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Abstract

Abstract (English)
This dissertation contains an assortment of articles pertaining to mathematical finance
and computational methods. A total of four articles are included, covering a wide range
of topics detailed below.

The first article covers various methods for the approximation of the exponential func-
tion with relevant adjustments specific to implementations using fixed-point numbers,
which are of particular relevance in decentralized finance applications, where (the more
commonly-used) floating-point numbers are typically not available.

The second article demonstrates the utilization of dual numbers in the diffusion operator
integral variance reduction method proposed by Heath and Platen. Using dual numbers
for exact differentiation allows the method to be extended to complex option pricing
problems that have existing solutions in the Black-Scholes model without the need for
error-prone derivations of analytical sensitivities. The method is applied to the pricing of
discretely-monitored down-and-out call barrier options and floating-strike lookback put
options.

The third article introduces a generalization of a scalable reward distribution method
frequently used in practical implementations of smart contracts. This generalization
allows for the constant-time distribution of an arbitrary claims process among accounts
according to their (changing) relative shares. Special cases covering deposit-backed claims
and delayed allocation are covered, along with a formalization of blockchains, smart
contracts and associated filtrations that allows for an interpretation consistent with the
presented continuous-time setup.

The fourth and final article presents a method for identifying the "most equitable" dis-
tribution of an integer budget among integer allocations when constraints apply to in-
dividual allocations. In a first step, a table characterization of real-valued solutions is
constructed, which can be cached (stored) for future use. A second step then retrieves
integer allocations that solve the original problem from this characterization. An example
application to the allocation of space in graphical user interfaces is then shown.
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Abstract

Abstract (Danish)
Denne afhandling indeholder en række artikler indenfor matematisk finansiering og com-
putional metoder. Fire artikler er inkluderet og opsummeret nedenfor.

Den første artikel redegører for adskillige metoder til approksimering af eksponential
funktionen med justeringer for fixed-point tal, hvilket har særlig relevans for anvendelser
inden for decentraliseret finansiering, hvor (de mere hyppigt anvendte) floating-point tal
typisk ikke er tilgængelige.

Den anden artikel demonstrerer brugen af dual tal i diffusions operator integral vari-
ans reduktions metoden introduceret af Heath og Platen. Brugen af dual tal til eksakt
differentiering udvider metoden til options pristfastsættelses problemer med eksisterende
løsninger i Black-Scholes modellen uden at kræve analytiske løsninger til prisfølsomheder.
Metoden er vist i prisfastsættelsen af diskret-overvågede down-and-out call barrier op-
tioner og floating-strike lookback put optioner.

Den tredje artikel introducerer en generalisering af en skalerbar belønning distribuerings
metode ofte anvendt i praktiske implementeringer af smart kontrakter. Denne generalis-
ering kan anvendes til distribuering af en viklårlig claims proces blandt kontoer i forhold
til deres (ændrende) relative andele. Særtilfælde med claims opbakket af depoter og
forsinket allokering af claims er beskrevet, samt en formalisering af blockchains, smart
kontrakter og associerede filtreringer, hvilket tillader en fortolkning der er forenelig med
det præsenterede setup i kontinuert tid.

Den fjerde og sidste artikel præsenterer en metode til identificering af den "mest ret-
færdige" distribuering af et heltals budget blandt heltal allokeringer med begrænsninger
på individuelle allokeringer. En tabel der karakteriserer reale løsninger er konstrueret i et
første trin. I et andet trin bliver heltal løsninger afledt fra denne tabel, hvilket løser det
oprindelige heltal allokerings problem. Et eksempel med anvendelse inden for allokering
af plads i grafiske brugerflader er vist.

3



Approximation of the exponential function
with fixed-point numbers

Johan Auster∗

Abstract

This article presents a non-technical overview of popular methods
for approximation of the exponential function with notes and adjust-
ments relevant for fixed-point number implementations. A preliminary
discussion of fixed-point numbers is included, after which Taylor poly-
nomials, Padé approximations, range reduction with bit-shifting and
minimax methods are covered and compared. A practical example of
configuring a fixed-point implementation based on accuracy require-
ments for the value of a deposit after interest rate compounding is then
provided, followed by concluding remarks.

Keywords: Approximation theory, exponential function, fixed-point arith-
metic, Taylor polynomial, Padé approximation, range reduction, minimax
approximation.

∗Department of Mathematical Sciences, University of Copenhagen, Denmark. E-mail:
johan.auster@math.ku.dk.
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1 Introduction
This paper provides a survey of common approximation methods relevant to the im-
plementation of exponential function approximators. The focus will be on usage with
fixed-point numbers, with relevant adjustments and discussion of how these implementa-
tions would differ from "standard" floating-point implementations.

A balance between brevity and providing sufficient insights for developers to comfortably
apply the methods covered is strived for. The aim of the article is to provide a prac-
tical perspective with an emphasis on points relevant to smart contract development in
particular; hence the focus on fixed-point numbers and count of operations (due to the
per-operation transaction costs on blockchains).

Approximation theory is a deep topic with rich and rigorous underlying results, remaining
an active area of research even after centuries of developments. Given the priority on
practice and the amount of methods covered, the formal theory and results are, broadly
speaking, left out. For a more extensive theoretical treatment of general approximation
theory, we refer to textbooks such as the one by Powell (1981).

Section 2 provides a preliminary introduction to fixed-point arithmetic and how these
representations can be used to emulate non-integer numbers in purely-integer computa-
tional environments. Section 3 compares multiple methods commonly used in practice for
approximation of the exponential functions, starting with Taylor polynomials, rational
Padé approximations, range reduction and finally minimax methods. Section 4 demon-
strates the calibration of a fixed-point approximator based on practical requirements.
Section 5 provides concluding remarks.

2 Fixed-point numbers
This section provides a brief preliminary discussion of fixed-point numbers and their
properties, as the focus of the article will be on implementation for this representation
of numbers.1 Beyond this section, fixed-point operations will be assumed implicitly (e.g.
in appropriate rescaling and floored division), though points regarding these specifics as
they relate to the implementation of a given approximation method under consideration
will still be discussed. More details on fixed-point arithmetic can be found in e.g. the
report by Yates (2020) and all fixed-point implementations used in this article can be
found in the open-sourced github repository referenced in Section 3.1.

A fixed-point number is a digital representation of a real number x consisting of an
internal integer representation x̄ ∈ N representing counts of units of some fixed scaling
factor S ∈ R. For example, the integer x̄ = 51 with scaling factor S = 1/2π would
represent the number x̄ · S = 51/2π.

One of the most common configurations of fixed-point numbers is base-10 scaling:

S10(d) :=
1

10d
, d ∈ Z \ {0} , (2.1)

which represents decimal numbers for a fixed number of digits d > 0, or alternatively:
truncation of integer values with d < 0.

1While similar in name, fixed-point numbers is unrelated to the concept of fixed points (of e.g. a
function), which refers to points that are unchanged after a transformation.

1
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Another common configuration is binary scaling:

S2(d) :=
1

2d
, d ∈ Z \ {0} , (2.2)

which is a natural choice given the binary representation of integers in computing. For
the remainder of the article, we always assume base-10 scaling (2.1) with d > 0.

In practice, scaling factors are typically treated as implicit, with the expected scaling
factor of inputs being documented in source code where relevant. Fixed-point numbers
are thereby not reliant on anything other than the availability of integers, since their
interpretation as units of a given scaling factor does not require an explicit inclusion in
the underlying digital representation.

For any two fixed-point numbers x1, x2 with scaling factors S1, S2, one can convert x1 to
the same representation as x2 by multiplication of the (floored) ratio of scaling factors
⌊(x̄1·S2)/S1⌋, which may be subject to rounding and loss of precision depending on the
scaling factors involved.

Assuming the same scaling factor S for two fixed-point numbers x1, x2, addition and sub-
traction is straight-forward: the operations can be directly applied to the internal integers
and the result remains a fixed-point number of the same scaling factor. Multiplication-
and division by non-fixed-point integers similarly requires no rescaling,2 though integer
division may be subject to truncation errors when the numerator is not divisible by the
divisor.

Multiplication and division between two fixed-point numbers (S ̸= 1) however leads to
scaling issues, since multiplying e.g. x̄1 = 10 and x̄2 = 50 both with scaling factor
S = 1/10 yields x̄1 · x̄2 = 500, which would represent 50.0 rather than 5.0. More generally,
the product of fixed-point numbers will be in the form of a fixed-point number with scaling
factor equal to the product of the scaling factors of the multiplicants, thereby requiring
rescaling consistent with the desired representation, e.g. ⌊(500·S2)/S⌋ = ⌊500/10⌋ = 50.

Conversely, "naive" division of two fixed-point numbers can lead to severe truncation
error due to the implicit flooring of integer division, as the result of ⌊n1/n2⌋ will have a
scaling factor of ⌊S1/S2⌋. In practice one often circumvents this by preemptively rescaling
the numerator to S1 · S2 representation, which leads to a result with scaling factor S1 of
the numerator before rescaling.

Fixed-point numbers are especially suited for domains with known units and ranges of
values, where scaling factors can be chosen according to the precision required in the
relevant context. For example, accounting software configured for USD may make use
of a decimal scaling factor S = 1/100 such that x̄ ∈ N0 will represent dollar amounts in
cents. In contrast, the more widely-used representation of real-valued numbers in modern
computing are floating-point numbers, which represent numbers as multiples m of a fixed
base b raised to some (variable) exponent c, similar to scientific notation.

Advantages of fixed-point numbers include their relative simplicity in comparison to
floating-point numbers, low computational cost of operations and ability to exactly rep-
resent (integer counts) of real numbers, thereby not being subject to the same error prop-
agation issues as occur in floating-point arithmetic. However, these advantages come at

2Equivalently one can think of "non-fixed-point integers" as fixed-point integers with S = 1, in which
case the rescaling covered in the next paragraph corresponds to division by 1 and can thus be skipped.
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the cost of some flexibility, as the appropriate scaling factor can vary wildly depending
on the context and carries with it a trade-off between precision in the representation and
the range of numbers that can be represented within the number of bits available.

While fixed-point numbers are still utilized in certain low-compute environments (such
as field-programmable gate arrays) and accounting (for exact representation of dollar
amounts), floating-point numbers are the norm in modern general-purpose computing.
With the popularization of blockchains and decentralized finance applications however,
the domain of fixed-point numbers has expanded, as e.g. computation of continuous inter-
est rate compounding requires (high-precision) fixed-number approximation algorithms
that internally utilize purely-integer representations of currency amounts.

The high-bit integer environment with serial execution of instructions across multiple
validator nodes in blockchain Virtual Machines (VMs) stands in stark contrast to the
computational methods often seen in e.g. machine learning applications, which generally
makes use of highly-parallel low-bit floating-point computations executed on Graphics
Processing Units (GPUs) or even more specialized hardware. Methods well-suited for
one computational environment may be poorly suited for the other.

With the expensive nature of on-chain operations,3 there is a renewed importance of
developer familiarity with low-operation approximation methods that are often taken for
granted in the standard libraries of modern programming languages. Although many
approximation methods have straight-forward analogues for fixed-point numbers (as one
can simply appropriately rescale after every operation that requires it), the fixed-point
paradigm can lead to different formulations, or even entire methods, being more suitable
than the approaches used for the same problems in floating-point arithmetic.4

Even with thoroughly tested implementations available, the nature of fixed-point numbers
puts far greater responsibility on developers to configure the precision of the fixed-number
representations in line with expected input ranges to ensure stable and valid results for the
specific context. Implementing and validating such numerical approximation algorithms
and configuring these appropriately can be a large undertaking for developers coming from
modern general-purpose languages without previous experience in numerical methods.

The above partially motivates the subsequent coverage of approximation methods that
are relatively straight-forward to implement across any architecture that supports basic
integer operations. After discussing common methods for approximation and adjustments
for fixed-point implementations in Section 3, a practical example of configuring a fixed-
point approximation method is given in Section 4.

3Relative to equivalent general-purpose off-chain computation.
4As one example of this point, modern computational architectures often make heavy use of Single

Instruction, Multiple Data (SIMD) instructions that execute multiple operations in a single instruction,
making an assessment of efficiency based solely on a simple count of operations somewhat misleading. In
contrast, blockchain VMs tend to utilize simple serial instruction sets for arithmetic with fixed transaction
costs assigned on a per-operation basis.

3
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3 Approximation of the exponential function

3.1 Implementation details

All approximators presented in the following sections are implemented in Python 3.12
for fixed-point integer inputs and utilize d = 20 digits unless otherwise stated. For
estimation of relative errors, approximations are compared against the output of the
exponential function provided in the arbitrary-precision mpmath library targeting the
decimal precision matching the number of digits in the fixed-point representation.

Integer division is assumed to correspond to floored division as suggested by Knuth (1997),
which matches the implementation in Python, the Ethereum Virtual Machine (EVM)
(Buterin, 2013) and many other programming environments. Adjustments may be re-
quired when implementing the methods outlined in the following sections in environments
which do not use floored division by default.

Variations or reformulations motivated by the fixed-point setting are made note of. Oth-
erwise, the implementation specifics of fixed-point numbers are treated as implicit, in-
cluding e.g. rescaling of constants and rescaling before division / after multiplication
between two fixed-point numbers, as outlined in Section 2.

For any further details on the implementation, the full source code is made available
online on https://github.com/austerj/exponential-approximation, which includes
a full set of unit tests and reproduction of all figures and results in the article.

3.2 Taylor polynomial approximation

The Taylor series (Taylor, 1717) of an infinitely differentiable function f : U → R for an
open subset U ⊆ R is the well-known power series expansion

∞∑
i=0

f (i)(a)

i!
(x− a)i (3.1)

for x, a ∈ U with f (i) denoting the i’th derivative of f . When f is equal to its Taylor
series, it is said to be analytic. This characterization of a sufficiently regular function
as an infinite sum of terms that depend only on evaluations of the derivatives of f , a
factorial i! and an integer power of x− a is a fundamental result in analysis.

One is rarely able to evaluate (3.1) in full;5 fortunately, Taylor’s theorem (Kudryavtsev,
2013) shows that summation of a finite number N ∈ N of the terms in (3.1), known as
the Taylor polynomial of f :

PN(x) :=
N∑
i=0

f (i)(a)

i!
(x− a)i (3.2)

acts an approximator of the original function f with the remainder term

f(x)− PN(x) = o
(
|x− a|N

)
(3.3)

5The notable exception being when f is itself a polynomial, in which case the derivatives eventually
become constants equal zero on the full domain, resulting in a finite number of non-zero terms.
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as a → x, i.e. the approximation error of the order-N Taylor polynomial of f is bounded
by |x− a|N in the neighbourhood of a.

While (3.3) rapidly goes to zero as x approaches a (in particular for large N), this says
nothing about the errors outside the neighbourhood of a. This already hints at one
potential shortcoming of Taylor polynomials, namely that their accuracy may rapidly
deteriorate when used for extrapolation at points x not in the immediate vicinity of a.

Applying the expansion (3.1) to ex around a = 0 yields the remarkably simple expression

ex =
∞∑
i=0

xi

i!
(3.4)

since (ex)(i)(a) = e0 = 1 for all i ∈ {0, 1, . . .}.
When implementing the corresponding order-N Taylor polynomial from (3.4), one can
use that

N∑
i=0

xi

i!
=

N∑
i=0

N !

N !

xi

i!
=

∑N
i=0

N !
i!
xi

N !
(3.5)

and accumulate the numerator via Horner’s scheme (Horner, 1819):

N∑
i=0

N !

i!
xi =

N !

0!
+ x

(
N !

1!
+ x

(
N !

2!
+ . . .+ x

(
N !

(N − 1)!
+

N !

N !
x

)))
(3.6)

followed by a single division by N ! to correct for the integer multiplications.

While Horner’s scheme is optimal in the sense of minimizing multiplications and additions
in the evaluation of a general polynomial (Pan, 1966), the rearrangement in (3.5) does
come at the cost of one additional subsequent division. This reformulation however has
the advantage of avoiding the propagation of errors in fixed-point numbers by circum-
venting the i! integer division in each term, replacing these with integer multiplications
(which do not result in loss of precision).6

The relative errors of Taylor approximations are shown in Figure 1. As suggested by the
previous discussion, errors rapidly increase as x moves away from a = 0, with odd-ordered
approximations even going negative for sufficiently small values of x.

Despite the high regularity of the exponential function, the failure of polynomials to
maintain a high degree of accuracy outside the neighbourhood of a is not at all surprising
upon reflection of the type of function we are approximating: namely, we are trying
to replicate a function with exponential growth / decay by polynomials of finite degrees.
This is bound to eventually fail as x moves sufficiently far away from a in either direction,
as exponential growth will always overtake that of any polynomial - and likewise for
exponential decay, as polynomials will always diverge to ±∞ as x → −∞.

6Since the scheme evaluates polynomials by repeated multiplications, any such truncation errors will
propagate and grow exponentially, although their magnitude will depend on both the orders used in the
Taylor polynomial and the number of digits in the fixed-point representation.
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Figure 1: Relative errors of order-N Taylor approximations.

Despite predating the first digital computer by centuries, Taylor polynomials are often
the starting point of extending the (typically hardware-level) arithmetic operations pro-
vided by a general-purpose computer to the numerical evaluation of a wide range of
mathematical functions, such as trigonometric functions.

In practice, one can often find improvements on Taylor polynomials, whether the aim is
to minimize errors within an interval, replicate certain asymptotic behavior of the target
function (e.g. cyclical functions or functions that converge to a constant), achieve similar
accuracy with fewer operations or some combination of all of these goals. Nevertheless,
Taylor polynomials are often a solid foundation to build upon, both in its underlying the-
ory and as a starting point to guide the choice of a more advanced methods by identifying
which shortcomings are most relevant to a given problem.

One category of methods that often provides substantial improvements are approximators
which make use of a ratio of polynomials. Padé approximation is one such method which,
similar to Taylor polynomials, replicates the behavior of a function in a neighbourhood of
a point; only with a ratio of polynomials of potentially different degrees. The subsequent
section covers this approach further for the exponential function with direct comparison
to Taylor polynomials.

3.3 Padé rational polynomial approximation

The order-[N/M ] Padé approximation (Padé, 1892) with N ∈ N and M ∈ N0 of a
N +M -times differentiable function f : U → R for an open subset U ⊆ R is the ratio of
polynomials

R[N/M ](x) :=

∑N
i=0 c

N
i x

i∑M
i=0 c

M
i xi

(3.7)

with real-valued coefficients cNi , c
M
i ∈ R, which for some fixed a ∈ U satisfies

6
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f (i)(a) = R(i)(a) (3.8)

for all i ∈ {0, 1, . . . , N +M}, i.e. the Padé approximation is a ratio of polynomials whose
value and first N +M derivatives are consistent with those of f at the point a.

When f is transcendental, the coefficients of (3.7) can be found from solving a system
of linear equations (Weisstein, 2023), though algorithms exist to compute the coefficients
of (3.7) in more general cases (Wynn, 1966). Padé approximations are unique when they
exist and can be seen as a generalization of Taylor polynomials (3.2), since the order-[N/0]
Padé approximation will be identical to the order-N Taylor polynomial.

A key difference from Taylor polynomials in the behavior of the rational structure is the
potential presence of poles, i.e. points at which the denominator in (3.7) are zero. The
rational specification also allows for approximations that converge to constants, which is
not possible with a polynomial. In this sense, Padé approximations are "more flexible"
than Taylor polynomials.

While the Padé coefficients are chosen to replicate the features of f only around a singular
point, multi-point extensions of the method exist to find rational functions in the form
of (3.7) that replicate the features discussed above (i.e. poles or specific values) of f
at fixed points or asymptotically (Ismail, 1996). Even still, the choice of N and M
provide additional control over the global behavior of the approximator and, unlike Taylor
polynomials, rational approximations do not necessarily diverge as |x| → ∞.

The Padé coefficients satisfying (3.8) around a = 0 for the exponential function have the
analytical solution (Ehle, 1969):

cNi =
(N +M − i)!N !

(N +M)!i!(N − i)!
, cMi =

(N +M − i)!M !

(N +M)!i!(M − i)!
(−1)i (3.9)

and taking N = M , we get

R[N/N ](x) =

∑N
i=0

(2N−i)!N !
(2N)!i!(N−i)!

xi∑N
i=0

(2N−i)!N !
(2N)!i!(N−i)!

(−x)i
=

(2N)!
N !

(2N)!
N !

∑N
i=0

(2N−i)!N !
(2N)!i!(N−i)!

xi∑N
i=0

(2N−i)!N !
(2N)!i!(N−i)!

(−x)i

=

∑N
i=0

(2N−i)!
i!(N−i)!

xi∑N
i=0

(2N−i)!
i!(N−i)!

(−x)i
=

A(x) +B(x)

A(x)−B(x)

(3.10)

with even- and odd term sums

A :=
N∑
i=0

1{0,2,...}(i)
(2N − i)!

i!(N − i)!
xi, B :=

N∑
i=0

1{1,3,...}(i)
(2N − i)!

i!(N − i)!
xi. (3.11)

Rescaling the coefficients in (3.10) is particularly advantageous for fixed-point represen-
tations as this leads to integer coefficients, thereby avoiding the need for rescaling after
multiplying powers of x by a non-integer (i.e. fixed-point) coefficient. This also saves a
coefficient multiplication, since the highest-order term coefficient

7
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(2N −N)!

N !(N −N)!
=

N !

N !
= 1, (3.12)

while the lower-order term is constant since x0 = 1, thus requiring no multiplication.
In the non-rescaled formulation, this multiplicative identity is "wasted" on the constant
term, which does not require a multiplication in any case.

An additional convenient property for (unsigned) fixed-point numbers is that

R[N/N ](−x) =
1

R[N/N ](x)
=

A(x)−B(x)

A(x) +B(x)
, (3.13)

leading to a straight-forward implementation for the computation of the inverse exponen-
tial function without relying on negative integers or having to invert an approximation for
a positive input, which may require very large intermediary values to maintain accuracy
for high-digit representations due to rescaling, as discussed in Section 2.

Since we have different polynomials in the numerator and denominator, we can no longer
rely on a single evaluation of Horner’s scheme as with the Taylor polynomial. Instead,
the sum computations (3.11) can be implemented with an additional variable for storing
computed values of powers of x, which can then be reused for the subsequent coefficient
multiplication and addition to even / odd sum accumulators initialized to zero.7

Focusing on the N = M case may seem unmotivated at first sight, however there are
several benefits to this choice that, especially when working with fixed-point numbers,
render this the ideal choice in almost all circumstances:

1. The property in (3.12) no longer applies to both the numerator- and denominator
coefficients if N ̸= M , hence an additional multiplication is required.

2. Sharing coefficients saves multiplications, since the same computation of the product
of the coefficient and xi can be reused.

3. As a continuation of the above, the separation into even- and odd term sums in
(3.11) means that any additional order term only needs to be added once (to either A
or B). This also makes underflow less likely for unsigned integers, since subtraction
only happens after A and B have been computed.

4. The multiplication of a d-digit fixed-point number x with e.g. itself (x2 = (x̄·x̄)/10d)
requires an additional division by 10d to rescale the result back to a d-digit repre-
sentation. Even this point alone makes it relatively more "expensive" to go from
[N/N ] to [N/N+1] than to go from [N/N+1] to [N+1/N+1], since the additional
power term is then reused in the numerator.8

For a concrete example of the advantages of N = M configurations, consider the following
approximations:

7For further details on the implementation, see the source code available in the github repository
linked in Section 3.1

8This same point applies to the equivalent-order Taylor polynomial, making these similar in number
of operations required for evaluation to the corresponding [N/N ] Padé approximation.
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R[2/2](x) =
12 + 6x+ x2

12− 6x+ x2
,

R[2/3](x) =
60 + 24x+ 3x2

60− 36x+ 9x2 − x3
,

R[3/3](x) =
120 + 60x+ 12x2 + x3

120− 60x+ 12x2 − x3
,

R[3/4](x) =
840 + 360x+ 60x2 + 4x3

840− 480x+ 120x2 − 16x3 + x4
,

R[4/4](x) =
1680 + 840x+ 180x2 + 20x3 + x4

1680− 840x+ 180x2 − 20x3 + x4
.

(3.14)

Table 1 summarizes the arithmetic operations required for the computation of each of
the approximations in (3.14) for fixed-point numbers when making use of (3.12) and the
separation of terms (3.11) in the [N/N ] approximations.

Notably, the [2/3] approximation is more computationally costly than the [3/3] approx-
imation, requiring one more subtraction and two more multiplications. Even more stark
is the difference between the [3/4] and [4/4] approximation, with the [3/4] approximation
requiring one more addition, one more subtraction and three more multiplications.

+ − · /

R[2/2] 2 1 3 2
R[2/3] 3 2 7 3
R[3/3] 3 1 5 3
R[3/4] 5 2 10 4
R[4/4] 4 1 7 4

Table 1: Number of operations in fixed-point Padé approximations assuming reuse
of powers of x after rescaling.

The relative errors of Padé approximations are shown in Figure 2. Unlike the Taylor
polynomials in Figure 1, Padé approximations are no longer bound to diverge in both
directions thanks to the "cancelling" nature of having the same order of terms in both the
numerator and denominator. It is however apparent that the approximations remain local
in nature as relative errors still grow quickly, even overtaking those of Taylor polynomials
to become arbitrarily large near the critical points of odd-ordered approximations (where
the negative highest-power term in the denominator eventually outgrows the positive
terms).

What is perhaps surprising about the Padé approximations is the extent to which they
achieve improvements in accuracy of several orders of magnitude near zero compared to
Taylor approximations of much higher order. As can be seen in Figure 3 visualizing the
maximal relative errors for |x| ≤ (log 2)/2 across order-N Taylor approximations and order-
[N/N ] Padé approximations, achieving comparable accuracies with Taylor polynomials
requires such high orders that there is little reason to prefer Taylor polynomials over Padé
approximations for the exponential function for any given target accuracy.
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Figure 2: Relative errors of order-[N/N ] Padé approximations.
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Figure 3: Maximal relative errors for |x| ≤ (log 2)/2 across order-N Taylor polynomials
and order-[N/N ] Padé approximations.

From the above discussion, the case for order-[N/N ] Padé approximations over Taylor
polynomials and N ̸= M Padé approximations should be clear, at the very least for
local approximations near zero. However, even with the improvements in accuracy, the
approximations still deteriorate rapidly to the point of being practically unusable once
x is sufficiently far from zero. This problem is addressed in the next section via a product
decomposition of the exponential function that replicates the relative errors of a small
region around zero across the entire domain of real-valued inputs.

3.4 Range reduction and bit-shifting

Having established methods for constructing locally-performant approximators in previ-
ous sections, we now exploit properties of the exponential function to achieve accurate
approximations across the entire domain. This method is used in e.g. the implementation
of the exponential function in the Cephes library (Moshier, 1992), and while the earliest
reference to the method (known to the author) appears in an article by Cody and Ralston
(1967) attributing it to Maehly (1960), no digital version of the latter work appears to
be available.
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We first note the identity

ex = 2k2−kex = 2kelog(2
−k)ex = 2kex−k log 2 = 2ker(x,k) (3.15)

holds for all x ∈ R and k ∈ Z with remainder

r(x, k) := x− k log 2. (3.16)

In particular, we can choose

k =

⌊
x

log 2
+

1

2

⌋
=

⌊
x+ 1

2
log 2

log 2

⌋
, (3.17)

the latter identity being useful to avoid rescaling of fixed-point numbers, such that

|r(x, k)| =
∣∣∣∣x−

⌊
x+ 1

2
log 2

log 2

⌋
· log 2

∣∣∣∣
=

∣∣∣∣((x+
log 2

2

)
mod log 2

)
− log 2

2

∣∣∣∣
≤ max

({∣∣∣∣log 2− log 2

2

∣∣∣∣ , ∣∣∣∣0− log 2

2

∣∣∣∣})
=

log 2

2

(3.18)

using 0 ≤ x mod y = x− y ⌊x/y⌋ ≤ y for y > 0.
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Figure 4 shows the product decomposition (3.15) visually with the choice of k given by
(3.17). On segments of length log 2, the 2k term acts as a constant, while er(x,k) is cyclical
across these segments, acting as a corrective factor shifting the 2k constant to the value
of ex. In particular, er(x,k) > 1 when 2k < ex, er(x,k) = 1 when 2k = ex and er(x,k) < 1
when 2k > ex.

The multiplication by 2k, k ∈ Z can be done in a very efficient manner because of the
binary representation of integers digitally. Assuming sufficient bits are available for the
result, "shifting" the bits of the fixed-point integer k times to the left (to multiply by 2k) or
right (to divide by 2k) results in the same output as the more computationally expensive
equialent of computing 2k followed by a general multiplication / division operation.

The above enable us to approximate ex in the following three steps:

1. Find k via (3.17) such that r(x, k) satisfies (3.18).

2. Compute an approximation y ≈ er(x,k).

3. Apply k bit-shifts to y to get y · 2k ≈ ex via (3.15).

This range reduction method effectively restricts the domain of the original exponential
function approximator to a reduced domain centered around zero (where the accuracy is
relatively good). Bit-shifting is then utilized to efficiently transform the reduced-range
approximation to an approximation of the original input by emulating a multiplication
or division by 2k. None of these steps make use of any specific method of approximating
er(x,k), hence this same procedure can be applied to any approximator of the exponential
function. Note however that the range reduction method may lead to discontinuities at
points k/2 log 2, k ∈ Z.

In addition to the increase in accuracy, we avoid the dependency on potentially very large
intermediary values for high-order approximations that could cause overflow - further
extending the domain in which ex can be approximated in practice. Additionally, the
critical points of Padé approximators are no longer an issue, as even the critical point of
2 for the order-[1/1] Padé approximator far exceeds the upper bound 1/2 log 2 ≈ 0.35 of
the reduced domain.

As discussed in Section 3.3, the Padé approximations have considerably lower relative
errors near zero compared to Taylor approximations of the same order, though this does
not necessarily hold when |x| is large; in particular, Padé approximations may even
be undefined. When combined with range reduction however, the high local accuracy
of Padé approximations is replicated across the entire domain, as even the order-[1/1]
approximations achieve relative errors below 0.4% on the reduced domain. An extension
of the range reduction method is demonstrated by Tang (1990) in which the domain is
divided further, though this relies on tabulation and several more operations.

Finally, range reduction makes an entire new category of approximators relevant: since we
only need a way to approximate ex on a bounded interval, this opens up the possibilities
of extending interpolation-type techniques to work across the entire domain of real-valued
inputs. This could include linear interpolation, polynomial interpolation, splines or min-
imax methods to minimize the maximal absolute error on the bounded interval. The
latter example of minimax polynomial- and rational approximations is covered in the
next section.
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Figure 5: Relative errors of Taylor-, Padé-, and bit-shifted Padé approximations.

3.5 Minimax approximations

Minimax approximators refers to a category of functions which minimize the maximal
absolute error compared to a target function f within a bounded interval [a, b], i.e.
minimizing the uniform norm L∞,[a,b] of the difference between the approximator and the
target function f - in contrast to the approximators discussed in previous sections, which
were determined entirely from satisfying conditions at a single point.

In general, fitting a minimax polynomial- or rational function relies on numerical proce-
dures for estimating coefficients. A popular approach to this end is the Remez algorithm
(Remez, 1934) and extensions thereof, such as as those implemented in the chebfun
MATLAB package for polynomials (Pachon and Trefethen, 2009) and rational approxima-
tions (Filip et al., 2018).

While minimax methods are very common in floating-point implementations of non-
arithmetic functions and included here for completeness, we will address some caveats
in the special case of fixed-point numbers that would support favoring the simpler Padé
methods covered in Section 3.3. The theoretical foundations of minimax methods are
extensive and covered in many textbooks on approximation theory (e.g. Powell, 1981),
however the practical points made in this section will not depend on how the coefficients
are obtained, so we simply "take these for granted".9

Ignoring the finer details of how one arrives at suitable coefficients, we consider the order-
N minimax polynomial approximations (analogous to Taylor polynomials):

9Coefficients are computed via the chebfun package in MATLAB - the script is available in the github
repository linked in Section 3.1. Since these values will be hardcoded constants in practice where the
order is fixed, there is no reliance on anything besides the values themselves in "real" implementations.
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P̂N(x) :=
N∑
i=0

cix
i (3.19)

with coefficients ci ∈ R that minimize (up to some small tolerance)

∥∥∥P̂N(x)− f(x)
∥∥∥
∞,[a,b]

= max
a≤x≤b

∣∣∣P̂N(x)− f(x)
∣∣∣ . (3.20)

Similarly, we have order-[N/M ] minimax rational (analogous to Padé) approximations:

R̂[N/M ](x) :=

∑N
i=0 c

N
i x

i∑M
i=0 c

M
i xi

(3.21)

with coefficients cNi , c
M
i ∈ R that minimize the uniform norm analogous to (3.20). For

simplicity, we focus on the N = M case.

Figure 6 compares the relative errors of Taylor polynomials with those of minimax poly-
nomials of the same order (on the left side), as well as Padé approximations with the
minimax rational approximation of the same order (on the right side).10 The minimax
coefficients are fitted on the range-reduced region [a, b] = [−1/2 log 2, 1/2 log 2] as covered
in Section 3.4.
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Figure 6: Relative errors of order-N Taylor- and minimax polynomials (left) and
order-[N/N ] Padé- and minimax rational approximations (right).

10Unlike the Taylor and Padé approximators, the minimax implementations in this section utilize
mpmath floating-point numbers rather than fixed-point numbers. This has no implications for the relative
error analysis.
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The comparison to local approximators shows how, for the same order, the minimax
approaches "distribute" the errors across the interval, with each additional power term
leading to a new peak in the relative errors. Meanwhile, the local approximators use every
additional power term to increase the accuracy around zero. Minimax approximations,
as expected, achieve lower maximal error, but higher minimal error; unlike the change
from Taylor polynomials to Padé approximations, there are no shifts in the general order
of magnitude of errors, but rather a redistribution of these within the chosen interval.

Since one is normally concerned primarily with the worst case performance of numerical
approximation, minimax approaches are a popular choice utilized in the default implemen-
tations of many languages to get Padé-like orders of magnitude in errors, but distributed
more evenly.11

For a given order N , the case for rational minimax approaches appears strong at first
glance; however, several downsides weaken the case for fixed-point numbers in particular:

1. Unlike Padé coefficients, rational minimax coefficients do not have a "natural" in-
teger representation. Thus additional work is required to identify an appropriate
number of significant digits (which may be quite high) in order to rescale all co-
efficients to integers without causing overflow - or potentially utilize fixed-point
coefficients of varying digits for each term, requiring an additional division.

2. Even with N = M , the symmetry of numerator- and denominator coefficients are
lost in the minimax approach - and with it, the computational cost savings from
the separation into even- and odd term sums in (3.11).

3. The multiplicative identity (3.12) for the highest-order coefficient can only be en-
sured in general by treating all other coefficients as fixed-point numbers (or likely
accepting significant precision loss from truncation to integers).

Analogous to the points made in Section 3.3 comparing the computational cost of order-
[2/3] and order-[3/3] Padé approximations, this motivates a comparison of the number
of operations to determine if, once again, a Padé approximation of higher order can
outperform the minimax approximation at a similar or lower number of operations.

The order-[2/2] and order-[3/3] minimax rational approximations12

R̂[2/2](x) ≈
11.95798930995 + 5.99100802161x+ 1.00000000000x2

11.95798754936− 5.96690830996x+ 0.98806902258x2

=
1195798930995 + 599100802161x+ 100000000000x2

1195798754936− 596690830996x+ 98806902258x2
,

R̂[3/3](x) ≈
119.665663565 + 59.884226173x+ 11.989280835x2 + 1.000000000x3

119.665663561− 59.781437174x+ 11.937886908x2 − 0.991459909x3

=
119665663565 + 59884226173x+ 11989280835x2 + 1000000000x3

119665663561− 59781437174x+ 11937886908x2 − 991459909x3

(3.22)

11This is especially relevant for functions with many local extrema, which may be poorly captured by
local approximators – this is however not the case for the exponential function.

12The minimax coefficients are remarkably close to the Padé coefficients, hence the difference in behav-
ior is due to very small differences in coefficients - meaning that the temptation to significantly truncate
or round-off coefficients to the point of symmetry quickly deteriorates the approximations to a "worse"
Padé approximation (unless rounded all the way to the original Padé coefficients).
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are compared to Padé approximations from (3.14) in terms of operations required for
evaluation of their integer-coefficient representations in Table 2.

+ − · /

R[2/2] 2 1 3 2
R̂[2/2] 3 1 5 2
R[3/3] 3 1 5 3
R̂[3/3] 4 2 9 3
R[4/4] 4 1 7 4

Table 2: Number of operations in fixed-point Padé approximations R[N/N ] and ratio-
nal minimax approximations R̂[N/N ] assuming reuse of powers of x after rescaling.

Even in the best case of fully-integer representations of the minimax coefficients, the R[3/3]

Padé approximation can be computed with just a single additional division compared to
the R̂[2/2] minimax approximation, while achieving several orders of magnitude lower
maximal relative errors.

Similar to the case in the comparison between [N/N ]- and [N/M ] Padé approximations,
the [N/N ] Padé approximations once again scales better with increasing orders due to
the sum separation (3.11) - going from the R̂[3/3] minimax approximation to the R[4/4]

Padé approximation saves one subtraction and two multiplications, still with only one
additional division.

As can been seen from the comparison of maximal relative errors in Figure 7, if the
goal is to stay below a certain "worst case" error, it is counterintuitively not optimal
to use a minimax rational approximation in most cases, since using a higher-order Padé
approximation will still yield lower maximal errors with similar or even fewer operations.
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Minimax poly
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Figure 7: Maximal relative errors for |x| ≤ 1/2 log 2 across order-N Taylor- and
minimax polynomials and order-[N/N ] Padé- and minimax rational approximations.

The points made above in favor of Padé approximation for fixed-point number imple-
mentations are even slightly understated. In particular, we assumed a fully-integer repre-
sentation was feasible for the minimax approximation, but computed the relative errors
from an arbitrary-precision floating-point implementation - which would understate the
errors if any truncation of coefficients took place.
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We also ignored the additional complexity involved in obtaining the coefficients for the
minimax approximations. Coefficients used here were computed via the chebfun package
in MATLAB which, to the authors’ knowledge, offers some of the most thoroughly-tested and
state-of-the-art procedures for numerically stable floating-point approximations available
- yet even more specialized implementations tailored to arbitrary-precision floating-point
numbers would be required to find coefficients of higher order, since the order-[5/5] mini-
max routine already terminates early due to limitations in the machine precision of 64-bit
floating-point numbers, as seen by the kink in Figure 7.13

Having covered the primary candidate methods for exponential function approximation,
the following section provides a practical example for how one may configure a fixed-point
approximation based on imposing requirements derived from a specific use case.

4 Approximator configuration: a practical example
With coverage of fixed-point numbers in Section 2 and various approximation methods
for the exponential function in Section 3, we now give an example of arriving at a set
configuration for the approximator order and fixed-point number representation based on
practical requirements relevant to the application of the approximation.

Based on the review of approximation methods in Section 3, we utilize a bit-shifted order-
[N/N ] Padé approximation. We want to compute the value of a deposited USD amount
$C ≥ 0 accounting for compounded interest after T ≥ 0 years for some fixed annual rate
rA. Since the lowest unit of USD is $0.01 (one cent), this amount can be represented as
a base-10 fixed-point number with dC = 2 digits.

Note first that the annual rate rA corresponds to a continous per-second rate of

r =
log (1 + rA)

γ
(4.1)

with γ = 60 · 60 · 24 · 365 being the number of seconds in a normal (non-leap) year such
that after γ seconds, the deposit is worth

Cerγ = Ce
log(1+rA)

γ
γ = C(1 + rA). (4.2)

We assume a dollar-amount error tolerance of at-most $α for elapsed years T ≤ β implying
for all 0 ≤ x ≤ rγβ = β log(1 + rA):

C
∣∣R[N/N ](x)− ex

∣∣ ≤ α ⇔
∣∣∣∣R[N/N ](x)− ex

ex

∣∣∣∣ ≤ α

Cex
≤ α

C(1 + rA)eβ
. (4.3)

We thus accomplish the target error tolerance for 0 ≤ x ≤ rγβ with relative errors below
the (constant) error threshold in (4.3), which depends on the the deposit amount C, the
error tolerance amount α, the (annual) rate rA and number of years β.

13See https://github.com/chebfun/chebfun/blob/db207bc/minimax.m#L539.
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Figure 8: Relative errors of order-[N/N ] Padé approximations and threshold (4.3).

Figure 8 shows the threshold from (4.3) for parameters $C := $100 000, $α := $0.02,
rA := 0.05 and β := 5 across order-[N/N ] Padé approximation relative errors. We see
that the order-[3/3] approximator achieves the target dollar amount error tolerance, since
the relative errors stay below the threshold for 0 ≤ x ≤ rγβ ≈ 0.24.

Having identified an appropriate order for the approximator, we now turn to the tuning
of the fixed-point number representation. Assume we want to support deposits up to
C̄ ≫ C: we choose some large value (ideally a safe amount above realistic inputs), e.g.
C̄ := $1 000 000 000 000 = $1012 (one trillion). This amount as an (unsigned) fixed-point
number in cents requires an additional two digits, so this deposit takes

⌈
log2

(
C̄ · 102

)⌉
=

⌈
log2 10

12+2
⌉
= ⌈14 log2 10⌉ = 47 (4.4)

bits to represent.14

The approximator R[3/3] should support up to β years of compounding, in which case

R[3/3](x) ≈ ex ≤ erγβ = elog(1+rA)β = (1 + rA)e
β. (4.5)

The number of bits required to represent the approximations R[3/3](x) as (unsigned)
fixed-point numbers with dR ≥ 0 approximation digits is then at most

⌈
log2

(
10dR(1 + rA)e

β
)⌉

= ⌈dR log2 10 + log2(1 + rA) + β log2 e⌉ . (4.6)

Computing the deposit value after compounded rates requires the multiplication of the
deposit value and the approximation, which then takes the number of bits corresponding
to the sum of (4.4) and (4.6) to represent. Figure 9 shows the required bits for this
product in the upper subplot, and the required bits for intermediary values relied on in
the Padé approximator across approximation digits dR in the lower subplot.

From Figure 9, we can see that choosing e.g. dR := 16 allows us to fit both the product
(of the deposit C̄ and approximation R[3/3](rγβ)) and the intermediary values relied on
in the approximator within 128-bit integers, since the required bits will all be less than

14Implementing approximators that are safe for an arbitrary amount of a token on a blockchain would
need to assume a value of the total (integer) supply of the minimal unit of the token in question.
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Figure 9: Required bits for the multiplication of a C̄ = $1012 deposit in cents with
the approximation (upper) and the required bits for the approximator intermediary
values (lower) across approximation digits dR. Dotted line highlights dR := 16.

128.15 While the product will be rescaled to a smaller number after the multiplication
(as discussed in Section 2), we cannot skip this initial computation of the numerator in
general.

It is important to note that finding the bits required for the intermediary values requires
assessing the maximal number of bits required across all points in the approximation
process and across the range of values 0 ≤ x ≤ rγβ; the bits in the intermediary values
are not necessarily maximized at the largest input value.16 One can attempt to derive
these requirements more formally by finding bounds in each step of the approximation
process, though here we took a more empirical approach via an integer subclass that
keeps track of the maximal intermediary value after each operation.17

In practice the calibration process is often highly non-linear: it is typical to revisit the ini-
tial parameters and error tolerances after reviewing the required number of bits, tweaking
and testing parameter changes until one arrives at a balance that "feels reasonable". The
key point is to establish a systematic approach where one can directly observe the impact
of configuration choices and guide any changes to this based on practical, application-
specific considerations – ideally supported by automated tests to confirm the expected
behavior.

Starting from "outrageously strict" requirements is often a good idea in the above ap-
proach: for example, if we needed to fit all values into a 64-bit environment, we may
loosen the requirements on the supported deposit range, the per-second time resolution

15The gaps up to 128 bits then leaves additional space for e.g. larger deposits or longer compounding
– but importantly we have a guarantee that the values implied from the chosen parameters can be
represented without overflow with 128-bit integers.

16This may be amplified by the use of a bit-shifted approximator, though this does not take into effect
in the ranges considered here as the range does not exceed (log 2)/2.

17For further details, see the github repository linked in Section 3.1.
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and dollar-amount errors to find that the order-[2/2] approximations could still provide
adequate accuracy for our purposes. The benefit of starting from overly strict targets is
that this leads to a "natural" continuous process of adjusting those parameters and error
tolerances that may have been excessive at first until one finds an acceptable pragmatic
trade-off that makes full use of the resources at hand (by only barely fitting into the
available space).

The configuration arrived at in this section is by no means to be taken as a general
recommendation, but rather to provide an example of how one can iterate towards a
context-based calibration framework that derives a configuration from requirements that
can be assessed in relation to the application.

5 Conclusion
This article provided a brief introduction to fixed-numbers and their context in Section 2
followed by coverage of a variety of methods for approximating the exponential function
in Section 3 with notes specific to fixed-point numbers.

We showed how Padé approximations outperform Taylor polynomials when accounting
for computational cost and introduced range reduction methods that utilize bit-shifting
for achieving high accuracy across a wide range of inputs. Minimax methods were then
covered, but ultimately found to not be competitive with Padé approximations for fixed-
point numbers when accounting for savings in computational costs in symmetric order-
[N/N ] Padé approximations.

Finally, Section 4 demonstrated an example of steps involved in constructing a calibration
framework for fixed-point approximations that maps context-relevant parameters to the
general configuration of the approximator.
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We perform a relative error analysis of the estimator and standard
Monte Carlo estimation against the numerical integration solution of
the European call option in the Heston model and find computational
time savings in excess of three orders of magnitude for the same ex-
pected relative errors for an at-the-money option. The implementation
is further extended to the valuation of discrete down-and-out barrier
call options and floating-strike lookback put options, demonstrating
the relative ease of applying the automatic differentiation approach to
path-dependent options with monitoring bias corrections.

Keywords: Monte Carlo, automatic differentiation, variance reduction, Heston
model, barrier options, lookback options, monitoring bias.

JEL classification: C63, C65, G12.

∗Department of Mathematical Sciences, University of Copenhagen, Denmark. E-mail:
johan.auster@math.ku.dk.

Automatic differentiation for diffusion operator integral variance reduction

27



1 Introduction
This paper demonstrates applications of automatic differentiation (AD) with nested dual
numbers for computation of value function sensitivities in the diffusion operator integral
(DOI) variance reduction framework introduced by Heath and Platen (2002) in their
seminal paper.1 Combining this estimator with AD methods allows for a significant
reduction in the implementation complexity when applying the method across models
and contracts, without trade-offs in numerical stability or accuracy of estimates.

The DOI estimator utilizes martingale properties of value functions, leading to a control
variate-like sample-based method using a known value function evaluated at the initial
time and a corrective integral running until a first exit time of the process. This integral
depends on the sensitivities from the approximating value function applied to sample
paths of the process from the original model, thereby incorporating information from
the full path realization even when pricing non-path-dependent options. As shown in the
original paper (Heath and Platen, 2002), this approach leads to a consistent and unbiased
price estimator with drastic reductions in the variance of price estimates compared to
simple averaging of realized discounted payoffs as in standard Monte Carlo (MC) methods.

In a follow-up paper by Heath and Platen (2014), DOI estimation was utilized in conjunc-
tion with partial differential equation (PDE) methods for a multidimensional diffusion
model. In this approach, a smooth dimension-reduced approximation of the PDE solution
to the pricing problem of interest is constructed via truncated Taylor series expansions.
The approximating PDE is then combined with the DOI estimator to approximate the
true solutions of European-style options in a three-component model representing a di-
versified equity index.

Recent works have illustrated further applications of this estimator to a variety of pricing
problems and the significant variance reduction achievable over standard MC methods,
e.g. in the valuation of short-rate derivatives in the Fong-Vasicek model (Coskun et al.,
2019) and barrier options in the Heston model (Coskun and Korn, 2018), with the results
of the latter being replicated in this paper.

A key practical limitation of the DOI approach is the reliance on second-order sensitivities
for the approximating pricing problems, which quickly grow in complexity when dealing
with non-constant variance approximations, volatility-dependent corrections for discrete
path-dependent options and complicated value functions. By combining the dual number
approach to differentiation with a general transformation of Black-Scholes value functions,
sensitivities can be computed efficiently from single value function passes without the
truncation and round-off errors of traditional numerical differentiation techniques. This
enables applications of the estimator to a wide range of problems, requiring only the
corresponding analytical value function from the Black-Scholes case.

This paper is organized as follows: in Section 2 we summarize the derivation of the DOI
estimator and the form of the estimator in the Heston model with a suitable Black-Scholes
approximation. Section 3 outlines the AD approach to exact differentiation with dual
numbers, along with the extension to nested dual numbers for higher order differentiation.
Section 4 presents numerical results and benchmarks of the estimator in the Heston

1Automatic differentiation is sometimes referred to as adjoint algorithmic differentiation, adjoint
automatic differentiation, algorithmic differentiation, computational differentiation etc.
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model, including a relative error analysis for the European call followed by applications
to discrete down-and-out call barrier options and floating-strike lookback put options.
Section 5 concludes.

2 The Heath-Platen DOI estimator
This section provides a summary of the general structure and derivation of the DOI
estimator. The presentation is largely based on the original paper by Heath and Platen
(2002), while leaving out some of the more intricate points. No new material or results
are presented here and we refer to the original work for a more detailed derivation and
discussion of the theoretical foundations of the estimator.

2.1 Setup

We let T > 0 and denote by Γ a path-connected subset of Rd, and we let X = (Xt)0≤t≤T

be a real-valued d-dimensional Itô process starting from time t = 0 with initial value
X0 = x ∈ Γ on the time horizon [0, T ] satisfying the stochastic integral equation

Xt = x+

∫ t

0

µ (s,Xs) ds+

∫ t

0

σ (s,Xs) dWs. (2.1)

Here W is an m-dimensional standard Brownian motion on a filtered probability space
(Ω,F , P,F), with the filtration F satisfying the usual conditions. µ and σ are d× 1 and
d×m matrices respectively, and we use the notation µi, σi,j to refer to the entries of the
i’th row and j’th column of these, and we assume sufficient conditions on µ and σ for
(2.1) to be a unique strong Markovian solution, e.g. linear growth bounds and Lipschitz
continuity (Kloeden and Platen, 1992).

We introduce a stopping time τ : Ω → [0, T ] given by

τ := inf {t ≥ 0 : (t,Xt) /∈ [0, T )× Γ} , (2.2)

which is the first exit time of (t,Xt) from the region [0, T ) × Γ, and we define a payoff
function h : B → R with

B := ([0, T )× ∂Γ) ∪
(
{T} × Γ

)
, (2.3)

where ∂Γ denotes the boundary of Γ and Γ = Γ ∪ ∂Γ denotes the closure. The payoff is
thus defined for paths in the exit region and at maturity, allowing for payoffs that may
depend on a stochastic first exit time τ of the region Γ. This could correspond to the
optimal exercise region for an American-style contract or a barrier knockout.

For pricing purposes we consider value functions u(t, x) : [0, T ]× Γ → R of the form

u (t, x) := EQ [h (τ,Xτ ) | Ft] , (2.4)

where we assume u(t, x) ∈ C1,2([0, T ]×Γ), i.e. with ∂tu(t, x) continuous in t on (0, T ) for
fixed x ∈ Γ and ∂xixju(t, x) continuous in x ∈ Γ for fixed t ∈ (0, T ) for all i, j = 1, . . . , d.
We use the notation ∂x for the partial differentiation operator, e.g. ∂txu(s,Xs) is the
partial derivative of u (t, x) w.r.t t and x evaluated at t = s and x = Xs. Q is assumed
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to be an appropriate risk-neutral measure in order for the market to be free of arbitrage
opportunities in the no free lunch with vanishing risk (NFLVR) sense (Bjork, 2004).

Note that the value function in (2.4) can be interpreted either as a price function under
some appropriately discounted dynamics or an undiscounted price function. Throughout
the paper we use the latter interpretation.

From Itô’s formula for continuous semimartingales (Øksendal, 2003), it holds that

u (τ,Xτ ) = u (0, x) +

∫ τ

0

∂tu (s,Xs) ds+

∫ τ

0

d∑
i=1

∂xiu (s,Xs) dX
i
s

+
1

2

∫ τ

0

d∑
i,j=1

∂xixju (s,Xs) d
[
X i, Xj

]
s

(2.5)

with [X i, Xj] denoting the quadratic covariation of X i and Xj. From the definition of X
in (2.1) we thus have

u (τ,Xτ ) = u (0, x) +

∫ τ

0

∂tu (s,Xs) ds+

∫ τ

0

d∑
i=1

µi (s,Xs) ∂xiu (s,Xs) ds

+

∫ τ

0

d∑
i=1

m∑
k=1

σi,k (s,Xs) ∂xiu (s,Xs) dW
k
s

+
1

2

∫ τ

0

d∑
i,j=1

m∑
k=1

σi,k (s,Xs)σ
j,k (s,Xs) ∂xixju (s,Xs) ds,

(2.6)

and interchanging summation and collecting terms then gives

u (τ,Xτ ) = u (0, x) +

∫ τ

0

L0u (s,Xs) ds+
m∑
k=1

∫ τ

0

Lku (s,Xs) dW
k
s (2.7)

using the operator notation

L0 := ∂t +
d∑

i=1

µi (t, x) ∂xi +
1

2

d∑
i,j=1

m∑
k=1

σi,k (t, x)σj,k (t, x) ∂xixj ,

Lk :=
d∑

i=1

σi,k (t, x) ∂xi .

(2.8)

The operator L0 is the "diffusion operator", which is the namesake of the estimator
presented in the following sections.

2.2 Uncoupled DOI estimator

Assume further that the payoff h : B → R+ has sufficient regularity such that the process

EQ [h (τ,Xτ ) | Ft] = u (t ∧ τ,Xt∧τ ) (2.9)

is a square-integrable martingale; since τ is a bounded stopping time, this depends only
on the regularity of h. We then consider some approximating value function ū(t, x) with
the boundary condition

ū (τ,Xτ ) = u (τ,Xτ ) = h (τ,Xτ ) (2.10)

3
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with ū(t, x) ∈ C1,2([0, T ]×Γ). Furthermore assume that
∫ t∧τ
0

Lkū (s,Xs) dW
k
s is a square-

integrable martingale null at zero for all k = 1, . . . ,m, hence in particular zero in expec-
tation. Then from the boundary condition (2.10) and applying the representation (2.7)
to ū(t, x) we have that

u (0, x) = EQ [h (τ,Xτ ) | X0 = x]

= EQ [ū (τ,Xτ ) | X0 = x]

= ū (0, x) + EQ

[∫ τ

0

L0ū (s,Xs) ds | X0 = x

]
,

(2.11)

from which the "uncoupled" DOI estimator results from (discounted) realizations of
(2.11). The following section shows how this estimator can be extended to incorporate
approximating model dynamics.

2.3 DOI estimator with approximating dynamics

Consider now another d-dimensional stochastic process X̄ approximating the dynamics of
X in some sense and starting from the same initial values x ∈ Γ with the same regularity
assumptions as for (2.1). From Itô’s formula we once again have

ū
(
τ, X̄τ

)
= ū (0, x) +

∫ τ

0

L̄0ū
(
s, X̄s

)
ds+

m∑
k=1

∫ τ

0

L̄kū
(
s, X̄s

)
dW k

s (2.12)

with L̄ operators analogous to the ones defined in (2.8). Taking expectations in (2.12)
and using the martingale property of ū(t, x) leads to the Kolmogorov backward PDE

L̄0ū (t, x) = 0 (2.13)

on [0, T ]× Γ with ū(t, x) = h(t, x) on B, hence

EQ

[∫ τ

0

L̄0ū (s,Xs) ds | X0 = x

]
= 0. (2.14)

Subtracting (2.14) from the final equation in (2.11) then leads to the coupled DOI esti-
mator:

Zτ := ū (0, x) +

∫ τ

0

(
L0 − L̄0

)
ū (s,Xs) ds. (2.15)

The L0 − L̄0 integral couples the two processes via their diffusion operators, and from
(2.15) we can immediately observe the mechanics behind the resulting variance reduc-
tion: provided we have the solution to ū (0, x), we can think of this as a prior from our
approximating model, while the variance of the correcting integral term is low when the
operators L0 and L̄0 cancel, which is exactly the case when X̄ closely mimicks the dy-
namics of X. Interestingly, the integral term only depends on the true value function
implicitly through the L0 diffusion operator, as the operators are applied only to the
approximating ū function. The practical application of the estimator is discussed further
in Section 2.4 and Section 4.1.

The above estimator can be furthed generalized, as the boundary condition (2.10) is not
technically necessary. In this case, one would replace the estimator in (2.15) with

Z̃τ := ū (0, x) + h (τ,Xτ )− ū (τ,Xτ ) +

∫ τ

0

(
L0 − L̄0

)
ū (s,Xs) ds, (2.16)

4
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where the additional h(τ,Xτ )− ū(τ,Xτ ) term corrects for any difference in payoffs. This
allows for a more flexible choice of approximating contracts, for example one may choose
a European put approximation when pricing the American-style counterpart.

2.4 Application in the Heston model

We now apply the DOI estimator in (2.15) to the Heston model. The Heston model
(Heston, 1993) consists of the two stochastic differential equations (SDEs):

dSt = St (r dt+
√
νt dWt)

dνt = κ (θ − νt) dt+ ξ
√
νt dZt

(2.17)

starting from initial values S0, ν0 > 0 with a constant risk-free rate r ∈ R and strictly
positive constants κ, θ and ξ. W and Z are Brownian motions with correlation ρ ∈ [−1, 1]

such that Z d
= ρW+

√
1− ρ2W̃ for Brownian motions W, W̃ with W̃ ⊥ W , and the Feller

condition 2κθ > ξ2 is assumed to ensure that the variance process ν a.s. remains positive.

As an approximating process we use the same Generalized Black-Scholes (GBS) model
as proposed by Heath and Platen (2002) with dynamics

dS̄t = S̄t

(
r dt+

√
ν̄t dWt

)
dν̄t = κ (θ − ν̄t) dt

(2.18)

with W a Brownian motion and parameters matching those in (2.17). The (2.18) dynam-
ics are resemblant of the Heston model, but with only the deterministic mean reversion
ordinary differential equation (ODE) component in the variance process.

From the definition in (2.8) we have

L0 = rS∂S +
1

2
νS2∂SS + κ (θ − ν) ∂ν + ξν

(
ρS∂Sν +

1

2
ξ∂νν

)
,

L̄0 = rS∂S +
1

2
νS2∂SS + κ (θ − ν) ∂ν

(2.19)

such that the ∂S and ∂SS terms cancel in (2.15) and we are left with

L0 − L̄0 = ξν

(
ρS∂Sν +

1

2
ξ∂νν

)
. (2.20)

Value functions in the approximating GBS model can then be fully characterized by
Black-Scholes value functions through a simple volatility transformation presented in
Section 6.1. Note that the resulting diffusion operator term (2.20) was already presented
in the original paper (Heath and Platen, 2002).

In practice the differenced diffusion operator in (2.20) is evaluated at discrete time points
for path realizations of (2.17). The DOI estimator hence incorporates information from
the approximating GBS dynamics though the known value function along each discrete
point. In contrast, many control variate techniques only incorporate known quantities
statically.2 Section 4 illustrates in greater detail the advantageous properties that result
from this utilization of path data for valuation, regardless of the terminal payoff for a
particular sample.

2A standard example is to add and subtract ST from the standard MC estimator when pricing a call
option and rewriting the positive ST term as the known expectation at the initial time (Glasserman,
2003).
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Figure 1: Realization of ν (solid line) and approximating ODE ν̄ (dashed line).

3 Exact differentiation with nested dual numbers
In this section we outline the core idea behind differentiation with dual numbers and their
extension to nested dual numbers for higher-order differentiation, and we demonstrate
how these are used to retrieve the relevant value function sensitivities in (2.20).

Dual number AD overcomes several of the shortcomings of finite difference (FD) methods,
as derivatives can be computed exactly in a single function pass with limited computa-
tional overhead, while simultaneously avoiding the numerical instability from standard
FD differentiation.3

AD is increasingly being adopted in favor of more traditional FD methods (Baydin et al.,
2018) and are used in the implementations of gradient descent algorithms in many popular
machine learning libraries, including PyTorch, TensorFlow and Flux.jl. AD methods
have also seen recent attention within applications specific to finance, e.g. for computing
greeks for discontinuous payoff functions from MC estimates (Daluiso and Facchinetti,
2018). For a detailed discussion of AD methods, see Griewank and Walther (2008).

3.1 Dual numbers

A dual number z := a+ bε is characterized by a real 2-tuple (a, b) ∈ R2 with the property
that

ε2 = 0, (3.1)

which forms a unital associative commutative algebra over the reals, allowing us to extend
real functions to functions of dual numbers in a general way.4

3To quote Baydin et al. (2018), FD numerical differentiation schemes commit a cardinal sin of nu-
merical analysis: "thou shalt not subtract numbers which are approximately equal".

4In so many words, we have an algebraic structure with well-defined commutative and associative
addition and multiplication, and for any z = a+bε we have a zero element 0+0ε, additive inverse −a−bε,
multiplicative identity 1 + 0ε and distributivity s.t (z1 + z2) · (z3 + z4) = z1z3 + z1z4 + z2z3 + z2z4.
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For any function f real analytic at a ∈ R with n’th derivative f (n), the Taylor series of f
around a evaluated at a+ bε is given by

f (a+ bε) =
∞∑
n=0

f (n) (a)

n!
(a+ bε− a)n

= f (a) +
∞∑
n=1

f (n) (a)

n!
bnεn

= f (a) + f (1) (a) bε

(3.2)

from the property in (3.1), since εn = 0 for all n ≥ 2. Setting b = 1 and evaluating
coefficients of the real part f(a) and non-real part f (1)(a) separately then yields the func-
tion value at a and first-order derivative at a respectively. This is not an approximation
of the derivative, but the exact derivative; and this with only a single evaluation of the
function.5

For two dual numbers z1 := a1 + b1ε and z2 := a2 + b2ε, we have the operations

z1 ± z2 = (a1 ± a2) + (b1 ± b2) ε,

z1 · z2 = a1a2 + (a1b2 + a2b1) ε,

z1
z2

=
a1
a2

+
b1a2 − a1b2

a22
ε.

(3.3)

Here the ε terms can be seen to align with basic rules of differentiation, and naturally
this further extends to, for example, the chain rule for composite functions. In practice,
dual numbers are propagated through series of simple operations when function values
are computed, from which the above properties lead to general, efficient and exact differ-
entiation without the need for manually specifying analytical derivative solutions to any
terms or relying on potentially numerically unstable and computationally expensive FD
schemes.

3.2 Higher-order differentiation with nested dual numbers

In order to apply dual numbers to higher-order differentiation problems, we further extend
our notion of dual numbers to the case of nested dual numbers, where an N -dimensional
nested dual number is given by

z := a+
N∑

n=1

bnεn (3.4)

with a ∈ R and where any of the bn coefficients may themselves be nested dual numbers.
In analogy with (3.1), we impose that

ε2n = ε2m = (εnεm)
2 = 0 (3.5)

for all n,m = 1, . . . , N , noting that this property does not imply εn = 0, εm = 0 nor
εnεm = 0, as these are not real numbers.

5This is suggestive of the potential for gains in computational efficiency compared to manual differ-
entiation in cases where analytical derivatives are computationally expensive to evaluate.
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The definition in (3.4) includes as a special case the following two-dimensional nested
dual number:

zh := a+ b1ε1 + (b2 + b3ε1) ε2

= a+ b1ε1 + b2ε2 + b3ε1ε2
(3.6)

such that the Taylor series of f real analytic at a ∈ R evaluated at zh is

f
(
zh
)
=

∞∑
n=0

f (n) (a)

n!

(
zh − a

)n
= f (a) + f (1) (a) (b1ε1 + b2ε2 + b3ε1ε2) +

1

2
f (2) (a) (2b1b2ε1ε2)

= f (a) + f (1) (a) b1ε1 + f (1) (a) b2ε2 + f (1) (a) b3ε1ε2 + f (2) (a) b1b2ε1ε2

(3.7)

from expanding terms and applying (3.5), after which we retrieve the first and second
order derivatives by evaluating the appropriate coefficients for the non-real parts as in
(3.2) with b1 = b2 = 1 and b3 = 0. The collection of dual numbers of the form zh in (3.6)
is sometimes referred to as the hyper-dual numbers; these are discussed in depth in Fike
and Alonso (2011).

Finally, to see how the nested dual numbers enable us to retrieve the required sensitivites
for our application in (2.20), we consider a value function u(t, x) with t ∈ [0, T ] for T > 0
and x := (x1, x2) ∈ R2 and define the nested dual numbers

z1 :=
(
x1 + 1ε1 + 0ε2

)
+ (0 + 0ε1 + 0ε2) ε3,

z2 :=
(
x2 + 0ε1 + 1ε2

)
+ (1 + 0ε1 + 0ε2) ε3.

(3.8)

Then the Taylor series of u(t, x) around x evaluated at z := (z1, z2) gives

u (t, z) = (u (t, x) + ∂x1u (t, x) ε1 + ∂x2u (t, x) ε2)

+ (∂x2u (t, x) + ∂x1x2u (t, x) ε1 + ∂x2x2u (t, x) ε2) ε3,
(3.9)

from which the sensitivities ∂sνu and ∂ννu needed in (2.20) are exactly the coefficients
associated with the two non-real terms ε1ε3 and ε2ε3 from the nesting dual number.

8

Automatic differentiation for diffusion operator integral variance reduction

35



St

80
90

100
110

120

t

0.005
0.010

0.015
0.020

0.025

-0.50

-0.25

0.00

0.25

0.50

(a) Call / put with K = 100

St

90
100

110
120

t

0.005
0.010

0.015
0.020

0.025

0.8
0.6
0.4
0.2
0.0
0.2
0.4

(b) Down-and-out barrier call with K = 100, H = 90 and 200 monitoring points
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(c) Floating-strike lookback put with max0≤u<t Su = 120

Figure 2: Differenced diffusion operators L0 − L̄0 for the Heston model computed with
dual numbers at t = 0.7 for the European call / put, discretely-monitored down-and-
out barrier call and continuous floating-strike lookback put with parameter set A. Puts
and calls have the same Vanna and Vomma in the European case (Haug, 2007), so their
diffusion operators are identical.
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4 Numerical results
This section presents the details of the implementation and the results of various bench-
marks of the estimator in the Heston model. First we compare the AD DOI estimates of
the European call option to the standard non-AD method with manually derived sensi-
tivities and confirm that the resulting estimates are equivalent. Estimate errors are then
assessed against the numerical integration solution and the relationship between errors
and moneyness is investigated.

The estimator is then applied to the pricing problem of the discrete down-and-out barrier
call option by utilizing monitoring bias correction (Broadie et al., 1997) of the value
function for the continuous option, with results compared against the mean estimates
and confidence intervals achieved with the non-AD method in the paper of Coskun and
Korn (2018).

Finally we apply the estimator to the valuation of the continuously-monitored floating-
strike lookback put option, demonstrating the apparent lack of any practically significant
monitoring bias in contrast to the standard MC estimator. We then extend the appli-
cation to the discrete counterpart of this option type through a correction of the value
function (Broadie et al., 1999) similar to the discrete barrier option.

4.1 Implementation details

The estimator is implemented in Julia 1.4.1 (Bezanson et al., 2017) and the full source
code is available online on https://github.com/austerj/ad-doi. All benchmarks
are run on a laptop with an Intel Core i7-8650U 1.90GHz CPU running Ubuntu
20.04 LTS. The Dual number type from the ForwardDiff.jl package (Revels et al.,
2016) is used for automatic differentiation of the value function sensitivities. All random
numbers are generated using the xoroshiro128+ algorithm (Blackman and Vigna, 2018)
as implemented in the RandomNumbers.jl package.

For generation of sample paths, a Predictor-Corrector (PC) scheme with degrees of im-
plictness 0.5 for the drift and no diffusion implicitness6 (Kloeden and Platen, 1992) is
implemented with correctors

Ŝn+1 := Ŝn +
∆

2
r
(
S̃n+1 + Ŝn

)
+ Ŝn

√
ν̂n∆Wn

ν̂n+1 := ν̂n +∆κ

(
θ − 1

2
(ν̃n+1 + ν̂n)

)
+ ξ
√

ν̂n∆Zn

(4.1)

for Euler-Maruyama predictors

S̃n+1 := Ŝn

(
1 + ∆r +

√
ν̂n∆W

)
ν̃n+1 := ν̂n +∆κ (θ − ν̂n) + ξ

√
ν̂n∆Z

(4.2)

with ∆ := T/N denoting the step size for maturity T > 0 and number of steps N ∈ N
and ∆W,∆Z normal random variables with variance ∆ and correlation ρ ∈ [−1, 1].
Variance process samples ν̂ are truncated at 10−8 to prevent negative values. The scheme

6While the inclusion of diffusion implicitness can lead to a highly efficient scheme for small N , nu-
merical instability can arise as the number of time steps increases (Platen and Shi, 2008).
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is initialized at the initial values of the Heston underlying asset and variance process,
i.e. (Ŝ0, ν̂0) := (S0, ν0), and the differenced diffusion operator in (2.20) is integrated
numerically using the trapezoidal rule.

The baseline model parameters for the Heston model are chosen in accordance with
parameter set A defined in Table 1, which are themselves based on the parameters in
(Heath and Platen, 2002) with a larger initial variance ν0. These parameters are used
throughout the numerical section unless deviations are explicitly stated, i.e. in tables
with varying parameters and in Section 4.4. All curves fitted to the resulting estimates
and their errors are attained using standard ordinary least squares (OLS) methods with
the noted transformations of dependent variables.

S0 ν0 r κ θ ξ ρ T

100 0.16 0.04 0.6 0.04 0.2 -0.15 1

Table 1: Parameter set A used as a baseline throughout the numerical section.

Listing 1 shows the code for the implementation of the single-threaded DOI estimator
for non-path-dependent contracts. A multi-threaded version of the estimator has been
implemented in addition, with each thread using a distinct random number generator with
a random unsigned 128-bit integer as a seed. The latter estimator is used in the proceeding
benchmarks due to the significant performance benefits over the single-threaded version.

While subtle complications, such as false sharing, can arise from random number gener-
ation on multiple threads (Hellekalek, 1998), the multi-threaded implementation passes
the two-sample Kolmogorov-Smirnov test at a 99.9% confidence level against the single-
threaded estimator, i.e. estimates produced by the two algorithms are identically dis-
tributed. The test is available on the github repository within the test folder.

Listing 1: Single-threaded implementation of the AD DOI estimator
function estimator(nsteps, npaths, model, contract, rng)

@unpack s0, ν0, r, κ, θ, ξ, ρ = model
@unpack T = contract
∆ = T/nsteps
t = ∆:∆:T
u0 = u(0., s0, ν0, model, contract) # computes σ̄ and transforms BS to GBS
A0 = diffop(0., s0, ν0, model, contract)/2 # first point of trapezoidal
payoffs = Vector{Float64}(undef, npaths)
doi = Vector{Float64}(undef, npaths)
for j = 1:npaths

s, ν = s0, ν0

A = A0

for i = 1:nsteps
s, ν = step(s, ν, ∆, model, rng)
A += diffop(t[i], s, ν, model, contract)

end
# diffop is zero at time T, hence division not needed for trapezoidal
A *= ∆
payoffs[j] = h(s, contract)
doi[j] = A

end
discount = exp(-r*T)
mc_estimate = discount * mean(payoffs)
doi_estimate = discount * (u0 + mean(doi))
mc_estimate, doi_estimate

end
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function diffop(t, s, ν, model, contract)
@unpack r, κ, θ, ξ, ρ = model
∂sν, ∂νν = sensitivities(t, s, ν, model, contract, state)
ξ*ν*(ρ*s*∂sν + 0.5*ξ*∂νν)

end

function sensitivities(t, s, ν, model, contract, state)
zs = Dual(Dual(s, 1., 0.), Dual(0., 0., 0.))
zν = Dual(Dual(ν, 0., 1.), Dual(1., 0., 0.))
uz = u(t, zs, zν, model, contract, state)
∂sν = uz.partials[1].partials[1] # vanna
∂νν = uz.partials[1].partials[2] # vomma
∂sν, ∂νν

end

4.2 Analytical and AD comparison for European call

We first consider the valuation problem of a European call option in the Heston model.
This contract provides a payoff of

h (ST , T ) := max (ST −K, 0) = (ST −K)+ (4.3)

at the time of maturity T > 0 with strike price K > 0.

This contract has the well-known closed-form time t value function solution in the Black-
Scholes framework:

uBS (t, x) = xer(T−t)Φ (d1)−KΦ (d2) (4.4)

where Φ denotes the standard normal cumulative distribution function, and with

d1 :=
log x

K
+
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

,

d2 := d1 − σ
√
T − t

(4.5)

starting from initial value of the underlying x > 0 with constant volatility σ > 0 and
risk-free rate r ∈ R. This is then transformed into the appropriate GBS value function as
shown Section 6.1, from which the value sensitivities relied on in (2.20) are computed via
dual numbers in the AD method and analytically in the standard method. The derivation
of the analytical diffusion operator expression is shown in Section 6.2.

In the comparison of the two implementations of the DOI estimator, 200 time steps are
used for each sample path of the Heston dynamics based on parameter set A and we use
a strike price of K = 100.

Figure 3 shows 100 realizations of the European call payoff (4.3) against single-path
estimates for each of the DOI estimator implementations, as well as both DOI estimators
against each other. As expected, the analytical DOI and AD (dual) DOI estimates are
perfectly aligned for every path, showing that the value sensitivity computation via dual
numbers indeed produces the same result as direct evaluation of analytical solutions.

Furthermore, Figure 3 showcases an imperfect correlation between payoffs and DOI esti-
mates, exemplifying concretely the ability of the estimator to utilize path realization data
beyond the terminal payoff. Additionally, the range of DOI estimates is noteworthy; even
single-path estimates are contained in a tight band, with a distance of only 0.7 between
the minimum and maximum compared to approximately 120 for payoff realizations.
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Figure 3: Scatter plots of European call payoff realizations against both DOI estimates
and AD DOI estimates against analytical DOI estimates for the same underlying paths.

For the remainder of the numerical section, we exclusively use the AD DOI method and
simply refer to this as the DOI estimator.

4.3 Relative error analysis and pricing of European call

Relative errors (REs) for the DOI and MC estimates are measured via the semi-closed-
form solution computed with numerical integration (Heston, 1993), first for a single strike
in order to assess the performance of the DOI estimator across numbers of sample paths,
then across a range of strike prices to assess how REs scale with moneyness.

Using 200 time steps for the simulated paths, we estimate prices for the European call with
K = 100 and with all other parameters as specified in parameter set A in Table 1. We
use ⌊10n⌋ sample paths for n = 1, 1.25, . . . , 5.75, 6, where ⌊x⌋ denotes the floor operator.
The resulting mean REs are shown in Figure 4 from running the DOI and MC estimators
50 times for each number of sample paths.
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Figure 4: Mean relative errors for European call price estimates for the DOI and MC
estimators in a log10-log10 plot as a function of number of paths M . Both MC and DOI
estimates are fitted to log10M .

While the convergence rate of the DOI estimator suggested by the OLS fit is comparable
to the standard MC convergence, the variance reduction is apparent in the shift in REs:
the mean RE of 0.28% for the DOI estimator with 10 sample paths corresponds to
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the mean RE from approximately 250 000 paths with the regular MC estimator. A
benchmark run on the same laptop used throughout this paper revealed that for multi-
threaded implementations of both estimators at these configurations, the MC estimator
had a median runtime of 384.0 milliseconds compared to just 161.5 microseconds for the
DOI estimator, i.e. computational time gains of a factor of almost 2 400 for comparable
expected REs with 200 time steps.7

We stress that the large variance reduction does not solely come from the initial GBS
price, as directly taking the GBS price of 16.74 as an estimate would lead to a RE of
5.1% against the Heston price of 15.94 in this case. A significant dynamic correction is
thus incorporated from each sample via the integral term in (2.15), demonstrating that
the DOI estimator is able to efficiently incorporate new data for the target model price
from even a small number of paths.

Next we analyze how the performance of the estimator scales over a range of strikes.
Using the same parameters as before, we run both estimators 10 000 times with 200 time
steps and 10 sample paths per run across each of the strike prices K = 20, 25, . . . , 175, 180.
The resulting mean REs are presented in Figure 5.
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Figure 5: Mean relative errors for European call price estimates for the DOI and MC
estimators in a semi-log10 plot across strike prices K. MC estimates are fitted to K, DOI
estimates are fitted to log10K.

While the order of magnitude of REs of standard MC estimates grow linearly in strike
prices, the DOI REs grows sublinearly. Consistent with the RE analysis across sample
paths, the REs for the MC estimator are larger by orders of magnitude, in particular for
lower strike prices.

Table 2 outlines summary statistics of the MC and DOI estimator after 50 runs with
10 000 sample paths per estimate and 200 time steps. Parameter set A is used as a
baseline, but using the noted values for initial variance ν0. Consistent with the RE
analysis, confidence intervals of the DOI estimates are significantly narrower than for the
MC estimates across strikes and initial variances, while the mean estimates produced by
the two estimators are closely aligned.

7Even more extreme factors could likely be achieved for in-the-money contracts as indicated by Fig-
ure 5 and by using fewer time steps for a diffusion-implicit PC scheme in the DOI estimation.
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MC AD DOI

K ν0 Mean Conf.Interval Mean Conf.Interval

90
0.01 14.4970 (14.2735,14.7205) 14.4867 (14.4842,14.4893)
0.04 16.1085 (15.7597,16.4574) 16.0981 (16.0947,16.1014)
0.16 21.1127 (20.4906,21.7349) 21.1253 (21.1217,21.1289)

95
0.01 10.5287 (10.3314,10.7261) 10.5541 (10.5507,10.5575)
0.04 12.6923 (12.3826,13.0021) 12.6921 (12.6883,12.6959)
0.16 18.3987 (17.8175,18.9798) 18.3925 (18.3889,18.3961)

100
0.01 7.2057 (7.0166,7.3949) 7.1990 (7.1958,7.2022)
0.04 9.7673 (9.4823,10.0523) 9.7563 (9.7522,9.7603)
0.16 15.9465 (15.3980,16.4950) 15.9401 (15.9370,15.9433)

105
0.01 4.5641 (4.4133,4.7149) 4.5851 (4.5820,4.5883)
0.04 7.3414 (7.1037,7.5791) 7.3198 (7.3164,7.3231)
0.16 13.7448 (13.1701,14.3195) 13.7597 (13.7562,13.7631)

110
0.01 2.7614 (2.6379,2.8849) 2.7591 (2.7568,2.7613)
0.04 5.3952 (5.1621,5.6282) 5.3747 (5.3713,5.3780)
0.16 11.8874 (11.4560,12.3188) 11.8349 (11.8316,11.8382)

Table 2: Mean estimates and 95% confidence intervals for the European call option for
the standard MC estimator and the DOI estimator. Parameter set A is used as a baseline.

4.4 Pricing of discrete down-and-out call barrier

Based on the paper by Coskun and Korn (2018), we now apply the estimator to the pricing
problem of a discretely-monitored down-and-out call barrier option. Down-and-out call
barrier contracts give a payoff of

h (ST , T ) := (ST −K)+ 1{mT>H}, mT := min
u∈T

Su (4.6)

at maturity T > 0 with strike K > 0, barrier H > 0 and with T ⊆ [0, T ] being the set of
monitoring times. The payoff is thus that of a European call option under the additional
condition that the underlying asset is not below the barrier H at any monitored time
during the lifetime of the contract. The continuosly-monitored barrier value function, i.e.
taking T = [0, T ], has an analytical Black-Scholes solution (Haug, 2007)

uBS (t, x) = xer(T−t)

(
Φ (d1)− Φ (h1)

(
H

x

)p+1
)

−K

(
Φ (d2)− Φ (h2)

(
H

x

)p−1
)

(4.7)
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for x ≥ H with

d1 :=


log x

K
+(r+ 1

2
σ2)(T−t)

σ
√
T−t

, H < K
log x

H
+(r+ 1

2
σ2)(T−t)

σ
√
T−t

, H ≥ K
,

h1 :=


log H2

xK
+(r+ 1

2
σ2)(T−t)

σ
√
T−t

, H < K
log H

x
+(r+ 1

2
σ2)(T−t)

σ
√
T−t

, H ≥ K
,

d2 := d1 − σ
√
T − t,

h2 := h1 − σ
√
T − t,

p :=
2r

σ2
.

(4.8)

When utilizing standard MC methods, we are implicitly dealing with discrete monitoring
of the barrier, as one cannot observe the potential breach of the barrier between discrete
points in time. However, as shown by Broadie et al. (1997), for a barrier H and N
equidistant discrete monitoring points, there exists the following relationship between
discrete barrier value functions uBS

N (H) and continuous barrier value functions uBS (H):

uBS
N (H) = uBS

(
He±βσ

√
T/N
)
+ o

(
1√
N

)
(4.9)

using +β for H > x (e.g. up-and-out barriers) and −β otherwise (e.g. our application
for the down-and-out barrier) with the constant β := −ζ( 1

2)/
√
2π ≈ 0.5826 for the Riemann

zeta function ζ. We utilize this corrected barrier level H at each pass of the value function
for the DOI estimator to account for the discrete monitoring. Since (4.9) is a function of
σ, the adjusted barrier must be recomputed at each evaluation of the value function. For
the equivalent analytical implementation of the DOI estimator, the dependence on σ in
(4.9) would have to be accounted for in the manually derived sensitivities.

In order to get comparative results to the paper of Coskun and Korn (2018), we utilize
parameter set B outlined in Table 3. Additionally, we use a stepsize of ∆ = 0.004 leading
to the number of time steps N = T/∆ = 125. As expressed in (2.15), if the barrier
H is crossed before maturity T , the DOI estimate from the given path will include the
integration term up until the barrier crossing at time τ ≤ T .

S0 ν0 r κ θ ξ ρ T

100 0.04 0.04 0.6 0.04 0.2 -0.8 0.5

Table 3: Parameter set B used for the discrete barrier option.

Table 4 shows summary statistics across strikes K and barriers H from 50 runs of the
estimator for each configuration with 10 000 sample paths per estimate. The Coskun-
Korn column contains the corresponding summary statistics as reported by Coskun and
Korn (2018) for the same number of sample paths.

The aforementioned paper employs a truncated Euler-Maruyama scheme, which may
explain the slight differences in estimates compared to the drift-implicit PC scheme in
(4.1). Regardless, the AD DOI and MC mean estimates are consistent across parameters.
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MC AD DOI Coskun-Korn

K H Mean Conf.Interval Mean Conf.Interval Mean Conf.Interval

90
92 10.6707 (10.4032,10.9382) 10.6629 (10.6609,10.6650) 10.7489 (10.7466,10.7512)
95 8.3302 (8.1118,8.5485) 8.3085 (8.3044,8.3126) 8.3899 (8.3847,8.3951)
98 4.6752 (4.4552,4.8952) 4.6963 (4.6904,4.7022) 4.7526 (4.7454,4.7598)

100
92 5.7400 (5.5662,5.9139) 5.7427 (5.7369,5.7486) 5.6910 (5.6849,5.6971)
95 4.7567 (4.5985,4.9148) 4.7178 (4.7142,4.7214) 4.6761 (4.6724,4.6799)
98 2.8242 (2.7039,2.9445) 2.8266 (2.8255,2.8276) 2.8158 (2.8147,2.8168)

110
92 2.1084 (2.0214,2.1955) 2.1026 (2.0961,2.1091) 2.0608 (2.0538,2.0679)
95 1.8225 (1.7409,1.9041) 1.8248 (1.8182,1.8315) 1.7750 (1.7678,1.7823)
98 1.1757 (1.1026,1.2487) 1.1832 (1.1774,1.1891) 1.1523 (1.1459,1.1587)

Table 4: Mean estimates and 95% confidence intervals for the discrete up-and-out barrier
call option with 125 monitoring points for the standard MC estimator, the AD DOI
estimator and results from the standard DOI estimator implementation from Coskun
and Korn (2018). Parameter set B is used for all estimates.

As with the European call, Table 4 shows a significant variance reduction over the MC
estimator. The width of MC confidence bands are upwards of 130 times the width of the
DOI confidence bands for the highly in-the-money case (K = 90, H = 92), and still more
than 12 times for all out-of-the-money options (K = 110).

4.5 Monitoring bias and pricing of floating-strike lookback put

We finally apply the DOI estimator to the valuation of a lookback put option with a
floating strike price. This contract gives a terminal payoff of

h (ST , T ) := max
u∈T

Su − ST (4.10)

at maturity T > 0 with the set of monitoring points T ⊆ [0, T ], and hence depends on
the maximal value attained at monitoring points throughout the horizon of the contract.
The floating strike refers to the fact that this payoff is identical to a European put option
with a strike equal to this maximal attained value of the underlying across the monitored
times of the underlying asset.

The arbitrage-free value function of the continuously-monitored contract with T = [0, T ]
in the Black-Scholes model is

uBS (t, x) = −xer(T−t)Φ (−d1)+mΦ (−d2)+
xσ2

2r

(
er(T−t)Φ (d1)−

(m
x

) 2r
σ2

Φ (d3)

)
(4.11)

using the same notation as before and assuming r > 0, and with

m := max
0≤u≤t

Su,

d1 :=
log x

m
+
(
r + 1

2
σ2
)
(T − t)

σ
√
T − t

,

d2 := d1 − σ
√
T − t,

d3 := d1 −
2r
√
T − t

σ
.

(4.12)
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The pricing formula in (4.11) was originally proven by Goldman et al. (1979), and an
alternative derivation can be found in chapter 6 of the book by Musiela (2005). As before,
this value function is readily transformed into the GBS value function by the volatility
transformation shown in Section 6.1. Besides the tracking of the rolling maximum m for
each path, no further results or additions to the implementation are necessary to utilize
the AD implementation for this contract.

When pricing contracts dependent on a continuously monitored extremal value of the
underlying, a monitoring bias occurs when using standard MC methods without addi-
tional bias corrections. In the case of the lookback put, a negative bias from monitoring
the rolling maximum on a discretized simulation would arise, as a higher payoff from
attaining a new maximum between two points cannot be observed.

This bias improves relatively slowly in the number of steps N ∈ N for MC methods relying
on a standard discretization of the underlying dynamics. While methods to overcome the
monitoring bias problem for lookback options have been proposed, e.g. by Andersen and
Brotherton-Ratcliffe (1996), such bias correction methods can be model specific and in
some cases have lead to overcorrections producing even larger biases with opposite signs
as discussed in Linetsky (2004).

We again use parameter set A for all model parameters and run both the DOI and MC
estimators using 100 000 sample paths per estimate across number of steps N = 2n for
n = 4, 5, . . . , 20, 21 in order to assess the impact on price estimation from the number of
steps used per sample path.
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Figure 6: Price estimates for floating-strike lookback puts for the DOI and MC estimators
in semi-log2 plots as functions of number of steps N . MC estimates are fitted to 1/

√
N,

DOI estimates are fitted to log2N .

The resulting MC price estimates in Figure 6 clearly reveal the large monitoring bias, even
for impractically large numbers of time steps. The DOI estimates however do not show a
comparable bias, being practically constant regardless of the number of time steps, as the
method can leverage the analytical value function for the continuous lookback option.

In particular, the increase from the smallest to the largest observed DOI estimate is below
0.03%, in stark contrast to an almost 24% increase from the MC estimate at 24 steps to the
221-step estimate. This close clustering of DOI estimates in absolute terms suggests that,
unlike the MC estimator, any possible monitoring bias is of limited practical concern.
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In order to get a comparable pricing problem for the MC and DOI estimators, we now
take the same approach as in Section 4.4 by utilizing the following relationship shown by
Broadie et al. (1999) between the discrete floating-strike lookback put value function uBS

N

with N equidistant monitoring points and the continuous value function uBS:

uBS
N (m) = e−βσ

√
T/NuBS

(
meβσ

√
T/N
)
+ xer(T−t)

(
e−βσ

√
T/N − 1

)
+ o

(
1√
N

)
(4.13)

where β is defined as in Section 4.4 and x,m refers to the underlying value and (dis-
cretely) observed maximum respectively. By applying the above transformation to the
value function, we obtain a variance reduced estimator of the discrete problem. As with
the barrier option, replicating this approach with the non-AD method requires manual
derivation of the sensitivities of the transformed value function (4.13).

MC AD DOI

S0 ν0 Mean Conf.Interval Mean Conf.Interval

90
0.04 11.7428 (11.5299,11.9557) 11.7021 (11.6977,11.7064)
0.16 24.1983 (23.8682,24.5283) 24.2618 (24.2559,24.2677)
0.36 38.4869 (38.0183,38.9556) 38.5792 (38.5739,38.5844)

95
0.04 12.4053 (12.2282,12.5824) 12.3527 (12.3476,12.3579)
0.16 25.5533 (25.2243,25.8823) 25.6093 (25.6051,25.6135)
0.36 40.6457 (40.1154,41.1760) 40.7234 (40.7165,40.7303)

100
0.04 13.0540 (12.8480,13.2600) 13.0023 (12.9965,13.0082)
0.16 26.8630 (26.5003,27.2257) 26.9580 (26.9533,26.9628)
0.36 42.8005 (42.2420,43.3589) 42.8666 (42.8596,42.8736)

105
0.04 13.6964 (13.4576,13.9352) 13.6522 (13.6468,13.6575)
0.16 28.1811 (27.8040,28.5581) 28.3054 (28.2986,28.3123)
0.36 44.9436 (44.4033,45.4838) 45.0092 (45.0026,45.0158)

110
0.04 14.3338 (14.1287,14.5389) 14.3023 (14.2967,14.3079)
0.16 29.5346 (29.1753,29.8938) 29.6533 (29.6476,29.6590)
0.36 47.0962 (46.5446,47.6477) 47.1536 (47.1470,47.1602)

Table 5: Mean estimates and 95% confidence intervals for the discrete floating-strike
lookback put option with 200 monitoring points for the standard MC estimator and the
DOI estimator. Parameter set A is used as a baseline.

Table 5 shows summary statistics across initial values of the underlying S0 and intial
variances ν0 with 200 time steps, 10 000 sample paths per estimate and 50 runs for each
set of parameters. After applying the bias correction transformation, the mean estimates
of the MC and DOI estimates are now closely aligned across model parameters, while the
reduction in confidence intervals is consistent with the previous pricing problems.
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5 Conclusion
This paper demonstrated how the use of AD methods can augment the DOI estimator
introduced by Heath and Platen by allowing for efficient and numerically stable evaluation
of value sensitivities with dual numbers, while mitigating the complications involved in
applying the estimator to general valuation problems, as only the Black-Scholes price and
a suitable transformation are needed to achieve significant variance reduction.

We benchmarked the estimator in the valuation of European calls in the Heston model,
where we saw an improvement of orders of magnitude in REs for the same number of paths
compared with the standard MC estimator, with gains in computational time exceeding
three orders of magnitude for the same expected REs in the benchmarked at-the-money
option.

The implementation was further applied to the valuation of the discrete down-and-out
barrier call, where the monitoring bias correction impact on sensitivities was effectively
handled by the dual number approach. Finally, the estimator was applied to both contin-
uous and discrete floating-strike lookback put options. Close clustering of price estimates
in the continuous case across a large range of number of steps indicate that the monitor-
ing bias, which severely limits effective valuation with traditional MC methods for this
class of options, is of limited practical concern.

6 Appendix

6.1 Black-Scholes with transformed volatility

Value functions in the GBS model can be fully characterized by Black-Scholes value
functions with transformed volatilities; to see this, note that for the GBS dynamics (2.18)
starting from strictly positive initial values (S̄t, ν̄t) = (x1, x2) on the finite horizon [t, T ]
with T > t, we have that

S̄t,T = x1er(T−t)− 1
2

∫ T
t ν̄t,s ds+

∫ T
t

√
ν̄t,s dWs , (6.1)

for a Q-Brownian motion W .

By the Dambis-Dubins-Schwarz theorem (Revuz and Yor, 1999), we can represent the
stochastic integral in (6.1) as a time-changed Brownian motion∫ T

t

√
ν̄t,s dWs

d
= W∫ T

t ν̄t,s ds

d
=

√∫ T

t
ν̂t,s ds

T − t
WT−t,

(6.2)

hence the analytical solution to the approximating variance ODE8 shows that

S̄t,T
d
= x1e(r−

1
2
σ̄2
t,T )(T−t)+σ̄t,TWT−t (6.3)

8This is a first order linear inhomogeneous ODE with constant coefficients, hence the analytical
solution is ν̄t,T = θ + (ν̄t − θ)e−κ(T−t) s.t.

∫ T

t
ν̄t,s ds = θ(T − t) + ν̄t−θ

κ

(
1− e−κ(T−t)

)
.
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with
σ̄2
t,T := θ +

x2 − θ

κ(T − t)

(
1− e−κ(T−t)

)
. (6.4)

The representation in (6.3) directly implies that a value function ū(t, x) in the GBS model
starting from values x = (x1, x2) can be expressed equivalently as

ū(t, x) = EQ

[
h(T, ST ) | S̄t = x1, ν̄t = x2

]
= uBS

σ̄t,T
(t, x1)

(6.5)

for the corresponding Black-Scholes value function uBS
σ̄ (t, x1) with modified volatility σ̄t,T

computed as in (6.4) from the initial value ν̄t = x2 for the deterministic variance process.

While this example is based on the approximating dynamics for the Heston model (2.18),
the above approach can be applied in exactly the same manner for a wide variety of
approximating variance processes with analytical solutions to drift ODEs, e.g. multifactor
Heston models (Gourieroux and Sufana, 2004), the 3/2 geometric mean reversion model
proposed by Platen (1997) or the multifactor model of Grasselli (2016).

6.2 Analytical diffusion operator for the European call

The analytical solution to the (differenced) diffusion operators in (2.20) for the European
call option can be derived from computing the derivatives of the value function (4.4) after
applying the transformation outlined in Section 6.1.

Due to non-constant volatility in the GBS model, the chain rule is required in order to
account for the time-varying volatility dynamics. In particular, we have

∂ν ū = ∂σ̄u
BS
σ̄ · ∂ν σ̄,

∂νν ū = ∂σ̄σ̄u
BS
σ̄ · (∂ν σ̄)2 + ∂σ̄u

BS
σ̄ · ∂νν σ̄,

∂Sν ū = ∂Sσ̄u
BS
σ̄ · ∂ν σ̄

(6.6)

with ν denoting the realization of the stochastic volatility process (2.17) used as the
starting value of the approximating deterministic volatility ODE at each point in time.
Since the approximating volatility satisfies

σ̄ = σ̄t,T =

√
θ +

ν − θ

κ (T − t)
(1− e−κ(T−t)) (6.7)

it follows that

∂ν σ̄ =
1− e−κ(T−t)

2κ (T − t)

1

σ̄
(6.8)

and subsequently

∂νν σ̄ =
1− e−κ(T−t)

2κ (T − t)
∂ν

[
1

σ̄

]
= −1− e−κ(T−t)

2κ (T − t)

1

σ2
∂ν σ̄

= −(∂ν σ̄)
2

σ̄
.

(6.9)
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Letting φ denote the standard normal density, we have the well-known sensitivies from
the Black-Scholes model (Haug, 2007):

∂σ̄u
BS
σ̄ = er(T−t)Sφ (d1)

√
T − t,

∂σ̄σ̄u
BS
σ̄ = ∂σ̄u

BS
σ̄

d1d2
σ̄

,

∂Sσ̄u
BS
σ̄ = −er(T−t)φ (d1)

d2
σ̄
.

(6.10)

Substituting these into (6.6) and simplifying, we finally have

∂νν ū = er(T−t)Sφ (d1)
d1d2 − 1

σ̄3

(
1− e−κ(T−t)

)2
4κ2 (T − t)

3/2
,

∂Sν ū = −er(T−t)φ (d1)
d2
σ̄2

1− e−κ(T−t)

2κ (T − t)
,

(6.11)

which gives us the necessary terms in (2.20).
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Claim distribution in continuous time
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Abstract

This article generalizes the scalable reward distribution methodology
(colloquially referred to as "the billion-dollar algorithm") to a continu-
ous time framework encompassing a wide range of special cases. Several
smart contract vulnerabilities that arise in practice are discussed in re-
lation to the proposed methods, after which notions are introduced to
enable the interpretation of blockchains as stochastic processes com-
patible with the established framework. Filtrations that capture the
sequential flow of information available to smart contracts in their exe-
cution are formalized, along with the concept of monitoring of processes
that are not observable to contracts in general under these filtrations.
Concrete pseudocode implementations are then presented.
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1 Introduction
This article generalizes the scalable reward distribution method (colloquially known as
"the billion-dollar algorithm"), originally proposed by Batog et al. (2018) specifically for
distribution of rewards on the Ethereum blockchain (Buterin, 2013). A continuous time
stochastic setup is formulated to model the allocation of claims among a set of accounts
based on their (changing) relative shares, for which a constant time evaluation scheme is
derived. Examples of practical special cases with additional structure imposed on claims
processes are then covered, including claims backed (fully or partially) by deposits, along
with delayed claim allocation governed by dynamics that derive from these deposits.

Several concepts and definitions are then introduced to enable the discussion of smart con-
tract compatible blockchains in a general (implementation-agnostic) way. The presence of
multiple simultaneous states in a single block and associated contract vulnerabilities are
discussed in relation to the proposed methods. A totally-ordered sequential structure is
then proposed, reconciling the simultaneous states in individual blocks with a stochastic
process interpretation compatible with the established framework.

Suitable filtrations that model the flow of information within- and across blocks are
formalized, which in turn suggest issues in the implicit reliance on deposit processes which
are not generally observable by contracts. This is subsequently addressed by the concept
of monitoring of processes within contract execution contexts, enabling implementations
of deposit-based claim allocations based on observable lower bounds.

Special cases of the structure formalized in this article are widely utilized in practice,
including in the Uniswap V3 Staker contract.1 While implementations often rely on
instant- or linear allocation of claims to participating accounts, the delayed allocation
structure formalized in Section 2.3.3 enables dynamics that derive from a general class of
monotonic Lipschitz-continous functions, including the concrete example provided of an
exponential specification in Section 4.3.

The article is organized as follows: Section 2.1 provides an illustrative example of the
constant time evaluation scheme that is indicative of the more general case to come.
Section 2.2 establishes the continuous time stochastic framework for a general class of
total claims processes, along with a scheme for the evaluation of claims allocated to
individual accounts. Section 2.3 then covers several special cases of this setup.

Section 3.1 develops general notions around blockchains and smart contracts. Section 3.2
discusses the non-uniqueness of state within each block and potential contract vulner-
abilities that can arise. Section 3.3 finally provides an interpretation of blockchains as
stochastic processes (on a filtered probability space) compatible with the framework- and
special cases previously discussed.

Section 4 provides pseudocode of concrete implementations of contracts in the fully backed
special case, with one example replicating the instant allocation of claims analogous to
Batog et al. (2018), and another demonstrating delayed exponential allocation of claims.
Section 5 concludes the article.

1https://web.archive.org/web/20231209115558/https://docs.uniswap.org/contracts/v3/
reference/periphery/staker/UniswapV3Staker

1

Claim distribution in continuous time

53



2 Distribution of claims

2.1 An illustrative example

Alice and Bob are co-owners in a new business with an agreement that every owner is
entitled to, at any time of their choosing, redeem their claims to a fraction of total profits
in proportion to their relative share in the business at the time of sales. Alice will be
responsible for maintaining the accounting of these claims on a ledger.

In the first week, the business makes a total profit of $500 and Bob wants to redeem
$100 of his claims. They have equal shares, and so Alice allocates $250 to herself and
$250− $100 = $150 to Bob. Two days later, Alice wants to redeem all of her claims; the
business has made another $100, and so Alice adds $50 to Bob’s existing entry of $150
and clears her own entry to $0 after receiving her $300.

Five days later, Alice and Bob agree to each sell 10% of their shares to Charlie. Because
the relative stakes are changing, Alice needs to immediately allocate the profits of $700
accrued since the last update of their spreadsheet: Alice and Bob are allocated $350 each,
followed by adding another entry for Charlie with an initial allocation of $0. After only
thirty minutes, Charlie demands his rightful 20% share of the accumulated $5 profit -
and so each entry is again updated in the ledger: an additional $2 is allocated to Alice
and Bob, while Charlie redeems his $1 and is left with $0 in remaining claims.

Five hours later, another $20 profit has been made, at which point Charlie sells half of
his shares to Dan, who plans to gift tiny fractions of his shares to every member of his ex-
tended, liquidity-strapped family over the coming days. Alice subsequently contemplates
whether to hire an accountant or sell her remaining shares in the business.

Alice Bob Charlie Dan ... Profit

0 [50%] 0 [50%] 0
250 [50%] 150 [50%] 500

0 [50%] 200 [50%] 100
350 [40%] 550 [40%] 0 [20%] 700
352 [40%] 552 [40%] 0 [20%] 5
360 [40%] 560 [40%] 4 [10%] 0 [10%] 20

...
...

...
...

...
...

Table 1: Centralized ledger of claims.

The problem that arises in the above approach is related to the time complexity in the
structure used for allocating claims: every time any owner wants to redeem their claims
or transfer their shares, every entry of the ledger needs to be updated. More precisely:
the number of operations required for updating the ledger grows linearly, O(N), in the
number of owners N (Knuth, 1997).

Worse still, this linear growth is per update. If every new owner redeems claims at
similar frequencies independently of other owners, the frequency of updates also grows
linearly. Finally, if new owners continue to sell parts of their own shares at an identical
pace to create even more owners, we end up with exponential growth in the number of
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owners, each triggering yet more ledger updates - and with each ledger update requiring
a linearly-growing number of operations, ledger management rapidly grows out of hand.

Fortunately, an alternative approach exists that requires fewer operations overall and
distributes the workload among owners in a "fair" way. All owners together keep track
of the total (cumulative) profits noted down on a shared ledger, while each owner
additionally tracks two values for themselves: Redeemable/Last Profit.

Any time any new- or existing owner has a change in their share or wants to redeem their
claims, they go through the following steps (in order):

1. Add new profits (if any) to the shared Total Profit.

2. Add Share · (Total Profit− Last Profit) to Redeemable.

3. Set Last Profit equal to Total Profit.

4. Subtract redeemed amount (if any) from Redeemable.

5. Update Share to new value (if any).

Instead of immediately allocating the accumulated profits of each period among all owners
according to their relative share, owners individually track the accumulation of profits in
partitions of time where their own shares remain constant, thereby decoupling the timing
of allocations from other owners. This leverages that an owners claims within any interval
of time with a constant share will be the corresponding share of profits accumulated in
this period - independently of how other shares are distributed in the interim.

Unlike the first approach, these steps do not depend at all on how many owners have
shares in the business, or what other owners do with their shares: the time complexity
is constant - O(1). No matter how many more owners get involved or how frequently
they redeem their share of profits, no other owner has to perform any updates until they
themselves redeem claims or have a change in their share.

Alice Bob Charlie Dan ... Total Profit

0/0 [50%] 0/0 [50%] 0
150/500 [50%] 500

0/600 [50%] 600
350/1300 [40%] 550/1300 [40%] 0/1300 [20%] 1300

0/1305 [20%] 1305
4/1325 [10%] 0/1325 [10%] 1325

...
...

...
...

...
...

Table 2: Distributed ledger of claims.

Constant time algorithms are particularly important for smart contracts (computer pro-
grams that run on a blockchain) due to the expensive nature of storage and operations.
Methods such as the above are prime candidates in such contexts, as they provide a
combination of computational efficiency, scalability and simple handling of transaction
costs (with each account simply paying for their own computations and storage, which
are unaffected by other accounts).
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Smart contracts enable the implementation of methods akin to the above in a trustless
environment that does not require owners to trust that others accurately and honestly
track the redemption of their own claims, as this will be handled autonomously by an
immutable set of publicly visible program instructions embedded in smart contracts.

The remainder of the article formalizes the core principle of this approach in the evaluation
of allocations from a general continuous time stochastic process to accounts based on
their (changing) relative shares. Various aspects of blockchains and smart contracts are
then formalized in order to translate these methods into practice, followed by concrete
examples of pseudocode implementations.

2.2 Continuous time claim distribution

2.2.1 Share processes

We assume a probability space (Ω,F , P ) with an augmented filtration F := (Ft)t≥0 and
let q := (qt)t≥0 be a left-continuous with right limits (LCRL) process of the form

qt :=
∞∑

i=1

Zi1{τi−1<t≤τi} (2.1)

for an increasing sequence of F-stopping times Q := (τi)i∈N0 with 0 = τ0 < τ1 < . . .
and a sequence of real-valued non-negative random variables Z := (Zi)i∈N with Z1 = 0,
Zi ̸= Zi+1 and Fτi−1

-measurability of Zi for i ∈ N such that q is F-adapted; and in
particular, F-predictable.

Let A := {A,B, . . .} be a countable index set for a family of LCRL processes p := (pA)A∈A
with each process pA := (pAt )t≥0 of the form

pAt :=
∞∑

i=1

ZA
i 1{τi−1<t≤τi} (2.2)

for sequences of real-valued non-negative random variables ZA := (ZA
i )i∈N with Fτi−1

-
measurability of ZA

i for i ∈ N, and assume that
∑

A∈A ZA
i

a.s.
= Zi for all i ∈ N such that∑

A∈A pAt
a.s.
= qt.

Denote further by PA := (τAi )i∈N0
the smallest subsequences of Q for which pA is constant

in (τAi−1, τ
A
i ] for i ∈ N and let Z̄A := (Z̄A

i )i∈N be the corresponding subsequences of ZA

such that Z̄A
i ̸= Z̄A

i+1 for i ∈ N and

pAt =
∞∑

i=1

ZA
i 1{τi−1<t≤τi} =

∞∑

i=1

Z̄A
i 1{τAi−1<t≤τAi } (2.3)

for all t ≥ 0 and A ∈ A.

We refer to pA as the shares of account A and define its relative share hA := (hA
t )t≥0 as

hA
t :=

{
pAt
qt
, qt ̸= 0

0, qt = 0
. (2.4)

Since 0 ≤ pAt ≤
∑

B∈A pBt
a.s.
= qt for all t ≥ 0, it follows that qt = 0 implies pAt

a.s.
= 0 for all
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A ∈ A, while qt > 0 implies

∑

A∈A

ht =

∑
A∈A pAt
qt

a.s.
=

qt
qt

= 1, (2.5)

hence the family of relative shares h := (hA)A∈A almost surely (a.s.) constitute a convex
combination on intervals (τi−1, τi] where qt = Zi ̸= 0.

2.2.2 Total claims processes

Let the cumulative total claims X := (Xt)t≥0 be a real-valued F-adapted right-continuous
with left limits (RCLL) process and define the total allocated claims as

XQ
t := −X01{t<τ+} +

∞∑

i=1

(
Xt1{Zi>0} +Xτi−1

1{Zi=0}
)
1{τi−1≤t<τi} (2.6)

for the first hitting time

τ+ := inf{t ≥ 0 : qt > 0}, (2.7)

which is an F-stopping time by the Début theorem (Nikeghbali, 2006). Since τ0 = 0,
Z1 = 0 and Z1 ̸= Z2 ≥ 0, it follows that τ+

a.s.
= τ1.

The total allocated claims process XQ (2.6) effectively "pauses" the total claims on
intervals [τi−1, τi) where q+ = 0 (in the sense of right limits), ending in an immediate
jump to the value of the underlying total claims process X at τi. Subtracting X0 until
the first hitting time of {q > 0} further ensures that the total allocated claims start at
zero (even if X does not), and remain so up until τ+.

X

XQ

q

pA

pB

t

( ]( ]( ]( ]( ]( ]( ]( ]( ]( ]( ]( ]( ]
Q

( ]( ]( ]( ]( ]( ]( ]( ]( ]( ]
PA

( ]( ]( ]( ]( ]( ]( ]( ]( ]( ]
PB

Figure 1: Share processes and allocated total claims XQ.
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We next define the family of F-adapted processes Γ := (Γi)i∈N with Γ1 = 0 and

Γi
t :=

{
1
Zi

(
XQ

τi∧t −XQ
τi−1∧t +∆XQ

τi−1
1{τi−1<t}1{Zi−1=0}

)
, Zi > 0

0, Zi = 0

=

{
1
Zi

(
Xτi∧t −Xτi−1∧t +∆XQ

τi−1
1{τi−1<t}1{Zi−1=0}

)
, Zi > 0

0, Zi = 0

(2.8)

for i > 1, where

∆XQ
t := XQ

t − lim
s↗t

XQ
s = XQ

t −XQ
t− (2.9)

denotes the jump in XQ at time t. Each Γi process then corresponds to the accumulation
of allocated claims normalized by q in a period (τi−1, τi] where q is constant, including
a (left-continuous) jump term when Zi−1 is zero. While each Γi is zero up until (and
including) time τi−1, only those without the jump term (i.e. with Zi−1 > 0 or Zi = 0) are
also right-continuous at τi−1.

Note that ∆XQ
τi−1

for i > 2 in (2.8) can be equivalently expressed in terms of the change
in X since Xτi−2

, as for any i > 2 with Zi−1 = 0 and Zi > 0:

∆XQ
τi−1

= XQ
τi−1
− lim

s↗τi−1

XQ
s = Xτi−1

−Xτi−2
(2.10)

by (2.6), where Zi > 0 implies XQ
τi−1

= Xτi−1
and Zi−1 = 0 implies XQ

s = Xτi−2
for all

s ∈ [τi−2, τi−1), hence in particular the left limit of τi−1.

This enables the rewriting of (2.8) for Zi > 0 as

Γi
t =

{
1
Zi

(
Xt −Xτi−2

)
, Zi−1 = 0

1
Zi

(
Xt −Xτi−1

)
, Zi−1 ̸= 0

(2.11)

for i > 2 with t ∈ [τi−1, τi], from which it follows for s ∈ [τi−1, t) that

Γi
t − Γi

s =

{
1
Zi

(
Xt −Xτi−2

)
− 1

Zi

(
Xs −Xτi−2

)
, Zi−1 = 0

1
Zi

(
Xt −Xτi−1

)
− 1

Zi

(
Xs −Xτi−1

)
, Zi−1 ̸= 0

=
1

Zi

(Xt −Xs) .

(2.12)

Meanwhile for i = 2 with τi−1 = τ1
a.s.
= τ+:

lim
s↗τ1

XQ
s

a.s.
= lim

s↗τ+
XQ

s = −X0 +Xτ0 = −X0 +X0 = 0 (2.13)

by construction (2.6) such that ∆XQ
τ1

a.s.
= Xτ1 and

Γ2
t =

1

Z2

(
XQ

t −XQ
τ1
+∆XQ

τ1

)
a.s.
=

1

Z2

XQ
t =

1

Z2

(Xt − 0) (2.14)

for t ∈ [τ1, τ2].

The above shows how both the direct evaluation of Γi on [τi−1, τi] and incrementing
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this from a previous value of Γi have the same form: namely as the change since some
previously observed value of X (starting at zero) up to the "current time" scaled by 1/Zi

- which is not surprising, since all Γi start at zero.

We finally define the total relative claims as

ξt :=
∞∑

i=1

Γi
t (2.15)

which will represent the cumulative allocated claims per share. Since each Γi in this
sum will be constant outside "its interval" (τi−1, τi], an incremental scheme for evaluating
(2.15) up to an arbitrary time t ≥ 0 arises in a natural way from the structure on the
individual Γi processes noted above.

XQ

1

q

t

Γ

ξ

Figure 2: Total relative claims ξ =
∑∞

i=1 Γ
i and inverse total shares 1/q.

2.2.3 Incremental evaluation of relative claims

We now show how the total relative claims ξ (2.15) can be evaluated in an incremental
manner, keeping track of only the running value of ξ, previous values of X and (right
limits) q+. By construction we have that ξ0 = 0, and this remains so at least up until
time τ+

a.s.
= τ1, at which point the value qτ1+ = Z2 > 0 is stored as the variable q.

Following this, ξ can (optionally) be incremented to any arbitrary time s ∈ (τ1, τ2) using

ξs = Γ1
s︸︷︷︸

=0

+ Γ2
s +

∞∑

i=3

Γi
s︸︷︷︸

=0

=
1

Z2

XQ
s =

1

q
XQ

s , (2.16)

at which point the value of Xs is stored as X−, allowing for further incrementing ξ by

ξt − ξs =
(
Γ2
t − Γ2

s

)
=

1

q
(Xt −X−) (2.17)

up to any time t < τ2, continuously updating the stored value of X− on each increment.

From time τ2, Γ2 will remain constant up to all future times, and so the final value of Γ2 is
incorporated into ξ, with the values Xτ2 and qτ2+ = Z3 stored for subsequent increments
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via evaluations of Γ3. Notably, this does not require having evaluated Γ2 at any previous
point of the interval due to the aforementioned equivalence between incrementing Γ2 and
direct evaluation from the stored X− value: adding the change in X scaled by 1/q will
always ensure that Γ2 is fully captured in ξ.

This procedure can be applied indefinitely moving forward, updating the values of X−
(and q) whenever ξ is (optionally) evaluated between- or at times (necessarily) where q
has a discontinuity. When times τi−1 with Zi = 0 are reached, Xτi−1

is kept until τi with
Zi+1 > 0, at which point q is updated and the steps outlined above are repeated.

Algorithm 1 Evaluation of ξtN for a supersequence 0 = t0 < t1 < . . . < tN of Q.
Input: (Xt0 , Xt1 , . . . , XtN ), (qt0+, qt1+, . . . , qtN+)
Output: ξtN
1: ξ,X−, q ← 0 ▷ Initialize variables
2: for n = 0, 1, . . . , N do
3: if q > 0 then
4: ξ ← ξ + 1

q
(Xtn −X−) ▷ Increment ξ based on change in X

5: X− ← Xtn ▷ Store Xtn for next change in X
6: q ← qtn+ ▷ Update q for next ξ increment
7: return ξ

Despite the slightly involved nature of constructing the underlying processes, the practical
evaluation as outlined in the pseudocode of Algorithm 1 is very simple. The same update
logic is applied at all times, and all of the above cases are captured by simply updating q
after incrementing ξ and updating X− (whenever the previous value of q was positive),
with all variables initialized to zero. As long as at least all stopping times τi, i ∈ N0 in Q
where q is discontinuous are included in the evaluation, this scheme will track ξ exactly.

2.2.4 Account claim allocations

We let XA refer to the cumulative claims allocated to account A ∈ A from XQ based on
its relative share hA such that for τi−1 < s ≤ t ≤ τi:

XA
t −XA

s = hA
s

(
XQ

t −XQ
s

)
=

ZA
i

Zi

(
XQ

t −XQ
s

)
. (2.18)

It may then be tempting to take XA to be the stochastic integral
∫
hA dXQ (Revuz and

Yor, 1999) - however this has the problem that for e.g. t ∈ (τ1, τ2] where τ1
a.s.
= τ+:
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∑

A∈A

∫ t

0

hA
u dXQ

u =
∑

A∈A



∫ τ+

0

hA
u︸︷︷︸

=0

dXQ
u +

∫ t

τ+
hA
u dXQ

u




=
∑

A∈A

(
ZA

2

Z2

(
XQ

t −XQ
τ+

))

=
(
XQ

t −XQ
τ+

)∑

A∈A

ZA
2

Z2

= XQ
t −XQ

τ+

̸= XQ
t

(2.19)

such that any jumps in XQ at τ+ that were explicitly accounted for in the Γ processes
(2.8) are missed, hence the sum of these integrals will not in general correspond to the
total allocated claims XQ.

Instead, we take

XA
t :=

∞∑

i=1

ZA
i

(
ξτi∧t − ξτi−1∧t

)
=

∞∑

i=1

ZA
i Γ

i
t (2.20)

with the latter equality following from

ξτi∧t − ξτi−1∧t =
∞∑

j=1

Γj
τi∧t −

∞∑

j=1

Γj
τi−1∧t = Γi

τi∧t − Γi
τi−1∧t︸ ︷︷ ︸
=0

= Γi
t, (2.21)

since the Γj terms outside j = i cancel, Γi is zero up until (and including) τi−1 and Γi is
constant after τi. The account claims XA will then correspond to the Γ processes scaled
by the shares of account A in the applicable intervals, and with t ∈ (τ1, τ2] as above:

∑

A∈A

XA
t =

∑

A∈A

(
∞∑

j=1

ZA
j Γ

j
t

)

=
∑

A∈A


ZA

1 Γ1
t︸︷︷︸

=0

+ ZA
2 Γ

2
t +

∞∑

j=3

ZA
j Γj

t︸︷︷︸
=0




a.s.
=
∑

A∈A

(
ZA

2

1

Z2

(
XQ

t −XQ
τ+ +∆XQ

τ+

))

= XQ
t

∑

A∈A

(
ZA

2

1

Z2

)

︸ ︷︷ ︸
=1

(2.22)

since the jump in XQ at time τ+
a.s.
= τ1 is included in the Γ2 process by (2.8). Further

increments will then simply be the sum of the scaled changes in X up until the next time
with q+ = 0, after which the jump will again be incorporated in a subsequent Γ process
when q > 0.
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The Γ processes are constructed to explicitly handle the issue of left-continuous integrands
hA with respect to an RCLL integrator XQ potentially "missing" the point mass of XQ

at the onset of intervals with hA
+ > 0 following hA = 0. By shifting the jump term into a

left-continuous term in ξ, the account claims processes as defined in (2.20) will include
these jumps.

In general, the sum over all accounts will agree with XQ at all points except the singular
points in time τi at which XQ jumps in the transition from an interval [τi−1, τi,) with
Zi = 0 to [τi, τi+1) with Zi+1 > 0 due to the left-continuity of the jump term in (2.8).

2.2.5 Incremental evaluation of account claims

We finally show how the evaluation of account claims can be combined with the evaluation
of the total relative claims ξ discussed in Section 2.2.3 in a manner that distributes the
computation of increments of ξ across accounts, analogous to the illustrative example
covered in Section 2.1.

First, Algorithm 2 shows the pseudocode for the evaluation of some isolated XA up
to time tN based on the definition in (2.20) using the previous steps for evaluating ξ.
This requires additional variables for keeping track of XA and the changes in ξ between
increments. The evaluation necessitates incrementing ξ at least at all times τ0, τ1, . . .
where q is discontinuous - even across intervals of times in which pA remains constant
throughout.

Algorithm 2 Evaluation of XA
tN

for a supersequence 0 = t0 < t1 < . . . < tN of Q.

Input: (Xt0 , Xt1 , . . . , XtN ),
(
pAt0+, p

A
t1+

, . . . , pAtN+

)
, (qt0+, qt1+, . . . , qtN+)

Output: XA
tN

1: ξ, ξA−, X−, X
A, pA, q ← 0 ▷ Initialize variables

2: for n = 0, 1, . . . , N do
3: if q > 0 then
4: ξ ← ξ + 1

q
(Xtn −X−) ▷ Increment ξ based on change in X

5: X− ← Xtn ▷ Store Xtn for next change in X
6: XA ← XA + pA

(
ξ − ξA−

)
▷ Increment XA account claims

7: ξA− ← ξ ▷ Store ξ for next increment of account claims
8: q ← qtn+ ▷ Update q for next ξ increment
9: pA ← pAtn+ ▷ Update pA for next XA increment

10: return XA

However, for any interval (s, t] ⊆ (τAi−1, τ
A
i ] with τA and Z̄A as defined in Section 2.2.1:

XA
t −XA

s = Z̄A
i (ξt − ξs) (2.23)

since pA = Z̄A
i on (τAi−1, τ

A
i ], i.e. only the values ξt and ξs are needed in addition to

Z̄A
i to evaluate the increment in XA in intervals where pA is constant - even if many

discontinuities in q occurred in (s, t].

Since ξ is identical across XA for all A ∈ A and no discontinuities in any pA can occur
outside of times τ0, τ1, . . . in Q, the incremental updates of ξ needed for evaluating XA

when pA has a discontinuity can be distributed across accounts. By incrementing a shared
global ξ value each time any account has a change in shares (and thus would need to
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increment ξ regardless in order to then increment XA prior to a change in shares), all
accounts are ensured an up-to-date ξ value "for free".

0.0

0.5

1.0
hA hB

−10

0

10

20
XA

XQ

XB

XQ

−100
0

100

101

pA

ξ

pB

ξ

t

−10

0

10

20 ∑
pA∆ξ

XA

t

∑
pB∆ξ

XB

Figure 3: Account claims XA as sums of pA∆ξ over PA.

Sharing the incremental computation of ξ enables a substantial reduction in the steps
necessary for evaluating XA in cases where pA has few changes relative to q, as incre-
menting ξ will then only be necessary at times in PA (where pA is discontinuous), i.e.
from the perspective of account A, t0 < t1 < . . . < tN need only be a supersequence of
PA - not Q. This would even work for Algorithm 2 without any further changes - other
than making ξ, X− and q global variables shared across accounts with the assumption
that these are updated by at least one account at all times τ0 < τ1 < . . . in Q.

Algorithm 2 remains relatively well-behaved in this setup even when multiple XA are
evaluated at the same time t - because X is global and updated to Xt on the first
increment to ξ, any subsequent increments at time t will necessarily be zero, since the
stored value of X will already be Xt, and the initial increment will always use the correct
value of q, as this cannot be updated before the ξ increment.

However, with multiple executions of Algorithm 2 at time t, it is possible for the stored
value of q to change from q = 0 initially to q > 0 after the first execution, leading to the
jump term in (2.8) potentially being incorporated in a right-continuous manner. This can
be prevented by (globally) storing the time of updates to q and explicitly skipping the ξ
update step whenever the current time is not (strictly) greater, as shown in Algorithm 3,
ensuring that ξ is only updated after q+ = 0 - consistent with the left-continuity of the
jump term in Γ and that these always start at zero.

In practice, the value of q may not itself be readily available without each individual
change in shares being "registered" - and in fact, this too can be tracked as part of the
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distributed scheme as long as the above prevention of multiple updates of ξ at the same
time t ≥ 0 is implemented. Whenever an account has a change in their share, they
simply increment both their (local) stored pA variable and the (global) total shares q.
Since multiple increments of ξ cannot happen at time t, the order in which these changes
in shares are added to q does not matter, as any allocation of claims will be delayed until
after time t (where all changes in shares will have already been incorporated into q).

Algorithm 3 Distributed evaluation of XA
tN

for a supersequence 0 = t0 < t1 < . . . < tN
of PA. Assumes global variables are kept up-to-date via increments from other accounts
at the time of changes in their share.

Input: (Xt0 , Xt1 , . . . , XtN ),
(
∆pAt0+,∆pAt1+, . . . ,∆pAtN+

)

Output: XA
tN

1: Globals: ξ,X−, q, t− ← 0 ▷ Initialize global variables
2: Locals: ξA−, X

A, pA ← 0 ▷ Initialize local (per account) variables
3: for n = 0, 1, . . . , N do
4: if q > 0 ∧ tn > t− then
5: ξ ← ξ + 1

q
(Xtn −X−) ▷ Increment ξ based on change in X

6: X− ← Xtn ▷ Store Xtn for next change in X
7: XA ← XA + pA

(
ξ − ξA−

)
▷ Increment XA account claims

8: ξA− ← ξ ▷ Store ξ for next increment of account claims
9: q ← q +∆pAtn+ ▷ Increment q for next ξ increment

10: pA ← pA +∆pAtn+ ▷ Increment pA for next XA increment
11: t− ← t ▷ Store current time to prevent simultaneous updates
12: return XA

2.3 Special cases

2.3.1 Bounded claims

Until now, we worked with very general total claims processes X, imposing only that
these were RCLL and F-adapted. Notably, X in this setup can decrease and even be
negative, in which case a likely interpretation of redeeming a claim would be the account
paying out the (absolute) allocated amount, rather than receiving it.

In this and subsequent sections, we focus on special cases with non-negative bounded
claims, restricting the total claims process X further to be non-negative, non-decreasing
(hence finite variation) and bounded from above by a process U := (Ut)t≥0, assumed to
also be a non-negative non-decreasing F-adapted real-valued RCLL process such that

Xt ≤ Ut (2.24)

a.s. at all times t ≥ 0. Note that if this bound is satisfied for X, the allocated process
XQ (see Section 2.2.2) will also adhere to this upper bound, since XQ ≤ X if X is
non-negative and non-decreasing.

By requiring claims to be non-negative and non-decreasing, we exclude the potential for
redemption of claims to have a timing component to consider. For example, if redemption
of allocated claims by accounts is voluntary, accounts A ∈ A are incentivized to time their
redemption of claims when the value of XA is "high" - and accounts may never redeem
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Figure 4: Claims processes bounded by U .

a negative claim. If claims are non-decreasing, there is no such timing factor in the
redemption, as allocations can only increase over time.

2.3.2 Fully backed claims

Take two processes Y +, Y −, both assumed to be non-negative non-decreasing F-adapted
real-valued RCLL processes with Y + ≥ Y −, and let

Yt := Y +
t − Y −

t (2.25)

represent the net asset balance process of some account, composed of subtracting cumu-
lative withdrawals (outflows) Y − from cumulative deposits (inflows) Y +.

If we interpret the account balance of Y as one backing the total claims X such that Y −

corresponds precisely to the redemption of claims (hence Y − ≤ XQ ≤ X), we can choose
U := Y + as an upper bound in (2.24) to ensure that any allocated claims are fully backed
by a corresponding deposit represented in the underlying account for Y (which we refer
to as the claims account), since then

Yt = Y +
t − Y −

t ≥ Y +
t −Xt = Ut −Xt ≥ 0 (2.26)

a.s. at all times t ≥ 0 - i.e. the net balance process remains non-negative, hence the
claims account will always be solvent with respect to the redemption of claims.

Taking then e.g. X := Y + will correspond to the instant allocation of new deposits
towards claims across accounts with positive shares p, as in the Batog et al. (2018) paper
(see Section 4.2). Note that Y may itself be derived from some other account - e.g. as
some fraction of inflows to a revenue account.

2.3.3 Delayed claim allocation from deposits

Take a real-valued function f(t, x) : [0,∞)2 → [0,∞) continuous in t, Lipschitz-continuous
in x and non-decreasing in x (for fixed t) with

f(t, 0) = 0 (2.27)
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for all t ≥ 0.

We then define R as the finite variation process governed by the stochastic differential
equation (SDE)

dRt = −f(t, Rt−) dt+ dY +
t (2.28)

with R0 = Y +
0 , where t− denotes the left limit such that Rt− is left-continuous, hence

predictable. Continuity assumptions on f then ensure the existence and uniqueness of
solutions (Kloeden and Platen, 1992).

Since f is non-negative, it follows that

Rt = Y +
0 +

∫ t

0

dY +
s −

∫ t

0

f(s, Rs−) dt = Y +
t −

∫ t

0

f(s, Rs−) dt ≤ Y +
t . (2.29)

As Y + is also non-negative and the integral of the drift term is continuous, (2.27) together
with R0 ≥ 0 implies that R is well-defined and non-negative: the drift may "push down"
the value of R continuously (which starts from a non-negative initial value) until it reaches
zero - but not further.

Taking then

Xt := Y +
t −Rt (2.30)

leads to claims which are non-negative, non-decreasing and adhering to the upper bound
X ≤ Y +, ensuring solvency of the underlying account, and with the immediate jumps
in Y + cancelled out by the definition of R. This gives an interpretation of R as the
remaining deposits of the total cumulative deposits not yet allocated (hence delayed)
towards claims, with the drift coefficient −f(t, Rt−) controlling the rate of allocation.

If we further assume that Y + is a (pure) jump process, hence a.s. constant on countably
many intervals, the SDE (2.28) on any such interval [a, b) with dY + = 0 reduces to an
ordinary differential equation (ODE):

dyt = −f(t, yt) dt (2.31)

with initial condition y0 = Ra, which for e.g. f(t, x) = rx with r ≥ 0 has the solution

Rs = Rae
−r(s−a) (2.32)

for all s ∈ [a, b). A concrete example of a contract implementation utilizing this specifi-
cation is covered in Section 4.3.

The standard ODE dynamics in (2.31) are particularly relevant due to the monitoring of
deposit processes in practice, which by design incorporates jumps in Y + after evaluat-
ing the ODE dynamics based on the last observed value of Y +, as discussed further in
Section 3.3.5. When analytical solutions to the ODE (2.31) are available, the implemen-
tation of delayed claim allocations is then as simple as incrementing ξ based on the X
resulting from directly evaluating these solutions.
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Figure 5: Delayed allocation of claims with drift f(t, x) := rx for r > 0.

2.3.4 Partially backed claims

An immediate concern regarding the "fully backed" setup in light of the delayed allocation
approach is capital efficiency : the unallocated deposits Y + − X are effectively unused
capital, serving no immediate purpose other than to ensure solvency for redemption of
claims in the (possibly very distant) future. This motivates another interpretation of Y +

as still governing the dynamics of X via (2.28), but without necessarily requiring the
claims account to always remain solvent for all future claims.

One way to express this is with the addition of a net outstanding balance

Lt := L+
t − L−

t (2.33)

with L+, L− analogous to Y +, Y − in Section 2.3.2 and L ≤ Y a.s..

This can then represent inflows and outflows "owed" to the claims account, which are
to be ignored for the purposes of the (delayed) allocation of claims - i.e. not accounted
for in Y +. An increase in L+ would be a withdrawal from the claims account, while an
increase in L− would be a repayment into the claims account, and L

a.s.
= 0 at all times

would correspond to the fully backed case.

Since Y + −X are the not-yet-allocated deposits and L represents the amount "missing"
from the claims account, it follows that

Lt > Y +
t −Xt (2.34)

implies insolvency at time t, with L − (Y + − X) corresponding to the excess amount
withdrawn from the claims account. A sensible (bare minimum) control to impose is
thus the rejection of any attempted withdrawals that would cause L to exceed this limit,
ensuring that any already-allocated claims remain redeemable.
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As an example of handling insolvency events, one could, prior to updating ξ as in Al-
gorithm 3, check if the computed value of X from the delayed claim dynamics satisfies
(2.34). If this is not the case, the claims account is solvent and the scheme can proceed
as normal. Otherwise, the change in total claims used in the update of ξ may be replaced
by Y + − L, i.e. the remaining deposits (effectively stopping X after crossing Y + − L).

This distributes all remaining deposits in the claims account according to the relative
shares at the time of the detected insolvency event independently of the timing of claim
redemptions (preventing a "run on the bank" where accounts rush to redeem their claims
prior to insolvency). This may be followed by additional logic, such as terminating all
future claim allocations and enabling the seizure of some collateral in proportion to the
relative shares of each account.

Y + −X
L

t

Y + − L
X

XQ

XA

XB

Figure 6: Partially backed claims terminating at insolvency L > Y + −X.

A myriad of variations around this setup can be devised, including complex logic triggered
by insolvency events (e.g. auctioning off illiquid collateral), claim allocation itself being
contingent on L (e.g. rate increases as a "risk premium" for insolvency risk), further
limitations on withdrawals to provide a guaranteed buffer period of solvency and so forth.
Further exploration of such extensions are out of scope of the article and we conclude the
theoretical treatment of the claims distribution mechanisms here.

In the coming sections, we formalize some general notions around blockchains in order to
interpret and implement the established methods in such environments (where a single
point in time is mapped to multiple states). A common vulnerability to transaction re-
ordering and how this relates to contracts that implement claim distribution is discussed,
followed by the formalization of a stochastic process interpretation of blockchains and
associated filtrations. The concept of monitoring of cumulative deposits is then intro-
duced in order to derive processes that will be adapted to the filtrations that arise in the
execution of contracts.
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3 Blockchains as stochastic processes

3.1 Blockchains and contracts

We define a blockchain as a sequence of blocks (Bn)n∈N0 , with each element of a block
mapping to a block state space S (containing e.g. all possible timestamps, configurations
of assets, account balances, contracts etc.) starting from some initial block n = 0 with
block time tn ≥ 0 representing the physical time of the block.

Each block Bn = ((Bn)m)m∈N0 itself consists of a sequence of executed instructions with
mn+1 ∈ N of these non-empty, each of which may mutate the state of the block from the
previous instruction. For example, an asset transfer of $5 from account A to account B
can be considered an instruction that decreases the account A balance by $5 and increases
the account B balance by $5. The state at the block header instruction m = 0 is assumed
to be the state from the last non-empty instruction at mn−1 of the previous block after
updating the block time to tn > tn−1.2

t← tn−10

Instructions

...1

...2

...3

...

Block n− 1

t← tn0

Instructions

...1

...2

...3

...

Block n

t← tn+10

Instructions

...1

...2

...3

...

Block n+ 1

Figure 7: Sequences of blocks (of sequences of instructions).

An account A represents an autonomous entity with the capability to create new assets,
transfer assets to other accounts, deploy new contracts to the blockchain or interact
with existing contracts. A contract C is itself an entity deployed to the blockchain by
an account, embedded with its own contract account, contract storage and a contract
program ΠC := (π0, π1, . . . , πmC

) forming a sequence of mC + 1 ∈ N program instructions
- always ending in a return instruction to end its execution. The program controls the
account- and storage space of the contract, and may be called by an account, triggering
the execution of the program (in accordance with parameters provided in the contract
call) - possibly with some temporary limited control over the calling account.

Contracts will often access some element of the state of the block within their program,
such as the asset balance of a particular account A, the state of contract storage (possibly
of another contract) or even the program instructions of another deployed contract. All of

2Typically the block header contains a variety of other meta data regarding the block (though this is
less relevant for our purposes and therefore left out of the discussion).
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these serve as examples of elements contained within a general block state in S, assumed
to be observable to contracts at the time of their execution.3

We refer to (possibly singular) adjacent related instructions in sequential order which
cannot be internally reordered as transactions, forming a partition of all non-empty
instructions in a block. As an example, a single transaction can consist of an instruction
of account A transfering an asset amount to the contract account of C, immediately
followed by calling the program of C (resulting in further executed instructions produced
by the contract program). This is much broader than the traditional use of the word
and can include several complex contract calls within a single transaction.

In very general terms, the blocks of executed instructions arise from accounts "submit-
ting" transactions - within relatively short intervals, these batches of transactions are
grouped together and validated by block validators (sometimes called miners), who as-
semble, verify and execute these transactions in some sequential order, with the result of
these forming a new block.

It is important to distinguish between executed instructions, which are "actions taken"
within a block (akin to running a computer program), and program instructions, which
are the elements forming the logic of a contract program (akin to the source code of
a computer program). We always take "instruction" to implicitly refer to an executed
instruction within a block, and use program instruction explicitly whenever referring to
parts of a contract program.

A program instruction may be a simple asset transfer from a contract account - but
can also be analogous to those of a general-purpose computer. Program instructions in
ΠC might increment a value in storage, load the value of an element from the current
block state, check that some condition on this value is met and branch to another pro-
gram instruction based on this. These are examples of program instructions, and calling
the contract produces a sequence of executed instructions based on these, immediately
following the contract call instruction in the block.

For our purposes, we assume an interpreted setting in the execution of programs, in the
sense that any program instruction that is "reached" in the execution of a program will
correspond to exactly one executed instruction in the resulting block (even if this does not
mutate the block state). All executed instructions thus originate from (are the execution
of the program instruction of) exactly one program index i ∈ {0, 1, . . . ,mC} =: IC .4

We say the i’th (executed) instruction of block n is in the k’th execution context ECk
of contract C when the instruction originates from any program index i ∈ IC of the
program in the k’th call to the contract, and we let

MC
n,m :=

{
j ∈ {0, 1, . . . ,m− 1} : (Bn)j+1 ∈ ECk for some k ∈ N0

}
(3.1)

be the set of instruction indices j < m of the n’th block immediately preceding instructions
3In practice, this access would typically happen via dedicated read instructions, loading the relevant

values into the stack - this level of detail is out of scope of the current discussion, but is explored further
in the Ethereum papers by Buterin (2013) and Wood (2014).

4An executed instruction on a block does not necessarily originate from a program instruction (e.g.
an asset transfer directly from one account to another). Meanwhile, a contract call does not necessarily
reach every index of a program, since program instructions may branch to other parts of the program -
and finally, the same index may be reached many times in a single call, for example in a for loop.
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in any execution context of C. This then represents the indices of block state that can
be accessed in the execution of individual program instructions up to instruction m.

We further take

ĒCn,m :=
{
ECk : (Bn)j ∈ ECk for some k ∈ N0 and j ≤ m

}
(3.2)

as all execution contexts that have been reached up to (and including) the m’th instruction
of block n.

Finally we let

M̄C
n,m :=MC

n,m ∪
{
j ∈ N0 : (Bn)j ∈ E for some E ∈ ĒCn,m

}
(3.3)

contain all indices of instructions that precede or are within execution contexts that
have been reached by the m’th instruction. This is then "forward-looking" in the sense
that indices greater than m may be included, which will be useful in characterizing the
block state observable to a contract overall, as discussed further in Section 3.3.4.

Instructions
...

A calls ΠCm

...
...

x← 3...

return...

...

B calls ΠC

...

x← 4

return

...

Block n

Program Instructions

...

x← x+ 1mC − 1

returnmC

Program ΠC

M̄C
n,m

EC3

EC4

Figure 8: Execution contexts with x := 0 at call k = 0 to ΠC .

The definitions utilized here are purposefully general and not necessarily fully consistent
with the terminology in any specific blockchain implementation, as these are meant only
to provide an abstraction of properties that apply across a range of blockchain implemen-
tations. In particular, we have largely ignored transaction costs, storage costs, bytecode,
representations of data, execution stacks and block validation mechanisms.

The finer practical details of the above concepts varies substantially across different
implementations of blockchains (even the concept of a contract is not universal and may
only be available in a limited form - or not at all). For a more complete description
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of these terms along with a detailed, concrete specification of a blockchain implemen-
tation supporting (smart) contracts, see the Ethereum white paper (Buterin, 2013) and
Ethereum yellow paper (Wood, 2014).

3.2 Caveat: non-uniqueness of intrablock state

Throughout Section 2 we worked under the assumption of stochastic processes : sequences
of real-valued random variables indexed by a (totally ordered) time index t ≥ 0. As gen-
eral as this may seem, this is apparently not satisfied for a blockchain with multiple
simultaneous states at the same block time tn (without some alternative temporal struc-
ture imposed on this, as explored in the next sections).

For a given block time tn, n ∈ N0 representing a (physical) point in time t ≥ 0 of the
n’th block, the associated block will generally consist of mn ≫ 1 non-empty instructions,
e.g. transfers between accounts (Nakamoto, 2009). This then leads to complications in
the interpretation of the overall block state, or even specific elements of this, as stochas-
tic processes indexed by the time of the containing block, since there can be multiple
mutations of the same element within a single block with only one associated time tn.5

Figure 9 shows an example for an account A where multiple mutations of account balances
after asset transfers involving account A in block n leads to ambiguity in referencing this
balance "at time tn" - this value is not unique, as any of $22, $17, $19 and $6 would
correspond to the balance at some stage in the sequential execution of instructions within
the block.

For smart contract compatible blockchains in particular, such as Ethereum (Buterin,
2013), the practical ramifications of the order of transactions can be significant, as in-
structions may themselves be contingent on the state of the blockchain prior to their
execution. Concrete examples of this include Automated Market Maker (AMM) con-
tracts (Mohan, 2022), where the exchange rate between two assets is determined by the
ratio of these as held by the contract account at the point of the contract call. Since this
ratio is mutated on every call to the AMM contract resulting in an exchange, different
exchange rates may apply to contract calls within the same block.

Unlike the traditional limit order book approach prevalent in "traditional finance" (Gould
et al., 2013), the order of transactions in blocks is not necessarily determined by their
time of submission (in spite of their sequential execution). Since submitted transactions
can be observed prior to the finalization of blocks, this can lead to potential single-block
frontrunning (Daian et al., 2020).6 This is related to the more general notion of Maximal
Extractable Value (MEV), which denotes the excess value extractable by controlling the
inclusion-, exclusion- and order of transactions within a given block by block validators

5The state of the block with time tn will itself not generally be Ftn-measurable "in real time" due
to the delay from validation of blocks - but will be at least Fs-measurable for some s ∈ [tn, tn+1) due
to validation of subsequent blocks being dependent on the finality (completed validation) of previous
blocks.

6This would be much like a broker having the ability to rearrange the timing of their trades after
observing the realized price evolution at the end of a trading day. Such practices would generally be
regarded as fraud in traditional finance.
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Instructions

A transfers $5 to F1

B transfers $2 to A2

A transfers $13 to E3

...

...mn

tn

Block n

A has $22 A has $6

Figure 9: Non-uniqueness of account A balance at time tn.

(Ethereum Development Documentation, 2024).7

Another category of strategies (exploits) related to this peculiar nature of multiple "si-
multaneous" mutations arises from the concept of flash loans: assets borrowed "early" in
a block and paid back in a "later" transaction in the same block, enabling the manipula-
tion of certain vulnerable contracts by utilizing this transient capital in the mutation of
intrablock state, all the while having no exposure between blocks. Applications of such
loans in the manipulation of AMMs and price oracles are covered by Qin et al. (2021).

Worthy of note is that the staking pool implementation presented in the paper of Batog
et al. (2018) (see Section 4.2) would be especially vulnerable to manipulation of trans-
action ordering, since total claims in this setup are determined by an explicit deposit of
"rewards", which are allocated instantly at the point of the deposit in the block. Since
the p shares in this setup are themselves based on accounts staking their assets (tem-
porarily transfering custody of these to the contract account), this heavily incentivizes
manipulation of transaction order in blocks.

Specifically, an account may attempt to place their staking contract call just before a large
deposit of rewards (increasing their share of these), followed by immediately unstaking
those same assets - all within the same block. Taking this a step further, this relative
share could be inflated by also placing any other staking transactions in the block after
the distribution of rewards (and all unstaking transactions prior to it). This may defeat
the very purpose of such contracts: namely, incentivizing locking the assets in question
over time to accrue claims, akin to dividend payments of stocks.

Fortunately, the restriction to a single update of ξ per (block) time already implemented
in Algorithm 3 mitigates such issues to a large extent. In particular, the above mentioned
example of an account increasing their shares immediately before a deposit would not

7The extent to which this excess value implies inefficiencies in practice will vary wildly across
blockchains. In the case of Ethereum, this may translate into higher transaction costs paid out to
validators, as transacting accounts outbid each other to achieve more favorable outcomes in the block.
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work, since accumulation of claims requires at least one additional evaluation of ξ at a
later block - implying both that the total shares would still "have time" to increase in
the remainder of the block regardless of their order and that no claims can be allocated
to new shares within the same block. This significantly reduces the incentives to "bribe"
validators to induce a specific transaction order (which would ultimately push transaction
costs up as accounts outbid each other for favorable orders of transactions, with no net
gain in total claims).

Beyond the potential inefficiencies discussed above, the ambiguity in referencing on-chain
state "at time tn" leads to difficulties in translating any set of methods that assumes a
temporal flow of state and information, as in Section 2. This motivates the formulation of
notions that enable an interpretation of these sequences of block state as stochastic pro-
cesses in the context of a probability space equipped with suitable filtrations that model
the availability of block state information to contracts. The next section proposes one
such interpretation, along with an on-chain monitoring approach for cumulative deposits
that enables the implementation of the special cases covered in Section 2.3 in light of the
limited information available to contracts based on the introduced filtrations.

3.3 Block process, filtrations and monitoring

3.3.1 Block state as random variables

We assume a probability space (Ω,F , P ) representing some probabilistic structure of the
blockchain and a measurable space (S,Σ), consisting of the set S of all possible block
states and a σ-algebra Σ on S.8

Denote by Bn,m with n,m ∈ N0 the (random) block state of the n’th block after the m’th
instruction, taking on some value in S. In order to characterize these random variables
as a stochastic process, it remains to find some totally ordered index that provides a
chronological ordering of these indices to arive at an indexed collection B := (Bt)t≥0 of
random variables. As discussed in Section 3.2, utilizing the block timestamps tn does not
accomplish this, as multiple mutations may be contained within a single block.

One way of resolving non-uniqueness in the indexing of states of a single block is to utilize
a two-dimensional index set (n,m) to refer to block n ∈ N0 and instruction m ∈ N0 with
all m ≥ mn mapping to the state after the last (non-empty) instruction in the block.
While this provides an ordering among blocks and an ordering of instructions within
blocks, it is not sufficient for the definition of a stochastic process, since we still have no
totally ordered index that induces a chronological order on both: e.g. mapping a point
in time t ≥ 0 to a (single) random variable Bn,m.

3.3.2 Time index of instructions

Define the instruction time as

t̄(n,m) := n+
m∑

i=1

1

2m
(3.4)

8For example, one could let S be the set of all possible configurations of arbitrary-length tuples of
bits, with each of these representing some (possibly invalid) state of the blockchain - taking then Σ to
be the power set of this choice of S.
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for the m’th instruction in block n, mapping the two-dimensional (n,m) ∈ N2
0 tuple in

Section 3.3.1 to a positive real-valued "time" with

t̄(n,m) < t̄(n,m+ 1) < t̄(n+ 1,m) (3.5)

for all (n,m) ∈ N2
0, hence preserving the order of blocks and instructions within blocks.

This enables the simultaneous indexing of block- and intrablock state by rounding down
"points in time" to the inverse of (3.4), i.e. t̄ : [0,∞)→ N2

0 with

t 7→
(
⌊t⌋,

⌊− log(1 + ⌊t⌋ − t)

log 2

⌋)
=: (n̄(t), m̄(t)) (3.6)

where ⌊x⌋ denotes the (floored) integer part of x ≥ 0 (Graham et al., 1994). This maps
a real-valued t ≥ 0 to the nearest (rounded down) block index n ∈ N0 and instruction
index m ∈ N0 such that

t̄(n̄(t), m̄(t)) =: t̂(t) ≤ t. (3.7)

The block process

B :=
(
Bn̄(t),m̄(t)

)
t≥0

=
(
B⌊t⌋,⌊− log(1+⌊t⌋−t)

log 2 ⌋
)
t≥0

(3.8)

then constitutes a stochastic process indexed by t ≥ 0.

Imposing this "artificial" temporal structure on the sequence of instructions within- and
across blocks then allows for the interpretation of the sequential changes in block state
across instructions in a block as happening "over time". One should however be wary of
interpreting (3.4) in a literal sense over the physical time tn associated with the block in
any application that relies on time explicitly, such as in the delayed allocation dynamics
from Section 2.3.3.9

0 1 2 3 ...

Block n

... ...

n

t̄(n,m)

n+ 1

t̂(t)

Figure 10: Temporal ordering of intrablock state for t ∈ [n, n+ 1).

With the mapping between times t ≥ 0 and tuples (n,m) ∈ N2
0 already established, we

can use time t and tuples of block- and instruction indices (n,m) interchangably, as these
9Not only would it be misleading (to put it mildly) to take a literal interpretation of block counts

corresponding to linear time progression and instruction counts to non-linear time progression, the
resulting time steps per instruction quickly decay, becoming impractically small to represent numerically.
The key point is that a totally ordered index that captures the sequential nature of intrablock state
changes exists, leading to a valid interpretation of blockchains as stochastic processes.
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will simply be different representations of the same underlying order: with t mapping to
(n,m) via (3.6) and (n,m) mapping to t via (3.4). For any given time t ≥ 0, we can
retrieve the exact instruction time via t̂(t), as this "rounds down" arbitrary points in
time to the nearest realized instruction time as shown in Figure 10. For simplicity, we
take "instruction at time t" as referring to the instruction of the rounded down time t̂(t).

3.3.3 Natural filtration of the block process

While the structure of a stochastic process indexed by t ≥ 0 via (3.8) is now in place, we
have yet to define a suitable filtration for this block process, i.e. the characterization of
the flow of block state information (from block to block and instruction to instruction)
accessible to executing instructions.

It may seem counter to the simultaneous nature of instructions in a block to not assume
measurability of the whole block at once, and while true from the perspective of physical
time, the availability of information to (program) instructions in a block more closely
resembles that of a temporal interpretation of the sequence of instructions, i.e. the m’th
instruction of block n can depend on the state prior to its execution, but does not in
general have access to the block state at instructions k > m "in the future".10

This leads us to define the block filtration FB = (FB
t )t≥0 with

FB
t := σ

(
B−1

s (E) : 0 ≤ s ≤ t, E ∈ Σ
)
, (3.9)

which is the natural filtration consisting of sub-σ-algebras generated by the block process
(3.8) over time, making B an FB-adapted process by construction. This models the
history of changes in block state after the execution of instructions up to (and including)
the latest instruction at time t - but not future instructions, even those within the same
block.

3.3.4 Contract filtrations

While the block filtration (3.9) characterizes the changes in state across instructions, of
greater practical relevance in the implementation of contract programs is the information
generally available in the execution contexts of a contract program ΠC .

Typically, the full history of past states will not be accessible to contracts at the time of
their execution, but rather only the state of the block before the instruction is executed,
as in the definition of MC

n,m (3.1). Elements of this state (such as the balance of an
account) can however be stored within the contract storage for future reference. In this
sense, all observable information by program instructions can be made available at all
points in the future (ignoring any contract storage limitations) - but unobserved past
states remain unobserved, consistent with the definition of a filtration as an indexed
family of sub-σ-algebras.11

10If this was possible in general, one could create infinitely recursive contingencies by having instruction
m depend on the state at instruction k > m and instruction k depend on the state at instruction m.

11This will ultimately come down to the specific blockchain implementation, however even if a
blockchain would provide the capability to look up past states from within a contract, filtering and
iterating over unobserved states would generally be prohibitively expensive in a validated "on-chain"
setting. This would also produce dynamic transaction costs that may not be known until the time of
execution, since the number of required iterations might depend on the order of transactions in the block.
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Assessing measurability on a per-instruction level is however too granular for anything
but the lowest level of interpretation. In particular, Bt is not itself observable by the
instruction at time t in general, since this can mutate Bt (and the instruction cannot,
at least in a literal sense, access the result of its own execution ahead of time). This
would then require arguing for the measurability of an element of Bt at the level of
individual program instructions. Even a process which is entirely determined by program
instructions would not necessarily be observable under such an interpretation - making it
cumbersome to reason about elements of B being "observable to the contract" in a more
general sense.

Based on this remark, we define

SC
t :=

{
s ≥ 0 : m̄(s) ∈ M̄C

n̄(t),m̄(t)

}
∪ {0} (3.10)

as the set of times of instructions immediately preceding- or being within execution
contexts that have been reached by time t, along with the initial time 0. In particular,
this may include times s > t when t is itself within an execution context of C.

From (3.10), we finally define the contract filtration as FC := (FC
t )t≥0 with

FC
t := σ

(
B−1

s (E) : s ∈ SC
t , E ∈ Σ

)
, (3.11)

which models the history of all block state available within execution contexts of contract
C reached by time t. By this definition, FC

t is still defined for all t ≥ 0, but remains
constant between execution contexts, "jumping" from the information available at the
latest execution directly to all the information (i.e. block states) available within any
execution context reached by time t.

The rationale for including "future" times s > t of on-going execution contexts is that
programs are themselves a deterministic sequence of instructions: any mutations happen-
ing within execution contexts will themselves be predetermined, since the random block
state will have been realized prior to the contract call. In a sense, a contract program
whose instructions can observe an element somewhere in its execution can be augmented
to observe it anywhere in its program by replicating instructions appropriately, so we
can skip the extra work of assessing measurability at the level of individual instructions -
though we must then avoid interpreting FC

t -measurability as an element being accessible
at time t, but rather that it can be made accessible.

The contract filtration (3.11) is especially useful in assessing the reliance on processes
which cannot always be observed between execution contexts. In particular, the block
process B as a whole cannot be FC-adapted for any contract C: for any s ≤ t with
s /∈ SC

t , the contract filtration will be constant, and hence Bs will not be FC
s -measurable.

Bs will however be FC
s -measurable for s ∈ SC

t : the contract can access any block state
within its own execution context. Unlike elements of the block filtration (3.9), FC

t will
not contain the block states from past times s /∈ SC

t outside its execution contexts:
unobserved "gaps" remain unobservable in the future. Regardless, FC is not strictly
smaller than FB, since FC

t may contain block states Bs for s > t when t is within
an execution context of C, and these block states would not be in FB

t until after the
termination of the program.

Processes which can change only from within execution contexts (e.g. those represented
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by elements of contract storage) will always be FC-adapted, since all times where these
could change will be in St by definition. As alluded to previously, this would not be the
case if taking the filtration to be generated only from the times of directly observable
block state - this property is a direct result of treating all block state information as
"measurable" at the start of execution contexts.

The contract filtration provides a useful characterization of the information that can
accessed from within the overall execution of a contract C, and we take filtrations F := FC

of this form in the interpretation of Section 2. This still implies some additional work,
since this assumes a fixed choice of contract C: and we have implicitly relied on processes
which cannot be FC-adapted in general, namely the cumulative deposit processes in
Section 2.3. The subsequent section shows how a contract C can be amended with
appropriate variables and program instructions to ensure that an FC-adapted monitored
representation of cumulative deposits can still be observed, providing a lower bound that
can be utilized in delayed claim allocation dynamics between execution contexts.

3.3.5 Monitoring of cumulative deposits

We now utilize the notions covered in previous sections to establish a monitoring approach
that achieves FC-adapted lower bounds (for some suitable contract C) on the cumulative
deposit process Y + relied on in Section 2.3. Starting from some arbitrary contract C
with a program ΠC , we iteratively amend this program to achieve the desired properties.
To start with, we focus on the fully backed case from Section 2.3.2 and assume the claims
account is the C contract account.

First note that deposits into the claims account will not be limited to program instructions
in general, as (non-contract) accounts may freely transfer into this account. This already
shows that Y + is not FC-adapted, since changes can occur between execution contexts
of C (where FC remains constant).

Furthermore, even at times s ∈ SC
t , we will not be able to directly observe the cumulative

withdrawals Y − from the isolated block state Bs: we can only observe the current account
balance Ys. A persistent variable representing Y − in contract storage is thus required to
track this quantity.

Unlike deposits, withdrawals (redemption of claims) always happen in the execution
context of C, as the program maintains exclusive control over the contract account. It
is then straightforward to keep exact track of Y − by incrementing the relevant variable
in contract storage by the withdrawn (redeemed) amount after every such instruction,
thereby making Y − an FC-adapted process as captured by this variable.

By definition (2.25), we have the identity

Y +
t = Yt + Y −

t , (3.12)

and since Y − is FC-adapted by the argument above and Y can be observed directly from
the block state at any time s ∈ SC

t , this identity allows us to infer Y + at all times s ∈ SC
t .

However, (3.12) is still not FC-adapted, since Y is not FC
s -measurable in general for s ≤ t

when s /∈ SC
t .
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We therefore take the monitoring time at time t ≥ 0 to be

tC := t ∧max
(
SC
t

)
, (3.13)

which will simply be t whenever t ∈ SC
t or the last time prior to t within the execution

context of C otherwise, hence tC ∈ SC
t for all t ≥ 0.

From this we finally define the monitored cumulative deposits as the process

Y +C
t := Y

tC
+ Y −

tC
a.s.
= Y +

tC
(3.14)

which is FC-adapted, since tC ∈ SC
t ensures that this will be FC

t -measurable.

The monitored process (3.14) corresponds to the exact value of Y + within execution
contexts, and since Y + is non-decreasing, this becomes a non-strict lower bound of Y +

between execution contexts, enabling a practical implementation of the methods relying
on cumulative deposits in Section 2.3 by utilizing this monitored (lower bound) process
Y +C in place of Y + in the claim dynamics between execution contexts.

t

Y +

Y +C

R

Figure 11: Cumulative deposits Y +, monitored cumulative deposits Y +C and re-
maining deposits process R.

We next consider the partially backed variant in Section 2.3.4, where the separation of
the oustanding balance L assumes the ability to deposit to- and withdraw from the claims
account with no impact on Y − and Y +. Contracts may accomplish this by incorporating
a dedicated deposit / withdrawal mechanism within the contract program, which will
increment a variable representing L on withdrawals (without also incrementing Y −) and
decrement it on deposits. This will thus track these "excluded" inflows- and outflows
from the contract account, ensuring that L is FC-adapted through its representation by
the L variable in contract storage.

This however means that the net balance observed in the monitoring will actually be
Y −L (the amount held by the account), hence the monitored partially backed cumulative
deposits will be

Y +C
t := (YtC + LtC ) + Y −

tC
a.s.
= Y +

tC
(3.15)

to correct for the amount L missing in the net balance state. This is thus a generalization
of the previous definition (3.15), where L

a.s.
= 0 at all times corresponds to the fully backed

variation. Otherwise, the monitoring process remains unchanged.

It is important to note that if we were to evaluate the delayed allocation of claims in
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Section 2.3.3 after adding the immediately observed value of the monitored deposits at
times s ∈ SC

t to R via the ODE dynamics in (2.31), we would be overshooting the
allocation dynamics, since this would include all deposits in the accrual over time as if
they had been present at the start of the interval.

Instead, the evaluation of the ODE dynamics when incrementing ξ for a given block
should happen before incorporating the increase in monitored cumulative deposits into
the remaining rewards process R, similar to how lagged values of p and q are used in
Algorithm 3. Otherwise, the value would effectively act as an upper bound on Y + on the
interval in question, rather than a lower bound.

3.3.6 Delayed claims and robustness

We conclude by discussing how the delayed allocation of claims from the monitored
deposit process leads to an even greater degree of robustness to potential MEV-related
frictions than already ensured by the prevention of multiple single-block updates discussed
in Section 3.2.

First note that when utilizing the monitored deposits process in the implementation of
delayed claims, the incremented value of ξ in any block n > 0 can be known independently
of any instructions in the block besides the initial timestamp tn. This is because ξ is
derived from the (deterministic) ODE dynamics evaluated from the (lagged) monitored
deposits, which is itself determined from monitoring in prior blocks. While the variables
representing the monitored process may be updated after increments of ξ within the same
block, these will have no impact on ξ until later blocks.

This invariance to the order of transactions that increment ξ is not guaranteed in general,
even when preventing multiple updates in the same block, as the total claims X may itself
be non-constant within a block. In fact, the explicit prevention of multiple updates in
a single block is no longer necessary, as the continuous ODE dynamics (2.31) already
guarantee that any increments to ξ after the first in a block will always be zero when
no additional time has elapsed, even when Y + increases in the same block (since the
immediate jumps in Y + cancel).

Delaying claims further disincentivizes adversarial behavior related to manipulation of
blocks more generally (such as excluding transactions that increase the shares of other
accounts): by "smoothing out" the allocation of claims over time (i.e. multiple blocks),
the potential short-term gains of even outright exclusion of other transactions within a
single block are dampened, as the net gain in allocated claims will only apply to the claims
of that single isolated block. Sustaining such highly-targetted exclusion of transactions
over consecutive blocks will be economically infeasible on any "healthy" blockchain,
severely limiting the potential upside of such tactics in contrast to implementations where
claims are allocated in (large) single-block bursts.

The delayed claims from the monitored process thus enables a high degree of resistance to
manipulation of blocks by aligning the incentives of accounts: all accounts with positive
relative shares benefit from collectively monitoring new deposits, as these can only in-
crease the total allocation of claims. Meanwhile, internal (zero-sum) competition among
accounts to manipulate blocks by reordering- or excluding transactions at the expense of
other accounts within a given block is limited for the reasons given above.
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This concludes the theoretical aspects of the article, with the subsequent section provid-
ing pseudocode for concrete implementations of contracts, showing how the theoretical
methods of Section 2 can be translated into practice based on the notions introduced
throughout the preceding sections.

4 Contract implementations

4.1 Staking pools

Staking pools are a special case of claim distribution contracts where shares pA correspond
one-to-one to assets staked by accounts (transferred temporarily to the contract account
until unstaked). Relative shares thus correspond to the quantity of assets staked by an
account in proportion to the total quantity of assets staked across all accounts.

These contracts have several use cases, for example as an analogy to dividend-paying
stocks, with the staking asset being some representation of ownership and claims repre-
senting dividend payments deriving from revenue generated by the underlying business.
Such contracts can be further embedded with e.g. voting capabilities based on the relative
stakes of accounts.

Typically these contracts will not utilize the same asset for both staking and paying
out claims; often the staking asset is some (illiquid) token representing ownership in a
project, while the claimable asset would be a highly-liquid asset (e.g. the native token of
the blockchain or a stablecoin). For simplicity, we leave explicit references to assets out
of the implementations covered here and simply take these to be implicit in the transfer
instructions.

Both of the subsequent examples assume the fully backed setup covered in Section 2.3.2,
and hence will rely on the monitored process Y + = Y + Y −, where Y is the current
contract account balance (of the claimable asset) and Y − is a global variable tracked in
the contract as described in Section 3.3.5.

4.2 Instant allocation of claims

Contract 1 shows the simplest example of a fully backed staking pool contract where
claims are allocated instantly, i.e. X := Y +, such that total claims are based on the
immediate allocation of all cumulative deposits. This mirrors the method presented in
Batog et al. (2018), though with the added properties of dynamically monitored deposits
(instead of these only being registered on explicit deposit contract calls) as outlined in
Section 3.3.5, as well as the prevention of multiple increments to ξ at a single point in
time (i.e. within the same block) as in Algorithm 3 and Section 3.2.
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Contract 1 Distributor contract with instant allocation of deposits.
1: Globals: ξ, Y +

− , Y −, q, t− ← 0 ▷ Initialize global variables
2: Locals: ξA, XA, pA ← 0 ▷ Initialize local (per account) variables
3: ▷ Increment account A claims ◁
4: function _increment_claims(A)
5: if q > 0 ∧ now() > t− then
6: ξ ← ξ + 1

q

(
Y + − Y +

−
)

▷ Increment ξ based on change in deposits
7: Y +

− ← Y + ▷ Store for next change in X = Y +

8: XA ← XA + pA
(
ξ − ξA

)
▷ Increment XA account claims

9: ξA ← ξ ▷ Store ξ for next increment of account claims
10: t− ← now() ▷ Store current time to prevent simultaneous updates
11: ▷ Stake assets for account A ◁
12: function stake(A, ∆p)
13: A transfer ∆p to C ▷ Transfer from A to contract
14: _increment_claims(A) ▷ Increment XA prior to updating share
15: pA ← pA +∆p ▷ Update account A share
16: q ← q +∆p ▷ Update total shares
17: return
18: ▷ Unstake assets for account A ◁
19: function unstake(A, −∆p)
20: assert pA ≥ ∆p ▷ Ensure new share will be non-negative
21: C transfer ∆p to A ▷ Transfer from contract to A
22: _increment_claims(A) ▷ Increment XA prior to updating share
23: pA ← pA −∆p ▷ Update account A share
24: q ← q −∆p ▷ Update total shares
25: return
26: ▷ Redeem claims for account A ◁
27: function redeem(A)
28: _increment_claims(A) ▷ Increment XA prior to redemption
29: C transfer XA to A ▷ Transfer from contract to A
30: Y − ← Y − +XA ▷ Increment cumulative withdrawals
31: XA ← 0 ▷ Reset XA after redemption
32: return

4.3 Delayed exponential allocation

Contract 2 shows an example of delayed claim allocation as covered in Section 2.3.3,
with an exponential decay of remaining rewards based on some rate r > 0. A global
variable R representing remaining rewards is added in this setup, and as discussed in
Section 3.3.5, new deposits are incorporated into the remaining rewards after evaluating
the dynamics. Another global variable Y +

− is utilized to track the changes in cumulative
deposits between evaluations of ODE dynamics. Otherwise, the stake, unstake and
redeem functions are all taken to be identical to those of Contract 1.

Multiple increments of ξ in a single block are implicitly suppresed by the dynamics, hence
the t− variable is moved into the increment function itself such that this represents the
time of the last actual evaluation of claims (where q > 0) - though one could also utilize
the previous setup to "pause" the dynamics in periods with q = 0, which would then
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remove the jump term in XQ that had to be explicitly dealt with in Section 2.2.

Besides the added robustness to MEV attacks from delayed allocation of claims in gen-
eral, the exponential specification in particular has some additional nice properties. For
example, the deposits will never "run out", allowing for continuous distribution of claims
indefinitely with no sudden termination of allocations.

Additionally, the rate of exponential decay has an interpretation independent of the units
of the claimable asset and the scale of cumulative deposits. Exponential growth of revenue
is one example of a common economic phenomenon that demonstrates why this is a useful
property. In contrast, utilizing a linear rate of claim allocation in revenue sharing- and
dividend contexts would lead to ill-suited behavior if revenue grows (or shrinks) over
time. Regardless of this, the latter is widely used in practice.

Computing the exponential function in a smart contract context is a non-trivial task
on its own however, as blockchains generally only provide (unsigned) integers and no
built-in capabilities for non-arithmetic math operations. Custom implementations of
approximation algorithms utilizing fixed-point numbers are thus typically required (see
Auster, 2024).

Contract 2 Distributor contract with delayed exponential allocation of claims.
1: Globals: ξ,X−, Y

+
− , Y −, R, q, t− ← 0 ▷ Initialize global variables

2: Locals: ξA, XA, pA ← 0 ▷ Initialize local (per account) variables
3: ▷ Increment account A claims ◁
4: function _increment_claims(A)
5: if q > 0 then
6: R← Re−r(now()−t−) ▷ Evaluate ODE dynamics
7: R← R + (Y + − Y +

− ) ▷ Incorporate new deposits after dynamics
8: ξ ← ξ + 1

q
(Y + −R−X−) ▷ Increment ξ based on change in total claims

9: X− ← Y + −R ▷ Store for next change in X = Y + −R
10: Y +

− ← Y + ▷ Store for next change in Y +

11: t− ← now() ▷ Store for next evaluation of ODE dynamics
12: XA ← XA + pA

(
ξ − ξA

)
▷ Increment XA account claims

13: ξA ← ξ ▷ Store ξ for next increment of account claims
14: ▷ Stake assets for account A ◁
15: function stake(A, ∆p)
16: . . .
17: ▷ Unstake assets for account A ◁
18: function unstake(A, −∆p)
19: . . .
20: ▷ Redeem claims for account A ◁
21: function redeem(A)
22: . . .

31

Claim distribution in continuous time

83



5 Conclusion
This article introduced a general stochastic framework for the distribution of claims in
continuous time. A scheme was derived allowing for constant time evaluation of account
claims in this setup. Practical special cases of the general setup were then discussed. No-
tions were introduced allowing for an interpretation of blockchains as stochastic processes
in the general setup, along with filtrations to model the flow of information available in
the execution of smart contracts. The concept of process monitoring was introduced
to enable the implementation of claim allocations that derive from cumulative deposits.
Concrete pseudocode implementations were then provided.
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A cacheable two-step method for equitable
integer allocation under constraints
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Abstract

This article outlines a method for solving optimization problems per-
taining to "evenly" distributing a budget of integers under constraints
on individual allocations. We first show how the real-valued version
of the problem can be reformulated to a single-variable problem with
a monotonic piecewise linear characterization of solutions. A method
for efficiently constructing a table of these solutions by traversing the
bounds in sorted order is then demonstrated, which allows for quickly
retrieving characterizations of solutions via lookups on this table in a
first step. This characterization is then transformed into integer allo-
cations that solve the original optimization problem in a second step.
Applications of the method to the dynamic allocation of screen real es-
tate in graphical user interfaces is then demonstrated.
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1 Introduction
Consider an integer B ∈ Z representing a budget of some kind. We want to fully allocate
this budget "as evenly as possible" among N ∈ N allocations A := (a1, a2, . . . , aN). More
precisely, we want to find an N -tuple of real-valued allocations A∗ that is optimal in the
sense of minimizing the sum of squared residuals from its mean, i.e. minimizing:

f(A) :=
N∑

n=1

(
an −

∑N
m=1 am
N

)2

=
N∑

n=1

(
an −

B

N

)2

, (1.1)

with the latter equality following from the requirement to fully exhaust the budget.
With no constraints and no requirement for the allocations themselves to be integer,
the solution is then to simply take an := B/N for all n ∈ {1, 2, . . . , N} such that each
allocation corresponds exactly to the mean allocation.

If we require the allocations to also be integer, solutions are no longer necessarily unique;
for example, given a budget B = 4 with N = 3, the allocations

A ∈ {(1, 1, 2) , (1, 2, 1) , (2, 1, 1)} (1.2)

are all valid solutions with f(A) = 1+1+4
9

= 2/3, while e.g.

A := (0, 1, 3) (1.3)

is not, since then f(A) = 16+1+25
9

= 14/3 > 2/3.

We extend this setting further by allowing for constraints on individual allocations an,
requiring each of these to fall within some range of allowed values. The general form
of the integer allocation problem can then be fully stated in standard form (Boyd and
Vandenberghe, 2004) as finding optimal allocations A∗ ∈ ZN such that

A∗ = argmin
A∈ZN

f(A) (1.4)

subject to
∑N

n=1 an = B and

L1 ≤a1 ≤ U1,

L2 ≤a2 ≤ U2,

. . . ,

LN ≤aN ≤ UN

(1.5)

with −∞ ≤ Ln ≤ Un ≤ ∞, Ln < ∞, Un > −∞ and an integer for all n ∈ {1, 2, . . . , N}.

While it is possible for multiple solutions to exist as in (1.2), it may also be the case
that no solutions exist. In particular, if all upper bounds are finite, we cannot fully
exhaust a budget B >

∑N
n=1 Un without violating at least one constraint, and vice versa

for lower bounds. For the remainder of the article, we always assume that one- or more
allocations has at least one finite lower- or upper bound (i.e. not all allocations are fully
unconstrained).

In the next section, an efficient method for deriving a lookup table characterization
of solutions to the formulated problem without the integer constraint on allocations is
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presented. We then show how integer allocations that solve the optimization problem
(1.4) can be retrieved from this characterization in a second step. An application to the
allocation of screen real estate is then presented.

A Python implementation of the method introduced in this paper is available on GitHub
at https://github.com/austerj/equitable-integers, including the reproduction of
all plots and a suite of tests demonstrating the correctness of the generated output. These
tests include comparison against general trust-region constrained methods (Byrd et al.,
1999) as implemented in the SciPy package (Virtanen et al., 2020) across a large number
of test cases.

2 Lookup table of real solutions
We first consider the optimization problem formulated in (1.4) without requiring alloca-
tions to be integer. Solutions to this (non-linear) optimization problem could be found
with iterative numerical solvers, e.g. via previously mentioned trust-region constrained
methods (Byrd et al., 1999). However, such iterative solvers produce only approximate
solutions and can be computationally expensive - especially for relatively simple, analyt-
ically tractable problems with more direct solution methods available (such as the class
of problems under consideration).

With some inspiration from the "trivial" solution of allocating the mean in the uncon-
strained case, we consider an alternative problem of finding a real-valued x∗ ≥ 0 with

an := min(max(x∗, Ln), Un) (2.1)

for all n ∈ {1, 2, . . . , N} that fully exhausts the budget B. This formulation imposes
that all allocations are equal to their lower bound, upper bound or x∗ ≥ 0, with the only
decision variable then being the value of x∗ identical across all allocations.

The following argument shows that finding an x∗ satisfying the single-variable formulation
(2.1) is equivalent to solving the general (non-integer) case (1.4) where each allocation is
taken as a separate decision variable: assume allocations A exists such that the budget B
is fully exhausted without violating any constraints. Then for any two allocations an, am
with

an < am ∧ an < Un ∧ am > Lm, (2.2)

the sum of squared residuals (1.1) can be reduced by increasing an and lowering am by
the same amount (such that the budget remains fully exhausted) until these are either
equal to each other or their upper- or lower bounds respectively. Since an and am were
arbitrary, this holds until all allocations are equal if not constrained by their lower- or
upper bounds. This also shows that real-valued solutions, when they exist, are unique.

The total budget allocated in this single-variable formulation

h(x) =
N∑

n=1

an =
N∑

n=1

min(max(x, Ln), Un) (2.3)

is a non-decreasing continuous piecewise linear function between the smallest lower bound
and the largest upper bound, with a rate of change corresponding to the number of allo-
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cations without a binding constraint at any given point. Figure 1 shows the relationship
between h and bounds for an example with N = 5 and constraints:

1 ≤a1 ≤ 5,

2 ≤a2 ≤ 4,

−∞ ≤a3 ≤ 3,

7 ≤a4 ≤ 10,

9 ≤a5 ≤ 12.

(2.4)

Since h constitutes a surjective mapping from values of x to budgets B, we can directly
infer optimal allocations via (2.1) by evaluating a right inverse g (B) =: x∗ of h (2.3) such
that the allocations an = min (max (x∗, Ln) , Un) for n = 1, 2, . . . , N fully exhaust any
budget B ∈ Z with

N∑
n=1

Ln ≤ B ≤
N∑

n=1

Un. (2.5)
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Figure 1: Relationship between the total budget allocated h(x) and the bounds im-
posed by constraints on individual allocations. Dashed lines represent extrapolation.

A "brute-force" approach to constructing g would be to evaluate h at every unique
bound value and infer the linear relationship between each segment. This would re-
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quire evaluating min(max(x, Ln), Un) for all N constraints at up to 2N points (one for
each unique lower- and upper bound value), i.e. upwards of 2N2 total evaluations of
min(max(x, Ln), Un).

We can achieve the same result by deriving the parameters of the piecewise linear segments
directly from the bounds. First we "flatten" the set of lower- and upper bounds into a
single tuple of 2-tuples (xn, Fn) consisting of the value xn of each bound and a flag Fn

denoting whether the value represents a lower bound L or an upper bound U . Doing this
for the example in (2.4) would yield the tuple((

1, L
)
,
(
5, U

)
,
(
2, L

)
,
(
4, U

)
,
(
−∞, L

)
,
(
3, U

)
,
(
7, L

)
,
(
10, U

)
,
(
9, L

)
,
(
12, U

))
. (2.6)

We then sort this tuple (of tuples), e.g. via Powersort (Munro and Wild, 2018), in
increasing order of the bound values xn after dropping unbounded entries, storing the
counts of these as N−∞ and N∞. In the case of (2.6), this would give us((

1, L
)
,
(
2, L

)
,
(
3, U

)
,
(
4, U

)
,
(
5, U

)
,
(
7, L

)
,
(
9, L

)
,
(
10, U

)
,
(
12, U

))
. (2.7)

with N−∞ = 1 and N∞ = 0.

Next, we construct a mapping from values of x to the rates of change in the allocated
budget h by iterating over every (xn, Fn) pair in the sorted tuple (2.7) with the following
logic and initial variables B− := 0, r := N−∞ and an empty hash table R := {}:

1. Add 1 to r if Fn = L (lower bound), else subtract 1 from r.

2. Set R[xn] := r.

3. Add xn to B− if Fn = L (lower bound).

The resulting R will map values of x to the rates of change in h applicable between each
value of x, while B− will be the sum of all finite lower bounds (or zero if none exist).

Applying this to the example in (2.7) would produce the mapping R:

x 1 2 3 4 5 7 9 10 12

r 2 3 2 1 0 1 2 1 0

Table 1: R mapping values of x to rates of change r in h.

with B− = 19.

This can finally be transformed into a mapping from budgets to pairs of x and rates of
change r by iterating over the (xn, rn) key-value pairs of R (in ascending order of xn)
with the following logic and initial variables x− := 0, r− := N−∞, an empty hash table
X := {} and B− from above:

1. Add (xn − x−) · r− to B−.
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2. Set X [B−] := (xn, rn).

3. Set x− := xn and r− := rn.

Continuing with the example from Table 1, we then get:

B− 20 22 25 27 28 30 32 34

x 1 2 3 4 7 9 10 12
r 2 3 2 1 1 2 1 0

Table 2: X mapping budgets B− to values x and rates r.

and from the resulting table, we can retrieve

x∗ = g(B) =

{
x+ B−B−

r
, r > 0

x, r = 0
(2.8)

for any budget B on the solution space with x and r retrieved from X :

1. If B is below the minimal B− in X : evaluate (2.8) with the minimal entry values in
X for B− and x with r := N−∞ (extrapolating to the left); if N−∞ = 0, no solution
exists.

2. If B is above the maximal B− in X : evaluate (2.8) with the maximal entry values in
X for B− and x with r := N∞ (extrapolating to the right); if N∞ = 0, no solution
exists.

3. Otherwise, identify the largest B− in X that is less than or equal to B, for example
via binary search (Knuth, 1998), and evaluate (2.8) with the corresponding entry
values for B−, x and r (interpolating between linear segments).

Applying this to Table 2 with e.g. B = 24, we get B− = 22 and x∗ = 2 + 24−22
3

= 8/3,
leading to the allocations

A∗ = (8/3, 8/3, 8/3, 7, 9) . (2.9)

A visual representation of the piecewise linear relationship characterized by Table 2 be-
tween budgets and values of x∗ is shown in Figure 2. Since the concrete example has at
least one allocation a3 without a lower bound, a solution exists for any sufficiently small
B, as a3 can always be lowered to ensure that all other upper bounds can be satisfied by
the budget. All allocations have an upper-bound however, hence there exists no solution
for B > 34, as these would conflict with at least one upper bound.

We have now established a methodology for efficiently identifying real-valued solutions via
a lookup table constructed from the bounds of the problem. This table can be cached (i.e.
stored in memory) after construction, allowing for quickly retrieving solutions with the
same constraints for a changing budget. In the next section, we show how these solutions
can be transformed into (possibly non-unique) integer-valued solutions while satisfying all
individual allocation constraints, fully exhausting the budget and maintaining optimality
in the sense of minimizing (1.1).
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Figure 2: Right inverse g(B) of h(x), mapping budgets B to values x∗ that fully
exhaust B while satisfying all constraints. Dashed line represents extrapolation.

3 Optimal integer solutions
Although we did not explicitly impose any integer requirement on the bounds in Section 2,
we can continue under the assumption that the bounds are themselves integer, since any
non-integer bound enforced on an allocation in combination with an integer requirement
effectively translates into a rounding of the real-valued constraint in the appropriate
direction (e.g. an upper bound of 5.2 is effectively an integer upper bound of 5). We
therefore proceed, with no loss of generality, under the assumption that all (finite) bounds
are integer-valued.

While the unique solution retrived from the procedure outlined in Section 2 will always
fully exhaust the budget, the resulting allocations will not in general be integer. Intu-
itively, the real-valued allocations represent the "ideal" reference state for any potential
integer solution: integer allocations that are close to the real-valued optimal allocations
will represent comparatively more equitable allocations, and the additional requirement
for allocations to be integer can only make these solutions comparatively "worse".

With this in mind, we start from a value of x∗ and rate r characterizing real-valued
solutions for a budget B retrieved via the lookup table from Section 2. As mentioned,
and seen in the example allocations (2.9), the resulting allocations are not in general
integer. In light of the above discussion, we can then frame the problem of finding integer
allocations that minimize (1.1) as rounding these (rational) allocations characterized by
(2.8) to integers, while still exhausting the budget. In cases where x∗ is already integer,
no further steps are thus required - so assume that x∗ is not integer.

First note that any allocations with binding constraints will already be integer, as these
will be equal to their lower- or upper bounds. We therefore focus on the remaining (non-
integer) allocations with non-binding constraints, all of which will be equal to x∗ prior to
rounding. The count of these unconstrained allocations will then correspond to the rate
r for the budget in question.

For each of these r unconstrained allocations, we must decide between rounding down
via flooring ⌊x∗⌋ or up via ceiling ⌈x∗⌉ (Knuth, 1997). Since the cost function (1.1) is
minimized by the original non-integer allocations, the optimal integer allocations must
themselves be one of the two possible nearest integer values to x∗.

Letting
¯
N denote the number of floored allocations and N̄ the number of ceiled alloca-
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tions, the requirement to fully exhaust the budget will correspond to

¯
N⌊x∗⌋+ N̄⌈x∗⌉ = rx∗ (3.1)

where
¯
N + N̄ = r such that all non-integer allocations are either rounded down- or up.

Using then that N̄ = r −
¯
N , it follows that

¯
N = r

⌈x∗⌉ − x∗

⌈x∗⌉ − ⌊x∗⌋
= r(⌈x∗⌉ − x∗) (3.2)

with ⌈x∗⌉ − ⌊x∗⌋ = 1 whenever x∗ is non-integer. Importantly, (3.2) will always be
integer, since r divides x∗ (2.8) by construction - which also shows that if a real-valued
solution exists, at least one integer solution exists.

Since all r unconstrained allocations are identically equal to x∗ prior to rounding, the re-
sulting change in the cost function (1.1) will not depend on which allocations are rounded
down- or up. Knowing the total number of unconstrained allocations

¯
N to floor and

N̄ = r −
¯
N to ceil, applying these to the unconstrained allocations in any arbitrary

order (combined with the original constrained allocations) will yield a solution to the
integer allocation problem (1.4). We can then, for example, apply flooring to the first

¯
N

unconstrained allocations and ceiling to the remaining unconstrained allocations.

Notably, the above steps do not depend on having already computed the non-integer
allocations; only the x∗ and r characterizing these. Evaluating the integer allocations
thus requires little computational overhead compared to the rational solutions. A solution
can e.g. be retrieved by iterating over the constraints (Ln, Un) with the initial variable
i := 0 and an empty tuple A∗ with the following logic:

1. Append Ln to A∗ if Ln ≥ x∗.

2. Else, append Un to A∗ if Un ≤ x∗.

3. Else, increment i by 1 and append ⌊x∗⌋ to A∗ if i ≤
¯
N , otherwise append ⌈x∗⌉.

Applying the above steps to the previous example (2.9) from Section 2 with B = 24 then
leads to the integer allocations:

A∗ = (2, 3, 3, 7, 9) . (3.3)

The combination of the precomputed lookup table covered in Section 2 and the fast
subsequent retrieval of allocations via the above allows for solving the integer allocation
problem with very limited computation. This renders the method especially suitable for
real-time applications where computational resources are restricted or prioritized for other
tasks. An example of such a context is the allocation of screen real estate in graphical
user interfaces (GUIs), as discussed further in the next section.

4 Application to graphical user interfaces
A computer monitor displays information in a rectangular resolution of square pixels ; for
example, a display with a resolution of 1920×1080 will have 1080 "rows", each containing
1920 "columns" of square pixels for a total of around 2 million pixels.
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Modern GUIs need to account for a large variety of available screen real estate when
supporting different resolutions and aspect ratios. These GUIs may consist of a mix of
flexible elements taking up an arbitrary amount of additional space (such as the display of
long-form text or cells in a spreadsheet), and fixed elements, such as toolbars and menus,
which may be scalable up to a point - but often times will require some minimal fixed
amount of space, while not benefiting from additional space past a certain point.

The presented optimization method can be applied in this context to allocate the total
"budget" of available screen real estate across different elements of a GUI, for example via
a tree structure of rows containing columns containing rows etc., each embedded with a
solver allocating space according to the constraints of the elements nested within it. The
bounds for elements can then be chosen to capture the desired behavior, e.g. choosing
an upper bound for elements that should only scale up to a point.

Fullscreen Side-by-side Quadrants

Header Toolbar Panel Workspace Extra Options Footer

Figure 3: Example of GUI with dynamic allocation of available space.

Figure 3 shows an example of a generic GUI, where the header, toolbar and footer are
fixed elements, the panel contains some secondary information that can be safely shrunk
when insufficient space is available, the workspace contains the main content taking up
all available space not reserved for other elements, extra contains some secondary func-
tionality related to the workspace and options contains core functionality related to the
workspace, hence always taking up some minimal amount of space. For additional details,
see the source code provided in the GitHub repository.1

Because the proposed method can cache the table characterizing real-valued solutions
while requiring minimal computation to retrieve optimal integer allocations for (rapidly)
changing budgets afterwards, the allocation of space can be done very efficiently. This
enables e.g. the reallocation of space as windows are resized (budgets change) in real-time,
while taking only limited resources away from core tasks of an application.

5 Conclusion
This article introduced a two-step method to solving equitable integer allocation problems
with constraints. A lookup table characterizing real-valued solutions is constructed in a
first step, which can be cached for future lookups with the same constraints for a changing
budget. Integer allocations are then retrieved from the lookup table in a second step by
applying a precomputed number of flooring- and ceiling operations to the unconstrained
allocations. An application to dynamic allocation of monitor real-estate in GUIs was
then covered.

1https://github.com/austerj/equitable-integers/blob/main/plots/gui.py
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