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Abstract

This thesis contains various results regarding the identifiability of causal models and
estimation of causal effects in the presence of latent variables.
First, we study the identifiability of the partially observed linear causal model. In

many applications, statistical dependencies between measured variables are partially
due to unmeasured confounders or mediators. In order to fully understand the data
generating process, it is desirable to learn not only the causal relations between the
observed variables, but also the causal structure of the latent variables. To this end,
we present two local graphical conditions that are necessary and sufficient to ensure
identifiability of the full graph.
Second, we study the deconfounder algorithm, which was proposed for multiple causal

inference in the presence of unmeasured confounding. The deconfounder can be seen
as outcome regression adjusted for a substitute confounder which is recovered from the
observed treatments. We give theoretical results justifying the use of this method when
the treatments are independent when conditioning on the confounter. We also analyze
the finite sample error of this estimator in terms of the recovery error of the confounder.
The deconfounder is analyzed both from a causal and a causally agnostic perspective.
Third, we study the steady-state distributions of Lévy-driven Ornstein-Uhlenbeck pro-

cess. We argue that the steady-state interventional distributions of these processes can
be expressed in terms of the first two moments of the observational steady-state dis-
tribution under a condition we refer to as drift-volatility balance. We derive equations
relating higher-order cumulants of the steady-state distributions to the parameters of
the stochastic process. From the second- and third-order equations, we derive a rank
constraint which holds when drift-volatility balance is satisfied.
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Sammenfatning

Denne afhandling indeholder forskellige resultater vedrørende identificerbarheden af kausale
modeller og estimering af kausale effekter i tilstedeværelsen af latente variabler.
Først studerer vi identificerbarheden af den delvist observerede lineære kausale model.

I mange applikationer skyldes statistiske afhængigheder mellem m̊alte variable delvist
um̊alte confoundere eller mediatorer. For fuldt ud at forst̊a datagenereringsprocessen er
det ønskeligt at lære ikke kun årsagssammenhængene mellem de observerede variabler,
men ogs̊a årsagsstrukturen af de latente variable. Til dette form̊al præsenterer vi to lokale
grafiske forhold, der er nødvendige og tilstrækkelige til at sikre identificerbarheden af den
fulde graf.
For det andet studerer vi deconfounder-algoritmen, som blev foresl̊aet til multipel

kausal inferens i nærvær af um̊alt confounding. Deconfounderen kan ses som udfald-
sregression justeret for en substitutconfounder, som rekonstrueres fra de observerede
folklarende variable. Vi giver teoretiske resultater, der retfærdiggør brugen af denne
metode, n̊ar de forklarende variable er uafhængige, n̊ar de betinges p̊a confounteren.
Vi analyserer ogs̊a den endelige prøvefejl i denne estimator i form af rekonstrueringsfe-
jlen for confounderen. Deconfounderen analyseres b̊ade ud fra et kausalt og et kausalt
agnostisk perspektiv.
For det tredje studerer vi steady-state-fordelingerne af den Lévy-drevne Ornstein-

Uhlenbeck-proces. Vi viser, at de steady-state interventionelle fordelinger af disse pro-
cesser kan udtrykkes i form af de første to momenter af den observationelle steady-state
fordeling under en tilstand, vi omtaler som drift-volatilitetsbalance. Vi udleder ligninger,
der relaterer højere-ordens kumulanter af steady-state distributioner til parametrene
for den stokastiske proces. Fra anden- og tredjeordens ligninger udleder vi en rang-
betingelser, som gælder, n̊ar drift-volatilitetsbalancen er opfyldt.
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Contributions and Structure

Chapter 1 is an introduction to the thesis. It is not a literature review, but rather
attempts to identify common threads between chapters and situate them in a common
framework. More thorough reviews relating each of the thesis’s contributions to existing
work appear in the corresponding chapters.
The introduction is followed by 3 chapters, each containing a paper as well as ad-

ditional results or discussion. For reference within this thesis, we give each paper an
acronym, for example [Identification]. All theorems, etc., are numbered relative to the
paper they appear in.

Chapter 2 (Identifiability in Partially Observed Linear Models) discusses the identifia-
bility of a causal adjacency matrix when only a subset of causal variables are observed.
The chapter contains the following paper:

[Identification] [Adams et al., 2021]. J. Adams, N. Hansen, and K. Zhang. Identification of par-
tially observed linear causal models: Graphical conditions for the non-Gaussian
and heterogeneous cases. Advances in Neural Information Processing Systems, 34:
22822–22833, 2021.

Chapter 3 (Multiple Causal Inference and Substitute Adjustment) discusses the decon-
founder as a method for multiple causal inference. We develop theory for the method
as a specific instance of a causally agnostic adjustment problem. Further, we relate the
causally agnostic analysis of the method to a causal interpretation. The chapter contains
the following paper:

[Adjustment] [Adams and Hansen, 2024]. J. Adams and N. R. Hansen. Substitute adjustment
via recovery of latent variables. arXiv preprint arXiv:2403.00202, 2024.

Paper status: Submitted at JMLR.

Chapter 4 (Causal Interpretations of Lévy-Driven Ornstein Uhlenbeck Processes)
studies steady-state distributions of Lévy driven Ornstein Uhlenbeck processes and a
condition under which causal conclusions can be inferred from the observational distri-
butions. The chapter consists of the following paper:
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Contributions and Structure

[Precision] [Recke et al., 2024]. C. O. Recke, J. Adams, and N. R. Hansen. Non-Gaussian
graphical precision models. 2024.

Paper status: Work in progress.
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1 Introduction

In this PhD thesis, we present theory for causal inference and causal discovery in the
presence of latent variables. Roughly speaking, causal inference is concerned with the
estimation of causal effects when the causal graph (i.e. the causal relations between
variables) are known, whereas causal discovery (also known as causal search or structure
learning) is concerned with the process of learning that structure itself [Spirtes et al.,
2000, Pearl, 2009, Peters et al., 2017].

One famous problem in causal inference is the attempt to estimate the effect of a
treatment (say, a drug) on a response (say, a disease state some time after treatment) in
the presence of confounding factors (say, the severity of the disease state before treat-
ment). If the treatment is systematically administered to sicker patients, it may seem
to be less effective than the control regardless of its actual effectiveness because sicker
patients are just more likely to stay sick. One goal of causal inference is to identify the
treatment effect by removing the confounding bias.

Notice that in the above example, the causal order is known and corresponds to the
temporal order. Often this is not the case. For example, in cellular biology, there
are gene-regulatory networks which constitute causal systems; one gene up- or down-
regulates another’s expression, but it is not know a priori which direction this regulation
takes place. The goal of causal discovery can be to learn the causal order between two
variables, or to describe the causal structure of a large causal network.

We can go further. In both examples, we were primarily concerned (at least implicitly)
with the causal effects between measured variables; any unobserved confounding was a
nuisance to be removed. But we may also be interested in the unobserved part of
the causal graph in its own right. Not only can latent structure help us explain the
distribution of the observed variables, but it can also point to real causal variables
whose existence can be hypothesized and experimentally confirmed.

The remainder of this introduction identifies two unifying themes throughout the
thesis. In Section 1.1, we formalize the word “causal” in terms of structural equation
models, with attention to how each of the papers included in this thesis fit into the struc-
tural equation framework. In Section 1.2, we discuss the relevance of non-Gaussianity
and tensor decomposition algorithms to identification and estimation problems in causal
discovery and causal inference.

1.1 Structural Equation Models

While “causation” may be a philosophically loaded term, it is supposed to be distin-
guished from mere conditioning by describing something “fundamental” about the data
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1 Introduction

generating process. While this can be given a mathematically precise meaning using the
languages of interventions, causal graphs, or potential outcomes, here we present struc-
tural equation models as a formalization of causal relations. When interpreted causally,
structural equation models describe the mechanisms by which some variables (causally)
influence other variables, thereby inducing causal graphs, interventional distributions,
and distributions over potential outcomes [Peters et al., 2017, for example].

A structural equation model over variables X1, ..., Xp is a model of the form

Xi = fi(Pa(Xi), εi) (1)

where fi is an arbitrary function in a function class F , where Pa(Xi) ⊆ {X1, ..., Xp},
and where {ε1, ..., εp} are unmeasured jointly independent random variables. We usually
refer to Pa(i) as the parents of Xi, and εi as the independent noise.

Together, the equations of (1) along with the distributions of ε induce a distribution
over X—we call this the observational distribution. If the “=” sign is interpreted
as mere equality in distribution, the (1) makes no causal claim. However, the “=” sign
can also be interpreted as value assignment, so that in addition to describing the joint
distribution of X1, ..., Xp, it also induces interventional distributions [Pearl, 2009]. In
this case, it is common to refer to the structural equation model as a structural causal
model, and to refer to fi as a causal mechanism.

One line of research in causal inference (when Pa(Xi) are known) and causal discov-
ery (when they are not) is concerned with the identification and estimation of structural
equation models from the observational distribution, which may be possible under ap-
propriate restrictions on fi and the distributions of ε. For example, identification of the
mechanism and noise distributions is possible in additive [Shimizu et al., 2006, Peters
et al., 2013] and post non-linear additive [Zhang and Hyvärinen, 2009, Qiao et al., 2021]
noise models. This is not an inherently causal endeavor; fi are just estimands, and
estimands don’t have to be causal to be interesting. However, if the modeling assump-
tions (here, independent noise, the function class F , and in causal inference the order of
the variables) are plausible approximations of the true data generating process, we may
regard the structural equation model as a structural causal model.

Let’s analyze one particular structural causal model for the confounding example
from the beginning of this chapter. Writing X for the treatment, Y for the response,
and Z for the confounder, the example was implicitly written with X ∈ R. However,
in Chapter 3 we consider the case where X ∈ Rp (so that there are p treatments), and
where the treatments X1, ..., Xp are mutually independent conditional on the confounder
Z. Expressed as a partially linear structural causal model,

Z = εz

Xi = fi(Z, εi), i ∈ {1, ..., p} (2)

Y =

p∑

i=1

βiXi + fz(Z) + εy.

2



1.1 Structural Equation Models

Here βi are the parameters of interest, representing the linear effect of X on Y . It is well
known that if Z is unmeasured, then β is not identifiable from the joint distribution of
(X,Y ) without additional assumptions. Nevertheless, under appropriate assumptions on
the conditional distributions X|Z = z, the σ-algebra generated by Z is identifiable from
the joint distribution of X. In such case, β is also identified in (2). Chapter 3 discusses
the recovery of Z and the estimation of β when such assumptions are approximately
satisfied.

Another famous structural equation model is the linear non-Gaussian acyclic model
(LiNGAM) Shimizu et al. [2006]. Writing X = (X1, ..., Xp)

T and ε = (ε1, ..., εp)
T ,

X = FX + ε, (3)

where F ∈ Rp×p is an adjacency matrix, where at most one εi is Gaussian and none
are degenerate, and where there exists a permutation matrix P such that PFPT is
lower triangular. The appropriateness of “linear” and “non-Gaussian” are self-evident.
To see why they are also called acyclic, notice that Xi depends only on the support
of the i-th row of F, so that this support is equal to Pa(Xi). The requirement that F
be lower triangular (modulo permutation) indicates that Pa is a partial ordering (i.e.
an acyclic relation) on {X1, ..., Xp}. Causally speaking, the interventional distribution
fixing Xi = x is expressed by setting the i-th row of F to zero and εi = x in (3).

Solving in terms of the observed variables X, we have

X = Mε (4)

where M := (I− F)−1 is called the mixing matrix. Notice that (3) and (4) entail the
same observational distribution, but represent different structural causal models; in the
latter, no Xi causes any other Xj . However, under either causal model, the (i, j)-th slot
of M represents the net effect of εj on Xi. We will never regard (4) as causal in this
thesis.

In general, the problem of identifying M and the distributions of ε is known as inde-
pendent component analysis (ICA) Comon [1994], Hyvärinen et al. [2001]. Clearly, M is
at best identifiable up to scaling and permutation of columns; this corresponds to rein-
dexing and rescaling the unobserved signals ε. As we will see in Section 1.2, it turns out
that under the conditions of LiNGAM, M is always identifiable up to permutation and
scaling of columns from the joint distribution of X in the case where all of X1, ..., Xp

from (3) are observed. From this fact, Shimizu et al. [2006] constructively prove the
identifiability of (3) in the case where all variables X are observed and their order is
unknown. In Chapter 2, we study the same problem in the partially observed case, so
that we observe only only a subset of X1, ..., Xp.

When interpreted causally, structural equation models of the form (1) often indicate
that causes do not change their values after they have brought about their effects. Alter-
natively, in the case of (3), one observation of X can be interpreted as a single draw of ε
propagated through the causal network in continuous time, and then measured after the
system has reached equilibrium. (An analogous result was originally shown in discrete
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1 Introduction

time by Fisher [1970].) Formally, this entails a differential equation of the form

dX(t) = (F− I)X(t)dt+ εdt (5)

where ε ∈ Rp is constant across time (but random across observations). The solution to
(5) is given by

X(t) = et(F−I)X(0)−
∫ t

0
et(F−I)εdt. (6)

When F is lower triangular as in LiNGAM, or more generally when all its eigenvalues
have real part strictly less than one, it is the case that

lim
t→∞

X(t) = (I− F)−1ε = Mε (7)

regardless of the initial value of X(0). Hence the equilibrium distribution of (5) coincides
with the observational distribution of (3).

Furthermore, if a causal interpretation of (5) is desired, the intervention fixing Xi(t) =
x across all times t corresponds to setting the i-th row of F to zero and εi = x; hence
the equilibrium interventional distribution of (5) and the interventional distrubition of
(3) coincide. Thus while (5) is not formally a structural equation model of the form
(1) (since it references infinitely many intermediate values of X(t)) it nevertheless has a
clear causal interpretation.

Interestingly, (6) is an Ornstein-Uhlenbeck process with the Brownian motion dZ(t)
replaced by a constant drift process εdt. In Chapter 4, we study a generalization of (5).
Rather than time-constant ε, we allow a time-varying semi-martingale Z(t):

dX(t) = (F− I)X(t)dt+ dZ(t). (8)

In this case, unlike (5), the system will never reach equilibrium in the strict sense that
X(t)→ X. However, so long as Z(t) is a Lévy process and all eigenvalues of F have real
part strictly less than one, a steady-state distribution exists and is given by

X = lim
t→∞

∫ t

0
es(F−I)dZ(s). (9)

Notice that when Z(t) is the pure drift Lévy process εt, this is precisely the limit of (6).
Chapter 4 provides a causal interpretation of Lévy-driven Ornstein-Uhlenbeck processes
by describing their steady-state distributions under time-constant interventions.

1.2 Non-Gaussianity and Tensor Methods

A recurring theme throughout this thesis is the blessing of non-Gaussianity due to the
generic uniqueness of tensor decompositions.

Consider the representation of the LiNGAM model given by (4). We are interested in
identifying M; from this, the adjacency matrix F = M−1 + I is also identifiable. Due to
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1.2 Non-Gaussianity and Tensor Methods

mutual independence of ε, the covariance of X is given by

Cov(X) = MCov(ε)MT =

p∑

i=1

Var(εi)(Mei)⊗ (Mei)

where ei denotes the i-th standard basis vector. It is well known that a symmetric matrix
never has a unique decomposition into a sum of symmetric rank-one matrices unless it
is itself rank one. However, consider instead the third cumulant of X [?]:

cum3(X) =

p∑

i=1

cum3(εi)(Mei)⊗ (Mei)⊗ (Mei). (10)

It turns out that this and many similar three-way tensors often do have a unique de-
composition into a sum of p rank-one tensors due to Kruskal’s theorem.

Define the Kruskal rank of a matrix as the largest number r such that every set of
r columns is linearly independent.

Theorem 1 (Kruskal). Let M1,M2,M3 each have q columns. Suppose that the sum of
their Kruskal ranks is greater than 2q + 1. Suppose M̃1, M̃2, M̃3 also have q columns,
and that

q∑

i=1

(M1ei)⊗ (M2ei)⊗ (M3ei) =

q∑

i=1

(M̃1ei)⊗ (M̃2ei)⊗ (M̃3ei). (11)

Then there exist a permutation matrix P and invertible diagonal matrices D1,D2,D3

with D1D2D3 such that M̃i = MiDiP for each i ∈ {1, 2, 3}.

Theorem 1 was originally proven in Kruskal [1977]; for a more concise proof, see
Rhodes [2010]. In words, (1) provides a condition under which a tensor T is uniquely
decomposable into a sum of rank one tensors. Applied to (10), if cum3(εi) ̸= 0, then
these conditions are always sufficient for identification of M up to permutation and
scaling of columns; the mixing matrix M always has full Kruskal rank when F is strictly
lower triangular. Given the columns of M (or estimates thereof), the main contribution
of Shimizu et al. [2006] is an algorithm to identify (or to estimate) F.

Notice that for i with cum3(εi) = 0, the triple product of Mei vanishes from (10),
and so is not identifiable by Kruskal’s theorem. However, if cumk(εi) ̸= 0 for some
k > 2, then for this k, Kruskal’s theorem identifies Mei from some three-way subtensor
of cumk(X). We now see the importance of non-Gaussianity in linear acyclic models.

Proposition 1. Let X be a random variable. Then cumk(X) = 0 for all k > 2 if and
only if X is Gaussian.

Theorem 1 also reveals the mathematical advantages of using of finite mixture models
in (2). If X is a finite mixture of product measures, then for all i ̸= j ̸= k ̸= i it is the
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1 Introduction

case that

E[XiXjXk] =
m∑

z=1

P[Z = z]E[Xi|Z = z]E[Xj |Z = z]E[Xk|Z = z] (12)

by mutual independence of X given Z. It follows that for every non-empty I, J,K ⊂
{1, ..., p}, if I, J,K are disjoint, then

E(XI ⊗XJ ⊗XK) =
m∑

z=1

P[Z = z]E[XI |Z = z]⊗ E[XJ |Z = z]⊗ E[XK |Z = z] (13)

which has the form of the sum in (11). Under appropriate conditions on the conditional
means, the latter are identifiable from the raw third moment E[X ⊗ X ⊗ X]. Indeed
? provide conditions under which each conditional probability Xi|Z = z is identifiable
from the joint distribution of X using a similar observation.
Unfortunately, neither Kruskal’s theorem nor the identifiability results of ? are con-

structive, and various heuristics must be used. Moreover, when the relevant cumulant
tensors are estimated rather than known, any tensor decomposition algorithm must
be able to handle small errors in the tensor’s estimation. For example, Anandkumar
et al. [2014] and Guo et al. [2022] provide probably approximately correct decomposi-
tion algorithms when (13) holds for some I, J,K; we discuss these algorithms further in
Chapter 3. While these algorithms are also applicable to tensors of the form in (10), it is
common to use computationally faster algorithms such as FastICA ? when (10) denotes
a p× p× p tensor with p rank-one addends. However, in the case where there are more
than p rank-one components in the tensor sum—as in the partially observed case—none
of the aforementioned algorithms apply. We review alternative methods in Chapter 2.
Proposition 1 also motivates the study of Ornstein-Uhlenbeck processes (8) driven by

non-Brownian Lévy processes. In Chapter 4, we show that

cumk(Z(1)) +
k∑

i=1

M×i cumk(X) = 0 (14)

for all k; the case where k = 2 is the continuous-time Lyapunov equation. If Z(t) is a
Brownian motion, then both Z andX are Gaussian, so that every term of (14) is trivially
zero for k > 2 due to Proposition 1. However, if Z(t) is any other (non-deterministic)
Lévy process, then (14) is non-trivial for some k.

Under a condition we call rank-volatility balance, Chapter 4 shows that interventional
steady-state distributions ofX can be expressed in terms of the observational distribution
of X. Furthermore, we use the second- and third-order cumulant equations to construct
a matrix V which is rank deficient under that same condition. Therefore, Chapter 4
proposes to turn the singular values of V into a test for rank volatility balance. However,
if X is Gaussian, then V is identically 0 whether drift-volatility balance is satisfied or
not, and so the test is useless in the Gaussian case.

6



2 Identifiability in Partially Observed Linear
Models

This chapter contains the following paper:

[Identification] [Adams et al., 2021]. J. Adams, N. Hansen, and K. Zhang. Identification of
partially observed linear causal models: Graphical conditions for the non-Gaussian
and heterogeneous cases. Advances in Neural Information Processing Systems, 34:
22822–22833, 2021.

Here we consider the identifiability of an adjacency matrix from the (scaled and per-
muted) columns of the mixing matrix in partially observed linear causal models. In
Section 6 of the paper, we argue that our model assumptions unify a wide variety of
related partially observed causal models, and that the assumptions of many of those
models are special cases of our conditions.
In order to discuss identifiability in this model class, Section 2 of the paper motivates

and leverages a condition that we refer to as minimality (of the edges in the adjacency
matrix). However, in the original paper, the two notions of minimality and identifia-
bility are sometimes conflated. Stated clearly, Theorem 2 proves that every minimal
admissible adjacency matrix satisfies two structural assumptions. Theorem 3 provides a
constructive proof that the true adjacency matrix can be recovered from the columns of
the true mixing matrix whenever the structural conditions are satisfied.
After the paper, in Section 2.1, we will discuss various generalizations of the notion

of identifiability with reference to the theoretical results of the main paper. In light of
these, we present an additional theoretical result regarding the identifiability of partially
observed linear models.

7
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Abstract

In causal discovery, linear non-Gaussian acyclic models (LiNGAMs) have been
studied extensively. While the causally sufficient case is well understood, in many
real applications the observed variables are not causally related. Rather, they are
generated by latent variables, such as confounders and mediators, which may
themselves be causally related. Existing results on the identification of the causal
structure among the latent variables often require very strong graphical assumptions.
In this paper, we consider partially observed linear models with either non-Gaussian
or heterogeneous errors. In that case we give two graphical conditions which are
necessary for identification of the causal structure. These conditions are closely
related to sparsity of the causal edges. Together with one additional condition on
the coefficients, which holds generically for any graph, the two graphical conditions
are also sufficient for identifiability. These new conditions can be satisfied even
when the number of latent variables is very large. We demonstrate the validity of
our results on synthetic data.

1 Introduction

In the standard causal discovery problem, we are given non-experimental data and aim to learn the
direct causal relations between the observed variables [1, 2]. But in many applications, we do not
believe that all causal variables relevant to the observed system have been measured. While some
of the observed variables may interact directly, others might interact indirectly via latent mediators,
and still others could be generated by latent common causes; indeed, any pair of observed variables
may stand in all three relations at once. Further, the relevant latent variables may be causally related
themselves. For example, responses to psychometric questionnaires are usually thought of as noisy
views of various traits, and the researcher is predominately interested in the causal relations between
these hidden traits and their hierarchical structure. Similarly, in financial markets, stock returns may
be causally related, but may also be confounded or mediated by a complicated network of unmeasured
economic and political factors.

It is natural to ask what conditions are both necessary and sufficient for the identification of such
partially observed causal structures from observational data. Various sufficient conditions have
been proposed; however, these conditions are rather restrictive, and are not in general necessary for
identification of the full causal structure.

∗The work presented in this article was started while JA was at CMU.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



In this work, we consider the case of linear causal models in which the overcomplete mixing matrix
from the noise terms to the measured variables is identifiable up to permutation and scaling of columns.
This is possible, for example, in the case of independent non-Gaussian noise [3], or when given
access to heterogeneous domains in which the variances of the noise terms change independently
across domains but the causal graph and weights remain constant (see Theorem 1 of our paper). We
provide necessary and sufficient conditions under which the latent causal structure can be uniquely
identified up to trivial indeterminicies.

2 Problem setup

Suppose some causal variables V = {V1, . . . , Vp} follow a linear structural equation model (SEM)

V = FV + ε, (1)

where V := (V1, . . . , Vp)T is a vector of causal variables, F is a causal adjacency matrix that can
be permuted (by simultaneous row and column permutations) to strictly lower-triangular form, and
ε = (ε1, . . . , εp)T is a vector of independent noise variables. In this paper we consider two settings
for εi: 1) all εi are mutually independent and non-Gaussian; or 2) there are multiple domains, εi are
uncorrelated within each domain, and their variances change independently across domains. We will
make the second assumption technically precise Section 3.

We seek necessary and jointly sufficient conditions for identifiability of F (up to trivial indetermina-
cies) in the case where only some subset of V (which we call X ) is measured. Thus F may encode
observed-observed interactions, latent confounding, latent-latent interactions, and latent mediation or
intermediate confounding. Our results identify F from the equivalence classM, as defined in Section
2.2, of mixing matrices induced by (1). This equivalence classM is identifiable if, for example, the
errors are non-Gaussian or if their distribution changes over time or between domains.

2.1 Notation

For any matrix A and index sets J and K, we write AJ
K to denote the submatrix of A with columns

indexed by J and rows indexed by K. Observe that AJ
K = IKAIJ . Thus, FJ

K describes the direct
effect of {Vj : j ∈ J} on {Vk : k ∈ K}. (Remember: causes are up-stream of their effects.)

The graph induced by (1) has edges Vi → Vj whenever Fi
j 6= 0. We write Pa(Vi) := {Vj : Vi ← Vj}

and Ch(Vi) := {Vj : Vi → Vj}, respectively, to denote the parents and children of Vi. We say that
(V1, ..., Vk) constitutes a directed path from V1 to Vk if Vi → Vi+1 for every i ∈ {1, ..., k − 1}.
Trivially, for every Vi, (Vi) is a directed path from Vi to itself; we say that a directed graph is acyclic
(a DAG) if (Vi) is the only such path. We write Anc(Vi) := {Vj ∈ V : Vj has a directed path to Vi}
and Desc(Vi) := {Vj : Vi has a directed path to Vj}, respectively, to denote the ancestors and
descendants of Vi. For DAGs, notice that Anc(Vi) ∩Desc(Vi) = {Vi}, but Vi 6∈ Pa(Vi) ∪ Ch(Vi).

We assume that only some subset X ⊆ V is observed, with the remaining L = V − X being latent.
We use Vi to denote a generic variable, observed or latent, whileXi ∈ X denotes an observed variable
and Lj ∈ L denotes a latent variable. When it is clear from context, we occasionally suppress the
distinction between a variable Vi and its index i.

2.2 Identification and minimality

Since F induces a DAG, we can always solve (1) to express the causal variables in terms of the
independent noise terms:

V = Mε, (2)
where

M := (I− F)−1 (3)
is the mixing matrix with Mi

j being the net effect of εi on Vj . This net effect is calculated by
multiplying causal weights along paths and summing across paths. Notice that if Mi

j 6= 0, then
Vj ∈ Desc(Vi).

Because L is hidden, let us explicitly write X in terms of ε:

X = MX ε. (4)
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In both the non-Gaussian and heterogeneous settings we consider in this paper, MX is identifiable up
to permutation and scaling of columns; that is, we can identify the equivalence class

M = {MXDP : DP ∈ DPp}, (5)

where

DPp := {DP ∈ Rp×p : D is full rank diagonal and P is a permutation matrix}.
We argue this for both settings individually in Section 3.

We say that an adjacency matrix F generatesM if (I−F)−1X ∈M. Of course, in partially observed
systems, the adjacency matrix that generatesM is not unique. However, some of these matrices are
sparser than others. In causal discovery, as in model selection more broadly, we tend to prefer the
“simplest” model that adequately fits the data [4, 5]. As a result, without prior knowledge, a partially
observed linear causal model cannot be identified if the population distribution can be written in
terms of an equally sparse or sparser model; after all, we would never select a complicated model if
a simpler model fits just as well. It is therefore natural to recast the question of identifiability to a
question of maximal sparsity.

Let the `0 “norm” of a matrix ‖ · ‖0 denote the number of non-zero entries in that matrix. Then we say
that a causal adjacency matrix F is minimal with respect toM if F generatesM and ‖F̂‖0 ≥ ‖F‖0
for any F̂ 6= F that generatesM.

Let F denote the class of minimal adjacency matrices that generate M. Clearly, since M is
identifiable, so is F . We say that an adjacency matrix F is identified up to trivialities if

F =
{

(DP)−1FDP : DP ∈ DPp with (DP)XX = I
}
. (6)

The only indeterminacy remaining in F amounts to re-indexing and re-scaling the latent factors.

A word of caution is in order. Because the adjacency matrix that generatesM is not unique in the
partially observed case, it is only possible to talk about identification with respect to some selection
principle. Throughout this work we use minimality as such a selection principle – indeed we define
identification in terms of it. As justification, in Section 5.1, we describe one class of non-minimal
adjacency matrices which are pathological and whose exclusion is desirable; further, in Section 6, we
show that existing works make assumptions even stronger than minimality; further still, in Section
7, we show that popular model selection criteria like BIC favor minimal graphs. Nevertheless, just
as BIC is not always the most sensible criterion for model selection, so minimality is not always
the most sensible principle for an identification theory. For example, Figure 1 shows a non-minimal
graph which is not pathological. Thus, if a practitioner believes the true partially observed causal
model to be non-minimal, they should content themselves with partial identification (c.f. [6]).

In Sections 4 and 5, we express identification up to trivialities in terms of two local graphical
conditions, which are much easier to check than (6). But first, we return to the identifiability ofM.

3 Sufficient conditions for identification ofM
The main results of Sections 4 and 5 rely on the identifiability ofM, which is theoretically guaranteed
in the two settings we consider in this paper. In the first setting, εi are assumed to be independent and
non-Gaussian. Then according to Theorem 3 by Eriksson and Koivunen [7],M is identifiable from
the distribution of X. The task of estimatingM from X is known as Overcomplete Independent
Component Analysis (OICA) [3], and in practice this task is known to be computationally difficult
[8].

In the second setting, εi are uncorrelated from each other with changing variances across multiple
domains (or over time) and MX has full row rank (which is always the case for acyclic models). Note
that in this setting, while the components of ε are mutually independent within each domain, they
are not necessarily mutually independent across domains because their variances may be dependent
across domains. This setting is expected to apply to a number of nonstationary scenarios including
brain signal analysis, and the following theorem establishes the corresponding identifibiality ofM.
Besides complementing Theorem 3 of Eriksson and Koivunen [7] as an alternative foundation for our
identification work, the identifiability ofM in this setting may be of independent interest in the fields
of blind source separation and system identification.
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Theorem 1. Suppose we have observed X generated according to the mixing procedure (4) in a
number of domains, t = 1, 2, ..., T , where MX has full row rank. Assume that εi are uncorrelated
in each domain and that their variances in domain t, denoted by σ2

ti, change independently across
domains in the sense that S, whose (t, i)-th entry is σ2

ti, has full column rank. Further assume that
each |X | columns of MX are linearly independent and that p ≤ 2|X | − 2. Then if X admits a model
X = M̃X ε̃, where ε̃ also follows the above assumption on ε, then every column of M̃X must be
proportional to a column of MX and vice versa.

Note that this theorem gives sufficient conditions for the identifiability ofM; our empirical results
suggest that they are not necessary.

4 Necessary conditions for identification of F up to trivialities

In this section, we introduce our identification conditions and show that they are necessary for F to
be identified up to trivialities. The identification conditions are graphical conditions described in
terms of “bottlenecks” and “redundancies.”

Let J , K, and B be subsets of the nodes of a directed graph. Note that they need not be mutually
disjoint. We say that B is a bottleneck from J to K if, for every j ∈ J and every k ∈ K, each
directed path from j to k includes some b ∈ B. A bottleneck B from J to K will be called minimal
if every bottleneck B′ from J to K has |B′| ≥ |B|, and unique minimal if the inequality is strict
for B′ 6= B. Note that bottlenecks do not in general d-separate J and K along all paths, but only
directed paths from J to K.

It is clear from the definition that, for each Vi, Ch(Vi) is a bottleneck from Ch(Vi) to X . However,
for identification, we further require:
Condition 1 (Bottleneck). For every Vi, Ch(Vi) is the unique minimal bottleneck from Ch(Vi) to X .

As illustrated in Figure 1, the bottleneck condition ensures that if we try to “explain” the net effect of
Vi on X by replacing Ch(Vi) with any subset of Desc(Vi), the result is a denser graph. As illustrated
in Figure 3, the strong non-redundancy condition will further ensure that we cannot “explain” the
effect of Vi on Ch(Vi) via some of its non-descendants:
Condition 2 (Strong Non-Redundancy). For all Li, Vj , if Ch(Li) ⊆ Ch(Vj) ∪ {Vj} then Li = Vj .

Figure 2 shows a graph that satisfies both of these conditions. To build intuition, let us list some
simple consequences of these conditions. By the bottleneck condition, each variable must have fewer
than |X | children; but if a variable has no latent children, then the bottleneck condition is satisfied
trivially for that variable. By strong non-redundancy, each latent variable must have at least two
children. For any pair (Li, Vj), if Li is an ancestor but not a parent of Vj , or has more than one
directed path to Vj , then strong non-redundancy is satisfied for that pair. If Vj is a parent of Li and
they violate strong non-redundancy, then the bottleneck condition is violated for Vj .
Theorem 2. If F is identified up to trivialities, then the graph induced by F satisfies the bottleneck
and strong non-redundancy conditions.

Figure 1: An egregious violation of the bottleneck condition.
Left: {V2, V3} is a strictly smaller bottleneck from Ch(V1)
to X . Right: a sparser yet observationally equivalent graph.
Although both graphs also violate strong non-redundancy,
egregious bottleneck violations are not always redundant.

Figure 2: A simple graph illustrating
our structural conditions. L1 satisfies
the bottleneck condition. L2 and L3

are non-redundant as each has a child
the other does not. X1 and L3 are non-
redundant as L3 → X2 and X1 6∈ L.
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Thus the bottleneck and strong non-redundancy conditions are necessary for identification of F up to
trivialities. In Section 5, we further show that they (along with a very mild constraint on the causal
weights) are also jointly sufficient conditions.

If Ch(Vi) is not at least a minimal bottleneck for every Vi, then F 6∈ F . Figure 1 shows one example
of such a violation of the bottleneck condition. Otherwise, as long as bottleneck faithfulness is also
satisfied, F is an equivalence class of equally sparse latent structures which all violate at least one of
the bottleneck and strong non-redundancy conditions. The nature of these indeterminacies is depicted
in Figure 3. In Figure 2 we show a simple yet illustrative example in which both conditions are
satisfied.

(a) (b) (c) (d)

Figure 3: Two equivalence classes. (a) and (b) are equivalent, the former violating the bottleneck
condition (X 6= Ch(L1) is a minimal bottleneck from Ch(L1) to X ) and the latter strong non-
redundancy (Ch(L2) ⊆ Ch(L1)). (c) and (d) are equivalent, both violating strong non-redundancy.

5 Sufficient conditions for identification of F up to trivialities

In the previous section, we introduced two structural conditions which must be satisfied for F to be
identifiable up to trivialities. In this section, we prove that they (along with “bottleneck faithfulness,”
a very mild constraint on the causal weights) are also jointly sufficient. Throughout, we assume that
X is generated according to (1). In particular, we assume thatM is identifiable, for example due to
Theorem 3 of Eriksson and Koivunen [7] or Theorem 1 of the present work.

5.1 Bottleneck faithfulness

First, we connect ranks of submatrices of M to minimal bottlenecks of its corresponding graph.
Proposition 1. Let B be a minimal bottleneck from J to K. Then Rank(MJ

K) ≤ |B|.

Strict inequality in Proposition 1 for some minimal bottleneck B from J to K can make F non-
identifiable – even if the bottleneck condition and strong non-redundancy hold. For instance, both
graphical conditions hold for

X =




0 1 −1
2 2 0
3 3 0
4 0 4


L + εX , L = εL,

but Rank(MLX ) = 2 while the minimal bottleneck from L to X is L with |L| = 3. The system

X =




0 1 −1
0 2 0
0 3 0
0 0 4


L + εX , L =

[
0 0 0
1 0 0
1 0 0

]
L + εL

generates the same mixing matrix, MX , but has a strictly sparser graph. Thus to ensure identifiability,
we assume that the causal coefficients satisfy:
Condition 3 (Bottleneck Faithfulness). For every J ⊆ V,K ⊆ X , if B is a minimal bottleneck from
J to K, then Rank

(
MJ

K

)
= |B|.

In the supplementary material we characterize the set of adjacency matrices F that are bottleneck
faithful for a given graph. In particular, we show that a generic F is bottleneck faithful.

Interestingly, in linear systems, classical faithfulness is a special case of bottleneck faithfulness.
Rank(MJ

K) = 0 is a violation of classical faithfulness if there is a minimal bottleneck B 6= ∅ from
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J to K. That is, if there is a path from J to K but the path coefficients cancel out so that the net
effect of J on K is 0, the system is not faithful to the graph. Bottleneck faithfulness generalizes this
so that the net effect of J on K must have maximal rank for the given graph.

5.2 Identifiability

In this subsection, we show that if the bottleneck condition, strong non-redundancy, and bottleneck
faithfulness hold for F, then F is identifiable up to trivialities. Throughout, we assume the three
conditions hold.

Our approach is illustrated by the following computation. For any Vi,

MX (I− F)i = IiX . (7)

Let J = Ch(Vi). Since the support of Fi is J , the equation

(M− I)iX = MJ
Xx. (8)

always has a solution at x = Fi
J . In fact, (under the three assumptions of this section) this solution is

unique:

Lemma 1. Let J = Ch(Vi). Then the unique solution to (8) is given by x = Fi
Ch(Vi)

.

But there is a version of (8) for each J ⊆ V . For which other choices of J does (8) have a solution?
Clearly a solution always exists if J ⊇ Ch(Vi). On the other hand, we can guarantee that a solution
with |J | ≤ |Ch(Vi)| is only possible if J contains an ancestor of Vi:

Lemma 2. Suppose J ⊆ V − Anc(Vi). If (M − I)iX ∈ Range
(
MJ
X
)
, then |J | ≥ |Ch(Vi)|, with

equality if and only if J = Ch(Vi).

By Lemma 2, if any superset of Ch(Vi) containing no ancestors of Vi is identifiable, then Ch(Vi) is
also identifiable. Next, we will show how such a superset of Ch(Vi) can be identified.

Let Vk ⊆ V denote the variables whose longest path to X has fewer than k nodes. More formally, we
define recursively

V0 := ∅, (9)
Vk+1 := {Vi ∈ V : Ch(Vi) ⊆ Vk} , for k ≥ 0. (10)

Naturally, we define Xk := Vk ∩ X and Lk := Vk ∩ L. Notice that Vk is strictly increasing, and is
induced by the topological ordering on V .

Proposition 2. For all k, either Vk ⊂ Vk+1, or Vk = V .

Further, for each k ≥ 0, define

Jk+1(Vi) := arg min
J∈
{
J⊆Vk:Mi

Xk
∈Range

(
MJ

Xk

)} |J |. (11)

Intuitively, this denotes the set of minimal choices for J ⊂ Vk such that (8) has a solution. From
Lemma 2, we know that Jk+1(Vi) = {Ch(Vi)} if Vi ∈ Vk+1 − Vk. The construction of (11) allows
us to generalize Lemma 2 to describe which versions of (8) have solutions when we are not sure of
the causal order.

Lemma 3. For every k ≥ 0, let Vk and Jk(Vi) be defined as above. Then Vi ∈ Vk+1 − Vk if and
only if all of the following hold:

1. Vi 6∈ Vk;

2. |Support(Mi
X )−Xk| ≤ 1;

3. |Jk+1(Vi)| = 1; and

4. for all Vj 6= Vi satisfying points 1 and 2, Mj
Xk
6∈ Range

(
M

Jk(Vi)
Xk

)
.
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As a result of Lemma 3, each Vk is identifiable. Clearly, if Vi ∈ Vk+1, then Ch(Vi) ∈ Vk and
Vk ∩ Anc(Vi) = ∅. Hence by Lemma 2, Ch(Vi) is also identifiable. Thus the full DAG is
identifiable, and each column of MX can be associated with the corresponding node in the DAG.
However, Lemmas 1, 2, and 3 are not enough to distinguish which nodes correspond to latent variables
and which correspond to observed variables; we have yet to pair each Xi with its net effects Mi

X .
Resolving this final indeterminacy is not hard. Intuitively, the vector of MX corresponding to Xi

must have non-zero coefficients in the i-th slot while every vector corresponding to descendants of
Xi will not. Lemma 4 formalizes this observation.

Lemma 4. Xi ∈ Xk+1 if and only if Xi ∈ Vk+1 and Support (MXi

X )−Xk = {i}.

Together, Lemmas 1, 2, 3, and 4 imply that F is identifiable if MX is identifiable. Of course,
we do not know MX—only M. Nevertheless, Lemmas 2, 3, and 4 do not involve the scaling
and permutation of MX—only the linear dependencies of its columns. Some simple calculation
shows that Lemma 1 can be used to put any MXPD ∈ M in one-to-one correspondence with
(PD)−1F(PD).

Theorem 3. Suppose F satisfies generalized non-redundancy, bottleneck faithfulness, and the bottle-
neck condition. Then F is identifiable up to indeterminacies.

6 Relation to existing work

Constraint- and score-based approaches to causal discovery based on conditional independence
testing—such as SGS [1], IC [2], PC [9], GES [10], and FGS [11]—generally focus on the causally
sufficient case. These algorithms identify the Markov equivalence class of graphs which all encode
the same set of conditional independence relations. While some methods based on conditional inde-
pendence tests, such as FCI [12] and RFCI [13], are able to relax the assumption of causal sufficiency,
their focus is on learning the causal relations between observed variables and distinguishing them
from spurious dependencies induced by shared latent ancestors. Such methods recover only limited
information about the latent structure, as only the most basic information about latent structure
is identifiable from conditional independence relations alone. For one review of causal discovery
methods, see Spirtes and Zhang [14].

It is possible to go beyond the equivalence class with additional assumptions on causal mechanisms
[14]. In particular, linear non-Gaussian models have been studied extensively. In the causally
sufficient case, Shimizu et al. [15] leverages acyclicity of the causal relations and the identifiability
of the square ICA problem [16, 17] to show how the causal adjacency matrix can be identified, while
Lacerda et al. [18] further estimate a subclass of cyclic causal models. In both cases, one may replace
the non-Gaussian noise assumption with the heterogeneous noise assumption (in the formal sense of
Theorem 1) and the identifiability results still hold [19].

By contrast, previous works on partially observed linear non-Gaussian models only study certain
special cases in which the models are partially identifiable. Hoyer et al. [20] describe a procedure
to convert partially observed causal models to a canonical form in which no latent variable has any
parents. They further provide an algorithm which recovers all canonical forms consistent with the
observed overcomplete basisM, which is identifiable by OICA [3]. This recovered equivalence class
of observationally equivalent canonical forms can be huge, and by definition can neither identify
causal relations among latent confounders nor distinguish latent confounders from latent mediators.

More recently, Lemma 5 of Salehkaleybar et al. [6] states that ifM is identifiable, then the causal
order among observed variables is identifiable if classical faithfulness holds between all variables.
Their condition is strictly weaker than ours; as we discuss in Section 5.1, classical faithfulness is
entailed by bottleneck faithfulness and imposes no graphical conditions. That a weaker condition
suffices for their task is not surprising, since their task is strictly easier than ours; if F is identified
up to trivialities then the causal order among observed variables is also identified (while the causal
order alone tells very little about F). Lemma 5 has a reassuring consequence for our work: even if
the graphical conditions for total identification fail to apply, the causal order of X is still identified.

If the practitioner is further interested in the observed variables’ net effects on one another, (M− I)XX ,
then additional graphical assumptions are needed. Theorem 16 of Salehkaleybar et al. [6] provides
one condition sufficient for this purpose: no latent variable Li has precisely the same observed
descendants as any observed variable Xj (formally, for all Li, Xj ,Desc(Li) ∩X 6= Desc(Xj) ∩X ).
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Again, this being a relatively easy subtask of the problem we consider, it is not surprising that our
conditions are not strictly weaker. With that said, our conditions are not strictly stronger, either; the
bottleneck and strong non-redundancy conditions can be satisfied even when Li and Xj have the
same observed descendants, as shown in Figure 4.

Figure 4: Examples of graphs identifiable fromM. From left to right: a graph where Desc(L)∩X =
Desc(X1) ∩ X ; a widening hierarchical structure; a hierarchical structure with intra-layer relations.

To recover causal structures of the hidden variables, many results rely on strong assumptions about
clusters of pure variables (sets of observed variables which each share a latent confounder and have
no other parents). For example, Spearman’s classical Tetrad condition [21] identifies latent causes
with four pure observed children from covariance information alone. In the linear non-Gaussian case,
existing work reduces the number of pure observed children to three [22], and more recently to two
[23, 24]. Clearly, these are all special cases of both the bottleneck and non-redundancy conditions.
As such, our graphical assumptions are strictly weaker.
Proposition 3. Suppose each Li in a partially observed DAG has at least two pure children (latent
or observed). Then the DAG satisfies the bottleneck and non-redundancy conditions.

However, identification is possible even when no latent confounder has any pure children; for
example, Anandkumar et al. [25] present a model in which latent variables with no pure children are
identifiable. Rather than purity, they require a graph expansion property—for all non-singleton S ⊆ L,
|⋃Li∈S Ch(Li)∩X | ≥ |S|+dmax, where dmax = maxi |Ch(Li)∩X |—as well as a rank condition
on FLX which places hard-to-check graphical constraints on the model and bounds |L| ≤ 1

3 |X |. Non-
redundancy among latent variables can be derived from the expansion property by considering the
case where |S| = 2, and the bottleneck condition by considering S = {Li} ∪ Ch(Li) ∩ L. Thus
in one sense, our conditions can be seen as a refinement on the expansion property; however, we
also remove the many hard-to-check graphical consequences of the rank condition, and further show
that many graphs even with |L| � |X | are identifiable. For example, Figure 4 shows an identifiable
hierarchical model in which the number of latent variables increases with depth. Moreover, we show
that our conditions are sufficient for identifying hierarchical structures in which variables in the same
layer are causally related. Figure 4 shows one such system.
Proposition 4. Suppose F satisfies the rank and graph expansion conditions of Anandkumar et al.
[25]. Then F also satisfies the bottleneck and strong non-redundancy conditions.

Propositions 3 and 4 show that our conditions are indeed more general than previous identification
conditions; not only do our conditions allow and identify causal relations among observed variables,
they also identify latent structures which no previous works could. (See, for example, Figure 4.)
Furthermore, in light of Theorems 2 and 3, they show that many existing works implicitly took
sparsity of causal edges as a useful primitive for what it means for a partially observed causal model
to be identifiable. Such a primitive is widely used throughout causal discovery, even in the causally
sufficient case [4, 5].

Although many of these conditions for latent structure identification rely on non-Gaussian independent
noise, direct estimation of the mixing matrix is often avoided in practice, especially in the causally
insufficient case, as estimation of the overcomplete mixing matrix is computationally challenging
[8]. Estimation of the mixing matrix can be avoided by directly using the independent additive noise
assumption and exploiting graphical conditions such as causal sufficiency or purity. For example,
in the causally sufficient case, Pa(Xi) is identifiable by regressing Xi on Z ⊆ X and testing the
independence of the regression residuals and Z [26]. This approach may be adapted to the non-linear
[27, 28] and post-nonlinear [29] cases. Tashiro et al. [30] extend this idea to identify causal relations
among observed variables in the causally insufficient case, and a related condition is developed by
Xie et al. [24] to identify one special type of confounder. However, such methods owe their efficiency
to the strong structural conditions under which they guarantee identifiability. As the bottleneck
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and non-redundancy conditions are much more general, this naturally complicates the question of
estimation.

7 Estimation

In Theorems 1 and 3, we have shown that a causal system which satisfies the conditions of Section 4
is uniquely identifiable whenever MX is identifiable. However, as indicated in Section 6, estimation
of MX from homogeneous non-Gaussian data—for example, by overcomplete ICA—is computa-
tionally hard. Further, whereas the estimation algorithms presented in [15], [18], and [6] require the
practitioner to test which entries of MX are exact zeros, a naive algorithm inspired by Lemmas 1, 2,
3, and 4 would further require them to test which submatrices’ singular values are exact zeros. Such
an algorithm is not advisable.

As a proof of concept, we therefore focus our experiments on partially observed linear causal models
in the heterogeneous case. In this setting, F can be learned directly by optimizing the regularized
likelihood with respect to F, given the sample covariance matrices of X. We leave more efficient
estimation in more general settings to future work.

7.1 Simulations

Suppose we have access to samples from T heterogeneous domains. The data in the t-th domain
follow

V = FV + ε, (12)
where ε ∼ N (0,Σt) for diagonal Σt. Then in the t-th domain,

X = MXΣtM
T
X . (13)

The negative log likelihood is

−2``(F,Σ) =

T∑

t=1

nt

(
|X | log(2π) + log det(St) + Tr

(
S−1t Ê

[
xtx

T
t

]))
, (14)

where xt,i is the i-th row of the design matrix for the t-th domain, Ê
[
xtx

T
t

]
is the empirical second

moment of the d-th domain, St = MXΣtM
T
X , and nt is the sample size in the t-th domain. If X

is generated according to (12), the independent change condition in Theorem 1 holds for the noise
variances, and F satisfies the assumptions of Section 4, then by Theorems 1 and 3, F is identifiable
up to trivialities. Hence we can in principle optimize the regularized log likelihood.

As a sanity check for our theoretical results, we simulate data according to (12); for every identifiable
graph structure with three observed variables and at most five directed edges, we generated ten causal
adjacency matrices with weights randomly drawn from (−0.9,−0.5)∪ (0.5, 0.9). We estimate F and
|L| by minimizing the BIC via exhaustive search. By enumerating candidate graphs from sparsest to
densest, a single search could take anywhere from 10 to 60 minutes on an Intel core i7 processor.

To verify that our estimation method was actually leveraging the noise’s heterogeneity, we ran
the experiment with one domain and 5000 observations. Only 3% of graphs were identified. Not
surprisingly, only 15% of learned graphs had any latent variables at all. Increasing the number of
domains from 1 to 3 but keeping the total sample size at 5000 (i.e. 1666 per domain) improved the
rate of structure identification to 50% of trials.

With 5 domains and 500 samples per domain, the correct graph is identified on 50% of trials; with
1000 samples per domain, this improves to 70%; and with 10 000, this further improves to 80%. In
every case that the wrong graph was recovered, the equivalence class of mixing matrices M̂ generated
by F̂ had incorrect support, perhaps due to insufficient domains or accidentally coupled changes
in the noise variances. This supports the main theory of Theorem 3, which, in light of Theorem
1, claims that the structure of F is uniquely determined from a correctly identifiedM. We report
detailed results in the supplement for all graphs studied.

To verify our claims in Theorem 2, we also tested simulated data from ten non-identifiable par-
tially observed DAGs—six of which stand in the main equivalence class relations of Figure 3, and
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four of which are not minimal. Not surprisingly, members of the same equivalence class were
indistinguishable, each system achieving the same log likelihood up to eight significant digits.

Because exhaustive search over graphs is computationally expensive (even for this toy problem, there
are 1759 graphs, and so 1759 non-convex optimization problems), it would be desirable to instead
optimize the L1-penalized negative log likelihood:

L(F,Σ) = −2``(F,Σ) + λ
∑
|Fi,j |. (15)

As before, we simulated data from (12). Numerical experiments verify that L(F0,Σ0) is very near
a local minimum for all practical λ > 0, where (F0,Σ0) denotes the true adjacency matrix and
noise covariances. However, experiments also suggest that this local minimum is generally quite
far from the global minimum, both in parameter space and in L1 loss. Moreover, while the L1
penalty successfully drives many parameters to zero (as we would expect), our experiments frequently
converge to minima which are denser than the true system. Intuitively, the L1 penalty does not care
about the density of F̂; a dense system with small coefficients may have a comparable L1 penalty
as a sparse system with large coefficients. Naturally, denser systems are better equipped to fit the
observed domain covariances. We summarize these experiments in the supplement.

8 Conclusion and discussions

In many fields, we do not believe that all causally relevant variables have been measured. In
such partially observed settings, beyond accurately estimating the causal relations among observed
variables, practitioners may want to further identify the causal relations among the hidden variables
which generate the observed data. Inspired by this issue, we have contributed to the identification
theory of partially observed linear causal models by providing necessary and sufficient graphical
conditions for the identification of the full causal graph. Throughout, we assume the additive noise
terms in the structural equation model follow non-Gaussian distributions or have independently
changing variances across time or between domains. Such assumptions, unlike the single-domain
Gaussianity assumption, render the mixing procedure from the noise terms to the observed variables
identifiable up to the permutation and scaling of columns, thereby facilitating our final identifiability
results. These conditions are expected to be applicable to a wide variety of partially observed
structures. To deal with real applications, efficient estimation methods are needed, and we hope our
theoretical identifiability results will stimulate algorithmic development to finally solve this important
causal discovery problem. As future work, we will focus on developing practical estimation methods
and extending our results to nonlinear cases.
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1 Proofs and more details

For convenience, we reserve the matrix RJ
B to denote the net effect of J on B prior to any mixing

effects among B—that is, on the subgraph where Ch(Vb) has been set to ∅ for each Vb ∈ B.

Proposition 3. For any J,B ⊆ V , RJ
B =

(
MB

B

)−1
MJ

B . Moreover, if B is a bottleneck from J to
K, then MJ

K = MB
KRJ

B .

1.1 Theorem 1 and its proof

Let us present the complete theorem first, and then give its proof. Let n be the dimensionality of
X. Remeber p is the number of noise terms. In the case where n = p, MX in (4) is a square
matrix, and its identifiability from X up to column rescaling and permutations has been provided
by Matsuoka et al. [1], but we are concerned with the case where n < p. In the case where the
noise terms εi are non-Gaussian, the identifiability of MX up to column rescaling and permutations
was also given in the literature [2], inspired by the results in [3]. Although the corresponding OICA
problem may be difficult to solve in practice, this identifiability result is nice in that it holds true even
if p is much larger than n. The heterogeneous variance case seems complementary: its maximum
likelihood estimation procedure is simple, but our proof of it uses a constraint on p, given a fixed n
(this condition is sufficient, but may be unnecessary, as illustrated by our simulation results), as given
in the following theorem.

Before presenting Theorem 1, let us give the following lemma, which will be needed in the proof of
Theorem 1.

Lemma 5. Suppose matrix K ∈ Rn×n has linearly independent columns, i.e., Rank(K) = n.
Let K̊ = K − d · 1ᵀ, where d ∈ Rn and 1 is the length-n vector of all 1’s. Then for any d,
Rank(K̊) ≥ n− 1.

Proof. Since K in invertible, let f := K−1 ·d. Then K̊ = K−d·1ᵀ = K(I−f ·1ᵀ), where I denotes
the identity matrix. Since K has full rank, Rank(K̊) = Rank(K(I− f · 1ᵀ)) = Rank(I− f · 1ᵀ).

To show Rank(I− f · 1ᵀ) ≥ n− 1, we can equivalently show that the nullspace of (I− f · 1ᵀ) has
at most dimension one. suppose that g is a nonzero vector in Rn that satisfies the equation:

(I− f1ᵀ)g = 0⇐⇒ g = f · 1ᵀg,

which also implies 1ᵀ · g = 1ᵀ · f · 1ᵀg, or 1ᵀ · f = 1. Therefore, there are two cases to consider:

• If the value of d satisfies 1ᵀ · f = 1ᵀK−1 · d = 1, the nullspace of (I− f1ᵀ) is span(f),
which has dimension one, and accordingly Rank(I− f · 1ᵀ) = Rank(K̊) = n− 1.
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• If the value of d does not satisfy 1ᵀK−1 · d = 1, the nullspace of (I− f1ᵀ) has dimension
zero, and consequently Rank(I− f · 1ᵀ) = Rank(K̊) = n.

We are now ready to present Theorem 1.

Theorem 1 Suppose we have observed X generated according to the mixing procedure (4) in a
number of domains, t = 1, 2, ..., T . Assume that εi are uncorrelated in each domain and that their
variances in domain t, denoted by σ2

ti, change independently across domains in the sense that S,
whose (i, t)th entry is σ2

ti, has full column rank. Further assume that each n columns of MX are
linearly independent and that p ≤ 2n− 2. Then if X admits a model

X = M̃X ε̃, (16)

where ε̃ also follows the above assumption on ε, every column of M̃X must be proportional to a
column of MX and vice versa.

Proof. Let σ2
ti be the variance of ε̃i in the tth domain. Let St be the diagonal matrix with

σ2
t1, σ

2
t2, ..., σ

2
tp on its diagonal, and similarly for S̃t. Let S̃ be the matrix with σ̃2

ti as its (i, t)th
entry. Denote by Mi

X the ith column of MX , and similarly for M̃i
X . In the t-th domain the two

mixing models imply the same distribution, or more specifically, the same covariance matrix, of X.
That is, in the t-th domain,

Cov(Xt) = MXStM
ᵀ
X = M̃X S̃tM̃

ᵀ
X , or equivalently, (17)

Cov(Xt) =

p∑

i=1

σ2
tiM

i
XM

iᵀ
X =

p∑

i=1

σ̃2
tiM̃

i
XM̃

iᵀ
X . (18)

It can also be written as
p∑

i=1

σ2
tiM

i
X ⊗Mi

X =

p∑

i=1

σ̃2
tiM̃

i
X ⊗ M̃i

X , or in matrix form,

(MX �MX ) · S = (M̃X � M̃X ) · S̃, (19)

where ⊗ denotes the Kronecker product and � the Khatri–Rao (column-wise Kronecker) product,
i.e., M̃X � M̃X = [M1

X ⊗M1
X , M

2
X ⊗MX2, ...,M

p
X ⊗Mp

X ].

Since S has full column rank, we can select p columns from it, corresponding to p domains, that
form a full rank matrix. Let this matrix be S∗ . Similarly we have S̃∗ corresponding to the alternative
model (16), corresponding to the same p domains. Equation (19) then implies

(MX �MX ) · S∗ = (M̃X � M̃X ) · S̃∗, (20)

We will use the concept Kruskal-rank [4], denoted by Rankk; the Kruskal-rank of a matrix K is
the maximum number of l such that every l columns of K are linearly independent. Bear in mind
that each n columns of MX are linear independent (i.e., Rankk(MX ) = n) and that p ≤ 2n − 2.
Lemma 1 by Sidiropoulos et al. [5] then implies that the rank of MX �MX is larger than or equal
to min(2n− 1, p) = p. That is, MX �MX has full column rank. Further because S∗ has full rank,
(20) implies that S̃∗ has full rank and that M̃X � M̃X has full column rank.

Right-multiplying both sides of (20) by S̃∗−1 and let Q := S∗ · S̃∗−1, one will get

(M̃X � M̃X ) = (MX �MX ) ·Q. (21)

We shall then show that Q must be a generalized permutation matrix and hence the columns of M̃X
are a permuted and scaled version of those of MX .

Without loss of generality, let us consider the first column of the matrices on both sides of (21), and
let qi1 be the (i, 1)th entry of Q. We have

M̃1
X ⊗ M̃1

X = (MX �MX ) ·Q1 =

p∑

i=1

qi1 · (Mi
X ⊗Mi

X ), (22)
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where qi1 cannot be zero for all i. Since each n columns of MX are linearly independent, it cannot
contain a zero column. Suppose Mi

X k, the (k, i)th entry of MX , is nonzero. According to the
specific structure of the Kronecker product M̃1

X ⊗ M̃1
X in (22), we know that there must exist a

non-zero vector d ∈ Rn such that the RHS satisfies
p∑

i=1

qi1 · (Mi
X ⊗Mi

X ) = d⊗
( p∑

i=1

qi1 · (Mi
Xk ·Mi

X )
)

=

p∑

i=1

qi1 ·
(
(Mi
Xk · d)⊗Mi

X
)

=⇒
p∑

i=1

qi1 ·
(
(Mi
X −Mi

Xk · d)⊗Mi
X
)

= 0

=⇒(M̊X �MX )Q1 = 0, (23)

where M̊X is a n× n matrix with (Mi
X −Mi

Xk · d) as its i-th column, i.e.,

M̊X = MX −Mi
Xk · d · 1T .

We are now about to show that in order for (23) to hold, qi1 6= 0 for one and only one i = 1, 2, ..., p.

There are two cases to consider:

• Suppose one column of M̊X is zero. Note that since Rankk(MX ) = n, each pair of its
columns are linearly independent, so there is only one zero column in M̊X . Let the r-th
column of M̊X be zero. Denote by M̊

(−r)
X the matrix obtained by removing the r-th column

from M̊X , and similarly for M(−r)
X . Let Q1

(−r) be the vector obtained by removing the r-th

entry from the vector Q1. According to Lemma 5, each n columns of M̊(−r)
X have rank at

least n− 1, so Rank(M̊
(−r)
X ) ≤ n− 1. At the same time, Rankk(M

(−r)
X ) = n. Moreover,

M̊
(−r)
X �M

(−r)
X has p−1 columns. Hence Rank(M̊

(−r)
X )+Rankk(M

(−r)
X ) ≥ n−1+n =

2n− 1 ≥ (p− 1) + 1 because it is assumed that p ≤ 2n− 2. Lemma 1 by Guo et al. [6]
then implies that M̊(−r)

X �M
(−r)
X has full column rank. On the other hand, (23) becomes

qr1 · 0 + (M̊
(−r)
X �M

(−r)
X )Q1

(−r) = (M̊
(−r)
X �M

(−r)
X )Q1

(−r) = 0.

Consequently, Q1
(−r) is a zero vector because M̊

(−r)
X �M

(−r)
X has full column rank. That

is, only qr1 is non-zero. Then (22) tells us that

M̃1
X ⊗ M̃1

X = qr1 · (Mr
X ⊗Mr

X ).

Hence, M̃1
X is a scaled version of Mr

X .

• Suppose no column of M̊X is zero. According to Lemma 5, each n columns of M̊X have
rank at least n−1, so Rank(M̊X ) ≤ n−1. Remember Rankk(M

(−r)
X ) = n and M̊X �MX

has p columns. Hence Rank(M̊X ) + Rankk(MX ) ≥ n− 1 + n = 2n− 1 ≥ p+ 1 because
p ≤ 2n− 2. Again, Lemma 1 by Guo et al. [6] indicates that M̊X �MX has full column
rank. Hence, in order for (23) to hold, Q1 must be a zero vector, leading to a contradiction.

Therefore, M̃1
X is a scaled version of Mr

X . Similarly M̃2
X is a scaled version of Mr′

X , and so on.
Because M̃X � M̃X has full column rank, different columns of M̃1

X must correspond to different
columns of MX . Further because of the symmetry between the two models (4) and (16), every
column of M̃X must be proportional to a column of MX and vice versa.

1.2 Proof of Theorem 2

Theorem 2. If F is identified up to trivialities, then the graph induced by F satisfies the bottleneck
and strong non-redundancy conditions.
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We prove this for the two conditions separately. Throughout, we use F, M, and Ch(·) to refer to
the relevant components of the true causal system; and F̂, M̂, and Ch′(·) to refer to the relevant
components of an alternative causal system which we will construct. R is as described in Proposition
3.

Bottleneck condition: Let B 6= Ch(Vi) be a minimal bottleneck from Ch(Vi) to X . Define

F̂i = IBVR
i
B

so that F̂i
j =

[
Ri

B

]
j

if Vj ∈ B and F̂i
j = 0 otherwise. Clearly, (I− F̂) is invertible whenever (I−F)

is. Moreover,

MX F̂
i = MB

XR
Ch(Vi)
B Fi

Ch(Vi)
= M

Ch(Vi)
X Fi

Ch(Vi)
= MXF

i.

So, since MX F̂ = MXF = (M − I)X , (3) shows that (I − F̂)−1X = MX . Thus F̂ generatesM.
Furthermore, ‖F̂‖0 ≤ ‖F‖0 since B is assumed to be minimal, so that F̂ ∈ F . Therefore, since F

and F̂ induce different DAGs when B 6= Ch(Vi), F is not identified up to trivialities.

Parental non-redundancy: If Li → Vj , define P as the identity matrix with the i-th and j-th columns
switched; D as the diagonal matrix with Di

i = 1/F i
j and ones on the rest of the diagonal; and further

M̂X = MXDP,

F̂i = Ij + Ii −
(
F i
j

)−1
PFi,

F̂j = P
[(
F i
j

)−1
Fi + (F− I)j

]
,

F̂k = PD−1Fk for all k 6∈ {i, j},

so that Ch′(Li) = Ch(Li) and Ch′(Vj) ⊆ Ch(Vj), but with weights F̂i 6∝ Fi and F̂j 6∝ Fj .
Moreover, for every other Vk, if Li ∈ Ch(Vk), then Vj ∈ Ch′(Vk) and vice versa. Clearly ‖F̂‖0 ≤
‖F‖0 if Li is a parental redundancy of Vj . Moreover, the resulting graph is acyclic whenever the true
graph is acyclic. We compute:

M̂X F̂
i = M̂X

[
Ij + Ii −

(
F i
j

)−1
PFi

]

= MX
(
F i
j

)−1 [
Ii + F i

j I
j − Fi

]

=
(
F i
j

)−1 [
Mi
X + F i

jM
j
X −Mi

X + IiX
]

= Mj
X

= M̂i
X ,

where we have used the fact that IiX = 0 since Li ∈ L. We further calculate

M̂X F̂
j = MD

[(
F i
j

)−1
Fi + (F− I)j

]

=
(
F i
j

)−1
Mi − Ij

= M̂j − Ij ,

and finally
M̂X F̂

k = MXF
k

for k 6∈ {i, j}. Hence M̂X F̂ = (M − I)X . Rearranging, we see that (I − F̂)−1X = M̂X ∈ M.
Because we have already argued that ‖F̂‖0 ≤ ‖F‖0 if Li is a parental redundancy of Vj , it follows
that F̂ ∈ F if Li is a parental redundancy of Vj . Therefore, due to the changes in causal scale, F is
not identifiable up to trivialities.

Co-parental non-redundancy: If Li 6→ Vj and Vk ∈ Ch(Li) ∩ Ch(Vj), define

F̂j = Fj + (I− F)if,

4



where f :=
F j

k

F i
k

. Then Ch′(Vj) = Ch(Vj)∪{Li}∪Ch(Li)−{Vk}. If Li is a co-parental redundancy
of Vj , then the resulting system is no denser than the original. Moreover, the resulting system is
acyclic. Finally, we calculate:

MX F̂
j = (M− I)jX + fIiX

= (M− I)jX ,

since Li ∈ L. With F̂k = Fk for all remaining k 6= i, (3) shows that (F̂ − I)−1X = MX , so that
F̂ ∈ F . But since F induces a different DAG, F is not identified up to trivialities.

Remark: Notice that parental non-redundancy is not necessary to identify the full causal DAG; if Li

is a parental redundancy of Vj , and neither Li nor Vj has any parent, then both the true system and
the alternative system constructed in the proof of Theorem 2 will have the same skeleton. However,
the alternative system is emphatically not a mere re-indexing and re-scaling of latent variables. In
particular, if Vj ∈ X , then the net effect of Xj on X will not be identified.

1.3 Characterizing bottleneck faithfulness

In this section we show that the set of adjacency matrices, corresponding to a fixed graph, that are not
bottleneck faithful is a proper algebraic subset of all adjacency matrices for that graph. That is, the
property of being bottleneck faithful is a generic property, both in the sense that it holds on an dense
open set and that the exception set is of Lebesgue measure zero. But first, we prove Proposition 1
from the main paper.

Proof. (Prop. 1) Decompose MJ
K = MB

KRJ
B using Proposition 3, then Rank

(
MJ

K

)
≤ |B|.

To formalize that bottleneck faithfulness is a generic property, let G denote a graph (a DAG) with p
nodes and n edges. A p × p adjacency matrix F that induces G has n nonzero entries, and we let
FG ⊆ Rn denote the set of adjacency matrices that induce G – with FG regarded as a subset of Rn.
An algebraic subset of FG is a set

A = {F ∈ FG | pol(F) = 0}
where pol is a polynomial. If pol is not the zero polynomial, A is a proper algebraic subset, and it is
well known thatA is then nowhere dense and of Lebesgue measure zero. We will construct a non-zero
polynomial that evaluates to 0 if and only if the adjacency matrix is not bottleneck faithful. To this
end, we first show that for any graph there exists an adjacency matrix that is bottleneck faithful.
Proposition 4. For any graph G there exists F ∈ FG such that F is bottleneck faithful.

Proof. The proof is by induction on the number of edges, n. Clearly for n = 0 we have bottleneck
faithfulness.

For the induction step, let n ≥ 1 and suppose there exists a bottleneck faithful adjacency matrix
for any graph with less than n edges. Let G′ be a graph with n edges, let Vi be a root node with
Ch′(Vi) 6= ∅ the children of Vi in G′. Let G be the subgraph of G′ with all edges out of Vi removed,
and let F ∈ FG denote a bottleneck faithful adjacency matrix for G. By choosing F i

l for l ∈ Ch′(Vi)
we can regard F ∈ FG′ , and the objective is to choose F i

l such that F becomes bottleneck faithful for
G′. In what follows, M denotes the mixing matrix for F on G, that is, when F i

l = 0 for l ∈ Ch′(Vi),
and M′ denotes the mixing matrix on G′ for any choice of F i

l for l ∈ Ch′(Vi).

Given J,K ⊆ V we denote by LJ
K the set of coefficients F i

l for l ∈ Ch′(Vi) for which bottleneck
faithfulness for G′ is violated by J and K.

If Vi 6∈ J , then since Vi is a root in G′, bottleneck faithfulness holds for G′ from J to K – no matter
the coefficients F i

l for l ∈ Ch′(Vi). Thus LJ
K = ∅.

If Vi ∈ J , we have that Mi
K = IiK , and

M′iK = IiK +
∑

l∈Ch′(Vi)

F i
l M

l
K and M′jK = Mj

K for j 6= i.

There are two cases to consider.
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1. There is a minimal bottleneck, B, from J to K in G such that all paths from i to K in G′
pass through B.

In this case, B is also a minimal bottleneck in G′. Since Vi is a root node, Mj
i = 0 for all

j, and replacing zero entries in the column IiK by possibly non-zero entries in the column
M′iK cannot reduce the rank of MJ

K . Thus no choice of F i
l for l ∈ Ch′(Vi) makes J and K

violate bottleneck faithfulness for G′ and LJ
K = ∅.

2. For any minimal bottleneck, B, from J to K in G there is a path from i to K in G′ that does
not pass through B.

Note that in this case, Vi 6∈ K and IiK = 0. Choose any minimal bottleneck, B, in G. Then
B ∪ {i} is a minimal bottleneck in G′, and with col(MJ

K) the column space of MJ
K ,

LJ
K =



(F i

l )l∈Ch′(Vi)

∣∣∣∣∣∣
∑

l∈Ch′(Vi)

F i
l M

l
K ∈ col(MJ

K)



 ⊆ RCh′(Vi).

Note that LJ
K is a linear subspace of RCh′(Vi). Due to bottleneck faithfulness for G,

Rank(M
J∪Ch′(Vi)
K ) ≥ |B|+ 1, or there would be a bottleneck from J to K in G′ of size

|B|. This shows that LJ
K is a true subspace.

The set
⋂

J,K(LJ
K)c contains all valid choices of coefficients F i

l for l ∈ Ch′(Vi) such that F is
bottleneck faithful for G′. Since all LJ

K are true subspaces, their complements are open and dense
and so is their intersection. It is, in particular, non-empty and contains an element with F i

l 6= 0 for all
l ∈ Ch′(Vi).

Proposition 5. Let G be a graph with n edges. The set

A = {F ∈ FG | F is bottleneck faithful for G}
is a proper algebraic subset of Rn. In particular, a generic adjacency matrix F is bottleneck faithful.

Proof. Recall that the mixing matrix for F is

M = (I − F)−1 = I + F + . . .+ Fp,

thus the entries in M are polynomials in the coefficients in F. For any J and K, let bJK denote the
size of a minimal bottleneck from J to K, let

HJ
K = {H | H is a bJK × bJK submatrix of MJ

K},
and define

polJK(F) =
∑

H∈HJ
K

det(H)2.

Clearly, polJK is a polynomial in the coefficients of F, polJK(F) = 0 if and only if bottleneck
faithfulness is violated for F by J and K, and

A =



F ∈ FG

∣∣∣∣∣∣
∏

J⊆V,K⊆V
polJK(F) = 0





is the set of adjacency matrices that are not bottleneck faithful. By Proposition 4 it is non-empty, thus
the defining polynomial is not the zero polynomial and A is a proper algebraic subset.

1.4 Proofs of Theorem 3 and its associated lemmas

First we prove a useful result not in the main text.

Proposition 6. Suppose a partially observed DAG satisfies the bottleneck condition and generalized
non-redundancy. For every Vi, Vj , Ch(Vi) is a bottleneck from Ch(Vj) to X if and only if Vi = Vj .
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Proof. The backward direction is obvious. Conversely, define

S := {Vk ∈ Desc(Vj)− Ch(Vi) : Ch(Vi) is a bottleneck from Vk to X}.
Obviously S ∩ X = ∅, and if S = ∅, then Ch(Vi) is not a bottleneck from Vj to X . Hence,
by acyclicity, there is an Ln ∈ S which has no descendent in S. Therefore Ch(Ln) ⊆ Ch(Vi) ∪
{Vi}.

As indicated in the main paper, we assume in Lemmas 1-4 and Theorem 3 that the bottleneck
condition, strong non-redundancy, and bottleneck faithfulness hold, and thatM is identifiable.

1.4.1 Proof of Lemma 1

Lemma 1. Let J = Ch(Vi). Then the unique solution to (8) is given by x = Fi
Ch(Vi)

.

Proof. For uniqueness, notice that

Rank
(
M

Ch(Vi)
X

)
≥ Rank

(
M

Ch(Vi)
X−{Vi}

)
= |Ch(Vi)|,

with the equality following from the bottleneck condition and bottleneck faithfulness.

To see that Fi
J is a solution, notice that MJ

XF
i
J = MXFi, and use (3).

1.4.2 Proof of Lemma 2

Lemma 2. Suppose J ⊆ V − Anc(Vi). If (M − I)iX ∈ Range
(
MJ
X
)
, then |J | ≥ |Ch(Vi)|, with

equality if and only if J = Ch(Vi).

Proof. Let J ⊆ V − Anc(Vi). The i-th row of (8) is satisfied trivially: MJ
i = 0 when J ⊆

V −Anc(Vi), and (M− I)ii = 0 by acyclicity. Thus (8) has a solution if and only if

Mi
X−{Vi} = MJ

X−{Vi}x

has a solution. This can be factorized as

MB
X−{Vi}R

i
B = MB

X−{Vi}R
J
Bx,

where B is any minimal bottleneck from {Vi} ∪ J to X − {Vi}. By bottleneck faithfulness,

Rank
(
MB
X−{Vi}

)
= |B|

so that there is a solution to (8) if and only if

Ri
B = RJ

Bx.

We distinguish two cases: either Vi ∈ B, or Vi 6∈ B.

In the first case, Ri
B is a B-dimensional basis vector with 1 in the i-th slot and 0 elsewhere. Thus if

there is a solution, RJ
i 6= 0, so that J has a path to Vi. Hence J ∩Anc(Vi) 6= ∅.

In the second case, bottleneck faithfulness and the fact that B is a minimal bottleneck indicate that
|J | ≥ |B|. Noting that B is a bottleneck from Ch(Vi) to X , we apply the bottleneck condition:
|B| ≥ |Ch(Vi)| with equality if and only if B = Ch(Vi). Moreover, for each Vj ∈ J , Ch(Vi)
is a bottleneck from Vj to X − {Vi} if and only if Vj ∈ Ch(Vi) by Proposition 6. Combining,
|J | ≥ |B| ≥ |Ch(Vi)| with equalities if and only if J = B = Ch(Vi).

1.4.3 Proof of Lemma 3

Lemma 3. For every k ≥ 0, let Vk and Jk(Vi) be defined as in the main paper. Then Vi ∈ Vk+1−Vk
if and only if all of the following hold:

1. Vi 6∈ Vk,

2. |Support(Mi)−Xk| ≤ 1,

7



3. |Jk+1(Vi)| = 1, and

4. for all Vj 6= Vi satisfying points 1 and 2, Mj
Xk
6∈ Range

(
M

Jk(Vi)
Xk

)
.

Proof. Suppose Vi ∈ Vk+1 − Vk. The first conjunct is obvious, the second conjunct follows by
acyclicity, and the third conjunct follows from Lemma 2. For the fourth conjunct, take any other Vj ,
and let B be a minimal bottleneck from {Vj} ∪ Ch(Vi) to Xk. Then B is further a bottleneck from
{Vj} ∪Ch(Vi) to X . By Proposition 6, B 6= Ch(Vi), since B is in particular a bottleneck from Vj to
X . Hence, by the bottleneck condition, |B| > |Ch(Vi)|, since B is in particular a bottleneck from
Ch(Vi) to X . Therefore,

Rj
B = R

Ch(Li)
B x

has no solution due to bottleneck faithfulness, so that

Mj
Xk

= M
Ch(Vi)
Xk

x

also has no solution by bottleneck faithfulness applied to MB
Xk

.

Conversely, suppose Vi 6∈ Vk+1 − Vk, and let J ∈ Jk+1(Vi). Clearly there exists some Vj ∈
(Vk+1−Vk)∩Desc(Vi). Now, for any minimal bottleneckB from {Vi}∪J toXk, Ri

B ∈ Range(RJ
B)

by bottleneck faithfulness on MB
Xk

. Since J ⊆ Vk, it follows that B ⊆ Vk; otherwise some row of
RJ

B is zero, proving that either B is not minimal, or that J does not admit a solution to (8). So in
particular, Anc(Vj) ∩B = ∅. Therefore, since Vi has a path to Vj , and since B is a bottleneck from
Vi to Xk, B is a bottleneck from Vj to Xk. Hence

Mj
Xk
∈ Range

(
MB
Xk

)
⊆ Range

(
MJ
Xk

)
,

since B is by definition a bottleneck from J to Xk. Because Vj clearly satisfies conjuncts 1 and 2,
the fourth conjunct is violated.

1.4.4 Proof of Lemma 4

Lemma 4. Xi ∈ Xk+1 if and only if Xi ∈ Vk+1 and Support (Mi)−Xk = {i}.

Proof. This follows from definitions and acyclicity.

1.4.5 Proof of Theorem 3

Theorem 3. Suppose F satisfies strong non-redundancy, bottleneck faithfulness, and the bottleneck
condition. Then F is identifiable up to trivialities.

Proof. Lemma 3 shows that MVkX is identifiable fromM up to permutation and scaling of columns,
since neither it nor Lemma 2 upon which it relies makes any assumptions about the scaling or
permutation of M.

From here, Lemma 4 shows that MX
X is identifiable up to scaling for each X ∈ X . But then MX

X is
identifiable exactly since MX

X = 1 by acyclicity. Hence MXX is identifiable exactly, and MLX up to
permutation and scaling of columns. In other words,

M̃ := {MXDP : DP ∈ DPp with (DP)XX = I} ⊂ M
is identifiable.

Fix any M̃ ∈ M̃, and let PD satisfy M̃PD = MX . Without loss of generality, reindex the latent
variables so that P = I. Because Vk is identified for every k, apply Lemma 2 to conclude that
M̃Ch(Vi) is identifiable for every i. Moreover, notice that M̃i = M̃Ch(Vi)x if and only if Mi

X =

M
Ch(Vi)
X

[
D

Ch(Vi)
Ch(Vi)

x/Di
i

]
. By Lemma 1, this holds if and only if x = Di

i(D
−1)

Ch(Vi)
Ch(Vi)

Fi
Ch(Vi)

.

Repeating for every Vi, F̃ := D−1FD is identified from M̃.
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2 Detailed experimental results

2.1 BIC penalty

As indicated in the main paper, we created 10 causal systems for each of the graphs in Figure 5. The
causal weights were drawn uniformly from (−0.9,−0.5) ∪ (0.5, 0.9), and the independent variances
σ2
t,i were drawn independently and uniformly from (0.5, 2.0). For each of the T domains, n samples

were then simulated according to (12).

To estimate the full system, we enumerate all partially observed DAGs with three observed and at
most two latent variables, and optimize all causal weights and noise variances using L-BFGS. As
initialization, every covariance term and non-zero causal weight was set to 1. We then selected the
graph with the lowest BIC:

BIC(F,Σ) = −2``(F,Σ) + ‖F‖0 log(nT ).

The table below summarizes the rate at which the correct skeleton was learned for each graph and
each choice of T × n.

Graph 1× 5000 3× 1666 5× 500 5× 1000 5× 10000
(i) 10 10 10 10 10
(ii) 4 9 9 10 10
(iii) 2 10 9 8 9
(iv) 2 10 10 9 10
(v) 10 10 9 9 10
(vi) 1 7 4 6 8
(vii) 0 7 8 10 10
(viii) 0 7 8 9 10
(ix) 0 9 8 9 10
(x) 0 6 6 10 10
(xi) 0 9 6 9 10
(xii) 0 9 9 9 10
(xiii) 0 6 3 7 8
(xiv) 0 2 2 4 9
(xv) 0 0 1 3 6
(xvi) 2 9 8 9 10
(xvii) 0 0 1 3 5
(xviii) 0 5 7 8 10
(xix) 0 3 0 4 10
(xx) 0 5 2 6 10
(xxi) 0 3 1 2 8
(xxii) 0 5 0 5 8

Notice that the three sample sizes 1× 5000, 3× 1666, and 5× 1000 all have the same total number
of samples; any difference in performance is therefore attributable to the diversity of domains, and
not to mere sample size.

Obviously these are not the only identifiable graphs; however, they are the only identifiable graphs
up to re-indexing of variables. For example, graph (vii) has three versions: X1 ← L → X2,
X1 ← L→ X3, and X2 ← L→ X3. However, it is clearly sufficient to study the empirical recovery
rate of only one of the three structures. Nevertheless, the exhaustive search was performed over
all 1759 possible graphs with at most two latent variables; that is to say, for example, that the BIC
optimization for graph (vii) included all three of these possibilities.

Recovery for graphs with exactly one latent and over 3 edges—graphs (xiii), (xiv), and (xv)—was
relatively poor. In many incorrectly recovered graphs, the model of best fitting had an additional
latent variable. In some sense, this gives the model an extra degree of freedom to approximate the
covariances, by providing a larger overcomplete basis. However, only the number of edges was
penalized in the L0 penalty, and not the number of latents. This was not possible in the case of (xii),
as every graph with two latents has at least 4 edges, and so the BIC penalty was effective to prevent
this. It is possible that this could be avoided by choosing the number of latent variables by a separate
prior method, or by penalizing the number of latent variables. However, since this is not relevant
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

(xvii) (xviii) (xix) (xx)

(xxi) (xxii)

Figure 5: Identifiable graph skeletons, up to re-indexing of variables.

to enough graphs which are computationally admissible in an exhaustive search, we are not able to
effectively study these cases.

The other graph with poor performance was (xvii). Note that in this case, with two latent variables
and three measured variables, the mixing matrix MX is not guaranteed to be recoverable by Theorem
1. (Recall that Theorem 1 gives sufficient identifibility conditions, which might not be necessary,
and in the two cases the condition p ≤ 2n− 2 does not hold.) However, in every alternative graph,
the recovered system had a very different mixing matrix—even in terms of sparsity patterns up to
permutation of columns! We therefore attribute this indeterminacy to a non-identifiable mixing matrix
in the heterogeneous case, and not to an unidentifiable graph structure in general (for example, in the
single-domain non-Gaussian setting).

For the sake of reproducibility, we have included the code for this main experiment, along with
instructions for how to generate these results.

2.2 Detailed experimental results: Unidentifiable graphs

Here we show detailed estimation results for the three equivalence classes of Figure 6. For each
of graphs (i) through (ix) of Figure 6, we generated 15 adjacency matrices as in the identifiable
experiments—that is, with weights drawn uniformly from (−0.9,−0.5) ∪ (0.5, 0.9). Further, we
drew 1000 samples from 5 domains, with the variance of each noise term σ2

t,i drawn uniformly from
the interval (0.5, 2.0). We then optimized the log likelihood for each of the three systems in each
equivalence class, and selected the model with the best optimized log likelihood. Since we are only
showing that the graphs in each class are equivalent, we do not need to search over all possible latent
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi)

(xii) (xiii)

Figure 6: Three equivalence classes of graphs: {(i), (ii), (iii)} are equally sparse and observationally
indistinguishable, as are {(iv), (v), (vi)} and {(vii), (viii), (ix)}. Moreover, (x) (xi) (xii) and (xiii) are
not minimal, with (x) being observationally equivalent to (i) and (xi) being observationally equivalent
to (iv). (xii) and (xiii) are discussed in Figure 1 of the main paper.

DAGs, but only over DAGs in the equivalence class. The charts below show the number of times
each graph was chosen.

True graph Times (i) was selected Times (ii) was selected Times (iii) was selected
(i) 6 3 6
(ii) 7 4 4
(iii) 7 1 7

True graph Times (iv) was selected Times (v) was selected Times (vi) was selected
(iv) 8 3 4
(v) 6 4 5
(vi) 7 2 6

True graph Times (vii) was selected Times (viii) was selected Times (ix) was selected
(vii) 2 5 8
(viii) 1 8 6
(ix) 1 7 7
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In general, the difference in average log likelihood was on the same order as the convergence tolerance,
‖∇2``/n‖∞ < 10−8, where n is the total number of samples.

We ran a similar experiment for the non-minimal graphs (x)-(xiii). For each, 10 heterogeneous causal
systems were generated, and 1000 samples were simulated from each of the T = 5 domains. For
every overly dense graph, on all 10/10 trials, a sparser and observationally equivalent graph received
a lower BIC score than the true overly dense one.

2.3 Detailed experimental results: L1 penalty

In this section, we show exact results for a random system generated with skeleton (xviii). Results
for other partially observed graphs are similar.

The true causal model is given by:



L1

L2

X1

X2

X3


 =




0 0 0 0 0
0 0 0 0 0

0.82 0 0 0 0
0.53 0.51 0 0 0

0 0.82 0 0 0







L1

L2

X1

X2

X3


+ ε.

As in the tests of the BIC algorithm, we used 5 domains. In the t-th domain, ε ∼ N (0,Σt) for
diagonal Σt. The variances for the t-th domain (i.e. the diagonal entries of Σt) are listed in the t-th
row of the matrix below:

S =




1.45 0.71 1.91 1.28 1.12
0.89 1.66 1.18 1.35 0.52
1.42 1.41 1.42 1.91 1.52
1.03 1.15 1.54 0.59 1.50
1.50 0.81 0.69 0.97 1.04


 .

All coefficients were randomly drawn by the same method used for the BIC-simulation studies.

We simulated 1000 observations for each of the 5 domains, and then estimated the adjacency matrix
by minimizing

−2``(F,Σ)/(nT ) + λ
∑
|Fi,j |

as in (15), subject to σt,i ∈ (0.1, 2.0) for each t ∈ {1, ..., 5} and i ∈ L. It is necessary to bound each
of the latent σ, because otherwise it would be possible to evade the L1 penalty by making FL very
small but ΣL very large. However, to give the L1 optimizer the fairest chance of finding the true
system, we constrained the latent values of σ with the same upper bound as Σ was generated with.

Because this is a non-convex objective, we ran L-BFGS-B from 10 random initializations, and used
the point which best optimized (15).

Below we show the best-fitting adjacency matrix for various choices of λ. Recovered edges with
strength in (−0.1, 0.1) were pruned.

λ = .5; our procedure returned:




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




λ = .1; our procedure returned:




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0.20 0 0
0 0 0 0.23 0



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λ = .015; our procedure returned:



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0.37 0.24 0 0
0 0.31 0 0.19 0




Interestingly, at this choice of λ, the true graph was no longer a local minimum; with the truth as
initialization, the optimizer moves to




0 0 0 0 0
0 0 0 0 0

0.45 0 0 0 0
0.39 0.36 0.12 0 0

0 0.41 0 0.16 0




which has a much smaller L1 penalty than the true system.

λ = .01; our procedure returned:




0 0 0 0 0
0 0 0 0 0

0.39 0 0 0 0
0.38 0.37 0.16 0 0

0 0.32 0 0.21 0




With the truth as initialization, the optimizer moves to an adjacency matrix with similar support.
Again, these systems incur a smaller L1 penalty than the true system, even though they are denser
than the true system.

Similar results for each choice of λ are obtained with 10 000 samples in each domain.
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2.1 Additional Results and Discussion of Identifiability

2.1 Additional Results and Discussion of Identifiability

In statistics, “identifiability” is usually defined in terms of the injectivity of maps from
parameters to distributions. More formally, let P denote a set of probability distributions
indexed by parameters θ and η so that P = {Pθ,η}. Throughout this section, we will
say that a parameter θ0 is conventionally identifiable if, for all θ, η, it is the case
that Pθ0,η = Pθ,η if and only if θ0 = θ. When identifiability holds for all θ0, we say the
parameter is globally identified; when it holds on the complement of a proper algebraic
subset, it is globally identified.

This notion of conventional identifiability, widespread throughout statistics, is too
strong for the purposes of [Identification], because the map from lower triangular adja-
cency matrices F to partially observed mixing matrices MX (and hence to the model
class P; see (4) of [Identification]) is never injective. For example, if an edge from Vi to
Vj is increased by 1 and the vector of Vi’s effects F

i is simultaneously decreased by F j ,
then every variable will still have the same net effect on X so thatM is unchanged.

If we want to talk about identifiability of the adjacency matrix for the partially ob-
served linear model, one option is to introduce some form of razor, preference, or selection
criterion to restrict the equivalence class from to a preferred subclass. We could then
say a parameter of interest is “identifiable” when it is the only element of this preferred
subclass. Formally, let θ ∈ Θ denote the parameter of interest, and let c : Θ→ R denote
a cost function measuring the suitability of θ with respect to some preferred selection cri-
terion. We say that a parameter θ0 is c-identifiable if, for all θ and η, it is the case that
Pθ,η = Pθ0,η with c(θ) ≤ c(θ0) if and only if θ = θ0. In Section 2.2, [Identification]defines
“identifiability up to trivialities” in terms of minimality of F; as such, [Identification]
promises to investigate necessary and sufficient conditions for ∥·∥0-identifiability of F
(up to rescaling and re-indexing of latents). If we have a good reason to prefer sparser
causal graphs, this could be a useful notion of identifiability to characterize.

While this is the notion of identifiability considered in [Identification] Theorem 2,
it is not actually the notion of identifiability considered in [Identification] Theorem 3;
there is a third way of caching out “identifiability” when conventional identifiability is
impossible, and [Identification] Theorem 3 equivocates the two. Formally, let Q : P →
Rm be a function from the model class of probability distributions to a finite dimensional
vector space, and let A denote a polynomial time algorithm which requires v ∈ Rm and
returns θ ∈ Θ. We say that θ0 is A-identifiable (from Q) if for all η it is the case
that A(Q(Pθ0,η)) = θ0. The proof of [Identification] Theorem 3 uses Lemmas 1-4 to
construct the true adjacency matrix F from the equivalence class of mixing matrices
M whenever Conditions 1-3 are satisfied; call this implied polynomial time algorithm
A3. As such, every adjacency matrix satisfying Conditions 1-3—and therefore every
uniquely minimal graph—is A3-identifiable given M. It is not obvious whether this is
stronger or weaker than being ∥·∥0-identifiable. Moreover, algorithmic identifiability
is neither stronger nor weaker than conventional identifiability; a parameter may be
provably conventionally identifiable but not constructively so, and the algorithm “always
return 0” algorithmically identifies θ when θ = 0 even if other values of θ are admissible.

To summarize: [Identification] Theorem 2 proves that every ∥·∥0-identifiable adjacency
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2 Identifiability in Partially Observed Linear Models

matrix satisfies Conditions 1 and 2, while [Identification] Theorem 3 proves that every
adjacency matrix satisfying Conditions 1-3 is A3-identifiable; we have a merely necessary
condition for one notion of identification, and a merely sufficient condition for the other.

To resolve this equivocation, we prove the following stronger result.

Theorem 1. Suppose F satisfies Conditions 1-3. Then any other adjacency matrix F̃
which generates MX violates bottleneck faithfulness.

The proof uses [Identification] Lemma 2 and [Identification] Proposition 6 (printed in
the supplement).

Proof. Suppose that F̃ is bottleneck faithful, and define Ṽ i and C̃h(·) analogously to V i
and Ch(·) from the main paper. We will show that F = F̃ by induction on the longest
path length.

Trivially, Ṽ1 ⊆ V1. We indeed have Ṽ1 = V1 if F̃ is bottleneck faithful.

Suppose for the purpose of induction that Ṽk = Vk and C̃h(Vi) = Ch(Vi) for every
Vi ∈ Vk. Now consider any Vj ∈ Vk+1−Vk. Because F satisfies Conditions 1 and 3,

we know that rankM
Ch(Vj)∪{Vj}
X −{Vj} = |Ch(Vj)|, and so F̃ must have a bottleneck from

Ch(Vj) ∪ {Vj} to X −{Vj} of size |Ch(Vj)| if it is to be bottleneck faithful. Notice that
on F, the unique smallest bottleneck from Ch(Vj) to X −{Vj} is Ch(Vj) itself due to

Condition 1. But the same is true on F̃; by definition C̃h(Vj) ⊆ Ṽk = Vk, and FVk = F̃
Vk

by inductive hypothesis. Since any bottleneck of Ch(Vj) ∪ {Vj} is also a bottleneck of
Ch(Vj), it follows that Ch(Vj) is a bottleneck from Vj to X −{Vj} on F̃.

Now, by analogy to the proof of [Identification] Proposition 6 (from the supplement),
it can be shown that Ch(Vj) is not a bottleneck from any V ̸∈ Ch(Vj)∪{Vj} to X −{Vj}
on F. Hence Mj

X −{Vj} is the only column of MX −{Vj} in the span of M
Ch(Vj)

X −{Vj} by

bottleneck faithfulness on F. This entails that no other V ∈ V can be bottlenecked
from X −{Vj} by Ch(Vj) on F̃, and thus that C̃h(Vj) ⊆ Ch(Vj) (otherwise Vj would
have a child not bottlenecked by Ch(Vj) on F̃, contradicting the previous paragraph’s

conclusion). We in fact must have C̃h(Vj) = Ch(Vj) by bottleneck faithfulness of F.

Theorem 1 shows that when bottleneck faithless adjacency matrices are excluded
from the model a priori, Conditions 1-2 entail conventional identifiability globally on
that submodel. Furthermore, since conventional identifiability obviously entails ∥·∥0-
identifiability, the converse also holds due to [Identification] Theorem 2. Hence, if the
model class is restricted to bottleneck faithful adjacency matrices, then Conditions 1-2
are necessary and sufficient not only for ∥·∥0-identifiability, but also for global conven-
tional identifiability. We summarize this observation below.

Theorem 2. Consider the model class described in Section 2 of [Identification] subject
to the restriction that F satisfy bottleneck faithfulness. Then the following are equivalent:

1. F satisfies Conditions 1-2;

2. F is conventionally identifiable from M up to trivialities;
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3. F is ∥·∥0-identifiable.

Let’s be clear about what Theorems 1 and 2 are claiming. Although bottleneck faith-
fulness is generically satisfied on any fixed graph due to [Identification] Proposition 5
(from the supplement), Theorem 1 emphatically does not say that Conditions 1-2 en-
tail generic (conventional) identifiable (up to trivialities); for every bottleneck faithful F
with n edges, there exists an observationally equivalent F′ with more than n edges which
violates bottleneck faithfulness. What these theorems do claim is that if we are willing
to exclude these bottleneck faithless alternatives from consideration a priori, then on
this model class, Conditions 1-2 are equivalent to identifiability.
There are two potential justifications for the a priori exclusion of bottleneck faithless

adjacency matrices. One is of course that bottleneck faithfulness violations constitute an
proper algebraic subset of the parameter space for any graph over V. Nature would only
give us parameters from this particular null set if we were extremely unlucky. This is
closely related to what Glymour et al. [1986] (page 94) call Spearman’s Principle: “Other
things being equal, prefer those models that, for all values of their free parameters, en-
tail the constraints judged to hold in the populations.” They elaborate: “Spearman’s
dominant methodological idea, never fully articulated, seems to have been that the best
explanation [or model] is one that generates constraints found in the population measures
without having to assume special values for its parameters.” (page 236) Essentially, the
graph over V entails certain rank constraints over submatrices of MX—see [Identifica-
tion] Proposition 1. So long as we have no reason to believe that the causal weights were
fine-tuned to violate bottleneck faithfulness, excluding those models can be viewed as
invoking Spearman’s Principle with respect to the observed rank conditions on MX .
Theorem 1 above is in one sense a very clear improvement over [Identification] Theorem

3; at the low cost of a priori excluding bottleneck faithless adjacency matrices from the
model class, Theorem 1 gives us conventional identifiability—a much nicer notion than
algorithmic identifiability, which (on its own) is merely relative to an arbitrary algorithm.
But we should not forget about [Identification] Theorem 3. Conventional identifiability
does not entail algorithmic identifiability; Theorem 1 is not constructive, and as such
does not establish algorithmic identifiability. It is only through [Identification] Theorem
3 that we can conclude that the adjacency matrices treated in Theorem 2 are also
algorithmically identifiable.
Similarly, we should not forget about [Identification] Theorem 2; since it holds globally

with no reference to bottleneck faithfulness, it further motivates our study of the two
graphical conditions.
When conventional identification is impossible, there are many weaker notions of iden-

tifiability available to be studied instead. Each can provide its own perspective on the
identification problem at hand.
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3 Multiple Causal Inference by Substitute
Adjustment

This chapter contains the following paper:

[Adjustment] [Adams and Hansen, 2024]. J. Adams and N. R. Hansen. Substitute adjustment
via recovery of latent variables. arXiv preprint arXiv:2403.00202, 2024.

In this chapter we study the multiple causal inference problem in the presence of
unobserved confounding described in Section 1.1 (2).
Throughout the paper, many of the results and discussion are causally agnostic—the

paper describes an adjustment problem without claiming that the regression model re-
flects anything about the interventional or counterfactual distributions. Nevertheless,
the problem is intricately related to the multiple causal inference problem studied in
Wang and Blei [2019]. The methods and theory presented there generated much dis-
cussion [D’Amour, 2019, Ogburn et al., 2020, Grimmer et al., 2023, for example]. In
particular, much of the discussion was obscurred by questions about whether the de-
confounder model of Wang and Blei [2019] is causally plausible. After the paper, we
discuss the deconfounder project of Wang and Blei [2019] and how our results relate to
the subsequent literature.
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SUBSTITUTE ADJUSTMENT VIA RECOVERY OF LATENT VARIABLES

JEFFREY ADAMS7 AND NIELS RICHARD HANSEN7

Abstract. The deconfounder was proposed as a method for estimating causal param-
eters in a context with multiple causes and unobserved confounding. It is based on
recovery of a latent variable from the observed causes. We disentangle the causal in-
terpretation from the statistical estimation problem and show that the deconfounder in
general estimates adjusted regression target parameters. It does so by outcome regres-
sion adjusted for the recovered latent variable termed the substitute. We refer to the
general algorithm, stripped of causal assumptions, as substitute adjustment. We give
theoretical results to support that substitute adjustment estimates adjusted regression
parameters when the regressors are conditionally independent given the latent variable.
We also introduce a variant of our substitute adjustment algorithm that estimates an
assumption-lean target parameter with minimal model assumptions. We then give finite
sample bounds and asymptotic results supporting substitute adjustment estimation in
the case where the latent variable takes values in a finite set. A simulation study illus-
trates finite sample properties of substitute adjustment. Our results support that when
the latent variable model of the regressors hold, substitute adjustment is a viable method
for adjusted regression.

1. Introduction

The deconfounder was proposed by Wang & Blei (2019) as a general algorithm for esti-
mating causal parameters via outcome regression when: (1) there are multiple observed
causes of the outcome; (2) the causal effects are potentially confounded by a latent vari-
able; (3) the causes are conditionally independent given a latent variable Z. The proposal
spurred discussion and criticism; see the comments to (Wang & Blei 2019) and the con-
tributions by D’Amour (2019), Ogburn et al. (2020) and Grimmer et al. (2023). One
question raised was whether the assumptions made by Wang & Blei (2019) are sufficient
to claim that the deconfounder estimates a causal parameter. Though an amendment by
Wang & Blei (2020) addressed the criticism and clarified their assumptions, it did not
resolve all questions regarding the deconfounder.

The key idea of the deconfounder is to recover the latent variable Z from the observed
causes and use this substitute confounder as a replacement for the unobserved confounder.
The causal parameter is then estimated by outcome regression using the substitute con-
founder for adjustment. This way of adjusting for potential confounding has been in
widespread use for some time in genetics and genomics, where, e.g., EIGENSTRAT
based on PCA (Patterson et al. 2006, Price et al. 2006) was proposed to adjust for popu-
lation structure in genome wide association studies (GWASs); see also (Song et al. 2015).

7Department of Mathematical Sciences, University of Copenhagen
Universitetsparken 5, Copenhagen, 2100, Denmark

E-mail addresses: ja@math.ku.dk, niels.r.hansen@math.ku.dk.
Date: February 29, 2024.
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2 J. ADAMS AND N. R. HANSEN

Similarly, surrogate variable adjustment (Leek & Storey 2007) adjusts for unobserved
factors causing unwanted variation in gene expression measurements.

In our view, the discussion regarding the deconfounder was muddled by several issues.
First, issues with non-identifiablity of target parameters from the observational distri-
bution with a finite number of observed causes lead to confusion. Second, the causal
role of the latent variable Z and its causal relations to any unobserved confounder were
difficult to grasp. Third, there was a lack of theory supporting that the deconfounder
was actually estimating causal target parameters consistently. We defer the treatment of
the thorny causal interpretation of the deconfounder to the discussion in Section 5 and
focus here on the statistical aspects.

In our view, the statistical problem is best treated as adjusted regression without insisting
on a causal interpretation. Suppose that we observe a real valued outcome variable
Y and additional variables X1, X2, . . . , Xp. We can then be interested in estimating the
adjusted regression function

(1) x ÞÑ E [E [Y | Xi = x; X´i]]

where X´i denotes all variables but Xi. That is, we adjust for all other variables when
regressing Y on Xi. The adjusted regression function could have a causal interpretation
in some contexts, but it is also of interest without a causal interpretation. It can, for
instance, be used to study the added predictive value of Xi, and it is constant (as a
function of x) if and only if E [Y | Xi = x; X´i] = E [Y | X´i]; that is, if and only if Y is
conditionally mean independent of Xi given X´i (Lundborg et al. 2023).

In the context of a GWAS, Y is a continuous phenotype and Xi represents a single
nucleotide polymorphism (SNP) at the genomic site i. The regression function (1) quan-
tifies how much a SNP at site i adds to the prediction of the phenotype outcome on
top of all other SNP sites. In practice, only a fraction of all SNPs along the genome are
observed, yet the number of SNPs can be in the millions, and estimation of the full re-
gression model E [Y | Xi = x; X´i = x´i] can be impossible without model assumptions.
Thus if the regression function (1) is the target of interest, it is extremely useful if we,
by adjusting for a substitute of a latent variable, can obtain a computationally efficient
and statistically valid estimator of (1).

From our perspective, when viewing the problem as that of adjusted regression, the
most pertinent questions are: (1) when is adjustment by the latent variable Z instead of
X´i appropriate; (2) can adjustment by substitutes of the latent variable, recovered from
the observe Xi-s, be justified; (3) can we establish an asymptotic theory that allows for
statistical inference when adjusting for substitutes?

With the aim of answering the three questions above, this paper makes two main con-
tributions:

A transparent statistical framework. We focus on estimation of the adjusted mean,
thereby disentangling the statistical problem from the causal discussion. This way the
target of inference is clear and so are the assumptions we need about the observational
distribution in terms of the latent variable model. We present in Section 2 a general
framework with an infinite number of Xi-variables, and we present clear assumptions
implying that we can replace adjustment by X´i with adjustment by Z. Within the
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general framework, we subsequently present an assumption-lean target parameter that
is interpretable without restrictive model assumptions on the regression function.

A novel theoretical analysis. By restricting attention to the case where the latent vari-
able Z takes values in a finite set, we give in Section 3 bounds on the estimation error
due to using substitutes and on the recovery error—that is, the substitute mislabeling
rate. These bounds quantify, among other things, how the errors depend on p; the actual
(finite) number of Xi-s used for recovery. With minimal assumptions on the conditional
distributions in the latent variable model and on the outcome model, we use our bounds
to derive asymptotic conditions ensuring that the assumption-lean target parameter can
be estimated just as well using substitutes as if the latent variables were observed.

To implement substitute adjustment in practice, we leverage recent developments on
estimation in finite mixture models via tensor methods, which are computationally and
statistically efficient in high dimensions. We illustrate our results via a simulation study
in Section 4. Proofs and auxiliary results are in Appendix A. Appendix B contains
a complete characterization of when recovery of Z is possible from an infinite X in a
Gaussian mixture model.

1.1. Relation to existing literature. Our framework and results are based on ideas by
Wang & Blei (2019, 2020) and the literature preceding them on adjustment by surro-
gate/substitute variables. We add new results to this line of research on the theoretical
justification of substitute adjustment as a method for estimation.

There is some literature on the theoretical properties of tests and estimators in high-
dimensional problems with latent variables. Somewhat related to our framework is the
work by Wang et al. (2017) on adjustment for latent confounders in multiple testing, mo-
tivated by applications to gene expression analysis. More directly related is the work by
Ćevid et al. (2020) and Guo, Ćevid & Bühlmann (2022), who analyze estimators within
a linear modelling framework with unobserved confounding. While their methods and
results are definitely interesting, they differ from substitute adjustment, since they do
not directly attempt to recover the latent variables. The linearity and sparsity assump-
tions, which we will not make, play an important role for their methods and analysis.

The paper by Grimmer et al. (2023) comes closest to our framework and analysis. Grim-
mer et al. (2023) present theoretical results and extensive numerical examples, primarily
with a continuous latent variable. Their results are not favorable for the deconfounder
and they conclude that the deconfounder is “not a viable substitute for careful research
design in real-world applications”. Their theoretical analyses are mostly in terms of
computing the population (or n-asymptotic) bias of a method for a finite p (the number
of Xi-variables), and then possibly investigate the limit of the bias as p tends to infin-
ity. Compared to this, we analyze the asymptotic behaviour of the estimator based on
substitute adjustment as n and p tend to infinity jointly. Moreover, since we specifically
treat discrete latent variables, some of our results are also in a different framework.

2. Substitute adjustment

2.1. The General Model. The full model is specified in terms of variables (X, Y), where
Y P R is a real valued outcome variable of interest and X P RN is a infinite vector of
additional real valued variables. That is, X = (Xi)iPN with Xi P R for i P N. We let
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X´i = (Xj)jPNztiu, and define (informally) for each i P N and x P R the target parameter
of interest

(2) χi
x = E [E [Y | Xi = x; X´i]] .

That is, χi
x is the mean outcome given Xi = x when adjusting for all remaining variables

X´i. Since E [Y | Xi = x; X´i] is generally not uniquely defined for all x P R by the distri-
bution of (X, Y), we need some additional structure to formally define χi

x. The following
assumption and subsequent definition achieve this by assuming that a particular choice
of the conditional expectation is made and remains fixed. Throughout, R is equipped
with the Borel σ-algebra and RN with the corresponding product σ-algebra.

Assumption 1 (Regular Conditional Distribution). Fix for each i P N a Markov kernel
(Pi

x,x)(x,x)PRˆRN on R. Assume that Pi
x,x is the regular conditional distribution of Y given

(Xi, X´i) = (x, x) for all x P R, x P RN and i P N. With P´i the distribution of X´i,
suppose additionally that

ĳ
|y| Pi

x,x(dy)P´i(dx) ă 8

for all x P R.

Definition 1. Under Assumption 1 we define

(3) χi
x =

ĳ
y Pi

x,x(dy)P´i(dx).

Remark 1. Definition 1 makes the choice of conditional expectation explicit by letting

E [Y | Xi = x; X´i] =

ż
y Pi

x,X´i
(dy)

be defined in terms of the specific regular conditional distribution that is fixed accord-
ing to Assumption 1. We may need additional regularity assumptions to identify this
Markov kernel from the distribution of (X, Y), which we will not pursue here.

The main assumption in this paper is the existence of a latent variable, Z, that will render
the Xi-s conditionally independent, and which can be recovered from X in a suitable way.
The variable Z will take values in a measurable space (E, E), which we assume to be a
Borel space. We use the notation σ(Z) and σ(X´i) to denote the σ-algebras generated
by Z and X´i, respectively.

Assumption 2 (Latent Variable Model). There is a random variable Z with values in
(E, E) such that:

(1) X1, X2, . . . are conditionally independent given Z,
(2) σ(Z) Ď Ş8

i=1 σ(X´i).

The latent variable model given by Assumption 2 allows us to identify the adjusted
mean by adjusting for the latent variable only.
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Z

Xi

X´i

Y

Figure 1. Directed Acyclic Graph (DAG) representing the joint distribu-
tion of (Xi, X´i, Z, Y). The variable Z blocks the backdoor from Xi to Y.

Proposition 1. Fix i P N and let P´i
z denote a regular conditional distribution of X´i given

Z = z. Under Assumptions 1 and 2, the Markov kernel

(4) Qi
x,z(A) =

ż
Pi

x,x(A)P´i
z (dx), A Ď R

is a regular conditional distribution of Y given (Xi, Z) = (x, z), in which case

(5) χi
x =

ĳ
y Qi

x,z(dy)PZ(dz) = E [E [Y | Xi = x; Z]] .

The joint distribution of (Xi, X´i, Z, Y) is, by Assumption 2, Markov w.r.t. to the graph in
Figure 1. Proposition 1 is essentially the backdoor criterion, since Z blocks the backdoor
from Xi to Y via X´i; see Theorem 3.3.2 in (Pearl 2009) or Proposition 6.41(ii) in (Peters
et al. 2017). Nevertheless, we include a proof in Appendix A for two reasons. First,
Proposition 1 does not involve causal assumptions about the model, and we want to
clarify that the mathematical result is agnostic to such assumptions. Second, the proof
we give of Proposition 1 does not require regularity assumptions, such as densities of
the conditional distributions, but it relies subtly on Assumption 2(2).

Example 1. Suppose E[|Xi|] ď C for all i and some finite constant C, and assume, for
simplicity, that E[Xi] = 0. Let β = (βi)iPN P ℓ1 and define

xβ, Xy =
8ÿ

i=1

βiXi.

The infinite sum converges almost surely since β P ℓ1. With ε being N (0, 1)-distributed
and independent of X consider the outcome model

Y = xβ, Xy + ε.

Letting β´i denote the β-sequence with the i-th coordinate removed, a straightforward,
though slightly informal, computation, gives

χi
x = E

[
E
[
βiXi + xβ´i, X´iy | Xi = x; X´i

]]

= βix + E
[xβ´i, X´iy

]
= βix + xβ´i, E [X´i]y = βix.

To fully justify the computation, via Assumption 1, we let Pi
x,x be theN (βix+ xβ´i, xy, 1)-

distribution for the P´i-almost all x where xβ´i, xy is well defined. For the remaining x
we let Pi

x,x be the N (βix, 1)-distribution. Then Pi
x,x is a regular conditional distribution
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of Y given (Xi, X´i) = (x, x),
ż

y Pi
x,x(dy) = βix + xβ´i, xy for P´i-almost all x,

and χi
x = βix follows from (3). It also follows from (4) that for PZ-almost all z P E,

E [Y | Xi = x; Z = z] =
ż

y Qi
x,z(dy)

= βix +

ż
xβ´i, xyP´i

z (dx)

= βix +
ÿ

j‰i

β jE[Xj | Z = z].

That is, with Γ´i(z) =
ř

j‰i β jE[Xj | Z = z], the regression model

E [Y | Xi = x; Z = z] = βix + Γ´i(z)

is a partially linear model.

Example 2. While Example 1 is explicit about the outcome model, it does not describe
an explicit latent variable model fulfilling Assumption 2. To this end, take E = R, let
Z1, U1, U2, . . . be i.i.d. N (0, 1)-distributed and set Xi = Z1 + Ui. By the Law of Large
Numbers, for any i P N,

1
n

n+1ÿ

j=1;j‰i

Xj = Z1 + 1
n

n+1ÿ

j=1;j‰i

Uj Ñ Z1

almost surely for n Ñ 8. Setting

Z =

#
lim

nÑ8
1
n
řn+1

j=1;j‰i Xj if the limit exists

0 otherwise

we get that σ(Z) Ď σ(X´i) for any i P N and Z = Z1 almost surely. Thus, Assumption 2
holds.

Continuing with the outcome model from Example 1, we see that for PZ-almost all z P E,

E[Xj | Z = z] = E[Z1 + Uj | Z = z] = z,

thus Γ´i(z) = γ´iz with γ´i =
ř

j‰i β j. In this example it is actually possible to compute
the regular conditional distribution, Qi

x,z, of Y given (Xi, Z) = (x, z) explicitly. It is the
N
(

βix + γ´iz, 1 + }β´i}2
2
)
-distribution where }β´i}2

2 = xβ´i, β´iy.

2.2. Substitute Latent Variable Adjustment. Proposition 1 tells us that under Assump-
tions 1 and 2 the adjusted mean, χi

x, defined by adjusting for the entire infinite vector
X´i, is also given by adjusting for the latent variable Z. If the latent variable were ob-
served we could estimate χi

x in terms of an estimate of the following regression function.

Definition 2 (Regression function). Under Assumptions 1 and 2 define the regression
function

(6) bi
x(z) =

ż
y Qi

x,z(dy) = E [Y | Xi = x; Z = z]

where Qi
x,z is given by (4).
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Algorithm 1: General Substitute Adjustment

1 input: data S0 = tx0
1:p,1, . . . , x0

1:p,mu and S = t(x1:p,1, y1), . . . (x1:p,n, yn)u, a set E,
i P t1, . . . , pu and x P R;

2 options: a method for estimating a recovery map f p : Rp Ñ E, a method for
estimating the regression function z ÞÑ bi

x(z);
3 begin
4 use data in S0 to compute the estimate f̂ p of the recovery map.
5 use data in S to compute the substitute latent variables as ẑk := f̂ p(x1:p,k),

k = 1, . . . , n.
6 use data in S combined with the substitutes to compute the regression

function estimate, z ÞÑ b̂i
x(z), and set

pχi,sub
x =

1
n

nÿ

k=1

b̂i
x(ẑk).

7 end
8 return pχi,sub

x

If we had n i.i.d. observations, (xi,1, z1, y1), . . . , (xi,n, zn, yn), of (Xi, Z, Y), a straightfor-
ward plug-in estimate of χi

x is

(7) χ̂i
x =

1
n

nÿ

k=1

b̂i
x(zk),

where b̂i
x(z) is an estimate of the regression function bi

x(z). In practice we do not observe
the latent variable Z. Though Assumption 2(2) implies that Z can be recovered from X,
we do not assume we know this recovery map, nor do we in practice observe the entire
X, but only the first p coordinates, X1:p = (X1, . . . , Xp).

We thus need an estimate of a recovery map, f̂ p : Rp Ñ E, such that for the substi-
tute latent variable Ẑ = f̂ p(X1:p) we have1 that σ(Ẑ) approximately contains the same
information as σ(Z). Using such substitutes, a natural way to estimate χi

x is given by
Algorithm 1, which is a general three-step procedure returning the estimate pχi,sub

x .

The regression estimate b̂i
x(z) in Algorithm 1 is computed on the basis of the substitutes,

which likewise enter into the final computation of pχi,sub
x . Thus the estimate is directly

estimating χi,sub
x = E

[
E
[
Y | Xi = x; Ẑ

] ˇ̌
ˇ f̂ p

]
, and it is expected to be biased as an esti-

mate of χi
x. The general idea is that under some regularity assumptions, and for p Ñ 8

and m Ñ 8 appropriately, χi,sub
x Ñ χi

x and the bias vanishes asymptotically. Section 3
specifies a setup where such a result is shown rigorously.

Note that the estimated recovery map f̂ p in Algorithm 1 is the same for all i = 1, . . . , p.
Thus for any fixed i, the x0

i,k-s are used for estimation of the recovery map, and the
xi,k-s are used for the computation of the substitutes. Steps 4 and 5 of the algorithm

1We can in general only hope to learn a recovery map of Z up to a Borel isomorphism, but this is also
all that is needed, cf. Assumption 2.
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could be changed to construct a recovery map f̂ p
´i independent of the i-th coordinate.

This appears to align better with Assumption 2, and it would most likely make the ẑk-s
slightly less correlated with the xi,k-s. It would, on the other hand, lead to a slightly
larger recovery error, and worse, a substantial increase in the computational complexity
if we want to estimate pχi,sub

x for all i = 1, . . . , p.

Algorithm 1 leaves some options open. First, the estimation method used to compute f̂ p

could be based on any method for estimating a recovery map, e.g., using a factor model
if E = R or a mixture model if E is finite. The idea of such methods is to compute a par-
simonious f̂ p such that: (1) conditionally on ẑ0

k = f̂ p(x0
1:p,k) the observations x0

1,k, . . . , x0
p,k

are approximately independent for k = 1, . . . , m; and (2) ẑ0
k is minimally predictive of x0

i,k
for i = 1, . . . , p. Second, the regression method for estimation of the regression function
bi

x(z) could be any parametric or nonparametric method. If E = R we could use OLS
combined with the parametric model bi

x(z) = β0 + βix + γ´iz, which would lead to the
estimate

pχi,sub
x = β̂0 + β̂ix + γ̂´i

1
n

nÿ

k=1

ẑk.

If E is finite, we could still use OLS but now combined with the parametric model
bi

x(z) = β1
i,zx + γ´i,z, which would lead to the estimate

pχi,sub
x =

(
1
n

nÿ

k=1

β̂1
i,ẑk

)
x +

1
n

nÿ

k=1

γ̂´i,ẑk .

The relation between the two datasets in Algorithm 1 is not specified by the algorithm
either. It is possible that they are independent, e.g., by data splitting, in which case f̂ p

is independent of the data in S . It is also possible that m = n and x0
1:p,k = x1:p,k for

k = 1, . . . , n. While we will assume S0 and S independent for the theoretical analysis,
the x1:p-s from S will in practice often be part of S0, if not all of S0.

2.3. Assumption-Lean Substitute Adjustment. If the regression model in the general
Algorithm 1 is misspecified we cannot expect that pχi,sub

x is a consistent estimate of χi
x. In

Section 3 we investigate the distribution of a substitute adjustment estimator in the case
where E is finite. It is possible to carry out this investigation assuming a partially linear
regression model, bi

x(z) = βix + Γ´i(z), but the results would then hinge on this model
being correct. To circumvent such a model assumption we proceed instead in the spirit
of assumption-lean regression (Berk et al. 2021, Vansteelandt & Dukes 2022). Thus we
focus on a univariate target parameter defined as a functional of the data distribution,
and we then investigate its estimation via substitute adjustment.

Assumption 3 (Moments). It holds that E(Y2) ă 8, E[X2
i ] ă 8 and E [Var [Xi | Z]] ą 0.

Definition 3 (Target parameter). Let i P N. Under Assumptions 2 and 3 define the target
parameter

(8) βi =
E [Cov [Xi, Y | Z]]

E [Var [Xi | Z]]
.

Algorithm 2 gives a procedure for estimating βi based on substitute latent variables. The
following proposition gives insight on the interpretation of the target parameter βi.
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Algorithm 2: Assumption-Lean Substitute Adjustment

1 input: data S0 = tx0
1:p,1, . . . , x0

1:p,mu and S = t(x1:p,1, y1), . . . (x1:p,n, yn)u, a set E
and i P t1, . . . , pu;

2 options: a method for estimating the recovery map f p : Rp Ñ E, methods for
estimating the regression functions µi(z) = E [Xi | Z = z] and
g(z) = E [Y | Z = z];

3 begin
4 use data in S0 to compute the estimate f̂ p of the recovery map.
5 use data in S to compute the substitute latent variables as ẑk := f̂ p(x1:p,k),

k = 1, . . . , n.
6 use data in S combined with the substitutes to compute the regression

function estimates z ÞÑ µ̂i(z) and z ÞÑ ĝ(z), and set

pβsub
i =

řn
k=1(xi,k ´ µ̂i(ẑk))(yk ´ ĝ(ẑk))řn

k=1(xi,k ´ µ̂i(ẑk))2 .

7 end
8 return pβsub

i

Proposition 2. Under Assumptions 1, 2 and 3, and with bi
x(z) given as in Definition 2, and βi

given as in Definition 3,

(9) βi =
E
[
Cov

[
Xi, bi

Xi
(Z) | Z

]]

E [Var [Xi | Z]]
.

Moreover, βi = 0 if bi
x(z) does not depend on x. If bi

x(z) = β1
i(z)x + Γ´i(z) then

(10) βi = E [wi(Z)β1
i(Z)]

where
wi(Z) =

Var[Xi | Z]
E [Var[Xi | Z]]

.

We include a proof of Proposition 2 in Appendix A.1 for completeness. The arguments
are essentially as in (Vansteelandt & Dukes 2022).

Remark 2. If bi
x(z) = β1

i(z)x + Γ´i(z) it follows from Proposition 1 that χi
x = β1

ix, where
the coefficient β1

i = E[β1
i(Z)] may differ from βi given by (10). In the special case where

the variance of Xi given Z is constant across all values of Z, the weights in (10) are all 1,
in which case βi = β1

i. For the partially linear model, bi
x(z) = β1

ix + Γ´i(z), with β1
i not

depending on z, it follows from (10) that βi = β1
i irrespectively of the weights.

Remark 3. If Xi P t0, 1u then bi
x(z) = (bi

1(Z) ´ bi
0(Z))x + bi

0(Z), and the contrast
χi

1 ´ χi
0 = E

[
bi

1(Z) ´ bi
0(Z)

]
is an unweighted mean of differences, while it follows from

(10) that

(11) βi = E
[
wi(Z)(bi

1(Z) ´ bi
0(Z))

]
.

If we let πi(Z) = P(Xi = 1 | Z), we see that the weights are given as

wi(Z) =
πi(Z)(1 ´ πi(Z))

E [πi(Z)(1 ´ πi(Z))]
.
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We summarize three important take-away messages from Proposition 2 and the remarks
above as follows:

Conditional mean independence: The null hypothesis of conditional mean inde-
pendence,

E [Y | Xi = x; X´i]) = E [Y | X´i] ,

implies that βi = 0. The target parameter βi thus suggests an assumption-lean
approach to testing this null without a specific model of the conditional mean.

Heterogeneous partial linear model: If the conditional mean,

bi
x(z) = E [Y | Xi = x; Z = z] ,

is linear in x with an x-coefficient that depends on Z (heterogeneity), the target
parameter βi is a weighted mean of these coefficients, while χi

x = β1
ix with β1

i the
unweighted mean.

Simple partial linear model: If the conditional mean is linear in x with an x-coef-
ficient that is independent of Z (homogeneity), the target parameter βi coincides
with this x-coefficient and χi

x = βix. Example 1 is a special case where the latent
variable model is arbitrary but the full outcome model is linear.

Just as for the general Algorithm 1, the estimate that Algorithm 2 outputs, pβsub
i , is not

directly estimating the target parameter βi. It is directly estimating

(12) βsub
i =

E
[
Cov

[
Xi, Y | Ẑ

] ˇ̌
ˇ f̂ p

]

E
[
Var

[
Xi | Ẑ

] ˇ̌
ˇ f̂ p

] .

Fixing the estimated recovery map f̂ p and letting n Ñ 8, we can expect that pβsub
i is

consistent for βsub
i and not for βi.

Pretending that the zk-s were observed, we introduce the oracle estimator

pβi =

řn
k=1(xi,k ´ µi(zk))(yk ´ g(zk))řn

k=1(xi,k ´ µi(zk))2 .

Here, µi and g denote estimates of the regression functions µi and g, respectively, us-
ing the zk-s instead of the substitutes. The estimator pβi is independent of m, p, and
f̂ p, and when (xi,1, z1, y1), . . . , (xi,n, zn, yn) are i.i.d. observations, standard regularity as-
sumptions (van der Vaart 1998) will ensure that the estimator pβi is consistent for βi (and
possibly even

?
n-rate asymptotically normal). Writing

(13) pβsub
i ´ βi = (pβsub

i ´ pβi) + (β̂i ´ βi)

we see that if we can appropriately bound the error, |pβsub
i ´ pβi|, due to using the sub-

stitutes instead of the unobserved zk-s, we can transfer asymptotic properties of β̂i to
pβsub

i . It is the objective of the following section to demonstrate how such a bound can
be achieved for a particular model class.
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3. Substitute adjustment in a mixture model

In this section, we present a theoretical analysis of assumption-lean substitute adjust-
ment in the case where the latent variable takes values in a finite set. We provide
finite-sample bounds on the error of pβsub

i due to the use of substitutes, and we show, in
particular, that there exist trajectories of m, n and p along which the estimator is asymp-
totically equivalent to the oracle estimator pβi, which uses the actual latent variables.

3.1. The mixture model. To be concrete, we assume that X is generated by a finite
mixture model such that conditionally on a latent variable Z with values in a finite set,
the coordinates of X are independent. The precise model specification is as follows.

Assumption 4 (Mixture Model). There is a latent variable Z with values in the finite
set E = t1, . . . , Ku such that X1, X2, . . . are conditionally independent given Z = z.
Furthermore,

(1) The conditional distribution of Xi given Z = z has finite second moment, and its
conditional mean and variance are denoted

µi(z) = E[Xi | Z = z]

σ2
i (z) = Var[Xi | Z = z]

for z P E and i P N.
(2) The conditional means satisfy the following separation condition

(14)
8ÿ

i=1

(µi(z) ´ µi(v))2 = 8

for all z, v P E with v ‰ z.
(3) There are constants 0 ă σ2

min ď σ2
max ă 8 that bound the conditional variances;

(15) σ2
min ď max

zPE
σ2

i (z) ď σ2
max

for all i P N.
(4) P(Z = z) ą 0 for all z P E.

Algorithm 3 is one specific version of Algorithm 2 for computing β̂sub
i when the latent

variable takes values in a finite set E. The recovery map in Step 5 is given by computing
the nearest mean, and it is thus estimated in Step 4 by estimating the means for each of
the mixture components. How this is done precisely is an option of the algorithm. Once
the substitutes are computed, outcome means and xi,k-means are (re)computed within
each component. The computations in Steps 6 and 7 of Algorithm 3 result in the same
estimator as the OLS estimator of βi when it is computed using the linear model

bi
x(z) = βix + γ´i,z, βi, γ´i,1, . . . , γ´i,K P R

on the data (xi,1, ẑ1, y1), . . . (xi,n, ẑn, yn). This may be relevant in practice, but it is also
used in the proof of Theorem 1. The corresponding oracle estimator, β̂i, is similarly an
OLS estimator.
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Algorithm 3: Assumption Lean Substitute Adjustment w. Mixtures

1 input: data S0 = tx0
1:p,1, . . . , x0

1:p,mu and S = t(x1:p,1, y1), . . . (x1:p,n, yn)u, a finite set
E and i P t1, . . . , pu;

2 options: a method for estimating the conditional means µj(z) = E[Xj | Z = z];
3 begin
4 use the data in S0 to compute the estimates µ̌j(z) for j P t1, . . . , pu and z P E.
5 use the data in S to compute the substitute latent variables as

ẑk = arg minz }x1:p,k ´ µ̌1:p(z)}2, k = 1, . . . , n.
6 use the data in S combined with the substitutes to compute the estimates

ĝ(z) =
1

n̂(z)

ÿ

k:ẑk=z

yk, z P E

µ̂i(z) =
1

n̂(z)

ÿ

k:ẑk=z

xi,k, z P E,

where n̂(z) =
řn

k=1 1(ẑk = z) is the number of k-s with ẑk = z.
7 use the data in S combined with the substitutes to compute

pβsub
i =

řn
k=1(xi,k ´ µ̂i(ẑk))(yk ´ ĝ(ẑk))řn

k=1(xi,k ´ µ̂i(ẑk))2 .

8 end
9 return pβsub

i

Note that Assumption 4 implies that

E[X2
i ] =

ÿ

zPE

E[X2
i | Z = z]P(Z = z) =

ÿ

zPE

(σ2
i (z) + µi(z)2)P(Z = z) ă 8

E [Var [Xi | Z]] =
ÿ

zPE

σ2
i (z)P(Z = z) ě σ2

min min
zPE

P(Z = z) ą 0.

Hence Assumption 4, combined with E[Y2] ă 8, ensure that the moment conditions in
Assumption 3 hold.

The following proposition states that the mixture model given by Assumption 4 is a
special case of the general latent variable model.

Proposition 3. Assumption 4 on the mixture model implies Assumption 2. Specifically, that
σ(Z) Ď σ(X´i) for all i P N.

Remark 4. The proof of Proposition 3 is in Appendix A.3. Technically, the proof only
gives almost sure recovery of Z from X´i, and we can thus only conclude that σ(Z) is
contained in σ(X´i) up to negligible sets. We can, however, replace Z by a variable, Z1,
such that σ(Z1) Ď σ(X´i) and Z1 = Z almost surely. We can thus simply swap Z with
Z1 in Assumption 4.

Remark 5. The arguments leading to Proposition 3 rely on Assumptions 4(2) and 4(3)—
specifically the separation condition (14) and the upper bound in (15). However, these
conditions are not necessary to be able to recover Z from X´i. Using Kakutani’s the-
orem on equivalence of product measures it is possible to characterize precisely when
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Z can be recovered, but the abstract characterization is not particularly operational. In
Appendix B we analyze the characterization for the Gaussian mixture model, where Xi
given Z = z has a N (µi(z), σ2

i (z))-distribution. This leads to Proposition 5 and Corol-
lary 1 in Appendix B, which gives necessary and sufficient conditions for recovery in
the Gaussian mixture model.

3.2. Bounding estimation error due to using substitutes. In this section we derive
an upper bound on the estimation error, which is due to using substitutes, cf. the
decomposition (13). To this end, we consider the (partly hypothetical) observations
(xi,1, ẑ1, z1, y1), . . . (xi,n, ẑn, zn, yn), which include the otherwise unobserved zk-s as well
as their observed substitutes, the ẑk-s. We let xi = (xi,1, . . . , xi,n)

T P Rn and y =
(y1, . . . , yn)T P Rn, and }xi}2 and }y}2 denote the 2-norms of xi and y, respectively.
We also let

n(z) =
nÿ

k=1

1(zk = z) and n̂(z) =
nÿ

k=1

1(ẑk = z)

for z P E = t1, . . . , Ku, and

nmin = mintn(1), . . . , n(K), n̂(1), . . . , n̂(K)u.

Furthermore,

µi(z) =
1

n(z)

ÿ

k:zk=z

xi,k,

and we define the following three quantities

α =
nmin

n
(16)

δ =
1
n

nÿ

k=1

1(ẑk ‰ zk)(17)

ρ =
min

␣řn
k=1(xi,k ´ µi(zk))

2,
řn

k=1(xi,k ´ µ̂i(ẑk))
2
(

}xi}2
2

.(18)

Theorem 1. Let α, δ and ρ be given by (16), (17) and (18). If α, ρ ą 0 then

(19) |pβsub
i ´ β̂i| ď 2

?
2

ρ2

c
δ

α

}y}2

}xi}2
.

The proof of Theorem 1 is given in Appendix A.2. Appealing to the Law of Large
Numbers, the quantities in the upper bound (19) can be interpreted as follows:

‚ The ratio }y}2/}xi}2 is approximately a fixed and finite constant (unless Xi is
constantly zero) depending on the marginal distributions of Xi and Y only.

‚ The fraction α is approximately

(20) min
zPE

␣
mintP(Z = z), P(Ẑ = z)u( ,

which is strictly positive by Assumption 4(4) (unless recovery is working poorly).
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‚ The quantity ρ is a standardized measure of the residual variation of the xi,k-s
within the groups defined by the zk-s or the ẑk-s. It is approximately equal to the
constant

min
␣

E [Var [Xi | Z]] , E
[
Var

[
Xi | Ẑ

]](

E(X2
i )

,

which is strictly positive if the probabilities in (20) are strictly positive and not
all of the conditional variances are 0.

‚ The fraction δ is the relative mislabeling frequency of the substitutes. It is ap-
proximately equal to the mislabeling rate P(Ẑ ‰ Z).

The bound (19) tells us that if the mislabeling rate of the substitutes tends to 0, that is,

if P(Ẑ ‰ Z) Ñ 0, the estimation error tends to 0 roughly like
b

P(Ẑ ‰ Z). This could
potentially be achieved by letting p Ñ 8 and m Ñ 8. We formalize this statement in
Section 3.4.

3.3. Bounding the mislabeling rate of the substitutes. In this section we give bounds
on the mislabeling rate, P(Ẑ ‰ Z), with the ultimate purpose of controlling the magni-
tude of δ in the bound (19). Two different approximations are the culprits of mislabeling.
First, the computation of Ẑ is based on the p variables in X1:p only, and it is thus an ap-
proximation of the full recovery map based on all variables in X. Second, the recovery
map is an estimate and thus itself an approximation. The severity of the second approx-
imation is quantified by the following relative errors of the conditional means used for
recovery.

Definition 4 (Relative errors, p-separation). For the mixture model given by Assump-
tion 4 let µ1:p(z) = (µi(z))i=1,...,p P Rp for z P E. With µ̌1:p(z) P Rp for z P E any collection
of p-vectors, define the relative errors

(21) R(p)
z,v =

}µ1:p(z) ´ µ̌1:p(z)}2

}µ1:p(z) ´ µ1:p(v)}2

for z, v P E, v ‰ z. Define, moreover, the minimal p-separation as

(22) sep(p) = min
z‰v

∥∥∥µ1:p(z) ´ µ1:p(v)
∥∥∥

2

2
.

Note that Assumption 4(2) implies that sep(p) Ñ 8 for p Ñ 8. This convergence
could be arbitrarily slow. The following definition captures the important case where
the separation grows at least linearly in p.

Definition 5 (Strong separation). We say that the mixture model satisfies strong separation
if there exists an ε ą 0 such that sep(p) ě εp eventually.

Strong separation is equivalent to

lim inf
pÑ8

sep(p)
p

ą 0.

A sufficient condition for strong separation is that |µi(z) ´ µi(v)| ě ε eventually for all
z, v P E, v ‰ z and some ε ą 0. That is, lim infiÑ8 |µi(z) ´ µi(v)| ą 0 for v ‰ z. When we
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have strong separation, then for p large enough
(

R(p)
z,v

)2 ď 1
εp

}µ1:p(z) ´ µ̌1:p(z)}2
2 ď 1

ε
max

i=1,...,p
(µi(z) ´ µ̌i(z))

2 ,

and we note that it is conceivable2 that we can estimate µ1:p(z) by an estimator, µ̌1:p(z),

such that for m, p Ñ 8 appropriately, R(p)
z,v

PÑ 0.

The following proposition shows that a bound on R(p)
z,v is sufficient to ensure that the

growth of sep(p) controls how fast the mislabeling rate diminishes with p. The propo-
sition is stated for a fixed µ̌, which means that when µ̌ is an estimate, we are effectively
assuming it is independent of the template observation (X1:p, Z) used to compute Ẑ.

Proposition 4. Suppose that Assumption 4 holds. Let µ̌1:p(z) P Rp for z P E and let

Ẑ = arg min
z

}X1:p ´ µ̌1:p(z)}2.

Suppose also that R(p)
z,v ď 1

10 for all z, v P E with v ‰ z. Then

(23) P
(
Ẑ ‰ Z

) ď 25Kσ2
max

sep(p)
.

If, in addition, the conditional distribution of Xi given Z = z is sub-Gaussian with variance
factor vmax, independent of i and z, then

(24) P
(
Ẑ ‰ Z

) ď K exp
(

´sep(p)
50vmax

)

Remark 6. The proof of Proposition 4 is in Appendix A.3. It shows that the specific con-
stants, 25 and 50, appearing in the bounds above hinge on the specific bound, R(p)

z,v ď 1
10 ,

on the relative error. The proof works for any bound strictly smaller than 1
4 . Replacing

1
10 by a smaller bound on the relative errors decreases the constant, but it will always be
larger than 4.

The upshot of Proposition 4 is that if the relative errors, R(p)
z,v , are sufficiently small then

Assumption 4 is sufficient to ensure that P
(
Ẑ ‰ Z

) Ñ 0 for p Ñ 8. Without additional
distributional assumptions the general bound (23) decays slowly with p, and even with
strong separation, the bound only gives a rate of 1

p . With the additional sub-Gaussian
assumption, the rate is improved dramatically, and with strong separation it improves
to e´cp for some constant c ą 0. If the Xi-s are bounded, their (conditional) distributions
are sub-Gaussian, thus the rate is fast in this special but important case.

3.4. Asymptotics of the substitute adjustment estimator. Suppose Z takes values in
E = t1, . . . , Ku and that (xi,1, z1, y1), . . . , (xi,n, zn, yn) are observations of (Xi, Z, Y). Then
Assumption 3 ensures that the oracle OLS estimator pβi is

?
n-consistent and that

pβi
as„ N (βi, w2

i /n).

2Parametric assumptions, say, and marginal estimators of each µi(z) that, under Assumption 4, are
uniformly consistent over i P N can be combined with a simple union bound to show the claim, possibly
in a suboptimal way, cf. Section 3.5.
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There are standard sandwich formulas for the asymptotic variance parameter w2
i . In this

section we combine the bounds from Sections 3.2 and 3.3 to show our main theoretical
result; that pβsub

i is a consistent and asymptotically normal estimator of βi for n, m Ñ 8
if also p Ñ 8 appropriately.

Assumption 5. The dataset S0 in Algorithm 3 consists of i.i.d. observations of X1:p, the
dataset S in Algorithm 3 consists of i.i.d. observations of (X1:p, Y), and S is independent
of S0.

Theorem 2. Suppose Assumption 1 holds and E(Y2) ă 8, and consider the mixture model
fulfilling Assumption 4. Consider data satisfying Assumption 5 and the estimator pβsub

i given by
Algorithm 3. Suppose that n, m, p Ñ 8 such that P(R(p)

z,v ą 1
10 ) Ñ 0. Then the following hold:

(1) The estimation error due to using substitutes tends to 0 in probability, that is,

|pβsub
i ´ β̂i| PÑ 0,

and pβsub
i is a consistent estimator of βi.

(2) If sep(p)
n Ñ 8 and nP(R(p)

z,v ą 1
10 ) Ñ 0, then

?
n|pβsub

i ´ β̂i| PÑ 0.
(3) If Xi conditionally on Z = z is sub-Gaussian, with variance factor independent of i and

z, and if sep(p)
log(n) Ñ 8 and nP(R(p)

z,v ą 1
10 ) Ñ 0, then

?
n|pβsub

i ´ β̂i| PÑ 0.

In addition, in case (2) as well as case (3), pβsub
i

as„ N (βi, w2
i /n), where the asymptotic variance

parameter w2
i is the same as for the oracle estimator pβi.

Remark 7. The proof of Theorem 2 is in Appendix A.4. As mentioned in Remark 6,
the precise value of the constant 1

10 is not important. It could be replaced by any other
constant strictly smaller than 1

4 , and the conclusion would be the same.

Remark 8. The general growth condition on p in terms of n in case (2) is bad; even with
strong separation we would need p

n Ñ 8, that is, p should grow faster than n. In the
sub-Gaussian case this improves substantially so that p only needs to grow faster than
log(n).

3.5. Tensor decompositions. One open question from both a theoretical and practical
perspective is how we construct the estimators µ̌1:p(z). We want to ensure consistency

for m, p Ñ 8, expressed as P
(

R(p)
z,v ą 1

10

)
Ñ 0 in our theoretical results, and that the

estimator can be computed efficiently for large m and p. We indicated in Section 3.3
that simple marginal estimators of µi(z) can achieve this, but such estimators may be
highly inefficient. In this section we briefly describe two methods based on tensor de-
compositions (Anandkumar et al. 2014) related to the third order moments of X1:p. Thus
to apply such methods we need to additionally assume that the Xi-s have finite third
moments.

Introduce first the third order p ˆ p ˆ p tensor G(p) as

G(p) =

pÿ

i=1

ai b ei b ei + ei b ai b ei + ei b ei b ai,
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where ei P Rp is the standard basis vector with a 1 in the i-th coordinate and 0 elsewhere,
and where

ai =
ÿ

zPE

P(Z = z)σ2
i (z)µ1:p(z).

In terms of the third order raw moment tensor and G(p) we define the tensor

(25) M(p)
3 = E[X1:p b X1:p b X1:p] ´ G(p).

Letting I = t(i1, i2, i3) P t1, . . . , pu | i1, i2, i3 all distinctu denote the set of indices of the
tensors with all entries distinct, we see from the definition of G(p) that G(p)

i1,i2,i3
= 0 for

(i1, i2, i3) P I . Thus

(M(p)
3 )i1,i2,i3 = E [Xi1 Xi2 Xi3 ]

for (i1, i2, i3) P I . In the following, (M(p)
3 )I denotes the incomplete tensor obtained by

restricting the indices of M(p)
3 to I .

The key to using the M(p)
3 -tensor for estimation of the µi(z)-s is the following rank-K

tensor decomposition,

(26) M(p)
3 =

Kÿ

z=1

P(Z = z)µ1:p(z) b µ1:p(z) b µ1:p(z);

see Theorem 3.3 in (Anandkumar et al. 2014) or the derivations on page 2 in (Guo, Nie
& Yang 2022).

Guo, Nie & Yang (2022) propose an algorithm based on incomplete tensor decomposi-
tion as follows: Let (xM(p)

3 )I denote an estimate of the incomplete tensor (M(p)
3 )I ; obtain

an approximate rank-K tensor decomposition of the incomplete tensor (xM(p)
3 )I ; extract

estimates µ̌1:p(1), . . . , µ̌1:p(K) from this tensor decomposition. Theorem 4.2 in (Guo, Nie
& Yang 2022) shows that if the vectors µ1:p(1), . . . , µ1:p(K) satisfy certain regularity as-
sumptions, they are estimated consistently by their algorithm (up to permutation) if
(xM(p)

3 )I is consistent. We note that the regularity assumptions are fulfilled for generic
vectors in Rp.

A computational downside of working directly with M(p)
3 is that it grows cubically

with p. Anandkumar et al. (2014) propose to consider rX(p) = WTX1:p P RK, where
W is a p ˆ K whitening matrix. The tensor decomposition is then computed for the
corresponding K ˆ K ˆ K tensor ĂM3. When K ă p is fixed and p grows, this is compu-
tationally advantageous. Theorem 5.1 in Anandkumar et al. (2014) shows that, under a
generically satisfied non-degeneracy condition, the tensor decomposition of ĂM3 can be
estimated consistently (up to permutation) if ĂM3 can be estimated consistently.

To use the methodology from Anandkumar et al. (2014) in Algorithm 3, we replace
Step 4 by their Algorithm 1 applied to rx(0,p) = WTx(0)1:p. This will estimate the trans-

formed mean vectors rµ(p)(z) = WTµ1:p(z) P RK. Likewise, we replace Step 5 in Algo-
rithm 3 by

ẑk = arg min
z

›››rx(p) ´ qrµ(p)(z)
›››

2



18 J. ADAMS AND N. R. HANSEN

where rx(p) = WTx1:p. The separation and relative errors conditions should then be
expressed in terms of the p-dependent K-vectors rµ(p)(1), . . . , rµ(p)(K) P RK.

4. Simulation Study

Our analysis in Section 3 shows that Algorithm 3 is capable of consistently estimating
the βi-parameters via substitute adjustment for n, m, p Ñ 8 appropriately. The purpose
of this section is to shed light on the finite sample performance of substitute adjustment
via a simulation study.

The Xi-s are simulated according to a mixture model fulfilling Assumption 4, and the
outcome model is as in Example 1, which makes bi

x(z) = E[Y | Xi = x; Z = z] a partially
linear model. Throughout, we take m = n and S0 = S in Algorithm 3. The simulations
are carried out for different choices of n, p, β and µi(z)-s, and we report results on both
the mislabeling rate of the latent variables and the mean squared error (MSE) of the
βi-estimators.

4.1. Mixture model simulations and recovery of Z. The mixture model in our simula-
tions is given as follows.

‚ We set K = 10 and fix pmax = 1000 and nmax = 1000.
‚ We draw µi(z)-s independently and uniformly from (´1, 1) for z P t1, . . . , Ku and

i P t1, . . . , pmaxu.
‚ Fixing the µi(z)-s and a choice of µscale P t0.75, 1, 1.5u, we simulate nmax inde-

pendent observations of (X1:pmax , Z), each with the latent variable Z uniformly
distributed on t1, ..., Ku, and Xi given Z = z being N (µscale ¨ µi(z), 1)-distributed.

We use the algorithm from Anandkumar et al. (2014), as described in Section 3.5, for
recovery. We replicate the simulation outlined above 10 times, and we consider recovery
of Z for p P t50, 100, 200, 1000u and n P t50, 100, 200, 500, 1000u. For replication b P
t1, . . . , 10u the actual values of the latent variables are denoted zb,k. For each combination
of n and p the substitutes are denoted ẑ(n,p)

b,k . The mislabeling rate for fixed p and n is
estimated as

δ(n,p) =
1
10

10ÿ

b=1

1
n

nÿ

k=1

1(ẑ(n,p)
b,k ‰ zb,k).

Figure 2 shows the estimated mislabeling rates from the simulations. The results demon-
strate that for reasonable choices of n and p, the algorithm based on (Anandkumar et al.
2014) is capable of recovering Z quite well.

The theoretical upper bounds of the mislabeling rate in Proposition 4 are monotonely
decreasing as functions of

∥∥∥µ1:p(z) ´ µ1:p(v)
∥∥∥

2
. These are, in turn, monotonely increas-

ing in p and in µscale. The results in Figure 2 support that this behavior of the upper
bounds carry over to the actual mislabeling rate. Moreover, the rapid decay of the mis-
labeling rate with µscale is in accordance with the exponential decay of the upper bound
in the sub-Gaussian case.
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Figure 2. Empirical mislabeling rates as a function of n = m and p and
for three different separation scales.

4.2. Outcome model simulation and estimation of βi. Given simulated Z-s and Xi-s as
described in Section 4.1, we simulate the outcomes as follows.

‚ Draw βi independently and uniformly from (´1, 1) for i = 1, . . . , pmax.
‚ Fix γscale P t0, 20, 40, 100, 200u and let γz = γscale ¨ z for z P t1, . . . , Ku.
‚ With ε „ N (0, 1) simulate nmax independent outcomes as

Y =

pmaxÿ

i=1

βiXi + γZ + ε.
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Figure 3. Average MSE for substitute adjustment using Algorithm 3 as
a function of sample size n and for two different dimensions, a range of
the unobserved confounding levels, and with µscale = 1.

The simulation parameter γscale captures a potential effect of unobserved Xi-s for i ą
pmax. We refer to this effect as unobserved confounding. For p ă pmax, adjustment us-
ing the naive linear regression model

řp
i=1 βixi would lead to biased estimates even if

γscale = 0, while the naive linear regression model for p = pmax would be correct when
γscale = 0. When γscale ą 0, adjusting via naive linear regression for all observed Xi-s
would still lead to biased estimates due to the unobserved confounding.

We consider the estimation error for p P t125, 175u and n P t50, 100, 200, 500, 1000u.
Let βb,i denote the i-th parameter in the b-th replication, and let β̂

sub,n,p
b,i denote the

corresponding estimate from Algorithm 3 for each combination of n and p. The average

MSE of β̂
sub,n,p
b is computed as

MSE(n,p) =
1
10

10ÿ

b=1

1
p

pÿ

i=1

(β̂
sub,n,p
b,i ´ βb,i)

2.

Figure 3 shows the MSE for the different combinations of n and p and for different
choices of γscale. Unsurprisingly, the MSE decays with sample size and increases with
the magnitude of unobserved confounding. More interestingly, we see a clear decrease
with the dimension p indicating that the lower mislabeling rate for larger p translates to
a lower MSE as well.

Finally, we compare the results of Algorithm 3 with two other approaches. Letting X

denote the n ˆ p model matrix for the xi,k-s and y the n-vector of outcomes, the ridge
regression estimator is given as

β̂
(n,p)
Ridge = arg min

βPRp
min
β0PR

}y ´ β0 ´ Xβ}2
2 + λ∥β∥2

2,

with λ chosen by five-fold cross-validation. The augmented ridge regression estimator
is given as

β̂
(n,p)
Aug-Ridge = arg min

βPRp
min
γPRK

››››y ´ [X, Ẑ
] [ β

γ

]››››
2

2
+ λ∥β∥2

2,
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Figure 4. Average MSE for substitute adjustment using Algorithm 3
compared to average MSE for the ridge and augmented ridge estima-
tors for two different dimensions, a range of unobserved confounding
levels, and with µscale = 1.

where Ẑ is the n ˆ K model matrix of dummy variable encodings of the substitutes.
Again, λ is chosen by five-fold cross-validation.

The average MSE is computed for ridge regression and augmented ridge regression just
as for substitute adjustment. Figure 4 shows results for p = 125 and p = 175. These two
values of p correspond to asymptotic (as p stays fixed and n Ñ 8) mislabeling rates δ
around 7% and 2%, respectively.
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We see that both alternative estimators outperform Algorithm 3 when the sample size is
too small to learn Z reliably. However, naive linear regression is biased, and so is ridge
regression (even asymptotically), and its performance does not improve as the sample
size, n, increases. Substitute adjustment as well as augmented ridge regression adjust for
Ẑ, and their performance improve with n, despite the fact that p is too small to recover Z
exactly. When n and the amount of unobserved confounding is sufficiently large, both
of these estimators outperform ridge regression. Note that it is unsurprising that the
augmented ridge estimator performs similarly to Algorithm 3 for large sample sizes,
because after adjusting for the substitutes, the xi,k-residuals are roughly orthogonal if
the substitutes give accurate recovery, and a joint regression will give estimates similar
to those of the marginal regressions.

We made a couple of observations (data not shown) during the simulation study. We ex-
perimented with changing the mixture distributions to other sub-Gaussian distributions
as well as to the Laplace distribution and got similar results as shown here using the
Gaussian distribution. We also implemented sample splitting, and though Proposition
4 assumes sample splitting, we found that the improved estimation accuracy attained
by using all available data for the tensor decomposition outweighs the benefit of sample
splitting in the recovery stage.

In conclusion, our simulations show that for reasonable finite n and p, it is possible
to recover the latent variables sufficiently well for substitute adjustment to be a bet-
ter alternative than naive linear or ridge regression in settings where the unobserved
confounding is sufficiently large.

5. Discussion

We break the discussion into three parts. In the first part we revisit the discussion about
the causal interpretation of the target parameters χi

x treated in this paper. In the second
part we discuss substitute adjustment as a method for estimation of these parameters
as well as the assumption-lean parameters βi. In the third part we discuss possible
extensions of our results

5.1. Causal interpretations. The main causal question is whether a contrast of the form
χi

x ´ χi
x0

has a causal interpretation as an average treatment effect. The framework in
(Wang & Blei 2019) and the subsequent criticisms by D’Amour (2019) and Ogburn et al.
(2020) are based on the Xi-s all being causes of Y, and on the possibility of unobserved
confounding. Notably, the latent variable Z to be recovered is not equal to an unob-
served confounder, but Wang & Blei (2019) argue that using the deconfounder allows us
to weaken the assumption of “no unmeasured confounding” to “no unmeasured single-
cause confounding”. The assumptions made in (Wang & Blei 2019) did not fully justify
this claim, and we found it difficult to understand precisely what the causal assumptions
related to Z were.

Mathematically precise assumptions that allow for identification of causal parameters
from a finite number of causes, X1, . . . , Xp, via deconfounding are stated as Assump-
tions 1 and 2 in (Wang & Blei 2020). We find these assumptions regarding recovery of
Z (also termed “pinpointing” in the context of the deconfounder) for finite p implausi-
ble. Moreover, the entire framework of the deconfounder rests on the causal assumption
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of “weak unconfoundedness” in Assumption 1 and Theorem 1 of (Wang & Blei 2020),
which might be needed for a causal interpretation but is unnecessary for the decon-
founder algorithm to estimate a meaningful target parameter.

We find it beneficial to disentangle the causal interpretation from the definition of the
target parameter. By defining the target parameter entirely in terms of the observational
distribution of observed (or, at least, observable) variables, we can discuss the properties
of the statistical method of substitute adjustment without making causal claims. We have
shown that substitute adjustment under our Assumption 2 on the latent variable model
targets the adjusted mean irrespectively of any unobserved confounding. Grimmer et al.
(2023) present a similar view. The contrast χi

x ´ χi
x0

might have a causal interpretation
in specific applications, but substitute adjustment as a statistical method does not rely
on such an interpretation or assumptions needed to justify such an interpretation. In
any specific application with multiple causes and potential unobserved confounding,
substitute adjustment might be a useful method for deconfounding, but depending on
the context and the causal assumptions we are willing to make, other methods could be
preferable (Miao et al. 2023).

5.2. Substitute adjustment: interpretation, merits and deficits. We define the target
parameter as an adjusted mean when adjusting for an infinite number of variables.
Clearly, this is a mathematical idealization of adjusting for a large number of variables,
but it also has some important technical consequences. First, the recovery Assumption
2(2) is a more plausible modelling assumption than recovery from a finite number of
variables. Second, it gives a clear qualitative difference between the adjusted mean of
one (or any finite number of) variables and regression on all variables. Third, the natural
requirement in Assumption 2(2) that Z can be recovered from X´i for any i replaces the
minimality of a “multi-cause separator” from (Wang & Blei 2020). Our assumption is
that σ(Z) is sufficiently minimal in a very explicit way, which ensures that Z does not
contain information unique to any single Xi.

Grimmer et al. (2023) come to a similar conclusion as we do: that the target param-
eter of substitute adjustment (and the deconfounder) is the adjusted mean χi

x, where
you adjust for an infinite number of variables. They argue forcefully that substitute ad-
justment, using a finite number p of variables, does not have an advantage over naive
regression, that is, over estimating the regression function E

[
Y | X1 = x1, . . . , Xp = xp

]

directly. With i = 1, say, they argue that substitute adjustment is effectively assuming a
partially linear, semiparametric regression model

E
[
Y | X1 = x1, . . . , Xp = xp

]
= β0 + β1x1 + h(x2, . . . , xp),

with the specific constraint that h(x2, . . . , xp) = g(ẑ) = g( f (p)(x2, . . . , xp)). We agree
with their analysis and conclusion; substitute adjustment is implicitly a way of making
assumptions about h. It is also a way to leverage those assumptions, either by shrinking
the bias compared to directly estimating a misspecified (linear, say) h, or by improving
efficiency over methods that use a too flexible model of h. We believe there is room for
further studies of such bias and efficiency tradeoffs.

We also believe that there are two potential benefits of substitute adjustment, which
are not brought forward by Grimmer et al. (2023). First, the latent variable model can
be estimated without access to outcome observations. This means that the inner part of
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h = g ˝ f (p) could, potentially, be estimated very accurately on the basis of a large sample
S0 in cases where it would be difficult to estimate the composed map h accurately from
S alone. Second, when p is very large, e.g., in the millions, but Z is low-dimensional,
there can be huge computational advantages to running p small parallel regressions
compared to just one naive linear regression of Y on all of X1:p, let alone p naive partially
linear regressions.

5.3. Possible extensions. We believe that our error bound in Theorem 1 is an inter-
esting result, which in a precise way bounds the error of an OLS estimator in terms
of errors in the regressors. This result is closely related to the classical literature on
errors-in-variables models (or measurement error models) (Durbin 1954, Cochran 1968,
Schennach 2016), though this literature focuses on methods for bias correction when
the errors are non-vanishing. We see two possible extensions of our result. For one,
Theorem 1 could easily be generalized to E = Rd. In addition, it might be possible
to apply the bias correction techniques developed for errors-in-variables to improve the
finite sample properties of the substitute adjustment estimator.

Our analysis of the recovery error could also be extended. The concentration inequalities
in Section 3.3 are unsurprising, but developed to match our specific needs for a high-
dimensional analysis with as few assumptions as possible. For more refined results on
finite mixture estimation see, e.g., (Heinrich & Kahn 2018), and see (Ndaoud 2022) for
optimal recovery when K = 2 and the mixture distributions are Gaussian. In cases where
the mixture distributions are Gaussian, it is also plausible that specialized algorithms
such as (Kalai et al. 2012, Gandhi & Borns-Weil 2016) are more efficient than the methods
we consider based on conditional means only.

One general concern with substitute adjustment is model misspecification. We have
done our analysis with minimal distributional assumptions, but there are, of course,
two fundamental assumptions: the assumption of conditional independence of the Xi-s
given the latent variable Z, and the assumption that Z takes values in a finite set of size
K. An important extension of our results is to study robustness to violations of these two
fundamental assumptions. We have also not considered estimation of K, and it would
likewise be relevant to understand how that affects the substitute adjustment estimator.
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Appendix A. Proofs and auxiliary results

A.1. Proofs of results in Section 2.1.

Proof of Proposition 1. Since Xi as well as X´i take values in Borel spaces, there exists a
regular conditional distribution given Z = z of each (Kallenberg 2021, Theorem 8.5).
These are denoted Pi

z and P´i
z , respectively. Moreover, Assumption 2(2) and the Doob-

Dynkin lemma (Kallenberg 2021, Lemma 1.14) imply that for each i P N there is a
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measurable map fi : RN Ñ E such that Z = fi(X´i). This implies that P´i(B) =ş
P´i

z (B)PZ(dz) for B Ď RN measurable.

Since Z = fi(X´i) it holds that fi(P´i) = PZ, and furthermore that P´i
z ( f ´1

i (tzu)) = 1.
Assumption 2(1) implies that Xi and X´i are conditionally independent given Z, thus
for A, C Ď R and B Ď E measurable sets and B̃ = f ´1

i (B) Ď RN,

P(Xi P A, Z P B, Y P C) = P(Xi P A, X´i P B̃, Y P C)

=

ż
1A(x)1B̃(x)Pi

x,x(C)P(dx, dx)

=

ż
1A(x)1B̃(x) Pi

x,x(C)
ż

Pi
z b P´i

z (dx, dx)PZ(dz)

=

¡
1A(x)1B̃(x) Pi

x,x(C)Pi
z(dx)P´i

z (dx)PZ(dz)

=

¡
1A(x)1B(z)

ż
Pi

x,x(C)P´i
z (dx)Pi

z(dx)PZ(dz)

=

ĳ
1A(x)1B(z) Qi

x,z(C)Pi
z(dx)PZ(dz).

Hence Qi
x,z is a regular conditional distribution of Y given (Xi, Z) = (x, z).

We finally find that

χi
x =

ĳ
y Pi

x,x(dy)P´i(dx)

=

¡
y Pi

x,x(dy)P´i
z (dx)PZ(dz)

=

ĳ
y
ż

Pi
x,x(dy)P´i

z (dx)PZ(dz)

=

ĳ
y Qi

z,x(dy)PZ(dz).

□

Proof of Proposition 2. We find that

Cov [Xi, Y | Z] = E [(Xi ´ E[Xi | Z])Y | Z]

= E [E [(Xi ´ E[Xi | Z])Y | Xi, Z] | Z]

= E [(Xi ´ E[Xi | Z])E [Y | Xi, Z] | Z]

= E
[
(Xi ´ E[Xi | Z])bi

Xi
(Z) | Z

]

= Cov
[

Xi, bi
Xi
(Z) | Z

]
,

which shows (9). From this representation, if bi
x(z) = bi(z) does not depend on x, bi(Z)

is σ(Z)-measurable and Cov
[
Xi, bi(Z) | Z

]
= 0, whence βi = 0.
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If bi
x(z) = β1

i(z)x + η´i(z),

Cov
[

Xi, bi
Xi
(Z) | Z

]
= Cov [Xi, β1

i(Z)Xi + η´i(Z) | Z] = β1
i(Z)Var [Xi | Z] ,

and (10) follows. □

A.2. Auxiliary results related to Section 3.2 and proof of Theorem 1. Let Z denote
the n ˆ K matrix of dummy variable encodings of the zk-s, and let Ẑ denote the similar
matrix for the substitutes ẑk-s. With PZ and PẐ the orthogonal projections onto the
column spaces of Z and Ẑ, respectively, we can write the estimator from Algorithm 3 as

(27) pβsub
i =

xxi ´ PẐxi, y ´ PẐyy
}xi ´ PẐxi}2

2
.

Here xi, y P Rn denote the n-vectors of xi,k-s and yk-s, respectively, and x¨, ¨y is the stan-
dard inner product on Rn, so that, e.g., }y}2

2 = xy, yy. The estimator, had we observed
the latent variables, is similarly given as

(28) β̂i =
xxi ´ PZxi, y ´ PZyy

}xi ´ PZxi}2
2

.

The proof of Theorem 1 is based on the following bound on the difference between the
projection matrices.

Lemma 1. Let α and δ be as defined by (16) and (17). If α ą 0 it holds that

(29) }PZ ´ PẐ}2 ď
c

2δ

α
,

where } ¨ }2 above denotes the operator 2-norm also known as the spectral norm.

Proof. When α ą 0, the matrices Z and Ẑ have full rank K. Let Z+ = (ZTZ)´1ZT and
Ẑ+ = (ẐTẐ)´1ẐT denote the Moore-Penrose inverses of Z and Ẑ, respectively. Then
PZ = ZZ+ and PẐ = ẐẐ+. By Theorems 2.3 and 2.4 in (Stewart 1977),

}PZ ´ PẐ}2 ď min
␣}Z+}2, }Ẑ+}2

( }Z ´ Ẑ}2.

The operator 2-norm }Z+}2 is the square root of the largest eigenvalue of

(ZTZ)´1 =




n(1)´1 0 . . . 0
0 n(2)´1 . . . 0
...

...
. . .

...
0 0 . . . n(K)´1


 .

Whence }Z+}2 ď (nmin)´1/2 = (αn)´1/2. The same bound is obtained for }Ẑ+}2, which
gives

}PZ ´ PẐ}2 ď 1?
αn

}Z ´ Ẑ}2.

We also have that

}Z ´ Ẑ}2
2 ď }Z ´ Ẑ}2

F =
nÿ

k=1

pÿ

i=1

(Zk,i ´ Ẑk,i)
2 = 2δn,

because
řp

i=1(Zk,i ´ Ẑk,i)
2 = 2 precisely for those k with ẑk ‰ zk and 0 otherwise. Com-

bining the inequalities gives (29). □



SUBSTITUTE ADJUSTMENT 27

Before proceeding with the proof of Theorem 1, note that
nÿ

k=1

(xi,k ´ µi(zk))
2 = }xi ´ PZxi}2

2 = }(I ´ PZ)xi}2
2 ď }xi}2

2

since (I ´ PZ) is a projection. Similarly,
řn

k=1(xi,k ´ µ̂i(ẑk))
2 = }xi ´ PẐxi}2

2 ď }x}2
2, thus

ρ =
min

␣}xi ´ PZxi}2
2, }xi ´ PẐxi}2

2

(

}xi}2
2

ď 1.

Proof of Theorem 1. First note that since I ´ PẐ is an orthogonal projection,

xxi ´ PẐxi, y ´ PẐyy = xxi, (I ´ PẐ)yy
and similarly for the other inner product in (28). Moreover,

xxi, (I ´ PẐ)yy ´ xxi, (I ´ PZ)yy = xxi, (PZ ´ PẐ)yy
and

}(I ´ PZ)xi}2
2 ´ }(I ´ PẐ)xi}2

2 = }(PẐ ´ PZ)xi}2
2.

We find that

pβsub
i ´ β̂i =

xxi, (I ´ PẐ)yy
}(I ´ PẐ)xi}2

2
´ xxi, (I ´ PZ)yy

}(I ´ PZ)xi}2
2

= xxi, (I ´ PẐ)yy
(

1
}(I ´ PẐ)xi}2

2
´ 1

}(I ´ PZ)xi}2
2

)

+
xxi, (I ´ PẐ)yy ´ xxi, (I ´ PZ)yy

}(I ´ PZ)xi}2
2

= xxi, (I ´ PẐ)yy
( }(PẐ ´ PZ)xi}2

2

}(I ´ PẐ)xi}2
2}(I ´ PZ)xi}2

2

)

+
xxi, (PZ ´ PẐ)yy

}(I ´ PZ)xi}2
2

.

This gives the following inequality, using that ρ ď 1,

|pβsub
i ´ β̂i| ď }PZ ´ PẐ}2}xi}3

2}y}2

ρ2}xi}4
2

+
}PZ ´ PẐ}2}xi}2}y}2

ρ}xi}2
2

=

(
1
ρ2 +

1
ρ

)
}PZ ´ PẐ}2

}y}2

}xi}2

ď 2
ρ2 }PZ ´ PẐ}2

}y}2

}xi}2
.

Combining this inequality with (29) gives (19). □

A.3. Auxiliary concentration inequalities. Proofs of Propositions 3 and 4.

Lemma 2. Suppose that Assumption 4 holds. Let µ̌1:p(z) P Rp for z P E and let Ẑ =

arg minz }X1:p ´ µ̌1:p(z)}2. Suppose that R(p)
z,v ď 1

10 for all z, v P E with v ‰ z then

(30) P(Ẑ = v | Z = z) ď 25σ2
max

}µ1:p(z) ´ µ1:p(v)}2
2

.
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Proof. Since p is fixed throughout the proof, we simplify the notation by dropping the
1:p subscript and use, e.g., X and µ to denote the Rp-vectors X1:p and µ1:p, respectively.

Fix also z, v P E with v ‰ z and observe first that

(Ẑ = v) Ď (∥X ´ µ̌(v)∥2 ă ∥X ´ µ̌(z)∥2)

=
(

xX ´ µ̌(z), µ̌(z) ´ µ̌(v)y ă ´ 1
2∥µ̌(z) ´ µ̌(v)∥2

2

)

=
(

xX ´ µ(z), µ̌(z) ´ µ̌(v)y ă
´
(

1
2∥µ̌(z) ´ µ̌(v)∥2

2 + xµ(z) ´ µ̌(z), µ̌(z) ´ µ̌(v)y
) )

.

The objective is to bound the probability of the event above using Chebyshev’s inequal-
ity. To this end, we first use the Cauchy-Schwarz inequality to get

1
2∥µ̌(z) ´ µ̌(v)∥2

2 + xµ(z) ´ µ̌(z), µ̌(z) ´ µ̌(v)y
ě 1

2∥µ̌(z) ´ µ̌(v)∥2
2 ´ }µ(z) ´ µ̌(z)}2}µ̌(z) ´ µ̌(v)}2

= ∥µ(z) ´ µ(v)∥2
2

(
1
2 B2

z,v ´ R(p)
z,v Bz,v

)
,

where

Bz,v =
∥µ̌(z) ´ µ̌(v)∥2
∥µ(z) ´ µ(v)∥2

.

The triangle and reverse triangle inequality give that

∥µ̌(z) ´ µ̌(v)∥2 ď ∥µ(z) ´ µ(v)∥2 + ∥µ̌(z) ´ µ(z)∥2 + ∥µ(v) ´ µ̌(v)∥2

∥µ̌(z) ´ µ̌(v)∥2 ě
ˇ̌
ˇ∥µ(z) ´ µ(v)∥2 ´ ∥µ(z) ´ µ̌(z)∥2 ´ ∥µ(v) ´ µ̌(v)∥2

ˇ̌
ˇ,

and dividing by ∥µ(z) ´ µ(v)∥2 combined with the bound 1
10 on the relative errors yield

Bz,v ď 1 + R(p)
z,v + R(p)

v,z ď 6
5

,

Bz,v ě
ˇ̌
ˇ1 ´ R(p)

z,v ´ R(p)
v,z

ˇ̌
ˇ ě 4

5
.

This gives

1
2 B2

z,v ´ R(p)
z,v Bz,v ě 1

2 B2
z,v ´ 1

10 Bz,v ě 6
25

since the function b ÞÑ b2 ´ 2
10 b is increasing for b ě 4

5 .

Introducing the variables Wi = (Xi ´ µi(z))(µ̌i(z) ´ µ̌i(v)) we conclude that

(Ẑ = v) Ď
( pÿ

i=1

Wi ă ´ 6
25∥µ(z) ´ µ(v)∥2

2

)
.(31)

Note that E[Wi | Z = z] = 0 and Var[Wi | Z = z] = (µ̌i(z) ´ µ̌i(v))2σ2
i (z), and by

Assumption 4, the Wi-s are conditionally independent given Z = z, so Chebyshev’s
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inequality gives that

P(Ẑ = v | Z = z) ď P

( pÿ

i=1

Wi ă ´ 6
25∥µ(z) ´ µ(v)∥2

2

ˇ̌
ˇ̌
ˇ Z = z

)

ď
(

25
6

)2 řp
i=1(µ̌i(z) ´ µ̌i(v))2σ2

i (z)

∥µ(z) ´ µ(v)∥4
2

ď
(

25
6

)2 σ2
max∥µ̌(z) ´ µ̌(v)∥2

2

∥µ(z) ´ µ(v)∥2
4

ď
(

25
6

)2

B2
z,v

σ2
max

∥µ(z) ´ µ(v)∥2
2

ď 25σ2
max

∥µ(z) ´ µ(v)∥2
2

,

where we, for the last inequality, used that B2
z,v ď ( 6

5

)2. □

Before proceeding to the concentration inequality for sub-Gaussian distributions, we use
Lemma 2 to prove Proposition 3.

Proof of Proposition 3. Suppose that i = 1 for convenience. We take µ̌1:p(z) = µ1:p(z) for
all p P N and z P E and write Ẑp = arg minz }X2:p ´ µ2:p(z)}2 for the prediction of Z
based on the coordinates 2, . . . , p. With this oracle choice of µ̌1:p(z), the relative errors
are zero, thus the bound (30) holds, and Lemma 2 gives

P
(
Ẑp ‰ Z

)
=

ÿ

z

ÿ

v‰z
P
(
Ẑp = v, Z = z

)

=
ÿ

z

ÿ

v‰z
P
(
Ẑp = v

ˇ̌
Z = z

)
P (Z = z)

ď C

minz‰v

∥∥∥µ2:p(z) ´ µ2:p(v)
∥∥∥

2

2

with C a constant independent of p. By (14), minz‰v

∥∥∥µ2:p(z) ´ µ2:p(v)
∥∥∥

2

2
Ñ 8 for p Ñ

8, and by choosing a subsequence, pr, we can ensure that P
(
Ẑpr ‰ Z

) ď 1
r2 . Thenř8

r=1 P
(
Ẑpr ‰ Z

) ă 8, and by Borel-Cantelli’s lemma,

P
(
Ẑpr ‰ Z infinitely often

)
= 0.

That is, P
(
Ẑpr = Z eventually

)
= 1, which shows that we can recover Z from (Ẑpr)rPN

and thus from X´1 (with probability 1). Defining

Z1 =

#
lim
rÑ8 Ẑpr if Ẑpr = Z eventually

0 otherwise

we see that σ(Z1) Ď σ(X´1) and Z1 = Z almost surely. Thus if we replace Z by Z1 in
Assumption 4 we see that Assumption 2(2) holds. □
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Lemma 3. Consider the same setup as in Lemma 2, that is, Assumption 4 holds and R(p)
z,v ď 1

10
for all z, v P E with v ‰ z. Suppose, in addition, that the conditional distribution of Xi given
Z = z is sub-Gaussian with variance factor vmax, independent of i and z, then

(32) P(Ẑ = v | Z = z) ď exp
(

´ 1
50vmax

}µ1:p(z) ´ µ1:p(v)}2
2

)
.

Proof. Recall that Xi given Z = z being sub-Gaussian with variance factor vmax means
that

log E
[
eλ(Xi´µi(z))

ˇ̌
ˇ Z = z

]
ď 1

2
λ2vmax

for λ P R. Consequently, with Wi as in the proof of Lemma 2, and using conditional
independence of the Xi-s given Z = z,

log E
[
eλ

řp
i=1 Wi

ˇ̌
ˇ Z = z

]
=

pÿ

i=1

log E
[
eλ(µ̌i(z)´µ̌i(v))(Xi´µi(z))

ˇ̌
ˇ Z = z

]

ď 1
2

λ2vmax

pÿ

i=1

(µ̌i(z) ´ µ̌i(v))2

=
1
2

λ2vmax}µ̌1:p(z) ´ µ̌1:p(v)}2
2.

Using (31) in combination with the Chernoff bound gives

P(Ẑ = v | Z = z) ď P

( pÿ

i=1

Wi ă ´ 6
25

∥∥∥µ1:p(z) ´ µ1:p(v)
∥∥∥

2

2

ˇ̌
ˇ̌
ˇ Z = z

)

ď exp


´

(
6

25

)2
∥∥∥µ1:p(z) ´ µ1:p(v)

∥∥∥
4

2

2vmax}µ̌1:p(z) ´ µ̌1:p(v)}2
2




= exp

(
´ 1

2vmax

(
6

25

)2

B´2
z,v

∥∥∥µ1:p(z) ´ µ1:p(v)
∥∥∥

2

2

)

ď exp
(

´ 1
50vmax

∥∥∥µ1:p(z) ´ µ1:p(v)
∥∥∥

2

2

)
,

where we, as in the proof of Lemma 2, have used that the bound on the relative error
implies that Bz,v ď 6

5 . □

Proof of Proposition 4. The argument proceeds as in the proof of Proposition 3. We first
note that

P
(
Ẑ ‰ Z

)
=

ÿ

z

ÿ

v‰z
P
(
Ẑ = v, Z = z

)

=
ÿ

z

ÿ

v‰z
P
(
Ẑ = v

ˇ̌
Z = z

)
P (Z = z) .

Lemma 2 then gives

P
(
Ẑ ‰ Z

) ď 25Kσ2
max

sep(p)
.
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If the sub-Gaussian assumption holds, Lemma 3 instead gives

P
(
Ẑ ‰ Z

) ď K exp
(

´sep(p)
50vmax

)
.

□

A.4. Proof of Theorem 2.

Proof of Theorem 2. Recall that

δ =
1
n

nÿ

k=1

1(ẑk ‰ zk),

hence by Proposition 4

E[δ] = P(Ẑk ‰ Z)

ď P

(
Ẑk ‰ Z

ˇ̌
ˇ̌ max

z‰v
R(p)

z,v ď 1
10

)
+ P

(
max
z‰v

R(p)
z,v ą 1

10

)

ď 25Kσ2
max

sep(p)
+ K2 max

z‰v
P
(

R(p)
z,v ą 1

10

)
.(33)

Both of the terms above tend to 0, thus δ
PÑ 0.

Now rewrite the bound (19) as

|pβsub
i ´ β̂i| ď ?

δ

(
2

?
2

ρ2
?

α

}y}2

}xi}2

)

loooooooomoooooooon
=Ln

From the argument above,
?

δ
PÑ 0. We will show that the second factor, Ln, tends to a

constant, L, in probability under the stated assumptions. This will imply that

|pβsub
i ´ β̂i| PÑ 0,

which shows case (1).

Observe first that

}xi}2
2 =

1
n

nÿ

k=1

x2
i,k

PÑ E[X2
i ] P (0, 8)

by the Law of Large Numbers, using the i.i.d. assumption and the fact that E[X2
i ] P

(0, 8) by Assumption 4. Similarly, }y}2
2

PÑ E[Y] P [0, 8).

Turning to α, we first see that by the Law of Large Numbers,

n(z)
n

PÑ P(Z = z)

for n Ñ 8 and z P E. Then observe that for any z P E

|n̂(z) ´ n(z)| ď
nÿ

k=1

|1(ẑk = z) ´ 1(zk = z)| ď
nÿ

k=1

1(ẑk ‰ zk) ď nδ.
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Since δ
PÑ 0, also

n̂(z)
n

PÑ P(Z = z),

thus

α =
nmin

n
= min

"
n(1)

n
, . . . ,

n(K)
n

,
n̂(1)

n
, . . . ,

n̂(K)
n

*
PÑ min

zPE
P(Z = z) P (0, 8).

We finally consider ρ, and to this end we first see that

1
n

}(I ´ PZ)xi}2
2 =

1
n

nÿ

k=1

(xi,k ´ µ(zk))
2 PÑ E

[
σ2

i (Z)
] P (0, 8).

Moreover, using Lemma 1,
ˇ̌}(I ´ PẐ)xi}2

2 ´ }(I ´ PZ)xi}2
2
ˇ̌
=

ˇ̌}(PẐ ´ PZ)xi}2
2 + 2|x(I ´ PẐ)xi, (PẐ ´ PZ)xiy

ˇ̌

ď }PẐ ´ PZ}2
2}xi}2

2 + 2}PẐ ´ PZ}2}xi}2
2

ď
(

2δ

α
+

c
2δ

α

)
}xi}2

2.

Hence

ρ
PÑ E

[
σ2

i (Z)
]

E[X2
i ]

P (0, 8).

Combining the limit results,

Ln
PÑ L =

2
?

2E[X2
i ]

2

E
[
σ2

i (Z)
]2 aminzPE P(Z = z)

d
E[Y2]

E[X2
i ]

P (0, 8).

To complete the proof, suppose first that sep(p)
n Ñ 8. Then

?
n|pβsub

i ´ β̂i| ď ?
nδLn

By (33) we have, under the assumptions given in case (2) of the theorem, that nδ
PÑ 0,

and case (2) follows.

Finally, in the sub-Gaussian case, and if just hn = sep(p)
log(n) Ñ 8, then we can replace (33)

by the bound

E[δ] ď K exp
(

´sep(p)
50vmax

)
+ K2 max

z‰v
P
(

R(p)
z,v ą 1

10

)
.

Multiplying by n, we get that the first term in the bound equals

Kn exp
(

´sep(p)
50vmax

)
= K exp

(
´sep(p)

50vmax
+ log(n)

)

= K exp
(

log(n)
(

1 ´ hn

50vmax

))
Ñ 0

for n Ñ 8. We conclude that the relaxed growth condition on p in terms of n in the
sub-Gaussian case is enough to imply nδ

PÑ 0, and case (3) follows.
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By the decomposition
?

n(pβsub
i ´ βi) =

?
n(pβsub

i ´ pβi) +
?

n(β̂i ´ βi)

it follows from Slutsky’s theorem that in case (2) as well as case (3),
?

n(pβsub
i ´ βi) =

?
n(pβi ´ βi) + oP(1)

DÑ N (0, w2
i ).

□

Appendix B. Gaussian mixture models

This appendix contains an analysis of a latent variable model with a finite E, similar to
the one given by Assumption 4, but with Assumption 4(1) strengthened to

Xi | Z = z „ N (µi(z), σ2
i (z)).

Assumptions 4(2), 4(3) and 4(4) are dropped, and the purpose is to understand precisely
when Assumption 2(2) holds in this model. That is, when Z can be recovered from X´i.
To keep notation simple, we will show when Z can be recovered from X, but the analysis
and conclusion is the same if we left out a single coordinate.

The key to this analysis is a classical result due to Kakutani. As in Section 2, the condi-
tional distribution of X given Z = z is denoted Pz, and the model assumption is that

(34) Pz =
8â

i=1
Pi

z

where Pi
z is the conditional distribution of Xi given Z = z. For Kakutani’s theorem below

we do not need the Gaussian assumption; only that Pi
z and Pi

v are equivalent (absolutely
continuous w.r.t. each other), and we let dPi

z
dPi

v
denote the Radon-Nikodym derivative of

Pi
z w.r.t. Pi

v.

Theorem 3 (Kakutani (1948)). Let z, v P E and v ‰ z. Then Pz and Pv are singular if and only
if

(35)
8ÿ

i=1

´ log
ż d

dPi
z

dPi
v

dPi
v = 8.

Note that

BCi
z,v =

ż d
dPi

z
dPi

v
dPi

v

is known as the Bhattacharyya coefficient, while ´ log
(

BCi
z,v

)
and

b
1 ´ BCi

z,v are known

as the Bhattacharyya distance and the Hellinger distance, respectively, between Pi
z and

Pi
v. Note also that if Pi

z = hi
z ¨ λ and Pi

v = hi
v ¨ λ for a reference measure λ, then

BCi
z,v =

ż b
hi

zhi
v dλ.
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Proposition 5. Let Pi
z be the N (µi(z), σ2

i (z))-distribution for all i P N and z P E. Then Pz
and Pv are singular if and only if either

8ÿ

i=1

(µi(z) ´ µi(v))2

σ2
i (z) + σ2

i (v)
= 8 or(36)

8ÿ

i=1

log
(

σ2
i (z) + σ2

i (v)
2σi(z)σi(v)

)
= 8(37)

Proof. Letting µ = µi(z), ν = µi(v), τ = 1/σi(z) and κ = 1/σi(v) we find

BCi
z,v =

ż d
τ?
2π

exp
(

´τ2

2
(x ´ µ)2

)
κ?
2π

exp
(

´κ2

2
(x ´ ν)2

)
dx

=

c
τκ

2π

ż
exp

(
´ (τ2 + κ2)x2 ´ 2(τ2µ + κ2ν)x + (τ2µ2 + κ2ν2)

4

)
dx

=

c
τκ

2π

c
4π

τ2 + κ2 exp
(
(τ2µ + κ2ν)2

4(τ2 + κ2)
´ τ2µ2 + κ2ν2

4

)

=

c
2τκ

τ2 + κ2 exp
(

´τ2κ2(µ ´ ν)2

4(τ2 + κ2)

)

=

d
2σi(z)σi(v)

σ2
i (z) + σ2

i (z)
exp

(
´ (µi(z) ´ µi(v))2

4(σ2
i (z) + σ2

i (z))

)
.

Thus
8ÿ

i=1

´ log
(

BCi
z,v

)
=

1
2

8ÿ

i=1

log
(

σ2
i (z) + σ2

i (v)
2σi(z)σi(v)

)
+

1
4

8ÿ

i=1

(µi(z) ´ µi(v))2

σ2
i (z) + σ2

i (v)
,

and the result follows from Theorem 3. □
Corollary 1. Let Pi

z be the N (µi(z), σ2
i (z))-distribution for all i P N and z P E. There is a

mapping f : RN Ñ E such that Z = f (X) almost surely if and only if either (36) or (37) holds.

Proof. If either (36) or (37) holds, Pz and Pv are singular whenever v ‰ z. This implies that
there are measurable subsets Az Ď RN for z P E such that Pz(Az) = 1 and Pv(Az) = 0
for v ‰ z. Setting A = Yz Az we see that

P(A) =
ÿ

z
Pz(A)P(Z = z) =

ÿ

z
Pz(Az)P(Z = z) = 1.

Defining the map f : RN Ñ E by f (x) = z if x P Az (and arbitrarily on the complement
of A) we see that f (X) = Z almost surely.

On the other hand, if there is such a mapping f , define Az = f ´1(tzu) for all z P E. Then
Az X Av = H for v ‰ z and

Pz(Az) =
P(X P Az, Z = z)

P(Z = z)
=

P( f (X) = z, Z = z)
P(Z = z)

=
P( f (X) = Z, Z = z)

P(Z = z)
=

P(Z = z)
P(Z = z)

= 1.
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Similarly, for v ‰ z

Pv(Az) =
P(X P Az, Z = v)

P(Z = v)
=

P( f (X) = z, Z = v)
P(Z = v)

=
P( f (X) ‰ Z, Z = v)

P(Z = v)
=

0
P(Z = v)

= 0.

This shows that Pz and Pv are singular, and by Proposition 5, either (36) or (37) holds. □
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3 Multiple Causal Inference by Substitute Adjustment

3.1 Additional Discussion

In [Adjustment], our analysis is largely agnostic to causal interpretation. In this section,
we will discuss a causal interpretation of the model in greater detail. First, we introduce
and motivate the main assumptions of Wang and Blei [2019]. Next, we discuss two main
criticisms of the original paper. The first is the original claim that σ(Z) did not need
to be unique for deconfounding to be possible. The second is the debate whether a
deconfounder can pick up on a mediator.

3.1.1 The Assumptions

As presented in Wang and Blei [2019], the deconfounder originally rested on three as-
sumptions, which we discuss here.
As pointed out by Grimmer et al. [2023], substitute adjustment essentially coincides

with a semiparametric partially linear regression model

E[Y |X1 = x1, ..., Xp = xp] = β0 + β1x1 + h(x2, ..., xp).

However, we disagree that this observation makes the deconfounder idea unnecessary.
For such a partially linear regression to be feasible, we desire a principled way of re-
stricting the function class of h. Assumption 1 will give us such a principled restriction.

Assumption 1 (Conditional Independence). The entries of X are mutually independent
given Z.

This is exactly [Adjustment] Assumption 2(1). Interpreted causally, Assumption 1
says that the treatments are causally non-adjacent, and that the dependency structure
of X is entirely explained by a hidden common cause, Z. However, understood as a
restriction on the function class of h, it says that h must be of the form g ◦ f , where
f(X2, ..., Xp) is required to make X2, ..., Xp independent. In cases where the causal
model is plausible, this could be a principled choice of function class.
However, Assumption 1 is not really a restriction on Z yet—X is mutually independent

conditional on X, but we certainly don’t want to adjust X for X. Intuitively, the idea
of Wang and Blei [2019] is to adjust for as little information as necessary to make X
independent, but no more. Essentially, the only information the causal model gives us
is that X are conditionally independent given the true Z. Therefore, it is sensible to
reconstruct Z using all information in the dependency structure of X; however, we are
not justified in using any information from the marginal distributions, because we cannot
know what part is idiosyncratic to Xi and what part is due to a confounder. Therefore,
in the original paper, Wang and Blei [2019] propose

Assumption 2 (Minimality). For any random variable Z ′, if Z ′ satisfies Assumption 1,
then σ(Z) ̸⊃ σ(Z ′).

The remarkable thing about Assumption 2 is that, if it were sufficient to control for
confounding, then it would not be necessary to recover the σ-algebra of the true con-
founder Z; it would be sufficient to adjust for any minimal σ-algebra which makes X

74



3.1 Additional Discussion

conditionally independent. However, this assumption is too weak to control for unob-
served confounding in general; problems can occur when the σ-algebra satisfying As-
sumption 2 is not unique, as we will discuss this in Section 3.1.2. Wang and Blei [2020]
resolve this problem by assuming there is a unique map f : Rp → E such that f(X)
satisfies Assumptions 1 and 2.

In contrast, any random variable satisfying [Adjustment] Assumption 2(2) is sufficient
to adjust for confounding due to [Adjustment] Proposition 1. That assumption is in the
same spirit as Assumption 2: informally, Assumption 2(2) entails that any information
in Z must be in at least two Xi, so that it is actually required to render X independent.

For substitute adjustment to actually remove confounding bias, the recovered variable
must actually relate to the confounding. Since the substitute is constructed only from
the dependency structure of X and not from the marginal distributions, a confounder
which affects only one treatment variable cannot be captured by the substitute. This
motivates Wang and Blei [2019] to rule out single-cause confounders:

Assumption 3 (Single Ignorability). For all i ∈ {1, ..., d}, x ∈ X , the potential outcome
Y Xi=x ⊥⊥ Xi|Z.

This assumption is weaker than the usual assumption of no unobserved confounding.

3.1.2 Uniqueness of Z

Wang and Blei [2019] claimed that any substitute satisfying Assumptions 1 to 3 could
be used for adjustment. This promised to allow for unbiased treatment effect estimation
under weaker assumptions than standard unconfoundedness, and to allow model checking
of the substitute confounder.

The problem is that without some way to chose between different minimal σ(Z), the
linear regression parameter β (or any other functional of the counterfactual distribution)
is not generally identifiable. As Ogburn et al. [2020] point out, a variable Z satisfying
Assumption 1 controls for confounding only insofar as the dependency structure on X
relates to the confounding between X and Y X=x—i.e. insofar as the same variable Z
satisfies both Assumption 1 and Assumption 3. D’Amour [2019] demonstrate this with
a specific theoretical example. Similar to our analysis for Gaussian mixtures in [Ad-
justment]Appendix B, their example further reminds us that p→∞ is not sufficient to
recover Z, because this in itself does not necessarily entail mutually singular conditional
distributions X|Z. It is in light of these critiques that Wang and Blei [2020] strengthened
Assumption 2.

But even with this correction, we must remember that these assumptions are just as-
sumptions: D’Amour [2019] provide a simple copula argument showing that confounding
is not generally discoverable from X alone. Only when causal relations between treat-
ments are negligible (Assumption 1) and when the confounding structure between X
and Y is related to the dependency structure within X (Assumption 3) does substitute
adjustment actually adjust for confounding.
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3.1.3 Picking up a Mediator, Picking up a Mechanism

When the assumptions of Wang and Blei [2020] hold in finite dimensions, the true
confounder Z is not only causally prior to X, but also can be viewed as a deterministic
function of the treatments X. This could raise many conceptual worries. For example,
since Z is X-measurable, it follows that Y Xi=x ⊥⊥ Z|X, indicating that Z is not a
confounder according to usual definitions of confounding; “Confounders confound because
they are related to potential outcomes even conditional on the observed treatment and
outcome.” [Ogburn et al., 2019] It is, in part, in response to this concern that we
consider an infinite dimensional X in [Adjustment]; we only ever observe finitely many
treatments, so that it still makes sense to talk about Z as a latent confounder.

The pinpointedness of Z also indicates a type of multicolinearity problem in the full
deconfounder regression (in which the recovered substitute is merely appended to the full
design matrix). This problem was investigated by [Grimmer et al., 2023]. For example,
if Ẑ is constructed from X by linear factor analysis, then it is colinear with X; thus, an
ordinary least squares regression of Y on X and Ẑ is undefined. More generally, consider
a non-parametric regression

E[Y |X1 = x1, ..., Xp = xp] = b(X) + g(Z) (1)

where b and g are restricted to some function classes. We must be sure, for example, the
function classes are appropriately restricted so that b cannot first reconstruct Z as an
intermediate step. [Ogburn et al., 2019] Clearly, we avoid this concern by considering
each treatment individually in [Adjustment] Algorithms 1-3.

The multicolinearity problem is subtly related to the issue of “picking up a mediator.”
Lemma 4 of Wang and Blei [2019] claims that the substitute confounder cannot pick up a
mediator— that is, no mediator is measurable with respect to the substitute confounder.
If true, this is reassuring; it is unwise to adjust for mediators. However, it seems that
the lemma is true, but surprisingly uninteresting. More interesting is the question, “can
the substitute confounder pick up a mechanism”? The answer seems to be yes.

First a discussion of Lemma 4. The proof reveals that the claim relies on a specific
but widespread understanding of the term “mediator”. For example, Imai et al. [2010]
requires that a mediator M satisfy M ̸⊥⊥ Y X=x|X for some potential treatment level
x. The implication is that, by definition, mediators exclude X-measurable variables;
and clearly every Ẑ-variable variable is also X-measurable because Ẑ = f(X). In this
sense, Lemma 4 of Wang and Blei [2019] is correct, but trivial. (X-measurability of
the substitute confounder is indeed implicit in Lemma 4; otherwise the proof given in
Wang and Blei [2019] fails, since it is possible that Z = Y X=x satisfies X ⊥⊥ Z but
Z ̸⊥⊥ Y X=x|X, which would contradict the proof.)

A similar argument addresses concerns about M-bias and single-cause colliders raised
by Ogburn et al. [2019]. However, this does not automatically greenlight adjustment
with respect to Ẑ, precisely because the mechanism by which X causes Y could be
similar to the true function f which pinpoints Z from X. Thus the possible issue is not
that we are adjusting for a mediator, but that the true mechanisms align.
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This is actually a major concern of Ćevid et al. [2020]: in linear models, the PCA
correction often forces β̂ orthogonal to the largest principle components, which is catas-
trophic when the true treatment mechanism is approximately colinear with the true
linear factor loadings. Perhaps Ẑ cannot pick up a mediator, but it can certainly pick
up a mechanism. Ćevid et al. [2020] avoid their version of the problem by assuming
sparse β and dense confounding, which forces orthogonality; Wang and Blei [2019] avoid
picking up a mechanism by the function-class restrictions in Theorem 6, and the overlap
assumption of Theorem 7. We avoid this and related problems by performing assumption
lean substitute adjustment on each dimension of X individually.
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4 Causal Interpretations of Lévy-driven
Ornstein Uhlenbeck Processes

This chapter contains the following paper:

[Precision] [Recke et al., 2024]. C. O. Recke, J. Adams, and N. R. Hansen. Non-Gaussian
graphical precision models. 2024.

In [Precision], we show that under a condition we call drift-volatility balance causal con-
clusions can easily be drawn from the steady-state observational distribution of Ornstein
Uhlenbeck processes. Furthermore, we derive equations relating higher-order cumulants
of the steady-state observational distribution to the drift- and volatility-parameters of
the Ornstein-Uhlenbeck process. From these equations, we show that drift-volatility
balance is a falsifiable property.

The proof of [Precision] Proposition 3.1 is very concise, but also very abstract. In
Section 4.1, we provide a second proof of this proposition in the special case where the
dependence structure of the Lévy process Z is explained by a linear mixing of arbitrarily
many independent Lévy processes. Because this second proof is from first principles
about the time dynamics of the stochastic process, it provides a mechanistic intuition
that is absent in the more concise proof. Moreover, we show that under this additional
linearity assumption, the cumulants of Z admit a symmetric tensor decomposition.
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NON-GAUSSIAN GRAPHICAL PRECISION MODELS

CECILIE OLESEN RECKE, JEFFREY ADAMS, AND NIELS RICHARD HANSEN

This draft manuscript represents work in progress.

Abstract. Sparse estimation of precision matrices is widely used also beyond the Gauss-
ian case. Since a vanishing partial correlation does not imply a conditional independence
for non-Gaussian data, it may, however, be difficult to give a proper interpretation of the
sparsity pattern of such a precision matrix. We give a novel interpretation in terms of op-
erator selfdecomposable (OSD) distributions, which appear as steady-state distributions for
a class of Markov processes. A sparse precision matrix is then interpretable in terms of
the process dynamics whenever the dynamics satisfies a condition we term drift-volatility
balance. In the Gaussian case, the condition is equivalent to detailed balance, which re-
sults in a classical Gaussian graphical model. If drift-volatility balance is not satisfied, the
precision matrix will generally be dense. We derive equations for the higher order cumu-
lants of the non-Gaussian OSD distributions. These equations allow us to derive a rank
constraint that holds under drift-volatility balance, and which is expressible in terms of
the second and third order cumulants.

1. Introduction

We consider a multivariate random variable X ∈ Rp with finite second moment. We
denote its covariance matrix by Σ, and when it is invertible we denote the corresponding
precision matrix by Θ = Σ−1.

If G = ([p], E) is an undirected graph with nodes [p] = {1, . . . , p} and edges E we let RE

denote the symmetric p× p matrices whose (i, j)-th entry is non-zero only if {i, j} ∈ E,
and

PDG = {Θ ∈ RE | Θ is positive definite}.
The set PDG constitutes a graphical precision model given by the graph G, and any
Θ ∈ PDG inherits the sparsity pattern of (the adjacency matrix of) G. If X ∼ N (0, Σ)
has a Gaussian distribution with Θ = Σ−1 ∈ PDG the distribution of X factorizes w.r.t.
G, whence the distribution satisfies the global Markov property w.r.t. G, and separation
in G implies a corresponding conditional independence among coordinates of X. In
particular, for Gaussian distributions

(1) Θij = 0 ⇐⇒ Xi ⊥⊥ Xj | (Xk)k ̸=i,j,

see Proposition 5.2 in [Lau96].

We will consider the graphical precision model PDG for non-Gaussian distributions, and
we are particularly interested in (semiparametric) models that

(1) can explain the particular sparsity pattern of Θ as encoded by G
(2) and come with a testable causal interpretation

1
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X1

X2 X3

X4

Θ =




∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗




Figure 1. The graphical precision model PDG for G the (undirected)
four-cycle graph is equivalent to the constraints Θ13 = Θ31 = 0 and
Θ24 = Θ42 = 0 for all Θ ∈ PDG.

We will, nevertheless, first discuss the case where the distribution of X is Gaussian
and where Θ ∈ PDG implies a range of factorization and conditional independency
properties about the joint distribution of X. These properties do, however, not explain
the origin of G. That is, they do not explain the mechanisms that can generate such a
multivariate Gaussian distribution.

The graphical model with p = 4 given by the four-cycle, see Figure 1, is an interesting
example; it is the simplest example of an undirected graphical independence model that
cannot be represented by a DAG [Fry90, Theorem 5.6], whence the four-cycle cannot
be (faithfully) explained by a set of recursive regressions. Cox and Wermuth [CW00]
investigated other possible mechanisms that can explain the four-cycle, including limits
and steady-state distributions for stochastic dynamical systems. The four-cycle – and
any other Gaussian graphical model for that matter – can be explained as the steady-
state distribution of a Gaussian Markov process, see also [LR02]. In fact, there is an
entire family of such possible explanations, but among these it is only for the reversible
Gaussian processes (those that satisfy detailed balance) that we can link the sparsity of
Θ to the causal interpretation encoded by the dynamics of the process.

For non-Gaussian distributions we must be even more careful when interpreting the
sparsity pattern of the precision matrix since (1) no longer holds. In general, Θij = 0 is
only equivalent to a vanishing partial correlation between Xi and Xj, not a conditional
independence, and even if Θ ∈ PDG, we cannot use separation in G to infer conditional
independencies. However, we argue that a sparse precision matrix maintains a natural
interpretation for data from a steady-state distribution of a Markov process – whenever
this process satisfies a condition we call drift-volatility balance. The steady-state distribu-
tions we consider are known as operator selfdecomposable distributions, with the Gaussian
distribution being a special case. In the Gaussian case, drift-volatility balance is equiva-
lent to detailed balance. Using the causal interpretation entailed by the Markov process
we show that under the drift-volatility balance condition, interventional means and co-
variances are computable from Θ even in the non-Gaussian case, which is a generaliza-
tion of Proposition 5 in [LR02].

In practice, given n i.i.d. observations, we are interested in estimating Θ. We are partic-
ularly interesting in interpreting the estimated Θ in terms of a steady-state distribution
– and possibly draw causal inference. Estimation of a precision matrix is thoroughly
investigated, and sparsity of Θ is a common assumption to ensure efficient estimation
of either Θ ∈ PDG or of G itself, notably in the high-dimensional case where p≫ n. The
graphical lasso [YL07; BGd08; FHT08] based on the Gaussian log-likelihood is one pop-
ular example of an estimator that enforces a sparsity constraint on Θ – in this case via
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a 1-norm penalty. Conditions that ensure high-dimensional consistency of the graphical
lasso even in the non-Gaussian case are well known [Rav+11]. Alternative estimators of
Θ based on multivariate t-distributions [FD11] and elliptical distributions [VF11] have
been considered as well, see also [DM17] for a detailed review of graph estimation for
Gaussian as well as non-Gaussian data. There are thus multiple well studied estimators
of sparse precision matrices also for non-Gaussian data.

Whether data is Gaussian or non-Gaussian, it remains important to investigate if a
sparse precision matrix is an appropriate model. When Θ is the precision of a steady-
state distribution we argue that sparsity of Θ is only really explainable by the dynamics
of the process under drift-volatility balance. A sparse estimate of Θ is, however, no evi-
dence in itself of drift-volatility balance, and a causal interpretation without further con-
siderations is dubious. In the Gaussian case, drift-volatility balance is untestable without
additional structural assumptions, but in the non-Gaussian case, drift-volatility balance
has certain implications for the higher order moments. We derive equations characteriz-
ing all higher order cumulants of the operator selfdecomposable distributions. We use
this to construct a matrix from Θ and the third order cumulant tensor, which is rank
deficient under drift-volatility balance. Its empirical version can then be used to test the
hypothesis of drift-volatility balance.

2. Operator selfdecomposable distributions

2.1. OSD distributions and Lévy processes. Recall that a continuous time stochastic
process Z = (Zt)t≥0 with Zt ∈ Rp is a Lévy process if: Z0 = 0; if the increments of Z
are independent and stationary; and if Z is continuous in probability. Letting (∆δZ)s =
Zsδ − Z(s−1)δ for a δ > 0 it holds that (∆δZ)1, . . . , (∆δZ)n are i.i.d. and Znδ = ∑n

s=1(∆δZ)s

is a random walk. Fixing δ > 0 and ρ ∈ (0, 1), the weighted sum

X =
∞

∑
s=0

ρs(∆δZ)s

converges almost surely. The distribution of X on Rp is the invariant distribution of the
discrete time Markov process given by the autoregression

Xt+1 = ρXt + (∆δZ)t.

The operator selfdecomposable distributions are defined below by a representation anal-
ogous to the infinite weighted sum above. In this definition, the sum is replaced by an
integral corresponding to taking the limit δ → 0, and the weight ρs = es log(ρ) is re-
placed by the linear operator esM for a p× p matrix M, which entails that the different
coordinates of Z are also mixed together. The condition that log(ρ) < 0 is replaced by
the condition that all eigenvalues of M have strictly negative real part. Such a matrix is
called a stable matrix. To ensure convergence of the integral (3) below, we need to assume
that

(2) E(log(1 + ∥Z1∥)) < ∞.

We will throughout assume that all Lévy processes considered fulfill this unrestrictive
integrability condition.
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Definition 2.1 (OSD distributions). Let M be a p× p stable matrix and let Z = (Zt)t≥0
denote a p-dimensional Lévy process satisfying (2). The distribution of

(3) X =
∫ ∞

0
esMdZs

is called M-selfdecomposable. A distribution is operator selfdecomposable, or OSD, if it
is M-selfdecomposable for some stable M and some Lévy process Z.

Operator selfdecomposable distributions where first studied by Urbanik [Urb72] un-
der the name “Lévy’s probability measures”. Traditionally, X is defined to have an M-
selfdecomposable distribution if there for all t > 0 exists Xt independent of X such
that

(4) X D
= etMX + Xt.

It is not so difficult to show that an X given by (3) satisfies (4). Independently, Jurek
[Jur82] and Wolfe [Wol82] showed the other direction, thus M-selfdecomposability is
equivalently defined by the distributional property (4) and by the representation (3) for
some Lévy process Z. See also [SY84] for several alternative characterizations of OSD
distributions. We take (3) as our definition since this representation is directly useful for
the results we show.

It is worth explaining the term “operator selfdecomposable”. Historically, if X D
= X′+X′′

for independent X′ and X′′ the distribution of X is said to be decomposable. If it is possi-
ble to take X′ = ρX in this decomposition for any ρ ∈ (0, 1), the distribution of X is said
to be selfdecomposable. The M-selfdecomposable distributions are by (4) a generalization
where ρ ∈ (0, 1) is replaced by the linear operator etM for t > 0. The selfdecompos-
able distributions are thus precisely those that are I-selfdecomposable with I the p× p
identity matrix. Examples of OSD distributions are the multivariate stable distributions
[SY84, Example 4.1], which include the Gaussian distributions. The larger class of multi-
variate generalized hyperbolic distributions [Mas04, Section 5], which include the mul-
tivariate t-distributions, are also OSD. On the other hand, the infinite divisibility of the
Lévy process Z in (3) implies that any OSD is infinitely divisible, see Figure 2.

2.2. A causal interpretation. One main motivation for studying operator selfdecompos-
able distributions is the following result.

Proposition 2.2 ([SY84, Theorem 4.1]). Let M be a p× p stable matrix and let Z = (Zt)t≥0
denote a p-dimensional Lévy process satisfying (2). The M-selfdecomposable distribution given
by (3) is the unique steady-state distribution of the stationary Markov process solving the SDE

(5) dXt = MXtdt + dZt.

The fact that any OSD distribution can occur as the steady-state distribution of a Markov
process solving (5) makes this class of distributions natural when considering cross-
sectional data from a dynamical system. Moreover, the SDE will also allow us to define
interventions and thus give a causal interpretation of OSD distributions.

Following [LR02] and [SH14], the SDE can be given a causal interpretation1 with inter-
ventions defined by substitution. That is, we define the intervention on a coordinate by

1This is a structural interpretation; the structure of the SDE is assumed invariant to interventions, and
the SDE is interpreted as an infinitesimal structural causal model, see [SH14].
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Infinitely
divisible

Operator
selfdecomposable

Elliptical

Stable

• Gauss

• Cauchy

• t

• GH

Figure 2. All stable distributions are OSD, and OSD distributions are
infinitely divisible. There is some overlap between OSD and elliptical
distributions. The generalized hyperbolic (GH) distributions are OSD, the
t-distributions are, in addition, elliptical and the Cauchy as well as the
Gaussian distributions are both stable and elliptical.

substituting that coordinate with a fixed value in the SDE. Interventions may, of course,
be defined for any subset of coordinates similarly, and we can also define more general
interventions where coordinates are not just fixed, see [SH14].

Here we consider intervening on a block of coordinates, and we let

M =

(
M11 M12
M21 M22

)

denote a block partition of M and Xt = (X(1)
t , X(2)

t ) and Zt = (Z(1)
t , Z(2)

t ) denote the
corresponding partition of Xt and Zt, respectively. Intervening, as defined in [LR02;
SH14], by fixing X(1)

t = x(1) for all t ≥ 0 gives the SDE

dX(2)
t = (M22X(2)

t + M21x(1))dt + dZ(2)
t

= M22X(2)
t dt + d(Z(2)

t + M21x(1)t).(6)

Proposition 2.3. If M22 is a stable matrix, the steady-state interventional distribution of X(2)
t

is M22-selfdecomposable. If Z(2)
1 , and hence X(2), has finite second moment then

E(X(2) | do(X(1) = x(1))) = −(M22)
−1(a(2) + M21x(1))(7)

V(X(2) | do(X(1) = x(1))) = Σ(2) =
∫ ∞

0
esM22 C22esMT

22ds(8)

where a(2) = E(Z(2)
1 ) and C22 = V(Z(2)

1 ).
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Proof. When M22 is stable, the steady-state distribution of the solution to the interven-
tional SDE (6) gives that the interventional distribution of X(2) is represented by

X(2) =
∫ ∞

0
esM22d(Z(2)

s + M21x(1)s)(9)

=
∫ ∞

0
esM22dZ(2)

s +
∫ ∞

0
esM22dsM21x(1)

=
∫ ∞

0
esM22dZ(2)

s − (M22)
−1M21x(1),(10)

where we have used that when M22 is stable,
∫ ∞

0
esM22ds = (M22)

−1esM22

∣∣∣
∞

0
= −(M22)

−1.

We note that (9) directly shows that the distribution of X(2) is M22-selfdecomposable.
When Z(2) has finite first moment, the expectation of (10) gives

E(X(2) | do(X(1) = x(1))) =
∫ ∞

0
esM22 a(2)ds− (M22)

−1M21x(1)

= −(M22)
−1(a(2) + M21x(1)).

If Z(2) has finite second moment, taking the covariance of (10) gives the formula (8); the
computation is a special case of the proof of Proposition 3.1 below. □

Note that if M22 is not stable, the intervened SDE (6) will generally not have a steady-
state distribution2 and the interventional distribution is undefined.

When M22 is stable, the formulas (7) and (8) are superficially similar to the formulas
for the (observational) conditional mean and covariance in the multivariate Gaussian
distribution. The interventional mean is, e.g., an affine function of x(1) and the interven-
tional covariance is independent of x(1). There are, however, important differences, and
we emphasize that:

• In the general non-Gaussian case, (7) and (8) only give the first two interventional
moments, which do not characterize the entire interventional distribution.
• Even in the Gaussian case, the interventional mean and covariance only coin-

cide with the observational conditional mean and covariance in special cases, see
Proposition 5 in [LR02].
• There are non-Gaussian examples where the observational conditional mean

and covariance always differ from the interventional formulas (7) and (8). Thus
Proposition 5 in [LR02] does not generalize from the Gaussian case to all OSD
distributions, but see Section 4.1.

3. Cumulants

3.1. The Lyapunov tensor equation. We derive the general Lyapunov tensor equation
for M-selfdecomposable distributions. We recall the notion of an n-mode product be-
tween a tensor and a matrix, which is also sometimes called the Tucker product.

2It might have if the distribution of Z1 is degenerate but not for non-degenerate distributions of Z1.
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The n-mode product of a tensor K ∈ RI1×I2×···×IN with a matrix A ∈ RJ×In denoted
K×n A is a I1 × · · · × In−1 × J × In+1 × · · · × IN tensor with elementwise entries

(K×n A)i1···in−1 jin+1···iN =
In

∑
in=1

Ki1···in−1inin+1···iN Ajin .

Proposition 3.1. Let M be a p× p stable matrix and let Z = (Zt)t≥0 denote a p-dimensional
Lévy process with finite k-th moment. Then the corresponding M-selfdecomposable distribution
given by (3) has finite k-th moment, and the k-th order cumulant tensor K = cumk(X) solves
the equation

(11) K×1 M + . . . + K×k M + Ck = 0

where Ck = cumk(Z1) is the k-order cumulant tensor of Z1.

Proof. Using multilinearity of the cumulant operator,

K = cumk(X) =
∫ ∞

0
· · ·

∫ ∞

0
cumk(dZs1 , . . . , dZsk)×1 es1 M ×2 es2 M . . .×k esk M

=
∫ ∞

0
Ck ×1 esM ×2 esM . . .×k esMds

where we have used that for a Lévy process, the k-th order cumulant measure is “diag-
onal” and equals

cumk(dZs1 , . . . , dZsk) = Ckδs1,...,sk H1(ds1, . . . , dsk)

with H1 the 1-dimensional Hausdorff measure. That K solves (11) follows from Theorem
3.4 in [XW21]. □

The special case k = 1 gives the equation ME(X) + E(Z1) = 0 and for k = 2 the
second order cumulant equation results in the well known Lyapunov equation for the
covariance matrix Σ = V(X) = cum2(X) in terms of M and the covariance matrix
C = C2 = V(Z1).

Corollary 3.2. Let M be a p× p stable matrix and let Z = (Zt)t≥0 denote a p-dimensional Lévy
process with finite second moment. Let a = E(Z1) and C = V(Z1). Then the corresponding
OSD has mean ξ = −M−1a and covariance matrix Σ solving the continuous Lyapunov equation

(12) MΣ + ΣMT + C = 0.

Remark 3.3. Note that Corollary 3.2 implies that the covariance matrix Σ(2) given by
the integral representation in (8), and appearing there as the interventional covariance
matrix, solves the Lyapunov equation

M22Σ(2) + Σ(2)MT
22 + C22 = 0.



8 C. O. RECKE, J. ADAMS, AND N. R. HANSEN

4. Drift-volatility balance

In this section we assume throughout that Z has independent coordinates3 and finite
second moment. Thus

(13) C = V(Z1) =




c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . cp


 .

4.1. The drift-volatility balance condition. We introduce a concept we call drift-volatility
balance for Markov processes solving (5), which expresses a form of local flow balance
between any two coordinates i and j. It is a weaker condition than detailed balance,
which requires the Markov process to be reversible.

Except for the Gaussian case, solutions of (5) are generally not reversible even if drift-
volatility balance holds, but drift-volatility balance is sufficient to ensure some very
important links between the dynamics of the process and its steady-state distribution.

Definition 4.1 (Drift-volatility balance). Let M be a stable matrix and C a diagonal
matrix with diagonal elements c1, . . . , cp > 0. We say that (M, C) satisfies drift-volatility
balance (DVB) if

(14) Mijcj = Mjici.

A Markov process solving (5) is likewise said to satisfy drift-volatility balance if (M, C)
does so.

The drift-volatility balance condition can also be formulated as the matrix identity:

(15) MC = CMT,

which simply states that MC is symmetric.

Proposition 4.2. Let M be a stable matrix and C a positive definite diagonal matrix. If (M, C)
satisfies drift-volatility balance then

(16) Σ = −1
2

M−1C

is the unique solution of the Lyapunov equation (12). Moreover, if Zt = C
1
2 Wt for a standard

Brownian motion W, the corresponding Gaussian Markov process solving (5) satisfies detailed
balance with N (0, Σ) as steady-state distribution.

Proof. Under the stated conditions, the Lyapunov equation has a unique solution, and
when drift-volatility balance holds, (16) is directly seen to solve the Lyapunov equation.
When Zt is a Brownian motion the Markov process solving (5) is well known to be
Gaussian with Gaussian transition densities and Gaussian steady-state distribution, and
the detailed balance condition is easily verified from (16). □

3A slightly more general assumption, that might also work, is that Zt = DZ′t for a p× q matrix D with
orthogonal rows and Z′ a q-dimensional Lévy process with independent coordinates.
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X1

X2 X3

X4 X1

X2 X3

X4 X1

X2 X3

X4

M =




∗ ∗ 0 ∗
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ 0 ∗ ∗


 M =




∗ 0 0 ∗
∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗


 M =




∗ 0 0 0
∗ ∗ 0 0
0 ∗ ∗ ∗
∗ 0 0 ∗




Figure 3. Three representations of the sparsity patterns of M-matrices
using directed graphs. With C = I, M satisfies DVB if and only if M is
symmetric, in which case Θ = Σ−1 = −2M (left). If M is not symmetric
(middle and right), the sparsity pattern of Θ = Σ−1, with Σ solving the
Lyapunov equation, does not generally correspond to that of M. Indeed,
without DVB there is typically no zeros in Θ.

We see from (16) that (M, C) satisfies DVB if and only if

(17) M = −1
2

CΘ

where Θ = Σ−1. From this identity it is clear (since C is assumed diagonal) that under
the DVB assumption, M and Θ share the same sparsity pattern. That is, we can from M
directly read of the zero entries of the precision matrix for all the M-selfdecomposable
distributions given by a Lévy process with C = V(Z1).

Starting out with a PD matrix Θ instead, Lemma 6.3 in [Det+23] gives that Σ = Θ−1

solves the Lyapunov equation MΣ + ΣMT + C = 0 if and only if

(18) M =
1
2
(K− C)Θ,

where K is a skew-symmetric matrix. Moreover, any M given by (18) is stable. The pair
(M, C) then satisfies DVB if and only if KC + CK = 0 if and only if K = 0. Thus, for
each pair (Θ, C) there is precisely one stable M, given by (17), for which (M, C) satisfies
DVB and gives Σ = Θ−1 as the solution of the corresponding Lyapunov equation.

4.2. Causal interpretation. In the following proposition we consider the same block
decomposition of M and X as in Proposition 2.3.

Proposition 4.3. Suppose that M is stable and (M, C) satisfies drift-volatility balance. Then
M22 is stable and

E(X(2) | do(X(1) = x(1))) = ξ(2) − (Θ22)
−1Θ21(x(1) − ξ(1))(19)

= ξ(2) + Σ21(Σ11)
−1(x(1) − ξ(1))

V(X(2) | do(X(1) = x(1))) = (Θ22)
−1 = Σ22 − Σ21(Σ11)

−1Σ12,(20)

where Θ = Σ−1 and Σ is given by (16).
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Proof. By (17) we see that 2M = −CΘ, whence 2M22 = −C22Θ22. Since Θ22 is a principal
submatrix of a positive definite matrix, it is positive definite, and C22 is likewise diagonal
and positive definite. As argued above, see (17) and (18), M22 is stable.

When DVB holds for (M, C) it holds for the pair of principal submatrices (M22, C22).
Remark 3.3 and Proposition 4.2 then imply that

Σ(2) = −1
2
(M22)

−1C22 = −(−C22Θ22)
−1C22 = (Θ22)

−1.

Since (Θ22)−1 equals the Schur complement Σ22 − Σ21(Σ11)
−1Σ12, (20) follows from (8).

Note that we also have 2M21 = −C22Θ21, so

(M22)
−1M21 = (Θ22)

−1(C22)
−1C22Θ21 = (Θ22)

−1Θ21 = −Σ21(Σ11)
−1.

By Corollary 3.2, a(2) = −M21ξ(1) −M22ξ(2), and we get from (7) that

E(X(2) | do(X(1) = x(1))) = −(M22)
−1(a(2) + M21x(1))

= ξ(2) − (M22)
−1M21(x(1) − ξ(1))

= ξ(2) − (Θ22)
−1Θ21)(ξ

(1) − x(1))

= ξ(2) + Σ21(Σ11)
−1(ξ(1) − x(1)),

which shows (19). □

Under drift-volatility balance, the formulas (19) and (20) for the interventional mean
and covariance are given entirely in terms of the observational mean vector and covari-
ance matrix, and the formulas are the same as the observational conditional mean and
covariance for the Gaussian distribution even for non-Gaussian OSDs. They are also the
observational conditional mean and covariance more generally in the class of elliptical
distributions [CHS81, Corollary 5].

4.3. Rank constraints implied by drift-volatility balance. Recall that drift-volatility
balance implies

(21) M = −1
2

CΘ.

We can therefore write the Lyapunov equation for the third order cumulant tensor under
drift-volatility balance, using the Einstein summation convention, as

(22) ci(ΘilKl jk) + cj(ΘjlKilk) + ck(ΘklKijl) = 2dv
3δijkv.

Let ei denote the standard basis vector in Rp for i = 1, . . . , p, and define for i, j, k ∈
{1, . . . , p} the p-dimensional vectors

v1
ijk = (ΘilKl jk)ei, v2

ijk = (ΘjlKilk)ej, v3
ijk = (ΘklKijl)ek,

and

(23) vijk = v1
ijk + v2

ijk + v3
ijk.

When i < j < k, these vectors look as

vT
ijk = (0, . . . , 0, ΘilKl jk, 0, . . . , 0, ΘjlKilk, 0 . . . , 0, ΘklKijl , 0, . . . , 0)
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where ΘilKl jk is in the i-th entry etc. Unless i = j = k, (22) implies that with c =
(c1, . . . , cp)T,

vT
ijkc = 0.

If V denotes the matrix with p columns constructed by stacking the vT
ijk-rows for i ≤

j ≤ k not all equal, then under drift-volatility balance, V is rank deficient because c is
non-zero. That is, rank(V) < p.

Obviously, for the Gaussian case where Kijk = 0, V is the zero matrix. We have shown
(this is not included in the current draft of the manuscript) that if dv

3 = cum3(Zv
1) > 0

for v = 1, . . . , p and the directed graph induced by M is connected, then generically
rank(V) = p− 1, which under DVB allows us to identify c up to a scaling factor, and
then M from Θ and c via (17). If the graph is not connected, we should consider the
problem for each connectivity component, which in the extreme case of a diagonal M
makes c completely unidentifiable.

We conjecture that if drift-volatility balance does not hold, then generically rank(V) = p
whenever the graph is connected and the distribution is non-Gaussian OSD with dv

3 =
cum3(Zv

1) > 0.

We propose to turn the rank deficiency constraint into a test of drift-volatility balance
for non-Gaussian OSDs by computing an estimate of V from estimates of Θ and K, and
then test if its rank is strictly less than p, e.g., via the smallest singular value.

Example 4.4. We investigate in this example with p = 4 the theoretical and empirical
effect of drift-volatility balance on the singular values, λ1 ≥ ... ≥ λ4 ≥ 0, of V. We
consider the following precision matrices parameterized by θ:

(24) Θθ =




1 θ 0 θ
θ 1 θ 0
0 θ 1 θ
θ 0 θ 1


 .

These are positive definite (and hence valid precision matrices) for θ ∈ (−0.5, 0.5), and
they form a submodel of the PDG model for G the (undirected) four-cycle, cf. Figure 1.
If C = V(Z1) is diagonal, the corresponding M-matrices fulfilling DVB (given by (17))
have the same sparsity pattern and correspond to the left-most directed four-cycle in
Figure 3.

In this example, we make C = V(Z1) = I by letting the Lévy process Z have indepen-
dent coordinates each being a compound Poisson process with intensity 1/4 and jump
size 2. The M-matrices that satisfy DVB are then Mθ = − 1

2 Θθ .

To study the effects of drift-volatility violations, consider the skew-symmetric matrices
given by

Kρ = ρ




0 1 1 1
−1 0 1 1
−1 −1 0 1
−1 −1 −1 0


 ,

parametrized by ρ ∈ R. Define the parametrized family of M-matrices, in accordance
with (18), as

Mθ,ρ =
1
2
(Kρ − I)Θθ .
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Figure 4. Left: Theoretical singular values λi of Vθ,ρ as a function of
θ (controlling the precision matrix) and for a range of skew-symmetric
magnitudes ρ. Right: Corresponding trajectory of estimated singular val-
ues as a function of sample size in the case where θ = 0.2.
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Figure 5. Singular values of V0.2,ρ as a function of ρ.

The Lyapunov equation defined by the pair (Mθ,ρ, I) is solved by Θ−1
θ , and only in the

case ρ = 0 does the pair satisfy DVB. We can calculate the theoretical Vθ,ρ according
to (23), as well as its theoretical singular values. These are shown in the left panel of
Figure 4. See also Figure 5, which shows the singular values as a function of ρ for
θ = 0.2. Most importantly, we see that the smallest singular value, λ4, is equal to 0 for
ρ = 0 when DVB is satisfied, and that λ4 grows with ρ for all values of θ. The other
singular values are strictly positive except for θ = ρ = 0, in which case they are all
0 (because V0,0 is the zero-matrix). These empirical results are in accordance with our
theoretical results and conjectures.

We also investigate the empirical singular values of the estimate V̂θ,ρ calculated from a
finite sample as a plug-in estimate based on Θ̂ and K̂ (the empirical third order cumu-
lant). Because the coordinates of Z are compound Poisson processes, X can be efficiently
generated using the representation in (3) up to expected numerical precision of 10−8.

For each θ, ρ, and n, we calculate the empirical singular values of V̂θ,ρ and average the
results over 100 trials. The right panel in Figure 4 shows the results for θ = 0.2 and a
range of values of ρ. We see that empirical estimates λ̂1, λ̂2, and λ̂3 are quite accurate at
n = 2000. On the other hand, when ρ < 0.1, the estimate of the smallest singular value,
λ̂4, is generally less accurate even for large sample sizes. Nevertheless, as can be seen
from Figure 6, λ̂4 does continue to decrease with n under DVB (when θ = 0.2); this does
not occur when DVB is violated.

Code is available at https://github.com/jgadams7/LinearDetailedBalance.
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Figure 6. Empirical singular values of V̂0.2,ρ at two different values of ρ.
Note that ρ = 0 corresponds to the case where drift-volatility balance is
satisfied.
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4.1 Alternative Proof of the Cumulant Equations

4.1 Alternative Proof of the Cumulant Equations

The proof of Proposition 3.1 of [Precision] makes no assumption about the dependency
structure of the p-dimensional Lévy process Z. In this section we provide an alternative
proof of Proposition 3.1 in the special case where the p-dimensional Lévy process is
an affine mixture of q pairwise independent Lévy processes. Specifically, we consider
a p dimensional stochastic process X = (X1, ..., Xp)

T driven by a q-dimensional Lévy
process (or for some of our results, merely a semimartingale) Z = (Z1, ..., Zq)

T :

dXi(t) =

p∑

k=1

Mk
i Xk(t)dt+

q∑

l=1

Dl
idZl(t). (1)

Here each Mk
i (drift parameters) and Dl

i (volatility parameters) are real constants. We
follow the convention of Chapter 2; superscripts index columns, and subscripts index
rows.

In particular, we show that under (1), Cn from Proposition 3.1 has the following form:

Cn =
∑

l

vl(n)

k⊗
Dl (2)

where
⊗n denotes the n-way outer product and where vl(n) is a scalar that depends

only on the Lévy measure of Zl.

This representation has two advantages. First, we might be interested in the identi-
fiability of M and Cn from the cumulants of X. If there is no known structure on Cn,
then the number of free parameters in Cn is equal to the number of cumulant equations
due to Proposition 3.1. (both on the order of pn); hence identification is impossible.
However, in (2), Cn has only p2 + p free parameters; this fact makes identifiability of M
and Cn much more plausible. The second advantage is that if Cn is identifiable (as, for
example, when M is known a priori) and if no Zl is a Brownian motion, then Kruskall’s
theorem entails that D is identifiable from Ck up to permutation and scaling of columns.

In addition to the special structure of Cn, the calculations in this section show explic-
itly how the cumulant equations detailed there arise from the underlying mechanics of
the Lévy-driven Ornstein-Uhlenbeck process. Many of the intermediate results require
weaker assumptions than Proposition 3.1, and may be of independent interest when
studying the time dynamics of Ornstein-Uhlenbeck processes.

Notation. X and Z are always understood as time-dependent processes so that their
time-indices may occasionally be suppressed. A process’s left limit isX−(t) := lims→t,s<tX(s),
and its jumps are ∆X := X−X−. We follow Einstein’s summation convention—indices
that appear twice in a product are summed over by default—reserving the index k
to index X and l to index Z. The relevant sums should be understood as preced-
ing the entire formula. Hence (1) becomes dXi(t) = Mk

i Xk(t)dt + Dl
idZl(t). We re-

iterate that in contrast to the usual Einstein convention, subscripts index rows and
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superscripts index columns throught this thesis for consistency with Chapter 2. We
write

∏n
m̸=j Xm := X1...Xj−1Xj+1...Xn to denote the product of X1 through Xn ex-

cept Xj ; similarly, when J is a set,
∏n

m ̸∈J Xm :=
∏

m∈{1,...,n}−J Xm. The covariation of
two semimartingales M and N is written [M,N ], and the quadratic variation of M is
[M,M ] =: [M ]2. We recursively define the n-th variation of M as

[M ]1 :=M

[M ]n+1 := [M, [M ]n]

Sticklers for index counting may view expressions like [Zl]n
∏n

j=1D
l
j as recursively de-

fined abbreviations for

[Zl]n

n∏

j=1

Dl
j :=


ZuD

v
n, [Zu′ ]n−1

n−1∏

j=1

Dv′
j


δu,u′

l δlv,v′

where δ is the Kronecker delta.

To begin, we prove an interesting relation between the n-th variation of a semimartin-
gale and its jumps. This allows us to conclude that the n-th variation has finite variation,
so that we may integrate with respect to it.

Proposition 1. If Z is a semimartingale, then [Z]n(t) =
∑

s≤t∆Z(s)
n for n ≥ 3.

Moreover, [Z]n has finite variation for all n ≥ 2.

Proof. All proofs are in Section 4.1.1

Using Ito’s formula for discontinuous processes and mathematical induction, we can
show that:

Proposition 2. If X is a semimartingale, then for indices i1, ..., in:

d
n∏

j=1

Xij =
n∑

j=1




n∏

m̸=j

X−
im


dXij +




n∏

m=j+1

X−
im


d
[
Xij ,

j−1∏

m=1

Xim

]
.

It is desirable to rewrite the stochastic integrals with respect to covariations of X as
stochastic integrals with respect to something more basic. To this end, we leverage (1),
as well as the facts that time integrals of real-valued functions are absolutely continuous,
that Z is a semimartingale, and that the covariation is bilinear.

Proposition 3. If X is given as in (1) and Z1, ..., Zq are pairwise independent semi-
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martingales, then for indices i1, ..., in:

d
n∏

j=1

Xij =
n∑

j=1




n∏

m ̸=j

X−
im


Mk

ijXkdt

+
∑

J⊂{1,...,n}

d[Zl]n−|J |

n∏

m ̸∈J
Dl

im

∏

m∈J
X−

im

To get moment equations out of Proposition 3, we need to integrate and then take
expectations. It can be seen that all resulting integrals are of one of two forms:

1. E
∫
poly(X−)Xkdt

2. E
∫
poly(X−)d[Zl]m for m ≥ 2

While the first is potentially estimable under mild assumptions, the second is harder to
estimate without strong assumptions due to its dependence on the latent processes via
[Zl]m. One sufficiently strong assumption is that Z is a Lévy process.

Proposition 4. If X is given as in (1) and Z1, ..., Zq are pairwise independent Lévy
processes, then for indices i1, ..., in:

E
n∏

j=1

Xij =

n∑

j=1

Mk
ijE
∫ 


n∏

m ̸=j

Xim


Xkdt

+
∑

J⊂{1,...,n}




n∏

m ̸∈J
Dl

im


E[Zl]n−|J |(1)E

∫ ∏

m∈J
Ximdt

+ E
n∏

j=1

Xij (0)

Notice that the quantities E
∫ (∏

m∈J Xim

)
dt are estimable from data, and that the

quantities E([Zl]2(1)) may be set to 1 without loss of generality by rescaling D and Z
accordingly.

Proposition 4 is a nearly immediate consequence of the following fact:

Proposition 5. [Z]n is a Lévy process whenever Z is a Lévy process.

Proposition 4 describes the moments of X(T ) in terms of the time dynamics up to
time T . In the case where T is large and X has reached a steady-state distribution, the
individual time dynamics become negligible and we arrive at a much simpler moment
equation.
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Proposition 6. In addition to the assumptions of Proposition 4, suppose that X is
stationary. Then for any time t ≥ 0,

0 =
n∑

j=1

Mk
ijE


Xk

n∏

m̸=j

Xim


+

∑

J⊂{1,...,n}




n∏

m̸∈J
Dl

im


vl(n− |J |)E

∏

m∈J
Xim

where vl(i) := E[Zl]i(t = 1)

By rewriting Proposition 6 in terms of cumulants, it is possible to absorb much of the
second term (which is polynomial in D, lower moments of X, and variations of Z) into
the first term (which is linear in M). An induction argument shows that:

Proposition 7. Under the conditions of Proposition 6, it is the case that

0 =
n∑

j=1

Mk
ijK


Xk

n∏

m ̸=j

Xim


+ vl(n)

n∏

m=1

Dl
im

where vl(i) := E[Zl]i(t = 1)

where K(n)i1,...,in := K(
∏n

j=1Xij ) is the n-th cumulant of {Xij}nj=1.

The clear advantage of the cumulant equations in Proposition 7 over the moment
equations in Proposition 6 is that the former depend only on a single order cumulant of
X. By contrast, the moment equation involves a complicated interplay between D and
all lower-order moments of X.

In tensor form, the first term of Proposition 7 can be written




n∑

j=1

K(n)×j M
T




i1,...,in

.

This means that Proposition 7 has the form of a continuous Lyapunov equation,

0 =

n∑

j=1

K(n)×j M
T + C(n).

Here,

C(n) =
∑

l

vl(n)

n⊗
Dl = V(n)×1 D

T ...×n D
T

where V(n)i1,...,in := vl(n)δ
l
i1,...,ij

is an n-order pn-dimensional tensor with E[Z]n(1) along
the main diagonal and zero elsewhere.
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4.1 Alternative Proof of the Cumulant Equations

4.1.1 Proofs

4.1.1.1 Proof of Proposition 1

Proof. For n = 3,

[Z, [Z,Z]] =

∫
∆Zd[Z,Z] =

∑

s≤t

∆Z∆[Z,Z] =
∑

s≤t

∆Z(∆Z)2

where the first and second equalities follow because [Z,Z] has finite variation. To see
that [Z]3 has finite variation, notice

∑

s≤t

|∆Z|3 =
∑

s≤t:|∆Z|<1

|∆Z|3 +
∑

s≤t:|∆Z|≥1

|∆Z|3

≤
∑

s≤t:|∆Z|<1

|∆Z|2 +
∑

s≤t:|∆Z|≥1

|∆Z|4

≤
∑

s≤t

|∆Z|2 +
∑

s≤t

|∆Z|4

= [Z,Z] +
∑

s≤t

(∆[Z,Z])2

= [Z,Z] + [[Z,Z], [Z,Z]] <∞

For n > 3,

[Z, [Z]n−1] =[Z,

∫
(∆Z)n−3d[Z,Z]]

=

∫
(∆Z)n−3d[Z, [Z,Z]]

=

∫
(∆Z)n−2d[Z,Z]

=
∑

s≤t

(∆Z)n

where the first and third equalities follow by induction. The argument that [Z]n has
finite variation is similar to the case when n = 3. When n is even,

∑

s≤t

(∆Z)n =
∑

s≤t

(∆[Z]n/2)
2

=
[
[Z]n/2, [Z]n/2

]

99
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and when n is odd,

∑

s≤t

(∆Z)n ≤
∑

s≤t

(∆Z)n−1 +
∑

s≤t

(∆Z)n+1

= [∆Z]n−1 +
[
[Z](n+1)/2, [Z](n+1)/2

]

In either case, the result is finite by induction.

4.1.1.2 Proof of Proposition 2

Proof. Proceed by induction. For n = 1, the result holds because
∏

j∈∅Xj = 1 and
[Xj , 1] = 0.

For the inductive step, use Ito’s formula for discontinuous processes:

d

n∏

j=1

Xij =d


Xin

n−1∏

j=1

Xij




=X−
in
d
n−1∏

j=1

Xij +




n−1∏

j=1

X−
ij


dXin + d


Xin ,

n−1∏

j=1

Xij




+∆
n∏

j=1

Xij −X−
in
∆

n−1∏

j=1

Xij −




n−1∏

j=1

X−
ij


∆Xin −∆Xin∆

n−1∏

j=1

Xij

=X−
in
d
n−1∏

j=1

Xij +




n−1∏

j=1

X−
ij


dXin + d


Xin ,

n−1∏

j=1

Xij


+ 0

=X−
in

n−1∑

j=1




n−1∏

m̸=j

X−
im


dXij +




n−1∏

m=j+1

X−
im


d
[
Xij ,

j−1∏

m=1

Xim

]

+




n−1∏

j=1

X−
ij


dXin + d


Xin ,

n−1∏

j=1

Xij




=

n∑

j=1




n∏

m̸=j

X−
ij


dXij +




n∏

m=j+1

X−
ij


d
[
Xij ,

j−1∏

m=1

Xim

]

where the fourth equality invokes the inductive hypothesis.

4.1.1.3 Proof of Proposition 3

Our proof of Proposition 3 utilizes the following technical lemma.
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4.1 Alternative Proof of the Cumulant Equations

Lemma 1. Let

ψn :=
n∑

j=1




n∏

m=j+1

X−
im
(t)




Dl

ij

∑

J⊆{1,...,j−1}

d[Zl]j−|J |+c

j−1∏

m̸∈J
Dl

im

∏

m∈J
X−

im


,

where c is any whole number and Z1, ..., Zq are semimartingales. Then

ψn =
∑

J⊂{1,...,n}

d[Zl]n−|J |+c

n∏

m̸∈J
Dl

im

∏

m∈J
X−

im

for all n ≥ 1

Proof. We proceed by induction. For n = 1, we recall that
∏

m∈∅Xm = 1 so that both
expressions equal d[Zl]1+cD

l
i1

as desired. For n > 1, separate the sum into j = n and
1 ≤ j < n to obtain:

ψn =X−
in

n−1∑

j=1




n−1∏

m=j+1

X−
im
(t)




Dl

ij

∑

J⊆{1,...,j−1}

d[Zl]j−|J |+c

j−1∏

m ̸∈J
Dl

im

∏

m∈J
X−

im




+Dl
in

∑

J⊆{1,...,n−1}

d[Zl]n−|J |+c

n−1∏

m ̸∈J
Dl

im

∏

m∈J
X−

im

=(X−
in
+Dl

in)
∑

J⊂{1,...,n−1}

d[Zl]n−|J |+c

n−1∏

m ̸∈J
Dl

im

∏

m∈J
X−

im

+Dl
in

∑

J={1,...,n−1}

d[Zl]n−|J |+c

n−1∏

m ̸∈J
Dl

im

∏

m∈J
X−

im

where the second equality is obtained by applying the inductive hypothesis to the first
term and separating the second term into J ⊂ {1, ..., n− 1} and J = {1, ..., n− 1}. The
result follows by comparing terms.

We now prove Proposition 3.

Proof. First we observe that if Z is a semimartingale, then X is also a semimartingale
if it evolves according to (1), so that the conditions of Proposition 2 are satisfied.

Next we argue that

d

[
Xin+1 ,

n∏

m=1

Xim

]
= Dl

in+1


 ∑

J⊂{1,...,n}

d[Zl]n−|J |+1

∏

m ̸∈J
Dl

im

∏

m∈J
X−

im


, n > 0
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by induction on n. For n = 1,

d[Xi2 , Xi1 ] =d[D
l
i2Zl, Zl′D

l′
i1 ]

=Dl
i2d[Zl]2D

l
i1

=Dl
i2


 ∑

J⊂{1}

d[Zl]2−|J |

1∏

m ̸∈J
Dl

im

∏

m∈J
X−

im




where the first equality follows from (1), the bilinearity of the covariation, and the fact
that

∫
Mk

i Xkdt is absolutely continuous and that Zl is a martingale; and the second
follows from the fact that Zl are pairwise independent.

For n > 1,

[
Xin+1 ,

n∏

m=1

Xim

]
=


Dl

in+1
Zl,

∫ 


n∏

m ̸=j

X−
im
(t)


Dl

ijdZl




+


Dl

in+1
Zl,

∫ 


n∏

m=j+1

X−
im
(t)


d
[
Xij ,

j−1∏

m=1

Xim

]


=


Dl

in+1
Zl,

∫ 


n∏

m=j+1

X−
im
(t)



(
Dl

ijd[Z]l

j−1∏

m=1

X−
im

)


+


Dl

in+1
Zl,

∫ 


n∏

m=j+1

X−
im
(t)




Dl

ij

∑

J⊂{1,...,j−1}

d[Zl]j−|J |

j−1∏

m ̸∈J
Dl

im

∏

m∈J
X−

im






=


Dl

in+1
Zl,

∫ 


n∏

m=j+1

X−
im
(t)




Dl

ij

∑

J⊆{1,...,j−1}

d[Zl]j−|J |

j−1∏

m ̸∈J
Dl

im

∏

m∈J
X−

im






=

∫
Dl

in+1




n∏

m=j+1

X−
im
(t)




Dl

ij

∑

J⊆{1,...,j−1}

d[Zl]j−|J |+1

j−1∏

m̸∈J
Dl

im

∏

m∈J
X−

im




=

∫
Dl

in+1

∑

J⊂{1,...,n}

d[Zl]n−|J |+1

n∏

m̸∈J
Dl

im

∏

m∈J
X−

im

where the first equality follows from (1) and Proposition 2, the bilinearity of covari-
ation, and the fact that terms like

∫
poly(X−)Xkds are always absolutely continuous

while terms like
∫
poly(X−)dZ are semimartingales when Z is a semimartingale; the

second equality applies the inductive hypothesis to the second term; the fourth equality
uses the fact that [Zl,

∫
poly(X−)d[Zl′ ]k] =

∫
poly(X−)d[Zl, [Zl′ ]k] and that independent

semimartingales have covariation zero; and the fifth equality uses Lemma 1 with c = 1.
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Substituting into Proposition 2 gives

d
n∏

j=1

Xij (t) =
n∑

j=1




n∏

m ̸=j

X−
im
(t)


dXij

+




n∏

m=j+1

X−
im
(t)




Dl

ij

∑

J⊂{1,...,j−1}

d[Zl]j−|J |

j−1∏

m̸∈J
Dl

im

∏

m∈J
X−

im




=
n∑

j=1




n∏

m̸=j

X−
im
(t)


(Mk

ijXkdt+Dl
ijdZl)

+




n∏

m=j+1

X−
im
(t)




Dl

ij

∑

J⊆{1,...,j−1}

d[Zl]j−|J |

j−1∏

m̸∈J
Dl

im

∏

m∈J
X−

im




−




n∏

m=j+1

X−
im
(t)



(
Dl

ijd[Zl]1

j−1∏

m=1

X−
im

)

where the second equality substitutes (1) into the first term and adds the third term to
the second term. Recalling that [Zl]1 := Zl and applying Lemma 1 to the second term
with c = 0 completes the proof.

4.1.1.4 Proof of Proposition 4

Proof. Since the conditions of Proposition 3 are satisfied, take the expectation after the
integral to obtain

E
n∏

j=1

Xij =

n∑

j=1

Mk
ijE
∫ 


n∏

m̸=j

X−
im


Xkdt

+
∑

J⊂{1,...,n}




n∏

m̸∈J
Dl

im


E

∫ ∏

m∈J
X−

im
d[Zl]n−|J |

+ E
n∏

j=1

Xij (0)

where the last term on the right is the integration constant from Ito’s formula. Since
X− = X a.e. a.s., the minus can be dropped from the first term. The second term is the
expectation of the integral of a predictable process with respect to a Lévy process—see
Proposition 5. As such,

E
∫ ∏

m∈J
X−

im
d[Zl]n−|J | = E

∫ ∏

m∈J
X−

im
λl(n− |J |)dt
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, where λl(j) := E[Zl]j(t = 1).

4.1.1.5 Proof of Proposition 5

Proof. Clearly [Z]2(t) = bt +
∑

s≤t(∆Z(s))
2 is continuous in probability with indepen-

dent and stationary increments whenever Z is. The same is true of
∑

(∆Z)n, which by
Proposition 1 is equal to [Z]n for n > 2.

4.1.1.6 Proof of Proposition 6

Proof.

E
∫ s

0
poly(X(s))dt =

∫ s

0
Epoly(X(s))dt

=

∫ s

0
Epoly(X(0))dt

=sEpoly(X(0))

where the second equation follows from stationarity. Hence

E
n∏

j=1

Xij (s) =s
n∑

j=1

Mk
ijE


Xk(0)

n∏

m ̸=j

Xim(0)




+ s
∑

J⊂{1,...,n}




n∏

m̸∈J
Dl

im


E[Zl]n−|J |(1)E

∏

m∈J
Xim(0)

+ E
n∏

j=1

Xij (0)

by Proposition 4 and the above calculation. The left hand side cancels with the third
term on the right hand side due to stationarity. Dividing through by s gives the desired
result for t = 0; again invoking stationarity gives the result for all t ≥ 0.

4.1.1.7 Proof of Proposition 7

Proof. For n = 1, we have

0 =Mk
i EXk +Dl

ivl(1)

=Mk
i KXk +Dl

ivl(1)
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For n > 1, the second sum is

ψ(i1, ..., in) :=
∑

J⊂{1,...,n}


vl(n− |J |)

n∏

m̸∈J
Dl

im


E

∏

m∈J
Xim

=vl(n)
n∏

j=1

Dl
ij +

∑

J⊂{1,...,n}
J ̸=∅



−

n∑

j ̸∈J
Mk

ijK


Xk

n∏

m ̸∈J∪{j}

Xim





E

∏

m∈J
Xim

=vl(n)

n∏

j=1

Dl
ij −

n∑

j=1

Mk
ij

∑

J⊆{1,...,n}−{j}
J ̸=∅

K


Xk

n∏

m ̸∈J∪{j}

Xim


E

∏

m∈J
Xim

=vl(n)
n∏

j=1

Dl
ij −

n∑

j=1

Mk
ij

∑

J⊆{1,...,n}−{j}
J ̸=∅

K


Xk

n∏

m ̸∈J∪{j}

Xim


 ∑

σ∈Ψ(J)

∏

H∈σ
K

(∏

h∈H
Xh

)

=vl(n)

n∏

j=1

Dl
ij −

n∑

j=1

Mk
ij



E


Xk

n∏

m̸=j

Xim


−K


Xk

n∏

m ̸=j

Xim







where the second line splits the sum into |J | = 0 and |J | > 0 and then applies the
inductive hypothesis to the latter; the third line follows by comparing terms; the fourth
line uses the fact that the raw moment of X equals the sum of the products of the
cumulants of the partitions of X (here Ψ(J) refers to the partitions of J); and the fifth
line again uses this fact. Therefore

0 =
n∑

j=1

Mk
ijE


Xk

n∏

m̸=j

Xim


+ ψ(i1, ..., in)

=vl(n)
n∏

j=1

Dl
ij +

n∑

j=1

Mk
ijK


Xk

n∏

m ̸=j

Xim




as desired.
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