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ENGLISH ABSTRACT

This thesis consists of four independent articles. The overarching
theme, arithmetic intersections, will present itself from very distinct
angles.

Article [HM23] is an outlier in the sense that it is local in na-
ture. It proves a conjectural identity between intersection numbers
on Rapoport-Zink spaces and central derivatives of local orbital inte-
grals, known as an arithmetic fundamental lemma(AFL), in the case
of general linear groups over the quaternion division algebra.

Articles [Hul23], [Hul24] and [DHS24] belong to the field of Arakelov
geometry. Article [Hul23] studies arithmetic properties of algebraic
extensions of Q through its Northcott number. We extend finiteness
results from fields satisfying the Northcott property to fields with big
enough Northcott number and provide examples of infinite extensions
of Q with finitely many CM points.

In Article [Hul24], we study the Arakelov geometry of toric bundles
in a systematic way. The purpose is two-fold. On one hand it pro-
vides us with a new class of examples that can be studied explicitly.
On the other, toric bundles contain many varieties of interest such as
semiabelian varieties and their compactifications. We compute the Ok-
ounkov body and Boucksom-Chen transform of toric line bundles on
toric bundles in terms of information on the base. We prove a for-
mula for intersection numbers in terms of convex geometry data, an
arithmetic relative BKK theorem.

Lastly, we study arithmetic intersection numbers in families in Arti-
cle [DHS24]. We associate to finite type schemes over globally valued
fields topological spaces and prove continuity of arithmetic intersection
numbers on them. We apply this to prove a conjecture of Gualdi and
Sombra on the height of complete intersections in toric varieties.





DANSK ABSTRACT

Denne afhandling best̊ar af fire uafhængige artikler. Deres fælles
emne, aritmetisk snitteori, præsenterer sig fra vidt forskellige vinkler.
Artikel [HM23] afviger fra de andre artikler, idet det behandlede

spørgsmål er lokalt. Den beviser en formodet identitet mellem snittal
p̊a Rapoport-Zink-rum og centrale afledninger af lokale orbitalinte-
graler, kendt som et aritmetisk fundamentalt lemma (AFL), i tilfælde
af generelle linære grupper over en kvaternion divisionsalgebra.
Artiklerne [Hul23], [Hul24] og [DHS24] hører til feltet Arakelov ge-

ometri. Artikel [Hul23] behandler aritmetiske egenskaber af algebraiske
udvidelser af Q ved hjælp af deres Northcott-tal. Vi udvider ende-
lighedsresultater fra legemer med Northcott-egenskaben til legemer
med tilstrækkeligt stort Northcott-tal og giver eksempler p̊a uendelige
algebraiske udvidelser af Q med endelig mange CM punkter.

I Artikel [Hul24], undersøger vi Arakelov geometrien af toriske bundter
p̊a systematisk vis. Det har to primære form̊al. For det første er toriske
bundter en ny klasse af eksempler, som kan undersøges eksplicit. For det
andet, findes der eksempler p̊a toriske bundter af uafhængig interesse,
s̊asom semiabelske varieteter og deres kompaktificeringer. Vi beregner
Okounkov-legemerne og Boucksom-Chen-transformationerne af toriske
linjebundter p̊a toriske bundter i afhængighed af information om basen.
Vi beviser en konveks-geometrisk formel for snittal, en relativ aritmetisk
BKK-sætning.

Til sidst, undersøger vi aritmetiske snittal i familier i Artikel [DHS24].
Vi associerer topologiske rum til skemaer af endelig type over globalt
valuerede legemer og beviser kontinuiteten af det aritmetiske snittal
p̊a dem. Vi andvender det til at bevise en formodning af Gualdi og
Sombra om højden af transverse snit i toriske varieteter.
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INTRODUCTION

This thesis consists of four independent articles. The overarching theme, arith-
metic intersections, will present itself from very distinct angles. The aim of this
introduction is to shine a light on the connections that nonetheless exist. For a
summary and statement of the results contained in each of the articles we refer to
the respective introductions.

The starting point of much of modern number theory is the observation that
the rational numbers Q share many properties of function fields of curves. Just
as any meromorphic function on a complete curve has the same number of zeroes
and poles, any f ∈ Q× satisfies the product formula∏

p∈MQ

|f |p = 1,

where the product goes over all normalized absolute values of Q. This suggests
considering the usual absolute value as corresponding to a further prime ∞. The
natural next step is to study varieties over Q using relative algebraic geometry and
intersection theory over SpecZ ∪ {∞}.1

The first instance of such an extension of algebraic geometry goes back to
Arakelov who introduced intersections on arithmetic surfaces in [Ara76]. Faltings
applied the newly developed Arakelov geometry to prove Mordell’s conjecture, see
[Fal83]. Arakelov geometry was later extended by Gillet and Soulé to varieties of
arbitrary dimension.

1. Heights. An implicit application of arithmetic intersection theory predating
Arakelov geometry can be found in the theory of Weil heights. Let us explain
them from a geometric point of view.

Let X be a projective variety over Q and L a line bundle over X. Imagine
that X is a proper model of X over SpecZ ∪ {∞} and L is a model of L over X .

Then, to any closed point x ∈ X corresponds a curve {x} ⊂ X . The height of

ξ ∈ X(Q̄) is defined as ht(x) = d̂egL({x})
degL(x)

, where x is the underlying closed point

of ξ. However, before the advent of arithmetic intersection theory there was no
way to make sense of what it means to choose a model of L. Still, the Weil height
machine allowed to associate to the pair (X,L) an equivalence class of functions
h : X(Q̄) → R, where two functions are deemed equivalent if they differ by a
bounded function. Due to Northcott’s theorem this is often sufficient in order to
prove finiteness results.

1This is not a well-defined mathematical object. The notation is only used as an analogy to
help build intuition.
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2 INTRODUCTION

Theorem 1.1 (Northcott). Let X be a projective variety over a number field K.
Let L be an ample line bundle on X and hL a Weil height for L, i.e. a function
hL : X(Q̄) → R in the equivalence class of functions associated to L by the Weil
height machine. Then, for any C ∈ R the set

{x ∈ X(K)|hL(x) < C}

is finite.

A particularly important example of a height is the logarithmic Weil height.

Definition 1.2. Let K be a number field and MK the set of normalized absolute
values. By normalized we understand that they extend the absolute values on Qp

and R respectively. The logarithmic Weil height of a point x = [x0 : · · · : xn] ∈
Pn(K) is defined as

h(x) =
∑
v∈MK

[Kv : Qv]

[K : Q]
max{log |x0|v, . . . , log |xn|}.

Note that the above sum is finite and doesn’t depend on the choice of represent-
ative. For x ∈ Pn(Q̄) we define the Weil height by choosing a number field K over
which x is defined. The height does not depend on the choice of K. We define the
Weil height on Q̄ by viewing it as a subset of P1(Q̄).

This means that in order to show finiteness results for points over number fields
it suffices to give height bounds. Going beyond the Weil height machine allows us
to study the height properties of algebraic extensions of Q that do not satisfy the
conclusion of Northcott’s theorem, the Northcott property.

Definition 1.3 (Northcott number). For a subset S ⊆ Q̄ of the algebraic numbers
we define the Northcott number of S with respect to a function f : Q̄ → [0,∞) as

Nf (S) = inf{t ∈ [0,∞)|#{α ∈ S; f(α) < t} = ∞}.

We follow the convention that inf ∅ = ∞. We call Nf (S) ∈ [0,∞] the Northcott
number of S.

In the first article of this thesis we study the arithmetic implications of bounds
on Northcott numbers, when we choose f to be the logarithmic Weil height h or the
weighted Weil height degγ h for γ ∈ R. The algebraic extensions with prescribed
Northcott number constructed in [PTW21] and [OS22] provide us with examples
of fields with few small points in various senses of the word. The following theorem
illustrates such an application.

Theorem 1. There are uncountably many algebraic field extensions of Q contain-
ing only finitely many CM j-invariants.
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2. Arithmetic fundamental lemma and height pairings. The topic of the
arithmetic fundamental lemma stands out within the thesis as a completely local
question. However, its global motivations are closely related to Arakelov geometry.
For a survey on the context of the arithmetic fundamental lemma we refer to
[Zha24] which has inspired the following short overview.

Let X be a smooth projective variety over a number field F . Denote by CH i(X)
the codimension i Chow group. Let H denote a Weil cohomology theory. Then,
there is a cycle class map c : CH i(X) → H2i(X) and we define the group of
homologically trivial cycles CH i(X)0 as ker(c). For i + j = dimX + 1, Beilinson
and Bloch conjecture the existence of a height pairing

CH i(X)0 × CHj(X)0 → R.

This is defined conditionally on the existence of a proper regular integral model and
the special fibres satisfying the standard conjectures. Note that Grothendieck’s
standard conjectures are stated for smooth projective varieties and the special
fibres might be singular. We hence need to be more specific about this condition.
Specifically, we assume the model has strictly semistable reduction and its strata
satisfy the standard conjectures, i.e. the intersection of any collection of irreducible
components of the special fibre is smooth projective and satisfies the standard
conjectures.

The Arakelov intersection theory of Gillet-Soulé provides one strategy to con-
struct such a pairing. Let X be a regular integral model. Then, there is an
intersection pairing

ĈH
i
(X ) × ĈH

j
(X ) → R

for i + j = dimX + 1. We would then like to extend homologically trivial cycles
in a flat way. Note that this makes complete sense for divisors, i.e. we require the
metrics at all places to be flat. On curves, this allows us to recover the Néron-Tate
pairing.

The Beilinson-Bloch conjectures relate the height pairing to special values of
motivic L-functions associated to X, thus generalizing the BSD conjecture. For
special cycles on Shimura varieties one can apply automorphic methods such as
(arithmetic) relative trace formulae to simplify the problem. While the existence
of the Beilinson-Bloch pairing is still conjectural the relationship to the arithmetic
intersection product on integral models suggests a decomposition into local pieces.
After applying Rapoport-Zink uniformization one finally arrives at the fully local
question, to relate intersections on Rapoport-Zink spaces(moduli spaces of deform-
ations of p-divisible groups) and local orbital integrals. In [HM23], we prove an
instance of such a relationship in the form of an arithmetic fundamental lemma
by reducing it to a different arithmetic fundamental lemma.
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3. Globally valued fields. Heights or arithmetic intersection numbers have tra-
ditionally been studied from a discrete viewpoint. An exception to this general
rule is Silverman’s study of the variation of heights in families in [Sil83] and work
it inspired such as [Tat83] and [Gre89]. The key obstruction to the continuous
study of heights, however, is not addressed: The classical topological spaces asso-
ciated to a variety X over Q̄ are not suited to study maps to R. The key idea is
to study collections of valuations in a more conceptual way reminiscent of valued
rings. The following definition is taken directly from [DHS24, Definition 2.1].

Definition 3.1. A globally valued field (abbreviated GVF) is a field F together
with a height function h : A(F ) → R ∪ {−∞}, where A(F ) denotes the disjoint
union of An(F ) for all n ∈ N, satisfying the following axioms, for some Archimedean
error e ≥ 0.

Height of zero: ∀x ∈ F n, h(x) = −∞ ⇔ x = 0
Height of one: h(1, 1) = 0
Invariance: ∀x ∈ F n, ∀σ ∈ Symn, h(σx) = h(x)
Additivity: ∀x ∈ F n, ∀y ∈ Fm, h(x⊗ y) = h(x) + h(y)
Monotonicity: ∀x ∈ F n, ∀y ∈ Fm, h(x) ≤ h(x, y)
Triangle inequality: ∀x, y ∈ F n, h(x + y) ≤ h(x, y) + e
Product formula: ∀x ∈ F×, h(x) = 0

Here ⊗ denotes the Segre product, i.e., (x1, . . . , xn) ⊗ (y1, . . . , ym) = (xi · yj : 1 ≤
i ≤ n, 1 ≤ j ≤ m). Note that such height factors through h : Pn(F ) → R≥0 for
each n. We write ht(x) := h[x : 1] for x ∈ F .

This definition is motivated by the example F = Q̄ together with the function
that associates to a tuple (x0, . . . , xn) the Weil height of the corresponding point
[x0 : · · · : xn] ∈ Pn(Q̄).

Arising first as a space of quantifier-free types we can associate to a finite type
scheme X over a GVF K a locally compact Hausdorff space XGVF which we refer to
as the GVF analytification. Let us provide its definition that is highly reminiscent
of the Berkovich analytification, cf. [DHS24].

Definition 3.2. Let X be a finite type scheme over a (non-trivial) GVF K. Then,
the GVF analytification of XGVF is defined as a set to be

{(x, h) | x ∈ X, hx GVF structure on κ(x)}.

We equip XGVF with the weakest topology such that

(1) The map π : XGVF → X is continuous onto X with the Zariski topology.
(2) For every open U ⊂ X, and every tuple (f1, . . . , fn) ∈ OX(U)n, the

map (x, h) 7→ h(f1, . . . , fn) is continuous on π−1(D(f1, . . . , fn)), where
D(f1, . . . , fn) ⊂ U is the open where at least one of the fi does not vanish.
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We extend the intersection theory of adelically metrized line bundles to pro-
jective varieties over a GVF. We prove the continuity of these global intersection
numbers in families, i.e. the intersection numbers define a continuous function on
the GVF analytification and apply it to prove the following conjecture of Roberto
Gualdi.

Theorem 3.3 ([DHS24]). Let f1, . . . , fm be Laurent polynomials in n variables
with coefficients in a number field K and let T be a proper toric variety with torus
T = Gn ⊂ T . Denote by Vi the hypersurface defined by fi and by ρi its Ronkin
function. Let (ζ1,j, . . . , ζm,j)j be a generic sequence of small points in Tm for the
Weil height and let D0, . . . , Dn−m be semipositive toric adelic divisors on T with
associated local roof functions θ0,v, . . . , θn−m,v. Then,

lim
j→∞

hD0,...,Dn−m
(ζ1,jV1 ∩ · · · ∩ ζm,jVm) =

∑
v∈MK

nvMIM(θ0,v, . . . , θn−m,v, ρ
∨
1 , . . . , ρ

∨
m).

Let us focus our attention on GVF analytifications over a number field K. Then,
X(Q̄) ⊂ XGVF is dense. This is equivalent to the existential closedness of Q̄ in
the theory of globally valued fields, proven in [Sza23]. On the other hand, the
Northcott property of K is equivalent to X(K) being nowhere dense. For infinite
algebraic extension F , one may ask for about more subtle questions in the spirit
of [Hul23].

4. Toric bundles. Convex geometry has proven to be a useful tool in algebraic
geometry as exemplified by the proof of differentiability of volume via Okounkov
bodies in [LM09]. There are, however, so far only few examples of explicitly
calculated Okounkov bodies and their arithmetic analogues. The goal of [Hul24] is
to extend the combinatorial approach from toric varieties to toric bundles. To do
this we construct arithmetic toric bundles in the spirit of [CT01] and study them
combinatorially.

Once the Okounkov body and the Boucksom-Chen transform are calculated one
may read off their height and their successive minima. A further contribution
of the work on toric bundles is the establishment of an arithmetic bundle BKK
theorem. We hope that continuation of work in this direction can establish further
cases of the arithmetic standard conjectures. In the article [DHS24] an intersection
problem occurs that is the intersection of line bundles of the form ρ̂(L), but for
differing metric structures on the torus bundle. It may be interesting to extend
the arithmetic bundle BKK theorem to this setting.

The article in particular allows us to compute heights and successive minima on
semiabelian varieties, thereby recovering work of Chambert-Loir in [Cha00]. The
work suggests the existence of preferred choices of compactifications of semiabelian
varieties. These will, however, no longer be given by a projective variety, but only
by a limit along birational models in the spirit of [YZ24]. It is worth studying
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whether this is convenient in the study of compactifications of the moduli space
of polarized abelian varieties.

5. Possibilities for future research. We note that contrary to the rest of the
thesis this section is dedicated to wild speculation. It is intended to highlight
problems that may benefit from the methods developed in the articles as well as
new problems arising in their context.

• Analytic geometry over globally valued fields: The definition of the GVF
analytification is highly reminiscent of the definition of a Berkovich space.
This suggests the possibility for a global analytic geometry. Moreover one
may define analogues of adic spaces over GVFs by allowing higher rank
heights.

• Infinite algebraic extensions using the GVF analytification: One can re-
cover the Northcott property of an extension F of Q as a topological prop-
erty of F -points in the GVF analytification. It is interesting to study
topological properties of F -points for other extensions. For instance, for
which extensions is the closure in the GVF analytification restricted to the
generic point discrete or convex? Which fields F satisfy that if F -points
are Zariski dense they are also analytically dense?

• Compactifications of the GVF analytification: Contrary to our expecta-
tion from an analytification, the GVF analytification does not send proper
varieties to compact topological spaces. On the other hand, it sends all
varieties to Hausdorff spaces, even the ones that are not separated. Con-
structing some bigger space might allow to interpret more equidistribution
results, such as the one for singular moduli, in terms of Arakelov geometry.

• Semiabelian varieties: A compactification of a semiabelian variety is essen-
tially given as a polytope in the cocharacter space of its torus. A polariz-
ation on the abelian quotient endows the cocharacter space with a norm.
This is preserved under homomorphisms of semiabelian varieties. Hence
the obvious choice for a convex body in the cocharacter space is the unit
ball. This is not a polytope, but it is still possible to study it using the
theory of Yuan and Zhang. This may be helpful for uniformity results.

• Beyond toric bundles: Many constructions do not rely on the objects being
toric bundles. Even in the case of toric varieties it is natural to consider
T′-linearized sheaves on a toric variety with torus T and a homomorphism
T′ → T. This perspective clarifies the formula for pullback of T-linearized
line bundles to closed subvarieties. It may be interesting to extend methods
to further groups, flag bundles and other setups. We note further that in
the setting of toric bundles there is the possibility to consider what happens
when varying the metric.
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• Positivity in Arakelov geometry: It is arguably even more crucial to study
positivity properties in Arakelov geometry than in classical algebraic geo-
metry. This is because objects of interest like adelically metrized line
bundles of Zhang, cf. [Zha95], are defined using a limiting procedure. In
order to have a valid definition of intersection numbers one needs positivity
assumptions. This is subtle even in apparently simple situations considered
in [Hul24].
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FIELDS WITH FEW SMALL POINTS

NUNO HULTBERG

Abstract. Let X be a projective variety over a number field K endowed with
a height function associated to an ample line bundle on X. Given an algebraic
extension F of K with a sufficiently big Northcott number, we can show that
there are finitely many cycles in XQ̄ of bounded degree defined over F . Fields F
with the required properties were explicitly constructed in [PTW22] and [OS22],
motivating our investigation. We point out explicit specializations to canonical
heights associated to abelian varieties and selfmaps of Pn. We apply similar
methods to the study of CM-points. As a crucial tool, we introduce a refinement
of Northcott’s theorem.

There have recently been advances on the study of height properties of algebraic
extensions of Q in [PTW22] and [OS22]. Let N denote the Northcott number with
respect to the logarithmic Weil height. The Northcott number N (S) is defined in
Definition 1.1. It is the smallest limit point of heights of a subset of S ⊆ Q̄ and ∞
if S satisfies the Northcott property. The key result of their work is the following
theorem.

Theorem 0.1 (Theorem 1.3 [OS22]). For every t ∈ [0,∞] there exist sequences of
prime numbers (pi)i∈N, (qi)i∈N, and (di)i∈N such that the field F = Q((pi

qi
)1/di |i ∈ N)

satisfies N (F ) = t.

Remark 0.2. While not stated, everything in [OS22] can be done over an arbitrary
number field K. For this, think of K as the first step in the tower.

The full strength of this result is not necessary for our purposes. Instead we opt
for the simpler construction of [PTW22].

Theorem 0.3 (Theorem 1.3 [PTW22]). For every t ∈ [0,∞) there exist sequences

of prime numbers (pi)i∈N and (di)i∈N such that p
1/di
i converges to exp(2t) and the

pi are strictly increasing.
Given such a sequence, the field F = Q(pi

1/di |i ∈ N) satisfies t ≤ N (F ) ≤ 2t.

We can show the abundance of extensions of K with large Northcott number as
a formal consequence of the above theorem, i.e. using it as a blackbox.

2020 Mathematics Subject Classification. 11G50, 14G40, 11R04, 11G15.
Key words and phrases. heights, small points, Bogomolov property, Northcott number, sin-

gular moduli.
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Lemma 1. Let C > 0 be a constant and K a number field. Then there exist
uncountably many algebraic extensions F of K such that N (F ) > C.

For fields satisfying the Northcott property the finiteness of cycles of bounded
degree and height is known. It is natural to ask whether a similar result can be
extended to fields with known Northcott number.

Let (X,L) be a pair consisting of a variety over a number field K and a line
bundle on said variety. In order to state our theorems more elegantly, we write
D(V ) = (dim(V ) + 1) deg(V ) for equi-dimensional cycles V on XK̄ . The line
bundle implicit in this notation will be clear from context. Going forward, all
cycles will be assumed equi-dimensional and effective throughout the article. We
call a cycle F -rational if it is fixed by the action of Gal(K̄/F ).

Theorem 1. Let X be a projective scheme over a number field K endowed with
an admissible adelically metrized line bundle L̄ whose underlying line bundle L is
ample. Let d ∈ N and C > 0 be constants. Then there exists a constant R > 0 such
that, for all algebraic extensions F of K, such that its Northcott number satisfies
N (F ) > d(C +R), we obtain the following.

There are only finitely many F -rational cycles V on X such that D(V ) ≤ d and
hL̄(V ) < CD(V ).

Remark 0.4. Regardless of this theorem, we can’t expect to have only finitely
many subvarieties defined over even a number field K as the Northcott property
holds only for subvarieties of bounded degree. An example of the failure of the
Northcott property without bound on the degree are the subvarieties {(z, zn)} ⊆
P2. They are all distinct, defined over the base field and have canonical height 0.

We will now give some specializations of interest with explicit constants.

Theorem 2. Consider Pn over a number field K endowed with the canonical toric
height ĥ. Let d ∈ N and C > 0 be constants. Let F be an extension of K, such
that its Northcott number satisfies

N (F ) > d

(
C +

7

2
n log 2 +

n∑
i=1

1

2i
+ log 2

)
.

Then there are only finitely many F -rational cycles V on Pn
K such that D(V ) ≤ d

and ĥ(V ) < CD(V ).

Theorem 3. Let A be an abelian variety of dimension g over a number field K
endowed with an ample symmetric line bundle M. Let L denote the extension of
K generated by

ker
(
A

[16]−−→ A
pM−−→ A∨

)
,
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where pM denotes the polarization morphism associated to M. Then there is an
embedding Θ of A into Pn defined over L with associated line bundle M⊗16. Denote
by h2 the l2-logarithmic Weil height and by ĥM the Néron-Tate height associated
to M.

Let d ∈ N and C > 0 be constants. If F is an extension of L, such that its
Northcott number satisfies

N (F ) >
d

16

(
C + 4g+1h2(ΘM⊗16(0A)) + 3g log 2 +

n∑
i=1

1

2i
+ log 2

)
,

then there are only finitely many F -rational cycles V on AL such that D(V ) ≤ d

and ĥM(V ) < CD(V ). In particular, there are only finitely many torsion points
and abelian subvarieties with D(V ) ≤ d defined over F .

A similar result may be obtained for dynamical systems on projective space.

Theorem 4. Let f : Pn → Pn be a selfmap of degree D ≥ 2, defined over a number
field K. Denote by ĥ the canonical height associated to f and the tautological line
bundle. Let d ∈ N and C > 0 be constants. Let F be an extension of K, such that
its Northcott number satisfies

N (F ) > d

(
C + C1(n,D)h(f) + C2(n,D) +

n∑
i=1

1

2i

)
,

where h(f) is the height of the coefficients of f as a projective tuple and

C1(n,D) = 5nDn+1, C2(n,D) = 3nnn+1(2D)n2
n+4Dn

.

Then there are only finitely many F -rational effective divisors V on Pn
K such that

deg(V ) ≤ d and ĥ(V ) < CD(V ). In particular, there are only finitely many
preperiodic hypersurfaces of degree ≤ d defined over F .

Remark 0.5. Based on the ideas in [Ing22], a result that is linear in deg(V )
should be possible in any codimension. At the present moment we may use [Hut19,
Theorem 4.12], which yields a bound exponential in deg(V ).

Remark 0.6. If we restrict to geometrically irreducible closed subsets we can
improve the bound on the Northcott number by d log 2 in Theorems 1, 2 and by
d log 2/16 in Theorem 3. The statement of Theorem 4 cannot be improved.

We lastly consider an application to CM points on the modular curve. These
are not small points in the usual sense. For this reason it is necessary to consider
weighted Weil heights.

Theorem 5. There are uncountably many algebraic field extensions of Q contain-
ing only finitely many CM j-invariants.
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The author is not aware of other examples of infinite algebraic extensions of Q
known to contain only finitely many CM j-invariants.

In the first section we introduce Northcott numbers and their behaviour under
field extension. Lastly we deduce Lemma 1.

The second section will deal with various notions of height and the bounds on
their differences. At the end we will see how Theorems 1 and 2 follow from these
bounds.

The third section contains the applications to abelian varieties and dynamical
systems on projective space.

At last, we construct infinite algebraic extensions of Q over which only finitely
many CM points are defined.
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1. Northcott numbers

In this section, we introduce Northcott numbers of subsets of Q̄, which allows
us to refine Northcott’s theorem (see [DZ08, Theorem 2.1]) to a statement on
Northcott numbers that we call the Northcott inequality. We conclude the section
with a proof of Lemma 1.

Definition 1.1 (Northcott number). For a subset S ⊆ Q̄ of the algebraic numbers
we define the Northcott number of S with respect to a function f : Q̄ → [0,∞) as

Nf (S) = inf{t ∈ [0,∞)|#{α ∈ S; f(α) < t} = ∞}.
We follow the convention that inf ∅ = ∞. We call N (S) ∈ [0,∞] the Northcott
number of S.

Remark 1.2. Our main focus is on the case that f = h is the logarithmic Weil
height. In this case, we omit the h from the notation.

Example 1.3. Let K be a number field. Then by Northcott’s theorem N (K) =
∞. On the other hand, N (Q̄) = 0.

We now state and prove the Northcott inequality.
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Theorem 1.4 (Northcott inequality). Let F be a field with Northcott number
N (F ) = C. Then the set of algebraic numbers X of degree ≤ d over F satisfies
N (X) ≥ C−d log 2

d2d
.

Proof. Let ϵ > 0. Let Yϵ be the set of algebraic numbers x of height ≤ C−d log 2
d2d

−ϵ =
Bϵ satisfying [F (x) : F ] ≤ d. It is enough to show that the set Yϵ is finite
for any ϵ > 0. Let x ∈ Yϵ. Then the at most d conjugates of x over F are
also elements of Yϵ. The coefficients of the minimal polynomial of x over F are
elementary symmetric functions in these conjugates. We can bound the height of
the coefficients by

d2dBϵ + d log 2 = C − ϵd2d

using the properties of the height (see [BG06, Prop. 1.5.15]). Let x, x1, . . . , xr ∈ Q̄
and σ ∈ Gal(Q̄/Q), then

h(σ(x)) = h(x)(1)

h(x1 + · · ·+ xr) ≤ h(x1) + · · ·+ h(xr) + log r(2)

h(x1 . . . xr) ≤ h(x1) + · · ·+ h(xr).(3)

However, by assumption on F , there are only finitely many such coefficients, thus
showing the finiteness of Yϵ. □

Remark 1.5. The optimal bound we may obtain with these methods is min0≤j≤d
C−log (dj)
(dj)j

.

In [PTW22, Lemma 5] they notice that the house shares the crucial properties
necessary to perform the proof of Theorem 1.4. By combining the ideas of [PTW22,
Lemma 5] and Theorem 1.4 we obtain.

Lemma 1.6. Let f : Q̄ → [0,∞) be a function. Denote by Nf (S) the Northcott
number of a subset S ⊆ Q̄ with respect to f . Suppose that f satisfies

f(σ(x)) = f(x)(4)

f(x1 + x2) ≤ F (f(x1), f(x2))(5)

f(x1x2) ≤ F (f(x1), f(x2))(6)

for some continuous function F : R2 → [0,∞) and all x1, x2 ∈ Q̄ and σ ∈
Gal(Q̄/Q). Then there exists a continuous function G : [0,∞] → [0,∞] with
G(∞) = ∞ depending only on F and an auxiliary natural number d such that the
following holds. Let U ⊆ Q̄ and let S ⊆ Q̄ be the subset of numbers satisfying
monic polynomials with coefficients in U of degree bounded by d. Then

Nf (S) ≥ G(Nf (U)).

Let us be more explicit in the case of the house. The house is defined as follows.
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− : Q̄ → [0,∞)(7)

α 7→ max
σ:Q̄↪→C

|σ(α)|(8)

Lemma 1.7. Let F be a field such that N− (OF ) = C. Then the set of algebraic

integers X of degree ≤ d over F satisfies N− (X) ≥ C1/d

2d
.

Proof. The proof is analogous to that of Theorem 1.4 using the properties

σ(x) = x(9)

x1 + x2 ≤ x1 + x2(10)

x1x2 ≤ x1 x2 .(11)

for x1, x2 ∈ Q̄ and σ ∈ Gal(Q̄/Q) □

Remark 1.8. We may improve the constant to min0≤j≤d
C1/j

(dj)
.

This approach, of course, can be used to upper bound Northcott numbers, as
well.

Corollary 1.9. Suppose a field K has a field extension F of degree d satisfying
N (F ) = C. Then N (K) ≤ Cd2d + d log 2.

Remark 1.10. Again we may improve the bound. Here the best possible bound
is min0≤j≤d

(
d
j

)
jC + log

(
d
j

)
.

Example 1.11. We may apply this to the field extension Qtr(i)/Qtr of the totally
real numbers. In [ADZ14, Example 5.3] it is shown that

αk =

(
2− i

2 + i

)1/k

is a sequence of points with height tending to zero in Qtr(i). In particular,
Nh(Qtr(i)) = 0. Hence N (Qtr) ≤ log 2 ≈ 0.693. The best known bound is the one
in [Smy80] (N (Qtr) ≤ 0.2732 . . . ).

Remark 1.12. The bound in the specific case of the totally real numbers is not
sharp and may be improved. Using that the conjugates of αk equidistribute around
the unit circle we may see that h(αk + αk) →

∫ 1

0
max{2 log|cos(πx)|, 0} ≈ 0.323.1

We can prove Lemma 1.

1This constant also appears as the Mahler measure of the polynomial 1 + x + y, computed
by Smyth in [Boy80] and as the Arakelov-Zhang pairing ⟨x2, 1− (1− x)2⟩ in [PST12]. It equals
3
√
3

4π L(2, χ), where χ is the nontrivial quadratic character modulo 3.
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Lemma 1. Let C > 0 be a constant and K a number field. Then there exist
uncountably many algebraic extensions F of K such that N (F ) > C.

Proof. When the ground field is Q, this follows immediately by the work of [OS22]
or [PTW22] quoted at the beginning of the introduction.

Consider now the case of an arbitrary number field K and write d = [K : Q]. We
may use Theorem 1.4 to obtain that for fields F satisfying N (F ) > d2dD+ d log 2
the composite field KF satisfies N (KF ) > D. Over Q, there are uncountably
many fields satisfying N (F ) > d2dD + d log 2. Hence it suffices to show that KF
are distinct for distinct F .
For this let us consider fields of the form F = Q(pi

1/di |i ∈ N), where all pi and
di are distinct primes. We can find an extension F of the above form that further
satisfies that pi

1/di tends to exp 2t for some t > d2dD + d log 2. This satisfies
the conditions of 0.3 and hence N (F ) ≥ t. Let t′ ̸= t and F ′ be an extension

Q(p′i
1/d′i |i ∈ N) with the same conditions of F , but with p′i

1/d′i going to exp 2t′. We

need to show that KF cannot contain F ′. Now F ′ contains infinitely many p′i
1/d′i

that are not contained in F . When d′i > [K : Q], then also p′i
1/d′i /∈ KF . □

Theorem 1.13. Let C > 0 be a constant and K a number field. Then there exist
uncountably many algebraic extensions F of K such that N− (OF ) > C.

Proof. Fields F with prescribed value for N− (OF ) are constructed in [PTW22,

Theorem 1]. The same argument as above applies since the fields are of similar
form. □

1.1. Relative Northcott numbers. In [Oka22], Northcott numbers are con-
sidered in a relative setting. The following simplified statement of their result
suffices for our needs.

Theorem 1.14 ([Oka22] Thm. 1.7.). There exists a field L satisfying N (L) = 0
such that, for every t ∈ (0,∞], there exist sequences of prime numbers (pi)i∈N,
(qi)i∈N, and (di)i∈N such that the field F = L((pi

qi
)1/di |i ∈ N) satisfies N (F \L) = t.

Lemma 1.15. Let L ⊆ F ⊆ Q̄ be fields satisfying N (L) = c and N (F \ L) = t.
Then there exists no x ∈ F \ L satisfying h(x) < t− c.

Proof. We notice that the set F \ L is closed under multiplication by elements in
L×. Suppose x ∈ F \L satisfies h(x) < t−c. Let ϵ > 0 be such that h(x)+2ϵ < t−c.
Then for any of the infinitely many y ∈ L× satisfying h(y) ≤ c+ ϵ, yx lies in F \L
and satisfies h(yx) ≤ h(y) + h(x) < t− c− 2ϵ+ c+ ϵ = t− ϵ. This contradicts the
assumption N (F \ L) = t. □

Using the lemma above we can state and prove our results in a relative setting.
Theorem 2, for instance, would take the following form.
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Theorem 1.16. Consider Pn over an algebraic extension L/Q endowed with the

canonical toric height ĥ. Let d ∈ N and C > 0 be constants. Suppose that N (L) =
c. Let F be an extension of K, such that its relative Northcott number satisfies

N (F \ L) > d

(
C +

7

2
n log 2 +

n∑
i=1

1

2i
+ log 2

)
+ c.

Then all F -rational cycles V on Pn
K such that D(V ) ≤ d and ĥ(V ) < CD(V ) are

already defined over K.

2. Heights

This section will contain an overview of some different notions of heights and
the bounds on their differences. The two notions of heights we will consider are
Arakelov heights, which are defined using arithmetic intersection theory, and Phil-
ippon heights, whose definition relies on Chow forms of subvarieties of projective
space. While Arakelov heights have conceptual advantages, Philippon height will
be crucial to obtain information on the height of a subvariety from the arithmetic
of its field of definition.

As a link between these two notions we use canonical heights. Canonical heights
may be considered as Arakelov heights, but can at the same time be obtained from
Philippon heights by a limit procedure. We will lastly apply this study to prove
Theorems 1 and 2.

2.1. Arakelov heights and adelic metrics. We now introduce the notions in
Arakelov geometry needed in this text. For a more comprehensive survey, we refer
to [Cha21].

Let X be a proper scheme over Q. For all places v ≤ ∞ we may associate
an analytic space Xan

v over Qv. For v = ∞ we set Xan
∞ = X(C)/F∞, where F∞

denotes complex conjugation. For v < ∞ the definition of the analytification is due
to Berkovich in [Ber12]. For all v this is a compact metrizable, locally contractible
topological space containing X(Cv)/Aut(Cv/Qv) as a dense subspace. Further,
it’s equipped with the structure of a locally ringed space with a valued structure
sheaf OXan

v
, i.e. to each f ∈ OXan

v
(U) we can associate an absolute value function

|f | : U → R+ that is continuous in a way that is compatible with restrictions. We
define Xad =

∐
v≤∞ Xan

v .
We now define the structure of an adelic metric on a line bundle L on X. An

adelic metric is a collection of compatible v-adic metrics. A v-adic metric on a line
bundle Lan

v on Xan
v is the association of a norm function ||s||v : U → R+ to every

section s ∈ Lan
v (U) compatible with restriction. Being a norm function means

compatibility with multiplication by holomorphic functions and that ||s||v only
vanishes when s does. Tensor products and inverses of line bundles with v-adic
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metrics are canonically endowed with v-adic metrics. The absolute value endows
the trivial bundle with a v-adic metric at all places.

The compatibility conditions for adelic metrics reflect the global nature of X.
A proper model (X ,L) of (X,L) over SpecZ induces continuous v-adic metrics at
all finite places. For a collection of continuous v-adic metrics to form an adelic
metric we demand it agrees with the metrics induced by (X ,L) at all but finitely
many places. A metric family on a line bundle L is called algebraic if it is induced
by a model of some tensor power L⊗n of L, cf. [Cha21, Example 4.4].
Not all adelically metrized line bundles can be studied equally well. It is often

helpful to impose algebraicity and positivity conditions. A notion fulfilling these
requirements is semipositivity. Semipositive metrics are limits of algebraic metrics
with a positivity condition, cf. [Cha21, Definition 5.1]. Important examples of
semipositive metrics are the canonical metrics obtained from polarized dynamical
systems. An adelic line bundle is called admissible if it can be represented as the
difference of semipositive adelic line bundles.

We can easily define the height of a point P ∈ X(Q̄) in terms of adelic metrics.
Let L̄ be an adelically metrized line bundle on X with underlying line bundle L
and P ∈ X(Q̄). This point defines a point Pv in the Berkovich space Xan

v for all v.
The height of a point P ∈ X(Q̄) with respect to an adelically metrized line bundle
L̄ on X is defined as hL̄(P ) = −

∑
v≤∞ log ||s(Pv)||v, where s is a meromorphic

section of L with no poles or zeroes at P .
More generally, the height of irreducible closed subsets of XQ̄ is defined using

arithmetic intersection theory. Given an irreducible closed subset Z ⊆ XQ̄ of
dimension d, we recall the height to be the arithmetic intersection number

hL̄(Z) = d̂egL̄(Z) = d̂eg(ĉ1(L̄)
d+1|Z).

We do not follow the convention of [Cha21] since we would like a notion which
is additive in cycles. Our convention differs from that of [Cha21] by the factor
D(V ) = (dim(V ) + 1) deg(V ).

2.2. Heights under the variations of metrics. We will now introduce a lemma
comparing the heights with respect to two admissible metrics.

Lemma 2.1. Let X be a proper scheme over Q endowed with a line bundle L. Let
L̄ and L̄′ be admissible adelic metrics on L. Then there exists a constant C ∈ R
such that for all closed integral subschemes V ⊆ XQ̄ we have

|hL̄(V )− hL̄′(V )| ≤ CD(V ).

If L is ample and the metrics are algebraic, the admissibility assumption can be
omitted.



10 NUNO HULTBERG

Proof. This follows from [Cha21, Prop. 5.3.], a limit argument and linearity. The
second case is Prop. 3.7 loc.cit. . In order to follow our convention we multiply
the bounds by D(V ). □

2.3. Philippon height. There is an alternative definition of heights of subvari-
eties of projective space introduced by Philippon in his papers [Phi91], [Phi94]
and [Phi95]. The Philippon height is obtained from the coefficients of the Chow
form of the variety. This viewpoint is important in order to obtain information
on the height of a subvariety from the arithmetic of its field of definition. We
do not consider the case of weighted projective spaces. For more details we refer
to Philippon’s original papers. The heights in his different papers differ in the
contribution of the infinite places. We will follow [Phi95].

In order to define the Philippon height of a subvariety of projective space we
need to first define its Chow form. This is done using projective duality. Let K be
a field and V be a closed geometrically irreducible subvariety of Pn

K of dimension
r. Denote the variety parametrizing linear hyperplanes in Pn, i.e. the projective
dual of Pn, by Pn,∨. The subvariety X of (Pn,∨)r+1 consisting of the tuples of
hyperplanes (H0, . . . , Hr) such that H0 ∩ . . . Hr ∩V ̸= ∅ is a hypersurface. In fact,
it is the vanishing locus of a multihomogeneous polynomial over K of degree deg V
in the coordinates of each factor. This polynomial f , defined up to multiplication
by a scalar, is called the Chow form of V . If K is a number field we may now
proceed to define the Philippon height of V . Given the Chow form we define

hPh(V ) :=
1

[K : Q]

∑
v

[Kv : Qv] logMv(f).

Here Mv(f) is defined as the maximum v-adic absolute value of the coefficients of
f when v is a finite place. For the archimedean places we define

logMv(f) =

∫
(Sn+1)r+1

log |σv(f)|σ∧(r+1)
n+1 +D(V )

n∑
i=1

1

2i
.

Here σv denotes a choice of complex embedding for the place v. Sn+1 denotes the
unit sphere in Cn+1, while σn+1 denotes the invariant probability measure on Sn+1.
We define a variant of the Philippon height h̃Ph by taking the contribution at an
archimedean place to be the maximum modulus of the coefficients instead.

We need to compare the Philippon height with this variant in order to deduce
from the Northcott number of a field something about the height of projective
varieties defined over said field. Philippon attributes such a comparison to Lelong
[Lel92, Théorème 4]. We state it now.
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Lemma 2.2. Let V ⊆ Pn
Q̄ be an integral closed subvariety, then we have the

inequalities

0 ≤ hPh(V )− h̃Ph(V ) ≤ D(V )
n∑

i=1

1

2i
= D(V )c(n).

Lastly we need to compare Philippon’s heights with the toric canonical height on
projective space. This allows us to relate Arakelov heights with Philippon heights.
The following statement is taken from [DP99, Prop 2.1].

Proposition 2.3. Let V ⊆ Pn
Q̄ be a closed irreducible subset. Let ĥ denote canon-

ical toric height on Pn. Then

|ĥ(V )− hPh(V )| ≤ D(V )
7

2
n log 2.

2.4. Cycles. It may be useful to consider the height of general equi-dimensional
F -rational cycles for a field F ⊆ Q̄. Since the components of an F -rational cycle C
are not necessarily defined over F , a further lemma is required to relate its height
to the arithmetic of F .

Let CQ̄ =
∑

niVi, for irreducible Vi, be a F -rational cycle on Pn. Its Chow form
is defined to be

fC =
∏

fni
Vi
.

Up to scalar, fC has coefficients in F . Let us define the Philippon height of a cycle
C by applying Philippon’s construction to fC . We can define h̃Ph in the analogous
way.

The resulting height isn’t linear with respect to addition of cycles. To address
this issue we invoke an inequality on the height of products of polynomials.

Theorem 2.4 ([BG06] Thm 1.6.13). Let f1, . . . , fm be polynomials in n variables,
d the sum of partial degrees of f = f1 . . . fm and let h denote the logarithmic Weil
height of the coefficients of a polynomial considered as a projective tuple. Then

|h(f)−
m∑
j=1

h(fj)| ≤ d log 2.

Lemma 2.5. Let C =
∑

niVi be a homogeneous cycle of Pn
Q̄. Then

|h̃Ph(C)−
∑

nih̃Ph(Vi)| ≤ D(C) log 2.

Proof. We apply the theorem to fC =
∏

fni
Vi

and obtain that d = (dim(C) +
1) deg(C). □



12 NUNO HULTBERG

2.5. Small subvarieties of projective space. In this section we prove Theorems
2 and 1 on small subvarieties.

Theorem 2. Consider Pn over a number field K endowed with the canonical toric
height ĥ. Let d ∈ N and C > 0 be constants. Let F be an extension of K, such
that its Northcott number satisfies

N (F ) > d

(
C +

7

2
n log 2 +

n∑
i=1

1

2i
+ log 2

)
.

Then there are only finitely many F -rational cycles V on Pn
K such that D(V ) ≤ d

and ĥ(V ) < CD(V ).

Proof. Let V =
∑

niVi be an F -rational homogeneous cycle. Then its Chow form
fV has coefficients in F . As such, we know that h(fV ) ≤ N (F )− ϵ for only finitely
many cycles. By Lemma 2.5 there can only be finitely many cycles satisfying∑

nih̃Ph(Vi) ≤ N (F )−D(V ) log 2− ϵ. Consequently there are only finitely many
V with

∑
nihPh(Vi) + ϵ ≤ N (F )−D(V ) (c(n) + log 2) by Lemma 2.2. Moreover,

there are only finitely many V such that

ĥ(V ) + ϵ =
∑

niĥ(Vi) + ϵ ≤ N (F )−D(V )

(
7

2
n log 2 + c(n) + log 2

)
by Proposition 2.3. Under the assumption that C > N (F )

d
− 7

2
n log 2− c(n)− log 2

we obtain that there are only finitely many F -rational cycles V on Pn
K such that

D(V ) ≤ d and ĥ(V ) < CD(V ). By rearranging the inequality, we conclude the
theorem. □

We easily obtain Theorem 1 as a consequence.

Theorem 1. Let X be a projective scheme over a number field K endowed with
an admissible adelically metrized line bundle L̄ whose underlying line bundle L is
ample. Let d ∈ N and C > 0 be constants. Then there exists a constant R > 0 such
that, for all algebraic extensions F of K, such that its Northcott number satisfies
N (F ) > d(C +R), we obtain the following.

There are only finitely many F -rational cycles V on X such that D(V ) ≤ d and
hL̄(V ) < CD(V ).

Proof. We need to compare the heights on X with heights on projective varieties.
For this we replace L̄ by its n-th power such that the underlying line bundle is
very ample. Let X ↪→ Pk be an embedding associated to L. Pulling back the
canonical toric metric on O(1) induces an adelic metric on L, which we denote L̃.

Then by Lemma 2.1 the height associated to L̃ only differs from the one asso-
ciated to L̄ by an amount bounded by R′D(V ) for some constant R′. Now the
result follows from Theorem 2. □
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3. Applications to dynamical systems

Specializations of our main theorem can be obtained by applying more spe-
cific height bounds. The arguments required to obtain these specializations are
adaptations of the proof of Theorem 2, which will only be sketched.

The dynamical systems to be considered in greater detail are the ones given by
multiplication on abelian varieties and selfmaps of projective space. We start out
with a more general situation considered in the foundational paper of Call and
Silverman([CS93]).

In their setup, X is a smooth projective variety over a number field K endowed
with a selfmap ϕ and a divisor class η ∈ Pic(X)⊗R satisfying ϕ∗η = αη for some
α > 1. Suppose h is a Weil function associated with η. Then there is a constant R
such that |h ◦ ϕ− αh| ≤ R. Let ĥ denote the canonical height for η and ϕ. Then
the following holds.

Proposition 3.1 ([CS93] Proposition 1.2). For every P ∈ X(K̄), the following
inequality holds:

|ĥ(P )− h(P )| ≤ R

α− 1
.

Note that we can’t expect to have finitely many small points for arbitrary η, as
an associated Weil function might not even be bounded below. We may, however,
by adapting the proof of Theorem 2 obtain the following statement.

Proposition 3.2. In the current setting, suppose that η is very ample and h is
induced by the canonical toric height under some embedding into projective space.
Let F be an algebraic extension of K satisfying N (F ) > C + R

α−1
. Then there are

only finitely many points P ∈ V (F ) such that ĥ(P ) ≤ C.

Proof. We adapt the proof of Theorem 2. We bound the height of a point in
projective space from below by the height of one of its coordinates and use the
bound in Proposition 3.1. □

3.1. Small subvarieties of abelian varieties. In order to study small points
on abelian varieties, we embed them into projective space using a variant of the
theta embedding, first introduced in [Mum66]. For a more detailed overview of
its properties, see [DP02]. We will then apply a bound on the difference of the
canonical height to the Philippon height from loc.cit. to deduce a result on small
points of abelian varieties.

Let A be a g-dimensional abelian variety defined over a number field K. Let M
be an ample symmetric line bundle on A. Then M⊗16 is very ample. David and
Philippon choose sections that yield the embedding ΘM⊗16 , or simply Θ, into PN .
It is inspired by the embedding of Mumford in [Mum66], but differs from it. As
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such, it is not defined over K itself, but over the field generated by

ker
(
A

[16]−−→ A
pM−−→ A∨

)
,

where pM denotes the polarization morphism associated to M.
In this setting, we have the following comparison of heights.

Proposition 3.3 ([DP02] Proposition 3.9.). Let V be an integral closed subvariety
of AK̄ and let h2 denote the l2-logarithmic Weil height. Then

|ĥM⊗16(V )− hPh(Θ(V ))| ≤ c0(Θ)D(V ).

Here, c0(Θ) = 4g+1h2(Θ(0A)) + 3g log 2.

Theorem 3. Let A be an abelian variety of dimension g over a number field K
endowed with an ample symmetric line bundle M. Let L denote the extension of
K generated by

ker
(
A

[16]−−→ A
pM−−→ A∨

)
,

where pM denotes the polarization morphism associated to M. Then there is an
embedding Θ of A into Pn defined over L with associated line bundle M⊗16. Denote
by h2 the l2-logarithmic Weil height and by ĥM the Néron-Tate height associated
to M.

Let d ∈ N and C > 0 be constants. If F is an extension of L, such that its
Northcott number satisfies

N (F ) >
d

16

(
C + 4g+1h2(ΘM⊗16(0A)) + 3g log 2 +

n∑
i=1

1

2i
+ log 2

)
,

then there are only finitely many F -rational cycles V on AL such that D(V ) ≤ d

and ĥM(V ) < CD(V ). In particular, there are only finitely many torsion points
and abelian subvarieties with D(V ) ≤ d defined over F .

Proof. We adapt the proof of Theorem 2. The main differences are that Pro-
position 3.3 applies to ĥM⊗16 = 16ĥM instead of directly to ĥM and that the
Θ-embedding of A is not defined over its field of definition K, but only over

L = K
(
ker
(
A

[16]−−→ A
pM−−→ A∨

))
. □

Remark 3.4. The l2-logarithmic Weil height h2(ΘM⊗16(0A)) in the theorem is
compared to the Faltings height of the abelian variety in [Paz12]. This allows for
a phrasing of the theorem that does not reference the theta embedding. In [DP02]
the quantity h(ΘM⊗16(0A)) is denoted by h(A) which may lead to confusion with
the Philippon height of A, see [DP02, Notation 3.2.].
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3.2. Small subvarieties with respect to dynamical systems on Pn. Another
case in which explicit bounds on difference of heights exist are divisors on Pn with
a canonical height from a selfmap. In fact, [Ing22] proves the following statement.

Theorem 3.5. Let f : Pn → Pn be a morphism of degree d ≥ 2 defined over Q̄.
Let V be an effective divisor on Pn, then

|ĥf (V )− hPh(V )| ≤ (C1(n, d)h(f) + C2(n, d))D(V ),

where h(f) is the height of the coefficients of f as a projective tuple. Moreover,
one may choose

C1(n, d) = 5ndn+1, C2(n, d) = 3nnn+1(2d)n2
n+4dn .

For simplicity he states the theorem only for hypersurfaces, but claims there to
be no conceptual obstruction to its generalization.

This leads to Theorem 4.

Theorem 4. Let f : Pn → Pn be a selfmap of degree D ≥ 2, defined over a number
field K. Denote by ĥ the canonical height associated to f and the tautological line
bundle. Let d ∈ N and C > 0 be constants. Let F be an extension of K, such that
its Northcott number satisfies

N (F ) > d

(
C + C1(n,D)h(f) + C2(n,D) +

n∑
i=1

1

2i

)
,

where h(f) is the height of the coefficients of f as a projective tuple and

C1(n,D) = 5nDn+1, C2(n,D) = 3nnn+1(2D)n2
n+4Dn

.

Then there are only finitely many F -rational effective divisors V on Pn
K such that

deg(V ) ≤ d and ĥ(V ) < CD(V ). In particular, there are only finitely many
preperiodic hypersurfaces of degree ≤ d defined over F .

Proof. We adapt the proof of Theorem 2. Note that Theorem 3.5 applies directly
to cycles, so the results in section 2.5 are not needed. □

4. Application to special points

While special points on Shimura varieties are not small in the usual sense, our
approach can still deduce a finiteness result for CM points on the modular curve
defined over certain infinite extensions. To this end, we will use weighted Weil
heights.

We have some information on the height of special points on the modular curve
from [Bre01]. The result on the degree is a restating of the Brauer-Siegel theorem.
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Proposition 4.1 (Proposition 2.1 [Bre01]). Let x ∈ Q̄. If the elliptic curve Ex of
j-invariant x has complex multiplication we denote ∆(x) = |Disc(End(Ex))|.

(1) If x is CM, then [Q(x) : Q] = ∆(x)1/2+o(1).
(2) There exists an effectively computable constant C such that if x is CM,

h(x) ≤ π∆(x)1/2 + C.

Remark 4.2. In fact, the proof of part 2 computes the asymptotic of the house
as the discriminant grows: x ≈ exp(π∆(x)1/2).

Let γ ∈ R, x ∈ Q̄. Then, the weighted Weil height hγ is defined by hγ(x) =
deg(x)γh(x). We may consider Northcott numbers of subsets S ⊆ Q̄ for varying
γ. For a set S ⊆ Q̄, define the sets

I0(S) = {γ | Nhγ (S) = 0}, I∞(S) = {γ | Nhγ (S) = ∞}.
We can summarize the work of [OS22] as follows.

Theorem 4.3. The sets I0(S) and I∞(S) are (in the case of I0(S) possibly empty)
rays. They satisfy (1,∞) ⊆ I∞ and I(S) = sup I0 = inf I∞. For γ ∈ (−∞, 1) and
c ∈ [0,∞] one can construct a field F such that I(F ) = γ and Nhγ (F ) = c.

We phrase a Corollary of Theorem 4.1 in terms of weighted Weil heights.

Corollary 4.4. The set of CM points S satisfies I(S) ≤ −1.

Theorem 5. There are uncountably many algebraic field extensions of Q contain-
ing only finitely many CM j-invariants.

Proof. Any field F satisfying I(F ) < 1 constructed in Theorem 4.3 fulfills the
conditions. □

Remark 4.5. Using Remark 4.2 we see that the corresponding properties for the
weighted house suffice for the conclusion. However, the counterpart to Theorem
4.3 has not yet been proven in this setting.
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mathématiques pures et appliquées 74.4 (1995), pp. 345–365.

[PST12] Clayton Petsche, Lucien Szpiro and Thomas Tucker. “A dynamical
pairing between two rational maps”. In: Transactions of the Amer-
ican Mathematical Society 364.4 (2012), pp. 1687–1710. issn: 00029947.
url: http://jstor.org/stable/41524901.

[PTW22] Fabien Pazuki, Niclas Technau and Martin Widmer. “Northcott num-
bers for the house and the Weil height”. In: Bulletin of the London
Mathematical Society 54.5 (2022), pp. 1873–1897. doi: 10.1112/blms.
12662.

[Smy80] Christopher Smyth. “On the measure of totally real algebraic integers”.
In: Journal of the Australian Mathematical Society. Series A. Pure
Mathematics and Statistics 30.2 (1980), pp. 137–149. doi: 10.1017/
S1446788700016426.

Nuno Hultberg. University of Copenhagen, Institute of Mathematics, Uni-
versitetsparken 5, 2100 Copenhagen, Denmark; ORCiD: orcid.org/0000-0003-0097-
0499

Email address: nh@math.ku.dk

https://doi.org/10.24033/bsmf.2623
http://numdam.org/articles/10.24033/bsmf.2623/
http://numdam.org/articles/10.24033/bsmf.2623/
http://eudml.org/doc/164780
http://eudml.org/doc/164780
https://doi.org/10.5802/aif.1426
http://jstor.org/stable/41524901
https://doi.org/10.1112/blms.12662
https://doi.org/10.1112/blms.12662
https://doi.org/10.1017/S1446788700016426
https://doi.org/10.1017/S1446788700016426
https://orcid.org/0000-0003-0097-0499
https://orcid.org/0000-0003-0097-0499


A linear AFL for quaternion
algebras

45





A LINEAR AFL FOR QUATERNION ALGEBRAS
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Abstract. We prove new fundamental lemma and arithmetic fundamental lemma
identities for general linear groups over quaternion division algebras. In particu-
lar, we verify the transfer conjecture and the arithmetic transfer conjecture from
[11] in cases of Hasse invariant 1/2.
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1. Introduction

Fix a non-archimedean local field F and some n ≥ 1. The linear arithmetic fun-
damental lemma (AFL) conjecture of Q. Li [7] states a family of identities between
derivatives of orbital integrals on GL2n(F ) and intersection numbers on moduli
spaces of strict formal OF -modules of height 2n. It has a global motivation which
is parallel to that of W. Zhang’s unitary AFL [14] and which is related to the trace
formula comparison of Leslie–Xiao–Zhang [6]. We refer to [15] and the introduction
of [11] for this global aspect and henceforth focus on the local setting.

While the unitary AFL has been proved [16, 12, 13, 17], the linear AFL conjecture
is still open. It is, however, known to hold when n ≤ 2, see [8]. Moreover, both the
conjecture and its validity for n ≤ 2 have been extended to a biquadratic setting by
Howard–Li [3] and Li [9]. A non-basic version of both the linear and the biquadratic
AFL is formulated and reduced to the basic setting in [10].

The linear AFL concerns orbital integrals for hyperspecial test functions and
moduli spaces for GL2n for hyperspecial level (good reduction). In a recent article,
Li and the second author formulated a variant that relates parahoric test func-
tions on the analytic side with moduli spaces for central simple algebras on the
intersection-theoretic side.

In the present article, we consider this variant in the case of Hasse invariant
1/2. More precisely, we prove a fundamental lemma (FL) type and an AFL type
statement for the group GLn(B) where B/F is a quaternion division algebra. We
now state these results in a vague form, together with references to their precise
formulations.

Date: September 30, 2024.
1



2 NUNO HULTBERG AND ANDREAS MIHATSCH

Theorem A (Fundamental Lemma, see Theorem 2.7). Let γ ∈ GL2n(F ) and g ∈
GLn(B) be regular semi-simple matching elements. Then

Orb(γ, 1Par, 0) = Orb(g, 1GLn(OB)).

Here, the orbital integral on the left is with respect to the subgroup GLn(F ×F ).
The one on the right is with respect to the subgroup GLn(E) for a fixed embedding
E → B of an unramified quadratic extension E/F . The test function 1Par on the
left hand side is the indicator function of the standard (n × n)-block parahoric
subgroup of GL2n. Precise definitions will be given in §2.

In order to state our arithmetic result, we also need the datum of a 1-dimensional
strict OE-module Y of OE-height n. The Serre tensor construction OB ⊗OE

Y then
has dimension 2 and OF -height 4n.

Theorem B (Arithmetic Fundamental Lemma, see Theorem 2.9). Let γ ∈ GL2n(F )
and g ∈ Aut0B(OB ⊗OE

Y) be regular semi-simple matching elements. Assume that
the linear AFL holds for Y. Then

d

ds

∣∣∣∣
s=0

Orb(γ, 1Par, s) = 2 Int(g) log(q). (1.1)

We refer to §2.4 for the definition of the intersection number Int(g). Using that
the linear AFL is known for all Y whose connected factor has OE-height ≤ 2 we
obtain the following corollary.

Corollary (see Corollary 2.10). Assume that the connected factor of Y has OE-
height ≤ 2. Then, for every pair of regular semi-simple matching elements γ ∈
GL2n(F ) and g ∈ Aut0B(OB ⊗OE

Y),

d

ds

∣∣∣∣
s=0

Orb(γ, 1Par, s) = 2 Int(g) log(q).

In particular, this verifies new cases of the arithmetic transfer (AT) conjecture
[11, Conjecture 1.5]. We remark that [11, Conjecture 1.5] involves an unspecified
correction term. Identity (1.1) shows that we expect this term to vanish for Hasse
invariant 1/2.

Our proofs of Theorems A and B are by reduction to the Guo–Jacquet FL [2],
the quadratic base change FL, and the linear AFL. On the orbital integral side, this
reduction relies on a combinatorial interpretation in terms of lattice counts. On the
intersection-theoretic side, it relies on a moduli-theoretic translation between the
intersection problems for GL2n(F ) and GLn(B).

2. Statement of Results

The definitions and conventions that follow are taken from [11, §2 – §4], but spe-
cialized to general linear groups over quaternion algebras. We begin this section by
recalling the invariant polynomial (§2.1) and by fixing our setting (§2.2). Next, we
give the definitions of the relevant orbital integrals (§2.3) and intersection numbers
(§2.4). Then we state our main results (§2.5).
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2.1. Regular semi-simple orbits. We will consider several instances of the fol-
lowing kind. Let F be a field and let E/F be an étale quadratic extension with
Galois conjugation σ. Let D be a central simple algebra (CSA) over F of degree 2n
together with an embedding E → D. Let C = CentE(D) be the centralizer which
is a CSA over E of degree n.

In this situation, C× × C× acts on D× by (h1, h2) · g = h−1
1 gh2. An element

g ∈ D× is called regular semi-simple if its orbit for this action is Zariski closed
and its stabilizer of minimal dimension. (This minimal dimension is equal to n.)
According to Jacquet–Rallis [4] and Guo [2, §1], the regular semi-simple orbits can
be characterized as follows:

Let D = D+ ⊕ D− be the decomposition into E-linear and E-conjugate linear
components. That is, D+ = C and D− = {x ∈ D | xa = σ(a)x for a ∈ E}. Let
g = g+ + g− denote the corresponding decomposition of an element g ∈ D×. For
g ∈ D× with g+ ∈ D×, set zg = g−1

+ g−.

Definition 2.1. Assume that g ∈ D× with g+ ∈ D×. The reduced characteristic
polynomial charredD/F (z

2
g ;T ) ∈ F [T ] is always a square. Define the invariant of g

as its unique monic square root,

Inv(g;T ) := charredD/F (z
2
g ;T )

1/2 ∈ F [T ]. (2.1)

The polynomial Inv(g;T ) is monic, of degree n, and satisfies Inv(g; 1) ̸= 0. An
element g ∈ D× is regular semi-simple if and only if both g+, g− lie in D× and
Inv(g;T ) is a separable polynomial. The invariant polynomial classifies orbits in
the sense that for two regular semi-simple elements g1, g2 ∈ D×,

C×g1C
× = C×g2C

× ⇐⇒ Inv(g1;T ) = Inv(g2;T ).

2.2. Setting and notation. For the rest of this article, we fix an integer n ≥ 1
and a non-archimedean local field F with uniformizer π. Let q denote its residue
field cardinality, v its normalized valuation and |x| = q−v(x) its normalized absolute
value.

We denote by K = F × F the split quadratic extension of F . The diagonal
embedding K → M2n(F ), (a, b) 7→ diag(a · 1n, b · 1n) is of the kind considered in
§2.1 and has centralizer Mn(K). Let

(G′, H ′) = (GL2n(F ), GLn(K))

be the corresponding pair of linear groups. For γ ∈ G′, the notion of being regular
semi-simple and the invariant Inv(γ;T ) are meant with respect to the (H ′ × H ′)-
action. Let G′

rs ⊂ G′ denote the set of regular semi-simple elements.
We denote by E/F an unramified quadratic extension, by σ ∈ Gal(E/F ) the non-

trivial element, and by η : F× → {±1}, η(x) = (−1)v(x) the character associated to
E. Let OF and OE be the rings of integers in F and E.

Let Bλ/F be a quaternion algebra over F of Hasse invariant λ ∈ {0, 1/2}. For
both possibilities B ∈ {B0, B1/2}, we fix a maximal order OB ⊂ B and an embedding
OE → OB. The resulting diagonal embedding E → Mn(B) is of the type considered
in §2.1 and has centralizer Mn(E). Let

(Gλ, H) = (GLn(Bλ), GLn(E))
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be the corresponding pair of linear groups. For g ∈ Gλ, the notion of being regular
semi-simple and the invariant Inv(g;T ) are meant with respect to the (H × H)-
action. Let Gλ,rs ⊂ Gλ be the subset of regular semi-simple elements.

2.3. Orbital integrals.

2.3.1. The case of G′. We define two characters η and | · | on H ′ by

η, | · | : H ′ −→ C×, η((a, b)) := η(det(ab−1)), |(a, b)| := | det(ab−1)|.

For a regular semi-simple element γ ∈ G′
rs, we denote by

(H ′ ×H ′)γ = {(h1, h2) ∈ H ′ ×H ′ | h1γ = γh2} (2.2)

the stabilizer of γ. Set Lγ = F [z2γ] which is an étale extension of degree n of F
because γ is regular semi-simple. There is the identity L×

γ = H ′ ∩ γ−1H ′γ, so
(H ′ ×H ′)γ can be identified with the torus L×

γ . We normalize the Haar measures
on H ′ ×H ′ and (H ′ ×H ′)γ by

Vol(GLn(OK)) = Vol(O×
Lγ
) = 1. (2.3)

For a regular semi-simple element γ ∈ G′
rs, a test function f ′ ∈ C∞

c (G′) and a
complex parameter s ∈ C, we can now define the orbital integral

Orb(γ, f ′, s) := Ω(γ, s) ·
∫

H′×H′
(H′×H′)γ

f ′(h−1
1 γh2)|h1h2|sη(h2)d(h1, h2). (2.4)

Here, the so-called transfer factor Ω(γ, s) ∈ ±qZ·s ensures that the definition only
depends on the orbit H ′γH ′. It is defined by

Ω

((
a b
c d

)
, s

)
= η(det(cd−1)) · | det(b−1c)|s

and satisfies Ω(h−1
1 γh2, s) = |h1h2|sη(h2)Ω(γ, s). The definition in (2.4) moreover

relies on [3, Lemma 3.2.3.] which states that η and | · | have trivial restriction to
(H ′ × H ′)γ. We will be interested in the central value and the central derivative
only, so we define

Orb(γ, f ′) := Orb(γ, f ′, 0) and ∂Orb(γ, f ′) :=
d

ds

∣∣∣∣
s=0

Orb(γ, f ′, s). (2.5)

2.3.2. The case of Gλ. Let G ∈ {G0, G1/2} be one of the two possible groups. For
a regular semi-simple element g ∈ Grs, we denote by (H × H)g its stabilizer. It
can be identified with the torus L×

g , where Lg = F [z2g ] as before. We normalize the
Haar measures on H ×H and (H ×H)g by

Vol(GLn(OE)) = Vol(O×
Lg
) = 1. (2.6)

For a regular semi-simple element g ∈ Grs and a test function f ∈ C∞
c (G), we put

Orb(g, f) :=

∫
H×H

(H×H)g

f(h−1
1 gh2)d(h1, h2). (2.7)
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2.4. Intersection numbers. We next define two families of intersection numbers,
one for each of the possible Hasse invariants λ ∈ {0, 1/2}. For λ = 0, these are the
intersection numbers that occur in the linear AFL from [10]. For λ = 1/2, these
are a special case of the intersection numbers from [11].

Let B = Bλ in the following. Let F̆ be the completion of a maximal unramified
extension of F with ring of integers OF̆ and residue field F; fix an embedding
E → F̆ . As a further datum, let Y be a strict π-divisible OE-module of dimension
1 and OE-height n over F, see [10, Definition 3.1]. We denote its OE-action by
ι : OE → End(Y). Recall that the connected-étale sequence of any such Y has a
unique splitting, meaning there is a canonical isomorphism

Y = Y◦ × Yet

where Y◦ is the connected component of the identity of Y and Yet its maximal étale
quotient. Let n◦ and net be the OE-heights of Y◦ and Yet. Then n = n◦+net, every
1 ≤ n◦ ≤ n may occur, and (n◦, net) characterize Y uniquely up to isomorphism.

Define (X, κ) as the Serre tensor product X = OB ⊗OE
Y with OB-action κ(x) =

x⊗ idY. Note that X also carries the OB-linear OE-action idOB
⊗ ι which we again

denote by ι.

Remark 2.2. Assume that λ = 0. Then any choice of isomorphism OB
∼= M2(OF )

provides a decomposition of X as X = Y⊕2 (Morita equivalence). In this way, the
ensuing definitions for λ = 0 reduce to the ones in [10].

We consider the rings of quasi-endomorphisms CY = End0
E(Y, ι) and Dλ,Y =

End0
B(X, κ), as well as the groups HY = C×

Y and Gλ,Y = D×
λ,Y. By functoriality of

the Serre tensor construction, there is a group homomorphism

HY −→ Gλ,Y, g 7−→ idOB
⊗ g.

The structure of these groups is as follows. Let X = X◦×Xet be the connected-étale
decomposition of X. There are no homomorphisms between connected and étale
π-divisible groups over F, so

CY = C◦
Y × Cet

Y , Dλ,Y = D◦
λ,Y ×Det

λ,Y, (2.8)

where the factors denote the E-linear (resp. B-linear) quasi-endomorphisms of the
factors of Y and X. Then

C◦
Y

∼= C1/n◦ D◦
λ,Y

∼= D1/2n◦+λ

Cet
Y

∼= Mnet(E) Det
λ,Y

∼= Mnet(B).

Here, C1/n◦ denotes a central division algebra (CDA) of Hasse invariant 1/n◦ over
E, and D1/2n◦+λ denotes a CSA of degree 2n◦ and Hasse invariant 1/2n◦ + λ over
F . Note that the two pairs (C◦

Y, D
◦
λ,Y) and (Cet

Y , D
et
λ,Y) are of the type considered in

§2.1.

Definition 2.3. An element g = (g◦, get) ∈ Gλ,Y is called regular semi-simple if its
components g◦ and get are regular semi-simple with respect to H◦

Y and Het
Y , and if

its invariant, defined as

Inv(g;T ) = Inv(g◦;T ) Inv(get;T ) ∈ F [T ],

is a separable polynomial. Let Gλ,Y,rs ⊂ Gλ,Y be the subset of regular semi-simple
elements.
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We now associate an intersection number to each g ∈ Gλ,Y,rs. Let N be the RZ
space for Y: By definition, this means that it is the formal scheme over OF̆ that
represents the functor

N (S) =

{
(Y, ι, ρ)

∣∣∣∣ (Y, ι)/S a strict OE-module
ρ : S ×SpecF (Y, ι) −→ S ×S (Y, ι) a quasi-isogeny

}
. (2.9)

Here and in the following, S = F⊗OF̆
S denotes the special fiber of S.

Similarly, let Mλ be the RZ space for (X, κ). Recall for its definition that an
OB-action on a 2-dimensional strict OF -module X over a Spf OF̆ -scheme S is called
special if the two κ(OE)-eigenspaces of Lie(X) are both locally free of rank 1 as OS-
modules.1 Then Mλ is the formal scheme over Spf OF̆ that represents the functor

Mλ(S) =

{
(X, κ, ρ)

∣∣∣∣ (X, κ)/S a special OB-module
ρ : S ×SpecF (X, κ) −→ S ×S (X, κ) a quasi-isogeny

}
.

(2.10)
It is clear that if (Y, ι) is a 1-dimensional strict OE-module, then OB ⊗OE

(Y, ι) is a
special OB-module. Thus we obtain a morphism

N −→ M
(Y, ι, ρ) 7−→ (OB ⊗OE

Y, κ(x) := x⊗ idY , idOB
⊗ ρ).

(2.11)

This is a closed immersion by [11, Proposition 4.15]. There are right actions of HY
on N and of Gλ,Y on Mλ by

h · (Y, ι, ρ) = (Y, ι, ρh) and g · (X, κ, ρ) = (X, κ, ρg).

The morphism (2.11) is equivariant with respect to HY → Gλ,Y. Moreover, the
structure of N as formal scheme is easy to describe:

N ∼=
∐

Z×GLnet (E)/GLnet (OE)

Spf OF̆ [[t1, . . . , tn−1]], (2.12)

where the indexing can be chosen compatibly with the Het
Y -action for a fixed identi-

fication Het
Y
∼= GLnet(E). In particular, N is formally smooth of relative dimension

n− 1 over Spf OF̆ .
Concerning Mλ, it is known to be locally formally of finite type over Spf OF̆ and

regular of dimension 2n, see [11, Proposition 4.13]. Using (2.11), we can thus view
N as cycle in middle dimension on Mλ.

For a regular semi-simple element g ∈ Gλ,Y,rs, we define the intersection locus

I(g) := N ∩ g · N . (2.13)

For such g, we also denote by g = g+ + g− the decomposition of g into E-linear
and E-conjugate linear components, where ι : E → Dλ,Y comes from the definition
of (X, κ). Set zg = g−1

+ g− and Lg = F [z2g ]. Since L×
g = HY ∩ g−1HYg as subgroups

of Gλ,Y, the L×
g -action on M preserves the intersection locus I(g). Let Γ ⊂ L×

g be
a free discrete subgroup such that L×

g = Γ × O×
Lg

. It acts without fixed points on
Mλ.

Proposition 2.4. Let g ∈ Gλ,Y and Γ ⊂ L×
g be as before. The quotient Γ\(N∩g·N )

is an artinian scheme.

1This definition goes back to Drinfeld [1].
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Proof. By [11, Proposition 4.18],2 the quotient Γ\I(g) is a proper scheme over
SpecOF̆ with empty generic fiber. Since the maximal reduced subscheme Nred is
0-dimensional, cf. (2.12), this scheme has to be artinian. □

The general definition of intersection numbers in [11, Definition 4.21] now spe-
cializes to taking the length:

Definition 2.5. For a regular semi-simple element g ∈ Gλ,Y,rs, choose Γ as before
and define

Int(g) := lenOF̆

(
OΓ\I(g)

)
.

2.5. FL and AFL. We consider the following test functions. For the case λ = 0,
i.e. for B ∼= M2(F ), we define

f ′
0 = 1GL2n(OF ) ∈ C∞

c (G′) and f0 = 1GL2n(OF ) ∈ C∞
c (G).

For the case λ = 1/2, we first define the parahoric subgroup

Par =

{(
GLn(OF ) πMn(OF )
Mn(OF ) GLn(OF )

)}
⊂ GL2n(OF ). (2.14)

Let 1Par ∈ C∞
c (G′) be its characteristic function and let h ∈ H ′ be the element

diag(π1n, 1n). Then put

f ′
1/2( · ) = 1Par(h · ) ∈ C∞

c (G′) and f1/2 = 1GLn(OB) ∈ C∞
c (G). (2.15)

The orbital integrals of f ′
1/2 and 1Par are related by

Orb(γ, f ′
1/2, s) = q−ns Orb(γ, 1Par, s). (2.16)

The advantage of f ′
1/2 over 1Par is that its orbital integral satisfies the completely

symmetric functional equation (see [11, Proposition 3.19])

Orb(γ, f ′
1/2,−s) = ε1/2(γ)Orb(γ, f ′

1/2, s) (2.17)

where the sign is defined by

ε1/2(γ) = (−1)n (−1)r, r = v
(
detMn(B)/F (zγ)

)
. (2.18)

Definition 2.6. Two regular semi-simple elements γ ∈ G′
rs and g ∈ Gλ,rs (resp. γ

and g ∈ Gλ,Y,rs) are said to match if

Inv(γ;T ) = Inv(g;T ).

Theorem 2.7 (Fundamental Lemma). For every regular semi-simple γ ∈ G′
rs,

Orb(γ, f ′
λ) =

{
Orb(g, fλ) if there exists a matching g ∈ Gλ,rs

0 otherwise.

The case λ = 0 is well-known (Guo–Jacquet FL) and due to Guo [2]. Our addition
is the case λ = 1/2 whose proof will be given in §3. We now turn to the central
derivatives:

2Strictly speaking, [11, Proposition 4.18] is formulated only for p-adic F . However, Proposition
2.4 is known when λ = 0 by [10, Lemma 3.7] and the comparison between the cases λ = 0 and
λ = 1/2 in §4 gives an alternative proof of Proposition 2.4 that applies to all F .
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Conjecture 2.8 (Arithmetic Fundamental Lemma). For every regular semi-simple
element γ ∈ G′

rs,

∂Orb(γ, f ′
λ) =

2 Int(g) log(q)
if there is a strict OE-module (Y, ι)
and g ∈ Gλ,Y,rs that matches γ

0 otherwise.
(2.19)

The AT conjecture for general CSAs [11, Conjecture 1.5] also includes an unspec-
ified correction term that cannot be omitted in general. Conjecture 2.8 here, which
is for Hasse invariant 1/2, is hence stronger in the sense that this correction term
is conjectured to vanish.

For λ = 0, Conjecture 2.8 is the linear AFL conjecture from [10]. The vanishing
part of (2.19) is known to hold in general, see [10, Corollary 2.18]. Moreover,
Identity (2.19) is known for all g ∈ G0,Y,rs with Y such that n◦ ≤ 2. This statement
is [10, Corollary 1.3] and goes back to Li [8] who verified the case n ≤ 2.

Our main result here is a reduction of the case λ = 1/2 in Conjecture 2.8 to the
case λ = 0:

Theorem 2.9. (1) The vanishing part of Conjecture 2.8 holds.
(2) If Conjecture 2.8 holds for λ = 0, then it also holds for λ = 1/2. More precisely,
assume that Identity (2.19) holds for λ = 0 and all g ∈ G0,Y,rs for some Y. Then
Identity (2.19) also holds for λ = 1/2 and all g ∈ G1/2,Y,rs.

Corollary 2.10 (to Theorem 2.9 and [10, Corollary 1.3]). Identity (2.19) holds in
all cases with λ = 1/2 and with Y such that n◦ ≤ 2. □

Our proofs of Theorems 2.7 and 2.9 are by expressing the occurring orbital in-
tegrals and intersection numbers for λ = 1/2 in terms of orbital integrals and
intersection numbers for λ = 0. This is made precise by the following result.

Theorem 2.11. (1) Assume that γ ∈ G′
rs is regular semi-simple and that π−nInv(γ; πT )

lies in T n + πOF [T ]. Then there exists a regular semi-simple element γ̃ ∈ G′
rs with

Inv(γ̃;T ) = π−nInv(γ; πT ) and

Orb(γ, f ′
1/2, s) = Orb(γ̃, f ′

0, s).

(2) Assume that g ∈ G1/2,rs and that π−nInv(g; πT ) ∈ T n + πOF [T ]. Then there
exists a regular semi-simple g̃ ∈ G0,rs with Inv(g̃;T ) = π−nInv(g; πT ) and

Orb(g, f1/2) = Orb(g̃, f0)).

(3) Assume that g ∈ G1/2,Y,rs is regular semi-simple with π−nInv(g; πT ) ∈ T n +
πOF [T ]. Then there exists a regular semi-simple g̃ ∈ G0,Y,rs with Inv(g̃;T ) =
π−nInv(g; πT ) and

Int(g) = Int(g̃).

The proof of Theorem 2.11 will be constructive in the sense that we work with
explicit orbit representatives γ resp. g and then define concrete elements γ̃ and g̃.

The condition on the invariants of γ ∈ G′ resp. g ∈ G1/2 or g ∈ G1/2,Y in
Theorem 2.11 can also be formulated by saying that z2γ/π ∈ Lγ resp. z2g/π ∈ Lg are
topologically nilpotent. It is clear that Theorem 2.11 immediately implies Theorems
2.7 and 2.9 for such elements. Moreover, the cases where z2γ/π or z2g/π are not
integral over OF are trivial: Here, all orbital integrals or intersection numbers in
question vanish, a fact proven in Corollary 3.4, Lemma 3.10 and Lemma 4.5. This
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leaves the edge cases where z2γ/π or z2g/π are integral but not topologically nilpotent.
We will prove some auxiliary results (Corollary 3.6, Lemma 3.11, Proposition 4.8)
that allow to split off the non-topologically nilpotent part and to treat it separately.

3. Fundamental Lemma

In this section we prove parts (1) and (2) of Theorem 2.11. As a corollary we
will obtain the fundamental lemma for GLn(B) in Theorem 2.9. Our main tool is
the combinatorial interpretation of orbital integrals in terms of lattice counts.

3.1. Orbital integrals on G′. Our aim in this section is to relate the orbital
integrals Orb(γ, f ′

1/2, s) and Orb(γ, f ′
0, s) for regular semi-simple γ ∈ G′

rs. They
both only depend on the double coset H ′γH ′. Hence it suffices to consider elements
of the form γ(x) = ( 1 x

1 1 ), where x ∈ GLn(F ) and where 1 ∈ GLn(F ) denotes
the unit element. Recall that we define zγ = γ−1

+ γ− and Lγ = F [z2γ]. Note that
zγ(x) = ( 0 x

1 0 ) and z2γ(x) = ( x 0
0 x ). So it is by definition that the invariant polynomial

Inv(γ(x), T ) of γ(x) equals the characteristic polynomial of x. We next recall some
definitions and results from [11], but specialized to our quaternion algebra setting.
Let K = F × F be as in §2.2.

Definition 3.1 ([11, Definition 3.20]). Let L denote the set of OK-lattices in F 2n.
For γ ∈ G′

rs regular semi-simple and λ ∈ {0, 1/2}, we define Lλ(γ) in the following
way. For λ = 0, we put

L0(γ) := {Λ ∈ L | γΛ ∈ L}. (3.1)

For λ = 1/2, and where (π, 1) ∈ OK is the element diag(π, 1), we put

L1/2(γ) := {Λ ∈ L | z2γΛ ⊆ zγ(π, 1)Λ ⊆ πΛ}. (3.2)

These two sets equal the set L(γ) from [11, Definition 3.20] in the two cases of Hasse
invariant 0 and 1/2. In the case of Hasse invariant 1/2, we have furthermore used
the equivalent description in [11, (3.26)].

Note that the OK-lattices Λ ∈ L are precisely the direct sums Λ+ ⊕ Λ− of OF -
lattices Λ+,Λ− ⊂ F n. We use this to give a more concrete description of L1/2(γ(x)):

Definition 3.2. For x ∈ GLn(F ), define

L(x) := {(Λ+,Λ−) pairs of OF -lattices in F n | xΛ− ⊆ Λ+ ⊆ Λ−} . (3.3)

Since zγ(x) = ( 0 x
1 0 ), it follows directly from definitions that

L(x/π) ∼−→ L1/2(γ(x))

(Λ+,Λ−) 7−→ Λ+ ⊕ Λ−.

Definition 3.3 ([11, Definition 3.20]). For a regular semi-simple element γ ∈ G′
rs

and a lattice Λ ∈ L0(γ), we put

Ω(γ,Λ, s) := Ω(h−1
1 γh2, s), (3.4)

where h1, h2 ∈ H ′ are chosen such that Λ = h1O
2n
F and γΛ = h2O

2n
F .
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For x ∈ GLn(F ), we let Lx = F [x] ⊆ Mn(F ) be the generated F -algebra. For
a pair Λ = (Λ+,Λ−) ∈ L(x), we denote by RΛ ⊂ Lx the stabilizer of Λ under the
diagonal action of Lx on lattices. We can now state the combinatorial interpretation
of orbital integrals from [11, Equation (3.25)] of the test function f ′

1/2:

Orb(γ(x), f ′
1/2, s) = q−ns

∑
Λ=(Λ+,Λ−)∈L(x/π)/L×

x

[O×
Lx

: R×
Λ ] Ω(γ(x), Λ+ ⊕ Λ−, s). (3.5)

Corollary 3.4. If x/π is not integral over OF , then the orbital integral Orb(γ(x), f ′
1/2, s)

vanishes identically.

Proof. The set L(x/π) is empty if x/π is not integral. □

Assume now that x is topologically nilpotent. Then [11, Lemma 3.21 (1)] states
that there is a bijection

L(x) ∼−→ L0(γ(x))

(Λ+,Λ−) 7−→ Λ+ ⊕ Λ−.

Identity [11, Equation (3.25)] then specializes to

Orb(γ(x), 1GL2n(OF ), s) =
∑

Λ=(Λ+,Λ−)∈L(x)/L×
x

[O×
Lx

: R×
Λ ] Ω(γ(x), Λ+ ⊕ Λ−, s). (3.6)

Combining (3.5) and (3.6) yields a proof of Theorem 2.11 (1):

Proof of Theorem 2.11 (1). First recall the statement: Let γ ∈ G′
rs be regular semi-

simple. The statement we would like to prove only depends on the orbit of γ, so
we may assume without loss of generality that γ = γ(x) for some x ∈ GLn(F ). Set
x̃ = x/π. The assumption is

char(x̃;T ) = π−nInv(γ(x), πT ) ∈ T n + πOF [T ]

which implies that x̃ is topologically nilpotent. In particular, γ̃ := γ(x̃) lies in
GL2n(F ) and is regular semi-simple. It satisfies Inv(γ̃;T ) = π−nInv(γ; πT ) and our
task is to show that

Orb(γ, f ′
1/2, s) = Orb(γ̃, 1GL2n(OF ), s). (3.7)

To this end, we compare the two quantities Ω(γ,Λ+ ⊕ Λ−, s) and Ω(γ̃,Λ+ ⊕ Λ−, s)
for (Λ+,Λ−) ∈ L(x̃). Choose h1 and h2 in H ′ such that h1O

2n
F = Λ+ ⊕ Λ− and

h2O
2n
F = γ(Λ+⊕Λ−). Write h−1

1 = ( a
b ) and h2 = ( c

d ). We obtain from Definition
3.3 that

Ω(γ̃, Λ+ ⊕ Λ−, s) = Ω

((
ac axd/π
bc bd

)
, s

)
= Ω

((
ac axd
bc bd

)
, s

)
q−ns = Ω(γ, Λ+ ⊕ Λ−, s)q

−ns.

(3.8)

Substituting this into (3.6) for γ̃ yields (3.5) for γ which proves (3.7) as desired. □

Note that if (Λ+,Λ−) ∈ L(x), then both Λ+ and Λ− are OF [x]-modules. For this
reason, we next focus on the ring OF [x], in particular on its idempotents.

Lemma 3.5. Assume that x ∈ GLn(F ) is integral over OF . Then there is a unique
way to write OF [x] as a product R0 × R1 such that the image (x0, x1) of x has the
property that x0 is topologically nilpotent and x1 ∈ R×

1 a unit.
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Proof. As x was assumed to be integral over OF , the ring OF [x] is of the form
OF [T ]/(P (T )) for some monic polynomial P (T ) ∈ OF [T ]. We consider the reduc-
tion P of P modulo π. It will factor as P = Tmf(T ) with f(0) ̸= 0. By Hensel’s
lemma, this factorization lifts to a factorization of P which defines the desired
factorization R0 ×R1. □

Corollary 3.6. Let x ∈ GLn(F ) have the property that x̃ = x/π is integral over
OF . Let OF [x̃] = R0 × R1 be the factorization from Lemma 3.5 with respect to x̃
and let (x0, x1) denote the components of x. Let F n = V0 × V1 be the corresponding
factorization of F n and fix isomorphisms Vi

∼= F ni. Then γ = γ(x) lies in G′
rs

while γ0 = γ(x0) and γ1 = γ(x1) lie in GL2ni
(F )rs. There is an identity of orbital

integrals
Orb(γ, f ′

1/2, s) = Orb(γ0, f
′
1/2,n0

, s)Orb(γ1, f
′
1/2,n1

, s) (3.9)

where the test functions on the right hand side are meant in the sense of (2.15) but
on GL2ni

(F ).

Proof. Every OF [x̃]-lattice is a direct sum of an R0-lattice and an R1-lattice. It is
easily seen that this defines a bijection L(x̃) ∼→ L(x0/π) × L(x1/π). Furthermore,
the definition of Ω(γ,Λ+⊕Λ−, s) is multiplicative in such direct sums. The desired
identity then follows from (3.5). □

Identity (3.7) already covers the factor Orb(γ0, f
′
1/2,n0

, s), so we now turn to the
factor Orb(γ1, f

′
1/2,n1

, s). For elements x ∈ GLn(F ) that are regular semi-simple in
the usual sense, we consider the conjugation orbital integral

Orb(x, 1GLn(OF )) =

∫
GLn(F )/L×

x

1GLn(OF )(y
−1xy)dy, (3.10)

where Lx = F [x] as before and where dy is the Haar measure on GLn(F )/L×
x that

is normalized by
Vol(GLn(OF )) = Vol(O×

Lx
) = 1. (3.11)

Lemma 3.7. Assume that x ∈ GLn(F ) has the property that x̃ = x/π is integral
over OF with det(x̃) ∈ O×

F . Then there is an identity of orbital integrals

Orb(γ(x), f ′
1/2, s) = Orb(x̃, 1GLn(OF )). (3.12)

Proof. We again use (3.5) to express the left hand side. A general identity (see [11,
Lemma 3.23]) states that the transfer factor of a lattice Λ = Λ+ ⊕ Λ− ∈ L0(γ) is
given by

Ω(γ,Λ+ ⊕ Λ−, s) = (−1)[(γΛ)−:zΛ+]+[(γΛ)−:Λ−]q([(γΛ)+:zΛ−]+[(γΛ)−:zΛ+])s, (3.13)

where z = zγ and where [Λ1 : Λ2] denotes the length of Λ1/Λ2. In the situation of
(3.5), we apply this formula to the element γ = γ(x) and a lattice Λ = Λ+ ⊕ Λ−
with (Λ+,Λ−) ∈ L(x̃). We have that z = ( 0 x

1 0 ) and that γΛ = Λ because x
is topologically nilpotent under the assumption det(x̃) ∈ O×

F . The assumption
moreover implies that any L(x̃) is the set of lattice pairs (Λ+,Λ−) that satisfy

x̃Λ+ = Λ− = Λ+.
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We see that zΛ+ = Λ− and zΛ− = πΛ+ for all such (Λ+,Λ−). Substituting this in
(3.13) gives Ω(γ(x),Λ+ ⊕ Λ−, s) = qns for all (Λ+,Λ−) ∈ L(x̃) and hence

Orb(γ, f ′
1/2, s) = qnsq−ns

∑
Λ=(Λ+,Λ−)∈L(x̃)

[O×
Lx

: R×
Λ ]. (3.14)

This is precisely the combinatorial description of Orb(x̃, 1GLn(OF )) and the proof is
complete. □

3.2. Orbital integrals on Gλ. Recall that E/F is an unramified quadratic exten-
sion and that Bλ denotes a quaternion algebra over F of Hasse invariant λ ∈ {0, 1/2}
with an embedding E → Bλ. Recall that σ ∈ Gal(E/F ) denotes the non-trivial
element. Our aim in this section is to relate the orbital integrals Orb(−, f0) and
Orb(−, f1/2), where fλ ∈ C∞

c (Gλ) is the characteristic function of GLn(OBλ
). Put

ε = 2λ ∈ {0, 1} and fix an element ϖ ∈ OBλ
that satisfies

ϖ2 = πε and ϖa = σ(a)ϖ for a ∈ E. (3.15)

For x ∈ GLn(E), we define g(x) = 1 + xϖ ∈ Mn(Bλ). This element lies in Gλ,rs if
and only if the characteristic polynomial of z2g(x) = xσ(x)πε ∈ GLn(E) is separable
and does not vanish at 0 or 1. In this case, Inv(g(x);T ) = char(xσ(x)πε;T ). Since
Orb(g, fλ) only depends on the double coset HgH, we may restrict attention to
group elements of the form g(x).

Definition 3.8. Denote by σ : En → En the coordinate-wise Galois conjugation.
For x ∈ GLn(E), define Lσ(x) as the set of OE-lattices Λ ⊂ En that satisfy

xσ(Λ) ⊆ Λ. (3.16)

Moreover, define Lx ⊂ Mn(E) as the subalgebra F [xσ(x)πε]. Then L×
x acts by

multiplication on Lσ(x).

Lemma 3.9. Let λ ∈ {0, 1/2} be any and let B = Bλ. Let g = 1 + xϖ ∈ Gλ,rs be
regular semi-simple. Suppose further that xσ(x)πε is topologically nilpotent. Then
there is the identity

Orb(g(x), 1GLn(OB)) =
∑

Λ∈Lσ(x)/L×
x

[O×
Lx

: R×
Λ ]. (3.17)

Here RΛ ⊆ Lx denotes the order that stabilizes Λ.

Proof. The assumption that xσ(x)πε = (xϖ)2 is topologically nilpotent implies
that the determinant det(g(x)) lies in O×

F . (Here and in the following, the de-
terminant is meant in the sense of the reduced norm GLn(B) → F×.) Hence
the condition h−1

1 gh2 ∈ GLn(OB) holds if and only if h−1
1 gh2 ∈ Mn(OB). Since

h−1
1 gh2 = h−1

1 h2(1 + h−1
2 xϖh2) and since h−1

2 xϖh2 is topologically nilpotent by as-
sumption, this is equivalent to h−1

1 h2 ∈ GLn(OE) and h−1
2 xσ(h2) ∈ Mn(OE). Given

a pair (h1, h2) with h−1
1 h2 ∈ GLn(OE), consider the lattice Λ = h1O

n
E = h2O

n
E.

Then h−1
2 xσ(h2) lies in Mn(OE) if and only if xσ(Λ) ⊆ Λ. Rewriting the definition

of Orb(g, 1GLn(OB)) in this way gives (3.17). □

Lemma 3.10. Let g ∈ G1/2,rs and B = B1/2. The orbital integral Orb(g, 1GLn(OB))
vanishes if z2g/π is not integral over OF .



A LINEAR AFL FOR QUATERNION ALGEBRAS 13

Proof. Since Orb(g, 1GLn(OB)) only depends on the orbit of g and since every regular
semi-simple orbit contains a representative of the form g(x) we may assume without
loss of generality that g = g(x) for some x ∈ GLn(E). In this case z2g/π = xσ(x).
Moreover, GLn(OB) = GLn(OE) + Mn(OE)ϖ because B is the division algebra.
So h−1

1 h2 + h−1
1 xσ(h2)ϖ ∈ GLn(OB) with hi ∈ GLn(E) can only hold if h−1

1 h2 ∈
GLn(OE) and h−1

2 xσ(h2) ∈ Mn(OE). The second condition implies that xσ(x) is
integral over OF because it is conjugate to h−1

2 xσ(h2)σ(h
−1
2 xσ(h2)). This was to be

shown. □

Proof of Theorem 2.11 (2). Let g ∈ G1/2,rs be such that π−nInv(g; πT ) ∈ T n +
πOF [T ]. Denote by ϖλ ∈ Bλ the element fixed in (3.15). Without loss of generality
we may assume that g = 1 + xϖ1/2 for some x ∈ GLn(E). The assumption on g is
then equivalent to xσ(x) being topologically nilpotent. The element g̃ = 1 + xϖ0

hence lies in G0,rs and satisfies Inv(g̃;T ) = π−nInv(g; πT ). Lemma 3.9 applies to
both g and g̃, and yields

Orb(g, 1GLn(OB)) = Orb(g̃, 1GL2n(OF )) (3.18)

as desired. □

We next prove a factorization of the orbital integral that is analogous to that in
Lemma 3.6.

Lemma 3.11. Let B = B1/2 and assume that g(x) ∈ G1/2,rs is such that xσ(x) is
integral over OF . Let OF [xσ(x)] = R0 ×R1 be as in Lemma 3.5. Let En = V0 × V1

be the induced decomposition of En which is preserved by x. Write (x0, x1) for its
components and choose isomorphisms Vi

∼= Eni. Put gi = 1 + xiϖ ∈ GLni
(B).

Then there is an identity of orbital integrals

Orb(g, 1GLn(OB)) = Orb(g0, 1GLn0 (OB))Orb(g1, 1GLn1 (OB)). (3.19)

Proof. Every OF [xσ(x)]-lattice is a direct sum of an R0-lattice and an R1-lattice.
This defines a bijection Lσ(x)

∼→ Lσ(x0)×Lσ(x1). The desired identity now follows
from Lemma 3.9 which can be applied to all three orbital integrals because xσ(x),
x0σ(x0) and x1σ(x1) are all integral by assumption. □

Identity (3.18) already covers the factor Orb(g0, 1GLn0 (OB)), so we now turn to
the factor Orb(g1, 1GLn1 (OB)). Let x ∈ GLn(OE) be an element that is regular semi-
simple with respect to the σ-twisted conjugation action (y, x) 7→ y−1xσ(y). Its
stabilizer then equals L×

x where Lx = F [xσ(x)]. We normalize the Haar measure
dy on GLn(E)/L×

x by

Vol(GLn(OE)) = Vol(O×
Lx
) = 1 (3.20)

and define a twisted orbital integral by

Orbσ(x, 1GLn(OE)) :=

∫
GLn(E)/L×

x

1GLn(OE)(y
−1xσ(y))dy. (3.21)

Lemma 3.12. Let B = B1/2 and let x ∈ GLn(E) be such that xσ(x) is integral
over OF with det(xσ(x)) ∈ O×

F . Then there is the identity

Orb(g(x), 1GLn(OB)) = Orbσ(x, 1GLn(OE)). (3.22)
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Proof. The assumption that xσ(x) is integrally invertible implies that Lσ(x) is the
set of OE-lattices Λ ⊆ En such that xσ(Λ) = Λ. In this case, the lattice counting
expression in Lemma 3.9 equals Orbσ(x, 1GLn(OE)). □

3.3. Vanishing orders. The FL and the AFL both include vanishing statements.
In order to prove these, we now recall some results from [10] for the case λ = 0.

By regular semi-simple invariant (of degree n), we mean a degree n polynomial
δ ∈ F [T ] that is monic, separable and satisfies δ(1)δ(0) ̸= 0. These are precisely
the polynomials that arise as invariant polynomials of elements γ ∈ G′

rs. Given a
regular semi-simple δ ∈ F [T ], we define

Lδ := F [z2]/(δ(z2)) and Bδ := (E ⊗F Lδ)[z]/(z(a⊗ b) = (σ(a)⊗ b)z)a∈E, b∈Lδ
.

(3.23)
Then Lδ is an étale F -algebra of degree n = deg(δ) by separability, and Bδ/Lδ is
a quaternion algebra. Moreover, Bδ contains E by construction. Let Lδ =

∏
i∈I Li

and Bδ =
∏

i∈I Bi be the factorizations of Lδ and Bδ according to the idempotents
in Lδ. The algebraic vanishing order of δ from [10, Definition 2.15] is defined as the
integer

ord0(δ) := #{i ∈ I | Bi is a division algebra}.
One of the main results of [10] is a factorization formula for Orb(γ, 1GL2n(OF ), s). It
implies, see [10, Corollary 2.17], that for every regular semi-simple γ ∈ G′

rs,

ords=0 Orb(γ, 1GL2n(OF ), s) ≥ ord0(Inv(γ)). (3.24)

Our aim is to formulate an analogous result in the case of invariant λ = 1/2.

Definition 3.13. Let δ ∈ F [T ] be a regular semi-simple invariant of degree n and
let Lδ, Bδ be defined as in (3.23). Let B = B1/2 be the quaternion division algebra
over F . Define

ord1/2(δ) := #{i ∈ I | Bi ̸∼= B ⊗F Li}.
In other words, ord1/2(δ) is the number of indices such that Bi is split and [Li : F ]
odd, or such that Bi is division and [Li : F ] even. It is checked with a simple case
distinction that

ord1/2(δ(T )) = ord0(π
−nδ(πT )). (3.25)

Corollary 3.14. Let γ ∈ G′
rs be a regular semi-simple element. Then

ords=0 Orb(γ, f ′
1/2, s) ≥ ord1/2(Inv(γ)). (3.26)

Proof. If z2γ/π is not integral over OF , then Orb(γ, f ′
1/2, s) = 0 by Corollary 3.4 and

there is nothing to prove. So assume that z2γ/π is integral and consider the orbital
integral factorization from Corollary 3.6,

Orb(γ, f ′
1/2, s) = Orb(γ0, f

′
1/2, s)Orb(γ1, f

′
1/2, s).

Since Inv(γ) = Inv(γ0)Inv(γ1), we have

ord1/2(Inv(γ)) = ord1/2(Inv(γ0)) + ord1/2(Inv(γ1)).

It hence suffices to show (3.26) for γ0 and γ1 separately, meaning we may either
assume z2γ/π to be topologically nilpotent or integrally invertible.

If z2γ/π is topologically nilpotent, then we can apply Theorem 2.11 (1): For
any element γ̃ ∈ G′

rs with Inv(γ̃;T ) = π−nInv(γ; πT ), we have Orb(γ, f ′
1/2, s) =
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Orb(γ̃, 1GL2n(OF ), s). Using (3.25), the desired vanishing statement (3.26) follows
directly from (3.24).

If z2γ/π is integral over OF and det(z2γ/π) ∈ O×
F , then

ord1/2(Inv(γ;T )) = ord0(π
−nInv(γ; πT )) = 0

because z2γ/π then lies in O×
Lγ

and is hence a norm from E ⊗F Lγ. (This uses that
E/F is unramified.) The inequality ords=0Orb(γ, f ′

1/2, s) ≥ 0 holds trivially and
there is nothing to prove in this case. This completes the argument. (We remark
that if z2γ/π ∈ O×

Lγ
, then Corollary 3.7 states that Orb(γ, f ′

1/2, s) is a constant
independent of s.) □

3.4. Proof of Theorem 2.7. We can finally deduce the fundamental lemma for
λ = 1/2.

Proof of Theorem 2.7. Let γ ∈ G′
rs. We need to show the identity

Orb(γ, f ′
1/2) =

{
Orb(g, f1/2) if there exists a matching g ∈ G1/2

0 otherwise.
(3.27)

We first note that if π−nInv(γ; πT ) /∈ OF [T ], then both sides of the equation vanish.
This follows from Corollary 3.4 and from Lemma 3.10, respectively. Hence we
assume from now on that π−nInv(γ; πT ) ∈ OF [T ] or, equivalently, that z2γ/π is
integral. Consider Lδ and Bδ as in Equation (3.23) for δ = Inv(γ;T ). Let Lδ =

∏
i Li

and Bδ =
∏

i Li be their factorizations according to idempotents. By [11, Corollary
2.8] there exists an element g ∈ G1/2,rs that matches γ if and only if ord1/2(δ) = 0,
see Definition 3.13. In particular, if there is no matching element g ∈ G1/2,rs, then
Orb(γ, f ′

1/2) = 0 by Corollary 3.14. This proves the vanishing part of (3.27).
We henceforth consider the case that there is an element g ∈ G1/2,rs that matches

γ. Assuming that γ = 1+zγ and that g = 1+zg, let γ = (γ0, γ1) and g = (g0, g1) be
the components of γ and g such that z2γ0/π and z2g0/π are topologically nilpotent, and
z2γ1/π and z2g1/π integrally invertible (Corollaries 3.7 and 3.12). Then γ0 matches g0
and γ1 matches g1 as can be seen by using the isomorphism OF [z

2
γ]

∼= OF [z
2
g ] that

sends z2γ to z2g . By Lemmas 3.6 and 3.11, the two sides of (3.27) factor and the
desired equality becomes

Orb(γ0, f
′
1/2,n0

)Orb(γ1, f
′
1/2,n1

)
?
= Orb(g0, 1GLn0 (OB))Orb(g1, 1GLn1 (OB)).

Here, B = B1/2. We can prove this identity factor-by-factor, meaning we may
assume that z2γ/π is topologically nilpotent or that z2γ/π ∈ O×

Lγ
.

Assume first that z2γ/π is topologically nilpotent. Then we may apply Theorem
2.11 (1) and (2): Let γ̃ ∈ G′

rs and g̃ ∈ G0,rs be such that Inv(γ̃;T ) = π−nδ(πT ) =
Inv(g̃;T ). We obtain

Orb(γ, f ′
1/2) = Orb(γ̃, 1GL2n(OF )) = Orb(g̃, 1GL2n(OF )) = Orb(g, 1GLn(OB))

where the middle equality is the Guo–Jacquet FL, i.e. the case λ = 0 of Theorem
2.7.

Assume now that z2γ/π ∈ O×
Lγ

. Without loss of generality, we may assume that
γ = γ(x) for some x ∈ GLn(F ) and g = 1 + x′ϖ for some x′ ∈ GLn(E). The fact
that γ and g match translates to the identity

charF (x/π;T ) = charE(x
′σ(x′);T ).
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In other words, x/π and x′ match in the sense of the quadratic base change FL, see
[5]. We obtain from Lemmas 3.7 and 3.12, as well as the base change FL that

Orb(γ, f ′
1/2) = Orb(x/π, 1GLn(OF )) = Orbσ(x′, 1GLn(OE)) = Orb(g, 1GLn(OB)).

The proof of Theorem 2.7 is now complete. □

4. Arithmetic Fundamental Lemma

It is left to prove Theorem 2.11 (3) and Theorem 2.9 which is the aim of this
final section. Its structure is analogous to that of §3: We first relate the intersection
problems for λ = 0 and λ = 1/2 by analyzing their moduli descriptions (§4.1). Then
we prove a factorization result for Int(g) in the case of λ = 1/2 (§4.2). Combining
both techniques we obtain the proof of Theorem 2.9 (§4.3). Our notation in this
section is the same as in §2.4.

4.1. Description of I(g). Let λ ∈ {0, 1/2} and let g ∈ Gλ,Y,rs be a regular semi-
simple element. Our first aim is to give a more explicit description of I(g). Let
B = Bλ be the quaternion algebra of invariant λ. Let ϖ ∈ B× be the element
from (3.15). Recall that this means that ϖ is chosen such that ϖa = σ(a)ϖ for all
a ∈ E and such that ϖ2 = πε where ε = 2λ. Then OB = OE ⊕ϖOE. So for every
strict OE-module Y, we obtain the coordinates X = Y⊕ϖY. With respect to this
decomposition, the OB-action κ : OB → End(X) is given by

a+ bϖ 7−→
(

a bπε

σ(b) σ(a)

)
, a, b ∈ E.

The OB-linear endomorphisms of X then have the presentation

Dλ,Y =

{(
x πεy
y x

) ∣∣∣∣ x ∈ CY, y ∈ End0
F (Y) s.th. ya = σ(a)y for a ∈ E

}
. (4.1)

Let g =
(
x πεy
y x

)
∈ Gλ,Y = D×

λ,Y be an element such that both x and y are invertible.
Then zg takes the form

zg =

(
πεx−1y

x−1y

)
. (4.2)

It follows from this that the invariant polynomial of g is

Inv(g;T ) = charredCY/E

(
πε(x−1y)2;T

)
.

Definition 4.1. For an element z ∈ End0
F (X), we denote by Z(z) ⊆ Mλ the closed

formal subscheme with functor of points description

Z(z)(S) = {(X, κ, ρ) ∈ Mλ(S) | ρzρ−1 ∈ End(X)}.

We analogously define Z(w) ⊆ N for an endomorphism w ∈ End0
F (Y).

Lemma 4.2. Let g ∈ Gλ,Y,rs be a regular semi-simple element such that zg is topo-
logically nilpotent. Then, as closed formal subschemes of Mλ,

I(g) = N ∩ Z(zg).

Furthermore, writing zg = ( πεw
w ) as in (4.2), there is the following identity of

closed formal subschemes of N :

N ∩ Z(zg) = Z(w).
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Proof. The first identity is a special case of [11, Proposition 4.23 (2)] which we may
apply because zg is topologically nilpotent by assumption. The second identity
follows directly from the definitions of Z(zg) and Z(w). □

Corollary 4.3. Part (3) of Theorem 2.11 holds.

Proof. Let g ∈ G1/2,Y,rs be an element whose invariant has the property that
π−nInv(g; πT ) lies in T n + πOF [T ]. We need to construct an element g̃ ∈ G0,Y,rs
such that both Inv(g̃, T ) = π−nInv(g, πT ) and Int(g) = Int(g̃).

Given g, we define g̃ ∈ D0,Y by the following relation:

g =

(
x πy
y x

)
and g̃ :=

(
x y
y x

)
.

Since g is regular semi-simple, g+ = ( x
x ) and g− = ( πy

y ) are both invertible.
Then g̃+ = g+ and g̃− = ( y

y ) are invertible as well. The assumption on Inv(g;T )
implies that Inv(g; π) ̸= 0, so g̃ lies in G0,Y and has invariant polynomial

Inv(g̃;T ) = π−nInv(g; πT ).

This polynomial is separable by assumption on g, so g̃ is regular semi-simple. More-
over, z2g̃ is topologically nilpotent since Inv(g̃;T ) ≡ T n modulo πOF [T ]. We may
now apply Lemma 4.2 twice to see that

I(g̃) = N ∩M0 Z (( y
y ))

= Z(y)

= N ∩M1/2
Z (( πy

y ))

= I(g).

(4.3)

Note that z2g = πz2g̃ , so the two F -algebras Lg = F [z2g ] and Lg̃ = F [z2g̃ ] agree as
subalgebras of CY. The isomorphism in (4.3) is then equivariant with respect to the
action of L×

g = L×
g̃ . Choosing the same subgroup Γ ⊂ L×

g = L×
g̃ in the definition

of the intersection number (Definition 2.5), we obtain Γ\I(g) = Γ\I(g̃) and hence
the identity

Int(g) = Int(g̃)

as was to be shown. □

4.2. Factorization of Int(g). Recall that Y = Y◦ × Yet and X = X◦ × Xet denote
the connected-étale decompositions of Y and X. We define RZ spaces N ◦, N et, M◦

λ

and Met
λ in complete analogy to our definitions of N and M in (2.9), (2.10), but

using the objects Y◦, Yet, X◦ and Xet instead of Y and X. For g = (g◦, get) ∈ Gλ,Y,rs,
we can then also define

I(g◦) := N ◦ ∩ g◦(N ◦) and I(get) := N et ∩ get(N et)

where the intersections happen on M◦
λ and Met

λ .

Lemma 4.4. The set I(g)(F) has the product structure

I(g)(F) = I(g◦)(F)× I(get)(F). (4.4)

Proof. Every strict OF -module over F is, in a unique way, the product of its iden-
tity connected component and its maximal étale quotient. This decomposition is
functorial in all respects, giving (4.4) from definitions. □
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Lemma 4.5. Let g ∈ G1/2,Y,rs be regular semi-simple and such that I(g) ̸= ∅. Then
z2g/π is integral over OF .

Proof. By the product structure on I(g)(F) from Lemma 4.4, I(g) being non-empty
implies that both I(g◦) and I(get) are non-empty. Since Y◦ has no étale factor
by definition, [11, Proposition 4.23 (1)] applies and states that z◦g is topologically
nilpotent. Then I(g◦) = N ◦ ∩Z(z◦g) by Lemma 4.2. Writing g = ( x πy

y x ) as in (4.1)
(here we used that we consider the case λ = 1/2), we obtain from

z◦g =

(
πw◦

w◦

)
, w = x−1y, (4.5)

that I(g◦) = Z(w◦) where the right hand side is a closed formal subscheme of N .
Thus I(g◦) ̸= ∅ implies that w◦ is integral. Since (z◦g)

2/π = (w◦)2, this shows that
(z◦g)

2/π is integral as claimed.
We are left to prove that (zetg )

2/π is integral. Passing from Yet and Xet to Tate
modules, we may identify I(get)(F) with the set L(ϖ−1zetg ) from Definition 3.8. By
Lemma 3.10, this set being non-empty implies (zetg )

2/π integral. The proof is now
complete. □

Lemma 4.6. Let g◦ ∈ G◦
1/2,Y,rs be a regular semi-simple element such that (z◦g)2/π

is integral. Then (z◦g)
2/π is even topologically nilpotent.

Proof. We consider the two cases n◦ even or odd separately. Assume first that n◦ is
even. Then D◦

1/2,Y is a CDA over F of degree 2n◦ and Hasse invariant (n◦+1)/2n◦.
Thus L◦

g is a field extension of degree n◦ of F . As E⊗F L◦
g embeds into D◦

1/2,Y, this
tensor product has to be a field, so the inertia degree of Lg over F is odd. This
implies that its ramification index is even. Moreover, B◦

g embeds into D◦
1/2,Y and is

hence a division algebra. It follows that (z◦g)2 ∈ (L◦
g)

× is not a norm from E ⊗F L◦
g

and hence has odd valuation. Since the ramification index is even, (z◦g)2/π has odd
valuation as well. So (z◦g)

2/π ∈ O×
L◦
g

is impossible as was to be shown.
Now we consider the case that n◦ is odd. Then D1/2,Y ∼= M2(Q) where Q is a

CDA over F of degree n◦ and Hasse invariant (n◦ + 1)/2n◦. The étale F -algebra
L◦
g, which has degree n◦, again has to be a field because there cannot exist an

embedding Lg → M2(Q) otherwise. (This argument used that n◦ is odd.) Then
one obtains that B◦

g
∼= M2(L

◦
g) because it equals the centralizer of L◦

g in M2(Q).
This means that (z◦g)

2 ∈ L◦
g is a norm from E ⊗F L◦

g which is equivalent to (z◦g)
2

having even valuation. The degree [L◦
g : F ] is odd, so it follows that (z◦g)

2/π has
odd valuation and thus cannot lie in O×

L◦
g

as was to be shown. □

Construction 4.7. Assume that g = (g◦, get) ∈ G1/2,Y,rs satisfies that z2g/π is inte-
gral. By Lemma 4.6, (z◦g)2/π is even topologically nilpotent. Let R = OF [z

2
g/π] ⊂

CY be the OF -algebra generated by z2g/π. Using Hensel’s Lemma as in Lemma 3.5,
there is a unique factorization R = R0×R1 such that, when writing z2g/π = (ζ0, ζ1),
the component ζ0 is topologically nilpotent and ζ1 ∈ R×

1 . Since (z◦g)
2/π is topolog-

ically nilpotent, the projection R → R1 factors through the projection map

F [z2g/π] = F [(z◦g)
2/π]× F [(zetg )

2/π] −→ F [(zetg )
2/π].
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Let Y = Y0 × Y1 be the decomposition of Y up to isogeny with respect to the
idempotents defining R = R0 × R1. By what was just said, Y1 is an étale π-
divisible OE-module. The centralizer in G1/2,Y,rs of the idempotent (1, 0) ∈ R is
thus of the form J0 × J1 with

J0 = G1/2,Y0 and J1 = G1/2,Y1
∼= GLn1(B).

Here, n1 is the OE-height of Y1. Let (g0, g1) ∈ J0,rs × J1,rs be a pair of regular
semi-simple elements such that HY(g0, g1)HY = HYgHY. Such a pair exists: For
example, after an HY-translation, we may assume that g = 1 + zg in which case g
commutes with zg. Then g itself lies in J0 × J1.

Proposition 4.8. Assume g ∈ G1/2,Y,rs is such that z2g/π is integral over OF . Let
(g0, g1) ∈ J0,rs × J1,rs be as in Construction 4.7. Then the intersection number of g
factors as

Int(g) = Int(g0)Orb(g1, 1GLn1 (OB)). (4.6)

Proof. All three quantities in (4.6) only depend on the invariants of the three ele-
ments g, g0 and g1. So we may assume that, g has the form

(
1 πy
y 1

)
. By Lemma

4.2,
I(g) = N ∩ Z (( πy

y )) = Z(y)

where Z(y) ⊂ N is the subspace of all (Y, ι, ρ) such that ρyρ−1 ∈ End(Y ). More-
over, since y2 = z2g/π, the ring R in Construction 4.7 agrees with OF [y

2]. Using its
idempotents, every (Y, ι, ρ) ∈ Z(y) factors as (Y0, ι0, ρ0)× (Y1, ι1, ρ1) where the two
triples lie in I(g0) and I(g1). Furthermore, we may choose Γ ⊂ L×

g = F [πy2]× as
Γ = Γ0 × Γ1 with Γi ⊂ F [z2gi ]

×. In this way, we obtain the factorization

Γ\I(g) ∼= (Γ0\I(g0))×Spf OF̆
(Γ1\I(g1)). (4.7)

Since Y1 is an étale π-divisible OE-module, I(g1) is étale over Spf OF̆ . Moreover,
passing to Tate modules, I(g1)(F) may be identified with the set L(ϖ−1zg1) from
Definition 3.8. The formal scheme Γ1\I(g1) is then a disjoint union of Orb(g1, 1GLn1 (OB))
many copies of Spf OF̆ . Thus (4.6) follows from (4.7). □

4.3. Proof of Theorem 2.9.

Proof of Theorem 2.9 (Vanishing Part). Let γ ∈ G′
rs be regular semi-simple with

invariant δ = Inv(γ). We claim that there exists a strict OE-module Y over F and
a matching element g ∈ G1/2,Y,rs if and only if ord1/2(δ) = 1. Indeed, this condition
is by definition equivalent to

Lδ
∼= L0 × L1, Bδ

∼= (B1/2 ⊗F L0)×B1 (4.8)

where L0 is an étale F -algebra, L1 a field extension of F , and B1/L1 the quaternion
algebra that is not isomorphic to B1/2⊗F L1. Assuming this condition is met, let Y
be the unique strict OE-module such that n◦ = [L1 : F ] and net = [L0 : F ]. Then

D1/2,Y ∼= M[L0:F ](B)×D◦
1/2,Y. (4.9)

Here, D◦ := D◦
1/2,Y is a CSA of degree 2n◦ with Hasse invariant (n◦+1)/2n◦. There

are two cases: If n◦ is even, then B1 and D◦ are both division algebras. If n◦ is
odd, then B1 = M2(L1) and D◦ is the ring of (2 × 2)-matrices over a CDA. In
both cases, there exists an F -algebra embedding B1 → D◦ and hence an F -algebra
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embedding Bδ → D1/2,Y. By [11, Corollary 2.8] (2), resp. its extension to semi-
simple F -algebras, this is equivalent to the existence of an element g ∈ G1/2,Y,rs
with Inv(g;T ) = δ(T ).

Conversely, assume that there exists an embedding β : Bδ → D1/2,Y where D1/2,Y
is as in (4.9). Then β(Bδ) agrees with the centralizer of β(Lδ) for dimension reasons
[11, Proposition 2.6 (3)] which implies that Bδ takes the form in (4.8), and hence
that ord1/2(δ) = 1. This finishes the prove of our claim.

The vanishing statement is now obtained as follows. Assume there is no Y with
matching g ∈ G1/2,Y,rs. By the claim, this means ord1/2(δ) = 0 or ord1/2(δ) ≥ 2. In
the first case, we apply the functional equation

Orb(γ, f ′
1/2,−s) = ε1/2(γ)Orb(γ, f ′

1/2, s)

from (2.17). The sign ε1/2(γ) can be seen to equal (−1)ord1/2(δ). Thus ∂Orb(γ, f ′
1/2) =

0 if ord1/2(δ) = 0. In the second case, the vanishing of ∂Orb(γ, f ′
1/2) is implied by

Corollary 3.14. □

Proof of Theorem 2.9 (Reduction to the linear AFL). Fix Y and a regular semi-simple
element g ∈ G1/2,Y,rs. Let γ ∈ G′

rs be a matching element. Assuming the linear AFL
for all strict OE-modules with the same connected height n◦, we need to see that

∂Orb(γ, f ′
1/2) = 2 Int(g) log(q). (4.10)

The condition that γ and g match is by definition equivalent to assuming that z2γ
and z2g have the same characteristic polynomial. Thus z2γ/π is integral if and only
if z2g/π is integral. By Corollary 3.4 and by Lemma 4.5, both sides of (4.10) vanish
if these elements are not integral. So from now on we assume that z2g/π and z2γ/π
are integral.

We may assume that γ and g take the form γ = 1 + zγ and g = 1 + zg. Let
γ = (γ0, γ1) and g = (g0, g1) be the components of γ and g such that z2γ0/π and
z2g0/π are topologically nilpotent, and z2γ1/π and z2g1/π integrally invertible. Then
γ0 matches g0 and γ1 matches g1.

We write f ′
1/2,n0

and f ′
1/2,n1

for the Parahoric test functions on GL2n0(F ) and
GL2n1(F ). By Lemma 3.7, ∂Orb(γ1, f

′
1/2,n1

) = 0. By Corollary 3.6, we hence obtain
that

∂Orb(γ, f ′
1/2) = ∂Orb(γ0, f

′
1/2,n0

)Orb(γ1, f
′
1/2,n1

). (4.11)

By Proposition 4.8, we also have the factorization

Int(g) = Int(g0)Orb(g1, 1GLn1 (OB)). (4.12)

By the fundamental lemma (Theorem 2.7),

Orb(γ1, f
′
1/2,n1

) = Orb(g1, 1GLn1 (OB)).

Thus, Identity (4.10) follows if we can prove

∂Orb(γ0, f
′
1/2,n0

) = 2 Int(g0) log(q).

Since z2γ0/π and z2g0/π are topologically nilpotent, by Theorem 2.11, there are two
elements γ̃0 ∈ GL2n0(F )rs and g̃0 ∈ G0,Y0,rs such that

∂Orb(γ̃0, 1GL2n0 (OF )) = ∂Orb(γ0, f
′
1/2,n0

) and Int(g̃0) = Int(g0).
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The linear AFL for Y0, whose connected part has height n◦, precisely states that
∂Orb(γ̃0, 1GL2n0 (OF )) = 2 Int(g̃0) log(q)

and the proof is complete. □
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CONTINUITY OF HEIGHTS IN FAMILIES AND COMPLETE
INTERSECTIONS IN TORIC VARIETIES

PABLO DESTIC, NUNO HULTBERG AND MICHAŁ SZACHNIEWICZ

Abstract. We study the variation of heights of cycles in flat families over number
fields or, more generally, globally valued fields. To a finite type scheme S over a
GVF K we associate a locally compact Hausdorff space SGVF which we refer to as
the GVF analytification of S. For a flat projective family X ⊂ Pn

S → S, we prove
that (s ∈ SGVF) 7→ ht(Xs) is continuous.

As an application, we prove Roberto Gualdi’s conjecture on limit heights of
complete intersections in toric varieties.
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1. Introduction

In classical algebraic geometry Bezout’s theorem states that generically the in-
tersection of n hypersurfaces of degrees d1, . . . , dr in Pn is of degree d1 . . . dr. If the
hypersurfaces are defined over a number field, one may ask whether it is possible to
compute the Weil height of the intersection in terms of their arithmetic complexity.
This is important, because estimates on Weil heights can lead to finiteness theorems
about rational points. A striking example of this philosophy appears in (Proposition
2.17 of) [Fal91]. Another example is the arithmetic Bezout’s theorem obtained in
[BGS94], however it only gives an upper bound for the height of an intersection.
Since Weil heights are also connected to special values of L-functions and periods
(see e.g. Section 4 of [PP24], or [Mai00; CM00]) it is desirable to have formulas for
their exact values. The starting point of our considerations is [Gua18b], where such

1
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a formula was given, for the height of a single hypersurface (r = 1) in a toric variety,
with respect to a semipositively metrized toric divisor.

However, Roberto Gualdi observed in his thesis [Gua18a] that it is not possible
to extend a result of the same nature to r ≥ 2. In fact, he gives examples of
polynomials with the same associated arithmetic data, defining cycles of differing
heights. As a remedy to this issue, he suggested to consider average heights of cycles
with prescribed arithmetic data and formulated the following conjecture, which we
prove in this article.

Theorem 1.1 (Theorem 4.5). Let f1, . . . , fm be Laurent polynomials in n variables
with coefficients in a number field K and let T be a proper toric variety with torus
T = Gn ⊂ T . Denote by Vi the hypersurface defined by fi and by ρi its Ronkin
function. Let (ζ1,j, . . . , ζm,j)j be a generic sequence of small points in Tm for the
Weil height and let D0, . . . , Dn−m be semipositive toric adelic divisors on T with
associated local roof functions θ0,v, . . . , θn−m,v. Then,

lim
j→∞

d̂eg(D0, . . . , Dn−m | ζ1,jV1 ∩ · · · ∩ ζm,jVm)

=
∑
v∈MK

nvMIM(θ0,v, . . . , θn−m,v, ρ
∨
1 , . . . , ρ

∨
m).

The original conjecture can be found in [Gua18a, Conjecture 6.4.4]. Let us briefly
describe its contents. The arithmetic degree of a suitably generic complete inter-
section subvariety in a toric variety can be computed as an arithmetic intersection
number of adelic toric divisors. The formulation of the conjecture is in terms of
a convex geometry identity for this intersection number involving mixed integrals.
Mixed integrals and further convex geometry tools are discussed in Section 2.4.

Roberto Gualdi and Martin Sombra have together proved partial results in this
direction. In [GS23] they prove the above result in the case T = P2, m = 2 and
f1(x1, x2) = f2(x1, x2) = x1+x2+1. Moreover, for this example, they compute that
both sides of the identity in question are equal to the intriguing value 2ζ(3)

3ζ(2)
. They

have also solved the m = 2 case of the conjecture in [GS24]. Their methods funda-
mentally differ from ours. In particular, their approach relies on local logarithmic
equidistribution as in [DH22] while we modify the problem in such a way that we
can apply Yuan’s equidistribution theorem from [Yua08].

Said modification can be conveniently phrased in the framework of globally valued
fields (abbreviated GVF). Globally valued fields were introduced by Ben Yaacov
and Hrushovski to serve as a theory of fields with multiple valuations satisfying the
product formula. As such, globally valued fields are closely related to proper adelic
curves as defined and developed in [CM20] by Chen and Moriwaki, see [Ben+24,
Corollary 1.3] for the precise relationship. Globally valued fields, however, form a
theory in unbounded continuous logic from [Ben08], and are therefore amenable to
methods from model theory.

The original motivation of this article was to prove the definability of intersection
products of divisors over globally valued fields, i.e., that arithmetic intersection
numbers parametrized over a base form a quantifier-free definable formula. For the
benefit of Arakelov geometers reading this article, we will phrase this as a continuity
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result.1 First, let us state a version of the ‘continuity of heights’ over Q that does
not require any additional definitions.

Theorem 1.2. Let π : X → S be a surjective morphism of projective varieties over
Q, generically of relative dimension d. Let (si)i be a generic sequence of points in
S(Q) such that for every adelic line bundle M on S the value hM(si) converges.
Let L0, . . . , Ld be integrable line bundles on X . Then, the arithmetic intersection
number on fibers

d̂eg(L0 . . . Ld|Xsi)
converges. Its limit can be described as a certain arithmetic intersection number
over a GVF.

If hM(si) converges to L
dimS

M for some arithmetically nef line bundle L and
every adelically metrized line bundle M , then d̂eg(L0 . . . Ld|Xsi) converges to the
intersection number (π∗L)dimSL0 . . . Ld.

The first part corresponds to Theorem 3.1 (which we state in detail below) and
the latter part to Proposition 3.26, essentially due to Chen and Moriwaki [CM21,
Proposition 4.5.1]. Equidistribution theorems in Arakelov geometry provide us with
various examples of sequences to which the above theorem can be applied. We note
in particular Yuan’s equidistribution in the form of [Cha21, Lemma 8.2] gives such
examples.

Before stating the ‘continuity of heights’ Theorem 3.1 let us recall its algebro-
geometric counterpart which is the following constructibility/constantness result.

Theorem 1.3 (Corollary III 9.10 [Har77]). Let X → S be a flat projective family
of varieties over a field K of relative dimension d. Let L be a line bundle on X .
Then, the degree of the fibres degL(Xs) is locally constant.

Note that this is equivalent to the map s 7→ degL(Xs) being a continuous function
on S with the Zariski topology. The same result is implied for the intersection of
d line bundles. In our result the Zariski topology is replaced by a GVF analytic
topology, and the degree is replaced by height. Let us be more precise.

We associate to a finite type scheme S over a GVF K, a locally compact Hausdorff
space SGVF, called its GVF analytification. This is done similarly to the Berkovich
analytification, however with valuations replaced by global heights (see Definition 2.1
and Section 2.2). For K = Q, a generic sequence si in S(Q) ⊂ SGVF converges to a
point in SGVF if and only if the value hM(si) converges for every adelically metrized
line bundle M on S. In Definition 3.21, for a flat family X → S over a GVF K, we
introduce the group of global line bundles on X over S. Following [Zha95a], we define
semipositivity and integrability in this context. For example, the group of globally
integrable line bundles on X over S is denoted by P̂ic

int
Q (X/S). In Proposition 3.22

we define an intersection paring on tuples of globally integrable line bundles and we
prove that is satisfies the following.

Theorem 1.4 (Theorem 3.1). Let X → S be a flat projective morphism of finite
type schemes over a GVF K of relative dimension d. Let L0, . . . ,Ld ∈ P̂ic

int
Q (X/S).

1We thank Rémi Reboulet for pointing out the similarity to the existence of a Deligne pairing.
In fact, in the number field case our result is likely to be implied by the Deligne pairing in [YZ24,
Theorem 4.1.3]. Our approach has the advantage of its simplicity.
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Then, the map

SGVF → R

s 7→ d̂eg(L0, . . . ,Ld|Xs)

is continuous.

Equivalently, this means that the intersection product d̂eg(L0, . . . ,Ld|Xs) (for
s ∈ S(F ) with K ⊂ F being a GVF extension) can be defined by a quantifier-free
formula in the GVF language, with parameters from the base-field K. We believe
that this fact may be important in axiomatizing the model companion of globally
valued fields (if it exists).

The structure of this text is the following. In Section 2 we introduce globally val-
ued fields, GVF analytifications, and give some examples. We also present necessary
notions from Arakelov geometry of toric varieties. In Section 3 we use the theory of
adelic curves to define the intersection product over arbitrary GVF and prove The-
orem 3.1. We also prove Theorem 3.24 which relates global integrable line bundles
(in our new sense) to integrable adelic line bundles over a number field (in the sense
of Zhang). In Section 4 we use the previous results and perform calculations which
allow us to conclude with Theorem 4.5. In Appendix A we prove an estimate on a
variant of the Mahler measure of a polynomial, needed in the proof of Theorem 3.1.
We believe this is known to experts, however we could not find a suitable reference.
The appendix is self-contained and elementary.

1.1. Acknowledgments. We would like to thank our advisors Itaï Ben Yaacov,
Ehud Hrushovski and Fabien Pazuki for various discussions and comments regarding
this work. Special thanks go to Roberto Gualdi and Martin Sombra, for sharing
with us their draft [GS24] and for their helpful remarks. Moreover, we would like to
thank the organizers and the participants of the 2024 Students’ Conference on Non-
Archimedean, Tropical and Arakelov Geometry, for their interest in this project. We
are grateful to Rémi Reboulet for pointing out the connection to Deligne pairings.
The third author would like to thank Douglas Molin for discussions about limit
heights.

2. Preliminaries

This section will serve both to recall definitions and theorems, as well as to state
and prove technical results related to the definitions just recalled.

2.1. Globally valued fields. Globally valued fields are a theory in (unbounded)
continuous logic designed to model fields with multiple valuations and a product
formula. They are closely related to adelic curves.

There are multiple ways to describe globally valued fields, see [Ben+24] for an
introduction. The simplest definition is the following.

Definition 2.1. A globally valued field (abbreviated GVF) is a field F together
with a height function h : A(F ) → R ∪ {−∞}, where A(F ) denotes the disjoint
union of An(F ) for all n ∈ N, satisfying the following axioms, for some Archimedean
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error e ≥ 0.
Height of zero: ∀x ∈ F n, h(x) = −∞⇔ x = 0
Height of one: h(1, 1) = 0
Invariance: ∀x ∈ F n, ∀σ ∈ Symn, h(σx) = h(x)
Additivity: ∀x ∈ F n, ∀y ∈ Fm, h(x⊗ y) = h(x) + h(y)
Monotonicity: ∀x ∈ F n, ∀y ∈ Fm, h(x) ≤ h(x, y)
Triangle inequality: ∀x, y ∈ F n, h(x+ y) ≤ h(x, y) + e
Product formula: ∀x ∈ F×, h(x) = 0

Here ⊗ denotes the Segre product, i.e., (x1, . . . , xn) ⊗ (y1, . . . , ym) = (xi · yj : 1 ≤
i ≤ n, 1 ≤ j ≤ m). Note that such height factors through h : Pn(F )→ R≥0 for each
n. We write ht(x) := h[x : 1] for x ∈ F .

If F is countable, these can also be seen as equivalence classes of proper adelic
curve structures on F (originally defined in [CM20]).

Definition 2.2. A proper adelic curve is a field F together with a measure space
(Ω,A, ν) and with a map (ω 7→ | · |ω) : Ω→ MF to the space of absolute values on
F , such that for all a ∈ F× the function

ω 7→ ω(a) := − log |a|ω
is in L1(ν) with integral zero.

If F is equipped with a proper adelic curve structure, then one can define a GVF
structure on it, by putting

h(x1, . . . , xn) :=

∫
Ω

−min
i
(ω(xi))dν(ω).

On the other hand, if F is countable, any GVF structure on F is represented by
some proper adelic curve structure in this way ([Ben+24, Corollary 1.3]).

There is yet another equivalent way to describe a GVF structure on a field which
turns out convenient for our purposes. We give here this definition in the case where
F is countable. The general definition can be found in [Ben+24].

Definition 2.3. A lattice group is a partially ordered abelian group (G,+,≤) such
that every pair of elements x, y ∈ G has a greatest lower bound, denoted x∧y. Since
the order may be recovered from the binary operator ∧, we may also call the triple
(G,+,∧) a lattice group.

We equip the space (MF )
R with the structure of a lattice group such that f :

MF → R is positive if and only if f(| · |) ≥ 0 for each absolute value | · |. We call the
space of lattice divisors over F , denoted LDivQ(F ), the divisible lattice subgroup of
(MF )

R generated by elements of the form d̂iv(x) : | · | 7→ − log |x| for x ∈ F×. These
generators are called principal lattice divisors.

Then, GVF structures on F correspond to so called GVF functionals, which are
linear functionals

l : LDivQ(F )→ R
that are non-negative on the positive cone, and are zero on principal lattice divisors.

Assume that F is a finitely generated extension of Q. In [Sza23] and [Ben+24] an
Arakelov theoretic interpretation of the lattice LDivQ(F ) was given. More precisely,
LDivQ(F ) embeds into

ADivQ(F ) = lim−→ADivQ(X ),
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where ADivQ(X ) is the group of arithmetic Q-divisors of C0-type on X , and the
union is taken over the system of all arithmetic varieties X (i.e., normal, integral,
flat and projective over Spec(Z)) with an isomorphism κ(X ) ≃ F . In [Sza23] a group
lattice structure on ADivQ(F ) was defined, so that the embedding is a morphism of
group lattices.

Let X be projective scheme over Q whose function field is isomorphic to F . To
avoid confusion, we use the name Zhang divisors/Zhang line bundles for Cartier
divisors on X equipped with adelic Green functions/line bundles with adelic metrics,
in the sense of [Cha21, Remark (4.8)] (originally defined by Zhang [Zha95b]). We
denote the group of Zhang divisors on X by ZDiv(X) and by ZDivQ(X) its tensor
with Q. Using the same methods as in [Sza23], one also defines a lattice structure
on

ZDivQ(F ) = lim−→ZDivQ(X),

where the union is taken over the system of all X as above (with maps respecting
the isomorphisms κ(X) ≃ F ). Then the group lattice LDivQ(F ) has a natural
embedding into ZDivQ(F ). Moreover, every GVF functional extends uniquely to a
positive functional on ZDivQ(F ) so we get the following.

Corollary 2.4. On a finitely generated field F over Q there is a natural bijection{
GVF functionals ZDivQ(F )→ R

}
←→

{
GVF structures on F

}
,

where by GVF functionals we mean the linear ones that are non-negative on the
effective cone, and are zero on principal Zhang divisors.

For D ∈ ZDivQ(X) and x ∈ X(Q) we write hD(x) for the height of x with respect
to D. A GVF functional l determines a GVF structure on a field by the formula

h(x1, . . . , xn) := l
(
−

n∧
i=1

d̂iv(xi)
)
.

Globally valued fields form a category where maps are embeddings of fields re-
specting height functions. Equivalently, an extension of fields K ⊂ F induces an
embedding LDivQ(K) ⊂ LDivQ(F ) and GVF structures on F extending a given
GVF structure on K are precisely extensions of GVF functionals. Let us point out
the following fact.

Lemma 2.5. [Ben+24, Lemma 10.2] For any e ≥ 0 there is a unique GVF structure
on Q (and on any subfield of Q) satisfying ht(2) = e · log 2.

We refer to the GVF structure with e = 1 as the standard one.

2.2. GVF analytification. Now, we describe a construction which recovers the
space of quantifier-free types in the theory of globally valued fields, as in [Ben+24].

Definition 2.6. Let K be a non-trivial GVF (i.e. there exists a ∈ K such that
h[1 : a] ̸= 0), and let X be a finite type scheme over K. We define the GVF
analytification of X over K, denoted XGVF,K (or XGVF if the base GVF is implied),
to be the set of couples x = (π(x), hx) where π(x) is a point of X, and hx is a
height on κ(π(x)) extending the height on K. If x ∈ XGVF,K and U ⊂ X is an open
containing π(x), we will also denote by hx the map

hx :
A(OX(U)) → R ∪ {−∞}
(f1, . . . , fn) 7→ hx(f1(π(x)), . . . , fn(π(x)))

.
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We equip XGVF,K with the weakest topology such that
(1) The map π : XGVF,K → X is continuous onto X with the Zariski topology.
(2) For every open U ⊂ X, and every tuple (f1, . . . , fn) ∈ OX(U)n, the map x 7→

hx(f1, . . . , fn) is continuous on π−1(D(f1, . . . , fn)), where D(f1, . . . , fn) ⊂ U
is the open where at least one of the fi does not vanish.

Remark 2.7. One can in fact prove that for every tuple of local sections (f1, . . . , fn) ∈
OX(U)n, the map x 7→ hx(f1, . . . , fn) is continuous on U as a whole. Moreover, in
(1) one could demand that π is continuous with respect to the constructible topology
on X and it would yield the same space. In particular, it follows that AGVF can be
naturally identified with the space of quantifier-free n-types Sqf

n (K), see [Ben+24,
Construction 11.15].

Remark 2.8. Let K ⊂ F be a GVF extension. Then, there is a canonical ana-
lytification map X(F )→ XGVF,K , defined by taking x ∈ X(F ) to the point (x, hx),
where hx is the restriction of the height on F to κ(x). The image of x by this map
will be denoted xan.

2.3. Polarisations. Here we present how arithmetic intersection theory can induce
GVF structures and how to interpret Yuan’s equidistribution result as certain kind
of uniqueness of a GVF structure.

Definition 2.9. Let F be a finitely generated characteristic zero field equipped
with a GVF structure. We say that this GVF structure comes from a polarisation
(X,H1, . . . , Hd), if X is a normal projective variety of dimension d over Q with
function field F and H i ∈ ZDivQ(X) are arithmetically nef Zhang divisors, such
that the GVF functional

l : ZDivQ(F )→ R
is given by

l(D) = H1 · . . . ·Hd ·D.
The name “polarisation” comes from [Mor00, Section 3.1], however here we also

allow not necessarily model Zhang divisors. We also use the term polarisation if
instead of H i’s we are given the corresponding Zhang line bundles O(H i). If the
H i occurs with multiplicity ki we denote by (X,H

k1
1 , . . . , H

kr
r ) for the corresponding

polarisation.

Remark 2.10. A polarisation (X,H1, . . . , Hd) induces a GVF structure structure
on F that extends the standard GVF structure on Q (i.e. satisfies ht(2) = log 2) if
and only if the geometric intersection number satisfies H1 · . . . ·Hd = 1.

Yuan’s equidistribution [Yua08] gives examples of polarised GVF structures. Let
us recall a version of it from [Cha21, Lemma (8.2)].

Theorem 2.11. Let X be a projective variety of dimension d over Q. Fix a
semipositive Zhang divisor D with D ample and Dd+1

= 0. For any generic sequence
xn ∈ X(Q) with hD(xn)→ 0, and any M ∈ ZDivQ(X) we have

lim
n
hM(xn) =

D
d ·M

deg(D)
.

For the next two corollaries, fix the context of the above theorem. Also, denote
by F the function field of X.
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Corollary 2.12. There is a unique GVF functional l on F extending the standard
one on Q and satisfying l(D) = 0.

Proof. Fix a GVF functional l on F with the above properties and a Zhang divi-
sor M ∈ ZDivQ(F ). Since the quantities from the assumptions of Theorem 2.11
are birational invariant, without loss of generality M ∈ ZDivQ(X). By existential
closedness of Q from [Sza23, Theorem A] there is a generic sequence of elements
xn ∈ X(Q) such that hD(xn) → l(D) = 0 and hM(xn) → l(M). By Theorem 2.11
we get that

l(M) =
D
d ·M

deg(D)
.

On the other hand, l given by this formula onX and its blowups, is a GVF functional,
which finishes the proof. □

Corollary 2.13. Fix a generic sequence (xn)n∈N satisfying the assumptions from
Theorem 2.11. The sequence xann ∈ XGVF converges to the point xan∞ ∈ XGVF defined
by the generic point x∞ ∈ X(F ) together with the GVF structure l on F . Moreover,
l is induced by the polarisation (X,D, . . . , D).

Yuan’s equidistribution theorem can be applied to the case when X = PdK over a
number field K and O(1) endowed with the Weil metrics(denoted by O(1)).

Corollary 2.14. There is a unique GVF structure on Q(x1, . . . , xd) extending the
standard one on Q and satisfying ht(x1) = · · · = ht(xd) = 0.

Corollary 2.15. Let πi :
∏e

i=1 PdK → PdK be the i-th projection and let L =∑
i π

∗
iO(1). Let xn ∈

∏e
i=1 PdK(Q) be a generic sequence of small points, i.e., satis-

fying hL(xn) → 0. Let F be the function field of
∏e

i=1 PdK with the GVF structure
coming from the polarisation (

∏e
i=1 PdK , π∗

1O(1)
d
, . . . , π∗

eO(1)
d
). Then

lim
n
xann = xan∞,

where xan∞ ∈ PdGVF is defined by the generic point x∞ ∈ PdK(F ). Moreover, naturally
identifying F with K(xij : i ≤ d, j ≤ e), the GVF structure on F is the unique one
satisfying ht(xij) = 0 and ht(2) = log 2.
2.4. Convex geometry and toric varieties. This section contains basic notions
on Ronkin metrics on toric varieties and some calculations in convex geometry. For
more details on Ronkin metrics we suggest [Gua18b]. For an in depth treatment of
the Arakelov geometry of toric varieties, see [BPS14].

Let T ∼= Gn
m be a split torus over a number field K. Denote by N its co-character

lattice and by M its character lattice. Let XΣ denote the proper toric variety
associated to a complete fan Σ in NR. Let T ∼= X0 ⊂ XΣ denote the open T-orbit
in XΣ.

Definition 2.16. A toric Cartier divisor on a toric variety X is defined to be a
Cartier divisor which is invariant under the action of the torus µ : T × X → X.
This means that a Cartier divisor D is toric if µ∗D = π∗D, where π denotes the
projection map.

These are in bijection with virtual polytopes. This bijection is explained and
proven in [BPS14, Section 3.3].
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Definition 2.17. A virtual support function or virtual polytope with respect to a
fan Σ on NR is a function NR → R that is linear and integral on each cone in Σ.

Let v be a place of K. A v-adic Green’s function gv for a toric Cartier divisor
D is called toric if its restriction to (X0)

an factors through the tropicalization map
(X0)

an → NR, defined in [BPS14, Section 4.1].

Theorem 2.18. [BPS14, Theorem 4.8.1.(1)] Let D be the toric divisor associated
to the virtual support function Ψ. Then, the space of v-adic Green’s functions for
D is in bijection with continuous functions ψ : NR → R such that ψ−Ψ is bounded.
Concave functions correspond to semipositive metrics under this bijection.

If Dv is a toric divisor with a semipositive v-adic Green’s function, Legendre-
Fenchel duality associates to ψ a concave function on the polytope DΨ ⊂MR asso-
ciated to Ψ. It is called the roof function of Dv and denoted by θDv

. For details, we
refer to [BPS14, Theorem 4.8.1].

A collection of functions (ψv)v∈MK
defines a Zhang metric on the toric divisor

corresponding to Ψ if for all v the difference |ψv −Ψ| is bounded and for almost all
v we have ψv = Ψ. We call D ∈ ZDiv(XΣ) a toric Zhang divisor, if D is a toric
Cartier divisor, and the metrics on D come from a collection of functions (ψv)v∈MK

satisfying the above condition.
The vector space MR carries a Haar measure normalized in such a way that M

has covolume 1. We associate to a compact convex set ∆ its volume vol(∆) with
respect to the Haar measure. Recall that the Minkowski sum of subsets S1, S2 of a
vector space V is defined by

S1 + S2 = {s1 + s2 | s1 ∈ S1, s2 ∈ S2}.
The volume is a homogeneous polynomial on the space of compact convex sets with

Minkowski addition. It can therefore be polarized, cf. [BPS14, Definition 2.7.14].

Definition 2.19. The mixed volume is a multilinear form on compact convex sets
defined by

MV(∆1, . . . ,∆n) =
n∑
j=1

(−1)n−j
∑

1≤i1<···<ij≤n

vol(∆i1 + · · ·+∆ij).

It satisfies MV(∆, . . . ,∆) = n! vol(∆).

Given a concave function θ on a compact convex set ∆, we associate to it its
integral

∫
∆
θ(m)dm. Given concave functions θ1 on ∆1 and θ2 on ∆2, we define

their sup-convolution by
θ1 ⊞ θ2(m) = sup

m1+m2=m
θ(m1) + θ(m2).

It defines a concave function on ∆1 + ∆2. It is defined precisely such that the
hypograph of θ1 ⊞ θ2 is the Minkowski sum of the hypographs of θ1 and θ2. One
has a similar polarization as in the case of mixed volumes, cf. [BPS14, Definition
2.7.16].

Definition 2.20. The mixed integral is a multilinear form on concave functions
θ0, . . . , θn on compact convex sets ∆0, . . . ,∆n defined by

MI(θ0, . . . , θn) =
n∑
j=0

(−1)n−j
∑

0≤i0<···<ij≤n

∫
∆i1

+···+∆ij

θi1 ⊞ · · ·⊞ θij(m)dm.
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It satisfies MI(θ, . . . , θ) = (n+ 1)!
∫
∆
θ(m)dm.

These notions are helpful to express arithmetic intersection numbers combinato-
rially.

Theorem 2.21. [BPS14, Theorem 5.2.5] Let D0, . . . , Dn be semipositive toric
Zhang divisors on XΣ. Then,

d̂eg(D0, . . . , Dn|XΣ) =
∑
v∈MK

nvMIM(θ0,v, . . . , θn,v),

where θi,v is the roof function of Di,v, for every i = 0, . . . , n and v ∈ MK .

For a nonzero Laurent polynomial f ∈ K[M ], we denote by V (f) its vanishing
locus on XΣ. Let NP (f) be the Newton polytope of f , i.e. the convex hull of the
position of its non-zero coefficients. Then, NP (f) defines a Cartier divisors on a
suitable toric modification of XΣ by [BPS14, Section 3.4] such that f gives rise to a
regular section by [BPS14, Section 3.4]. It vanishes precisely on V (f). This amounts
to an easy check that the section restricts to a nontrivial section on codimension
1 toric subvarieties, see [Gua18b, Theorem 4.3]. We now define the Ronkin metric
on the divisor DNP (f) corresponding to NP (f). For this we use that the fibers
trop−1(u) of the tropicalization map trop : Tan

v → NR carry a natural choice of
probability measure σu. In the non-Archimedean case, it is concentrated on the
Gauss point over u. In the archimedean case, it is induced by the Haar measure on
(S1)n.

Definition 2.22. [Gua18b, Definition 2.7] Let f be a nonzero Laurent polynomial
over K. The Ronkin function of f over a place v is the map ρf : NR → R defined
by

ρf : u 7→
∫
trop−1(u)

− log |f(x)|dσu(x).

By [Gua18b, Proposition 2.10], ρf is a concave continuous function with bounded
difference from ΨNP (f). By Theorem 2.18, it defines a semipositive Green’s function
for D(f). The collection of v-adic Ronkin functions gives rise to a Zhang divisor Rf

by [Gua18b, Lemma 5.11].

Theorem 2.23. (variation of [Gua18b, Theorem 5.12]) Let XΣ be a proper toric
variety. Let f be a Laurent polynomial with vanishing locus Z such that NP (f)
defines a divisor on XΣ. Let D0, . . . , Dn−1 be semipositive toric Zhang divisors on
XΣ. Then,

d̂eg(D0, . . . , Dn−1|Z) = d̂eg(D0, . . . , Dn−1, Rf |XΣ).

For future use, we will relate the Ronkin functions and the Ronkin roof function
of Laurent polynomials related by maps of tori.

Definition 2.24. Let γ : V → W be a homomorphism of finite dimensional real
vector spaces and f : V → R ∪ {−∞} be a closed concave function with compact
support. We define the direct image of f along γ by

γ∗f(w) = max
v∈γ−1(w)

f(v).

It is a closed concave function with compact domain in W .
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Lemma 2.25. Let γ : M → M ′ be a map of lattices. Then, this induces a map
on the rings of Laurent polynomials K[γ] : K[M ] → K[M ′]. Let f ∈ K[M ] \ {0}.
Then,

ρK[γ](f) = ρf ◦ γ∨

and
ρ∨K[γ](f) = γ∗ρ

∨
f (m).

Proof. The first statement follows readily from the definitions. The second statement
follows from the first using [BPS14, Proposition 2.3.8(1)]. □

We now prove generalizations of Lemma 1.11 and Proposition 1.12 in [Gua18b].
We apply this to write the formulas in the preceding section in the form used in
[Gua18a, Conjecture 1].

Lemma 2.26. Let ∆1, . . . ,∆k be polytopes contained in a k-dimensional rational
subspace L and denote by π the projection away from this subspace to the quotient
P . Let Q1, . . . , Qn−k be polytopes in MR. Then,

MVM(∆1, . . . ,∆k, Q1, . . . , Qn−k) = MVL(∆1, . . . ,∆k) ·MVP (π(Q1), . . . , π(Qn−k)).

Proof. By the definition of mixed volume one obtains

MVM(∆1, . . . ,∆k, Q1, . . . , Qn−k)

=
n−k∑
j=1

(−1)n−j
∑

1≤i1<···<ij≤n−k

∑
I⊂{1,...,k}

(−1)|I| vol(∆I +Qi1 + · · ·+Qij).

Here ∆I is taken to denote
∑

i∈I ∆i. It now suffices to show that∑
I⊂{1,...,k}

(−1)|I| vol(∆I +Q) = (−1)kMVL(∆1, . . . ,∆k) vol(π(Q)).

For this take any p ∈ P and denote by Qp the preimage of p in Q. We may view∑
I⊂{1,...,k}(−1)|I| vol(∆I +Q) as an integral over π(Q), namely as∫

π(Q)

∑
I⊂{1,...,k}

(−1)|I| vol(∆I +Qp).

In order to conclude, we need to show that
∑

I⊂{1,...,k}(−1)|I| vol(∆I+R) = MVL(∆1, . . . ,∆k)
for any polytope R in the k-dimensional subspace spanned by the ∆i. For this we
decompose the expression by writing out the volumes as mixed volumes and order
by the number of R occurring in the expansion.∑
I⊂{1,...,k}

(−1)|I| vol(∆I +R)

=
k∑
s=0

(
k

s

) ∑
I⊂{1,...,k}

(−1)|I|
∑

1≤j1≤···≤jk−s≤k,ji∈I

(
k − s
J

)
MV(∆j1 , . . . ,∆jk−s

, R, . . . , R).

Here
(
k−s
J

)
is taken to denote the number of partitions of k − s elements into

partitions of form J , i.e. the multinomial coefficient for k − s and #{i|ji = m}.
We reorder the sum to sum over size k − s multisets of {1, . . . , k}. Fix a multiset
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1 ≤ j1 ≤ · · · ≤ jk−s ≤ k of order k−s in elements of {1, . . . k}. Then, its contribution
to the sum is (

k

s

)(
k − s
J

)
MV(∆j1 , . . . ,∆jk−s

, R, . . . , R)
∑
I⊇J

(−1)|I|,

where containment is understood on the level of underlying sets. By comparing to
the expansion of

∏
I\J(1 − 1) we see that this vanishes for J ̸= I and is (−1)k for

J = I. □

Lemma 2.27. Let the gi be concave functions on polytopes Qi and ∆i as before.
Then,

MIM(ι∆1 , . . . , ι∆k
, g1, . . . , gn−k+1) = MVL(∆1, . . . ,∆k) ·MIP (π∗g1, . . . , π∗gn−k+1).

Proof. The reduction to the previous Lemma is precisely as in [Gua18b, Proposition
1.12]. □

3. Intersection product

In this section we study the intersection product defined in [CM21] and prove
that it varies continuously in flat families. More precisely, we prove the following
theorem.

Theorem 3.1. Let X → S be a flat projective morphism of finite type schemes
over a GVF K of relative dimension d. Let L0, . . . ,Ld ∈ P̂ic

int
Q (X/S) be globally

integrable line bundles on X over S. Then, the map

SGVF → R

s 7→ d̂eg(L0, . . . ,Ld|Xs)
is continuous.

This can be applied in various settings of interest to number theorists. This can
be seen for instance by the following corollary.

Corollary 3.2. Suppose that S is projective over Q and X → S a projective
morphism. Then, any integrable Zhang line bundle on X is a globally integrable
line bundle in P̂ic

int
Q (X/S).

Proof. It is a weaker property to be an element of P̂ic
int
Q (X/S) than of P̂ic

int
Q (X ).

Hence, the statement follows from Theorem 3.24. □

Remark 3.3. The property of being globally integrable is preserved under base
change. In particular, one may apply Theorem 3.1 to integrable Zhang divisors on
a projective X after restricting to the flat locus of X → S.
3.1. Lattice divisors. Let K be a countable GVF. We can assume that it is rep-
resented by a proper adelic curve (K, (Ω,A, ν), ϕ) with Ω =MK , the trivial absolute
value having zero mass, and the restriction of the measure to the archimedean places
ν|Ω∞ being supported at normalized valuations (i.e., satisfying v(2) = − log 2).
Moreover, whenever we consider a GVF extension K ⊂ F in this subsection, we
assume that F is also countable and the GVF structure on F is induced by an
adelic curve structure with the same properties (see [Ben+24, Section 9]).
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We recall ideas from the theory of adelic curves only briefly. We refer to [CM20;
CM21] for details. Let us start by recalling a definition.

Definition 3.4. Let X be a finite type K-scheme with a line bundle L. A metric
family on L is a family φ = (φω)ω∈Ω, where each φω is a continuous metric on Lω
on Xan

ω . Here Xan
ω is the Berkovich analytification of Xω = X ⊗K Kω, where Kω is

the completion of K with respect to the absolute value ω ∈ Ω =MK . We call a pair
L = (L, φ) a metrized line bundle on X over K.

This is as in [CM21, Definition 4.1.4], but we also allow non-projective X. Also,
we naturally extend this definition to Q-line bundles. Similarly, we extend the
definition of a Green function family of a (Q-)Cartier divisor on X from [CM21,
Definition 4.2.1], to a non-projective X, word for word. A (Q-)Cartier divisor with
a Green function family is called a metrized divisor.

Chen and Moriwaki introduce adelic line bundles as a subset of metrized line bun-
dles respecting the global nature of the adelic curve, see [CM21, Definition 4.1.9].
There are two conditions. Firsty, the variation of metrics along ω has to be mea-
surable. This condition does not occur for number fields since their set of places
is discrete. Finally, one needs a condition requiring that the family of metrics has
finite distance to arising from a global model. This condition is referred to as being
dominated. In order to obtain an intersection theory, one needs to demand the
metrics at each place to be integrable, i.e. the difference of semipositive metrics. We
follow the definition of semipositivity from [CM20, Section 2.3]. Note that this only
allows for semipositive metrics on semiample line bundles.

Definition 3.5. Consider Pn = PnK with coordinates x0, . . . , xn. We equip the
anti-tautological line bundle O(1) with two families of metrics φ = (| · |ϕω)ω∈Ω, ψ =
(| · |ψω)ω∈Ω defined in the following way. For a section s ∈ H0(Pn,O(1)) identified
with a linear form A we have

|s(z)|φω :=
|A(z)|ω

max(|z0|ω, . . . , |zn|ω)
,

for z ∈ Pn,anω and any ω ∈ Ω. The metric ψ is defined in the same way for non-
Archimedean ω, but for archimedean ω we set

|s(z)|ψω :=
|A(z)|ω√∑n

i=0 |zi|2ω
,

for all z ∈ Pn,anω . We call φ, ψ the Weil and the Fubini-Study metric respectively and
use the notation O(1) = (O(1), φ),O(1)

FS
= (O(1), ψ). We use the same notation

for pullbacks of these adelic line bundles on PnS for any finite type K-scheme S. Both
the Weil and the Fubini-Study metric define semipositive adelic line bundles.

Recall that for a place ω ∈ Ω and Green’s functions ϕ, ψ for a divisor D we denote
by dω(ϕ, ψ) the sup-norm of ϕ − ψ and call it the local distance of ϕ and ψ. For
different metrics on a divisor over an adelic curve we denote by d(ϕ, ψ) the global
distance of ϕ and ψ. It is defined as the upper integral

∫ +
dω(ϕω, ψω)ν(dω) over the

local distances.
From the point of view of globally valued fields the Weil metric is the fundamental

object. We need to relate it to the Fubini-Study height to invoke calculations from
that setting.
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Lemma 3.6. Let αn : Pr → Ps be the n-th Veronese map. Consider two metrics
on the line bundle O(1) on Pr, namely the Weil metric φ and the metric n

√
α∗
nψ

which is the n-th root of the pullback of the Fubini-Study metric from O(1) on Ps.
Then for non-Archimedean places the two metrics are the same and for archimedean
places σ ∈ Ω we have

dσ(φ,
n
√
α∗
nψ) ≤

r log n

n
,

for n ≥ r + 1.

Proof. We only calculate the archimedean case. Consider the section x0 of O(1) on
Pr. By definition we have

|x0(z)|φ =
|z0|σ

max(|z0|σ, . . . , |zn|σ)
and

|x0(z)| n√α∗
nψ

= n

√√√√ |z0|nσ√∑
|I|=n |zI |2σ

=
|z0|σ

2n

√∑
|I|=n |zI |2σ

.

Hence we calculate∣∣∣∣− log
|x0(z)|φ
|x0(z)| n√α∗

nψ

∣∣∣∣ = ∣∣∣∣ log max(|z0|σ, . . . , |zn|σ)
2n

√∑
|I|=n |zI |2σ

∣∣∣∣.
This is bounded by

| log 2n
√
s+ 1| =

∣∣∣∣ log 2n

√(
r + n

n

)∣∣∣∣ ≤ 1

2n
| log(r + 1)nr| ≤ r log n

n
,

where in the first inequality we use the fact that
(
r+n
n

)
≤ (r + 1)nr and the second

inequality holds for n ≥ r + 1. □

Lemma 3.7. Let f : Q→ P be a morphism of projective schemes over K and let
L be an adelic line bundle on P . Then f ∗L is an adelic line bundle on Q.

If L is semipositive or integrable, so is f ∗L.

Proof. The fact that f ∗L is an adelic line bundle is found in [CM24, Section 2.8.3
and 2.9.5]. The semipositivity assertion follows from [CM24, Lemma 6.1.2]. □

Let us fix a projective morphism π : X → S of finite type K-schemes, where S is
not necessarily projective.

Definition 3.8. We say that a metrized family L on X is simple over S, if there is
a closed embedding j : X → PnS over S (for some n), such that L = j∗O(1). The
elements of the Q-vector space of metrized Q-line bundles on X generated by simple
ones are called lattice line bundles on X over S and are denoted by LPicQ(X/S).
The space of metrized Q-divisors coming from rational sections of such metrized Q-
line bundles is denoted by LDivQ(X/S) and its elements are called lattice divisors on
X over S. If S is equal to Spec(K), we omit it in the notation. Moreover, if we want
to emphasize the dependence on the GVF K, we use the notation LPicQ(X/S)K .

Remark 3.9. It follows from Lemma 3.7 that simple metrized line bundles on X
over S are semipositive on fibers. More precisely, if K ⊂ F is a GVF extension, and
s ∈ S(F ), then a simple metrized line bundle L over S coming from an embedding
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j : X → PnS induces an adelic line bundle Ls = j∗sO(1) which is semipositive on Xs
with respect to the GVF F .

We remark that for any GVF extension F/K, a finite type F -scheme T , and a
morphism of K-schemes T → S, there is a base-change map

LPicQ(X/S)K → LPicQ(XT/T )F .

In particular for s ∈ S(F ), there is a specialisation map

LPicQ(X/S)K → LPicQ(Xs)F .

Let us describe these maps more precisely. Let L = (L, φ) ∈ LPicQ(X/S)K , for
φ = (φω)ω∈MK

. This means that each φω is a metric on Lω over X an
ω . To get a family

of metrics ψ = (ψv)v∈MF
on the base-change LT of L via the morphism XT → X one

proceeds as in [CM21, Example 4.1.8] (which works the same when K ′ = F/K is
not algebraic). Equivalently, one could take an embedding j : X → PnS that realises
L = j∗O(1) (or two embeddings such that it comes from the difference of pullbacks)
and define (LT , ψ) via the pullback of O(1) through the map jT : XT → PnT .
3.2. Heights of resultants. Chen and Moriwaki have constructed an intersection
product of integrable adelic Cartier divisors in [CM21]. In this subsection we look
closely at its definition which uses heights of certain resultants.

Theorem 3.10. [CM21, Theorem B] Let X be a projective scheme of pure dimen-
sion d over a GVF K. Then, there is a multilinear adelic intersection product

LPicQ(X)d+1 → R.

Proof. Given finitely many elements of LPicQ(X) we can replace K by a countable
subfield over which the corresponding embeddings to projective spaces (and X)
are defined. Then we can represent the GVF K by an adelic curve. Since lattice
line bundles are integrable, an arithmetic intersection number is defined by [CM21,
Theorem B]. We show that the product on LPicQ(F ) only depends on the induced
GVF structure on K in Corollary 3.15. □

We write the intersection number of lattice line bundles L0, . . . , Ld as L0 · · ·Ld.
We observe that the adelic intersection product is determined by its values on tuples
of simple line bundles. Let us fix a tuple of such simple adelic Cartier divisors on a
projective scheme X and analyse how to calculate their intersection.

Assume we are given closed embeddings ξi : X → Pri = P(Vi) for i = 0, . . . , d,
where Vi is a (ri + 1)-dimensional vector space over K with a distinguished basis.
For a natural number n, denote by ξ⊗ni : X → Pri(n) the composition of ξi with the
n-th Veronese map Pri = P(Vi) → P(SnVi) = Pri(n) and write Vi(n) := SnVi. Note
that in this case we have

dimVi(n) = ri(n) + 1 =

(
ri + n

n

)
= O(nri).

For each n we define the line bundle Li(n) to be the pullback ξ⊗n,∗i O(1). We
pull back the Weil metric and the Fubini-Study metric to obtain adelic line bundles
Li(n) and Li(n)

FS
respectively. For n = 1, we omit the n in the notation. We note

that there is a canonical isomorphism Li(n) ∼= L⊗n
i .
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Let δi(n) be the intersection number L0(n) · · ·Li−1(n) · Li+1(n) · · ·Ld(n) and set
δi = δi(1). Since Li(n) ∼= L⊗n

i , we have δi(n) = nd · δi. Let

W (n) := Sδ0(n)(V0(n)
∨)⊗K . . .⊗K Sδd(n)(Vd(n)∨)

and note that using distinguished bases of Vi for i = 0, . . . , d we can naturally
interpret elements of W (n) as polynomials of multi-degree (δ0(n), . . . , δd(n)) on
V0(n) × · · · × Vd(n). There is a unique (up to scaling) element Rn ∈ W (n) such
that it vanishes on (v0, . . . , vd) if and only if the intersection X ∩Z(v0)∩ · · · ∩Z(vd)
is non-empty (as a scheme), where Z(vi) is the pullback to X of the hyperplane in
P(Vi(n)) defined by the zero-set of the linear form vi. We call it the resultant of
X with respect to embeddings ξ⊗ni . It determines a unique element Rn ∈ P(W (n))
whose height calculates the adelic intersection product in the followng way.

Remark 3.11. [CM21, Remark 4.2.13]

L0(n)
FS
· . . . · Ld(n)

FS
=

∫
Ω\Ω∞

log ∥Rn∥ων(dω)

+

∫
Ω∞

ν(dσ)

∫
S0(n)σ×···×Sd(n)σ

log |(Rn)σ(z0, . . . zd)|ηS0(n)σ(dz0)⊗ · · · ⊗ ηSd(n)σ(dzd)

+ν(Ω∞)
1

2

d∑
i=0

δi(n)

ri(n)∑
l=1

1

l
,

where we use the notation from the cited remark, but with an additional variable
n. This means that Si(n)σ is the unit sphere in Vi(n)σ with the sphere measure
ηSi(n)σ . Moreover, for a non-Archimedean ω ∈ Ω, the norm ∥ · ∥ω is the maximum of
coefficients norm, with respect to the distinguished basis of W (n), for example by
[CM24, Proposition A.2.2]. Later we write η(dz) for ηS0(n)σ(dz0)⊗ · · · ⊗ ηSd(n)σ(dzd)
and z for the tuple z0, . . . , zd (here n, d and σ are implicit).

Lemma 3.12. The adelic intersection product satisfies

lim
n

1

nd+1
L0(n)

FS
· . . . · Ld(n)

FS
= L0(n) · . . . · Ld(n).

Proof. It suffices to show that the metrics on 1
n
Li(n)

FS
converge with respect to the

global distance to the metrics on Li. By Lemma 3.6 the global distance satisfies
d( 1

n
Li(n)

FS
, Li) ≤ ν(Ω∞) · ri logn

n
. □

We use the above formula and the lemma to calculate D0 · . . . ·Dd through resul-
tants. More precisely we show the following.

Proposition 3.13. In the above context we have

L0 · . . . · Ld = lim
n

1

nd+1
ht(Rn),

where we treat Rn’s as tuples, using the distinguished basis of W (n).

Proof. By Lemma 3.12 we only need to show that

|L0(n)
FS
· . . . · Ld(n)

FS
− ht(Rn)| = o(nd+1).
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First we express ht(Rn) in a form of an integral

ht(Rn) =

∫
Ω

log ∥Rn∥ων(dω)

=

∫
Ω\Ω∞

log ∥Rn∥ων(dω) +
∫
Ω∞

log ∥Rn∥σν(dσ),

where ∥·∥ω, ∥·∥σ denote the maximum of coefficients norms (for a non-Archimedean
ω ∈ Ω or archimedean σ ∈ Ω∞), with respect to the distinguished basis of W (n).

Claim 3.14. We have

ν(Ω∞)
1

2

d∑
i=0

δi(n)

ri(n)∑
l=1

1

l
= O(nd log n).

In particular, when divided by nd+1 converges to zero, for n→∞.

Proof. This follows from the fact that δi(n) = ndδi and
ri(n)∑
l=1

1

l
= O(log ri(n)) = O(log nri) = O(log n).

□

By Remark 3.11 we will be done if we show that∣∣∣ ∫
S0(n)σ×···×Sd(n)σ

log |(Rn)σ(z)|η(dz)− log ∥Rn∥σ
∣∣∣ = o(nd+1),

where the constant is independent of σ ∈ Ω∞. But by Proposition A.1 applied to
the polynomial (Rn)σ, we have∣∣∣ ∫

S0(n)σ×···×Sd(n)σ
log |(Rn)σ(z)|η(dz)−log ∥Rn∥σ

∣∣∣ ⩽ d∑
i=0

δi(n)

log(ri(n) + 1) +

ri(n)−1∑
k=1

1

k

 ,

where δi(n) = ndδi and log(ri(n) + 1) +
∑ri(n)−1

k=1
1
k
= O(log(ri(n))) = O(log n) for

all i ⩽ d, so

d∑
i=0

δi(n)

log(ri(n) + 1) +

ri(n)−1∑
k=1

1

k

 = O(nd log n) = o(nd+1),

where the given bound does not depend on σ. □

Corollary 3.15. The intersection product on LPicQ(X) only depends on the in-
duced GVF structure on K.

Remark 3.16. By analysing precisely the proof of Proposition 3.13, one can see
that in fact it shows existence of an absolute constant C such that∣∣∣L0 · . . . · Ld −

1

nd+1
ht(Rn)

∣∣∣ ≤ C · (1 + ν(Ω∞)) ·max
i
riδi ·

log n

n
.

Note that the number ν(Ω∞) can be expressed as ht(2)
log 2

with respect to the induced
GVF structure on K.
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3.3. Definability of adelic intersection product. In this section we prove The-
orem 3.1 for lattice line bundles. Let π : X → S be a flat projective morphism
with d-dimensional fibers. Suppose S = SpecA is an affine variety (so that A is an
integral domain).

Let L0, . . . ,Ld ∈ LPic(X/S) be simple over S with embeddings αi : X → PkiS . For
a field-valued point s ∈ S(F ) and any object Q over S, the notation Q(s) denotes
its base change to s. Denote by δi the intersection number

deg(L0(s) · . . . · Li−1(s) · Li+1(s) · . . . · Ld(s)|Xs)
for any s ∈ S(F ) in any field extension K ⊂ F . It is independent of the choice of s
since the family π : X → S is flat.

Lemma 3.17. There is a family of polynomials Rn with coefficients in A defined
up to scalar in A×, such that for all s ∈ S(F ) we have

Rn(s) = Rn,s,

where Rn,s is the resultant Rn from Subsection 3.2, defined for the scheme Xs
equipped with the family of embeddings (αi)s : Xs → Pkiκ(s) for i = 0, . . . , d.

Proof. This is probably standard, but we could not find a reference so we sketch a
proof here, based on the construction of resultants from [CM21, Section 1.6]. We
use notation from loc.cit but with the base-field k replaced by A, X over k replaced
by X over S = Spec(A), and Li’s replaced by Li’s.

First note that the whole Section 1.5 and Section 1.6 up to Proposition 1.6.2
of [CM21] go through word-for-word over A. It remains to prove the analogue of
[CM21, Proposition 1.6.2] over A. This boils down to calculating the cycles

q∗(c1(p
∗L0) · · · c1(p∗Li−1)c1(q

∗q∗i (OE∨
i
(1)))c1(p

∗Li+1) · · · c1(p∗Ld) ∩ [X ×S P̌])

= c1(q
∗
i (OE∨

i
(1))) · q∗(c1(p∗L0) · · · c1(p∗Li−1)c1(p

∗Li+1) · · · c1(p∗Ld) ∩ [X ×S P̌])
We look at the diagram

X ×S P̌ X

P̌ S

p

q r

s

and use flat base-change to get the equality

q∗(c1(p
∗L0) · · · c1(p∗Li−1)c1(p

∗Li+1) · · · c1(p∗Ld) ∩ [X ×S P̌])

= s∗r∗(c1(L0) · · · c1(Li−1)c1(Li+1) · · · c1(Ld) ∩ [X ]).
Let η be the generic point of S. By the flat base-change for the localisation map
η → S, we get

r∗(c1(L0) · · · c1(Li−1)c1(Li+1) · · · c1(Ld) ∩ [X ])
= deg(L0(η) · · · Li−1(η)Li+1(η) · · · Ld(η))[S]

which is equal to δi · [S]. Hence the cycle in question is equal to

c1(q
∗
i (OE∨

i
(1)))s∗(δi · [S]) = c1(q

∗
i (OE∨

i
(1))) ∩ δi[P̌] = c1(q

∗
i (OE∨

i
(δi))) ∩ [P̌],

which finishes the proof as in [CM21, Proposition 1.6.2].
□
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Proposition 3.18. Let X → S be a flat projective morphism of finite type schemes
over a GVF K of relative dimension d. Let L0, . . . ,Ld ∈ LPic(X/S) be lattice line
bundles on X over S. Then, the map

SGVF → R

s 7→ d̂eg(L0(s), . . . ,Ld(s)|Xs)
is continuous.

Proof. By Remark 2.7 (continuity with respect to the constructible topology) we may
without loss of generality assume that S is an affine variety and the line bundles are
simple over the base S.

Fix a net (si)i ∈ SGVF and s ∈ SGVF such that si → s. Using the notation from
Lemma 3.17, put

In,i =
1

nd+1
ht(Rn(si)), In =

1

nd+1
ht(Rn(s)),

Ii = lim
n

1

nd+1
ht(Rn(si)), I = lim

n

1

nd+1
ht(Rn(s)).

We need to show that limi Ii = I. Pick a positive number ε. First, note that there
is a natural number n such that

|I − In| < ε

and
|Ii − In,i| < ε

for all i. Indeed, this is possible because by Remark 3.16 the above differences are
bounded by logn

n
times an absolute multiple of (1 + ν(Ω∞))maxi kiδi. Next, note

that for i big enough we have
|In,i − In| < ε

because for a fixed n, ht(Rn(y)) is a continuous function on SGVF. Hence together
we get

|I − Ii| < 3ε,

which finishes the proof as ε > 0 was arbitrary. □

3.4. Integrable divisors over globally valued fields. For applications, it is
useful to consider not only lattice line bundles, but also to allow certain limit metrics.
We will define global line bundles and globally semipositive line bundles over a GVF
in the spirit of Zhang line bundles. Let X → S be a projective morphism of finite
type schemes over a GVF K.

Definition 3.19. A lattice line bundle L on X over S is called semipositive if for
every s ∈ SGVF the family of metrics φ|Xs consists of semipositive metrics over
almost all places ω ∈Mκ(s).

Definition 3.20. Let L be a line bundle on X over S. For every compact set
C ⊂ SGVF, we define a pseudometric dC on the space of metrics on L. Let s be a
section of L and let ϕ and ψ be two families of metrics on L. Then, we define

dC(ϕ, ψ) = sup
z∈C

∫ +

Ωκ(z)

sup
x∈X an

s,ω

| log |s|ϕ − log |s|ψ|ν(dω).
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Note that the set of (semipositive) adelic divisors is closed under this norm. The
norm allows us to define notions of global and integrable divisors on X over S.

Definition 3.21. A global line bundle L on X over S is defined to be a line
bundle L with a metric family ϕ such that there is a sequence of lattice line bundles
Lk = (L, ϕk) such that

lim
k→∞

dC(ϕk, ϕ) = 0

for every compact C ⊂ SGVF.
It is called globally semipositive if the metric families ϕk can be chosen semi-

positive. A global line bundle L is called globally integrable if there are globally
semipositive line bundles L+ and L− and an isometry L ∼= L+ ⊗ L−.

We denote the isometry classes of global Q-line bundles by P̂icQ(X/S). The
subgroup of integrable line bundles is denoted by P̂ic

int
Q (X/S). If S = SpecK, we

often omit it in the notation. We furthermore denote the distance between two
metric families by d.

Proposition 3.22. Let X be a projective scheme of pure dimension d over a
countable GVF K. The intersection product on lattice divisors extends to a pairing

P̂ic
int
Q (X)d+1 → R.

Proof. By linearity, it suffices to construct the pairing for globally semipositive divi-
sors. It suffices to show that on the set of semipositive lattice divisors the intersection
product is continuous with respect to d.

Let L = (O, ϕ) be a lattice line bundle with trivial underlying line bundle and
d(ϕ, 0) = C and let L1, . . . , Ld ∈ LPicQ

+(X) be semipositive lattice line bundles.
Then,

|L · L1 · · ·Ld| ≤ C deg(L1 · · ·Ld).
This can be read off from the interpretation of the intersection number as the integral
over local heights

|L · L1 · · ·Ld| = |
∫
Ω

∫
Xan

ω

log |1|ϕ,ω c1(L1,ω) · · · c1(Ld,ω)ν(dω)|

≤
∫ +

Ω

sup
x∈Xan

ω

| log |1|ϕ,ω(x)| deg(L1 · · ·Ld)ν(dω)

≤ C deg(L1 · · ·Ld).

□

We are finally in the position to prove Theorem 3.1. We restate it for convenience.

Theorem 3.23. Let X → S be a flat projective morphism of finite type schemes
over a GVF K of relative dimension d. Let L0, . . . ,Ld ∈ P̂ic

int
Q (X/S) be globally

integrable divisors on X over S. Then, the map

SGVF → R

s 7→ d̂eg(L0, . . . ,Ld|Xs)

is continuous.
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Proof. We assume by linearity that L0, . . . ,Ld are all semipositive. Let C ⊂ SGVF

be a compact subset. For k ∈ N, let Lk0, . . . ,L
k

d be semipositive lattice line bundles
such that dC(L

k

i ,Li) converges to zero. Then, the functions d̂eg(Lk0, . . . ,L
k

d|Xs)
converge uniformly to d̂eg(L0, . . . ,Ld|Xs) on C. Since the former are continuous by
Proposition 3.18, the latter is, too. We are done since SGVF is locally compact. □

For applications the following theorem is crucial. It follows from [Zha95a], but we
have not found a suitable reference for the precise statement we need. Our reasoning
uses some techniques from the proof of the arithmetic Demailly theorem in [QY23]
or from [Cha17]. Note that we have the notion of semipositivity and integrability for
both Zhang line bundles and global line bundles and that they are a priori different.

Theorem 3.24. Every integrable Zhang line bundle L = (L, ϕ) on a projective
variety over a number field is induced by an integrable global divisor.

Proof. We prove that arithmetically ample divisors are induced by integrable global
divisors. Arithmetically ample divisors in turn are dense in semipositive Zhang
divisors allowing us to finish the proof.

Definition 3.25. A hermitian line bundle L over an arithmetic variety X → SpecZ
is called arithmetically ample if

(1) LQ is ample,
(2) the metrics on L are semipositive at each place,
(3) the height ĉ1(L|Y)dimY > 0 for every irreducible horizontal subvariety Y ⊆ X .

A Zhang divisor is called arithmetically ample if it is induced by an arithmetically
ample Hermitian line bundle.

We want to approximate an arithmetically ample arithmetic divisor L defined on
the model X from below. For this we apply the maps ιn : X → P(H0(nL)). We
endow the line bundle O(1) on P(H0(nL)) with the metric hn induced by the supre-
mum norm on H0(nL). Semipositivity implies precisely that the induced metrics on
L converge uniformly to L by [Zha95a, Theorem 3.5]. This is always semipositive
at all places and the underlying line bundle is ample. It is arithmetically ample
since the subspace of integral sections in H0(nL) has a basis s1, . . . , sN consisting
of strictly small integral sections, at least for n large enough. We are reduced to
proving the claim for (O(1), hn) on P(H0(nL)). At finite places, the metric on O(1)
agrees with the Weil metric for the basis s1 . . . , sN (as in [Sza23, Claim 3.1.15]). It
remains to show the approximation at the infinite place. We can approximate the
metric hn by a smooth metric with everywhere positive curvature.

From now on we assume that L induces O(1) on some projective space Pn with
Weil metrics at finite places and a smooth metric with everywhere positive curvature
at ∞. By Dini’s theorem it suffices to prove pointwise approximation, i.e. for every
point x ∈ X(C) and ϵ > 0 there exists an integer N > 0 and a small integral section
s ∈ H0(O(N)) such that − 1

N
log |s(x)| < ϵ.

We prove first that for arbitrarily big N we can find l ∈ H0(PnR,O(N)) satisfying
− log |l|sup ≥ ϵ and − 1

N
log |l(x)| < 2ϵ. Let x be the complex conjugate of x. We

apply [Zha95a, Theorem 2.2] to O(1) and Y = {x, x} to obtain a holomorphic
section s of O(N) with − log |s|sup = 0 and − 1

N
log |sN(x)|,− 1

N
log |sN(x)| < ϵ/2.

The section sN⊗sN ∈ H0(PnC,O(2N)) is then a section l ∈ H0(PnR,O(2N)) satisfying
− log |l|sup ≥ 0 and − 1

2N
log |l(x)| < ϵ. Rescaling proves the claim.
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The vector space H0(PnR,O(N)) has a norm given by the supremum norm on
X(C). The global sections over Z form a lattice ΛN = H0(PnZ,O(N)). By [Zha95a,
Theorem 4.2], there exists 0 < r < 1 such that for big enough N , there is a basis of
ΛN consisting of vectors of norm < rN . For r < r′ < 1, and big enough N it follows
that for every l ∈ H0(PnR,O(N)) there exists l′ ∈ ΛN with |l − l′|sup < (r′)N . We
apply this to the section l constructed in the previous paragraph. Then, l′ eventually
satisfies |l′|sup ≤ 1. Furthermore, for small enough ϵ in the construction of l we can
ensure − log |r′| > 2ϵ. Then, for big enough N we have − 1

N
log |l′(x)| < 3ϵ proving

the theorem. □

Let us present a result that allows to calculate the adelic intersection product over
a GVF structure that comes from a polarisation, due to Chen and Moriwaki.

Let (S,H1, . . . , Hn) be a polarisation inducing a GVF structure on F = Q(S).
Let X be a d-dimensional projective variety over F which is the generic fiber of a
projective morphism π : X → S. Fix globally integrable line bundles L0, . . . ,Ld ∈
P̂ic

int
Q (X/S)Q and denote by L0, . . . , Ld their restriction to P̂ic

int
Q (X)F .

Proposition 3.26. [CM21, Proposition 4.5.1] The following equality holds:

d̂eg(L0, . . . , Ld|X) = L0 · . . . · Ld · π∗H1 · . . . · π∗Hn,

where the left hand side is the adelic intersection product over the globally valued
field F and the right hand side is the arithmetic/Arakelov intersection product of
integrable Zhang divisors on X .

Proof. The case of the polarization and the line bundles Li being defined on a model
over Z is [CM21, Proposition 4.5.1]. Our version follows from continuity of the
intersection product on semipositive line bundles and continuity of the intersection
number in families, cf. Theorem 3.1. □

4. Average intersections

Let f1, . . . , fm be Laurent polynomials in n variables with coefficients in a number
field K. Each fi defines a hypersurface Vi inside a proper toric variety T with torus
T = Gn

m ⊂ T . Let (u1,j, . . . , um,j)j be a generic sequence of small points in Tm with
respect to the Weil height on Tm ⊂ Pnm. For integrable Zhang divisorsD0, . . . , Dn−m
on T we want to compute

lim
j→∞

d̂eg(D0, . . . , Dn−m|u1,jV1 ∩ · · · ∩ um,jVm).

Denote the coordinates of the i-th factor of Gn
m by w1,i, . . . , wn,i. We let V ⊂

T × Tm be the intersection of the vanishing loci of fi(z1w−1
1,i , . . . , znw

−1
n,i). We note

that under V → Tm the generic fibre has dimension n −m. The map V → Tm is
flat of relative dimension n−m over a dense Zariski open U ⊆ Tm. We define global
line bundles L0, . . . ,Ln−m ∈ P̂ic

int
Q (V/U) by pulling back O(D0), . . . ,O(Dn−m) to

T × Tm and restricting to V . This makes sense by Theorem 3.24. By Theorem 3.1,
the map

UGVF → R

u 7→ d̂eg(L0, . . . ,Ld|Xu)
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is continuous. We note that on (u1, . . . , um) ∈ U(K) the above map is given by

(u1, . . . , um) 7→ d̂eg(D0, . . . , Dn−m|u1V1 ∩ · · · ∩ umVm).
By Corollary 2.15, a generic small sequence (u1,j, . . . , um,j)j in Tm has the cor-

responding points on UGVF converging to K(w1,1, . . . , wn,1, . . . , w1,m, . . . , wn,m) with
the polarized GVF structure associated to (

∏m
i=1 Pn, π∗

1O(1)
n
, . . . , π∗

mO(1)
n
). De-

note this limit point by ηcan ∈ UGVF.
Since the right hand side is the intersection over a polarized GVF it can be

computed up to birational modification as the height of V ⊂ T ×
∏m

i=1 Pn with
respect to π∗

hD0 . . . π
∗
hDn−m · (

∑
π∗
iO(1))nm by Proposition 3.26. In other words, we

get the following.

Lemma 4.1. Suppose that D0, . . . , Dn−m are integrable Zhang divisors on T over
K. Then,

lim
j→∞

d̂eg(D0, . . . , Dn−m|u1,jV1 ∩ · · · ∩ um,jVm)

= d̂eg(π∗
hD0 . . . π

∗
hDn−m · π∗

1O(1)
n
· · · π∗

mO(1)
n
|V ).

On the right hand side, the Di should be viewed as adelic divisors pulled back to F .

We need to be slightly careful when applying Fubini’s theorem in the non-Archimedean
setting. This is because of the failure of (X × Y )an = Xan × Y an. In our setting,
there is a preferred very affine chart given by the torus in the toric variety on which
we may apply Fubini.

We sketch an argument that one can always apply Fubini in such situations.
This is based on [Sto21, Proposition 3.4.21]. If α ∈ A(dimX,dimX)(Xan) and β ∈
A(dimY,dimY )(Y an) are smooth forms that are defined on very affine charts of integra-
tion U ⊆ X and V ⊆ Y . Then, U × V ⊆ X × Y is a very affine chart of integration
for π∗

Xα ∧ π∗
Y β. Furthermore, trop(U × V ) = trop(U) × trop(V ) by Rosenlicht’s

theorem. Then, one needs to prove that one has the product measure on each poly-
hedron in the tropicalization. This is done by adapting [Sto21, Lemma 3.4.16]. The
general case follows by approximation. We refer to [Gub16] for an introduction to
the theory of forms in the non-Archimedean setting.

Theorem 4.2. LetRi denote the Ronkin divisor associated to gi = fi(z1w
−1
1,i , . . . , znw

−1
n,i)

on a suitable toric blowup X of T ×
∏m

i=1 Pn. Let Ṽ denote the common vanishing
locus of the gi. Then, we have an identity

d̂eg(R1 . . .Rmπ
∗
hD0 . . . π

∗
hDn−m · π∗

1O(1)
n
· · · π∗

mO(1)
n
|X)

= d̂eg(π∗
hD0 . . . π

∗
hDn−m · π∗

1O(1)
n
· · · π∗

mO(1)
n
|Ṽ ).

Proof. In order not to overburden notation we omit the superscript denoting the
analytification.

Let si denote the distinguished section of O(Ri). The sections gisi of O(Ri) have
common vanishing locus Ṽ . By the iterative definition of the height, the equality of
intersection numbers is equivalent to the vanishing of the integrals occurring in the
height computations. These are of the form∫
div(g1)∩···∩div(gr−1)

log |grsr|c1(Rr+1) . . . c1(Rm)π
∗
hc1(D0) . . . π

∗
hc1(Dn−m)

m∏
i=1

π∗
i c1(O(1)).
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Let us write ω for c1(Rr+1) . . . c1(Rm)π
∗
hc1(D0) . . . π

∗
hc1(Dn−m)

∏
i ̸=r π

∗
i c1(O(1)). To

each of them we can apply Fubini to obtain∫
div(g1)∩···∩div(gr−1)∩X

log |grsr|π∗
rc1(O(1))nω

=

∫
(div(g1)∩···∩div(gr−1)∩(T×

∏r−1
i=1 T))×T×

∏m
i=r+1 T

log |grsr|π∗
rc1(O(1))nω

=

∫
(div(g1)∩···∩div(gr−1)∩(T×

∏r−1
i=1 T))×

∏m
i=r+1 T

(∫
T
log |grsr|c1(O(1))n

)
ω

=

∫
(div(g1)∩···∩div(gr−1)∩(T×

∏r−1
i=1 T))×

∏m
i=r+1 T

(∫
T
log |grsr|dσ0(x)

)
ω.

The first equality follows since a Zariski closed subset with empty interior is a nullset
with respect to a measure associated to differential forms.

We claim that the inner integral
∫
T log |grsr|σ0(x) vanishes at each fibre. Recall

that gr(t, t1, . . . , tm) = fr(tt
−1
r ). Let πr denote the projection from T ×

∏m
i=1 T to

the r-th component Tr in the second factor.
We compute

log |sr(t, t1, . . . , tm)| =
∫
trop−1(trop(t,t1,...,tm))

− log |gr(x)|dσ(t,t1,...,tm)(x)

=

∫
trop−1(trop(t,tr))⊂(T×Tr)trop

− log |fr(xx−1
r )|dσ(t,tr)(x, xr)

=

∫
trop−1(trop(tt−1

r ))⊂Ttrop
r

− log |fr(x)|dσtt−1
r
(x) = ρr(tt

−1
r ).

Here, ρr denotes the Ronkin function for fr and Tr denotes the r-th factor of the
torus.

Consider the fibre over an element

(t, t1, . . . , tr−1, tr+1, . . . , tm) ∈

(
div(g1) ∩ · · · ∩ div(gr−1) ∩ (T×

r−1∏
i=1

T)

)
×

m∏
i=r+1

T.

Over this fibre we evaluate the integral∫
T
log |gr(t, t1, . . . , tm)sr(t, t1, . . . , tm)|σ0(tr) =

∫
T
log |fr(tt−1

r )|+ ρr(tt
−1
r )σ0(tr)

= −ρr(t) + ρr(t) = 0.

□

Lemma 4.3. Let Ri denote the Ronkin line bundle associated to fi and suppose it
is already defined on T and assume D0, . . . , Dn−m are toric. Let X denote a suitable
toric blow-up of T ×

∏m
i=1 Pn over which Ri are defined. We have an equality of

intersection numbers

d̂eg(R1 . . .Rmπ
∗
hD0 . . . π

∗
hDn−m · π∗

1O(1)
n
· · · π∗

mO(1)
n
|X)

= d̂eg(R1 . . . RmD0 . . . Dn−m|T )
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Proof. By linearity, we assume that D0, . . . , Dn−m are all semipositive. Then, we
interpret the left hand side in a combinatorial manner as in [BPS14, Theorem 5.2.5].
We then apply Lemma 2.27. The occurring polytopes are m times n copies of the
unit simplex, one set of copies for each factor in

∏m
i=1 Pn. It is immediate to see that

the pushforward of the roof functions of the π∗
hDi yield precisely the roof functions

of the Di. Similarly, the pushforward of the roof function of Ri is the roof function
of Ri by Lemma 2.25. □

Theorem 4.4. Let f1, . . . , fm be Laurent polynomials in n variables with coefficients
in a number field K and let T be a proper toric variety with torus T = Gn

m ⊂ T .
Suppose that NP (fi) define divisors on T . Denote by Vi the hypersurface defined
by fi. Let (ζ1,j, . . . , ζm,j)j be a generic sequence of small points in Tm with respect
to the Weil height and D0, . . . , Dn−m be integrable toric Zhang divisors on T . Then,

lim
j→∞

d̂eg(D0, . . . , Dn−m | ζ1,jV1 ∩ · · · ∩ ζm,jVm) = d̂eg(R1 . . . RmD0 . . . Dn−m|T ).

Proof. This is a combination of Lemma 4.1, Theorem 4.2 and Lemma 4.3. □

We finally prove Conjecture 6.4.4. in [Gua18a].

Theorem 4.5. Let f1, . . . , fm be Laurent polynomials in n variables with coefficients
in a number field K and let T be a proper toric variety with torus T = Gn ⊂ T .
Denote by Vi the hypersurface defined by fi and by ρi its Ronkin function. Let
(ζ1,j, . . . , ζm,j)j be a generic sequence of small points in Tm for the Weil height and
let D0, . . . , Dn−m be semipositive toric Zhang divisors on T with associated local
roof functions θ0,v, . . . , θn−m,v. Then,

lim
j→∞

d̂eg(D0, . . . , Dn−m | ζ1,jV1 ∩ · · · ∩ ζm,jVm)

=
∑
v∈MK

nvMIM(θ0,v, . . . , θn−m,v, ρ
∨
1 , . . . , ρ

∨
m).

Proof. We apply the projection formula to restrict to the case, where the NP (fi)
define divisors on T . Then, the conjecture follows from Theorem 4.4 and Theo-
rem 2.21. □

Appendix A. Mahler measures on complex polynomials

In this appendix, we study some measures of complexity of complex polynomials.
For a nonzero P ∈ C[X1, . . . , Xn], we define the logarithmic Mahler measure

m(P ) =

∫
[0,1]n

log |P (e2iπt1 , . . . , e2iπtn)|dt1 . . . dtn,

and the logarithmic Fubini-Study Mahler measure

mSn(P ) =

∫
Sn

log |P (z1, . . . , zn)|dηn(z1, . . . , zn),

where Sn is the unit sphere in Cn for the usual Euclidean norm, and ηn is the
spherical measure on Sn, normalized so that ηn(Sn) = 1.

In [Lel94], Pierre Lelong studied these two measures and gave a bound for the
distance between them in terms of n and the degree of P .
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In this appendix, we prove an analogue of Lelong’s result in the space of poly-
nomials C[X1, . . . , Xn], where each X i is a tuple of abstract variables of length mi.
More precisely, we define the mixed Fubini-Study Mahler measure by

mSm1×...×Smn
(P ) =

∫
Sm1×...Smn

log |P (z1, . . . , zn)|dηm1(z1) ∧ . . . ∧ dηmn(zn).

Our goal is to prove the following proposition, where the norm ∥·∥ on C[X1, . . . , Xn]
assigns to a polynomial the maximum absolute value of its coefficients.

Proposition A.1. Let P ∈ C[X1, . . . , Xn] be a nonzero polynomial, where each X i

is a tuple of abstract variables of length mi. For all i ≤ n, let di be the degree of P
in X i. Then,∣∣mSm1×...×Smn

− log∥P∥
∣∣ ⩽ n∑

i=1

di

(
log(mi + 1) +

1

2

mi−1∑
k=1

1

k

)
.

Let us start with the simpler case where eachmi is equal to 1. Let P ∈ C[X1, . . . , Xn]
be a nonzero polynomial of degree d.

Lemma A.2. Let

S(P ) := sup{|P (z1, . . . , zn)| : (z1, . . . , zn) ∈ Cn and |zi| ⩽ 1 for all i}.
Then,

∥P∥ ⩽ S(P ) ⩽

(
n+ d

n

)
∥P∥.

Proof. The rightmost inequality follows from the fact that a polynomial of degree d
has at most

(
n+d
n

)
nonzero coefficients.

For the other inequality, consider the integral

I =

∫
[0,1]n
|P (e2iπt1 , . . . , e2iπtn)|2 dt1 . . . dtn

=

∫
[0,1]n

P (e2iπt1 , . . . , e2iπtn)P (e2iπt1 , . . . , e2iπtn) dt1 . . . dtn

=

∫
[0,1]n

( ∑
k,l∈Nn

akal exp (2iπ(k1 − l1)t1 + . . .+ 2iπ(kn − ln)tn)

)
dt1 . . . dtn

I =
∑
k,l∈Nn

akal

∫
[0,1]n

exp (2iπ(k1 − l1)t1 + . . .+ 2iπ(kn − ln)tn) dt1 . . . dtn.

Now, for k, l ∈ Nn with k ̸= l, there exists 1 ⩽ r ⩽ n with kr − lr ̸= 0. So,∫
[0,1]n

exp (2iπ(k1 − l1)t1 + . . .+ 2iπ(kn − ln)tn) dt1 . . . dtn

=

∫
[0,1]n−1

exp

(∑
s ̸=r

2iπ(ks − ls)ts

)(∫ 1

0

e2iπ(kr−lr)trdtr

)∏
s ̸=r

dts = 0,

and for k = l,∫
[0,1]n

exp (2iπ(k1 − l1)t1 + . . .+ 2iπ(kn − ln)tn) dt1 . . . dtn = 1.
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So, finally
I =

∑
k∈N

|ak|2 ⩾ ∥P∥2.

But we also have

I =

∫
[0,1]n
|P (e2iπt1 , . . . , e2iπtn)|2 dt1 . . . dtn ⩽ S(P )2.

Hence, ∥P∥ ⩽ S(P ). □

Remark A.3. In particular, Lemma A.2 implies that

S(P ) = lim
m→+∞

∥Pm∥1/m.

Lemma A.4. Assume that n = 1, i.e. P =
d∑

k=0

akX
k ∈ C[X]. Then, for all

0 ⩽ k ⩽ d:

|ak| ⩽
(
d

k

)
exp(m(P ))

Proof. Since C is algebraically closed, we can write P = λ
degP∏
i=1

(X − αi), where λ ∈

C×, α1, . . . , αdegP ∈ C. Now, by Jensen’s formula, we have for each 1 ⩽ i ⩽ degP ,∫ 1

0

log
∣∣e2iπt − αi∣∣ dt = max(0, log |αi|).

So, by summing,

m(P ) = log |λ|+
degP∑
i=1

max(0, log |αi|).

Now, let k ⩽ degP . Then, the coefficient of Xk in P is equal to

ak = (−1)degP−kλ
∑

I⊆{1,...,degP}

∏
i∈I

αi.

So, by the triangle inequality

|ak| ⩽ |λ|
∑

I⊆{1,...,degP}

∏
i∈I

|αi| ⩽
(
degP

k

)
|λ|

degP∏
i=1

max(1, αi) ⩽

(
d

k

)
exp(m(P ).

□

Lemma A.5. Write P =
∑

m∈Nn

amX
m1
1 . . . Xmn

n . Then, for everym = (m1, . . . ,mn) ∈

Nn, we have

|am| ⩽
(

d

m1, . . . ,mn

)
exp(m(P )).

Proof. We prove this inequality by induction on n. The n = 1 case is the result of
Lemma A.4, so we may assume n ⩾ 2. The result is also immediate if am is zero, so

assume it is not. Write P =
d∑

k=0

PkX
k
n, where the Pk are in C[X1, . . . , Xn−1]. Then,

we may write

m(P ) =

∫
[0,1]n−1

m(P (e2iπt1 , . . . , e2iπtn−1 , X))dt1 . . . dtn−1.
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By Lemma A.4, we have for all (t1, . . . , tn−1) ∈ [0, 1]n−1, |Pmn(e
2iπt1 , . . . , e2iπtn−1)| ⩽(

d
mn

)
exp(m(P (e2iπt1 , . . . , e2iπtn−1 , X))). Since Pmn(e

2iπt1 , . . . , e2iπtn−1) is nonzero for
almost all (t1, . . . , tn−1), we may write
m(P (e2iπt1 , . . . , e2iπtn−1 , X)) ⩾ log |Pmn(e

2iπt1 , . . . , e2iπtn−1)|− log
(
d
mn

)
and integrate,

yielding

m(P ) ⩾ m(Pmn)− log

(
d

mn

)
,

i.e., exp(m(Pmn)) ⩽
(
d
mn

)
exp(m(P )) Since Pmn has degree at most d−mn, the in-

duction hypothesis gives |am| ⩽
(

d−mn

m1,...,mn−1

)
exp(m(Pmn)). Since

(
d
mn

)(
d−mn

m1,...,mn−1

)
=(

d
m1,...,mn

)
, this concludes. □

Corollary A.6.
|m(P )− log∥P∥| ⩽ d log(n+ 1)

Proof. First, it is clear that m(P ) ⩽ log(S(P )) ⩽ log∥P∥ + log
(
n+d
n

)
by Lemma

A.2. A basic counting argument shows that
(
n+d
n

)
⩽ (n + 1)d, hence m(P ) ⩽

log∥P∥+ d log(n+ 1).
For the other direction, write P =

∑
m∈Nn

amX
m1
1 . . . Xmn

n . By Lemma A.5, we have

for all m ∈ Nn,

|am| ⩽
(

d

m1, . . . ,mn

)
exp(m(P ))

A basic counting argument shows that
(

d
m1,...,mn

)
⩽ (n + 1)d, hence by taking the

maximum over all coefficients,

∥P∥ ⩽ (n+ 1)d exp(m(P )),

i.e. log∥P∥ ⩽ m(P ) + d log(n+ 1), which concludes the proof. □

Remark A.7. If P ∈ C[X1, . . . , Xn] is homogeneous, we may replace n+ 1 by n in
the above inequality. Indeed, evaluating in Xn = 1 does not change m(P ) and ∥P∥,
so we may replace P with a polynomial in n− 1 variables.

Lemma A.8.
|mSn(P )− log∥P∥| ⩽ 2d log(n+ 1).

Proof. It is clear from the definition that mSn(P (e
2iπt1X1, . . . , e

2iπtnXn)) = mSn(P )
for all t1, . . . , tn ∈ [0, 1]. So, we may write

mSn(P ) =

∫
[0,1]n

mSn(P (e
2iπt1X1, . . . , e

2iπtnXn))dt1 . . . dtn.

By Fubini, this is equal to∫
Sn

(∫
[0,1]n

(P (z1e
2iπt1 , . . . , zne

2iπtn))dt1 . . . dtn

)
dηn(z) =

∫
Sn
m(P (z1X1, . . . , znXn))dηn(z)

But, by Lemma A.6, we have for all z ∈ Sn:
|m(P (z1X1, . . . , znXn))− log∥P∥| ⩽ d log(n+ 1)

So, by integrating:∣∣∣∣mSn(P )−
∫
Sn

log∥P (z1X1, . . . , znXn)∥dηn(z)
∣∣∣∣ ⩽ d log(n+ 1)
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Moreover, it is clear that for all z ∈ Sn, ∥P (z1X1, . . . , znXn)∥ ⩽ ∥P∥, therefore∫
Sn

log∥P (z1X1, . . . , znXn)∥dηn(z) ⩽ log∥P∥.

On the other hand, if P is written as
∑

s∈Nn asX
s1
1 . . . Xsn

n , we have for all s such
that as ̸= 0,∫

Sn
log∥P (z1X1, . . . , znXn)∥dηn(z) =

∫
Sn

(
max
s

log |aszs11 . . . zsnn |
)
dηn(z)

⩾ max
s

∫
Sn

log |aszs11 . . . zsnn |dηn(z)

= max
s

(
log |as|+

n∑
i=1

si

∫
Sn

log |zi|dηn(z)

)

= max
s

(
log |as|+ |s|

∫
Sn

log |z1|dηn(z)
)

∫
Sn

log∥P (z1X1, . . . , znXn)∥dηn(z) ⩾ log∥P∥+ d

∫
Sn

log |z1|dηn(z).

It remains to show that
∫
Sn

log |z1|dηn(z) ≥ − log(n+1). In fact, we even know from

[Lel94, Equation 2.28] that this integral evaluates to −1
2

n−1∑
i=1

1
k
. □

Now, we move on to the mixed case. Fix a nonzero polynomial P ∈ C[X1, . . . , Xn]
and denote di := degXi

P . Our goal is to adapt the result of Lemma A.8 and find a
bound for the distance between this measure and log∥P∥ in terms of the di.

Lemma A.9. Again, let

S(P ) := sup{|P (z1, . . . , zn)|(z1, . . . , zn) ∈ Cm1+...+mn and |zi,j| ⩽ 1 for all i, j}.

Then,

∥P∥ ⩽ S(P ) ⩽

(
n∏
i=1

(
mi + di
mi

))
∥P∥

Proof. This follows from the fact that the number of nonzero coefficients of P is at

most
n∏
i=1

(
mi+di
mi

)
, by the same argument as in the proof of Lemma A.2. □

Lemma A.10. Write

P =
∑

(k1,...,kn)∈Nm1×...×Nmn

ak1,...,knX
k1
1 . . . X

kn
n ,

where Xki
i :=

mi∏
j=1

X
ki,j
i,j . Then, for every k = (k1, . . . , kn) ∈ Nm1× . . .×Nmn , we have

|ak1,...,kn| ⩽

(
n∏
i=1

(
di

ki,1, . . . , ki,mi

))
exp(m(P )).

Proof. The proof is a straightforward induction on n, based on Lemma A.5. □
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Corollary A.11.

|m(P )− log∥P∥| ⩽
n∑
i=1

di log(mi + 1)

Proof. First, it is clear that m(P ) ⩽ log(S(P )) ⩽ log∥P∥ +
∑n

i=1 log
(
mi+di
mi

)
by

Lemma A.2. As in the proof of Corollary A.6, a counting argument shows that(
mi+di
mi

)
⩽ (mi + 1)di , so m(P ) ⩽ log∥P∥+

∑n
i=1 di log(mi + 1).

Then, it follows from Lemma A.10 and the fact that every multinomial coefficient(
di

k1,...,kmi

)
is smaller or equal to (mi + 1)di , that

∥P∥ ⩽

(
n∏
i=1

(mi + 1)di

)
exp(m(P )),

i.e. log∥P∥ ⩽ m(P ) +
∑n

i=1 di log(mi + 1), which concludes the proof. □

Remark A.12. If P ∈ C[X1, . . . , Xn] is homogeneous in each of the tuples X i, we
may replace mi + 1 by mi in the above inequality. Indeed, evaluating in Xi,mi

= 1
does not change m(P ) nor ∥P∥, so we may replace X i by a (mi − 1)-tuple.

We are finally able to prove the main result of this appendix.

Proof of Proposition A.1. We first prove the inequality

mSm1×...×Smn
⩽ log∥P∥+

n∑
i=1

di log(mi + 1)

exactly as in the proof of Corollary A.11.
For the other inequality, we again reason by induction on n. If n = 1, the result

follows directly from Lemma A.8. So, assume n ⩾ 2. Write P =
∑

k∈Nmn

PkX
k

n, where

the Pk are in C[X1, . . . , Xn−1]. Let l ∈ Nmn be such that ∥Pl∥ = ∥P∥. Then, we
have

mSm1×...×Smn
=

∫
S1×...×Smn−1

mSmn
(P (z1, . . . , zn−1, X))dηm1(z1) ∧ . . . ∧ dηmn−1(zn−1)

By Lemma A.8, we have for all z1, . . . , zn−1,

mSmn
(P (z1, . . . , zn−1, X)) ⩾ log∥P (z1, . . . , zn−1, X)∥ − dn

(
log(mn + 1) +

1

2

mn−1∑
k=1

1

k

)

⩾ log |Pl(z1, . . . , zn−1)| − dn

(
log(mn + 1) +

1

2

mn−1∑
k=1

1

k

)
,

so by integrating, we get

mSm1×...×Smn
⩾ mSmn

(Pl)− dn

(
log(mn + 1) +

1

2

mn−1∑
k=1

1

k

)
.

But, by induction hypothesis,

mSmn
(Pl) ⩾ log∥Pl∥ −

n−1∑
i=1

di

(
log(mi + 1) +

1

2

mi−1∑
k=1

1

k

)
,

where ∥Pl∥ = ∥P∥ by assumption, which concludes the proof. □
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ARAKELOV GEOMETRY OF TORIC BUNDLES: OKOUNKOV
BODIES AND BKK

NUNO HULTBERG

Abstract. This article introduces the study of toric bundles and the morph-
isms between them from the perspective of adelic fibre bundles, as introduced by
Chambert-Loir and Tschinkel. We study the Okounkov bodies and Boucksom-
Chen transforms of suitable adelic line bundles on toric bundles. Finally, we
prove an arithmetic analogue of a formula for intersection numbers due to Hof-
scheier, Khovanskii and Monin. We apply this to the study of compactifications
of semiabelian varieties, whose height and successive minima we compute. This
extends computations of Chambert-Loir to arbitrary toric compactifications.

1. Introduction

Let G be a semiabelian variety over a field K. A semiabelian variety is canon-
ically an extension of an abelian variety A by a torus T:

0 T G A 0.i π

After possibly passing to a finite extension of K, we assume that T is split, i.e.
T ∼= Gt

m. We refer to T as the torus part of G and to A as its abelian quotient.
Abstractly, we may view G as a T-torsor over A. This perspective clarifies the
canonical identification Ext1K(A,Gm) ∼= A∨(K) given by the Weil-Barsotti formula,
see [Oor66, §III.8].

Many methods of algebraic and arithmetic geometry rely on the properness of
the studied varieties. If T is not trivial, G is not proper. We obtain a compactific-
ation G of G by considering it as a T-torsor and applying a toric compactification
X of T. This naturally places us in the setting of toric bundles. We concretize
the constructions of [CT01] in this setting. Details of the upcoming discussion are
contained in Section 3.

Let B be a variety over K and let T be a T-torsor over B, for a split torus T.
Let N = Hom(Gm,T) be the lattice of co-characters and M = Hom(T,Gm) the
lattice of characters of T. A fan Σ in NR defines a toric variety XΣ containing
T. We define a toric bundle XΣ = (T × XΣ)/T by using Zariski descent, where
x ∈ T acts by (x, x−1). The fibres of XΣ → B can be identified with XΣ. Such
an identification is canonical up to the action of T. Furthermore, a T-invariant
Cartier divisor D on XΣ gives rise to a T-invariant Cartier divisor ρ(D) on XΣ.

1



2 NUNO HULTBERG

More precisely, there is a map ρ : DivT(XΣ) → DivT(XΣ) which after restricting
to a fibre identified with XΣ yields the identity.

The torus bundle T induces a homomorphism c : M → Pic(B) by sending
m ∈ M to (T × Gm)/T, where the action of x ∈ T is by (x, χ−m(x)). In
fact, this defines an isomorphism between the group of isomorphism classes of
T-torsors and Hom(M,Pic(B)). If K is endowed with an absolute value or is
a global field, we define metrized and adelic torus bundles. Their isomorphism

classes will be isomorphic to Hom(M,Picmetr(B)) and Hom(M, P̂ic(B)) respect-

ively. Given a metrized/adelic torus bundle T̂ with underlying torus bundle
T , we define analogous constructions ρmetr : Divmetr

T (XΣ) → Divmetr
T (XΣ) and

ρ̂ : D̂ivT(XΣ) → D̂ivT(XΣ). We denote the homomorphism describing its iso-

morphism class by ĉ :M → P̂ic(B).
We may study the group structure on G by exhibiting it as a map of toric

bundles, a notion we will introduce. Using the theory of toric bundles we can
extend maps on G to maps to its compactifications. For instance, let [n] denote the
multiplication by n on G and GΣ denote the compactification of G as a toric bundle
associated to the fan Σ. Then, the morphism [n] extends to an endomorphism [n]Σ
of GΣ. Furthermore, the multiplication on G extends to an action of G on GΣ.
The multiplication [n]Σ on GΣ does not give rise to a polarized dynamical system
unless G is a torus or an abelian variety. Instead, canonical heights are defined
in terms of a toric contribution L̄ and a contribution from the abelian variety
π̄∗M̄. Here M̄ is a canonically metrized ample symmetric line bundle on the
abelian variety A. The toric contribution is defined by endowing Cartier divisors
of the form ρ(D) with canonical metrics with respect to [n]Σ, which we denote by
ρ(D)can. We will prove that ρ(D)can is isometric to ρ̂(Dcan), when endowing the
line bundles on the abelian variety with their canonical metric. This framework
enables us to conceptualize the computations in [Cha00], which serves as a major
inspiration for this work.

1.1. Statement of results. We say that K is a global field if it is a number field
or the function field of a geometrically irreducible curve S over a field k. In the
number field case, we denote by S the spectrum of the ring of integers. For details
on notation we refer to Section 2.

Let T̂ be an integrable torus bundle (cf. Definition 3.1.4) over a proper variety

B over a global field K with associated homomorphism ĉ : M → P̂ic(B). Let
∆ ⊂ MR be a rational polytope and Σ a complete rational fan that refines the
normal fan of ∆. Denote the toric bundle defined by these data by X . Let D be
the toric Cartier divisor defined by ∆. Let ∆ denote the datum of a polytope ∆
together with a collection (θv) of local roof functions on ∆ with global roof function
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θ. It gives rise to a semipositive toric Cartier divisor D. We define ρ(∆) := ρ(D)
and ρ̂(∆) := ρ̂(D).
We briefly recall the notion of Zhang minima. Let L̄ be an adelically metrized

line bundle on a geometrically irreducible variety X of dimension d. For λ ∈ R,
define the set XL(λ) to be the Zariski closure in X of the set {x ∈ X(K̄) | hL(x) ≤
λ}.

Definition 1.1.1. The i-th Zhang minimum of L̄ is defined to be

(1) ζi(L) = inf{λ | dimXL(λ) ≥ i− 1}
in [Zha95a]. The absolute minimum ζabs(L) is defined to be the first Zhang min-
imum, i.e. the infimum over the λ such that XL(λ) ̸= ∅. The essential minimum is
the (d+ 1)-st Zhang minimum, i.e. the infimum over the λ such that XL(λ) = X.

We compute the essential and absolute minima of adelically metrized line bundles
on toric bundles by studying their Okounkov body and Boucksom-Chen transform
with respect to a suitable flag.

Theorem A. Let L be an adelic line bundle on B such that L+ ĉ(m) is geomet-
rically big for some m ∈ ∆. Let ∆◦ denote the interior of ∆. Then, we have the
following formula for the essential minimum of ρ̂(∆) + π∗L on X :

ζess(ρ̂(∆) + π∗L) = sup
m∈∆

{
ζess(L+ ĉ(m)) + θ(m)

}
.

If in addition L+ ĉ(m) is semipositive for all m ∈ ∆,

ζabs(ρ̂(∆) + π∗L) = inf
m∈∆◦

{
ζabs(L+ ĉ(m)) + θ(m)

}
.

Remark 1.1.2. One may replace infm∈∆◦ by infm∈∆ provided L + ĉ(m) is geo-
metrically big for all m ∈ ∆.

We are able to compute the height filtration of a toric bundle in terms of data
from the base variety, see Section 3.6. The height filtration has previously been
computed explicitly for toric varieties in [BPS15] and in the case of flag varieties
over function fields in [FLQ24]. Without such kind of additional structure, the
problem of computing height filtrations seems very hard.

In addition to computing the essential and absolute minima, we seek a combin-
atorial formula for arithmetic intersection numbers on toric bundles inspired by
[HKM21]. We will refer to this as the arithmetic bundle BKK theorem. It is a
common generalization of the arithmetic BKK theorem [BPS14, Theorem 5.2.5]
and the bundle BKK theorem [HKM21, Theorem 4.1]. The study of Okounkov
bodies used in the proof of Theorem A suffices to obtain the arithmetic bundle
BKK theorem for complete intersection cycles. To prove it for arbitrary cycles
requires other methods.
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Let X̂ be an adelic integrable proper toric bundle of relative dimension t over a
smooth projective base variety B of dimension g. Let B be a regular scheme flat

and projective over S with BK = B. Let γ ∈ ĈHi(B) and denote by [∞] ∈ ĈH
1
(B)R

the class of a trivial Cartier divisor endowed with constant Green’s functions at
all places such that h[∞](x) = 1 for all x ∈ B(K̄).

Theorem B. The intersection numbers below are well-defined and the following
identity holds:

i!ρ̂(∆)t+iπ∗γ = (t+ i)!

∫
∆

(ĉ(m) + θ(m)[∞])iγdm.

We remark that the formula can be polarized, see [Gre69, Equation 7.8], to
obtain a description of the intersection number ρ̂(D1) . . . ρ̂(Dt+i)π

∗γ for integrable
toric Cartier divisors D1, . . . , Dt+i. By approximation, one can replace γ by a
product γ′ĉ1(L1) . . . ĉ1(Ll) for integrable line bundles L1, . . . , Ll on B and γ ∈
ĈHi+l(B). The condition that B is regular is a strong assumption. It can be
omitted in the case that the toric bundle has a model over B.
We would like to note that the bundle BKK theorem of [HKM21] is used to

compute the cohomology ring of smooth toric bundles. This relies on Poincaré
duality for oriented manifolds and Leray’s theorem on the cohomology of fibrations.
It would be interesting to find a similar description for a suitable subring of the
arithmetic Chow group of a toric bundle or for some equivariant arithmetic Chow
group.

Let G be a semiabelian variety over a global field K with abelian quotient A,
given as a torus bundle by a map c : M → A∨(K̄). Let M denote an ample
symmetric line bundle on A. Endowing it with the canonical metrics gives it the

structure of an adelically metrized line bundle M. Let ĥ denote the Néron-Tate
height on A(K̄)⊗R. We note that it factors through the polarization A(K̄)⊗R →
A∨(K̄) ⊗ R. We denote its evaluation on A∨(K̄) ⊗ R by ĥ as well. Let G be the
compactification of G with respect to a fan in MR. Let D be an ample toric
Cartier divisor on XΣ with Newton polytope ∆ ⊂ MR. Let F(∆)i denote the set
of i-dimensional faces of ∆.

Theorem C. The height of a compactified semiabelian variety G can be computed
as

hρ(D)can⊗π∗M̄(G) = −(d+ 1)!

∫
∆

ĥ(c(m))dm.

Theorem D. The i-th successive minimum of Ḡ with respect to ρ(D)can ⊗ π∗M̄
satisfies ζi(Ḡ) = ζ1(Ḡ) for i ≤ g + 1. For i ≥ g + 1,

ζi(Ḡ) = − max
F∈F(∆)t+g+1−i

min
m∈F

ĥ(c(m)).
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By specializing ∆ in the above theorems, one can recover the results of Section
4 in [Cha00].

1.2. Organization of the article. Section 2 is devoted to establishing notations
and recalling known facts on toric varieties and Okounkov bodies in algebraic and
arithmetic geometry. We further explain how to associate intersection numbers to
an arbitrary arithmetic cycle and a collection of integrable divisors.

In Section 3 we introduce metrized toric bundles and construct the map ρ̂. We
proceed to study their basic properties.

In Section 4, we compute Okounkov bodies and the Boucksom-Chen transform
for line bundles on toric bundles. We apply this to prove Theorem A.

We prove the arithmetic bundle BKK theorem in Section 5 by means of arith-
metic convex chains.

Section 6 illustrates the results from the previous sections with examples in the
realm of semiabelian varieties. In particular, we prove Theorem C and D. We then
apply this to recover computations of Chambert-Loir.

2. Preliminaries

2.1. Arakelov geometry of toric varieties. We will assume basic familiarity
with toric varieties, but still give a brief recollection on some basic facts. We then
present the extension of these facts in arithmetic geometry as developed in [BPS14],
which we recommend for an in-depth treatment of the Arakelov geometry of toric
varieties. In addition, we introduce the original notion of an adelic polytope. This
turns out to be convenient to transfer arguments from the classical theory.

Let T be a split torus over a field K.

Definition 2.1.1. A toric variety with torus T is a normal variety X with a dense
open embedding T ⊆ X and an action T×X → X extending multiplication on T.

We follow the convention to denote by N the set of cocharacters Hom(Gm,T)
and by M the set of characters Hom(T,Gm). They are finitely generated free
abelian groups, dual to one another. Toric varieties with torus T are in bijection
to rational fans on NR. We denote by XΣ the toric variety associated to a fan Σ.

Definition 2.1.2. A virtual support function or virtual polytope with respect to
a fan Σ on NR is a function |Σ| → R that is linear on each cone in Σ. The set of
virtual support functions with respect to Σ is denoted by PΣ.

Virtual polytopes are generalizations of polytopes by Legendre-Fenchel duality.
Consider the monoid of polytopes P+

Σ in MR whose normal fan coarsens Σ with
addition given by Minkowski sum. The normal fan of a polytope ∆ is defined by
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associating to each i-dimensional face F the (n− i)-dimensional cone{
n ∈ NR

∣∣∣∣∀u ∈ F : ⟨n, u⟩ = sup
x∈∆

⟨n, x⟩
}
.

The normal fan is the collection of these cones.
The group completion of P+

Σ can be identified with PΣ through Legendre-Fenchel
duality. Under this duality polytopes are identified with concave functions.

Definition 2.1.3. We denote by P and P+ the set of (virtual) polytopes with
respect to any rational fan.

Definition 2.1.4. A toric Cartier divisor on a toric variety X is defined to be a
Cartier divisor which is invariant under the action of the torus µ : T × X → X.
This means that a Cartier divisor D is toric if µ∗D = π∗D, where π denotes the
projection map. Denote the set of toric Cartier divisors on a toric variety X by
DivT(X). A toric R-Cartier divisor is an element of DivT(X)R = DivT(X)⊗ R.

Theorem 2.1.5 (Section 3.3 [Ful93]). There is an isomorphism ρ : PΣ → DivT(XΣ)R.

Let X be a finite type scheme over a field K endowed with an absolute value.

Let K̂ denote its completion. Then, we define Xan to be the analytification of XK̂

in the sense of Berkovich, introduced in [Ber12]. Suppose XK̂ = Spec(A) is affine.
Then, Xan as a set can be identified with

{|·| : A→ R multiplicative seminorm extending the norm on K̂}.
For a split torus T we can define the tropicalization map by

Tan → NR

x 7→ (m 7→ |χm(x)|).
We will not need to introduce tropicalization in the general setting.

Definition 2.1.6. LetD be a Cartier divisor on a varietyX over a fieldK endowed
with an absolute value. Then, a continuous Green’s function for D is a function
g : (X \ SuppD)an → R such that for each U ⊆ X on which D is defined by a
section f , the function g+log |f(x)| : (U \SuppD)an → R extends to a continuous
function on Uan.

Definition 2.1.7. Let K be a field with an absolute value. A metrized Cartier
divisor D̄ = (D, g) on a proper variety X consists of a Cartier divisor D and a
continuous D-Green’s functions g.

If K is a global field, an adelic Cartier divisor D̄ = (D, gv) consists of a Cartier
divisor and continuous Green’s functions gv for all places v ∈MK such that there
exists a dense open subset U ⊆ S and a normal proper model (XU , DU) over U
such that for all v ∈ U , gv is induced by the model. An adelic Cartier divisor
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is called effective if the underlying Cartier divisor is effective and gv ≥ 0 for all
places v.

These notions have an analogue on the level of line bundles, namely metrized
line bundles and adelically metrized line bundles. We denote the set of adelic

Cartier divisors by D̂iv(X).

For the purposes of arithmetic intersection this is too general. We restrict to
integrable metrics at each place. An integrable metric is the difference of semipos-
itive metrics. Semipositive metrics are limits of model/smooth metrics satisfying
certain positivity conditions.

Let X be a proper variety of dimension d. Then, there is an intersection pairing
defined in [Zha95b] that to d + 1 integrable divisors D0, . . . , Dd associates an
intersection number D0 . . . Dd ∈ R. This pairing factors through the group of
integrable adelic R-Cartier divisors, see [Bal22b, Section 3.2]. The group of adelic

R-Cartier divisors D̂iv(X)R consists of an R-Cartier divisor and compatible Green’s

functions at every place. It admits a natural surjection D̂iv(X)⊗ R → D̂iv(X)R.

Given an adelic R-Cartier divisor D we denote its top intersection product D
d+1

by
hD(X) and call it the height of X with respect to D. This convention differs from
[Cha00], where the height is normalized by a factor 1

(dimX+1) degD(X)
, but agrees

with the convention of [Bal21].
When X is a toric variety we call a Green’s function g toric if it factors through

tropicalization on the underlying torus, i.e. is invariant under the action of the

unit torus. We will denote the set of toric adelic divisors by D̂ivT(X). The toric
dictionary extends to this setting. The continuous metrics on Ψ ∈ PΣ are in
bijection to continuous functions ψ on NR such that ψ − Ψ is bounded. Under
this bijection, semipositive metrics correspond to concave functions ψ, see [BPS14,
Theorem 4.8.1].

It will be useful to relate integrable divisors directly to polytopes.

Definition 2.1.8. Let J be a finite set and V a finite-dimensional vector space.
A J-metrized polytope is a polytope ∆ ⊂ V ⊕

⊕
j∈J R that can be obtained via

the following construction.
Let (∆, (θj)j∈J) consisting of a polytope ∆ in V and for each j ∈ J , a concave

function θj : ∆ → R≥0. The associated polytope is

∆ = {(x, tj) ∈ V ⊕
⊕
j∈J

R | x ∈ ∆, 0 ≤ tj ≤ θj(x)}.

Denote the set J-metrized polytopes by PJ,+.
For an infinite set I, we define the set of I-metrized polytopes to be the filtered

colimit
colim

J⊂I finite
PJ,+,
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where the transition map for J ⊂ J ′ is given by ∆ 7→ ∆ ×
∏

j∈J ′\J 0. This
is compatible with the monoid structure, hence giving a monoid of I-metrized
polytopes.

We denote the group completion of PI,+ by PI and call it the group of I-metrized
virtual polytopes. When the set I is the set of places MK of a global field K we

will use the notation P̂+ and P̂ . Their elements will be referred to as (virtual)
adelic polytopes.

For I = {∗}, we speak simply of metrized polytopes.

Definition 2.1.9. An I-metrized polytope ∆ has an associated underlying poly-
tope ∆ ⊂ V and for each i ∈ I a local roof function θi : ∆ → R satisfying θi = 0
for almost all i such that ∆ is associated to (∆, (θj)i∈I) as described in Definition
2.1.8. The global roof function is defined as the finite sum θ =

∑
i∈I niθi, where

ni is a choice of weights that is clear from the context. In particular, for adelic

divisors ni will be 1 for all i if K is a function field and [Ki:Qi]
[K:Q]

if K is a global field.

For each i ∈ I, we associate a local metrized polytope

∆i = {(x, t) ∈ V ⊕ R | x ∈ ∆, 0 ≤ t ≤ θi(x)}.

We define the global polytope ∆̂ to be

{(x, t) ∈ V ⊕ R | x ∈ ∆, 0 ≤ t ≤ θ(x)}.

Let us recall [BPS14, Theorem 4.8.1] using this new language. There is an
isomorphism of monoids between semipositive effective metrized divisors and met-
rized polytopes. This globalizes to an isomorphism of monoids between semi-
positive effective adelic divisors and adelic polytopes. By group completion, the
isomorphisms extend to isomorphisms between virtual (adelically) metrized poly-
topes and integrable (adelically) metrized divisors.

Model metrics will play a crucial role in the proof of the arithmetic bundle
BKK-theorem.

Let K be a complete field with respect to an absolute value associated to a
non-trivial discrete valuation. Let Σ be a complete rational fan on MR. Then,

the set of toric models can be identified with rational fans Σ̃ in NR ⊕ R≥0 whose
intersection with NR⊕0 is Σ, cf. [BPS14, Theorem 3.5.3]. We refer to the fan Σcan

consisting of the cones of the form σ ⊕ 0 and σ ⊕ R≥0 for σ ∈ Σ as the canonical

(metrized) fan associated to Σ. Denote the toric model associated to Σ̃ by XΣ̃.
The following follows from [BPS14, Theorem 3.6.7].

Theorem 2.1.10. The set of semipositive effective R-divisors on XΣ̃ is in bijection

to metrized polytopes whose normal fan restricted to NR ⊕ R≥0 coarsens Σ̃.

Proof. Piecewise affine concave functions ψ on Σ̃∩ (NR×{1}) are in bijection with
semipositive R-divisors on XΣ̃ by a combination of [BPS14, Theorem 3.6.7] and
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[BPS14, Theorem 3.7.3]. The divisor corresponding to ψ is effective precisely if ψ
is nonnegative. Let Ψ be the recession function of ψ. We may extend it to a conical

function on ψ̃ : NR ⊕ R by setting ψ(n, x) = Ψ(n) for x < 0. Legendre-Fenchel
duality restricts to a correspondence between metrized polytopes whose normal

fan coarsens Σ̃ and conical functions of the form above. □

We can consider metrics on toric divisors compatible with Σ̃ even if K does not
have a discrete valuation.

Definition 2.1.11. A metrized divisor is compatible with Σ̃ if it is a difference
of two divisors associated to metrized polytopes whose normal fan restricted to

NR ⊕ R≥0 coarsens Σ̃. We will denote the set of metrized polytopes compatible

with Σ̃ by PΣ̃. It can be identified with conical functions ψ : NR ⊕ R → R that is

linear on cones of Σ̃ and such that ψ(n, x) = ψ(n, 0) for x < 0.

Definition 2.1.12. We define an adelic fan Σ̃ to be a collection of fans Σ̃v in
NR⊕R≥0 for each v ∈MK such that almost all the fans are canonical. A (virtual)

adelic polytope is said to be compatible with Σ̃ if it is compatible with each Σ̃v

when considered as a metrized polytope. The set of such polytopes will be denoted

P̂Σ̃ and P̂+

Σ̃
.

One can identify virtual adelic polytopes with conical functions ψ : NR ⊕⊕
i∈I R → R that factors over NR ⊕

⊕
j∈J R for some finite J ⊂ MK satisfy-

ing that ψ(n, (xj)) = ψ(n, (max{0, xj})) and linear on each cone of Σ and each
cone of the form

∑
j ∈ Jσj, where σj ∩NR = σ for some fixed cone σ ∈ Σ.

The set of cones of P̂Σ̃ is defined to be the union of Σ and the cones of P̂Σ̃v at
each place v. Here the cones at v contained in NR × 0 are identified with Σ.

Definition 2.1.13. Let v ∈MK be a place. Denote by P̂v the set of virtual adelic
polytopes canonical at all places w ̸= v, i.e. the ones that come from {v}-metrized

polytopes in the colimit. Then, we say that ∆ ∈ P̂+

Σ̃
is v-interior if its is in the

interior of
(
∆+ P̂v

)
∩ P̂+

Σ̃
⊂ ∆+ P̂v.

2.2. Okounkov bodies and roof functions. Let X be a projective variety over
a global field K and let D be a geometrically big adelic Cartier divisor on X. The
concave transform of D as defined in [BC11, Definition 1.7] is a concave function
on the Okounkov body ∆ associated to the underlying line bundle encoding in-
formation on the adelically metrized line bundle in terms of convex geometry. It
is defined in terms of the filtered linear series associated to D.

Consider the graded linear series V • =
⊕∞

n=0H
0(X,O(nD)). Let x ∈ X(K̄)

be a regular point and fix an isomorphism z : ÔX,x
∼= K̄[[x1, . . . , xd]]. This in-

duces a rank d valuation νn on each H0(X,O(nD)) by taking the valuation on
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K̄[[x1, . . . , xd]] sending x
a1
1 · · · · · xadd to (a1, . . . , ad) and on a linear combination

of monomials the lexicographically smallest term. The Okounkov body of D is
defined to be as the closure of

∞⋃
n=0

1

n
ν(H0(X,O(nD))).

This is a convex body and we denote it by ∆(D), where the choice of z is un-
derstood. It is invariant under numerical equivalence by [LM09, Proposition 4.1].
Just as easily we can define Okounkov bodies for subalgebras.

Each term in the graded algebra is endowed with a filtration by minima. More
precisely, on an adelically normed vector space V we may define the F tV to be
the sub-vector-space generated by vectors of height ≤ t, see [BC11, Definition 3.1].
We define F tV • =

⊕
F ntH0(X,O(nD)). The associated Okounkov body will be

denoted by ∆t(D). Boucksom and Chen in [BC11] define the concave transform
GL,z : ∆(D) → R by x 7→ inf{t | x ∈ ∆t(D)}, which is concave and upper
semicontinuous on the boundary. The hypograph of this function is called the
arithmetic Okounkov body.

A common way to obtain an isomorphism ÔX,x
∼= K̄[[x1, . . . , xd]] is by fixing a

flag

X• : X ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xd = {x},
of irreducible subvarieties Xi of codimension i that are non-singular at x. If z is
induced by X•, we denote the Boucksom-Chen transform by GD,X•

.
The concave transform defined above encodes important information on the ad-

elically metrized line bundle. For instance, Ballaÿ shows that the essential and the
absolute infimum of an adelic line bundle are determined by its associated filtered
linear series in the semipositive case. [QY22, Theorem 1.7] allows to remove one
semipositivity assumption. Here is a version of [Bal21, Proposition 7.1] adapted
accordingly together with [Bal22a, Corollary 1.2].

Theorem 2.2.1. Let D ∈ D̂ivR with D big. Then,

ζess(D) = max
α∈∆(D)

GD(α).

If D is semipositive,

ζabs(D) = inf
α∈∆(D)

GD(α).

Furthermore, the Okounkov body and the concave transform are related to the
volume and the arithmetic volume respectively. We will not discuss arithmetic
volume functions as we will only use its relation to heights via the arithmetic
Hilbert-Samuel theorem. The following result contains a geometric part [LM09,
Theorem A] and an arithmetic one taken from [Bal21, Theorem 6.4], but which is
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implicit in [BC11]. We apply the normalization of arithmetic volumes in [BC11]
which differs from the one in [Bal21].

Theorem 2.2.2. Let D be a big R-Cartier divisor on X. Then,

vol(D) = d! volRd(∆(D))

If D is an adelic divisor whose underlying divisor is D, then

v̂ol(D) = (d+ 1)!

∫
∆(D)

max{0, GD}dλ

and

v̂olχ(D) ≤ (d+ 1)!

∫
∆(D)

GDdλ,

with equality if infα∈∆(D)GD(α) > −∞.

This in turn allows a comparison with heights and intersection numbers by the
(arithmetic) Hilbert-Samuel theorem (see [Deb01, Proposition 1.31] and [Mor13,
Theorem 5.3.2]).

Theorem 2.2.3. If D is nef, then vol(D) = deg(D). If D is semipositive, then

v̂olχ(D) = hD(X).

2.3. (Arithmetic) Okounkov bodies of toric varieties. There are two ways
to associate a convex body ∆ and a concave function θ on ∆ to the datum of a
semipositive toric adelic Cartier divisorD. The first construction is toric by nature,
it is given by the Newton polytope and the toric roof function as in [BPS14]. The
second construction does not depend on the toric nature(except for the choice of
a flag). It is given by the Okounkov body and the Boucksom-Chen concave trans-
form. In the setting of toric bundles, it is important to relate these constructions
to apply results on toric varieties.

The equality (up to translation) of the Newton polytope and roof function on the
toric side with the Okounkov body and concave transform is mentioned in passing
in [BC11, Section 4.5] using the work of [Wit14]. The necessary arguments are
presented in [Bur+16, Section 5] in detail. We prove the equality of the two
constructions here as it is not explicitly stated in [Bur+16].

Let us first recall the geometric statement. We want to study big toric divisors
on a proper toric variety XΣ. We may refine Σ in such a way that it defines a
smooth projective variety, see [CLS10, Chapter 11]. This does not change the
Newton polytope. We may then take prime toric divisors D1, . . . , Dt such that

X• : XΣ ⊃ D1 ⊃ D1 ∩D2 ⊃ · · · ⊃ D1 ∩ · · · ∩Dt = {p}.
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defines a flag. Let vi denote the primitive generator of the ray corresponding to
Di. Then, the vi form a basis of N and induce an isomorphism Zt ∼= N . Its dual
basis determines an isomorphism M ∼= Zt.

Proposition 2.3.1 ([LM09] Proposition 6.1). Let D be a toric divisor not con-
taining any of the D1, . . . , Dt in its support. Let ∆ be its Newton polytope. Then
the Okounkov body of ρ(∆) is ∆ under the identification M ∼= Zt. In particular,
the valuation of the section χm is m.

By translating ∆, we can always ensure that the conditions in the above pro-
position are satisfied. We now introduce the toric roof function and prove an
arithmetic analogue of the statement above. We apply [Bur+16, Proposition 5.1]
in order to give an alternative, but equivalent definition of the toric roof functions.

Definition 2.3.2. Let D be a toric metrized R-Cartier divisor over a field K with
absolute value |·|v. Let ∆ be the Newton polytope of the underlying geometric
Cartier divisor. Then, the local roof function θ of D is the unique continuous
function θv,D : ∆ → R satisfying the following condition: For m ∈ l∆, the toric
section χm ∈ Γ(X, lD) satisfies

− log ∥χm∥v,sup = θD(m/l).

If D is a toric adelic R-Cartier divisor over a global field K, we define its global
roof function as a sum over local roof functions

θD(x) =
∑
v∈MK

nvθD,v(x).

The sum is finite since the local roof function is constantly 0 at all the places
for which D carries the canonical metric.

Proposition 2.3.3. Let D be a toric divisor not containing any of the D1, . . . , Dt

in its support. Let ∆ be its Newton polytope. Let D be an adelic Cartier-divisor
obtained by endowing D with toric metrics. Identifying the Newton polytope with
the Okounkov body as in Proposition 2.3.1 the global roof function agrees with
the Boucksom-Chen transform.

The main technical result we use is the orthogonality of toric sections. We recall
the statement for future use.

Theorem 2.3.4 (Corollary 5.4 [Bur+16]). Let D be a toric adelic R-divisor on X
and s =

∑
∆∩M γmχ

m ∈ Γ(X,D). Then,

∥s∥sup ≥ max
m∈∆∩M

∥γmχm∥sup.

Proof of Proposition 2.3.3. We have that the concave transform GD̄,X•(m/l) is
bounded from below by

∑
v θD̄,v(m/l) as χ

m provides a Q-section with valuation
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m/l and height θ(m/l). Let us now prove that GD̄,X•(m/l) ≤ θ(m/l). By defini-
tion of the Boucksom-Chen transform, for any ϵ > 0, there is a sufficiently large N
such that there is a section s ∈ Γ(ND) of valuation mN/l generated by sections
of height < N(GD̄,X•(m/l) + ϵ). So write s =

∑
si. At least one si will be of the

form γmχ
m +

∑
m′ ̸=m γm′χm′

. By the orthogonality of eigenspaces this vector has

height ≥ Nθ(m/l) finishing the proof. □

We may alternatively conclude the equality of functions using the equality of
their integrals provided by [Bur+16, Theorem 5.6] and Theorem 2.2.2.

2.4. Operations on arithmetic Chow homology. Recall that S denotes a geo-
metrically irreducible projective curve over a field or the spectrum of the ring of
integers in a number field. Let X be a flat projective scheme over S. Then,
similarly to algebraic geometry Gillet and Soulé require regularity of the scheme
in order to define an intersection theory. However, it suffices to require the generic
fibre X = XK to be smooth in order to define arithmetic Chow groups and opera-
tional Chern classes associated to hermitian line bundles, see [GS92, Section 2.4].
The operational perspective is convenient even if one focuses on regular arithmetic
varieties as it allows us to pass to fibre products, such as special fibres, that are
no longer necessarily regular.

Let us give a basic recollection of arithmetic Chow groups and the intersection
with hermitian line bundles. Let X be a flat projective scheme over S with

smooth generic fibre. Then, we can define its arithmetic Chow groups ĈHk(X )
as equivalence classes of pairs (Z, gZ) of a k-cycle Z on X and Green currents
gZ for ZC at all archimedean places modulo rational equivalence and the image of

∂ + ∂. Note that there is a well-defined arithmetic degree map ĈH0(X ) → R by
the existence of a proper pushforward map, see [GS92, Paragraph 2.2.2].

Let L be a hermitian line bundle on X . Then, we can describe the action of

the first Chern class ĉ1(L) : ĈHk(X ) → ĈHk−1(X ) explicitly. Let [(Z, gZ)] ∈
ĈHk(X ) and let s be a meromorphic section of L on Z and denote by ωL the
curvature form of L. Then,

ĉ1(L)[(Z, gZ)] = [(div(s),− log |s|δZ(C) + ωLgZ)].

This is independent of the choice of section and additive in the tensor product
of hermitian line bundles. If M is a further hermitian line bundle, the Chern
classes commute, i.e. ĉ1(L)ĉ1(M) = ĉ1(M)ĉ1(L) as operations on Chow groups. In
particular, there is a multilinear intersection pairing

P̂ic(X )k × ĈHk(X ) → R

(L 1, . . . ,L k, [(Z, gZ)]) 7→ d̂eg
(
ĉ1(L 1) · · · ĉ1(L k)[(Z, gZ)]

)
which is symmetric in the first k entries.
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Proposition 2.4.1. Suppose that X is regular. Then, the above intersection
pairing extends uniquely to a pairing

P̂ic
int
(X)k × ĈHk(X ) → R

(L1, . . . , Lk, [(Z, gZ)]) 7→ d̂eg
(
L1 · · ·Lk · [(Z, gZ)]

)
allowing any integrable line bundle.

Proof. Suppose first that π : X ′ → X is a further projective model dominating
X . We let Y be a regular projective alteration of X ′ of generic degree d, i.e.
there is a generically finite map ϕ : Y → X ′ of degree d with Y regular. Such an
alteration exists by [Jon96, Theorem 8.2].

Then, we first extend the pairing to P̂ic(X ′) by setting

P̂ic(X ′)k × ĈHk(X ) → R

(L 1, . . . ,L k, [(Z, gZ)]) 7→
1

d
d̂eg

(
ĉ1(ϕ

∗L 1) · · ·ϕ∗ĉ1(L k)(ϕ ◦ π)∗[(Z, gZ)]
)
,

where the pullback is defined in [GS90, Section 4.4]. Note that since π is projective
between regular schemes, it is in particular l.c.i. and thus the pullback is defined.
Furthermore, we note that the pullback along a generically finite morphism induces

multiplication by the degree on ĈH0. This follows from the fact that ĈH0
∼= R via

the degree map for every regular projective arithmetic variety, see [GS94, Theorem
2.1] and that if a cycle is defined on the locus where the morphism is finite the
claim holds by [GS90, Theorem 4.4 ii].

Hence, the definition does not depend on the choice of alteration. We are left
to show that one can extend the intersection number to integrable line bundles.

For this assume that L,L2, . . . , Lk are line bundles onX and [(Z, gZ)] ∈ ĈHk(X )
is an arithmetic cycle. Suppose that L ,L 2, . . . ,L k are hermitian Q-line bundles
on a model X ′ whose generic fibres are L,L2, . . . , Lk. Suppose L 2, . . . ,L k are
relatively nef at a place v and L is of the form O(D) for an effective Cartier
divisor supported on the special fibre at v whose associated Green’s function is
bounded by C. Then, we need to bound

1

d
d̂eg

(
ĉ1(ϕ

∗L )ĉ1(ϕ∗L 2) · · · ĉ1(ϕ∗L k)(ϕ ◦ π)∗[(Z, gZ)]
)

in terms of C, L2, . . . , Lk and [(Z, gZ)]. In the archimedean case this is taken to
be meant as D is given by a non-negative smooth function bounded by C.

Suppose first that v is archimedean. Note that the curvature form ω(gZ) is the
difference of strongly positive forms. Locally, this follows from [Dem12, Section
III.1.4]. We may perform a partition of unity to write ω(gZ) as the difference
of strongly positive forms ω+ − ω−. Let ω2, . . . , ωk be the curvature forms of
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L 2, . . . ,L k. Then, by assumption ω2 · · ·ωkω
+ and ω2 · · ·ωkω

− are positive meas-
ures of mass ≤ K. Pulling them back yields measures of mass ≤ dK. Then,

|1
d
d̂eg

(
ĉ1(ϕ

∗L )ĉ1(ϕ∗L 2) · · · ĉ1(ϕ∗L k)(ϕ ◦ π)∗[(Z, gZ)]
)
| ≤ CK.

Hence, the intersection product on semipositive line bundles is continuous with
respect to supremum norm at archimedean places and hence extends to integrable
metrics at archimedean places.

Let us now consider the case of a finite place. Denote the inclusion of the special
fibre of Y by j : Yv ↪→ Y and that of X by i : Xv ↪→ X . By assumption, ĉ1(ϕ

∗L )
is represented by a cycle D supported on Yv. It therefore suffices to compute the
algebraic intersection ĉ1(j

∗ϕ∗L 1) · · · ĉ1(j∗ϕ∗L k−1)j
∗(ϕ ◦ π)∗[(Z, gZ)] ∩ D on the

special fibre by the projection formula as in [Ful98, p. 323]. Denote the base
change of ϕ ◦ π to the special fibre by ϖ. Note that j∗(ϕ ◦ π)∗ = ϖ∗i∗. It suffices
to write i∗[(Z, gZ)] as the difference of nef dual cycle classes on each irreducible
component as nefness is preserved under pullback and under intersection with nef
divisors. One can write any dual cycle class as the difference of two nef cycles by
the full-dimensionality of the nef cone proven in [FL17, Lemma 3.7]. □

3. Toric bundles

Analogous to the toric compactification of T-torsors in algebraic geometry we
would like such a compactification in the arithmetic setting. Despite the lack of
a total space, we can apply Arakelov geometry to imitate the algebro-geometric
construction where toric Cartier divisors induce line bundles on the total space,
cf. [CT01, Construction 2.3.5]. All torsors will be torsors in the Zariski topology.

3.1. Categories of torus bundles. We can use characters to understand torus
bundles more closely. More precisely, let Pic(B) be the category of Gm-torsors
on B with morphisms given by isomorphisms. It naturally has the structure of a
symmetric monoidal category given by the tensor product. Given a T-torsor, every
character T → Gm gives rise to an element in Pic(B). We define the symmetric
monoidal category M of characters by setting its elements to beM = Hom(T,Gm)
with no non-trivial morphisms and monoidal structure given by addition. We will
call a category associated to finitely generated free abelian groups in this way lattice
category. Let BunT(B) denote the symmetric monoidal category of T-torsors over
B1. There is a monoidal equivalence of categories

BunT(B) → Fun⊗(M,Pic(B)).

1This notation is reminiscent of the B-valued points of the stack BunG studied among others
in the context of the geometric Langlands program as in [BD91]. While they consider the stack
BunG(X) for a curve X, we consider the stack BunG(∗).
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Here Fun⊗(M,Pic(B)) denotes the category of monoidal functors with the mon-
oidal structure given by the tensor product on Pic(B) and monoidal natural trans-
formations as morphisms. This equivalence identifies T-torsors with linear maps
M → Pic(B). This expresses that the category of T-torsors is in equivalence to
collections of line bundles (T (m))m∈M on B indexed by M with compatible iden-
tifications T (m1+m2) ∼= T (m1)⊗T (m2). The morphisms between such maps are
collections of isomorphisms of Gm-bundles indexed over M compatible with the
tensor product.

We redefine torus bundles to be monoidal functors from a lattice category M to
Pic(B). Over a field K endowed with an absolute value, we let Picmetr(B) denote

the category of metrized line bundles. Over a global field, we let P̂ic(B) denote
the category of adelically metrized line bundles.

Definition 3.1.1. Let B be a variety over a field K endowed with an absolute
value. We define a metrized torus bundle to be a symmetric monoidal functor
T metr : M → Picmetr(B) from a lattice category M. If K is a global field we

define an adelic torus bundle as a symmetric monoidal functor T̂ : M → P̂ic(B).
We will extend the meaning of qualifiers from the case of line bundles to torus

bundles. We call a metrized/adelic torus bundle integrable if its image consists
of integrable line bundles. We call it flat if its image consists of flat line bundles.
Recall that a line bundle is flat if both it and its dual are semipositive. We call
a torus bundle algebraic if the line bundles in the image are algebraic, i.e. the
metric is induced by a Q-line bundle on a model of B. We say a torus bundle has
model metrics if the line bundles in the image have model metrics, i.e. the metric
is induced by a line bundle on a model of B.

Torus bundles whose image consists of semipositive line bundles are automat-
ically flat. We can identify isomorphism classes of T-torsors with linear maps
M → Pic(B). The same principle holds for metrized T-bundles.

Remark 3.1.2. We will use adelic notation such as T̂ as stand-in for the local
equivalent T metr. This does not lead to confusion since all local considerations
easily globalize. We will use the word metrized, both in the local context as well
as for adelically metrized.

Definition 3.1.3. Let T1 and T2 be torus bundles on B for split tori T1 and T2

respectively. Let ϕ : T1 → T2 be a group homomorphism. A morphism f : T1 → T2

over B is ϕ-equivariant if the diagram



ARAKELOV GEOMETRY OF TORIC BUNDLES: OKOUNKOV BODIES AND BKK 17

T1 × T1 T2 × T2

T1 T2

ϕ× f

µ µ

f

commutes. We say that f is equivariant if it is ϕ-equivariant for some ϕ.

We can now define categories of torus bundles from the functor perspective.

Definition 3.1.4. We define categories of torus bundles over a base B with the
additional flexibility of varying the torus. Morphisms from a torus bundle T :
M → Pic(B) to T ′ : M′ → Pic(B) are given by a morphism of tori encoded
by a monoidal functor α : M′ → M and an equivariant morphism between the
torus bundles encoded by a monoidal natural transformation F : T ◦ α → T ′.
This defines a category TorBun(B). Applying the same approach to the metrized

setting yields categories TorBunmetr(B) and T̂orBun(B).

Proposition 3.1.5. For fixed α : M′ → M, the set of equivariant morphisms is
in bijection to the sections of (T ◦ α)⊗ (T ′)∨.

The above observation shows that if T and T ′ are metrized and T → T ′ is a
morphism of the underlying torus bundles, there is a function on Ban giving the
norm of the morphism. Only morphisms of constant norm 1 are considered to be
morphisms of metrized torus bundles.

Example 3.1.6. For any (metrized) torus bundle T and integer n, there is an n-th
power map T → T ⊗n, where T ⊗n is defined by T ⊗n(m) = T (m)⊗n. It is defined
by the map n : M → M and the collection of isomorphisms T (nm) → T (m)⊗n

that is inherent in the definition of the monoidal functor T . More generally if
A :M ′ →M we define the torus bundle T ⊗A by T ⊗A(m′) = T (A ·m′)

We would now like to have a notion of morphism of torus bundles that allows
for a change in base scheme. Let f : B′ → B be a morphism of schemes and T
be a (possibly metrized) torus bundle over B. Then, we may define the pullback
f ∗T = f ∗ ◦ T as the composition of T and the pullback functor on line bundles,
cf. [CT01, Proposition 1.2.4].

Definition 3.1.7. A morphism of torus bundles f = (ft, fb) : (T1 → B1) → (T2 →
B2) is the datum of a map fb : B1 → B2 and an equivariant map ft : T1 → f ∗

b T2.

This defines categories TorBun, TorBunmetr and T̂orBun.

Example 3.1.8. This setup provides a suitable setting for the proof of the Weil-
Barsotti formula. Let G be a semiabelian variety with a split torus part T and
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abelian quotient A with quotient map π. The addition on G has to be a morphism
of toric bundles f : G × G → G with underlying map of base spaces fb = mA :
A × A → A, the addition on A, and map on tori mT : T × T → T. Let T be
a torus bundle over A. Then, an equivariant morphism T × T → T of the form
exists if and only if m∗T ∼= T ⊠T . This is precisely the case when the image of T
consists of algebraically trivial line bundles. The map thus defined is unique, once
a rigidification T ∼= π−1(e) is chosen. One can easily check that this morphism
yields a group structure.

Definition 3.1.9. A dynamical torus bundle is a tuple (B, f, T , f ∗T ∼= T ⊗r)
consisting of a proper base variety B, an endomorphism f : B → B, a torus
bundle T and an isomorphism f ∗T ∼= T ⊗r for some r > 1. This data gives rise to
canonical metrics on T . Over a global field it gives rise to an adelic torus bundle.
Its isomorphism class does not depend on the chosen isomorphism.

Remark 3.1.10. One could more generally define a dynamical torus bundle to
be a tuple (B, f, T , f ∗T ∼= T ⊗A) consisting of a proper base variety B, an endo-
morphism f : B → B, a torus bundle T and an isomorphism f ∗T ∼= T ◦A for some
endomorphism A :M →M which is diagonalizable over R and whose eigenvalues
are real numbers > 1.

3.2. Toric bundles and their morphisms.

Definition 3.2.1. A toric bundle over a scheme B is a scheme X over B with the
action of a torus T such that, Zariski locally on U ⊆ B, X is T-equivariantly of
the form XΣ × U for a fixed fan Σ in NR.
There is an underlying T-torsor T such that X is of the form XΣ = (T ×XΣ)/T,

where x ∈ T acts by (x, x−1). The quotient (T × XΣ)/T can be defined using
Zariski descent, c.f. [CT01, Construction 2.1.2]. We will call Σ the underlying fan
of X .

Remark 3.2.2. It is useful to consider less restrictive definitions in other contexts.
For instance the only model of a toric variety over a DVR that is a toric bundle is
the canonical model.

We define a class of maps of toric bundles respecting the toric structure. We first
give a definition for a fixed base variety B inspired by the case of toric varieties.

Definition 3.2.3. Let X1 and X2 be toric bundles on B for split tori T1 and T2

respectively. Let ϕ : T1 → T2 be a group homomorphism. A morphism f : T1 → T2

over B is ϕ-equivariant if the diagram
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T1 ×X1 T2 ×X2

X1 X2

ϕ× f

µ µ

f

commutes. We say that f is equivariant if it is ϕ-equivariant for some ϕ. It will
be called non-degenerate if its fiberwise image intersects the open dense torus on
all fibers and degenerate otherwise.

Example 3.2.4. Let XΣ be a toric variety. The T-orbits on XΣ are in bijection
to the cones of Σ. The closure V (σ) of a T-orbit corresponding to a cone σ ∈ Σ
is itself naturally a toric variety though for a quotient T′ of the original torus T.
Its character lattice is identified with M ∩ σ⊥. The fan defining V (σ) is denoted
Σ(σ). Given a toric bundle of the form XΣ, there is a closed subvariety V(σ) given
by (T × V(σ))/T. This is again a toric bundle. The isomorphism class of its
underlying torus bundle is given by M ∩ σ⊥ →M → Pic(B).

A morphism of this form is called a closed embedding of toric bundles.

Let us classify non-degenerate equivariant morphisms of toric bundles using
combinatorial data. We can apply the theory of torus bundles since a morphism of
toric bundles X1 → X2 restricts to a map of the underlying torus bundle T1 → T2.
Note that a toric bundle is defined by the data of a torus bundle together with a
fan Σ on NR.

Proposition 3.2.5. Let X1 and X2 be toric bundles defined by the data of under-
lying torus bundles Ti : Mi → Pic(B) and fans Σi. Let ϕ : T1 → T2 be a group
homomorphism such that for every cone σ1 ∈ Σ1 there exists a cone σ2 ∈ Σ2 such
that H(ϕ)(σ1) ⊆ σ2. Then the non-degenerate ϕ-equivariant morphisms from X1

to X2 are in bijection with the ϕ-equivariant maps of torus bundles T1 → T2. If
the condition on the fan is not satisfied there are no ϕ-equivariant morphisms.
In particular, ϕ-equivariant maps are in bijection to sections of the T2-torsor

defined by
T ∨
2 ⊗ (T1 ◦H∨(ϕ)) : M2 → Pic(B).

Proof. This is a combination of Proposition 3.2.5 and [BPS14, Theorem 3.2.4]. □

Example 3.2.6. Degenerate equivariant morphisms are not as easy to describe.
For instance, there is no description of equivariant morphisms as the composition
of non-degenerate morphisms and the inclusion of a closed orbit as in the non-
relative setting.

An example of a degenerate morphism, where this property fails can be given
as follows. Pick as base variety a toric variety B for the torus T. We consider the



20 NUNO HULTBERG

trivial toric bundles T×B and B ×B. Then, (m, id) : T×B → B ×B defines a
degenerate morphism if B ̸= T. More precisely, the image of (m, id) restricted to
fibre over b ∈ B lands in the orbit of b.
Another property that is not inherited from the absolute case where B = ∗

is that in order to specify an equivariant morphism XΣ1 → XΣ2 it suffices to
give a map of tori ϕ : T1 → T2 respecting the fans and a ϕ-equivariant map
T1 → XΣ2 . The failure of this property is illustrated by the fact that the map
(m, id) : T×B → B ×B does not extend to a map B ×B → B ×B for B ̸= T.

The above example motivates the following definition.

Definition 3.2.7. An equivariant morphism is called a morphism of toric bundles
if it is the composition of a non-degenerate equivariant morphism followed by a
closed embedding of toric bundles.

We would like to allow for changes of the base variety. For this note that the
base change of a toric bundle is the toric bundle associated to the same fan Σ and
the pullback torus bundle. We will use also use the word pullback and related
notation in the context of toric bundles.

Definition 3.2.8. A morphism of toric bundles f = (ft, fb) : (X1 → B1) →
(X2 → B2) is the datum of a map fb : B1 → B2 and a morphism of toric bundles
ft : X1 → f ∗

bX2.

Example 3.2.9. Let T be a torus bundle and Σ a fan on the co-character space
of its torus. Let X be the toric bundle associated to this data and denote by
X⊗n the toric bundle associated to T ⊗n and Σ. Then, the map of torus bundles
[n] : T → T ⊗n extends to a non-degenerate map of toric bundles [n] : X → X⊗n.

Example 3.2.10. Let us extend Example 3.1.8. From Proposition 3.2.5 it easily
follows that the multiplication on G extends to actions on its compactifications
as toric bundles. We note that multiplication by n on semiabelian varieties can
be seen as the unique toric morphism with underlying map fb = [n] : A → A
and map on tori [n] : T → T respecting the rigidification. Again we may apply
Theorem 3.2.5 to obtain that it extends to any compactification as a morphism
of toric bundles. We remark that homomorphisms of semiabelian varieties can
be viewed as morphisms of toric bundles and that they extend to morphisms of
compactifications if this is true on the toric part.

3.3. Divisors on toric bundles. Although we are mainly interested in the case
of torus invariant Cartier divisors on toric bundles it does not add much complexity
to consider more general T-linearized sheaves. They are convenient as contrary to
Cartier divisors one can always pull them back.
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Definition 3.3.1. A T-linearized quasicoherent sheaf F on a toric variety X
consists of a quasicoherent sheaf H on X together with an isomorphism m∗H ∼=
pr∗2H, where m denotes the action T × X → X. The category of T-linearized
sheaves is denoted by QCohT(X).

A toric Cartier divisor D gives rise to a T-linearized line bundle O(D) with
the T-linearization given by the morphism m∗O(D) → pr∗2O(D) being given by
sending m∗sD to pr∗2sD where sD is the distinguished rational section. If a toric
Cartier divisor additionally is endowed with a toric metric, it follows that the
isomorphism m∗O(D) → pr∗2O(D) is in fact an isometry over the preimage of
0×Xan ⊆ NR ×Xan in (T×X)an.

We fix the following setup. Let X be a variety with an action of T and let T
be a T-bundle on B. Let X = (T × X)/T. We call X → B a T-fibre bundles.
A morphism of torus fibre bundles is a map induced by a map T1 → T2 of torus
bundles and an equivariant map of varieties X → Y with torus actions. We
obtain the notion of (adelically) metrized torus fibre bundles by adding metrics to
the underlying torus bundle.

Proposition 3.3.2. There is a unique functor

ρ : QCohT(X) → QCoh(X )

compatible with tensor products satisfying the following conditions:

(1) If B = {∗} and T is the trivial bundle, the map is the identity.
(2) It commutes with pullback for morphisms of torus fibre bundles, i.e. if

F : X1 → X2 is a morphism with underlying morphism of varieties with
torus action f : X1 → X2, then F∗ρ(H) = ρ(f ∗H).

Proof. Locally on a Zariski open U ⊆ B we may choose a trivialization of T . This
may be seen as a collection of sections sm ∈ Γ(T (m)) satisfying sm1+m2 = sm1⊗sm2 .
Since Cartier divisors are a local notion we may assume w.l.o.g. that U = B. The
trivialization of T induces a trivialization s : X → XΣ. In this situation we set ρ to
be s∗. The ambiguity in this definition is resolved by applying the T-linearization.
The constructed map is the unique map satisfying the imposed conditions. □

Remark 3.3.3. One may define ρ : DivT(XΣ) → DivT(XΣ) on the level of Cartier
divisors. The divisors D and D′ being linearly equivalent does not imply that ρ(D)
and ρ(D′) are linearly equivalent.

In the metrized setting it is natural to replace T by the elements of unit norm
and T by the part of the torus bundle of unit norm. This is dictated to us since
we want compatibility of the two constructions in the case of model metrics. We
will avoid the use of quotients due to their technical difficulty in algebraic and
nonarchimedean geometry.
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We denote by VectT(X) the category of T-linearized vector bundles on X.
We denote by Vectmetr

T (X) the category of metrized vector bundles with a T-
linearization which is an isometry over the preimage of 0 × Xan ⊆ NR × Xan.

Let V̂ectT(X) be the category of T-linearized adelic vector bundles, i.e. the cat-
egory of T-linearized vector bundles V with metrics at all places such that the
T-linearization is an isometry over the preimage of 0 × Xan and there is a dense
open U ⊆ S such that the metrics over U are defined by a model VU .

Proposition 3.3.4. Let B be a variety over a valued field K and X be a metrized
toric bundle with fan Σ and underlying metrized torus bundle T metr over B. Let
XΣ be the toric variety associated to Σ. Then, there is a unique monoidal functor

ρmetr : Vectmetr
T (XΣ) → Vectmetr

T (XΣ)

satisfying the following conditions:

(1) If B = {∗} and T metr is the trivial bundle, the map is the identity.
(2) It commutes with pullback for morphisms of metrized torus fibre bundles,

i.e. if F : X1 → X2 is a morphism with underlying morphism of varieties
with torus action f : X1 → X2, then F∗ρmetr(H) = ρmetr(f ∗H).

(3) Let ϕ : X1 → X2 be a morphism of metrized torus fibre bundles. Then,
there is a homomorphism |f | : M2 → Cont(Ban,R) associated to the
induced map f : T1 → T2 giving the norm of f . Then, it holds that
f ∗ ◦ ρmetr

T̂2(−|f |) = ρmetr
T̂ ◦ ϕ∗. The subscript emphasizes the dependence on the

metric of the underlying torus bundle.

The homomorphism ρmetr automatically restricts to ρ on underlying vector bundles.

Proof. We cannot copy the proof from the non-metrized verbatim since we cannot
assume the existence of local trivializing sections of constant norm 1. We can,
however, trivialize the underlying torus bundle and correct for the non-triviality
of the norm.

Let s be a local trivialization of T . Then, there is a continuous map |s| : Ban →
Ttrop given by the metrics. This allows us to write X ∼= B × XΣ. We define the
vector bundle by pullback. We proceed to define the metric.

Under the isomorphism m∗V ≃ pr∗V for m, pr : T × XΣ → XΣ we have the
following relationship on norms. Suppose v is a nowhere vanishing section of

m∗V ≃ pr∗V over some open U ⊂ T×XΣ. Then, the quotient of norms δv =
|v|m∗V
|v|pr∗V

factors over Ttrop × XΣ by the assumption that the linearization be an isometry
over 0 ∈ Ttrop.
Let v ∈ V (U) for U ⊆ XΣ be a nowhere vanishing section. We define the norm of

pr∗v ∈ ρ(V )(B×U) to be |v(u)| · δv(|s|, u). It is easy to see that it doesn’t depend
on the choice of section. This construction defines the unique functor satisfying
the conditions on ρmetr. □
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Proposition 3.3.5. Let B be a variety over a global field K and X be an adelic

toric bundle with fan Σ and underlying adelic torus bundle T̂ over B. Let XΣ be
the toric variety associated to Σ. Then, there is a unique homomorphism

ρ̂ : V̂ectT(XΣ) → V̂ect(XΣ)

which restricts to ρmetr at each place.

Proof. We need to show metrics defined by ρmetr glue together to yield an adelic
metric. Let V be an adelic vector bundle. Let U ⊂ S be an open dense subset

on which both T̂ and V have a model. By assumption, there is a model B over U

and a T-torsor T̂U defining the metrics of T̂ at almost all places. Then, ρT̂U (V U)
defines the metrics at all places included in U . Thus one obtains an adelic vector
bundle. □

We note that one may analogously define homomorphisms for Cartier divisors ρ :

DivT(XΣ) → DivT(XΣ), ρ
metr : Divmetr

T (XΣ) → Divmetr
T (XΣ) and ρ̂ : D̂ivT(XΣ) →

D̂ivT(XΣ). The rest of the section is devoted to study their positivity properties.

Lemma 3.3.6. Let D be a semipositive toric metrized divisor on XΣ with under-
lying divisor D whose Newton polytope is ∆. Let L be a metrized line bundle on
B such that π∗L + T metr(m) is semipositive for all m ∈ ∆ ∩MQ. Then, the line
bundle π∗L+ ρmetr(D) is semipositive.

Proof. Denote the local roof function of D by θ and let L(m) := π∗L+T metr(m)+

θ(m). For m ∈ ∆ ∩MQ, the line bundle T̂ (m) + θ(m) on B parametrizes χm-
equivariant sections of ρmetr(D). We approximate the metric on π∗L+ρmetr(D) by
the maximum over the semipositive metrics defined on the χm-invariant Q-sections
L(m). The semipositivity of π∗L+ ρmetr(D) follows immediately.
Recall that given a globally generated line bundle L on X, a norm ∥·∥ on

H0(X,L) induces a metric on L by the quotient norm under the restriction map
H0(X,L) → H0(x, Lan|x) for x ∈ Xan. For two metrics on a line bundle we define
their distance to be the supremum norm of the function

log
|·|′

|·|
.

Let l > 1 be a number such that log |l∆ ∩M |/l < ϵ and the metric induced by
the supremum norm on Γ(lD) differs from the norm on D by at most ϵ. Such an l
exists by the characterization of semipositive metrics on semiample line bundles in
[CM18, Section 3.3] in the non-archimedean and [Mor15] in the archimedean case.
On Γ(lD) we know the following inequality of norms from [Bur+16, Corollary 5.4].
For s =

∑
m∈ 1

l
∆∩M γmχ

m ∈ Γ(lD), we have

max
m∈ 1

l
∆∩M

∥γmχm∥sup ≤ ∥s∥sup ≤ |l∆ ∩M | max
m∈ 1

l
∆∩M

∥γmχm∥sup.
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The expression maxm∈ 1
l
∆∩M ∥γmχm∥sup defines a norm on Γ(lD) and by taking the

quotient norm a norm on D. The distance of this norm to that on D is at most
2ϵ.
We now define a norm on ρ(D) + π∗L approximating the norm on ρ̂(D) + π∗L.

Locally on B, we can decompose sections of l(ρ(D) + π∗L) into eigenspaces, i.e.
sections will be of the form

∑
m∈ 1

l
∆∩M γm for sections γm ∈ Γ(U, lL(m)). We

metrize l(ρ(D)+π∗L) by taking the maximum of the norms on lL(m). The induced
metric on ρ(D) + π∗L differs at most by 2ϵ from the metric on π∗L + ρmetr(D).
Furthermore it is semipositive since it is the maximum of semipositive metrics. □

Corollary 3.3.7. If T metr is integrable, then ρmetr preserves integrability. If T metr

is flat, then ρmetr preserves semipositivity.

Proof. Let D be a semipositive toric divisor. We need to show that there exists a
semipositive line bundle L on the base B such that ρ̂(D)+π∗L is semipositive. For

this it suffices to find a semipositive L such that T̂ (m) + π∗L is semipositive for
all m ∈ ∆. We can replace the condition for all m ∈ ∆ by a condition for finitely
many points since semipositive divisors form a convex cone. For any single m, this

is possible by the assumption that T̂ be integrable. Summing up over semipositive
line bundles yields a single L for all m ∈ ∆. The second claim is immediate from
Lemma 3.3.6. □

Example 3.3.8. We freely use the notation of Example 3.2.9. Let (B, f, T , f ∗T ∼=
T ⊗r) be a dynamical torus bundle and let T̂ be T endowed with its canonical met-
ric. Then, for any fan Σ there is an endomorphism of the toric bundle associated
to T and Σ given by

F : X 2r

−→ X⊗r ∼= f ∗X → X .
There is a canonical isomorphism F∗ρ(D) ∼= rρ(D) that induces a canonical metric

on ρ(D) which we will denote by ρ(D). There is an isometry ρ(D) ∼= ρ̂T̂ (D). This,
in particular, applies to multiplication by r on semiabelian varieties.

3.4. Global sections. We would now like to study the global sections of vector
bundles constructed in the previous section. Let X be a variety with an action
of T and let T be a T-bundle on B. Let X = (T × X)/T be the corresponding
torus fibre bundle. Let V ∈ VectT(X) be a T-linearized vector bundle. Note that
the pushforward π∗V along a T-equivariant morphism is naturally endowed with a
T-linearization. After recalling [KL84, Proposition 1.8] in our notation, we prove
an adaptation to the metrized setting.

Lemma 3.4.1. Let F be a T-linearized quasi-coherent sheaf onX. Let π : X → Y
be a T-equivariant morphism of T-varieties. Let T be a T-bundle on B and
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Π : X → Y be the induced map on torus fibre bundles. Then,

Π∗ρ(F) ∼= ρ(π∗F).

In particular, if X is a toric variety and Y = ∗ the pushforward of O(ρ(∆)) can
be decomposed into eigenspaces as

π∗O(ρ(∆)) ∼=
⊕

m∈∆∩M

T (m).

Proof. Assume first that T is trivial. In this case the assertion follows from flat
base change. The identification given by flat base change does not depend on the
choice of trivialization of T . Hence, the isomorphism globalizes. □

Suppose that Y = ∗ and V is a metrized vector bundle on a proper X. Sup-
pose further that T is given a metric structure. Then, the π∗V = H0(X, V ) has
the structure of a T-linearized metrized vector bundle with norm given by the su-
premum norm. On the other hand, Π∗ρ(V ) carries a metric given by the fibrewise
supremum norm.

Proposition 3.4.2. The isomorphism

Π∗ρ
metr(V ) ∼= ρmetr(H0(X, V )sup).

is an isometry.

Proof. Suppose that T is trivial and the trivialization is a normed trivialization
over b ∈ Ban. Then by construction, the metrized vector bundle ρmetr(V ) restricted
to Π−1(b) is precisely V . Hereby the claim follows. □

Lemma 3.4.3. The eigenspaces T (m) of the metrized vector bundle π∗O(ρmetr(∆))
are orthogonal to one another. Each eigenspace T (m) carries the metric T metr(m)+
θv(m).

Proof. The claim follows by Proposition 3.4.2 and a study of global sections on
toric varieties. The orthogonality claim follows immediately from Theorem 2.3.4.
The claim on the metrics on each eigenspace follows by the definition of the local
roof function in Definition 2.3.2. □

3.5. Arithmetic intersections. This section is devoted to a generalization of
[Cha00, Proposition 4.1]. We work on an integrable smooth projective toric bundle

X with underlying adelic torus bundle T̂ → B with B smooth projective.

Let Σ̃ be a smooth projective adelic fan with recession fan Σ. Let τi denote the

rays of Σ̃ and let hi denote the dual polytopes. For notation on adelic polytopes,
we refer to Section 2.1.
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Proposition 3.5.1. Let τ1, . . . , τr be rays in Σ̃ not spanning a cone. Let XΣ be

a toric bundle whose underlying torus bundle is endowed with an adelic metric T̂
with model metrics at finite places and a smooth metric at archimedean places.

Let γ ∈ ĈHr(X̂ ) be an arithmetic cycle on a regular model X̂ of XΣ. Then,

d̂eg(ρ̂(h1) · · · ρ̂(hr)γ) = 0.

Proof. Note first that if τ1, . . . , τr are not supported at one place the conclusion
holds since one may find a regular scheme Y on which the ρ̂(hi) can be defined in
such a way that they are still supported at the same places. On Y the intersection
of the ρ̂(hi) is empty. Then, the conclusion follows from [GS92, Theorem 3 (2)].
Now consider the case that all τi are supported at a non-archimedean place

v. Observe that the adelic torus bundle is induced by the pullback of an adelic
torus bundle on a regular projective scheme Z by projectivity of B. Note that the

fan Σ̃v ⊂ NR × R≥0 not only defines a model, but also a smooth toric variety of
dimension t+1. Denote the monomial corresponding to the dual of R≥0 by T . The
model XΣ̃v

over Rv is given as the closed subscheme of XΣ̃v ,Rv
cut out by T = π.

The torus bundle T̂ ⊕ Gm on Z and the fan Σ̃ define a toric bundle over B.
Since a smooth scheme over a regular base is regular the toric bundle XΣ̃v

is in
fact regular and the Cartier divisors ρ̂(hi) are defined by pullback of ρ(hi) from
there. The intersection of the ρ(hi) in XΣ̃v

is empty. Hence, the claim follows
again by [GS92, Theorem 3 (2)].

It remains to deal with the case that the τi are supported at an archimedean
place. We allow ourselves to work on the toric bundle XΣ.

Let us prove the vanishing of the current gρ̂(h1)ω(ρ̂(h2)) · · ·ω(ρ̂(hr)). Note that
the Green’s functions of the hi are given by piecewise linear functions gi : NR → R.
On the preimage of an open subset U ⊂ NR where gi vanishes the metric is flat.
In fact, the standard section of ρ(Di) is flat on this locus. The empty intersection
condition in the combinatorial setting implies that

∏
gi = 0. Hence, gρ̂(D0)

vanishes

on the support of ω(ρ̂(D1)) · · ·ω(ρ̂(Dt)). We note that by approximation the
intersection number is precisely the integral of gρ̂(h1)ω(ρ̂(h2)) · · ·ω(ρ̂(hr)) against
the curvature form of γ. This finishes the proof. □

For the n-th power map 2n : X → X⊗n introduced in Example 3.2.9 we have
(2n)∗ρ̂X⊗n(D) = ρ̂X ([n]

∗D). Moreover, for any toric Q-Cartier divisor D on a

model XΣ̃, there is a unique Q-Cartier divisor D
′
on the same model such that

[n]∗D
′
= D. This implies that the above proposition applies more generally to

algebraic torus bundles because (2n)∗ρ̂X⊗n(D) is algebraically metrized. Hence
the conclusion stays valid for algebraically metrized torus bundles by passing to
X⊗n.
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We need an approximation result in order to apply this for integrable torus
bundles that are not necessarily algebraic.

Proposition 3.5.2. Let τ1, . . . , τr be rays in Σ̃ not spanning a cone. Let XΣ be
a toric bundle whose underlying torus bundle is endowed with integrable adelic

metrics T̂ . Let γ ∈ ĈHr(X̂ ) be an arithmetic cycle on a regular model X̂ of XΣ.
Then,

d̂eg(ρ̂(h1) · · · ρ̂(hr)γ) = 0.

Proof. We approximate T̂ by algebraic metrics T̂k. Pick a basis m1, . . . ,mt of M .

For each mi we can write T̂ (mi) as the difference of limits algebraic semipositive
metrics, i.e. there are semipositive algebraic line bundles L+

k,i and L−
k,i such that

for k → ∞ the metrics converge uniformly to semipositive line bundles L+
i and L−

i

such that T̂ (mi) = L+
i − L−

i . Extending the map mi 7→ L+
k,i − L−

k,i by linearity to

M allows us to approximate T̂ by algebraic metrics T̂k.
Note that for C big enough the line bundle C

∑
i

(
L+
k,i + L−

k,i

)
+ ρ̂T̂k(Dj) is semi-

positive for all j = 0, . . . , t and all k. We are done once we show that ρ̂T̂k(D)

converges uniformly to ρ̂T̂ (D) for D = Dj for some j. Fix a norm ∥·∥ on NR. Since

the Green’s function g of D on NR is piecewise linear on finitely many polyhedra
it is Lipschitz continuous with some Lipschitz constant K. Varying the metric on
the torus bundle by vector v(b) in NR of length at most ϵ at a b ∈ Ban translates
the Green’s function by v(b) on the fibre at b. By the Lipschitz continuity, we
obtain ∥g(x) − gj(x − v)∥sup ≤ K∥v∥. The uniform convergence of line bundles

T̂k(m) → T̂ (m) implies that the difference of T̂k and T̂ given by vk : Ban → NR
converges uniformly to 0. □

3.6. Successive minima of toric bundles.
Let X be a proper variety and let L be an adelic line bundle on X whose

underlying line bundle is big. For a real number λ, the set XL(λ) denotes the
Zariski closure of

{x ∈ X(K̄) | hL(x) ≤ λ}.
Since X is a noetherian topological space the filtration given by varying λ has only
finitely many stages. It yields the so-called height filtration

X0 = ∅ ⊊ X1 ⊊ · · · ⊊ Xr = X.

Often, one considers the sub-filtration consisting of the Xi such that dimXi >
dimXi−1. This filtration is closely related to the notion of Zhang minima. Let X
be a proper toric bundle and π∗M + ρ̂(D) be an adelic line bundle on X whose
underlying line bundle is big. Then, there are other natural filtrations.
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Lemma 3.6.1. The set Xλ = {x ∈ X (K̄) | hL(x) ≤ λ} is invariant under the torus
action.

Proof. It is enough to prove that Xλ(K̄) is stable under the action of T(K̄) as
reduced schemes are determined by their K̄-points. The height is invariant under
the action of torsion points of T. This is checked fibrewise. Torsion points of T
tropicalize to 0 at all places. Hence, their action does not affect the tropicalization
of points in the fibre XΣ and thus their height.

Since torsion points are Zariski dense in T, it follows that Xλ contains the T(K̄)-
orbit of any x ∈ X (K̄). In particular, we may view Xλ(K̄) as the closure of the
T(K̄)-invariant set T(K̄){x ∈ X (K̄) | hL(x) ≤ λ}. The claim now follows from
the fact that the action map T(K̄)×X (K̄) → X (K̄) is continuous. □

It is natural to consider Tλ = {x ∈ T (K̄) | hL(x) ≤ λ} in T , where T denotes
the underlying torus bundle. Then, the resulting filtration

T0 = ∅ ⊊ T1 ⊊ · · · ⊊ Tr = T

is the pullback of a filtration on B which we call the toric filtration. The following
equality holds

Tλ = π−1({b ∈ B(K̄) | ∃x ∈ π−1(b), hL(x) ≤ λ}).

One can recover the height filtration on X from filtrations on B associated to
each cone on the underlying fan Σ. For every cone σ ∈ Σ we denote the associated
closed toric subbundle by Xσ and the associated torus bundle by Tσ. We introduce
the filtrations

Bσ,λ = {b ∈ B(K̄) | ∃x ∈ π−1(b) ∩ Xσ, hL(x) ≤ λ}.

Then we obtain the height filtration on X as

Xλ =
⋃
σ∈Σ

π−1(Bσ,λ) ∩ Xσ.

The last step remaining is to understand the filtrations Bσ,λ. We have additional
tools available to study fibres of toric bundles since they are toric varieties. For a
point b ∈ B(K̄), we may consider the fibre Xb. Let s : X ∼= Xb be a trivialization.
Here X is a toric variety with torus T ⊂ X.
Let D be a toric metrized Cartier divisor on X. Then, ρmetr

Xb
(D) is the translate

of D by |s|−1 ∈ Ttrop, when we trivialize the torsor by s. In particular, if D is
semipositive the local roof function θ(ρ̂(D)) is θ(D)−log |s| by [BPS14, Proposition
2.3.3], where log |s| is the linear function M → R defined by the norm of s.

If D is a semipositive adelic toric divisor its global roof function is θ(D)(m) +
hT̂ (m)(b). This allows us to apply the results of [BPS15] to fibers of π. We introduce
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the function h∆ on B given by h∆(b) = maxm∈∆ θ(b,m). The study of the toric fil-

tration boils down to the study of h∆ and the filtration by {b ∈ B(K̄) | h∆(b) ≤ λ}.

4. Okounkov bodies of toric bundles and applications

Let B be a variety over K of dimension g. Let X be a toric bundle over B with
underlying torus bundle T and fan Σ. Let ∆ be a polytope whose normal fan
coarsens Σ and ρ(∆) the corresponding line bundle on X . Let L be a line bundle
on B. We next compute the Okounkov body of ρ(∆) + π∗L.
In order to obtain a more convenient flag we refine Σ such that it defines a smooth

projective variety, see [CLS10, Chapter 11]. Since the fibres XΣ are smooth we
can take prime toric divisors D1, . . . , Dt such that

X• : XΣ ⊃ D1 ⊃ D1 ∩D2 ⊃ · · · ⊃ D1 ∩ · · · ∩Dt = {p}.
defines a flag. We obtain a partial flag on X :

ρ(X•) : X ⊃ ρ(D1) ⊃ ρ(D1) ∩ ρ(D2) ⊃ · · · ⊃ ρ(D1) ∩ · · · ∩ ρ(Dt) ∼= B.

Given a flag B• on B, we extend ρ(X•) to a flag X• on XΣ. We now compute the
Okounkov body of ρ(∆) + π∗L with respect to X•.
By translating ∆, we can always ensure that the conditions in Proposition 2.3.1

are satisfied. In the toric bundle setting this requires to change the line bundle L.

Theorem 4.0.1. The Okounkov body of X with respect to ρ(∆) + π∗L is given
by the closure of

{(m,x) | m ∈ ∆, x ∈ ∆B•(L+ T (m))}.
For m ∈ ∆ such that L+ T (m) is big the fibre is given by ∆B•(L+ T (m)).

Proof. Just as for complete flags one can associate a valuation νρ(X•) to the partial
flag ρ(X•) as the first t entries of the valuation associated to X•. By definition,
the Okounkov body of ρ(∆)+π∗L is the closure of the family of Okounkov bodies
over m ∈ ∆ ∩MQ of the linear series

im
(
{s ∈ H0(X , n(π∗L+ ρ(∆))) | νρ(X•)(s) ≥ nm} α→ H0(X,n(L+ T (m)))

)
.

We can understand this by applying Lemma 3.4.1. For m /∈ ∆ the image will be
0 since then the domain of the map is 0. On the other hand if m ∈ ∆ ∩ MQ,
the χm-equivariant sections are in bijection with H0(B,L + T (m)). All non-zero
χm-equivariant sections s satisfy νρ(X•)(s) = m. Therefore, the map α is surject-
ive. Hence, the map of Okounkov bodies ∆X•(π

∗L + ρ(∆))) has fibres containing
∆B•(L + T (m)). For fixed m ∈ ∆ such that L + T (m) is big, the fibre of the
closure of {(m,x) | m ∈ ∆, x ∈ ∆B•(L + T (m))} doesn’t contain points outside
∆B•(L + T (m)) by the convexity of Okounkov bodies as a function of the line
bundle, see [LM09, Section 4.2]. □
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4.1. Arithmetic version. Suppose that in addition to the setup we have an adelic

structure T̂ on T . Denote by ĉ : M → P̂ic(B) the homomorphism describing the

isomorphism class of T̂ . Suppose further that we have a semipositive toric adelic
metricD with roof function θ on the divisor associated to ∆ and that L is adelically
metrized.

Theorem 4.1.1. The Boucksom-Chen transform Gπ∗L+ρ̂(D),X•
(m,x) on

{(m,x) | m ∈ ∆, x ∈ ∆B•(L+ T (m))}
is given by θ(m) +GL+T̂ (m),B•

(x) when L+ T (m) is big.

Proof. The vector space

im
(
{s ∈ H0(X , n(π∗L+ ρ̂(D))) | νρ(X•)(s) ≥ nm} α→ H0(B, n(L+ T (m)))

)
.

can be endowed with quotient norms at each, where the left hand side endowed
with the supremum norm. The arithmetic Okounkov body of L + ρ̂(D) is the
closure of the arithmetic Okounkov bodies for all the filtered graded linear series.
By Lemma 3.4.3, the quotient norm for α agrees with the supremum norm on

H0(X,n(L+ T̂ (m))) twisted by θv(m).
By the convexity of arithmetic Okounkov bodies in families the theorem follows.

□

Remark 4.1.2. Due to the work of Sombra and Ballaÿ one will be able to deduce
equidistribution of small points on some line bundles of the form ρ̂(∆) + π∗L
as they can phrase their sufficient condition on equidistribution in terms of the
Boucksom-Chen transform, see [BS24, Section 1.4].

4.2. Application to successive minima. In this section, we prove Theorem A
by studying the Boucksom-Chen transform.

Theorem A. Let L be an adelic line bundle on B such that L+ ĉ(m) is geomet-
rically big for some m ∈ ∆. Let ∆◦ denote the interior of ∆. Then, we have the
following formula for the essential minimum of ρ̂(∆) + π∗L on X :

ζess(ρ̂(∆) + π∗L) = sup
m∈∆

{
ζess(L+ ĉ(m)) + θ(m)

}
.

If in addition L+ ĉ(m) is semipositive for all m ∈ ∆,

ζabs(ρ̂(∆) + π∗L) = inf
m∈∆◦

{
ζabs(L+ ĉ(m)) + θ(m)

}
.

Proof. If m is such that L+ ĉ(m) is geometrically big, this holds in a neighborhood
of m. It follows by Theorem 4.0.1 that ρ̂(∆) + π∗L is geometrically big. We can
therefore apply Theorem 2.2.1 to compute the essential minimum in terms of
the Boucksom-Chen transform. Recall that the Okounkov body of π∗L + ρ̂(D)
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maps to ∆. Over m ∈ ∆, the fibre can be identified with ∆B•(L + T (m)) and
the restriction of the Boucksom-Chen transform Gπ∗L+ρ̂(D),X•

is given by θ(m) +

GL+T̂ (m),B•
(x). Hence, over each such fibre the maximum of the Boucksom-Chen

function is ζess(L+ ĉ(m)) + θ(m) by Theorem 2.2.1.
Let ∆big denote the locus of m ∈ ∆ such that L + c(m) is big. By concavity

and upper semicontinuity of the Boucksom-Chen transform and concavity of the
essential minimum it follows that

ζess(ρ̂(∆) + π∗L) = max
(m,x)∈∆X• (π

∗L+ρ(D))
Gπ∗L+ρ̂(D),X•

(m,x)

= sup
m∈∆big

ζess(L+ ĉ(m)) + θ(m)

= sup
m∈∆

ζess(L+ ĉ(m)) + θ(m).

We now assume that in addition L + ĉ(m) is semipositive. In order for L + c(m)
to admit semipositive metrics it has to be nef. Hence, the Hilbert-Samuel theorem
[Deb01, Proposition 1.31] holds. Adding an arbitrarily small multiple of a big nef
line bundle yields a big nef divisor. Hence, L + c(m) is pseudoeffective for all
m ∈ ∆ and big for all m in the interior ∆◦.

By the upper semi-continuity of the Boucksom-Chen transform and applying
Theorem 2.2.1 to each fibre, we obtain

ζabs(ρ̂(∆) + π∗L) = inf
(m,x)∈∆X• (π

∗L+ρ(D))
Gπ∗L+ρ̂(D),X•

(m,x)

= inf
m∈∆◦

ζabs(L+ ĉ(m)) + θ(m).

□

5. Arithmetic bundle BKK

The purpose of this section is to prove the arithmetic bundle BKK theorem
stated in the introduction. Its proof will follow the outline of the proof of [HKM21,
Theorem 4.1]. Let us swiftly recall the statement of the theorem.

Let X̂ be an adelic integrable proper toric bundle with underlying fan Σ of
relative dimension t over a smooth projective base variety B of dimension g. Let

B be a regular scheme flat and projective over S with BK = B. Let γ ∈ ĈHi(B) and
denote by [∞] ∈ ĈH

1
(B)R a trivial Cartier divisor endowed with constant Green’s

functions at all places such that h[∞](x) = 1 for all x ∈ B(K̄). Let ∆ ∈ P̂+
Σ be an

adelic polytope.
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Theorem B. The intersection numbers below are well-defined and the following
identity holds:

i!ρ̂(∆)t+iπ∗γ = (t+ i)!

∫
∆

(ĉ(m) + θ(m)[∞])iγdm.

Remark 5.0.1. The regularity assumption on the model B is needed in order to
apply Proposition 2.4.1 to show that there is a well defined intersection number.
However, in other settings where the intersection number is defined such as when
the torus bundle has a model over B, there is no need for a regularity assumption on
B and the same proof applies. A similar result should hold for general arithmetic
operational cohomology classes. For the product of first Chern classes of integrable
line bundles the result follows from Section 4.

We introduce shorthand notations for use in the course of the proof. Let

Îγ : P̂+ → R, ∆ 7→
∫
∆

(ĉ(m) + θ(m)[∞])i · γdm

and
F̂γ : P̂ → R, ∆ 7→ d̂eg(ρ̂(∆)t+i · π∗γ).

The function F̂γ is well-defined as the intersection number does not change un-

der birational modification. We eventually extend Îγ to the space of all virtual
polytopes. Using the introduced shorthand, the theorem is stated below.

Theorem 5.0.2. The polynomials Îγ and F̂γ satisfy

(t+ i)! · Îγ(∆) = i! · F̂γ(∆).

In particular, the polarizations of Îγ and F̂γ are proportional multilinear forms,

i.e. for any ∆1, ...,∆t+i ∈ P̂Σ

(t+ i)! · Îγ(∆1, ...,∆t+i) = i! · F̂γ(∆1, ...,∆t+i).

Remark 5.0.3. The above intersection numbers are shown to be well-defined in
Section 2.4. This is the case since one can define π∗γ on a regular model given
by the toric bundle XΣ for an algebraic torus bundle over B. Since this is smooth
over B the model in particular is regular. In fact, by approximation the formula
also holds for expressions γ of the form ĉ1(L1) . . . ĉ1(Lr)γ

′ for integrable adelic line

bundles L1, . . . ,Lr on B and γ′ ∈ ĈHi+r(B).
This closely resembles the BKK-type theorem in [HKM21]. Let us recall their

statement for context. Let X → B be a toric bundle over a smooth compact
oriented R-manifold B with smooth underlying fan Σ. Analogous to our situation
there are maps c :M → H2(B,Z) and ρ : PΣ → H2(B,Z). Furthermore, the toric
bundle X has an induced orientation. Hence, the top cohomology groups will be
identified with R.
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Theorem 5.0.4 (Theorem 4.1 [HKM21]). Let γ ∈ Hk−2i(B,R). Then, the cup
product satisfies

i!ρ(∆)t+iπ∗γ = (t+ i)!

∫
∆

c(m)i · γdm.

5.1. Overview of proof. Following the outline in [HKM21] we prove Theorem
5.0.2 by first showing that the two functions are polynomials and comparing their
partial derivatives. The novel notion of adelic polytopes allows us to transfer many

ideas from the classical setting. We obtain that Îγ is a homogeneous polynomial

function in Corollary 5.2.10. It is clear, that the same holds for F̂γ. For i > 0, it
suffices to show

i!∂k11 . . . ∂krr F̂γ(∆) = (t+ i)!∂k11 . . . ∂krr Îγ(∆)

for partial derivatives along the rays of Σ̃ of total degree k1 + · · ·+ kr = t+ 1. In
the case of multiplicity µ = k1 + · · ·+ kr − r of the partial derivative being 0, the
comparison is done by direct calculation. We perform induction on i+ µ.

For i = 0, we observe that

t! · Îγ(∆) = t! · vol(∆) deg(γ) = deg(∆)d̂eg(γ) = d̂eg(ρ̂(∆)t · π∗γ) = F̂γ(∆).

This is just the classical BKK theorem except for the second to last equality which
follows from a projection formula that can be deduced adhoc.

The cycle γ can be represented as a sum of closed points and a measure on B.
By linearity, assume first that γ is represented by a closed point. The cycle π∗γ is
given as the fibre over γ. The restriction of ρ(∆) to this fibre has degree deg(∆).
Hence, the claim holds in this case. Now suppose γ has only an archimedean part

ω. Then ρ(∆)t · π∗γ =
∫
X (C) c1(ρ̂(∆))tπ∗ω =

∫
B(C)

(∫
π−1(b)

c1(ρ̂(∆))t|π−1(b)

)
ω(b) =

deg(∆) deg γ.

5.2. Arithmetic convex chains. The goal of this section is to prove that Îγ(∆)
is a polynomial on the space of arithmetic virtual polytopes. This requires an
extension of the ideas in [PK92] to the arithmetic setting.

Definition 5.2.1. Let V be a finite dimensional real vector space. Then, a convex
chain on V is a function α : V → Z of the form α =

∑k
i=1 ni1Ai

for polytopes
Ai ∈ P+ and ni ∈ Z. This forms an algebra Z(V ) under the usual addition and
multiplication given by the convolution product.

Definition 5.2.2. A finitely additive measure on P+ is a map ϕ : P+ →M to an
abelian group M satisfying the following property:
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If A1, . . . , AN ∈ P+ are such that ∪N
i=1Ai ∈ P+, then the following inclusion-

exclusion relation holds:

ϕ(
N⋃
i=1

Ai) =
∑
i

ϕ(Ai)−
∑
i<j

ϕ(Ai ∩ Aj) + . . .

The empty set satisfies F (∅) = 0.

Definition 5.2.3. (1) A map p : N → M of abelian groups is called a poly-
nomial of degree ≤ k if one of the following two conditions holds:
(a) k = 0 and p is constant, i.e. p(N) = m ∈M
(b) k ≥ 1 and for any a ∈ N , the map pa : N → M , pa : x 7→ p(x + a)−

p(x), is a polynomial of degree ≤ k − 1.
(2) A measure ϕ : P+ → M is polynomial of degree ≤ k if for each A ∈ P+

the function ϕ(A+ v) : V →M is polynomial of degree ≤ k.

Remark 5.2.4. The notion of convex chains allows for a reinterpretation of the
notions of measure. Namely, a finitely additive measure is an arbitrary homo-
morphism of additive groups ϕ : Z(V ) → M . If the measure is polynomial of
degree ≤ k, this extends to translation of functions in Z(V ). The remark justi-
fies calling P+ → Z(V ) the universal measure. This is discussed below [PK92,
Definition 2.8].

Let τv : Z(V ) → Z(V ) be the translation by a vector defined by τvα(x) =
α(x− v) for α ∈ Z(V ). Let Jk ⊂ Z(V ) denote the subgroup generated by chains
of the form

(τv1 − 1) ◦ · · · ◦ (τvk − 1)(α)

for all v1, . . . , vk ∈ V . The subgroup Jk ⊂ Z(V ) is an ideal. The map P+ →
Z(V )/Jk+1 is the universal polynomial measure of degree ≤ k, i.e. all polynomial
measures of degree ≤ k factor uniquely through a homomorphism Z(V )/Jk+1 →
M .
The degree of a convex chain α =

∑k
i=1 ni1Ai

for Ai ∈ P+ is defined to be∑k
i=1 ni. This is well-defined by [PK92, Proposition/Definition 2.1]. Let L ⊂

Z(V ) denote the ideal of degree 0 chains.

Theorem 5.2.5 (Theorem 2.3 [PK92]). For k ≥ 1,

L dimV+k ⊂ Jk.

This theorem that any polynomial measure on V of degree ≤ k restricted to the
group of virtual polytopes P is a polynomial of degree ≤ dimV + k by [PK92,
Corollary 2.5].

Let us now introduce the arithmetic analogues of P . Due to the view towards
toric varieties, we denote dimV = t. We freely use the notation of Definition 2.1.8
and
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Definition 5.2.6. An I-metrized convex chain on V is a function α : V ⊕⊕
i∈I R → Z of the form α =

∑k
i=1 ni1Ai

for I-metrized polytopes Ai ∈ PI+

and ni ∈ Z. This forms an algebra ZI(V ) under the usual addition and multi-
plication given by the convolution product. For I = ∅, we recover the algebra of
convex chains Z(V ).

Let ∗ denote a one element set. Then, the addition
⊕

i∈I R → R via the push-
forward from [PK92, Proposition/Definition 2.2] induces a ring homomorphism
ZI(V ) → Z∗(V ). We note that the algebra of metrized convex chains Z∗(V ) can
be is a subalgebra of Z(V ⊕R). The I-metrized convex chains are a subalgebra of⋃

J⊆I,finite Z(V ⊕
⊕

j∈J R).
A polynomial map from an R-vector W space to R will be called a polynomial

function if it is continuous on every finite dimensional subvector space. A polyno-
mial function f : W → R is said to be homogeneous of degree k if for λ ∈ R and
w ∈ W the equality f(λw) = λkf(w) holds.

Definition 5.2.7. Let f be a polynomial function of degree ≤ k on V . Then,
we denote by If the map P → R extended from ∆ 7→

∫
∆
f . It is a degree ≤ k

measure on the space of polytopes.

The statement of [HKM21, Theorem 5.5] is an easy corollary of Theorem 5.2.5
and summarizes the discussion in a convenient way.

Theorem 5.2.8 (Theorem 5.5 [HKM21]). If f : V → R is a homogeneous poly-
nomial function of degree k, then the function If : P+ → R; (∆) 7→ If (∆) =∫
∆
f(x)dµ admits a unique extension to a homogeneous polynomial function of

degree t+ k on P .

We will apply this to prove an arithmetic variant. In the proof of Theorem 5.0.2
it will be applied for the functionMR×R → R given by (m,x) 7→ (ĉ(m)+x[∞])iγ.

Theorem 5.2.9. If f : V ×R → R is a homogeneous polynomial function of total
degree k, then the function

Îf : P̂+ → R, ∆ 7→
∫
∆

f(m, θ(m))dm

admits a unique extension to a homogeneous polynomial function of degree t + k

on P̂ . Here θ denotes the global roof function of ∆.

Proof. We reduce the statement to [HKM21, Theorem 5.5]. For this note that
the partial derivative f ′ with respect to the last variable is a polynomial of degree
k− 1. Assume that θv(x) ≥ 0 for all x ∈ ∆ and all places v ∈MK . Then, we have

that Îf (∆) = If (∆) + If ′(∆̂) by the fundamental theorem of calculus. The first
term is known to be a polynomial of degree t+ k by [HKM21, Theorem 5.5].
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The second term is a degree ≤ k − 1 measure on Z∗(V ). Hence, it gives a
degree ≤ k + t polynomial on Z∗(V ). Since the map ZMK (V ) → Z∗(V ) is a ring
homomorphism, it follows that we obtain a degree t + k polynomial on virtual
adelic polytopes. □

Corollary 5.2.10. The function

Îγ : P̂+ → R, ∆ 7→
∫
∆

(ĉ(m) + θ(m)[∞])iγdm

admits a unique extension to a homogeneous polynomial function of degree t + i

on P̂ .

Proof. We apply Theorem 5.2.9 to the function MR × R → R given by (m,x) 7→
(ĉ(m) + x[∞])iγ. □

5.3. Differentiation of Îγ. We compute the (t+1)-st partial derivatives of Îγ of
multiplicity 0 for a preferred basis of the space of adelic polytopes. We compute

more generally the derivatives of functions of the form Îf introduced in Theorem
5.2.9 for smooth f on V ⊕R. Denote the restriction of f to V ×0 by f as well and
f ′ the partial derivative along the R-summand. We note by the proof of Theorem

5.2.9 that Îf (∆) = If (∆)+ If ′(∆̂). We compute the differentials of each summand
separately.

Let Σ̃ be a simplicial adelic fan with recession fan Σ. The vector space of virtual

adelic polytopes compatible with Σ̃, P̂Σ̃, has a distinguished basis provided by the

virtual polytopes corresponding to the rays of Σ̃. We say that a set of rays spans

a cone if there is a place at which they span a cone. Since Σ̃ is simplicial, there is
a unique virtual polytope h whose support function is 1 at the primitive generator
of a chosen ray τ and 0 on all other rays. We refer to h as the polytope dual to
τ . We will be working with a finite set of rays τ1, . . . , τs. We denote its primitive
generators by e1, . . . , es and its dual polytopes by h1, . . . , hs. We denote the partial
derivative in the direction of hi by ∂i.
We recall first the classical case. Let f : V → R be a continuous function and

Σ be a complete fan on V . Let ∆ be a polytope in the interior of P+
Σ .

Lemma 5.3.1 (Lemma 6.1 [HKM21]). Let τ1, . . . τt be rays spanning a maximal
cone dual to a vertex A ∈ ∆. Then, we have

∂1 . . . ∂t(If )(∆) = f(A) · | det(e1, . . . , et)|.

Note that in the reference f is assumed smooth. This is, however, not used in
the proof. An adelic analogue of [HKM21, Lemma 6.1] is given below.
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Proposition 5.3.2. Let τ1, . . . τt+1 be rays spanning a maximal cone σ in Σ̃ at a

place v and ∆ ∈ P̂+

Σ̃
a v-interior polytope. Suppose that σ is dual to the vertex

(A, θv(A)) ∈ ∆v. Then, we have

∂1 . . . ∂t+1(If )(∆̂) = f(A, θ(A)) · | det(e1, . . . , et+1)|.

Proof. Extend the function θ−θv to a continuous function E on V . Define f̃(v, t) =

f(v, t + E(v)). Then one easily sees that ∂1 . . . ∂t+1(If )(∆̂) = ∂1 . . . ∂t+1(If̃ )(∆v).

We can then apply [HKM21, Lemma 6.1] to find that the derivative is

f̃(A, θv(A)) · | det(e1, . . . , et+1)| = f(A, θ(A)) · | det(e1, . . . , et+1)|.
□

If ∆ is a polytope in P̂+

Σ̃
and τ1, . . . , τr do not span a cone in Σ̃, then we have

∂k11 . . . ∂krr (If )(∆) = 0

for any tuple of ki ≥ 1.

Corollary 5.3.3. Let τ1, . . . τt+1 be rays spanning a maximal cone σ in Σ̃ at a

place v and ∆ ∈ P̂+

Σ̃
a v-interior polytope. Suppose that σ is dual to the vertex

(A, θv(A)) ∈ ∆v. Then, we have

∂1 . . . ∂t+1(Îγ)(∆) = iĉ(A)i−1 · [∞] · γ · | det(ei1 , . . . , eir)|.

Proof. Recall the decomposition Îf (∆) = If (∆) + If ′(∆̂). We observe that

∂1 . . . ∂t+1If (∆) = 0

since at least one of the rays does not lie in V ×0. Note that Îγ = Îf for f(m, t) =
(ĉ(m) + t[∞])iγ.

We compute f ′(m, t) = i(ĉ(x)+θ[∞])i−1[∞]γ = iĉ(x)i−1[∞]γ. The last equality
follows since [∞]2 = 0 in the Chow ring. □

If ∆ is a polytope in P̂+

Σ̃
and τ1, . . . , τr do not span a cone in Σ̃, then we have

∂k11 . . . ∂krr (Îγ)(∆) = 0

for any tuple of ki ≥ 1.

5.4. Differentiation of F̂γ. Let us consider first the squarefree case.

Lemma 5.4.1. Let τ1, . . . τt+1 be rays spanning a maximal cone σ in Σ̃ at a

place v and ∆ ∈ P̂+

Σ̃
a v-interior polytope. Suppose that σ is dual to the vertex

(A, θv(A)) ∈ ∆v. Then,

∂1 . . . ∂t+1(F̂γ)(∆) =
(t+ i)!

i!
· iĉ(A)i−1[∞]γ · | det(ei1 , . . . , eir)|.
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If ∆ is a polytope in P̂+

Σ̃
and τ1, . . . , τr do not span a cone in Σ̃, then we have

∂k11 . . . ∂krr (F̂γ)(∆) = 0

for any tuple of ki ≥ 1.

Proof. For the vanishing result it is clearly sufficient to consider the case ki = 1

for all i. Denote by D̂i the divisor associated to hi on XΣ̃.
We expand the polynomial Fγ at ∆ in order to compute the derivative.

F̂γ(∆ +
∑
i

λiρ̂(D̂i)) = (ρ̂(∆) +
∑
i

λiρ̂(D̂i))
t+iπ∗(γ)

=
∑

α0+···+αs=t+i

(
t+ i

α0, . . . , αs

)
ρ̂(∆)α0 ρ̂(D̂1)

α1 · · · ρ̂(D̂r)
αrπ∗(γ)λα1

1 · · ·λαr
r .

The expression ∂1 . . . ∂r(F̂γ)(∆) shows up as the coefficient of λ1 · · ·λr. Since the

intersection of the D̂i is empty it follows by Proposition 3.5.2 that the arithmetic
intersection also vanishes.

We proceed to the case, where τ1, . . . τt+1 span a cone. We have

∂1 . . . ∂t+1Fγ(∆) =
(t+ i)!

i!
ρ̂(∆)iρ̂(D̂1) · · · ρ̂(D̂t+1)π

∗(γ).

Let ∆̃ be the virtual adelic polytope ∆− (A, θv(A)). Then,

h∆̃(e1) = · · · = h∆̃(et+1) = 0

since the vertex of ∆̃ corresponding to A is sent to the origin. Therefore, ∆̃ is the
linear combination of rays not belonging to σ. In particular,

ρ̂(∆̃)ρ̂(D̂1) · · · ρ̂(D̂t+1) = 0.

We compute

ρ̂(∆)iρ̂(D̂1) · · · ρ̂(D̂t+1)π
∗(γ)

=ρ̂(∆̃ + (A, θv(A))
iρ̂(D̂1) · · · ρ̂(D̂t+1)π

∗(γ)

=ρ̂((A, θv(A)))
iρ̂(D̂1) · · · ρ̂(D̂t+1)π

∗(γ).

We now apply that ρ̂(A, θv(A)) = π∗ĉ(A, θv(A)).
We apply an explicit projection formula. We restrict to the case of model

metrics by approximation. The intersection of D̂1, . . . , D̂t+1 on XΣ is given as
the | det(ei1 , . . . , eit)|-multiple of a closed point at the place v. In particular,

ρ̂(D̂1) . . . ρ̂(D̂t+1) is the multiple of a horizontal cycle mapping to the special fibre
at v of B. Hence,

ρ̂(D̂1) · · · ρ̂(D̂t+1)π
∗(ĉ(A, θv(A))

iγ)
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is represented by the multiple of a cycle that maps one to one to the intersection
of ĉ(A, θv(A))

iγ with the special fibre at a place. The archimedean case follows by
the projection formula for differential forms. □

Corollary 5.4.2. For any i ≤ g + 1 and γ ∈ ĈH
g+1−i

(A) and any squarefree
differential monomial ∂I of order t+ 1, we have

(t+ i)! · ∂I Îγ(∆) = i! · ∂IF̂γ(∆).

We now need to consider partial derivatives which are not squarefree. We treat
them by induction on the multiplicity. The multiplicity of a multiset is the dif-
ference of the cardinality of the multiset and the cardinality of the underlying
set.

Let I be a multiset of rays in Σ̃. As induction hypothesis we assume that

(t + i)! · ∂I Îγ(∆) = i! · ∂IF̂γ(∆) for all differential monomials ∂I of multiplicity
µ − 1 ≥ 0. We need to show the same equality for multiplicity µ. Let τ1, . . . , τr
be rays in Σ̃ forming a cone. By relabeling, we may assume ∂I = ∂k11 . . . ∂krr and

k1 > 1. We may restrict to the case where τ1, . . . , τr form a cone in Σ̃.
We express ∂1 in terms of a Lie derivative Lv for v ∈MR ×R and other partial

derivatives. As e1, . . . , er generate a cone in the simplicial fan Σ̃ they can be
completed to a basis e1, . . . , et+1 of NR ⊕ R. The first vector of the dual basis
satisfies ⟨v, e1⟩ = 1 and ⟨v, ej⟩ = 0 for j = 2, . . . , r. The vector v is of the form∑s

i=1⟨v, ei⟩hi for further prime virtual polytopes hr+1, . . . , hs. We conclude that
Lv =

∑s
i=1⟨v, ei⟩∂i and thus ∂1 = Lv −

∑
j>r⟨v, ei⟩∂j. We get:

∂I = ∂k11 . . . ∂krr =

(
Lv −

∑
j>r

⟨v, ei⟩∂j

)
∂k1−1
1 . . . ∂krr

= Lv∂
k1−1
1 . . . ∂krr −

∑
j>r

⟨v, ei⟩∂k1−1
1 . . . ∂krr ∂j.

We may apply the induction hypothesis to the second term.
We use induction on i to show the following statement analogous to [HKM21,

Lemma 6.5].

Lemma 5.4.3. In the above situation, we have (t+ i)! · Lv Îγ(∆) = i! · LvF̂γ(∆).
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Proof. We prove the statement by two direct computations. Write v = (x, t).

LvIγ(∆) = ∂s|s=0

∫
∆+sx

ĉ(m+ θ(x) + sm)iγdm

= ∂s|s=0

∫
∆

ĉ(m+ sv)iγdm

= ∂s|s=0

∫
∆

i∑
j=0

(
i

j

)
sj ĉ(v)j ĉ(m)i−jγdm

= i

∫
∆

ĉ(v)ĉ(m)i−1γdm = iÎĉ(v)γ(∆).

On the other hand,

LvF̂γ(∆) = ∂s|s=0ρ̂(∆ + sv)t+iγ = ∂s|s=0

t+i∑
j=0

(
t+ i

j

)
sjπ∗ĉ(v)j ρ̂(∆)t+i−jπ∗γ

= (t+ i)ρ̂(∆)t+i−1π∗(ĉ(v)γ)

= (t+ i)Fĉ(v)γ(∆).

By induction hypothesis,

(t+ i− 1)!Îĉ(v)γ(∆) = (i− 1)!F̂ĉ(v)γ(∆).

Hence,

(t+ i)!Lv Îγ(∆) = i(t+ i)!Îĉ(v)γ(∆) = (t+ i)i!F̂ĉ(v)γ(∆) = i!LvF̂γ(∆).

□

This finishes the proof.

6. Semiabelian varieties

In this section we study the semiabelian varieties and their compactifications by
applying the methods developed earlier in the article. This allows us to recover
Chambert-Loir’s computation of the height and the absolute minimum in [Cha00].

The first result is the calculation of the Okounkov body and Boucksom-Chen
transform for semiabelian varieties. Let us recall the setup in the introduction.

Let G be a semiabelian variety over a global field K with abelian quotient A
and split torus part T. Suppose the isomorphism class as a torus bundle is given
by a map c : M → A∨(K̄). Let M denote an ample symmetric line bundle
on A. Endowing it with canonical metrics gives it the structure of an adelically

metrized line bundle M. Let ĥ denote the Néron-Tate height with respect to M
on A(K̄) ⊗ R as well as the induced map on A∨(K̄) ⊗ R along the polarization
A(K̄)⊗R → A∨(K̄)⊗R. Let G be the compactification of G with respect to a fan
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Σ in NR. Let D be an ample toric Cartier divisor on XΣ with Newton polytope
∆ ⊂ MR. After refining Σ, we assume it defines a smooth projective variety. Let
G• be a flag on G of the type considered in Section 4 consisting of a toric part X•
and an abelian part A•.

Lemma 6.0.1. The Okounkov body of G with respect to π∗M+ρ(D) decomposes
as a product ∆×∆A•(M). The Boucksom-Chen transform satisfies

GG•,π∗M+ρ(D)can(m,x) = −ĥ(c(m)).

Proof. By Theorem 4.0.1, the fibers of the Okounkov body over m ∈ ∆ are given
by the Okounkov body ∆A•(M + Q) for some numerically trivial line bundle
Q on A. By [LM09, Proposition 4.1], there is an equality of Okounkov bodies
∆A•(M+Q) = ∆A•(M).

In order to compute the Boucksom-Chen transform, we need to compute the
Boucksom-Chen transformGA•,M+Q(x) for a numerically trivial line bundleQ with

its canonical metric. We note that M+Q is semipositive and that ζess(M+Q) =
ζabs(M+Q), since heights with respect to M+Q are invariant under translation
by the Zariski dense set of torsion points of A. By the results in Section 2.2, the
Boucksom-Chen transform is constant of value

d̂eg((M+Q)g+1)

(g + 1) deg((M+Q)g)
.

Suppose that Q is the image of q ∈ A(K̄) under the polarization morphism A →
A∨. The intersection number d̂eg((M+Q)g+1) is calculated in [Cha00, Théorème

2.5] to be −2 deg(Mg)
g

ĥM(q). This implies

d̂eg((M+Q)g+1)

(g + 1) deg((M+Q)g)
= −ĥ(q) = −ĥ(Q).

□

This can be applied to compute the height of a semiabelian variety.

Theorem C. The height of a compactified semiabelian variety G can be computed
as

hρ(D)can⊗π∗M̄(G) = −(d+ 1)!

∫
∆

ĥ(c(m))dm.
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Proof. By applying the results of Section 2.2 and Lemma 6.0.1, we see that

hρ(D)can⊗π∗M̄(G)

=(d+ 1)!

∫
∆(π∗M+ρ(D))

GG•,π∗M+ρ(D)can(x)dx

=− (d+ 1)!

∫
∆×∆A• (M)

ĥ(c(m))d(m,x)

=− (d+ 1)! deg(M)

g!

∫
∆×∆A• (M)

ĥ(c(m))dm

=− (d+ 1)! deg(M)

g! vol(M)

∫
∆

ĥ(c(m))dm

=− (d+ 1)!

∫
∆

ĥ(c(m))dm.

□

We proceed to study the successive minima of G. Let F(∆)i denote the set of
i-dimensional faces of ∆.

Theorem D. The i-th successive minimum of Ḡ with respect to ρ(D)can ⊗ π∗M̄
satisfies ζi(Ḡ) = ζ1(Ḡ) for i ≤ g + 1. For i ≥ g + 1,

ζi(Ḡ) = − max
F∈F(∆)t+g+1−i

min
m∈F

ĥ(c(m)).

Proof. By Section 3.6 it suffices to study successive minima on each locally closed
subvariety of G corresponding to a torus orbit. Since the functions of the form h∆
are invariant under the action of torsion points on A each subvariety each such
filtration of A has only one step. In particular, the first step in the height filtration
maps surjectively onto A and hence ζi(Ḡ) = ζ1(Ḡ) for i ≤ g + 1.

We start out by noting that the formula holds for ζess by applying Lemma
6.0.1 and Theorem 2.2.1. By this discussion it suffices to show that the essential
minimum of the restriction of π∗M + ρ(D)can to the closed toric subbundle V(σ)
given by the cone σ is −minm∈Fσ ĥ(c(m)), where Fσ is the face dual to σ. For
this it suffices to understand the Boucksom-Chen transform on each closed toric
subbundle.

Let us understand the restriction of the T-Cartier divisor D on X to the closure
of a T-orbit V (σ). By [BPS14, Proposition 3.4.11], its restriction is given by the
divisor on V (σ) corresponding to the face Fσ dual to σ. The restriction of ρ(D)
to the toric subbundle is given precisely by ρ(Fσ). Hence, the Okounkov body
and the Boucksom-Chen transform of the restriction are precisely the restriction
to the preimage of Fσ and the claim follows. Suppose otherwise that mσ ∈ Fσ.
Then, the Cartier divisor associated to Fσ −mσ intersects V (σ) properly. Hence,
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the restriction of ρ(D) to V(σ) is given by ρ(Fσ − mσ) + π∗c(mσ). Hence, the
Okounkov body and the Boucksom-Chen transform of the restriction are (up to
translation) the restriction to the preimage of Fσ and the claim follows. □

Wemay now apply the above for the specific compactification studied in [Cha00].
Let us recall their setup.

Let G be a semiabelian variety with torus Gt
m and associated isomorphisms

N ∼= Zt and M ∼= Zt. Let A denote the abelian quotient of G and M an ample
symmetric line bundle on A inducing a polarization morphism ϕ : A → A∨. Let
e1, . . . , et denote the standard basis of M . Let q1, . . . , qt ∈ A(K̄) satisfying c(ei) =
ϕ(qi). The compactification is taken to be Gt

m ⊂ Pn. If ∆t denotes the unit
simplex, we let ∆ = (t+ 1)∆t −

∑
i ei. The line bundle on G that Chambert-Loir

denotes as L is ρ(∆).

Lemma 6.0.2 (Lemma 4.5 [Cha00]). Let q =
∑

i qi. Then, one has

ζabs(ρ(∆)can + π∗M) = −max{ĥ(q),max
i
ĥ(q − (t+ 1)qi)}.

Proof. By Theorem D, the absolute minimum is given by the negative of max ĥ(c(m))
as m ranges over the vertices of ∆. On the vertices v0, . . . , vt of ∆, one has
c(v0) = ϕ(−q) and c(vi) = ϕ((t+ 1)qi − q) for i = 1, . . . , t. □

Lemma 6.0.3. The height of G can be computed as

hρ(D)can⊗π∗M̄(G) = −(d+ 1) deg(M)

(t+ 1)(t+ 2)

(
ĥ(q) +

t∑
i=1

ĥ(q − (t+ 1)qi)

)
.

Proof. By Theorem C we are reduced to computing the integral
∫
∆
ĥ(c(m)).

Let H be a symmetric multilinear form in r entries on Rt and ∆ a polytope
spanned by v0, . . . , vt. Then, it is proven in [LA01] that∫

∆

H(m, . . . ,m) =
vol(∆)(

t+r
r

) ∑
0≤i1≤···≤ir≤t

H(vi1 , . . . , vir).

Let us specialize to the case that r = 2 and
∑t

i=0 vi = 0. Then we obtain∫
∆

H(m, . . . ,m) =
vol(∆)

(t+ 1)(t+ 2)

t∑
i=0

H(vi, vi)

by subtracting vol(∆)

2(t+r
r )
H(v0+ · · ·+vt, v0+ · · ·+vt) = 0. We apply this to ∆ as in the

setup and H the polarization of ĥ(c(m)). We lastly need the geometric identity
from Theorem 2.2.2. □



44 NUNO HULTBERG

References

[Bal21] François Ballaÿ. “Successive minima and asymptotic slopes in Arakelov
geometry”. In: Compositio Mathematica 157.6 (2021), pp. 1302–1339.
doi: 10.1112/S0010437X21007156.
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[BS24] François Ballaÿ and Mart́ın Sombra. Approximation of adelic di-
visors and equidistribution of small points. 2024. arXiv: 2407.14978
[math.NT]. url: https://arxiv.org/abs/2407.14978.
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