ψ

i2
k,k−1(β0)

⊤(ΣΣ⊤
0 )

−1Ztk +R(1/N,Xtk−1
).

In the previous equation, we must show that the sum of expectations of all the terms except the first converges to
zero. We only prove this for the second row; the rest follows analogously. Due to the definition of ψi, it is clear that
E0[∥ψik,k−1(β0)∥p |Xtk−1

] =R(h,Xtk−1
), for all p≥ 1. Then, we use property (S13) to obtain:

1

Nh
|Eθ0

[Z⊤
tk(ΣΣ⊤

0 )
−1ψi1k,k−1(β0)∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1Ztk |Xtk−1

]|

≤ 1

Nh
|Tr(∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1)|∥(ΣΣ⊤

0 )
−1∥Eθ0

[∥ZtkZ⊤
tk∥∥ψi1k,k−1(β0)∥ |Xtk−1

]

≤ C

Nh
(Eθ0

[∥ZtkZ⊤
tk∥2 |Xtk−1

]Eθ0
[∥ψi1k,k−1(β0)∥2 |Xtk−1

])
1

2

=
1

Nh
(R(h2,Xtk−1

)R(h,Xtk−1
))

1

2 =R(
√
h/N,Xtk−1

).

Finally, we use Lemma 4.2 to get:

N∑

k=1

Eθ0
[η

(i1)
N,k(θ0)η

(i2)
N,k(θ0) |Xtk−1

]

=
4

Nh

N∑

k=1

(Eθ0
[Z⊤
tk(ΣΣ⊤

0 )
−1∂βi1

F0(Xtk−1
)∂βi2

F0(Xtk−1
)⊤(ΣΣ⊤

0 )
−1Ztk |Xtk−1

] +R(h3/2,Xtk−1
))

=
4

N

N∑

k=1

(Tr(∂βi2
F(Xtk−1

;β0)
⊤(ΣΣ⊤

0 )
−1∂βi1

F(Xtk−1
;β0)) +R(

√
h,Xtk−1

))
Pθ0−−−−→

N→∞
4[Cβ(θ0)]i1i2 .



20

To prove (vii) we use Corollary 3.8:

Eθ0
[ζ

(j1)
N,k (θ0)ζ

(j2)
N,k (θ0) |Xtk−1

]

=
1

h2N
Eθ0

[Z⊤
tk(ΣΣ⊤

0 )
−1(∂ςj1ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ZtkZ
⊤
tk(ΣΣ⊤

0 )
−1(∂ςj2ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Ztk |Xtk−1
]

− 1

N
Tr((ΣΣ⊤

0 )
−1∂ςj1ΣΣ⊤

0 )Tr((ΣΣ⊤
0 )

−1∂ςj2ΣΣ⊤
0 )

=
1

h2N
Eθ0

[ξ⊤h,k(ΣΣ⊤
0 )

−1(∂ςj1ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1ξh,kξ

⊤
h,k(ΣΣ⊤

0 )
−1(∂ςj2ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ξh,k |Xtk−1
]

− 1

N
Tr((ΣΣ⊤

0 )
−1∂ςj1ΣΣ⊤

0 )Tr((ΣΣ⊤
0 )

−1∂ςj2ΣΣ⊤
0 ) +R(

√
h/N,Xtk−1

).

Now, we use the expectation of a product of two quadratic forms of normally distributed random vectors (see for
example Section 2 in Kumar (1973)) to get:

1

h2N
Eθ0

[ξ⊤h,k(ΣΣ⊤
0 )

−1(∂ςj1ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1ξh,kξ

⊤
h,k(ΣΣ⊤

0 )
−1(∂ςj2ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1ξh,k |Xtk−1
]

=
2

N
Tr((ΣΣ⊤

0 )
−1∂ΣΣ⊤

0

∂ςj1
(ΣΣ⊤

0 )
−1∂ΣΣ⊤

0

∂ςj2
) +

1

N
Tr((ΣΣ⊤

0 )
−1∂ΣΣ⊤

0

∂ςj1
)Tr((ΣΣ⊤

0 )
−1∂ΣΣ⊤

0

∂ςj2
).

This proves (vii). We omit the proofs of (viii)-(xi) since they follow the same pattern. Namely, we find the leading
term and ensure it goes to zero. For the expectations of squares, we can apply the same approach with a product of
two quadratic forms.

S2. Auxiliary properties. In this section, we revisit crucial properties essential for establishing the consistency
and asymptotic normality of the proposed estimators. To begin, we invoke Lemma 2.3 from Tian and Fan (2020)
as Lemma S2.1, which was used in proving Lemma 4.1. This lemma offers a generalization of the Grönwall’s
inequality.

Furthermore, Lemma 9 in Genon-Catalot and Jacob (1993) provides conditions for the convergence of a sum of a
triangular array and is recalled as Lemma S2.2.

Lemmas S2.3 and S2.4 give sufficient conditions for uniform convergence. The former is sourced from Proposition
A1 in Gloter (2006), while the latter comes from Lemma 3.1 from Yoshida (1990). On occasions, Lemma S2.3
might not suffice, warranting the use of Lemma S2.4. Theorem S2.5 is a helpful tool for assessing the conditions of
these two lemmas is the Rosenthal’s inequality for martingales (Theorem 2.12 in Hall and Heyde (1980)).

Lastly, Theorem S2.6 presents a special case of the central limit theorem for multivariate martingale triangular
arrays (Proposition 3.1 from Crimaldi and Pratelli (2005)). This theorem is pivotal for proving the asymptotic
normality of the proposed estimators.

LEMMA S2.1 (Generalized Grönwall’s inequality, Lemma 2.3 in Tian and Fan (2020)). Let p > 1 and b > 0 be
constants, and let a : (0,+∞)→ (0,+∞) be a continuous function. If

u(t)≤ a(t) + b

∫ t

0
up(s)ds,

then u(t)≤ a(t) + (κ1−p(t)− (p− 1)2p−1bt)
1

1−p and κ1−p(t)> (p− 1)2p−1bt, where

(S28) κ(t) := 2p−1b

∫ t

0
ap(s)ds.

LEMMA S2.2 (Lemma 9 in Genon-Catalot and Jacob (1993)). Let (XN
k )N∈N,1≤k≤N be a triangular array with

each row N adapted to a filtration (GNk )1≤k≤N , and let U be a random variable. If
N∑

k=1

E[XN
k | GNk−1]

P−−−−→
N→∞

U,

N∑

k=1

E[(XN
k )2 | GNk−1]

P−−−−→
N→∞

0,

then
∑N

k=1X
N
k

P−−−−→
N→∞

U .
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LEMMA S2.3 (Proposition A1 in Gloter (2006)). Let SN (ω,θ) be a sequence of measurable real-valued
functions defined on Ω×Θ, where (Ω,F ,P) is a probability space, and Θ is product of compact intervals of R.
We assume that SN (·,θ) converges to a constant C in probability for all θ ∈ Θ; and that there exists an open
neighbourhood of Θ on which SN (ω, ·) is continuously differentiable for all ω ∈Ω. Furthermore, we suppose that:

sup
N∈N

E[sup
θ∈Θ

|∇θSN (θ)|]<∞.

Then, SN (θ)
P−−−−→

N→∞
C uniformly in θ.

LEMMA S2.4 (Lemma 3.1 in Yoshida (1990)). Let F ⊂Rd be a convex compact set, and let {ξN (θ);θ ∈ F},
be a family of real-valued random processes for N ∈N. If there exist constants p≥ l > d and C > 0 such that for
all θ,θ1 and θ2, it holds:

(1) E[|ξN (θ1)− ξN (θ2)|p]≤C∥θ1 − θ2∥l;
(2) E[|ξN (θ)|p]≤C;
(3) ξN (θ)

P−−−−→
N→∞

0,

then supθ∈F |ξN (θ)| P−−−−→
N→∞

0.

THEOREM S2.5 (Rosenthal’s inequality, Theorem 2.12 in Hall and Heyde (1980)). Let (XN
k )N∈N,1≤k≤N be a

triangular array with each row N adapted to a filtration (GNk )1≤k≤N and let:

SN =

N∑

k=1

XN
k , N ∈N

be a martingale array. Then, for all p ∈ [2,∞) there exist constants C1,C2 such that:

C1(E[(
N∑

k=1

E[(XN
k )2 | GNk−1])

p

2 ] +

N∑

k=1

E[|XN
k |p])≤ E[|SN |p]≤C2(E[(

N∑

k=1

E[(XN
k )2 | GNk−1])

p

2 ] +

N∑

k=1

E[|XN
k |p]).

THEOREM S2.6 (Proposition 3.1. in Crimaldi and Pratelli (2005)). Let (XN,k)N∈N,1≤k≤N be a triangular
array of d-dimensional random vectors, such that, for each N , the finite sequence (XN,k)1≤k≤N is a martingale
difference array with respect to a given filtration (GNk )1≤k≤N such that:

SN =

N∑

k=1

XN,k, N ∈N.

If

(1) E[ sup
1≤k≤N

∥XN,k∥1]−−−−→
N→∞

0;

(2)
N∑
k=1

XN,kX
⊤
N,k

P−−−−→
N→∞

U, for some non-random positive semi-definite matrix U,

then, SN
d−−−−→

N→∞
Nd(0,U).

REMARK S1. Instead of using the second condition of Theorem S2.6, Lemma S2.4 yields that it is sufficient to
prove that, for all i, j = 1, ..., d, it holds:

N∑

k=1

E[X(i)
N,kX

(j)
N,k | GNk−1]

P−−−−→
N→∞

Uij ,

N∑

k=1

E[(X(i)
N,kX

(j)
N,k)

2 | GNk−1]
P−−−−→

N→∞
0.
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REMARK S2. For a martingale difference array the conditional expectations need to be zero almost surely, i.e:

E[XN,k | GNk−1] = 0, a.s. for all N ∈N, 1≤ k ≤N.

In our case, (XN,k)N∈N,1≤k≤N does not fulfil the previous condition. Hence, similar to the approach in Corollary
2.6 of McLeish (1974), we need the following two additional conditions on (XN,k)N∈N,1≤k≤N :

N∑

k=1

E[X(i)
N,k | GNk−1]

P−−−−→
N→∞

0,

N∑

k=1

E[X(i)
N,k | GNk−1]E[X

(j)
N,k | GNk−1]

P−−−−→
N→∞

0.(S29)

Indeed, martingale difference array YN,k =XN,k −E[XN,k | GNk−1] satisfies conditions of the previous theorem. To
prove that the first condition is satisfied, we write:

E[ sup
1≤k≤N

∥YN,k∥1]≤ E[ sup
1≤k≤N

∥XN,k∥1] + E[ sup
1≤k≤N

E[∥XN,k∥1 | GNk−1]]

≤ E[ sup
1≤k≤N

∥XN,k∥1] + E[ sup
1≤k≤N

E[ sup
1≤j≤N

∥XN,j∥1 | GNk−1]]≤ 3E[ sup
1≤k≤N

∥XN,k∥1]−−−−→
N→∞

0.

We used the Doob’s inequality for the last submartingale. To demonstrate the second condition we fix i, j to get:
N∑

k=1

Y
(i)
N,kY

(j)
N,k =

N∑

k=1

X
(i)
N,kX

(j)
N,k −

N∑

k=1

X
(i)
N,kE[X

(j)
N,k | GNk−1]

−
N∑

k=1

X
(j)
N,kE[X

(i)
N,k | GNk−1] +

N∑

k=1

E[X(i)
N,k | GNk−1]E[X

(j)
N,k | GNk−1].

The first term goes to Uij , and the last term goes to zero. To prove that middle terms also vanish, we use the following
inequalities:

|
N∑

k=1

X
(i)
N,kE[X

(j)
N,k | GNk−1]| ≤

N∑

k=1

|X(i)
N,k||E[X

(j)
N,k | GNk−1]|

≤ (

N∑

k=1

(X
(i)
N,k)

2
N∑

k=1

E2[X
(j)
N,k | GNk−1])

1

2 −−−−→
N→∞

0.

Theorem S2.6 yields that
N∑
k=1

YN,k
d−−−−→

N→∞
Nd(0,U), which together with (S29), gives SN

d−−−−→
N→∞

Nd(0,U).

S3. Estimators. In this section, we treat the computation of integrals involving matrix exponentials, using
formulas from (Van Loan, 1978) and apply it to the LL estimator, following (Gu, Wu and Xue, 2020). In the main
paper, we extend this approach to calculate Ωh for the splitting schemes.

Additionally, we present the coefficients for the HE log-likelihood expansion up to order J = 2 for the Lorenz
system, with our gratitude to the third reviewer for providing these formulas. The section concludes with a detailed
analysis of the simulation results for the HE method.

S3.1. Ozaki’s local linearization. Building on the approach by Gu, Wu and Xue (2020), we can efficiently
compute Rh,i and Ω

[LL]
h,k (θ) using the following procedure. To begin, define the three block matrices:

P1(x) =

[
0d×d Id
0d×d DF(x;β)

]
,P2(x) =



−DF(x;β) Id 0d×d

0d×d 0d×d Id
0d×d 0d×d 0d×d


 ,P3(x) =

[
DF(x;β) ΣΣ⊤

0d×d −DF(x;β)⊤

]
.(S30)

Then, we compute the matrix exponential of matrices hP1(x) and hP2(x):

exp(hP1(x)) =

[
⋆ Rh,0(DF(x;β))

0d×d ⋆

]
, exp(hP2(x)) =




⋆ ⋆ BRh,1
(DF(x;β))

0d×d ⋆ ⋆
0d×d 0d×d ⋆


 .
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The terms marked with ⋆ symbols can be disregarded. Starting with the first matrix, we derive Rh,0(DF(x;β)).
Then, we compute Rh,1(DF(x;β)) using the formula Rh,1(DF(x;β)) = exp(hDF(x;β))BRh,1

(DF(x;β)).
Finally, we obtain Ω

[LL]
h,k (θ) from the matrix exponential:

exp(hP3(x)) =

[
BΩh,k

(DF(x;β);θ)CΩh,k
(DF(x;β);θ)

0d×d ⋆

]
,

Ω
[LL]
h,k (θ) =CΩh,k

(DF(x;β);θ)BΩh,k
(DF(x;β);θ)⊤.

S3.2. Aït-Sahalia’s Infinite Hermite Expansion. Polynomial coefficients C(j)
Y (γ(Xtk) | γ(Xtk−1

)), for j =
−1,0,1, . . . , J are calculated recursively according to Theorem 1 in (Aït-Sahalia, 2008). In the following, we
present C(j)

Y for the Lorenz system up to order J = 2 (provided by the third reviewer):

C
(−1)
Y (γ(x, y, z) | γ(x0, y0, z0)) =−1

2

(
(x− x0)

2

σ21
+

(y− y0)
2

σ22
+

(z − z0)
2

σ23

)
;

C
(0)
Y (γ(x, y, z) | γ(x0, y0, z0)) =

1

3
(x− x0)(y− y0)(z − z0)

(
− 1

σ22
+

1

σ23

)

− 1

2

(
p(x− x0)

2

σ21
+

(y− y0)
2

σ22
+
c(z − z0)

2

σ23

)

+
1

2
x0(y− y0)(z − z0)

(
− 1

σ22
+

1

σ23

)
+

1

2
(x− x0)(y− y0)

(
p

σ21
+
r− z0
σ22

)
+

1

2
(x− x0)(z − z0)

y0
σ23

+ (x− x0)
p(−x0 + y0)

σ21
+ (y− y0)

(rx0 − y0 − x0z0)

σ22
+ (z − z0)

(x0y0 − cz0)

σ23
;

C
(1)
Y (γ(x, y, z) | γ(x0, y0, z0)) =

1

24
(x− x0)

2

(
p2σ22
σ41

− 4p2 + 2p(r− z0)

σ21
− 3(r− z0)

2

σ22
− 3y20
σ23

)

+
1

24
(y− y0)

2

(
σ21(r− z0)

2 + σ23x
2
0

σ42
− 3p2

σ21
+

2(x20 − p(r− z0)− 2)

σ22
− 3x20

σ23

)

+
1

24
(z − z0)

2

(
σ21y

2
0 + σ22x

2
0

σ43
− 3x20

σ22
+

2(x20 − 2c2)

σ23

)

+
1

12
(x− x0)(y− y0)

(
4p2

σ21
+
x0y0 + 4(r− z0)

σ22
− 7x0y0 − 4cz0

σ23

)

+
1

12
(y− y0)(z − z0)

(
σ21y0(r− z0)

σ22σ
2
3

− 4x0
σ22

− py0 − 4cx0
σ23

)

+
1

12
(x− x0)(z − z0)

(
px0σ

2
2

σ21σ
2
3

+
px0
σ21

− 4y0 + 7x0(r− z0)

σ22
+

4cy0 − x0(r− z0)

σ23

)

+
1

2
(x− x0)

(
p2(−x0 + y0)

σ21
+

−x0(r− z0)
2 + y0(r− z0)

σ22
+
y0(−x0y0 + cz0)

σ23

)

+
1

2
(y− y0)

(
p2(x0 − y0)

σ21
+
x0(r− z0)− y0

σ22
+
x0(−x0y0 + cz0)

σ23

)

+
1

2
(z − z0)

(
x0(−y0 + x0(r− z0))

σ22
+
c(x0y0 − cz0)

σ23

)

+
1

2

(
1 + p+ c− p2(x0 − y0)

2

σ21
− (x0y0 − cz0)

2

σ23
− (−x0(r− z0) + y0)

2

σ22

)
;
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Fig 1: Comparing S (red) and HE (blue) objective functions of a data set generated from the Lorenz system where
all parameters except σ23 are fixed to the true values. The sample size is fixed to N = 10000. Each row represents
one value of the discretization step h. The black vertical dashed line is the true value of σ23 .

C
(2)
Y (γ(x, y, z) | γ(x0, y0, z0)) =− 1

12

(
p2σ22
σ21

+
σ21(r− z0)

2 + σ23x
2
0

σ22
+
σ21y

2
0 + σ22x

2
0

σ23

)

− 1

6
(1 + p2 + c2 − x20 + rp− pz0).

The poor performance of the HE estimator (no convergence for larger discretization step sizes h, and only
≈ 43 − 72% convergence for small h) in the simulation study can probably be attributed to the polynomial
approximation of the likelihood function, which can become unstable, particularly for larger h, as illustrated in
Figure 1. Additional coefficients C(j)

Y in the approximation might mitigate this problem.
Figure 1 shows the objective functions of HE and S for a fixed trajectory, h, and N , with all parameters fixed

to their true values except for σ23 . Consequently, the objective functions are presented as functions of σ23 . The HE
function tends towards −∞ as σ23 approaches zero. This is also the case for the smallest h, although it is not evident
in the figure due to the x-scale used. However, in this case the objective function do possess a local minimum close
to the true value. As a result, the global minimum of the HE objective function is always at −∞. For sufficiently
small h, this issue can be mitigated by imposing constraints on σ23 . However, as h increases, the local minimum
vanishes. In contrast, the objective functions of other estimators like S tend towards +∞, when σ23 goes to zero,
ensuring that the minimum around the true value of σ23 is also the global minimum of their objective functions.
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Strang Splitting Parameter Estimator for Second-order SDEs A PREPRINT

S1 Supplementary Material

In this section, we provide proofs for all the nontrivial lemmas, propositions, and theorems presented in Sections 3 and 6.
The majority of these proofs, especially those in Section 6, heavily rely on Itô or Taylor expansions in h around Ytk−1

.
Additionally, we frequently employ Fubini’s theorem as a useful tool. Our initial focus is on the results from Section 6,
as they constitute technical auxiliary properties essential for understanding the main results outlined in Section 3.

S1.1 Proofs of results from Section 6

Proof of Lemma 6.2 To prove (i), calculate

Ω
[RR]
h (θ)−1 =

1

h
(ΣΣ⊤)−1(I+

h

2
(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)−1) +R(h,y0)

=
1

h
(ΣΣ⊤)−1(I− h

2
(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1) +R(h,y0)

=
1

h
(ΣΣ⊤)−1 − 1

2
((ΣΣ⊤)−1Av(β) +Av(β)

⊤(ΣΣ⊤)−1) +R(h,y0).

Proof of (ii):

Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1 = (

h2

2
(ΣΣ⊤) +

h3

6
(Av(β)(ΣΣ⊤) + 2ΣΣ⊤Av(β)

⊤))
1

h
(ΣΣ⊤)−1

− h2

4
(ΣΣ⊤)((ΣΣ⊤)−1Av(β) +Av(β)

⊤(ΣΣ⊤)−1)) +R(h3,y0)

=
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1) +R(h3,y0).

To prove (iii), use the previous result to obtain:

Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1Ω

[RS]
h (θ)

= (
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1))(
h2

2
(ΣΣ⊤) +

h3

6
(2Av(β)(ΣΣ⊤) +ΣΣ⊤Av(β)

⊤)) +R(h5,y0)

=
h3

4
ΣΣ⊤ +

h4

8
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤) +R(h5,y0).

Proof of (iv) follows from (iii) and Lemma 6.1. To prove (v), approximate the log-determinant as:

log detΩ
[RR]
h (θ) = log det

(
hΣΣ⊤ +

h2

2
(Av(β)ΣΣ⊤ +ΣΣ⊤Av(β)

⊤)

)
+R(h2,y0)

= d log h+ log detΣΣ⊤ + log det

(
I+

h

2
(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)

)
+R(h2,y0)

= d log h+ log detΣΣ⊤ +
h

2
Tr(Av(β) +ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1) +R(h2,y0)

= d log h+ log detΣΣ⊤ + hTrAv(β) +R(h2,y0). (S1)

To prove (vi), repeat the previous reasoning on (iv). The proof of (vii) follows from det Ω̃h = detΩ
[RR]
h detΩ

[S|R]
h

and properties (v) and (vi).

Proof of Lemma 6.4 Using the same approximation as in the previous proof of (v), we obtain:

2 log |detDfh/2 (y;β) | = 2 log |det(I+ h

2
DN(y;β))|+R(h2,y)

= 2 log |1 + h

2
TrDN(y;β)|+R(h2,y)

= hTrDN(y;β) +R(h2,y) = hTrDvN(y;β) +R(h2,y). (S2)

In complete observation, put Ytk instead of y and use Itô’s lemma on N(Ytk) as in (S6). In partial observation, put
(Xtk ,∆hXtk+1

) instead of y and approximate N(Xtk ,∆hXtk+1
) as in (S7).

1
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Proof of Lemma 6.5 We use definition (6) and approximation (55), and plug them in (17) to obtain:

µ̃h(f̃h/2(y)) = eÃh(f̃h/2(y)− b̃) + b̃

=

(
I2d + hÃ+

h2

2
Ã2 +R(h3,y)

)
(f̃h/2(y)− b̃) + b̃

=

[
Id +

h2

2 Ax +R(h3,y) hId +
h2

2 Av +R(h3,y)

hAx +R(h2,y) Id + hAv +R(h2,y)

] [
x− b

v + h
2N(y) +R(h2,y)

]
+

[
b
0

]

=

[
x+ hv + h2

2 F(y) +R(h3,y)

v + h(F(y)− 1
2N(y)) +R(h2,y)

]
.

This concludes the proof.

To prove Proposition 6.6, we need the following lemma that provides expansion of ∆hXtk+1
−∆hXtk .

Lemma S1.1 For process ∆hXtk+1
(33) it holds:

∆hXtk+1
−∆hXtk =

√
hΣ0Uk,k−1 + hF0(Ytk−1

) +
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h2,Ytk−1
), (S3)

∆hXtk −Vtk−1
=

√
hΣ0ξ

′
k−1 +

h

2
F0(Ytk−1

) +
h3/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1 +R(h2,Ytk−1

). (S4)

Proof of Lemma S1.1 Proof of (S3). Equation (2) in integral form and (33) yield:

∆hXtk+1
−∆hXtk =

1

h

∫ tk+1

tk

Vt dt−
1

h

∫ tk

tk−1

Vt dt =
1

h

∫ tk+1

tk

(Vt −Vtk) dt+
1

h

∫ tk

tk−1

(Vtk −Vt) dt

=
1

h

∫ tk+1

tk

∫ t

tk

F0(Ys) dsdt+
1

h
Σ0

∫ tk+1

tk

∫ t

tk

dWs dt

+
1

h

∫ tk

tk−1

∫ tk

t

F0(Ys) dsdt+
1

h
Σ0

∫ tk

tk−1

∫ tk

t

dWs dt.

Apply Fubini’s theorem on double integrals to obtain:

∆hXtk+1
−∆hXtk =

1

h

∫ tk+1

tk

(tk+1 − t)F0(Yt) dt+
1

h

∫ tk

tk−1

(t− tk−1)F0(Yt) dt+
√
hΣ0Uk,k−1. (S5)

Applying Itô’s lemma on F0(Yt) yields the following approximation:

F0(Yt) = F0(Ytk) +DvF0(Ytk)Σ0

∫ t

tk

dWs +R(h,Ytk). (S6)

Plugging (S6) into (S5) gives:

∆hXtk+1
−∆hXtk = hF0(Ytk) +

1

h
DvF0(Ytk)Σ0

∫ tk+1

tk

∫ t

tk

(tk+1 − t) dWs dt

− 1

h
DvF0(Ytk)Σ0

∫ tk

tk−1

∫ tk

t

(t− tk−1) dWs dt+
√
hΣ0Uk,k−1 +R(h2,Ytk−1

).

Once again, apply Fubini’s theorem on the double integrals to get:
∫ tk+1

tk

∫ t

tk

(tk+1 − t) dWs dt =
1

2
h5/2ζ′k,

∫ tk

tk−1

∫ tk

t

(t− tk−1) dWs dt =
1

2
h5/2ζk−1.

So far, we have

∆hXtk+1
−∆hXtk =

√
hΣ0Uk,k−1 + hF0(Ytk) +

h3/2

2
DvF0(Ytk)Σ0(ζ

′
k − ζk−1) +R(h2,Ytk−1

).

To conclude the proof, use Itô’s lemma to get F0(Ytk) = F0(Ytk−1
) +

√
hDvF0(Ytk−1

)Σ0ηk−1 +R(h,Ytk−1
).

2
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Proof of (S4). As before, start with (33) and use (S6) to get:

∆hXtk −Vtk−1
=

1

h

∫ tk

tk−1

(tk − t)F0(Yt) dt+
1

h
Σ0

∫ tk

tk−1

(tk − t) dWt

=
√
hΣ0ξ

′
k−1 +

h

2
F0(Ytk−1

) +
1

h
DvF0(Ytk)Σ0

∫ tk

tk−1

∫ t

tk−1

(tk − t) dWs dt+R(h2,Ytk−1
).

This concludes the proof.

Proof of Proposition 6.6 The expansion of Z[S]
k,k−1 follows directly from Lemma 6.5 and S1.1. Indeed, it holds

Z
[S]
k,k−1(β) = Xtk −Xtk−1

− hVtk−1
− h2

2
F(Ytk−1

) +R(h3,Ytk−1
)

= h(∆hXtk −Vtk−1
)− h2

2
F(Ytk−1

) +R(h3,Ytk−1
).

To expand Z
[R]
k,k−1, we use definition (27) and approximations (58) and (60), as follows:

Z
[R]
k,k−1(β) = Vtk −Vtk−1

− hF(Ytk−1
)− h

2
(N(Ytk)−N(Ytk−1

)) +R(h2,Ytk−1
)

= Σ0

∫ tk

tk−1

dWt +

∫ tk

tk−1

F0(Yt) dt− hF(Ytk−1
)− h

2
(N(Ytk)−N(Ytk−1

)) +R(h2,Ytk−1
)

=
√
hΣ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h

2
(N(Ytk)−N(Ytk−1

))

+DvF0(Ytk−1
)Σ0

∫ tk

tk−1

∫ t

tk−1

dWs dt+R(h2,Ytk−1
).

In the last line, we used Itô’s lemma on F0(Yt) as in (S6). Again, apply Itô’s lemma on N(Ytk) to get:

Z
[R]
k,k−1(β) =

√
hΣ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0ηk−1

+ h3/2DvF0(Ytk−1
)Σ0ξ

′
k−1 +R(h2,Ytk−1

).

The expansion of Z[S]
k,k−1 follows from definition (36) and plugging (Xtk−1

,∆hXtk) in approximation (60):

Z
[S]

k+1,k,k−1(β) = Xtk −Xtk−1
− h∆hXtk − h2

2
F(Xtk−1

,∆hXtk) +R(h3,Ytk−1
)

= −h
2

2
F(Xtk−1

,∆hXtk) +R(h3,Ytk−1
).

Use Taylor’s formula on F(Xtk−1
,∆hXtk) to get

F(Xtk−1
,∆hXtk) = F(Ytk−1

) +DvF(Ytk−1
)(∆hXtk −Vtk−1

) +R(h2,Ytk−1
). (S7)

Now, the rest follows from Lemma S1.1.

Finally, to expand Z
[R]

k+1,k,k−1, start with definition (37) and approximations (58), and (60):

Z
[R]

k+1,k,k−1(β) = ∆hXtk+1
−∆hXtk − hF(Xtk−1

,∆hXtk)

− h

2
(N(Xtk ,∆hXtk+1

)−N(Xtk−1
,∆hXtk)) +R(h2,Ytk−1

).

Lemma S1.1 yields:

Z
[R]

k+1,k,k−1(β) =
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Xtk−1
,∆hXtk))

− h

2
(N(Xtk ,∆hXtk+1

)−N(Xtk−1
,∆hXtk)) +

h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 +R(h2,Ytk−1
).

3
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Apply Taylor’s formula on F(Xtk−1
,∆hXtk), N(Xtk ,∆hXtk+1

), and N(Xtk−1
,∆hXtk), to get:

Z
[R]

k+1,k,k−1(β) =
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h

2
(N(Ytk)−N(Ytk−1

))

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 −

h3/2

2
DvN(Ytk)Σ0ξ

′
k

+
h3/2

2
DvN(Ytk−1

))Σ0ξ
′
k−1 +R(h2,Ytk−1

).

Finally, applying Itô’s lemma on N(Ytk) yields

Z
[R]

k+1,k,k−1(β) =
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0ηk−1

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 −

h3/2

2
DvN(Ytk−1

)Σ0ξ
′
k

+
h3/2

2
DvN(Ytk−1

))Σ0ξ
′
k−1 +R(h2,Ytk−1

)

=
√
hΣ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0Uk,k−1

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1 +R(h2,Ytk−1

).

This concludes the proof.

Proof of Lemma 6.7 Combining Proposition 6.6 and property (ii) of Lemma 6.2 yields:

Z
[S|R]
k,k−1(β) = Z

[S]
k,k−1(β)−Ω

[SR]
h (θ)Ω

[RR]
h (θ)−1Z

[R]
k,k−1(β)

= h3/2Σ0ξ
′
k−1 +

h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1

−
(
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)

)(
h1/2Σ0ηk−1 + h(F0(Ytk−1

)− F(Ytk−1
))

−h
3/2

2
DvN(Ytk−1

)Σ0ηk−1 + h3/2DvF0(Ytk−1
)Σ0ξ

′
k−1)

)
+R(h3,Ytk−1

)

= h3/2Σ0ξ
′
k−1 +

h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

2
DvF0(Ytk−1

)Σ0ζ
′
k−1

− h3/2Σ0ηk−1 −
h2

2
(F0(Ytk−1

)− F(Ytk−1
)) +

h5/2

4
DvN(Ytk−1

)Σ0ηk−1

− h5/2

2
DvF0(Ytk−1

)Σ0ξ
′
k−1 +

h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0ηk−1 +R(h3,Ytk−1
).

Additionally,

Z
[S|R]

k+1,k,k−1(β) = Z
[S]

k,k−1(β)−Ω
[SR]
h (θ)Ω

[RR]
h (θ)−1Z

[R]

k+1,k,k−1(β)

= −h
2

2
F(Ytk−1

)− h5/2

2
DvF(Ytk−1

)Σ0ξ
′
k−1 −

(
h

2
I− h2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)

)

·
(
h1/2Σ0Uk,k−1 + h(F0(Ytk−1

)− F(Ytk−1
))− h3/2

2
DvN(Ytk−1

)Σ0Uk,k−1

+
h3/2

2
DvF0(Ytk−1

)Σ0Qk,k−1 − h3/2DvF(Ytk−1
)Σ0ξ

′
k−1

)
+R(h3,Ytk−1

)

= −h
2

2
F(Ytk−1

)− h5/2

2
DvF(Ytk−1

)Σ0ξ
′
k−1 − h3/2Σ0Uk,k−1 −

h2

2
(F0(Ytk−1

)− F(Ytk−1
))

+
h5/2

4
DvN(Ytk−1

)Σ0Uk,k−1 −
h5/2

4
DvF0(Ytk−1

)Σ0Qk,k−1 +
h5/2

2
DvF0(Ytk−1

)Σ0ξ
′
k−1

4
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+
h5/2

12
(Av −ΣΣ⊤Av(β)

⊤(ΣΣ⊤)−1)Σ0Uk,k−1 +R(h3,Ytk−1
).

S1.2 Proofs from Section 3

Before we start the proofs, we state the following ergodic property, which is proved in Kessler [1997] in case of
complete observations, and in Samson and Thieullen [2012] for both complete and partial observation.

Lemma S1.2 (Proposition 4 in Samson and Thieullen [2012]) Let Assumptions (A1), (A2) and (A3) hold, and let Y
be the solution to (3). Let g : R2d × Θ → R be a differentiable function with respect to y and θ with derivatives of
polynomial growth in y, uniformly in θ. If h→ 0 and Nh→ ∞, then,

1

N − 1

N∑

k=1

g (Ytk ;θ)
Pθ0−−−−−→

Nh→∞
h→0

∫
g (y;θ) dν0(y), (S8)

1

N − 2

N−1∑

k=1

g (Xtk ,∆hXtk ;θ)
Pθ0−−−−−→

Nh→∞
h→0

∫
g (y;θ) dν0(y), (S9)

uniformly in θ.

S1.3 Proof of consistency

Proof of Theorem 3.1 The proof of the consistency of the estimators follows a similar path as in Theorem 5.1 of
[Pilipovic et al., 2024]. With σ := vech(ΣΣ⊤) = ([ΣΣ⊤]11, [ΣΣ⊤]12, [ΣΣ⊤]22, ..., [ΣΣ⊤]1d, ..., [ΣΣ⊤]dd), we
half-vectorize ΣΣ⊤ to avoid working with tensors when computing derivatives with respect to ΣΣ⊤. Since ΣΣ⊤ is a
symmetric d× d matrix, σ is of dimension s = d(d+ 1)/2. For a diagonal matrix, instead of a half-vectorization, we
use σ := diag(ΣΣ⊤) and s = d in that case.

We start by finding the limits in Pθ0
of

1

N − 1
L[C·]
N (β,σ) and

1

N − 2
L[P·]
N (β,σ), (S10)

for Nh→ ∞, h→ 0, uniformly in θ. We apply Lemma 9 in Genon-Catalot and Jacod [1993] to prove the convergence
and use Proposition A1 in Gloter [2006] to prove the uniform convergence. For more detailed derivations, see proofs in
Pilipovic et al. [2024]. Taking the expectations of (69)- (74), we conclude that:

1

N − 1
L[CR]
N (β,σ) → log det(ΣΣ⊤) + Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 1
L[CS|R]
N (β,σ) → log det(ΣΣ⊤) + Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 1
L[CF]
N (β,σ) → 2 log det(ΣΣ⊤) + 2Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 2
L[PR]
N (β,σ) → 2

3
log det(ΣΣ⊤) +

2

3
Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 2
L[PS|R]
N (β,σ) → 2 log det(ΣΣ⊤) + 2Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

1

N − 2
L[PF]
N (β,σ) → 8

3
log det(ΣΣ⊤) +

8

3
Tr((ΣΣ⊤)−1ΣΣ⊤

0 ),

in Pθ0 , for Nh→ ∞, h→ 0, uniformly in θ. From here, the rest of the proof of consistency for Σ̂Σ
⊤[C·]
N and Σ̂Σ

⊤[P·]
N

is the same as in [Pilipovic et al., 2024]. The coefficients in front of log det terms in the partial observation setup
correspond to the correcting factors in definitions of objective functions (39)-(41). They are needed to match coefficients
in front of Tr terms that come from the forward difference’s under- or over-estimation of the noise effects.

To prove the consistency of the drift estimators β̂[CR]
N and β̂[PR]

N , we start by finding the limits in Pθ0 of

1

(N − 1)h
(L[CR]

N (β,σ)− L[CR]
N (β0,σ)) and

1

(N − 2)h
(L[PR]

N (β,σ)− L[PR]
N (β0,σ)), (S11)

5
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for Nh→ ∞, h→ 0, uniformly in θ. Starting with expressions (69) and (72) we get

1

(N − 1)h
(L[CR]

N (β,σ)− L[CR]
N (β0,σ)) =

2

(N − 1)
√
h

N∑

k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(F0(Ytk−1

)− F(Ytk−1
))

+
1

N − 1

N∑

k=1

(F0(Ytk−1
)− F(Ytk−1

))⊤(ΣΣ⊤)−1(F0(Ytk−1
)− F(Ytk−1

))

− 1

N − 1

N∑

k=1

η⊤
k−1Σ

⊤
0 Dv(F(Ytk−1

)− F0(Ytk−1
))⊤(ΣΣ⊤)−1Σ0ηk−1

+
1

N − 1

N∑

k=1

TrDv(F(Ytk)− F0(Ytk)),

1

(N − 2)h
(L[PR]

N (β,σ)− L[PR]
N (β0,σ)) =

2

(N − 2)
√
h

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(F0(Ytk−1

)− F(Ytk−1
))

+
1

N − 2

N−1∑

k=1

(F0(Ytk−1
)− F(Ytk−1

))⊤(ΣΣ⊤)−1(F0(Ytk−1
)− F(Ytk−1

))

− 1

N − 2

N−1∑

k=1

(Uk,k−1 + 2ξ′k−1)
⊤Σ⊤

0 Dv(F(Ytk−1
)− F0(Ytk−1

))⊤(ΣΣ⊤)−1Σ0Uk,k−1

+
1

N − 2

N−1∑

k=1

TrDv(F(Ytk)− F0(Ytk)).

To prove the convergence in probability of the previous two sequences, we use Lemma S1.2 and Lemma 9 in Genon-
Catalot and Jacod [1993]. To apply Lemma 9 from Genon-Catalot and Jacod [1993], we need to show that the sum of
expectations converges to a certain value, while the sum of covariances converges to zero. Here, we only show the
former. Moreover, standard tools like Proposition A1 in Gloter [2006] or Lemma 3.1 in Yoshida [1990] can be used to
prove uniform convergence. Thus, we just look at the expectation to find the limits of these sequences. We use the
known covariances (66) and (68) to get:

1

Nh
(L[·R]

N (β,σ)− L[·R]
N (β0,σ))

Pθ0−−−−−→
Nh→∞
h→0

∫
(F0(y)− F(y))⊤(ΣΣ⊤)−1(F0(y)− F(y)) dν0(y)

+

∫
Tr(Dv (F0 (y)− F (y)) (ΣΣ⊤

0 (ΣΣ⊤)−1 − I)) dν0(y). (S12)

Thus, the consistency of the drift estimator in the partial case coincides with the complete case when using rough
objective functions. This is because the right-hand side of (S12) is non-negative when ΣΣ⊤ = ΣΣ⊤

0 , and the left-hand
side is non-positive, following the definition of the likelihood. The remainder of the proof is analogous to that in
Pilipovic et al. [2024], and is therefore not repeated here.

Here, we also illustrate why the objective functions based on the conditional likelihood of smooth given rough
coordinates do not provide identifiable drift estimators. Starting with the complete observations objective function (70)
and using that Eθ0 [(ηk−1 − 2ξ′k−1)η

⊤
k−1|Ftk−1

] = 0, we conclude::

1

Nh
(L[CS|R]

N (β,σ)− L[CS|R]
N (β0,σ))

Pθ0−−−−−→
Nh→∞
h→0

0. (S13)

In the partial observation case, we need to add the term 4 log |detDvfh/2| in (31). Due to this correction, we obtain
the consistency of the drift estimator from the following derivations and the fact that the diffusion estimator converges
faster:

1

(N − 2)h
(L[PS|R]

N (β,σ)− L[PS|R]
N (β0,σ)) =

2

N − 2

N−1∑

k=1

TrDv(N(Ytk)−N0(Ytk))

+
3

N − 2

N−1∑

k=1

Tr((ΣΣ⊤)−1Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 Dv(N0(Ytk−1

)−N(Ytk−1
))⊤)

6
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Pθ0−−−−−→
Nh→∞
h→0

2

∫
Tr(Dv (N0 (y)−N (y)) (ΣΣ⊤

0 (ΣΣ⊤)−1 − I)) dν0(y).

Finally, the consistency of the estimators based on the full objective functions follows from the previous proofs, (71),
and (74). That concludes the proof of consistency.

Proof of Lemma 3.3 We start by proving the first part of the lemma, for both complete and partial cases using the
rough objective functions (69) and (72). First, we find their second derivatives with respect to β:

1

(N − 1)h
∂2β(i1)β(i2)L[CR]

N (Y0:tN ;θ) =
2

(N − 1)
√
h

N∑

k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1∂2β(i1)β(i2)F(Ytk−1

;β)

+
1

N − 1

N∑

k=1

TrDv∂
2
β(i1)β(i2)F(Ytk ;β) +

2

N − 1

N∑

k=1

∂β(i1)F(Ytk−1
;β)⊤(ΣΣ⊤)−1∂β(i2)F(Ytk−1

;β)

− 2

N − 1

N∑

k=1

∂2β(i1)β(i2)F(Ytk−1
;β)⊤(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

− 1

N − 1

N∑

k=1

η⊤
k−1Σ

⊤
0 Dv∂

2
β(i1)β(i2)F(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0ηk−1,

1

(N − 2)h
∂2β(i1)β(i2)L[PR]

N (Y0:tN ;θ) =
2

(N − 2)
√
h

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1∂2β(i1)β(i2)F(Ytk−1

;β)

+
1

N − 2

N−1∑

k=1

TrDv∂
2
β(i1)β(i2)F(Ytk ;β) +

2

N − 2

N−1∑

k=1

∂β(i1)F(Ytk−1
;β)⊤(ΣΣ⊤)−1∂β(i2)F(Ytk−1

;β)

− 2

N − 2

N−1∑

k=1

∂2β(i1)β(i2)F(Ytk−1
;β)⊤(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

− 1

N − 2

N−1∑

k=1

(Uk,k−1 + 2ξ′k−1)
⊤Σ⊤

0 Dv∂
2
β(i1)β(i2)F(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1.

As in the proof of consistency, it holds:

1

Nh
∂2β(i1)β(i2)L[·R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 2

∫
∂β(i1)F0(y)

⊤(ΣΣ⊤)−1∂β(i2)F0(y) dν0(y).

Now, we investigate the limit of 1
(N−1)

√
h
∂2
β(i1)σ(j2)L[CR]

N (θ) and ∂2
β(i1)σ(j2)L[PR]

N (θ):

1

(N − 1)
√
h
∂2β(i1)σ(j2)L[CR]

N (Y0:tN ;θ) = − 2

N − 1

N∑

k=1

η⊤
k−1Σ

⊤
0 ∂σ(j2)(ΣΣ⊤)−1∂β(i1)F(Ytk−1

;β)

+
1

N − 1

N∑

k=1

R(
√
h,Ytk−1

)

1

(N − 2)
√
h
∂2β(i1)σ(j2)L[PR]

N (Y0:tN ;θ) = − 2

N − 2

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 ∂σ(j2)(ΣΣ⊤)−1∂β(i1)F(Ytk−1

;β)

+
1

N − 2

N−1∑

k=1

R(
√
h,Ytk−1

)

Both previous sequences converge to zero due to Lemma 9 in Genon-Catalot and Jacod [1993]. Next, we look at the
limits of 1

N−1∂
2
σ(j1)σ(j2)L[CR]

N (θ) and 1
N−2∂

2
σ(j1)σ(j2)L[PR]

N (θ):

1

N − 1
∂2σ(j1)σ(j2)L[CR]

N (Y0:tN ;θ) = ∂2σ(j1)σ(j2) log det(ΣΣ⊤)

7
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+
1

N − 1

N∑

k=1

∂2σ(j1)σ(j2) Tr(Σ0ηk−1η
⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1) +

1

N − 1

N∑

k=1

R(
√
h,Ytk−1

)

= Tr((ΣΣ⊤)−1∂2σ(j1)σ(j2)ΣΣ⊤)− Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤)

− 1

N − 1

N∑

k=1

Tr(Σ0ηk−1η
⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂2σ(j1)σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 1

N∑

k=1

Tr(Σ0ηk−1η
⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 1

N∑

k=1

Tr(Σ0ηk−1η
⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 1

N∑

k=1

R(
√
h,Ytk−1

),

1

N − 2
∂2σ(j1)σ(j2)L[PR]

N (Y0:tN ;θ) =
2

3
∂2σ(j1)σ(j2) log det(ΣΣ⊤)

+
1

N − 2

N−1∑

k=1

∂2σ(j1)σ(j2) Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1) +

1

N − 2

N−1∑

k=1

R(
√
h,Ytk−1

)

=
2

3
Tr((ΣΣ⊤)−1∂2σ(j1)σ(j2)ΣΣ⊤)− 2

3
Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤)

− 1

N − 2

N−1∑

k=1

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂2σ(j1)σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 2

N−1∑

k=1

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 2

N−1∑

k=1

Tr(Σ0Uk,k−1U
⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j2)ΣΣ⊤)(ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1)

+
1

N − 2

N−1∑

k=1

R(
√
h,Ytk−1

).

Using the second moments of ηk−1 and Uk,k−1 with additional calculations, we can conclude that:
1

N − 1
∂2σ(j1)σ(j2)L[CR]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤),

1

N − 2
∂2σ(j1)σ(j2)L[PR]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 2

3
Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤).

To extend the previous results on the objective functions (70) and (73), we start by acknowledging that
1

Nh
∂2β(i1)β(i2)L[·S|R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 0.

The reasons behind this are the same as in the proof of consistency. The same can be said for the limit of
1

N
√
h
∂βσL[·S|R]

N (θ). Finally, repeating the same derivations as before, we get:

1

N − 1
∂2σ(j1)σ(j2)L[CS|R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤),

1

N − 2
∂2σ(j1)σ(j2)L[PS|R]

N (Y0:tN ;θ)
∣∣∣
θ=θ0

Pθ0−−→ 2Tr((ΣΣ⊤)−1(∂σ(j1)ΣΣ⊤)(ΣΣ⊤)−1∂σ(j2)ΣΣ⊤).

This concludes the first part of the lemma. The second part follows from the fact that all limits are continuous in θ.

To prove Lemma 3.4, we state another useful property that provides a general formula to calculate moments of a product
of two quadratic forms with Gaussian vectors.

8
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Lemma S1.3 Let (αk)
N
k=1, (βk)

N
k=1, be two sequences of independent Ftk+1

-measurable Gaussian random variables
with mean zero. If Eθ0

[αk−1β
⊤
k−1 | Ftk−1

] is diagonal, and A and B are two symmetric positive definite matrices,
then:

Eθ0
[α⊤

k−1Aαk−1β
⊤
k−1Bβk−1 | Ftk−1

] = 2Tr(Eθ0
[αk−1β

⊤
k−1 | Ftk−1

]AEθ0
[αk−1β

⊤
k−1 | Ftk−1

]B)

+ Tr(AEθ0
[αk−1α

⊤
k−1 | Ftk−1

]) Tr(BEθ0
[βk−1β

⊤
k−1 | Ftk−1

]).

Proof We start with

Eθ0
[α⊤

k−1Aαk−1β
⊤
k−1Bβk−1 | Ftk−1

] =
d∑

i,j,l,m=1

AijBlmEθ0
[α

(i)
k−1α

(j)
k−1β

(l)
k−1β

(m)
k−1 | Ftk−1

]

=

d∑

i,j,l,m=1

AijBlm cov(α
(i)
k−1α

(j)
k−1, β

(l)
k−1β

(m)
k−1) (S14)

+

d∑

i,j,l,m=1

AijBlmEθ0 [α
(i)
k−1α

(j)
k−1 | Ftk−1

]Eθ0 [β
(l)
k−1β

(m)
k−1 | Ftk−1

].

We compute (S14) using the formula for the covariance of products of centered Gaussian random variables [Bohrnstedt
and Goldberger, 1969]. Then we get

Eθ0
[α⊤

k−1Aαk−1β
⊤
k−1Bβk−1 | Ftk−1

] =
d∑

i,j,l,m=1

AijBlmEθ0
[α

(i)
k−1β

(l)
k−1 | Ftk−1

]Eθ0
[α

(j)
k−1β

(m)
k−1 | Ftk−1

]

+
d∑

i,j,l,m=1

AijBlmEθ0
[α

(i)
k−1β

(m)
k−1 | Ftk−1

]Eθ0
[α

(j)
k−1β

(l)
k−1 | Ftk−1

]

+

d∑

i,j,l,m=1

AijBlmEθ0 [α
(i)
k−1α

(j)
k−1 | Ftk−1

]Eθ0 [β
(l)
k−1β

(m)
k−1 | Ftk−1

]

= 2

d∑

i,j=1

AijBijEθ0 [α
(i)
k−1β

(i)
k−1 | Ftk−1

]Eθ0 [α
(j)
k−1β

(j)
k−1 | Ftk−1

]

+
d∑

i,j=1

AiiBjjEθ0
[α

(i)
k−1α

(i)
k−1 | Ftk−1

]Eθ0
[β

(j)
k−1β

(j)
k−1 | Ftk−1

].

That concludes the proof.

Applying the previous Lemma to our setup, corollary S1.4 follows immediately.

Corollary S1.4 Let (ηk)Nk=1, (ξk)Nk=1, (ξ′k)
N
k=1 be random sequences as defined in (61) and (62). Let Bj1 and Bj2 be

two symmetric positive definite matrices. Then, it holds:

Eθ0 [η
⊤
k−1Bj1ηk−1η

⊤
k−1Bj2ηk−1 | Ftk−1

] = 2Tr(Bj1Bj2) + TrBj1 TrBj2 , (S15)

Eθ0 [ξ
⊤
k−1Bj1ξk−1ξ

⊤
k−1Bj2ξk−1 | Ftk−1

] =
2

9
Tr(Bj1Bj2) +

1

9
TrBj1 TrBj2 , (S16)

Eθ0 [ξ
′⊤
k−1Bj1ξ

′
k−1ξ

′⊤
k−1Bj2ξ

′
k−1 | Ftk−1

] =
2

9
Tr(Bj1Bj2) +

1

9
TrBj1 TrBj2 , (S17)

Eθ0 [ξ
⊤
k−1Bj1ξk−1ξ

′⊤
k−1Bj2ξ

′
k−1 | Ftk−1

] =
1

18
Tr(Bj1Bj2) +

1

9
TrBj1 TrBj2 . (S18)

Proof of Lemma 3.4 To prove the lemma, we need to compute λ[obj]
N . The main part of the proof focuses only on the

rough estimators, while at the end of the proof we discuss how the same ideas can be adapted for other estimators. Thus,
we start with − 1√

Nh
∂β(i)L[·R]

N :

− 1√
(N − 1)h

∂β(i)L[CR]
N (Y0:tN ;θ) =

2√
N − 1

N∑

k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1∂β(i)F(Ytk−1

;β)

9
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+ 2

√
h

N − 1

N∑

k=1

∂β(i)F(Ytk−1
;β)⊤(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+

√
h

N − 1

N∑

k=1

η⊤
k−1Σ

⊤
0 Dv∂β(i)F(Ytk−1

;β)⊤(ΣΣ⊤)−1Σ0ηk−1 −
√

h

N − 1

N∑

k=1

TrDv∂β(i)F(Ytk ;β),

− 1√
(N − 2)h

∂β(i)L[PR]
N (Y0:tN ;θ) =

2√
N − 2

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1∂β(i)F(Ytk−1

;β)

+ 2

√
h

N − 2

N−1∑

k=1

∂β(i)F(Ytk−1
;β)⊤(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+

√
h

N − 2

N−1∑

k=1

(Uk,k−1 + 2ξk−1)
⊤Σ⊤

0 Dv∂β(i)F(Ytk−1
;β)⊤(ΣΣ⊤)−1Σ0Uk,k−1

−
√

h

N − 2

N−1∑

k=1

TrDv∂β(i)F(Ytk ;β).

Similarly, for − 1√
N
∂σ(j)L[·R]

N , we get:

− 1√
(N − 1)

∂σ(j)L[CR]
N (Y0:tN ;θ) = − 1√

N − 1

N∑

k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
1√
N − 1

N∑

k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0ηk−1

+ 2

√
h

N − 1

N∑

k=1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+
N∑

k=1

R(
h√
N
,Ytk−1

),

− 1√
(N − 2)

∂σ(j)L[PR]
N (Y0:tN ;θ) = − 2

3
√
N − 2

N−1∑

k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
1√
N − 2

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0Uk,k−1

+ 2

√
h

N − 2

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1(F(Ytk−1

;β0)− F(Ytk−1
;β))

+
N−1∑

k=1

R(
h√
N
,Ytk−1

).

To prove the convergence in distribution of λ[·R]
N , we introduce the following triangular arrays that arise from the

previous calculations:

ϕ
[CR](i)
N,k−1 (θ0) :=

2√
N − 1

η⊤
k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) (S19)

+

√
h

N − 1
(Tr(Σ0ηk−1η

⊤
k−1Σ

⊤
0 Dv∂β(i)F0(Ytk−1

)⊤(ΣΣ⊤
0 )

−1)− TrDv∂β(i)F0(Ytk−1
)),

ϕ
[PR](i)
N,k−1 (θ0) :=

2√
N − 2

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) (S20)

+

√
h

N − 2
(Tr(Σ0Uk,k−1(Uk,k−1 + 2ξ′k−1)

⊤Σ⊤
0 Dv∂β(i)F0(Ytk−1

)⊤(ΣΣ⊤
0 )

−1)− TrDv∂β(i)F0(Ytk)),

10
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ρ
[CR](j)
N,k−1 (θ0) :=

1√
N − 1

(η⊤
k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0ηk−1 − Tr((ΣΣ⊤
0 )

−1∂σ(j)ΣΣ⊤
0 )), (S21)

ρ
[PR](j)
N,k−1 (θ0) :=

1√
N − 2

(U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0Uk,k−1 −
2

3
Tr((ΣΣ⊤

0 )
−1∂σ(j)ΣΣ⊤

0 )).

(S22)

Then, λ[·R]
N rewrites as:

λ
[·R]
N =

N∑

k=1




ϕ
[·R](1)
N,k−1(θ0)

...
ϕ

[·R](r)
N,k−1(θ0)

ρ
[·R](1)
N,k−1(θ0)

...
ρ
[·R](s)
N,k−1(θ0)




+
1

N

N∑

k=1

R(
√
Nh2,Ytk−1

). (S23)

Thus, to establish estimators’ asymptotic normality, we need an extra convergence condition Nh2 → 0. This is common
in literature, and it is necessary for most estimators.

To finish the proof, we apply the central limit theorem for martingale difference arrays (Proposition 3.1 in Crimaldi and
Pratelli [2005]). However, we can not apply the same reasoning in complete and partial observation cases.

First, we notice that in both complete and partial cases, ϕ[·R](i)
N,k−1(θ0) and ρ[·R](j)

N,k−1(θ0) are centered conditionally to

Ftk−1
. Moreover, in the complete case, ϕ[CR](i)

N,k−1 (θ0) and ρ[CR](j)
N,k−1 (θ0) are adapted to the filtration Ftk . Thus, the proof

follows directly by applying Proposition 3.1 in Crimaldi and Pratelli [2005]. This proposition assumes a martingale
difference array centered conditionally to Ftk−1

and Ftk -measurable.

In the partial observation case, Uk,k−1 is Ftk+1
-measurable as it depends on random variables ξk−1 and ξ′k. Conse-

quently, to apply Proposition 3.1 in Crimaldi and Pratelli [2005], it is not enough for ϕ[PR](i)
N,k−1 (θ0) and ρ[PR](j)

N,k−1 (θ0) to
be centered conditionally to Ftk−1

, they also need to be centered conditionally to Ftk . The previous condition, however,
does not hold. Thus, we use the idea of reordering the sum in λ[PR]

N (S23) to obtain the Ftk -measurable and centered
conditionally on Ftk−1

, as proposed by Gloter [2000, 2006] and later used by Samson and Thieullen [2012].

First, use Lemma 9 from Genon-Catalot and Jacod [1993] to notice that:
N−1∑

k=1

ϕ
[PR](i)
N,k−1 (θ0) =

2√
N − 2

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + oPθ0
(1).

Then, reorder the sum of ϕ[PR](i)
N,k−1 (θ0) as follows:

N−1∑

k=1

ϕ
[PR](i)
N,k−1 (θ0) =

2√
N − 2

(
ξ⊤0 Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Yt0) + ξ

′⊤
N−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(YtN−2

)
)

+
2√
N − 2

N−1∑

k=2

(
ξ⊤k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + ξ′⊤k−1Σ
⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−2

)
)
+ oPθ0

(1)

=
2√
N − 2

N−1∑

k=2

(
ξ⊤k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + ξ′⊤k−1Σ
⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−2

)
)
+ oPθ0

(1).

Now, the triangular arrays under the sum are centered conditionally on Ftk−1
and Ftk measurable. Thus, define:

ϕ
⋆[PR](i)
N,k−1 (θ0) :=

2√
N − 2

(
ξ⊤k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−1

) + ξ′⊤k−1Σ
⊤
0 (ΣΣ⊤

0 )
−1∂β(i)F0(Ytk−2

)
)
.

To apply Proposition 3.1 from Crimaldi and Pratelli [2005], we need the following limits in probability:

N−1∑

k=2

Eθ0
[ϕ

⋆[PR](i1)
N,k−1 (θ0)ϕ

⋆[PR](i2)
N,k−1 (θ0) | Ftk−1

]
Pθ0−−→ 4[Cβ(θ0)]i1i2 ,

11
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N−1∑

k=2

Eθ0
[(ϕ

⋆[PR](i1)
N,k−1 (θ0)ϕ

⋆[PR](i2)
N,k−1 )2(θ0) | Ftk−1

]
Pθ0−−→ 0.

The first limit follows from properties (66) and (67). The second limit follows due to an additional order of 1/N .

When looking at ρ[·R](j)
N,k−1, we repeat the same reasoning. For notational simplicity, start with defining:

Bj(θ0) := Σ0(ΣΣ⊤
0 )

−1(∂σ(j)ΣΣ⊤
0 )(ΣΣ⊤

0 )
−1Σ0.

It follows immediately that Tr(Bj(θ0)) = Tr((ΣΣ⊤
0 )

−1∂σ(j)ΣΣ⊤
0 ). Again, reorder the sum of ρ[PR](j)

N,k−1 (θ0) as
follows:
N−1∑

k=1

ρ
[PR](j)
N,k−1 (θ0) =

1√
N − 2

N−1∑

k=1

(U⊤
k,k−1Bj(θ0)Uk,k−1 −

2

3
Tr(Bj(θ0)))

=
1√
N − 2

N−1∑

k=2

(
ξ⊤k−1Bj(θ0)ξk−1 + 2ξ⊤k−2Bj(θ0)ξ

′
k−1 + ξ

′⊤
k−1Bj(θ0)ξ

′
k−1 −

2

3
Tr(Bj(θ0))

)

+
1√
N − 2

(
ξ⊤0 Bj(θ0)ξ0 + 2ξ⊤N−2Bj(θ0)ξ

′
N−1 + ξ

′⊤
N−1Bj(θ0)ξ

′
N−1 −

2

3
Tr(Bj(θ0))

)
.

Since the last term in the previous equation is oPθ0
(1), we focus only on:

ρ
⋆[PR](j)
N,k−1 (θ0) :=

1√
N − 2

(
ξ⊤k−1Bj(θ0)ξk−1 + 2ξ⊤k−2Bj(θ0)ξ

′
k−1 + ξ

′⊤
k−1Bj(θ0)ξ

′
k−1 −

2

3
Tr(Bj(θ0))

)
.

Notice that ρ⋆[PR](j)
N,k−1 (θ0) is Ftk measurable and centered conditionally on Ftk−1

. Again, to apply Proposition 3.1 from
Crimaldi and Pratelli [2005], we need the following limits in probability:

N−1∑

k=2

Eθ0
[ρ

⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 (θ0) | Ftk−1

]
Pθ0−−→ [Cσ(θ0)]j1j2 ,

N−1∑

k=2

Eθ0 [(ρ
⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 )2(θ0) | Ftk−1

]
Pθ0−−→ 0.

Once again, the second limit follows trivially. To prove the first limit, start by noticing that:

Eθ0 [ξ
⊤
k−1Bj(θ0)ξk−1 | Ftk−1

] = Eθ0 [ξ
′⊤
k−1Bj(θ0)ξ

′
k−1 | Ftk−1

] =
1

3
Tr(Bj(θ0)).

Then, we multiply the expectation with N − 2 for notational simplicity and compute:

(N − 2)Eθ0
[ρ

⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 (θ0) | Ftk−1

]

= Eθ0
[ξ⊤k−1Bj1(θ0)ξk−1ξ

⊤
k−1Bj2(θ0)ξk−1 | Ftk−1

] + 4Eθ0
[ξ⊤k−2Bj1(θ0)ξ

′
k−1ξ

⊤
k−2Bj2(θ0)ξ

′
k−1 | Ftk−1

]

+ Eθ0 [ξ
′⊤
k−1Bj1(θ0)ξ

′
k−1ξ

′⊤
k−1Bj2(θ0)ξ

′
k−1 | Ftk−1

] + Eθ0 [ξ
⊤
k−1Bj1(θ0)ξk−1ξ

′⊤
k−1Bj2(θ0)ξ

′
k−1 | Ftk−1

]

+ Eθ0 [ξ
′⊤
k−1Bj1(θ0)ξ

′
k−1ξ

⊤
k−1Bj2(θ0)ξk−1 | Ftk−1

]− 4

9
Tr(Bj1(θ0)) Tr(Bj2(θ0)). (S24)

Applying Corollary S1.4 on (S24) yields:
N−1∑

k=2

Eθ0
[ρ

⋆[PR](j1)
N,k−1 (θ0)ρ

⋆[PR](j2)
N,k−1 (θ0) | Ftk−1

] =
5

9
Tr(Bj1(θ0)Bj2(θ0))

+
4

3

1

N − 2

N−1∑

k=2

ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2.

Once again, applying Proposition 3.1 from Crimaldi and Pratelli [2005] yields:

4

3

1

N − 2

N−1∑

k=2

ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2

Pθ0−−→ 4

9
Tr(Bj1(θ0)Bj2(θ0)),

12
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since

1

N − 2

N−1∑

k=2

Eθ0
[ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2 | Ftk−2

]
Pθ0−−→ 1

3
Tr(Bj1(θ0)Bj2(θ0)),

1

(N − 2)2

N−1∑

k=2

Eθ0
[(ξ⊤k−2Bj1(θ0)Bj2(θ0)ξk−2)

2 | Ftk−2
]

Pθ0−−→ 0.

This concludes the convergence in distribution of λ[PR]
N .

To find the asymptotic distributions of λ[·S|R]
N , the main issue is the fact that − 1√

Nh
∂β(i)L[·S|R]

N → 0 in probability. The

proof of this follows the same ideas as in the proof of consistency. Thus, we focus only on − 1√
N
∂σ(j)L[·S|R]

N . This

is then used together with equations (71) and (74) to obtain the asymptotic distributions of λ[·F]
N . Thus, we start with

− 1√
N
∂σ(j)L[·S|R]

N :

− 1√
(N − 1)

∂σ(j)L[CS|R]
N (Y0:tN ;θ) = − 1√

N − 1

N∑

k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
3√
N − 1

N∑

k=1

(ηk−1 − 2ξ′k−1)
⊤Σ⊤

0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0(ηk−1 − 2ξ′k−1) +
N∑

k=1

R(
h√
N
,Ytk−1

),

− 1√
(N − 2)

∂σ(j)L[PS|R]
N (Y0:tN ;θ) = − 2√

N − 2

N−1∑

k=1

Tr((ΣΣ⊤)−1∂σ(j)ΣΣ⊤)

+
3√
N − 2

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1Σ0Uk,k−1

− 6

√
h

N − 2

N−1∑

k=1

U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1F(Ytk−1

;β0) +
N−1∑

k=1

R(
h√
N
,Ytk−1

).

Once again, we define:

ρ
[CS|R](j)
N,k−1 (θ0) :=

1√
N − 1

(
3(ηk−1 − 2ξ′k−1)

⊤Σ⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0(ηk−1 − 2ξ′k−1)

− Tr((ΣΣ⊤
0 )

−1∂σ(j)ΣΣ⊤
0 )

)
, (S25)

ρ
[PS|R](j)
N,k−1 (θ0) :=

3√
N − 2

(U⊤
k,k−1Σ

⊤
0 (ΣΣ⊤

0 )
−1(∂σ(j)ΣΣ⊤

0 )(ΣΣ⊤
0 )

−1Σ0Uk,k−1 −
2

3
Tr((ΣΣ⊤

0 )
−1∂σ(j)ΣΣ⊤

0 ))

− 6

√
h

N − 2
U⊤

k,k−1Σ
⊤
0 (ΣΣ⊤)−1(∂σ(j)ΣΣ⊤)(ΣΣ⊤)−1F0(Ytk−1

). (S26)

We skip the proof of the complete case, but it can be shown analogously that:
N∑

k=1

Eθ0
[ρ

[PS|R](j1)
N,k−1 (θ0)ρ

[PS|R](j2)
N,k−1 (θ0) | Ftk−1

]
Pθ0−−→ [Cσ(θ0)]j1j2 ,

N∑

k=1

Eθ0
[(ρ

[PS|R](j1)
N,k−1 (θ0)ρ

[PS|R](j2)
N,k−1 )2(θ0) | Ftk−1

]
Pθ0−−→ 0.

Focusing on the partial case, we first notice:

ρ
[PS|R](j)
N,k−1 (θ0) = 3ρ

[PR](j)
N,k−1 (θ0) + oPθ0

(1).

Thus, the same derivations from before hold. Moreover,

ρ
[PF](j)
N,k−1 (θ0) = 4ρ

[PR](j)
N,k−1 (θ0) + oPθ0

(1),

which concludes the proof.
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