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i

Abstract

This thesis consists of two essentially independent parts.
The first part is concerned with the notion of separable algebras in homotopy theory, specifi-

cally in the context of monoidal stable ∞-categories. Separable algebras are a common gener-
alization of étale algebras in the commutative setting and Azumaya algebras in the noncom-
mutative setting, and in Part I, I study their foundational properties: I prove rigidity results
with respect to the homotopy category which generalize previously known rigidity results,
and I try to bring the well-developed theory from classical algebra to homotopical algebra.

The second part is devoted to the study of topological Hochschild homology (THH) and related
invariants. In the first chapter of Part II, I explain how to rephrase a theorem of Dundas
and McCarthy relating THH and algebraic K-theory in terms of Kaledin and Nikolaus’ trace
theories, and how to use this formalism to extend the theorem to nonconnective ring spectra
and their bimodules, as well as to more general invariants than algebraic K-theory. In the
second chapter of the second part, I explain how to use this result to compute invariants of
THH itself, such as its endomorphism ring spectrum, and variants thereof.
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Resumé

Denne afhandling består af to uafhængige dele.
Den første del handler om konceptet separable algebraer i homotopiteori, specifikt i

monoidale stabile ∞-kategorier. Separable algebraer er en fælles generalisering af étalealge-
braer i den kommutative kontekst, og Azumayaalgebraer i den ikkekommutative kontekst,
og i Del I studerer jeg deres grundlæggende egenskaber: jeg beviser rigiditetssætninger med
hensyn til homotopikategorien som generaliserer tidligere kendte resultater, og jeg prøver at
udvide den veludviklede teori fra klassisk algebra op til homotopisk algebra.

Den anden del er dedikeret til studiet af topologisk Hochschild homologi (THH) og relaterede
invarianter. I første kapitel af Del II, forklarer jeg hvordan man kan interpretere en sætning af
Dundas og McCarthy der relaterer THH og algebraisk K-teori ud fra perspektivet af Kaledin
og Nikolaus’ spor teorier, og hvordan man kan bruge deres formalisme til at udvide sætnin-
gen til ikkekonnektive ringspektre og bimoduler såvel som til mere generelle invarianter end
algebraisk K-teori. I andet kapitel af Del II, forklarer jeg hvordan man kan bruge dette resul-
tat til at beregne invarianter af THH selv, som dens endomorfismeringspektrum, og varianter
deraf.
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Introduction

Contextual overview
Both parts of this thesis fit into the general framework of homotopical algebra2, that is, the
algebra of structures “up to coherent homotopy” - this means that equality is replaced with
homotopy, and more precisely, axioms of algebraic structures are replaced by systems of
homotopies that are given as part of the structure. This kind of algebra has two distinct but
related origins: algebraic topology and category theory.

In category theory, this can be concretely seen in structures like (symmetric) monoidal
categories, where properties like classical associativity and commutativity are replaced by
associators and commutators which satisfy possibly subtle coherence conditions.

In algebraic topology, cohomology theories are powerful tools to study spaces and the
Brown representability theorem guarantees that they are all represented by spectra. Often,
additional structure on these cohomology theories is reflected in additional structure on these
spectra. For example, multiplicative cohomology theories, that is, cohomology theories with
a cup product, are often represented by ring spectra, or even commutative ring spectra. These
are analogues of rings and commutative rings, where associativity and commutativity con-
straints are only “up to homotopy” - again, this means that specific homotopies witnessing
associativity and commutativity are given as part of the structure. “Brave new algebra” is
the term coined by Waldhausen to describe the kind of algebra where spectra and variants
thereof (e.g. multiplicative structures on spectra) take the place of abelian groups, though
Quillen’s “homotopical algebra” is probably a more descriptive name.

Part I, about the theory of separable algebras, is part of the by-now-classical trend of tak-
ing structures and concepts from classical algebra, and making them homotopical. Separable
algebras are a classical notion, introduced by Auslander and Goldman in [AG60], that en-
compasses both étale algebras in their commutative variant, and Azumaya algebras in their
noncommutative variant. My work here draws inspiration from, and is related to many clas-
sical approaches to both of these notions.

In the commutative setting, the work of Lurie made étale algebras a natural part of homo-
topical algebra - in [Lur12, Section 7.5], Lurie proves that many of the classical properties of
étale algebras extend to the setting of commutative ring spectra, and in fact, the latter often
reduce to the classical properties through deformation theory. In Lurie’s setting, the “derived
direction” (as recorded through, e.g. higher homotopy groups) is seen as an infinitesimal
thickening of classical algebra. This setting is extremely powerful and has been very suc-
cessful in making (connective) spectral algebraic geometry a workable theory, more or less as
understandable as classical algebraic geometry.

Another source of inspiration for my work, and indeed my original motivation for it, is
Balmer’s work on tensor-triangulated (henceforth tt-) geometry, wherein he studies a tt-

2The term “higher algebra” is often used, but “homotopical” seems more accurate and more descriptive.
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category by means of what is known as its “Balmer spectrum”. Just as in the classical sit-
uation, where the étale theory of a scheme contains information about the geometry of that
scheme, the “étale” theory of a tt-category, as encoded through its commutative separable
algebras, contains information about the geometry of that category.

Both of these approaches to what “étale” should mean, while powerful, suffer from prob-
lems, solved partially by the other. On the one hand, Lurie’s approach to étale algebras
works best in the ∞-category of spectra, or more generally in a stable symmetric monoidal
∞-category equipped with a t-structure, and is very largely based on the intuition that ho-
motopy groups encode an infinitesimal thickening of π0. This kind of intuition tends to fail
in genuinely non-connective settings, such as chromatically localized categories of spectra.
In particular, key features and important examples are not covered by this theory - such as
my favourite Galois extension: KO→ KU.

On the other hand, Balmer’s approach is inherently geometric, and does not put such a
heavy weight on homotopy groups. Nonetheless, unlike Lurie’s flexible ∞-categorical ap-
proach, Balmer works in the setting of tt-categories, where many coherence problems arise,
and are best solved using ∞-categories.

In Part I of this thesis, I adress the latter issue by explaining in what precise sense the étale
theory of a stably symmetric monoidal ∞-category is controlled by its homotopy category,
and in what sense the work of Balmer naturally upgrades to the setting of stable ∞-categories,
in a sense “bridging the gap” between those two approaches.

In the noncommutative setting, separable algebras are best thought of as generalizations
of Azumaya algebras. There is an increasing body of work on “derived” or homotopical
Azumaya algebras, started by Toën’s work in [Toë12], and followed up on in the spectral case
for example by Baker–Richter–Szymik [BRS12], Antieau–Gepner [AG14] and many others
(see e.g. [GL16] and [HL17] for work in the nonconnective setting). The original connection
between (classical) Azumaya algebras and (classical) separable algebras dates back to 1960
[AG60] and another goal of Part I is to clarify the extent to which this connection extends
to this newer setting of homotopical algebra. My work in this direction is more incomplete,
although I prove that in many relatively general cases the classical connections extend to
homotopical algebra.

Part II is about topological Hochschild homology (henceforth THH). This is an invariant
of stable ∞-categories, a version of classical Hochschild homology “linear over the sphere
spectrum S”. In this part, I try to treat THH as a kind of cohomology theory, and explore a
natural question from that perspective: what are the natural operations of this cohomology
theory ? To adress this question, I first extend on a classical theorem of Dundas and McCarthy
[DM94] relating THH to algebraic K-theory. I extend it by proving a kind of uniqueness
theorem concerning THH, which immediately implies the Dundas–McCarthy theorem, as
well as variants thereof where algebraic K-theory is allowed to be replaced by more general
“cohomology theories”, more specifically, by more general localizing invariants.

This extension uses the formalism of trace theories, as introduced by Kaledin [Kal20]
and Nikolaus [HS19]. This formalism encodes the cyclic invariance of THH, namely the
fundamental property that for f : C → D, g : D → C, we have canonical equivalences
THH(C; g f ) ≃ THH(D; f g). After setting up the basics of this theory which has not been
recorded in the ∞-categorical setting yet beyond the Oberwolfach report [HS19], I prove a
classification result for certain trace theories, and use this to prove the desired extension of
the Dundas–McCarthy theorem. Finally, I use this to explore the question of operations on
THH, and fully answer some of its variants.
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Technical overview
This thesis consists of two independent parts, each consisting of three chapters.

• Part I is a variation on my preprint [Ram23]: the sections in Chapter 1 corresponds
to Sections 1-5 in [Ram23], in particular Sections 4 and 5 are reproductions of these
sections with little to no modifications, while Sections 1-3 are mostly reproduced from
loc. cit. with modifications that we discuss below.

• Part II is new material, though its second chapter has been presented in a talk [Ram24].

We now move on to a more detailed overview of the contents of this thesis. All of the work
in this thesis takes place in the context of ∞-categories, as thoroughly developed in Lurie’s
[Lur09; Lur12].

Part I

Part I is a slight variation on my preprint [Ram23]. Let me mention the few changes from
that preprint: the most significant one is that while in [Ram23] I work with a symmetric
monoidal ∞-category from the start, many of the results work in greater generality. Namely,
in this thesis, I work in the setting of an Em-monoidal category, for 1 ≤ m ≤ ∞ (although the
specific m may vary from result to result): all of the noncommutative results from [Ram23]
work for any m, and most of the commutative results already work with m = 3. This change
may be relevant for future applications3.

Apart from that, the other changes are in the amount of content: the preprint [Ram23]
has varied material with sometimes “separability” as the only common theme – I have thus
decided to split up this paper in future revisions, and to only include in this thesis the foun-
dations of the theory, leaving for future work the relationship between separable algebras
and Hochschild homology, as well as their relationship to traces.

They will of course be stated appropriately in the relevant sections, but let me state here
the main results of Part I.

The first key result is the following theorem in the associative case:

Theorem A. Let C be an additively monoidal4 ∞-category. Given an algebra A in ho(C), i.e.
a homotopy algebra, which is separable in ho(C), the moduli space

Alg(C)≃ ×Alg(ho(C))≃ {A}

of lifts of A to a homotopy coherent algebra in C is simply-connected (and in particular non-
empty). Furthermore, any lift Ã of A is separable as an algebra in C.

In this situation, the canonical functor

ho(LModÃ(C))→ LModA(ho(C))

is an equivalence.
Finally, for any R ∈ Alg(C), the canonical map

π0 mapAlg(C)(Ã, R)→ homAlg(ho(C))(A, R)

is an isomorphism.

3Forthcoming work of Burklund–Clausen–Levy seems to involve finite m’s.
4This means that C is additive and the tensor product commutes with finite direct sums in each variable.
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Remark 0.0.1. The simple-connectedness of the moduli space of lifts cannot be improved to
a contractibility statement, cf. Example 1.2.29. Similarly, the π0-statement at the end cannot
be improved to a space level statement, even if Ã is commutative and the target R is sep-
arable, cf. Example 1.3.32. See however below for the case where the target is (homotopy)
commutative. ◁

This theorem simply gathers Theorem 1.2.16 , Proposition 1.2.9, Theorem 1.2.6 and Theo-
rem 1.2.14 in a single statement.

In the commutative case, both the obstructions to contractibility and to discreteness vanish,
and I prove:

Theorem B. Let C be an additively Em-monoidal ∞-category, 3 ≤ m ≤ ∞ and let
A ∈ Alg(ho(C)), which is homotopy separable and homotopy commutative. In this case,
the moduli space of lifts to an associative algebra in C is contractible. More generally, for any
1 ≤ d ≤ m, the moduli space

AlgEd
(C)≃ ×AlgEd

(ho(C))≃ {A}

of lifts to an Ed-algebra in C is contractible - we let Ã denote the unique lift.
Furthermore, in this case, for any algebra R which is homotopy commutative, the canonical

map
mapAlg(C)(Ã, R)→ homAlg(ho(C))(A, R)

is an equivalence - the source is discrete.
If R ∈ AlgEd

(C), the same holds with mapAlgEd
(C)(Ã, R) in place of Alg(C).

I have again stated it as a single theorem, but it is a combination of Proposition 1.3.11,
Theorem 1.3.19, Corollary 1.3.33, Corollary 1.3.39.

As a sample application of these results, in Section 1.5.4, I use Ravenel and Wilson’s com-
putations from [RW80] to prove (a corrected version of) Sati and Westerland’s main results
from [SW15]. In some sense, my proof is simpler as it does not involve any obstruction theory.

These results are reminiscent of the Goerss–Hopkins–Miller theorem [GH05], and although
Morava E-theory is not separable in K(n)-local spectra, I prove that it is close enough to being
separable that some of my results still apply to it. In more detail, I introduce the notion of
an (homotopy) ind-separable algebra in Section 1.4, and prove an analogue of Theorem B for
ind-separable algebras (though subject to some caveats). I further prove, using as only input
a computation of π∗(LK(n)(E ⊗ E)), that Morava E-theory is homotopy ind-separable, and
I thus recover the Goerss–Hopkins–Miller theorem (I prove a more precise version, also for
morphisms, cf. Corollary 1.4.53):

Theorem C. Let E = E(k, G) be a Morava E-theory, where k is a perfect field of characteristic
p and G a formal group over k. For any d ≥ 1, the moduli space AlgEd

(Sp)≃×Alg(ho(Sp))≃ {E}
is contractible.

Remark 0.0.2. When d = 1, this is the Hopkins-Miller theorem, and when d = ∞, this is its
extension to the Goerss-Hopkins-Miller theorem. This result, for intermediary values of d, is
well-known to experts, but does not seem to have been recorded in the literature. ◁

Remark 0.0.3. My proof of this theorem is also based on obstruction theory - I refer to Re-
mark 1.4.41 for a discussion of the difference between my proof and previous proofs. ◁
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In Chapter 2 of Part I, I study Auslander-Goldman theory in the context of homotopical
algebra. In this direction, my results are only partial. A special case of what I prove is:

Theorem D. Let R be a commutative ring spectrum satisfying the assumptions of Theo-
rem 2.1.14. In this case, any dualizable central separable algebra over R is Azumaya.

Conversely, in any additive presentably symmetric monoidal ∞-category C, an Azumaya
algebra A is separable if and only if its unit 1C → A admits a retraction.

This is a combination of Theorem 2.1.14 and Proposition 2.1.10.

Remark 0.0.4. The assumptions of Theorem 2.1.14 cover all connective ring spectra, and
all ring spectra “coming from chromatic homotopy theory”, but they are nonetheless a bit
restrictive. ◁

I also study the question of whether centers of separable algebras are separable, although
I only reach results in more restricted generality - the following is Theorem 2.2.1 in the body
of the text:

Theorem E. Let R be a connective commutative ring spectrum and let A be an almost perfect
R-algebra. If A is separable, then so is its center.

The same holds for separable algebras in K(n)-local E-modules, where E is Morava E-
theory, and for separable algebras in K(n)-local spectra.

Part II

Part II of the thesis is more recent work that has not appeared in writing yet. It starts with
a review of the notion of “trace theories”, introduced by Kaledin [Kal20] and later Nikolaus
in the context of ∞-categories [HS19]. My first main result is a classification of cocontinuous
trace theories (see Section 4.1 for definitions):

Theorem F. Evaluation at (Sp, idSp) induces, for every cocomplete stable ∞-category E , an
equivalence

TrThyL(E)→ EBS1

between E -valued (fiberwise) cocontinuous trace theories and objects of E with an S1-action.
The inverse to that equivalence is implemented by E 7→ THH ⊗ E with a certain trace

theory structure.

I further prove, following Nikolaus, that localizing invariants give rise to trace theories by
taking Goodwillie derivatives, or linearizations. I deduce from this a nonconnective exten-
sion of the Dundas–McCarthy theorem [DM94], as well as a generalization to general finitary
localizing invariants (see Section 4.1 for definitions):

Theorem G. Let E be a finitary localizing invariant with values in E , a cocomplete stable
∞-category. The object XE := P1Ecyc(Sp, idSp) admits a canonical S1-action, and with this we
have an equivalence of trace theories:

P1Ecyc ≃ THH⊗ XE

In fact, I further explain how this can be viewed as an equivalence of cyclotomic spectra
when we plug in objects of the form (C, idC), and more generally, of polygonic spectra.

Using the case where E = K is (nonconnective) algebraic K-theory, which is simply a non-
connective extension of the classical Dundas–McCarthy theorem [DM94], I compute variants
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of “endomorphisms of THH”. Indeed, the Dundas–McCarthy theorem can be interpreted as
giving a “presentation” of THH in terms of functors of the form K(Funex(A,−)), maps out
of which are easy to describe.

As a plain functor or a symmetric monoidal functor I obtain:

Theorem H. As a plain functor THH : Catperf → Sp, the S1-action induces an equivalence

S[S1] ≃ end(THH)

As a symmetric monoidal functor, there is an equivalence

MapCAlg(Sp)(S
S1

, S) ≃ End⊗(THH)

and the space MapCAlg(Sp)(S
S1

, S) can be described.

I also obtain k-linear versions which can be completely computed when THH(k) is well-
understood, e.g. for k = Fp:

Theorem I. As a functor HHk : Catperf
k → Modk, there is a canonical equivalence

endk⊗THH(k)(k, k)[S1] ≃ end(HHk)

Finally, I explore variants of these results when THH is regarded as a functor
AlgO(Catperf) → Sp. After rationalization, or T(n)-localization for any height n and im-
plicit prime, I give a complete description of the endomorphisms of THH, but I also show
that the corresponding description fails integrally. A summary of my results in this direction
is the following, where L denotes either T(n) localization for some height n ≥ 1 and some
implicit prime p, or rationalization - here, γk denotes the (unique up to conjugacy) length k
cycle in Σk, andO(k)γk denotes the fixed points ofO(k) for the Z-action induced by γk, with
its residual Ck-action (coming from the fact that Ck is the centralizer of γk in Σk):

Theorem J. For any single-colored ∞-operad O, there is a canonical map⊕
k≥1

S[(O(k)γk × S1)hCk
]→ endFun(AlgO(Catperf),Sp)(THH)

such that :

(i) For any finite set S ⊂N≥1, the restriction to
⊕

k∈S admits a splitting;
(ii) The induced map on L-localization, specifically:

L(
⊕
k≥1

S[(O(k)γk × S1)hCk
])→ endFun(AlgO(Catperf),Sp)(LTHH)

is an equivalence.

One might wonder whether the second item is optimal - namely, whether the map is an
equivalence integrally. I prove that it is not so: for example, we will see that for every prime
p, mapFun(Catperf,Sp)(THH, THHhCp) is a direct summand of endFun(CAlg(Catperf),Sp)(THH), and

that it is equivalent to S[S1/Cp]⊕ΩSp[S1/Cp], where Sp is the p-complete sphere. I do not
know a full description in the integral case, but believe that, with more work, my methods
could in principle provide a full answer.
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Relation to other work
As already mentioned, Part I is inspired by, and analogous to Lurie’s study of étale algebras
in [Lur12, Section 7.5]. As proved in Proposition 1.3.53, separable algebras are more general
than étale algebras, which makes my results in some sense more general (they apply, for
example, to all finite Galois extensions); but it is important to note that in general, we do not
use (or indeed, have!) homotopy groups which gives the results a slightly different flavour,
and they are not necessarily directly comparable to Lurie’s.

Some of the foundational results of Part I are also closely related to similar results in the
work of Dell’Ambrogio–Sanders (cf. [DS18, Theorem 1.6]), as well as that of Naumann and
Pol [NP23], the latter of which was developed mostly independently and approximately si-
multaneously.

The notion of trace theory introduced in Part II goes back to Kaledin [Kal15], and was re-
introduced in homotopy theory by Nikolaus [HS19], although the latter work has not yet ap-
peared in print beyond loc. cit.. The observation that this formalism can be used to prove the
nonconnective extension of the Dundas–McCarthy theorem was already known to Nikolaus,
and will also appear in a slightly different form in work of Harpaz, Nikolaus and Saunier
[HNSb].

However the classification of cocontinuous trace theories and its consequence for general
localizing invariants seems to be new. The use of the Dundas–McCarthy theorem to compute
endomorphisms of THH was independently discovered by Sasha Efimov and announced in
a lecture series in Chicago.

The notion of trace theories is closely related to that of shadows, due to Ponto [Pon07],
which was made ∞-categorical by Hess–Rasekh [HR21a]. While I do not do so in this thesis,
I intend to prove in future work that the two formalisms, while definitionally different, are
in some sense equivalent.

Conventions
We work with ∞-categories throughout, as developed by Lurie in [Lur09; Lur12]. Categorical
notions (functors, subcategories etc.) are to be understood in this context unless explicitly
stated.
S denotes the ∞-category of spaces5, Sp the ∞-category of spectra, Cat that of (small)

∞-categories (Ĉat possibly denoting the ∞-category of large ∞-categories), PrL that of pre-
sentable ∞-categories and left adjoints between them, as well as its stable variant PrL

st. FunL

denotes the ∞-category of cocontinuous functors (equivalently, left adjoints, as we only con-
sider presentable ∞-categories). We use pt for the terminal ∞-category (or space), and S for
the sphere spectrum. Abelian groups are often implicitly considered as Eilenberg-MacLane
spectra, and we do not distinguish notationally between the two.

Catex denotes the ∞-category of small stable ∞-categories and exact functors, and Catperf

the full subcategory thereof spanned by idempotent-complete ∞-categories. We let Funex

denote the ∞-category of exact functors.
∆ always denotes the usual simplex category, and we use [n] and ∆n interchangeably to

denote the n-simplex. “Geometric realization” is used to mean “colimit over ∆op”.
Throughout, Map denotes mapping spaces, while map is reserved for mapping spectra

in stable ∞-categories. In additive ∞-categories, we may consider Map as a commutative

5Or homotopy types, ∞-groupoids, anima,...
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group6 in S , or equivalently a connective spectrum - thus, in a stable ∞-category, we have
Map = map≥0. We use hom for hom sets in 1-categories, as well as for enriched mapping
objects, e.g. internal homs in closed monoidal ∞-categories.

When drawing adjunctions, we draw the left adjoint on top, and the right adjoint on the
bottom. The right adjoint of a functor f , if it exists, is denoted f R, and similarly, the left
adjoint of f , if it exists, is denoted f L.

We follow the convention from [Lur09] for the meaning of “cofinal”, and use “initial” for
the dual notion.

For an algebra A in a monoidal ∞-category C, we use LModA(C) (resp. RModA(C)) to
denote the ∞-category of left (resp. right) A-modules in C. We try to be careful and distin-
guish left and right modules, except when A is commutative, in which case we use ModA(C)
to denote E∞-A-modules, the ∞-category of which is equivalent to (say) left A-modules.
If C is clear from context, we may drop it from notation and simply write LModA (resp.
RModA, ModA).

6Also known as E∞-group.
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Introduction to Part I
In classical algebra, separable algebras, introduced by Auslander and Goldman in [AG60],
are a generalization to arbitrary commutative rings of the classical notion of separable field
extensions. They are R-algebras A for which the multiplication map A⊗R Aop → A admits
an (A, A)-bimodule section. Commutative separable algebras are closely related to étale al-
gebras, while separable algebras whose center is the base commutative ring are also known
as Azumaya algebras, introduced in the context of the Brauer group.

A typical trend in homotopical algebra is the attempt to mirror constructions and notions
from classical algebra to “derived” contexts, and see what parts of the theory carry over,
and what changes. For example, in [Bal11], Balmer initiated the study of separable algebras
in tensor-triangulated categories (henceforth, tt-categories). A surprising feature of these
algebras in this context is that they admit a good notion of module categories, even at the
unstructured level of triangulated categories. In many situations, these module categories
recover the “expected” result. For example, if A is an étale R-algebra, then modules over A
in the derived category of R recover the derived category of A, a surprising result which is
known to be wrong when A is a general R-algebra.

A natural source of tt-categories (to some extent, the only source of “natural” tt-categories)
is stably symmetric monoidal ∞-categories: given any such gadget C, its homotopy cate-
gory ho(C) has a natural structure of a tt-category (and in fact, all the “enhancements” that
appear in [Bal11, Section 5] - which, from this perspective, are trying to encode as extra struc-
ture on ho(C) the homotopical data contained in C - arise in this way). From this point of
view, it makes sense to wonder what parts of the tensor-triangulated story extend to the ∞-
categorical case, and also, what parts of the tt-story are (at least morally) explained by the
∞-story.

The goal of Part I of this thesis is to answer some of these questions and to clarify the
connection between separable algebras in C, and separable algebras in ho(C). Chapter 1 is
devoted to exactly this: there, I argue that separable algebras in C and their modules are
mostly controlled by the homotopy category ho(C), and even more so in the commutative
setting. In particular, I answer a folk question by proving that the distinction between sep-
arable algebras and homotopy separable homotopy algebras is mild in the associative case,
and inexistent in the commutative case (Theorem 1.2.16 and Theorem 1.3.19).

I further introduce a variant of separability that works in the commutative case in more “in-
finitary” situations, which I call ind-separability, and prove similar results about this variant;
among other things leading to a somewhat new proof of the Goerss–Hopkins–Miller theorem
(Corollary 1.4.53 - see Remark 1.4.41 for a discussion of the sense of the word “new”).

Beyond their nice behaviour with respect to homotopy categories (or more generally, tt-
categories), separable algebras are interesting in their own right: as we mentioned before,
separability can be seen as an analogue of étale-ness. For example, Balmer proves in [Bal16]
that étale maps of schemes induce separable algebras, and Neeman proves in [Nee18] that
over a noetherian scheme, this is not far from an exhaustive list of commutative separable al-
gebras. See also the recent work of Naumann and Pol [NP23] for another comparison of sep-
arable commutative algebras and another notion of “(finite) étale” due to Mathew [Mat16].

Now, classically, separable algebras can be neatly organized in the following way: if A is
a separable algebra over R, its center C is separable over R and commutative, hence “étale”,
and A is separable over C and central, and hence Azumaya. Thus, separable algebras can
be studied by studying separately the commutative, slightly more geometric case, and the
central case, closely related to Brauer groups. In Chapter 2, I try to replicate this story, orig-
inally due to Auslander and Goldman [AG60] in the case of ring spectra. Along the way, I
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correct a mistake in [BRS12], namely I prove that not all Azumaya algebras are separable by
giving a number of examples, and formulate a criterion for when a given Azumaya algebra
is separable.

Local conventions

On top of the global conventions outlined at the beginning of the thesis, we have the follow-
ing conventions.

• Throughout this part, C will denote a monoidal ∞-category, satisfying various extra
conditions. When we say that an ∞-category is “(semi)additively” (resp. “stably”,
“presentably”) monoidal, we mean that it is a monoidal ∞-category whose underlying
∞-category is (semi)additive (resp. stable, presentable), and where the tensor product
is compatible with this structure, that is, commutes with coproducts in each variable
(resp. finite colimits, all colimits).

• If there is no specified ∞-operad, the word “algebra” (resp. the notation Alg) means
“associative or equivalently E1-algebra” (resp. denotes the ∞-category of associative
algebras).

• We use the Dunn additivity theorem without comment - for our purposes, we might as
well consider that the ∞-operad Em is defined as E⊗m

1 , where⊗ denotes the Boardman–
Vogt tensor product.

• Often, we will consider an Em-monoidal ∞-category C, and will consider algebras
for certain ∞-operads O over Em. In [Lur12], Lurie denotes these ∞-categories by
AlgO/Em

(C). For simplicity of notation, we will simply write AlgO(C), the map
O → Em always being clear from context.

• We use ho(C) to denote the homotopy category of an ∞-category. When X is an object
of C (possibly with some extra structure), we write hX for the same object viewed as
an object of ho(C) (with the appropriate extra structure, in ho(C)). We append the
word “homotopy” to a type of structure to mean “that type of structure, considered in
ho(C)”. For example, a “homotopy algebra” is an algebra in ho(C).

• A common trick consists in embedding a small ∞-category (possibly with some extra
structure) in its presheaf ∞-category (or a variant thereof) to reduce to proving state-
ments about presentable ∞-categories, or simply ∞-categories with suitable colimits.
This is usually compatible with multiplicative structures, essentially by [Lur12, Section
4.8.1] (see, e.g., [Lur12, Proposition 4.8.1.10]). We will usually simply say “up to adding
enough colimits” to mean “without loss of generality, assume C has these colimits”, i.e.,
to refer to this trick.

• We use ABiModB(C) to denote (A, B)-bimodules in C, and BiModA(C) to denote
(A, A)-bimodules in C.

• When there is a t-structure floating around, e.g. the standard one in Sp, we use τ≤n

(resp. τ≥n, π♡0 or π0) to denote the truncation functor7 (resp. the other truncation
functor, the π0 relative to the given t-structure). We append categories with a ♡ to
indicate that we are considering suitable subcategories of objects in the heart, e.g.
CAlg(C)♡ := CAlg(C)×C C♡.

7Everything is in homological conventions.
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Chapter 1

Foundations of separability

Introduction
The goal of this chapter is to discuss the relationship between separable algebras in a
monoidal ∞-category C and its homotopy category. As mentioned in the introduction to
Part I, I do this to conceptually explain the good behaviour of separable algebras in tt-
categories, as well as to provide lifts of most constructions and results concerning separa-
ble algebras in tt-categories arising as homotopy categories of (symmetric) monoidal stable
∞-categories.

After setting up the definitions and the basics of the theory, I start proving rigidity results
for separable algebras. The first such rigidity theorem is Theorem A:

Theorem. Let C be an additively monoidal ∞-category. Given an algebra A in ho(C), i.e. a
homotopy algebra, which is separable in ho(C), the moduli space

Alg(C)≃ ×Alg(ho(C))≃ {A}

of lifts of A to a homotopy coherent algebra in C is simply-connected (and in particular non-
empty). Furthermore, any lift Ã of A is separable as an algebra in C.

In this situation, the canonical functor

ho(LModÃ(C))→ LModA(ho(C))

is an equivalence.
Finally, for any R ∈ Alg(C), the canonical map

π0 mapAlg(C)(Ã, R)→ homAlg(ho(C))(A, R)

is an isomorphism.

Remark 1.0.1. We already mentioned that the simple-connectedness of the moduli space of
lifts cannot be improved to a contractibility statement, cf. Example 1.2.29 and similarly, the
π0-statement at the end cannot be improved to a space level statement, even if Ã is commu-
tative and the target R is separable, cf. Example 1.3.32. ◁

This theorem and the following remark show that in this generality the comparison be-
tween the tt-setting and the stable ∞-setting, while reasonably good, is not perfect.

In a later section of this chapter, I study the commutative case. There, the situation is much
better: the obstructions to contractibility and discreteness respectively vanish, so that the
comparison becomes essentially perfect. This can be encapsulated in Theorem B:
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Theorem. Let C be an additively Em-monoidal ∞-category, 3 ≤ m ≤ ∞ and let
A ∈ Alg(ho(C)), which is homotopy separable and homotopy commutative. In this case,
the moduli space of lifts to an associative algebra in C is contractible. More generally, for any
1 ≤ d ≤ m, the moduli space

AlgEd
(C)≃ ×AlgEd

(ho(C))≃ {A}

of lifts to an Ed-algebra in C is contractible - let Ã denote the unique lift.
Furthermore, in this case, for any algebra R which is homotopy commutative, the canonical

map
mapAlg(C)(Ã, R)→ homAlg(ho(C))(A, R)

is an equivalence - the source is discrete.
If R ∈ AlgEd

(C), the same holds with mapAlgEd
(C)(Ã, R) in place of Alg(C).

As these results are reminiscent of the Goerss–Hopkins–Miller theorem [GH05], we also
spend some time after the commutative section to discuss the relation with Morava E-theory
- we caution the reader here that even in the ∞-category of K(n)-local spectra, Morava
E-theory is not separable. However it does satisfy a weaker property which I call “ind-
separability” and briefly study.

Sectionwise outline

• In Section 1.1, I outline the basics of the theory of separable algebras: definitions, sta-
bility properties and the basic properties of their module categories;

• In Section 1.2, I start comparing things with the homotopy category. This is where I
prove Theorem A. Most of the proofs are relatively elementary, except for the proof
that the moduli space of lifts is non-empty, where I use some deformation theory of
∞-categories;

• In Section 1.3, I move on to the commutative side of the picture, and I prove Theorem B.
In this section, we also study the analogy between separable algebras and étale algebras
in the sense of Lurie;

• In Section 1.4, I study a variant of separability, which I call ind-separability, and use it
to recover the Goerss–Hopkins–Miller theorem, namely Theorem C;

• Finally, in Section 1.5, I gather a number of examples of separable algebras, to indicate
the wealth of examples despite how strong this condition is.

1.1 Generalities
The goal of this section is to set the stage: we define separable algebras, and gather some of
their basic properties.

Notation 1.1.1. Throughout this section, C is a monoidal ∞-category, with unit 1 and tensor
product denoted by ⊗. ◁

Following [Bal11], we define:

Definition 1.1.2. An algebra A ∈ Alg(C) is said to be separable if the multiplication map,
A⊗ Aop → A admits a section s, as a map of A-bimodules1.

1The notation A⊗ Aop is potentially confusing if C is only monoidal. Note that in this case, we cannot describe
bimodules as modules over a certain ring, and really have to stick to bimodules. I hope that this notational
convention does not bring confusion.
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In this case, we call the composite 1 → A s−→ A ⊗ Aop, or sometimes the section
s itself, a separability idempotent. Equivalently, this is an A-bimodule idempotent map
A⊗ Aop → A⊗ Aop. ◁

Variant 1.1.3. An algebra A ∈ Alg(C) is said to be homotopy separable if it is separable, as an
algebra in ho(C).

If we start with an algebra A ∈ Alg(ho(C)) directly, we will say that we have a homotopy
separable homotopy algebra.

Variant 1.1.4. Suppose C admits geometric realizations which are compatible with the tensor
product. In particular, C admits relative tensor products.

Suppose further that C is symmetric monoidal and let R ∈ CAlg(C) be a commutative
algebra, and A ∈ Alg(ModR(C)) be an R-algebra. We say A is separable over R if A is
separable as an algebra in ModR(C). If A ∈ CAlg(ModR(C)), we will say that it is a separable
extension of R. We will use more careful terminology if C is only Em-monoidal, for some finite
m.

Remark 1.1.5. Assume C is symmetric monoidal. Recall that an algebra is said to be smooth
if A is right or left dualizable over A⊗ Aop [Lur12, Definition 4.6.4.13.]. If C is idempotent-
complete, dualizable objects are closed under retracts, and so a separable algebra is smooth.

One can therefore think of separability as a strenghtening of smoothness. ◁

1.1.1 Basic properties

Separable algebras enjoy a number of closure properties:

Lemma 1.1.6. Let A, B ∈ Alg(C) be algebras.

(i) The unit of C, 1, is separable; more generally if A is an idempotent algebra [Lur12,
Definition 4.8.2.8.], then it is separable.

(ii) Suppose C admits geometric realizations, compatible with the tensor product, and sup-
pose that the map B⊗A B→ B is an equivalence. If A is separable, then so is B.

(iii) Suppose C is semiadditively monoidal. The product A× B is separable if and only if
both A and B are.

(iv) If there is a retraction A→ B→ A in Alg(C), and B is separable, then so is A.
(v) If f : C→ D is a monoidal functor, and A is separable, then so is f (A).

(vi) If C is E2-monoidal, Alg(C) acquires a tensor product. In this case, if A and B are
separable, then so is A⊗ B.

(vii) If C is E2-monoidal, algebras have opposite algebras2 If A is separable, then so is Aop

Proof. (i) is clear, as the multiplication map A ⊗ Aop → A of an idempotent algebra is an
equivalence (on underlying objects, and hence as bimodules).

For (ii), observe that basechange along f induces a functor BiModA → BiModB that sends
A⊗ Aop to B⊗ Bop by design, and the bimodule A to the bimodule

B⊗A A⊗A B ≃ B⊗A B ≃ B

where the last equivalence is by assumption. Further, the multiplication map is sent to the
multiplication map, and the existence of a section in the source guarantees the existence of a
section in the target.

2In fact there are two ways of doing so, depending on a chosen orientation. What we say is valid for both.
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For one direction of (iii), we note that the multiplication map

(A× B)⊗ (A× B)op → A× B

factors as
(A× B)⊗ (A× B)op → (A⊗ Aop)× (B⊗ Bop)→ A× B

If A, B are separable, then the second map has a bimodule section, and so the claim follows
from the fact that, in the semiadditive case, with no assumption on A, B, the first map also
has a bimodule section.

Conversely, notice that in the semiadditive case, the projections A × B → A (resp. B)
satisfy the assumption of (ii) so that, by (ii), if A× B is separable, then so are A and B.

For (iv), let A i−→ B r−→ A denote a retraction diagram. We view B-bimodules as A-

bimodules via restriction along i. Then, A i−→ B s−→ B⊗ Bop r⊗rop
−−−→ A⊗ Aop is an A-bimodule

map, where s is the separability idempotent of B. Furthermore, the composite

A i−→ B s−→ B⊗ Bop r⊗rop
−−−→ A⊗ Aop → A

is equivalent to

A i−→ B s−→ B⊗ Bop → B r−→ A

because r is an algebra map, and thus, because s is a separability idempotent, to A→ B→ A
and thus, because we started with a retraction diagram, to idA, and so we are done.

(v) is clear.
(vi) and (vii) follow from (v) applied to the monoidal functors ⊗ : C× C → C (using that

an algebra (A, B) ∈ Alg(C×D) ≃ Alg(C)×Alg(D) is separable if and only if both A, B are)
and Crev ≃ C respectively.

Example 1.1.7. Applying (v) to the canonical functor C → ho(C), one finds that if A is a
separable algebra, then so is hA, its underlying homotopy algebra. ◁

Remark 1.1.8. It follows from (vi) and (vii) that if C is E2-monoidal and A ∈ Alg(C) is
separable, then so is A⊗ Aop. ◁

Remark 1.1.9. Item (v) really requires a monoidal functor, and not just a lax monoidal one. ◁

Remark 1.1.10. We will see in Proposition 2.2.5, that Item (v) has a form of converse in the
commutative case, if we assume that f is more than conservative, rather part of a limit de-
composition of C. ◁

Remark 1.1.11. The condition in Item (ii) implies that A → B is an epimorphism in Alg(C).
We do not know whether being an epimorphism is sufficient. Note that if C is furthermore
stable, then this condition is equivalent to being an epimorphism. ◁

Lemma 1.1.12. Suppose C is semi-additively monoidal. Then an algebra A ∈ Alg(C) is
separable if and only if A is (finitely generated) projective as an A-bimodule, i.e. if and only
if there exists some finite n and a retraction of (A⊗ Aop)n onto A.

Proof. Clearly separability implies the projectivity condition, with n = 1.

For the converse, fix a retraction diagram A i−→ (A⊗ Aop)n p−→ A. Write p as (pi)i, where
each pi : A⊗ Aop → A is p on the ith summand.
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Observe that the unit map 1 → A lifts through A ⊗ Aop µ−→ A, so that each
pi : A⊗ Aop → A lifts as well, now as a bimodule map. Fix a lift p̃i to get

p̃ : (A⊗ Aop)n → A⊗ Aop

Then p̃ ◦ i is a section of µ.

Remark 1.1.13. A consequence of this characterization is that in the setting of classical alge-
bra, as projectivity is Morita invariant, separability also is.

This is wrong in the generality that we are in. The following counterexample was pointed
out to me by Robert Burklund: one can show that if X is a finite spectrum which generates
Spω as a thick subcategory, then End(X) is separable if and only if the unit map S→ End(X)
splits (cf. Proposition 2.1.10), while End(X) is always Morita equivalent to the sphere spec-
trum S, which is of course separable. Yet there are such spectra such that the unit map does
not split, such as X = S/η, the cone of η ∈ π1(S).

One can analyze this example and make it more general - in particular, one can make a
similar example in some category of representations of some group over Q, and so have such
examples in characteristic 0.

One could instead formulate a notion of “projective Morita equivalence”, and prove that
separability is projective-Morita invariant. ◁

1.1.2 Modules over separable algebras

We now move on to discussing modules over separable algebras. The main observation in
this realm is the following:

Proposition 1.1.14. Let A be an algebra in C, and consider the free-forgetful adjunction

A⊗− : C ⇄ LModA(C) : U

A is separable if and only if the co-unit A ⊗ U(−) → idLModA(C) admits a natural right
C-linear section.

Proof. There is a functor FunC(LModA(C), LModA(C)) → BiModA(C) given informally by
evaluation at the object A ∈ LModA(C) [Lur12, Remark 4.6.2.9., Theorem 4.8.4.1.]3.

This functor sends A ⊗ U(−) to A ⊗ Aop as an A-bimodule, and idModA(C) to A itself,
with its canonical A-bimodule structure. In particular, the existence of a natural section as
indicated implies the existence of a bimodule section.

Conversely, suppose that A is separable. Up to embedding C in a monoidal ∞-category
admitting geometric realizations compatible with the tensor product, we may assume that
C has these properties. In that case, the above restriction functor induces an equivalence
Fun∆

C(LModA(C), LModA(C)) ≃ BiModA(C), and so we can reverse the argument from
above.

Concretely, the section is described as follows :

M ≃←− A⊗A M
s⊗A M−−−→ (A⊗ Aop)⊗A M ≃ A⊗M

3Under relatively mild hypotheses on C, this can be made into an equivalence by restricting the domain a little: if
C admits geometric realizations compatible with the tensor product, then C-linear endofunctors of LModA(C)
that commute with geometric realizations are exactly given by bimodules [Lur12, Theorem 4.8.4.1.]. For this part
of the proof, we do not need an equivalence.
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Corollary 1.1.15. If A is a separable algebra in C, then any A-module M is a retract of the
free A-module A⊗M.

It will be convenient to have a generalization of this observation in the following direction:
if M is equipped with a coherent tensoring by C, i.e. M is a left C-module, the notion of left
A-module in M makes sense. We have:

Corollary 1.1.16. Let M be a left C-module, A an algebra in C, and consider the free-
forgetful adjunction A ⊗ − : M ⇄ LModA(M) : U. If A is separable, then the co-unit
A ⊗ U(−) → idLModA(M) admits a natural section. If M is a C-bimodule, this section is
right C-linear4.

In particular, any A-module in M, M, is a retract of the free A-module A⊗M.

Proof. As in the previous proof - by embedding C, M in ∞-categories that have geometric
realizations compatible with the tensor product (resp. the tensoring of C), we may assume
that they have these properties.

In this case, LModA(M) ≃ LModA(C) ⊗C M, and the free-forgetful adjunction for M is
identified with −⊗C M applied to the free forgetful adjunction for C. The result follows.

We note that the section has the same concrete description as in the case of M = C.

Remark 1.1.17. We will have several results that hold for an arbitrary C-module M. While
this always implies the result for the special case M = C, we will typically state this special
case explicitly, to help with intuition. However, note that the general case (specifically with
C-modules such as RModA(C)) will be relevant.

Furthermore, all the results can straightforwardly (and usefully!) be dualized to right C-
modules, and we will use the right-module version here and there with no further comment
(except perhaps a reference to this remark). ◁

Thus, separability allows us to deduce things about A-modules based on underlying prop-
erties. For instance:

Corollary 1.1.18. Let M be a left C-module and let A be a separable algebra in C. Consider a
map M → N of left A-modules in M. If it has a retraction in M (resp. a section), then it does
so in LModA(M) as well.

Proof. The map M → N is a retract of the map A⊗M → A⊗ N, and the property of having
a section (resp. a retraction) is closed under retracts.

Similarly, we have:

Corollary 1.1.19. Let C be a pointed monoidal ∞-category in which ⊗ preserves the zero
object, and A ∈ Alg(C) a separable algebra. Let f : M → N be a morphism in LModA(C),
whose underlying map in C is nullhomotopic, i.e. factors through 0.

In this case, f is nullhomotopic in LModA(C).
The same holds for morphisms in LModA(M) whose underlying morphism in M is null-

homotopic, for any left C-module M.

Proof. The proof is the same: retracts of nullhomotopic maps are nullhomotopic.

Remark 1.1.20. Note that this fact is famously not true in general ∞-categories if we do not
assume separability. For example, let A = EndZ(Z/p), and view Z/p as an A-module. Then
p : Z/p→ Z/p is not zero as an A-module map, but its underlying map is 0. ◁

4For example, if C is symmetric monodal one can consider M itself as an E∞-C-module and LModA(C) remains a
C-module, and this section is C-linear.
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Corollary 1.1.15, as well its extension to Corollary 1.1.16 will be crucial in the next section,
where we analyze the relation of separable algebras to homotopy categories, but we can
already make good use of it to analyze relative tensor products and internal homs.

We recall that, for a right (resp. left) A-module M (resp. N) in C, we can form a sim-
plicial object Bar(M, A, N)• : ∆op → C, compatibly with monoidal functors C → D,
and that its colimit, if it exists, is the relative tensor product M ⊗A N, cf. [Lur12, Sec-
tion 4.4.2.]. Given a monoidal functor f : C → D, we have a canonical equivalence
f ◦ Bar(M, A, N)• ≃ Bar( f (M), f (A), f (N))•.

Definition 1.1.21. Let f : C → D be a monoidal functor, A ∈ Alg(C) an algebra in C, M
(resp. N) a right (resp. left) A-module.

We say that f preserves the relative tensor product M⊗A N if it exists in C, and f preserves
the colimit colim∆opBar(M, A, N)•. ◁

We can then state:

Proposition 1.1.22. Assume C admits geometric realizations which are compatible with the
tensor product. Let A ∈ Alg(C) be a separable algebra, and M, N be a right A-module and a
left A-module respectively.

In this case, the relative tensor product M ⊗A N is a (natural, C-linearly on both sides)
retract of M⊗ N.

In particular, if we now remove the assumption that C admits geometric realizations and
replace it with C being idempotent complete, then C still admits relative tensor products of
(right with left) A-modules; and they are preserved by any monoidal functor C→ D.

Proof. The second part can be deduced from the first as follows: freely add geometric realiza-
tions to C to obtain a fully faithful monoidal functor C→ D where D satisfies the hypotheses
of the first part. The image of A in D is still separable, and so the tensor product M ⊗A N,
computed in D, lives in C, because M⊗ N does and C is idempotent complete (here, we use
the first part). Therefore, this colimit of the bar construction is a colimit in C as well.

For the first part, we note that N is a (natural, C-linear) retract of A⊗ N, so that M⊗A N
is a (natural, C-linearly on both sides) retract of M⊗A (A⊗ N) ≃ M⊗ N, as was claimed.

From the proof, it is clear that these relative tensor products are preserved by any monoidal
functor, because retractions are; this proves the final part.

Remark 1.1.23. One could instead phrase this, and the next proof, in terms of the
canonical resolution of the left A-module N, namely a simplicial object which looks like
[n] 7→ A⊗n+1 ⊗ N. In those terms, the statement would be that the corresponding col-
imit diagram N ≃ colim∆op A⊗n+1 ⊗ N is an absolute colimit diagram, as it is a retract of the
corresponding diagram for A⊗ N, which is split augmented and hence an absolute colimit
diagram. See the proof of [NP23, Lemma 4.7] for an argument in this direction. ◁

We now move on to hom objects. Given two left A-modules M, N, the hom-object from
M to N, homA(M, N), is, if it exists the object of C equipped with a map of left A-modules
ev : M ⊗ homA(M, N) → N which satisfies the following universal property: restriction
along ev induces an equivalence

mapC(c, homA(M, N)) ≃ mapLModA(C)(M⊗ c, N)

Remark 1.1.24. Since we have only assumed C to be monoidal, we must be careful about
left and right internal homs. However, because in that situation, LModA(C) is only right
tensored over C, the handedness of the homs is forced upon us. To clarify this, we make the
following definition for C itself. ◁



1.1 GENERALITIES 20

Definition 1.1.25. Let C be a monoidal ∞-category. We say C admits right internal homs if it
admits internal homs as an ∞-category right tensored over C, that is, if for any x, y ∈ C,
there exists an object hom(x, y) with a map ev : x ⊗ hom(x, y) → y satisfying the fol-
lowing universal property: for any c ∈ C, composition with ev induces an equivalence
mapC(c, hom(x, y))→ mapC(x⊗ c, y). ◁

If f : C→ D is a monoidal functor, and if homA(M, N) exists, then we obtain a map of left
f (A)-modules f (M)⊗ f (homA(M, N))→ f (N).

Definition 1.1.26. Let f : C → D be a monoidal functor, A ∈ Alg(C) an algebra in C and
M, N left A-modules. We say that f preserves the internal hom homA(M, N) if it exists, and
the induced map f (M)⊗ f (homA(M, N))→ f (N) exhibits f (homA(M, N)) as a hom object
from f (M) to f (N). ◁

We begin with a well-known lemma:

Lemma 1.1.27. Let C be monoidal, and assume it admits totalizations of cosimplicial objects
as well as right internal homs in the sense of Definition 1.1.25. Finally, we assume that −⊗ c
preserves colimits for any c ∈ C.

In this case, for any algebra A ∈ Alg(C), the right-C-module LModA(C) admits hom-
objects in C.

Remark 1.1.28. If C is E2-monoidal (in fact, a natural equivalence x ⊗ y ≃ y ⊗ x suffices),
then for any c ∈ C, −⊗ c ≃ c⊗− has a right adjoint by assumption on right internal homs,
and thus preserves all colimits. Thus in this setting the condition is superfluous. ◁

Proof. Now, given Y ∈ LModA(C), we note the following two things: first, if C admits Iop-
shaped limits, then the property that homA(X, Y) exist is closed under I-shaped colimits in
X, and second, for any X ∈ C, homA(A⊗ X, Y) exists.

For the first one, we note that indeed, the condition that homA(X, Y) exists is by definition
the condition that the presheaf

Cop → S , c 7→ mapA(X⊗ c, Y)

be representable. Representable presheaves are closed under Iop-shaped limits by assump-
tion, and −⊗ c preserves any colimits that exist in C, so the claim follows at once.

For the second one, we note that

mapA(A⊗ X⊗ c, Y) ≃ Map(X⊗ c, Y) ≃ Map(c, hom(X, Y))

so for any X, homA(A⊗ X, Y) exists and is equivalent to hom(X, Y).
With these two things in hand, we can conclude: any A-module is the colimit of a ∆op-

shaped diagram, all of whose terms are of the form A ⊗ X for some X [Lur12, Proposition
4.7.3.14].

Proposition 1.1.29. Assume C admits totalizations of cosimplicial objects, and right inter-
nal homs. Let A ∈ Alg(C) be a separable algebra, and M, N ∈ LModA(C). In this case,
homA(M, N) ∈ C exists, and is a retract of hom(M, N). Furthermore, any monoidal func-
tor C → D which is also closed, or more generally, which preserves hom(M, N), preserves
homA(M, N).

If we remove the assumption that C admits totalizations, while keeping the existence of
hom(M, N) and we assume that C is idempotent complete, then we get the same conclusion
about homA(M, N).
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Proof. We begin under the assumption that C admits totalizations and internal homs.
In this case, by Lemma 1.1.27, homA(M, N) exists and is a retract of

homA(A⊗M, N) ≃ hom(M, N)

It is clear that this is preserved by any monoidal functor which preserves hom(M, N).
Now, we go back to a general idempotent-complete C. There is a monoidal embedding

C → D where D admits totalizations, and which preserves all homs that exist in C : in fact,
the Yoneda embedding into the Day convolution monoidal structure on presheaves has this
property. In particular, homA(M, N) in E is a retract of hom(M, N) in C, and thus is in C by
idempotent-completeness. The conclusion about preservation follows similarly.

An internal hom of specific interest is the center of A:

Corollary 1.1.30. Let C be an idempotent complete E2-monoidal ∞-category, and
A ∈ Alg(C) a separable algebra. Since C is E2-monoidal, BiModA(C) can be considered as
a left C-module5. In this case, Z(A) = homBiModA(A, A) exists and is a retract of A.

Furthermore, it is preserved by any E2-monoidal functor C→ D.

Notation 1.1.31. We introduce here the notation Z(A) = homA⊗Aop(A, A) - this is the E1-
center of A. If C is Em-monoidal, m ≥ 2, this is an E2-algebra in C [Lur12, Section 5.3.]6. ◁

Remark 1.1.32. Note that the retraction A → Z(A) is given by precomposition by
s : A→ A⊗ Aop:

A ≃ homA⊗Aop(A⊗ Aop, A)→ homA⊗Aop(A, A) = Z(A)

In particular, it has a canonical left Z(A)-linear structure. ◁

We conclude this section with the following classical fact:

Proposition 1.1.33. Assume C is idempotent-complete and Em+1-monoidal, m ≥ 1, and let
R ∈ AlgEm+1

(C) be separable. In this case, relative tensor products over R exist and so
LModR(C) is Em-monoidal.

Let A ∈ Alg(LModR(C)). If A is separable in LModR(C), then it is separable in C.

Proof. Suppose A is separable over R. We then have section A → A ⊗R Aop in
ABiModA(LModR(C)), and hence in ABiModA(C) through the lax monoidal forgetful func-
tor LModR(C) → C. But now, because R is separable, the latter is a retract of A ⊗ Aop in
A-bimodules. Composing the two retraction gives the claim.

We prove the converse in the case of an additive ∞-category in Proposition 1.2.12.

1.2 Separable algebras and homotopy categories
In this section, I explain how separable algebras in C are controlled by the homotopy category
ho(C). This suggests that a big chunk of the study of separable algebras can be performed in
the homotopy category, and thus explains morally why separable algebras work so well in
tt-categories. This also allows to lift many results about separable algebras in the tt-setting to
the stable ∞-setting.

5As a left C-module, it is equivalent to RModAop⊗A(C).
6Much of [Lur12, Section 5.3] is only stated for symmetric monoidal ∞-categories. Since we will not need this struc-

ture on Z(A) in the remainder of the thesis, the reader should feel free to ignore this subtlety. Let us simply point
out a simple way of making Z(A) an E2-algebra: if C is presentably E2-monoidal, LModC(PrL) is monoidal,
and ABiModA(C) ≃ FunL

C(RModA(C), RModA(C)) can thus be interpreted as an internal endomorphism object
therein, so that it is canonically an E1-algebra in LModC(PrL), and thus the endomorphism object of its unit (A)
is canonically an E2-algebra in C.
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1.2.1 Modules, separability and algebras

The key property that will drive our analysis is Corollary 1.1.15, which, recall, states that over
a separable algebra, any module is a retract of a free module of the form A⊗M. We will use
it together with the following general fact:

Lemma 1.2.1. Let A ∈ Alg(C) be any algebra, and let X ∈ LModA be a retract of a module
of the form A⊗M.

For any N ∈ LModA, the functor ho(LModA(C)) → LModhA(ho(C)) induces an isomor-
phim

π0 mapLModA(C)(X, N)
∼=−→ homLModhA(ho(C))(hX, hN)

More generally, if M is a left C-module, and X ∈ LModA(M) is a retract of
some module of the form A ⊗ M, then for any N ∈ LModA(M), the functor
ho(LModA(M))→ LModhA(ho(M)) induces an isomorphism

π0 mapLModA(M)(X, N)
∼=−→ homLModhA(ho(M))(hX, hN)

Proof. The collection of X’s for which this map is an isomorphism is clearly closed under
retract, so we may assume that X is free on some M. But then hX is free on the same hM,
with the same unit map, from which the claim follows.

Remark 1.2.2. Applying this (or making the same argument) with M = RModB(C) shows
that if X is a retract of a free (A, B)-bimodule, then for any (A, B)-bimodule N, the canonical
map π0 map

ABiModB(C)(X, N)→ hom
hABiModhB(ho(C))(hX, hN) is an isomorphism. ◁

Corollary 1.2.3. Let A ∈ Alg(C) be a separable algebra. The functor
ho(LModA(C))→ LModhA(ho(C)) is fully faithful.

More generally, if M is a left C-module, then

ho(LModA(M))→ LModhA(ho(M))

is fully faithful.

Proof. This follows from the previous lemma together with Corollary 1.1.15 (resp. Corol-
lary 1.1.16).

Convention 1.2.4. In the rest of this thesis, C will be assumed to be additive. We will however
repeat it in the statements of results for self-containedness. ◁

It is not clear to the author whether this condition is necessary, and exactly where, but we
use it in some key instances, so it is certainly necessary for our proofs, if not the results. Note
that additivity is a place where both ∞-categories and their homotopy categories can live,
so it is a suitable inbetween between ∞-categories and 1-categories. We use this assumption
together with the following lemma:

Lemma 1.2.5. Let C be an additive ∞-category and e : X → X an idempotent in ho(C). There
exists a coherent idempotent Idem→ C which lifts e (cf. [Lur09, Section 4.4.5.]).

In particular, if C is idempotent-complete, then so is ho(C).

Proof. This is [Lur12, Lemma 1.2.4.6., Remark 1.2.4.9.] - note that as stated, the assumption
is that C is stable, but the proof works just as well if C is additive. Alternatively, one can
deduce the additive case from the stable case by embedding any additive ∞-category in a
stable one.
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With all of this, we can show:

Theorem 1.2.6. Suppose C is additively monoidal, and let A ∈ Alg(C) be a separable alge-
bra. The forgetful functor ho(LModA(C))→ LModhA(ho(C)) is an equivalence.

More generally, if M is a left C-module, then the forgetful functor
ho(LModA(M))→ LModhA(ho(M)) is an equivalence.

In the stable case, and for C = M, this is also a consequence of the main theorem of [DS18]
(together with [Bal11]).

Proof. We have already shown it is fully faithful, so we are left with proving that it is
essentially surjective. Note that we can assume without loss of generality that M is
idempotent-complete: indeed, assume for a second the claim holds for idempotent complete
∞-categories, and let M → M′ be the idempotent-completion of M, which is in particular a
fully faithful functor.

Let M ∈ LModhA(ho(M)) ⊂ LModhA(ho(M′)). By the idempotent complete case, this can
be lifted to an A-module in M′. But the underlying object of M is in ho(M), and therefore the
underlying object of this lift is in M, which proves the claim.

So we now assume M is idempotent complete. It follows that LModA(M) is also
idempotent-complete, cf. [Lur12, Corollary 4.2.3.3.] and [Lur09, Remark 4.4.5.13.]. It is also
additive and therefore by Lemma 1.2.5, ho(LModA(M)) is also idempotent complete. So to
prove that a fully faithful functor ho(LModA(M)) → D is essentially surjective, it suffices
to show that any object in D is a retract of some object in the image; but here any object of
LModhA(ho(M)) is a retract of some hA⊗ N, by separability of hA (cf. Example 1.1.7), and
hA⊗ N is the image of A⊗ N, so we are done.

This is the first instance of how separable algebras behave nicely with respect to homotopy
categories.

Remark 1.2.7. By Proposition 1.1.22 and Proposition 1.1.29 applied to the
monoidal functor C → ho(C), the functors LModA(C) → LModhA(ho(C)) and
RModA(C) → RModhA(ho(C)) are compatible with relative tensor products over A
and internal homs over A that is, the tensor product M ⊗A N is the coequalizer in ho(C)
over the two maps M⊗ A⊗N ⇒ M⊗N, and the internal hom homA(M, N) is the equalizer
in ho(C) of hom(M, N) ⇒ hom(A⊗M, N).

This is therefore compatible with Balmer’s construction in the triangulated setting [Bal14,
Section 1].

Because the functor ho(LModA(C)) → LModhA(ho(C)) is also an equivalence, this gives
an explanation, at least in the case of tensor triangulated categories which are homotopy
categories of monoidal stable ∞-categories, of the fact that module categories over separable
algebras are still triangulated, and why their tensor product behaves nicely.

We note that this is also discussed in the recent work of Naumann and Pol, see [NP23,
Lemma 4.7, Remark 4.9]. ◁

Remark 1.2.8. The previous remark, as well as the equivalence

ho(LModA(M)) ≃ LModhA(ho(M))

and the analogous one for RModB, for separable algebras A and B, shows that for separable
algebras, there is a reasonable notion of Morita equivalence at the level of the homotopy cat-
egory, that can be phrased in terms of bimodules in the “naive” way. See also Theorem 1.2.14
for an application of this idea to morphisms between separable algebras. ◁



1.2 SEPARABLE ALGEBRAS AND HOMOTOPY CATEGORIES 24

We next show that the picture is even more rigid: separability is detected at the level of the
homotopy category, more precisely:

Proposition 1.2.9. Suppose C is additively monoidal and let A ∈ Alg(C) be a homotopy
separable algebra. In this case, A is separable.

For this, we use the following categorical facts:

Lemma 1.2.10 ([Lur22, Example 1.4.7.10. (Tag 00JC)]). Let ∆1/∂∆1 → BN be the canonical
map. It is a categorical equivalence.

Lemma 1.2.11. [Lur09, p. 4.4.5.15.] The canonical map N≥ → Idem is cofinal.

Moreover, note that this canonical map is given by the following composite :
N≥ → BN→ Idem so that we have the following commutative diagram for any ∞-category
D:

Fun(∆1/∂∆1, D) Fun(BN, D) Fun(N≥, D)

Fun(Idem, D)

≃

With this in hand, we can prove the claim:

Proof of Proposition 1.2.9. Without loss of generality, we assume C is idempotent complete.
Consider the idempotent s : hA ⊗ hAop → hA → hA ⊗ hAop in the category of homo-

topy A-bimodules. Note that its source and target are free A-bimodules, and so that by Re-
mark 1.2.2, the functor ho(ABiModA(C)) →hA BiModhA(ho(C)) is fully faithful on the full
subcategory spanned by A⊗ Aop. By Lemma 1.2.5, this implies that this idempotent lifts to
a coherent idempotent in ABiModA(C). That is, we have a functor s̃ : Idem→A BiModA(C)
that classifies s.

In the diagram

Fun(∆1/∂∆1, ABiModA(C)) Fun(BN, ABiModA(C)) Fun(N≥, ABiModA(C))

Fun(Idem, ABiModA(C))

≃

if we follow s̃ up and then left, we simply get A⊗ Aop s−→ A⊗ Aop. Now, in Fun(∆1/∂∆1, C),
we have an arrow that corresponds to the following commutative square in ABiModA(C):

A⊗ Aop A⊗ Aop

A A

s

idA

µ µ

Note that there exists such a commutative square in ABiModA(C), because there is one in
hABiModhA(ho(C)), and the source is a free A-bimodule (cf. Lemma 1.2.1 and Remark 1.2.2).

In particular, if we now go from Fun(∆1/∂∆1, ABiModA(C)) to Fun(N≥, ABiModA(C)),

we get a map from A⊗ Aop s−→ A⊗ Aop s−→ . . . to A
idA−−→ A

idA−−→ . . . . By commutativity of
the diagram, the source is simply the restriction of s̃ along the map N≥ → Idem.

In particular, the source has a colimit given by the splitting of that idempotent, and we
get a map from this colimit to A in ABiModA(C). But splitting of idempotents are ab-
solute colimits [Lur09, Corollary 4.4.5.12.], so they are preserved by the forgetful functor
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ABiModA(C) → hABiModhA(ho(C)). If we redo this story in the latter category, A is the
splitting of the idempotent in question, and so the canonical map from this colimit to A is an
equivalence.

It is therefore an equivalence in ho(C), and therefore in C, and therefore in ABiModA(C).
This proves that A is the splitting of some idempotent on A ⊗ Aop in ABiModA(C), along

A⊗ Aop µ−→ A, which is exactly saying that A is separable, and so we are done.

We can now prove the converse of Proposition 1.1.33, namely:

Proposition 1.2.12. Assume C is additively Em-monoidal, m ≥ 3 and idempotent-complete,
and let R ∈ AlgEk

(C), k ≥ 2 be separable. In this case, relative tensor products over R exist
and so LModR(C) is monoidal.

Let A ∈ Alg(LModR(C)). In this case, A is separable in LModR(C) if and only if it is
separable in C.

Warning 1.2.13. Classically, if A is separable, then it is so over R, with no separability as-
sumption on R. This is wrong in homotopical algebra and if one tries to run the classical
proof, one will encounter the issue that A⊗ Aop → A⊗R Aop is not an epimorphism.

A counterexample is given by the Q-algebras R = Q[x] and A = any nonzero separable
commutative Q-algebra, all of this in the ∞-category of Q-module spectra. ◁

Proof. We have proved in Proposition 1.1.33 that if A was separable over R, it was separable.
Now, assume A is separable.

We observe that by Proposition 1.2.9, it suffices to show that A is separable in
ho(ModR(C)). But because R is separable, ho(ModR(C)) ≃ ModhR(ho(C)), monoidally
as the relative tensor products are preserved. In other words, we may work in ho(C) and
thereby assume that C is a symmetric monoidal 1-category (an E3-monoidal 1-category is
automatically symmetric monoidal).

But now A⊗ Aop → A⊗R Aop is a split epimorphism because R is separable, and in a 1-
category, split morphisms are epimorphisms. It follows that an A⊗ Aop-linear map between
A⊗R Aop-modules is automatically A⊗R Aop-linear.

The following composite A s−→ A⊗ Aop → A⊗R Aop, where s is a witness that A is sep-
arable, is therefore an A⊗R Aop-linear section of the multiplication map, which proves the
claim.

We now exploit what we did so far to analyze morphisms between separable algebras. Our
main result in the noncommutative world is:

Theorem 1.2.14. Assume C is additively monoidal, and let A, R ∈ Alg(C). If A is separable,
the canonical map

π0 mapAlg(C)(A, R)→ homAlg(ho(C))(hA, hR)

is an isomorphism.

Warning 1.2.15. In general, mapAlg(C)(A, R) is not discrete, even if R is also separable and C
symmetric monoidal, see Proposition 1.2.27 and Example 1.2.29. ◁

The situation is better in the commutative world, as we will see in Proposition 1.3.11 and
Theorem 1.3.19.

Proof. Up to embedding C monoidally and additively in a presentably additively monoidal
∞-category, we may assume C is presentably additively monoidal.
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There is then a fully faithful functor

Alg(C)→ (RModC)C/, A 7→ (LModA(C), A)

by [Lur12, Theorem 4.8.5.11] (see also [Lur12, Remark 4.8.3.25]), so that mapAlg(C)(A, R) can
be described as the fiber of

mapRModC
(LModA(C), LModR(C))→ mapRModC

(C, LModR(C))

at the map C→ LModR(C) classifying the R-module R.
By [Lur12, Theorem 4.8.4.1]7, this map can be rewritten as the forgetful map

RBiModA(C)≃ → LModR(C)≃

For simplicity of notation, we simply write LModR(C) = LModR, and then by [Lur12, Theo-
rem 4.3.2.7], this can again be rewritten as

RModA(LModR)
≃ → LMod≃R

In more concrete terms: an algebra map A → R is the same data as a right A-module
structure on the left R-module R. It is easy to check that the same holds for 1-categories, with
no presentability assumption8.

Consider now the commutative diagram:

RModA(LModR) RModhA(ho(LModR)) RModhA(LModhR)

LModR ho(LModR) LModhR

When restricted to the full subcategory of LModR (resp. ho(LModR), resp.
LModhR(ho(C))) spanned by R, R⊗ A⊗n, the horizontal maps are fully faithful on homotopy
categories: for the left square, this follows from Corollary 1.2.3 applied to the right C-module
M = LModR (cf. Remark 1.1.17), and for the right square, this follows from Lemma 1.2.1.

Passing to groupoid cores and restricting to these components, we see that the horizontal
maps are therefore 1-equivalences, and so the induced maps on fibers are 0-equivalences -
the fiber of the leftmost map is, by the previous argument, mapAlg(C)(A, R), while the fiber
of the rightmost map is homAlg(ho(C))(hA, hR), so that this proves the claim.

1.2.2 From homotopy algebras to algebras

The final goal of this section is to prove that not only is separability detected in the homotopy
category, but that separability of a homotopy algeba is strong enough to guarantee that it can
be lifted to an E1-algebra in C. In other words, we now aim to prove:

Theorem 1.2.16. Let C be an additive monoidal ∞-category, and A ∈ Alg(ho(C)) a homo-
topy separable homotopy algebra.

There exists an algebra Ã ∈ Alg(C), necessarily separable, which lifts A. In fact, the moduli
space of such lifts is simply-connected.

7See also [Lur12, Theorem 4.3.2.7]
8In fact, we can deduce that it also holds in general with no presentability assumption from the presentable case.
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Warning 1.2.17. The moduli space of lifts is not contractible in general, cf. Example 1.2.29. We
will later see however that it is contractible in the case of a homotopy commutative separable
algebra, see Proposition 1.3.11. ◁

Let us first specify explicitly what we mean by “the moduli space of lifts”.

Definition 1.2.18. Let A ∈ Alg(ho(C)) be a homotopy algebra. We define the moduli
space of lifts of A to Alg(C) to be the space Alg(C)≃ ×Alg(ho(C))≃ {A}, i.e. the fiber of
Alg(C)→ Alg(ho(C)) at A. ◁

Observation 1.2.19. By Theorem 1.2.14 together with the fact that

Alg(C)→ Alg(ho(C))

is conservative, we find that Alg(C)≃ → Alg(ho(C))≃ is injective on π0, and an isomor-
phism on π1 at any point of Alg(C)≃. Furthermore, π2(Alg(ho(C))≃) = 0 at every point, so
that to prove that the moduli space of lifts is simply connected, it really suffices to prove that
it is non-empty. ◁

Observation 1.2.20. A lies in its connected component in Alg(ho(C)), which is equivalent to
BAutAlg(ho(C))(A). If Ã is a lift of A, then the connected component of this lift in the moduli
space is a connected component of the fiber of the map BAutAlg(C)(Ã)→ BAutAlg(ho(C)(A).

In particular, if we already know that the moduli space is connected, then the loop space
of this moduli space at Ã is the fiber of AutAlg(C)(Ã)→ AutAlg(ho(C))(A) at idA. ◁

Our proof relies on deformation theory and Theorem 1.2.14, as well as the following lemma
(which one could make more precise, but the following version is enough for our purposes):

Lemma 1.2.21. Let m ≥ 1 and let C be an additively Em-monoidal ∞-category. There exists
an additively Em-monoidal ∞-category D and a commutative diagram of additively Em-
monoidal ∞-categories:

ho≤n+1(C) ho≤n(C)

ho≤n(C) D

such that the induced map ho≤n+1(C)→ ho≤n(C)×D ho≤n(C) is fully faithful.

Here, ho≤n(C) denotes the homotopy n-category of C.
Taking this lemma for granted, the proof of Theorem 1.2.16 is not hard.

Proof of Theorem 1.2.16. Fix a homotopy separable A ∈ Alg(ho(C)). By Observation 1.2.19, it
suffices to prove that A admits some lift Ã to Alg(C).

As C ≃ limn ho≤n(C) and Alg(−) preserves limits (see Lemma 1.3.17), it suffices to prove
that any given separable An ∈ Alg(ho≤n(C)) admits a lift to Alg(ho≤n+1(C)). For this, we
apply Lemma 1.2.21: fix a square

ho≤n+1(C) ho≤n(C)

ho≤n(C) D

d1

d0

as in the conclusion of that lemma.
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Viewing An as a homotopy algebra in C, we find that d0(An) ≃ d1(An) as homotopy alge-
bras in D. But both are separable, as they are the image of the separable An under monoidal
functors d0, d1.

In particular, by Theorem 1.2.14, this equivalence can be lifted to an equivalence of alge-
bras, and thus we get a lift in the pullback. But the underlying object of this lift is (the under-
lying object of) An in ho≤n+1(C), so that it provides an algebra object An+1 in ho≤n+1(C), by
fully faithfulness, and this clearly lifts An.

Finally, let us prove Lemma 1.2.21. We will need a slight modification in the Em-case which
we sketch later. On first reading, the reader can pretend that m = ∞.

Proof of Lemma 1.2.21. One could in principle use the methods of [HNP18], but one would
still have to make a number of additional verifications. Instead, let us use the synthetic
objects of [HL17].

We first deal with the case where C is stable: let E be a stably Em-monoidal ∞-category. We
let SynE denote Fun×(Eop, Sp≥0), this is an additive presentably Em-monoidal ∞-category,
receiving a fully faithful, additive Em-monoidal functor

E → SynE , c 7→ Map(−, c) = map(−, c)≥0

By [HL17, Proposition 7.3.6.], we obtain a pullback square of additively Em- monoidal ∞-
categories:

Mod1≤n(SynE ) Mod1≤n−1(SynE )

Mod1≤n−1(SynE ) D

and the composite E → SynE → Mod1≤k (SynE ) factors through ho≤k+1(E) in a fully faithful
way - this is essentially saying that

τ≤k Map(−, 1E )⊗Map(−, e) ≃ τ≤k Map(−, e)

which follows from [HL17, Lemma 7.1.1. and Corollary 7.3.7.(c)] (alternatively, the proof of
[HL17, Lemma 7.1.1.] works just as well for this statement).

To make sense of Mod1≤n(SynE ) as an Em-monoidal ∞-category when m < ∞, and to make
sense of D, we use Lemma 1.2.24. We note that the proof of [HL17, Proposition 7.3.6] works
just as well in this context9.

In other words, we have a commuting diagram:

ho≤n+1(E) ho≤n(E)

ho≤n(E) Mod1≤n(SynE ) Mod1≤n−1(SynE )

Mod1≤n−1(SynE ) D

where the diagonal arrows are fully faithful. It follows that the map

ho≤n+1(E)→ ho≤n(E)×D ho≤n(E)
9In fact, as soon as the Em-monoidal square is set up, one can check that it is a pullback square on underlying

∞-categories, and thus this does not depend on the extra structure on 1≤n from Lemma 1.2.24.
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is fully faithful.
Now, let C be a general additive ∞-category. Using the Yoneda embedding10

C→ Fun×(Cop, Sp≥0)→ Fun×(Cop, Sp)

and considering a small stable subcategory of Fun×(Cop, Sp) containing the image of the
Yoneda embedding, we find a fully faithful additive Em-monoidal embedding C → E with
E stably Em-monoidal.

The following commutative diagram allows us to conclude:

ho≤n+1(C) ho≤n(C)

ho≤n(C) ho≤n+1(E) ho≤n(E)

ho≤n(E) D

Remark 1.2.22. In a previous version of the preprint [Ram23], we used obstruction theory to
prove Theorem 1.2.16. Unravelling the proof in question, one would arrive at an essentially
equivalent proof as the one proposed here. It simply seems to the author that this version is
much simpler to parse, and to understand what is going on. ◁

In the Em-monoidal case, while 1≤n is still an Em-algebra in SynE , this piece of structure
alone does not allow us to define Mod1≤n(SynE ) as an Em-monoidal ∞-category itself, which
is needed for the construction.

Remark 1.2.23. For m ≥ 2, this structure on 1≤n (and more generally on the relevant square
zero extensions) is enough to make this ∞-category E1-monoidal, and this is enough for
Theorem 1.2.16: indeed, a version of Lemma 1.2.21 where D and the relevant square is only
monoidal is sufficient for Theorem 1.2.16.

Thus the reader who does not care about maximal generality can safely skip the next con-
struction and pretend that m ≥ 2 throughout. ◁

The following lemma guarantees that Mod1≤n(SynE ) makes sense as an Em-monoidal ∞-
category, and that the pullback square constructed in [HL17] generalizes to this context. In-
deed, given an Em-algebra A in an Em-monoidal ∞-category C with compatible geometric
realizations, to promote LModA(C) to an Em-monoidal ∞-category, it suffices to produce a
lift Ã ∈ AlgEm+1

(ZEm(C)) of A along the canonical functor ZEm(C) → C, where ZEm(C)

is the Em-center of C ∈ AlgEm
(Cat(∆)) in the sense of [Lur12, Definition 5.3.1.12, Remark

5.3.1.13].

Lemma 1.2.24. Let E be a small stable Em-monoidal ∞-category, Synst
E = Sp(SynE ) be the sta-

bilization of SynE , where SynE is as in the proof of Lemma 1.2.21, and finally let ZEm(Synst
E )

denote the Em-center of Synst
E in PrL

st, considered as an Em+1-monoidal ∞-category.

10We implicitly use here that any additive ∞-category has a fully faithful Yoneda embedding into its presheaves of
connective spectra. This follows from the fact that Sp≥0 ≃ GrpE∞

by the recognition principle.
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The Postnikov square-zero extensions

1≤n+1 1≤n

1≤n 1≤n ⊕ Σn+2π♡n+1(1)

from [Lur12, Corollary 7.4.1.28] lift to Em+1-square zero extensions in ZEm(Synst
E ).

Remark 1.2.25. We state this lemma in the case of SynE , as we are not sure what is the correct
maximal generality. What happens here is that 1≤n happens to be in the center of SynE ,
essentially because of the formula

1≤n ⊗Map(−, e) ≃ τ≤n Map(−, e)

There does not seem to be an analogous formula in a general Em-monoidal prestable ∞-
category, and so it is not clear that 1≤n should always be in the center in that generality.
In fact, one can produce counterexamples to π0(1) being in the center from examples of
bimodules being left flat but not right flat over rings. ◁

Remark 1.2.26. With this lemma, one can make sense of Mod1≤n(SynE ) as an Em-monoidal
∞-category, as well as of the pullback square used in the proof of Lemma 1.2.21. As men-
tioned in the proof, it is not hard to check that the proofs from [HL17] extend to this setting,
essentially because the result only depends on the underlying square of ∞-categories, and
basic formal properties of the (relative) tensor product. ◁

Proof. Let ZEm(E) denote the Em-center of E in small stable ∞-categories. By the universal
property of centers and the lax symmetric monoidality of the Syn-construction, this induces
an Em+1-monoidal functor Synst

ZEm (E) → ZEm(Synst
E ) such that the composite

Synst
ZEm (E) → ZEm(Synst

E )→ Synst
E

is the left Kan extended from the canonical functor ZEm(E) → E . It thus suffices to find
appropriate lifts in SynZEm

(E).
Note that an easy calculation shows that in SynF , τ≥n1SynF can be described as

Σn map(−, Ωn1F )≥0
11 and thus the functor SynZEm (E) → SynE sends τ≥n+11 to τ≥n+11 for

every n, since it preserves colimits and representables - it also preserves the corresponding
map to 1.

Since it also preserves cofibers, it follows that it sends 1≤n := τ≤n1 to 1≤n. Finally, the
relevant pushout/pullback square in Synst

ZEm (E) consists only of connective objects so it is
also a pushout in SynZEm (E) and is thus sent to a pushout in SynE , and thus also to the
appropriate pushout/pullback there.

[Lur12, Corollary 7.4.1.28] allows us to conclude that the Postnikov tower of the unit in
SynZEm (E) upgrades to a tower of Em+1-square zero extensions, as claimed.

We now analyze the moduli space of lifts a bit further to show that it is not typically con-
tractible. Theorem 1.2.16 shows that the moduli space is simply-connected, and we now
explain how to describe its 2-fold loopspace.

11This is true more generally for any object x ∈ F in place of 1F .
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Proposition 1.2.27. Let A ∈ Alg(C), and hA the corresponding algebra in ho(C). LetM be
the moduli space of lifts of hA to Alg(C), and LA the E1-cotangent complex of A.

The double-loop space ofM at A is equivalent to the following spaces:

(i) Ω(MapAlg(C)(A, A), idA);

(ii) the fiber over idA of MapBiModA
(A, A)→ MapA(A, A), or equivalently if C is additive,

its fiber over 0;
(iii) MapBiModA

(ΣLA, A) if C is stable.

Proof. Without loss of generality, we assume C is presentably monoidal.
Recall thatM = Alg(C)×Alg(ho(C)) {hA} by definition. An equivalent description is the

fiber sequenceM→ Alg(C)≃ → Alg(ho(C))≃ at the point hA ∈ Alg(ho(C))≃.
Looping once at A, we find the fiber sequence

ΩM→ Ω(Alg(C)≃, A)→ Ω(Alg(ho(C))≃, hA)

and thus
ΩM→ AutAlg(C)(A)→ AutAlg(ho(C))(hA)

As an endomorphism of A which is the identity in ho(C) must be an equivalence, this also
yields a fiber sequence

ΩM→ MapAlg(C)(A, A)→ homAlg(ho(C))(hA, hA)

at idhA. As the latter is discrete, we deduce point (i).
Next, we use the fully faithful embedding12

Alg(C)→ (RModC(PrL))C/, A 7→ (LModA, A)

to describe MapAlg(C)(A, A) as the fiber of

MapRModC
(LModA, LModA)→ MapRModC

(C, LModA)

over the canonical functor C → LModA classified by A ∈ LModA. Using [Lur12, Theorem
4.8.4.1], we rewrite this map as the functor BiMod≃A → LMod≃A that forgets the right A-
module structure. Taking loops at the identity of A ∈ Alg(C) yields the fiber sequence

Ω(MapAlg(C)(A, A), idA)→ Ω(BiMod≃A , A)→ Ω(LMod≃A , A)

We rewrite the latter two terms as AutBiModA(A)→ AutA(A) and use again the fact that any
A-bimodule endomorphism of A which is an underlying equivalence is an equivalence to
rewrite the fiber of this map as the fiber of

MapBiModA
(A, A)→ MapA(A, A)

over the identity. This proves the first half of (ii), and using the additivity of C and the fact
that this is a map of grouplike E∞-monoids which has both idA and 0 in its image, we deduce
that the fiber is the same over 0, which is the second half of (ii).

Finally, (iii) follows from the second half of (ii): we rewrite MapA(A, A) as
MapBiModA

(A⊗ Aop, A) and then the restriction map

MapBiModA
(A, A)→ MapA(A, A) ≃ MapBiModA

(A⊗ Aop, A)

12Cf. again [Lur12, Theorem 4.8.5.11].
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is identified with precomposition by the multiplication map µ : A⊗ Aop → A (indeed, the
multiplication is just the co-unit of the adjunction that forgets the right A-module structure),
so that by (ii), our double-loop space is identified with mapBiModA

(cofib(µ), A). To conclude,
we use that cofib(µ) ≃ ΣLA [Lur12, Theorem 7.3.5.1.]13.

Remark 1.2.28. If C is E2-monoidal so that ABiModA(C) can be considered a left C-module,
then Map

ABiModA
(X, A) can also be described as Map(1, homABiModA(X, A)). So unless

Map(1, Z(A)) → Map(1, A) is an inclusion of components, Ω2(M, A) is not contractible,
and thereforeM isn’t either. Here, Z(A) is the E1-center of A, from Notation 1.1.31. ◁

Example 1.2.29. Consider the commutative differential graded Q-algebra R = Q[t], where
t is in degree 2 as a commutative ring spectrum and let C = ModR. For any n ≥ 1,
the matrix ring Mn(R) = EndR(Rn) is separable, and its center is R itself. Therefore
MapA⊗Aop(A, A) → MapA(A, A) is the map Ω∞(Q[t] → Mn(Q[t])) and this is clearly not
an inclusion of components as long as n ≥ 2 (it is not surjective in any π2k, k ≥ 1). By
Remark 1.2.28, the moduli space of lifts of Mn(Q[t]) is not contractible. ◁

Remark 1.2.30. In [KT17], the authors also study a certain moduli space of algebra structures.
Note, however, that this is a different moduli space in that it is the moduli space of algebra
structures on an object of C, while ours is the moduli space of algebra structures extending a
homotopy algebra. The answers we get for the double loop space are thus different, even if
there is some similarity in that both involve some version of Hochschild cohomology. ◁

We apply these results in the case of ring spectra. For an E2-ring spectrum R14, let
ProjSep(R) denote the full subgroupoid of Alg(ModR(Sp)) spanned by separable algebras
whose underlying R-module is finitely generated projective. This is clearly functorial along
basechange.

The following is our version of [BRS12, Theorem 6.1] (cf. also [GL21, Proposition 3.12,
Theorem 3.15]):

Proposition 1.2.31. Let R be an E2-ring spectrum. In the span

ProjSep(R)← ProjSep(R≥0)→ ProjSep(π0(R))

the left leg is an equivalence, and the right leg is essentially surjective, with simply-connected
fibers.

In particular, any separable algebra over π0(R) can be (weakly uniquely) realized as π0 of
a separable algebra over R.

Proof. For any E2-ring spectrum R, ProjSep(R) can equivalently be described as the space
of separable algebras in Proj(R), the additive monoidal ∞-category of projective R-modules.
In particular, this only depends on this additive ∞-category, and it is a classical fact that
Proj(R≥0)→ Proj(R) is an equivalence. This proves the statement about the left leg.

For the right leg, we observe that π0 : Proj(R≥0) → Proj(π0(R)) witnesses
the latter as the homotopy category of the former, and thus, passing to algebras,
Alg(Proj(R≥0))→ Alg(Proj(π0(R)) is equivalently

Alg(Proj(R≥0))→ Alg(ho(Proj(R≥0)))

The statement thus follows from Theorem 1.2.16.
13Strictly speaking, [Lur12, Theorem 7.3.5.1.] is stated for symmetric monoidal ∞-categories, but in the Em-case it

works over Em-monoidal ∞-categories. More to the point, in the rest of this thesis we will never actually need to
know that this LA has anything to do with the actual cotangent complex, only its description as fib(µ) is relevant
to us, so the skeptical reader can safely ignore this description.

14So that ModR(Sp) is a monoidal ∞-category.
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Remark 1.2.32. Note that if R is a discrete commutative ring, any central separable algebra
over R is necessarily finitely generated projective [AG60, Theorem 2.1]. In particular, this
allows us to lift all central separable algebras. ◁

Remark 1.2.33. In [BRS12, Theorem 6.1], the lift along the right leg is said to be “unique”.
Remark 1.2.28 and Example 1.2.29 show that this unicity is to be taken with a grain of salt. ◁

The results of this section suggest the slogan that “Separable algebras and their modules
are controlled by the homotopy category”. From the perspective of homotopy theory, this
justifies to some extent the study of separable algebras and their modules in tensor triangu-
lated categories, but also suggests that many results in the unstructured setting can be lifted
for free to a more structured or coherent setting. Because of the non-unicity pointed out in
Remark 1.2.28, we see that not everything can be lifted for free.

In the next section we will see that the situation in the commutative world is much better.
The moduli spaces become contractible (even the E1 ones!), and the mapping spaces become
discrete.

1.3 Commutative separable algebras
In this section, we study commutative separable algebras. Unsurprisingly, this situation is
much better behaved than in the associative case. In the commutative case, we will see that
the obstructions to contractibility from Section 1.2 vanish - in fact, even in the homotopy
commutative case. The key difference with the general case is that now, the multiplication
map µ : A⊗ A→ A is an (homotopy) algebra map.

With a view towards future applications, it seems relevant to allow a bit more flexibility -
namely, just as C was allowed to be only monoidal in the previous sections, in this one, we
will allow C to be only Em-monoidal for some m ≥ 3, rather than symmetric monoidal - note
that this includes m = ∞15. For some of the results, E2 is sufficient, but E3 is much simpler to
handle, because in that case ho(C) is actually symmetric monoidal, rather than only braided
monoidal. There are also some results where we are not sure whether they work for m = 2 -
thus, in total we will only deal with m ≥ 3, except where it is easy to put m = 2.

We begin this section with a study of certain moduli spaces, and of mapping spaces from
commutative separable algebras, and we then apply Lurie’s deformation theory from [Lur12,
Section 7.4] to compare étale algebras and separable commutative algebras.

Definition 1.3.1. Let C be Em-monoidal for some m ≥ 1. For 1 ≤ d ≤ m, a separable Ed-
algebra in C is an Ed-algebra whose underlying algebra is separable.

When d = m = ∞, we simply say commutative, so a separable commutative algebra or
perhaps commutative separable algebra. ◁

We begin with a general proposition:

Proposition 1.3.2. Suppose C is additively Em-monoidal for some m ≥ 2, and idempotent-
complete.

Let A ∈ AlgEm
(C) be an Em-algebra in C and B ∈ Alg(C) an algebra, and finally f : A→ B

a morphism of algebras. If f admits an A-module splitting, then B is the localization of A at
an idempotent e.

In particular LModA(C) splits right C-linearly as a product

LModA ≃ LModB(C)× LModB(C)⊥

15Thus, in every assumption of the form “Em, for some m”, m should be interpreted as varying in {0, ..., ∞} together
with specified extra restrictions.
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This proposition relies on the following result, which is simply a variant of the discussion
of idempotent algebras in [Lur12, Section 4.8.2.] in the setting of non-symmetric monoidal ∞-
categories. Parts of it work exactly the same as in the monoidal setting, but some of it does
not, so we simply record it here.

First, recall the definition:

Definition 1.3.3. Let M be an Ek-monoidal ∞-category with unit 1 and k ≥ 1. An E0-object
e therein, that is, an object in M1/, is called idempotent, if both e⊗ (1 → e) and (1 → e)⊗ e
are equivalences.

For 0 ≤ d ≤ k, an Ed-algebra A in M is called idempotent if its underlying E0-algebra
is. ◁

Remark 1.3.4. In the case of an Ek-monoidal ∞-category, k ≥ 2, these two maps are homo-
topic and so it suffices to require one of them to be an equivalence. ◁

The main result is:

Proposition 1.3.5. Let M be an Ek-monoidal ∞-category with 1 ≤ k ≤ ∞, and let 0 ≤ d ≤ k.
The forgetful functor from Ed-algebras to E0-algebras restricts to an equivalence between the
respective full subcategories of idempotent algebras:

AlgEd
(M)Idem ≃−→ AlgE0

(M)Idem

We begin with an easy lemma:

Lemma 1.3.6. Let M be an Ek-monoidal ∞-category, and e ∈ M1/ an idempotent E0-object.
The full subcategory Me of M spanned by those m’s for which both m ⊗ (1 → e) and
(1 → e) ⊗ m are equivalences determines a full sub-Ek-operad of M, which is itself an
Ek-monoidal ∞-category.

Warning 1.3.7. For k ≥ 2, the inclusion Me → M actually admits an Ek-monoidal left adjoint,
given by tensoring with e. For k = 1, this left adjoint is only oplax monoidal, as the canonical
map e⊗ x⊗ y⊗ e → e⊗ x⊗ e⊗ y⊗ e need not be an equivalence. This is the key difference
between k = 1 and higher k’s. ◁

Proof sketch. Firstly, Me is stable under the formation non-empty tensor products, so we only
need to prove that it admits a unit, which we claim is e.

In other words, we need to show that for m ∈ Me, the restriction map
Map(e, m)→ Map(1, m) is an equivalence. The inverse is given by

Map(1, m)→ Map(e, e⊗m)→ Map(e, m)

- it is a diagram chase to check that this is indeed an inverse.

Proof of Proposition 1.3.5. Forgetting down to its underlying Ed-monoidal ∞-category, we
may assume without loss of generality that d = k.

We first prove essential surjectivity: fix an idempotent E0-algebra e. By Lemma 1.3.6, there
is a lax Ek-monoidal inclusion Me → M, which therefore sends Ek-algebras to Ek-algebras,
and e is the unit in the source, so it has an Ek-algebra structure in the target as well, which
proves essential surjectivity.

For fully faithfulness, fix two idempotent Ek-algebras e, e′. We aim to prove that in both ∞-
categories, the mapping space from e to e′ is empty or contractible, in the same case. Clearly
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if the mapping space in E0-algebras is empty, the same holds in Ek-algebras, so we may
assume it’s non-empty, and in this case, we need to prove that both are contractible.

So suppose there exists a factorization 1 → e → e′. We claim that in this case, e′ is in Me.
By fully faithfulness of the inclusion M⊗e → M⊗, this will then prove the claim, as e is the
unit in Me.

But now, note that the map e′ → e⊗ e′ can be composed with e⊗ e′ → e′ ⊗ e′ ≃ e′, so that
e′ is a retract of e⊗ e′, which is an object m for which the map e→ e⊗m is an equivalence. It
follows that e′ is also such an object. Similarly for the map e′ → e′ ⊗ e.

With this in mind, we can prove the following preliminary version of the desired result:

Lemma 1.3.8. Let D be a semiadditively Ek-monoidal ∞-category with unit 1, where
1 ≤ k ≤ ∞. Suppose 1 splits as a⊕ b.

There are essentially unique Ek-algebra structures on a, b in D for which the unit maps
1 → a, b are the projections coming from this decomposition. In particular, 1 → a× b is an
equivalence of algebras.

More precisely, a, b are idempotent algebras in D in the sense of Definition 1.3.3, and there-
fore have unique algebra structures extending their unit map by Proposition 1.3.5.

Proof. We show that the projections witness a, b as idempotent E0-algebras.
For this, observe that

a⊗ a⊕ a⊗ b⊕ b⊗ a⊕ b⊗ b ≃ (a⊕ b)⊗ (a⊕ b) ≃ 1⊗ 1 ≃ 1 ≃ a⊕ b

Second, observe that the morphism

a⊗ b→ 1⊗ 1 ≃ 1

factors as a⊗ b→ a⊗ 1 ≃ a→ 1, but also as a⊗ b→ 1⊗ b ≃ b→ 1. In particular, a⊗ b→ 1
factors through 0, but it has a retraction, so a⊗ b must be 0.

Similarly, b⊗ a ≃ 0. It is then just a matter of diagram chasing to see that a, b are idempo-
tents. (Note that this diagram chases can be made in ho(D), as D → ho(D) is conservative,
monoidal, and biproduct preserving).

Proof of Proposition 1.3.2. We start by assuming C has geometric realizations that commute
with the tensor product in each variable. Thus, because m ≥ 2, we can make LModA(C) into
a monoidal ∞-category with the relative tensor product16.

We can now apply Lemma 1.3.8 to the ∞-category LModA(C): A is the unit, and it splits as
B⊕ C for some C, as C is additive and idempotent-complete, where the projection A → B is
chosen to be f . Lemma 1.3.8 in the case k = 1 tells us exactly that C admits a unique algebra
structure in LModA(C) extending its unit A → C, and then A ≃ B× C as algebras, which is
exactly saying that B is the localization of A at an idempotent.

As C is additive compatibly with the tensor product, it follows that
LModA(C) → LModB(C) × LModC(C) is an equivalence, and under this identifi-
cation we clearly have {0} × ModC(C) = ModB(C)⊥, where for a subcategory E ,
E⊥ := { f ∈ ModA(C) | ∀e ∈ E , Map(e, f ) ≃ pt ≃ Map( f , e)}.

To deduce the statement for general C, we note that if C→ D is an additive, Em-monoidal
embedding where D has geometric realizations compatible with the tensor product, then

16This is well known if C is symmetric monoidal, but the following construction works in this generality: (PrL)Alg →
PrL, (C, A) 7→ LModA(C) is a symmetric monoidal functor by [Lur12, Theorem 4.8.5.16], and so one can plug
in algebras in (PrL)Alg to obtain algebras on the output - by Dunn additivity, algebras in (PrL)Alg correspond
exactly to E2-monoidal ∞-categories equipped with an E2-algebra.
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because C was assumed idempotent complete, the decomposition M ≃ B⊗A M⊕ C ⊗A M
for any M ∈ LModA(C) ⊂ LModA(D) shows that B ⊗A M (resp. C ⊗A M) is in fact in
LModB(C) ⊂ LModB(D) (resp. LModC(C) ⊂ LModC(D)), which concludes the proof.

The first consequence we wanted to reach is the following:

Corollary 1.3.9. Suppose C is additively Em-monoidal, m ≥ 3, and let A ∈ AlgEm
(C) be

a separable Em-algebra, with LA its E1-cotangent complex. In this case, the mapping space
mapBiModA

(LA, A) is trivial. In fact, one can make BiModA into a right C-module and the
corresponding hom-object in C is 0.

Proof. We assume without loss of generality that C admits geometric realizations compatible
with the tensor product, in particular it admits basechange along algebra maps.

Since m ≥ 2, for any B ∈ Alg(C), BiModB(C) can be equipped with a right C-module
structure, for which we have a right C-linear equivalence

BiModB ≃ LModB⊗Brev

Thus the statement about the hom-object makes sense. To prove that it is 0, we assume m ≥ 3.
In that case, ho(C) is symmetric monoidal, and furthermore by Proposition 1.1.29, the hom-
object in C is the same as in ho(C), so that we may assume without loss of generality that C
is symmetric monoidal, and A is commutative.

In that case, we may consider µ : A ⊗ A → A as a commutative algebra map, and un-
der the identification Aop ≃ A, this corresponds to the A-bimodule multiplication map
A ⊗ Aop → A. Let L′A denote the A ⊗ A-module fiber of µ. Under the same identifica-
tion, this corresponds to LA.

In particular, as an A⊗ A-module, A can be described as µ∗A, the restriction of scalars of A
along µ, so that homA⊗A(L′A, µ∗A) ≃ homA(µ!LA, A). Here, µ! denotes extension of scalars
along µ.

By Proposition 1.3.2, µ : A ⊗ A → A is a localization at an idempotent, so that µ! of the
fiber is trivial, and the claim follows.

Remark 1.3.10. This corollary is the crucial difference between the commutative and the
associative case. In Remark 1.2.28, we saw that it was precisely the nontriviality of
mapBiModA

(LA, A) that makes the moduli space of E1-algebra structures non-trivial. ◁

As a corollary, we find that in the presence of homotopy commutativity, the obstruction
theory for E1-structures simplifies greatly. We have:

Proposition 1.3.11. Suppose C is additively Em-monoidal, m ≥ 3. Let A ∈ CAlg(ho(C)) be
a homotopy commutative, homotopy separable homotopy algebra. The moduli space of lifts
of A to an E1-algebra in C is contractible.

Proof. Using again the embedding Sp≥0 → Sp, we may assume without loss of generality
that C is stable and admits internal hom’s.

Theorem 1.2.16 proves that this moduli space is simply-connected, so it suffices to prove
that its double loopspace at any given point is contractible. So we fix an E1-algebra Ã ex-
tending A ∈ Alg(ho(C)).

By point 3. in Proposition 1.2.27, it suffices to prove that mapBiModÃ
(ΣLÃ, Ã) is contractible,

or better, it suffices to prove that the hom object homBiModÃ
(ΣLÃ, Ã) is zero. The algebra

Ã⊗ Ãop is separable, so by Proposition 1.1.29, this hom object can be computed in ho(C).
It now follows from Corollary 1.3.9 that it is 0 - note that as Ã⊗ Ãop → Ã is split, its fiber

can be computed in C or in ho(C) equivalently.
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We now explore other consequences of this orthogonality, namely the uniqueness of the
separability idempotent of a commutative separable algebra, and we deduce from it nice de-
scent properties of separable algebras. This uniqueness is well-known classically, and Nau-
mann and Pol have also isolated it, as well as the resulting descent properties, in their recent
work, cf. [NP23, Lemma 6.2, Proposition 6.3].

Corollary 1.3.12. Assume C is additively Em-monoidal, m ≥ 3. Let A ∈ AlgEm
(C) be a

separable Em-algebra. The space of separability idempotents for A is contractible. More
precisely, we define this space is the fiber of

mapBiModA
(A, A⊗ Aop)→ mapBiModA

(A, A)

over idA.

Proof. This is a map of grouplike E∞-monoids, and idA is in the image by separability, so the
fiber is the same as the fiber over 0, so it is equivalent to mapBiModA

(A, LA).
This is contractible by the same reasoning as in Corollary 1.3.9.

A corollary of this uniqueness of separability idempotents is the fact that for commutative
algebras, separability can be checked locally. We first make the following definition:

Definition 1.3.13. We let CSepm(C) ⊂ AlgEm
(C)≃ denote the subspace spanned by separable

algebras. ◁

The statement of locality can then be phrased as follows:

Corollary 1.3.14. Let m ≥ 3. The functor C 7→ CSepm(C), defined on additively Em-
monoidal ∞-categories, is limit-preserving.

Remark 1.3.15. The corresponding statement for separable E1-algebras is wrong. We will
give a counterexample involving Azumaya algebras and based on [GL21] in Example 2.1.11.

◁

Proof. The proof is similar to the corresponding claim for dualizable objects, cf. [Lur12,
Proposition 4.6.11.].

Consider the space of “Em-algebras equipped with a separability idempotent”, namely the
space of tuples (A, s : A → A⊗ Aop, h) where s is a map of bimodules A → A⊗ Aop, and h
a homotopy witnessing that µ ◦ s ≃ idA in A-bimodules.

The functor that assigns this space to C is clearly limit preserving in C (it can be writ-
ten as a limit of spaces that are limit-preserving functors of C), and the projection down
to AlgEm

(C)≃, which is natural in C, establishes, by Corollary 1.3.12, an equivalence with
CSepm(C). The claim thus follows.

Remark 1.3.16. If one thinks of “descent”-type statements as statements about recovering a
(Em-monoidal) ∞-category as a limit of other (Em-monoidal) ∞-categories, this result can be
interpreted as saying that commutative separable algebras satisfy descent.

For instance, if 1 → A is a universal descent morphism in the sense of [Lur18b, Definition
D.3.1.1] (e.g. an étale cover in CAlg(Sp)), one sees that an algebra R ∈ CAlg(C) is separable
if and only if A⊗ R ∈ CAlg(ModA) is separable: one can check separability (of commutative
algebras) after passing to a (universal descent) cover. ◁

In the above proof, we have used implicitly the following lemma, which we record explic-
itly:
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Lemma 1.3.17. The functor AlgEm
: AlgEm

(Cat) → Cat preserves limits. This is more gener-
ally true for the functor AlgO , for any ∞-operad O over Em.

Furthermore, given a limit diagram C• : I◁ → AlgEm
(Cat), and an algebra object

A ∈ AlgE1
(C∞)17, the canonical map LModA(C∞) → limI LModAi (Ci) is an equivalence,

where Ai is the image of A under the induced functor Alg(C∞) → Alg(Ci)

Proof. The first part follows from the existence of envelopes, see [Lur12, Proposition 2.2.4.9].
In more detail, for any ∞-operadO over Em, there is an Em-monoidal ∞-category EnvEm(O)
with an O-algebra UO ∈ AlgO(EnvEm(O)) such that evaluation at UO induces an equiva-
lence

Fun⊗Em
(EnvEm(O), C)→ AlgO(C),

natural in C. Since the source of this equivalence clearly preserves limits in C, the claim
follows.

The second part is a corollary of the first: let LM denote the ∞-operad that classifies left
modules [Lur12, Section 4.2.1], and Ass the associative operard, with its canonical inclusion
Ass→ LM which induces the canonical forgetful functor AlgLM → Alg, and similarly over
Em.

We can then write LModA(C) = AlgLM(C)×Alg(C) {A}. By the first part of the statement,
it follows that (C, A) 7→ LModA(C) is a pullback of limit-preserving functors of the pair
(C, A), and is thus itself a limit-preserving functor.

Corollary 1.3.18. Let m ≥ 3. The functor Algsep
Em

(−), that assigns to an additively Em-
monoidal ∞-category C the full subcategory of AlgEm

(C) spanned by separable algebras,
is limit-preserving.

Proof. Generally, if f , g : S → Cat∞ are functors, g preserves limits and i : f → g is a point-
wise fully faithful natural transformation, then f preserves limits if and only if f≃ : E → S
does. “Only if” is clear as (−)≃ : Cat∞ → S preserves limits.

To prove “if”, we note that limits of fully faithful functors are fully faithful. It follows that
for any diagram X : I → E, in the following commutative square

f (limI X) limI f (X)

g(limI X) limI g(X)

i i

the vertical arrows and the bottom horizontal arrow are all fully faithful. Therefore, so is the
top horizontal arrow. Thus, to prove that it is an equivalence, we simply need to check that
it is essentially surjective, but this follows from f≃ preserving limits.

We apply this to f = Algsep
Em

, g = AlgEm
(−): we observed above that g and

f≃ = CSepm(−) preserved limits.

We now move on to the main theorem of this section, which concerns highly coherent
commutative structures on separable algebras.

Theorem 1.3.19. Let C be an additively Em-monoidal ∞-category where m ≥ 3, and
A ∈ Alg(C) a separable algebra.

If A is homotopy commutative, then it has an essentially unique Em-structure extending
its given E1-structure.
17We use “∞” to denote the cone point in I◁.
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Remark 1.3.20. More generally, but as a consequence of the way the theorem is stated, for
any 1 ≤ n ≤ m, A has an essentially unique En-structure extending its given E1-structure. ◁

Remark 1.3.21. We note that this is an obvious commutative analogue of Theorem 1.2.16, but
that, as with Proposition 1.3.11, the situation is better in the commutative world. ◁

We also note the important corollary that all the previous work in the section, about com-
mutative separable algebras therefore also applies in the case of homotopy commutative sep-
arable algebras. Combined with Proposition 1.3.11, this yields:

Corollary 1.3.22. Let C be an additively Em-monoidal ∞-category with m ≥ 3, and
A ∈ Alg(ho(C)) a homotopy separable homotopy commutative homotopy algebra.

It has an essentially unique Em-structure extending its given homotopy algebra structure.

Remark 1.3.23. This theorem is consistent with the experience that all commutative sep-
arable algebras in tensor triangulated categories coming from stably symmetric monoidal
∞-categories admit highly coherent structures. ◁

Remark 1.3.24. This corollary should be reminiscent of the Goerss–Hopkins–Miller theorem
[GH05]. However, Morava E-theory is not separable. In Section 1.4.3, we introduce the notion
of an ind-separable algebra to make up for this defect, and observe that Morava E-theories are
examples of such things. We deduce extensions of the Goerss–Hopkins–Miller theorem to
other ∞-operads than E1 and E∞ (cf. Theorem 1.3.28 below and Corollary 1.4.53) - these are
well-known to experts but do not seem to be recorded in the literature. ◁

In fact, we deduce Theorem 1.3.19 from a more general statement. To state it, we introduce
a certain class of ∞-operads over Em which contains the En, 1 ≤ n ≤ m.

Notation 1.3.25. Let O be an ∞-operad, with a single color x, i.e. O⊗⟨1⟩ has a single object up

to equivalence. By definition of an ∞-operad, it follows that O⊗⟨n⟩ has a unique object up to
equivalence too, denoted x ⊕ ...⊕ x (see [Lur12, Remark 2.1.1.15] for the notation). In this
case, we let O(n) denote the space of n-ary operations. In more detail, letting µn : ⟨n⟩ → ⟨1⟩
denote the unique active morphism in Fin∗, we put:

O(n) := mapO⊗(x⊕ ...⊕ x, x)×homFin∗ (⟨n⟩,⟨1⟩) {µn}

. ◁

Definition 1.3.26. Let O be an ∞-operad. We say it is weakly reduced if:

• It has a single color, i.e. its underlying ∞-category has a unique object x up to equiva-
lence.

• Both O(0) and O(1) are connected.

◁

Example 1.3.27. The En-operads, 1 ≤ n ≤ ∞ are weakly reduced ∞-operads. ◁

Our more general statement can thus be stated as:

Theorem 1.3.28. Let C be an additively Em-monoidal ∞-category, m ≥ 3, and A ∈ Alg(C)
a separable algebra which is homotopy commutative.

For any weakly reduced ∞-operadO equipped with a morphism of ∞-operadsO → Em−1,
the space of O ⊗E1-structures on A extending the given E1-structures is contractible. Here,
⊗ denotes the Boardman-Vogt tensor product of ∞-operads following [Lur12, section 2.2.5],
and O ⊗ E1 is viewed as an ∞-operad over Em using the Dunn additivity equivalence
Em−1 ⊗ E1 ≃ Em.



1.3 COMMUTATIVE SEPARABLE ALGEBRAS 40

Remark 1.3.29. We note that the Boardmann–Vogt tensor product has the relevant universal
property also in the relative setting, essentially by definition - see [Lur12, Construction 3.2.4.1,
Proposition 3.2.4.3]. Thus for O → Em−1, and C an Em-monoidal ∞-category, there is a
canonical Em−1-monoidal structure on AlgE1

(C) and a canonical equivalence

AlgO⊗E1
(C) ≃ AlgO(AlgE1

(C))

As usual, this is well known in the case of m = ∞, but the constructions from [Lur12] are
made to work in this generality too. ◁

Let us briefly describe the strategy of proof of Theorem 1.3.28, so that we can also explain
the hypotheses on O. We will expand on Theorem 1.2.14, by proving that under the homo-
topy commutativity assumption, mapAlg(C)(A, R) has lots of discrete components, in fact,
enough to guarantee that each mapAlg(C)(A⊗n, A) is discrete and therefore18 equivalent to
homAlg(ho(C))(hA⊗n, hA).

From this, it follows at once that O-algebra structures on A in AlgE1
(C), i.e. O ⊗ E1-

algebra structures on A extending the given algebra structure, are equivalent to O-algebra
structures on hA in Alg(ho(C)). As hA is commutative and Alg(ho(C)) is a 1-category, the
assumptions on O will then guarantee that there is a unique such structure.

We thus begin with:

Proposition 1.3.30. Assume C is additively Em-monoidal, with m ≥ 2. Let A ∈ Alg(C) be
separable and homotopy commutative, and let R ∈ Alg(C) be arbitrary. Let f : A → R be
a map in Alg(C), and suppose that it is homotopy-central, i.e. the following two maps19 are
equivalent in C:

A⊗ R
f⊗id−−→ R⊗ R→ R

and
A⊗ R ≃ R⊗ A

id⊗ f−−→ R⊗ R→ R

In this situation, Ω(mapAlg(C)(A, R), f ) is contractible, i.e. the component of f in
mapAlg(C)(A, R) is contractible.

Proof. Recall from [Lur12, Theorems 4.8.4.1 and 4.8.5.11] that mapAlg(C)(A, R) is equivalent
to the fiber over R of the forgetful map RBiMod≃A → LMod≃R .

It follows that Ω(mapAlg(C)(A, R), f ) is equivalent to the fiber of
AutRBiModA(R, R) → AutR(R, R) over idR, where R has the (R, A)-bimodule structure
induced by f . As the forgetful functor RBiModA → LModR is conservative, this is equiv-
alently the fiber of the corresponding mapping spaces, again at idR. Because idR is in the
image and this map is a map of grouplike E∞-spaces, the fiber over idR is equivalent to the
fiber over 0.

In other words, it suffices to prove that for every n,

πn(map
RBiModA

(R, R), 0)→ πn(mapR(R, R), 0)

is an isomorphism, or equivalently, that

π0(map
RBiModA

(R, ΩnR))→ π0(mapR(R, ΩnR))

18By Theorem 1.2.14.
19In the case of m = 2, we have to pick an orientation for the equivalence A⊗ R ≃ R⊗ A. Either choice makes the

statement correct.
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is an isomorphism.
By adjunction, this forgetful map is equivalent to the map given by precomposition with

R⊗ A → R: π0(map
RBiModA

(R, ΩnR)) → π0(map
RBiModA

(R⊗ A, ΩnR)), and because A is
separable, R⊗ A → R is split, so that this map is always injective. It thus suffices to prove
that it is surjective.

Note that this is a map between hom sets in ho(RBiModA(C)), and by Corollary 1.2.3, it
is thus equivalent to a map between hom sets in RModhA(ho(LModR)). Furthermore, the
source in both cases is free as an R-module, so by Lemma 1.2.1 it is equivalent to a map
between hom sets in hRBiModhA(ho(C)). In other words, we are trying to prove that every
map R → ΩnR of left hR-modules is right hA-linear. We note that R, ΩnR are R-bimodules,
and the right A-module structure is induced from the right R-module structure by restricting
along f : A→ R. In other words, for both R and ΩnR, the right A-module structure is given
by M⊗ A→ M⊗ R→ M.

It thus suffices to prove that the right A-action on ΩnR agrees with the following map20:
ΩnR⊗ A ≃ A⊗ΩnR→ R⊗ΩnR→ ΩnR. Indeed, this is the case for R by assumption, and
it will thus follow immediately that any left hR-linear map R→ ΩnR is also right hA-linear.

Now, by assumption, we already know that this is the case for the A-action on R, so it
suffices to show that the action map of A on ΩnR is given (up to homotopy) by

ΩnR⊗ A ≃ Ωn(R⊗ A)→ ΩnR

where the second map is Ωnρ, ρ being the right action of A on R. But this is clear, as the left
A-action on ΩnR is obtained via restiction of scalars from the left R-action, which is given
this way.

Remark 1.3.31. Note that the end of this proof really identifies maps in ho(C), and there is
no coherence claim. This is what the results from Section 1.2 buy us. ◁

In the proof, we really use the homotopy centrality of f : A → R. The result is not true in
general if we drop this hypothesis, as the following example shows (in fact, in this example,
R is also separable, and C is symmetric monoidal, i.e. m = ∞):

Example 1.3.32. We start by a computation in a homotopy category, namely, consider D
the symmetric monoidal 1-category of Z/2d-graded Q-vector spaces, where d is some odd
integer different from 1. Let H be some group with a nontrivial automorphism α of order
d, and consider the corresponding semi-direct product G := H ⋊ Z/d, with projection map
p : G → Z/d and section i : Z/d→ G.

We let A = Q[u] where |u| = 2, and ud = 1, and R =
⊕

g∈G Q[2p(g)], where the algebra
structure is the natural one, namely, given by

Q[2p(g)]⊗Q[2p(g′)]→ Q[2p(gg′)]

(note that A is given by the same construction, replacing G by Z/d). Both A and R are
separable in D. Let f : A → R be given by the section i, i.e. u maps to the generator of the
i(σ) summand in R - this is easily checked to be an algebra map.

Given h ∈ H such that α(h) ̸= h, let g0 = (h, 1), and consider the corresponding ele-
ment r0, corresponding to 1 ∈ Q[2p(g0)] = Q[2] which corresponds to a left R-linear map
R → R[−2]. We claim that this left R-linear map is not right A-linear. Indeed, it is given by
r 7→ rr0, and right A-linearity would be the claim that rar0 = rr0a which, when r = 1, is

20In the case m = 2, the first swap map is the one in the opposite direction as the one in the statement of the
proposition.
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the claim that ar0 = r0a, which can be checked to be wrong, essentially because i does not
land in the center of G. More precisely, when a = u, r0a, ar0 live in different summands of⊕

g∈G Q[2p(g)], one of them in the summand corresponding to (h, σ), and the other in the
summand corresponding to (α(h), σ).

We claim that this is now enough to give a counterexample to the previous proposition
when f is not homotopy central. Indeed, consider S = Q[t±1] as a commutative algebra in
ModQ, where t has degree 2d. The homotopy category of ModS is symmetric monoidally
equivalent to D, and the suspension on ModS corresponds to shifting in D. Further, because
A, R are separable in D, they can be lifted to algebras in ModS in a weakly unique way by
Theorem 1.2.16, similarly for the map f : Ã → R̃21, and because A is commutative in D,
Theorem 1.3.19 implies that Ã is commutative in a unique way. We are now left with proving
that Ω(mapAlgS

(Ã, R̃), f ) is not discrete. By the analysis in the previous proof, it suffices to

prove that homR⊗A(R, Ω2R)→ homR(R, R) is not surjective. We have just done this! ◁

As an immediate corollary, we find:

Corollary 1.3.33. Assume C is additively Em-monoidal, m ≥ 2, and let A ∈ Alg(C) be
separable and homotopy commutative, and R ∈ Alg(C) be homotopy commutative.

In this case, mapAlg(C)(A, R) is discrete and equivalent (via the canonical map) to
homAlg(ho(C))(hA, hR).

Proof. This follows from Proposition 1.3.30 as any map f : A → R is homotopy central, by
homotopy commutativity of R.

Corollary 1.3.34. Assume C is additively Em-monoidal, m ≥ 3, and let A ∈ Alg(C) be
separable and homotopy commutative.

In this case, for any n ≥ 0, mapAlg(C)(A⊗n, A) is discrete and equivalent to
homAlg(ho(C)(hA⊗n, hA).

Proof. This is an immediate corollary of Corollary 1.3.33, using that because m ≥ 2, A⊗n is
also separable by Lemma 1.1.6, and because m ≥ 3, A⊗n is also homotopy commutative.

We can now prove Theorem 1.3.28:

Proof of Theorem 1.3.28. By Corollary 1.3.34, the (Em−1 monoidal) forgetful functor
Alg(C) → Alg(ho(C)) restricts to a (Em−1-monoidal) equivalence between the full sub-
categories spanned by A⊗n, n ≥ 0 and hA⊗n, n ≥ 0 respectively.

It therefore induces an equivalence between the space of O-algebra structures on A, and
the space of O-algebra structures on hA, for any single-colored operad O over Em−1.

Now, m ≥ 3, so ho(C) is symmetric monoidal. Furthermore, hA is commutative, so that
the O-algebra structures on hA in Alg(ho(C)) are the same thing as O-algebra structures
in CAlg(ho(C)), which is cocartesian Em−1-monoidal (and hence symmetric monoidal). It
follows that these are simply O-algebra structures on hA in CAlg(ho(C)).

Therefore, by [Lur12, Proposition 2.4.3.9], the assumption that O is weakly reduced guar-
antees that the space of such structures is contractible22.

21In this case, the algebras in question are just Thom spectra so one can actually give a relatively easy construc-
tion both of the algebras and the map, as well as a proof that they are separable. This is expanded upon in
Example 1.5.17.

22In this case, CAlg(ho(C)) is a 1-category, so we do not really need anything as sophisticated as [Lur12, Proposition
2.4.3.9]
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Proof of Theorem 1.3.19. The operad E∞ is clearly weakly reduced, and by [Lur12, Corollary
5.1.1.5, Theorem 5.1.2.2], E∞ ⊗E1 ≃ E∞.

Similarly, by Example 1.3.27, the operads En are weakly reduced for 1 ≤ n ≤ ∞, and again
by [Lur12, Theorem 5.1.2.2], En+1 ≃ En ⊗E1.

In fact, for m ≥ 3 we could have guessed ahead of time that A could be made at least E2 in
a canonical way, via the following elementary observation:

Observation 1.3.35. Assume C is additively Em-monoidal. Let A ∈ Alg(C) be a separable
algebra, which is homotopy commutative. The forgetful map

Z(A) = homA⊗Aop(A, A)→ A

(cf. Notation 1.1.31) is an equivalence of algebras, and in particular A admits an E2-algebra
structure, as Z(A) always does for m ≥ 3. ◁

Indeed, by Proposition 1.1.29, this internal hom is preserved by passage to the homotopy
category, so it suffices to prove the claim there. But now, hA is literally a commutative algebra
in a symmetric monoidal 1-category, so the claim is obvious.

Remark 1.3.36. We can rephrase Theorem 1.3.28 as saying that for any weakly reduced op-
erad O, the forgetful map AlgO⊗E1

(C)≃ → Alg(C)≃ has trivial fibers over separable, ho-
motopy commutative algebras, and in particular is an equivalence when restricted to the
appropriate components. ◁

A special case of the previous remark is that CAlg(C)≃ → Alg(C)≃ is an equivalence when
restricted to the components of algebras that are homotopy commutative and separable in the
target. We note a corollary of this:

Corollary 1.3.37. Let hCSep(C) denote the full subspace of Alg(C)≃ spanned by the sepa-
rable, homotopy commutative algebras. The functor C 7→ hCSep(C), defined on additively
Em-monoidal ∞-categories, m ≥ 3, is limit-preserving.

Proof. This follows from Corollary 1.3.14 and Remark 1.3.36 in the case O = Comm: the
natural map CSep(C)→ hCSep(C) is an equivalence.

Corollary 1.3.38. The functor C 7→ CSepm(C), defined on additively Em-monoidal ∞-
categories, m ≥ 3, preserves filtered colimits.

Proof. By Corollary 1.3.22, Proposition 1.2.9 and Corollary 1.3.33, it is equivalent to
C 7→ CSep(ho(C)).

Now C 7→ ho(C) preserves filtered colimits and the fact that CSep(−) also does on 1-
categories is elementary: the definition of a commutative separable algebra in a 1-category
involves finitely many objects, morphisms and equations.

We also note the following corollary of Corollary 1.3.33:

Corollary 1.3.39. Assume C is additively Em-monoidal, m ≥ 3.
Let A, R ∈ AlgEm

(C). If A is separable, then the forgetful maps

mapAlgEm (C)(A, R)→ mapAlg(C)(A, R)→ homAlg(ho(C))(hA, hR)

are equivalences.
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More generally, if O is any single-colored ∞-operad equipped with a map O → Em−1
and R ∈ AlgO⊗E1

(C) is an algebra whose underlying E1-algebra is homotopy commutative,
then, viewing A as an O ⊗E1-algebra using the map of ∞-operads O ⊗E1 → Em, we find
that the canonical map

mapAlgO⊗E1
(C)(A, R)→ homAlgO⊗E1

(ho(C))(hA, hR)

is an equivalence.

Remark 1.3.40. The condition on R in the second part of the statement is automatic if O is
weakly reduced and has at least one operation in arity 2, e.g. for O = En, 1 ≤ n ≤ ∞. ◁

To see that this really is a corollary, we first record the following classical lemma:

Lemma 1.3.41. Let f : C → D be an Em-monoidal functor, and A, B ⊂ C two full subcat-
egories. Assume A is closed under tensor products in C, and furthermore assume that for
every a ∈ A, b ∈ B, the canonical map

mapC(a, b)→ mapD( f (a), f (b))

is an equivalence.
In this case, for any ∞-operad O over Em and any R ∈ AlgO(A), viewed as an O-

algebra in C, and any S ∈ AlgO(C) whose underlying objects are in B, the canonical map
mapAlgO(C)(R, S)→ mapAlgO(D)( f (R), f (S)) is an equivalence.

This is in turn a consequence of:

Lemma 1.3.42. Let f : C → D be a functor between two ∞-categories, and let
A, B ⊂ C be full subcategories such that for each a ∈ A, b ∈ B, the canonical map
mapC(a, b)→ mapD( f (a), f (b)) is an equivalence.

Let X, Y : I → C be two functors such that for each i ∈ I, Xi ∈ A, Yi ∈ B. In this case, the
canonical map

mapFun(I,C)(X, Y)→ mapFun(I,D)( f ◦ X, f ◦Y)

is an equivalence.

Proof. This follows directly from the description of mapping spaces in Fun(I, C) as ends, cf.
[GHN15, Proposition 5.1], but for the sake of completeness, we give here a more elementary
proof.

Let CA,B ⊂ C∆1
be the full subcategory spanned by arrows a → b where a ∈ A, b ∈ B. We

note that our assumption guarantees that the following is a pullback square:

CA,B D∆1

A× B D× D

In particular, it remains so after taking Fun(I,−). We now note that

Fun(I, CA,B) ≃ Fun(I, C)Fun(I,A),Fun(I,B)

and Fun(I, D∆1
) ≃ Fun(I, D)∆1

compatibly.
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Now for X, Y as in the statement, Map(X, Y) is the fiber of

Fun(I, C)∆1 → Fun(I, C)× Fun(I, C)

over (X, Y), so that by fullness of A, B ⊂ C, it is also the fiber of
Fun(I, C)Fun(I,A),Fun(I,B) → Fun(I, A) × Fun(I, B) over (X, Y) and thus, because the

above square is a pullback, the fiber of Fun(I, D)∆1 → Fun(I, D) × Fun(I, D) over
( f ◦ X, f ◦Y), i.e. Map( f ◦ X, f ◦Y), as claimed.

Proof of Lemma 1.3.41. For simplicity of notation, we deal with the case of m = ∞, but the gen-
eral case is strictly analogous. The ∞-category AlgO(C) (resp. AlgO(D)) is a full subcategory
of Fun(Fin∗, C⊗)×Fun(Fin∗ ,Fin∗) {id} (resp. Fun(Fin∗, D⊗)×Fun(Fin∗ ,Fin∗) {id}).

We can thus apply Lemma 1.3.42 here, by taking A⊗ to be the full suboperad of C⊗ spanned
by objects of A, and taking B⊗ to be the full suboperad of C⊗ spanned by objects of B.

We simply need to check the assumptions on f⊗ : C⊗ → D⊗, i.e. we need to prove that
for any tuples A1, ..., An ∈ A, B1, ..., Bm ∈ B with corresponding objects A ∈ C⊗⟨n⟩, B ∈ C⊗⟨m⟩,
the canonical map

mapC⊗(A, B)→ mapD⊗( f⊗A, f⊗B)

is an equivalence.
This map is a map of spaces over homFin∗(⟨n⟩, ⟨m⟩) and so we can take fibers over a given

morphism α : ⟨n⟩ → ⟨m⟩, and because f⊗ is symmetric monoidal, it is compatible with the
equivalences mapC⊗(A, B) ≃ ∏i∈⟨m⟩o (

⊗
j∈α−1(i) Aj, Bi); and so the claim follows from the

assumption on A, B, and the fact that A is closed under tensor products.

Proof of Corollary 1.3.39. This follows again from Corollary 1.3.33, using the (definitional)
equivalence AlgO⊗E1

(C) ≃ AlgO(AlgE1
(C)), and Lemma 1.3.41 - we apply the latter to the

Em−1-monoidal functor Alg(C) → Alg(ho(C)), with the full subcategories A, B spanned on
the one hand by the commutative separable algebras, and on the other hand by the homotopy
commutative algebras.

We also record the following special case explicitly:

Corollary 1.3.43. Assume C is additively symmetric monoidal. Let A ∈ CAlg(C) be a com-
mutative separable algebra, and R ∈ CAlg(C) an arbitrary commutative algebra. In this case,
mapCAlg(C)(A, R) is 0-truncated, i.e. discrete.

It is of course a special case of the above, but to make this consequence more concrete, we
give an alternative, more elementary proof that could be useful in different contexts.

Alternative proof of Corollary 1.3.43. It suffices to argue that the diagonal map
mapCAlg(C)(A, R) → mapCAlg(C)(A, R) × mapCAlg(C)(A, R) is an inclusion of compo-
nents, i.e. a monomorphism.

Since CAlg(C) admits coproducts given by tensor products, this amounts to the claim
that the multiplication map A ⊗ A → A is an epimorphism in CAlg(C). But this follows
immediately from it being a localization at an idempotent, cf. Proposition 1.3.2.
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1.3.1 Deformation theory and étale algebras

In the specific case where C = ModR, for some connective ring spectrum, we can try, as in the
étale case, to relate connective commutative separable algebras to their π0, rather than to their
corresponding homotopy algebra ho(C). In that regard, the usual techniques of deformation
theory work just as well as in the étale case, cf. [Lur12, Section 7.5]. We explain how this
works in our situation. In fact, a big chunk of the deformation theory works for general 0-
cotruncated commutative algebras. For a little while, we will therefore be in the setting of
spectra and no longer a general C (although many of these results could be phrased more
genreally in the presence of a t-structure).

Proposition 1.3.44. Let S be a connective Em+1-ring spectrum, m ≥ 1, R a connective Em
S-algebra23, and A a 0-cotruncated connective Em-S-algebra.

In this case, the canonical maps

mapAlgEm ,S
(A, R)→ mapAlgEm ,π0(S)

(A⊗S π0(S), π0(R))→ mapCAlg♡
π0(S)

(π0(A), π0(R))

are equivalences.

Proof. Note that, for both maps, by adjunction it suffices to prove that the map
mapAlgEm ,S

(A, R)→ mapAlgEm ,S
(A, π0(R)) is an equivalence.

As R ≃ limn R≤n, it suffices to prove that each R≤n+1 → R≤n induces an equivalence
mapAlgEm ,S

(A, R≤n+1)→ mapAlgEm ,S
(A, R≤n).

For this, we note that R≤n+1 → R≤n is a square zero extension [Lur12, Corollary 7.4.1.28],
so it suffices to prove this claim for arbitrary square zero extensions of Em-S-algebras by
connective modules.

So let R̃→ R denote such a square zero extension, classified by a pullback square

R̃ R

R R⊕ ΣM

p

d0

dη

p

where M is connective. As this is a pullback square, it remains so after applying
mapAlgEm ,S

(A,−), and so, to prove that the left vertical map becomes an equivalence, it suf-
fices to prove that this is so for the right vertical map. But the right vertical map has a left
inverse, namely, the projection R⊕ ΣM → R, so it suffices to prove that this left inverse gets
sent to an equivalence.

However, this projection map R⊕ ΣM→ R is a trivial square zero extension, so it suffices
to prove the claim for these ones, i.e., extensions where the corresponding pullback square
has dη ≃ d0. This is where we use 0-cotruncatedness: applying mapAlgEm ,S

(A,−) yields a
pullback square of sets of the form:

mapAlgEm ,S
(A, R̃) mapAlgEm ,S

(A, R)

mapAlgEm ,S
(A, R) mapAlgEm ,S

(A, R⊕ ΣM)

p

d0

d0

p

23By which we mean an Em-algebra in the Em-monoidal ∞-category ModS.
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Where the two d0’s really are the same map, and further are (split) injections. The pullback
of sets along injections is given by the intersection of the images. But if the maps are equal,
then their images are equal too, so that the intersection is the whole thing. This implies that
the left vertical map is an equivalence, as was to be proved.

Proposition 1.3.45. Let C 7→ Q(C) be a limit-preserving subfunctor of the functor
C 7→ AlgEm

(C) defined on the ∞-category of Em-monoidal ∞-categories, m ≥ 1.
Let Qcn denote the restriction of Q to the ∞-category Algcn

Em+1
of connective Em+1-ring

spectra along R 7→ Modcn
R . Suppose that the image of

Qcn(R)→ AlgEm
(Modcn

R )

consists of 0-cotruncated Em-algebras.
In this case, for any connective Em+1-ring spectrum R, the canonical map R → π0(R)

induces an equivalence Qcn(R)→ Qcn(π0(R)).

Proof. The argument is essentially the same as before. We use the fact that Modcn
• preserves

the inverse limits involved in Postnikov towers, namely the limit diagrams of the form
R ≃ limn R≤n [Lur18b, p. 19.2.1.5], and pullback squares defining square zero extensions
by connective modules [Lur18b, Theorem 16.2.0.2.].

As Q preserves all limits, Qcn preserves these specific limits, so that, to prove that
Qcn(R) → Qcn(π0(R)) is an equivalence, it suffices to prove that Qcn(R̃) → Qcn(R) is
an equivalence for all square zero extensions by connective modules and hence, as before, it
suffices to prove it for trivial square zero extensions by connective modules.

For these ones, we note that the same argument as before using pullbacks of sets along
equal injections implies, by looking at mapping spaces, that Qcn(R ⊕ ΣM) → Qcn(R) is
fully faithful. In more detail, we can fit this map in a pullback square:

Qcn(R⊕ ΣM) Qcn(R)

Qcn(R) Qcn(R⊕ Σ2M)

where the two maps Qcn(R) → Qcn(R⊕ Σ2M) are equivalent, and so, looking at mapping
spaces, we find pullback squares of sets of the form:

X Y

Y Z

where the two maps Y → Z are equal and (split) injective. It follows that the map X → Y is
an isomorphism as before, and hence, that Qcn(R⊕ ΣM)→ Qcn(R) is fully faithful.

Because it also has a right inverse (namely Qcn(R) → Qcn(R⊕ ΣM)), it follows that it is
also essentially surjective, hence an equivalence.

Corollary 1.3.46. Let R be a connective Em+1-ring spectrum, m ≥ 3. Basechange along
R→ π0(R) induces an equivalence CSepcn

m (R)→ CSepcn
m (π0(R)).

Proof. Combine Corollary 1.3.43 and Proposition 1.3.45.
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In the case of étale extensions, however, one can go further: flatness (which is part of the
definition of étale) forces étale extensions of π0(R) to also be discrete. We do not know if
this is so for arbitrary commutative separable extensions, however, in the noetherian case,
Neeman proved the following:

Theorem 1.3.47 ([Nee18, Lemma 2.1., Remark 2.2.]). Let R be a discrete commutative noethe-
rian ring. Any commutative separable algebra in ModR is coconnective24. In particular, any
connective commutative separable algebra is discrete.

A discrete separable commutative algebra is also flat.

Remark 1.3.48. In that last sentence, we are considering separable algebras in ModR, which
are discrete; and not separable algebras in Mod♡R . The latter can be non-flat: for example, any
quotient R→ R/I is separable in Mod♡R , as R/I ⊗R R/I ∼= R/I. ◁

Remark 1.3.49. Neeman proves more than Theorem 1.3.47, he completely classifies commu-
tative separable algebras over noetherian schemes. ◁

We will deduce the following:

Corollary 1.3.50. Let R be a connective Em+1-ring spectrum, m ≥ 3, with noetherian π0. The
functor π0 : Modcn

R → Mod♡R ≃ Mod♡
π0(R) ⊂ Modπ0(R) preserves separable Em-algebras.

Furthermore, any connective separable Em-algebra over R is flat.
The functor π0(−), or equivalently π0(R)⊗R − induces an equivalence

Algsep
Em

(R)cn → Algsep
Em

(π0(R))♡,♭

We have used the following notation:

Notation 1.3.51. We use the superscript ♭ to indicate flatness - we can use this for ModR,
where R is a ring spectrum [Lur12, Definition 7.2.2.10.], and by extension for ∞-categories
that admit natural forgetful functors to it, such as AlgEm

(R). ◁

To prove this, we use the following standard lemma:

Lemma 1.3.52. Let R be a connective ring spectrum and M a right R-module. Suppose
M⊗R π0(R) is a flat (in particular discrete) π0(R)-module. In this case, M is a flat R-module.

Proof. For any discrete left R-module N, M ⊗R N ≃ M ⊗R π0(R) ⊗π0(R) N is discrete by
assumption. This is enough by [Lur12, Theorem 7.2.2.15.(5)].

Proof of Corollary 1.3.50. Let A be a connective, homotopy commutative separable algebra
over R. Basechange along R → π0(R) is Em-monoidal, so that A ⊗R π0(R) is separable
and hence, by Neeman’s theorem (Theorem 1.3.47), coconnective. As it is also connective, it
is therefore discrete.

It follows that it is isomorphic to its π0, which is also π0(A), and hence, π0(A) is separable,
as an algebra in Modπ0(R)

25.
Furthermore, A⊗R π0(R) is flat, again by Theorem 1.3.47, and hence A is flat, by the pre-

vious lemma.
Now, as commutative separable algebras are 0-truncated, by Corollary 1.3.43, this implies

that the two functors (which we just explained are equivalent) π0(−) and π0(R) ⊗R − are

24In [Nee18], Neeman says “connective”, but he is working with cohomological conventions.
25It is obviously separable in Mod♡

π0(R), because π0 : Modcn
R → Mod♡

π0(R) is strong Em-monoidal.
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fully faithful as functors CAlgsep(R)cn → CAlgsep(π0(R))♡,♭. We are left with proving that
they are essentially surjective.

But the inclusion Mod♡,♭
π0(R) → Modπ0(R) is strong symmetric26 monoidal, and hence pre-

serves separable algebras. Thus, any object in CAlgsep(π0(R))♡,♭ lifts to CAlgsep(π0(R))cn,
and by Corollary 1.3.46, anything there can be lifted to CAlgsep(R)cn.

In other words, under this noetherian-ness assumption, connective commutative separable
algebras in Modπ0(R) are exactly the flat ordinary commutative separable algebras. Note that
given a flat ordinary commutative separable algebra A0, the corresponding commutative
separable algebra over R is flat, and hence has homotopy groups π∗(A) ∼= A0 ⊗π0(R) π∗(R).

This allows us to compare separability with étale-ness in the sense of Lurie in the noethe-
rian case. Namely, we have:

Proposition 1.3.53. Let R be a commutative ring spectrum and A a commutative R-algebra.
If A is étale in the sense of [Lur12, Definition 7.5.0.4.], then A is separable.

Conversely, if R is connective and π0(R) is noetherian, then if A is separable, connective
and π0(A) is finitely presented over π0(R) then A is étale in the same sense.

Remark 1.3.54. It is not clear to the author what the optimal statement is. Clearly, one cannot
drop all connectivity assumptions: for instance, Galois extensions are separable (see Propo-
sition 1.5.3), but many of them, such as KO→ KU are not étale.

It is reasonable to expect that one can drop the noetherian assumption, and possibly the
connectivity assumption on A. ◁

Proof. Assume A is étale. By definition, π0(A) is étale over π0(R). In par-
ticular, π0(A) is flat over π0(R), and separable in the classical sense. So let
e ∈ π0(A) ⊗π0(R) π0(A) ∼= π0(A ⊗R A) be a separability idempotent. This is in turn
an idempotent in A⊗R A which gets sent to 1 ∈ π0(A) under the multiplication map.

In particular, it induces a map (A⊗R A)[e−1] → A. Because homotopy groups commute
with localizations, and because A is flat, this map can be identified, on homotopy groups,
with

(π0(A)⊗π0(R) π0(A)⊗π0(R) π∗(R))[e−1]→ π0(A)⊗π0(R) ⊗π∗(R)

Because (π0(A) ⊗π0(R) π0(A))[e−1] → π0(A) is an isomorphism, this map is also an
isomorphism, which proves that (A ⊗R A)[e−1] ≃ A. As e is idempotent, it follows that
A⊗R A→ A has an A⊗R A-linear splitting, thus proving that it is separable.

For the converse, we already know π0(A) is separable, flat and finitely presented, which
means that it is étale over π0(R) in the classical sense. Furthermore, we also know that
A is flat over R, which altogether means that A is étale in the sense of [Lur12, Definition
7.5.0.4.].

Question 1.3.55. Do these results (Theorem 1.3.47, Corollary 1.3.50 and Proposition 1.3.53)
continue to hold without a noetherian-ness assumption ? ◁

In their recent work [NP23], Naumann and Pol partially answer this question by removing
the noetherian assumption and adding the assumption that the algebra A is perfect as an
R-module. One easily sees that their proof only uses the assumption that A is almost perfect
[Lur12, Definition 7.2.4.10]. In fact, as it turns out, it follows that in this case, almost perfect
implies perfect. We record it here for the convenience of the reader, but the proof is the same
as that of [NP23, Proposition 10.5]:

26Note that π0(R) is commutative.
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Proposition 1.3.56. The answer to Question 1.3.55 is yes, when restricted to almost perfect
separable algebras. More precisely, fix a connective commutative ring spectrum R. Let A be
a commutative separable R-algebra, whose underlying R-module is almost perfect.

In this case, A is flat, and hence connective; π0(A) is separable as a π0(R)-algebra in
Modπ0(R) (and not only in Mod♡

π0(R)). In particular, A is étale in the sense of Lurie over
R.

In particular, A is perfect, and even finitely generated projective as an R-module. In other
words, almost perfect commutative separable algebras are always perfect/finitely gener-
ated projective, and they correspond exactly to finite étale extensions. The functor π0(−),
or equivalently π0(R) ⊗R −, induces an equivalence between these and finite étale π0(R)-
algebras.

Proof. By Lemma 1.3.52, to prove that A is flat, it suffices to prove that A ⊗R π0(R) is flat,
and in particular discrete, over π0(R).

We reduce to the case of a field using [Sta23, Tag 068V]. In more detail, we note that the
word “pseudo-coherent” used in [Sta23] is equivalent to “almost perfect” in the case of dis-
crete rings, so that this lemma does apply to our situation. Then, we note that basechange pre-
serves almost perfect modules, so that A⊗R π0(R) is almost perfect over π0(R), i.e. pseudo-
coherent. Finally, we note that being flat is equivalent to being of Tor-amplitude in [0, 0],
so that by [Sta23, Tag 068V] it suffices to prove that A⊗R π0(R)⊗π0(R) k is concentrated in
degree 0 for any field k and morphism π0(R)→ k.

But now A⊗R k is the basechange of A along the commutative ring map

R→ π0(R)→ k

so it is a separable commutative algebra over the field k, and by [Nee18, Proposition 1.6],
these are all discrete, as was to be shown.

Now, we have proved that A is flat (and in particular connective), so that
π0(R)⊗R A ≃ π0(A) - the former is obviously separable, and therefore, so is the latter.

To prove that A is étale, as in the proof of Proposition 1.3.53, because we already know that
it is flat, it suffices to prove that π0(A) is étale over π0(R). We know that it is separable and
flat, so it suffices to prove that it is finitely presented, but it is finitely presented as a module
over π0(R), which immediately implies that it is finitely presented as an algebra as well, and
hence étale.

Furthermore, π0(A) is a finitely presented flat π0(R)-module, hence it is finitely generated
projective, and thus, by flatness of A, A is a finitely generated projective R-module, and in
particular perfect.

By Corollary 1.3.46, the functor

CAlgsep(R)aperf ⊂ CAlgsep(R)cn → CAlgsep(π0(R))cn

is fully faithful, and it lands in the full subcategory CAlgsep(π0(R))♡,♭. To conclude the proof,
it thus suffices to prove that its essential image is exactly the finite étale extensions. But if A0
is a finite étale extension of π0(R), it is in particular finitely generated projective, and so
its unique lift to a flat π0(R)-module is also finitely generated projective, and hence almost
perfect.

Question 1.3.55 remains however open in full generality.

https://stacks.math.columbia.edu/tag/068V
https://stacks.math.columbia.edu/tag/068V
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1.4 A variant: ind-separability
The goal of this section is to study a variant of the notion of separability, which I call “ind-
separability”, and which is better suited in some “infinitary” situations. We will see that they
share many of the properties of separable algebras, in particular concerning highly structured
multiplicative structures.

We will see that, in the ∞-category of K(n)-local spectra, Morava E-theory is ind-separable
- the proof of this will require as its only input the computation of the ring of cooperations
of Morava E-theory, by Hopkins–Ravenel, Baker, and revisited by Hovey in [Hov04]. As a
corollary, we will obtain a relatively simple proof of the Goerss–Hopkins–Miller theorem, or
in some sense a reorganization of the classical proof; as well as an extension to the folklore
claim that E-theory admits a unique Ed-structure for any 1 ≤ d ≤ ∞27.

Because of the infinitary nature of the notion of ind-separability, and because separable
algebras only have strong enough rigidity properties in the commutative case, the variant we
introduce here only really works in the (homotopy) commutative case. For similar reasons,
this variant is best suited in the compactly generated case, and we will mostly stick to this
assumption.

Furthermore, unlike the previous sections where the proofs were carried out very elemen-
tarily, in this case we will actually use obstruction theory, specifically the obstruction theory
from [PV22], which is developed in the setting of symmetric monoidal ∞-categories. While it
is very likely that most of what we need can be made to work in the Em-monoidal case for
m large enough, I did not have the time to go over the work from [PV22] to “make it Em-
monoidal”. Thus, for this section, and for now, I will stick to the symmetric monoidal case,
though perhaps future versions will include the Em-monoidal case as well.

1.4.1 Ind-separability

Recall that, if A is a commutative separable algebra, the multiplication map A⊗ A → A
witnesses the target as the localization of the source at an idempotent. The key observation
of this section is that many of our results only really need it to be a localization at some set of
elements. We thus define:

Definition 1.4.1. Let C be a presentably, stably symmetric monoidal ∞-category, and
A ∈ CAlg(C) a commutative algebra in C. We say that A is ind-separable if there is a
set S ⊂ π0 map(1, A⊗ A) such that the multiplication map witnesses A as the localization
(A⊗ A)[S−1] in the ∞-category of A⊗ A-modules. ◁

Remark 1.4.2. Note that a priori, an ind-separable algebras has no particular reason to be a
filtered colimit of separable algebras, i.e. an ind-(separable algebra). This will, however, be
our main source of examples, cf. the subsequent sections. ◁

This notion is relatively well-suited if we want to study the moduli space of commutative
structures extending the underlying E1-algebra structure of A, at least when C is compactly
generated.

However, if we also want to get off the ground and go from a homotopy algebra structure
to an actual algebra structure, we need to phrase this in “up-to-homotopy” terms. Because
in a stably symmetric monoidal ∞-category with filtered colimits, localizing a commutative
algebra at a set of elements is a relatively well understood procedure, namely it is given by a

27The d = 1 case is known as the Hopkins–Miller theorem, and the d = ∞ case as the Goerss–Hopkins–Miller
theorem.
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telescope (see e.g. [BNT18, Appendix C]), we can in fact give the following definition in the
compactly generated case:

Definition 1.4.3. Let C be a compactly generated presentably, stably symmetric monoidal
∞-category, and A ∈ CAlg(ho(C)) a homotopy commutative homotopy algebra in C. We
say that A is homotopy ind-separable if there exists a set S ⊂ π0 map(1, A⊗ A) such that the
multiplication map induces, for each compact object c ∈ Cω, an isomorphism

π∗(map(c, A⊗ A))[S−1]→ π∗map(c, A)

◁

In this definition, the localization is taken outside of π∗, and by it we simply mean the
usual telescope construction in abelian groups.

Remark 1.4.4. Because filtered colimits are exact in Ab, the condition that the above map be
an isomorphism at c is closed under co/fiber sequences in Cω, and thus it suffices to check it
on generators, e.g. on R if C = ModR(Sp) for some commutative ring spectrum R. ◁

Again because localizations of commutative algebras in stable ∞-categories are computed
as telescopes [BNT18, Appendix C], the following is an immediate consequence of the defi-
nition:

Lemma 1.4.5. Let C be a compactly generated presentably, stably symmetric monoidal ∞-
category, and A ∈ CAlg(C) a commutative algebra in C. If A is ind-separable, then its
underlying homotopy algebra is homotopy ind-separable.

In some cases of interest though, the compacts of C are complicated to calculate, and so
it can be useful to formulate a criterion at the level of C. It can be hard to phrase in this
generality, because the diagram that defines the telescope has no reason to lift to C in general.
However, if S is particularly nice, the diagram can be lifted to C even if A is only a homotopy
algebra.

To explain this in more detail, we begin with a construction.

Construction 1.4.6. Let C be a symmetric monoidal additive ∞-category admitting sequen-
tial colimits. Let B ∈ CAlg(ho(C)) be a homotopy commutative homotopy algebra, and let
s : 1 → B be an “element” of B. This induces a (homotopy-)B-module map B → B given by
multiplication by s, and thus, an N-shaped diagram B→ B→ B→ . . . in C.

We call its colimit the telescope of B at s, Tels(B).
Suppose instead given an N-indexed family s = (si) of elements of B. We can then form

its telescope as the colimit of the diagram B
s1−→ B

s1s2−−→ B
s1s2s3−−−→ B . . . , and we still denote it

by Tels(B). ◁

Remark 1.4.7. In this construction, the diagram B→ B→ B→ . . . can really be constructed
in C and not only in ho(C), because N is free as an ∞-category (cf., e.g., [Lur09, Proof of
Proposition 4.4.2.6]). ◁

Definition 1.4.8. Let C be a symmetric monoidal additive ∞-category admitting sequential
colimits. Let B ∈ CAlg(ho(C)) be a homotopy commutative homotopy algebra and let M
be a (homotopy-)B-module with a (homotopy-)B-module map f : B → M. Let s be an N-
indexed family of elements of B.

We say that f witnesses M as a telescope of B at s if there exist homotopies

f ◦ (s1...sn) ≃ f

for all n that induce an equivalence Tels(B) ≃ M. ◁
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Remark 1.4.9. Note that in the latter definition, because N is free as an ∞-category, the
collection of homotopies f ◦ (s1...sn) ≃ f is sufficient to induce a map from the colimit to
M. ◁

Remark 1.4.10. If C is stable and compactly generated, the condition that the induced map
Tels(B)→ M be an equivalence does not depend on the chosen homotopies f ◦ (s1...sn) ≃ f .
Indeed, it can be checked after applying π0 map(c,−) for all compacts c, and the induced
map there does not depend on the homotopies. ◁

Definition 1.4.11. Let C be a stably symmetric monoidal ∞-category with sequential colimits
compatible with the tensor product, and let A ∈ CAlg(ho(C)) be a homotopy commutative
homotopy algebra. We say that A is homotopy ω-separable if the multiplication map A ⊗
Aop → A witnesses A as a telescope of A ⊗ Aop at some sequence s = (si) of elements
si : 1→ A⊗ Aop. ◁

The following is again an easy consequence of the definition:

Lemma 1.4.12. Let C be a compactly generated presentably, stably symmetric monoidal ∞-
category, and A ∈ CAlg(ho(C)) a homotopy commutative homotopy algebra in C. If A is
homotopy ω-separable, then it is homotopy ind-separable.

The way things will go is that we will prove things about (homotopy) ind-separable (ho-
motopy) algebras, and our main example of a homotopy ind-separable homotopy algebra
(Morava E-theory) will be proved to be so by proving that is a homotopy ω-separable alge-
bra.

1.4.2 Obstruction theory

Having defined (homotopy) ind-separability, our first goal is to argue that most of our re-
sults about commutative separable algebras extend to the case of (homotopy) ind-separable
algebras, at least when C is compactly generated, and under suitable assumption on phan-
tom maps. To prove these results, we will use obstruction theory - we could in principle
follow a similar approach as in Section 1.2, but because filtered colimits do not interact so
well with the formation of homotopy (n-)categories, we would have to stick closer to the
proof of Lemma 1.2.21 rather than just using it as a lemma. As a result, the proof would be
more convoluted and the obstruction theory from [PV22] neatly packages the constructions
anyway.

Warning 1.4.13. An earlier version of this document was missing a key assumption which
will appear here, about phantom maps. We will discuss this assumption when it is relevant.

◁

Unlike Section 1.2, we now start with a compactly generated stably symmetric monoidal
C.

Assumption 1.4.14. C is a compactly generated stably symmetric monoidal ∞-category, in
which tensor products commute with colimits in each variable. Further, we assume that the
compact objects of C are closed under non-empty tensor products28 ◁

We will rely heavily on [PV22], and so our first goal is to get ourselves in the setting of the
obstruction theory from that paper.

The following construction is very similar to the construction in [HL17, Section 4.4], so we
only briefly go over the details.
28We do not assume that the unit is compact.
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Construction 1.4.15. Let C be as in Assumption 1.4.14.
Let SynC ⊂ Fun×((Cω)op, Sp≥0). Similarly to [HL17, Section 4.4], the assumption that

Cω is closed under non-empty tensor products makes SynC into a non-unital symmetric
monoidal ∞-category for which the Yoneda embedding Cω → SynC is canonically non-
unitally symmetric monoidal.

Again, similarly to [HL17, Section 4.4], we obtain an essentially unique non-unitally sym-
metric monoidal colimit-preserving preserving functor f : SynC → C whose restriction to
Cω is (non-unitally symmetric monoidally) equivalent to the inclusion. The right adjoint of
f , given by the restricted Yoneda embedding M : c 7→ map(−, c)≥0 thus acquires a canonical
(non-unital) lax symmetric monoidal structure.

The structure maps map(−, c)≥0 ⊗ map(−, d)≥0 → map(−, c ⊗ d)≥0 are equivalences
whenever c, d ∈ Cω, so because C is compactly generated and M preserves filtered colimits,
we find that these structure maps are also equivalences for all c, d ∈ C.

In particular, map(−, 1)≥0⊗M(c) ≃ M(c) for all c ∈ Cω and thus, because of the universal
property of SynC, M(1)⊗− ≃ id as functors SynC → SynC (see [HL17, Lemma 4.4.9]).

It follows that SynC is in fact a unital symmetric monoidal ∞-category, and that
M : C → SynC is fully faithful and symmetric monoidal. Furthermore, SynC is clearly
Grothendieck prestable, complete and separated. We abuse notation and write 1 also for the
unit of SynC, i.e. for M(1).

The grading given by F[1] := F(Ω−), where Ω : C → C is the loop functor (equivalently
the suspension functor on Cop) makes it into a graded Grothendieck prestable ∞-category in
the sense of [PV22], and the assembly map induces a shift structure on the unit

τ : Σ1[−1]→ 1

again in the sense of [PV22]. This is the only shift algebra we will consider in this section, so
“periodic module” in the sense of [PV22] should always be understood with respect to this
shift algebra. ◁

Warning 1.4.16. When specialized to the case of C = ModE(SpK(n)) where E is Morava E-
theory at height n, our definition of SynC is related to the SynE appearing in [HL17], but they
are not the same: SynE is also defined as an ∞-category of product-preserving presheaves,
but on something smaller than Cω. ◁

We recall the following definition from [PV22]:

Definition 1.4.17 ([PV22, Definition 2.17]). An object M ∈ SynC is a periodic module over 1
if the canonical map induces an isomorphism π0(M)⊗π0(1) π∗(1)→ π∗(M); equivalently if
τ : ΣM[−1]→ M is a 1-connective cover29. ◁

Lemma 1.4.18. For any c ∈ C, M(c) is a periodic module over 1.

Proof. We use the second characterization for this: τ : ΣM(c)[−1]→ M(c) identifies with the
map Σ(map(Σ−, c))≥0 → map(−, c)≥0.

Furthermore, map(Σ−, c) ≃ Ω map(−, c). Now, for any spectrum X, the canonical map
Σ(ΩX)≥0 → X≥0 is a 1-connective cover, so we are done.

Lemma 1.4.19. Let M, N ∈ SynC be periodic modules over 1. If f : M → N is a morphism
which induces an isomorphism on π0, then f is an equivalence.

29The equivalence between these two conditions is proved as [PV22, Proposition 2.16]
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Proof. It follows from the first definition of periodic modules that f induces an isomorphism
on all homotopy groups. Given the definition of SynC and of the homotopy groups, it is clear
that this implies that it is an equivalence.

Lemma 1.4.20. The functor M : C → SynC identifies C with the full subcategory of SynC
spanned by periodic modules over 1.

Proof. By [PV22, Proposition 2.22], we have an equivalence Synper
C ≃ Sp(SynC)

τ−1
, where the

superscript τ−1 means “τ-local”, i.e. the M ∈ Sp(SynC) ≃ Fun×((Cω)op, Sp) such that the
canonical map ΣM(Σ−)→ M is an equivalence.

By definition, this canonical map is an equivalence if and only if M sends suspensions in
(Cω)op to loops, i.e. if and only if M is an exact functor [Lur12, Corollary 1.4.2.14.]. But
M : C→ Fun((Cω)op, Sp) identifies C with the full subcategory of Fun((Cω)op, Sp) spanned
by exact functors, i.e. Ind(Cω).

Corollary 1.4.21. Let C be as in Assumption 1.4.14, and let A ∈ CAlg(ho(C)) be a homotopy-
ind-separable homotopy commutative homotopy algebra.

In this case, π0M(A) ∈ Modπ0(1)(SynC) is an ind-separable commutative algebra.
If A ∈ Alg(C) is homotopy commutative and ind-separable, the same holds.

Proof. We first observe that the canonical map

π0M(A)⊗π0(1) π0M(A)→ π0M(A⊗ A)

is an equivalence. Granted this observation, the claim simply follows from the definition of
(homotopy) ind-separable and the fact that π0 : SynC → SynC preserves filtered colimits
(and again, the fact that localizations of commutative algebras are given by telescopes).

To prove the observation, we combine Lemma 1.4.18 and [PV22, Proposition 2.16] to
get that π0M(−) ≃ M(−) ⊗1 π0(1), from which the claim follows as M(−) is symmetric
monoidal, and so is basechange along 1→ π0(1) in SynC.

Lemma 1.4.22. Let D be a stably symmetric monoidal ∞-category admitting filtered colim-
its that are compatible with the tensor product, and let A ∈ CAlg(D) be an ind-separable
commutative algebra.

Let LA be the fiber of the multiplication map A⊗ A → A, viewed as an A-bimodule. For
any A-module M, viewed as an A-bimodule via restriction along the multiplication map, we
have that the mapping spectrum mapA⊗A(LA, M) vanishes.

Proof. Basechange along the multiplication map is left adjoint to restriction, so it suffices to
prove that the basechange of LA is zero, and for this it suffices to prove that the co-unit
A⊗A⊗A A→ A is an equivalence. This follows immediately from ind-separability.

Theorem 1.4.23. Let C be as in Assumption 1.4.14, and let A ∈ Alg(C) be homo-
topy commutative and homotopy ind-separable. For any homotopy commutative al-
gebra R ∈ Alg(C), the mapping space mapAlg(C)(A, R) is discrete and equivalent to
homAlg(Syn♡C )

(π0M(A), π0M(R)).

Proof. First, note that M(A), M(R) are periodic algebras over 1, so that we can use [PV22,
Proposition 5.7] to study the mapping space

mapAlg(C)(A, R) ≃ mapAlg(SynC)
(M(A), M(R))

By [PV22, Proposition 5.7], the fiber of
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mapAlg(Mod1≤n+1 (SynC))
(1≤n+1⊗M(A), 1≤n+1⊗M(R))→ mapAlg(Mod1≤n (SynC))

(1≤n⊗M(A), 1≤n⊗M(R))

at any point in the target is a space of paths in a certain space. We claim that this space is
contractible. Indeed, this space is

mapBiModπ0 M(A)(SynC)
(LE1

π0 M(A)/π0(1)
, Σn+2π0M(R)[−(n + 1)])

Now because M(R) is homotopy commutative, the M(R)-bimodule π0M(R)[−(n + 1)] is
pulled back along the multiplication map

π0M(R)⊗π0(1) π0M(R)→ π0M(R)

and so the same holds when we see this bimodule as a π0M(A)-bimodule. Thus by
Lemma 1.4.22 applied to D = Modπ0(1)(SynC) (and Corollary 1.4.21), this space is con-
tractible, and hence so is the path space between any two points therein. Here we use that
by [Lur12, Theorem 7.3.5.1], LE1

π0 M(A)/π0(1)
is what we have called Lπ0 M(A), computed in

Modπ0(1)(SynC).
This proves that the map

mapAlg(Mod1≤n+1 (SynC))
(1≤n+1⊗M(A), 1≤n+1⊗M(R))→ mapAlg(Mod1≤n (SynC))

(1≤n⊗M(A), 1≤n⊗M(R))

is an equivalence, and thus by [PV22, Remark 5.2], the composite map

mapAlg(SynC)
(M(A), M(R))→ mapAlg(Modπ0(1))

(π0(1)⊗M(A), π0(1)⊗M(R))

≃ mapAlg(Syn♡C )
(π0M(A), π0M(R))

is an equivalence.

As in the proof of Corollary 1.3.39, and because Syn♡C is a 1-category, we obtain:

Corollary 1.4.24. Let C be as in Assumption 1.4.14 and let A ∈ Alg(C) be an ind-separable
homotopy commutative algebra. Let O be an arbitrary one-colored ∞-operad. In this case,
the canonical forgetful map

AlgO⊗E1
(C)≃ ×Alg(C)≃ {A} → AlgO⊗E1

(Syn♡C )
≃ ×Alg(Syn♡C )≃

{π0M(A)}

is an equivalence. In particular, if O is weakly reduced, AlgO⊗E1
(C)≃ ×Alg(C)≃ {A} is con-

tractible. This is the case e.g. if O = Ed, d ≥ 1.

More generally, again arguing as in the proof of Corollary 1.3.39:

Corollary 1.4.25. Let C be as in Assumption 1.4.14 and let A ∈ Alg(C) be an ind-separable
homotopy commutative algebra. If O is any ∞-operad and R ∈ AlgO⊗E1

(C) is an algebra
whose underlying E1-algebra is homotopy commutative, then, viewing A as an O ⊗ E1-
algebra using the unique map of ∞-operads O ⊗E1 → E∞, we find that the canonical map

mapAlgO⊗E1
(C)(A, R)→ homAlgO⊗E1

(Syn♡C )
(π0M(A), π0M(R))

is an equivalence.
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As showcased in the proof of Corollary 1.4.24, our obstruction theory based on SynC really
only knows about the π0 of M(A), which can be understood as the cohomology theory rep-
resented by A on Cω, rather than the whole of C. The following assumption on C will thus
be needed if we want to lift information about Syn♡C to information about ho(C):

Assumption 1.4.26. Let X, Y ∈ C and let f : π0 map(−, X) ∼= π0 map(−, Y) be an isomor-
phism between the cohomology theories they represent on Cω. There exists a map f̃ : X → Y
which lifts f (and is therefore an equivalence). ◁

Remark 1.4.27. By [Hoy23, Theorem 7], this assumption is often satisfied in practice. Specif-
ically, for C stable, it suffices for ho(Cω) to be “countable”, in the sense that it has countably
many isomorphism classes, and mapping sets between any two objects are countable.

Because of long exact sequences induced by fiber sequences, to check this it suffices to
check that there is a countable number of generators, and that the mapping sets between
(shifts) of these generators are all countable. ◁

Theorem 1.4.28. Let C be as in Assumption 1.4.14.
Let A ∈ CAlg(ho(C)) a homotopy ind-separable homotopy commutative homotopy alge-

bra. In this case, the moduli space Alg(C)≃ ×Alg(Syn♡C )≃
{π0M(A)} is contractible.

If C satisfies Assumption 1.4.26, then any lift Ã of π0M(A) is equivalent, as an object of C,
to A.

Proof. As in Observation 1.2.19, Corollary 1.4.24 shows that the real content here is the non-
emptiness of this moduli space.

We first replace Alg(C) by Alg(SynC)
per (algebras in SynC whose underlying object is pe-

riodic), and we use [PV22, Theorem 5.4] to prove the existence of a lift - by Lemma 1.4.20, the
map Alg(C)→ Alg(SynC)

per is an equivalence.
In more detail, [PV22, Theorem 5.4] tells us that the obstructions to the existence of a lift

live in Extn+2(LE1
π0 M(A)/π0(1)

, π0M(A)[−n]), so it suffices to prove that these groups vanish.

By [Lur12, Theorem 7.3.5.1], LE1
π0 M(A)/π0(1)

is what we have called Lπ0 M(A), computed in
Modπ0(1)(SynC). As the π0M(A)-bimodule structure on π0M(A)[−n] is obtained by shifting
the bimodule structure on π0M(A), and in particular by restriction along the multiplication
map, Lemma 1.4.22 implies that these Ext-groups vanish (using that π0M(A) is ind-separable
by Corollary 1.4.21). We thus find a periodic algebra Ã in SynC whose π0 is π0M(A) as was
claimed.

Now for the second part, by Lemma 1.4.20, we may in fact write M(Ã) for some algebra
Ã ∈ C, with π0M(Ã) ∼= π0M(A) as algebras. By Assumption 1.4.26, it follows that Ã ≃ A,
and so M(Ã) ≃ M(A), all of this lifting the isomorphism π0M(Ã) ∼= π0M(A), and so we
do get an algebra structure on M(A) lifting the one on π0M(A). By fully faithfulness of
C→ SynC, this is what we wanted.

Remark 1.4.29. Without Assumption 1.4.26, this proof constructs a homotopy ind-separable
algebra Ã such that π0M(Ã) ∼= π0M(A) as algebras in Syn♡C , i.e. as multiplicative cohomol-
ogy theories on Cω, but there is no way to guarantee that A ≃ Ã.

Even with Assumption 1.4.26, there is no way to guarantee that the multiplication we
obtain on A is the one we started with, they only agree up to phantom maps. ◁

One might be tempted to conclude that the same sort of result holds for
Alg(C)≃ ×Alg(ho(C))≃ {A}, because “ho(C) → Syn♡C is fully faithful”30. However,

30This is what an earlier version of this document claimed without justification.
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ho(C) → Syn♡C is generally not fully faithful, for similar reasons that Assumption 1.4.26
was needed: the hom-set between π0M(X) and π0M(Y) is the set of natural transformation
π0 map(−, X)→ π0 map(−, Y) as functors on Cω, not on C. For example, any phantom map
from X to Y is sent to 0 in Syn♡C . Recall:

Definition 1.4.30. A phantom map X → Y in C is a map such that for any compact c ∈ Cω,
the composite c→ X → Y is nullhomotopic. ◁

Remark 1.4.31. Of couse if the nullhomotopy is natural in c ∈ Cω, then X → Y is nullhomo-
topic itself, but Syn♡C = Fun×(ho(Cω)op, Ab) cannot see this. ◁

Similarly, in the above theorem, if C satisfies Assumption 1.4.26, we obtain a lift on M(A),
or equivalently A, of the algebra structure on π0M(A), but this tells us that the homotopy
algebra structure that we obtained on A need only agree with the original one up to phantom
maps. And in fact, this is no surprise: our assumption that A be ind-separable only depends
on the multiplication µ up to phantom maps, because it is tested after mapping in from com-
pact objects. The above theorem shows that if two homotopy algebra structures on A agree
up to phantom maps, then at most one of them can be lifted to an actual algebra structure.

In particular, to properly get statements about ho(C) rather than Syn♡C , one needs to make
assumptions about phantom maps.

Observation 1.4.32. If there are no phantom maps A→ R, then

homho(C)(hA, hR)→ homSyn♡C
(π0M(A), π0M(R))

is injective, and thus so is homAlg(ho(C))(hA, hR)→ homAlg(Syn♡C )
(π0M(A), π0M(R)).

For any lift Ã of A, the map

mapAlg(C)(Ã, R)→ homAlg(Syn♡C )
(π0M(A), π0M(R))

factors through homAlg(ho(C))(A, hR), and is an equivalence by Theorem 1.4.28. If there are
no phantom maps A→ R, the above implies that both maps

mapAlg(C)(Ã, R)→ homAlg(ho(C))(A, hR)

and
homAlg(ho(C))(A, hR)→ mapAlg(Syn♡C )

(π0M(A), π0M(R))

are equivalences. ◁

The above observation buys us the following version of Theorem 1.4.28:

Theorem 1.4.33. Let C be as in Assumption 1.4.14 and Assumption 1.4.26. Let
A ∈ CAlg(ho(C)) a homotopy ind-separable homotopy commutative homotopy algebra,
and assume that A receives no phantom map from any tensor power of A. In this case, the
moduli space

Alg(C)≃ ×Alg(ho(C)))≃ {A}
is contractible, i.e. A admits a unique lift to an algebra in C.

Let A ∈ Alg(C) be a homotopy commutative, ind-separable algebra, and let R ∈ Alg(C)
be a homotopy commutative algebra. If there are no phantom maps from A to R, then the
mapping space mapAlg(C)(A, R) is equivalent to homAlg(ho(C))(hA, hR)31.

31One could weaken the assumption to “Any two homotopy algebra maps that differ by a phantom map are homo-
topic”, but it does not seem like this is a checkable criterion.
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We could also run an obstruction-theory argument to get to highly structured commutative
structures on homotopy ind-separable homotopy commutative homotopy algebras, but as in
??, we can also deduce it by more elementary means.

Corollary 1.4.34. Let C be as in Assumption 1.4.14 and Assumption 1.4.26, and let
A ∈ Alg(C) be an ind-separable homotopy commutative algebra. Let O be an arbitrary
one-colored ∞-operad. If A receives no phantom maps from tensor powers of A, the canoni-
cal forgetful map

AlgO⊗E1
(C)≃ ×Alg(C)≃ {A} → AlgO⊗E1

(ho(C))≃ ×Alg(ho(C))≃ {hA}

is an equivalence.

More generally, again as a corollary of Lemma 1.3.41, we obtain:

Corollary 1.4.35. Let C be as in Assumption 1.4.14 and Assumption 1.4.26, and let
A ∈ CAlg(C) be ind-separable. If O is any ∞-operad and R ∈ AlgO⊗E1

(C) is an algebra
whose underlying E1-algebra is homotopy commutative, and which receives no phantom
maps from A, then, viewing A as an O ⊗ E1-algebra using the unique map of ∞-operads
O ⊗E1 → E∞, the canonical map

mapAlgO⊗E1
(C)(A, R)→ homAlgO⊗E1

(ho(C))(hA, hR)

is an equivalence.

Remark 1.4.36. As in the separable case, a consequence of this corollary is the discreteness
of mapCAlg(C)(A, R), and, just as in that case, we could give a more elementary proof of this
specific fact, cf. Corollary 1.3.43 and its alternative proof. ◁

Corollary 1.4.37. Let C be as in Assumption 1.4.14 and Assumption 1.4.26, and let
A ∈ CAlg(ho(C)) be a homotopy commutative, homotopy ind-separable homotopy alge-
bra in C which receives no phantom maps from any tensor power of A. For any 1 ≤ d ≤ ∞,
the moduli space AlgEd

(C)≃ ×Alg(ho(C))≃ {A} is contractible.

The upshot of this discussion is that, at least in the compactly-generated case, with some
assumption on phantom maps, and using slightly less elementary methods, we are able to
recover most of the results from the commutative separable case in the commutative (homo-
topy) ind-separable case.

1.4.3 Examples

We now discuss examples of ind-separable algebras.
Ind-(separable algebras)
The first natural source of examples is filtered colimits of (commutative) separable algebras.
Of course, separable algebras are ind-separable (one can pick the set S to consist of the single
separability idempotent).

Lemma 1.4.38. Let C be as in Assumption 1.4.14, and let A• : I → CAlg(C) be a filtered
diagram of commutative separable algebras. In this case, colimI Ai is ind-separable.

If I is countable, one can choose S in the definition of ind-separable to be countable.

Proof. For every i ∈ I, let si : 1→ Ai ⊗ Ai → A⊗ A be the image in A⊗ A of the separability
idempotent of Ai, and let S be the set of the si’s. It is easy to verify that this does the job.
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Example 1.4.39. Let X be a profinite set. The algebra C(X; Z) of continuous functions on X
is ind-separable, as the filtered colimit of i 7→ C(Xi; Z) for any presentation of X as limi Xi,
where each Xi is finite. However, if X is not finite, it is not separable. ◁

Example 1.4.40. More generally, Rognes’ pro-Galois extension [Rog08, Definition 8.1.1] are
ind-separable, by the above lemma together with Proposition 1.5.3. In particular, taking the
Goerss–Hopkins–Miller theorem for granted, Devinatz and Hopkins prove in [DH04a] that
Morava E-theory is a pro-Galois extension of the K(n)-local sphere SK(n) in the ∞-category
of K(n)-local spectra. As we wish to give a non-circular proof of the Goerss–Hopkins–Miller
theorem, we will give a different proof that Morava E-theory is ind-separable below. ◁

Morava E-theory
In this section, we study Morava E-theory. Example 1.4.40 together with its description as
a profinite Galois extension [Rog08] show that it is ind-separable in the ∞-category of K(n)-
local spectra. However, the proof that it is a pro-Galois extension relies on its highly commu-
tative multiplicative structure, cf. [DH04a], i.e. on the Goerss–Hopkins–Miller theorem.

We offer here a proof of the latter based on our earlier work on ind-separable algebras. The
key (and in fact, essentially only) input that we need about Morava E-theory is the compu-
tation of π∗(LK(n)(E⊗ E)), as done by Hopkins–Ravenel, Baker, and revisited by Hovey in
[Hov04] (we refer to loc. cit. for a brief history of this computation).

Remark 1.4.41. Our results on ind-separable algebras rely on the obstruction theory from
[PV22], an obstruction theory which was designed and used to give a proof of the Goerss–
Hopkins–Miller theorem, so one might wonder to what extent our proof is actually different.
It is not completely clear to the author - it however seems that it is at the very least a re-
organization of that proof. Indeed, we first prove a single result about E-theory, namely its
ind-separability, and then let the obstruction theory machine take its course, with no further
input needed, unlike in [PV22, Section 7], where calculations about Morava E-theory show
up alongside the obstruction theory (among other things, Ext-group computations in E∗E-
comodules).

Furthermore, as is clear from our proofs, we only really need the obstruction theory to get
an E1-structure and describe E1-maps to other algebras - our proof clarifies the formal aspect
of going from there to higher Ed’s (including d = ∞). In particular, we obtain a proof of the
folklore fact that Morava E-theory admits a unique Ed-structure also for 1 < d < ∞ that does
not require computing the corresponding Ed-cotangent complexes - while this computation
is not complicated (they all vanish, for d > 1), it does not allow for generalizations to more
general operads of the form O ⊗E1.

Finally, while we use the same obstruction theory as in [PV22, Section 7], we apply it to a
much simpler ∞-category: our SynC has no completion/localization coming into its defini-
tion.

In other words, it is not clear to what extent our proof is really new, but it is a re-packaging
of the classical proof which has several advantages. ◁

Fix a (from now on, implicit) prime p and a height n. For a perfect field k of characteristic p,
and a formal group G of height n over k, we have a spectrum E(k, G), called Morava E-theory
(or Lubin-Tate theory), usually denoted E or En. It can for instance be constructed using the
Landweber exact functor theorem, and has a homotopy associative, homotopy commutative
ring structure. It is also K(n)-local, so we can consider it as an object in CAlg(ho(SpK(n))).
We refer to [Rez98, Part 1] for an introduction to these homotopy ring spectra.

As we mentioned, the only input we need is a computation of π∗(LK(n)(E ⊗ E)). In the
statement, we write ⊗̂ for the K(n)-local tensor product, and C(X, R) for the graded ring
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of continuous functions from a topological space X to a graded topological ring R. For k
algebraic over Fp (and perfect), Hovey proves:

Theorem 1.4.42 ([Hov04, Theorem 4.11]). There is an isomorphism

π∗(E⊗̂E) ∼= C(Γ, E∗)

for which the multiplication map π∗(E⊗̂E)→ E∗ is identified with evaluation at the neutral
element e ∈ Γ, C(Γ, E∗)→ E∗. Here, Γ is the (profinite) Morava stabilizer group, equivalently,
the group of automorphisms of E in Alg(ho(SpK(n))).

Let X be a profinite space with a point x ∈ X. Write X = limi Xi where the Xi’s are finite
sets, with projection maps pi : X → Xi, and let δi : X → Xi → {0, 1} denote the indicator
function of (pi)

−1(pi(x)).

Lemma 1.4.43. Composing the δi’s with the inclusion {0, 1} → Z, form the subset S of
C(X, Z) consisting of the δi’s.

Then evaluation at x, as a ring map e : C(X, Z)→ Z, witnesses the target as the localization
of the source at S.

Proof. As Z is discrete, C(X, Z) is the colimit of the C(Xi, Z) along restriction maps. Now, the
localization of C(Xi, Z) at the indicator function of pi(x) is clearly Z, and the result follows
easily.

We also recall the following lemma from [Hov04]:

Lemma 1.4.44 ([Hov04, Proposition 2.5]). Suppose G is a profinite group and R is a graded
commutative ring that is complete in the a-adic topology for some homogeneous ideal a.
Then there is a natural isomorphism R⊗̂C(G, Z) → C(G, R), where ⊗̂ is the a-adically com-
pleted tensor product.

Corollary 1.4.45. The homotopy algebra E ∈ CAlg(ho(SpK(n))) is homotopy ind-separable.

Proof. We prove that it is in fact homotopy ω-separable.
Let Γ ∼= limk Γ/Uk be a description of the Morava stabilizer group as a countable inverse

limit of its finite quotients (we implicitly use here that Γ is first countable, cf. [Hov04, Theoem
1.4], and let δk denote the indicator function of Uk (this corresponds to δi in Lemma 1.4.43 with
x = the neutral element of Γ).

Let S ⊂ π0(E⊗̂E) ∼= C(Γ, E0) correspond to the set of the δk’s. We claim that the multi-
plication map E⊗̂E → E witnesses the latter as a telescope of E⊗̂E at S in SpK(n). Indeed,
this telescope is the K(n)-localization of the same telescope in Sp, and we can compute that
the homotopy groups of the latter are simply π∗(E⊗̂E)[S−1] ∼= C(Γ, E∗)[S−1]. In particular,
they are concentrated in even degrees and the sequence (p, u1, ..., un−1) is a regular sequence
on them. To express this precisely, we can e.g. observe that E⊗̂E can be viewed as an MU-
module, and so we can make sense of (p, u1, ..., un−1) on it, and they agree with the ones
coming from E∗. The same can be said for E⊗̂E[S−1].

Now, for an MU-module M on which un acts invertibly, the K(n)-localization is given by
limk M⊗MU MU/(pk, ...uk

n−1), and so, if M is concentrated in even degrees and the sequence
(p, u1, ..., un−1) is regular on M, then the homotopy groups of LK(n)M are simply the m =
(p, u1, ..., un−1)-adic completion of the homotopy groups of M.

In particular, π∗(LK(n)((E⊗̂E)[S−1]) is the m-adic completion of C(Γ, E∗)[S−1], i.e., by
Lemma 1.4.44 the m-adic completion of E∗ ⊗ C(Γ, Z)[S−1], and so, by Lemma 1.4.43, just
E∗. This is only a verification on homotopy groups, but it is not hard to see that it implies the
desired statement.
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Remark 1.4.46. Note that SpK(n) is compactly generated, and since its compacts are also du-
alizable, they are closed under non-empty tensor products. However, the unit is not com-
pact. ◁

Lemma 1.4.47. The ∞-category of K(n)-local spectra satisfies Assumption 1.4.14 and As-
sumption 1.4.26.

Proof. Assumption 1.4.14 is clear, in fact SpK(n) is compactly generated (as a stable ∞-
category) by LK(n)X for any finite spectrum X of type n.

Therefore, by Remark 1.4.27, it suffices to prove that for a type n spectrum X,
π∗map(LK(n)X, LK(n)X) is countable. Because X is a finite spectrum, this reduces to proving
that π∗(LK(n)X) is countable. For this, we refer to the discussion about finite type in the in-
troduction of [Dev07]. We sketch the argument below for the convenience of the reader. In
what follows, we let En denote Morava theory at height n over Fpn .

The argument is essentially that there is a strongly convergent spectral sequence of signa-
ture

Es,t
2 = Hs(Gn, (En)tX) =⇒ πt−s(LK(n)X)

by [DH04b, Proposition 6.7], using that X has type n.
Using again that X has type n, we observe that En ⊗ X is in the thick subcategoy gener-

ated by K(n). Now the spectral sequence with E2-page Hs(Gn, K(n)t) consists of countable
groups: Gn is a profinite group with a countable basis, and each K(n)t is a discrete countable
group. Thus, the same holds for Hs(Gn, (En)tX).

Finally, this spectral sequence has a vanishing line, i.e. for a fixed r ≥ 2, Es,t
r = 0 for s >> 0

by the smashing theorem, so the countability of the E2 terms implies the countability of the
groups it converges to (there are no infinite extensions because of the vanishing line).

Remark 1.4.48. Alternatively, the proof of the analogous result for SpT(n) is simpler because
for a type n finite spectrum X, LT(n)X is a telescope of a vn-self map on X. One can then
simply observe that LT(n)(E ⊗ E) ≃ LK(n)(E ⊗ E) because E is an MU-module (note that
in SpT(n), LK(n) is smashing, so this equivalence between LT(n) and LK(n) for MU-modules
follows from the same one for MU, which in turn follows from [Rav93, Theorem 2.7.(iii)]). ◁

It already follows from Theorem 1.4.28 and Corollary 1.4.24 that there is a unique com-
mutative algebra in SpK(n), Ẽ, which represents E∗(−) on compact K(n)-local spectra, and is
equivalent to E as a (K(n)-local) spectrum; and furthermore its endomorphism operad is en-
tirely determined by the corresponding one for E∗(−), which one can compute - for exemple
its endomorphism space is discrete and isomorphic to the Morava stabilizer group.

For completeness, to reassure the reader about phantom maps and to relate our work to
algebra structures in the homotopy category, we spend some time discussing phantom maps
to Morava E-theory.

Lemma 1.4.49. Let E, E′ be Landweber exact spectra.

• E⊗ E′ is Landweber exact;
• There are no nonzero phantom maps E→ E′.

Proof. The first part is a consequence of [Rez98, §15], and the second is [Lur10, Lecture 17,
Corollary 7].

Warning 1.4.50. This lemma is about phantom maps in Sp. There are more phantom maps in
SpK(n), because the compact objects are of the form LK(n)X for X a finite type ≥ n spectrum,
so there are fewer compact objects. ◁
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Lemma 1.4.51. Fix a perfect Fp-algebra k, and a formal group G of height n over k, and
let E = E(k, G) be the corresponding Morava E-theory, and let X → E be a K(n)-locally
phantom map. It is also phantom in Sp.

Proof. Let V be a finite spectrum, and f : V → X a map. We wish to show that V → X → E
is null, or equivalently that LK(n)V → LK(n)X → E is null (as E is K(n)-local). Now note that
LK(n)V, being ω1-compact, is K(n)-locally a sequential colimit of finite type n spectra, say
LK(n)V ≃ LK(n)colimNVk. Now each composite

Vk → LK(n)X → LK(n)E

is null because of our assumption, so the only obstruction to LK(n)V → E being null is in
lim1

N π1 map(Vk, E). It therefore suffices to argue that this lim1 is 0, by e.g. showing that it
satisfies the Mittag-Leffler condition.

But each Vk is a type n complex, so map(Vk, E) is in the thick subcategory generated by
K(n), and thus its πm, for any fixed m, is an Artinian π0(E)-module32. This automatically
implies the Mittag-Leffler condition.

Corollary 1.4.52. There are no nonzero phantom maps in K(n)-local spectra from any tensor
powers of Morava E-theories to any Morava E-theory.

Proof. Morava E-theories are Landweber exact, so there are no nonzero phantom maps in Sp
of the form

⊗k
i=1 E(ki, Gi) → E by Lemma 1.4.49. By Lemma 1.4.51, this implies that there

are no nonzero phantoms in SpK(n).

We thus obtain the Goerss–Hopkins–Miller theorem, and its variants for other operads,
namely:

Corollary 1.4.53. Fix a perfect algebraic extension k of Fp, and a formal group G of height n
over k, and let E = E(k, G) be the corresponding Morava E-theory, considered as a (homo-
topy commutative) homotopy algebra. We have:

(i) For any weakly reduced ∞-operad O (e.g. Ed, 1 ≤ d ≤ ∞), the moduli space

AlgO⊗E1
(Sp)≃ ×Alg(ho(Sp))≃ {E}

is contractible.
(ii) For any ∞-operad O and any R ∈ AlgO⊗E1

(SpK(n)) whose underying algebra is ho-
motopy commutative and which receives no phantom map from E, viewing E as an
O ⊗E1-algebra using the unique map of ∞-operads O ⊗E1 → E∞, the canonical map

mapAlgO⊗E1
(SpK(n))

(E, R)→ homAlgO⊗E1
(ho(SpK(n)))

(hE, hR)

is an equivalence. This is the case e.g. if R is a Lubin-Tate theory.

In particular, if we consider the underlying spectrum of E, its space of Ed-structures, for
any 1 ≤ d ≤ ∞, is equivalent to BAut(Γ).

32If k is a finite field, it is in fact a finite abelian group; but for k a large perfect field, even π0(K(n)) is not finite -
however the homotpy groups of K(n) are finite dimensional vector spaces over π0(K(n)) ∼= k.
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Proof. We first note that SpK(n) satisfies Assumption 1.4.14 and Assumption 1.4.26 by
Lemma 1.4.47.

Now, by Theorem 1.4.33, Corollary 1.4.34 and Corollary 1.4.35, the only thing left to com-
ment on is why we could write Sp in place of SpK(n) in item (i). The point is that E is K(n)-
local, and SpK(n) is a symmetric monoidal Bousfield localization of Sp, so that the space of
O-algebra structures on E in Sp is equivalent to the one in SpK(n). There, E is ind-separable
and so the results from the previous subsection apply.

The right hand side of these equivalences, i.e. homotopy algebra maps from hE to hR can
also be computed, at least under favourable circumstances, e.g. if R is also a Morava E-theory,
or more generally if it is even 2-periodic, cf. e.g. [Rez98].

Remark 1.4.54. At some point, the Goerss–Hopkins–Miller theorem was the only known
way to construct a commutative ring structure on Morava E-theory. Lurie proposed an al-
ternative construction in [Lur18a] where he directly gives a construction of E-theory with its
commutative ring structure. ◁

In the case of E(k, G) for an algebraic extension of Fp, k, we wanted to give a self-contained
argument for the ind-separability, for our proof to be at least a somewhat new proof of the
Goerss–Hopkins–Miller theorem. We now move on to the case of a general perfect commu-
tative Fp-algebra - for this, we use an analogue of the computation of π∗(LK(n)(E⊗ E)) for
general perfect Fp-algebras which follows from Lurie’s work [Lur18a]. We prove:

Theorem 1.4.55. Let R be a perfect (discrete) commutative Fp-algebras, G a formal group of
height exactly n over R. Assume that R is ind-separable over Fp, i.e. that the multiplication
R⊗Fp R→ R is a localization at a set S of elements.

In this situation, E(R, G) is ind-separable in SpK(n).

Remark 1.4.56. The ∞-category SpK(n) is a smashing localization of SpT(n), so that this result
implies the same one in SpT(n). ◁

As mentioned above, the key ingredient is again a computation of E(R, G) ⊗ E(R, G) (to
be taken in SpK(n)) - this computation is a combination of the universal property of Morava E-
theory [Lur18a, Theorem 5.1.5.] together with an explicit analysis of the coproduct in Lurie’s
FG (cf. [Lur18a, Remark 5.1.6.]), by way of an analysis of the stack of isomorphisms between
formal groups, cf. [Goe08, Theorem 5.23] (Goerss credits Lazard for this result).

Proof. Consider R ⊗Fp R with the two formal groups induced from G along the two inclu-
sions of R, say G1 and G2.

By [Goe08, Theorem 5.23], we can find a sequence Rk of finite étale extensions of R⊗Fp R
whose colimit R∞ classifies isomorphisms of formal groups between G1 and G2 (in par-
ticular, it acquires one specific formal group, G∞, which comes with isomorphisms to the
basechanges of Gi, i = 1, 2)33.

Furthermore, it is not hard to deduce from [Lur18a, Theorem 5.1.5.] (see also [Lur18a, Re-
mark 5.1.6.]) that E(R, G)⊗ E(R, G) ≃ E(R∞, G∞) as commutative algebras (the tensor prod-
uct is taken in K(n)-local spectra), and the multiplication map to E(R, G) corresponds to the
map R∞ → R classifying the identity isomorphism of G.

Let S be a set of elements of R⊗Fp R such that the multiplication map

R⊗Fp R→ R

33Note that in [Goe08], Goerss Iso(G1, G2)k → Spec(R⊗Fp R) is finite étale, and hence it is also affine - the corre-
sponding ring is our Rk .
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witnesses the target as the localization of the domain at S (this exists by assumption). We
claim that each induced map Rk[S−1] → R is a localization, in fact, a split localization.
Indeed, Rk is a finite étale extension of R ⊗Fp R, so that Rk[S−1] is a finite étale exten-
sion of R. But via Rk → R∞ → R, this is an étale extension which admits a section,
and thus a splitting, and this splitting gives an R-algebra isomorphism Rk[S−1] ∼= R × T,
for some R-algebra T. Let ek be the corresponding idempotent in Rk[S−1]. It follows that
R∞[(S ∪ {ek, k ∈N})−1] ∼= R via the canonical map R∞ → R.

Thus, to conclude, it suffices to prove the following: if (R, G) → (A, H) be a morphism
of formal groups over perfect Fp-algebras which witnesses the target as a localization of
the source at a set S of elements, then there is a set of elements S̃ ⊂ π0E(R, G) such that
E(R, G)→ E(A, H) witnesses the target as the localization of the source at this set of elements
(in SpK(n)).

But this follows from [Lur18a, Theorems 5.1.5. and 5.4.1.]: indeed, consider any subset
S̃ ⊂ π0E(R, G) whose image under the surjective morphism π0E(R, G) → R is S, and let
T = E(R, G)[S̃−1] (computed in SpK(n)). By [Lur18a, Remark 4.1.10.], T is complex periodic.
It is then clear that T and E(A, H) have the same universal property in the ∞-category of
complex periodic K(n)-local commutative ring spectra.

Remark 1.4.57. When R is strictly henselian, one can prove a converse to this theorem, that
is, if E(R, G) is ind-separable in SpK(n), then R is ind-separable over Fp. It is also reasonable
to expect a converse in general, but I have not found a proof.

In particular, as there are strictly henselian rings that are not ind-separable over Fp, one
sees that the result is not true in full generality. ◁

Remark 1.4.58. We make a final note that the results in this subsection say nothing about the
homotopy algebra structures on the spectra E(R, G). In particular, while for a given perfect
field k, and a given height n, the various spectra E(k, G), ht(G) = n are homotopy equivalent
[LP22], they are not equivalent as ring spectra if the formal groups are not isomorphic. But
this is already the case at the level of homotopy algebras (the formal group only depends on
the homotopy algebra structure). ◁

1.5 Examples
We take a bit of time away from theory to look at some examples of separable algebras. All
the examples we mention here are fairly standard. We begin with Galois extensions, and
then move on to certain “cochain algebras” which appear among other places in equivariant
stable homotopy theory, and can be organized through ∞-categories of spans. We later go
to the setting of group rings under certain assumptions on the “cardinality” of the group -
these appear among other places in ambidexterity theory, and can also be organized through
∞-categories of spans. We later mention examples related to algebraic geometry, namely
we recall that étale maps of schemes induce separable algebras, and that (certain) Azumaya
algebras are separable. Finally, we conclude with a non-example, by pointing out that sep-
arability is really a “linear” story, namely that there are no interesting examples in cartesian
cases.

Warning 1.5.1. In the cases of ∞-categories of spans, it is convenient to use (∞, 2)-categorical
technology to organize the proofs that the relevant algebras are separable, by going through
the (∞, 2)-category of correspondences. However, some of this technology has not been de-
veloped yet, and is only really known in the case of 2-categories. The reader can thus view
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these examples as either sketches (“a complete proof is left to the reader”), conjectures, or
as proving less than what we claim, in the following sense : our proofs will still be valid
at the homotopy category level, because there we only need the 2-categorical version of the
aforementioned technology. We note that because of the results of the previous sections, for
most purposes, this is not a real restriction: as long as one maps those span ∞-categories to
an additive symmetric monoidal ∞-category, homotopy separability guarantees full-fledged
separability.

We will indicate with a (*) the statements that are subject to this warning. ◁

1.5.1 Galois theory

In this section, we review one of the main examples of separability, namely Galois extensions.
Originally introduced in field theory, they were later studied in the more general context of
commutative rings [AG60], and later, by work of Rognes [Rog08], in the setting of commuta-
tive ring spectra. His definition extends verbatim to more general stable homotopy theories.
We recall the definition for the convenience of the reader:

Definition 1.5.2. Let C be a cocompletely, stably symmetric monoidal ∞-category, and let
A ∈ CAlg(C). For an E1-group G, an object B ∈ CAlg(ModA)

BG is called a G-Galois exten-
sion of A if:

• The induced map A→ BhG is an equivalence (of commutative algebras);
• the natural map B⊗A B→ F(G+, B), adjoint to the action map

A[G]⊗A B⊗A B→ B⊗A B→ B

is an equivalence (informally, this map is given by x⊗ y 7→ (g 7→ g(x)y)).

◁

When G is a discrete group, F(G+, B) ≃ ∏G B and the multiplication map B⊗A B → B
becomes identified with evaluation at e ∈ G, ∏G B → B. In particular, this clearly has a
section as ∏G B-modules, and we obtain:

Proposition 1.5.3 ([Rog08, Lemma 9.1.2.]). Let G be a discrete finite group, and A → B a
G-Galois extension in CAlg(C). In this case, B is a separable A-algebra.

Remark 1.5.4. In the case of a Galois extension, a proof of Theorem 1.3.19 was already
sketched by Mathew in [Mat16, Theorem 6.25]. ◁

Example 1.5.5. Any Galois extension of fields K → L is Gal(L/K)-Galois. More generally,
Galois extensions of commutative rings are Galois, this follows from [Rog08, Proposition
2.3.4.(c)]. ◁

Example 1.5.6. Profinite Galois extension in the sense of [Rog08, Definition 8.1.1] are in gen-
eral only ind-separable, cf. Section 1.4. ◁

1.5.2 Spans and equivariant stable homotopy theory

In this subsection and the next, we will deal with span ∞-categories. For an account, see
[Bar17; BGS19] 34. For the proofs, it will also be convenient to use the (∞, 2)-categories of
correspondences that extend them [Ste20],[Mac22].

34Where the ∞-category of spans is called the “effective Burnside category”
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One reason to be interested in span ∞-categories is their relation to equivariant stable
homotopy theory: the ∞-category of genuine G-spectra, SpG, can be described as the ∞-
category of spectral Mackey functors, i.e. direct sum preserving functors Span(FinG)

op →
Sp.

In [BDS14], Balmer, Dell’Ambrogio and Sanders describe, for a subgroup H ≤ G, the ∞-
category SpH as the ∞-category of modules over some algebra AG

H ∈ CAlg(SpG) which they
prove is separable. In particular, all their work at the level of homotopy categories works at
the level of stable ∞-categories by Section 1.2.

Note that AG
H is the image under the symmetric monoidal Yoneda embedding

Span(FinG)→ SpG of an algebra in Span(FinG). The object of this subsection is to prove that
this algebra is already separable there. Note that Span(FinG) is not additive, so we cannot
apply [BDS14, Theorm 1.1] directly and work in ho(Span(FinG)), where the result is simpler
to prove.

More generally, we prove

Theorem 1.5.7 (*). Let C be a small ∞-category with finite limits, and X ∈ C. We view X as
a commutative algebra in Cop, and thus, X∨ as a commutative algebra in Span(C) under the
canonical symmetric monoidal functor Cop → Span(C).

If the evaluation map from the cotensoring XS1 → X is an equivalence, then X∨ is a sepa-
rable commutative algebra in Span(C).

Remark 1.5.8. This applies in particular if C is a 1-category such as FinG. ◁

In the course of this proof, we use the following:

Conjecture 1.5.9. Let B be a symmetric monoidal (∞, 2)-category, A ∈ Alg(ι1B) an algebra
in (the underlying ∞-category of) B, M, N A-modules in B, and f : M → N an A-module
map. If f admits a right adjoint f R, and the square:

A⊗M A⊗ N

M N
f

A⊗ f

is horizontally right-adjointable, then f R is canonically A-linear; and more precisely f admits
a right adjoint in ModA(B). ◁

We note that in the case where B is the (∞, 2)-category of ∞-categories, this conjecture is
essentially proved in [Lur12, Remark 7.3.2.9].

Remark 1.5.10. This conjecture should also have a more general form, similarly to the cal-
culus of mates in [HHL+20]. Namely, in the above, if we only assume that f admits a right
adjoint f R, then this right adjoint should be canonically lax A-linear, that is, come with suit-
ably compatible and coherent maps

“a⊗ f R(m)→ f R(a⊗m)′′

and it should then be a property (namely, adjointability) that these maps are equivalences.
Conversely, the left adjoint of a lax A-linear morphism should always be oplax A-linear, and
this should be a perfect correspondence between oplax A-linear left adjoints, and lax A-linear
right adjoints. In the case B = Cat, this can be deduced from [HHL+20], but below we need
it for B being an (∞, 2)-category of correspondences. ◁
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As explained in the introduction to this section, this conjecture is well-known (and classi-
cal) in the case of 2-categories, so the arguments that we give apply unconditionally to the
homotopy category ho(Span(C)), and thus to any additive ∞-category C with a symmetric
monoidal map Span(C)→ C.

Proof. We use the (∞, 2)-category of correspondences, Corr(C), see [Ste20], [Mac22]. In par-
ticular, its underlying ∞-category is Span(C).

We note that the multiplication map of X is given by the span

X× X ∆←− X =−→ X

We note that, as a morphism in Corr(C), it admits a left adjoint, cf. [Ste20]. Because the
multiplication map is X × X-linear, it is a property that this left adjoint is actually X × X-
linear, namely that the square from be left adjointable (by the dual of Conjecture 1.5.9).

Let us assume for now that we have checked this - the composite is then the composite of
spans

X =←− X ∆−→ X× X ∆←− X =−→ X

which is easily seen to be given by the span X ev←− XS1 ev−→ X. Our assumption guarantees
that this is an equivalence, hence an equivalence of X× X-modules, and so up to composing
by its inverse, we find that X is separable as an algebra.

Let us now check the property : we need to check that the oplax-X-linear structure maps
are strict, we do it for the left-X-linear one, and the right-X linear one follows by symmetry.
The left X-linearity of the multiplication map is given by the following commutative diagram
in Corr(C):

X× X× X X× X

X× X X
µ

µ×X µ

X×µ

In this diagram, all maps are in Cop, so this is just the image under Cop → Corr(C) of the
canonical coassociativity diagram for X, and this canonical coassociativity diagram is a pull-
back square:

X× X× X X× X

X× X X∆

∆×X ∆

X×∆

In particular, it is adjointable in Corr(C) e.g. by [Ste20],[Mac22], so we are done.

1.5.3 Spans, ambidexterity and Thom spectra

In this subsection, we study a situation similar to the one of the previous subsection, except
that we start with a monoid G in C, and view it as a monoid in Span(C).

The result that we prove is:

Theorem 1.5.11 (*). Let f : Span(C) → C be a symmetric monoidal functor, and suppose it
sends the span pt← G → pt to an equivalence. Then f (G) is a separable algebra in C.

Example 1.5.12. Consider the case where C = Fin, the category of finite sets. In this case,
Span(Fin) is the initial semiadditively symmetric monoidal ∞-category. In particular, for any
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semiadditively symmetric monoidal C, there is an essentially unique symmetric monoidal,
semiadditive functor Span(Fin)→ C. It sends a finite set X to

⊕
X 1.

In this case, a G as in the theorem is simply a finite group. The theorem is saying that if its
order |G| is invertible in C, then 1[G] is separable. This is typical from classical algebra: the
group algebra Q[G] is always separable, and more generally, for a field k, k[G] is separable
over k if and only if |G| ∈ k×. ◁

A generalization of the previous example, and our motivating example for this section,
comes from the theory of higher semi-additivity, cf. [Har20; CSY18]. This is a context
where one can sum not only over finite sets, but also over finite groupoids, or more gen-
erally, m-finite spaces, i.e. spaces X with finitely many components, and with, at every point,
πk(X) = 0 for k > m (or possibly only the m-finite spaces, all of whose homotopy groups
are p-groups, for some fixed prime p). We refer to the above references for a more detailed
account of this theory. We let S (p)

m denote the ∞-category of m-finite spaces all of whose
homotopy groups are p-groups.

In that case, when C is (p-typically) m-semiadditive [CSY21a, Definition 3.1.1], there is
a unique symmetric monoidal functor Span(S (p)

m ) → C which preserves p-typical m-finite
colimits, which we denote by 1[−]. The span pt ← G → pt is sent to the cardinality |G|C of
G, as a morphism 1 → 1. The property that this be an equivalence is related to the so-called
semi-additive height of C. For example, “height 0” corresponds to the rational case, where all
these cardinalities are invertible. Higher heights are also related to chromatic height - we
refer to [CSY21a] for more details.

Proof. The proof again makes use of the higher categorical structure of Corr(C). Just as be-
fore, we observe that µ : G× G → G has a right adjoint, and by Conjecture 1.5.9, it is simply
a property for it to be G × Gop-linear, which we can check in the exact same way as in the
proof of Theorem 1.5.7. The key point is that the associativity diagram for G in C (which is
also the “left G-linearity” diagram) is a pullback diagram in C:

G× G× G G× G

G× G G

G×µ

µ×G

µ

µ

and hence, it is adjointable in Corr(C). This is exactly what we need for the adjoint of µ to be
G× Gop-linear.

Now, this gives us a G×Gop-linear morphism G → G×Gop in Span(C). The composition

G → G× Gop → G is given by the span G
µ←− G× G

µ−→ G, and as a morphism in Span(C),
this is equivalent to G

pr1←− G× G
pr1−→ G because of the shear map G× G → G× G. We can

rewrite the latter span as (pt← G → pt)× G. The claim now follows in the same way: up to
inverting the span pt← G → pt, we have a separability idempotent.

Example 1.5.13. In [CSY21b, Definition 4.7], the authors introduce, for any stable ∞-
semiadditive presentably symmetric monoidal ∞-category C a height n prth-cyclotomic ex-
tension 1[ω(n)

pr ], which is a higher height analogue of the usual cyclotomic extensions.
This cyclotomic extension is defined as the splitting of an idempotent on 1[BnCpr ] and the

definition of “height n” guarantees that |BnCpr | is invertible in C, in other words, that the

previous theorem applies. So 1[BnCpr ] is separable, and hence so is 1[ω(n)
pr ]. This shows that,
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even if it is not always Galois (cf. [Yua22, Proposition 3.9]), it is separable, which is a notion
not too far from “étale” in the commutative setting. ◁

For a group G, the group algebra 1[G] can be seen as the colimit of the constant diagram
with value 1, indexed by G. We saw in Example 1.5.12 that when |G| is invertible, this algebra
is separable - we now describe a slight extension of this result, namely to Thom objects. First,
we recall the following construction:

Construction 1.5.14. Let X be a space, and f : X → Pic(C) a map, where Pic(C) ⊂ C≃ is
the maximal subgroupoid spanned by the invertible objects in C. One may take the colimit
of the composite X → Pic(C)→ C, if it exists.

If C is, say, cocomplete, this corresponds to the unique colimit-preserving functor
S/Pic(C) → C which restricts to the canonical inclusion along the Yoneda embedding
Pic(C)→ S/Pic(C) → C.As a consequence, this functor S/Pic(C) → C is symmetric monoidal,
so it sends groups G equipped with a group map G → Pic(C) to an algebra object in C. ◁

Proposition 1.5.15 (*). Assume C is m-semiadditive for some 0 ≤ m ≤ ∞. The
above construction extends uniquely to an m-semiadditive, symmetric monoidal functor
Span((Sm)/Pic(C))→ C.

In particular, if f : G → Pic(C) is a group map from an m-finite group G, where |G|C is
invertible in C, then its Thom object colimG f is a separable algebra in C.

Proof. The “in particular” part follows from Theorem 1.5.11, together with the observation
that the span (pt, 1)← (G, 1)→ (pt, 1) is indeed sent to |G|C in C.

Now, for the first part, namely the existence of the map, we use [Har20, Theorem 5.28] in
the special case where C = Pic(C). We note that the canonical symmetric monoidal structure
on Span((Sm)/X), when X is a symmetric monoidal ∞-groupoid, is the one induced by the
universal property of [Har20, Theoem 5.28] because the natural map X → Span((Sm)/X) is
symmetric monoidal for this symmetric monoidal structure.

The cited theorem thus implies that a symmetric monoidal map X → C (here the inclusion
Pic(C) ⊂ C) extends essentially uniquely to an m-semiadditive symmetric monoidal functor
Span((Sm)/X)→ C.

Example 1.5.16. In the case m = 0, an m-finite group is simply an ordinary finite group, and
if furthermore every point in G is sent to the unit 1 ∈ Pic(C), then the Thom object is simply
a twisted group ring 1α[G]. ◁

Example 1.5.17. The algebra from Example 1.3.32 is an example of this construction. Indeed,
let D = ModQ[t±1] with t in degree 2d for some odd d ̸= 1. We let G = H ⋊ Z/d as in
Example 1.3.32, and G → Pic(D) is the map G → Z/d → Pic(D), where the latter map
picks out Σ2Q[t±1]. Let us briefly explain why Z/d → Pic(D) can be made into a map of
commutative groups. This picard element is clearly classified by a map S → Pic(D), and
because it is d-torsion, by a map S/d→ Pic(D). The homotopy groups of Pic(D) are rational
above π2, and the homotopy groups of S/d are finite, so this map canonically factors through
τ≤1(S/d), which is Z/d because d is odd.

Now colimits over G, Z/d are just coproducts, so it is easy to check that the algebra struc-
ture in the homotopy category of D is the one we described in Example 1.3.32. Because |G|
and |Z/d| are invertible in D, we find that these algebras are indeed separable (note that this
does not depend on Conjecture 1.5.9 because D is additive). ◁

Along the way, we record the following result we have sketched in the previous example
(cf. also [Law20, Example 2.30] and the surrounding discussion):
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Lemma 1.5.18. Let D be a symmetric monoidal ∞-category, and L ∈ Pic(D) be an invertible
element with L⊗d ≃ 1D. Assume that d is odd, and invertible in π∗map(1D, 1D), ∗ ≥ 1. The
space of maps of commutative groups Z/d→ Pic(D) classifying L is equivalent to the space
of equivalences L⊗d ≃ 1.

1.5.4 Twists of Morava K- and E-theories

In this subsection, we recover the main results of [SW15] (namely [SW15, Theorems 1.1 and
1.2]), and correct along the way [SW15, Theorem 1.2], as well as get rid of any need for
obstruction theory. For the convenience of the reader, we recall these theorems:

Theorem 1.5.19 ([SW15, Theorem 1.1]). Let n ≥ 1 and K(n) be (2(pn − 1)-periodic) Morava
K-theory at height n and an implicit prime p. The canonical map is an equivalence:

MapS∗(K(Z, n + 2), BGL1(K(n)))→ homAlg(K(n)∗)(K(n)∗K(Z, n + 1), K(n)∗)

We warn the reader that, as stated, the following theorem contains a small mistake, which
we correct later:

Theorem 1.5.20 ([SW15, Theorem 1.2]). Let n ≥ 1 and En be Morava E-theory at height n and
an implicit prime p. The canonical maps are equivalences:

MapCAlg(S)(K(Z, n + 2), BGL1(En))→ MapS∗(K(Z, n + 2), BGL1(En))

→ homAlg((En)∗)((En)∗K(Z, n + 1), (En)∗)

Their proof relies on a computation of the Morava K-theories of Eilenberg-MacLane spaces
due to Ravenel and Wilson [RW80], together with Goerss–Hopkins obstruction theory. We
aim to explain how one can get rid of the latter, and recover this result based only on Ravenel
and Wilson’s calculations.

Warning 1.5.21. Our proof proceeds by proving that En[K(Z/pk, n)] is separable in K(n)-
local spectra – in particular, it involves K(n)-localization, and thus we note that [SW15, The-
orem 1.2] is wrong as stated. Namely, the correct equivalence is

MapCAlg(En)
(En[K(Z, n + 1)], En) ≃ homCAlg(π∗(En))((En)

∨
∗ K(Z, n + 1), π∗(En))

where (En)∨∗ (X) := π∗(LK(n)(En ⊗ X)) is completed Morava E-theory. One can prove that
without completion, this equivalence does not hold. For example if n is even (so that n + 1 is
odd, and H∗(K(Z, n + 1); Q) = Q[ϵ], |ϵ| = 1), it is not so hard35 to prove that

homCAlg(π∗(En))((En)∗K(Z, n + 1), (En)∗) ∼= homCAlg(π∗(En))((En)∗, (En)∗) ∼= pt

On the other hand, with completed Morava E-theory, one does find a set isomorphic to Zp,
as claimed in [SW15]. ◁

Thus, the corrected version of Theorem 1.5.20 is:

Theorem 1.5.22 ([SW15, Theorem 1.2]). Let n ≥ 1 and En be Morava K-theory at height n
and an implicit prime p. The canonical maps are equivalences:

MapCAlg(S)(K(Z, n + 2), BGL1(En))→ MapS∗(K(Z, n + 2), BGL1(En))

→ homAlg((En)∗)((En)
∨
∗ K(Z, n + 1), (En)∗)

35The proof uses the rational computation together with the fact that (En)∗ is torsion free and concentrated in even
degrees.
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We prove Theorem 1.5.19, indicating along the way the necessary changes for Theo-
rem 1.5.22.

Proof. Let

MK := Map∗(K(Z, n + 2), BGL1(K(n))), Md+1
E := MapAlgEd

(S)(K(Z, n + 2), BGL1(En))

(including for d = 0 and ∞). We begin by noting that

MK ≃ MapAlg(S)(K(Z, n + 1), GL1(K(n)) ≃ MapAlg(SpK(n))
(SK(n)[K(Z, n + 1)], K(n))

In the case of E-theory, one can similarly move to

Md
E ≃ MapAlgEd

(ModEn (SpK(n)))
(En[K(Z, n + 1)], En)

Now, K(Z, n + 1) is p-adically equivalent to colimkK(Z/pk, n) so that we can rewrite
our space as inverse limits of similar spaces with K(Z/pk, n) in place of K(Z, n + 1). By
[CSY21a, Lemma 5.3.3.], we may apply Theorem 1.5.11 to G = K(Z/pk, n) and C = SpK(n)

(resp. ModEn(SpK(n))) and obtain that SK(n)[K(Z/pk, n)] (resp. En[K(Z/pk, n)], computed in
SpK(n)) is separable as a K(n)-local (En-)algebra36.

In the case of E-theory, we can directly conclude that

MapAlgEd
(En)

(En[K(Z/pk, n)], En) ≃ homCAlg(ho(ModEn ))
(En[K(Z/pk, n)], En)

by Corollary 1.3.39. By [HL13, Proposition 3.4.3., Proposition 2.4.10.], π∗(En[K(Z/pk, n)]) is
a free (En)∗-module, so that

homCAlg(ho(ModEn ))
(En[K(Z/pk, n)], En) ∼= homCAlg((En)∗)(π∗(En[K(Z/pk, n)]), (En)∗)

Thus
Md

E ≃ homAlg((En)∗)(π∗(colimkLK(n)(En[K(Z/pk, n)])), (En)∗)

Finally, (En)∗ is m-adically complete (where m = (p, v1, ..., vn−1) is the maximal ideal in the
local ring π0(En)), and colimkLK(n)(En[K(Z/pk, n)) is concentrated in even degrees, so that
the m-adic completion of its homotopy groups is the same as the homotopy groups of its
K(n)-localization, and so we get:

Md
E ≃ homAlg((En)∗)(π∗(LK(n)(En[K(Z, n + 1)])), (En)∗)

which was to be proved.
In the case of K-theory, the approach is the same but more care must be taken at the prime

2, as Morava K-theory is not homotopy commutative there37.
In the case of odd primes, Morava K-theory is homotopy commutative, and so by combin-

ing Theorem 1.2.14 and Corollary 1.3.33 we obtain

MK ≃ homAlg(ho(Sp))(SK(n)[K(Z, n + 1)], K(n))

36For the connection to Theorem 1.5.11, see the discussion following Example 1.5.12.
37Since we are working over the sphere, there is only one E1-structure on Morava K-theory for each choice of a

height n formal group over Fp, and it is homotopy commutative at odd primes. In the case of odd primes, this
is the only place where we use that we are considering 2(pn − 1)-periodic Morava K-theory as opposed to the
2-periodic version.
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In ho(Sp), K(n) is now a commutative algebra, so this is equivalent to

homAlg(ModK(n)(ho(Sp)))(K(n)[K(Z, n + 1)], K(n))

and ModK(n)(ho(Sp)) is monoidally equivalent to ModK(n)∗(GrVectFp)
38 so that the latter is

equivalent to homAlg(K(n)∗)(K(n)∗K(Z, n + 1), K(n)∗), as claimed.
The case of the prime 2 is a bit more subtle, but it can be approached using the work of Wür-

gler [Wür86]. More specifically, [Wür86, Proposition 2.4, Remark 2.6.(b)] shows that there is
a map Q : K(n) → Σ2n−1K(n) such that the multiplication map µ : K(n)⊗ K(n) → K(n)
differs from its twist

K(n)⊗ K(n)
τ≃ K(n)⊗ K(n)→ K(n)

by vn · µ ◦ (Q⊗Q).
Note that Q is of odd degree. Ravenel and Wilson’s computation [RW80] shows, in

particular, that K(n)∗(K(Z, n + 1)) is concentrated in even degrees, so that for any map
f : S[K(Z, n + 1)]→ K(n), the composition

S[K(Z, n + 1)]→ K(n)→ Σ2n−1K(n)

is 0 (2n − 1 is odd as n ≥ 1). In particular, for any such map, the composites

S[K(Z, n + 1)]⊗ K(n)→ K(n)⊗ K(n)→ K(n)

and
S[K(Z, n + 1)]⊗ K(n) ≃ K(n)⊗ S[K(Z, n + 1)]→ K(n)⊗ K(n)→ K(n)

agree. We may thus apply Proposition 1.3.30 even though K(n) is not homotopy commuta-
tive, and conclude in the same way as before, using Theorem 1.2.14 to compute π0.

1.5.5 Scheme theory

In [Bal16], Balmer proves the following (compare Proposition 1.3.53):

Theorem 1.5.23 ([Bal16, Theorem 3.5]). Let f : V → X be a separated étale morphism of
quasicompact, quasiseparated schemes. In this case, f∗OV is a separable algebra in QCoh(X).

As already mentioned, Neeman proved in [Nee18] that, at least in the noetherian case, this
is not far from exhausting all examples:

Theorem 1.5.24 ([Nee18, Theorem 7.10]). Let X be a noetherian scheme and A ∈ QCoh(X)
a commutative separable algebra. There exists an étale morphism g : U → X and a
specialization-closed subset V ⊂ U such that A ≃ g∗LVOU of commutative algebras39.

Here, LV is the Bousfield-localization of QCoh(U) associated to the specialization-closed
subset V.

In other words, up to idempotent algebras and under a noetherianity assumption, all com-
mutative separable algebras come from étale maps.

38Every (homotopy) K(n)-module is free up to shifts.
39Neeman only proves that this is an equivalence of algebras in the homotopy category, but Theorem 1.3.19 tells us

that this suffices.
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1.5.6 Azumaya algebras

In Section 2.1, we will see that there is a strong connection between Azumaya algebras and
separable algebras. We will prove that many Azumaya algebras are separable, specifically
(cf. Proposition 2.1.10):

Proposition 1.5.25. Assume C is presentably symmetric monoidal. Let A ∈ Alg(C) be an
algebra. If A is Azumaya and the unit η : 1→ A admits a retraction, then A is separable.

We will recall the definition of Azumaya algebras in higher algebra in Section 2.1. Doing
so, we will along the way correct a mistake in [BRS12, Proposition 1.4], which states this
result without the assumption that the unit splits - we will provide counterexamples to this
statement, cf. Example 2.1.8 and Example 2.1.9.

In classical algebra, the assumption on the unit is automatic, and we have:

Theorem 1.5.26 ([AG60, Theorem 2.1]). Let R be an ordinary commutative ring. An Azu-
maya algebra in Mod♡R is separable.

1.5.7 Cartesian symmetric monoidal ∞-categories

We conclude this Examples section with a situation where there are no interesting examples.
The unit of a symmetric monoidal ∞-category is of course always separable, and we show:

Proposition 1.5.27. Let C be cartesian symmetric monoidal. The only separable algebra in C
is the unit, i.e. the terminal object.

Proof. As C → ho(C) preserves products, and as the unit object has an essentially unique
algebra structure, we may assume C is a 1-category. Using the (classical) Yoneda embedding,
we may even assume C = Set.40

Let M be a monoid with multiplication map µ : M × M → M and neutral element
η : pt→ M, which we assume to be separable, with section s : M → M×M. We write s as
(s1, s2). Left M-linearity of s guarantees that s2 is constant. Indeed, for any x ∈ M, we have

(s1(x), s2(x)) = s(x) = s(x · 1) = x · s(1) = x · (s1(1), s2(1)) = (x · s1(1), s2(1))

and similarly right M-linearity guarantees that s1 is constant. This proves that s is constant
and hence µ ◦ s is, i.e. idM is constant, from which it follows that M = pt.

40These reductions are purely æsthetic, the proof goes through more or less unchanged in the general case.



Chapter 2

Auslander–Goldman theory in ho-
motopical algebra

Introduction
In [AG60], Auslander and Goldman lay the foundations of a systematic study of separable
algebras (in classical algebra). One of the key results that they prove is the following: for
a (discrete) commutative ring R, an R-algebra A is separable if and only if its center C is
separable over R, and A is Azumaya over its center. This allows one to reduce the study of
general separable algebras to two special cases : the commutative case, which is closely re-
lated to étale algebras, and the central case, which is closely related to the theory of Azumaya
algebras and the Brauer group.

Our goal in this section is to raise two questions such that a positive answer to both, or
at least reasonable conditions under which they have positive answers, would allow one to
give a similar treatment of separable algebras in homotopical algebra.

We separate this key result in two parts: first, the center C of A is separable over R (and
commutative), and second, A is Azumaya over its center.

In homotopical algebra, the center Z(A) of A is in general an E2-algebra, but if it is sep-
arable, it is therefore canonically E∞, i.e. commutative, by Theorem 1.3.19. This raises the
following question (cf. [AG60, Theorem 2.3]):

Question 2.0.1. Let A ∈ Alg(C) be a separable algebra. Is its center Z(A) separable too ? ◁

The second key result is that A is Azumaya over its center Z(A). We start by offering a few
recollections about Azumaya algebras, along the way correcting an error in [BRS12] about
the relation between separable algebras and Azumaya algebras. Once this is done, we can
phrase the second main question of this section:

Question 2.0.2. Let A ∈ Alg(C) be a dualizable separable algebra which is central, i.e. the
unit map 1→ Z(A) is an equivalence. In particular, A is full, as it retracts onto Z(A) ≃ 1.

Is A necessarily Azumaya ? ◁

I start this section by answering Question 2.1.13 in certain cases; the main result in this
direction is Theorem D - the assumptions on the ring R are slightly technical so we defer
them to Theorem 2.1.14:

Theorem. Let R be a commutative ring spectrum satisfying the assumptions of Theo-
rem 2.1.14. In this case, any dualizable central separable algebra over R is Azumaya.
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Conversely, in any additive presentably symmetric monoidal ∞-category C, an Azumaya
algebra A is separable if and only if its unit 1C → A admits a retraction.

We then attack Question 2.0.1, again answering it in certain cases. The main result there is
Theorem E:

Theorem. Let R be a connective commutative ring spectrum and let A be an almost perfect
R-algebra. If A is separable, then so is its center.

The same holds for separable algebras in K(n)-local E-modules, where E is Morava E-
theory, and for separable algebras in K(n)-local spectra.

As is clear from these statements, I fall short of answering both questions in the generality
of ModR(Sp), where R is some commutative ring spectrum - this is essentially because we
lack “residue fields”, as will be clear from our discussion.

Here, our main examples and main sources of positive answers to our questions are in
symmetric monoidal ∞-categories, I did not try to extend the discussion to Em-monoidal
ones for m large enough, though large swaths of it could work in that generality.

Sectionwise outline

• In Section 2.1, I do some recollections concerning Azumaya algebras and the interaction
between the Azumaya condition and separability. This is where I prove Theorem D;

• In Section 2.2, I study Question 2.0.1 and this is where I prove Theorem E.

2.1 Azumaya algebras
We start by recalling a possible definition of Azumaya algebras:

Definition 2.1.1. Let C be presentably symmetric monoidal. An algebra A ∈ Alg(C) is
Azumaya if LModA(C) is invertible in ModC(PrL). ◁

We also recall several equivalent characterizations. For this, we need the following propo-
sition/definition:

Proposition 2.1.2 ([HL17, Proposition 2.1.3., Corollary 2.1.4.]). Let C be presentably symmet-
ric monoidal. Let M be a dualizable object of C. The following are equivalent:

(i) M generates C under C-colimits, that is, the smallest tensor ideal of C closed under
colimits and containing M is the whole of C;

(ii) The (C-linear) functor hom(M,−) : C→ RModEnd(M)(C) is an equivalence;
(iii) End(M) is (C-linearly) Morita equivalent to the unit 1;
(iv) M⊗− is conservative.

If M satisfies one (and hence all) of these properties, it is called full. Furthermore, any (and
hence all) of these properties are stable under passing to the dual M∨.

Proof. We prove (i) =⇒ (iv) =⇒ (ii) =⇒ (iii) =⇒ (i).
Assume (i), and let f : X → Y be a map such that M⊗ f is an equivalence. The collection

of Z’s such that Z⊗ f is an equivalence is certainly a tensor ideal of C, closed under colimits,
so that by (i), it contains 1. In particular, f is an equivalence, thus proving (iv).

Let us now assume (iv). The functor G = hom(M,−) : C → RModEnd(M) preserves
limits and colimits hence has a left adjoint F = M ⊗End(M) −. The unit map at End(M),
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End(M) → hom(M, M ⊗End(M) End(M)) is easily seen to be an equivalence, and both the
source and the target of the unit id→ GF are C-linear and colimit-preserving, hence the unit
is an equivalence at all End(M)-modules.

To prove that the counit is an equivalence, by the triangle identities, it thus suffices to
show that the right adjoint hom(M,−) is conservative, and because the forgetful functor
RModEnd(M) → C is conservative, it suffices to show that hom(M,−) : C → C is conserva-
tive. By dualizability, this is equivalent to M∨ ⊗−. Now if M∨ ⊗ f is an equivalence, so is
M⊗M∨ ⊗M⊗ f ; and thus, so is M⊗ f , as M is a retract of M⊗M∨ ⊗M. By conservativity
of M, it follows that f is an equivalence, and hence hom(M,−) is conservative. This proves
(ii).

(ii) clearly implies (iii), by definition of Morita equivalence.
So let us now assume (iii). The existence of a Morita equivalence yields a right End(M)-

module X and a left End(M)-module Y such that X ⊗End(M) Y ≃ 1. The smallest C-
linear subcategory of RModEnd(M) closed under colimits and containing End(M) con-
tains X, so that the smallest C-linear subcategory of C closed under colimits and con-
taining Y ≃ End(M) ⊗End(M) Y also contains 1. But now Y is a retract (in C) of
End(M)⊗ Y ≃ M⊗ M∨ ⊗ Y so that (i) follows.

We also briefly need:

Definition 2.1.3. Let C be presentably symmetric monoidal, and let M be a C-module in PrL.
An object x ∈ M is called C-atomic if the canonical map

c⊗ hom(x, y)→ hom(x, c⊗ y)

is an equivalence for all c ∈ C, y ∈ M, and hom(x,−) : M → C preserves all colimits. Here,
hom denotes the C-valued hom object of M. ◁

Remark 2.1.4. This definition appears in [BS21, Definition 2.2] in the case where C is a mode,
so that it actually suffices to assume that hom(x,−) preserves colimits, cf. [BS21, Remark
2.4]. ◁

The following is immediate from the definitions:

Lemma 2.1.5. Let C be presentably symmetric monoidal.

• C-atomic objects in C are exactly dualizable objects.
• If f : M0 → M1 is an equivalence of C-modules in PrL, it carries C-atomic objects to

C-atomic objects.

We can now prove:

Proposition 2.1.6 ([HL17, Corollary 2.2.3.]). Let C be presentably symmetric monoidal, and
let A ∈ Alg(C) be an algebra. The following are equivalent:

(i) A is Azumaya;
(ii) A is dualizable, full, and the canonical map A⊗ Aop → End(A) is an equivalence;

(iii) A is dualizable, full, and there is an equivalence of algebras A ⊗ Aop ≃ End(A);
(iv) There is some full dualizable object M and an equivalence of algebras

A ⊗ Aop ≃ End(M);
(v) A⊗ Aop is (C-linearly) Morita equivalent to the unit 1;

(vi) There exists an algebra B, a full dualizable object M, and an equivalence
A ⊗ B ≃ End(M)
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(vii) There exists an algebra B and a (C-linear) Morita equivalence between A⊗ B and 1

Proof. We prove (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (vii) =⇒ (i), and we prove
(vi) ⇐⇒ (vii).

Note that (ii) =⇒ (iii) =⇒ (iv) are just each specializations of the previous one, so these
implications are obvious, same for (v) =⇒ (vii).

For (iv) =⇒ (v) (resp. (vi) =⇒ (vii)), we simply observe that for a full dualizable object
M, End(M) is Morita equivalent to 1 by the previous proposition/definition.

(vii) =⇒ (i) follows from the observation that LModA ⊗C LModB ≃ LModA⊗B, and hence
(vii) implies that LModA ⊗C LModB ≃ C, which is the definition of Azumaya.

We are left with (i) =⇒ (ii) and (vii) =⇒ (vi). The proof of (vii) =⇒ (vi) poceeds by observ-
ing that any algebra Morita equivalent to 1 is of the form End(M) for some full dualizable
M. Indeed, suppose A is such an algebra, and fix a Morita equivalence F : LModA ≃ C.
Note that A ∈ LModA is C-atomic, i.e. homA(A,−) : LModA → C is C-linear and colimit-
preserving - indeed, homA(A,−) is C-linearly equivalent to the forgetful functor. As F is
a C-linear equivalence, F(A) ∈ C is also atomic by the previous lemma, and it is therefore
dualizable, also by the previous lemma. Furthermore, we have

A ≃ EndA(A)op ≃ End(F(A))op ≃ End(F(A)∨)

It follows that F(A)∨ is a dualizable object with End(F(A)∨) Morita equivalent to the unit,
so by the previous proposition/definition, it is full, which proves the claim.

Finally, we need to prove that (i) implies (ii). The observation here is that LModA is always
dualizable in ModC, so that invertibility is the property that the evaluation and coevaluation
maps,

LModAop ⊗C LModA → C

and
C→ LModA ⊗C LModAop

respectively, be equivalences.
For the second one, it implies in particular that A is proper, i.e. that A is dualizable as an

object of C.
Next, note that the map LModA⊗Aop ≃ LModA ⊗C LModAop → C is given by tensoring

over A⊗ Aop with the A⊗ Aop-module A. It therefore sends A⊗ Aop to A, and as it is an
equivalence, it induces an equivalence of algebras

A⊗ Aop ≃ EndA⊗Aop(A⊗ Aop)
≃−→ End(A)

It is easy to check that this is the canonical map.
To prove (ii), we are left with checking that A is full. But it follows from what we just

said that LModEnd(A) was equivalent to C, and A is dualizable, so by the previous proposi-
tion/definition, A is full, and so we are done.

A further key property of Azumaya algebras is their centrality.

Lemma 2.1.7. Let A ∈ Alg(C) be an Azumaya algebra. In this case, the center of A is equiv-
alent to the unit 1.

Proof. The center of A is equivalent to the endomorphism object of the C-module LModA(C).
Since the latter is invertible, the functor

C→ FunL
C(LModA(C), LModA(C))
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is a C-linear equivalence, and it sends 1 to idLModA(C). It follows that

Z(A) ≃ End(idLModA(C)) ≃ End(1) ≃ 1

as claimed.

In [BRS12, Proposition 1.4], it is claimed that an Azumaya algebra is necessarily separable,
in analogy with [AG60, Theorem 2.1.]. Unfortunately, there is an error in their argument: in
their notation, the module F̃(A) = A∧R A is not the canonical bimodule A∧R Aop, but rather
the bimodule obtained by tensoring the canonical bimodule A with the object A. There are,
in fact, counterexamples to this statement. We give two: a local one, and a global one.

Example 2.1.8. There are some associative ring structures on Morava K-theory K(n) in the
∞-category SpK(n) of K(n)-local spectra, which are Azumaya algebras, cf. [HL17]. How-
ever, none of these are separable: a bimodule splitting as in Definition 1.1.2 would yield a
retraction of

En ≃ MapK(n)⊗K(n)op(K(n), K(n))→ K(n)

and there is clearly no such thing (the first equivalence follows from Lemma 2.1.7). ◁

Example 2.1.9. The same example as in Remark 1.1.13 also provides a global example here,
that is, without needing to localize. Namely, if X is a type 0 spectrum, such as the cofiber of
η, End(X) is Morita equivalent to S and hence Azumaya, but we already argued that it is not
separable. ◁

We can now state the corrected version of [BRS12, Proposition 1.4]

Proposition 2.1.10. Let A ∈ Alg(C) be an algebra. If A is Azumaya, then A is separable if
and only if the unit η : 1→ A admits a retraction.

Proof. First note that the multiplication map A⊗ Aop → A factors as

A⊗ Aop → End(A)→ A

where the second map is evaluation at the unit η : 1→ A, as a map of bimodules.
If A is Azumaya, it follows that this multiplication admits a bimodule section if and only

if evη : End(A) → A has an A-bimodule section. Now End(A) ≃ A⊗ A∨ as A-bimodules,
where the latter has the structure of A-bimodule coming from A, so that this map is really

A⊗ (A∨
evη−→ 1).

Finally, A∨ → 1 is dual to η : 1→ A. So, if the unit has a retraction, then evη : A∨ → 1 has
a section, and therefore so does A⊗ (A∨ → 1), as a map of bimodules, and by the previous
discussion, so does A⊗ Aop → A, so that A is separable.

Conversely, if A is separable, then the canonical map Z(A) → A admits a section (cf.
Corollary 1.1.30). As A is Azumaya, we can combine this with Lemma 2.1.7 to obtain that
1 ≃ Z(A)→ A admits a retraction.

We use this proposition to prove that, unlike in the commutative case, separability cannot
be checked locally:

Example 2.1.11. In [GL21, Proposition 7.17], Gepner and Lawson construct a twisted form of
M2(KU), that is, a KO-algebra Q, necessarily Azumaya, for which Q⊗KO KU ≃ M2(KU) as
algebras. This algebra is not M2(KO), in fact π∗Q ∼= KU∗⟨C2⟩, a twisted group ring.

It follows that Q is not separable: it is Azumaya so by the above proposition, if it were sep-
arable, its unit would split. But it has no π1, so such a splitting is impossible as π1(KO) ̸= 0.
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Therefore we have a non-separable algebra, Q, whose basechange along a Galois-extension
is separable - it follows that Algsep(ModhC2

KU )→ Algsep(ModKU)
hC2 is not an equivalence: the

former is equivalent to Algsep(ModKO), and the latter to the full subgroupoid of Alg(ModKO)
consisting of those algebras whose basechange to KU is separable. ◁

Remark 2.1.12. Let us mention, without too much detail, the following interpretation of sep-
arable Azumaya algebras. Let C be an additively symmetric monoidal ∞-category, and A
an Azumaya algebra therein. In this case, A is separable (equivalently, its unit splits) if and
only if it remains Azumaya in SynC = Fun×(Cop, Sp) under the symmetric monoidal Yoneda
embedding C → SynC, if and only if it is “absolutely Azumaya”, i.e. it remains Azumaya
after applying any additive symmetric monoidal functor (the part of the definition of “Azu-
maya” which is not clearly preserved by any functor is the “fullness” property, but is here
guaranteed by the retraction onto the unit).

Sven van Nigtevecht has independently observed1 that the obstruction theory from
[PV22]2 can be used in the case where A is an Azumaya algebra which remains Azumaya
in SynC, for then the mapping spectrum in ModA⊗Aop(SynC) from A to itself is simply
mapSynC

(1SynC
, 1SynC

) ≃ map(1C, 1C)≥0. From our perspective, this is explained by the fact
that under this assumption, A is actually separable. ◁

In the setting of classical rings, a stronger result holds: if A is dualizable, separable, and
central, i.e. its center Z(A) is the unit 1, then A is Azumaya. We do not know whether the
converse holds in our generality, and we therefore raise it as a question:

Question 2.1.13. Let A ∈ Alg(C) be a dualizable separable algebra which is central, i.e. the
unit map 1→ Z(A) is an equivalence. In particular, A is full, as it retracts onto Z(A) ≃ 1.

Is A necessarily Azumaya ? ◁

I provide a positive answer in the following cases:

Theorem 2.1.14. If C is one of the following:

• QCoh(X) for some (connective) spectral Deligne-Mumford stack X [Lur18b, Definition
1.4.4.2];

• ModR(Sp), where R is some commutative ring spectrum for which R ⊗ Fp = 0 for
all primes p;

• ModR(Sp), where R is a commutative ring spectrum which is even, 2-periodic and
whose π0 is regular noetherian, and in which 2 is invertible.

then Question 2.1.13 has a positive answer for C: if A ∈ Alg(C) is a dualizable separable
algebra which is central, i.e. the unit map 1→ Z(A) is an equivalence, then A is Azumaya.

Remark 2.1.15. The second situation of Theorem 2.1.14 is somewhat orthogonal to the first
one: such a commutative ring R, unless it is rational, must be non-connective, and of “chro-
matic” flavour. For instance, Morava E-theories fall into this category.

The third situation allows for certain non-connective commutative Fp-algebras at odd

primes, such as FtS1
p , but not, e.g., F

tCp
p . ◁

Proof. Combine Corollary 2.1.25, Corollary 2.1.37 and Proposition 2.1.28.

1Private communication.
2Which used to be used in Section 1.2.2
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The strategy of proof in all cases of Theorem 2.1.14, which is also the one we will use in
Section 2.2 to adress Question 2.0.1, is to try to descend the question to simpler and simpler
C’s, until we reach a classical algebraic C, where the usual proofs just go through.

The “descent” statement in this case is the following:

Lemma 2.1.16. Let f : C → D be a conservative symmetric monoidal functor. For a dualiz-
able, full algebra A ∈ Alg(C), if f (A) is Azumaya, then so is A.

More generally, if fi : C → Di is a jointly conservative family of symmetric monoidal
functors, if each fi(A) is Azumaya, then so is A.

Proof. We deal with the case of a single functor, the other case being similar (or simply a
consequence, by taking f = ( fi)i∈I : C→ ∏I Di).

A is already assumed to be dualizable and full, so by point 2. in Proposition 2.1.6, it suffices
to show that the canonical map A⊗ Aop → End(A) is an equivalence.

The functor f is symmetric monoidal, and A is rigid, so that applying f to this map yields
the canonical map f (A)⊗ f (A)op → End( f (A)). By conservativity of f , if this is an equiva-
lence, then so was the canonical map.

The key example we try to reduce to is the category of modules over a graded field.

Notation 2.1.17. We consider the category of graded abelian groups as symmetric monoidal
using the Koszul convention: the symmetry isomorphism A ⊗ B ∼= B ⊗ A is
a⊗ b 7→ (−1)|a||b|b⊗ a for homogeneous elements a, b of respective degrees |a|, |b|. ◁

Definition 2.1.18. A graded field is a commutative algebra k in graded abelian groups such
that every homogeneous element x ∈ k∗ is invertible.

A graded division algebra is similar, except we do not require commutativity. ◁

Remark 2.1.19. Graded fields are easy to classify: they are either fields concentrated in degree
0, or of the form k[t±1] for some t of positive degree - necessarily even if the characteristic of
k is not 2.

On the other hand, graded division algebras are more complicated to classify: even if the
degree 0 part is a field (i.e. commutative), the non-commutativity of the multiplication in
higher degrees allows for a wealth of examples. ◁

Proposition 2.1.20. Let k be a graded field, and D the category of graded k-vector spaces.
Any central separable algebra in D is Azumaya.

One way to go about this proof is to prove the following lemma, which is classical in the
ungraded case and most likely well-known in the graded case too. There is, however, an
easier proof under our assumption, so I will simply mention the lemma here and let the
reader fill in the details of this proof if they are interested.

Lemma 2.1.21. Let k be a graded field, and D, D′ central graded division algebras over k. The
algebra D⊗k D′ is graded simple, i.e. it has no nontrivial homogeneous ideal.

We are in a simpler situation, as we assume separability:

Lemma 2.1.22. Let D be a symmetric monoidal abelian category which is semi-simple, and let
A ∈ Alg(C) be a separable algebra. Any (bilateral) ideal I in A splits: there is an isomophism
of algebras A ∼= I × A/I.

In particular, if A is central, i.e. 1 ∼= Z(A), and EndD(1) has no nontrivial idempotents,
then any (bilateral) ideal is 0 or A.
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Proof. As D is semi-simple, the inclusion I → A, which is a morphism of A⊗ Aop-modules,
admits a section in D. Because A⊗ Aop is separable, Corollary 1.1.18 implies that it admits a
section of A-bimodules. The result follows by Lemma 1.3.8.

The “in particular” follows from the fact that Z(A× B) ∼= Z(A)× Z(B).

Lemma 2.1.23. Let C be idempotent-complete, and let A, B ∈ Alg(C) be separable. The
canonical map Z(A)⊗ Z(B)→ Z(A⊗ B) is an equivalence.

Proof. Note that this a map of the form

homR(M, N)⊗ homS(P, Q)→ homR⊗S(M⊗ P, N ⊗Q)

and the latter is natual in M, N, P, Q. Furthermore, for M = N = R, P = Q = S, it is clearly
an equivalence. Hence it is so for any tuple (M, N, P, Q) which is a retract of (R, R, S, S).

By separability of A, B, (A, A, B, B) is a retract of (A⊗ Aop, A⊗ Aop, B⊗ Bop, B⊗ Bop) and
so we are done.

Remark 2.1.24. In fact an easy modification of this proof shows that it suffices that A is
separable if we also assume that B is smooth, or that A is proper, see [Lur12, Section 4.6.4]
for definitions. ◁

Proof of Proposition 2.1.20. As k is a graded field, the category D of graded k-vector spaces is
semi-simple, and EndD(1) = End(k) = k has no nontrivial idempotents.

In particular, by Lemma 2.1.22 if A is central and separable, then it is simple: it has no
nontrivial ideals.

We apply this to A ⊗ Aop instead: it is still separable (Lemma 1.1.6) and central
(Lemma 2.1.23), and therefore by the above it is simple.

It follows that the canonical map A ⊗ Aop → End(A), which is an algebra map, has no
kernel, i.e. it is injective. Comparing the dimensions of both sides implies that it is an iso-
morphism3. By Proposition 2.1.6, point 2., we are done.

The case of ordinary fields is enough to bootstrap to all connective Deligne-Mumford
stacks:

Corollary 2.1.25. Let X be a (connective) Deligne-Mumford stack. Any dualizable central
separable algebra in QCoh(X) is Azumaya.

Proof. By [Lur18b, Proposition 6.2.4.1], QCoh(X) is a limit, in CAlg(PrL), of ∞-categories of
the form ModR(Sp), where R is a connective commutative ring spectrum.

Since for any diagram f : I → Cat and any essentially surjective map from a set I0 → I,
the forgetful functor limI f → ∏I0

f is conservative, we can apply Lemma 2.1.16 to reduce to
the case of ModR(Sp), where R is a connective commutative ring spectrum.

Since we assumed the algebra was dualizable, we can in fact reduce to Perf(R). Now, for
a connective ring spectrum R, the restriction of π0(R) ⊗R − to bounded below R-modules
is symmetric monoidal and conservative, so we can reduce to the case where R is discrete,
again by Lemma 2.1.16.

For a discrete commutative ring R, the basechange functors along all ring maps R → k,
where k is a field are jointly conservative on perfect R-modules, so we can reduce to the case
of a field.

3We are in a graded setting, but over a graded field, so dimensions still make sense.



2.1 AZUMAYA ALGEBRAS 83

Now note that for any C, C→ ho(C) is conservative and symmetric monoidal. For a field
k, ho(Modk) is symmetric monoidally equivalent to the 1-category of graded k-vector spaces,
and so Proposition 2.1.20 allows us to conclude.

To deal with the second case of Theorem 2.1.14, we first specialize to R = Morava E-theory
- the nilpotence theorem [HS98] and the chromatic Nullstellensatz [BSY22] will be our tools
to reduce to this key case.

The situation is simpler at odd primes than at the even prime, so we first deal with the odd
primes, even though the proof we will give for the prime 2 also works for odd primes.

Proposition 2.1.26. Let R = E = E(k, G) be a Morava E-theory4 over some field k of odd
characteristic, and at some height n > 0, and let A ∈ Alg(ModE) be a rigid separable E-
algebra. If A is furthermore central, then A is Azumaya.

Remark 2.1.27. In contrast to Example 2.1.8, these Azumaya algebras are not “atomic” in the
sense of [HL17], precisely because they are separable and therefore retract onto E. ◁

Proof. Because we are working at an odd prime, there exist ring structures on Morava
K-theory K(n) that are homotopy commutative [Str99, Section 3]. In this case,
K(n)∗ : ModE → ModK(n)∗(GrVectk) is a symmetric monoidal functor, and it is conser-
vative when restricted to K(n)-local E-modules, in particular when restricted to perfect, or
equivalently dualizable, E-modules.

As K(n)∗ is a graded field, Proposition 2.1.20 applies again, and we are done, again by
Lemma 2.1.16.

In fact, thanks to work of Mathew [Mat15], the same argument works more generally:

Proposition 2.1.28. Let R be a commutative ring spectrum which is even, 2-periodic, with
regular noetherian π0, and such that 2 ∈ π0(R)×. Let A ∈ Alg(ModR) be a dualizable
separable R-algebra. If A is furthermore central, then A is Azumaya.

Proof. The same proof as above works, where we replace K(n) by the K(p)’s, cf. [Mat15,
Definition 2.5]. Indeed, each K(p)∗ is a graded field by loc. cit., they are jointly conservative
on perfect R-modules [Mat15, Proposition 2.8] (in fact on all modules), and finally by [Str99,
Section 3], if 2 ∈ π0(R)×, they can be chosen to be homotopy commutative.

We now deal with the even prime. The point is that in this situation, Morava K-theory
cannot be chosen to be homotopy commutative, so that K(n)∗ is only monoidal, but not
symmetric monoidal, which means that it is possibly not compatible with the map

A⊗ A→ End(A) ≃ A∨ ⊗ A

and in particular we cannot check Azumaya-ness through this functor.
There is a way out, using the notion of Milnor modules [HL17, Section 6]. The main take-

away of this notion for us is the following:

Theorem 2.1.29. Let E = E(k, G) be a Morava E-theory at height n at the prime p, possibly
even. There is a symmetric monoidal 1-category MilE of Milnor-modules together with a
(strong) symmetric monoidal homology theory h∗ : ModE → MilE.

For any choice of a Morava K-theory K ∈ Alg(ho(ModE)), the monoidal homology the-
ory K∗ : ModE → coModKE∗K(ModK∗((GrVectk)) factors through a monoidal5 equivalence
MilE ≃ coModKE∗K(ModK∗((GrVectk)).

4See [BSY22, Section 2.4] for a modern introduction
5At the prime 2, there is no choice of Morava K-theory that makes this symmetric monoidal.
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Note that the notion of separable algebra, and of rigidity can be phrased completely in
monoidal terms (for duality, one needs to worry about left vs right duality, but these notions
still make sense). The only part of “rigid central separable algebra” that requires symmetry
is the centrality part.

In particular, if A ∈ Alg(ModE) is rigid and separable, K∗(A) is a rigid separable algebra
in K∗-modules in GrVectk. This will turn out to be enough for us.

We begin with a lemma:

Lemma 2.1.30. Let C be a symmetric monoidal 1-category, H a commutative Hopf algebra in
C, i.e. a group object in CAlg(C)op.

Let I be a non-unital algebra in coModH(C) such that the underlying non-unital algebra I
in C admits a unit [Lur12, Definition 5.4.3.1]. In this case, I admits a unit in coModH(C).

Remark 2.1.31. We state and prove this lemma for 1-categories because in the proof, we use a
description of comodules as “algebraic representations” of an “algebraic group” (see below).
This description is elementary for 1-categories, while for ∞-categories, it is highly expected
to hold completely analogously, but we did not want to get into the intricacies of its proof.

We later only use it for 1-categories, so this is not an issue, but it would be interesting to
prove the corresponding description for symmetric monoidal ∞-categories (the lemma, for
instance, would follow immediately in the same generality). ◁

As mentioned in the remark, to prove this lemma, it is convenient to use the usual descrip-
tion of coModH(C) as “algebraic representations of SpecC(H)”. Let us make this a bit more
precise. The corepresented functor M = SpecC(H) : CAlg(C) → S given by Map(H,−) is
canonically a monoid whenever H is a comonoid in CAlg(C). The category of transforma-
tions BM(R)→ ModR(C), natural in R ∈ CAlg(C) can be viewed as a category of “algebraic
representations of M” - here, R 7→ ModR(C) is functorial along base-change6.

It is an instructive exercise to prove that this category is symmetric monoidally equivalent
to the category of H-comodules, compatibly with the forgetful functor to C. We use this fact
without further comment.

Notation 2.1.32. Let M : CAlg(C) → Mon be a functor from commutative algebras in C to
(discrete) monoids. We let RepM(C) denote the symmetric monoidal category of algebraic
representations of M, as described above. ◁

Remark 2.1.33. We note that here, H needs to be a Hopf algebra - the lemma is not true for
general commutative bialgebras. For example, let H be the bialgebra in abelian groups whose
underlying algebra is Z×Z. The functor on CAlg(Ab) it corepresents is simply

Idem : R 7→ Idem(R)

the functor mapping a ring to its set of idempotents, and we can make it a commutative
monoid under multiplication, thus making H into a bialgebra. In this case, one can make Z

into an algebraic representation of SpecC(H), i.e. an H-comodule, via the canonical action
of Idem(R) on R by multiplication. It is easy to check that this makes it into a non-unital
algebra whose underlying algebra is unital, but it is not unital. ◁

Proof. By [Lur12, Theorem 5.4.3.5], the unit of a non-unital algebra, if it exists, is unique.
More precisely, the forgetful functor Alg(D)≃ → Algnu(D)≃ is fully faithful7.

6Because every such natural transformation has a value c at R = 1, the value at every other R is of the form R⊗ c,
and so all the required basechanges exist, along arbitrary maps R → S, therefore, to make this definition, we do
not actually need C to have arbitrary relative tensor products.

7Note that this is not true if one removes the symbol ≃, it is only faithful.
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In particular, for any group G, if A ∈ Algnu(Fun(BG, D)) is a non-unital algebra such that
the underlying A ∈ Algnu(D) admits a unit, then A admits a unit too. More precisely, the
canonical map

Alg(Fun(BG, D))→ Algnu(Fun(BG, D))×Algnu(D) Alg(D)

is an equivalence.
It follows that the same holds for the category of representations of any functor

G : CAlg(C)→ Grp, i.e. the canonical map

Alg(RepG(C))→ Algnu(RepG(C))×Algnu(C) Alg(C)

is an equivalence for any such G.
The result now follows from the symmetric monoidal equivalence

coModH(C) ≃ RepSpecC(H)(C)

compatible with the forgetful functor as discussed before the proof.

Proposition 2.1.34. Let R = E = E(k, G) be a Morava E-theory over some field k of posi-
tive, possibly even characteristic, and at some height n > 0, and let A ∈ Alg(ModE) be a
dualizable separable E-algebra. If A is furthermore central, then A is Azumaya.

Proof. Fix an atomic E-algebra K [HL17, Definition 1.0.2], i.e. a Morava K-theory.
By Theorem 2.1.29, K∗ factors through h∗ : ModE → MilE, and K∗ is conservative on perfect

E-modules, hence by Lemma 2.1.16, it suffices to prove the result in MilE.
We prove the following intermediary result: let A be a central separable algebra in MilE,

then A is simple, i.e. any (bilateral) ideal I ↪→ A is 0 or A. Notice that the functor
MilE → coModKE∗K(ModK∗((GrVectk)) → ModK∗(GrVectk) is (strong) monoidal, and con-
servative, so it sends ideals to ideals, and dualizable separable algebras to dualizable separa-
ble algebras.

By Lemma 2.1.22, there is a central idempotent e in A such that I = eA. Furthermore, we
started with an ideal in coModKE∗K(ModK∗), and Lemma 2.1.30 will in fact imply that e is a
morphism K∗ → A in comodules, and not only in ModK∗ (note that KE

∗K is a commutative
Hopf algebra by [BP21, Lemma 2.6]- this is so even at the prime 2).

The algebra we apply Lemma 2.1.30 to is I, viewed as a non-unital algebra in comodules.
The existence of the central idempotent e in A such that I = eA guarantees that I is unital in
ModK∗ , and thus, the lemma guarantees that it is unital in comodules.

This means that its unit is a morphism of KE
∗K-comodules K∗ → I, i.e., that the idempotent

e is a map of KE
∗K-comodules K∗ → A.

This further implies that A splits as an algebra in coModKE∗K as I × A/I. This being a
statement only about the monoidal structure of coModKE∗K, it holds also in the monoidal
category of Milnor modules, i.e. MilE. But there, A is central by assumption, and so I = 0 or
A, as was to be proved. We have thus proved that A was simple.

We now apply this to A ⊗ Aop, which is dualizable, central and separable as well, and
hence simple. It follows that the canonical map A ⊗ Aop → End(A) is injective. Now, the
two sides have the same (finite) dimension as K∗-modules, so it follows that this map is an
isomorphism, which is what was to be proved.

To prove the general case of a commutative ring spectrum for which R⊗ Fp = 0 for all p,
we use the nilpotence theorem [HS98]. Let us recall an important consequence of it:
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Proposition 2.1.35. Let R be a commutative ring spectrum and P a dualizable R-module.
Suppose that for all implicit primes p and and all 0 ≤ n ≤ ∞, LK(n)P = 0. In this case, P = 0.

Here, K(0) = Q, K(∞) = Fp. In particular, if R⊗Fp = 0 for all primes p, then it suffices to
check that LK(n)P = 0 for all 0 ≤ n < ∞.

Proof. By definition, LK(n)P = 0 if and only if K(n) ⊗ P = 0. As P is dualizable and K(n)
admits a ring structure, K(n) ⊗ P = 0 if and only if K(n) ⊗ End(P) = 0: one direction is
always true, as K(n)⊗ P is a module over K(n)⊗ End(P). For the other direction, note that
End(P) ≃ P⊗R P∨ ≃ colim∆op P⊗ R⊗n ⊗ P∨.

Similarly, P = 0 if and only if End(P) = 0.
Now, End(P) is an E1-ring, so the result follows from [HS98, Theorem 3].
The “in particular” part follows from the fact that if R⊗Fp = 0, then P⊗Fp = 0 too.

We also recall an important consequence of the Chromatic Nulstellensatz [BSY22].

Proposition 2.1.36. Fix an implicit prime p. Let R be a K(n)-local commutative ring spectrum,
and P a nonzero dualizable R-module. There exists a field L as well as a map of commutative
ring spectra R→ E(L) such that E(L)⊗R P ̸= 0.

To prove this from the results of [BSY22], we need a bit of work. Before doing so, let us
deduce the desired result from this.

Corollary 2.1.37. Let R be a commutative ring spectrum such that R ⊗ Fp = 0 for all p.
Question 2.1.13 has a positive answer in ModR(Sp), that is, every dualizable central separable
algebra is Azumaya.

Proof. Let A be a dualizable central separable algebra over R, and let P denote the cofiber of
A⊗ Aop → End(A). We aim to prove that P = 0. To reach a contradiction, we assume P ̸= 0.

As A is dualizable, P is dualizable too. By Proposition 2.1.35, there exists a prime p and an
n such that LK(n)P ̸= 0. By Proposition 2.1.36, there exists a field and a map of commutative
ring spectra LK(n)R→ E(L) such that E(L)⊗LK(n)R LK(n)P ̸= 0. Note that P is dualizable over
R, so that LK(n)R⊗R P ≃ LK(n)P.

Therefore, E(L)⊗R P ̸= 0. As E(L)⊗R − is symmetric monoidal, we find that E(L)⊗R A
is not Azumaya. This contradicts Proposition 2.1.34.

We now explain how to deduce Proposition 2.1.36 from [BSY22].
First, a definition [CSY18, Definition 4.4.1]:

Definition 2.1.38. A monoidal functor f : D → E between stably monoidal ∞-categories is
said to be nil-conservative if for all R ∈ Alg(D), f (R) = 0 implies that R = 0. ◁

Lemma 2.1.39 ([BSY22, Lemma 4.32]). Let C ∈ CAlg(PrL) be compactly generated, with the
property that every compact in C is dualizable, and let A → B a morphism in CAlg(C). If it
detects nilpotence, then B⊗A − : ModA(C)→ ModB(C) is nil-conservative.

Lemma 2.1.40 ([CSY18, Proposition 4.4.4]). A nil-conservative monoidal exact functor be-
tween stably monoidal ∞-categories is conservative when restricted to dualizable objects.

Corollary 2.1.41. Let C ∈ CAlg(PrL) be compactly generated, with the property that every
compact in C is dualizable, and A→ B a morphism in CAlg(C). If it detects nilpotence, then
B⊗A − : ModA(C)→ ModB(C) is conservatie when restricted to dualizable objects.

One of the main results of [BSY22] is:
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Theorem 2.1.42 ([BSY22, Theorem 5.1]). Let R be a nonzero T(n)-local ring. There exists
a perfect Fp-algebra A of Krull dimension 0 and a nilpotence detecing map R → E(A) in
SpT(n).

If R is K(n)-local, then it is also T(n)-local. If P is furthermore dualizable over R, then
for any map of commutative algebras R → S to a K(n)-local ring S, E(A) ⊗R P is already
K(n)-local.

Corollary 2.1.43. In order to prove Proposition 2.1.36, it suffices to prove the special case
where R = E(A) for A a perfect Fp-algebra of Krull dimension 0.

Proof. Suppose Proposition 2.1.36 holds whenever R = E(A), A a perfect Fp-algebra of
Krull dimension 0, and let R be an arbitrary K(n)-local commutative ring spectrum, and
P a nonzero dualizable R-module.

By Theorem 2.1.42 ([BSY22, Theorem 5.1]), we can find a nilpotence detecting map
R → E(A) in SpT(n) for some perfect Fp-algeba of Krull dimension 0, A. By Corollary 2.1.41,
the T(n)-local tensor product with E(A) over R is conservative on dualizable objects, hence
E(A)⊗R P is nonzero, since its T(n)-localization is nonzero (note that P is dualizable over R,
so it is already T(n)-local, and hence it is nonzero as a T(n)-local R-module), and dualizable
over E(A), thus Proposition 2.1.36 follows for R.

The proof of this special case is in fact implicit in the proof of [BSY22, Theorem 4.47] -
we reproduce the proof nonetheless, for the convenience of the reader, as it is not explicitly
spelled out:

Proof of Proposition 2.1.36. By the previous corollary, we may assume R = E(A) for some
perfect Fp-algebra A of Krull dimension 0.

Let P be a dualizable E(A)-module. For any field k and any map A → k, E(k)⊗E(A) P is
K(n)-local, and thus equivalent to its K(n)-localization.

Assume E(k) ⊗E(A) P = 0 for all such A → k, we wish to prove that P = 0. The ∞-
category LK(n)ModE(A) is compactly generated so it suffices to show that [c, P]E(A) = 0 for
any compact c. As c is compact in a p-complete ∞-category, p acts nilpotently on it. It follows
that if [c, P]E(A) ⊗W(A) A ∼= [c, P]E(A) ⊗Z Fp is zero, then so is [c, P]E(A). Here, W(A) is the
ring of Witt vectors of A.

Now, by [BSY22, Lemma 4.45], if [c, P]E(A)⊗W(A) A is nonzero, there is a perfect field k and
a map A → k such that [c, P]E(A) ⊗W(A) A ⊗A k ̸= 0. By [BSY22, Lemma 4.46], this tensor
product is [c⊗E(A) E(k), P⊗E(A) E(k)]E(k), and this is 0 by assumption.

Here, we have used [BSY22, Lemma 4.46] with C = LK(n)ModE(Fp) so that, by [BSY22,
Lemma 2.37], WC(B) ≃ E(B) for any perfect Fp-algebra B (in particular B = Fp, A), and so
that this really is an application of [BSY22, Lemma 4.46].

This concludes the proof of Theorem 2.1.14. As is clear from the proof, if one wants to
answer Question 2.1.13 positively for ModR(Sp) for an arbitrary commutative ring spectrum
R, one may without loss of generality assume R is an Fp-algebra for some prime p. In this
case, residue fields are harder to come by, and are the subject of ongoing work.

A first issue is that, away from characteristic 2, one cannot hope for graded fields, cf.
[Mat17, Example 3.9]. One could still try to find enough “residue fields” and analyze their
homotopy categories in enough detail to answer the question there. A good test-case would
be to start with R = ktCp , where k is a field of characteristic p and the Tate construction is
taken with respect to the trivial action. In this case, ModktCp ≃ StModkCp , the stable module
∞-category, and it seems possible to study the separable algebras therein an try to prove that
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they are Azumaya - for instance, the commutative case was studied in [BC18] (of course, the
commutative case is orthogonal to our discussion, but Balmer and Carlson’s result shows
that such an analysis is not completely impossible).

We note that Question 2.1.13 (both its inputs and its answers, positive or negative) can
be phrased in the homotopy category ho(C), and so one can also try to approach it using
the homological residue fields of Balmer [Bal20]. Thus the question becomes completely
about (graded) abelian symmetric monoidal 1-categories, over Fp. It is not clear to the author
whether one can say anything in this generality.

2.2 Centers of separable algebras
In this subsection, we study Question 2.0.1. Just as in the previous subsection, our approach
is via descent. As the center of an algebra is E2, and in particular homotopy commutative,
Corollary 1.3.37 tells us that separability can be tested locally.

In the previous subsection however, we used a much weaker notion of “local”, namely,
we tested Azumaya-ness against conservative functors, of which there is a larger supply than
“descendable” functors. I was not able to phrase separability in terms of certain maps being
equivalences, and so I am not able to use this technique.

For this reason, our positive answer is in a more restricted generality. The goal of this
section is to prove:

Theorem 2.2.1. Let A ∈ Alg(C) be a separable algebra. Question 2.0.1 has a positive answer,
i.e. the center Z(A) is separable, in the following cases:

(i) If C = ModR(Sp) for some connective commutative ring spectrum R, and A is almost
perfect [Lur12, Definition 7.2.4.10]. More generally, this holds if C = QCoh(X) for
some (connective) Deligne-Mumford stack X and if A is locally almost perfect.

(ii) If C = ModE(SpK(n)) is the ∞-category of K(n)-local E-modules, where E is Morava
E-theory at height n, for some height n and some odd implicit prime p. In particular,
the same is true if C = SpK(n).

Remark 2.2.2. If we have some a priori control over Z(A), one can get sometimes phrase sep-
arability in terms of certain maps being equivalences, and then get a more general positive
answer. This is the case if, for instance, we assume that A is sufficiently finite over its center.
For instance, in the ordinary category of (discrete) R-modules for some (discrete) commuta-
tive ring R, Auslander and Goldman prove in [AG60, Theorem 2.1] that a separable algebra
is always dualizable over its center. I do not know in what generality this can be expected,
and as I was not able to formulate general criteria for this to happen, I did not include results
along these lines here. ◁

Remark 2.2.3. We note that if A is separable and almost perfect over a connective commuta-
tive ring spectrum R, Z(A) is also almost perfect, and thus, by Proposition 1.3.56, it is sepa-
rable if and only if it is étale. Under these finiteness assumptions, étaleness can be checked
“conservative locally”, and this is how we will be able to actually prove Item (i). In an earlier
draft, the assumptions on R were more restrictive, and I am grateful to Niko Naumann and
Luca Pol for sharing a draft of their work which allowed us to prove Proposition 1.3.56, and
subsequently, this version of the above theorem. ◁

Before moving on to the proof of Theorem 2.2.1, we note that under a positive answer to
Question 2.0.1, we can somewhat recreate the picture from [AG60]:
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Lemma 2.2.4. Suppose A ∈ Alg(C) is separable, and that Z(A) is also separable.
In this case, the center of A as a Z(A)-algebra, C, is equivalent to Z(A), i.e. A is a central

Z(A)-algebra.

Proof. Note that Theorem 1.3.19 implies, together with the homotopy commutativity of Z(A),
that Z(A) has an essentially unique commutative algebra structure extending its (E2-)algebra
structure.

Furthermore, by Theorem 1.2.6 and Proposition 1.1.22, we have that

ho(ModZ(A)(C)) ≃ ModhZ(A)(ho(C))

as symmetric monoidal categories, compatibly with the lax symmetric monoidal functor to
ho(C).

As A is separable over Z(A) by Proposition 1.2.12, its center in ModZ(A)(C) can be com-
puted in ho(ModZ(A)(C)) by Corollary 1.1.30, and thus we may assume that C is a 1-category.

In particular, A ⊗ Aop → A ⊗Z(A) Aop is then an epimorphism, as it is split, so that
homA⊗Z(A)Aop(A, A) → homA⊗Aop(A, A) is a a monomorphism, compatible with the for-
getful map to A.

But the first one receives a map from Z(A), as Z(A) is commutative, also compatible with
the forgetful map to A, and so, because all these maps to A are monomorphisms (as they
admit retractions and we are in a 1-category), this implies the claim.

We now move on to Theorem 2.2.1. The descent method here is based on:

Proposition 2.2.5. Let A be a homotopy commutative algebra in C. Assume that there is fully
faithful symmetric monoidal functor C → limI Di, where i 7→ Di is a diagram of additively
symmetric monoidal ∞-categories, and where I has a weakly initial set of objects I0.

In this case, if the projection pi0(A) is separable in Di0 for all i0 ∈ I0, then A is separable in
C.

Here, a set of objects I0 in I is weakly initial if any object in I receives a map from some
object in I0.

Proof. As I0 is a weakly initial set of objects, the assumption on pi0(A) implies that pi(A) is
separable in every object i, and so by Corollary 1.3.37, the image of A in limI Di is separable.
By fully faithfulness, it follows that A is also separable in C.

This explains the second half of Item (i) in Theorem 2.2.1: for any (connective) Deligne
Mumford stack X, QCoh(X) can be expressed as a limit of ∞-categories of the form
ModR(Sp), so if one can prove the result for those ones, it follows automatically for QCoh(X).
So we will prove Item (i) from Theorem 2.2.1 only in the affine case. We begin with:

Lemma 2.2.6. Let A be a separable algebra in Modk(Sp), where k is a field. In this case, the
center of A is separable.

Proof. The homotopy groups functor induces a symmetric monoidal equivalence
ho(Modk(Sp)) ≃ GrVectk with the category of graded k-vector spaces, so by Corollary 1.1.30
and Proposition 1.2.9, it suffices to prove the result in GrVectk, so let A be a separable algebra
therein.

We note that by Remark 1.1.32, Z(A) is a Z(A)-linear retract of A. It follows that for any
ideal I in Z(A), we have IA ∩ Z(A) = I. But now, by Lemma 2.1.22, because GrVectk is
semisimple, IA must be principal, generated by a (graded) central idempotent e. In particu-
lar, e ∈ IA ∩ Z(A), and so e ∈ I. Thus, Z(A) is semi-simple.
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It follows that any module over Z(A) is projective, and in particular A is projective
over Z(A). Thus, as Z(A)-bimodules, we have that Z(A) is a retract of A, which is a re-
tract of A ⊗k Aop, which is projective over Z(A) ⊗k Z(A). Hence Z(A) is projective over
Z(A) ⊗k Z(A), which implies that it is separable.

Recall that by [Nee18, Proposition 1.6], this means in particular that Z(A) is discrete and
an étale algebra overr the field k, in the usual sense.

We then reduce the general case to the discrete case:

Proposition 2.2.7. To prove Item (i) from Theorem 2.2.1, it suffices to prove it in the case
where R is discrete.

Proof. Note that the canonical functor ModR → limn ModR≤n is fully faithful when restricted
to bounded below objects by [Lur18b, p. 19.2.1.5], so it suffices to prove the result for each
R≤n, by Proposition 2.2.5.

In particular, as R≤n+1 → R≤n is a square zero extension by a connective spectrum, it
suffices to prove that the result is stable under such, namely, that the result for R≤n implies
that for R≤n+1. This follows from [Lur18b, Theorem 16.2.0.2] and Proposition 2.2.5: the ∞-
category of bounded below R≤n+1-modules can be expressed as a pullback where the two
corners are the ∞-category of bounded below R≤n-modules.

Remark 2.2.8. This proof in fact shows that to provide a positive answer to Question 2.0.1
for a connective R, and in the bounded below case, it suffices to provide one for π0(R). ◁

Proof of Item (i) from Theorem 2.2.1. As explained above, we may assume R is a discrete com-
mutative ring. We fix an almost perfect separable algebra A over R. We first aim to prove
that its center Z(A) is a flat R-module.

By Corollary 1.1.30, Z(A) is a retract of A and thus is also almost perfect. By [Sta23, Tag
068V], to prove that it is flat, we may therefore basechange to any field and check that the
result is in degree 0.

Using again Corollary 1.1.30, we find that for any map R → k to a field,
Z(A) ⊗R k ≃ Z(A ⊗R k). Now A⊗R k is a separable algebra over a field, so by the case of
fields, i.e. Lemma 2.2.6 , Z(A⊗R k) is separable. By [Nee18, Proposition 1.6], it follows that
it is discrete. Thus, Z(A) is indeed flat over R, as claimed.

In particular, it is also discrete. Because it is almost perfect, it follows that it is also finitely
presented, as a module over R. It also follows that it is finitely presented as an algebra over
R, and thus [Sta23, Tag 02GM] implies that, to prove that it is étale over R, we may check
after basechange along any map R → k, k a field. But there Lemma 2.2.6 kicks in again:
Z(A)⊗R k ≃ Z(A⊗R k) is separable and hence étale over k.

It follows that Z(A) is étale over R. By Proposition 1.3.53, Z(A) is separable.

We now move on to Item (ii) from Theorem 2.2.1. The proof of this will rely, as in Sec-
tion 2.1, on Milnor modules. However, because the center of an algebra is a notion that really
relies on the symmetric monoidal structure of the ambient category, this time we were not
able to use a trick as in the proof of Proposition 2.1.34 to use the (not-necessarily-symmetric)
monoidal equivalence MilE ≃ coModKE∗K(ModK∗((GrVectk)), so we are only able to give a
proof at odd primes, where this equivalence can be made symmetric monoidal.

We will need a bit more about Milnor modules, so we recommend the reader have a deeper
look at [HL17, Section 6]. What we called MilE in Theorem 2.1.29 is denoted Syn♡E in [HL17],
but there is also a larger ∞-category SynE

8 and a fully faithful (Proposition 4.2.5 in loc. cit.),

8cf. Warning 1.4.16

https://stacks.math.columbia.edu/tag/068V
https://stacks.math.columbia.edu/tag/068V
https://stacks.math.columbia.edu/tag/02GM
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symmetric monoidal (Variant 4.4.11 in loc. cit.) embedding Sy[−] : ModE(SpK(n)) → SynE.
We let 1 denote the unit of SynE, and 1≤n its truncations. The following is implicit in [HL17]:

Lemma 2.2.9. Let X ∈ SynE. The canonical map X → limn 1≤n ⊗ X is an equivalence. In
particular, the canonical symmetric monoidal functor

SynE → lim
n

Mod1≤n(SynE)

is fully faithful.

Proof. The second part of the statement follows from the first, as the canonical map
X → limn 1≤n ⊗ X is the unit of the adjunction SynE ⇄ limn Mod1≤n(SynE).

For the first part, we simply note that the canonical map X → 1≤n ⊗ X induces an equiva-
lence upon n-truncation, and therefore so do the morphisms 1≤m ⊗ X → 1≤n ⊗ X. Because
limits and truncations in SynE = Fun×(Modmol

E ,S) are pointwise, the claim follows.

The following will allow us to reduce to Syn♡E :

Lemma 2.2.10 ([HL17, Proposition 7.3.6]). For every n ≥ 0, basechange along 1≤n+1 → 1≤n

fits in a pullback square of additively symmetric monoidal ∞-categories of the form:

Mod1≤n+1(SynE) Mod1≤n(SynE)

Mod1≤n(SynE) C

Proof of Item (ii) from Theorem 2.2.1. We begin by proving the case of C = ModE(SpK(n)).
Let A ∈ ModE(SpK(n)) be a separable algebra. By [HL17, Proposition 4.2.5, Variant 4.4.11]

and Corollary 1.1.30, to prove that its center is separable, it suffices to prove that its image
Sy[A] ∈ SynE has the same property, and by Lemma 2.2.9 and Proposition 2.2.5, it suffices
to prove the same result for each 1≤n ⊗ Sy[A] ∈ Mod1≤n(SynE).

By induction, Proposition 2.2.5 and by Lemma 2.2.10, it suffices to prove it for
1≤0 ⊗ Sy[A] ∈ Mod1≤ 0(SynE). By [HL17, Lemma 7.1.1], the latter is equivalent to
π0Sy[A]910, and the same is true for Sy[A⊗̂A]. In other words, π0Sy[A] is a separable al-
gebra in Syn♡E , so we are reduced to the case of separable algebras in Syn♡E .

It is in this last analysis, i.e. that of separable algebras in Syn♡E , that we really use that we
were working with ModE(SpK(n)) and the precise SynE from [HL17]. Namely, [HL17, Propo-
sition 6.9.1] states that, at an odd prime, there is a symmetric monoidal equivalence between
Syn♡E and the category of graded modules over a (finite dimensional) cocommutative Hopf
algebra over K∗ ∼= k[t±1], |t| = 2. The latter is equivalently described as a category of alge-
braic representations of an algebraic group, and so, by Corollary 1.3.14, one can check that
an algebra is separable on underlying objects (this is similar to the proof of Lemma 2.1.30).

As the center is preserved by this forgetful functor, we are reduced to the case of the cate-
gory of graded modules over a graded field, where the proof is essentially the same as that
of Lemma 2.2.6.

This concludes the proof for C = ModE(SpK(n)). The case of C = SpK(n) follows from
this, together with Proposition 2.2.5 and Galois descent for the K(n)-local Galois extension
SK(n) → E (in more detail, see [Mat16, Proposition 10.10]).

9Denoted Sy♡[A] in loc. cit..
10This result can be seen as a version of the statement “Sy[A] is flat”, see also [PV22, Proposition 2.16]. Thus in a

sense the beginning of this proof is very similar to the proof of Item (i).
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As for Question 2.1.13 we note that all the parts involved in Question 2.0.1 (its inputs and
its answers, positive or negative) only depend on the homotopy category of C. In particular,
if one tries to answer the question in full generality, one can try to consider abelian categories,
e.g. via Balmer’s homological residue fields – this idea is very clearly apparent in the proof
of Item (ii).

Ultimately, the questions in Chapter 2, in full generality, are questions about symmetric
monoidal abelian categories.



Chapter 3

Questions and perspectives

3.1 The finite étale site
My work in this Part I tightens the analogy between commutative separable algebras and
étale algebras. To get an even closer connection and not worry about finiteness questions, it
is reasonable to restrict to the “finite étale” part of the theory, corresponding to dualizable
commutative separable algebras.

A natural research direction is thus to extend much of the classical “étale geometry” from
classical algebra, or even spectral algebraic geometry to this more general setting, particu-
larly towards nonconnective geometry. Can we compute some natural étale sites ? Is étale
cohomology in this generality interesting/computable ?

Burklund and Burklund–Clausen–Levy have work in progress in this direction in the T(n)-
and K(n)-local settings, but the rational and Fp-linear settings remain wildly open. For ex-
ample, some of my proofs use the chromatic nullstellensatz from [BSY22] and are therefore
unable to reach Fp-linear settings. An almost precise question would be:

Question 3.1.1. Can one describe nullstellensatzian commutative Fp-algebras in the sense of
[BSY22] ? What about separably closed Fp-algebras ?

What about nullstellensatzian/separably closed symmetric monoidal stable ∞-categories?
◁

Another question, related to the classification of separable algebras in general, which can
be asked for finite separable algebras but also in general concerns the notion of tt-degree, for
which I refer the reader to [Bal14]. I have not discussed this in this thesis, but it seems like
a natural question to ask now that the foundations of the theory of separable algebras have
been laid, and I hope to study it in future work - with Chedalavada, we have made some
progress on this question:

Question 3.1.2. What natural assumptions on C guarantee that its separable algebras all have
finite tt-degree ? ◁

Remark 3.1.3. In [Góm23], Gómez shows that these assumptions must be more stringent
than “rigidly compactly generated”. ◁

3.2 Ind-separability
The notion of “ind-separability” that I set up in Section 1.4 is partly ad hoc, though it is suf-
ficient for the results I presented here. I believe it would be interesting to study it in more
detail, and potentially refine the definition.
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A question I essentially completely adressed in the separable case but not at all in the ind-
separable case is:

Question 3.2.1. How does ind-separability interact with module categories ? ◁

There are also other reasonable notions of infinitary separability that one can study, at least
once one already has a highly structured algebra (though see the discussion at the beginning
of Section 1.4), it could be interesting to compare them to ind-separability:

Question 3.2.2. How does ind-separability precisely relate to formal étale-ness in the sense
of a vanishing E∞-cotangent complex ? How about to formal THH-étaleness in the sense of
[Rog08] ? ◁

3.3 Auslander-Goldman theory
I have already raised these questions in the main body of the text, but I wish to recall them
as interesting questions in the structure theory of general separable algebras:

Question 3.3.1. Is the center of a separable algebra necessarily separable ? ◁

Question 3.3.2. Is a central separable, dualizable algebra necessarily Azumaya ? ◁

Finally, a question which we have not seriously considered here but studied in some ex-
amples, is the amount by which the condition of Proposition 2.1.10 is restrictive, say up to
Morita equivalence. A precise question could be:

Question 3.3.3. Can we describe the Morita closure of separable Azumaya algebras ? How
about the “descent-closure”, that is, the Azumaya algebras that are locally separable, or lo-
cally Morita equivalent to a separable algebra ? ◁

The word “locally” here may be interpreted liberally. A possibly interesting interpretation
could be to ask it “separable-locally”, and in particular study the theory of separable splitting
rings for Azumaya algebras (note that not all Azumaya algebras are separable-locally trivial
in the nonconnective world). More generally, and somewhat tangentially, the study of Brauer
groups and Azumaya algebras away from the connective setting seems like a promising av-
enue for research.

Finally, I’ll allow myself to give a “splitting” of a conjecture of Hopkins and Lurie [HL17,
Conjecture 9.4.1] about Azumaya algebras into two possibly simpler conjectures - besides a
vague hope and work at height 1, there is no evidence that these ought to be much simpler
than their conjecture:

Question 3.3.4. Let A be an Azumaya algebra in ModE, where E is a Morava E-theory1.
Is A necessarily Morita equivalent to a separable Azumaya algebra ?
If A is separable, is A Morita equivalent to an E-algebra which is (graded) free as an E-

module ? ◁

A positive answer to both questions would imply a positive answer to [HL17, conjecture
9.4.1], but I believe that these questions may be more easily approachable.

1We are considering non-K(n)-local modules here, so Morava K-theories are not Azumaya in this context
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Introduction to Part II
Topological Hochschild homology (henceforth, THH) is a central object in modern homo-
topical algebra, along with its many variants such as TR, TP, TC, TC−. It can be used to study
generalizations of traces of matrices to noncommutative settings, and it can also be seen as a
noncommutative analog of the complex of de Rham forms, through the Hochschild–Kostant–
Rosenberg theorem [KHK+09]. Here, we shall take a third point of view on THH, namely its
relationship to algebraic K-theory: THH is some kind of linearization (or first derivative) of
K-theory. This relationship is at the heart of so-called “trace methods” which can be used to
reduce (some) K-theory calculations to linear algebra.

The goal of Part II of this thesis is two-fold. First, I give a modern account and slight gen-
eralization of this relationship - this is the content of Chapter 4, where I explore the Dundas–
McCarthy theorem from the perspective of Blumberg, Gepner and Tabuada’s localizing in-
variants and of Kaledin and Nikolaus’s trace theories.

Second, I use this relationship to compute invariants of THH, more specifically, compute
the endomorphisms of THH (and variants thereof). This is the content of Chapter 5.

I give more precise descriptions of their content, and more complete introductions at the
start of the respective chapters.

Local conventions

On top of the global conventions outlined at the beginning of the thesis, we have the follow-
ing conventions.

• We recall in Appendix B our conventions regarding localizing invariants and splitting2

invariants.
• We use implicitly the equivalence Ind : Catperf ≃ PrL

st,ω : (−)ω between small idem-
potent complete stable ∞-categories and compactly generated stable ∞-categories and
compact preserving morphisms between them.

• The symbol K denotes nonconnective algebraic K-theory, while Kcn denotes its connec-
tive variant. Note that, unlike in [BGT13], we do not require the latter to be invariant
under idempotent-completion, and in particular, Kcn is only the connective cover of
K for idempotent-complete stable ∞-categories (otherwise it agrees with it in degrees
≥ 1).

• Given a coCartesian fibration p : E → S and an edge f : t → s in S, we let f! : Et → Es
denote the associated coCartesian pushforward.

• Given a space X, LX denotes map(S1, X), its free loop space.
• Given an (∞, 2)-category B, we let ι1B denote the underlying ∞-category, that is the

∞-category obtained by forgetting the non-invertible 2-morphisms in B.

Local acknowledgements

I’ve had helpful conversations about the contents of this work with Sasha Efimov, Achim
Krause, Ishan Levy, Zhouhang Mao, Thomas Nikolaus, Victor Saunier and Lior Yanovski. As
usual, I also want to thank my advisors, Jesper Grodal and Markus Land for their support.

Some of this work was written while I was visiting various universities in North Amer-
ica, and I wish to thank them and the people who invited me or housed me there for their

2More often called “additive”.
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Antieau and Achim Krause at the Institute for Advanced Study, David Gepner at Johns Hop-
kins Univerisity, Niranjan Ramachandran at the University of Maryland, Akhil Mathew at
the University of Chicago, Paul Balmer and Morgan Opie at UCLA, and Elden Elmanto at
the University of Toronto.

Finally, thanks to q.uiver for help with the commutative diagrams.



Chapter 4

Around the Dundas–McCarthy
theorem

Introduction
The Dundas–McCarthy theorem [DM94] is at the heart of trace methods: it suggests that the
infinitesimal behavior of K-theory is controlled by THH, and that therefore we may be able to
understand K-theory in a “neighborhood” of some already understood ring or ring spectrum
by completely “linear algebraic” methods, using THH or variants thereof.

This theorem can be stated and proved for connective ring spectra using connectivity esti-
mates on the K-theory and THH spectra of these, and while trace methods have mostly been
successful in the connective setting, it remains a natural question to wonder whether this
result holds in the nonconnective setting; and in particular, to what extent this theorem can
be proved within the conceptual framework provided by Blumberg, Gepner and Tabuada’s
perspective on K-theory and related invariants [BGT13]. Among other things, this noncon-
nective version of the result will be needed in Chapter 5 to compute endomorphisms of THH
as a functor of stable ∞-categories by essentially reducing to K-theory, using non-connective
ring spectra in an essential way.

A proof of the Dundas–McCarthy theorem closer to those lines is sketched in [Ras18], but
the details of this proof are not particularly easy to fill. The approach I will follow here was
pioneered by Nikolaus, using so-called trace theories, as sketched in [HS19].

My proof, though, is slightly different: while I use the language of trace theories and the
universal property of K-theory, I prove a classification theorem for cocontinuous trace theo-
ries which essentially directly implies the result; but further provides a generalization of the
Dundas–McCarthy theorem for arbitrary finitary localizing invariants.

The classification result is Theorem F from the introduction and can be stated as follows
- here, TrThy(E) denotes the ∞-category of E -valued trace theories, the superscript L indi-
cates that we are considering the ones that are cocontinuous “in the bimodule variable”, and
TrThy∆ is a slight variant of TrThy; precise definitions will appear later:

Theorem. Let E be a stable cocomplete ∞-category. Evaluation at (Sp, idSp) induces equiva-
lences:

TrThyL
∆(E)

≃−→ E
and

TrThyL(E) ≃−→ EBS1

I use this to prove the following version of the Dundas–McCarthy theorem, which is The-
orem G from the introduction:
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Theorem. Let E : Catperf → E be a finitary localizing invariant with values in a cocomplete
stable ∞-category E . There exists an object of E with S1-action XE such that

P1Ecyc ≃ XE ⊗ THH

where P1Ecyc is the linearization of E.
For E being algebraic K-theory, XE is S with trivial S1-action.

In this theorem, XE⊗THH is obtained using the canonical action of Sp on E , and using the
S1-action on XE to make the result into a trace theory. A more precise construction will also
appear later.

I also use the classification result to sketch a comparison bettwen Nikolaus’ construction
of THH in [HS19] and Hoyois, Scherotzke and Sibilla’s construction in [HSS17]; and finally I
use methods from Land and Tamme’s work [LT19] to recover the connectivity estimates from
[DM94] in the connective case, showing that even working purely with universal properties
may be used to recover these estimates (which can be useful for other purposes).

Outline

In Section 4.1, I introduce trace theories following [HS19], and explain how to go back and
forth between trace theories and localizing invariants. In Section 4.2, I specialize the picture
to cocontinuous trace theories and finitary localizing invariants, and I prove the classification
theorem for cocontinuous trace theories. Finally, I use it to deduce the Dundas–McCarthy
theorem and its generalization mentioned above. This section has three addenda: in the first
one, I explain how to recover cyclotomic (and more generally polygonic) structures on THH
and first derivatives of localizing invariants from the perspective of trace theories; in the
second one, I explain how to define the trace functor from [HSS17] as a trace theory, and how
to use my classification theorem to compare it to THH; and finally in the third one I explain
how to recover connectivity estimates for the trace map K → THH simply from the abstract
Dundas–McCarthy theorem.

4.1 Trace theories and localizing invariants
In this section we introduce trace theories following Kaledin [Kal15] and Nikolaus [HS19]
and relate them to localizing invariants in the sense of [BGT13]1.

We begin in the general setting of an (∞, 2)-category, and are thereby approximately in the
middle of these two presentations (the former being set in an ordinary 2-category, while the
latter is in the specific (∞, 2)-category of compactly generated stable ∞-categories).

First, a historical and contextual remark:

Remark 4.1.1. Kaledin seems to have defined trace theories around the same time that Ponto–
Shulman defined shadows [PS13], and somewhat independently. The two definitions are
remarkably close to one another, but subtly different.

I intend to adress this difference, as well as a comparison between the two in future work
[Ram], where I prove that while they have different definitions, the resulting theories agree (I
view this result as a homotopy-coherent enhancement of the Morita invariance of shadows,
cf. [CP19, Proposition 4.8]). ◁

1With the by now standard omission of the filtered-colimit-preservation condition.
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Trace theories are meant to encode the following fundamental property of Hochschild
homology (which also holds for THH): if R, S are two rings, M, N are (R, S)- and (S, R)-
bimodules respectively, then there is a canonical equivalence

HH(R; M⊗S N) ∼= HH(S; N ⊗R M)

It turns out to be convenient, for higher coherences (and expected structures like Cn-actions
on HH(R, M⊗Rn)), to rather encode this in an “unbiased way” as follows: there will be an
object on which we can evaluate our “trace theory” HH(−), loosely denoted by (R, S; M, N)
equipped with maps

(S, N ⊗R M)← (R, S; M, N)→ (R, M⊗S N)

and we will demand that these maps be sent to equivalences by HH(−). This is convenient
as this third object is “unbiased” towards either composition order N ⊗R M or M⊗S N.

The natural context for these kinds of objects is that of 2-categories, or rather, in our case,
(∞, 2)-categories: rings will correspond to objects, bimodules to 1-morphisms, and mor-
phisms of bimodules to 2-morphisms. So we fix for the remainder of the discussion2 an
(∞, 2)-category B. Rather than just singling out the cyclic invariance for two bimodules, the
generic object that we can plug in to the trace theory will look like

(b0
f0−→ b1

f1−→ . . . ...
fn−1−−→ bn

fn−→ b0)

where, again, the bi’s can be thought of as rings, and the fi’s as bimodules.
Maps between those, for a “fixed n” will be (co)lax morphisms between these diagrams, ac-

counting for both (restricted) functoriality in the bi’s and in the fi’s3. The morphisms between
varying n are supposed to encode composition, and will be encoded in the combinatorics of
Connes’ cyclic category Λ, which we review in Appendix A4. These objects, together with
these kinds of morphisms, will assemble into an ∞-category ΛB. A trace theory on B will, in
turn, be a functor out of ΛB, sending specific morphisms to equivalences.

Before giving the precise definitions involved in the concept of trace theories, we describe
here our main example of an (∞, 2)-category:

Notation 4.1.2. We let PrL
st,(ω) denote the full sub-(∞, 2)-category of PrL

st spanned by com-
pactly generated stable ∞-categories. ◁

Remark 4.1.3. It is crucial here that we take the full subcategory, as opposed to what we
would denote by PrL

st,ω where the morphisms are also restricted to be the compact-preserving
cocontinuous functors. ◁

A reasonably large collection of trace theories on PrL
st,(ω) (the exact trace theories, that is,

those that induce exact functors on FunL(C, C) for every C) is easily seen5 to induce localizing
invariants upon restriction to objects of the form (C, idC). This is for example how one obtains
THH as a localizing invariant from THH as a trace theory.

The remarkable phenomenon that we describe in this section after having given the basic
definitions is that there is a way to go back: the first Goodwillie derivative of localizing
invariants can be canonically given the structure of a trace theory. This structure will be
particularly helpful to compare THH and P1Kcyc, which is the announced goal of Chapter 4.

2Which is meant to be an informal description of the concept of “trace theory”, a precise definition of which ap-
pearing shortly after.

3This is the difference between shadows and trace theories: in shadows, the lax maps have to fix the bi’s, so that
the functoriality is a priori only in the fi’s.

4Our conventions are slightly different from some appearing in the literature, so we recommend the reader have a
brief look at this appendix.

5See Proposition 4.1.54.
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4.1.1 Trace theories

We can now start with precise definitions. We first recall the following definitions and nota-
tions:

Definition 4.1.4. Let B be an (∞, 2)-category. The ∞-category Bladj is the wide subcategory
of the underlying ∞-category ι1B of B spanned by left adjoint morphisms in B. ◁

Example 4.1.5. For B = PrL
st,(ω), we find that (PrL

st,(ω))
ladj = PrL

st,ω, the ∞-category of com-
pactly generated ∞-categories and compact-preserving cocontinuous functors between them.

If instead we had started with B = PrL
st,ω, then in Bladj, the only morphisms allowed would

be those whose right adjoint also preserves compacts! ◁

Definition 4.1.6. Let C be an ∞-category and B an (∞, 2)-category. The ∞-category
Funcolax(C, B) is defined in [Hau20, Definition 3.9]. Its objects are functors C → ι1B, and
its morphisms are colax natural transformations. ◁

Informally, a colax natural transformation from f to g is a collection of 1-morphisms
f (c)→ g(c) in B together with (not necessarily invertible) 2-morphisms

f (c0) g(c0)

f (c1) g(c1)

for every morphism c0 → c1, with (higher) coherences. We will call these “colax naturality
squares”.

Before giving the main definition, we first introduce a convenient notation:

Notation 4.1.7. For C ∈ Cat, we let

Funladj
colax(C, B) := Funcolax(C, B)×Fun(C≃ ,B) Fun(C≃, Bladj)

◁

These are the functors C → B and colax transformations between them that are, objectwise,
left adjoints - so in the example square from above, the maps f (ci) → g(ci) would be left
adjoints in B, while the maps f (c0)→ f (c1) and g(c0)→ g(c1) have no extra conditions.

Warning 4.1.8. This notation has the potential for confusion: Funcolax(C, B) can be naturally
upgraded to an (∞, 2)-category, and as such it has an internal notion of left adjoints. What
we are describing is not the ∞-category of left adjoints in Funcolax(C, B). However, the latter
will not play a role in this thesis, so there should be no confusion. ◁

In the following definition, we use the description of Λ from Corollary A.0.19 to identify
Λ with a certain (non-full) subcategory of Cat:

Definition 4.1.9. Let B be an (∞, 2)-category. The functor Λop → Cat, given by

C 7→ Funladj
colax(C, B)

has a cocartesian unstraightening, which we denote by ΛB → Λop.
We can restrict it along ∆op → Λop and obtain ∆B → ∆op (and similarly (Λ∞)B → (Λ∞)op,

though we will not make much use of it).
More generally, whenever we have a functor Γ → Cat for some ∞-category Γ, we may

define an ∞-category ΓB in the same way. We will not use this a lot either, but it will be
convenient to have this flexibility. ◁
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Here, the notation is slightly abusive since ΓB depends on the specific functor Γ → Cat:
for example, ∆B is defined using not the standard embedding ∆ ⊂ Cat but the functor
(−)Λ : ∆ → Λ followed by the standard inclusion Λ → Cat. We hope no confusion
arises from this.

In Funcolax(C, B) ×Fun(C≃ ,B) Fun(C≃, Bladj), the objects are simply functors C → ι1B, and
morphisms between them are colax natural transformations which are object-wise left ad-
joints.

Example 4.1.10. If C = pt, this ∞-category is Bladj.
If C = ∆1, this ∞-category has objects arbitrary arrows in B, and morphisms colax natural-

ity squares where the horizontal maps are left adjoints in B. ◁

Example 4.1.11. In [HHL+20, Theorem E], the authors prove that for B = Cat,
Funcolax(C, Cat) is equivalent to the full subcategory of Cat/Cop spanned by cartesian fibra-
tions.

Recall that under un/straightening, Fun(C, Cat) is equivalent to the subcategory of Cat/Cop

spanned by cartesian fibrations and cartesian-morphism-preserving functors between those.
This latter condition corresponds exactly to a colax natural transformation being strict, that
is, to the colax naturality squares being given by invertible 2-cells.

In [HS19], Nikolaus takes this perspective rather than that of colax natural transformations
to describe trace theories, but by loc. cit., we get equivalent notions. ◁

Remark 4.1.12. One could also use a cartesian unstraightening of the functor Λop → Cat.
The total category of this cartesian fibration would be inequivalent but lead to an equivalent
notion of trace theory; and in fact this alternative description can be useful for some purposes.
However, we do not need it for the present work, so we do not give it a name or discuss it
further. ◁

The typical element of ΛB lying over [n]Λ is a tuple (b0, ..., bn) equipped with mor-
phisms b0 → b1, ..., bn−1 → bn, bn → b0. It is convenient to draw it as follows:

In particular, we have a functor Bladj → ΛB given by b 7→ (b, idb) lying over [0]Λ.
Cocartesian edges in ΛB lying over maps C → D ∈ Λ correspond to precomposition. The

reader is encouraged to write those out explicitly for the generating edges from Construc-
tion A.0.20, Construction A.0.22 and Construction A.0.21.

Definition 4.1.13. A trace theory on B with values in some ∞-category E is a functor ΛB → E
which inverts edges that are coCartesian with respect ot the fibration6 ΛB → Λ. Equivalently,
it is a transformation

Funladj
colax(C, B) = Funcolax(C, B)×Fun(C≃ ,B) Fun(C≃, Bladj)→ E

6By default, if the fibration is not specified, this is always the one that is meant.
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natural in C. A pre-trace theory is simply a functor ΛB → E . We let TrThy(B; E), resp.
TrThypre(B; E) denote the ∞-categories of trace theories and pre-trace theories with values in
E .

A ∆-trace theory with values in E is similarly a functor ∆B → E which inverts cocarte-
sian edges. A pre-∆-trace theory is similarly a functor ∆B → E . We similarly denote the
corresponding ∞-categories by TrThy∆(B; E), TrThypre

∆ (B; E). ◁

Remark 4.1.14. It would be convenient for some arguments, and also generally interesting
to define a symmetric monoidal version of this notion when B is equipped with a symmetric
monoidal structure, such as the Lurie tensor product on PrL

st,(ω), but we will not do so here.
We will pay the price in the proof of Theorem 4.2.1, which will be (only slightly) less slick
than it could be. ◁

In particular, the universal trace theory has values in ΛB[(cocart)−1], which is equiva-
lently7 a colimit over Λop of the functor

C 7→ Funladj
colax(C, B)

Notation 4.1.15. When B = PrL
st,(ω),we let Λst and ∆st denote ΛB and ∆B respectively, and

more generally Γst for ΓB. ◁

Convention 4.1.16. When we use the word “trace theory” with no further context, we mean
a trace theory over B = PrL

st,(ω). ◁

Remark 4.1.17. Note that in the definition of ΛB or ∆B, we allow morphisms that are left
adjoints in B between different labelled cyclic graphs. In PrL

st,(ω), this means functors that

have left adjoints themselves in PrL
st, that is, functors whose right adjoint preserves colimits,

or equivalently, compact preserving functors. ◁

Notation 4.1.18. Because of Example 4.1.11, we also think of an object of Λst lying over [n]Λ
as a particular kind of presentable cartesian fibration over ([n]Λ)op (specifically, one where
the fibers are compactly generated and stable). ◁

Before moving on to examples, let us describe the kind of structure that comes from a trace
theory. Specifically, we mention two features: first, the desired “cyclic invariance” which
was the motivation to set all this structure up; second, Cn and S1-actions on specific values of
trace theories, which were part of the motivation for the higher coherences of the definition
of trace theories. These constructions will be evidence that the notion of trace theory encodes
what we wanted it to.

Example 4.1.19 (Cyclic invariance). Let b0, b1 ∈ B and f0 : b0 → b1, f1 : b1 → b0. We

get an object (⃗b, f⃗ ) := (b0
f0−→ b1

f1−→ b0) ∈ ΛB lying over [1]Λ. We then have two morphisms
[1]Λ → [0]Λ ∈ Λop, corresponding to the two morphisms [0]Λ → [1]Λ in Λ, which send
the single object to either object of [1]Λ, and the generating morphism to the corresponding
composite of generating morphisms.

These two morphisms have coCartesian lifts, namely precomposition by the two maps in
Λ, so these coCartesian lifts are maps

(⃗b, f⃗ )→ (b0, f1 ◦ f0), (⃗b, f⃗ )→ (b1, f0 ◦ f1)

7Modulo set theory.



4.1 TRACE THEORIES AND LOCALIZING INVARIANTS 104

respectively.
By definition, a trace theory T sends these to equivalences so that we find a canonical

equivalence:
T(b0, f1 ◦ f0)

≃←− T(⃗b, f⃗ ) ≃−→ T(b1, f0 ◦ f1)

◁

One can call this the “trace property” of T.
Since we will upgrade the following example in Section 4.2.1 and will not use it before

then, we do not go into too much detail:

Example 4.1.20 (Cn-actions). Our goal is to construct the following: given b ∈ B and an
endomorphism f : b→ b, for any trace theory T, a Cn-action on T(b, f ◦n).

For this, we first use the previous example to rewrite T(b, f ◦n) as T(⃗b, f⃗ ) where

(⃗b, f⃗ ) = (b
f−→ ...

f−→ b) with n times f , lying over C = [n− 1]Λ.
This a Cn-fixed point in Fun(C, B) where Cn-acts on C = [n− 1]Λ by rotation, so it can be

seen as a section
BCn → (Funladj

colax(C, B))hCn

of the classifying fibration.
But the total category of this classifying fibration maps to ΛB, as it is exactly the pullback

ΛB ×Λop BCn. In other words, we have a functor BCn → ΛB classifying the rotation action on
(⃗b, f⃗ ). This is the desired Cn-action. ◁

Example 4.1.21 (S1-actions). The S1-action comes from “bundling up” together all the Cn-
actions on T(b, idb) = T(b, id◦nb ). In more detail, let us observe that we have a coCartesian
section Λop → ΛB of the form

[n]Λ 7→ (⃗b, i⃗db) = (b
idb−→ b→ . . .

idb−→ b)

This can be constructed by noting that each C ∈ Λ has a morphism in Cat to the terminal
category pt, which can be used to get a coCartesian section as desired. Thus the composite
Λop → ΛB[cocart−1] is constant and therefore its restriction to ∆op has an absolute colimit,
given by (b, idb).

By Construction A.0.13, this implies that for any functor T : ΛB[cocart−1] → E , i.e. any
E -valued trace theory, T(b, idb) has a canonical S1-action. This can clearly be upgraded to
yield a functor TrThyB(E)→ Fun(Bladj, EBS1

) for any (∞, 2)-category B. ◁

As it will be relevant in the near future, we also point out the following piece of structure:

Example 4.1.22 (Local functoriality). Fix b ∈ B, and let T be a trace theory on B with values
in E . The fiber at [0]Λ of ΛB is Funcolax(BN, B)×B Bladj, which is itself fibered over Bladj with
fiber homB(b, b) over b. Thus we obtain a functor

T(b,−) : hom(b, b)→ E

which is the “local” functoriality of T.
When B = PrL

st,(ω) and b = LModA(Sp) for some ring spectrum A, FunL(LModA, LModA)

is equivalent to the category of A-bimodules, and so we also say “bimodule functoriality”
of T to talk about this local functoriality. When referring to properties that are local in this
sense, we may say “in the bimodule variable”. ◁



4.1 TRACE THEORIES AND LOCALIZING INVARIANTS 105

We will not need the fact that the forgetful functor (ΛB)[0]Λ → Bladj is in fact a coCartesian
fibration, but the proof of this is a simpler version of Proposition 4.2.21 to come, and so for
the convenience of the reader, to get a better feel for the latter, we include a proof. The idea
here (and later, there) is that restricting to adjoints in the target (the base) of the functor will
typically provide the desired coCartesian lifts one needs.

Proof that Funladj
colax(BN, B)→ Bladj is a coCartesian fibration. In fact we prove more generally

that Funcolax(∆1, B)×Fun({0},B) Fun({0}, Bladj) → Bladj × ι1B is a fibration. The result is ob-
tained by pulling back along the diagonal Bladj → Bladj × ι1B.

We give two proofs: one “by hand”, and one “abstract” proof.
First, by hand: consider a map f : b0 → b1 in B, and a map p0 : b0 → c0 ∈ Bladj, a map

p1 : b1 → c1 in B. We can then form c0
p1 f pR

0−−−→ c1, and we have an obvious diagram:

b0 c0

b1 c1

p0

f p1 f pR
0

p1

given by the unit map idpR
0 p0. To check that this is a coCartesian edge, one observes that

given maps q0 : c0 → d0, q1 : c1 → d1, and g : d0 → d1, a filler 2-cell in:

c0 d0

c1 d1

q0

p1 f pR
0

g

q1

is definitionally the data of a map q1 p1 f pR
0 → gq0 which is, by adjunction8, the same as a

map q1 p1 f → gq0 p0, i.e. the same as a filler in:

b0 d0

b1 d1

q0 p0

f g

q1 p1

and this equivalence is “along the unit”.
Now, an abstract proof. Consider the forgetful functor

Funcolax(∆
1, B)×Fun({0},B) Fun({0}, Bladj)→ Bladj × B→ Bladj

Essentially by definition, it is pulled back from Funcolax(∆1, B) src−→ ι1B along the inclusion
Bladj → ι1B. Now this latter functor is clearly a cartesian fibration: it classifies the functo-
riality of the lax slice, (ι1B)op → Cat, b 7→ (Bb�). Furthermore, since Bladj consists of left
adjoints, each b0 → c0 ∈ Bladj induces a right adjoint Bc0� → Bb0�. A cartesian fibration
where all pullbacks are right adjoints is also a coCartesian fibration.

For much simpler reasons, Bladj × B → Bladj is also a coCartesian fibration. Furthermore,
on fibers over b ∈ Bladj, our functor induces the functor Bb� → B which is also a coCartesian
fibration.

It then becomes easy to check the hypotheses of [HMS22, Lemma A.1.8] to deduce that the
global functor is indeed a coCartesian fibration.

8Recall the f 7→ (− ◦ f ) reverses the order of adjunctions.
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The following is a general fact about cocartesian fibrations, combined with the description
of Λ as (Λ∞)hS1 (Definition A.0.9) and the cofinality of the functor ∆op → Λop

∞ (Proposi-
tion A.0.6):

Lemma 4.1.23. Let B be a (∞, 2)-category, and let E be a ∞-category. There is an S1-action on
TrThy∆(B; E) and an equivalence

TrThy∆(B; E)hS1 ≃ TrThy(B; E)

Let us now describe the key examples of pre-trace theories. We start by introducing some
notation.

Notation 4.1.24. We denote by (C⃗, T⃗) a typical element of Λst or ∆st, where, over [n]Λ,
C⃗ = (C0, ..., Cn) is a list of (compactly generated, stable) ∞-categories, and Ti : Ci → Ci+1
a list of (cocontinuous) functors (where Cn+1 := C0). ◁

Example 4.1.25. Over [0]Λ, this data amounts to some C ∈ PrL
st,(ω) and an endomorphism

T thereof. A map (C, T) → (D, S) lying over [0]Λ corresponds to the data of a compact-
preserving cocontinuous functor f : C → D and a (not-necessarily invertible) 2-cell α:

C D

C D
f

f

T S

More generally, since [0]Λ = BN, the fiber over [0]Λ is exactly End(PrL
st,(ω)) in the notation

of [HSS17]. ◁

Remark 4.1.26. This fiber at [0]Λ comes up quite naturally in the context of Goodwillie calcu-
lus, as it can be shown to be equivalent to the tangent ∞-category TCatperf [Lur12, Definition
7.3.1.9]. We will not need or prove this here. ◁

In the following notation, we follow the perspective of Example 4.1.11:

Notation 4.1.27. Given (C⃗, T⃗) lying over [n]Λ, we let End(C⃗, T⃗) denote the full subcategory
of

Fun/([n]Λ)op(Sp× ([n]Λ)op, (C⃗, T⃗))

spanned by those functors such that over each i ∈ [n]Λ, Sp→ Ci is in PrL
st,(ω); and Endω(C⃗, T⃗)

the full subcategory thereof where each Sp→ Ci is in PrL
st,ω, that is, it preserves compacts. ◁

Since Sp is free on a point as a presentable stable ∞-category, and [n]Λ, as an ∞-category, is
free on a cyclic graph, End(C⃗, T⃗) can be informally described as follows: it’s the ∞-category
whose objects are tuples xi ∈ Ci, fi : xi+1 → Ti(xi); while Endω(C⃗, T⃗) is the full subcategory
thereof where each xi is compact, i.e. xi ∈ Cω

i .

Example 4.1.28. Suppose T : Ind(C) → Ind(C) is an endomorphism, where C is a small sta-
ble idempotent-complete ∞-category. Endω(Ind(C), T) is the ∞-category with the following
informal description: its objects are a pair (x, α : x → Tx) with x ∈ C.

When C = Perf(A), T = ΣM⊗A − for some ring spectrum A and some A-bimodule M, if
both A, M are connective, then there is an equivalence

Endω(ModA(Sp), ΣM⊗A −) ≃ Perf(A⊕M)

where A⊕M is the trivial square zero extension, see [Bar22] for a detailed proof, and [Ras18]
for a more elementary sketch. ◁
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The following is more or less clear from the definition and the fact that colax limits are
computed as global sections, which in turn follows from the description of colax functors as
cartesian fibrations from Example 4.1.11:

Lemma 4.1.29. Fix [n]Λ ∈ Λ. The functor

Λst
[n]Λ
→ Catperf, (C⃗, T⃗) 7→ Endω(C⃗, T⃗)

from the fiber at [n]Λ is right adjoint to the functor D 7→ (Ind(D)
id−→ ... id−→ Ind(D)) obtained

by restriction along the unique functor [n]Λ → pt (where Λ is viewed as a subcategory of
Cat).

We now globalize the previous lemma:

Corollary 4.1.30. The functor triv : Λop ×Catperf → Λst, (G, D) 7→ p∗GD, where pG : G → pt
is the unique functor to a point, admits a relative right adjoint in the sense of (the dual of)
[Lur12, Definition 7.3.2.2], given on each fiber by Endω.

Proof. This follows directly from (the dual of) [Lur12, Proposition 7.3.2.6]:
Λop × Catperf → Λop and Λst → Λop are both coCartesian and hence locally coCartesian
fibrations, and triv clearly preserves coCartesian edges.

We record the the following construction, which is obtained from the previous corollary by
composing the right adjoint with the projection Λop × Catperf → Catperf - here, the various
items come from unwinding the proof of [Lur12, Proposition 7.3.2.6]:

Construction 4.1.31. We have constructed a functor Endω : Λst → Catperf such that for any
n ∈ N≥0, the restriction of Endω to the fiber over [n]Λ is the functor from Notation 4.1.27.
Furthermore, it acts as follows on the “generating morphisms” of Λ:

(i) For each edge e of the form (i → i + 1) 7→ (i → i + 2) in Λ (cf. Construc-
tion A.0.20), and each object (C⃗, T⃗) ∈ Λst lying over [n + 1]Λ corresponding to a se-

quence (C0
T0−→ . . . Tn−→ Cn+1

Tn+1−−→ C0), the coCartesian lift of e is sent by Endω to the
functor informally described as

(x⃗, x1
α1−→ T0x0, . . . , x0 → Tn+1xn+1) 7→ ( ˆ⃗x, x1 → T0x0, ..., xi+2

αi+2−−→ Ti+1xi+1
Ti+1αi+1−−−−→ Ti+1Tixi, . . . )

where ˆ⃗x is x⃗ minus the (i + 1)st term.
(ii) For each edge e of the form (i → i + 1) 7→ i (cf. Construction A.0.22),

and and each object (C⃗, T⃗) ∈ Λst lying over [n]Λ corresponding to a sequence

(C0
T0−→ . . .

Tn−1−−→ Cn
Tn−→ C0), the coCartesian lift of e is sent by Endω to the func-

tor informally described as

(x⃗, x1
α1−→ T0x0, . . . , x0 → Tnxn) 7→ ( ˜⃗x, x1 → T0x0, ..., xi → Ti−1xi−1, xi

id−→ xi, xi+1 → Tixi, . . . )

(iii) For the generating automorphism of [n]Λ, i.e. the cyclic permutation σ sending
i 7→ i + 1, and (C⃗, T⃗) lying over [n]Λ, the corresponding coCartesian edge in Λst is
sent by Endω to the obvious equivalence

(x⃗, x1 → T0x0, . . . , x0 → Tnxn) 7→ (σ · x⃗, x2 → T1x1, . . . , x0 → Tnxn, x1 → T0x0)

◁
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Remark 4.1.32. By Proposition A.0.24 and the fact that any morphism can be decomposed
as a coCartesian morphism followed by a morphism in a fiber, these examples determine the
full behaviour of Endω as a functor-up-to-homotopy, i.e. they determine its effect on any
given morphism in Λst. ◁

Over ∆op, we have the following simplification:

Lemma 4.1.33. The functor Endω, restricted to ∆st, is right adjoint to the functor
Catperf → ∆st, D 7→ (D, idD).

Proof. The relative adjunction Λop ×Catperf ⇌ Λst pulls back to a relative adjunction

∆op ×Catperf ⇌ ∆st

by [Lur12, Proposition 7.3.2.5]. Now, as [0] is initial in ∆op (terminal in ∆), the inclusion of
{[0]} induces an adjunction pt ⇌ ∆op which we can compose with the above one to get the
desired result.

We note that in particular, on ∆st, the functor Endω (or rather its core) is representable by
(Sp, idSp) lying over [0].

Remark 4.1.34. We stress that this is not true in Λst: the crucial difference is that in ∆op, there
is only one map [0] → [n] for every n, so that a map (Sp, idSp) → (C⃗, T⃗) in ∆st has to lie
over this map and in that case the coCartesian pushforward of (Sp, idSp) to [n] is given by

(Sp
idSp−−→ . . .

idSp−−→ Sp).
Over Λop, the coCartesian pushforwards look the same, but there are more maps

[0]Λ → [n]Λ (namely, n + 1 of them) so that the mapping space from (Sp, idSp) to (C⃗, T⃗)
will be a disjoint union of n + 1 copies of the one described above, as is clear from Corol-
lary 4.1.30, since mapping spaces in Λop × Catperf are products of the respective mapping
spaces. ◁

While the adjunction statement is not true for Λst, it is important to know that the functor
Endω exists over Λop too, as we will see later.

We finally note that the adjunction Λop × Catperf ⇌ Λst exists for more general ∞-
categories Γ equipped with a functor Γ→ Cat. If Γ is a subcategory that has (for example) the
same objects as Λ, then the same proof works to show that the right adjoint is also described
in terms of Endω, but for more complicated Γ, the right adjoint may be more complex (some
kind of lax limit). We nonetheless record the special case as follows (it implies the Λ version
simply by pulling back):

Corollary 4.1.35. Let Γ ⊂ Cat be the essential image of the canonical functor Λ → Cat.
There is also a functor Endω : Γst → Γop × Catperf, right adjoint to the fiberwise diagonal
functor.

Another example of a pre-trace theory which will also be relevant for us comes from the
following:

Lemma 4.1.36. Fix [n]Λ ∈ Λ. The functor Λst
[n]Λ
→ (Catperf)n+1, (C⃗, T⃗) 7→ C⃗ω is fully faithful

when restricted to the (C⃗, T⃗) where T⃗ = 0⃗, and thus induces an equivalence of this full
subcategory with (Catperf)n+1.

More generally, it induces an adjunction (Catperf)n+1 ⇌ Λst
[n]Λ

, and thus an adjunction

Catperf ⇌ Λst
[n]Λ

where the right adjoint is (C⃗, T⃗) 7→ ∏i Ci.
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Proof. The fully faithfulness claim is evident, which allows us to even define in the first place
the functor (Catperf)n+1 → Λst

[n]Λ
simply as an inverse.

It is then not hard to verify the adjunction property as 0 is initial in every FunL(Ci, Di+1).

Just as for Endω (with the same proof), we can globalize ∏ to be the right adjoint in some
adjunction Λop×Catperf ⇌ Λst, and just as before we can project onto the Catperf coordinate.
Using the natural inclusion ([n]Λ)≃ → [n]Λ, we can also produce a natural transformation
Endω → ∏.

We record it as the following construction:

Construction 4.1.37. We have constructed a functor ∏ : Λst → Catst as well as a natural
transformation Endω → ∏ such that on each fiber, the functor ∏ restricts to the one de-
scribed in Lemma 4.1.36, and such that its behaviour on the generating edges from Construc-
tion A.0.20, Construction A.0.22 and Construction A.0.21 is described analogously to the one
from Construction 4.1.31:

• On coCartesian edges lying over edges of the form (i → i + 1) 7→ (i → i + 2), the
induced map between products is a projection away from the index i + 1;

• On coCartesian edges lying over edges of the form (i → i + 1) 7→ i, the induced map
between products is given by a diagonal Ci → Ci × Ci;

• On coCartesian edges lying over edges of the form σ ∈ Aut([n]Λ) = Cn+1, the in-
duced map between products is the canonical symmetry isomorphism between ∏i Ci
and ∏i Cσ(i).

◁

With the exact same proof as for End, Π admits a left adjoint on ∆st (but not on Λst, for the
same reason):

Lemma 4.1.38. The functor ∏ : ∆st → Catperf, is right adjoint to the functor D 7→ (D, 0).

4.1.2 Trace theories from localizing invariants

Our main example of trace theory comes from the following construction and variants
thereof. The construction takes as input a functor E : Catperf → E (typically a localizing
invariant), and outputs a (pre-)trace theory Ecyc, which we dub “cyclic E(-theory)”.

Construction 4.1.39. Let E : Catperf → E be a functor with values in a stable ∞-category E .
We can define a pre-trace theory Ecyc : Λst → E by

(C⃗, T⃗) 7→ fib(E(Endω(C⃗, T⃗))→ E(∏(C⃗, T⃗)))

◁

Proposition 4.1.40. Let E : Catperf → E be a functor with values in a stable ∞-category E . If
E is a localizing invariant in the sense of [BGT13]9, then Ecyc is a trace theory.

In the proof, we will use the following general lemma:

9Though we do not require our localizing invariants to be finitary, i.e. to preserve filtered colimits. See the end
Appendix B for (very) brief reminders on localizing invariants.
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Lemma 4.1.41. Let p : A → B be a localization in PrL
st with colimit-preserving right adjoint

pR, and let A0 ⊂ Aω be some stable subcategory of the compacts of A10. Suppose further
that ker(p) = Ind(ker(p)ω) and that ker(p)ω ⊂ A0.

In that case, the canonical functor A0/ ker(p)ω → B is fully faithful: A0 → B is a Verdier
localization onto its image.

Proof. Let i : ker(p) → A denote the kernel inclusion, with right adjoint iR. Because of
the cofiber sequence iiR → idA → pR p, we find that iR is colimit-preserving and hence i
preserves compacts.

For any x ∈ Ind(A0), the cofiber sequence iiR(x) → x → pR p(x) tells us that pR p(x) also
lives in Ind(A0) ⊂ A. In other words, p|Ind(A0)

lands in B0 := (pR)−1Ind(A0) and thus the
adjunction p ⊣ pR restricts to an adjunction Ind(A0) ⇌ B0. Since the counit is compatible,
it follows that the right adjoint is also fully faithful, and hence p|Ind(A0)

: Ind(A0) → B0 is a
localization, and its kernel is ker(p) = Ind(ker(p)ω).

It follows that B0 ≃ Ind(A0/ ker(p)ω), and since B0 ⊂ B, this proves the claim.

Proof of Proposition 4.1.40. By Corollary A.0.25 it suffices to prove that the coCartesian mor-
phisms lying over the edges of the form (i → i + 1) 7→ (i → i + 2)11 in Λ are sent to
equivalences. For notational simplicity and for the clarity of the argument, we deal only with
the special case of the map [0]Λ → [1]Λ sending 0 to 0, but the other cases are completely
analogous (if more notationally tedious).

In this case, an object lying over [1]Λ is a pair

(C, D, F : C → D, G : D → C)

and by Construction 4.1.31, the corresponding coCartesian edge12 (C, D, F, G) → (C, GF) is
sent by Endω to

Endω(C, D, F, G)→ Endω(C, GF), (x, y, x → Gy, y→ Fx) 7→ (x → Gy→ GFx)

and by ∏ to the projection Cω × Dω → Cω.
To prove that Ecyc(C, D, F, G)→ Ecyc(C, GF) is an equivalence, we thus need to prove that

the vertical fibers in the following square are equivalent, i.e. that the following square is a
pullback square:

E(Endω(C, D, F, G)) E(Endω(C, GF))

E(Cω × Dω) E(Cω)

Since E is stable, it thus suffices to show that the horizontal fibers are equivalent. Since E is a
localizing invariant, the fiber of the bottom map is Dω, so it suffices to show:

(i) The functor Endω(C, D, F, G)→ Endω(C, GF) is a Verdier localization,
(ii) The restriction of the projection Endω(C, D, F, G) → Cω × Dω to the kernel of this

localization induces an equivalence with Dω.

The second fact is easier: if (x, x → Gy → GFx) is 0, then x is 0. So the kernel of
Endω(C, D, F, G) → Endω(C, GF) is the ∞-category of tuples (0, y, 0 → Gy, y → 0) and is
clearly equivalent to Dω under the projection to Cω × Dω.

10We do not assume A is compactly generated.
11Cf. Construction A.0.20.
12It goes in the opposite direction because Λst lies over Λop.
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For the first fact, we embed Endω(C, D, F, G) and Endω(C, GF) in End(C, D, F, G)
and End(C, GF) respectively. For these ones, the corresponding map
End(C, D, F, G) → End(C, GF) still clearly has D as a kernel (which is compactly
generated by the kernel of the Endω version).

Furthermore, the corresponding map admits a right adjoint, given by

(x, x → GFx) 7→ (x, Fx, x → GFx, Fx = Fx)

for which the counit is clearly an equivalence13. Thus

End(C, D, F, G)→ End(C, GF)

is a Bousfield localization with compactly generated kernel and colimit preserving right ad-
joint.

This puts us in the setting of Lemma 4.1.41 with

A0 = Endω(C, D, F, G) ⊂ End(C, D, F, G) = A

It follows that Endω(C, D, F, G) → Endω(C, GF) is a Verdier localization onto its image, so
we are left with examining its essential image. Let x ∈ Cω and α : x → GFx. Write
Fx ≃ colimIyi, yi ∈ Dω where I is filtered. Since x is compact, the map α factors through
G(yi) for some i, so that (x, α) is the image of (x, yi, x → G(yi), yi → Fx), as was needed.

Remark 4.1.42. Note that in this proof, the functor

Endω(C, D, F, G)→ Endω(C, GF)

is surjective, and not only up to retracts, and its kernel is exactly Dω. Thus the result above
also holds for invariants that are localizing on (non-split) Verdier sequences (as opposed
to Karoubi sequences, which feature in the usual definition of “localizing invariant”). An
example of such is connective K-theory. Thus a lot of what we will do/say will apply not
only to localizing invariants, but also to connective K-theory. This is particularly true for
Theorem 4.2.1. ◁

Remark 4.1.43. Despite how simple the kernel was to analyze14, we needed something like
Lemma 4.1.41 since it is not true in general that Ind(Endω(C, T)) = End(C, T), even for
C compactly generated. For example, if T = idC, then for any object x ∈ C, the free endo-
morphism object on x has

⊕
N x as its underlying object of C, which is never compact unless

x = 0. ◁

Definition 4.1.44. A (pre-,∆-)trace theory F is reduced if for any (C⃗, T⃗) ∈ Λst (resp.∆st) such
that there exists i with Ti = 0, we have F(C⃗, T⃗) = 0. ◁

Remark 4.1.45. We will not use the general fact, nor the explicit formula, but for formal
reasons, there is a “reduction” functor which universally turns a (pre-,∆-)trace theory F into
a reduced one. ◁

Corollary 4.1.46. For a localizing invariant E, Ecyc is reduced: if one of the Ti’s is 0, then
Ecyc(C⃗, T⃗) = 0.

13At the Endω level, we cannot use this since Fx need not be compact.
14So that there are no “telescope conjecture” types of questions appearing here



4.1 TRACE THEORIES AND LOCALIZING INVARIANTS 112

Proof. We use the trace property to obtain that

Ecyc(C⃗, T⃗) = Ecyc(C0, Tn+1 ◦ ... ◦ T1) = Ecyc(C0, 0)

and now the claim follows immediately from the fact that Endω(C, 0) = Cω and the defini-
tion of Ecyc.

In fact, Ecyc is universal in that respect:

Corollary 4.1.47. The map E ◦Endω → Ecyc is initial among maps from E ◦Endω to a reduced
∆-trace theory15.

Proof. The fiber of this map is E ◦∏, so it suffices to prove that the reduction of E ◦∏ is null,
i.e. that for any reduced trace theory F, map(E ◦Π, F) = 0.

Since ∏ is right adjoint to C 7→ (C, 0) by Lemma 4.1.38, it suffices to prove that
map(E, F ◦ ( ⃗(−), 0⃗)) = 0. As F is reduced, the target is already 0, which implies the
desired claim.

Remark 4.1.48. For “formulaic” reasons, this is also true for trace theories rather than ∆-
trace theories, though we will not use that fact. Since proving it would require setting up the
relevant “formulas” for reduction, we restrain from doing so. ◁

We explained how to go from localizing invariants to trace theories. There is a way to
go back : for example, note that THH is more naturally seen as a trace theory [HS19] and
plugging in identities allows us to see it as a localizing invariant.

Definition 4.1.49. Let (C, T) i−→ (D, S)
p−→ (E, Q) be a sequence of morphisms in Λst (resp.

∆st) lying over the identity of [0]Λ (resp. [0]). It is called a localization sequence if the un-
derlying sequence C → D → E is a localization sequence and the induced null-sequence16

iTiR → S→ pRQp is a co/fiber sequence in FunL(D, D).
◁

Example 4.1.50. Two key examples of localization sequences in Λst are those of the form

(C, T)→ (D, iTiR)→ (D/C, 0)

and
(ker(p), 0)→ (D, pRQp)→ (E, Q)

where i is fully faithful, resp. p is a localization; but they are not the only ones. ◁

Definition 4.1.51. Let T : Λst → E (resp. ∆st → E ) be a trace theory (resp. ∆-trace theory)
with values in a stable ∞-category E . It is called localizing if it sends localization sequences
in Λst (resp. ∆st) to co/fiber sequences in E . ◁

Warning 4.1.52. For a localizing invariant E, it is almost never the case that Ecyc is a localizing
(∆-)trace theory. The point is that Endω(−) does not preserve localization sequences of small
∞-categories. ◁

From this definition, the following is essentially tautological:

15Note that E ◦ Endω itself is not a trace theory, only a pre-trace theory.
16The maps iTiR → S and S → pRQp are induced by the structure of i and p as maps in Λst/∆st. The composite

is uniquely nullhomotopic, as is any map of the form ix → pRy, so we do not need to specify the nullhomotopy
here.
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Proposition 4.1.53. Let T : ∆st → E be a localizing ∆-trace theory. The functor
C 7→ T(Ind(C), idInd(C)) is a localizing invariant on Catperf.

However the following is a convenient (if rarely applicable) criterion to detect when a trace
theory is localizing:

Proposition 4.1.54. Any exact trace theory is localizing.

Here, we used:

Definition 4.1.55. A trace theory is called exact if it is exact in the bimodule variable - that is,
for every C ∈ PrL

st,(ω), the local functor T(C,−) : FunL(C, C)→ E is exact. ◁

This proposition is one of the key examples of interaction between the bimodule functo-
riality of trace theories and the functoriality in the objects. This interaction will be studied
in more depth in my future work comparing shadows and trace theories, but for now, let us
simply give the proof - we leave some of the details to the reader, as actually spelling out all
the necessary checks would take up a lot of unnecessary space:

Proof. Let (C, T) i−→ (D, S)
p−→ (E, Q) be a localization sequence in Λst. Since i is fully faithful

and p is a localization, we may replace T with TiRi and Q with QppR freely. We thus have a
square □1:

(C, TiRi) (D, S)

(0, 0) (E, QppR)

which we wish to show is sent to a co/fiber sequence in E . We note, as will be relevant later,
that there is a unique homotopy filling this square.

We construct a zigzag of morphisms in Λst between this square and the square □2:

(D, iTiR) (D, S)

(D, 0) (D, pRQp)

where each of the maps involved in the zigzag consists entirely of coCartesian morphisms.
Since the latter square is sent to a co/fiber sequence in E by assumption, and the maps in-
volved in the zigzag are sent to equivalences, also by assumption, this will conclude the
proof. We note, similarly to before, that there is a unique homotopy filling this square which
fixes D.

The middle term of the zigzag will be a square of the form □:

(C i−→ D TiR
−−→ C) (D

idD−−→ D S−→ D)

(0→ D → 0) (E
pR

−→ D
Qp−→ E)

We briefly explain how to properly construct □ as well as the relevant maps
□ → □i, i ∈ {1, 2}, leaving the details to the reader.
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Construction of □: All the maps between ∞-categories are the ones we have already intro-
duced, that is, i, idD and p. The commutation data also comes from commutation data that
was given to us: for example, for the bottom horizontal map in the square we need a 2-cell
given by a map from iTiR to S. We chose the map corresponding to the map (C, T)→ (D, S)
that was given to us. The other maps are either tautological, 0, the unit idD → pR p, or the
map pS→ Qp that is part of the data of the map (D, S)→ (E, Q).

It is sufficient to produce maps like this since [1]Λ is free on the cyclic graph 0→ 1→ 0.
Construction of the maps between squares: The maps from □→ □i will simply be given

as coCartesian morphisms lying over specific morphisms [1]Λ → [0]Λ in Λop, i.e. specific
morphisms [0]Λ → [1]Λ in Λ. Since [0]Λ is free on the cyclic graph with one vertex ⟲, there
are exactly two such morphisms and using coCartesian pushforwards along (say) the one
sending 0 ∈ [0]Λ to 0 ∈ [1]Λ amounts to taking the total composite in the corners of □
as indicated - thus the square we obtain looks like □1, and it is not hard to check that the
various edges are correct. Since the edges of □1 can be filled by at most one homotopy, we
indeed get □1.

The same reasoning works for the other coCartesian pushforward, along the functor send-
ing 0 ∈ [0]Λ to 1 ∈ [1]Λ - only at the end we need to check that the filling homotopy fixes D to
guarantee that it is the correct one. This is clear as the homotopy filling □ itself fixes D.

Remark 4.1.56. A similar proof appears in [HSS17, Theorem 3.4]. I find the proof above
slightly clearer, but the idea is essentially the same17. ◁

Notation 4.1.57. We let TrThyloc(E) (resp. TrThyloc
∆ (E))) denote the full subcategory of

TrThy(E) spanned by localizing trace theories (resp. localizing ∆-trace theories).
Similarly, TrThyex(E) (resp. TrThyex

∆ (E))) denotes the full subcategory spanned by the
exact trace theories (resp. exact ∆-trace theories). ◁

Corollary 4.1.58. Let E be a stable ∞-category and E : Catperf → E be a localizing invariant.
For any reduced trace theory T, let Tid : C 7→ T(C, idC), we have an equivalence:

MapTrThy∆(E)
(Ecyc, T) ≃ MapFun(Catperf,E)(E, Tid)

Proof. This follows from combining:

(i) The universal property of (−)cyc from Corollary 4.1.47;
(ii) The fact that Endω is right adjoint to C 7→ (C, idC) and that if f ⊣ g, then precomposi-

tion with f is right adjoint to precomposition with g.

Remark 4.1.59. We cannot quite state this as an adjunction because Tid need not be a localiz-
ing invariant. If we restrict to localizing trace theories, then it is, but in this case, Ecyc itself
need not be a localizing trace theory, cf. Warning 4.1.52.

After linearization, this problem is fixed as we explain below. ◁

Notation 4.1.60. Given a reduced trace theory T, we let Pfbw
1 T denote the fiberwise first

derivative18 of T. ◁

17Though we note that the statement of uniqueness of the square (3.3) in loc. cit. and its use could be made more
precise.

18That this is well defined and remains a trace theory is essentially a consequence of general facts about relative ad-
junctions together with the fact that for T a trace theory, T(C⃗, T⃗) = T(C0, Tn ◦ ... ◦ T0) so that the multi-derivative
agrees with the derivative along any single variable, and is compatible along all the morphisms in Λop.
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Corollary 4.1.61. Let E be a cocomplete stable ∞-category. The functor

P1(−)cyc : Funloc(Catperf, E)→ TrThyex
∆ (E)

is left adjoint to the functor T 7→ T(C, idC).

Proof. This follows from combining:

(i) The universal property of Pfbw
1 ;

(ii) The universal property of (−)cyc from Corollary 4.1.47;
(iii) The fact that Endω is right adjoint to C 7→ (C, idC) and that if f ⊣ g, then precomposi-

tion with f is right adjoint to precomposition with g.

With all of this, we can finally give the universal property of P1Kcyc from the perspective
of trace theories:

Corollary 4.1.62. In the ∞-category of exact trace theories, P1Kcyc corepresents evaluation at
(Sp, idSp). That is, there is an equivalence, natural in the exact trace theory T:

mapTrThyex
∆
(P1Kcyc, T) ≃ T(Sp, idSp)

Proof. This follows from Corollary 4.1.61 and the universal property of K-theory from
[BGT13]19.

Remark 4.1.63. We used localizing invariants in the previous corollary, so that K-theory is to
be interpreted as nonconnective K-theory. However, we noted in Remark 4.1.42 that connec-
tive K-theory was sufficiently close to a localizing invariant for (Kcn)cyc to be a trace theory,
and thus, what we wrote above also holds for connective K-theory.

As a consequence, we find that P1Kcyc does not depend on whether we chose connective or
nonconnective K-theory (while, of course, Kcyc does).

However, we note that in this case there is also an easy way to see this without needing to
go through the proofs: Goodwillie derivatives involve a sequential colimit over n of objects
of the form ΩnK(Cn), so it is clear that any homotopy group of the colimit only depends on
the functor τ≥0K which is Kcn, up to idempotent completion (and in fact, they only depend
on τ≥1K which is simply τ≥1Kcn). ◁

Remark 4.1.64. We make a second remark about the meaning of “linearization of K-
theory” employed here as opposed to the classical literature, e.g. in [DM94]. Therein,
the linearization of K-theory at a ring A and a bimodule M is defined as colimnΩnK̃(A ⊕
Σn−1M). The relation is as follows: by the main result of [Bar22] in the split case,
or [Ras18, Proposition 3.2.2, Lemma 3.4.1], for connective A, M, there is an equivalence
Endω(Perf(A), ΣM ⊗A −) ≃ Perf(A ⊕ M) which is functorial in M and thus proves
that the two definitions are equivalent (and explains the “off by a Σ” difference between our
results and the ones in [DM94]).

Miraculously, it turns out that one can also say something in the nonconnective case: while
in this generality, it is not the case that Endω(Perf(A), ΣM⊗A−) and Perf(A⊕M) are equiv-
alent, there is a natural fully faithful inclusion Perf(A ⊕ M) → Endω(Perf(A), ΣM ⊗A −)
19In [BGT13], they state this universal property only for maps with values in a finitary localizing invariant, that is,

one commuting with filtered colimits. However, this universal property holds more generally with values in any
localizing invariant. In any case, we will not use it in this generality.
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whose image consists of pairs (P, P → ΣM⊗A P) such that the map is nilpotent: some com-
posite P → ΣM⊗A P → · · · → Σn M⊗An ⊗A P is 0. While this is therefore not surjective in
general, it follows that in the commutative square:

Endω(Perf(A), M⊗A −) Perf(A)

Perf(A) End(Perf(A), ΣM⊗A −)

obtained from functoriality in M and the canonical square:

M 0

0 ΣM

there is a factorization:

Endω(Perf(A), M⊗A −) Perf(A)

Perf(A) Perf(A⊕M)

Endω(Perf(A), ΣM⊗A −)

so that, while the natural comparison map is not a degreewise equivalence, it is in fact an
ind-equivalence:

“colimn“ΩnK̃(A⊕ Σn−1M) ≃ “colimn“ΩnKcyc(Perf(A), Σn M)

In fact, there is a variant of Kcyc (more generally Ecyc) where one considers nilpotent en-
domorphisms instead of endomorphisms, and Theorem 4.2.11 would give another way of
proving this result (or at least, a weaker version, namely the statement about actual colimits
rather than ind-colimits; though the proof above also simply works in more generality). I
do not know whether this variant has other uses/purposes before taking Goodwillie deriva-
tives. ◁

Warning 4.1.65. While the previous remark allows us to reduce the computation of P1Kcyc

evaluated at a ring spectrum to K-theories of ring spectra (as opposed to arbitrary stable
∞-categories), for a nonconnective ring spectrum, one still cannot use the group completion
model for K-theory for nonconnective ring spectra, and so proofs of the Dundas–McCarthy
theorem based on connectivity estimates alone as in [DM94] will not cut it in general. ◁

Remark 4.1.66. The two previous remarks20 show that the object “P1Kcyc” is quite robust: it
does not depend on whether one takes connective or nonconnective K-theory, and it does not
depend on how exactly one linearizes K-theory. Thus also the Dundas–McCarthy theorem,
its equivalence with THH, is quire robust. ◁

20With the previous warning as a mild caveat.
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4.2 Cocontinuous trace theories and the Dundas–
McCarthy theorem

In this section, we finally give a proof of the Dundas–McCarthy theorem [DM94] in the fol-
lowing form:

Theorem 4.2.1. The Dennis trace map K → THH induces an equivalence of trace theories

P1Kcyc ≃ THH

We note that our proof makes use of the structure of trace theories in an essential way, even
for objects of the form (C, idC).

Here, we implicitly assume that THH can be upgraded to a trace theory. This is done in
[HS19, Nikolaus, Definition 10] in terms of the bar construction and from this perspective I
have nothing to add to this definition. I will discuss in Section 4.2.2 how one can go about
defining a version of the trace functor Tr as in [HSS17] as a trace theory.

Remark 4.2.2. With respect to the previous paragraph, the reader can either assume that
there is an a priori-defined THH to which we are comparing P1Kcyc (e.g. the one defined in
[HS19]); or they can look ahead in Section 4.2.2 and take that definition, or finally they can see
this theorem as stating “P1Kcyc is a trace theory, and it has the structure and the properties
one would expect of whatever THH is supposed to be”.

See also Remark 4.2.10. ◁

We explained in Remark 4.1.64 in what way our “P1Kcyc” really is (at least on ring spectra)
what Dundas and McCarthy called the linearization of K-theory; thus this truly is a (slight)
generalization of their theorem. See also Remark 4.2.29 and Section 4.2.3 for a discussion of
the connectivity estimates in [DM94].

Before giving the proof, we also mention a further extension of it to other localizing invari-
ants.

Theorem 4.2.3. Let E : Catperf → E be a finitary localizing invariant with values in a
cocomplete stable ∞-category E . There exists an object of E with S1-action XE such that
P1Ecyc ≃ XE ⊗ THH.

Here, XE ⊗ THH is made into a trace theory using the S1-action on XE as follows:

Λst → Λop → BS1 XE−→ E

where the first functor is the canonical one, the second comes from the definition of Λ as a
quotient by an S1-action.

Remark 4.2.4. I will explain in Section 4.2.1 that XE has a cyclotomic structure, and that
this equivalence can be refined to take into account this extra structure. I will do so in a
very “pointwise” way, and leave the higher coherences between varying Frobenii to future
work. ◁

Definition 4.2.5. A trace theory T : Λst → E with values in a cocomplete stable ∞-category
E is called cocontinuous if for any C ∈ PrL

st,(ω), the induced functor from Example 4.1.22,

T(C,−) : FunL(C, C)→ E preserves colimits. ◁
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Remark 4.2.6. Note that this implies that for any tuple C0, ..., Cn of ∞-categories, the induced
functor T(C⃗,−) : FunL(C0, C1)× ...× FunL(Cn, C0) → E preserves colimits in each variable,
since the composition functor does so and T(C⃗,−) factors through the composition functor
by design. ◁

Notation 4.2.7. We let TrThyL(E) (resp. TrThyL
∆(E)) the full subcategory of TrThy(E) (resp.

TrThy∆(E)) spanned by cocontinuous trace theories (resp. ∆-trace theories). ◁

The following is essentially the key result concerning cocontinuous trace theories:

Proposition 4.2.8. Evaluation at (Sp, idSp) is a conservative functor

TrThyL
∆(E)→ E

and also TrThyL(E)→ E .

Proof. Note that the latter claim follows from the former by Lemma 4.1.23.
For the former, we argue as follows: let α : T → T′ be a morphism of cocontinuous trace

theories and suppose that T(Sp, idSp) → T′(Sp, idSp) is an equivalence. We wish to show
that α is an equivalence. Because every object in Λop admits a morphism to [0]Λ, and both
T, T′ invert coCartesian morphisms, it suffices to prove so on the fiber over [0]. That is, for
a compactly generated ∞-category C equipped with an endomorphism S, we need to show
that T(C, S)→ T′(C, S) is an equivalence

Now since C is compactly generated, FunL(C, C) is generated under colimits by functors
of the form map(x,−) ⊗ y, x, y ∈ Cω, it suffices to prove it for S = map(x,−) ⊗ y because
T, T′ are cocontinuous.

But each map(x,−) ⊗ y : C → C factors as C
map(x,−)−−−−−→ Sp

−⊗y−−→ C so that, by the trace
property of T, T′, it suffices to prove it for

(Sp, map(x,−⊗ y)) ≃ (Sp, map(x, y)⊗−)

Thus it suffices to prove it for (Sp, X⊗−), X ∈ Sp. But now, Sp is generated under colimits
(and desuspensions) by S, so we are done.

In particular, to prove Theorem 4.2.1, it would suffice to prove that the Dennis trace map
induces an equivalence P1Kcyc(Sp, idSp) → THH(Sp, idSp) ≃ S. One could do this by re-
ducing to the classical Dundas–McCarthy theorem, more specifically to the following special
case:

Theorem 4.2.9. There is an equivalence colimnΩnK̃(S⊕ Σn−1S) ≃ S.

This can be proved using connectivity estimates, and in fact was originally proved21 by
Goodwillie in [Goo90, Corollary 3.3].

Remark 4.2.10. This naive argument gives us a local version of the Dundas–McCarthy the-
orem without needing to upgrade THH itself to a trace theory, namely as follows: P1Kcyc,
restricted to FunL(C, C) ≃ FunL(C, Sp)⊗ C is equivalent, by cyclic invariance, to the com-

posite FunL(C, Sp)⊗C ev−→ Sp
P1Kcyc(Sp,idSp)⊗−−−−−−−−−−−→ Sp, but the first arrow is how THH is defined.

So in some sense, modulo Theorem 4.2.9 (which we recover later as Corollary 4.2.25, also
without needing an upgrade of THH to a trace theory), we do not even need to know that
THH is itself a trace theory to obtain the result. ◁
21This is not exactly what he proves, but further easy connectivity estimates allow us to deduce that result from his

work.
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Instead, we follow a more indirect route, where we completely classify cocontinuous trace
theories.

Specifically, we prove:

Theorem 4.2.11. Let E be a stable cocomplete ∞-category. Evaluation at (Sp, idSp) induces
equivalences:

TrThyL
∆(E)

≃−→ E

and
TrThyL(E) ≃−→ EBS1

It is easy to convince oneself that this ought to be true, essentially via the same reasoning
as in Proposition 4.2.8: the value of T(C⃗, T⃗) is determined by T(C0, Tn ◦ . . . ◦ T0) because T
is a trace-theory, and now, to evaluate T(C0, F) it suffices to note that F is a colimit of functors
of the form Map(x,−)⊗ y which factor as C0 → Sp→ C0 and thus

T(C0, Map(x,−)⊗ y) ≃ T(Sp, Map(x, y)⊗−) = T(Sp, idSp)⊗Map(x, y)

so that T is completely determined by T(Sp, idSp) which “can be anything”.
This argument works in ∆st because there is in some sense a canonical choice of a C0, but

over Λop there is an ambiguity, and it is this ambiguity that induces the S1-action.
Let us make the argument a tiny bit more precise before finally moving on to the actual

(more technically involved) proof: the idea is to observe that ∆st is a ∆op-indexed colimit
of a certain diagram. Since we have asked for fiberwise cocontinuity, this colimit can be
understood to be in PrL

st, and, more importantly, this diagram can be understood as being
built out of things like

FunL(C0, C1)⊗ ...⊗ FunL(Cn, C0)

Since each Ci is dualizable in PrL
st, this can be rewritten as

FunL(Sp, C0)⊗ FunL(C0, C1)⊗ ...⊗ FunL(Cn, Sp)

- but this new diagram has an extra degeneracy because it is a special case of the same dia-
gram one level up! This extra degeneracy gives us the result immediately for “diagrammatic”
reasons.

Remark 4.2.12. This sketch is essentially the same as the one proposed in [HSS17, Proposition
4.24] to prove that bar constructions compute traces, just one category level up, in PrL

st. It is a
tiny bit more subtle because our ∆st is not exactly a version of the cyclic bar construction, it is
some kind of lax version thereof. ◁

At this point, the reader comfortable with fibrational technology has all they need to fill in
the gaps - the proof from this point onwards is tediously technical, but relatively straightfor-
ward.

We now need to enter the details of the argument. To make the above idea precise, we need
some auxiliary constructions.

Our goal is to encode the category of labelled cyclic graphs of the form

Sp→ C0 → · · · → Cn → Sp

(and morphisms between them that are the identity on Sp), and the procedure of composing
the edge Cn → Sp→ C0 that returns the labelled cyclic graph

C0 → · · · → Cn → C0
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Since everything involved here is essentially given by coCartesian pushforwards, these
auxiliary constructions work in the generality of a coCartesian fibration, and we perform
there in this generality to prevent confusion22.

I will recall the notations every time, but let us fix throughout the following convention:
p : E → S is a coCartesian fibration, and D will be some arbitrary ∞-category. The fibration
p should be thought of as ∆st → ∆op, D as PrL

st,ω, and I will also indicate what the general
fibrational manoeuvers correspond to in this special case.

Recall that our convention is that given an edge f : t → s in S, f! : Et → Es denotes the
associated coCartesian pushforward.

Construction 4.2.13. Let p : E → S be a coCartesian fibration, and s ∈ S. There is a functor
S/s ×S E→ Es corresponding the natural transformation of S/s-indexed functors

( f : t→ s) 7→ (Et
f!−→ Es)

.
More generally, there is a functor S∆1 ×S E → E where the functor S∆1 → S is given by

“source”, which acts as above on fibers. To construct this, note that the full subcategory of
(E∆1

)cocart ⊂ E∆1
spanned by p-coCartesian edges is equivalent, via forgetting, to S∆1 ×S E.

Using the inverse of that forgetful functor, followed by evaluation at the target in E∆1
pro-

vides the desired functor.
Specializing to fibers over s ∈ S gives the first statement, but the general functor

S∆1 ×S E→ E shows that the functors S/s ×S E→ Es are natural in s ∈ S. ◁

Lemma 4.2.14. Let p : E → S be a coCartesian fibration and D an ∞-category. Fix s ∈ S,
r : Es → D a functor, and finally let d ∈ D.

The projection (S/s×S E)×Es Es×D {d} → S/s is a coCartesian fibration, where the functor
(S/s ×S E)→ Es is the one constructed in Construction 4.2.13.

Note that (S/s×S E)×Es Es×D {d} ≃ (S/s×S E)×D {d}, we simply spelled it out to clarify
the projection functor.

Proof. Let f : t0 → t1 be a map in S/s, where pi : ti → s, and x ∈ Et0 equipped with an
equivalence α : r ◦ (p0)!x ≃ d, so that (t0, x, α) is a point in (S/s ×S E)×D {d} lying over t0.

We then have an equivalence β : (p1)! f!x ≃ (p0)!x so that

r(β) : r(p1)! f!x ≃ r(p0)!x ≃ d

making (t1, f!x, r(β)) a point in (S/s×S E)×D {d} lying over t1. Furthermore, f and the iden-
tity f!x = f!x produce a map (t0, x, α) → (t1, f!x, r(β)) lying over f - it is now easy to verify
by hand that this is a coCartesian lift of f : we sketch out a more high-brow argument below
for ease of formal verification (but the “by hand” argument is easier to check for oneself).

Consider the diagram:

(S/s ×S E)×D {d} {d}

S/s ×S E D

S/s

q i

r◦π!

p/s

22At least the author’s confusion.
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where the top square is by definition a pullback diagram and the bottom vertical map is a
coCartesian fibration because it is pulled back from one.

Now our map (t0, x, α) → (t1, f!x, r(β)) is q-coCartesian: indeed, by [Lur09, Proposition
2.4.1.3.(2)], it suffices to check that its image in {d} is i-coCartesian: it is an equivalence (as
is any map in {d}) and thus i-coCartesian, by [Lur09, Proposition 2.4.1.5]. Thus, by [Lur09,
Proposition 2.4.1.3.(3)], to prove that our edge is p/s ◦ q-coCartesian, it suffices to show that
its image in S/s ×S E is p/s-coCartesian. Using the pullback diagram

S/s ×S E E

S/s S

p/s

and again [Lur09, Propostion 2.4.1.3.(2)], it suffices to check that its image in E is p-
coCartesian. But now this is by design : the image in E is the p-coCartesian edge x → f!x
lying over f : t0 → t1(!)

Example 4.2.15. Consider the fibration ∆st → ∆op, s = [0] ∈ ∆op, the functor r : ∆st
[0] → PrL

st,ω

which forgets the endomorphism, and d = Sp ∈ PrL
st,ω. In that case, the source of that

functor is the ∞-category of cyclic graphs of stable ∞-categories indexed by a pointed finite
non-empty linearly ordered set, with a specified equivalence between the value at the distin-
guished point and Sp. In drawings, this would be something like

C0 → ...→ Ci → Sp→ ...→ Cn → C0

As will be clear later, we will mostly focus on the case where Sp is “at the start”, so pictorially
something like

Sp→ C1 → ...→ Cn → Sp

◁

Remark 4.2.16. In this example, it is crucial that we allow D to be different from Es: other-
wise, we would be considering cyclic graphs of the announced form where the total compos-
ite Sp→ C1 → · · · → Cn → Sp is some fixed endofunctor of Sp. ◁

By pulling back, we obtain:

Corollary 4.2.17. Let p : E→ S be a coCartesian fibration, s ∈ S, r : Es → D a functor and fix
d ∈ D. For any map T → S/s, the map (T ×S E)×D {d} → T is a coCartesian fibration.

Similarly, if we have a map T → S∆1
we can use the more general construction of Con-

struction 4.2.13 to obtain:

Corollary 4.2.18. Suppose p : E→ S is a coCartesian fibration, s ∈ S, and a functor over S

f : S→ S∆1 ×S S/s

is given23, corresponding to a functor F : S → S equipped with transformations

idS
i←− F

q−→ s.
For every functor r : Es → D and d ∈ D, we have a map (S ×S E) ×D {d} → E of

coCartesian fibrations over S given informally by

(t, x ∈ EF(t), r(qt)!x ≃ d) 7→ (t, (it)!x)
23In the target, the map S∆1 → S used in defining the pullback is the source map; and the map from the pullback to

S used in saying that f is “over S” is the target map S∆1 → S.
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Proof. The map is given by the composite

(S×S E)×D {d} → S×S E→ S∆1 ×S E→ E

where the first map is the forgetful functor, the second uses the functor S→ S∆1
and the third

one is the map from Construction 4.2.13.
This is clearly a map over S and combining the proof of Lemma 4.2.14 together with the

proof that coCartesian fibratiosn are stable under pullbacks, one finds that it preserves co-
Cartesian edges.

Example 4.2.19. We keep going with Example 4.2.15. Our functor of interest here is the func-
tor ∆op → ∆op given by [0] ⋆−, i.e. join with [0]. This comes with natural transformations24

[0] ⋆ [n]→ [n], [0] ⋆ [n]→ [0]

In that case, the source of the functor from above is something like cyclic graphs of the form
Sp→ C0 → ...→ Cn → Sp, and the map to ∆st simply composes the functors Cn → Sp→ C0
to obtain C0 → ...→ Cn → C0. ◁

Notation 4.2.20. We let ∆st
0,Sp denote the relevant pullback

(∆op ×∆op ∆st)×PrL
st,ω
{Sp}

◁

With this notation, we have a map of fibrations over ∆op, ∆st
0,Sp → ∆st.

The fiber over [n] of that map is the map

Funladj
colax([1 + n]Λ, PrL

st,(ω))×PrL
st,ω
{Sp} → Funladj

colax([n]Λ, PrL
st,(ω))

given by precomposition by the map [n]Λ → [1 + n]Λ that misses the 0th term.
Note that, viewing [n]Λ as an ∞-category, there is a natural functor [n]→ [n]Λ.

Proposition 4.2.21. Restriction along [n]→ [n]Λ induces co/Cartesian fibrations

Funladj
colax([1 + n]Λ, PrL

st,(ω))×PrL
st,ω
{Sp} → Funladj

colax([n], PrL
st,(ω))

and
Funladj

colax([n]Λ, PrL
st,(ω))→ Funladj

colax([n], PrL
st,(ω))

and the map between the two sources preserves co/Cartesian edges.

The idea here is essentially the same as the one in the proof following Example 4.1.22,
only more notationally involved. The point is again that, generally speaking, restricting to
adjoints in the target/base of some kind of 2-functor often helps provide coCartesian lifts.
We recommend the reader have a look again at the simpler proof following Example 4.1.22,
as it can be seen as a toy example of this phenomenon, which is essentially all there is to this
proof.

24Recall that these are in ∆op as opposed to ∆.
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Proof. Fix (C⃗, T⃗) = (C0
T0−→ ...

Tn−1−−→ Cn) and similarly for (D⃗, S⃗) in Funladj
colax([n], PrL

st,(ω)) as

well as a map f⃗ : (C⃗, T⃗)→ (D⃗, S⃗) between them.
We first deal with the second claim: for Tn : Cn → C0, the claim is that fixing

f0 ◦ Tn ◦ f R
n : Dn → D0 and picking the obvious lift of f⃗ to a morphism in

Funladj
colax([n]Λ, PrL

st,(ω)) provides a coCartesian lift of f⃗ .

Indeed, let (E⃗, R⃗) = (E0
R0−→ ... Rn−→ E0) and consider the following lifting problem:

(C⃗, T⃗) + Tn (D⃗, S⃗) + f0Tn f R
n

(E⃗, R⃗) (C⃗, T⃗) (D⃗, S⃗)

(E⃗, R⃗)|[n]

Since [n] and [n]Λ are free on the chain of n-arrows and the cyclic graph on n + 1-letters
respectively which differ only by the arrow/edge n→ 0 in the latter, the space of dotted lifts
is equivalent to the space of lifts in the following smaller problem:

(Cn
Tn−→ C0) (Dn

f0Tn f R
n−−−−→ D0)

(En
Rn−→ E0) (Cn, C0) (Dn, D0)

(En, E0)

i.e. we are given g0 : D0 → E0, gn : Dn → En, as well as a map g0 f0Tn → Rngn fn, and are
asking about the fiber of

h : Map(g0 f0Tn f R
n , Rngn)→ Map(g0 f0Tn, Rngn fn)

over that map. But by design of the map

(Cn
Tn−→ C0)→ (Dn

f0Tn f R
n−−−−→ D0)

h is precisely the adjunction equivalence between those two spaces, so that the fiber is indeed
contractible.

For the first claim, we only supply the coCartesian edge: the proof that it is indeed co-
Cartesian is similar (in fact, easier). So let

(C⃗, T⃗) = (Sp F−→ C0
T0−→ ...

Tn−1−−→ Cn
G−→ Sp)

and
(D⃗, S⃗) = (D0

S0−→ ...
Dn−1−−−→ Dn)

as well as a map
f⃗ : (C0 → ...→ Cn)→ (D0 → ...→ Dn)
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We claim that the canonical map from

(Sp→ C0 → ...→ Cn → Sp)

to

(Sp
f0F−−→ D0 → ...→ Dn

G f R
n−−→ Sp)

is a coCartesian lift of f⃗ .

Corollary 4.2.22. Let E be a cocomplete ∞-category. For every n, restriction along

Funladj
colax([1 + n]Λ, PrL

st,(ω))×PrL
st,ω
{Sp} → Funladj

colax([n]Λ, PrL
st,(ω))

induces an equivalence on functors into E that are fiberwise cocontinuous in each variable.

Proof. For a coCartesian fibration E→ S, E is a lax colimit of the fibers Es, s ∈ S and Fun(E, E)
is the lax limit of Fun(Es, E), s ∈ S.

Thus if E → E′ is a map of coCartesian fibrations over S, and for every s ∈ S,
Fun(E′s, E) → Fun(Es, E) induces an equivalence on appropriate subcategories, then
Fun(E′, E)→ Fun(E, E) induces an equivalence on the appropriate fiberwise subcategories.

In our case, the relevant map is a map of coCartesian fibrations over Funladj
colax([n], PrL

st,(ω))

and on fibers it induces

FunL(Cn, Sp)× FunL(Sp, C0)→ FunL(Cn, C0)

which induces an equivalence when mapping into a cocomplete E and restricting to bilinear
(resp. cocontinuous) functors because composition induces an equivalence

FunL(Cn, Sp)⊗ FunL(Sp, C0) ≃ FunL(Cn, C0)

Corollary 4.2.23. For any stable cocomplete ∞-category E , the functor ∆st
0,Sp → ∆st induces

an equivalence

TrThyL
∆(E) = Funfbw−L

cocart (∆st, E)→ Funfbw−L
cocart (∆st

0,Sp, E)

between ∞-categories of fiberwise multilinear functors that invert coCartesian edges.

Proof. This map is induced by taking a limit over ∆ of the maps from Corollary 4.2.22, which
are equivalences.

Corollary 4.2.24. Evaluation at (Sp, idSp) induces an equivalence TrThyL
∆(E)→ E .

Proof. By the previous corollary, it suffices to observe that the ∞-category Funfbw−L
cocart (∆st

0,Sp, E)
is the totalization over ∆ of a diagram admitting extra degeneracies in the sense that it ex-
tends to ∆∞ in the notation of [Lur09, Lemma 6.1.3.16].

Indeed, ∆st
0,Sp is the pullback to ∆op of a coCartesian fibration over (∆op)/[0] = (∆[0]/)

op,
namely the one from Lemma 4.2.14, and there is a functor ∆∞ → ∆[0]/ under ∆ (via the
functor [0] ⋆−) and over ∆ (via the forgetful functors: the obvious one for ∆[0]/, and, still in
the (dual) notation from [Lur09, p. 6.3.1.16], J 7→ J ∪ {−∞} for ∆∞).

The fiber over [0] of that fibration is clearly E .
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Proof of Theorem 4.2.11. Combine Corollary 4.2.24 and Lemma 4.1.23. We simply need to
prove that the induced action on E from Corollary 4.2.24 is trivial - we essentially checked this
in Example 4.1.21. Indeed, recall that we constructed there a coCartesian section Λop → Λst

with value at [0]Λ given by (Sp, idSp). After inverting coCartesian morphisms, this produces
a section BS1 → (Λ∞)st[cocart−1]hS1 with value (Sp, idSp), i.e this makes (Sp, idSp) into an
S1-fixed point in ∆st[cocart−1] (where the action on the latter is induced by the equivalence
with the Λ∞ version).

Thus evaluating at (Sp, idSp) produces an S1-equivariant functor

TrThyL
∆(E)→ E

triv

whose underlying functor is the functor we produced, and hence is an equivalence, as was
needed.

Corollary 4.2.25. There is an equivalence

P1Kcyc(Sp, idSp) = colimnΩnKcyc(Sp, ΣnidSp) ≃ S

Remark 4.2.26. This equivalence falls out from the universal property of K-theory and the
mere observation that derivatives of localizing invariants naturally form trace theories; and
yet it in principle yields information about classifying spaces of GLn(S), and somewhat pre-
cise connectivity estimates, cf. Section 4.2.3. This is surprising, but quite pleasing. ◁

Proof. By Corollary 4.1.62, P1Kcyc corepresents the equivalence

ev(Sp,idSp)
: TrThyL

∆(Sp) ≃ Sp

from Theorem 4.2.11. Thus, its left adjoint (which is also its inverse!) sends S 7→ P1Kcyc.
The fact that this adjunction is an equivalence implies that ev(Sp,idSp)

(P1Kcyc) ≃ S, i.e.
P1Kcyc(Sp, idSp) ≃ S, as claimed.

We can now prove our version of the Dundas–McCarthy theorem:

Proof of Theorem 4.2.1. By [HS19, Nikolaus, Definition 10], THH also upgrades to a trace the-
ory with THH(Sp, idSp) ≃ THH(Sp) = S. Thus, by Theorem 4.2.11, THH ≃ P1Kcyc. Let us
fix such an equivalence, say f .

Now, we have an equivalence Map(P1Kcyc, THH) ≃ Map(K, THH) ≃ S by Corol-
lary 4.1.61. The equivalence f is sent to some map on the right which corresponds to some
n ∈ Z ∼= π0S and which cannot be divisible, since the identity of THH is not divisible (since
the identity of S isn’t). Thus n = ±1. Up to taking − f , we may thus assume that under the
equivalence

Map(P1Kcyc, THH) ≃ Map(K, THH) ≃ S

f maps to 1, and thus to the Dennis trace in Map(K, THH). In other words, the Dennis trace
induces an equivalence, as claimed.

Remark 4.2.27. Had we set up a symmetric monoidal version of trace theories as mentioned
in Remark 4.1.14, the above proof could have been streamlined by making Kcyc and THH into
symmetric monoidal trace theories. Indeed, taking into account (lax) symmetric monoidal
structures, there is a unique map K → THH as a well as a unique map P1Kcyc → THH. ◁
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Remark 4.2.28. At this point, the context of trace theories makes the Dundas–McCarthy the-
orem essentially obvious25, and this raises the question: since P1Kcyc is so much simpler than
THH to define, and more clearly the appropriate setting for trace methods26, what would we
lose by defining THH to be P1Kcyc ? For example, as is clear from the previous discussion
we easily recover the S1-action, furthermore we will explain below how to recover the cyclo-
tomic structure; and one could recover the symmetric monoidality without too much trouble.
The key thing that is missing seems to be the simple formula for THH(R), and specifically
the universal property when R is a commutative ring spectrum. Were I able to prove these
for P1Kcyc in a satisfactory manner without essentially going through the equivalence with
THH, I would suggest this change of definitions. ◁

Remark 4.2.29. The astute reader might point out at this point that, while we prove a more
general theorem than Dundas and McCarthy by allowing nonconnective rings, in the connec-
tive case we get a weaker statement, as they actually get precise connectivity estimates for
the map ΩnKcyc(C, ΣnT) → THH(C, T) in the connective case, and one can use these con-
nectivity estimates for other purposes than proving this theorem - for example, Waldhausen’s
calculations from [Wal78] use these more precise estimates. At the end of this chapter, in Sec-
tion 4.2.3, we digress to explain how the above version of this theorem, together with formal
techniques from the work of Land and Tamme [LT19] allow us to actually recover these con-
nectivity estimates from the bare statement about the first derivative, and how to recover also
Waldhausen’s calculations from those, thereby showing that in this situation, nothing is lost
from working only with universal properties. ◁

Remark 4.2.30. In fact, in the nonconnective setting, connectivity estimates are essentially
impossible at this point, so that a proof in the desired generality is not possible with only
connectivity estimates. For the application of the Dundas–McCarthy theorem we present in
Chapter 5, the nonconnective setting is needed (and essential). ◁

Let us now move on to the promised generalizations. First, we immediately obtain a proof
of Theorem 4.2.3:

Proof of Theorem 4.2.3. It suffices to note that by Proposition 4.1.40, Ecyc is a trace theory, and
hence P1Ecyc is a trace theory which is exact in the bimodule variable. Since E was finitary,
P1Ecyc is furthermore filtered-colimit preserving in the bimodule variable (F 7→ Endω(E, F)
commutes with filtered colimits).

It is therefore of the given form by Theorem 4.2.11.

Example 4.2.31. Consider Uloc : Catperf → Motloc, the universal finitary localizing invariant
from [BGT13]. Theorem 4.2.3 implies that P1(Uloc)

cyc ≃ X⊗ THH for some X ∈ Motloc. One
can show that

K(X⊗−) ≃ THH

as localizing invariants - that an X with this property exists follows from Efimov’s recent
proof that Motloc is rigid and in particular self-dual via M 7→ K(M ⊗ −), but here X is
relatively explicit.

The proof, however, relies on the methods from Efimov’s proof of the rigidity of Motloc, so
I do not include it27. ◁

25Modulo the very definition of THH as a trace theory.
26Which ultimately would work fine with P1Kcyc regardless of its relationship to THH.
27For the reader who has an idea of how this proof works: the idea is to use trace-class functors to intertwine

Endω(Sp, Σn)⊗ C and Endω(C, Σn) - Efimov proves that there are in some sense enough trace-class functors to
make this go through.
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In fact, Theorem 4.2.11 also provides information about non-cocontinuous exact trace the-
ories, which will be convenient:

Corollary 4.2.32. The inclusion TrThyL
∆(Sp) ↪→ TrThyex

∆ (Sp) admits a right adjoint given by
T 7→ T(Sp, idSp)⊗ THH.

The same holds for TrThyL ↪→ TrThyex, where now one remembers the S1-action on
T(Sp, idSp).

Proof. By Theorem 4.2.11, this inclusion is given by Sp
−⊗P1Kcyc

−−−−−→ TrThyex
∆ (Sp) and for gen-

eral reasons has map(P1Kcyc,−) ≃ ev(Sp,idSp)
as its right adjoint. The claim follows from

unwinding the relevant equivalences.
For trace-theories, we note that the inclusion of cocontinuous ∆-trace theories inside exact

∆-trace theories is S1-equivariant, and hence so is its right adjoint. Passing to fixed points for
the S1-action and using Lemma 4.1.23 gives the desired result.

This is convenient as it allows us to describe the Frobenius on P1Ecyc in terms of XE. Defin-
ing this Frobenius and explaining how to apply this adjunction to describe it is the goal of
the following subsection.

4.2.1 Addendum I: Polygonic and cyclotomic Frobenii

Let us, in the first place define the Frobenius on P1Ecyc.
For starters, we need to define its target, which is supposed to be something like

“P1Ecyc(C, T◦p)tCp ” when evaluated on (C, T). To make sense of this properly, as a trace
theory, we need to use the Λp’s of Appendix A.

Definition 4.2.33. For m ∈ N, we let (Λm)st := (Λm)op ×Λop Λst where the functor Λm → Λ
is qm (cf. Appendix A). ◁

Construction 4.2.34. The natural transformation ψm : Ψm → qm from Construction A.0.30
induces by restriction a natural transformation:

Funcolax(qmC, PrL
st,(ω))→ Funcolax(ΨmC, PrL

st,(ω))

which we can restrict appropriately to a natural map

Funladj
colax(qmC, PrL

st,(ω))→ Funladj
colax(ΨmC, PrL

st,(ω))

and mapping the (appropriately restricted) target into the fiber of Λst over ΨmC gives, in
total, a map

(Ψm)! : (Λm)
st := (qm)

∗Λst → Λst

◁

Ultimately, an object in (Λm)st is an object (C⃗, T⃗) in Λst, together with a lift of its underlying
[n]Λ to Λm

28. This construction sends this object not to (C⃗, T⃗) itself, but to an “unfolded”
version thereof, which looks like

(C0
T0−→ C1 . . .

Tn−1−−→ Cn
Tn−→ C0

T0−→ C1 · · · → C0)

with m copies of each Ci.

28[n]Λ has a “unique” lift to Λm - the point of this lift is therefore rather about encoding the correct functoriality than
encoding the correct objects.
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Example 4.2.35. This construction sends (C, T) lying over [1]Λm to

(C T−→ C T−→ . . . T−→ C)

Thus, any trace theory f evaluated at that object returns an object equivalent to f (C, T◦m).
◁

The example above and the unwinding of the definitions is supposed to show that the
construction we are about to give is simply a more fancy version of Example 4.1.20.

To see this clearly, recall that Λm → Λ admits a canonical BCm-equivariant structure, and
therefore so does (Λm)st as an ∞-category. We can therefore do the following construction:

Construction 4.2.36. Let E be any ∞-category, and consider the following composite:

Fun(Λst, E) −◦(Ψm)!−−−−−→ Fun((Λm)
st, E) ≃ FunBCm((Λm)

st, EBCm)

where the last equivalence comes from the forgetful-coinduction adjunction: EBCm has a co-
induced BCm-action. ◁

If E has sufficient co/limits, we have, as in [NS18]:

Proposition 4.2.37. Let G be an E1-group, and suppose E is an ∞-category with BG-indexed

limits. In this case EBG limBG−−−→ E is Aut(BG)-equivariant.
In particular, if G is equipped with E2-structure so that BG is an E1-group and acts on

itself, the limit functor is BG-equivariant.
If E is stable and furthermore admits G and BG-indexed colimits, then the same holds for

the G-Tate construction as defined in [NS18, Theorem I.4.1], for S = BG.
Finally, if G is a finite group and E admits all colimits29, the same holds for the G-proper

Tate construction.

Proof. For the claim about limits, this follows from the fact that the left adjoint, namely the
diagonal functor E → EBG, is canonically Aut(BG)-equivariant. Thus the theory of relative
adjunctions (cf. [Lur12, Section 7.3.2, Proposition 7.3.2.6]) provides a canonical Aut(BG)-
equivariant structure on the right adjoint.

The claim about Tate constructions follows from the limit claim together with the universal
property of Tate constructions from [NS18, Theorem I.4.1].

Remark 4.2.38. The same holds for G orbits with the same proof. We will not need it. ◁

Corollary 4.2.39. Let f : Λst → E be a trace theory and m ∈N; suppose E admits Cm-indexed
limits.

There is a canonical trace theory ( fm)hCm which, on the fiber over [0]Λ, acts as
(C, T) 7→ f (C, T◦m)hCm .

If E is stable and furthermore admits all colimits, there is also a canonical trace theory
( fm)τCm which, on the fiber over [0]Λ, acts as (C, T) 7→ f (C, T◦m)τCm where we use (−)τG for
the G-proper Tate construction (and ((−)tG for the usual Tate construction).

If f is exact in the bimodule variable, then so is ( fm)τCm .

Remark 4.2.40. The notation ( fm)hCm resp. ( fm)τCm for these canonical trace theories is
slightly abusive in the sense that fm itself is not a trace theory. fm is a BCm-equivariant functor
(Λm)st → EBCm , and as will be clear from the proof, it is only after taking fixed points/Tate
constructions that it induces a trace theory. ◁
29This could be refined analogously to above.
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Remark 4.2.41. For the Tate case, while there is also something like ( fm)tCm , if m is not a
prime number, it is not true that if f was exact, ( fm)tCm is too. ◁

Proof. Construction 4.2.36 gives a functor Fun(Λst, E)→ FunBCm((Λm)st, EBCm). By Proposi-
tion 4.2.37, in either the fixed points or Tate case we get a BCm-equivariant functor EBCm → E
and thus a map to

FunBCm((Λm)
st, E) ≃ Fun(((Λm)

st)hBCm , E) ≃ Fun(Λst, E)

For the first part of the statement, we thus only need to prove that if f was a trace theory,
then so is this new functor ( fm)?Cm , ? ∈ {h, τ}.

Now Λ∞ → Λ and hence Λm → Λ is surjective on morphisms. Thus, to prove that
( fm)?Cm sends coCartesian edges to equivalences, it suffices to prove the same for the functor
(Λm)st → E , and hence for the functor (Λm)st → EBCm . Equivalences are underlying, so it

suffices to prove it for the non-BCm-equivariant functor fm : (Λm)st (Ψm)!−−−→ Λst f−→ E .
But (Ψm)! is induced by a natural transformation and hence sends coCartesian edges to

coCartesian edges, which in turn are sent to equivalences by f (by assumption), so we are
done.

For the second part of the statement concerning exact trace theories, this is a fiberwise
statement so it suffices to unwind the construction to observe that the restriction of ( fm)τCm

to FunL(C, C) is indeed T 7→ f ((C, ..., C), (T, ..., T))τCm so that the lemma below applies (for
it to apply, note that

f ((C, ..., C), (−)) : FunL(C, C)×m → E

factors as the exact-in-each-variable composition functor

◦m : FunL(C, C)×m → FunL(C, C)

followed by the exact functor f (C,−) : FunL(C, C) → E and is thus each in each variable as
well).

Lemma 4.2.42. Let D, E be stable ∞-categories, with E complete and cocomplete, and m ∈N.
Let f : D×m → E be a Cm-equivariant functor which is exact in each variable.

Then ( f ◦ δm)τCm is exact, where δm : D → D×m is the diagonal functor.

Proof. This is standard, see e.g. [NS18, Proposition III.1.1] for the case of m being a prime
number and a specific Cm-equivariant functor.

The only difference is that the non-diagonal terms need not be induced from {e} ⊂ Cm,
but from some proper subgroup Cd ⊂ Cm, which is why for general m we need the proper
Tate construction which kills these terms too.

We introduce a slightly better notation for “ fm”:

Notation 4.2.43. Given Λst → E , we let φ∗m f : (Λm)st → EBCm denote the BCm-equivariant
functor from Construction 4.2.36.

We may abuse notation and denote similarly the underlying functor, as well as its post-

composition with EBCm
forget−−−→ E if there is no possibility for confusion. ◁

Before going further, we note a corollary, the proof of which amounts to unwinding the
previous constructions:
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Corollary 4.2.44. Let f , g : Λst → E be functors where E admits BCm-indexed limits. There
is a natural equivalence:

MapFun(Λst,E)( f , (φ∗mg)hCm) ≃ MapFun((Λm)st,E)( f ◦ (qm)
st, g ◦ (Ψm)!)

where (qm)st : (Λm)st → Λst is the canonical quotient map.

We can now construct our Frobenii. First, we construct a categorical Frobenius, in-
formally described as the map Endω(C, T) → Endω((C, ..., C), (T, ..., T)) of pre-trace
theories which acts as (x → Tx) 7→ (x → Tx, x → Tx, ..., x → Tx). Here,
(C, T) 7→ Endω((C, ..., C), (T, ..., T)) will be what we called φ∗mEndω

Remark 4.2.45. Note that by composition, Endω((C, ..., C), (T, ..., T)) maps further to
Endω(C, T◦m) and the composite Endω(C, T)→ Endω(C, T◦m) is

(x → Tx) 7→ (x → Tx → T2x → ...→ Tmx)

◁

Construction 4.2.46. By Corollary 4.2.44, constructing a map

Endω → (φ∗mEndω)
hCm

in Fun(Λst, Catperf) is equivalent to constructing a map

Endω ◦ (qm)
st → Endω ◦ (Ψm)!

in Fun((Λm)st, Catperf).
For this, we use Γst as defined in Definition 4.1.9 for Γ specifically the essential image of Λ

in Cat : ψm : Ψm → qm lives in this subcategory and so it induces, via coCartesian lifts in Γst,
a morphism (qm)st → (Ψm)!.

In turn, using Corollary 4.1.35, we obtain a morphism of ∞-categories

Endω ◦ (qm)
st → Endω ◦ (Ψm)!

which is what we needed. ◁

Unwinding the construction shows that it does indeed admit the previous informal de-
scription.

Finally, we have:

Construction 4.2.47. Let E : Catperf → E be a functor with values in a stable ∞-category
admitting BCm-indexed limits (resp. BCm-indexed limits and all colimits).

Construction 4.2.46 provides a map Endω ◦ (qm)st → Endω ◦ (Ψm)! of (Λm)st-indexed func-
tors, and hence a map E ◦ Endω ◦ (qm)st → E ◦ Endω ◦ (Ψm)! of E -valued functors, and there-
fore a map E ◦ Endω → (φ∗m(E ◦ Endω))hCm of Λst-indexed functors.

If E is a localizing invariant, then Corollary 4.1.4730 gives us a map

Ecyc → (φ∗mEcyc)hCm

of trace theories.
Furthermore, the “exact” part of Corollary 4.2.39 together with the universal property of

Pfbw
1 induces a map

P1Ecyc → (φ∗m(P1Ecyc))τCm

of trace theories. We call this the polygonic Frobenius. ◁
30And Proposition 4.1.40, Corollary 4.2.39.
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Remark 4.2.48. Using the very same argument, and considering higher Goodwillie deriva-
tives, we obtain, for every pair (n, m) ≥ 1, a “Frobenius” morphism of trace theories of the
form

PnmEcyc → (φ∗m(PnEcyc))hCm

coming from the fact that T 7→ T◦m is m-excisive, and so T 7→ PnEcyc(C, T◦m) is nm-excisive.
◁

Since trace theories give objects with S1-action when evaluated at objects of the form
(C, idC), we obtain:

Corollary 4.2.49. Let E be a localizing invariant. There is a lift of the functor31

P1Ecyc : Catperf → Sp to a functor

P1Ecyc : Catperf → CycSp

Remark 4.2.50. In principle we should verify that the S1-action on
((φ∗m) f )hCm(C, idC) = f (C, idC)

hCm is indeed the residual S1/Cm ∼= S1-action. This is
true, and not very difficult, though possibly tedious and notationally involved, so we do not
do so here. ◁

Remark 4.2.51. The ∞-category of cyclotomic spectra as defined in [NS18] only involves cy-
clotomic Frobenii one prime at a time. There is a more refined notion of cyclotomic spectrum
introduced in [AMR17] which involves proper Tate constructions, and coherences relating
Tate fixed points with respect to cyclic groups of comparable order. The constructions in-
troduced before can be refined to give such a cyclotomic structure on P1Ecyc, but again the
technicalities involved in doing so would lead us too far astray for the purposes of this the-
sis. ◁

The following corollary is obvious from the functoriality properties arising from

P1Ecyc → (φ∗m(P1Ecyc))τCm

being a map of trace theories, and from the definition of polygonic spectra [KMN23]:

Corollary 4.2.52. Let E be a localizing invariant. There is a lift of the functor
P1Ecyc : Λst

[0]Λ
→ Sp to a functor

P1Ecyc : Λst
[0]Λ
→ PgSp

where PgSp is the ∞-category of polygonic spectra as defined in [KMN23], such that, for each
m ∈N, the value at m of the polygonic spectrum P1Ecyc(C, T) is P1Ecyc(C, T◦m).

Remark 4.2.53. As in the case of cyclotomic spectra, one could offer a refined notion of poly-
gonic spectra involving coherences between different primes and, again as in that case, the
constructions presented here could be refined to produce such polygonic spectra.

In the polygonic case, there should also be further structures that would allow us to define
something on the whole of Λst, as opposed to only the fiber at [0]Λ. ◁

Having these constructions in hand, we can now leverage Corollary 4.2.32 to describe the
polygonic Frobenius of P1Ecyc in terms of XE = P1Ecyc(Sp, idSp). Namely, we have:

31We implicitly precompose everything with Ind to go from Catperf to PrL
st,ω , and with C 7→ (C, idC) to apply trace

theories to bare ∞-categories.
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Theorem 4.2.54. Let E be a finitary localizing invariant. Upon restriction to Λst
[0]Λ

, we have
an equivalence of PgSp-valued functors

P1Ecyc ≃ XE ⊗ THH

where XE = P1Ecyc(Sp, idSp) is the cyclotomic spectrum from Corollary 4.2.49 and ⊗ is the
canonical action of cyclotomic spectra on polygonic spectra32.

Thus P1Ecyc, together with its natural extra structure, is entirely controlled by the single
cyclotomic spectrum XE.

Example 4.2.55. Suppose E = EC := K(C⊗−) for some fixed stable ∞-category C. One can
prove using ideas similar to Remark 4.1.64 that XE ≃ THH(C) as cyclotomic spectra.

By Efimov’s rigidity theorem and the main result from [RSW], any finitary localizing in-
variant is of this form. ◁

Question 4.2.56. Can any cyclotomic spectrum be realized as THH(C) for some C ∈ Catperf

? (or equivalently, by [RSW], for some C ∈ Motloc ?) ◁

Proof of Theorem 4.2.54. This follows essentially from Corollary 4.2.32: the map of trace theo-
ries

P1Ecyc → (φ∗pP1Ecyc)tCp

is entirely determined by the corresponding map at (Sp, idSp), which is a map XE → X
tCp
E .

Unwinding the definitions, one sees that this map is the cyclotomic Frobenius on XE, and
thus the above map simply agrees on (Sp, idSp) with the composite

P1Ecyc = XE ⊗ THH→ X
tCp
E ⊗ (φ∗pTHH)tCp → (XE ⊗ φ∗pTHH)tCp → (φ∗pP1Ecyc)tCp

as was to be shown.

Remark 4.2.57. In forthcoming work [HNSa], Harpaz, Nikolaus and Saunier prove a version
of the Lindenstrauss–McCarthy theorem, namely that PnEcyc ≃ TRn(P1Ecyc) where TRn is
taken with respect to the polygonic structure we defined above. From our perspective, this
can be rewritten as PnEcyc ≃ TRn(XE ⊗ THH) and thus indicates that the whole infinitesimal
theory of E is controlled by the single cyclotomic spectrum XE. ◁

4.2.2 Addendum II: Sketching an a priori construction of Tr as a trace the-
ory

In [HSS17], the authors produce a functor Tr from an ∞-category equivalent to our Λst
[0]Λ

to Sp

which takes the symmetric monoidal trace of an endomorphism in PrL
st,(ω). Our Remark 4.2.10

shows that at least objectwise, this Tr agrees with P1Kcyc. In particular, since it is not difficult
to check that Tr is cocontinuous in the bimodule variable, this shows that if Tr could be
upgraded to a trace theory, it would be equivalent to P1Kcyc as such (and in particular as a
full coherent functor on Λst

[0]Λ
, rather than just objectwise). In this subsection, we sketch such

a construction.
To actually give all details, we would need some preliminaries on enriched ∞-categories.

Thus, we only sketch the construction of Tr. As in [HSS17], we proceed in the generality of a
symmetric monoidal (∞, 2)-category.

We will need:
32Obtained using the symmetric monoidal functor i : CycSp→ PgSp from [KMN23].
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Notation 4.2.58. For C an ∞-category, let Frrig(C) denote the free symmetric monoidal ∞-
category with duals on C, as in [HSS17]. ◁

Notation 4.2.59. Let B be a symmetric monoidal (∞, 2)-category. Following [HSS17], we let
ΩB := End(1B) be the symmetric monoidal ∞-category of endomorphisms of the unit of
B. ◁

The key construction appears in [HSS17, Definition 2.9]: let B be a symmetric monoidal
(∞, 2)-category, and we assume for simplicity that every object in B is dualizable. Fix an
∞-category C and an element αC ∈ ΩFrrig(C).

We then have the following composite:

Funladj
colax(C, B) ≃ Fun⊗colax(Frrig(C), B)→ Fun⊗colax(ΩFrrig(C), ΩB)

evαC−−→ ΩB

The first two arrows are natural in C33, and the third one depends on a choice αC ∈ ΩFrrig(C).
In the case of C = BN, the walking endomorphism, one picks αC to be the symmetric

monoidal trace of that endomorphism in Frrig(C).
In the case of a general C ∈ Λ, one would like to simply say : fix any basepoint in C, com-

pose all the generating/indecomposable morphisms starting from that basepoint, and take
the symmetric monoidal trace of that endomorphism. Since “traces are cyclically invariant”,
this is in fact independent of the choice of the basepoint.

If that choice of αC can be made naturally in C ∈ Λ, then we get, by definition, an induced
morphism ΛB[cocart−1] → ΩB, i.e. a trace theory on B, with values in End(1B) which, on
the fiber over [0]Λ, definitionally agrees with that of [HSS17].

This choice can in fact be made natural in C, though the above sketch does not lend itself
to that easily: we said “pick a basepoint and observe that the end result does not depend on
it”, which typically does not allow for proper, natural constructions. We explain below how
to do so.

The key idea is that while the composite 0 → 1 → ... → n → 0 in C, for C abstractly
equivalent to [n]Λ is not canonical, its image in some kind of unstable HH of C is. We can use
this together with a “realization map” going from HH to endomorphisms of the unit, real-
izing abstract traces as symmetric monoidal traces, to realize the desired class in ΩFrrig(C).
The difficulty comes down to constructing this realization map. A version of this was done in
limited generality in [Ram21], but I will adress details of the following construction in greater
generality in future work.

For this generality, we need a bit of enriched ∞-category theory, and because in its current
state it is quite technical, we only sketch the relevant constructions below, though they can
be made precise (see, e.g. [Ber22]). The key thing we do not prove (though see loc. cit.) is the
following:

Fact 4.2.60. Let V be a cocompletely symmetric monoidal ∞-category, S a space and C an
S-flagged V-category34. There is a Λop-shaped, V-valued diagram of the form

Bcyc
V (C) : [n]Λ 7→ colimx0,...,xn∈S homC(x0, x1)⊗ ...⊗ homC(xn, x0)

called the cyclic bar construction for C.
It is natural in (V , S, C). Furthermore, when V = S and C is a ∞-category with the canoni-

cal flagging35 S = C≃, this diagram is equivalent to [n]Λ 7→ map([n]Λ, C).
33See [HSS17, Lemma 2.4] for a discussion of the first equivalence.
34This is our name for what is called a “categorical algebra in V with space of objects S” in [GH15] - this is supposed

to be like a V-enriched ∞-category with a presentation of the space of objects given by S.
35In the case of V = S , an S-flagged S-category is exactly an ∞-category C equipped with an essentially surjective

functor S→ C. The canonical choice for S is thus C≃.
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Notation 4.2.61. We let HHbar
V (C) denote the geometric realization of Bcyc

V (C)|∆op . ◁

Note that by Construction A.0.13, HHbar
V (C) admits an S1-action, and

HHbar
V (C)hS1 ≃ colimΛop Bcyc

V (C)

The following is then a simple calculation:

Proposition 4.2.62. Let C ∈ Λ be viewed as a category. We have a functorial decomposition

HHbar
S (C)hS1 ≃ pt ⨿ F̸=1(C)

Proof. The cyclic bar construction is Λop → S , D 7→ mapCat(D, C). Recall that
HHbar

S (C)hS1 ≃ colimΛop Bcyc
S (C).

Now, given D ∈ Λ, mapCat(D, C) ≃ mapΛ(D, C)⨿ map ̸=1(D, C) where map ̸=1(D, C) is
the full subspace of maps that induce a degree ̸= 1 map from |D| to |C|. Both these subspaces
are subfunctors as they are closed under maps between varying C’s in Λ.

Now colimits of representable functors are contractible, so we are done by letting
F̸=1(C) := colimΛop map ̸=1(−, C).

Remark 4.2.63. This is the statement that, up to the S1-action, the class of long composites in
C is canonical in “HHunstable(C)”. ◁

The final thing we need to know about HHbar
V is the following:

Proposition 4.2.64. Let V0 ⊂ V be a subcategory consisting of dualizable objects in V , and
containing 1V . In this case V admits internal homs for objects of V0, so V0 is canonically
V-enriched. Furthermore, in this case HHbar

V (V0) ≃ 1V with a trivial S1-action.

Sketch of proof. The first part is classical, see e.g. [GH15, Corollary 7.4.10]. The second part is
also classical, and ultimately comes from a similar proof as in Theorem 4.2.11, see in particu-
lar the discussion right after the statement.

The idea is that since every object in V0 is dualizable,

hom(xn, x0) ≃ hom(xn, 1)⊗ hom(1, x0)

so that Bcyc
V (V0)n can be viewed as a “chunk” of Bcyc

V (V0)n+1. More precisely, this equivalence
provides Bcyc

V (V0)|∆op with an extra degeneracy as in [Lur09, Proposition 6.1.3.16], making it
an absolute colimit with value 1V .

The triviality of the S1-action comes from the fact that there is a natural map of
Λop-diagrams 1V → Bcyc

V (V0) induced by the V-full inclusion of flagged V-categories
(pt, {1V})→ (V≃0 ,V0) which induces the given equivalence upon realization.

Construction 4.2.65. Let V be a symmetric monoidal ∞-category in which every object is
dualizable. We construct a map, natural in V ,

HHbar
S (V)hS1 → End(1V )

such that the restriction to the 0-simplices Map(x0, x0) is given by the symmetric monoidal
trace.

We do it as follows: first, we may consider V canonically as a V-enriched ∞-category (it
has all duals) and hence, via the Yoneda embedding, as a Psh(V)-enriched ∞-category. By
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adjunction, it suffices to produce an S1-equivariant map 1V ⊗HHbar
S (V) → 1V in36 Psh(V).

For this we simply note that the naturality of HHbar
E in the E variable implies that if D is an

ordinary category, then there is an equivalence in Psh(V):

HHbar
Psh(V)(1V ⊗ D) ≃ 1V ⊗HHbar

S (D)

where 1V ⊗ D is the flagged Psh(V)-category obtained by taking the same objects as D and
for morphism objects hom1V⊗D(d0, d1) := 1V ⊗map(d0, d1). This construction participates
in an adjunction between Psh(V)-enriched ∞-categories and ordinary ∞-categories, and in
particular we have a counit morphism 1V ⊗ V0 → V where V0 = V is the underlying (=
non-enriched) ∞-category of V .

This counit morphism induces the desired S1-equivariant map

1V ⊗HHbar
S (V)→ 1V

upon taking HHbar
Psh(V), since HHbar

Psh(V)(V) ≃ 1V by assumption that V consists of dualizable
objects. ◁

With these facts in hand, we can give a construction of αC : pt → ΩFrrig(C) natural in
C ∈ Λ, as follows:

Definition 4.2.66. We let αC denote the following composite:

pt→ HHbar
S (C)hS1 → HHbar

S (Frrig(C))hS1 → ΩFrrig(C)

where the first map is the one arising from the decomposition in Proposition 4.2.62.
◁

We now need to check that αC hits exactly the symmetric monoidal trace of any choice of
long composite 0 → 1 → ... → n → 0 in C. By naturality it suffices to do so for C = [0]Λ,
and there it suffices to note that the proof that HHbar

V (V) ≃ 1V exactly uses the equivalence
hom(x0, x0) ≃ hom(x0, 1)⊗ hom(1, x0) to get an extra degeneracy, and it is this equivalence
that computes traces at the end of the day.

Thus in total we have constructed αC, and thus Tr : ΛB[cocart−1]→ End(1B), as was to be
done. The previous paragraph shows that the local functoriality Map(b, b)→ End(1B) really
is given by the usual trace, and so in the case of B = PrL

st,(ω), Theorem 4.2.11 directly implies:

Corollary 4.2.67. There is an equivalence of trace theories

P1Kcyc ≃ TrSp

In particular, if we accept that the missing details can be filled, we obtain a canonical
(unique) comparison between THH as defined in [HS19] and TrSp as defined in [HSS17].

Remark 4.2.68. We note that there is a map

map(S1, B) ≃ map(|C|, B)→ Funladj
colax(C, B)

natural in C ∈ Λop, which therefore induces an S1-equivariant map map(S1, B) →
∆B[cocart−1]. Composing this with the S1-equivariant map Tr : ∆B[cocart−1] → ΩB which
we have just produced yields, in total, an S1-equivariant map

Tr : map(S1, B)→ ΩB
36We suppressed the Yoneda embedding from the notation.



4.2 COCONTINUOUS TRACE THEORIES AND THE DUNDAS–MCCARTHY THEOREM 136

The uniqueness that is proved in [HSS17, Theorem 2.14] (see the last paragraph of the
proof) shows that this S1-equivariant structure agrees with the one constructed in loc. cit..
Alternatively, one can also simply unwind the constructions and see that they yield the same
S1-equivariant structure37. ◁

We do not go much further in this direction as it would again lead us astray, but these
constructions and ideas will be explored further (and expanded upon) in future work.

4.2.3 Addendum III: Connectivity estimates

We conclude this section with the promised digression on connectivity estimates, namely, we
explain how to recover, from the abstract statement that P1Kcyc ≃ THH, precise connectivity
estimates on the maps ΩnK̃(A⊕ Σn−1M) → THH(A, M) for A a connective ring spectrum
and M a connective A-bimodule.

First, our main tool will be the following classical result:

Lemma 4.2.69 ([LT19, Lemma 2.4]). Suppose f : R → S is a map of connective ring spectra,
which is k-connective for some k ≥ 1 (in particular π0( f ) is an isomorphism).

Then the induced morphism K(R)→ K(S) is (k + 1)-connective.

Second, we recall the main theorem of [LT19]:

Theorem 4.2.70 ([LT19, Main theorem]). Consider a pullback square of ring spectra:

A B

C D

There exists a ring spectrum (the “circle-dot ring”) B ⊙D
A C together with a commutative

diagram of ring spectra
A B

C B⊙D
A C

D

such that the homotopy filling in the outer square is the one from the start, such that, as a
map of (B, C)-bimodule spectra, B⊙D

A C → D is identified with B ⊗A C → D and finally
such that the inner square induces a pullback square of K-theory spectra:

K(A) K(B)

K(C) K(B⊙D
A C)

An important point is that even when B⊙D
A C → D is not an equivalence, if everything is

connective, then connectivity estimates can be used to see how far the original square is from

37Surprisingly, this produces an S1-equivariant trace without using the cobordism hypothesis at all.
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being a K-theory pullback. Indeed, if all the rings involved are connective, and B⊙D
A C → D

is k-connective for some k ≥ 1, then

K(B⊙D
A C)→ K(D)

is (k + 1)-connective, by the previous result. This specializes to:

Corollary 4.2.71. Suppose R is a connective ring spectrum, M a k-connective R-bimodule
and let R⊕M denote the trivial square-zero extension of R by M.

Then the pullback square
R⊕M R

R R⊕ ΣM

induces a 2(k + 1)-connective map K(R⊕M)→ ΩK(R)K(R⊕ ΣM), where

ΩK(R)K(R⊕ ΣM) := K(R)×K(R⊕ΣM) K(R)

Proof. Consider a diagram of spectra as follows:

X

X Y

Z

Then if Y → Z is j-connective, the induced morphism X ×Y X → X ×Z X is (j − 1)-
connective. Indeed, fibers commute with pullbacks, so that the fiber of this morphism is
Ωfib(Y → Z), which is (j− 1)-connective as claimed.

We apply this to

K(R)

K(R) K(R⊙R⊕ΣM
R⊕M R)

K(R⊕ ΣM)

So it now suffices to show that the map on bottom right corners is 2(k + 1) + 1-connective,
and so it suffices to show that R⊗R⊕M R→ R⊕ ΣM is 2(k + 1)-connective.

We do so by putting a grading everywhere: consider R⊕M and R⊕ ΣM as graded ring
spectra, where M is put in grading 1 and R in grading 0.

In that case, everything can be graded, and we claim that the map

R⊗R⊕M(1) R→ R⊕ ΣM(1)

is an equivalence in grading ≤ 1, where X(n) denotes the spectrum X in grading n. Indeed,
there is a map TR(M(1)) → R ⊕ M(1) from the free algebra in R-bimodules which is an
equivalence in grading ≤ 1, so that R ⊗TR(M(1)) R → R ⊗R⊕M(1) R is also an equivalence
in grading ≤ 1 (note that everything is nonnegatively graded so the grading ≤ 1 part of
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these relative tensor products only depends on the grading≤ 1 part of the terms); and [LT23,
Lemma 4.3] shows that the composite

R⊗TR(M(1)) R→ R⊗R⊕M(1) R→ R⊕ ΣM(1)

is an equivalence (in all gradings!).
Thus the right hand map is also an equivalence in grading ≤ 1. But the source of this map,

when realized, is a direct sum of its grading ≤ 1 part with its grading ≥ 2 part. The grading
w part is the geometric realization of a simplicial object which starts in simplicial degree w
with all objects of the form R⊗? ⊗M(1)⊗w+? which are therefore≥ wk-connective. Therefore
the grading w part is ≥ wk + w = w(k + 1) ≥ 2(k + 1)-connective, as claimed.

Remark 4.2.72. There is a version of this claim for nontrivial square-zero extensions, which is
convenient for Waldhausen’s [Wal78] because it allows one to use for Postnikov square-zero
extensions. We will not go this far here, and so we stick to this simpler claim. Note that in
the non-split square zero extension case, I only know how to prove that the induced map is
2k + 1-connective, as opposed to 2(k + 1), because of lim1-issues. ◁

Corollary 4.2.73. Let R be a connective ring, M a k-connective R-bimodule. Then the canon-
ical map K̃(R, M)→ ΩK̃(R, ΣM) is 2(k + 1)-connective.

Proof. Simply take the fiber of K(R⊕M)→ ΩK(R)K(R⊕ ΣM) over K(R).

We can now finally get the same connectivity estimates as in [DM94]:

Corollary 4.2.74. For any connective ring spectrum R and k-connective bimodule M, the
map K̃(R, M) → THH(R, ΣM) coming from the Dundas–McCarthy theorem is 2(k + 1)-
connective .

Proof. The previous corollary implies that all the maps

K̃(R, M)→ ΩK̃(R, ΣM)→ Ω2K̃(R, Σ2M)→ . . .

are 2(k+ 1)-connective, therefore so is the map to colimit, which is, by the Dundas–McCarthy
theorem, identified with K̃(R, M)→ THH(R, ΣM).



Chapter 5

Endomorphisms of THH

Introduction
In Chapter 4, we saw that THH is very rigid as a trace theory, because it has a very clean uni-
versal property. However, restricting it to inputs of the form (C, idC) turns it into a localizing
invariant with a much more complex universal property.

The goal of this chapter is to study the endomorphisms of the localizing invariant we
obtain this way. Similar questions have been studied by Wahl–Westerland [WW16], Wahl
[Wah16] and Klamt [Kla15]. In these works, the authors study what they call “formal
operations”, which can be viewed as an approximation to the spectrum of operations, of
Hochschild homology relative to a base commutative ring R, evaluated on dg algebras over
R. While I am not able to access endomorphisms of THH as a functor on ring spectra, I do
give a complete description of the actual endomorphism spectrum of THH as a functor of sta-
ble ∞-categories, as well as of the endomorphism monoid of THH as a symmetric monoidal
functor.

As a plain functor, the answer looks as follows, which is Theorem H from the introduction:

Theorem. As a plain functor THH : Catperf → Sp, the S1-action induces an equivalence

S[S1] ≃ end(THH)

As a symmetric monoidal functor, there is an equivalence

MapCAlg(Sp)(S
S1

, S) ≃ End⊗(THH)

and the space MapCAlg(Sp)(S
S1

, S) can be described1.

I also prove analogous results in relative contexts, that is, for THH relative to a base com-
mutative ring spectrum k.

I use these results as well as other results from my work with Carmeli–Cnossen–Yanovski
[CCR+23] and with Sosnilo–Winges [RSW24] to study analogous questions, related to the
more general questions studied in the works of Wahl–Westerland, Wahl and Klamt men-
tioned above, namely, to study the endomorphism spectrum of THH viewed as a functor
on AlgO(Catperf) for some (single-colored) ∞-operad O. The integral answer there seems to
be more subtle, and I only get partial results, but I also get a full description of these endo-
morphisms if one suitably localizes THH, e.g. rationally. The following is Theorem J from
the introduction, where L denotes either rationalization, or T(n)-localization for some height

1But it is not exactly S1.
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n ≥ 1 and implicit prime p - here, γk denotes the (unique up to conjugacy) length k cycle in
Σk, andO(k)γk is the space of Z-fixed points ofO(k) with automorphism given by the action
of γk (it retains a Ck-action, where Ck is the centralizer of γk in Σk, in this case the subgroup
generated by γk):

Theorem. For any single-colored ∞-operad O, there is a canonical map⊕
k≥1

S[(O(k)γk × S1)hCk
]→ endFun(AlgO(Catperf),Sp)(THH)

such that :

(i) For any finite set S ⊂N≥1, the restriction to
⊕

k∈S admits a splitting;
(ii) The induced map on L-localization, specifically:

L(
⊕
k≥1

S[(O(k)γk × S1)hCk
])→ endFun(AlgO(Catperf),Sp)(LTHH)

is an equivalence.

I also prove, by studying the “spectrum of cyclotomic Frobenii”, that the relevant map is
not an equivalence in the integral case (though this is not visible in [Kla15] precisely because
the cyclotomic Frobenius does not exist over Z).

Outline

In Section 5.1 I set up some preliminaries regarding Day convolution that will be convenient
for the later sections. In Section 5.2, I apply these results to compute plain endomorphisms of
THH, and I study the relative setting in Section 5.3. Finally, in Section 5.4 I initiate the study
of operations for stable ∞-categories equipped with multiplicative structures.

5.1 Day convolution of localizing invariants
Since THH admits a multiplication, one way to compute endomorphisms of THH is to com-
pute THH-linear maps out of “THH⊗THH” into THH, for some meaning of⊗. The relevant
meaning here is the one that encodes the symmetric monoidal structure on the functor THH,
as opposed to that on each of its values2. The relevant tensor product for this is Day con-
volution, which is known to encode symmetric monoidal structures. We will not enter into
too many details about it, but there is also a version of the Day tensor product for localizing
invariants, which is better suited for our purposes.

The goal of this section is therefore to prove the following, which will be the key tool to
study endomorphisms of THH:

Proposition 5.1.1. Let E be a cocomplete stable ∞-category and E : Catperf → E be an acces-
sible localizing invariant. The Day convolution as localizing invariants THH⊗Day E of THH
with E is naturally equivalent to C 7→ P1Ecyc(C, idC).

Remark 5.1.2. We stress that the usual Day convolution of THH and E need not be a lo-
calizing invariant. What we mean by “the Day convolution as localizing invariants” is what
is obtained by first taking ordinary Day convolution and then taking the universal localiz-
ing invariant with a map from this Day convolution. Through the ∞-category of localizing
motives, this is closely related to “exactified Day convolution”, which we briefly discuss be-
low. ◁

2Indeed, on THH of an arbitrary stable ∞-category, there is no such structure !
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Remark 5.1.3. One can state and prove a refined version of this result - implying in particular
an S1-equivariant version of it, as both sides have a natural S1-action. However, it requires
setting up more technicalities, more than seem worth it for our purposes, so we leave the
refined statement for the future. ◁

To prove this, we use the following preparatory lemma:

Lemma 5.1.4. Let C be a presentably symmetric monoidal ∞-category, and let x ∈ C. For any
accessible3 functor F : C → E to a cocomplete ∞-category E , there is a natural equivalence

Map(x,−)⊗Day F ≃ F(hom(x,−))

Proof. Let G be any functor C → E , and let µ : C × C → C denote the tensor product,
pri : C× C → C the two projection maps. By definition of the Day tensor product, there is an
equivalence

Map(Map(x,−)⊗Day F, G) ≃ Map(Map(x, pr1)⊠ F ◦ pr2, G ◦ µ)

where we temporarily use ⊠ to distinguish the external tensor product from the Day tensor
product.

By currying, this is equivalent to

Map(Map(x,−), Map(F, G ◦ µ))

where the target is y 7→ Map(F, G(y⊗−)).
By the Yoneda lemma, this is equivalent to Map(F, G(x ⊗ −)) and by adjunction, this is

equivalent to Map(F(hom(x,−)), G), as was to be proved.

If C, E are stable and F, G are exact functors, F⊗Day G need not be exact a priori. However,
one can then take its first derivative to make it exact, and this induces a Day convolution
monoidal structure on Funex,acc(C, E) - see e.g. [HR21b, Theorem 4.5] in the case where the
source is small, but the generalization to accessible functors is straightforward. We call it the
exactified Day convolution.

In that case, there is an analogue of the previous lemma when we consider instead the
mapping spectrum out of x, and the exactified Day convolution. The proof is the same4, so
we only state it:

Corollary 5.1.5. Let C be a stable presentably symmetric monoidal ∞-category, and x ∈
C be an object admitting internal homs hom(x,−). For any accessible exact functor
F : C → E to a cocomplete stable ∞-category E , there is a natural equivalence
map(x,−)⊗Day F ≃ F(hom(x,−)), where now map denotes the mapping spectrum functor,
and ⊗Day denotes the exactified Day convolution product.

To apply this to THH, we introduce a bit of notation. Notice that for C ∈ Catperf,
End(C, Σn) can be described as Funex(An, C) for some An ∈ Catperf. Specifically, An is easily
verified to be Perf(S[σ−n]), where S[σ−n] is the free associative algebra on a class in degree
−n. Indeed, a map x → Σnx is the same as a map Ωnx → x, which is the same as a map
S[σ−n]→ map(x, x).

Notation 5.1.6. Let An := Perf(S[σ−n]) as discussed above. ◁

3Here accessibility is just used to deal with size issues, namely to make sure that the Day tensor product is defined
a priori.

4Or in fact it can be seen to follow from the previous lemma, as map(x,−) = P1S[Map(x,−)].
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With this notation, we can state Theorem 4.2.1 as follows:

Corollary 5.1.7. There is a natural equivalence

THH ≃ colimnΩnK̃(Funex(An,−))

If we rephrase it by viewing THH as a functor on Motsplit, the ∞-category of splitting
motives5, we can interpret it as follows with a direct application of Corollary B.0.10:

Corollary 5.1.8. Considering THH as a functor on Motsplit, letting Ãn denote
Usplit(An)/Usplit(Spω), we have:

THH ≃ colimnΩn map(Ãn,−)

Thus, directly using the formula from Corollary 5.1.5, we find:

Corollary 5.1.9. Let E : Motsplit → E be an exact accessible functor to a cocomplete stable
∞-category. With exactified Day convolution, we have an equivalence:

THH⊗Day E ≃ P1Ecyc

Proof. Using Corollary 5.1.5 and Corollary 5.1.8, we find

THH⊗Day E ≃ colimnΩnẼ(Funex(An,−)) ≃ colimnΩnẼ(End(−; Σn)) =: P1Ecyc

Proof of Proposition 5.1.1. We first note that the functor Motsplit → Motloc witnessing that ev-
ery localizing invariant is a splitting invariant is a localization.

Thus, if E, F are localizing invariants such that their Day convolution as splitting invariants
is already localizing, it is also their Day convolution as localizing invariants.

We also note that if E happened to be a localizing invariant, then by Proposi-
tion 4.1.40,Proposition 4.1.54, Proposition 4.1.53, P1Ecyc is already localizing. Thus in this
situation, the calculation from Corollary 5.1.9 works for Day convolution as splitting invari-
ants or as localizing invariants, which is what we wanted to prove.

We point out another, more naive consequence of Corollary 5.1.8, which can sometimes be
convenient:

Corollary 5.1.10. Let E be a splitting invariant. There is an equivalence:

map(THH, E) ≃ lim ΣnẼ(An)

Proof. By adjunction, map(K(Funex(An,−)), E) ≃ map(K, E(An ⊗ −)) and so, by the uni-
versal property of K-theory from [BGT13], the latter is E(An).

Putting things together as n varies gives the result.

Remark 5.1.11. By Remark 4.1.63, we can use either connective or nonconnective K-theory
here, which is why E is allowed to be a splitting invariant as opposed to a localizing invariant.

◁

5These are typically called “additive motives” in the literature. This, especially the corresponding notion of “ad-
ditive invariant” sounds very confusing and less descriptive than “splitting”, so I have opted for this change of
name. I have gathered a few helpful facts in Appendix B.
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So while tensoring with THH acts as a Goodwillie derivative, mapping out of THH acts as
some kind of co-derivative.

Corollary 5.1.12. Evaluation at Spω induces a symmetric monoidal equivalence

ModTHH(Funloc,ω(Catperf, Sp)) ≃ Sp

Proof. Evaluation at Spω is represented by THH on this ∞-category, so this functor admits a
left adjoint given by X 7→ X⊗ THH.

Furthermore, evaluation at Spω preserves filtered colimits and hence THH is a compact
object in that module ∞-category. Thus, since

endTHH(THH) ≃ Map(K, THH) ≃ S

this left adjoint is fully faithful.
Now for any finitary localizing invariant E, E⊗Day THH ≃ P1Ecyc by Proposition 5.1.1 and

by Theorem 4.2.3 the latter is XE ⊗ THH for some fixed spectrum XE (note that we are not
considering the trace theory structure here, so XE is simply a spectrum, no S1-action in sight).

It follows that the image of the left adjoint Sp → ModTHH(Funloc,ω(Catperf, Sp)) contains
all the free modules, i.e. contains a collection of generators under colimits. Since it is fully
faithful and colimit-preserving, it follows that it is an equivalence.

Both sides are symmetric monoidal ∞-categories, and Sp has a unique symmetric monoidal
structure with S as the unit, so the symmetric monoidal claim follows as well.

5.2 Plain endomorphisms of THH
In this section, we prove Theorem H, that is, we compute endomorphisms of THH as a
plain functor, as well as its endomorphisms as a lax symmetric monoidal functor. Using a
extensions-restriction of scalars adjunction, this will ultimately boil down to a computation
of THH⊗Day THH, which the previous section together with Chapter 4 have given us the
tools to study.

Thus we begin with the following well-known computation about THH - to limit confu-
sion, in the statement and its proof, we let T denote the trace theory “topological Hochschild
homology”, and THH denote the corresponding localizing invariant. :

Proposition 5.2.1. There is an equivalence of trace-theories with S1-action:

P1THHcyc ≃ TS1

where the S1-action on the right is coinduced.

Proof. It suffices to evaluate at (Sp, idSp) by Theorem 4.2.11, where this is a classical compu-
tation (more generally in the case of ring spectra), cf. e.g. [Hes94, Proposition 3.2] (there it
says S[S1]⊗ T, but the shift here is the same as in Remark 4.1.64).

Ultimately, the point as explained in loc. cit. is that the (homogeneous) degree 1 part of the
cyclic bar construction computing THH(S⊕ Σn−1S) is a free cyclic object on the (non-cyclic)
bar construction computing THH(S, Σn−1S), and so its realization has an induced S1-action
on S. There is a shift involved, and the relation ΣSS1 ≃ S[S1] gets us to the announced result.

Alternatively, one can use the general formula for THH of square zero extensions which
we recall later in Proposition 5.4.12.
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Corollary 5.2.2. There is an S1-equivariant, THH-linear equivalence

THH⊗Day THH ≃ THHS1

where:

• THH⊗Day THH is the extension of scalars to THH of THH with its S1-action;

• THHS1
is the coinduced S1-action on the unit in THH-modules.

Remark 5.2.3. The same refinement as in Remark 5.1.3 would allow us to make this equiva-
lence S1× S1-equivariant, but we will not need this, and as mentioned there, the technicalities
needed for this statement seem to outweigh the benefits. ◁

Proof. By Proposition 5.1.1 and Proposition 5.2.1, we know that there is an equivalence in
Funloc,ω(Catperf, Sp)BS1

between the two.
By Corollary 5.1.12, the equivalence ModTHH(Funloc,ω(Catperf, Sp))BS1

is given
by evaluation at Spω, and therefore factors through the forgetful functor
ModTHH(Funloc,ω(Catperf, Sp))BS1 → Funloc,ω(Catperf, Sp)BS1

. Thus there is an equiva-
lence between the two, as claimed.

In fact, this can be upgraded to a multiplicative equivalence:

Corollary 5.2.4. There is an equivalence of commutative THH-algebras with S1-action

THH⊗Day THH ≃ THHS1

Proof. By passing to Sp under the equivalence from Corollary 5.1.12, with
A = THH ⊗Day THH (or more precisely its image in Sp), we have the following
situation:

(i) There is a commutative algebra A ∈ CAlg(SpBS1
);

(ii) Its underlying object UA ∈ SpBS1
is coinduced, specifically of the form SS1

;
(iii) There is a map A→ S in CAlg(Sp).

The algebra map A→ S comes from the multiplication map

THH⊗Day THH→ THH

We claim that this is enough to conclude A ≃ coIndS1
S as commutative algebras.

Since A → S is an algebra map, it is split, and hence, on underlying objects S⊕ΩS → S

must be the projection onto the first factor (there are no nonzero maps ΩS → S). Thus, as a
map SS1 → S it is the co-unit map of the co-induction adjunction.

It follows that the coinduction map UA→ SS1
is an equivalence. But this coinduction map

can be made into a commutative algebra map, since the forgetful functor preserves limits and
hence coinductions. Since it is also conservative, we find that A ≃ SS1

.

Remark 5.2.5. This proof actually gives a bit more than what we claim: it shows that specifi-
cally, the map of commutative THH-algebras with S1-action

THH⊗Day THH→ THHS1

induced by adjunction from the multiplication THH⊗Day THH → THH is itself an equiva-
lence. ◁
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Remark 5.2.6. It is overwhelmingly likely that by setting up everything (trace theories,
derivatives etc.) symmetric monoidally from the start, one could obtain a cleaner proof of
the previous two results by applying only improved versions of Proposition 5.1.1 and Propo-
sition 5.2.1. ◁

We can now prove Theorem H. In fact, we prove more. Let us first deal with the non-
symmetric monoidal part.

Theorem 5.2.7. The S1-action on THH induces an equivalence

S[S1] ≃ end(THH)

More generally, as functors Catperf → Sp, for any p, q ≥ 1, we have
map(THH⊗p, THH⊗q) ≃ 0 if p ̸= q, and S[((S1)p × Σp)] if p = q. Here, the tensor pow-
ers are pointwise.

Remark 5.2.8. We could also explain how to compute endomorphisms of Day-tensor pow-
ers of THH, but they follow immediately from the case of THH itself together with Corol-
lary 5.2.2, so we do not delve into it in more detail. ◁

Proof. For the first part of the statement, note that

map(THH, THH) ≃ mapTHH(THH⊗Day THH, THH) ≃ mapTHH(THHS1
, THH)

≃ mapTHH(THH, THH)⊗ S1 ≃ THH(S)⊗ S1 ≃ S[S1]

More generally, this shows that for any spectrum X, the canonical assembly map
X⊗ map(THH, THH)→ map(THH, X⊗ THH) is an equivalence.

Now we move on to pointwise tensor products. The point here is that by the main result
of [RSW], recalled in Theorem B.0.15, we can compute this mapping spectrum as a mapping
spectrum between functors defined on Motloc, where THH is exact. Indeed, this main result
states that Catperf → Motloc is a Dwyer-Kan localization, and THH⊗p clearly factors through
it, hence the mapping spectra agree6.

Note that since THH is exact on Motloc, THH⊗p is p-homogeneous thereon, and so this
deals automatically with the case q < p.

We now deal with the case q = p: in that case, we can use the classification of p-
homogoneous functors:

map(THH⊗p, THH⊗p) ≃ mapΣp
(
⊕
Σp

THH⊠p,
⊕
Σp

THH⊠p) ≃ map(THH⊠p,
⊕
Σp

THH⊠p)

where ⊠ indicates an external products, so we are considering (symmetric) functors with p
inputs.

Now using currying and the fact that the assembly map

X⊗map(THH, THH)→ map(THH, X⊗ THH)

is an equivalence, we find the desired result.
In the case p < q, we appeal to Lemma 5.2.9 below.
Note that in all cases, we find that for any X, the canonical map

X⊗Map(THH⊗p, THH⊗q)→ Map(THH⊗p, X⊗ THH⊗q)

is an equivalence.
6THH itself is a localizing invariant, so by the very definition of Motloc, this is obvious for THH. On the other hand,

THH⊗p is not localizing: it’s not even an additive functor, so we do need something else.
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Lemma 5.2.9. Let C, D be stable ∞-categories and F : Cn → D be a functor which is exact in
each variable. For m < n and for any m-excisive functor G : C → D, map(G, F ◦ δn) = 0.

In other words, if D admits sequential limits, the mth co-Goodwillie derivative Pm(F ◦ δn)
vanishes.

Proof. By adjunction, we have map(G, F ◦ δn) ≃ map(G ◦∏n, F).
The reduction of G ◦ ∏n in the sense of [Lur12, Construction 6.1.3.15] is, by definition

(cf. [Lur12, Construction 6.1.3.20]) the nth cross effect of G. It follows from [Lur12, Remark
6.1.3.23] that Red(G ◦∏n) =: crn(G) = crn(PnG) = P1,...,1crnG = 0, where the second equal-
ity comes from G being m- and hence n-excisive. It is 0 because G is also Pn−1G, as m ≤ n− 1.

Now as a functor of n-variables, F is (1, ..., 1)-homogeneous in the sense of [Lur12, Defini-
tion 6.1.3.7], and so, to prove the claim, it suffices to prove that there is an equivalence

map(G ◦∏
n

, F) ≃ map(Red(G ◦∏
n
), F)

because the latter is also equivalent to map(P1,...,1Red(G ◦∏n), F) = map(0, F) = 0.
This now follows from [Heu21a, Lemma B.1] : loc. cit. implies the third equality in

Red(G ◦∏
n
) ≃ Red(G ◦⨿

n
) =: crn(G) ≃ crn(G) := coRed(G ◦∏

n
)

and coRed is left adjoint to the inclusion of reduced functors, cf. [Lur12, Proposition 6.2.3.8].

Remark 5.2.10. The failure of this result when F ◦ δn is replaced with an arbitrary n-
homogeneous functor comes from the fact that such a functor is of the form (F ◦ δn)hΣn

for some symmetric F, and we cannot “pull out” the hΣn .
Let us give an interpretation in terms of co-Goodwillie derivatives which will come up

again later in Section 5.4. For simplicity we focus on m = 1. In this case, P1(F ◦ δn)hΣn is
always very explicit: it is given by X 7→ limk ΣkF ◦ δn(ΩkX).

It turns out that each of the maps Σk+1(F ◦ δn)(Ωk+1X) → Σk(F ◦ δn)(ΩkX) is nullhomo-
topic, as they are essentially given by the diagonal S1 → Sn. But they are not Σn-equivariantly
nullhomotopic (they are essentially Euler maps), and so taking orbits can break the 0-ness of
the limit, and this is indeed what often happens (e.g. in Theorem 5.4.11). ◁

We also have all the tools at hand to prove the multiplicative part of Theorem H:

Proof of the multiplicative part of Theorem H. Using the equivalence between commutative al-
gebras for the Day tensor product and lax symmetric monoidal functors, we can rewrite
End⊗(THH) as MapCAlg(THH, THH).

By adjunction, and by Corollary 5.2.4, this is the same as

MapCAlg(THH)(THH⊗Day THH, THH) ≃ MapCAlg(THH)(THHS1
, THH)

Finally, using Corollary 5.1.12, the latter is equivalent to MapCAlg(Sp)(S
S1

, S), as claimed. In
the proposition below, we describe the latter mapping space as claimed in Theorem H - let
us point out that this proof no longer has anything to do with THH.

Proposition 5.2.11. The space MapCAlg(Sp)(S
S1

, S) is a disjoint union of circles. Its π0 is Ẑ,
the profinite integers.

The proof of this fact relies on two facts, an easy one in rational homotopy theory, and
Mandell’s theorem in p-adic homotopy theory:
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Lemma 5.2.12. Let R be a commutative Q-algebra in Sp. The commutative R-algebra RS1
is

free on a generator in degree −1.

Proof. It suffices to prove it over Q. As a Q-module, QS1 ≃ Q⊕ΩQ, so it receives a map from
the free commutative Q-algebra on ΩQ. The latter is, as a Q-module,

⊕
n((ΩQ)⊗n)hΣn . Now

as a Σn-module, (ΩQ)⊗n is a copy of the sign representation in degree −n, which has no
coinvariants and no higher homology (as we are over Q and Σn is finite), and hence simply
vanishes.

And now the difficult result:

Theorem 5.2.13 (Mandell). Let X be a finite nilpotent space. The canonical map induces an
equivalence

Xp ≃ MapCAlg(Fp)
(Fp

X , Fp)

where Xp denotes the p-completion of X.

Corollary 5.2.14. Let X be a finite nilpotent space. There is an equivalence

L(Xp) ≃ MapCAlg(Fp)
(FX

p , Fp)

where LY := Map(S1, Y) is the free loop space on Y.

Proof. This follows from Theorem 5.2.13 by Galois descent, as the Galois action on
MapCAlg(Fp)

(Fp
X , Fp) is trivial on Xp

7 and thus the fixed points for it are just L(Xp).

Remark 5.2.15. For X = S1 (which is the universal case up to p-adic completion), this implies
that π0 MapCAlg(Fp)

(FS1
p , Fp) ∼= Zp. I do not really know how to describe these morphisms in

a concrete way, how to “name” them. This lack of concreteness permeates through the later
calculations and so I am essentially unable to “name” the elements of π0 Map(SS1

, S) ∼= Ẑ

except for 0. ◁

Proof of Proposition 5.2.11. We use the arithmetic fracture square for S. Writing
A f := (∏p Zp)Q for the finite adèles, we have a pullback square of commutative algebras:

S ∏p Sp

Q A f

so that, using adjunction in each of the mapping spaces, we have a pullback square

Map(SS1
, S) ∏p Map(SS1

p , Sp)

Map(QS1
, Q) Map(AS1

f , A f )

By Lemma 5.2.12, the bottom map is simply BQ→ BA f .

7It is trivial because the map from Xp to the mapping space in Theorem 5.2.13 is an assembly map which is clearly
Galois equivariant.
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By [Lur11, Theorem 2.4.9], basechange further induces an equivalence8

Map(SS1
p , Sp) ≃ Map(FS1

p , Fp) which, by Corollary 5.2.14 is L(S1)p ≃ ⨿Zp(S
1)p.

Using basechange along Zp → W(Fp) one finds that for a given p, all the maps (S1)p →
BA f indexed over Zp are the same map. Thus we find that the pullback can be computed as:

Map(SS1
, S) ∏p L(BZp)

BZ ∏p B(Zp)

BQ BA f

The top right vertical map is a fold map of the form ⨿∏p Zp ∏p BZp → ∏p BZp by dis-
tributivity of products over coproducts, and hence the top left vertical map, as a pullback
thereof, is also a fold map and hence map(SS1

, S) ≃ ⨿∏p Zp BZ . The claim then follows as

Ẑ ∼= ∏p Zp.

Remark 5.2.16. I am not sure whether this is the right perspective to have, but the “weird
result” coming out of this calculation seems to stem from the following strikingly different
behaviour of certain cochain algebras over Q and over Fp: in characteristic 0, the presentation
of C∗(X; R) as an E∞-ring is essentially independent of R’s arithmetic, while in characteristic
p, properties such as algebraic closure seem to affect the presentation quite a bit. ◁

5.3 Endomorphisms over a base
In this section, we extend the calculation from Theorem 5.2.7 to THH(−/k), that is, THH
relative to a base commutative ring spectrum k. A surprising feature of this calculation is that
while for classical rings such as k = Fp, one can phrase the question entirely algebraically, the
answer turns out to involve THH(k). We only state and prove the following result for plain
endomorphisms, but the method is simple enough that the other variants from the previous
section can also easily be calculated:

Corollary 5.3.1. Let k be a commutative ring spectrum. When regarded as a functor
Catperf

k → Sp, the endomorphism spectrum of THH(−/k) is

mapTHH(k)(k, k)[S1]

When regarded as a functor Catperf
k → Modk, it has the following endomorphism k-algebra:

mapk⊗THH(k)(k, k)[S1]

Remark 5.3.2. We provide both calculations here, for the following reason: on the one hand,
when k is a classical ring, the second endomorphism spectrum is clearly a purely algebraic
gadget, as both Catperf

k and Modk are; and this showcases the appearance of THH(k) in this
purely algebraic question.

8See [Yua23, Corollary 7.6.1] to see how to deduce this from the given reference.
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On the other hand, one could argue that the k-linear structure is “overdetermined” by
putting it both in the source and the target which could explain the appearance of THH -
e.g., as it does in FunL(ModZ, ModZ) as opposed to FunL(ModZ, Sp). The first calculation
shows that this is not the case: even removing this over-determinacy, the answer involves
THH(k). ◁

Proof. We prove the second variant, the first variant works the same by replacing the word
“(k, THH(k))-bimodule” with “right THH(k)-module”.

The idea for this calculation is that THH(−/k) ≃ k⊗THH(k) T̃HH, where

T̃HH : Catperf
k → ModTHH(k)

is THH of the underlying stable ∞-category equipped with its THH(k)-action; and that this
expression is well-defined for any (k, THH(k))-bimodule in place of k.

So let M be such a bimodule, and let us instead try to prove more generally that there is an
equivalence

Mapk(M⊗THH(k) T̃HH, THH(−/k)) ≃ Mapk⊗THH(k)(M, k)[S1]

For this, we note that M 7→ M⊗THH(k) T̃HH is a functor, and thus (using the S1-action on
THH(−/k)) we have a canonical map

Mapk⊗THH(k)(M, k)[S1]→ Mapk(M⊗THH(k) T̃HH, THH(−/k))

and the claim is that this map is an equivalence. But now both sides clearly send colimits in
the M variable to limits, and so we are reduced to the case M = k ⊗ THH(k)9, where this
map is the canonical map

k[S1]→ MapSp(THH ◦Uk, THH(−/k))

where Uk : Catperf
k → Catperf is the forgetful functor.

By adjunction nonsense, this last mapping spectrum is simply

MapSp(THH, THH(−/k) ◦ (k⊗−)) ≃ MapSp(THH, k⊗ THH) ≃ k[S1]

by Theorem 5.2.7 (and the claim, in the proof, that
Map(THH, X ⊗ THH) ≃ X ⊗ Map(THH, THH)).

One checks, e.g. using k-linearity and compatibility with the S1-actions, that the map
k[S1]→ k[S1] thus obtained is the identity, and thus we are done.

Example 5.3.3. Let k be a (classical) perfect field of characteristic p. In this case, by Bökstedt
periodicity (see e.g. [KN22]), we have a presentation of k as a THH(k)-module, or as a k ⊗
THH(k)-module, so we can actually compute these mapping spectra quite explicitly.

Indeed, letting σ ∈ π2THH(k) denote the Bökstedt element, we have π∗THH(k) ∼= k[σ], a
polynomial algebra. Thus k ≃ THH(k)/σ as a THH(k)-module, and so

mapTHH(k)(k, k)[S1] ≃ fib(k 0−→ Ω2k)[S1] ≃ (k⊕Ω3k)[S1]

and we find, on top of the expected k[S1], a degree −3-generator (plus the S1-action).

9For the first variant, we are reduced to the right THH(k)-module THH(k) itself.
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The calculation as bimodule is only a bit more involved:

mapk⊗THH(k)(k, k) ≃ mapk(k⊗k⊗THH(k) k, k)

Using the universal property of THH(k) as a commutative algebra, we find that k⊗k⊗THH(k)
k ≃ THH(k)⊗ (k⊗THH(k) k), and using now Bökstedt’s equivalence THH(k) ≃ k[ΩS3], we
find k⊗THH(k) k ≃ k[S3], so that, in total,

mapk⊗THH(k)(k, k) ≃∏
n
(Ω2nk⊕Ω2n+3k)

To get k-linear endomorphisms of HHk, one simply adjoins [S1] to this. ◁

Remark 5.3.4. In the previous examples, it is not clear to me what the extra operations “do”.
Similarly to the situation in Remark 5.2.15, I do not know how to “name” them, and it would
probably be worthwhile to spend time figuring out what these operations do, or are. ◁

5.4 Operations on THH of O-algebras
The goal of this section is to initiate the study of endomorphisms of THH viewed as a functor
AlgO(Catperf)→ Sp, that is, to study the extra operations that arise on THH(C) when C has a
particular kind of multiplicative structure encoded by a one-colored ∞-operad O. Our main
result in this section is Theorem J.

As is clear from the statement of Theorem J, the case of endomorphisms of THH viewed as
a functor on AlgO(Catperf) is more subtle.

We first describe the general approach to this question, and then specialize to get the pre-
cise results that we mentioned.

We let U : AlgO(Catperf) → Catperf denote the forgetful functor, with a left adjoint F such
that UF ≃ ⊕

n(O(n)⊗ (−)⊗n)hΣn [Lur12, Proposition 3.1.3.13].
The idea now is that by general adjunction nonsense,

MapFun(AlgO(Catperf),Sp)(THH ◦U, THH ◦U) ≃ MapFun(Catperf,Sp)(THH, THH ◦UF)

and so we are “left with” understanding THH ◦UF.
For this, we compute each of the individual terms of

THH ◦UF =
⊕

n
THH((O(n)⊗ (−)⊗n)hΣn)

Proposition 5.4.1. Let O be a space with a Σn-action. There is an equivalence, natural in
C ∈ Catperf:

THH((O⊗ C⊗n)hΣn) ≃
⊕

σ∈Σn/conj

(Oσ ⊗ THH(C)⊗n(σ))hC(σ)

where for σ ∈ Σn, n(σ) is the number of cycles appearing in σ, C(σ) is the centralizer of σ in
Σn and Oσ = L(OhΣn)×LBΣn {σ} with its residual C(σ)-action10.

Remark 5.4.2. The action of C(σ) on THH(C)⊗n(σ) is a bit subtle to describe. Part of the point
here is that there is a functor SpBS1 → SpBC(σ) of the form X 7→ X⊗n(σ) such that the above is
obtained by applying it to THH(C) with its S1-action.

10Here, L denotes the free loop space, i.e. Map(S1,−).
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In extreme cases, the action is easier to describe: if σ = 1 is the trivial permutation,
n(σ) = n, C(σ) = Σn, and the action is simply given by the permutation action. If σ is
the11 length n cycle, n(σ) = 1 and C(σ) is generated by σ, i.e. a cyclic group of order n, and
the action in this case is given by restricting the S1-action. ◁

Given the above remark, we cannot be too precise about the C(σ)-action for general σ ∈ Σn,
and the specifics we will need about this formula are the following:

Proposition 5.4.3. Let O be a space with a Σn-action. There is an equivalence, natural in
C ∈ Catperf:

THH((O⊗ C⊗n)hΣn) ≃ (OCn ⊗ THH(C))hCn ⊕ F(C)

where the Cn-action on OCn ⊗ THH(C) is diagonal, the one on THH(C) being restricted
from S1, and such that C 7→ F(C) factors through Motloc and is a (finite) direct sum of k-
homogeneous functors, 1 < k ≤ n.

The main tool for this proposition is [CCR+23, Corollary 7.15], which we recall for conve-
nience of the reader. We specialize it to the relevant context. In the notation of that paper,
this means setting C = Sp. See also Section 4.2.2 for the comparison between Tr, as used in
[CCR+23] and THH, as used here.

Definition 5.4.4. Let A be a space and ζ : A → PrL
st be a functor with values in dualizable

objects12, and let χζ : LA→ Sp denote the functor

γ 7→ THH(ζ(γ(0)); ζ ◦ γ)

◁

Theorem 5.4.5 ([CCR+23, Corollary 7.15]). Let A be a space and ζ : A → PrL
st be a functor

with values in dualizable objects. The colimit colimAζ is still dualizable, and there is a natural
equivalence:

THH(colimAζ) ≃ colimLA(χζ)

We need two more trace-calculations. The first is the trace of a permutation:

Lemma 5.4.6. Fix σ ∈ Σn for some n ≥ 0, and let C be a symmetric monoidal ∞-category
and x ∈ C a dualizable object. There is an equivalence

tr(x⊗n; σ) ≃ dim(x)⊗n(σ)

where n(σ) is the number of cycles in σ, in End(1C ).
Furthermore, if σ is a length n cycle, the C(σ) = ⟨σ⟩-action on the right, induced by func-

toriality in LBΣn, is mapped to the Cn ⊂ S1-action on dim(x) (which is dim(x)⊗n(σ) since
n(σ) = 1).

Proof. First, we note that the pair (x⊗n, σ) decomposes as a tensor product over the cycles
in σ of terms of the form (x⊗ℓ, Cℓ) for each cycle Cℓ in σ13. Therefore it suffices to identifty
tr(x⊗n; Cn) where Cn is the length n cycle.

11There is only one up to conjugacy.
12For our purposes, the reader can replace this with compactly generated ∞-categories, or equivalently think of a

functor A→ Catperf.
13Though this decomposition is not natural in σ ∈ LBΣn, there we would have to worry about cycle types too.
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By [Har12]14, the one-dimensional cobordism ∞-category Cob1 is the universal symmetric
monoidal ∞-category on a dualizable object, thus the calculation of the trace and the C(σ)
-action can be performed entirely there.

Let 1+ denote the universal dualizable object in Cob1, 1− its dual, and n+ := (1+)⊗n (sim-
ilarly for n−). Recall that End(1Cob1) = ⨿n(BS1)n

hΣn
is given by the space of 1-dimensional,

closed oriented manifolds, i.e. disjoint unions of oriented circles. So, to identify the object
tr(n+, Cn) as a manifold it suffices to identify its number of connected components.

Recall that the cobordism representing the coevaluation looks as follows (we read our
cobordisms from left to right):

and the cobordism representing the evaluation looks like:

The manifold representing tr(n+, Cn) is obtained by taking the cobordism representing
Cn from n+ to itself, the one representing id from n− to itself, and adding evaluations and
coevaluations.

We let (i±, 0), i ∈ {0, n− 1} denote the endpoints in the source, (i±, 1) denote the endpoints
in the target. By definition, (i+, 0) is related by the cobordism to (σ(i)+, 1); this is in turn
related by the evaluation to (σ(i)−, 1), which is related by the id-cobordism to (σ(i)−, 0)
which, finally, is related by the coevaluation to (σ(i)+, 0).

Since σ = Cn is transitive (by definition of cycle!) it follows that all the points (i+, 0)
are connected. Continuing this argument shows that all points are connected, and thus
tr(n+, Cn) ∈ End(1Cob1) is a connected manifold, i.e. the circle, i.e. dim(1+).

Here is a pictorial example:

14Harpaz gave a full proof of the one dimension cobordism hypothesis, previously sketched in all dimensions by
Lurie in [Lur08].
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We now need to identify the Cn-action on this circle. The proof that it is as we claim is not
so difficult, but it takes up a bit of space. As it is mostly unrelated to the rest of the section,
we defer it to Appendix C, specifically see Proposition C.0.2.

Corollary 5.4.7. Let B be a symmetric monoidal (∞, 2)-category. The functor Bdbl → End(1B)
given by b 7→ tr(b⊗n; σ) is naturally equivalent to

b 7→ dim(b)⊗n(σ)

For σ = Cn being the length n cycle, the induced Cn-action is restricted from the S1-action
on dim(x).

Proof. Using naturality of the Ω-construction in [HSS17, (2.7)], we find that this functor is
given by

Fun⊗colax(Frrig(pt), B)→ Fun⊗colax(ΩFrrig(pt), ΩB) ev−→ ΩB

where ev is evaluation at tr(x⊗n; σ) ∈ ΩFrrig(pt), where x is the universal dualizable object.
But now this trace has been computed in Lemma 5.4.6, and is indeed dim(x)⊗n(σ). The claim
follows.

And second, we need a calculation of traces on ∞-categories of local systems in PrL:

Lemma 5.4.8. Let X : A → S be a local system of spaces, and consider the induced local
system SX : A → PrL. This has dualizable values, and the corresponding χX is given by the
local system LA→ S whose unstraightening is L(colimAX)→ LA, that is,

γ 7→ Xγ

where Xγ is the fixed points for the Z-action on X induced by γ, or equivalently the global
sections Γ(S1, colimAX×A S1).

Proof. Let
∫

X := colimAX for simplicity of notation, with its map p :
∫

X → A.
Note that by un/straightening, X = p!pt, where pt :

∫
X → S is the constant local

system. Thus, in terms of functors PrL[A] → PrL, letting p∗ denote the right adjoint to
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p!, we find that the functor PrL[A] → PrL induced by SX is equivalent to the composite

PrL[A]
p∗−→ PrL[

∫
X]

r!−→ PrL,where r :
∫

X → pt is the unique map.
Thus, passing to PrL-linear traces15 and using (an obvious generalization of) [CCR+23,

Proposition 7.14]16 we obtain that χX is the composite:

S [LA]
(Lp)∗−−−→ S [L(

∫
X)]

Lr−→ S

This implies the desired claim under un/straightening.

With these two facts in mind, we can give:

Proof of Proposition 5.4.3, Proposition 5.4.1. By Theorem 5.4.5, we have

THH((O⊗ C⊗n)hΣn ≃ colimσ∈LBΣn THH(O⊗ C⊗n; σ)

≃ colimσ∈BCn THH(O⊗ C⊗n; σ)⊕ colimσ∈LBΣn |n(σ)>1THH(O⊗ C⊗n, σ)

Now σ acts diagonally on O and C⊗n, so each of these terms splits as a colimit of
THH(O; σ) ⊗ THH(C⊗n; σ).

The second summand is therefore a colimit of terms of the form X⊗THH(C)⊗k, 1 < k ≤ n
by Corollary 5.4.7 and is therefore indeed a sum of homogeneous functors of (varying) de-
grees 1 < k ≤ n.

The first summand is, again by Corollary 5.4.717 and by Lemma 5.4.8, of the form
(Oσ ⊗ THH(C))hCn , as was to be proved.

Putting things together, we obtain:

Corollary 5.4.9. Let O be a single-colored operad and F : Catperf ⇌ AlgO(Catperf) : U the
free-forgetful adjunction. There is a natural equivalence:

THH ◦UF ≃
⊕
n≥0

⊕
σ∈Σn/conj

(O(n)σ ⊗ THH(C)⊗n(σ))hC(σ)

From this we can see how to approach the question of endomorphisms of THH ◦U, and
we can also see the relevant difficulties: we have already understood endomorphisms of
THH, and we see that we “simply” need to understand maps from THH to (say in the case of
O = Comm) THHhCn , Cn ⊂ S1 a cyclic group, and maybe variants involving tensor powers.

These variants are of higher polynomiality degree than THH itself, and so one might expect
there to not be maps from THH to them, thus leading to a (potentially) simple expression.

Three problems arise:

(i) First, this is not quite right in general: there can a priori be maps from a homogeneous
functor of degree n to a homogeneous functor of degree m > n - if the symmetric m-
linear functor corresponding to the latter has an induced symmetric structure, then this
in fact does not happen, but here the homotopy orbits by C(σ) prevent that from being
the case, except for very special operads O. Another place where this does not happen
is in chromatically localized contexts, as was first observed by Kuhn in [Kuh04];

15The reader uncomfortable with set theory may pass to PrL
κ for κ sufficiently large, this does not change anything

to the argument.
16The proof of this uses nothing specific to maps A → pt: it only uses [CCR+23, Theorem 4.34] which is stated in

full generality.
17Note that by Remark 4.2.68, the S1-action on Tr(C), which is used in Corollary 5.4.7, agrees with that on THH(C).
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(ii) The second problem is that we have an infinite direct sum in the target of our mapping
spectrum, and this can cause issues a priori both with the homogeneity phenomenon
observed above, but also with computing the actual mapping spectrum once we’ve
removed the “high degree” terms. This will turn out to be solved also in the chromatic
context, because of a “quick convergence” phenomenon for Goodwillie derivatives in
that context, a phenomenon recorded by Heuts in [Heu21b] (though he attributes it to
Mathew);

(iii) Finally, it turns out to be difficult to compute maps from THH to THHhCn . Among
other things, the reason for this is that THHhCn is simply not a module over THH, and
so the tools we have developped so far are not great for this purpose. The same “quick
convergence” phenomenon mentioned above will turn out to save us here again in the
chromatic context, though we end up also being able to compute this integrally.

These three problems, and their chromatically localized fixes are the reason our results in
this section look the way they do, and are only partial. We point out that there are in fact
subtleties in the integral context, and that the answer we get in the chromatic world does not
generalize verbatim to the integral context (thus, it is not only that our proof is not optimal,
but that the answer is more complicated):

Observation 5.4.10. Let p be a prime number. There is a nonzero natural transformation
THH→ ΣTHHhCp , given by the composite

THH
φp−→ THHtCp → ΣTHHhCp

where the first map is the cyclotomic Frobenius, and the second is the attaching map for the
fiber sequence defining the Tate construction.

This is nonzero e.g. because it is also the attaching map for the fiber sequence defining
(p-typical) TR2, which in general does not split as THH⊕ THHhCp . ◁

In fact, the partial splitting result from Theorem J will show that this nonzero transforma-
tion participates nonzero-ly to the endomorphism spectrum

endFun(CAlg(Catperf),Sp)(THH ◦U, THH ◦U)

in the case O = Comm, thus leading to genuinely new operations, not predicted e.g. by the
chromatic case, or by the Z-linear case explored in [Kla15]. In fact, we can fully compute
each mapping spectrum map(THH, THHhCn) and see that the above operations essentially
“generate” it:

Theorem 5.4.11. Let n ≥ 2 be a prime number. The mapping spectrum map(THH, THHhCn)
is equivalent to

S[S1/Cn]⊕
⊕

p|n, prime

ΩSp[S1/Cp]

where the first factor is mapped into isomorphically by map(THH, THH)hCn along the as-
sembly map, and where the degree −1 generators correspond to the Frobenius morphisms
described above.

I wish to thank Achim Krause for an enlightening discussion that allowed me to prove this
result.

Before we get into the proof, we need a computation of THH(Ak) which is suitably nat-
ural. We let T : Sp → Alg(Sp) denote the left adjoint to the forgetful functor, i.e. the free
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(associative) algebra functor18. This is a canonically augmented algebra, since T(0) = S, and
for a functor F : Alg(Sp)→ E with values in some stable ∞-category, we let F̃(T(M)) denote
the complementary summand to F(S) = F(T(0)).

Proposition 5.4.12. There is a natural equivalence

T̃HH(T(M)) ≃
⊕
d≥1

IndS1

Cd
M⊗d

where: M⊗d has a Cd-action by permutation, and IndS1

Cd
is left adjoint to the restriction functor

SpBS1 → SpBCd .

Proof. This follows from combining [LT23, Theorem D] and [Ras18, Proposition 3.2.2, Propo-
sition 4.5.1]19 and noting that THH(S, N) ≃ N naturally in N.

Proof of Theorem 5.4.11. We first note that, as a spectrum with S1-action coming from
the target, map(THH, THH) ≃ S[S1] has an induced S1-action, so the norm map
map(THH, THH)hCn → map(THH, THH)hCn is an equivalence.

Since it factors through (via assembly and coassembly) the norm map
map(THH, THHhCn) → map(THH, THHhCn) ≃ map(THH, THH)hCn , it follows that
map(THH, THHhCn) admits map(THH, THH)hCn as a summand.

We now move on to the explicit calculation of the extra summand. By Corollary 5.1.10,
there is an equivalence

map(THH, THHhCn) ≃ lim
k

Σk(THH(Ãk)hCn)

and recall from Proposition 5.4.12 that

THH(Ãk) ≃
⊕
d≥1

IndS1

Cd
(ΩkS)⊗d)

Remark 5.4.13. We make a digression to mention that without hCn , this inverse limit is easy
to deal with: the map Σk+1(Ωk+1S)⊗d → Σk(ΩkS)⊗d is null whenever d ≥ 2, and thus the
whole inverse system is Z-equivariantly nilpotent of order 2, where Z acts via picking a gen-
erator Z → Cd. Since the underlying object of IndS1

Cd
X is XhZ for X ∈ SpBCd , it follows from

Lemma 5.4.21 that this inverse limit is equivalent to the inverse limit of the d = 1 summand,
which is a constant diagram. This is another way of proving that map(THH, THH) ≃ S[S1],
but will also be relevant in a second.

The difficulty now is that for THHhCn , we have to take into account the Cn-equivariance,
and the map Σk+1(Ωk+1S)⊗d → Σk(ΩkS)⊗d is not Cd-equivariantly null in general. ◁

Now, using a basechange formula, we obtain that for d, k ≥ 1,

(IndS1

Cd
X)hCn ≃ Xh(Cd∧n×Z)

where the Z×Cd∧n-action on X is induced by the map Z×Cd∧n → Cd which is the inclusion
on the right factor, and picks out a generator on the left factor - we use a∧ b to denote the gcd
of a and b.

18T stands for “tensor algebra”.
19Note that Raskin uses Ind to denote the right adjoint to the forgetful functor. However, they differ by a shift Σ,

and this is accounted for by the motivic pullback square from [LT23]
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Let us point out that Z-orbits are given by a colimit over S1, i.e. a finite colimit, and
therefore commute with the limit term.

So all in all we are considering the limit of (
⊕

d≥1 Σk(S⊗dk)hCd∧n
)hZ. It is not hard to check

that the maps Σk+1((S⊗d(k+1))hCd∧n
)→ Σk((S⊗dk)hCd∧n

) are Cd∧n-orbits of Euler maps for the
standard representation Rd of Cd∧n.

If d ∧ n < d, then Rd admits a more than 1-dimensional fixed point space for Cd∧n, and
thus this Euler map is Cd∧n-equivariantly nullhomotopic. It follows that the limit is the same
as the limit taken over the d’s for which d ∧ n = d, i.e. d | n.

Thus we are dealing with finite sums and can stop worrying about commuting limits and
finite sums and focus on each

lim
k

Σk((ΩkS)⊗d)hCd
, d | n

(again, the Z-orbits commute with the inverse limit, so we will deal with them later).
We claim that these are 0 whenever d is not 1 or prime, and ΩSp whenever d = p is

prime. The term corresponding to d = 1 comes from map(THH, THH)hCn , by Remark 5.4.13,
and therefore we can also focus on the case where d is not 1. Once this is proved, we will
be done: the only nonzero terms correspond to the primes dividing n, they are given by
(ΩSp)hZ ≃ ΩSp[S1/Cp]20, as claimed.

Let us prove the second fact, i.e. the case of d = p being prime: in this case, the map

Σk((ΩkS)⊗p)hCp → Σk((ΩkS)⊗p)hCp

has Σk((ΩkS)⊗p)tCp as a cofiber. Since X 7→ (X⊗p)tCp is an exact functor by [NS18, Proposi-
tion III.1.1], we find that the cofiber, as a Nop-indexed diagram, is equivalent to the constant
diagram at StCp , which is equivalent to Sp by the Segal conjecture, a theorem of Gunawardena
[Gun80] (at odd primes) and Lin [Lin80] (at p = 2).

Since limk Σk((ΩkS)⊗p)hCp ≃ (limk(ΩkS)⊗p)hCp = 0, the result follows. The latter equality
comes from the fact that the maps in the system are non-equivariantly trivial, and hence the
limit is trivial before taking homotopy fixed points, therefore it is also trivial after taking
homotopy fixed points.

Our proof of the first fact, namely the vanishing of the inverse limit for d composite pro-
ceeds differently depending on whether d is a prime power or has different prime factors.

The key input will be the following easy observation: for any proper subgroup Ca ⊂ Cd,
Rd, viewed as a Ca-representation, has a fixed point space of dimension > 1 and thus the
associated Euler map is Ca-equivariantly nullhomotopic.

The case of several prime factors: We consider more generally the Euler map for a spec-
trum M:

Σ(ΩM)⊗d → M⊗d

So let a, b be coprime integers > 1 such that ab = d. Using the associated fracture square,
we may assume that either a or b is invertible. If b is invertible (say, the argument is symmet-
ric), then we use the above fact to obtain that the induced map

(Σ(ΩM)⊗d)hCa → (M⊗d)hCa

is null, and b acts invertibly on both terms. Thus, it is also Cb-equivariantly null, and so in
total, the map

(Σ(ΩM)⊗d)hCd
→ (M⊗d)hCd

20The /Cp does not affect the homotopy type, but is here to remember the specific S1-action. The fact that it is given
exactly as that one can be recovered by remembering where this (−)hZ came from. Since we will not specifically
need this S1-action, we do not give more details.
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is null, which implies that the inverse limit is 0.
The case of a prime power: Say d = ps, s > 1. In this case, we use the Tate orbit lemma

[NS18, Lemma I.2.1]. An immediate corollary of this is that for X bounded below with a

Cps -action, we have (XhCps−1 )
tCps /Cps−1 = 0. A way to rephrase this is that the norm map

XhCps = (XhCps−1 )hCps /Cps−1 → (XhCps−1 )
hCps /Cps−1

is an equivalence.
In particular, we obtain

(lim
k

Σk(ΩkS)⊗ps
)hCps = lim

k
Σk(((ΩkS)⊗ps

)hCps−1 )
hCps /Cps−1 = (lim

k
Σk((ΩkS)⊗ps

)hCps−1 )
hCps /Cps−1

and it suffices to prove that the inner term is 0. But now Cps−1 is a proper subgroup of Cps so
the Euler maps are again Cps−1 -equivariantly null, and thus the inner term is indeed 0.

Remark 5.4.14. Let us point out that in the last part of this proof, the composite case and the
prime power case have qualitatively different proofs: in the composite case, we essentially
obtain that the relevant inverse system is nilpotent, because nilpotent inverse systems are
closed under pullback; whereas in the prime power case we only get that the inverse limit is
0. It seems likely that the inverse system is actually not pro-zero. ◁

We can also use this result to study the independently interesting question of the unique-
ness of cyclotomic Frobenii on THH. Indeed, maps from THH to THHhCp are easily com-
putable. We obtain:

Corollary 5.4.15. The spectrum map(THH, THHtCp) is equivalent to Sp[S1/Cp], and in par-
ticular the spectrum of S1-equivariant maps THH→ THHtCp is equivalent to Sp.

Proof. This follows from Theorem 5.4.11 and the fact that

map(THH, THHhCp) ≃ map(THH, THH)hCp

Similarly, and using the same methods as for the proof of the multiplicative part of Theo-
rem H, we obtain:

Corollary 5.4.16. The space of lax symmetric monoidal transformations
Map⊗(THH, THHtCp) is equivalent to MapCAlg(Sp)(S

S1
, Sp), which is in turn equivalent to

Map(S1, S1
p), where S1

p is the p-complete circle.

Before moving on to proofs of the general results about O-algebras, we point out one final
thing: our methods, both for the partial result in the integral case, and the full result in the
chromatically localized context, extend to “computing” (with the same caveats) mapping
spectra between (pointwise) tensor powers of THH. However, the expression of our answer
there is more complicated, and still only partial, thus we refrain from stating and proving it,
as the methods are exactly the same.

We now move on to the proofs. We start with the integral version, which we can prove
right away with no further preparation:
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Proof of (i) in Theorem J. The map we construct is the following : for each n, we pick the inclu-
sion of the length n-cycle γn in Σn and produce the following composite:

S[O(n)γn × S1]hCn ≃ map(THH,O(n)γn ⊗ THH)hCn

→ map(THH, (O(n)γn ⊗ THH)hCn)→ map(THH, THH ◦UF)

≃ map(THH ◦U, THH ◦U)

where the map (O(n)γn ⊗ THH)hCn → THH ◦UF is the summand inclusion from Proposi-
tion 5.4.1.

To prove that each finite direct sum of these inclusion splits, we give the argument for each
summand for simplicity of writing, but it clearly extends to the general case, e.g. by using
norm maps for non-connected groupoids.

The point is that the last maps involved in this composite split because of the computation
of THH ◦UF from Proposition 5.4.1, while the assembly map from the Cn-orbits outside to
the Cn-orbits inside is split by the norm map (it is the same argument as in the beginning of
the proof of Theorem 5.4.11: if F is a functor that preserves limits, and F(x)hCn → F(x)hCn is
an equivalence, then the assembly map F(x)hCn → F(xhCn) splits).

We now move on to the chromatically localized picture. The key piece of intuition here is
the following result, which is a corollary of (a suitably generalized version of) Kuhn’s [Kuh04,
Theorem 1.1]:

Corollary 5.4.17. Let E be a cocomplete T(n)-local stable ∞-category, where n ≥ 0, and
C be stable ∞-category. For any m0 < m1, any mi-homogeneous functors Fi : C → E ,
Map(F0, F1) = 0.

Remark 5.4.18. In the other direction, note that the definition of m1-homogeneous includes
(m1 − 1)- and thus m0-reduced, so that Map(F1, F0) = 0 is clear. We note that this direction
is simply not true without T(n)-localization, as the existence of k-excisive functors that do
not split as sums of homogeneous ones shows (e.g. norm functors in equivariant homotopy
theory, or more classically derived symmetric/exterior powers functors). ◁

Kuhn’s proof is more direct21, but we give a proof in terms of Proposition 5.4.19 which we
will need later anyways.

Proof. By Proposition 5.4.19, for any finite type n spectrum V, V ⊗ Pm0 F1 = 0, where Pm0

denote the m0th co-Goodwillie derivative.
Since E is T(n)-local, it follows that Pm0 F1 = 0, and thus

Map(F0, F1) = Map(F0, Pm0 F1) = 0

As we mentioned before, this corollary will in fact not quite cut it because of the presence
of infinite direct sums in our considerations.

The point is that (as “our” proof shows) we can reinterpret this statement as a vanishing
statement for the m0-th co-Goodwillie derivative22 of F1, something which involves infinite
inverse limits (as Goodwillie derivatives involve infinite colimits), which thus do not com-
mute a priori with the relevant colimits. The idea, and the point where T(n)-localization

21The way to deduce this from Kuhn’s result is to take a map F0 → F1 and consider its cofiber. Kuhn’s splitting
result implies that it splits off ΣF0 and thus the map F0 → F1 must have been 0.

22Or Goodwillie coderivative ?
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will again be relevant, is that in fact the vanishing of this co-Goodwillie derivative happens
quickly: the relevant inverse limits, rather than simply being 0, are pro-zero, which allows us
to get the corresponding result for infinite colimits.

Let us briefly explain the idea that will allow us to deal with these infinite colimits, in
the (much) simpler special case of m0 = 1, so that F0 is an exact functor, and n = 0 so that
T(n)-local means rational.

In that case, the first co-Goodwillie derivative of F1 is given by the inverse limit
limn ΣnF1(Ωn−). Now, F1 being m1-homogeneous is of the form ( f1 ◦ δn)hΣn for some sym-
metric n-linear functor f1 [Lur12, Proposition 6.1.4.14], and we note that each of the transition
maps Σ f1(ΩX1, ..., ΩXm1) → f1(X1, ..., Xm1) is nullhomotopic, because they are (dual to) the
diagonal map S1 → (S1)∧n = Sn. However, they are not Σn-equivariantly null in general.
Rationally, though, they are because null implies equivariantly null for a finite group over a
rational base.

Thus the relevant inverse system is even more than pro-zero: all of the transition maps are
0.

Moving to a higher m0 and possibly a higher height, this is no longer true, but the pro-zero-
ness persists, although the argument is more involved. This is explicitly recorded in [Heu21b,
Appendix B], where Heuts attributes it to Akhil Mathew. For this statement to make sense,
recall from [Lur12, Construction 6.1.1.27] that n-excisive approximations are given as certain
explicit sequential colimits of finite limits - thus, dually, the n-excisive coapproximation PnF
of a functor F is given as a sequential limit of a certain inverse system. In the following
statement, it is this inverse system we call “the inverse system computing PnF”:

Proposition 5.4.19 ([Heu21b, Appendix B]). Let n ≥ 0, V a finite type n spectrum and let
k ≥ 0 be an integer. There is a constant C such that for any m > k and any m-homogeneous
functor F : D → E from a stable ∞-category D to a cocomplete stable ∞-category E , the
inverse system computing V⊗ PkF, the k-th co-Goodwillie derivative is nilpotent of exponent
C.

Here, we used:

Definition 5.4.20. Let I be a cofiltered ∞-category, and A• : I → E be a diagram with values
in a pointed ∞-category. A• is called nilpotent of exponent N if for every sequence of N
composable non-identity morphisms i0 → ...→ iN , Ai0 → AiN is nullhomotopic. ◁

If I has an initial copy of Nop, then any nilpotent I-shaped diagram has a trivial limit (in
fact is pro-zero, but being nilpotent is stronger than being pro-zero).

But nilpotency with a uniform exponent allows for more, as the following easy observation
shows:

Lemma 5.4.21. Let J be any set, I a cofiltered ∞-category and Xj, j ∈ J a family of I-shaped
diagrams that are nilpotent of a uniform exponent C. The diagram

⊕
J Xj is also nilpotent of

degree C. In particular, if I has an initial copy of Nop, then limI
⊕

J Xj = 0.

Proof. This is clear, as direct sums of zero morphisms are 0.

We are now ready to prove the second part of Theorem J:

Proof of (ii) in Theorem J. For the duration of this proof, everything is implicitly rationalized,
or T(n)-localized for some implicit prime and some height n ≥ 1.

We recall that

mapFun(AlgO(Catperf),Sp)(THH ◦U, THH ◦U) ≃ mapFun(Catperf,Sp)(THH, THH ◦UF)
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We combine Proposition 5.4.19, Lemma 5.4.21,Corollary 5.4.9 and Theorem B.0.15 to find
that this is equivalent to

map(THH,
⊕
n≥1

⊕
σ∈Σn/conj|n(σ)=1

(O(n)σ ⊗ THH⊗n(σ))hC(σ))

Now, for every n, there is only one permutation Cn ∈ Σn with n(σ) = 1, up to conjugacy:
the length n cycle. Its centralizer is itself the length n cycle, and by Corollary 5.4.723, it acts
on THH via the canonical map Cn → S1. Thus, we get an equivalence with

map(THH,
⊕
n≥1

(O(n)γn ⊗ THH)hCn)

Now, we use Corollary 5.1.10 to rewrite this as

lim
k
(
⊕
n≥1

Σk(O(n)γn ⊗ T̃HH(Ak)hCn)

Now we use again Proposition 5.4.19, Lemma 5.4.21 and Proposition 5.4.12 to obtain

lim
k

⊕
n≥1

Σk(O(n)γn ⊗ IndS1

e ΩkS)hCn ≃
⊕
n≥1

(O(n)γn ⊗ S[S1])hCn ≃
⊕
n≥1

S[O(n)γn × S1]hCn

which was to be proved.

As explained in the beginning of this section, this proof does not work integrally: it should
be clear that we used Proposition 5.4.19 repeatedly, and this is crucially a truly chromatic or
rational phenomenon. We have, in any case, indicated in Theorem 5.4.11 that the result fails
in the integral case. I do not have a guess for what the correct answer is: it is not clear to me
whether the operations from Theorem 5.4.11 account for all the difference in the integral case,
or if the commutation between inverse limits and infinite direct sums fails badly enough that
there are other “exotic” operations.

23Though the proof really is in Proposition C.0.2.



Chapter 6

Questions and perspectives

The goal of this chapter is to record a number of questions we have not answered in the
body of this text, as well as perspectives for future research on the subjects at hand. I will
probably be thinking at the very least on-and-off about these questions, but anyone reading
this document is more than welcome to think about them on their own, and I’d be more than
happy to discuss them with them.

6.1 Trace theories
Question 6.1.1. In Theorem 4.2.11, we have classified cocontinuous trace theories. Many
variants of this classification remain open, in the polynomial direction.

(i) For any spectrum with S1-action X, (C, T) 7→ (X⊗THH(C, Tn))hCn upgrades to a fiber-
wise n-homogeneous, finitary localizing trace-theory. Are these the only examples ?

(ii) Removing the “localizing” condition in the previous item, we also find tensor prod-
ucts of trace theories of the above form with n1, ..., nk such that ∑i ni = n gives other
examples of fiberwise n-homogeneous finitary trace theories. Are they the only ones ?

(iii) Removing the “finitary” condition instead, can we relate localizing, fiberwise n-
homogeneous trace theories and exact trace theories through the Tn ?

(iv) Finally, removing all conditions but fiberwise n-homogeneity, what can we say ? In that
case, I no longer have a guess/conjecture.

◁

Question 6.1.2. Does the ∞-category PgSp of polygonic spectra from [KMN23] have a uni-
versal property from the perspective of trace theories ? ◁

6.2 Operads
In this section, O denotes an operad, such as Comm, and F ⊣ U denotes the corresponding
free-forgetful adjunction for O-algebras in Catperf.

Obviously, the partialness of Theorem J raises:

Question 6.2.1. What is

endFun(AlgO(Catperf),Sp)(THH ◦U, THH ◦U)

? What about tensor powers of THH ? ◁
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In principle, if one is able to compute, for all p, q ≥ 1,

Map(THH⊗p ◦U, THH⊗q ◦U)

one should be able to compute MapFun(AlgO(Catperf),AlgO(Sp)(THH, THH), which leads to:

Question 6.2.2. What is EndFun(AlgO(Catperf),AlgO(Sp))(THH) ?

How does it relate to End⊗−O(THH), the space of O-monoidal endomorphisms of THH?
◁

Finally, we point out that we got a formula for THH ◦ UF(C) only in terms of THH(C)
with its S1-action. This leads to the following natural question:

Question 6.2.3. Is there a monad T on SpBS1
such that THH intertwines the monad UF on

Catperf and T ?
Can we use this monad to get obstructions to the following realization problem: “Is any

commutative algebra in Motloc of the form U loc(C) for some commutative algebra C ?” ? ◁

The following is unrelated to our work in the main body of the text but is inspired by this
last question:

Question 6.2.4. Let C be a stable ∞-category. What kind of structure on K(C) is needed to
recover K(UF(C)), where K is algebraic K-theory ? ◁

6.3 Extra structure on THH
Besides its cyclotomic structure, THH admits extra structure in certain restrictive cases. For
example, when restricted to CAlg(Catperf), THH comes with the “even filtration”; and when
restricted to animated commutative rings HHZ comes with the HKR filtration.

Question 6.3.1. How do the endomorphisms we computed interact with these filtrations?
What are endomorphisms of THH, resp. HHZ when viewed as a functor to filtered spectra
? ◁

Finally, we have indicated that, while we obtain extra operations on HHk or on THH as a
symmetric monoidal functor, we do not really know what these operations are or what they do.

Question 6.3.2. How can we understand these operations on HHk, or on THH⊗ ? Are they
good for something ? ◁



Appendix A

The cyclic category

The goal of this appendix is to gather basic facts about Connes’ cyclic category Λ and related
functors and categories, which will be used in the main body of Part II. Most (if not all) of the
material here can be extracted from [NS18] or [HS19].

First, we define the paracyclic category.

Definition A.0.1. The paracyclic category Λ∞ is the full subcategory of the category of lin-
early ordered posets with a Z-action spanned by the posets isomorphic to 1

n Z with the Z-
action given by +1. ◁

Remark A.0.2. More abstractly, these are characterized as linearly ordered Z-posets such that
every element has a successor and a predecessor, such that the transitive-symmetric-reflexive
closure of the “successor” relation is the full relation; and such that x ≤ σx where σ is the
generator of Z. ◁

Notation A.0.3. For n ∈N≥0, we let [n]∞ ∈ Λ∞ denote 1
n+1 Z with the +1-action. ◁

Warning A.0.4. Our convention here (and therefore, all the later ones) differs from that of
[NS18] by a +1. While this +1 makes sense given the above formula, it is also confusing with
respect to the functor (−)∞ : ∆ → Λ∞: the formula [n] 7→ [n]∞ is much more convenient,
and since it is in this form that our convention will mostly be used, we stick to this one. ◁

Construction A.0.5. There is a functor (−)∞ : ∆ → Λ∞ sending a finite linearly ordered
poset S to Z× S with the lexicographic ordering and Z-action on the left factor. If S = [n],
this is isomorphic to 1

n+1 Z =: [n]∞. ◁

Proposition A.0.6. The functor above is initial.

Remark A.0.7. This is proved in [NS18, Theorem B.3], but it seems like their proof contains
a(n eventually fixable) mistake: in their notation, C[t, t + 1) ∩ C[s, s + 1) is often empty, and
thus does not allow for the induction to run as they do. We discuss below the necessary cor-
rections to their proof - this is based on a discussion with Tim Campion, available at [Cam],
though I believe the proof there also contains a mistake. ◁

Proof. We need to prove that for every T ∈ Λ∞, the slice C := ∆ ×Λ∞ (Λ∞)/T is weakly
contractible.

Note that for S ∈ ∆, a map S∞ → T is the same as a map S → T such that
f (max S) ≤ f (min S) + 11.

1This can be proved by noting that, as a set with Z-action, Z× S is free on S.
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Fix T = 1
n Z, and for a, b ∈ T we let C[a, b] denote the full subcategory of C spanned by

those maps f : S→ T such that f (S) ⊂ [a, b].
In particular, if b > a + 1, we have a pushout square:

C[b− 1, b− 1
n ] C[b− 1, b]

C[a, b− 1
n ] C[a, b]

since each map f : S→ T in C[a, b] either hits b and therefore must be in the top right corner,
or does not, in which case it must be in the bottom left corner.

By induction, this reduces us to the situation where b ≤ a + 1, in which case, an object in
C[a, b] is just a map S → [a, b] ⊂ T, with no extra condition: in this case, C[a, b] ≃ ∆/[a,b] has
a terminal object and hence is contractible.

Construction A.0.8. Λ∞ has a S1 = BZ-action, that is2, an endomorphism of the identity
functor simply given by the generator of the Z-action. ◁

Definition A.0.9. The cyclic category Λ is defined to be the quotient of Λ∞ by the S1-action,
namely Λ := (Λ∞)hS1 . We let π : Λ∞ → Λ denote the canonical functor. ◁

Notation A.0.10. We let [n]Λ := π([n]∞) denote the image in Λ of [n]∞.
More generally, we also let (−)Λ denote the composite functor

∆
(−)∞−−−→ Λ∞

π−→ Λ

◁

In particular, we have a fiber sequence of ∞-categories:

Λ∞ Λ

pt BS1

This allows us to compute mapping spaces in Λ:

Lemma A.0.11. Let n, m ∈N≥0. The mapping space MapΛ([n]Λ, [m]Λ) is discrete, and is the
(ordinary) quotient of homΛ∞([n]∞, [m]∞) by the Z-action given by that on [m]∞.

In particular, Λ is a 1-category.

Proof. We use the fiber sequence
Λ∞ Λ

pt BS1

to obtain fiber sequences of mapping spaces of the form:

homΛ∞([n]∞, [m]∞) MapΛ([n]Λ, [m]Λ)

pt S1

2Because Λ∞ is a 1-category - for general ∞-categories, a BZ-action is more data.
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which witnesses MapΛ([n]Λ, [m]Λ) as homΛ∞([n]∞, [m]∞)hZ, where one checks that the ac-
tion is the action on [m]∞ (or [n]∞).

One checks by hand that this action is free on the hom-set, and thus its quotient is the
ordinary quotient.

We also have:

Corollary A.0.12. The functor Λ→ BS1 induces an equivalence |Λ| ≃ BS1.

Proof. |Λ| ≃ |Λ∞|hS1 since | − | commutes with colimits. Since ∆ → Λ∞ is initial, it induces
an equivalence upon realization, and ∆ is sifted, so that |∆| ≃ pt. The claim now follows.

Given a cyclic object X : Λop → E , where E admits geometric realizations, one can restrict
X to ∆op along ∆op → (Λ∞)op → Λop and take its geometric realization. It is a classical
fact (and one of the main motivations for the cyclic category) that this geometric realization
admits a canonical S1-action. For completeness, we record the construction below:

Construction A.0.13. Let p : Λ → BS1 be the canonical functor. We let
p! : Fun(Λop, E) → Fun(BS1, E) - we claim that this exists as soon as E admits geomet-
ric realizations and that in this case, letting e : pt → BS1 be the inclusion of the basepoint,
e∗p! : Fun(Λop, E)→ Fun(BS1, E)→ E is canonically isomorphic to colim∆op .

Indeed, Λop → BS1 is a coCartesian fibration so the pointwise formula for left Kan exten-
sion simplifies to colimits over the fiber, i.e. over (Λ∞)op. Since ∆op → (Λ∞)op is cofinal
by Proposition A.0.6, this exists if and only if the restriction to ∆op admits a colimit, and if it
does, the canonical map between them is an equivalence. This proves all claims. ◁

Remark A.0.14. As for the “pointwise formula for left Kan extensions”, this is implicitly an
adjointability claim. ◁

Let us now give an alternative description of Λ.

Construction A.0.15. By definition, viewing posets as categories, we have an inclusion
Λ∞ ⊂ CatBZ. The colimit functor can be upgraded canonically to a BZ-equivariant func-
tor CatBZ → Cat, so that we obtain a BZ-equivariant map Λ∞ → Cat of the form P 7→ PhZ,
and thus, a functor i : Λ→ Cat of this form. ◁

Observation A.0.16. The poset Z is weakly contractible, and hence each |PhZ|, P ∈ Λ∞ is
equivalent to BZ. Since P is a poset, any choice of a successor relation x ≤ x+ provides an
orientation of |PhZ|, i.e. a generator of H1(|PhZ|), and it is elementary to check that any two
x’s yield the same generator.

Thus |PhZ| is canonically an oriented circle. ◁

Lemma A.0.17. Let n ∈N≥0. The category ([n]∞)hZ is free on an oriented graph of the form
0→ 1→ ...→ n→ 0.

In particular it is a 1-category, and none of its objects have nontrivial automorphisms3.

Proof. The category Z and hence 1
n Z is free on the graph · · · → 0 → 1 → . . . , i.e.

map( 1
n Z, C) ≃ eq(∏ 1

n Z
C∆1

⇒ ∏ 1
n Z

C).
The Z-action on each factor of the equalizer is cofree, which allows us to compute

MapCat(([n]∞)hZ, C) as an equalizer of the form eq(∏ 1
n Z/Z

C∆1
⇒ ∏ 1

n Z/Z
C), thus proving

the claim.

3As an object of Cat, it does have automorphisms which is why we are careful in stating this.



167

Lemma A.0.18. Let n, m ∈N≥0. The map

MapΛ([n]Λ, [m]Λ)→ MapCat(([n]∞)hZ, ([m]∞)hZ)

obtained via the previous construction is fully faithful.
A functor is in the image if and only if the induced map |([n]∞)hZ| → |([m]∞)hZ| has

degree 1.

Proof. By Lemma A.0.11 and Lemma A.0.17, both sides are ordinary sets, so that this is really
an injectivity statement, and this can be checked by explicitly describing both.

As an immediate corollary, we obtain:

Corollary A.0.19. Λ is equivalent to the non-full subcategory of Cat spanned by categories
free on a finite cyclic directed graph, and functors between them that induce degree 1 maps
on their realizations.

We will freely use this corollary in describing Λ and related constructions.
Let us describe typical morphisms in Λ. This will be particularly helpful when checking

whether a functor out of a fibration E→ Λ sends coCartesian morphisms to equivalences.

Construction A.0.20. Let n ∈ N and i ∈ {0, ..., n + 1}. We construct a morphism
[n]Λ → [n + 1]Λ which skips i: on the free generating graph

0→ ...→ i− 1→ i→ ...→ n→ 0

it sends j < i to j, j ≥ i to j + 1 and the generating edge i − 1 → i is sent to the composite
i− 1→ i→ i + 1 in [n + 1]Λ.

We will denote this morphism typically by “(i− 1 → i) 7→ (i− 1 → i + 1)” if there is no
ambiguity.

One might draw this as:

◁

Construction A.0.21. Let n ∈N. The automorphism group of [n]Λ is Cn: any automorphism
induces an automorphism on ([n]Λ)≃ ≃ {0, ..., n} and so a permutation. Since it is an equiv-
alence it must send irreducible arrows to irreducible arrows and hence must be given by a
cyclic permutation. Conversely every cyclic permutation is clearly realized by an automor-
phism of [n]Λ.

Pictorially, this looks like:
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◁

Construction A.0.22. Let n ∈ N and i ∈ {0, ..., n + 1}. We construct a morphism
[n + 1]Λ → [n]Λ that sends objects j ≤ i to j, objects j ≥ i + 1 to j − 1 and finally the
edge i→ i + 1 to the identity endomorphism of i.

We denote this morphism by “(i→ i + 1) 7→ i” if there is no ambiguity.
Pictorially, this looks like:

◁

Lemma A.0.23. Fix n ∈N and i ∈ {0, ..., n + 1}. The composite

[n]Λ → [n + 1]Λ → [n]Λ

given by (i→ i + 1) 7→ (i→ i + 2) followed by (i→ i + 1) 7→ i is the identity.

Proof. Check on objects and generating morphisms.

The following is a simple exercise in combinatorics:

Proposition A.0.24. Any morphism in Λ is a composite of morphisms constructed in Con-
structions A.0.20 to A.0.22.

Corollary A.0.25. Let p : E→ Λ be a cartesian (resp. coCartesian) fibration, and let f : E→ C
be a functor. If f sends all p-cartesian (resp. p-coCartesian) morphisms lying over edges of
the form (i → i + 1) 7→ (i → i + 2) to equivalences in C, then f sends all p-cartesian (resp.
p-coCartesian) morphisms to equivalences.

Proof. The morphisms from Construction A.0.21 are equivalences, so p-cartesian morphisms
lying over them are equivalences, and hence are sent to equivalences by any functor.

By Lemma A.0.23, the maps from Construction A.0.22 are one-sided inverses of the ones
from Construction A.0.20, thus the same holds for the p-cartesian morphisms lying over
them: if x → y, y → z are p-cartesian morphisms lying over α, β, and β ◦ α ≃ id, then
x → z is an equivalence (since it is p-cartesian and lying over an equivalence).

Thus if f inverts the p-cartesian morphisms lying over the latter to equivalences, the same
holds for the ones lying over the former.

By Proposition A.0.24, this concludes the proof.
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The final object we will need from this appendix is a variant of Λ called Λm, m ∈ N.
Recall that Λ := (Λ∞)hS1 .

Definition A.0.26. For m ∈ N, let Λm denote (Λ∞)hS1 where the action is restricted along
S1 m−→ S1. ◁

In other words, Λm fits in a pullback square of the form:

Λm Λ

BS1 BS1
m

In particular, there is also a pullback square of the form:

Λm Λ

pt B2Cm

which witnesses Λ as a quotient of Λm by a BCm-action.

Notation A.0.27. Let πm : Λ∞ → Λm denote the canonical projection, and let qm : Λm → Λ
the canonical projection as well; so that qm ◦ πm = π. We also let [n]Λm := πm([n]∞). ◁

There is another relevant functor here, and it is important not to confuse it with qm.

Notation A.0.28. Let Ψm : Λ∞ → Λ∞ denote the functor sending a poset P with automor-
phism σ to (P, σm).

It is not hard to verify that it is well-defined and BZ-equivariant where the source has the
BZ ≃ BmZ→ BZ-action, and the target has its usual BZ-action. ◁

In particular, Ψm induces, upon taking S1-orbits, a functor Ψm : Λm → Λ.

Example A.0.29. For P = [n]∞ = 1
n+1 Z, Ψm(P) is easily checked to be

[(n + 1)m− 1]∞ =
1

(n + 1)m
Z

◁

We thus have a span:
Λm

Λ Λ

Ψm qm

where qm is a quotient map and Ψm is some map.
The following construction will be important when we consider Frobenii of trace theories:

Construction A.0.30. For P ∈ Λ∞, consider the canonical map

PhmZ → PhZ

We can reinterpret its source as (ΨmP)hZ, and so this is a morphism of categories, though it
does not lie in Λ (it has degree m upon realization).
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Furthermore, by design it fits into a pullback square as follows:

PhmZ PhZ

B(mZ) BZ

Unwinding the definitions, this implies that it is B(mZ)-equivariant, and thus in total it de-
scends to Λm. In other words, we obtain a natural transformation of functors Λm → Cat∞ of
the form

ψm : Ψm → qm

and while its source and target are in the image of Λ, it is not. ◁

Here is a drawing of ψ2 evaluated at P = 1
3 Z = [2]∞ (the two “2”’s are unrelated):
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Splitting motives

In this appendix, we gather a few facts about splitting motives1 which will be convenient for
Section 5.1.

First, let us fix some notation and terminology.

Notation B.0.1. Let C be a stable ∞-category. We let Cof(C) ⊂ C□ denote the full subcategory
of cofiber sequences, that is, squares whose bottom left corner is 0, and that are coCartesian.

◁

This is the analogue of what Waldhausen called S2(C) in the context of his S•-construction.

Definition B.0.2. A split exact sequence is a sequence C i−→ D
p−→ Q of stable ∞-categories

where:

(i) p ◦ i = 0;
(ii) p and i both have right adjoints pR and iR respectively;

(iii) i and pR are fully faithful2;
(iv) the canonical nullsequence3 iiR → idD → pR p is a cofiber sequence.

◁

Remark B.0.3. Split exact sequences are essentially equivalent to semi-orthogonal decompo-
sitions. ◁

The following is the key example of a split exact sequence, it is essentially universal:

Example B.0.4. Let C be a stable ∞-category, and let i : C → Cof(C) be given by
x 7→ (x → x → 0), p : Cof(C) → C be given by evaluation the the bottom right cor-
ner, so (x → y→ z) 7→ z.

iR is given by evaluation at the top left corner, while pR : z 7→ (0→ z→ z).
We let f , t, c : Cof(C) → C denote the evaluation functors at the three nonzero corners4.

They fit into a canonical cofiber sequence f → t→ c of functors Cof(C) → C. ◁

1These are typically called “additive motives” in the literature. This, especially the corresponding notion of “ad-
ditive invariant” sounds very confusing and less descriptive than “splitting”, so I have opted for this change of
name.

2Equivalently, the unit idC → iRi and the counit ppR → idQ are equivalences.
3For any functors f , g, map(i f , pRg) = 0, so this nullsequence is canonical and unique.
4 f stands for “fiber”, t for “total” and c for “cofiber”.
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We further recall that Catex is a semi-additive ∞-category, so that for any ∞-category E
with finite products, every finite-product preserving functor f : Catex → E admits a
canonical lift to CMon(E), so we can add maps between values of f . In this context, we have:

Theorem B.0.5 (Waldhausen). Let E : Catex → E be a finite-product-preserving functor. The
following are equivalent:

(i) For any cofiber sequence of exact functors F, G, H : C → D, F → G → H, there exists
some homotopy E(G) ≃ E(F) + E(H);

(ii) For any stable ∞-category C, and for the canonical cofiber sequence of functors
f → t→ c : Cof(C)→ C, E(t) ≃ E( f ) + E(c);

(iii) For any stable C, the functor E applied to Cof(C)
( f ,c)−−→ C× C yields an equivalence;

(iv) For any split exact sequence C i−→ D
p−→ Q, letting r denote the right adjoint to i, E

applied to D
(r,p)−−→ C×Q yields an equivalence.

Definition B.0.6. A functor E : Catex → E is called a splitting invariant if it preserves fi-
nite products and satisfies any (and hence all) of the equivalent conditions of the previous
theorem.

It is called finitary if it preserves filtered colimits. ◁

Definition B.0.7. Let Usplit : Catex → Motsplit denote the universal finitary splitting invari-
ant with values in a stable ∞-category5. It exists by [BGT13], and Motsplit admits a unique
presentably symmetric monoidal structure for which Usplit is symmetric monoidal. ◁

We take for granted6 the following main result from [BGT13], and deduce two keys fact
about mapping spaces in Motsplit from it which we will use in Section 5.1.

Theorem B.0.8 ([BGT13, Theorem 1.3]). There is an equivalence

Kcn ≃ map(Usplit(Spω),Usplit(−))

Here, Kcn denotes connective K-theory.

Remark B.0.9. We depart slightly from [BGT13] by not requiring splitting invariants to be
invariant under idempotent-completion. This is a mild difference, and only affects K0. ◁

We can essentially take this theorem as our definition of Kcn. Thus, the following is only
really a corollary if one has an a priori definition of K-theory.

Before we state it, note that we have a canonical internal hom comparison map of the form:

Usplit(Funex(A, B))→ hom(Usplit(A),Usplit(B))

whenever A, B ∈ Catex. By taking maps from the unit, this induces an map

Kcn(Funex(A, B))→ mapMotsplit
(Usplit(A),Usplit(B))

Corollary B.0.10. Let A, B ∈ Catex, with A being a compact object therein. The canonical
map

Kcn(Funex(A, B))→ mapMotsplit
(Usplit(A),Usplit(B))

described above is an equivalence.
5Strictly speaking, we do not need stability here. It turns out to be more convenient for our use of Motsplit in Sec-

tion 5.1 - though not necessary - so we choose this convention, but for other purposes it is maybe more canonical
not to require this, though the not-necessarily-stable version automatically embeds in the stable version.

6Or for definition.
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Proof. Fix A, and consider B a variable.
Since A is compact, Kcn(Funex(A,−)) is finitary, and since Funex(A,−) preserves split

exact sequences7, Kcn(Funex(A,−)) is a splitting invariant, hence in total a finitary splitting
invariant.

One also proves ahead of time (essentially using item (iii) in Theorem B.0.5) that Usplit(A)
is compact in Motsplit, so that mapMotsplit

(Usplit(A),Usplit(−)) is also a finitary splitting invari-
ant.

We now use the Yoneda lemma: let F : Catex → Sp be a finitary splitting invariant. We
then have equivalences:

map(Kcn(Funex(A,−)), F) ≃ map(Kcn, F(A⊗−)) ≃ F(A⊗ Spω) ≃ F(A)

where the first equivalence is by adjunction, the second uses the Yoneda lemma with
Kcn ≃ mapMotsplit

(Usplit(Spω),Usplit(−)) and the fact that F(A ⊗ −) is still a finitary split-
ting invariant.

By the Yoneda lemma, we also have

map(mapMotsplit
(Usplit(A),Usplit(−)), F) ≃ F(A)

It follows that there is an equivalence as desired. It is not difficult to verify that the equiv-
alence in question is indeed given by the internal hom-comparison map, for example by
rewriting this second equivalence as the string:

map(mapMotsplit
(Usplit(A),Usplit(−)), F) ≃ map(map(Usplit(Spω), hom(Usplit(A),Usplit(−))), F)

≃ map(Kcn, F(Usplit(A)⊗−)) ≃ F(A)

Corollary B.0.11. Let A, B ∈ Catex, with A being a compact object therein. The internal
hom-comparison map

Usplit(Funex(A, B))→ hom(Usplit(A),Usplit(B))

is an equivalence.

Proof. It suffices to check that mapping in from Usplit(C), C ∈ (Catex)ω produces an equiva-
lence.

Since C is compact, Corollary B.0.10 shows that mapping in from C gives the following
map:

Kcn(Funex(C, Funex(A, B)))→ mapMotsplit
(Usplit(C), hom(Usplit(A),Usplit(B)))

which is, in turn:

Kcn(Funex(C⊗ A, B))→ mapMotsplit
(Usplit(C)⊗Usplit(A),Usplit(B))

Since Usplit is strong monoidal, using that A⊗C is compact and using again Corollary B.0.10,
we conclude that this map is an equivalence.

7This is the crucial difference with the story in the localizing case.
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Beyond splitting invariants/motives, there is the crucial notion of a localizing invari-
ant/motive8.

Definition B.0.12. A null-sequence C → D → Q of stable ∞-categories is called a Karoubi
sequence, or localization sequence, if Ind(C)→ Ind(D)→ Ind(Q) is a split exact sequence.

One can show that this is equivalent to:

(i) C → D is fully faithful;
(ii) the sequence is a cofiber sequence in Catperf, the ∞-category of idempotent-complete

stable ∞-categories.

◁

With this in hand, we can define:

Definition B.0.13. A localizing invariant with values in a stable ∞-category E is a functor
E : Catperf → E sending 0 to 0 and Karoubi sequences to co/fiber sequences.

It is called finitary if it preserves filtered colimits. ◁

And finally, we have:

Definition B.0.14. We let Uloc : Catperf → Motloc denote the universal finitary localizing
invariant. It exists by [BGT13], and Motloc is presentable and stable. ◁

A result which we do not prove here, but will be used once in the body of the thesis is the
following result, obtained in joint work with Sosnilo and Winges [RSW24]:

Theorem B.0.15. The functor Uloc : Catperf → Motloc is a Dwyer-Kan localization (at the class
of morphisms it inverts, called motivic equivalences).

The point of this theorem is that it allows us to compare mapping spaces/spectra of the
form MapFun(Motloc,E)(F, G) and MapFun(Catperf,E)(F ◦ Uloc, G ◦ Uloc) even when F, G need not
be cocontinuous functors out of Motloc. We will use this for F, G being functors such as
THH⊗n, which, while clearly not cocontinuous in general (it is n-excisive), still clearly factors
through Motloc.

8Our localizing invariants will be Morita invariant, also known as Karoubi localizing invariants. In this setting, this
is the standard convention, though we note that Kcn is an interesting example of a “Verdier localizing invariant”
which is not Morita invariant.



Appendix C

Actions on traces

Let C be a symmetric monoidal ∞-category. In [HSS17], the authors construct a trace map

tr : Map(S1, Cdbl)→ End(1C)

It is S1-equivariant, and in particular induces a map Cdbl → End(1C)
BS1

upon taking S1-fixed
points.

In particular, whenever A → Cdbl is a map from a space A, we obtain a map
LA→ End(1C).

Example C.0.1. Let x ∈ Cdbl, and consider the Σn-action on x⊗n. It corresponds formally to
a map BΣn → Cdbl which in turn induces a map LBΣn → map(S1, Cdbl)→ End(1C).

Restricting, e.g. to the conjugacy class of the length n-cycle σ in Σn, we obtain a map
BCn → End(1C) sending the point to tr(x⊗n; σ), i.e. a Cn-action on this trace. ◁

We have observed in Lemma 5.4.6 that for this length n cycle, tr(x⊗n; σ) = dim(x), and
thus the above construction produces a Cn-action on dim(x).

The goal of this appendix is to prove the following claim:

Proposition C.0.2. The equivalence

tr(x⊗n; σ) ≃ dim(x)

is Cn-equivariant, where the right hand side has the Cn-action described in Example C.0.1,
and the left hand side has the Cn-action restricted from the usual S1-action.

As usual, it suffices to prove this in the universal case, i.e. where C = Cob1 and x is the
universal dualizable object.

To prove this case, we observe the following:

Observation C.0.3. The symmetric monoidal functor Cob1 → coSpan(Sfin) induces, on en-
domorphisms of the unit, a map which sends the circle (as a framed manifold) to the circle (as
a homotopy type), and on automorphisms of those, it is given by (id, 0) : S1 → S1×Z/2. ◁

(this can be proved by explicitly describing the functor Cob1 → coSpan(Sfin), using that
Cob1 is essentially a category of cospans)

In particular, to prove that the Cn-actions agree, it suffices to do so after passing to
coSpan(Sfin), where we have more freedom. For example, we can try to identify the Cn-
action on the trace of the universal Cn-action (for some sense of universal).
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Consider the natural map A → coSpan(Sfin/A). By the construction above, it induces a
natural map LA → (Sfin/A)≃, as the unit in coSpan(Sfin/A) is , and so its endomorphism
space is precisely (Sfin/A)≃.

By naturality in A, the Yoneda lemma implies that this is completely determined by the
value at S1 of the identity in LS1 = Map(S1, S1), which is, in turn, a certain map S1 → S1.

Comparing Sfin/S1 ≃ (SBZ)fin,we find that this trace, in coSpan((SBZ)fin) is the pushout
of the following span:

Z Z

Z ⨿ Z

(id,id) (id,σ)

which one easily computes to be pt (here, σ denotes the successor function). Now, the object
pt corresponds to the identity map S1 → S1 under the equivalence SBZ ≃ S/S1 , so this
proves (by the Yoneda lemma) that the map LA → (Sfin/A)≃ we constructed with traces is
simply the composite

LA = (Sfin/A×Sfin {S1})≃ → (Sfin/A)≃

Proof of Proposition C.0.2. By the discussion in Observation C.0.3, it suffices to prove this
equivalence in the special case of C = coSpan(Sfin), x = pt.

The composite functor BCn → coSpan((SBCn)fin)→ coSpan(Sfin), where the second func-
tor is the forgetful functor, classifies S1 with the action induced from Cn ⊂ S1.

Thus it suffices to prove that the BCn-action on tr(pt; σ) ≃ S1 in endomorphisms of the unit
in coSpan((SBCn)fin) is the canonical one, or equivalently, the same statement for tr(S1; σ) in
coSpan(Sfin/BCn).

But we have identified the corresponding trace map LBCn → (Sfin/BCn)≃ with the
“canonical map”, and this canonical map is now a map of ordinary 2-groupoids, namely:

map(BZ, BCn)→ (1Gpd/BCn)
≃

which one can simply fully identify by hand, and check the statement there.
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