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Abstract

This thesis contains a series of independent contributions to mathematical statistics,
unified by a model-free perspective. The first chapter elaborates on how a model-free
perspective can be used to formulate flexible methods that leverage prediction techniques
from machine learning. Mathematical insights are obtained from concrete examples, and
these insights are generalized to principles that permeate the rest of the thesis.

The second chapter studies the concept of local independence, which describes whether
the evolution of one stochastic process is directly influenced by another. To test local
independence, we define a model-free parameter called the Local Covariance Measure
(LCM). We formulate an estimator for the LCM, from which a test of local independence
is proposed. We discuss how the size and power of the proposed test can be controlled
uniformly and investigate the test in a simulation study.

The third chapter focuses on covariate adjustment, a method used to estimate the
effect of a treatment by accounting for observed confounding. We formulate a gen-
eral framework that facilitates adjustment for any subset of covariate information. We
identify the optimal covariate information for adjustment and, based on this, introduce
the Debiased Outcome-adapted Propensity Estimator (DOPE) for efficient estimation
of treatment effects. An instance of DOPE is implemented using neural networks, and
we demonstrate its performance on both simulated and real data.

The fourth and final chapter introduces a model-free measure of the conditional as-
sociation between an exposure and a time-to-event, which we call the Aalen Covariance
Measure (ACM). The ACM serves as an assumption-lean generalization of the exposure
coefficient in the Aalen additive hazards model. We develop a model-free estimation
method and show that it is doubly robust, ensuring /n-consistency provided that the
nuisance functions can be estimated with modest rates. A simulation study demonstrates
the use of our estimator in several settings.

vi



Sammenfatning

Denne Ph.D.-afhandling indeholder en reekke selvsteendige bidrag inden for matematisk
statistik med det til fzelles, at de har et model-frit perspektiv. Det fgrste afsnit uddyber,
hvordan et model-frit perspektiv kan bruges til at formulere fleksible metoder, som
benytter praediktionsteknikker fra maskinleering. Matematisk indsigt opnas via konkrete
eksempler, og denne indsigt generaliseres til principper, der er gennemgaende for resten
af athandlingen.

Det andet afsnit omhandler konceptet lokal uafhsengighed, hvilket beskriver om ud-
viklingen af en stokastisk proces er direkte pavirket af en anden proces. For at teste
hypotesen om lokal uafhsengighed definerer vi en model-fri parameter kaldet Local Co-
variance Measure (LCM). Vi beskriver en estimator af LCM, og baseret pa denne foreslar
vi nye test af lokal uathsengighed. Vi forklarer, hvordan stgrrelsen og styrken af disse
test kan kontrolleres uniformt, og vi udforsker dem i et simulationsstudie.

Det tredje afsnit vedrgrer justering for kovariater, hvilket er en metode til at estimere
effekten af en behandling ved at tage hgjde for observeret confounding. Vi udvikler en
generel teori, der kan beskrive justering for enhver delmzngde af information i kovari-
aterne. Vi identificerer den optimale information at justere for, og baseret pa denne,
introducerer vi Debiased Outcome-adapted Propensity Estimatoren (DOPE) for effi-
cient estimering af behandlingseffekter. En version af DOPE implementeres med neurale
netveaerk, og vi demonstrerer dens praestation pa bade simuleret og virkelig data.

Det fjerde og sidste afsnit introducerer en model-fri stgrrelse, der maler den betingede
sammenhang mellem en eksponering og en overlevelsestid, som vi kalder Aalen Co-
variance Measure (ACM). Man kan betragte ACM som en fleksibel generalisering af
koefficienten for eksponering i en Aalen additive hazard model. Vi udvikler en model-fri
estimationsmetode og viser at den er dobbelt robust, hvilket garanterer 4/n-konsistens
under beskedne betingelser. Et simulationsstudie demonstrerer brugen af vores estimator
i adskillige scenarier.
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Contributions and Structure

Chapter 1 is an introduction, which briefly motivates model-free statistical inference
based on machine learning. The introduction is not meant to be a literature review,
but rather an effort to build intuition around some key principles that permeate the
rest of the thesis. It is followed by 3 chapters, each of which corresponds to a paper.
For reference within this thesis, we give each paper an acronym, for example [LCM].
Notation established in each chapter should be considered specific to the chapter where
it is introduced.

Chapter 2 discusses hypothesis testing for time-to-event responses using the Local Co-
variance Measure (LCM) and corresponds to the paper:

[LCM] [Christgau et al., 2023b]. A. M. Christgau, L. Petersen, and N. R. Hansen. Non-
parametric conditional local independence testing. Annals of Statistics, 51(5):
2116-2144, 2023b.

Chapter 3 formulates a general framework for the method of covariate adjustment,
which leads to the Debiased Outcome-adapted Propensity Estimator (DOPE), and cor-
responds to the paper:

[DOPE] [Christgau and Hansen, 2024].  A. M. Christgau and N. R. Hansen. Efficient
adjustment for complex covariates: Gaining efficiency with DOPE. arXiv preprint
arXiv:2402.12980, 2024.

Chapter 4 introduces a measure of the conditional association between an exposure and
a time-to-event, namely the Aalen Covariance Measure (ACM), and corresponds to the
following paper in preparation:

[ACM] [Christgau and Hansen, 2024+4] A. M. Christgau and N. R. Hansen. Assumption-
lean Aalen regression. In preparation, 2024+.
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Contributions and Structure

During my PhD studies, I also worked on the following two publications, which, how-
ever, are not included in this thesis.

1. A. M. Christgau, A. Arnaudon, and S. Sommer. Moment evolution equations and
moment matching for stochastic image EPDiff. Journal of Mathematical Imaging
and Vision, 65(4):563-576, 2023a.

2. A. Bianchi, A. M. Christgau, and J. S. Pedersen. On generators and relations of
the rational cohomology of Hilbert schemes. Journal of Algebraic Combinatorics,
57(3):829-857, 2023



Contents

Preface

Abstract

Contributions and Structure

1

Introduction
1.1 Model-free statistical objectives . . . . . . . . .. ... ... L.
1.2 Estimation . . . . . . . . . .

Nonparametric conditional local independence testing

2.1 Introduction . . . . . . . . . . . ..
2.2 The Local Covariance Measure . . . . . . . . . . . .. ... ... .....
2.3 Interpretations of the LCM estimator . . . . . .. ... ... ... ....
2.4 General asymptoticresults. . . . . .. ..o oL
2.5 The Local Covariance Test . . . . . . . . . . ... . ... ... ...
2.6 Simulation study . . . . . ... L
2.7 Discussion . . . . ... e
2.A Proofs of results in the main text . . . . . . ... ... ... ... .....
2.B  Uniform stochastic convergence . . . . . . . .. . ... ... ... ...
2.C The Functional Martingale CLT . . . . . . . ... ... ... .. ......
2.D Estimationof Aand G . . . . . ... .. ...
2.E  Relation to semiparametric survival models . . . . . . . .. ... ... ..
2.F Details on Neyman orthogonality . . . . . . .. .. ... ... ... ...
2.G Additional details of simulation study . . . . . ... ... ... ... ...

Efficient adjustment for complex covariates: Gaining efficiency with DOPE

3.1 Introduction. . . . . . . . . . . . e
3.2  Generalized adjustment concepts . . . . .. ... Lo
3.3 Efficiency bounds for adjusted means . . . . . . . ... ... ... ... ..
3.4 Estimation based on outcome-adapted representations . . . ... ... ..
3.5 Experiments. . . . . . ...
3.6 Discussion . . . . . . ..
3.A Auxiliary results and proofs . . . . ... ... oL L
3.B Details of simulation study . . . ... ... ... 000
3.C Extension to cross-fitting . . . . .. .. .. oo

15
15
20
28
32
37
40
45
49
68
80
83
86
87
90

xi



Contents

4 Assumption-lean Aalen regression 141
4.1 Imtroduction . . . . . . . . . . . . e 141
4.2 Target estimand and interpretations . . . . .. .. ... ... ... ... 145
4.3 Estimation . . . . .. ... e 151
4.4 Asymptotic theory . . . . . . . Lo 153
4.5 Simulation study . . . . . ... 158
4.6 Discussion . . . . . ..o 162
4.A Auxillary results and proofs . . . . . ... ..o 164
4.B Multiplicative hazards models . . . . . . . . .. ... oL 175

Bibliography 179

xii



1 Introduction

This thesis delves into a range of statistical challenges, including event history analysis,
statistical efficiency, hypothesis testing, effect estimation, and assumption-lean inference.
Despite the variety of topics, a central theme is that the problems and methods are
studied from a model-free perspective.

To understand what this means, suppose we are given a sample consisting of n obser-
vations Z1,...,Z,, and that our objective is to infer properties about the mechanisms
that generated this data. To simplify matters, we may start by assuming that the obser-
vations are independent and identically distributed (i.i.d.) according to a distribution
P, referred to as the data-generating process (DGP). Whether this is reasonable assump-
tion depends on the application, but it will be assumed throughout this thesis. Under
the i.i.d. assumption, our objective can be reformulated in terms of inferring proper-
ties about P. To this end, it is convenient to let Z denote an auxiliary independent
observation with distribution P.

Before we can understand and appreciate a model-free approach to statistics, we first
follow the thought process of Rhonda Fisher, a (fictional) model-based statistician.

Example 1.0.1. Rhonda has obtained a sample in which each observation is an indepen-
dent copy of the template observation Z = (X,Y) e RExR. Here X = (X',..., X% isa
d-dimensional covariate and Y is a real-valued response variable. She knows that with-
out further assumptions, she can hardly infer anything about the relationship between
the covariate and the response. With this consideration, Rhonda begins by positing a
linear model:

V=a+8"X +e, with ¢ ~ N(0,0?) and ¢ 1l X, (1)

where a € R, 8 = (B1,...,04) € R, and 0% > 0 are unknown parameters. Conveniently,
her favorite statistical software can ‘fit’ the linear model (1).

She now recalls that her primary objective is to describe the effect of X' on Y. In
view of the linear model (1), she concludes that §; summarizes such an effect. Thus
she decides to report the summary of the fitted model, which in particular includes an
estimate of 81 and a valid confidence interval. '

While Rhonda is a caricature, her line of reasoning is ubiquitous and applies to many
applications using generalized linear models (GLMs) and Cox models, among other semi-
parametric models. Whereas Rhonda is ‘lucky’ that her model conveniently summarizes
her target of interest, others may choose a model with this objective in mind.

In some applications, for example in physics, a thorough understanding of the data-
generating process may justify the belief that the data follow a (semi)parametric model.
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However, in more complex systems, e.g., those analyzed in the physiological and social
sciences, (semi)parametric models are often chosen for simplicity and convenience, rather
than being a consequence of principled reasoning.

Because the data-generating process is often more complicated than desired, this leads
to a difficult trade-off between model misspecification due to simplicity, and impracti-
cality due to complexity. Model misspecification may lead to bias in the results of the
analysis, but a potentially more serious problem is the lack of interpretability of the
target parameter for distributions that do not conform to the model. Other issues with
model-based reasoning were pointed out in the seminal paper by Breiman [2001] and are
also discussed by Hines et al. [2022], among others.

We will proceed to discuss how to define a model-free target parameter.

1.1 Model-free statistical objectives

The importance of explicitly defining a target of interest at the onset of statistical anal-
yses has been increasingly highlighted, particularly within the field of causal inference
[van der Laan and Rose, 2011]. A starting point is to consider a general collection P of
possible data-generating processes, that is, a collection of probability distributions over
the sample space for a single observation. Although causal analyses require additional
structure, this thesis will concentrate on observational quantities and their estimation.

We call a function an estimand if its domain is P. For example, if each observation is
real-valued, a possible estimand is the population average outcome

pw: P — R, w(P) = sz(dz) =Ep[Z]. (2)

The statistician is responsible for defining an estimand that effectively summarizes the
target of interest.

Note that the estimand g in (2) requires the mild condition that the possible DGPs
are integrable. Most estimands require similar assumptions to be well-defined, such as
the existence of moments, the positivity of certain probabilities, absolute continuity, or
regularity conditions on conditional means. These are properties that can be justified
based on knowledge of the underlying DGP.

We say that an estimand is model-based if it explicitly requires a parametrization of a
component of the DGPs and reduces the dimension of the component.' If an estimand is
not model-based, we say that it is model-free, also commonly referred to as nonparametric
in other literature.

Returning to the setting of Example 1.0.1, Rhonda defined her target parameter by
restricting P to the linear Gaussian model

Pt — {PeP|3(a,B,0%) € R x R? x Rog: Equation (1) holds for (X,Y) ~ P}.

Rhonda’s target can be interpreted as the model-based estimand 7p,: P — R that
inverts the parametrization in §; (technically, this requires that P is initially restricted

'This is, admittedly and intentionally, a vague definition.
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enough to ensure that f; is identifiable). Critically, her statistical analysis becomes
meaningless if the model is misspecified. That is, for a distribution P ¢ P, the estimand
Tmb 18 undefined and it is a priori unclear what any estimator of 7}, or equivalently, 5,
will target. In view of this, model-free estimands have been increasingly advocated over
model-based ones.

It turns out, however, that the model-based estimand 7,,;, can be extended to a model-
free estimand. For convenience, we let X = (D, W), where D := X' denotes the covariate
of interest, and W = (X?2,..., X d) represents the other covariates. Then we define the
estimand Tyr: P — R given by

_ Ep[(D—Ep[D|W])Y] _ Ep[Covp(D,Y|W)] 3
Ep[(D —Ep[D|W])?] Ep[Varp(D|W)] '

Tmf(P) :

where we use a subscript P to indicate that an operator is computed under the distribu-
tion P. This estimand unambiguously defines a target parameter without reference to
a (semi)parametric model, and the conditions for being well-defined are clear from the
expression, unlike the model-based estimand 7yp,.”

To see how 7y,¢ is a generalization of 7}, consider a distribution P € P that follows
the partially linear model:

Ep[Y | D, W] = BpD + gp(W), (4)

where Bp € R and where gp is an integrable function with respect to the distribution
of W under P. This semiparametric model generalizes the linear model by allowing
a more flexible dependency on the covariates W. By applying iterated expectations
conditionally on W, we obtain that

Ep[(D — Ep[D|W])(BpD + gp(W))]
Ep[(D —Ep[D|W])?]

Ep[D? — (Ep[D|W])?]
"Ep[(D — Ep[D|W])?]

Tmf(P) = =B = Bp.
This shows that 7,¢ reduces to the coefficient fp in the (partially) linear model. Thus,
we can more generally make sense of estimators that target 7,¢, while maintaining the
same interpretation within the (partially) linear model.

There can exist multiple extensions of a model-based estimand. For example, another

possible extension of 1,1, is the average partial effect, defined by

Tape(P) = Ep {;dEP[Y | D =d, W]|d_D] . (5)
Within the partially linear model (4), we observe that the derivative inside the expecta-
tion equals 3, and, consequently, Tape is also a model-free extension of 7. Arguably, the
estimand T,pe offers more direct interpretations for causal analyses than 7,s. However,
Tmf can also serve as a reasonable summary of conditional association, and estimators
of T may be more robust and well-behaved than those of Type [Lundborg and Pfister,
2023).

?Both estimands are well-defined under the moment conditions Ep[|DY|] < o and Ep[D?] < 0 and
the positivity condition Ep[Varp(D |W)] > 0.
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1.2 Estimation

In this section, we explore how 4/n-consistent estimation of an estimand can be achieved,
even when dealing with complex or high-dimensional underlying DGPs. A substantial
body of work exists on nonparametric estimation using influence functions, with methods
such as one-step estimation [Pfanzagl and Wefelmeyer, 1985, Bickel et al., 1998] and
Targeted Mazimum Likelihood Estimation (TMLE) [van der Laan and Rose, 2011]. This
literature is well summarized in tutorial papers by, e.g., Hines et al. [2022] and Kennedy
[2022].

While the theory of influence functions is useful for defining an effective estimator,
rigorously establishing the distributional properties of the estimator is a task that is
typically done through case-specific analysis. In this introduction, we focus on this task
through direct and concrete analyses, without invoking influence functions.

Drawing from Chernozhukov et al. [2018], we begin with a motivating example, em-
phasizing an estimand-based perspective rather than a semiparametric (score-based)
approach. After discussing the example, we will explore how these insights can be ex-
tended to more general contexts.

1.2.1 An instructive example

Consider again the setting where the observed sample Z1, ..., Z, consists of i.i.d. copies
of Z=(D,W,Y)eR xR xR with Z ~ P € P. Suppose our target of interest is the
numerator of (3), i.e., the estimand p: P — R given by

p(P) = Ep[(D —Ep[D|W])Y]. (6)

This estimand has been studied for the purpose of quantifying and testing conditional
(mean) independence [Shah and Peters, 2020, Lundborg, 2023]. We shall assume that
D,Y, and DY are square-integrable under each P € P, which in particular ensures that
p is well-defined.

Expression (6) combines two components of the distribution: the expectation operator,
Ep[-], and the conditional mean function, mp(-) == Ep[D|W = :]. According to the
central limit theorem (CLT), the expectation operator is pointwise y/n-approximated by
the empirical mean operator, denoted P, [-] and given by P,,[f(Z)] = L 37 | f(Z;), for
any function f e £2(P).

Distributional quantities that are used to compute the target estimand, but are not
of primary interest, such as mp, are called nuisance parameters. Estimating conditional
means can be done using various regression methods, including model-free prediction
algorithms from machine learning (ML), which we discuss further in Section 1.2.3. As-
sume, for now, that an estimate m of mp is given. This suggests the estimator

U = B [(D = (W)Y ] = 3 (Di = (W)Y
i=1

SEES

Estimators like P& which are derived by substituting nuisance estimates directly into
the expression for the estimand, are often referred to as plug-in estimators. However,
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it is important to note that such estimators are not necessarily of the form p(]g) for an
estimate P € P of the entire distribution P, which is a commonly used representation
for plug-in estimators. As we will see shortly, there can be multiple valid expressions for
the same estimand, resulting in different plug-in estimators.

To understand the behavior of this estimator, consider the following decomposition

V(P — p(P)) = V/nPu[(D — (W)Y ] — VnEp[(D — mp(W))Y]
= Vn(P, — IEP)[(D mp(W)Y] + vnPp[(mp(W) — m(W))Y].

_

—. Uplug in ::R;l(ug—in
The term UPS™ is an oracle term that describes the error of the plug-in estimator
based on the true conditional mean mp(-). The CLT asserts that UP&™ converges in
distribution to a Gaussian distribution with mean zero.

The term RPM&™ js a sum of n conditionally i.i.d. terms that are controlled by the
estimation error of mp(-). As we discuss in Section 1.2.3, we can generally expect the
root mean squared error (RMSE) of f(+) to converge at a rate of n=, where a € (0, 1).
Consequently, if Ep[Y | W] # 0, then we can expect RPU&" to be of stochastic order
n%_o‘, in which case

V(e — p(P))| D co.

This is, of course, undesirable and makes inference about p(P) based on pPM& in-
tractable.

Fortunately, the bias in RPM&™ can be fixed by adding a correction term in the
expression. Motivated by the fact that RP'"&™ hecomes centered when Ep[Y | W] = 0,
we rewrite the estimand as

p(P) = Ep[(D —Ep[D[W])(Y —Ep[Y [W])]. (7)

This introduces a new nuisance parameter, gp(-) == Ep[Y |W = -], which can be esti-
mated similarly to mp(-), e.g., using an ML algorithm, yielding another estimate g(-).
This suggests the following estimator,

P = Bul(D = ROV =90V = S0 R0 -0 (9

~double

To understand why p might be preferable to pPU& we can decompose its estima-

tion error as follows:
Va(p? — p(P)) = U + Ry + Ry + Ring (9)

where
U = /(P — Ep)[(D —mp
Ry = v/nPp[(mp(W) — (W

) )
Ry = /nPn[(D —mp(W ))(gP(W) (W))
Ring = v/nPu[(mp(W) — m(W)) —4(
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The first term, U, is again an oracle term that is asymptotically Gaussian, that is,
U4 N(0,0%) with asymptotic variance 0% = Varp((D — mp(W))(Y — gp(W))). We
will argue that, under suitable conditions, the error terms R,,, Ry, and R,,, converge to
zero in probability, in which case Slutsky’s theorem asserts that

Va(pe — p(P)) % N(0,0%). (10)

There are several strategies for controlling a term like R,,, which we elaborate further
in Section 1.2.4. For simplicity, let us assume that m(:) is estimated on an auxiliary
sample that is independent from the sample (Z;);c[n) used in P, where [n] = {1,...,n}.
Then, the summands in R, are independent conditionally on 7 and (W;);e[n), and their
conditional means are zero since E[Y; |m, (W}) e] = E[Yi [Wi] = gp(W;) for i € [n].
Note that the first equality crucially relies on m being estimated on an independent
sample.
It follows that the conditional variance of R,, is given by

Varp(Run | 0, (Wi)iepn)) = = D, (Au(Wi) — mp(W5))? Varp(Y; | W5).
i=1

Thus, if there exists a bound C' > 0 such that Varp(Y | W) < C almost surely and if m is
(out-of-sample) RMSE consistent for mp, then it holds that Varp(R., | m, (Wi)ie[n)) TR
0. In this case, an application of Chebyshev’s inequality, conditionally on m and
(Wi)ie[n]> lets us to conclude that Ry, 0.

Since R,, and R, are symmetric in (mp, D) and (gp,Y’), the same argument can be
applied to show that R, L, 0 under analogous conditions on g and Varp(D | W).

For the product error term, R,,,, the Cauchy-Schwarz inequality yields that

Rimg < /1 A/Bo[(m(W) — mp(W))2] - V/Pa[(G(W) — gp(W))2]. (11)

As a consequence, we see that R,,, L, 0 if the product of the RMSE for m(-) and
the RMSE for §(-) decays at an order of op(n~/2). When the rate requirements for
nuisance estimators reduce to this condition, we say that the estimator exhibits rate
double robustness. There are several settings where this requirement can be achieved by
nonparametric regression estimators, as we elaborate in Section 1.2.3.

We proceed to discuss, from a more general perspective, conditions under which an
estimator may exhibit (rate) double robustness.

1.2.2 Double robustness and orthogonality

In this section, we generalize some of the insights obtained from the example in the
preceding section, and we derive a condition required for rate double robustness.
Suppose that 7: P — R is an estimand that can be written of the form

_ Ep[i(Z m(P))]
Ep[o(Z. 10(P))]

7(P) (12)
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where 1n9: P — £ is a nuisance parameter, and where ¢,1: Z x £ — R are measurable
maps, with Z denoting the sample space for Z. We assume that for all n € £ and P € P,
the random variables ¥(Z,n) and ¢(Z,n) are integrable under P with Ep[¢(Z,n)] # 0.
Note that all the estimands considered so far have been of this form. An estimand may
be written of the form (12) in more than one way, as was highlighted in Section 1.2.1.
Given a nuisance estimate 77 € £ of 19(P), we can define a plug-in estimator more

generally as:
) — Pal0(Z.0)
Pn[o(Z,7)]
Both pPlug-in and pdouble were conceived in this way, so why does pdoPle exhibit rate
double robustness while P& does not?
To answer this question, consider first an estimand that can be written of the form
(12) with ¢(-,-) = 1, and let np = no(P). We can then decompose the general plug-in
estimator (13) similarly to the example in Section 1.2.1:

Vn(F([@) = 7(P)) = Vn(Pn = Ep)[(Z, np)] + VnPu[1(Z, 1) — ¥ (Z,1p)]

(13)

The first term is again an oracle term, whose behavior is governed by the CLT.

To analyze the second term, we may appeal to a Taylor expansion. Assume that £ is a
convex set, and assume that the map r — 1 (z,np +r(n—np)) is two times continuously
differentiable for all (z,17) € Z x £. Then, a Taylor expansion yields that

\/ﬁpn[¢<Z7 ﬁ)_¢(Zv nP)] (14)
= ﬁ[PM&W(Z, np + (7 = 1p))lr=0] + ﬁPn[R2(Za ne,n)],  (15)

~~

=T =Ty

where Ra(Z,np,1) is a second-order remainder term that is left unspecified for now.
As we will discuss in Section 1.2.3, we can generally expect a nuisance estimator to
converge at a rate of n=%, where « € (0, %) To simplify the analysis, suppose that 7 —
np = n~“An for a fixed An € £. Although this might seem like an oversimplification, if
the plug-in estimator is y/n-consistent for general nuisance estimates, we can reasonably
expect it to be y/n-consistent under this simplifying assumption.
Then, by the chain rule,

Ty = 2By — Ep)[0:0(Z,np + rAD)|r=o] + 2 *QEp[$(Z,np + rAN)]|r=o

provided we can interchange derivative and expectation. The first term vanishes in
probability, whereas the absolute value of the second term is either diverging to infinity
or equal to zero for all n. In conclusion, we can expect T} to vanish in probability if for
allne &:

orEp [$(Z,np +7(n—np)]lr=0 =0 (16)

We can interpret the condition (16) as the bias of the plug-in estimator not being sensitive
to small estimation errors of the nuisance parameter 7.
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The condition (16) is similar to a condition at the core of Double Machine Learn-
ing (DML) [Chernozhukov et al.,; 2018]. Indeed, we can explicitly translate (12) into
the DML framework by considering (7p,np) = (7(P),no(P)) as solutions to the score
equation

Ep[S(Z;0,m)] =0,  where S5(Z;0,n)=0-6(Z,n)—¢(Z,n). (17)

Definition 2.1 in Chernozhukov et al. [2018] states that the score S satisfies the Neyman
orthogonality condition at (p,np) if O, Ep [S(Z;7p,np + r(n —np))] exists for all n e €
and r € [0,1), and if

orEp [S(Z;7p,mp +1r(n—1p))] lr=0 = 0. (18)

This is essentially equivalent to (16) and 0,Ep[¢(Z,np +r(n —np)]|r=0 = 0. Or-
thogonality is paramount in order for an estimator 7 of the form (13) to satisfy that

Vn(T —71p) 4, N(0,0%) for some 0% > 0. It is straightforward to verify that the expres-
sion in (7) corresponds to a score that satisfies the orthogonality condition, whereas the
expression (6) does not, unless gp = 0. Heuristically, this explains why @double, which is
based on (7), exhibits rate double robustness.

Orthogonality alone is not sufficient to ensure asymptotic normality, and Chernozhukov
et al. [2018] provide additional conditions that ensure this; see their Assumptions 3.1
and 3.2. However, these conditions essentially entail a reformulation of the condition
that 15 L, 0, cf. Assumption 3.2(c). Obtaining a general bound for 75 with minimal
assumptions is a complex task, so T5 is typically analyzed case-by-case. When the nui-
sance parameter np = (np1,...,Npq) consists of several nuisance functions, it is often
possible to establish a bound in the form:

T <Op(va Y, lii—mpd

(i,5)e8

|15 — npyl

). (19)

for a set S < [q] x [¢]. This represents a general form of rate double robustness, which
is met, for example, when |%; — np,|| = op(n="/*) for each i € [¢]. The bound (11), for
instance, is of this form.

Keeping the orthogonality condition — or analogous conditions in other frameworks —
in mind when constructing an estimator is crucial. This approach is taken in [LCM],
[ACM], and [DOPE], though the details of the latter are more intricate.

1.2.3 Estimation of nuisance parameters using machine learning

The estimation procedures discussed up to this point have relied on the ability to estimate
the nuisance parameter, and the analysis suggested that an estimation error of order
n~Y4 would be sufficient. Often, the nuisance parameter consists of functions given by
conditional expectations, as in Section 1.2.1 with n(P) = (mp,gp).

To discuss estimation of such nuisance functions, consider a generic regression setting
where Z = (X,Y) € R? x R and suppose that fp(-) == Ep[Y | X = -] is the nuisance
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parameter. Assuming that Ep[Y?] < 00, recall that

fpeargminEp[(Y — f(X))Q]
feF

for any collection of measurable functions F that contains fp. This connects the estima-
tion of the conditional mean function, fp, with the minimization of the mean squared
prediction error over a sufficiently rich function class.

When fp is known to be linear, this naturally leads to ordinary least squares, and the
resulting estimator for fp converges at a rate of Op(n~'/2) under a few additional con-
ditions. Similarly, other classical regression techniques based on semiparametric models
that represent F based on a finite-dimensional representation, such as GLMs, generally
yield y/n-consistent estimators of fp when the model is correctly specified.

However, contemporary datasets and regression competitions, such as those hosted by
Kaggle [Bojer and Meldgaard, 2021], indicate that ML methods, e.g. random forests,
gradient boosting, and neural nets, routinely and significantly outperform classical re-
gression methods in terms of prediction accuracy. This suggests that the function classes
corresponding to classical methods are not rich enough to capture good approximations
of the truth.

Considering larger nonparametric function classes can come with two challenges: it
can make the resulting optimization problem difficult and usually leads to overfitting
if implemented naively. Remarkable advancements in machine learning have resulted
in powerful and efficient tools for handling optimization tasks with few assumptions on
the function class. To prevent overfitting, these methods often depend on advanced
(implicit) regularization techniques, making them difficult to analyze theoretically.

In view of the above, it is often left as a general assumption that the nuisance pa-
rameter can be estimated with a sufficiently fast rate. This assumption can be justified
based on (i) the empirical observation that machine learning estimators perform well in
practice and (ii) by comparing with achievable (minimax) rates for reasonable function
classes. To elaborate on (ii), suppose, for example, that fp is known to be differentiable
up to order |s|, with partial derivatives of order |s| that are (s — |s])-Holder continuous,
for some s > 0. In the absence of additional constraints on fp, the optimal uniform
estimation rate is Op(n_ﬁﬂl)7 which can be attained using local polynomials [Gyorfi
et al., 2002, Tsybakov, 2009]. The key insight is not necessarily to use local polynomials,
but to understand that effective estimators of fp can attain an estimation rate, e.g., of
order n~ %4, when fp has a smoothness of order s > d/2.

While the discussion above revolves around conditional mean estimation, other es-
timation tasks might also be of interest. Estimation of the average partial effect (5)
with DML requires density and derivative estimation [Klyne and Shah, 2023], and in
both [LCM] and [ACM] we require estimation of conditional hazards. Such estimation
methods are discussed within each manuscript, see for example Section 2.D in [LCM].

1.2.4 Controlling cross-terms by cross-fitting

In this section we elaborate the discussion of how to control cross-terms such as R,, and
R, from the decomposition (9) of v/n(p — p(P)). More generally, in Section 1.2.2 we
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encountered the ‘first-order’ term

Ty = Py [0:(Z,np + (7 — 1p)) lr=0]-

By simplifying the analysis and considering the deterministic sequence of nuisance esti-
mates 1 = np + n~*An for a fixed An € £, we derived that the orthogonality condition

(16) was essential for achieving T} L, 0. We now discuss how to proceed when 7 is a
stochastic estimate, e.g., obtained by machine learning as described in Section 1.2.3.
When 7] is estimated independently of the sample in P, the orthogonality condition
(16) implies that 77 has mean zero conditionally on 7. In many concrete examples, we
can then control the conditional variance of 17 by the error in nuisance estimation, in

which case the convergence T} £, 0 follows from consistency of the nuisance estimator
and Chebyshev’s inequality. For example, this was the case for the estimator ol in
(8), where it is straightforward to show that 71 = R, + R,.

Obtaining an independent nuisance estimate can be achieved by initially splitting the
sample into two folds, and then using first part for nuisance estimation and the second
part for plug-in estimation. This comes at the cost of reducing the effective sample
size. However, it is possible to recover full-sample efficiency by swapping the roles of the
two folds and then aggregating the resulting estimates. More generally, we can perform
K-fold cross-fitting for any integer K > 2 as follows:

i) Partition the observation indices into K disjoint folds: [n] =11 u--- U Ik.
ii) For each k € [K], use the holdout data (Z;);e[n]\s, to compute an ML estimate 7).

iii) Compute the plug-in estimates on each fold and aggregate the estimates by

2 Zzelk V(Zis k) or - % ZkK=1 Dvier, V(Zi, ﬁk)‘ (20)

Zze[k ( )’ % 25:1 Zielk O(Zi; k)
%,_J

Tk

The estimators 7 and 7 are known as the DML1 and DML2 estimators, respectively (see
Definitions 3.1 and 3.2 in Chernozhukov et al. [2018]). The estimators are asymptotically
equivalent (under conditions) and they are equal when ¢ is a constant, which was the
case in (7). In small samples, however, DML2 may perform better due to the increased
numerical stability achieved by pooling the estimates before division.

The DML1 estimator is considered in all the manuscripts in this thesis; therefore, we
present a simple result for its asymptotics.

Lemma 1.2.1 (Asymptotics of DML1 estimator). Let 7 and (Tk) e[k be the estimators
defined in (20) and let 0% > 0. Suppose that each k € [K],

lirrolon/\fk\ =K and Vgl - (7 — 7p) = Uy + Ry,
n—

10
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where U and Ry are variables satisfying that Uy 4, N(0,0'12;.) and Ry L. 0asn— 0.
Assume also the joint independence statement Uy 1L --- Il Ug. Then it holds that

Va(F —7p) % N(0,0%)
as n — 0.

Proof. The conditions on I, Uy, and Ry imply that

L AL JAN N(0,0%) and R vn

Uy = , k= e
VK| K |1k

By joint independence, it follows that (Uy,...,U) 4, N(0,0%)®K [Billingsley, 2013,
Theorem 2.8(ii)]. By continuous mapping and the convolution property of the Gaussian
distribution, we conclude that

Ry 0.

K

1

- U+R —>N0
Vn(¥ —7p) kg_l k k) ( UP)

as n — 0. O]

In practice, we can apply the lemma with oracle terms (Uy) corresponding to using the
oracle nuisance estimate np. In this case, it simplifies the analysis of the DML1 estimator
to that of a single sample split estimator 7.

Note that the DML1 estimator indeed recovers full-sample efficiency, as it is scaled by
4/n rather than m . In particular, the asymptotic distribution is independent of the
number of folds K. The choice of K will have a practical impact in smaller samples,
as it will affect the remainder terms (Ry)pe[x], Which are controlled by the nuisance
estimation error. Larger values of K will allocate more data to the estimation of the
nuisance parameter and are thus likely to result in smaller error terms. However, this
also comes at the cost of higher computational demand since the nuisance estimator has
to be fitted K times. Choosing K = 4 or K = 5 might be reasonable in practice, cf.
Remark 3.1. in Chernozhukov et al. [2018], which was also consistent with the findings
in the simulation studies conducted for the work in this thesis.

1.2.5 Alternatives to cross-fitting

In the preceding discussion, we have covered how cross-fitting can be used to control the
cross-term. This raises the question:

Is cross-fitting necessary? (21)

There is no simple or general answer to this question, and it is instead typically discussed
on a case-specific basis. In [LCM] and [ACM], we found that cross-fitting was neces-
sary, and for [DOPE] we found that cross-fitting was neither necessary nor significantly
detrimental.

11
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To understand how a cross-term might be controlled without cross-fitting, consider
again the term R, from (9), but now as a map

Ruo(m) = —= D mp (W) = m(W) (¥ = gp(1W:)

which takes as input any measurable function m: R%! — R. Assuming for simplicity
that |Y| < C for some constant C' > 0, the CLT implies that for each m € L2(Py),

R () % N(0, vp(m)) (22)

as n — o0, where vp(i) = Ep[(mp(W) — m(W))2)(Y — gp(W))?].
The question (21) is now whether R,,(m) L, 0 can be established from a consistency

condition of m, e.g., vp(m) £ 0. Unfortunately, this is not generally true, but it can
be concluded under additional assumptions on .

Donsker class conditions: Let F,, = £?(Py) denote a function space such that
m € F, almost surely. A sufficient condition for the implication

~

vp(m) 0 =  Rn(@m) 50 (23)
to hold is that the collection of random variables
{(mp(W) —m(W))(Y — gp(W)): m € Fn}

is a Donsker class. See, for example, Lemma 19.24 in van der Vaart [2000]. Informally,
this Donsker class condition means that the weak convergence (22) holds uniformly over
m € Fm. There are numerous ways to establish the Donsker condition in itself, which
typically involve technical bounds on the ‘size’ of the function class F,,,. However, these
conditions are unsuitable for high-dimensional settings [Chernozhukov et al., 2018] or
when the nuisance estimates belong to a complex function class.

Algorithmic stability: More recently, Chen et al. [2022] have shown that cross-fitting
can be avoided when the algorithm for producing the nuisance estimates is stable. Infor-
mally, this means that the learned function does change significantly when the training
data is perturbed, and there are several different definitions that formalize this idea.
For the cross-term R,,, Proposition S15 in Lundborg et al. [2022a] describes algorith-

mic stability conditions that guarantee R,,(m) 4, 0 without the need for cross-fitting.
It is possible to verify that certain algorithms are stable, see, for example, Hardt et al.
[2016], Bousquet and Elisseeft [2002], and recent work has shown that bagging can in-
crease the stability of any algorithm [Soloff et al., 2024b,a]. These works, however, are
not all working under the same notion of stability, and it is therefore unclear to what
extent bagging can be used as a replacement for cross-fitting.

12
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Donsker class conditions and algorithmic stability have not been investigated in depth
in this thesis. However, the analysis of cross-terms plays a central role in the asymptotic
theory, and these terms are controlled by cross-fitting or the aforementioned alternative
conditions. Since the answer to question (21) appears to be yes in both [LCM] and
[ACM], these alternative conditions must somehow be violated. A deeper understanding
of why these conditions are violated could provide valuable insights into our methods.

13






2 Nonparametric conditional local
independence testing
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HANSEN

Abstract

Conditional local independence is an asymmetric independence relation among
continuous time stochastic processes. It describes whether the evolution of one
process is directly influenced by another process given the histories of additional
processes, and it is important for the description and learning of causal relations
among processes. We develop a model-free framework for testing the hypothesis
that a counting process is conditionally locally independent of another process.
To this end, we introduce a new functional parameter called the Local Covariance
Measure (LCM), which quantifies deviations from the hypothesis. Following the
principles of double machine learning, we propose an estimator of the LCM and
a test of the hypothesis using nonparametric estimators and sample splitting or
cross-fitting. We call this test the (cross-fitted) Local Covariance Test ((X)-LCT),
and we show that its level and power can be controlled uniformly, provided that
the nonparametric estimators are consistent with modest rates. We illustrate the
theory by an example based on a marginalized Cox model with time-dependent
covariates, and we show in simulations that when double machine learning is used
in combination with cross-fitting, then the test works well without restrictive para-
metric assumptions.

2.1 Introduction

Notions of how one variable influences a target variable are central to both predictive
and causal modeling. Depending on the objective, the relevant notion of influence can be
variable importance in a predictive model of the target, but it can also be the causal effect
of the variable on the target. In either case, we can investigate influence conditionally
on a third variable — to quantify the added predictive value, the direct causal effect or
the causal effect adjusted for a confounder. Our interests are in an asymmetric notion
of direct influence among stochastic processes, which is not adequately captured by
classical (symmetric) notions of conditional dependence. The objective of this paper is
therefore to quantify this notion of asymmetric influence and specifically to develop a
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new nonparametric test of the hypothesis that one stochastic process does not directly
influence another.

The hypothesis we consider is that of local independence — a concept introduced by
Schweder [1970] for Markov processes as a continuous time formalization of the phe-
nomenon that the past of one stochastic process does not directly influence the evolu-
tion of another stochastic process. Generalizations to other continuous time processes
were given by Aalen [1987] and studied by Commenges and Gégout-Petit [2009], who
systematically used the term conditional local independence for the general concept. We
will in this paper follow that convention whenever we want to emphasize the conditional
nature of the local independence. We note that (conditional) local independence is a
continuous time version of the discrete time concept of Granger non-causality [Granger,
1969, Aalen, 1987].

To illustrate the concept of conditional local independence we will in this introduction
consider an example involving three processes: X, Z and N — see Figure 2.1.1. The
process N is the indicator of death, Ny = 1(T" < t), for an individual with survival time
T, and X; denotes the total pension savings of the individual at time ¢. The process
Z is a covariate process, e.g., health variables or employment status, that may directly
affect both the pension savings and the survival time. This is indicated in Figure 2.1.1
by edges pointing from Z to X and N. Edges pointing from N to X and Z indicate
that a death event directly affects both X and Z (which take the values Xp and Zp,
respectively, after time T, see Section 2.2.2).

To define conditional local independence let ]-'tN’Z = 0(Ns,Zs;s < t) denote the
filtration generated by the IN- and Z-processes. The o-algebra ftN Z represents the
information contained in the N- and the Z- processes before time ¢. Informally, the
process IVy is conditionally locally independent of the process X; given ]:tN 7 if (Xs)s<t
does not add predictable information to ]:ﬁ Z about the infinitesimal evolution of N;.
For this particular example this means that the conditional hazard function of T" does
not depend on (Xs)s<; given ]:tN’Z. In Figure 2.1.1 the hypothesis of interest, that Ny
is conditionally locally independent of X; given ]-'tN ’Z, is represented by the lack of an
edge from X to N.

A systematic investigation of algebraic properties of conditional local independence
was initiated by Didelez [2006, 2008, 2015]. She also introduced local independence
graphs, such as the directed graph in Figure 2.1.1, to graphically represent all conditional
local independencies among several processes, and she studied the semantics of these
graphs. This work was extended further by Mogensen and Hansen [2020] to graphical
representations of partially observed systems. While we will not formally discuss local
independence graphs, the problem of learning such graphs from data was an important
motivation for us to develop a nonparametric test of conditional local independence. A
constraint based learning algorithm of local independence graphs was given by Mogensen
et al. [2018] in terms of a conditional local independence oracle, but a practical algorithm
requires that the oracle is replaced by conditional local independence tests.

Another important motivation for considering conditional local independence arises
from causal models. With a structural assumption about the stochastic process specifi-
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Covariate process

Pension savings @

Death indicator

Figure 2.1.1: Local independence graph illustrating a dependence structure among the
three processes X, Z and N. Here N is the indicator of death for an
individual, X is their cumulative pension savings and Z is a covariate
process. All nodes in this graph have implicit self-loops. There is no edge
from X to N, which indicates that death is not directly influenced by
pension savings. This can be formalized as N being conditionally locally
independent of X, which is the hypothesis we aim to test.

cation, a conditional local independence has a causal interpretation [Aalen, 1987, Aalen
et al., 2012, Commenges and Gégout-Petit, 2009], and if the causal stochastic system is
completely observed, a test of conditional local independence is a test of no direct causal
effect. See also Roysland et al. [2022], who use local independence graphs to formulate
criteria for identification of causal effects in continuous-time survival models. If the
causal stochastic system is only partially observed, a conditional local dependency need
not correspond to a direct causal effect due to unobserved confounding, but the pro-
jected local independence graph, as introduced by Mogensen and Hansen [2020], retains
a causal interpretation, and its Markov equivalence class can be learned by conditional
local independence testing. In addition, within the framework of structural nested mod-
els, testing the hypothesis of no total causal effect can also be cast as a test of conditional
local independence [Lok, 2008, Thm. 9.2].

To appreciate what conditional local independence means — and, in particular, what
it does not mean — it is useful to compare with ordinary conditional independence. In
our example, V; is conditionally locally independent of X; given .FtN ’Z, but this implies
neither that N I X | Z (as processes), nor that N; I X; | FZ. In fact, these condi-
tional independencies cannot hold in this example where X; = Xp for t > T — except
in special cases such as T" being a deterministic function of Z. Theorem 2 in Didelez
[2008] gives a sufficient condition for Ny 1L X; | FZ to hold in terms of the local inde-
pendence graph, but this condition is also not fulfilled by the graph in Figure 2.1.1 due
to the edge from N to X. Moreover, conditional local independence is in general also
different from the baseline conditional independence T' 1L X | Zp unless both X and Z
are time-independent, see Section 2.3.2. In Section 2.E in the supplementary material
[Christgau et al., 2023¢|, we elaborate further upon the connection to semiparametric
survival models. Didelez [2008] argues that N; being conditionally locally independent
of X; given ftN 2 heuristically means that N; 1L FX | ]:JX’Z, but this is technically
problematic in continuous time. If 7" has a continuous distribution, then for any fixed ¢,
Ny = N;_ almost surely, whence V; is almost surely fﬁ Z_measurable and conditionally
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independent of anything given Fﬁ Z This heuristic can thus not be used to formally de-
fine conditional local independence in continuous time. See instead the formal Definition
2 by Didelez [2008] or our Definition 2.2.1.

Several examples from health sciences given by Didelez [2008] demonstrate the useful-
ness of conditional local independence for multivariate event systems, and more recent
attention to event systems in the machine learning community [Zhou et al., 2013, Xu
et al., 2016, Achab et al., 2017, Bacry et al., 2018, Cai et al., 2022] testifies to the
relevance of conditional local independence. This line of research relies primarily on
the linear Hawkes process model, which is effectively used to infer local independence
graphs — sometimes even interpreted causally. The Hawkes model is attractive because
conditional local independencies can be inferred from corresponding kernel functions
being zero — and statistical tests can readily be based on parametric or nonparametric
estimation of kernels.

A less attractive property of the Hawkes model is that it is not closed under marginal-
ization. As with any model based statistical test, the validity of the test is jeopardized
by model misspecification, hence even within a subsystem of a linear Hawkes process, a
test of conditional local independence based on a Hawkes model may be invalid.

The challenges resulting from model misspecification and marginalization is investi-
gated further in Sections 2.2.2 and 2.6 based on an extension of our introductory example
and Cox’s survival model. Both the Hawkes model and the Cox model illustrate that con-
ditional local independence might be expressed and tested within a (semi-)parametric
model, but model misspecification makes us question the validity of any such model
based test. Thus there is a need for a nonparametric test of the hypothesis of condi-
tional local independence. Moreover, since we cannot translate the hypothesis into an
equivalent hypothesis about classical conditional independence, we cannot directly use
existing nonparametric tests, such as the GCM [Shah and Peters, 2020] or the GHCM
[Lundborg et al., 2022b], of conditional independence.

We propose a new nonparametric test when the target process NV is a counting process
and X is a real valued process, and where the hypothesis is that V is conditionally locally
independent of X given a filtration F;. In the context of the introductory example,
Fi = ]-'tN 2 We consider a counting process target primarily because the theory of
conditional local independence is most complete in this case, but generalizations are
possible — we refer to the discussion in Section 2.7. Within our framework we base our
test on an infinite dimensional parameter, which we call the Local Covariance Measure
(LCM). It is a function of time, which is constantly equal to zero under the hypothesis.
Our main result is that the LCM can be estimated by using the ideas of double machine
learning [Chernozhukov et al., 2018] in such a way that the estimator converges uniformly
at a y/n-rate to a mean zero Gaussian martingale under the hypothesis of conditional
local independence. We use the LCM to develop the (cross-fitted) Local Covariance Test
((X)-LCT), for which we derive uniform level and power results.

18



2.1 Introduction

2.1.1 Organization of the paper

In Section 2.2 we introduce the general framework for formulating the hypothesis of
conditional local independence. This includes the introduction in Section 2.2.1 of an
abstract residual process, which is used to define the LCM as a functional target pa-
rameter indexed by time. The LCM equals the zero-function under the hypothesis of
conditional local independence, and to test this hypothesis we introduce an estimator of
the LCM in Section 2.2.3. The estimator is a stochastic process, and we describe how
sample splitting is to be used for its computation via the estimation of two unknown
components.

In Section 2.3 we give interpretations of the LCM and its estimator. We show that
the LCM estimator is a Neyman orthogonalized score statistic in Section 2.3.1, and in
Section 2.3.2 we relate LCM to the partial copula when X is time-independent.

In Section 2.4 we state the main results of the paper. We establish in Section 2.4.1
that the LCM estimator generally approximates the LCM with an error of order n=1/2.
Under the hypothesis of conditional local independence, we show that the (scaled) LCM
estimator converges weakly to a mean zero Gaussian martingale. The estimator requires
a model of the target process NV as well as the process X conditionally on F; to achieve
the orthogonalization at the core of double machine learning. The model of X is in
this paper expressed indirectly in terms of the residual process, and we show that if
we can learn the residual process at rate g(n) and the model of N at rate h(n) such
that g(n),h(n) — 0 and /ng(n)h(n) — 0 for n — oo then we achieve a /n-rate
convergence of the LCM estimator. We also show that the variance function of the
Gaussian martingale can be estimated consistently, and we give a general result on the
asymptotic distribution of univariate test statistics based on the LCM estimator. All
asymptotic results are presented in the framework of uniform stochastic convergence.

Section 2.5 gives explicit examples of univariate test statistics, including the Local Co-
variance Test based on the normalized supremum of the LCM estimator. Its asymptotic
distribution is derived and we present results on uniform asymptotic level and power. In
Section 2.5.2 we present the generalization from the sample split estimator to the cross-
fit estimator. Though this estimator and the corresponding cross-fit Local Covariance
Test (X-LCT) are a bit more involved to compute and analyze, X-LCT is more powerful
and thus our recommended test for practical usage.

The survival example from the introduction is used and elaborated upon throughout
the paper. We introduce a Cox model in terms of the time-varying covariate processes,
and we report in Section 2.6 the results from a simulation study based on this model.

The paper is concluded by a discussion in Section 2.7.

The supplementary material [Christgau et al., 2023c], henceforth referred to as the
supplement, consists of Sections 2.A through 2.G and contains: proofs of results in this
paper (2.A); definitions and results on uniform asymptotics (2.B); a uniform version
of Rebolledo’s martingale CLT (2.C); an overview of achievable rate results for esti-
mation of nuisance parameters that enter into the LCM estimator (2.D); a comparison
with semiparametric survival models (2.E); details on Neyman orthogonality (2.F); and
additional results from the simulation study (2.G).
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2.2 The Local Covariance Measure

In this section we present the general framework of the paper, we define conditional local
independence and we introduce the Local Covariance Measure as a means to quantify
deviations from conditional local independence. In Section 2.2.3 we outline how the
Local Covariance Measure can be estimated using double machine learning and sample
splitting. We illustrate the central concepts and methods by an example based on Cox’s
survival model with time-varying covariates.

We consider a counting process N = (NV;) and another real value process X = (X3),
both defined on the probability space (2, F,P). All processes are assumed to be defined
on a common compact time interval. We assume, without loss of generality, that the
time interval is [0,1]. We will assume that N is adapted w.r.t. a right continuous and
complete filtration F;, and we denote by G; the right continuous and complete filtration
generated by F; and X;. We assume throughout that X is caglad (that is, has sample
paths that are continuous from the left and with limits from the right), which will ensure
bounded sample paths and that the process is Gi-predictable.

In the survival example of the introduction, N; = 1(T" < t) is the indicator of whether
death has happened by time ¢, and there can only be one event per individual observed.
Furthermore, F; = ftN Z and G, = .7-'tN X2 Our general setup works for any counting
process, thus it allows for recurrent events and censoring, and the filtration F; can
contain the histories of any number of processes in addition to the history of N itself.

2.2.1 The hypothesis of conditional local independence

The counting process N is assumed to have an Fi-intensity A, that is, A\; is F;-predictable

and with .
Ay = J Asds
0
being the compensator of N,
My = N, — Ay (2.2.1)

is a local Fi-martingale. Within this framework we can define the hypothesis of condi-
tional local independence precisely.

Definition 2.2.1 (Conditional local independence). We say that IV, is conditionally
locally independent of X; given F; if the local Fi-martingale M; defined by (2.2.1) is
also a local Gi-martingale. &

For simplicity, we may also refer to this hypothesis as local independence and write
Hy : My = Ny — Ay is a local Gi-martingale. (2.2.2)

As argued in the introduction, the hypothesis of local independence is the hypothesis
that observing X on [0,¢] does not add any information to F;_ about whether an N-
event will happen in an infinitesimal time interval [¢,¢+dt). Definition 2.2.1 captures this
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2.2 The Local Covariance Measure

interpretation by requiring that the F;-compensator, A, of IV is also the G;-compensator.
Thus, A is also the G;-intensity under Hy.

If N has Gi-intensity A, the innovation theorem, Theorem I1.T14 in Brémaud [1981],
gives that the predictable projection A\; = E(A; | F;—) is the (predictable) Fi-intensity.
Local independence follows if A is F;-predictable. Intensities are, however, only unique
almost surely, and we can have local independence even if A is not a priori F;-predictable
but have an F;-predictable version. When N has G;-intensity A, Hp is thus equivalent
to A having an F;-predictable version. We find Definition 2.2.1 preferable because it
directly gives an operational criterion for determining whether N has an Fi-predictable
version of a Gs-intensity.

Remark 2.2.2 (Censoring). Suppose that the data is censored such that (N, Xy, Fy) =
(NS o Xfon Five), where (N*, X*, F*) are uncensored data and where C is the cen-

soring time. The hypothesis regarding the uncensored data,
Hg: Nj is locally independent of X/ given F},

might then be the hypothesis of interest. If 1(C > ¢) happens to be F;*-predictable, it is
straightforward to show that Hj implies Hy, and consequently a test of Hy is also a test
of Hj. However, F;* may not a priori contain information about the censoring process.
Suppose instead that the common condition of independent censoring [Andersen et al.,
1993] holds, which is equivalent to N;* being locally independent of C; := 1(C < t) given
GF [Roysland et al., 2022]. Then H implies that IV; is locally independent of X; given
Fi v FE. Thus, in order to test Hf, we replace F; by the enlarged filtration F; v a
and proceed mutatis mutandis with testing Hy using the observed data. &

Since X is assumed caglad, and thus especially G;-predictable, the stochastic integral
¢

f XdMs, (2.2.3)
0

is under Hy a local Gi-martingale. A test could be based on detecting whether (2.2.3) is,
indeed, a local martingale. We will take a slightly different approach where we replace
the integrand X by a residual process as defined below. We do so for two reasons.
First, to achieve a y/n-rate via double machine learning we need the integrand to fulfill
(2.2.4) below. Second, other choices of integrands than X could potentially lead to more
powerful tests.

Definition 2.2.3 (Residual Process). A residual process G = (Gt)e[0,1] of X given F;
is a caglad stochastic process that is Gi-adapted and satisfies

E(Gy| Fi—) =0 (2.2.4)
for t € [0,1]. &

The geometric interpretation is that the residual process evolves such that G; is or-
thogonal to Lo(F;—) within Lo(G;—) at each time t. One obvious residual process is the
additive residual process given by

Gy=X— 1 = Xy —E(Xy | Fro),
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2 Nonparametric conditional local independence testing

where I, = E(X; | F;—) denotes the predictable projection of the caglad process X,
see Theorem VI.19.6 in Rogers and Williams [2000]. The additive residual projects X;
onto the orthogonal complement of Ly(F;—), but this may not necessarily remove all
Fi-predictable information from X;. An alternative choice that does so under sufficient
regularity conditions is the quantile residual process given by

1
Gi = Fi(Xt) — bR

where F; is the conditional distribution function given by Fi(x) = P(X; < z | F;—). The
quantile residual process satisfies (2.2.4) provided that (¢,z) — Fy(z) is continuous. In
Section 2.3.1 we discuss additional transformations of X that can also be applied before
any residualization procedure.

We will formulate the general results in terms of an abstract residual process, but
we focus on the additive residual process in the examples. Any non-degenerate residual
process will contain a predictive model of (aspects of) X; given F;_ in order to satisfy
(2.2.4). We use (A;t to denote the residual obtained by plugging in an estimate of that
predictive model. For the additive residual process, the predictive model is II; and
C:lt = X; — ﬁt. For the quantile residual process, the predictive model is F; and C:’t =
F(Xy) — 3.

We can now define our functional target parameter of interest, which we call the Local
Covariance Measure.

Definition 2.2.4 (Local Covariance Measure). With G; a residual process, define for

te[0,1]
t

v =E (L), where I; = f Gsd M, (2.2.5)
0

whenever the expectation is well defined. We call the function ¢ — ~; the Local Covari-
ance Measure (LCM). )

The following propositions illuminate how ~ relates to the null hypothesis of V; being
conditionally locally independent of X; given F;.

Proposition 2.2.5. Under Hy, the process I = (I;) is a local Gi-martingale with Iy = 0.
If I is a martingale, then v = 0 for t € [0,1].

To interpret v in the alternative, we assume that N has G;-intensity A.

Proposition 2.2.6. If S(l) E(|Gs|(As + As))ds < oo, then for every t € [0, 1],
t
"= J COV(Gs, AS - )\S)dS.
0

In particular, v is the zero-function if and only if Cov(Gs, As — As) = 0 for almost all
se0,1].
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2.2 The Local Covariance Measure

We note that under Hy, the condition Sé E(|Gs|As)ds < oo is sufficient to ensure that
I is a martingale and 4 = 0 for all ¢ € [0, 1]. By Proposition 2.2.6, the LCM quantifies
deviations from Hj in terms of the covariance between the residual process and the
difference of the F;- and G;-intensities. To this end, note that if X happens to be F;-
adapted, then G; = F; and N is trivially locally independent of X. The hypothesis of
local independence is only of interest when G; is a strictly larger filtration than F;, that
is, when X provides information not already in F;.

For the additive residual process, where Gy = Xy — II;,

s -8([ o) ([ ) ()

provided that the expectations are well defined. Since the predictable projection II; has
a caglad version and is JF;-predictable, and since My is a local F;-martingale, Sé 1T ,dM;
is a local Fi-martingale. If it is a martingale, it is a mean zero martingale, and

t t
v =E (J Xdes> =E ( X - f X5A3d5> : (2.2.6)
0 T<t:AN,.=1 0

The computation above shows that the additive residual process defines the same func-
tional target parameter ; as the stochastic integral (2.2.3) would. It is, however, the
representation of ; as the expectation of the residualized stochastic integral that will
allow us to achieve a y/n-rate of convergence of the estimator of 44 in cases where the
estimator of \; converges at a slower rate.

2.2.2 A Cox model with a partially observed covariate process

To further illustrate the hypothesis of conditional local independence and the Local
Covariance Measure we consider an example based on Cox’s survival model with time
dependent covariates. This is an extension of the example from the introduction with T°
being the time to death of an individual, and with X and Z being time-varying processes.
There is, moreover, one additional time-varying process Y in the full model.

An interpretation of the processes is as follows:

X = Pension savings
Y = Blood pressure
Z = BMI

Periods of overweight or obesity may influence blood pressure in the long term, and due
to, e.g., job market discrimination, high BMI could influence pension savings negatively.
Death risk is influenced directly by BMI and blood pressure but not the size of your
pension savings. Figure 2.2.2 illustrates two possible dependence structures among the
three processes and the death time as local independence graphs, and we will use these
two graphs to discuss the concept of conditional local independence of pension savings
on time to death.
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BMI BMI

Blood Blood
pressure pressure
Pension Pension
savings savings
Death indicator Death indicator

Figure 2.2.2: Local independence graphs illustrating how the three processes X, Y, and
Z could affect each other and time of death in the Cox example. There
is no direct influence of X (pension savings) on time of death in either of
the two graphs, but in the left graph the death indicator is furthermore
conditionally locally independent of X given the history of Z and N. In
the right graph, Z and N does not block all paths from X to IV, thus con-
ditioning on the history of Z and N only would not render N conditionally
locally independent of X.

We assume that 7" € [0, 1] and that X, Y and Z have continuous sample paths. Recall
also that Ny = 1(T < t) is the death indicator process. To maintain some form of realism,
all processes are stopped at time of death, that is, X; = Xp, Y; = Y and Z; = Zp for
t = T. This feedback from the death event to the other processes is reflected in Figure
2.2.2 by the edges pointing out of N. Recall also that

FZ = 6(Ns, Zg;s < t)

is the filtration generated by the N- and Z-processes. We use a similar notation for
other processes and combinations of processes. For example, ]:tN Y7 g the filtration
generated by N and all three X-, Y-, and Z-processes. With A"l denoting the .7-}]\7 XYL
intensity of time of death based on the history of all processes, we assume in this example

a Cox model given by
MUl — (T > ) \0e¥e 52 (2.2.7)

with \Y a deterministic baseline intensity. It is not important that Al"!! is a Cox model
for our general theory, but it allows for certain theoretical computations in this example.
The fact that A?ﬂl does not depend upon X; implies that )\E‘JH is also the .7-"tN Y2
intensity, and according to Definition 2.2.1, IV is conditionally locally independent of X;
given .7-"tN Y2 This is in agreement with the local independence graphs in Figure 2.2.2
where there is no edge in either of them from X to N.
We will take an interest in the case where Y is unobserved and test the hypothesis:

Hy : Ny is conditionally locally independent of X; given ]:tN Z

That is, with Y unobserved we want test if the intensity of time to death given the history
of N, X and Z depends on X. To simplify notation let F; = ]:tN’Z and G; = ftN’X’Z —
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2.2 The Local Covariance Measure

in accordance with the general notation. The G;-intensity is by the innovation theorem
given as
A =EMMY G, ) = 1T = 6)A\ePZE (Y | G,), (2.2.8)

while the Fi-intensity is
A= EQM | 7y = 1T = 6)M\ePAE(EY | Fio), (2.2.9)

and Hj is equivalent to A\; = A¢ almost surely. Comparing (2.2.8) and (2.2.9) we see
that Hp holds in this example if E(e* | G;_) = E(e¥* | F,_), and a sufficient condition
for this is

FX U FY R (2.2.10)

The condition (2.2.10) is in concordance with the left graph in Figure 2.2.2, see Theorem
2 in Didelez [2008], but not the right, and it implies Hy. We will in Section 2.6.1 elaborate
on condition (2.2.10) and give explicit examples.

We recall that Hy can be reformulated as A; not depending on X, and we could
investigate the hypothesis via a marginal Cox model

)\gox _ 1(T > t))‘?ealXﬁLOQZt (2.2.11)

and test if a3 = 0. The Cox model is, however, not closed under marginalization and
the semi-parametric model (2.2.11) is quite likely misspecified. Consequently, a test of
a1 = 0 is not equivalent to a test of Hy.

Our proposed nonparametric test of Hy does not rely on a specific (semi-)parametric
model of A;. To test Hy we consider the LCM using the additive residual process. Then
(2.2.6) implies that

t
v = E (XTNt - f XsAsd:s) ,
0

By Proposition 2.2.5, v, = 0 for ¢ € [0, 1] under Hp, whence conditional local indepen-
dence implies 74 = 0, and we test Hy by estimating ~; and testing if it is constantly
equal to 0.

Before introducing a general estimator of the LCM in Section 2.2.3 we outline how to
estimate the end point parameter 7 in this example. Due to T' < 1 and the appearance
of the indicator 1(T" > t) in (2.2.9),

T
Y1 = E (XT — J XSAS(ILS) .
0

With i.i.d. observations (71, X1, 21),...,(Th, Xn, Z,) and (nonparametric) estimates,

~

Ajt, based on (T1, Z1),...,(Th, Zyn), we could compute the plug-in estimate

() Ly R
Vl,plug—in = E Z <Xj7Tj _J;) XjaSAjvst> :
j=1
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o r?l,plug-in
12 41, double W/ 0 cross-fit

91, double W/ cross-fit

10

—0.06 —0.04 —0.02 0.00 0.02 0.04 0.06
Estimates of 1 under Hy

Figure 2.2.3: Histograms of the distributions of three different estimators of v;. Each histogram
contains 1000 estimates fitted to samples of size n = 500. The samples were sam-
pled from a model that satisfies the hypothesis of conditional local independence
and hence the ground truth is v; = 0. See Section 2.6.2 for further details of the
data generating process.

However, we cannot expect the plug-in estimator to have a y/n-rate unless X has \/n-
rate, which effectively requires parametric model assumptions on the intensity. Using
the definition of ; in terms of the additive residual process Gy = Xy — II;, we also have
that

T
v =E (XT — Iy — f (Xs — HS))\sds) . (2.2.12)
0

A double machine learning estimator based on the ideas by Chernozhukov et al. [2018]
is therefore obtained by plugging in two nonparametric estimators:

n T
A( 1 ~ J ~ ~
vlfﬁ)ouble = Z (Xj,Tj =17 —JO (Xjs — Hj,s)/\j,st) .
j=1

To achieve a small bias and a y/n-rate of convergence, we use sample splitting. The
nonparametric estimates ﬁj and Xj are based on one part of the sample only, and are
thus independent of the other part of the sample used for testing, see Section 2.2.3.
To obtain a fully efficient estimator, multiple sample splits can be combined, e.g., via
cross-fitting, see Section 2.5.2.
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2.2 The Local Covariance Measure

Figure 2.2.3 shows the distributions of "?5531?1)%111 and 7§ d ozble for the Cox example with

~v1 = 0, see Section 2.6.2 for details on the full model spemﬁcatlon. The latter estimator
was computed using cross-fitting but also without using any form of sample splitting.
The figure illustrates the bias of 7§5§10u)g .n» Which is somewhat diminished by double
machine learning without sample splitting and mostly eliminated by double machine

learning in combination with cross-fitting.

2.2.3 Estimating the Local Covariance Measure

To estimate the LCM we assume that we have observed n i.i.d. replications of the pro-
cesses, (N1, X1,F1),...,(Np, Xy, Fpn), where observing F; = (Fj:) signifies that any-
thing adapted to the j-th filtration is computable from observations. The process IN;
is adapted to F;, while X, is not, and G; denotes the smallest right continuous and
complete filtration generated by X; and F;.

For each n, we consider a sample spht corresponding to a partition J, U J;, = {1,...,n}
of the indices into two disjoint sets. We let A and G™ be estimates of the 1nten81ty
and the residualization map, respectively, fitted on data indexed by JS only. By an
estimate, )\(”) of A we mean a (stochastic) function that can be evaluated on the basis

of Fj; for j € J,, and its value, denoted by Xﬁ), is interpreted as a prediction of \;;.

The stochasticity in A arises from its dependence on data indexed by Jg, from which
its functional form is completely determined. Similarly, G(™) is a function that can be

evaluated on the basis of G;; for j € J,, to give a prediction éyi) of Gj¢. In Section 2.6.1

we illustrate through the Cox example how 2™ and G™ are to be computed in practice
when we use sample splitting. In Section 2.D in the supplement we give more examples
of such estimation procedures and discuss their statistical properties in greater detail.

To ease notation, we will throughout assume that (N, X, F) denotes one additional
process and filtration — independent of and with the same distribution as the observed
processes. Then the estimated intensity (™ and estimated residual process G™ can be
evaluated on (N, X, F), and thus we may write Xg") and @En) to denote template copies
of X%) and égz) for j € Jy.

In terms of the estimates A™ and G we estimate LCM by the stochastic process
5" given by

~(n 1 n
;) - -7 JG( dM", (2.2.13)
jeJ

~(n)

where ]\/4\](7;) Nji— So Js " ds. We can regard 7, ~ as a double machine learning estimator
of v, with the observations indexed by JS used to learn models of A and G, and with
observations indexed by J, used to estimate -, based on these models. In Section 2.5.2
we define the more efficient estimator that uses cross-fitting, but it is instructive to study
the simpler estimator based on sample splitting first.

In practical applications, we do not directly observe the filtration F;, but rather
samples from the stochastic processes generating the filtration. In accordance with the
introductory Cox example, consider F; and G; given by F;; = 0(Zjs, Njs; s < t) and
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2 Nonparametric conditional local independence testing

Gjt = 0(Xjs,Zjs,Njs; s < t) for a third stochastic process Z;, with Z; possibly being
multivariate. Within this setup, a general procedure for numerically computing the
LCM is described in Algorithm 1. Here, historical regression refers to any method which
regresses the outcome at a given time on the history of the regressors up to that time. For
example, historical linear regression is discussed in Section 2.6 and various alternative
methods are discussed in Section 2.D in the supplement. The choice of sample split will
be discussed further in Section 2.5.2 in the context of cross-fitting.

Algorithm 1: Sample split estimator of LCM

1 input: processes (N, X;, Z;)j=1,..n, partition J, u JS of indices ;

2 options: historical regression methods for estimation of A and G given N and
Z,

discrete time grid 0 = tg < -+ - <t} < 1;

begin

historically regress (X;);esc on (N, Z;)jesc to obtain a fitted model G

historically regress (IV;)jeje on (Nj, Zj)jesc to obtain a fitted model A

compute out of sample residuals @(72 and ]\/Z](Z) forjedJ,andi=0,...,k;

J

® N o ook W

for each i = 1,..., k, compute

—

~m) _ 1 An) TE) 75
Tt = ’J | Z Gj:tz(Mjﬂfz B Mj}tlﬂ)
e, 1<I<i

9 output: Local Covariance Measure 5™ numerically approximated on grid;

As in Section 2.2.2 we could suggest estimating the entire function ¢ — ~ by a
simple plug-in estimator of A using the representation (2.2.6). Figure 2.2.4 illustrates
the distribution of estimators of the entire time dependent LCM for this plug-in estimator
together with the double machine learning estimator with and without using cross-fitting.
The figure also shows the distribution of the endpoint being the same distribution shown
in Figure 2.2.3. The simulation is under Hyp, and we see that only the double machine
learning estimator with cross-fitting results in estimated sample paths centered around
0.

2.3 Interpretations of the LCM estimator

In this section we provide some additional perspectives on and interpretations of the
LCM. First we show that the LCM estimator can be seen as a Neyman orthogonalization
of the score statistic for a particular one-parameter family. The abstract formulation
of the residual process (G;) permits that we transform X into another G;-predictable
processes. Using this perspective, we may optimize the choice of the process X in terms
of power.

Next we show that when X is independent of time, the test statistic reduces in a
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Figure 2.2.4: A time dependent extension of Figure 2.2.3 showing the distribution of the

sample paths t — 'yt(5p?3)g i and t— 71E5d00013b1e7 the latter with and without

using cross-fitting. The data were simulated under Hy where t — ~; is the
zero function. See Section 2.6.2 for further details of the data generating
process.

survival context to certain covariance measures between X-residuals and Cox-Snell-
residuals, which we can link to existing test statistics for ordinary conditional inde-
pendence.

2.3.1 Neyman orthogonalization of a score statistic
Consider the one-parameter family of G;-intensities
A = ePXey,
for B € R. Within this one-parameter family, the hypothesis of conditional local in-

dependence is equivalent to Hy : S = 0. The normalized log-likelihood with n i.i.d.
observations in the interval [0, t] is

0(B) = % D (J log(X])dN; 4 f Aﬁsds)

7=1

n t
> < f BXjs +log(\js)dN; s — L eﬁXf*S)\j,Sds>.

7j=1

3\'—‘
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2 Nonparametric conditional local independence testing
Straightforward computations show that

aﬁﬁt(O) f Xj Sde s and — aﬁgt f XisAj,sds'

If X were known, the score statistic dgl;(0) satisfies E(03l¢(0)) = 7. Moreover, under
Hy : 8 =0 we have that —(9%&5(0) = (0g(0)) is a consistent estimate of the asymptotic
variance of the mean zero martingale dgf;(0). The hypothesis of local independence —
with A known — could thus be tested using the score test statistic —85&(0)2/0%&(0).

The nuisance parameter A is, however, unknown and we want to avoid restrictive
parametric assumptions about A. Replacing Xj;; by the residual process Gj; in the
score statistic dgl;(0) gives a Neyman orthogonalized score

1 Z” t
; f Gj,Sde,S'
j=1"0

This score is linear in A, which is used in supplementary Section 2.F to show that
it satisfies the Neyman orthogonality condition under Hy, cf. Definition 2.1 in Cher-
nozhukov et al. [2018]. In this section, it is also shown that the act of replacing X; with
G: = X; — II; can, in fact, be viewed as concentrating out the intensity of the score
statistic in the sense of Newey [1994]. While Neyman orthogonality is never invoked
explicitly, it is implicitly a central part of the asymptotic results for the LCM estimator
(in particular Lemma 2.A.7 in the supplement).

The perspective on the LCM from a Neyman orthogonalized score statistic suggests
that a test based on the LCM has most power against alternatives in the one-parameter
family A?. If it happens that the most important alternatives are of the form

A = PRy,
for some G;-predictable process X; different from X;, then we should replace X; by X;

in our test statistic, that is, in the residualization procedure. Examples of processes X;
are:

e transformations, X; = f(X;) for a function f
e time-shifts, X; = X;_4 for s > 0

e linear filters, X; = So k(t — s)Xsds for a kernel &

e non-linear filters, X; = ¢ <S0 (t— s)f(Xs)ds> for a kernel x and functions f
and (.

Any finite number of such processes could, of course, also be combined into a vector
process, and we could, indeed, generalize the LCM estimator (2.2.13) to a vector process.
The generalization is straightforward.
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2.3.2 Survival time with time-independent covariates

A different perspective on the test statistic is obtained if X is constant over time, if
Ny = 1(T < t) is the counting process of a survival time 7', and if F; = 0(Ng, Z;s < t)
where Z is a vector of additional baseline variables. Then the Fi-intensity is

A = 1(T = t)h(t, Z),

where h(t, Z) is the hazard function for T" given the baseline Z. In this special case, the
hypothesis of conditional local independence is equivalent to the ordinary conditional

independence
X UL T|Z (2.3.14)

We also find that

Y =EX AT <t) — Aiar)),
and in particular 3 = E(X (1 — Arp)) as T € [0, 1] by assumption. Since A is exponen-
tially distributed with mean 1, we may write

m = —cov(X, Ar).

Testing if v; # 0 in this particular setup is effectively a test of the conditional indepen-
dence (2.3.14). When (2.3.14) is true, it further holds that I, = E(X | F—) = E(X |
Z) = Ilj is independent of ¢, and if we incorporate this into our model of II, the LCM
estimator of v equals

A = % ‘ZX fl;0)(1 - Agy). (2.3.15)
nljed,

This is a (non-normalized) generalized covariance measure (GCM), see [Shah and Peters,
2020], which is simply the (negative) empirical covariance between the additive residuals
X; — ﬁj,o and the Cox-Snell residuals /AXTj.

Alternatively, consider the quantile residual process G;; = Fy(X;) — % where Fy(z) =
P(X <z | F_). If (2.3.14) is true, it holds again that Fi(x) = Fo(x) =P(X <=z | Z) is
independent of ¢, and our LCM estimator becomes

A" |J ’ Z Gjo< ) (2.3.16)

This is likewise an empirical covariance, but now between the generalized residuals and
the Cox-Snell residuals. This is closely related to the partial copula between X and T
given Z, which can be estimated as

1 ~ 1 ~
m ZJ] Gj70 (2 - eXp(—ATj)) .
JE€EJIn

See Petersen and Hansen [2021] for further details on the partial copula and how this
statistic can be used to test conditional independence.
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Under a combined rate condition on estimation of G and A, the endpoint statistics
above are known to be asymptotically Gaussian with mean zero when the hypothesis of
conditional independence in (2.3.14) holds. Within this survival setting, the endpoint
statistics (2.3.15) can, furthermore, be seen as a score test derivable from a semipara-
metric efficient score function. Section 2.E in the supplement gives the details for two
specific semiparametric survival models.

Whenever C:’j,t = éj,o is independent of time, e.g., if we incorporate (2.3.14) into the
residual model, the t-indexed LCM estimator is

NONEE é A
A Wj;ﬂ Gio (1(Tj <t)— ATjAt> )

which can be seen as a t-indexed extension of (2.3.16). For a general, time-dependent
residual process, the full t-indexed LCM estimator is

1 ~ t/\Tj ~ ~
A = = ST 1Ty < )G —f G;
|Jn]| ; A o Jo

The general results of this paper show that the t-indexed LCM estimator is asymptot-
ically distributed as a mean zero Gaussian martingale under Hy. This appears to be a
novel result even when X is constant over time. However, the main contributions of this
paper is to the case where X and Z are stochastic processes varying with time — where
the hypothesis of conditional local independence is also distinct from (2.3.14).

2.4 General asymptotic results

In this section we derive uniform asymptotic results regarding the general LCM estimator
as a stochastic process. In Section 2.5 we discuss how to construct tests of Hy based on
the asymptotic results.

We assume that N has a Gi-intensity A;, we let Ay = S(t) Asds denote the Gi-compensator
of N and let M; = N; — A; be the compensated local G-martingale. We also recall that
7" denotes the LCM estimator based on sample splitting as defined in Section 2.2.3.
Within this framework we consider the decomposition

7™ =™ + rRM + RM 4+ M 4+ D™ 4 DM (2.4.17)
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2.4 General asymptotic results
(n) pn) pn) pn) Hn) (n) :
where the processes U\, R, Ry, Ry, Dy, and D, "’ are given by

U™ f GjsdMj s, (2.4.18)
-T2

3 (n)

Rl,t \/|TJ§ j 7,8 ] s )\J s ) ds, (2‘4‘19)
RQ»t \/‘T]; f jS — Ys )de,57 (2420)
A(" )

R = S L@ ) (he i) e eaan

Dl,t W]; f st 7,8 js)d (2.4.22)
Z j 7, s - ()\j s )\j,s)ds- (2.4.23)

_]EJ

Note that the processes D; and Dj are (almost surely) the zero-process under Hy, since
the null is equivalent to A; being a version of A;. We proceed to show that:

e the processes U™ and D%n) — +/|Jn|y each converge in distribution,
e and the processes R;, Ro, R3, Dy converge to the zero-process.

For the analysis of each of Rj, Ro, and Dy, sample splitting is used to render the
summands conditionally independent.

These asymptotic properties imply that +/[J,[(3 — 7) is stochastically bounded
in general, so the LCM estimator will asymptotically detect if the LCM is non-zero.
Moreover, it will follow that U drives the asymptotic limit of the LCM estimator
under Hy. Based on these general asymptotic results we derive in Section 2.5 asymptotic
error control for tests based on the LCM estimator.

2.4.1 Asymptotics of the LCM estimator

Our asymptotic results are formulated in terms of uniform stochastic convergence, which
has also been discussed extensively in the recent literature on hypothesis testing [Shah
and Peters, 2020, Lundborg et al., 2022b,a, Scheidegger et al., 2022, Neykov et al., 2021].
Uniform convergence allows us to establish uniform asymptotlc level of our proposed test,
as well as power under local alternatives. We have collected key definitions and results
related to uniform convergence in Section 2.B in the supplement.

To state uniform assumptions and asymptotic results we need to indicate a range of
possible sampling distributions for which the assumptions apply and the results hold.
For this purpose, we extend our setup and allow all data to be parametrized by a fixed
parameter set ©. The set © is not a priori assumed to have any structure, and 6 € ©
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2 Nonparametric conditional local independence testing

simply indicates that NY, X% M\ GY etc. have #-dependent distributions. We generally
denote evaluation of processes or derived quantities for a specific #-value by a superscript,
with the LCM, ~?, in particular, depending on 6. The LCM estimator is likewise written
as 30 — ('Ayt(n)’g) for # € © to denote its dependence on the sampling distribution.
The superscript notation is, however, heavy and unnecessary in many cases and we will
suppress the dependency on 0 € © whenever it is not needed. Any result that does not
explicitly involve © should be understood as a pointwise result for each 6 € ©.

The parametrization allows us to express convergence in distribution and probability

uniformly over ©, which are denoted by 2, and P—/@—n respectively. These concepts are
defined rigorously in Definition 2.B.2 in the supplement. We note that uniform conver-
gence reduces to classical (pointwise) convergence if © is a singleton, which corresponds
to fixing the sampling distribution. We also introduce the parameter subset

@0 = {(9 €O ’ H[) is valid}, (2424)

consisting of all parameter values for which the hypothesis of conditional local indepen-
dence holds. Correspondingly, we will use D%, and 2 to denote stochastic conver-
gences uniformly over ©g.

We are now ready to formulate the underlying assumptions on the data required for
our asymptotic results. These assumptions may appear strong, but we argue in the

discussion in Section 7 that they are not unreasonable from a practical viewpoint.

Assumption 2.4.1. There exist constants C,C’" > 0, such that for any parameter value
feO:

i) The G?-intensity ¢ of NY is caglad with SUPp<i<1 A < C almost surely.
i) The residual process GY is caglad with SUPp<i<1 |G| < C" almost surely.

The estimator, /A\gn), of \¢ and the estimator, @En), of the residual process are assumed
to satisfy the same bounds as \; and G;. We note that Assumption 2.4.1 i) implies that
M, is a true Gi-martingale, and by the innovation theorem, A\, = E[A; | Fi—]. As a
consequence, the Fi-intensity A; inherits the boundedness from the Gi-intensity Ay, and
M, is an Fi-martingale. More generally, we have the following proposition ensuring that
stochastic integrals are true martingales, e.g., that I; is a martingale under Hy.

Proposition 2.4.1. Under Assumption 2.4.1 it holds that each of the processes

( fo ' f(GaM, Doy @ fo G, )

are mean zero, square integrable Gi-martingales for any f € C(R).

te[0,1]

To express the asymptotic distribution of U™ we need its variance function.

Definition 2.4.2. We define the variance function V: [0,1] — [0, ] as

V() =E (f GﬁdNS) (2.4.25)

0
for t € [0, 1]. &
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2.4 General asymptotic results

As everything else, the variance function, V = V9, is also indexed by the parameter 6,
which we, for notational simplicity, suppress unless explicitly needed.

By taking f(x) = z? in Proposition 2.4.1, Assumption 2.4.1 implies that for each
t e [0,1],

V@-E(ﬂ@&®><w

Moreover, V(t) is the variance of Sé GsdM,, which under Hj is the same as the variance
of I; = §; GsdM,.

With the assumptions above we can prove the following proposition about the uni-
form distributional limit of the process U™ in the Skorokhod space DJ0,1], the space
of cadlag functions from [0,1] to R endowed with the Skorokhod topology. A corre-
sponding pointwise result is an application of Rebolledo’s classical martingale CLT. Our
generalization to uniform convergence is based on a uniform extension of Rebolledo’s
theorem, see Theorem 2.C.4 in Section 2.C in the supplement.

Proposition 2.4.3. Under Assumption 2./.1 it holds that

U(TL),@ D/@ U@
in D[0,1] as n — oo, where for each 6 € ©, U’ is a mean zero continuous Gaussian
martingale on [0, 1] with variance function V°.

To control the remainder terms in (2.4.17) we will bound the estimation errors in
terms of the 2-norm, ||-||5, on La([0,1] x ), i.e.,

1
W2 = E (f Wfds)
0

for any process W e Lo ([0, 1] x ). We will make the following consistency assumptions
on A(™ and G,

Assumption 2.4.2. Assume that |J,| = o0 when n — © and let

fo =[le” =G0, ana w0y =[50 =57

Then each of the sequences g’(n), h?(n), and +/|J.|g’ (n)h%(n) converge to zero uni-
formly over © as n — o, i.e.,

lim sup max{g’(n), h(n), /| Jn|g? (n)h?(n)} = 0.

n—=9%0 geg

With this assumption we can establish that the remainder terms also converge uni-
formly to the zero-process.

Proposition 2.4.4. Under Assumptions 2./.1 and 2.4.2, it holds that

n),0, P/©
sup [R5
te[0,1]

0

asn — o fori=1,2,3.
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2 Nonparametric conditional local independence testing

To control the asymptotic behavior of the LCM estimator in the alternative we need
to control the two terms Dgn) and Dé").
Proposition 2.4.5. Let Assumptions 2.4.1 and 2.4.2 hold true.
i) The stochastic process D( —+/|Jnly? converges in distribution in (C[0,1], |- |e)
uniformly over © as n — .
i) If GY = X9 —T1¢ is the additive residual process, then D( 0 2o,
n — oo.

0 in D[0,1] as

We note that Dgn) might not vanish without an assumption like G; being the additive

residual process, and it is not clear if Dgn) will even converge in general. We will not

pursue an analysis of the asymptotic behavior of Dén) in the general case. We note,
however, that if we can estimate G with a parametric rate, that is, 4/|J,|g(n) = O(1),

(n)

then it follows from the Cauchy-Schwarz inequality that Dy is stochastically bounded,

and Dgn) still dominates in the alternative where v # 0.
We can combine all of the propositions into a single theorem regarding the asymptotics
of the LCM estimator, which we consider as our main result.

Theorem 2.4.6. Let Assumptions 2.4.1 and 2.4.2 hold true.
i) It holds that

VIR 22 0

in D[0,1] asn — oo, where for each 6 € Oy, U? is a mean zero continuous Gaussian
martingale on [0, 1] with variance function V9.

i1) For the additive residual process it holds that for every ¢ > 0 there exists K > 0
such that

lim sup sup P («/|Jn| RO~ A0 > K) <e. (2.4.26)

n—ow fe®

Thus we have established the weak asymptotic limit of 1/[J,[7(™ under Hy. However,
the variance function V of the limiting Gaussian martingale is unknown and must be
estimated from data. We propose to use the empirical version of (2.4.25),

ZJ ]”S dN]S—|J1n| ooy (c?*;"))Q (2.4.27)

n
|J | j€Jn T<E:AN; s=1

for which we have the following consistency result.

Proposition 2.4.7. Under Assumptions 2./.1 and 2.4.2 it holds that

P/O

sup_[Vi(t) = V(1)) == 0,

te[0,1]

as n — 0.
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2.5 The Local Covariance Test

We emphasize that V is only the asymptotic variance function of the LCM estimator
under Hy. It is always the asymptotic variance function of U, but in the alternative
the asymptotic distribution of 'Ay(”) also involves the asymptotic distribution of Dgn) and
is thus more complicated.

Tests of conditional local independence can now be constructed in terms of univariate
functionals of (™ and V, that quantify the magnitude of the LCM. The asymptotics of
such test statistics under Hy are described in the following corollary, which is essentially

an application of the continuous mapping theorem.

Corollary 2.4.8. Let J: D[0,1] x D[0,1] — R be a functional that is continuous on the
closed subset C[0,1] x {V?: 0 € Oy} with respect the uniform topology, i.e., the topology
generated by the norm |(f1, f2)| = max{|filw, |f2elw} for fi,fo € D[0,1]. Define the
test statistic

Dh = 7 (VITA™e, v5).
Under Assumptions 2.4.1 and 2.4.2, it holds that

D/6,

DY 22 WV, n— o, (2.4.28)

where UY is a mean zero continuous Gaussian martingale with variance function V7.

2.5 The Local Covariance Test

In this section we introduce a practically applicable test based on the LCM estimator.
Using the asymptotic distribution of the LCM estimator we show that the asymptotic
distribution of our proposed test is independent of the sampling distribution under Hy
and has an explicit representation. We show, in addition, uniform asymptotic level of
the test, and we give a uniform power result for the additive residual process. Finally,
we modify the test to be based on a cross-fitted estimator of the LCM instead of using
sample splitting, and we show uniform level of that test.

To construct a test statistic based on the LCM estimator it is beneficial that its
distributional limit does not depend on the variance function. As a simple example,
consider the endpoint test statistic:

(Va(1) VTR (2.5.29)

which under Hy converges in distribution to V(l)_%Ul by Corollary 2.4.8. The distri-
bution of the latter is the standard normal distribution, and in particular it does not
depend on V.

Any test statistic constructed from (™ should capture deviations of ~v; away from 0.
The test statistic in (2.5.29) does, however, only consider the endpoint of the process,
and since v is not necessarily monotone, ; may deviate more from 0 for other ¢ € [0, 1].
Thus in order to increase power against such alternatives we consider the test statistic

T, = 7"\|Jn| sup |?§n)| (2.5.30)

Vn(l) o<i<l1
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2 Nonparametric conditional local independence testing

We refer to T, as the Local Covariance Test statistic (LCT statistic). We proceed to
show that the LCT statistic can be turned into a test of Hy with asymptotic level «,
and which has asymptotic power against any alternative with a non-zero LCM. This is
the best we can hope for of any test based on the LCM estimator.

We note that it might be possible to establish similar results for other norms of the
LCM, for example, a statistic based on a weighted Lo-norm. However, since other
norms of the distributional limit U will generally have a distribution with a complicated
dependency on V, we believe that the LCT statistic is the simplest to construct.

To establish uniform asymptotic level via Corollary 2.4.8 for tests based on test statis-
tics such as (2.5.30) we need to assume that the asymptotic variances in ¢t = 1 are
uniformly bounded away from zero.

Assumption 2.5.1. There exists 1 > 0 such that for all 6 € © it holds that V?(1) = ;.

2.5.1 Type | and type Il error control

We proceed to show that under Hy, the LCT statistic is distributed as supg<;<; |Bl,
where (By) is a standard Brownian motion. From this point onwards, we let S denote a
random variable with such a distribution and note that its CDF can be written as:

4G (—1)k m2(2k + 1)?
k=0

See, for example, Section 12.2 in Schilling and Partzsch [2012] where the formula is
derived from Lévy’s triple law.

The p-value for a test of Hy equals 1— Fg (YA“ n), and since the series in (2.5.31) converges
at an exponential rate, the p-value can be computed with high numerical precision by
truncating the series. Given a significance level a € (0, 1), we also let z;_, denote the
(1 — a)-quantile of Fg, which exists and is unique since the right-hand side of (2.5.31) is
strictly increasing and continuous. The Local Covariance Test (LCT) with significance
level « is then defined by

U, = 0% = 1(Fg(T,) > 1—a) = LT, > z1_4). (2.5.32)

From Theorem 2.4.6 we can now deduce the asymptotic properties of the LCT under

the hypothesis of conditional local independence. Recall that 2%, denotes uniform

convergence in distribution under Hy.

Theorem 2.5.1. Let Assumptions 2.4.1, 2.4.2 and 2.5.1 hold true. Then it holds that
70 2%, 5
n

asn — . As a consequence, for any « € (0,1),

N

lim sup sup P(0%Y = 1) < a.

n—o (eBq

In other words, the Local Covariance Test defined in (2.5.32) has uniform asymptotic
level «v.
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2.5 The Local Covariance Test

In general, we cannot expect that the test has power against alternatives to Hy for
which the LCM is the zero-function. This is analogous to other types of conditional
independence tests based on conditional covariances, e.g., GCM [Shah and Peters, 2020].
However, we do have the following result that establishes power against local alternatives
with |v]e decaying at an order of at most |.J,,| /2.

Theorem 2.5.2. Let Assumptions 2./.1 and 2./.2 hold true. Using the additive residual
process it holds that for any 0 < o < B < 1 there exists ¢ > 0 such that

liminf inf P(UXY =1) > g,

n—a0 QEAC n

where Aen = {0€ 0 | |10 = c| Jn| V3.

2.5.2 Extension to cross-fitting

In Section 2.4 we considered sample splitting with observations indexed by JS used
to estimate the two models and with observations indexed by J, used to estimate ~.
Following Chernozhukov et al. [2018], we can improve efficiency by cross-fitting, i.e., by
flipping the roles of J,, and JJ to obtain a second equivalent estimator of . Heuristically,
the two estimators are approximately independent, and thus their average should be a
more efficient estimator. This procedure generalizes directly to a partition J!u---UJE =
{1,...,n} of the indices into K disjoint folds. The partition is assumed to have a uniform
asymptotic density, meaning that |J¥|/n — & as n — oo for each k.

We estimate G and A using (J¥)¢ = {1,...,n}\J* and subsequently estimate y using
Jf{. Then the K-fold Cross-fitted LCM estimator, abbreviated as X-LCM, is defined as

the average LCM estimator over the K folds, i.e.,

CK,(n Ak, (n
SH) _ ’ k| D f GEManm), (2.5.33)

jeJk

where for each j € J¥, the processes @?’(n) and ]\//Tf’(n) are the model predictions of G

and M, respectively, based on training data indexed by (Jff)c. We also define a K-fold
version of the variance estimator:

t (é"?"”))Q dN; .. (2.5.34)

Now, similarly to the LCT statistic, the cross-fitted estimator can be used to construct

a test statistic,
va = sup
) o<t<1

from which we define the following test of conditional local independence.

(2.5.35)
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2 Nonparametric conditional local independence testing

Definition 2.5.3. Let a € (0,1) and let TX be the test statistic from (2.5.35). The
K-fold Cross-fitted Local Covariance Test (X-LCT) with significance level « is defined
by

UK = 1(F(TEY>1-a) = 1T > 2_4),
where z1_, is the (1 — a)-quantile of the distribution function Fyg given in (2.5.31). &

We provide a summary of the computation of the X-LCT in Algorithm 2. The asymp-
totic analysis of ?y(") generalizes to 55" but we will refrain from restating all results
for the K-fold cross-fitted estimator. For simplicity, we focus on the fact that the X-LCT
has asymptotic level a.

Theorem 2.5.4. Suppose that Assumption 2.4.2 is satisfied for every sample split J¥ U
(JFY k=1,...,K. Under Assumptions 2.4.1 and 2.5.1, the X-LCT statistic satisfies

TKS 2%, g

for n — oo0. In particular, the X-LCT has uniform asymptotic level .

Note that cross-fitting recovers full efficiency in the sense that the scaling factor is
y/n rather than /|.J,,|, which leads to a more powerful test. Moreover, the asymptotic
distribution of TT{( does not depend on the number of folds K, and any difference between
various choices of K can thus be attributed to finite sample errors. Larger values of K
will allocate more data to estimation of G and A, which intuitively should be the harder
estimation problem. Following Remark 3.1 in Chernozhukov et al. [2018], we believe
that a default choice of K = 4 or K = 5 should be reasonable in practice.

2.6 Simulation study

In this section we present the results from a simulation study based on the Cox example
introduced in Section 2.2.2. We elaborate in Section 2.6.1 on the full model specification
used for the simulation study — which will also illuminate how II and A can be modeled
and estimated. The results from the simulation study focus on the distribution of the
X-LCT statistic T,f( and validate the asymptotic level and power of the X-LCT \ilff . The
latter is also compared to a hazard ratio test based on the marginal Cox model (2.2.11).
The simulations were implemented in Python and the code is available'.

2.6.1 Cox model continued

Consider the same setup as in Section 2.2.2. To fully specify the model we need to
specify the distribution of the processes X, Y and Z. We suppose that X and Y can be
written in terms of Z as

¢ ¢
X, = f Zspx (s, t)ds + V4, and Y, = J Zspy (s,t)ds + Wy, (2.6.36)
0 0

"https://github.com/AlexanderChristgau/nonparametric-cli-test
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2.6 Simulation study

Algorithm 2: K-fold cross-fitted local covariance test (X-LCT)

1 input: processes (N;, X;, Z;)j=1,...n, partition J} U U JE of indices into K
folds;

2 options: historical regression methods for estimation of A\ and G given (N, Z),

3 discrete time grid T < [0, 1], significance level « € (0, 1);

4 begin

5

6

for k=1,...,K do

apply Algorithm 1 on sample split J* U (J¥)¢ to compute (") on the
grid T;
7 use Equation (2.4.27) on sample split J* U (J¥)¢ to compute ]N/kn(l) :
8 compute 55 = % ZkK:1 5 () on grid T ;
9 compute Vi, (1) = % 25:1 f}k,n(l);

10 compute the X-LCT statistic T = \/n - maxser |’3ff(’(n)|/4/l>K,n(1) ;

11 compute p-value p =1 — FS(TJ( ) by truncating the series in Equation

(2.5.31).

12 output: the X-LCT ¥X = 1(p < a), and optionally the p-value p;

where py and py are two functions defined on the triangle {(s,t) € [0,1]? | s < t}, and
where V = (V)o<t<1 and W = (W})p<i<1 are two noise processes with mean zero. The
processes Z, V and W are assumed independent, which implies (2.2.10) and thus that
N is conditionally locally independent of X given F; = ]-"tN "z

The specific dependency of X and Y on Z is known as the historical functional linear
model in functional data analysis [Malfait and Ramsay, 2003]. Within this model,

t
I, — B(X, | F) - J Zupx (s, 8)ds, (2.6.37)
0

and on (T > t)
E(e¥ | F) = 0 Zspy(s,t)dSE(eWt | T >1t) = ePo(D+5; Zspy (st)ds
where By(t) = log(E(e* | T > t)). Since
At = LT = t)\ePZE(EY | F),

it follows that on (T > t),

T
log(\) = Bo(t) + BZ + L Zupy (s,1)ds, (2.6.38)

where the two baseline terms depending only on time have been merged into Bo.
The computations above suggest how the estimators A" and TI could be con-
structed. That is, (™) could be based on estimates of 3, By and py from the observations
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2 Nonparametric conditional local independence testing

(T}, Zj) jese, and 1™ could be based on estimates of px from (Xj, Zj)jejc. We would
then have

t
it — JO 2,50 (s, 1)ds

(n)

for j € J,, where p )? denotes the estimate of px, and similarly for )

Jit
of estimators ﬁg?) and ﬁ(; ) and their theoretical properties are reviewed in Section 2.D

in the supplement. Our conclusion from this review is that for the historical functional
linear model, sufficient rate results should be possible but have not yet been established
rigorously.

(

) . Particular choices

2.6.2 Sampling scheme

The actual time-discretized simulations and computations were implemented using an
equidistant grid T = (¢;)7_, with ¢ = 128 time points 0 = ¢; < --- < ¢, = 1. Inspired by
Harezlak et al. [2007], we generated the processes as follows: let £ € R and V, W, W/ e
RT be independent random variables such that ¢ ~ A(0,13) and such that V, W, and

WV are identically distributed with V;,, Vi, = V4y,..., Vi, = Vi, b N(0,1/q). Then the
process Z is determined by Z; = & + &ot + sin(2n&st) + WV, for ¢t € T. The processes X
and Y were then given by the historical linear model (2.6.36) with kernels px and py
being one of the following four kernels:

zero: (s,t) — 0, constant: (s,t) — 1,
Gaussian: (s, t) — e 279" sine: (s,t) — sin(4t — 20s).

To compute X and Y, we evaluated the kernels on {(s,t) € T? | s < t} and approximated
the integrals by Riemann sums. The full intensity for N; = 1(T' < t) was specified with
a Weibull baseline of the form A" = 1(T > #)81t2exp (62Z; + Y;), for B1 > 0 and a
choice of 9 € {—1,1}. To sample T" we applied the inverse hazard method, which utilizes
that Af}‘“ is standard exponentially distributed. That is, we sampled E ~ Exp(1) and
numerically computed T = max{t € T | Af"ll! < E} as a discretized approximation. For
any given parameter setting, the baseline coefficient 81 was chosen sufficiently large to
ensure that Af*!! > F would occur before time ¢ = 1 in more that % -n samples.

The simulation setting used to sample the data for Figures 2.2.3 and 2.2.4 was 5 = —1
and px = py = constant.

With this setup, Assumption 2.4.1 is satisfied if V', W and WV were bounded. Since we
use the Gaussian distribution, they are technically not bounded, but they could be made
bounded by introducing a lower and upper cap. Due to the light tails of the Gaussian
distribution such caps would have no noticeable effect on the simulation results, and the
results we report are generated without a cap.

The implementation details for the X-LCT and the hazard ratio test are given in
Section 2.G.1 in the supplement.
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Figure 2.6.5: Empirical cumulative distribution functions of simulated p-values for the
cross-fitted local covariance test and the hazard ratio test. The simulated
data satisfies the hypothesis of conditional local independence, so the p-
values are supposed to be uniformly distributed, and the CDF should fall

on the diagonal dotted line.
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2 Nonparametric conditional local independence testing

2.6.3 Distributions of p-values under H,

We examine the distributional approximation Tf % 8, cf. Theorem 2.5.4, by comparing
the p-values 1 — Fg(TX) to a uniform distribution. Figure 2.6.5 shows the empirical
distribution functions of the p-values computed from data simulated according to the
scheme described in the previous section. The results are aggregated over the two choices
of By € {—1,1} since these two settings were found to be similar. For more detailed
results from the experiment, see Figure 2.G.1 in Section 2.G in the supplement, which
also includes the p-values corresponding to the endpoint test statistic.

For the hazard ratio test, Figure 2.6.5 shows that the p-values are sub-uniform for the
zero-kernel. In this case, the marginal Cox model is correct, and the non-uniformity of
the p-values can be explained by the Ls-penalization. For the constant and Gaussian
kernels the hazard ratio test fails completely, whereas for the sine kernel, the mediated
effect of Z on T through Y is more subtle, and the model misspecification only becomes
apparent for n = 2000. Overall, these results are consistent with the reasoning in
the Section 2.2.2: a test based on the misspecified Cox model will wrongly reject the
hypothesis of conditional local independence.

For the proposed X-LCT, Figure 2.6.5 shows that the associated p-values are slightly
anti-conservative for n = 100. This is to be expected, and can be explained by the finite
sample errors leading to more extreme values of 7K than the approximation by S. As
n increases, these errors become smaller — and for n = 2000 the p-values actually seem
to be sub-uniform. The sub-uniformity may be explained by the time discretization,
since the maximum of the process is taken over T rather than [0,1]. Figure 2.G.3 in
Section 2.G in the supplement illustrates the asymptotic effect of the time discretization
which supports this claim. Another support of this claim is that the endpoint test does
not appear to give sub-uniform p-values for large n, see Figure 2.G.1. We finally note
that the distributions of the p-values for our proposed test is largely unaffected by the
kernel used to generate the data.

2.6.4 Power against local alternatives

To investigate the power of the X-LCT we construct local alternatives to Hy in accor-
dance with the right graph in Figure 2.2.2 by replacing Y; by the process Y; + %Xt.
That is, for pg # 0, blood pressure is then directly affected by pension savings, and N; is
no longer conditionally locally independent of Xy given F;. In terms of the full intensity,

these local alternatives are equivalent to

Al — (T = 1) 8182 exp (ﬁzzt +Y;+ pOXt> . (2.6.39)
vn
We simulated data for the dependency parameter py € {0,5,10}. Note that py = 0
corresponds to our previous sampling scheme with conditional local independence. For
each of the 96 = 4 x 2 x 4 x 3 choices of kernel, 82, n and py we ran the tests 400 times
and computed the p-values. For simplicity, we report the rejection rate at an o = 5%
significance level and the results are shown in Figure 2.6.6.
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Figure 2.6.6: For each py € {0,5,10}, the lines show the average rejection rates of our
proposed test X-LCT (blue) and the hazard ratio test (orange) as functions
of sample size, with each average taken over 8 different settings. For each
setting, the rejection rate is computed from 400 simulated datasets at a 5%
significance level and the rejection rate is displayed with a dot.

In the leftmost panel, the data was generated under Hy and the plot shows what we
noted previously, namely that the X-LCT holds level for large n, whereas the hazard
ratio test does not. For the local alternatives, pg = 5 and py = 10, we note that the
power of the hazard ratio test is quite sensitive to the simulation settings. For some
settings it has no power, while for others it has some power.

In contrast, the proposed X-LCT has power against all of the local alternatives. The
power increases with n initially but stabilizes from around n = 1000. This is similar
to the behavior observed under the null hypothesis and is not surprising. We expect
that the sample size needs to be sufficiently large for the nonparametric estimators to
work sufficiently well, and we expect the sufficient sample size to be mostly unaffected
by the value of py. For fixed n, we also note that the power of WX is fairly robust with
respect to the choice of S and the choice of kernel. Overall, we find that the X-LCT
is applicable in these settings with historical effects: it has consistent power against the
y/n alternatives while controlling type I error for n reasonably large.

In Section 2.G in the supplement, we provide additional numerical results for time-
varying alternatives, and we compare the X-LCT with its endpoint counterpart.

2.7 Discussion

The LCM was introduced as a functional parameter that quantifies deviations from the
hypothesis Hy of conditional local independence. We showed how the parameter may
be expressed in several ways, but that it is the representation in terms of the residual
process that allows us to estimate the LCM with a y/n-rate under Hy without parametric
model assumptions. The residual process was introduced as an abstract model of X; for
each t given the history up to time ¢, and we showed that such a residualization could
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2 Nonparametric conditional local independence testing

be viewed as a form of orthogonalization. Similar ideas have been used recently for
classical conditional independence testing, such as GCM [Shah and Peters, 2020], tests
based on the partial copula [Petersen and Hansen, 2021], and GHCM [Lundborg et al.,
2022b]. It is, however, not possible to use any of these to test Hy, which cannot be
expressed as a classical conditional independence. Our test based on the LCM is the
first nonparametric test of conditional local independence with substantial theoretical
support, and we propose to test Hy in practice by using X-LCT based on the cross-fitted
estimator of LCM.

Contrary to the tests of conditional independence mentioned above, we need sample
splitting — even under Hg — to achieve our asymptotic results. We do not believe that
this can be avoided. The standard argument to avoid this uses classical conditional
independence in a crucial way, which does not translate into our framework — basically
because we condition on information that changes with time. Our simulation study
also indicates that sample splitting or cross-fitting is needed in practice for the LCM
estimator to be unbiased under Hj.

While our cross-fitted estimator of the LCM, the X-LCM, share some of the general
patterns of other double machine learning procedures — including the overall decompo-
sition (2.4.17) — our analysis and results required a range of generalizations of known
results and some novel ideas. The asymptotic distribution of the leading term, U () s
also a well known consequence of Rebolledo’s CLT, see, e.g., Section V.4 in [Andersen
et al., 1993] for related results in the context of survival analysis. However, we generalized
this result to uniform convergence in the Skorokhod space DJ0, 1], and we introduced
new techniques for handling the remainder terms. These novel techniques are made
necessary by the decomposition (2.4.17) being a decomposition of stochastic processes
indexed by time. We outline below the three most important technical contributions we
made.

First, to obtain uniform control of level and power, all asymptotic results in Section
2.4 are formulated in terms of uniform stochastic convergence. Since this notion of
convergence had not previously been considered on general metric spaces, and especially
not on the Skorokhod space, we had to develop the necessary theory. This development
could be of independent interest, and we have collected the general definitions and
main results on uniform stochastic convergence in metric spaces in Section 2.B in the
supplement. This framework also allowed us to show a uniform version of Rebolledo’s
martingale CLT in Section 2.C in the supplement.

Second, to establish distributional convergence under Hy, we need to control the re-

) uniformly over ¢. The third term, R:(,)n), is simple to bound, and by

exploiting Doob’s submartingale inequality, the second term, Rén), can also be bounded.

. n
mainder terms RZ( .
b

The most difficult first term, Rgn), was controlled using stochastic equicontinuity via
an exponential tail bound and the use of the chaining lemma. The necessary general
uniform stochastic equicontinuity and chaining arguments are collected in Section 2.B.3
in the supplement.

Third, to achieve rate results in the alternative, the processes Dgn) and Dgn) must be

controlled. The process Dgn) does, like U™ not involve any estimation, and its dis-
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tributional convergence follows from a general CLT argument for continuous stochastic

processes. The term Dén) is more difficult to handle, as it may not have mean zero if

G is not the additive residual process. However, X; cancels out in ég") — Gy for the

)

additive residual process, which makes the difference F;-predictable, and Dgn can then
be bounded similarly to Rgn). For a general residual process, it seems possible for Dén)
to have a bias of order 1/|J,|g(n).

Our main result, Theorem 2.4.6, is stated under two assumptions. The second, As-
sumption 2.4.2, is a straightforward generalization to our setup of similar assumptions
in the double machine learning literature on rates of convergence for the two estimators
used. Both estimation errors are measured using a 2-norm, and it is plausible that we
can relax one norm to a weaker form of convergence if we simultaneously strengthen
the other norm. The first assumption, Assumption 2.4.1, requires uniform bounds on
both A and G. This is a strong assumption but perhaps not particularly problematic
from a practical viewpoint. Indeed, G is a process we can choose, and we can thus make
it bounded if necessary. And though many theoretically interesting counting process
models have unbounded intensities, a large cap on the intensity will make no difference
in practice. We believe, nevertheless, that it is possible to relax Assumption 2.4.1 to
a weaker form of control on the magnitudes of A and G as functions of time, e.g., mo-
ment bounds uniform in §. However, such a generalization will come at the expense of
considerably more technical proofs, and we did not pursue this line of research.

A majlor practical question is whether we can estimate A and G with sufficient rates,
e.g. n~17¢ In Section 2.D in the supplement we give an overview of some known
and some conjectured rate results for specific forms of A and II. Beyond parametric
models we conclude that the existing rate results are scarce, and we regard it is as an
independent research project to establish rates for general historical regression methods.

Another question is whether we can replace the counting process N by a more general
semimartingale. Commenges and Gégout-Petit [2009] define conditional local indepen-
dence for a class of special semimartingales, and Mogensen et al. [2018] and Mogensen
and Hansen [2022] show global Markov properties for local independence graphs of cer-
tain Ito processes, which are, in particular, special semimartingales. Thus conditional
local independence is well defined beyond counting processes, and we believe that most
definitions and results of this paper would generalize beyond N being a counting process.
Besides some additional technical challenges, the major practical obstacle with such a
generalization is that we cannot realistically assume to have completely observed sample
paths of It6 processes, say. The discrete time nature of the observations should then be
included in the analysis, and this is beyond the scope of the present paper.

Irrespectively of the remaining open problems, the simulation study demonstrated
some important properties of our proposed test, the X-LCT. First, it was fairly simple to
implement for the specific example considered using some standard estimation techniques
that were not tailored to the specific model class. Second, it had good level and power
properties and clearly outperformed the test based on the misspecified marginal Cox
model. Third, both Neyman orthogonalization as well as cross-fitting were pivotal for
achieving the good properties of the test.
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Supplement to ‘Nonparametric conditional local independence
testing’

The supplementary material is organized as follows: In Section 2.A, we give the proofs of
the results of the main text. In Section 2.B, we formulate a general uniform asymptotic
theory for metric spaces, whereafter we specialize the theory to the Skorokhod space
DJ0,1] and chaining of stochastic processes. In Section 2.C, we state Rebolledo’s mar-
tingale central limit theorem, and then we generalize the result to a uniform version that
is used in the proofs. In Section 2.D, we discuss estimation of the intensity A and the
residual process G in practice. In particular, we compare known rate results with the
rates required in Assumption 2.4.2. In Section 2.F, we compare the LCM estimator with
existing work in semiparametric survival models. In Section 2.F, we provide mathemat-
ical details regarding Neyman orthogonality. Finally, Section 2.G contains additional
details, numerical results, and figures related to the simulation study of Section 2.6.

2.A. Proofs of results in the main text

2.A.1 Proof of Proposition 2.2.5
The process G is caglad and G;-predictable by assumption, and the process I = (I;) is

a stochastic integral of Gy w.r.t. a local G;-martingale under the hypothesis Hy. It is
thus also a local Gi-martingale under Hy. By definition, Iy = 0, and if I is a martingale,
Y = E(I¢) = E(lo) = 0. O
2.A.2 Proof of proposition 2.2.6

Suppose that H is non-negative, caglad and Gi;-predictable, then since S(t) H,dM; is a
local Gi-martingale it follows by monotone convergence along a localizing sequence that

E (ﬂ Hst5> -E ( L t stsds) = L tIE(HS)\S)ds (2.A.1)

for all t € [0,1]. We can apply the identity above with H the positive and negative part
of G, respectively, and the integrability assumption ensures that (2.A.1) also holds with
H = G. 1t follows that

v =E(l;) =E (Jt Gs(As — )\S)ds> = fE(GS(AS — X)) ds.

0 0

The latter expectation is indeed a covariance since E(Gg) = E(E(Gs | Fs—)) = 0. O

2.A.3 Proof of Lemma 2.4.1

Before proving Lemma 2.4.1, we first state general martingale criteria in the context of
counting processes.
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2 Nonparametric conditional local independence testing

Lemma 2.A.1. Let (Hy) be a locally bounded Gi-predictable process, let N be a counting
process with a Gi-intensity A¢, and let My = Ny — Sé Agds.

If Sé Xsds (or equivalently Ny ) is integrable, then M; and M7 — Sé Asds are each G-
martingales. If, in addition, Sé H2X.ds is integrable, then Sg H,dM is a mean zero
square integrable martingale.

Proof. The first part is Lemma 2.3.2 and Theorem 2.5.3 in Fleming and Harrington
[2011]. For the second part, assume that Sé Agds and Sé H2M\ds are both integrable. In
this case, the G;-predictable quadratic variation of M is (M )(t) = Sé Asds by the first
part. Then it remains to note that (Hy) is a locally bounded G;-predictable process,
so the conditions of Theorem 2.4.4 in Fleming and Harrington [2011] are satisfied if
Sé H?2M\ds is integrable. This establishes the second part. O

We now return to the proof of Lemma 2.4.1. Let f € C(R), and we shall prove that
Sé f(Gs)dMy is a mean zero, square integrable G;-martingale. The proof for the integral
with f (éﬁ”)) is identical.

Continuity of f implies that C = sup,e[_cr o |f(2)] < 00 and that (f(Gy)) is a G-
predictable process. By Assumption 2.4.1, the process (f(Gy)) is almost surely bounded
by Cy and therefore

1
E <J f(Gs)Q)\sds> < C}C < .
0

Thus we can apply Lemma 2.A.1 to conclude that Sé f(Gs)dM; is a mean zero, square
integrable G;-martingale. O

2.A.4 Proof of Proposition 2.4.3

As noted elsewhere, the explicit parametrization of all objects by 6 is notationally heavy,
and there will thus be an implicit parameter value § € © in most of the subsequent
constructions and arguments.

To simplify notation we write

t
n n n G's
o=y fo HAM;,, where H = —2

SVIFAE

We will use a uniform extension of Rebolledo’s martingale central limit theorem on the
sequence (U(™),>; to show the result. See Section 2.C for a discussion of Rebolledo’s
CLT and Theorem 2.C.4 for its uniform extension.

Define g}” be the smallest right continuous and complete filtration generated by the
filtrations {G;¢ | j € Jn}. We can apply Lemma 2.4.1 to each of the terms of U™
to conclude that the j-th term is a square integrable, mean zero GJ';-martingale. By
independence of the observations for each j, we can enlarge the filtration for each term
and conclude that they are also square integrable, mean zero Q?—martingales. Thus U™
is also a square integrable, mean zero Q[”-martingale.

J€JIn
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To apply Theorem 2.C.4 first establish that the conditions in Equation (2.C.2) are
fulfilled. By Proposition 2.C.5, we have that

t
U™ (1) Zf JZ )\Jsds Jl ZJGiSAj,Sds.
| n’jGJn 0

jeJn

By directly applying the bounds from Assumption 2.4.1, we see that the square mean
of Sg G?\,ds is bounded by C?(C’)%. Thus, for fixed t € [0, 1], the uniform law of large
numbers [Shah and Peters, 2020, Lemma 19] gives that

t
U™ (t) = Ji Z J G Ajsds RNy ) (J Gg)\sds> =V(t)
0

]eJ

for n — o0, since the integrals are i.i.d. with the same distribution as Sé G?\,ds. This
establishes the first part of the condition in Equation (2.C.2). For the second part, we
also have from Proposition 2.C.5 that

W = 3 [ () 1 (1212 ) ans.
jEJ
Ef !Gys\ \/m>Aj,sd3 (2.A.2)

’ n|j€J

for each ¢t € [0,1] and € > 0. From Assumption 2.4.1, we note that for n sufficiently
large such that |J,| > (C’)?/€?, it holds that P (\Gj,s\ > e\/W) = 0 for all j € J,,.
As a consequence, the terms in (2.A.2) are almost surely zero for n sufficiently large
uniformly over ©. It follows that <U€(n)>(t) Lo, 0, which establishes the second part of
(2.C.2).

We finally note that the collection of variance functions, (V?)gee, is uniformly equicon-
tinuous and bounded above under Assumption 2.4.1. This is established in Lemma 2.A .2
below. We have thus verified all the conditions of Theorem 2.C.4, so we conclude that
0 D/O

U U’
in D[0,1] as n — o0, where U? is a mean zero continuous Gaussian martingale with
variance function VY. O

Note that the convergence of (2.A.2) is established directly from the uniform bounds
in Assumption 2.4.1. However, the convergence could also be established under a milder
conditions with alternative arguments. For example, under the weaker assumption of
uniformly bounded variance functions, dominated convergence can be used to establish
L1-convergence.

In the proof above we invoked the following lemma, which we will also use in several
proofs in the sequel.
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2 Nonparametric conditional local independence testing

Lemma 2.A.2. Under Assumption 2.4.1, the collections (7%)geco and (V?)geo are each
uniformly Lipschitz and in particular uniformly equicontinuous. Moreover, it holds al-
most surely that

1
sup |y <2CC" and V(1) =E (j G§A5d5> < C(C)2
te[0,1] 0

Proof. For any 0 < s < t < 1, a direct application of Assumption 2.4.1 and Proposi-
tion 2.4.1 yields

t t
|’7t - 75’ <E f GudN, — f Guiudu

¢
<E (J |Gul (A + /\u)du) < 20C'(t — ),

and similarly,

V() —V(s) =E (Jt GgAudu> < C(CH3(t — s).

This establishes the first part. The bounds follow from inserting (s,t) = (0,¢) in the
first inequality and (s,t) = (0,1) in the second inequality. O

2.A.5 Proof of Proposition 2.4.4

We will divide the proof into three lemmas for each of the remainder terms Rgn), Rén)

and Rén) , where we establish convergence to the zero-process uniformly over ¢ and 6.
However, note that the notion of uniform convergence differs for the process index,
t € [0, 1], and the parameter, § € ©, as we need to show that

Vie{1,2,3}¥e>0: lim SupIP’( sup |RY,| > e) ~0.
N0 gee  \e[0,1]

For a general discussion of the relation between weak convergence and convergence in
probability uniformly as a stochastic process, see Newey [1991]. For a general discussion
of uniform stochastic convergence over a distribution parameter, see Section 2.B and
the references contained therein. In Section 2.B.3, we discuss the combination of both
convergences.

As in the proof of Proposition 2.4.3, Gf denotes the smallest right continuous and
complete filtration generated by the filtrations {G;; | j € J,}. Analogously, we let
:? *“ be the smallest right continuous and complete filtration generated by the filtrations

{Gj+ | 7€ J5}. We start by considering Rgn), since this is the easiest case.

Lemma 2.A.3. Under Assumption 2.4.2 it holds that sup[q 1 |Rg?| 2900,

Proof. We will show the result by showing that
supE ( sup ]Rg?ﬂ) -0

0e© o<1
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as n — o0. Using that the random variables

sup ‘Gj,t — ég?’

- sup ’)\j,t — XE?‘
0<t<1

0<t<1

for j € J,, are identically distributed for each fixed n > 2, we have that
E < sup ‘Rdt |>
0<t<1

ol W;J =) (12

_ _ (”
< 5 = (g, lose - G2 e - 32
T EU ‘G — G| d)
| Tn|E \/f G, — G \/f A—)\") ® ds

< m\/E <L1 (6, - @g"))2d3> \/IE <£ (A - xgm)%s)

[Jnlg(n)h(n).
By Assumption 2.4.2, /|J,|g(n)h(n) — 0 uniformly over © as n — o0, so the result
follows. H
(n)

Next we proceed to the remainder process Ry .

‘)\ Q)

P/©

Lemma 2.A.4. Under Assumptions 2./.1 and 2./.2, it holds that supepo 1 |R2 )| 0.

Proof. We first write

(n
27 f s G dM'75,
t /’J ]; JsS J

and note that Rgft) is a square integrable, mean zero gf—martingale conditionally on
G, This follows by applying Lemma 2.4.1 to each of the terms, which are i.i.d. con-
ditionally on G}"°. We conclude that the squared process (Rg:?)Q is a GI'-submartingale

conditionally on ,C’;?C By Doob’s submartingale inequality we have that

JP’< sup |R2t| ) ( sup <R§Z))2 > e2>
o<t<1 o<t<1

S ECACHRTIED)
E (Var (Rénl) | Q?C»

€2

N
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for € > 0. The collection of random variables

(J) (61 652) ans,

are i.i.d. conditionally on G°. Therefore,
n 5n,c 1 ! ~(n 5n,c
Var (Ré,l) ‘ Ql’ ) = m 2 Var <J;) <Gj,s - Gg‘,s)) de,s ’ gl’ )
" gedn
1 A\ 2 ~
floinyose )

:E<O

Jj€Jn

f: (6, - @§">)2 Asds | gl>
<C-E <L1 (Gs - ég">)2ds | g?0>

where we have used that A is bounded by Assumption 2.4.1 (i). Thus

E <Var (Rg}g | é?’c)) <C-E (f (GS - ég”))2d8> = C-g(n),

0

and we conclude that

P ( sup ]Rgft)

o<t<1

2
>6> <G

as n — oo uniformly over © by Assumption 2.4.2. O

Before proving that Rgn) converges weakly to the zero-process, we will need two aux-
iliary lemmas. The first is a conditional version of Hoeffding’s lemma, which lets us
conclude conditional sub-Gaussianity. Recall that a mean zero random variable A is
sub-Gaussian with variance factor v > 0 if

QTQI/

lOg ]E(GIA) < 7
for all z € R. See, for example, Boucheron et al. [2013], Lemma 2.2, for the classical

unconditional version.

Lemma 2.A.5 (conditional Hoeffding’s lemma). Let Y be a random variable taking
values on a bounded interval [a,b], satisfying E[Y'|G] = 0 for a o-algebra G.
Then logE(e™ | G) < (b — a)?22/8 almost surely for all v € R.

Proof. Fix z € R. By convexity of the exponential function we have

b—y y—a
ey < e 4 exb
b—a b—a

y € [a,b].
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Inserting Y in place of y and taking the conditional expectation yields

b a
zY ra xb _ L(x(b—a))
Ele |Q]<b_ae ot e

almost surely, where L(h) = b}i—aa + log(1 + “%Z“) Standard calculations show that

L(0) = L'(0) = 0, and the AM-GM inequality implies

beh 1

L'(h) = __ave” <-.

(h) (b—aeh)?2 ~ 4
Thus, a second order Taylor expansion yields that L(h) < %h2, and it follows that
logE[e*Y | G] < %a@ as desired. O

For the next lemma define for s,t € [0,1] with s <t

t
T f Gu(Ay — XM du,

- u
t—s J

Lemma 2.A.6. Let Assumption 2.4.1 hold true. Then, for any 0 < s <t <1, it holds
that E(W*t | G1"°) = 0 and that W5 is sub-Gaussian conditionally on G{"° with variance
factor v = (2CC")2, that is,

log E(e*V™" | G°) < 2(zCC")?
for all s <t and x € R.
Proof. For fixed u € [0, 1], note that
E (Gu ()\u - Xg;w) | g?) —E (E (Gu ()\u - X{P) | Fou v g’f) | g;l)

—E (E (G | Fs_) (Au - Xg")) | gN{“C) —0,  (2.A.3)
where we have used that A, — Xgn) is Fi-predictable conditionally on G"°, that Gy is in-
dependent of G1"“ since it is G;-predictable, and that E (G | Fs—) = 0 per definition. By
applying the conditional Fubini theorem [Schilling, 2017, Theorem 27.17], we conclude
that E(W*! | G;"°) = 0.

We can now use the conditional version of Hoeffding’s lemma formulated in Lemma
2.A.5. Indeed, we have that for all s <t

I A
W < [ GO - 3w

< sup |Gyl sup |(A — AP < 20C"

o<u<l o<u<l

by Assumption 2.4.1. Hence, for all s <¢, Lemma 2.A.5 lets us conclude that
log E(e*™W™" | GI°) < 2(xCC")?, z € R. O
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Then we have the following regarding R(n) .

0.

Lemma 2.A.7. Under Assumptions 2./.2 and 2.4.1 it holds that sup[o 1] |R \ Lo,
Proof. The proof consists of two parts. First we show that for each ¢t € [0, 1] it holds
that

P/

R") %0
")

for n — o0. Then we show stochastic equicontinuity of the process Rg
O, and by Lemma 2.B.16 it follows that

uniformly over

‘ re,

sup |R 0.

te[0,1]

This is a direct generalization of Theorem 2.1 in Newey [1991]. The collection of random

variables
(63 (e 32) .

are ii.d. conditionally on G"°. Therefore, an application of the conditional Fubini
theorem yields

E(Ry, | G1) = \/Tj;J A(”)|g ) —0

where the last equality follows from the computation in (2.A.3). Whence E(Rgnt)) =0,
and Var(R{")) = E(Var(R\") | G["*)), so

< (C')’E < f t ()\5 . Xg">)2 ds)
< (C”)Qh(n);)

where we have used Assumption 2.4.1 (ii). Hence by Chebychev’s inequality, it holds for
all € > 0 that
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as n — oo uniformly over © by Assumption 2.4.2. This completes the first part of
the proof. For the second part, we use a chaining argument based on the exponential
inequality in Lemma 2.A.6. We let

I f "G (A = A ) du

J t—sJ, Jru

and

1 st 1 (n) (n)
A= A zjj Wit = — (R} - BY).
nljedn

Using that (st’t)jejn are iid. conditionally on G"° we have by Lemma 2.A.6 that
E(A) = 0 and that

logE (eZA) =logE (E (e‘”A | g]”))

= logE <H E (e\/fJTWVj’ ’ g?’c>)

Jj€JIn
1}21/
< logE (e2>
B 2%y
2

Hence A is also sub-Gaussian with variance factor v. This implies that

712’/

P(|4] > ) < 2e7%

for all n > 0. Rephrased in terms of Rgn) this bound reads

7]21/

P (IR — R{Y| > n(t - 5)) < 2¢7"°
for all n > 0 and s < t. It now follows from the chaining lemma, Pollard [1984] Lemma
VIL.9, that Rgn) is stochastic equicontinuous. Since the variance factor v = (2CC")? does

not depend on 6 € O, we have stochastic equicontinuity uniformly over © by Corollary
2.B.19. This completes the second part of the proof and we are done. ]

Note that the second part of the proof above establishes stochastic equicontinuity by
a bound on the probability that the increments of the process are large. This is a well
known technique, see, e.g., Example 2.2.12 in van der Vaart and Wellner [1996], from
which the same conclusion will follow if

E(|R{Y — R{)IP) < K|t — s|'*"

for K,p,r > 0.
Proposition 2.4.4 now follows from combining the Lemmas 2.A.7, 2.A.4, and 2.A.3.
O
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2 Nonparametric conditional local independence testing

2.A.6 Proof of Proposition 2.4.5

We separate the discussion of Dgn) and Dén) into the Lemmas 2.A.8 and 2.A.10, respec-
tively, which together amount to Proposition 2.4.5.

Lemma 2.A.8. Suppose that Assumptions 2./.1 and 2.4.2 hold. Then the stochastic
process D™ .= Dgn) — A/ |Jn| - v converges in distribution in C[0,1] uniformly over ©.

Proof. Let D" = Dgn) — +/|Jn| - v and note that

D _ |Jn|_% Z Wi,
jedn

where W is given by W, == Sé Gjs(Ajs — Ajs)ds — vy for each j € J,. By assumption,
the variables {W;: j € J,} arei.i.d. with the same distribution as the process W given by
Wy = Sé Gs(As—As)ds—;. For each 6 € O, let I'? be a Gaussian process with mean zero
and covariance function (s,t) + Cov(W¢ W/), which is well-defined by computations
shown below.

We will show that D™ 22, 16 iy C[0,1] by applying Lemma 2.B.14, which is an
example of Prokhorov’s method of ”tightness + identification of limit”. We first prove
that for any given ke Nand 0 <t) <to <--- <t <1,

D™ .— (E(H) D E(")) /e, (r? ¢

(2R I I Bl 7% t1) St

LT9).

To this end we will apply the uniform CLT of Lundborg et al. [2022h, Proposition 19]
to the sequence of random vectors D™ e R¥, i.e., the sequence of normalized sums of
iid. copies of W = (Wy,,..., Wy, ). The process (W) is mean zero and hence W is
also mean zero. For any t € [0, 1] we observe that

(

Therefore the trace of Var(W) is uniformly bounded, which is implies the trace condition
in Proposition 19 of Lundborg et al. [2022b]. From Holder’s inequality and Minkowski’s
inequality, we note that for any a, b € R¥

Var(W;) = Var(W; + v) < E
0

t 2
J |GS| ' |)\s - >\s|d$> ] < 202(0/)2.

la+bJ3 < &2a+ bJ3 < &*2(Jals + [bl3)* < 8k*2(Jal§ + [b[3).

Combining the above with Assumption 2.4.1 and Lemma 2.A.2 yields that

+ Cy sup |yl® <16C,C3(C")3,

1 3
E[[W[3] < CkE [U G|+ |As — >\3|d5>
0 t€[0,1]

where Cj, = 8k%2. Hence Proposition 19 of Lundborg et al. [2022b] lets us conclude

that D™ 22 N(0,Var(W)). By definition of T, this is equivalent to D™ 2o,
(re,re,....17).

o8



2.7 Discussion

We now argue that (E(n)) and (I'%) are stochastically equicontinuous uniformly over
©. From the definition of I'Y and by Assumption 2.4.1, it follows that

E[(T? — T%)%] = E[(W; — W.)?] < (20C" (i — 5))°. (2.A.4)

Hence 2 (I'Y —T%) is Gaussian with a variance bounded over ©® and 0 < s <t < 1. In
particular, it is sub-Gaussian with a uniform variance factor over ©® and 0 < s <t < 1.
Since W is uniformly bounded over O, an application of Hoeffding’s Lemma yields that
Az.’s = A (W;; — W,) is also sub-Gaussian with a variance factor v that is uniform

t—s
over ©,0< s <t<1,and je J, Letting A" = i(ﬁt(”) — ﬁ(n)), we have

s

2
s,t —-1/2 s,t v 2
EemA. _ | | E[ex|Jn| A]- ]< | | e2Tnl — ¥ 1//2'

jEJn ]EJn

Hence Af’t is also sub-Gaussian with a variance factor uniformly over © and 0 < s <
t< 1.

From the uniform chaining lemma, Corollary 2.B3.19, we now conclude that both (T'%)
and (ﬁ(n)) are stochastically equicontinuous uniformly over ©. By Proposition 2.B.20,

this means that the collection (ﬁ(n)’e) is sequentially tight and that (T'%), which is
constant in n, is uniformly tight.
Now we have shown convergence of the finite-dimensional marginals and appropriate

tightness conditions, so Lemma 2.B.14 lets us conclude that D™ 2O, o weakly in

c[o,1]. O
(n)

Before moving on to the term Dy, we first note that Lemma 2.A.8 implies that
stochastic boundedness, as we will use this result in the proof of Theorem 2.4.6.

Lemma 2.A.9. Suppose that Assumptions 2.4.1 and 2.4.2 hold. Then D(n) gn) —
V|| - v is stochastically bounded uniformly over ©, i.e., for every € > 0 there exists
K > 0 such that

) <

Proof. We have established in the proof of Lemma 2.A.8, under the same conditions,
that D™ 29, o weakly in C[0,1]. By the uniform continuous mapping theorem

formulated in Proposition 2.B.6, it follows that Hb(n) %l 25
Holzmann [2019] Theorem 4.1 we then obtain that

lim sup sup P (Hb(n)

n—w 6O

7). From Bengs and

E|T?
hmsupsupIP’(”D ||OO > K) < SUPP(HFGHOO > K) < HK|oo‘
n—o (€O

Hence it suffices to argue that E||T?| is uniformly bounded over ©. To this end, we
note that Equation (2.A.4) shows that square means of the increments of T'Y are smaller
that those of a standard Brownian motion scaled by 2C'C’. Then the Sudakov—Fernique
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2 Nonparametric conditional local independence testing

comparison inequality [Adler and Taylor, 2007, Theorem 2.2.3] allows us to leverage this
relationship to the expected uniform norms, i.e., E[T?|4 < 2CCE(supyepo ) | Bil). It

can be verified that E(supeo17|Bt|) is finite, and in fact, equal to 4/7/2 as shown in
saz [2019)]. O

Lemma 2.A.10. Suppose that Assumptions 2.4.1 and 2.4.2 hold, and that Gy = X —11;
is the additive residual process. Then Dgn) 25,0 in DJ[0,1] as n — 0.

Proof. Note first that the terms in Dén) are i.i.d. conditionally on G;"°, with the same
distribution as the process £ given by

JAs — Ag)ds.

1 PN
fm—[ew -
|Jn| 0

Since A; is independent of QN? . we have from the innovation theorem that
E\ | Fie v G1°) =E(N\ | Fio) = A

For the additive rgsidual process we also note that G —C:’gn) = ﬁgn) —1I1I; is Fi-predictable
conditionally on G1"°. It now follows that

~ t N ~
VIT Bl 1 67] = [ BUGE = G = M) | 671ds

t
= f E[(G™ — G)(E[As | Foe v G — Ag) | §™¢]ds = 0.
0

We can therefore conclude that Dgn) is mean zero conditionally on G™¢. Using that the
are i.i.d. conditionally on G™¢ once more, we now obtain that

t 2

(J (GM — Gg)(As — As)ds>

0

(n)
gNn,c]
1 ~
<4C?-E ( J (G — G,)2ds|G™ )
0

terms of D
Taking expectation of the above we have Var(Dgft)) = (Var(Dgi | G™¢)) < 4C%g(n)2.
By Chebyshev’s inequality we get for all € > 0

4C%g(n)?
P (D5} > €) < =57,

and by Assumption 2.4.2 we conclude that D(n) L%, 0 for each t € [0,1].

We now apply the same chaining argument used in the proofs of Lemma 2.A.7 and
Lemma 2.A.8. From Assumption 2.4.1, we have for 0 < s < t < 1 that [§ — &| <
4/|Jn|CC’ (t — s). Hence the conditional Hoeffding’s lemma (Lemma 2.A.5) yields that

Var(DJY | ) = | J| - Var(é, | G™¢) = E

7,8

s 1 t A(n
Aj,t - f (G(- ) Gjs)(Ajs — Ajs)ds
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2.7 Discussion

is sub-Gaussian conditionally on Q?’c with a variance factor v that is uniform over ©

and s < t (cf. the proof of Lemma 2.A.6). Letting AY" = i(Dént) - Dg;)), we have for
any r € R

E (efo’t> - <IE [ezAf’t | QN?CD

—1/2 §,t ~ z v 2
([ el 16 ) < [ o -

jeJn

SO A?t is also sub-Gaussian uniformly over s < ¢t and ©. In terms of Dgn), this means

that we can apply the uniform chaining lemma, Corollary 2.B.19, and conclude that it
is stochastically equicontinuous uniformly over ©.
Since Dg) L% 0 for cach t € [0,1] and (Dén)) is stochastically equicontinuous uni-

formly over ©, Lemma 2.B.16 now lets us conclude that supe[g 1 |D§nt)\ 2,0 and we

are done. ]

2.A.7 Proof of Theorem 2.4.6

Before proving Theorem 2.4.6, we first prove that the collection of Gaussian martingales
from Proposition 2.4.3 is tight in C]0, 1] (see Definition 2.B.7).

Lemma 2.A.11. Let (U%)geo be the collection of Gaussian martingales from Proposi-
tion 2.4.3, 1.e., UY is a mean zero continuous Gaussian martingale with variance function
V0. Under Assumption 2.4.1, (U%)geo is uniformly tight in C[0,1].

Proof. We will use Theorem 7.3 in Billingsley [2013], which characterizes tightness of
measures in C[0,1]. The first condition of the theorem is trivially satisfied for (U%)gee
since P(U§ = 0) = 1 for all § € ©.

By Proposition 2.C.2, U? has a distributional representation as a time-transformed

Brownian motion such that (Uf);e[0.1] 2 (Byo(1))iefo,1], Where B is a Brownian motion.

1

Recall that Brownian motion is a-Holder continuous for o € (0, 5), which means that

B, —B
K(a):supM<oo

Note also that the collection of variance functions is uniformly Lipschitz by Lemma 2.A.2
with uniform Lipschitz constant Cj, say. It follows that for every € > 0,

lim sup[P’( sup U —UY| > e) = lim sup[P’( sup |Bye(y) — Byog)| > e)

6—-0% ge@ N |t—s|<6 6—-0% g0 \|i—s|<b

< lim supP(K(a) sup V() —V(s)|[* > e
Jim, supP(K () sup V() =V(s)|" > )

= lim. P(K(a)CS‘&O‘ > e> —0.

This establishes the second condition of Theorem 7.3 in Billingsley [2013], and we thus
conclude that (U?)gee is uniformly tight in C[0,1]. O
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2 Nonparametric conditional local independence testing

We now return to the proof of Theorem 2.4.6.

For part i), we first note that under Hy we can take Ay = Ay, which implies that both
Dgn) and Dén) equal the zero-process.

Combining Propositions 2.4.3 and 2.4.4 with the uniform version of Slutsky’s theorem
formulated in Lemma 2.B.5, we conclude that

~(n n n n n n P/()o
[Jn[7™ = U™ + R + RYY + RYY + DI + DYV 22 17,

Y v
D/6y o P/© 0 =0under Hy

in D[0,1] as n — o0, where U? is the Gaussian martingale from Proposition 2.4.3.

For part ii) we can, in addition to Propositions 2.4.3 and 2.4.4, apply Proposition 2.4.5
and Lemma 2.A.9. Using the triangle inequality on the decomposition (2.4.17) yields
that

VITnl - 13™ = 5o [T, + | DM — anu@
+ 1B oo + 1R oo + 1R oo + D5 co.

All the terms in the second line converge in probability to zero uniformly over ©. Com-
bined with the convergences established in Proposition 2.4.3 and Lemma 2.A.8, we obtain
that

hmsupsup]P’(\/|J A — Ao >K>
n—o (e
< supP (HU@HOO > K/6> +supP (HPHHOO > K/ﬁ) , (2.A.5)
0eO© 0c®

where T'? is the limiting Gaussian process from (the proof of) Lemma 2.A.8. The last
term in (2.A.5) can be made arbitrarily small for K sufficiently large by Lemma 2.A.9.
Lemma 2.A.11 states that the family (U%)gco is tight in C[0,1], and hence the family
(U0 )oeo is tight in Rsq. This implies that the first term in (2.A.5) can also be made
arbitrarily small for K sufficiently large. This establishes (2.4.26) and we are done. [

2.A.8 Proof of Proposition 2.4.7
Consider the decomposition of the variance function estimator given by

Vo(t) = A™ + B™ 120

where

n 1

A( = T J G dN] Sy
jGJ

m _ 1 ' (n)

Bt - m (G]s - Gj,s) dN]’s,
"l jeg, Y0
o = o JtG-s(G L -G ang,
[Tal 5 do 720\ ™ B0 ) 5
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2.7 Discussion

We first consider the asymptotic limit of A which is the empirical mean of |.J,| i.i.d.
samples of the process Sé G?dN,. Under Assumption 2.4.1, we can apply the first part
of Lemma 2.A.1 which states M? — A; is a martingale. We use this fact to note that

E(N?) = E(M; + A1)?) < 2 (E(M7) + E(A])) = 4E <<£ )\Sds>2) < 4C2.

Now, another use of Assumption 2.4.1 shows that Sé G?dN; has a second moment
bounded by 4(CC’)2. Thus we can apply the uniform law of large numbers [Shah and
Peters, 2020, Lemma 19] to conclude for each ¢ € [0, 1],

t
P/
Al ‘J | > J ‘AN, ——E (f ngNs) =V(t).
Jj€JIn 0
Note also that A and V are non-decreasing and that the collection (Vg)ge@ is uniformly
equicontinuous by Lemma 2.A.2. These are exactly the conditions for Lemma 2.B.13,
P/

— 0.

Next we show that the remainder terms B and C(™) converge uniformly to zero in
expectation. Similarly to the proof of Lemma 2.A.4, we have under Assumptions 2.4.1
and 2.4.2,

E B =E(B;" E < — -
(0221 ! > (B (\J | - j i G ) A d8>

) ( (méj Gy = G1) Aa%st’Qf»

so we can automatically conclude that sup;epg 1 |A§”) —V(t)|
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2 Nonparametric conditional local independence testing

as n — oo uniformly over ©. Lastly, we see that

E| sup C’t(n)‘ <E ( sup |C't(n)|>
o<t<1 o<t<1
t
, Ay
< | Z OS<UE L 1Gjsl|Gjs Gj7s |)‘]7Sd8>

"l jed,
nljed,

-E (j 1G,||Gs — ég"usds)
0
1 ~
< CC'E (J |Gy — Gg">|ds>
0

<CC -g(n) —0

as n — oo uniformly over © by Assumption 2.4.2. Combining the convergences estab-
lished for A, B and C" we get by a generalized Slutsky (Lemma 2.B.11) that

3 P
sup [Vn(t) = V(8)] —
te[0,1]

2.A.9 Proof of Corollary 2.4.8

Under Assumptions 2.4.1 and 2.4.2 we know by Theorem 2.4.6 and Proposition 2.4.7
that

VT ™o 22 1 and PP 22 0 (2.A.6)

in D[0,1] as n — 0. If we were to show pointwise convergence of the test statistic,
this would now be a straightforward consequence of the continuous mapping theorem.
However, to show uniform convergence, we will need an additional tightness argument.

Let (0p)nen © Op be an arbitrary sequence. Proposition 2.B.3 then states that it
suffices to show that there exists a subsequence (0x(n))nen S (0n)nen, with k: N — N
strictly increasing, such that

Tim dpp, (D), 7 (UFs0,19500)) = 0. (2.A.7)

Here dp1, denotes the bounded Lipschitz metric defined in Section 2.B. By Lemma 2.A .11,
the collection (U%)geq is tight in C[0, 1] under Assumption 2.4.1. Therefore, Prokhorov’s

64



2.7 Discussion

theorem [[<allenberg, 2021, Theorem 23.2] asserts that there exists a subsequence (6,(,)) <

(6,,), and a C[0, 1]-valued random variable U such that U%(m 2, Uin o, 1].
Likewise, Lemma 2.A.2 states that the collection (V%) is uniformly bounded and
uniformly equicontinuous under Assumption 2.4.1. Thus the Arzela-Ascoli theorem
yields that there exists a further subsequence (6y(,,)) < (04(r)) and a function Ve C[0,1]
such that V% — V|, — 0.
Combining the convergences of U% and Ve with those in Equation (2.A.6), it
follows from the triangle inequality of the metric dpy, that also

/\0 n P ~
A/ 1 Jb(n |V Do By 7 and Vb(br(l)) -V,

in D[0,1] as n — oo. Now we may use that convergence in Skorokhod topology is
equivalent to convergence in uniform topology whenever the limit variable continuous,
see e.g. Kallenberg [2021, Theorem 23.9]. Hence the convergences above also hold in

Since V is deterministic, this implies the joint convergences

(U, V(’b(m) (U, V) and (\/mv )):0b(n) Ve(b(;)) EEN (U, V)

in the product space D[0, 1] x D[0, 1] endowed with the uniform topology. Since ([7 ) f/) €
C[0,1] x {V?: 0 € O} takes values in the continuity set of J by assumption, the classical
continuous mapping theorem lets us conclude that

T (U Vo) By 7(T, V) and ﬁgé’;s) < | Jo(n |A(b ):Os(m) Vfg’(;)) = J(U,V)

as n — 00. Now another application of the triangle inequality with J (U , f/) as interme-
diate value shows that (2.A.7) holds with k(n) = b(n), so we are done. O

2.A.10 Proof of Theorem 2.5.1
We will apply Corollary 2.4.8 with the functional J given by

If1lo0
[f2(D)]

Under Assumption 2.5.1, it suffices to check continuity of 7 on the set T given by

T (f1,f2) = 1(f2 # 0)———= 1, fa € D[0,1].

T :=C[0,1] x {f € C[0,1] | &1 < |f(1)|} 2 C[0,1] x {V?: 0 € Op}.

To see that 7 is continuous on T in the uniform topology, we note that it can be written
as a composition of the continuous maps

T— [0,00) X [51700)7 (flan) — (Hfluow ‘f2(1)|)7
[0,00) x [61,0) — R, (w1,22) — \%
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2 Nonparametric conditional local independence testing

Thus it follows from Corollary 2.4.8 that

/ ~(n)
~ Jn su ~ 3 o U
T = | Jn Iite[o,l] 7 _ j( |Jn|7(n), Vn) D/© J(U,V) = |V(|10)o
Va(1)
With (B,,) a Brownian motion it follows by Proposition 2.C.2 that
su B SUPg<y B,
[Ullo D SuPo<i<1 | Byl SuPo<u<v(r) [Bul D up B2, (2.A.8)

VYA V() B V(1) o<t<1

where we have used that V is continuous and that Brownian motion is scale invariant.
This establishes the first part of the theorem.

For the second part, we first note that the distribution of S is absolutely continuous
with respect to Lebesgue measure, which follows from Equation (2.5.31). Then we can
use Theorem 4.1 of Bengs and Holzmann [2019] to conclude that

lim sup sup |]P>(fn < 21-0) — (1 -a)|=0.

n—w (O

It follows from the triangle inequality that

lim sup sup P(¥9) = 1) = lim sup sup P(fn > 21_q) < Q.
n—w fecO n—w (e

2.A.11 Proof of Theorem 2.5.2

Let 0 < o < 8 < 1 be given. The second part of Theorem 2.4.6 permits us to choose
K > 0 sufficiently large such that

lim sup sup P ((\/un\m(")ﬂ ) > K) <1-8. (2.A.9)

n—ow HeO

We then choose ¢ > K + z1_q4/1 + C(C")? such that for all § € A.,, it holds that

\/WH’YQHOO - 21701\/% >c—21_aV/1+C(C")?2 > K,

where we have used Lemma 2.A .2 in the first inequality. The (reverse) triangle inequality
now yields that for any 6 € A,

(¥, =0) = (T < 21-0) = (IW(”)’GI

< ﬁgmzla)
- VIal
c (Wroo — [ -+ < 92(1)“)

),0

c EYL V) Eén)’e,
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2.7 Discussion

where

s - (v, ).
ES — (V1) > 14V°(1)) < (ID5) - V()] > 1).

From Proposition 2.4.7 we know that limsup,,_,., Supyece P(Eé")’e) = 0, so from the
choice of K we conclude that
lim sup sup P(¥,, = 0) < lim sup sup P(E{n)’e) <1-5.
n—w feO n—0 (e

The desired statement follows from substituting P(¥,, = 0) = 1 — P(¥,, = 1) into the
above equation and simplifying. O

2.A.12 Proof of Theorem 2.5.4

Assume that Hg holds and note that Assumptions 2.4.1 and 2.4.2 are satisfied for every
sample split J* U (JF)¢, k=1,... K.
We consider the decomposition in Equation (2.4.17) for each sample split J* U (J¥)¢,

and denote the corresponding processes by U™ R’f’(n), Rg’(n), Rg’(n), le’(n)

Dg’(n). For each fold k € {1,..., K}, we can then apply the results in Section 2.4 for a
single data split:

, and

e By Proposition 2.4.3, we have that U*(™ = 28, U in D[0,1], where U is a mean

zero continuous Gaussian martingale with variance function V.

rle,

e By Proposition 2.4.4, Rf’( ") 0 in (D[0,1],] - ||ec) as n — c0.

e Under Hj, the processes D]f’(n) and DI;’(n) are equal to the zero process almost
surely.

Recall that the folds are assumed to have uniform asymptotic density, which is equivalent
NG
v/

— 1 as n — 00. Thus we may also conclude that for each fixed k& and ¢,

VP k) 20, apg Y REM 10,
VK| JF| KA/|JE]

where the convergences hold in the Skorokhod and uniform topology, respectively. Now
the key observation is that

AOR I s (08

To see this, note that U™ is constructed from (Gj, Mj) e v only, and by the i.i.d.
assumption of the data, the collections (Gj, M;)jes1, ..., (G}, Mj)jecsx are jointly inde-
pendent. We can therefore apply Lemma 2.B.12 iteratively to the sequences

VR e,V R

VE|;] VE|J]
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2 Nonparametric conditional local independence testing

to conclude that their sum is uniformly convergent to the sum of K independent copies
of U. Using the convolution property of the Gaussian distribution, it therefore follows
that

,(n) D/® U

ZW

in D[0, 1] as n — c0. By the uniform Slutsky theorem formulated in Lemma 2.B.11, we
can therefore conclude that

K\(n) _ 77K, (n) Vn kyn) | pki(n) | pki(n) | k(n) | k(n)) D/eo
Vrym =g +ZK =7 (Rl + Ry + Ry + DY + Dy )—»U

in D[0,1] as n — c0. Note that we use § € Og to ensure that Dk (n) +D§’(”) is equal to the
zero process almost surely. Since the limit (U?)gee, is tight in C[0,1] by Lemma 2.A.11,

Proposition 2.B.9 lets us conclude that /7|55 | 22 U]
Consider now the cross-fitted variance estimator at its endpoint

From Proposition 2.4.7, we see that VKn(l) is an average of K variables converging
uniformly in probability to V(1) in the uniform topology. Hence Vi ,,(1) also converges
uniformly in probability to V(1) in the uniform topology. We can then apply Theorem
6.3 of Bengs and Holzmann [2019], which is a uniform version of Slutsky’s theorem, to
conclude that

7k _ VT v Ul 2
V(1) V(1)
as n — 00, where last equality in distribution was established in (2.A.8).

Following the second part of the proof of Theorem 2.5.1, we conclude in the X-LCT
has uniform asymptotic level. O

S,

2.B. Uniform stochastic convergence

In this section, we discuss weak convergence of random variables with values in a metric
space uniformly over a parameter set ©. The uniformity over the parameter set can be
used, for example, to establish uniform asymptotic level as well as power under local
alternatives.

The content of this section extends the works of Bengs and Holzmann [2019] and Kasy
[2019], and we especially build upon Appendix B of Lundborg et al. [2022b], in which
uniform stochastic convergence is considered in separable Banach spaces and Hilbert
spaces. The space space (D[0,1],| - |«) of cadlag functions endowed with the uniform
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2.7 Discussion

norm is a Banach space, but it is unfortunately not separable. Therefore we extend the
notion of uniform stochastic convergence to random variables in metric spaces, with the
condition that the limit is supported on a separable set. This allows to consider uniform
weak convergence in two important special cases: i) convergence in (D0, 1], - [w)
towards variables in (C[0,1],| - ||e), and ii) convergence in D[0,1] endowed with the
Skorokhod metric.

The Skorokhod space DJ0, 1] is, if not specified otherwise, equipped with the complete
Skorokhod metric d°, which makes it a Polish space, i.e., a complete and separable metric
space. See for example Section 12 in Billingsley [2013] for a discussion of the Skorokhod
space and in particular Equation (12.16) for a definition of d°.

2.B.1 Uniform stochastic convergence in metric spaces

Throughout this section we consider a background probability space (Q2,F,P) and let
(D, dp) denote a generic metric space. We define BL;(D) as the set of real-valued
functions on D with Lipschitz norm bounded by 1, that is, functions f: D — R with
[flo < 1 and |f(z) — f(y)| < dp(x,y) for every x,y € D. Let M;(D) denote the set
of Borel probability measures on . We then define the bounded Lipschitz metric on
My (D) by

dpr(u,v) = sup ‘ffdﬂ - ffdy , w,v e Mq(D).

feBL, (D)

For any pair (X,Y") of D-valued random variables we use the shorthand notation

dpr(X,Y) = dpr(X(P),Y(P)) = sup [E(f(X)— f(Y))|.
feBL, (D)

If the underlying metric space is ambiguous for dpy,, we will specify that it is the bounded
Lipschitz metric on M;(D) by writing dpr(p). Our interest in the bounded Lipschitz
metric is due to its characterization of weak convergence.

Proposition 2.B.1. Let X, Xy, Xo,... be a sequence of D-valued random variables.
Assume that there exists a separable subset Dy € D such that P(X € Dg) = 1. Then the
following are equivalent:

e The sequence (X,)n>1 converges in distribution to X, i.e., for all f € Cy(D) it
holds that E[f(X,)] — E[f(X)] as n — o0.

e [t holds that dpr, (X, X) — 0 as n — o0.

Proof. See Theorem 1.12.2, Addendum 1.12.3, and the following discussion in van der
Vaart and Wellner [1996]. O

To discuss uniform stochastic convergence, we will for the remaining part of this
section let © be fixed set, which is used as a (possible) parameter set for every random
variable. We say that a collection (X 9)969 of D-valued random variables is separable
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2 Nonparametric conditional local independence testing

if there exists a separable subset Dy < I such that P(X? € Dy) = 1 for all 6 € ©.
If D is a separable metric space, then any collection of D-valued random variables is
automatically separable.

Now Lemma 2.B.1 justifies the following generalization of weak convergence uniformly
over O:

Definition 2.B.2. Let (XS)neNﬁe@ and (X%)gee be collections of D-valued random
variables and assume that (X%)scg is separable. We say that:

(1) Xg converges uniformly in distribution over © to X% in D, and write Xz 25, X
if
lim sup dBL(]D)) (Xz,Xe) = 0.

n—=% ge@

(ii) X9 converges uniformly in probability over © to X? in D, and write X? Lo, X0
if
lim supP(dp(X%, X%) >€) =0
n—=% geg

for every € > 0.

&

If for some p € My (D), it holds that X¢ 2% X with X?(P) = u for all 6 € ©, we
also write Xg 2R, . Similarly, we may replace the limit random variable X? by a point
x € D by interpreting = as the constant map (6,w) +— z for § € © and w € Q.

Note that if the parameter set © = {6y} is a singleton, then each type of uniform con-
vergence reduces to the corresponding classical definition of convergence in distribution
or probability. If D is a separable Banach space, we note that Definition 2.B.2 coincides
with Definition 3 in Lundborg et al. [2022D].

Proposition 2.B.3. Let (Xz)nemge@ and (X%)geo be collections of D-valued random
variables and assume (X9)9€@ is separable. Then the following are equivalent:

a) XﬁD—/Gng asn — oo.

b) For any sequence (Op)neny S © it holds that dgrp (X%, X%) — 0 as n — 0.

¢) For any sequence (0,)nen S O there exists a subsequence (Ok(n) nen, withk: N — N
strictly increasing, such that

. Ok(n) v Orm)) —
Jim s (X[, X%0) = 0.

Moreover, X9 e, xo if and only if for any sequence (0,)neny S © and any € > 0 it
holds that

lim. P(dp (X%, X)) > €) = 0.
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Proof. This is essentially Lemma 1 in Kasy [2019] for D-valued random variables, except
that we have added the equivalent condition ¢). The proof for the characterization
of uniform convergence in probability is identical to the one given by Kasy [2019], so
we focus on the equivalence between a), b), and ¢). To this end, we to prove that
a) = b) = ¢) = a).

The fact that a) implies b) follows directly from applying the bound

dBL(ina Xen) < Zug dBL(XfL,Xe)
e

and taking the limit as n — o0. We also see that b) implies ¢) since any sequence is a
subsequence of itself.

We show that ¢) implies a) by contraposition. Assume the negation of a), that is,
there exists an € > 0 and a sequence (6,,)neny S © such that

dpr (X0, X%) > €
for all n € N. Then, for all subsequences (6j,)) of (6;,), it holds that dp, (Xgl(“;l’;) , XOkm)
does not converge to zero. This implies the negation of c). O

Proposition 2.B.3 will allow us to extend many results for classical stochastic conver-
gence to uniform stochastic convergence.

Corollary 2.B.4. Let (Xg)neNﬁe@ be a collection of D-valued random variables and let
reD. Then X? Do, if and only if X? RN

Proof. For any sequence (6,,)neny S O, recall that Xz" D, 2 if and only if Xﬁ” P, x,
see e.g. Lemma 5.1 in Kallenberg [2021]. Hence the statement follows directly from
Proposition 2.B.3 (combined with Proposition 2.B.1). O

Our goal is to prove uniform versions of Slutsky’s theorem for D[0, 1], Rebolledo’s cen-
tral limit theorem, and the chaining lemma for stochastic processes. To prove Slutsky’s
lemma for D[0,1], we first prove a general result for metric spaces.

Lemma 2.B.5. Let (XG,XTQL,Y,?)”EN@E@ be a collection of D-valued random variables
and assume that (X%)gco is separable. If X 20 X0 and dp(X2,Y,9) 0,0, then it

also holds that Y;? 2, xo.

Proof. By the triangle inequality of the bounded Lipschitz metric, we observe that

supdpy(Yyy, X%) < supdpr(Yy, X)) + supdpr (X, X°).
0€© 0c© 0e©

The last term converges to zero by the assumption of X? P8, X9, For the other term,

let € > 0 and use the partition

(dp(X7,Yy) < €) U (dp(X,Y)) > €)
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2 Nonparametric conditional local independence testing

to obtain that

dpr(X2, YY) = sup [E[f(XE) - F(¥D)]]

T eBLy (D) "
<e+ sup  E[f(X]) — f(Y))|L(dn(X7,Y))) > €)]
feBL, (D)
< e+ Pldp(X2, V7)) > ).

Taking the supremum over © and the limit superior for n — oo finishes the proof. [

The following formulation of the continuous mapping theorem is analogous to Theo-
rem 1 in Kasy [2019]. The proof is almost identical, but we repeat it here for complete-
ness.

Proposition 2.B.6. Let (D1,d;) and (D2,ds) be metric spaces, and let ®: D — Do
be a Lipschitz continuous map. Let (Xs)neNﬁe@ and (X%)geo be collections of Dy -valued

random variables, and assume (Xe)geg is separable.
D/O

If X0 22 X0 in Dy, then ®(X?) 25 o(X?) in Dy.

n n

Proof. Note first that if X% is in a separable subset Dy < Dy, then the variables ®(Xjy)
for § € © are all in the separable subset ®(Dy) < Ds. Hence it is well-defined to consider
uniform convergence in distribution towards (®(X%))gco. Let f € BLi(Dy) and let K
be the Lipschitz constant of ®. Consider the map

9: D1 — R,  g(z) =min(l, K ) f(®(x)).
Then [¢]ow < | fllo <1 and for all z,y € Dy,
< min(1, K1) dy(B(x), B(y))
< min(1, K YKdy(z,y) < di(x,y)

Hence g € BL1(Dy). It follows that

dpr, s (2(X7), ®(X%)) = sup  [E[f(D(X})) — F(2(X"))]|
feBL1(D2)

1
< —/————+ Ssup Eng —gXe
mln(laK_l)geBLl(D1)| [9(X7) — g(XT)]|

< max(1, K) 'dBLl(IDJl)(Xz’Xe)
Taking the supremum over © and the limit superior as n — oo finish the proof. O
We will also need the following two notions of tightness.

Definition 2.B.7. Let (u?)geo be a family of probability measures on D, and let (X?)gco
and (Xs)neN79€@ be collections of D-valued random variables.
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2.7 Discussion

i) We say that (1?)gco is tight if for any € > 0, there exists a compact set K < D such
that supgpeg u?(K€) < . We say that (X%)ge is uniformly tight if the collection
of distributions (X?(P))gee is tight.

ii) The sequence ((X?)geo)nen of collections is said to be sequentially tight if for any
sequence (6, )neny < O, the sequence of distributions (X% (P)),en is tight.

&

Definition 2.B.7 i) is a classical concept, whereas sequential tightness was introduced
by Lundborg et al. [2022b] and relaxes uniform tightness for sequences of variables
parametrized over an infinite set.

The importance of tightness is mainly due to Prokhorov’s theorem [Kallenberg, 2021,
Theorem 23.2], which states that if D is a Polish space”, then (u)gee is tight if and only
if all sequences in (1?)geo have a weakly convergent subsequence.

The continuous mapping theorem in Proposition 2.B.6 is more restrictive than the
classical theorem as it requires Lipschitz continuity. However, we also have an alternative
version of uniform continuous mapping when the limit variable is tight.

Proposition 2.B.8. Let (D1, d;) and (Dg,ds) be Polish spaces, and let (Xg)neNyge@ and
(X%peo be collections of Di-valued random variables. Assume (X%)geq is uniformly
tight, and let ®: Dy —> Dy be a map that is continuous on the support of (X?)gco.

D/

IF X9 28 X0 in Dy, then ®(X2) 22 &(X?) in Dy.

n

Proof. Same as the proof of Proposition 10 in Lundborg et al. [2022b], but with norms
of differences replaced by metric distances. O

2.B.2 Uniform stochastic convergence in Skorokhod space

In this section we consider the special case where (I, dp) is the Skorokhod space (D[0, 1], d°).
We can also equip D[0, 1] with the uniform norm, [2[s = supefoqy|2t], and it known
that weak convergence based on either | - [, or d° are equivalent when the limit is
continuous. We now extend this result to stochastic convergence uniformly over ©.

Proposition 2.B.9 (Skorokhod equivalence). Let (X9)nengeo be a collection of D[0,1]-
valued random variables and let (X%)geo be a uniformly tight collection of C[0, 1]-valued
random wvariables. Then X9 28, X0 in (D[0,1],d°) if and only if X¢ AN )
(D[0,1], ]| - o). In the affirmative, || X2l 2o, [ X ||oo -

Proof. To avoid ambiguity in the topology on D[0, 1], we will throughout this proof use
D° to denote the metric space (D[0,1],d°) and we use Dy, to denote the Banach space
(D[0,1],] - o). Note also that C[0,1] is separable within Dy, so (X?)geo is separable,

and hence the convergence X? P8, X is well-defined in the non-separable space Dy,.
The ‘if’ part is clear since d°(z,y) < ||z — y| o for all z,y € D[0,1].

2The ‘only if’ part does not require separability nor completeness.
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2 Nonparametric conditional local independence testing

For the ‘only if’ part, assume that X9 2%, X0 in D° and let (0,) < O be an arbitrary

sequence. Since (X% (P)) is tight, Prokhorov’s Theorem asserts that there exists a

subsequence (0 ,,)) and a probability distribution p on C[0, 1] such that X Ok (IP) ok, ,u

in D°. By the triangle inequality
Ok(n Ok(n
dBL(DO)(Xk?;L))7N) < dBL(]D)O)(XkZ(L)) LX) + dprpey (X0, 1) — 0, n— 0.

]
This shows that also X ka’)‘) (P) wk, p in D°. Now we can use that weak convergence
in the Skorokhod topology and the uniform topology are equivalent when the limit
is continuous [Kallenlmg, 202 Theorem 23.9 (iii)]. We therefore conclude that the

convergences X s (IP) ok, ] and X () (P) ok, p also hold in Dy,. But then another
use of the triangle inequality shows that

Ok (n Ok (n
dBL(Dw)(Xk?:z))7X9k<”)) < dBL(DOO)(Xk?T(z))vﬂ) +dprm,) (p, X)) — 0.
Since (0x(n)) is a subsequence of the arbitrarily chosen sequence (6,,), we conclude that

X0 == 2O, X0 in Dy by Proposition 2.B.3.
Finally, as the uniform norm is Lipschitz continuous as a map from Dy to R, the
continuous mapping theorem formulated in Proposition 2.B.6 yields that

D/O

D/ .
X2 X i Dy = X 7 X e
This establishes the last part of the lemma. O

Using ||i]s to denote the pushforward measure for any p e Mq(D([0,1])) we restate
the result above for a fixed limit distribution.

Corollary 2.B.10. Let (X9),enpeo be a collection of D0, 1]-valued random variables
and let ;1 be a probability measure on C[0,1]. Then X? 2o, w in (D[0,1],d°) if and
only if X 7% puin (D[0,1]. ] - |oe). In the affirmative, | X7 = 1]co-

Proof. Since pu is a probability measure on the Polish space C[0,1], it is, in particular,
tight [Billingsley, 2013, Theorem 1.3]. Hence the statement is a special case of Proposi-
tion 2.B.9. O

Now we are ready to prove a uniform version of Slutsky’s theorem in the Skorokhod
space.

Lemma 2.B.11 (Uniform Slutsky in Skorokhod space). Let (X, XmYn)neN,GEG be a
collection of D|0,1]-valued random variables such that Y,? 00 and X9 20, X0 in
D[0,1]. Then it holds that X¢ + Y?? 2 X9

D/0

Proof. Since Y,? 0,0, Corollary 2.B3.10 implies that |Y,?|s —— 0, and Corollary 2.B3.4
P/O

implies that |Y,?||,, = 0. Using the trivial estimate d°(z+y,z) < |(z+y)—2]|0 = |¥]ew
for 2,y € D[0,1], it follows that d°(X? + Y,? X9) = %, 0. Combining the latter with

X, 0 2/, Xt , the desired conclusion now follows from Lemma 2.B.5 O
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2.7 Discussion

We also have a related result for sums of independent sequences.

Lemma 2.B.12. Let (Xn, Y? JneNpeo be a collection of D0, 1]-valued random variables

and let (X%)geo and (Y%)geo be uniformly tight collections of C[0,1]-valued random

variables. Assume that X? 2P, X0 and Y? 2R,y in DJ0,1], and that for each 6 € ©
and n € N, it holds that X? 1L Y,%. Let Z% have distribution X°(P) + Y?(P), that is, the
same distribution as the sum of two independent copies of each of X? and Y.

Then it also holds that X% + Y9 == PO, 79 in (D[0, 1], - oo)-

Proof. We may assume without loss of generality that X? 1 Y and that Z% = X?+Y?.
Let (0,) € © be an arbitrary sequence. By tightness of (X%)geo and (Y?)peq, we can

apply Prokhorov’s theorem twice to obtain probability measures p and v on C[0,1],
w

and a subsequence (), such that X Ok (IP) ok, p and Y% (P) ¥, ». Hence the
product measures converge,

X0 (P) @ YOkt (B) 5 i@y,

in C[0, 1] as n — oo, see, for example, Theorem 2.8 (ii) in Billingsley [2013].

Since X¢ AN G DJ0,1] by assumption and (X?) is uniformly tight in C[0, 1],
Proposition 2.B.9 implies that the convergence also holds in (D0, 1], |- |«). The triangle
inequality now yields

Okin Ok(n
dBL(Xkl(cr(L)>7/'L) < dBL(XkI(CT(L))7X0k<n>) + dBL(X0k<n)7lu’) - 07

so also X I(“(’)‘) (P) Lok, w in (D[0,1],] - o). An analogous computation shows that

Y:(]:i;) (P) ¥, 1, and hence also

6 n 6 n
Xp (B) @ Yol (B) 5 pov

in the product space D[0, 1] x D[0, 1] endowed with the uniform product topology. From
the independence statements X? 1 Y% and X? Il Y% we have thus shown that

D Or(n Ok (n
(X% Yo%) = p@v  and (ka()) Y(k()))—’:“@”

in the uniform product topology. Since addition +: D[0,1] x D[0,1] — D[0,1] is con-
tinuous with respect to this topology, we conclude by the classical continuous mapping
theorem that

0 0
Z0%m) = X0 4 YO 2, p=v and Xk’(gr(;)” + Yk(’;i;) 2, JTER2

It now follows that

9 . 0 -

9 . O
< dBL(Xk](Z(L)) + Yk(}:i))#i # V) +dpr(p* v, Zak(n)) — 0.
Since (fx(n)) is a subsequence of the arbitrarily chosen sequence (6,,), we conclude that

X0 +vY? 20, 79 in (D[0, 1], - |o0) by Proposition 2.B.3. O
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2 Nonparametric conditional local independence testing

We also need the following lemma, which is a generalization of the classical result:
pointwise convergence of a sequence of monotone functions towards a continuous limit
is in fact uniform over compact intervals.

Lemma 2.B.13. Let (X))nengeo be a collection of D[0,1]-valued random variables
with non-decreasing sample paths. Let (f%)gce < C[0,1] be a uniformly equicontinuous

collection of non-decreasing functions. If X0 (t) —= e, fO(t) for each t € [0,1], then it also
holds that
P/
sup | X7 (t) = f7(t)] == 0.
te[0,1]
Proof. Let € > 0. By uniform equicontinuity we can find 0 = ¢; < .-+ < t; = 1 such

that fO(t;) — fO(t;_1) < ¢/2 for all # and i. Using that X? and f? are non-decreasing,
we observe that for t;_1 <t < i;:

Xﬁ(t)—fe(t) < Xp(ts) — fO(t:) + €/2,
> X0(tio1) — fOtim1) — €/2.
Combining the inequalities over the entire grid we have

sup |X0(t) — fO(O)] < max |X0(t) — £O(t:)] + ¢/2.
tE[O,l] ZZO,...,k

P/©

By assumption, X?(t) == f%(t) for each t, and in particular

max |X2(t;) — f(t:)] 25 0

1=0,...,k

as n — 0. We therefore conclude that

supIP’( sup |XO(t) — fO(t)] > e) < sup]P’( max |X9 (ti) — fO(t:)| > e/2) — 0
0e©  “te[0,1] gee \i=0,..k

as n — 0. O

The last auxiliary result of this section is an example of Prokhorov’s method of “tight-
ness + identification of limit”.

Lemma 2.B.14. Let (D, dp) be either (C[0,1], |[l) or (D[0,1],d°), and let (X?, X9)nen 0o
be a collection of D-valued random variables with (X%)gee separable. Suppose that

o The finite dimensional marginals converge uniformly: for any0 <ty <--- <ty <1

D/O
Tt (X0) == T (X0), o oo,
where my, 40 D — R* is the projection given by Tyt (@) = (2(t1), ..., 2(tk))-

hd (Xg)nEN,Ge@ is sequentially tight.
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2.7 Discussion

o (X% enpeo is uniformly tight.

D/©
ThenXﬁ#Xe asn — .

Proof. The statement is analogous to Proposition 18 in Lundborg et al. [2022b], the
difference being that the functionals (-, h) in Lundborg et al. [2022b] have been replaced
by the functionals 7, . ¢, .

The proof of Lundborg et al. [2022b] also works in our case, given that the finite
dimensional marginals form a separating class for the both the Borel algebra on C[0,1]
and the Borel algebra on D[0,1]. This is established in Billingsley [2013], Example 1.3
and Theorem 12.5 (iii). O

2.B.3 Chaining in time uniformly over a parameter

We extend the basic chaining arguments to hold uniformly over ©. Our arguments
closely follow those of Pollard [1984, Chapter VIL.2.] and Newey [1991]. The results
are formulated for processes indexed over a general metric space T, but we will only
apply the results in the case T' = [0,1]. We have the following extension of stochastic

equicontinuity to the uniform setting.
Definition 2.B.15. A collection of sequences

(n),0

Z(n),@ — ( )
( )neN,eee t teT,neN,0e0

of stochastic processes indexed over a metric space (T, d) is called stochastically equicon-
tinuous uniformly over © if for all e, > 0 there exists § > 0 such that

lim sup supIP’( sup ’Zg")’e — Zt(n)’e’ > e) <.
n—o  fed s,teT: d(s,t)<é

&

In Section 2.8.2 of van der Vaart and Wellner [1996], the same definition is given in the
context of empirical processes. Recall that we write, e.g., Z( as a shorthand for Z(™)?
and let the dependency on ¢ be implicit for notational ease. We also write supy(, ¢)<s
as a shorthand for sup, ;e 4(s+)<s- Definition 2.B.15 is a direct extension of pointwise
stochastic equicontinuity. Accordingly, Theorem 2.1 from Newey [1991] generalizes as
follows:

Lemma 2.B.16. Let (Zt(n))teTmeN be a sequence of stochastic processes indexed by a
compact metric space T'. Assume that (Zt(n)) 1s stochastically equicontinuous uniformly

over © and that for each t € T it holds that Zt(n) 25, 0. Then SUDyeT |Zt(")| 280 as

n — 0.
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2 Nonparametric conditional local independence testing

Proof. Let €, > 0 be given, and let § > 0 be the corresponding distance obtained from
the uniform stochastic equicontinuity of (Z (")). By compactness of T' there exists a finite
set T* < T such that T' = J,cp+ B(t,6). By the triangle inequality we get that

sup|Zt(n)| —sup sup |Z™] < sup |Zt(n)| +sup sup |ZM — Zt(n)].
teT teT* seB(t,0) teT* teT* seB(t,d)

Since T is finite, it follows that sup,c+ |Zt(n)] L%, 0, which combined with the inequality

implies that
lim sup sup P(sup |Zt(n) | > 2¢)
n—w (e teT

< 0 + limsup supIP’( sup sup ]Zt(n) — Zt(n)\ > a) <.
n—w fcO teT* seB(t,5)

As e,m > 0 were chosen arbitrarily, we conclude that sup,cr |Zt(n)| 0. O

To establish uniform stochastic equicontinuity we extend the chaining lemma to a
uniform setting. To formulate the theorem we first need some classical definitions related
to chaining.

Definition 2.B.17. Let T be a compact metric space. A subset T* < T is called a
d-net if (J,ep+ B(t,8) = T. The covering number

N(§)=N(6,T) = min{ |T*|: T* < T,T* is a d-net }

is the smallest possible cardinality of a d-net, which is finite by compactness. The
associated covering integral is

g 1
J(5) = L (2log(N(e)/))2 de,  0<5<1.

&

Lemma 2.B.18. Let (T,d) be a metric space with finite covering integral J(-) and let
(Zf)teTﬂE@ be a collection of stochastic processes indexed by T with continuous sample
paths. Assume there is a uniform constant ¢ > 0 such that, for all s,t € T and n > 0,

2

sup P <|Z§ ~ 7! >n- d(s,t)) <2 27,
0e©

Then, for all0 <e <1,

SupP( sup |20 - 70| > 26§J(€)> < 2e.
0O d(s,t)<e

78



2.7 Discussion

Proof. The lemma is a direct consequence of classical chaining lemma [Pollard, 1984,
page 144]. For each # € O, the conditions of the chaining lemma are met for (Zf)scr
with sub-exponential factor ¢. This implies, in particular, that for any 6 € © and
O<e<l,

JP( sup |20 — 20| > 26gJ(e)) < 2,
d(s,t)<e

which is equivalent to the conclusion of the lemma. O

This immediately implies the following corollary.

Corollary 2.B.19. Let (T,d) be a metric space with finite covering integral J(-) and
let (Z(")’Q) be a sequence of stochastic processes on T with continuous sample paths.
Assume there exists a constant ¢ > 0 such that, for all s,t €T and n >0 and n e N,

2
sup P <\Zs(n),0 _ Zt(n)ﬂ’ > d(s,t)) < 9¢ 732
0e©

Then (Z (")) 1s stochastically equicontinuous uniformly over ©.

For stochastic processes with continuous sample paths, stochastic equicontinuity turns
out to be equivalent to sequential tightness (Definition 2.B.7 ii)).

Proposition 2.B.20. Let (Z(”)79)neN7969 be a collection of C[0,1]-valued random vari-
ables such that P(Zén)’g =0)=1allneN and 0 € ©. The following are equivalent:

1. (Z(”)’e) is stochastically equicontinuous uniformly over ©.
2. (29 is sequentially tight.

Proof. The equivalence is a straightforward application of Theorem 7.3 in Billingsley

[2013]. Condition (i) of the aforementioned theorem is satisfied for any sequence of
measures from the collection (Z?(P)),cn geo, since Z(g")’e = 0 almost surely for all n
and #. For any sequence (6,) < ©, stochastic equicontinuity uniformly over © implies
condition (i) of Theorem 7.3 in Billingsley [2013] for the measures ((Z):0)(P)). We
therefore conclude that stochastic equicontinuity uniformly over © implies sequential
tightness.

On the contrary, assume that (Z (")7‘9) is sequentially tight and let €, > 0 be given.

For each n, choose 6,, such that

1
supIP’( sup ‘Zg”)’e — Zt(n)’e‘ = e) < ]P’( sup ‘Zﬁ”)’an — Zt(n)ﬁ”’ > e) + —.
00 N |s—t|<§ |s—t|<d n
Since ((Z(-0n)(P)) is tight by assumption, condition (i7) of Theorem 7.3 asserts that
there exists §, NV > 0 such that

P( sup |Z(")’0” — Zt(n)’a"’ > e) <n

s
|s—t|<d

for n = N. Combining both inequalities and taking the limit superior finish the proof.
O
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2 Nonparametric conditional local independence testing

2.C. The Functional Martingale CLT

In this section we state Rebolledo’s martingale CLT [Rebolledo, 1980] based on its for-
mulation in Andersen et al. [1993], and then we extend the result to a uniform version
without fixed variance functions. The one-dimensional case suffices for our purpose, so
for simplicity, every local martingale in the following is a real-valued stochastic process.
For a local square integrable martingale (M;), we let (M )(t) denote its quadratic char-
acteristic. The theorem requires a condition on the jumps of the local martingales, for
which we will need the following definition.

Definition 2.C.1. Let M; be a local square integrable F;-martingale. For any ¢ > 0,
we define (M. )(t) to be the quadratic characteristic of the pure jump-process given by

t > MA(AM,] > ¢).

0<s<t
L]

We also need a representation of Gaussian martingales, which ensures their continuity.

Proposition 2.C.2. Let (Bi)eo,w0) be a Brownian motion on [0,00) with continuous
sample paths. For every non-decreasing f € C[0,1], the process (Bf(t))te[()’l] s a contin-
uous mean zero Gaussian martingale on [0, 1] with variance function f.

Consequently, if U = (Ut)te[o,l] 18 a mean zero Gaussian martingale with a continuous
variance function V, then U has the distributional representation

(Us)iefo,] 2 (By)iefo,]- (2.C.1)

Proof. Let f € C[0,1] be non-decreasing. From the properties of Brownian motion, it
follows directly that the time-transformed process (B f(t))te[o,l] is a mean zero Gaussian
process with variance function f. Since f is continuous, each sample path ¢ — By is a
composition of continuous functions and thus continuous itself. Since f is non-decreasing,
the time-transformation also preserves the martingale property. This establishes the first
part.

For the second part, recall that the covariance function of a martingale is determined
by its variance function. Hence the first part implies that the right-hand side in (2.C.1)
is a Gaussian process with the same mean and covariance structure as the left-hand side.
Since the distribution of a Gaussian processes is uniquely determined by its mean and
covariance structure, the equality in distribution follows. ]

Proposition 2.C.2 is a simple, distributional variant of the Dubins-Schwarz theorem,
see Revuz and Yor [2013], Chapter V, Theorems 1.6 and 1.7. The Dubins-Schwarz
theorem implies that, in fact, Uy = By () for t € [0, 1], where B is a Brownian motion on
[0,V (1)]. For the purpose of this work we only need the simpler, distributional equality
(2.C.1).

We can now formulate Rebolledo’s CLT for local martingales. To this end, note that
Proposition 2.C.2 ensures the existence of the continuous Gaussian limit martingale U
when the variance function V is continuous.
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2.7 Discussion

Theorem 2.C.3 (Rebolledo’s CLT). Let (U™),ey be a sequence a local square inte-
grable martingales in D|0, 1], possibly defined on different sample spaces and with dif-
ferent filtrations for each n € N. Let U be a continuous Gaussian martingale with con-

tinuous variance function V: [0,1] — [0,0), and assume that Uon) = Uy = 0. Suppose
that for every t € [0,1] and € > 0,

W Lvey  and O Do,

as n — o0. Then it holds that U™ 2 U in DJ[0,1] as n — .
Proof. This is a special case of Theorem I1.5.2 in Andersen et al. [1993]. O

The general formulation of Rebolledo’s CLT above, which allows for n-dependent
sample spaces and filtrations, can now be leveraged to obtain a uniform version via the
sequential characterization of uniform stochastic convergence.

Theorem 2.C.4 (Uniform Rebolledo CLT). For each ne€ N and 0 € ©:
o Let F(M:0 — (ft(n)ﬁ)te[o,l] be a filtration satisfying the usual conditions.

o Let Ut(n)’e be a local square integrable ]:t(n)’e—martmgale in D[0, 1] with Uon)’e = 0.
o Let V9:[0,1] — [0,00) be a non-decreasing function with V°(0) = 0.

Assume that (V%)pee is uniformly equicontinuous and that supyeg V(1) < 0. Assume
further that for every e > 0 and t € [0,1],

P/O P/
—

REN0) VO(t) and WMoty =2 0, (2.C.2)

as n — . Then it holds that
ume 28yl o,

in D[0,1] uniformly over ©, where for each § € ©, U’ is a mean zero continuous
Gaussian martingale on [0, 1] with variance function V?.

Proof. We will use the characterization of uniform convergence as stated in Proposi-
tion 2.B.3 ¢). To this end, let (6,) € © be an arbitrary sequence. By assumption
(Vi,, Jnen is a uniformly equicontinuous and bounded sequence of functions on a compact
interval, so the Arzela—Ascoli theorem states that there exists a subsequence 0y,(,,), with

k: N — N strictly increasing, and a function V € C[0, 1] such that

sup |V (1) — V(t)] — 0, n — 0.
te[0,1]

Since each function V%) is non-decreasing, it follows that V is non-decreasing. It also
holds that V(0) = lim,,_,q Vo (0) = 0, and therefore V' is the variance function of a
continuous Gaussian martingale U with Uy = 0.
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2 Nonparametric conditional local independence testing

By assumption of the convergences in (2.C.2), we may conclude that

UKDk (1) = V(1)) < [UEED Ik (1) — Yok (1)) 4 Vo) (1) — T (8)] 5 0

J

v

io —0

and that <Ue(k(n))’9k(")>(t) — 0 as n — 0. Thus we have established the conditions of
the classical Rebolledo CLT — Theorem 2.C.3 — for the sequence U (k(n):kn) and the
Gaussian martingale U with variance function V. We therefore conclude that

U7 (k(n)),0k(n) D, U

in D[0,1] as n — c0.

We now establish that the sequence (U%) also converges in distribution to U in
C[0,1], and in particular also in D[0,1]. To this end, we use the characterization of
convergence in distribution in C]0, 1] from Theorem 7.5 in Billingsley [2013], which
states that we need to show that

1. Forall 0 <t <--- <t <1, it holds that
Okin Ok(n D ~ ~
(U, 05 = (U, .., Uy, n — o0.

2. Foralle >0

0 0
lim lim SupP( sup U™ — U™ | > e) =0.

6—0" n—owo [t—s|<6

The first condition is clear since all the marginals are multivariate Gaussian, and the
mean and variance of the sequence converges to the mean and variance of the limit
distribution. The second condition follows from the same computation as in the proof
of Lemma 2.A.11. By Theorem 7.5 in Billingsley [2013] we therefore conclude that

Uk 2»0, for n — oo,

in C[0, 1], and hence also in D[0,1].
We can now apply the triangle inequality for the bounded Lipschitz metric to conclude
that

dBL(U(k(n))’ek(n)7 U9k(n>) < dBL(U(k(n)),9k<n>70) + dBL(ﬁ7 U9k<n>) —0.

Since (6,,) € © was an arbitrary sequence, we conclude that U (n),0 20, 70 by Proposi-

tion 2.B.3. O

The following proposition gives explicit expressions for the quadratic characteristics
that appear in Rebolledo’s CLT in the special case where the local martingales are given
as stochastic integrals with respect to a compensated counting processes.
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2.7 Discussion

Proposition 2.C.5. Let Ny,..., N, be counting processes and assume that for each j =

(n)

1,...,n, Nj has an absolutely continuous F, ~ -compensator A;j; such that M;; = Nj; —

A is a locally square integrable ft(n)—martingale. Let Hy,...,H, be locally bounded

Ft(n)—predictable processes, and define the process Ut(n) = 2?21 Sé H; dM;js. Then Ut(n)
(n)

is a local square integrable F,; "’ -martingale, and for any t,e > 0 it holds that

W) = i f H2,dA,,
W) f 1(H, | > )dAj s

Proof. See the discussion following Theorem I1.5.2 in Andersen et al. [1993], in particular
equations (2.5.6) and (2.5.8). O

2.D. Estimation of \ and (¢

The asymptotic theory for estimation of the LCM crucially relies on (™ and G being
consistent, and more importantly, having a product error decaying at an n~12rate.
Therefore, a central question when applying the test, is how to model A and G.

In principle, we could use parametric models to learn 2™ and CAJ(”), and under such
models it should be possible to achieve n~'/2rates. For example, if we consider a
parametrization (¢,60) — A¢(0) which is x(¢)-Lipschitz in § € © < RP for each t, then

1
) = ( [ etto) = @)t ) < 1l g0y 210 — )
Thus the rates from parametric asymptotic theory can be converted to rates for g and h.

However, it is of greater interest if sufficient rates can be achieved with nonparametric
estimators. Below we give concrete examples of nonparametric models and discuss which
rates are achievable. For simplicity, we focus on the case where F; = ]-"tN Z and where
Gy = X — Il; as in the introductory example.

2.D.1 Nonparametric functional estimation of 11

As seen in Section 2.6.1, assumptions on the form of II turn the general estimation
problem into a concrete problem of estimating a function.

If the system is Markovian, it can be reasonable to assume a functional concurrent
model. The model asserts that II; = (¢, Z;) for a bivariate function u, and a survey
of methods for estimating u is given by Maity [2017]. Notably, Jiang and Wang [2011]
~1/3_rate of g(n) under certain regularity and moment assumptions, see their
Theorem 3.3. That result also holds if Z is replaced by a linear predictor 57Z of several
covariates.

achieve an n
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2 Nonparametric conditional local independence testing

Consider again the historical linear regression model from Section 2.6.1, and assume
that the effect of Z on X is homogeneous over time. That is, px(s,t) = px(t — s) for
some function px. This submodel is known as the functional convolution model, since I1
can be written as the convolution of Z and px. Applying the Fourier transform converts
it into a (complex) linear concurrent model, so by Plancherel’s theorem one can leverage
the convergence rates from the concurrent model. Manrique [2016, Theorem 16] uses
this idea to transfer the n="/4-rate of the functional ridge regression estimator [Manrique
et al., 2018] to the convolution model, which holds under modest moment conditions on
the data. With additional distributional assumptions, we conjecture that faster rate
results for the linear concurrent model can also be leveraged to the convolution model.
Senttirk and Miiller [2010] consider a similar model under the assumption that

px(s,t) = 1t — A < s <t)px(t)px (t — 9),

for two functions pk and p% and a lag A > 0. They establish a pointwise rate result for
the response curve, but it is not obvious how to cast their result as a polynomial rate
for g(n).

For the full historical functional linear model we are not aware of any published rate
results. Yuan and Cai [2010], Cai and Yuan [2012] establish rates on the prediction
error for scalar-on-function regression, and Yao et al. [2005] establish various rates for
function-on-function regression, but in a non-historical setting. Based on the former, we
give a heuristic for which rates are achievable for g(n) in this model. If II is based on a

~(n)

kernel estimate p )? of px, then Tonelli’s theorem yields

= ([
[x((

Theorem 4 in Cai and Yuan [2012] asserts that we, under certain regularity conditions,
can estimate px(-,t) such that

E (( | (ox(s,1) - ﬁg?)(&t))sts)z)

decays at a n™ -rate for a fixed t. Here r; is a constant describing the eigenvalue
decay of a certain operator related to the autocovariance of Z and the regularity of
px. As a concrete example, if Z is a Wiener process and px(-,t) € W3*([0,¢]) is in
the m-th Sobolev space for each t > 0, then r, = 1 + m and g(n) will converge at an
n~(1+m)/(2m+3)_rate, see the discussion after Corollary 8 in Yuan and Cai [2010]. Based
on these arguments, we believe that the desired n~(1/4+)_rate for g(n) is achievable with
suitable regularity assumptions on Z and px.

g(n)? = || -1

t 2
f (px(s,t) — ﬁg?)(s,t))zsds) dt)

0

t 2
f (px(s,t) — ﬁg?)(s,t))sts> > dt.

0

2'I’t/(27"t+1)
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2.7 Discussion

2.D.2 Estimation of )\

Within the framework of the Cox model, Wells [1994] demonstrate that the baseline
intensity can be estimated with rate n=2/% using a standard kernel smoothing technique.
With the parametric n~/2-rate on the remaining parameters, this translates readily into
h(n) = O(n=2/%).

We suspect that the same rate should also be attainable in a sparse setting with high-
dimensional covariates, for example by applying the smoothing approach of Wells [1994]
to the baseline hazard estimators of e.g. Fang et al. [2017] and Hou et al. [2023].

Hiabu et al. [2021] consider the more general multiplicative intensity model with \; =
LT > t)f(t,Z;)), where f has a multiplicative structure over its arguments. They
introduce an estimator with optimal rate h(n) = n~2/G+d) where d is the dimension of
Z. For d > 3, we therefore need faster rates on g(n) in order for the LCT to maintain
type I error control.

Omitting the multiplicative structure on f, Bender et al. [2020] propose a general
framework for nonparametric estimation of Markovian intensities. They survey existing
methods such as gradient boosted trees and neural networks and relate them to this
setting. Based on real and synthetic data, they find that both gradient boosted trees
and neural networks outperform the Cox model in terms of predictive performance as
measured by the Brier score. In essence, the framework relies on discretizing time and
approximating the intensity with successive Poisson regressions. Using the same idea,
Rytgaard et al. [2021] argue that h(n) = o(n~*) can be achieved for time-independent
covariates.

Similarly, Rytgaard et al. [2022] mention that h(n) = o(n~'/*) can be achieved for
estimation of intensities in a multivariate point process with a uniformly bounded number
of events, which we place into a general modeling framework below.

2.D.3 Estimation of \ and II for counting processes

In Sections 2.2 and 2.4 we considered the setup where N was a counting process adapted
to a filtration F;, which could contain information on baseline covariates and covariate
processes that were not necessarily counting processes. In this section we explore how our
testing framework can be applied when all stochastic processes of interest are counting
processes.

More specifically, let (Ntd)de[p] be a p-dimensional counting process. For a,b € [p]
and C < [p|\{b} with a # b and a € C we are interested in testing the hypothesis that
N is conditionally locally independent of N? given the filtration, F£, generated by
NC = (N d)deC-

We can cast this setup in the framework of Section 2.2 as follows. Naturally, we let
N = N® and F; = FC. The auxiliary process X is chosen to be caglad and predictable
with respect to the filtration, 77, generated by N°. For example, we could choose
X; = N} . But X; could be any functional of N® such as X; = f(N}_) for a suitable
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2 Nonparametric conditional local independence testing

function f or a linear filter of N?,

i

Xt = J I{(t—S)de,
0

where x is a suitable kernel function, see also Section 2.3.1. In principle, the process

X could also depend on the process N¢, but it is important that the filtration, G;,

generated by F; and X, is strictly larger than i, i.e., X; should depend on N, in order

to get a non-trivial test as explained in Section 2.2.

In the framework of counting processes, we can approach the estimation of both A and
IT in a unified and general way as follows: Let (7j,2;);>1 be the marked point process
associated with the counting process N¢, i.e., (75)j=1 is a sequence of almost surely
strictly increasing event times located at the jumps of N¢, and (2j)j=1 for zj € C are
the corresponding event types.

Since both \; and II; are real-valued and FC -measurable for each fixed t > 0, they
can be represented as measurable functions of {(7},2;) | 7; < t,2; € C}. Hence, we can
model both A and II using any sequence-to-number model. For the intensity process,
Rytgaard et al. [2022] propose a sequence of HAL estimators when the total event count
is uniformly bounded. As an alternative, Xiao et al. [2019] propose using a recurrent
neural network (LSTM). Unless there is a uniform bound on the total number of events,
as assumed by Rytgaard et al. [2022], there are currently no published results available on
the rates of convergence for nonparametric estimation of sequence-to-number functions.

2.E. Relation to semiparametric survival models

In this section, we relate the LCM to existing work on treatment effects in survival
analysis. We resume to the setting of Section 2.3.2, that is, the case where Ny = 1(T' > t)
is the counting process of a survival time, X is a baseline treatment variable, and where
Fi = 0(Ns, Z;s < t) for additional baseline covariates Z. Supposing that X is also
non-negative, we may consider two different models for the intensity:

A= 1T
A= 1T

HAE) exp(0X + o(2)), (2.E.1)
X + B(t, 2)), (2.E.2)

\VARRVY

where 6,9 € R are treatment parameters of interest, and where A, ¢, ¢ deterministic
nuisance functions. The model in (2.E.1) is known as the partially linear Cox model
(PLCM, Sasieni [1992]), and the additive model in (2.E.2) was considered by Dukes
et al. [2019] among others.

While the parameters 6 and ¥ are difficult to compare directly, the hypothesis of
conditional local independence corresponds to the hypothesis of zero treatment effect
within each of the models, and testing this hypothesis can be done using a score test.

Sasieni [1992] shows that within the PLCM, the efficient score for 6 is given by
1
S* (037, 0) = f (X —a*(t) = h*(Z))(dN; — LT = A0 ¢ Pdr),  (2E3)
0
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2.7 Discussion

where (a*, h*) are defined as the minimizers E(X — a(T) —h(Z))?. Recall that, when X
and Z are time-independent, the null hypothesis Hy of conditional local independence
reduces to the conditional independence statement X 1 T | Z. Consequently, it holds
that o*(T) = 0 and h*(Z) = E[X | Z] = IIp under Hy. Evaluating the efficient score at
0 = 0 under Hy therefore gives
1
S*(0:0,9) = [ (X = T)(@N, = 1T > DABE"Dde) = (X - To)(1— Ar(A, ).
0
We see that the empirical version of S* is exactly the endpoint of the LCM estimator
with additive residual process (cf. Equation 2.3.16). This means that our test, the
X-LCT, can under the PLCM be interpreted as a score test based on the efficient score.
A similar connection can be made for the additive model. Dukes et al. [2019] show
that the efficient score for ¥ is given by

Yy ELOX 4 6(t, 2)) T Xem "X | 2] (AN — M (9, )dt)
<  E[(9X +6(t,2)) T X1 | 7] > (VX +6(t,2))

s*(0s0) = [

0

Plugging in ¥ = 0 and simplifying under Hj yields

$*(0:4) f (X —E[X | Z]) (dN; — Adt).

0 ¢(t7 Z)

We recognize the empirical version of S* as the endpoint of the LCM estimator with
the time-constant X replaced by the hazard weighted process X /\;.

Other works that consider effect estimation based on orthogonal scores include Huang
[1999], Fang et al. [2017], Niu et al. [2022], Zhong et al. [2022] for the PLCM and Hou
et al. [2023] for the additive model in (2.E.2).

We also suspect, as the derivations in Section 2.3.1 likewise suggest, that the LCM is
still an efficient score for certain semiparametric survival models even when the covariates
vary with time, but we are not aware of existing results on such a connection.

(AN, — L(T = £)g(t, Z)dt) = f (X;HO)
0 t

2.F. Details on Neyman orthogonality

In this section, we first show by direct computation that the LCM is Neyman orthogonal
with respect to both general residual processes and intensities. We then show that the
LCM with an additive residual process can be viewed as a concentrated-out score in the
sense of Newey [1994].

2.F.1 General Neyman orthogonality

The definition of Neyman orthogonality by Chernozhukov et al. [2018, Def. 2.1.] requires
that we formally define function spaces for the collections of nuisance parameters. How-
ever, to avoid extensive technical specifications (and redundant model assumptions), we
prove a simpler — but more general — condition, from which Neyman orthogonality can
be derived within specific semiparametric models.
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2 Nonparametric conditional local independence testing

First, we generalize the integral I; from Definition 2.2.4 to a function of pairs (z,y)
of caglad functions, given by

t

It(m7y) = f :Es(st - ysds)'
0

With this notation, the LCM is given by v, = E[I;(G, \)], where G is a residual process
and A is the Fi-intensity of N. We assume for simplicity that A and G are bounded such
that the expectation is well-defined.

Now let G be an arbitrary bounded G;-predictable caglad process, and let M be an ar-
bitrary bounded Fi-predictable caglad process. We establish the following orthogonality
condition: under Hy it holds that

OE[L(G + (G —G),A+r(A=N)]| _, = 0. (2.F.1)

Indeed, observe that
L(G+7(G=G)A+r(A=N)
= (1=7)’L(G ) +7(1 = r)(L(G, N) + L(G, \) + r*I,(G, N),
from which it follows that

OE[L(G+7(G—G) A+ (A= N]| _, = 2-E[L(G,N)] + E[L(G, N)] + E[L,(G, \)].

r=0

The first term is zero under Hy by Proposition 2.2.5, and the third term vanishes under
Hjy by the same argument. For the second term, we note that

E[I,(G,N)] =n+E [J Gs(As — )\S)ds} =y + f E [IE [Gs | Fs—] (As — /\S)] ds =,
0 0
which also vanishes under Hy. This lets us conclude that (2.F.1) holds under Hj.
2.F.2 Concentrating-out

To derive the concentrated-out score, we first need to formalize the nuisance parameters
and the collection thereof. We consider the case where F; = EN’Z for a process Z = (Z;),
and let Dx and Dz denote the respective sample spaces of the X and Z. We posit the
following semiparametric model for the intensity:

(B, h) = LT = t)ePXeh(t, Z),

where h: [0,1] x Dz — [0,0) is a function such that t — h(t, Z) is an FZ-predictable
caglad process. Denote the collection of such functions by 71. To make the space not
dependent on the particular instantiation of the process Z, we could also take it to be
the set:

@D
{(ht)te[o,l] € f[ | La(Dzli,4), R)dt | £ — he((25)s<t) is a bounded nonnegative
0,1

caglad function for all (z4)o<s<1 € DZ},

88
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where S@ denotes the direct integral, and where D Z|[0,t) is the path space Dy restricted
to the domain [0, t).
Recall that the likelihood at ¢ = 1 is given by

1 1
((8.h) = fo log(A(8, h))dN, — fo Au(B h)ds

We show that concentrating out the nuisance parameter h of ¢1(3, h) yields to the LCM
with additive residual process under Hy.

Let Py be fixed distribution satisfying Hy with ground truth A° = 0 and A" € 7.
Suppose that for each 3 € (—¢, €) in a neighborhood of zero, there is a function wg € Ty
such that

ws(t, Z) = Ep,["Xt | T = t, FZ].

The first step of concentrating-out is to maximize the expected likelihood over h. We
claim that for each fixed 3, the function h; = hO/w5 € 71 maximizes the objective
u(h) :==Ep,[1(B,h)] over h e T;.

Since the logarithm is concave and A(f, h) is linear in h, it follows that u is a concave
objective. Moreover, one can show that hg is the unique critical point of u by equating
its Gateaux derivative to zero and invoking the fundamental lemma of the calculus
of variations. For simplicity, we settle with verifying (see below) that the Gateaux
derivative is zero at h;. From these properties we may conclude that the global maximum
of u is attained at h;.

A straightforward differentiation shows that for any h € 77,

Op01 (B, hf + 1 h) yrzozf He Z dN f

Because h};(é 7 is Gi-predictable and Ny — So (0, ho ds is a Gy-martingale, taking ex-

pectation under Py yields that
oru(hly + 1 h) [r—o = E[0:01(B,h* + 1 - h) | ;o]

— 1M 0 S — ' h S
_EUO h;(s,Z)AS<O’h)d Lks(ﬁ,h)d]

_E Ul 1T > s) (wB(t, 7) — eﬁXs) h(s, Z)ds]

0
- LIE [1(T > 5) <w5(t,Z) —E[e"X | T > t,}"Z_]) h(s, Z)] ds =0,

where we have used that h(s, Z) is Fs-predictable.
Now, by the method of concentrating-out, we are led to consider nuisance functions
of the form

Tlh (_676) - 7-17

mi®) = (9~ 2575
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2 Nonparametric conditional local independence testing

for any h € 71, which in particular includes 7, (8) = hj. The resulting concentrating-out
score is therefore

W(Bomn) = 0ty (ﬁégh(ﬁ))

e Osws(t, Z) ! X dpwp(t, Z)

Jo (Xs - w(t.2) >st _fo <W6<ta Z)  wal(t,Z)> )A(ﬁ’h)ds
BX, 7z

B jl (Xs B Ep, [Xse | T > s,fs]> dN,

0 E[ef | T > s, F/ ]

! X, Ep [XePXs | T = s, FZ
_J 7 _ PO[ € | § Zs—] A(ﬁ,h)ds
]EPO [e/BXs | T> 57]:5—] (EPO [GBXS | T> 57f8_])2

0
After plugging in 8 = 0 and simplifying we see that

1
w(0.m) = | (X = ELX, | (AN, - A0, 1)ds).
0
This shows that the concentrating-out score evaluated at § = 0 is exactly the score for
the endpoint of the LCM estimator.

2.G. Additional details of simulation study

This section contains additional details, numerical results, and figures related to the
simulations of Section 2.6.

2.G.1 Implementation of estimators and tests

For our proof-of-concept implementation we used two simple off-the-shelf estimators.

To estimate A\ we used the BoXHED2.0 estimator from Pakbin et al. [2021], based
on the works of Wang ct al. [2020] and Lec et al. [2021]. In essence, the estimator
is a gradient boosted forest adapted to the setting of hazard estimation with time-
dependent covariates. The maximum depth and number of trees were tuned by 5-fold
cross-validation over the same grid as in Pakbin et al. [2021]. For computational ease,
the hyperparameters were tuned once on the entire dataset instead of tuning them on
each fold Jff . In principle, this may invalidate the asymptotic properties of \ilff since
it breaks the independence between \¥(") and (T3, X5, Z;) jeJk but we believe that this
dependency is negligible.

To estimate the predictable projection II; = E(X; | F;—), we fitted a series of linear
least squares estimators by regressing X; on (Zs)ser.s<¢ for each ¢t € T. To stabilize the
estimation error g(n), we added a small Lo-penalty with coefficient 0.001 fixed across
all experiments for simplicity. Since X; was sampled from a discretized historical linear
model, the error g(n) should in principle converge with a classical n~"/2-rate. The
historical linear regression estimator from the scikit-fda library was also considered
initially, but we found that fitting this model was too computationally expensive for
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2.7 Discussion

X-LCT LCM Endpoint Test Hazard Ratio Test
0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
p-value p-value p-value
Coefficient B: -1.0 -—= 10
Kernel: Gaussian constant sine zero

Figure 2.G.1: Empirical distribution functions of p-values for the three different condi-

tional local independence tests considered, simulated under the sampling
scheme described in Section 2.6. The dotted line shows y = = correspond-
ing to a uniform distribution.
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Figure 2.G.2: Sample paths of 5%(509) fitted on data sampled from three different alter-
natives as described in Section 2.6.4. Here (X,Y, Z) are sampled from the
scheme described in Section 2.6, with both px and py being the constant
kernel and with 8 = —1. For each alternative, 100 paths are shown. The
empirical mean functions and the endpoint distributions are highlighted
and computed based on 500 samples.
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Figure 2.G.3: Empirical distribution functions of p(@ = 1 — FS(M(q)), where M@ =

(Mt(q))tzl,_,_ﬂ is a random walk with Gaussian increments such that Mq(q)
has unit variance for each ¢ € {2¢: £ = 4,...,8}. Each empirical distribu-
tion function is based on N = 20000 samples.
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2.7 Discussion

a simulation study with cross-fitting. In principle, in our time-continuous setting, we
would like to use a functional estimator of Il that would utilize the regularity along
s and t. Initial experiments, however, suggested that the simpler historical regression
described above gave similar results as using the scikit-fda library, and we went with
the less time consuming implementation.

Based on these estimators, the X-LCT was implemented based on Algorithm 2. Fol-
lowing the recommendation by Chernozhukov et al. [2018, Remark 3.1.], we computed
the X-LCT with K = 5 folds. The associated p-value was computed with the series
representation of Fg truncated to the first 1000 terms.

We compared our results for X-LCT with a hazard ratio test in the possibly mis-
specified marginal Cox model given by (2.2.11). This test was computed using the
lifelines library [Davidson-Pilon, 2019], specifically the CoxTimeVaryingFitter model.
The model was fitted with an Lo-penalty with a coefficient set to 0.1 (the default), and
as a consequence the hazard ratio test is expected to be conservative.

2.G.2 Comparison with endpoint statistic

We compare the X-LCT, which is based on the uniform norm of the X-LCM, with its
endpoint counterpart. More precisely, we consider the test statistic

(Vin(1)) E \/ﬁ’?f(7(n)7

which is asymptotically standard normal under Hy. With the simulation settings in
Section 2.6.4, the X-LCT turns out to be more or less indistinguishable from the corre-
sponding endpoint test. This is because the alternatives considered have corresponding
LCMs, which are most extreme towards t = 1. Therefore, the supremum and the end-
point behave similarly in these cases.

For this reason we consider local alternatives that result in a non-monotonic LCM.
Using the same expression for the intensity (2.6.39), but with a time-varying pp, we
consider the alternatives

Astep: po(t) =5-1(t <0.4) —5-1(t > 0.4),
Acos: po(t) =T -cos(4m - t).

The idea behind the alternative Agtep is that the LCM should be increasing on [0, 0.4] and
decreasing on (0.4, 1]. Figure 2.G.2 shows sample paths of 4% (") for data simulated under
each of the alternatives py = 5, Agtep and Acos. The figure illustrates that ¢ — \’ytK ’(n)|
is, indeed, mostly maximal towards ¢t = 1 for the alternative py = 5, but not for the
time-varying alternatives Agiep and Acos.

With the same sampling scheme for (X,Y,Z) as in Section 2.6.2, we conducted an
analogous experiment with 400 runs for each setting. Figure 2.G.4 shows the rejection
rates for the two tests.

Under the hypothesis of conditional local independence, the left plot in Figure 2.G.4
shows that the endpoint test behaves similarly to \ilff as expected. Both tests have power
against the local alternatives, but for Agep the power does not seem to stabilize before
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Figure 2.G.4: The plots show the average rejection rate of the double machine learning

tests based on the supremum statistic (blue) and the endpoint statistic
(red).

n = 2000. This is different from the previous settings, and can be explained by a slower
convergence of the intensity estimator due to the more complex dependency on X. For
both of the local alternatives, we observe that \115 is more powerful than the endpoint
test, with the difference being largest for Agep. In conclusion, these results show that
the supremum test dominates the endpoint test in certain situations.
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3 Efficient adjustment for

complex covariates: Gaining efficiency
with DOPE

ALEXANDER MANGULAD CHRISTGAU AND NIELS RICHARD HANSEN

Abstract

Covariate adjustment is a ubiquitous method used to estimate the average treat-
ment effect (ATE) from observational data. Assuming a known graphical struc-
ture of the data generating model, recent results give graphical criteria for optimal
adjustment, which enables efficient estimation of the ATE. However, graphical
approaches are challenging for high-dimensional and complex data, and it is not
straightforward to specify a meaningful graphical model of non-Euclidean data
such as texts. We propose a general framework that accommodates adjustment
for any subset of information expressed by the covariates. We generalize prior
works and leverage these results to identify the optimal covariate information for
efficient adjustment. This information is minimally sufficient for prediction of the
outcome conditionally on treatment.

Based on our theoretical results, we propose the Debiased Outcome-adapted
Propensity Estimator (DOPE) for efficient estimation of the ATE, and we provide
asymptotic results for the DOPE under general conditions. Compared to the aug-
mented inverse propensity weighted (AIPW) estimator, the DOPE can retain its
efficiency even when the covariates are highly predictive of treatment. We illustrate
this with a single-index model, and with an implementation of the DOPE based
on neural networks, we demonstrate its performance on simulated and real data.
Our results show that the DOPE provides an efficient and robust methodology for
ATE estimation in various observational settings.

3.1 Introduction

Estimating the population average treatment effect (ATE) of a treatment on an out-
come variable is a fundamental statistical task. A naive approach is to contrast the
mean outcome of a treated population with the mean outcome of an untreated popu-
lation. Using observational data this is, however, generally a flawed approach due to

95



3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

Treatment Outcome

Figure 3.1.1: The covariate W can have a complex data structure, even if the information
it represents is structured and can be categorized into components that
influence treatment and outcome separately.

confounding. If the underlying confounding mechanisms are captured by a set of pre-
treatment covariates W, it is possible to adjust for confounding by conditioning on W in
a certain manner. Given that multiple subsets of W may be valid for this adjustment, it
is natural to ask if there is an ‘optimal adjustment subset’ that enables the most efficient
estimation of the ATE.

Assuming a causal linear graphical model, Henckel et al. [2022] established the ex-
istence of — and gave graphical criteria for — an optimal adjustment set for the OLS
estimator. Rotnitzky and Smucler [2020] extended the results of Henckel et al. [2022],
by proving that the optimality was valid within general causal graphical models and for
all regular and asymptotically linear estimators. Critically, this line of research assumes
knowledge of the underlying graphical structure.

To accommodate the assumption of no unmeasured confounding, observational data
is often collected with as many covariates as possible, which means that W can be high-
dimensional. In such cases, assumptions of a known graph are unrealistic, and graphical
estimation methods are statistically unreliable [Uhler et al.; 2013, Shah and Peters, 2020,
Chickering et al., 2004]. Furthermore, for non-Euclidean data such as images or texts,
it is not clear how to impose any graphical structure pertaining to causal relations.
Nevertheless, we can in these cases still imagine that the information that W represents
can be separated into distinct components that affect treatment and outcome directly,
as illustrated in Figure 3.1.1.

In this paper, we formalize this idea and formulate a novel and general adjustment
theory with a focus on efficiency bounds for the estimation of the average treatment
effect. Based on the adjustment theory, we propose a general estimation procedure and
analyze its asymptotic behavior.

3.1.1 Setup

Throughout we consider a discrete treatment variable T € T, a square-integrable outcome
variable Y € R, and pre-treatment covariates W € W. For now we only require that T
is a finite set and that W is a measurable space. The joint distribution of (T, W,Y) is
denoted by P and it is assumed to belong to a collection of probability measures P. If
we need to make the joint distribution explicit, we denote expectations and probabilities
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3.1 Introduction

with Ep and Pp, respectively, but usually the P is omitted for ease of notation.
Our model-free target parameters of interest are of the form

1T = )Y

;m:mmym:uwuzﬁb@:ﬂ“”

} , teT. (3.1.1)
In words, these are treatment specific means of the outcome when adjusting for the
covariate W. To ensure that this quantity is well-defined, we assume the following
condition, commonly known as positivity.

Assumption 3.1.1 (Positivity). It holds that 0 < P(T' = t| W) < 1 almost surely for
eachteT.

Under additional assumptions common in causal inference literature — which infor-
mally entail that W captures all confounding — the target parameter x; has the interpre-
tation as the interventional mean, which is expressed by E[Y |do(T = t)] in do-notation
or by E[Y!] using potential outcome notation [Peters et al., 2017, van der Laan and
Rose, 2011]. Under such causal assumptions, the average treatment effect is identified,
and when T = {0,1} it is typically expressed as the contrast x1 — xo. The theory in
this paper is agnostic with regards to whether or not x; has this causal interpretation,
although it is the primary motivation for considering y; as a target parameter.

Given n i.i.d. observations of (7, W,Y"), one may proceed to estimate x; by estimating
either of the equivalent expressions for x; in Equation (3.1.1). Within parametric models,
the outcome regression function

git,w)=E[Y |T =t,W = w]

can typically be estimated with a y/n-rate. In this case, the sample mean of the estimated
regression function yields a 1/n-consistent estimator of x; under Donsker class conditions
or sample splitting. However, many contemporary datasets indicate that parametric
model-based regression methods get outperformed by nonparametric methods such as
boosting and neural networks [Bojer and Meldgaard, 2021].

Nonparametric estimators of the regression function typically converge at rates slower
than 4/n, and likewise for estimators of the propensity score

m(t|w)=P(T =t|W =w).

Even if both nonparametric estimators have rates slower than 1/n, it is in some cases
possible to achieve a y/n-rate of x; by modeling both m and g, and then combining their
estimates in a way that achieves ‘rate double robustness’ [Smucler et al., 2019]. That
is, an estimation error of the same order as the product of the errors for m and g. Two
prominent estimators that have this property are the Augmented Inverse Probability
Weighted estimator (AIPW) and the Targeted Minimum Loss-based Estimator (TMLE)
[Robins and Rotnitzky, 1995, Chernozhukov et al., 2018, van der Laan and Rose, 2011].

In what follows, the premise is that even with a y/n-rate estimator of y;, it might still
be intractable to model m — and possibly also g — as a function of W directly. This can
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happen for primarily two reasons: (i) the sample space W is high-dimensional or has
a complex structure, or (ii) the covariate is highly predictive of treatment, leading to
unstable predictions of the inverse propensity score P(T' =t | W)~

In either of these cases, which are not exclusive, we can try to manage these difficulties
by instead working with a representation Z = (W), given by a measurable mapping
@ from W into a more tractable space such as R?. In the first case above, such a
representation might be a pre-trained word embedding, e.g., the celebrated BERT and
its offsprings [Devlin et al.; 2018]. The second case has been well-studied in the special
case where W = R* and where P contains the distributions that are consistent with
respect to a fixed DAG (or CPDAG). We develop a general theory that subsumes both
cases, and we discuss how to represent the original covariates to efficiently estimate the
adjusted mean x;.

3.1.2 Relations to existing literature

Various studies have explored the adjustment for complex data structures by utilizing
a (deep) representation of the covariates, as demonstrated in works such as Shi et al.
[2019], Veitch et al. [2020]. In a different research direction, the Collaborative TMLE
[van der Laan and Gruber, 2010] has emerged as a robust method for estimating average
treatment effects by collaboratively learning the outcome regression and propensity score,
particularly in scenarios where covariates are highly predictive of treatment [Ju et al.,
2019]. Our overall estimation approach shares similarities with the mentioned strategies;
for instance, our proof-of-concept estimator in the experimental section employs neural
networks with shared layers. However, unlike the cited works, it incorporates the concept
of efficiently tuning the representation specifically for predicting outcomes, rather than
treatment. Related to this idea is another interesting line of research, which builds
upon the outcome adapted lasso proposed by Shortreed and Ertefaie [2017]. Such works
include Ju et al. [2020], Benkeser et al. [2020], Greenewald et al. [2021], Baldé et al.
[2023]. These works all share the common theme of proposing estimation procedures
that select covariates based on Lj-penalized regression onto the outcome, and then
subsequently estimate the propensity score based on the selected covariates adapted
to the outcome. The theory of this paper generalizes the particular estimators proposed
in the previous works, and also allows for other feature selection methods than Li-
penalization. Moreover, our generalization of (parts of) the efficient adjustment theory
from Rotnitzky and Smucler [2020] allows us to theoretically quantify the efficiency gains
from these estimation methods. Finally, our asymptotic theory considers a novel regime,
which, according to the simulations, seems more adequate for describing the finite sample
behavior than the asymptotic results of Benkeser et al. [2020] and Ju et al. [2020].

Our general adjustment results in Section 3.3 draw on the vast literature on classical
adjustment and confounder selection, for example Rosenbaum and Rubin [1983], Hahn
[1998], Henckel et al. [2022], Rotnitzky and Smucler [2020], Guo et al. [2022], Perkovié¢
et al. [2018], Peters et al. [2017], Forré and Mooij [2023]. In particular, two of our results
are direct extensions of results from Rotnitzky and Smucler [2020], Henckel et al. [2022].
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3.2 Generalized adjustment concepts

3.1.3 Organization of the paper

In Section 3.2 we discuss generalizations of classical adjustment concepts to abstract
conditioning on information. In Section 3.3 we discuss information bounds in the frame-
work of Section 3.2. In Section 3.4 we propose a novel method, the DOPE, for efficient
estimation of adjusted means, and we discuss the asymptotic behavior of the resulting
estimator. In Section 3.5 we implement the DOPE and demonstrate its performance on
synthetic and real data. The paper is concluded by a discussion in Section 3.6.

3.2 Generalized adjustment concepts

In this section we discuss generalizations of classical adjustment concepts. These gener-
alizations are motivated by the premise from the introduction: it might be intractable
to model the propensity score directly as a function of W, so instead we consider ad-
justing for a representation Z = ¢(W). This is, in theory, confined to statements about
conditioning on Z, and is therefore equivalent to adjusting for any representation of the
form Z = 1 op(W), where v is a bijective and bimeasureable mapping. The equivalence
class of such representations is characterized by the o-algebra generated by Z, denoted
by o(Z), which informally describes the information contained in Z. In view of this, we
define adjustment with respect to sub-o-algebras contained in o(W).

Remark 3.2.1. Conditional expectations and probabilities are, unless otherwise indi-
cated, defined conditionally on o-algebras as in Kolmogoroff [1933], see also Kallenberg
[2021, Ch. 8|. Equalities between conditional expectations are understood to hold al-
most surely. When conditioning on the random variable 7" and a o-algebra Z we write
“|T,2 as a shorthand for ‘|o(7") v Z’. Finally, we define conditioning on both the
event (1" =t) and on a c-algebra Z < o(W) by E[Y |T =t, Z] = %, which
is well-defined under Assumption 3.1.1. &
Definition 3.2.2. A sub-c-algebra Z < o(W) is called a description of W. For each
te T and P € P, and with Z a description of W, we define

m(Z:P) = Bp(T = 1| Z),
bi(2;P) = Ep[Y | T = t, 2],
Xt(Z; P) = Ep[bi(Z; P)] = Ep[m(Z; P)"'L(T = t)Y].

If a description Z of W is given as Z = o(Z) for a representation Z = (W), we may
write x¢(Z; P) instead of x¢(c(Z); P) etc.

We say that
Zis Pvalid if:  x4(Z; P) = x¢(W; P), for all t € T,
Z is P-OMS if: bi(Z; P) = by(W; P), forall teT,

Z is P-ODS if: YUpW|T, Z.

Here OMS means Outcome Mean Sufficient and ODS means Outcome Distribution Suf-
ficient. If Z is P-valid for all P € P, we say that it is P-valid. We define P-OMS and
P-ODS analogously. &
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

A few remarks are in order.

e We have implicitly extended the shorthand notation described in Remark 3.2.1 to
the quantities in Definition 3.2.2.

e The quantity x.(Z;P) is deterministic, whereas m;/(Z;P) and b,(Z; P) are Z-
measurable real valued random variables. Thus, if Z is generated by a repre-
sentation Z, then by the Doob-Dynkin lemma [Kallenberg, 2021, Lemma 1.14]
these random variables can be expressed as functions of Z. This fact does not play
a role until the discussion of estimation in Section 3.4.

e There are examples of descriptions Z € o(W) that are not given by representa-
tions. Such descriptions might be of little practical importance, but our results do
not require Z to be given by a representation. We view the o-algebraic framework
as a convenient abstraction that generalizes equivalence classes of representations.

o We have the following hierarchy of the properties in Definition 3.2.2:
P-ODS = P-OMS = P-valid,
and the relations also hold if P is replaced by P.

e The P-ODS condition relates to existing concepts in statistics. The condition can
be viewed as a o-algebraic analogue of prognostic scores [Hansen, 2008], and it
holds that any prognostic score generates a P-ODS description. Moreover, if a
description Z = o(Z) is P-ODS, then its generator Z is c-equivalent to W in the
sense of Pearl [2009], see in particular the claim following his Equation (11.8). In
Remark 3.3.12 we discuss the relations between P-ODS descriptions and classical
statistical sufficiency.

The notion of P-valid descriptions can be viewed as a generalization of valid adjust-
ment sets, where subsets are replaced with sub-o-algebras.

Example 3.2.3 (Comparison with adjustment sets in causal DAGs). Suppose W € RF
and let D be a DAG on the nodes V = (T, W,Y). Let P = M(D) be the collection
of continuous distributions (on R¥*2) that are Markovian with respect to D and with
E|Y]| < c0.

Any subset Z € W is a representation of W given by a coordinate projection, and
the corresponding o-algebra o(Z) is a description of W. In this framework, a subset
Z < W is called a valid adjustment set for (T,Y) if for all Pe P, t€ T, and y € R

. { LT = )L(Y <)
P Pp(T = t[pap(T))

where pap denotes the parents T in D, see for example Definition 2 in Rotnitzky and
Smucler [2020]. It turns out that Z is a valid adjustment set if and only if

1T = )Y
B [w — pan(D)

} — Ep[Pp(Y <y|T =1,2)],

] =REp[Ep[Y | T =t,Z]] = x¢(Z; P)
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for all P € P and t € T. This follows' from results of Perkovi¢ et al. [2018], which we
discuss for completeness in Proposition 3.A.1 in the supplement. Thus, if we assume
that W is a valid adjustment set, then any subset Z < W is a valid adjustment set if
and only if the corresponding description o(Z) is P-valid. '

In general, P-valid descriptions are not necessarily generated from valid adjustment
sets. This can happen if structural assumptions are imposed on the conditional mean,
which is illustrated in the following example.

Example 3.2.4. Suppose that the outcome regression is known to be invariant under
rotations of W e R¥ such that for any P e P,

Ep[Y |T,W] =Ep[Y|T, [W][] = gr(T, [W]).

Without further graphical assumptions, we cannot deduce that any proper subset of W
is a valid adjustment set. In contrast, the magnitude |[W| generates a P-OMS — and
hence also P-valid — description of W by definition.

Suppose that there is a distribution P € P for which g(t, ) is bijective. Then o(|W])
is also the smallest P-OMS description up to Pz-negligible sets: if Z is another P-OMS
description, we see that by(Z; P) = b(W; P) = gp(t, [W]) almost surely. Hence

o([W]) = a(gp(t, [WI)) = o(be(2: P)) < Z,

where overline denotes the P s-completion of a o-algebra. That is, Z is the smallest
o-algebra containing Z and all its PP 5-negligible sets. [

Even in the above example, where the regression function is known to depend on a one-
dimensional function of W, it is generally not possible to estimate the regression function
at a y/n-rate without restrictive assumptions. Thus, modeling of the propensity score is
required in order to obtain a y/n-rate estimator of the adjusted mean. If W is highly
predictive of treatment, then naively applying a doubly robust estimator (AIPW, TMLE)
can be statistically unstable due to large inverse propensity weights. Alternatively,
since o(|W/|) is a P-valid description, we could also base our estimator on the pruned
propensity P(T = t| |[W/|). This approach should intuitively provide more stable weights,
as we expect |[W/|| to be less predictive of treatment. We proceed to analyze the difference
between the asymptotic efficiencies of the two approaches and we show that, under
reasonable conditions, the latter approach is never worse asymptotically.

3.3 Efficiency bounds for adjusted means

We now discuss efficiency bounds based on the concepts introduced in Section 3.2. To
this end, let Z = (W) be a representation of W. Under a sufficiently dense model P,
the influence function for x.(Z; P) is given by

LT =1t)

Vi(Z; P) = b(Z; P) + W(Y —b(Z; P)) — x¢(Z; P). (3.3.2)

"We thank Leonard Henckel for pointing this out.
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The condition that P is sufficiently dense entails that no ‘structural assumptions’ are
imposed on the functional forms of 7 and by, see also Robins et al. [1994], Robins
and Rotnitzky [1995], Hahn [1998]. Structural assumptions do not include smoothness
conditions, but do include, for example, parametric model assumptions on the outcome
regression.

Using the formalism of Section 3.2, we define 14(Z; P) analogously to (3.3.2) for any
description Z of W. We denote the variance of the influence function by

Vi(Z; P) == Varp[yy(Z; P)]
_ Varp(Y |T =t, 2)
N EP[ m(Z; P)

] + Varp(b:(Z; P)). (3.3.3)

The importance of this variance was highlighted by Hahn [1998], who computed
V(W3 P) as the semiparametric efficiency bound for regular asymptotically linear (RAL)
estimators of x;(W; P). That is, for any P-consistent RAL estimator x;(W; P) based on
n i.i.d. observations, the asymptotic variance of \/n(x:(W; P) — x;(W; P)) is bounded
below by V,(W; P), provided that P does not impose structural assumptions on m;,(W)
and b;(W). Moreover, the asymptotic variance of both the TMLE and ATPW estima-
tors achieve this lower bound when the propensity score and outcome regression can be
estimated with sufficiently fast rates [Chernozhukov et al., 2018, van der Laan and Rose,
2011].

Since the same result can be applied for the representation Z = (W), we see that
estimation of x¢(Z; P) has a semiparametric efficiency bound of V(Z; P). Now suppose
that o(Z) is a P-valid description of W, which means that x; == x;(W; P) = x¢(Z; P) for
all P. It is then natural to ask if we should estimate y; based on W or the representation
Z? We proceed to investigate this question based on which of the efficiency bounds
Vi(Z; P) or V,(W; P) is smallest.

If Vi(Z; P) is smaller than V;(W; P), then V;(W; P) is not an actual efficiency bound
for x+(W; P). This does not contradict the result of Hahn [1998], as we have assumed the
existence of a non-trivial P-valid description of W, which implicitly imposes structural
assumptions on the functional form of b;(W). Nevertheless, it is sensible to compare the
variances Vi(Z; P) and V(W P), as these are the asymptotic variances of the AIPW
when using either Z or W, respectively, as a basis for the nuisance functions.

We formulate our efficiency bounds in terms of the more general contrast parameter

A= A(W;P) = > cixi(W; P), (3.3.4)
teT

where ¢ := (¢;)ser are fixed real-valued coefficients. The prototypical example, when T =
{0,1}, is A = x1 — X0, which is the average treatment effect under causal assumptions,
cf. the discussion following Assumption 3.1.1. Note that the family of A-parameters
includes the adjusted mean y; as a special case.

To estimate A, we consider estimators of the form

A(2;P) = Z cXt(Z; P), (3.3.5)
teT
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where X¢(Z; P) denotes a consistent RAL estimator of x;(Z; P). Correspondingly, the
efficiency bound for such an estimator is

Va(Z; P) = Varp (Z e (Z; P)). (3.3.6)
teT

It turns out that two central results by Rotnitzky and Smucler [2020], specifically
their Lemmas 4 and 5, can be generalized from covariate subsets to descriptions. One
conceptual difference is that there is a priori no natural generalization of precision vari-
ables and overadjustment (instrumental) variables. To wit, if Z; and Z5 are descriptions,
there is no canonical way” to subtract Z5 from Zj in a way that maintains their join
21 v 29 = 0(21,2,). Apart from this technical detail, the proofs translate more or
less directly. The following lemma is a direct extension of Rotnitzky and Smucler [2020,
Lemma 4].

Lemma 3.3.1 (Deletion of overadjustment). Fiz a distribution P € P and let Z, S 2,
be o-algebras such that Y 1Lp Zo | T, Z1. Then it always holds that

Va(Z2; P) = VA(Z1; P) = Y ¢} Dy(21, 22; P) > 0,
teT

where for eacht €T,
Dy(21, 23 P) = Vi(Z5; P) — V(215 P)
_Ep [nt(zl; P)Var(Y | T = t, Zy) Var (m (203 P) | T =1, zl)].
Moreover, if Z9 is a description of W then Z1 is P-valid if and only if 2 is P-valid.

The lemma quantifies the efficiency lost in adjustment when adding information that
is irrelevant for the outcome.

We proceed to apply this lemma to the minimal information in W that is predictive
of Y conditionally on 7. To define this information, we use the regular conditional
distribution function of Y given T' = ¢, W = w, which we denote by

Fy|t,w; P) =Pp(Y <y|T =t,W =w), yeR,teT,weW.

See Kallenberg [2021, Sec. 8] for a rigorous treatment of regular conditional distributions.
We will in the following, by convention, take

by(w: P) — J ydF(y |t w: P), (3.3.7)

so that b,(W; P) is given in terms of the regular conditional distribution.

2equivalent conditions to the existence of an independent complement are given in Proposition 4 in
Emery and Schachermayer [2001].
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Figure 3.3.2: The og-algebra Q given in Definition 3.3.2 as a description of W.

Definition 3.3.2. Define the o-algebras

Q‘:\/QPv Qp=o0(F(y|t, W;P); yeR,teT),
PeP

R = \/RP; Rp=0(by(W;P); teT).
PeP

&

Note that Qp, @, Rp and R are all descriptions of W, see Figure 3.3.2 for a depiction
of the information contained in Q. Note also that Rp € Qp by the convention (3.3.7).
We now state one of the main results of this section.

Theorem 3.3.3. Fixz P € P. Then, under Assumption 3.1.1, it holds that

(i) If Z is a description of W and Qp € Z, then Z is P-ODS. In particular, Qp is
a P-ODS description of W.

(ii) If Z is P-ODS description, then Qp  Z.

(iii) For any P-ODS description Z it holds that
VA(Z;P) = Va(Qp; P) = >, ¢} Di(Qp, Z; P) > 0, (3.3.8)
teT

where Dy is given as in Lemma 3.3.1.

Together parts (i) and (ii) state that a description of W is P-ODS if and only if its
Pp-completion contains Qp. Part (iii) states that, under P € P, Qp leads to the optimal
efficiency bound among all P-ODS descriptions.

In the following corollary we use Z* to denote the Pp-completion of a o-algebra Z.

Corollary 3.3.4. Let Z be a description of W. Then Z is P-ODS if and only if
Qp < ZP for all P € P. A sufficient condition for Z to be P-ODS is that Q < ZF for
all P € P, in which case

VA(Z;P) = VA(Q;P) = Y ¢} Di(Q, 2;P) >0,  PeP. (3.3.9)
teT

In particular, Q is a P-ODS description of W, and (3.3.9) holds with Z = o(W).
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3.3 Efficiency bounds for adjusted means

Remark 3.3.5. It is a priori not obvious if Q is given by a representation, i.e., if Q@ =
o(p(W)) for some measurable mapping ¢. In Example 3.2.4 it is, since the arguments
can be reformulated to conclude that Q = o(|W]|)). &

Instead of working with the entire conditional distribution, it suffices to work with the
conditional mean when assuming, e.g., independent additive noise on the outcome.

Proposition 3.3.6. For fired P € P, then Qp = Rp if any of the following statements
are true:

o F(y|t,W;P) is o(by(W; P))-measurable for each t € T,y e R.

e Y is a binary outcome.

e Y has independent additive noise, i.e., Y =bp(W) + ey withey LpT, W.
If Qp = Rp holds, then (3.3.8) also holds for any P-OMS description.

Remark 3.3.7. When Op = Rp for all P € P we have Q = R. There is thus the
same information in the o-algebra R generated by the conditional means of the outcome
as there is in the o-algebra Q generated by the entire conditional distribution of the
outcome. The three conditions in Proposition 3.3.6 are sufficient but not necessary to
ensure this. &

We also have a result analogous to Lemma 4 of Rotnitzky and Smucler [2020]:

Lemma 3.3.8 (Supplementation with precision). Fiz P € P and let Z; < Z5 be de-
scriptions of W such that T' 1L p Z5 | Z1. Then 21 is P-valid if and only if Zo is P-valid.
Irrespectively, it always holds that

VA(Z1; P) — Va(Z2; P) = ¢" Varp[R(Z1, Z2; P)]c = 0
where R(Z1, Z9; P) = (Ri(21, Z2; P))eT with

LT =t)

Ri(21,29; P) = <7Tt(ZZP)

- 1) (bi(Z0: P) — bi(21: P)) .

Writing Ry = Ri(Z1, Z2; P), the components of the covariance matriz of R are given by

Varp(R;) = Ep [(m(Zth) - 1) Varp[bi(Z2; P) | Zl]] ;

COVP<RS,Rt> = _EP[COVP(bS(ZQ;P)bt(ZQ;P) ’Zl)]

As a consequence, we obtain the well-known fact that the propensity score is a valid
adjustment if W is, cf. Theorems 1-3 in Rosenbaum and Rubin [1983].

Corollary 3.3.9. LetlIp = o(m(W; P): teT). If Z is a description of W containing
IIp, then Z is P-valid and

Va(Ilp; P) — Va(Z; P) = ¢' Varp[R(Rp, Z; P)]c > 0.
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

The corollary asserts that while the information contained in the propensity score is
valid, it is asymptotically inefficient to adjust for in contrast to all the information of
W. This is in similar spirit to Theorem 2 of Hahn [1998], which states that the efficiency
bound VA (W; P) remains unaltered if the propensity is considered as known. However,
the corollary also quantifies the difference of the asymptotic efficiencies.

Corollary 3.3.4 asserts that Q is maximally efficient over all P-ODS descriptions Z
satisfying @ < Z¥, and Proposition 3.3.6 asserts that in special cases, Q reduces to R.
Since R is P-OMS, hence P-valid, it is natural to ask if R is generally more efficient
than Q. The following example shows that their efficiency bounds may be incomparable
uniformly over P.

Example 3.3.10. Let 0 < § < % be fixed and let P be the collection of data generating
distributions that satisfy:

e W e [§,1— 6] with a symmetric distribution, i.e., W 21-w.
o T'e{0,1} with E(T|W) =W.

o Y =T+g(|W—3|)+v(W)ey, where ey 1L (T, W), E[e}] < o0, E[ey] = 0, and

where g: [0, 3 — 6] — R and v: [§,1 — §] — [0,0) are continuous functions.
Letting Z = |[W — %\, it is easy to verify directly from Definition 3.3.2 that
Q=0(W)#0(Z)=TR.

It follows that Z is P-OMS but not P-ODS. However, Z is P;-ODS in the homoscedastic
submodel P; = {P € P|v = 1}. In fact, it generates the o-algebra Q within this
submodel, i.e., 0(Z) = v pep, Qp. Thus Va(Z; P) < VA(W; P) for all P € P;.

We refer to the supplementary Section 3.A.6 for complete calculations of the subse-
quent formulas.

From symmetry it follows that m1(Z) = 0.5 and hence we conclude that 7" 1L Z. By
Lemma 3.3.8, it follows that 0 (the trivial adjustment) is P-valid, but with Va(Z; P) <
Va(0; P) for all P e P.

Alternatively, direct computation yields that

Vi(0) = 2Var(g(Z)) + 2E[v(W)?]E[

Vi(Z) = Var (g(Z)) + 2E[v(W)*|E[7]
V(W) = Var (9(Z)) + E [v(W)?*/ W] E[e%].

o
b~<l\')
—_—

With A = x¢, the first two equalities confirm that Va(Z; P) < VA(0; P), P € P, and
the last two yield that indeed Va(Z; P) < VA(W; P) for P € P; by applying Jensen’s
inequality. In fact, these are strict inequalities whenever g(Z) and ey are non-degenerate.

Finally, we show that it is possible for Va(Z; P) > VA(W; P) for P ¢ P;. Let P P
be a data generating distribution with Es[e3] > 0, v(W) = W2, and with W uniformly
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3.4 Estimation based on outcome-adapted representations

distributed on [d,1 — ¢]. Then

55 55
U(W)2 (1 - 5)4 Y 5o 1
Ep[ W ] = Ep[W?] = %) 7

So for sufficiently small 6, it holds that VA(Z; P) > VA (W; P). The example can also be
modified to work for other § > 0 by taking v to be a sufficiently large power of W. &

Remark 3.3.11. Following Theorem 1 of Benkeser et al. [2020], it is stated that the
asymptotic variance Va(Rp; P) is generally smaller than VA(W; P). The example
demonstrates that this requires some assumptions on the outcome distribution, such
as the conditions in Proposition 3.3.6. &

Remark 3.3.12. Suppose that P = {fy - u: 6 € ©} is a parametrized family of measures
with densities {fp}geo With respect to a o-finite measure p. Then informally, a suffi-
cient sub-o-algebra is any subset of the observed information for which the remaining
information is independent of 6 € ©, see Billingsley [2017] for a formal definition. Super-
ficially, this concept seems similar to that of a P-ODS description. In contrast however,
the latter is a subset of the covariate information o(W) rather than the observed in-
formation (T, W,Y’), and it concerns sufficiency for the outcome distribution rather
than the entire data distribution. Moreover, the Rao-Blackwell theorem asserts that
conditioning an estimator of § on a sufficient sub-o-algebra leads to an estimator that
is never worse. Example 3.3.10 demonstrates that the situation is more delicate when
considering statistical efficiency for adjustment. &

3.4 Estimation based on outcome-adapted representations

In this section we develop a general estimation method based on the insights of Sec-
tion 3.3, and we provide an asymptotic analysis of this methodology under general
conditions. Our method modifies the AIPW estimator, which we proceed to discuss in
more detail.

We have worked with the propensity score, m, and the outcome regression, b, as
random variables. We now consider, for each P € P, their function counterparts obtained
as regular conditional expectations:

mp: T xW — R, mp(t|w) =Pp(T =t|W =w),
gp: T xW — R, gp(t,w) =Ep[Y|T =t,W = w].
To target the adjusted mean, y;, the AIPW estimator utilizes the influence function —

given by (3.3.2) — as a score equation. To be more precise, given estimates (m, g) of the
nuisance functions (mp, gp), the AIPW estimator of y; is given by

1T =) - §(taW))]

Y (i, §) = P |G(t, W

(3.4.10)
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

where P,[-] is defined as the empirical mean over n i.i.d. observations from P. The
natural AIPW estimator of A given by (3.3.5) is then AP (M, §) = 3o XY (77, ).
Roughly speaking, the ATIPW estimator ;7" converges to x; with a y/n-rate if

n-Pu[((t| W) —mp(t| W))*] - Pu[(§(t, W) — gp(t, W))*] — 0. (3.4.11)

If (m,g) are estimated using the same data as P,, then the above asymptotic result
relies on Donsker class conditions on the spaces containing m and §g. Among others,
Chernozhukov et al. [2018] propose circumventing Donsker class conditions by sample
splitting techniques such as K-fold cross-fitting.

3.4.1 Representation adjustment and the DOPE

Suppose that the outcome regression function factors through an intermediate represen-
tation:

gp(t,w) = hp(t,p(0p,w)), teT,weW, (3.4.12)

where ¢: © x W — R? is a known measurable mapping with unknown parameter 6 € O,
and where hp: T x R? — R is an unknown function. We use Zg = ¢(f, W) to denote
the corresponding representation parametrized by 6 € ©. If a particular covariate value
w € W is clear from the context, we also use the implicit notation zg = ¢(0, w).

Example 3.4.1 (Single-index model). The (partial) single-index model applies to W €
R* and assumes that (3.4.12) holds with ¢(6,w) = w'6, where § € © < RF. In
other words, it assumes that the outcome regression factors through the linear predictor
Zo = W0 such that

VPeP: Y = hp(T, Z@P) + €y, Ep[&‘y | T, W] =0. (3.4.13)

For each treatment 7" = ¢, the model extends the generalized linear model (GLM) by
assuming that the (inverse) link function hp(t,-) is unknown.

The semiparametric least squares (SLS) estimator proposed by Ichimura [1993] esti-
mates fp and hp by performing a two-step regression procedure. Alternative estimation
procedures are given in Powell et al. [1989], Delecroix et al. [2003]. [ )

Given an estimator 6 of fp, independent of (T, W,Y'), we use the following notation
for various functions and estimators thereof:

9;(t,w) =Ep[Y |T =t,Z; = 2;,0],
my(t|w) = Pp(T = t|Zs = 24,0),
g(t,w): an estimator of gp(t,w),
gs(t, w): an estimator of g,(¢, w) of the form h( 0)s (3.4.14a)
my(t | w): an estimator of m;(t|w) of the form i, z;). (3.4.14b)
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3.4 Estimation based on outcome-adapted representations

In other words, g; and my are the theoretical propensity score and outcome regression,
respectively, when using the estimated representation Z; = cp(é, W). Note that we have
suppressed P from the notation on the left-hand side, as we will be working under a
fixed P in this section.

Sufficient conditions are well known that ensure

VAREPY (7, 9) — xi) S N(0, V(W P)).

Such conditions, e.g., Assumption 5.1 in Chernozhukov et al. [2018], primarily entail the
condition in (3.4.11). We will leverage (3.4.12) to derive more efficient estimators under
similar conditions.

Suppose for a moment that 6p is known. Since Zg, is P-OMS under (3.4.13), it holds
that x+(Zg,; P) = x¢- Then under analogous conditions for the estimators (myg,, s, ),
we therefore have

~aipw ; ~ ~ d
\/E(Xt P (m9p7gep) - Xt) - N(Ovvt(zepﬂ P))

Under the conditions of Proposition 3.3.6, it holds that Vi(Zg,; P) < V,(W;P). In

other words, {2P% (Mg,, Jop) is asymptotically at least as efficient as LY (1, §).

In general, the parameter 0p is, of course, unknown, and we therefore consider ad-
justing for an estimated representation Z,. For simplicity, we present the special case
A = x¢, but the results are easily extended to general contrasts A. Our generic estima-
tion procedure is described in Algorithm 3, where

Zéﬂ; = ‘P(éa Wl)

denotes the estimated representation of the i-th observed covariate. We refer to the
resulting estimator as the Debiased Outcome-adapted Propensity Estimator (DOPE),
and it is denoted by Q?OPQ.

Algorithm 3 is formulated such that Z;, Zs, and Z3 can be arbitrary subsets of [n],
and for the asymptotic theory we assume that they are disjoint. However, in practical
applications it might be reasonable to use the full sample for every estimation step, i.e.,
employing the algorithm with 7y = Zy = Z3 = [n]. In this case, we also imagine that
line 4 and line 5 are run simultaneously given that 6 may be derived from an outcome
regression, cf. the SLS estimator in the single-index model (Example 3.4.1). In the
supplementary Section 3.C, we also describe a more advanced cross-fitting scheme for

Algorithm 3

Remark 3.4.2. Benkeser et al. [2020] use a similar idea as the DOPE, but their propensity
factors through the final outcome regression function instead of a general intermediate
representation. That our general formulation of Algorithm 3 contains their collaborative
one-step estimator as a special case is seen as follows. Suppose T € {0, 1} is binary and
let

0= {‘9 = (gP(07 ')agP(la )) Pe P}

be the collection of outcome regression functions. Define the intermediate representation
as the canonical pairing ¢(6, W) = (01(W),02(W)). Then, for any outcome regression
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

Algorithm 3: Debiased Outcome-adapted Propensity Estimator

1 input: observations (T3, Wi, Y;)e[n), index sets 71, I, I3 < [n];
2 options: method for computing é, regression methods for propensity score and
outcome regression of the form (3.4.14);
3 begin
4 compute estimate 6 based on data (T3, Wi, Y:)iezy;
5 regress outcomes (Y;)iez, onto (73, Zéﬂ,)ieb to obtain g,(-, -);
6 regress treatments (7;);ez, onto (Z97i)ieIg to obtain my(-|-);
7 compute AIPW based on data (7}, W;, Y;)ez, and nuisance estimates
(Mg, Jg):

Adope_
= g 2 (e +

ZEIg

L UTi=

t)(Yi §g(t,Wi))>
mg(t| Wi)

8 return DOPE: ¥ AdoPe

estimate 0, we may set gs(t,w) = (1 — t)01(w) + thy(w), and the propensity score
my(t | w) factors through the outcome regressions. In this case and with 7; = 7 =

T3, Algorithm 3 yields the collaborative one-step estimator of Benkeser et al. [2020,
Appendix D]. Accordingly, we refer to this special case as DOPE-BCL (Benkeser, Cai
and van der Laan). O

3.4.2 Asymptotics of the DOPE

We proceed to discuss the asymptotics of the DOPE. For our theoretical analysis, we
assume that the index sets in Algorithm 3 are disjoint. That is, the theoretical analysis
relies on sample splitting.

Assumption 3.4.1. The observations (T, Wi, Yi);e[n) used to compute RIPe are ii.d.
with the same distribution as (T, W,Y), and [n] =Z; v Zy U I3 is a partition such that
|Z5] — o0 as n — 0.

In our simulations, employing sample splitting did not seem to enhance performance,
and hence we regard Assumption 3.4.1 as a theoretical convenience rather than a prac-
tical necessity in all cases. Our results can likely also be established under alternative
assumptions that avoid sample splitting, in particular Donsker class conditions.

We also henceforth use the convention that each of the quantities 7y, b, x¢, and V; are
defined conditionally on 0, e.g.,

Xi(Zg) = E[b:(Zy)

The error of the DOPE estimator can then be decomposed as

REC = x = (RE = xalZg)) + (xe(Zg) — xt)- (3.4.15)

)1 =E[E[Y |T =t,Z4,0]|0].
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3.4 Estimation based on outcome-adapted representations

The first term is the error had our target been the adjusted mean when adjusting for
the estimated representation Zj;, whereas the second term is the adjustment bias that
arises from adjusting for Z, rather than W (or Zy).

3.4.2.1 Estimation error conditionally on representation

To describe the asymptotics of the first term of (3.4.15), we consider the decomposition

VITsIR5PC = Ugn) + R1 + Ry + R, (3.4.16)
where
W A : LT, = 1)(Y; — g(t, W)
U)W = — u;(0), ui(0) = g5(t, W;) + ,
P 9 (W)
1 . UT; =t)
Ry=—— 3, rhi= (G(6 W) — g5(t, W) (1 - ) ,
1 UT; =1t) UT; =1t)
Ry = 2, 2= (= W) (2 - ,
/|Ig| i;;; o mé(t ’ WZ) Mé(t ‘ Wz)
1 N UT; =1t) UT; =1t)
Ry = —— T‘?, r? = (g5(t, W;) — g5(t, W; (,\ - .
Vo & (@9t W) = 9t W) \ 7 6T~ gt TW00)

We show that the oracle term, U (gn), drives the asymptotic limit, and that the terms
Ri, Ry, R3 are remainder terms, subject to the conditions stated below.

Assumption 3.4.2. For (T, W,Y) ~ P satisfying the representation model (3.4.12), it
holds that:

(i) There ezists ¢ > 0 such that max{|iy; — 3|,|ms — 3|} < 5 —c.
(ii) There exists C > 0 such that E[Y?|W,T] < C.

(iii) There exists § > 0 such that E[|Y*T°] < 0.

(iv) It holds that Sﬁ) = ﬁ Dz, (Mt Wi) —my(t | W;))? 0.

n ~ P
(v) It holds that €5y = o307 (5(t, W) — g5(t, Wi))? 0.

(vi) It holds that |T3| - £ &5 > 0.

Classical convergence results of the AIPW are proven under similar conditions, but
with (vi) replaced by the stronger convergence in (3.4.11). We establish conditional
asymptotic results under conditions on the conditional errors 51(2) and 5’5;). To the best
of our knowledge, the most similar results that we are aware of are those of Benkeser
et al. [2020], and our proof techniques are most similar to those of Chernozhukov et al.
[2018], Lundborg and Pfister [2023].

We can now state our first asymptotic result for the DOPE.
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

Theorem 3.4.3. Under Assumptions 3.4.1 and 3.4.2, it holds that

Vt(zé)*l/Q-Ug N(0,1), and Ri50, i=1,23,

asn — . As a consequence,

Tl - Vo(Z,)~ 2 <Ad0pe Xt(zé)>iN(0’l)'

In other words, we can expect the DOPE to have an asymptotic distribution, condi-
tionally on 6, approximated by

~dope N as. 1
X? P (ggamg) |0~ N(Xt(zé), @Vt(zg))

Note that if |Z3] = |n/3], say, then the asymptotic variance is 2V;(Z). Our simulation
study indicates that the asymptotic approximation may be valid in some cases without
the use of sample splitting, in which case |Z3| = n and the asymptotic variance is
%Vt(Zé). A direct implementation of the sample splitting procedure thus comes with
an efficiency cost. In the supplementary Section 3.C we discuss how the cross-fitting
procedure makes use of sample splitting without an efficiency cost.

Given nuisance estimates (g, m) we consider the empirical variance estimator given by

VG, ™) = ; a2 (’ 3’; ui)2: @;3( \z\ Z UJ) . (3.4.17)

where

LT =) (Vi — g(t, Wy))
m(t| W;)

~

The following theorem states that the variance estimator with nuisance functions
(94,my) is consistent for the asymptotic variance in Theorem 3.4.3.

Theorem 3.4.4. Under Assumptions 3.4.1 and 3.4.2, it holds that
Soa A P
Vi(95. M) — Vi(Zy) — 0

as n — o0.

3.4.2.2 Asymptotics of representation induced error

We now turn to the discussion of the second term in (3.4.15), i.e., the difference between
the adjusted mean for the estimated representation Z; and the adjusted mean for the
full covariate W. Under sufficient regularity, the delta method [van der Vaart, 2000,
Thm. 3.8] describes the distribution of this error:
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3.4 Estimation based on outcome-adapted representations

Proposition 3.4.5. Assume (T, W,Y) ~ P satisfies the model (3.4.12) with 0p € © <
RP. Let u: © — R be the function given by u(0) = x+(p(8, W); P) and assume that u is
differentiable in Op. Suppose that 0 is an estimator of 0p with rate ry, such that

- (6 — 0p) 5 N(0,3).
Then
rn - (xe(Zg) — xt) > N(0, Vu(0p) T SVu(6p))
as n — o0.

The delta method requires that the adjusted mean, x; = x:(¢(6, W); P), is differen-
tiable with respect to 8 € ©. The theorem below showcases that this is the case for the
single-index model in Example 3.4.1.

Theorem 3.4.6. Let (T, W,Y) ~ P be given by the single-index model in Example 3./.1
with hi(:) = h(t,-) € CY(R). Assume that W has a distribution with density pw with
respect to Lebesque measure on RY and that pw is continuous almost everywhere with
bounded support. Assume also that the propensity m(t | w) = P(T = t|W = w) is
continuous in w.

Then u: R* — R, defined by u(0) = x:(W'0; P), is differentiable at 0 = 0p with

P(T =
Vu(0p) = Ep| (W 0p) (1 - P(T(: - |tv|vVTVe)P))W]‘

The theorem is stated with some restrictive assumptions that simplify the proof, but
these are likely not necessary. It should also be possible to extend this result to more
general models of the form (3.4.12), but we leave such generalizations for future work.
In fact, the proof technique of Theorem 3.4.6 has already found application in Gnecco
et al. [2023] in a different context.

The convergences implied in Theorem 3.4.3 and Proposition 3.4.5, with r, = 1/|Z3|,
suggest that the MSE of the DOPE is of order

E[(R{°° — x0)?] = E[(X{*** — x¢(Z4))*] + E[(x¢(Z) — x1)*]
+ 2E[(R{°"° — x¢(Z5)) (xe(Zg) — x2)]

~ @(E[Vt(zé)] + VU(HP)TZVU(QP)> +o (|1-3|—1) (3-4-18)

The informal approximation ‘~’ can be turned into an equality by establishing (or simply
assuming) uniform integrability, which enables the distributional convergences to be
lifted to convergences of moments.

Remark 3.4.7. The expression in (3.4.18) suggests an approximate confidence interval of
the form

~ Zlma 5 STSS
Qlope 4 Zloa () 4 VTSV,

~VIE
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where ¥ is a consistent estimator of the asymptotic variance of \/@(é — 0p), and
where V is a consistent estimator of Voxt(¢(0, W))|p=p,. However, the requirement of
constructing both S and V adds further to the complexity of the methodology, so it
might be preferable to rely on bootstrapping techniques in practice. In the simulation

study we return to the question of inference and examine the coverage of a naive interval
that does not include the term V' EV. &

3.5 Experiments

In this section, we showcase the performance of the DOPE on simulated and real data.
All code is publicly available on GitHub?.

3.5.1 Simulation study

We present results of a simulation study based on the single-index model from Exam-
ple 3.4.1. We demonstrate the performance of the DOPE from Algorithms 3 and 4, and
compare with various alternative estimators.

3.5.1.1 Sampling scheme

We simulated datasets consisting of n i.i.d. copies of (T, W,Y") sampled according to
the following scheme:

W= (W, ..., W% ~ Unif(0,1)®?
T|W ~ Bern(0.01 +0.98 - 1(W*! > 0.5))
Y |T,W, By ~N(h(T,W'jy),1) (3.5.19)

where By is sampled once for each dataset with

By = (1, By), By ~N(0,I41),

and where n,d, and h are experimental parameters. The settings considered were n €
{300,900, 2700}, d € {4,12,36}, and with h being one of

hlin(ty Z) =t+ 3z, hsquare(ta Z) = 21+t)

hebet(t, 2) = (24 )23, han(t, 2) = (3 + t) sin(r2). (3.5.20)

For each setting, NV = 300 datasets were simulated.

Note that while E[T] = 0.01 + 0.98 - P(W! > 0.5) = 0.5, the propensity score m(t |
w) = 0.0140.98 - 1(w! > 0.5) takes the rather extreme values {0.01,0.99}. Even though
it technically satisfies (strict) positivity, these extreme values of the propensity makes
the adjustment for W a challenging task. For each dataset, the adjusted mean yi
(conditional on fBy) was considered as the target parameter, and the ground truth was
numerically computed as the sample mean of 107 observations of h(1, W' 3y ).

3https://github.com/AlexanderChristgau/OutcomeAdaptedAdjustment
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3.5 Experiments

3.5.1.2 Simulation estimators

This section contains an overview of the estimators used in the simulation. For a com-
plete description see Section 3.B in the supplementary material.
Two settings were considered for outcome regression (OR):

e Linear: Ordinary Least Squares (OLS).

e Neural network: A feedforward neural network with two hidden layers: a linear
layer with one neuron, followed by a fully connected ReLU-layer with 100 neurons.
The first layer is a linear bottleneck that enforces the single-index model, and
we denote the weights by § € R? An illustration of the architecture can be
found in the supplementary Section 3.B. For a further discussion of leaning single-
and multiple-index models with neural networks, see Parkinson et al. [2023] and
references therein.

For propensity score estimation, logistic regression was used across all settings. A ReLU-
network with one hidden layer with 100 neurons was also considered for estimation of
the propensity score, but it did not enhance the performance of the resulting ATE
estimators in this setting. Random forests and other methods were also initially used
for both outcome regression and propensity score estimation. They were subsequently
excluded because they did not seem to yield any noteworthy insights beyond what was
observed for the methods above.

For each outcome regression, two implementations were explored: a stratified regres-
sion where Y is regressed onto W separately for each stratum 7' = 1 and T = 2, and
a joint regression where Y is regressed onto (7', W) simultaneously. In the case of joint
regression, the neural network architecture represents the regression function as a single
index model, given by Y = h(aT + 0" W) + ey This representation differs from the de-
scription of the regression function specified in the sample scheme (3.5.19), which allows
for a more complex interaction between treatment and the index of the covariates. In
this sense, the joint regression is misspecified.

Based on these methods for nuisance estimation, we considered the following estima-
tors of the adjusted mean:

e The regression estimator Y;°® = P,[g(1, W)].
e The AIPW estimator given in Equation (3.4.10).

e The DOPE from Algorithm 3, where Z; = W T8 and where 6 contains the weights
of the first layer of the neural network designed for single-index regression. We
refer to this estimator as the DOPE-IDX.

e The DOPE-BCL described in Remark 3.4.2, where the propensity score is based
on the final outcome regression. See also Benkeser et al. [2020, App. D].

115



3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

link = lin link = square

Vi x RMSE

25— 25 Estimator

—— Regression

— AIPW

link = cbrt link = sin — DOPE-BCL

—— DOPE-IDX
OR

—— Linear
--- Neural net

o

o

/7 x RMSE

IS

w

300 900 2700 300 900 2700
sample size n sample size n

Figure 3.5.3: Root mean square errors for various estimators of x; plotted against sample
size. Each data point is an average over 900 datasets, 300 for each choice
of d € {4,12,36}. The bands around each line correspond to +1 standard
error. For this plot, the outcome regression (OR) was fitted separately for
each stratum T'= 1 and T = 2.

We considered two versions of each DOPE estimator: one without sample splitting and
another using 4-fold cross-fitting*. For the latter, the final empirical mean is calculated
based on the hold-out fold, while the nuisance parameters are fitted using the remaining
three folds. For each fold k = 1,...,4, this means employing Algorithm 3 with 7; =
Zy = [n]\Jr and Z3 = Ji. The two versions showed comparable performance for larger
samples. In this section we only present the results for the DOPE without sample
splitting, which performed better overall in our simulations. However, a comparison
with the cross-fitted version can be found in Section 3.B in the supplement.

Numerical results for the IPW estimator Y1 = P,[1(T = t)Y /m(1| W)] were also
gathered. It performed poorly in our settings, and we have omitted the results for the
sake of clarity in the presentation.
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3.5.1.3 Empirical performance of estimators

The results for stratified outcome regression are shown in Figure 3.5.3. Each panel,
corresponding to a link function in (3.5.20), displays the RMSE for various estimators
against sample size. Across different values of d € {4,12, 36}, the results remain consis-
tent, and thus the RMSE is averaged over the 3 x 300 datasets with varying d. In the
upper left panel, where the link is linear, the regression estimator x;*® with OLS per-
forms best as expected. The remaining estimators exhibit similar performance, except
for ATPW, which consistently performs poorly across all settings. This can be attributed
to extreme values of the propensity score, resulting in a large efficiency bound for AIPW.
All estimators seem to maintain an approximate ,/n-consistent RMSE for the linear link
as anticipated.

For the nonlinear links, we observe that the OLS-based regression estimators perform
poorly and do not exhibit approximate y/n-consistency. For the sine link, the RMSEs
for all OLS-based estimators are large, and they are not shown for ease of visualiza-
tion. For neural network outcome regression, the AIPW still performs the worst across
all nonlinear links. The regression estimator and the DOPE estimators share similar
performance when used with the neural network, with DOPE-IDX being more accurate
overall. Since the neural network architecture is tailored to the single-index model, it is
not surprising that the outcome regression works well, and as a result there is less need
for debiasing. On the other hand, the debiasing introduced in the DOPE does not hurt
the accuracy, and in fact, improves it in this setting.

The results for joint regression of Y on (7, W) are shown in Figure 3.5.4. The re-
sults for the OLS-based estimators provide similar insights as previously discussed, so
we focus on the results for the neural network based estimators. The jointly trained neu-
ral network is, in a sense, misspecified for the single-index model (except for the linear
link), as discussed in Section 3.5.1.2. Thus it is not surprising that the regression esti-
mator fails to adjust effectively for larger sample sizes. What is somewhat unexpected,
however, is that the precision of DOPE, especially the DOPE-IDX, does not appear to
be compromised by the misspecified outcome regression. In fact, the DOPE-IDX even
seems to perform better with joint outcome regression. We suspect that this could be
attributed to the joint regression producing more robust predictions for the rare treated
subjects with W' < 0.5, for which m(1|W) = 0.01. The predictions are more robust
since the joint regression can leverage some of the information from the many untreated
subjects with W' < 0.5 at the cost of introducing systematic bias, which the DOPE-
IDX deals with in the debiasing step. While this phenomenon is interesting, a thorough
exploration of its exact details, both numerically and theoretically, is a task we believe
is better suited for future research.

In summary, the DOPE serves as a middle ground between the regression estimator
and the AIPW. It provides an additional safeguard against biased outcome regression,
all while avoiding the potential numerical instability entailed by using standard inverse
propensity weights.

4consistent with Rem. 3.1. in Chernozhukov et al. [2018], which recommends using 4 or 5 folds for
cross-fitting.
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Figure 3.5.4: Root mean square errors for various estimators of x; plotted against sample
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size. Each data point is an average over 900 datasets, 300 for each choice
of d € {4,12,36}. The bands around each line correspond to +1 standard
error. For this plot, the outcome regression (OR) was fitted jointly onto
(T, W).



3.5 Experiments

3.5.1.4 Inference

We now consider approximate confidence intervals obtained from the empirical variance
estimator V defined in (3.4.17). Specifically, we consider intervals of the form X; +
Zo-ﬁl}*u 2 where 2(.975 is the 0.975 quantile of the standard normal distribution.

Figure 3.5.5 shows the empirical coverage of x; for the AIPW, DOPE-BCL and DOPE-
IDX, all based on neural network outcome regression fitted jointly. Based on the number
of repetitions, we can expect the estimated coverage probabilities to be accurate up to
+0.01 after rounding.

The left column shows the results for no sample splitting, whereas the right column
shows the results for 4-fold cross-fitting. For all estimators, cross-fitting seems to improve
coverage slightly for large sample sizes. The AIPW is a little anti-conservative, especially
for the links hgy, and heyrg, but overall maintains approximate coverage. The slight
miscoverage is to be expected given the challenging nature with the extreme propensity
weights. For the DOPE-BCL and DOPE-IDX, the coverage probabilities are worse,
but with the DOPE-IDX having better coverage overall. According to our asymptotic
analysis, specifically Theorem 3.4.3, the DOPE-BCL and DOPE-IDX intervals will only
achieve asymptotic 95% coverage of the random parameters xi1(h(t,Z;)) and x1(Z;),
respectively. Thus we do not anticipate these intervals to asymptotically achieve the
nominal 95% coverage of x1. However, we show in Figure 3.B.3 in the supplementary
Section 3.B that the average widths of the confidence intervals are significantly smaller
for the DOPE intervals than the AIPW interval. Hence it is possible that the DOPE
intervals can be corrected — as we have also discussed in Remark 3.4.7 — to gain advantage
over the ATPW interval, but we leave such explorations for future work.
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Figure 3.5.5: Coverage of asymptotic confidence intervals of the adjusted mean x1, ag-
gregated over d € {4,12,36} and with the true § given in (3.5.19).
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In summary, the lack of full coverage for the naively constructed intervals are consistent
with the asymptotic analysis conditionally on a representation Z,. In view of this, our
asymptotic results might be more realistic and pragmatic than the previously studied
regime [Benkeser et al.; 2020, Ju et al., 2020], which assumes fast unconditional rates of
the nuisance parameters (172, g;)-

3.5.2 Application to NHANES data

We consider the mortality dataset collected by the National Health and Nutrition Ex-
amination Survey I Epidemiologic Followup Study [Cox et al., 1997], henceforth referred
to as the NHANES dataset. The dataset was initially collected as in Lundberg et al.
[2020]°. The dataset contains several baseline covariates, and our outcome variable is
the indicator of death at the end of study. To deal with missing values, we considered
both a complete mean imputation as in Lundberg et al. [2020], or a trimmed dataset
where covariates with more than 50% of their values missing are dropped and the rest
are mean imputed. The latter approach reduces the number of covariates from 79 to
65. The final results were similar for the two imputation methods, so we only report the
results for the mean imputed dataset here. In the supplementary Section 3.B we show
the results for the trimmed dataset.

The primary aim of this section is to evaluate the different estimation methodologies
on a realistic and real data example. For this purpose we consider a treatment variable
based on pulse pressure and study its effect on mortality. Pulse pressure is defined as
the difference between systolic and diastolic blood pressure (BP). High pulse pressure
is not only used as an indicator of disease but is also reported to increase the risk of
cardiovascular diseases [Franklin et al., 1999]. We investigate the added effect of high
pulse pressure when adjusting for other baseline covariates, in particular systolic BP and
levels of white blood cells, hemoglobin, hematocrit, and platelets. We do not adjust for
diastolic BP, as it determines the pulse pressure when combined with systolic BP, which
would therefore lead to a violation of positivity.

A pulse pressure of 40 mmHg is considered normal, and as the pressure increases past
50 mmHg, the risk of cardiovascular diseases is reported to increase. Some studies have
used 60 mmHg as the threshold for high pulse pressure [Homan et al., 2024], and thus
we consider the following treatment variable corresponding to high pulse pressure:

T = 1 (pulse pressure > 60 mmHg) .

For the binary outcome regression we consider logistic regression and a variant of
the neural network from Section 3.5.1.2 with an additional ‘sigmoid-activation’ on the
output layer. Based on 5-fold cross-validation, logistic regression yields a log-loss of 0.50,
whereas the neural network yields a log-loss of 0.48 (smaller is better).

Figure 3.5.6 shows the distribution of the estimated propensity scores used in the
ATPW, DOPE-IDX, and DOPE-BCL, based on neural network regression. As expected,

5See https://github.com/suinleelab/treeexplainer-study for their GitHub repository.
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Figure 3.5.6: Distribution of estimated propensity scores based on the full covariate set
W, the single-index W6, and the outcome predictions g(1, W), respec-
tively.

we see that the full covariate set yields propensity scores that essentially violate positiv-
ity, with this effect being less pronounced for DOPE-IDX and even less so for DOPE-
BCL, where the scores are comparatively less extreme.

Table 3.5.1 shows the estimated treatment effects A = X1 — Xo for various estimators
together with 95% bootstrap confidence intervals. The estimators are sorted according
to bootstrap variance based on B = 1000 bootstraps. Because we do not know the true
effect, we cannot directly decide which estimator is best. The naive contrast provides
a substantially larger estimate than all of the adjustment estimators, which indicates
that the added effect of high pulse pressure on mortality when adjusting is different
from the unadjusted effect. The IPW estimator, X}, is the only estimator to yield a
negative estimate of the adjusted effect, and its bootstrap variance is also significantly
larger than the other estimators. Thus it is plausible, that the IPW estimator fails to
adjust appropriately. This is not surprising given extreme distribution of the propensity
weights, as shown in blue in Figure 3.5.6.

The remaining estimators yield comparable estimates of the adjusted effect, with the
logistic regression based estimators having a marginally larger estimates than their neural
network counterparts. The (bootstrap) standard errors are comparable for the DOPE
and regression estimators, but the AIPW estimators have slightly larger standard errors.
As a result, the added effect of high pulse pressure on mortality cannot be considered
statistically significant for the AIPW estimators, whereas it can for the other estimators.

In summary, the results indicate that the choice treatment effect estimator impacts the
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Estimator Estimate BS se BS CI
Regr. (NN) 0.022  0.009 (0.004, 0.037)
Naive contrast 0.388 0.010  (0.369, 0.407)
Regr. (Logistic) 0.026 0.010  (0.012, 0.049)
DOPE-BCL (Logistic) 0.023 0.010 (0.003, 0.040)
DOPE-BCL (NN) 0.021  0.010 (0.001, 0.039)
DOPE-IDX (NN) 0.024 0.012  (0.002, 0.048)
ATIPW (NN) 0.023 0.015  (-0.009, 0.051)
ATPW (Logistic) 0.026 0.015  (-0.004, 0.056)
IPW (Logistic) -0.040 0.025 (-0.103, -0.006)

Table 3.5.1: Adjusted effect estimates of unhealthy pulse pressure on mortality based on
NHANES dataset. Estimators are sorted in increasing order after bootstrap
(BS) standard error.

final estimate and confidence interval. While it is uncertain which estimator is superior
for this particular application, the DOPE estimators seem to offer a reasonable and
stable estimate.

3.6 Discussion

In this paper, we address challenges posed by complex data with unknown underlying
structure, an increasingly common scenario in observational studies. Specifically, we
have formulated a refined and general formalism for studying efficiency of covariate
adjustment. This formalism extends and builds upon the efficiency principles derived
from causal graphical models, in particular results provided by Rotnitzky and Smucler
[2020]. Our theoretical framework has led to the identification of the optimal covariate
information for adjustment. From this theoretical groundwork, we introduced the DOPE
for general estimation of the ATE with increased efficiency.

Several key areas within this research merit further investigation:

Extension to other targets and causal effects: Our focus has predominantly
been on the adjusted mean x; = E[E[Y |T = t,W]]. However, the extension of our
methodologies to continuous treatments, instrumental variables, or other causal effects,
such as the average treatment effect among the treated, is an area that warrants in-depth
exploration. We suspect that many of the fundamental ideas can be modified to prove
analogous results for such target parameters.

Beyond neural networks: While our examples and simulation study has applied
the DOPE with neural networks, its compatibility with other regression methods such
as kernel regression and gradient boosting opens new avenues for alternative adjustment
estimators. Investigating such estimators can provide practical insights and broaden the
applicability of our approach. The Outcome Highly Adapted Lasso [Ju et al., 2020] is
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a similar method in this direction that leverages the Highly Adaptive Lasso [Benkeser
and van der Laan, 2016] for robust treatment effect estimation.

Causal representation learning integration: Another possible direction for fu-
ture research is the integration of our efficiency analysis into the broader concept of
causal representation learning [Scholkopf et al., 2021]. This line of research, which is not
concerned with specific downstream tasks, could potentially benefit from some of the
insights of our efficiency analysis and the DOPE framework.

Implications of sample splitting: Our current asymptotic analysis relies on the
implementation of three distinct sample splits. Yet, our simulation results suggest that
sample splitting might not be necessary. Using the notation of Algorithm 3, we hypothe-
size that the independence assumption Zs N (Z3 uZy) = & could be replaced with Donsker
class conditions. However, the theoretical justifications for setting 7Z; identical to Zo are
not as evident, thus meriting additional exploration into this potential simplification.

Valid and efficient confidence intervals: The naive confidence intervals explored
in the simulation study, cf. Section 3.5.1.4, do not provide an adequate coverage of the
unconditional adjusted mean. As indicated in Remark 3.4.7, it would be interesting to
explore methods for correcting the intervals, for example by: (i) adding a bias correction,
(ii) constructing a consistent estimator of the unconditional variance, or (iii) using boot-
strapping. Appealing to bootstrapping techniques, however, might be computationally
expensive, in particular when combined with cross-fitting. To implement (i), one ap-
proach could be to generalize Theorem 3.4.6 to establish general differentiability of the
adjusted mean with respect to general representations, and then construct an estimator
of the gradient. However, one must asses whether this bias correction could negate the
efficiency benefits of the DOPE.
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3.6 Discussion

Supplement to ‘Efficient adjustment for complex covariates:
Gaining efficiency with DOPFE’

The supplementary material is organized as follows: Section 3.A contains proofs of the
results in the main text and a few auxiliary results; Section 3.B contains details on the
experiments in Section 3.5; and Section 3.C contains a description of the cross-fitting
algorithm.

3.A. Auxiliary results and proofs

The proposition below relaxes the criteria for being a valid adjustment set in a causal
graphical model. It follows from the results of Perkovic et al. [2018], which was pointed
out to the authors by Leonard Henckel, and is stated here for completeness.

Proposition 3.A.1. Let T,Z, and Y be pairwise disjoint node sets in a DAG D =
(V,E), and let M(D) denote the collection of continuous distributions that are Marko-
vian with respect to D and with E|Y| < co. Then Z is an adjustment set relative to

(T,Y) if and only if for all P € M(D) and all t
1T = t)Y
T = t|pap(T))

Proof. The ‘only if’ direction is straightforward if we use an alternative characterization
of Z being an adjustment set: for any density p of a distribution P € P it holds that

Ep[Y |do(T = t)] = Ep [w }:EP[EP[YTﬂ,Z]]

p(y | do(T = 1)) = jp<y|z, Hp(z)dz,

where the ‘do-operator’ (and notation) is defined as in, e.g., Peters et al. [2017]. Fubini’s
theorem then yields

EplY |do(T = )] = | yp(yldo(T = ))dy

= JRZ yf p(ylz,t)p(z)dzdy

f f yp(y|z, t)dyp(z)dz
=Ep[Ep[Y|T = t,Z]],

which is equivalent to the ‘only if’ part. On the contrary, assume that Z is not an
adjustment set for (7,Y’). Then Theorem 56 and the proof of Theorem 57 in Perkovic
et al. [2018] imply the existence of a Gaussian distribution P € P for which

Ep[Y [do(T = 1)] # Ep[E[Y | T = 1,2]]

This implies the other direction. O
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The following lemma is a generalization of Lemma 27 in Rotnitzky and Smucler [2020].

Lemma 3.A.2. For any o-algebras 21 < Z9 < o(W) it holds, under Assumption 5.1.1,
that
Ep [m(Z0; P) T =t,21| = m(2; P)*

for all PeP.
Proof. Direct computation yields
Ep [mt(Z2; P) | T = t, 21| Pp(T = t| Z1)

o AT L] [ELT =12
= Er {Wt(Z%P) ‘Zl] EP[ 7 (Z2; P)

2] -1

3.A.1 Proof of Lemma 3.3.1

Since P € P is fixed, we suppress it from the notation in the following computations.
FromY 1 25| Z;,T and 21 € 2y, it follows that E[Y | Z;,T] = E[Y | 22, T]. Hence,
for each t € T,

b(21) =E[Y | 2, T = t] = E[Y | 25, T = t] = by(2>). (3.A.1)

Therefore x¢(Z1) = E[bi(Z1)] = E[b:(Z22)] = x¢(22). If Z5 is description of W, this
identity shows that Z, is P-valid if and only if Z; is P-valid.

To compare the asymptotic efficiency bounds for Z5 with Z; we use the law of total
variance. Note first that

E[(2) |T, Y, 1] = E[1(T = (¥ ~ bi(2))— o +bu(22) — x| T,Y, 21]

ﬂt(ZQ)
— T = (Y — b(Z)) E[m({%) T =Y.+ b(Z)
= 1(T = t)(Y — bt(Zl))E |:7Tt(12,72) ’T =, Zl:| + bt(Zl) — Xt
— LT = )Y = (20— + h(Z) — i = (21,

Second equality is due to Zj-measurability and (3.A.1), whereas the third equality follows
fromY 1 Z5|Z1,T and the last inequality is due to Lemma 3.A.2. On the other hand,

E[ Var(¢:(22) | T,Y, 21)]

zﬁwH@qsz—m@mméw+m@ﬂ—mwﬂﬂng]

1
m(22)

- 1
:Jwazgvaqzu:uzgvm(ﬁ(Zﬁ
- t

:Ei@:@&-@@mﬁm(

]T:LKZO]

|T=t,2)|

126
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Combined we have that

Vi(22) = Var(¢y(22)) = Var(E[v(22) | T,Y, 21]) + E[Var[wt(zz) |T,Y, Z1]]

= Vi(21) + E|m(21) Var(Y | T = t, Z4) Var ( [T=tv.2))|.

mt(22)

To prove the last part of the lemma, we first note that ¥.(23) and ¢y (23) are condi-
tionally uncorrelated for ¢ # ¢’. This follows from (3.A.1), from which the conditional
covariance reduces to

Cov(¥i(22), ¥ (22) | T, Y, 21) = W(T = )L(T =t') Cov(x,*|T,Y, Z1) = 0.
Thus, letting ¥ (22) = (¥4(22))ter and using the computation for Vi, we obtain that:

Va(22) = Var(c'y(22))
= Var(E[cTw(Zg) | T,Y, Z1]) + E[Var[c ¢(2,) | T,Y, Z1]]

1
)+ Y [w Z)Var(Y |T =t, 2 Var<7‘T=t,Y,Z>].
;Et t 1 ( ’ 1) Wt(Zz) 1

This concludes the proof. O

3.A.2 Proof of Theorem 3.3.3

(i) Assume that Z < (W) is a description of W such that Qp < Z. Observe that
almost surely,

Pp(Y <y|T,W) =Y 1(T = t)F(y | t,W;P)

teT

is (T, Qp)-measurable and hence also (T, Z)-measurable. It follows that Pp(Y <
y|T, W) is also a version of Pp(Y < y|T,Z). As a consequence, Pp(Y < y|T, W) =
Pp(Y < y|T, Z) almost surely. From Doob’s characterization of conditional indepen-
dence [Kallenberg, 2021, Theorem 8.9], we conclude that Y ILp W | T, Z, or equivalently
that Z is P-ODS. The ‘in particular’ follows from setting Z = QOp.

(ii) Assume that Z < ¢(W) is P-ODS. Using Doob’s characterization of conditional
independence again, Pp(Y < y|T, W) = Pp(Y < y|T, Z) almost surely. Under As-
sumption 3.1.1, this entails that F(y|T = t,W;P) = Pp(Y < y|T = t,2) almost
surely, and hence F(y|T = t,W; P) must be Z-measurable. As the generators of Qp
are Z-measurable, we conclude that Qp < Z.

(iii) Let Z be a P-ODS description. From (i) and (ii) it follows that Qp < Z, and
since Z < (W) it also holds that Y ILp Z | T,Qp. Since VA(Z;P) = Va(Z;P),
Lemma 3.3.1 gives the desired conclusion. O

3.A.3 Proof of Corollary 3.3.4
Theorem 3.3.3 (i,ii) implies that Z is P-ODS if and only if ZF contains Qp for all P € P.
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If Q < ZP for all P € P then Qp < Z¥ for all P € P by definition, and Z is P-
ODS. Equation (3.3.9) follows from the same argument as Theorem 3.3.3 (zi¢). That is,
Q < ZP and since Q is P-ODS and Z < o(W) we have Y Il p zP | T, Q. Lemma 3.3.1
can be applied for each P € P to obtain the desired conclusion. O

3.A.4 Proof of Proposition 3.3.6

Since Rp € Qp always holds, so it suffices to prove that Qp < Rp. If F(y|t, W; P) is
o(b:(W; P))-measurable, then Qp < R p follows directly from definition. If Y is a binary
outcome, then the conditional distribution is determined by the conditional mean, i.e.,
F(y|t,W;P) is o(by(W; P))-measurable. If Y = bp(W) + ey with ey 1L T, W, then
F(y|t,w; P) = Fp(y — by(w)) where Fp is the distribution function for the distribution
of ey. Again, F(y|t, W; P) becomes o(b;(W; P))-measurable.

To prove the last part, let Z be a P-OMS description. Since by(W; P) = b(Z; P)
is Z-measurable for every t € T, it follows that Rp < Z. Hence the argument of
Theorem 3.3.3 (iii) establishes Equation (3.3.8) when Qp = Rp. O

3.A.5 Proof of Lemma 3.3.8

Since P € P is fixed throughout this proof, we suppress it from notation. From Z; <
Zyco(W)and T UL p 25| Z1, it follows that m(21) = m(21), and hence

xt(Z1) = E[m(2) 7 'UT = 1)Y] = E[7¢(Z2) ' U(T = 1)Y] = x4(22).

This establishes the first part. For the second part, we use that m(21) = m(22) and
xt(Z1) = x¢(22) to see that

1T = t)
Wt(ZQ)

- 1)(bt(22) — by(21)) = Ri(Z1, 25).

Yi(Z1) — Yu(22) = bi(Z21) — bi(Z22) +

_ (1(T =t)
- 7Tt(22)

(b:(22) = be(21))

Since E[Ri(Z1, Z2) | Z2] = 0 we have that E[¢(Z22)Ri (21, Z2)] = 0, which means that
P(Z2) and R¢(21, Z2) are uncorrelated. Note that from m(21) = m(22) it also follows
that

bi(Z1) = E[eri(TzT)t) | zl] - E[E[W | Zz] \Zl] = E[bi(22) ] 21]
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3.6 Discussion

This means that E[(b;(22) — b:(21))? | Z1] = Var(b,(22) | Z1). These observations let us
compute that

Vi(21) = Var(¢:(21)

= Var(¢y(22)

= Var(y(Z2)

)
)+
)+
—_ )2 _
= Vy(2) +E[ bi(2Zs) — bt(zl))%[lii;l;) - 21(1@_1;) + 1|22]]

= Vi(2) + E[ Var(b(2)| Zl)(m(lzl) -1)] (3.A.2)

This establishes the formula in the case A = x;.
For general A, note first that R and (¢+(22))er are uncorrelated since E[R | 23] = 0.
Therefore we have

Va(Z21) = Var (Z Ct¢t(Zl)>

Var (Ry(21, 22))
E[E[Ri (21, 2)? | 2]]

teT
= Var (;Tct@/}t(Zg)) + Var <;TCth(Zh Zg))

= Va(25) + ¢ Var (R)c.

It now remains to establish the covariance expressions for the last term, since the ex-
pression of Var (R(2Z1, 22)) was found in (3.A.2). To this end, note first that for any

s,t e T with s # €,
. [<17(f(;2? a 1) (17(rtT(Z:2)t) - 1) 122} =—1.

Thus we finally conclude that

Cov(Rs, By) = —E[(bs(22) = bs(21))(bi(22) — be(21))]
—E[Cov(bs(Z2), bi(22) | 21)]

as desired. O

3.A.6 Computations for Example 3.3.10
Using symmetry, we see that

m(Z) = E[T | Z] = E[W | Z]
1

= (05~ Z)P(W < 05]2) + (05 + Z)F(W > 0.5 Z) = .

From T 1. Z we observe that
b(W) =t +E[g(Z)|T =t, W] =t +9(Z),
bi(2) =t +E[g(Z)|T =t,Z] =t + g(Z),
bi(0) =t +E[g(Z) | T =t] =t +E[g(Z)].
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

Plugging these expressions into the asymptotic variance yields:

Vt (O) = Var (bt(O) +

= m(0)” 2Var (LT =t)(Y — b:(0)))
= 4E[L(T = t)(9(Z) — E[g(Z)] + v(W)ey)?]
= 4E[W (9(Z) — E[g(Z)])*] + 2E[v(W)e3]
— 2Var(g(Z)) + 2E[v(W)?|E[¢% ]
V,(Z) = Var (bt(Z) + 1(73;(;)75)(1/ - bt(Z))>
= Var g(Z) + 21(T = t)U(W)€Y)

(
(9(2)) + 2E[v(W)?]E[}]

Proof of Theorem 3.4.3

We first prove that R; L0 fori = 1,2,3. The third term is taken care of by combining
Assumption 3.4.2 (i,iv) with Cauchy-Schwarz:

2 n
Ryl < \/|Ia\/| gt | W)~ — mg(t] Wi)~1) 2 Je50)
'LEZ

< Loy |IB|51¢ gZ,t) — 0,

where (. > 0 is the Lipschitz constant of z — 7" on [¢,1 — ¢].

For the first term, R;, note that conditionally on 6 and the observed estimated repre-
sentations Zg = (Zé,i)iezg = (cp(é,Wi))ier the summands are conditionally i.i.d. due
to Assumption 3.4.1. They are also conditionally mean zero since

1

E[r!|Zs,0] = (3;(t, W;) — g5(t, W) (1 B E[l(TiA(:ﬂt) | Z)s,G])
~ E[1(T; *t)|zeza ]

= G\ls i) — g;(t, W; — =0,

(35t W) — g5(6, W) (1 W ) -0
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3.6 Discussion

for each i € Z3. Using Assumption 3.4.2 (i), we can bound the conditional variance by

(56, W,) — gy(t, W)

Var (r}]Z;,é) = Var (1(T:t)\Z;,é)

m(t| W)?
~ N A . 2
_ (geu,v:;;(t%v(i’wz)) (1= mglt| W)
(1—-2¢)

(G5t W,) — g5(t, W)

c
Now it follows from Assumption 3.4.2 (v) and the conditional Chebyshev’s inequality
that

~ ~ 1_ n
P <|R1| > e\Za,G) < e ?Var(Ry | Zs,0) < ETCC(%(’t) i 0,

from which we conclude that R; Lif 0.
The analysis of Ry is similar. Observe that the summands are conditionally i.i.d. given
Z;,0, and T, := (T};)iez,- They are also conditionally mean zero since

B[] Za, 7.0 = (BIYi| 26, 2. 0] - g5t W) @?ﬁvzvf)) ) 1&;‘7%
1T, = t) 1(n—t)>

= (B[Y: | 9(0, W), T, 0] — g5(t, W) | = =0,

§(Wi)  my(W)
where we use that on the event (T; = t),

E[Y; | Zé,i?Ti?é] = E[Y; | Zéﬂ‘aTi = tvé] = gé(tvwl)

To bound the conditional variance, note first that Assumption 3.4.1 and Assumption 3.4.2
imply

Var (Y;|Z,, T1,0) <E[Y}|Z;,,T:,0] = B[E[Y | Wy, T5,0] | Zy, T;, 0] < C,
which in return implies that

. 1 1 2 .
21Z:.T,,0) =1(T, = — Y;|Z; ., T;
Var (rl | Zs, ,0) ( t) (mé(wi) mé(wi)) Var( ] b ,6’)

2
<C < N ) .
mg(Wi)  my(Wy)
It now follows from the conditional Chebyshev’s inequality that

P(|Ry| > €| Zs, Ts,0) < e 2 Var(Ry | Zs, Ty, 0)
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

Assumptions 3.4.2 (iv) implies convergence to zero in probability, and from this we

conclude that also Ro P, 0.
We now turn to the discussion of the oracle term U én)

lows that (T;, W, Yi)iez, AL 0, and hence the conditional distribution U gn) | 0 = 0 is the
(n)

same as U, ’. We show that this distribution is asymptotically Gaussian uniformly over

0 € ©. To see this, note that for each 6 € O, the terms of U(gn) are i.i.d. with mean x;(Zyg)
and variance V;(Zg). The conditional Jensen’s inequality and Assumption 3.4.2 (i) imply
that

. From Assumption 3.4.1 it fol-

Cars(Ellgo(t, W)[**] + ¢ WHIE[)Y — go(t, W)IPH])
C'E[)Y ],

E[Jui (0)[**]

<
<

where C’ > 0 is a constant depending on ¢ and §. Thus we can apply the Lindeberg-Feller
CLT, as stated in Shah and Peters [2020, Lem. 18], to conclude that

d/©
= V[Z3[Vi(Zg) AU = vi(Zg)) L N0, 1),

where the convergence holds uniformly over § € ©. With ®(-) denoting the CDF of a
standard normal, this implies that

J (B(Su(6) < t] 6 = 6) — B(£))P;(d6)
teR teR

< supsup |P(S,(0) < t) — ®(t)| — 0. (3.A.3)
0cO teR

sup [P(Sa(6) < t) — @(¢)] = sup

This shows that Sn(é) 4, N(0,1) as desired. The last part of the theorem is a simple
consequence of Slutsky’s theorem. O
Proof of Theorem 3.4.4

For each i € T3, let @; = u;(0) + 7} + 72 + 73 be the decomposition from (3.4.16). For the
squared sum, it is immediate from Theorem 3.4.3 that

2
<‘ T Z; uz> (|3|Z§3 u,(@)) +op(1).

For the sum of squares, we first expand the squares as
02 = ui(0)® + 20rF + 72 + ) u(0) + (r} + 12 +19)% (3.A.4)

We show that the last two terms are convergent to zero in probability. For the cross-term,
we note by Cauchy-Schwarz that

. 1/2 1/2
< Z(r}—i—r?—i—r?ﬁ) ( Zuz ) .
<|Ig| i€l3 | 3| i€l3

Do+ rf 4 ru(B)

’ |Ig| i€l3
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3.6 Discussion

We show later that the sum |I | >
the last two terms of (3.A.4) converge to zero, it suffices to show that @ ZiEIS (r} +

ieTs u is convergent in probability. Thus, to show that

rz-z + r?)Q L, 0. To this end, we observe that

3\2
|13|Zr +r2 47 113|2 )2+ ()

€13 i€l3

The last term is handled similarly to Rs in the proof of Theorem 3.4.3,

e (ATi=0) AT =)\
ZI ZI (8505, W) = g5t W) (m@mwn m(;(twi))

< @(é@g(t,wi) - Qé(t,wi)>2) (;3 (ﬁii%;;?\f‘)) B TT];EZ|?7\§)))2>

< 2neMe) o,

where we have used the naive inequality > a?b? < (3] a?)(3.b?) rather than Cauchy-
Schwarz. From the proof of Theorem 3.4.3, we have that

E[(r})?| Zs, 0] = Var[r} | Zs,0] < — (3,(t, Ws) — g5(t, W),

and hence the conditional Markov’s inequality ylelds

<‘ 3‘2 >e\Z;,é><6_1E[’ 3’2 \z;,é]

€13 €13

_112]{5[ \z.,a]

l—c.m) P
< &y — 0.
ec 2t

Thus we also conclude that \T13|Zie13 (r})? £ 0. Analogously, the final remainder

ﬁZiezg (r?)? can be shown to converge to zero in probability by leveraging the ar-

gument for Ro £, 0 in the proof of Theorem 3.4.3.
Combining the arguments above we conclude that

V g,m |IS| Z uz — (1-3’ Z > |Ig| Z (|1.3| 2 1(6)) +0P(1)

As noted in the proof of Theorem 3.4.3, for each 6 € O the terms {u;(0)}iez, are i.i.d
with E[u;(0)|?°] < C'E[|Y]**°] < oo. Hence, the uniform law of large numbers, as
stated in Shah and Peters [2020, Lem. 19], implies that

P/© 1 P/©

L 2, uif) —E[wi(9)]) —— 7 2w (0) — E[ui(6)*] == 0,
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

where the convergence in probability holds uniformly over § € ©. Since Var(ui(0)) =
Var(¢(Zg)) = Vi(Zg), this lets us conclude that

o " 1 2 P/o
S, (0) = ’13“;1 <‘I3Z§ (9)) —V,(Zg) 225 0.

We now use that convergence in distribution is equivalent to convergence in probability
for deterministic limit variables, see Christgau et al. [2023b, Cor. B.4.] for a general
uniform version of the statement. Since Assumption 3.4.1 implies that the conditional
distribution S, (#) |# = 6 is the same as S,,(0), the computation in (3.A.3) with ®(-) =

1(- = 0) yields that S, (6) 4, 0. This lets us conclude that

Vi@, i) = Su(0) + op(1) 50,

which finishes the proof. O

3.A.7 Proof of Theorem 3.4.6

We fix P € P and suppress it from notation throughout the proof. Given 6 € R%, the
single-index model assumption (3.4.13) implies that

b(WTO)=RE[Y |T =t,W'0] = E[h(W 0p) | T =t, W'4].
Now since ht € C1(R), we may write
hi(WT0) = hy(W'0p) + R(6,0p),
R(0,0p) = hy(W 0p)WT (0 — 0p) + (W' (0 — 0p))W' (0 — 0p)
for a continuous function r: R — R satisfying that lim._o7(e) = 0. It follows that
E[h:(W T 0p) | T =t,W'0] = hy(W'0) —E[R(6,0p) | T =t, W'4],

The theoretical bias induced by adjusting for W 6 instead of W, or equivalently W 8p,
is therefore
xt(WT0; P) — xi(W) = xe(WT0; P) — xo(WT0p)
=E[h(W'0) —E[R(0,0p) | T =t, W'0] — hy(W'0p)]
= E[R(0,0p) — E[R(0,0p) | T = t, W'0]]

=5 |R0.00) (1~ e g |
= C(0,600)7 (0~ 0p),

where

C(:09) =B | (HOWT0) +-r W0~ 0) (1~ 5 gy ) W
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3.6 Discussion

To show that u is differentiable at 6 = 0p, it therefore suffices to show that the mapping
6 — C(60;0p) is continuous at fp.

We first show that P(T = ¢t| W '6) is continuous at §p almost surely, which follows
after applying a coordinate change such that 6 becomes a basis vector. To be more
precise, we may choose a neighborhood I« = R? of #p and d — 1 continuous functions

qg,...,qd:L{—>Sd_1

such that Q(8) == (||0]|716, ¢2(0), ... qq(f)) is an orthogonal matrix for every 6 € . For
example, the first d vectors of the Gram-Schmidt process applied to (0,eq,...,eq) is
continuous and yields an orthonormal basis for # € R?\ span(ey), so this works in case
Op # +ey. Let Z(0) = Q(A) "W and note that Z(0); = ||0]| '0TW = ||§]|"*WT4. Then
by iterated expectations,

P(T = ¢|WT6) = E[m(t| W) | W 6]
=E[m(t|Q(0)Z(0))| Z(6)1]

_ SRa-1 m(t|W(0,z))pw (W (0, 2))dz F (0. 2) = O Z(0)
o o= (")

Each integrand is bounded and continuous over 6 € Y. From dominated convergence it
follows that P(T = ¢t| W) is continuous at fp almost surely. It follows that almost
surely,

(hy(WT) +7(WT(0—6p))) (1 - ]P)(Tl(:TtTVi;T@)> w
/ AT = 1)
— (W 0p) (1 T me)) W ferdm e

By dominated convergence again we conclude that

C(0;0p) — E [h;(WTep) (1 ~ P(Tlﬁz |ZV\?T&P)> W] . 6 —0p.

This shows that 6 — C(0;6p) is continuous at #p, and hence we conclude that u is
differentiable at 0 = 0p with gradient

Vu(fp) = E {h;(wTep) (1 — P(le(j; |:\7\§)T9p)> W]

P(T = t|W)
P(T=t|wwp>)w]'

=F [h;(wTep) (1 —
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3 Efficient adjustment for complex covariates: Gaining efficiency with DOPE

input layer hidden layer

Figure 3.B.1: Neural network architecture for single-index model.

3.B. Details of simulation study

Our experiments were conducted in Python [Van Rossum et al., 1995]. The linear and
logistic regression was imported from the scikit-learn package [Pedregosa et al., 2011],
and the neural network for the DOPE-IDX was implemented using pytorch [Paszke
et al., 2019].

The neural network architecture is illustrated in Figure 3.B.1. The network was opti-
mized using MSE loss and the ADAM optimizer with 1r=1e-3 and n_iter=1200 in the
simulation experiment. For the NHANES application the settings were similar, but with
BCELoss and n_iter=3000. We discovered that the optimization procedure could get
stuck in a local minimum with significantly lower training score. To avoid getting stuck
in a such a ‘bad local minimum’, it was possible to refit the network with random initial-
ization several times and pick the model with highest training score. The frequency of
bad local minimums is roughly 15%, with variation between each setting. Thus, refitting
the network, say 5 times, is enough to avoid a bad minimum > 99,99% of the time. To
save the computational cost of refitting many times for each simulation, we initialized
the first layer with an initial value 0;,;; = § + Unif(—0.1, 0.1)®d. The logistic regression
for the propensity score was fitted without fs-penalty and optimized using the lbfgs
optimizer. The propensity score was clipped to the interval (0.01,0.99) for all estimators
of the adjusted mean.

Figure 3.B.2 shows the cross-fitted DOPE estimators versus their full sample coun-
terparts in the simulation setup of Section 3.5.1. We observe that cross-fitting generally
seems to decrease performance for small sample sizes, but the discrepancy diminishes
for larger sample sizes.

Table 3.B.1 corresponds to Table 3.5.1 in the main manuscript, but where covariates
with more than 50% missing data have been removed rather than imputed. Except for
the naive contrast (which has dropped two rows) the ordering according to bootstrap
variance is the same.

Figure 3.B.3 shows the same coverage values as Figure 3.5.5, but also includes the
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Figure 3.B.2: Comparison of DOPE estimators with and without sample splitting.

Estimator Estimate BS se BS CI
Regr. (NN) 0.020 0.008  (0.002, 0.035)
Regr. (Logistic) 0.027  0.009  (0.012, 0.048)
DOPE-BCL (Logistic) 0.024 0.010  (0.004, 0.040)
Naive contrast 0.388 0.010  (0.369, 0.407)
DOPE-BCL (NN) 0.018 0.010 (-0.003, 0.036)
DOPE-IDX (NN) 0.023 0.012 (-0.001, 0.047)
ATPW (NN) 0.017 0.016 (-0.017, 0.046)
ATPW (Logistic) 0.022 0.016 (-0.012, 0.051)
IPW (Logistic) -0.047  0.027 (-0.119, -0.01)

Table 3.B.1: Treatment effect estimates for NHANES dataset, where covariates with
more than 50% missing values have been removed.

average lengths of the confidence intervals in the parentheses. We note that the lengths
of the confidence intervals for the DOPE estimators are much smaller than those of the

AIPW estimator.
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Figure 3.B.3: Coverage of asymptotic confidence intervals of the adjusted mean x1, ag-
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3.6 Discussion

3.C. Extension to cross-fitting

Algorithm 4: Cross-fitted DOPE
1 input: observations (T;, Wi, Y;) e[, partition [n] = J; U -+ U Jk;

2 options: integer 1 < m < K — 2 and options for Algorithm 3;
g fork=1,..., K do

a | Set Ty =Jy, Ty = U, i and T = [n)\(Zh v Z3);

5 Compute gjc,’fe as the output of Algorithm 3;

6 Compute variance estimate 1715,;9 given as in (3.4.17);

~x . 1 K ~dope Ox . 1 K
7 return X7 = 20 Xy ond Vi= 5 20 Vik

A cross-fitting procedure for the DOPE is described in Algorithm 4, which computes
both a cross-fitted version of the DOPE and its variance estimator. Here the indices
of the folds are understood to cycle modulo K such that Jxy1 = Ji and so forth.
This version of cross-fitting with three index sets has also been referred to as ‘double
cross-fitting’ by Zivich and Breskin [2021].

We note that the ‘standard arguments’ for establishing convergence of the cross-fitted
estimator cannot be applied directly to our case. This is because, for each fold k € [K],

the corresponding oracle terms UQS”) do not only involve the data indexed by Z¥, but also
k

depend on 6 which is estimated from data indexed by I{“. Hence the oracle terms are

not independent. However, we believe that this dependency should be negligible, and

perhaps the convergence can be established under a more refined theoretical analysis.
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4 Assumption-lean Aalen regression

ALEXANDER MANGULAD CHRISTGAU AND NIELS RICHARD HANSEN

Abstract

We propose a novel and model-free estimand to measure the conditional asso-
ciation between a time-to-event and an exposure given covariates. The estimand
may be interpreted as a weighted hazard difference, and can be viewed as an
assumption-lean generalization of the cumulative exposure coefficient in the Aalen
additive hazards model. We develop an estimation method based on the principles
of double machine learning, which is algorithm-agnostic and incorporates cross-
fitting. We prove that our method is doubly robust in the sense that, when the
nuisance functions are learned with modest rate conditions, the resulting estimator
converges to the true estimand at a y/n-rate. A simulation study is conducted,
showcasing that our estimation procedure yields an efficient and robust estimator
of our estimand.

4.1 Introduction

Statistical inference for the conditional association between a time-to-event and an ex-
posure is the primary objective in many bio-medical applications. A critical task for
such applications is to first define an appropriate measure of association. Formulating a
general and interpretable measure is intricate and remains an active research topic.

The hazard ratio is one of the most popular and reported measures of association
in clinical research, with its application being a subject of ongoing discussion since the
influential work of Cox [1972]. Despite its popularity, the hazard ratio, and the often
accompanying Cox model, are subject to several significant drawbacks, as highlighted
by Hernén [2010], Martinussen and Vansteelandt [2013], Stensrud and Hernan [2020],
among others. These drawbacks include non-collapsibility of the hazard ratio and that
it is unsuitable for quantifying causal effects. The pitfalls of model misspecification is
another notable drawback. When used as a conditional association measure within the
framework of the Cox model, its interpretation is problematic without strong model
assumptions such as proportionality.

To address the issue of model misspecification, Vansteelandt et al. [2022] propose a
more general measure of association that reduces to the log (cumulative) hazard ratio
under the Cox model. Generalizing a model-based measure of association with a model-
free measure has now become known as assumption-lean inference [Berk et al., 2019].
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4 Assumption-lean Aalen regression

This approach subsumes model-based and estimand-based methods, and can be advan-
tageous when each method has its own merits, see Vansteelandt and Dukes [2022] and
the surrounding discussion for more details.

In this work we develop an analogous approach, but based on the hazard difference
as an effect measure. The hazard difference is collapsible for the additive hazards model,
introduced by Aalen [Aalen, 1980, 1989]. As mentioned, this desirable property does
not hold for the hazard ratio and the Cox model [Martinussen and Vansteelandt, 2013,
Daniel et al., 2021]. There are other appealing properties of the hazard difference, but
the discussion is subtle, see, for example, Didelez and Stensrud [2022], Martinussen
et al. [2020]. Regardless, there are several applications where additive hazards are more
plausible than proportional ones; we refer to Breslow and Day [1987], Lin and Ying
[1994], Kravdal [1997], Lee S. McDaniel and Chappell [2019], Bischofberger et al. [2023].

Assumptions on the | Ratio-based target Difference-based target
non-baseline term
Parametric Cox model [Cox, 1972] Additive risk model in Lin
and Ying [1994]
Semi-parametric Partial Cox model [Sasieni, | Partially additive hazards
1992, Huang, 1999, Zhong | [McKeague and Sasieni, 1994,
et al., 2022] Dukes et al., 2019, Hou et al.,
2023]
Assumption-lean [Vansteelandt et al., 2022] This work

Table 4.1.1: Overview of selected works on inference for the conditional association be-
tween a time-to-event and an exposure, defined using varying levels of model
assumptions. All models include a nonparametric baseline term that does
not depend on covariates.

Despite some of their well-behaved theoretical properties, additive hazards are “some-
what overlooked in practice” according to Martinussen and Scheike [2006, p. 103]. A
common criticism of additive hazard models is that they can lead to hazard estimates
that are negative and are thus not valid hazards. To circumvent this issue, we define a
model-free target parameter based on the Local Covariance Measure (LCM) introduced
by Christgau et al. [2023b]. We show that, within a partially additive hazards model,
it coincides with the cumulative effect of the exposure. However, our target does not
rely on such modeling assumptions and we discuss its interpretations in more general
settings. Table 4.1.1 gives an overview of our target parameter in relation to some ex-
isting works. We show how the target may be estimated using flexible machine learning
methods, and prove asymptotic normality under suitable rate conditions on the nuisance
parameters.

4.1.1 A hazard difference estimand

To motivate our general framework and results we first present a simplified example.
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4.1 Introduction

Example 4.1.1. Let T € [0,1] denote a survival time, let X € {0,1} denote a binary
baseline exposure and let Z denote additional baseline covariates. With H;(X, Z) de-
noting the conditional cumulative hazard given (X, Z), the conditional survival function
is P(T > t| X, Z) = e H(X2) and

P(T>t|X=0,2)

OuZ) =log gy —1z) ~ H1.2) — Hi0.2) (4.1.1)

quantifies the, possibly heterogeneous, exposure effect as a function of Z. Suppose that

H,(X,7) = L t hy(X, Z)ds

is given in terms of the conditional hazard hy(X, Z), then
t ¢
0.(2) - j ho(1, Z) — hy(0, Z) ds — J 0,(Z)ds
0

0 ~-
—0,(2)

is the integrated difference of conditional hazards. We can always express the conditional
hazard as
hs(X,Z) = X04(Z) + hs(0,2), (4.1.2)

and the additive decomposition (4.1.2) does not impose any model restrictions unless we
restrict one of the functions 05(Z) or hs(0, Z).

We seek an estimand the summarizes the values of 05(Z) over s and Z. To this end,
let ws(Z) denote a weight process with wy(Z) = 0 and S(l) E[ws(Z)]ds = 1, and consider
the weighted hazard difference estimand

7" o= L E[0s(Z)ws(Z)]ds.

The real-valued parameter 7}” is the endpoint of the functional estimand

N f CE[0.(Z)wa(Z)]ds, ¢ e [0.1].
0

For wy(Z) = 1, the estimand simplifies to the expected cumulative hazard difference 7} =
E(©:(Z)), but other weights are also of interest. For the partially additive hazards model,
where 0, is independent of Z, we see that ;" = Sé 0sE[ws(Z)]ds is a cumulative weighted
hazard difference. Efficient and (rate) doubly robust estimation was considered for the
partially additive model in Dukes et al. [2019] and Hou et al. [2023] using semiparametric
estimation theory — in particular when 6; = 0 is independent of ¢t and ~;” = 0t. In this
paper we introduce an assumption-lean additive hazard estimand and corresponding
estimation theory that, as a special case, applies to model (4.1.2) without any model
restrictions.
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4 Assumption-lean Aalen regression

To give an explicit formula for our assumption-lean estimand for model (4.1.2) within
this simplified example, let Y; = 1(T" > t) denote the at-risk indicator, and define what
we call the Aalen covariance weights

Yoms(Z2)(1 = ms(2))
[Yems(Z2)(1 = 7s(2))]

w(2) = ¢ (4.1.3)

where 74(Z) =P(X = 1|T > s,Z). The resulting estimand can be expressed as

— ' wAC s — "E[05(2)Ysms(Z2) (1 — 75(2))] s
e | Bl @ = | SR B

The weights (4.1.3) and the formula (4.1.4) may at first appear unmotivated. In Section 3
in Vansteelandt and Dukes [2022] we find weights similar to (4.1.3) used to represent
assumption-lean GLM regression estimands, and also in Section 2 in Vansteelandt et al.
[2022] similar weights appear in the representation of assumption-lean Cox regression
estimands. 'y

In Example 4.2.6 we show that the Aalen covariance weights and the estimand (4.1.4)
appear naturally as an assumption-lean Aalen regression estimand. The estimand 4
given by (4.1.4) is an example of the Aalen covariance measure (ACM) — the general
estimand we introduce in Definition 4.2.1. This is, in turn, an example of a Local
Covariance Measure as introduced by Christgau et al. [2023b]. We show in this paper
that ACM can be defined and interpreted as an assumption-lean estimand for any real-
valued and time-dependent X-process and time-dependent Z-process, thus generalizing
model (4.1.2) considerably.

4.1.2 Organization of paper

We organize the rest of the paper as follows. In Section 4.2, we first introduce our general
setup and define our target estimand. We then discuss interpretations of the estimand
based on theoretical properties and computations in concrete examples. Conditions on
the censoring mechanism are postponed to the end of the section to avoid a technical
discussion from the onset. In Section 4.3, we discuss an estimation methods for our
target estimand, in particular we propose the X-ACM, which is based on double machine
learning estimator. In Section 4.4, we prove that the X-ACM is asymptotically Gaussian
with a y/n-rate under suitable conditions. The most significant conditions are rate-
conditions on nuisance estimators, which are similar to those for other (rate) doubly
robust estimators. In Section 4.5, conduct a simulation study that demonstrates the
effect of the x-AcM. We conclude with a discussion in Section 4.6 outlining potential
future research directions.

The supplementary material consists of Section 4.A, which contains proofs of all our
main results and related auxiliary lemmas, and Section 4.8, which includes a discussion
of our framework in the context of multiplicative hazards models.
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4.2 Target estimand and interpretations

4.2 Target estimand and interpretations

4.2.1 General setup

We consider a survival time 7% > 0 censored by a random variable C' € [0,1], such
that the observed time is T' :== T% A C together with the indicator A = 1(T* < C).
From these we define the observed counting process N; = 1(T < t,A = 1), and the at-
risk indicator Y; = 1(T" > t). In addition to (7', A), we also observe a covariate process
Z = (Z;) and an exposure process X = (X;) of particular interest. The covariate process
can, in principle, take values in any measurable space, whereas the exposure process is
assumed real-valued and left-continuous.

We postpone an elaborate discussion of assumptions on the censoring mechanism to
Section 4.2.4. In summary, we introduce Assumption 4.2.1, which is an instance of
independent right-censoring in the sense of Andersen et al. [1993], and which will remain
an assumption throughout the remainder of the manuscript.

For any stochastic process W = (W;), we let W; = (Wj)s<; denote the history up
to time ¢t > 0, but not including the timepoint t.! Note that by left-continuity, X; =
X;_ = lim,_,; X, is determined by the history X;.

The conditional cumulative hazard H;, given the processes X and Z, is defined by

Hy(X, Z) = —1ogP(T* > t| X4, Zy).

The overall objective is to quantify how H;(Xy, Z;) depends on the exposure process
X;. Such a dependence can, in general, be complicated and depend on the value of
the covariate process Z;. Our approach is assumption-lean meaning that we do not
make strong model assumptions on how H; depends on X and Z;. We will assume,
though, that Ht(y( +, Z1) is given by a conditional hazard function, denoted by h;, that
IS Ht Xt,Zt SO XS,Z dS

4.2.2 Aalen Covariance Measure

Before we define our model-free estimand in the most general case, we need to intro-
duce two auxiliary stochastic processes: the predictable projection of X and the Z-
compensated counting process.

A stochastic process is said to be caglad if its sample paths are left-continuous and have
right-limits at all times. We henceforth assume that X is caglad and square-integrable.
Then, the predictable projection of X onto the histories of N and Z can be defined as
the unique? caglad process, denoted by IT = (II;), satisfying that

T, = E[X; | Ny, Zy). (4.2.5)

! This convention differs from other works such as [Lok, 2017, 2008], which do include the timepoint ¢ in
the history. For any left-continuous process, this convention does not affect the information content
of the history. In particular, there is no distinction between the conventions when conditioning on
X, see also Remark 4.2.3

2Technically, it is unique up to evanescence.
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4 Assumption-lean Aalen regression

For more details, see for example Corollary 7.6.8 in Cohen and Elliott [2015]. We will
primarily need the process II; on the event (Y; = 1) = (T > t), where it takes the value
7(Zy) = E[X¢ | T = t,Z4].°
Introducing
h(Zy) = Elho(X0, Z,) | T > 1, 7).

the innovation theorem, see, e.g., Theorem I1.T14 in Brémaud [1981], gives that h; is
the conditional hazard given Z that satisfies the relation
— t — —
Ht(Zt) = J hs(ZS)dS = —logIP’(T* >t ’ Zt)
0

In terms of the conditional hazard given Z we define the Z-compensated counting
process

My = Ny — f: Yshs(Ze)dS =Ny — Ht/\T(Zt/\T)'
We can now define our target estimand.
Definition 4.2.1 (Aalen Covariance Measure). For each ¢ € [0, 1] let
p(t) = E[Yi(X; — IL)*] = E[Yy(X; — m(Z0))?], (4.2.6)

and define, whenever p(t) > 0, the residual process G = (Gy) by

Q= Yi( Xy —ILy) _ Yi( Xy — m(Zy))
' p(t) p(t) '

If p(t) > 0 for all t € [0,1], the Aalen Covariance Measure (ACM) is defined as the
functional estimand v = () given by

(4.2.7)

e =E Uot Gdes] (4.2.8)

for t € [0,1]. &

We discuss the positivity assumption p(t) > 0 further in Remark 4.4.1. To appreciate
Definition 4.2.1 we compute the ACM for the partially additive hazards model.

Example 4.2.2 (Partially additive hazards model). Suppose that
ht(yta Zt) = etXt + gt(Zg), (429)

for some 6; € R and a function g; € Ll(PZt), where P, denotes the distribution of Z;.
The model given by (4.2.9) is the partially additive hazards model. 1t specifies the direct

3We technically define 7 via the Doob-Dynkin lemma such that Y;IT, = Yimi(Z,) holds surely. Thus
we can ensure that m:(Z¢) is a caglad version of E[ X |T > t, Z¢].
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4.2 Target estimand and interpretations

effect of X in a separate term with time-varying coefficient #;. For this model the
innovation theorem yields the explicit expression

ht(zt) = etﬂ't(Zt) + gt(Zt) (4210)
Introducing the (X, Z)-compensated counting process, My == Ny — Hy 17 (X¢ a1, ZiaT)

we get by (4.2.10) that

¢
My = M; + f 0s(Xs — ms(Zs))ds.
0

Since M; is a mean zero martingale and the residual process is predictable,

t t
v =E {J G,dM; + J Gs0s(Xs — WS(ZS))dS]
0 0

t Y:e Xs — s Zs 2 t
~E U g, YoXs = ms(Zs)) ds} =f 0,ds. (4.2.11)

0 p(s) 0
Hence, the ACM reduces to the cumulative direct effect ©; = Sé 0sds for the partially
additive hazards model. 'y

We note that both Dukes et al. [2019], Hou et al. [2023] consider models that fall
under the partially additive model given by (4.2.9), and they propose estimation of the
cumulative effect ©; with doubly robust estimation methods. The example above shows
that our ACM estimand reduces to the cumulative effect for the partially additive model,
but we will not make this model assumption. We present additional represetations and
interpretations of the ACM in Section 4.2.3

Remark 4.2.3. The ACM is an example of a Local Covariance Measure (LCM), which was
introduced by Christgau et al. [2023b] in a more general setting of counting processes,
where all definitions and results are formulated in terms of filtrations and intensities.
Since this work is focused on survival analysis, the results are formulated using histories
and conditional hazards to make them more accessible. To describe the connection
between the notation used in this paper and in Christgau et al. [2023b], introduce the
two filtrations F; = 0(Zs, Ng;s < t) and Gy = 0(Xs,Zs,Ng;s < t). Then G =
o(X¢, Zy, Ny) and Fy_ = o(Zy, Ny), and N\ = Y;hy(Z;) and A\ = Yihy(X;, Z;) are
the Fi- and Gi-predictable intensities, respectively, for the counting process N. The
martingale argument in Example 4.2.2 uses that M; is a G,-martingale, which relies
on the implicit Assumption 4.2.1 on the censoring mechanism. The supplementary
Section 4.A elaborates on the notation, which is also used in the proofs.

In Christgau et al. [2023b], the LCM was introduced for any G;-predictable residual
process Gy satisfying E[G, | F;—] = 0. The residual process given by (4.2.7) is a specific
example of such a process. The LCM was introduced in Christgau et al. [2023b] to
quantify deviations from the hypothesis that N is locally independent of X given F;.
The ACM, being an example of a LCM, enjoys the same interpretation: under local
independence, v is equal to the zero function. The ACM was, however, not considered in
Christgau et al. [2023b], and we proceed to show that the ACM enjoys the interpretation
as an effect measure generalizing the cumulative effect in a partially additive hazards
model. &
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4 Assumption-lean Aalen regression

4.2.3 Interpretations of the ACM as an effect measure

By Proposition 2.6 in Christgau et al. [2023b], the LCM, and therefore also the ACM,
has the following equivalent representation for each t € [0, 1],

v = jt Cov (GS,YS(hS(X'S, Zs) — hs(ZS)))ds (4.2.12)
0

_ fE[Gs(hS(XS,ZS) — hy(Z,))] ds, (4.2.13)
0

where (4.2.13) follows from G, having mean zero and Y; € {0, 1}. Example 4.2.2 showed
that the ACM equals the cumulative direct effect under the partially additive hazards
model. The following proposition asserts that in general — when (4.2.9) may not hold —
the ACM equals the cumulated coefficient in the L?-projection of the conditional hazard
h; onto a partially additive model.

Proposition 4.2.4. Consider the minimization problem
! - = = \\2
minimize: E [ J Vi (he(X+, Zy) — 9 Xy — g¢(Zy)) dt] (4.2.14)
g 0

over all measurable functions 9: [0,1] — R and collections of functions (gt)e[o,1] such
that gi(Z;) is progressively measurable. Let 9* = (97) be given by

0F = Cov(Gy, Yy (he( X1, Zy) — hi(Z4)))

forte[0,1].
Then there exists g* such that (9*,g*) is a solution to (4.2.14), and 9* is unique up
to modifications on a null set of [0,1]. In particular, the ACM can be expressed as

¢
V¢ = f J4ds, t e [0,1],
0

for any solution (¥, g) to (4.2.14).
All proofs are deferred to the supplement.

Example 4.2.5. Continuing Example 4.2.2 we see that for the partially additive hazards
model given by (4.2.9), the minimizer given by Proposition 4.2.4 is

V7 = Cov(Gy, Yy (he(Xy, Z¢) — he(Z4)))
= COV(Gt, Qth(Xs - ﬂ‘t(Zt)))
_ OE[Y(Xy — m(Zy))?]
- p(s)

= b;.

Thus, as also established directly in Example 4.2.2, for the partially additive hazards
t
model, v = Oy = SO 0.ds. '

148



4.2 Target estimand and interpretations

Example 4.2.6. As a generalization of the introductory Example 4.1.1, suppose that
X € {0,1} and that o B B
hi(Xt, Zt) = X104(Z+t) + 9:(Z4).

If 9;(Z;) does not depend on Z, this model is also a partially additive hazards model.
In general, we see that B B B B
hi(Z1) = m(Z24)0:(Z1) + 9:(Z1)

where m(Z;) = P(X; = 1|T > t, Z;). Hence,

p(t)

E [Yi(X; — m(Z))?]
E[YE[(X, - m(Z) | T > 1,Z]]
E [Yemi(Ze)(1 — m(Z4))] .

The minimizer given by Proposition 4.2.4 is
19; = COV(Gt, }/t(ht(yty Zt) - ht(zt)))
= COV(Gt, Ht(Zt)Yt(Xt — Wt(Zt)))
[ YE|(X - m(Z)’|T > 1.2]
p(t)

_ e Yimi(Z)(1 — m(Z4))
£ | 20g [ (7 ><1—m<zt>>]]
Zy)],

=K Qt(Z)

[et(Zt
where the Aalen covariance weights are

Yimi(Z) (1 — m(Z1))

D) = Yim 20 = m(Z0)]

(4.2.15)

In the special case with baseline exposure and baseline covariates, as treated in Ex-
ample 4.1.1, these weights reduce to the weights in (4.1.3), and the estimand given by
(4.1.4) is, indeed, the ACM.

To give a more specific example of a model that is not a partially additive model,
suppose that Z; € R and that 6;(Z;) = 67 Z; for € R%. Then

t d
v = HTJ E[Zwi(Z,)]ds = 0T wpC = Z Orwr
k=1

0

is a linear combination of the f-parameters with w; So [Zk SWAHC )] ds. '

Proposition 4.2.4 allows us to interpret the ACM as a cumulative direct effect in the
best L? model-approximation by a partially additive hazards model. This underlines that
the ACM is well-defined and retains some level of interpretability for (small) deviations
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4 Assumption-lean Aalen regression

from the partially additive model. In contrast, the model-based target parameter in
(4.2.11) is a priori undefined when the partially additive model is misspecified.

Beyond the partially additive model, as treated in Examples 4.2.2 and 4.2.5, we cannot
expect the ACM to have a simple closed-form expression. Even for the simple baseline
model (4.1.2), the innocent looking representation

t

= | Elb.(2)0i(2))ds
0

that follows from Example 4.2.6, involves the weights and in turn the predictable pro-

jections m¢(Z). We elaborate on the computation of 7(Z) for a multiplicative (baseline)

hazards model in supplementary Section 4.B, and we discuss the representation of the

ACM further for the Cox proportional hazards model in Example 4.6.2.

4.2.4 Censoring

Let N;* := 1(T™ < t) denote the uncensored counting process, and let Nf = 1(C < t)
denote the counting process for censoring. Recall the definitions of the filtrations F;
and G; in Remark 4.2.3, and define similarly the filtrations F;* = 0(Zs, NJ;s < t) and
G =0(Xs, Zs, NJ;s < t).

We assume two conditions on the censoring mechanism, both are forms of independent
right-censoring in the sense of Andersen et al. [1993]. We refer to Martinussen and
Scheike [2006], Andersen et al. [1993] for interpretations and intuition behind this type
of censoring. Formulated in terms of local independence as in [Roysland et al., 2022],
we specifically assume that N;* is locally independent of Nf given both F; and G;.
Alternatively, the censoring condition may be formulated as in Assumption 4.2.1 below.

An equivalent definition of the conditional hazards, hs and hg, is that

¢ t
N — j 1T* = s)hs(Zs)ds and N; —J 1T* = s)hs(Xy, Z4)ds
0 0
are martingales with respect to the filtrations F;* and Gj, respectively. Independent
right-censoring means that the conditional hazards also yield valid compensators of the
observed counting process in the following sense.

Assumption 4.2.1 (Independent right-censoring). It holds that

t t
N, _f AT > s)hy(Zo)ds  and N, —J UT > $)ha(Xy, Z2)ds
0 0

are martingales with respect to the filtrations Fy and G, respectively.

All of our results regarding estimation and asymptotic theory will rely on Assump-
tion 4.2.1, and no other assumptions on censoring.

It is natural to ask if the ACM depends on the censoring distribution. For the partially
additive hazards model (4.2.9), the ACM is determined by the conditional hazard h and
is thus unaffected by the censoring distribution in this special case. However, the more
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4.3 Estimation

general interpretations of the ACM in (4.2.12) and in Proposition 4.2.4 depend a priori
on the censoring distribution via the at-risk indicator Y;. In view of (4.2.12), the ACM
is unaffected by censoring if for all ¢ € [0, 1],

E[u(X:, Zy) |C 2 t,T* > t] _ E[u(Xy, Zy) |
E[v(Xy, Zy) |C >, T* > t]  E[v(X,Z

*

*

T
T
where
WXy, Zt) = (Xo = m(Z0)) (b X, Zt) — hu(Z4)),
0(Xe, Zt) = (Xi — m(Zy))%.
This holds, for example, when C' 1 X, Z, T*.

4.3 Estimation

Welet [n] = {1,...,n} for n € N and assume that a sample of n observations, (W(i))ie[n] =
(T, A0 X0 7 (i))ie[n], is available as independent copies of the template observation

W = (T,A,X,Z). For each index i € [n], we use a superscript notation, @) for

the corresponding quantities introduced in Section 4.2. For example, Mt(i) = Nt(i) —

H)tATu) (Zi )T< )) is the ZW_compensated counting process, where Nt(l) = 1(TH <t, A =
1).

We will use cross-fitting to construct an estimator of the ACM, but for simplicity we
first describe our estimator based on single sample split [n] = Z; U Zy, where Z; and Z
are disjoint sets. For convenience we let ny = |Z;| and ny = |Z|, and we assume that
min{ni,ny} — 00 as n — . The data indexed by Z;, henceforth called the training
data, is used to compute estimates 7; and iAzt of the functions m; and h;.

The remaining data (W;);ez, is used to compute the estimate of ACM by the following
three-step procedure:

(a) Compute an estimate of p(-), as defined by (4.2.6). Such an estimate could be
Z v —2(Z)). (4.3.16)
ZEIQ

Since we need to divide by an estimate of p(-), it will be convenient to consider a
clipped estimate of the form p(-) = max{p(-), c} for some ¢ > 0. We return to this
discussion in both the general theory and for practical considerations.

(b) Compute estimates of the residual process and Z ()_compensated counting process
by

GE“ <>1Y> 0 %(Zi”n, (4.3.17)

JYh

for each index i € Z5.
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4 Assumption-lean Aalen regression

(c) Compute the ACM estimator, denoted 7 = (7;), by

~ 1
"= — 2
n2 iEIQ

t
f GOdM®,  telo,1]. (4.3.18)
0

While the formula (4.3.18) is the same for the LCM estimator proposed in Christgau
et al. [2023b], there is an important technical distinction: the residual estimate éﬁ”
cannot be determined from the training data and i-th observation alone, since the esti-
mate p is based on all of the data indexed by Z,. Thus the residual estimates are not
conditionally independent given the training data, which makes the theoretical analysis
of the estimator a bit more involved. See the discussion in Section 4.6 for an elaboration
regarding this difference.

A general procedure for computing the ACM estimator is described in Algorithm 5.
There are additional numerical challenges when computing the ACM estimator in prac-
tice. The estimator (4.3.18) is, for instance, defined as an integral, and its practical
evaluation may require numerical integration. We return to this practical discussion in
Section 4.5.1.

Algorithm 5: Single split estimate of ACM

1 input: sample (T, A®) X®) Z(i))ie[n] and partition Z; U Zy = [n];
2 options: regression methods for estimation of hy(+) and m(+);

3 begin

4 fit conditional hazard Et() by regressing (T(i)7 A(i))iezl onto (Zgi))iezl;
5 fit projection () by regressing (Xt(i))z‘ezl onto (T, A®), Zz(si))ielﬁ
6 | compute p(-) using 7(-) and (T®,A®, X® 70)), 7 .

7 compute (CAJ(Z'),]M(’A))EZ2 according to (4.3.17);
8 output: the ACM estimate J; = - DlicT, Sé C:’g)dMgi);

n2

4.3.1 Cross-fitted ACM estimator

The ACM estimator defined in (4.3.18), and described in Algorithm 5, is based on a single
data split [n] = Z; UZ, and only uses the data indexed by Z, for estimation of the target.
The more sophisticated technique of 2-fold cross-fitting produces an additional estimate
by swapping the roles of Z; and 7> and aggregates the two estimates by averaging. More
generally, K-fold cross-fitting partitions the data into K disjoint folds, and cyclically
uses each fold for estimation of the ACM. We assume that the folds have sizes at least
|n/K| and at most [n/K|. The procedure is described in detail in Algorithm 6, and the
resulting cross-fitted estimator is referred to as the Xx-AcM and is denoted by 5. We refer
to Chernozhukov et al. [2018] and references therein for a more general description of
cross-fitting,.
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4.4 Asymptotic theory

Algorithm 6: K-fold cross-fitted X-ACM

1 input: sample (70, A0 X @) Z(i))ie[n] and partition J; U -+ U Jg = [n];
2 options: options for Algorithm 5;

3 begin

4 L fork=1,...,K do

5 L compute 7% using Algorithm 5 with Z; = Uesr Je and Iy = J;

6 output: the X-ACM estimate ¥ = % 25:1 Ak

4.4 Asymptotic theory

We present in this section asymptotic representations of the estimation errors, ¥ —~ and
7 — 7, for the sample split and cross-fit estimators. We leverage these representations to
derive asymptotic Gaussian process limits, which can be used for statistical inference.
The asymptotic properties of the general LCM estimator were analyzed in Christgau
et al. [2023b] for the specific purpose of understanding type I and type II errors of the
Local Covariance Test — a test of local independence based on the LCM estimator. In
Christgau et al. [2023b] it was established, under suitable regularity conditions, that:

e The asymptotic limit of the LCM estimator is a Gaussian martingale under the
null hypothesis v = 0.

e The LCM estimator is 4/n-consistent using the additive residual process Xy — I1;.

These results cannot directly be applied to our proposed ACM estimator, as the resid-
ual estimates in (4.3.17) are constructed with a mutual dependence via p. However, by
tailoring the theoretical analysis to the residual process given by (4.2.7), and its cor-
responding estimates in (4.3.17), we establish the asymptotic Gaussian process limit of
\/N2(7 — ), also under the alternative v # 0.

It will be instructive and useful for the general analysis to first understand the asymp-
totics of the ACM estimator in the simplified scenario where p is assumed known. In
this case we can largely use the results from Christgau et al. [2023b], and we can then
in Section 4.4.2 combine these results with a decomposition of the full estimation error
to arrive at the general results when p is estimated.

4.4.1 Asymptotics with a p-oracle

In this section we analyze the asymptotics of the p-oracle estimator

N 1
’Yt::n*22

1€1s

Jt v (x” - %t(zgi)))dM@ te0,1]. (4.4.19)
0 p(s)

That is, we assume that p is known and not estimated. Since the terms in the sum are
conditionally i.i.d. given (7, h;) — and these nuisance estimates are obtained from the
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4 Assumption-lean Aalen regression

training data only — the estimator 7; fits into the framework of Christgau et al. [2023D].
While Christgau et al. [2023b] did not establish an asymptotic limit in the alternative
~v # 0, we can follow their initial asymptotic analysis. To this end, it will be convenient
to first define the processes
Et = Yt(Xt - Ht) p( )Gt, (4420)
Ey = Yi( Xy — 7(Zy)) = p(t)Gy. (4.4.21)
The following assumption is essentially a reformulation of Assumption 4.1 in [Christ-
gau et al., 2023b].
Assumption 4.4.1 (Boundedness). There exist constants Cp,Cg,c, > 0 such that for
each t € [0,1]:
(Z) Emax{ht()?t,zt), ?Lt(Z)} < Ch.
(ii) max{|Ei], |Ex]} < Ci

(iid) plt) = c,

A few remarks regarding Assumption 4.4.1 are in order.

Remark 4.4.1 (Remarks on boundedness assumptions).

(a) From the innovation theorem it follows that
Yihi(Xy, Zy) < Cp, = Yihy(Z;) < Ch.

Since hazards are non-negative, the assumption (i) also entails the bounds Y |hi( X, Z4)—
ht(Zt)‘ < Ch, and Y;]ht(Zt) — ht(Zt)’ < Cpx

(b) If the exposure process takes values in an interval, that is, X; € [a,b], then also
IT; € [a,b] and it is reasonable to impose 7; € [a,b]. In this case, (ii) is satisfied
with C E = b—a.

(c) Note that
p(t) = P(T = HE[(X; — T1)* | T > t].
Thus Assumption 4.4.1 (iii) is equivalent to the two conditions: P(7" > 1) > 0 and
infyepo 1) E[(X;—II;)? | T > ] > 0. The first is natural in order to perform statistical
inference up to time ¢ = 1. The second condition should also not be surprising:
even for the partially additive model we would need E[(X; — II;)? | T > t] > 0 for
all t € [0, 1] to identify the coefficient 6;.

In case that (7ii) appears to be violated for the observed data, it is always possible
to restrict the observation window and target the ACM over a shorter timespan.

&

To establish convergence it is, of course, also necessary to control the estimation error
of the nuisance parameters.
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4.4 Asymptotic theory

Assumption 4.4.2 (Analogous to Assumption 4.2 in Christgau et al. [2023b]). With

1

0y = fE[Yt(?rt(zt)—Trt(zt))ﬂdt, and by ::j

E|Yi(h(Z0) = hi(Z0))? | at,
0 0

it holds that
max{an, bp, na - apby} — 0
asn — 0.

Under these assumptions, it follows that 7; is asymptotically equivalent to the corre-
sponding oracle term, where the nuisance estimates (7, h¢) are replaced with (7, hy).

Proposition 4.4.2. Under Assumptions 4.4.1 and 4./4.2, it holds that

~ P
sup |v/ng -y — U — 0
te[0,1]

as n — o, where (Uy) is the oracle process given by
1 o .
Up=— ), f GOdMm® telo,1].

The proof of Proposition 4.4.2 is largely based on the results of Christgau et al. [2023b],
with a few minor modifications. Under Assumptions 4.4.1 and 4.4.2, it is possible to
establish that the process U — /nay converges in distribution to a continuous Gaussian
process by appealing to a central limit theorem in Skorokhod space. However, as we
are primarily interested in the actual ACM estimator, 4, we return to the asymptotics
of the process (Uy) in the proof of Theorem 4.4.6, see Section 4.A.6 in the supplement,
where it is analyzed in combination with another non-vanishing term.

Remark 4.4.3. Tt should be possible to weaken the rate requirements to the empirical
errors. To wit, if we define

Qp *
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|
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&

i
|

; 1 QG P (i
by Zf YO (0(Z9) — h(Z9))2at,

then Assumption 4.4.2 can likely be replaced by the weaker condition that
max{a,, by M2 - dngn} P, 0, n — 0.
In fact, (G, bp) L0 is equivalent with (an,bn) = (Elan], E[bn]) — 0 under Assump-

tion 4.4.1 due to uniform integrability. The scaled product error, ng-a,by,, is not a priori
uniformly integrable, so its convergence does not imply that ne - a,b, — 0. &
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4 Assumption-lean Aalen regression

4.4.2 Asymptotics when p is estimated

To analyze the ACM estimator in the general case, where p is estimated, we consider
the decomposition

AN -y =4/n2-y+ B, (4.4.22)

where 7 is the p-oracle estimator defined as in (4.4.19), and where B is the process given

by

1 trq 1 o
B — — J (A - > EWDam®.
" m 2;2 0 \A(s)  p(s)

In Proposition 4.4.2 we found an asymptotically equivalent oracle process for y/nz-y. We
proceed to find an asymptotically equivalent oracle process for B, and then we identify
the limit distribution of the sum of the oracle processes. The decompositions of 5 and
B into oracle terms and remainder terms can be found in the proofs of Proposition 4.4.2
and Theorem 4.4.5.

In view of Assumption 4.4.1 (i7i), we will for our general theory, and in the residual
estimates é(i), consider the clipped estimator p given by

A(t) = max{c, p(1)}, (4.4.23)

for a c; > 0 and where p is the empirical estimate from (4.3.16). We assume that c; is
chosen such that lim, . c¢; = 0 and cgl = o(y/n2), or in other words, c; tends to zero,
but slower than 1/,/nz. In particular, this implies that c; < ¢, eventually, and thus the
event (p # p) has vanishing probability.

To control the error of p with a sufficiently fast rate, we require not only that 7, is
estimated consistently, but that it can be estimated with a n'/4-rate.

Assumption 4.4.3. With a), = Sé E|Y:(7:(Z¢) — m(Zy))*]dt, it holds that naal, — 0 as
n — oo.

This assumption is analogous to standard assumptions in the partially linear model,
cf. Assumption 4.1(e)(ii) in Chernozhukov et al. [2018]. However, we have assumed the
rate on the slightly more restrictive 4-norm. We believe that this rate requirement could
be relaxed to y/n2a,, — 0 under (potentially) additional mild assumptions. The reason
that a], simplifies the asymptotic analysis is that it controls the estimation error of p in
terms of the 2-norm.

Proposition 4.4.4. Under Assumptions /./.1 and 4.4.3, it holds that

N

1 4
lim sup ngf E[(p(t) — p(t))?]dt % (4.4.24)

n—0o0 0 4

The following result describes the asymptotics of B.
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4.4 Asymptotic theory

Theorem 4.4.5. Under Assumptions 4.4.1, 4.4.2, and 4.4.3, it holds that

sup |By — Vi L, 0,
te[0,1]

where V= (V;) is the process given by

1 t (Egl))2
Vi = \/772% - \/@ZEZIIQ o p(s)

The proof of Theorem 4.4.5 does not readily follow from any of the results in Christgau
et al. [2023b], and can be dissected into two novel steps: first control the approximation

1 1 i ~ (=(i (i p(s) — p(s i i i
<M—M>(X§)—WS(Z§)))<1M§)%M(X”—H”)dMﬁ),

S S
asymptotically (Proposition 4.A.2), and then use a functional law of large numbers to
reduce all stochasticity to the stochastics from p — p (Proposition 4.A.3).
To summarize, we have considered the decomposition y/ng -5 = +/ng -5 + B, and
established under Assumptions 4.4.1, 4.4.2, and 4.4.3 that

E[G,(hs(Xs, Zs) — hs(Z))]ds.

Vne -y =U+ OP(n_l/Q) and B=V + 0p(n_1/2).

In view of (4.2.13) we can regard v as a signed measure on [0, 1] with Radon-Nikodym

derivative
ds

1o = ElGu(hi(X., Z0) = h(Z2))),

which gives that

1 o . to
U+ V; — oy = N > < L GOaM — fo ES)Gg”dyS) . (4.4.25)

iEZQ

The integrand ‘Gg) dMS(i) — Egi)Ggi)dys’ corresponds to the oracle term of a partially
linear model on an ‘infinitesimal scale’. Theorem 4.A.6 in the supplement establishes
asymptotic normality of (4.4.25) based on a central limit theorem in Skorokhod space.

Combining Proposition 4.4.2, Theorem 4.4.5, and Theorem 4.A.6, we obtain asymp-
totic Gaussianity of the ACM estimator and the x-AcM, ¥, described in Section 4.3.1.

Theorem 4.4.6. Let I’ = (Ft)te[o,l] be a continuous Gaussian process with mean zero
and the same covariance function as the process (Sg GsdM, — Sé ESGSd’yS)
Under Assumptions /.4.1, 4.4.2, and 4.4.3, it holds that

tef0,1]"

V(3 =v) =T  and  V/n(y-7)>T

with respect to the uniform topology as n — 0.
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4 Assumption-lean Aalen regression

Note that the cross-fitted estimate is scaled with 1/n rather than /ns, and is thus
more efficient than the single-split estimator 7.

Remark 4.4.7. Having established asymptotic Gaussianity of the ACM estimator, it is
natural to ask if the (co)variance function of I' can be estimated in order to perform
statistical inference for v. Let V be the variance function of the Gaussian process I'.
Under the null hypothesis that v = 0, I is a martingale and

V(t) = Var (Lt Gdes> =E U: ngNs} :

which can be estimated by
2
72 (J G@)dM()) ZJ (GOPANG,
zeI

cf. Proposition 4.7 in Christgau et al. [2023b]. However, if the main purpose is to test
the null hypothesis, it suffices to use the LCM with the additive residual process X; — II;
that omits the scaling by p and thus avoids estimation of p. Then, a test of this null can
be carried out using the X-LCT from Christgau et al. [2023b]. However, if a pointwise
confidence band for the ACM estimator is desired, we surmise that

t 2
*2 (J GDan® ngﬂGgi)d%)

’LEIQ

is a consistent estimator of V(t), though a proof is outstanding. &

4.5 Simulation study

Simulations were conducted in the special case with time-independent X and Z, and
with administrative censoring C' = 1. Two different settings were considered for the
data generating process:

(Siin) An Aalen additive model with
Z =(Zy,...,2Z4) ~ Unif(0,1)®4,
X|Z ~ Unif(Zy, 2y + 1),
h2(X,Z2)=2t(1+ X + 87 2),

where the coefficient 8 = (1, ..., 34) is sampled once and independently for each
dataset, with (5,...,34) ~ Dirichlet(14) and 5; = 0 for 5 < i < d.

(Spar) A partially additive model with
Z = (Zy,...,Zq) ~ N(0,1)®,
X |Z ~ Unif(p(Z1), p(Z1) + 1),
R (X, Z) = 2t(1 + X + o(Z1)),

where (t) = exp(—2t?) is a scaled Gaussian density.
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4.5 Simulation study

Note that both settings adhere to the partially additive model (4.2.9), and in this case
the ACM coincides with the cumulative direct effect ©; = Sé 2sds = t. The uncensored
survival time T™ can in this case be simulated by

T* : VE

VI+ X+ f(2)

where E 1l X, Z is standard exponentially distributed, and where f(z) equals 3"z for
the setting Syin, and equals (z1) for the setting Spar.

The simulations were performed with covariate dimensions d € {4, 16} and datasets of
sample sizes n € {200,600, 1800}. For each setting N = 500 datasets were simulated.

4.5.1 Estimators and implementation

The simulation study was implemented in Python. As a benchmark, an estimator of
the exposure coefficient in the Aalen additive model was considered, which was im-
plemented using AalenAdditiveFitter in the lifelines package [Davidson-Pilon, 2019].
This estimator is referred to as ‘Aalen estimator’ and denoted by A= (A\t)

Estimation of the ACM requires methods for estimating the predictable projection and

the conditional hazard. For estimation of m; we implemented the following procedure.

1. Instantiate a grid T = (nkal :k=0,1,...,n7 — 1). Simulations were conducted
with ny = 20.
2. Let [n] = Z; U Z, be a given sample-split, and let =y = (¢, Yt(i),Zg), .. "Zc(l?)7

where Zj(i) denote the j-th covariate for the i-th individual (independent of ¢ in
this setting). Then format:

e covariate matrices Xerain = (7it) (e, x7 and Xiest = (Tit) (i 4)ez, x7 Of di-
mensions (|Zi1| - ny) x (d + 2) and (|Z2| - n7) x (d + 2), respectively.

e a response vector Yirain = (Xt(i))(m)eTle of length ny - |Zy|.

3. Regress Yipain onto Xirain using any regression method. For this we considered OLS
and gradient boosting [Friedman, 2001, Hastie et al.; 2009], which are denoted
by a subscript 1in and gb, respectively. These were implemented using classes
LinearRegression and GradientBoostingRegressor from the Scikit-learn pack-
age [Pedregosa et al., 2011].

4. Use the fitted methods to predict response values for Xiest to produce estimates of
the predictable projection over the grid 7 for each test observation.

5. Interpolate to general time points ¢ € [0, 1] using the estimated value at time
t< =max{se T |s <t}

It is also possible to subset matrices in step (2) to pairs (i,t) such that (7 > t). This
corresponds to directly targeting the quantity m(Z) = E[X |Y; = 1,Z], rather than
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4 Assumption-lean Aalen regression

targeting E[ X | Y7, Z;] as done in the steps (3) and (4). Both methods were tried initially,
with no noteworthy differences in the analysis result observed. For the interpolation in
step (5), it is important that the method preserves predictability, which would not be
ensured by, e.g., linear interpolation.

For conditional hazard estimation, we considered two off-the-shelf implementations:
GradientBoostingSurvivalAnalysis from the scikit-survival module [Polster], 2020)]
and the AalenAdditiveFitter from the lifelines package [Davidson-Pilon, 2019]. The
two methods are again indicated by a subscript gb and lin, respectively.

The estimate p was computed with the clipping value c¢; = 0.005. However, the
estimate was set to ‘nan’ rather than c; whenever p(t) < c;. This is similar to how the

AalenAdditiveFitter returns nan for times ¢ such that ), Y;(i) < 3d.

The x-ACM was implemented with 4-fold cross-fitting according to Algorithm 6. In
addition, a version of the ACM estimator without any sample splitting was implemented,
and this estimator is referred to as the N-ACM. Thus, 4 different estimators of the ACM
were implemented: N-ACMiin, X-ACM1in, N-ACMgp, and X-ACMgp.

4.5.2 Results

Figure 4.5.1 shows the scaled root mean square error RMSE for various estimators with
respect to the cumulative direct effect at time ¢ = 67/127 ~ 0.622. This timepoint was
the largest, for which all estimators yielded well-defined estimates for all the simulated
datasets (the Aalen estimator yielded nan at time ¢ = 68/127 for a dataset in the additive
setting with n = 200 and d = 16). We observed initially that the ACM estimators based
on linear regress/i\on methods, namely N-ACM1i, and X-ACMiipn, behaved similarly to the
Aalen estimate A;. In view of this fact, and since our focus is on estimation of the ACM
using flexible learning methods, the results for linear methods are omitted for more clear
visualization.

In the left column of Figure 4.5.1, corresponding to the setting Sy, we observe that the
Aalen estimator and X-ACMgy, have similar performance and appear to be /n-consistent.
It is expected that both these estimators are y/n-consistent, but it is perhaps surpris-
ing that the X-ACMgy, is as efficient as the Aalen estimator in the linear setting. The
small discrepancy might be due to numerical approximations when fitting the estimators
to the same common grid, or difference in bias-variance tradeoff because of (implicit)
penalization.

The estimator N-ACMg, without sample splitting performs significantly worse, al-
though the discrepancy seems to diminish for larger sample sizes. In theory, sample-
splitting is used to control the empirical process terms*, but these terms can also be
handled by Donsker conditions or algorithmic stability, see for example the discussions
in Chernozhukov et al. [2018], Chen et al. [2022]. This indicates, that such Donsker
conditions are violated in our setup, and that the gradient boosting methods are not
sufficiently stable. In practice, overfitting can lead to biases that would otherwise not

“In our analysis, these are the terms denoted by RM R RW r. R® and R™ found in the supple-
mentary Section 4.A.

160



4.5 Simulation study

d =4 — Setting = linear d =4 — Setting = partial
10
2 s
>
&
<
6
4 = =S . ® o o
y
® Aalen
= 16 — Setting = linear = 16 — Setting = partial ®  X-ACMg
® N-ACMg,
12
210
>
&
§ 8
6
4
200 600 1800 200 600 1800
n n

Figure 4.5.1: Scaled RMSE for various estimators with respect to the cumulative direct
effect.
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4 Assumption-lean Aalen regression

appear with sample-splitting [Chernozhukov et al., 2018]. Since the gradient boosted
methods are fitted with the same hyper parameters, and these were tuned towards the
larger sample sizes, it is plausible that they overfit in the smaller sample sizes, resulting
in a systematic bias.

We observe that each of the ACM estimators perform similarly across the linear setting
Siin and in the partial setting Spa,. This is different for the Aalen estimator A\t, which fails
severely in estimating the effect ©;. This is to be expected, as the Aalen additive model
is misspecified, and as a consequence, ﬁt cannot reasonable account for the nonlinear
effect p(Z7).

In summary, we conclude that X-ACMg, performs well across all settings, indicating
that it provides an efficient and robust estimator of the cumulative direct effect.

4.6 Discussion

The ACM was proposed as a model-free estimand to quantify the conditional relationship
between a time-to-event and an exposure, controlling for given covariates. While it is
a specific instance of the more general LCM introduced by Christgau et al. [2023Db], we
have highlighted several unique properties and results that apply to the ACM — and not
necessarily to the LCM — which were not considered in Christgau et al. [2023D].

The ACM may be understood as a weighted hazard difference estimand, and we showed
in Proposition 4.2.4 that it coincides with the cumulative exposure coefficient in the
partially additive hazards model (4.2.9) that best approximates the true hazard in L.
As a result, the ACM measures the cumulative direct effect within partially additive
hazards model, and in particular within the Aalen additive model.

The asymptotic analysis for our proposed estimator, the X-ACM, was to some extent
based on results from Christgau et al. [2023b]. However, a novel examination of the
term B in (4.4.22) was necessary to account for the estimation error in the function p
appearing in the denominator. Notably, the remainder term D® from Christgau et al.
[2023b], analogous to R in (4.A.3), does not vanish for the ACM when p is estimated.
Moreover, the decomposition in (2.4.17) differs from typical decompositions of estimators
related to the partially linear model, considered in, e.g., [Robinson, 1988, Lundborg and
Pfister, 2023, Hines et al., 2023], because these decompositions are not feasible when
integrating over time.

Estimating p using the training data. Suppose that the function p is estimated
using the training data, which corresponds to replacing Zo with Z; in (4.3.16). Although
the residual estimates would then fit within the framework of Christgau et al. [2023D],
the analysis does not simplify as the term D®) in Christgau et al. [2023b] still remains
non-vanishing. Nevertheless, the analysis in Section 4.4.2 can be adapted to derive an
oracle decomposition similar to (4.4.25), but with the integrals Sé Es(,Z)C{(J)dfyS summed
over i € 7. This makes it unfeasible to aggregate the cross-fitted estimates, resulting
in a smaller effective sample when using this approach. Additionally, controlling the
estimation error of p in this case requires Donsker class conditions or algorithmic stability,
cf. the term r; in the proof of Proposition 4.4.4. Our simulations in Section 4.5 suggest

162
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that such conditions may not hold in practice, at least when gradient boosting is used.

The cross-fitting scheme. The X-ACM, described in Section 4.3.1, employs cross-
fitting similarly to the DML1 estimator described in Chernozhukov et al. [2018]. While
it is conceivable that a cross-fitting scheme corresponding to DML2 — where numerators
and denominators are aggregated separately across sample splits — could be implemented,
the integration over time complicates this approach. If possible, however, such an ap-
proach might lead to increased numerical stability in small samples, cf. Remark 3.1 in
Chernozhukov et al. [2018].

Relaxations of assumptions. We already discussed, in Remark 4.4.3, the possibility
of relaxing the rate requirements to hold for the empirical errors instead of the expected
errors. The assumptions on boundedness, Assumptions 4.4.1 (i) and (i7), can be found
in similar works, c¢f. Theorem 2 in Vansteelandt et al. [2022] or Assumption 1 in Hou
et al. [2023]. Tt is, however, likely that they can be replaced by suitable tail bounds
or bounds on conditional variances, but at the cost of more technical proofs. Finally,
Assumption 4.4.3 states that II can be estimated at an order o(n~'/*) in terms of the
4-norm. While the order o(n~1/4) is to be expected, see [Chernozhukov et al., 2018], it
is conceivable that the condition can be relaxed to hold for the 2-norm rather than the
slightly more restrictive 4-norm.

Alternative estimands. A limitation of the ACM is the inverse weighting by the
function p, potentially making it difficult to estimate accurately. An interesting direc-
tion for future work is to consider alternative ways of weighting the hazard difference.
This may lead to estimands that are easier to estimate, but still interpretable. Such a
compromise was considered by Vansteelandt et al. [2022], who propose a hazard ratio
estimand that deliberately avoids inverse weighting by the conditional density of the
exposure. However, their estimand still requires inverse weighting by the cumulative
hazard, which imposes a limitation similar to the inverse weighting with p.

The related works Dukes et al. [2019], Hou et al. [2023], cf. Table 4.1.1, consider
estimation of ©; in (4.2.9), with time-independent exposure and covariates, based on
(efficient) orthogonal score methodology. It would be interesting to investigate how the
X-ACM performs relatively to their methodology, both for a well-specified and misspec-
ified model. Furthermore, supposing that their methodologies can be shown to target
general model-free estimands, it would be interesting to compare these estimands with
the ACM.
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4 Assumption-lean Aalen regression

Supplement to ‘Assumption-lean Aalen regression’

The supplementary material consists of Section 4.A, which contains proofs of the main
results and related auxiliary lemmas, and Section 4.8, which includes a discussion of the
ACM in the context of multiplicative hazards models.

4.A. Auxillary results and proofs

4.A.1 Additional notation for proofs

While the main manuscript is formulated using histories and the conditional hazards h;
and h;, it will be convenient to work with filtrations and intensities in the proofs, as also
discussed in Remark 4.2.3. Recall that we define the filtrations F; = o(Zs, Ng;s < t)
and G; == 0(Xs, Zs, Ns; s < t). The stochastic processes A = (A\¢) and XA = (A;), defined
by

At = Ktht(zt) and A = Y;fht()?t; Zt);
are then, under independent right-censoring as described in Section 4.2.4, the F3- and

Gi-intensity, respectively, of N;. We remark that, by definition, this means that M; =
N; — S(t) Asds is an Fy-martingale and that

t
Mt = Nt — J }\Sds
0

is a Gi-martingale. By the innovation theorem, it also holds that E[A; | F;—] = A\;. This
notation is consistent with Christgau et al. [2023b].

For the proofs in the asymptotic analysis we will additionally use the following nota-
tion:

N = v h(Z)
for i € [n] and ¢ € [0,1]. Finally, we let || - ||, denote the norm on LP([0,1] x ©,dt ® P),

so that, for example,

1
b = | B — 22 = 13- A,
0

4.A.2 Proof of Proposition 4.2.4
We first consider the minimization objective for a fixed timepoint ¢ € [0, 1].

Lemma 4.A.1. For fized t € [0, 1], it holds that

{19; = Cov(Ge, At — Ao) (4AD)

g;( = ht — COV(Gt, At — )\t)7rt
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are solutions to

— = 2
inimi EY; (he(X¢, Z¢) — (04X Z
pcminipize B (Y (R0 20 - 0%+ 02

where Pz denotes the distribution of Zy. Moreover, the solution ¥} is unique.

Proof. Recall that on the event (Y; = 1) = (T' > ¢), the predictable projection II; takes
the value m(Z;) = E[X¢|T > t,Z]. Since my, hy € LO(PZ), the minimization problem
is equivalent to minimizing

u(d,0) = E|Yi(ho(X1, Z0) = h(Z0) = 0,(X, = mi(Z0)) — 4(Z0)"
— E[ (A = A = 93X — ) - Vila(Z0))°
which corresponds to the substitution g, = ¢, + hy — ¥ym. Note that
E[A — M| Fie] =0 =E[X; — II; | Fi—].
Now, expanding the square in u(9;, ;) and using that E[¢;(Z;)?] = 0, we obtain that
w(s, ) = E[( A — Xo)?] + O2E[Y:(X; — T1)%] — 204E[(As — ) (X — ITp)].

Equality is attained when ¢; = 0, which is equivalent to ¢; = hy — Yym; € LO(PZ). The
right-hand side is a quadratic in ¥; and its unique minimizer is given by
E[(Ae — A) (X — I1y)]
E[Y (X, —11;)?]

= COV(Gt, )\t — )\t)

This shows that (97, g;) in (4.A.1) are indeed minimizers and that ¥* is unique. O

Returning to the proof of Proposition 4.2.4, we let (¥}, g;) be the pointwise minimizers
from (4.A.1) for each t € [0,1]. For any (¢, ¢g) as in Proposition 4.2.4, it follows directly
from Tonelli’s theorem and Lemma 4.A.1 that

1

minimization objective = J E [Y} (ht(y{t, Z) — 94 Xy — gt(Zt))2] dt

0

> f E [Yt (he(X1, Zy) — 91X — g;(Zt))2] dt.  (4.A.2)
0

We conclude that (9*, ¢*) is indeed a minimizer to (4.2.14), since ¥ is measurable and
g7 € LO(PZ) for each t € [0,1]. Note that equality occurs in (4.A.2) if and only if

v 7 2 \\2 ¥ Ty (7 )2
E [Yt(ht(Xtv Zy) — 0 Xy — gi(Zy)) ] =E [Yt(ht(Xt7 Zy) =0 Xy — g/ (Z4)) ]
for almost all ¢ € [0,1]. By the uniqueness of ¥* in Lemma 4.A.1, this is equivalent

to ¥y = ¥} for almost all ¢ € [0,1]. The last part of the proposition now follows since
"= S(t) ¥%ds, according to (4.2.12). -
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4.A.3 Proof of Proposition 4.4.2

We consider a decomposition similar to that of Christgau et al. [2023b], but with their
non-vanishing processes combined. To this end, define the p-oracle residual estimates

~ B, YiX,-1I
Gy = e _ VX t>, te[0,1].

Then note that
M' ;\}7 — U+ R(l) + R(Q) + R(3) + R(4)’ (4A3)

where the processes U, RV, R® R®) and R® are given by

L 2 J GOAMD,

’LGI
ZJ GO (O — 30)ds,
zeI
=3 [ @ aan
ZEIQ

— GO)Y(AD — XD)ds,
w rgJ
- L [@ - a0 - a0)as

In view of this decomposition, it suffices to show that

sup \R,SZ)] Lo
te[0,1]

asn — o for £ = 1,...,4. To this end, note that Assumption 4.4.1 ensures that
Assumption 4.1 in Christgau et al. [2023b] holds with:

max{|Gy],|Gel} < ¢,'Cp, and  max{\, A} < Ch.

Assumption 4.4.2 can be translated directly into Assumption 4.2 in Christgau et al.
[2023b]. We therefore conclude that RV, R®) and R®) converge (uniformly) to zero in
probability by Proposition 4.4 in Christgau et al. [2023b]. For the last remainder process
we have that

sup \R§4)| oosup |—— Z f ) — E® ()\gi) - )\gi))ds‘ £, 0,
te[0,1] te[0,1] zeI

where the convergence in probability is established in Lemma A.10 in Christgau et al.
[2023D). O
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4.6 Discussion

4.A.4 Proof of Proposition 4.4.4

For n sufficiently large it holds that c; < c,, in which case Assumption 4.4.1(i7) implies
that |p(t) — p(t)| < |p(t) — p(t)| for all t € [0, 1]. Hence it suffices to establish the bound
for the empirical estimator p from (4.3.16). Note also that

il Z E(
ZGIQ

and consider the following decomposition

Vg - (p(t) = p(t)) = v/nz - (P = p) + 2ri(t) + r2(t)

where

O nl SO,

’iEIQ

— 2 - B,

ZGZQ

_ 1 A6 (i)2

We first note that the terms in 71 are conditionally i.i.d. given D = o(W®: i € 7))
with conditional mean zero. It follows that

E[rl (t)2] = E[ Var(ry(t) |D1)]

_ E[— >, Var (BB - E{”) | Dy)|

2 ZEIQ

— E[(EM)(EY - ED)?] < c2E[(1, — 11,)?),

where we have used that E’,@ — Et(i) = Yt(Xt(i) — ﬁ,ﬁ” — Xt(i) + Hf)) = Yt(Hf) - ﬁgl)) By

integrating over time we obtain
[r1]2 < C[TT =TTy — 0. (4.A.4)

For the other remainder, Cauchy-Schwarz yields

E[r o Z E(z )) (E(J) (J)) 1< HZE[(Et —Et)4]-
aJEI2

By Assumption 4.4.3 we conclude that

Iral3 < mal| B = E[f = no T~ T|§ —0,  n— 0. (4.A.5)
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4 Assumption-lean Aalen regression

For the oracle sum, p, we note that E[p(t)] = p(t), and that p(¢) is a sum of i.i.d. random
variables with the same distribution as E? € [0, C%] Invoking Popoviciu’s inequality on
variances [Popoviciu, 1935], we obtain
1 1 1 ! oL,
f E[(p(t) — p(t))*]dt = J Var (p(t))dt = — | Var (Ef)dt < —Z. (4.A.6)
0 0 n2 Jo 4712

Combining (4.A.4), (4.A.5), and (4.A.6) via Minkowski’s inequality we obtain (4.4.24).
O

4.A.5 Proof of Theorem 4.4.5
We first note that

L1 _ple)=pls) _ pls) =Ps) , (pls) = P()*
pls)  p(s)  p(s)p(s) p(s)? p(s)p(s)?
=, =€,

where

The decomposition may seem peculiar at first glance: some of the remainder processes
could be decomposed further into terms that would be more manageable. However, crude
bounds on these error terms will suffice since ¢ and & also decay at an order of n, 2
Theorem 4.4.5 follows from combining Proposition 4.A.2 and Proposition 4.A.3, stated

below. ]
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4.6 Discussion

Proposition 4.A.2. Under Assumptions 4.4.1, 4.4.2, and 4.4.3, it holds that

sup [R50 (4.A.7)
te[0,1]

for £ e {1,2,3,4,5}.

Proof. Let {-,-)o denote the inner product on L?([0,1] x Q,dt ® P). The triangle in-
equality and Cauchy-Schwarz can be used to bound the expectation of the first remainder
term as follows:

- 1 ~ , 4 .
B[ sup [BV]] < ¢l 1BD — O A6 — \@
[ sup (2] = 2 <l -] D

<z ¢l (B = E)- (A= N)],
<, Cpynz-|p—p|,-|E-E

where we have used Assumption 4.4.1 for the last inequality. By a similar argument we
obtain

y (4.A.8)

JE[ sup |}~2§3)|] < C;QCE\/TTy 1p=pl,- ||X — A, (4.A.9)
te[0,1]

Now, combining Assumption 4.4.2 with Proposition 4.4.4, we see that the right-hand
sides of (4.A.8) and (4.A.9) vanish as n — . Hence we conclude that the desired
convergence, (4.A.7), holds for £ =1 and ¢ = 3.

For the second and fourth remainder, let Dy :== o(W;: i € Z;) denote the informa-
tion contained in the training data. Let further G; = Dy v a(gt(l): i € Iy) denote the
filtration containing the histories of the processes (N, X®) Z(®)), 7 together with the
information D;. Then note that:

e since the observations are independent, the compensated ggi)—martingale Mt(i) is
in fact also a G;-martingale for each i € Z,.

e each term in the empirical estimator p, defined in (4.3.16), is G4-predictable, and
hence p(t) = max{cs, p(t)} is Gs-predictable. As a consequence, both (; and & are
also Gi-predictable.

e Assumption 4.4.1 implies that |(;| < 0;20]25 and that |&] < 0510;26%. Hence both

Sé Zdt and S(l] £2dt have finite expectations.
We conclude that the terms in R(2)~ are mean-zero Gi-martingales, cf. Lemma A.l in
Christgau et al. [2023b], and hence R® is also a G;-martingale. By the same argument,

RW is a Gg-martingale. Therefore we can apply Doob’s submartingale inequality, which
yields that

- 1 .
IP( sup |[RY| > s) < SE[(R")?] (4.A.10)
te[0,1] €
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4 Assumption-lean Aalen regression

for ¢ € {2,4}. Now using the calculus of the quadratic characteristic for compensated

counting processes (see, for example, Proposition I1.4.1 in [Andersen et al.,
obtain

B[ (7] = B[] = 5[ [ 2Eia]

1 t o ’\t 2 B R
= Chc%f Mdt < Cp4ChC]257Hp — p“% — 0.

0 p(t)*
Similarly, observe that
E[(R)?] = E[¢R)] = j gEAl|
(p(t) = p(t))

1993]) we

4
< CRLC3 M B g < 2o — 0,
Ner) jﬂ < et O~ ol

where the convergence follows from Proposition 4.4.4 and the fact that c¢2

Combined with (4.A.10), we conclude that (4.A.7) holds for ¢ = 2 and ¢ = 4.
For the final term, a direct bound yields

E[fEﬁﬂé@i] < CpCryml€r < ¢,2%¢; ' CpChy/mallp — I3 — 0.
€y,

Thus we have established (4.A.7) for ¢ € {1,2,3,4,5}.
Proposition 4.A.3. Under Assumptions 4.4.1 and 4./.3, it holds that

sup |Bt — Vi L 0,
te[0,1]

where V- = (V) is the process given by

NS 2 f 2)IE[ES(AS — Xs)]ds, te[0,1].

’LEI

Proof. The results follows from combining Lemmas 4.A.4 and 4.A.5.

o(n).

O]

Lemma 4.A.4. Under Assumptions 4.4.1 and j.4.5, it holds that sup[q 1] |Bt—1’/\}\ EiR 0,

where V = (V,) is the process given by

V= \/njfot CGE[Es (A — As)]ds, te0,1].

Proof. Letting | - [|jo,1;] denote the norm on L?*([0,1],dt), an application of Cauchy-

Schwarz yields that

sup | B — Vil = itz f G| 3 BOOD = AD) — BB, - A)]|ds
zEI
_ = A@ 20y _ _
1L 3 5000 a0 s,
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4.6 Discussion

Since E| E(A—))||jo,1] < CeCh, the law of large numbers — in the space L*([0, 1]) — gives
that the first factor of (4.A.11) converges to zero almost surely, and in particular also
in probability. See for example Ledoux and Talagrand [1991, Cor. 7.10] for a general
formulation of the law of large numbers on separable Banach spaces.

For the second factor, we note that

[0,1] 2\/ HP PHOl

The right-hand side is bounded in expectation by (4.4.24), and in particular it is bounded
in probability. Combined we conclude that the right-hand side of (4.A.11) converges to
zero in probability. O

Lemma 4.A.5. Under Assumptions 4.4.1 and /./.3, it holds that

B[ sup [V - vil| L0
te[0,1]

Proof. Let V = (V;) be the process given by

V= \/@Jot GE[Es(As — As)]ds, where ¢4 = p(s/))(_s)s(S)

In other words, ¢ corresponds to (s, but where the clipped estimate, p, is replaced
by the empirical estimate p from (4.3.16). As such, we have equality of the events
(¢s # ¢s) = (p(s) < ¢5). Let n be large enough such that ¢; < ¢, < p(s) for all s € [0,1],
and then we observe that

1
sup [V — V| < CECM@J € — c|ds
te[0,1]

2CEChy/iz f ) < cp) ds
< ¢pe;2CuChy/ia j — ()2 < (pls) — 5)?) ds.

Applying Tonelli’s theorem and using Markov’s inequality to the above we obtain

. _ 1
B[ sup (V= Vil] < vz | P ((30) = p(6))* < 05) = ) s

te[0,1]
S 2
<\ /n J Zi);) ]ds

< (cp—cp)” v Hp pl3 — 0,

where ‘<’ is an inequality up to the constant c,;c;QC £Ch, and where the last convergence
follows from Proposition 4.4.4.
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4 Assumption-lean Aalen regression

It now suffices to show that E[supte[()’l] |f/t — Vt|] £ 0. Using the decomposition
p = p+r1+ ro from the proof of Proposition 4.4.4, we first see that

(el — ) s
so that

- CgC
sup |V, — V| < =5
te[0,1] ¢

1
N fo [r1()] + [ra(s)lds.

Using the intermediate results (4.A.4) and (4.A.5) from the proof of Proposition 4.4.4,
it follows that

~ CeC
E| sup [V = Vil| = =52 ymg(ral + Jra]) — 0.
te[0,1] =7

4.A.6 Proof of Theorem 4.4.6

We first establish asymptotic Gaussianity of the oracle process.

Theorem 4.A.6. Let S = (St)e0,1] be the process given by Sy = Uy + Vi — \/nay, and
let I' = (T't)seqo,1] be the process from Theorem J.4.0.

Under Assumption 4.4.1, it holds that S 4T with respect to the uniform topology as
n — o0.

Proof. For any 0 < xz < y < 1, define the integrals
Y Y
Iy :=f G.dM,, and Jay ::J E.G.d,.
€T x

The process S; is a sum of i.i.d. processes with same distribution as Iy, — Jy¢, and note
that this process has mean zero: it holds that E[Iy;| = ; by the definition of the LCM,
and that E[Jy;] = 4 since E[E;G] = 1. Thus we can apply the central limit theorem in
Skorokhod space derived in van der Vaart and Wellner [2023, Example 1.14.24]. In view
of this CLT, it suffices to show that there exist continuous, strictly increasing functions
Fi, F5:[0,1] — [0,0) and constants €1, €2 > 0, such that for every 0 < s <t <u <1,

|F1(t) — Fy(s)|Y2, (4.A.12)
|Fy(u) — Fy(s)| e (4.A.13)
To this end, let 0 < s <t < u < 1 be given. In the following use z < y to denote that
the inequality x < K -y holds for a constant K > 0 independent of (s,¢,u). In fact,

in each case the constant will be a polynomial over the constants Cp, Cg, and c;l from
Assumption 4.4.1.
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4.6 Discussion

We first note that
Jg St—s, and Jy Su-—t, (4.A.14)

under Assumption 4.4.1. Using the quadratic characteristic for compensated counting
processes, we also have

E[2] <E deM) +E JG )\T)dr>2]

JG2)\dr | +E[( JG )]

(t—s) + (t —s)> <2(t—s)

Thus we conclude that
E[(Is + Jo)?] S E[I2] +E[J2] <t —s.

This shows that the condition (4.A.12) holds with €; = 1 and Fy(r) = Cyr for a suitably
large constant C7 > 0.
For the second condition we have that

E[(Lst + Jst)*(Ieu + Jea)’] < 4(EULIE] + ELL T3] + ELJL15,] + E[T577,])-

By same argument as E[I%] < t — s, we also have that E[I2,] < ¢t — u. Combining this
with the inequality (4.A.14) we obtain

E[I15J5] + ELGIR] + ELLJR] < (t = s)(u—1)

For the term E[I217,], we note that if T’ € (s,t] then M is constant on the interval (¢, u],
in which case I, = 0. Therefore

<£ GrArdr>2 Ifu] < (t—s)PE[I2] < (t — s)2(u—1)

Combined we conclude that
E[(Ist + Jst)Q(Itu + Jtu>2] < (t — s)(u — t) < (U — 8)2.

This shows that the second condition (4.A.13) is satisfied with € = 1 and Fy(r) = Cor
for a suitably large constant Cy > 0. 0

Returning to the proof of Theorem 4.4.6, the limit distribution of the ACM estimator
is now a simple consequence of the continuous mapping theorem.” Using the limits
establised in Proposition 4.4.2, Theorem 4.4.5, and Theorem 4.A.6, we conclude that

V(3 —7)=_8 +(W.§—U)+(B—V)£+F (4.A.15)
v —_— —_——
NN 250 20

5 Applied to the map D* 5 (2,9,2) > = +y + z € D, where D is the space of caglad functions on [0, 1]
endowed with the uniform norm.
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4 Assumption-lean Aalen regression

in the uniform topology as n — 0.
Turning to the cross-fitted ACM estimator, let 4% denote ACM estimator fitted with
Z; = [n]\Ji and Iy = Ji, for each k € [K]. Let also

where s\ = f GOaM® + f EDGD dn,,
0 0

T n

denote the corresponding oracle processes.

In the following computation, we use z ~ y as a shorthand for sup¢(g 1 |zt — yyl Zo.
Using that folds are assumed to have sizes |Ji| € {|n/K|, [n/K|}, Proposition 4.4.2 and
Theorem 4.4.5 applied to each fold yields that

K K i 1 i
S by Ly

where last equivalence follows from Lemma 4.A.7. By the continuous mapping theorem,
applied as in (4.A.15), it suffices to establish that f Dieln ]s(i) 4, T. However, this is
simply the CLT established in Theorem 4.A.6 with Zy = [n]. O

The following lemma is a Banach space generalization of one of the standard steps for
proving validity of cross-fitting, cf. Lemma S1 in Lundborg and Pfister [2023].

N\%

V(¥ -

Lemma 4.A.7. Let W be a random element in a Banach space (D, | - ), satisfying
that E[|[W|] < oo, and let (W;)ien be i.i.d. copies of W. For a fizxed K € N, let
[n] = J1 U - U Jg be a disjoint partition of [n] with |Ji| € {|n/K|,|n/K]|} for each
ke [K]. Finally, let S = %Zie[n] W; and Sy = ﬁz W for each k € [K].

Then, for any r <1,

ieJy,

Pl L
n .<Kkz_jlsk—s)—>o

asn — .
Proof. Note that nJ}K < Kllel < —1- and hence |K|1Jk\ I ﬁ Since
fzsk_s S5 (e )m
k=1ieJj,
we conclude that
n’ EHKZS;C—SH —0
as n — 0. O
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4.6 Discussion

4.B. Multiplicative hazards models

The predictable projection, m;(Z;) = E[X | T > t, Z,], is generally difficult to compute —
even with baseline covariates Z and a binary baseline exposure X, where m(Z) = P(X =
1|T = t,Z). However, for a multiplicative hazards model, and under a strengthened cen-
soring assumption, we give a fairly explicit representation of m;(Z) in Proposition 4.B.1
below. Example 4.6.2 elaborates further on the ACM in the Cox proportional hazards
model.

Proposition 4.B.1 (Predictable projection for binary exposure). Suppose that X €
{0,1} is a binary baseline exposure, that Z is a baseline covariate and that the model is
a nonparametric time-varying proportional hazards model:

h(X, 2) = (X6, + g 2).
IfC 1 (T*,X)| Z, then the predictable projection is given by

mo(Z)
70(Z) + (1 — mo(Z))e(2)”

m(Z) =
where mo(Z) = P(X = 1| Z) is the (baseline) propensity score and

¢
1(Z) = f Osps(Z)ds.
0
The predictable projection can be expressed as the logistic model:
logit(m(Z)) = logit(mo(Z)) — 1(Z).

Proof. Recall that ¥; = 1(T' > t) = 1(C = t)1(T* > t). Using the definition of m(Z)
and the conditional independence assumption regarding censoring, we find that

E[XY;| Z]

P(T >t]Z)
E[X1(T* > t)| Z]P(C >t | Z)

T P(T*=t|2)P(C>t|2)

_E[XUT* >1t)|Z]

O P(T*=t|2)

m(Z) =E[X|T >t 7] =

Using the correspondence between survival time and cumulative hazard we obtain that

E[X1(T* > t)|Z] = E[X -B(T* > t| X, Z) | Z]
- E[X exp ( _ Xfot Bs05(Z)ds — Lt gos(Z)ds> | Z]

=P = 1o (- [ opuris - [ o)

0
— ﬂ_o(Z)e—It(Z)—llt(Z)’
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where l;(z) = Sé Osps(z)ds and 1(z) = S(t) ©s(2)ds. Similarly the denominator is given
by

P(T*>t|Z)=E {exp (—X fot Osps(Z)ds — Lt bsgos(Z)ds) | Z}
— (1= mo(2)) + e D)) D),

From this we obtain that

mo(Z)e (%)

m(Z) = (1—70(2)) + e @ my(2)
_ m0(Z)
70(Z) + (1 — mo(2Z))e'(2)
1

= T D)D) expit(logit(mo(Z)) — 1.(2)).

O]

Example 4.6.2 (ACM in a Cox proportional hazards model). With baseline covariates
Z € R%, in addition to a binary exposure X € {0, 1}, the Cox proportional hazards model
asserts that:

hi(X,Z) = h'(t) exp(Bx X + B3 Z) = (X(e?X — 1) + )R’ (t)exp(BLZ).  (4.B.1)

Letting ¢(Z) = (¢/X — 1)eP2Z we see that this model is a special case of Example 4.1.1
with 0;(Z) = h%(t)¢(Z). Tt follows by (4.1.4) that the ACM can be expressed as

= J E[h0(s)6(Z)w(Z)] ds

0

= E[qb(Z ) f: ho(s)wic(Z)ds] =E[¢(Z)W}°(Z)] =E [eﬁngtAc( Z)] (ePx 1),

J

—Wi(2)

Thus 4 = c(t)(e’X — 1) is proportional to e’X — 1 with a t-dependent proportionality
constant c(t) = E [e@ZWtAC(Z)] = 0.
Using the innovation theorem we see that

he(Z) = (m(Z)( — 1) + 1)R(1) exp(8} 2),

and we could also arrive at the representation of the ACM directly from the identity
(4.2.13). Indeed, hs(X, Z) — hs(Z) = (% — 1)(X —75(Z))h%(s) exp(B} Z), and (4.2.13)

gives

1) Lt HO($)E {eggz Vs (X ;(;T)S(Z))Q:| iy

176



4.6 Discussion

The proportionality constant must, of course, be ¢(t), but this can also be verified directly
using the same argument as in Example (4.2.6). We may note that h;(+) is not generally
of the form of a Cox proportional hazards model, which illustrates the fact that the Cox
model is not closed under marginalization.

To compute the proportionality constant we need the weights

Yirl 2)(1 - m(2))
U ) = B ()0~ m(2))]

and to this end we need to compute the predictable projection 7;(Z). Under the cen-
soring assumption C' 1L (T*, X) | Z, it follows from Proposition 4.B.1 that

logit(m(Z)) = logit(mo(Z)) — ¢(Z)HO(¢), (4.B.2)

where HO(t) = Sé hY(s)ds. This shows that m;(Z) evolves in time with a logistic growth
rate precomposed with H°. Formula (4.B.2) makes it straightforward to compute
m(2)(1 — m(2)) for any given t and z (provided that we can compute my(z)), but it
does not appear to yield a simple analytic expression of neither the weights w;°(Z) nor
the proportionality constant c(¢). It is, however, useful for Monte Carlo computation of
the ACM.

[ )
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