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Paper III: On generalizing Descartes’ rule of signs to hypersurfaces, Advances in Math-
ematics 408(A), 2022

©Elisenda Feliu and Máté L. Telek
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Summary

This thesis includes six papers that investigate three different areas: chemical reaction
network theory, Descartes’ rule of signs, and real tropicalization. A common thread
among them is the significant role played by the signed support of multivariate poly-
nomials.

Paper I and II focus on chemical reaction networks. In Paper I, we describe a general
algorithm for verifying connectivity of the parameter region of multistationarity of a
reaction network and apply it to several biologically relevant networks. In Paper II,
our focus is on two families of phosphorylation networks, called n-site phosphorylation
networks. We provide a proof showing that their parameter region of multistationarity
is connected for every n ∈ N≥2.

In Paper III and IV, we present combinatorial conditions on the signed support that
provide upper bounds on the number of connected components of the set in the positive
real orthant where the polynomial takes negative values. We frame this problem as a
generalization of Descartes’ rule of signs to multivariate polynomials. The methods
developed in Paper III and IV are crucial for the arguments used in Paper I and II.

In Paper V, we investigate the real tropicalization of semi-algebraic sets and show
its relation to the signed support of the polynomials defining these sets. In Paper VI, we
study the signed A-discriminant and show that it has a simple structure if the signed
support satisfies some combinatorial conditions. In such cases, Viro’s patchworking
becomes applicable for determining all isotopy types of hypersurfaces in the positive
real orthant with a prescribed signed support for their defining polynomials.
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Dansk resumé

Denne afhandling omfatter seks artikler inden for tre forskellige forskningsfelter: kemisk
reaktionsnetværksteori, Descartes’ fortegnsregel og reel tropikalisering. En fællesnæv-
ner er den afgørende betydning, som den støtte med angivet fortegn af polynomier i
flere variable spiller.

Artikel I og II omhandler kemiske reaktionsnetværker. I artikel I beskrives en al-
goritme til verificering af hvorvidt parameterregionen for multistationaritet af et reak-
tionsnetværk er sammenhængende, hvilken anvendes p̊a flere relevante netværker inden
for biologi. I artikel II er vores fokus rettet mod to familier af fosforyleringsnetværk
kaldet n-steder fosforylerings netværk. Vi fremlægger et bevis for sammenhængen af
parameterregionen for multistationaritet for hvert n ∈ N≥2.

I artiklerne III og IV præsenterer vi kombinatoriske betingelser for den støtte med
angivet fortegn, som giver et øvre estimat for antallet af sammenhængskomponenter af
delmængden af den positive reelle ortant, hvor polynomiet antager negative værdier.
Vi fortolker dette som en generalisering af Descartes’ fortegnsregel til multivariate po-
lynomier. Metoderne fra artikel III og IV er afgørende for argumenterne i artikel I og II.

I artikel V undersøger vi den reelle tropikalisering af semi-algebraiske mængder
og sætter den i relation til den støtte med angivet fortegn af de polynomier, som
definerer mængden. I artikel VI studerer vi den fortegn A-diskriminant og beviser, at
den har en simpel struktur under visse kombinatoriske betingelser til den støtte med
angivet fortegn. I s̊adanne tilfælde kan Viro’s patchworking anvendes til at bestemme
alle isotopityper af hyperflader i den positive reelle ortant med foreskrevet støtte med
angivet fortegn for de definerende polynomier.
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1
Introduction

This thesis focuses on the fascinating field of real algebraic geometry, where the in-
terplay between algebra, geometry, and topology uncovers insights into the structure
of real solutions of polynomial equations and inequalities. In this work, we investigate
how the set of exponent vectors of a polynomial together with the signs of the coef-
ficients, called the signed support, influences properties of semi-algebraic sets defined
by the polynomial. Specifically, we study generalizations of Descartes’ rule of signs to
multivariate polynomials and real tropicalization of semi-algebraic sets. The motivation
to investigate these questions arose from analyzing mathematical models of chemical
reaction networks.

1.1 From reaction networks to real algebraic geometry

The mathematical foundations of chemical reaction network theory go back to works
of Feinberg, Horn, and Jackson in the 1970’s [41, 43, 61]. To illustrate the concept of a
reaction network, consider the phosphorylation process of a substrate S. This biological
mechanism is represented by the reaction network

S0 + E
κ1−⇀↽−
κ2

ES0
κ3−→ S1 + E. (1.1)

Each arrow is a reaction and the letters E, S0, S1,ES0 correspond to biological species.
In the first reaction, labeled by κ1, the unphosphorylated substrate S0 binds with a
kinase E to form an intermediate species ES0. This intermediate species ES0 can then
dissociate in two different ways: either producing a phosphorylated substrate S1 or
reverting back to the unphosphorylated form S0 without attaching a phosphate group.
This mechanism is known as the Michaelis-Menten mechanism in the literature [32].

To model the evolution of the concentration of the species of a given reaction net-
work over time, several mathematical models can be used, including both stochastic
and deterministic ones [93]. Chemical reaction network theory aims to investigate these
models and comprehend their local and global dynamical behaviors. In this thesis, we
focus on deterministic models using an Ordinary Differential Equation (ODE) system.

1



2 Chapter 1. Introduction

A first step often taken in the examination of qualitative properties of the dynamical
system involves exploring its steady states, that is, finding solutions of the ODE system
such that the concentration of each species is constant. From a biological perspective,
the existence of at least two stable steady states has been linked to cellular decision-
making, switching, and the memory of cells [75, 87].

Under the assumption of mass-action kinetics, the functions in the ODE system
become parametrized polynomial functions, offering opportunities for the application
of methods from computer algebra and real algebraic geometry [38, 44]. In particular,
the question of multistationarity, that is, the existence of multiple steady states, boils
down to whether a parametrized polynomial equation system has at least two solutions
for some choice of the parameters. Since these solutions represent concentrations of
species, one is only interested in positive real solutions. The number of such solutions
might depend on the values of the parameters and there might be open regions in
the parameter space giving rise to equation systems with different number of positive
real solutions. Finding these regions and determining the number of positive solutions
within each region is a challenging problem in real algebraic geometry.

Several methods have been developed to decide whether a reaction network exhibits
multistationarity. Classical results providing sufficient conditions to preclude multista-
tionarity include the Deficiency Zero and Deficiency One Theorem [42]. Over the past
two decades, researchers have devoted significant attention to the so-called Injectivity
Criterion, an alternative condition used to rule out multistationarity [5, 6, 33, 34, 49,
50, 67, 83, 84, 88]. We discuss this important criterion in more detail in Section 2.2.

Beyond precluding multistationarity, there are methods to verify whether a reaction
network is multistationary for some choice of the parameters. One common approach
involves identifying a subnetwork with at least two steady states and then “lifting”
these steady states to the original network [35, 51, 68]. Additionally, methods based
on polyhedral geometric conditions can also be used to find parameters for which the
reaction network is multistationary [12, 16, 56, 57]. For a comprehensive overview of
methods for determining multistationarity, we refer to the survey article [69].

The above-mentioned methods offer a way to determine whether the parameter re-
gion of multistationarity is non-empty, but they do not provide additional information
about the shape or size of this region. Theoretically, a semi-algebraic description of
the multistationarity region can be found using existing algorithms such as Cylindri-
cal Algebraic Decomposition and Real Quantifier Elimination (see [29] for a survey).
However, due to the high complexity of these algorithms, their applicability is limited
to handling reaction networks of moderate size [24]. Numerical methods [48, 60] might
provide information about certain parts of the parameter space for somewhat larger
networks, yet these methods also have their limitations.

Instead of providing a complete description of the parameter region of multista-
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tionarity, it might be interesting to explore some of its properties, such as its shape.
Probably the first article in this direction was [85], where the authors investigated the
connectivity of such a parameter region for a specific phosphorylation network using
homotopy continuation and topological data analysis techniques. In the same article,
it was suggested that lack of connectivity may indicate that different biological mech-
anisms underlie multistationarity.

A projection of the parameter region of multistationarity onto a subset of the pa-
rameters was proven to be connected in [45] for the 2-site phosphorylation network

S0 + E
κ1−⇀↽−
κ2
ES0

κ3−→ S1 + E
κ7−⇀↽−
κ8

ES1
κ9−→ S2 + E

S2 + F
κ10−−⇀↽−−
κ11

FS2
κ12−−→ S1 + F

κ4−⇀↽−
κ5

FS1
κ6−→ S0 + F.

(1.2)

Each phosphorylation and dephosphorylation step in (1.2) follows the same mechanism
as described in (1.1). By increasing the number of phosphorylation sites, one obtains
a family of reaction networks known as n-site phosphorylation networks, indexed by
n ∈ N. This family of reaction networks has been extensively studied, with particular
focus on questions about the number of positive steady states [47, 52, 57, 59, 109].
Extending the connectivity result for the 2-site phosphorylation network, in [46] it was
proven that the projected parameter region of multistationarity is connected for the
n-site phosphorylation network for every n. The question, whether the same is true for
the whole parameter region of multistationarity, became the catalyst for my research
journey.

Our first breakthrough came a few months later after we started investigating this
question. Based on the results in [31], we gave sufficient conditions on the critical
polynomial of a reaction network (see Section 2.3) that imply connectivity of the pa-
rameter region of multistationarity. To verify one of the conditions, we needed to show
that the set of points in the positive real orthant, where the critical polynomial takes
negative values, is connected. For the 2-site phosphorylation network (1.2), the critical
polynomial was large with 15 variables and 400 monomials. Therefore, computing the
number of connected components of the preimage of the negative real line using the
existing semi-algebraic algorithms was out of reach. We found ourselves in search of a
computable sufficient condition that could guarantee the connectivity of the preimage
of the negative real line under a polynomial function —a puzzle that set the stage for
this thesis.

1.2 Real algebraic geometry

The field of algebraic geometry is devoted to studying properties of solution sets of
polynomial equalities, called algebraic varieties. In cases where one is interested in so-
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lutions in an algebraically closed field, such as the field of complex numbers, there
are several classical results providing information about these solution sets. However,
in many applications, including chemical reaction networks, robotics or computer vi-
sion, only the real solutions, or even only the positive real solutions, are of interest.
The structure of the real and complex algebraic varieties might differ significantly, for
example, the polynomial x2024 − 1 has 2024 complex solutions by the Fundamental
Theorem of Algebra, but only two of the solutions are real, x = 1 and x = −1. In real
algebraic geometry, the focus lies on these real solutions.

In 1637, Descartes published his famous result, Descartes’ rule of signs, that provides
an upper bound on the number of positive real solutions of a univariate real polynomial
in terms of the number of sign changes in the coefficient sequence of the polynomial.
The above example, x2024 − 1, has only one sign change in its coefficient sequence,
so the bound given by Descartes’ rule of signs is one. It is known that Descartes’
bound is sharp, that is, for any given sign sequence, there exists a compatible choice of
coefficients such that the polynomial has as many positive real solutions as the number
of sign changes [58]. Moreover, the number of positive real solutions has the same parity
as the number of sign changes [54], and Descartes’ rule of signs is valid for polynomials
with real exponents [36, 110].

One possible way to generalize Descartes’ rule of signs to multivariate polynomials
is to bound the number of positive real solutions of an equation system involving n
polynomial equations in n variables, also called a square system. In 1991, Khovanskii
gave such a bound in terms of n and the number of monomials appearing in the
polynomials [71]. Khovanskii’s bound has been improved in [17, 19] and for specific
equation systems in [4, 9, 13, 72, 76].

Based on Viro’s patchworking for complete intersections, proven by Sturmfels in
1996 [101], Itenberg and Roy formulated their famous conjecture regarding the max-
imum number of (positive) real solutions of a system of n multivariate polynomial
equations in n variables [65]. Their conjecture was based on the combinatorial proper-
ties of the set of exponent vectors and the signs of the coefficients of the polynomials.
They showed that their bound is a lower bound of a possible upper bound, that is,
for any prescribed set of exponent vectors and signs of the coefficients, there exist n
polynomials for which the number of their common (positive) real solutions matches
the combinatorial bound. The first non-trivial example supporting the conjecture was
proposed by Sturmfels and proven by Lagarias and Richardson in 1997 [74]. Almost at
the same time, Li and Wang gave a counterexample to the Itenberg-Roy conjecture [77].

There are a few special cases when a Descartes-type bound is known for the number
of positive real solutions of a square system. The Injectivity Criterion [83], mentioned
in Section 1.1, provides a condition when the number of positive real solutions is at
most one. For systems involving n variables, n polynomials and a total number of
n + 2 monomials, a sharp upper bound on the number of positive solutions was given
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in [10, 11]. This bound is in terms of the number of sign changes of a certain sequence
of numbers associated with the polynomial system.

An alternative approach to generalizing Descartes’ rule of signs to the multivariate
setting is to consider a polynomial in n variables and to bound topological invariants of
the hypersurface defined by the positive real zero set of the polynomial. Upper bounds
for the sum of the Betti-numbers were given in [18, 71], while bounds on the number
of connected components of the hypersurface in [14, 15, 53, 76, 89]. Like Khovanskii’s
bound for square systems, these bounds rely on the number of variables and monomials
in the polynomial.

For our applications, as discussed at the end of Section 1.1, we wished to have
a similar bound. However, instead of bounding the number of connected components
of a hypersurface, we aimed to bound the number of connected components of the
complement of the hypersurface where the defining polynomial takes negative values.
In particular, we were interested in the case where this upper bound is one. Our findings
in that direction have been published in Paper III and Paper IV. We refer to Section 1.4
for a brief summary and Chapter 3 for a detailed discussion of the results.

It is worth mentioning that results regarding Descartes’ rule of signs for the hy-
persurface case might have implications for square systems. For example, one of the
techniques used in Paper III enables to derive novel bounds on the number of positive
real solutions of polynomial equation systems with specific signed support. This, again,
can be viewed as a generalization of Descartes’ rule of signs. We provide these bounds
in Section 3.4.

1.3 Tropical geometry

During the past two years, as I presented our results from Paper III at conferences
and workshops, I often received comments that our results have a “tropical flavor”.
Inspired by these remarks, I started to explore the connection between our work and
real tropical geometry.

One of the primary goals of tropical geometry is to establish a connection be-
tween algebraic and polyhedral geometry, enabling to transform an algebraic variety
into a polyhedral object, called tropical variety, that mimics essential properties of its
algebraic counterpart. This approach has been successful for varieties defined over al-
gebraically closed fields with non-trivial valuation, such as the field of complex Puiseux
series [64, 78].

Tropicalization of varieties over the field of real numbers traces back to Viro’s
patchworking [105]. For a fixed signed support, Viro described a method to construct a
polyhedral complex, known as the Viro diagram, which has the same isotopy type as the
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positive real zero set of some polynomial matching the signed support (see Section 4.3).
In Paper VI, we showed that under conditions on the signed support similar to those
in Paper III, Viro diagrams can be used to find all possible isotopy types, that is, for
all polynomials matching the signed support, the positive real hypersurface is isotopic
to one Viro diagram. It is important to note that this statement is not true in general,
for a counterexample, we refer to Example VI.2.11.

The tropicalization of semi-algebraic sets goes back to the work by Alessandrini [1].
In his paper, Alessandrini investigated the logarithmic limit of semi-algebraic sets de-
fined in the positive orthant Rn

>0 and showed that it coincides with the real trop-
icalization. We will recall this fundamental result in Theorem 4.7. Only in certain
special cases it is known how to compute the real tropicalization of semi-algebraic sets
[2, 20, 25, 102, 104]. However, there exist polyhedral complexes that serve as approxi-
mations of these, either by containing the real tropicalization or being contained within
it [20, 66, 104]. Such approximations are easier to compute and under certain additional
assumptions they coincide with the real tropicalization. The proof techniques used in
Paper III and Paper IV, allowed us to derive a novel approximation of real tropical-
ization and to identify cases when these two objects coincide. This is the content of
Paper V.

1.4 Contribution to the state of the art

The contributions presented in this thesis can be divided into three main parts, focusing
on the parameter region of multistationarity of a reaction network, on generalizing
Descartes’ rule of signs to multivariate polynomials, and on tropicalization of semi-
algebraic sets. The signed support played a central role in each of these three topics.

Paper I contains an algorithm that checks a sufficient condition for the connectivity
of the parameter region of multistationarity. The algorithm is based on Theorem 2.14
that relates the preimage of the negative real line under the critical polynomial to the
parameter region of multistationarity. We applied the method to several biologically
relevant networks, including the n-site phosphorylation network for n = 2, 3 (cf. (1.2)),
and showed that their parameter region of multistationarity is connected. The case of
n > 3 required a deeper investigation and new techniques. In Paper II, we showed that
the critical polynomial for the n-site phosphorylation network can be written recur-
sively. We used this recursive formula to show inductively that the parameter region of
multistationarity is connected for the n-site phosphorylation network for every n ∈ N≥2.

Paper III and IV provide conditions on the signed support of a multivariate poly-
nomial such that the set of points in the positive orthant Rn

>0 where the polynomial
takes negative values has at most one or two connected components. We phrased these
results as generalization of Descartes’ rule of signs to hypersurfaces. Furthermore, in
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Paper IV it is shown that the problem of finding the number of such connected compo-
nents can be reduced to the same problem for a polynomial in fewer monomials if all
the exponent vectors with negative coefficients are contained in a face of the Newton
polytope. A similar reduction is possible if the Newton polytope has two parallel faces
containing all the exponent vectors. As an addition to the results in Paper III and IV,
in Section 3.4 we describe conditions on the signed support of n polynomials in n vari-
ables such that these polynomials have at most 2 or infinitely many common positive
real solutions. These statements can be seen as (partial) generalization of Descartes’
rule of signs to square systems.

Paper V contains results about the real tropicalization of semi-algebraic subsets
of Rn

>0. We give a self-contained proof for the result that the negative normal cone (see
Section 4.2 for a precise definition) approximates the real tropicalization. This proof is
also valid for polynomials with real exponents. Furthermore, Paper V describes a cone
that provides a better approximation of the real tropicalization, and that might be
computable by means of existing algorithms. Moreover, in Paper V we discuss certain
scenarios when these approximations coincide with the real tropicalization. Paper VI
investigates the signed A-discriminant of a signed support. The connection to tropical
geometry comes from the observation that if the signed A-discriminant has a “simple
structure”, then the isotopy types of the positive real hypersurfaces defined by polyno-
mials matching the signed support can be described by a polyhedral object, the Viro
diagram. In Paper VI, we provide conditions on the signed support that ensure that
the signed A-discriminant has such a “simple structure”.

1.5 Structure of the thesis

This thesis is based on six articles, which are collected after the four introductory chap-
ters. The purpose of these chapters is to motivate and highlight the main contributions
of the papers. Each paper has its own bibliography. The references used in Chapter 1-4
can be found in the bibliography after Chapter 4.

Chapter 2 starts by giving the necessary background on chemical reaction networks.
We define the parameter region of multistationarity and discuss how the Jacobi deter-
minant of a certain function can be used to gain information about this parameter
region. The last part of Chapter 2 summarizes the results of Paper I and Paper II. In
Chapter 3, we turn our investigation to Descartes’ rule of signs. We recall this classical
theorem for univariate polynomials and discuss possible generalizations to the multi-
variate setting. In Section 3.3, we discuss partial generalizations to the hypersurface
case, based on the results in Paper III and Paper IV. In Section 3.4, we investigate a
generalization of Descartes’ rule of signs to square systems, these results have not been
included in any publication. Section 4.1 and 4.2 contain a brief introduction to tropi-
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cal geometry along with an overview of recent results on real tropicalization including
findings discussed in Paper V. Section 4.3 is based on Paper VI, where we introduce
the signed A-discriminant and discuss its relation to Viro’s patchworking.

Last but not least we fix some notation we will use throughout the thesis. The
cardinality of a finite set S will be denoted by |S|. For the index set {1, . . . , n} we
write [n] for short, and for I ⊆ [n] we write Ic for the complement of I in [n]. For two
vectors v, w ∈ Rn, v ·w denotes their Euclidean scalar product and v ∗w denotes their
coordinate-wise product. The transpose of a matrixM ∈ Rn×m is denoted byM⊤. For a
differentiable function f : Rn → Rm, we write Jf (x) for the Jacobian matrix at x ∈ Rn,
which is the matrix of size m × n whose (i, j)-th entry equals the partial derivative
∂fi(x)
∂xj

. In the special case m = 1, we denote the Jacobian matrix Jf (x) by ∇f(x).



2
Chemical reaction networks

The goal of this chapter is to provide more information and context for the statements
discussed in Section 1.1. Specifically, we recall a formal definition of a reaction network
and describe the ODE system that models the change in the concentration of the
species in the network over time. We define the parameter region of multistationarity
and discuss several methods for gaining information about it. Furthermore, we give an
overview of the results of Paper I and Paper II.

2.1 Basic definitions

A (chemical) reaction network (S,R) is a collection of reactions R = {R1, . . . , Rr} be-
tween species in a set S = {X1, . . . ,Xn}. Each reaction is given by a linear combination
of the species, that is, each reaction has the form

Rj :
n∑

i=1

ai,jXi −→
n∑

i=1

bi,jXi, j = 1, . . . , r,

where ai,j, bi,j are non-negative integers, called stoichiometric coefficients. The species
on the left-hand (resp. right-hand) side of a reaction with non-zero stoichiometric coeffi-
cient are called reactants (resp. products) of the reaction. The reactant matrix A ∈ Zn×r
keeps track of the reactant species. Specifically, its (i, j)-th entry is given by the stoichio-
metric coefficients ai,j, i = 1, . . . , n, j = 1, . . . , r. The stoichiometric matrix N ∈ Zn×r
encodes the net production of the reactions. The (i, j)-th entry of N equals bi,j − ai,j,
i = 1, . . . , n, j = 1, . . . , r.

Under the assumption of mass-action kinetics, introduced by Guldberg and Waage
in 1864 [107, 108], the reaction rate function equals

vκ(x) = diag(κ)xA = (κ1x
a1,1
1 · · · xan,1

n , . . . , κrx
a1,r
1 · · ·xan,r

n )⊤.

Here, xi denotes the concentration of the species Xi and κ = (κ1, . . . , κr)
⊤ ∈ Rr

>0 is
a vector of parameters called reaction rate constants. The ODE system modeling the

9
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evolution of the concetration of the species over time has the form:

ẋ = fκ(x), x ∈ Rn
≥0, (2.1)

where fκ(x) := Nvκ(x).

The positive and the non-negative orthants Rn
>0, Rn

≥0 are forward invariant with
respect to the ODE system (2.1) [99, 106]. In other words, if the initial condition
is contained in these orthants, the entire trajectory remains contained in them. This
property is particularly important, since the trajectories encode concentration of species
that should not be negative numbers.

Moreover, the trajectories of (2.1) are contained in certain affine subspaces. To
see this, consider the stoichiometrix subspace S defined as the column space of the
matrix N . Let s denote the rank of N and choose a full-rank matrix W ∈ Rd×n whose
rows form a basis of the left kernel of N . Note that by definition, we have d = n − s
and ker(W ) = im(N). Since w · ẋ = w · (Nvκ(x)) = 0 for every vector w in the left
kernel of N , it follows immediately that the trajectories of (2.1) with initial condition
x(0) ∈ Rn

≥0 are contained in the affine subspace x(0)+S. A stoichiometric compatibility
class is a set of the form

Pc :=
{
x ∈ Rn

≥0 | Wx = c
}
=
(
x(0) + S

)
∩ Rn

≥0,

for c = Wx(0). This vector is called the vector of total concentrations, and it is usually
treated as a parameter. The defining equations of Pc are called conservation laws, and
the matrix W is called a conservation matrix.

Example 2.1. To illustrate the above definitions, we consider the following reaction
network

X1
κ1−→ X2, X2

κ2−→ X1, 2X1 +X2
κ3−→ 3X1, (2.2)

which served as the running example in Paper I. Its reactant, stoichiometric and con-
servation matrices have the form

A =

(
1 0 2
0 1 1

)
, N =

(
−1 1 1
1 −1 −1

)
, W =

(
1 1

)
,

and the corresponding ODE system and the conservation laws are

ẋ1 = −κ1x1 + κ2x2 + κ3x
2
1x2, x1 + x2 = c,

ẋ2 = κ1x1 − κ2x2 − κ3x
2
1x2.
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(a)

1 2 3 4 5 6 7 8 9
x1

1

2

3

4
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8

9

x
2

P5 P8

V(14, 1, 1)V(7, 1, 1)

(b)

Figure 2.1: (a) Parameter region of multistationarity for the reaction network (2.2)
sliced by the hyperplane κ2 = 1, κ3 = 1. (b) Steady state varieties (purple curves) and
stoichiometric compatibility classes (green lines) for different choices of parameters
corresponding to the points marked by blue dots in (a).

For fixed reaction rate constants κ = (κ1, . . . , κr)
⊤ ∈ Rr

>0, the set of non-negative
steady states of the ODE system (2.1)

Vκ :=
{
x ∈ Rn

≥0 | Nvκ(x) = 0
}

is called the steady state variety. A pair of parameters (κ, c) enables multistationarity
if the intersection Vκ ∩ Pc ∩ Rn

>0 contains at least two points.

Definition 2.2. Let (S,R) be a reaction network. The parameter region of multista-
tionarity is defined as

Ω :=
{
(κ, c) ∈ Rr

>0 × Rd | (κ, c) enables multistationarity
}
.

Example 2.3. The reaction network from (2.2) is small enough to apply Cylindrical Al-
gebraic Decomposition [26] to decompose the parameter space into semi-algebraic sets,
called cells, where the number of positive solutions of fκ(x) = 0, Wx = c is constant.
We used the Maple [79] function CellDecomposition from the package Parametric [98]
to compute such a cell decomposition. The code returned only one open cell with at
least two positive solutions. This cell is given by the inequalities

κ2 > 0, κ3 > 0, κ1 > 8κ2, ξ3 < c < ξ4, (2.3)

where ξ3, ξ4 denote the 3rd and 4th root of the polynomial

4c4κ2κ
2
3 − c2κ2

1κ3 − 20c2κ1κ2κ3 + 8c2κ2
2κ3 + 4κ3

1 + 12κ2
1κ2 + 12κ1κ

2
2 + 4κ3

2.
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For fixed parameters κ2 = 1, κ3 = 1, this cell is depicted in Figure 2.1(a). The parameter
pair ((14, 1, 1), 8) lies in the cell given by the inequalities in (2.3). Figure 2.1(b) shows
the steady state variety V(14,1,1) and the stoichiometric compatibility class P8. Their
intersection contains 3 points in R2

>0, thus ((14, 1, 1, ), 8) enables multistationarity.

If κ2 = 1, then from the inequalities in (2.3) follows that for κ1 < 8 the parameter
pair ((κ1, 1, κ3), c) does not enable multistationarity independently of the choices of κ3

and c. Figure 2.1(b) illustrates that the steady state variety V(7,1,1) has at most one
intersection point with Pc for all c ∈ R.

The equation system fκ(x) = 0, Wx = c, defining the points in Vκ ∩ Pc, is overde-
termined, that is, it has more equations than variables. Following [31], we reduce it
to a system in n equations and n variables as follows. Assume that the conservation
matrix W is row reduced and let i1 < · · · < id be the indices of the first non-zero
coordinates of each row of W . We denote by Fκ,c(x) the function obtained from fκ(x)
by replacing the ij-th entry fκ,ij(x) by the affine linear function wj ·x−cj, j = 1, . . . , d,
where wj denotes the j-th row of W . In [31], it was shown that

Vκ ∩ Pc =
{
x ∈ Rn

≥0 | Fκ,c(x) = 0
}
.

Since the rows of the Jacobian matrix Jfκ(x) are given by the gradients ∇fκ,i(x)
i = 1, . . . , n, it follows that

JFκ,c(x) = Mκ(x), (2.4)

where Mκ(x) denotes the matrix that is obtained from Jfκ(x) by replacing the rows
i1, . . . , id by the rows of W . The matrix Mκ(x) does not depend on the parameter c.

2.2 Jacobian critera for multistationarity

In this section, we recall several criteria that either preclude or verify multistationarity.
These criteria are based on the Jacobian matrix of certain functions associated with
the reaction network. First, consider the function

fκ : Rn
>0 → Rn, x 7→ fκ(x) = N diag(κ)xA

as introduced in (2.1). If fκ is injective on the stoichiometric compatibility class Pc,
that is, fκ(x) ̸= fκ(x

′) for x, x′ ∈ Pc with x ̸= x′, then Vκ ∩ Pc ∩ Rn
>0 contains at most

one point, and the pair (κ, c) does not enable multistationarity. This simple observation
yields that the parameter region of multistationarity is empty if fκ is injective on Pc
for all κ ∈ Rr

>0 and all c ∈ Rd. In [49, Theorem 5.6], injectivity of fκ has been related
to injectivity of the Jacobian matrix Jfκ(x).
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Theorem 2.4. [49, Theorem 5.6] Let (S,R) be a reaction network, and let S = im(N)
be its stoichiometric subspace. The following are equivalent:

(inj) fκ is injective on Pc for all κ ∈ Rr
>0 and all c ∈ Rd.

(jac) Jfκ(x) is injective on S for all κ ∈ Rr
>0 and all x ∈ Rn

>0.

Theorem 2.4 extends a previously known Injectivity Criterion for so-called CFSTR
networks [33], for which S = Rn. Later, Theorem 2.4 has been generalized to power-law
kinetics [111], as well as to more general functions, similar to fκ, but not necessarily
related to reaction networks [83].

In the following, we elaborate on the condition (jac) in Theorem 2.4. First, we show
that the set of such Jacobian matrices can be reparametrised. Let A1, . . . , Ar denote
the columns of the reactant matrix A. We will write ∗ for the coordinate-wise product
of two vectors, and 1

x
= ( 1

x1
, . . . , 1

xn
)⊤. Using this notation, for vκ(x) = diag(κ)xA we

have

Jvκ(x) = diag(κ ∗ xA)A⊤ diag( 1
x
).

From the Chain Rule, it follows that

Jfκ(x) = NJvκ(x) = N diag(κ ∗ xA)A⊤ diag( 1
x
).

By setting v = κ ∗ xA and h = 1
x
, we obtain the following lemma.

Lemma 2.5. [83, Lemma 2.7] Let (S,R) be a reaction network. Let N be the stoichio-
metric matrix and A be the reactant matrix, as introduced in Section 2.1. Then it holds
that

{
Jfκ(x) | κ ∈ Rr

>0, x ∈ Rn
>0} =

{
N diag(v)A⊤ diag(h) | v ∈ Rr

>0, h ∈ Rn
>0

}
.

From Lemma 2.5, it follows immediately that condition (jac) in Theorem 2.4 is
equivalent to the condition

(lin) ker(N diag(v)A⊤ diag(h)) ∩ S = {0} for all (v, h) ∈ Rr
>0 × Rn

>0.

Recall that the stoichiometric subspace S = im(N) equals the kernel of the conser-
vation matrix W . Therefore, y ∈ Rn is contained in ker(N diag(v)A⊤ diag(h)) ∩ S if
and only if N diag(v)A⊤ diag(h)y = 0 and Wy = 0. The rows of N might be linearly
dependent. Similar to the reduction described at the end of Section 2.1, we systemati-
cally remove these linear dependences. Following [49], we assume that W has the form

W =
(
Idd W̃

)
, where Idd denotes the d× d identity matrix and W̃ ∈ Rd×(n−d). Such
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a choice of W is always possible after reordering the species of the network. Let N ′

denote the matrix obtained from N by deleting the first d rows. We define the matrix

Γv,h :=

(
W

N ′ diag(v)A⊤ diag(h)

)
.

Note that Γv,h equals the Jacobian Mκ(x) of the function Fκ,c (cf. (2.4)) for v = κ ∗ xA
and h = 1

x
.

It holds that N diag(v)A⊤ diag(h)y = 0, Wy = 0 if and only if (Γv,h)y = 0. We refer
to [49, Corollary 4.8] for a proof of this fact. Since Γv,h is a square matrix, ker(Γv,h) =
{0} if and only if det(Γv,h) ̸= 0. Therefore, the condition (lin) is equivalent to

(det′) det(Γv,h) ̸= 0 for all (v, h) ∈ Rr
>0 × Rn

>0.

For a matrix M of size k ×m and two sets of indices I ⊆ [k], J ⊆ [m], we denote by
[M ]I,J the matrix obtained from M by selecting the entries in rows indexed by I, and
columns indexed by J . Using the Laplace expansion on complementary minors (see e.g.
[90, Theorem 2.4.1]), we rewrite det(Γv,h) as

∑

I⊆[n]
|I|=s

(−1)
∑n

j=d+1 j+
∑

i∈I i det
(
[W ][d],Ic

)
det
(
[N ′ diag(v)A⊤][s],I

)∏

i∈I
hi. (2.5)

Now, we apply the Cauchy-Binet formula (see e.g. [90, Theorem 2.3]) to get for each
I ⊆ [n], |I| = s:

det
(
[N ′ diag(v)A⊤][s],I

)
=
∑

J⊆[r]
|J |=s

det([N ′][s],J) det([A]I,J)
∏

j∈J
vj. (2.6)

From (2.5) and (2.6), it follows that det(Γv,h) is a homogeneous polynomial in v and h.
Furthermore, the exponent vector of each of its monomials has only 0 or 1 entries. For
such a polynomial, it is simple to decide whether it has a root in the positive orthant.
Specifically, such a polynomial has a positive root if and only if it has both positive
and negative coefficients [83, Lemma 2.12].

Building upon the above discussions, Theorem 2.4 can be extended with the follow-
ing additional equivalent conditions.

Theorem 2.6. [49, 83] Let (S,R) be a reaction network with stoichiometric subspace

S = im(N). Assume that the conservation matrix W has the form W =
(
Idd W̃

)
.

The following are equivalent:

(inj) fκ is injective on Pc for all (κ, c) ∈ Rr
>0 × Rd.
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(jac) Jfκ(x) is injective on S for all (κ, x) ∈ Rr
>0 × Rn

>0.

(lin) ker(N diag(v)A⊤ diag(h)) ∩ S = {0} for all (v, h) ∈ Rr
>0 × Rn

>0.

(det) Viewed as a polynomial in v and h, det(Γv,h) is non-zero and all of its non-zero
coefficients have the same sign.

(det′) det(Γv,h) ̸= 0 for all (v, h) ∈ Rr
>0 × Rn

>0.

(det′′) det(Mκ(x)) ̸= 0 for all (κ, x) ∈ Rr
>0 × Rn

>0.

In [83], two additional conditions are described, which are equivalent to the con-
ditions in Theorem 2.6. One of these conditions relies on minors of size s × s of the
matrices N and A. The other condition is based on the signs of the vectors in ker(N)
intersected with a specific subset of the row span of A. Since we do not use these condi-
tions in this thesis and prefer to keep the explanation as simple as possible, we choose
to omit them.

By Theorem 2.6, the determinant of Mκ(x) can preclude multistationarity. In the
following, we discuss a theorem from [31] that uses det(Mκ(x)) both to verify and to
preclude multistationarity in a reaction network. This theorem is applicable for reaction
networks satisfying certain assumptions, which we will briefly recall.

A reaction network is conservative if each stoichiometric compatibility class is a
compact set. This is equivalent to the existence of a vector in the left kernel of N with
positive coordinates [8], which is easy to check using linear programming. A milder
condition is that for every stoichiometric compatibility class Pc, there is a compact
set Kc ⊆ Pc such that all the trajectories of the ODE system (2.1) starting in Pc
enter the compact set Kc in finite time and do not leave again. A network with this
property is called dissipative. In general, it is hard to verify whether a reaction network
is dissipative, see the discussion in [31, p. 11-12]. For simplicity, we consider only
conservative networks in our applications.

A steady state x ∈ Vκ ∩Pc is called a relevant boundary steady state if some of the
coordinates of x are zero and Pc ∩ Rn

>0 ̸= ∅.

Theorem 2.7. [31, Theorem 1] Assume that the reaction network is dissipative without
relevant boundary steady states and let s = rk(N). Then for each parameter pair (κ, c) ∈
Rr
>0 × Rd it holds:

(A) If (−1)s det(Mκ(x)) > 0 for all x ∈ Vκ ∩ Pc ∩ Rn
>0, then (κ, c) does not enable

multistationarity.

(B) If (−1)s det(Mκ(x)) < 0 for some x ∈ Vκ ∩ Pc ∩ Rn
>0, then (κ, c) enables multi-

stationarity.
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Unlike Theorem 2.6, in Theorem 2.7, the determinant of Mκ(x) is evaluated only
at points in the incidence variety

V :=
{
(x, κ) ∈ Rn

>0 × Rr
>0 | x ∈ Vκ

}
. (2.7)

In Section 2.3, we introduce a systematic way how to parametrize V using so-called con-
vex parameters. Here, at the end of this section, we discuss another type of parametriza-
tion of V . Such a parametrization is obtained by solving some of the equations fκ(x) = 0
for a subset of the variables. To illustrate this, we consider the following example.

Example 2.8. We revisit the reaction network from (2.2). Its steady state variety is
given by the equations:

−κ1x1 + κ2x2 + κ3x
2
1x2 = 0, κ1x1 − κ2x2 − κ3x

2
1x2 = 0.

By solving the second equation for x2, we obtain the parametrization

Ψ: R4
>0 → V , (x1, κ1, κ2, κ3) 7→ (x1,

κ1x1
κ3x21+κ2

, κ1, κ2, κ3).

The network (2.2) is conservative, since (1, 1) is contained in the left kernel of N . It
is easy to check that the only non-negative steady state with zero coordinates is (0, 0).
The stoichiometric compatibility class containing (0, 0) does not intersect R2

>0. Thus,
the network (2.2) does not have relevant boundary steady states and Theorem 2.7
applies.

Evaluating det(Mκ(x)) at (x, κ) = Ψ(x1, κ1, κ2, κ3), we get the rational function

κ23x
4
1+(2κ2κ3−κ1κ3)x21+κ1κ2+κ22

κ3x21+κ2
, (2.8)

whose denominator is always positive. For the numerator of (2.8) to take negative
values, we need 2κ2κ3− κ1κ3 < 0. Under this assumption, it is a so-called circuit poly-
nomial and by [46, Theorem 2.2] (which is a direct specialization of [63, Theorem 3.8])
it takes negative values if and only if

−2κ2κ3 + κ1κ3 >
√
2κ2

3

√
2(κ1κ2 + κ2

2),

which is equivalent to

0 < (−2κ2κ3 + κ1κ3)
2 − 4κ2

3(κ1κ2 + κ2
2) = (κ1 − 8κ2)κ1κ

2
3.

From this follows that (2.8) is negative for some x1 > 0 if and only if κ1 > 8κ2.
Now, we apply Theorem 2.7 to conclude that the projection of the parameter region of
multistationarity onto the parameters (κ1, κ2, κ3) is given by the inequality κ1 > 8κ2.
Specifically, for κ ∈ R3

>0 there exists c ∈ R such that (κ, c) enables multistationarity if
and only if κ1 > 8κ2. Note that this is the same region as we computed in Example 2.3
using Cylindrical Algebraic Decomposition.
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2.3 The critical polynomial

The aim of this section is to describe a convenient parametrization, called convex
parametrization, of the incidence variety V (cf. (2.7) ). Using this parametrization,
we evaluate det(Mκ(x)) (cf. Theorem 2.7) at points (κ, x) ∈ V , and call the resulting
function the critical polynomial.

Convex parameters in the context of chemical reaction networks were introduced
by Clarke [28]. The idea behind such a parametrization is the observation that for
(κ, x) ∈ Rr

>0 × Rn
>0 we have x ∈ Vκ if and only if diag(κ)xA ∈ ker(N) ∩ Rr

>0. The
set ker(N) ∩ Rr

≥0 is a closed convex pointed polyhedral cone, called the flux cone. Let

E(1), . . . , E(ℓ) ∈ Rr denote a choice of the extreme vectors of the flux cone, and write
them as columns of a matrix E ∈ Rr×ℓ. Such a choice of extreme vectors is unique up
to multiplication by a positive scalar. Every element in ker(N) ∩ Rr

≥0 can be written
as a non-negative linear combination of the extreme vectors. If E does not contain any
zero row, by Proposition I.6.1 we have

ker(N) ∩ Rr
>0 =

{
Eλ =

ℓ∑

i=1

λiE
(i) | λ ∈ Rℓ

>0

}
.

The assumption that E does not have any zero row, is equivalent to ker(N)∩Rr
>0 ̸= ∅.

If a reaction network satisfies this assumption, we call it consistent [3]. For consistent
networks, the map

Ψ: Rn
>0 × Rℓ

>0 7→ V , (h, λ) 7→ ( 1
h
, (Eλ) ∗ hA)

is surjective, i.e. a parametrization (Corollary I.6.2). From Lemma 2.5 with v = Eλ
follows Lemma 2.9, which is a slight refinement of [30, Proposition 2].

Lemma 2.9. For a consistent reaction network, it holds that
{
Jfκ(x) | κ ∈ Rr

>0, x ∈ Rn
>0, x ∈ Vκ} =

{
N diag(Eλ)A⊤ diag(h) | λ ∈ Rℓ

>0, h ∈ Rn
>0

}
.

Now, we do the same modification on N diag(Eλ)A⊤ diag(h) as we did on Jfκ(x)
at the end of Section 2.1. Assume that the conservation law matrix W is row reduced
and let i1 < · · · < id be the indices of the first non-zero coordinates of the rows of W .
We denote by M(h, λ) the matrix obtained from N diag(Eλ)A⊤ diag(h) by replacing
the rows i1, . . . , id by the rows of W . The polynomial

q : Rn
>0 × Rℓ

>0 → R, (h, λ) 7→ q(h, λ) := (−1)s detM(h, λ), (2.9)

is called the critical polynomial. In Section 2.4, we will use the critical polynomial
to prove that the parameter region of multistationarity is path connected for certain
reaction networks.
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Example 2.10. We consider again the reaction network (2.2). A choice of the extreme
vectors of the flux cone ker(N) ∩ R3

≥0 is given by the columns of the matrix

E =



1 1
0 1
1 0


 .

This can be computed for this small example by hand or by using the function rays in
SageMath [103] or the function with the same name in OSCAR [37, 86]. With this choice
of E, the critical polynomial is given by

q(h, λ) = h1λ2 − h1λ1 + h2λ1 + h2λ2. (2.10)

To find the critical polynomial, one has to compute the determinant of the matrix
M(h, λ) with h and λ as symbolic variables. This task might be demanding if the
matrix has many rows or there are many symbolic variables. Theorem 2.13 below
might simplify such computations. In Paper II, we used this statement to provide a
recursive expression of the critical polynomial for the n-site phosphorylation network,
see Section 2.4 for more details. To state this result, first we recall the notion of a Gale
dual matrix.

Definition 2.11. Let K be a field and V ∈ Ks×n, U ∈ Kn×d be two matrices. The
matrix U is called a Gale dual of V if im(U) = ker(V ) and ker(U) = {0}.

For I = {i1, . . . , is} ⊆ [n] with i1 < · · · < is and Ic = {j1, . . . , jd}, j1 < · · · < jd,
we denote by sgn(τI) ∈ {−1, 1} the sign of the permutation that sends (1, . . . , n) to
(i1, . . . , is, j1, . . . , jd).

Lemma 2.12. (Corollary II.2.6, see also [83, Lemma 2.10] [70, Theorem 12.16]) Let
D(λ) ∈ R(λ)n×d be a Gale dual of N ′ diag(Eλ)A⊤ ∈ R(λ)s×n. There exists δ(λ) ∈
R(λ) \ {0} such that for all I ⊆ [n] with |I| = s it holds:

δ(λ) det
(
[D(λ)]Ic,[d]

)
= sgn(τI) det

(
[N ′ diag(Eλ)A⊤][s],I

)
. (2.11)

Theorem 2.13. (Theorem II.2.7) Let D(λ) ∈ R(λ)n×d be a Gale dual of N ′ diag(Eλ)A⊤.
The critical polynomial (2.9) can be written as

q(h, λ) = (−1)s(d+1)
∑

I⊆[n]
|I|=s

δ(λ) det
(
[W ][d],Ic

)
det
(
[D(λ)]Ic,[d]

)∏

i∈I
hi,

where δ(λ) ∈ R(λ) as in (2.11).
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The idea behind the proof of Theorem 2.13 is to use Laplace expansion on comple-
mentary minors onM(h, λ) as in (2.5), and replace the minors det

(
[N ′ diag(Eλ)A⊤][s],I

)
,

I ⊆ [n], |I| = s by minors of a Gale dual matrix via Lemma 2.12.

The advantage of Theorem 2.13 is that the coefficients of q(h, λ) (viewed as a
polynomial in the h’s) are given by minors of size d×d. For the two families of reaction
networks studied in Paper II, we have d = 3 for all networks in the family, which
significantly simplifies the computation of the critical polynomial.

2.4 Connectivity of parameter region of multistationarity

The focus of Paper I and Paper II lies on showing that the parameter region of mul-
tistationarity is path connected for certain chemical reaction networks. Based on The-
orem 2.7, we developed a sufficient criterion implying connectivity of the parameter
region of multistationarity.

Theorem 2.14. (Theorem I.2.4) Consider a conservative consistent reaction network
without relevant boundary steady states. Assume that there exist species X1, . . . ,Xk such
that each Xj participates in exactly 3 reactions of the form

n∑

i=k+1

ai,jXi

κ3j−1−−−⇀↽−−−
κ3j

Xj
κ3j−2−−−→

n∑

i=k+1

bi,jXi, j = 1, . . . , k.

Let q be the critical polynomial of the reduced network obtained by removing the reac-
tions corresponding to κ3j for j = 1, . . . , k. If

(P1) q−1(R<0) is path connected, and

(P2) the Euclidean closure of q−1(R<0) equals q
−1(R≤0),

then the parameter region of multistationarity of both the reduced and the original
network is path connected.

Instead of a convex parametrization, Theorem I.2.4 in Paper I is formulated in
terms of any parametrization of the incidence variety (2.7). In this section, for the sake
of simplicity, we focus only on the convex parametrization.

Since the critical polynomial q is a polynomial, the set

q−1(R<0) =
{
(h, λ) ∈ Rn

>0 × Rℓ
>0 | q(h, λ) < 0

}

is a semi-algebraic set. Thus to verify condition (P1), one can apply semi-algebraic
algorithms, which work well for small reaction networks. This is illustrated in the next
example.
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Example 2.15. Consider the reaction network (2.2). Its critical polynomial was com-
puted in (2.10). The Maple [79] function SamplePoints from the package Regular-

Chains [27] provides a sample point from each connected component of the set q−1(R<0).
For the polynomial (2.10), the code returned only one sample point, thus q−1(R<0) is
connected.

Our initial goal was to show connectivity of the parameter region of multistation-
arity of the n-site phosphorylation network

Si + E
κ6i+1−−−⇀↽−−−
κ6i+2

ESi
κ6i+3−−−→ Si+1 + E, Si+1 + F

κ6i+4−−−⇀↽−−−
κ6i+5

FSi+1
κ6i+6−−−→ Si+6 + F, i = 0, . . . , n− 1.

For n = 2 the network is displayed in (1.2), and its critical polynomial has 15 variables
and 400 monomials. For polynomials of that size, the semi-algebraic algorithms checking
(P1) become intractable. In Paper I, we used a sufficient condition from Paper III
implying (P1) and (P2), which is based on separating hyperplanes of the signed support
of the polynomial. Since this condition can be checked using linear programming, it
is applicable to larger polynomials. For example, the critical polynomial of the ERK
network (see Section I.3.2) has 21 variables and 18472 monomials, yet a separating
hyperplane can be found in less than a minute using a computer. We will discuss this
method in more detail in Chapter 3. Using the separating hyperplane condition and
Theorem 2.14, we proved connectivity of the parameter region of multistationarity for
the n-site phosphorylation network with n = 2, 3 and for several other biologically
relevant reaction networks, see Table I.1.

In Paper II, we focused on two infinite families of phosphorylation networks, the
n-site phosphorylation network discussed above and a slightly different family, called
n-site weakly irreversible phosphorylation network

Si + K
κ10i+1−−−−⇀↽−−−−
κ10i+2

Y2i+1
κ10i+3−−−−→ Y2i+2

κ10i+4−−−−⇀↽−−−−
κ10i+5

Si+1 + K

Si+1 + F
κ10i+6−−−−⇀↽−−−−
κ10i+7

U2i+1
κ10i+8−−−−→ U2i+2

κ10i+9−−−−⇀↽−−−−
κ10i+10

Si + F,
i = 0, . . . , n− 1.

For n = 2, the weakly irreversible phosphorylation network was investigated in [85],
where based on numerical computations, it was suggested that the parameter region
of multistationarity is connected. From the expression in Theorem 2.13, we derived a
recursive formula for the critical polynomials. Based on the results from Paper III and
Paper IV, we gave an inductive proof that these critical polynomials satisfy conditions
(P1) and (P2) from Theorem 2.14. This provides a proof for connectivity of the param-
eter region for multistationarity of the two families of n-site phosphorylation networks
for every n ∈ N≥2.

One should also note that the concepts discussed in Paper I are applicable not only
for verifying the connectivity of the parameter region of multistationarity but also for
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finding reaction networks whose parameter region of multistationarity has more than
one connected component. In Section I.3.4, we showcased this idea by proving that for
the allosteric reciprocal enzyme regulation network

S + KL
κ1−⇀↽−
κ2

SKL
κ3−→ Sp +KL, Sp + P

κ4−⇀↽−
κ5

SpP
κ6−→ S + P,

K+ L
κ7−⇀↽−
κ8

KL, P + L
κ9−−⇀↽−−
κ10

PL
(2.12)

from [100] the parameter region of multistationarity has exactly two connected compo-
nents. The network (2.12) has 5 conservation laws, so the vector of total concentrations
c is of length 5. Using Theorem 2.7 and a parametrization of the incidence variety (2.7),
similar to the one used in Example 2.8, we showed that the pair (κ, c) ∈ R10

>0×R5 does
not enable multistationarity if κ3 = κ6. Furthermore, we proved that both sets

{
(κ, c) ∈ R10

>0 × R5 | κ3 > κ6

}
and

{
(κ, c) ∈ R10

>0 × R5 | κ3 < κ6

}

contain parameters that enable multistationarity. This observation implies that the
parameter region of multistationarity has at least two connected components.

To show that the number of connected components is exactly two, we used Theo-
rem I.2.4 that gives an upper bound on the number of connected components of the
multistationarity region in terms of the number of connected components of q−1(R<0).
Here q denotes the critical polynomial associated with the reduced network obtained
from (2.12) by removing the reactions κ2, κ5. We showed that to find such an upper
bound it is enough to consider a restriction of q to a certain face of its Newton polytope
(see Section 3.3 for further details). By applying Corollary III.3.13, we concluded that
this restriction of q and, consequently, the parameter region of multistationarity, has
at most two connected components. It is worth mentioning that the observation, which
allows one to restrict q to a certain face of its Newton polytope in order to determine
an upper bound on the number of connected components of q−1(R<0), served as the
motivation for Paper IV, where this concept was generalized.

Surprisingly, the structure of network (2.12) appears similar to the networks in
Table I.1, which have connected parameter region of multistationarity. Exploring other
biologically relevant networks with disconnected multistationarity region might help
to characterize structural properties of reaction networks that imply (dis)connectivity
of the parameter region of multistationarity. Understanding why one reaction network
has a connected multistationarity region while another does not, poses an interesting
question that warrants further investigation.



22 Chapter 2. Chemical reaction networks



3
Descartes’ rule of signs

The focus of this chapter is on the content of Paper III and Paper IV. In Section 3.1
and 3.2, we recall essential notions on signomials and convex geometry. In Section 3.3,
we review the results from Paper III and IV. Specifically, we discuss how properties of
the signed support of a polynomial can be used to provide bounds on the number of
connected components of the set of points in the positive orthant, where the polynomial
takes negative values. Additionally, in Section 3.4, we describe conditions on the signed
support of an equation system of n polynomials in n variables ensuring that its number
of positive real solutions is either infinite or at most two. The content of Section 3.4 is
not part of Paper III and IV and has not been included in any publication, but follows
directly from the argument used in Paper III.

3.1 Signomials

Consider a polynomial function with real exponents

f : Rn
>0 → R, x 7→ f(x) =

∑

µ∈σ(f)
cµx

µ, (3.1)

where σ(f) ⊆ Rn is a finite set, called the support of f . Following [39, 97], in Paper III
and IV we used the term signomial for such functions to emphasize that the domain
of the function is restricted to the positive orthant and the exponent vectors µ ∈ σ(f)
may have real entries.

We divide the support of f according to the signs of the coefficients into

σ+(f) := {µ ∈ σ(f) | cµ > 0} and σ−(f) := {µ ∈ σ(f) | cµ < 0}.

We call the elements of σ+(f) and σ−(f) positive and negative exponent vectors of f ,
respectively. For a set S ⊆ Rn we define the restriction of f to S as

f|S : Rn
>0 → R, x 7→ f|S(x) :=

∑

µ∈σ(f)∩S
cµx

µ.

23
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The set of common positive real roots of a collection of signomials f1, . . . , fk : Rn
>0 → R

will be denoted by

V>0(f1, . . . , fk) :=
{
x ∈ Rn

>0 | f1(x) = · · · = fk(x) = 0
}
.

Motivated by the problem discussed in Section 2.4, we were interested in showing
that the preimage of the negative real line under a signomial f ,

f−1(R<0) =
{
x ∈ Rn

>0 | f(x) < 0
}
, (3.2)

is a connected set. We call the connected components of (3.2) negative connected com-
ponents of f , write B−

0 (f) for the set of negative connected components of f , and denote
the cardinality of B−

0 (f) by b0(f
−1(R<0)).

For a univariate signomial, using Descartes’ rule of signs it is possible to derive a
simple combinatorial condition, based on the signs of the coefficients, that ensures the
existence of at most one negative connected component.

Theorem 3.1. (Descartes’ rule of signs, see e.g. [36, 92, 110]) Let g(t) =
∑d

i=1 cit
νi be

a non-zero univariate signomial such that ν1 < · · · < νd. The number of positive real
roots of g is bounded above by the number of sign changes in the coefficient sequence
(c1, . . . , cd).

Corollary 3.2. Let g(t) =
∑d

i=1 cit
νi be a non-zero univariate signomial whose coeffi-

cient sequence matches one of the following sign sequences

(+ · · ·+− · · ·−), (− · · · −+ · · ·+), (+ · · ·+− · · · −+ · · ·+).

Then g has at most one negative connected component.

Thus, the univariate Descartes’ rule of signs not only provides a bound on the num-
ber of positive real roots, but it also gives bounds on the number of negative connected
components. This observation leads to the following generalization of Descartes’ rule
of signs to hypersurfaces.

Problem 3.3. (Problem III.1.1) Let f : Rn
>0 → R be a signomial with f(x) =

∑
µ∈σ(f) cµx

µ,

and σ(f) ⊆ Rn a finite set. Find a (sharp) upper bound on the number of connected
components of f−1(R<0) based on the sign of the coefficients and the geometry of σ(f).

Problem 3.3 is invariant under affine transformations of the support σ(f). To make
this more precise, we recall Lemma III.2.3.

Lemma 3.4. (Lemma III.2.3) Let f : Rn
>0 → R be a signomial. For an invertible matrix

M ∈ Rn×n and v ∈ Rn, consider the map

FM,v,f : Rn
>0 → R, FM,v,f (x) = xvf(xM).

There exists a homeomorphism between the connected components of f−1(R<0) and
F−1
M,v,f (R<0). Furthermore,

σ+

(
FM,v,f

)
= Mσ+(f) + v and σ−

(
FM,v,f

)
= Mσ−(f) + v.
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3.2 Background on convex and polyhedral geometry

The partial solutions for Problem 3.3, as presented in Paper III and IV, rely on poly-
hedral geometric conditions of the signomial’s support. In Section 3.4, we will apply
some results from convex geometry to find upper bounds on the number of positive
real solutions of a polynomial equation system. Here, we provide a brief overview of the
necessary background on these topics. In this section, we closely follow the standard
books [70, 94, 112].

A set C ⊆ Rn is convex if for any x, y ∈ C and λ ∈ [0, 1] we have λx+(1−λ)y ∈ C.
An affine combination of points x1, . . . , xm ∈ Rn is a linear combination

∑m
i=1 λixi,

λ1, . . . , λm ∈ R such that
∑m

i=1 λi = 1. The affine hull of a set C is

Aff(C) =
{ m∑

i=1

λixi | x1, . . . , xm ∈ C,
m∑

i=1

λi = 1
}
.

This is the smallest affine linear subspace of Rn that contains C. The dimension of a
convex set is the dimension of its affine hull. The Euclidean interior of C ⊆ Rn will be
denoted by int(C) and the boundary of C by bd(C) = C \ int(C), where C denotes the
closure of C in the Euclidean topology of Rn. The relative interior of a convex set C,
denoted as relint(C), is the interior of C interpreted as a subset of its affine hull.

An affine combination
∑m

i=1 λixi is called a convex combination if additionally λ1 ≥
0, . . . , λm ≥ 0. The convex hull of {x1, . . . , xm} ⊆ Rn is defined as the set of all convex
combinations of x1, . . . , xm, that is

Conv({x1, . . . , xm}) =
{ m∑

i=1

λixi | λ1, . . . , λm ∈ R≥0,
m∑

i=1

λi = 1
}
.

Such a set is also called a polytope. The convex hull Conv({x1, . . . , xm}) is a convex set.
In fact, it is the smallest convex set (with respect to inclusion) that contains x1, . . . , xm.

A hyperplane Hv,a is a set given by an affine linear equality, that is,

Hv,a = {x ∈ Rn | v · x = a},

where v ∈ Rn \ {0} and a ∈ R. Each hyperplane defines two half-spaces

H+
v,a = {x ∈ Rn | v · x ≥ a}, H−

v,a = {x ∈ Rn | v · x ≤ a}.

We denote by H+,◦
v,a and H−,◦

v,a the interior of these half-spaces respectively.

Theorem 3.5. [94, Corollary 2.1.1, Theorem 11.5]

(i) The intersection of a collection of closed half-spaces is convex.
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(ii) A closed convex set is the intersection of the closed half-spaces that contain it.

A set P ⊆ Rn is a polyhedron if it is the intersection of finitely many half-spaces
H−
v1,a1

, . . . ,H−
vk,ak

. An important theorem in polyhedral geometry states that a polytope
is a bounded polyhedron.

Theorem 3.6. [112, Theorem 1.1] A subset P ⊆ Rn is a polytope, i.e. the convex hull
of a finite set {x1, . . . , xm} ⊆ Rn if and only if P is a bounded polyhedron, i.e. P is
bounded and the intersection of half-spaces H−

v1,a1
, . . . ,H−

vk,ak
⊆ Rn.

For a polyhedron P ⊆ Rn and v ∈ Rn, we define the face with normal vector v as

Pv :=
{
x ∈ Rn | v · x = max

y∈P
v · y

}
. (3.3)

The hyperplane Hv,a ⊆ Rn with a = maxy∈P v · y is called a supporting hyperplane
of P ⊆ Rn. It satisfies P ⊆ H−

v,a and P ∩ Hv,a = Pv. A face of dimension 0, 1 and
dim(P )− 1 is called a vertex, edge and facet respectively. We denote the set of vertices
of a polytope P by Vert(P ).

Proposition 3.7. [112, Proposition 2.2]

(i) Every polytope P ⊆ Rn is the convex hull of its vertices, i.e. P = Conv(Vert(P )).

(ii) If P = Conv(C) for a finite set C ⊆ Rn, then Vert(P ) ⊆ C.

For a signomial f , its Newton polytope is defined as the convex hull of its support

N(f) := Conv(σ(f)).

From Proposition 3.7 it follows that vertices of N(f) correspond to monomials of f
with non-zero coefficients.

Another ubiquitous class of convex sets that play an important role in this thesis is
the class of convex cones. A subset C ⊆ Rn is a cone if it is closed under multiplication
by positive scalars. A cone C is a convex cone if it is additionally a convex set.

Theorem 3.8. [94, Corollary 2.5.1, Corollary 11.7.1]

(i) The intersection of a collection of closed linear half-spaces is a convex cone.

(ii) A non-empty closed convex cone C ⊆ Rn is the intersection of the closed linear
half-spaces H−

vi,0
with C ⊆ H−

vi,0
.
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A convex polyhedral cone is a subset of Rn that can be written as the intersection
of a finite number of linear half-spaces H−

v1,0
, . . . ,H−

vm,0 ⊆ Rn. Similarly to polytopes,
convex polyhedral cones have also an equivalent representation. The conical hull of
{x1, . . . , xm} ⊆ Rn is defined as

Cone({x1, . . . , xm}) :=
{ m∑

i=1

λixi | λ1, . . . , λm ∈ R≥0

}
.

Theorem 3.9. [112, Theorem 1.3] A subset C ⊆ Rn is a convex polyhedral cone, i.e. the
intersection of linear half-spaces H−

v1,0
, . . . ,H−

vk,0
⊆ Rn if and only if C is the conical

hull of a finite set {x1, . . . , xm} ⊆ Rn.

We finish this section by recalling some special classes of convex cones associated
with convex sets. First, we discuss the recession cone of a convex set C ⊆ Rn. This
cone contains all vectors y ∈ Rn such that, for every x ∈ C, the half-line with direction
vector y and endpoint x is contained in C. Thus, the recession cone is given by

0+C := {y ∈ Rn | ∀x ∈ C ∀λ ≥ 0: x+ λy ∈ C}.

The recession cone is a convex cone [94, Theorem 8.1]. This property of 0+C will play
a crucial role in the proof of Lemma 3.24. Furthermore, it is known that a non-empty
closed convex set C is bounded if and only if 0+C = {0} [94, Theorem 8.4].

Next, we pay our attention to normal cones of polytopes, which are defined as
follows. Let P ⊆ Rn be a polytope and F ⊆ P one of its faces. The set

NP (F ) :=
{
v ∈ Rn | F ⊆ Pv

}
. (3.4)

is a convex cone, called the normal cone of F . The collection of the normal cones of
all faces of a polytope is a complete fan NP [112, Example 7.3], called the normal fan
of P . The (n− 1)-skeleton of NP contains all cones NP (F ) with dimNP (F ) ≤ n− 1.

Example 3.10. The convex hull of the points (0, 0), (5, 0), (0, 5) is a triangle P , depicted
in Figure 3.1(a), with 3 vertices and 3 edges. Since dim(P ) = 2, its edges and facets
coincide. The normal cone of P consists of 3 one-dimensional cones spanned by the
vectors (1, 1), (−1, 0), (0,−1), and 3 two-dimensional cones

Cone((1, 1), (−1, 0)), Cone((−1, 0), (0,−1)), Cone((−1, 0), (1, 1)).

These cones are shown in Figure 3.1(b).
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1 2 3 4 5

1

2

3

4

5

(a)

v1

v2

v3

Cone(v1, v2)

Cone(v2, v3)

Cone(v1, v3)

(b)

Figure 3.1: Convex hull of (0, 0), (5, 0), (0, 5), and its normal cones.

3.3 Descartes’ rule of signs for hypersurfaces

In this section, we elaborate further on Problem 3.3 and present the main results of
Paper III and IV.

Definition 3.11. Let f : Rn
>0 → R, x 7→ f(x) =

∑
µ∈σ(f) cµx

µ be a signomial. A hyper-

plane Hv,a ⊆ Rn is a separating hyperplane of σ(f) if

σ−(f) ⊆ H+
v,a and σ+(f) ⊆ H−

v,a.

If additionally σ−(f) ∩H+,◦
v,a ̸= ∅, then Hv,a is called a strict separating hyperplane.

If Hv,a is a separating hyperplane of the support of a signomial f , then for each
fixed x ∈ Rn

>0 the univariate signomial

fv,x : R>0 → R, t 7→ f(tv ∗ x) =
∑

µ∈σ(f)
cµx

µtv·µ (3.5)

has at most one sign change in its coefficient sequence. From the univariate Descartes’
rule of signs (Theorem 3.1), it follows that

fv,x(t) < 0, for all t ∈ [1,∞) if x ∈ f−1(R<0),

we refer to Lemma III.3.3 for more details on the proof of this fact. This observation
provides an explicit method for constructing paths that are contained within f−1(R<0).

For a face of the Newton polytope N(f)v ⊆ N(f), v ∈ Rn \ {0}, as defined in (3.3),
the hyperplane Hv,a, a = maxµ∈σ(f) v ·µ, satisfies σ(f) ⊆ H−

v,a. Thus, if σ−(f) ⊆ N(f)v,
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then Hv,a is a non-strict separating hyperplane of σ(f). On the contrary, if σ−(f) ̸= ∅
and Hv,a is a non-strict separating hyperplane of σ(f), then F = Hv,a ∩N(f) is a face
of the Newton polytope and σ−(f) ⊆ F . We refer to Figure 3.2(a) for an illustration
of non-strict and strict separating hyperplanes.

Theorem 3.12. (Theorem III.3.6, Theorem IV.3.1) Let f : Rn
>0 → R, x 7→ f(x) =∑

µ∈σ(f) cµx
µ be a signomial.

(i) If σ(f) has a strict separating hyperplane, then f−1(R<0) is non-empty and con-
tractible. In particular

b0(f
−1(R<0)) = 1.

(ii) If σ(f) has a non-strict separating hyperplane Hv,a such that F = Hv,a ∩N(f) is
a face of N(f), then

b0(f
−1(R<0)) = b0(f

−1
|F (R<0)).

The proof of Theorem 3.12 is based on arguments that use that the induced signo-
mial (3.5) has at most one sign change in its coefficient sequence. If for some v ∈ Rn

there are at most two sign changes in the coefficient sequence of (3.5), the induced
signomial might still be used to derive bounds on the number of negative connected
components.

Definition 3.13. Let f : Rn
>0 → R, x 7→ f(x) =

∑
µ∈σ(f) cµx

µ be a signomial. A pair of

parallel hyperplanes (Hv,a, Hv,b), a ≥ b such that

σ+(f) ⊆ H−
v,a ∩H+

v,b and σ−(f) ⊆ Rn \
(
H−,◦
v,a ∩H+,◦

v,b

)
,

is called a pair of enclosing hyperplanes of σ+(f). A pair of enclosing hyperplanes is
strict, if

σ−(f) ∩H+,◦
v,a ̸= ∅ and σ−(f) ∩H−,◦

v,b ̸= ∅.

Strict enclosing hyperplanes were used in Theorem III.3.8 to show that a signomial
has at most two negative connected components. In Paper IV, the argument has been
generalized to non-strict separating hyperplanes. Before we recall this statement, we
introduce some notation. Given a pair of enclosing hyperplanes (Hv,a,Hv,b) of σ+(f),
we define

A = (H+
v,a ∩ σ−(f)) ∪ σ+(f), B = (H−

v,b ∩ σ−(f)) ∪ σ+(f). (3.6)

and the bipartite graph with vertex and edge sets defined as

BA,B := B−
0 (f|A) ⊔ B−

0 (f|B),

EA,B :=
{
(U, V ) | U ∈ B−

0 (f|A), V ∈ B−
0 (f|B) : U ∩ V ̸= ∅

}
.

(3.7)
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Proposition 3.14. (Proposition IV.2.6) Let f : Rn
>0 → R, x 7→ ∑

µ∈σ(f) cµx
µ be a sig-

nomial, (Hv,a,Hv,b) a pair of enclosing hyperplanes of σ+(f), and let A,B ⊆ σ(f) as
defined in (3.6). Then

b0
(
f−1(R<0)

)
≤ C ≤ b0

(
f−1
|A (R<0)

)
+ b0

(
f−1
|B (R<0)

)
,

where C denotes the number of connected components of the bipartite graph (BA,B, EA,B)
from (3.7).

Example 3.15. Consider the signomial f = x3
1x

3
2−5x3

1x2+x1x
3
2+x3

1+x2
1−5x2. A pair of

enclosing hyperplanes (Hv,3,Hv,1) of σ+(f) with v = (1, 0) is depicted in Figure 3.2(a).
The sets A,B as defined in (3.6) are given by

A = {(3, 1), (2, 0), (3, 0), (1, 3), (3, 3)}, B = {(0, 1), (2, 0), (3, 0), (1, 3), (3, 3)}.
The hyperplane H−v,−1 is a strict separating hyperplane of σ(f|B), which implies that
f−1
|B (R<0) is connected by Theorem 3.12(i), see Figure 3.2(b). Using Theorem 3.12(ii),

we have that the number of connected components of f−1
|A (R<0) is the same as the

number of negative connected components of x3
1 − 5x3

1x2 + x3
1x

3
2 = x3

1(1 − 5x2 + x3
2).

Since the latter polynomial is essentially univariate, it is easy to deduce that it has one
negative connected component.

Thus, the bipartite graph BA,B has two vertices corresponding to f−1
|A (R<0) and

f−1
|B (R<0). An easy computation shows that (1, 1) ∈ f−1

|A (R<0)∩f−1
|B (R<0), which implies

that the graph BA,B has an edge between the two vertices. Using Proposition 3.14, we
conclude that f has one negative connected component.

Note that if (Hv,a,Hv,b) is a pair of strict enclosing hyperplanes of σ(f), then Hv,a

and H−v,−b are strict separating hyperplanes of σ(f|A) and σ(f|B) respectively. Thus,
both f|A and f|B have one negative connected component by Theorem 3.12(i).

Corollary 3.16. (Theorem III.3.8) Let f : Rn
>0 → R, x 7→∑

µ∈σ(f) cµx
µ be a signomial

such that σ+(f) has a pair of strict enclosing hyperplanes. Then

b0(f
−1(R<0)) ≤ 2.

Theorem 3.12 has another important consequence, which allows us to reduce the
problem of finding the number of negative connected components to the same problem
but for polynomials in less monomials and variables.

Corollary 3.17. (Theorem IV.3.6) Let f : Rn
>0 → R, x 7→∑

µ∈σ(f) cµx
µ be a signomial.

Assume that there exists v ∈ Rn such that σ(f) ⊆ N(f)v ∪ N(f)−v and

b0
(
f−1
|N(f)v

(R<0)
)
= b0

(
f−1
|N(f)−v

(R<0)
)
= 1.

If there exist negative exponent vectors β1 ∈ N(f)v and β2 ∈ N(f)−v such that Conv(β1, β2)
is an edge of N(f), then b0

(
f−1(R<0)

)
= 1.
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1 2 3 4

1

2

3

4

v= (1, 0)H+
v, 1 ∩H−

v, 3

H−
v, 1

H−v, − 1

H+
v, 3

N(f|A)

(a)

1

1

f< 0

f|A < 0f|B < 0

(b)

Figure 3.2: (a) Signed support of f = x3
1x

3
2 − 5x3

1x2 + x1x
3
2 + x3

1 + x2
1 − 5x2, positive

exponent vectors are depicted as red circles, negative exponent vectors as blue dots. The
pair (Hv,3,Hv,1) is a pair of enclosing hyperplanes of σ+(f). The green quadrilateral
shows the Newton polytope of f|A = x3

1x
3
2 − 5x3

1x2 + x1x
3
2 + x3

1 + x2
1. The hyperplane

H−v,−1 is a strict separating hyperplane of the support of f|B = x3
1x

3
2+x1x

3
2+x3

1+x2
1−5x2

(b) Preimage of the negative real line under f, f|A and f|B.

Corollary 3.17 played a crucial role in Paper II, since it allowed us to show in-
ductively that the critical polynomial (see Chapter 2) of the phosphorylation network
considered in Paper II has one negative connected component.

Using the induced signomial (3.5) and adopting a similar approach as in the proofs
of Theorem 3.12 and Proposition 3.14, one can show that the signomial has at most
one negative connected component in the following cases.

Theorem 3.18. (Theorem III.3.4, Corollary IV.2.13) Let f : Rn
>0 → R, x 7→ f(x) =∑

µ∈σ(f) cµx
µ be a signomial.

(i) If |σ−(f)| ≤ 1, then f−1(R<0) is either empty or a logarithmically convex set. In
particular

b0(f
−1(R<0)) ≤ 1.

(ii) If |σ+(f)| ≤ 1 and dimN(f) ≥ 2, then

b0(f
−1(R<0)) = 1.

Remark 3.19. The condition dimN(f) ≥ 2 in Theorem 3.18(ii) is necessary. The uni-
variate signomial −x2 + 4x− 1 has one positive coefficient but two negative connected
components.
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Besides separating and enclosing hyperplanes of the signed support, one can ensure
that a signomial has one negative connected component if its signed support is sep-
arated by a simplex in a certain way. In the remaining of this section, we recall this
result.

A simplex P ⊆ Rn is the convex hull of n+1 affinely independent points µ0, . . . , µn,
which are its vertices. The negative vertex cone at the vertex µk is defined as

P−,k := µk + Cone(µk − µ0, . . . , µk − µn).

We denote by P− the union of the negative vertex cones P−,0, . . . , P−,n. We refer to
Figure 3.3 for an illustration of a simplex and its negative vertex cones. If the vertices
of the simplex are the standard basis vectors e1, . . . , en ∈ Rn and the zero vector, then
we call the simplex the standard n-simplex and write ∆n := Conv({0, e1, . . . , en}).
Lemma 3.20. (Lemma III.4.4) Let f : Rn

>0 → R be a signomial. If σ−(f) ⊆ ∆n and
σ+(f) ⊆ ∆−

n , then f is a convex function.

Sublevel sets of a convex function are convex sets [94, Theorem 4.6]. Thus, if a
signomial f is a convex function, then f has one negative connected component, which
is a convex set. Using an affine transformation, one can transform every n-dimensional
simplex P into the standard n-simplex ∆n (see e.g. Lemma III.4.5). By Lemma 3.4,
such an affine transformation induces a homeomorphism between the corresponding
negative connected components. This leads to the following result.

Theorem 3.21. (Theorem III.4.6, Corollary IV.2.15) Let f : Rn
>0 → R, x 7→∑

µ∈σ(f) cµx
µ

be a signomial, and let P ⊆ Rn be an n-simplex.

(i) If σ−(f) ⊆ P and σ+(f) ⊆ P−, then f−1(R<0) is either empty or contractible.

(ii) If σ+(f) ⊆ P, σ−(f) ⊆ P−, σ−(f) ∩ int(P−) ̸= ∅ and n ≥ 2, then f−1(R<0) is
non-empty and connected.

Remark 3.22. In Theorem 3.21(ii) both conditions σ−(f) ∩ int(P−) ̸= ∅ and n ≥ 2
are necessary for f−1(R<0) to be connected. If n = 1, then we consider the polynomial
f = −x2 + 4x − 1 as in Remark 3.19. The simplex P = Conv(0.5, 1.5) satisfies the
conditions in Theorem 3.21(ii) , but f−1(R<0) has two connected components. For the
necessity of σ−(f) ∩ int(P−) ̸= ∅ , we refer to Example IV.2.16(b).

Example 3.23. Consider the signomial

f = x7
1x2 + x7

2 + x6
1 − 3x2

1x
3
2 − 2x2

1x
2
2 + 1,

which has 4 positive and 2 negative exponent vectors, which are shown in Figure 3.3(a).
The simplex P := Conv((1, 1), (5, 1), (1, 5)) separates σ+(f) and σ−(f) as required in
Theorem 3.21(i). Therefore, f−1(R<0) is a contractible set, see Figure 3.3(b).
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1 2 3 4 5 6 7

1

2

3

4

5

6

7

P

P−, 0 P−, 1

P−, 2

(a)

1

1

f< 0

(b)

Figure 3.3: (a) Signed support of f = x7
1x2 + x7

2 + x6
1 − 3x2

1x
3
2 − 2x2

1x
2
2 + 1. Positive

exponent vectors are marked by red circles, while the negative exponent vectors are
marked by blue dots. The simplex P = Conv((0, 0), (5, 1), (1, 5)) and its negative vertex
cones, P−,0, P−,1, P−,2, separate σ+(f) and σ−(f) as required in Theorem 3.21(i). (b)
Preimage of the negative real line under f .

3.4 Descartes’ rule of signs for square systems

The goal of this section is to provide conditions on the signed support of signomials
f1, . . . , fn in n variables such that their set of common positive roots V>0(f1, . . . , fn)
contains at most two or infinitely many points. Our strategy is to transform

V>0(f1, . . . , fn) = V>0(f1) ∩ V>0(f2, . . . , fn)

such that V>0(f1) becomes the boundary of a convex set and V>0(f2, . . . , fn) is trans-
formed to an affine linear subspace of Rn. A similar strategy has been applied in [4, 13,
72, 76] to bound the number of points in V>0(f1, . . . , fn). Assuming that σ(f2), . . . , σ(fn)
are contained in the vertex set of an n-simplex (up to affine translation) and σ(f1) has
m exponent vectors, the current best bound in the case n = 2 is

|V>0(f1, f2)| ≤ 2m− 2,

if V>0(f1, f2) is finite [4, Theorem 1]. For general n, the authors in [76] proved the
bound n + n2 + · · · + nm−1 on the number of isolated points in V>0(f1, . . . , fn) under
the assumption that V>0(f2, . . . , fn) is smooth.

To prove the new bounds in Theorem 3.26 and Theorem 3.28 below, we need the
following technical lemmata.
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Lemma 3.24. Let C ⊆ Rn be a closed convex set and L ⊆ Rn be an affine linear
subspace. Then bd(C) ∩ L is either infinite or contains at most two points.

Proof. Our strategy is to show that the existence of three pairwise distinct points
x1, x2, x3 ∈ bd(C) ∩ L implies that bd(C) ∩ L contains infinitely many points. Since
C ∩ L is convex, it contains Conv(x1, x2, x3). If relint(Conv(x1, x2, x3)) ⊆ bd(C) ∩ L,
then we are done, since the relative interior of a convex set containing more than one
point is infinite.

Thus, in the following, we assume relint(Conv(x1, x2, x3)) ∩ int(C) ∩ L ̸= ∅. Let y
be a point in this intersection such that y ̸= xi for i = 1, 2, 3. Let vi := xi − y denote
the vector pointing from y into xi for each i = 1, 2, 3. Note that vi ̸= 0, and

y + λvi = (1− λ)y + λxi ∈ Aff(x1, x2, x3) ⊆ L for all λ ∈ R.

Furthermore, since y ∈ Conv(x1, x2, x3), there exist µ1, µ2, µ3 ≥ 0 with
∑3

i=1 µi = 1
and

∑3
i=1 µixi = y. A simple computation shows that

∑3
i=1 µivi =

∑3
i=1 µi(xi−y) = 0.

Thus, the linear span of v1, v2, v3 is an at most two-dimensional linear subspace of Rn.

We distinguish between two cases. First, we assume that there exists i ∈ {1, 2, 3}
and λ0 > 1 such that y + λ0vi ∈ C. Since C is convex and y ∈ C, we have

y + λvi = (1− λ
λ0
)y + λ

λ0
(y + λ0vi) ∈ C, for all 0 ≤ λ ≤ λ0.

If for all 1 < λ ≤ λ0 we have y+λvi ∈ bd(C), then bd(C)∩L is infinite. If there exists
1 < λ1 ≤ λ0 such that y + λ1vi ∈ int(C), then

xi = (1− 1
λ1
)y + 1

λ1
(y + λ1vi) ∈ Conv(y, y + λ1vi) ⊆ int(C),

which contradicts xi ∈ bd(C).

Now, we focus on the second case and assume that for all i ∈ {1, 2, 3} and all λ > 1
y + λvi /∈ C. In particular, v1, v2, v3 are not contained in the recession cone 0+C. If
vi = λvj for i ̸= j and λ > 1, then xi = y + vi = y + λvj /∈ C, which is a contradiction.
If vi = λvj for i ̸= j and 0 < λ < 1, then 1

λ
vi = vj,

1
λ
> 1 and by the same argument as

above, we get a contradiction. From these, it follows that v1, v2, v3 do not lie on a line.
Thus, we can assume without loss of generality that Conv(v1, v3) and Conv(v2, v3) are
two-dimensional cones.

In the next step of the proof, we show that at least one of the cones Cone(v1, v2),
Cone(v2, v3), or Cone(v1, v3) does not intersect 0

+C and this cone has dimension two. If
v1 and v2 are linearly independent, then Cone(v1, v2) is also two dimensional. Assume
that there exist w1 ∈ Cone(v1, v3), w2 ∈ Cone(v2, v3), w3 ∈ Cone(v1, v2) contained in
0+C. Since v1, v2, v3, w1, w2, w3 are contained in the linear span of v1, v2, v3, which is
a linear subspace of dimension at most two, there exist i, j, k ∈ {1, 2, 3} such that
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vk ∈ Cone(wi, wj). Since the recession cone is a convex cone [94, Theorem 8.1], we have
vk ∈ Cone(wi, wj) ⊆ 0+C, which is a contradiction.

If v1 and v2 are linearly dependent, that is v1 = µv2 for µ ∈ R \ {0}. From the
above discussion it follows that µ < 0. Assume that there exist w1 ∈ Cone(v1, v3), w2 ∈
Cone(v2, v3) contained in 0+C. There exist λ1, λ2, λ3, λ

′
3 > 0 such that w1 = λ1v1+λ3v3

and w2 = λ2v2 + λ′
3v3. Since µ < 0, there exists t > 0 with λ1

λ3
µ + λ2

λ′3
t = 0. A direct

computation shows

1
λ3(1+t)

w1 +
t

λ′3(1+t)
w2 =

1
(1+t)

(
λ1
λ3
µv2 + v3 +

λ2t
λ′3
v2 + tv3

)
= v3

Thus, v3 ∈ Cone(w1, w2) ⊆ 0+C, which is again a contradiction.

From the above arguments it follows that at least one of the cones Cone(v1, v2),
Cone(v2, v3), Cone(v1, v3) does not intersect 0

+C and this cone has dimension two. We
assume without loss of generality this holds for Cone(v1, v2). For all v ∈ Cone(v1, v2)
and all λ≫ 0 we have y+λv /∈ C. Since C is closed and y ∈ int(C), there exists λv > 0
such that y + λvv ∈ bd(C). Thus, in that case we also have that bd(C) ∩ L contains
infinitely many points.

Lemma 3.25. Let C ⊆ Rn be an open convex set of dimension n and let f : C → R be
a strictly convex function.

(a) If {x ∈ C | f(x) < 0} = ∅, then {x ∈ C | f(x) = 0} contains at most one point.

(b) If {x ∈ C | f(x) ≤ 0} is a closed subset of Rn with respect to the Euclidean
topology, then

bd
(
{x ∈ C | f(x) ≤ 0}

)
= {x ∈ C | f(x) = 0}.

Proof. We prove part (a) by contradiction. Assume that there exists x, y ∈ C with
x ̸= y and f(x) = f(y) = 0. Since f is strictly convex it follows

f(1
2
x+ 1

2
y) < 1

2
f(x) + 1

2
f(y) = 0,

which contradicts {x ∈ C | f(x) < 0} = ∅.
To prove part (b), we distinguish two cases. If {x ∈ C | f(x) < 0} = ∅, then

{x ∈ C | f(x) ≤ 0} is either empty or contains at most one point by (a), and the
statement follows. If {x ∈ C | f(x) < 0} ≠ ∅, then by [94, Theorem 7.6] the interior of
{x ∈ C | f(x) ≤ 0} equals {x ∈ C | f(x) < 0}. Since {x ∈ C | f(x) ≤ 0} is closed, we
have

bd
(
{x ∈ C | f(x) ≤ 0}

)
= {x ∈ C | f(x) ≤ 0} \ {x ∈ C | f(x) < 0}
= {x ∈ C | f(x) = 0},

which concludes the proof.
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A signomial f is a binomial if σ(f) contains exactly 2 exponent vectors. Binomial
equation systems are well studied. In the chemical reaction network literature for net-
works whose steady state variety is defined by binomial equations, there are easily
checkable conditions to decide upon multistationarity [83, 91, 96]. It is well known that
if f1, . . . , fn are binomials, then V>0(f1, . . . , fn) contains at most one point or infinitely
many (see e.g. [76, Theorem 4]). In Theorem 3.26, we replace one of the binomials by
a signomial with arbitrarily many exponent vectors, assuming that only one exponent
vector is negative. Under this assumption, we have the following bound.

Theorem 3.26. Let f1, . . . , fn : Rn
>0 → R be signomials such that f2, . . . , fn are binomi-

als, dimN(f1) = n, and f1 has exactly one negative exponent vector. Then V>0(f1, . . . , fn)
is either infinite or contains at most two points.

Proof. Let β denote the unique negative exponent vector of f1 and define the signomial
g1(x) := x−βf1(x). Note that V>0(g1, f2 . . . , fn) = V>0(f1, f2 . . . , fn) and σ−(g1) = {0}.
Denote the elements of σ+(g1) by α1, . . . , αm and let Exp: Rn → Rn

>0 and Log : Rn
>0 →

Rn be the coordinate-wise exponential and natural logarithm functions. Consider the
exponential sum

G(y) := g1(Exp(y)) = c0 +
m∑

i=1

cie
αi·y,

where c0, . . . , cm denote the coefficients of g1.

In the proof of Theorem VI.4.11, we showed that the Hessian of G is positive definite
for all y ∈ Rn. We recall this computation for the sake of completeness. Consider the
matrix

Ã =
(
α1 . . . αm

)
∈ Rn×m.

Since cie
αi·y is positive for i = 1, . . . ,m, its square root is a real number. The Hessian

of G at y is given by

HessG(y) =
m∑

i=1

(cie
αi·y)αiα

⊤
i = Ã diag

(
(cie

αi·y)i=1,...,m

)
Ã⊤

=
(
Ã diag

(
(
√
cieαi·y)i=1,...,m

))(
Ã diag

(
(
√
cieαi·y)i=1,...,m

))⊤
.

By assumption N(f1) has dimension n. The same is true for N(g1), since it is an affine
translate of N(f1). Since σ−(g1) = {0}, it follows that

n = rk(Ã) = rk(Ã diag
(
(
√
cieαi·y)i=1,...,m

)
),

in particular the rows of Ã diag
(
(
√
cieαi·y)i=1,...,m

)
are linearly independent. From [62,

Theorem 7.2.10] it follows that HessG(y) is positive definit. Using [23, Section 3.1.4],
we conclude that G is a strictly convex function.
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By [94, Theorem 4.6], the sublevel set

C := {y ∈ Rn | G(y) ≤ 0} = Log
(
g−1
1 (R≤0)

)

is a convex set. Since G is a continuous function on Rn, the set C is a closed subset
of Rn. From Lemma 3.25, it follows that

bd(C) = {y ∈ Rn | G(y) = 0} = Log(V>0(g1)).

In the second part of the proof, we show that the image of V>0(f2, . . . , fn) under Log
is an affine linear subspace of Rn. If there exists fi, i = 2, . . . , n, such that its coefficients
have the same sign, then V>0(f2, . . . , fn) = ∅. In the following, we assume that this is
not the case, and denote by γi (resp. βi) the positive (resp. negative) exponent vector
of fi and cγi , cβi the corresponding coefficients of fi for each i = 2, . . . , n. The set

Log(V>0(f2, . . . , fn)) =
{
Log(x) | x ∈ Rn

>0 and cγix
γi = −cβixβi for i = 2, . . . , n

}

=
{
y ∈ Rn | log(cγi) + γi · y = log(−cβi) + βi · y for i = 2, . . . , n

}

is an affine linear subspace. Therefore, using Lemma 3.24 we conclude that bd(C) ∩
Log(V>0(f2, . . . , fn)) contains at most 2 or infinitely many points. Since Log is a bijec-
tion, the theorem follows.

In Theorem 3.28 below, we present another condition on the signed support that
implies that a square system has either infinitely many or at most two positive solutions.
Before proving this result, we state another technical lemma.

Lemma 3.27. Let f : Rn
>0 → R be a strictly convex signomial. If σ−(f) ⊆ int(N(f)),

then f−1(R≤0) is a closed convex subset of Rn.

Proof. Since f is strictly convex, f−1(R<0) = ∅ implies that f−1(R≤0) is a point,
in particular a closed subset of Rn, see Lemma 3.25. In the following, we assume
f−1(R<0) ̸= ∅. We prove the statement in two steps. First, we show that

f−1(R≤0) = f−1(R<0)
>0
, (3.8)

where the closure is taken in the subspace topology of Rn
>0 ⊆ Rn, see [73, Defini-

tion 1.2.82]. Since f is continuous, the set f−1(R≤0) is closed in the subspace topology
of Rn

>0. Thus to prove (3.8), it is enough to show that for every y ∈ f−1(R≤0) there
exists a sequence in f−1(R<0) converging to y. If y ∈ f−1(R<0), then we take the con-
stant sequence given by y. If f(y) ∈ f−1(R≤0) \ f−1(R<0), then f(y) = 0. Since f is a
convex function, by [94, Theorem 4.1] we have for any fixed x ∈ f−1(R<0) and for all
t ∈ (0, 1) that

f((1− t)y + tx) ≤ (1− t)f(y) + tf(x) = tf(x) < 0.
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Thus, (1 − t)y + tx ∈ f−1(R<0). As t → 0, we have (1 − t)y + tx → y, which implies

that y lies in f−1(R<0)
>0
.

In the second step, we show

f−1(R<0)
>0

= f−1(R<0), (3.9)

where on the right-hand side the closure is taken in the Euclidean topology of Rn. Since
f−1(R<0) is closed, it contains all limit points of f−1(R<0). In particular, it contains
all limit points that are contained in Rn

>0. Therefore, the left-hand side of (3.9) is
contained in the right-hand side. To see the other inclusion, assume that there exists
y ∈ f−1(R<0) \ Rn

>0. For such a y it holds that y ∈ Rn
≥0 \ Rn

>0. Thus there exists

k ∈ [n] with yk = 0. Since y ∈ f−1(R<0) there exists a sequence {xn}n ⊆ f−1(R<0)
with xn → y. Since the logarithm function is continuous, it follows that log(xn,k) →
log(yk) = −∞. From the assumption σ−(f) ⊆ int(N(f)) and Corollary V.3.6, it follows
that Log(f−1(R<0)) is a bounded set, which contradicts log(xn,k)→ −∞.

Combining (3.8) and (3.9), we conclude that f−1(R≤0) is a closed subset of Rn.
From [94, Theorem 4.6], it follows that f−1(R≤0) is a convex set.

Theorem 3.28. Let f1, . . . , fn : Rn
>0 → R be signomials. Assume that there exists an

n-simplex P ⊆ Rn and v2, . . . , vn ∈ Rn such that

σ−(f1) ⊆ P, σ+(f1) ⊆ P−, σ(f1) ∩ (P ∪ P−) ̸= ∅,
σ−(f1) ⊆ int(N(f1)), σ(fi) ⊆ Vert(vi + P ) for i = 2, . . . n.

Then V>0(f1, f2, . . . , fn) is either infinite or contains at most two points.

Proof. First, we transform f1, . . . , fn into more convenient signomials using affine trans-
formations as in Lemma 3.4. Multiplying the equation fi by x−vi does not change
the number of positive solutions. Thus, we assume without loss of generality that
σ(fi) ⊆ Vert(P ) for i = 2, . . . , n. From Lemma III.4.5 it follows that there exists an
invertible matrix M ∈ Rn×n and v ∈ Rn such that

Mσ−(f1) + v ⊆ ∆n, Mσ+(f1) + v ⊆ ∆−
n , (Mσ(f1) + v) ∩ (∆n ∪∆−

n ) ̸= ∅, (3.10)

Mσ(fi) + v ⊆ Vert(∆n), i = 2, . . . , n. (3.11)

Consider the signomials

gi : Rn
>0 → R, x 7→ xvfi(x

M), i = 1, . . . , n.

Note that the number of points in V>0(f1, . . . , fn) is the same as in V>0(g1, . . . , gn).
From σ(gi) ⊆ Vert(∆n), i = 2, . . . , n, it follows that the functions g2, . . . , gn are affine
linear and hence V>0(g2, . . . , gn) is the intersection of an affine linear subspace with Rn

>0.
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V> 0(g)
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V> 0(f̃)

V> 0(g̃)

(b)

Figure 3.4: Illustration of Example 3.29 (a) Positive zero sets of f = x7
1x2 + x7

2 +
x6
1 − 3x2

1x
3
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1x
2
2 + 1 and g = x5

1x2 − x1x
5
2 + x1x2 (b) Positive zero sets of f̃ =

x
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2 − 2x

1
4
1 x

1
4
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−1
4

1 x
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4

2 , g̃ = x1 − x2 + 1.

Since Mσ−(f1) + v = σ−(g1) and Mσ+(f1) + v = σ+(g1) (cf. Lemma 3.4), from (3.10)
follows that g1 is a strictly convex function by [80, Theorem 7]. This implies that
g−1
1 (R≤0) is a closed convex set by Lemma 3.27. From Lemma 3.25, it follows that
bd(g−1

1 (R≤0)) = V>0(g1). Now, the theorem follows from Lemma 3.24.

Example 3.29. We revisit the polynomial

f = x7
1x2 + x7

2 + x6
1 − 3x2

1x
3
2 − 2x2

1x
2
2 + 1

from Example 3.23. Its positive and negative exponent vectors are separated by the
simplex P = Conv((1, 1), (5, 1), 1, 5)), cf. Figure 3.3(a). Consider the polynomial

g = x5
1x2 − x1x

5
2 + x1x2.

Since σ(g) ⊆ P , from Theorem 3.28 follows that V>0(f)∩ V>0(g) is infinite or contains
at most two points. The sets V>0(f), V>0(g) are shown in Figure 3.4(a).

In the following, we illustrate the idea of the proof of Theorem 3.28. The affine map
R2 → R2, x 7→ 1

4
x − (1

4
, 1
4
) transforms P into the standard 2-simplex. The signomials

f, g are transformed into

f̃ = x
6
4
1 + x

−1
4

1 x
6
4
2 + x

5
4
1 x

−1
4

2 − 3x
1
4
1 x

2
4
2 − 2x

1
4
1 x

1
4
2 + x

−1
4

1 x
−1
4

2 ,

g̃ = x1 − x2 + 1.
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The function g̃ is affine linear and f̃ : R2
>0 → R is a convex function by Lemma 3.20.

Thus, V>0(g̃) is an affine linear subspace and V>0(f̃) is the boundary of a convex set,
see Figure 3.4(b). From Lemma 3.24 follows that V>0(f̃) ∩ V>0(g̃) is either infinite or
it contains at most 2 points.

In Section 3.3, we observed that the existence of a separating hyperplane, a pair
of enclosing hyperplanes, or a separating simplex of the signed support implies that
the preimage of the negative real line has at most one or two connected components.
Theorem 3.26 and Theorem 3.28 demonstrate that, under similar conditions on the
signed support of signomials in a square system, the number of positive solutions is
at most two. Could other polyhedral conditions on the signed support provide upper
bounds on the number of positive solutions? Is it possible to use separating hyperplanes
to establish such bounds? In Papers I and II, we observed that even very restrictive
assumptions on the signed support can lead to interesting applications. My future plan
is to pursue this path, and to investigate the connection between the signed support and
upper bounds on the number of positive real solutions of square systems. Such results
would be highly valuable in applications where bounding the number of positive real
solutions is crucial, such as addressing questions of multistationarity in the study of
chemical reaction networks.



4
Real tropicalization

This chapter offers an overview of the content of Paper V and Paper VI. To relate these
two papers to previous results in tropical geometry, in Section 4.1, we discuss how to
tropicalize algebraic varieties over the field of complex Puiseux series. In Section 4.2,
our focus shifts to tropicalization of semi-algebraic sets over the field of real Puiseux
series and discuss why the notion of real tropicalization is analogous to tropicalization
of complex algebraic varieties. Afterward, we present the main results of Paper V.
In Section 4.3, we elaborate on when it is possible to capture the isotopy type of a
hypersurface with a polyhedral object, called the Viro diagram. For that, we study the
signed reduced A-discriminant, which is the main object of Paper VI.

4.1 Tropical geometry

The main theorems of tropical geometry concern algebraic varieties over algebraically
closed fields with non-trivial valuations. For simplicity, in this thesis, we only consider
the field of Puiseux series with complex coefficients. The field of complex Puiseux series
C = C{{t}} contains formal power series of the form

c(t) =
∞∑

k=k0

ckt
k
N , for k0 ∈ Z, N ∈ N, ck ∈ C, ck0 ̸= 0. (4.1)

The valuation map val : C× → R is given by val(c(t)) = k0
N

[78, Example 2.1.3]. Here,
we use the notation C× = C \ {0}. We denote the coordinate-wise valuation map by

val : (C×)n → Rn, x 7→ val(x) := (val(x1), . . . , val(xn)). (4.2)

For a Laurent polynomial f =
∑

µ∈σ(f) cµ(t)x
µ ∈ C[x±

1 , . . . , x
±
n ], we write

VC(f) :=
{
x ∈ (C×)n | f(x) = 0

}
(4.3)

for the set of its zeros in (C×)n, and define its tropicalization

Trop(VC(f)) :=
{
− val(x) | x ∈ VC(f)

}
, (4.4)

41
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where the closure is with respect to the Euclidean topology in Rn. The tropicalization
Trop(VC(f)) is a finite union of polyhedral sets. To see this, first we introduce the
tropical hypersurface defined by f as the set

trop(f) :=
{
w ∈ Rn | max

µ∈σ(f)
(− val(cµ(t)) + w · µ) is achieved at least twice

}
, (4.5)

which is a finite union of polyhedral sets [78, Proposition 3.1.6]. In this thesis, we use
the maximum to define tropical hypersurfaces as in [64]. This convention has the ad-
vantage that the logarithmic limit of a complex hypersurface equals its tropicalization
(cf. Theorem 4.3). Some authors prefer using the minimum to define tropical hyper-
surfaces [78]. In such cases, the logarithmic limit is the reflection of the tropicalization
through the origin.

In (4.4), we introduced the tropicalization of the hypersurface defined by a Laurent
polynomial f , and in (4.5) the tropical hypersurface defined by f . The following theorem
states that the two objects coincide.

Theorem 4.1. (Kapranov’s Theorem [40, Theorem 2.1.1] see also [78, Theorem 3.1.3])
Let f ∈ C[x±

1 , . . . , x
±
n ] be a Laurent polynomial. Then

Trop(VC(f)) = trop(f).

Theorem 4.1 can be generalized to varieties of higher codimension as follows. Let
I ⊆ C[x±

1 , . . . , x
±
n ] be an ideal and denote VC(I) its vanishing locus in (C×)n

VC(I) :=
{
x ∈ (C×)n | ∀f ∈ I : f(x) = 0

}
.

Similarly as in (4.4), the tropicalization of VC(I) is defined as

Trop(VC(I)) :=
{
− val(x) | x ∈ VC(I)

}
. (4.6)

By the Fundamental Theorem of Tropical Algebraic Geometry, the tropicalization
Trop(VC(I)) is the intersection of the tropical hypersurfaces defined by the polyno-
mials in the ideal I.

Theorem 4.2. (Fundamental Theorem of Tropical Algebraic Geometry [78, Theorem 3.2.3])
For an ideal I ⊆ C[x±

1 , . . . , x
±
n ], we have

Trop(VC(I)) =
⋂

f∈I
trop(f).

By [78, Theorem 2.6.6], every ideal I ⊆ C[x±
1 , . . . , x

±
n ] has a finite tropical basis, that

is, there exist finitely many polynomials g1, . . . , gm ∈ I such that

Trop(VC(I)) =
m⋂

i=1

trop(gi).
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There exist algorithms based on Gröbner basis methods for computing the tropicaliza-
tion of VC(I), performing such computations in practice is highly challenging [21, 81].

In the rest of this section, we focus on hypersurfaces, where the coefficients of the
defining polynomial are complex numbers. The field of complex Puiseux series C is
a field extension of C. Every complex number z ∈ C can be viewed as a constant
Puiseux series zt0. In particular, if z ̸= 0, then val(z) = 0. For a Laurent polynomial
f ∈ C[x±

1 , . . . , x
±
n ], we write

VC(f) :=
{
x ∈ (C×)n | f(x) = 0

}
.

For each t > 0, denote logt : R>0 → R the logarithm map with base t and let |z| be the
usual Archimedean absolute value of a complex number z ∈ C. Consider the map

Logt : (C×)n → Rn, x 7→
(
logt(|x1|), . . . , logt(|xn|)

)
. (4.7)

The logarithmic limit of a set S ⊆ (C×)n is defined as

L(S) := lim
t→∞

Logt(S), (4.8)

see [1, Section 2] for a precise definition of the limit for a family of subsets of Rn.

Theorem 4.3. Let f =
∑

µ∈σ(f) cµx
µ ∈ C[x±

1 , . . . , x
±
n ] be a Laurent polynomial. The

following sets coincide:

(i) the logarithmic limit L(VC(f)),

(ii) the tropicalization Trop(VC(f)),

(iii) the tropical hypersurface trop(f),

(iv) the (n− 1)-skeleton of the outer normal fan of the Newton polytope of f .

Proof. In [82, Corollary 6.4], it has been shown that the logarithmic limit L(VC(f))
and the tropicalization Trop(VC(f)) coincide. The sets in (ii) and (iii) are equal by
Kapranov’s theorem (Theorem 4.1). Since val(cµ) = 0 for all µ ∈ σ(f), it follows
directly from the definition (cf. (4.5)) that trop(f) is the (n− 1)-skeleton of the outer
normal fan of N(f) (cf. Section 3.2).

Example 4.4. To illustrate Theorem 4.3, we consider the polynomial

f = 10x5
1 + 10x5

2 − 33x2
1x

2
2 + 10x1x2 − 1, (4.9)

which will serve as a running example in the upcoming sections. The Newton polytope
of f and the 1-skeleton of its outer normal fan are shown in Figure 4.1. By Theorem
4.3, this 1-skeleton coincide with the tropicalization Trop(VC(f)) and with the loga-
rithmic limit of VC(f). For t = e, Euler’s number, the set Loge(VC(f)) is depicted in
Figure 4.1(c). The set Loge(VC(f)) is sometimes called the amoeba of f . To create
Figure 4.1(c), we used [22].
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Figure 4.1: (a) The Newton polytope of f = 10x5
1 + 10x5

2 − 33x2
1x

2
2 + 10x1x2 − 1 from

Example 4.4 (b) Logarithmic limit of VC(f) (c) Image of VC(f) under the map Logt
(4.7) for t = e, Euler’s number.

4.2 Real tropical geometry

In this section, we study tropicalization of semi-algebraic sets and discuss the results of
Paper V. The field of real Puiseux series R = R{{t}} is a subfield of C{{t}} containing
formal power series (cf. (4.1)) whose coefficients are real numbers. The valuation map
val : (R×)n → Rn is the restriction of the valuation map of complex Puiseux series (4.2).
It is known that R is a real closed field [7, Theorem 2.91]. An element x(t) ∈ R× is
positive (resp. negative) if the coefficient of the smallest non-zero term tval(x(t)) is positive
(resp. negative). We denote by R>0 the set of positive real Puiseux series.

Following the notation from Section 3.1, we denote by σ−(f) the set of exponent
vectors of a polynomial f ∈ R[x1, . . . , xn] whose corresponding coefficients are negative.
For f1, . . . , fk ∈ R[x1, . . . , xn], we define the semi-algebriac set

SR(f1, . . . , fk) :=
{
x ∈ Rn

>0 | f1(x) < 0, . . . , fk(x) < 0
}
, (4.10)

and its real tropicalization

Trop(SR(f1, . . . , fk)) :=
{
− val(x) | x ∈ SR(f1, . . . , fk)

}
.

where the closure is taken in the Euclidean topology of Rn. Note that this definition is
analogous to the tropicalization of complex algebraic varieties (4.6). Similar to (4.5),
we define

trop−(f) :=
{
w ∈ Rn | max

µ∈σ(f)
(− val(cµ(t)) + w · µ) is achieved for some µ0 ∈ σ−(f)

}
.

In [66], the authors proved a semi-algebraic analogue of the Fundamental Theorem of
Tropical Algebraic Geometry (Theorem 4.2).
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Theorem 4.5. ([66, Theorem 6.9], see also [20, Section 2.1]) Let f1, . . . , fk ∈ R[x1, . . . , xn]
be polynomials and let S = SR(f1, . . . , fk) be a semi-algebraic set as in (4.10). Then

Trop(SR(f1, . . . , fk)) =
⋂

f≤0 on S

trop−(f), (4.11)

where the intersection is over all polynomials f , which are non-positive on S.

It is known that the intersection on the right-hand side of (4.11) might be taken over
finitely many polynomials. However, there exists no general algorithm in the literature
that would determine such a finite list of polynomials. Therefore, it is valuable to
have approximations of Trop(SR(f1, . . . , fk)) which might be easier to compute. The
following theorem provides such an approximation.

Theorem 4.6. ([66, Theorem 6.12]) Let f1, . . . , fk ∈ R[x1, . . . , xn] be polynomials and
let SR(f1, . . . , fk) be a semi-algebraic set as in (4.10). Then

int
( k⋂

i=1

trop−(fi)
)
⊆ Trop(SR(f1, . . . , fk)) ⊆

k⋂

i=1

trop−(fi).

From now on, we focus on the case when the defining equations of the semi-algebraic
set (4.10) have real coefficients. For f1, . . . , fk ∈ R[x1, . . . , xn], we set

S(f1, . . . , fk) :=
{
x ∈ Rn

>0 | f1(x) < 0, . . . , fk(x) < 0
}
. (4.12)

The logarithmic limit of S(f1, . . . , fk) (cf. (4.8)) coincides with the real tropicalization
of SR(f1, . . . , fk).

Theorem 4.7. [1, Corollary 4.6] Let f1, . . . , fk ∈ R[x1, . . . , xn] be polynomials, then

L(S(f1, . . . , fk)) = Trop(SR(f1, . . . , fk)).

In Paper V, we studied logarithmic limits of sets of the form (4.12). We used the
notation Trop(S(f1, . . . , fk)) for the logarithmic limit. In the rest of the section, we
follow this convention and write

Trop(S(f1, . . . , fk)) := L(S(f1, . . . , fk)).

This slight abuse of notation is justified by Theorem 4.7. All the results in Paper V
are valid for polynomials f1, . . . , fk with real exponents, that is, for signomials (cf.
Section 3.1).
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The negative normal cone of the Newton polytope of a signomial f contains all outer
normal vectors of N(f) such that the corresponding face of N(f) contains a negative
exponent vector of f ,

N−
f :=

{
v ∈ Rn | N(f)v ∩ σ−(f) ̸= ∅

}
.

Note that if f ∈ R[x1, . . . , xn], then N−
f = trop−(f). The actual negative normal cone

of a collection of signomials f1, . . . , fk is given by

Σ(f1, . . . , fk) :=
{
v ∈ Rn |

k⋂

i=1

f−1
i|N(fi)v

(R<0) ̸= ∅
}
.

It holds that Σ(f) ⊆ N−
f , and it is easy to construct examples where the inclusion is

strict, see Figure 1 in Paper V or Example V.3.12.

The next theorem is a version of Theorem 4.6 for signomials, which additionally
includes the actual negative normal cone.

Theorem 4.8. (Theorem V.3.3) Let f1, . . . , fk : Rn
>0 → R be signomials. Then, we have

int
( k⋂

i=1

N−
fi

)
⊆ Σ(f1, . . . , fk) ⊆ Trop(S(f1, . . . , fk)) ⊆

k⋂

i=1

N−
fi
.

Example 4.9. We revisit the polynomial

f = 10x5
1 + 10x5

2 − 33x2
1x

2
2 + 10x1x2 − 1,

from Example 4.4. Its negative normal cone is spanned by the vectors (0,−1) and
(−1, 0), see Figure 4.2 (cf. Figure 3.1 and Figure 4.1). Since the closure of int(N−

f )

equals N−
f , it follows that all the inclusions in Theorem 4.8 are equalities. In particular,

N−
f coincide with the logarithmic limit of S(f) = f−1(R<0).

It might happen that all the inclusions in Theorem 4.8 are strict, see Exam-
ple V.3.12. However, if a signomial f satisfies some additional properties, one might
use the negative normal cone or the actual negative normal cone to compute the real
tropicalization of S(f).

Proposition 4.10. (Corollary V.3.6, Corollary V.3.10) Let f : Rn
>0 → R be a signomial.

(i) If σ(f) = Vert(N(f)), then

Trop(S(f)) = N−
f .

(ii) If f has generic enough coefficients, then

Trop(S(f)) = Σ(f).
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Figure 4.2: Illustration of Example 4.9, f = 10x5
1 + 10x5

2 − 33x2
1x

2
2 + 10x1x2 − 1 (a)

Image of S(f) = f−1(R<0) under the map Logt : R2
>0 → R2 for t = e, Euler’s number

(b) Negative normal cone of the Newton polytope of f , which agrees with Trop(S(f))
and with the logarithmic limit of S(f).

4.3 Viro’s patchworking and the signed A-discriminant

In Section 3.3, we used polyhedral geometric properties of the exponent vectors of
a signomial f and the signs of its coefficients to provide bounds on the number of
connected components of the set f−1(R<0). In this section, we focus on the topology
of the hypersurface

V>0(f) =
{
x ∈ Rn

>0 | f(x) = 0
}
.

We fix a finite set of exponent vectors A = {α1, . . . , αn+k+1} ⊆ Rn, a sign distribution
ε ∈ {1,−1}n+k+1, and consider the family of signomials

fc : Rn
>0 → R, x 7→

n+k+1∑

i=1

cix
αi ,

for c ∈ Rn such that sign(c) = ε. We call (A, ε) a signed support. Similar to Chapter 3,
we divide A into positive and negative exponent vectors

A+ := {αi ∈ A | εi = 1}, A− := {αi ∈ A | εi = −1}.

For a face F ⊆ Conv(A), we define the restricted signed support (AF , εF ) as AF :=
A ∩ F and εF containing the signs corresponding the elements in AF .

One of the roots of tropical geometry goes back to the 1980’s when Viro showed it
is possible to construct a polyhedral complex associated to a fixed signed support such
that for some choice of the coefficients the positive hypersurface and the polyhedral
complex have the same isotopy type. To be more precise, the polyhedral complex is
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Figure 4.3: (a) Image of the positive real zero set of f = 10x5
1+10x5

2−33x2
1x

2
2+10x1x2−1

under the logarithm map Loge : R2
>0 → R2 (b) Viro diagram of the signed support of

f with h = (0, 0, 1, 1, 0)

constructed as follows. Let (A, ε) be a signed support with A = {α1, . . . , αn+k+1} ⊆ Rn,
and let h ∈ Rn+k+1. The Viro diagram is defined as

Viroε(A, h) :=
{
v ∈ Rn | max

i∈[n+k+1]
(v·αi+hi) is attained for some α ∈ A+ and α′ ∈ A−

}
.

For t ∈ R>0, we consider the polynomial

fε∗th : Rn
>0 → R, x 7→

n+k+1∑

i=1

εit
hixαi .

Theorem 4.11. (Viro’s patchworking) [105][55, Ch.11 Theorem 5.6][64, Theorem 2.19]
Let (A, ε) be a signed support such that A = {α1, . . . , αn+k+1} ⊆ Zn, and let h ∈ RA

be generic.

Then Viroε(A, h) is isotopic to V>0(fε∗th) for t≫ 1 sufficiently large.

The Viro diagram of the signed support of the running example f from (4.9) with
h = (0, 0, 1, 1, 0) has the same isotopy as V>0(f), see Figure 4.3. Conversely, in Exam-
ple 4.9, the logarithmic image of a semi-algebraic set failed to detect bounded connected
components. This observation might suggest that the “correct” notion of real tropical-
ization should involve Viro diagrams rather than the logarithmic limit construction.
However, two main obstructions hinder this approach. First, it is unknown how to as-
sociate a Viro diagram to a fixed c ∈ Rn, such that V>0(fc) and Viroε(A, h) are isotopic.
Second, there exist examples where the isotopy type cannot be obtained be any Viro
diagram, see Example VI.2.11.
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In Paper VI, we addressed the question of the conditions on (A, ε) that ensure that
all possible isotopy types are covered by Viro diagrams. To answer this question, we
investigated the signed reduced A-discriminant. All the results in Paper VI are phrased
in terms of exponential sums, but using the coordinate-wise exponential and logarithm
maps Exp: Rn → Rn

>0, Loge : Rn
>0 → Rn, one can turn signomials to exponential sums

and vice versa without changing the topology of the corresponding zero sets.

For a fixed signed support (A, ε), with A = {α1, . . . , αn+k+1}, consider the matrix

Â =

(
1 . . . 1
α1 . . . αn+k+1

)
∈ R(n+1)×(n+k+1). (4.13)

If dimConv(A) = n, then Â has full rank and its kernel has dimension k. Let B ∈
R(n+k+1)×k be a Gale dual of Â, see Definition 2.11.

The signed A-discriminant contains all the coefficients such that the hypersurface
has a singularity in the positive orthant

∇A,ε :=
{
c ∈ Rn+k+1 | sign(c) = ε and ∃x ∈ Rn

>0 : fc(x) =
∂fc(x)

∂x1

= · · · = ∂fc(x)

∂xn
= 0
}
.

For each face F ⊆ Conv(A), we define ∇AF ,εF analogously and define

∇̃AF ,εF :=
{
(cαi

)i=1,...,n+k+1 ∈ Rn+k+1 | sign(c) = ε and (cαi
)αi∈AF

∈ ∇AF ,εF

}
.

This set contains all the coefficients c ∈ Rn+k+1 with sign(c) = ε such that the hyper-
surface V>0(fc|F ) has a singularity.

It is known [95, Theorem 3.8], see also [14, Proposition 2.9], that the isotopy type
of the hypersurfaces is constant in the connected components of

Rk \
⋃

F⊆Conv(A) a face

B⊤ Log(|∇̃AF ,εF |).

The signed reduced A-discriminant is defined as

Γε(A,B) := B⊤ Log(|∇A,ε|).

Under similar conditions on the signed support as in Section 3.3, the complement of
the signed reduced A-discriminant has at most two connected components. Recall that
an affine hyperplane Hv,a ⊆ Rn separates (A, ε) if A+ and A− are contained in different
half-spaces given by Hv,a. We call a separating hyperplane non-trivial if Hv,a∩A ̸= A.

Theorem 4.12. (Theorem VI.3.3) Let (A, ε) be a signed support. Then Γε(A,B) = ∅ if
and only if (A, ε) has a non-trivial separating hyperplane.
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If for all faces F ⊆ Conv(A) the restricted signed support (AF , εF ) has a non-trivial
separating hyperplane, then all hypersurfaces V>0(fc) with c ∈ Rn+k+1, sign(c) = ε have
the same isotopy type (Theorem VI.3.5). In that case, any Viro diagram Viroε(A, h)
for generic h ∈ Rn+k+1 gives that isotopy type.

In the special case when A contains exactly n+3 exponent vectors we characterized
conditions on (A, ε) implying that Rk\Γε(A,B) has at most two connected components.
Recall that for an n-simplex P ⊆ Rn, we denote by P− the union of its negative vertex
cones (cf. Section 3.3).

Theorem 4.13. (Theorem VI.4.11, Theorem VI.4.12) Let (A, ε) be a signed support
such that dimConv(A) = n and |A| = n + 3. The complement of the signed reduced
A-discriminant has at most two connected components if

(i) |A−| = 1, or

(ii) A+ ⊆ P , A− ⊆ P−, and A ∩ int
(
P ∪ P−) ̸= ∅.

Under the conditions in Theorem 4.13, and assuming that (AF , εF ) has a non-trivial
separating hyperplane for all proper faces F ⊊ Conv(A), the isotopy type of V>0(fc) is
given by a Viro diagram (Corollary VI.4.13). One should note that in Paper VI we did
not address how to compute such a Viro diagram for a given V>0(fc). Addressing this
question and characterizing other properties of (A, ε) that imply Rk \Γε(A,B) has two
connected components are interesting questions that require further research.
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1994.

[56] M. Giaroli, F. Bihan, and A. Dickenstein. Regions of multistationarity in cascades
of Goldbeter-Koshland loops. J. Math. Biol., 78(4):1115–1145, 2019.
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TOPOLOGICAL DESCRIPTORS OF THE PARAMETER REGION OF

MULTISTATIONARITY: DECIDING UPON CONNECTIVITY

MÁTÉ L. TELEK AND ELISENDA FELIU

Abstract. Switch-like responses arising from bistability have been linked to cell signaling
processes and memory. Revealing the shape and properties of the set of parameters that lead
to bistability is necessary to understand the underlying biological mechanisms, but is a complex
mathematical problem. We present an efficient approach to address a basic topological property
of the parameter region of multistationary, namely whether it is connected. The connectivity of
this region can be interpreted in terms of the biological mechanisms underlying bistability and
the switch-like patterns that the system can create.

We provide an algorithm to assert that the parameter region of multistationarity is con-
nected, targeting reaction networks with mass-action kinetics. We show that this is the case
for numerous relevant cell signaling motifs, previously described to exhibit bistability. The
method relies on linear programming and bypasses the expensive computational cost of direct
and generic approaches to study parametric polynomial systems. This characteristic makes it
suitable for mass-screening of reaction networks.

Although the algorithm can only be used to certify connectivity, we illustrate that the ideas
behind the algorithm can be adapted on a case-by-case basis to also decide that the region
is not connected. In particular, we show that for a motif displaying a phosphorylation cycle
with allosteric enzyme regulation, the region of multistationarity has two distinct connected
components, corresponding to two different, but symmetric, biological mechanisms.

Keywords: reaction network, mass-action kinetics, steady states, phosphorylation cycle

1. Introduction

Bistable switches are frequently observed and studied in living systems, and have been linked
to cellular decision making and memory processes [1, 2]. These switches arise in different forms;
one common form in parametric systems is that of hysteresis [3], that is, the system is monostable
for small or large values of a parameter, and has two or more stable steady states for intermediate
values. When the parameter changes slowly enough to allow the system to remain approximately
at steady state, the resulting steady states depend on whether the parameter is increased or
decreased. This is illustrated in Fig. 1(a), which displays a hypothetical system with three
steady states. When the parameter increases from low to high, the steady state goes through
a bifurcation at a critical parameter value τmax, after which the system discontinuously settles
to another region of the output space. If the parameter value is decreased again, the system
remains at the high steady state value, that is, it does not return to the low steady state value
immediately. This will first happen if the parameter is decreased beyond another critical value
τmin < τmax. This behavior confers the switch with robustness: after a change of level of steady
state value takes place, small fluctuations in the parameter will not reverse the change. The
larger the interval [τmin, τmax] where the system has several steady states, the higher the degree
of robustness of the change. More complicate switches can arise if, for example, the system has
more than one steady state (is multistationary) in two intervals of the parameter, as illustrated
in Fig. 1(b,c). Irreversible switches are obtained if the relevant interval is of the form (0, τmax].
Fig. 1(a) and Fig. 1(b,c) are qualitatively different in one important aspect: the parameter
region where the system has multistationarity is connected in Fig. 1(a) and disconnected (has
two disjoint pieces) in Fig. 1(b,c).

This phenomenon appears also in higher dimensions, where instead of a curve of steady
states, there is a steady state manifold with “bends”, and instead of having one parameter being
varied, a vector of parameters is changed along a curve. The shape of the parameter region of

1
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Figure 1. (a-c) Input-output curves for hypothetical systems. Input is thought to be
a parameter of the system that is varied, and the output is the concentration of a species
at steady state. Dashed lines correspond to unstable steady states, and solid lines to
stable steady states. (a) displays a simple hysteresis switch; (b-c) show input-output
curves for systems where bistability arises in two disjoint intervals of input. (d-e) For a
system with two parameters, the system has more than one positive steady state in the
orange regions, and one in the purple regions. In panel (d) the multistationarity region
is connected, while in (e) it has two connected components.

multistationarity (or multistationarity region for short), and specifically the number of path-
connected components, modulates the type of switches that can arise. If the multistationarity
region is path connected, as in Fig. 1(d), then any two parameter values in the region can be
joined by a continuous path completely included in the region, typically giving rise to simple
hysteresis switches (if the system has three steady states for parameters in the region). If, on the
contrary, the region has two path-connected components, as in Fig. 1(e), then any path joining
two parameter points in different regions, necessarily goes through parameter points where the
system does not have several steady states, allowing for complex switches to arise.

Mathematically, understanding the connectivity of a region is a basic topological property
of a set, and the number of connected components is called the 0th Betti number of the set.
Higher order Betti numbers describe the shape of the set in more detail, for instance, the
first Betti number is the number of “holes” of the set. Tools from topological data analysis
can infer the Betti numbers of a set from sample data points. By generating points in the
multistationarity region, properties of the shape of the region have been explored for a specific
dual phosphorylation system (Fig. 2(h)) in [4], where it has also been suggested that lack of
connectivity may indicate that different biological mechanisms underlie multistationarity.

In this work, we address connectivity of the multistationarity region for polynomial systems
describing the steady states of biochemical reaction networks. We achieve this by using exact
symbolic tools and theoretical results relating the multistationarity region with the region where
a polynomial attains negative values. Specifically, we work in the framework of chemical reaction
network theory [5, 6], where extensive work has been done to decide whether a network exhibits
multistationarity, i.e. whether the multistationarity region is non-empty [7]. More recent work
focuses on understanding and finding the multistationarity region, but here progress is scarce
and often restricted to special systems, e.g. [8–14].

Finding and studying the region where a polynomial system has more than one positive
solution is a mathematical problem that belongs to the realm of semi-algebraic geometry and
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quantifier elimination [15, 16]. Although there are generic methods to address this question, these
have high complexity, and fail for realistic networks, even of moderate size. To overcome these
difficulties, methods targeting the specificities of reaction networks systems have been developed,
and some partial results, for example describing the projection of the multistationarity region
onto a subset of the parameters, have been developed [9–11].

Here we present a new algorithm to assert that the multistationarity region is connected
without explicitly finding it, which bypasses the use of computationally expensive algorithms
from semi-algebraic geometry and quantifier elimination. In fact, we reduce the problem to
computing the determinant of a symbolic matrix, and finding a point in the feasible region of a
system of linear inequalities. This makes the algorithm successful for networks of moderate size.

We apply our algorithm to numerous motifs in cell signaling, known to exhibit multistationar-
ity, and conclude that these have connected multistationarity regions. These systems are shown
in Fig. 2, where for all subfigures but (c) and (h), we confirm that the region is connected. For
the system in Fig. 2(h), previously suggested to have a connected multistationarity region [4], our
method is inconclusive. For system (c), modeling the enzymatic phosphorylation of a substrate
S with allosteric regulation of the enzymes [17], the algorithm is also inconclusive. In this case, a
detailed inspection of the system employing ideas similar to those behind our algorithm, allows
us to assert that the region has exactly two path-connected components. These components
are contained in the subset of parameters where κ3 > κ6 or κ6 > κ3 respectively. These two
parameters are the catalytic constants of the phosphorylation and dephosphorylation processes,
respectively. Therefore, if for example κ6 increases from a small value to a value larger than
κ3, then the multistationarity region will be crossed twice, and a non-simple hysteresis switch
arises.

The fact that the remaining networks in Figure 2 have a connected multistationarity region,
does not forbid complex switches, as a parameter path could still enter and exit the multi-
stationarity region several times. However, in this scenario we can assert that for any pair of
parameter values of multistationarity, there is a path connecting them and completely included
in the multistationarity region. This implies that the conditions yielding to multistationarity
vary continuously, and we cannot separate the multistationarity region into two disjoint sets,
each corresponding to a distinct biological mechanism.

Our algorithm builds on two previous results. First, in [9], the authors associated with each
reaction network a function, whose signs are closely related to the multistationarity region.
Second, in [18], we developed a new criterion to determine the connectivity of a set described
as the preimage of the negative real half-line by a polynomial map. We connect these two key
ingredients in Theorem 2.2 to give a criterion for connectivity of the multistationarity region.
Our results establish a stronger property, namely path-connectivity of the region, which in turn
imply connectivity.

The criterion relies on computing the determinant of a matrix with symbolic entries, and
this task might become unfeasible for large matrices with many variables. To bypass this, we
show that the network can be reduced by removing some reactions and connectivity of the
multistationarity region for the reduced network can be translated into the original network, see
Theorem 2.4.

This paper is organized as follows. We first establish the framework and background material,
and present our algorithm for connectivity of the multistationarity region. We proceed to apply
our algorithm to the networks in Fig. 2, and while doing so, we illustrate the strengths and
limitations of the algorithm. To keep the exposition concise, we compile the proofs of the main
theorems in Section 6 at the end.

2. Results

2.1. Theory. The results of this work are framed in the context of chemical reaction network
theory, a formalism to study reaction networks that goes back to the 70s with the works of Horn,
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SpP
∗ κ6−−→ S + P∗

K+ E
κ7−−⇀↽−−
κ8

KE
κ9−−→ K∗ + E P+ E

κ10−−⇀↽−−
κ11

PE
κ12−−→ P∗ + E

P∗ κ13−−→ P K∗ κ14−−→ K

(d) Covalent reciprocal enzyme regulation

S + E
κ1−−⇀↽−−
κ2

SE
κ3−−→ Sp + E

κ7−−⇀↽−−
κ8

SpE
κ9−−→ Spp + E

Spp + F
κ10−−⇀↽−−
κ11

SppF
κ12−−→ Sp + F

κ4−−⇀↽−−
κ5

SpF
κ6−−→ S + F

(e) Two-site phosphorylation cycle

S + E
κ1−−⇀↽−−
κ2

SE
κ3−−→ Sp + E

κ7−−⇀↽−−
κ8

SpE
κ9−−→ Spp + E

Spp + F2
κ10−−⇀↽−−
κ11

SppF2
κ12−−→ Sp + F2 Sp + F1

κ4−−⇀↽−−
κ5

SpF1
κ6−−→ S + F1

(f) Two-site: different phosphatases

S + E
κ1−−⇀↽−−
κ2

SE
κ3−−→ Sp + E

κ4−−⇀↽−−
κ5

SpE
κ6−−→ Spp + E

Spp + F
κ7−−⇀↽−−
κ8

SppF
κ9−−→ SpF

κ10−−⇀↽−−
κ11

Sp + F

Sp + F
κ12−−⇀↽−−
κ13

SpF
∗ κ14−−→ SF

κ15−−⇀↽−−
κ16

S + F

(g) Two-site: weakly irreversible dephosphorylation

S + E
κ1−−⇀↽−−
κ2

Y1
κ3−−→ Y2

κ4−−⇀↽−−
κ5

Sp + E
κ6−−⇀↽−−
κ7

Y3
κ8−−→ Y4

κ9−−⇀↽−−
κ10

Spp + E

Spp + F
κ11−−⇀↽−−
κ12

Y5
κ13−−→ Y6

κ14−−⇀↽−−
κ15

Sp + F
κ16−−⇀↽−−
κ17

Y7
κ18−−→ Y8

κ19−−⇀↽−−
κ20

S + F

(h) Two-site: fully weakly irreversible

S + E
κ2−−⇀↽−−
κ3

SE
κ1−−→ Sp + E Sp + F1

κ5−−⇀↽−−
κ6

SpF1
κ4−−→ S + F1

P + Sp
κ8−−⇀↽−−
κ9

PSp
κ7−−→ Pp + Sp Pp + F2

κ14−−⇀↽−−
κ15

PpF2
κ13−−→ P + F2

P + E
κ11−−⇀↽−−
κ12

PE
κ10−−→ Pp + E

(i) Two-layer cascade with shared kinase

A+ E
κ1−−⇀↽−−
κ2

AE
κ3−−→ Ap + E, Ap + F1

κ4−−⇀↽−−
κ5

ApF1
κ6−−→ A+ F1

B+Ap
κ7−−⇀↽−−
κ8

BAp
κ9−−→ Bp +Ap

κ10−−⇀↽−−
κ11

BpAp
κ12−−→ Bpp +Ap

Bpp + F2
κ13−−⇀↽−−
κ14

BppF2
κ15−−→ Bp + F2

κ16−−⇀↽−−
κ17

BpF2
κ18−−→ B+ F2

(j) Two-layer MAPK cascade

S00 + E
κ1−−⇀↽−−
κ2

S00E
κ3−−→ S0pE

κ4−−→ Spp + E
κ5←−− Sp0E

κ6−−⇀↽−−
κ7

Sp0 + E Spp + F
κ10−−⇀↽−−
κ11

SppF
κ12−−→ Sp0F

κ13−−→ S00 + F
κ14←−− S0pF

κ15−−⇀↽−−
κ16

S0p + F

S0pE
κ8−−⇀↽−−
κ9

S0p + E Sp0F
κ17−−⇀↽−−
κ18

Sp0 + F

(k) ERK network

Figure 2. Reaction networks arising in cell signaling. The subindex ‘p’ indicates

a phosphorylated site. When writing ‘p’ and ‘pp’ it is assumed the substrate has two

phosphorylation sites, and phosphorylation/dephosphorylation is ordered. When writing

‘0p’ for example, it means the substrate also has two sites numbered 1 and 2, and the

second one is phosphorylated. All networks are known to be multistationary. For all

networks but (c) and (h), the multistationarity region is path connected. For network

(c), the multistationarity region has two path-connected components, while for network

(h) our approach is inconclusive.

Jackson and Feinberg [5, 6]. To help the unfamiliar reader, and to fix the notation, we start
with a brief introduction. This part ends with the main theoretical result to decide whether the
set of parameters where multistationarity arises is path connected (and hence connected). To
keep the exposition simple for non-experts, the proofs of the statements are given in Section 6
at the end.

Reaction networks. A reaction network (S,R) is a collection of reactions R = {R1, . . . , Rr}
between species in a set S = {X1, . . . , Xn}. In our applications, species will be proteins, such
as kinases and substrates. The reactions will encode events such as complex formation or
posttranslational modifications.

Formally, each reaction connects to linear combinations of species, that is, it has the form:

Rj : a1jX1 + · · ·+ anjXn −→ b1jX1 + · · ·+ bnjXn, j = 1, . . . , r,



CONNECTIVITY OF THE PARAMETER REGION OF MULTISTATIONARITY 5

where the coefficients aij , bij are non-negative integer numbers. The net production of each
species when the reactions takes place is encoded in the stoichiometric matrix

N =
[
bij − aij

]
i=1,...,n
j=1,...,r

∈ Rn×r.

We do not consider reactions where the reactant and product are equal, hence N has no zero
columns.

For illustration purposes, we consider a reaction network that is small enough to get a good
feeling about the formal concepts but large enough to display the relevant features. To construct
such a reaction network, the article [19] was particularly helpful. Realistic networks will be
considered in Section 3 of this work. We refer to the following reaction network as the running
example:

X1 → X2, X2 → X1, 2X1 + X2 → 3X1.(1)

Here, two species are related by three reactions, so the corresponding stoichiometric matrix has
two rows and three columns, see Fig. 3.

Mathematical modeling offers us tools to get insights into the dynamics of the network and
understand the temporal changes in the concentrations of the species of the network. By en-
coding the concentrations of X1, . . . , Xn into the vector x = (x1, . . . , xn) ∈ Rn≥0, and under the
assumption of mass-action kinetics, the evolution of the concentrations of the species over time
is modeled by the ODE system:

ẋ = fκ(x), x ∈ Rn≥0,(2)

where fκ(x) := Nvκ(x) with the rate function vκ(x) given for x ∈ Rn≥0 by

vκ(x) = (κ1 x
a11
1 · · ·xan1

n , . . . , κn x
a1n
1 · · ·xann

n )⊤ ∈ Rr≥0.(3)

Here κ = (κ1, . . . , κr) ∈ Rr>0 is the vector of reaction rate constants, which are parameters of the
system. Observe that each component of vκ(x) corresponds to one reaction, and it is obtained
by considering the coefficients of the reactant of the reaction as exponents. The function vκ(x)
and the associated ODE system of the running example are shown in Fig. 3.

The ODE system (2) is forward invariant on stoichiometric compatibility classes [20],
that is, for any initial condition x0 the dynamics takes place in the stoichiometric compatibility
class of x0, which is the set (x0 + S) ∩ Rn≥0, where S denotes the vector space spanned by the
columns of N . To work with stoichiometric compatibility classes it is more convenient to have
equations for them. These are obtained by considering a full rank matrix W ∈ R(n−s)×n such
that W N = 0, where s is the rank of the stoichiometric matrix N . Then for each parameter
vector c ∈ Rn−s, the associated stoichiometric compatibility class is the set

Pc := {x ∈ Rn≥0 |Wx = c}.(4)

This class is the set (x0 + S) ∩ Rn≥0 for any initial condition x0 satisfying Wx0 = c. Such a
matrix W is called a matrix of conservation relations, any equation defining a class is a
conservation relation, and the parameter vector c is called a vector of total concentrations.

For the running example, we have n = 2, s = 1, and hence W has one row, as given in Fig. 3.
The figure depicts also the stoichiometric compatibility classes for c = 2, 3, 4, which are compact.
In general, a reaction network is called conservative if each stoichiometric compatibility class
is a compact subset of Rn≥0, and this is the same as asking that there is a vector with all entries

positive in the left-kernel of N [21]. Under this assumption, all trajectories of the ODE system
(2) are completely contained in a compact subset, and hence no component can go to infinity.
For the purposes of this work, it will be enough to require a milder condition, namely that there
is a compact set that all trajectories enter in finite time and do not leave again. In this case,
the reaction network is said to be dissipative. See [9] for ways to verify that a network is
dissipative. For simplicity, our applications are conservative networks.
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We denote the set of non-negative steady states of the ODE system (2) by

Vκ := {x ∈ Rn≥0 | Nvκ(x) = 0},(5)

and call it the steady state variety. The positive steady state variety consists then of
the points in Vκ with all entries positive and is denoted by Vκ,>0. A steady state x ∈ Vκ is a
boundary steady state, if one of its coordinates equals zero. For our results, we will need that
stoichiometric compatibility classes intersecting Rn>0 do not contain boundary steady states. We
call therefore a boundary steady state relevant if it belongs to a class Pc with Pc ∩ Rn>0 ̸= ∅.

We say that a pair of parameters (κ, c) enables multistationarity if the intersection of the
positive steady state variety Vκ,>0 with the stoichiometric compatibility class Pc contains more
than one point. The set of parameters that enable multistationarity form the multistationarity
region. We show in the right panel of Fig. 3 some stoichiometric compatibility classes, steady
state varieties and their intersection, showing that multistationarity arises.

The running example:

X1
κ1−−→ X2, X2

κ2−−→ X1, 2X1 +X2
κ3−−→ 3X1.

Stoichiometric matrix N , reaction rate function vκ(x)
and a full rank matrix W such that WN = 0:

N =

[
−1 1 1
1 −1 −1

]
, W =

[
1 1

]
.

vκ(x) = (κ1x1, κ2x2, κ3x
2
1x2)

ODE system:

ẋ1 = κ3x
2
1x2 − κ1x1 + κ2x2,

ẋ2 = −κ3x21x2 + κ1x1 − κ2x2.

Equation of the stoichiometric compatibility class Pc:

x1 + x2 = c.

Steady state varieties Vκ and stoichiometric compatibi-
lity classes Pc for different choices of parameters (κ, c):

1 2 3 4
x1

1

2

3

4

x
2

P2 P3 P4

V(18, 1, 10)

V(1, 1, 1)

(κ, c) = ((18, 1, 10), 3) enables multistationarity,
(κ, c) = ((18, 1, 10), 4) does not enable multistationarity.
For κ = (1, 1, 1) there is no total concentration c such
that ((1, 1, 1), c) enables multistationarity.

Figure 3. Illustration of the relevant objects for the running example given in (1).

We now recall the main theorem from [9] that is key to describe the multistationarity region.
The theorem requires choosing a matrix of conservation relations W that is row reduced. Then,
if i1 < · · · < in−s are the indices of the first non-zero coordinates of each row of W , we construct
the matrix Mκ(x) from the Jacobian of fκ(x) by replacing the ijth row by the jth row of W
(for j = 1, . . . , n− s).
Theorem 2.1 (Multistationarity). [9, Theorem 1] Consider a reaction network that is dissipa-
tive and does not have relevant boundary steady states. For each vector of reaction rate constants
κ ∈ Rr>0 and vector of total concentrations c ∈ Rn−s, it holds:

(A) If (−1)s det(Mκ(x)) > 0 for all x ∈ Vκ,>0 ∩ Pc, then the parameter pair (κ, c) does not
enable multistationarity.

(B) If (−1)s det(Mκ(x)) < 0 for some x ∈ Vκ,>0 ∩ Pc, then the parameter pair (κ, c) enables
multistationarity.

Our running example is dissipative, as it is conservative, and it has no relevant boundary
steady states. We also find that

(−1)s det(Mκ(x)) = κ3x
2
1 − 2κ3x1x2 + κ1 + κ2.

This expression is negative for κ = (18, 1, 10) and x∗ ≈ (0.2448, 2.7552) ∈ Vκ. Since Wx∗ = 3,
we can conclude using Theorem 2.1, that the intersection of V(18,1,10) and P3 contains more than
one point. This is exactly what Fig. 3 indicates.
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Parametrizations. In Theorem 2.1, it is crucial to evaluate the determinant of Mκ(x) at points
in the incidence set:

V := {(x, κ) ∈ Rn>0 × Rr>0 | x ∈ Vκ}.(6)

Therefore, we need to be able to describe the points in V in a useful way. This is done by
considering parametrizations of V. Loosely speaking, a parametrization is a function whose
image set consists precisely of the points in Rn>0 × Rr>0 that belong to V. Formally, we define a
parametrization of V as a surjective analytic map

Φ: D → V.
In practice, D is the positive orthant of some Rk and Φ is described by polynomials or quotients
of polynomials such that their denominators do not vanish on D. Below, we discuss how to
choose a parametrization and show that there is always at least one.

Using Theorem 2.1, one can show (see Lemma 6.4) that the multistationarity region is closely
related to the preimage of the negative real half-line under the polynomial map

g : V → R, (x, κ) 7→ (−1)s det(Mκ(x)),(7)

which can be described using a parametrization

g ◦ Φ: D → V → R, ξ 7→ g(Φ(ξ)).(8)

Following [22], we call the function g ◦Φ a critical function, and observe that it depends on
the choice of the parametrization. We are ready to present the main theoretical result of this
work, namely a criterion for connectivity of the multistationarity region. The statement tells
us that we can look at the number of path-connected components of (g ◦Φ)−1(R<0), that is, of
the set of values ξ where g ◦ Φ is negative. The proof of the following theorem can be found in
Section 6.

Theorem 2.2 (Deciding connectivity). Consider a reaction network that is dissipative and does
not have relevant boundary steady states. Let g ◦Φ be a critical function as in (8) such that the
closure of (g ◦ Φ)−1(R<0) equals (g ◦ Φ)−1(R≤0).

Then the number of path-connected components of the multistationarity region is at most the
number of path-connected components of (g ◦ Φ)−1(R<0).

In particular, if (g ◦ Φ)−1(R<0) is path connected, then the multistationarity region is path
connected.

2.2. Algorithm for checking path connectivity. Theorem 2.2 gives a theoretical criterion
to decide upon connectivity, from which one can establish an algorithm for connectivity with
the following steps:

(Step 1) Check that the reaction network is dissipative and does not have relevant boundary
steady states.

(Step 2) Find a parametrization Φ of V and compute the critical function g ◦ Φ.
(Step 3) Check that (g ◦ Φ)−1(R<0) is path connected and its closure equals (g ◦ Φ)−1(R≤0).

The important point is that each of these steps can be addressed computationally, and hence the
algorithm can be carried through without manual intervention, at least for networks of moderate
size. We proceed to describe each of these steps in detail.

(Step 1) has already been described in detail in [9], as it consists of verifying that the
conditions to apply Theorem 2.1 hold. Computable criteria that are sufficient to ensure that
the properties hold are presented in [9]. These are, however, not necessary and hence it might
not always be possible to decide upon this step.

To verify dissipativity, the first attempt is to show that the reaction network is conservative
by finding a row vector w ∈ Rn>0 such that wN = 0 . This can be checked by solving the system
of linear equalities:

wNi = 0, for all i = 1, . . . , r and wj > 0 for all j = 1, . . . , n,(9)
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where Ni denotes the ith column of N . We already noticed that the running example is conser-
vative, by choosing

w = (1, 1) ∈ R2
>0.(10)

A sufficient criterion to preclude the existence of relevant boundary steady states arises by
using siphons, that is, subsets of species such that for all species in the set and all reactions
producing them, there is a species in the reactant also in the set, see [23, Theorem 2], [25,
Proposition 2], [26]. In a nutshell, the criterion requires that for each minimal siphon it is
possible to choose w ∈ Rn≥0 with wN = 0 and such that the positive entries of w correspond

exactly to the species in the siphon. For more details, we refer to [9, 23, 25]. Note that this
criterion also relies on solving linear inequalities. Our running example has only one siphon,
namely {X1, X2}. As the two entries of w in (10) are positive, the criterion holds and the
network does not have relevant boundary steady states.

(Step 2) asks for the choice of a parametrization of V and the computation of the critical
function. To find a parametrization systematically, we consider so-called convex parameters
introduced by Clarke in [27]. Since then, they have been applied to study reaction networks, for
example to detect Hopf bifurcations and study bistability [28–31].

The idea behind convex parameters is the simple observation that the rate function vκ(x) has
to be in the flux cone:

F := {v ∈ Rr≥0 | Nv = 0} = ker(N) ∩ Rr≥0

for each (x, κ) ∈ V. It is easy to see that F is a convex polyhedral cone containing no lines.
Using software with packages for polyhedral sets (see Methods), one can compute a minimal
collection of generators E1, . . . , Eℓ ∈ Rr of F .

These generators are often called extreme vectors of the cone. Their choice is unique up to
multiplication by a positive number. Since the flux cone F does not contain lines, each of its
elements can be written as a non-negative linear combination of extreme vectors [32, Corollary
18.5.2], that is for each v ∈ F there exists some λ = (λ1, . . . , λℓ) ∈ Rℓ≥0 such that

v =
ℓ∑

i=1

λiEi = Eλ

where E ∈ Rr×ℓ denotes the matrix with columns E1, . . . , Eℓ. We call E a matrix of extreme
vectors. This gives rise to the following convex parametrization:

Ψ: Rn>0 × Rℓ>0 → V, (h, λ) 7→ ( 1
h , diag((hA1 , . . . , hAr))Eλ),(11)

where A1, . . . , Ar denote the columns of the matrix A :=
[
aij
]
∈ Rn×r of the coefficients of the

reactants of the reactions, hAj is short notation for h
a1j
1 · · ·h

anj
n , diag(v) is the diagonal matrix

with diagonal entries given by v, and 1/h is taken component-wise.
In Corollary 6.2(a) in Section 6, we show that Ψ is surjective if E does not have a row where

all the entries are equal to zero, and hence Ψ is a parametrization of V. This restriction is
not relevant for our purposes: a zero row of E is equivalent to ker(N) not having any positive
vector, and hence there is no positive steady state of the ODE system (2), see Corollary 6.2(b).
In particular, the reaction network cannot be multistationary. In the rest of the work, we assume
that E does not have a zero row and when this holds, we say that the network is consistent[23]
(consistent networks are called dynamically nontrivial in other works, e.g. [24]).

For the convex parametrization, the critical function g ◦Ψ can be represented in a direct way
using the following observation. The Jacobian of fκ(x) evaluated at Ψ(h, λ) equals

J̃(h, λ) := N diag(Eλ)A⊤ diag(h),(12)

for each (h, λ) ∈ Rn>0 × Rℓ>0, see [28]. We construct the matrix M̃(h, λ) from J̃(h, λ) as above:
if W is row reduced and i1 < · · · < in−s are the indices of the first non-zero coordinates of each
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Figure 4. The flux cone of the running example in R3. The extreme vectors E1 =

(1, 0, 1), E2 = (1, 1, 0) are shown in blue.

row, replace the ijthrow of J̃(h, λ) by the jth row of W . Then, it holds

(g ◦Ψ)(h, λ) = (−1)s det M̃(h, λ).(13)

From this equality, one computes g ◦ Ψ directly using symbolic software. Since the entries of
M̃(h, λ) are polynomials in (h, λ), so is g ◦ Ψ. In the following, we call this polynomial the
critical polynomial.

Let us find the critical polynomial g ◦ Ψ for the running example. The flux cone F and its
extreme vectors are displayed in Fig. 4. Now, all we have to do is to compute the matrix product
in (12)

[
−1 1 1

1 −1 −1

]

λ1 + λ2 0 0

0 λ2 0
0 0 λ1






1 0
0 1
2 1



[
h1 0
0 h2

]
=

[
(λ1 − λ2)h1 (λ1 + λ2)h2
−(λ1 − λ2)h1 −(λ1 + λ2)h2

]
,

and replace the first row by (1, 1). After taking the determinant and multiplying by (−1)s = −1,
we obtain the critical polynomial:

(g ◦Ψ)(h1, h2, λ1, λ2) = h1λ2 − h1λ1 + h2λ1 + h2λ2.(14)

The above discussion shows that we can always find a suitable parametrization and compute
the critical polynomial. In some cases, other types of parametrizations arise by parametrizing
each Vκ,>0 separately. This is done by first trying to express some variables among x1, . . . , xn,
κ1, . . . , κr in terms of the others using the equations in (5). For finding these expressions, a
computer algebra system such as SageMath [33] or Maple [34] can be useful. Once such an
expression is found, one should check whether it gives a well-defined surjective analytic map,
that is a parametrization. If all the components of the parametrization Φ are quotients of
polynomials with positive denominators, then g ◦ Φ is a quotient of polynomials too, and its
denominator is positive.

Let us see how this works in practice for the running example. We see from the ODE system
in Fig. 3 that positive steady states are characterized by

x2 = κ1x1
κ3x21+κ2

.

This expression gives the parametrization

Φ: R4
>0 → V ⊆ R2

>0 × R3
>0, (x1, κ1, κ2, κ3) 7→ (x1,

κ1x1
κ3x21+κ2

, κ1, κ2, κ3).

Combining Φ with g from (7), we get the critical function:

(g ◦ Φ)(x1, κ1, κ2, κ3) =
κ23x

4
1−κ1κ3x21+2κ2κ3x21+κ1κ2+κ

2
2

κ3x21+κ2
.(15)

In general, there is no guarantee that such a parametrizations for each κ can be found.
However, there are broad classes of reaction networks allowing such a parametrization, for
example networks with toric steady states [35] and post-translational modification systems [36]
to name a few. As we always can find a critical function using the convex parametrization, one
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Figure 5. (a) A strict separating hyperplane (in purple) of the support of f(x1, x2) =

x21−x21x2 + 2x1x2 +x31 +x22. Red dots correspond to positive exponents, the blue square

corresponds to the only negative exponent. (b) The preimage of the negative real half-

line under f .

might wonder what the value of these other type of parametrizations is. The point is that with
this type, the reaction rate constants are still present in the parametrization, and this is useful
to get information about what parameter values yield to multistationarity. This was the theme
of [9], and we will explore this advantage later in the application of our algorithm to the network
with allosteric reciprocal enzyme regulation in Fig. 2(c).

Finally, we discuss how to address (Step 3), now that we know how to compute the critical
polynomial/function. To check whether the preimage of the negative real half-line under a critical
function is path connected is in general hard and depends strongly on the parametrization. As
we discussed in (Step 2), critical functions are in practice polynomials or rational functions
with positive denominator. In the latter case, we can restrict to the numerator of the rational
function. To verify the conditions in Theorem 2.2, it is then enough to study the preimage of
the negative real half-line under a polynomial function restricted to the positive orthant.

Recall that a polynomial function can be written as

f : Rk>0 → R, f(x) =
∑

µ∈σ(f)
cµx

µ1
1 . . . xµkk , with cµ ̸= 0,

and σ(f) ⊆ Nk is a finite set, called the support of f . To determine whether the preimage of the
negative real half-line

f−1(R<0) = {x ∈ Rk>0 | f(x) < 0}
is path connected, one can use methods from real algebraic geometry [15, Remark 11.19], [37,
Section 3]. These methods work well for polynomials in few variables, but they scale poorly. If
the polynomial has many variables, the computation is unfeasible.

In [18], the authors of the present work gave a sufficient criterion for deciding that f−1(R<0)
is path connected, based on the geometry of the support and the sign of the coefficients. We
call an exponent µ ∈ σ(f) positive (resp. negative) if the corresponding coefficient cµ is positive
(resp. negative). We write σ+(f) (resp. σ−(f)) for the set of positive (resp. negative) exponents
of a polynomial f . For example, the polynomial f(x1, x2) = x21−x21x2 +2x1x2 +x31 +x22 has four
positive exponents (2, 0), (1, 1), (3, 0), (0, 2) and one negative exponent (2, 1). These exponents
are depicted in Fig. 5.

A hyperplane in Rk is the set of solutions µ ∈ Rk of a linear equation

v · µ = a,
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where v ∈ Rk \ {0}, a ∈ R and v · µ denotes the Euclidean scalar product of two vectors. Each
hyperplane has two sides, which are described by the linear inequalities

v · µ ≤ a, and v · µ ≥ a.
A hyperplane is called strictly separating if the positive and negative exponents of f are on
different sides of the hyperplane and not all the negative exponents are on this hyperplane. For
a geometric interpretation, we refer to Fig. 5.

Strict separating hyperplanes can be used to decide upon path connectivity of the multista-
tionarity region using Theorem 2.2 via the following theorem.

Theorem 2.3 (Preimage of negative real half-line). [18, Theorem 3.9] Let f : Rk>0 → R be
a polynomial function. If there exists a strict separating hyperplane of the support of f , then
f−1(R<0) is path connected and its closure equals f−1(R≤0).

For the running example, the supports of the two critical functions (14) and (15) form a
quadrilateral. In both cases, there is only one negative exponent, which is at a corner (vertex)
of the quadrilateral. Hence, one can easily find strict separating hyperplanes for the supports of
each polynomial. To get a geometric intuition, we investigate the numerator of (15). Its support
lives in a 2 dimensional subspace of R4, so we can project it onto the plane R2 and find a strict
separating hyperplane there. The projected support is precisely that depicted in Fig. 5(a).

Therefore, Theorem 2.3 holds for the running example and any of the two critical functions,
and then, by Theorem 2.2 we conclude that the multistationarity region of the running example
is path connected.

Note that a strict separating hyperplane of the support of f exists if the following system of
linear inequalities has a solution (v, a) ∈ Rk+1:

v · α ≤ a, for all α ∈ σ+(f)(16)

v · β ≥ a, for all β ∈ σ−(f)(17)
∑

β∈σ−(f)
(v · β − a) > 0.(18)

For the polynomial in Fig. 5, v = (2, 3), and a = 6 form a solution to the system.
In practice, we determine whether the system of linear inequalities (16)-(18) has a solution as

follows. First, we construct the polyhedral cone C ⊆ Rk+1 defined by the inequalities (16)-(17).
Second, we pick a point (v, a) in the relative interior of C. If there exists β ∈ σ−(f) such that
v · β > a, then (v, a) satisfies also inequality (18) and a strict separating hyperplane exists. If
such β does not exist, then a simple argument gives that σ−(f) is contained in the hyperplane
defined by any (w, b) ∈ C, i.e. w ·β = b for all β ∈ σ−(f) and all (w, b) ∈ C. Therefore a strictly
separating hyperplane does not exist.

Theorem 2.3 gives a way to assert that the multistationarity region is path connected, but
it is not informative if that is not the case. In [18] additional results are given to include two
path-connected components. One of these results will be used to show that the multistationarity
region of network in Fig. 2(c) has two path-connected components.

Model reduction for the simplification of the computations. Finding the critical func-
tion or the critical polynomial requires the computation of the determinant of a symbolic matrix,
which can have a high computational cost if the matrix is large or the entries are long expres-
sions in the symbolic variables. The next theorem shows that it is possible to remove certain
reverse reactions from the network, and use a critical function for the reduced network to study
the multistationarity region of the original network, thereby reducing (often dramatically) the
computational cost.

Theorem 2.4 (Reduction and connectivity). Consider a conservative reaction network (S,R)
without relevant boundary steady states. Assume that there exist species X1, . . . ,Xk ∈ S such
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that each Xj participates in exactly 3 reactions of the form

ak+1,jXk+1 + · · ·+ an,jXn

κ3j−1−−−⇀↽−−−
κ3j

Xj
κ3j−2−−−→ bk+1,jXk+1 + · · ·+ bn,jXn, j = 1, . . . , k.

Let g̃ ◦ Φ̃ be a critical function of the reduced network obtained by removing the reactions corre-
sponding to κ3j for j = 1, . . . , k. Assume that the closure of (g̃◦Φ̃)−1(R<0) equals (g̃◦Φ̃)−1(R≤0).

Then the number of path-connected components of the multistationarity region for both the
reduced and the original reaction network is at most the number of path-connected components
of (g̃ ◦ Φ̃)−1(R<0).

In particular, if (g̃ ◦ Φ̃)−1(R<0) is path connected, then the multistationarity region of the
original network (S,R) is path connected.

The theorem might look a bit technical, but it is simply saying that it is enough to apply
the algorithm to a smaller network obtained by removing the reverse reactions κ3j , and the
conclusions can be translated to the original network. Removal of reverse reactions contribute
to the reduction of the computational cost as each of them gives an extreme vector to the flux
cone (see Lemma 6.3(a) in Section 6). Making reversible reactions irreversible removes this

extreme vector and thereby the matrix M̃(h, λ) depends on one less variable.

To illustrate Theorem 2.4, we consider the reaction network representing a signaling cascade
with shared kinase in Fig. 2(i). This reaction network describes the phosphorylation of two
substrates S and P with one phosphorylation site. The phosphorylation of S is catalyzed by
a kinase E, while the phosphorylation of P is catalyzed both by E and by the phosphorylated
form of S. The dephosphorylation processes are governed by two different phosphatases F1 and
F2 [38].

One checks using the above criteria that this network is conservative and has no relevant
boundary steady states. Then, Theorem 2.2 for connectivity of the multistationarity region can
be applied. A matrix of extreme vectors, formed by a minimal collection of extreme vectors
generating the flux cone is

E =




0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0




.

The highlighted column extreme vectors correspond to the 5 reversible reactions of the type in
Theorem 2.4 (the κ3j in the theorem). Computing the determinant of (12) takes approximately
1.5 minutes. The critical polynomial has 20 variables and 5312 terms.

Following Theorem 2.4, we remove the reactions corresponding to κ3, κ6, κ9, κ12, κ15. The
reduced network has the form

S + E
κ2−→ SE

κ1−→ Sp + E Sp + F1
κ5−→ SpF1

κ4−→ S + F1

P + Sp
κ8−→ PSp

κ7−→ Pp + Sp P + E
κ11−−→ PE

κ10−−→ Pp + E

Pp + F2
κ14−−→ PpF2

κ13−−→ P + F2.
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A matrix of extreme vectors is now 


0 0 1
0 0 1
0 0 1
0 0 1
1 0 0
1 0 0
0 1 0
0 1 0
1 1 0
1 1 0




.

The extreme vectors are the non-highlighted vectors in the matrix E above, with the entries
corresponding to the reverse reactions removed (every third row of E). Computing the critical
polynomial for the reduced network takes only 4 seconds. This critical polynomial is much
simpler than the one for the full network. It has 15 variables and 204 terms.

This example illustrates that the reduction in Theorem 2.4 might reduce the computational
cost substantially. On one hand, the computation of the critical polynomial is faster and, on the
other, the critical polynomial itself has less variables and terms, and therefore checking (Step
3) becomes faster as well. In the next section, we investigate networks where the benefit of
applying network reduction and Theorem 2.4 is more dramatical. For example, for two of the
networks, computing the critical polynomial for the full network turned out to be infeasible,
but the computation became possible for the reduced network. By means of Theorem 2.4, we
could assert connectivity of the multistationarity region for the full network (see Table 1 for
more detail). This illustrates that Theorem 2.4 allows us to apply our approach to networks
that were originally too large.

An important observation is that the existence of a strict separating hyperplane for a network
or for a reduced version of it like in Theorem 2.4 are independent. That is, if we cannot find a
strict separating hyperplane for the reduced network, it could still be that it exists for the original
network. Also, the existence of this hyperplane depends on the choice of critical function, that
is, of the parametrization.

Algorithm for path connectivity. We conclude this section by giving a procedure that checks
a sufficient criterion for connectivity of the multistationarity region with no user intervention.
Since most of the steps rely on solving linear inequalities, we implemented the algorithm using the
computer algebra system SageMath [33]. The code is given in the Supporting Information.
We would like to emphasize that the multistationarity region could still be path connected, even
if our algorithm terminates inconclusively.

Algorithm 2.5. Input: a reaction network

(Step 1) Check that the reaction network is conservative and that it does not have relevant bound-
ary steady states using siphons.

(Step 2) Compute the convex parametrization map Ψ if the network is consistent, and the critical
polynomial g ◦Ψ from (13).

(Step 3) Decide whether a strict separating hyperplane of the support of g ◦Ψ exists.
(Step 4) Eventually repeat Steps 1-3 with a reduced network as in Theorem 2.4.

Output: ‘The parameter region of multistationarity is path connected’ or ‘The algorithm is
inconclusive’.

3. Investigating connectivity in relevant biochemical networks

We now demonstrate that Algorithm 2.5 is useful for realistic networks and that the number
of connected components of the multistationarity region can be understood for several relevant
networks in cell signaling of moderate size.

We start by going through the algorithm with two small networks: first, with the module
regulating the cell cycle shown in Fig. 2(a), and then, with the simplified hybrid histidine kinase
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network in Fig. 2(b). The corresponding matrices and the critical polynomials become more
complicated than for the running example, but still, are small enough to be displayed here.

Afterwards we analyze the rest of the networks in Fig. 2. Additionally, we consider the
extensions of Fig. 2(e-f), with two phosphorylation sites, to several phosphorylation sites, and
explore the strengths and weaknesses of the algorithm. When increasing the network size, the
computation of the critical polynomial becomes unfeasible and we apply the reduction from
Theorem 2.4.

We summarize the main properties of all the applications of the algorithm discussed in this
work in Table 1. Table 1 shows the number of species, reactions, and extreme vectors of the
reaction network. If the critical polynomial can be computed, it shows the number of positive and
negative exponents of the critical polynomial and whether a strict separating hyperplane of the
support exists. The same computations are repeated with the reduced network of Theorem 2.4,
and we report the same data except the number of species and reactions.

3.1. Small networks.
Cell cycle regulating module. We consider the model proposed in [39] for the second mod-
ule that regulates the cell’s transition from G2 phase to M-phase [40], which is shown in
Fig. 2(a). This model has been analyzed for bistability in [30]. With the order of species
C,C+,M,M+,W,W+, the stoichiometric matrix, a matrix of conservation relations and a ma-
trix of extreme vectors are:

N =




0 1 0 0 −1 0
0 −1 0 0 1 0
1 0 −1 0 0 0
−1 0 1 0 0 0

0 0 0 −1 0 1
0 0 0 1 0 −1



, W =




1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1


 , E =




0 0 1
0 1 0
0 0 1
1 0 0
0 1 0
1 0 0



.

The sum of the three rows of W gives a positive vector and hence the network is conservative.
We further verified that the network has no relevant boundary steady states. Furthermore, E
has no zero row, so the network is consistent and the critical polynomial can be found using (13).

The matrix M̃(h, λ) is found by replacing the first, third and fifth rows of N diag(Eλ)A⊤ diag(h)
by the rows of W :




1 1 0 0 0 0
λ2h1 −λ2h2 −λ2h3 0 0 0

0 0 1 1 0 0
−λ3h1 0 λ3h3 −λ3h4 λ3h5 0

0 0 0 0 1 1
0 0 λ1h3 0 λ1h5 −λ1h6



.

Since s = 3, the negative of the determinant of M̃(h, λ) gives the critical polynomial:

(g ◦Ψ)(h, λ) = (−h1h3h5 + h1h4h5 + h2h4h5 + h2h3h6 + h1h4h6 + h2h4h6)λ1λ2λ3.

A strict separating hyperplane exists, for example v · (h1, . . . , h6, λ1, λ2, λ3) = 2 with

v = (1, 0, 1, 0, 1, 0, 0, 0, 0).

Indeed, (g◦Ψ)(h, λ) has 6 monomials, all with exponent (1, 1, 1) for λ, and for h they have expo-
nents (1, 0, 1, 0, 1, 0), (1, 0, 0, 1, 1, 0), (0, 1, 0, 1, 1, 0), (0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 0, 1), (0, 1, 0, 1, 0, 1).
The first exponent is negative, and the scalar product with v returns the value 3, which is strictly
larger than 2. The other exponents correspond to positive coefficients, and their scalar product
with v give the values 2, 1, 1, 1, 0 respectively. All of them are smaller or equal to 2. There-
fore, the condition for being a strict separating hyperplane holds, and we conclude that the
multistationarity region of this network is path connected.
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Hybrid histidine kinase. The hybrid histidine kinase network in Fig. 2(b) comprises a hybrid
histidine kinase HK with the domain REC embedded, and separate histidine phospho-transfer
domain Hpt. This reaction network has been studied in [41], where it was shown that the
network displays multistationarity and a (complicate) description of the set of parameters with
3 steady states is given. It is further known that there is a choice of total concentrations such
that the network is multistationary if and only if κ3 > κ1, see [9] (this set is the projection of the
multistationarity region onto the space of reaction rate constants). It was not known whether
the full multistationarity region in κ and c is path connected.

With the order of species HK00,HKp0,HK0p,HKpp,Hpt,Hptp, the stoichiometric matrix N , a
matrix of conservation relations W , and a matrix E whose columns are a minimal set of extreme
vectors are

N =




−1 0 0 1 0 0
1 −1 0 0 1 0
0 1 −1 −1 0 0
0 0 1 0 −1 0
0 0 0 −1 −1 1
0 0 0 1 1 −1



, W =

[
1 1 1 1 0 0
0 0 0 0 1 1

]
, E =




0 1
1 1
1 0
0 1
1 0
1 1



.

The network is conservative, consistent, and has no relevant boundary steady states. By
replacing the first and fifth rows of N diag(Eλ)A⊤ diag(h) by the rows of W we find the matrix

M̃(h, λ) and its determinant gives the critical polynomial:

(g ◦Ψ)(h, λ) = h1h2h3h5λ
3
1λ2 + 3h1h2h3h5λ

2
1λ

2
2 + 2h1h2h3h5λ1λ

3
2 + h1h2h4h5λ

2
1λ

2
2

+ h1h2h4h5λ1λ
3
2 − h2h3h4h5λ31λ2 − h2h3h4h5λ21λ22 + h1h2h3h6λ

3
1λ2

+ 2h1h2h3h6λ
2
1λ

2
2 + h1h2h3h6λ1λ

3
2 + h1h2h4h6λ

3
1λ2 + 2h1h2h4h6λ

2
1λ

2
2

+ h1h2h4h6λ1λ
3
2 + h1h3h4h6λ

3
1λ2 + 2h1h3h4h6λ

2
1λ

2
2 + h1h3h4h6λ1λ

3
2

+ h2h3h4h6λ
3
1λ2 + 2h2h3h4h6λ

2
1λ

2
2 + h2h3h4h6λ1λ

3
2.

The polynomial has 8 variables and 17 positive and 2 negative coefficients. A strict separating
hyperplane of its support is given by the equation

(−5,−5,−1, 0, 5, 0, 0, 0) · µ = −3.

Using Theorem 2.2, it follows that the multistationarity region for the hybrid histidine kinase
network is path connected.

3.2. Phosphorylation cycles. We investigate models for phosphorylation and dephosphory-
lation of a substrate S with m binding sites with processes catalyzed by a kinase E and one or
more phosphatases F .

Sequential and distributive phosphorylation cycles. We first assume that phosphorylation
and dephosphorylation occurs sequentially and distributively [42]: the kinase E catalyzes the
phosphorylation one site at a time in a given order, while the phosphatase F dephosphorylates
in the reverse order, also one site at a time. Under these assumptions, the network for m = 2
sites is shown in Fig. 2(e).

The dynamics of phosphorylation cycles have been intensively studied, e.g. [14, 28, 42–52].
In particular, it is known that they are multistationary for m ≥ 2, and there are choices of
parameter values where they have m + 1 steady states for m even, and m for m odd [44],
with half of them plus one being asymptotically stable [47]. It has been conjectured that these
networks can have up to 2m − 1 steady states, but this has only been established for small
m [48]. These networks are in the class of post-translational modification networks, which are
conservative and consistent, and by the results in [25], since the underlying substrate network
is strongly path connected, they do not have relevant boundary steady states.

The phosphorylation cycle with m = 2 binding sites has n = 9 species and the flux cone has
ℓ = 6 extreme vectors. Then, the corresponding critical polynomial g ◦ Ψ has 15 variables. It
is a big polynomial with 288 positive and 112 negative exponents. Despite the large number of
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exponents, a strict separating hyperplane of its support can be found in less than a second. Our
algorithm (and Theorem 2.2) can be applied to conclude that the multistationarity region for
the sequential and distributive phosphorylation cycle with two binding sites is path connected.

By increasing the numberm of binding sites, the reaction network size increases systematically.
For example, for m = 3, the reaction network becomes

S + E
κ1−⇀↽−
κ2

ES
κ3−→ Sp + E

κ7−⇀↽−
κ8

ESp
κ9−→ S2 + E

κ13−−⇀↽−−
κ14

ESpp
κ15−−→ Sppp + E

Sppp + F
κ16−−⇀↽−−
κ17

FSppp
κ18−−→ Spp + F

κ10−−⇀↽−−
κ11

FSpp
κ12−−→ Sp + F

κ4−⇀↽−
κ5

FSp
κ6−→ S + F.

The critical polynomial g ◦ Ψ has 2560 positive and 1536 negative exponents. The algorithm
confirms that the multistationarity region is path connected in 96 seconds.

For m = 4, we could not compute the critical polynomial for the original network due to
computer memory constraints. This shows that the computation of the critical polynomial is
the bottleneck of the algorithm. After removing all reverse reactions as in Theorem 2.4, we could
compute the critical polynomial, but it does not have a strict separating hyperplane. Therefore,
for this family of networks we know that the multistationarity region is path connected for
m = 2, 3, but it is unknown for m ≥ 4. Previous work has shown that the projection of the
multistationarity region onto the reaction rate constants κ is path connected for all m ≥ 2, see
[53], so we conjecture that the full multistationarity region is path connected for all m ≥ 2.

Phosphorylation cycles with different phosphatases. Different mechanisms for multisite
phosphorylation have been observed, and in particular, phosphorylation and dephosphorylation
of the different sites of a phosphate might not be catalyzed by the same kinase or phosphatase
e.g. [54, 55]. If all steps are carried out by different enzymes, then multistationarity does not
arise (see [38] for m = 2). Therefore, we consider the scenario where the phosphorylation occurs
sequentially and the kinase acts in a distributive way, but we assume that each dephosphorylation
step is governed by different phosphatases F1, . . . , Fm (see Fig. 2(f) for m = 2). These
networks are also conservative and do not have relevant boundary steady states for any m.

For m = 2 and m = 3, the algorithm finds a strict separating hyperplane, and hence the
multistationarity region is path connected. Form = 4, the computation of the critical polynomial
via the symbolic determinant in (Step 2) of the algorithm was too demanding, and the computer
used for the tests ran out of memory. We employed the reduction approach given in Theorem 2.4
and removed eight reactions. The critical polynomial of the reduced network is significantly
simpler: it has 22 variables and 178 monomials. Its support has a strict separating hyperplane.
Thus, the multistationarity region of the original network is path connected by Theorem 2.4 and
Theorem 2.3.

Weakly irreversible phosphorylation cycles. The two-site sequential and distributive phos-
phorylation network given in Fig. 2(e) assumes that each phosphorylation step proceeds via a
Michaelis-Menten mechanism. This is referred to as strong irreversibility in [43]. More plausible
mechanisms have been argued to include the complex formation of the product with the enzyme,
as for example a mechanism of this form would allow:

S + E ⇌ SE→ SpE ⇌ Sp + E.

A model incorporating this weak irreversibility at the dephosphorylation stage was pro-
posed and analyzed for bistability in [56, Scheme 2]. In the model, dephosphorylation of ERK
by the phosphatase MKP3 proceeds as shown in Fig. 2(g) [57]. For this network, our algorithm
concludes that the multistationarity region is path connected.

A model with full weak irreversibility, that is, for both the phosphorylation and dephos-
phorylation processes, is shown in Fig. 2(h). The shape of the multistationarity region for this
type of models was analyzed in [43], where it was concluded by means of a numerical approach
that the multistationarity region in some aggregated steady state parameters is connected. Nei-
ther for the original network nor for the reduced network, a strict separating hyperplane exists,
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Table 1. Summary of the algorithm on selected systems

Reaction network n r ℓ #σ+(g ◦Ψ) #σ−(g ◦Ψ) sep. hyp. ℓ̃ #σ+(g̃ ◦ Ψ̃) #σ−(g̃ ◦ Ψ̃) sep. hyp.

(a) Cell cycle 6 6 3 5 1 YES 3 5 1 YES

(b) Hybrid histidine kinase 6 6 2 17 2 YES 2 17 2 YES

(c) Allosteric regulation 9 10 5 168 8 NO 3 42 2 NO

(d) Covalent regulation 12 14 7 1856 32 YES 3 116 2 YES

(e) 2-site phosph. cycle 9 12 6 288 112 YES 2 18 7 YES

3-site phosph. cycle 12 18 9 2560 1536 YES 3 40 24 YES

4-site phosph. cycle 15 24 12 ?? ?? ?? 4 75 54 NO

(f) 2-site: different phosphat. 10 12 6 304 48 YES 2 19 3 YES
3-site: diff. phosphat. 14 18 9 3264 960 YES 3 51 15 YES

4-site: diff. phosphat. 18 24 12 ?? ?? ?? 4 127 51 YES

(g) 2-site: weak. irrev. dephos. 11 16 8 2176 640 YES 4 136 40 YES

(h) 2-site: fully weak. irrev. 13 20 10 16320 3648 NO 6 1020 228 NO

(i) Two-layer, shared kinase 12 15 8 5088 224 YES 3 195 9 YES

(j) Two layer MAPK cascade 14 18 9 5120 1408 YES 3 80 22 YES

(k) ERK network 12 18 9 15040 3432 YES 5 1374 340 YES

The columns of the table indicate: network; n = number of species; r = number of reactions; ℓ = number of
extreme vectors of the flux cone; #σ±(g ◦Ψ) = number of positive/negative exponents of the critical polynomial;

existence of a strict separating hyperplane; ℓ̃ = number of extreme vectors of the flux cone of the reduced network
of Theorem 2.4; #σ±(g̃ ◦ Ψ̃) = number of positive/negative exponents of the critical polynomial of the reduced
network; existence of strict separating hyperplane for the reduced network. The number of variables of the critical
polynomial is n+ ℓ for the original network and n+ ℓ̃ for the reduced network. ?? means that the computation
could not be performed due to computer memory loss. The labels (a)-(k) refer to the networks in Fig. 2.

and hence our algorithm is inconclusive. It remains thus open to be confirmed whether the
multistationarity region is path connected.

Extracellular signal-regulated kinase (ERK) network. Dual-site phosphorylation and de-
phosphorylation of extracellular signal-regulated kinase has an important role in the regulation
of many cellular activities [58], and a better knowledge of the dynamical properties of the ERK
network might facilitate the prediction of this network’s response to environmental changes or
drug treatments [59]. This network, analyzed in [60–62] and shown in Fig. 2(k), comprises as
well phosphorylation of a substrate in two sites, but not in a distributive and sequential way.

Using Algorithm 2.5, we conclude that the multistationarity region for the ERK network is
path connected.

3.3. Signaling cascades. We next investigate two types of signaling cascades comprising phos-
phorylation cycles, which are known to be multistationary.

Shared kinase. We consider first a two-layer signaling cascade with two single phosphorylation
at each stage. The phosphorylated substrate of the first layer acts as the kinase of the second
layer. We consider additionally that the kinase of the first layer also can act as kinase for the
second layer, so the kinase is shared for the two layers, as shown in Fig. 2(i). Without this
shared kinase, the cascade would not display multistationarity.

Algorithm 2.5 finds a strict separating hyperplane and we conclude that the multistationarity
region for the cascade is path connected.

Two-layer MAPK-cascade. Huang and Ferrell proposed a model for the MAPK cascade
consisting of three layers, the first one being a single phosphorylation cycle, while the last
two are dual phosphorylation cycles with phosphorylation and dephosphorylation proceeding
sequentially and distributive [63]. This network has bistability and also oscillations, and in fact
for both properties only the first two layers of the cascade are required.
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The network with two layers is shown in Fig. 2(j), and Algorithm 2.5 can be employed to
conclude that the multistationarity region is path connected.

The full network with the three layers is large, with 22 species, 30 reactions, the rank of the
stoichiometric matrix is 15, and the matrix E has 15 extreme vectors. Due to the computational
cost, the computation of the critical polynomial was not possible for the original network, but
was possible for the reduced network using the Julia package SymbolicCRN.jl [64]. However,
a strict separating hyperplane does not exist, so our algorithm is inconclusive.

3.4. Reciprocal enzyme regulation. Finally, we consider two multistationary networks com-
prising single phosphorylation cycles, where the kinase and the phosphatase are subject to re-
ciprocal regulation, both proposed and studied in [17].

Covalent regulation. We first consider the case where reciprocal regulation is via covalent
modification catalyzed by the same enzyme, see Fig. 2(d). By means of Algorithm 2.5 we find
that the multistationarity region for the the cascade is path connected.

Allosteric regulation: An example with two path-connected components. The other
mechanism of reciprocal regulation considered in [17] is via allosteric regulation: it is assumed
that there is an allosteric effector L that binds both the phosphatase and the kinase, see Fig. 2(c).
After performing a quasi-steady-state approximation, the authors of [17] show that a necessary
condition for multistationarity is that κ3 > κ6. This network is conservative, consistent, and
has no relevant boundary steady states.

For all the applications we have seen so far, we could either conclude that the multistationarity
region is path connected, or our approach was inconclusive. For this network our approach was
inconclusive as well, however, by employing other theoretical results from [18] in conjunction
with Theorem 2.4 and the approaches in [9], we were able to conclude that the multistation-
arity region has exactly two path-connected components, revealing two mechanisms underlying
multistationarity.

The approach is as follows. On one hand, using the method to find parameter regions in
κ from [9] relying on Theorem 2.1, we show in Section 6 that the two sets of parameters
{(κ, c) ∈ R10

>0×R5
≥0 |κ3 > κ6} and {(κ, c) ∈ R10

>0×R5
≥0 |κ3 < κ6} both contain parameters that

yield multistationarity, that is, these two regions both intersect the multistationarity region. To
be precise, the condition κ3 > κ6 yields multistationarity if additionally the Michaelis-Menten
constant for phosphorylation, K1 = κ2+κ3

κ1
, is large enough relative to that for the dephosphoryla-

tion, K2 = κ5+κ6
κ4

. Symmetrically, the condition κ6 > κ3 requires K2 ≫ K1 for multistationarity
to arise.

We also show that if κ3 = κ6, then the network cannot display multistationarity, no matter
what the other parameters are. Therefore, any two points in each of the two sets above cannot
be joined by a continuous path inside the multistationarity region, as any such path should
cross at least one point where κ3 = κ6. Hence, the full multistationarity region cannot be path
connected: it has at least two path-connected components.

On the other hand, we show also in Section 6 that the multistationarity region of the reduced
network has at most two path-connected components using [18]. Hence, by Theorem 2.4, the
original network in Fig. 2(c) has at most two path-connected components as well.

Putting the two pieces together, we conclude that the multistationarity region has precisely
two connected components: one in which the catalytic rate of the phosphorylation step is larger
than the catalytic rate of dephosphorylation, that is κ3 > κ6, and the other where the inequality
is reversed κ6 > κ3. The second region was missed in [17] as it is outside the regime where the
quasi-steady-state approximation employed there is valid.

To illustrate the type of switches that may arise from this system, we have considered the
reduced model (for which there are also two connected components), and selected two parameter
values α1, α2 in different path-connected components of the multistationarity region. The two
parameter values are identical except for the three parameters governing the dephosphorylation
event: κ4, κ6 and the total amount of P, see Fig. 6. We choose the path through the two points,
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(a) (b) (c)

(d) (e) (f)

Figure 6. Input-output curves (bifurcation diagrams) for the reduced reciprocal al-
losteric regulation system in Fig. 2(c) (that is, with κ2 = κ5 = 0 for simplicity). The fol-
lowing parameters are fixed: κ1 = 1, κ3 = 1, κ7 = 1, κ8 = 1, κ9 = 1, κ10 = 0.1, Ltot = 72,
Ktot = 62, Stot = 426. In (a)-(d), the bifurcation parameter t, which can be negative,

describes a path for (κ4, κ6,Ptot): β(t) = (
(
1
5

)t ( 510
41

)1−t
, 10t

(
51
256

)1−t
, 17t

(
5307
17

)1−t
).

Subfigures (a)-(c) show the bifurcation diagrams for the concentration of Sp, K and L at
steady state. In the intervals with three steady states, the one in the middle is unstable.
Subfigure (d) shows the path in the three-dimensional space (K2,Ptot, κ6). The blue
regions indicate the region of the path that belongs to the multistationarity region, and
the displayed plane κ6 = 1 separates the two regions. Subfigures (e)-(f) show the mul-
tistationarity regions when we fix κ6 = 9.5 and κ6 = 0.195 respectively. These are two
slices of the two path-connected components, obtained by keeping only two free parameters.

which component-wise is given as β(t)i = αt1,iα
1−t
2,i . At t = 0 the path is α1, while at t = 1

it is α2. Fig. 6(a-c) shows bifurcation diagrams, where t is the perturbed parameter, which
perturbs simultaneously K2, κ6 and the total amount of P, and we display the logarithm of
the concentration of the phosphorylated substrate Sp, kinase K and ligand L at steady state
respectively. Note that by the choice of path we have made, t can take any real value, also
negative. For the three concentrations, we obtain saddle-node bifurcations: a usual switch for
larger values of t, while for smaller values of t, no hysteresis effect arises and the response curve
has two components. In panel (d) of Fig. 6 a path in the three dimensional parameter space
joining the two points is given. We see that the path enters and exists the multistationarity
region twice, corresponding to the two path-connected components. The shape of these two
components is displayed in Fig. 6(e-f) after slicing the three-dimensional space by fixing κ6 for
illustration purposes.

4. Discussion

Determining topological properties of semi-algebraic sets, that is, sets described by polyno-
mial equalities and inequalities, is a highly complex problem that requires, for general sets,
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computationally expensive algorithms that scale poorly with the number of variables [15]. For
reaction networks with mass-action kinetics, the multistationarity region is a semi-algebraic set,
and hence its description might not be straightforward.

Here we presented an approach to determine a basic topological property of a set, namely its
connectivity. Non-connectivity of the multistationarity region may indicate different biological
mechanisms underlying the existence of multiple steady states, and additionally, may give the
cell the possibility to operate on complex switches as shown in Fig. 1. Our algorithm is to our
knowledge the first to address the problem of connectivity in an effective and conclusive way.
This is done by relying on linear programming and polyhedral geometry algorithms, rather than
on semi-algebraic approaches, which reduces dramatically the computational cost. Addition-
ally, our approach provides a symbolic proof of connectivity, and does not require numerical
approaches, which unavoidably cannot explore the whole parameter space.

Although our algorithm might terminate inconclusively, even if the multistationarity region
is path connected, we have shown that it is often applicable: for many motifs, the multistation-
arity region is connected because a strict separating hyperplane of the support of the critical
polynomial exists. This came as a surprise to us, and might indicate a hidden feature present in
realistic systems and brings up the question: What are the characteristics of the reaction net-
works from cell signaling that ensure that the support of the corresponding critical polynomial
has a strict separating hyperplane?

It would certainly be relevant to understand the answer to this question, to bypass finding
the critical polynomial, a step that is prohibitive for larger networks. This was illustrated with
the networks of phosphorylation cycles with several phosphorylation sites, which revealed the
computational boundaries of the algorithm. In several cases, the computation of the critical
polynomial was not possible on a common computer. However, it was possible to compute
the critical polynomial of the reduced network and still we were able to conclude that the
multistationarity region is path connected.

Despite covering many networks, the algorithm remains inconclusive for some relevant net-
works, where we cannot decide whether the multistationarity region is connected, meaning that
further investigations are required. For the m-site sequential and distributive systems, the pro-
jection of the multistationarity region onto the set of reaction rate constants is known to be
path connected for all m [53], and this makes us believe that the same holds for the full region.
In fact, based on the evidence gathered from the tested networks, we conjecture that if the
projection onto the set of reaction rate constants κ is path connected, so is the multistationarity
region. This would provide an additional strategy to study connectivity, which in particular
might give a way to show that the fully weakly irreversible phosphorylation cycle studied in [4],
see Fig. 2(h), is indeed path connected.

For the network in Fig. 2(c), where the algorithm was inconclusive, the network had two
path-connected components. The strategy to show this was to combine knowledge about the
projection of the multistationarity region onto the set of reaction rate constants, and a bound
on the number of connected components of the reduced network found using ideas similar to
those in the proof of [18, Theorem 3.9]. This example opens up for new directions for counting
path-connected components and understanding underlying features of reaction networks where
the multistationarity region is disconnected. On one hand, it would be interesting to devise
algorithms that can assert that the multistationarity region is disconnected, and ideally, count
or give bounds on the number of path-connected components. On the other hand, one might
wonder what network characteristics might give rise to disconnected multistationarity regions.
For the reduced network of Fig. 2(c), the multistationarity region is no longer disconnected
after deleting a reaction or a species, so this network can be viewed as a minimal motif with
this property. A proper investigation of minimal networks with disconnected multistationarity
region would require a better understanding on how the connectivity of the multistationarity
region changes upon modifications on the network, in the spirit of Theorem 2.4.

We would like to point out that the proof of the key theorem, namely Theorem 2.2, is based on
relating the multistationarity region to the preimage of the negative real half-line by the critical
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polynomial. When a strict separating hyperplane of the support of the critical polynomial exists,
it is not only known that this preimage is path connected, but also that it is contractible [18,
Theorem 3.9]. This implies that all Betti numbers of the preimage set are zero. We conjecture
that when this is the case, the multistationarity region is contractible, and hence topologically
very simple (for example, it has no holes). However, this cannot be directly deduced by our
arguments in the proof of Theorem 2.2.

To conclude, we propose the application of our work in the design of synthetic circuits dis-
playing predefined switches. Indeed, by combining algorithms to determine multistationarity
with the study of the connectivity of the multistationarity region, one can systematically study
small networks and search for a desired input-output curve shape. This approach would adhere
to related work already done in this direction, e.g. [65, 66].

5. Methods

We implemented Algorithm 2.5 in SageMath 9.2 [33]. A Jupyter notebook containing the
code can be found in the Supporting Information. The computations for the networks in Table
1 were run on a Windows 10 computer with Intel Core i5-10310U CPU @ 1.70GHz 2.21 GHz
processor and 8GB RAM.

In our implementation, each species is represented by a symbolic variable, and each reaction
is represented by a list containing two symbolic expressions in the variables. For example, to
run the code for the running example (1), one has to type:

X1,X2 = var(’X1,X2’)

species = [X1,X2]

reactions = [[X1,X2],[X2,X1],[2*X1+X2,3*X1]]

F = CheckConnectivity(species,reactions)

The output is given in the following format:

n = 2

r = 3

The reaction network is conservative.

There are no relevant boundary steady states.

l = 2

Number of positive coefficients: 3

Number of negative coefficients: 1

The support set has a strict separating hyperplane.

All the conditions are satisfied.

We conclude that the parameter region of multistationarity

is path connected.

Although we used SageMath to compute the extreme vectors, the same computation can also
be done with Polymake [67] (as a standalone [68] or as part of the Oscar project in Julia [69]).
These programs compute extreme vectors of arbitrary pointed cones. For open cones of the form
ker(N) ∩ Rn>0, there exist specific algorithms designed in the context of stoichiometric network
analysis and metabolic network analysis. See for example [70].

As discussed above, the bottleneck of Algorithm 2.5 is to compute the determinant of the
symbolic matrix M̃(h, λ) in (13). In the tested examples, the Julia package SymbolicCRN.jl

[64] is more efficient in computing the symbolic determinant than our implementation using
SageMath. Using SymbolicCRN.jl, we were able to compute the critical polynomial for the
reduced MAPK cascade with three layers, which was not possible with SageMath. For the 4-site
phosphorylation networks in Table 1, we could not compute the critical polynomial using neither
Julia nor SageMath.

The parameter regions of multistationarity displayed in Fig. 6(e-f) are found using cylindrical
algebraic decomposition in Maple, using the command CellDecomposition from the packages
RootFinding[Parametric] and RegularChains.
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6. Proof of the results

6.1. Convex parameters. In this subsection we show basic results on the flux cone, and
specially that positive combinations of extreme vectors of ker(N)∩Rr≥0 parametrize the positive
part of the cone.

Proposition 6.1. Let E ∈ Rr×ℓ be a matrix of extreme vectors for the flux cone ker(N)∩Rr≥0.

(a) The relative interior of ker(N)∩Rr≥0 equals {Eλ | λ ∈ Rℓ>0} and contains ker(N)∩Rr>0.

(b) ker(N) ∩ Rr>0 ̸= ∅ if and only if E does not have any zero row.

(c) If E does not have any zero row, then {Eλ | λ ∈ Rℓ>0} = ker(N) ∩ Rr>0.

Proof. (a) The first equality is proven in [71, Section XVIII, Theorem 1]. To show that ker(N)∩
Rr>0 is included in {Eλ | λ ∈ Rℓ>0}, let v ∈ ker(N)∩Rr>0 and 1 ∈ Rℓ the vector with coordinates

equal to 1. By [32, Corollary 18.5.2], there exists λ ∈ Rℓ≥0 such that v = Eλ. Since all
coordinates of v are positive, it is possible to choose ϵ > 0 such that Eλ − ϵE1 has positive
coordinates. Thus, E

(
λ− ϵ1) belongs to the flux cone. Using [32, Corollary 18.5.2] again, there

exist µ ∈ Rℓ≥0 such that E
(
λ− ϵ1) = Eµ. By reordering, we have

v = Eλ = E(µ+ ϵ1)

where µ+ ϵ1 ∈ Rℓ>0. This shows (a).

(b) Follows easily from the equality ker(N) ∩ Rr≥0 = {Eλ | λ ∈ Rℓ≥0}.
(c) If E does not have a zero row, then {Eλ | λ ∈ Rℓ>0} ⊆ ker(N) ∩ Rr>0. Together with (a),

we obtain the equality of sets. □

Corollary 6.2. Let E ∈ Rr×ℓ be a matrix of extreme vectors for the flux cone ker(N) ∩ Rr≥0.

Recall the set V of steady states given in (6).

(a) If E does not have any zero row, then the convex parametrization map Ψ: Rn>0×Rℓ>0 → V
from (11) is surjective.

(b) If E has a zero row, then V = ∅.
Proof. First, we observe that for (x, κ) ∈ V the vector vκ(x) lies in ker(N) ∩ Rr>0 by (3). Now,
part (b) follows directly from Proposition 6.1(b). To show that Ψ is surjective, let (x, κ) ∈ V.
By Proposition 6.1(a), there exist λ ∈ Rℓ>0 such that vκ(x) = Eλ. By letting h = 1/x, using
the definition of vκ(x) in (3) and the definition of Ψ, one easily sees that Ψ(h, λ) = (x, κ), and
hence, (x, κ) is in the image of Ψ, concluding the proof. □

Lemma 6.3. Let (S,R) be a reaction network such that the last two reactions Rr−1 and Rr are

reverse to each other. Let (S̃, R̃) be the reduced network obtained by removing the reaction Rr.

(a) The vector (0, . . . , 0, 1, 1) ∈ Rr≥0 is an extreme vector of the flux cone of (S,R).

(b) If v is an extreme vector of the flux cone of (S̃, R̃), then (v, 0) is an extreme vector of
the flux cone of (S,R).

In particular, the flux cone of (S,R) has more extreme vectors than the flux cone of (S̃, R̃).

Proof. Before starting the proof, we recall some definitions and statements. The support of a
vector u ∈ Rr is the set of indices where the vector is non-zero: supp(u) := {i ∈ {1, . . . , r} |
ui ̸= 0}. A vector u ∈ ker(N)∩Rr≥0 is said to have minimal support if for all w ∈ ker(N)∩Rr≥0

with supp(w) ⊆ supp(u) we have supp(w) = supp(u). A vector u ∈ ker(N)∩Rr≥0 is an extreme

vector if and only if it has minimal support [72, Proposition 5], see also [73, Definition 1] and
[74, Proposition 5].

(a) Since the reactions Rr−1 and Rr are reverse to each other, for the last two columns of N
it holds that Nr−1 = −Nr, which implies

N(0, . . . , 0, 1, 1)⊤ = Nr−1 +Nr = 0.
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Thus, (0, . . . , 0, 1, 1) belongs to the flux cone. If (0, . . . , 0, 1, 1) did not have minimal support,
then (0, . . . , 0, 1) or (0, . . . , 0, 1, 0) would be contained in the flux cone, but that would imply
that Nr = 0 and N has a zero column, which cannot be the case.

(b) Let Ñ ∈ Rn×(r−1) denote the stoichiometric matrix of the reduced network and hence

N =
(
Ñ Nr

)
∈ Rn×r. Since

N

(
v
0

)
= Ñv = 0,

we have that (v, 0) is contained in the flux cone of (S,R). To show that (v, 0) is an extreme
vector, we show that it has minimal support. Let w ∈ ker(N) ∩ Rr≥0 such that supp(w) ⊆
supp((v, 0)). Then wn = 0, and hence (w1 . . . , wr−1) ∈ ker(Ñ) ∩ Rr−1

≥0 . Since v is an ex-

treme vector of ker(Ñ) ∩ Rr−1
≥0 and supp((w1 . . . , wr−1)) ⊆ supp(v), it follows that supp(w) =

supp((w1 . . . , wr−1)) = supp(v) = supp((v, 0)). Hence (v, 0) has minimal support and is therefore
an extreme vector. □

6.2. Proof of Theorem 2.2. Theorem 2.2 is a direct consequence of two technical lemmas. To
state the lemmas, we use the notation of the main text, and additionally we write Ω ⊆ Rr>0×Rd
for the parameter region of multistationarity:

Ω :=
{

(κ, c) ∈ Rr>0 × Rd | #
(
Vκ ∩ Pc ∩ Rn>0

)
≥ 2
}
.

We will write Ω as the image of a subset of V under the map

π : V → Rr>0 × Rd, (x, κ) 7→ (κ,Wx),(19)

and then compare path-connected components. Recall that W is a matrix of conservation
relations.

By Theorem 2.1, Ω is closely related to the preimage of the negative real half-line under the
critical function given in (8) for a parametrization Φ: D → V:

g ◦ Φ: D → R.

So we introduce the set:

Θ := g−1(R≤0) ∩ π−1(Ω) ⊆ V.(20)

We summarize all the relevant functions that play a role in the proof of Theorem 2.2 in the
following diagram:

(g ◦ Φ)−1(R<0) Φ−1(Θ) (g ◦ Φ)−1(R≤0) D

g−1(R<0) Θ g−1(R≤0) V R

Ω Rr>0 × Rd.

Φ Φ Φ Φ
g◦Φ

π π

g

We denote by b0(X) the number of path-connected components of a set X ⊆ Rk [75, Definition
3.3.7]. Note that X is path connected if and only if b0(X) = 1.

Lemma 6.4. For a dissipative reaction network without relevant boundary steady states, it holds
that

π(Θ) = Ω.

In particular, b0(Ω) ≤ b0(Θ).

Proof. By definition of Θ, we have π(Θ) ⊆ Ω. To show the reverse inclusion, consider (κ, c) ∈ Ω.
All we need is to find a point (x∗, κ) such that π(x∗, κ) = (κ, c) and g(x∗, κ) ≤ 0. From the
definition of Vκ in (5) and of Pc in (4), it follows that

π−1(κ, c) = {(x∗, κ) ∈ V | x∗ ∈ Vκ ∩ Pc ∩ Rn>0}.
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Since (κ, c) enables multistationarity as it belongs to Ω, we have π−1(κ, c) has at least two
elements and hence Theorem 2.1(A) cannot hold. It follows that π−1(κ, c) contains at least
one point where (x∗, κ) with g(x∗, κ) ≤ 0. As by construction π(x∗, κ) = (κ, c), we have the
inclusion.

The second part follows from the fact that continuous images of path connected sets are path
connected [75, Theorem 3.3.5]. □
Lemma 6.5. Consider a dissipative reaction network without relevant boundary steady states.
If the closure of (g ◦ Φ)−1(R<0) equals (g ◦ Φ)−1(R≤0), then

b0(Θ) ≤ b0((g ◦ Φ)−1(R<0)).

Proof. For all (x, κ) ∈ V with g(x, κ) < 0, Theorem 2.1(B) gives that π(x, κ) ∈ Ω. Thus, by
definition of Θ, it holds that

g−1(R<0) ⊆ Θ ⊆ g−1(R≤0).

By taking preimages under Φ, it follows that

(g ◦ Φ)−1(R<0) ⊆ Φ−1(Θ) ⊆ (g ◦ Φ)−1(R≤0).

Since (g ◦Φ)−1(R≤0) is the closure of (g ◦Φ)−1(R<0), every point η ∈ Φ−1(Θ) is contained in
the closure of (g ◦Φ)−1(R<0). Using the Curve Selecting Lemma [76], there exists a continuous
path

γ : [0, 1]→ Rn

such that γ(0) = η and γ
(
(0, 1)

)
⊆ (g◦Φ)−1(R<0). Thus, there exists a continuous path between

η and one of the path-connected components of (g ◦ Φ)−1(R<0). Therefore, b0(Φ
−1(Θ)) ≤

b0((g ◦ Φ)−1(R<0)).
Since Φ is surjective, it follows that Φ(Φ−1(Θ)) = Θ. Since a continuous image of a path

connected set is path connected [75, Theorem 3.3.5], we conclude that b0(Θ) ≤ b0(Φ−1(Θ)). □
6.3. Proof of Theorem 2.4. To prove Theorem 2.4, we need to show that under the hypotheses
of the theorem, we have

b0(Ω) ≤ b0((g̃ ◦ Φ̃)−1(R<0)).

The proof is based on inductive application of the following statement.

Proposition 6.6. Let (S,R) be a conservative reaction network without relevant boundary
steady states. Assume that the species Xn participates in exactly 3 reactions of the form

a1X1 + · · ·+ an−1Xn−1

κr−1−−−⇀↽−−−
κr

Xn
κr−2−−−→ b1X1 + · · ·+ bn−1Xn−1.

Let (S̃, R̃) denote the reduced network obtained by removing the reaction corresponding to κr
and Θ̃ denote the set in (20) for (S̃, R̃). It holds that

b0(Θ) ≤ b0(Θ̃).

Proof. For every object corresponding to a network, we write ˜ to indicate that it corresponds
to the reduced network, e.g. the reaction rate constants in the reduced network are denoted by
κ̃1, . . . , κ̃r−1.

As in the proof of Lemma 6.3, the stoichiometric matrices N and Ñ satisfy Nr−1 = −Nr,
Ñj = Nj for j = 1, . . . , r − 1, and rk(N) = rk(Ñ). Recall that W ∈ Rd×n is a row reduced full

rank matrix such that WN = 0. It follows that WÑ = 0, so W is a matrix of conservation
relations for (S̃, R̃) and we use this matrix in the definition of π̃, analogously to (19). Using (9),

we also have that (S̃, R̃) is conservative if and only if (S,R) is conservative.
Following the proof of [77, Prop. 1] we introduce the maps:

η : Rr>0 → Rr−1
>0 , κ 7→ (κ1, . . . , κr−2,

κr−1

κr+κr−2
),

η̃ : Rr−1
>0 → Rr−1

>0 , κ̃ 7→ (κ1, . . . , κr−2,
κ̃r−1

κ̃r−2
).
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For x ∈ Rn, let xa = xa11 · · ·x
an−1

n−1 where a = (a1, . . . , an−1, 0).
We start by relating the steady states of the two networks under the hypothesis that η(κ) =

η̃(κ̃). Recall that (κ, c) ∈ Ω if and only if the equation system

fκ(x) = Nvκ(x) = 0, Wx = c(21)

has at least two positive solutions. Redundant linear relations among the equations fκ(x) = 0
arise from linear dependencies of the rows of N . To remove these redundancies, we consider
I = {i1, . . . , id} to be the set of indices of the first non-zero coordinates of each row of W ,
i1 < · · · < id. For all j = 1, . . . , d, we replace the ijth row of fκ(x) by the jth row of Wx − c.
If we denote the resulting function by hκ,c(x), then x∗ ∈ Rn>0 is a solution of (21) if and only
if hκ,c(x

∗) = 0 holds. Thus, the parameter pair (κ, c) enables multistationarity if and only if
hκ,c(x) = 0 has at least two positive solutions.

Since xn appears linearly in hκ,c(x), there exist vectors z(κ), v(x, κ) such that

hκ,c(x) =

(
z(κ)

−(κr + κr−2)

)
xn +

(
v(x, κ)
κr−1x

a

)
.(22)

Specifically:

if i = ij ∈ I : zi(κ) = Wj,n, vi(x, κ) = −cj +Wj,1x1 + · · ·+Wj,n−1xn−1,

if i ∈ {1, . . . , n− 1} \ I : zi(κ) = κrai + κr−2bi, vi(x, κ) = −κr−1aix
a + ui(x, κ),

where u(x, κ) is chosen such that (22) holds.

We define h̃κ̃,c(x) analogously for the reduced network and write

h̃κ̃,c(x) =

(
z̃(κ̃)
−κ̃r−2

)
xn +

(
ṽ(x, κ̃)
−κ̃r−1x

a

)
,

which under the assumption that η(κ) = η̃(κ̃), we have

if i = ij ∈ I : z̃i(κ̃) = zi(κ), ṽi(x, κ̃) = vi(x, κ),

if i ∈ {1, . . . , n− 1} \ I : z̃i(κ̃) = κ̃r−2bi, ṽi(x, κ̃) = −κ̃r−1aix
a + ui(x, κ̃).

It then holds that

(23) κr−1

κr+κr−2
z(κ)xa + v(x, κ) = κ̃r−1

κ̃r−2
z̃(κ̃)xa + ṽ(x, κ̃).

For i ∈ I, it is straightforward to see that this equality holds. If i /∈ I, then the equation reduces
to the equality

κr−1

κr+κr−2
(κrai + κr−2bi)− κr−1ai = κr−1

κr+κr−2
κr−2(bi − ai) = κ̃r−1

κ̃r−2
κ̃r−2(bi − ai)

= κ̃r−1bi − κ̃r−1ai.

With this in place, consider the matrices

B(κ) =

(
Idn−1

z(κ)
κr+κr−2

0 − 1
κr+κr−2

)
, and B̃(κ̃) =

(
Idn−1

z̃(κ̃)
κ̃r−2

0 − 1
κ̃r−2

)
,

where Idn−1 is the identity matrix of size n− 1. Using (23), we have

(24) B(κ)hκ,c(x) =

(
Idn−1

z(κ)
κr+κr−2

0 − 1
κr+κr−2

)(
z(κ)xn + v(x, κ)

−(κr + κr−2)xn + κr−1x
a

)
=

(
κr−1

κr+κr−2
z(κ)xa + v(x, κ)

xn − κr−1

κr+κr−2
xa

)
=

(
κ̃r−1

κ̃r−2
z̃(κ̃)xa + ṽ(x, κ̃)

xn − κ̃r−1

κ̃r−2
xa

)
= B̃(κ̃)h̃κ̃,c(x).

Since the matrices B(κ) and B̃(κ̃) are invertible, it follows from (24) that every positive solution
of hκ,c(x) = 0 is a solution of hκ̃,c(x) = 0. In particular, the reduced network does not have
relevant boundary steady states.
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Additionally, since s = s̃, and the Jacobian of hκ,c(x) is precisely the matrix Mκ(x) (and
analogous for the reduced network), taking the Jacobian and determinant of both sides of (24)
yields:

− 1
κr+κr−2

g(x, κ) = − 1
κ̃r−2

g̃(x, κ̃).(25)

Since κr, κr−2, κ̃r−2 > 0, it follows that g(x, κ) and g̃(x, κ̃) have the same sign if η(κ) = η̃(κ̃).

Finally, we can easily see that for (x∗, κ) ∈ V and (x∗, κ̃) ∈ Ṽ with η(κ) = η̃(κ̃) the following
holds:

π(x∗, κ) ∈ Ω if and only if π̃(x∗, κ̃) ∈ Ω̃.(26)

For the forward implication, if π(x∗, κ) ∈ Ω, then by definition, the parameter pair (κ, c)
with c = Wx∗ enables multistationarity, that is hκ,c(x) = 0 has at least two positive solutions.

Hence so does hκ̃,c(x) = 0, and (κ̃, c) = π̃(x∗, κ̃) ∈ Ω̃. The reverse implication of (26) follows
analogously.

With these preliminaries in place, consider the maps

F : V → Rn−1
>0 × Rr−1

>0 , (x, κ) 7→ ((x1, . . . , xn−1), η(κ)),

F̃ : Ṽ → Rn−1
>0 × Rr−1

>0 , (x̃, κ̃) 7→ ((x̃1, . . . , x̃n−1), η̃(κ̃)).

By considering the steady state equation of Xn, for (x, κ) ∈ V and (x̃, κ̃) ∈ Ṽ the nth coordinate
is uniquely determined by the rest of the coordinates, that is:

xn = κr−1

κr+κr−2
xa, x̃n = κ̃r−1

κ̃r−2
x̃a.(27)

This implies that

F (x, κ) = F̃ (x̃, κ̃)⇔
{
x = x̃

η(κ) = η̃(κ̃).
(28)

Additionally, the restriction of F to a fixed κ or of F̃ to a fixed κ̃ are injective functions.

Now, the first step towards the proof of the theorem is to show that Θ satisfies

Θ = F−1
(
F̃ (Θ̃)

)
.(29)

To show the inclusion ⊆, let (x, κ) ∈ Θ ⊆ V. By the definition of Θ in (20), it holds π(x, κ) ∈ Ω
and g(x, κ) ≤ 0. Since η̃ is surjective, there exists κ̃ ∈ Rr−1

>0 such that η(κ) = η̃(κ̃). As

(x, κ) ∈ V, we have (x, κ̃) ∈ Ṽ by (24), and hence π̃(x, κ̃) ∈ Ω̃ by (26). Now (25) implies also

that g̃(x, κ̃) ≤ 0, thus (x, κ̃) ∈ Θ̃ by definition. As F (x, κ) = F̃ (x, κ̃), the inclusion ⊆ follows.

For the reverse inclusion ⊇, let (x, κ) ∈ F−1
(
F̃ (Θ̃)

)
. Then there exists (x̃, κ̃) ∈ Θ̃ such that

F (x, κ) = F̃ (x̃, κ̃). By (28) it follows that x = x̃ and η(κ) = η̃(κ̃). We now use (26) and (25)
again, to show that (x, κ) ∈ Θ.

From (29) follows that F (x, κ) ∈ F̃ (Θ̃) for all (x, κ) ∈ Θ. As a next step of the proof, we
show that there exists a continuous path between any two points (x, κ), (x′, κ′) ∈ Θ, if F (x, κ)

and F (x′, κ′) lie in the same path-connected component of F̃ (Θ̃). So let

γ : [0, 1]→ Rn−1
>0 × Rr−1

>0 , t 7→ (y(t), α(t))

be a continuous path such that γ(0) = F (x, κ), γ(1) = F (x′, κ′) and im γ ⊂ F̃ (Θ̃). We now
extend γ to a path in Rn>0 × Rr>0 by defining

Γ: [0, 1]→ Rn>0 × Rr>0,

t 7→
((
y(t), αr−1(t)y(t)a

)
,
(
α1(t), . . . , αr−2(t), αr−1(t)(κr + αr−2(t)), κr

))
.



CONNECTIVITY OF THE PARAMETER REGION OF MULTISTATIONARITY 27

Here κr is fixed, and is the last component of the original parameter vector κ. Using γ(0) =
F (x, κ), that is, y(0) = (x1, . . . , xn−1) and α(0) = η(κ), and the recovery property of the nth
coordinate (27), we have

Γ(0) =
((
x1, . . . , xn−1,

κr−1

κr+κr−2
xa
)
,
(
κ1, . . . , κr−2,

κr−1

κr+κr−2
(κr + κr−2), κr

))
= (x, κ).

Furthermore, im Γ ⊆ F−1(F̃ (Θ̃)) = Θ, since for all t ∈ [0, 1]:

F (Γ(t)) =
(
y(t),

(
α1(t), . . . , αr−2(t),

αr−1(t)(κr+αr−2(t))
κr+αr−2(t)

))
= γ(t) ∈ F̃ (Θ̃).(30)

We have now connected γ(0) to the point Γ(1) via a continuous path in Θ. We now construct
a continuous path between Γ(1) and (x′, κ′) in Θ. First note that by (30),

F (Γ(1)) = γ(1) = F (x′, κ′).

Thus, both Γ(1) and (x′, κ′) are contained in the set F−1(γ(1)), which is
{(
x′, (κ′1, . . . , κ

′
r−2, αr−1(1)(β + κ′r−2), β)

)
| β ∈ R>0

}
.

Since this set is path connected, there exists a continuous path

Λ: [0, 1]→ F−1(γ(1))

such that Λ(0) = Γ(1) and Λ(1) = (x′, κ′). This path is contained in Θ = F−1(F̃ (Θ̃)), since

F (Λ(t)) = γ(1) ∈ F̃ (Θ̃) for all t ∈ [0, 1].

To finish the proof of the proposition, let U1, . . . , Uk be the path-connected components of
Θ and let Ũ1, . . . , Ũk̃ be the path-connected components of Θ̃. Since a continuous image of a

path connected set is path connected, F̃ (Ũ1), . . . , F̃ (Ũk̃) are path connected. Moreover, from

Θ̃ = ∪jŨj follows that F̃ (Θ̃) = ∪jF̃ (Ũj).

If k > k̃, then there must exist j ∈ {1, . . . , k̃} and i1 ̸= i2 ∈ {1, . . . , k} and (x, κ) ∈
Ui1 , (x

′, κ′) ∈ Ui2 such that F (x, κ), F (x′, κ′) ∈ F̃ (Ũj). By the above argument, there ex-
ist a continuous path between (x, κ) and (x′, κ′). This contradicts that i1 ̸= i2. Therefore,

b0(Θ) = k ≤ k̃ = b0(Θ̃) as desired. □

Proof of Theorem 2.4. We conclude the proof of Theorem 2.4 using Proposition 6.6. For i =
1, . . . k, let (Si, Ci) denote the reaction network obtained by removing the reverse reactions

corresponding to j = 1, . . . , i. Furthermore, let Θ̃i be the set corresponding to the network
(Si, Ci) as defined in (20).

Since the closure of (g̃ ◦ Φ̃)−1(R<0) equals (g̃ ◦ Φ̃)−1(R≤0),

b0(Θ̃k) ≤ b0((g̃ ◦ Φ̃)−1(R<0))

by Lemma 6.5. Applying Proposition 6.6 inductively, one has that

b0(Θ) ≤ b0(Θ̃1) ≤ · · · ≤ b0(Θ̃k).

Now, we use Lemma 6.4 to conclude that the multistationarity region Ω of the network (S,R)
satisfies:

b0(Ω) ≤ b0((g̃ ◦ Φ̃)−1(R<0)).

□

6.4. Number of path-connected components of the multistationarity region for Fig. 2(c).
We aim at showing that the multistationarity region Ω of the network in Fig. 2(c) has exactly
two path-connected components. We do this in two steps. First, we show that b0(Ω) ≥ 2, and
then that b0(Ω) ≤ 2, giving the equality.
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Showing that b0(Ω) ≥ 2. We choose the order of species S, Sp,K, P, KL, PL, SKL, SpP,L,
giving the following stoichiometric matrix, and choice of matrix of conservation relations:

N =




−1 1 0 0 0 1 0 0 0 0
0 0 1 −1 1 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 −1 1 1 0 0 −1 1
−1 1 1 0 0 0 1 −1 0 0

0 0 0 0 0 0 0 0 1 −1
1 −1 −1 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0
0 0 0 0 0 0 −1 1 −1 1




,

W =




1 1 0 0 0 0 1 1 0
0 0 1 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 0 1 1 1 0 1


 .

The network is conservative, consistent, and has no relevant boundary steady states (deter-
mined using the siphon criterion). Solving the steady states equations for x2, x6, x7, x8, x9 gives
that any positive steady state satisfies

x2 =
(κ5 + κ6)κ1κ3x1x5
κ6(κ2 + κ3)κ4x4

, x6 =
κ8κ9x4x5
κ7κ10x3

, x7 =
κ1x1x5
κ2 + κ3

, x8 =
κ1κ3x1x5
κ6(κ2 + κ3)

, x9 =
κ8x5
κ7x3

.

It is convenient to introduce the Michaelis-Menten constants of the two enzymatic processes of
the network:

K1 =
κ2 + κ3
κ1

, K2 =
κ5 + κ6
κ4

.

With this notation, and by letting ξ be the vector of free variables, that is ξ1 = x1, ξ2 = x3, ξ3 =
x4, ξ4 = x5, we obtain the parametrization Φ: R4

>0 × R10
>0 → V given by

Φ(ξ, κ) =

(
ξ1,

κ3K2ξ1ξ4
κ6K1ξ3

, ξ2, ξ3, ξ4,
κ8κ9ξ3ξ4
κ7κ10ξ2

,
ξ1ξ4
K1

,
κ3ξ1ξ4
κ6K1

,
κ8ξ4
κ7ξ2

)
.

The critical function g ◦ Φ is a quotient of polynomials with denominator K1κ6κ7ξ
2
2ξ3, and

numerator a multiple of κ1κ4. Since these expressions are positive for all positive ξ and κ, the
sign of (g ◦Φ)(ξ, κ) depends only on the sign of the numerator divided by κ1κ4, which we denote
by pκ(ξ). If we view pκ(ξ) as a polynomial in ξ1, ξ2, ξ3, ξ4, then there are two monomials ξ1ξ

2
2ξ

2
3ξ4

and ξ1ξ
2
2ξ3ξ

2
4 with coefficients

κ6κ7κ8κ9K1(κ6 − κ3), and κ3κ7κ8κ9K2(κ3 − κ6).
The coefficient of the other monomials of pκ(ξ) are sums of products of the parameters, and
are positive. Thus, the value of the critical function (g ◦ Φ)(ξ, κ) is positive for all ξ ∈ R4

>0 if
κ3 = κ6. Now, one can apply part A of Theorem 2.1 to conclude that (κ, c) does not enable
multistationarity if κ3 = κ6.

As indicated in the main text, it is enough to show now that in the cases κ3 < κ6 and κ3 > κ6,
the network can be multistationary. We show it is possible to choose K1,K2, κ1, κ4, κ7, κ8, κ9, κ10
such that the polynomial pκ(ξ) takes negative values for some ξ ∈ R4

>0. To this end, we need
to employ some standard techniques relating the signs a polynomial attains and its Newton
polytope, and refer the reader for example to [49, Section 2.2]. Since the negative monomials of
pκ(ξ) are contained in a face of the Newton polytope of pκ(ξ), it is enough to show that pκ(ξ)
restricted to that face takes negative values. The restricted polynomial is given by κ1κ7ξ1ξ2
times

qκ(ξ) :=κ6K1ξ
2
3

(
κ6κ7κ10ξ

2
2 + κ8κ9(κ6 − κ3)ξ2ξ4 + κ6κ8κ9ξ3ξ4

)

+ κ3K2ξ
2
4

(
κ3κ7κ10ξ

2
2 + κ8κ9(κ3 − κ6)ξ2ξ3 + κ3κ8κ9ξ3ξ4

)
.

This is a polynomial with exactly one negative coefficient, for any choice of κ3 ̸= κ6.
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If κ6 − κ3 < 0, by choosing K2 very small (or K1 large), the polynomial multiplying K1

determines the sign of qκ(ξ). By letting ξ2 = 1, ξ3 = 1
ξ4

, the polynomial multiplying κ6K1ξ
2
3

becomes

κ6κ7κ10 + κ8κ9(κ6 − κ3)ξ4 + κ6κ8κ9.

Hence, for any ξ4 > 0 large enough, this polynomial is negative, and so is qκ(ξ). Therefore,
pκ(ξ) also attains negative values.

If κ3− κ6 < 0, all we need to do is to let K1 be small enough, or K2 large enough and repeat
the argument. We conclude that b0(Ω) ≥ 2.

Showing that b0(Ω) ≤ 2. We now apply Theorem 2.4 to the reduced network:

S + KL
κ1−→ SKL

κ3−→ Sp + KL, K + L
κ7−⇀↽−
κ8

KL

Sp + P
κ2−→ SpP

κ6−→ S + P, P + L
κ9−−⇀↽−−
κ10

PL.

A matrix of extreme vectors is

E =




0 0 1
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
1 0 0
1 0 0




.

The critical polynomial g̃ ◦ Φ̃ in the variables (λ1, λ2, λ3, h1, . . . , h9) has 2 negative monomials
corresponding to the exponents

β1 := (1, 1, 3, 0, 1, 0, 1, 1, 0, 1, 0, 1), β2 := (1, 1, 3, 1, 0, 0, 1, 1, 0, 0, 1, 1),

and it has 42 monomials with positive coefficients.
In the following, we write

(g̃ ◦ Φ̃)(y) = −cβ1yβ1 − cβ2yβ2 +
∑

α∈σ+(g̃◦Φ̃)

cαy
α,

where σ+(g̃ ◦ Φ̃) denotes the set of positive monomials and cα are all positive. For the vector
v = (−6, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 2) it holds that

v · β1 = 0, v · β2 = 0,

v · α ≤ 0, for all α ∈ σ+(g̃ ◦ Φ̃),(31)

where for exactly two monomials α1, α2 ∈ σ+(g̃ ◦ Φ̃) there is equality in (31). Define the
polynomial

h(y) := cα1y
α1 + cα2y

α2 − cβ1yβ1 − cβ2yβ2 .
Using [18, Corollary 3.13], it follows that b0(h

−1(R<0)) ≤ 2.

The next step is to show that b0((g̃ ◦ Φ̃)−1(R<0)) ≤ b0(h
−1(R<0)). First, we observe that

(g̃ ◦ Φ̃)(y) ≥ h(y) for all y ∈ R12
>0 and hence

(32) (g̃ ◦ Φ̃)−1(R<0) ⊆ h−1(R<0).

If y, y′ ∈ (g̃ ◦ Φ̃)−1(R<0) belong to the same path-connected component of h−1(R>0), then we

build a path between y and y′ contained in (g̃ ◦ Φ̃)−1(R<0) as follows. Since y and y′ lie in the
same path-connected component of h−1(R<0), by (32) there exists a continuous path

γ : [0, 1]→ h−1(R<0)



30 MÁTÉ L. TELEK AND ELISENDA FELIU

such that γ(0) = y, γ(1) = y′. Note that the image of γ is not necessarily contained in

(g̃ ◦ Φ̃)−1(R<0).
For each s ∈ [0, 1], we define the function fs : R>0 → h−1(R<0) as

fs(t) = (g̃ ◦ Φ̃)(γ(s) ◦ tv) = −cβ1γ(s)β1tv·β1 − cβ2γ(s)β2tv·β2 +
∑

α∈σ+(g̃◦Φ̃)

cαγ(s)αtv·α,

= h(γ(s)) + ps(t),

where γ(s) ◦ tv = (γ1(s)t
v1 , . . . , γ12(s)t

v12), and from (31) ps(t) is a sum of generalized mono-
mials in t with all exponents negative and all coefficients positive. Hence the leading coefficient
of fs(t) is h(γ(s)) < 0, all the other coefficients of fs(t) are positive, and fs(t) has a unique pos-
itive real root Ts > 0. Since the roots of a polynomial depend continuously on the coefficients,
Ts depends continuously on s. Therefore, T := maxs∈[0,1] Ts exists.

For each s ∈ [0, 1] and t0 > max{1, T} it holds that (g̃ ◦ Φ̃)(γ(s) ◦ tv0) = fs(t0) < 0. Using this
observation, we define the path:

Γ: [0, 1]→ (g̃ ◦ Φ̃)−1(R<0), s 7→ γ(s) ◦ tv0.
Now, we connect the points y,Γ(0), and y′,Γ(1) using respectively the paths:

γ1 : [1, t0]→ (g̃ ◦ Φ̃)−1(R<0) γ2 : [1, t0]→ (g̃ ◦ Φ̃)−1(R<0)

t 7→ y ◦ tv t 7→ y′ ◦ tv.

Indeed, γ1(1) = y ◦ 1v = y, γ1(t0) = y ◦ tv0 = γ(0) ◦ tv0 = Γ(0), and the image of γ1 is contained

in (g̃ ◦ Φ̃)−1(R<0), as (g̃ ◦ Φ̃)(y ◦ tv) is negative at t = 1, has negative leading coefficient, and has
at most one positive real root. The analogous argument shows that γ2 connects y′ and Γ(1) in

(g̃ ◦ Φ̃)−1(R<0).

The concatenated path γ−1
2 Γ γ1 gives a continuous path from y, y′ contained in (g̃◦Φ̃)−1(R<0).

We conclude that the number of path-connected components of (g̃ ◦ Φ̃)−1(R<0) is less or equal
than the number of path-connected components of h−1(R<0). Hence the inequality b0((g̃ ◦
Φ̃)−1(R<0)) ≤ b0(h−1(R>0)) holds.

This worked for the reduced network. In order to lift the result to the original network, we
need to verify the extra condition of Theorem 2.4, namely that the closure of (g̃ ◦ Φ̃)−1(R<0)

is (g̃ ◦ Φ̃)−1(R≤0). To see this, it is enough to show that the gradient ∇(g̃ ◦ Φ̃)(y) is different
from zero for all y ∈ R12

>0. Since the sixth entry of both β1 and β2 are zero and the exponent

(1, 1, 3, 1, 1, 1, 1, 0, 0, 1, 0, 0) corresponds to a positive monomial of g̃ ◦ Φ̃, the last entry of ∇(g̃ ◦
Φ̃)(y) cannot be zero. Using Theorem 2.4 we conclude that:

b0(Ω) ≤ b0((g̃ ◦ Φ̃)−1(R<0)) ≤ b0(h−1(R<0)) ≤ 2

as desired.

7. Supporting information

An accompanying Jupyter notebook contains the code of the algorithm, written in SageMath

9.2 [33].
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CONNECTIVITY OF PARAMETER REGIONS OF MULTISTATIONARITY

FOR MULTISITE PHOSPHORYLATION NETWORKS

NIDHI KAIHNSA AND MÁTÉ L. TELEK

Abstract. The parameter region of multistationarity of a reaction network contains all the pa-
rameters for which the associated dynamical system exhibits multiple steady states. Describing
this region is challenging and remains an active area of research. In this paper, we concentrate on
two biologically relevant families of reaction networks that model multisite phosphorylation and
dephosphorylation of a substrate at n sites. For small values of n, it had previously been shown
that the parameter region of multistationarity is connected. Here, we extend these results and
provide a proof that applies to all values of n. Our techniques are based on the study of the critical
polynomial associated with these reaction networks together with polyhedral geometric conditions
of the signed support of this polynomial.

Keywords: phosphorylation networks, connectivity, Newton polytope, Gale duality, signed sup-
port
2020 MSC: 92xx, 52Bxx

1. Introduction

Within the framework of reaction network theory [7], the change in concentration of the species
over time is modeled by a parametrized ordinary differential equation (ODE) system. In this paper,
we focus on a fundamental property of ODE systems: the existence of multiple steady states, also
known as multistationarity. Having multistationarity is a precursor to multistability, which has
been linked to cellular decision-making, switching, and the memory of cells [17, 22].

Under the assumption of mass-action kinetics, the functions in the ODE system become poly-
nomials, which are parametrized by two types of parameters: reaction rate constants and total
concentrations. Identifying the parameter region of multistationarity is equivalent to describing the
set of parameters for which the polynomial equation system has at least two positive real solutions.
While existing symbolic methods, such as Cylindrical Algebraic Decomposition and Quantifier Elim-
ination, may offer a complete description of this region, their high algorithmic complexity limits
their applicability to reaction networks of moderate size [2]. On the other hand, numerical methods
are able to handle larger reaction networks and offer insights into specific parts of the parameter
space, but they do not provide information about the entire parameter space [10, 14, 21].

Even though an exact description of the multistationarity region is usually out of reach, having
some partial information about its properties, such as its shape, could have significant biologi-
cal implications. For instance, connectivity of the parameter region of multistationarity has been
associated with robustness, and the lack of connectivity has been suggested to indicate that mul-
tistationarity arises for different biological reasons [21]. Further research into the connectivity of
the multistationarity region has been carried out in [5, 8, 9, 26]. In this paper, we continue this
line of research and investigate the parameter region of multistationarity for two infinite families
of reaction networks modeling phosphorylation mechanisms.

Phosphorylation networks play a crucial role in cell signaling processes [13, 15]. These mech-
anisms typically involve a substrate denoted by S, along with a kinase K and a phosphatase F ,
responsible for catalyzing the phosphorylation and dephosphorylation of S, respectively. Assuming
that both phosphorylation and dephosphorylation occur in a sequential and distributed manner,
and the substrate S has n ∈ N phosphorylation sites, the corresponding reaction network takes the

1
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following form:

Si +K
κ6i+1−−−⇀↽−−−
κ6i+2

Yi+1
κ6i+3−−−→ Si+1 +K

Si+1 + F
κ6i+4−−−⇀↽−−−
κ6i+5

Ui+1
κ6i+6−−−→ Si + F,

i = 0, . . . , n− 1.(N1,n)

We refer to network (N1,n) as the strongly irreversible n-site phosphorylation network.
In [8], it was shown that the projection of the parameter region of multistationarity onto the

reaction rate constants is connected for n = 2. This result was later generalized for all n ≥ 2 in [9].
Subsequently, it was shown with the aid of a computer that the entire multistationarity region
is connected for n = 2, 3 in [26], and for n = 4, 5, 6, 7 in [25]. One of the main contribution of
the current article is a proof showing that for (N1,n), the parameter region of multistationarity is
connected for every n ≥ 2.

The second family of phosphorylation networks considered in this paper is the weakly irreversible
n-site phosphorylation network, which is

Si +K
κ10i+1−−−−⇀↽−−−−
κ10i+2

Y2i+1
κ10i+3−−−−→ Y2i+2

κ10i+4−−−−⇀↽−−−−
κ10i+5

Si+1 +K

Si+1 + F
κ10i+6−−−−⇀↽−−−−
κ10i+7

U2i+1
κ10i+8−−−−→ U2i+2

κ10i+9−−−−−⇀↽−−−−−
κ10i+10

Si + F,
i = 0, . . . , n− 1.(N2,n)

The name of these networks originates from the fact that once a phosphate group is attached,
the product Si+1 + K might rebind to form the intermediate species Y2i+2. Analogously, for
dephosphorylation, the product Si + F might rebind to U2i+2. In [21], it has been argued that
allowing this product rebinding for phosphorylation systems is more realistic compared to the
mechanism represented in (N1,n). For (N2,n) with n = 2, the authors in [21] investigated the shape
of the parameter region of multistationarity numerically, and their methods strongly indicated that
this region is connected. In [25], a symbolic proof was provided showing that the multistatinarity
region of (N2,2) is indeed connected.

In this paper we prove that for both families (N1,n) and (N2,n) the parameter region of multista-
tionarity is connected for every n ≥ 2. Our approach builds upon [4], where the authors associated
a polynomial, called the critical polynomial, with reaction networks satisfying some mild assump-
tions. Subsequently, in [26, Theorem 4], the authors gave conditions on the critical polynomial that
imply the connectivity of the parameter region of multistationarity.

One of the main challenges faced is that a direct computation of the critical polynomial for the
networks (N1,n) and (N2,n) becomes infeasible even for relatively small n. In [26], it was shown
that it is enough to compute the critical polynomial of a reduced version of the reaction network.
In [25], this reduced critical polynomial was successfully computed for (N1,n) when n = 2, 3, 4, 5, 6, 7
and for (N2,n) when n = 2. Even for the reduced critical polynomial, the computation becomes
intractable for larger values of n. To overcome this difficulty, in Section 2.2, we derive a formula
for the critical polynomial (Theorem 2.7) using Gale dual matrices that allows us to work with
the critical polynomial for all n. We believe this result is interesting in its own right, as it might
simplify the computation of the critical polynomial for general networks.

In Section 2.3, we recall several results on the structure of the Newton polytope and the signed
support of a polynomial that we later employ to study the critical polynomial. We explain our
approach to prove connectivity of the parameter region of multistationarity in Section 2.4. In
Sections 3 and 4 we prove connectivity for (N1,n) and (N2,n) respectively for every n ≥ 2.

2. Preliminaries

In this section we introduce basic definitions and results regarding reaction networks, the critical
polynomial, and the signed support of polynomials. These will be used later on.
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2.1. Reaction networks and multistationarity. A reaction network over species X1, . . . , Xm

is a collection of reactions of the form
∑m

i=1 aijXi →
∑m

i=1 bijXi for j = 1, . . . , r, where aij , bij are
non-negative integers. Each reaction is weighted by a positive parameter κj ∈ R>0, called reaction
rate constant. By κ := (κ1, . . . , κr) ∈ Rr>0, we denote the reaction rate vector.

The net production of the species along each reaction is encoded in the stoichiometric matrix
N ∈ Zm×r, which is defined as

N :=
(
bij − aij

)
∈ Zm×r.

We consider also the reactant matrix, given by

A :=
(
aij
)
∈ Zm×r.

Using these matrices and under the assumption of mass-action kinetics, the ODE system that
models the evolution of the concentration of the species is

ẋ = N diag(κ)xA,(1)

where x = (x1, . . . , xm) ∈ Rm≥0 is a vector representing the concentration of the species X1, . . . , Xm,

and xA :=
(∏m

i=1 x
ai1
i , . . . ,

∏m
i=1 x

air
i

)⊤ ∈ Rr≥0.

For the ODE system in (1), the trajectories are contained in affine linear subspaces of Rm called
stoichiometric compatibility classes. These are affine translates of the image of the stoichiometric
matrix N . The dimension of this subspace will be denoted by s = rk(N). We represent im(N)
by linear equations determined by a full-rank matrix W ∈ Rd×m such that WN = 0 and d =
m − s. Such a matrix is called a conservation law matrix. Using W , we define the stoichiometric
compatibility classes as

PT := {x ∈ Rm≥0 |Wx = T},
where T ∈ Rd is called the total concentration vector. A reaction network is conservative, if every
stoichiometric compatibility class is a compact set. Equivalently, there exists a vector with only
positive coordinates in the left kernel of N (cf. [1]).

Given a reaction network, the set of steady states is obtained by the common zeros of the
polynomials on the right-hand side of (1). As we are only interested in the non-negative steady
states, for fixed reaction rate constants κ, we consider the steady state variety

Vκ := {x ∈ Rm≥0 | N diag(κ)xA = 0}.(2)

A steady state x ∈ Vκ is a relevant boundary steady state if one of the coordinates of x equals zero
and the stoichiometric compatibility class containing x intersects the positive orthant Rm>0 .

A parameter pair (κ, T ) ∈ Rr>0 ×Rd enables multistationarity if Vκ ∩PT ∩Rm>0 contains at least
two points. The parameter region of multistationarity is thus defined as

Ω := {(κ, T ) ∈ Rr>0 × Rd | (κ, T ) enables multistationarity}.(3)

In this article, our main goal is to show that the set Ω is path connected for the two families of
networks (N1,n) and (N2,n).

2.2. Critical polynomial. In [26], the authors described a sufficient condition based on a poly-
nomial that implies connectivity of the parameter region of multistationarity. In this section, we
recall this statement (Theorem 2.2) and elaborate on how to compute this polynomial.

Given a reaction network with stoichiometric matrix N , the set C := ker(N) ∩ Rr≥0 is a convex

polyhedral cone, called the flux cone [3]. A minimal collection of generators {E(1), . . . , E(ℓ)} ⊆ Rr
of C is called a choice of extreme vectors. The extreme vectors of C are unique up to multiplication
by positive scalars [24]. A matrix E ∈ Rr×ℓ, whose columns are given by a choice of extreme
vectors, is called an extreme matrix. If E does not have a zero row, the reaction network is called
consistent. This property is equivalent to ker(N) ∩ Rr>0 ̸= ∅.
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In Proposition 2.1, we establish a condition that ensures that a basis of ker(N) gives a choice of
extreme vectors of C. We denote by [r] the set {1, . . . , r}, and for a vector u ∈ Rr, we write

supp(u) :=
{
i ∈ [r] | ui ̸= 0

}
.

A vector v ∈ C\{0} is an extreme vector if and only if v is support-minimal [19], i.e. for all non-zero
w ∈ C it holds

supp(w) ⊆ supp(v) implies supp(w) = supp(v).(4)

Using this we now prove the following result.

Proposition 2.1. Consider a reaction network with stoichiometric matrix N ∈ Zm×r. Assume
that E(1), . . . , E(ℓ) ∈ Rr≥0 is a basis of ker(N), and for every k ∈ [ℓ] there exists jk ∈ [r] such that

jk ∈ supp(E(k)) \
( ℓ⋃

i=1
i ̸=k

supp(E(i))
)
.(5)

Then {E(1), . . . , E(ℓ)} is a choice of extreme vectors of the flux cone C.
Proof. By (4), it is enough to show that E(1), . . . , E(ℓ) are the only support-minimal vectors in C
up to multiplication by a scalar. Consider w ∈ C ⊂ ker(N) with w ̸= 0. By assumption, there

exist a1, . . . , aℓ ∈ R such that w =
∑ℓ

k=1 akE
(k). As jk satisfies (5), wjk = akE

(k)
jk

for k ∈ [ℓ]. Since

E
(k)
jk

> 0, we conclude that a1, . . . , aℓ ≥ 0 and hence,

supp(E(k)) ⊆ supp(w) if ak ̸= 0.(6)

If supp(w) ⊆ supp(E(k)) for some k, then supp(w) = supp(E(k)). Consequently, E(k) is support-

minimal, and hence E(k) is an extreme vector for all k ∈ [ℓ].
If w is an extreme vector of C, then there exists k ∈ [ℓ] with ak ̸= 0. From (6) and the support-

minimality of w, it follows that supp(E(k)) = supp(w). If there exist two distinct k1, k2 ∈ [ℓ] such

that ak1 , ak2 are non-zero, then supp(E(k1)) = supp(w) = supp(E(k2)), which contradicts (5). Thus,

there exists exactly one non-zero ak and w = akE
(k). □

Consider a reaction network with stoichiometric matrix N ∈ Zm×r, reactant matrix A ∈ Zm×r,
a conservation law matrix W ∈ Rd×m and an extreme matrix E ∈ Rr×ℓ. We assume that W is
row reduced and that 1, . . . , d are the indices of the first non-zero entries of the rows of W . In
Sections 3 and 4, we will choose the conservation law matrix for various networks such that this
extra assumption is satisfied (cf. (18), (29)). For h = (h1, . . . , hm) ∈ Rm>0, λ = (λ1, . . . , λℓ) ∈ Rℓ>0,
we define

M(h, λ) :=

(
W

N ′ diag(Eλ)A⊤ diag(h)

)
∈ Rm×m,(7)

where N ′ ∈ Rs×r is the matrix obtained from N by deleting the first d rows. Following [6, 26], we
consider the following function

q : Rm>0 × Rℓ>0 → R, (h, λ) 7→ q(h, λ) := (−1)s detM(h, λ),(8)

and call q(h, λ) the critical polynomial. Theorem 2.2 exploits this polynomial to establish path
connectivity of the parameter region of multistationarity.

Theorem 2.2. [26, Theorem 4] Consider a conservative consistent reaction network without rel-
evant boundary steady states. Assume that there exist species X1, . . . ,Xk such that each Xj partic-
ipates in exactly 3 reactions of the form

m∑

i=k+1

ai,jXi

κ3j−1−−−⇀↽−−−
κ3j

Xj
κ3j−2−−−→

m∑

i=k+1

bi,jXi, j = 1, . . . , k.
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Let q be the critical polynomial of the reduced network obtained by removing the reactions corre-
sponding to κ3j for j = 1, . . . , k. If

(P1) q−1(R<0) is path connected, and
(P2) the Euclidean closure of q−1(R<0) equals q−1(R≤0),

then the parameter regions of multistationarity of both the reduced and the original network are
path connected.

To simplify the computation of the critical polynomial, we derive a formula using Gale dual
matrices (Theorem 2.7).

Definition 2.3 (Gale dual matrix). Let K be a field and V ∈ Ks×m, U ∈ Km×d be two matrices.
The matrix U is Gale dual of V if im(U) = ker(V ) and ker(U) = {0}.

To compute a Gale dual matrix of V , one simply needs to find a basis of ker(V ) and write these
vectors as the columns of U . Once a Gale dual matrix is obtained, the maximal minors of V can
be computed by determining the maximal minors of U using Lemma 2.4 below.

For a set I ⊆ [k], we denote its complement by Ic := [k] \ I and its cardinality by |I|. If
I = {i1, . . . , ip} ⊆ [k] and Ic = {j1, . . . , jk−p} with i1 < · · · < ip and j1 < · · · < jk−p, we define
sgn(τI) ∈ {±1} to be the sign of the permutation τI that sends (1, . . . ,m) to (i1, . . . , ip, j1, . . . , jk−p).
Additionally, consider any general matrix Y ∈ Kℓ1×ℓ2 and some set of indices L1 ⊆ [ℓ1] and
L2 ⊆ [ℓ2]. By [Y ]L1,L2 we denote the sub-matrix of Y given by the rows and the columns indexed
by the elements of L1 and L2 respectively.

Lemma 2.4. [20, Lemma 2.10] [16, Theorem 12.16] Let K be a field, V ∈ Ks×m a matrix of rank
s < m and let U ∈ Km×d be a Gale dual matrix of V . There exists δ ∈ K \ {0} such that for all
I ⊆ [m] with |I| = s it holds:

δ det
(
[U ]Ic,[d]

)
= sgn(τI) det

(
[V ][s],I

)
.(9)

In particular, δ ∈ K \ {0} is independent of I ⊆ [m].

Using the Laplace expansion on complementary minors (see e.g. [23, Theorem 2.4.1]) for the
matrix M(h, λ) in (7), we can rewrite q(h, λ) as:

q(h, λ) = (−1)s
∑

I⊆[m]
|I|=s

(−1)
∑m

j=d+1 j+
∑

i∈I i det
(
[W ][d],Ic

)
det
(
[N ′ diag(Eλ)A⊤][s],I

)∏

i∈I
hi.(10)

Remark 2.5. Viewed as a polynomial in h , the coefficients of q(h, λ) are given by maximal minors
of W ∈ Rd×m and of N ′ diag(Eλ)A⊤ ∈ R(λ)s×m. Therefore, if rk(N ′ diag(Eλ)A⊤) < s, then q(h, λ)
is the zero polynomial.

In the following, we treat λ1, . . . , λℓ as symbolic variables and view N ′ diag(Eλ)A⊤ as a matrix
with entries in the field of rational functions R(λ). Furthermore, we assume that N ′ diag(Eλ)A⊤

has full rank s.

Corollary 2.6. Let D(λ) ∈ R(λ)m×d be a Gale dual matrix of N ′ diag(Eλ)A⊤ ∈ R(λ)s×m. There
exists δ(λ) ∈ R(λ) \ {0} such that for all I ⊆ [m] with |I| = s it holds:

δ(λ) det
(
[D⊤(λ)][d],Ic

)
= sgn(τI) det

(
[N ′ diag(Eλ)A⊤][s],I

)
.(11)

The above corollary now establishes a way to simplify the computation of the critical polynomial
by computing the determinant of minors of size d using the Gale dual matrices.
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Theorem 2.7. Let D(λ) ∈ R(λ)m×d be a Gale dual matrix of N ′ diag(Eλ)A⊤. The critical poly-
nomial (8) can be written as

q(h, λ) = (−1)s(d+1)
∑

I⊆[m]
|I|=s

δ(λ) det
(
[W ][d],Ic

)
det
(
[D⊤(λ)][d],Ic

)∏

i∈I
hi,

where δ(λ) ∈ R(λ) \ {0} satisfies (11).

Proof. Let I = {i1, . . . , is} ⊆ [m], Ic = {j1, . . . , jd} ⊆ [m] with i1 < · · · < is and j1 < · · · < jd. In
the first part of the proof, we compute the sign of the permutation τI . The number of inversions
in τ is given by

v :=
d∑

k=1

(
m− jk − (d− k)

)
= ds−

d∑

k=1

jk +
d∑

k=1

k,(12)

and therefore sgn(τI) = (−1)v.
We substitute the expression of det

(
[N ′ diag(Eλ)A⊤][s],I

)
from (11) in (10). The total power of

(−1) can, therefore, be computed as:

s+
m∑

k=d+1

k +
s∑

k=1

ik + v = s+ 2
m∑

k=1

k − 2
d∑

k=1

jk + ds ≡ s(d+ 1) mod 2.

This concludes the proof. □

2.3. Signed supports of polynomials. To establish connectivity in the parameter region of
multistationarity via Theorem 2.2, it is enough to show that the properties (P1) and (P2) hold for
the critical polynomial. To verify the two properties, we will exploit the structure of the Newton
polytope of the critical polynomial.

Consider a multivariate polynomial function

f : Rm>0 → R, x 7→ f(x) =
∑

µ∈σ(f)
cµx

µ,

where cµ ∈ R \ {0} and σ(f) ⊆ Zm is a finite set, called the support of f . An exponent vector
µ ∈ σ(f) is called positive (resp. negative) if the corresponding coefficient cµ is positive (resp.
negative). We write:

σ+(f) := {µ ∈ σ(f) | cµ > 0} and σ−(f) := {µ ∈ σ(f) | cµ < 0}.
The Newton polytope of f , denoted by NP(f) is given by the convex hull of σ(f). For S ⊆ Rm, we
denote the restriction of f to S by

f|S(x) =
∑

µ∈σ(f)∩S
cµx

µ.

Following [25], we say that f has one negative connected component if

f−1(R<0) =
{
x ∈ Rn>0 | f(x) < 0

}

is a connected set. If the Euclidean closure of f−1(R<0) equals f−1(R≤0), then f satisfies the
closure property. These are the terminologies for conditions (P1) and (P2) in Theorem 2.2.

For v ∈ Rm \ {0} and a ∈ R, we define the hyperplane Hv,a := {µ ∈ Rm | v · µ = a}, and the
following two half-spaces:

H+
v,a = {µ ∈ Rm | v · µ ≥ a}, H−

v,a = {µ ∈ Rm | v · µ ≤ a}.
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We will denote by H+,◦
v,a and H−,◦

v,a the two open half-spaces:

H+,◦
v,a = {µ ∈ Rm | v · µ > a}, H−,◦

v,a = {µ ∈ Rm | v · µ < a}.
A hyperplane Hv,a is called a separating hyperplane of σ(f) if σ−(f) ⊆ H+

v,a and σ+(f) ⊆ H−
v,a.

Additionally, we call Hv,a a strict separating hyperplane if there exists some µ ∈ σ−(f) such that
v ·µ > a. The following proposition now recalls a result in [11], that establishes the properties (P1)
and (P2) of f based on the existence of a strict separating hyperplane.

Proposition 2.8. [11, Theorem 3.6] For a polynomial function f : Rm>0 → R, f(x) =
∑

µ∈σ(f) cµx
µ,

if σ(f) has a strict separating hyperplane, then f has one negative connected component and satisfies
the closure property.

For a polytope P ⊆ Rm, the face with normal vector v ∈ Rm is given by

Pv :=
{
µ ∈ P | v · µ = max

ν∈P
v · ν

}
.

We call two faces Pv, Pw ⊆ P parallel if v = −w. An edge (resp. vertex ) of P is a face of dimension
1 (resp. 0). We write Vert(P ) for the set of vertices of P . For a Newton polytope, we denote the
face with normal vector v by NPv(f). If F ⊆ NP(f) is an edge and F ∩ σ(f) ⊆ σ−(f), we call F a
negative edge of NP(f).

Theorem 2.9. [25, Theorem 3.1] Let f : Rm>0 → R, f(x) =
∑

µ∈σ(f) cµx
µ be a polynomial function.

If there exists a proper face NPv(f) ⊊ NP(f) such that σ−(f) ⊆ NPv(f), then f satisfies the
closure property. If additionally f|NPv(f) has one negative connected component, then f also has
one negative connected component.

The following result from [25] provides a condition for splitting the polynomial into two parts
and establishes that if both smaller polynomials have one negative connected component, then so
does the original polynomial.

Theorem 2.10. [25, Theorem 3.6] Let f : Rm>0 → R, f(x) =
∑

µ∈σ(f) cµx
µ be a polynomial

function. Assume that there exist parallel faces NPv(f), NP−v(f) ⊆ NP(f) such that σ(f) ⊆
NPv(f) ∪ NP−v(f) and both f|NPv(f) and f|NP−v(f) have one negative connected component. If
there exist µ0 ∈ NPv(f) ∩ σ−(f) and µ1 ∈ NP−v(f) ∩ σ−(f) such that Conv(µ0, µ1) is an edge of
NP(f), then f has one negative connected component.

Example 2.11. Let c1, . . . , c7 ∈ R>0 and consider the polynomial

f = c1x1 + c2x1x2 − c3x2 − c4 − c5x1x3 − c6x1x2x3 + c7x2x3,

which has 3 positive and 4 negative exponent vectors:

σ+(f) = {(1, 0, 0), (1, 1, 0), (0, 1, 1)}, σ−(f) = {(0, 0, 0), (0, 1, 0), (1, 0, 1), (1, 1, 1)}.
These exponent vectors are shown in red and blue colour respectively in Figure 1. For e3 = (0, 0, 1),
the faces

F = NP−e3(f) = Conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)),

G = NPe3(f) = Conv((1, 0, 1), (0, 1, 1), (1, 1, 1))

are parallel and their union contains σ(f). The restricted polynomials are given by

f|F = c1x1 + c2x1x2 − c3x2 − c4, f|G = −c5x1x3 − c6x1x2x3 + c7x2x3.

Since the hyperplanes H−e1,−0.5 and He1,0.5 with e1 = (1, 0, 0) are strict separating hyperplanes of
σ(f|F ) and σ(f|G) respectively, Proposition 2.8 implies that both f|F and f|G have one negative
connected component.
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Figure 1. An illustration of Example 2.11. The positive and negative exponent vectors

σ+(f), σ−(f) are marked with red circles and blue dots respectively. The grey hyperplane

with normal vector e1 = (1, 0, 0) is a strict separating hyperplane of σ(f|F ) and σ(f|G), for

F = NP−e3(f), G = NPe3(f). The blue thick edge Conv((0, 0, 0), (1, 0, 1)) connects negative

exponent vectors of f|F and f|G

For the negative exponent vectors µ0 = (0, 0, 0), µ1 = (1, 0, 1), Conv(µ0, µ1) is an edge of NP(f).
Using Theorem 2.10, we conclude that f has one negative connected component. For an illustration,
we refer to Figure 1.

We conclude the section with a couple of results that will be used in Section 3.2 and 4.2. In
Section 3.2, we deal with polynomial functions with the special property that σ(f) ⊆ {0, 1}m and
each µ ∈ σ(f) has exactly d zero entries, for some fixed d ∈ N. For I ⊆ [m] with |I| = d, we write
zI ⊂ Rm for the vector with (zI)i = 0 for i ∈ I and (zI)i = 1 for i /∈ I. Moreover, we denote by
e1, . . . , em ∈ Rm the standard basis vectors in Rm.

Proposition 2.12. For d,m ∈ N with d < m, let P ⊆ Rm be a polytope such that

Vert(P ) ⊆
{
zI ∈ {0, 1}m | I ⊆ [m], |I| = d

}
,

and let J1, J2 ⊆ [m] such that |J1| = |J2| = d. If |J1 ∩ J2| = d − 1 and zJ1 , zJ2 ∈ P , then
Conv(zJ1 , zJ2) is an edge of P .

Proof. Since |J1 ∩ J2| = d− 1, we have that J1 = (J1 ∩ J2)∪ {j1}, J2 = (J1 ∩ J2)∪ {j2} for j1 ̸= j2.
Let v := ej1 + ej2 + 2

∑
i∈(J1∪J2)c ei. For every zI ∈ Rm, it holds:

(13)
v · zI = 2|(J1 ∪ J2)c|+ 1 = 2(m− d− 1) + 1, if I = J1 or I = J2

v · zI < 2|(J1 ∪ J2)c|+ 1 = 2(m− d− 1) + 1, if I ̸= J1 or I ̸= J2.

From (13), it follows that v · µ ≤ 2(m − d − 1) + 1 for all µ ∈ P with equality if and only if
µ ∈ Conv(zJ1 , zJ2). Thus, Conv(zJ1 , zJ2) is an edge of P . □

In Section 4.2, we will work with polynomial functions f such that σ(f) ⊆ {0, 1}m×Rℓ. To find
edges of the Newton polytope for such polynomials the following proposition will be particularly
helpful.

Proposition 2.13. Let pr1 : Rm×Rℓ → Rm and pr2 : Rm×Rℓ → Rℓ be projections onto the first m
and onto the last ℓ coordinates respectively. Let P ⊆ Rm × Rℓ be a polytope, x1, x2 ∈ Vert(pr1(P ))
and y ∈ Vert(pr2(P )). If Conv(x1, x2) is an edge of pr1(P ) such that

pr1(Vert(P )) ∩ Conv(x1, x2) = {x1, x2},
then Conv

(
(x1, y), (x2, y)

)
is an edge of P .
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Proof. Let v ∈ Rm be a normal vector of the face Conv(x1, x2) ⊆ pr1(Vert(P )). Since pr1(Vert(P ))∩
Conv(x1, x2) = {x1, x2}, for z ∈ Vert(P ) we have

v · pr1(z) ≤ v · x1 = v · x2,
with equality if and only if pr1(z) ∈ {x1, x2}.

Let w ∈ Rℓ be a normal vector of Vert(pr2(P )) = {y}. For z ∈ Vert(P ), it holds

w · pr2(z) ≤ w · y
with equality if and only if pr2(z) = y.

From the above inequalities, it follows that for z ∈ Vert(P )

(v, w) · z ≤ (v, w) · (x1, y) = (v, w) · (x2, y)

with equality if and only if z = (x1, y) or z = (x2, y). So, Conv((x1, y), (x2, y)) is an edge of P . □

2.4. Overview of the approach. In this section, we briefly summarize the approach we will use
in Sections 3 and 4 to establish connectivity of the parameter region of multistationarity in the
networks (N1,n) and (N2,n), for every n ≥ 2. We aim for this method to be applicable to other
families of reaction networks. Therefore, we outline the key steps and how to address them.

Our arguments rely on Theorem 2.2, which applies to conservative consistent reaction networks
without relevant boundary steady states. Both network families (N1,n) and (N2,n) are post-
translational modification networks, which are conservative and consistent. From [18, Corollary
2] both networks do not have any relevant boundary steady states. So we can apply Theorem 2.2
and only consider the networks obtained from (N1,n) (resp. (N2,n)) by removing the reversible re-
actions corresponding to κ6i+2, κ6i+5 (resp. κ10i+2, κ10i+7), i = 0, . . . , n−1. After this modification,
the reduced strongly irreversible phosphorylation network is given by

Si +K
κ4i+1−−−→Yi+1

κ4i+2−−−→ Si+1 +K

Si+1 + F
κ4i+3−−−→Ui+1

κ4i+4−−−→ Si + F,
i = 0, . . . , n− 1,(F1,n)

and the reduced weakly irreversible phosphorylation network has the form

Si +K
κ8i+1−−−→Y2i+1

κ8i+2−−−→ Y2i+2
κ8i+3−−−⇀↽−−−
κ8i+4

Si+1 +K

Si+1 + F
κ8i+5−−−→U2i+1

κ8i+6−−−→ U2i+2
κ8i+7−−−⇀↽−−−
κ8i+8

Si + F,
i = 0, . . . , n− 1.(F2,n)

By Theorem 2.2, it is enough to show that the critical polynomial qn of the reduced network
satisfies properties (P1) and (P2), that is, it has one negative connected component and satisfies
the closure property. To that end, first in Sections 3.1 and 4.1, we provide recursive formulas for
the stoichiometric matrix Nn ∈ Rm×r, reactant matrix An ∈ Rm×r, a conservation law matrix
Wn ∈ Rd×m and an extreme matrix En ∈ Rr×ℓ of the networks (F1,n) and (F2,n). Moreover, we

compute a Gale dual matrix Dn(λ) ∈ R(λ)m×d of N ′
n diag(Enλ)A⊤

n ∈ R(λ)s×m. We use these to
write qn in a recursive form.

For both families (F1,n) and (F2,n), we have d = 3 for every n ∈ N. Thus, using Theorem 2.7,
we can compute the coefficients of the critical polynomial qn by computing minors of size 3 of the
matrices Wn and Dn(λ). In Sections 3.2 and 4.2, we conduct these computations, focusing on the
signs of the coefficients of qn. For n = 1, the critical polynomial q1 has only positive coefficients for
both (F1,n) and (F2,n). Thus, the parameter region of multistationarity is empty by [4, Theorem
1]. For n = 2, the polynomial q2 satisfies (P1) and (P2) according to [26] for (F1,n), and as shown
in [25] for (F2,n).

To prove that qn, n ≥ 3 satisfies the closure property, we show that σ−(qn) is contained in a
proper face F ⊊ NP(qn) (cf. Theorem 2.9). It is now enough to show that qn|F satisfies the
property (P1). We split up qn|F into sub-polynomials based on parallel faces of the Newton polytope
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(cf. Theorem 2.10 and Example 2.11). One of these sub-polynomials corresponds to qn−1. For the
remaining sub-polynomials, we show that their signed support has a strict separating hyperplane,
which implies that they have one negative connected component (cf. Proposition 2.8). To conclude
that qn|F and consequently, qn has one negative connected component we will use induction on n
and Theorem 2.10. To identify negative edges between parallel faces, as required in Theorem 2.10,
we will apply Proposition 2.12 and 2.13.

Combining these arguments shows that the critical polynomial qn of the reduced networks sat-
isfy properties (P1) and (P2). Consequently, Theorem 2.2 implies that the parameter region of
multistationarity is connected for both the reduced and the original network.

3. Strongly Irreversible Phosphorylation Networks

In this section, we study the family of reduced strongly irreversible phosphorylation networks
(F1,n). First in Section 3.1 we compute their critical polynomial and then in Section 3.2 we use it
to show that the parameter region of multistationarity is connected for all n ≥ 2.

3.1. Computation of Critical Polynomial. To define the matrices Nn and An for (F1,n), we
use the order K,F, S0, Y1, U1, S1, . . . , Yn, Un, Sn for the species and κ1, . . . , κ4n for the reactions to
label the rows and the columns, respectively, of Nn and An. We now give the matrix for N1 and a
recursive expression of the stoichiometric matrices Nn ∈ R(3n+3)×4n:

N1 =

(
P1

P2

)
∈ R6×4 and Nn =

(
Nn−1 P1

03×(4n−4) P2

)
∈ R(3n+3)×4n,(14)

where the (3n× 4)-matrix P1 and (3× 4)-matrix P2 are given by

P1 =




−1 1 0 0
0 0 −1 1
0 0 0 0
...

...
...

...
0 0 0 0
−1 0 0 1



∈ R3n×4 and P2 =




1 −1 0 0
0 0 1 −1
0 1 −1 0


 ∈ R3×4.(15)

Remark 3.1. We point out that matrix P1 has exactly 3n− 3 rows with only zero entries. Matrix
P2 has full rank and the rank of N1 is 3. From the recursive relation it is easy to deduce that
rank(Nn) = 3n. In particular, dim(im(Nn)) = 3n and the dimension of the left kernel of Nn is 3.

A recursive expression for the reactant matrices An ∈ R(3n+3)×4n is given as

A1 =

(
Q1

Q2

)
∈ R6×4 and An =

(
An−1 Q1

03×(4n−4) Q2

)
∈ R(3n+3)×4n,(16)

where the matrices Q1 and Q2 are given by

Q1 =




1 0 0 0
0 0 1 0
0 0 0 0
...

...
...

...
0 0 0 0
1 0 0 0



∈ R3n×4 and Q2 =




0 1 0 0
0 0 0 1
0 0 1 0


 ∈ R3×4.(17)

Same as P1, matrix Q1 has exactly 3n−3 rows with zero entries. With the stoichiometric matrix
as in (14), we now determine a conservation law matrix Wn.
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Lemma 3.2. For the stoichiometric matrix Nn in (14), a conservation law matrix Wn is given by:

Wn :=
(
Id3 W · · · W

︸ ︷︷ ︸
n

)
∈ R3×(3n+3),(18)

where Id3 is the identity matrix of size 3 and

W :=




1 0 0
0 1 0
1 1 1


 ∈ R3×3.

Proof. Since the dimension of the left kernel of Nn is 3 (Remark 3.1) and Wn has rank 3 for all n,
it is enough to show that WnNn = 0. Using W0 := Id3 and Wn =

(
Wn−1 W

)
, for n ≥ 2 we have

WnNn =
(
Wn−1Nn−1 Wn−1P1 +WP2

)
.

Simple computations give

Wn−1P1 =



−1 1 0 0

0 0 −1 1
−1 0 0 1


 ∈ R3×4 and WP2 =




1 −1 0 0
0 0 1 −1
1 0 0 −1


 ∈ R3×4.

Thus, for n = 1, we get W1N1 = Wn−1P1 +WP2 = 0. Let us now assume that the result holds for
k = n − 1 for some n ≥ 1. By assumption Wn−1Nn−1 = 03×(4k−4). Consequently, WnNn = 03×4k

and therefore, Wn is a conservation law matrix for Nn. □

Proposition 3.3. An extreme matrix of (F1,n) has the following recursive form

En =

(
En−1 0(4n−4)×1

04×(n−1) E1

)
∈ R4n×n,(19)

where

E⊤
1 =

(
1 1 1 1

)
∈ R1×4.

Moreover, the n column vectors E
(1)
n , . . . , E

(n)
n ∈ R4n of En form a basis of ker(Nn).

Proof. Using (14), it is easy to check that E
(1)
n , . . . , E

(n)
n are contained in ker(Nn) ∩ R4n

≥0. Since

dim ker(Nn) = 4n− dim im(Nn) = 4n− 3n = n

(cf. Remark 3.1) and E
(1)
n , . . . , E

(n)
n are linearly independent, they form a basis of ker(Nn). More-

over, E
(1)
n , . . . , E

(n)
n have pairwise disjoint support and hence, by Proposition 2.1 En gives an

extreme matrix for the network (F1,n). □

The matrix N ′
n is obtained by removing the first three rows of Nn. In the remainder of this

subsection, we compute a Gale dual matrix Dn(λ) of N ′
n diag(Enλ)A⊤

n ∈ R(λ)3n×(3n+3) and δn(λ)
as in Theorem 2.7 for the network (F1,n), considering λ = (λ1, . . . , λn) as symbolic variables.

In Lemma 3.4, we compute the maximal minor det([N ′
n diag(Enλ)A⊤

n ][s],I) for I = {4, . . . , 3n+3}
and Ic = {1, 2, 3}.
Lemma 3.4. Given n ∈ N, let s = 3n, I = {4, . . . , 3n+ 3}. Then,

det([N ′
n diag(Enλ)A⊤

n ][s],I) = (−1)n
n∏

i=1

λ3i .

In particular, ker(N ′
n diag(Enλ)A⊤

n ) has dimension 3.
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Proof. Note that the matrix [N ′
n diag(Enλ)A⊤

n ][s],I is obtained by deleting the first 3 columns of

N ′
n diag(Enλ)A⊤

n . Let A′
n denote the matrix obtained from An after deleting the first three rows.

Then,

[N ′
n diag(Enλ)A⊤

n ][s],I = N ′
n diag(Enλ)A

′⊤
n .

We define the matrices Cn ∈ R(λ)3n×3n recursively as:

Cn :=

(
Cn−1 03×3

03×(3n−6) Vn Zn

)
∈ R(λ)3n×3n and C1 := Z1

where

Vn :=




0 0 λn
0 0 0
0 0 0


, Zn :=



−λn 0 0

0 −λn λn
λn 0 −λn


 = P2 diag(E1λn)Q⊤

2 ,

and P2, Q2 are the matrices from (15) and (17). Therefore, for n = 1, we have:

N ′
1 diag(E1λ)A

′⊤
1 = P2 diag(E1λn)Q⊤

2 = C1.

To prove the result we show that Cn is obtained by performing elementary row operations on
N ′
n diag(Enλ)A

′⊤
n . Consider the matrix Xn ∈ R3n×3n given by

(Xn)ij :=





1 if i = j

1 if k < n, i = 3k, j > 3k

0 else.

Furthermore, we set X1 := Id3. Multiplying by Xn is the same as adding the rows 3k + 1, 3k + 2,
and 3k + 3 to the row 3k for each k = 1, . . . , n− 1. Note that Xn can be written recursively as

Xn =

(
Xn−1 X ′

n−1

03×(3n−3) Id3

)

where X ′
n ∈ R(3n−3)×3 and

(X ′
n−1)ij :=

{
1 if i = 3k, k = 1, . . . , n− 1,

0 else.

It follows that for all n > 1 the matrix XnN
′
n can be written recursively as:

XnN
′
n =

(
Xn−1N

′
n−1 Xn−1P

′
1 +X ′

n−1P2

03×(4n−4) P2

)
=

(
Xn−1N

′
n−1 0(3n−3)×4

03×(4n−4) P2

)
,

where P ′
1 is obtained by removing the first three rows of P1 and P2 is defined as in (15).

Finally, we show inductively that Cn = XnN
′
n diag(Enλ)A

′⊤
n for all n ∈ N. The statement holds

for n = 1. Assume that for n ∈ N, Ck = XkN
′
k diag(Ekλ)A

′⊤
k holds for all 2 ≤ k < n. Using the

block structure of XnN
′
n, Enλ, A

′⊤
n and Cn, we have:

XnN
′
n diag(Enλ)A

′⊤
n =

(
Xn−1N

′
n−1 diag(En−1λ̂) 0(3n−3)×4

03×(3n−3) P2 diag(E1λn)

)(
A

′⊤
n−1 0(3n−3)×3

Q
′⊤
1 Q⊤

2

)

=

(
Cn−1 03×3

03×(3n−6) Vn Zn

)
= Cn,

where λ = (λ1, . . . , λn), λ̂ = (λ1, . . . , λn−1), and Q1, Q2 are the matrices from (17), with Q′
1 being

obtained from Q1 by removing the first three rows.
Since det(Xn) = 1, we get

det(N ′
n diag(Enλ)A

′⊤
n ) = det(Cn) =

n∏

i=1

det(Zi) = (−1)n
n∏

i=1

λ3i .
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Since this determinant is non-zero, the matrix N ′
n diag(Enλ)A⊤

n has rank s = 3n for all n, and
hence, its kernel has dimension 3. □

Next, we find an explicit representation of a Gale dual matrix of N ′
n diag(Enλ)A⊤

n for all n.

Theorem 3.5. Let N ′
n, An and En be the matrices associated with the network (F1,n) and λ =

(λ1, . . . , λn). Consider the matrices

D(0) :=




1 1 −1
0 1 0
0 0 1


, D(i) :=




0 0 −1
−(i− 1) −(i− 1) −i

1 1 1


, i = 1, . . . , n, and

D⊤
n (λ) :=

(
D(0) . . . D(n)

)
∈ R(λ)3×(3n+3).

Then Dn(λ) is a Gale dual matrix of N ′
n diag(Enλ)A⊤

n ∈ R(λ)3n×(3n+3).

Proof. By Lemma 3.4, ker(N ′
n diag(Enλ)A⊤

n ) has dimension 3. The columns ofDn(λ) are linearly in-
dependent and hence, it is enough to show that they are contained in the kernel of N ′

n diag(Enλ)A⊤
n .

Note that a vector v ∈ R(λ)3n+3 is in this kernel if and only if diag(Enλ)A⊤
n v ∈ ker(N ′

n). Moreover,
ker(N ′

n) = ker(Nn). Since the columns of En form a basis of ker(Nn) by Proposition 3.3, it follows
that v ∈ ker(N ′

n diag(Enλ)A⊤
n ) if and only if there exists µ ∈ R(λ)n such that

diag(Enλ)A⊤
n v = Enµ =

[
u1 . . . un

]⊤

where

ui =
[
µi µi µi µi

]
∈ R(λ)4 for i = 1, . . . , n.

Using the block form of An and the block form of En, for each v ∈ R(λ)3n+3 we have

diag(Enλ)A⊤
n v =

[
ω1 . . . ωn

]⊤
.(20)

such that

ωi =
[
λi(v1 + v3i) λiv3i+1 λi(v2 + v3i+3) λiv3i+2

]
for i = 1, . . . n.

So, the vector v ∈ R(λ) is such that the entries 4i + 1, 4i + 2, 4i + 3, and 4i + 4 are equal in the
column vector in (20) for all i = 1, . . . , n. In particular, v1 + v3i = v3i+1 = v2 + v3i+3 = v3i+2. It
is easy to check that the rows of D⊤

n (λ) are linearly independent and satisfy these relations. This
concludes the proof. □

Note that the Gale dual matrix obtained in Theorem 3.5 is independent of λ. While this is the
case for (F1,n), we will see in Section 4.1 that the same does not hold for (F2,n).

The main objective in this section is to obtain the expression of critical polynomial using The-
orem 2.7. The final missing ingredient is the expression of δn(λ). We will use (11) to find this
expression.

Proposition 3.6. With the choice of Gale dual matrix in Theorem 3.5, it holds

δn(λ) =

n∏

i=1

λ3i .

Proof. Consider the index set I = {4, . . . , 3n+3}. Then τI is the permutation that sends (1, . . . , 3n+
3) to (4, . . . , 3n+ 3, 1, 2, 3). A straightforward computation gives

sgn(τI) = (−1)n.

Moreover, det
(
[D⊤

n (λ)][3],Ic
)

= detD(0) = 1. Using Lemma 3.4 and substituting these values in
(11), we obtain the statement. □
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3.2. Connectivity of the Multistationarity Region of (N1,n). For h = (h1, . . . , h3n+3) ∈
R3n+3
>0 , by Theorem 2.7 and Theorem 3.5, the critical polynomial associated with (F1,n) can be

written as qn(h, λ) = gn(h)δn(λ), where

gn(h) =
∑

I⊆[3n+3]
|I|=3

det
(
[Wn][3],I

)
det
(
[D⊤

n ][3],I
) ∏

i∈Ic
hi and δn(λ) =

n∏

i=1

λ3i .(21)

Remark 3.7. The polynomial gn is independent of λ. Moreover, δn(λ) is a positive function if
λ ∈ Rn>0 and hence, if g−1

n (R<0) is connected, then so is q−1
n (R<0). Therefore, it is enough to

consider the polynomial gn(h).

Henceforth, we will use the following notation:

αn,I := det
(
[Wn][3],I

)
det
(
[D⊤

n ][3],I
)
.(22)

In the next remark, we list various cases when αn,I = 0.

Remark 3.8. For n ≥ 1 and I ⊂ [3n+ 3] with |I| = 3, the following holds:

(i) If 3ℓ+ k, 3ℓ′ + k ∈ I for ℓ, ℓ′ ∈ [n] and k ∈ {1, 2}, then det
(
[Wn][3],I

)
= 0.

(ii) If 3ℓ+ 3, 3ℓ′ + 3 ∈ I for ℓ, ℓ′ ∈ [n] ∪ {0}, then det
(
[Wn][3],I

)
= 0.

(iii) If 3ℓ+ 1 /∈ I or 3ℓ′ + 2 /∈ I for ℓ, ℓ′ ∈ [n] ∪ {0}, then det
(
[Wn][3],I

)
= 0.

(iv) If 3ℓ+ 1, 3ℓ+ 2 ∈ I for ℓ ∈ [n], then det
(
[D⊤

n ][3],I) = 0.

To show that the region in the parameter space for (N1,n) and (F1,n) that enables multista-
tionarity is path connected for all n, we first write gn as a polynomial in h3n+1, h3n+2, h3n+3 with

coefficients in ĥ = (h1, . . . , h3n):

gn(h) =
∑

J⊆[3]

(
aJ(ĥ)

∏

i∈Jc

h3n+i

)
= b0(h) + b1(h),

where

b0(h) = a{1}(ĥ)h3n+2h3n+3 + a{1,2}(ĥ)h3n+3 + a{1,3}(ĥ)h3n+2 + a{1,2,3}(ĥ)

b1(h) = (a∅(ĥ)h3n+2h3n+3 + a{2}(ĥ)h3n+3 + a{3}(ĥ)h3n+2 + a{2,3}(ĥ))h3n+1.
(23)

In the next result, we focus on the polynomial b0(h).

Proposition 3.9. For all n ≥ 1, the polynomial b0(h) is non-zero and all of its coefficients are
positive.

Proof. First we show that a{1,2}(ĥ) and a{1,2,3}(ĥ) are zero polynomials. To see this, note that their
coefficients are obtained from summands in (21) indexed by I such that {3n+ 1, 3n+ 2} ⊆ I. For

such an I, we have det
(
[D⊤

n ][3],I
)

= 0 by Remark 3.8(iv). Thus, a{1,2}(ĥ) = 0 and a{1,2,3}(ĥ) = 0.

We now show that a{1,3}(ĥ) and a{1}(ĥ) only have positive coefficients. First consider the poly-

nomial a{1,3}(ĥ). Here the coefficients (22) of a{1,3}(ĥ) are computed for I = {r, 3n+1, 3n+3} such
that r ∈ [3n]. By Remark 3.8, we only need to consider the case when r = 3ℓ+2 for ℓ = 0, . . . , n−1.
When ℓ = 0, we have that det

(
[D⊤

n ][3],I
)

= 0. When ℓ ∈ [n− 1], we have:

αn,I = det




0 1 0
1 0 0
1 1 1


 det




0 0 −1
−(ℓ− 1) −(n− 1) −n

1 1 1


 = (−1)(ℓ− n) = n− ℓ > 0.

This ensures a{1,3}(ĥ) only has positive coefficients.

We now consider the coefficients of a{1}(ĥ). In this case, 3n+ 1 ∈ I and 3n+ 2, 3n+ 3 /∈ I. We
can write I = {r1, r2, 3n+ 1} for r1, r2 ∈ [3n] and let ℓ, ℓ′ ∈ [n− 1].
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(i) For (r1, r2) = (1, 2) and (r1, r2) = (2, 3), we have αn,I = 1 and αn,I = n respectively.
(ii) Finally, (r1, r2) ∈ {(1, 3ℓ + 2), (2, 3ℓ + 2), (2, 3ℓ + 3), (3, 3ℓ + 2), (3ℓ + 2, 3ℓ′ + 3)}, we get,

αn,I = n− ℓ.
By Remark 3.8, in all the other cases αn,I = 0. Since in all the cases above αn,I ≥ 0, the

coefficients of a{1}(ĥ) are positive and hence, the result. □
Following corollary is now a direct consequence of Proposition 3.9.

Corollary 3.10. For n ≥ 2, the face NPe3n+1(gn) is a proper face of NP(gn) and σ−(gn) ⊆
NPe3n+1(gn). In particular, gn satisfies the closure property and if the polynomial

b1(h) =
(
a∅(ĥ)h3n+2h3n+3 + a{2}(ĥ)h3n+3 + a{3}(ĥ)h3n+2 + a{2,3}(ĥ)

)
h3n+1

has one negative connected component, then so does gn.

Proof. For I1 = {1, 2, 3}, αn,I1 = 1, and therefore zI1 ∈ σ(gn). From Proposition 3.9, there exists
I2 ⊆ [3n+ 3] with |I2| = 3, 3n+ 1 /∈ I2 and zI2 ∈ σ(gn). Since e3n+1 · µ ∈ {0, 1} for all µ ∈ σ(gn),
we have that NPe3n+1(gn) is a proper face of NP(gn).

Since σ−(gn) ⊆ NPe3n+1(gn) by Proposition 3.9, the second part of the corollary follows from
Theorem 2.9. □

By Corollary 3.10, it is enough to focus on b1(h). Next, we consider the polynomial a∅(ĥ). We
recall that z{i,j,k} ∈ {0, 1}3n+3 denotes the vector whose entries indexed by i, j, k ∈ [3n+3] are zero

and all the other entries are 1. If i, j, k ∈ [3n], we write ẑ{i,j,k} ∈ R3n for the vector that is obtained
from z{i,j,k} by removing its last three coordinates.

Proposition 3.11. For n ≥ 2, and J = ∅, aJ(ĥ) is the polynomial gn−1(ĥ) associated with the
network (F1,n−1). Furthermore, if ẑ{i,j,k} ∈ σ−(gn−1), then z{i,j,k} ∈ σ−(gn).

Proof. The terms in a∅(ĥ) are computed from the summands indexed by I in (21) such that {3n+
1, 3n+ 2, 3n+ 3} ∩ I = ∅. Note the following set equaltiy:

{
I ⊆ [3n+ 3] | |I| = 3 and {3n+ 1, 3n+ 2, 3n+ 3} ∩ I = ∅

}
=
{
I ⊆ [3n] | |I| = 3

}
.

Using the block structures of Wn and Dn, the first part of the statement follows directly from (21).

For the second part, let I be in the set above. Since a∅(ĥ) = gn−1(ĥ), by (21), (23), the coefficient
of gn corresponding to zI is the same as the coefficient of gn−1 that corresponds to ẑI . □

Next, we look at the support of a{2,3}(ĥ)h3n+1, a{2}(ĥ)h3n+1h3n+3 and a{3}(ĥ)h3n+1h3n+2. In
each of these polynomials, every exponent vector is of the form z{i,j,k} by (21) and is a vertex of
the Newton polytope.

Proposition 3.12. For n ≥ 2, consider the supports σ(a{2,3}(ĥ)h3n+1) and σ(a{2}(ĥ)h3n+1h3n+3).
Each set has exactly one positive exponent vector given by z{1,3n+2,3n+3} and z{1,2,3n+2}, respectively.
Moreover, both supports have a strict separating hyperplane, and it holds that

(i) σ−(a{2,3}(ĥ)h3n+1) =
{
z{3ℓ+1,3n+2,3n+3} | ℓ ∈ [n− 1]

}
,

(ii) z{1,3,3n+2}, z{1,3ℓ+1,3n+2} ∈ σ−
(
a{2}(ĥ)h3n+1h3n+3

)
for ℓ ∈ [n− 1].

Proof. Let us consider the polynomial a{2,3}(ĥ)h3n+1. The terms in a{2,3} are obtained from the
summands in (21) indexed by I = {r, 3n+ 2, 3n+ 3} where r ∈ [3n]. By Remark 3.8, we only need
to consider the case when r = 3ℓ+ 1 for ℓ = 0, . . . , n− 1. When ℓ = 0, we have αn,I = 1 > 0. When
r = 3ℓ+ 1, for ℓ = [n− 1] , we have:

αn,I = det




1 0 0
0 1 0
1 1 1


 det




0 0 −1
−(ℓ− 1) −(n− 1) −n

1 1 1


 = ℓ− n < 0.
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This shows that σ−(a{2,3}(ĥ)h3n+1) =
{
z{3ℓ+1,3n+2,3n+3} | ℓ ∈ [n − 1]

}
. Additionally, for I =

{1, 3n+ 2, 3n+ 3} we get the unique positive exponent vector.

For a{2}(ĥ)h3n+1h3n+3, we haven I = {r1, r2, 3n+ 2} for some r1, r2 ∈ [3n]. Let ℓ, ℓ′ ∈ [n− 1].

(i) For (r1, r2) = (1, 2) we obtain αn,I = 1.
(ii) For (r1, r2) ∈ {(1, 3), (1, 3ℓ+ 1)}, we get, αn,I = −(n− 1).

(iii) For (r1, r2) ∈ {(2, 3ℓ+ 1), (3, 3ℓ+ 1), (3ℓ+ 1, 3ℓ′ + 3)}, we have αn,I = −(n− ℓ).
(iv) Finally, for (r1, r2) = (1, 3ℓ+ 3), we have αn,I = −(n− ℓ− 1).

By Remark 3.8, in all the other cases αn,I = 0. From the computations above we obtain the unique
positive exponent vector for I = {1, 2, 3n+ 2}.

To see that both σ(a{2,3}(ĥ)h3n+1) and σ(a{2}(ĥ)h3n+1h3n+3) have a strict separating hyperplane,
note that the unique positive exponent vector is a vertex of the coppesponding Newton polytope.
Therefore, the unique positive exponent vector can be separated by an affine hyperplane from the
other exponent vectors. This concludes the proof. □

Finally, we consider the set of exponent vectors of a{3}(ĥ)h3n+1h3n+2.

Proposition 3.13. For n ≥ 3, the set of exponent vectors σ
(
a{3}(ĥ)h3n+1h3n+2

)
has a strict

separating hyperplane. Moreover, we have
{
z{2,3ℓ+1,3n+3} | ℓ ∈ [n− 1]

}
⊆ σ−

(
a{3}(ĥ)h3n+1h3n+2

)
.

Proof. We consider I = {r1, r2, 3n + 3} where r1, r2 ∈ [3n]. First, we investigate the case r1 =
1, r2 ̸= 2. By Remark 3.8, we only need to consider the case when r2 = 3ℓ + 2 for ℓ ∈ [n − 1]. In
this case αn,I = (n− ℓ+ 1) ≥ 0 with equality only if ℓ = n− 1.

Next, we work with the case when r1 = 2, r2 ̸= 1. Again by Remark 3.8, we only need to consider
the case when r2 = 3ℓ + 1 for ℓ ∈ [n − 1]. For this case we find αn,I = −(n − ℓ) < 0. This shows
that the exponent vectors of the form z{2,3ℓ+1,3n+3} correspond to negative coefficients.

Furthermore,

(i) When 1 ∈ I and 2 /∈ I, we have (e1 − e2) · zI = −1 < 0 .
(ii) When either 1, 2 ∈ I or 1, 2 /∈ I, we have (e1 − e2) · zI = 0.

(iii) Finally, when 2 ∈ I and 1 /∈ I, we have (e1 − e2) · zI = 1 > 0.

Thus, the open half-space H+,◦
e1−e2,0 contains only negative exponent vectors and H−,◦

e1−e2,0 contains
only positive exponent vectors. This implies that He1−e2,0 is a strict separating hyperplane of

σ
(
a{3}(ĥ)h3n+1h3n+2

)
. □

Proposition 3.14. The polynomial g2 from (21) has one negative connected component.

Proof. The polynomial g2 equals

− h1h2h3h5h6h7 + h2h3h4h5h6h7 + h1h2h3h4h6h8 + 2h2h3h4h6h7h8 − h1h3h5h6h7h8
+ h3h4h5h6h7h8 − h1h2h3h5h7h9 − h1h2h5h6h7h9 − h1h3h5h6h7h9 − h2h3h5h6h7h9
− h2h4h5h6h7h9 + h3h4h5h6h7h9 + h1h2h3h4h8h9 + h1h3h4h5h8h9 + h1h2h4h6h8h9

+ h1h3h4h6h8h9 + h2h3h4h6h8h9 + 2h1h4h5h6h8h9 + h3h4h5h6h8h9 + h2h3h4h7h8h9

+ h3h4h5h7h8h9 + h3h4h6h7h8h9 + h1h5h6h7h8h9 + h3h5h6h7h8h9 + h4h5h6h7h8h9.

An easy computation shows that the hyperplane Hv,4 with v = (1, 1, 1, 0, 1, 0, 1, 0, 1) is a strict
separating hyperplane of σ(g2). The statement now follows by Proposition 2.8. □

We are now ready to show that the multistationarity region of (F1,n) and (N1,n) are connected
for all n ≥ 2.

Theorem 3.15. For all n ≥ 2, the parameter region of multistationarity is path connected for the
networks (F1,n) and (N1,n).
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Proof. By Corollary 3.10, it is enough to show that the following polynomial

b1 =
(
a∅(ĥ)h3n+2h3n+3 + a{2,3}(ĥ) + a{2}(ĥ)h3n+3 + a{3}(ĥ)h3n+2

)
h3n+1

has exactly one negative connected component. To show that b1 has one negative connected compo-
nent for all n ≥ 2 we will use an induction argument over n. From Proposition 3.14, we know that
g2 has exactly one negative component, so we assume that it holds for all gk where 2 ≤ k ≤ n− 1.

Now, we write b1 = b2 + b3 based on the exponent of h3n+3:

b2 :=
(
a∅(ĥ)h3n+1h3n+2 + a{2}(ĥ)h3n+1

)
h3n+3 and b3 := a{2,3}(ĥ)h3n+1 + a{3}(ĥ)h3n+1h3n+2.(24)

Note that σ(b2) ⊆ NPe3n+3(b1) and σ(b3) ⊆ NP−e3n+3(b1). Moreover, these two faces are par-
allel and σ(b1) = σ(b2) ∪ σ(b3). Since by Proposition 3.12 we have z{1,4,3n+2} ∈ σ−(b2) and
z{4,3n+2,3n+3} ∈ σ−(b3), using Proposition 2.12 we obtain a negative edge Conv(z{1,4,3n+2}, z{4,3n+2,3n+3})
of NP(b1). Therefore by Theorem 2.10, it is now enough to show that b2 and b3 have one negative
connected component.

We now consider b2. The two summands in (24) split b2 in terms of the exponent of h3n+2. Similar

to b1, we have σ(a∅(ĥ)h3n+1h3n+2h3n+3) ⊆ NPe3n+2(b2) and σ(a{2}(ĥ)h3n+1h3n+3) is contained in
NP−e3n+2(b2). Moreover, from Proposition 2.12, Proposition 3.11 and Proposition 3.12 it follows
that Conv(z{1,3,3(n−1)+2}, z{1,3,3n+2}) is an edge of the Newton polytope NP(b2) between the two
negative exponent vectors. Using Theorem 2.10, it is enough to show that the two summands have
exactly one negative connected component. By Proposition 3.11, a∅(ĥ) = gn−1(ĥ), and it has one
negative connected component by the inductive assumption. On the other hand, by Proposition 3.12
a{2}(ĥ)h3n+1h3n+3 has a strict separating hyperplane, which implies that a{2}(ĥ)h3n+1h3n+3 has a
unique negative connected component by Proposition 2.8. Hence, so does b2.

To complete the proof, we show that b3 has one negative connected component. We follow
the same argument thread as for b2. We split the two summands of b3 in (24) in terms of the
exponent of h3n+2. Their exponent vectors then lie on parallel faces of NP(b3) with normal vectors
±e3n+2. We observe that Conv(z{4,3n+2,3n+3}, z{2,4,3n+3}) is an edge of the Newton polytope NP(b3)

between two negative exponent vectors of a{2,3}(ĥ)h3n+1 and a{3}(ĥ)h3n+1h3n+2, respectively. By
Theorem 2.10, it is therefore enough to show that the two summands have exactly one negative
connected component. By Proposition 3.12 and Proposition 3.13 the supports of a{2,3}(ĥ)h3n+1

and a{3}(ĥ)h3n+1h3n+2 have a strict separating hyperplane. Therefore, both a{2,3}(ĥ)h3n+1 and

a{3}(ĥ)h3n+1h3n+2 have one negative connected component and hence, so does b1. □

4. Weakly Irreversible Phosphorylation Networks

We now study the family of reduced weakly irreversible phosphorylation networks (F2,n). This
section has several results analogous to Section 3. First, in Section 4.1 we give the basic set up
that allow us to compute the critical polynomial of the reduced networks. In Section 4.2 we use
this to show that this network has multistationarity for all n ≥ 2 and the parameter region of
multistationarity is connected.

4.1. Computation of Critical Polynomial. The family of networks (F2,n) is obtained from
(N2,n) by removing reversible reactions as in Theorem 2.2. We fix the order of the species as
K,F, S0, Y1, Y2, U1, U2, S1, . . . , Y2n−1, Y2n, U2n−1, U2n, Sn to obtain the stoichiometric matrix Nn and
the reactant matrix An as below. For n = 1 these matrices are given by:

N1 =

(
P1

P2

)
, and A1 =

(
Q1

Q2

)
.(25)

For general n ≥ 2, we can write these matrices recursively as:
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Nn =

(
Nn−1 P1

05×(8n−8) P2

)
∈ R(5n+3)×8n, An =

(
An−1 Q1

05×(8n−8) Q2

)
∈ R(5n+3)×8n,(26)

where

P1 =




−1 0 1 −1 0 0 0 0
0 0 0 0 −1 0 1 −1
0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0

−1 0 0 0 0 0 1 −1




∈ R(5n−2)×8, P2 =




1 −1 0 0 0 0 0 0
0 1 −1 1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 1
0 0 1 −1 −1 0 0 0




∈ R5×8,

(27)

and

Q1 =




1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1




∈ R(5n−2)×8, Q2 =




0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0




∈ R5×8.(28)

Remark 4.1. The matrices P1 and Q1 have 5n−5 rows with all entries zero. Note that the matrix
P2 has full rank and the rank of N1 is 5. From the recursive relation it follows that rank(Nn) = 5n.
Equivalently, the dimension of left kernel of Nn is 3 and dim(im(Nn)) = 5n.

Using the above matrices, we compute a conservation law matrix and an extreme matrix for
(F2,n) in Lemma 4.2 and Proposition 4.3 respectively.

Lemma 4.2. Given the stoichiometric matrix Nn in (26), a conservation law matrixWn is given by:

Wn :=
(
Id3 W · · · W

︸ ︷︷ ︸
n

)
∈ R3×(5n+3),(29)

where Id3 is the identity matrix of size 3 and

W :=




1 1 0 0 0
0 0 1 1 0
1 1 1 1 1


 ∈ R3×5.

Proof. Let W0 := Id3, then using Wn =
(
Wn−1 W

)
, for n ≥ 2 we have

WnNn =
(
Wn−1Nn−1 Wn−1P1 +WP2

)
.

Simple computation gives:

Wn−1P1 =



−1 0 1 −1 0 0 0 0

0 0 0 0 −1 0 1 −1
−1 0 0 0 0 0 1 −1


 and WP2 =




1 0 −1 1 0 0 0 0
0 0 0 0 1 0 −1 1
1 0 0 0 0 0 −1 1


.

For n = 1, we get W1N1 = W0P1 +WP2 = 0. We now assume that the claim holds for all k ∈ N
such that 1 ≤ k ≤ n−1. By assumption Wn−1Nn−1 is a zero matrix and hence, WnNn = 03×8n and
since the rank of Wn and the dimension of the left kernel of Nn are both 3 for all n by Remark 4.1,
it follows that Wn is a conservation law matrix for Nn. □
Proposition 4.3. An extreme matrix of (F2,n) has the following recursive form

En =

(
En−1 0(8n−8)×3

08×(3n−3) E1

)
∈ R8n×3n,(30)
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where

E1 =




1 1 1 0 1 1 1 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1




⊤

∈ R8×3.

Moreover, the column vectors E
(1)
n , . . . , E

(3n)
n ∈ R8n of En form a basis of ker(Nn).

Proof. Using (26), a simple computation shows that E
(1)
n , . . . , E

(3n)
n ∈ ker(Nn) ∩ R8n

≥0. Since by
Remark 4.1

dim ker(Nn) = 8n− dim im(Nn) = 8n− 5n = 3n

and E
(1)
n , . . . , E

(3n)
n are linearly independent, they form a basis of ker(Nn).

Furthermore, E
(1)
1 , E

(2)
1 , E

(3)
1 satisfy (5) and since the blocks of En have pairwise disjoint sup-

ports, E
(1)
n , . . . , E

(3n)
n also satisfy (5). Thus, En is an extreme matrix for (F2,n) by Proposi-

tion 2.1. □

The matrix N ′
n is obtained by removing the first three rows of Nn. We will now compute a Gale

dual Dn(λ) (Theorem 4.5) of N ′
n diag(Enλ)A⊤

n and δn(λ) (Proposition 4.6) for the network (F2,n).
In the following, we view λ = (λ1, . . . , λ3n) as symbolic variables. In Lemma 4.4, we first compute

the maximal minor det([N ′
n diag(Enλ)A⊤

n ][s],I) for I = {4, . . . , 3n+ 3} and Ic = {1, 2, 3}.
Lemma 4.4. For a fixed n, let s = 5n, I = {4, . . . , 5n+ 3}. Then,

det([N ′
n diag(Enλ)A⊤

n ][s],I) = (−1)n
n−1∏

k=0

(λ3k+1 + λ3k+2)(λ3k+1 + λ3k+3)λ
3
3k+1.

In particular, ker(N ′
n diag(Enλ)A⊤

n ) ∈ R(λ)5n has dimension 3.

Proof. Let A′
n be obtained from An after removing the first three rows. Then we have,

[N ′
n diag(Enλ)A⊤

n ][s],I = N ′
n diag(Enλ)A

′⊤
n .

Consider the matrix Xn ∈ R5n×5n, n ≥ 2 given by

(Xn)ij :=





1 if i = j,

1 if k < n, i = 5k, j > 5k,

0 else.

Furthermore, we set X1 := Id5. Multiplying by Xn is the same as adding the rows 5k + 1, 5k +
2, 5k+ 3, 5k+ 4 and 5k+ 5 to the row 5k for each k = 1, . . . , n− 1. The matrix Xn can be written
recursively as

Xn =

(
Xn−1 X ′

n−1

05×(5n−5) Id5

)
with (X ′

n−1)ij :=

{
1 if i = 5k, k = 1, . . . , n− 1,

0 else.

It follows that for all n > 1 the matrix XnN
′
n can be written recursively as:

XnN
′
n =

(
Xn−1N

′
n−1 Xn−1P

′
1 +X ′

n−1P2

05×(8n−8) P2

)
=

(
Xn−1N

′
n−1 0(5n−5)×8

05×(8n−8) P2

)
,

where P1 and P2 is defined as in (27) and P ′
1 is obtained by removing the first three rows of P1.

We define the matrices Cn ∈ R(λ)5n×5n recursively as:

Cn :=

(
Cn−1 05×5

05×(5n−10) Vn Zn

)
∈ R(λ)5n×5n and C1 := Z1

where
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Vn :=




0 0 0 0 λ3n−2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 λ3n

0 0 0 0 0



, Zn :=




−λ3n−2 0 0 0 0
λ3n−2 −λ3n−2 − λ3n−1 0 0 λ3n−1

0 0 −λ3n−2 0 λ3n−2

0 0 λ3n−2 −λ3n−2 − λ3n 0
0 λ3n−2 + λ3n−1 0 0 −λ3n−2 − λ3n−1



.

Let ω = [λ3n−2, λ3n−1, λ3n]⊤. A simple computation shows that Zn = P2 diag(E1ω)Q⊤
2 and

hence, for n = 1, we have X1N
′
1 diag(E1λ)A

′⊤
1 = C1. Assume that XkN

′
k diag(Ekλ)A

′⊤
k = Ck for all

1 ≤ k < n, and let λ̂ = (λ1, . . . , λ3n−3). Then using the block structure of Nn, An, and En, we get

XnN
′
n diag(Enλ)A

′⊤
n =

(
Xn−1N

′
n−1 diag(En−1λ̂) 0(5n−5)×8

05×(8n−8) P2 diag(E1ω)

)(
A

′⊤
n−1 0(8n−8)×5

Q
′⊤
1 Q⊤

2

)

=

(
Cn−1 05×5

05×(5n−10) Vn Zn

)
= Cn,

where Q1, Q2 are the matrices from (28) and Q′
1 is obtained from Q1 by removing the first three

rows. Since det(Xn) = 1, it follows

det(N ′
n diag(Enλ)A

′⊤
n ) = det(Cn) =

n∏

k=1

det(Zk)

= (−1)n
n−1∏

k=0

(λ3k+1 + λ3k+2)(λ3k+1 + λ3k+3)λ
3
3k+1.

The second part of the lemma holds since the 5n × 5n maximal minor det([N ′
n diag(Enλ)A⊤

n ][s],I)
is non-zero for all n. □
Theorem 4.5. Let Nn, An and En be the matrices associated with the network (F2,n) as described
in (26) and (30). Let λ = (λ1, . . . , λ3n) and for k = 0, . . . , n− 1 consider the matrices

D(k) :=




0 0 0 0 −1

−k
−kλ3k+1−(k+1)λ3k+2

λ3k+1+λ3k+2
−k

−kλ3k+1+(1−k)λ3k+3

λ3k+1+λ3k+3
−(k + 1)

1 1 1 1 1


, D(−1) :=




1 1 −1
0 1 0
0 0 1


, and

D⊤
n (λ) :=

(
D(−1) D(0) . . . D(n−1)

)
∈ R(λ)3×(5n+3).

Then Dn(λ) is a Gale dual matrix of N ′
n diag(Enλ)A⊤

n .

Proof. A vector v ∈ R(λ)5n+3 lies in the kernel of N ′
n diag(Enλ)A⊤

n if and only if diag(Enλ)A⊤
n v ∈

ker(N ′
n). For v ∈ R(λ)5n+3, let

diag(Enλ)A⊤
n v =

[
ω0, . . . , ωn−1

]⊤

such that for i = 0, . . . , n− 1, ωi ∈ R(λ)8 is given by:
[
λ3k+1(v1 + v5k+3) λ3k+1v5k+4 (λ3k+1 + λ3k+2)v5k+5 λ3k+2(v1 + v5k+8)

λ3k+1(v2 + v5k+8) λ3k+1v5k+6 (λ3k+1 + λ3k+3)v5k+7 λ3k+3(v2 + v5k+3)
]
.(31)

Moreover, since the columns of En span ker(N ′
n), there exists µ ∈ R(λ)3n such that diag(Enλ)A⊤

n v =
Enµ. Let

Enµ =
[
u0, . . . , un−1

]⊤

such that for i = 0, . . . , n− 1

ui =
[
µ3i+1 µ3i+1 µ3i+1 + µ3i+2 µ3i+2 µ3i+1 µ3i+1 µ3i+1 + µ3i+3 µ3i+3

]
∈ R(λ)8.(32)
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Comparing equations (31) and (32), we get that v ∈ ker(N ′
n diag(Enλ)A⊤

n ) if it satisfies the
following relations for all i = 0, . . . , n− 1:

v1 + v5k+3 = v5k+4, v1 + v5k+3 = v2 + v5k+8, v1 + v5k+3 = v5k+6,

(λ3k+1 + λ3k+2)v5k+5 = λ3k+1(v1 + v5k+3) + λ3k+2(v1 + v5k+8),

(λ3k+1 + λ3k+3)v5k+7 = λ3k+1(v1 + v5k+3) + λ3k+3(v2 + v5k+3).

It is easy to check that the columns of Dn(λ) are linearly independent and satisfy these relations.
Moreover, since ker(N ′

n diag(Enλ)A⊤
n ) has dimension 3 (Lemma 4.4), Dn(λ) is a Gale dual matrix

of ker(N ′
n diag(Enλ)A⊤

n ). □
Using Lemma 4.4, we compute δn(λ), which is the final ingredient needed to calculate the critical

polynomial of (F2,n) as in Theorem 2.7.

Proposition 4.6. With the choice of Gale dual matrix in Theorem 4.5, from (11) we get

δn(λ) =
n−1∏

k=0

(λ3k+1 + λ3k+2)(λ3k+1 + λ3k+3)λ
3
3k+1.

Proof. By Lemma 2.4, δn(λ) in (11) is independent of the choice of index set. For I = {4, . . . , 5n+3}
we have

sgn(τI) = (−1)n and det([D⊤
n (λ)][3],Ic) = 1.

Now, using Lemma 4.4 and Corollary 2.6, we obtain the result. □
4.2. Connectivity of Multistationarity Region of (N2,n). Using the conservation law ma-

trix Wn (29), the Gale dual matrix Dn(λ) of N ′
n diag(Enλ)A⊤

n from Theorem 4.5, and applying
Theorem 2.7 we write the critical polynomial of (F2,n) as

qn(h, λ) =
∑

I⊆[5n+3]
|I|=3

δn(λ) det
(
[Wn][3],I

)
det
(
[D⊤

n (λ)][3],I
) ∏

i∈Ic
hi.(33)

Unlike for (F1,n), the matrix D⊤
n (λ) depends on λ in this case. Since the product

α(λ)n,I := det
(
[Wn][3],I

)
det
(
[D⊤

n (λ)][3],I
)

(34)

is not independent of λ, we cannot factor qn in terms of polynomial in h and polynomial in λ like we
did in Section 3.2. Here, we study the whole polynomial qn. Going forward, for ease of notations,
we will only write αn,I for α(λ)n,I .

From n − 1 to n, the critical polynomial depends on eight new variables h5n−1, . . . , h5n+3, and
λ3n−2, λ3n−1, λ3n. For any subset J ⊆ [5], we define

Ĵ := {5n− 2 + j | j ∈ J} and Ĵc := {5n− 2 + j | j ∈ [5] \ J},(35)

which will be used to index the variables h5n−1, . . . , h5n+3. For instance, for J = [5] we have

{h5n−1, . . . , h5n+3} = {hi | i ∈ Ĵ}. Using this notation, we write qn as

qn(h, λ) =
∑

J⊆[5]
|J |≤3

(
aJ(ĥ, λ)

∏

i∈Ĵc

hi

)
,(36)

where ĥ = (h1, . . . , h5n−2). From (33), it follows that the aJ ’s have the following form

aJ(ĥ, λ) =
∑

I⊆[5n+3],|I|=3

Ĵ⊆I, Ĵc∩I=∅

δn(λ) det
(
[Wn][3],I

)
det
(
[Dn(λ)]I,[3]

) ∏

i∈Ic\Ĵc

hi.(37)

First, we relate a∅ to the critical polynomial of (F2,n−1). In what follows, we set λ̂ = (λ1, . . . , λ3n−3).



22 NIDHI KAIHNSA AND MÁTÉ L. TELEK

Proposition 4.7. For n ≥ 2 and J = ∅,
aJ(ĥ, λ) = qn−1(ĥ, λ̂)(λ3n−2 + λ3n−1)(λ3n−2 + λ3n)λ33n−2,

where qn−1(ĥ, λ̂) denotes the critical polynomial of (F2,n−1).

Proof. The summands in (37) depend on the subsets I ⊆ [5n − 2] with |I| = 3. Note that the
following sets coincide
{
I ⊆ [5n+3] | |I| = 3 and {5n−1, 5n, 5n+1, 5n+2, 5n+3}∩I = ∅

}
=
{
I ⊆ [5(n−1)+3] | |I| = 3

}
.

The proof now follows from (33) and (37) using the block structures of Wn and Dn(λ). □

In (37) the cardinality of I is 3. Moreover, when J ̸= ∅, the intersection I ∩ {5n − 1, 5n, 5n +
1, 5n + 2, 5n + 3} ̸= ∅. In the next lemma, we list cases when αn,I = 0 from (34). The proof of

Lemma 4.8 follows directly by considering the columns of the matrices [Wn][3],I and [D⊤
n (λ)][3],I .

Lemma 4.8. Let I ⊂ [5n+ 3] with |I| = 3 and ℓ, ℓ′ ∈ [n− 1] ∪ {0}.
(i) If 5ℓ+ 4, 5ℓ′ + 5 ∈ I, then det

(
[Wn][3],I

)
= 0 and hence, αn,I = 0.

(ii) If 5ℓ+ 6, 5ℓ′ + 7 ∈ I, then det
(
[Wn][3],I

)
= 0 and hence, αn,I = 0.

(iii) If 5ℓ+ 4, 5ℓ+ 6 ∈ I, then det([D⊤
n (λ)][3],I) = 0 and hence, αn,I = 0.

(iv) If 5ℓ+ k, 5ℓ′ + k ∈ I for k ∈ {4, 5, 6, 7, 8}, then det
(
[Wn][3],I

)
= 0 and hence, αn,I = 0.

(v) If 3, 5ℓ+ 8 ∈ I, then det
(
[Wn][3],I

)
= 0 and hence, αn,I = 0.

(vi) If I ∈
{
{1, 3, 5ℓ+4}, {1, 3, 5ℓ+5}, {1, 5ℓ+4, 5ℓ′ +8}, {1, 5ℓ+5, 5ℓ′ +8}, then det

(
[Wn][3],I

)
= 0

and hence, αn,I = 0.
(vii) If I ∈

{
{2, 3, 5ℓ+6}, {2, 3, 5ℓ+7}, {2, 5ℓ+6, 5ℓ′ +8}, {2, 5ℓ+7, 5ℓ′ +8}, then det

(
[Wn][3],I

)
= 0

and hence, αn,I = 0.

Proposition 4.9. For all n ∈ N, if {1, 2} ⊆ J, {3, 4} ⊆ J or {1, 3} ⊆ J , then the polynomial aJ is
the zero polynomial. Equivalently, a{1,2}, a{1,3}, a{3,4}, a{1,2,3}, a{1,2,4}, a{1,2,5}, a{1,3,4}, a{1,3,5}, a{2,3,4},
and a{3,4,5} are zero polynomials.

Proof. The result follows from Lemma 4.8(i),(ii),(iii). □

To determine the signs of the coefficients of qn and to find vertices of the Newton polytope the
following lemmas will be particularly helpful.

Lemma 4.10. For all I ⊆ [5n+ 3] with |I| = 3, there exist pI ∈ R[λ] and gI in

G =
{

1, λ3k+1 + λ3k+2, λ3k+1 + λ3k+3, (λ3k+1 + λ3k+2)(λ3k′+1 + λ3k′+3) | k, k′ ∈ {0, . . . , n− 1}
}

such that αn,I = pI
gI
, and σ(pI) ⊆ σ(gI).

Proof. By Lemma 4.8(iv) if αn,I ̸= 0, then [D⊤
n (λ)][3],I has at most two entries involving λ. These

entries are of the following form:

−kλ3k+1−(k+1)λ3k+2

λ3k+1+λ3k+2
and

−kλ3k+1+(1−k)λ3k+3

λ3k+1+λ3k+3
.(38)

Hence, gI can be chosen from G. The inclusion σ(pI) ⊆ σ(gI) follows from the observation that
for all entries of [D⊤

n (λ)][3],I , the support of the numerator is contained in the support of the
denominator. □

We recall from Proposition 4.6 that δn(λ) is given by

δn(λ) =
n−1∏

k=0

(λ3k+1 + λ3k+2)(λ3k+1 + λ3k+3)λ
3
3k+1.
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Lemma 4.11. For every n ∈ N, consider the vector

νn :=
[
ν . . . ν

]⊤ ∈ R3n, where ν :=
[
5 0 0

]
.(39)

Then νn is a vertex of NP(δn(λ)). Furthermore, for n ≥ 2 and I ⊆ [5n − 2], if (ẑI , νn−1) ∈
σ−(qn−1), then (zI , νn) ∈ σ−(qn), where ẑI ∈ R5n−2 is obtained from zI ∈ R5n by removing the last
5 coordinates.

Proof. In each monomial of δn(λ), the degree of the variable λ3k+1 is at most 5 for each k =

0, . . . , n− 1. Moreover, there is a unique monomial in δn(λ) which is divisible by
∏n−1
i=0 λ

5
3k+1. This

implies that νn is a vertex of NP(δn(λ)). The second part follows from Proposition 4.7. □

For J ⊆ [5] and |J | ≤ 3, let aJ and Ĵ be as defined in (37) and in (35). Let I ⊆ [5n+ 3], |I| = 3

such that Ĵ ⊆ I and Ĵc ∩ I = ∅. If µ ∈ σ
(
δn(λ)αn,I

)
, then from the definition of aJ we get that

(zI , µ) ∈ σ(aJ
∏
i∈Ĵc hi). Moreover, we have the following result.

Lemma 4.12. Let J and I be as defined above, and write αn,I = pI
gI
. If pI has only positive

(resp. negative) coefficients, then (zI , µ) ∈ σ+(aJ
∏
i∈Ĵc hi) (resp. (zI , µ) ∈ σ−(aJ

∏
i∈Ĵc hi)) for

all µ ∈ σ
(
δn(λ)αn,I

)
.

Proof. By Lemma 4.10, gI divides δn(λ). Note that δn(λ)
gI

has only positive coefficients. Since pI
has only positive (resp. negative) coefficients, then

δn(λ)αn,I
∏

i∈Ic
hi = δn(λ)

gI
pI
∏

i∈Ic
hi(40)

has only positive (resp. negative) coefficients. Thus, (zI , µ) ∈ σ+(aJ
∏
i∈Ĵc hi) (resp. (zI , µ) ∈

σ−(aJ
∏
i∈Ĵc hi)) for all µ ∈ σ

(
δn(λ)αn,I

)
. □

The polynomial qn has 8n+ 3 many variables, h1, . . . , h5n+3, λ1, . . . , λ3n. Thus, σ(qn) ⊆ R5n+3×
R3n Let pr1 (resp. pr2) denote the coordinate projection from R5n+3×R3n onto R5n+3 (resp. R3n).
The following result finds vertices of the projected Newton polytope of aJ ’s.

Lemma 4.13. Let µ ∈ Vert
(

NP(δn(λ))
)
, and I ⊆ {I ⊆ [5n + 3] | |I| = 3}. Consider the

polynomial

f :=
∑

I∈I
δn(λ)αn,I

∏

i∈Ic
hi.

If there exists I0 ∈ I such that (zI0 , µ) ∈ σ(f), then µ is a vertex of pr2(NP(f)).

Proof. Let αn,I = pI
gI

. By Lemma 4.10, we have σ(pI) ⊆ σ(gI). Since gI divides δn(λ), it follows

that σ(δn(λ)αn,I) ⊆ σ(δn(λ)) for all I ∈ I. This implies that

pr2(σ(f)) ⊆
⋃

I∈I
σ(δn(λ)αn,I) ⊆ σ(δn(λ)).(41)

Since µ is a vertex of NP(δn(λ)), there exists v ∈ R3n such that v · ω < v · µ for all ω ∈
NP(δn(λ)) \ {µ}. From (zI0 , µ) ∈ σ(f) follows that µ ∈ pr2(σ(f)). Using (41), we conclude that µ
is a vertex of pr2(NP(f)). □

In the following, we investigate the signed supports of different aJ ’s.

Proposition 4.14. For every n ∈ N, if 1 ∈ J or 2 ∈ J , then aJ has only non-negative coefficients.
Furthermore, aJ is not the zero polynomial for J = {2, 3, 5}.
Proof. If 1 ∈ J , write I = {r1, r2, 5n− 1}. For ℓ, ℓ′ ∈ {0, . . . , n− 1}, by Lemma 4.8 αn,I ̸= 0 in the
following cases:

(i) When (r1, r2) = (1, 2) and (r1, r2) = (2, 3), we get αn,I = 1 and αn,I = n respectively.
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(ii) When (r1, r2) ∈ {(1, 5ℓ + 6), (2, 5ℓ + 6), (2, 5ℓ + 8), (3, 5ℓ + 6), (5ℓ + 6, 5ℓ′ + 8)}, we have
αn,I = n− ℓ− 1.

(iii) When (r1, r2) ∈ {(1, 5ℓ + 7), (2, 5ℓ + 7), (3, 5ℓ + 7), (5ℓ + 7, 5ℓ′ + 8)}, we obtain αn,I =

(n− ℓ− 1) +
λ3ℓ+3

λ3ℓ+1+λ3ℓ+3
.

Since the numerator of all these αn,I has only non-negative coefficients, from Lemma 4.12 it follows
that aJ with 1 ∈ J has only non-negative coefficients.

If 2 ∈ J , I = {r1, r2, 5n}. For ℓ, ℓ′ ∈ {0, . . . , n− 1}, by Lemma 4.8 αn,I ̸= 0 for following cases:

(i) When (r1, r2) = (1, 2), we get αn,I = 1.

(ii) When (r1, r2) = (2, 3), we get αn,I = n+ λ3n−1

λ3n−2+λ3n−1
.

(iii) When (r1, r2) ∈ {(1, 5ℓ + 6), (2, 5ℓ + 6), (2, 5ℓ + 8), (3, 5ℓ + 6), (5ℓ + 6, 5ℓ′ + 8)}, we have

αn,I = (n− ℓ− 1) + λ3n−1

λ3n−2+λ3n−1
.

(iv) When (r1, r2) ∈ {(1, 5ℓ + 7), (2, 5ℓ + 7), (3, 5ℓ + 7), (5ℓ + 7, 5ℓ′ + 8)}, we obtain αn,I =

(n− ℓ− 1) +
λ3ℓ+3

λ3ℓ+1+λ3ℓ+3
+ λ3n−1

λ3n−2+λ3n−1
.

Since the numerator of αn,I in the above cases has only non-negative coefficients, using again
Lemma 4.12, we conclude that aJ has only non-negative coefficients if 2 ∈ J .

The second part of the proposition follows from case (iii) listed above and Lemma 4.12. □

Proposition 4.14 implies the following corollary.

Corollary 4.15. The polynomials a{1}, a{2}, a{1,4}, a{1,5}, a{2,3}, a{2,4}, a{2,5}, a{1,4,5}, a{2,3,5}, and
a{2,4,5} have non-negative coefficients for all n ∈ N.

Next, in Corollary 4.16 we show that qn satisfies the closure property (P2) and to show connec-
tivity it is enough to consider the following polynomial

b(h, λ) :=
(
a∅(ĥ, λ)h5n+1h5n+2h5n+3 + a{3}(ĥ, λ)h5n+2h5n+3 + a{4}(ĥ, λ)h5n+1h5n+3

+ a{5}(ĥ, λ)h5n+1h5n+2 + a{3,5}(ĥ, λ)h5n+2 + a{4,5}(ĥ, λ)h5n+1

)
h5n−1h5n.

(42)

Corollary 4.16. For n ≥ 2, qn satisfies the closure property (P2). Additionally, if b in (42) has
one negative connected component, then qn also has exactly one negative connected component.

Proof. To prove this result, we first claim that there exists a proper face of NP(qn) that contains
all the negative exponent vectors of qn. Since in all the terms of qn the variables h5n−1, h5n have
exponents either 0 or 1, it follows that

(e5n−1 + e5n) · ω ≤ 2 for all ω ∈ σ(qn).

From Proposition 4.7, it follows that the above inequality is attained for some ω′ ∈ σ(qn). Since the
polynomial a{2,3,5} is non-zero by Proposition 4.14, there exists ω′′ ∈ σ(qn) that is not contained in
the face NPe5n−1+e5n(qn). We conclude that NPe5n−1+e5n(qn) is a proper face of NP(qn).

It is easy to check that qn restricted to NPe5n−1+e5n(qn) is exactly the polynomial given by
b(h, λ). From Proposition 4.9 and Proposition 4.14 it follows that each monomial of qn with
negative coefficient is divisible by h5n−1h5n. Therefore, σ−(qn) ⊆ NPe5n−1+e5n(qn) = NP(b). The
corollary now follows from Theorem 2.9. □

Next we will consider different summands of b(h, λ).

Proposition 4.17. For n ≥ 2, there exists a strict separating hyperplane of the signed support for
both a{3}(ĥ, λ)h5n−1h5nh5n+2h5n+3 and a{3,5}(ĥ, λ)h5n−1h5nh5n+2. Furthermore,

(a) (z{4,8,5n+1}, µ) ∈ σ−(a{3}(ĥ, λ)h5n−1h5nh5n+2h5n+3) for all µ ∈ σ(δn(λ)).

(b) (z{4,5n+1,5n+3}, µ) ∈ σ−(a{3,5}(ĥ, λ)h5n−1h5nh5n+2) for all µ ∈ σ(δn(λ)).
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Proof. If J = {3}, let I = {r1, r2, 5n + 1}. By Lemma 4.8, αn,I ̸= 0 in following cases, where
ℓ, ℓ′ ∈ {0, . . . , n− 2}:

(i) When (r1, r2) = (1, 2), we have αn,I = 1.
(ii) When (r1, r2) = (1, 3) and (r1, r2) = (1, 5ℓ+ 8), we get αn,I = −n+ 1 and αn,I = −n+ ℓ+ 2

respectively.
(iii) When (r1, r2) ∈ {(1, 5ℓ+4), (2, 5ℓ+4), (3, 5ℓ+4), (5ℓ+4, 5ℓ′+8)}, we have αn,I = −n+ℓ+1.
(iv) When (r1, r2) ∈ {(1, 5ℓ + 5), (2, 5ℓ + 5), (3, 5ℓ + 5), (5ℓ + 5, 5ℓ′ + 8)}, we obtain αn,I =

(−n+ℓ+1)λ3ℓ+1+(−n+ℓ+2)λ3ℓ+2

λ3ℓ+1+λ3ℓ+2
.

From Lemma 4.12, it follows

σ+(a{3}(ĥ, λ)h5n−1h5nh5n+2h5n+3) = {(z{1,2,5n+1}, µ) | µ ∈ σ(δn(λ))}.
Since (e1 + e2) · (zI , µ) ≥ 0 for all I ⊆ [5n + 3], |I| = 3 and µ ∈ σ(δn(λ)αn,I), the hyperplane

He1+e2,0 is a strict separating hyperplane of the support of a{3}(ĥ, λ)h5n−1h5nh5n+2h5n+3.
Let J = {3, 5}, and let I = {r1, 5n+ 1, 5n+ 3}. We only need to consider the following cases,

(i) When r1 = 1, we have αn,I = 1.
(ii) When r1 = 5ℓ+ 4, we have αn,I = −n+ ℓ+ 1.

(iii) When r1 = 5ℓ+ 5, we obtain αn,I =
(−n+ℓ+1)λ3ℓ+1+(−n+ℓ+2)λ3ℓ+2

λ3ℓ+1+λ3ℓ+2
.

The only non-negative numerator is given by I = {1, 5n+ 1, 5n+ 3} and hence, He1,0 gives a strict
separating hyperplane.

To prove the second part of the proposition, we note that for I = {4, 8, 5n + 1} and I =
{4, 5n + 1, 5n + 3}, αn,I = −n + 1 < 0. Additionally, since αn,I is an integer, σ(δn(λ)αn,I) =
σ(δn(λ)). Hence, for I = {4, 8, 5n + 1} (resp. I = {4, 5n + 1, 5n + 3}) and for all µ ∈ σ(δn(λ)),

(zI , µ) ∈ σ−(a{3}(ĥ, λ)h5n−1h5nh5n+2h5n+3) (resp. σ−(a{3,5}(ĥ, λ)h5n−1h5nh5n+2)). □
Corollary 4.18. For n ≥ 2, the polynomial

b0 :=
(
a{3}(ĥ, λ)h5n+2h5n+3 + a{3,5}(ĥ, λ)h5n+2

)
h5n−1h5n

has one negative connected component.

Proof. Let b0,1 := a{3}(ĥ, λ)h5n+2h5n+3h5n−1h5n and b0,2 := a{3,5}(ĥ, λ)h5n+2h5n−1h5n. The poly-
nomial b0,1 (resp. b0,2) is the restriction of b0 to the face of NPe5n+3(b0) (resp. NP−e5n+3(b0)).
Since σ(b0,1) and σ(b0,2) have strict separating hyperplanes (Proposition 4.17), b0,1 and b0,2 have
one negative connected component by Proposition 2.8.

Let µ ∈ σ(δn(λ)) be a vertex of NP
(
δn(λ)

)
. By Proposition 4.17, (z{4,8,5n+1}, µ) ∈ σ−(b0,1)

and (z{4,5n+1,5n+3}, µ) ∈ σ−(b0,2). Moreover, by Proposition 2.12, Conv(z{4,8,5n+1}, z{4,5n+1,5n+3})
is an edge of pr1(NP(b0)) and by Lemma 4.13, µ is a vertex of pr2(NP(b0)). Using Proposition
2.13 we get that Conv((z{4,8,5n+1}, µ), (z{4,5n+1,5n+3}, µ)) is an edge of NP(b0). Since b0,1 and b0,2
have exactly one negative connected component and NP(b0) has an edge connecting two negative
vertices of NP(b0,1) and NP(b0,2), we conclude by Theorem 2.10 that b0 has one negative connected
component. □
Proposition 4.19. For n ≥ 2, the supports σ(a{4}h5n−1h5nh5n+1h5n+3), σ(a{5}h5n−1h5nh5n+1h5n+2),
and σ(a{4,5}h5n−1h5nh5n+1) have strict separating hyperplanes. For n ≥ 3, we have

(a) (z{1,4,5n+2}, µ) ∈ σ−(a{4}(ĥ, λ)h5n−1h5nh5n+1h5n+3) for all µ ∈ σ(δn(λ)),

(b) (z{2,4,5n+3}, µ) ∈ σ−(a{5}(ĥ, λ)h5n−1h5nh5n+1h5n+2) for all µ ∈ σ(δn(λ)),

(c) (z{4,5n+2,5n+3}, µ) ∈ σ−(a{4,5}(ĥ, λ)h5n−1h5nh5n+1) for all µ ∈ σ(δn(λ)).

Let n = 2 and ν2 be as given in (39). Then,

(a’) (z{1,4,12}, ν2) ∈ σ−(a{4}(ĥ, λ)h9h10h11h13),
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(b’) (z{2,4,13}, ν2) ∈ σ−(a{5}(ĥ, λ)h9h10h11h12),

(c’) (z{4,12,13}, ν2) ∈ σ−(a{4,5}(ĥ, λ)h9h10h11).

Proof. Let J = {4} and I = {r1, r2, 5n+ 2}. By Lemma 4.8, αn,I ̸= 0 in the following cases, where
ℓ, ℓ′ ∈ {0, . . . , n− 2}:

(i) When (r1, r2) = (1, 2) and (r1, r2) = (1, 3), we get αn,I = 1 and αn,I = (−n+1)λ3n−2+(−n+2)λ3n
λ3n−2+λ3n

respectively.
(ii) When (r1, r2) ∈ {(1, 5ℓ+4), (2, 5ℓ+4), (3, 5ℓ+4), (5ℓ+4, 5ℓ′ +8)}, we obtain the expression

αn,I = (−n+ℓ+1)λ3n−2+(−n+ℓ+2)λ3n
λ3n−2+λ3n

(iii) When (r1, r2) ∈ {(1, 5ℓ + 5), (2, 5ℓ + 5), (3, 5ℓ + 5), (5ℓ + 5, 5ℓ′ + 8)}, we obtain αn,I =
(−n+ℓ+1)λ3ℓ+1λ3n−2+(−n+ℓ+2)λ3ℓ+2λ3n−2+(−n+ℓ+2)λ3ℓ+1λ3n+(−n+ℓ+3)λ3ℓ+2λ3n

(λ3ℓ+1+λ3ℓ+2)(λ3n−2+λ3n)
.

(iv) Finally, when (r1, r2) = (1, 5ℓ+ 8), we get αn,I = (−n+ℓ+2)λ3n−2+(−n+ℓ+3)λ3n
λ3n−2+λ3n

.

For all (zI , µ) ∈ σ(a{4}h5n−1h5nh5n+1h5n+3), we have

(−e4) · (zI , µ) ≥ −1,(43)

with strict inequality if and only if I = {1, 4, 5n+ 2} , {2, 4, 5n+ 2}, {3, 4, 5n+ 2} , {4, 5ℓ+ 8, 5n+ 2},
ℓ ∈ {0, . . . , n − 2}. Using above cases and Lemma 4.12 if the inequality is strict, (zI , µ) ∈
σ−(a{4}h5n−1h5nh5n+1h5n+3) for all µ ∈ σ(δn(λ)αn,I). Hence, H−e4,−1 is a strict separating hyper-
plane of σ(a{4}h5n−1h5nh5n+1h5n+3).

Let J = {5} and I = {r1, r2, 5n + 3}. By Lemma 4.8, it is enough to compute αn,I for ℓ, ℓ′ ∈
{0, . . . , n− 2} in the following cases:

(i) When (r1, r2) = (1, 2), (r1, r2) = (1, 5ℓ+6), (r1, r2) = (2, 5ℓ+4), and (r1, r2) = (5ℓ+4, 5ℓ′+6)
we get αn,I as 1, n− ℓ,−n+ ℓ+ 1, and ℓ− ℓ′, respectively.

(ii) When (r1, r2) = (1, 5ℓ + 7) and (r1, r2) = (2, 5ℓ + 5), we get αn,I =
(n−ℓ)λ3ℓ+1+(n−ℓ+1)λ3ℓ+3

λ3ℓ+1+λ3ℓ+3

and αn,I =
(−n+ℓ+1)λ3ℓ+1+(−n+ℓ+1)λ3ℓ+2

λ3ℓ+1+λ3ℓ+2
, respectively.

(iii) When (r1, r2) = (5ℓ + 4, 5ℓ′ + 7) and (r1, r2) = (5ℓ + 5, 5ℓ′ + 6), we obtain the expression

αn,I = (ℓ− ℓ′) +
λ3ℓ′+3

λ3ℓ′+1+λ3ℓ′+3
and αn,I = (ℓ− ℓ′) +

λ3ℓ+2

λ3ℓ+1+λ3ℓ+2
, respectively.

(iv) Finally, when (r1, r2) = (5ℓ+ 5, 5ℓ′ + 7), we get αn,I = (ℓ− ℓ′) +
λ3ℓ+2

λ3ℓ+1+λ3ℓ+2
+

λ3ℓ′+3

λ3ℓ′+1+λ3ℓ′+3
.

To show that a{5} has a separating hyperplane, we observe that:

(a) if 1 ∈ I and 2 /∈ I then the numerator of αn,I has only positive coefficients, and
(b) if 1 /∈ I and 2 ∈ I then the numerator of αn,I has only negative coefficients.

Hence, He1−e2,0 is a strict separating hyperplane of a{5}h5n−1h5nh5n+1h5n+2 by Lemma 4.12.
Finally, let J = {4, 5} and let I = {r1, 5n+ 2, 5n+ 3}. Then by Lemma 4.8, αn,I is non-zero in

the following cases:

(i) When r1 = 1, we have αn,I = λ3n−2+2λ3n
λ3n−2+λ3n

.

(ii) When r1 = 5ℓ+ 4, we have αn,I = (−n+ℓ+1)λ3n−2+(−n+ℓ+2)λ3n
λ3n−2+λ3n

.

(iii) When r1 = 5ℓ+ 5, we obtain αn,I = (−n+ ℓ+ 1)
λ3ℓ+2

λ3ℓ+1+λ3ℓ+2
+ λ3n

λ3n−2+λ3n
,

where ℓ, ℓ′ ∈ {0, . . . n− 2}.
To show that σ(a{4,5}) has a strict separating hyperplane, we note that:

(a) if 1 ∈ I and 4 /∈ I then the numerator of αn,I has only positive coefficients. and
(b) if 1 /∈ I and 4 ∈ I then the numerator of αn,I has only negative coefficients.

Hence, He1−e4,0 is a strict separating hyperplane of σ(a{4,5}h5n−1h5nh5n+1) by Lemma 4.12.
We now focus on the second part of the proposition. We only explicitly prove part (a), the

cases (b) and (c) follow the similar argument and observations. The coefficients of the numerator
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of αn,I are negative for I = {1, 4, 5n + 2} and (z{1,4,5n+2}, µ) ∈ σ(a{4}(ĥ, λ)h5n−1h5nh5n+1h5n+3).
Moreover, the support of the numerator of αn,I is same as the support of the denominator of αn,I
for n ≥ 3. Hence, σ(δn(λ)) = σ(δn(λ)αn,I). Now, the statement follows from Lemma 4.12.

To prove (a’),(b’),(c’), we observe that

α2,I = −λ4
λ4+λ6

, if I = {1, 4, 12} or I = {4, 12, 13}, and α2,I = −1, if I = {2, 4, 13}.
Thus, for I ∈ {{1, 4, 12}, {4, 12, 13}, {2, 4, 13}}, λ51λ54 is a monomial of δ2(λ)α2,I with negative
coefficients. This completes the proof. □

We now present the main result of this section.

Theorem 4.20. For all n ≥ 2, both for reduced weakly irreversible phosphorylation network (F2,n)
and for the weakly irreversible phosphorylation network (N2,n), the parameter region of multista-
tionarity is non-empty and path connected.

Proof. To prove that the parameter region of multistationarity is connected, it is enough to show
that the polynomial b in (42) has one negative connected component for all n by Corollary 4.16.
We relabel the summands of b as follows:

(44)

b0 =
(
a{3}(ĥ, λ)h5n+2h5n+3 + a{3,5}(ĥ, λ)h5n+2)

)
h5n−1h5n,

b1 := a∅(ĥ, λ)h5n−1h5nh5n+1h5n+2h5n+3, b2 := a{4}(ĥ, λ)h5n−1h5nh5n+1h5n+3,

b3 := a{5}(ĥ, λ)h5n−1h5nh5n+1h5n+2, and b4 := a{4,5}(ĥ, λ)h5n−1h5nh5n+1.

For all n ≥ 2, we make the following observations:

(O1) Polynomials b1 and b2 are the restrictions of the polynomial b1 + b2 to the parallel faces
NPe5n+2(b1 + b2) and NP−e5n+2(b1 + b2).

(O2) Polynomials b3 and b4 are the restrictions of the polynomial b3 + b4 to the parallel faces
NPe5n+2(b3 + b4) and NP−e5n+2(b3 + b4).

(O3) Polynomials b1 + b2 and b3 + b4 are the restrictions of b1 + b2 + b3 + b4 to the parallel faces
NPe5n+3(b1 + b2 + b3 + b4), and NP−e5n+3(b1 + b2 + b3 + b4).

(O4) Lastly, polynomials b0 and b1 + b2 + b3 + b4 are the restrictions of b to the parallel faces
NPe5n+1(b), and NP−e5n+1(b).

From Proposition 4.19, it follows that the support of b2, b3, b4 have strict separating hyperplanes.
Thus, b2, b3, b4 have one negative connected component by Proposition 2.8. Moreover, the polyno-
mial b0 satisfies (P1) by Corollary 4.18.

We will use these observations to first show that b has one negative connected component for
n = 2 and then use induction on n.

For n = 1, the critical polynomial q1 only has positive coefficients. For n = 2, by Lemma 4.7, we
have

b1 = q1(ĥ, λ̂)(λ4 + λ5)(λ4 + λ6)λ
3
4h9h10h11h12h13.

Therefore, σ−(b1 + b2) ⊆ NP−e12(b1 + b2). Since b2 has one negative connected component, by
observation (O1) above and Theorem 2.9, b1 + b2 satisfies (P1).

Let ν2 = [5, 0, 0, 5, 0, 0]⊤. By Lemma 4.11, ν2 ∈ Vert(NP(δ2(λ))). Let I0 := {4, 11, 13}, I2 :=
{1, 4, 12}, I3 = {2, 4, 13}, I4 := {4, 12, 13}. From Proposition 4.17 and Proposition 4.19 it follows
that

(zI0 , ν2) ∈ σ−(b0), (zI2 , ν2) ∈ σ−(b1 + b2), (zI3 , ν2) ∈ σ−(b3), (zI4 , ν2) ∈ σ−(b4).

Using Lemma 4.13, Proposition 2.12, and Proposition 2.13 we have the following edges joining
negative vertices of parallel faces in (O2)-(O4):

(i) Conv((zI3 , ν2), (zI4 , ν2)) is an edge joining negative vertices of NP(b3 + b4),
(ii) Conv((zI2 , ν2), (zI4 , ν2)) is an edge joining negative vertices of NP(b1 + b2 + b3 + b4),
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(iii) Conv((zI0 , ν2), (zI4 , ν2)) is an edge joining negative vertices of NP(b0 + b1 + b2 + b3 + b4).

Since, b0, b1 + b2, b3, b4 satisfy (P1), the cases above and repeated application of Theorem 2.10 gives
that b has one negative connected component for n = 2.

Let n ≥ 3 and assume that qk has one negative connected component for all 2 ≤ k ≤ n− 1. By
the inductive assumption qn−1 has one negative connected component and thus, by Proposition 4.7
so does b1.

Let I0 := {4, 5n + 1, 5n + 3}, I1 := {1, 4, 5n − 3}, I2 := {1, 4, 5n + 2}, I3 = {2, 4, 5n + 3},
I4 := {4, 5n+ 2, 5n+ 3} and let νn as defined in (39). Note that νn ∈ Vert(NP(δn(λ))) by Lemma
4.11. From Lemma 4.11, Proposition 4.17 and Proposition 4.19 it follows that

(zI0 , νn) ∈ σ−(b0), (zI1 , νn) ∈ σ−(b1), (zI2 , νn) ∈ σ−(b2), (zI3 , νn) ∈ σ−(b3), (zI4 , νn) ∈ σ−(b4).

Using Lemma 4.13, Proposition 2.12, and Proposition 2.13 we conclude that:

(i) Conv((zI1 , νn), (zI2 , νn)) is an edge joining negative vertices of NP(b1 + b2),
(ii) Conv((zI3 , νn), (zI4 , νn)) is an edge joining negative vertices of NP(b3 + b4),

(iii) Conv((zI2 , νn), (zI4 , νn)) is an edge joining negative vertices of NP(b1 + b2 + b3 + b4),
(iv) Conv((zI0 , νn), (zI4 , νn)) is an edge joining negative vertices of NP(b0 + b1 + b2 + b3 + b4).

Using observations (O1)-(O4) and Theorem 2.10, we conclude that b has one negative connected
component.

Since qn attains negative values, from [4, Theorem 1] it follows that the multistationarity region
is non-empty for the reduced network (F2,n). From [12, Theorem 5.1], it follows that (N2,n) is
multistationary for some choice of the parameters. □
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ON GENERALIZING DESCARTES’ RULE OF SIGNS TO

HYPERSURFACES

ELISENDA FELIU AND MÁTÉ L. TELEK

Abstract. We give partial generalizations of the classical Descartes’ rule of signs to multi-
variate polynomials (with real exponents), in the sense that we provide upper bounds on the
number of connected components of the complement of a hypersurface in the positive orthant.
In particular, we give conditions based on the geometrical configuration of the exponents and
the sign of the coefficients that guarantee that the number of connected components where the
polynomial attains a negative value is at most one or two. Our results fully cover the cases where
such an upper bound provided by the univariate Descartes’ rule of signs is one. This approach
opens a new route to generalize Descartes’ rule of signs to the multivariate case, differing from
previous works that aim at counting the number of positive solutions of a system of multivariate
polynomial equations.

Keywords: semi-algebraic set; signomial; Newton polytope; connectivity; convex function

1. Introduction

Descartes’ rule of signs, established by René Descartes in his book La Géométrie in 1637,
provides an easily computable upper bound for the number of positive real roots of a univariate
polynomial with real coefficients. Specifically, it states that the polynomial cannot have more
positive real roots than the number of sign changes in its coefficient sequence (excluding zero
coefficients). In 1828, Gauss improved the rule by showing that the number of positive real roots,
counted with multiplicity, and the number of sign changes in the coefficients sequence, have the
same parity [22]. Since then, several different proofs were published e.g. [1, 17, 43], and several
generalizations were made in several directions. In 1918, Curtiss gave a proof that works for real
exponents and even for some infinite series [17]. In 1999, Grabiner showed that Descartes’ bound
is sharp, that is, for every given sign sequence, one can always find compatible coefficients such
that the polynomial has the maximum possible number of positive roots provided by Descartes’
bound [25]. Generalizations of the Descartes’ rule to other types of functions in one variable are
also available [28, 42].

Efforts to generalize Descartes’ rule of signs to the multivariate case have focused on systems
of n multivariate polynomial equations in n variables, and on bounding the number of solutions
in the positive orthant using sign properties of the coefficients of the system. The first conjecture
for such a bound was published in 1996 by Itenberg and Roy [29]. They were able to show their
conjecture for some special cases. The first non-trivial example supporting the conjecture was
presented by Lagarias and Richardson [32] in 1997. Almost at the same time, Li and Wang
gave a counterexample to the Itenberg-Roy conjecture [33]. The first generalization was given
recently and identifies systems with at most one solution in the positive orthant [35], see also [15].
Afterwards, a sharp upper bound was given for systems of polynomials supported on circuits
[10, 11]. In these works, the bound is given in terms of the sign variation of a sequence associated
both with the exponents and the coefficients of the system. To the best of our knowledge, these
are the only known generalizations of Descartes’ rule of signs to the multivariate case.

Descartes’ rule of signs allows however for a “dual” presentation: it gives an upper bound on
the number of connected components of R>0 minus the zero set of the polynomial, and if the
sign of the highest degree term is fixed, then it also gives an upper bound on the number of
connected components where the polynomial evaluates positively or negatively. Specifically, if
we write f(x) = a0 + a1x + · · · + anx

n with an ̸= 0, and let ρ be the Descartes’ bound on the
number of positive roots, then there are at most ρ + 1 connected components. If ρ is odd, the

1
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(a) (b) (c) (d)

Figure 1. Graphs of polynomials p of degree three with coefficient sign sequence (+−
+−). In each figure, the connected components of R>0 minus the zero set of p, where p

evaluates positively or negatively, are shown in red and blue respectively. (a) 8− 12x+

6x2 − x3. (b) 9− 15x+ 7x2 − x3. (c) 15− 23x+ 9x2 − x3. (d) 3− 7x+ 5x2 − x3.

upper bounds for the number of components where f is positive or negative agree, while if ρ is
even, then there are at most ρ

2 + 1 connected components where f attains the sign of an. For
example, if after ignoring zero coefficients, the sign sequence of the coefficients is (++−−), then
there is one connected component where the polynomial evaluates positively and one where it
evaluates negatively. If the sequence is (+−+−), then there at most two connected components
where the polynomial evaluates positively and at most two where it evaluates negatively, see
Fig. 1.

With this presentation, Descartes’ rule of signs may be generalized to hypersurfaces in the
following sense. Let f : Rn>0 → R be a signomial (a multivariate generalized polynomial, where
we allow real exponents, restricted to the positive orthant), and consider the sets

(1) V>0(f) := {x ∈ Rn>0 | f(x) = 0}, V c
>0(f) := Rn>0 \ V>0(f).

We aim at bounding the number of connected components of V c
>0(f) in terms of the relative

position of the exponent vectors of each monomial of f in Rn, and the sign of the coefficients.
This leads to the formulation of the following problem for the generalization of Descartes’ rule
of signs to hypersurfaces.

Problem 1.1. Consider a signomial f : Rn>0 → R with f(x) =
∑

µ∈σ(f) cµx
µ, and σ(f) ⊆ Rn a

finite set. Find a (sharp) upper bound on the number of connected components of V c
>0(f), where

f takes negative (resp. positive) values, based on the sign of the coefficients and the geometry of
σ(f).

In this paper we address Problem 1.1 for generic n in some scenarios, which, in particular,
include the univariate Descartes’ rule of signs when the upper bound on the number of connected
components where f is negative is one, that is, when the sign sequence is one of (+ · · ·+− · · ·−),
(− · · · −+ · · ·+), or (+ · · ·+− · · · −+ · · ·+).

Specifically, we show that V c
>0(f) has at most one connected component where f is negative

if f has only one negative coefficient (Theorem 3.4). The same holds if there exists a hyperplane
separating the exponents with positive coefficients from those with negative coefficients (Theo-
rem 3.6), or if the exponents with negative coefficient lie on a simplex such that the exponents
with positive coefficient lie outside the simplex in a certain way (Theorem 4.6). A detailed
account of our results is given in Section 5. We focus on finding upper bounds for the num-
ber of negative connected components, as statements about the number of positive connected
components of V c

>0(f) follows by studying −f .

If f is a polynomial, that is, σ(f) ⊆ Zn≥0, the set V c
>0(f) is semi-algebraic and hence it has a

finite number of connected components [7, Theorem 5.22]. Computing topological invariants of
semi-algebraic sets, such as the number of connected components, has been heavily studied in
real algebraic geometry. Upper bounds of the sum of the Betti numbers of a semi-algebraic set
in terms of the number of variables, the degree and the number of the defining polynomials can
be found for example in [4, Theorem 1], [21, Theorem 6.2], and [8, Theorems 1.8 and 2.7]. For
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the number of connected components of a semi-algebraic set, that is, the 0-th Betti number, an
upper bound was given in [6, Theorem 1], [3, Theorem 1.1].

There exist several algorithms to compute the number of connected components of a semi-
algebraic set. One algorithm is provided by Cylindrical Algebraic Decomposition, but it has
double exponential complexity (see [7, Remark 11.19]). A more efficient way to compute con-
nected components is using so-called road maps. In this way, one has an algorithm with single
exponential complexity. For more details about this algorithm, see [5, Section 3].

The Descartes’ rule of signs is of special importance in applications where positive solutions
to polynomial systems are the object of study. This is the case in models in biology and
(bio)chemistry where variables are concentrations or abundances. It is precisely in this setting,
namely the theory of biochemical reaction networks, where our motivation to consider Problem
1.1 comes from. In an upcoming paper, we show that the connectivity of the set of parameters
that give rise to multistationarity in a reaction network [14, 16, 30] relies on the number of
connected components of the complementary of a hypersurface. The hypersurface of interest
is large for realistic networks, with many monomials and variables, and hence not manageable
by algorithms from semi-algebraic geometry. The advantage of the techniques presented here is
that they rely on linear optimization problems, and can handle this application.

The paper is organized as follows. In Section 2, we provide the notation and basic results on
signomials. In Section 3, we give bounds answering Problem 1.1 using separating hyperplanes
(Theorem 3.6, 3.8), while in Section 4 bounds are found by providing conditions that guarantee
that the signomial can be transformed into a convex function, while preserving the number of
connected components of V c

>0(f) (Theorem 4.6). In Section 5, we compare the two approaches.
Throughout we illustrate our results with examples and figures, worked out using SageMath
[41].

Notation. R≥0, R>0 and R<0 refer to the sets of non-negative, positive and negative real
numbers respectively. We denote the Euclidean scalar product of two vectors v, w ∈ Rn by v ·w.
For a set σ ⊆ Rm, a matrix M ∈ Rn×m and a vector v ∈ Rn we write Mσ + v for the set
{Ms + v | s ∈ σ}. For two sets A,B ⊆ Rn, the set A + B = {a + b | a ∈ A, b ∈ B} is the
Minkowski sum of A and B. We let Conv(A) denote the convex hull of A. For a1, . . . , am ∈ Rn,
we write Conv(a1, . . . , am) := Conv({a1, . . . , am}). By convention, the maximum over an empty
set is −∞, and the minimum over an empty set is ∞. The symbol #S denotes the cardinality
of a finite set S.

2. Preliminaries

The central object of study is a function

f : Rn>0 → R, f(x) =
∑

µ∈σ(f)
cµx

µ, with cµ ∈ R \ {0},(2)

where σ(f) ⊆ Rn is a finite set, called the support of f . Here xµ is the usual short notation
for xµ11 . . . xµnn . To emphasize that we restrict the domain of f to the positive orthant, we call
f a signomial. That is, a signomial is a generalized polynomial on the positive orthant. The
term signomial was introduced by Duffin and Peterson in the early 1970s [19]. Since then, it is
commonly used in geometric programming [12, 39].

Given a signomial f as in (2) and a set S ⊆ σ(f), we define the restriction of f to S by
considering the monomials with exponent vectors in S:

(3) f|S(x) =
∑

µ∈S
cµx

µ.

With the notation in (1) and by continuity, the signomial f has constant sign in each connected
component of V c

>0(f).
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Figure 2. (a) Newton polytope of p1(x1, x2) from Example 2.2. Blue points are neg-

ative and red points are positive. (b) The positive and negative connected components of V c
>0(p1).

Definition 2.1. Let f be a signomial in n variables.

• A connected component U of V c
>0(f) is said to be positive if f(x) > 0 for every x ∈ U .

We say U is negative, if f(x) < 0 for every x ∈ U .
• The convex hull of σ(f) is called the Newton polytope of f and denoted by N(f).
• A point α ∈ σ(f) is called positive, resp. negative, if the coefficient cα is positive, resp.

negative. The set σ(f) is partitioned into the set of positive points and the set of negative
points:

σ+(f) := {α ∈ σ(f) | cα > 0} and σ−(f) := {β ∈ σ(f) | cβ < 0}.

Example 2.2. The support of the signomial

p1(x1, x2) = x2.51 − 2x0.51 x22 + x0.51 − x2.51 x−2
2

is σ(p1) = {(2.5, 0), (0.5, 2), (0.5, 0), (2.5,−2)}. The points (2.5, 0), (0.5, 0) are positive, while the
points (0.5, 2), (2.5,−2) are negative. The Newton polytope of p1 and the positive and negative
connected components of V c

>0(p1) are displayed in Fig. 2.

In what follows, it will be convenient to consider transformations of the support that do not
change the number of negative (resp. positive) connected components. Any invertible matrix
M ∈ GLn(R) induces a function

hM : Rn>0 → Rn>0, x 7→ xM := (xM1 , . . . , xMn)(4)

where M1, . . . ,Mn denote the columns of M . The function hM is called a monomial change of
variables and it is a homeomorphism.

Lemma 2.3. For M ∈ GLn(R), v ∈ Rn, and a signomial f on Rn>0, define the signomial

FM,v,f : Rn>0 → R, FM,v,f (x) = xvf(hM (x)).

There is a homeomorphism between the positive (resp. negative) connected components of V c
>0(f)

and V c
>0(FM,v,f ). Furthermore,

σ+
(
FM,v,f

)
= Mσ+(f) + v and σ−

(
FM,v,f

)
= Mσ−(f) + v.

Proof. If f(x) =
∑

µ∈σ(f) cµx
µ, we have

FM,v,f (x) = xvf(hM (x)) =
∑

µ∈σ(f)
cµx

v(xM )µ =
∑

µ∈σ(f)
cµx

Mµ+v.

From this, the second part of the lemma follows.
For the first part, clearly, the identity map induces a sign-preserving homeomorphism between

V c
>0(FM,v,f ) and V c

>0(f ◦hM ), and the map hM induces a homeomorphism between V c
>0(f ◦hM )

and V c
>0(f), which also preserves the sign of each connected component. □
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In view of Lemma 2.3, we can for example assume that all exponent vectors belong to Rn>0 if
necessary. Moreover, if σ(f) ⊆ Qn, then f can be replaced by a polynomial and the number of
negative (resp. positive) connected components of V c

>0(f) remains unchanged.

Example 2.4. The matrix M =

(
0.5 0.5
0.5 0

)
and the vector v = (−0.25,−0.25) transform the

signomial p1 from Example 2.2 to the polynomial FM,v,p1(x1, x2) = x1x2 − 2x2 + 1− x1.

3. Paths on logarithmic scale

In this section, we provide the first results towards Problem 1.1. The idea behind the proofs in
this section relies on reducing the multivariate signomial to a univariate signomial, and applying
Descartes’ rule of signs. To this end, given v ∈ Rn and x ∈ Rn>0, we consider continuous paths

γv,x : [1,∞)→ Rn>0, t 7→ (tv1x1, . . . , t
vnxn).(5)

In logarithmic scale, applying the coordinate-wise natural logarithm map

Log : Rn>0 → Rn, (x1, . . . , xn) 7→ (log(x1), . . . , log(xn)),(6)

each path γv,x is transformed into a half-line τv,Log(x) : [0,∞)→ Rn, s 7→ s v+Log(x), with start
point Log(x) and direction vector v. Specifically,

(7) Log ◦ γv,x = τv,Log(x) ◦ log, in [1,∞).

Since the logarithm map Log is a homeomorphism, the topological properties of f−1(R<0) and
of its image under Log are the same. This observation gives us an easy geometric way to think
about paths γv,x.

Given a signomial f , each v ∈ Rn and x ∈ Rn>0 induce a signomial function in one variable:

fv,x : R>0 → R, t 7→
∑

µ∈σ(f)
(cµx

µ)tv·µ.(8)

Note that fv,x(1) = f(x). Since the restriction of fv,x to [1,∞) is the composition f ◦ γv,x,
understanding the properties of fv,x allows us to determine whether the path γv,x is in the pre-
image of the negative real line under f . This motivates the study of signomials in one variable.
The following lemma will be used repeatedly in what follows. Its proof is a direct application of
Descartes’ rule of signs.

Lemma 3.1. Let g : R>0 → R, g(t) =
∑

ν∈σ(g) aνt
ν , be a signomial in one variable such that

g(1) < 0.

(i) If the sign sequence of the coefficients of g has at most two sign changes, and the leading
coefficient is positive, then there is unique ρ ∈ (1,∞) such that g(ρ) = 0, and it holds
that g(t) < 0 for all t ∈ [1, ρ) and g(t) > 0 for all t ∈ (ρ,∞).

(ii) If the sign sequence of the coefficients of g has at most one sign change, and the leading
coefficient is negative, then g(t) < 0 for all t ∈ [1,∞).

Following the notation of [31, Section 2.3.1] and [26, Section 1.1], for every v ∈ Rn and a ∈ R,
we define a hyperplane Hv,a := {µ ∈ Rn | v · µ = a}, and two half-spaces

H+
v,a := {µ ∈ Rn | v · µ ≥ a} and H−

v,a := {µ ∈ Rn | v · µ ≤ a}.

We let H+,◦
v,a ,H−,◦

v,a denote the interior of H+
v,a, and H−

v,a respectively. Although Hv,a = H−v,−a,
the choice of sign determines which half-space is positive and which one is negative.

As we will see in Lemma 3.3, the relative position of a hyperplane Hv,a and the points in
σ(f) gives valuable information about the behavior of the function fv,x in (8). To this end, we
introduce the following types of vectors v.

Definition 3.2. Let v ∈ Rn.
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(i) We say that v is a separating vector of σ(f) if for some a ∈ R it holds

σ−(f) ⊆ H+
v,a, σ+(f) ⊆ H−

v,a.

The separating vector v is strict if σ−(f) ∩ H+,◦
v,a ̸= ∅, and very strict if additionally

σ−(f)∩Hv,a = ∅ for some a ∈ R. Let S−(f) denote the set of separating vectors of σ(f).
(ii) We say that v is an enclosing vector of σ(f) if for some a, b ∈ R, a ≤ b, it holds

σ−(f) ⊆ H+
v,a ∩H−

v,b, σ+(f) ⊆ Rn \ (H+,◦
v,a ∩H−,◦

v,b ).

We say that v is a strict enclosing vector of σ(f) if additionally σ+(f) ∩ H−,◦
v,a ̸= ∅ and

σ+(f) ∩H−,◦
v,b ̸= ∅. We denote by E−(f) the set of enclosing vectors of σ(f).

The sets of separating and enclosing vectors can be described algebraically as

S−(f) =
{
v ∈ Rn | max

α∈σ+(f)
v · α ≤ min

β∈σ−(f)
v · β

}
,(9)

E−(f) = {v ∈ Rn | ∀α ∈ σ+(f) : v · α ≤ min
β∈σ−(f)

v · β or max
β∈σ−(f)

v · β ≤ v · α}.(10)

For v ∈ S−(f), setting a := maxα∈σ+(f) v · α, Definition 3.2(i) holds. For v ∈ E−(f), we let
a := minβ∈σ−(f) v · β and b := maxβ∈σ−(f) v · β and Definition 3.2(ii) holds.

Note that a separating vector is in particular an enclosing vector, that is, S−(f) ⊆ E−(f).
Using the algebraic description of S−(f) from (9), one can easily show that S−(f) is a convex
cone, i.e. it is closed under addition and multiplication by a nonnegative scalar [44, Ch. 1].

For a separating vector v to be strict, there must be a negative point in σ(f) in H+
v,a that is

not in the hyperplane Hv,a. That is, there exists β0 ∈ σ−(f) such that maxα∈σ+(f) v ·α < v · β0.
For it to be very strict, no negative point of σ(f) lies on the hyperplane, or equivalently, the
inequality defining S−(f) in (9) is strict. Fig. 3(a) shows a strict separating vector.

Enclosing vectors enclose all negative points of σ(f) between two parallel hyperplanes sepa-
rated from the positive points, but points of both signs are allowed to be in the two hyperplanes.
For an enclosing vector v to be strict, there must be positive points on the side of the hyperplanes
not containing the negative points, that is, there exist α1, α2 ∈ σ+(f) such that the inequalities
in (10) are strict for that v respectively. See Fig. 4(a).

Enclosing and separating vectors order the exponents of fv,x in (8), such that the negative
and positive coefficients are grouped. This has the following consequences.

Lemma 3.3. Let f : Rn>0 → R be a signomial and x ∈ Rn>0.

(i) If v ∈ E−(f), then there are at most two sign changes in the coefficient sign sequence
of the signomial fv,x. If v is additionally strict, then both the leading coefficient and the
coefficient of smallest degree of fv,x are positive.

(ii) If v ∈ S−(f), then there is at most one sign change in the coefficient sign sequence of
the signomial fv,x. If v is strict, then the leading coefficient of fv,x is negative.

Additionally if f(x) < 0, then the following statements hold:

(i’) If v ∈ E−(f), then there is a unique ρ ∈ (1,∞] such that fv,x(t) < 0 for all t ∈ [1, ρ) and
fv,x(t) > 0 for all t > ρ (note that ρ might be ∞).

(ii”) If v ∈ S−(f), then fv,x(t) < 0 for all t ∈ [1,∞).

Proof. (i) and (i’). For v ∈ E−(f), v orders the exponents v · µ such that the sign sequence is
(+ · · ·+− · · · −+ · · ·+), with potentially one or more of the three blocks of repeated signs not
present. The positive blocks are present if v is strict by definition, showing (i).

For f(x) < 0, if the leading coefficient of fv,x is positive, then Lemma 3.1(i) gives the existence
of a unique ρ ∈ (1,∞) satisfying (i’) in the statement. If the leading coefficient of fv,x is negative,
then v ∈ S−(f) and this case is covered next, and gives ρ =∞.

(ii) and (ii’). From v ∈ S−(f), it follows that the signomial fv,x has at most one sign change
in its coefficient sequence, as maxα∈σ+(f) v · α ≤ minβ∈σ−(f) v · β. If v is strict, then for at
least one β0 ∈ σ−(f) we have maxα∈σ+(f) v · α < v · β0, and hence the leading term is negative,
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showing (ii). If fv,x(1) = f(x) < 0, fv,x must have some negative coefficient. Using v ∈ S−(f),
we conclude that the leading coefficient is negative and v is strict. Lemma 3.1(ii) gives now
statement (ii’). □
Theorem 3.4. Let f : Rn>0 → R be a signomial. If at most one coefficient of f is negative,
then f−1(R<0) is a logarithmically convex set. In particular, V c

>0(f) has at most one negative
connected component.

Proof. Let x, y ∈ f−1(R<0), define v := Log(y) − Log(x), and let e denote Euler’s number.
Since f has at most one negative coefficient, v is an enclosing vector, c.f. Definition 3.2(ii).
Since fv,x(1) = f(x) < 0 and fv,x(e) = f(y) < 0, Lemma 3.3(i’) implies that fv,x(t) < 0 for
all t ∈ [1, e] and hence γv,x(t) ∈ f−1(R<0) for t ∈ [1, e]. Applying Log, equality (7) gives that
τv,Log(x)(s) ∈ Log(f−1(R<0)) for all s ∈ [0, 1]. As τv,Log(x) in the interval [0, 1] is simply the line

segment joining Log(x) and Log(y), Log(f−1(R<0)) is convex. This concludes the proof. □
We will now show that the existence of one strict separating vector implies that V c

>0(f) has
at most one negative connected component, which in addition is contractible. To this end, we
need an auxiliary proposition, that states that the existence of one very strict separating vector
is enough to guarantee that there is a basis of very strict separating vectors. The idea is simply
that the property of being a very strict separating vector is robust under small perturbations.

For a finite collection of vectors w1, . . . , wk ∈ Rn we write

Cone(w1, . . . , wk) :=
{ k∑

i=1

λiwi | λ1, . . . , λk ∈ R≥0

}
(11)

for the convex cone generated by w1, . . . , wk. If w1, . . . , wk are linearly independent, then the
relative interior of Cone(w1, . . . wk) is given by

Cone◦(w1, . . . , wk) =
{ k∑

i=1

λiwi | λ1, . . . , λk ∈ R>0

}
.(12)

Proposition 3.5. Let f : Rn>0 → R be a signomial and v ∈ Rn a very strict separating vector of
σ(f). Then there exists a basis {w1, . . . , wn} of Rn consisting of very strict separating vectors,
and a constant c ∈ R such that

σ−(f) ⊆ H+
wi,c, σ+(f) ⊆ H−

wi,c for every i ∈ {1, . . . , n},(13)

v ∈ Cone◦(w1, . . . , wn).(14)

Proof. Define
a := max

α∈σ+(f)
v · α, b := min

β∈σ−(f)
v · β, c := a+b

2 .

As v ∈ S−(f), σ−(f) ⊆ H+
v,c and σ+(f) ⊆ H−

v,c by (9). Since v is very strict, we have b > c > a.
Choose a basis {v1, . . . , vn} of Rn such that v ∈ Cone◦(v1, . . . , vn). By (12) this is equivalent

to the existence of λ1, . . . , λn ∈ R>0 such that v =
∑n

i=1 λivi. For this basis, we define

K := min
i=1,...,n

min
µ∈σ(f)

vi · µ, L := max
i=1,...,n

max
µ∈σ(f)

vi · µ.

In the following, we show that it is possible to choose ϵi > 0 such that the vectors wi := v+ϵi vi,
for i = 1, . . . , n, with the given c satisfy (13). For β ∈ σ−(f) and i ∈ {1, . . . , n}, using that
vi · β ≥ K and v · β ≥ b, it holds that

wi · β = v · β + ϵi (vi · β) ≥ b+ ϵiK

{
≥ b > c if K ≥ 0 and for ϵi > 0,

> b+ a−b
2K K = c if K < 0 and for 0 < ϵi <

a−b
2K .

(15)

Similarly, for every α ∈ σ+(f) and i ∈ {1, . . . , n}, it follows that

wi · α = v · α+ ϵi (vi · α) ≤ a+ ϵiL

{
≤ a < c if L ≤ 0 and for ϵi > 0,

< a+ b−a
2L L = c if L > 0 and for 0 < ϵi <

b−a
2L .

(16)
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Therefore, there exists an ϵ > 0 such that wi satisfies (15) and (16) for all 0 < ϵi < ϵ and
i ∈ {1, . . . , n}. Hence for sufficiently small ϵ1, . . . , ϵn the vectors w1, . . . , wn are very strict
separating vectors satisfying (13).

To obtain (14), we specify a choice of ϵ1, . . . , ϵn. For each i ∈ {1, . . . , n}, choose pi > 0 such

that ϵi := λi
pi
< ϵ and define P :=

∑n
i=1 pi. By construction, we have that

n∑

i=1

pi
P+1wi =

n∑

i=1

pi
P+1(v + λi

pi
vi) = P

P+1v + 1
P+1

n∑

i=1

λivi = v,

which gives that v ∈ Cone◦(w1, . . . , wn).
Finally, since v is a positive linear combination of v1, . . . , vn and ϵ1, . . . , ϵn are positive, an

easy linear algebra argument shows that w1, . . . , wn form a basis of Rn. □
Theorem 3.6. Let f : Rn>0 → R be a signomial. If there exists a strict separating vector of
σ(f), then

(i) f−1(R<0) is non-empty and contractible.
(ii) The closure of f−1(R<0) equals f−1(R≤0).

In particular, V c
>0(f) has at most one negative connected component.

Proof. Let v ∈ S−(f) be a strict separating vector. Define

a := max
α∈σ+(f)

v · α, and M := {β ∈ σ−(f) | v · β = a} = σ−(f) ∩Hv,a.

Since v is a strict separating vector, σ−(f) \M ̸= ∅. Consider the restriction of f to σ(f) \M ,
c.f. (3):

f̃ := f|σ(f)\M .

As f̃ is obtained from f only by removing monomials with negative coefficients, f(x) ≤ f̃(x) for

all x ∈ Rn>0 and hence f̃−1(R<0) ⊆ f−1(R<0). By construction σ−(f̃) ̸= ∅, and v is also a strict

separating vector of σ(f̃), which additionally satisfies

max
α∈σ+(f̃)

v · α < min
β∈σ−(f̃)

v · β.

Hence, v is a very strict separating vector of σ(f̃). Note that for any x ∈ Rn>0, the leading

coefficient of f̃v,x is negative by Lemma 3.3(ii), and hence f̃−1(R<0) ̸= ∅. It follows that
f−1(R<0) ̸= ∅ as well.

We show that f−1(R<0) is contractible, by showing that this is the case for Log(f−1(R<0)).
First, note that by Proposition 3.5, there exists a basis {w1, . . . , wn} of Rn, consisting of very

strict separating vectors of σ(f̃) such that v can be written as

(17) v =

n∑

i=1

λiwi for some λ = (λ1, . . . , λn) ∈ Rn>0.

To show that Log(f−1(R<0)) is contractible, we will show that for any ξ ∈ Log(f̃−1(R<0)),
it holds that ξ + Cone(w1, . . . , wn) is a strong deformation retract of Log(f−1(R<0)). As ξ +
Cone(w1, . . . wn) is contractible, this will conclude the proof of (i), c.f. [27].

To this end, fix x ∈ f̃−1(R<0) and let ξ = Log(x). For w ∈ S−(f̃), the path γw,x is con-

tained in f̃−1(R<0) by Lemma 3.3(ii’). Hence, by equality (7), the path τw,ξ is contained in

Log(f̃−1(R<0)). In particular, it holds that ξ + w ∈ Log(f̃−1(R<0)) for all w ∈ S−(f̃). As

S−(f̃) is a convex cone and contains w1, . . . , wn, we have Cone(w1, . . . , wn) ⊆ S−(f̃) [44, Ch.

1]. It follows that ξ + Cone(w1, . . . , wn) ⊆ Log(f̃−1(R<0)) ⊆ Log(f−1(R<0)).

We now construct a homotopy map giving that ξ+ Cone(w1, . . . , wn) is a strong deformation
retract of Log(f−1(R<0)). To this end, we consider the map s∗ : Rn → R≥0 defined by

s∗(ζ) = min{s ∈ R≥0 | ζ + s v ∈ ξ + Cone(w1, . . . , wn)}.
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Figure 3. Graphical representation of Example 3.7. (a) v = (1,−1) ∈ S−(p2) is a

strict separating vector, the vectors w1 = (1.1,−1) and w2 = (1,−1.1) are very strict

separating vectors of the support of p̃2(x1, x2) and form a basis of R2. (b) p−1
2 (R<0)

shown in blue and its subset p̃−1
2 (R<0) shown in green. (c) The half-line Log(γv,y)

intersects the cone generated by w1, w2 with apex ξ = Log(x).

To see that s∗ is well defined and continuous, we note that

s∗(ζ) = max
{

0,− (W−1(ζ−ξ))1
λ1

, . . . ,− (W−1(ζ−ξ))n
λn

}
,

where W ∈ Rn×n is the matrix of the linear isomorphism that sends the i-th standard basis
vector of Rn to wi, and λ1, . . . , λn > 0 are from (17).

Consider the following continuous map

ρ : [0, 1]× Log(f−1(R<0))→ Log(f−1(R<0)), (t, ζ) 7→ ζ + t s∗(ζ) v.(18)

Since v is a strict separating vector of σ(f), from Lemma 3.3(ii’) follows that ρ(t, ζ) ∈ Log(f−1(R<0))
for all (t, ζ) ∈ [0, 1] × Log(f−1(R<0)). Clearly, ρ(0, ·) is the identity map, and by defini-
tion of s∗, ρ(1, ζ) ∈ ξ + Cone(w1, . . . , wn) for all ζ ∈ Log(f−1(R<0)). Furthermore, if ζ ∈
ξ + Cone(w1, . . . , wn), then s∗(ζ) = 0 and ρ(t, ζ) = ζ for all t ∈ [0, 1].

We conclude that ρ is a homotopy showing that ξ+ Cone(w1, . . . , wn) is a strong deformation
retract of Log(f−1(R<0)). This implies (i).

Finally, we show statement (ii). Let x ∈ f−1({0}). Since v ∈ S−(f) and strict, Lemma 3.3(ii)
gives that fv,x(t) < 0 for all t > 1. Thus the sequence

(
γv,x(1 + 1

n)
)
n∈N belongs to f−1(R<0).

As γv,x is continuous and γv,x(1) = x, the sequence
(
γv,x(1 + 1

n)
)
n∈N converges to x. So each

x ∈ f−1(R≤0) is the limit of a convergent sequence in f−1(R<0). Hence f−1(R≤0) ⊆ f−1(R<0).
The other inclusion is clear by the continuity of f . □
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Example 3.7. Consider the signomial

p2(x1, x2) = −x41x52 + 3x31x
4
2 − x31x22 − x21x32 + x1x

2
2 − 3x1x2 + x2.

Then v = (1,−1) ∈ S−(p2) is strict, see Fig. 3(a), and by Theorem 3.6, V c
>0(p2) has one negative

connected component which is a contractible set.
Fig. 3 displays the idea of the proof of Theorem 3.6. First, one considers the signomial obtained

by removing the negative monomials on the separating hyperplane Hv,−1 from Fig. 3(a):

p̃2(x1, x2) = 3x31x
4
2 − x31x22 + x1x

2
2 − 3x1x2 + x2.

Using Proposition 3.5, one can find strict separating vectors w1 = (1.1,−1) and w2 = (1,−1.1)
of σ(p̃2) such that v ∈ Cone(w1, w2). For a fixed x ∈ p̃−1

2 (R<0), the paths γw1,x, γw2,x turn
into half-lines with start point ξ = Log(x) under the coordinate-wise logarithm map (see Fig. 3
(b,c)). For each point ζ = Log(y) ∈ Log(p−1

2 (R<0)), the half-line with start point ζ and direction
vector v intersects Cone(w1, w2). By sending ζ to the first such intersection point, we obtain
that Cone(w1, w2) is a strong deformation retract of Log(p−1

2 (R<0)).

The results provided so far guarantee that V c
>0(f) has at most one negative connected com-

ponent. With analogous techniques, the existence of strict enclosing vectors of σ(−f) gives that
V c
>0(f) has at most two negative connected components. Note that a strict enclosing vector of
σ(−f) defines two parallel hyperplanes such that the positive points of σ(f) are between them,
and the negative points of σ(f) are on the other side of these hyperplanes.

Theorem 3.8. Let f : Rn>0 → R be a signomial. If there exists a strict enclosing vector of
σ(−f), then V c

>0(f) has at most two negative connected components.

Proof. Let v ∈ E−(−f) be a strict enclosing vector. Then for β ∈ σ+(−f) = σ−(f), it holds
that either

v · β ≤ min
α∈σ+(f)

v · α or max
α∈σ+(f)

v · α ≤ v · β.

As v is strict, the following sets are non-empty:

M := {β ∈ σ−(f) | max
α∈σ+(f)

v · α < v · β}, N := {β ∈ σ−(f) | v · β < min
α∈σ+(f)

v · α}.

Consider the restriction of f to the sets M ∪ σ+(f) and N ∪ σ+(f):

f̃M := f|M∪σ+(f) f̃N := f|N∪σ+(f).

By construction, see (9), v and −v are strict separating vectors of σ(f̃M ) and σ(f̃N ) respectively.

Hence f̃−1
N (R<0) and f̃−1

M (R<0) are path connected by Theorem 3.6. Additionally, as the sets

of negative points in σ(f̃M ) and σ(f̃N ) are included in σ−(f), it holds f(x) ≤ f̃N (x) and

f(x) ≤ f̃M (x) for all x ∈ Rn>0 and hence

f̃−1
M (R<0) ⊆ f−1(R<0), f̃−1

N (R<0) ⊆ f−1(R<0).

With this in place, if we show that for every x ∈ f−1(R<0) there is a continuous path to a

point in f̃−1
M (R<0) or to a point in f̃−1

N (R<0) and this path is contained in f−1(R<0), then the
number of connected components of f−1(R<0) is at most 2.

Fix x ∈ f−1(R<0). As v is a strict separating vector of σ(f̃M ) and −v of σ(f̃N ), there exist

tx, dx > 1 such that γv,x(tx) ∈ f̃−1
M (R<0) and γ−v,x(dx) ∈ f̃−1

N (R<0) by Lemma 3.3(ii).
By Lemma 3.3(i), fv,x has negative leading and smallest degree coefficients, and the coefficient

sign sequence has at most two sign changes. Hence either fv,x(t) < 0 for all t ≥ 1 or fv,x(t) < 0
for all t ≤ 1. If fv,x(t) = f(γv,x(t)) < 0 for all t ≥ 1, then the path γv,x connects x to a point

in f̃−1
M (R<0). If fv,x(t) < 0 for all t ≤ 1, then f−v,x(t) = fv,x(t−1) < 0 for all t ≥ 1. Hence the

path γ−v,x connects x to a point in f̃−1
N (R<0). This concludes the proof. □
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Figure 4. Illustration of Example 3.9. (a) A strict enclosing vector for −p3 is

shown. (b) The positive connected component of V c
>0(p3) is shown in red, the negative

connected components of V c
>0(p3) are shown in blue, the subset p̃−1

3,M (R<0) is shown in

green, and the subset p̃−1
3,N (R<0) is shown in purple. The path γv,x from x = (0.15, 0.95)

to p̃−1
3,M (R<0), shown dashed in red, is not contained in p−1

3 (R<0). The path γ−v,x, shown

in solid green, connects x with p̃−1
3,N (R<0) and does not leave p−1

3 (R<0).

Example 3.9. Consider the signomial

p3(x1, x2) = x31x
5
2 − x21x52 + x41x

2
2 + x31x

3
2 − x51 − x1x42 − x31x2 + 3x21x

2
2 − x1x32 + x1x2.

The vector v = (1,−1) is a strict enclosing vector of −p3, see Fig. 4(a). Hence, the number of
negative connected components of V c

>0(p3) is at most two by Theorem 3.8.
In Fig. 4(b), the idea of the proof of Theorem 3.8 is illustrated. The following two signomials

are considered

p̃3,M (x1, x2) = x31x
5
2 + x41x

2
2 + x31x

3
2 − x51 + 3x21x

2
2 + x1x2,

p̃3,N (x1, x2) = x31x
5
2 − x21x52 + x41x

2
2 + x31x

3
2 − x1x42 + 3x21x

2
2 + x1x2.

For each of these signomials, the pre-image of R<0 is path connected and contained in p−1
3 (R<0).

Using the paths γv,x or γ−v,x, any point x ∈ p−1
3 (R<0) is connected to one of these two connected

sets.

Remark 3.10. The conditions of Theorems 3.6 and 3.8 can be checked computationally using
linear programming. Finding a separating vector of σ(f) corresponds to finding a solution of
the linear inequality system

v · α ≤ a, α ∈ σ+(f), v · β ≥ a, β ∈ σ−(f),(19)

where v ∈ Rn, a ∈ R are treated as unknown variables. Existing software like SageMath [41],
Polymake [23] and other linear programming software can find a solution to (19) even for large
number of variables and of inequalities.

Finding an enclosing hyperplane as in Theorem 3.8 can be more demanding computationally.
A naive approach is to consider all partitions of σ−(f) into two sets σ−,1(f), σ−,2(f) and for
each partition decide the feasibility of the system of linear inequalities

v · β ≤ a, β ∈ σ−,1(f) a ≤ v · α ≤ b, α ∈ σ+(f), v · β ≤ b, β ∈ σ−,2(f).

Remark 3.11. One might be tempted to believe that in the situation of Theorem 3.8, V c
>0(f) has

at most one positive connected component. However, Example 2.2 gives a counter example, as
V c
>0(p1) has two positive connected components, and the vector v = (0, 1) satisfies the hypotheses

of Theorem 3.8, see Fig. 2.
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A direct consequence of Theorems 3.6 and 3.8 applies to the case where the positive points
of σ(f) belong to a hyperplane that does not contain all the negative points of σ(f).

Corollary 3.12. Let f : Rn>0 → R be a signomial. If for some v ∈ Rn and a ∈ R
σ+(f) ⊆ Hv,a and σ−(f) ⊈ Hv,a,

then V c
>0(f) has at most two negative connected components.

Proof. The conditions imply that either v is a strict enclosing vector of σ(−f), or either v or −v
is a strict separating vector of σ(−f). The statement then follows from Theorem 3.8 or Theorem
3.6. □
Corollary 3.13. Let f : Rn>0 → R be a signomial. If

#σ+(f) ≤ dim N(f),

then V c
>0(f) has at most two negative connected components.

Proof. Since #σ+(f) ≤ dim N(f) ≤ n, the points σ+(f) lie on an affine subspace of dimension
at most dim N(f)− 1. Necessarily, this subspace cannot contain all points of σ(f). Hence, there
exists an affine hyperplane Hv,a containing σ+(f) and not containing σ−(f). Now, the statement
follows from Corollary 3.12. □
Remark 3.14. The techniques used in this section rely on the observation that the paths
(5) become half-lines at the logarithmic scale. Studying images of algebraic sets under the
coordinate-wise logarithm map has a rich history. In 1994, Gelfand et al. [24] introduced the
amoeba of a Laurent polynomial f ∈ C[x±1

1 , . . . , x±1
n ] which is the image of the set {z ∈ (C∗)n |

f(z) = 0} under the map (C∗)n → Rn, (z1, . . . , zn) 7→ (log(|z1|), . . . , log(|zn|)). Since then, many
results have been proved about the structure of the connected components of the complement of
the amoeba. It is known that these connected components are convex [24, Corollary 1.6], their
number is at least equal to the number of vertices of the Newton polytope N(f) and at most
equal to the total number of integer points in N(f) ∩ Zn [20, Theorem 2.8]. Furthermore, if the
polynomial is maximally sparse (i.e. every exponent of f is a vertex of N(f)), then the number
of connected components of the complement of the amoeba is equal to the number of vertices
of N(f) [36], and each of these components is unbounded [24, Corollary 1.8].

The logarithmic image of V>0(f) can be seen as the “positive real part” of the amoeba of f .
Therefore, one might hope that statements about amoebas can be translated directly to answer
Problem 1.1. However, logarithmic images of V>0(f) have been studied in [2], where the author
concluded that, in general, it is not possible to use properties of the amoeba to understand
the logarithmic image of V>0(f) [2, Section 5.1]. To illustrate that the amoeba of f and the
logarithmic image can behave differently, we recall the following example [38, Example 2.6].
Consider the maximally sparse polynomial f = 1− x1 − x2 + 6

5x
4
1x2 + 6

5x1x
4
2. The complement

of the amoeba of f has 5 connected components, which are convex and unbounded. However, it
is easy to see that the complement of Log(V>0(f)) has a bounded connected component, which
is contained in the amoeba of f .

4. Convexification of signomials

In Section 3, we used continuous paths (5), which are half-lines on logarithmic scale, to derive
bounds for the number of negative connected components of V c

>0(f), where f is a signomial
function. In this section, we take a different approach to bound the number of negative connected
components of V c

>0(f). We use the almost trivial observation that every sublevel set of a convex
function is a convex set (see e.g. [37, Theorem 4.6.]). Therefore, V c

>0(f) has at most one
negative connected component, if f is a convex function. With this in mind, we investigate
what signomials can be transformed into a convex function using Lemma 2.3.

From [34, Theorem 7], one can easily derive a sufficient condition for convexity of signomials.

Lemma 4.1. A signomial f : Rn>0 → R is a convex function if the following holds:
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(a) For each α ∈ σ+(f), it holds that
(i) αi ≤ 0 for all i = 1, . . . , n, or

(ii) there exists j ∈ {1, . . . , n} such that αi ≤ 0 for all i ̸= j and (1, . . . , 1) · α ≥ 1,
(b) For each β ∈ σ−(f), it holds that βi ≥ 0 for all i = 1, . . . , n and (1, . . . , 1) · β ≤ 1.

Proof. By [34, Theorem 7], hypotheses (a) and (b) imply that each term cαx
α, α ∈ σ+(f) and

cβx
β, β ∈ σ−(f) is convex. The result follows from the fact that the sum of convex functions is

convex. □

We proceed to interpret the conditions in Lemma 4.1 geometrically.

Definition 4.2. Given an n-simplex P ⊆ Rn with vertices µ0, . . . , µn, we define for k ∈
{0, . . . , n} the negative vertex cone at the vertex µk as

P−,k := µk + Cone(µk − µ0, . . . , µk − µn)

=

{
n∑

i=0

λiµi |
n∑

i=0

λi = 1, λi ≤ 0 for all i ̸= k

}
.

We write P− =
⋃n
k=0 P

−,k.

Note that it follows that λk > 0 in the definition of P−,k. The name ’negative vertex cone’
comes from [9, 13], where the authors refer to the vertex cone as the pointed convex cone with
apex µk and generators the edge directions pointing out of µk. Fig. 5(a) shows an example of
the negative vertex cones in the plane.

The next proposition provides another geometric interpretation of negative vertex cones. First
recall that every n-simplex P ⊆ Rn has n+ 1 facets, each facet F is supported on a hyperplane
HvF ,aF , and it holds that P =

⋂
F⊆P facetH−

vF ,aF
[26, Section 4.1].

Proposition 4.3. Let P = Conv(µ0, . . . , µn) ⊆ Rn be an n-simplex. A point α ∈ Rn belongs to
P−,k for k ∈ {0, . . . , n}, if and only if α ∈ H+

vF ,aF
for all facets F of P containing µk. In that

case, it holds α ∈ H−
vF ,aF

for the facet F not containing µk.

Proof. Denote by Fi the facet of P that does not contain µi and Hvi,ai a supporting hyperplane.
In particular it holds that

(20) vj · µi = aj for i ̸= j and vi · µi < ai, for i = 0, . . . , n.

The condition in the statement is equivalent to the existence of k ∈ {0, . . . , n} such that

vi · α ≥ ai for i ̸= k.(21)

Write α =
∑n

j=0 λjµj for λ0, . . . , λn ∈ R such that
∑n

j=0 λj = 1. Then

(22)
vi · α =

n∑

j=0

λj(vi · µj) = λi(vi · µi) +
n∑

j=0,j ̸=i
λjai

= λi(vi · µi) + (1− λi)ai = ai + λi(vi · µi − ai).
Using this, condition (21) holds for some k if and only if

λi(vi · µi − ai) ≥ 0 for i ̸= k.

By (20), this holds if and only if λi ≤ 0 for i ̸= k, that is, if and only if α ∈ P−,k ⊆ P−. As
then, λk ≥ 0, (22) gives that vk · α < ak and hence α ∈ H−

vk,ak
. □

We write ∆n := Conv(e0, e1, . . . , en) for the standard n-simplex in Rn, where e1, . . . , en are
the standard basis vectors of Rn and e0 denotes the zero vector.

Lemma 4.4. Let f : Rn>0 → R be a signomial. If σ−(f) ⊆ ∆n and σ+(f) ⊆ ∆−
n , then f is a

convex function.
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Proof. We show that the conditions in Lemma 4.1 are equivalent to σ−(f) ⊆ ∆n and σ+(f) ⊆
∆−
n . For β ∈ Rn, find the unique λ0, . . . , λn ∈ R such that

∑n
i=0 λiei = β and

∑n
i=0 λi = 1.

Note that (1, . . . , 1) · β =
∑n

i=1 λi = 1− λ0, which is at most 1 if and only if λ0 ≥ 0.
Lemma 4.1(b) holds if and only if λi ≥ 0 for all i = 1, . . . , n and

∑n
i=1 λi ≤ 1. Equivalently,

λi ≥ 0 for all i = 1, . . . , n and λ0 ≥ 0, that is, β ∈ ∆n.
We show now that β ∈ ∆−

n if and only if Lemma 4.1(a) holds. By definition, β ∈ ∆−
n if and

only if for some k,

(23) λi ≤ 0 for i ̸= k.

For k = 0, (23) holds if and only if βi ≤ 0 for all i, thus Lemma 4.1(a,i) holds. For k > 0, (23)
holds, if and only if all but the k-th coordinate of β are non-positive, and λ0 ≤ 0, equivalently
(1, . . . , 1) · β ≥ 1, which is Lemma 4.1(a,ii). This concludes the proof. □

We next look into what signomials can be transformed into a convex signomial using the
transformations from Lemma 2.3. It is well known that any two n-simplices are affinely isomor-
phic [44]. The next lemma shows that the negative vertex cones are preserved under such an
affine transformation.

Lemma 4.5. Let P,Q ⊆ Rn be n-simplices. For every B ⊆ P and A ⊆ P−, there exist an
invertible matrix M ∈ GLn(R) and a vector v ∈ Rn such that MB + v ⊆ Q and MA+ v ⊆ Q−.

Proof. Denote by {p0, . . . , pn} and {q0, . . . , qn} the vertex sets of P and Q respectively. Since P
and Q are simplices, there is an invertible matrix M ∈ GLn(R) such that M(pi − p0) = qi − q0
for i = 1, . . . , n. Define v := −Mp0 + q0. By construction, it holds that Mpi + v = qi for every
i = 0, . . . , n.

For each µ ∈ Rn, write µ =
∑n

i=0 λipi with
∑n

i=0 λi = 1. It holds that

Mµ+ v =
n∑

i=0

λiMpi +
n∑

i=0

λiv =
n∑

i=0

λi(Mpi + v) =
n∑

i=0

λiqi.

That is, the coordinates of µ according to P and those of Mµ+ v according to Q are the same.
From this the statement follows. □

Theorem 4.6. Let f : Rn>0 → R be a signomial. If there exists an n-simplex P such that

σ−(f) ⊆ P, and σ+(f) ⊆ P−,

then f−1(R<0) is either empty or contractible. In particular, V c
>0(f) has at most one negative

connected component.

Proof. By Lemma 4.5 with B = σ−(f) and A = σ+(f), there exists M ∈ GLn(R) and v ∈ Rn
such that Mσ−(f) + v ⊆ ∆n and Mσ+(f) + v ⊆ ∆−

n . By Lemma 2.3, σ+(FM,v,f ) = Mσ+(f) + v
and σ−(FM,v,f ) = Mσ−(f) + v. Hence by Lemma 4.4, FM,v,f is a convex function and thus

F−1
M,v,f (R<0) is either empty or contractible. By Lemma 2.3 again, f−1(R<0) is homeomorphic

to F−1
M,v,f (R<0), and the statement of the theorem follows. □

In view of Theorem 4.6, understanding P− for a simplex P allows us to determine whether f
can be transformed to a convex function.

Example 4.7. Consider the signomial

p4(x1, x2) = x51x
2
2 + x1x

5
2 − 2x31x

2
2 − 3x21x

2
2 + x1x

3
2 + x42 − x1x2 + 1

and the simplex P = Conv((1, 1), (4, 2), (1, 3)). We have σ−(p4) ⊆ P and σ+(p4) ⊆ P−, see
Fig. 5. By Theorem 4.6, the set p−1

4 (R<0) is contractible, since p4(1, 1) = −1.

A direct consequence of Theorem 4.6 states that if all positive points of σ(f) are vertices of
the Newton polytope and this is a simplex, then f−1(R<0) is either empty or contractible. Let
Vert(N(f)) denote the set of vertices of N(f).
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Figure 5. Illustration of Example 4.7. (a) A 2-simplex P , its negative cones P− and

the support of p4(x1, x2). (b) The set p−1
4 (R<0) is shown in blue.

Corollary 4.8. Let f : Rn>0 → R be a signomial. If σ+(f) ⊆ Vert(N(f)) and N(f) is a simplex,
then f−1(R<0) is either empty or contractible.

Proof. Let d := dim N(f) and denote by e1, . . . , ed the first d standard basis vectors of Rn.
Without loss of generality, we can assume that σ(f) belongs to the linear subspace generated
by e1, . . . , ed in Rn, as this can be achieved via a change of variables as in Lemma 2.3. Hence
f depends only on the variables x1, . . . , xd, and can be seen as a signomial in Rd>0 with full

dimensional Newton polytope. Viewing V c
>0(f) in Rd>0, the statement follows from Theorem 4.6,

since σ+(f) ⊆ Vert(N(f)) ⊆ N(f)− and σ−(f) ⊆ N(f).
The proof is completed noticing that the pre-image of a contractible subset of Rd>0 under the

projection map (x1, . . . , xn) 7→ (x1, . . . , xd) is contractible in Rn>0. □
Remark 4.9. Finding a simplex P that satisfies the conditions of Theorem 4.6 might be chal-
lenging even in low dimensions. For a partition of σ+(f) into n + 1 sets σ+,0(f), . . . , σ+,n(f),
Proposition 4.3 give rise to a system of linear inequalities that the normal vectors of the facets
of P need to satisfy to ensure that σ−(f) ⊆ P and σ+,i(f) ⊆ P−,i for i = 0, . . . , n. To verify
that a solution of this system gives indeed an n-simplex, one can employ Lemma 4.10 below,
whose proof is given for completeness.

Using these observations, the existence of a simplex P satisfying the conditions of Theorem
4.6 can be established by verifying the feasibility of a system of polynomial inequalities. This
can be for example achieved using quantifier elimination [18]; see [40] for an implementation.

Lemma 4.10. Let {Hw0,a0 , . . . ,Hwn,an} be a set of hyperplanes of Rn such that:

(i) Every proper subset of {w0, . . . , wn} is linearly independent.

(ii) For every i ∈ {0, . . . , n} it holds that
⋂n
j=0,j ̸=iHwj ,aj ⊆ H−,◦

wi,ai.

Then
⋂n
j=0H−

wj ,aj is an n-simplex.

Proof. First, note that (ii) implies

(ii′)
n⋂

j=0

Hwj ,aj = ∅.

As a finite intersection of closed half-spaces, P :=
⋂n
j=0H−

wj ,aj is a convex polyhedron. Each

face of P has the form
PI = P ∩HI , HI =

⋂

i∈I
Hwi,ai ,

for some non-empty subset I ⊆ {0, . . . , n}. By (i) and (ii’), HI is zero dimensional if and only if
I has n elements. By (ii), for I = {0, . . . , n}\{i}, PI ̸= ∅ and hence PI is a vertex of P , denoted
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by µi. Furthermore, the points µ0, . . . , µn are affinely independent. This follows from (ii’), as
for each k, µi ∈ Hwk,ak for i ̸= k and µk /∈ Hwk,ak . Hence Conv(µ0, . . . , µn) is an n-simplex.

Finally, P = Conv(µ0, . . . , µn) as H−,◦
wk,ak contains a vertex for each k. □

We conclude the section with Proposition 4.11, which states that if there are n − 1 linearly
independent non-strict separating vectors and the convex hull of the negative points does not
contain positive points, then a simplex satisfying the conditions of Theorem 4.6 exists. This case,
together with the scenario with one negative point in Theorem 3.4 or the existence of a strict
separating vector in Theorem 3.6, conform the situations where one can effectively conclude that
V c
>0(f) has at most one negative connected component.

Proposition 4.11. Let f : Rn>0 → R be a signomial, such that σ(f) has at least two negative
points. Assume that there exist n − 1 linearly independent separating vectors of σ(f), which
are not strict and that Conv(σ−(f)) ∩ σ+(f) = ∅. Then there exists an n-simplex P such that
σ−(f) ⊆ P and σ+(f) ⊆ P−.

Proof. Let w1, . . . , wn−1 be non-strict separating vectors. Then with ai := max{wi · α | α ∈
σ+(f)}, it holds

σ+(f) ⊆
n−1⋂

i=1

H−
wi,ai and σ−(f) ⊆ L with L :=

n−1⋂

i=1

Hwi,ai .(24)

If σ−(f) ⊆ L, then any simplex P having as edge Conv(σ−(f)) satisfies the statement. Hence,
we assume that this is not the case. We prove the proposition by applying Lemma 4.10. We
introduce the following:

v :=

n−1∑

i=1

wi ∈ Rn−1, d :=

n−1∑

i=1

ai ∈ R, K := max {v · α | α ∈ σ+(f), v · α ̸= d} ∈ R.

By assumption, ϵ := d−K > 0 and we have σ−(f) ⊆ Hv,d. Let z ∈ Rn such that z, w1, . . . , wn−1

are linearly independent, and denote by β0, β1 the vertices of Conv(σ−(f)) where the linear form
induced by z attains its minimum and its maximum respectively. These vertices are different,
otherwise each β ∈ Conv(σ−(f)) would be the unique solution of z · β = z · β0, wi · β = ai,
i = 1, . . . , n− 1. This would be a contradiction, since σ−(f) contains at least two points.

We let M := max{z · α | α ∈ σ+(f)}, choose λ > µ positive real numbers such that

λ(M − z · β0) ≤ ϵ = d−K, µ(M − z · β1) ≤ ϵ = d−K,(25)

and define w0 := v + λz, wn := −v − µz, a0 := d + λ(z · β0), and an := −d − µ(z · β1). By
construction, β0 ∈ H−w0,−a0 and β1 ∈ H−wn,−an .

We show that P :=
⋂n
i=0H−

−wi,−ai is an n-simplex using Lemma 4.10, and satisfies the hy-
potheses of the statement. Lemma 4.10(i) holds by construction. To show Lemma 4.10(ii), we
consider first i ∈ {0, n}. As

(26)
n−1⋂

j=0

H−wj ,−aj = {β0},
n⋂

j=1

H−wj ,−aj = {β1},

it suffices to show that β0 ∈ H−,◦
−wn,−an and β1 ∈ H−,◦

−w0,−a0 . For each β ∈ σ−(f), it holds that

wn · β = −v · β − µ(z · β) ≥ −d− µ(z · β1) = an, and(27)

w0 · β = v · β + λ(z · β) ≥ d+ λ(z · β0) = a0(28)

as z attains its minimum resp. its maximum on Conv(σ−(f)) at β0 resp. at β1 and λ, µ > 0.

From these we get that β0 ∈ H−,◦
−wn,−an and β1 ∈ H−,◦

−w0,−a0 , since z · β1 > z · β0 and hence the
inequalities in (27) and (28) are strict.
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Figure 6. Illustration of Example 4.12. (a) Shows σ(p5) with blue indicating negative

points and red positive points. The vector w1 = (1,−1) is a non-strict separating vector

of the support of p5. (b) The negative connected component of V c
>0(p5) is shown in blue.

Consider now i ∈ {1, . . . , n−1} and x ∈ ⋂n
j=0,j ̸=iH−wi,−ai . In particular, x ∈ Hw0,a0∩Hwn,an .

Solving the linear system w0 · x = v · x + λ(z · x) = a0 and wn · x = −v · x − µ(z · x) = an for
v · x and z · x and using the definition of a0, an, we obtain

z · x = a0+an
λ−µ , v · x = a0 − λ · a0+anλ−µ = d+ λµ

λ−µ(z · β1 − z · β0) > d,

as λ, µ, λ− µ, z · β1 − z · β0 > 0. Hence

n−1∑

j=1

wj · x = v · x > d =

n−1∑

j=1

aj .

From this follows that wi · x > ai, since wj · x = aj for j ̸= i. Therefore x ∈ H−,◦
−wi,−ai and

Lemma 4.10(ii) holds. We conclude that P is an n-simplex.
Finally, we show that σ−(f) ⊆ P and σ+(f) ⊆ P−. The inclusion σ−(f) ⊆ P follows from

(24), (27) and (28).
Let α ∈ σ+(f) and assume that v · α < d. By (25),

w0 · α = v · α+ λ(z · α) ≤ K + λM = d− ϵ+ λM ≤ d+ λ(z · β0) = a0,

which implies α ∈ H+
−w0,−a0 . This together with (24) imply that α ∈ P− by Proposition 4.3.

Now, consider the case v · α = d. In this case, (24) implies that wi · α = ai for each
i = 1, . . . , n− 1. Thus, α ∈ L and recall α /∈ Conv(σ−(f)). Hence α ∈ L \ Conv(σ−(f)) ⊆ P−,
where the last inclusion follows from the fact that the supporting hyperplanes of each cone P−,k

are supporting hyperplanes of P . □

Example 4.12. Consider the signomial

p5(x1, x2) = x41x
4
2 + x21x

6
2 + x2y3 − 5x31x

3
2 − 3x21x

2
2 + x1x2 + x22,

with σ(p5) depicted in Fig. 6(a). The vector w1 = (1,−1) is a separating vector of σ(p5).
The convex hull of σ−(p5) does not intersect σ+(p5) as we can see from Fig. 6(a). Hence, we
can use Proposition 4.11 to conclude that there exists a simplex P such that σ−(p5) ⊂ P and
σ+(p5) ⊂ P−. In fact, the proof Proposition 4.11 is constructive, the corresponding P is depicted
also in Fig. 6(a). Now, we can apply Theorem 4.6 to conclude that f−1(R<0) is contractible.

5. Comparing the different approaches

Theorems 3.4, 3.6, 3.8, 4.6 cover some cases of a generalization of Descartes’ rule of signs
to hypersurfaces. In particular, we have shown that f−1(R<0) is contractible in the following
relevant cases:
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• f has at most one negative point in σ(f).
• There exists a strict separating vector of σ(f).
• There exists a simplex P such that negative points of σ(f) belong to P and positive

points to P−; in particular if all positive points are vertices of the Newton polytope and
this is a simplex, or if there are n− 1 linearly independent non-strict separating vectors
and the convex hull of the negative points does not contain positive points.

The techniques to study the case where f−1(R<0) is path connected could also be used to
derive a condition for f−1(R<0) having at most two connected components:

• There exists a strict enclosing vector of σ(−f); in particular if the positive points belong
to a hyperplane that does not contain all negative points, or if the number of positive
points is smaller than dim N(f).

Theorem 4.6 covers all the cases where the classical Descartes’ rule guarantees that the number
of negative connected components of V c

>0(f) is at most one. These are the cases when the
coefficients of the one-variable signomial f has one of the following sign patterns:

(− · · ·−+ · · ·+) (+ · · ·+− · · ·−) (+ · · ·+− · · · −+ · · ·+) .

Although Theorem 3.6, and 4.6 build apparently on different techniques, we show in this
section that they are equivalent in some situations. Computationally, checking whether Theo-
rem 3.6 applies is less demanding than to verifying that the conditions of Theorem 4.6 hold.

We start by noting that Theorem 4.6 applies for the signomial p4 in Example 4.7, but σ(p4)
does not have any separating vector. However, under some assumptions, the existence of an
n-simplex as in Theorem 4.6 implies the existence of a separating vector.

Proposition 5.1. Let f : Rn>0 → R be a signomial and let P ⊆ Rn be an n-simplex such that

σ−(f) ⊆ P and σ+(f) ⊆ P−. If there exists k ∈ {0, . . . , n} such that P−,k ∩ σ+(f) = ∅, then
σ(f) has a separating vector. Moreover, there is a strict separating vector if there is a negative
point in P \ Fk, where Fk denotes the facet of P opposite to P−,k.

Proof. Let Hvk,ak be a supporting hyperplane for the facet Fk. By hypothesis and from Propo-
sition 4.3 we obtain σ+(f) ⊆ H+

vk,ak
. By hypothesis we also have that σ−(f) ⊆ P ⊆ H−

vk,ak
.

Therefore, −vk is a separating vector of σ(f). If there is a negative point β /∈ Fk, then vk ·β < ak
giving that −vk is strict. □

We inspect now whether or when Theorem 3.6 follows from Theorem 4.6, in which case we
obtain the additional information that f can be transformed into a convex signomial. The
existence of a strict separating vector does not imply the existence of an n-simplex satisfying
the condition in Theorem 4.6. To see this, we consider the signomial p2 in Example 3.7. The
positive point (3, 4) lies in Conv(σ−(p2)), and is not a vertex. Therefore, there is no n-simplex
P such that σ−(p2) ⊆ P and (3, 4) ∈ P−.

However, if there exists a very strict separating vector, then there is an n-simplex satisfying
the conditions in Theorem 4.6 and Theorem 3.6 follows from it. For an example, see Fig. 7.

Proposition 5.2. Let f : Rn>0 → R be a signomial. If there is a very strict separating vector
v ∈ Rn of σ(f), then there exists an n-simplex P such that σ−(f) ⊆ P and σ+(f) ⊆ P−.

Proof. By Proposition 3.5 there exist n linearly independent very strict separating vectors
−w1, . . . ,−wn, and c ∈ Rn such that

σ−(f) ⊆
n⋂

i=1

H−
wi,c and σ+(f) ⊆

n⋂

i=1

H+
wi,c.(29)

We consider minus the basis in Proposition 3.5, as separating vectors leave the negative points
on the positive side of the hyperplane, while the simplex P leaves them on the negative side of
the defining hyperplanes.
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Figure 7. The support of the signomial p̃2 in Example 3.7 has a very strict separating

vector as in Proposition 5.2, namely v = (1,−1). The 2-simplex P shown in blue is

constructed following the proof of Proposition 5.2 with the choice v1,= (1, 0), v2 =

(0,−1), a0 = 4.

We define w0 := −∑n
i=1wi, choose a0 ∈ R such that a0 > maxµ∈σ(f)w0 · µ and define

P := H−
w0,a0 ∩

n⋂

i=1

H−
wi,c.

It then holds that σ−(f) and σ+(f) belong to H−
w0,a0 . Thus, σ−(f) ⊆ P , and σ+(f) ⊆ P− by

Proposition 4.3.
All that is left is to show that P is an n-simplex. To this end, we apply Lemma 4.10. It is

clear that every subset of {w0, . . . , wn} with n elements is linearly independent, so Lemma 4.10(i)
holds. From (29) follows that

n (−c) ≤ max
β∈σ−(f)

n∑

i=1

−wi · β = max
β∈σ−(f)

w0 · β ≤ max
µ∈σ(f)

w0 · µ < a0.(30)

For x ∈ ⋂n
j=1Hwj ,c, we obtain w0 ·x = −n c < a0, so x ∈ H−,◦

w0,a0 . If x ∈ Hw0,a0 ∩
⋂n
j=1,j ̸=iHwj ,c,

again by (30) we have that

wi · x = −w0 · x−
n∑

j=1,j ̸=i
wj · x = −a0 − (n− 1)c < n c− (n− 1) c = c.

Hence x ∈ H−,◦
wi,c for each i ∈ {1, . . . , n}. We conclude that Lemma 4.10(ii) holds, so P is an

n-simplex and this completes the proof. □

In the scenario where f has exactly one negative point neither the existence of a separating
hyperplane nor the existence of a simplex satisfying the conditions of Theorem 4.6 are guaran-
teed. In fact, if f has one negative point, then a strict separating hyperplane exists if and only
if the negative point is a vertex of the Newton polytope of f . The following example illustrates
a scenario where a simplex as in Theorem 4.6 does not exist, and f has only one negative point.

Example 5.3. Let f : R2
>0 → R be a signomial with only one negative point β0 ∈ σ(f). If

σ+(f) is equal to the vertex set of a regular m-gon for some m ≥ 7 with circumcenter β0, then
there does not exist a simplex P such that σ−(f) ⊆ P and σ+(f) ⊆ P−.

To see this, assume that such a simplex exists and write P = H−
w0,b0

∩ H−
w1,b1

∩ H−
w2,b2

, with

w0, w1, w2 ∈ R2, and b0, b1, b2 ∈ R. For ai := wi · β0, i = 0, 1, 2, the three lines Hw0,a0 , Hw1,a1 ,
and Hw2,a2 , intersect each other at β0 and divide the circumsphere of the m-gon into 6 regions.
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Let γ0, γ1, γ2 ∈ [0, π] be the angles of the regions cut out by Hw0,a0 and Hw1,a1 , by Hw1,a1 and
Hw2,a2 , and by Hw2,a2 and Hw0,a0 respectively. Note that γ0 + γ1 + γ2 = π. Since σ+(f) ⊆ P−,
the positive points are in alternating regions. Therefore one of the two regions cut out by Hw0,a0

and Hw1,a1 with angle γ0 cannot contain any positive point. Since σ+(f) is the vertex set of a
regular m-gon, for each pair of consecutive positive point αi, αi+1 (counted counterclockwise),
the angle ∡αiβ0αi+1 equals 2π

m . From this follows that γ0 ≤ 2π
m . A similar argument shows

that γ1 ≤ 2π
m , γ2 ≤ 2π

m . We conclude that γ0 + γ1 + γ2 ≤ 6π
m . Since m ≥ 7, this contradicts

γ0 + γ1 + γ2 = π. Therefore, such a simplex P does not exist.
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GEOMETRY OF THE SIGNED SUPPORT OF A MULTIVARIATE

POLYNOMIAL AND DESCARTES’ RULE OF SIGNS

MÁTÉ L. TELEK

Abstract. We describe conditions on the signed support, that is, on the set of the exponent
vectors and on the signs of the coefficients, of a multivariate polynomial f ensuring that the
semi-algebraic set {f < 0} defined in the positive orthant has at most one connected component.
These results generalize Descartes’ rule of signs in the sense that they provide a bound which
is independent of the values of the coefficients and the degree of the polynomial. Based on how
the exponent vectors lie on the faces of the Newton polytope, we give a recursive algorithm that
verifies a sufficient condition for the set {f < 0} to have one connected component. We apply the
algorithm to reaction networks in order to prove that the parameter region of multistationarity
of a ubiquitous network comprising phosphorylation cycles is connected.

Keywords: semi-algebraic set, connected component, Newton polytope, reaction network

1. Introduction

Descartes’ rule of signs is a classical theorem in real algebraic geometry that provides an
upper bound on the number of positive real roots of a univariate real polynomial. The bound is
given by the number of sign changes in the coefficient sequence of the polynomial, therefore it
is easy to compute. Since Descartes’ bound is independent from the degree of the polynomial,
it shows a crucial difference between real and complex roots.

Since Descartes published his result in 1637, a lot of effort has been made to improve and
generalize his statement. It is known that the result is valid for polynomials with real exponents
[11], and the number of positive roots has the same parity as the number of sign changes in
the coefficient sequence [22]. Moreover, Descartes’s bound is sharp, that is, for every given sign
sequence there exists a polynomial matching the sign sequence that has as many positive roots
as provided by Descartes’s bound [25].

The research question of multivariate generalizations is still rather open. In his seminal book
Fewnomials [30], Khovanskii gave an upper bound on the number of positive solutions of a
polynomial system given by n real polynomials in n variables that depends only on n and the
number of monomials appearing in the polynomials. Khovanskii’s bound has been improved in
[7, 9]. For some specific systems there are also better bounds available [1, 2, 5, 31, 32]. These
works generalize Descartes’ rule of signs in the sense that they provide upper bounds which
are independent of the degree, however the signs of the coefficients are not taken into account.
Recently in [3, 4], for systems whose polynomials are supported on a circuit, a sharp upper
bound was given that depends on the number of sign changes of a given sequence associated
both with the exponents and the coefficients of the polynomials.

Descartes’ rule of signs allows also different types of generalizations. In a notorious one,
instead of focusing on a system of polynomials, one considers a single polynomial in n variables
and bounds topological invariants of the hypersurface given by the positive real zero set of
the polynomial. In [8], the authors provided upper bounds on the sum of the Betti numbers
of the hypersurface. Bounds on the connected component of the hypersurface were given in
[6, 21]. These bounds depend on the number of variables n and the number of monomials of the
polynomial.

In this work, we aim to bound connected components but in a slightly different setting. As
in [19], we consider connected components of the complement of the hypersurface. To make
it precise, let f : Rn>0 → R be a signomial (a generalized polynomial whose exponent vectors
are real) and let f−1(R<0) be the set of points in Rn>0 where f takes negative values. In

1
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[19], the authors phrased the following problem as generalization of Descartes’ rule of signs to
hypersurfaces.

Problem 1.1. Consider a signomial f : Rn>0 → R with f(x) =
∑

µ∈σ(f) cµx
µ, and σ(f) ⊆ Rn

a finite set. Find a (sharp) upper bound on the number of connected components of f−1(R<0)
based on the sign of the coefficients and the geometry of σ(f).

To avoid wordy sentences, we might call connected components of f−1(R<0) negative connected
components of f . In Section 2, we give new conditions on the set of exponent vectors σ(f) that
ensure that f has at most one negative connected component. For instance, the existence of
two parallel hyperplanes, which enclose in a certain way the exponent vectors of f with positive
coefficients, implies that f has at most one negative connected component (Theorem 2.11). In
case f is multivariate (n ≥ 2), we show that the number of negative connected components is
one if f has only one positive coefficient (Corollary 2.13), or the exponent vectors are separated
by a simplex in a specific manner (Corollary 2.15).

In Section 3, we show that the problem of finding the number negative connected components
can be reduced to the same problem for a signomial in fewer monomials, if all the exponent
vectors of f with negative coefficients are contained in a face of the Newton polytope (Theorem
3.1). A similar reduction is possible if the Newton polytope of f has two parallel faces containing
all the exponent vectors of f (Theorem 3.6). These statements lead to a recursive algorithm that
can verify connectivity of f−1(R<0) (Algorithm 1). Since the algorithm is based on polyhedral
geometry computations, its running time remains reasonable even for polynomials with many
variables and many monomials.

The motivation to consider Problem 1.1 came from chemical reaction network theory. In
[39], the authors associated with a reaction network (satisfying some technical conditions) a
polynomial function q : Rn>0 → R such that connectivity of q−1(R<0) implies that the parameter
region of multistationarity of the reaction network is connected. Using the results from [19],
for several reaction networks it was verified that the associated polynomial q has one negative
connected component, so the parameter region of multistationarity is connected.

However, there were some biologically relevant reaction networks, where the results from [19]
did not suffice. In particular, one of these networks was the weakly irreversible phosphorylation
system with two binding sites [34]. Using numerical methods, the authors in [34] showed that its
parameter region of multistationarity is connected, however they did not give a rigorous proof.

Another, important family of reaction networks, where the connectivity of the parameter
region of multistationarity has been investigated, is the sequential and distributive phosphory-
lation cycles with m-binding sites, m ∈ N. In [39], it has been showed that the parameter region
of multistationarity is connected for m = 2, 3. Furthermore, it is known that the projection of
the parameter region of multistationarity to a subset of the parameters (reaction rate constants)
is connected for all m [16, 17]. In Section 4, we revisit these networks. We use Algorithm 1
to show connectivity of the parameter region of multistationarity for the weakly irreversible
phosphorylation system and for phosphorylation cycles with m = 4, 5, 6, 7 binding sites.

Notation. R≥0, R>0 and R<0 refer to the sets of non-negative, positive and negative real
numbers respectively. For monomials, we use the notation xµ = xµ11 · · ·xµnn , where x ∈ Rn>0, µ ∈
Rn. For two vectors v, w ∈ Rn, v · w denotes the Euclidean scalar product, and v ∗ w denotes
the coordinate-wise product of v and w. We denote the Euclidean interior of a set X ⊆ Rn
by int(X). If X ⊆ Rn is a polyhedron, relint(X) denotes the relative interior of X, that is the
Euclidean interior of X in its affine hull. The symbol #S denotes the cardinality of the finite
set S. We write S ⊔ T for the disjoint union of two sets S, T .

2. Separating and enclosing hyperplanes

2.1. Background and definitions. In this section, we investigate signomials and their nega-
tive connected components using certain affine hyperplanes that partition the exponent vectors
of the signomial. Recall that a signomial is a multivariate generalized polynomial with real
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exponents whose domain is restricted to the positive orthant Rn>0 [14, 36]. In other words, a
signomial is a function of the form:

f : Rn>0 → R, x 7→
∑

µ∈σ(f)
cµx

µ,

where σ(f) ⊆ Rn is a finite set, called the support of f , and the coefficients cµ are non-zero real
numbers. The negative connected components of f are connected components of the set:

f−1(R<0) = {x ∈ Rn>0 | f(x) < 0}.
We write B−0 (f) for the set of negative connected components, and b0(f

−1(R<0)) for the cardi-
nality of B−0 (f).

If cµ > 0 (resp. cµ < 0), we call µ a positive (resp. negative) exponent vector of f . We write

σ+(f) := {µ ∈ σ(f) | cµ > 0} and σ−(f) := {µ ∈ σ(f) | cµ < 0}
for the set of positive and negative exponent vectors respectively. The convex hull of the support

N(f) := Conv(σ(f))

is called the Newton polytope of f . For a set S ⊆ Rn, we define the restriction of f to S as

f|S : Rn>0 → R, x 7→ f|S(x) :=
∑

µ∈σ(f)∩S
cµx

µ.

Similarly to [19], our arguments will benefit from the existence of separating and enclosing
hyperplanes of the support of f . We briefly recall these objects. Each v ∈ Rn \ {0} and a ∈ R
define a hyperplane

Hv,a := {µ ∈ Rn | v · µ = a},
and two half-spaces

H+
v,a := {µ ∈ Rn | v · µ ≥ a}, H−

v,a := {µ ∈ Rn | v · µ ≤ a}.

The interiors of these half-spaces are denoted by H+,◦
v,a and H−,◦

v,a . If the support of a signomial
f satisfies

σ−(f) ⊆ H+
v,a and σ+(f) ⊆ H−

v,a

then we callHv,a a separating hyperplane of σ(f) and v is called a separating vector. A separating
hyperplane is strict, if

σ−(f) ∩H+,◦
v,a ̸= ∅,

meaning that the negative exponent vectors are not all contained in the hyperplane. We call a
vector v ∈ Rn an enclosing vector of σ+(f) if there exist parallel hyperplanes Hv,a, Hv,b, a ≥ b
such that

σ+(f) ⊆ H−
v,a ∩H+

v,b, and σ−(f) ⊆ Rn \
(
H−,◦
v,a ∩H+,◦

v,b

)
.

In that case, we call the pair (Hv,a,Hv,b) a pair of enclosing hyperplanes of σ+(f). A pair of
enclosing hyperplanes is strict, if

σ−(f) ∩H+,◦
v,a ̸= ∅, and σ−(f) ∩H−,◦

v,b ̸= ∅.
Example 2.1. To illustrate the above definitions, consider the polynomial

f(x, y) = −101x3y2 + 50x2y3 + xy3 + y4 − x2y − 9.5y3 + 51x2 + 30.5y2 − 37y + 12.(1)

The set of positive and negative exponent vectors are given by:

σ+(f) = {(2, 3), (1, 3), (0, 4), (2, 0), (0, 2), (0, 0)}, σ−(f) = {(3, 2), (2, 1), (0, 3), (0, 1)}.
The pair (Hv,2, Hv,0), v = (1, 0) is a pair of enclosing hyperplanes of σ+(f), see Figure 1(a).
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1 2 3
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4

v= (1, 0)

H+
v, 0 ∩H−

v, 2
H−
v, 0 H+
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(a)

1 2 3

1

2

3

4

v= (1, 0)

Hv, 2

(b)

1 2 3

1

2

3

4

v= (1, 0)Hv, 0

N(f|B)

(c)

Figure 1. Exponent vectors of f, f|A, f|B from Example 2.1. Positive exponent vectors

are marked by red circles and negative exponent vectors by blue dots. (a) A pair of

enclosing hyperplanes of σ+(f). (b) A strict separating hyperplane of σ(f|A). (c) The

Newton polytope of f|B and a non-strict separating hyperplane of σ(f|B).

If we remove the two negative exponent vectors (0, 3), (0, 1) which are contained in H−
v,0, or

with other words we restrict f to A = (H+
v,2 ∩ σ−(f)) ∪ σ+(f), then the support of

f|A(x, y) = −101x3y2 + 50x2y3 + xy3 + y4 − x2y + 51x2 + 30.5y2 + 12(2)

has a strict separating hyperplane given by Hv,2, v = (1, 0), see Figure 1(b).
By restricting f to B = (H−

v,0 ∩ σ−(f)) ∪ σ+(f), we have

f|B(x, y) = 50x2y3 + xy3 + y4 − 9.5y3 + 51x2 + 30.5y2 − 37y + 12.(3)

The hyperplane Hv,0 is a non-strict separating hyperplane of σ(f), see Figure 1(c). The face of
N(f|B) with inner normal vector v = (1, 0) equals N(f|B) ∩ Hv,0 and contains all the negative
exponent vectors of f|B.

The relevance of separating and enclosing vectors arises from the following observation. Each
v ∈ Rn and x ∈ Rn>0 induce a univariate signomial

R>0 → R, t 7→ f(tv ∗ x) =
∑

µ∈σ(f)
cµx

µtv·µ.(4)

If v is a separating (resp. enclosing) vector, then f(tv ∗ x), viewed as a signomial in t, has at
most one (resp. two) sign changes in its coefficient sequence.

Recall that a coefficient of a univariate signomial g is called the leading coefficient LC(g)
(resp. trailing coefficient TC(g)) if the corresponding exponent is the largest (resp. smallest).
If LC(g) < 0 (resp. TC(g) < 0), then g attains negative values for large (resp. small) enough
t ∈ R>0. This simple observation and the univariate Descartes’ rule of signs give the following
statement.

Lemma 2.2. Let g : R>0 → R, g(t) =
∑d

i=1 ait
νi be a univariate signomial such that g(1) < 0.

(i) If LC(g) < 0 and g has at most one sign change in its coefficient sign sequence, then
g(t) < 0 for all t ≥ 1.

(ii) If TC(g) < 0 and g has at most one sign change in its coefficient sign sequence, then
g(t) < 0 for all t ≤ 1.

(iii) If g has at most two sign changes in its coefficient sign sequence and LC(g) < 0 or
TC(g) < 0, then g(t) < 0 for all t ≤ 1 or g(t) < 0 for all t ≥ 1.

Lemma 2.2 played a crucial role in the proof of the following theorems in [19].

Theorem 2.3. Let f : Rn>0 → R, x 7→∑
µ∈σ(f) cµx

µ be a signomial.
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(i) If there exists a strict separating hyperplane of σ(f), then f−1(R<0) is non-empty and
contractible [19, Theorem 3.6].

(ii) If there exists a pair of strict enclosing hyperplanes of σ+(f), then b0(f
−1(R<0)) ≤ 2

[19, Theorem 3.8].
(iii) If f has at most one negative coefficient, then f−1(R<0) is either empty or logarithmically

convex [19, Theorem 3.4].

In addition to Theorem 2.3, another condition on the signed support of the signomial f
implying that f has at most one negative connected component, is that the negative and positive
exponent vectors of f are separated by a simplex and its negative vertex cones [19, Theorem
4.6]. We postpone recalling this result to Section 2.3, and continue with investigating separating
and enclosing hyperplanes.

2.2. Non-strict separating and non-strict enclosing hyperplanes. In the following propo-
sitions, we investigate what happens when σ(f) (resp. σ+(f)) has a separating (resp. enclosing)
hyperplane that is not necessarily strict. In these cases, a bound on b0(f

−1(R<0)) is given by
the number of negative connected components of restrictions of f to certain subsets of σ(f).
These technical statements serve as the core part of the proofs in Section 2.3 and Section 3.1.

The first such statement considers subsets of the support containing all negative exponent
vectors and those positive exponent vectors which lie on the separating hyperplane.

Proposition 2.4. Let f : Rn>0 → R, x 7→ ∑
µ∈σ(f) cµx

µ be a signomial whose support has a

separating hyperplane Hv,a. For any subset R ⊆ σ(f) such that σ−(f) ⊆ R and Hv,a∩σ+(f) ⊆ R,
we have:

(i) For all U ∈ B−0 (f|R), there exists a unique V ∈ B−0 (f) such that U ∩ f−1(R<0) ⊆ V .
(ii) The map

ϕ : B−0 (f|R)→ B−0 (f), U 7→ connected component of f−1(R<0)
that contains U ∩ f−1(R<0)

is well defined and bijective. In particular, it holds

b0(f
−1
|R (R<0)) = b0(f

−1(R<0)).

Proof. First observe that

f−1(R<0) ⊆ f−1
|R (R<0),(5)

because f|R(x) ≤ f(x) for all x ∈ Rn>0.
If σ+(f) ⊆ R, then R = σ(f) and we are done. So we assume that there exists α0 ∈ σ+(f)

such that α0 /∈ Hv,a. Since Hv,a is a separating hyperplane of σ(f), we have

v · β ≥ a ≥ v · α for all β ∈ σ−(f), α ∈ σ+(f), and a > v · α0.(6)

For x ∈ Rn>0 , consider the path

γv,x : [1,∞)→ Rn>0, t 7→ tv ∗ x
and the univariate signomial f(tv ∗ x) as in (4). Note that f(γv,x(t)) = f(tv ∗ x) for all t ≥ 1.

If v is a strict separating vector of σ(f), then f(tv ∗ x) has a negative leading coefficient. If v
is not strict, then

LC(f(tv ∗ x)) = f|Hv,a
(x), and f|R(x) = f|Hv,a

(x) +
∑

α∈σ+(f)∩R∩H−,◦
v,a

cαx
α.

Thus, if f|R(x) < 0, then LC(f(tv ∗ x)) < 0.
By (6), f(tv ∗x) and f|R(tv ∗x) have at most one sign change in their coefficient sign sequence.

By Lemma 2.2(i), we have:

im γv,x ⊆ f−1(R<0), for all x ∈ f−1(R<0),(7)

im γv,x ⊆ f−1
|R (R<0) and γv,x(t) ∈ f−1(R<0), for all x ∈ f−1

|R (R<0) < 0, t≫ 1.(8)
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This gives that each connected component of f−1
|R (R<0) has a non-empty intersection with

f−1(R<0).
To prove (i), let U ∈ B−0 (f|R), x, y ∈ U ∩ f−1(R<0) and consider a continuous path

γ : [0, 1]→ Rn>0

such that γ(0) = x, γ(1) = y and γ(s) ⊆ f−1
|R (R<0) for all s ∈ [0, 1].

We construct now a path between x and y that is contained in f−1(R<0). For a fixed s ∈ [0, 1],
since f|R(γ(s)) < 0, and the signomial f(tv ∗ γ(s)) has exactly one sign change in its coefficient
sign sequence, Descartes’ rule of signs implies that f(tv ∗γ(s)) has exactly one positive real root
τ(s), which is simple. Now, the Implicit Function Theorem [15] implies that the function

τ : [0, 1]→ R>0, s 7→ τ(s)

is continuous. So T := maxs∈[0,1] τ(s) exists, and we have:

f(tv0 ∗ γ(s)) < 0 for some t0 > max{1, T} and all s ∈ [0, 1].

Thus, the path

[0, 1]→ Rn>0, s→ tv0 ∗ γ(s)

connects tv0 ∗x and tv0 ∗y, and is contained in f−1(R<0). By (7), the paths γv,x, γv,y are contained
in f−1(R<0) and join x and t0 ∗ x, resp. y and t0 ∗ y. Thus, if x, y are in the same connected
component of f−1

|R (R<0), then they are also in the same connected component of f−1(R<0),

which gives (i).
By (i), the map ϕ is well defined. Now we show that ϕ is bijective. From (5), it follows that

every W ∈ B−0 (f) lies in a connected component of f−1
|R (R<0), which is a preimage of W under

ϕ. Thus, ϕ is surjective.
To show injectivity of ϕ, consider U1, U2 ∈ B−0 (f|R) such that ϕ(U1) = ϕ(U2) and let x1 ∈

U1, x2 ∈ U2. By (8)

im γv,x1 ⊆ f−1
|R (R<0), im γv,x2 ⊆ f−1

|R (R<0), and

γv,x1(t0) ∈ f−1(R<0), γv,x2(t0) ∈ f−1(R<0) for some t0 ≫ 1.

Since U1 ∩ f−1(R<0) and U2 ∩ f−1(R<0) are in the same connected component of f−1(R<0),
there exists a continuous path γ3 between γv,x1(t0) and γv,x2(t0) such that im γ3 ⊆ f−1(R<0).

By (5), we have im γ3 ⊆ f−1
|R (R<0). Thus, γv,x1 , γ3 and γv,x2 give a continuous path between x1

and x2 contained in f−1
|R (R<0). Thus, x, y lie in the same connected component of f−1

|R (R<0),

which implies that U1 = U2. □

In the following, we generalize the proof of Theorem 2.3(ii) to the case, where the enclosing
hyperplanes are not necessarily strict. To ease the reading of the proofs, we discuss first the
notation we are going to use. Given a pair of enclosing hyperplanes (Hv,a,Hv,b) of σ+(f), we
define

A = (H+
v,a ∩ σ−(f)) ∪ σ+(f), B = (H−

v,b ∩ σ−(f)) ∪ σ+(f).(9)

That is, both A and B contain all the positive exponent vectors of f . The set A (resp. B)
contains the negative exponent vectors from one (resp. the other) side of the area enclosed by
the hyperplanes Hv,a,Hv,b. Note that by definition, Hv,a (resp H−v,b) is a separating hyperplane
of the support of the restricted signomials f|A (resp f|B). If (Hv,a,Hv,b) is a pair of strict
enclosing hyperplanes, then Hv,a and H−v,b are strict separating hyperplanes of σ(f|A) and
σ(f|B) respectively. In this case, by Theorem 2.3(i) we have:

b0
(
f−1
|A (R<0)

)
= 1, b0

(
f−1
|B (R<0)

)
= 1.(10)
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For example, for the signomial (1) from Example 2.1, the sets A,B are given by

A = (H+
v,2 ∩ σ−(f)) ∪ σ+(f) = {(3, 2), (2, 1), (2, 3), (1, 3), (0, 4), (2, 0), (0, 2), (0, 0)}(11)

B = (H−
v,0 ∩ σ−(f)) ∪ σ+(f) = {(0, 3), (0, 1), (2, 3), (1, 3), (0, 4), (2, 0), (0, 2), (0, 0)}.(12)

The supports of the restricted signomials f|A and f|B are depicted in Figure 1(b),(c). For fixed
x ∈ Rn>0, the induced univariate signomials as in (4) equal

f(t1x, t0y) = (−101x3y2)t3 + (51x2 − x2y + 50x2y3)t2 + xy3t1 + y4 − 9.5y3 + 30.5y2 − 37y + 12,

f|A(t1x, t0y) = (−101x3y2)t3 + (51x2 − x2y + 50x2y3)t2 + xy3t1 + y4 + 30.5y2 + 12,

f|B(t−1x, t0y) = y4 − 9.5y3 + 30.5y2 − 37y + 12 + xy3t−1 + (51x2 + 50x2y3)t−2.

The leading coefficient of f|A(t1x, t0y) is −101x3y2, which is negative for all (x, y) ∈ R2
>0.

This phenomenon always happens. If v is a strict separating vector of σ(f), then the leading
coefficient of the induced signomial in (4) is negative. On the contrary, this might not be true
for non-strict separating vectors. For the above example, we have

LC(f|B(t−1x, t0y)) = y4 − 9.5y3 + 30.5y2 − 37y + 12 < 0, if y4 − 9.5y3 + 30.5y2 − 37y + 12 < 0,

LC(f|B(t−1x, t0y)) = xy3 > 0, if y4 − 9.5y3 + 30.5y2 − 37y + 12 = 0,

LC(f|B(t−1x, t0y)) = y4 − 9.5y3 + 30.5y2 − 37y + 12 > 0, if y4 − 9.5y3 + 30.5y2 − 37y + 12 > 0.

In the next proposition, we consider subsets R ⊆ A, S ⊆ B such that f|A and R (resp. f|B
and S) satisfy the hypothesis of Proposition 2.4.

Proposition 2.5. Let f : Rn>0 → R, x 7→∑
µ∈σ(f) cµx

µ be a signomial and (Hv,a,Hv,b) be a pair

of enclosing hyperplanes of σ+(f). Let A,B ⊆ σ(f) be as in (9) and let R ⊆ A, S ⊆ B such
that

• R ∩ σ−(f) = A ∩ σ−(f), Hv,a ∩ σ+(f) ⊆ R,
• S ∩ σ−(f) = B ∩ σ−(f), Hv,b ∩ σ+(f) ⊆ S.

Then the map

φ : B−0 (f|R) ⊔ B−0 (f|S)→ B−0 (f),

U 7→
{

connected component of f−1(R<0) that contains U ∩ f−1
|A (R<0), if U ∈ B−0 (f|R),

connected component of f−1(R<0) that contains U ∩ f−1
|B (R<0), if U ∈ B−0 (f|S).

is well defined and surjective. In particular, we have

b0
(
f−1(R<0)

)
≤ b0

(
f−1
|R (R<0)

)
+ b0

(
f−1
|S (R<0)

)
,

Proof. The idea of the proof follows closely the arguments in [19, Theorem 3.8]. Since f|A and f|B
are obtained by removing some of the monomials with negative coefficient from f , f(x) ≤ f|A(x)
and f(x) ≤ f|B(x) for all x ∈ Rn>0. This implies:

f−1
|A (R<0) ⊆ f−1(R<0), and f−1

|B (R<0) ⊆ f−1(R<0).

Thus, every connected component of f−1
|A (R<0) and f−1

|B (R<0) is contained in a unique connected

component of f−1(R<0). By this observation, the map

ψ : B−0 (f|A) ⊔ B−0 (f|B)→ B−0 (f), V 7→ connected component of f−1(R<0) that contains V

is well defined.
From Proposition 2.4 applied to f|A and R or f|B and S, it follows that the map

ϕ : B−0 (f|R) ⊔ B−0 (f|S)→ B−0 (f|A) ⊔ B−0 (f|B),

U 7→
{

connected component of f−1
|A (R<0) that contains U ∩ f−1

|A (R<0), if U ∈ B−0 (f|R),

connected component of f−1
|B (R<0) that contains U ∩ f−1

|B (R<0), if U ∈ B−0 (f|S).
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is well defined and bijective. Since φ is the composition of ϕ and ψ, it is enough to show that
ψ is surjective.

To prove that ψ is surjective, for W ∈ B−0 (f) and any x ∈ W , we show that one of the two
paths

γv : [1,∞)→ Rn>0, t→ tv ∗ x, γ−v : (0, 1]→ Rn>0, t→ t−v ∗ x
(a) connects x to a point y ∈ f−1

|A (R<0) ∪ f−1
|B (R<0), and

(b) the image of the path is contained in f−1(R<0).

Then, any connected component V ∈ B−0 (f|A) ⊔ B−0 (f|B) that contains y will be a preimage of
W under ψ. To see this, we define

Sx,a(t) :=
∑

µ∈σ(f), a≤v·µ
cµx

µtv·µ, Sx,b(t) :=





∑
µ∈σ(f), v·µ≤b

cµx
µtv·µ, if a ̸= b

∑
µ∈σ(f), v·µ<b

cµx
µtv·µ, if a = b

.

and consider the signomials

f̃A(t) := f|A(tv ∗ x) = Sx,a(t) +
∑

µ∈σ+(f),v·µ<a
cµx

µtv·µ,

f̃B(t) := f|B(tv ∗ x) =
∑

µ∈σ+(f),b<v·µ
cµx

µtv·µ + Sx,b(t).

A simple argument shows that

(13)
If LC(f̃A) < 0, then f̃A(tA) < 0 for some tA > 1 and γv connects x to f−1

|A (R<0).

If TC(f̃B) < 0, then f̃B(tB) < 0 for some tB < 1 and γ−v connects x to f−1
|B (R<0).

Since (Hv,a,Hv,b) is a pair of enclosing hyperplanes of σ+(f), the univariate signomial

f̃(t) := f(tv ∗ x) = Sx,a(t) +
∑

µ∈σ+(f),
b<v·µ<a

cµx
µtv·µ + Sx,b(t)

has at most two sign changes in its coefficient sign sequence. We denote the number of sign
changes by #signvar(f̃). By Lemma 2.2, we have:

im(γv) ⊆ f−1(R<0) or im(γ−v) ⊆ f−1(R<0), if LC(f̃) < 0 and TC(f̃) < 0,

im(γv) ⊆ f−1(R<0), if LC(f̃) < 0 and #signvar(f̃) ≤ 1,(14)

im(γ−v) ⊆ f−1(R<0), if TC(f̃) < 0 and #signvar(f̃) ≤ 1.

In view of (13) and (14), to obtain (a) and (b) all we need is to show that one of the following
holds:

(I) LC(f̃) = LC(f̃A) < 0 and TC(f̃) = TC(f̃B) < 0,

(II) LC(f̃) = LC(f̃A) < 0 and #signvar(f̃) ≤ 1,

(III) TC(f̃) = TC(f̃B) < 0 and #signvar(f̃) ≤ 1.

The leading and trailing coefficients LC(f̃),LC(f̃A),TC(f̃) and TC(f̃B) depend on the signs

of Sx,a(t), Sx,b(t). If Sx,a(t) (resp. Sx,b(t)) is not the zero polynomial, then LC(f̃) = LC(f̃A) =

LC(Sx,a) (resp. TC(f̃) = TC(f̃B) = TC(Sx,b)). As f̃(1) < 0, we have that at least one of Sx,a(t)
and Sx,b(t) is not the zero polynomial, furthermore LC(Sx,a) < 0 or TC(Sx,b) < 0. We have the
following cases:

• If LC(Sx,a) < 0 and TC(Sx,b) < 0, then Sx,a ̸≡ 0, Sx,b ̸≡ 0 and (I) is satisfied.
• If LC(Sx,a) < 0 and TC(Sx,b) > 0 or Sx,b ≡ 0, then (II) holds.
• If TC(Sx,b) < 0 and LC(Sx,a) > 0 or Sx,a ≡ 0, then (III) holds.

□
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If (Hv,a,Hv,b) is a pair of enclosing hyperplanes of σ+(f), then by Proposition 2.4(iii), for
every R,S ⊆ σ(f) as in Proposition 2.5 the number of negative connected components of f|R
respectively f|S is the same. So to reduce the computational cost of finding b0(f

−1
|R (R<0)) and

b0(f
−1
|S (R<0)) one might choose the sets R,S as small as possible, that is R = H+

v,a ∩ σ(f) and

S = H−
v,b ∩ σ(f). However, if R and S are as large as possible, that is R = A and S = B, then

one can refine the bound from Proposition 2.5 by identifying negative connected components of
f|A and f|B that intersect. To make this precise, consider the bipartite graph with vertex set
and edges defined as

(15)
BA,B := B−0 (f|A) ⊔ B−0 (f|B),

EA,B := {(U, V ) | U ∈ B−0 (f|A), V ∈ B−0 (f|B) : U ∩ V ̸= ∅}.
Proposition 2.6. Let f : Rn>0 → R, x 7→ ∑

µ∈σ(f) cµx
µ be a signomial, (Hv,a,Hv,b) a pair of

enclosing hyperplanes of σ+(f), and let A,B ⊆ σ(f) be as in (9). Then

b0
(
f−1(R<0)

)
≤ C ≤ b0

(
f−1
|A (R<0)

)
+ b0

(
f−1
|B (R<0)

)
,

where C denotes the number of connected components of the graph (BA,B, EA,B) from (15).

Proof. The inequality C ≤ b0
(
f−1
|A (R<0)

)
+ b0

(
f−1
|B (R<0)

)
follows from the fact that a graph

cannot have more connected components than the number of its vertices.
Let φ be the surjective map from Proposition 2.5 with R = A,S = B. If the intersection of

two connected sets is non-empty, then their union is connected. This gives that if U, V ∈ BA,B
lie in the same connected component of the graph (BA,B, EA,B), then U and V are contained in
the same connected component of f−1(R<0). This yields a well defined map

φ̃ : BA,B
/
∼ → B−0 (f), [U ] 7→ φ(U) = connected component of f−1(R<0) that contains U.

where ∼ denotes the equivalence relation that identifies two elements of BA,B if they lie in the
same connected component of the graph (BA,B, EA,B), and [U ] denotes the equivalence class of
U under this relation. Since φ is surjective, so is φ̃, which gives b0

(
f−1(R<0)

)
≤ C. □

Remark 2.7. If (Hv,a,Hv,b) is a pair of strict enclosing hyperplanes of σ+(f), then from (10)
and Proposition 2.6 follows that

b0
(
f−1(R<0)

)
≤ 2,

which recovers the bound from Theorem 2.3(ii).

Example 2.8. We revisit the signomial f in (1) from Example 2.1, whose support and a pair
of enclosing hyperplanes (Hv,2,Hv,0), v = (1, 0) of σ+(f) are depicted in Figure 1(a). We
determined the corresponding sets A,B in (11), (12).

Using the Maple [33] function IsEmpty(), one can check that f−1
|A (R<0)∩f−1

|B (R<0) = ∅. Thus,

the graph (BA,B, EA,B) does not have any edges and the bound C on b0
(
f−1(R<0)

)
provided by

Proposition 2.6 equals
C = b0

(
f−1
|A (R<0)

)
+ b0

(
f−1
|B (R<0)

)
.

Since σ(f|A) has a strict separating hyperplane, b0
(
f−1
|A (R<0)

)
= 1 by Theorem 2.3(i). In

Example 3.2, we show that b0
(
f−1
|B (R<0)

)
= 2. Thus, Proposition 2.6 gives the bound C = 3.

In this case, C equals the number of negative connected components of f . In Example 3.5, we
will consider a signomial where the bound C is not sharp.

The sets f−1(R<0), f
−1
|A (R<0) and f−1

|B (R<0) are depicted in Figure 2(a),(b).

One might wonder if, for other choices of R and S, the bound from Proposition 2.5 could
be refined using a similar idea as in the proof of Proposition 2.6. We will show that such a
refinement is possible in the special case where all the exponent vectors are contained in the
enclosing hyperplanes, or with other words the exponent vectors lie on parallel faces of the
Newton polytope (Proposition 3.3). The next example shows that Proposition 2.6 might fail for
other choices of R and S.
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1

1
f< 0

f< 0

f< 0

(a)

1

1
f|A < 0

f|B < 0

f|B < 0

(b)

1

1
f|R < 0

f|S < 0

f|S < 0

(c)

Figure 2. Negative connected components of f ,f|A,f|B ,f|R,f|S from Example 2.8 and

Example 2.9. For better visibility, the figures show the images of these sets under
the coordinate-wise natural logarithm map R2

>0 → R2, (x, y) 7→ (log(x), log(y)).

Example 2.9. Consider again the signomial f in (1) from Example 2.1 and choose

R = {(3, 2), (2, 1), (2, 3), (1, 3), (2, 0)}, S = {(0, 3), (0, 1), (1, 3), (0, 4), (0, 2), (0, 0)}.
Similarly to (15), we investigate the graph whose vertices are

BR,S := B−0 (f|R) ⊔ B−0 (f|S), and edges

ER,S := {(U, V ) | U ∈ B−0 (f|R), V ∈ B−0 (f|S) : U ∩ V ̸= ∅}.
Since σ(f|R) has a strict separating hyperplane, f|R has one negative connected component.
From Theorem 3.1, it will follow that f|S has two negative connected components. Thus, the

graph (BR,S , ER,S) has three vertices. One can check that (2, 1) ∈ f−1
|R (R<0) ∩ f−1

|S (R<0) ̸= ∅.
This implies that the graph has at most two connected components. Since b0(f

−1(R<0)) = 3,
the number of connected components of the graph (BR,S , ER,S) cannot be an upper bound on

b0(f
−1(R<0)). In Figure 2(c), we depicted the sets f−1

|R (R<0), f
−1
|S (R<0).

To compute the bound C in Proposition 2.6, one should check whether the negative con-
nected components of two signomials intersect. We finish this subsection with a criterion on the
signed supports of two signomials guaranteeing that the intersection of their negative connected
components is non-empty.

Proposition 2.10. Let f, g : Rn>0 → R be signomials. If there exist negative exponent vectors
β1 ∈ σ−(f), β2 ∈ σ−(g) such that

Conv
(
{β1, β2}

)
∩ Conv

(
σ+(f) ∪ σ+(g)

)
= ∅,

then f−1(R<0) ∩ g−1(R<0) ̸= ∅.
Proof. We start by observing

f(x) ≤ f|σ+(f)∪{β1}(x), and g(x) ≤ g|σ+(g)∪{β2}(x) for all x ∈ Rn>0,(16)

since f, f|σ+(f)∪{β1} (resp. g, g|σ+(g)∪{β2}) differ only in monomials with negative coefficients.
As non-intersecting closed convex sets can be separated by an affine hyperplane see e.g. [26,

Section 2.2, Theorem 1], from Conv({β1, β2}) ∩ Conv(σ+(f) ∪ σ+(g)) = ∅ it follows that there
exists w ∈ Rn such that

w · β1 > w · α, w · β2 > w · α, for all α ∈ σ+(f) ∪ σ+(g).

For a fixed x ∈ Rn>0, both univariate signomials

f|σ+(f)∪{β1}(t
w ∗ x), g|σ+(g)∪{β2}(t

w ∗ x)
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have negative leading coefficients. Thus, there exists t0 ≫ 0 such that

f|σ+(f)∪{β1}(t
w
0 ∗ x) < 0 and g|σ+(g)∪{β2}(t

w
0 ∗ x) < 0.

By (16), we have tw0 ∗ x ∈ f−1
|σ+(f)∪{β1}(R<0) ∩ g−1

|σ+(g)∪{β2}(R<0) ⊆ f−1(R<0) ∩ g−1(R<0), which

completes the proof. □

2.3. One negative connected component. Building on the results of Section 2.2, we describe
conditions on the signs of the coefficients of f and its support σ(f) that guarantee that f has
one negative connected component. Similarly to Theorem 2.3(i), for polynomials satisfying these
conditions the number of negative connected components does not depend on the values of the
coefficients but only on their signs.

Theorem 2.11. Let f : Rn>0 → R, x 7→∑
µ∈σ(f) cµx

µ be a signomial such that σ+(f) has a pair

of strict enclosing hyperplanes (Hv,a,Hv,b). Assume that there exist negative exponent vectors
β1, β2 ∈ σ−(f) such that

• β1 ∈ H+
v,a, β2 ∈ H−

v,b and

• Conv({β1, β2}) ∩ Conv(σ+(f)) = ∅.
Then f−1(R<0) is non-empty and connected.

Proof. Let A,B ⊆ σ(f) as in (9). Since (Hv,a,Hv,b) is a pair of strict enclosing hyperplanes of
σ+(f), by (10) we have:

b0
(
f−1
|A (R<0)

)
= 1, b0

(
f−1
|B (R<0)

)
= 1.

The assumptions of the theorem are equivalent to β1 ∈ σ−(f|A), β2 ∈ σ−(f|B) and Conv({β1, β2})∩
Conv(σ+(f|A)∪σ+(f|B)) = ∅. Thus, by Proposition 2.10, f−1

|A (R<0)∩ f−1
|B (R<0) ̸= ∅. Now, from

Proposition 2.6 it follows that b0(f
−1(R<0)) = 1. □

Example 2.12. Consider the signomial f = −x4y4 + 10x3y3 − 10x4 − 10 y4 + 7xy + 5x − 1.
Figure 3(a) displays the exponent vectors of f . The pair (Hv,3.5, Hv,0.5), v = (1, 0) is a pair of
strict enclosing hyperplanes of σ+(f), furthermore

Conv({(0, 4), (4, 4)}) ∩ Conv(σ+(f)) = ∅.(17)

Thus, f−1(R<0) is connected by Theorem 2.11. Figure 3(b),(c) show f−1(R<0), f
−1
|A (R<0) and

f−1
|B (R<0), where f|A = −x4y4+10x3y3−10x4+7xy+5x and f|B = 10x3y3−10 y4+7xy+5x−1.

By Theorem 2.3(iii), f−1(R<0) is either empty or logarithmically convex, if the signomial f
has at most one negative coefficient. In particular, in that case f has one negative connected
component. A natural question to ask is what happens for signomials with at most one positive
coefficient. For a univariate signomial f , it is easy to construct examples where f has one
positive coefficient and f−1(R<0) is disconnected, take for example f = −x2 + 3x− 1.

If n ≥ 2 and the positive exponent vector lies in the interior of the Newton polytope, then
f−1(R<0) is homeomorphic to the complement of a bounded convex set [38, Corollary 3.5] [19,
Theorem 3.4], therefore f−1(R<0) is connected. This argument does not work if the positive
exponent vector lies on the boundary of N(f), but the conclusion is still true.

Corollary 2.13. Let f : Rn>0 → R, x 7→ ∑
µ∈σ(f) cµx

µ be a signomial. If dim N(f) ≥ 2 and

#σ+(f) = 1, then f−1(R<0) is non-empty and connected.

Proof. Write {α} = σ+(f). Since dim N(f) ≥ 2, there exist β1, β2 ∈ σ−(f) such that β1, β2 and
α do not lie on a line. In that case,

Conv({β1, β2}) ∩ Conv({α}) = ∅.
Pick a hyperplane Hv,a that contains α such that β1, β2 lie in different open half-spaces

determined by Hv,a. Thus, (Hv,a,Hv,a) is a pair of strict enclosing hyperplanes of σ+(f).
Using Theorem 2.11, we conclude that f−1(R<0) is non-empty and connected. □
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1 2 3 4 5

1

2

3

4

5

v= (1, 0)

w= (0, 1)

Hw, 3.5

Hv, 0.5 Hv, 3.5

(a)

1

1 f< 0

(b)

1

1

f|A < 0

f|B < 0

(c)

Figure 3. Illustration of Example 2.12 (a) Negative and positive exponent vectors of

f = −x4y4 +10x3y3−10x4−10 y4 +7xy+5x−1, blue dots are negative, red circles are

positive. The black solid lines are strict enclosing hyperplanes of σ+(f). The gray dashed

line separates Conv((0, 4), (4, 4)) from Conv(σ+(f)). (b) Negative connected component

of f . (c) Negative connected component of f|A = −x4y4 + 10x3y3 − 10x4 + 7xy + 5x

and f|B = 10x3y3 − 10 y4 + 7xy + 5x− 1.

Corollary 2.13 shows that one can flip the signs in Theorem 2.3(iii) if dim N(f) ≥ 2, i.e.
if f has one negative coefficient then both f−1(R<0) and (−f)−1(R<0) are (possibly empty)
connected sets. As discussed at the end of Section 2.1, a signomial has at most one negative
connected component if its positive and negative exponent vectors are separated by a simplex
and its negative vertex cones [19, Theorem 4.6]. We proceed by recalling this statement, and
show that it is possible the flip the signs also in that case under some mild assumptions.

First we recall the definition of the negative vertex cone of a simplex. For an n-simplex
P ⊆ Rn with vertices µ0, . . . , µn, the negative vertex cone of P at the vertex µk is defined as

P−,k := µk + Cone(µk − µ0, . . . , µk − µn).

Thus, P−,k is the cone with apex at µk which is generated by the edges pointing into µk. For
the union of the negative vertex cones P−,0, . . . , P−,n, we write P−.

Theorem 2.14. [19, Theorem 4.6] Let f : Rn>0 → R, x 7→∑
µ∈σ(f) cµx

µ be a signomial. If there

exists an n-simplex P ⊆ Rn such that

σ−(f) ⊆ P, and σ+(f) ⊆ P−,

then f−1(R<0) is either empty or contractible.

As another consequence of Theorem 2.11 we have the following result.

Corollary 2.15. Let n ≥ 2 and let f : Rn>0 → R, x 7→ ∑
µ∈σ(f) cµx

µ be a signomial. Assume

that there exists an n-simplex P ⊆ Rn such that

σ+(f) ⊆ P and σ−(f) ⊆ P−.

If σ−(f) ∩ int(P−) ̸= ∅, then f−1(R<0) is non-empty and connected.

Proof. Denote µ0, . . . , µn the vertices of P and write P as

P =
n⋂

j=0

H−
vj ,aj(18)

for a choice of normal vectors v0, . . . , vn ∈ Rn and scalars a0, . . . , an ∈ R such that µk equals
the intersection point of the hyperplanes Hvj ,aj , j ∈ {0, . . . , n} \ {k}. By [19, Proposition 4.3],
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each negative vertex cone has the form:

P−,k =
n⋂

j=0,j ̸=k
H+
vj ,aj k = 0, . . . , n.

Note that if β ∈ P−,k, then β is contained in H−,◦
vk,ak . Since σ+(f) ⊆ P and σ−(f) ⊆ P−, we

have

vk · β ≥ ak ≥ vk · α ≥ v · µk ≥ vk · β′, and vk · α > vk · β′(19)

for all β ∈ σ−(f) \ P−,k, α ∈ σ+(f), β′ ∈ σ−(f) ∩ P−,k, k = 0, . . . , n.
Let β0 ∈ σ−(f) ∩ int(P−) and assume without loss of generality that β0 ∈ int(P−,0), so

a0 > v0 · β0 and vj · β0 > aj , for j = 1, . . . , n.(20)

If σ−(f) ∩ P−,1 = ∅, then σ−(f) ⊆ H+
v1,a1 . Since β0 ∈ H+,◦

v1,a1 , Hv1,a1 is a strict separating

hyperplane of σ(f), which implies that f−1(R<0) is non-empty and connected by Theorem 2.3(i).
Assume now that σ−(f) ∩ P−,1 ̸= ∅, let β1 ∈ σ−(f) ∩ P−,1 and b1 ∈ R such that

v1 · α > b1 > v1 · β1 for all α ∈ σ+(f).

From (19), it follows that (Hv1,a1 ,Hv1,b1) is a pair of enclosing hyperplanes of σ+(f). By (20),

we have β0 ∈ H+,◦
v1,a1 . Thus, (Hv1,a1 ,Hv1,b1) is a pair of strict enclosing hyperplanes.

Every element µ ∈ Conv(β0, β1) \ {β1} has the form µ = tβ0 + (1 − t)β1 for some t ∈ (0, 1].
By (19) and (20), we have

v2 · µ = t(v2 · β0) + (1− t)(v2 · β1) > a2.

Thus, Conv(β0, β1) \ {β1} ⊆ H+,◦
v2,a2 , which implies that

Conv({β0, β1}) ∩ Conv(σ+(f)) = ∅.

From Theorem 2.11, it follows that f−1(R<0) is non-empty and connected. □

Example 2.16. (a) Consider the signomial

f = −x5y 7
3 − x5y2 + x2y2 − xy3 − y4 + 2x2y

4
3 + 2xy2 − xy.

The simplex P = Conv((1, 1), (4, 2), (1, 3)) contains σ+(f), and the negative exponent vectors
are contained in the union of the negative vertex cones P−. By Theorem 2.14, we have that
(−f)−1(R<0) is connected. From Corollary 2.15, it follows that f−1(R<0) is connected as well.
The exponent vectors of f , the simplex P and its negative vertex cones are depicted in Figure
4 (a),(b).

To write P as an intersection of half-spaces as in (18) in the proof of Corollary 2.15, one can
choose v0 = (−1, 0), v1 = (0.5, 1.5), v2 = (0.5,−1.5). With this choice we have:

P = H−
v0,−1 ∩H−

v1,5
∩H−

v2,−1.

(b) The following example shows that the assumption σ−(f)∩ int(P−) ̸= ∅ in Corollary 2.15
is necessary. If we remove the exponent vectors (0, 4), (5, 2) ∈ relint(P−) from the support of f ,
the signomial

g = −x5y 7
3 + x2y2 − xy3 + 2x2y

4
3 + 2xy2 − xy

satisfies that σ+(g) ⊆ P and σ−(g) ⊆ P−, however g−1(R<0) has two connected components.
Figure 4(c),(d) displays σ(g) and g−1(R<0).
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2.5

3.0

3.5

g< 0

g< 0

(d)

Figure 4. Illustration of Example 2.16 (a) A simplex P , its negative vertex cones, and

the support of f = −x5y 7
3 −x5y2 +x2y2−xy3−y4 +2x2y

4
3 +2xy2−xy (c) The support

of g = −x5y 7
3 + x2y2 − xy3 + 2x2y

4
3 + 2xy2 − xy

3. Reduction to faces of the Newton polytope

3.1. Negative and parallel faces. In this section, we present two criteria to reduce the prob-
lem of finding the number of negative connected components of a signomial to the same problem
for a signomial in less variables and monomials. The approach is based on how the exponent
vectors of the signomial lie on the faces of the Newton polytope. A face of the Newton polytope
of a signomial f is a set of the form

N(f)v :=
{
ω ∈ N(f) | v · ω = max

µ∈N(f)
v · µ

}

for some v ∈ Rn. The vector v is called the outer normal vector of the face N(f)v. A polytope
has finitely many faces [29, Theorem 3.46]. For a fixed face F ⊆ N(f), the set of vectors v ∈ Rn
such that N(f)v = F is called the outer normal cone of F . For more details about polytopes
and their faces, we refer to the books [28, 29, 43]. To compute faces and outer normal cones of
polytopes, one can use e.g. Polymake [23] or SageMath [40].

Theorem 3.1. Let f : Rn>0 → R, x 7→ ∑
µ∈σ(f) cµx

µ be a signomial. If there exists a face

F ⊆ N(f) such that σ−(f) ⊆ F , then
b0
(
f−1(R<0)

)
= b0

(
f−1
|F (R<0)

)
.

Proof. It follows directly from Proposition 2.4 with R = σ(f) ∩ F . □
Example 3.2. Consider the signomial

f|B(x, y) = 50x2y3 + xy3 + y4 − 9.5y3 + 51x2 + 30.5y2 − 37y + 12

from Example 2.1 whose Newton polytope is shown in Figure 1(c).
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1

1
f|F < 0

f|F < 0f|B < 0

f|B < 0

Figure 5. Images of the negative connected components of f|B and f|F from Example

3.2 under the coordinate-wise natural logarithm map.

The face F = Conv
(
(0, 0), (0, 4)

)
⊆ N(f|B) contains all the negative exponent vectors of f|B.

Since f|F is univariate, it is easy to conclude that f−1
|F (R<0) has two connected components. By

Theorem 3.1, f−1
|B (R<0) has also two connected components.

The next proposition refines the bound from Proposition 2.5 in the special case where the
pair of enclosing hyperplanes (Hv,a,Hv,b) of σ+(f) is non-strict and all the exponent vectors of
f lie on the union of the two hyperplanes. In this case, the hyperplanes Hv,a,Hv,b cut out two
parallel faces of the Newton polytope of f , i.e.:

N(f)v = N(f) ∩Hv,a, N(f)−v = N(f) ∩Hv,b.
Similarly to (15), we define a bipartite graph whose set of vertices and edges are

(21)
Bv := B−0 (f|N(f)v) ⊔ B−0 (f|N(f)−v

),

Ev := {(U, V ) | U ∈ B−0 (f|N(f)v), V ∈ B−0 (f|N(f)−v
) : U ∩ V ̸= ∅}.

Proposition 3.3. Let f : Rn>0 → R, x 7→∑
µ∈σ(f) cµx

µ be a signomial. Assume that there exists

v ∈ Rn such that σ(f) ⊆ N(f)v ∪N(f)−v. Then

b0
(
f−1(R<0)

)
≤ D ≤ b0

(
f−1
|N(f)v

(R<0)
)

+ b0
(
f−1
|N(f)−v

(R<0)
)
,

where D denotes the number of the connected components of the graph (Bv, Ev) from (21).

Proof. Let a := maxµ∈σ(f) v · µ and b := minµ∈σ(f) v · µ. Since σ(f) ⊆ N(f)v ∪N(f)−v, the pair
(Hv,a,Hv,b) is a pair of enclosing hyperplanes of σ+(f). Let A,B ⊆ σ(f) be as in (9) and let φ
be the map from Proposition 2.5 with R = σ(f) ∩ N(f)v and S = σ(f) ∩ N(f)−v. Recall that
A = R ∪ σ+(f), B = S ∪ σ+(f).

We show that the map

φ̃ :
(
B−0 (f|N(f)v) ⊔ B−0 (f|N(f)−v

)
)/
∼ −→ B−0 (f), [U ] 7→ φ(U)

is well defined and surjective. Here ∼ denotes the equivalence relation that identifies two ele-
ments in Bv if they lie in the same connected component of the graph (Bv, Ev).

Let U and V be in the same connected component of the bipartite graph (Bv, Ev) and let
U1 = U, V1, U2, . . . , Vm−1, Um, Vm = V be a path in the graph such that Ui ∈ B−0 (f|N(f)v),

Vi ∈ B−0 (f|N(f)−v
), Ui ∩ Vi ̸= ∅ for i = 1, . . . ,m and Vi ∩ Ui+1 ̸= ∅ for i = 1, . . . ,m − 1. It

is enough to show that, for all i = 1, . . . ,m and j = i, i + 1 it holds that Ui ∩ f−1
|A (R<0) and

Vj ∩ f−1
|B (R<0) lie in the same connected component of f−1(R<0). We show this by constructing

a path γ between Ui ∩ f−1
|A (R<0) and Vj ∩ f−1

|B (R<0) such that im(γ) ⊆ f−1(R<0).

For a fixed x ∈ Ui ∩ Vj , consider the univariate signomial

f(tv ∗ x) =
( ∑

µ∈σ(f)∩N(f)v

cµx
µ
)
ta +

( ∑

µ∈σ(f)∩N(f)−v

cµx
µ
)
tb = f|N(f)v(x)ta + f|N(f)−v

(x)tb.
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Since f|N(f)v(x) < 0 and f|N(f)−v
(x) < 0, we have f(tv ∗ x) < 0, f|N(f)v(tv ∗ x) < 0 and

f|N(f)−v
(tv ∗ x) < 0 for all t > 0, and therefore the image of the path

γ : R>0 → Rn>0, t 7→ tv ∗ x
is contained in Ui ∩ Vj ∩ f−1(R<0).

Since LC(f|A(tv ∗ x)) = f|N(f)v(x) < 0 and TC(f|B(tv ∗ x)) = f|N(f)−v
(x) < 0, there exist

t1 ≫ 1 and 0 < t2 ≪ 1 such that γ(t1) ∈ f−1
|A (R<0) and γ(t2) ∈ f−1

|B (R<0). Since im(γ) ⊆ Ui

and im(γ) ⊆ Vj , it follows that γ(t1) ∈ Ui ∩ f−1
|A (R<0) and γ(t2) ∈ Vj ∩ f−1

|B (R<0). Since

x, γ(t1), γ(t2) lie in the same connected component of f−1(R<0), it follows that Ui ∩ f−1
|A (R<0)

and Vj ∩ f−1
|B (R<0) lie in the same connected component of f−1(R<0). Thus, the map φ̃ is well

defined.
From the surjectivity of φ follows that φ̃ is surjective, which gives b0(f

−1(R<0)) ≤ D. □
Remark 3.4. Let f be a signomial satisfying

σ(f) ⊆ N(f)v ∪N(f)−v

for some v ∈ R as in Proposition 3.3 and let A,B the sets as in (9). By Theorem 3.1, there is a
bijection between the sets

B−0 (f|N(f)v) ⊔ B−0 (f|N(f)−v
)←→ B−0 (f|A) ⊔ B−0 (fB).

Thus, the graphs (BA,B, EA,B) from (15) and (Bv, Ev) from (21) have the same number of vertices.
Since

f−1
|A (R<0) ⊆ f−1

|N(f)v
(R<0) and f−1

|B (R<0) ⊆ f−1
|N(f)−v

(R<0),

every edge of the graph (BA,B, EA,B) corresponds to an edge of the graph (Bv, Ev). Thus, the
bound provided in Proposition 3.3 is always smaller or equal than the bound given in Proposition
2.6.

Example 3.5. The bound on b0(f
−1(R<0)) in Proposition 2.6 and in Proposition 3.3 can be

different, even though the two statements look similar.
To demonstrate this, consider the signomial f = 73x − 55x2 − x4 + y − 20xy + x4y. The

Newton polytope of f is shown in Figure 6(a). We have that σ(f) ⊆ N(f)v ∪ N(f)−v, for
v = (0, 1). The restrictions of f to these two faces are given by:

fN(f)v = 73x− 55x2 − x4, fN(f)−v
= y − 20xy + x4y.

The pair (Hv,1, Hv,0) is a pair of enclosing hyperplanes of σ+(f). Let A,B ⊆ σ(f) be as defined
in (9):

A = (H+
v,1 ∩ σ−(f)) ∪ σ+(f) = {(1, 1), (1, 0), (0, 1), (4, 1)},

B = (H−
v,0 ∩ σ−(f)) ∪ σ+(f) = {(2, 0), (4, 0), (1, 0), (0, 1), (4, 1)}.

Since f|N(f)v and f|A only have one negative coefficient, the sets f−1
|N(f)v

(R<0) and f−1
|A (R<0) are

connected by Theorem 2.3(iii). Since the supports of f|N(f)−v
and f|B have strict separating

hyperplanes, Theorem 2.3(i) implies that f−1
|N(f)−v

(R<0), f
−1
|B (R<0) are connected.

One can also verify that f−1
|A (R<0) ∩ f−1

|B (R<0) = ∅, e.g. using the Maple [33] function

IsEmpty(). Thus, the bound on the number of connected components of f−1(R<0) provided
by Proposition 2.6 is two. The negative connected components of f|A, f|B are shown in Figure
6(c).

On the other hand, (1, 1) ∈ f−1
|N(f)v

(R<0) ∩ f−1
|N(f)−v

(R<0). Thus, Proposition 3.3 gives that

f−1(R<0) is connected.

From Proposition 3.3, we derive a criterion to ensure that a polynomial has at most one
negative connected component. This criterion can be interpreted as a version of Theorem 2.11
where we replace strict separating hyperplanes by non-strict ones.
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Figure 6. Illustration of Example 3.5 (a) Newton polytope of f = 73x− 55x2 − x4 +

y − 20xy + x4y. (b) The negative connected component of f (c)Negative connected

components of f|A (purple) and f|B (green), where A = {(1, 1), (1, 0), (0, 1), (4, 1)}, B =

{(2, 0), (4, 0), (1, 0), (0, 1), (4, 1)}.

Theorem 3.6. Let f : Rn>0 → R, x 7→ ∑
µ∈σ(f) cµx

µ be a signomial. Assume that there exists

v ∈ Rn such that σ(f) ⊆ N(f)v ∪N(f)−v and

b0
(
f−1
|N(f)v

(R<0)
)

= b0
(
f−1
|N(f)−v

(R<0)
)

= 1.

If there exist negative exponent vectors β1 ∈ N(f)v and β2 ∈ N(f)−v such that Conv(β1, β2) is
an edge of N(f), then b0

(
f−1(R<0)

)
= 1.

Proof. Throughout the proof we assume that N(f)v ̸= N(f)−v, otherwise the statement is ob-
vious. First, we show that Conv(β1, β2) ∩ σ(f) = {β1, β2}. For α ∈ Conv(β1, β2) ∩ σ(f), if
α /∈ {β1, β2}, then there exists t ∈ (0, 1) such that α = tβ1 + (1− t)β2. Let Hv,a and Hv,b be the
supporting hyperplanes of N(f)v and N(f)−v respectively. As N(f)v ̸= N(f)−v, a > b. Thus,
we have

v · α = t(v · β1) + (1− t)(v · β2) = ta+ (1− t)b ̸= a, b if t ∈ (0, 1).

which contradicts α ∈ Hv,a ∪Hv,b.
Proposition 2.10 implies that f−1

|N(f)v
(R<0) ∩ f−1

|N(f)−v
(R<0) ̸= ∅. Thus, by Proposition 3.3 we

have b0
(
f−1(R<0)

)
= 1. □

Remark 3.7. In the last step of the proof of Theorem 3.6, instead of Proposition 3.3 one could
use Theorem 3.1 and Proposition 2.6 as well to conclude that b0

(
f−1(R<0)

)
= 1.

Example 3.8. For each c1, . . . , c9 ∈ R>0, the Newton polytope of

f(x, y, z) = c1x+ c2xy − c3y − c4 + c5yz − c6z − c7xz − c9xyz
is the cube depicted in Figure 7. The top and the bottom faces of the cube are parallel to each
other and contain all the exponent vectors of f . Choosing v = (0, 0, 1), we have that σ(f) ⊆
N(f)v ∪ N(f)−v. Since both σ(f|N(f)v) and σ(f|N(f)−v

) have a strict separating hyperplane,

b0
(
f−1
|N(f)v

(R<0)
)

= b0
(
f−1
|N(f)−v

(R<0)
)

= 1 by Theorem 2.3(i).

The vertices of the edge Conv
(
(0, 0, 0), (0, 0, 1)

)
correspond to negative exponent vectors,

thus f−1(R<0) is connected by Theorem 3.6.

3.2. Algorithm for connectivity. Based on Theorem 3.1 and Theorem 3.6, we give a recursive
algorithm that checks a sufficient condition for having a signomial f one negative connected
component. Using Theorem 3.1, we reduce f to a face of its Newton polytope that contains all
the negative exponent vectors, if possible. Using Theorem 3.6, we split up f to parallel faces of
its Newton polytope whose union contains all exponent vectors of f . We repeat this reduction
until the polynomials are simple enough, and we can apply one of the following criterion:

(i) f has one negative coefficient, Theorem 2.3(iii),
(ii) f has one positive coefficient and n ≥ 2, Corollary 2.13,



18 MÁTÉ L. TELEK

Figure 7. Newton polytope of f(x, y, z) = c1x+c2xy−c3y−c4+c5yz−c6z−c7xz−c9xyz
from Example 3.8. Red (resp. blue) dots correspond to positive (resp. negative) exponent

vectors. The blue squares are parallel faces of N(f) whose union contains σ(f). The blue

thick edge Conv((0, 0, 0), (0, 0, 1)) joins the two blue parallel faces and its vertices are

negative exponent vectors.

(iii) the support of f has a strict separating hyperplane, Theorem 2.3(i),
(iv) the exponent vectors of f lie in and outside of a simplex as in Theorem 2.14 or in

Corollary 2.15.

We define a submethod CheckConnectivity() that checks these conditions. If one of (i)-(iv)
holds, CheckConnectivity(f) returns true, and we know that f−1(R<0) is connected. If none
of the conditions (i)-(iv) is true, CheckConnectivity(f) returns false. Checking (i) and (ii)
is simple. Deciding whether σ(f) has a strict separating hyperplane can be done using linear
programming. Therefore, condition (iii) can be checked even for signomials in many variables
and many monomials. Checking condition (iv) is a significantly harder problem, and in practice
we might avoid it.

The submethod IntersectionNonempty() checks whether there exists an edge of the Newton
polytope between two parallel faces such that both vertices of the edge correspond to a negative
exponent vector.

To compute the smallest face F ⊆ N(f) such that σ−(f) ⊆ F , one proceeds as follows. First,
one finds all the facets of N(f) (using Polymake [23] or SageMath [40]). If N(f) does not have
any facet containing σ−(f), then N(f) is the smallest face that contains σ−(f). Otherwise, the
intersection of the facets containing σ−(f) give the smallest face that contains σ−(f).

One possible way to compute all proper faces N(f)v ⊆ N(f) such that σ(f) ⊆ N(f)v ∪N(f)−v
is the following:

(1) Compute the outer normal fan F of N(f) and the common refinement F ∧−F of F
and −F ([43, Definition 7.6]). Here, −F is the inner normal fan of N(f), i.e. the fan
obtained by taking the negative of each cone in F .

(2) Collect a vector from the relative interior of each cone in F ∧−F . These vectors are the
normal vectors of the parallel faces of N(f).

(3) Consider all the parallel faces and check whether their union contains σ(f). This can be
done by taking each vector v from step (2) and computing their scalar product with the
exponent vectors. The vector v gives a pair of parallel faces containing σ(f) if and only
if {v · µ | µ ∈ σ(f)} has exactly two elements.

If the Newton polytope has many faces, computing F ∧−F might become too expensive. In
our implementation, we use the following simplification. For a facet F ⊂ N(f), there exist a
unique v ∈ Rn such that F = N(f)v. We consider all the facets N(f)v and check whether
σ(f) ⊆ N(f)v ∪N(f)−v. Thus, our code runs through only a sublist of the list in the for-loop in
line 8 in Algorithm 1.



THE SIGNED SUPPORT AND DESCARTES’ RULE OF SIGNS 19

Algorithm 1 CheckConnectivityRecursive

Input: a signomial f
Output: true if f−1(R<0) is connected, false if the method is inconclusive
1: if CheckConnectivity(f) = true then
2: return true
3: end if
4: F ← smallest face of N(f) that contains σ−(f)
5: if F ⊆ N(f) is a proper face then
6: return CheckConnectivityRecursive( f|F)
7: end if
8: for every proper face N(f)v ⊆ N(f) such that σ(f) ⊆ N(f)v ∪N(f)−v do
9: if IntersectionNonempty( f|N(f)v , f|N(f)−v

) then
10: v connected ← CheckConnectivityRecursive( f|N(f)v)

11: vminus connected ← CheckConnectivityRecursive( f|N(f)−v
)

12: if v connected and vminus connected then
13: return true
14: end if
15: end if
16: end for
17: return false

Using OSCAR [12, 35] and Polymake [23], we implemented Algorithm 1 in Julia. The code
can be found at the Github repository [37].

Example 3.9. To demonstrate how Algorithm 1 works, consider the polynomial

f(x, y, z, w) = c1x+ c2xy − c3y − c4 + c5yz − c6z − c7xz − c9xyz + c10w
3 + c11xw,

where c1, . . . , c11 ∈ R>0. Since #σ−(f) ≥ 2, #σ+(f) ≥ 2 and σ(f) does not have a strict sepa-
rating hyperplane CheckConnectivity(f) returns false. Following the algorithm, we compute
the smallest face F ⊆ N(f) containing σ−(f). This is a 3-dimensional face with normal vector
v = (0, 0, 0,−1). Then the algorithm calls CheckConnectivityRecursive(f|F), where

f|F = c1x+ c2xy − c3y − c4 + c5yz − c6z − c7xz − c9xyz,
which is the same polynomial as in Example 3.8.

Since f|F have more than one positive and more than one negative exponent vectors and
σ(f|F ) does not have a strict separating hyperplane, CheckConnectivity(f|F) returns false and
the algorithm continues with computing the smallest face of N(f|F ) = F containing σ−(f|F ).
Since this smallest face is F itself, the algorithm proceeds with the for-loop in line 8.

The faces

G1 = Fv1 , v1 = (0, 0, 1,−1), G2 = Fv2 , v2 = (0, 0,−1,−1)

are parallel and contains all the exponent vectors of f|F . As discussed in Example 3.8, there
is an edge with negative vertices between G1 and G2, thus IntersectionNonEmpty(f|G1

,f|G2
)

returns true and the method CheckConnectivityRecursive is called again for f|G1
and fG2 .

Since σ(f|G1
) and σ(f|G2

) have strict separating hyperplanes, both CheckConnectivity(f|G1
)

and CheckConnectivity(f|G2
) return true, and the algorithm terminates with the result that

f−1(R<0) is connected. The steps taken by the algorithm can be found in Figure 8.

3.3. The closure property. We finish the section with a statement that will allow us to apply
Algorithm 1 for reaction networks in Section 4. We say that a signomial f satisfies the closure
property, if the closure of f−1(R<0) equals f−1(R≤0).

Proposition 3.10. A signomial f : Rn>0 → R, x 7→∑
µ∈σ(f) cµx

µ satisfies the closure property,

if one of the following holds:
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#σ+(f) = 5, #σ−(f) = 5, dim N(f) = 4

restrict f to the smallest face F containing σ−(f)

#σ+(f|F ) = 3, #σ−(f|F ) = 5, dimF = 3

restrict f|F to parallel faces G1, G2 of F containing σ(f|F )

intersection f−1
|G1

(R<0) ∩ f−1
|G2

(R<0) is non-empty

#σ+(f|G1
) = 1, #σ−(f|G1

) = 3, dimG1 = 2 #σ+(f|G2
) = 2, #σ−(f|G2

) = 2, dimG2 = 2

σ(f|G1
) has a strict separating hyperplane σ(f|G2

) has a strict separating hyperplane

Figure 8. Depiction of the steps taken by Algorithm 1 as in Example 3.9.

(i) σ(f) has a strict separating hyperplane.
(i) σ−(f) ⊆ F , for a proper face F ⊆ N(f).

Proof. (i) has been showed in [19, Theorem 3.6]. (ii) follows by almost the same argument.
We recall it for the sake of completeness. Since f−1(R≤0) is closed, it contains the closure of
f−1(R<0). To show the reverse inclusion, we pick a point x ∈ f−1({0}) and show that it can be
written as a limit of elements from f−1(R<0).

Let v ∈ Rn \ {0} such that N(f)v = F . Consider the univariate signomial

R>0 → R, t 7→ f(tv ∗ x) =
( ∑

µ∈F∩σ(f)
cµx

µ
)
td +

∑

µ∈σ(f)\F
cµx

µtv·µ,

where d = maxµ∈σ(f) v ·µ. The leading coefficient of f(tv∗x) is negative since otherwise f(x) > 0.
Since F is a proper face, σ(f) \ F ̸= ∅, therefore the trailing coefficient of f(tv ∗ x) is positive.
By Descartes’ rule of signs, 1 is a positive real root of f(tv ∗ x) and (1 + 1

n)v ∗ x ∈ f−1(R<0) for

all n ∈ N. Furthermore, the sequence {(1 + 1
n)v ∗ x}n∈N converges to x. □

4. Application to reaction networks

A reaction network is a collection of reactions between (bio)chemical species. The species are
represented by formal variables and the reactions by arrows between non-negative integer linear
combination of the species. The goal of reaction network theory is to study the evolution of
the concentration of the species in time, which is usually modeled by an ordinary differential
equation system (ODE). For an introduction to reaction network theory, we refer to [13]. Here,
we consider some specific reaction networks, where Algorithm 1 can be applied to verify that
the parameter region of multistationarity is path connected.

Remark 4.1. An open subset of an Euclidean space is connected if and only if it is path
connected. Thus, for negative connected components of a signomial these two notions of con-
nectivity coincide. As the parameter region of multistationarity might not be an open set,
path-connectivity is a stronger property than connectivity.
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4.1. Weakly irreversible phosphorylation cycle. First, we consider the reaction network
that was studied in [34]:

(22)

S + E
κ1−⇀↽−
κ2

Y1
κ3−→ Y2

κ4−⇀↽−
κ5

Sp + E
κ6−⇀↽−
κ7

Y3
κ8−→ Y4

κ9−−⇀↽−−
κ10

Spp + E

Spp + F
κ11−−⇀↽−−
κ12

Y5
κ13−−→ Y6

κ14−−⇀↽−−
κ15

Sp + F
κ16−−⇀↽−−
κ17

Y7
κ18−−→ Y8

κ19−−⇀↽−−
κ20

S + F,

which represents the two-site phosphorylation cycle of a substrate S, where both the phospho-
rylation and dephosphorylation processes follow a weakly irreversible mechanism. The reaction
network has 13 species and 20 reactions. Under the assumption of mass action kinetics, the
evolution of the concentration of the species is modeled by an ODE system of the form:

ẋ = fκ(x),

where κ = (κ1, . . . , κ20) are positive parameters, called reaction rate constants, and fκ is a
polynomial in 13 variables. One can find the exact form of fκ in the accompanying Jupyter

notebook [37].
The set of all positive steady states of the ODE system equals the variety

Vκ := {x ∈ R13
>0 | fκ(x) = 0}.

For a given initial condition, the trajectories of the ODE are contained in stoichiometric com-
patibility classes that are defined as

Pc := {x ∈ R13
>0 |Wx = c},

where c ∈ R3 is the so-called total concentration parameter and W ∈ R3×13 is a matrix whose
rows give the conservation laws of the network. A pair of parameters (κ, c) enables multista-
tionarity if Vκ ∩ Pc contains at least two points. The parameter region of multistationarity is
the set of all pairs (κ, c) enabling multistationarity.

By sampling parameters and using a connectivity graph, connectivity of the parameter region
of multistationarity had been studied for the weakly irreversible phosphorylation cycle (22) in
[34]. Based on that numerical observation, it was conjectured that the region is path connected.

In [39, Algorithm 2.5], the authors gave an algorithm that certifies that the parameter region
of multistationarity is path connected for reaction networks satisfying some technical conditions.
The algorithm is based on the following result.

Proposition 4.2. [39, Theorem 2.4] For a conservative reaction network without relevant
boundary steady states, there exists a polynomial

q : Rn+ℓ>0 → R
such that if q satisfies the closure property and q−1(R<0) is path connected, then the parameter
region of multistationarity is path connected.

In [10, 39], it was described how to check whether the network is conservative, does not have
any relevant boundary states and how to compute the polynomial q. To check if q satisfies
the closure property and q−1(R<0) is path connected, the authors in [39] used strict separating
hyperplanes [19, Theorem 3.6]. Using this strategy, it was verified for a large number of reaction
networks that the parameter region of multistationarity is path connected.

The weakly irreversible phosphorylation cycle (22) satisfies the technical conditions of Propo-
sition 4.2, i.e. it is conservative and does not have any relevant boundary steady states. The
polynomial q from Proposition 4.2 associated with the network (22) is a large polynomial with
1248 monomials.

The method in [39, Algorithm 2.5] was inconclusive, because σ(q) does not have a strict
separating hyperplane. In the following, we go through Algorithm 1 step-by-step and show that
q satisfies the closure property and q−1(R<0) is path connected, which implies by Proposition
4.2 that the parameter region of multistationarity for the weakly irreversible phosphorylation
cycle (22) is path connected. The computations were done using OSCAR [12, 35] and Polymake

[23]. The code can be found at the Github repository [37].
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#σ+(q) = 1020, #σ−(q0) = 228, dim N(q) = 16

restrict q to the smallest face F containing σ−(q)

#σ+(q|F ) = 212, #σ−(q|F ) = 228, dimF = 12

restrict q|F to parallel faces G1, G2 of F containing σ(q|F )

intersection q−1
|G1

(R<0) ∩ q−1
|G2

(R<0) is non-empty

#σ+(q|G1
) = 120, #σ−(q|G1

) = 80, dimG1 = 11 #σ+(q|G2
) = 92, #σ−(q|G2

) = 148, dimG2 = 11

σ(q|G1
) has a strict separating hyperplane σ(q|G2

) has a strict separating hyperplane

Figure 9. Steps taken by Algorithm 1 with input polynomial q from Proposition 4.2

associated with the weakly irreversible phosphorylation cycle (22).

The Newton polytope of q has dimension 16, 1020 out of its 1248 monomials are positive,
and 228 are negative. The smallest face F ⊆ N(q) that contains σ−(q) has dimension 12 and
contains 212 positive exponent vectors of q. Using Proposition 3.10, we conclude that q satisfies
the closure property.

Following Algorithm 1, we study the restricted polynomial q|F . The Newton polytope N(q|F )
has 37 facets. We choose the first facet G1 = N(q)v that is provided by Polymake. For the
face G2 = N(f)−v it holds that σ(q|F ) ⊆ G1 ∪G2. Furthermore, there exists a pair of negative
exponent vectors β1, β2 such that β1 ∈ G1 and β2 ∈ G2 and Conv(β1, β2) is an edge of N(q|F ).

Thus, by Theorem 3.6, it is enough to show that q−1
|G1

(R<0) and q−1
|G2

(R<0) are connected. This

holds by Theorem 2.3(i), since the support of q|G1
and q|G2

have strict separating hyperplanes.
For an overview of the steps taken by Algorithm 1, we refer to Figure 9.

Theorem 4.3. The parameter region of multistationarity of the weakly irreversible phosphory-
lation system with two binding sites (22) is path connected.

4.2. Strongly irreversible phosphorylation cycles. A well-studied family of reaction net-
works is the family of m-site phosphorylation cycles, where it is assumed that each phosphoryla-
tion step follows the Michaelis-Menten mechanism. This is also referred to as strong irreversibility
in [41]. For a fixed m ∈ N, the m-site phosphorylation cycle is given by the reactions:

Si + E
κ6i+1−−−⇀↽−−−
κ6i+2

ESi
κ6i+3−−−→ Si+1 + E, Si+1 + F

κ6i+4−−−⇀↽−−−
κ6i+5

FSi+1
κ6i+6−−−→ Si+6 + F, i = 0, . . . , n− 1.

Questions about the existence of multistationarity and the number of steady states are well
understood [18, 20, 24, 27, 42] It is known that the projection of the parameter region of
multistationarity onto the space of reaction rate constants (the κ’s) is path connected for all
m ≥ 2 [17]. In [39], it was shown that the full parameter region (the region in the κ’s and c’s)
of multistationarity is path connected for m = 2, 3, which led to the conjecture that this might
be true for every m ≥ 2.

Let qm denote the polynomial from Proposition 4.2 associated with the m-site phosphorylation
cycle. Algorithm 1 can be successfully applied to show that q−1

m (R<0) is path connected for
m = 4, 5, 6, 7. The computation can be found in the accompanying Jupyter notebook [37]. Since
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in these cases, the negative monomials are contained in a proper face of N(qm), the polynomial
qm satisfies the closure property by Proposition 3.10. We conclude that the parameter region of
multistationarity for the m-site phosphorylation cycle is path connected for m = 4, 5, 6, 7.

The steps taken by Algorithm 1 are similar for each m = 4, 5, 6, 7, thus Algorithm 1 might
provide a strategy to prove the conjecture about the connectivity of the parameter region of
multistationarity for all m ≥ 2. This will be explored in future work.
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Máté L. Telek
Department of Mathematical Sciences

University of Copenhagen

Publication details

Published in the Journal of Pure and Applied Algebra 228(6), 2024
DOI: https://doi.org/10.1016/j.jpaa.2023.107564

179





REAL TROPICALIZATION AND NEGATIVE FACES OF THE NEWTON

POLYTOPE

MÁTÉ L. TELEK

Abstract. In this work, we explore the relation between the tropicalization of a real semi-
algebraic set S = {f1 < 0, . . . , fk < 0} defined in the positive orthant and the combinatorial
properties of the defining polynomials f1, . . . , fk. We describe a cone that depends only on the
face structure of the Newton polytopes of f1, . . . , fk and the signs attained by these polynomials.
This cone provides an inner approximation of the real tropicalization, and it coincides with the
real tropicalization if S = {f < 0} and the polynomial f has generic coefficients. Furthermore,
we show that for a maximally sparse polynomial f the real tropicalization of S = {f < 0}
is determined by the outer normal cones of the Newton polytope of f and the signs of its
coefficients. Our arguments are valid also for signomials, that is, polynomials with real exponents
defined in the positive orthant.

Keywords: logarithmic limit set, signomial, semi-algebraic set, signed support

1. Introduction

Real algebraic varieties, or more generally, semi-algebraic sets, play a central role in applica-
tions, e.g. in chemical reaction network theory [7] or in robotics [29]. In practice, the polynomials
defining these sets involve many variables and many monomials, which makes using standard
techniques from real (semi-)algebraic geometry infeasible.

Tropicalization is the process of associating a polyhedral complex to an algebraic variety.
This can be used to answer questions about the variety, such as computing its dimension [20,
Structure Theorem], or to compute Gromov-Witten invariants, that is, to count the number
of curves of given degree and genus passing through a given finite number of points in the
complex projective plane [21]. Moreover, using tropicalizations one can find the generic number
of solutions of a parametric polynomial equation system [12].

One of the roots of tropical geometry goes back to 1971 when Bergman [3] studied the loga-
rithmic limit of an algebraic variety V in the complex torus (C∗)n. The logarithmic limit of V
is defined as the limit in the Hausdorff distance of the images of V under the coordinate-wise
logarithm map with base t > 0

Logt : (C∗)n 7→ Rn, z 7→ (logt(|z1|), . . . , logt(|zn|)
as t→∞. If V is a hypersurface, i.e. it is defined by one polynomial f , the logarithmic limit of
V equals the (n−1)-skeleton of the outer normal fan of the Newton polytope of f [22, Corollary
6.4].

The logarithmic limit of a real semi-algebraic set S ⊆ Rn>0 was first studied by Alessandrini
[1] in 2013. The author showed that the logarithmic limit of S is a closed polyhedral complex
of dimension at most the dimension of S [1, Theorem 3.11]. In [4, 5], the authors called the
logarithmic limit of S the real tropicalization of S. In this manuscript, we follow this notation
and write

Trop(S) := lim
t→∞

Logt(S).

Computing the real tropicalization of a semi-algebraic set S ⊆ Rn>0 is known to be hard. The
Fundamental Theorem [17, Theorem 6.9] implies that Trop(S) is described as an intersection of
outer normal cones as follows: For a polynomial f ∈ R[x1, . . . , xn], we call an exponent vector
negative if the coefficient of the corresponding monomial is negative. Similarly, a face F of the
Newton polytope NP(f) is a negative face if F contains a negative exponent vector. The union

1
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of the outer normal cones of NP(f) that correspond to negative faces is denoted by N−
f . Using

this notation, we have:

Trop(S) =
⋂

f≤0 on S

N−
f ,(1)

where the intersection is taken over all polynomials f ∈ R[x1, . . . , xn] which are nonpositive on
S.

In [17, Theorem 6.9], it was also shown that the intersection in (1) can be taken over finitely
many such polynomials, but to the best of our knowledge, no algorithm is known to find such
a finite set of polynomials. However, in certain cases, there exist good approximations of the
real tropicalization. From [17, Proposition 6.12], it follows that the real tropicalization of a

semi-algebraic set S of the form S =
⋂k
i=1 f

−1
i (R<0) satisfies

int
( k⋂

i=1

N−
fi

)
⊆ Trop(S) ⊆

k⋂

i=1

N−
fi
.(2)

If the set on the right-hand side in (2) is regular (it is equal to the closure of its interior), then the
real tropicalization of S equals the intersection of the cones N−

fi
, i = 1, . . . , k [2, Corollary 4.8].

In Proposition 3.2, we characterize when regularity happens. As a consequence of this, we show
that if S is defined by one polynomial f , i.e. S = f−1(R<0), then N−

f is regular if and only if the

faces of NP(f) that contain a negative exponent vector have also a negative vertex. This seems
to be a quite restrictive assumption, but it is automatically satisfied for polynomials whose set
of exponent vectors equals the set of vertices of the Newton polytope. Such polynomials are
called maximally sparse in the literature [23]. Thus, if f is maximally sparse, then the real
tropicalization of S = f−1(R<0) is easy to compute as it equals N−

f (Corollary 3.5).

Our main result is Theorem 3.3, where we give an elementary proof of the inclusions in (2),
while we also refine them. We associate a cone Σ(f1, . . . , fk), called the actual negative normal
cone of f1, . . . , fk (see Section 2) that provides a better inner approximation of Trop(S):

int
( k⋂

i=1

N−
fi

)
⊆ Σ(f1, . . . , fk) ⊆ Trop(S) ⊆

k⋂

i=1

N−
fi
.(3)

The proof of Theorem 3.3 is valid also in the case where the defining polynomials of the semi-
algebraic set have real exponents.

Theorem 3.3 has two main consequences. In the case when S is defined by one polynomial,
i.e. S = f−1(R<0), we show that Σ(f) equals the real tropicalization of S when the coefficients
of f are generic (Corollary 3.10).

Specifically, to compute Σ(f), one needs to determine all faces of the Newton polytope of f for
which the restriction of f to the face takes negative values over Rn>0. Deciding if a polynomial
is nonnegative is an NP-hard problem [19]. To address this difficulty, several sufficient criteria
implying nonnegativity have been introduced. For instance, one approach, going back to Hilbert
[15], is to express the polynomial as a sum of squares (SOS); this decomposition can be found
by semidefinite programming, see [19] and the references therein. Another approach is to write
the polynomial as sums of nonnegative circuits (SONC) [8, 16], see also [6, 25].

The set of all nonnegative polynomials is a closed convex cone, called the nonnegativity
cone. The sets of SOS and SONC polynomials are also convex cones, clearly contained in
the nonnegativity cone. The genericity assumption in Corollary 3.10 is that neither f nor its
restrictions to the faces of the Newton polytope lie on the boundary of the nonnegativity cone.
To the best of our knowledge, there are no complete descriptions of the boundary neither of the
nonnegativity cone nor of the SOS cone. On the contrary, the boundary of the SONC cone has
been characterized in [11]. This characterization together with Corollary 3.10 provide a method
to compute the real tropicalization of semi-algebraic sets defined by one polynomial.

In [14], the authors introduced the DSONC cone, which is a cone contained in the interior
of the SONC cone. A remarkable property of the DSONC cone is that it is possible to check
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membership using linear programming. This might give a more efficient method to compute
Σ(f) and to verify the genericity condition in Corollary 3.10.

Finally, an additional consequence of Theorem 3.3, which is an interesting result on its own,
is that any logarithmic image of f−1(R<0) is a bounded set if the boundary of NP(f) does not
contain any negative exponent vector (Corollary 3.6).

Notation. R≥0, R>0 and R<0 refer to the sets of nonnegative, positive and negative real num-
bers respectively. For two vectors v, w ∈ Rn, v · w denotes the Euclidean scalar product, and
v ∗ w denotes the coordinate-wise product of v and w. We denote the interior of a set X ⊆ Rn
by int(X). If X ⊆ Rn is a polyhedron, relint(X) denotes the relative interior of X. The symbol
#S denotes the cardinality of a finite set S.

2. Negative faces of the Newton polytope

Following [9, 27], a signomial is a function

f : Rn>0 → R, x 7→ f(x) =
∑

µ∈σ(f)
cµx

µ,

where σ(f) ⊆ Rn is a finite set, called the support of f , and the coefficients cµ ∈ R are non-zero.
We use the notation xµ for xµ11 · · ·xµnn . Thus, a signomial is a polynomial with real exponents
whose domain is restricted to the positive orthant. For a set S ⊆ Rn, we define the restriction
of f to S as

f|S(x) :=
∑

µ∈σ(f)∩S
cµx

µ.

Furthermore, we divide the support of f into the set of positive and negative exponent vectors:

σ+(f) := {µ ∈ σ(f) | cµ > 0}, σ−(f) := {µ ∈ σ(f) | cµ < 0}.
Thus, a positive exponent vector µ is an exponent vector of a monomial xµ of f such that the
corresponding coefficient cµ is positive.

The Newton polytope of f is the convex hull of the support

NP(f) := Conv
(
σ(f)

)
.

We refer to Figure 1(a) for an illustration of the Newton polytope of f = x21 − x1 + 1 − x22.
The set of negative exponent vectors is σ−(f) = {(1, 0), (0, 2)} and the set of positive exponent
vectors is σ+(f) = {(0, 0), (2, 0)}.

We recall some basic notions in polyhedral geometry that are relevant to the study of real
tropicalizations (see [13, 18, 30] for details). Each vector v ∈ Rn cuts out the face of NP(f) [13,
Section 15.1.1] given by

NP(f)v := {µ ∈ NP(f) | v · µ = max
ν∈NP(f)

v · ν}.(4)

The vector v is called an outer normal vector of NP(f)v, or normal vector for short. A face is
proper if it is not the entire polytope.

For a face F ⊆ NP(f), the set of all vectors v such that F ⊆ NP(f)v form a closed convex
polyhedral cone, called the normal cone of F [13, Section 15.2.2]:

Nf (F ) = {v ∈ Rn | F ⊆ NP(f)v}.(5)

Furthermore, for v ∈ Nf (F ), it holds:

NP(f)v = F ⇐⇒ v ∈ relintNf (F ).(6)

The collection of the normal cones of all faces forms a complete fan Nf [30, Example 7.3].
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Taking normal cones induces an inclusion reversing correspondence between faces and their
normal cones, which behaves well with dimensions. Hence, for any two non-empty faces F,G ⊆
NP(f), it holds that:

F ⊆ G ⇐⇒ Nf (F ) ⊇ Nf (G),(7)

dimF = n− dimNf (F ).(8)

To study several signomials f1, . . . , fk at the same time, it will be beneficial to consider the
common refinement of the normal fans Ff1 , . . . ,Ffk [30, Definition 7.6], which is the fan defined
as

k∧

i=1

Nfi :=
{ k⋂

i=1

Ci | Ci ∈ Nfi
}
.(9)

It is easy to see from (9) that full-dimensional cones in the common refinement are intersections
of full-dimensional cones. Note that for every pair of vectors v, v′ in the relative interior of a
cone in the common refinement, it holds that

NP(fi)v = NP(fi)v′ for all i = 1, . . . , k.(10)

Several arguments in this work rely on the following easy observation. Each v ∈ Rn and
x ∈ Rn>0 induce a signomial in one variable

R>0 → R, t 7→ f(tv ∗ x) =
∑

µ∈σ(f)
cµx

µtv·µ,(11)

where tv is short for the vector (tv1 , . . . , tvn). We call a coefficient of a univariate signomial the
leading coefficient (LC) if the exponent of the accompanying monomial is the largest. From (4)
it follows that for fixed x ∈ Rn>0

LC(f(tv ∗ x)) =
∑

µ∈σ(f)∩NP(f)v

cµx
µ,

if we view f(tv ∗ x) as a univariate signomial in the variable t. This implies the following
well-known fact (see e.g. [10, Proposition 2.3])

Lemma 2.1. Let f : Rn>0 → R be a signomial and v ∈ Rn. If f|N(f)v(x) < 0 for some x ∈ Rn>0,
then there exists T ∈ R>0 such that for all t > T :

f(tv ∗ x) < 0.

To find all vectors v ∈ Rn for which Lemma 2.1 applies, we have to decide for which faces
F ⊆ NP(f), the signomial f|F takes negative values. A necessary condition for f|F to take
negative values is that the face F contains negative exponent vectors of f . Motivated by this
observation, we call a face F ⊆ NP(f) a negative face if F ∩ σ−(f) ̸= ∅. Furthermore, we
define the negative normal cone of NP(f) as the union of the normal cones corresponding to the
negative faces:

N−
f =

⋃

F⊆NP(f)
negative face

Nf (F ) = {v ∈ Rn | NP(f)v ∩ σ−(f) ̸= ∅}.

Note that N−
f is a cone, i.e. it is closed under multiplication by positive scalars, but N−

f does

not need to be convex.
Even if the face F contains negative exponent vectors of f there is no guarantee that f|F

actually takes negative values. For an example, take the signomial f = x21 − x1 + 1 − x22 from
Figure 1 and the face F = Conv

(
(0, 0), (2, 0)

)
.

For a signomial f , we define the actual negative normal cone as

Σ(f) :=
{
v ∈ Rn | f−1

|NP(f)v
(R<0) ̸= ∅

}
⊆ N−

f .
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1 2

1

2

(a) NP(f) (b) Σ(f) (c) N−
f

1

1

(d) f−1(R<0)

1

1

(e) Log2

(
f−1(R<0)

)

1

1

(f) Log10

(
f−1(R<0)

)

Figure 1. (a) Newton polytope of f = x21 − x1 + 1 − x22. Blue dots correspond to

negative exponents vectors, red circles correspond to positive exponent vectors. (b),(c)

actual negative normal cone and negative normal cone of f , (d) semi-algebraic set defined

by f , (e),(f) logarithmic images of f−1(R<0).

In Proposition 2.2, we show that Σ(f) is the union of normal cones corresponding to faces
F ⊆ NP(f) such that f|F takes negative values. The actual negative normal cone and the

negative normal cone of f = x21 − x1 + 1− x22 are depicted in Figure 1(b)(c).
Define the actual negative normal cone of a collection of signomials f1, . . . , fk as:

Σ(f1, . . . , fk) :=
{
v ∈ Rn |

k⋂

i=1

f−1
i|NP(fi)v

(R<0) ̸= ∅
}
.(12)

In the proof of Theorem 3.3, we need that the negative normal cones N−
fi
, i = 1, . . . , k are

closed subsets of Rn. This property follows easily from the fact that a polytope has finitely
many faces [18, Theorem 3.46] and the cones Nfi(F ), F is a face of NP(fi), are closed. The
actual negative normal cone Σ(f1, . . . , fk) is also closed, as the following argument shows.

Proposition 2.2. Let f1, . . . , fk be signomials on Rn>0, let C be a cone in the common refinement∧k
i=1Nfi and v ∈ relint(C). If v ∈ Σ(f1, . . . , fk), then C ⊆ Σ(f1, . . . , fk). In particular,

Σ(f1, . . . , fk) is a closed subset of Rn.

Proof. Let Ci ∈ Nfi , i = 1, . . . , k such that C = ∩ki=1Ci. Since v ∈ relint(C), from [26, Theorem
6.5.] follows that v ∈ relint(Ci) for all i = 1, . . . , k.

Let Fi := NP(fi)v, i = 1, . . . , k. Since v ∈ relint(C), for any w ∈ C we have that

Fi =
(

NP(fi)w
)
v
⊆ NP(fi)w

for all i = 1, . . . , k by (5) and (6).

Consider x ∈ ⋂k
i=1 f

−1
i|Fi

(R<0), which exists since v ∈ Σ(f1, . . . , fk). By Lemma 2.1, there

exists T > 0 such that

tv ∗ x ∈
k⋂

i=1

f−1
i|NP(fi)w

(R<0), for t > T,
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which implies that w ∈ Σ(f1, . . . , fk). Hence, C ⊆ Σ(f1, . . . , fk).

This argument shows that Σ(f1, . . . , fk) is the union of the cones in
∧k
i=1Nfi , whose relative

interior intersects Σ(f1, . . . , fk). Since there exist only finitely many cones in
∧k
i=1Nfi and they

are closed, it follows that Σ(f1, . . . , fk) is a closed set. □
Proposition 2.2 ensures that to compute the actual negative normal cone Σ(f1, . . . , fk), it is

enough to check for finitely many v ∈ Rn whether

k⋂

i=1

f−1
i|NP(fi)v

(R<0) ̸= ∅.(13)

To be precise, for each cone C ∈ ∧k
i=1Nfi , pick v ∈ relint(C) and check whether (13) is empty.

This observation provides a way to compute Σ(f1, . . . , fk). Note that, computing the negative
normal cone N−

fi
is significantly simpler and in some cases still gives enough information about

the real tropicalization (Theorem 3.3, Corollary 3.5).

We conclude the section with a bound on the roots of a univariate signomial that will be used
in the proofs of Theorem 3.3 and Theorem 3.9. The statement is a generalization of Cauchy’s
bound [24, Theorem 8.1.7] to signomials. Although the idea of the proof is almost the same as
in the polynomial case, we recall it for the sake of completeness.

Lemma 2.3. Let g : R>0 → R, g(t) :=
∑d

i=1 ait
νi be a univariate signomial such that ν1 < · · · <

νd. If there exist p ∈ {1, . . . , d} and ϵ > 0 such that (ad − ϵ)tνd +
∑d−1

i=p ait
νi > 0 for all t > 0,

then for all 0 < δ ≤ νp − νp−1 it holds:

max{t0 ∈ R>0 | g(t0) = 0} ≤ max
{

1,
(
1
ϵ

p−1∑

i=1

|ai|
)1
δ
}
.

Proof. Let t0 > 1 be such that g(t0) = 0. Then,

ϵ tνd0 <
d∑

i=p

ait
νi
0 = −

p−1∑

i=1

ait
νi
0 ≤

p−1∑

i=1

|ai|tνi0 ≤
p−1∑

i=1

|ai|tνd−δ0 .

The first inequality follows from (ad − ϵ)tνd0 +
∑d−1

i=p ait
νi
0 > 0. The last inequality follows from

νd − δ ≥ νi for all i = 1, . . . , p− 1. Dividing both sides by ϵ tνd−δ0 , the statement follows. □
Remark 2.4. In Section 3, Lemma 2.3 will be used to ensure that for a signomial f and a
convergent sequence w(m)→ w in Rn, the roots of f(tw(m)) converge to the roots of f(tw).

This statement might fail for some signomials not satisfying the assumptions of Lemma 2.3 as
the following example shows. Consider the signomial f(x1, x2) = x21−x1 + 1−x22 from Figure 1
and the sequence w(m) = (1, 1− 1

m)→ w = (1, 1). The induced functions are given by:

f(tw) = −t+ 1, f(tw(m)) = t2 − t2−
2
m − t+ 1.

The function f(tw) has a unique root t = 1. The function f(tw(m)) has two positive real roots,
one of which converges to 1 and the other goes to infinity as m→∞.

3. Real tropicalization

The goal of this section is to relate the real tropicalization of the set

S(f1, . . . , fk) :=
k⋂

i=1

f−1
i (R<0),(14)

where f1, . . . , fk are signomials on Rn>0, to the negative normal cones N−
f1
, . . . ,N−

fk
, and to

the actual negative normal cone Σ(f1, . . . , fk). In the case that (14) is described by a single
polynomial f , we show that the real tropicalization and the actual negative normal cone coincide
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for generic coefficients of f . Furthermore, Trop(S(f)) equals the negative normal cone of f if f
is maximally sparse (all exponent vectors of f are vertices of the Newton polytope).

As indicated in the Introduction, following [4, 5], the real tropicalization of S ⊆ Rn>0 is defined
to be

Trop(S) := lim
t→∞

Logt(S) = lim
t→∞

1
loge(t)

Loge(S),(15)

where Logt denotes the point-wise logarithm with base t, and e is Euler’s number. This con-
struction is also called the logarithmic limit set of S. For a precise definition and for some basic
properties, we refer to [1, Section 2]. Since it will be used frequently, we recall the following
results from [1]:

Proposition 3.1. [1, Proposition 2.2] For any set S ⊆ Rn>0, it holds:

(i) Trop(S) is a closed subset of Rn.
(ii) For w ∈ Rn, w ∈ Trop(S) if and only if there exist sequences

{
x(m)

}
m∈N ⊆ S and{

t(m)
}
m∈N ⊆ (1,∞) such that t(m)→∞ and Logt(m)(x(m))→ w.

(iii) Trop(S) ⊂ {0} if and only if Logt(S) is bounded for all t > 0.

As discussed in the Introduction, if f1, . . . , fk are polynomials, that is their exponents are
nonnegative integer vectors, it is known that

Trop
(
S(f1, . . . , fk)

)
=

k⋂

i=1

N−
fi

(16)

if the set on the right is a regular set (it is equal to the closure of its interior) [2, Corollary 4.8].
The following proposition characterizes the cases when the intersection of the negative normal
cones in (16) is regular.

Proposition 3.2. Let f1, . . . , fk be signomials on Rn>0. A point w ∈ ⋂k
i=0N−

fi
is in the closure

of int
(⋂k

i=0N−
fi

)
if and only if there exists v ∈ Rn such that NP(fi)v is a negative vertex of

NP(fi)w for all i = 1, . . . , k.

Proof. First, we show the if part. For each i = 1, . . . , k, let βi := NP(fi)v be the negative vertex
of NP(fi)w. It follows that w is contained in

k⋂

i=1

Nfi(βi).(17)

In the following, we show that the interior of (17) is non-empty. As vertices correspond to
full-dimensional normal cones by (8), the interior and the relative interior of Nfi(βi) coincide.
By (6), v ∈ relint(Nfi(βi)) = int(Nfi(βi)), which implies that there exists an ϵ > 0 such that the
ball with radius ϵ and center v is contained in the interior of Nfi(βi) for all i = 1, . . . , k. Thus,
the interior of (17) is non-empty.

As the finite intersection of interiors equals the interior of the intersection [28, Section 1.1],
we have

int
( k⋂

i=1

Nfi(βi)
)

=

k⋂

i=1

int
(
Nfi(βi)

)
⊆

k⋂

i=1

int
(
N−
fi

)
= int

( k⋂

i=1

N−
fi

)
,(18)

where the inclusion in the middle holds since βi is a negative vertex of NP(fi) for all i = 1, . . . , k.
Since (17) is a polyhedral cone with non-empty interior, it is regular and w is contained in

the closure of the interior of (17). Using (18), one concludes that w is contained in the closure

of int
(⋂k

i=1N−
fi

)
.

To show the reverse implication, we assume that w is in the closure of int
(⋂k

i=0N−
fi

)
. In that

case, for every ϵ > 0 we have that Bϵ(w) ∩ int
(⋂k

i=0N−
fi

)
̸= ∅, where Bϵ(w) denotes the ball
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with radius ϵ and center w. We choose ϵ small enough such that Bϵ(w) does not intersect the

cones of the (n− 1)-skeleton of
∧k
i=1Nfi that do not contain w.

The (n−1)-skeleton of
∧k
i=1Nfi is not full-dimensional, so there exists v ∈ Bϵ(w)∩int

(⋂k
i=0N−

fi

)

which is not contained in the (n− 1)-skeleton.

Let C be the smallest cone in
∧k
i=1Nfi that contains v in its interior, and let Ci ∈ Nfi ,

i = 1, . . . , k such that C = ∩ki=1Ci. From v ∈ int(C) follows that v ∈ int(Ci) for all i = 1, . . . , k.
From (6) and (8) it follows that NP(fi)v is a vertex for all i = 1, . . . , k. Moreover, NP(fi)v is a
negative vertex, since v ∈ N−

fi
.

Since Bϵ(w) intersects only the cones of the (n − 1)-skeleton of
∧k
i=1Nfi that contain w, it

follows that w lies in C. Using (7), we conclude that NP(fi)v ⊆ NP(fi)w. □
For an example of a signomial whose negative normal cone is not regular, we refer to Figure 1.

The negative normal cone of f(x1, x2) = x21 − x1 + 1 − x22 has a ray in southern direction, but
the closure of int(N−

f ) does not contain this ray. One can also use Proposition 3.2 to conclude

that N−
f is not regular: The face Conv

(
(0, 0), (2, 0)

)
⊆ NP(f) is negative, but does not contain

any negative vertex.

In [2, 17], to prove (2) the authors worked with polynomials over the field of real Puiseux
series. In the following theorem, we give an elementary proof of (2) that applies to signomials
and extend (2) by relating the real tropicalization to the actual negative normal cone as defined
in (12).

Theorem 3.3. For signomials f1, . . . , fk on Rn>0, it holds:

int
( k⋂

i=1

N−
fi

)
⊆ Σ(f1, . . . , fk) ⊆ Trop

(
S(f1, . . . , fk)

)
⊆

k⋂

i=1

N−
fi
.

Proof. Let S = S(f1, . . . , fk). To show the first inclusion, let w ∈ int
(⋂k

i=1N−
fi

)
. By Proposition

3.2, there exists v ∈ Rn such that NP(fi)v is a negative vertex of NP(fi)w for all i = 1, . . . , k.
For any fixed x ∈ Rn>0, we have

fi|NP(fi)w(tv ∗ x) < 0 for t≫ 0

by Lemma 2.1. Thus, w ∈ Σ(f1, . . . , fk).

For the proof of the second inclusion, let w ∈ Σ(f1, . . . , fk), and let x ∈ ⋂k
i=1 f

−1
i|NP(fi)w

(R<0).

By Lemma 2.1, fi(t
w ∗ x) < 0 for all i = 1, . . . , k and t ≫ 0. Therefore, tw ∗ x ∈ S for t ≫ 0.

Choose a sequence (t(m))m∈N such that t(m)→∞ and t(m)w ∗ x ∈ S for all m ∈ N. Then

Logt(m)(t(m)w ∗ x) = logt(m)(t(m))w + Logt(m)(x) = w + 1
loge(t(m)) Loge(x)→ w.

Proposition 3.1 implies that w ∈ Trop(S).

The third inclusion remains to be shown. For that, let w ∈ Trop(S). By Proposition 3.1,
there exist sequences {x(m)}m∈N ⊆ S and {t(m)}m∈N ⊆ R>0 such that t(m)→∞ and w(m) :=
Logt(m)(x(m))→ w. Note that with this notation we have

t(m)w(m) = x(m), for all m ∈ N.

If w /∈ ⋂k
i=1N−

fi
, then there exists i ∈ {1, . . . , k} such that w ∈ Rn \N−

fi
. In the following, we

show that it is possible to choose a subsequence {w̃(m)}m∈N of {w(m)}m∈N such that

fi(t
w̃(m)) > 0 for all t > T,

where T > 0 can be chosen independently from m. This yields to a contradiction, since for large
m, t(m) > T and fi(t(m)w̃(m)) < 0.

Since the relative interiors of the cones in Nfi form a partition of Rn and there are only finitely
many such cones, there exists a face F ⊆ NP(fi) such that relint(Nfi(F )) contains infinitely
many elements of {w(m)}m∈N. Thus, we can pass to a subsequence {w̃(m)}m∈N such that
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F = NP(fi)w̃(m) for all m ∈ N. Since w̃(m) → w and Nfi(F ) is closed, w ∈ Nfi(F ). Therefore

F ⊆ NP(fi)w. Note that equality holds if and only if w ∈ relint
(
Nfi(F )

)
by (6).

Since w ∈ Rn \N−
fi

and this set is open in Rn, it follows that w̃(m) ∈ Rn \N−
fi

for all m≫ 1.

Since NP(fi)w̃(m) = F for all m ∈ N, it follows that w̃(m) ∈ Rn \N−
fi

for all m ∈ N and the face

F does not contain any negative exponent vector of fi. This implies:

fi|N(fi)w̃(m)
(1, . . . , 1) =

∑

µ∈σ(fi)∩F
cµ =

∑

µ∈σ+(fi)∩F
cµ > 0,(19)

where cµ for µ ∈ σ(fi) are the coefficients of fi. Thus, by Lemma 2.1 for each w̃(m) there exists
T (m) > 0 such that

fi(t
w̃(m)) > 0, for all t > T (m).

In the following, we show that T (m) can be chosen independently from m. The leading

coefficient of fi(t
w̃(m)) is as given in (19), which is positive, so there exists ϵ > 0 such that

fi|N(fi)w̃(m)
(1, . . . , 1)− ϵ > 0. Since w ∈ Rn \ N−

fi
, all the exponent vectors on the face NP(fi)w

are positive, i.e.
cµ > 0, for all µ ∈ NP(fi)w ∩ σ(fi).

Thus, the expression
(
fi|N(fi)w̃(m)

(1, . . . , 1)− ϵ
)
td +

∑

µ∈(NP(fi)w\F )∩σ(fi)
cµt

µ·w̃(m),

where d = maxµ∈NP(fi) w̃(m) · µ, is positive for all t > 0 and m.
Note that there exists δ > 0 such that

w · µ− w · ν > δ for all µ ∈ σ(fi) ∩NP(fi)w, ν ∈ σ(fi) \NP(fi)w.

Since w̃(m)→ w and the scalar product is continuous,

w̃(m) · µ− w̃(m) · ν > δ for all µ ∈ σ(fi) ∩NP(fi)w, ν ∈ σ(fi) \NP(fi)w

holds for m large enough. By passing to a subsequence if necessary, we may assume that the
above inequality holds for all w̃(m). Lemma 2.3 gives a bound T ≥ 1 on the positive roots of

fi(t
w̃(m)) that depends only on ϵ, δ and cµ, µ ∈ σ(fi). In particular, this bound is independent

of m. Since the leading coefficient of fi(t
w̃(m)) is positive for all m ∈ N by (19), we conclude

that
fi(t

w̃(m)) > 0.

for all m ∈ N and t > T . □
Remark 3.4. Some of the inclusions in Theorem 3.3 can be generalized to semi-algebraic sets
over a real closed fieldR with a compatible non-trivial non-Archimedean valuation val : R∗ → R,
for instance the field of real Puiseux series R{{t}}.

Let f1, . . . , fk ∈ R[x1, . . . , xn] be polynomials and consider the semi-algebraic set

SR(f1, . . . , fk) = {z ∈ Rn>0 | f1(z) < 0, . . . , fk(z) < 0}.
Here, > denotes the unique ordering on the real closed field R. The real tropicalization of a
semi-algebraic set is defined as

Trop
(
SR(f1, . . . , fk)

)
:=
{

(− val(z), . . . ,− val(z)) | z ∈ SR(f1, . . . , fk)
}
,

where the closure is taken in the Euclidean topology of Rn.
This construction generalizes the definition of real tropicalization as a logarithmic limit in

the following sense. If R is a non-Archimedean real closed field of rank one extending R (e.g.
R = R{{t}}) and the coefficients of f1, . . . , fk ∈ R[x1, . . . , xn] are real numbers, then by [1,
Corollary 4.6] we have,

Trop
(
S(f1, . . . , fk)

)
= Trop

(
SR(f1, . . . , fk)

)
,

where S(f1, . . . , fk) is defined as in (14) and Trop(S(f1, . . . , fk)) denotes the logarithmic limit
of S(f1, . . . , fk) as introduced in (15).
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(a) NP(f)

1

1

(b) S(f)

1

1

(c) Log2

(
S(f)

)

1

1

(d) Log10

(
S(f)

)

Figure 2. (a) The Newton polytope of f = x91x
6
2 + x61x

9
2 − x71x72 − 4x71x

6
2 + 5x51x2 +

5x1x
5
2 − 5x1x2 + 1 from Example 3.7 (b) The set S(f) = f−1(R<0) is bounded. (c)(d)

Logarithmic images of S(f) for t = 2 and t = 10.

By replacing the negative normal cones N−
fi

with a “signed part” of the tropical hypersurface

defined by fi (see [17, Section 5.2] or [5, Section 2.1] for a precise definition), the inclusions in
(2) remain true [17, Proposition 6.12].

To the best of our knowledge, there is no known generalization of the actual negative normal
cone Σ(f1, . . . , fk) in the non-trivial valuation case, such that the generalized objects would
satisfy similar inclusions as in Theorem 3.3. The techniques used in the current paper do not
allow immediately to find such a generalization. However, it is an interesting problem that might
be addressed using alternative approaches.

Corollary 3.5. For a maximally sparse signomial f , it holds:

Trop(S(f)) = N−
f .

Proof. If all the exponent vectors of f are vertices of NP(f), then every negative face of NP(f)
must contain a negative vertex. Thus, N−

f equals the closure of its interior by Proposition 3.2.

Using that Trop(S(f)) is closed and Theorem 3.3, we conclude that Trop(S(f)) = N−
f . □

For a signomial f , it might be worth to know when S(f) is bounded from the coordinate
planes in Rn and from infinity. Note that this happens if and only if Logt(S(f)) is bounded for
t > 0, as the map Logt : Rn>0 → R is a homeomorphism.

Corollary 3.6. Let f be a signomial on Rn>0. If σ−(f) ⊆ int(NP(f)), then Logt(S(f)) is
bounded for all t > 0.

Proof. If the boundary of NP(f) does not contain negative monomials, thenN−
f ⊆ {0}. Theorem

3.3 implies that Trop(S(f)) ⊆ {0}. Now, the statement follows from Proposition 3.1(iii). □

Example 3.7. The boundary of the Newton polytope of f = x91x
6
2 + x61x

9
2 − x71x72 − 4x71x

6
2 +

5x51x2 + 5x1x
5
2 − 5x1x2 + 1 does not contain any negative exponent vector of f . By Corollary

3.6, Logt
(
S(f)

)
is bounded for all t > 0. For an illustration, we refer to Figure 2.
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To conclude, we show that for a semi-algebraic set of the form S(f) the second inclusion in
Theorem 3.3 is an equality if the coefficients of f are generic. First, we clarify what we mean
by generic coefficients. For a fixed finite set A ⊆ Rn, we consider the space of signomials whose
support is contained in A:

RA =
{
f =

∑

µ∈σ(f)
cµx

µ | σ(f) ⊆ A
}
.

Interpreting the coefficients of signomials as vectors, one has an isomorphism RA ∼= R#A.
The set of nonnegative signomials in RA,

P+
A =

{
f ∈ RA | f(x) ≥ 0 for all x ∈ Rn>0

}
,

is a full-dimensional closed convex cone, called the nonnegativity cone [11, 14]. Using this ter-
minology, the genericity condition we will assume is that for all faces F ⊆ NP(f), the signomial
f|F does not lie on the boundary of the nonnegativity cone, i.e.:

f|F ∈ P+
σ(f)∩F =⇒ f|F ∈ int(P+

σ(f)∩F ).(NB)

As a consequence of the non-boundary assumption (NB), we will be able to perturb the coeffi-
cients of a nonnegative signomial while preserving nonnegativity.

Remark 3.8. If a signomial, which is nonnegative over the positive real orthant, has a positive
real root, then this root is degenerate and the signomial lies on the boundary of the nonnegativity
cone. However, there exist signomials contained in the boundary of the nonnegativity cone that
do not have any positive real roots as the following well-known example shows.

The signomial g = x21x
2
2− 2x1x2 + 1 + x21 = (x1x2− 1)2 + x21 is positive for all (x1, x2) ∈ R2

>0,
but for any ε > 0 the signomial gε = x21x

2
2−(2+ε)x1x2+1+x21 takes negative values in R2

>0, e.g.

gε(
√
ε
2 ,

2√
ε
) = 3

4ε < 0. Thus, even if a nonnegative signomial does not have any roots, i.e. it is

strictly positive, we might not be able to perturb its coefficients while preserving nonnegativity.

Theorem 3.9. Let f1, . . . , fk be signomials on Rn>0 such that condition (NB) holds for all fi
and all faces F ⊆ NP(fi), i = 1, . . . , k. Then:

Trop
(
S(f1, . . . , fk)

)
⊆

k⋂

i=1

Σ(fi).

Proof. We use a similar argument to the proof of Theorem 3.3. Let w ∈ Trop(S). By Proposition
3.1, there exist sequences {x(m)}m∈N ⊆ S, and {t(m)}m∈N ⊆ R>0 such that t(m) → ∞ and
w(m) := Logt(m)(x(m))→ w.

Assume that w /∈ ⋂k
j=1 Σ(fj), and let i ∈ {1, . . . , k} such that w /∈ Σ(fi). In the following,

we write cµ, µ ∈ σ(fi) for the coefficients of fi and G := NP(fi)w for the face of NP(fi) which
is cut out by w. By an argument as in the proof of Theorem 3.3, we may pass to a subsequence
if necessary and assume that there exists a face F ⊆ G of NP(fi) such that F = NP(fi)w(m) for
all m ∈ N.

Since w cuts out the face G, there exists δ > 0 such that

w · µ− δ > w · ν, for all µ ∈ G ∩ σ(fi), ν ∈ σ(fi) \G.(20)

By continuity of the scalar product, (20) holds also for w(m) for large enough m. Thus, we can
pass to a subsequence again to assume that (20) holds for all w(m).

Since w /∈ Σ(fi), the signomial fi|G is in the nonnegativity cone P+
σ(fi)∩F . By the condition

(NB) fi|G is in the interior and hence there exists ϵ̃ > 0 such that
∑

µ∈F∩σ(fi)
(cµ − ϵ̃)xµ +

∑

µ∈(G\F )∩σ(fi)
cµx

µ > 0 for all x ∈ Rn>0.(21)
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1

1

(a) S(g)

1

1

(b) Log2

(
S(g)

)

1

1

(c) Log10

(
S(g)

)

Figure 3. The semi-algebraic set S(g) defined by g = x21 − 2x1 + 1 − x22 (a), and its

logarithmic images for t = 2 (b) and t = 10 (c).

In particular, it holds:
∑

µ∈F∩σ(fi)
(cµ − ϵ̃)tw(m)·µ +

∑

µ∈(G\F )∩σ(fi)
cµt

w(m)·µ > 0 for all t ∈ R>0 and m ∈ N.(22)

From (20) and (22) follows that for each m ∈ N the univariate signomial

f(tw(m)) =
( ∑

µ∈F∩σ(fi)
cµ

)
td +

∑

µ∈(G\F )∩σ(fi)
cµt

w(m)·µ +
∑

µ∈σ(fi)\G
cµt

w(m)·µ,

where d = maxµ∈σ(fi)w(m) · µ, satisfies the conditions in Lemma 2.3 with ϵ =
∑

µ∈F∩σ(fi) ϵ̃ > 0

and δ as in (20). Thus, there exists T > 1 which is independent of m such that

fi(t
w(m)) > 0, for all t > T.

Since t(m)→∞, t(m) > T for m≫ 1. Thus,

0 < fi(t(m)w(m)) = fi(x(m)) < 0.

which is a contradiction. The last inequality holds as x(m) ∈ S(f1, . . . , fk). □

Corollary 3.10. Let f be a signomial on Rn>0. If all faces F ⊆ NP(f) satisfy (NB) then:

Trop
(
S(f)

)
= Σ(f).

Proof. By Theorem 3.9, Trop
(
S(f)

)
⊆ Σ(f). The reverse inclusion follows from Theorem

3.3. □

Example 3.11. Consider the signomials f = x21−x1 + 1−x22 from Figure 1 and g = x21−2x1 +
1−x22. Note that f and g have the same negative/positive exponent vectors and NP(f) = NP(g).
The only difference between f and g is the coefficient of x1. Furthermore, we have:

Σ(f) = Σ(g), N−
f = N−

g .

For the faces F1 = Conv((2, 0), (0, 2)), F2 = Conv((0, 0), (0, 2)) of NP(f), the restrictions f|Fi

and g|Fi
, i = 1, 2 take negative values by Lemma 2.1. Thus, f|Fi

and g|Fi
, i = 1, 2 are not in the

nonnegativity cone.
For the face F = Conv((0, 0), (2, 0)), f|F = x21 − x1 + 1 is contained in the interior of the

nonnegativity cone. So the coefficients of f are generic in the sense of Corollary 3.10, thus:

Trop(S(f)) = Σ(f).

The sets S(f),Σ(f) and Logt(S(f)) for t = 2, 10 are shown in Figure 1. The negative normal
coneN−

f (see Figure1(c)) is strictly larger than Trop(S(f)) asN−
f has a ray in southern direction

that Trop(S(f)) does not have. This example illustrates that the negative normal cone might
not coincide with the real tropicalization.
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(a) NP(f) (b) Trop
(
S(f)

)
⊊ N−

f

(c) Log2

(
S(f)

)
(d) Log5

(
S(f)

)

Figure 4. Illustration of Example 3.12 (a) The Newton polytope of f = x22 − 2x2 +

1− 2x1x2x3 +x1x2x
2
3 +x21x2 . The exponent vector (1, 1, 1) lies in the interior of NP(f).

(b) Negative normal cone of f (blue shaded area) and the real tropicalization of S(f)

(pink shaded area) (c),(d) Logarithmic images of S(f) for t = 2 and t = 5 respectively.

As g|F = x21 − 2x1 + 1 is nonnegative but has a positive real root, g|F lies on the boundary
of the nonnegativity cone. Thus (NB) is not satisfied, and we cannot apply Corollary 3.10. In
fact, it holds that

Trop(S(g)) = N−
g ,

which is strictly larger than the actual negative normal cone Σ(g), see Figure 1 (b),(c). This
illustrates that if the condition (NB) is not satisfied, Corollary 3.10 might not hold. Logarithmic
images of S(g) with base t = 2, 10 are shown in Figure 3.

Example 3.12. Consider the signomial

f = x22 − 2x2 + 1− 2x1x2x3 + x1x2x
2
3 + x21x2.

The Newton polytope of f is shown in Figure 4(a). The only negative exponent vector of f that
lies on the boundary of NP(f) is (0, 1, 0). This negative exponent vector is contained in the 1-
dimensional face F = Conv

(
(0, 0, 0), (0, 2, 0)

)
. The negative normal cone of f is 2-dimensional,

and it is spanned by the vectors (0, 0,−1) and (−1, 0, 2), see Figure4(b). Since N−
f is not full

dimensional, we have that int(N−
f ) = ∅.

The restricted signomial f|F = x22 − 2x2 + 1 is non-negative but it has a positive real zero.
Thus, f|F does not satisfy the condition (NB). Since f(0.5, 1, 0.5) = −0.125 < 0 and f|G is
non-negative for all proper faces G ⊊ NP(f), we have Σ(f) = {0}.

The real tropicalization of S(f) is a 2-dimensional cone, spanned by the vectors (−1, 0, 0) and
(−1, 0,−1). This example shows that Trop(S(f)) is not always a subfan of the outer normal fan
of NP(f), and that all the inclusions in Theorem 3.3 might be strict:

int
(
N−
f

)
⊊ Σ(f) ⊊ Trop

(
S(f)

)
⊊ N−

f .
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VIRO’S PATCHWORKING AND THE SIGNED REDUCED

A-DISCRIMINANT

WEIXUN DENG, J. MAURICE ROJAS, AND MÁTÉ L. TELEK

Abstract. Computing the isotopy type of a hypersurface, defined as the positive real zero set
of a multivariate polynomial, is a challenging problem in real algebraic geometry. We focus
on the case where the defining polynomial has combinatorially restricted exponent vectors and
fixed coefficient signs, enabling faster computation of the isotopy type. In particular, Viro’s
patchworking provides a polyhedral complex that has the same isotopy type as the hypersurface,
for certain choices of the coefficients. So we present properties of the signed support, focussing
mainly on the case of n-variate (n+3)-nomials, that ensure all possible isotopy types can be
obtained via patchworking. To prove this, we study the signed reduced A-discriminant and show
that it has a simple structure if the signed support satisfies some combinatorial conditions.

Keywords: exponential sum, signed support, Viro’s patchworking, isotopy type

1. Introduction

Tropical geometry bridges the worlds of algebraic and polyhedral geometry. The key idea
is to transform algebraic varieties into polyhedral objects, turning their algebraic structure
functorially into a combinatorial structure. This approach has been fruitful in the case of
varieties over algebraically closed fields [17, 22]. Recently, the tropicalization of semialgebraic
sets over the real numbers (or more generally over real closed fields) has received increasing
attention [4, 5, 18, 29, 31].

In the early 1980s, Oleg Viro showed that it is possible to associate a polyhedral complex
with a parametrized polynomial in such a way that there exists some choice of coefficients such
that the polyhedral complex and the positive real zero set of the polynomial with that choice of
coefficients have the same isotopy type [33]. This result is known as Viro’s patchworking in the
literature and was one of the first examples of tropical geometry.

Classifying the isotopy type of real hypersurfaces is a challenging question in real algebraic
geometry, tracing its origins to Hilbert’s 16th problem [34]. In his original formulation, Hilbert
asked for a classification of isotopy types of plane real algebraic curves. Based on his patchwork-
ing method, Viro provided such a classification for curves of degree 7 [32].

Using Viro’s method, under certain conditions, one can determine the possible isotopy types
for hypersurfaces defined by the positive roots of polynomials of the form f(x) =

∑
a∈A cax

a,
with A ⊆ Zn a finite set and ca real and nonzero for all a∈A. We call A the support of f , let
ε=(εa | a∈A)∈{±1}A denote the vector of signs of the coefficients ca, and call the pair (A, ε)
the signed support of f . To know whether one can build all possible isotopy types for a given
(A, ε) via Viro’s patchworking one must first understand how the isotopy type of a hypersurface
changes while varying the coefficient vector c. We will abuse notation slightly by calling εa the
sign of the exponent vector a when the underlying polynomial and support are clear. Hence we
will sometimes speak of positive or negative exponents in this sense.

It is known that using discriminant varieties, one can decompose the coefficient space into
a disjoint union of open connected sets — called chambers — such that in each chamber the
topological type of any corresponding hypersurface is constant [3, 14]. More specifically, such
a chamber decomposition is given by connected components of the complement of the union of
the signed A-discriminants ∇AF ,εF for the faces F of Conv(A). In [26], a reduced version of
the signed A-discriminant, denoted Γε(A,B), was introduced. The complement of the union of
the signed reduced A-discriminants has the same property as its non-reduced counterpart, but

1
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has the advantage of reducing the number of parameters. We will review these constructions in
Section 2.3.

When considering chambers (reduced or non-reduced), there will sometimes be chambers
where the isotopy type of the hypersurfaces can not be obtained by Viro’s patchworking (see,
e.g., [11, Example 2.9] and [3, Theorem 7.8]). These chambers are called inner chambers, and
reduced inner chambers are usually bounded sets.

Our main goal is to give conditions on the signed support (A, ε) enabling Viro’s patchworking
to find all isotopy types, i.e., conditions that obstruct the existence of inner chambers. For
instance, we show that the signed A-discriminant is empty if and only if the exponent vectors in
A with positive signs can be separated from those with negative signs by an affine hyperplane
(Theorem 3.5). In that case, all hypersurfaces with signed support (A, ε) have the same isotopy
type, and the isotopy type can be obtained by Viro’s patchworking. Moreover, for a given set
of exponent vectors A, we give an upper bound on the number of sign distributions ε ∈ {±1}A
such that the signed support (A, ε) does not have a separating hyperplane (Proposition 3.4).

As we will see, it will be convenient (and natural) to assume Conv(A) has dimension n and
cardinality n+ k+ 1, and then consider k as a measure of the complexity of the resulting family
of isotopy types. The special cases k ∈ {0, 1} are addressed in [2, 8], so we will contribute to
the case k=2: We show that the complement of the signed reduced A-discriminant has exactly
two connected components if A contains exactly one negative exponent vector (Theorem 4.11)
or if the positive and the negative exponent vectors of A are separated by an n-simplex in a
certain way (Theorem 4.12). Under the additional assumption that the signed A-discriminants
associated to proper faces of Conv(A) are empty, one can use Viro’s patchworking to find all
possible isotopy types (Corollary 4.13).

Signed supports with a separating hyperplane or a separating simplex have previously been
studied in [9]. In that work, the authors used these conditions to show that the set of points
where the polynomial takes negative values has, at most, one connected component.

For n = 2 andA consisting 5 points, we show that if the negative and positive exponent vectors
are separated by two pairs of affine lines (Theorem 4.10), then the complement of Γε(A,B) has at
most two connected components, which are unbounded. In Section 5, we study further bivariate
5-nomials and show that for a bounded chamber to exist in the complement of Γε(A,B), the set
of exponent vectors must satisfy very restrictive inequalities, see Theorem 5.5 and Remark 5.6.

We will work in the more general context of exponential sums on Rn, instead of polynomials
on Rn>0, and this will in fact simplify some of our arguments. Note that any real polynomial
can be transformed into a real exponential sum while preserving topological properties of the
corresponding zero sets: Any polynomial f : Rn>0 → R give rise to an exponential sum Rn →
R, (x1, . . . xn) 7→ f(ex1 , . . . , exn). Since the map Exp: Rn → Rn>0, (x1, . . . xn) 7→ (ex1 , . . . , exn)
is a homeomorphism, two subsets of Rn>0 have the same isotopy type if and only if their images
under Exp have the same isotopy type.

Notation. For two vectors v, w ∈ Rn, v · w denotes the Euclidean scalar product, and v ∗ w
denotes the coordinate-wise product of v and w. The transpose of a matrix M will be denoted
by M⊤. We denote the interior of a set X ⊆ Rn by int(X). If X ⊆ Rn is a polyhedron, relint(X)
denotes the relative interior of X. By #S we denote the cardinality of a finite set S. For a
differentiable function f : Rn → Rm, the Jacobian matrix at x ∈ Rn is denoted by Jf (x).

2. Preliminaries

2.1. Signed support of an exponential sum. Let A = {α1, . . . , αn+k+1} ⊆ Rn be a finite
set. We think about the elements of A as the exponent vectors of an exponential sum:

fc : Rn → R, x 7→ fc(x) =
n+k+1∑

i=1

cie
αi·x,(1)

where c ∈ (R \ {0})n+k+1. We call ε = sign(c) ∈ {±1}n+k+1 a sign distribution, and (A, ε) a
signed support. For a fixed order of the exponent vectors α1, . . . , αn+k+1, there is an isomorphism
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between the vector spaces RA ∼= Rn+k+1. We might use these two notations interchangebly. For
a fixed sign distribution ε ∈ {±1}n+k+1, we write

RA
ε = {c ∈ RA | sign(c) = ε}.

for the orthant in RA containing the coefficients matching the signs given by ε.
We split the support set A into the sets of positive and negative exponent vectors, that is, we

define

A+ := {αi ∈ A | εi = 1}, A− := {αi ∈ A | εi = −1}.
We call A full-dimensional if Conv(A) has dimension n. For a set S ⊆ Rn, we denote the
restriction of fc to S by

fc|S : Rn → R, x 7→ fc(x) =
∑

αi∈A∩S
cie

αi·x.

Furthermore, we set AS := A∩S, and define εS to be the sign distribution containing the signs
corresponding to the elements in AS .

The real zero set of fc is denoted by

Z(fc) := {x ∈ Rn | fc(x) = 0}.
We are interested in the possible isotopy types of Z(fc) when c ∈ Rn+k+1 varies over all coef-
ficients such that sign(c) = ε. Two subsets Z0, Z1 ⊆ Rn are isotopic (ambient in Rn) if there
exists a continuous map H : [0, 1]× Rn → Rn, called an isotopy, such that

• H(t, ·) is a homeomorphism for all t ∈ [0, 1],
• H(0, ·) is the identity on Rn,
• H(1, Z0) = Z1.

Being isotopic gives an equivalence relation on subsets of Rn [20, Chapter 10.1], which allows us
to talk about their isotopy types.

2.2. Viro’s patchworking. Viro’s patchworking method provides possible isotopy types of
Z(fc), c ∈ RA

ε for a fixed signed support (A, ε). In this section, we recall this method. We
follow the notation used in [7].

Let A = {α1, . . . , αn+k+1} ⊆ Zn be a finite set and h ∈ Rn+k+1. We consider the lifted points

Ah :=
{

(αi, hi) ∈ Rn+1 | αi ∈ A
}
.

A face F ⊆ Conv(Ah) is called an upper face if there exists a vector (vF , 1) ∈ Rn+1 such that

F =
{
x ∈ Conv(Ah) | (vF , 1) · x ≥ (vF , 1) · y for all y ∈ Conv(Ah)

}
.

For a generic choice of h ∈ Rn+k+1, each upper face F ⊆ Conv(Ah) contains exactly n+1 points
of Ah. The projection of upper faces of Conv(Ah) onto Rn gives a polyhedral subdivision P of
Conv(A). If h is generic, each polyhedron in P is a simplex.

The tropical hypersurface associated to A and h ∈ RA is defined as

Trop(A, h) :=
{
v ∈ Rn | max

i=1,...,n+k+1
(v · αi + hi) is attained at least twice.

}
.

It is dual to the (n − 1)-skeleton of the subdivision P induced by h. For a sign distribution
ε ∈ {±1}A, we define the signed tropical hypersurface

Tropε(A, h) :=
{
v ∈ Rn | max

i=1,...,n+k+1
(v · αi + hi) is attained for some α ∈ A+ and α′ ∈ A−

}
.

Example 2.1. Consider the following set of exponent vectors

A =
{
α1 =

[
0
0

]
, α2 =

[
1
0

]
, α3 =

[
0
1

]
, α4 =

[
4
1

]
, α5 =

[
1
4

]}
,(2)



4 WEIXUN DENG, J. MAURICE ROJAS, AND MÁTÉ L. TELEK

(a)

Trop(A, h)

Tropε(A, h)

(b)

Figure 1. (a) Upper convex hull of the lifted points from Example 2.1 and the induced

polyhedral subdivision. (b) Signed tropical hypersurface associated to the points in (a).

the sign distribution ε = (1, 1, 1,−1,−1) and h = (5, 4, 4, 5, 5). The upper faces of the convex
hull of the lifted points

Ah =
{



5
0
0


 ,




4
1
0


 ,




4
0
1


 ,




5
4
1


 ,




5
1
4



}
,

are shown in Figure 1(a). The induced subdivision of Conv(A) contains 3 triangles, 7 edges,
and 5 vertices. The tropical hypersurface Trop(A, h), which is dual to the 1 skeleton of the
subdivision, contains 3 vertices and 7 edges. We depicted Trop(A, h) and the signed tropical
hypersurface Tropε(A, h) in Figure 1(b).

Viro’s patchworking is usually stated for polynomials and their zero sets in the positive orthant
Rn>0, however using the coordinate-wise exponential map Exp: Rn → Rn>0 it possible to translate
Viro’s theorem to exponential sums.

Theorem 2.2. [33][14, Ch.11 Theorem 5.6][17, Theorem 2.19] Let (A, ε) be a signed support
such that A ⊆ Zn and let h ∈ RA be generic. For t ∈ R, consider the exponential sum

gt : Rn → R, x 7→
n+k+1∑

i=1

εie
hiteαi·x.

Then the signed tropical hypersurface Tropε(A, h) is isotopic to Z(gt) for t ≫ 0 sufficiently
large.

2.3. Signed A-discriminant. The goal of this subsection is to recall the notion of the A-
discriminant from [3, 14, 26]. Let fc be an exponential sum as in (1). A point x ∈ Rn is a
singular zero of fc if and only if

fc(x) =
∂fc(x)

∂x1
= · · · = ∂fc(x)

∂xn
= 0.(3)

We denote the set of singular zeros of fc by Sing(fc). For a fixed signed support (A, ε), we define
the signed A-discriminant as

∇A,ε :=
{
c ∈ RA

ε | Sing(fc) ̸= ∅
}
.

Thus, ∇A,ε contains all coefficients c ∈ RA
ε such that the exponential sum fc has a singular zero

in Rn.
For the sake of completeness, we recall that the signed A-discriminant does not change under

affine transformations of the exponent vectors.
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Proposition 2.3. Let fc be an exponential sum with support A = {α1, . . . , αn+k+1} ⊆ Rn. For
an invertible matrix M ∈ Rn×n and v ∈ Rn consider the exponential sum

gc : Rn → R, x 7→ gc(x) =
n+k+1∑

i=1

cie
(Mαi+v)·x.

Then we have:

(i) If det(M) > 0, then the hypersurfaces Z(fc) and Z(gc) are isotopic.
(ii) Sing(fc) = M⊤ Sing(gc).

(iii) For all x ∈ Sing(gc) the Hessian matrices Hessfc(M
⊤x) and Hessgc(x) have the same

number of positive, negative and zero eigenvalues.

Proof. Note that gc(x) = ev·xfc(M⊤x) for all x ∈ Rn. Since ev·x ̸= 0, we have

(4)

Z(gc) = Z(fc(M
⊤x)) = {x ∈ Rn |

n+k+1∑

i=1

cie
αi·(M⊤x) = 0}

= {(M⊤)−1y ∈ Rn |
n+k+1∑

i=1

cie
αi·y = 0} = (M⊤)−1Z(fc)

Since the group of invertible real n×n matrices with positive determinant is path-connected (see,
e.g. [36, Theorem 3.68]), there exists a continuous path from the identity matrix to (M⊤)−1,
which induces an isotopy. This shows (i).

Applying the product and the chain rule from calculus, we have

Jgc(x) = v⊤fc(M⊤x) + ev·xJfc(M
⊤x)M⊤.

Using (4) and that M⊤ is invertible, for x ∈ Z(gc) it follows that Jgc(x) = 0 if and only if

Jfc(M
⊤x) = 0, which implies (ii).

For the rest of the proof, we assume that x ∈ Sing(gc). From [28, Corollary 1] it follows that

Hessgc(x) = ev·xM Hessfc(M
⊤x)M⊤.

Thus, Hessgc(x) and Hessfc(M
⊤x) have the same number of positive, negative and zero eigen-

values by Sylvester’s law of inertia [25, Chapter 7].
□

Corollary 2.4. Let (A, ε) be a signed support, M ∈ Rn×n an invertible matrix and v ∈ Rn. For
MA+ v = {Mα+ v | α ∈ A}, we have

∇A,ε = ∇MA+v,ε.

Proof. The statement follows directly from Proposition 2.3(ii). □
Remark 2.5. Using Proposition 2.3, one might transform any full-dimensional support A ⊆ Rn
to a support containing the standard basis vectors e1, . . . , en ∈ Rn and the zero vector without
changing the isotopy types of the corresponding hypersurfaces.

To be more precise, from dim Conv(A) = n it follows thatA contains n+1 affinely independent
vectors α1, . . . , αn+1. Thus, there exists an invertible matrix M ∈ Rn×n such that M(α1 −
αn+1) = e1, . . . ,M(αn − αn+1) = en. If det(M) < 0, we change the order of α1, . . . , αn such
that the corresponding matrix M has positive determinant. For v := −Mαn+1, the affine linear
map L : Rn → Rn, α 7→Mα+ v satisfies {0, e1, . . . , en} ⊆ L(A).

For each face F ⊆ Conv(A), we define ∇AF ,εF in a similar way, and set

∇̃AF ,εF :=
{

(cαi)i=1,...,n+k+1 ∈ Rn+k+1
ε | (cαi)αi∈AF

∈ ∇AF ,εF

}
.

In [3], the authors proved the following statement regarding the topology of hypersurfaces
corresponding to different connected components of the complement of the union of the signed
A-discriminants ∇̃AF ,εF .
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Proposition 2.6. [3, Proposition 2.9] Let (A, ε) be a full-dimensional signed support such that
A ⊆ Zn. If c and c′ are in the same connected component of

RA
ε \

( ⋃

F⊆Conv(A) a face

∇̃AF ,εF

)
,

then the zero sets Z(fc) and Z(fc′) are homeomorphic.

Finding the defining equalities of the signed A-discriminant is challenging, but an explicit
parametrization is much simpler to find. First, let diag(c) denote the #A×#A diagonal matrix
with (a, a)-entry ca, and let us rewrite the equalities in (3) as:

Âdiag(c)
(
eαi·x

)
i=1,...,n+k+1

= Âε diag(|c|)
(
eαi·x

)
i=1,...,n+k+1

= 0,(5)

where the matrix Â is given by

Â =

[
1 . . . 1
α1 . . . αn+k+1

]
∈ R(n+1)×(n+k+1),(6)

ε = sign(c) ∈ {±1}n+k+1 and Âε = Âdiag(ε). We refer to the equation system (5) as the critical

system of (A, ε). Note that the assumption dim Conv(A) = n is equivalent to rk(Â) = n + 1

[38]. If rk(Â) = n+ 1, the kernel of Â has dimension k, which is usually called the codimension
of A.

If x ∈ Rn is a singular zero of fc, then diag(c)
(
eαi·x)

i=1,...,n+k+1
∈ ker(Â). Choose a basis

of ker(Â) and write these vectors as columns of a matrix B ∈ R(n+k+1)×k. Such a choice of B

is called a Gale dual matrix of Â. With slight abuse of notation, we might call B a Gale dual
matrix of A. Since im(B) = ker(Â) for each x ∈ Sing(fc) there exists λ ∈ Rk such that

Bλ = diag(c)
(
eαi·x)

i=1,...,n+k+1
.(7)

Since eαi·x is positive for all x ∈ Rn and all α1, . . . , αn+k+1, the signs of the vector in (7) are
given by sign(c) = ε. Therefore, it is enough to look at the set

CB,ε :=
{
λ ∈ Rk | sign(Bλ) = ε

}
.

We define the signed Horn-Kapranov Uniformization map as

ψ : CB,ε × Rn → Rn+k+1
ε , (λ, x) 7→ Bλ ∗

(
eαi·(−x))

i=1,...,n+k+1
,(8)

where ∗ denotes the point-wise multiplication of two vectors.

Proposition 2.7. Let (A, ε) be a full-dimensional signed support with Gale dual matrix B. For
the signed Horn-Kapranov Uniformization map (8), it holds that

im(ψ) = ∇A,ε.

Proof. If ψ(λ, x) = c, then

Âdiag(c)
(
eαi·x)

i=1,...,n+k+1
= Â

(
Bλ ∗

(
eαi·−x)

i=1,...,n+k+1
∗
(
eαi·x)

i=1,...,n+k+1

)
= ÂBλ = 0,

which implies that x ∈ Sing(fc) and therefore c ∈ ∇A,ε.
On the contrary, if c ∈ ∇A,ε, then there exists a point x ∈ Sing(fc). From (7) follows that

there exists λ ∈ CB,ε such that ψ(λ, x) = c. □
The signed A-discriminant lives in an ambient space of dimension n+k+1. Following [26], we

reduce the dimension of the ambient space to k by quotienting out some homogeneities without
losing essential information as follows. We define the signed reduced A-discriminant Γε(A,B)
[26, Definition 2.5] to be

Γε(A,B) := B⊤ Log|∇A,ε|,
where Log is the coordinate-wise natural logarithm map and |·| denotes the coordinate-wise
absolute value map. In [26], bounded (resp. unbounded) connected components of Rk \Γε(A,B)
have been called signed reduced inner (resp. outer) chambers.
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Theorem 2.8. [26, Theorem 3.8.] Let (A, ε) be a full-dimensional signed support with Gale dual
matrix B and let c, c′ ∈ RA

ε . If B⊤ Log|c| and B⊤ Log|c′| are in the same connected component
of

Rk \
( ⋃

F⊆Conv(A) a face

B⊤ Log|∇̃AF ,εF |
)
,

then the zero sets Z(fc) and Z(fc′) are ambiently isotopic in Rn.

The signed reduced A-discriminant admits a parametrization as well.

Proposition 2.9. Let (A, ε) be a full-dimensional signed support with Gale dual matrix B. The
image of the map

ξB,ε : CB,ε → Rk, λ 7→ B⊤ Log|Bλ|(9)

is the signed reduced A-discriminant Γε(A,B).

Proof. Let prk : CB,ε × Rn → CB,ε be the natural coordinate projection and ψ be the signed

Horn-Kapranov Uniformization (8). Furthermore, denote Ã the matrix obtained from Â in (6)

by removing its top row, that is, the columns of Ã are given by the vectors in A. For every
(λ, x) ∈ CB,ε × Rn, we have

ψ(λ, x) = B⊤ Log|Bλ ∗ (eαi·(−x))i=1,...,n+k+1| = B⊤ Log|Bλ| −B⊤Ã⊤x = ξB,ε(λ),

where the last equality holds, since ÃB = 0. Thus, the following diagram commutes

(10)

CB,ε × Rn Rn+k+1
ε Rn+k+1

CB,ε Rk
prk

ψ Log|·|

B⊤

ξB,ε

which gives that

im(ξB,ε) = im(ξB,ε ◦ prk) = im(B⊤ ◦ Log|·| ◦ ψ) = B⊤ Log|∇A,ε| = Γε(A,B),

where the first equality holds since prk is surjective, and the second-to-last equality follows from
Proposition 2.7. □

Since the first row of the matrix Â is given by the all one vector 1 ∈ Rn+k+1, we have B⊤1 = 0,
which implies that the map ξB,ε is homogeneous, i.e. for all a ∈ R:

ξB,ε(aλ) = B⊤ Log|B(aλ)| = log(|a|)B⊤1 +B⊤ Log|Bλ| = B⊤ Log|Bλ| = ξB,ε(λ).

Thus, one could projectivize the domain CB,ε ⊆ Rk of ξB,ε.

Remark 2.10. Modifying a Gale dual matrix using elementary column operations gives another
choice of Gale dual matrix. Thus, one can assume without any restriction that the last row of
the Gale dual matrix B has the form Bn+k+1 = (0, . . . , 0,−1). Such a choice of B fixes the sign
εn+k+1 = −1. Since Z(fc) = Z(f−c), we can always fix one of the signs of the coefficients.

Since ξB,ε is homogeneous, one can replace Rk (assuming Bn+k+1 = (0, . . . , 0,−1)) by the
upper half of the (k − 1)−sphere

Ck−1 = {λ ∈ Rk | ∥λ∥ = 1, λk > 0},
or by the (k − 1)−dimensional affine subspace

{λ ∈ Rk | λk = 1}.
In Section 4, we will prefer this latter choice and work with the map

ξ̄B,ε : {µ ∈ Rk−1 | sign(B

[
µ
1

]
) = ε} → Rk, λ 7→ B⊤ Log|B

[
µ
1

]
|.(11)
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1 2 3 4

1

2

3

4

(a) (b)

1

1

(c)

1

1

(d)

1

1

(e)

Figure 2. (a) Signed support from Example 2.11. The positive and negative exponent

vectors are depicted by red circles and blue dots respectively. (b) Signed reduced A-

discriminant of the signed support in (a). (c)(d)(e) Hypersurfaces Z(fc) corresponding

to different connected components of the complement of the signed reduced A-discriminant.

Example 2.11. To give an illustration of the signed reduced A-discriminant, we recall [11,
Example 2.9]. Consider the same set of exponent vectors as in Example 2.1

A =
{
α1 =

[
0
0

]
, α2 =

[
1
0

]
, α3 =

[
0
1

]
, α4 =

[
4
1

]
, α5 =

[
1
4

]}
.(12)

Unlike in Example 2.1, here we consider the sign distribution ε = (−1, 1, 1,−1,−1). We
depicted the signed support (A, ε) in Figure 2(a). Since A has codimension 2, the signed
reduced A-discriminant Γε(A,B) is in the plane R2. For an illustration we refer to Fig-
ure 2(b). The complement of Γε(A,B) has 3 connected components. For the coefficient vectors
c = (−1, 6, 3,−1,−1),(−1, 1, 1,−1,−1),(−1, 0.5, 1,−1,−1), their projection B⊤ Log|c| lies in dif-
ferent connected components of R2\Γε(A,B). The corresponding hypersurfaces Z(fc) are shown
in Figure 2(c),(d),(e) respectively.

One remarkable property of this particular signed support is that the isotopy type of the
hypersurface in Figure 2(d), corresponding to the coefficient c = (−1, 1, 1 − 1,−1), cannot be
obtained by Viro’s patchworking (cf. Theorem 2.2). All possible signed tropical hypersurfaces
Tropε(A, h), with h ∈ RA generic, consist of 2 unbounded connected components, but the
hypersurface Z(fc), c = (−1, 1, 1 − 1,−1) has 3 connected components, one bounded and two
unbounded.

2.4. Some useful results from topology. In the proof of Proposition 4.6, we need some
classical results from topology. Let us also introduce these briefly here (see, for example, Chapter
I.11 & Chapter IV.19 in [6]).

Lemma 2.12. Suppose that X and Y are locally compact, Hausdorff spaces and that f : X → Y
is continuous. Let X+ be the one-point compactification space of X. Then f is proper (i.e., the
preimage of any compact subset is compact) ⇐⇒ f extends to a continuous map f+ : X+ → Y +

by setting f+(∞X) =∞Y .
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Lemma 2.13. (Jordan-Brouwer Separation Theorem) If f : Sn−1 → Sn (where Sn denotes n-
sphere) is an injective continuous map, then Sn \ f(Sn−1) consists of exactly two connected
components. Moreover, f(Sn−1) is the topological boundary of each of these components.

Corollary 2.14. If f : Rn → Rn+1 is injective, continuous and proper, then Rn+1 \ f(Rn)
consists of exactly two unbounded connected components.

Proof. Note that the one point compactification of Rn is Sn. By Lemma 2.12, f can be extended
to f+ : Sn → Sn+1 with f+(∞) =∞. Then f+ is also injective. By Lemma 2.13, Sn+1 \ f+(Sn)
consists of two connected components and the point∞ is in the boundary. Since the point∞ is
in the boundary of each component, we can always find a sequence {xl} ⊆ Rn+1 = Sn+1 \ {∞}
in each of the components such that xl →∞. Therefore, these two components are unbounded
in Rn+1. □

Finally, we need the following version of the mean value theorem:

Lemma 2.15. (Cauchy’s Mean Value Theorem) If the functions f, g : [a, b] → R are both con-
tinuous and differentiable on the open interval (a, b), then there exists some c ∈ (a, b), such
that

(f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c).

3. Signed supports without singular zeros

In this section, we give a necessary and sufficient condition on the signed support (A, ε) such
that the signed reduced A-discriminant ∇A,ε is empty. Building on this result and Theorem

2.8, we give conditions on (A, ε) such that for all c ∈ RA
ε the hypersurfaces Z(fc) have the same

isotopy type (Theorem 3.5). First, we start with a simple observation.

Proposition 3.1. Let A = {α1, . . . , αn+k+1} ⊆ Rn be a set of exponent vectors and ε ∈
{±1}n+k+1 be a fixed sign distribution. Let Â the matrix defined in (6).

(a) If ker(Â) ∩ Rn+k+1
ε = ker(Âε) ∩ Rn+k+1

>0 = ∅, then for all c ∈ Rn+k+1
ε the critical system

(5) does not have any solution x ∈ Rn.
(b) If ker(Âε) ∩ Rn+k+1

>0 ̸= ∅, then there exists c ∈ Rn+k+1
ε such that the critical system has

a solution x ∈ Rn.

Proof. Part (a) follows directly, since for any c ∈ Rn+k+1
ε and any solution x ∈ Rn of (5), we

have diag(c)
(
eαi·x)

i=1,...,n+k+1
∈ ker(Â) ∩ Rn+k+1

ε .

If v ∈ ker(Âε)∩Rn+k+1
>0 , then for c = diag(ε)v, the point x = (0, . . . , 0) is a solution of (5). □

In the following, we interpret the conditions in Proposition 3.1 in terms of the geometry of
the support A and the sign distribution ε. An affine hyperplane is a set of the form

Hv,a := {µ ∈ Rn | v · µ = a},
for some v ∈ Rn \ {0} and a ∈ R. Each affine hyperplane defines two half-spaces

H+
v,a := {µ ∈ Rn | v · µ ≥ a}, H−

v,a := {µ ∈ Rn | v · µ ≤ a}.
Following [9], we call Hv,a a separating hyperplane of (A, ε) if

A+ ⊆ H+
v,a, and A− ⊆ H−

v,a.(13)

A separating hyperplane Hv,a is called non-trivial, if at least one of the open half-spaces
int(H+

v,a), int(H−
v,a) contains a point of A. A non-trivial separating hyperplane is called very

strict if Hv,a does not contain any point in A. For an illustration of separating hyperplanes, we
refer to Figure 3.

Proposition 3.2. A signed support (A, ε) has a non-trivial separating hyperplane if and only

if ker(Âε) ∩ Rn+k+1
>0 = ∅, where Â ∈ R(n+1)×(n+k+1) denotes the matrix from (6).
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Figure 3. The hyperplane Hv,0 with v = (0, 0, 1) is a non-trivial separating

hyperplane of A+ =
{

(1, 0, 0)⊤, (2, 2, 0)⊤, (0, 2, 0)⊤, (1, 1, 1)⊤
}

(depicted as red cir-

cles) and A− =
{

(0, 0, 0)⊤, (2, 0, 0)⊤, (1, 1,−1)⊤
}

(blue dots). For the face F =

Conv
(
(0, 0, 0)⊤, (0, 0, 2)⊤

)
(marked by thick line segment), the restricted signed sup-

port AF,+ =
{

(1, 0, 0)⊤
}
, AF,− =

{
(0, 0, 0)⊤, (2, 0, 0)⊤

}
does not have any non-trivial

separating hyperplane.

Proof. By Stiemke’s Theorem [30] (which is a version of Farkas’ Lemma, see also [38, Section
6.2]), exactly one of the following holds. Either there exists w ∈ Rn+1 such that

Â⊤
ε w ≥ 0,(14)

and at least one of the inequalities is strict, or there exists u ∈ Rn+k+1
>0 such that

Âεu = 0,(15)

but not both. Condition (15) is equivalent to ker(Âε) ∩Rn+k+1
>0 ̸= ∅. Note that one can rewrite

(14) as

εi((w2, . . . , wn+1) · αi) ≥ εi(−w1),

for all αi ∈ A. Thus, if such a w exists, then Hv,a with v = (w2, . . . , wn+1), a = −w1 is a non-
trivial separating hyperplane of (A, ε). On the other hand, if Hv,a is a non-trivial hyperplane of
(A, ε), then w = (−a, v) satisfies (14). □

Theorem 3.3. Let (A, ε) be a signed support with Gale dual matrix B. Then the following are
equivalent:

(i) ∇A,ε = ∅
(ii) Γε(A,B) = ∅

(iii) (A, ε) has a non-trivial separating hyperplane.

Proof. The equivalence between (i) and (ii) follows directly from the definition of the signed
reduced A-discriminant, since Γε(A,B) = B⊤ Log|∇A,ε|.

From Proposition 3.1 it follows that ∇A,ε = ∅ if and only if ker(Âε) ∩ Rn+k+1
>0 = ∅, which is

equivalent to the existence of a non-trivial separating hyperplane of (A, ε) by Propositon 3.2.
This shows that (i) and (ii) are equivalent. □

For fixed set of exponent vectors A ⊆ Rn, using the correspondence between hyperplane
arrangements and zonotopes, one derives a bound on the number of sign distributions for which
(A, ε) does not have a non-trivial separating hyperplane.

Proposition 3.4. Let A = {α1, . . . , αn+k+1} ⊆ Rn be a finite set such that dim Conv(A) = n.
The number of sign distributions ε ∈ {±1}n+k+1 for which (A, ε) does not have a non-trivial
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separating hyperplane is bounded above by:

2

k−1∑

i=0

(
n+ k

i

)
.

Proof. Let Â be the matrix defined in (6). By Proposition 3.2, the signed support (A, ε) does

not have a non-trivial separating hyperplane if and only if ker(Â)∩Rn+k+1
ε ̸= ∅. So all we have

to do is to count how many orthants Rn+k+1
ε ker(Â) intersects.

The assumption dim Conv(A) = n implies that dim ker(Â) = k. Let B ∈ R(n+k+1)×k be Gale

dual to Â and denote by B1, . . . , Bn+k+1 the rows of B. By [12, Lemma 0.16] (see also [38,

Corollary 7.17]), the orthants Rn+k+1
ε that im(B) = ker(Â) intersects, correspond one-to-one to

the vertices of the zonotope

[−B1, B1] + · · ·+ [−Bn+k+1, Bn+k+1] ⊆ Rk.
By [13, Table 2.1] (see also [37]) such a zonotope can have at most

2
k−1∑

i=0

(
n+ k

i

)

many vertices. □
We finish the section by characterizing signed supports for which all corresponding hypersur-

faces have the same isotopy type.

Theorem 3.5. Let (A, ε) be a signed support. If for all faces F ⊆ Conv(A) the signed support
(AF , εF ) has a non-trivial separating hyperplane, then for all c ∈ RA

ε the hypersurfaces Z(fc)
have the same isotopy type.

Proof. From Theorem 3.3 follows that the signed reduced A-discriminants associated to the faces
F ⊆ Conv(A) are empty. Thus, all the hypersurfaces Z(fc), c ∈ RA

ε have the same isotopy type
by Theorem 2.8. □
Corollary 3.6. If a signed support (A, ε) has a very strict separating hyperplane, then the
hypersurfaces Z(fc) have the same isotopy type for all c ∈ RA

ε .

Proof. If Hv,a is a very strict separating hyperplane of (A, ε), then it is also a very strict sep-
arating hyperplane of (AF , εF ) for all faces F ⊆ Conv(A). Now, the statement follows from
Theorem 3.5. □
Example 3.7. The signed support (A, ε) from Example 2.1 has a very strict separating hyper-
plane. Thus, by Corollary 3.6, all hypersurfaces Z(fc), c ∈ RA

ε have the same isotopy type. From
Theorem 2.2 follows that this isotopy type agrees with the isotopy type of the signed tropical
hypersurface Tropε(A, h) for every generic h ∈ RA. We refer to Figure 1(b) for an illustration
of Tropε(A, h) with h = (5, 4, 4, 5, 5).

Remark 3.8. If a signed support (A, ε) has a non-trivial separating hyperplane, it might happen
that for one of the faces F ⊆ Conv(A) the restricted signed support (AF , εF ) does not have
a non-trivial separating hyperplane. For such an example, we revisit the signed support from
Figure 3. The face F = Conv((0, 0, 0)⊤, (2, 0, 0)⊤), contains two negative exponent vectors
α1 = (0, 0, 0)⊤, α2 = (2, 0, 0)⊤ and one positive exponent vector α3 = (1, 0, 0)⊤. Since α3 lies in
the relative interior of Conv(α1, α2), it follows that {α1, α2} and {α3} cannot be separated by
an affine hyperplane.

4. A-discriminants with two signed reduced outer chambers

The goal of this section is to describe conditions on the signed support (A, ε) that ensure
Rk \Γε(A,B) has at most two connected components, which are unbounded. In Section 4.1, we
focus on the case where A has exactly n+ 3 exponent vectors. We show that the complement of
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Γε(A,B) has at most two chambers if the parametrization map ξB,ε has at most one critical point

(Proposition 4.6). It is known that ξB,ε can have at most n critical points [27], however there
did not exist any known example in the literature where this bound is attained. In Example
4.3, we describe a family of signed supports such that ξB,ε has n critical points for every n ∈ N.

In Section 4.2, we investigate the relation between critical points of ξB,ε and degenerate

singular points of Z(fc) , and show that if Z(fc) has no degenerate singular point for all c ∈ RA
ε

and the codimension of A is 2, then Rk \ Γε(A,B) has at most two connected components
(Theorem 4.9). In Section 4.3, we give several conditions on the geometry of the signed support
(A, ε) precluding the existence of degenerate singular points in Z(fc), c ∈ RA

ε .

During the whole section, we assume that the Gale dual matrix B ∈ R(n+k+1)×k is chosen in
a way such that its last row has the form (0, . . . , 0,−1) (cf. Remark 2.10).

4.1. Critical points of the signed reduced A-discriminant. Let A = {α1, . . . , αn+k+1} ⊆
Rn be a set of exponent vectors such that dim Conv(A) = n and fix a sign distribution

ε ∈ {±1}n+k+1. Let Â ∈ R(n+1)×(n+k+1) be as given in (6) and choose a Gale dual ma-

trix B ∈ R(n+k+1)×k with rows B1, . . . , Bn+k+1 such that its last row has the form Bn+k+1 =
(0, . . . , 0,−1).

Let ξ̄B,ε be the parametrization map of Γε(A,B) as defined in (11). Following [1, Section

1.2], we call a point µ ∈ Rk−1 a critical point of ξ̄B,ε if ξ̄B,ε(µ) is well-defined and the Jacobian
matrix Jξ̄B,ε

(µ) does not have full rank, that is, it has rank strictly less than k − 1.

Lemma 4.1. Let (A, ε) be a full-dimensional signed support with Gale dual matrix B, and let
ξ̄B,ε be as defined in (11). Then for each µ ∈ Rk−1 where ξ̄B,ε is defined, we have the following
equality for the Jacobian matrix

Jξ̄B,ε
(µ) = B⊤ diag

(
1
Bµ̂

)
B̃,(16)

where B̃ denotes the matrix obtained from B by deleting its last column.

Proof. By definition (cf. (11)), the j−th coordinate of ξ̄B,ε is given by

(
ξ̄B,ε(µ)

)
j

=
n+k+1∑

i=1

log|Bi · µ̂|Bi,j ,

where µ̂ =

[
µ
1

]
. Thus, the partial derivatives of ξ̄B,ε have the form

∂
(
ξ̄B,ε(µ)

)
j

∂µℓ
=

n+k+1∑

i=1

Bi,jBi,ℓ
Bi · µ̂

(17)

for all j = 1, . . . , k, and ℓ = 1, . . . , k− 1. Comparing (17) with the entries of the right-hand side
of (16) the result follows. □

Using Lemma 4.1, an easy computation shows that

µ̂⊤Jξ̄B,ε
(µ) =

(
Bµ̂
)⊤

diag
(

1
Bµ̂

)
B̃ = 1⊤B̃ = 0.(18)

Therefore, if ξ̄B,ε is differentiable at µ, then a normal vector at ξ̄B,ε(µ) is given by µ̂ =

[
µ
1

]
.

This statement was proven by Kapranov [21, Theorem 2.1].
In the remaining of the section, we focus on the case k = 2. Under this assumption, we have

Jξ̄B,ε
(µ) =


b

⊤
1 diag

(
1
Bµ̂

)
b1

b⊤2 diag
(

1
Bµ̂

)
b1


 ,

where b1, b2 denote the first and second column of the Gale dual matrix B.
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Lemma 4.2. Let (A, ε) be a full-dimensional signed support of codimension 2 with Gale dual

B ∈ R(n+3)×2, and let ξ̄B,ε be as defined in (11). For µ ∈ R \ {0} the following are equivalent.

(i) µ is a critical point of ξ̄B,ε.
(ii) sign(Bµ̂) = ε and µ is a zero of the univariate polynomial

qB(µ) :=
( n+3∏

i=1

(Bµ̂)i

)
b⊤1 diag

(
1
Bµ̂

)
b1.(19)

(iii) sign(Bµ̂) = ε and µ is a zero of the univariate polynomial

q̃B(µ) :=
( n+3∏

i=1

(Bµ̂)i

)
b⊤2 diag

(
1
Bµ̂

)
b1.(20)

Moreover, qB has degree at most n and ξ̄B,ε has at most n critical points.

Proof. Note that ξ̄B,ε(µ) is defined only if sign(Bµ̂) = ε. Furthermore, the factor
∏n+3
i=1 (Bµ̂)i

clears the denominator of b⊤1 diag
(

1
Bµ̂

)
b1 and of b⊤2 diag

(
1
Bµ̂

)
b1. Moreover,

∏n+3
i=1 (Bµ̂)i ̸= 0 if

sign(Bµ̂) = ε. From (18) follows that

µb⊤1 diag
(

1
Bµ̂

)
b1 = −b⊤2 diag

(
1
Bµ̂

)
b1.

Thus, Jξ̄B,ε
(µ) = 0 if and only if qB(µ) = 0, which is also equivalent to q̃B(µ) = 0.

The polynomial qB has been studied previously in [27], where it has been shown that its
degree is at most n. □

In [27, Theorem 3.10], the author constructed several matrices B ∈ R(n+3)×2 such that qB(µ)
has exactly n real roots. However, these roots correspond to different sign distributions ε. To
show that the bound on the critical points of ξ̄B,ε in Lemma 4.2 is attained, one needs to

construct B ∈ R(n+3)×2 such that qB (or q̃B) has n real roots µ1, . . . , µn such that sign(Bµ̂1) =
· · · = sign(Bµ̂n) = ε for some fixed ε ∈ {±1}A. We provide such a construction in the following
example.

Example 4.3. Let n ∈ N and let µ1, . . . , µn be distinct positive numbers different from 1.
Consider the univariate polynomials f(µ) = (µ− µ1)(µ− µ2) · · · (µ− µn), g(µ) = (µ+ µ1)(µ+

µ2) · · · (µ + µn)(µ + 1) ∈ R[µ]. Since deg(f) = n < deg(g) = n + 1, the fraction f(µ)
g(µ) admits a

partial fraction decomposition:

(µ− µ1)(µ− µ2) · · · (µ− µn)

(µ+ µ1)(µ+ µ2) · · · (µ+ µn)(µ+ 1)
=

a1
µ+ µ1

+
a2

µ+ µ2
+ · · ·+ an

µ+ µn
+
an+1

µ+ 1
,(21)

where a1, . . . , an+1 ∈ R. The ai’s satisfy the following properties:

(1)
a1
µ1

+
a2
µ2

+
a3
µ3

+ · · ·+ an
µn

+ an+1 = (−1)n,

(2) a1 + a2 + · · ·+ an+1 = 1.
(3) ai ̸= 0, i = 1, . . . , n+ 1.

Property (1) follows by plugging in µ = 0, (2) follows by comparing the leading coefficients of
numerators on both sides, (3) follows by comparing the degree of denominators on both sides.

We use the ai’s to build the matrix:

B =

[ a1
µ1

a2
µ2

a3
µ3
· · · an

µn
an+1 (−1)n+1 0

a1 a2 a3 · · · an an+1 0 −1

]⊤
.

Properties (1) and (2) imply that 1⊤B = 0, thus it is possible to choose a matrix Â ∈
R(n+1)×(n+3) as in (6) such that B is its Gale dual. Denoting by b1, b2 the columns of B,
we have:

b⊤2 diag
(

1
Bµ̂

)
b1 =

a21
µ1

a1
µ1
µ+ a1

+

a22
µ2

a2
µ2
µ+ a2

+

a23
µ3

a3
µ3
µ+ a3

+ · · ·+
a2n
µn

an
µn
µ+ an

+
a2n+1

an+1µ+ an+1
.
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The right-hand side of this equality agrees with the right-hand side of (21), as the ai’s are

nonzero. Therefore, the zeros of q̃B(µ) = b⊤2 diag
(

1
Bµ̂

)
b1 are µ1, . . . , µn. Since µ1, . . . , µn are

positive, it follows for all i = 1, . . . , n that

sign(Bµ̂i) = (sign(a1), sign(a2), . . . , sign(an+1), (−1)n+1,−1) =: ε.

We conclude that ξ̄B,ε has n critical points using Lemma 4.2.

Let n = 4 and pick µ1 = 5, µ2 = 6, µ3 = 7, µ4 = 8. We
have

(µ− 5)(µ− 6)(µ− 7)(µ− 8)

(µ+ 5)(µ+ 6)(µ+ 7)(µ+ 8)(µ+ 1)

=
−715

µ+ 5
+

12012
5

µ+ 6
+
−2730

µ+ 7
+

1040

µ+ 8
+

18
5

µ+ 1

and

B =

[
−143 2002

5 −390 130 18
5 −1 0

−715 12012
5 −2730 1040 18

5 0 −1

]⊤
.

By the above, the map ξ̄B,ε has 4 critical points for
ε = (−1, 1,−1, 1, 1,−1,−1). The signed reduced A-
discriminant is drawn to the right and its critical points
are highlighted by red circles.

In Example 2.11 (cf. Figure 2(b)), we saw that the complement of Γε(A,B) has three con-
nected components if ξ̄B,ε has 2 critical points. In the following, we show that if ξ̄B,ε has at

most one critical point, then Rk \ Γε(A,B) cannot have more then two connected components.
Before we get to this result, let us prove the following lemma for self-intersections of curves.

Lemma 4.4. Let φ : R → R2 be a smooth map such that the Jacobian matrix Jφ(µ) has full
rank for all µ ∈ R except for at most one point. Let S ⊆ R2 be the curve parametrized by φ. If
there exist two distinct points a, b ∈ R such that φ(a) = φ(b), then there exist two distinct points
µ1, µ2 ∈ R such that the tangent lines of S at φ(µ1) and at φ(µ2) are parallel.

Proof. Denote φ1, φ2 the first and the second coordinate of φ. Suppose a < b, and assume there
exists t ∈ R such that φ′

1(t) = φ′
2(t) = 0, that is, Jφ(t) does not have full rank. We start by

choosing c ∈ R such that a < c < b, φ(c) ̸= φ(a) and φ is smooth on both intervals (a, c) and
(c, b). If t ≤ a or t ≥ b, such c exists since the Jacobian matrix Jφ has full rank on (a, b). If
a < t < b and φ(t) = φ(a), then the curve is smooth on the interval (a, t), and we pick a c as
before. Finally, if a < t < b and φ(t) ̸= φ(a), then we choose c = t. If φ does not have any
singular point, then we pick c as in the case t ≤ a or t ≥ b.

By Lemma 2.15, on the interval (a, c), there exists some µ1 ∈ (a, c) such that

(φ1(c)− φ1(a))φ′
2(µ1) = (φ2(c)− φ2(a))φ′

1(µ1).

Similarly, on the interval (c, b), there exists some µ2 ∈ (c, b) such that

(φ1(c)− φ1(b))φ
′
2(µ2) = (φ2(c)− φ2(b))φ

′
1(µ2).

Thus, since φ(a) = φ(b) and φ(c) ̸= φ(a), we have

φ′
1(µ1)φ

′
2(µ2) = φ′

1(µ2)φ
′
2(µ1)

and hence the tangent lines at µ1, µ2 are parallel. □
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Remark 4.5. Lemma 4.4 is not true for hyper-
surfaces in Rn when n ≥ 3. The surface given
by φ : (t, s) 7→ (e−s(t2 − 1), e−st(t2 − 1), s) is a
counterexample for n = 3. The map φ is not
injective but there are no pairs of points with
parallel tangent planes. The image of φ is shown
on the right.

Now we are able to prove the following result bounding the number of connected components
of Rk \ Γε(A,B).

Proposition 4.6. Let (A, ε) be a full-dimensional signed support of codimension 2 with Gale

dual matrix B ∈ R(n+3)×2. If ξ̄B,ε has at most one critical point, then the complement of
the signed reduced A-discriminant Γε(A,B) has at most two connected components, which are
unbounded.

Proof. Recall that for µ ∈ R, we used the notation µ̂ =

[
µ
1

]
. If (A, ε) has a non-trivial separating

hyperplane, then Γε(A,B) = ∅ by Theorem 3.3. Thus, Rk \ Γε(A,B) has one connected com-
ponent. If (A, ε) does not have a non-trivial separating hyperplane, then from Proposition 3.2
follows that there exist µ1, µ2 ∈ R such that sign(Bµ̂1) = sign(Bµ̂2) = ε. By (18), µ̂1 and µ̂2
are normal vectors at ξ̄B,ε(µ1) and at ξ̄B,ε(µ2) respectively. If the tangent lines at ξ̄B,ε(µ1) and
at ξ̄B,ε(µ2) are parallel, then µ̂1 = λµ̂2 for some λ ∈ R \ {0}, which implies that µ1 = µ2. This
shows that there is no pair of points in Γε(A,B) with parallel tangent lines.

Lemma 4.4 implies that ξ̄B,ε is injective. Also, ξ̄B,ε maps an open interval of R to R2, and
ξ̄B,ε(µ)→∞ as µ approaches the endpoints of the interval. Therefore, ξ̄B,ε is proper by Lemma
2.12, which implies that the complement of Γε(A,B) has exactly two unbounded connected
components by Corollary 2.14. □

4.2. Critical points and degenerate singularities. Let fc be an exponential sum as in (1). A
singular point x ∈ Sing(fc) is called degenerate if the Hessian matrix Hessfc(x) is not invertible.
We have the following relationship between critical points of the signed reduced A-discriminant
and degenerate singular points in the corresponding hypersurface.

Lemma 4.7. Let (A, ε) be a full-dimensional signed support with Gale dual matrix B ∈ R(n+k+1)×k.

If µ∗ ∈ Rk−1 is a critical point of ξ̄B,ε, then for c∗ = B

[
µ∗

1

]
, the point x∗ = (0, . . . , 0) ∈ Rn is

a degenerate singular point of fc∗.

Proof. Since diag(c∗)
(
eαi·x∗

)
i=1,...,n+k+1

= B

[
µ∗

1

]
∈ ker(Â), we have that x∗ is a singular point

of fc∗ (cf.(5)). Thus, we only have to show that it is a degenerate singular point. Let ψ denote
the Horn-Kapranov Uniformization map (8). From [10, Theorem 3.4, Theorem 3.5], it follows
that x∗ is a degenerate singular point if

rk Jψ(µ̂∗, x∗) ≤ n+ k − 1,(22)

where µ̂∗ =

[
µ∗

1

]
.

We prove (22) in two steps. First we show that

rk JξB,ε
(µ̂∗) = rkJξ̄B,ε

(µ∗).(23)
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To see this, a similar computation as in (16) shows

JξB,ε
(µ̂∗) = B⊤ diag

(
1

Bµ̂∗

)
B.

Thus, the first k − 1 columns of JξB,ε
(µ̂∗) and Jξ̄B,ε

(µ∗) are the same. To show that the two

matrices have the same rank, it is enough to show that the last column of JξB,ε
(µ̂∗) is contained

in the linear space spanned by the columns of Jξ̄B,ε
(µ∗), which holds since

B⊤ diag
(

1
Bµ̂∗

)
Bµ̂∗ = B⊤1 = 0,

where the last equality holds since B⊤Â⊤ = 0 and the first column of Â⊤ equals 1. This shows
(23).

In the second part of the proof, we show (22). Using that the diagram (10) commutes and
the chain rule, we have

JB⊤◦Log|·|◦ψ(µ̂∗, x∗) = JξB,ε◦prk(µ̂∗, x∗) = JξB,ε
(µ∗)Jprk(µ̂∗, x∗).

Using (23) and that rk Jprk(µ̂∗, x∗) = k, it follows that

rk JB⊤◦Log|·|◦ψ(µ̂∗, x∗) = rk JξB,ε
(µ̂∗) = rk Jξ̄B,ε

(µ∗) ≤ k − 2,

where the last inequality holds since µ∗ is a critical point of ξ̄B,ε.
Using again the chain rule

JB⊤◦Log|·|◦ψ(µ̂∗, x∗) = B⊤JLog|·|(ψ(µ̂∗, x∗))Jψ(µ̂∗, x∗).

Note that B⊤ has rank k and JLog|·|(ψ(µ̂∗, x∗)) is a diagonal matrix with nonzero diagonal

entries. Thus, rkB⊤JLog|·|(ψ(µ̂∗, x∗)) = k. From Sylvester’s rank inequality follows that

rkB⊤JLog|·|(ψ(µ̂∗, x∗)) + rk Jψ(µ̂∗, x∗)− (n+ k + 1) ≤ rk JB⊤◦Log|·|◦ψ(µ̂∗, x∗) ≤ k − 2,

which imples (22). □

Proposition 4.8. Let (A, ε) be a full-dimensional signed support with Gale dual matrix B. If
for all c ∈ RA

ε , all singular points of Z(fc) are non-degenerate, then ξ̄B,ε does not have any
critical point.

Proof. The statement is a direct consequence of Lemma 4.7. □

Theorem 4.9. Let (A, ε) be a full-dimensional signed support of codimension 2 with Gale dual
matrix B. If for all c ∈ RA

ε , all singular points of Z(fc) are non-degenerate, then the complement
of the signed reduced A-discriminant Γε(A,B) has at most two connected components, which are
unbounded.

Proof. The statement follows directly from Proposition 4.6 and Proposition 4.8. □

4.3. Signed supports without degenerate singular points. Now, we show that for certain
signed supports (A, ε), the singular points of the hypersurfaces Z(fc) are non-degenerate singular
for all c ∈ RA

ε .
We call a pair of parallel affine hyperplanes Hv,a,Hv,b ⊆ Rn (a ≥ b) enclosing hyperplanes of

the positive exponents A+ if

A+ ⊆ H−
v,a ∩H+

v,b and A− ⊆ Rn \
(

int(H−
v,a) ∩ int(H+

v,b)
)
.

Enclosing hyperplanesHv,a,Hv,b are strict enclosing hyperplanes ofA+ if additionally int(H+
v,a)∩

A− ̸= ∅ and int(H−
v,b)∩A− ̸= ∅. We define strict enclosing hyperplanes of the negative exponents

A− in a similar way. For an illustration, we refer to Figure 4.
Our first statement concerns exponential sums in two variables.

Theorem 4.10. Let (A, ε) be a full-dimensional signed support in R2 and assume that both A+

and A− have a pair of strict enclosing hyperplanes. Then
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(i) for every c ∈ RA
ε and x ∈ Sing(fc), the Hessian matrix Hessfc(x) has a positive and a

negative eigenvalue.
(ii) If A consists of 5 exponent vectors, then the complement of the signed reduced A-

discriminant Γε(A,B) consists of at most two connected components.

Proof. Let Hv,a,Hv,b (resp. Hw,a′ ,Hw,b′) enclosing hyperplanes of A+ (resp. A−). Using an
affine change of coordinates as in Proposition 2.3, we assume without loss of generality that
v = (1, 0)⊤, w = (0, 1)⊤.

For x∗ ∈ Sing(fc) consider the univariate exponential sums:

fc,x∗,v : R 7→ R, s 7→ fc,x∗,v(s) :=
2+k+1∑

i=1

cie
αi·(x∗+sv)

fc,x∗,w : R 7→ R, s 7→ fc,x∗,w(s) :=

2+k+1∑

i=1

cie
αi·(x∗+sw).

By construction it holds:

0 = fc(x
∗) = fc,x∗,v(0) = fc,x∗,w(0).(24)

By denoting α1,i, α2,i the first and the second coordinate of the vector αi, it is easy to check
that

∂fc,x∗,v
∂s

(s) =

2+k+1∑

i=1

ciα1,ie
αi·(x∗+sv),

∂fc,x∗,w
∂s

(s) =

2+k+1∑

i=1

ciα2,ie
αi·(x∗+sw),

It follows that
∂fc,x∗,v
∂s

(0) =
∂fc
∂x1

(x∗) = 0,
∂fc,x∗,w
∂s

(0) =
∂fc
∂x2

(x∗) = 0,(25)

since x∗ ∈ Z(fc) is a singular point. Combining (24),(25), we have that 0 is a root of fc,x∗,v
(resp. fc,x∗,w) of multiplicity at least two.

The condition that Hv,a,Hv,b (resp. Hw,a′ ,Hw,b′) are strict enclosing hyperplanes of A+

(resp. A−) implies that both exponential sums have at most two sign changes in their coefficient
sequence. Since Descartes’ rule of signs is valid for polynomials with real exponents [35], one
can extend the result to exponential sums. Using Descartes’ rule of signs, it follows that the
multiplicity of 0 is exactly two for both fc,x∗,v and fc,x∗,w . Furthermore,

fc,x∗,v(s) < 0 and fc,x∗,w(s) > 0 for all s ̸= 0.

So 0 is a local maximum of fc,x∗,v and a local minimum of fc,x∗,w. Therefore

∂2fc
∂x21

(x) =
∂2fc,x∗,v
∂s2

(0) < 0,
∂2fc
∂x22

(x) =
∂2fc,x∗,w
∂s2

(0) > 0,

which implies that

det(Hessfc(x
∗)) =

∂2fc
∂x21

(x∗)
∂2fc
∂x22

(x∗)−
( ∂2fc
∂x1∂x2

(x∗)
)2

< 0.

Thus, Hessfc(x
∗) is invertible and must have a negative and a positive eigenvalue.

If A contains 5 exponent vectors, then the codimension of A is 2. Since all singular points of
Z(fc) are non-degenerate for all c ∈ RA

ε by (i), part (ii) follows from Theorem 4.9. □
The next condition on the signed support that precludes the existence of degenerate singular

points is valid for every number of variables n. Specifically, we require that there is only one
exponent vector with negative sign.

Theorem 4.11. Let (A, ε) be a full-dimensional signed support with Gale dual B such that
#A− = 1. Then we have

(i) for all c ∈ RA
ε and x ∈ Sing(fc) the Hessian matrix Hessfc(x) has only positive eigenval-

ues.
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3 2 1 1 2 3 4 5

2

1

1

2

3

4

5

v= (1, 0)

Hw, 1.2
w

=
(0.8, 1)

H+
v, 0 ∩H−

v, 3

Figure 4. An illustration of strict enclosing hyperplanes. Consider the signed exponent

vectors A+ =
{ [0

0

]
,

[
3
0

]
,

[
0
3

]}
(depicted by red circles) and A− =

{ [−1
2

]
,

[
4
−2

]}

(depicted by blue dots). The hyperplanes Hv,3,Hv,0 with v = (1, 0) are strict enclosing

hyperplanes of A+. The negative exponent vectors A− also have a pair of strict enclosing

hyperplanes given by Hw,1.2,Hw,1.2 with w = (0.8, 1).

(ii) If (A, ε) has codimension 2, then the complement of the signed reduced A-discriminant
Γε(A,B) consists of at most two connected components.

Proof. Write A+ = {α1, . . . , αn+k} and A− = {αn+k+1}. Using Proposition 2.3, we assume
without loss of generality that αn+k+1 = 0. Under this assumption, the Hessian of fc at x ∈
Sing(fc) is given by

Hessfc(x) =

n+k∑

i=1

(eαi·xci)αi · α⊤
i = Ãdiag

(
(eαi·xci)i=1,...,n+k)

)
Ã⊤,(26)

where

Ã =
[
α1 . . . αn+k

]
∈ Rn×(n+k).

Since the affine hull of α1, . . . , αn+k+1 has dimension n and αn+k+1 = 0, it follows that rk(Ã) = n.
Since eαi·xci is positive for i = 1, . . . , n+ k, their square root is a real number. This gives

Hessfc(x) =
(
Ãdiag

(
(
√
eαi·xci)i=1,...,n+k)

)(
Ãdiag

(
(
√
eαi·xci)i=1,...,n+k)

))⊤

and as Ã has full rank

rk
(
Ãdiag

(
(eαi·xci)i=1,...,n+k)

)
Ã⊤) = rk(Ãdiag

(
(
√
eαi·xci)i=1,...,n+k)

)
) = rk Ã = n.

Thus, Hessfc(x) is positive semi-definite and of full rank, which implies that all of its eigenvalues
are positive. This shows (i).

Since all singular points of Z(fc) are non-degenerate for all c ∈ RA
ε , part (ii) follows from

Theorem 4.9. □

Our final condition on the signed support, precluding the existence of degenerate singular
points in the hypersurfaces Z(fc), requires the positive and negative exponent vectors to be
separated by a simplex, as follows. We recall the definition of the negative vertex cone of a
simplex from [9, Section 4]. For an n-simplex P ⊆ Rn with vertices µ0, . . . , µn, the negative
vertex cone at vertex µk equals

P−,k := µk + Cone
(
µk − µ0, . . . , µk − µn

)
.

We write P− for the union of P−,0, . . . , P−n. We refer to Figure 5 for such a simplex and its
negative vertex cones in the plane.
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3 2 1 1 2 3 4 5 6

3

2

1

1

2

3

4

5

6

P

µ0

µ1

µ2

P−, 0 P−, 1

P−, 2

Figure 5. A simplex P = Conv((0, 0), (3, 0), (0, 3)) separating the signed ex-

ponent vectors A+ =
{ [0

0

]
,

[
0
3

]
,

[
1
1

] }
(marked by red circles) and A− =

{ [−1
5

]
,

[
5
−1

]
,

[
−1
−1

]
,

[
−2
0

] }
(marked by blue dots).

Theorem 4.12. Let P ⊆ Rn be an n-simplex and let (A, ε) be a full-dimensional signed support
in Rn with Gale dual matrix B such that A+ ⊆ P , A− ⊆ P−, and A∩ int

(
P ∪ P−) ̸= ∅. Then

(i) for all c ∈ RA
ε and all singular points x ∈ Sing(fc) the eigenvalues of Hessfc(x) are

negative.
(ii) If A has codimension 2, then the complement of the signed reduced A-discriminant

Γε(A,B) consists of at most two connected components.

Proof. Note that the negative vertex cones are preserved under affine transformation of P , see
e.g. [9, Lemma 4.5]. Thus by Proposition 2.3, we can assume without loss of generality that
P = Conv(0, e1, . . . , en).

Denote Exp: Rn → Rn>0 and Log : Rn>0 → Rn the coordinate-wise exponential and logarithm
maps. From [24, Theorem 7], it follows that the Hessian of the function

fc ◦ Log : Rn>0 → R, y 7→
n+k+1∑

i=1

ciy
αi

is negative definite for all y ∈ Rn>0. If x ∈ Rn is a singular point of fc, then from [28, Corollary
1] it follows that

Hessfc(x) = Hessfc◦Log ◦Exp(x) =
(
JExp(x)

)⊤
Hessfc◦Log(Exp(x))JExp(x).

Thus, all the eigenvalues of Hessfc(x) are negative by Sylvester’s law of inertia [25, Chapter 7].

In particular, all singular points of Z(fc) are non-degenerate for all c ∈ RA
ε . Part (ii) follows

from Theorem 4.9. □
Using Theorem 4.11 and Theorem 4.12, we give conditions on the signed support (A, ε) such

that all possible isotopy types of Z(fc), c ∈ RA
ε are given by some signed tropical hypersurface

(cf. Theorem 2.2).

Corollary 4.13. Let (A, ε) be a full-dimensional signed support of codimension 2 with Gale
dual B such that either #A− = 1 or A+ and A− are separated by a simplex as in Theorem 4.12.
If for each proper face F ⊊ Conv(A) the restricted signed support (AF , εF ) has a non-trivial
separating hyperplane, then for each smooth hypersurface Z(fc) with c ∈ RA

ε there exists h ∈ RA

such that the signed tropical hypersurface Tropε(A, h) and Z(fc) have the same isotopy type.
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Proof. In both cases, the complement of Γε(A,B) has at most two connected components by
Theorem 4.11 or Theorem 4.12. Since (AF , εF ) has a non-trivial separating hyperplane for every
proper face F ⊊ Conv(A), we have ∇AF ,εF = ∅ by Theorem 3.3. From Theorem 2.8 follows that

the hypersurfaces Z(fc) with c ∈ RA
ε have at most two different isotopy types.

First, we focus on the case #A− = 1. Assume with out loss of generality that A− = {αn+3}.
If αn+3 is contained in the boundary of Conv(A), then there exist a hyperplane Hv,a ⊆ Rn such
that αn+3 ∈ Hv,a and A ⊆ H+

v,a (cf. [19, Corollary 2.5]). Thus (A, ε) has a non-trivial separating

hyperplane, which implies that all Z(fc) with c ∈ RA
ε have the same isotopy type by Theorem

3.5.
If αn+3 ∈ int(Conv(A)), then choose a generic h ∈ RA ∼= Rn+3 such that hn+3 > hi for

i = 1, . . . , n+ 2. By construction, we have Tropε(A, h) ̸= ∅ and Tropε(A,−h) = ∅. By Theorem
2.2, there exist c1, c2 ∈ RA

ε such that Z(fc1) and Z(fc2) are isotopic to Tropε(A, h) and to
Tropε(A,−h) respectively. Since the number of possible isotopy types is at most two, it follows
that the possible isotopy types are given by Tropε(A, h) and Tropε(A,−h).

Next, we consider the case when A+ and A− are separated by a simplex P ⊆ Rn. If one of
the negative simplex cones P−,0, . . . , P−,n does not contain any positive exponent vector, then
(A, ε) has a non-trivial separating hyperplane and all Z(fc) with c ∈ RA

ε have the same isotopy
type by Theorem 3.5. If P−,i ∩ A+ ̸= ∅ for each i = 0, . . . , n, then a similar argument as above
shows that there exists two signed tropical hypersurfaces wich are not isotopic to each other.
This concludes the proof. □

5. Bivariate 5-nomials

For bivariate 5-nomials, the signed reduced A-discriminant has at most 2 critical points by
Lemma 4.2. If there is only one critical point, then Rk \ Γε(A,B) has a simple structure, it has
at most two connected components, which are unbounded (cf. Proposition 4.6). In this section,
we give a complete description of the geometry of the signed support of a bivariate 5-nomial
whose signed reduced A-discriminant has two critical points. In our experiments, if the signed
reduced A-discriminant had two critical points, then its complement had a bounded chamber.
We conjecture that this is always true, however we do not have a proof of this statement nor a
counter example.

Conjecture 5.1. Let (A, ε) be the signed support of a bivariate 5-nomial and let

ξ̄B,ε : {µ ∈ R | sign(B

[
µ
1

]
) = ε} → R2

be the parametrization map of Γε(A,B) as defined in (11). If ξ̄B,ε has two critical points, then
the complement of Γε(A,B) has a bounded connected component.

Given a 2-simplex P = Conv(µ0, µ1, µ2), denote by Hv0,d0 ,Hv1,d1 ,Hv2,d2 the supporting hy-
perplanes of the facets of P . We choose these hyperplanes such that

P = H+
v0,d0

∩H+
v1,d1

∩H+
v2,d2

and µi /∈ Hvi,di for each i = 0, 1, 2. The complement of the union of the hyperplanesHv0,d0 ,Hv1,d1 ,Hv2,d2
has 7 chambers. One of these chambers is the simplex P . Three other chambers are the negative
vertex cones P−,0, P−,1, P−,2, as introduced in Section 4.3. For these chambers we have

P−,i =

2⋂

j=0,j ̸=i
H−
vj ,dj
∩H+

vi,di
, for i = 0, 1, 2.(27)

The three other chambers in the hyperplane arrangment can be written as

P+,i =

2⋂

j=0,j ̸=i
H+
vj ,dj
∩H−

vi,di
, for i = 0, 1, 2.(28)
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For i ̸= j ∈ {0, 1, 2}, we define the subset of P+,i

P+,i,j :=
2⋂

j=0,j ̸=i
H+
vj ,dj
∩H−

vi,di
∩H−

vj ,Dj
,(29)

where Dj := vj · µj > dj . For an illustration of these chambers, we refer to Figure 6.
In the following lemmata, we focus on the special case when P is the standard 2-simplex

∆2 = Conv((0, 0)⊤, (1, 0)⊤, (0, 1)⊤) and

A+ =
{[

0
0

]
,

[
1
0

]
,

[
0
1

]}
, A− =

{[
x1
y1

]
,

[
x2
y2

]}
.(30)

Afterward we extend the results to the general case in Theorem 5.5. Choose a Gale dual matrix
corresponding to the exponent vectors in (30) as

B =




1− x1 − y1 1− x2 − y2
x1 x2
y1 y2
−1 0
0 −1



.(31)

With that choice of the Gale dual matrix, the polynomial from (19) is a quadratic polynomial
qB(t) := at2 + bt+ c, where

(32)

a := −x1y1 (1− x1 − y1) ,
b := −x21y22 + 2x1x2y1y2 − x22y21 + x21y2 + y22x1 + x22y1 + y21x2 − x1y2 − x2y1,
c := −x2y2 (1− x2 − y2) .

A point t ∈ R is a critical point of ξ̄B,ε, ε = (1, 1, 1,−1 − 1) if and only if qB(t) = 0 and it
satisfies the inequalities:

(33) (1− x1 − y1)t+ 1− x2 − y2 > 0, x1t+ x2 > 0, y1t+ y2 > 0, t > 0.

Lemma 5.2. Let A+,A− be the set of exponent vectors as defined in (30) and let B the corre-
sponding Gale dual matrix from (31). If

(i) α4 ∈ ∆2 and α5 ∈ ∆+,i
2 for some i ∈ {0, 1, 2}, or

(ii) α4 ∈ ∆−,i
2 and α5 ∈ ∆+,i

2 for some i ∈ {0, 1, 2},
then ξ̄B,ε has at most one critical point.

Proof. Let a, c denote the coefficients of qB as in (32). Both in case (i) and (ii), we have
a ≤ 0, c ≥ 0, which implies that qB has at most one sign change in its coefficient sequence.
From Descartes’ rule of signs, it follows that qB has at most 1 positive real root. By (33), every
critical point of ξ̄B,ε is a positive root of qB. Therefore, ξ̄B,ε has at most one critical point. □
Lemma 5.3. Let A+,A− be the set of exponent vectors as defined in (30) and let B the cor-

responding Gale dual matrix from (31). If α4 ∈ int(∆2) and α5 ∈ int(∆−,0
2 ), then ξ̄B,ε has one

critical point.

Proof. The inequalities in (33) is equivalent to M := max{−x2x1
, −y2y1 } < t. Note that M > 0,

The number of critical points of ξ̄B,ε is the same as the number of roots of qB in the interval
(M,∞).

Let a, c denote the coefficients of qB as in (32). Under the assumption of the lemma, we have
a < 0 and c < 0. Thus, qB has 0 or 2 sign changes in its coefficient sequence. By Descartes’
rule of signs qB has at most two positive roots. Moreover, if qB(M) > 0, then qB has exactly
one root in the interval (M,∞).

Evaluating qB at −x2
x1

or at −y2
y1

, depending which one is larger, we used the Maple function

IsEmpty [23] and the Mathematica function Reduce [16], to verify that qB(M) > 0. Thus, qB
has exactly one root in the interval (M,∞), which concludes the proof. □



22 WEIXUN DENG, J. MAURICE ROJAS, AND MÁTÉ L. TELEK

Lemma 5.4. Let A+,A− be the set of exponent vectors as defined in (30), let B the corre-

sponding Gale dual matrix from (31) and let a, b, c defined in (32). Assume α4 ∈ int(∆+,1
n )

and α5 ∈ int(∆+,2
n ). The map ξ̄B,ε has two critical points if and only if α4 ∈ int(P+,1,2) and

α5 ∈ int(P+,2,1) and the coordinates of α4 and α5 satisfy the following inequalities:

(34)

b2 − 4ac > 0

b2 − 4ac < (2x2y1(1− x1 − y1) + b)2, 0 < 2x2y1(1− x1 − y1) + b

b2 − 4ac < (2x1y2(1− x1 − y1) + b)2, 0 > 2x1y2(1− x1 − y1) + b.

Proof. If relint(Conv({α4, α5}) ∩ relint(∆2) = ∅, then A+ and A− can be separated by an
affine hyperplane [15, Section 2.2, Theorem 2] and therefore Γε(A,B) = ∅ by Theorem 3.3. In
particular, Γε(A,B) does not have any critical point.

If relint(P )∩relint(Q) ̸= ∅, then there exists a pair of strict enclosing hyperplanes of A−,which

are parallel to the affine hull of α4 and α5. If additionally α5 ∈ int(∆+,2
n ) \ int(∆+,2,1

n ), then by
perturbing the hyperplanes He1,0,He1,1 we get strict enclosing hyperplanes of A+. Thus, from
Proposition 4.8 and Theorem 4.10 it follows that ξ̄B,ε does not have any critical point.

A similar argument shows that ξ̄B,ε does not have critical points if α5 ∈ int(∆+,1
n )\int(∆+,1,2

n ).
This shows that to get a critical point of ξ̄B,ε the negative exponent vectors must satisfy α4 ∈
int(∆+,1,2

n ) and α5 ∈ int(∆+,2,1
n ), which is equivalent to

x1 < 0, 0 < y1 < 1, 1− x1 − y1 > 0,

0 < x2 < 1, y2 < 0, 1− x2 − y2 > 0.

Assuming these inequalities are satisfied, the inequality y1t+y2 > 0 in (33) implies t > −y2
y1

> 0,

and t > 0 implies (1 − x1 − y1)t + 1 − x2 − y2 > 0. Thus, the first and the last inequalities in
(33) are redundant.

The roots of qB are given by

t1 = −b+
√
b2−4ac
2a , t2 = −b−

√
b2−4ac
2a .

An easy computation shows that t1 ̸= t2 and both satisfy the second and the third inequality in
(33) if and only if

b2 − 4ac > 0

b2 − 4ac < (2x2y1(1− x1 − y1) + b)2, 0 < 2x2y1(1− x1 − y1) + b

b2 − 4ac < (2x1y2(1− x1 − y1) + b)2, 0 > 2x1y2(1− x1 − y1) + b.

This concludes the proof. □

Using Lemma 5.2, Lemma 5.3, and Lemma 5.4, we characterize the signed support of a
bivariate 5-nomial such that signed reduced A-discriminant has two critical points.

Theorem 5.5. Let (A, ε) be the full-dimensional signed support of a bivariate 5-nomial with
Gale dual matrix B ∈ R5×2. The map ξ̄B,ε has two critical points only if #A+ = 3, #A− = 2
and dim Conv(A+) = 2, or #A+ = 2, #A− = 3 and dim Conv(A−) = 2.

Assume that A+ = {α1, α2, α3}, A− = {α4, α5} and P = Conv(A+) has dimension 2. Let
M ∈ R2×2 be an invertible matrix such that M(α2−α1) = e1, M(α3−α1) = e2 and v = −Mα1.
Denote (x1, y1)

⊤ = Mα4+v, (x2, y2)
⊤ = Mα5+v and a, b, c the expressions in x1, y1, x2, y2 from

(32). The map ξ̄B,ε has two critical points if and only if α4 ∈ int(P+,j,i) and α5 ∈ int(P+,i,j)
for i ̸= j ∈ {0, 1, 2} and the coordinates of α4 and α5 satisfy the following inequalities:

(35)

b2 − 4ac > 0

b2 − 4ac < (2x2y1(1− x1 − y1) + b)2, 0 < 2x2y1(1− x1 − y1) + b

b2 − 4ac < (2x1y2(1− x1 − y1) + b)2, 0 > 2x1y2(1− x1 − y1) + b.
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Proof. If all the exponent vectors are positive (resp. negative), then Γε(A,B) = ∅. If #A+ = 1
or #A− = 1, then ξ̄B,ε does not have any critical point by Theorem 4.11 and Proposition 4.8.
Thus, in order to have a critical point of ξ̄B,ε one needs #A+ ≥ 2, #A− ≥ 2.

Write P = Conv(A+) andQ = Conv(A−) and assume dimP = dimQ = 1. Since dim Conv(P∪
Q) = dim Conv(A) = 2, the intersection P ∩ Q is either empty or a point. If relint(P ) ∩
relint(Q) = ∅, then P and Q can be separated by an affine hyperplane [15, Section 2.2, Theorem
2] and therefore Γε(A,B) = ∅ by Theorem 3.3. If relint(P ) ∩ relint(Q) ̸= ∅, then the affine hull
of P (resp. Q) is a strict enclosing hyperplane of A+ (resp. A−). In that case, we use Theorem
4.10 and Proposition 4.8 to conclude that ξ̄B,ε does not have any critical point. This shows the
first part of the theorem.

In the rest of the proof, we assume A+ = {α1, α2, α3}, A− = {α4, α5} and dimP = 2.

Choose the order of α1, α2, α3 so that det

[
1 1 1
α1 α2 α3

]
> 0. Then there exists an invertible

matrix M ∈ R2×2 with positive determinant such that M(α2 − α1) = e1 and M(α3 − α1) = e2.
Let v := −Mα1. By construction, the affine linear map

L : R2 → R2, a 7→Ma+ v,

satisfies L(α1) = 0, L(α2) = e1, L(α3) = e2 and L(P ) = ∆2. By Proposition 2.3, we assume
without loss of generality that

α1 =

[
0
0

]
, α2 =

[
1
0

]
, α3 =

[
0
1

]
, α4 =

[
x1
y1

]
, α5 =

[
x2
y2

]
,

and choose the Gale dual matrix B as in (31).
If α4, α5 are separated from ∆2 by an affine hyperplane, then Γε(A,B) = ∅ by Theorem 3.3.

If α4, α5 ∈ int(∆2), then ξ̄B,ε does not have any critical point by Theorem 4.12 and Proposition
4.8. If α4 (resp. α5) lies on a supporting hyperplane of a facet of P , then a = 0 (resp. c = 0).
From this follows that qB has at most two monomial terms, so qB has at most one positive root.
Thus, ξ̄B,ε has at most one critical point.

In the following, we investigate the remaining cases:

(I) α4 ∈ int(∆2) and α5 ∈ int(∆+,i
2 ) for some i ∈ {0, 1, 2}.

(II) α4 ∈ int(∆−,i
2 ) and α5 ∈ int(∆+,i

2 ) for some i ∈ {0, 1, 2}.
(III) α4 ∈ int(∆2) and α5 ∈ int(∆−,i

2 ) for some i ∈ {0, 1, 2}.
(IV) α4 ∈ int(∆+,i

2 ) and α5 ∈ int(∆+,j
2 ) for some i ̸= j ∈ {0, 1, 2}.

For (I) and (II), Lemma 5.2 implies that ξ̄B,ε has at most one critical point. In case (III), by

rotating the exponent vectors we assume without loss of generality that α5 ∈ int(∆−,0
2 ). Now,

it follows from Lemma 5.3 that ξ̄B,ε has one critical point. Under the assumption in (IV), we

rotate again the exponent vectors to achieve α4 ∈ int(∆+,1
2 ) and α5 ∈ int(∆+,2

2 ). This rotation
does not change the number of critical points of ξ̄B,ε by Corollary 2.4. We use Lemma 5.4 to
conclude that ξ̄B,ε has two critical points if and only if the inequalities in (35) are satisfied. □

Remark 5.6. Consider the signed support

A+ =
{[

0
0

]
,

[
1
0

]
,

[
0
1

]}
, A− =

{[
x1
y1

]
,

[
x2
y2

]}
.

Using the Mathematica function Reduce [16], we verified that for every fixed (x1, y1) ∈ int(∆+,1,2
2 )

and 0 < x2 < 1, there always exists y2 < 0 satisfying the inequalities in (35). With other words,

for given (x1, y1) ∈ int(∆+,1,2
2 ) there exists a (x2, y2) ∈ int(∆+,2,1

2 ) such that ξ̄B,ε has two critical
points.

In Figure 6, we depicted the region of (x2, y2)’s satisfying the inequalities in (35) for (x1, y1) =
(−0.1, 0.3).
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1 1 2

1

1

2

P

µ0

µ1

µ2

P−, 0

P+, 0

P−, 1

P+, 1

P+, 1, 2

P−, 2

P+, 2P+, 2, 1

Figure 6. An illustration of the chambers as defined in (27),(28),(29) for P =

Conv((0, 0), (1, 0), (0, 1)). The red circles denote positive exponent vectors A+ =
{ [0

0

]
,

[
1
0

]
,

[
0
1

]}
, the blue dot denote a negative exponent vector

[
−0.1
0.3

]
. The blue

region contains all negative exponent vectors

[
x2
y2

]
∈ P+,2,1 such that ξ̄B,ε has two critical points.
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