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Abstract

This thesis is comprised of nine independent research projects pertaining primarily

to dynamic portfolio optimization with time-varying investment opportunities,

model ambiguity, and relative performance concerns. We start with the optimal

mean-variance portfolio selection problem with a 3/2 stochastic volatility in a

complete market setting, where we derive, in closed form, both the static and

dynamic optimality using a backward stochastic differential equation approach.

Then, in incomplete market settings, we study more complicated cases within

the framework of the mean-variance criteria under a hybrid model of stochastic

volatility and stochastic interest rates, the family of state-of-the-art 4/2 stochastic

volatility models with derivatives trading and uncontrollable random liabilities,

and in the presence of mispricing, respectively. Next, three portfolio optimization

problems under the expected utility maximization paradigm are investigated, where

we consider the presence of stochastic volatility and affine short rates, stochastic

income and stochastic inflation, and random liabilities under the hyperbolic absolute

risk aversion preferences, respectively. The last two projects revolve around optimal

asset-liability management problems with stochastic volatility in the non-Markovian

cases, demonstrating the impact of model ambiguity and relative performance

concerns on the behavior of the optimal investment strategies by means of the

backward stochastic differential equations, in which the former one is modeled as a

zero-sum stochastic differential game between the manager and the adverse market

whereas the latter one is described by a non-zero-sum stochastic differential game

between two competitive managers.
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Preface

This thesis has been submitted in partial fulfillment of the requirements for the PhD

degree at the Department of Mathematical Sciences, Faculty of Science, University

of Copenhagen. The work was carried out between January 2020 and December

2022 under the supervision of Associate Professor Jesper Lund Pedersen.

The thesis is comprised of an introductory chapter and nine manuscripts, of which

two are submitted for review and seven have been published in international peer-

reviewed journals at the time of writing. The introduction, Chapter 1, provides an

overview and contextualization of the contributions and outlines the interconnections

of the manuscripts. Each manuscript is independent, constituting a chapter, and

some minor notational discrepancies may exist between the contents of a chapter

and the corresponding manuscript. The author takes full responsibility for any

typographical and mathematical errors.
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Summary

This thesis is comprised of an introductory chapter and nine research papers

written from January 2020 to December 2022. Each paper is self-contained and

constitutes a chapter, investigating problems and techniques around dynamic

portfolio optimization problems with time-varying investment opportunities under

different market scenarios. The introduction, Chapter 1, provides the scientific

background and an overview of the main contributions of the papers and their

interconnections. The abstracts of the subsequent Chapters 2–10 are listed below:

• Dynamic optimal mean-variance portfolio selection with a 3/2

stochastic volatility. This paper considers a mean-variance portfolio selec-

tion problem when the stock price has a 3/2 stochastic volatility in a complete

market. Specifically, we assume that the stock price and the volatility are

perfectly negatively correlated. By applying a backward stochastic differential

equation (BSDE) approach, closed-form expressions for the statically optimal

(time-inconsistent) strategy and the value function are derived. Due to the

time inconsistency of the mean-variance criterion, a dynamic formulation of

the problem is presented. We obtain the dynamically optimal (time-consistent)

strategy explicitly which is shown to keep the wealth process strictly below

the target (expected terminal wealth) before the terminal time. Finally, we

provide numerical studies to show the impact of main model parameters on

the efficient frontier and illustrate the differences between the two optimal

wealth processes.

• Dynamic optimal mean-variance portfolio selection with stochastic

volatility and stochastic interest rate. This paper studies optimal port-

folio selection problems in the presence of stochastic volatility and stochastic

interest rate under the mean-variance criterion. The financial market con-

sists of a risk-free asset (cash), a zero-coupon bond (roll-over bond), and

a risky asset (stock). Specifically, we assume that the interest rate follows

the Vasicek model, and the risky asset’s return rate not only depends on a

Cox-Ingersoll-Ross (CIR) process but also has stochastic covariance with the

interest rate, which embraces the family of state-of-the-art 4/2 stochastic
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volatility models as an exceptional case. By adopting a backward stochastic

differential equation (BSDE) approach and solving two related BSDEs, we

derive, in closed form, the static optimal (time-inconsistent) strategy and

optimal value function. Given the time inconsistency of the mean-variance

criterion, a dynamic formulation of the problem is further investigated and

the explicit expression for the dynamic optimal (time-consistent) strategy is

derived. In addition, analytical solutions to some special cases of our model

are provided. Finally, the impact of the model parameters on the efficient

frontier and the behavior of the static and dynamic optimal asset allocations

is illustrated with numerical examples.

• Mean-variance asset-liability management under CIR interest rate

and the family of 4/2 stochastic volatility models with derivative

trading. This paper investigates the effects of derivative trading on the

performance of asset-liability management in the presence of stochastic interest

rate and stochastic volatility under the mean-variance criterion. Specifically,

the asset-liability manager can invest not only in a money market account, a

zero-coupon (rollover) bond, and a stock index but also in stock derivatives.

It is assumed that the interest rate follows a Cox-Ingersoll-Ross (CIR) process,

and the instantaneous variance of the stock index is governed by the family of

4/2 stochastic volatility models, which embraces the Heston model and 3/2

model, as particular cases. By solving a system of three backward stochastic

differential equations, closed-form expressions for the optimal strategies and

optimal value functions are derived in two cases: with and without the stock

derivatives. Moreover, we consider the special cases without random liabilities.

Numerical examples are provided to illustrate theoretical results and explore

the effects of derivative trading on efficient frontiers.

• Dynamic optimal mean-variance investment with mispricing in the

family of 4/2 stochastic volatility models. This paper considers an

optimal investment problem with mispricing in the family of 4/2 stochastic

volatility models under the mean-variance criterion. The financial market

consists of a risk-free asset, a market index, and a pair of mispriced stocks.

By applying the linear–quadratic stochastic control theory and solving the

corresponding Hamilton–Jacobi–Bellman equation, explicit expressions for the

statically optimal (pre-commitment) strategy and the corresponding optimal

value function are derived. Moreover, a necessary verification theorem is

provided based on an assumption of the model parameters with the investment

horizon. Due to the time inconsistency under the mean-variance criterion,

we give a dynamic formulation of the problem and obtain the closed-form

expression of the dynamically optimal (time-consistent) strategy. This strategy

is shown to keep the wealth process strictly below the target (expected

terminal wealth) before the terminal time. Results on the special case without
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mispricing are included. Finally, some numerical examples are given to

illustrate the effects of model parameters on the efficient frontier and the

difference between static and dynamic optimality.

• Utility maximization in a stochastic affine interest rate and CIR

risk premium framework: a BSDE approach. This paper investigates

optimal investment problems in the presence of stochastic interest rates and

stochastic volatility under the expected utility maximization criterion. The

financial market consists of three assets: a risk-free asset, a risky asset,

and zero-coupon bonds (rolling bonds). The short interest rate is assumed

to follow an affine diffusion process, which includes the Vasicek and the

Cox-Ingersoll-Ross (CIR) models, as special cases. The risk premium of

the risky asset depends on a square-root diffusion (CIR) process, while the

return rate and volatility coefficient are unspecified and possibly given by

non-Markovian processes. This framework embraces the family of state-of-

the-art 4/2 stochastic volatility models and some non-Markovian models, as

exceptional examples. The investor aims to maximize the expected utility

of the terminal wealth for two types of utility functions, power utility, and

logarithmic utility. By adopting a backward stochastic differential equation

(BSDE) approach to overcome the potentially non-Markovian framework and

solving two BSDEs explicitly, we derive, in closed form, the optimal investment

strategies and optimal value functions. Furthermore, explicit solutions to

some special cases of our model are provided. Finally, numerical examples

illustrate our results under one specific case, the hybrid Vasicek-4/2 model.

• Optimal DC pension investment with square-root factor processes

under stochastic income and inflation risks. This paper studies optimal

defined contribution (DC) pension investment problems under the expected

utility maximization framework with stochastic income and inflation risks.

The member has access to a financial market consisting of a risk-free asset

(money account), an inflation-indexed bond, and a stock. The market price

of volatility risk is assumed to depend on an affine-form, Markovian, square-

root factor process, while the return rate and the volatility of the stock are

possibly given by general non-Markovian, unbounded stochastic processes.

This financial framework recovers the Black-Scholes model, constant elasticity

of variance (CEV) model, Heston model, 3/2 model, 4/2 model, and some

non-Markovian models as exceptional cases. To tackle the potentially non-

Markovian structures, we adopt a backward stochastic differential equation

(BSDE) approach. By solving the associated BSDEs explicitly, closed-form

expressions for the optimal investment strategies and optimal value functions

are obtained for the power, logarithmic, and exponential utility functions.

Moreover, explicit solutions to some special cases of our portfolio model are
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provided. Finally, numerical examples are provided to illustrate the effects of

model parameters on the optimal investment strategies under the 4/2 model.

• Optimal investment strategies for asset-liability management with

affine diffusion factor processes and HARA preferences. This pa-

per investigates an optimal asset-liability management problem within the

expected utility maximization framework. The general hyperbolic absolute

risk aversion (HARA) utility is adopted to describe the risk preference of the

asset-liability manager. The financial market comprises a risk-free asset and a

risky asset. The market price of risk depends on an affine diffusion factor pro-

cess, which includes, but is not limited to, the constant elasticity of variance

(CEV), Stein-Stein, Schöbel and Zhu, Heston, 3/2, 4/2 models, and some

non-Markovian models, as exceptional examples. The accumulative liability

process is featured by a generalized drifted Brownian motion with possibly

unbounded and non-Markovian drift and diffusion coefficients. Due to the

sophisticated structure of HARA utility and the non-Markovian framework of

the incomplete financial market, a backward stochastic differential equation

(BSDE) approach is adopted. By solving a recursively coupled BSDE system,

closed-form expressions for both the optimal investment strategy and optimal

value function are derived. Moreover, explicit solutions to some particular

cases of our model are provided. Finally, numerical examples are presented to

illustrate the effect of model parameters on the optimal investment strategies

in several particular cases.

• Robust optimal asset-liability management under square-root factor

processes and model ambiguity: a BSDE approach. This paper studies

robust optimal asset-liability management problems for an ambiguity-averse

manager in a possibly non-Markovian environment with stochastic investment

opportunities. The manager has access to one risk-free asset and one risky asset

in a financial market. The market price of risk relies on a stochastic factor

process satisfying an affine-form, square-root, Markovian model, whereas

the risky asset’s return rate and volatility are potentially given by general

non-Markovian, unbounded stochastic processes. This financial framework

includes, but is not limited to, the constant elasticity of variance (CEV) model,

the family of 4/2 stochastic volatility models, and some path-dependent non-

Markovian models, as exceptional cases. As opposed to most of the papers

using the Hamilton-Jacobi-Bellman-Issacs (HJBI) equation to deal with model

ambiguity in the Markovian cases, we address the non-Markovian case by

proposing a backward stochastic differential equation (BSDE) approach. By

solving the associated BSDEs explicitly, we derive, in closed form, the robust

optimal controls and robust optimal value functions for power and exponential

utility, respectively. In addition, analytical solutions to some particular cases

of our model are provided. Finally, the effects of model ambiguity and market
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parameters on the robust optimal investment strategies are illustrated under

the CEV model and 4/2 model with numerical examples.

• Non-zero-sum stochastic differential games for asset-liability man-

agement with stochastic inflation and stochastic volatility. This paper

investigates the optimal asset-liability management problems for two managers

subject to relative performance concerns in the presence of stochastic inflation

and stochastic volatility. The objective of the two managers is to maximize the

expected utility of their relative terminal surplus with respect to that of their

competitor. The problem of finding the optimal investment strategies for both

managers is modeled as a non-zero-sum stochastic differential game. Both

managers have access to a financial market consisting of a risk-free asset, a

risky asset, and an inflation-linked index bond. The risky asset’s price process

and uncontrollable random liabilities are not only affected by the inflation risk

but also driven by a general class of stochastic volatility models including the

constant elasticity of variance model, the family of state-of-the-art 4/2 models,

and some path-dependent models as particular cases. By adopting a backward

stochastic differential equation (BSDE) approach to overcome the possibly

non-Markovian setting, closed-form expressions for the equilibrium investment

strategies and corresponding value functions are derived under power and

exponential utility preferences. Moreover, explicit solutions to some special

cases of our model are provided. Finally, we perform numerical studies to

illustrate the impact of model parameters on the equilibrium strategies and

draw some economic interpretations.
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Resumé

Dette speciale best̊ar af et indledende kapitel og ni forskningsartikler som er skrevet

fra januar 2020 til december 2022. Hvert papir er selvstændigt og udgør et kapitel, der

undersøger problemer og teknikker omkring dynamiske porteføljeoptimeringsproblem-

er med tidsvarierende investeringsmuligheder under forskellige markedsscenarier.

Indledningen, kapitel 1, giver den videnskabelige baggrund og et overblik over de vig-

tigste bidrag fra artiklerne og deres sammenhænge. Resuméerne af de efterfølgende

kapitler 2–10 er anført nedenfor:

• Dynamisk optimal middel-varians porteføljevalg med en 3/2 stoka-

stisk volatilitet. Denne artikel betragter et problem med porteføljeudvælgelse

med middel varians, n̊ar aktiekursen har en 3/2 stokastisk volatilitet p̊a et

komplet marked. Mere konkret antager vi, at aktiekursen og volatiliteten

er perfekt negativt korreleret. Ved at anvende en baglæns stokastisk diffe-

rentialligningstilgang (BSDE) udledes udtryk i lukket form for den statisk

optimale (tids-inkonsistente) strategi og værdifunktionen. P̊a grund af tidsin-

konsistensen af middelvarianskriteriet præsenteres en dynamisk formulering af

problemet. Vi opn̊ar eksplicit den dynamisk optimale (tidskonsistente) strategi,

som er vist at holde rigdomsprocessen strengt under m̊alet (forventet terminal

rigdom) før terminaltidspunktet. Endelig giver vi numeriske undersøgelser

for at vise indvirkningen af hovedmodelparametre p̊a den effektive grænse og

illustrere forskellene mellem de to optimale velstandsprocesser.

• Dynamisk optimal middel-varians porteføljevalg med stokastisk

volatilitet og stokastisk rente. Denne artikel studerer optimale por-

teføljeudvælgelsesproblemer i nærvær af stokastisk volatilitet og stokastisk

rente under middelvarianskriteriet. Det finansielle marked best̊ar af et risikofrit

aktiv (kontanter), en nulkuponobligation (roll-over-obligation) og et risikabelt

aktiv (aktie). Mere konkret antager vi, at renten følger Vasicek-modellen, og

det risikable aktivs afkastsats afhænger ikke kun af en Cox-Ingersoll-Ross

(CIR) proces, men har ogs̊a stokastisk kovarians med renten, som favner famili-

en af state-of-the-art 4/2 stokastiske volatilitetsmodeller som et ekstraordinært

tilfælde. Ved at anvende en baglæns stokastisk differentialligningstilgang (BS-
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DE) og løse to relaterede BSDE’er, udleder vi i lukket form den statiske

optimale (tids-inkonsistente) strategi og optimale værdifunktion. Givet tidsin-

konsistensen af middelvarianskriteriet, undersøges en dynamisk formulering

af problemet yderligere, og det eksplicitte udtryk for den dynamiske optimale

(tidskonsistente) strategi udledes. Derudover tilbydes der analytiske løsninger

til nogle særlige tilfælde af vores model. Til sidst illustreres modelparametrenes

indvirkning p̊a den effektive grænse og adfærden af de statiske og dynamiske

optimale aktivallokeringer med numeriske eksempler.

• Middel-varians aktiv-passivstyring under CIR-rente og familien af

4/2 stokastiske volatilitetsmodeller med derivathandel. Denne artikel

undersøger virkningerne af derivathandel p̊a ydeevnen af aktiv-passivstyring i

tilstedeværelsen af stokastisk rente og stokastisk volatilitet under middelva-

rianskriteriet. Konkret kan aktiv-passivforvalteren investere ikke kun i en

pengemarkedskonto, en nulkupon (roll-over) obligation og et aktieindeks, men

ogs̊a i aktiederivater. Det antages, at renten følger en Cox-Ingersoll-Ross

(CIR) proces, og aktieindeksets øjeblikkelige varians er styret af familien af

4/2 stokastiske volatilitetsmodeller, som omfatter Heston modellen og 3/2

modellen, som særlige tilfælde. Ved at løse et system af tre bagudrettede

stokastiske differentialligninger udledes udtryk i lukket form for de optimale

strategier og optimale værdifunktioner i to tilfælde: med og uden aktiederiva-

terne. Desuden betragter vi de særlige tilfælde uden tilfældige forpligtelser.

Der gives numeriske eksempler for at illustrere teoretiske resultater og udforske

virkningerne af derivathandel p̊a effektive grænser.

• Dynamisk optimal middel-variance-investering med fejlpriser i fa-

milien af 4/2 stokastiske volatilitetsmodeller. Denne artikel betragter

et optimalt investeringsproblem med fejlprissætning i familien af 4/2 stokasti-

ske volatilitetsmodeller under middelvarianskriteriet. Det finansielle marked

best̊ar af et risikofrit aktiv, et markedsindeks og et par forkert prissatte aktier.

Ved at anvende den lineære–kvadratiske stokastiske kontrolteori og løse den

tilsvarende Hamilton–Jacobi–Bellman-ligning, udledes eksplicitte udtryk for

den statisk optimale (pre-commitment) strategi og den tilsvarende optimale

værdifunktion. Desuden er der givet et nødvendigt verifikationsteorem baseret

p̊a en antagelse af modelparametrene med investeringshorisonten. P̊a grund af

tidsinkonsistensen under middelvarianskriteriet giver vi en dynamisk formule-

ring af problemet og opn̊ar det lukkede udtryk for den dynamisk optimale

(tidskonsistente) strategi. Denne strategi er vist for at holde rigdomsprocessen

strengt under m̊alet (forventet terminal rigdom) før terminaltidspunktet. Re-

sultater p̊a den særlige sag uden fejlpriser er inkluderet. Til sidst gives nogle

numeriske eksempler for at illustrere effekterne af modelparametre p̊a den

effektive grænse og forskellen mellem statisk og dynamisk optimalitet.
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• Maksimering af nytte i en stokastisk affin rente og CIR-risikopræmie-

ramme: en BSDE-tilgang. Denne artikel undersøger optimale investerings-

problemer i nærvær af stokastiske renter og stokastisk volatilitet under det

forventede nyttemaksimeringskriterium. Det finansielle marked best̊ar af

tre aktiver: et risikofrit aktiv, et risikabelt aktiv og nulkuponobligationer

(rullende obligationer). Den korte rente antages at følge en affin diffusions-

proces, som inkluderer Vasicek og Cox-Ingersoll-Ross (CIR) modellerne, som

særlige tilfælde. Risikopræmien for det risikable aktiv afhænger af en kvadra-

trodsdiffusionsproces (CIR), mens afkastraten og volatilitetskoefficienten er

uspecificerede og muligvis givet af ikke-markovske processer. Denne ramme

omfatter familien af state-of-the-art 4/2 stokastiske volatilitetsmodeller og

nogle ikke-markovske modeller, som ekstraordinære eksempler. Investoren

sigter mod at maksimere den forventede nytte af terminalformuen for to typer

hjælpefunktioner, elforsyning og logaritmisk nytte. Ved at anvende en baglæns

stokastisk differentialligning (BSDE) tilgang til at overvinde den potentielt

ikke-markovske ramme og eksplicit løse to BSDE’er, udleder vi, i lukket form,

de optimale investeringsstrategier og optimale værdifunktioner. Desuden er

der eksplicitte løsninger p̊a nogle særlige tilfælde af vores model. Endelig

illustrerer numeriske eksempler vores resultater under ét specifikt tilfælde,

hybrid Vasicek-4/2-modellen.

• Optimal DC pensionsinvestering med kvadratrodsfaktorprocesser

under stokastiske indkomst- og inflationsrisici. Denne artikel studerer

optimale pensionsinvesteringsproblemer (DC) under den forventede nyttemak-

simeringsramme med stokastiske indkomst- og inflationsrisici. Medlemmet

har adgang til et finansielt marked best̊aende af et risikofrit aktiv (pen-

gekonto), en inflationsindekseret obligation og en aktie. Markedsprisen p̊a

volatilitetsrisiko antages at afhænge af en affin-form, markovsk, kvadratrods-

faktorproces, mens afkastraten og volatiliteten af aktien muligvis er givet af

generelle ikke-markovske, ubegrænsede stokastiske processer. Denne økono-

miske ramme genskaber Black-Scholes-modellen, konstant varianselasticitet

(CEV)-modellen, Heston-modellen, 3/2-modellen, 4/2-modellen og nogle ikke-

markovske modeller som ekstraordinære tilfælde. For at tackle de potentielt

ikke-markovske strukturer anvender vi en baglæns stokastisk differentialligning

(BSDE) tilgang. Ved eksplicit at løse de tilknyttede BSDE’er opn̊as lukkede

udtryk for de optimale investeringsstrategier og optimale værdifunktioner for

effekt-, logaritmiske og eksponentielle nyttefunktioner. Desuden er der ekspli-

citte løsninger p̊a nogle særlige tilfælde af vores porteføljemodel. Afslutningsvis

gives numeriske eksempler for at illustrere effekterne af modelparametre p̊a

de optimale investeringsstrategier under 4/2-modellen.

• Optimale investeringsstrategier til aktiv-passivstyring med affine dif-

fusionsfaktorprocesser og HARA-præferencer. Denne artikel undersøger
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et optimalt aktiv-passivstyringsproblem inden for den forventede nyttemaksi-

meringsramme. Den generelle hyperbolske absolutte risikoaversion (HARA)

bruges til at beskrive risikopræferencen for aktiv-passiver manager. Det finan-

sielle marked best̊ar af et risikofrit aktiv og et risikofyldt aktiv. Markedsprisen

for risiko afhænger af en affin diffusionsfaktorproces, som inkluderer, men ikke

er begrænset til, den konstante varianselasticitet (CEV), Stein-Stein, Schöbel

og Zhu, Heston, 3/2, 4/2-modeller og nogle ikke-markovske modeller, som

ekstraordinære eksempler. Den akkumulerede ansvarsproces er karakteriseret

ved en generaliseret drift af Brownsk bevægelse med muligvis ubegrænsede og

ikke-markovske drift- og diffusionskoefficienter. P̊a grund af den sofistikerede

struktur af HARA-nytte- og den ikke-markovske ramme for det ufuldstændige

finansielle marked, anvendes en baglæns stokastisk differentialligning (BSDE).

Ved at løse et rekursivt koblet BSDE-system udledes udtryk i lukket form

for b̊ade den optimale investeringsstrategi og optimal værdifunktion. Der

gives eksplicitte løsninger p̊a nogle særlige tilfælde af vores model. Til sidst

præsenteres numeriske eksempler for at illustrere effekten af modelparametre

p̊a de optimale investeringsstrategier i flere særlige tilfælde.

• Robust optimal aktiv-passivstyring under kvadratrodsfaktorproces-

ser og modeluklarhed: en BSDE-tilgang. Denne artikel studerer robuste,

optimale aktiv-passivstyringsproblemer for en tvetydighedsvillig forvalter i et

muligvis ikke-markovsk miljø med stokastiske investeringsmuligheder. Forval-

teren har adgang til ét risikofrit aktiv og ét risikabelt aktiv p̊a et finansielt

marked. Markedsprisen for risiko er afhængig af en stokastisk faktorproces, der

opfylder en affin-form, kvadratrods, Markovian model, hvorimod det risikable

aktivs afkastrate og volatilitet potentielt er givet af generelle ikke-markovske,

ubegrænsede stokastiske processer. Denne økonomiske ramme inkluderer, men

er ikke begrænset til, modellen for konstant varianselasticitet (CEV), familien

af 4/2 stokastiske volatilitetsmodeller og nogle sti-afhængige ikke-Markovske

modeller, som undtagelsestilfælde. I modsætning til de fleste artikler, der

bruger Hamilton-Jacobi-Bellman-Issacs (HJBI)-ligningen til at h̊andtere mode-

luklarhed i de Markovske tilfælde, adresserer vi det ikke-Markovianske tilfælde

ved at foresl̊a en baglæns stokastisk differentialligning (BSDE) tilgang. Ved

at løse de tilknyttede BSDE’er eksplicit, udleder vi i lukket form de robuste

optimale kontroller og robuste optimalværdifunktioner for henholdsvis kraft

og eksponentiel nytte. Derudover tilbydes der analytiske løsninger til nogle

særlige tilfælde af vores model. Endelig er effekterne af modeluklarhed og

markedsparametre p̊a de robuste optimale investeringsstrategier illustreret

under CEV-modellen og 4/2-modellen med numeriske eksempler.

• Ikke-nul-sum stokastiske differentielle spil til aktiv-passivstyring

med stokastisk inflation og stokastisk volatilitet. Denne artikel un-

dersøger de optimale problemer med aktiv-passivstyring for to forvaltere,
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der er underlagt relative præstationsbekymringer i nærvær af stokastisk in-

flation og stokastisk volatilitet. Målet for de to forvaltere er at maksimere

den forventede nytte af deres relative terminaloverskud i forhold til deres

konkurrents. Problemet med at finde de optimale investeringsstrategier for

begge forvaltere er modelleret som et stokastisk differentielle spil, der ikke er

nul sum. Begge forvaltere har adgang til et finansielt marked best̊aende af et

risikofrit aktiv, et risikabelt aktiv og en inflationsindekseret indeksobligation.

Det risikable aktivs prisproces og ukontrollerbare tilfældige forpligtelser er

ikke kun p̊avirket af inflationsrisikoen, men ogs̊a drevet af en generel klasse af

stokastiske volatilitetsmodeller, herunder modellen med konstant variansela-

sticitet, familien af avancerede 4/2-modeller, og nogle sti-afhængige modeller

som særlige tilfælde. Ved at anvende en baglæns stokastisk differentialligning

(BSDE) tilgang til at overvinde den muligvis ikke-markovske indstilling, ud-

ledes udtryk i lukket form for ligevægtsinvesteringsstrategier og tilsvarende

værdifunktioner under magt og eksponentielle nyttepræferencer. Desuden er

der eksplicitte løsninger p̊a nogle særlige tilfælde af vores model. Til sidst

udfører vi numeriske undersøgelser for at illustrere effekten af modelparametre

p̊a ligevægtsstrategierne og drage nogle økonomiske fortolkninger.
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Chapter 1

Introduction

This introductory chapter serves as a prelude to a series of investigations that are

mainly concerned with the problems and techniques within the mathematics of

dynamic portfolio optimization. Section 1.1 briefly reviews the background and

existing studies related to the classical single-agent portfolio optimization problems

under both the expected utility maximization and mean-variance criteria. In Section

1.2, the seminal studies and results in the field of robust portfolio optimization under

model ambiguity are reviewed. Section 1.3 presents the most relevant works on the

multi-agent portfolio optimization problems taking into account relative performance

concerns. In Section 1.4, some essential methodologies that are commonly adopted

to address dynamic portfolio optimization problems are summarised, including the

dynamic programming approach, martingale approach, and backward stochastic

differential equation (BSDE) approach. Finally, the introduction provides an outline

of the thesis and the interconnections among the reminder chapters.

1.1 Portfolio optimization problems

This section introduces a brief background on the classical single-agent portfolio

optimization problems over a finite horizon to either maximize the expected inte-

grated utility of running consumption and terminal wealth or minimize the variance

of terminal wealth given a specific expected return.

The earliest attempt to analyze portfolio selection problems in a quantitative

way appears to be Markowitz (1952), in which the agent was concerned with the

trade-off between the profit (expected return) maximization and risk (variance)

minimization in a single period. Although the pioneering work of Markowitz laid the

foundation of modern portfolio optimization theory, the results of Markowitz’s work,

limited by the single-period setting, lead to myopic investment strategies and fail to

account for the optimal investment behavior with time-varying opportunities within

long-term investment problems. Around two decades later, Samuelson (1969) and
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Hakansson (1975) formulated and solved the multi-period investment-consumption

problems under the framework of expected utility maximization, where the agents’

risk preferences were described by constant relative risk aversion (CRRA) and

constant absolute risk aversion (CARA) utilities. Due to the variance operator

within the objective function under the mean-variance criterion precluding the use

of Bellman’s principle of optimality, Markowitz’s results were not generalized to the

multi-period case until the seminal work of Li and Ng (2000), where an embedding

technique was first proposed to reduce the mean-variance problem to the resolution

of an auxiliary control problem.

To tackle the constantly dynamic financial markets and to react to new informa-

tion immediately, portfolio optimization problems in a continuous-time setting have

also been extensively investigated by quite a few scholars, among which Merton

(1969, 1971) initiated research on continuous-time portfolio optimization under

the framework of expected utility maximization using the dynamic programming

approach and solving the associated Hamilton-Jacobi-Bellman (HJB) equations.

The dynamic programming approach, however, entails the Markovian structures of

state variable processes. Pliska (1986) and Karatzas, Lehoczky, and Shreve (1987)

solved continuous-time consumption/portfolio optimization problems in a more

generally complete but non-Markovian market setting by proposing the martingale

approach. In short, this approach decomposes a dynamic portfolio optimization

problem into a more tractable static optimization problem and a financial repli-

cation problem. From a mathematical point of view, the martingale approach

essentially hinges on the uniqueness of the risk-neutral measure (market complete-

ness) and the martingale representation theorem for determining the attainable

optimal terminal wealth and the associated replication strategy, respectively. In

other words, the martingale approach falls apart in generally incomplete markets

where there exist infinitely many risk-neutral measures and some contingent claims

cannot be hedged against by using the underlying assets solely. To extend the

usage of the martingale approach to incomplete market settings, Karatzas et al.

(1991) proposed the fictitious completion method by introducing additional fictitious

assets into the original incomplete market and making them unfavorable to the

agent. Nevertheless, finding such fictitious assets is not straightforward and might

be computationally intensive. El Karoui, Peng, and Quenez (1997) opted for the

BSDE (Pardoux and Peng (1990)) approach to portfolio optimization problems in

an incomplete and non-Markovian market setting, where the solution to a BSDE

with the concave generator was represented as the objective function of the portfolio

optimization problem and the comparison theorem for BSDEs played a key role

in the determinization of the optimal control and value function. Hu, Imkeller,

and Müller (2005) adopted an alternative BSDE approach to El Karoui, Peng, and

Quenez (1997) to solve portfolio optimization problems, where the idea of this BSDE

approach for determining the value function and the associated optimal control is

2



to construct a family of stochastic processes depending on the admissible strategies

in a way that their values at time zero do not depend on any admissible control and

their terminal values coincide with the utility of the agent’s terminal wealth. For

all the admissible strategies, the stochastic processes are (local) super-martingale,

while there exists one particular strategy such that it is a (local) martingale.

In the context of mean-variance theory, following a similar embedding technique

pioneered by Li and Ng (2000) for discrete-time models, Zhou and Li (2000)

transferred the continuous-time mean-variance portfolio optimization problem in a

complete market setting into a tractable stochastic linear-quadratic control problem.

The latter was solved explicitly premised on deterministic coefficients. Besides

the embedding technique, Li, Zhou, and Lim (2002) proposed the Lagrange dual

method to investigate a continuous-time mean-variance problem with no-shorting

constraint upon noticing that the mean-variance problem is a convex optimization

problem with a linear constraint which can be dealt with by introducing a Lagrange

multiplier. To extend the results of Zhou and Li (2000) to a more general model

with random market coefficients, Lim and Zhou (2002) used the Lagrange dual

method and the standard results of existence and uniqueness of linear BSDEs with

uniformly Lipschitz continuity (El Karoui, Peng, and Quenez (1997) and Yong

and Zhou (1998)) to derive the efficient frontier and optimal investment strategy

which are expressed in terms of the solutions to a backward stochastic Riccati

equation (BSRE) and a standard linear BSDE. Owing to the complete market

setting and uniformly bounded market coefficients, Lim and Zhou (2002) showed

that the global solvability of the BSRE can be addressed via an auxiliary linear

BSDE. Lim (2004) adopted a similar approach to Lim and Zhou (2002) to study a

continuous-time mean-variance problem in a more complicated incomplete market.

The proof of the solvability of the BSRE used the results of BSDEs with quadratic

growth (Lepeltier and Martin (1998) and Kobylanski (2000)). However, since the

coefficients of the linear BSDE in Lim (2004) were only square integrable rather

than uniformly bounded, the existence and uniqueness results were not evident and

an intricate variance optimal martingale measure was adopted to finish the proof.

Recently, Shen (2015) generalized the results of Lim and Zhou (2002) to the case

with unbounded market coefficients in a complete market. The global solvability of

the associated BSRE and linear BSDE were proved by imposing an exponential

integrability assumption on the market price of risk, which was a sufficient condition

to define a class of equivalent probability measures and ensure that the solutions to

the associated BSDEs belong to proper spaces. Lv, Wu, and Yu (2016) investigated a

continuous-time mean-variance portfolio selection problem in an incomplete market

with uniformly bounded market coefficients and an uncertain investment horizon.

By virtue of the martingales of bounded mean oscillation (Kazamaki (1994)) and

Girsanov’s measure change techniques, the existence results of the associated BSRE

and linear BSDE were determined. Moreover, the proof of the uniqueness of
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the solution to the linear BSDE was completed with the help of the results on

BSDEs with stochastic Lipschitz condition (Briand and Confortola (2008)). Another

development for continuous-time mean-variance portfolio selection problems that

has been receiving much attention in recent years is the time-inconsistent control

(Strotz (1956)), which means that the optimal control derived at the initial time

might not be optimal at a future time point due to the non-separability of the

variance operator under the mean-variance criterion in the sense of Bellman’s

optimality principle. In other words, once the agent arrives at any new position at a

future time, the optimal strategy determined at the new position is inconsistent with

the initial one unless the agent commits himself/herself to the initial strategy over

the whole investment period. As such, the time-inconsistent strategy is also referred

to as the pre-committed strategy in the literature. To tackle the time inconsistency,

Basak and Chabakauri (2010) derived a time-consistent strategy that is determined

by applying a backward recursion starting from the terminal date. Within a

reasonably general Markovian framework, Björk, Khapko, and Murgoci (2017)

developed a game theoretical approach that essentially studies the subgame-perfect

Nash equilibrium, and they derived the equilibrium strategy and equilibrium value

function by solving an extended HJB equation. Lately, Pedersen and Peskir (2017)

introduced the dynamically optimal approach to investigate the time inconsistency

of mean-variance problems. They overcame the time inconsistency by recomputing

the statically optimal (pre-committed) strategy during the investment period, and

they can, therefore, obtain dynamically optimal (time-consistent) strategies by

solving infinitely many optimization problems.

It is widely accepted that the volatility of stock returns displays a stochastic

fashion rather than a constant or deterministic one. Empirical studies on equity

market data reveal many stylized facts including fat tails, the leverage effect,

volatility clustering, and volatility smile/skew, which cannot be explained by the

Black-Scholes model (Black and Scholes (1973)). Over the last few decades, various

stochastic (local) volatility models have been developed to interpret the phenomena

observed in the market. See, for example, French, Schwert, and Stambaugh (1987),

Wiggins (1987), Hull and White (1987), Stein and Stein (1991), Heston (1993),

Schöbel and Zhu (1999), and Grasselli (2017). Besides volatility risk, changing

interest rates also constitute one of the major risk sources, and modeling the

term-structure movements of interest rates is deemed a challenging but crucial task.

The rigorous treatment of the term-structure models stemmed from the seminal

work of Vasicek (1977), where the short rates of interest were characterized by

an Ornstein-Uhlenbeck (OU) model. Cox, Ingersoll, and Ross (1985) (hereafter

called CIR) adopted an affine-form, square-root process to describe the evolution of

the short rates of interest. Contrarily to the Vasicek model, the CIR specification

precludes negative interest rates while preserving tractability. Duffie and Kan

(1996) stepped further by introducing a multi-factor affine-form diffusion equation
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to track the evolution of bond prices. Duffee (2002) proposed a broader class of

”essentially affine” models which not only retained the analytical tractability of

completely affine models but also allowed compensation for interest rate risk to

vary independently of interest rate volatility.

The early research of stochastic volatility and stochastic interest rate models

focused on derivative pricing problems. In recent years, there has been emerging

interest in portfolio optimization problems under various stochastic environments.

Under the framework of expected utility maximization, Kraft (2005) provided an

explicit solution for a CRRA utility maximizer under the Heston model (Heston

(1993)) by imposing a specific condition on the model parameters and solving the

associated HJB equation. Chacko and Viceira (2005) investigated an investment-

consumption problem under the 3/2 model (Lewis (2000)), where an explicit solution

and an approximation solution were derived for CRRA utility and generally recursive

utility, respectively. Liu (2007) solved a CRRA utility maximization problem when

the asset returns were (non-affine) quadratic, up to the solution to an ordinary

differential equation (ODE). With the help of a martingale criterion, Kallsen and

Muhle-Karbe (2010) derived explicit solutions for a CRRA utility maximization

problem in a number of affine-form stochastic volatility models. Jung and Kim

(2012) considered an optimal investment problem under the constant elasticity of

variance (CEV) model and hyperbolic absolute risk aversion (HARA) utility. Zeng

and Taksar (2013) studied an optimal investment problem under CRRA utility

and a general stochastic volatility model in a Markovian setting, and closed-form

solutions for the Heston model were derived by solving the associated HJB equation

under a more relaxed assumption than that in Kraft (2005). Cheng and Escobar

(2021a) investigated an optimal investment problem for a CRRA agent under the

family of state-of-the-art 4/2 stochastic volatility models (Grasselli (2017)) in both

complete and incomplete markets and obtained closed-form solutions by solving

the corresponding HJB equations. By using the martingale approach, Bajeux-

Besnainou, Jordan, and Portait (2003) and Deelstra, Grasselli, and Koehl (2000)

considered CRRA utility maximization problems under the Vasicek model and CIR

model, respectively. Grasselli (2003) studied a more complicated HARA utility

maximization problem under the CIR interest rate and derived closed-form solutions

by applying the dynamic programming approach. Assuming that the stock price and

its volatility were perfectly correlated, Li and Wu (2009) investigated CRRA utility

maximization problems in a hybrid CIR-Heston framework. Escobar, Neykova, and

Zagst (2017) studied a HARA utility maximization problem in a Markov-switching

bond-stock market. Chang et al. (2020) considered an optimal asset allocation

problem for a defined contribution plan member with a stochastic affine interest

rate and mean-reverting returns under the HARA preference. Recently, Zhang

(2022f) solved a utility maximization problem with a stochastic interest rate model

and volatility risk using the BSDE approach, where the short rate of interest
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followed an affine diffusion process established by Duffie and Kan (1996) and the

market price of risk was described by an affine-form, square-root factor process. In a

similar modeling framework, Zhang (2022c) investigated a defined contribution (DC)

pension investment problem with stochastic volatility and stochastic inflation and

obtained explicit solutions for CRRA and CARA utility. Zhang (2022d) considered

an asset-liability management (ALM) problem for a HARA utility maximizer in

a non-Markovian market setting, where the return rate and volatility of the risky

asset were potentially non-Markovian path-dependent processes, while the market

price of risk was governed by an affine diffusion process. As the literature on

utility maximization problems with various stochastic investment opportunities is

abundant, the above review is not exclusive. For more literature on continuous-time

utility maximization problems, one may refer to Zariphipoulou (2001), Pham (2002),

Benth and Karlsen (2005), Liang, Yuen, and Guo (2011), Shen and Siu (2012),

Zhao and Rong (2012), Kraft, Seifried, and Steffensen (2013), Guan and Liang

(2014), Pan and Xiao (2017a,b), Xing (2017), Pan, Hu, and Zhou (2019), Ma, Zhao,

and Rong (2020), and references therein.

Under Markowitz’s mean-variance paradigm, C̆erný and Kallsen (2008) studied

an optimal investment and hedging problem under the Heston model by using the

martingale approach. Ferland and Watier (2010) considered a portfolio selection

problem in a complete market under an extended CIR interest rate model. By means

of BSDEs, Shen, Zhang, and Siu (2014) investigated a portfolio selection problem

under the CEV model premised on a sufficient condition on the market price of

risk, where the generator of the associated BSDE satisfied the stochastic Lipschitz

condition established by Bender and Kohlmann (2000). Shen and Zeng (2015)

further studied an optimal investment-reinsurance problem for a mean-variance

insurer in an incomplete market, where the market price of risk is proportional to a

Markovian, affine-form, and square-root factor process. The modeling framework

recovered the CEV model, Heston model, and some non-Markovian path-dependent

models, as particular cases. Zhang and Chen (2016) considered an ALM problem

with multiple risky assets under the CEV model, and the solutions were expressed

in terms of the solutions to two BSDEs. Li, Shen, and Zeng (2018) stepped further

by incorporating derivative trading into an ALM problem under the Heston model.

Sun, Zhang, and Yuen (2020) investigated an ALM problem in a complete market

setting with multiple risky assets and reinsurance options, where the variance

processes of the risky assets followed an affine diffusion equation. Using a similar

technique, Tian, Guo, and Sun (2021) considered an optimal investment-reinsurance

problem, where the return rate of the risky asset was described by an OU process.

Zhang (2023) investigated a derivative-based ALM problem in the presence of both

stochastic interest rates and stochastic volatility, where the interest rate and risky

asset’s volatility were driven by the CIR model and 4/2 stochastic volatility model,

respectively. It is worth mentioning that the optimal strategies derived in the
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above-mentioned literature are pre-committed not time-consistent. Other previous

works along this line include Chiu and Wong (2014a), Chang (2015), Pan and Xiao

(2017c), Sun and Guo (2018), Pan, Zhang, and Zhou (2018), Shen, Wei, and Zhao

(2020), to name but a few. Following the game theoretical approach pioneered

by Björk, Khapko, and Murgoci (2017), Li, Rong, and Zhao (2015) considered a

time-consistent reinsurance-investment problem under stochastic interest rate and

stochastic inflation. Li, Zeng, and Lai (2012) and Lin and Qian (2016) investigated

time-consistent reinsurance-investment problems under the Heston model and CEV

model, respectively. Zhu and Li (2020) studied a time-consistent reinsurance-

investment problem with stochastic interest rates and stochastic volatility. Recently,

within the framework developed by Pedersen and Peskir (2017), Zhang (2021b,a,

2022a) derived the dynamically optimal strategies explicitly under the 3/2 model, 4/2

model with mispricing phenomenon, and a hybrid model with Vasicek interest rates

and general stochastic volatility, respectively. For more literature about continuous-

time mean-variance portfolio selection under different types of constraints and

scenarios, readers may refer to the review paper by Zhang, Li, and Guo (2018).

1.2 Robust portfolio optimization problems with model

ambiguity

In the preceding literature, the risk-averse agents are assumed to know the proba-

bility distributions of all relevant random quantities and fully trust the formulated

models. As pointed out by Merton (1980) and Cochrane (1997), however, economic

agents are indeed not confident in the formulated models due to the lack of complete

information or the difficulty to estimate model parameters with precision. Moreover,

following the early ideas originated from Knight (1921), the empirical studies of Ells-

berg (1961) and Bossaerts et al. (2010) demonstrated that economic agents display

aversion not only to risk but also to ambiguity (unknown probability distribution).

In this sense, incorporating model ambiguity into traditional portfolio optimization

problems is plausible. Great developments have been made in dealing with model

ambiguity in recent years. Among them, Andersen, Hansen, and Sargent (2000)

proposed the penalty-based robust control approach, behind which the fundamental

idea is that the ambiguity-averse agent takes the formulated reference model as

an approximation to the unknown true model and believes that the true model

belongs to a family of adverse models which do not deviate from the reference model

too much, and a penalty term, penalizing the situation where the agent accepts

an improper alternative model far away from the reference model, is embedded

into the objective function. Within this framework, the economic agent seeks the

robust optimal investment strategy to optimize the penalized objective function

measured in the worst-case scenario. Andersen, Hansen, and Sargent (2003) further

formulated the optimal investment problems under continuous-time Markovian
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models with jump and diffusion components, provided the associated HJB equation,

and solved it explicitly. Maenhout (2004) refined the penalty-based robust control

approach by introducing the notion of homothetic robustness and investigated the

impact of model ambiguity on the optimal investment-consumption problems in

the setting of constant investment opportunity. Uppal and Wang (2003) extended

the work of Maenhout (2004) to the case with different levels of ambiguity aversion

about state variables. Maenhout (2006) defined a utility loss function measuring

the influence of model ambiguity with stochastic investment opportunities, where a

mean-reverting process described the expected return rate of the risky asset.

The most common treatment for robust control problems with penalization is

to reformulate the original problems in terms of zero-sum, stochastic differential

games between the risk- and ambiguity-averse agent and the market, where the

economic agent aims at maximizing (minimizing) the value function by opting for

an investment strategy, while the market acts adversely by choosing a real-world

probability measure to minimize (maximize) the value function in the meantime. For

more details on the game-theoretic formulation, readers may refer to Mataramvura

and Øksendal (2008). Owing to the mathematical tractability and the consistency

with economic intuition under the penalty-based robust control approach, there

has been emerging literature on robust portfolio optimization problems under

various market settings. For example, Liu (2010) studied a robust investment-

investment problem under recursive utility. Yi et al. (2013) considered a robust

optimal reinsurance-investment problem under the Heston model. Flor and Larsen

(2014) investigated a robust investment problem with stochastic interest rates

described by the Vasicek model. Munk and Rubtsov (2014) extended the work

of Flor and Larsen (2014) to the case with both stochastic interest rates and

stochastic inflation. Escobar, Ferrando, and Rubtsov (2015) discussed the effect

of derivative trading on the robust portfolio optimization problem with stochastic

volatility and jump risk. Zheng, Zhou, and Sun (2016) and Gu, Viens, and Yi

(2017) investigated robust reinsurance-investment problems under the CEV model

and with mispricing, respectively. Zeng et al. (2018) considered a robust derivative-

based pension investment problem with stochastic income and Heston’s stochastic

volatility. Wang and Li (2018) discussed a robust DC pension investment problem

with affine interest rates and Heston’s stochastic volatility. Yang et al. (2020)

investigated a robust portfolio optimization problem with multi-factor stochastic

volatility. Chang, Li, and Zhao (2022) studied a robust mean-variance DC pension

investment problem under the Heston model. By disentangling a BSDE approach,

Zhang (2022e) investigated robust ALM problems for CRRA and CARA utility

in a potentially non-Markovian market featured by a general stochastic volatility

model including the CEV model, the family of state-of-the-art 4/2 model, and some

path-dependent models, as exceptional cases. The above review is not exhaustive

as the literature on the robust control problems under the penalty-based robust
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control framework is plentiful. For more recent work along this line, one may refer

to Cheng and Escobar (2021b), Yuan and Mi (2022b), Chen, Huang, and Li (2022),

Baltas et al. (2022), Wei, Yang, and Zhuang (2023), to name but a few.

1.3 Multi-agent portfolio optimization problems with

relative performance concerns

The majority of the above-mentioned studies do not consider the strategic interaction,

i.e., competition, among economic agents. However, as documented by a large

literature, such as Abel (1990), Gali (1994), DeMarzo, Kaniel, and Kremer (2008),

and Gomez (2009), relative performance concerns play a key role in explaining

various financial and economic phenomena in a competitive market. In recent

years, great advances have been achieved in dealing with optimal investment under

relative performance concerns within the framework with multi-agents. Among

them, two strands of literature, Basak and Makarov (2014) and Espinosa and Touzi

(2015), are noteworthy, for they not only pioneered the studies on dynamic portfolio

selection with relative performance concerns in continuous time and analyzed the

problems under a non-zero-sum stochastic differential game formulation in the

sense of Issacs (1965), among others but also proposed approaches to incorporating

relative performance concerns into optimal investment from different angles. More

specifically, Basak and Makarov (2014) focused primarily on a stochastic differential

game among money managers in a canonical Merton’s setting, i.e., the return

rate and volatility of risky assets were constants, and the utility function for each

manager was an average over his/her own terminal wealth and his/her relative wealth

aggregated via a constant elasticity Cobb-Douglas function. The Nash equilibrium

optimal position was derived by employing a martingale approach owing to the

complete market setting. Alternatively, Espinosa and Touzi (2015) investigated a

complete market situation where the economic agents were heterogeneous in terms of

utility functions as well as liquidity constraints sets, and instead of considering only

his/her absolute wealth, each agent cared about a convex combination of his/her

wealth and the difference between his/her wealth and the average wealth of their

peers via an interaction coefficient. By using the BSDE technique developed by Hu,

Imkeller, and Müller (2005), they provided general conditions for the existence and

uniqueness of the Nash equilibrium for the cases of unconstrained and constrained

agents with exponential utilities within a Black-Scholes market setting. The results

of both Basak and Makarov (2014) and Espinosa and Touzi (2015) show that the

competitive agents have tendencies to increase the weight of risky assets in their

portfolios as they are more concerned about their peers’ performances and quantify

the impact of interaction coefficients on the investment decisions of agents.

Recently, there is growing interest in continuous-time portfolio optimization

problems with relative performance concerns under various market settings. For

9



instance, following the framework of Basak and Makarov (2014), Guan and Liang

(2016) investigated a non-zero-sum stochastic differential game between two DC

pension funds with constant investment opportunities and inflation risk. Kraft,

Meyer-Wehmann, and Seifried (2020) went beyond constant investment oppor-

tunities and considered a dynamic asset allocation problem with relative wealth

concerns in incomplete markets with unhedgeable stochastic volatility. In the case

of heterogeneous agents, i.e., agents have different levels of risk aversion, solutions

were derived up to solving a system of ODEs. In a setting with homogeneous agents,

explicit solutions were obtained to the problem. Different from the conclusion

drawn by Basak and Makarov (2014) that relative wealth concerns only gave rise to

additional myopic demand for risky assets, the work of Kraft, Meyer-Wehmann, and

Seifried (2020) showed that relative wealth concerns lead to new hedge terms beyond

the usual Merton-Breeden terms as well. Following the modeling framework of

Espinosa and Touzi (2015), Bensoussan et al. (2014) studied a class of non-zero-sum

stochastic differential reinsurance and investment games between two insurance

companies whose surplus processes were modulated by continuous-time Markov

chains. Kwok, Chiu, and Wong (2016) explored the impact of relative performance

concerns on the longevity risk transfer market in the presence of stochastic interest

and mortality rates. Deng, Zeng, and Zhu (2018) considered a non-zero-sum stochas-

tic differential investment and reinsurance game with default risk and Heston’s

stochastic volatility. Under Markowitz’s mean-variance criterion, Hu and Wang

(2018) derived the optimal time-consistent investment and reinsurance strategies

for two mean-variance insurance managers with relative performance concerns in a

Black-Scholes market. Zhu, Cao, and Zhang (2019) and Zhu, Cao, and Zhu (2021)

extended the results of Hu and Wang (2018) to the cases with the Heston model

and CEV model, respectively. For more previous works along this line, readers may

refer to Meng, Li, and Jin (2015), Pun and Wong (2016), Dong, Rong, and Zhao

(2022), Savku and Weber (2022), among others.

It is worth mentioning that the majority of the preceding literature on portfolio

optimization problems with relative performance concerns was studied under Marko-

vian market settings. Hence, the Nash equilibrium can be essentially constructed

as a solution to a system of HJB equations thanks to the dynamic programming

principle (Mataramvura and Øksendal (2008)). In the recent work of Zhang (2022b),

non-zero-sum stochastic differential games for ALM in incomplete markets with

inflation and volatility risks for CARA and CRRA utility were considered, where

the two heterogeneous asset-liability managers aimed at maximizing the expected

utility of their relative terminal surplus with respect to that of their competitor in

the sense of Espinosa and Touzi (2015). More importantly, inspired by the BSDE

technique proposed by Hu, Imkeller, and Müller (2005), the author overcame the

potentially non-Markovian environment induced by the path dependence of the

return rate and volatility of the risky asset. Closed-form solutions to the Nash
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equilibrium and optimal value functions were derived for a general class of stochastic

(local) volatility models including the CEV model, Heston model, 3/2 model, 4/2

model, and some path-dependent stochastic volatility models, as exceptional cases.

1.4 Methodologies

This subsection summarizes the key methodologies adopted to solving dynamic

portfolio optimization problems. We convey the standard ideas of the dynamic

programming approach, martingale approach, and BSDE approach, provide their

basic procedures, and present a concise comparison among the three approaches.

As the optimal investment strategy under the mean-variance criterion is ingeniously

related to that under Merton’s expected utility maximization paradigm via Lagrange

multipliers, in what follows we only consider the context of continuous-time portfolio

optimization within the framework of expected utility maximization.

Let T ∈ R+ be a fixed and finite constant describing the decision-making horizon

for an economic agent. Consider a probability space (Ω,F ,P) carrying a one-

dimensional Brownian motion {Wt}t∈[0,T ]. The filtration F := {Ft}t∈[0,T ] is the

completion of the filtration generated by Wt. The economic agent has access to a

financial market consisting of a risk-free asset (money account) and a risky asset

(stock). The dynamics of the risk-free asset Bt are given by

dBt = rBt dt, B0 = 1,

where the constant r ∈ R stands for the risk-free short rate of interest. The price

process of the risky asset St is governed by the following stochastic differential

equation (SDE):

dSt = St (µt dt+ σt dWt) , S0 = s0 ∈ R,

where µt and σt are two R-valued progressively measurable processes such that

the above SDE of St is well-defined. Denote by πt and X
π
t the proportion of the

agents’ wealth invested in the risky asset and the controlled wealth associated with

πt, respectively. Suppose that the financial market is frictionless and infinite short-

selling and leverage are allowed. Under a self-financing condition, the dynamics of

the agent’s wealth Xπ
t with initial endowment x0 ∈ R read

dXπ
t = Xπ

t [(r + (µt − r)πt) dt+ σtπtdWt] , t ∈ [0, T ]. (1.4.1)

The task at hand is to choose an admissible strategy π ∈ A, where A denotes the

set of admissible strategies, that maximizes the agent’s expected utility with respect

to some utility function U from his/her total wealth Xπ
T , i.e.,

sup
π∈A

E [U(Xπ
T )] . (1.4.2)
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1.4.1 Dynamic programming approach

Within a Markovian market setting when the two stochastic processes µt and σt
can be described in a way of some measurable functions on the state variable St
and t, i.e.,

µt = µ̄(t, St), σt = σ̄(t, St). (1.4.3)

Then, the classical approach for solving (1.4.2) is that of dynamic programming.

As the name suggests, this approach hinges on Bellman’s dynamic programming

principle and ties the problem (1.4.2) to a special kind of second-order and nonlinear

partial differential equation (PDE), called the HJB equation, which is indeed the

infinitesimal version of the dynamic programming principle as the result of Itô’s

formula.

More precisely, denote by Vt the value function to the following problem associated

with (1.4.2):

Vt = sup
π∈A

E
[
U(Xπ

T )
∣∣ Ft] .

Thanks to the Markov property of the risky asset price process when (1.4.3) holds

true, the value function Vt is can be equivalently written as

Vt = sup
π∈A

E
[
U(Xπ

T )
∣∣ Ft] = sup

π∈A
E
[
U(Xπ

T )
∣∣ Xt, St

]
= V̄ (t,Xt, St), (1.4.4)

where V̄ is some unknown deterministic function, and more importantly, the

dynamic programming principle is viable in this context. In other words, for any

0 ≤ t ≤ t′ ≤ T , we have

V̄ (t,Xt, St) = sup
π∈A

E
[
V̄ (t′, Xπ

t′ , St′)
]
.

By further assuming that V̄ is a smooth function, an application of Itô’s formula

leads to the local behavior of V̄ which is governed by the following HJB equation:

∂V̄

∂t
(t, x, s) +

∂V̄

∂s
(t, x, s)µ̄(t, s)s+

1

2

∂2V̄

∂s2
(t, x, s)σ̄2(t, s)s2 + sup

π

{
∂V̄

∂x
(t, x, s)(r + (ū(t, s)

−r)π)x+
1

2

∂2V̄

∂x2
(t, x, s)x2σ̄2(t, s)π2 +

∂2V̄

∂x∂s
(t, x, s)xsσ̄2(t, s)π

}
= 0,

with terminal condition V̄ (T, x, s) = U(x). By solving the above HJB equation

explicitly or showing the existence of a smooth solution by PDE techniques, a

candidate solution to the HJB equation denoted by Ṽ (t, x, s), along with an optimal

feedback control denoted by π∗(t, x, s), is derived. Finally, it is indispensable to

check the concavity of the candidate solution with respect to x and the admissibility

condition of the optimal control so that the candidate solution Ṽ (t, x, s) coincides

with the value function V̄ (t, x, s), which is referred to as the verification theorem in

the literature; see, for example, Yong and Zhou (1998) or Pham (2009).

To summarize, the steps for finding the optimal controls and value functions via

the dynamic programming approach are as follows:
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1. Make sure the control problem is in the Markovian context. If that is the

case, derive the HJB equation formally.

2. Assume the value function is concave with respect to the wealth and use the

static optimization method to derive the expression of the optimal control

from the HJB equation.

3. Substitute the optimal control into the HJB equation and solve the resultant

PDE governing the value function explicitly by providing a candidate solution.

4. Verify all the technical conditions so that the candidate solution coincides

with the value function.

1.4.2 Martingale approach

The martingale approach stemmed from the seminal works of Pliska (1986) and

Karatzas, Lehoczky, and Shreve (1987). In the complete market case, it provides

an alternative methodology to the dynamic programming approach. Compared

with the dynamic programming approach, the biggest advantage of the martingale

approach is that it does not require the Markovian structure of the model. The

basic idea is to decompose the dynamic portfolio optimization problem into a static

optimization problem and a financial replication problem, from which the optimal

terminal wealth and the optimal investment strategy are derived, respectively.

Following the setup (1.4.1) and (1.4.2), by imposing the Novikov’s condition on the

following Radon-Nikodym derivative process Lt:

Lt := exp

{
−1

2

∫ t

0

(
µs − r

σs

)2

ds−
∫ t

0

µs − r

σs
dWs

}
,

the risk-neutral measure Q is well-defined and equivalent to P on FT via

dQ
dP

∣∣∣
FT

= LT .

Since the market is complete, the equivalent risk-neutral measure Q is unique.

Moreover, all the attainable terminal wealth Xπ
T can be regarded as the payoff of

some contingent claims which then must have a price equal to the agent’s initial

wealth x0, i.e.,

EQ [e−rTXπ
T

]
= x0. (1.4.5)

Combining (1.4.1) and (1.4.5) indicates that the agent faces a constrained optimiza-

tion problem which can be conveniently expressed in terms of the Lagrangian:

L := E
[
U(Xπ

T )− λ(e−rTLTX
π
T − x0)

]
, (1.4.6)

where λ is the Lagrange multiplier. A point-wise maximization within the expecta-

tion in (1.4.6) leads to the optimal attainable terminal wealthX∗
T = (U ′)−1(λe−rTLT ),
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where (U ′)−1 denotes the inverse of the utility function’s first-order derivative and

the Lagrange multiplier λ is obtained such that the linear constraint (1.4.5) holds

for X∗
T . To find the optimal strategy π∗ such that the associated wealth process

Xπ∗

t coincides with X∗
T , P almost surely at the terminal date T , applying Itô’s

formula to er(T−t)Xπ∗

t under Q measure shows that

der(T−t)Xπ∗

t = er(T−t)Xπ∗

t σtπ
∗
t dW

Q
t ,

where WQ
t =

∫ t
0
µs−r
σs

ds+Wt is the Brownian motion under Q due to Girsanov’s

theorem. Under some integrability condition, we know that er(T−t)Xπ∗

t is an (F,Q)-

martingale, and upon considering the terminal condition that Xπ∗

T = X∗
T , we find

the optimal wealth process is given by

Xπ∗

t = EQ
[
e−r(T−t)X∗

T

∣∣∣∣ Ft] ,
from which we further observe that the process e−rtLtX

π∗

t = E
[
e−rTLTX

∗
T

∣∣∣∣ Ft]
is an (F,P)-martingale. Due to the martingale representation theorem, on one hand,

there exists a progressively measurable process ψt such that

de−rtLtX
π∗

t = ψt dWt. (1.4.7)

On the other hand, an application of Itô’s formula yields the dynamics of e−rtLtX
π∗

t

as follows:

de−rtLtX
π∗

t = e−rtLtX
π∗

t

(
π∗
t σt −

µt − r

σt

)
dWt. (1.4.8)

Comparing the diffusion coefficients of (1.4.7) and (1.4.8) leads to the following

expression of the optimal investment strategy π∗
t :

π∗
t =

(
ψt

e−rtLtXπ∗
t

+
µt − r

σt

)
1

σt
. (1.4.9)

In summary, the martingale approach adopted here for determining the value

function and the optimal control in the complete market case is based on the

following procedure:

1. Compute the optimal attainable terminal wealth X∗
T = (U ′)−1(λe−rTLT ).

2. Determine the Lagrange multiplier λ from the budget equation EQ [e−rTX∗
T

]
=

x0.

3. Derive the optimal control π∗
t from (1.4.9) and the value function Vt =

E [U(X∗
T )| Ft].

It is worth mentioning that the validity of the martingale approach relies on market

completeness ensuring the uniqueness of the equivalent risk-neutral measure Q and
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that any contingent claims with maturity T which have a price equal to the initial

wealth x0 can be replicated. When the market is incomplete, Karatzas et al. (1991)

proposed the fictitious completion method to complete the incomplete market by

introducing additional fictitious assets. Hence, in addition to following the above

procedures for deriving the optimal control and value function in the fictitious

complete market, it is indispensable to determine the market price of risk ultimately

so that the fictitious assets are unfavorable to the agent and the solution to the

fictitious complete market case coincides with that to the original incomplete market

case.

1.4.3 BSDE approach

BSDE is a type of SDEs prescribed by the terminal condition. The theory of linear

BSDE was initiated by Bismut (1976) in the context of stochastic linear quadratic

control. The problem of the existence and uniqueness of the solutions to nonlinear

BSDEs was solved by Pardoux and Peng (1990) under the uniformly Lipschitz

condition on the generator, i.e., for the following general form of nonlinear BSDE

of (Yt, Zt): {
dYt =− f(t, Yt, Zt) dt+ Zt dWt,

YT =ξ,
(1.4.10)

where ξ is a given FT -measurable R-valued random variable satisfying E|ξ|2 < +∞,

the generator f : Ω ⊗ [0, T ] ⊗ R ⊗ R 7→ R is a progressively measurable function,

and there exists a positive constant k ∈ R+ such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ k(|y1 − y2|+ |z1 − z2|), (1.4.11)

for all t ∈ [0, T ] and y1, y2, z1, z2 ∈ R. To weaken the assumption of uniformly

Lipschitz condition (1.4.11), Bender and Kohlmann (2000), among others, proposed

a type of nonlinear BSDE with stochastic Lipschitz continuity: there exists two

non-negative F-measurable processes c1,t and c2,t such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ c1,t|y1 − y2|+ c2,t|z1 − z2|.

By strengthening the integrability conditions on the generator and the terminal

value ξ, Bender and Kohlmann (2000) derived the existence and uniqueness results

of the solutions in a proper space. Wang, Ran, and Hong (2006) further established

the well-posedness of the results of Bender and Kohlmann (2000) in some larger

spaces.

Another important weakening of the uniformly Lipschitz continuity (1.4.11) on

the generator was given in Kobylanski (2000), which pioneered the studies on the

BSDEs whose generator has quadratic growth in the variable z. More precisely, the

author assumed that there exists a positive constant k ∈ R+ such that

|f(t, y, z)| ≤ k(1 + |y|+ |z2|),
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and that there exists a positive constant k ∈ R+ such that

|f(t, y1, z1)− f(t, y2, z2)| ≤ k (|y1 − y2|+ (1 + |y1|+ |y2|+ |z1|+ |z2|)|z1 − z2|) ,

for all t ∈ [0, T ] and y1, y2, z1, z2 ∈ R. By imposing a uniform boundedness condition

on the terminal value ξ, the existence and uniqueness result of the solution to

quadratic BSDE was demonstrated in Kobylanski (2000). We should point out

that quadratic BSDEs have found wide applicability in the fields of stochastic

control and mathematical finance; see, for example, Hu, Imkeller, and Müller (2005),

Yu (2013), Lv, Wu, and Yu (2016), to name but a few. Briand and Hu (2006)

proved the existence result of the solution to quadratic BSDEs with unbounded

terminal value, where the uniform boundedness condition on the terminal value in

Kobylanski (2000) was replaced by an exponential integrability condition. However,

no uniqueness result was stated in that work since the comparison theorem for this

kind of BSDE was not presented. By further assuming the generator is convex in

the variable z, i.e., for all t ∈ [0, T ] and y ∈ R,

z 7→ f(t, y, z) is convex,

Briand and Hu (2008) filled this gap. In recent years, there has been growing interest

in developing and studying various types of BSDEs; see, for example, Briand and

Carmona (2000), Briand and Confortola (2008), Delbaen, Hu, and Adrien (2011),

Fan, Hu, and Tang (2020), and references therein. For a comprehensive textbook

reading on the theory of BSDEs, see, for instance, Pham (2009) and Zhang (2017).

In the context of dynamic portfolio optimization, compared with the above-

mentioned dynamic programming approach and martingale approach, the BSDE

approach does not entail the Markovian structures of state variables as well as

the complete market setting. There are numerous papers considering optimal

investment using the tools of BSDEs, among which the seminal works of Lim and

Zhou (2002) and Hu, Imkeller, and Müller (2005) are the milestones viewed from

our perspective.

To put it short, the primary ideas of both Lim and Zhou (2002) and Hu, Imkeller,

and Müller (2005) are to reformulate the term within the objective function under

either the mean-variance criterion or the expected utility maximization paradigm

as the terminal value of an unknown stochastic process. The determination of such

stochastic process then leads to several BSDEs with various and specific forms, and

usually, the resultant BSDEs would be in the types of backward stochastic Riccati

equations (BSREs), quadratic BSDEs, and linear BSDEs. Thus, the optimality

of portfolio optimization problems boils down to the solvability of the associated

BSDEs. Once the existence and uniqueness results can be established, the optimal

investment strategy along with the value function can be obtained via the martingale

optimality principle. We follow the above setup (1.4.1) and (1.4.2) to illustrate this

idea. Construct a family of stochastic processes denoted by Mπ
t , π ∈ A, such that
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• the terminal value Mπ
T = U(Xπ

T ), for all π ∈ A;

• the initial value at time zero Mπ
0 is independent of all π ∈ A;

• Mπ
t is an (F,P)-supermartingale for all π ∈ A, and there exists a π∗ ∈ A such

that Mπ∗

t is an (F,P)-martingale.

The above argument immediately shows that π∗ is the optimal investment strategy

and Mπ∗

0 is the value function of problem (1.4.2) since

E [U(Xπ
T )] = E [Mπ

T ] ≤Mπ
0 =Mπ∗

0 = E
[
Mπ∗

T

]
= E

[
U(Xπ∗

T )
]
.

The determination ofMπ
t normally hinges on the specific form of the utility function

and we can construct Mπ
t in the form

Mπ
t = U(Y1,tX

π
t + Y2,t), (1.4.12)

where Y1,t and Y2,t are the first components of the solutions to the following two

uncontrollable BSDEs of (Y1,t, Z1,t) and (Y2,t, Z2,t), respectively:{
dY1,t =− f1(t, Y1,t, Z1,t) dt+ Z1,t dWt,

Y1,T =1,
(1.4.13)

and {
dY2,t =− f2(t, Y2,t, Z2,t) dt+ Z2,t dWt,

Y2,T =0.
(1.4.14)

The expressions of generators f1 and f2 can be obtained by using Itô’s formula to

Mπ
t . By solving BSDEs (1.4.13) and (1.4.14) explicitly or at least establishing their

existence and uniqueness results, the value function of problem (1.4.2) turns out to

be Mπ
0 =Mπ∗

0 = U(Y1,0x0 + Y2,0) and the expression of the optimal strategy can

be found from the dynamics of Mπ
t . To summarize, the basic procedure for finding

the optimal controls and value functions via the BSDE approach is as follows:

1. Define an auxiliary process Mπ
t for all π ∈ A by (1.4.12), where the dynamics

of Y1,t and Y2,t are given by (1.4.13) and (1.4.14) and the expressions for

generators f1 and f2 are not given at this step.

2. Apply Itô’s formula to Mπ
t and reformulate the drift terms of dMπ

t in a way

that f1 and f2 are independent of all π ∈ A.

3. Substitute the specific forms of f1 and f2 determined from the last step into

(1.4.13) and (1.4.14) and solve the resultant BSDEs (1.4.13) and (1.4.14)

explicitly or prove their existence and uniqueness results.

4. Represent the value function in terms of the solutions to BSDEs (1.4.13)

and (1.4.14), i.e., V0 = U(Y1,0x0 + Y2,0), and derive the optimal investment

strategy π∗ from the drift coefficients of dMπ
t .
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We conclude this subsection by providing the following table which exhibits the

principles and applicable scenarios of the above-mentioned three approaches to

solving dynamic portfolio optimization problems:

Market scenarios

Approaches Principles Complete Incomplete Markovian Non-
Markovian

Dynamic pro-
gramming ap-
proach

Bellman’s
dynamic pro-
gramming
principle

Martingale
approach
(Pliska (1986)
and Karatzas,
Lehoczky,
and Shreve
(1987))

Uniqueness
of the risk-
neutral
measure and
martingale
representa-
tion theorem

( with
fictitious
comple-
tion by
Karatzas
et al.
(1991))

BSDE ap-
proach (Lim
and Zhou
(2002) and
Hu, Imkeller,
and Müller
(2005))

Martingale op-
timality prin-
ciple

Table 1.1: Methodologies for solving dynamic portfolio optimization problems under
different market scenarios

1.4.4 Outline of thesis

This thesis contains an introduction and nine self-contained research papers. Chap-

ters 2-5 are concerned with the single-agent portfolio optimization problems under

Markowitz’s mean-variance criteria in the presence of 3/2 stochastic volatility in a

complete market, a hybrid model of stochastic interest rates and stochastic volatility

in an incomplete market, uncontrollable random liabilities and the opportunities of

derivative trading, and the family of 4/2 stochastic volatility models with mispricing

phenomenon, respectively. Chapters 6-8 focus on dynamic portfolio optimization

for a single agent within the framework of Merton’s expected utility maximization

under various market scenarios. In Chapter 6, we consider utility maximization with

stochastic affine interest rates and stochastic volatility. Chapter 7 deals with optimal

DC pension investment problems with stochastic income, stochastic inflation, and

stochastic volatility taken into consideration in the meantime. Chapter 8 contains

a study on optimal ALM problems with affine diffusion factor processes and HARA

utility preferences in a non-Markovian market setting. Chapter 9 and 10 are on

the subject of stochastic differential games between two agents in non-Markovian

market economies. Particularly, in Chapter 9, we consider a robust optimal ALM
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problem with stochastic volatility with model ambiguity. Chapter 10 investigates

an optimal ALM problem for two asset-liability managers subject to relative per-

formance concerns in the presence of stochastic inflation and stochastic volatility,

and the problem is modeled as a non-zero-sum stochastic differential game. The

following hierarchical graph exhibits the interactions among the remaining chapters.

Chapter 2

Chapter 5 Chapter 3

Chapter 4

Chapter 8

Chapter 9 Chapter 10

Chapter 6

Chapter 7

Figure 1.1: Structure of the remaining chapters
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Chapter 2

Dynamic optimal mean-variance portfolio

selection with a 3/2 stochastic volatility

Abstract

This paper considers a mean-variance portfolio selection problem

when the stock price has a 3/2 stochastic volatility in a complete market.

Specifically, we assume that the stock price and the volatility are perfectly

negatively correlated. By applying a backward stochastic differential

equation (BSDE) approach, closed-form expressions for the statically

optimal (time-inconsistent) strategy and the value function are derived.

Due to the time inconsistency of the mean-variance criterion, a dynamic

formulation of the problem is presented. We obtain the dynamically

optimal (time-consistent) strategy explicitly which is shown to keep the

wealth process strictly below the target (expected terminal wealth) before

the terminal time. Finally, we provide numerical studies to show the

impact of main model parameters on the efficient frontier and illustrate

the differences between the two optimal wealth processes.

Keywords: Mean-variance portfolio selection; 3/2 stochastic volatility; Backward

stochastic differential equation; Dynamic optimality; Complete market

2.1 Introduction

In the last several decades, various stochastic volatility models have been developed

in the literature to explain the volatility smile and heavy tails of return distribution

as widely observed in the financial market. See, for example, Heston (1993), Hull

and White (1987), Lewis (2000), and Stein and Stein (1991). Among them, a

non-affine model with a mean reverting structure called the 3/2 stochastic volatility
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model (Lewis (2000)) enjoys empirical support in the bond and the stock market

by previous works, such as Ahn and Cao (1999), Bakshi, Ju, and Ou-Yang (2006),

and Jones (2003). Efforts have been made under the 3/2 stochastic volatility in

derivative pricing problems such as Carr and Sun (2007), Drimus (2012), and Yuen,

Zheng, and Kwok (2015). It seems, however, that little attention has been paid to

portfolio selection problems under Markowitz (1952)’s mean-variance criterion.

The single-period asset allocation theory under the mean-variance criterion is

first introduced by the seminal paper Markowitz (1952). Thereafter there has

been increasing attention on extensions and applications of Markowitz’s work.

Two milestones are the work of Li and Ng (2000) and Zhou and Li (2000) which

generalize Markowitz’s work to a multi-period and a continuous-time setting by

using embedding techniques. In Zhou and Li (2000), they assume that all the

market parameters are deterministic functions or constants. To extend the results

to more realistic models with random parameters, on the assumption that the return

rate, the volatility, and the risk premium are all bounded stochastic processes, the

backward stochastic differential equation (BSDE) approach is introduced by Lim and

Zhou (2002) to solve a mean-variance problem in a complete market. From then on,

many papers work on the mean-variance portfolio selection problem under various

financial models by using the BSDE approach. Chiu and Wong (2011) consider the

problem where asset prices are cointegrated. Shen, Zhang, and Siu (2014) investigate

the same problem under a constant elasticity of variance model by assuming that

the risk premium process satisfies exponential integrability. Zhang and Chen (2016)

extend the results in Shen, Zhang, and Siu (2014) by further incorporating a liability

process. Shen and Zeng (2015) study the optimal investment-reinsurance problem

for a mean-variance insurer in an incomplete market where the risk premium process

is proportional to a Markovian, affine-form and square-root process, and a modified

locally square-integrable optimal strategy is derived by imposing an exponential

integrability of order 2 on the risk premium process. Under similar conditions

considered in Shen and Zeng (2015), a mean-variance problem under the Heston

model with a liability process and a financial derivative is considered in Li, Shen, and

Zeng (2018). Other relevant works on mean-variance portfolio selection problems

by applying not only the BSDE approach but also other approaches (for example,

the dynamic programming approach and the martingale approach (Pliska (1986)))

include, such as Bielecki et al. (2005), Chang (2015), Ferland and Watier (2010),

Han and Wong (2021), Lv, Wu, and Yu (2016), Pan and Xiao (2017c), Pan, Zhang,

and Zhou (2018), Peng and Chen (2021), Peng and Chen (2022), Shen (2015), Shen

(2020), Shen, Wei, and Zhao (2020), Tian, Guo, and Sun (2021), and Yu (2013).

The literature mentioned above under Markowitz’s paradigm, however, shares

one characteristic, that is, all deals with pre-committed strategies (Strotz (1956)).

The resulting optimal strategy always depends on the initial wealth level and thus is

called time-inconsistent. Recently, the time-consistent mean-variance portfolio selec-
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tion problem has received considerable attention. To tackle the time inconsistency,

Basak and Chabakauri (2010) derive a time-consistent strategy which is determined

by applying a backward recursion starting from the terminal date. Björk, Khapko,

and Murgoci (2017) develop a game theoretical approach under Markovian settings

which essentially studies the subgame-perfect Nash equilibrium, and they derive

the equilibrium strategy and the equilibrium value function by solving an extended

Hamilton-Jacobi-Bellman (HJB) equation. Along this approach, previous works

include Li, Zeng, and Lai (2012), Li, Rong, and Zhao (2015), Lin and Qian (2016),

and Zhu and Li (2020), to name but only a few. Alternatively, Pedersen and

Peskir (2017) introduces the dynamically optimal approach to investigate the time

inconsistency of mean-variance problems. They overcome the time inconsistency

by recomputing the statically optimal (pre-committed) strategy during the invest-

ment period, and they can therefore obtain dynamically optimal (time-consistent)

strategies by solving infinitely many optimization problems.

Motivated by these aspects, we consider a dynamic mean-variance portfolio

selection problem within the framework developed in Pedersen and Peskir (2017)

in a complete market with two primitive assets, a risk-free asset and a stock

with 3/2 stochastic volatility. In particular, the market is completed by fixing a

perfectly negative correlation between the stock price and the volatility. To make

the problem analytically tractable, the return rate of the stock is constant so that

the risk premium process is linear in the reciprocal of the volatility process. We

adopt the BSDE approach to solve this problem. The Lagrange multiplier is first

applied to transform the mean-variance problem into an unconstrained optimization

problem. By making an assumption on model parameters, the uniqueness and

existence of the solution to a special type BSDE (Bender and Kohlmann (2000))

are established. We then solve the BSDE explicitly and obtain the optimal strategy

in a closed form for the unconstrained optimization problem. Furthermore, we

derive the analytic expression of the statically optimal strategy of the mean-variance

portfolio selection problem by the Lagrange duality theorem. Finally, by solving the

statically optimal strategy at each time, we obtain the dynamically optimal strategy

which is shown to keep the corresponding wealth process strictly below the target

(expected terminal wealth) before the terminal time. To summarize, this paper has

main contributions in three aspects: (1) We make an assumption on the model

parameters instead of on the risk premium process. This assumption guarantees the

existence and uniqueness of solutions to the BSDEs. (2) We manage to derive the

square-integrable optimal strategy instead of the locally square-integrable optimal

strategy and verify the admissibility. (3) We provide both static and dynamic

optimality.

The rest of this paper is organized as follows. Section 2.2 formulates the financial

market and the portfolio selection problem. In Section 2.3, we derive the explicit

solutions to the BSDEs as well as the closed-from expression of the optimal invest-
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ment strategy of the unconstrained problem. Section 2.4 presents the static and

dynamic optimality of the mean-variance portfolio selection problem. In Section 2.5,

we provide numerical examples to present the efficient frontier under the statically

optimal strategy and illustrate the differences between the two optimal controlled

wealth processes. Section 2.6 concludes the paper.

2.2 Formulation of the problem

Let [0, T ] be a finite horizon and (Ω,F ,P) be a complete probability space that

carries a one-dimensional standard Brownian motion W = (Wt)t∈[0,T ]. The right-

continuous, P-complete filtration (Ft)t∈[0,T ] is generated by the Brownian motion

W .

We consider a market where two primitive assets, one risk-free asset and one

stock, are available to the investor. The price of the risk-free asset B solves

dBt = rBt dt,

with Bt0 = b0 ∈ R+ at time t0 ∈ [0, T ) fixed and given, where r > 0 stands for the

interest rate. The price of the stock follows

dSt = µSt dt+
√
VtSt dWt, (2.2.1)

with St0 = s0 ∈ R+ at time t0. The return rate of the stock price µ > r is a

constant and V = (Vt)t∈[t0,T ] is the stochastic variance of the stock price described

by a 3/2 model: (see, for example, Lewis (2000))

dVt = κVt(θ − Vt) dt− σV
3/2
t dWt, (2.2.2)

with initial value Vt0 = v0 ∈ R+ at time t0, where three parameters κ, θ and σ are

all assumed to be positive. We hereby put the minus sign in front of σ in (2.2.2) to

emphasize the assumption that the dynamics of the stock price St and the volatility

Vt are perfectly negatively correlated.

We shall consider Markov controls u(t, Vt, X
u
t ) denoting the wealth invested in

the stock at time t ∈ [t0, T ] and such a deterministic function u(·, ·, ·) is called a

feedback control law. We assume that there are no transaction costs in the trading

as well as other restrictions. The investor wishes to create a self-financing portfolio

of the risk-free asset B and the stock S dynamically. Thus, the controlled wealth

process (Xu
t )t∈[t0,T ] of the investor can be described by the system of SDEs below{

dXu
t = [rXu

t + (µ− r)u(t, Vt, X
u
t )] dt+ u(t, Vt, X

u
t )
√
Vt dWt,

dVt = κVt(θ − Vt) dt− σV
3/2
t dWt,

(2.2.3)

with Xu
t0 = x0 at time t0 ∈ [0, T ). We let Pt0,v0,x0 denote the probability measure

with initial value (Vt0 , X
u
t0) = (v0, x0) at time t0 ∈ [0, T ).
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Definition 2.2.1. Given any fixed t0 ∈ [0, T ), if for any (v0, x0) ∈ R+×R, it holds
that

1. Et0,v0,x0

[∫ T
t0
u2(t, Vt, X

u
t )Vt dt

]
<∞,

2. Et0,v0,x0

[
supt∈[t0,T ] |Xu

t |2
]
<∞,

then the (Markovian) strategy u is called admissible. We denote by U the set of

admissible portfolio strategies.

We are first interested in determining an admissible strategy u ∈ U that solves

the following portfolio problem:

Definition 2.2.2. The mean-variance portfolio problem is an optimization problem

denoted by  min
u∈U

Vart0,v0,x0
(Xu

T )

subject to Et0,v0,x0
[Xu

T ] = ξ,
(2.2.4)

where ξ is a fixed and given constant playing the financial role of a target. The

corresponding value function is denoted by VMV (t0, v0, x0).

Remark 2.2.3. Here we impose ξ > x0e
r(T−t0), in line with previous studies such

as Lim and Zhou (2002), Shen and Zeng (2015), and Shen, Wei, and Zhao (2020).

Otherwise, the investor can simply take the risk-free strategy u ≡ 0 over [t0, T ]

which dominates any other admissible strategy.

As a result of the quadratic non-linearity of the variance operator, problem (2.2.4)

falls outside of Bellman’s principle. Denote by u∗ the optimal strategy in problem

(2.2.4) which refers to the static optimality (refer to Definition 1 in Pedersen and

Peskir (2017)) and is relative to the initial position (t0, v0, x0). The investor might

not be committed to the statically optimal strategy u∗ chosen at the very initial

position (t0, v0, x0) during the following investment period (t0, T ]. Therefore, we

shall also consider a dynamic formulation of problem (2.2.4). Here, we opt for the

framework developed in Pedersen and Peskir (2017). We now review the definition

of dynamic optimality in problem (2.2.4) for the readers’ convenience.

Definition 2.2.4. For a triple (t0, v0, x0) ∈ [0, T ) × R+ × R fixed and given, we

call a Makrov strategy ud∗ dynamically optimal in problem (2.2.4), if for every

(t, v, x) ∈ [t0, T ) × R+ × R and every strategy π ∈ U with π(t, v, x) ̸= ud∗(t, v, x)

and Et,v,x[X
π
T ] = ξ, there is a Markov strategy w satisfying w(t, v, x) = ud∗(t, v, x)

and Et,v,x[X
w
T ] = ξ such that

Vart,v,x(X
w
T ) < Vart,v,x(X

π
T ).
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The dynamically optimal strategy ud∗ is essentially derived by solving the stati-

cally optimal strategy u∗ at each time and implementing it in an infinitesimally

small period of time, which in turn implies that we shall first address problem

(2.2.4) in the sense of static optimality so as to derive the dynamic optimality.

We observe that problem (2.2.4) is, in fact, a convex optimization problem with lin-

ear constraint Et0,v0,x0
[Xu

T ] = ξ. Thus, we can handle the constraint by introducing

a Lagrange multiplier θ ∈ R, and define the following Lagrangian:

L(x0, v0;u, θ) = Et0,v0,x0 [(X
u
T − ξ)2] + 2θEt0,v0,x0 [X

u
T − ξ]

= Et0,v0,x0

[
(Xu

T − (ξ − θ))2
]
− θ2.

(2.2.5)

Then the Lagrangian duality theorem (see, for example, Luenberger (1968)) indicates

that we can derive the static optimality u∗ in problem (2.2.4) by solving the following

equivalent min-max stochastic control problem

max
θ∈R

min
u∈U

L(x0, v0;u, θ). (2.2.6)

This shows that we can solve problem (2.2.6) with two steps, of which the first

step is to solve the unconstrained stochastic optimization problem with respect to

u ∈ U given a fixed θ ∈ R and the second step is to solve the static optimization

problem with respect to the Lagrange multiplier θ ∈ R. Hence, we can first address

the following unconstrained quadratic-loss minimization problem:

min
u∈U

J(x0, v0;u, γ) = Et0,v0,x0

[
(Xu

T − γ)2
]
, (2.2.7)

with γ = ξ − θ fixed and given.

2.3 Solution to the unconstrained problem

In this section, we opt for the BSDE approach so as to solve problem (2.2.7) above.

Before formulating the main results in this section, we make the following notations

to facilitate the discussions below. For any R+-valued, Ft-adapted stochastic process

η := (ηt)t∈[0,T ], a continuous process A := (At)t∈[0,T ] associated with η is defined

by At =
∫ t
0
η2sds. Let β ≥ 0 be a generic constant; we denote by

• L2
P(β, η, [0, T ];R): the space of Ft-adapted, R-valued stochastic processes f

satisfying

∥f∥2β := E

[∫ T

0

eβAt |ft|2dt
]
<∞;

• L2,η
P (β, η, [0, T ];R): the space of Ft-adapted, R-valued stochastic processes f

satisfying

∥ηf∥2β := E

[∫ T

0

η2t e
βAt |ft|2dt

]
<∞;
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• L2,c
P (β, η, [0, T ];R) the space of Ft-adapted, R-valued stochastic processes f

satisfying

∥f∥2β,c := E

[
sup

0≤t≤T
eβAt |ft|2

]
<∞.

Hence, we have the following Banach space:

M(β, η, [0, T ];R2) :=
(
L2,η
P (β, η, [0, T ];R)) ∩ (L2,c

P (β, η, [0, T ];R)
)
×L2

P(β, η, [0, T ];R)

with the norm ∥(Y, Z)∥2β = ∥ηY ∥2β + ∥Y ∥2β,c + ∥Z∥2β .

In addition, we introduce

∆ =[κθ + 2(µ− r)σ]2 − 2σ2(µ− r)2,

n1 =
−[κθ + 2(µ− r)σ] +

√
∆

−σ2
, n2 =

−[κθ + 2(µ− r)σ]−
√
∆

−σ2
,

Cb =max

{
(60 + 16

√
14)

(
(µ− r)2 +

σ2n2
1n

2
2(1− e

√
∆T )2

(n1 − n2e
√
∆T )2

)
,

8(µ− r)2 + 8(µ− r)σ
n1n2(1− e

√
∆T )

n1 − n2e
√
∆T

}
.

(2.3.1)

It can be easily checked that ∆ > 0 due to µ > r. The following standing assumption

is imposed on the model parameters throughout the paper.

Assumption 2.3.1. Cb ≤ κ2θ2/2σ2.

Remark 2.3.2. It follows from Lemma 2.3.8 below that Cb is strictly increasing in

T . In particular, when T → 0, Cb → (60 + 16
√
14)(µ − r)2. This indicates the

feasibility of Assumption 2.3.1. Moreover, Assumption 2.3.1 is crucial to guarantee

that three BSDEs (2.3.2), (2.3.5), and (2.3.10) admit unique solutions and the

statically optimal strategy (2.4.4) is admissible.

The following linear BSDE of (P,Γ) is considered so as to solve problem (2.2.7)dPt =
{[

2r − (µ− r)2

Vt

]
Pt +

2(µ− r)√
Vt

Γt

}
dt+ Γt dWt,

PT = 1.

(2.3.2)

Clearly, due to the randomness and unboundedness of the driver of (2.3.2), this

linear BSDE is without the uniform Lipschitz continuity with respect to both Pt
and Γt. Thus, BSDE (2.3.2) is out of the scope of El Karoui, Peng, and Quenez

(1997). Nevertheless, we observe that BSDE (2.3.2) follows a stochastic Lipschitz

continuity which is first proposed in Bender and Kohlmann (2000). To proceed,

some useful results on the BSDE with stochastic Lipschitz continuity adapted from

Definition 2 and Theorem 3 in Bender and Kohlmann (2000) are presented below.
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Definition 2.3.3. We call a pair (ζ, f) standard data for the BSDE of (Y,Z):{
−dYt = f(t, Yt, Zt) dt− Zt dWt,

YT = ζ, t ∈ [0, T ],

if the following four conditions hold:

1. There exist two R+-valued, Ft-adapted stochastic processes (η1,t)t∈[0,T ] and

(η2,t)t∈[0,T ] such that ∀t ∈ [0, T ],∀(y1, z1), (y2, z2) ∈ R2

|f(t, y1, z1)− f(t, y2, z2)| ≤ η1,t|y1 − y2|+ η2,t|z1 − z2|.

We refer to this inequality as the stochastic Lipschitz continuity.

2. There exists a positive constant ε > 0 satisfying η2t := η1,t + η22,t ≥ ε.

3. The terminal condition ζ satisfies E
[
exp

(
β
∫ T
0
η2t dt

)
|ζ|2
]
< ∞ in which β

is a positive constant.

4. f(·,0,0)
η ∈ L2

P(β, η, [0, T ];R).

Lemma 2.3.4. The BSDE of (Y,Z){
−dYt = f(t, Yt, Zt) dt− Zt dWt,

YT = ζ, t ∈ [0, T ],

admits a unique solution (Y, Z) ∈ M(β, η, [0, T ];R2) if (ζ, f) is standard data for a

sufficiently large β, in particular, for β > 3 +
√
21.

Before adapting the above results to establish the uniqueness and existence of

the solution to BSDE (2.3.2), we recall the following useful result from Theorem

5.1 in Zeng and Taksar (2013).

Lemma 2.3.5. Suppose the process (rt)t∈[0,T ] follows the Cox-Ingersoll-Ross (CIR)

model:

drt = (κθ − κrt) dt+ σ
√
rt dWt,

where κ, θ and σ are positive constants. Then we have

E

[
exp

(
β

∫ T

0

rt dt

)]
<∞ if and only if β ≤ κ2/2σ2.

Lemma 2.3.6. Assume Assumption 2.3.1 holds true, then there is a constant

3 +
√
21 < β ≤ κ2θ2

6(µ−r)2σ2 such that the unique solution (P,Γ) ∈ M(β, η, [t0, T ];R2)

with ηt =
(
2r + 3(µ−r)2

Vt

)1/2
to BSDE (2.3.2) exists.
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Proof. Let η1,t = 2r− (µ− r)2/Vt and η2,t = 2(µ− r)/
√
Vt. Denote in this case the

non-negative Ft-adapted process ηt by

η2t := η1,t + η22,t,

and accordingly, define the increasing process At by

At :=

∫ t

t0

η2s ds =

∫ t

t0

(
2r +

3(µ− r)2

Vs

)
ds.

We then have

Et0,v0,x0 [exp (βAT )] ≤ CEt0,v0,x0

[
exp

(
3(µ− r)2β

∫ T

t0

1

Vt
dt

)]
,

where the positive constant C > 0 is independent of β. By Itô’s lemma, we then

have the following dynamics of the reciprocal of the variance process (2.2.2):

d

(
1

Vt

)
= κθ

(
κ+ σ2

κθ
− 1

Vt

)
dt+ σ

√
1

Vt
dWt,

which is a CIR process. It follows from Lemma 2.3.5 that if

3(µ− r)2β ≤ κ2θ2

2σ2
,

then we have

Et0,v0,x0

[
exp

(
3(µ− r)2β

∫ T

t0

1

Vt
dt

)]
<∞.

Indeed, when Assumption 2.3.1 holds, there exists a constant β such that 3+
√
21 <

β ≤ κ2θ2

6(µ−r)2σ2 , and the driver and the terminal condition of BSDE (2.3.2) then

constitute standard data. Finally, by Lemma 2.3.4 above, we see that a unique

solution (P,Γ) ∈ M(β, η, [t0, T ];R2) to BSDE (2.3.2) with 3+
√
21 < β ≤ κ2θ2

6(µ−r)2σ2

and ηt =
(
2r + 3(µ−r)2

Vt

)1/2
exists.

In what follows, we shall give the explicit expression of the unique solution (P,Γ)

of BSDE (2.3.2).

Lemma 2.3.7. Assume Assumption 2.3.1 holds, then the unique solution (P,Γ) of

BSDE (2.3.2) has the following explicit expression:
Pt = exp (−2r(T − t)) g(t, Vt),

Γt = σa(t)
Pt√
Vt
,

(2.3.3)

for t ∈ [t0, T ], where g(t, v) = exp
{
a(t) 1v + b(t)

}
, and a(t) and b(t) are solutions

to the following system of ODEs:
da(t)

dt
− (κθ + 2(µ− r)σ)a(t) +

1

2
σ2a2(t) + (µ− r)2 = 0, a(T ) = 0,

db(t)

dt
+ (κ+ σ2)a(t) = 0, b(T ) = 0.

(2.3.4)
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Proof. We first introduce the likelihood process (Lt)t∈[t0,T ] from the dynamics

dLt = −2(µ− r)√
Vt

Lt dWt, Lt0 = 1.

Similar to the reasoning in Lemma 2.3.6, it can be easily verified from Assumption

2.3.1 above that

Et0,v0,x0

[
exp

(∫ T

t0

2(µ− r)2

Vt
dt

)]
<∞.

That is, the Novikov’s condition is satisfied for (Lt)t∈[t0,T ]. Thus, (Lt)t∈[t0,T ]

is a uniformly integrable martingale under Pt0,v0,x0 measure and we can define

an equivalent probability measure P̃t0,v0,x0
on FT through the Radon-Nikodym

derivative

dP̃t0,v0,x0
= LT dPt0,v0,x0

.

From the Girsanov’s theorem, Brownian motions under P̃t0,v0,x0
and Pt0,v0,x0

are

related to each other through

dW P̃
t =

2(µ− r)√
Vt

dt+ dWt,

and we can rewrite (2.3.2) under P̃t0,v0,x0
-measure as followsdPt =

{[
2r − (µ− r)2

Vt

]
Pt

}
dt+ Γt dW

P̃
t ,

PT = 1.

(2.3.5)

We see that the driver of BSDE (2.3.5) again satisfies the stochastic Lipschitz

continuity with in this case η2t = |2r− (µ−r)2
Vt

|+ ε for any ε > 0 fixed and given and

At =
∫ t
t0
η2s ds such that using Hölder’s inequality we have for some β > 3 +

√
21

Ẽt0,v0,x0 [exp (βAT )] ≤KẼt0,v0,x0

[
exp

(
(µ− r)2β

∫ T

t0

1

Vt
dt

)]
=KEt0,v0,x0

[
LT exp

(
(µ− r)2β

∫ T

t0

1

Vt
dt

)]

≤K
(
Et0,v0,x0

[
exp

(
−
∫ T

t0

4(µ− r)√
Vt

dWt −
∫ T

t0

8(µ− r)2

Vt
dt

)]) 1
2

·
(
Et0,v0,x0

[
exp

(
(4 + 2β)(µ− r)2

∫ T

t0

1

Vt
dt

)]) 1
2

=K

(
Et0,v0,x0

[
exp

(
(4 + 2β)(µ− r)2

∫ T

t0

1

Vt
dt

)]) 1
2

<∞,

where K > 0 is constant independent of β, the second equality follows from the

fact that
(
exp

(
−
∫ t
t0

4(µ−r)√
Vu

dWu −
∫ t
t0

8(µ−r)2
Vu

du
))

t∈[t0,T ]
is a Pt0,v0,x0 martingale

due to Assumption 2.3.1, and the last strict inequality is due to Assumption 2.3.1.

This shows that the terminal condition and the driver of BSDE (2.3.5) constitute

standard data. Then by Lemma 2.3.4 above, the BSDE (2.3.5) admits a unique
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solution (P,Γ) satisfying Γ ∈ L2
P̃t0,v0,x0

(β, η, [t0, T ];R) with some β > 3 +
√
21 and

ηt =
√
|2r − (µ−r)2

Vt
|+ ϵ. Moreover, we see that under P̃t0,v0,x0 measure

d

[
Pt exp

(∫ t

t0

(
(µ− r)2

Vu
− 2r

)
du

)]
= exp

(∫ t

t0

(
(µ− r)2

Vu
− 2r

)
du

)
Γt dW

P̃
t .

This shows that
(
Pt exp

(∫ t
t0

(
(µ−r)2
Vu

− 2r
)
du
))

t∈[t0,T ]
is a local martingale under

measure P̃t0,v0,x0
. By Burkholder-Davis-Gundy inequality and Hölder’s inequality,

we then find that

Ẽt0,v0,x0

[
sup

t0≤t≤T

∣∣∣∣ ∫ t

t0

exp

(∫ s

t0

(
(µ− r)2

Vu
− 2r

)
du

)
Γs dW

P̃
s

∣∣∣∣]

≤KẼt0,v0,x0

[(∫ T

t0

exp

(
2

∫ t

t0

(
(µ− r)2

Vu
− 2r

)
du

)
Γ2
t dt

) 1
2

]

≤K
(
Ẽt0,v0,x0

[
exp

(
2

∫ T

t0

∣∣∣∣ (µ− r)2

Vt
− 2r

∣∣∣∣dt)]+ Ẽt0,v0,x0

[∫ T

t0

Γ2
tdt

])

≤K
(
Et0,v0,x0

[
exp

(
−
∫ T

t0

4(µ− r)√
Vt

dWt −
∫ T

t0

8(µ− r)2

Vt
dt

)]) 1
2

·
(
Et0,v0,x0

[
exp

(
8(µ− r)2

∫ T

t0

1

Vt
dt

)]) 1
2

+KẼt0,v0,x0

[∫ T

t0

Γ2
tdt

]

=K

((
Et0,v0,x0

[
exp

(
8(µ− r)2

∫ T

t0

1

Vt
dt

)]) 1
2

+ Ẽt0,v0,x0

[∫ T

t0

Γ2
tdt

])
<∞,

where the positive constant K > 0 might vary between lines; the equality follows

from the fact that
(
exp

(
−
∫ t
t0

4(µ−r)√
Vu

dWu −
∫ u
t0

8(µ−r)2
Vu

du
))

t∈[t0,T ]
is a Pt0,v0,x0

martingale due to Assumption 2.3.1, and the last strict inequality is due to As-

sumption 2.3.1 and Γ ∈ L2
P̃t0,v0,x0

(β, η, [t0, T ];R). This shows that

Pt exp

(∫ t

t0

(
(µ− r)2

Vu
− 2r

)
du

)
is, in fact, a uniformly integrable martingale under P̃t0,v0,x0

measure (refer to

Corollary 5.17 in Le Gall (2016)). Upon noticing the boundary condition that

PT = 1, we have the expectational form for (Pt)t∈[t0,T ] below

Pt = exp(−2r(T − t))EP̃
t0,v0,x0

[
exp

(∫ T

t

(µ− r)2

Vu
du

) ∣∣∣∣Ft

]
.

Denote by

g(t, v) = EP̃
t,v

[
exp

(∫ T

t

(µ− r)2

Vu
du

)]
,

where EP̃
t,v[·] is the expectation at time t ∈ [0, T ) such that Vt = v under P̃t0,v0,x0

-

measure. Due to the Markovian structure of the variance process (Vt)t∈[t0,T ] with

respect to (Ft)t∈[t0,T ], we can obviously rewrite (Pt)t∈[t0,T ] as follows

Pt = exp (−2r(T − t)) g(t, Vt).
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Note that the variance process Vt has P̃t0,v0,x0
-dynamics

dVt =
{
[κθ + 2(µ− r)σ]Vt − κV 2

t

}
dt− σV

3/2
t dW P̃

t .

Suppose the deterministic function g(·, ·) ∈ C1,2([t0, T ]× R+), then applying the

Feynman-Kac theorem yields the following PDE governing function g:
∂g

∂t
+ [(κθ + 2(µ− r)σ)v − κv2]

∂g

∂v
+

1

2
σ2v3

∂2g

∂v2
+

(µ− r)2

v
g = 0,

g(T, v) = 1.

(2.3.6)

We conjecture that g admits the following exponential expression:

g(t, v) = exp

(
a(t)

1

v
+ b(t)

)
,

with boundary condition a(T ) = b(T ) = 0. Its derivatives are given by

∂g

∂t
= g

(
1

v

da(t)

dt
+
db(t)

dt

)
,

∂g

∂v
= −g a(t)

v2
,

∂2g

∂v2
= g

(
a2(t)

1

v4
+ a(t)

2

v3

)
.

(2.3.7)

Substituting (2.3.7) into (2.3.6) yields[
da(t)

dt
− (κθ + 2(µ− r)σ)a(t) +

1

2
σ2a2(t) + (µ− r)2

]
1

v
+
db(t)

dt
+ (σ2 + κ)a(t) = 0.

The arbitrariness of v ∈ R+ in turn leads to the system of ODEs (2.3.4) as claimed

above. Applying Itô’s lemma to Pt, we obtain

Γt = σa(t)
Pt√
Vt

by the uniqueness result of BSDE (2.3.2).

Lemma 2.3.8. Assume Assumption 2.3.1 holds true, then the explicit solutions of

the ODE system (2.3.4) are

a(t) =
n1n2(1− e

√
∆(T−t))

n1 − n2e
√
∆(T−t)

, (2.3.8)

b(t) =

∫ T

t

(
κ+ σ2

)
a(s) ds, (2.3.9)

where n1, n2 and ∆ are given in (2.3.1). Moreover, function a(t) is strictly decreasing

in t.
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Proof. By reformulating the Riccati ODE of a(t), we have

da(t)

dt
= −1

2
σ2(a(t)− n1)(a(t)− n2),

where n1 and n2 are given in (2.3.1) above. After some tedious calculations upon

considering a(T ) = 0, we obtain (2.3.8). Integrating both sides of ODE of b(t) from

t to T upon considering the boundary condition b(T ) = 0 gives (2.3.9). Furthermore,

differentiating (2.3.8) with respect to t yields

da(t)

dt
=

−4(µ− r)2
√
∆e

√
∆(T−t)

σ4(n1 − n2e
√
∆(T−t))2

< 0.

Denote by Yt := 1/Pt the reciprocal process of (Pt)t∈[t0,T ]. Then a direct

application of Itô’s lemma to Yt yields the backward stochastic Riccati equation

(BSRE) of (Y,Λ) belowdYt =
{[

−2r +
(µ− r)2

Vt

]
Yt +

2(µ− r)√
Vt

Λt +
Λ2
t

Yt

}
dt+ Λt dWt,

YT = 1,

(2.3.10)

where Λt = −Y 2
t Γt. Since (P,Γ) given in (2.3.3) is the unique solution of BSDE

(2.3.2), from the relationship of (P,Γ) and (Y,Λ), we see that BSRE (2.3.10) admits

a unique solution as well.

Lemma 2.3.9. Assume Assumption 2.3.1 holds true, then the unique solution

(Y,Λ) of BSRE (2.3.10) is
Yt = exp

(
2r(T − t)− a(t)

1

Vt
− b(t)

)
,

Λt = −σa(t) 1√
Vt
Yt,

(2.3.11)

with a(t) and b(t) given in (2.3.8) and (2.3.9), respectively.

Proof. The equations (2.3.11) can be directly derived from the relationship of (P,Γ)

and (Y,Λ) above.

We now define a Doléans-Dade exponential (Πt)t∈[t0,T ] of
(
µ−r−σa(t)√

Vt

)
t∈[t0,T ]

by

Πt = exp

(∫ t

t0

−µ− r − σa(u)√
Vu

dWu −
∫ t

t0

1

2

(µ− r − σa(u))2

Vu
du

)
. (2.3.12)

In the next lemma, we shall study the integrablity of Πt which will be useful when

we verify the admissibility of optimal strategy (2.3.13) below.
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Lemma 2.3.10. Assume Assumption 2.3.1 holds true, then the Doléans-Dade

exponential Πt (2.3.12) satisfies

Et0,v0,x0

[
sup

t∈[t0,T ]

|Πt|8
]
<∞.

Proof. We know that the following equation of k

p =
k

2
√
k − 1

admits two positive solutions

k1 = 2p
√
p(p− 1) + p(2p− 1), k2 = −2p

√
p(p− 1) + p(2p− 1),

for any given constant p > 1, where the first solution satisfies k1 > 1. In particular,

when p = 8, we have k1 = 120 + 32
√
14. Using Assumption 2.3.1, Lemma 2.3.8,

and the reasoning given in the proof of Lemma 2.3.6 above, we see that

Et0,v0,x0

[
exp

(
(60 + 16

√
14)

∫ T

t0

(µ− r − σa(t))2

Vt
dt

)]
<∞.

Then Theorem 15.4.6 in Cohen and Elliott (2015) yields

Et0,v0,x0

[
sup

t∈[t0,T ]

|Πt|8
]

≤8

7

{
Et0,v0,x0

[
exp

(
(60 + 16

√
14)

∫ T

t0

(µ− r − σa(t))2

Vt
dt

)]}√
120+32

√
14−1

120+32
√

14

<∞.

This completes the proof.

To end this section, we shall relate the optimal Markovian strategy and the

corresponding value function of problem (2.2.7) to the solution (Y,Λ) of BSRE

(2.3.10).

Proposition 2.3.11. Assume Assumption 2.3.1 holds true, then for (t0, v0, x0) ∈
[0, T )×R+×R fixed and given, the optimal (Markovian) strategy of problem (2.2.7)

is

u∗(t, v, x) = −
(
x− γe−r(T−t)

) µ− r − σa(t)

v
, (2.3.13)

for t ∈ [t0, T ]. The corresponding value function is

J(x0, v0;u
∗(·), γ) = exp

(
2r(T − t0)− a(t0)

1

v0
− b(t0)

)(
x0 − γe−r(T−t0)

)2
,

(2.3.14)
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The controlled wealth process X∗
t evolves as

X∗
t =

(
x0e

r(t−t0) − γe−r(T−t)
)
Πt exp

{
−
∫ t

t0

(µ− r)
µ− r − σa(u)

Vu
du

}
+ γe−r(T−t),

(2.3.15)

where Πt is given in (2.3.12). Moreover, the optimal strategy u∗ belongs to U .

Proof. Using Itô’s lemma to Gt = Xu
t − γe−r(T−t), we obtain

dGt = [rGt + (µ− r)u(t, St, X
u
t )] dt+u(t, St, X

u
t )
√
Vt dWt, G0 = x0−γe−r(T−t0).

Furthermore, applying Itô’s lemma to YtG
2
t yields

dYtG
2
t =Yt

{
u(t, Vt, X

u
t )
√
Vt +

(
µ− r√
Vt

+
Λt
Yt

)
Gt

}2

dt

+
[
ΛtG

2
t + 2YtGtu(t, Vt, X

u
t )
√
Vt

]
dWt.

(2.3.16)

We observe that the stochastic integral on the right-hand side of (2.3.16) is a local

martingale, and thus, we can define stopping times (τn)n≥1 as follows

τn = inf

{
t ≥ t0 :

∫ t

t0

∣∣∣∣Λt′G2
t′ + 2Yt′Gt′u(t

′, Vt′ , X
u
t′)
√
Vt′

∣∣∣∣2 dt′ ≥ n

}
,

such that τn → ∞, Pt0,v0,x0
almost surely as n→ ∞. We integrate (2.3.16) from t0

to T ∧ τn and take expectations on both sides of (2.3.16)

Et0,v0,x0

[
YT∧τnG

2
T∧τn

]
=Et0,v0,x0

[∫ T∧τn

t0

Yt

{
u(t, Vt, X

u
t )

√
Vt +

(
µ− r√
Vt

+
Λt

Yt

)
Gt

}2

dt

]

+ y0
(
x0 − γe−r(T−t0)

)2
,

(2.3.17)

where y0 = exp
(
2r(T − t0)− a(t0)

1
v0

− b(t0)
)
. From the definition of function

g(t, v) in Lemma 2.3.7 above, we see that 0 < Yt < e2rT for any t ∈ [t0, T ], Pt0,v0,x0
-

a.s. Moreover, in view of Definition 2.2.1, we have Et0,v0,x0 [supt∈[t0,T ] |Gt|2] <∞
for u ∈ U . As a result of the Lebesgue’s dominated convergence theorem and the

monotone convergence theorem working on (2.3.17), then we have

Et0,v0,x0 [(X
u
T − γ)2] =Et0,v0,x0

[∫ T

t0

Yt

{
u(t, Vt, X

u
t )

√
Vt +

(
µ− r√
Vt

+
Λt

Yt

)
Gt

}2

dt

]

+ y0
(
x0 − γe−r(T−t0)

)2
.

(2.3.18)

Upon considering explicit expressions of Yt and Λt (2.3.11), we obtain the optimal

Markov strategy (2.3.13) and the value function (2.3.14) for problem (2.2.7).
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Substituting u∗ (2.3.13) into the wealth process (2.2.3), we obtain

dX∗
t =

[
rX∗

t + (µ− r)
µ− r − σa(t)√

Vt

(
γe−r(T−t) −X∗

t

)]
dt

+
µ− r − σa(t)√

Vt

(
γe−r(T−t) −X∗

t

)
dWt.

A direction application of Itô’s lemma to er(T−t)X∗
t − γ then yields the controlled

wealth process X∗
t (2.3.15).

In the following, we show that the optimal strategy u∗ (2.3.13) is admissible. For

this, we first show that

Et0,v0,x0

[
sup

t∈[t0,T ]

|X∗
t |4
]
<∞. (2.3.19)

Indeed, from Assumption 2.3.1 and Lemma 2.3.10 above we find that

Et0,v0,x0

[
sup

t∈[t0,T ]

|X∗
t |4
]

≤KEt0,v0,x0

[
1 + sup

t∈[t0,T ]

∣∣∣∣ exp{− ∫ t

t0

(µ− r)
µ− r − σa(u)

Vu
du

}
Πt

∣∣∣∣4
]

≤K +KEt0,v0,x0

[
sup

t∈[t0,T ]

exp

{
−8

∫ t

t0

(µ− r)
µ− r − σa(u)

Vu
du

}]

+KEt0,v0,x0

[
sup

t∈[t0,T ]

|Πt|8
]

≤K +KEt0,v0,x0

[
exp

(
C

∫ T

t0

1

Vt
dt

)]
+KEt0,v0,x0

[
sup

t∈[t0,T ]

|Πt|8
]
<∞,

where K > 0 is a constant that differs between lines and C = 8(µ − r)(µ −
r + σa(t0)) > 0. This shows that the second condition in Definition 2.2.1 that

Et0,v0,x0

[
supt∈[t0,T ] |X∗

t |2
]
< ∞ is satisfied by Jensen’s inequality. In view of

(2.3.19), we further find that the first condition in Definition 2.2.1 holds as well

since

Et0,v0,x0

[∫ T

t0

(u∗(t, Vt, X
∗
t ))

2Vt dt

]
=

∫ T

t0

Et0,v0,x0

[
(X∗

t − γe−r(T−t))2(µ− r − σa(t))2

Vt

]
dt

≤K
∫ T

t0

Et0,v0,x0

[
|X∗

t − γe−r(T−t)|4 + 1

V 2
t

]
dt

<K

{
Et0,v0,x0 [ sup

t∈[t0,T ]

|X∗
t |4] +

∫ T

t0

Et0,v0,x0

[
1

V 2
t

]
dt

}
<∞,

where K > 0 is a constant that differs between lines and last strict inequality comes

from (2.3.19) and the fact that 1/Vt is a CIR process (see the proof of Lemma
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2.3.6 above) with finite second moment Et0,v0,x0

[
1
V 2
t

]
at time t ∈ [t0, T ] which is

continuous in t (see, for example, Cox, Ingersoll, and Ross (1985)). These results

show that the optimal strategy u∗ (2.3.13) is admissible.

2.4 Static and dynamic optimality of the problem

In this section, we devote to deriving the static and dynamic optimality of problem

(2.2.4) by exploiting the results above. In regard to the static optimality of problem

(2.2.4), it now suffices to maximize the following optimization problem with respect

to the Lagrange multiplier θ ∈ R in view of (2.2.5) and (2.2.6) above

max
θ∈R

J(x0, v0;u
∗, ξ − θ)− θ2. (2.4.1)

Reformulating (2.4.1) in terms of a quadratic functional over θ ∈ R, we find that

the value function of problem (2.2.4) can be obtained from

VMV (t0, v0, x0) = max
θ∈R

{(
e
−a(t0)

1
v0

−b(t0) − 1
)
θ2 + 2e

−a(t0)
1
v0

−b(t0)
(
x0e

r(T−t0) − ξ
)
θ

+e
−a(t0)

1
v0

−b(t0)
(
x0e

r(T−t0) − ξ
)2}

.

(2.4.2)

Upon considering the exponential expression of function g(t, v) given in Lemma

2.3.7 above, the right-hand side of (2.4.2) is then a quadratic function of θ ∈ R with

strictly negative leading coefficient. Therefore, to the right-hand side of (2.4.2) the

maximum is uniquely attained at

θ∗ =
x0e

r(T−t0) − ξ

e
a(t0)

1
v0

+b(t0) − 1
. (2.4.3)

Theorem 2.4.1. Assume Assumption 2.3.1 holds true, then for (t0, s0, x0) ∈
[0, T ) × R+ × R given and fixed such that x0e

r(T−t0) < ξ, the statically optimal

(Markovian) strategy of problem (2.2.4) is

u∗(t, v, x) = −

(
x− ξe−r(T−t)+a(t0) 1

v0
+b(t0) − x0e

r(t−t0)

ea(t0)
1
v0

+b(t0) − 1

)
µ− r − σa(t)

v
(2.4.4)

for t ∈ [t0, T ), where functions a(t) and b(t) are given in (2.3.8) and (2.3.9),

respectively. The corresponding value function is

VMV (t0, v0, x0) =
1

ea(t0)
1
v0

+b(t0) − 1

(
x0e

r(T−t0) − ξ
)2
. (2.4.5)

The controlled wealth process Xu∗

t is given by

X∗
t =

x0e
r(t−t0)+a(t0)

1
v0

+b(t0) − ξe
−r(T−t)+a(t0)

1
v0

+b(t0)

e
a(t0)

1
v0

+b(t0) − 1
Πt

· exp
{
−
∫ t

t0

(µ− r)
µ− r − σa(u)

Vu
du

}
+
ξe

−r(T−t)+a(t0)
1
v0

+b(t0) − x0e
r(t−t0)

e
a(t0)

1
v0

+b(t0) − 1
,

(2.4.6)
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where Πt is given in (2.3.12). Moreover, the statically optimal strategy u∗ belongs

to U .

Proof. Substituting (2.4.3) into (2.4.2) gives the value function (2.4.5). Replacing

the constant γ in (2.3.13) and (2.3.15) with ξ − θ∗ yields the statically optimal

strategy (2.4.4) and the wealth process (2.4.6), respectively. In view of the proof

in Proposition 2.3.11 above, it is obvious that the statically optimal strategy u∗

(2.4.4) is admissible.

As discussed in Section 2.2, the statically optimal strategy u∗ (2.4.4) derived

in Theorem 2.4.1 relies on the initial value (t0, v0, x0). This implies that once the

investor arrives at a new position (t, v, x) at later times, the statically optimal

strategy u∗ determined at the initial position would be sub-optimal. Now we give

the dynamically optimal strategy ud∗ of the problem (2.2.4) within the framework

developed in Pedersen and Peskir (2017).

Theorem 2.4.2. Assume Assumption 2.3.1 holds, then for (t0, v0, x0) ∈ [0, T )×
R+ × R given and fixed such that x0e

r(T−t0) < ξ, the dynamically optimal (Marko-

vian) strategy of problem (2.2.4) for t ∈ [t0, T ) is

ud∗(t, v, x) = −xe
a(t) 1

v+b(t) − ξe−r(T−t)+a(t) 1
v+b(t)

ea(t)
1
v+b(t) − 1

µ− r − σa(t)

v
. (2.4.7)

The corresponding controlled wealth process Xd∗
t is

Xd∗
t =

(
x0e

r(t−t0) − ξe−r(T−t)
)
exp

{∫ t

t0

−(µ− r)
e
a(u) 1

Vu
+b(u)

e
a(u) 1

Vu
+b(u) − 1

µ− r − σa(u)

Vu
du

−1

2

e
2a(u) 1

Vu
+2b(u)(

e
a(u) 1

Vu
+b(u) − 1

)2 (µ− r − σa(u))2

Vu
du


· exp

{
−
∫ t

t0

e
a(u) 1

Vu
+b(u)

e
a(u) 1

Vu
+b(u) − 1

µ− r − σa(u)√
Vu

dWu

}
+ ξe−r(T−t)

(2.4.8)

satisfying Xd∗
t er(T−t) < ξ for t ∈ [t0, T ).

Proof. To derive a candidate for the dynamic optimality ud∗ over t ∈ [t0, T ), we

identify t0 with t, x0 with x and v0 with v in the statically optimal strategy given in

(2.4.4). We then immediately find a candidate for the dynamically optimal strategy

ud∗(t, v, x) = −xe
a(t) 1

v+b(t) − ξe−r(T−t)+a(t) 1
v+b(t)

ea(t)
1
v+b(t) − 1

µ− r − σa(t)

v
. (2.4.9)

In what follows, we show that this candidate (2.4.9) is indeed dynamically optimal

in problem (2.2.4). To see this, we take any other admissible control π ∈ U such
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that Et,v,x[X
π
T ] = ξ and π(t, v, x) ̸= ud∗(t, v, x), and we set w = u∗ under the

measure Pt,v,x. We note from (2.4.4) with (t0, v0, x0) replaced by (t, v, x) that

u∗(t, v, x) = ud∗(t, v, x), and thus, we have w(t, v, x) = u∗(t, v, x) = ud∗(t, v, x) ̸=
π(t, v, x) for any t ∈ [0, T ). Then by continuity of π and w, there exists a ball

Bε := [t, t + ε] × [v − ε, v + ε] × [x − ε, x + ε] such that w(t̃, ṽ, x̃) ̸= π(t̃, ṽ, x̃) for

any (t̃, ṽ, x̃) ∈ Bε when ε > 0 is small enough and satisfies t+ ε ≤ T . We observe

from (2.3.18) that w = u∗ is, in fact, the unique continuous function such that the

minimum within the expectation on the right-hand side of (2.3.18) (with ξ − θ∗

and (t, v, x) in place of γ and (t0, v0, x0), respectively) is attained up to probability

one. Therefore, we can set exiting time τε = inf {t ∧ T | (t, Vt, Xπ
t ) /∈ Bε}, and we

see that for t̃ ≤ τε

Yt̃

{
π(t̃, Vt̃, X

π
t̃ )
√
Vt̃ +

(
µ− r√
Vt̃

+
Λt̃

Yt̃

)
Gt̃

}2

≥ ζ > 0, Pt,v,x-a.s.

where ζ is a fixed positive constant. Now, from (2.3.18) with ξ − θ∗ and (t, v, x) in

place of γ and (t0, v0, x0) respectively, we find that

Et,v,x[(X
π
T − (ξ − θ∗))2]

=Et,v,x

∫ τε

t

Yt̃

{
π(t̃, Vt̃, X

π
t̃ )
√
Vt̃ +

(
µ− r√
Vt̃

+
Λt̃
Yt̃

)
Gt̃

}2

dt̃


+ Et,v,x

[∫ T

τε

Yt′

{
π(t′, Vt′ , X

π
t′)
√
Vt′ +

(
µ− r√
Vt′

+
Λt′

Yt′

)
Gt′

}2

dt′

]

+ c
(
x− (ξ − θ∗)e−r(T−t)

)2
≥ζEt,v,x[τε − t] + c

(
x− (ξ − θ∗)e−r(T−t)

)2
>c
(
x− (ξ − θ∗)e−r(T−t)

)2
=Et,v,x[(X

w
T − (ξ − θ∗))2],

(2.4.10)

where c = exp
(
2r(T − t)− a(t) 1v − b(t)

)
is a constant at position (t, v, x), and

the strict inequality makes use of the fact that τε > t since the pair (V,Xπ) has

continuous sample paths with probability one under Pt,v,x measure. From (2.4.10)

we see that

Vart,v,x(X
π
T ) = Et,v,x[(X

π
T )

2]− ξ2

= Et,v,x[(X
π
T − (ξ − θ∗))2]− (θ∗)2

> Et,v,x[(X
w
T − (ξ − θ∗))2]− (θ∗)2

= Vart,v,x(X
w
T ).

This shows that for any (t, v, x) ∈ [0, T )× R+ × R, the candidate ud∗ (2.4.9) is the

dynamically optimal (Markovian) strategy for problem (2.2.4).

39



We substitute ud∗ (2.4.9) into the controlled wealth process (2.2.3) and denote the

corresponding wealth process by Xd∗
t . Using Itô’s lemma to Zt := ξ − er(T−t)Xd∗

t

yields

dZt =− (µ− r)
ea(t)

1
Vt

+b(t)

ea(t)
1
Vt

+b(t) − 1

µ− r − σa(t)

Vt
Zt dt

− ea(t)
1
Vt

+b(t)

ea(t)
1
Vt

+b(t) − 1

µ− r − σa(t)√
Vt

Zt dWt.

(2.4.11)

We then obtain the closed-form expression of Zt by solving the linear SDE (2.4.11)

Zt =z0 exp

{∫ t

t0

−(µ− r)
ea(u)

1
Vu

+b(u)

ea(u)
1

Vu
+b(u) − 1

µ− r − σa(u)

Vu
du

−1

2

e2a(u)
1

Vu
+2b(u)(

ea(u)
1

Vu
+b(u) − 1

)2 (µ− r − σa(u))2

Vu
du


· exp

{
−
∫ t

t0

ea(u)
1

Vu
+b(u)

ea(u)
1

Vu
+b(u) − 1

µ− r − σa(u)√
Vu

dWu

}
,

(2.4.12)

where z0 = ξ − x0e
r(T−t0) > 0. From the definition of Zt and (2.4.8) we conclude

that Xd∗
t er(T−t) < ξ for t ∈ [t0, T ). Finally, the corresponding wealth process Xd∗

t

(2.4.8) follows from (2.4.12).

2.5 Numerical examples

In this section, numerical examples are provided to analyze the impact of different

parameters on the efficient frontier when the wealth process is controlled by the

statically optimal strategy as well as to illustrate the differences between the

dynamically optimal wealth and the statically optimal wealth derived in Section

4. Unless otherwise stated, we consider the following model parameters adapted

from previous empirical studies (see, for example, Drimus (2012)): r = 0.04, µ =

0.2, κ = 22.84, θ = 0.4689, σ = 8.56, x0 = 1, v0 = 0.245, t0 = 0, T = 1, ξ = 4.

Figure 2.1 shows us how the interest rate r affects the efficient frontier. We

find that higher interest rate r results in larger Vart0,v0,x0
(X∗

T ) with the same

Et0,v0,x0
[X∗

T ]. One of the possible reasons is that although the investor can get

a higher return by investing in the risk-free asset, the risk premium (µ− r)/
√
Vt

decreases as r increases so that the investor indeed derives less expected return

from the stock, and thus undertakes more risk. In summary, the impact of r on the

stock is more significant than that on the risk-free asset.

Figure 2.2 shows how the return rate of the stock µ influences the efficient frontier.

A higher level of the return rate of the stock price µ lowers the variance of terminal

wealth Vart0,v0,x0
(X∗

T ) with the same Et0,v0,x0
[X∗

T ], which is quite clear due to the
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Figure 2.1: Impact of r on the efficient frontier

fact that the investor receives more risk premium as µ increases and the investor

can therefore undertake less risk by investing less into the stock and more into the

risk-free asset so as to have the same expected terminal wealth.

Figure 2.2: Impact of µ on the efficient frontier

The impact of the parameter κ on the efficient frontier is presented in Figure

2.3 below. We see that larger κ results in larger Vart0,v0,x0
(X∗

T ) with the same

Et0,v0,x0 [X
∗
T ]. One possible reason is that as κ partly stands for the mean-reversion

speed of the reciprocal of the stochastic volatility 1/Vt (recall the proof of Lemma

2.3.7 above), a larger κ results in a faster speed of 1/Vt towards the long-term level

(κ+ σ2)/κθ. Meanwhile, we see that the long-term level is, in fact, decreasing in κ.

These two aspects in turn make the volatility of the stock Vt stay longer around the

relatively higher level κθ/(κ+σ2). Hence, the investor has to undertake more risk.

The effect of the parameter σ on the efficient frontier is given in Figure 2.4 which
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Figure 2.3: Impact of κ on the efficient frontier

Figure 2.4: Impact of σ on the efficient frontier

shows that Vart0,v0,x0
(X∗

T ) decreases with the same Et0,v0,x0
[X∗

T ] as σ increases.

Again, from the proof of Lemma 2.3.7 above, we see that σ plays a role as the

volatility of the reciprocal of volatility process 1/Vt, and a larger σ results in milder

movements of the volatility process Vt. In addition, we see that the long-run level

of volatility κθ/(κ+ σ2) decreases as σ increases. Therefore, these two factors help

the investor bear less risk.

To end this section, we show the dynamics of wealth processes controlled by the

statically optimal strategy u∗ (2.4.4) and the dynamically optimal strategy ud∗

(2.4.7), respectively. By setting 500 equidistant time points over [0, 1], we simulate

two paths of optimal wealth processes X∗
t and Xd∗

t . Figure 2.5 illustrates the

significant difference between the dynamically optimal wealth process Xd∗
t and the

statically optimal wealth process X∗
t . In particular, we see that the result supports

the conclusion of Theorem 2.4.2 above that the dynamically optimal wealth Xd∗
t is
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strictly smaller than the expected terminal wealth ξ = 4 when t < 1.

Figure 2.5: Statically optimal wealth X∗
t and dynamically optimal wealth Xd∗

t

2.6 Conclusions

In this paper, a dynamically optimal mean-variance portfolio selection problem

within the framework developed in Pedersen and Peskir (2017) in a stochastic

environment has been investigated. A 3/2 stochastic volatility model is used to

characterize the stochastic volatility of the stock. Considering the methodology

in Pedersen and Peskir (2017) to tackle the time inconsistency of the optimality

under the mean-variance criterion, we first address the static optimality and solve

it by using a general BSDE approach. Under an assumption on model parameters,

we obtain the static optimality and the corresponding value function explicitly.

By solving the static optimality in an infinitesimally small period of time, the

closed-form expression of the dynamic optimality is derived. Considering some

technical difficulties, however, we have only studied the case without any state

constraint. One branch of research topics in the future is to impose path-wise

constraints on the wealth process; see, for example, Pedersen and Peskir (2018).
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Chapter 3

Dynamic optimal mean-variance portfolio

selection with stochastic volatility and

stochastic interest rate

Abstract

This paper studies optimal portfolio selection problems in the presence

of stochastic volatility and stochastic interest rate under the mean-

variance criterion. The financial market consists of a risk-free asset

(cash), a zero-coupon bond (roll-over bond), and a risky asset (stock).

Specifically, we assume that the interest rate follows the Vasicek model,

and the risky asset’s return rate not only depends on a Cox-Ingersoll-Ross

(CIR) process but also has stochastic covariance with the interest rate,

which embraces the family of state-of-the-art 4/2 stochastic volatility

models as an exceptional case. By adopting a backward stochastic

differential equation (BSDE) approach and solving two related BSDEs,

we derive, in closed form, the static optimal (time-inconsistent) strategy

and optimal value function. Given the time inconsistency of the mean-

variance criterion, a dynamic formulation of the problem is further

investigated and the explicit expression for the dynamic optimal (time-

consistent) strategy is derived. In addition, analytical solutions to some

special cases of our model are provided. Finally, the impact of the model

parameters on the efficient frontier and the behavior of the static and

dynamic optimal asset allocations is illustrated with numerical examples.

Keywords: Mean-variance portfolio selection; Vasicek interest rate; CIR process;

Dynamic optimality; Backward stochastic differential equation
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3.1 Introduction

Mean-variance portfolio selection problem is concerned with the trade-off between

profit (expected return) maximization and risk (variance) minimization. The

pioneering work of Markowitz (1952) laid the foundation for portfolio selection under

the mean-variance criterion in a single-period setting. By applying an embedding

technique and taking advantage of the stochastic linear-quadratic control theory,

Li and Ng (2000) and Zhou and Li (2000) extended Markowitz’s work to a multi-

period and continuous-time setting, respectively. A notable feature of Zhou and Li

(2000) is that the exogenous parameter processes are assumed to be only constants

or deterministic functions. To generalize Zhou and Li (2000)’s results to more

realistic environments, Lim and Zhou (2002) considered a complete market where

the model coefficients are assumed to be uniformly bounded stochastic processes. By

exploiting the backward stochastic differential equation (BSDE) theory (El Karoui,

Peng, and Quenez (1997)), they solved the mean-variance problem by relating

the optimal strategy to the solution to the associated BSDEs. Lim (2004) went

a step forward by extending the results and methods of Lim and Zhou (2002)

to an incomplete market setting under similar model assumptions. The uniform

boundedness hypothesis, however, precludes the applications of local volatility

and stochastic volatility models to the mean-variance portfolio selection problem,

such as the constant elasticity of variance (CEV) model, Heston model (Heston

(1993)), 3/2 model (Lewis (2000)), and the state-of-the-art 4/2 model (Grasselli

(2017)). For this reason, many researchers drew on a more general market by

relaxing the uniform boundedness hypothesis in recent years. For example, Shen,

Zhang, and Siu (2014) investigated a mean-variance portfolio selection problem

under the CEV model, and explicit solutions were obtained by using a BSDE

approach and assuming that the market price of volatility risk satisfies exponential

integrability of infinitely large order. Shen and Zeng (2015) further considered

the optimal investment-reinsurance problem for a mean-variance insurer in an

incomplete market, where the market price of risk is proportional to a Markovian,

affine-form, and square-root factor process. By using similar techniques, Tian, Guo,

and Sun (2021) studied a mean-variance investment-reinsurance problem when

the return rate of the stock follows an Ornstein-Uhlenbeck (OU) process. As the

literature on the mean-variance portfolio selection problems is abundant, the above

review is not exhaustive. Other relevant works include Chiu and Wong (2011), Yu

(2013), Lv, Wu, and Yu (2016), Sun and Guo (2018), Sun, Zhang, and Yuen (2020),

to name but only a few.

Although the mean-variance portfolio selection problems have been extensively

investigated in the last decade, two aspects deserve further exploration. First,

most of the preceding literature assumes that the interest rates are constants or

deterministic functions, which violates the well-documented evidence that the short
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rates are stochastic, mainly referred to Vasicek (1977), Cox, Ingersoll, and Ross

(1985), and Duffie and Kan (1996). It is noteworthy that, in the last few years, some

research results on portfolio optimization problems with stochastic interest rates

have been achieved. For example, Ferland and Watier (2010) considered a portfolio

selection problem under the mean-variance criterion in a complete market with an

extended CIR interest rate and obtained the optimal strategy by using a BSDE

approach. Assuming that the stochastic interest rate follows the Vasicek model,

Shen and Siu (2012) studied an asset allocation problem with regime switching in

an exponential utility maximization framework by using the dynamic programming

approach. Chang (2015) concerned a mean-variance problem with random liabilities

and Vasicek’s stochastic interest rate and solved the problem explicitly for two

special cases by using the dynamic programming approach. Guan and Liang (2014)

investigated a defined contribution pension management problem under power

utility in the presence of stochastic interest rates and stochastic volatility. By using

similar methods to Guan and Liang (2014), Guan and Liang (2015) considered a

similar problem under the mean-variance criterion with an affine-form stochastic

interest rate and a stochastic return rate driven by an OU process. Recent works

on the portfolio selection problems with stochastic interest rates include Yao, Li,

and Lai (2016), Pan and Xiao (2017c), Escobar, Neykova, and Zagst (2017) and

Escobar, Ferrando, and Rubtsov (2018), Chang et al. (2020), and references therein.

Second, the optimal investment strategies derived in most of the aforementioned

literature on the mean-variance portfolio selection problems are time-inconsistent

(Strotz (1956)), in the sense that the optimal strategies determined at the initial

time might not be optimal at a future time point since the nonlinear operator

within the objective function under the mean-variance criterion precludes the use

of Bellman’s principle of optimality. In recent years, there has been a growing

interest in developing time-consistent mean-variance approaches. To deal with the

time inconsistency under the mean-variance criterion, Basak and Chabakauri (2010)

applied a backward recursion approach starting from the terminal date to determine

a time-consistent optimal strategy. Alternatively, Björk, Khapko, and Murgoci

(2017) proposed the Nash equilibrium approach by imposing a time-consistent

constraint on the optimal strategy and derived the equilibrium optimal strategy

and equilibrium value function by essentially solving an HJB equation under the

Markovian market settings. Along this approach, readers may refer to Li, Zeng,

and Lai (2012), Wei and Wang (2017), and Zhang, Li, and Lai (2020). Different

from the equilibrium approach, the dynamic optimal approach championed by

Pedersen and Peskir (2017) tackled the time inconsistency of the static optimal

(time-inconsistent) strategy by performing an infinite number of the static optimality

over the investment period, and they, therefore, derived a dynamic optimal (time-

consistent) strategy. For other previous works along this line, one can refer to

Pedersen and Peskir (2018), Zhang (2021b,a), and references therein.
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Motivated by the above aspects, in this paper, we study a mean-variance portfolio

selection problem that takes into consideration interest rate and volatility risks

within the framework developed by Pedersen and Peskir (2017). Three primitive

assets, one risk-free asset, one risky asset, and one zero-coupon bond, can be freely

traded in the market. We assume that the stochastic interest rate is described by

the Vasicek model. Inspired by Escobar, Ferrando, and Rubtsov (2018), the risky

asset price exhibits not only stochastic volatility but also stochastic covariance

with the interest rate. As opposed to most of the above-mentioned literature

on the mean-variance portfolio selection problems, the risky asset’s return rate

and volatility are not specifically given. We only assume that the market price

of volatility risk relies on a Cox-Ingersoll-Ross (CIR) process, which embraces

the family of state-of-the-art 4/2 stochastic volatility models (Cheng and Escobar

(2021a)) as a particular case. By applying a BSDE approach and solving the

associated BSDE explicitly, closed-form expressions for the static optimal (time-

inconsistent) strategy and optimal value function (efficient frontier) are derived.

Following the methodology of Pedersen and Peskir (2017), we further consider a

dynamic formulation of the mean-variance problem, and the explicit expression for

the dynamic optimal (time-consistent) strategy is obtained by solving an infinite

number of the static optimality over the investment period. Moreover, analytical

solutions to some special cases of our model are provided. Finally, the economic

impact of some model parameters on the efficient frontier as well as on the static

and dynamic optimal asset allocations is illustrated with numerical examples. To

sum up, the main contributions of this paper are as follows: (1) we consider a

mean-variance portfolio selection problem in an incomplete market with interest

rate and volatility risks, where the stochastic interest rate follows the Vasicek model

while the market price of volatility risk is driven by a CIR process recovering the

Heston model, 3/2 model, and 4/2 model as special cases. (2) Explicit expressions

for the static optimal (time-inconsistent) and dynamic optimal (time-consistent)

strategies are obtained by applying a BSDE approach. (3) The impact of some

model parameters on the efficient frontier and the static and dynamic optimal asset

allocations is shown.

The remainder of this paper is structured as follows. Section 3.2 introduces the

financial market and formulates the mean-variance portfolio selection problems. In

Section 3.3, we explore the solvability of a BSRE and a linear BSDE and obtain

the explicit solutions. Section 3.4 presents both the static and dynamic optimality

of the mean-variance problem, and closed-form solutions to some special cases are

recovered. In Section 3.5, some numerical experiments are implemented to illustrate

our theoretical results. Section 3.6 concludes the paper.
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3.2 Formulation of the problem

Let [0, T ] be a fixed and finite horizon of decision making and (Ω,F ,F,P) be a filtered
complete probability space satisfying the usual conditions on which are defined three

one-dimensional, mutually independent Brownian motions
{
W 0
t

}
t∈[0,T ]

,
{
W 1
t

}
t∈[0,T ]

,

and
{
W 2
t

}
t∈[0,T ]

. where filtration F := {Ft}t∈[0,T ] is generated by the above three

Brownian motions, and P is a real-world probability measure.

3.2.1 Financial market

We consider a financial market with interest rate and volatility risks, where a risk-

free asset (cash), a zero-coupon bond, and a risky asset (stock) can be continuously

traded. Assume that the price of the risk-free asset, denoted by S0
t , satisfies the

following dynamics:

dS0
t = rtS

0
t dt

with initial value S0
t0 = s0 at time t0 ∈ [0, T ) fixed and given, and that the

instantaneous interest rate rt is governed by the Vasicek model:

drt = (a− brt) dt− σr dW
0
t , (3.2.1)

with initial value rt0 = r0, where b ∈ R+ is the mean-reversion speed, a/b ∈ R+

is the long-run level, and σr is the volatility of the interest rate. Suppose that

the market price of interest rate risk is λr ∈ R+. From Vasicek (1977), the price

process Bt(u) of the zero-coupon bond with bond maturity u satisfies the following

stochastic differential equation (SDE):

dBt(u) = rtBt(u) dt+ h0(u− t)Bt(u)σr
(
λr dt+ dW 0

t

)
, t ≤ u (3.2.2)

with boundary condition Bu(u) = 1, where the deterministic function h0(t) is given

by

h0(t) =
1

b

(
1− e−bt

)
.

We notice that the maturity of the zero-coupon bond Bt(u), u−t, varies continuously
as time t evolves. However, as it is stated in Boulier, Huang, and Taillard (2001),

there may not exist zero-coupon bonds with any maturity in the market. We,

therefore, introduce a rollover bond with a fixed time-to-maturity K ∈ R+ into

the market. Denote by Bt(K) the price of the rollover bond at time t. Then, the

rollover bond Bt(K) is of the form:

dBt(K) = rtBt(K) dt+ h0(K)σrBt(K)
(
λr dt+ dW 0

t

)
. (3.2.3)

The risky asset price process S1
t is related to the risk of interest rate and governed

by the following general stochastic volatility model:

dS1
t = S1

t

[
µ (t, rt, αt) dt+ ηrσr dW

0
t + σ (t, αt) dW

1
t

]
, S1

t0 = s10 ∈ R+, (3.2.4)
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where µ and σ ̸= 0 are two possibly unbounded and continuous functions and

related to each other via:

µ(t, rt, αt)− rt = λ
√
αtσ(t, αt) + λrηrσr

with λ, ηr ∈ R, and αt is an observable stochastic factor process following the CIR

model:

dαt = κ(θ − αt) dt+ σα
√
αt

(
ρ dW 1

t +
√
1− ρ2 dW 2

t

)
, αt0 = α0 ∈ R+, (3.2.5)

where κ ∈ R+ is the speed of mean reversion, θ ∈ R+ is the long-run mean, σα is

the volatility of the factor process αt, and ρ ∈ [−1, 1] is the correlation coefficient

between the risky asset price and factor process. In particular, we posit that the

Feller condition is satisfied, i.e. 2κθ ≥ σ2
α, so that the factor process αt driving the

volatility of the risky asset price is strictly positive P almost surely, for t ∈ [t0, T ].

Remark 3.2.1. Notice that the risky asset price process (3.2.4) exhibits not only

stochastic volatility via the function σ and factor process αt (3.2.5), but also

stochastic instantaneous correlation ηrσr√
η2rσ

2
r+σ

2(t,αt)
∈ [−1, 1] with the interest rate

process rt (3.2.1), in which the parameter ηr measures the impact of the interest

rate dynamics on the risky asset price, and the specification ηr = 0 corresponds

to the case when the interest rate and risky asset price are uncorrelated. It is also

noteworthy that functions µ and σ allow for more flexibility in modeling the risky

asset price. In what follows, we shall see that the modeling framework includes

the family of the state-of-the-art 4/2 stochastic volatility models, as an exceptional

case.

Example 3.2.2 (The 4/2 model). If σ (t, αt) = c1
√
αt +

c2√
αt
, µ (t, αt, rt) =

rt + λ(c1αt + c2) + λrηrσr with constants c1 ≥ 0 and c2 ≥ 0, and αt = Vt, then the

risky asset price process is given by the 4/2 model (Grasselli (2017)):
dS1

t =S1
t

[
(rt + λ(c1Vt + c2) + λrηrσr) dt+

(
c1
√
Vt +

c2√
Vt

)
dW 1

t + ηrσr dW
0
t

]
,

dVt =κ(θ − Vt) dt+ σα
√
Vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
,

(3.2.6)

where Vt is the instantaneous variance driver process, and parameters c1 and c2
characterize the superposition of the two embedded parsimonious models, the

Heston model (Heston (1993)) and 3/2 model (Lewis (2000)). More specifically, the

case (c1, c2) = (1, 0) stands for the Heston model, while (c1, c2) = (0, 1) corresponds

to the 3/2 model.

Suppose that the investor has an initial wealth x0 ∈ R+ at time t0. Denote by

two Markovian controls πB(t, αt, rt, X
π
t ) and πS1(t, αt, rt, X

π
t ) the market value of

wealth invested in the rollover bond Bt(K) and risky asset S1
t , respectively, where
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π :=
(
{πB(·)}t∈[t0,T ] , {πS1(·)}t∈[t0,T ]

)
represents the investment strategy and Xπ

t

is the associated wealth process. Under a self-financing condition, the wealth of the

investor evolves according to

dXπ
t =

[
rtX

π
t + πB(t, αt, rt, X

π
t )h0(K)σrλr + πS1(t, αt, rt, X

π
t )

(
σ (t, αt)λ

√
αt

+λrηrσr

)]
dt+ (πB(t, αt, rt, X

π
t )h0(K)σr + πS1(t, αt, rt, X

π
t )ηrσr) dW

0
t

+ πS1(t, αt, rt, X
π
t )σ(t, αt) dW

1
t .

(3.2.7)

Throughout the rest of the paper, we denote by Pt0 the probability measure with

initial data (αt0 , rt0 , X
π
t0) = (α0, r0, x0) at time t0 ∈ [0, T ], and Et0 [·] and Vart0(·)

denote the associated expectation and variance, respectively.

Definition 3.2.3 (Admissible strategy)). Given any fixed initial time t0 ∈ [0, T ), a

Markovian investment strategy π is said to be admissible if the following conditions

are met:

1. SDE (3.2.7) associated with π has a pathwise unique solution;

2. Et0

[∫ T
0
π2
B(t, αt, rt, X

π
t ) + π2

S1
(t, αt, rt, X

π
t ) dt

]
< +∞;

3. Et0

[∫ T
0
π2
S1
(t, αt, rt, X

π
t )σ

2(t, αt) dt
]
< +∞;

4. Et0

[
supt∈[t0,T ] |Xπ

t |4
]
< +∞.

The set of admissible strategies is denoted by A.

Remark 3.2.4. Due to the unboundedness of interest rate process rt and factor

process αt in the meantime, the square integrability condition for the associated

wealth process adopted by some preceding literature, such as Tian, Guo, and Sun

(2021), Sun, Zhang, and Yuen (2020), and Zhang (2021b,a), is not sufficient to apply

the dominated convergence theorem on the left-hand side of (3.G.2) to exchange the

order of limit and expectation. We, therefore, opt for the fourth-order integrability

condition for the wealth process Xπ
t , i.e. condition 4 in Definition 3.2.3.

3.2.2 Optimization problems

We consider the investor who wants to trade over the time interval [t0, T ] to

minimize the variance of the terminal wealth, while the expected value is exogenously

determined, i.e., under the mean-variance criterion. Formally, the mean-variance

portfolio selection problem is defined as follows.
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Definition 3.2.5. The mean-variance portfolio problem is a constrained stochastic

optimization problem: min
π∈A

Vart0(X
π
T )

subject to Et0 [X
π
T ] = ξ,

(3.2.8)

where ξ is a fixed and given constant. We denoted by VMV (t0, α0, r0, x0) and π∗

the optimal value function and optimal investment strategy, respectively.

Considering the time inconsistency of the mean-variance criterion as discussed

in the introduction, it is expected to see that the resulting optimal strategy relies

on the initial value of state variables (t0, α0, r0, x0) and might not be guaranteed

to be optimal at a future time point. To address this problem, we opt for the

dynamic optimal approach introduced by Pedersen and Peskir (2017). For the

readers’ convenience, we now present the definition of dynamic optimality, which is

slightly modified from Definition 2 in Pedersen and Peskir (2017), to adapt to the

current context.

Definition 3.2.6 (Dynamic optimality). Given any fixed initial time t0 ∈ [0, T ),

a Markovian investment strategy πd∗ =:
({
πd∗B (·)

}
t∈[t0,T ]

,
{
πd∗S1(·)

}
t∈[t0,T ]

)
is re-

ferred to as the dynamic optimality for the mean-variance problem (3.2.8) if for

every (t, α, r, x) ∈ [t0, T )⊗ R+ ⊗ R⊗ R and every admissible strategy u ∈ A with

u(t, α, r, x) ̸= πd∗(t, α, r, x) and Et,α,r,x[X
u
T ] = ξ, there is a Markovian strategy w

satisfying w(t, α, r, x) = πd∗(t, α, r, x) and Et,α,r,x,[X
w
T ] = ξ such that

Vart,α,r,x(X
w
T ) < Vart,α,r,x(X

u
T ),

where Et,α,r,x[X
π
T ] = E[Xπ

T | αt = α, rt = r,Xπ
t = x] and Vart,α,r,x(X

π
T ) =

Et,α,r,x[(X
π
T )

2]− (Et,α,r,x[X
π
T ])

2.

Remark 3.2.7. According to Pedersen and Peskir (2017), the dynamic optimality

πd∗ is essentially derived by solving the static optimal strategy, i.e., π∗ at each time

and implementing it in an infinitesimally small period of time. In other words, the

static optimality shall be considered in the first place.

Since the mean-variance problem (3.2.8) involves a convex objective functional,

the associated linear constraint Et0 [X
π
T ] = ξ can be eliminated by introducing the

following auxiliary Lagrange dual function:

L(α0, r0, x0;π, θ) : = Et0 [(X
π
T − ξ)2] + 2θEt0 [X

π
T − ξ]

= Et0
[
(Xπ

T − (ξ − θ))2
]
− θ2,

(3.2.9)

where θ ∈ R is the Lagrange multiplier. According to the Lagrangian duality

theorem (see, for example, Luenberger (1968)), problem (3.2.8) is equivalent to the
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following min-max problem:

max
θ∈R

min
π∈A

L(α0, r0, x0;π, θ), (3.2.10)

which implies that it remains to first consider the following benchmark problem:

min
π∈A

J(α0, r0, x0;π, γ) := min
π∈A

Et0
[
(Xπ

T − γ)2
]
, (3.2.11)

where γ = ξ − θ ∈ R.

3.3 Solution to the benchmark problem

In this section, we mainly focus on the benchmark problem (3.2.11) using a BSDE

approach. Before introducing the BSDEs associated with the benchmark problem

(3.2.11), we present the following auxiliary results on the Vasicek model (3.2.1)

and CIR model (3.2.5), which are modified from Lemma 4.3 in Benth and Karlsen

(2005), Lemma 4.1 in Wei and Wang (2017), and Theorem 5.1 in Zeng and Taksar

(2013), respectively.

Lemma 3.3.1. For the Vasicek model (3.2.1), when c is a constant such that

c < b
2σ2

r(T−t0) , the Laplace transform of r2t is well-defined, i.e.,

Et0

[
exp

{
c

∫ T

t0

r2t dt

}]
< +∞.

Lemma 3.3.2. For the Vasicek model (3.2.1), |rt| has exponential moment of all

order, i.e.,

Et0

[
sup

t∈[t0,T ]

ep|rt|

]
< +∞, ∀p ≥ 0.

Lemma 3.3.3. For the CIR model (3.2.5), when c is a constant such that c ≤
κ2/2σ2

α, the Laplace transform of αt is well-defined, i.e.,

Et0

[
exp

{
c

∫ T

t0

αt dt

}]
< +∞.

Having reviewed the above preliminary results, we now impose the following

assumption to facilitate further discussions:

Assumption 3.3.4. 48σ2
rT < b and max

{
24λ(λ+ σα|ρb(t0)|), (276+ 48

√
33)(λ2 +

σ2
αb

2(t0))

}
≤ κ2/2σ2

α, where function b(t) is given by (3.3.9) below.
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Remark 3.3.5. The monotonicity of function b(t) shown in Proposition 3.3.9 implies

that |b(t)| decreases to 0 as T approaches 0, which indicates the mathematical

feasibility of the assumption above when the investment horizon is small enough.

From an economic point of view, Assumption 3.3.4 presents an upper bound for

the slope λ of the market price of volatility risk. As stated in Korn and Kraft

(2004), when λ is too large, undertaking volatility risk is rewarded too much by the

market, and the optimal investment strategy might not be uniquely determined.

Mathematically speaking, if the above technical condition is violated, the uniqueness

result to the following BSRE (3.3.1) and linear BSDE (3.3.2) might not be ensured.

Considering the following BSRE and linear BSDE:



dPt =

{[
−2rt + λ2r + λ2αt

]
Pt + 2λrΓ0,t + 2λ

√
αtΓ1,t +

Γ2
0,t

Pt
+

Γ2
1,t

Pt

}
dt

+ Γ0,t dW
0
t + Γ1,t dW

1
t + Γ2,t dW

2
t ,

PT =1,

Pt >0, for all t ∈ [t0, T ],

(3.3.1)

and

{
dYt = (rtYt + Ztλr) dt+ Zt dW

0
t ,

YT = −γ.
(3.3.2)

Here, a solution to (3.3.1) is a triplet of F-adapted processes (Pt,Γ0,t,Γ1,t,Γ2,t); a

solution to (3.3.2) is a pair of F-adapted processes (Yt, Zt). It is noteworthy that

these two kinds of BSDEs are with unbounded coefficients due to the unboundedness

of the interest rate process rt and factor process αt, and thus, the results in

Lim (2004) and El Karoui, Peng, and Quenez (1997) cannot be used in our case.

Nevertheless, by observing that the driver of linear BSDE (3.3.2) follows a stochastic

Lipschitz continuity (Bender and Kohlmann (2000)), we derive the unique solution

to BSDE (3.3.2) in the next lemma.

Lemma 3.3.6. Suppose that Assumption 3.3.4 holds true. The unique solution

(Yt, Zt) to linear BSDE (3.3.2) is given by

{
Yt = −γ exp {g(t) + h(t)rt} ,
Zt = −σrh(t)Yt,

(3.3.3)

54



where functions g(t) and h(t) are given by

g(t) =

(
σ2
r

2b2
− a+ σrλr

b

)
(T − t) +

(
a+ λrσr

b2
− σ2

r

b3

)(
1− e−b(T−t)

)
+
σ2
r

4b3

(
1− e−2b(T−t)

)
,

h(t) =
1

b

(
e−b(T−t) − 1

)
.

(3.3.4)

Proof. See Appendix 3.A.

By using the Markovian structures of the interest rate process rt and factor

process αt, we next manage to derive one explicit solution to BSRE (3.3.1) and

show its uniqueness.

Lemma 3.3.7. One solution (Pt,Γ0,t,Γ1,t,Γ2,t) to BSRE (3.3.1) is given by

Pt = exp {a(t)rt + b(t)αt}ϕ(t), (3.3.5)

and

(Γ0,t,Γ1,t,Γ2,t) = (−σra(t)Pt, σαρb(t)
√
αtPt, σα

√
1− ρb(t)

√
αtPt), (3.3.6)

where functions a(t), b(t), and ϕ(t) are solutions to the following ordinary differential

equations (ODEs):

da(t)

dt
− ba(t) + 2 = 0, a(T ) = 0,

db(t)

dt
− (κ+ 2ρσαλ)b(t) +

(
1

2
− ρ2

)
σ2
αb

2(t)− λ2 = 0, b(T ) = 0,

dϕ(t)

dt
+

[
(a+ 2σrλr)a(t) + κθb(t)− 1

2
a2(t)σ2

r − λ2r

]
ϕ(t) = 0, ϕ(T ) = 1.

(3.3.7)

Proof. See Appendix 3.B.

In the next proposition, we derive explicit solutions to ODEs (3.3.7), which

provides the closed-form solution to BSRE (3.3.1).

Proposition 3.3.8. The explicit solutions of a(t), b(t), and ϕ(t) to ODEs (3.3.7)

are given as follows:

a(t) =
2

b

(
1− e−b(T−t)

)
, (3.3.8)
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and

b(t) =



λ2

k + 2λρσα

(
e(k+2λρσα)(t−T ) − 1

)
, ρ2 =

1

2
, k + 2λρσα ̸= 0;

λ2(t− T ), ρ2 =
1

2
, k + 2λρσα = 0;

n1n2(1− e
√
∆(T−t))

n1 − n2e
√
∆(T−t)

, ρ2 ̸= 1

2
, ∆ > 0;

σ2
α(ρ

2 − 1
2 )(T − t)n20

σ2
α(ρ

2 − 1
2 )(T − t)n0 − 1

, ρ2 ̸= 1

2
, ∆ = 0;

√
−∆

σ2
α(2ρ

2 − 1)
tan

(
arctan

(
k + 2λρσα√

−∆

)
−

√
−∆

2
(T − t)

)
+ n0, ρ2 ̸= 1

2
, ∆ < 0,

(3.3.9)

and

ϕ(t) = exp

{∫ T

t

(a+ 2σrλr)a(s) + κθb(s)− 1

2
a2(s)σ2

r − λ2r ds

}
, (3.3.10)

where ∆, n0, n1, and n2 are given by
∆ = (k + 2λρσα)

2 − (4ρ2 − 2)σ2
αλ

2, n0 =
−(k + 2λρσα)

σ2
α(2ρ

2 − 1)
,

n1 =
−(k + 2λρσα) +

√
∆

σ2
α(2ρ

2 − 1)
, n2 =

−(k + 2λρσα)−
√
∆

σ2
α(2ρ

2 − 1)
.

(3.3.11)

Proof. See Appendix 3.C.

The next proposition shows that b(t) is a strictly increasing function over [t0, T ].

In other words, the maximum value of |b(t)| is attained at the initial time t0.

Proposition 3.3.9. Function b(t) is monotonically increasing over [t0, T ].

Proof. See Appendix 3.D.

Lemma 3.3.10. Suppose that Assumption 3.3.4 holds true. The solution given in

(3.3.5) and (3.3.6) is the unique solution to BSRE (3.3.1).

Proof. See Appendix 3.E.

Having derived the uniqueness results of BSRE (3.3.1) and linear BSDE (3.3.2),

we now define the following two stochastic exponential processes Π0,t and Π1,t, for

t ∈ [t0, T ],
Π0,t = exp

{
−
∫ t

t0

(λr − σra(s)) dW
0
s −

∫ t

t0

1

2
(λr − σra(s))

2
ds

}
,

Π1,t = exp

{
−
∫ t

t0

(λ+ σαρb(s))
√
αs dW

1
s −

∫ t

t0

1

2
(λ+ σαρb(s))

2αs ds

}
.

(3.3.12)
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In the next lemma, we investigate the integrability of Π0,t and Π1,t, which shall be

used in the proof of Proposition 3.3.12 below.

Lemma 3.3.11. Suppose that Assumption 3.3.4 holds true. The stochastic expo-

nential processes Π0,t and Π1,t defined in (3.3.12) satisfy

Et0

[
sup

t∈[t0,T ]

|Π0,t|12 + |Π1,t|12
]
< +∞.

Proof. See Appendix 3.F.

Based on the preceding results, we are ready to present the first main result of

this paper, which relates the optimal strategy and optimal value function of the

benchmark problem (3.2.11) to the solutions to BSRE (3.3.1) and linear BSDE

(3.3.2).

Proposition 3.3.12. Suppose that Assumption 3.3.4 holds true. For any initial

data (t0, α0, r0, x0) ∈ [0, T )⊗ R+ ⊗ R⊗ R fixed and given, the optimal investment

strategy, denoted by π∗, of the benchmark problem (3.2.11) is given by
π∗
S1(t, αt, rt, X

∗
t ) =−

(X∗
t + Yt)

(
Γ1,t

Pt
+ λ

√
αt

)
σ(t, αt)

,

π∗
B(t, αt, rt, X

∗
t ) =−

(X∗
t + Yt)

(
Γ0,t

Pt
+ λr

)
+ Zt + π∗

S1(t, αt, rt, X
∗
t )ηrσr

h0(K)σr
,

(3.3.13)

where Yt, Zt, Pt,Γ0,t, and Γ1,t are given by (3.3.3), (3.3.5), and (3.3.6), respectively.

The optimal value function is given by

J(α0, r0, x0;π
∗, γ) = Pt0 (x0 + Yt0)

2 , (3.3.14)

and the wealth process X∗
t associated with the optimal strategy (3.3.13) evolves as

X∗
t =

(
x0 − γeg(t0)+h(t0)r0

)
exp

{∫ t

t0

rs − (λ2
r − λrσra(s))− (λ2 + λσαρb(s))αs ds

}
×Π0,tΠ1,t + γeg(t)+h(t)rt ,

(3.3.15)

where g(t), h(t), a(t), b(t),Π0,t, and Π1,t are given in (3.3.4), (3.3.8), (3.3.9), and

(3.3.12), respectively. Moreover, the optimal strategy given in (3.3.13) is admissible.

Proof. See Appendix 3.G.
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3.4 Static and dynamic optimality of the problem

In this section, we derive the static and dynamic optimality of the mean-variance

problem (3.2.8). The static optimal investment strategy and optimal value function

(efficient frontier) of problem (3.2.8) are obtained by solving (3.2.9) and (3.2.11) in

a backward sequence.

Specifically, based on the relationship between the mean-variance problem (3.2.8)

and benchmark problem (3.2.11) as shown in (3.2.10), we have

VMV (t0, α0, r0, x0)

=max
θ∈R

J(α0, r0, x0;π
∗, ξ − θ)− θ2

=max
θ∈R

{
[exp {b(t0)α0 + 2g(t0)}ϕ(t0)− 1] θ2

+ 2 exp {(a(t0) + h(t0))r0 + b(t0)α0 + g(t0)}ϕ(t0)
(
x0 − ξeg(t0)+h(t0)r0

)
θ

+ exp {a(t0)r0 + b(t0)α0}ϕ(t0)
(
x0 − ξeg(t0)+h(t0)r0

)2}
.

(3.4.1)

It can be easily checked that the leading coefficient of the above quadratic function

of θ is negative, i.e,

exp {b(t0)α0 + 2g(t0)}ϕ(t0) < exp

{
−
∫ T

t0

(
a(t)σr

2
− λr

)2

dt

}
≤ 1,

where the strict inequality follows from the negativeness of function b(t) implied

by Proposition 3.3.9. As such, the maximum of the right-hand side of (3.4.1) is

attained at

θ∗ =
exp {(a(t0) + h(t0))r0 + b(t0)α0 + g(t0)}ϕ(t0)

(
ξeg(t0)+h(t0)r0 − x0

)
exp {b(t0)α0 + 2g(t0)}ϕ(t0)− 1

. (3.4.2)

Now we are ready to state our second main result.

Theorem 3.4.1. Suppose that Assumption 3.3.4 holds true. For any initial data

(t0, α0, r0, x0) ∈ [0, T )⊗ R+ ⊗ R⊗ R fixed and given, the static optimal investment

strategy of the mean-variance problem (3.2.8) is given by

π∗
S1(t, αt, rt, X

∗
t ) =−

(
X∗
t − (ξ − θ∗)eg(t)+h(t)rt

)
(λ+ σαρb(t))

√
αt

σ(t, αt)
,

π∗
B(t, αt, rt, X

∗
t ) =− (X∗

t − (ξ − θ∗)eg(t)+h(t)rt)(λr − σra(t)) + (ξ − θ∗)σrh(t)e
g(t)+h(t)rt

h0(K)σr

−
π∗
S1(t, αt, rt, X

∗
t )ηr

h0(K)
,

(3.4.3)

where θ∗ is given by (3.4.2), and g(t), h(t), a(t), and b(t) are given by (3.3.4),

(3.3.8), and (3.3.9), respectively. The optimal value function (efficient frontier) is
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given by

VMV (t0, α0, r0, x0) =
exp {a(t0)r0 + b(t0)α0}ϕ(t0)

(
x0 − ξeg(t0)+h(t0)r0

)2
1− exp {b(t0)α0 + 2g(t0)}ϕ(t0)

, (3.4.4)

and the wealth process X∗
t associated with (3.4.3) evolves according to

X∗
t =

(
x0 − (ξ − θ∗)eg(t0)+h(t0)r0

)
exp

{∫ t

t0

rs − (λ2r − λrσra(s))− (λ2 + λσαρb(s))αs ds

}
×Π0,tΠ1,t + (ξ − θ∗)eg(t)+h(t)rt ,

(3.4.5)

where Π0,t and Π1,t are given by (3.3.12). Moreover, the static optimality (3.4.3) is

admissible.

Proof. Replacing the constant γ in (3.3.13) and (3.3.15) by ξ−θ∗ leads to the static

optimal strategy (3.4.3) and the associated wealth process (3.4.5), respectively.

Plugging θ∗ given in (3.4.2) back into the right-hand side of (3.4.1) yields the

optimal value function (3.4.4). Moreover, following the proof of Proposition 3.3.12,

it is evident that the static optimal strategy (3.4.3) is admissible, i.e., π∗ ∈ A.

The next corollary provides the explicit results for one special case of our model,

the 4/2 stochastic volatility model.

Corollary 3.4.2 (The 4/2 model). Suppose that Assumption 3.3.4 holds true.

If the risky asset price S1
t follows the 4/2 model (3.2.6), then the static optimal

investment strategy and optimal value function of the mean-variance problem (3.2.8)

are, respectively, given by

π∗
B(t, Vt, rt, X

∗
t ) =− (X∗

t − (ξ − θ∗)eg(t)+h(t)rt)(λr − σra(t)) + (ξ − θ∗)σrh(t)e
g(t)+h(t)rt

h0(K)σr

−
π∗
S1(t, Vt, rt, X

∗
t )ηr

h0(K)
,

π∗
S1(t, Vt, rt, X

∗
t ) =−

(
X∗
t − (ξ − θ∗)eg(t)+h(t)rt

)
(λ+ σαρb(t))

√
Vt

c1
√
Vt +

c2√
Vt

,

and

VMV (t0, v0, r0, x0) =
exp {a(t0)r0 + b(t0)v0}ϕ(t0)

(
x0 − ξeg(t0)+h(t0)r0

)2
1− exp {b(t0)v0 + 2g(t0)}ϕ(t0)

.

Proof. Plugging the specified parameters of the 4/2 model (3.2.6) given in Example

3.2.2 into (3.4.3)-(3.4.4) leads to the above results.

Remark 3.4.3. If we further specify (c1, c2) = (1, 0) and (c1, c2) = (0, 1) in Corollary

3.4.2, explicit solutions to the embedded Heston model and 3/2 stochastic volatility
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model are derived, respectively. To the best of our knowledge, there is no existing

literature on the portfolio selection problems reporting the above results for the

hybrid Vasicek-4/2 model under the mean-variance criterion.

As discussed in Section 3.2, the static optimal investment strategy given in

Theorem 3.4.1 is time-inconsistent because it depends on the initial value of the

state variables via θ∗, and thus, the mean-variance investor might deviate from it

whenever any new position at a future time is arrived at. Now, we proceed to derive

the dynamic optimality of the mean-variance problem (3.2.8) within the framework

championed by Pedersen and Peskir (2017), which is the third main result of this

paper.

Theorem 3.4.4. Suppose that Assumption 3.3.4 holds true. For any initial data

(t0, α0, r0, x0) ∈ [0, T )⊗R+⊗R⊗R fixed and given, the dynamic optimal investment

strategy πd∗ of the mean-variance problem (3.2.8) is given by

πd∗S1(t, αt, rt, X
d∗
t ) =

(
Xd∗
t − ξeg(t)+h(t)rt

)
(λ+ σαρb(t))

√
αt

(exp {b(t)αt + 2g(t)}ϕ(t)− 1)σ(t, αt)
,

πd∗B (t, αt, rt, X
d∗
t ) =

Xd∗
t (λr − σra(t)− exp {b(t)αt + 2g(t)}ϕ(t)h(t)σr)

(exp {b(t)αt + 2g(t)}ϕ(t)− 1)h0(K)σr

− ξeg(t)+h(t)rt (λr + h(t)σr)

(exp {b(t)αt + 2g(t)}ϕ(t)− 1)h0(K)σr
−
πd∗S1(t, αt, rt, X

d∗
t )ηr

h0(K)
,

(3.4.6)

where Xd∗
t is the wealth process associated with πd∗ and evolves according to

Xd∗
t =ξeg(t)+h(t)rt + exp

{∫ t

t0

[
λr (λr − exp {b(u)αu + 2g(u)}ϕ(u)h(u)σr − σra(u))

exp {b(u)αu + 2g(u)}ϕ(u)− 1

+
(λ+ σαρb(u))λαu

exp {b(u)αu + 2g(u)}ϕ(u)− 1
+ ru

]
du

}
Π2,tΠ3,t

(
x0 − ξeg(t0)+h(t0)r0

)
,

(3.4.7)

with Π2,t and Π3,t given by

Π2,t =exp

{∫ t

t0

(λ+ σαρb(u))
√
αu

exp {b(u)αu + 2g(u)}ϕ(u)− 1
dW 1

u

−1

2

∫ t

t0

(λ+ σαρb(u))
2αu

(exp {b(u)αu + 2g(u)}ϕ(u)− 1)2
du

}
,

Π3,t =exp

{∫ t

t0

λr − σra(u)− exp {b(u)αu + 2g(u)}ϕ(u)h(u)σr

exp {b(u)αu + 2g(u)}ϕ(u)− 1
dW 0

u

−1

2

∫ t

t0

(λr − σra(u)− exp {b(u)αu + 2g(u)}ϕ(u)h(u)σr)
2

(exp {b(u)αu + 2g(u)}ϕ(u)− 1)2
du

}
.

Furthermore, if the initial data satisfies x0 ≤ ξeg(t0)+h(t0)r0 , then it holds that

Xd∗
t ≤ ξeg(t)+h(t)rt , Pt0 almost surely.

Proof. See Appendix 3.H.
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Corollary 3.4.5 (The 4/2 model). Suppose that Assumption 3.3.4 holds true. If

the risky asset price S1
t follows the 4/2 model (3.2.6), then the dynamic optimal

investment strategy πd∗ of the mean-variance problem (3.2.8) is given by

πd∗S1(t, Vt, rt, X
d∗
t ) =

(
Xd∗
t − ξeg(t)+h(t)rt

)
(λ+ σαρb(t))Vt

(exp {b(t)Vt + 2g(t)}ϕ(t)− 1)(c1Vt + c2)
,

πd∗B (t, Vt, rt, X
d∗
t ) =

Xd∗
t (λr − σra(t)− exp {b(t)Vt + 2g(t)}ϕ(t)h(t)σr)

(exp {b(t)Vt + 2g(t)}ϕ(t)− 1)h0(K)σr

− ξeg(t)+h(t)rt (λr + h(t)σr)

(exp {b(t)Vt + 2g(t)}ϕ(t)− 1)h0(K)σr
−
πd∗S1(t, Vt, rt, X

d∗
t )ηr

h0(K)
,

where the wealth process Xd∗
t satisfies that Xd∗

t ≤ ξeg(t)+h(t)rt , for t ∈ [t0, T ], Pt0
almost surely.

Proof. Substituting the specified parameters of the 4/2 model (3.2.6) given in

Example 3.2.2 into (3.4.6) yields the results immediately.

Remark 3.4.6. Setting either (c1, c2) = (1, 0) or (c1, c2) = (0, 1) in Corollary 3.4.5,

we provide the closed-form expressions for the dynamic optimal strategies under

the Heston model and 3/2 model, respectively.

3.5 Numerical analysis

This section investigates the impact of the model parameters on the efficient

frontier and the static and dynamic optimal investment strategies. The formula

of efficient frontier is given by (3.4.4) and the closed-form expressions for the

static and dynamic optimality are presented in (3.4.3) and (3.4.6), respectively.

We show the case when the market model is characterized by the hybrid Vasicek-

Heston model. Throughout this section, unless otherwise stated, the values of the

parameters modified from Escobar, Neykova, and Zagst (2017) are listed below:

a = 0.0125, b = 0.266, σr = 0.013, λr = 0.689, ηr = 0.4, λ = 2.234, κ = 2.115, θ =

0.051, σα = 0.505, ρ = −0.514, x0 = 1, r0 = 0.05, v0 = 0.03, T = 1, ξ = 3,K = 20.

3.5.1 Efficient frontier

In this subsection, we present how the model parameters affect the efficient frontier.

In the following numerical experiments, we vary the value of one parameter with

others fixed and given.

Figure 3.1 contributes to the impact of parameters λr, a, and ηr on the efficient

frontier. We observe from Figure 3.1(a) that given the fixed expected value of

terminal wealth, the efficient frontier moves downwards as λr increases from 0.689

to 0.889. Since λr characterizes the market price of interest rate risk, a greater

value of λr implies that the investor can obtain higher returns by investing in the
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(a) (b) (c)

Figure 3.1: Impact of parameters λr, a, and ηr on the efficient frontier

rollover bond. As such, the investor can take fewer risks from the market if he

wants to gain the same expected wealth at the terminal date. Figure 3.1(b) shows

the relationship between the efficient frontier and parameter a. We find that along

with the growth of a, the variance of terminal wealth decreases. As revealed by

(3.2.1), parameter a partially depicts the long-run mean of the short interest rate.

As a increases, the return rate of the risk-free asset becomes higher, while the

risk premiums of investing in both the roll-over bond and the risky asset are not

influenced. In such a case, the investor can bear fewer risks if the same expected

terminal wealth is acquired. From Figure 3.1(c), we find that the scale parameter

ηr has no impact on the efficient frontier. This is consistent with our intuition that

although ηr changes the optimal allocations on the roll-over bond and risky asset,

the optimal risk exposures to the interest rate and volatility risks remain unchanged.

Therefore, the investor undertakes the same investment risks, and he has the same

variance of terminal wealth if he acquires the same expected terminal wealth.

Figure 3.2 reveals the relationship between the efficient frontier and parameters

λ, σα, and ρ. From Figure 3.2(a), we find that the efficient frontier moves down

as λ increases from 2.234 to 3.234. λ characterizes the slope of the market price

of volatility risk. So, along with the growth of λ, the investor can obtain a higher

volatility risk premium. In such a case, the investor can invest less in the risky asset

to obtain the same expected terminal wealth. In Figure 3.2(b), we vary σα from

0.505 to 0.705, and find that the efficient frontier moves down. In other words, as

σα increases, to derive a fixed expected terminal wealth, the investor will undertake

fewer risks. One explanation is that as the volatility of volatility σα increases, the

fluctuation of the stochastic volatility becomes larger, and thus, the return rate of

the risky asset is more likely to increase, which helps the investor derive the same

expected return by investing less in the risky asset and hence bearing fewer risks. In

Figure 3.2(c), we vary ρ from −0.314 to −0.714, and find that the efficient frontier

moves down. This can be explained by the fact that as the correlation parameter ρ

approaches −1, the risky asset price and its instantaneous variance become more
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negatively correlated. Therefore, the offset between the risk caused by fluctuations

in the risky asset price and its volatility becomes more. Consequently, investing the

same amount in the risky asset reduces the investor’s exposure to volatility risk.

(a) (b) (c)

Figure 3.2: Impact of parameters λ, σα, and ρ on the efficient frontier

3.5.2 Static and dynamic optimal strategies

In this subsection, we investigate the impact of some model parameters and the

fixed expected terminal wealth ξ on the behavior of the static and dynamic optimal

investment strategies. For simplicity, we pay attention to the results at time t0 = 0

in the following numerical experiments. From the definition of dynamic optimality

above (see Definition 3.2.6), we know that π∗ = πd∗ at the initial time t0.

Figure 3.3 illustrates the relationship between the parameters λr, a, and ηr on

the dynamic and static optimal investment strategies. In Figure 3.3(a), we vary

λr from 0.689 to 0.889 and find that the market value of wealth invested in the

roll-over bond is positively correlated with λr, while the investment in the risky

asset is negatively correlated with λr. As the previous section explains, as the

market price of interest rate risk λr increases, the investor can obtain a higher risk

premium from investing in the roll-over bond. It is thus better to allocate more

in the roll-over bond to reduce the overall risks when the same expected terminal

wealth is acquired. Figure 3.3(b) shows that the amount of wealth invested in both

the roll-over bond and the risky asset decreases as a increases from 0.125 to 0.25.

Indeed, as a becomes larger, the long-run level of the short rate a/b increases, such

that the return rate of the risk-free asset is amplified. Hence, the investor can

undertake fewer risks by investing more in the risk-free asset. It is shown from

Figure 3.3(c) that as ηr increases from 0 to 1, the amount of wealth invested in the

roll-bond is reduced, while the investment in the risky asset remains unchanged.

As a matter of fact, the overall interest rate and volatility risks are not changed

when ηr varies since it only measures the impact of the interest rate dynamics on

the risky asset price. Namely, when ηr becomes larger, the investor faces the same
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amount of volatility and interest rate risks, but the interest rate risk can be more

easily hedged against by investing in the risky asset.

(a) (b) (c)

Figure 3.3: Impact of parameters λr, a, and ηr on the dynamic and static optimality

Figure 3.4 shows how the dynamic and static optimal investment strategies

change with respect to the parameters λ, σα, and ξ. From Figure 3.4(a), we find

that as λ increases, the investor is willing to invest more in the risky asset and less

in the rollover bond. This can be explained by the fact that λ characterizes the

slope of the market price of volatility risk, and the investor can derive a higher

risk premium from the risky asset as λ becomes larger. In Figure 3.4(b), we vary

σα from 0.505 to 0.905 and find that the amount of wealth invested in the risky

asset becomes larger as σα increases. One of the possible explanations is that as

the volatility of volatility σα increases, it is more likely for the investor to derive a

higher volatility risk premium from the risky asset, i.e., λ
√
Vt. In such a case, the

investor tends to adopt a more aggressive investment strategy. In the meantime,

since the optimal risk exposure to the interest rate risk is not affected by the change

of σα, the investor can invest less in the roll-over bond to hedge against the interest

rate risk due to the stochastic correlation between interest rate and risky asset

price. Finally, we see from Figure 3.4(c) that the amount of wealth invested in the

roll-over bond and the risky asset has a positive relationship with the expected

terminal value ξ. This is consistent with our intuition that to obtain a greater

value of the expected terminal wealth, the investor has to invest more in both the

roll-over bond and the risky asset such that the overall interest rate and volatility

risks can be hedged against.

To end this subsection, we highlight the difference between static and dynamic

optimality, i.e., π∗ and πd∗. By setting 500 equidistant time points over the

investment horizon [0, 1] and using some Monte Carlo techniques, we simulate two

paths of X∗
t and Xd∗

t , as well as one path of the stochastic process ξeg(t)+h(t)rt ,

which is referred to as the bound in Figure 3.5. As shown in Figure 3.5, the

trajectories of two optimal wealth processes X∗
t and Xd∗

t are significantly different

even though the same random numbers are used. In particular, we observe that
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(a) (b) (c)

Figure 3.4: Impact of parameters λ, σα, and ξ on the dynamic and static optimality

Figure 3.5: Two trajectories of static and dynamic optimality

the dynamic optimal wealth process Xd∗
t is strictly below the process ξeg(t)+h(t)rt ,

which is consistent with the theoretical results derived in Theorem 3.4.4 above.

3.6 Conclusion

In this paper, we consider dynamic mean-variance portfolio selection problems in a

stochastic environment. The risks in the market come from the interest rate and

the risky asset. The interest rate follows the Vasicek model while the risky asset’s

return rate not only relies on a CIR process but also exhibits stochastic covariance

with the interest rate. The modeling framework embraces the family of the state-

of-the-art 4/2 stochastic volatility models, as an exceptional case. Given the time

inconsistency of the mean-variance criterion, the problems are investigated in line

with the dynamic optimal approach. For this, we first address the static optimal

(time-inconsistent) strategy by using a BSDE approach. Under the assumption of

some model parameters, the associated BSDEs are solved explicitly. Analytical

expressions for the static optimality and optimal value function (efficient frontier)

are derived via the explicit solutions to the BSDEs. By recomputing the static

optimality in an infinitesimally small period of time, we derive, in closed form,

the dynamic optimal (time-consistent) strategy. Moreover, results on the Vasicek-
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Heston, Vasicek-3/2, and Vasicek-4/2 models are provided, as particular cases.

Finally, the economic impact of some model parameters on the efficient frontier

as well as on the static and dynamic optimal asset allocations is illustrated with

numerical examples. As far as we know, there is no existing literature on the

mean-variance portfolio selection problems considering the time-inconsistent and

time-consistent solutions in the presence of stochastic volatility and interest rate.

So, this study is meaningful from both theoretical and practical perspectives.

Built on the present paper, several potential topics in the future may be followed;

for instance, one may extend the current framework with a single risky asset to that

with multiple risky assets. In addition, since it is difficult to estimate the return

rate of the risky asset and interest rate with precision in practice, the investor

might be ambiguous about the financial market. It is thus of interest to explore

the mean-variance portfolio selection problems with stochastic interest rate and

volatility under model ambiguity.
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3.A Proof of Lemma 3.3.6

Proof. We start by introducing the likelihood process L1,t, for t ∈ [t0, T ] from the

following dynamic:

dL1,t = −λrL1,t dW
0
t ,

for which Novikov’s condition is satisfied. Thus, L1,t is an (F,Pt0)-uniformly

integrable martingale, and the equivalent probability measure, denoted by P̃t0 , is

well-defined on FT via the Radon-Nikodym derivative:

dP̃t0
dPt0

∣∣∣
FT

= L1,T .

Let Ẽt0 [·] denote the corresponding expectation under measure P̃t0 . From Girsanov’s

theorem, three processes W̃ 0
t , W̃

1
t , and W̃

2
t given by

dW̃
0

t = λr dt+ dW 0
t , dW̃

1

t = dW 1
t , dW̃

2

t = dW 2
t

are three standard (F, P̃t0) Brownian motions. Then, linear BSDE (3.3.2) can be

reformulated as follows: {
dYt = rtYt dt+ Zt dW̃

0

t ,

YT = −γ.
(3.A.1)
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Notice that the driver of BSDE (3.A.1) satisfies the stochastic Lipschitz continuity

(refer to Definition 2 (H2) in Bender and Kohlmann (2000)) with η2t := rt + ε as

its coefficient for any ε ∈ R+ fixed and given. Setting At :=
∫ t
t0
η2s ds and using

Hölder’s inequality, from Assumption 3.3.4 and Lemma 3.3.1, we have for some

constant β > 3 +
√
21

Ẽt0
[
| − γ|2 exp {βAT }

]
≤c

{
Et0

[
exp

{
−2

∫ T

t0

λr dW
0
t − 2

∫ T

t0

λ2r dt

}]} 1
2
{
Et0

[
exp

{∫ T

t0

(λ2r + 2β|rt|) dt

}]} 1
2

=c

{
Et0

[
exp

{∫ T

t0

(λ2r + 2β|rt|) dt

}]} 1
2

≤c

{
Et0

[
exp

{
2β

∫ T

t0

|rt|2 dt

}]} 1
2

< +∞,

where the constant c might differ between lines, and the second inequality follows

from the basic result that x2 + 1
4 ≥ x for x ∈ R+. This shows that the driver

and terminal condition of BSDE (3.A.1) constitute standard data (Definition 2 in

Bender and Kohlmann (2000)). According to Theorem 3 in Bender and Kohlmann

(2000), BSDE (3.A.1) admits a unique solution (Yt, Zt) such that

Ẽt0,

[∫ T

t0

eβAt |Zt|2 dt

]
< +∞.

Applying Itô’s formula to Yt exp
{
−
∫ t
t0
ru du

}
under measure P̃t0 yields

d

[
Yt exp

{
−
∫ t

t0

ru du

}]
= Zt exp

{∫ t

t0

−ru du
}
dW̃

0

t , (3.A.2)

which means Yt exp
{
−
∫ t
t0
ru du

}
is a (F, P̃t0)-local martingale. Moreover, by

Lemma 3.3.1, Burkholder-Davis-Gundy inequality, and Hölder’s inequality, we find

that Yt exp
{
−
∫ t
t0
ru du

}
is, in fact, an (F, P̃t0)-uniformly integrable martingale
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under Assumption 3.3.4, since

Ẽt0

[
sup

t∈[t0,T ]

∣∣∣∣ ∫ t

t0

exp

{
−
∫ s

t0

ru du

}
Zs dW̃

0

s

∣∣∣∣
]

≤cẼt0

(∫ T

t0

exp

{
−
∫ t

t0

2ru du

}
Z2
t dt

) 1
2


≤c

(
Ẽt0

[
exp

{
2

∫ T

t0

|rt| dt

}]
+ Ẽt0

[∫ T

t0

Z2
t dt

])

≤c

{
Et0

[
exp

{∫ T

t0

(λ2r + 4|rt|) dt

}]} 1
2

+ cẼt0

[∫ T

t0

Z2
t dt

]

≤c

{
Et0

[
exp

(∫ T

t0

4|rt|2 dt

)]} 1
2

+ cẼt0

[∫ T

t0

Z2
t dt

]
< +∞,

where the constant c might differ between lines. Therefore, from (3.A.2) and the

Markovian structure of interest rate process rt, we have the following expectation

formulation for Yt:

Yt = −γẼt0
[
exp

{
−
∫ T
t
rs ds

} ∣∣∣∣ Ft] = −γẼt0
[
exp

{
−
∫ T
t
rs ds

} ∣∣∣∣rt] = −γf(t, rt),

where the deterministic function f(t, r) = Ẽt,r

[
exp

{
−
∫ T
t
rs ds

}]
. Observe that

the interest rate process rt has the following P̃t0 dynamic:

drt = (a+ σrλr − brt) dt− σr dW̃
0
t .

Then, from the Feynman-Kac theorem, we find the following partial differential

equation (PDE) governing function f(t, r):
∂f

∂t
+ (a+ σrλr − br)

∂f

∂r
+

1

2
σ2
r

∂2f

∂r2
− rf = 0,

f(T, r) = 1.

Conjecture that f(t, r) admits the following exponential-affine form, i.e.,

f(t, r) = exp {g(t) + h(t)r}

with boundary conditions g(T ) = h(T ) = 0. Then, we can decompose the above

PDE into the following two ODEs of g(t) and h(t):
dg(t)

dt
+ (a+ σrλr)h(t) +

1

2
σ2
rh

2(t) = 0, g(T ) = 0,

dh(t)

dt
− bh(t)− 1 = 0, h(T ) = 0.
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After some tedious calculations, the closed-form expressions for g(t) and h(t) are

given by (3.3.4), and Yt is given by (3.3.3). Finally, applying Itô’s formula to Yt
under measure P̃t0 and comparing with the diffusive part of (3.A.1) lead to the

explicit expression for Zt given in (3.3.3).

3.B Proof of Lemma 3.3.7

Proof. Applying Itô’s lemma to Pt given by (3.3.5) and making use of (3.3.6)-(3.3.7),

we have

dPt =Pt

[
a(t)a− 2rt + αt

(
2ρσαλb(t) +

(
ρ2 − 1

2

)
σ2
αb

2(t) + λ2
)

+ κθb(t) +
1

2

(
σ2
αb

2(t)αt + σ2
ra

2(t)
) ]

dt− Ptσra(t) dW
0
t

+ Ptσα
√
αtρb(t) dW

1
t + Ptσα

√
αt
√
1− ρ2b(t) dW 2

t − Pt

(
(a+ 2σrλr)a(t)

+ κθb(t)− 1

2
a2(t)σ2

r − λ2r

)
dt

=

[ (
−2rt + λ2r + λ2αt

)
− 2σrλra(t) + 2ρσαλαtb(t) + ρ2σ2

αb
2(t)αt

+ a2(t)σ2
r

]
Pt dt− Ptσra(t) dW

0
t + Ptσα

√
αtρb(t) dW

1
t

+ Ptσα
√
αt
√
1− ρ2b(t) dW 2

t

=

[(
−2rt + λ2r + λ2αt

)
Pt + 2λrΓ0,t + 2λ

√
αtΓ1,t +

Γ2
1,t

Pt
+

Γ2
0,t

Pt

]
dt

+ Γ0,t dW
0
t + Γ1,t dW

1
t + Γ2,t dW

2
t .

This shows that Pt given in (3.3.5) satisfies the first equation of BSRE (3.3.1). The

terminal condition PT = 1 follows from the boundary conditions a(T ) = b(T ) = 0

and ϕ(T ) = 1 given by (3.3.7). Finally, considering the canonical exponential

expression of the solution to the first-order homogeneous linear equation, we know

that ϕ(t) given in (3.3.7) must have an exponential formulation, which implies from

(3.3.5) that Pt > 0 over [t0, T ].

3.C Proof of Proposition 3.3.8

Proof. Since the ODE of a(t) in (3.3.7) is a first-order linear equation, we can

reformulate it as follows:

da(t)

ba(t)− 2
= dt.
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By integrating both sides from t to T upon considering the boundary condition

a(T ) = 0, we obtain

a(t) =
2

b

(
1− e−b(T−t)

)
.

We next consider the ODE of b(t). Reshuffling the terms in (3.3.7) yields

db(t)

dt
=

(
ρ2 − 1

2

)
σ2
αb

2(t) + (κ+ 2σαρλ)b(t) + λ2, b(T ) = 0. (3.C.1)

When ρ2 = 1
2 and κ + 2σαρλ = 0, it follows from (3.C.1) that b(t) = λ2(t − T ).

When ρ2 = 1
2 and κ+ 2σαρλ ̸= 0, we have the following linear equation:

db(t) = (κ+ 2σαρλ)b(t) dt+ λ2 dt,

from which we obtain

b(t) =
λ2

k + 2λρσα

(
e(k+2λρσα)(t−T ) − 1

)
.

When ρ2 ̸= 1
2 , we denote by ∆ = (k + 2λρσα)

2 − (4ρ2 − 2)σ2
αλ

2. It follows from

(3.C.1) that

db(t)
dt =



σ2
α

(
ρ2 − 1

2

)
(b(t)− n1)(b(t)− n2), ∆ > 0;

σ2
α

(
ρ2 − 1

2

)
(b(t)− n0)

2 dt, ∆ = 0;

σ2
α

(
ρ2 − 1

2

)[(
b(t) +

k + 2λρσα
σ2
α(2ρ

2 − 1)

)2

+
−∆

σ4
α(2ρ

2 − 1)2

]
, ∆ < 0,

where n0, n1, and n2 are given by (3.3.11). After some tedious calculations, we

derive the explicit expressions for b(t) presented in (3.3.9). Finally, noticing the

boundary condition that ϕ(T ) = 1 and substituting a(t) and b(t) back into the

ODE of ϕ(t), we have the closed-form solution of ϕ(t) given in (3.3.10).

3.D Proof of Proposition 3.3.9

Proof. Differentiating (3.3.10) with respect to t yields

db(t)
dt =



λ2e(k+2λρσα)(t−T ), ρ2 =
1

2
, k + 2λρσα ̸= 0;

λ2, ρ2 =
1

2
, k + 2λρσα = 0;

4λ2∆e
√
∆(T−t)

σ4
α(2ρ

2 − 1)2
1

(n1 − n2e
√
∆(T−t))2

, ρ2 ̸= 1

2
, ∆ > 0;

σ2
α

(
ρ2 − 1

2

)
n20(

σ2
α(ρ

2 − 1
2 )(T − t)n0 − 1

)2 , ρ2 ̸= 1

2
, ∆ = 0;

−∆

2σ2
α(2ρ

2 − 1)
sec2

(
arctan

(
k + 2λρσα√

−∆

)
−

√
−∆

2
(T − t)

)
, ρ2 ̸= 1

2
, ∆ < 0;

It is obvious that db(t)
dt > 0 holds for the first three cases. As for the last two cases,

we see that ρ2 > 1
2 must hold when ∆ ≤ 0.
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3.E Proof of Lemma 3.3.10

Proof. Observing that Pt given in (3.3.5) is positive, we can apply Itô’s lemma to

log(Pt) and find that

d log(Pt) =

[
−2rt + λ2r + λ2αt + 2λr

Γ0,t

Pt
+ 2λ

√
αt

Γ1,t

Pt
+

1

2

Γ2
0,t

P 2
t

+
1

2

Γ2
1,t

P 2
t

− 1

2

Γ2
2,t

P 2
t

]
dt

+
Γ0,t

Pt
dW 0

t +
Γ1,t

Pt
dW 1

t +
Γ2,t

Pt
dW 2

t .

(3.E.1)

Now, we introduce the likelihood process L2,t from the following dynamic:

dL2,t = −2λrL2,t dW
0
t − 2λ

√
αtL2,t dW

1
t ,

which can be easily shown to be an (F,Pt0)-uniformly integrable martingale by

the Novikov’s condition and Assumption 3.3.4. Thus, we can define an equivalent

probability measure P̂t0 on FT via the following Radon-Nikodym derivative:

dP̂t0
dPt0

∣∣∣
FT

= L2,T .

From Girsanov’s theorem, the following three processes Ŵ 0
t , Ŵ

1
t , and Ŵ

2
t :

dŴ 0
t = 2λr dt+ dW 0

t , dŴ
1
t = 2λ

√
αt dt+ dW 1

t , dŴ
2
t = dW 2

t

are standard Brownian motions under measure P̂t0 . Then, BSDE (3.E.1) of(
log(Pt),

Γ0,t

Pt
,
Γ1,t

Pt
,
Γ2,t

Pt

)
can be rewritten as follows:

d log(Pt) =

[
−2rt + λ2r + λ2αt +

1

2

Γ2
0,t

P 2
t

+
1

2

Γ2
1,t

P 2
t

− 1

2

Γ2
2,t

P 2
t

]
dt+

Γ0,t

Pt
dŴ 0

t

+
Γ1,t

Pt
dŴ 1

t +
Γ2,t

Pt
dŴ 2

t ,

log(PT ) =0.

(3.E.2)

Suppose that there exists another solution, denoted by (P̂t, Γ̂0,t, Γ̂1,t, Γ̂2,t), to BSRE

(3.3.1). It follows from (3.E.2) that the following difference process

(∆ log(Pt),∆Γ0,t,∆Γ1,t,∆Γ2,t) :=
(
log(Pt)− log(P̂t),

Γ0,t

Pt
− Γ̂0,t

P̂t
,
Γ1,t

Pt
− Γ̂1,t

P̂t
,
Γ2,t

Pt
− Γ̂2,t

P̂t

)
must solve the following BSDE:

d∆ log(Pt) =

[
1

2

(
Γ2
0,t

P 2
t

−
Γ̂2
0,t

P̂ 2
t

)
+

1

2

(
Γ2
1,t

P 2
t

−
Γ̂2
1,t

P̂ 2
t

)
− 1

2

(
Γ2
2,t

P 2
t

−
Γ̂2
2,t

P̂ 2
t

)]
dt

+∆Γ0,t dŴ
0
t +∆Γ1,t dŴ

1
t +∆Γ2,t dŴ

2
t ,

∆ log(PT ) =0.

(3.E.3)
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We now introduce another likelihood process L3,t from the dynamic:

dL3,t = −Γ0,t

Pt
L3,t dŴ

0
t − Γ1,t

Pt
L3,t dŴ

1
t +

Γ2,t

Pt
L3,t dŴ

2
t .

By using the explicit expressions for Pt and (Γ0,t,Γ1,t,Γ2,t) given in (3.3.5) and

(3.3.6), Hölder’s inequality, Proposition 3.3.9, and Assumption 3.3.4, we find that

Novikov’s condition is satisfied for L3,t, i.e.,

Êt0

[
exp

{
1

2

∫ T

t0

Γ2
0,t

P 2
t

+
Γ2
1,t

P 2
t

+
Γ2
2,t

P 2
t

dt

}]

=Et0

[
L2,T exp

{
1

2

∫ T

t0

σ2
ra

2(t) + σ2
αb

2(t)αt dt

}]

≤

{
Et0

[
exp

{∫ T

t0

−4λr dW
0
t −

∫ T

t0

4λ
√
αt dW

1
t −

∫ T

t0

(
8λ2r + 8λ2αt

)
dt

}]} 1
2

×

{
Et0

[
exp

{∫ T

t0

4λ2r + σ2
ra

2(t) + (4λ2 + σ2
αb

2(t))αt dt

}]} 1
2

=c

{
Et0

[
exp

{∫ T

t0

(4λ2 + σ2
αb

2(t))αt dt

}]} 1
2

< +∞,

where c is a positive constant. Thus, the equivalent probability measure P̄t0 is

well-defined on FT via
dP̄t0

dP̂t0

∣∣∣
FT

= L3,T .

Accordingly, the standard Brownian motions W̄ 0
t , W̄

1
t , W̄

2
t under P̄t0 are given as

follows due to the Girsanov’s theorem:

dW̄ 0
t = dŴ 0

t +
Γ0,t

Pt
dt, dW̄ 1

t = dŴ 1
t +

Γ1,t

Pt
dt. dW̄ 2

t = dŴ 2
t − Γ2,t

Pt
dt. (3.E.4)

Plugging (3.E.4) into (3.E.3) yields the BSDE of (∆ log(Pt),∆Γ0,t,∆Γ1,t,∆Γ2,t)
d∆ log(Pt) =

[
−1

2
(∆Γ0,t)

2 − 1

2
(∆Γ1,t)

2 +
1

2
(∆Γ2,t)

2

]
dt

+∆Γ0,t dW̄
0
t +∆Γ1,t dW̄

1
t +∆Γ2,t dW̄

2
t ,

∆ log(PT ) =0.

(3.E.5)

It is easy to check that quadratic BSDE (3.E.5) satisfies all regularity conditions in

Kobylanski (2000). Then according to Theorem 2.3 and Theorem 2.6 in Kobylanski

(2000), we know that BSDE (3.E.5) admits unique solution (0, 0, 0, 0), which, in

turn, reveals

(Pt,Γ0,t,Γ1,t,Γ2,t) = (P̂t, Γ̂0,t, Γ̂1,t, Γ̂2,t).

Hence, we can conclude that (Pt,Γ0,t,Γ1,t,Γ2,t) given in Lemma 3.3.6 is the unique

solution to BSRE (3.3.1).
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3.F Proof of Lemma 3.3.11

Proof. For any given constant p > 1, it is straightforward to see that the following

equation of k

p =
k

2
√
k − 1

admits two positive solutions:

k1 = 2p
√
p(p− 1) + p(2p− 1), k2 = −2p

√
p(p− 1) + p(2p− 1),

where the first solution satisfies k1 > 1. In particular, we have k1 = 276 + 48
√
33

when p = 12. By Assumption 3.3.4 and Proposition 3.3.9, we have

Et0

[
exp

{
(138 + 24

√
33)

∫ T

t0

(λ+ σαρb(t))
2αt dt

}]
< +∞.

Then, according to Theorem 15.4.6 in Cohen and Elliott (2015), we have

Et0

[
sup

t∈[t0,T ]

|Π1,t|12
]
≤ 12

11

{
Et0,α0,r0,x0

[
exp

{
(138 + 24

√
33)

∫ T

t0

(λ+ σαρb(t))
2αt dt

}]}√
276+48

√
33−1

276+48
√

33

< +∞.

By using the same technique, we also have Et0
[
supt∈t0,T |Π0,t|12

]
<∞.

3.G Proof of Proposition 3.3.12

Proof. For any admissible strategy π ∈ A, applying Itô’s formula to Pt(X
π
t + Yt)

2

and completing of squares, we have

dPt(X
π
t + Yt)

2

=Pt

{[
πB(t, αt, rt, X

π
t )h0(K)σr + πS1(t, αt, rt, X

π
t )ηrσr + Zt + (Xπ

t + Yt)

(
Γ0,t

Pt
+ λr

)]2
+

[
πS1(t, αt, rt, X

π
t )σ(t, αt) + (Xπ

t + Yt)

(
Γ1,t

Pt
+ λ

√
αt

)]2}
dt

+
[
(Xπ

t + Yt)
2Γ0,t + 2(Xπ

t + Yt)Pt (πB(t, αt, rt, X
π
t )h0(K)σr + πS1(t, αt, rt, X

π
t )ηrσr + Zt)

]
dW 0

t

+
[
(Xπ

t + Yt)
2
Γ1,t + 2(Xπ

t + Yt)PtπS1(t, αt, rt, X
π
t )σ(t, αt)

]
dW 1

t

+ (Xπ
t + Yt)

2
Γ2,t dW

2
t .

(3.G.1)

Due to the continuity of Yt, Zt,Γ0,t,Γ1,t,Γ2,t, Pt, πB(t, αt, rt, X
π
t ), πS1(t, αt, rt, X

π
t ),

Xπ
t and σ(t, αt, rt, X

π
t ), the stochastic integrals on the right-hand side of (3.G.1)

are (F,Pt0)-local martingales. Hence, there exists a localizing sequence, denoted

by {τn}n∈N, such that τn ↑ +∞, Pt0 almost surely as n→ +∞, and when stopped

by such a sequence, the aforementioned local martingales are (F,Pt0)-martingales.

Then, integrating both sides of (3.G.1) from t0 to τn ∧ T and taking expectations,

73



we obtain

Et0
[
PT∧θn(X

π
T∧θn + YT∧θn)

2
]

=Et0

[∫ T∧θn

t0

Pt

(
πS1(t, αt, rt, X

π
t )σ(t, αt) + (Xπ

t + Yt)

(
Γ1,t

Pt
+ λ

√
αt

))2

dt

]

+ Et0

[∫ T∧θn

t0

Pt

(
πB(t, αt, rt, X

π
t )h0(K)σr + πS1(t, αt, rt, X

π
t )ηrσr + Zt

+ (Xπ
t + Yt)

(
Γ0,t

Pt
+ λr

))2

dt

]
+ Pt0(x0 + Yt0)

2.

(3.G.2)

For the term within the expectation on the left-hand side of (3.G.2), we have from

(3.3.3), (3.3.5), and Proposition 3.3.9 that

PT∧θn(X
π
T∧θn + YT∧θn)

2 ≤ c
(
ϕ2b supt∈[t0,T ] e

2a(t0)|rt| + supt∈[t0,T ] |Xπ
t |4 + γ2e2gb supt∈[t0,T ] e

2hb|rt|
)
,

(3.G.3)

where c is a positive constant, and ϕb, gb, and hb denote the bound of continuous

functions ϕ(t), g(t), and h(t) over [t0, T ], respectively. Then, from Definition 3.2.3

and Lemma 3.3.2, we know the family
{
PT∧θn(X

π
T∧θn + YT∧θn)

2
}
n∈N is integrable,

and thus, sending n to infinity and applying the dominated convergence theorem

and monotone convergence theorem to the left-hand and right-hand side of (3.G.2),

respectively, we have

Et0
[
(Xπ

T − γ)2
]
≥ Pt0 (x0 + Yt0)

2
. (3.G.4)

In particular, the right-hand side of (3.G.4) is attained when we opt for the

investment strategy given in (3.3.13). In other words, the strategy (3.3.13) is the

optimal strategy for the benchmark problem (3.2.11).

In the remaining part of this proof, we aim to show that the optimal strategy

(3.3.13) is admissible. Denote the wealth process (3.2.7) associated with the strategy

(3.3.13) by X∗
t . Then, we find that

d(X∗
t + Yt)

X∗
t + Yt

=

[
rt − λr

(
Γ0,t

Pt
+ λr

)
− λ

√
αt

(
Γ1,t

Pt
+ λ

√
αt

)]
dt

−
(
Γ0,t

Pt
+ λr

)
dW 0

t −
(
Γ1,t

Pt
+ λ

√
αt

)
dW 1

t .

(3.G.5)

Solving the linear SDE (3.G.5) and using the explicit expressions for Yt,Γ0,t,Γ1,t,

and Pt, we obtain (3.3.15). Moreover, by (3.3.15), Lemma 3.3.1-3.3.3, Assumption
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3.3.4, Lemma 3.3.11, and Hölder’s inequality, we have

Et0

[
sup

t∈[t0,T ]

|X∗
t |4
]

≤c

{
Et0

[
exp

{
24(λ2 + λσα|ρb(t0)|)

∫ T

t0

αt dt

}]
+ Et0

[
exp

{
24

∫ T

t0

r2t dt

}]

+Et0

[
sup

t∈[t0,T ]

|Π0,t|12
]
+ Et0

[
sup

t∈[t0,T ]

|Π1,t|12
]
+ Et0

[
sup

t∈[t0,T ]

e4hb|rt|

]}
< +∞,

(3.G.6)

where c is a positive constant and hb denotes the bound of h(t) over [t0, T ]. Finally,

from (3.G.6) and the explicit expressions for the optimal investment strategy given

in (3.3.13), it is easy to verify that

Et0

[∫ T

t0

(π∗
S1(t, αt, rt, X

∗
t ))

2(σ2(t, αt) + 1) + (π∗
B(t, αt, rt, X

∗
t ))

2 dt

]
< +∞.

(3.G.7)

Hence, we can conclude from (3.G.5)-(3.G.7) that the optimal strategy (3.3.13) is

admissible.

3.H Proof of Theorem 3.4.4

Proof. Identifying t0, α0, r0, and x0 with t, αt, rt, and X
∗
t in (3.4.3), respectively,

we can write a candidate for the dynamic optimality of problem (3.2.8), which is

given by (3.4.6). We claim that the candidate solution (3.4.6) is dynamic optimal

for problem (3.2.8). Indeed, for any initial data (t, α, r, x) ∈ [t0, T )⊗ R+ ⊗ R⊗ R,
we can take any other admissible strategy u ∈ A such that Et,α,r,x[X

u
T ] = ξ and

u(t, α, r, x) ̸= πd∗(t, α, r, x). Additionally, we set w = π∗, in which the initial data

(t0, α0, r0, x0) is replaced by (t, α, r, x). In other words, it holds that w(t, α, r, x) =

π∗(t, α, r, x) = πd∗(t, α, r, x) ̸= u(t, α, r, x) when the initial data is (t, α, r, x). Then,

by the continuity of the feedback controls u and w, there exists a ball Bε :=

[t, t+ε]⊗[α−ε, α+ε]⊗[r−ε, r+ε]⊗[x−ε, x+ε] such that w(t̃, α̃, r̃, x̃) ̸= u(t̃, α̃, r̃, x̃)

for any (t̃, α̃, r̃, x̃) ∈ Bε when ε is small enough such that t + ε ≤ T . Replacing

(t0, α0, r0, x0) and γ in (3.G.2) by (t, α, r, x) and ξ − θ̃∗, where θ̃∗ is given by

θ̃∗ =
exp {(a(t) + h(t))r + b(t)α+ g(t)}ϕ(t)

(
ξeg(t)+h(t)r − x

)
exp {b(t)α+ 2g(t)}ϕ(t)− 1

,

we observe that w = π∗ is the unique continuous function such that the minimum

within the expectations on the right-hand side of (3.G.2) is attained, Pt,α,r,x almost

surely, which indicates that by setting τε = inf {t ∧ T | (t, αt, rt, Xu
t ) /∈ Bε}, it holds
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that for t̃ ≤ τε

Pt̃

[(
uS1(t̃, αt̃, rt̃, X

u
t̃ )σ(t̃, αt̃) + (Xu

t̃ + Yt̃)

(
Γ1,t̃

Pt̃
+ λ

√
αt̃

))2

+

(
uB(t̃, αt̃, rt̃, X

u
t̃ )h0(K)σr

+ uS1(t̃, αt̃, rt̃, X
u
t̃ )ηrσr + Zt̃ + (Xu

t̃ + Yt̃)

(
Γ0,t̃

Pt̃
+ λr

))2]
≥ ζ, Pt,α,r,x − a.s.,

where ζ ∈ R+. In other words, replacing (t0, α0, r0, x0) and γ in (3.G.2) by (t, α, r, x)

and ξ − θ̃∗, respectively, we find that

Et,α,r,x

[
(Xu

t − (ξ − θ̃∗))2
]
≥ζEt,α,r,x[τε − t] + ea(t)r+b(t)αϕ(t)

(
x− (ξ − θ̃∗)eg(t)+h(t)r

)
>ea(t)r+b(t)αϕ(t)

(
x− (ξ − θ̃∗)eg(t)+h(t)r

)
=Et,α,r,x[(X

w
T − (ξ − θ̃∗))2],

where the strict inequality follows from the fact that τε > t holds Pt,α,r,x almost

surely due to the path-wise continuity of the state variables. This result, in turn,

leads to
Vart,α,r,x(X

u
T ) = Et,α,r,x

[
(Xu

T )
2
]
− ξ2

= Et,α,r,x[(X
u
T − (ξ − θ̃∗))2]− (θ̃∗)2

> Et,α,r,x[(X
w
T − (ξ − θ̃∗))2]− (θ̃∗)2

= Vart,α,r,x(X
w
T ),

by which we can conclude that the candidate solution presented in (3.4.6) is the

dynamic optimality of the mean-variance problem (3.2.8).

Substitute the dynamic optimal strategy (3.4.6) into the wealth process (3.2.7)

and denote by Kt = Xd∗
t + ξ

γYt. Then, we have the following linear SDE of Kt:

dKt =

[
rt +

λr (λr − σra(t)− exp {b(t)αt + 2g(t)}ϕ(t)h(t)σr)
exp {b(t)αt + 2g(t)}ϕ(t)− 1

+
(λ+ σαρb(t))λαt

exp {b(t)αt + 2g(t)}ϕ(t)− 1

]
Kt dt

+
(λ+ σαρb(t))

√
αt

exp {b(t)αt + 2g(t)}ϕ(t)− 1
Kt dW

1
t

+
λr − σra(t)− exp {b(t)αt + 2g(t)}ϕ(t)h(t)σr

exp {b(t)αt + 2g(t)}ϕ(t)− 1
Kt dW

0
t ,

with Kt0 = x0 − ξeg(t0)+h(t0)r0 . Solving the above SDE explicitly, we obtain (3.4.7).

Particularly, when the initial data satisfies x0 ≤ ξeg(t0)+h(t0)r0 , from (3.4.7), we see

that Xd∗
t ≤ ξeg(t)+h(t)rt , for t ∈ [t0, T ], Pt0 almost surely.
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Chapter 4

Mean-variance asset-liability management

under CIR interest rate and the family of

4/2 stochastic volatility models with

derivative trading

Abstract

This paper investigates the effects of derivative trading on the per-

formance of asset-liability management in the presence of stochastic

interest rate and stochastic volatility under the mean-variance criterion.

Specifically, the asset-liability manager can invest not only in a money

market account, a zero-coupon (rollover) bond, and a stock index but

also in stock derivatives. It is assumed that the interest rate follows a

Cox-Ingersoll-Ross (CIR) process, and the instantaneous variance of the

stock index is governed by the family of 4/2 stochastic volatility models,

which embraces the Heston model and 3/2 model, as particular cases.

By solving a system of three backward stochastic differential equations,

closed-form expressions for the optimal strategies and optimal value

functions are derived in two cases: with and without the stock deriva-

tives. Moreover, we consider the special cases without random liabilities.

Numerical examples are provided to illustrate theoretical results and

explore the effects of derivative trading on efficient frontiers.

Keywords: Asset-liability management; CIR interest rate; 4/2 stochastic volatility;

Derivative trading; Backward stochastic differential equation.
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4.1 Introduction

The asset-liability management (ALM) problem is a topic of concern to financial

institutions such as banks, pension funds, and insurance companies. The main

purpose of ALM is to pursue investment return at an adequate level with the

presence of liability. The ALM problem in a single-period setting under Markowitz

(1952)’s mean-variance criterion can be traced back to the pioneering work of Sharpe

and Tint (1990). In recent years, many attempts were made to extend the work

of Sharpe and Tint (1990) to different scenarios. Leippold, Trojani, and Vanini

(2004) investigated the multi-period case and derived explicit expressions for the

optimal investment strategy and the efficient frontier. By utilizing the stochastic

linear-quadratic theory and solving the corresponding Hamilton-Jacobi-Bellman

(HJB) equation, Chiu and Li (2006) solved a mean-variance ALM problem in a

continuous-time setting with the assumption that both the risky asset price and

random liability followed geometric Brownian motions. Different from Chiu and

Li (2006), Xie, Li, and Wang (2008) considered the case when the random liability

was governed by a Brownian motion with drift. Chen, Yang, and Yin (2008) and

Chen and Yang (2011) extended the work of Chiu and Li (2006) and Leippold,

Trojani, and Vanini (2004) to the cases with Markovian regime-switching markets,

respectively. By applying the backward stochastic differential equation (BSDE)

approach, Chiu and Wong (2012, 2013) studied a mean-variance ALM problem

with cointegrated risky assets. Peng and Chen (2021) considered a mean-variance

ALM problem with partial information and an uncertain time horizon by using

the BSDE approach. For other previous works, one can refer to Chiu and Wong

(2014a), Shen, Wei, and Zhao (2020), A, Shen, and Zeng (2022), and references

therein.

Although ALM problems under the mean-variance criterion have been extensively

studied, two aspects are worthy of being further explored. Firstly, most of the

aforementioned literature was studied in the context of constant or deterministic

volatility, which is, however, not consistent with many stylized facts observed in

the financial market, such as volatility smiles and volatility clustering. Therefore,

as natural extensions of constant volatility models, varieties of local volatility

and stochastic volatility models have been proposed in recent years, such as the

constant elasticity of variance (CEV) model, Stein-Stein model (Stein and Stein

(1991)), Heston model (Heston (1993)), and 3/2 model (Lewis (2000)). This has

led many researchers onto this path. For example, C̆erný and Kallsen (2008)

applied a martingale approach to study a mean-variance optimal investment and

hedging problem under the Heston model. Zhang and Chen (2016) considered a

mean-variance ALM problem under a CEV model with multiple risky assets, and

the optimal strategy and efficient frontier were expressed via the solutions to two

BSDEs. Li, Shen, and Zeng (2018) considered a derivative-based mean-variance
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ALM problem under the Heston model, and explicit solutions were derived for two

cases: with and without the derivative asset. By alternatively characterizing the

liability process by a generalized Brownian motion, Pan, Zhang, and Zhou (2018)

studied a mean-variance ALM problem under the Heston model, and they obtained

explicit solutions for the special cases when two fundamental risk factors were

perfectly correlated or anti-correlated. By using the BSDE approach, Sun, Zhang,

and Yuen (2020) further studied a mean-variance ALM problem in a complete

market setting with multiple risky assets, where the variance processes of the risky

assets were described by an affine diffusion equation. More recently, Han and

Wong (2021) incorporated rough volatility into a mean-variance portfolio selection

problem and derived the closed-form solution under the rough Heston model.

Secondly, most of the literature mentioned above assumes that interest rates are

constant or deterministic, which excludes the applications of some specific models for

modeling interest rates in practice, such as the Vasicek model (Vasicek (1977)) and

Cox-Ingersoll-Ross (CIR) model (Cox, Ingersoll, and Ross (1985)). Recently, some

literature has focused on the ALM problem with interest rate risk. For example, Pan

and Xiao (2017c) studied an optimal mean-variance ALM problem in the presence

of interest rate and inflation risks, and they obtained explicit solutions by using

the dynamic programming approach. Besides Markowitz’s mean-variance criterion,

Pan and Xiao (2017a) considered an optimal ALM problem under the expected

utility maximization framework with stochastic interest rates, and closed-form

expressions for the optimal strategies were derived for the power and exponential

utility functions. Other preceding research outputs on the ALM problem with

stochastic interest rates include Pan and Xiao (2017b), Zhu, Zhang, and Jin (2020),

to name but only a few. It is also worth mentioning that the optimal strategies

derived in the above-mentioned literature are pre-committed but not time-consistent

in the sense that, the optimal strategies determined at the initial time might not be

optimal at a future time point. This is because the nonlinear operator within the

objective function under the mean-variance criterion violates the Bellman optimality

principle. In the last few years, time-consistent mean-variance portfolio selection

problems within the game theoretical framework (Strotz (1956), Björk, Murgoci,

and Zhou (2014) and Björk, Khapko, and Murgoci (2017)) and open-loop control

framework (Hu, Jin, and Zhou (2017)) have been extensively studied under different

specific scenarios, such as Li, Zeng, and Lai (2012), Li, Rong, and Zhao (2015), Lin

and Qian (2016), Yan and Wong (2019), Zhu and Li (2020), and references therein.

In 2017, a new stochastic volatility model, known as the 4/2 model, was proposed

by Grasselli (2017). The state-of-the-art model recovers two parsimonious models,

the Heston model and 3/2 model, as particular cases. By combining the advantages

of the Heston model and 3/2 model and canceling their limitations, the 4/2 model

can better predict the dynamics of the implied volatility surface (Grasselli (2017),

Cui, Kirkby, and Nguyen (2018) and Zhu and Wang (2019)). Recently, the potential
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of applications of the 4/2 model to dynamic portfolio optimization problems has

been realized. For example, Cheng and Escobar (2021a) considered a utility maxi-

mization problem under the 4/2 model for power utility, and closed-form solutions

for the optimal strategy were obtained by applying the dynamic programming

approach. Alternatively, Zhang (2021a) investigated a mean-variance portfolio

selection problem with mispricing in the family of 4/2 models, and the optimal

strategy and efficient frontier were derived explicitly by solving the corresponding

HJB equation.

To the best of our knowledge, there is no existing literature discussing the

pre-committed strategies for the mean-variance ALM problem in the presence of

stochastic volatility as well as stochastic interest rates. This paper aims to fill the

gap. Specifically, we assume that the stochastic interest rate follows the CIR model

(Cox, Ingersoll, and Ross (1985)), and the stock index process exhibits not only the

4/2 stochastic volatility (Grasselli (2017)) but also a stochastic correlation with

the interest rate. The uncontrollable random liability is described by a generalized

geometric Brownian motion with the return rate and volatility dependent on the

stochastic interest rate. In addition to a money market account, a zero-coupon

(rollover) bond, and a stock index, we follow Escobar, Ferrando, and Rubtsov (2018)

to introduce stock derivatives to complete the market. Moreover, to investigate the

effects of derivatives trading on the mean-variance ALM problem, we also consider

the incomplete market case where the stock derivatives are not available to the

asset-liability manager. We employ a BSDE approach to solve the two problems.

By considering the canonical decomposition of continuous semi-martingales, we

introduce two systems of three BSDEs including a backward stochastic Riccati

equation (BSRE) and two linear BSDEs into the complete and incomplete markets,

respectively. Particularly, in the incomplete market case, the drivers of two linear

BSDEs are not only with unbounded coefficients but also dependent on the solution

to the BSRE. This makes the problem more technically challenging. By making

an assumption on the model parameters and using measure change techniques,

we prove the existence and uniqueness results to the two BSDE systems and

derive the corresponding solutions in closed form. Explicit expressions for both

the optimal strategies and efficient frontiers are then obtained. Furthermore, we

provide the results of special cases without random liabilities in both the complete

and incomplete market cases. Finally, some numerical experiments are given to

illustrate the effects of derivatives trading on efficient frontiers. For clarity, we list

the main contributions of the paper below:

1. We incorporate derivatives trading into an ALM problem under the mean-

variance criterion in the presence of stochastic volatility and stochastic interest

rates, where the interest rate is modeled by the CIR process and the stochastic

volatility is described by the 4/2 model (Grasselli (2017)).
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2. Explicit expressions for the optimal pre-committed (efficient) strategy and

optimal value function (efficient frontier) are derived by applying a BSDE

approach, which reduces a matter of conjecturing a candidate solution to a

sophisticated HJB equation and proving a necessary verification theorem along

the dynamic programming approach to solving three BSDEs and extends the

recent results of Cheng and Escobar (2021a) and Zhang (2021a) on portfolio

optimization problems under the 4/2 model to the cases with random liabilities

and stochastic interest rates.

3. We solve the induced linear BSDEs with unbounded coefficients by using

a comparison method combined with Girsanov’s measure transformation

and the linear BSDEs with uniformly Lipschitz continuity (El Karoui, Peng,

and Quenez (1997)) rather than the results of linear BSDEs with stochastic

Lipschitz continuity (Bender and Kohlmann (2000) and Wang, Ran, and Hong

(2006)), in which strong assumptions on the model parameters are needed to

ensure the existence and uniqueness results of the solution. This differentiates

the present paper from Shen, Zhang, and Siu (2014), Zhang and Chen (2016),

and Zhang (2021b) from a technical point of view.

The remainder of this paper is organized as follows. Section 4.2 introduces the

market model and formulates the problem in the complete market case. Section

4.3 explores the solvability of three BSDEs and derives the optimal strategy and

efficient frontier explicitly for the complete market case. In Section 4.4, we formulate

the problem in the incomplete market case and obtain the closed-form solutions

without derivatives trading by solving three BSDEs. Section 4.5 presents some

numerical experiments to illustrate our results. Section 4.6 concludes the paper.

4.2 Problem formulation

Let T > 0 be a fixed and finite time of decision making and (Ω,F ,F,P) be a filtered

complete probability space satisfying the usual conditions and carrying three one-

dimensional, mutually independent Brownian motions
{
WS
t

}
t∈[0,T ]

,
{
WV
t

}
t∈[0,T ]

,

and {W r
t }t∈[0,T ], where filtration F := {Ft}0≤t≤T is generated by the above Brow-

nian motions, and P is a real-world probability measure. The expectation under P
is denoted by E[·].

4.2.1 Financial markets

We consider a financial market consisting of a money market account (cash), a

stock index, zero-coupon bonds, and stock derivatives. The money market account

follows the dynamics:

dAt = rtAt dt, A0 = 1,
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where the short-term interest rate rt is governed by the Cox-Ingersoll-Ross (CIR)

model:

drt = (φr − κrrt) dt+ σr
√
rt dW

r
t (4.2.1)

with initial value r0 ∈ R+, where κr ∈ R+ is the mean-reversion speed, φr/κr ∈ R+

is the long-run mean, and σr ∈ R+ is the volatility of the interest rate. Moreover,

we require the Feller condition 2φr ≥ σ2
r to ensure that rt is strictly positive P

almost surely, for t ∈ [0, T ].

Suppose that the market price of interest rate risk is λr

σr

√
rt, where λr ∈ R+.

According to Cox, Ingersoll, and Ross (1985), the price process BT̄t of zero-coupon

bond with bond maturity T̄ evolves according to

dBT̄t =
(
rt − λrb(T̄ − t)rt

)
BT̄t dt− b(T̄ − t)σr

√
rtB

T̄
t dW

r
t , (4.2.2)

with boundary condition BT̄
T̄
= 1, where the deterministic function b(t) is given by

b(t) =
2
(
eζt − 1

)
2ζ + (ζ + κr + λr) (eζt − 1)

,

with ζ =
√

(κr + λr)2 + 2σ2
r . As discussed in Boulier, Huang, and Taillard (2001),

it is quite unlikely to find all zero-coupon bonds in the market. We, therefore,

introduce a rollover bond with constant maturity K ∈ R+ into the market. Denote

the price of the rollover bond by BKt . Then, the price process BKt is described by

the following SDE (Deelstra, Grasselli, and Koehl (2003)):

dBKt = (rt − λrb(K)rt)B
K
t dt− b(K)σr

√
rtB

K
t dW r

t . (4.2.3)

The stock index St is described by the following dynamics:

dSt =
(
rt + λvρ(c1Vt + c2) + λs

√
1− ρ2(c1Vt + c2) + ηλrrt

)
St dt+ ησr

√
rtSt dW

r
t

+ St

(
c1
√
Vt +

c2√
Vt

)(
ρ dWV

t +
√
1− ρ2 dWS

t

)
, S0 = s0 ∈ R+,

(4.2.4)

where parameters η ∈ R, c1 ≥ 0, c2 ≥ 0, and ρ ∈ (−1, 1), and the variance driver

Vt follows a CIR process:

dVt = (φv − κvVt) dt+ σv
√
Vt dW

V
t , V0 = v0 ∈ R+, (4.2.5)

where parameters κv, φv/κv, σv ∈ R+ have similar economic meaning to that of the

parameters for the interest rate process (4.2.1). Furthermore, we assume that the

Feller condition 2φv ≥ σ2
v is satisfied, so that Vt is strictly positive P almost surely,

for t ∈ [0, T ].

Remark 4.2.1. Note that the stock index process (4.2.4) exhibits not only the 4/2

stochastic volatility (refer to Grasselli (2017)) but also a stochastic instantaneous
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correlation with interest rate process rt (4.2.1). Specifically, the correlation between

the stock index return and interest rate is
ησr

√
rt√

(c1
√
Vt+

c2√
Vt

)2+η2σ2
rrt

∈ (−1, 1) and the

parameter η characterizes how large the effect of the interest rate on the stock

index dynamic is. In particular, the specification η = 0 means that the stock index

dynamic is not affected by interest rate shocks. Moreover, it is worth mentioning

that the case (c1, c2) = (1, 0) corresponds to the Heston model (Heston (1993)),

while the specification (c1, c2) = (0, 1) is known as the 3/2 model (Lewis (2000)).

Apart from investing in the money market account, rollover bond, and stock

index, we posit that the manager has access to stock derivatives in the financial

market. Following Escobar, Ferrando, and Rubtsov (2018), we assume that the

value of the stock derivative Dt relies on the underlying stock index St, stock

index instantaneous variance Vt, and interest rate rt via some twice continuously

differentiable function g(·, ·, ·, ·), i.e., Dt = g(St, Vt, rt, t). Then applying Itô’s

lemma to Dt and making use of the fundamental pricing equation that function

g(·, ·, · ·) should satisfy, the dynamic for the derivative price Dt is given by

dDt

Dt
=rt dt+ C1

(
λsVt dt+

√
Vt dW

S
t

)
+ C2 (λrrt dt+ σr

√
rt dW

r
t )

+ C3

(
λvVt dt+

√
Vt dW

V
t

)
,

(4.2.6)

where 
C1 = D−1

t gsSt
√
1− ρ2

(
c1 +

c2
Vt

)
,

C2 = D−1
t (gsStη + gr),

C3 = D−1
t

(
gsStρ

(
c1 +

c2
Vt

)
+ σvgv

)
.

Here, notations gs, gv, and gr represent the partial derivatives of Dt with St, Vt,

and rt, respectively, i.e., we write

gs =
∂g(s, v, r, t)

∂s

∣∣∣∣
(St,Vt,rt,t)

, gv =
∂g(s, v, r, t)

∂v

∣∣∣∣
(St,Vt,rt,t)

, gr =
∂g(s, v, r, t)

∂r

∣∣∣∣
(St,Vt,rt,t)

.

4.2.2 Asset and liability processes

Denote by πBt , π
S
t , and π

D
t the proportions of asset invested in the rollover bond,

stock index, and stock derivative, respectively. Let π :=
( {
πBt
}
t∈[0,T ]

,
{
πSt
}
t∈[0,T ]

,{
πDt
}
t∈[0,T ]

)
denote the investment strategy, and Xπ

t denote the asset process

associated with π. Under a self-financing condition, the asset process Xπ
t is given

83



by

dXπ
t =πBt X

π
t

dBKt
BKt

+ πSt X
π
t

dSt
St

+ πDt X
π
t

dDt

Dt
+ (1− πBt − πSt − πDt )Xπ

t

dAt
At

=
(
rt + θSt λsVt + θrtλrrt + θVt λvVt

)
Xπ
t dt+ θSt

√
VtX

π
t dW

S
t

+ θVt
√
VtX

π
t dW

V
t + θrtσr

√
rtX

π
t dW

r
t ,

(4.2.7)

with initial asset value Xπ
0 = x0 ∈ R+, where θSt , θ

r
t , and θVt represent the risk

exposures to the fundamental risk factors WS
t ,W

r
t , and W

V
t , respectively, and are

related to investment strategy πSt , π
B
t , and π

D
t viaθStθrt

θVt

 =


√
1− ρ2 (c1 + c2/Vt) 0 C1

η −b(K) C2

ρ (c1 + c2/Vt) 0 C3


πStπBt
πDt

 . (4.2.8)

Notice from SDE (4.2.7) that we work with the risk exposures rather than the

investment strategies to make our analysis independent of the stock derivative

specifically chosen in Section 4.3, and we replace Xπ
t by Xθ

t in the following

discussions.

Apart from making investments in the above financial market, the asset manager

is also subject to an exogenous liability commitment. The uncontrollable liability

process Lt follows the dynamics:

dLt
Lt

=µrrt dt+ βr
√
rt dW

r
t , L0 = l0 ∈ R+, (4.2.9)

where constant µr ∈ R is the drift coefficient, and βr ∈ R+ controls the volatility of

the liability process.

Definition 4.2.2 (Admissible strategy). A risk exposure strategy θ = (
{
θSt
}
t∈[0,T ]

,{
θVt
}
t∈[0,T ]

, {θrt }t∈[0,T ]) is said to be admissible if the following conditions are

satisfied:

1. θSt , θ
V
t , and θ

r
t are F-adapted processes such that∫ T

0

|θSt
√
Vt|2 dt <∞,

∫ T

0

|θrt
√
rt|2 dt <∞,

∫ T

0

|θVt
√
Vt|2 dt <∞, P− a.s.;

2. SDE (4.2.7) associated with θ has a unique strong solution Xθ
t ;

3. The family of random variables Yτn∧T
(
Xθ
τn∧T −G1,τn∧TLτn∧T − γG2,τn∧T

)2
,

n ∈ N, is uniformly integrable, for any sequence of F-stopping times {τn}n∈N
such that τn ↑ ∞, where γ ∈ R, and Yt, G1,t, G2,t are respectively given by

(4.3.9), (4.3.17), and (4.3.20).

The set of all admissible risk exposure strategies is denoted by Θ.
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4.2.3 Optimization problems

We now introduce the mean-variance ALM problem. Under the mean-variance

criterion, the asset-liability manager aims to find an admissible risk exposure strategy

such that the variance of the terminal surplus is minimized, while the expected

terminal surplus has been exogenously determined. Formally, the mean-variance

ALM problem is defined below.

Definition 4.2.3. The mean-variance ALM problem is the following constrained

stochastic optimization problem:min
θ∈Θ

JMV (θ) := E
[
(Xθ

T − LT − ξ)2
]

subject to E
[
Xθ
T − LT

]
= ξ

(4.2.10)

with ξ ∈ R fixed and given. Denote by J∗
MV the optimal value function corresponding

to the optimal strategy θ∗ =
({
θS∗t
}
t∈[0,T ]

, {θr∗t }t∈[0,T ] ,
{
θV ∗
t

}
t∈[0,T ]

)
.

To obtain the optimal risk exposure strategy for problem (4.2.10), we introduce an

auxiliary Lagrangian dual functional to eliminate the constraint E
[
Xθ
T − LT

]
= ξ

in problem (4.2.10)

L(θ, λ) : = E
[
(Xθ

T − LT − ξ)2
]
+ 2λE

[
Xθ
T − LT − ξ

]
= E

[
(Xθ

T − LT − (ξ − λ))2
]
− λ2,

(4.2.11)

where λ ∈ R is the Lagrange multiplier. According to the Lagrangian duality

theorem (refer to Luenberger (1968)), problem (4.2.10) is equivalent to the following

min-max problem:

max
λ∈R

min
θ∈Θ

L(θ, λ). (4.2.12)

This means that we shall first address the following benchmark problem:

min
θ∈Θ

JBM (θ; γ) := E
[(
Xθ
T − LT − γ

)2]
, (4.2.13)

where γ := ξ − λ ∈ R is an exogenous constant. We denote the optimal strategy of

problem (4.2.13) by θ∗BM =
({
θS∗BM,t

}
t∈[0,T ]

,
{
θV ∗
BM,t

}
t∈[0,T ]

,
{
θr∗BM,t

}
t∈[0,T ]

)
.

4.3 Solution to the complete market case

In this section, we first use the BSDE approach to solve the above benchmark

problem (4.2.13) and then obtain the optimal risk exposure strategy and optimal

value function of mean-variance ALM problem (4.2.10), when derivative trading is

available to the asset-liability manager.
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4.3.1 Solution to the benchmark problem

To find the BSDEs associated with benchmark problem (4.2.13), we consider

two continuous (F,P)-semi-martingales, Yt and Gt, with the following canonical

decomposition:

dYt = Ht dt+ Zr
t dW

r
t + ZS

t dW
S
t + ZV

t dWV
t , (4.3.1)

and

dGt = Ψt dt+ P r
t dW

r
t + PS

t dW
S
t + PV

t dWV
t , (4.3.2)

where Ht, Z
r
t , Z

S
t , Z

V
t ,Ψt, P

r
t , P

S
t , P

V
t are some F-adapted processes that will be

determined later. For any admissible strategy θ ∈ Θ, applying Itô’s formula to

Yt
(
Xθ
t −Gt

)2
, we have

Yt
(
Xθ
t −Gt

)2
=

∫ t

0

Ys

[(
θSs
√
VsX

θ
s − PSs

)
+ (Xθ

s −Gs)

(
ZSs
Ys

+ λs
√
Vs

)]2
ds

+

∫ t

0

Ys

[(
θVs
√
VsX

θ
s − PVs

)
+ (Xθ

s −Gs)

(
ZVs
Ys

+ λv
√
Vs

)]2
ds

+

∫ t

0

Ys

[(
θrsσr

√
rsX

θ
s − P rs

)
+ (Xθ

s −Gs)

(
Zrs
Ys

+
λr
σr

√
rs

)]2
ds

+

∫ t

0

2(Xθ
s −Gs)Ys

(
rsGs −Ψs + λsP

S
s

√
Vs + λvP

V
s

√
Vs +

λr
σr
P rs

√
rs

)
ds

+

∫ t

0

(Xθ
s −Gs)

2

(
Hs + 2rsYs − Ys

(
ZSs
Ys

+ λs
√
Vs

)2

− Ys

(
ZVs
Ys

+ λv
√
Vs

)2

−Ys
(
Zrs
Ys

+
λr
σr

√
rs

)2
)
ds+ Y0 (x0 −G0)

2

+

∫ t

0

[(
Xθ
s −Gs

)2
Zrs + 2Ys

(
Xθ
s −Gs

) (
θrsσr

√
rsX

θ
s − P rs

)]
dW r

s

+

∫ t

0

[(
Xθ
s −Gs

)2
ZSs + 2Ys(X

θ
s −Gs)

(
θSs
√
VsX

θ
s − PSs

)]
dWS

s

+

∫ t

0

[(
Xθ
s −Gs

)2
ZVs + 2Ys(X

θ
s −Gs)

(
θVs
√
VsX

θ
s − PVs

)]
dWV

s ,

(4.3.3)

for any t ∈ [0, T ]. Inspired by (4.3.3), we introduce the BSRE of
(
Yt, Z

r
t , Z

S
t , Z

V
t

)
:

dYt =

[(
λ2sVt + λ2vVt +

λ2r
σ2
r

rt − 2rt

)
Yt + 2λs

√
VtZ

S
t + 2λv

√
VtZ

V
t + 2

λr
σr

√
rtZ

r
t

+
(ZSt )

2

Yt
+

(ZVt )2

Yt
+

(Zrt )
2

Yt

]
dt+ ZSt dW

S
t + ZVt dW

V
t + Zrt dW

r
t ,

YT =1,

Yt >0, for all t ∈ [0, T ],

(4.3.4)

86



and the linear BSDE of
(
Gt, P

r
t , P

S
t , P

V
t

)
:

dGt =

(
rtGt + λs

√
VtP

S
t + λv

√
VtP

V
t +

λr
σr

√
rtP

r
t

)
dt+ PSt dW

S
t + PVt dWV

t

+ P rt dW
r
t ,

GT =LT + γ.

(4.3.5)

Furthermore, by separating the dependence of BSDE (4.3.5) on the liability value

LT and applying Itô’s lemma, we can decompose BSDE (4.3.5) of (Gt, P
r
t , P

S
t , P

V
t )

into the following two linear BSDEs of (G1,t,Λ
S
t ,Λ

V
t ,Λ

r
t ) and (G2,t,Γ

S
t ,Γ

V
t ,Γ

r
t ),

respectively:
dG1,t =

[(
1 +

λrβr
σr

− µr

)
rtG1,t + λs

√
VtΛ

S
t + λv

√
VtΛ

V
t

+

(
λr
σr

− βr

)
√
rtΛ

r
t

]
dt+ ΛSt dW

S
t + ΛVt dW

V
t + Λrt dW

r
t ,

G1,T =1,

(4.3.6)

and 
dG2,t =

(
rtG2,t + λs

√
VtΓ

S
t + λv

√
VtΓ

V
t +

λr
σr

√
rtΓ

r
t

)
dt

+ ΓSt dW
S
t + ΓVt dW

V
t + Γrt dW

r
t ,

G2,T =1.

(4.3.7)

Specifically, (Gt, P
r
t , P

S
t , P

V
t ), (G1,t,Λ

S
t ,Λ

V
t ,Λ

r
t ), and (G2,t,Γ

S
t ,Γ

V
t ,Γ

r
t ) are related

via the following linear formulation:
Gt =LtG1,t + γG2,t,

P rt =Lt (Λ
r
t +G1,tβr

√
rt) + γΓrt ,

PSt =LtΛ
S
t + γΓSt ,

PVt =LtΛ
V
t + γΓVt .

(4.3.8)

Throughout the rest of this paper, we make the following assumption on the market

parameters.

Assumption 4.3.1. λ2r ≥ 2σ2
r .

Remark 4.3.2. From an economic perspective, Assumption 4.3.1 is closely related

to the slope of the market price of interest rate risk λr/σr and implies that taking

interest rate risk should be highly rewarded, so that the asset-liability manager is

willing to invest in the rollover (zero-coupon) bond to hedge against the interest

rate risk. Otherwise, investing in the bond is too risky compared with the money

market account; in the extreme scenario when λr = 0, the return rates of the

money market account and bond are the same, but the bond dynamic involves
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an additional diffusion term (interest rate shocks). In other words, large enough

λr/σr assures that the interest rate risk can be fully hedged, and thus, leading

to the finite variance of terminal surplus. Mathematically speaking, Assumption

4.3.1 guarantees the non-positiveness and boundedness of functions A3(t) and Ā3(t)

given by (4.3.15) and (4.4.16) over [0, T ]. This is, in turn, essential to ensure that

BSREs (4.3.4) and (4.4.8) admit unique solutions, and the first-order conditions

work in the proof of Theorem 4.3.14 and 4.4.8.

To derive the optimal risk exposure strategy and optimal value function of

benchmark problem (4.2.13), we investigate the solvability of BSDEs (4.3.4), (4.3.6),

and (4.3.7).

Proposition 4.3.3. One solution
(
Yt, Z

r
t , Z

S
t , Z

V
t

)
to BSRE (4.3.4) is given by

Yt = exp {A1(t) +A2(t)Vt +A3(t)rt} , (4.3.9)

and 
Zrt = YtA3(t)σr

√
rt,

ZSt = 0,

ZVt = YtA2(t)σv
√
Vt,

(4.3.10)

where functions A1(t), A2(t), and A3(t) solve the following ordinary differential

equations (ODEs):

dA2(t)

dt
=
(
λ2s + λ2v

)
+ (κv + 2λvσv)A2(t) +

1

2
σ2
vA

2
2(t), A2(T ) = 0, (4.3.11)

dA3(t)

dt
=

(
λ2r
σ2
r

− 2

)
+ (κr + 2λr)A3(t) +

1

2
σ2
rA

2
3(t), A3(T ) = 0, (4.3.12)

dA1(t)

dt
=− φvA2(t)− φrA3(t), A1(T ) = 0. (4.3.13)

Proof. See Appendix 4.A.

Proposition 4.3.4. Closed-form solutions to (4.3.11), (4.3.12), and (4.3.13) are,

respectively, given by

A2(t) =



n+
A2
n−
A2

(
1− e

√
∆A2

(T−t)
)

n+
A2

− n−
A2
e
√

∆A2
(T−t)

, ∆A2 > 0;

n2
A2
σ2
v(T − t)

nA2σ
2
v(T − t)− 2

, ∆A2 = 0;√
−∆A2

σ2
v

tan

(
arctan

(
κv + 2λvσv√

−∆A2

)
−
√

−∆A2(T − t)

2

)
+ nA2 , ∆A2 < 0,

(4.3.14)

88



with 
∆A2 = (κv + 2λvσv)

2 − 2(λ2
s + λ2

v)σ
2
v, nA2 = −κv + 2λvσv

σ2
v

,

n+
A2

=
−(κv + 2λvσv) +

√
∆A2

σ2
v

, n−
A2

=
−(κv + 2λvσv)−

√
∆A2

σ2
v

,

A3(t) =



n+
A3
n−
A3

(
1− e

√
∆A3

(T−t)
)

n+
A3

− n−
A3
e
√

∆A3
(T−t)

, ∆A3 > 0;

n2
A3
σ2
r(T − t)

nA3σ
2
r(T − t)− 2

, ∆A3 = 0;√
−∆A3

σ2
r

tan

(
arctan

(
κr + 2λr√

−∆A3

)
−
√

−∆A3(T − t)

2

)
+ nA3 , ∆A3 < 0,

(4.3.15)

with 
∆A3 = (κr + 2λr)

2 − 2λ2
r + 4σ2

r , nA3 = −κr + 2λr

σ2
r

,

n+
A3

=
−(κr + 2λr) +

√
∆A3

σ2
r

, n−
A3

=
−(κr + 2λr)−

√
∆A3

σ2
r

,

and

A1(t) =

∫ T

t

φvA2(s) + φrA3(s) ds. (4.3.16)

Proof. See Appendix 4.B.

Proposition 4.3.5. Function A2(t) given in (4.3.14) is non-positive and bounded

over [0, T ]. Furthermore, suppose that Assumption 4.3.1 holds, then A3(t) given in

(4.3.15) is also non-positive and bounded over [0, T ].

Proof. See Appendix 4.C.

We now provide an auxiliary result before showing that the solution presented

in Proposition 4.3.3 above is the unique solution to BSRE (4.3.4). The following

lemma (Lemma 4.3.6) is adapted from Lemma A1 in Shen and Zeng (2015).

Lemma 4.3.6. For the CIR processes rt and Vt given in (4.2.1) and (4.2.5),

if functions m1(t),m2(t), and m3(t) are bounded on [0, T ], then the stochastic

exponential processes:

exp

{
−1

2

∫ t

0

m2
1(s)rs ds+

∫ t

0

m1(s)
√
rs dW

r
s

}
and

exp

{
−1

2

∫ t

0

(
m2

2(s) +m2
3(s)

)
Vs ds+

∫ t

0

m2(s)
√
Vs dW

V
s +

∫ t

0

m3(s)
√
Vs dW

S
s

}
are (F,P)-martingales.
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Remark 4.3.7. Lemma 4.3.6 essentially states the bonafide martingale properties of

the stochastic exponential processes of
∫ t
0
m1(s)

√
rs dW

r
s and

( ∫ t
0
m2(s)

√
Vs dW

V
s ,∫ t

0
m3(s)

√
Vs dW

S
s

)
under P measure. Hence, without Novikov’s condition imposed,

the above stochastic exponential processes are true (F,P)-martingales.

Corollary 4.3.8. Suppose that Assumption 4.3.1 holds true. The stochastic expo-

nential process

exp

{
−1

2

∫ t

0

A2
3(s)σ

2
rrs +A2

2(s)σ
2
vVs ds−

∫ t

0

A3(s)σr
√
rs dW̃

r
s −

∫ t

0

A2(s)σv

√
Vs dW̃

V
s

}

is an (F, P̃)-martingale, where the probability measure P̃ is defined by

dP̃
dP

∣∣∣∣
FT

=exp

{
− 2

∫ T

0

λs
√
Vt dW

S
t − 2

∫ T

0

λv
√
Vt dW

V
t − 2

∫ T

0

λr
σr

√
rt dW

r
t

− 2

∫ T

0

(λ2s + λ2v)Vt +
λ2r
σ2
r

rt dt

}
,

and W̃ r
t and W̃V

t are two independent Brownian motions under P̃.

Proof. See Appendix 4.D.

Lemma 4.3.9. Suppose that Assumption 4.3.1 holds true. The solution
(
Yt, Z

r
t , Z

S
t ,

ZVt
)
given in Proposition 4.3.3 is the unique solution to BSRE (4.3.4).

Proof. See Appendix 4.E.

In the next two propositions (Proposition 4.3.10 and 4.3.11), we derive closed-

form expressions for the unique solutions to linear BSDEs (4.3.6) and (4.3.7),

respectively.

Proposition 4.3.10. The unique solution (G1,t,Λ
S
t ,Λ

V
t ,Λ

r
t ) to linear BSDE (4.3.6)

is given by 
G1,t =exp {f1(t) + f2(t)rt} ,
ΛSt =0,

ΛVt =0,

Λrt =σr
√
rtf2(t)G1,t,

(4.3.17)
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where f1(t) and f2(t) are given by

f2(t) =



n+f2n
−
f2

(
1− e

√
∆f2

(T−t)
)

n+f2 − n−f2e
√

∆f2
(T−t)

, ∆f2 > 0;

n2f2σ
2
r(T − t)

nf2σ
2
r(T − t) + 2

, ∆f2 = 0;

−
√
−∆f2

σ2
r

tan

(
arctan

(
κr + λr − βrσr√

−∆f2

)
−
√

−∆f2(T − t)

2

)
+ nf2 , ∆f2 < 0,

(4.3.18)

where
∆f2 = (κr + λr − βrσr)

2 + 2σ2
r

(
1 +

λrβr
σr

− µr

)
, nf2 =

κr + λr − βrσr
σ2
r

,

n+f2 =
−(κr + λr − βrσr) +

√
∆f2

−σ2
r

, n−
f2

=
−(κr + λr − βrσr)−

√
∆f2

−σ2
r

and

f1(t) =

∫ T

t

φrf2(s) ds. (4.3.19)

Proof. See Appendix 4.F.

Proposition 4.3.11. The unique solution (G2,t,Γ
S
t ,Γ

V
t ,Γ

r
t ) to linear BSDE (4.3.7)

is given by 
G2,t =exp {g1(t) + g2(t)rt} ,
ΓSt =0,

ΓVt =0,

Γrt =g2(t)σr
√
rtG2,t,

(4.3.20)

where g1(t) and g2(t) are given by

g2(t) =
n+g2n

−
g2

(
1− e

√
∆g2

(T−t)
)

n+g2 − n−g2e
√

∆g2
(T−t)

, (4.3.21)

with ∆g2 = (κr + λr)
2 + 2σ2

r , n
+
g2 =

−(κr+λr)+
√

∆g2

−σ2
r

, n−g2 =
−(κr+λr)−

√
∆g2

−σ2
r

, and

g1(t) =

∫ T

t

φrg2(s) ds. (4.3.22)

Moreover, function g2(t) is non-positive and bounded over [0, T ].

The proof of Proposition 4.3.11 is similar to that of Proposition 4.3.5 and 4.3.10,

and so we omit it here.
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Remark 4.3.12. It is worth mentioning that the drivers of linear BSDEs (4.3.6)

and (4.3.7) are, in fact, with stochastic Lipschitz conditions (refer to Bender and

Kohlmann (2000) and Wang, Ran, and Hong (2006)). As shown either in Theorem

4 of Bender and Kohlmann (2000) or in Theorem 4.1 of Wang, Ran, and Hong

(2006), however, strict assumptions on coefficients are required, so that a contraction

mapping is constructed to prove the uniqueness and existence of an adapted solution

to the associated BSDEs. Unlike most of the related literature (see, for example,

Shen, Zhang, and Siu (2014), Zhang and Chen (2016), and Zhang (2021b)), we

verify the existence and uniqueness of the solutions to BSDEs (4.3.6) and (4.3.7)

by adopting Girsanov’s measure transformation techniques and the results of linear

BSDEs with uniformly Lipschitz condition (El Karoui, Peng, and Quenez (1997))

in the proof of Proposition 4.3.10 and 4.3.11.

Theorem 4.3.13. Suppose that Assumption 4.3.1 holds true. For any initial data

(r0, s0, v0, x0, l0) ∈ R+ × R+ × R+ × R+ × R+ fixed and given, the optimal risk

exposure strategy and optimal value function of benchmark problem (4.2.13) are,

respectively, given by

θS∗BM,t =− 1

X∗
t

λs

(
X∗
t − γeg1(t)+g2(t)rt − ef1(t)+f2(t)rtLt

)
,

θr∗BM,t =− 1

X∗
t

((
A3(t) +

λr
σ2
r

)
X∗
t − γeg1(t)+g2(t)rt

(
A3(t) + g2(t) +

λr
σ2
r

)
−
(
A3(t) + f2(t) +

βr
σr

+
λr
σ2
r

)
ef1(t)+f2(t)rtLt

)
,

θV ∗
BM,t =− 1

X∗
t

(σvA2(t) + λv)
(
X∗
t − γeg1(t)+g2(t)rt − ef1(t)+f2(t)rtLt

)
,

(4.3.23)

and

JBM (θ∗BM ; γ) =eA1(0)+A2(0)v0+A3(0)r0
(
x0 − l0e

f1(0)+f2(0)r0 − γeg1(0)+g2(0)r0
)2
,

(4.3.24)

where functions A1(t), A2(t), A3(t), f1(t), f2(t), g1(t), and g2(t) are given by (4.3.16),

(4.3.14), (4.3.15), (4.3.19), (4.3.18), (4.3.22), and (4.3.21), respectively. Further-

more, the optimal strategy θ∗BM given in (4.3.23) is admissible, i.e., θ∗BM ∈ Θ.

Proof. See Appendix 4.G.

4.3.2 Solution to the mean-variance problem

In the next theorem, we obtain closed-form expressions for the optimal risk exposure

strategy and optimal value function of the mean-variance ALM problem (4.2.10).

In addition, we provide the results of the special case without random liabilities.
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Theorem 4.3.14. Suppose that Assumption 4.3.1 holds true. For any initial data

(r0, s0, v0, x0, l0) ∈ R+ ×R+ ×R+ ×R+ ×R+ fixed and given, the optimal strategy

and optimal value function of mean-variance ALM problem (4.2.10) are, respectively,

given by

θS∗t =− 1

X∗
t

λs

(
X∗
t − (ξ − λ∗)eg1(t)+g2(t)rt − ef1(t)+f2(t)rtLt

)
,

θr∗t =− 1

X∗
t

[(
A3(t) +

λr
σ2
r

)
X∗
t − (ξ − λ∗)eg1(t)+g2(t)rt

(
A3(t) + g2(t) +

λr
σ2
r

)
−
(
A3(t) + f2(t) +

βr
σr

+
λr
σ2
r

)
ef1(t)+f2(t)rtLt

]
,

θV ∗
t =− 1

X∗
t

[
(σvA2(t) + λv)

(
X∗
t − (ξ − λ∗)eg1(t)+g2(t)rt

)
− (σvA2(t) + λv) e

f1(t)+f2(t)rtLt

]
,

(4.3.25)

and

J∗
MV =

Y0 (x0 − l0G1,0 − ξG2,0)
2

1− Y0G2
2,0

, (4.3.26)

with λ∗ given by

λ∗ =
Y0G2,0 (x0 − l0G1,0 − ξG2,0)

1− Y0G2
2,0

, (4.3.27)

where Yt, G1,t, G2,t, A1(t), A2(t), A3(t), f1(t), f2(t), g1(t), g2(t) are given by (4.3.9),

(4.3.17), (4.3.20), (4.3.16), (4.3.14), (4.3.15), (4.3.19), (4.3.18), (4.3.22), and

(4.3.21), respectively. In addition, the optimal risk exposure strategy (4.3.25) is

admissible, i.e., θ∗ ∈ Θ. Moreover, from the relationship between π and θ given

in (4.2.8), we have the optimal investment strategy π∗ = (πS∗t , πD∗
t , πB∗

t ) of mean-

variance ALM problem (4.2.10) as follows:

πS∗t =
C1θ

V ∗
t − C3θ

S∗
t

C1ρ
(
c1 +

c2
Vt

)
− C3

√
1− ρ2

(
c1 +

c2
Vt

) ,
πD∗
t =

ρθS∗t −
√
1− ρ2θV ∗

t

ρC1 −
√
1− ρ2C3

.

πB∗
t =

ηπS∗t + C2π
D∗
t − θr∗t

b(K)
.

(4.3.28)

Proof. See Appendix 4.H.

Remark 4.3.15. The above results for the mean-variance ALM problem with deriva-

tives trading under the hybrid CIR-4/2 model are not considered in the existing

literature. In this sense, the present paper extends the results on the mean-variance

ALM problems, such as Zhang and Chen (2016), Li, Shen, and Zeng (2018), and Sun,

Zhang, and Yuen (2020), to the case that simultaneously takes into consideration

derivatives trading, stochastic volatility as well as stochastic interest rates.
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Remark 4.3.16. Note that the optimal value function J∗
MV and optimal exposures θ∗

to the stock index risk, volatility risk, and interest rate risk are independent of the

specific type of derivative asset as said in Section 4.2, whereas the optimal demand

of stock index, rollover bond, and derivative asset depends on C1, C2, and C3, which

reflects the deltas of the derivative asset. In particular, for a volatility/variance

derivative asset such as VIX and variance swap, it follows from (4.2.6) that C1 = 0,

C2 = D−1
t gr, and C3 = D−1

t σvgv. Moreover, we observe that the optimal value

function and optimal exposures are also irrelevant to the specification of two non-

negative constants c1 and c2 in the dynamics of stock index (4.2.4). If we further set

(c1, c2) = (1, 0) and (c1, c2) = (0, 1), we obtain the corresponding optimal investment

strategies of mean-variance ALM problem (4.2.10) under the CIR-Heston model

and CIR-3/2 model, respectively. These two findings reveal that the solvability of

problem (4.2.10) essentially hinges upon the specifications of the market prices of

stock index risk λs
√
Vt, volatility risk λv

√
Vt, and interest risk λr

σr

√
rt.

Corollary 4.3.17. (Without liability). Suppose that Assumption 4.3.1 holds true.

If there is no liability, then for any initial data (r0, s0, v0, x0) ∈ R+×R+×R+×R+

fixed and given, the optimal strategy and optimal value function of mean-variance

problem (4.2.10) are, respectively, given by

θS∗t =− 1

X∗
t

λs

(
X∗
t − (ξ − λ̃∗)eg1(t)+g2(t)rt

)
,

θr∗t =− 1

X∗
t

[(
A3(t) +

λr
σ2
r

)
X∗
t − (ξ − λ̃∗)eg1(t)+g2(t)rt

(
A3(t) + g2(t) +

λr
σ2
r

)]
,

θV ∗
t =− 1

X∗
t

(σvA2(t) + λv)
(
X∗
t − (ξ − λ̃∗)eg1(t)+g2(t)rt

)
,

(4.3.29)

and

J̃∗
MV =

Y0 (x0 − ξG2,0)
2

1− Y0G2
2,0

, (4.3.30)

where

λ̃∗ =
Y0G2,0 (x0 − ξG2,0)

1− Y0G2
2,0

. (4.3.31)

Proof. Substituting l0 = µr = βr = 0 into (4.3.25)–(4.3.27) yields (4.3.29)–(4.3.31),

respectively.

4.4 Solution to the incomplete market case

In this section, we study the alternative scenario where stock derivatives are

not available, and we devote to deriving closed-form expressions for the optimal

investment strategy and optimal value function of the mean-variance ALM problem

in the incomplete market case.
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To facilitate further discussions in this section, we work with the following three

one-dimensional, mutually independent Brownian motions (W 0
t ,W

1
t ,W

2
t ) under P

measure defined bydW 0
t

dW 1
t

dW 2
t

 =

 0 0 1

ρ
√

1− ρ2 0√
1− ρ2 −ρ 0


dWV

t

dWS
t

dW r
t

 ,
which are clearly equivalent to (WS

t ,W
V
t ,W

r
t ) due to Levy’s characterization of

Brownian motions. It then follows from (4.2.1), (4.2.3), (4.2.4), (4.2.5), and (4.2.9)

that the dynamics of the market model and random liability can be reformulated

as follows:



drt =(φr − κrrt) dt+ σr
√
rt dW

0
t ,

dBKt =(rt − λrb(K)rt)B
K
t dt− b(K)σr

√
rtB

K
t dW 0

t ,

dSt =
[
rt +

(
λvρ+ λs

√
1− ρ2

)
(c1Vt + c2) + ηλrrt

]
St dt+ ησr

√
rt dW

0
t

+ St

(
c1
√
Vt +

c2√
Vt

)
dW 1

t ,

dVt =(φv − κvVt) dt+ σv
√
Vt

(
ρ dW 1

t +
√
1− ρ2 dW 2

t

)
,

dLt =Lt
(
µrrt dt+ βr

√
rt dW

0
t

)
.

(4.4.1)

With the additional constraint that the investor cannot trade stock derivatives, it

follows from (4.2.7) and (4.4.1) that the asset process Xπ
t evolves as:

dXπ
t =

[
rt +

(
λvρ+ λs

√
1− ρ2

)
(c1Vt + c2)π

S
t +

(
ηπSt − b(K)πBt

)
λrrt

]
Xπ
t dt

+ πSt X
π
t

(
c1
√
Vt +

c2√
Vt

)
dW 1

t +
(
ηπSt − b(K)πBt

)
σr

√
rtX

π
t dW

0
t ,

(4.4.2)

with initial asset value x0 ∈ R+.

Definition 4.4.1 (Admissible strategy). In the market without derivatives trading,

an investment strategy π is said to be admissible if the following conditions are

satisfied:

1. πSt and πBt are F-adapted processes such that∫ T

0

∣∣∣∣πS
t

(
c1
√
Vt +

c2√
Vt

) ∣∣∣∣2 dt <∞,

∫ T

0

|(ηπS
t − b(K)πB

t )
√
rt|2 dt <∞, P− a.s.;

2. SDE (4.4.2) associated with π has a unique strong solution Xπ
t ;

3. The family of random variables Y icτn∧T
(
Xπ
τn∧T −Gic1,τn∧TLτn∧T − γGic2,τn∧T

)2
,

n ∈ N is uniformly integrable, for any sequence of F-stopping times {τn}n∈N
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such that τn ↑ ∞, where Y ict , G
ic
1,t, and G

ic
2,t are respectively given by (4.4.13),

(4.4.18), and (4.4.21), and γ ∈ R.

The set of all admissible investment strategies is denoted as A.

Definition 4.4.2. In the market without derivatives trading, the mean-variance

ALM problem is the following constrained stochastic optimization problem:

min
π∈A

J icMV (π) := E
[
(Xπ

T − LT − ξ)
2
]

subject to E [Xπ
T − LT ] = ξ

(4.4.3)

with ξ ∈ R fixed and given. Denote by J ic∗MV the optimal value function corresponding

to the optimal investment strategy πic,∗ :=

({
πic,S∗t

}
t∈[0,T ]

,
{
πic,B∗
t

}
t∈[0,T ]

)
.

Similar to the previous sections, we shall first address the following benchmark

problem (4.4.4) before solving the mean-variance ALM problem (4.4.3) in the

incomplete market case:

min
π∈A

JBM (π; γ) = E
[
(Xπ

T − LT − γ)
2
]
, (4.4.4)

where γ := ξ − λ ∈ R is an exogenous constant, and we denote the corresponding

optimal strategy of problem (4.4.4) by πic∗BM .

4.4.1 Solution to the benchmark problem

To apply the BSDE approach to solve the above benchmark problem (4.4.4), we

introduce two continuous (F,P)-semi-martingales, Y ict and Gict , with the following

decomposition:

dY ict = Hic
t dt+ Z0,t dW

0
t + Z1,t dW

1
t + Z2,t dW

2
t , (4.4.5)

and

dGict = Ψict dt+ P0,t dW
0
t + P1,t dW

1
t + P2,t dW

2
t , (4.4.6)

where Hic
t , Z0,t, Z1,t, Z2,t,Ψ

ic
t , P0,t, P1,t, P2,t are some undetermined F-adapted pro-

cesses. For any admissibile strategy π ∈ A, using Itô’s formula to Y ict
(
Xπ
t −Gict

)2
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and completing the square yield

Y ic
t (Xπ

t −Gic
t )2

=

∫ t

0

[
(Xπ

s −Gic
s )2Z0,s + 2(Xπ

s −Gic
s )Y ic

s

((
ηπS

s − b(K)πB
s

)
σr

√
rsX

π
s − P0,s

)]
dW 0

s

+

∫ t

0

[
(Xπ

s −Gic
s )2Z1,s + 2(Xπ

s −Gic
s )Y ic

s

(
πS
sX

π
s

(
c1
√
Vs +

c2√
Vs

)
− P1,s

)]
dW 1

s

+

∫ t

0

[
(Xπ

s −Gic
s )2Z2,s − 2(Xπ

s −Gic
s )Y ic

s P2,s

]
dW 2

s + Y ic
0

(
x0 −Gic

0

)2
+

∫ t

0

Y ic
s

[(
ηπS

s − b(K)πB
s

)
σrX

π
s

√
rs − P0,s + (Xπ

s −Gic
s )

(
Z0,s

Y ic
s

+
λr

σr

√
rs

)]2
ds

+

∫ t

0

Y ic
s

[
πS
sX

π
s

(
c1
√
Vs +

c2√
Vs

)
− P1,s + (Xπ

s −Gic
s )

(
Z1,s

Y ic
s

+

(
λvρ

+ λs

√
1− ρ2

)√
Vs

)]2
ds+

∫ t

0

Y ic
s (P2,s)

2 ds+

∫ t

0

(Xπ
s −Gic

s )2
[
Hic

s + 2rsY
ic
s

−
(
Z0,s

Y ic
s

+
λr

σr

√
rs

)2

Y ic
s −

(
Z1,s

Y ic
s

+
(
λvρ+ λs

√
1− ρ2

)√
Vs

)2

Y ic
s

]
ds

+

∫ t

0

2(Xπ
s −Gic

s )Y ic
s

(
rsG

ic
s +

λr

σr

√
rsP0,s +

(
λvρ+ λs

√
1− ρ2

)√
VsP1,s

− Z2
s

Y ic
s

P2,s −Ψic
s

)
ds.

(4.4.7)

In view of the right-hand side of (4.4.7), we propose the BSRE of (Y ict , Z0,t, Z1,t, Z2,t):

dY ict =

[((
λ2r
σ2
r

− 2

)
rt +

(
λvρ+ λs

√
1− ρ2

)2
Vt

)
Y ict + 2

λr
σr

√
rtZ0,t + 2

(
λvρ

+ λs
√
1− ρ2

)√
VtZ1,t +

(Z0,t)
2

Y ict
+

(Z1,t)
2

Y ict

]
dt+ Z0,t dW

0
t + Z1,t dW

1
t

+ Z2,t dW
2
t ,

Y icT =1,

Y ict >0, for all t ∈ [0, T ],

(4.4.8)

and the linear BSDE of (Gict , P0,t, P1,t, P2,t):


dGict =

(
rtG

ic
t +

λr
σr

√
rtP0,t +

(
λvρ+ λs

√
1− ρ2

)√
VtP1,t −

Z2,t

Y ict
P2,t

)
dt

+ P0,t dW
0
t + P1,t dW

1
t + P2,t dW

2
t ,

GicT =LT + γ.

(4.4.9)

It can be shown that linear BSDE (4.4.9) is related to the following two linear

BSDEs of (Gic1,t,Λ0,t,Λ1,t,Λ2,t) and (Gic2,t,Γ0,t,Γ1,t,Γ2,t):
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
dGic1,t =

[(
1 +

λrβr
σr

− µr

)
rtG

ic
1,t +

(
λr
σr

− βr

)
√
rtΛ0,t + (λvρ+

λs
√
1− ρ2

)√
VtΛ1,t −

Z2,t

Y ict
Λ2,t

]
dt+ Λ0,t dW

0
t + Λ1,t dW

1
t + Λ2,t dW

2
t ,

Gic1,T =1,

(4.4.10)

and
dGic2,t =

[
rtG

ic
2,t +

λr
σr

√
rtΓ0,t +

(
λvρ+ λs

√
1− ρ2

)√
VtΓ1,t −

Z2,t

Y ict
Γ2,t

]
dt

+ Γ0,t dW
0
t + Γ1,t dW

1
t + Γ2,t dW

2
t ,

Gic2,T =1,

(4.4.11)

via the following linear formulation:
Gict =LtG

ic
1,t + γGic2,t,

P0,t =Lt
(
Λ0,t +Gic1,tβr

√
rt
)
+ γΓ0,t,

P1,t =LtΛ1,t + γΓ1,t,

P2,t =LtΛ2,t + γΓ2,t.

(4.4.12)

The next lemma presents a closed-form expression for the unique solution to BSRE

(4.4.8).

Lemma 4.4.3. Suppose that Assumption 4.3.1 holds true. The unique solution to

BSRE (4.4.8) is given by

Y ict =exp
{
Ā1(t) + Ā2(t)Vt + Ā3(t)rt

}
,

Z0,t =Y
ic
t Ā3(t)σr

√
rt,

Z1,t =Y
ic
t Ā2(t)σvρ

√
Vt,

Z2,t =Y
ic
t Ā2(t)σv

√
1− ρ2

√
Vt,

(4.4.13)

where functions Ā1(t), Ā2(t), and Ā3(t) solve

dĀ2(t)

dt
=
(
λvρ+ λs

√
1− ρ2

)2
+
(
κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ
)
Ā2(t)

+ σ2
v

(
ρ2 − 1

2

)
Ā2

2(t), Ā2(T ) = 0,

dĀ3(t)

dt
=

(
λ2r
σ2
r

− 2

)
+ (κr + 2λr) Ā3(t) +

1

2
σ2
r Ā

2
3(t), Ā3(T ) = 0,

dĀ1(t)

dt
=− φvĀ2(t)− φrĀ3(t), Ā1(T ) = 0.

(4.4.14)
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Moreover, closed-form solutions to ODEs (4.4.14) are given by

Ā2(t) =



(
λvρ+ λs

√
1− ρ2

)2(
e

(
κv+2

(
λvρ+λs

√
1−ρ2

)
σvρ

)
(t−T ) − 1

)
κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ

, ρ2 =
1

2

and κv + 2
(
λvρ+ λs

√
1− ρ2

)
σvρ ̸= 0;(

λvρ+ λs

√
1− ρ2

)2
(t− T ), ρ2 =

1

2
and κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ = 0;

n+
Ā2
n−
Ā2

(
1− e

√
∆Ā2

(T−t)
)

n+
Ā2

− n−
Ā2
e
√

∆Ā2
(T−t)

, ρ2 ̸= 1

2
and ∆Ā2

> 0;

σ2
v(ρ

2 − 1
2
)(T − t)n2

Ā2

σ2
v(ρ2 − 1

2
)(T − t)nĀ2

− 1
, ρ2 ̸= 1

2
and ∆Ā2

= 0;

√
−∆Ā2

σ2
v(2ρ2 − 1)

tan

arctan

κv + 2σvρ
(
λvρ+ λs

√
1− ρ2

)
√

−∆Ā2


−
√

−∆Ā2

2
(T − t)

)
+ nĀ2

, ρ2 ̸= 1

2
and ∆Ā2

< 0,

(4.4.15)

where

∆Ā2
=
(
κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ
)2

− (4ρ2 − 2)
(
λvρ+ λs

√
1− ρ2

)2
σ2
v,

nĀ2
=
−
(
κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ
)

σ2
v(2ρ2 − 1)

,

n+
Ā2

=
−
(
κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ
)
+
√

∆Ā2

σ2
v(2ρ2 − 1)

,

n−
Ā2

=
−
(
κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ
)
−
√

∆Ā2

σ2
v(2ρ2 − 1)

,

Ā3(t) =



n+
A3
n−
A3

(
1− e

√
∆A3

(T−t)
)

n+
A3

− n−
A3
e
√

∆A3
(T−t)

, ∆A3 > 0;

n2
A3
σ2
r(T − t)

nA3σ
2
r(T − t)− 2

, ∆A3 = 0;√
−∆A3

σ2
r

tan

(
arctan

(
κr + 2λr√

−∆A3

)
−
√

−∆A3(T − t)

2

)
+ nA3 , ∆A3 < 0,

(4.4.16)

where 
∆A3 = (κr + 2λr)

2 − 2λ2
r + 4σ2

r , nA3 = −κr + 2λr

σ2
r

,

n+
A3

=
−(κr + 2λr) +

√
∆A3

σ2
r

, n−
A3

=
−(κr + 2λr)−

√
∆A3

σ2
r

,

and

Ā1(t) =

∫ T

t

φvĀ2(s) + φrĀ3(s) ds. (4.4.17)
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Furthermore, functions Ā2(t) and Ā3(t) are non-positive and bounded over [0, T ].

Proof. See Appendix 4.I.

Based on the unique solution (Y ict , Z0,t, Z1,t, Z2,t) derived in Lemma 4.4.3, we

next obtain the unique solutions to BSDEs (4.4.10) and (4.4.11), respectively.

Lemma 4.4.4. Suppose that Assumption 4.3.1 holds true. The unique solution to

linear BSDE (4.4.10) is given by
Gic1,t =exp

{
f̄1(t) + f̄2(t)rt

}
,

Λ0,t =G
ic
1,tσrf̄2(t)

√
rt,

Λ1,t =0,

Λ2,t =0,

(4.4.18)

where closed-form expressions for f̄1(t) and f̄2(t) are given by

f̄2(t) =



n+
f2
n−
f2

(
1− e

√
∆f2

(T−t)
)

n+
f2

− n−
f2
e
√

∆f2
(T−t)

, ∆f2 > 0;

n2
f2
σ2
r(T − t)

nf2σ
2
r(T − t) + 2

, ∆f2 = 0;

−
√

−∆f2

σ2
r

tan

(
arctan

(
κr + λr − βrσr√

−∆f2

)
−
√

−∆f2(T − t)

2

)
+ nf2 , ∆f2 < 0,

(4.4.19)

where
∆f2 = (κr + λr − βrσr)

2 + 2σ2
r

(
1 +

λrβr
σr

− µr

)
, nf2 =

κr + λr − βrσr

σ2
r

,

n+
f2

=
−(κr + λr − βrσr) +

√
∆f2

−σ2
r

, n−
f2

=
−(κr + λr − βrσr)−

√
∆f2

−σ2
r

and

f̄1(t) =

∫ T

t

φrf̄2(s) ds. (4.4.20)

Proof. See Appendix 4.J.

Lemma 4.4.5. Suppose that Assumption 4.3.1 holds true. The unique solution to

linear BSDE (4.4.11) is given by
Gic2,t =exp {ḡ1(t) + ḡ2(t)rt} ,
Γ0,t =G

ic
2,tσr ḡ2(t)

√
rt,

Γ1,t =0,

Γ2,t =0,

(4.4.21)
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where functions ḡ1(t) and ḡ2(t) are given by

ḡ2(t) =
n+g2n

−
g2

(
1− e

√
∆g2

(T−t)
)

n+g2 − n−g2e
√

∆g2
(T−t)

, (4.4.22)

with ∆g2 = (κr + λr)
2 + 2σ2

r , n
+
g2 =

−(κr+λr)+
√

∆g2

−σ2
r

, n−g2 =
−(κr+λr)−

√
∆g2

−σ2
r

, and

ḡ1(t) =

∫ T

t

φr ḡ2(s) ds. (4.4.23)

Furthermore, function ḡ2(t) is non-positive and bounded over [0, T ].

The proof of Lemma 4.4.5 is similar to that of Lemma 4.4.4, so we omit it here.

It is worth noting that the non-positiveness and boundedness of ḡ2(t) over [0, T ]

follow from the fact that ḡ2(t) = g2(t) with g2(t) given in Proposition 4.3.11 above.

Remark 4.4.6. It should be noted that the results obtained in Lemma 4.4.4 and 4.4.5

do not rely on the unique solution (Y ict , Z0,t, Z1,t, Z2,t) to BSRE (4.4.8), although

the term Z2,t/Y
ic
t appears in the drivers of linear BSDEs (4.4.10) and (4.4.11).

Due to the boundedness of function Ā2(t) as shown in Lemma 4.4.3, we can change

the original probability measure P to some equivalent probability measures, which

substantially simplifies the forms of the drivers of BSDEs (4.4.10) and (4.4.11),

so that the only state variable process involved in their respective drivers is the

interest rate rt. This, in turn, allows us to obtain the explicit solutions to these

two BSDEs upon utilizing the Markovian structure of rt.

Theorem 4.4.7. Suppose that Assumption 4.3.1 holds true. For any initial data

(r0, s0, v0, x0, l0) ∈ R+ × R+ × R+ × R× R+ fixed and given, the optimal strategy

and optimal value function of benchmark problem (4.4.4) are, respectively, given by

πic,S∗
BM,t =− 1

X∗
t (c1Vt + c2)

(
X∗

t − γeḡ1(t)+ḡ2(t)rt − ef̄1(t)+f̄2(t)rtLt

)
×
(
Ā2(t)σvρ+ λvρ+ λs

√
1− ρ2

)
Vt,

πic,B∗
BM,t =

1

b(K)X∗
t

[
X∗

t

(
Ā3(t) +

λr

σ2
r

)
− γeḡ1(t)+ḡ2(t)rt

(
Ā3(t) + ḡ2(t) +

λr

σ2
r

)
−Lte

f̄1(t)+f̄2(t)rt

(
Ā3(t) + f̄2(t) +

βr
σr

+
λr

σ2
r

)]
+

η

b(K)
πic,S∗
BM,t,

(4.4.24)

and

JBM (πic∗BM ; γ) = eĀ1(0)+Ā2(0)v0+Ā3(0)r0
(
x0 − l0e

f̄1(0)+f̄2(0)r0 − γeḡ1(0)+ḡ2(0)r0
)2
,

(4.4.25)

where functions Ā1(t), Ā2(t), Ā3(t), f̄1(t), f̄2(t), ḡ1(t), and ḡ2(t) are given by (4.4.7),

(4.4.15), (4.4.16), (4.4.20), (4.4.19), (4.4.23), and (4.4.22), respectively. Further-

more, optimal strategy (4.4.24) is admissible, i.e., πic∗BM ∈ A.

Proof. See Appendix 4.K.
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4.4.2 Solution to the mean-variance problem

In the next theorem, we obtain the explicit solutions to the optimal investment

strategy and optimal value function of mean-variance ALM problem (4.4.3) in the

incomplete market without derivatives trading.

Theorem 4.4.8. Suppose that Assumption 4.3.1 holds true. For any initial data

(r0, s0, v0, x0, l0) ∈ R+×R+×R+×R+×R+ fixed and given, the optimal investment

strategy and optimal value function of mean-variance ALM problem (4.4.3) are,

respectively, given by

πic,S∗t =− 1

X∗
t (c1Vt + c2)

(
X∗
t − (ξ − λic∗)eḡ1(t)+ḡ2(t)rt − ef̄1(t)+f̄2(t)rtLt

)
×
(
Ā2(t)σvρ+ λvρ+ λs

√
1− ρ2

)
Vt,

πic,B∗
t =

1

b(K)X∗
t

[
X∗
t

(
Ā3(t) +

λr
σ2
r

)
− γeḡ1(t)+ḡ2(t)rt

(
Ā3(t) + ḡ2(t) +

λr
σ2
r

)
−Ltef̄1(t)+f̄2(t)rt

(
Ā3(t) + f̄2(t) +

βr
σr

+
λr
σ2
r

)]
+

η

b(K)
πic,S∗t ,

(4.4.26)

and

J ic∗MV =
Y ic0

(
x0 − l0G

ic
1,0 − ξGic2,0

)2
1− Y ic0 (Gic2,0)

2
, (4.4.27)

with λic∗ given by

λic∗ =
Y ic0 Gic2,0

(
x0 − l0G

ic
1,0 − ξGic2,0

)
1− Y ic0 (Gic2,0)

2
, (4.4.28)

where Y ict , G
ic
1,t, G

ic
2,t, Ā1(t), Ā2(t), Ā3(t), f̄1(t), f̄2(t), ḡ1(t), ḡ2(t) are given by (4.4.13),

(4.4.18), (4.4.21), (4.4.17), (4.4.15), (4.4.16), (4.4.20), (4.4.19), (4.4.23), and

(4.4.22), respectively. Furthermore, optimal investment strategy (4.4.26) is admissi-

ble, i.e., πic∗ ∈ A.

The proof of Theorem 4.4.8 is similar to that of Theorem 4.3.14, and so we omit

it here.

Remark 4.4.9. Note that, when specifying (c1, c2) = (1, 0) and (c1, c2) = (0, 1) in

Theorem 4.4.8, we obtain the optimal investment strategies of mean-variance ALM

problem (4.4.3) under the Heston model and 3/2 model, respectively. In addition,

it is not surprising to see that the optimal exposures to interest rate risk in the non-

derivative and derivative markets are the same, namely, ηπic,S∗t − b(K)πic,B∗
t = θr∗t .

This finding corresponds to the fact that the interest rate risk can be perfectly

hedged by the zero-coupon (rollover) bond regardless of the market completeness.
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Corollary 4.4.10. (Without liability). Suppose that Assumption 4.3.1 holds true.

If there is no liability, then for any initial data (r0, s0, v0, x0) ∈ R+×R+×R+×R+

fixed and given, the optimal investment strategy and optimal value function of

mean-variance ALM problem (4.4.3) are, respectively, given by

πic,S∗t =−

(
X∗
t − (ξ − λ̃ic∗)eḡ1(t)+ḡ2(t)rt

)(
Ā2(t)σvρ+ λvρ+ λs

√
1− ρ2

)
Vt

X∗
t (c1Vt + c2)

,

πic,B∗
t =

1

b(K)X∗
t

[
X∗
t

(
Ā3(t) +

λr
σ2
r

)
− γeḡ1(t)+ḡ2(t)rt

(
Ā3(t) + ḡ2(t) +

λr
σ2
r

)]
+

η

b(K)
πic,S∗t ,

(4.4.29)

and

J ic∗MV =
Y ic0

(
x0 − ξGic2,0

)2
1− Y ic0 (Gic2,0)

2
(4.4.30)

with λ̃ic∗ given by

λ̃ic∗ =
Y ic0 Gic2,0

(
x0 − ξGic2,0

)
1− Y ic0 (Gic2,0)

2
. (4.4.31)

Proof. Substituting l0 = µr = βr = 0 into (4.4.26)–(4.4.28) returns (4.4.29)–(4.4.31),

respectively.

Remark 4.4.11. The results provided in Theorem 4.4.8 and Corollary 4.4.10 above

for the mean-variance ALM problem under the CIR-4/2 model without derivatives

trading are not reported in the existing literature. In this sense, the present paper

extends some papers on portfolio optimization problems under the 4/2 model, such

as Cheng and Escobar (2021a) and Zhang (2021a), to the case with stochastic

interest rates and random liabilities.

To end this section, we verify that derivatives trading can improve the efficacy of

portfolio optimization under certain conditions.

Proposition 4.4.12. Suppose that Assumption 4.3.1 holds true. For any initial

data (r0, s0, v0, x0, l0) ∈ R+ × R+ × R+ × R+ × R+ fixed and given, we have

J∗
MV ≤ J ic∗MV ,

if the following condition is satisfied:

λv
√
1− ρ2 ≥ λsρ. (4.4.32)

Proof. See Appendix 4.L.
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4.5 Numerical illustration

In this section, we provide some numerical experiments to illustrate the effects of

derivatives trading on the economic behavior of efficient frontiers, when condition

(4.4.32) is not satisfied. Throughout this section, unless otherwise stated, the values

of model parameters are given as follows: λs = 0.22472, λr = −0.1132, λv =

−0.66932, η = −0.5973, ρ = −0.2292, κr = 1.3, φr = 0.0025, σr = 0.0566, κv =

2.8278, φv = 0.0563, σv = 0.2941, µr = 0.05, βr = 0.2, x0 = 1, l0 = 1, v0 =

0.0225, r0 = 0.03, T = 1. Most of the model parameters are adapted from Escobar,

Ferrando, and Rubtsov (2018). It is easy to verify that Assumption 4.3.1 is satisfied,

while condition (4.4.32) does not hold in this case. In the following numerical

experiments, we vary the value of one parameter with others fixed and given.

Figure 4.1 shows the effects of parameter λs on the efficient frontiers. We observe

that given the expectation of the terminal surplus, both the efficient frontiers, J∗
MV

and J ic∗MV , move downwards concerning λs. One possible reason is that larger λs
indicates that the stock index exhibits a higher return rate, which, in turn, allows

the asset-liability manager to undertake less risk for deriving the same value of

the expected return. We also notice that J ic∗MV − J∗
MV decreases concerning λs.

This can be explained by the economic implication of parameter λv. When λs
becomes larger, |λv| gets relatively smaller. In this case, the volatility risk induced

by Brownian motion WV
t is lower. Given that this risk can be hedged by the stock

derivatives but not by the stock index only, the effectiveness of derivatives trading

is reduced when λs increases.

Figure 4.1: The effects of λs on the efficient frontiers

Figure 4.2 depicts the effects of λv on the efficient frontiers. From Figure

4.2(a)-(b) we find that when |λv| increases, the efficient frontiers move downwards

substantially when derivatives trading is available whereas the efficient frontiers

move downwards subtly with no investment in the stock derivatives. As a matter

of fact, the larger |λv| becomes, the larger the volatility risk induced by Brownian

motion WV
t is. In this case, the stock derivative is more useful as a hedging tool.

This is consistent with the result shown in Figure 4.2(c) that as |λv| increases, the
value of J ic∗MV − J∗

MV becomes larger.
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Figure 4.2: The effects of λv on the efficient frontiers

Figure 4.3: The effects of ρ on the efficient frontiers

Figure 4.3 contributes to the evolution of the efficient frontiers with respect to ρ.

From Figure 4.3(a) we find that the value of ρ has no impact on the efficient frontier

J∗
MV in the complete market case. This corresponds to the results given in Theorem

4.3.14 above. Furthermore, Figure 4.3(c) shows that when ρ decreases from −0.2292

to −0.9292, the value of J ic∗MV − J∗
MV becomes smaller, that is, derivatives trading

becomes less useful. This is because when |ρ| approaches 1, the dynamic of the

stock index is less affected by Brownian motion WS
t but more affected by WV

t .

Consequently, fewer derivatives trading is needed to hedge the stock index risk. In

the extreme scenario when ρ = −1, both the dynamics of the stock index and its

instantaneous variance are driven by the same Brownian motion WV
t , and the stock

derivative becomes a redundant asset in this case. This also explains the results

shown in Figure 4.3(b) that the efficient frontiers J ic∗MV move upwards when the

value of |ρ| decreases.

4.6 Conclusion

In this paper, we investigated a mean-variance ALM problem with derivatives

trading in the presence of the state-of-the-art 4/2 stochastic volatility (Grasselli

(2017)) and CIR stochastic interest rate. The asset-liability manager is allowed to

invest in not only a money market account, a stock index, and zero-coupon bonds,

but also a stock derivative, the price dynamic of which depends on the interest rate,
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the stock index, and the instantaneous variance of the stock index.

By adopting a BSDE approach and solving a system of three BSDEs, we obtained

closed-form expressions for the optimal investment strategies and optimal value

functions for both the complete and incomplete market cases: with and without

derivatives trading. Furthermore, results for the CIR-4/2 model, CIR-Heston model,

and CIR-3/2 model without random liabilities were also provided explicitly, as

exceptional cases. Finally, some numerical experiments were given to illustrate the

effects of derivatives trading on the efficient frontiers, and we found that derivatives

trading can reduce investment risk under the mean-variance criterion. To the best

of our knowledge, there is no existing literature on the mean-variance ALM problem

with the hybrid CIR-4/2 model and derivatives trading taken into consideration

simultaneously.

Built on our current work, several potential topics deserve further investigation.

For example, one may consider the case with model ambiguity. One may also

introduce rough volatility into the market.
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4.A Proof of Proposition 4.3.3

Proof. We conjecture that the first component Yt of the solution to BSRE (4.3.4)

has the following exponential form:

Yt = exp {A1(t) +A2(t)Vt +A3(t)rt} , (4.A.1)

where A1(t), A2(t), and A3(t) are undetermined differentiable functions of t with

boundary conditions A1(T ) = A2(T ) = A3(T ) = 0. Applying Itô’s formula to Yt,

we have

dYt

=Yt

(
dA1(t)

dt
+
dA2(t)

dt
Vt + (φv − κvVt)A2(t) +

dA3(t)

dt
rt + (φr − κrrt)A3(t)

+
1

2
A2

2(t)σ
2
vVt +

1

2
A2

3(t)σ
2
rrt

)
dt+ Yt

(
A2(t)σv

√
Vt dW

V
t +A3(t)σr

√
rt dW

r
t

)
.

(4.A.2)

By matching the diffusion coefficients of SDEs (4.3.4) and (4.A.2):

ZSt = 0, ZVt = YtA2(t)σv
√
Vt, Z

r
t = YtA3(t)σr

√
rt,
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the driver of BSRE (4.3.4) turns out to be

Yt

{[(
λ2s + λ2v

)
+ 2λvσvA2(t) +A2

2(t)σ
2
v

]
Vt +

[(
λ2
r

σ2
r
− 2
)
+ 2λrA3(t) + σ2

rA
2
3(t)

]
rt

}
.

(4.A.3)

By comparing (4.A.3) and the drift coefficient of SDE (4.A.2), and separating the

dependence on rt and Vt, we find that functions A1(t), A2(t), and A3(t) must solve

the following ODEs:

dA2(t)

dt
=
(
λ2s + λ2v

)
+ (κv + 2λvσv)A2(t) +

1

2
σ2
vA

2
2(t), A2(T ) = 0,

dA3(t)

dt
=

(
λ2r
σ2
r

− 2

)
+ (κr + 2λr)A3(t) +

1

2
σ2
rA

2
3(t), A3(T ) = 0,

dA1(t)

dt
=− φvA2(t)− φrA3(t), A1(T ) = 0.

This completes the proof.

4.B Proof of Proposition 4.3.4

Proof. Denote ∆A2
:= (κv +2λvσv)

2 − 2(λ2s +λ
2
v)σ

2
v . When ∆A2

> 0, Riccati ODE

(4.3.11) is equivalent to

dA2(t)

dt
=

1

2
σ2
v

(
A2(t)− n+A2

) (
A2(t)− n−A2

)
. (4.B.1)

where n+A2
=

−(κv+2λvσv)+
√

∆A2

σ2
v

and n−A2
=

−(κv+2λvσv)−
√

∆A2

σ2
v

. Moreover, we can

rewrite (4.B.1) as follows:

dA2(t)

A2(t)− n+A2

− dA2(t)

A2(t)− n−A2

=
√
∆A2

dt. (4.B.2)

Integrating both sides of (4.B.2) with respect to t, and using the boundary condition

A2(T ) = 0, we have

A2(t) =
n+A2

n−A2

(
1− e

√
∆A2

(T−t)
)

n+A2
− n−A2

e
√

∆A2
(T−t)

.

When ∆A2
= 0, then Riccati ODE (4.3.11) can be reformed as follows:

dA2(t)

(A2(t)− nA2
)
2 =

1

2
σ2
v dt, (4.B.3)

where nA2 = −κv+2λvσv

σ2
v

. Integrating both sides of (4.B.3) and using the boundary

condition A2(T ) = 0, we have

A2(t) =
n2A2

σ2
v(T − t)

nA2σ
2
v(T − t)− 2

.
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When ∆A2
< 0, we can reformulate ODE (4.3.11) as follows:

dA2(t)

(A2(t)− nA2
)
2
+

−∆A2

σ4
v

=
1

2
σ2
v dt (4.B.4)

Using the separation variable method to (4.B.4), we have

A2(t) =

√
−∆A2

σ2
v

tan

(
arctan

(
κ+ 2λvσv√

−∆A2

)
−
√
−∆A2(T − t)

2

)
+ nA2

.

Similarly, denote ∆A3 := (κr + 2λr)
2 − 2λ2r + 4σ2

r . When ∆A3 > 0, Riccati ODE

(4.3.12) can be rewritten as follows:

dA3(t)

dt
=

1

2
σ2
r

(
A3(t)− n+A3

) (
A3(t)− n−A3

)
.

where n+A3
=

−(κr+2λr)+
√

∆A3

σ2
r

and n−A3
=

−(κr+2λr)−
√

∆A3

σ2
r

. By the boundary

condition A3(T ) = 0, a direct integral calculation yields

A3(t) =
n+A3

n−A3

(
1− e

√
∆A3

(T−t)
)

n+A3
− n−A3

e
√

∆A3
(T−t)

.

When ∆A3
= 0, similar to (4.B.3), we derive

A3(t) =
nA2

3
σ2
r(T − t)

nA3σ
2
r(T − t)− 2

,

where nA3 = −κr+2λr

σ2
r

. When ∆A3 < 0, we have

A3(t) =

√
−∆A3

σ2
r

tan

(
arctan

(
κr + 2λr√

−∆A3

)
−
√
−∆A3(T − t)

2

)
+ nA3

.

Finally, a direct integral calculation gives the solution A1(t) to ODE (4.3.13) below

A1(t) =

∫ T

t

φvA2(s) + φrA3(s) ds.

This completes the proof.

4.C Proof of Proposition 4.3.5

Proof. A direct differentiation of A2(t) given in (4.3.14) with respect to t leads to

dA2(t)

dt
=



4(λ2
s + λ2

v)∆ve
√

∆A2
(T−t)(

(κv + 2λvσv)−
√

∆A2 −
(
κv + 2λvσv +

√
∆A2

)
e
√

∆A2
(T−t)

)2 , ∆A2 > 0;

2(κv + 2λvσv)
2

σ2
v ((κv + 2λvσv)(T − t) + 2)2

, ∆A2 = 0;

−∆A2

2σ2
v

sec2
(
arctan

(
κv + 2λvσv√

−∆A2

)
−
√

−∆A2(T − t)

2

)
, ∆A2 < 0.
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This clearly shows that dA2(t)/dt > 0 over [0, T ]. Thus, by the boundary condition

A2(T ) = 0, we see that A2(t) is non-positive over [0, T ], and more precisely, A2(t)

is within the interval [A2(0), 0].

Similarly, for the function A3(t) given in (4.3.15), we have

dA3(t)

dt
=



4
(

λ2
r

σ2
r
− 2
)
∆A3e

√
∆A3

(T−t)(
−(κr + 2λr) +

√
∆A3 + (κr + 2λr +

√
∆A3)e

√
∆A3

(T−t)
)2 , ∆A3 > 0;

2(κr + 2λr)
2

σ2
r ((κr + 2λr)(T − t) + 2)2

, ∆A3 = 0;

−∆A3

2σ2
r

sec2
(
arctan

(
κr + 2λr√

−∆A3

)
−
√

−∆A3(T − t)

2

)
, ∆A3 < 0.

Under Assumption 4.3.1, the above equalities reveal that dA3(t)/dt > 0 over [0, T ].

Thus, A3(t) is non-positive and bounded by [A3(0), 0] over [0, T ].

4.D Proof of Corollary 4.3.8

Proof. By Lemma 4.3.6, the following two stochastic exponential processes:

exp

{
−2

∫ t

0

λs
√
Vs dW

S
s − 2

∫ t

0

λv
√
Vs dW

V
s − 2

∫ t

0

(λ2s + λ2v)Vs ds

}
(4.D.1)

and

exp

{
−2

∫ t

0

λr
σr

√
rs dW

r
s − 2

∫ t

0

λ2r
σ2
r

rs ds

}
(4.D.2)

are (F,P)-martingales. Since (F,P)-martingales (4.D.1) and (4.D.2) are mutually

independent with continuous sample paths under measure P, by Theorem 2.4 in

Cherny (2006), the product of (4.D.1) and (4.D.2)

exp

{
−2

∫ t

0

λs
√
Vt dW

S
s − 2

∫ t

0

λv
√
Vt dW

V
s − 2

∫ t

0

λr
σr

√
rs dW

r
s

−2

∫ t

0

[
(λ2s + λ2v)Vs +

λ2r
σ2
r

rs

]
ds

}
is also an (F,P)-martingale. Hence, the probability measure P̃ defined by

dP̃
dP

∣∣∣∣
FT

=exp

{
− 2

∫ T

0

λs
√
Vt dW

S
t − 2

∫ T

0

λv
√
Vt dW

V
t − 2

∫ T

0

λr
σr

√
rt dW

r
t

− 2

∫ T

0

[
(λ2s + λ2v)Vt +

λ2r
σ2
r

rt

]
dt

}
is equivalent to P measure on FT . As a result of Girsanov’s theorem, the dynamics

of Brownian motions under P̃ are related to the dynamics of Brownian motions

under P via

dW̃S
t = 2λs

√
Vt dt+ dWS

t , dW̃
V
t = 2λv

√
Vt dt+ dWV

t , dW̃
r
t = 2

λr
σr

√
rt dt+ dW r

t .
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Under measure P̃, we observe that Vt and rt:

dVt = (φv − (κv + 2λvσv)Vt) dt+ σv
√
Vt dW̃

V
t

and

drt = (φr − (κr + 2λr)rt) dt+ σr
√
rt dW̃

r
t

retain CIR structures. Therefore, by Proposition 4.3.5 and Lemma 4.3.6 again, the

following stochastic exponential processes:

exp

{
−1

2

∫ t

0

A2
3(s)σ

2
rrs ds−

∫ t

0

A3(s)σr
√
rs dW̃

r
s

}
(4.D.3)

and

exp

{
−1

2

∫ t

0

A2
2(s)σ

2
vVs ds−

∫ t

0

A2(s)σv
√
Vs dW̃

V
s

}
(4.D.4)

are (F, P̃)-martingales. Finally, given that martingales (4.D.3) and (4.D.4) are

mutually independent with continuous sample paths under P̃, by Theorem 2.4 in

Cherny (2006), we know that

exp

{
−1

2

∫ t

0

(
A2

3(s)σ
2
rrs +A2

2(s)σ
2
vVs
)
ds−

∫ t

0

A3(s)σr
√
rs dW̃

r
s

−
∫ t

0

A2(s)σv
√
Vs dW̃

V
s

}
is an (F, P̃)-martingale. This completes the proof.

4.E Proof of Lemma 4.3.9

Proof. By applying Itô’s formula to log(Yt) with Yt given in (4.3.9) and changing

from measure P to P̃,
(
log(Yt),

ZS
t

Yt
,
ZV

t

Yt
,
Zr

t

Yt

)
is a solution to the following quadratic

BSDE:

d log(Yt) =

[(
−2rt + λ2sVt + λ2vVt +

λ2r
σ2
r

rt

)
+

1

2

(
ZSt
Yt

)2

+
1

2

(
ZVt
Yt

)2

+
1

2

(
Zrt
Yt

)2 ]
dt+

ZSt
Yt

dW̃S
t +

ZVt
Yt

dW̃V
t +

Zrt
Yt

dW̃ r
t ,

log(YT ) =0.

(4.E.1)

Suppose there exists another solution to BSRE (4.3.4) denoted by (Ỹt, Z̃
S
t , Z̃

V
t , Z̃

r
t ),

which is different from the solution given in Proposition 4.3.3. By the above

transformation,
(
log(Ỹt),

Z̃S
t

Ỹt
,
Z̃V

t

Ỹt
,
Z̃r

t

Ỹt

)
also solves BSDE (4.E.1). Therefore, the

difference process (∆ log(Yt),∆Z
S
t ,∆Z

V
t ,∆Z

r
t ) defined by

(
∆log(Yt),∆Z

S
t ,∆Z

V
t ,∆Z

r
t

)
=

(
log(Yt)− log(Ỹt),

ZS
t

Yt
− Z̃S

t

Ỹt

,
ZV

t

Yt
− Z̃V

t

Ỹt

,
Zr

t

Yt
− Z̃r

t

Ỹt

)
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solves the following quadratic BSDE:



d∆ log(Yt) =
1

2

[(
(ZSt )

2

Y 2
t

− (Z̃St )
2

Ỹ 2
t

)
+

(
(ZVt )2

Y 2
t

− (Z̃Vt )2

Ỹ 2
t

)

+

(
(Zrt )

2

Y 2
t

− (Z̃rt )
2

Ỹ 2
t

)]
dt+∆ZSt dW̃

S
t +∆ZVt dW̃

V
t +∆Zrt dW̃

r
t ,

∆ log(YT ) =0.

From Corollary 4.3.8, we know that the probability measure P̂ defined by

dP̂
dP̃

∣∣∣∣
FT

=exp

{
− 1

2

∫ T

0

(
A2

3(t)σ
2
rrt +A2

2(t)σ
2
vVt
)
dt−

∫ T

0

A3(t)σr
√
rt dW̃

r
t

−
∫ T

0

A2(t)σv
√
Vt dW̃

V
t

}
=exp

{
− 1

2

∫ T

0

(
ZSt
Yt

)2

+

(
ZVt
Yt

)2

+

(
Zrt
Yt

)2

dt−
∫ T

0

ZSt
Yt

dW̃S
t

−
∫ T

0

ZVt
Yt

dW̃V
t −

∫ T

0

Zrt
Yt

dW̃ r
t

}

is equivalent to P̃ on FT , where the second equality makes use of the result in

Proposition 4.3.3 that
(
Zrt , Z

S
t , Z

V
t

)
=
(
YtA3(t)σr

√
rt, 0, YtA2(t)σv

√
Vt
)
. Therefore,

from Girsanov’s theorem, the Brownian motions Ŵ r
t , Ŵ

S
t , Ŵ

V
t under measure P̂

are given by

dŴ r
t = dW̃ r

t +
Zrt
Yt

dt, dŴS
t = dW̃S

t +
ZSt
Yt

dt, dŴV
t = dW̃V

t +
ZVt
Yt

dt.

Then, it can be shown that the difference process (∆ log(Yt),∆Z
S
t ,∆Z

V
t ,∆Z

r
t )

solves the following quadratic BSDE under P̂ measure:


d∆ log(Yt) =− 1

2

[
(∆ZVt )2 + (∆Zrt )

2 + (∆ZSt )
2
]
dt+∆ZSt dŴ

S
t +∆ZVt dŴ

V
t

+∆Zrt dŴ
r
t ,

∆ log(YT ) =0,

(4.E.2)

which satisfies all the regularity conditions in Kobylanski (2000). Hence, it follows

from Theorem 2.3 and 2.6 in Kobylanski (2000) that quadratic BSDE (4.E.2)

admits a unique solution (0, 0, 0, 0). Finally, we can conclude that the solution

(Yt, Z
r
t , Z

S
t , Z

V
t ) given in Proposition 4.3.3 is the unique solution to BSRE (4.3.4).
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4.F Proof of Proposition 4.3.10

Proof. We conjecture that the first component G1,t of the solution to linear BSDE

(4.3.6) admits the following exponential form:

G1,t = exp {f1(t) + f2(t)rt} , (4.F.1)

where f1(t) and f2(t) are undetermined differentiable functions of t with boundary

conditions f1(T ) = f2(T ) = 0. Applying Itô’ formula to G1,t given in (4.F.1) yields

dG1,t =G1,t

(
df1(t)

dt
+
df2(t)

dt
rt + (φr − κrrt)f2(t) +

1

2
σ2
rrtf

2
2 (t)

)
dt

+G1,tσr
√
rtf2(t) dW

r
t .

(4.F.2)

Let ΛSt = 0,ΛVt = 0, and Λrt = σr
√
rtf2(t)G1,t. The driver of linear BSDE (4.3.6)

can be reformulated as follows:

G1,t

(
1 +

λrβr
σr

− µr +

(
λr
σr

− βr

)
σrf2(t)

)
rt. (4.F.3)

A direct comparison between (4.F.3) and the drift coefficient of SDE (4.F.2) shows

that functions f1(t) and f2(t) must solve the following two ODEs:
df2(t)

dt
=

(
1 +

λrβr
σr

− µr

)
+ (κr + λr − βrσr) f2(t)−

1

2
σ2
rf

2
2 (t), f2(T ) = 0,

df1(t)

dt
= −φrf2(t), f1(T ) = 0.

(4.F.4)

Notice that ODEs (4.F.4) have similar structures to the ones given in Proposition

4.3.3. By repeating the calculations in Appendix 4.B, closed-form expressions of

f1(t) and f2(t) are then given by (4.3.18) and (4.3.18), respectively.

In the following, we verify that the solution given in (4.3.17) is the unique solution

to BSDE (4.3.6) by using a comparison method. By Lemma 4.3.6, we first notice

the following two stochastic exponential processes:

exp

{
−
∫ t

0

(
λr
σr

− βr

)
√
rs dW

r
s − 1

2

∫ t

0

(
λr
σr

− βr

)2

rs ds

}

and

exp

{
−
∫ t

0

λs
√
Vs dW

S
s −

∫ t

0

λv
√
Vs dW

V
s − 1

2

∫ t

0

(
λ2s + λ2v

)
Vs ds

}
are (F,P)-martingales. Clearly, the above two martingales are with continuous

sample paths and are mutually independent. It then follows from Theorem 2.4 in

Cherny (2006) that the stochastic exponential in the following Radon-Nikodym
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derivative is an (F,P)-martingale:

dP̄
dP

∣∣∣∣
FT

=exp

{
− 1

2

∫ T

0

(
λ2s + λ2v

)
Vt +

(
λr
σr

− βr

)2

rt dt

−
∫ T

0

(
λr
σr

− βr

)
√
rt dW

r
t −

∫ T

0

λs
√
Vt dW

S
t −

∫ T

0

λv
√
Vt dW

V
t

}
,

and thus, P̄ measure is equivalent to P measure on FT . By Girsanov’s theorem, we

have the dynamics of Brownian motions W̄ r
t , W̄

S
t , W̄

V
t under P̄ as follows:

dW̄ r
t = dW r

t +

(
λr

σr
− βr

)
√
rt dt, dW̄

S
t = dWS

t + λs

√
Vt dt, dW̄

V
t = dWV

t + λv

√
Vt dt.

Therefore, the solution presented in (4.3.17) must be a solution to the following

linear BSDE (4.F.5) under P̄ measure as well:dG1,t =

(
1 +

λrβr
σr

− µr

)
rtG1,t dt+ ΛSt dW̄

S
t + ΛVt dW̄

V
t + Λrt dW̄

r
t ,

G1,T =1.

(4.F.5)

Suppose that besides
(
G1,t,Λ

S
t ,Λ

V
t ,Λ

r
t

)
given in (4.3.17), there exists another

solution to BSDE (4.3.6), which is denoted as (Ḡ1,t, Λ̄
S
t , Λ̄

V
t , Λ̄

r
t ). Then the difference

process defined by(
∆G1,t,∆ΛSt ,∆ΛVt ,∆Λrt

)
:=
(
G1,t − Ḡ1,t,Λ

S
t − Λ̄St ,Λ

V
t − Λ̄Vt ,Λ

r
t − Λ̄rt

)
(4.F.6)

solves the following BSDE (4.F.7):d∆G1,t =

(
1 +

λrβr
σr

− µr

)
rt∆G1,t dt+∆ΛSt dW̄

S
t +∆ΛVt dW̄

V
t +∆Λrt dW̄

r
t ,

∆G1,T =0.

(4.F.7)

We now introduce the following BSDE of
(
∆G

′

1,t,∆ΛS
′

t ,∆ΛV
′

t ,∆Λr
′

t

)
with uni-

formly Lipschitz continuity:{
d∆G

′

1,t =∆ΛS
′

t dW̄S
t +∆ΛV

′

t dW̄V
t +∆Λr

′

t dW̄
r
t ,

∆G
′

1,T =0.
(4.F.8)

It is clear that linear BSDE (4.F.8) is with standard data (refer to El Karoui, Peng,

and Quenez (1997)). Then by Theorem 2.1 and Proposition 2.2 in El Karoui, Peng,

and Quenez (1997), BSDE (4.F.8) has the unique solution (0, 0, 0, 0). Let∆G1,t =exp

{∫ t

0

(
1 +

λrβr

σr

− µr

)
rs ds

}
∆G

′
1,t, ∆Λ

S
t = exp

{∫ t

0

(
1 +

λrβr

σr

− µr

)
rs ds

}
∆Λ

S′
t

∆Λ
V
t =exp

{∫ t

0

(
1 +

λrβr

σr

− µr

)
rs ds

}
∆Λ

V ′
t , ∆Λ

r
t = exp

{∫ t

0

(
1 +

λrβr

σr

− µr

)
rs ds

}
∆Λ

r′
t .

(4.F.9)
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Applying Itô’s formula to ∆G1,t defined in (4.F.9) yields

d∆G1,t =

(
1 +

λrβr
σr

− µr

)
rt∆G1,t dt+∆ΛSt dW̄

S
t +∆ΛVt dW̄

V
t +∆Λrt dW̄

r
t ,

with terminal condition ∆G1,T = 0, which is exactly BSDE (4.F.7). Hence, we can

conclude that BSDE (4.F.7) has the unique solution (0, 0, 0, 0) from the one-to-one

correspondence between
(
∆G1,t,∆ΛSt ,∆ΛVt ,∆Λrt

)
and

(
∆G

′

1,t,∆ΛS
′

t ,∆ΛV
′

t ,∆Λr
′

t

)
given in (4.F.9). This result, in turn, means that

(
G1,t,Λ

S
t ,Λ

V
t ,Λ

r
t

)
= (Ḡ1,t, Λ̄

S
t , Λ̄

V
t , Λ̄

r
t ),

that is, the solution given in (4.3.17) is the unique solution to BSDE (4.3.6). This

completes the proof.

4.G Proof of Theorem 4.3.13

Proof. Applying Itô’s formula to Yt
(
Xθ
t −Gt

)2
and completing of squares yield

dYt(X
θ
t −Gt)

2 =
[(
Xθ
t −Gt

)2
Zrt + 2Yt

(
Xθ
t −Gt

) (
θrtσr

√
rtX

θ
t − P rt

)]
dW r

t

+
[(
Xθ
t −Gt

)2
ZSt + 2Yt(X

θ
t −Gt)

(
θSt
√
VtX

θ
t − PSt

)]
dWS

t

+
[(
Xθ
t −Gt

)2
ZVt + 2Yt(X

θ
t −Gt)

(
θVt
√
VtX

θ
t − PVt

)]
dWV

t

+ Yt

[(
θSt
√
VtX

θ
t − PSt

)
+ (Xθ

t −Gt)

(
ZSt
Yt

+ λs
√
Vt

)]2
dt

+ Yt

[(
θVt
√
VtX

θ
t − PVt

)
+ (Xθ

t −Gt)

(
ZVt
Yt

+ λv
√
Vt

)]2
dt

+ Yt

[(
θrtσr

√
rtX

θ
t − P rt

)
+ (Xθ

t −Gt)

(
Zrt
Yt

+
λr
σr

√
rt

)]2
dt.

(4.G.1)

Due to the path-wise continuity of Gt, Yt, rt, Vt, P
r
t , P

S
t , P

V
t , Z

r
t , Z

S
t , Z

V
t , θ

r
t , θ

S
t , θ

V
t ,

and Xθ
t for any admissible strategy θ ∈ Θ, stochastic integrals on the right-hand side

of (4.G.1) are (F,P)-local martingales. Therefore, there exists a localizing sequence

(τn)n∈N such that τn ↑ +∞ P almost surely as n→ +∞, and when stopped by such

a sequence, the aforementioned local martingales are (F,P)-martingales.

By integrating both sides of above equality from 0 to τn ∧ T and taking expecta-
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tions, we have

E
[
Yτn∧T

(
Xθ

T∧τn −GT∧τn

)2]
=Y0 (x0 −G0)

2 + E

[∫ T∧τn

0

Yt

[(
θSt

√
VtX

θ
t − PS

t

)
+ (Xθ

t −Gt)

(
ZS

t

Yt
+ λs

√
Vt

)]2
dt

]

+ E

[∫ T∧τn

0

Yt

[(
θVt

√
VtX

θ
t − PV

t

)
+ (Xθ

t −Gt)

(
ZV

t

Yt
+ λv

√
Vt

)]2
dt

]

+ E

[∫ T∧τn

0

Yt

[(
θrtσr

√
rtX

θ
t − P r

t

)
+ (Xθ

t −Gt)

(
Zr

t

Yt
+
λr

σr

√
rt

)]2
dt

]
.

(4.G.2)

Notice from the correspondence between Gt, G1,t, and G2,t given in (4.3.8) that the

term in the expectation on the left-hand side of (4.G.2) is uniformly integrable for

any admissible strategy θ ∈ Θ, and the terms in the expectations on the right-hand

side of (4.G.2) are all non-negative and increasing with respect to n ∈ N. Hence,

by applying the monotone convergence theorem and the equivalence between the

uniform integrability and L1 convergence, sending n to infinity in (4.G.2) leads to

E
[(
Xθ

T − LT − γ
)2]

=Y0 (x0 −G0)
2 + E

[∫ T

0

Yt

[(
θSt

√
VtX

θ
t − PS

t

)
+ (Xθ

t −Gt)

(
ZS

t

Yt
+ λs

√
Vt

)]2
dt

]

+ E

[∫ T

0

Yt

[(
θVt

√
VtX

θ
t − PV

t

)
+ (Xθ

t −Gt)

(
ZV

t

Yt
+ λv

√
Vt

)]2
dt

]

+ E

[∫ T

0

Yt

[(
θrtσr

√
rtX

θ
t − P r

t

)
+ (Xθ

t −Gt)

(
Zr

t

Yt
+
λr

σr

√
rt

)]2
dt

]
.

(4.G.3)

Recalling the preceding results given in Proposition 4.3.3, 4.3.10, 4.3.11 and (4.3.8),

we find from (4.G.3) that the optimal strategy and optimal value function of

benchmark problem (4.2.13) are, respectively, given by

θS∗BM,t =− 1

X∗
t

λs

(
X∗
t − γeg1(t)+g2(t)rt − ef1(t)+f2(t)rtLt

)
,

θr∗BM,t =− 1

X∗
t

((
A3(t) +

λr
σ2
r

)
X∗
t − γeg1(t)+g2(t)rt

(
A3(t) + g2(t) +

λr
σ2
r

)
−
(
A3(t) + f2(t) +

βr
σr

+
λr
σ2
r

)
ef1(t)+f2(t)rtLt

)
,

θV ∗
BM,t =− 1

X∗
t

(σvA2(t) + λv)
(
X∗
t − γeg1(t)+g2(t)rt − ef1(t)+f2(t)rtLt

)
,

(4.G.4)

and

JBM (θ∗BM ; γ) = eA1(0)+A2(0)v0+A3(0)r0
(
x0 − l0e

f1(0)+f2(0)r0 − γeg1(0)+g2(0)r0
)2
.
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In the following, we devote ourselves to verifying that optimal strategy (4.G.4) is

admissible, that is, θ∗BM ∈ Θ.

Denote by X∗
t the asset process associated with the optimal strategy θ∗BM given

by (4.G.4). Then combining (4.2.7), (4.3.5), and (4.G.4), we observe that

d(X∗
t −Gt)

=

[
rt − λs

√
Vt

(
ZSt
Yt

+ λs
√
Vt

)
− λv

√
Vt

(
ZVt
Yt

+ λv
√
Vt

)
−λr
σr

√
rt

(
Zrt
Yt

+
λr
σr

√
rt

)]
(X∗

t −Gt) dt−
(
ZSt
Yt

+ λs
√
Vt

)
(X∗

t −Gt) dW
S
t

−
(
ZVt
Yt

+ λv
√
Vt

)
(X∗

t −Gt) dW
V
t −

(
Zrt
Yt

+
λr
σr

√
rt

)
(X∗

t −Gt) dW
r
t .

By solving this linear SDE explicitly and using the preceding results given in

Proposition 4.3.3, 4.3.10, and 4.3.11, the asset process X∗
t is given by

X∗
t

=
(
x0 − l0e

f1(0)+f2(0)r0 − γeg1(0)+g2(0)r0
)
exp

{
−
∫ t

0

λs
√
Vs dW

S
s − 1

2

∫ t

0

λ2sVs ds

}
× exp

{
−
∫ t

0

(A2(s)σv + λv)
√
Vs dW

V
s − 1

2

∫ t

0

(A2(s)σv + λv)
2Vs ds

}
× exp

{
−
∫ t

0

(
A3(s)σr +

λr
σr

)
√
rs dW

r
s − 1

2

∫ t

0

(
A3(s)σr +

λr
σr

)2

rs ds

}

× exp

{∫ t

0

(
1−A3(s)λr −

λ2r
σ2
r

)
rs − (A2(s)λvσv + λ2s + λ2v)Vs ds

}
+ l0 exp

{∫ t

0

(
µr −

1

2
β2
r

)
rs ds+

∫ t

0

βr
√
rs dW

r
s + f1(t) + f2(t)rt

}
+ γ exp {g1(t) + g2(t)rt} , X∗

t = x0.

(4.G.5)
Since X∗

t given in (4.G.5) is F-adapted and has continuous sample paths P almost
surely, it follows from (4.G.4) above that θS∗BM,t, θ

V ∗
BM,t, and θ

r∗
BM,t are also F-adapted

processes with continuous sample paths P almost surely. Thus, we must have

P
(∫ T

0

|θS∗
BM,t|

2
Vt dt < ∞

)
= P

(∫ T

0

|θV ∗
BM,t|

2
Vt dt < ∞

)
= P

(∫ T

0

|θr∗BM,t|
2
rt dt < ∞

)
= 1.

Now, it remains to show that
{
Yτn∧T

(
X∗
τn∧T −G1,τn∧TLτn∧T − γG2,τn∧T

)2}
n∈N

is a uniformly integrable family for any stopping time sequences {τn}n∈N such that

τn ↑ ∞, P almost surely as n→ +∞. Denote

Mt = Yt(X
∗
t −Gt)

2 = Yt(X
∗
t − LtG1,t − γG2,t)

2.
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From (4.G.1) above, we observe

dMt =−
(
A3(t)σr + 2

λr
σr

)
√
rtMt dW

r
t − 2λs

√
VtMt dW

S
t

− (A2(t)σv + 2λv)
√
VtMt dW

V
t .

Solving the above equation explicitly, we have

Mt =M0 exp

{
−
∫ t

0

(
A3(s)σr + 2

λr
σr

)
√
rs dW

r
s − 1

2

∫ t

0

(
A3(s)σr + 2

λr
σr

)2

rs ds

}

× exp

{
−
∫ t

0

2λs
√
Vs dW

S
s −

∫ t

0

(A2(s)σv + 2λv)
√
Vs dW

V
s

−1

2

∫ t

0

(4λ2s + (A2(s)σv + 2λv)
2)Vs ds

}
> 0,

(4.G.6)

where M0 = JBM (θ∗BM ). It follows from Lemma 4.3.6 that two stochastic exponen-

tial processes on the right-hand side of (4.G.6) are (F,P)-martingales. Furthermore,

due to the independence of the above two stochastic exponential processes with

continuous sample paths, it follows from Theorem 2.4 in Cherny (2006) that Mt is

an (F,P)-martingale.

For any sequence of stopping times {τn}n∈N such that τn ↑ ∞, it is clear that

τn ∧ T and T are two bounded stopping times. Thus, by Doob’s optional sampling

theorem (for bounded stopping times), we have

Mτn∧T = E [MT |Fτn∧T ] .

Since {Fτn∧T }n∈N is a family of sub σ−algebra of FT and E [|MT |] = JBM (θ∗BM ) <

∞, it follows from Theorem 4.6.1 in Durrett (2019) that the family {Mτn∧T }n∈N is

uniformly integrable. This completes the proof.

4.H Proof of Theorem 4.3.14

Proof. The solution is obtained via the relationship between the mean-variance

problem (4.2.10) and benchmark problem (4.2.13) shown in Section 4.2. Specifically,

we have

J∗
MV =max

λ∈R
JBM (θ∗BM ; ξ − λ)− λ2

=max
λ∈R

{
eA1(0)+A2(0)v0+A3(0)r0

(
x0 − l0e

f1(0)+f2(0)r0

−(ξ − λ)eg1(0)+g2(0)r0
)2

− λ2

}
.

(4.H.1)
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Note that

d2JBM (θ∗BM ; ξ − λ)− λ2

dλ2

=2 exp {A1(0) + 2g1(0) +A2(0)v0 + (A3(0) + 2g2(0))r0} − 2

=2 exp

{∫ T

0

(φvA2(t) + φrA3(t)) dt+ 2

∫ T

0

φrg2(t) dt+A2(0)v0

+ (A3(0) + 2g2(0))r0

}
− 2 < 0,

where the last strict inequality follows from the non-positiveness of A2(t), A3(t),

and g2(t) as shown in Proposition 4.3.5 and 4.3.11 above. Thus, the maximum of

the right-hand side of (4.H.1) is attained at

λ∗ =
Y0G2,0 (x0 − l0G1,0 − ξG2,0)

1− Y0G2
2,0

, (4.H.2)

where Yt, G1,t, and G2,t are given by (4.3.9), (4.3.17), and (4.3.20), respectively.

Substituting (4.H.2) into the right-hand side of (4.H.1) yields the optimal value

function of mean-variance ALM problem (4.2.10):

J∗
MV =

Y0 (x0 − l0G1,0 − ξG2,0)
2

1− Y0G2
2,0

.

Replacing γ in (4.3.23) with ξ − λ∗ gives the optimal risk exposure strategy as

shown in (4.3.25). Finally, the admissibility of optimal strategy (4.3.25) can be

shown as Theorem 4.3.13. This completes the proof.

4.I Proof of Lemma 4.4.3

Proof. We conjecture that the first component Y ict of the solution to BSRE (4.4.8)

admits the following exponential form:

Y ict = exp
{
Ā1(t) + Ā2(t)Vt + Ā3(t)rt

}
,

where Ā1(t), Ā2(t), and Ā3(t) are undetermined differentiable functions with bound-

ary conditions Ā1(T ) = Ā2(T ) = Ā3(T ) = 0. A direct application of Itô’s formula

to Y ict returns

dY ict =Y ict

(
dĀ1(t)

dt
+
dĀ2(t)

dt
Vt +

dĀ3(t)

dt
rt + (φv − κvVt)Ā2(t) +

1

2
σ2
vĀ

2
2(t)Vt

+(φr − κrrt)Ā3(t) +
1

2
σ2
rrtĀ

2
3(t)

)
dt+ σr

√
rtĀ3(t)Y

ic
t dW 0

t

+ σv
√
VtρĀ2(t)Y

ic
t dW 1

t + σv
√
Vt
√
1− ρ2Ā2(t)Y

ic
t dW 2

t .

(4.I.1)
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Let 
Z0,t =σr

√
rtĀ3(t)Y

ic
t ,

Z1,t =σv
√
VtρĀ2(t)Y

ic
t ,

Z2,t =σv
√
Vt
√
1− ρ2Ā2(t)Y

ic
t .

By matching the driver of BSRE (4.4.8) and the drift coefficient of SDE (4.I.1), we

find that functions Ā1(t), Ā2(t), and Ā3(t) solve the following ODEs:

dĀ2(t)

dt
=
(
λvρ+ λs

√
1− ρ2

)2
+
(
κv + 2

(
λvρ+ λs

√
1− ρ2

)
σvρ
)
Ā2(t)

+ σ2
v

(
ρ2 − 1

2

)
Ā2

2(t), Ā2(T ) = 0,

dĀ3(t)

dt
=

(
λ2r
σ2
r

− 2

)
+ (κr + 2λr) Ā3(t) +

1

2
σ2
r Ā

2
3(t), Ā3(T ) = 0,

dĀ1(t)

dt
=− φvĀ2(t)− φrĀ3(t), Ā1(T ) = 0.

(4.I.2)

Notice that ODEs (4.I.2) have similar structures to the ones given in Proposition

4.3.3 above. By repeating the same calculations as shown in Proposition 4.3.4,

we obtain closed-form expressions for Ā1(t), Ā2(t), and Ā3(t) given by (4.4.17),

(4.4.15), and (4.4.16), respectively. Moreover, it follows from direct differentiation

that functions Ā2(t) and Ā3(t) are strictly increasing over [0, T ] and are bounded

over [0, T ]. Therefore, by the similar arguments of Lemma 4.3.9, it can be shown that

(Y ict , Z0,t, Z1,t, Z2,t) given by (4.4.13) is the unique solution to BSRE (4.4.8).

4.J Proof of Lemma 4.4.4

Proof. Based on the unique solution to BSRE (4.4.8) given in Lemma 4.4.3, we can

rewrite the linear BSDE (4.4.10) of (Gic1,t,Λ0,t,Λ1,t,Λ2,t) as follows:

dGic1,t =

[(
1 +

λrβr
σr

− µr

)
rtG

ic
1,t +

(
λr
σr

− βr

)
√
rtΛ0,t

+
(
λvρ+ λs

√
1− ρ2

)√
VtΛ1,t − σv

√
1− ρ2Ā2(t)

√
VtΛ2,t

]
dt

+ Λ0,t dW
0
t + Λ1,t dW

1
t + Λ2,t dW

2
t ,

Gic1,T =1.

(4.J.1)

We make a conjecture that Gic1,t has the following exponential form:

Gic1,t = exp
{
f̄1(t) + f̄2(t)rt

}
. (4.J.2)

Applying Itô’s formula to Gict given in (4.J.2) gives

dGic1,t =G
ic
1,t

(
df̄1(t)

dt
+
df̄2(t)

dt
rt + (φr − κrrt)f̄2(t) +

1

2
σ2
r f̄

2
2 (t)rt

)
dt

+ σr
√
rtf̄2(t)G

ic
1,t dW

0
t

(4.J.3)
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Let

Λ0,t = Gic1,tσr
√
rtf̄2(t), Λ1,t = 0, Λ2,t = 0.

Then the driver of BSDE (4.J.1) is given by

rtG
ic
1,t

[(
1 +

λr
σr
βr − µr

)
+ (λr − βrσr)f̄2(t)

]
. (4.J.4)

It follows from (4.J.4) and the drift coefficient of SDE (4.J.3) that f̄1(t) and f̄2(t)

must solve the ODEs below


df̄2(t)

dt
=

(
1 +

λrβr
σr

− µr

)
+ (κr + λr − βrσr)f̄2(t)−

1

2
σ2
r f̄

2
2 (t), f̄2(T ) = 0,

df̄1(t)

dt
=− φrf̄2(t), f̄1(T ) = 0.

(4.J.5)

Notice that ODEs (4.J.5) are the same as ODEs (4.F.4). Hence, closed-form

solutions to ODEs (4.J.5) can be immediately given in (4.4.19) and (4.4.20). Due

to the boundedness of function Ā2(t) as shown in Lemma 4.4.3, by the similar

arguments of Proposition 4.3.10 above, it can be shown that (Gic1,t,Λ0,t,Λ1,t,Λ2,t)

given by (4.4.18) is the unique solution to linear BSDE (4.4.10).

4.K Proof of Theorem 4.4.7

Proof. The proof is similar to that of Theorem 4.3.13, so we only provide the

modifications here. It follows from (4.4.7) that

dY ict
(
Xπ
t −Gict

)2
=
[
(Xπ

t −Gict )
2Z0,t + 2(Xπ

t −Gict )Y
ic
t

((
ηπSt − b(K)πBt

)
σr

√
rtX

π
t − P0,t

)]
dW 0

t

+

[
(Xπ

t −Gict )
2Z1,t + 2(Xπ

t −Gict )Y
ic
t

(
πSt X

π
t

(
c1
√
Vt +

c2√
Vt

)
− P1,t

)]
dW 1

t

+
[
(Xπ

t −Gict )
2Z2,t − 2(Xπ

t −Gict )Y
ic
t P2,t

]
dW 2

t + Y ict (P2,t)
2 dt

+ Y ict

[(
ηπSt − b(K)πBt

)
σrX

π
t

√
rt − P0,t + (Xπ

t −Gict )

(
Z0,t

Y ict
+
λr
σr

√
rt

)]2
dt

+ Y ict

[
πSt X

π
t

(
c1
√
Vt +

c2√
Vt

)
− P1,t + (Xπ

t −Gict )

(
Z1,t

Y ict
+

(
λvρ

+λs
√
1− ρ2

)√
Vt

)]2
dt.

(4.K.1)
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By applying localization techniques and taking expectation and integration on both

sides of (4.K.1) from 0 to T , we obtain

E
[
(Xπ

t − LT − γ)
2
]
− Y ic0 (x0 − l0G

ic
1,0 − γGic2,0)

2

=E

[∫ T

0

Y ict

[
πSt X

π
t

(
c1
√
Vt +

c2√
Vt

)
− P1,t + (Xπ

t −Gict )

(
Z1,t

Y ict
+

(
λvρ

+λs
√
1− ρ2

)√
Vt

)]2
dt

]
+ E

[∫ T

0

Y ict

[ (
ηπSt − b(K)πBt

)
σrX

π
t

√
rt − P0,t

+(Xπ
t −Gict )

(
Z0,t

Y ict
+
λr
σr

√
rt

)]2
dt

]
+ E

[∫ T

0

Y ict (P2,t)
2 dt

]
.

(4.K.2)

We observe from (4.4.12), (4.4.18), and (4.4.21) above that P2,t = 0. Therefore,

it follows from (4.K.2) that the optimal investment strategy and optimal value

function of benchmark problem (4.4.4) are given by

πic,S∗
BM,t =−

(
X∗

t − γeḡ1(t)+ḡ2(t)rt − ef̄1(t)+f̄2(t)rtLt

)(
Ā2(t)σvρ+ λvρ+ λs

√
1− ρ2

)
Vt

X∗
t (c1Vt + c2)

,

πic,B∗
BM,t =

1

b(K)X∗
t

[
X∗

t

(
Ā3(t) +

λr

σ2
r

)
− γeḡ1(t)+ḡ2(t)rt

(
Ā3(t) + ḡ2(t) +

λr

σ2
r

)
−Lte

f̄1(t)+f̄2(t)rt

(
Ā3(t) + f̄2(t) +

βr
σr

+
λr

σ2
r

)]
+

η

b(K)
πic,S∗
BM,t.

4.L Proof of Proposition 4.4.12

Proof. Considering functions A2(t) and Ā2(t) determined by Riccati ODEs (4.3.11)

and (4.4.14), we observe that(
−(λvρ+ λs

√
1− ρ2)2 −(κv + 2(λvρ+ λs

√
1− ρ2)σvρ)

0 −
(
ρ2 − 1

2

)
σ2
v

)

≥

(
−(λ2v + λ2s) −(κv + 2λvσv)

0 − 1
2σ

2
v

) (4.L.1)

holds, when λv
√
1− ρ2 ≥ λsρ is satisfied. According to the comparison theorem for

Riccati ODEs (refer to Theorem 2.1 in Freiling, Jank, and Abou-Kandil (1996)), we

have A2(t) ≤ Ā2(t) ≤ 0, for all t ∈ [0, T ]. On the other hand, it is straightforward

to see from Proposition 4.3.4–4.3.11 and Lemma 4.4.3-4.4.5 that

Ā3(t) = A3(t) ≤ 0, ḡ1(t) = g1(t) ≤ 0, ḡ2(t) = g2(t) ≤ 0, f̄1(t) = f1(t), f̄2(t) = f2(t).

These results indicate that Gic1,t = G1,t, 0 < Gic2,t = G2,t < 1, and 0 < Y1,t ≤ Y ic1,t < 1

for t ∈ [0, T ]. Finally, since function f(x) = x
1−ax is monotonically increasing for
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x ∈ (0, 1) with an exogenous constant a ∈ (0, 1), we can conclude that

J∗
MV ≤ J ic∗MV .

This completes the proof.
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Chapter 5

Dynamic optimal mean-variance

investment with mispricing in the family

of 4/2 stochastic volatility models

Abstract

This paper considers an optimal investment problem with mispricing

in the family of 4/2 stochastic volatility models under the mean-variance

criterion. The financial market consists of a risk-free asset, a market

index, and a pair of mispriced stocks. By applying the linear–quadratic

stochastic control theory and solving the corresponding Hamilton–Jacobi–

Bellman equation, explicit expressions for the statically optimal (pre-

commitment) strategy and the corresponding optimal value function are

derived. Moreover, a necessary verification theorem is provided based

on an assumption of the model parameters with the investment horizon.

Due to the time inconsistency under the mean-variance criterion, we

give a dynamic formulation of the problem and obtain the closed-form

expression of the dynamically optimal (time-consistent) strategy. This

strategy is shown to keep the wealth process strictly below the target

(expected terminal wealth) before the terminal time. Results on the

special case without mispricing are included. Finally, some numerical

examples are given to illustrate the effects of model parameters on the

efficient frontier and the difference between static and dynamic optimality.

Keywords: Mean-variance investment; 4/2 stochastic volatility model; Mispricing;

Hamilton–Jacobi–Bellman equation; Dynamic optimality

123



5.1 Introduction

The development of continuous-time stochastic volatility models is deemed crucial

in the field of modern finance. The attraction of stochastic volatility models mainly

resides in their capacity to explain many stylized facts observed in the financial

market such as fat tails, the leverage effect, and the volatility smile/skew on implied

volatility surfaces. See, for example, Hull and White (1987), Stein and Stein (1991),

Heston (1993) and Lewis (2000). In 2017, Grasselli (2017) proposed a new model

called the 4/2 stochastic volatility model which embraces the celebrated Heston

model and the 3/2 model (Lewis (2000)) as special cases. The superposition of these

two parsimonious models makes it possible for the new 4/2 model to better predict

the evolution of the implied volatility surface. This leads to emerging interests in

applications of Grasselli’s work to derivative pricing problems, such as Cui, Kirkby,

and Nguyen (2017, 2018) and Zhu, Zhang, and Jin (2020). In view of the success

of the 4/2 model in terms of option pricing, Cheng and Escobar (2021a) recently

investigated a utility maximization problem under the 4/2 model. It seems, however,

that little attention has been paid to portfolio optimization problems with the 4/2

model under Markowitz (1952)’s mean–variance criterion.

The single-period portfolio selection problem under the mean-variance criterion

can be traced back to the seminal work of Markowitz (1952). Li and Ng (2000) and

Zhou and Li (2000) generalized Markowitz’s work to multi-period and continuous

settings, respectively. In particular, Zhou and Li (2000) applied the standard results

on the linear–quadratic stochastic control theory combined with an embedding

technique to solve the problem in a financial market where all the market coefficients

are deterministic. Many researchers then realized the potential of diversification.

For example, Shen, Zhang, and Siu (2014) solved the problem under the constant

elasticity of the variance model by imposing an exponential integrability condition on

the market price of risk. Shen and Zeng (2015) went a step forward by considering

the optimal investment–reinsurance problem for a mean-variance insurer in an

incomplete market where the market price of risk depends on an affine-form and

square-root process, and they derived the modified locally square-integrable optimal

strategy. Sun, Zhang, and Yuen (2020) further extended Shen and Zeng (2015)’s

results to the case with multiple risky assets and random liabilities. For other

previous works, one can refer to Chiu and Wong (2011), Yu (2013), Lv, Wu, and

Yu (2016), Tian, Guo, and Sun (2021), Sun, Zhang, and Yuen (2020) and the

references therein.

In the aforementioned literature, however, the optimal strategies depend on

the initial position of state variables, which is due to the non-separability of the

variance operator under the mean-variance criterion in the sense of Bellman’s

optimality principle. In other words, once the investor arrives at any new position

at a future time, the optimal strategy determined at the new position is inconsistent
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with the initial one unless the investor commits to the initial strategy over the

whole investment period. This optimal strategy is therefore time-inconsistent,

and is referred to as the pre-commitment strategy in the literature. The notion

of time-inconsistency under the mean-variance paradigm stemmed from the work

of Strotz (1956). In recent years, the time inconsistency of the mean-variance

portfolio selection problem has received considerable attention. For example,

Basak and Chabakauri (2010) determined a time-consistent strategy by using

a backward recursion approach starting from the terminal time. Alternatively,

Björk, Khapko, and Murgoci (2017) proposed the game theoretical approach and

studied the subgame-perfect Nash equilibrium for the mean-variance problem. The

equilibrium value function and the equilibrium strategy can be explicitly derived

under Markovian settings by essentially solving an extended Hamilton–Jacobi–

Bellman (HJB) equation. Rather than searching for the time-consistent equilibrium

strategy, Pedersen and Peskir (2017) pioneered the dynamically optimal approach

to deal with the time inconsistency of the statically optimal (pre-commitment)

strategy. Along with this approach, previous works include Pedersen and Peskir

(2017), Zhang (2021b), and the references therein.

According to the law of one price, identical assets must have an identical price.

There is, however, ample evidence of violations in the law of one price and of the

prevalence of a mispricing phenomenon in the financial market. See, for example,

Lamont and Thaler (2003), Liu and Longstaff (2004), and Liu and Timmermann

(2013). This leads to growing interest in portfolio optimization problems with

mispricing in recent years. Yi et al. (2015) studied a utility maximization prob-

lem with model ambiguity and mispricing in a financial market consisting of a

risk-free asset, a market index, and a pair of mispricing stocks with a constant

return rate and volatility. Ma, Zhao, and Rong (2020) considered a problem for a

defined contribution plan with mispricing under the Heston model. Considering the

methodology developed by Björk, Khapko, and Murgoci (2017) to deal with the time

inconsistency under the mean-variance paradigm, Wang et al. (2022) investigated a

mean-variance investment–reinsurance problem with mispricing in the context of

constant volatility. Other preceding research outputs on the portfolio optimization

problems with mispricing include Gu, Viens, and Yi (2017), Gu, Viens, and Yao

(2018), Wang et al. (2021), to name but only a few.

Motivated by the above aspects, within the framework introduced by Pedersen

and Peskir (2017) to overcome the time inconsistency under the mean-variance

criterion, in this paper we study a mean-variance portfolio selection problem that

takes into consideration the family of 4/2 stochastic volatility models and mispricing

simultaneously. The financial market consists of a risk-free asset, a market index,

and a pair of mispriced stocks. To solve this problem, we first apply the Lagrange

multiplier method to relate the original problem to an unconstrained optimization

problem. To solve the latter by using the dynamic programming approach, we
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establish the corresponding HJB equation. By solving the HJB equation explicitly,

closed-form expressions of the statically optimal strategy and the corresponding

optimal value function are derived. Based on an assumption on the model parameters

combined with the investment horizon, we prove the necessary verification theorem

from scratch and verify the admissibility of the optimal strategy. By solving the

statically optimal strategy each time, the dynamically optimal strategy is explicitly

derived. This time-consistent strategy keeps the wealth process strictly below the

target (expected terminal wealth) before the terminal time. Moreover, we provide

the results without mispricing and consider the special cases under the Heston

and the 3/2 models. Finally, we present some numerical examples to illustrate the

effects of some model parameters on the efficient frontier and the difference between

static and dynamic optimality. In summary, compared with some related current

research studies, the main contributions of this paper are as follows:

• The market model incorporates the 4/2 model and mispricing simultaneously;

• By making an assumption on the model parameters, a verification theorem

is provided to guarantee that the candidate solution to the HJB equation is

the optimal value function, and the admissibility of the optimal strategy is

verified;

• We derive both the statically optimal (pre-commitment) and the dynamically

optimal (time-consistent) strategies explicitly for the mean-variance problem.

The remainder of this paper is structured as follows. In Section 5.2, we formulate

the market model and the mean-variance portfolio problem. Section 5.3 is devoted

to solving the HJB equation and deriving the closed-form expression of the optimal

investment strategy of the unconstrained problem. In Section 5.4, we present the

statically optimal strategy and the dynamically optimal strategy for the mean-

variance problem, and provide the results on some special cases. In Section 5.5,

some numerical examples are given to illustrate our theoretical results. Section 5.6

concludes the paper.

5.2 Formulation of the problem

Let T > 0 be a fixed terminal time of decision making and (Ω,F ,P) be a complete

probability space carrying five one-dimensional, mutually independent standard

Brownian motions W 1,W 2, Z, Z1, Z2. The probability space is further equipped

with a right-continuous, P-complete filtration (Ft)t∈[0,T ] generated by the Brown-

ian motions.

We consider a financial market setting where a risk-free asset, a market index,

and a pair of stocks with mispricing can be continuously traded. The risk-free asset
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price B = (Bt)t∈[t0,T ] evolves over time as:

dBt = rBt dt,

with the initial value Bt0 = b0 ∈ R+ at time t0 ∈ [0, T ), where the positive constant

r > 0 is the risk-free interest rate. Let the price dynamic of the market index

Sm = (Sm,t)t∈[t0,T ] be governed by the 4/2 stochastic volatility model (Grasselli

(2017)):
dSm,t = (r + λ(c1Vt + c2))Sm,t dt+

(
c1
√
Vt +

c2√
Vt

)
Sm,t dW

1
t ,

dVt = κ(θv − Vt) dt+ σv
√
Vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
,

(5.2.1)

with Sm,t0 = sm,0 ∈ R+ and Vt0 = v0 ∈ R+ at time t0 ∈ [0, T ), where the constant

λ > 0 stands for a controller of the excess return, and the variance process Vt follows

a Cox–Ingersoll–Ross (CIR) process with mean-reversion speed κ > 0, long-term

mean θv > 0 and volatility of volatility σv > 0. The Feller condition 2κθv > σ2
v is

required such that Vt is strictly positive. We assume that two parameters c1 and c2
are non-negative constants and ρ ∈ [−1, 1].

Remark 5.2.1. It should be noted that the two non-negative constants c1 ≥ 0

and c2 ≥ 0 are critical in the 4/2 model (5.2.1), which makes the 4/2 model a

superposition of the Heston model (Heston (1993)) and the 3/2 model (Lewis

(2000)). Specifically, the case (c1, c2) = (1, 0) is known as the Heston model, while

the case (c1, c2) = (0, 1) corresponds to the 3/2 model.

The two mispriced processes are modeled as a pair of stocks S1 = (S1,t)t∈[t0,T ]

and S2 = (S2,t)t∈[t0,T ] which are coupled via the pricing error:

Mt = ln
S1,t

S2,t
,

where S1,t and S2,t evolve according to the following system of stochastic differential

equations (SDEs):

dS1,t =(r + βλ(c1Vt + c2))S1,t dt+ β

(
c1
√
Vt +

c2√
Vt

)
S1,t dW

1
t

+ σS1,t dZt + bS1,t dZ
1
t − l1MtS1,t dt,

dS2,t =(r + βλ(c1Vt + c2))S2,t dt+ β

(
c1
√
Vt +

c2√
Vt

)
S2,t dW

1
t

+ σS2,t dZt + bS2,t dZ
2
t + l2MtS2,t dt,

(5.2.2)

with initial values S1,t0 = s1,0 and S2,t0 = s2,0 at time t0 ∈ [0, T ), where l1, l2, β, σ

and b are constant parameters. The term β
(
c1
√
Vt +

c2√
Vt

)
dW 1

t characterizes

the systematic risk of the market, while σ dZt + b dZit stands for the idiosyncratic
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risk of stock i, i = 1, 2. In particular, σ dZt describes the common risk whereas

b dZit represents the individual risk generated by the stock i, i = 1, 2, respectively.

The term liMt reveals the effect of mispricing on ith stock’s price via the pricing

error Mt defined above. Moreover, it can be shown that the pricing error Mt follows

an Ornstein–Uhlenbeck (OU) process as a result of Itô’s formula:

dMt = −(l1 + l2)Mt dt+ b dZ1
t − b dZ2

t , (5.2.3)

with Mt0 = m0 = ln(s1,0/s2,0) ∈ R, where two constant parameters l1 and l2 can

be explained as liquidity terms which control the mean-reversion rate of the pricing

error. To be specific, the lower liquidity decreases the velocity of reversion of the

pricing error towards the long-term mean of zero. Following some previous studies,

such as Liu and Timmermann (2013), Ma, Zhao, and Rong (2020) and Wang

et al. (2022), we hereby assume that l1 + l2 > 0, which ensures the stability of the

financial market.

Let πm(t, Vt,Mt, X
π
t ), π1(t, Vt,Mt, X

π
t ), π2(t, Vt,Mt, X

π
t ) be three Markov con-

trols denoting the proportions of wealth invested in the market index Sm, and the

pair of stocks S1 and S2 at time t, respectively. We write π := (πm, π1, π2) and such

deterministic functions πm, π1, π2 are referred to as feedback control laws in the

literature. Suppose that the market is frictionless and no restrictions on leverage

and short-selling are enforced, the investor decides to construct a self-financing

portfolio of B,Sm, S1 and S2 over the investment period [t0, T ]. So the controlled

wealth process Xπ = (Xπ
t )t∈[t0,T ] is described by the following system of SDEs:

dXπ
t =Xπ

t [r + um(t, Vt,Mt, X
π
t )λ(c1Vt + c2)− (π1(t, Vt,Mt, X

π
t )l1

−π2(t, Vt,Mt, X
π
t )l2)Mt] dt+Xπ

t

(
c1
√
Vt +

c2√
Vt

)
um(t, Vt,Mt, X

π
t ) dW

1
t

+Xπ
t σ(π1(t, Vt,Mt, X

π
t ) + π2(t, Vt,Mt, X

π
t )) dZt

+Xπ
t b
(
π1(t, Vt,Mt, X

π
t ) dZ

1
t + π2(t, Vt,Mt, X

π
t ) dZ

2
t

)
,

dVt =κ(θv − Vt) dt+ σv

√
Vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
,

dMt =− (l1 + l2)Mt dt+ b dZ1
t − b dZ2

t ,

(5.2.4)

with Xπ
t0 = x0, where we write um := πm+β(π1 +π2) to simplify our notation. Let

Pt0,v0,m0,x0 denote the probability measure with the initial value (Vt0 ,Mt0 , X
π
t0) =

(v0,m0, x0) at time t0 ∈ [0, T ). Accordingly, Et0,v0,m0,x0
[·] and Vart0,v0,m0,x0

(·)
denote the associated expectation and variance under the probability measure

Pt0,v0,m0,x0 , respectively.

Definition 5.2.2 (Admissible strategy). Given any fixed t0 ∈ [0, T ), a strategy π

is said to be admissible if for any (v0,m0, x0) ∈ R+ × R× R, it holds that:

1. Et0,v0,m0,x0

[∫ T
t0
(Xπ

t )
2
(
c1
√
Vt +

c2√
Vt

)2
u2m(t, Vt,Mt, X

π
t ) dt

]
<∞,
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2. Et0,v0,m0,x0

[∫ T
t0
(Xπ

t )
2
(
π2
1(t, Vt,Mt, X

π
t ) + π2

2(t, Vt,Mt, X
π
t )
)
dt
]
<∞,

3. Et0,v0,m0,x0

[
supt∈[t0,T ] |Xπ

t |2
]
<∞.

The set of all admissible strategies is denoted by A.

The investor wishes to determine an admissible strategy π ∈ A solving the

following mean-variance portfolio problem.

Definition 5.2.3. The mean-variance portfolio problem is a stochastic optimization

problem denoted by  min
π∈A

Vart0,v0,m0,x0
(Xπ

T )

subject to Et0,v0,m0,x0
[Xπ

T ] = ξ,
(5.2.5)

where ξ is a fixed and given constant serving as a target. We denote the corresponding

optimal value function by VMV (t0, v0,m0, x0).

Remark 5.2.4. Here, we impose ξ > x0e
r(T−t0), which precludes the trivial case

when the investor simply takes the risk-free strategy π ≡ 0 over the investment

period [t0, T ]. This condition is consistent with some previous studies, such as Shen,

Zhang, and Siu (2014), Sun and Guo (2018) and Sun, Zhang, and Yuen (2020).

As discussed in the Introduction, the mean–variance problem (5.2.5) is time-

inconsistent due to the presence of the variance operator in the mean-variance

objective. We take the dynamically optimal approach as championed by Pedersen

and Peskir (2017) to address the problem of time inconsistency. For readers’

convenience, we adapted the definition of dynamic optimality (Definition 2 in

Pedersen and Peskir (2017)) into the current context.

Definition 5.2.5 (Dynamic optimality). A control πd∗ is said to be dynamically

optimal in mean–variance portfolio problem (5.2.5) for (t0, v0,m0, x0) given and

fixed, if for every given and fixed (t, v,m, x) ∈ [t0, T ) × R+ × R × R and every

strategy u ∈ A such that u(t, v,m, x) ̸= πd∗(t, v,m, x) with Et,v,m,x[X
u
T ] = ξ, there

exists a control w satisfying w(t, v,m, x) = πd∗(t, v,m, x) with Et,v,m,x[X
w
T ] = ξ

such that

Vart,v,m,x(X
w
T ) < Vart,v,m,x(X

π
T ).

Upon considering the nature of the dynamically optimal approach, as discussed

in the Introduction, we shall first pay attention to the static optimality (pre-

commitment) for the mean-variance problem (5.2.5).

Due to the convexity of the objective function in the problem (5.2.5), we can deal

with the linear constraint Et0,v0,m0,x0
[Xπ

T ] = ξ by introducing a Lagrange multiplier
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θ ∈ R. The associated (dual) Lagrangian is formulated as follows:

L(x0, v0,m0;π, θ) =Et0,v0,m0,x0 [(X
π
T − ξ)2] + 2θEt0,v0,m0,x0 [X

π
T − ξ]

=Et0,v0,m0,x0

[
(Xπ

T − (ξ − θ))2
]
− θ2.

(5.2.6)

According to the Lagrangian duality theorem (Luenberger (1968)), mean-variance

problem (5.2.5) is, in fact, equivalent to the following min–max stochastic optimiza-

tion problem:

max
θ∈R

min
π∈A

L(x0, v0,m0;π, θ). (5.2.7)

This suggests that two steps are involved to obtain the static optimality of the mean-

variance problem (5.2.5). First of all, we should solve the internal unconstrained

stochastic optimization problem with regard to π ∈ A with θ ∈ R fixed and given.

Subsequently, we turn to optimize Lagrange multiplier θ ∈ R in the external static

problem. Hence, we are supposed to determine the optimal strategy of the following

quadratic-loss minimization problem in the first place:

min
π∈A

J(x0, v0,m0;π, γ) = Et0,v0,m0,x0

[
(Xπ

T − γ)2
]
, (5.2.8)

with γ = ξ − θ fixed and given.

5.3 Solution to the unconstrained problem

In this section, we devote ourselves to solving the unconstrained quadratic-loss

minimization problem (5.2.8) by using the dynamic programming approach. For this,

we first define the optimal value function as

H(t, x, v,m) = inf
π∈A

Et,v,m,x
[
(Xπ

T − γ)2
]
, t0 ≤ t ≤ T, (5.3.1)

where Et,v,m,x[·] is short for E [·| Xπ
t = x, Vt = v,Mt = m] at time t ∈ [t0, T ].

For the function H(t, x, v,m) ∈ C1,2,2,2([t0, T ] × R × R+ × R), it must satisfy

the following HJB equation due to dynamic programming principle:

inf
π∈A

Dπ∈AH(t, x, v,m) = 0, (5.3.2)

where we denote Dπ∈AH(t, x, v,m) as the following differential operator:

Dπ∈AH(t, x, v,m) =Ht +Hxx[umλ(c1v + c2)− (π1l1 − π2l2)m+ r] + κ(θv − v)Hv

+
1

2
Hxxx

2

[(
c1
√
v +

c2√
v

)2

u2
m + σ2(π1 + π2)

2 + b2(π2
1 + π2

2)

]

+Hxvumρσvx(c1v + c2) +
1

2
σ2
vvHvv − (l1 + l2)mHm

+Hxmxb
2(π1 − π2) + b2Hmm,

130



for t ∈ [t0, T ), with the boundary condition H(T, x, v,m) = (x− γ)2. Then, the

first-order minimization condition yields the optimal control:



u∗
m = − (Hxλ+Hxvρσv)v

Hxxx(c1v + c2)
,

π∗
1 = − Hxm

Hxxx
+
Hxm[(σ2 + b2)l1 + σ2l2]

Hxxx(2σ2 + b2)b2
,

π∗
2 =

Hxm

Hxxx
− Hxm[(σ2 + b2)l2 + σ2l1]

Hxxx(2σ2 + b2)b2
.

(5.3.3)

Inserting (5.3.3) into the HJB Equation (5.3.2) and simplifying the expression, we

obtain the following second-order partial differential Equation (PDE) for function

H:

Ht +
1

2Hxx

[
2HxHxmm(l1 + l2)−H2

xλ
2v − 2HxHxvρσvλvs.−H2

xvρ
2σ2

vv − 2H2
xmb

2]
+κ(θv − v)Hv − H2

xm
2

2Hxx(2σ2 + b2)b2
[
(σ2 + b2)(l21 + l22) + 2σ2l1l2

]
+rxHx +

1

2
σ2
vvHvv − (l1 + l2)mHm + b2Hmm =0.

(5.3.4)

In the next proposition, we shall construct an explicit solution denoted byG(t, x, v,m)

to PDE (5.3.4).

Proposition 5.3.1. One solution to second-order PDE (5.3.4) is

G(t, x, v,m) = eα(t)+β(t)v+γ(t)m
2
(
x− γe−r(T−t)

)2
, (5.3.5)

and the optimal feedback control is given by



u∗m(t, v,m, x) = −
(λ+ ρσvβ(t))

(
x− γe−r(T−t)) v

x(c1v + c2)
,

π∗
1(t, v,m, x) =

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
m
(
x− γe−r(T−t))

x
,

π∗
2(t, v,m, x) =

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
m
(
x− γe−r(T−t))

x
,

(5.3.6)
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where

α(t) =

∫ T

t

κθvβ(s) + 2b2γ(s) + 2r ds, (5.3.7)

β(t) =



λ2(t− T ), ρ2 =
1

2
, k + 2λρσv = 0;

λ2

k + 2λρσv

(
e(k+2λρσv)(t−T ) − 1

)
, ρ2 =

1

2
, k + 2λρσv ̸= 0;

n1n2(1− e
√

∆(T−t))

n1 − n2e
√
∆(T−t)

, ρ2 ̸= 1

2
, ∆ > 0;

σ2
v(ρ

2 − 1
2
)(T − t)n2

0

σ2
v(ρ2 − 1

2
)(T − t)n0 − 1

, ρ2 ̸= 1

2
, ∆ = 0;

√
−∆

σ2
v(2ρ2 − 1)

tan

(
arctan

(
k + 2λρσv√

−∆

)
−

√
−∆

2
(T − t)

)
+ n0, ρ

2 ̸= 1

2
, ∆ < 0

(5.3.8)

with



∆ = (k + 2λρσv)
2 − (4ρ2 − 2)σ2

vλ
2,

n1 =
−(k + 2λρσv) +

√
∆

σ2(2ρ2 − 1)
,

n2 =
−(k + 2λρσv)−

√
∆

σ2(2ρ2 − 1)
,

n0 =
−(k + 2λρσv)

σ2(2ρ2 − 1)
,

(5.3.9)

and

γ(t) =

√
−∆γ

8b2
tan

(
arctan

(
−2(l1 + l2)√

−∆γ

)
−
√
−∆γ

2
(T − t)

)
+
l1 + l2
4b2

, (5.3.10)

with ∆γ = 4(l1 + l2)
2 − 16(σ2+b2)(l21+l

2
2)+32σ2l1l2

(2σ2+b2) < 0.

Proof. We propose a candidate solution to the second-order PDE (5.3.4) in the

following form:

G(t, x, v,m) = eα(t)+β(t)v+γ(t)m
2

[x− a(t)]2,

with α(T ) = β(T ) = γ(T ) = 0 and a(T ) = γ. Then, we have the following
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partial derivatives:

Gt =

[
dα(t)

dt
+
dβ(t)

dt
v +

dγ(t)

dt
m2

]
G− 2eα(t)+β(t)v+γ(t)m

2

· (x− a(t))
da(t)

dt
,

Gx =2eα(t)+β(t)v+γ(t)m
2

(x− a(t)), Gm = 2γ(t)mG, Gv = β(t)G,

Gxx =2eα(t)+β(t)v+γ(t)m
2

, Gmm = 2γ(t)G+ 4γ2(t)m2G, Gvv = β2(t)G,

Gxm =4γ(t)meα(t)+β(t)v+γ(t)m
2

(x− a(t)),

Gxv =2β(t)eα(t)+β(t)v+γ(t)m
2

(x− a(t)).

(5.3.11)

Substituting (5.3.11) into (5.3.4) and reshuffling terms yield

G

[
dα(t)

dt
+
dβ(t)

dt
v +

dγ(t)

dt
m

2
+ 4γ(t)m

2
(l1 + l2 − λ

2
v) − λ

2
v − 2ρσvλvβ(t) − ρ

2
σ
2
vvβ

2
(t)

− 8b
2
m

2
γ
2
(t) + κ(θv − v)β(t) −

(σ2 + b2)(l21 + l22) + 2σ2l1l2

(2σ2 + b2)b2
m

2
+

1

2
σ
2
vvβ

2
(t) + 4b

2
γ
2
(t)m

2

− 2 (l1 + l2) γ(t)m
2
+ 2b

2
γ(t) + 2r

]
+ 2(x− a(t))e

α(t)+β(t)v+γ(t)m2
[
ra(t) −

da(t)

dt

]
= 0.

This indicates that we have the following two identities:

ra(t)− da(t)

dt
= 0, (5.3.12)

and

dα(t)

dt
+
dβ(t)

dt
v +

dγ(t)

dt
m

2
+ 4γ(t)m

2
(l1 + l2 − λ

2
v) − λ

2
v − 2ρσvλvβ(t) − ρ

2
σ
2
vvβ

2
(t)

− 8b
2
m

2
γ
2
(t) + κ(θv − v)β(t) −

(σ2 + b2)(l21 + l22) + 2σ2l1l2

(2σ2 + b2)b2
m

2
+

1

2
σ
2
vvβ

2
(t) + 4b

2
γ
2
(t)m

2

− 2(l1 + l2)γ(t)m
2
+ 2b

2
γ(t) + 2r = 0.

(5.3.13)

Upon considering the boundary condition a(T ) = γ, we obtain the following

expression of a(t) by solving (5.3.12):

a(t) = γe−r(T−t).

As for (5.3.13), we can separate it with respect to variables v and m2 as follows:[
dβ(t)

dt
− (2ρσv + κ)λβ(t) +

(
1

2
− ρ2

)
σ2
vβ

2(t)− λ2

]
v +

[
dγ(t)

dt
− 4b2γ2(t)

+2(l1 + l2)γ(t)−
(σ2 + b2)(l21 + l22) + 2σ2l1l2

(2σ2 + b2)b2

]
m2 +

dα(t)

dt
+ κθvβ(t) + 2b2γ(t) + 2r = 0.

(5.3.14)
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Thus, we have the following system of ordinary differential equations (ODEs)

from (5.3.14) due to the arbitrariness of v ∈ R+ and m ∈ R:

dβ(t)

dt
=

(
ρ2 − 1

2

)
σ2
vβ

2(t) + (κ+ 2λρσv)β(t) + λ2, β(T ) = 0, (5.3.15)

dγ(t)

dt
= 4b2γ2(t)− 2(l1 + l2)γ(t) +

(σ2 + b2)(l21 + l22) + 2σ2l1l2
(2σ2 + b2)b2

, γ(T ) = 0,

(5.3.16)

dα(t)

dt
= −κθvβ(t)− 2b2γ(t)− 2r, α(T ) = 0. (5.3.17)

We see that both (5.3.15) and (5.3.16) are Riccati ODEs, and once these two

equations are solved, the explicit expression of solution α(t) to (5.3.17) can be

immediately derived.

In the following, we first solve Equation (5.3.15) of β(t). When ρ2 = 1
2 and

κ+ 2λρσv = 0, we have

β(t) = λ2(t− T ).

When ρ2 = 1
2 and κ+2λρσv ̸= 0, Riccati ODE (5.3.15) is reduced to the following

linear ODE:
dβ(t)

dt
= (κ+ 2λρσv)β(t) + λ2. (5.3.18)

Integrating both sides of (5.3.18) with respect to time t yields

β(t) =
λ2

k + 2λρσv

(
e(k+2λρσv)(t−T ) − 1

)
.

When ρ2 ̸= 1
2 , we set ∆ := (k+2λρσv)

2− (4ρ2−2)σ2
vλ

2 as given in (5.3.9) above.

If ∆ > 0, we can rewrite (5.3.15) as follows:

dβ(t)

dt
= σ2

v

(
ρ2 − 1

2

)
(β(t)− n1)(β(t)− n2), (5.3.19)

where n1 and n2 are given by (5.3.9). Upon considering the boundary condition

β(T ) = 0, we find

β(t) =
n1n2

(
1− e

√
∆(T−t)

)
n1 − n2e

√
∆(T−t)

.

If ∆ = 0, then (5.3.19) can be simplified to

1

(β(t)− n0)2
dβ(t) = σ2

v

(
ρ2 − 1

2

)
dt, (5.3.20)

where n0 is given in (5.3.9) above. Integrating both sides of (5.3.20) with respect

to time t upon considering the boundary condition β(T ) = 0, we obtain

β(t) =
σ2
v(ρ

2 − 1
2 )(T − t)n20

σ2
v(ρ

2 − 1
2 )(T − t)n0 − 1

.
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If ∆ < 0, then (5.3.15) can reformulated as follows:

dβ(t)(
β(t) + k+2λρσv

σ2
v(2ρ

2−1)

)2
+ −∆

σ4
v(2ρ

2−1)2

= σ2
v

(
ρ2 − 1

2

)
dt.

After calculations upon considering the boundary condition β(T ) = 0, we find

β(t) =

√
−∆

σ2
v(2ρ2 − 1)

tan

(
arctan

(
k + 2λρσv√

−∆

)
−

√
−∆

2
(T − t)

)
+ n0.

Then, we pay attention to the ODE (5.3.16) of γ(t). Considering

∆γ :=4(l1 + l2)
2 − 16(σ2 + b2)(l21 + l22) + 32σ2l1l2

(2σ2 + b2)

=
−8σ2(l1 + l2)

2 − 4b2(l1 − l2)
2 − 8b2(l21 + l22)

2σ2 + b2
< 0,

we can rearrange the terms in (5.3.16) to have the following formulation:

dγ(t)(
γ(t)− 1

4b2 (l1 + l2)
)2

+
−∆γ

64b4

= 4b2 dt. (5.3.21)

After some calculations, upon considering the boundary condition γ(T ) = 0, we

have

γ(t) =

√
−∆γ

8b2
tan

(
arctan

(
−2(l1 + l2)√

−∆γ

)
−
√

−∆γ

2
(T − t)

)
+
l1 + l2
4b2

.

Finally, a direct integral calculation on both sides of (5.3.17) upon considering

the boundary condition α(T ) = 0 yields (5.3.7).

The following proposition presents strict monotonicity results of β(t) and γ(t)

with respect to time t, which in turn leads to the non-positiveness of β(t) and γ(t)

over [t0, T ].

Proposition 5.3.2. Functions β(t) and γ(t) given by (5.3.8) and (5.3.10), re-

spectively, are strictly increasing with respect to time t, and thus non-positive over

[t0, T ].

Proof. By differentiating β(t) given in (5.3.8) with respect to t, we obtain

dβ(t)

dt
=



λ2, ρ2 =
1

2
, k + 2λρσv = 0;

λ2e(k+2λρσv)(t−T ), ρ2 =
1

2
, k + 2λρσv ̸= 0;

4λ2∆e
√
∆(T−t)

σ4
v(2ρ2 − 1)2

1

(n1 − n2e
√
∆(T−t))2

, ρ2 ̸= 1

2
, ∆ > 0;

σ2
v(ρ

2 − 1
2
)n2

0

(σ2
v(ρ2 − 1

2
)(T − t)n0 − 1)2

, ρ2 ̸= 1

2
, ∆ = 0;

−∆

2σ2
v(2ρ2 − 1)

sec2
(
arctan

(
k + 2λρσv√

−∆

)
−

√
−∆

2
(T − t)

)
, ρ2 ̸= 1

2
, ∆ < 0.
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It is obvious that dβ(t)
dt > 0 holds for the first three cases. As for the fourth and

the fifth cases, note that when ∆ ≤ 0, we must have ρ2 > 1
2 .

Similarly, a direct differentiation of γ(t) given in (5.3.10) leads to

dγ(t)

dt
=

−∆γ

16b2
sec2

(
arctan

(
−2(l1 + l2)√

−∆γ

)
−
√
−∆γ

2
(T − t)

)
> 0.

Finally, upon considering the boundary condition β(T ) = γ(T ) = 0, we can

conclude that β(t) and γ(t) are non-positive over [t0, T ].

To facilitate further discussions, we now present some auxiliary results on the

OU process and the CIR process in the literature. The first lemma (Lemma 5.3.3)

is adapted from Lemma 4.3 in Benth and Karlsen (2005).

Lemma 5.3.3. Consider the OU process Mt in (5.2.3). If ε is a constant such that

ε <
l1 + l2

4b2(T − t0)
,

then we have

Et0,v0,m0,x0

[
exp

(
ε

∫ T

t0

M2
u du

)]
<∞.

The second lemma (lemma 5.3.4) follows from Theorem 5.1 in Zeng and Taksar

(2013).

Lemma 5.3.4. Consider the CIR process Vt in (5.2.1). We have

Et0,v0,m0,x0

[
exp

(
ε

∫ T

t0

Vt dt

)]
<∞ if and only if ε ≤ κ2

2σ2
v

.

Inspired by the above results, throughout the rest of paper, we impose the

following assumption on the model parameters and the investment horizon [t0, T ]:

Assumption 5.3.5. The model parameters and the investment horizon [t0, T ]

satisfy:

Cb ≤
κ2

2σ2
v

and Cγ <
l1 + l2

4b2(T − t0)
,

where

Cb = max

{
24λ(λ− σv|ρ|β(t0)), (1128 + 96

√
138)

(
λ2 + ρ2σ2

vβ
2(t0)

)}
,

136



and

Cγ = max

{
(564 + 48

√
138)

(l1 − l2)
2σ2

(2σ2 + b2)2
,

(1128 + 96
√
138)

(
4b2γ2(t0) +

((σ2 + b2)l1 + σ2l2)
2

(2σ2 + b2)2b2

)
,

(1128 + 96
√
138)

(
4b2γ2(t0) +

((σ2 + b2)l2 + σ2l1)
2

(2σ2 + b2)2b2

)}
.

Remark 5.3.6. It follows from Proposition 5.3.2 above that as t0 → T , we have

Cb → (1128 + 96
√
138)λ2, which indicates the feasibility of the assumption on Cb.

As for the assumption on Cγ , it is straightforward to have (l1 + l2)/4b
2(T − t0)

and Cγ are decreasing and increasing with respect to T , respectively. This means

when the investment horizon T − t0 is small enough, the assumption on Cγ is well

established as well.

We next define four Doléans–Dade exponential processes Π0,t,Π1,t,Π2,t and Π3,t

as follows:

Π0,t =exp

(∫ t

t0

−(λ+ ρσvβ(s))
√
Vs dW

1
s − 1

2

∫ t

t0

(λ+ ρσvβ(s))
2Vs ds

)
,

Π1,t =exp

(∫ t

t0

(l1 − l2)σ

2σ2 + b2
Ms dZs −

1

2

∫ t

t0

(l1 − l2)
2σ2

(2σ2 + b2)2
M2

s ds

)
,

Π2,t =exp

(∫ t

t0

(
−2γ(s) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

)
bMs dZ

1
s − 1

2

∫ t

t0

(−2γ(s)

+
(σ2 + b2)l1 + σ2l2

(2σ2 + b2)b2

)2

b2M2
s ds

)
,

Π3,t =exp

(∫ t

t0

(
2γ(s)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

)
bMs dZ

2
s − 1

2

∫ t

t0

(2γ(s)

− (σ2 + b2)l2 + σ2l1
(2σ2 + b2)b2

)2

b2M2
s ds

)
.

(5.3.22)

We shall study the integrability of Π0,t,Π1,t,Π2,t and Π3,t which will be used in

the proof of Theorem 5.3.8 below.

Lemma 5.3.7. Suppose that Assumption 5.3.5 holds. Then, Π0,t,Π1,t,Π2,t and

Π3,t satisfy

Et0,v0,m0,x0

[
sup

t∈[t0,T ]

|Π0,t|24 + sup
t∈[t0,T ]

|Π1,t|24 + sup
t∈[t0,T ]

|Π2,t|24 + sup
t∈[t0,T ]

|Π3,t|24
]
<∞.

(5.3.23)

Proof. Let p > 1 be any given constant. Then, the following equation of k

p =
k

2
√
k − 1
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admits two positive roots:

k1 = p(2p− 1) + 2p
√
p(p− 1) and k2 = p(2p− 1)− 2p

√
p(2p− 1),

with the first root satisfying k1 > 1. In particular, when p = 24, we have k1 = 1128+

96
√
138. From Assumption 5.3.5, we have

Et0,v0,m0,x0

[
exp

(
(564 + 48

√
138)

∫ T

t0

(λ+ ρσvβ(s))
2Vt dt

)]
<∞.

According to Theorem 15.4.6 in Cohen and Elliott (2015), we then find that Π0

satisfies

Et0,v0,m0,x0

[
sup

t∈[t0,T ]

|Π0,t|24
]

≤24

23

{
Et0,v0,m0,x0

[
exp

(
(564 + 48

√
138)

∫ T

t0

(λ+ ρσvβ(s))
2Vt dt

)]}√
1128+96

√
138−1

1128+96
√

138

<∞.

By applying the same technique to Π1,Π2 and Π3, it is straightforward to obtain

(5.3.23) due to Assumption 5.3.5. So we omit the details here.

To end this section, we shall prove a verification theorem from scratch which

guarantees that the candidate solution G(t, x, v,m) derived in (5.3.5) coincides

with the optimal value function H(t, x, v,m) defined in (5.3.1) to the quadratic-loss

minimization problem (5.2.8). Furthermore, we will also prove the admissibility of

the optimal strategy obtained in (5.3.6) in the sense of Definition 5.2.2.

Theorem 5.3.8 (Verification theorem). Suppose that Assumption 5.3.5 holds.

Then, the optimal strategy given in (5.3.6) for the problem (5.2.8) is admissible,

and the optimal controlled wealth process X∗
t evolves as

X∗
t =Π0,tΠ1,tΠ2,tΠ3,t exp

{∫ t

t0

[
2(l1 + l2)γ(u)−

σ2(l1 + l2)
2 + b2

(
l21 + l22

)
(2σ2 + b2)b2

]
M2
u

− λ(λ+ ρσvβ(u))Vu du

}(
x0e

r(t−t0) − γe−r(T−t)
)
,

(5.3.24)

for t ∈ [t0, T ], with (t0, v0,m0, x0) ∈ [0, T ) × R+ × R × R given and fixed such

that x0e
r(T−t0) < ξ, where processes Π0,t,Π1,t,Π2,t, and Π3,t are given in (5.3.22).

Moreover, we have

G(t, x, v,m) = H(t, x, v,m)
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for any (t, x, v,m) ∈ [t0, T ]×R×R+ ×R. In particular, the optimal value function

of problem (5.2.8) is given by

G(t0, x0, v0,m0) = eα(t0)+β(t0)v0+γ(t0)m
2
0

(
x0 − γe−r(T−t0)

)2
, (5.3.25)

with α(t), β(t), and γ(t) given by (5.3.7), (5.3.8), and (5.3.10), respectively.

Proof. In the following, we will finish the proof with two steps. At step 1, we show

that the optimal strategy π∗ = (u∗m, π
∗
1 , π

∗
2) given in (5.3.6) is admissible. At step

2, we verify that the candidate solution G given in (5.3.5) is indeed the optimal

value function H defined in (5.3.1).

Step 1. Substituting the optimal strategy (5.3.6) into the controlled wealth

process (5.2.4) leads to

dX∗
t =

{[
2(l1 + l2)γ(t)−

σ2(l1 + l2)
2 + b2(l21 + l22)

(2σ2 + b2)b2

](
X∗
t − γe−r(T−t)

)
M2
t

− λ(λ+ ρσvβ(t))
(
X∗
t − γe−r(T−t)

)
Vt + rX∗

t

}
dt− (λ+ ρσvβ(t))

·
(
X∗
t − γe−r(T−t)

)√
Vt dW

1
t +

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
b

·
(
X∗
t − γe−r(T−t)

)
Mt dZ

1
t +

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
b

·
(
X∗
t − γe−r(T−t)

)
Mt dZ

2
t +

(l1 − l2)σ

2σ2 + b2

(
X∗
t − γe−r(T−t)

)
Mt dZt,

with X∗
t0 = x0. Applying Itô’s lemma to Yt := er(T−t)X∗

t − γ, we have

dYt =

{[
2(l1 + l2)γ(t)−

σ2(l1 + l2)
2 + b2(l21 + l22)

(2σ2 + b2)b2

]
YtM

2
t − λ(λ+ ρσvβ(t))YtVt

}
dt

− (λ+ ρσvβ(t))Yt
√
Vt dW

1
t +

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
bYtMt dZ

1
t

+

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
bYtMt dZ

2
t +

(l1 − l2)σ

2σ2 + b2
YtMt dZt,

with Yt0 = x0e
r(T−t) − γ. By explicitly solving the linear SDE of Yt, we then have

the following closed-form expression:

Yt =
(
x0e

r(T−t0) − γ
)
Π0,tΠ1,tΠ2,tΠ3,t exp

{∫ t

t0

[
2(l1 + l2)γ(u)

− σ2(l1 + l2)
2 + b2(l21 + l22)

(2σ2 + b2)b2

]
M2
u − λ(λ+ ρσvβ(u))Vu du

}
,

where Π0,t,Π1,t,Π2,t and Π3,t are defined in (5.3.22) above. This in turn shows the

optimal controlled wealth process X∗
t given by (5.3.24). We now proceed to show
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that the optimal strategy π∗ = (u∗m, π
∗
1 , π

∗
2) given in (5.3.6) is admissible. To this

end, we first show that

Et0,v0,m0,x0

[
sup

t∈[t0,T ]

|X∗
t |4
]
<∞. (5.3.26)

Indeed, from the expression of X∗
t given in (5.3.24), we have

Et0,v0,m0,x0

[
sup

t∈[t0,T ]

|X∗
t |4
]

≤KEt0,v0,m0,x0

[
sup

t∈[t0,T ]

∣∣∣∣Π0,tΠ1,tΠ2,tΠ3,t exp

(∫ t

t0

−λ(λ+ ρσvβ(u))Vu du

)

· exp
(∫ t

t0

(
2(l1 + l2)γ(u)−

σ2(l1 + l2)
2 + b2(l21 + l22)

(2σ2 + b2)b2

)
M2
u du

) ∣∣∣∣4 + 1

]

≤K

{
Et0,v0,m0,x0

[
1 + sup

t∈[t0,T ]

Π24
0,t +Π24

1,t +Π24
2,t +Π24

3,t

]

+ Et0,v0,m0,x0

[
exp

(
24λ(λ− σv|ρ|β(t0))

∫ T

t0

Vt dt

)]

+ Et0,v0,m0,x0

[
exp

(
− 24σ2(l1 + l2)

2 + 24b2(l21 + l22)

(2σ2 + b2)b2

∫ T

t0

M2
t dt

)]}
<∞,

where the positive constant K might differ between lines, the second inequality

makes use of Jensen’s inequality and the non-positiveness of functions β(t) and

γ(t) from Proposition 5.3.2, and the last strictly inequality is due to Assumption

5.3.5 on Cb and Lemma 5.3.3. This in turn leads to the establishment of Condition

3 in Definition 5.2.2 by Jensen’s inequality. Then, we show that Condition 1 in

Definition 5.2.2 is satisfied:

Et0,v0,m0,x0

[∫ T

t0

(X∗
t )

2 (u∗m (t, Vt,Mt, X
∗
t ))

2

(
c1
√
Vt +

c2√
Vt

)2

dt

]
<∞.

Indeed, in view of the expression of u∗m given in (5.3.6), we obtain

Et0,v0,m0,x0

[∫ T

t0

(X∗
t )

2 (u∗m (t, Vt,Mt, X
∗
t ))

2

(
c1
√
Vt +

c2√
Vt

)2

dt

]

=Et0,v0,m0,x0

[∫ T

t0

(λ+ ρσvβ(t))
2Vt

(
X∗
t − γe−r(T−t)

)2
dt

]

≤K

{
Et0,v0,m0,x0

[
sup

t∈[t0,T ]

|X∗
t |4
]
+

∫ T

t0

Et0,v0,m0,x0

[
V 2
t

]
dt

}
<∞,
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where K is a positive constant, and the last strict inequality follows from (5.3.26)

as well as the fact that the CIR process Vt has a finite second moment at time

t ∈ [t0, T ], which is continuous in time t (see, for example, Cox, Ingersoll, and Ross

(1985)). Recalling that Mt given in (5.2.3) is an OU process, we can write the

solution explicitly:

Mt = m0e
−(l1+l2)t +

√
2b

∫ t

t0

e−(l1+l2)(t−s) dZ3
s ,

where Z3
t = Z1

t /
√
2− Z2

t /
√
2 is Pt0,v0,m0,x0 Brownian motion due to Lévy’s char-

acterization of Brownian motion. Then, upon noticing that
∫ t
t0
e−(l1+l2)(t−s) dZ3

s

is normally distributed with mean zero and variance
∫ t
t0
e−2(l1+l2)(t−s) ds, we find

that

Et0,v0,m0,x0 [M
4
t ] ≤ K

[
1 + Et0,v0,m0,x0

[(∫ t

t0

e−(l1+l2)(t−s) dZ3
s

)4
]]

= K

[
1 + 3

(∫ t

t0

e−2(l1+l2)(t−s) ds

)2
]

≤ K
(
1 + 3(t− t0)

2
)
,

where K > 0 is a positive constant. Therefore, in view of the expressions of π∗
1 and

π∗
2 given in (5.3.6), we find that Condition 2 in Definition 5.2.2 holds as well:

Et0,v0,m0,x0

[∫ T

t0

(X∗
t )

2 (π∗
1 (t, Vt,Mt, X

∗
t ))

2
dt

]

=Et0,v0,m0,x0

[∫ T

t0

(
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

)
M2
t

(
X∗
t − γe−r(T−t)

)2]

≤K

{
Et0,v0,m0,x0

[
sup

t∈[t0,T ]

|X∗
t |4
]
+

∫ T

t0

Et0,v0,m0,x0

[
M4
t

]
dt

}
<∞,

where K is a positive constant. Using the same technique, we also have

Et0,v0,m0,x0

[∫ T

t0

(X∗
t )

2 (π∗
2 (t, Vt,Mt, X

∗
t ))

2
dt

]
<∞.

The above results show that the optimal strategy (5.3.6) π∗ ∈ A and completes

the first part of the proof.

Step 2. Applying Itô’s lemma to the candidate solution G given in (5.3.5) of the
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HJB Equation (5.3.2) for any admissible strategy π ∈ A, we have

dG(t,Xπ
t , Vt,Mt)

=Dπ∈AG(t,Xπ
t , Vt,Mt) dt+Gv(t,X

π
t , Vt,Mt)

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
· σv
√
Vt +Gx(t,X

π
t , Vt,Mt)

[
Xπ
t

(
c1
√
Vt +

c2√
Vt

)
um(t, Vt,Mt, X

π
t ) dW

1
t

+Xπ
t σ(π1(t, Vt,Mt, X

π
t ) + π2(t, Vt,Mt, X

π
t )) dZt +

(
π1(t, Vt,Mt, X

π
t ) dZ

1
t

+ π2(t, Vt,Mt, X
π
t ) dZ

2
t

)
Xπ
t b

]
+Gm(t,Xπ

t , Vt,Mt)
(
b dZ1

t − b dZ2
t

)
.

(5.3.27)

Due to the pathwise continuity of Xπ, π1, π2, um, V,Gx, Gm, all the stochastic

integrals on the right-hand side of (5.3.27) are clearly continuous local martingales

under measure Pt0,v0,m0,x0
. Then, there exists a sequence of stopping times localizing

all the local martingales (see, for example, page 76 in Le Gall (2016)). We therefore

denote the associated localizing sequence by (τn)n≥1 such that τn → ∞ Pt0,v0,m0,x0

almost surely as n → ∞. Similar to the preceding definition of the probability

measure Pt0,v0,m0,x0
, we let Pt,v,m,x denote the probability measure with initial

data (Vt,Mt, X
π
t ) = (v,m, x) given and fixed at time t ∈ [t0, T ). Thus, integrating

both sides of (5.3.27) from t to T ∧ τn and taking expectation lead to

Et,v,m,x
[
G(T ∧ τn, Xπ

T∧τn , VT∧τn ,MT∧τn)
]

=Et,v,m,x

[∫ T∧τn

t

Dπ∈AG(t′, Xπ
t′ , Vt′ ,Mt′) dt

′

]
+G(t, x, v,m).

(5.3.28)

From the expression of candidate function G given in (5.3.5), we find

G(T ∧ τn, Xπ
T∧τn , VT∧τn ,MT∧τn)

=
(
Xπ
T∧τn − γe−r(T−T∧τn)

)2
exp (α(T ∧ τn) + β(T ∧ τn)VT∧τn

+γ(T ∧ τn)M2
T∧τn

)
≤K

(
Xπ
T∧τn − γe−r(T−T∧τn)

)2
,

(5.3.29)

where K is a positive constant independent of V and M2, and the inequality

makes use of the non-positiveness of functions β(t) and γ(t) over [t0, T ] from

Proposition 5.3.2. On the one hand, we notice that
(
Xπ
T∧τn − γe−r(T−T∧τn)

)2
is Pt,v,m,x integrable for any admissible strategy π ∈ A. On the other hand,

since candidate function G given in (5.3.5) satisfies the HJB Equation (5.3.2),

then we must have Dπ∈AG(t′, Xπ
t′ , Vt′ ,Mt′) ≥ 0, Pt,v,m,x almost surely for all

t′ ∈ [t, T ]. Hence, passing to the limit in (5.3.28) and applying Lebesgue’s dominated
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convergence theorem to the left-hand side and the monotone convergence theorem

to the right-hand side of (5.3.28), respectively, we obtain

Et,v,m,x
[
(Xπ

T − γ)2
]

=Et,v,m,x

[∫ T

t

Dπ∈AG(t′, Xπ
t′ , Vt′ ,Mt′) dt

′

]
+G(t, x, v,m)

≥G(t, x, v,m),

(5.3.30)

which implies that, for any admissible strategy π ∈ A, we have

H(t, x, v,m) = inf
π∈A

Et,v,m,x
[
(Xπ

T − γ)2
]
≥ G(t, x, v,m)

with any (t, x, v,m) ∈ [t0, T ] × R × R+ × R fixed and given. Meanwhile, from

Proposition 5.3.1 above, we know:

G(t, x, v,m) = Et,v,m,x
[
(X∗

T − γ)2
]

with admissible strategy π∗ = (u∗m, π
∗
1 , π

∗
2) ∈ A given by (5.3.6), which means

H(t, x, v,m) = inf
π∈A

Et,v,m,x
[
(Xπ

T − γ)2
]
≤ Et,v,m,x

[
(X∗

T − γ)2
]
= G(t, x, v,m).

Combining these two results, we can finally conclude that the candidate solution

G coincides with the optimal value function H, i.e.

G(t, x, v,m) = H(t, x, v,m),

for any (t, x, v,m) ∈ [t0, T ]×R×R+×R fixed and given. In particular, the optimal

value function of the quadratic-loss minimization problem (5.2.8) is given by (5.3.25).

5.4 Static and dynamic optimality of the problem

In this section, we derive the statically optimal strategy and the dynamically optimal

strategy of the mean-variance portfolio problem (5.2.5) by utilizing the preceding

results. As a matter of fact, in view of (5.2.6) and (5.2.7) above, we now only need

to solve the following static optimization problem with respect to the Lagrange

multiplier θ ∈ R to obtain the static optimality and the corresponding optimal

value function for the mean-variance problem (5.2.5)

max
θ∈R

J(x0, v0,m0;π
∗, ξ − θ)− θ. (5.4.1)
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Reformulating (5.4.1) as a quadratic functional over θ ∈ R, we find that the optimal

value function of the mean-variance problem (5.2.5) can be obtained from

VMV (t0, v0,m0, x0)

=max
θ∈R

{[
eα(t0)+β(t0)v0+γ(t0)m

2
0−2r(T−t0) − 1

]
θ2 + 2eα(t0)+β(t0)v0+γ(t0)m

2
0−r(T−t0)

·
(
x0 − ξe−r(T−t0)

)
θ + eα(t0)+β(t0)v0+γ(t0)m

2
0

(
x0 − ξe−r(T−t0)

)2}
,

(5.4.2)

if the coefficient of the quadratic term is strictly negative. Indeed, upon noticing that

π∗ given in (5.3.6) is the unique optimal strategy for the quadratic loss minimization

problem (5.2.8), we must have

H(t0, x0, v0,m0) = eα(t0)+β(t0)v0+γ(t0)m
2
0

(
x0 − γe−r(T−t0)

)2
<
(
x0e

r(T−t0) − γ
)2

= Et0,v0,m0,x0

[
(X π̄

T − γ)2
]
,

where: π̄ := (π̄m, π̄1, π̄2) = (0, 0, 0) stands for the risk-free strategy over the period

[t0, T ]. This implies that the quadratic coefficient of θ in (5.4.2) is strictly negative

as desired. Therefore, the maximum to the right-hand side of (5.4.2) is uniquely

attained at

θ∗ =
x0e

r(T−t0) − ξ

e−α(t0)−β(t0)v0−γ(t0)m
2
0+2r(T−t0) − 1

. (5.4.3)

Theorem 5.4.1. Suppose that Assumption 5.3.5 holds. For any initial data

(t0, v0,m0, x0) ∈ [0, T ) × R+ × R × R given and fixed such that x0 < e−r(T−t0)ξ,

the statically optimal strategy of the mean–variance portfolio problem (5.2.5) is

given by

π∗
m(t, v,m, x) = −

[
(λ+ ρσvβ(t))v

c1v + c2
+
βm(l1 − l2)

2σ2 + b2

]
x− (ξ − θ∗)e−r(T−t)

x
,

π∗
1(t, v,m, x) =

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
m
x− (ξ − θ∗)e−r(T−t)

x
,

π∗
2(t, v,m, x) =

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
m
x− (ξ − θ∗)e−r(T−t)

x
,

(5.4.4)

for t ∈ [t0, T ], and the corresponding optimal value function is

VMV (t0, v0,m0, x0) =
1

e−α(t0)−β(t0)v0−γ(t0)m
2
0+2r(T−t0) − 1

(x0e
r(T−t0) − ξ)2,

(5.4.5)
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where α(t), β(t), and γ(t) are given in (5.3.7), (5.3.8), and (5.3.10), respectively,

and θ∗ is given by (5.4.3). The controlled wealth process X∗
t is given by

X∗
t =Π0,tΠ1,tΠ2,tΠ3,t exp

(∫ t

t0

[
2(l1 + l2)γ(u)−

σ2(l1 + l2)
2 + b2

(
l21 + l22

)
(2σ2 + b2)b2

]
M2
u

− λ(λ+ ρσvβ(u))Vu du

)(
x0e

r(t−t0) − (ξ − θ∗)e−r(T−t)
)
,

(5.4.6)

where processes Π0,t,Π1,t,Π2,t, and Π3,t are given in (5.3.22). Moreover, the stati-

cally optimal strategy given by (5.4.4) is admissible, i.e., π∗ = (π∗
m, π

∗
1 , π

∗
2) ∈ A.

Proof. Substituting θ∗ given by (5.4.3) into (5.4.2) leads to the optimal value

function (5.4.5). Replacing γ in (5.3.6) and (5.3.24) with ξ − θ∗ gives the statically

optimal strategy (5.4.4) and the statically optimal controlled wealth process (5.4.6),

respectively. Following the proof in Theorem 5.3.8 above, it is obvious to see that

the statically optimal strategy π∗ ∈ A.

Remark 5.4.2. If we set either (c1, c2) = (1, 0) or (c1, c2) = (0, 1) in (5.4.4), then we

obtain explicit solutions to the mean-variance problem with mispricing under the

Heston model and the 3/2 model, respectively.

Corollary 5.4.3. (No mispricing under the 4/2 model). Suppose that Assumption

5.3.5 holds. For any initial data (t0, v0, x0) ∈ [0, T )× R+ × R given and fixed such

that x0 < e−r(T−t0)ξ, the statically optimal strategy of the mean-variance portfolio

problem (5.2.5) without mispricing is given by

π∗
m(t, v, x) = − (λ+ ρσvβ(t)) v

c1v + c2

x− (ξ − θ̄∗)e−r(T−t)

x
, (5.4.7)

for t ∈ [t0, T ]. The corresponding optimal value function is

VMV (t0, v0, x0) =
1

e−ᾱ(t0)−β(t0)v0+2r(T−t0) − 1
(x0e

r(T−t0) − ξ)2, (5.4.8)

where β(t) is given in (5.3.8) and ᾱ(t) is given by

ᾱ(t) =

∫ T

t

κθvβ(s) + 2r ds, (5.4.9)

and θ̄∗ is given by

θ̄∗ =
x0e

r(T−t0) − ξ

e−ᾱ(t0)−β(t0)v0+2r(T−t0) − 1
. (5.4.10)

The controlled wealth process X∗
t is given by

X∗
t =exp

{∫ t

t0

−λ(λ+ ρσvβ(u))Vu du

}
Π0,t

(
x0e

r(t−t0) − (ξ − θ̄∗)e−r(T−t)
)
,

(5.4.11)
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with Π0,t given in (5.3.22). Moreover, the optimal strategy given in (10.4.7) is

admissible, i.e., π∗
m ∈ A.

Proof. If there is no mispricing in the market, then Mt ≡ 0, which reveals that

π∗
1 = π∗

2 = 0 and π∗
m = u∗m due to (5.3.3). Moreover, since m vanishes from the

HJB Equation (5.3.2) in this case, then γ(t) disappears as well. This in turn leads

to (5.4.7)–(5.4.11) following from (5.3.7), (5.4.3)–(5.4.6), respectively.

As discussed in Section 5.2, the statically optimal strategy π∗ = (π∗
m, π

∗
1 , π

∗
2) in

Theorem 5.4.1 relies on the initial position of state variables (t0, v0,m0, x0). We

will now proceed to derive the dynamically optimal strategy under the framework

developed by Pedersen and Peskir (2017).

Theorem 5.4.4. Suppose that Assumption 5.3.5 holds. For any initial data

(t0, v0,m0, x0) ∈ [0, T ) × R+ × R × R given and fixed such that x0 < e−r(T−t0)ξ,

the dynamically optimal strategy of the mean-variance portfolio problem (5.2.5) is

given by



πd∗
m (t, v,m, x) = −

[
(λ+ ρσvβ(t))v

c1v + c2
+
βm(l1 − l2)

2σ2 + b2

]
x− ξe−r(T−t)(

1− eα(t)+β(t)v+γ(t)m2−2r(T−t)
)
x
,

πd∗
1 (t, v,m, x) =

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

] m
(
x− ξe−r(T−t)

)
(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x
,

πd∗
2 (t, v,m, x) =

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

] m
(
x− ξe−r(T−t)

)
(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x
,

(5.4.12)

for t ∈ [t0, T ). The controlled wealth process Xd∗
t evolves over time as

Xd∗
t =Γ0,tΓ1,tΓ2,tΓ3,t exp

(∫ t

t0

[(
2(l1 + l2)γ(s)−

σ2(l1 + l2)
2 + b2

(
l21 + l22

)
(2σ2 + b2)b2

)
M2

s

− λ(λ+ ρσvβ(s))Vs

]
f(s, Vs,Ms) ds

)(
x0e

r(t−t0) − ξe−r(T−t)
)
+ ξe−r(T−t),

(5.4.13)
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with Xd∗
t er(T−t) < ξ for t ∈ [t0, T ), where processes Γ0,Γ1,Γ2, and Γ3 are given by



Γ0,t =exp

(∫ t

t0

−(λ+ ρσvβ(s))
√
Vsf(s, Vs,Ms) dW

1
s −

1

2

∫ t

t0

(λ+ ρσvβ(s))
2
Vsf

2
(s, Vs,Ms) ds

)
,

Γ1,t =exp

(∫ t

t0

(l1 − l2)σ

2σ2 + b2
Msf(s, Vs,Ms) dZs −

1

2

∫ t

t0

(l1 − l2)
2σ2

(2σ2 + b2)2
M

2
s f

2
(s, Vs,Ms) ds

)
,

Γ2,t =exp

(∫ t

t0

(
−2γ(s) +

(σ2 + b2)l1 + σ2l2

(2σ2 + b2)b2

)
bMsf(s, Vs,Ms) dZ

1
s

−
1

2

∫ t

t0

(
−2γ(s) +

(σ2 + b2)l1 + σ2l2

(2σ2 + b2)b2

)2

b
2
M

2
s f

2
(s, Vs,Ms) ds

)
,

Γ3,t =exp

(∫ t

t0

(
2γ(s) −

(σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

)
bMsf(s, Vs,Ms) dZ

2
s

−
1

2

∫ t

t0

(
2γ(s) −

(σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

)2

b
2
M

2
s f

2
(s, Vs,Ms) ds

)
,

(5.4.14)

and the help function f(t, v,m) : [t0, T )× R+ × R 7→ R is given by

f(t, v,m) =
1

1− exp(α(t) + β(t)v + γ(t)m2 − 2r(T − t))
, (5.4.15)

with α(t), β(t), and γ(t) given in (5.3.7), (5.3.8), and (5.3.10), respectively.

Proof. We start with identifying t0 with t, x0 with x, v0 with v and m0 with m in

(5.4.4). This leads to the following candidate:

πd∗
m (t, v,m, x) = −

[
(λ+ ρσvβ(t))v

c1v + c2
+
βm(l1 − l2)

2σ2 + b2

]
x− ξe−r(T−t)(

1− eα(t)+β(t)v+γ(t)m2−2r(T−t)
)
x
,

πd∗
1 (t, v,m, x) =

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

] m
(
x− ξe−r(T−t)

)
(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x
,

πd∗
2 (t, v,m, x) =

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

] m
(
x− ξe−r(T−t)

)
(
1− eα(t)+β(t)v+γ(t)m2−2r(T−t)

)
x
.

(5.4.16)

We next show that this candidate πd∗ = (πd∗m , π
d∗
1 , πd∗2 ) (5.4.16) is dynamically

optimal in the mean-variance portfolio problem (5.2.5). To this end, we first

take any other admissible strategy u ∈ A such that u(t, v,m, x) ̸= πd∗(t, v,m, x)

with Et,v,m,x[X
u
T ] = ξ. Then, set w = π∗ under the measure Pt,v,m,x. Replacing

(t0, v0,m0, x0) with (t, v,m, x) in (5.4.4), we see from (5.4.4) that π∗(t, v,m, x) =

πd∗(t, v,m, x), and thus w(t, v,m, x) = π∗(t, v,m, x) = πd∗(t, v,m, x) ̸= u(t, v,m, x)

for any t ∈ [0, T ). Due to the continuity of functions u and w, there exists a

ball Bϵ := [t, t + ϵ] × [v − ϵ, v + ϵ] × [m − ϵ,m + ϵ] × [x − ϵ, x + ϵ] such that

w(t̃, ṽ, m̃, x̃) ̸= u(t̃, ṽ, m̃, x̃) for (t̃, ṽ, m̃, x̃) ∈ Bϵ when ϵ > 0 is small enough such

that t + ϵ ≤ T . Therefore, since w = π∗ is the unique continuous function such

that the infimum within the HJB Equation (5.3.2) is attained for any (t, v,m, x),
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then we can set the exiting time τϵ = inf {t ∧ T | (t, Vt,Mt, X
u
t ) /∈ Bϵ} such that for

t̃ ≤ τϵ, it holds that

Du∈AH(t̃, Xu
t̃ , Vt̃,Mt̃) ≥ ζ > 0, Pt,v,m,x − a.s.

where ζ is a fixed positive constant. Replacing γ by ξ− θ̃∗ in the boundary condition

of the HJB Equation (5.3.2) with θ̃∗ given by

θ̃∗ =
xer(T−t) − ξ

e−α(t)−β(t)v−γ(t)m2+2r(T−t) − 1
,

it follows from (5.3.30) with ξ − θ̃∗ in place of γ that

Et,v,m,x

[
(Xπ

T − (ξ − θ̃∗))2
]

=Et,v,m,x

[∫ τϵ

t

Du∈AH(t̃, Xu
t̃ , Vt̃,Mt̃) dt̃

]
+ Et,v,m,x

[∫ T

τϵ

Du∈AH(t′, Xu
t′ , Vt′ ,Mt′) dt

′
]

+ eα(t)+β(t)v+γ(t)m2
(
x− (ξ − θ̃∗)e−r(T−t)

)2
≥ζEt,v,m,x[τϵ − t] + eα(t)+β(t)v+γ(t)m2

(
x− (ξ − θ̃∗)e−r(T−t)

)2
>eα(t)+β(t)v+γ(t)m2

(
x− (ξ − θ̃∗)e−r(T−t)

)2
=Et,x,v,m

[
(Xw

T − (ξ − θ̃∗))2
]
,

(5.4.17)

where the strict inequality follows from the fact that τε > t, since the triple

(V,M,Xu) has continuous sample paths with probability one under Pt,v,m,x measure.

From (5.4.17), we then have

Vart,v,m,x(X
u
T ) = Et,v,m,x[(X

u
T )

2]− ξ2

= Et,v,m,x[(X
u
T − (ξ − θ̃∗))2]− (θ̃∗)2

> Et,v,m,x[(X
w
T − (ξ − θ̃∗))2]− (θ̃∗)2

= Vart,v,m,x(X
w
T ).

This shows that the candidate πd∗ = (πd∗m , π
d∗
1 , πd∗2 ) proposed in (5.4.16) is the

dynamically optimal strategy for mean–variance portfolio problem (5.2.5).

Substitute πd∗ into (5.2.4) and denote the corresponding wealth process by Xd∗
t .
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Applying Itô’s lemma to Yt := er(T−t)Xd∗
t − ξ yields

dYt =

{[
2γ(t)(l1 + l2)−

b2(l21 + l22) + σ2(l1 + l2)
2

(2σ2 + b2)b2

]
M2
t f(t, Vt,Mt)

− λ(λ+ ρσvβ(t))f(t, Vt,Mt)Vt

}
Yt dt+

(l1 − l2)σ

2σ2 + b2
Mtf(t, Vt,Mt)Yt dZt

− (λ+ ρσvβ(t))
√
Vtf(t, Vt,Mt)Yt dW

1
t +

[
−2γ(t) +

(σ2 + b2)l1 + σ2l2
(2σ2 + b2)b2

]
bMt

· f(t, Vt,Mt)Yt dZ
1
t +

[
2γ(t)− (σ2 + b2)l2 + σ2l1

(2σ2 + b2)b2

]
bMtf(t, Vt,Mt)Yt dZ

2
t ,

(5.4.18)

where the help function f is defined in (5.4.15). Solving this linear SDE (5.4.18)

of Yt explicitly, we obtain the closed-form expression of Xd∗
t given in (5.4.13).

Moreover, it is easy to see that the initial value Yt0 = x0e
r(T−t0) − ξ < 0 leads to

Xd∗
t er(T−t) < ξ for t ∈ [t0, T ).

Corollary 5.4.5. (No mispricing under the 4/2 model). Suppose that the Assump-

tion 5.3.5 holds. For any initial data (t0, v0, x0) ∈ [0, T )× R+ × R given and fixed

such that x0 < e−r(T−t0)ξ, the dynamically optimal strategy of the mean-variance

portfolio problem (5.2.5) without mispricing is given by

πd∗m (t, v, x) = − (λ+ ρσvβ(t)) v

c1v + c2

x− ξe−r(T−t)(
1− eᾱ(t)+β(t)v−2r(T−t)

)
x
,

for t ∈ [t0, T ). The controlled wealth process Xd∗
t evolves as:

Xd∗
t =

(
x0e

r(t−t0) − ξe−r(T−t)
)
exp

{
−
∫ t

t0

(λ+ ρσvβ(u))
√
Vuf̄(u, Vu) dW

1
u

}
exp

{∫ t

t0

−λ(λ+ ρσvβ(u))f̄(u, Vu)Vu −
1

2
(λ+ ρσvβ(u))

2Vuf̄
2(u, Vu) du

}
+ ξe−r(T−t),

with Xd∗
t er(T−t) < ξ for t ∈ [t0, T ), where the help function f̄(t, v) : [t0, T )×R+ 7→ R

is given by

f̄(t, v) =
1

1− eᾱ(t)+β(t)v−2r(T−t) ,

with ᾱ(t) and β(t) are given in (5.4.9) and (5.3.8), respectively.

Proof. The results follow from Corollary 5.4.3 and Theorem 5.4.4 directly.

Remark 5.4.6. If we specify (c1, c2) = (1, 0) in Corollary 5.4.5, then we have the

dynamically optimal strategy under the Heston model without mispricing; if we

choose (c1, c2) = (0, 1) instead, then the results in Corollary 5.4.5 correspond to

the ones under the 3/2 model without mispricing.
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5.5 Numerical examples

This section presents some numerical results to illustrate the theoretical results

derived in the previous section. Throughout this section, unless stated otherwise, we

consider the following market parameter setting adapted from Cheng and Escobar

(2021a) and Ma, Zhao, and Rong (2020): κ = 7.3479, θv = 0.0328, σv = 0.6612, c1 =

0.9051, c2 = 0.0023, λ = 2.9428, ρ = −0.7689, r = 0.05, σ = 0.3, b = 0.3, l1 =

0.1, l2 = 0.2, β = 1.1, x0 = 1, ξ = 3, v0 = 0.02,m0 = 0.04, T = 1.

Figures 5.1 and 5.2 below display the effects of r and λ on the efficient frontier,

respectively. As a matter of fact, when the interest rate r increases, the investor

can obtain more expected return by investing in the risk-free asset, and thus

undertaking less risk. Meanwhile, from the economic implications of λ, the investor

can obtain a higher risk premium of W 1 as λ increases. This leads to a lower value

of Vart0,v0,m0,x0(X
∗
T ) when the same Et0,v0,m0,x0 [X

∗
T ] is asked for.

Figure 5.1: Effects of r on the efficient frontier.

Figure 5.3 contributes to the evolution of the efficient frontier with respect to

l1. When we vary l1 from 0.1 to 0.5, the efficient frontier moves downwards. One

possible explanation is that since l1 partially characterizes the liquidity term, then

as l1 increases, the pricing error Mt in (5.2.3) has a faster mean-reversion rate

towards the long-term zero such that the investor can bear less risk coming out of

the pricing error between S1 and S2.

We finally give a simulation experiment to illustrate the difference between the

dynamics of X∗ and Xd∗. As shown in Figure 5.4, two optimal wealth processes

have significantly different trajectories while using the same random numbers.

Particularly, we observe that the dynamically optimal wealth process Xd∗ is strictly

below the expected terminal wealth ξ = 3 when t < T = 1 in this case, which is

consistent with the conclusion derived in Theorem 5.4.4 above.
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Figure 5.2: Effects of λ on the efficient frontier.

Figure 5.3: Effects of l1 on the efficient frontier.

Figure 5.4: Trajectories of static and dynamic optimality.

5.6 Conclusions

In this paper, we consider an optimal investment problem with mispricing in the

family of 4/2 stochastic volatility models (Grasselli (2017)) which embraces the 3/2

and the Heston models as special cases under Markowitz’s mean–variance criterion.

By applying the dynamic programming approach and establishing the correspond-

ing HJB equation, we derive the closed-form expressions of the statically optimal

(pre-commitment) strategy and the optimal value function. A verification theorem
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is further provided from scratch to ensure that the candidate solution to the HJB

equation coincides with the optimal value function and that the optimal strategy

is admissible. By recomputing the statically optimal strategy in an infinitesimally

small period of time, we explicitly obtain the dynamically optimal (time-consistent)

strategy (Pedersen and Peskir (2017)). Moreover, some results on special cases,

such as that without mispricing and that under the 3/2 and Heston models, are

included. Finally, some numerical examples are presented to illustrate our results.

To the best of our knowledge, there is no existing literature on the mean-variance

problem with the new influential 4/2 stochastic volatility model and mispricing

taken into consideration simultaneously.

Based on our current work, several potential topics in the future may be followed;

for example, one may incorporate the stochastic interest rate into the model. One

may also introduce random liabilities into the mean–variance problem.
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Chapter 6

Utility maximization in a stochastic affine

interest rate and CIR risk premium

framework: a BSDE approach

Abstract

This paper investigates optimal investment problems in the presence of

stochastic interest rates and stochastic volatility under the expected utility

maximization criterion. The financial market consists of three assets: a

risk-free asset, a risky asset, and zero-coupon bonds (rolling bonds). The

short interest rate is assumed to follow an affine diffusion process, which

includes the Vasicek and the Cox-Ingersoll-Ross (CIR) models, as special

cases. The risk premium of the risky asset depends on a square-root

diffusion (CIR) process, while the return rate and volatility coefficient

are unspecified and possibly given by non-Markovian processes. This

framework embraces the family of state-of-the-art 4/2 stochastic volatility

models and some non-Markovian models, as exceptional examples. The

investor aims to maximize the expected utility of the terminal wealth for

two types of utility functions, power utility, and logarithmic utility. By

adopting a backward stochastic differential equation (BSDE) approach

to overcome the potentially non-Markovian framework and solving two

BSDEs explicitly, we derive, in closed form, the optimal investment

strategies and optimal value functions. Furthermore, explicit solutions

to some special cases of our model are provided. Finally, numerical

examples illustrate our results under one specific case, the hybrid Vasicek-

4/2 model.

Keywords: Affine diffusion process; CIR risk premium; Power utility; Logarithmic

utility; Backward stochastic differential equation
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6.1 Introduction

Continuous-time portfolio optimization under Merton (1969)’s utility-maximization

criterion is one of the central topics in mathematical finance. In the classical Mer-

ton’s model, all the market coefficients are assumed to be deterministic or constants.

However, this oversimplified assumption is not consistent with many phenomena

observed in the financial market, such as fat tails of return distribution and the

volatility smile on implied volatility surfaces. To better predict the dynamics of

implied volatility surfaces, different types of stochastic (local) volatility models

have been proposed in the last several decades; see, for example, the constant

variance of elasticity model, Heston model (Heston (1993)), 3/2 model (Lewis

(2000)). This leads to growing interest in extending Merton’s seminal work to cases

in a stochastic volatility environment. For instance, under a specific condition

on the model parameters, Kraft (2005) provided an explicit solution to a power

utility maximization problem under the Heston model. Chacko and Viceira (2005)

investigated a consumption and investment problem with an infinite horizon under

the 3/2 model. To extend Kraft’s work (Kraft (2005)), Zeng and Taksar (2013)

further studied an optimal portfolio selection problem for a broad class of stochastic

volatility models, and closed-form solutions for the Heston model were obtained

under more relaxed assumptions. Recently, a state-of-the-art 4/2 stochastic volatil-

ity model was introduced in Grasselli (2017), which recovers two parsimonious

models, the Heston model and 3/2 model, as particular cases. This new influential

model draws the attention of many scholars in the field of derivatives pricing; see,

for example, Cui, Kirkby, and Nguyen (2017), Lin et al. (2017), and Zhu, Cao,

and Zhang (2019). By using the dynamic programming approach and solving

the corresponding Hamilton-Jacobi-Bellman (HJB) equation, Cheng and Escobar

(2021a) derived analytical expressions for the optimal solutions for a power utility

maximization problem under the 4/2 model. For other related work concerning

utility maximization problems with stochastic volatility, one can refer to Liu (2007),

Kallsen and Muhle-Karbe (2010), Pan, Hu, and Zhou (2019), and references therein.

Although stochastic volatility has been considered in the aforementioned litera-

ture, most were studied on the preconditions that interest rates are either constant

or deterministic functions. However, it is generally accepted in the literature that

interest rates are stochastic (see, for example, Duffie and Kan (1996)) and can be

described by some specific Markovian models, such as the Vasicek model (Vasicek

(1977)) and Cox-Ingersoll-Ross (CIR) model (Cox, Ingersoll, and Ross (1985)).

Some research outputs on portfolio optimization problems under Merton’s utility-

maximization criterion with stochastic interest rates have been achieved in recent

years. For example, by assuming that the stock price and volatility are perfectly

correlated, Li and Wu (2009) investigated power utility maximization problems in

a CIR interest rate and Heston’s stochastic volatility framework. Chang and Rong
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(2013) extended the results of Li and Wu (2009) by further considering the optimal

consumption. Assuming that the interest rate is driven by an affine process and the

stock price is characterized by the Heston model, Guan and Liang (2014) studied

DC pension management problems for the power utility. Considering the same

market model as Guan and Liang (2014), Chang and Li (2016) studied optimal

investment-consumption problems for the power and logarithmic utility functions.

Chang et al. (2020) investigated DC pension management problems for a hyperbolic

absolute risk averse (HARA) type utility function when an affine model drives the

interest rate, and a mean-reverting process governs the stock’s return rate. As

the literature on utility maximization problems with stochastic interest rates is

abundant, the above review is not exhaustive. For other relevant works, one can

refer to Korn and Kraft (2002), Deelstra, Grasselli, and Koehl (2003), Shen and

Siu (2012), Escobar, Neykova, and Zagst (2017), to name but only a few.

In the literature concerning utility maximization problems, three approaches

have been extensively applied, the dynamic programming approach, the martingale

approach, and the backward stochastic differential equation (BSDE) approach. The

dynamic programming approach characterizes the optimal value function by the

induced HJB equation. Once the HJB equation can be solved in the viscosity

sense along with a necessary verification theorem, the candidate solution to the

HJB equation then coincides with the optimal value function. This approach,

however, requires a Markovian framework. One may refer to the monographs

Fleming and Soner (2006) and Pham (2009) for a detailed exposition of this

approach. Compared with the dynamic programming approach, the martingale

approach (refer to Pliska (1986) and Karatzas, Lehoczky, and Shreve (1987)) does

not entail the Markovian structures of state variable processes. This approach,

however, falls apart in an incomplete market setting. Mathematically speaking,

the martingale approach essentially hinges on the uniqueness of the risk-neutral

measure (market completeness) and the martingale representation theorem for

determining the attainable optimal terminal wealth and the associated replication

strategy, respectively. To overcome the problem of incompleteness, Karatzas et al.

(1991) proposed the fictitious completion method by introducing additional fictitious

assets into the original incomplete market and making them unfavorable to the

investor. Nevertheless, finding such fictitious assets is not straightforward and

might be computationally intensive. Alternatively, Hu, Imkeller, and Müller (2005)

introduced a BSDE approach to utility maximization problems in an incomplete and

non-Markovian market setting. In contrast to the martingale approach, the BSDE

approach addresses the primal problem directly rather than the dual problem. The

idea of the BSDE approach is to construct a stochastic process depending on the

investment strategy such that it coincides with the utility of the investor’s wealth at

the terminal date. For every admissible strategy, this stochastic process is a (local)

super-martingale, while there exists one particular strategy such that it is a (local)
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martingale. It is worth noting that, however, most of the literature adopting the

BSDE approach to address utility maximization problems (see, for example, Hu,

Imkeller, and Müller (2005), Cheridito and Hu (2011), and Huang, Wang, and Wu

(2020)) assumed that the short interest rates, the risky asset’s return rates, and

volatility coefficients are all uniformly bounded processes and only concentrated on

the existence and uniqueness of solutions to the corresponding BSDEs rather than

the explicit solutions.

In this paper, we proceed to study utility maximization problems in a stochastic

interest rate and stochastic volatility environment. We consider a risk-averse

investor with two types of utility functions, power utility and logarithmic utility.

Apart from a risk-free asset (money account) and a risky asset (stock), zero-coupon

bonds are available in the financial market to hedge against interest rate risk.

The stochastic interest rate is assumed to follow an affine diffusion process, which

recovers the Vasicek model and CIR model, as exceptional cases. Unlike most of the

preceding literature on utility maximization problems, the risky asset’s return rate

and volatility coefficient are not specified and might be unbounded, non-Markovian

processes in our model. We only assume that the risk premium of the volatility

risk relies on a CIR process, which embraces the family of 4/2 stochastic volatility

models and some non-Markovian models (refer to Siu (2012)), as particular cases.

Because of the potentially non-Markovian and incomplete market setting, we solve

the problem by adopting a BSDE approach. For more details on the theory and

applications of BSDEs, one may refer to El Karoui, Peng, and Quenez (1997),

Kobylanski (2000), Briand and Hu (2008), Zhang (2017), Shen and Zeng (2015),

Sun, Zhang, and Yuen (2020), and references therein. To find the associated BSDEs,

we consider the canonical decomposition of semi-martingales with continuous sample

paths and use the completion method of squares. Explicit expressions for both

the optimal investment strategies and optimal value functions are derived from

the unique solutions to the BSDEs. Moreover, we provide the analytical results

for several special cases of our model. Finally, we concentrate on the effects of

model parameters on the behavior of the optimal investment strategy by numerical

analysis. In summary, the main contribution of this paper are: (1) We incorporate

stochastic volatility and stochastic interest rates into utility maximization problems

simultaneously, which extends the results of Kraft (2005), Zeng and Taksar (2013),

and Cheng and Escobar (2021a) to a more general non-Markovian framework. (2)

We derive explicit expressions for the optimal strategies and optimal value functions

by presenting closed-form solutions to the corresponding BSDEs instead of only

considering the existence and unique results. (3) We give some numerical studies

with the hybrid Vasicek-4/2 model as the working example to illustrate our results.

The remainder of this paper is structured as follows. In Section 6.2, we introduce

the financial market and formulate two utility maximization problems. In Section

6.3, we consider the power utility case, and closed-form expressions for the optimal
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strategy and optimal value function are obtained by solving a non-linear BSDE.

Section 6.4 contributes to addressing the logarithmic utility case. Section 6.5

provides numerical studies to illustrate our results under a specific case. Section

6.6 concludes the paper.

6.2 Model formulation

This section will formulate the market model and two portfolio optimization prob-

lems.

Let [0, T ] be a fixed and finite horizon for decision-making. We fix a complete

probability space (Ω,F ,F,P), where three one-dimensional, mutually independent

standard Brownian motions
{
W 0
t

}
t∈[0,T ]

,
{
W 1
t

}
t∈[0,T ]

,
{
W 2
t

}
t∈[0,T ]

are carried, F =

{Ft}t∈[0,T ] is the P-augmentation of the filtration generated by the above three

Brownian motions, and P is a real-world probability measure. The expectation with

respect to P is denoted by E [·]. To facilitate the discussions throughout the rest of

the paper, we make use of the following notations:

• L0
F,P(0, T ;R): the space of all R-valued, F-adapted processes with P-a.s.

continuous sample paths;

• L2,loc
F,P (0, T ;R): the space of all R-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that P
(∫ T

0
|ft|2 dt <∞

)
= 1;

• S2
F,P(0, T ;R): the space of all R-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that E
[
sup0≤t≤T |ft|2

]
<∞;

• L2
F,P(0, T ;R): the space of all R-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that E
[(∫ T

0
|ft|2 dt

)]
<∞.

We consider a financial market that comprises a risk-free asset (money account), a

risky asset (stock), and a zero-coupon bond. The price process of the risk-free asset

S0
t evolves according to

dS0
t = rtS

0
t dt, S

0
0 = 1,

where the short interest rate rt is assumed to follow an affine diffusion process (refer

to Duffie and Kan (1996)):

drt = (a− brt) dt−
√
η1rt + η2 dW

0
t , (6.2.1)

with initial value r0 at time zero, where a ∈ R+, b ∈ R+, and η1, η2 are two

non-negative constants.
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Remark 6.2.1. When η1 ̸= 0, a direct application of Itô’s formula shows that

η1rt + η2 follows a Cox-Ingersoll-Ross (CIR) process:

d(η1rt + η2) = [η1a+ η2b− b(η1rt + η2)] dt− η1
√
η1rt + η2 dW

0
t , (6.2.2)

with mean-reverting rate b, long-run mean (η1a + η2b)/b, and volatility η1. It

follows from Cox, Ingersoll, and Ross (1985) that η1rt + η2 > 0, P almost surely

for t ∈ [0, T ] when the Feller condition η2
η1
b + a > η1

2 is satisfied. For the special

case when η1 ̸= 0 and η2 = 0, (6.2.1) is reduced to the CIR model (Cox, Ingersoll,

and Ross (1985)), and the Feller condition 2a > η1 is required such that rt > 0, P
almost surely for t ∈ [0, T ]. The specification η1 = 0 is known as the Vasicek model

(Vasicek (1977)).

Denote by Bt(u) the price of the zero-coupon bond with maturity u at time

t, and assume that the market price of interest rate risk is λr
√
η1rt + η2, where

λr ∈ R \ {0}. It follows from (6.2.2) and the exponentially affine term structure of

the CIR model that the bond price Bt(u) is given by (see also Proposition 1 and

Lemma 2 in Deelstra, Grasselli, and Koehl (2003))

Bt(u) = h1(u− t)e−h0(u−t)rt , for t ≤ u,

with functions h0(t) and h1(t) given by

h0(t) =
2(emt − 1)

m− (b− η1λr) + emt(m+ b− η1λr)
,

h1(t) = exp

{
η2
η1
t− 2(η1a+ η2b)

η21
log

(
2me

m+b−η1λr
2 t

m− (b− η1λr) + emt(m+ b− η1λr)

)

−η2
η1
h0(t)

}
,

where m =
√
(b− η1λr)2 + 2η1. Then, a direct application of Itô’s formula to Bt(u)

leads to the following stochastic differential equation (SDE):

dBt(u) = rtBt(u) dt+h0(u− t)Bt(u)
√
η1rt + η2

(
λr

√
η1rt + η2 dt+ dW 0

t

)
, (6.2.3)

with the terminal condition Bu(u) = 1. It is noteworthy that the maturity u− t of

the zero-coupon bond Bt(u) varies continuously over time. As suggested by Boulier,

Huang, and Taillard (2001), it is quite unlikely to find all of the zero-coupon bonds

in the market. To amend the drawback, we follow Boulier, Huang, and Taillard

(2001) to introduce a rolling bond with constant maturity K into the market.

Denote the price of the rolling bond at time t by Bt(K), then Bt(K) is supposed

to satisfy the following SDE (refer to Boulier, Huang, and Taillard (2001)):

dBt(K) = rtBt(K) dt+h0(K)Bt(K)
√
η1rt + η2

(
λr

√
η1rt + η2 dt+ dW 0

t

)
. (6.2.4)
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The price process S1
t of the risky asset is assumed to evolve according todS

1
t =µtS

1
t dt+ σtS

1
t dW

1
t ,

dαt =κ(θ − αt) dt+ σα
√
αt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
,

(6.2.5)

with initial value s10 ∈ R+ and α0 ∈ R+ at time zero, where µt and σt ̸= 0 are

two F-adapted processes standing for the risky asset’s return rate and volatility

coefficient at time t, respectively, and the affine form, square-root factor (CIR)

process αt is related to the price process of the risky asset S1
t via the following

specification of the market price of volatility risk:

µt − rt
σt

= λ
√
αt, λ ∈ R \ {0} .

In (6.2.5), κ ∈ R+ is the mean-reverting rate, θ ∈ R+ is the long-run mean, and

σα ∈ R+ is the volatility of the CIR process, respectively. Particularly, it is required

that the Feller condition 2κθ > σ2
α holds such that the CIR process αt > 0, P

almost surely over [0, T ]. The correlation coefficient ρ between the risky asset price

and the stochastic factor lies in [−1, 1].

Remark 6.2.2. It should be noted that the risky asset’s return rate µt and volatil-

ity coefficient αt given in (6.2.5) are not specified and may be unbounded and

non-Markovian processes, which reflects the generalization of the above modeling

framework. We shall see below that this modeling framework includes, but is not

limited to, the family of 4/2 stochastic volatility models (Grasselli (2017)) and some

non-Markovian models as special examples.

Example 6.2.3. (The 4/2 model). If we set µt = rt + λ(c1αt + c2) and σt =

c1
√
αt +

c2√
αt
, where c1 ≥ 0 and c2 ≥ 0, then the risky asset S1

t corresponds to the

4/2 model:
dS1

t = S1
t

[
(rt + λ(c1αt + c2)) dt+

(
c1
√
αt +

c2√
αt

)
dW 1

t

]
,

dαt = κ(θ − αt) dt+ σα
√
αt

(
ρ dW 1

t +
√
1− ρ2 dW 2

t

)
.

(6.2.6)

In this case, αt is the variance driver of the instantaneous volatility c1
√
αt +

c2√
αt

of the risky asset price; κ, θ, and σα are the mean-reverting speed, the long-run

average level, and the volatility of the variance driver, respectively.

Remark 6.2.4. The specification (c1, c2) = (1, 0) in (6.2.6) corresponds to the Heston

model (Heston (1993)), and the case (c1, c2) = (0, 1) is known as the 3/2 model

(Lewis (2000)).

Example 6.2.5. (A path-dependent model). If we set µt = rt + λ
√
αtσ̂(α[0,t]) and

σt = σ̂(α[0,t]) for some functional σ̂ : C(0, t; R) → R+, where α[0,t] := (αs)s∈[0,t]

is the restriction of α ∈ C(0, T ; R) to C(0, t; R), i.e. the space of R-valued,
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continuous functions defined on [0, t]. In this case, the risky asset is governed by a

path-dependent model:dS
1
t = S1

t

[(
rt + λ

√
αtσ̂

(
α[0,t]

))
dt+ σ̂

(
α[0,t]

)
dW 1

t

]
,

dαt = κ(θ − αt) dt+ σα
√
αt

(
ρ dW 1

t +
√
1− ρ2 dW 2

t

)
.

(6.2.7)

For more details on model (6.2.7), readers may refer to Siu (2012).

Let πBt and πS
1

t denote the proportions of wealth invested in the rolling bond

Bt(K) and the risky asset S1
t at time t, respectively. The two-dimensional process

π :=

({
πS

1

t

}
t∈[0,T ]

,
{
πBt
}
t∈[0,T ]

)
represents the investment strategy. Let Xπ

t

be the wealth process associated with π. Suppose that the financial market is

frictionless and infinite short-selling and leverage are allowed. Under a self-financing

condition, the controlled wealth process Xπ
t is described by the following SDE:

dXπ
t =

(
πBt h0(K)λr(η1rt + η2) + πS

1

t σtλ
√
αt + rt

)
Xπ
t dt+Xπ

t π
S1

t σt dW
1
t

+Xπ
t π

B
t h0(K)

√
η1rt + η2 dW

0
t , X

π
0 = x0 ∈ R+.

(6.2.8)

In this paper, we consider two utility maximization problems when the risk prefer-

ences of the investor are characterized by a power utility function U1(x) = γ−1xγ ,

where γ ∈ (0, 1) and x ∈ R+, and a logarithmic utility function U2(x) = log(x), x ∈
R+, respectively. To this end, we shall present the formal definitions of admissible

strategies for these two problems.

Definition 6.2.6. (Admissible strategy). Consider the power utility function U1(·).
An investment strategy π is said to be admissible if

1. πBt ∈ L2,loc
F,P (0, T ;R) and σtπS

1

t ∈ L2,loc
F,P (0, T ;R);

2. for any initial data (α0, r0, x0) ∈ R+ × R × R+ fixed and given, the SDE

(6.2.8) admits a unique solution Xπ
t ∈ L0

F,P(0, T ;R) satisfying Xπ
t > 0, P-a.s.

for all t ∈ [0, T ].

The set of admissible strategies is denoted as Ap.

In this case, the control problem corresponds to finding an admissible strategy

π ∈ Ap such that the expected utility derived from the terminal wealth Xπ
T is

maximized, i.e.,

sup
π∈Ap

E [U1 (X
π
T )] . (6.2.9)

We denote the corresponding optimal value function by Vp(α0, r0, x0).
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Definition 6.2.7. (Admissible strategy). Consider the logarithmic utility function

U2(·). An investment strategy π is said to be admissible if

1. πBt
√
η1rt + η2 ∈ L2

F,P(0, T ;R) and πS
1

t σt ∈ L2
F,P(0, T ;R);

2. for any initial data (α0, r0, x0) ∈ R+ × R × R+ fixed and given, the SDE

(6.2.8) admits a unique solution Xπ
t ∈ L0

F,P(0, T ;R) such that Xπ
t > 0, P-a.s.

for all t ∈ [0, T ].

We denote the set of admissible strategies by Al.

In this case, the investor aims to solve the following optimization problem by

opting for an admissible strategy π ∈ Al:

sup
π∈Al

E [U2 (X
π
T )] . (6.2.10)

The corresponding optimal value function is denoted by Vl(α0, r0, x0).

6.3 Solution to the power utility case

In this section, we solve the power utility maximization problem (6.2.9) and derive

the corresponding optimal investment strategy by applying a BSDE approach.

To find the BSDE associated with problem (6.2.9), we introduce a continuous

(F,P)-semi-martingale Yt with canonical decomposition:

dYt = Ψt dt+ Γ0,t dW
0
t + Γ1,t dW

1
t + Γ2,t dW

2
t ,

where Ψt is an F-adapted process that shall be determined in the sequel, and

Γ0,t,Γ1,t,Γ2,t ∈ L2,loc
F,P (0, T ;R). For any admissible strategy π ∈ Ap, applying Itô’s

formula to
(Xπ

t )γ

γ eYt and using the method of completion of squares, we have

d

(
(Xπ

t )
γ

γ
eYt

)
=
(Xπ

t )
γ

γ
eYt
(
γh0(K)

√
η1rt + η2π

B
t + Γ0,t

)
dW 0

t +
(Xπ

t )
γ

γ
eYt

(
γσtπ

S1

t + Γ1,t

)
dW 1

t

+
(Xπ

t )
γeYt

2(γ − 1)

{[
Γ1,t + λ

√
αt + (γ − 1)σtπ

S1

t

]2
+
[
Γ0,t + λr

√
η1rt + η2

+(γ − 1)h0(K)
√
η1rt + η2π

B
t

]2}
dt+

(Xπ
t )
γ

γ
eYt

[
Ψt +

Γ2
0,t

2
+

Γ2
1,t

2
+

Γ2
2,t

2
+ γrt

−
γ(λ

√
αt + Γ1,t)

2

2(γ − 1)
− γ(λr

√
η1rt + η2 + Γ0,t)

2

2(γ − 1)

]
dt.

(6.3.1)
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Inspired by the above equation, we can choose Ψt such that the last term on the

right-hand side of (6.3.1) turns out to be zero, which, in turn, leads to the following

nonlinear BSDE of (Yt,Γ0,t,Γ1,t,Γ2,t) we shall investigate:

dYt =

[
−γrt +

Γ2
0,t + 2γλr

√
η1rt + η2Γ0,t + γλ2

r(η1rt + η2)

2(γ − 1)

+
Γ2
1,t + 2γλ

√
αtΓ1,t + γλ2αt

2(γ − 1)
−

Γ2
2,t

2

]
dt+ Γ0,t dW

0
t + Γ1,t dW

1
t + Γ2,t dW

2
t ,

YT =0.

(6.3.2)

Remark 6.3.1. The construction for the stochastic process eYt(Xπ
t )
γ/γ is enlightened

by some existing results on portfolio optimization problems with power utility

functions in Markovian settings (see, for example, Kraft (2005), Zeng and Taksar

(2013), Guan and Liang (2014), and Cheng and Escobar (2021a)).

Remark 6.3.2. It is worth mentioning that the driver of BSDE (6.3.2) depends on

the market prices of interest rate and volatility risks, i.e., λr
√
η1rt + η2 and λ

√
αt

rather than the risky asset’s return rate µt and volatility σt. This means that the

solvability of BSDE (6.3.2) is completely determined by these two risk premium

processes, and it is, therefore, irrelevant exactly how to specify µt and σt per se.

However, due to the randomness and unboundedness of rt and αt within the driver

of BSDE (6.3.2), condition (H1) in Kobylanski (2000) and Assumption (A.2) in

Briand and Hu (2008) are violated so that the standard existence and uniqueness

results of quadratic BSDEs are not applicable directly in this case. Nevertheless,

upon considering the Markovian structures of two risk premium processes, we

manage to derive an explicit solution in the next lemma.

Lemma 6.3.3. One solution (Yt,Γ0,t,Γ1,t,Γ2,t) to BSDE (6.3.2) is given by

Yt = f1(t) + f2(t)rt + f3(t)αt,

Γ0,t = −
√
η1rt + η2f2(t),

Γ1,t = ρσα
√
αtf3(t),

Γ2,t =
√

1− ρ2σα
√
αtf3(t),

(6.3.3)

where functions f1(t), f2(t), and f3(t) are solutions to the following ordinary differ-

ential equation (ODE) system:

df1(t)

dt
+

(
a+ λrη2

γ

γ − 1

)
f2(t) + κθf3(t)−

η2
2(γ − 1)

f22 (t)−
λ2rγη2

2(γ − 1)
= 0,

df2(t)

dt
− η1

2(γ − 1)
f22 (t)−

(
b− λrη1

γ

γ − 1

)
f2(t) + γ − λ2rγη1

2(γ − 1)
= 0,

df3(t)

dt
+
σ2
α

2

(
1− ρ2

γ

γ − 1

)
f23 (t)−

(
κ+ ρλσα

γ

γ − 1

)
f3(t)−

λ2γ

2(γ − 1)
= 0,

(6.3.4)
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with boundary condition f1(T ) = f2(T ) = f3(T ) = 0.

Proof. We conjecture that the first component Yt of one solution to BSDE (6.3.2)

admits an affine form:

Yt = f1(t) + f2(t)rt + f3(t)αt,

where f1(t), f2(t), and f3(t) are three undetermined functions with boundary con-

ditions f1(T ) = f2(T ) = f3(T ) = 0. Applying Itô’s formula to Yt, we have

dYt =d(f1(t) + f2(t)rt + f3(t)αt)

=

(
df1(t)

dt
+
df2(t)

dt
rt +

df3(t)

dt
αt + (a− brt)f2(t) + κ(θ − αt)f3(t)

)
dt

−
√
η1rt + η2f2(t) dW

0
t + ρσα

√
αtf3(t) dW

1
t +

√
1− ρ2σα

√
αtf3(t) dW

2
t .

(6.3.5)

By comparing the diffusion coefficients of BSDE (6.3.2) and (6.3.5), we observe

that Γ0,t = −
√
η1rt + η2f2(t),Γ1,t = ρσα

√
αtf3(t), and Γ2,t =

√
1− ρ2σα

√
αtf3(t).

Moreover, the generator of BSDE (6.3.2) turns out to be

[
η1f

2
2 (t)− 2γλrη1f2(t) + λ2rγη1

2(γ − 1)
− γ

]
rt +

[
ρ2σ2

αf
2
3 (t) + 2γλρσαf3(t) + λ2γ

2(γ − 1)

− (1− ρ2)σ2
αf

2
3 (t)

2

]
αt +

η2f
2
2 (t)− 2γλrη2f2(t) + λ2rγη2

2(γ − 1)
.

(6.3.6)

Then comparing the drift coefficient of (6.3.5) and (6.3.6) and separating the

dependence on rt and αt, we see that f1(t), f2(t), and f3(t) must be governed by

the ODE system (6.3.4).

The next proposition provides the explicit expressions for functions f1(t), f2(t),

and f3(t).

Proposition 6.3.4. Explicit solutions to ODE system (6.3.4) are given by

f1(t) =

∫ T

t

{(
a+ λrη2

γ

γ − 1

)
f2(s) + κθf3(s)−

η2
2(γ − 1)

f22 (s)−
λ2rγη2

2(γ − 1)

}
ds,

(6.3.7)
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f2(t) =



γ

b

(
1− eb(t−T )

)
, if η1 = 0;

n1n2

(
1− e

√
∆r(T−t)

)
n1 − n2e

√
∆r(T−t)

, if η1 ̸= 0 and ∆r > 0;

η1(T − t)n20
η1(T − t)n0 − 2(γ − 1)

, if η1 ̸= 0 and ∆r = 0;

√
−∆r(γ − 1)

η1
tan

(
arctan

(
b(γ − 1)− λrη1γ√

−∆r(γ − 1)

)
−

√
−∆r

2
(T − t)

)
− b(γ − 1)− λrη1γ

η1
, if η1 ̸= 0 and ∆r < 0,

(6.3.8)

and

f3(t) =



l1l2

(
1− e

√
∆α(T−t)

)
l1 − l2e

√
∆α(T−t)

, if ∆α > 0;

σ2
α

(
ρ2 γ

γ−1 − 1
)
(T − t)l20

σ2
α

(
ρ2 γ

γ−1 − 1
)
(T − t)l0 − 2

, if ∆α = 0;

√
−∆α

σ2
α

(
ρ2 γ

γ−1 − 1
) tan

(
arctan

(
κ+ ρλσα

γ
γ−1√

−∆α

)
−

√
−∆α

2
(T − t)

)

+ l0, if ∆α < 0,

(6.3.9)

where ∆r, n0, n1, and n2 are given by
∆r = b2 +

γ

γ − 1
(λ2rη

2
1 + 2η1 − 2η1λrb), n0 =

−(b(γ − 1)− λrη1γ)

η1
,

n1 =
−(b(γ − 1)− λrη1γ) + (γ − 1)

√
∆r

η1
, n2 =

−(b(γ − 1)− λrη1γ)− (γ − 1)
√
∆r

η1
,

(6.3.10)

and ∆α, l0, l1, and l2 are given by

∆α =

(
κ+ ρλσα

γ

γ − 1

)2

+

(
1− ρ2

γ

γ − 1

)
λ2σ2

αγ

γ − 1
, l0 =

−
(
κ+ ρλσα

γ
γ−1

)
σ2
α

(
ρ2 γ

γ−1 − 1
) ,

l1 =
−
(
κ+ ρλσα

γ
γ−1

)
+

√
∆α

σ2
α

(
ρ2 γ

γ−1 − 1
) , l2 =

−
(
κ+ ρλσα

γ
γ−1

)
−

√
∆α

σ2
α

(
ρ2 γ

γ−1 − 1
) .

(6.3.11)

Proof. We first solve the equation of f2(t). When η1 = 0, the Riccati equation of

f2(t) is reduced to the following first-order linear equation:

df2(t)

bf2(t)− γ
= dt.
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Integrating both sides from t to T and noticing the boundary condition f2(T ) = 0

lead to

f2(t) =
γ

b

(
1− eb(t−T )

)
.

When η1 ̸= 0, we set ∆r = b2 + γ
γ−1 (λ

2
rη

2
1 + 2η1 − 2η1λrb). If ∆r > 0, we can

reformulate the Riccati equation of f2(t) in (6.3.4) as follows:

df2(t)

dt
=

η1
2(γ − 1)

(f2(t)− n1) (f2(t)− n2) , (6.3.12)

where n1 and n2 are given in (6.3.10) above. After taking integration on both sides

from t to T , we obtain

f2(t) =
n1n2

(
1− e

√
∆r(T−t)

)
n1 − n2e

√
∆r(T−t)

.

If ∆r = 0, then (6.3.12) can be rewritten as follows

1

(f2(t)− n0)2
df2(t) =

η1
2(γ − 1)

dt, (6.3.13)

where n0 is given in (6.3.10). Thus, implementing an integral calculation yields

f2(t) =
η1(T − t)n20

η1(T − t)n0 − 2(γ − 1)
.

If ∆r < 0, then the Riccati equation of f2(t) in (6.3.4) can be reformulated by

df2(t)[(
f2(t) +

b(γ−1)−λrη1γ
η1

)2
+ (−∆r)(γ−1)2

η21

] =
η1

2(γ − 1)
dt.

Doing an integral calculation with respect to t upon noticing the boundary condition

f2(T ) = 0, we obtain

f2(t) =

√
−∆r(γ − 1)

η1
tan

(
arctan

(
b(γ − 1)− λrη1γ√

−∆r(γ − 1)

)
−

√
−∆r

2
(T − t)

)
− b(γ − 1)− λrη1γ

η1
.

The derivation of f3(t) is similar to that of f2(t) above, so we omit it here. Fi-

nally, upon obtaining the explicit expressions for f2(t) and f3(t), a direct integral

calculation to the first-order linear equation of f1(t) leads to (6.3.7).

The next proposition shows that f2(t) and f3(t) are strictly decreasing functions

over [0, T ]. In other words, the maximum values of f2(t) and f3(t) are attained at

time zero.
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Proposition 6.3.5. Functions f2(t) and f3(t) are monotonically decreasing over

[0, T ].

Proof. Differentiating f2(t) given in (6.3.8) with respect to time t leads to

df2(t)
dt =



− γeb(t−T ), if η1 = 0;

2γ(γ − 1)(λ2r − 2(γ − 1))∆re
√
∆r(T−t)

η21
(
n1 − n2e

√
∆r(T−t)

)2 , if η1 ̸= 0 and ∆r > 0;

2(γ − 1)η1n
2
0

(η1(T − t)n0 − 2(γ − 1))
2 , if η1 ̸= 0 and ∆r = 0;

(−∆r)(γ − 1)

2η1
sec2

(
arctan

(
b(γ − 1)− λrη1γ√

−∆r(γ − 1)

)
−

√
−∆r(T − t)

2

)
, if η1 ̸= 0 and ∆r < 0.

Given that γ ∈ (0, 1), this result shows df2(t)
dt < 0. Similarly, by doing a differentia-

tion to f3(t) given in (6.3.9), we obtain

df3(t)
dt =



2γ∆αe
√
∆α(T−t)

(γ − 1)σ4
α

(
ρ2 γ

γ−1 − 1
)2 (

l1 − l2e
√
∆α(T−t)

)2 , if ∆α > 0;

2σ2
αl

2
0

(
ρ2 γ

γ−1 − 1
)

(
σ2
α

(
ρ2 γ

γ−1 − 1
)
(T − t)l0 − 2

)2 , if ∆α = 0;

−∆α

2σ2
α

(
ρ2 γ

γ−1 − 1
) sec

(
arctan

(
κ+ ρλσα

γ
γ−1√

−∆α

)
−

√
−∆α

2

)
, if ∆α < 0,

which implies that df3(t)
dt < 0 by γ ∈ (0, 1).

Lemma 6.3.6. The solution (Yt,Γ0,t,Γ1,t,Γ2,t) given by (6.3.3) lies in L2
F,P(0, T ;R)×

L2
F,P(0, T ;R)× L2

F,P(0, T ;R)× L2
F,P(0, T ;R).

Proof. For the non-trivial case when η1 ̸= 0, from Lemma 6.3.3, Proposition 6.3.5

and Fubini’s theorem, we have

E

[∫ T

0

|Γ0,t|2 dt

]
≤ f22 (0)

∫ T

0

E[η1rt + η2] dt

= f22 (0)

∫ T

0

[
(η1r0 + η2)e

−bt +
η1a+ η2b

b

(
1− e−bt

)]
dt <∞.

This means Γ0,t ∈ L2
F,P(0, T ;R). By applying the same procedure to Γ1,t and Γ2,t,

it can be checked that Γ1,t and Γ2,t also lie in L2
F,P(0, T ;R). When η1 ̸= 0, η1rt+ η2

and αt are both CIR processes with

E
[
(η1rt + η2)

2
]
=

[
(η1r0 + η2)e

−bt +
η1a+ η2b

b

(
1− e−bt

)]2
+ r0

η21
(
e−bt − e−2bt

)
b

+
(η1a+ η2b)η

2
1

(
1− e−bt

)2
2b2
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and

E
[
α2
t

]
=
[
α0e

−κt + θ
(
1− e−κt

)]2
+ α0

σ2
α

(
e−κt − e−2κt

)
κ

+
θσ2

α (1− e−κt)
2

2κ
.

Then, we have

E

[∫ T

0

|Yt|2 dt

]
=E

[∫ T

0

∣∣∣∣f1(t)− η2
η1
f2(t) +

f2(t)

η1
(η1rt + η2) + f3(t)αt

∣∣∣∣2 dt
]

≤c

(
1 +

f22 (0)

η21

∫ T

0

E
[
(η1rt + η2)

2
]
dt+ f23 (0)

∫ T

0

E[α2
t ] dt

)
<∞,

where c ∈ R+. As for when η1 = 0, rt follows the Vasicek model and

E[r2t ] =
[
r0e

−bt +
a

b

(
1− e−bt

)]2
+
η2
2b

(
1− e−2bt

)
.

Thus, we obtain

E

[∫ T

0

|Yt|2 dt

]
≤ c

(
1 + f22 (0)

∫ T

0

E
[
r2t
]
dt+ f23 (0)

∫ T

0

E[α2
t ] dt

)
<∞,

where c ∈ R+. These results reveal that Yt ∈ L2
F,P(0, T ;R).

Before showing that (Yt,Γ0,t,Γ1,t,Γ2,t) obtained in Lemma 6.3.3 is the unique

solution to BSDE (6.3.2) in L2
F,P(0, T ;R)×L2

F,P(0, T ;R)×L2
F,P(0, T ;R)×L2

F,P(0, T ;R),
we present an auxiliary result on the CIR process which is adapted from Theorem

5.1 in Zeng and Taksar (2013) provides an equivalent condition for the exponential

integrability of the integrated CIR process.

Lemma 6.3.7. For the CIR process αt given in (6.2.5), we have

E

[
exp

{
β

∫ T

0

αt dt

}]
<∞ if and only if β ≤ κ2

2σ2
α

.

If η1 ̸= 0, the CIR process η1rt + η2 given in (6.2.2) satisfies

E

[
exp

{
β

∫ T

0

(η1rt + η2) dt

}]
<∞ if and only if β ≤ b2

2η21
.

In view of the above results, throughout the rest of this section, we impose the

following assumption on the model parameters:

Assumption 6.3.8. 2γ2

(1−γ)2 (λ
2
r + f22 (0)) ≤ b2

2η21
and 2γ2

(1−γ)2
(
λ2 + σ2

αf
2
3 (0)

)
≤ κ2

2σ2
α
.

Remark 6.3.9. The monotonicity of functions f2(t) and f3(t) shown in Proposition

6.3.5 implies that f2(0) and f3(0) decrease to 0 as T approaches 0, which indicates
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the mathematical feasibility of the assumption above when the investment horizon

is small enough. From an economic point of view, Assumption 6.3.8 gives upper

bounds for the slope λr and λ of the market prices of interest and volatility risks.

As stated in Korn and Kraft (2004), when λr or λ is too large, undertaking risk is

rewarded too much by the market, and the optimal investment strategy might not

be uniquely determined. Mathematically speaking, if the above technical condition

is violated, the uniqueness result to BSDE (6.3.2) might not be ensured.

The uniqueness of the solution to BSDE (6.3.2) follows from the comparison

arguments below.

Lemma 6.3.10. Under Assumption 6.3.8, the solution (Yt,Γ0,t,Γ1,t,Γ2,t) derived

in Lemma 6.3.3 is the unique solution to nonlinear BSDE (6.3.2) in L2
F,P(0, T ;R)×

L2
F,P(0, T ;R)× L2

F,P(0, T ;R)× L2
F,P(0, T ;R).

Proof. We start by introducing the likelihood process L1,t for t ∈ [0, T ] from the

following dynamics:

dL1,t = − γ

γ − 1
λr

√
η1rt + η2L1,t dW

0
t − γ

γ − 1
λ
√
αtL1,t dW

1
t .

It is straightforward to see that Novikov’s condition is satisfied by Assumption 6.3.8

and Cauchy-Schwarz inequality, i.e.,

E

[
exp

{∫ T

0

γ2

2(γ − 1)2
(
λ2r(η1rt + η2) + λ2αt

)
dt

}]
<∞.

Thus, the likelihood process L1,t is an (F,P)-uniformly integrable martingale, and

the equivalent probability measure denoted by P̂ on FT is well-defined via the

Radon-Nikodym derivative:
dP̂
dP

∣∣∣
FT

= L1,T .

Let Ê[·] denote the corresponding expectation under measure P̂. From Girsanov’s

theorem, three processes Ŵ 0
t , Ŵ

1
t , and Ŵ

2
t given by

Ŵ 0
t =

∫ t

0

γ

γ − 1
λr

√
η1rs + η2 ds+W 0

t , Ŵ
1
t =

∫ t

0

γ

γ − 1
λ
√
αs ds+W 1

t , Ŵ
2
t =W 2

t

are three standard (F, P̂) Brownian motions. And the solution (Yt,Γ0,t,Γ1,t Γ2,t)

given by (6.3.3) forms a solution to the following BSDE:
dYt =

[
Γ2
0,t + γλ2r(η1rt + η2) + Γ2

1,t + γλ2αt

2(γ − 1)
−

Γ2
2,t

2
− γrt

]
dt+ Γ0,t dŴ

0
t

+ Γ1,t dŴ
1
t + Γ2,t dŴ

2
t ,

YT =0.
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Denote by (Ŷt, Γ̂0,t, Γ̂1,t, Γ̂2,t) another solution to BSDE (6.3.2). Then, the following

difference process

(∆Yt,∆Γ0,t,∆Γ1,t,∆Γ2,t) = (Yt − Ŷt,Γ0,t − Γ̂0,t,Γ1,t − Γ̂1,t,Γ2,t − Γ̂2,t)

must solve the following BSDE under P̂ measure:

d∆Yt =

[
(Γ2

0,t − Γ̂2
0,t) + (Γ2

1,t − Γ̂2
1,t)

2(γ − 1)
−

Γ2
2,t − Γ̂2

2,t

2

]
dt+∆Γ0,t dŴ

0
t

+∆Γ1,t dŴ
1
t +∆Γ2,t dŴ

2
t .

(6.3.14)

Now, we introduce the second likelihood process L2,t for which the dynamics are

given by

dL2,t = − Γ0,t

γ − 1
L2,t dŴ

0
t − Γ1,t

γ − 1
L2,t dŴ

1
t + Γ2,tL2,t dŴ

2
t ,

with Γ0,t,Γ1,t,Γ2,t given in (6.3.3) above. Then, by Cauchy-Schwarz inequality and

Assumption 6.3.8, we see that Novikov’s condition holds for likelihood process L2,t

Ê

[
exp

{
1

2

∫ T

0

1

γ − 1
Γ2
0,t +

1

γ − 1
Γ2
1,t + Γ2

2,t dt

}]

=E

[
L1,T exp

{
1

2

∫ T

0

1

γ − 1
Γ2
0,t +

1

γ − 1
Γ2
1,t + Γ2

2,t dt

}]

≤

{
E

[
exp

{∫ T

0

− 2γ

γ − 1
λr

√
η1rt + η2 dW

0
t −

∫ T

0

2γ

γ − 1
λ
√
αt dW

1
t

−
∫ T

0

2γ2

(γ − 1)2
(
λ2r(η1rt + η2) + λ2αt

)
dt

}]} 1
2

×

{
E

[
exp

{∫ T

0

(
λ2γ2

(γ − 1)2
+

1

γ − 1
ρ2σ2

αf
2
3 (t) + (1− ρ2)σ2

αf
2
3 (t)

)
αt

+

∫ T

0

(
λ2rγ

2

(γ − 1)2
+
f22 (t)

γ − 1

)
(η1rt + η2) dt

}]} 1
2

≤
√
2

2

{
E

[
exp

{
2λ2rγ

2

(γ − 1)2

∫ T

0

(η1rt + η2) dt

}]

+ E

[
exp

{(
2(1− ρ2)σ2

αf
2
3 (0) +

2λ2γ2

(γ − 1)2

)∫ T

0

αt dt

}]} 1
2

<∞.

This shows that probability measure P̃ is well-defined on FT via the Radon-Nikodym

derivative:
dP̃
dP̂

∣∣∣
FT

= L2,T .
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Accordingly, from Girsanov’s theorem, three processes W̃ 0
t , W̃

1
t , and W̃

2
t defined by

W̃ 0
t =

∫ t

0

Γ0,s

γ − 1
ds+ Ŵ 0

t , W̃
1
t =

∫ t

0

Γ1,s

γ − 1
ds+ Ŵ 1

t , W̃
2
t =

∫ t

0

−Γ2,s ds+ Ŵ 2
t ,

(6.3.15)

are three standard Brownian motions under measure P̃. Therefore, substituting

(6.3.15) into (6.3.14) shows that (∆Yt,∆Γ0,t,∆Γ1,t,∆Γ2,t) solves the following

quadratic BSDE under measure P̃:
d∆Yt =

(
− 1

2(γ − 1)
∆Γ2

0,t −
1

2(γ − 1)
∆Γ2

1,t +
1

2
∆Γ2

2,t

)
dt+∆Γ0,t dW̃

0
t

+∆Γ1,t dW̃
1
t +∆Γ2,t dW̃

2
t ,

∆YT =0.

(6.3.16)

It can be checked that this quadratic BSDE (6.3.16) satisfies all regularity conditions

in Kobylanski (2000). Hence, according to Theorem 2.3 and Theorem 2.6 in

Kobylanski (2000), BSDE (6.3.16) admits a unique solution (0, 0, 0, 0), which, in

turn, indicates

Yt = Ŷt, Γ0,t = Γ̂0,t, Γ1,t = Γ̂1,t, Γ2,t = Γ̂2,t.

We can, therefore, conclude that the solution (Yt,Γ0,t,Γ1,t,Γ2,t) given by (6.3.3) is

the unique solution to BSDE (6.3.2) in L2
F,P(0, T ;R)×L2

F,P(0, T ;R)×L2
F,P(0, T ;R)×

L2
F,P(0, T ;R).

Remark 6.3.11. Girsanov’s measure change techniques are applied within the proof

of Lemma 6.3.10, of which the validity critically hinges on the specifications of the

market prices of interest rate and volatility risks. By assuming the market prices

of risks to be linear in the square root of two CIR processes η1rt + η2 and αt and

making use of the exponential integrability condition with respect to CIR processes

(Assumption 6.3.8), the likelihood processes L1,t and L2,t presented in the proof

of Lemma 6.3.10 are indeed uniformly integrable martingales rather than strictly

(positive) local martingales under measures P and P̂, respectively. Consequently,
before implementing the optimal strategy presented in Theorem 6.3.12 below, one

must cautiously specify the form of the market prices of risks. Some parametric

settings might lead to local martingales and, therefore, a lack of likely changes of

measure (see, for example, Platen and Heath (2006), Grasselli (2017), and Gnoatto,

Grasselli, and Platen (2022)).

To end this section, we give the following theorem which relates the optimal

investment strategy and optimal value function for the power utility maximization

problem (6.2.9) to the unique solution (Yt,Γ0,t,Γ1,t,Γ2,t) to BSDE (6.3.2).
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Theorem 6.3.12. Under Assumption 6.3.8, for any initial data (α0, r0, x0) ∈
R+ × R× R+ fixed and given, the optimal strategy and optimal value function for

problem (6.2.9) are given by
πB∗
t =

1

h0(K)

(
λr

1− γ
− f2(t)

1− γ

)
,

πS
1∗

t =

√
αt
σt

(
ρσαf3(t)

1− γ
+

λ

1− γ

)
,

(6.3.17)

and

Vp(α0, r0, x0) =
(x0)

γ

γ
exp {f1(0) + f2(0)r0 + f3(0)α0} , (6.3.18)

where functions f1(t), f2(t), and f3(t) are explicitly given by (6.3.7), (6.3.8), and

(6.3.9). Moreover, the optimal strategy is admissible, i.e., π∗ ∈ Ap.

Proof. For any admissible strategy π ∈ Ap, it follows from (6.3.1) that

d

(
(Xπ

t )
γ

γ
eYt

)
=
(Xπ

t )
γ

γ
eYt
(
γh0(K)

√
η1rt + η2π

B
t + Γ0,t

)
dW 0

t +
(Xπ

t )
γ

γ
eYt

(
γσtπ

S1

t + Γ1,t

)
dW 1

t

+
(Xπ

t )
γeYt

2(γ − 1)

{[
Γ1,t + λ

√
αt + (γ − 1)σtπ

S1

t

]2
+
[
Γ0,t + λr

√
η1rt + η2

+(γ − 1)h0(K)
√
η1rt + η2π

B
t

]2}
dt.

(6.3.19)

Since Xπ
t ∈ L0

F,P(0, T ;R), Yt,Γ0,t,Γ1,t ∈ L2
F,P(0, T ;R), πS

1

t σt, π
B
t ∈ L2,loc

F,P (0, T ;R),
two stochastic integrals on the right-hand side of (6.3.19) are (F,P)-local mar-

tingales. Thus, there exists a sequence of F-stopping times {τn}n∈N such that

τn ↑ ∞, P almost surely as n→ ∞, and the aforementioned local martingales are

indeed (F,P)-martingales when stopped by {τn}n∈N. In other words, we have the

following equation by integrating both sides of (6.3.19) from 0 to T ∧ τn and taking

expectations:

E
[
(Xπ

T∧τn)

γ
eYT∧τn

]
=E

[∫ T∧τn

0

(Xπ
t )
γeYt

2(γ − 1)

([
(γ − 1)σtπ

S1

t + Γ1,t + λ
√
αt

]2
+
[
(γ − 1)h0(K)

√
η1rt + η2π

B
t + Γ0,t + λr

√
η1rt + η2

]2)
dt

]

+
(x0)

γ

γ
eY0 .

(6.3.20)

Recall from Definition 6.2.6 that for any admissible π ∈ Ap, the corresponding

wealth process Xπ
t > 0, P almost surely. Then the term within the expectation on
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the right-hand side of (6.3.20) is non-positive due to γ ∈ (0, 1), which means

E
[
(Xπ

T∧τn)

γ
eYT∧τn

]
≤ (x0)

γ

γ
eY0 . (6.3.21)

Then passing to the limit in (6.3.21) and making use of Fatou’s lemma, we find

E
[
(Xπ

T )
γ

γ

]
≤ lim inf

n→∞
E
[
(Xπ

T∧τn)

γ
eYT∧τn

]
≤ (x0)

γ

γ
eY0 ,

and thus, upon considering the explicit expression of Y0 from (6.3.3), we obtain

sup
π∈Ap

E
[
(Xπ

T )
γ

γ

]
≤ (x0)

γ

γ
exp {f1(0) + f2(0)r0 + f3(0)α0} . (6.3.22)

In particular, when we opt for the strategy πB∗
t and πS

1∗
t given in (6.3.17) and

denote by X∗
t the corresponding wealth process, (6.3.19) yields

d

(
(X∗

t )
γ

γ
eYt

)
=
(X∗

t )
γ

γ
eYt

[(
1

1− γ
Γ0,t +

γ

1− γ
λr

√
η1rt + η2

)
dW 0

t

+

(
1

1− γ
Γ1,t +

γ

1− γ
λ
√
αt

)
dW 1

t

]
.

(6.3.23)

Under Assumption 6.3.8, we find that process
{

(X∗
t )

γ

γ eYt

}
t∈[0,T ]

is an (F,P)-
uniformly integrable martingale because the following Novikov’s condition is satisfied

E

[
exp

{
1

2

∫ T

0

(
1

1− γ
Γ0,t +

γ

1− γ
λr

√
η1rt + η2

)2

+

(
1

1− γ
Γ1,t +

γ

1− γ
λ
√
αt

)2

dt

}]

=E

[
exp

{
1

2

∫ T

0

(
γ

1− γ
λr −

1

1− γ
f2(t)

)2

(η1rt + η2) +

(
γ

1− γ
λ+

1

1− γ
ρσαf3(t)

)2

αt dt

}]

≤1

2
E

[
exp

{
2γ2λ2r + 2f22 (0)

(1− γ)2

∫ T

0

(η1rt + η2) dt

}
+ exp

{
2λ2γ2 + 2ρ2σ2

αf
2
3 (0)

(1− γ)2

∫ T

0

αt dt

}]
<∞.

Hence, we have

E
[
(X∗

T )
γ

γ

]
=

(x0)
γ

γ
exp {f1(0) + f2(0)r0 + f3(0)α0} . (6.3.24)

Moreover, solving linear SDE (6.3.23) of
(X∗

t )
γ

γ eYt explicitly gives the following

dynamics of wealth process X∗
t :

X∗
t =x0 exp

{
f1(0) + f2(0)r0 + f3(0)α0 − f1(t)− f2(t)rt − f3(t)αt

γ

}
× exp

{∫ t

0

γλr − f2(s)

γ(1− γ)

√
η1rs + η2 dW

0
s − 1

2

∫ t

0

(γλr − f2(s))
2

γ(1− γ)2
(η1rs + η2) ds

}
× exp

{∫ t

0

γλ+ ρσαf3(s)

γ(1− γ)

√
αs dW

1
s − 1

2

∫ t

0

(γλ+ ρσαf3(s))
2

γ(1− γ)2
αs ds

}
> 0.

(6.3.25)
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Given (6.3.22) and (6.3.24), we know that π∗ given in (6.3.17) is the optimal

investment strategy, and the optimal value function is given by (6.3.18). Finally,

it follows from (6.3.17) and (6.3.25) that πB∗
t and σtπ

S1∗
t ∈ L2,loc

F,P (0, T ;R), X∗
t ∈

L0
F,P(0, T ;R) and X∗

t > 0, i.e., the optimal strategy π∗ is admissible.

Remark 6.3.13. Notice from (6.3.17) that the optimal allocation in the risky asset

πS
1∗

t comprises three terms, a multiplier
√
αt/σt, a myopic (time-independent)

component λ/(1− γ), and an inter-temporal (time-dependent) hedging component

ρσαf3(t)/(1 − γ) (refer to Merton (1973)). The myopic component is increasing

in both λ and γ; λ partially characterizes the market price of volatility risk, and

γ depicts the risk-averse preference of the investor. This is intuition-consistent

because a more aggressive investment strategy will be adopted when the investor

is less risk-averse or realizes a greater volatility risk premium. As for the effect of

the hedging demand, recall from Proposition 6.3.5 that f3(t) approaches zero as

the investment horizon shrinks. In other words, the hedging demand decreases in

absolute value as the investment horizon approaches its terminal. In the extreme

case of one-period investments, it is noticeable that no inter-temporal hedging is

needed. It is also important to point out from (6.3.17) that πS
1∗

t is affected by

the ratio
√
αt/σt rather than σt only. This can be explained by our choice of the

market price of volatility risk as well as the fact that not only the volatility σt
of the risky asset price but also the volatility risk premium λ

√
αt influences asset

allocation strategies. It is far more interesting to realize from the wealth equation

(6.2.8) and (6.3.17) that σtπ
S1∗
t is exactly the optimal risk exposure to the volatility

risk and it is not relevant to the specifications of the return rate µt and volatility σt
of the risky asset. This finding, combined with the expression for the optimal value

function given in (6.3.18), reveals that the optimal investment strategies essentially

hinge on the market price specification of volatility risk rather than the dynamics

of the risky asset price as a whole.

Remark 6.3.14. The optimal allocation of wealth in the rolling bond πB∗
t is a

deterministic and continuous function. Similar to the form of πS
1∗

t except for the

stochastic multiplier component, πB∗
t includes a constant multiplier 1/h0(K). This

is due to our specific choice of the market price of interest rate risk λr
√
η1rt + η2

and the volatility of the rolling bond h0(K)
√
η1rt + η2.

The next two corollaries provide the results for two special cases of our model,

the 4/2 model and Siu’s non-Markovian model, respectively.

Corollary 6.3.15. (The 4/2 model). Under Assumption 6.3.8, when the risky asset

S1
t follows the 4/2 model (6.2.6), then for any initial data (α0, r0, x0) ∈ R+×R×R+
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fixed and given, the optimal strategy for problem (6.2.9) is given by
πB∗
t =

1

h0(K)

(
λr

1− γ
− f2(t)

1− γ

)
,

πS
1∗

t =
αt

c1αt + c2

(
ρσαf3(t)

1− γ
+

λ

1− γ

)
,

and the optimal value function is given by

Vp(α0, r0, x0) =
(x0)

γ

γ
exp {f1(0) + f2(0)r0 + f3(0)α0} ,

where functions f1(t), f2(t), and f3(t) are given by (6.3.7), (6.3.8), and (6.3.9),

respectively.

Proof. Plugging the specified parameters in Example 6.2.3 back into Theorem 6.3.12

leads to the results in Corollary 6.3.15.

Remark 6.3.16. The optimal asset allocation in the risky asset πS1∗
t given in Corollary

6.3.15 is in line with the results derived in Cheng and Escobar (2021a), where

constant interest rates are considered. This means that our results generalize the

results of Cheng and Escobar (2021a) to the case with stochastic affine interest rates.

If we further specify (c1, c2) = (1, 0) and (c1, c2) = (0, 1), then Corollary 6.3.15

recovers the optimal strategies under the Heston model and 3/2 model with affine

interest rates, respectively. It can be checked that the resulting Heston solution is

consistent with the results presented in Kraft (2005) and Zeng and Taksar (2013).

Corollary 6.3.17. (Siu’s non-Markovian model). Under Assumption 6.3.8, when

the risky asset S1
t follows the non-Markovian model (6.2.7), then for any initial

data (α0, r0, x0) ∈ R+ × R× R+ fixed and given, the optimal strategy for problem

(6.2.9) is given by 
πB∗
t =

1

h0(K)

(
λr

1− γ
− f2(t)

1− γ

)
,

πS
1∗

t =

√
αt

σ̂
(
α[0,t]

) (ρσαf3(t)
1− γ

+
λ

1− γ

)
,

and the optimal value function is given by

Vp(α0, r0, x0) =
(x0)

γ

γ
exp {f1(0) + f2(0)r0 + f3(0)α0} ,

where functions f1(t), f2(t), and f3(t) are given by (6.3.7), (6.3.8), and (6.3.9),

respectively.

Proof. Substituting the specified parameters in Example 6.2.5 into Theorem 6.3.12

leads to the results in Corollary 6.3.17.
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6.4 Solution to the logarithmic utility case

In this section, we consider the logarithmic utility maximization problem (6.2.10)

by means of BSDE. Similar to the last section, we introduce a continuous (F,P)-
semi-martingale Pt with canonical decomposition:

dPt = Ht dt+ Z0,t dW
0
t + Z1,t dW

1
t + Z2,t dW

2
t ,

where Ht is an undetermined F-adapted process, and Z0,t, Z1,t, Z2,t ∈ L2,loc
F,P (0, T ;R).

Applying Itô’s formula to log(Xπ
t ) + Pt and using the method of completion of

squares for any admissible strategy π ∈ Al yield

d (log(Xπ
t ) + Pt) =

(
πBt h0(K)

√
η1rt + η2 + Z0,t

)
dW 0

t +
(
πS

1

t σt + Z1,t

)
dW 1

t

+ Z2,t dW
2
t − 1

2

(
πBt h0(K)− λr

)2
(η1rt + η2) dt−

1

2

(
πS

1

t σt

−λ
√
αt)

2
dt+

(
Ht + rt +

1

2
λ2αt +

1

2
λ2r(η1rt + η2)

)
dt.

(6.4.1)

Intuitively, we can choose Ht such that the last term on the right-hand side of

(6.4.1) is zero. This leads to the following linear BSDE of (Pt, Z0,t, Z1,t, Z2,t) we

shall consider:dPt =
[
−1

2
λ2αt −

1

2
λ2r(η1rt + η2)− rt

]
dt+ Z0,t dW

0
t + Z1,t dW

1
t + Z2,t dW

2
t ,

PT = 0.

(6.4.2)

Remark 6.4.1. Despite of the unboundedness of rt and αt, it is clear that the driver of

linear BSDE (6.4.2) is uniformly Lipschitz continuous with respect to Pt, Z0,t, Z1,t,

and Z2,t. In addition, it can be checked E
[∫ T

0
( 12λ

2αt +
1
2λ

2
r(η1rt + η2) + rt)

2 dt
]
<

∞, linear BSDE (6.4.2) is therefore with standard data (see El Karoui, Peng, and

Quenez (1997)) and the uniqueness and existence result of BSDE (6.4.2) is ensured

by Theorem 2.1 in El Karoui, Peng, and Quenez (1997).

In the following proposition, we explicitly present the unique solution to BSDE

(6.4.2).

Proposition 6.4.2. The unique solution (Pt, Z0,t, Z1,t, Z2,t) to linear BSDE (6.4.2)

is given by 

Pt = g1(t) + g2(t)rt + g3(t)αt,

Z0,t = −g2(t)
√
η1rt + η2,

Z1,t = g3(t)ρσα
√
αt,

Z2,t = g3(t)
√
1− ρ2σα

√
αt,

(6.4.3)
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where functions g1(t), g2(t), g3(t) are solutions to the following ODE system:

dg1(t)

dt
+ ag2(t) + κθg3(t) +

1

2
λ2rη2 = 0, g1(T ) = 0,

dg2(t)

dt
− bg2(t) +

1

2
λ2rη1 + 1 = 0, g2(T ) = 0,

dg3(t)

dt
− κg3(t) +

1

2
λ2 = 0, g3(T ) = 0.

(6.4.4)

Moreover, (Pt, Z0,t, Z1,t, Z2,t) lies in S2
F,P(0, T ;R)× L2

F,P(0, T ;R)× L2
F,P(0, T ;R)×

L2
F,P(0, T ;R).

Proof. Since linear BSDE (6.4.2) satisfies all the regularity condition in El Karoui,

Peng, and Quenez (1997), it follows from Proposition 2.2 in El Karoui, Peng, and

Quenez (1997) and Proposition 4.1.1 in Zhang (2017) that the unique solution

(Pt, Z0,t, Z1,t, Z2,t) ∈ S2
F,P(0, T ;R)×L2

F,P(0, T ;R)×L2
F,P(0, T ;R)×L2

F,P(0, T ;R), and
moreover, Pt can be represented by the following conditional expectation form:

Pt = E

[∫ T

t

1

2
λ2αs +

1

2
λ2r(η1rs + η2) + rs ds

∣∣∣∣∣ Ft
]
.

Denote by g(t, α, r) = Et,α,r
[∫ T
t

1
2λ

2αs +
1
2λ

2
r(η1rs + η2) + rs ds

]
,where Et,α,r[·]

denotes the conditional expectation under P measure given that αt = α and rt = r

at time t ∈ [0, T ]. Due to the Markovian structures of interest rate rt and factor

process αt with respect to Ft, we then have

Pt = g(t, αt, rt).

Suppose that function g(·, ·, ·) ∈ C1,2,2([0, T ] × R+ × R). Then, applying the

Feynman-Kac formula leads to the following partial differential equation:

∂g

∂t
+ (a− br)

∂g

∂r
+ κ(θ − α)

∂g

∂α
+

1

2
(η1r + η2)

∂2g

∂r2

+
1

2
σ2
αα

∂2g

∂α2
+

1

2
λ2α+

1

2
λ2r(η1r + η2) + r = 0,

g(T, α, r) = 0.

(6.4.5)

We conjecture that solution of g(t, α, r) admits an affine form:

g(t, α, r) = g1(t) + g2(t)r + g3(t)α, (6.4.6)

with boundary conditions that g1(T ) = g2(T ) = g3(T ) = 0. Substituting (6.4.6)

into (6.4.5) and separating the dependence on r and α result in the ODE system

(6.4.4). Finally, applying Itô’s lemma to Pt and matching the coefficients show us

that

Z0,t = −g2(t)
√
η1rt + η2, Z1,t = g3(t)ρσα

√
αt, Z2,t = g3(t)

√
1− ρ2σα

√
αt,

by the uniqueness of the solution to linear BSDE (6.4.2).
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Proposition 6.4.3. Explicit solutions to ODE system (6.4.4) are given by

g1(t) =
(λ2rη1 + 2)a

2b2

(
eb(t−T ) − 1

)
+
λ2θ

2κ

(
eκ(t−T ) − 1

)
+

1

2
(T − t)

(
(λ2rη1 + 2)a

b
+ λ2θ + λ2rη2

)
,

g2(t) = −λ
2
rη1 + 2

2b

(
eb(t−T ) − 1

)
,

g3(t) = −λ
2

2κ

(
eκ(t−T ) − 1

)
.

(6.4.7)

Proof. Since equations for g2(t) and g3(t) are both first-order linear ODEs, a direct

integral calculation leads to the analytical solution of g2(t) and g3(t) given by

(6.4.7). Inserting the explicit representations of g2(t) and g3(t) into the equation of

g1(t) and integrating both sides from t to T yield the analytical representation of

g1(t).

We now proceed to derive the optimal investment strategy and optimal value

function for the logarithmic utility maximization problem (6.2.10) via the unique

solution (Pt, Z0,t, Z1,t, Z2,t) to linear BSDE (6.4.2).

Theorem 6.4.4. For any initial data (α0, r0, x0) ∈ R+ × R× R+ fixed and given,

the optimal strategy and optimal value function for problem (6.2.10) are respectively

given by 
πB∗
t =

λr
h0(K)

,

πS
1∗

t =
λ
√
αt

σt
,

(6.4.8)

and

Vl(α0, r0, x0) = log(x0) + (g1(0) + g2(0)r0 + g3(0)α0), (6.4.9)

where functions g1(t), g2(t), and g3(t) are explicitly given by (6.4.7) above. Moreover,

the optimal investment strategy is admissible, i.e., π∗ ∈ Al.

Proof. For any admissible strategy π ∈ Al, it follows from (6.4.1) that

d(log(Xπ
t ) + Pt) =

(
πBt h0(K)

√
η1rt + η2 + Z0,t

)
dW 0

t +
(
πS

1

t σt + Z1,t

)
dW 1

t

+ Z2,t dW
2
t − 1

2

(
πBt h0(K)− λr

)2
(η1rt + η2) dt−

1

2

(
πS

1

t σt

−λ
√
αt)

2
dt.

(6.4.10)
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Furthermore, for any admissible strategy π ∈ Al, we have

E

[∫ T

0

(
πBt h0(K)

√
η1rt + η2 + Z0,t

)2
+
(
πS

1

t σt + Z1,t

)2
+ Z2

2,t dt

]

≤2h20(K)E

[∫ T

0

(
πBt
)2

(η1rt + η2) dt

]
+ k1

∫ T

0

E [η1rt + η2] dt

+ 2E

[∫ T

0

(
πS

1

t

)2
σ2
t dt

]
+ k2

∫ T

0

E [αt] dt <∞,

where constants k1 = 2 supt∈[0,T ] g
2
2(t) and k2 = (1 + ρ2)σ2

α supt∈[0,T ] g
2
3(t). This

means that stochastic integrals on the right-hand side of (6.4.10) are (F,P)-
martingales. Hence, integrating both sides of (6.4.10) from 0 to T and taking

expectation yield

E [log(Xπ
T )] = log(x0) + P0 −

1

2
E

[∫ T

0

(
πBt h0(K)− λr

)2
(η1rt + η2) dt

]

− 1

2
E

[∫ T

0

(
πS

1

t σt − λ
√
αt

)2
dt

]
≤ log(x0) + P0,

and thus, by making use of the explicit expression for Pt given in (6.4.3), we have

sup
π∈Al

E [log(Xπ
T )] ≤ log(x0) + g1(0) + g2(0)r0 + g3(0)α0. (6.4.11)

In particular, when we opt for the strategy πB∗
t and πS

1∗
t given by (6.4.8), we find

that

E

[∫ T

0

(
πB∗
t h0(K)

√
η1rt + η2 + Z0,t

)2
+
(
πS

1∗
t σt + Z1,t

)2
+ Z2

2,t dt

]

≤k1
∫ T

0

E [η1rt + η2] dt+ k2

∫ T

0

E[αt] dt <∞,

(6.4.12)

where constants k1 = supt∈[0,T ](λr − g2(t))
2 and k2 = supt∈[0,T ](λ+ g3(t)ρσα)

2 +

(1− ρ2)g23(t)σ
2
α. This implies that by replacing πBt and πS

1

t in (6.4.10) with πB∗
t

and πS
1∗

t , we arrive at

E [log(X∗
T )] = log(x0) + g1(0) + g2(0)r0 + g3(0)α0, (6.4.13)

where X∗
t denotes the wealth process associated with πB∗

t and πS
1∗

t given in (6.4.8).

Therefore, combining (6.4.11) and (6.4.13), we can conclude that (πB∗
t , πS

1∗

t ) is the

optimal strategy, and the optimal value function is given by (6.4.9). Finally, by

solving the following linear SDE of X∗
t explicitly:

dX∗
t

X∗
t

=
[
λ2r(η1rt + η2) + λ2αt + rt

]
dt+ λr

√
η1rt + η2 dW

0
t + λ

√
αt dW

1
t ,
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we obtain the dynamic of wealth process X∗
t as follows:

X∗
t =x0 exp

{∫ t

0

[
λ2r
2
(η1rs + η2) +

λ2

2
αs + rs

]
ds+

∫ t

0

λr
√
η1rs + η2 dW

0
s

+

∫ t

0

λ
√
αs dW

1
s

}
> 0.

(6.4.14)

From (6.4.9), (6.4.12), and (6.4.14), we know that π∗ ∈ Al. This completes the

proof.

Remark 6.4.5. It is straightforward to see that the optimal investment strategy

(6.4.8) for the logarithmic utility function can be obtained by letting γ = 0 in

(6.3.17). This is not surprising since the case of U2(x) = log(x) is a limiting case of

U1(x)− 1/γ = (xγ − 1)/γ as γ → 0.

Corollary 6.4.6. (The 4/2 model). If the risky asset S1
t follows the 4/2 model

(6.2.6), then for any initial data (α0, r0, x0) ∈ R+ × R × R+ fixed and given, the

optimal strategy and optimal value function for problem (6.2.10) are, respectively,

given by 
πB∗
t =

λr
h0(K)

,

πS
1∗

t =
λαt

c1αt + c2
,

and

Vl(α0, r0, x0) = log(x0) + (g1(0) + g2(0)r0 + g3(0)α0) .

Proof. Plugging the specified parameters in Example 6.2.3 into Theorem 6.4.4 leads

to the results in Corollary 6.4.6.

Remark 6.4.7. By specifying (c1, c2) = (1, 0) and (c1, c2) = (0, 1), Corollary 6.4.6

provides the optimal strategies under the Heston model and 3/2 model, respectively.

Corollary 6.4.8. (Siu’s non-Markovian model). If the risky asset price S1
t follows

the non-Markovian model (6.2.7), then for any initial data (α0, r0, x0) ∈ R+×R×R+

fixed and given, the optimal strategy and optimal value function for the problem

(6.2.10) are, respectively, given by
πB∗
t =

λr
h0(K)

,

πS
1∗

t =
λ
√
αt

σ̂
(
α[0,t]

) ,
and

Vl(α0, r0, x0) = log(x0) + (g1(0) + g2(0)r0 + g3(0)α0) .

Proof. Plugging the specified parameters in Example 6.2.5 into Theorem 6.4.4 leads

to the results in Corollary 6.4.8.
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6.5 Numerical studies

This section presents a sensitivity analysis of the optimal investment strategies with

respect to some model parameters. We mainly focus on the hybrid Vasicek-4/2 model

in the following numerical experiments because, as stated above, the 4/2 model not

only recovers two parsimonious models, the Heston model and 3/2 model, as special

cases but also shows practical significance in the context of derivatives pricing in the

past few years. In addition, we shall concentrate on the power utility case since the

logarithmic utility case can be seen as a limiting case of the former. Unless otherwise

stated, we consider the following model parameters, of which the values are modified

from some previous studies (see, for example, Escobar, Neykova, and Zagst (2017)

and Cheng and Escobar (2021a)): a = 0.0125, b = 0.266, η2 = 0.00169, λr =

0.689, λ = 2.234, κ = 2.115, θ = 0.051, σα = 0.505, ρ = −0.514, T = 1, α0 =

0.03, r0 = 0.05, K = 0.15, γ = 0.5, c1 = 0.9051, c2 = 0.0023. And without loss of

generality, we shall only investigate the impact of model parameters on the optimal

investment strategy at time zero.

The relationship between optimal strategies
(
πB∗
0 , πS

1∗
0

)
and parameter b is

presented in Figure 6.1(a). It can be seen that under the Vasicek-4/2 model, the

proportion of wealth invested in the rolling bond πB∗
0 at time zero increases with

parameter b, while πS
1∗

0 remains unchanged. As revealed by (6.2.1), the parameter

b characterizes both the mean-reversion rate and long-term mean of the interest rate

process rt. As b becomes larger, interest rate rt moves faster towards a relatively

lower level of long-term mean a/b. Therefore, the expected return rate of the

risk-free asset (money account) decreases, and the investor is willing to put more

wealth into the rolling bond in this case. As for the relationship between the optimal

asset allocation and parameter λr, Figure 6.1(b) shows that πB∗
0 increases in λr,

while πS
1∗

0 is not affected. This is intuition-consistent because λr partially depicts

the market price of interest rate risk, and a greater value of λr allows the investor

to realize a larger interest rate risk premium by undertaking the same amount of

risk.

The relationships between the optimal asset allocation and parameters λ, σα, and

κ are shown in Figures 6.2(a), 6.2(b), and 6.2(c), respectively. Specifically, Figure

6.2(a) shows that πS
1∗

0 increases in λ, while πB∗
0 is not affected when λ varies. This

is in line with the economic implication of parameter λ which describes the market

price of volatility risk. As λ increases, the return per unit risk by investing in the

risky asset (stock) increases accordingly. As such the investor tends to put more

wealth into the risky asset and reduces the proportion of wealth in the risk-free asset

to derive a greater expected utility at the terminal date. Conversely, as shown in

Figure 6.2(b), the investor is less willing to invest in the risky asset as the volatility

of variance driver σα under the 4/2 model becomes larger. One of the possible

explanations is that by specifying (c1, c2) = (0.9051, 0.0023) ≈ (1, 0) in the above
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(a) (b)

Figure 6.1: Impact of parameters b and λr on the optimal investment strategy

model parameter setting, the 4/2 model resembles the embedded Heston model.

Thus, the state variable αt to some extent represents the instantaneous variance

of the risky asset price in this case. Consequently, as the volatility of volatility σα
increases, the investor faces more volatility risk and is, therefore, reluctant to invest

in the risky asset. Figure 6.2(c) shows that πS
1∗

0 has a positive relationship with κ,

of which the reason is fairly similar to that of parameter σα. Notice that κ stands

for the mean-reverting speed of the instantaneous variance of the risky asset price.

As κ increases, αt moves faster towards the long-run mean θ. Hence, the risky asset

price is less volatile, and the investor tends to invest more in the risky asset.

(a) (b) (c)

Figure 6.2: Impact of parameters λ, σα and κ on the optimal investment strategy

Figures 6.3(a) and 6.3(b) contribute to the evolution of the optimal asset allocation

with respect to ρ and γ, respectively. Figure 6.3(a) reveals that πS
1∗

0 moves down as

ρ varies from 0 to −0.9. The risky asset price S1
t and the variance driver process αt

become more negatively correlated as ρ approaches −1, which leads to more offset

between the risks caused by fluctuations of the risky asset price and its volatility.

Accordingly, the same amount of volatility risk can be hedged against with less

investment in the risky asset. Lastly, it can be seen from Figure 6.3(b) that as the

risk-aversion parameter γ becomes more positive, πS
1∗

0 moves upwards, whereas πB∗
0
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moves downwards. Indeed, the investor becomes less risk-averse as γ increases, and

myopic allocation increases for the asset with a higher risk premium. As revealed in

our parameter setting above, the volatility risk premium is larger than the interest

rate risk premium at time zero, i.e., λ
√
α0 > λr

√
η2. Comparatively speaking, the

investor tends to increase the proportion of risky asset and, meanwhile, decrease

that of rolling bonds in asset allocation.

(a) (b)

Figure 6.3: Impact of parameters ρ and γ on the optimal investment strategy

6.6 Conclusions

This paper investigates utility maximization problems in a stochastic interest rate

and stochastic volatility environment. The dynamics of interest rates are described

by an affine diffusion process, including the Vasicek and CIR models, as special cases.

The risky asset’s return rate and volatility are not specified except that the stochastic

volatility risk premium is assumed to depend on a square-root diffusion (CIR) process.

This general modeling framework recovers some celebrated Markovian models, such

as the Heston, 3/2, 4/2 stochastic volatility models, and some non-Markovian

models, as exceptional cases. The investor’s objective is to maximize the expected

utility of the terminal wealth for power and logarithmic utility. Given the potentially

non-Markovian and incomplete market setting, we adopt a BSDE approach. To

find the BSDEs, we consider the canonical decomposition of semimartingales. By

exploring the uniqueness and existence results of the associated BSDEs and solving

the BSDEs completely, explicit expressions for the optimal strategies and optimal

value functions are derived. Furthermore, we provide analytical solutions to some

special cases of our model. Finally, a sensitivity analysis on the optimal strategies

to some model parameters under the hybrid Vasicek-4/2 model is presented with

numerical experiments. To the best of our knowledge, there is no existing literature

on utility maximization problems that simultaneously considers an affine stochastic

interest rate and a general class of (non-Markovian) stochastic volatility models.
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Built on our current work, several directions in the future may be followed: for

instance, instead of considering the power and logarithmic utility functions, one

may investigate the HARA utility maximization problems with affine stochastic

interest rates and affine diffusion factor processes. One may also extend the current

framework to that with multiple risky assets. We hope to address these problems

in future research.
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Chapter 7

Optimal DC pension investment with

square-root factor processes under

stochastic income and inflation risks

Abstract

This paper studies optimal defined contribution (DC) pension in-

vestment problems under the expected utility maximization framework

with stochastic income and inflation risks. The member has access to

a financial market consisting of a risk-free asset (money account), an

inflation-indexed bond, and a stock. The market price of volatility risk

is assumed to depend on an affine-form, Markovian, square-root factor

process, while the return rate and the volatility of the stock are possibly

given by general non-Markovian, unbounded stochastic processes. This

financial framework recovers the Black-Scholes model, constant elasticity

of variance (CEV) model, Heston model, 3/2 model, 4/2 model, and some

non-Markovian models as exceptional cases. To tackle the potentially

non-Markovian structures, we adopt a backward stochastic differential

equation (BSDE) approach. By solving the associated BSDEs explicitly,

closed-form expressions for the optimal investment strategies and optimal

value functions are obtained for the power, logarithmic, and exponential

utility functions. Moreover, explicit solutions to some special cases of our

portfolio model are provided. Finally, numerical examples are provided

to illustrate the effects of model parameters on the optimal investment

strategies under the 4/2 model.

Keywords: Expected utility maximization; DC pension; Stochastic income; In-

flation risk; Square-root factor process; Backward stochastic differential equation
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7.1 Introduction

Owing to the prevalence of lifespans increasing and fertility declining in recent

decades, the economic role of pension management is more and more prominent.

There are two different ways of pension fund management: defined benefit (DB)

and defined contribution (DC) pension plans. The benefits in a DB pension plan

are predetermined by the sponsor, while the contributions are initially set and

subsequently adjusted to maintain a balance of the pension fund. On the contrary,

in a DC pension plan, the contributions are fixed in advance by the sponsor and

the benefits depend on the investment performance of the pension fund during

the period up to retirement. Compared with DB pension plans, DC pension plans

have the advantage of transferring the financial, longevity, and inflation risks from

the sponsor to the member, and therefore relieve the pressure on social security

programs (Poterba et al. (2007)). Since the benefits of retirees depend on the

investment return of DC pension plans, a topic of concern to pension funds is

searching for the optimal investment strategies of DC pension plans. In recent

years, many attempts were made to study the optimal investment problems for DC

pension plans before retirement under the expected utility maximization framework

(see, for example, Boulier, Huang, and Taillard (2001), Deelstra, Grasselli, and

Koehl (2003), Cairns, Blake, and Dowd (2006), Korn, Siu, and Zhang (2011), and

Giacinto, Federico, and Gozzi (2011)). Since the investment of a pension plan

usually lasts for a long period, it is of interest to take the risk of inflation rate

into account. Battocchio and Menoncin (2004) introduced inflation risk into a DC

pension management problem and derived the optimal investment strategy for an

exponential utility function. By using the martingale method, Zhang and Ewald

(2010) considered an optimal DC pension management problem with inflation risk

for a power utility function. Han and Hung (2012) investigated the case with

downside protection under stochastic inflation. For other related work concerning

DC pension management with inflation risk, one may refer to Yao, Yang, and Chen

(2013), Wu, Zhang, and Chen (2015), Chen et al. (2017), Wang, Li, and Sun (2021),

and references therein.

In the aforementioned literature, however, the stock price dynamics were generally

assumed to follow a geometric Brownian motion, that is, the volatility of the

stock price was described by a constant or a deterministic function. This is not

consistent with many empirical studies supporting the existence of local volatility

and stochastic volatility models (see, for example, Heston (1993), Cox (1996),

and Lewis (2000)). Recently, some research outputs on DC pension management

problems with stochastic (local) volatility were achieved. For example, Xiao, Hong,

and Qin (2007) studied the constant elasticity of variance (CEV) model for a DC

pension plan problem, and they obtained the explicit solutions to the logarithmic

utility function by using the Legendre transform and dual theory. Gao (2009)
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extended the results of Xiao, Hong, and Qin (2007) to the cases for the power and

exponential utility functions. Apart from the CEV model, many attempts were

made to study Heston’s model (Heston (1993)) for portfolio optimization problems

under utility maximization and mean-variance criteria. See, for example, Kraft

(2005), Zeng and Taksar (2013) and Li, Shen, and Zeng (2018). In the field of DC

pension plans, Guan and Liang (2014) considered Heston’s model and an affine

stochastic interest rate simultaneously. Wang and Li (2018) stepped forward by

incorporating probability measure ambiguity into the framework of Guan and Liang

(2014). Zeng et al. (2018) further introduced derivatives trading into DC pension

plans under Heston’s model. Chang, Li, and Zhao (2022) alternatively studied a

robust optimal DC pension management problem under mean-variance criteria.

In 2017, a state-of-the-art stochastic volatility model named the 4/2 model was

proposed in Grasselli (2017) and a strong rationale for introducing this model into

the field of option pricing was reported by the author. This new influential model

recovers the Heston model and 3/2 model (Lewis (2000)) as special cases, and due

to the superposition of these two embedded parsimonious models, the 4/2 model

can accurately capture the evolution of the implied volatility surface. Considering

the recent success of the 4/2 model in the context of derivatives pricing (see, for

example, Cui, Kirkby, and Nguyen (2017), Lin et al. (2017), and Zhu and Wang

(2019)), Cheng and Escobar (2021a) and Zhang (2021a) studied the 4/2 model

on portfolio optimization problems under utility maximization and mean-variance

criteria, respectively. It seems that DC pension management problems under the

4/2 model may have not yet been well-explored.

In this paper, we study a DC pension investment problem with inflation and

volatility risk taken into consideration simultaneously under a more general model.

Specifically, the inflation level and the member’s stochastic income are modeled

by two different geometric Brownian motions. The DC pension plan member has

access to a financial market consisting of a risk-free asset (money account), an

inflation-indexed bond, and a stock. Unlike most of the previous literature on the

optimal DC pension management problems in which the price process of stock is

usually assumed to satisfy some specific Markovian structures, such as the CEV

model and Heston model, it is not a prerequisite to specify the structures of return

rate and volatility of the stock price in our paper as they may be general unbounded,

non-Markovian stochastic processes. On the contrary, we only assume that the

market price of volatility risk depends on an affine-form, square-root, Markovian

model, which includes the Black-Scholes model, CEV model, Heston model, 3/2

model, 4/2 model, and some non-Markovian models as particular cases (see Example

7.2.2-7.2.5). Based on the above settings, we subsequently formulate optimal DC

pension investment problems for the power, logarithmic, and exponential utility

functions. The potentially non-Markovian structures of the state variable processes

in the modeling framework lead to the failure of Bellman’s optimality principle,
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and thus, exclude the application of the dynamic programming approach which is

used in most of the aforementioned literature on DC pension investment problems.

We, therefore, opt for a backward stochastic differential equation (BSDE) approach.

To be specific, by considering the canonical decomposition of semi-martingales

with continuous sample paths and using the method of completion of squares, we

establish the BSDEs associated with the above utility maximization problems. By

discussing the uniqueness and existence results of the induced BSDEs and solving

the BSDEs explicitly, we derive the analytical expressions of the optimal investment

strategies and optimal value functions for power, logarithmic, and exponential

utility. Furthermore, we provide the results for two special cases of our model:

the CEV model and 4/2 model. Finally, we present some numerical examples to

illustrate our results and analyze the effects of model parameters on the behavior of

the optimal strategies under the 4/2 model. To sum up, compared with the existing

literature, the contributions of this paper are as follows:

1. We incorporate stochastic volatility, stochastic income, and stochastic inflation

simultaneously into an optimal DC pension investment problem in a general

non-Markovian modeling framework, which can reduce to some special cases

in the existing literature.

2. We introduce a BSDE approach to DC pension investment problems for the

power, logarithmic, and exponential utility functions by utilizing the canonical

decomposition of semi-martingales. Analytical representations of the optimal

investment strategies, optimal wealth processes, and optimal value functions

are obtained. Moreover, explicit solutions to some special cases are recovered.

3. We use Girsanov’s measure change techniques, the uniqueness theorem for

linear BSDEs with uniformly Lipschitz continuity (El Karoui, Peng, and

Quenez (1997)), and a contradiction method to solve the induced linear

BSDEs with stochastic Lipschitz continuity (Bender and Kohlmann (2000)

and Wang, Ran, and Hong (2006)), which differs from the technical methods

presented in Shen, Zhang, and Siu (2014), Sun and Guo (2018) and Zhang

(2021b).

The remainder of this paper is organized as follows. Section 7.2 formulates the model

and establishes the DC pension investment problems for the power, logarithmic

and exponential utility functions. Section 7.3 discusses the solvability of associated

BSDEs; the explicit expressions of the optimal strategies and optimal value functions

are derived, and two special cases are provided. Section 7.4 concentrates on the

effects of model parameters on the optimal strategy with numerical analysis. Section

7.5 concludes the paper.
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7.2 Model formulation

In this section, we introduce the financial market and formulate the optimal DC

pension investment problems under the expected utility maximization framework.

Let T > 0 be a fixed constant describing the retirement time of the DC pension

plan member and (Ω,F ,F,P) be a filtered complete probability space satisfying the

usual conditions on which are defined three one-dimensional, mutually independent

Brownian motions
{
W 0
t

}
t∈[0,T ]

,
{
W 1
t

}
t∈[0,T ]

, and
{
W 2
t

}
t∈[0,T ]

. The filtration F :=

{Ft}t∈[0,T ] is assumed to be generated by the three Brownian motions, and P is a

real-world probability measure.

7.2.1 Financial market and income

The financial market consists of a risk-free asset (money account), an inflation-

indexed bond, and a stock. The price process of the money account Bt evolves

as

dBt = RBt dt, B0 = 1,

where the constant R ∈ R stands for the nominal risk-free interest rate. The price

process of the stock St is governed by the following system of stochastic differential

equations (SDEs):{
dSt = µtSt dt+ σtSt dW

1
t ,

dαt = κ(θ − αt) dt+
√
αt
(
ρ1 dW

1
t + ρ2 dW

2
t

)
,

(7.2.1)

with initial value S0 = s0 ∈ R+ and α0 ∈ R+ at time zero, where µt and σt > 0 are

two F-progressively measurable processes representing the appreciation rate and

the volatility of the stock at time t, respectively; αt is an affine-form, square-root

process with the speed of mean reversion κ, long-run level θ and volatility
√
ρ21 + ρ22

and is related to the market price of risk (µt −R)/σt by

µt −R

σt
= λ

√
αt, λ ∈ R \ {0} .

In line with Chapter 6.3 in Jeanblanc, Chesney, and Yor (2009), we assume that

the constants κ, θ ∈ R satisfy κθ ∈ R+ to ensure the process αt is non-negative for

all t ∈ [0, T ], P almost surely, while we do not impose any specific conditions on the

parameters ρ1, ρ2 ∈ R. Notice that the Feller condition, i.e. 2κθ ≥ ρ21 + ρ22, is not

imposed on the parameters κ, θ, ρ1, ρ2 ∈ R in our case, which makes the modeling

framework more general.

Remark 7.2.1. We shall see below that the modeling framework includes, but is not

limited to, some classical Markovian models in finance, such as the Black-Scholes

model, CEV model (Cox (1996)), Heston model (Heston (1993)), 3/2 model (Lewis

(2000)) and 4/2 model (Grasselli (2017)), as well as some non-Markovian models

(Siu (2012)) as exceptional cases.
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Example 7.2.2. (CEV model). If µt = µ ̸= R, σt = σSβt , where parameters

µ ∈ R+, σ ∈ R+ and β ≤ − 1
2 , then the stock price is governed by the CEV model:

dSt = St

(
µdt+ σSβt dW

1
t

)
, S0 = s0 > 0, (7.2.2)

where β is called the elasticity parameter. By setting αt = S−2β
t , κ = 2βµ, θ =

(β + 1
2 )
σ2

µ , ρ1 = −2βσ, ρ2 = 0 and λ = µ−R
σ , we see

dαt =2βµ

[(
β +

1

2

)
σ2

µ
− S−2β

t

]
dt− 2βσS−β

t dW 1
t

=κ(θ − αt) dt+
√
αt
(
ρ1 dW

1
t + ρ2 dW

2
t

)
.

In particular, if we set β = 0, then the condition κθ ≥ 0 still holds, and the CEV

model (7.2.2) is reduced to the Black-Scholes model in this case.

Example 7.2.3. (The 4/2 model). If µt = R+ λ(c1αt + c2), σt = c1
√
αt +

c2√
αt
,

Vt = αt, κ ∈ R+, θ ∈ R+, ρ1 = σvρ and ρ2 = σv
√
1− ρ2, where constants

c1 ≥ 0, c2 ≥ 0, σv ∈ R+, and ρ ∈ (−1, 1), then the stock price process corresponds

to the 4/2 model (Grasselli (2017)):
dSt =St

[
(R+ λ(c1Vt + c2)) dt+

(
c1
√
Vt +

c2√
Vt

)
dW 1

t

]
, S0 = s0 ∈ R+,

dVt =κ(θ − Vt) dt+ σv
√
Vt

(
ρ dW 1

t +
√

1− ρ2 dW 2
t

)
, V0 = v0 = α0 ∈ R+.

(7.2.3)

Here κ ∈ R+ is the mean-reversion rate, θ ∈ R+ is the long-run mean, σv ∈ R+

is the volatility of the variance driver process, and ρ ∈ (−1, 1) is the correlation

coefficient between the stock price and its variance driver. For the 4/2 model (7.2.3),

we posit that the Feller condition holds, i.e. 2κθ ≥ σ2
v so that the process Vt which

drives the volatility of the stock price is strictly positive for all t ∈ [0, T ], P almost

surely.

Remark 7.2.4. The parameters c1 and c2 are crucial in the 4/2 model characterizing

the superposition of two embedded parsimonious models, the Heston model (Heston

(1993)) and 3/2 model (Lewis (2000)), and predicting a flattening and steepening

of the implied volatility skew, respectively (see, for example, Grasselli (2017)).

Particularly, by specifying (c1, c2) = (1, 0) in (7.2.3), the 4/2 model degenerates to

the Heston model, while the case (c1, c2) = (0, 1) corresponds to the 3/2 model.

Example 7.2.5. (A non-Markovian model). If αt = Vt, µt = R+λ
√
αtσ̂(α[0,t]) and

σt = σ̂(α[0,t]) for some functional σ̂ : C([0, t];R) 7→ R+, where α[0,t] := (αs)s∈[0,t]

is the restriction of α ∈ C([0, T ];R) to C([0, t];R), i.e. the space of real-valued,

continuous functions defined on [0, t]. The stock price process is then given by the

following path-dependent model:dSt =St
[(
R+ λ

√
Vtσ̂

(
V[0,t]

))
dt+ σ̂

(
V[0,t]

)
dW 1

t

]
, S0 = s0 ∈ R+,

dVt =κ(θ − Vt) dt+
√
Vt
(
ρ1 dW

1
t + ρ2 dW

2
t

)
, V0 = α0 ∈ R+.

(7.2.4)
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Since the appreciation rate and the volatility of the stock price are path-dependent,

the model (7.2.4) is a specific case of non-Markovian models. For more details on

model (7.2.4), readers may refer to Siu (2012).

As mentioned in the introduction, since the investment of pension funds usually

involves a long period, we shall consider the impact of inflation risk on the DC

pension member’s wealth. To describe the inflation risk, we follow Wang et al.

(2021) to assume that the price index Pt is given by the geometric Brownian motion

below:

dPt = Pt
(
µp dt+ σp dW

0
t

)
, P0 = p0 ∈ R+, (7.2.5)

where constants µp ∈ R and σp ∈ R+ stand for the appreciation rate and the

volatility of inflation, respectively. To hedge against the inflation risk, we introduce

an inflation-indexed bond into the market and assume the price process of the

inflation-indexed bond It follows the following SDE:

dIt
It

= r dt+
dPt
Pt

= (r + µp) dt+ σp dW
0
t , (7.2.6)

where the constant r ∈ R represents the real interest rate. Similar to Wang, Li,

and Sun (2021), we further posit that r + µp > R holds true, because of which the

inflation-indexed bond admits a positive risk premium.

Apart from making investments in the above financial market, in the DC pension

plan, the member continuously contributes a fixed percentage η ∈ [0, 1] of her

nominal income to her wealth during the period up to retirement time T . As Zhang

and Ewald (2010) and Wang, Li, and Sun (2021), we assume that the nominal

income LN,t is stochastic and is driven by

dLN,t
LN,t

= µl dt+ σl dW
0
t , LN,0 = lN,0 ∈ R+, (7.2.7)

where the constants µl ∈ R and σl ∈ R+ stand for the expected growth rate and

the volatility of the nominal income, respectively.

Let πSt and πIt denote the proportions of nominal wealth invested in the stock

and the inflation-indexed bond at time t, respectively. The two-dimensional process

π :=
({
πSt
}
t∈[0,T ]

,
{
πIt
}
t∈[0,T ]

)
represents the investment strategy. Let Xπ

N,t be

the nominal wealth process associated with π. Suppose that the financial market is

friction-less and infinite short-selling and leverage are allowed, under a self-financing

condition, the dynamics of the nominal wealth process Xπ
N,t is described by the

following SDE:

dXπ
N,t =

[
Xπ
N,tR+Xπ

N,tπ
S
t (µt −R) +Xπ

N,tπ
I
t (r + µp −R) + ηLN,t

]
dt

+Xπ
N,tπ

I
t σp dW

0
t +Xπ

N,tπ
S
t σt dW

1
t , X

π
N,0 = xN,0 ∈ R.

(7.2.8)
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Denote by Xπ
t := Xπ

N,t/Pt and Lt := LN,t/Pt the real wealth and the real income

at time t after stripping out inflation, respectively. Applying Itô’s formula to Xπ
t

yields the following dynamics of inflation-adjusted wealth process:

dXπ
t =

[
rXπ

t +Xπ
t π

S
t (µt −R) +Xπ

t (π
I
t − 1)

(
r + µp −R− σ2

p

)
+ ηLt

]
dt

+Xπ
t (π

I
t − 1)σp dW

0
t +Xπ

t π
S
t σt dW

1
t , X

π
0 = x0 = xN,0/p0 ∈ R.

(7.2.9)

Similarly, the dynamics of the inflation-adjusted income Lt is driven by

dLt
Lt

=
(
µl − µp + σ2

p − σlσp
)
dt+(σl−σp) dW 0

t , L0 = l0 = lN,0/p0 ∈ R+. (7.2.10)

Throughout the rest of the paper, we denote by P0 the real-word probability measure

conditioned on the initial data (α0, x0, l0) at time zero, and E0 [·] represents the

associated expectation.

7.2.2 Portfolio optimization problems

In this paper, we will subsequently consider three utility maximization problems

when the risk preferences of the member are characterized by a power utility

function U1(x) = γ−1xγ with parameter γ ∈ (0, 1), a logarithmic utility function

U2(x) = log(x), and an exponential utility function U3(x) = −e−qx with parameter

q ∈ R+. To this end, we give below the formal definitions of the admissible strategies

for these three optimization problems, respectively.

Definition 7.2.6. (Admissible strategy for power utility). For the power utility

function U1(·), an investment strategy π is called admissible if

1. π is F-progressively measurable;

2. for any initial data (α0, x0, l0) ∈ R+ ×R×R+ such that x0 +G1,0 ∈ R+, the

associated inflation-adjusted wealth process (7.2.9) admits a pathwise unique

solution such that Xπ
t +G1,t > 0 holds for all t ∈ [0, T ], where G1,t is given

by (7.3.13) below.

The set of admissible strategies is denoted by Πp.

In this case, the control problem corresponds to determining an admissible

strategy π ∈ Πp such that the following expected utility of the terminal real wealth

Xπ
T is maximized:

sup
π∈Πp

E0 [U1(X
π
T )] . (7.2.11)

We denote by V1(α0, x0, l0) the corresponding optimal value function.

Definition 7.2.7. (Admissible strategy for logarithmic utility). For the logarithmic

utility function U2(·), an investment strategy π is called admissible if
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1. the family of random variables
{
log(Xπ

τn∧T +G2,τn∧T ) + Y2,τn∧T
}
n∈N is uni-

formly integrable, for any sequence of F-stopping times {τn}n∈N such that

τn ↑ ∞, P0 almost surely as n→ ∞, where Y2,t and G2,t are given by (7.3.20)

and (7.3.23), respectively;

2. for any initial data (α0, x0, l0) ∈ R+ ×R×R+ such that x0 +G2,0 ∈ R+, the

associated inflation-adjusted wealth process (7.2.9) admits a pathwise unique

solution such that Xπ
t +G2,t > 0 holds for all t ∈ [0, T ], where G2,t is given

by (7.3.23); in particular, Xπ
T > 0 holds.

3. π is F-progressively measurable.

The set of admissible strategies is denoted by Πl.

For the logarithmic utility function U2(·), the control problem becomes

sup
π∈Πl

E0 [U2(X
π
T )] , (7.2.12)

and the corresponding optimal value function is denoted as V2(α0, x0, l0).

Definition 7.2.8. (Admissible strategy for exponential utility). For the exponential

utility function U3(·), an investment strategy π is called admissible if

1. the family of random variables
{
−e−q̃(X̃

π
T∧τn

−Y3,T∧τn )
}
n∈N

is uniformly inte-

grable, for any sequence of F-stopping times {τn}n∈N such that τn ↑ ∞, P0

almost surely as n→ ∞, where q̃ = qerT ∈ R+, and X̃π
t and Y3,t are given by

(7.3.27) and (7.3.32), respectively.

2. for any initial data (α0, x0, l0) ∈ R+×R×R+, the associated inflation-adjusted

wealth process (7.2.9) admits a pathwise unique solution;

3. π is F-progressively measurable.

The set of admissible strategies is denoted by Πe.

For the exponential utility function U3(·), the control problem is given by

sup
π∈Πe

E0 [U3(X
π
T )] . (7.2.13)

In this case, the corresponding optimal value function is denoted by V3(α0, x0, l0).

Remark 7.2.9. As discussed in the introduction, the non-Markovian structures of

the stock price process (7.2.1) and inflation-adjusted wealth process (7.2.9) lead to

the failure of Bellman’s optimality principle, so the dynamic programming approach

used in most of the related literature (see, for example, Xiao, Hong, and Qin (2007),
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Gao (2009), Kraft (2005), Zeng and Taksar (2013), Wang and Li (2018), Wang, Li,

and Sun (2021), and Cheng and Escobar (2021a)) cannot be applied in our paper.

We, therefore, opt for a general BSDE approach to solve the above three expected

utility maximization problems in Section 7.3.

7.3 Solution to the optimization problem

In this section, we devote ourselves to solving the utility maximization problems

(7.2.11)-(7.2.13) explicitly by using a BSDE approach.

7.3.1 Optimal investment strategies for the power utility

function

To find the BSDEs associated with problem (7.2.11), we introduce the following two

continuous (F,P0)-semi-martingales Y1,t and G1,t with canonical decomposition:

dY1,t = Ψ1,t dt+ Z0,t dW
0
t + Z1,t dW

1
t + Z2,t dW

2
t ,

and

dG1,t = H1,t dt+ Λ0,t dW
0
t + Λ1,t dW

1
t + Λ2,t dW

2
t ,

where Ψ1,t, Z0,t, Z1,t, H1,t,Λ0,t,Λ1,t,Λ2,t are undetermined F-progressively measur-

able processes. For any admissible strategy π ∈ Πp, applying Itô’s formula to

Y1,t
(Xπ

t +G1,t)
γ

γ and using the method of completion of squares lead to

d

(
Y1,t

(Xπ
t +G1,t)

γ

γ

)
=
1

2
(γ − 1)Y1,t(X

π
t +G1,t)

γ−2

[
(Xπ

t

(
πI
t − 1

)
σp + Λ0,t) +

1

γ − 1
(Xπ

t +G1,t)

(
Z0,t

Y1,t
+

r + µp −R− σ2
p

σp

)]2
dt+

1

2
(γ − 1)Y1,t(X

π
t +G1,t)

γ−2

[
(Xπ

t π
S
t σt + Λ1,t) +

1

γ − 1

×(Xπ
t +G1,t)

(
Z1,t

Y1,t
+ λ

√
αt

)]2
dt+ (Xπ

t +G1,t)
γ

[
Ψ1,t

γ
+ rY1,t −

Y1,t

2(γ − 1)

(
Z0,t

Y1,t

+
r + µp −R− σ2

p

σp

)2

− Y1,t

2(γ − 1)

(
Z1,t

Y1,t
+ λ

√
αt

)2
]
dt+ Y1,t(X

π
t +G1,t)

γ−1

[
H1,t

+ ηLt − rG1,t −
r + µp −R− σ2

p

σp
Λ0,t − λ

√
αtΛ1,t +

Z2,t

Y1,t
Λ2,t

]
dt+

1

2
(γ − 1)Y1,t

× (Xπ
t +G1,t)

γ−2Λ2
2,t dt+

[
(Xπ

t +G1,t)
γ

γ
Z0,t + Y1,t(X

π
t +G1,t)

γ−1(Xπ
t (π

I
t − 1)σp

+ Λ0,t)

]
dW 0

t +

[
(Xπ

t +G1,t)
γ

γ
Z1,t + Y1,t(X

π
t +G1,t)

γ−1(Xπ
t π

S
t σt + Λ1,t)

]
dW 1

t

+

[
(Xπ

t +G1,t)
γ

γ
Z2,t + Y1,t(X

π
t +G1,t)

γ−1Λ2,t

]
dW 2

t .

(7.3.1)
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Inspired by the right-hand side of (7.3.1), we shall consider the following nonlinear

BSDE of (Y1,t, Z0,t, Z1,t, Z2,t):

dY1,t =

[(
γ

2(γ − 1)

(r + µp −R− σ2
p)

2

σ2
p

+
γ

2(γ − 1)
λ2αt − rγ

)
Y1,t +

λγ

γ − 1

√
αtZ1,t

+
γ

γ − 1

r + µp −R− σ2
p

σp
Z0,t +

γ

2(γ − 1)

Z2
0,t

Y1,t
+

γ

2(γ − 1)

Z2
1,t

Y1,t

]
dt+ Z0,t dW

0
t

+ Z1,t dW
1
t + Z2,t dW

2
t ,

Y1,T =1,

Y1,t >0, for all t ∈ [0, T ),

(7.3.2)

and the linear BSDE of (G1,t,Λ0,t,Λ1,t,Λ2,t):
dG1,t =

[
rG1,t +

r + µp −R− σ2
p

σp
Λ0,t + λ

√
αtΛ1,t −

Z2,t

Y1,t
Λ2,t − ηLt

]
dt+ Λ0,t dW

0
t

+ Λ1,t dW
1
t + Λ2,t dW

2
t ,

G1,T =0.

(7.3.3)

Remark 7.3.1. The generators of two BSDEs (7.3.2) and (7.3.3) are unbounded

due to the unboundedness of processes αt and Lt. Hence, although there are some

established existence and uniqueness results of BSDEs theory (see, for example,

El Karoui, Peng, and Quenez (1997), Bender and Kohlmann (2000), Wang, Ran,

and Hong (2006), Kobylanski (2000) and Briand and Hu (2008)), none of them

can be applied to (7.3.2) and (7.3.3) immediately. It is also worth mentioning that

the presence of the term Z2,t/Y1,t in the generator of linear BSDE (7.3.3) makes

the problem more technically challenging. Nevertheless, by utilizing the Markovian

structures of processes αt and Lt, we prove the uniqueness of solutions to the above

two BSDEs.

In this subsection, we make the following assumption on the model parameters:

Assumption 7.3.2. κ+ ρ1λ
γ
γ−1 ̸= 0.

Remark 7.3.3. Assumption 7.3.2 assures that the process αt given in (7.2.1) main-

tains an affine-form, square-root structure under another probability measure P̃0

which is equivalent to P0 and defined in the proof of Corollary 7.3.7 below.

Proposition 7.3.4. One solution (Y1,t, Z0,t, Z1,t, Z2,t) to BSDE (7.3.2) is given by

Y1,t = exp {f1(t) + g1(t)αt} , (7.3.4)

and

(Z0,t, Z1,t, Z2,t) = (0, ρ1g1(t)
√
αtY1,t, ρ2g1(t)

√
αtY1,t) , (7.3.5)
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where functions f1(t) and g1(t) solve the following ordinary differential equations

(ODEs):

dg1(t)

dt
=

(
1

2(γ − 1)
ρ21 −

1

2
ρ22

)
g21(t) +

(
κ+

γ

γ − 1
λρ1

)
g1(t) +

γ

2(γ − 1)
λ2,

(7.3.6)

df1(t)

dt
= −κθg1(t) +

γ

2(γ − 1)

(r + µp −R− σ2
p)

2

σ2
p

− rγ, (7.3.7)

with boundary conditions f1(T ) = g1(T ) = 0. Moreover, the closed-form solutions
to ODEs (7.3.6) and (7.3.7) are given by

g1(t) =



n
g
+
1
n
g
−
1

(
1 − e

√
∆g1 (T−t)

)
n
g
+
1

− n
g
−
1
e
√

∆g1 (T−t)
, if ∆g1

> 0;

(
1

γ−1ρ
2
1 − ρ22

)
(T − t)n2

g1(
1

γ−1ρ
2
1 − ρ22

)
(T − t)ng1

− 2
, if ∆g1

= 0;

√
−∆g1(

1
γ−1ρ

2
1 − ρ22

) tan

(
arctan

(
κ+ γ

γ−1λρ1√
−∆g1

)
−
√

−∆g1

2
(T − t)

)
+ ng1 , if ∆g1 < 0,

(7.3.8)

and

f1(t) =

∫ T

t

[
κθg1(s)−

γ

2(γ − 1)

(r + µp −R− σ2
p)

2

σ2
p

+ rγ

]
ds, (7.3.9)

where
∆g1 =

(
κ+ λρ1

γ

γ − 1

)2

−
(

1

γ − 1
ρ21 − ρ22

)
γ

γ − 1
λ2, ng1 =

−
(
κ+ γ

γ−1
λρ1
)

1
γ−1

ρ21 − ρ22
,

n
g+1

=
−
(
κ+ γ

γ−1
λρ1
)
+
√

∆g1

1
γ−1

ρ21 − ρ22
, n

g−1
=

−
(
κ+ γ

γ−1
λρ1
)
−
√

∆g1

1
γ−1

ρ21 − ρ22
.

(7.3.10)

Proof. See Appendix 7.A.

The next proposition reveals that function g1(t) is non-negative and bounded

over [0, T ].

Proposition 7.3.5. Function g1(t) is strictly decreasing in t, and 0 ≤ g1(t) ≤ g1(0)

for t ∈ [0, T ].

Proof. See Appendix 7.B.

To facilitate further discussions, we now provide an auxiliary result that follows

from Lemma A1 in Shen and Zeng (2015).
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Lemma 7.3.6. (Bona-fide martingale property). If m1(t) and m2(t) are bounded

functions on [0, T ], then the stochastic exponential processes defined by

exp

{
−1

2

∫ t

0

(m2
1(s) +m2

2(s))αs ds+

∫ t

0

m1(s)
√
αs dW

1
s +

∫ t

0

m2(s)
√
αs dW

2
s

}
is an (F,P0)-martingale.

Corollary 7.3.7. Under Assumption 7.3.2, the stochastic exponential process

exp

{∫ t

0

1

1− γ
ρ1g1(s)

√
αs dW̃

1
s +

∫ t

0

ρ2g1(s)
√
αs dW̃

2
s

−1

2

∫ t

0

(
ρ21

(1− γ)2
+ ρ22

)
g21(s)αs ds

} (7.3.11)

is an (F, P̃0)-martingale, where probability measure P̃0 is defined by

dP̃0

dP0


FT

=exp

{
−
∫ T

0

γ

γ − 1

r + µp −R− σ2
p

σp
dW 0

t −
∫ T

0

γ

γ − 1
λ
√
αt dW

1
t

−1

2

∫ T

0

γ2

(γ − 1)2

[
(r + µp −R− σ2

p)
2

σ2
p

+ λ2αt

]
dt

}
,

and W̃ 1
t and W̃ 2

t are two mutually independent Brownian motions under P̃0 measure.

Proof. See Appendix 7.C.

In the next theorem, we show that the solution to nonlinear BSDE (7.3.2) given

in (7.3.4) and (7.3.5) must be unique.

Theorem 7.3.8. Under Assumption 7.3.2, the solution (Y1,t, Z0,t, Z1,t, Z2,t) given

in (7.3.4) and (7.3.5) is the unique solution to BSDE (7.3.2).

Proof. See Appendix 7.D.

After solving nonlinear BSDE (7.3.2) explicitly, we can now simplify linear BSDE

(7.3.3) as follows:
dG1,t =

[
rG1,t +

r + µp −R− σ2
p

σp
Λ0,t + λ

√
αtΛ1,t − ρ2g2(t)

√
αtΛ2,t − ηLt

]
dt

+ Λ0,t dW
0
t + Λ1,t dW

1
t + Λ2,t dW

2
t ,

G1,T =0.

(7.3.12)
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Remark 7.3.9. Instead of opting for the uniqueness and existence results of linear

BSDEs with stochastic Lipscthiz continuity which entail strong assumptions on the

coefficients within the generator (see Theorem 4 in Bender and Kohlmann (2000) or

Theorem 4.1 in Wang, Ran, and Hong (2006)), we observe that a linear BSDE with

uniform Lipschitz continuity (7.E.2) constructed by the difference of two possible

solutions to BSDE (7.3.12) always admits a zero solution. This result allows us to

conclude that linear BSDE (7.3.12) admits a unique solution and so does BSDE

(7.3.3).

The next proposition presents the explicit expression of the unique solution to

linear BSDE (7.3.12).

Proposition 7.3.10. The unique solution to linear BSDE (7.3.12) is given by

(G1,t,Λ0,t,Λ1,t,Λ2,t) = (b1(t)Lt, b1(t)(σl − σp)Lt, 0, 0) , (7.3.13)

where function b1(t) is given by

b1(t) =


η(T − t), if m = 0;

η
(
em(T−t) − 1

)
m

, if m ̸= 0,
(7.3.14)

and m = µl −R− σlσp −
r+µp−R−σ2

p

σp
σl.

Proof. See Appendix 7.E.

Theorem 7.3.11. Under Assumption 7.3.2, for any initial data (α0, x0, l0) ∈
R+ × R × R+ fixed and given at time zero such that x0 + b1(0)l0 > 0 holds, the

optimal investment strategy and optimal value function of problem (7.2.11) are

respectively given by
πS∗t =

λ
√
αt(X

∗
t +G1,t)

(1− γ)σtX∗
t

+
Z1,t(X

∗
t +G1,t)

(1− γ)Y1,tσtX∗
t

,

πI∗t =
(r + µp −R− σ2

p)

(1− γ)σ2
p

X∗
t +G1,t

X∗
t

+ 1− Λ0,t

σpX∗
t

,

(7.3.15)

and

V1(α0, x0, l0) =
(x0 + b1(0)l0)

γ

γ
exp (f1(0) + g1(0)α0) , (7.3.16)

where X∗
t is the inflation-adjusted wealth process associated with πS∗t and πI∗t ,

and Y1,t, Z1,t, G1,t,Λ0,t are explicitly given by (7.3.4), (7.3.5), and (7.3.13); func-

tions f1(t), g1(t), and b1(t) are given by (7.3.9), (7.3.8), and (7.3.14), respectively.

Moreover, the optimal strategy π∗ =
({
πS∗t

}
t∈[0,T ]

,
{
πI∗t
}
t∈[0,T ]

)
is admissible, i.e.

π∗ ∈ Πp.
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Proof. See Appendix 7.F.

The next two corollaries provide the results for two special cases of our model:

the CEV model (7.2.2) and the 4/2 model (7.2.3).

Corollary 7.3.12. (CEV model). Suppose that µ − γR ≠ 0 holds true. For

any initial data (s0, x0, l0) ∈ R+ × R× R+ fixed and given at time zero such that

x0 + b1(0)l0 > 0 holds, if the stock price St follows the CEV model (7.2.2) in

Example 7.2.2, then the optimal strategy and optimal value function of problem

(7.2.11) are, respectively, given by
πS∗t =

(µ−R)(X∗
t + b1(t)Lt)

(1− γ)σ2S2β
t X∗

t

− 2βg̃1(t)(X
∗
t + b1(t)Lt)

(1− γ)S2β
t X∗

t

,

πI∗t =
r + µp −R− σ2

p

(1− γ)σ2
p

X∗
t + b1(t)Lt

X∗
t

+
(σp − σl)b1(t)Lt

σpX∗
t

+ 1,

and

V1(s0, x0, l0) =
(x0 + b1(0)l0)

γ

γ
exp

(
f̃1(0) + g̃1(0)s

−2β
0

)
,

where functions f̃1(t) and g̃1(t) are given by

f̃1(t) =

∫ T

t

[
(2β + 1)βσ2g̃1(s)−

γ

2(γ − 1)

(r + µp −R− σ2
p)

2

σ2
p

+ rγ

]
ds,

and

g̃1(t) =



n
g̃
+
1
n
g̃
−
1

(
1 − e

√
∆g̃1

(T−t)
)

n
g̃
+
1

− n
g̃
−
1
e

√
∆g̃1

(T−t)
, if ∆g̃1

> 0;

1
γ−1 2β

2σ2(T − t)n2
g̃1

1
γ−1 2β

2σ2(T − t)ng̃1
− 1

, if ∆g̃1
= 0;

√
−∆g̃1

1
γ−1 4β

2σ2
tan

arctan

 2β
(
µ− λσγ

γ−1

)
√

−∆g̃1

−
√

−∆g̃1

2
(T − t)

+ ng̃1
, if ∆g̃1

< 0,

where
∆g̃1 =4β2

[(
µ+

γ(µ−R)

1− γ

)2

− γ

(1− γ)2
(µ−R)2

]
, ng̃1 =

(µ−R)γ − 2βµ(γ − 1)

2βσ2
,

n
g̃+1

=
2β
(
(µ−R) γ

γ−1
− 2βµ

)
+
√

∆g̃1

1
γ−1

4β2σ2
, n

g̃−1
=

2β
(
(µ−R) γ

γ−1
− 2βµ

)
−
√

∆g̃1

1
γ−1

4β2σ2
.

Proof. Substituting the parameters specified in Example 7.2.2 into Theorem 7.3.11

yields the results.

Remark 7.3.13. The specifications µl − µp + σ2
p − σlσp = σl − σp=0 and η = 1 in

Corollary 7.3.12 recover the results of Proposition 1 in Gao (2009).
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Corollary 7.3.14. (The 4/2 model). Suppose that κ+ λσvρ
γ
γ−1 ̸= 0 holds true.

For any initial data (v0, x0, l0) ∈ R+ × R× R+ fixed and given at time zero such

that x0 + b1(0)l0 > 0 holds, if the stock price St follows the 4/2 model (7.2.3) in

Example 7.2.3, then the optimal strategy and optimal value function of problem

(7.2.11) are given by
πS∗t =

λVt(X
∗
t + b1(t)Lt)

(1− γ)(c1Vt + c2)X∗
t

+
σvρĝ1(t)Vt(X

∗
t + b1(t)Lt)

(1− γ)(c1Vt + c2)X∗
t

,

πI∗t =
r + µp −R− σ2

p

(1− γ)σ2
p

X∗
t + b1(t)Lt

X∗
t

+
(σp − σl)b1(t)Lt

σpX∗
t

+ 1,

and

V1(v0, x0, l0) =
(x0 + b1(0)l0)

γ

γ
exp

(
f̂1(0) + ĝ1(0)v0

)
,

where functions f̂1(t) and ĝ1(t) are given by

f̂1(t) =

∫ T

t

[
κθĝ1(s)−

γ

2(γ − 1)

(r + µp −R− σ2
p)

2

σ2
p

+ rγ

]
ds,

and

ĝ1(t) =



n
ĝ
+
1
n
ĝ
−
1

(
1 − e

√
∆ĝ1

(T−t)
)

n
ĝ
+
1

− n
ĝ
−
1
e

√
∆ĝ1

(T−t)
, if ∆ĝ1

> 0;

σ2
v

(
γ

γ−1ρ
2 − 1

)
(T − t)n2

ĝ1

σ2
v

(
γ

γ−1ρ
2 − 1

)
(T − t)nĝ1

− 2
, if ∆ĝ1

= 0;

√
−∆ĝ1

σ2
v

(
γ

γ−1ρ
2 − 1

) tan

(
arctan

(
κ+ γλσvρ

γ−1√
−∆ĝ1

)
−
√

−∆ĝ1

2
(T − t)

)
+ nĝ1

, if ∆ĝ1
< 0,

where

∆ĝ1 =

(
κ+ λσvρ

γ

γ − 1

)2

− σ2
v

(
γ

γ − 1
ρ2 − 1

)
γ

γ − 1
λ2, nĝ1 =

−
(
κ+ λσvρ

γ
γ−1

)
σ2
v

(
γ

γ−1
ρ2 − 1

) ,

n
ĝ+1

=
−
(
κ+ λσvρ

γ
γ−1

)
+
√

∆ĝ1

σ2
v

(
γ

γ−1
ρ2 − 1

) , n
ĝ−1

=
−
(
κ+ λσvρ

γ
γ−1

)
−
√

∆ĝ1

σ2
v

(
γ

γ−1
ρ2 − 1

) .

Proof. Substituting the specified parameters of the 4/2 model (7.2.3) in Example

7.2.3 into Theorem 7.3.11 yields the results.

Remark 7.3.15. Note that if we further specify either (c1, c2) = (1, 0) or (c1, c2) =

(0, 1) in the 4/2 model (7.2.3), then Corollary 7.3.14 provides the explicit expressions

for the optimal strategy and optimal value function of problem (7.2.11) under the

Heston model and the 3/2 model, respectively.
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Remark 7.3.16. By imposing µl − µp + σ2
p − σlσp = σl − σp=0 and η = 1, then

Lt = c ∈ R over [0, T ]. In this case, Corollary 7.3.14 provides the results of the

DC pension management problems under the 4/2 model with inflation risk and

constant income and therefore, generalizes the results presented in Ma, Zhao, and

Rong (2020) (for more details, see Remark 3.1 in Ma, Zhao, and Rong (2020)).

Remark 7.3.17. By setting η = 0 in Corollary 7.3.14, the pension investment problem

is reduced to a pure investment problem under the 4/2 model, and it can be verified

that the optimal allocation in the stock πS∗t provided in Corollary 7.3.14 is then

identical to the result of Proposition 3.1 in Cheng and Escobar (2021a) in this

special case. If we further consider the Heston model by specifying (c1, c2) = (1, 0),

then the optimal strategy πS∗t corresponds to the result in Kraft (2005) (refer to

Eq. (28) in Kraft (2005)).

7.3.2 Optimal investment strategies for the logarithmic utility

function

In this subsection, we consider the logarithmic utility maximization problem (7.2.12)

by applying a BSDE approach. For this, we introduce the following two (F,P0)-

semi-martingales, Y2,t and G2,t, to find the BSDEs associated with problem (7.2.12):

dY2,t = Ψ2,t dt+ P0,t dW
0
t + P1,t dW

1
t + P2,t dW

2
t ,

and

dG2,t = H2,t dt+ Γ0,t dW
0
t + Γ1,t dW

1
t + Γ2,t dW

2
t ,

where Ψ2,t, P0,t, P1,t, P2,t, H2,t,Γ0,t,Γ1,t,Γ2,t are some F-progressively measurable

processes which will be determined in the sequel. For any admissible strategy

π ∈ Πl, applying Itô’s formula to log(Xπ
t +G2,t) + Y2,t yields

d (log(Xπ
t +G2,t) + Y2,t)

=− 1

2(Xπ
t +G2,t)2

[(
Xπ

t

(
πI
t − 1

)
σp + Γ0,t

)
−

(Xπ
t +G2,t)(r + µp −R− σ2

p)

σp

]2
dt

− 1

2(Xπ
t +G2,t)2

[(
Xπ

t π
S
t σt + Γ1,t

)
− (Xπ

t +G2,t)λ
√
αt

]2
dt

− 1

Xπ
t +G2,t

[
r + µp −R− σ2

p

σp
Γ0,t + λ

√
αtΓ1,t + rG2,t −H2,t − ηLt

]
dt

+

[
Ψ2,t + r +

(r + µp −R− σ2
p)

2

2σ2
p

+
λ2αt

2

]
dt

+

[
1

Xπ
t +G2,t

(
Xπ

t

(
πI
t − 1

)
σp + Γ0,t

)
+ P0,t

]
dW 0

t +

[
1

Xπ
t +G2,t

(
Xπ

t π
S
t σt + Γ1,t

)
+ P1,t

]
dW 1

t +

(
1

Xπ
t +G2,t

Γ2,t + P2,t

)
dW 2

t .

(7.3.17)
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Therefore, inspired by the right-hand side of (7.3.17), we shall consider the linear

BSDE of (Y2,t, P0,t, P1,t, P2,t):
dY2,t =−

(
r +

1

2
λ2αt +

1

2

(r + µp −R− σ2
p)

2

σ2
p

)
dt + P0,t dW

0
t

+ P1,t dW
1
t + P2,t dW

2
t ,

Y2,T =0,

(7.3.18)

and the linear BSDE of (G2,t,Γ0,t,Γ1,t,Γ2,t):
dG2,t =

(
rG2,t +

r + µp −R− σ2
p

σp
Γ0,t + λ

√
αtΓ1,t − ηLt

)
dt+ Γ0,t dW

0
t

+ Γ1,t dW
1
t + Γ2,t dW

2
t ,

G2,T =0.

(7.3.19)

The following Proposition 7.3.18 and 7.3.19 provide explicit solutions to linear

BSDEs (7.3.18) and (7.3.19), respectively.

Proposition 7.3.18. The unique solution (Y2,t, P0,t, P1,t, P2,t) to linear BSDE

(7.3.18) is given by

(Y2,t, P0,t, P1,t, P2,t) = (f2(t) + g2(t)αt, 0, ρ1g2(t)
√
αt, ρ2g2(t)

√
αt) , (7.3.20)

where the closed-form expressions of functions g2(t) and f2(t) are given by

g2(t) =
−λ2

(
eκ(t−T ) − 1

)
2κ

, (7.3.21)

and

f2(t) =

(
r +

1

2

(r + µp −R− σ2
p)

2

σ2
p

+
1

2
λ2θ

)
(T−t)− λ2θ

2κ

(
1− eκ(t−T )

)
. (7.3.22)

Proposition 7.3.19. The unique solution (G2,t,Γ0,t,Γ1,t,Γ2,t) to linear BSDE

(7.3.19) is given by

(G2,t,Γ0,t,Γ1,t,Γ2,t) = (b2(t)Lt, b2(t)(σl − σp)Lt, 0, 0) , (7.3.23)

where the closed-form expression of function b2(t) is given by

b2(t) =


η(T − t), if m = 0;

η
(
em(T−t) − 1

)
m

, if m ̸= 0,
(7.3.24)

and m = µl −R− σlσp −
r+µp−R−σ2

p

σp
σl.
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The proofs of Proposition 7.3.18 and 7.3.19 are similar to that of Proposition

7.3.10, and so we omit it here.

Based on the explicit solutions to BSDE (7.3.18) and (7.3.19), we can derive the

optimal strategy and the optimal value function of problem (7.2.12).

Theorem 7.3.20. For any initial data (α0, x0, l0) ∈ R+ × R× R+ fixed and given

at time zero such that x0 + b2(0)l0 > 0 holds, the optimal investment strategy and

optimal value function of problem (7.2.12) are respectively given by
πS∗t =

(X∗
t +G2,t)λ

√
αt

X∗
t σt

,

πI∗t =
1

X∗
t σp

(
(X∗

t +G2,t)(r + µp −R− σ2
p)

σp
− Γ0,t

)
+ 1,

(7.3.25)

and

V2(α0, x0, l0) = log (x0 + b2(0)l0) + f2(0) + g2(0)α0, (7.3.26)

where X∗
t is the inflation-adjusted wealth process associated with πS∗t and πI∗t , and

G2,t and Γ0,t are explicitly given by (7.3.23); functions f2(t), g2(t), and b2(t) are

respectively given by (7.3.22), (7.3.21), and (7.3.24). Moreover, the optimal strategy

π∗ =
({
πS∗t

}
t∈[0,T ]

,
{
πI∗t
}
t∈[0,T ]

)
is admissible, i.e. π∗ ∈ Πl.

Proof. See Appendix 7.G.

The following two corollaries provide the results for the CEV model and 4/2

model, respectively.

Corollary 7.3.21. (CEV model). For any initial data (s0, x0, l0) ∈ R+ × R× R+

fixed and given at time zero such that x0 + b2(0)l0 > 0 holds, if the risky asset St
follows the CEV model (7.2.2) in Example 7.2.2, then the optimal strategy and

optimal value function of problem (7.2.12) are respectively given by


πS∗t =

(X∗
t + b2(t)Lt)(µ−R)

X∗
t σ

2S2β
t

,

πI∗t =
1

X∗
t σp

(
(X∗

t + b2(t)Lt)(r + µp −R− σ2
p)

σp
− (σl − σp)b2(t)Lt

)
+ 1,

and

V2(s0, x0, l0) = log (x0 + b2(0)l0) + f̃2(0) + g̃2(0)s
−2β
0 ,

where functions f̃2(t) and g̃2(t) are given by
f̃2(t) =

(
r +

(r + µp − R− σ2
p)

2σ2
p

+
(β + 1

2 )(µ− R)2

2µ

)
−

(µ− R)2(β + 1
2 )
(
1 − e2βµ(t−T )

)
4βµ2

,

g̃2(t) =
(µ− R)2

(
1 − e2βµ(t−T )

)
4βµσ2

.
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Proof. Substituting the specified parameters of the CEV model (7.2.2) in Example

7.2.2 into Theorem 7.3.20 gives the results.

Remark 7.3.22. By specifying µl − µp + σ2
p − σlσp = σl − σp = 0 and η = 1, then

Lt = c ∈ R over [0, T ], and the optimal strategy πS∗t derived in Corollary 7.3.21 is

identical to the results in Xiao, Hong, and Qin (2007).

Corollary 7.3.23. (The 4/2 model). For any initial data (v0, x0, l0) ∈ R+×R×R+

fixed and given at time zero such that x0 + b2(0)l0 > 0 holds, if the risky asset

St follows the 4/2 model (7.2.3) in Example 7.2.3, then the optimal investment

strategy and optimal value function of problem (7.2.12) are respectively given by
πS∗t =

(X∗
t + b2(t)Lt)λVt
X∗
t (c1Vt + c2)

,

πI∗t =
1

X∗
t σp

(
(X∗

t + b2(t)Lt)(r + µp −R− σ2
p)

σp
− (σl − σp)b2(t)Lt

)
+ 1,

and

V2(v0, x0, l0) = log(x0 + b2(0)l0) + f̂2(0) + ĝ2(0)v0,

where functions f̂2(t) and ĝ2(t) are given by
f̂2(t) =

(
r +

(r + µp −R− σ2
p)

2

2σ2
p

+
λ2θ

2

)
(T − t)− λ2θ

2κ

(
1− eκ(t−T )

)
,

ĝ2(t) =
−λ2

(
eκ(t−T ) − 1

)
2κ

.

Proof. Plugging the specified parameters of the 4/2 model (7.2.3) in Example 7.2.3

into Theorem 7.3.20 yields the results.

Remark 7.3.24. If we specify (c1, c2) = (1, 0) in Corollary 7.3.23, we obtain the

results under Heston’s model. Instead, setting (c1, c2) = (0, 1) in Corollary 7.3.23

provides the results under the 3/2 model.

7.3.3 Optimal investment strategies for the exponential utility

function

In this subsection, we investigate the exponential utility maximization problem

(7.2.13). To facilitate further discussions in this subsection, we denote by X̃π
t :=

e−rtXπ
t the discounted inflation-adjusted wealth process which is discounted by the

real interest rate r. Using Itô’s formula leads to

dX̃π
t =

[
X̃π
t π

S
t (µt −R) + X̃π

t

(
πIt − 1

) (
r + µp −R− σ2

p

)
+ ηL̃t

]
dt

+ X̃π
t

(
πIt − 1

)
σp dW

0
t + X̃π

t π
S
t σt dW

1
t , X̃

π
0 = Xπ

0 = x0,
(7.3.27)
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where L̃t := e−rtLt represents the discounted value of the inflation-adjusted income,

and it has the following dynamics:

dL̃t =L̃t
[
(µl − µp + σ2

p − σlσp − r) dt+ (σl − σp) dW
0
t

]
, L̃0 = L0 = l0.

(7.3.28)

Thus, the exponential utility maximization problem (7.2.13) can be reformulated as

sup
π∈Πe

E0

[
−e−q̃X̃

π
T

]
, (7.3.29)

where q̃ = qerT ∈ R+. To obtain the BSDEs associated with problem (7.3.29), we

introduce an (F,P0)-semi-martingale Y3,t with the following decomposition:

dY3,t = Ψ3,t dt+M0,t dW
0
t +M1,t dW

1
t +M2,t dW

2
t ,

where Ψ3,t,M0,t,M1,t,M2,t are some F-progressively measurable processes which

shall be determined later. For any admissible strategy π ∈ Πe, by applying Itô’s

formula to −e−q̃(X̃π
t −Y3,t) and using the method of completion of squares, we have

d
(
−e−q̃(X̃

π
t −Y3,t)

)
=− 1

2
q̃2e−q̃(X̃

π
t −Y3,t)

(
X̃π
t

(
πIt − 1

)
σp −M0,t −

r + µp −R− σ2
p

q̃σp

)2

dt

− 1

2
q̃2e−q̃(X̃

π
t −Y3,t)

(
X̃π
t π

S
t σt −M1,t −

λ
√
αt
q̃

)2

dt

+ q̃e−q̃(X̃
π
t −Y3,t)

[
ηL̃t +

λ2αt
2q̃

+
(r + µp −R− σ2

p)
2

2q̃σ2
p

+
r + µr −R− σ2

p

σp
M0,t

+ λ
√
αtM1,t −

q̃M2
2,t

2
−Ψ3,t

]
dt+ q̃e−q̃(X̃

π
t −Y3,t)

(
X̃π
t

(
πIt − 1

)
σp −M0,t

)
dW 0

t

+ q̃e−q̃(X̃
π
t −Y3,t)

(
X̃π
t π

S
t σt −M1,t

)
dW 1

t − q̃e−q̃(X̃
π
t −Y3,t)M2,t dW

2
t .

(7.3.30)

The right-hand side of (7.3.30) induces the following BSDE of (Y3,t,M0,t,M1,t,M2,t)

we shall investigate in the sequel:

dY3,t =

[
λ2αt
2q̃

+
(r + µp −R− σ2

p)
2

2q̃σ2
p

+
r + µp −R− σ2

p

σp
M0,t + λ

√
αtM1,t

−
q̃M2

2,t

2
+ ηL̃t

]
dt+M0,t dW

0
t +M1,t dW

1
t +M2,t dW

2
t ,

Y3,T =0.

(7.3.31)

Throughout the rest of this subsection, we impose the following assumption:

Assumption 7.3.25. κ+ λρ1 ̸= 0.
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Remark 7.3.26. Similar to the role of Assumption 7.3.2 above, Assumption 7.3.25

is essential to assure that BSDE (7.3.31) admits a unique solution.

Proposition 7.3.27. One solution (Y3,t,M0,t,M1,t,M2,t) to BSDE (7.3.31) is

given by

Y3,t = f3(t) + g3(t)αt + b3(t)L̃t, (7.3.32)

and

(M0,t,M1,t,M2,t) =

(
(σl − σp)b3(t)L̃t, ρ1g3(t)

√
αt, ρ2g3(t)

√
αt

)
, (7.3.33)

where the closed-form expressions of functions f3(t), g3(t), and b3(t) are respectively

given by

g3(t) =



ng+3
ng−3

(
1− e

√
∆g3

(T−t)
)

ng+3
− ng−3

e
√

∆g3 (T−t)
, if ρ2 ̸= 0 and ∆g3 > 0;

−q̃ρ22(T − t)n2g3
−q̃ρ22(T − t)ng3 − 2

, if ρ2 ̸= 0 and ∆g3 = 0;

λ2
(
e(κ+λρ1)(t−T ) − 1

)
2q̃(κ+ λρ1)

, if ρ2 = 0,

(7.3.34)

b3(t) =


η(t− T ), if m = 0;

η
(
1− em(T−t))

m
, if m ̸= 0,

(7.3.35)

and

f3(t) =

∫ T

t

(
κθg3(s)−

(r + µp −R− σ2
p)

2

2q̃σ2
p

)
ds, (7.3.36)

where m = µl −R− σlσp −
r+µp−R−σ2

p

σp
σl and

∆g3 = (κ+ ρ1λ)
2 + ρ22λ

2, ng3 =
κ+ λρ1
q̃ρ22

,

ng−3
=

−(κ+ λρ1)−
√

∆g3

−q̃ρ22
, ng+3

=
−(κ+ λρ1) +

√
∆g3

−q̃ρ22
.

Proof. See Appendix 7.H.

Proposition 7.3.28. Function g3(t) is bounded over [0, T ].

Proof. See Appendix 7.I.

Theorem 7.3.29. Under Assumption 7.3.25, the solution (Y3,t,M0,t,M1,t,M2,t)

given in (7.3.32) and (7.3.33) is the unique solution to BSDE (7.3.31).
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The proof of Theorem 7.3.29 is almost identical to that of Theorem 7.3.8 above,

so we omit it here. The following theorem relates the optimal strategy and optimal

value function to the explicit solution to BSDE (7.3.31).

Theorem 7.3.30. Under Assumption 7.3.25, for any initial data (α0, x0, l0) ∈
R+ × R × R+ fixed and given at time zero, the optimal investment strategy and

optimal value function of problem (7.2.13) are respectively given by
πS∗t =

1

X∗
t σt

(
ertM1,t + e−r(T−t)λ

q

√
αt

)
,

πI∗t =
1

X∗
t σp

(
ertM0,t + e−r(T−t) r + µp −R− σ2

p

qσp

)
+ 1,

(7.3.37)

and

V3(α0, x0, l0) = − exp
{
−qerT (x0 − f3(0)− g3(0)α0 − b3(0)l0)

}
, (7.3.38)

where X∗
t is the inflation-adjusted wealth process associated with πS∗t and πI∗t , and

M0,t and M1,t are explicitly given by (7.3.33); functions f3(t), g3(t), and b3(t) are

given by (7.3.36), (7.3.34), and (7.3.35), respectively. Moreover, the optimal strategy

π∗ =
({
πS∗t

}
t∈[0,T ]

,
{
πI∗t
}
t∈[0,T ]

)
is admissible, i.e. π∗ ∈ Πe.

Proof. See Appendix 7.J.

Remark 7.3.31. It should be noted that different from the power utility maximization

problem (7.2.11) and logarithmic utility maximization problem (7.2.12), Theorem

7.3.30 shows that neither the inflation-adjusted wealth X∗
t nor the stochastic income

Lt affects the optimal market value of inflation-adjusted wealth invested in the

stock, i.e. X∗
t π

S∗
t , which can be possibly explained by the constant absolute risk

aversion q under the exponential utility function.

Corollary 7.3.32. (CEV model). For any initial data (s0, x0, l0) ∈ R+ × R× R+

fixed and given at time zero, if the risky asset St follows the CEV model (7.2.2)

in Example 7.2.2, then the optimal strategy and optimal value function of problem

(7.2.13) are given by
πS∗t =

µ−R

X∗
t qσ

2S2β
t

er(t−T )

(
1 +

(
1− e2βR(t−T )

) µ−R

2R

)
,

πI∗t =
1

X∗
t σp

(
(σl − σp)b3(t)Lt + e−r(T−t) r + µp −R− σ2

p

σpq

)
+ 1,

and

V3(s0, x0, l0) = − exp
{
−qerT

(
x0 − f̃3(0)− g̃3(0)s

−2β
0 − b3(0)l0

)}
,
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where functions f̃3(t) and g̃3(t) are given by


f̃3(t) =

∫ T

t

(
β(2β + 1)σ2 −

e−rT (r + µp −R− σ2
p)

2

2qσ2
p

)
ds,

g̃3(t) =
(µ−R)2

(
e2βR(t−T ) − 1

)
4βRqσ2erT

.

Proof. Substituting the specified parameters of the CEV model (7.2.2) in Example

7.2.2 into Theorem 7.3.30 gives the results. Moreover, it is straightforward to see

that Assumption 7.3.25 always holds for the CEV model due to 2βR ̸= 0.

Remark 7.3.33. If we further impose that r = R in Corollary 7.3.32, the optimal

allocation in the stock πS∗t recovers the results presented in Sun, Yong, and Gao

(2020) and Proposition 2 in Gao (2009) in which stochastic income and inflation

risks are not considered. In other words, Corollary 7.3.32 generalizes the existing

work of Gao (2009) and Sun, Yong, and Gao (2020).

Corollary 7.3.34. (The 4/2 model). Suppose that κ+ λσvρ ̸= 0 holds true. For

any initial data (v0, x0, l0) ∈ R+ ×R×R+ fixed and given at time zero, if the risky

asset St follows the 4/2 model (7.2.3) in Example 7.2.3, then the optimal strategy

and optimal value function of problem (7.2.13) are respectively given by
πS∗t =

Vt
X∗
t (c1Vt + c2)

(
σvρĝ3(t)e

rt + e−r(T−t)λ

q

)
,

πI∗t =
1

X∗
t σp

(
(σl − σp)b3(t)Lt + e−r(T−t) r + µp −R− σ2

p

σpq

)
+ 1,

and

V3(v0, x0, l0) = − exp
{
−qerT

(
x0 − f̂3(0)− ĝ3(0)v0 − b3(0)l0

)}
,

where functions f̂3(t) and ĝ3(t) are given by
f̂3(t) =

∫ T

t

(
κθĝ3(s)−

(r + µp −R− σ2
p)

2

2q̃σ2
p

)
ds,

ĝ3(t) =
n
ĝ+3
n
ĝ−3

(
1− e

√
∆ĝ3

(T−t)
)

n
ĝ+3

− n
ĝ−3
e
√

∆ĝ3
(T−t)

,

where

∆ĝ3
= (κ+ λσvρ)

2
+ (1 − ρ

2
)σ

2
vλ

2
, n

ĝ
−
3

=
−(κ+ λσvρ) −

√
∆ĝ3

−q̃σ2
v(1 − ρ2)

, n
ĝ
+
3

=
−(κ+ λσvρ) +

√
∆ĝ3

−q̃σ2
v(1 − ρ2)

.

Proof. Substituting the specified parameters of the 4/2 model (7.2.3) in Example

7.2.3 into Theorem 7.3.30 yields the results.
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Remark 7.3.35. The specifications (c1, c2) = (1, 0) and (c1, c2) = (0, 1) in Corollary

7.3.34 give the results under the Heston model and the 3/2 model, respectively.

Moreover, to the best of our knowledge, the results provided in Corollary 7.3.34

are not reported in the existing literature. In this sense, this paper extends the

results of Cheng and Escobar (2021a) and Zhang (2021a) to the case with stochastic

income and inflation risks under the exponential utility framework.

7.4 Numerical analysis

This section presents some numerical examples to illustrate the effect of some model

parameters on the behavior of the optimal investment strategy. We pay attention to

the sensitivity of the optimal investment strategy to some parameters within the 4/2

model (7.2.3) in the following numerical illustrations because this model includes

two parsimonious models, the Heston model and the 3/2 model, as particular cases,

and it has shown practical significance in the last few years as discussed in the

introduction. Additionally, we concentrate on the power utility framework because

the numerical experiments of the logarithmic and exponential functions can be

conducted similarly. Unless otherwise stated, the hypothetical values of model

parameters are given as follows: R = 0.05, r = 0.02, µl = 0.02, σl = 0.3, µp =

0.01, σp = 0.4, η = 0.8, T = 1, γ = 0.4, x0 = 1, l0 = 0.5, λ = 2.9428, κ =

7.3479, θ = 0.0328, σv = 0.6612, ρ = −0.7689, c1 = 0.9051, c2 = 0.023 and

v0 = 0.04. Most of the parameters are taken from the recent paper of Cheng and

Escobar (2021a). In the following numerical examples, we vary the value of one

parameter with others fixed at each time. The range allowed for the parameters is the

possibility that the conditions in Corollary 7.3.14 are satisfied, i.e., κ+λσvρ
γ
γ−1 ≠ 0

and x0 + b1(0)l0 > 0.

Figure 7.1 contributes to the evolution of the optimal investment strategy with

respect to parameters κ, σv and ρ. In Figure 7.1(a), we vary κ from 1.3479 to 7.3479.

It shows that πS∗0 is positively correlated with κ, while πI∗0 remains unchanged.

Indeed, since κ depicts the mean-reversion speed of the state variable Vt towards its

long-run mean θ in the 4/2 model (7.2.3), the state variable Vt moves faster towards

θ = 0.0328 < 0.04 = v0 as κ increases in our case. Furthermore, we notice from the

model parameter setting above that by specifying (c1, c2) = (0.9051, 0.023) ≈ (1, 0),

the 4/2 model (7.2.3) resembles the 3/2 model less than the embedded Heston

model of which Vt stands for the instantaneous variance. In other words, when

κ becomes larger, the member faces less volatility risk. Therefore, the member is

willing to adopt a more aggressive strategy in the stock as κ increases from 1.3479

to 7.3479. In Figure 7.1(b), we find that the πS∗0 decreases as σv increases. Namely,

as the volatility of the state variable Vt increases, the investor has to undertake

more volatility risk. Indeed, the explanation is similar to that of parameter κ above

in the sense that the 4/2 model in our case has a resemblance to the Heston model
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such that state variable Vt plays the role as the instantaneous variance of the stock

price. Thus, as the volatility of volatility increases, the member faces more volatility

risk and is less willing to invest in the stock. In Figure 7.1(c), we vary ρ from

0.9 to −0.9 and find that πS∗0 moves downwards as ρ decreases, while πI∗0 remains

unchanged. This is consistent with intuition because when ρ varies from 0.9 to

0, the stock price and its volatility become less positively related, while when ρ

changes from 0 to −0.9, the stock price and its volatility become more negatively

correlated. In such a case, the offset between the risks caused by fluctuations of

the stock price and its volatility becomes more. Accordingly, the member can

hedge against the same amount of volatility risk with less investment in the stock.

(a) The effect of κ (b) The effect of σv (c) The effect of ρ

Figure 7.1: The effects of parameters κ, σv, and ρ on the optimal investment strategy

(a) The effects of η (b) The effect of γ

Figure 7.2: The effects of parameters η and γ on the optimal investment strategy

The relationship between optimal strategy and parameters η and γ is presented in

Figure 7.2(a) and 7.2(b), respectively. It can be seen that the optimal allocation

in the stock πS∗0 increases with contribution rate η and risk-aversion γ whereas

the optimal allocation in the inflation-indexed bond πI∗0 decreases with these two

parameters. As η or γ increases, the member becomes less risk-averse. Therefore,
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myopic allocation increases for the asset with a positive market price of risk, and

it decreases if the asset admits a negative market price of risk. In the 4/2 model

(7.2.3), the market price of volatility risk is positive, i.e., λ
√
Vt > 0 by setting λ > 0,

while the market price of inflation risk is negative, i.e., (r + µp −R− σ2
p)/σp < 0,

given the values of model parameters above, we can therefore see from Figure 7.2

that πS∗0 and πI∗0 move in opposite directions as η and γ change.

7.5 Conclusion

In this paper, we investigate optimal investment problems for a DC pension member

with volatility and inflation risks taken into account simultaneously. We focus

on an affine-form, Markovian, square-root process for describing the market price

of volatility risk, whereas the return rate and the volatility of stock price are

not specified and possibly unbounded, non-Markovian processes. This modeling

framework embraces the Black-Scholes model, CEV model, Heston model, 3/2

model, 4/2 model, and some non-Markovian models, as exceptional cases. Moreover,

the member faces the risk of a stochastic income stream.

Due to the failure of Bellman’s optimality principle in this context, we introduce

a BSDE approach. To find the BSDEs, we consider the canonical decomposition of

semi-martingales. By exploring the uniqueness and existence results of the induced

BSDEs and solving the BSDEs explicitly, analytical expressions for the optimal

strategies, optimal wealth processes, and optimal value functions are derived for

the power, logarithmic, and exponential utility functions, respectively. Particularly,

explicit solutions to some special cases of our portfolio model are provided: the

CEV, Heston, 3/2, 4/2 models. Finally, we present some numerical examples to

analyze the effects of model parameters on the behavior of the optimal strategies

under the 4/2 model. To the best of our knowledge, there is no existing literature

on the optimal DC pension investment problems that incorporate stochastic income,

stochastic inflation, and a general class of potentially non-Markovian, stochastic

volatility models simultaneously.

Built on the current work, various directions might be followed in future research

on DC pension investment problems. For example, (1) this paper assumes that the

income risk faced by the member can be completely hedged. One may consider a

more general model for describing the stochastic income process. (2) In addition to

inflation, income, and volatility risks, the member might face model misspecification

(Andersen, Hansen, and Sargent (2003)). (3) It may also be of interest to extend

the framework of this paper to the case with multiple risky assets.

211



Acknowledgement(s)

The authors are grateful to Prof. Jesper Lund Pedersen, two anonymous reviewers,

and the editors for their insightful comments and suggestions, which are very helpful

for revising and improving our manuscript.

7.A Proof of Proposition 7.3.4

Proof. We conjecture that the first component of one solution to nonlinear BSDE

(7.3.2), Y1,t, admits an exponential form:

Y1,t = exp {f1(t) + g1(t)αt} ,

where f1(t) and g1(t) are two undetermined differentiable functions with boundary

conditions f1(T ) = g1(T ) = 0. Using Itô’s formula to Y1,t yields

dY1,t =Y1,t

[
df1(t)

dt
+
dg1(t)

dt
αt + κ(θ − αt)g1(t) +

1

2

(
ρ21 + ρ22

)
g21(t)αt

]
dt

+ ρ1g1(t)
√
αtY1,t dW

1
t + ρ2g1(t)

√
αtY1,t dW

2
t .

(7.A.1)

Let Z0,t = 0, Z1,t = ρ1g1(t)
√
αtY1,t, and Z2,t = ρ2g1(t)

√
αtY1,t, then the generator

of BSDE (7.3.2) can be reformulated as follows:

Y1,t

[(
γλρ1g1(t)

γ − 1
+
γg21(t)ρ

2
1

2(γ − 1)
+

γλ2

2(γ − 1)

)
αt − rγ +

γ

2(γ − 1)

(r + µp −R− σ2
p)

2

σ2
p

]
.

(7.A.2)

It then follows from a direct comparison between (7.A.2) and the drift of (7.A.1)

that functions f1(t) and g1(t) are governed by ODEs (7.3.6) and (7.3.7), respectively.

Moreover, denote by ∆g1 =
(
κ+ γ

γ−1λρ1

)2
−
(

1
γ−1ρ

2
1 − ρ22

)
γ
γ−1λ

2. The Riccati

equation governing g1(t) can be reformulated as follows:

dg1(t)

dt
=



(
1

2(γ − 1)
ρ21 −

1

2
ρ22

)(
g1(t)− n

g−1

)(
g1(t)− n

g+1

)
, if ∆g1 > 0;(

1

2(γ − 1)
ρ21 −

1

2
ρ22

)
(g1(t)− ng1)

2 , if ∆g1 = 0;

(
1

2(γ − 1)
ρ21 −

1

2
ρ22

)(g1(t)− ng1)
2 +

−∆g1(
1

γ−1
ρ21 − ρ22

)2
 , if ∆g1 < 0,

(7.A.3)

where ng1 , ng−1
and ng+1

are given by (7.3.10). By applying the separation variable

method to the ODE (7.A.3) and combining the boundary condition that g1(T ) = 0,

we have the closed-form expressions of g1(t) given in (7.3.8). Plugging g1(t) back

into the ODE (7.3.7) yields the closed-form expression of f1(t) given by (7.3.9).
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7.B Proof of Proposition 7.3.5

Proof. Differentiating g1(t) given in (7.3.8) with respect to t, we obtain

dg1(t)

dt
=



2γλ2∆g1e
√

∆g1
(T−t)

(γ − 1)
(

1
γ−1ρ

2
1 − ρ22

)2 (
ng+1

− ng−1
e
√

∆g1
(T−t)

)2 , if ∆g1 > 0;

2n2g1

(
1

γ−1ρ
2
1 − ρ22

)
[(

1
γ−1ρ

2
1 − ρ22

)
(T − t)ng1 − 2

]2 , if ∆g1 = 0;

−∆g1

2
(

1
γ−1ρ

2
1 − ρ22

) sec

(
tan

(
κ+ ρ1λ

γ
γ−1√

−∆g1

)
−
√
−∆g1

2

)
, if ∆g1 < 0.

This result reveals that dg1(t)/dt < 0 holds for γ ∈ (0, 1). Therefore, we can deduce

that 0 ≤ g1(t) ≤ g1(0) for t ∈ [0, T ].

7.C Proof of Corollary 7.3.7

Proof. In the first place, it follows from Lemma 7.3.6 that

M1,t := exp

{
−
∫ t

0

γ

γ − 1
λ
√
αs dW

1
s − 1

2

∫ t

0

γ2

(γ − 1)2
λ2αs ds

}
(7.C.1)

is an (F,P0)-martingale. In addition, we know that

M2,t := exp

{
−
∫ t

0

γ

γ − 1

r + µp −R− σ2
p

σp
dW 0

s − 1

2

∫ t

0

γ2

(γ − 1)2
(r + µp −R− σ2

p)
2

σ2
p

ds

}
(7.C.2)

is also an (F,P0)-martingale since Novikov’s condition holds. Due to the path-wise

continuity of both (7.C.1) and (7.C.2) and the independence between Brownian

motions W 0
t and W 1

t , it follows from Theorem 2.4 in Cherny (2006) that the

stochastic exponential process Mt := M1,tM2,t is an (F,P0)-martingale as well,

which in turn means that the probability measure P̃0 defined by dP̃0

dP0
|FT

=MT is

equivalent to P0 on FT . By Girsanov’s theorem, then we have

dW̃ 0
t =

γ

γ − 1

r + µp −R− σ2
p

σp
dt+ dW 0

t , dW̃
1
t =

γ

γ − 1
λ
√
αt dt+ dW 1

t , dW̃
2
t = dW 2

t ,

where W̃ 0
t , W̃

1
t and W̃ 2

t are mutually independent Brownian motions under P̃0

measure. Moreover, we find that the dynamics of αt under P̃0 measure reserves the

affine-form, square-root structure

dαt =

(
κ+ ρ1λ

γ

γ − 1

)(
κθ

κ+ ρ1λ
γ
γ−1

− αt

)
dt+

√
αt

(
ρ1 dW̃

1
t + ρ2 dW̃

2
t

)
,

under Assumption 7.3.2. Due to the boundedness of function g1(t) as shown in

Proposition 7.3.5 above, it therefore follows from Lemma 7.3.6 that the stochastic

exponential process given by (7.3.11) is an (F, P̃0)-martingale. This completes the

proof.

213



7.D Proof of Theorem 7.3.8

Proof. In view of the proof of Corollary 7.3.7, we can reformulate the nonlinear

BSDE of (Y1,t, Z0,t, Z1,t, Z2,t) under P̃0 measure as follows:

dY1,t =

[(
γ

2(γ − 1)

(r + µp −R− σ2
p)

2

σ2
p

+
γ

2(γ − 1)
λ2αt − rγ

)
Y1,t +

γ

2(γ − 1)

Z2
0,t

Y1,t

+
γ

2(γ − 1)

Z2
1,t

Y1,t

]
dt+ Z0,t dW̃

0
t + Z1,t dW̃

1
t + Z2,t dW̃

2
t ,

Y1,T =1,

Y1,t >0, for t ∈ [0, T ).

Suppose that there exists another solution (Ỹ1,t, Z̃0,t, Z̃1,t, Z̃2,t) to nonlinear BSDE

(7.3.2), which is different from the one obtained in Proposition 7.3.4 above. Then

by defining the following difference process:

(∆ log(Y1,t),∆Z0,t,∆Z1,t,∆Z2,t) :=

(
log(Y1,t)− log(Ỹ1,t),

Z0,t

Y1,t
− Z̃0,t

Ỹ1,t

,

Z1,t

Y1,t
− Z̃1,t

Ỹ1,t

,
Z2,t

Y1,t
− Z̃2,t

Ỹ1,t

)
and applying Itô’s formula to ∆ log(Y1), we find (∆ log(Y1,t),∆Z0,t,∆Z1,t,∆Z2,t)

solves the following BSDE under P̃0 measure:
d∆log(Y1,t) =

1

2

[
1

γ − 1

(
Z2

0,t

Y 2
1,t

−
Z̃2

0,t

Ỹ 2
1,t

)
+

1

γ − 1

(
Z2

1,t

Y 2
1,t

−
Z̃2

1,t

Ỹ 2
1,t

)
−

(
Z2

2,t

Y 2
1,t

−
Z̃2

2,t

Ỹ 2
1,t

)]
dt

+∆Z0,t dW̃
0
t +∆Z1,t dW̃

1
t +∆Z2,t dW̃

2
t ,

∆log(Y1,T ) =0.

(7.D.1)

By Corollary 7.3.7, we can define another equivalent probability measure P̂0 on FT
via the following Radon-Nikodym derivative:

dP̂0

dP̃0


FT

=exp

{
−
∫ T

0

1

γ − 1
ρ1g1(t)

√
αt dW̃

1
t +

∫ T

0

ρ2g1(t)
√
αt dW̃

2
t

−1

2

∫ T

0

(
1

(γ − 1)2
ρ21 + ρ22

)
g21(t)αt dt

}

=exp

{
−
∫ T

0

1

γ − 1

Z0,t

Y1,t
dW̃ 0

t −
∫ T

0

1

γ − 1

Z1,t

Y1,t
dW̃ 1

t +

∫ T

0

Z2,t

Y1,t
dW̃ 2

t

−1

2

∫ T

0

[
1

(γ − 1)2
Z2
0,t

Y 2
1,t

+
1

(γ − 1)2
Z2
1,t

Y 2
1,t

+
Z2
2,t

Y 2
1,t

]
dt

}
,

where the second equality follows from the explicit expressions of (Y1,t, Z0,t, Z1,t, Z2,t)

obtained in Proposition 7.3.4 above. By Girsanov’s theorem, we have the following
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dynamics of standard Brownian motions Ŵ 0
t , Ŵ

1
t and Ŵ 2

t under P̂0 measure:

dŴ 0
t =

1

γ − 1

Z0,t

Y1,t
dt+dW̃ 0

t , dŴ
1
t =

1

γ − 1

Z1,t

Y1,t
dt+dW̃ 1

t , dŴ
2
t = −Z2,t

Y1,t
dt+dW̃ 2

t .

(7.D.2)

Finally, combining (7.D.1) and (7.D.2) shows that (∆ log(Y1,t),∆Z0,t,∆Z1,t,∆Z2,t)

solves the following quadratic BSDE under P̂0 measure:
d∆ log(Y1,t) =− 1

2

[
1

γ − 1
∆Z2

0,t +
1

γ − 1
∆Z2

1,t −∆Z2
2,t

]
dt+∆Z0,t dŴ

0
t

∆Z1,t dŴ
1
t +∆Z2,t dŴ

2
t ,

∆ log(Y1,T ) =0.

(7.D.3)

It is straightforward to verify that quadratic BSDE (7.D.3) satisfies all the regularity

conditions in Kobylanski (2000). Hence, we can conclude that quadratic BSDE

(7.D.3) admits a unique solution by Theorem 2.3 and 2.6 in Kobylanski (2000),

and it is easy to see that (∆ log(Y1,t),∆Z0,t,∆Z1,t,∆Z2,t) = (0, 0, 0, 0) in our case,

which indicates that the solution (Y1,t, Z0,t, Z1,t, Z2,t) given in (7.3.4) and (7.3.5)

forms the unique solution to BSDE (7.3.2).

7.E Proof of Proposition 7.3.10

Proof. By the similar arguments given in the proof of Corollary 7.3.7, we can define

an equivalent probability measure P̄0 to P0 on FT via the following Radon-Nikodym

derivative:

dP̄0

dP0


FT

=exp

{
−
∫ T

0

r + µp −R− σ2
p

σp
dW 0

t −
∫ T

0

λ
√
αt dW

1
t +

∫ T

0

ρ2g1(t)
√
αt dW

2
t

−1

2

∫ T

0

(
(r + µp −R− σ2

p

σ2
p

+
(
λ2 + ρ22g

2
1(t)

)
αt

)
dt

}
.

By Girsanov’s theorem, we have the following dynamics of standard Brownian

motions W̄ 0
t , W̄

1
t and W̄ 2

t under P̄0 measure:
dW̄ 0

t =
r + µp −R− σ2

p

σp
dt+ dW 0

t ,

dW̄ 1
t = λ

√
αt dt+ dW 1

t ,

dW̄ 2
t = −ρ2g1(t)

√
αt dt+ dW 2

t .

Thus, we can reformulate linear BSDE (7.3.12) of (G1,t,Λ0,t,Λ1,t,Λ2,t) under P̄0

measure:{
dG1,t =(rG1,t − ηLt) dt+ Λ0,t dW̄

0
t + Λ1,t dW̄

1
t + Λ2,t dW̄

2
t .

G1,T =0.
(7.E.1)
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To solve BSDE (7.E.1) explicitly, we conjecture that the first component of solution,

G1,t, has an affine form:

G1,t = a1(t) + b1(t)Lt,

where a1(t) and b1(t) are undetermined differentiable functions with boundary

conditions a1(T ) = b1(T ) = 0. Apply Itô’s formula to G1,t under P̄0 measure and

let Λ0,t = b1(t)(σl − σp)Lt, Λ1,t = 0 and Λ2,t = 0. It can be shown that a1(t) = 0

and the explicit expression of b1(t) is given by (7.3.14).

In the sequel, we will verify the solution given in (7.3.13) is the unique solution to

BSDE (7.3.12). To this end, we denote by (Ḡ1,t, Λ̄0,t, Λ̄1,t, Λ̄2,t) any other solution

to BSDE (7.3.12) which is different from the one given in (7.3.13). Then the

following difference process

(∆G1,t,∆Λ0,t,∆Λ1,t,∆Λ2,t) :=
(
G1,t − Ḡ1,t,Λ0,t − Λ̄0,t,Λ1,t − Λ̄1,t,Λ2,t − Λ̄2,t

)
must solve the following linear BSDE under P̄0 measure:{

d∆G1,t = r∆G1,t dt+∆Λ0,t dW̄
0
t +∆Λ1,t dW̄

1
t +∆Λ2,t dW̄

2
t ,

∆G1,T = 0.
(7.E.2)

The generator of linear BSDE (7.E.2) is clearly uniformly Lipschitz continuous with

respect to ∆G1,t,∆Λ0,t,∆Λ1,t and ∆Λ2,t and satisfies all the regularity conditions

in El Karoui, Peng, and Quenez (1997). Hence, by Theorem 2.1 in El Karoui, Peng,

and Quenez (1997), we can conclude that BSDE (7.E.2) admits a unique solution

which is (0, 0, 0, 0) in our case. This, in turn, indicates that the solution given in

(7.3.13) is the unique solution to BSDE (7.3.12).

7.F Proof of Theorem 7.3.11

Proof. For any admissible strategy π ∈ Πp, by applying Itô’s formula to Y1,t
(Xπ

t +G1,t)
γ

γ

and using some localization techniques, we obtain

E0

[
Y1,τn∧T

(Xπ
τn∧T +G1,τn∧T )

γ

γ

]
=
1

2
(γ − 1)E0

[∫ τn∧T

0

Y1,t(X
π
t +G1,t)

γ−2
[
(Xπ

t

(
πIt − 1

)
σp + Λ0,t)

+
1

γ − 1
(Xπ

t +G1,t)

(
Z0,t

Y1,t
+
r + µp −R− σ2

p

σp

)]2
dt

]

+
1

2
(γ − 1)E0

[∫ τn∧T

0

Y1,t(X
π
t +G1,t)

γ−2

[
(Xπ

t π
S
t σt + Λ1,t) +

1

γ − 1

×(Xπ
t +G1,t)

(
Z1,t

Y1,t
+ λ

√
αt

)]2
dt

]
+ Y1,0

(x0 +G1,0)
γ

γ
,

(7.F.1)
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where {τn}n∈N is the localizing sequence. Recalling from Definition 7.2.6 that for

any admissible strategy π ∈ Πp, the corresponding inflation-adjusted wealth satisfies

Xπ
t +G1,t > 0, P0 almost surely, then since the risk aversion parameter γ lies in

(0, 1) and Y1,t is strictly positive for t ∈ [0, T ], we have the following inequality from

(7.F.1):

E0

[
Y1,τn∧T

(Xπ
τn∧T +G1,τn∧T )

γ

γ

]
≤ Y1,0

(x0 +G1,0)
γ

γ
. (7.F.2)

Sending n to infinity in (7.F.2) and using Fatou’s lemma yield

E0

[
(Xπ

T )
γ

γ

]
≤ lim inf

n→∞
E0

[
Y1,τn∧T

(Xπ
τn∧T +G1,τn∧T )

γ

γ

]
≤ Y1,0

(x0 +G1,0)
γ

γ
,

for any admissible strategy π ∈ Πp. Thus, recalling the explicit expressions of Y1,t
and G1,t given by (7.3.4) and (7.3.13), we find that

sup
π∈Πp

E0

[
(Xπ

T )
γ

γ

]
≤ (x0 + b1(0)l0)

γ

γ
exp (f1(0) + g1(0)α0) . (7.F.3)

Particularly, the right-hand side of (7.F.3) corresponds to the value function when

the strategy (πS∗t , πI∗t ) given in (7.3.15) is adopted. Denote by X∗
t the inflation-

adjusted wealth process associated with the strategy πS∗t and πI∗t , we have

d

(
Y1,t

(X∗
t +G1,t)

γ

γ

)
=Y1,t

(X∗
t +G1,t)

γ

γ

[
γ

1− γ

r + µp −R− σ2
p

σp
dW 0

t

+

(
1

1− γ
ρ1g1(t) +

γ

1− γ
λ

)
√
αt dW

1
t + ρ2g1(t)

√
αt dW

2
t

]
.

As a result of Lemma 7.3.6 and Theorem 2.4 in Cherny (2006), it is clear that

Y1,t
(X∗

t +G1,t)
γ

γ is an (F,P0)-martingale. Therefore, we have

E0

[
(X∗

T )
γ

γ

]
=

(x0 + b1(0)l0)
γ

γ
exp (f1(0) + g1(0)α0) . (7.F.4)

We finally show that the strategy
(
πS∗t , πI∗t

)
given by (7.3.15) is admissible. For this,

we need to show π∗ =
({
πS∗t

}
t∈[0,T ]

,
{
πI∗t
}
t∈[0,T ]

)
is F-progressively measurable

and X∗
t +G1,t > 0, P0 almost surely when x0 + b1(0)l0 > 0 holds. In fact, plugging

the strategy
(
πS∗t , πI∗t

)
given in (7.3.15) back into the inflation adjusted wealth

process (7.2.9) and solving the corresponding SDE explicitly lead to

X∗
t =exp

{∫ t

0

r − 1

γ − 1
(ρ1g1(s)λ+ λ2)αs −

1

γ − 1

(r + µp −R− σ2
p)

2

σ2
p

ds

}
× exp

{
−1

2

∫ t

0

1

(γ − 1)2
(ρ1g1(s) + λ)2 ds−

∫ t

0

1

γ − 1
(ρ1g1(s) + λ)

√
αs dW

1
s

}
× exp

{
−1

2

∫ t

0

1

(γ − 1)2
(r + µp −R− σ2

p)
2

σ2
p

ds−
∫ t

0

1

γ − 1

r + µp −R− σ2
p

σp
dW 0

s

}
× (x0 + b1(0)l0)− b1(t)Lt.

(7.F.5)
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Combining (7.3.15) and (7.F.5), we see that π∗ is F-progressively measurable, and

X∗
t +G1,t > 0 always holds P0 almost surely whenever the initial data (α0, x0, l0)

satisfies x0 + b1(0)l0 > 0. Therefore, we can conclude that π∗ ∈ Πp, and from

(7.F.3), we can say that π∗ is the optimal strategy of problem (7.2.11) and the

optimal value function is given by (7.3.16).

7.G Proof of Theorem 7.3.20

Proof. For any admissible strategy π ∈ Πl, using Itô’s formula to log (Xπ
t +G2,t) +

Y2,t and using some localization techniques, we obtain

E0

[
log
(
X

π
T∧τn

+G2,T∧τn

)
+ Y2,T∧τn

]
=E0

[∫ T∧τn

0

−1

2(Xπ
t +G2,t)2

[(
X

π
t

(
π
I
t − 1

)
σp + Γ0,t

)
−

(Xπ
t +G2,t)(r + µp − R− σ2

p)

σp

]2

dt

]

+ E0

[∫ T∧τn

0

−1

2(Xπ
t +G2,t)2

[(
X

π
t π

S
t σt + Γ1,t

)
− (X

π
t +G2,t)λ

√
αt

]2
dt

]
+ (log(x0 +G2,0) + Y2,0) .

(7.G.1)

Since for any admissible strategy π ∈ Πl, the family
{
log
(
Xπ
T∧τn +G2,T∧τn

)
+

Y2,T∧τn
}
n∈N is uniformly integrable for any F-stopping time sequences {τn}n∈N

such that τn ↑ ∞, P0 almost surely, and the terms in the expectations on the
right-hand side of (7.G.1) are non-positive and decreasing with respect to n ∈ N.
By using the monotone convergence theorem to the right-hand side of (7.G.1) and
the equivalence between uniform integrability and L1 convergence to the left-hand
side of (7.G.1), sending n to ∞ gives

E0

[
log
(
X

π
T

)]
=E0

[∫ T

0

−1

2(Xπ
t +G2,t)2

[(
X

π
t

(
π
I
t − 1

)
σp + Γ0,t

)
−

(Xπ
t +G2,t)(r + µp − R− σ2

p)

σp

]2

dt

]

+ E0

[∫ T

0

−1

2(Xπ
t +G2,t)2

[(
X

π
t π

S
t σt + Γ1,t

)
− (X

π
t +G2,t)λ

√
αt

]2
dt

]
+ log(x0 +G2,0) + Y2,0,

which implies that

sup
π∈Πl

E0 [log (X
π
T )] ≤ log (x0 +G2,0) + Y2,0 = log (x0 + b2(0)l0) + f2(0) + g2(0)α0.

(7.G.2)

In particular, when we opt for the strategy πS∗t and πI∗t given by (7.3.25) and

denote by X∗
t the corresponding inflation-adjusted wealth process, we have the

following SDE:

d (log(X∗
t +G2,t) + Y2,t) =

r + µp −R− σ2
p

σp
dW 0

t + (λ+ ρ1g2(t))
√
αt dW

1
t

+ ρ2g2(t)
√
αt dW

2
t .

(7.G.3)
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Note that for all t ∈ [0, T ], the following expectation value for square-root factor

process αt

E0[αt] = α0e
−κt + κθ

∫ t

0

e−κ(t−s) ds

is non-negative and uniformly bounded. Therefore, by using Fubini’s theorem, it

can be shown that

E0

[∫ T

0

(
(r + µp −R− σ2

p)
2

σ2
p

+
(
λ+ ρ1g2(t))

2 + ρ22g
2
2(t)

)
αt

)
dt

]
<∞,

which implies from (7.G.3) that log(X∗
t + G2,t) + Y2,t is an (F,P0)-martingale.

Hence, we have

E0 [log(X
∗
T )] = log(x0 +G2,0) + Y2,0 = log(x0 + b2(0)l0) + f2(0) + g2(0)α0 <∞.

(7.G.4)

Moreover, for any sequence of F-stopping times {τn}n∈N such that τn ↑ ∞, P0

almost surely as n→ ∞, τn ∧ T and T are two bounded stopping times. Then by

Doob’s optional sampling theorem for bounded stopping times (refer to Corollary

3.23 in Le Gall (2016)), we obtain

log(X∗
τn∧T +G2,τn∧T ) + Y2,τn∧T = E [log(X∗

T )| Fτn∧T ] .

Since {Fτn∧T }n∈N is a family of sub σ-algebra of FT and E0 [log(X
∗
T )] <∞, by The-

orem 4.6.1 in Durrett (2019), we find that
{
log(X∗

τn∧T +G2,τn∧T ) + Y2,τn∧T
}
n∈N

is a uniformly integrable family. This confirms condition (1) in Definition 7.2.7.

We next show that X∗
t +G2,t > 0 holds for all t ∈ [0, T ], P0 almost surely, if the

initial data satisfies x0 + b2(0)l0 > 0. In fact, applying Itô’s formula to X∗
t +G2,t

and solving the corresponding SDE explicitly give us

X∗
t +G2,t =(x0 + b2(0)l0) exp

{∫ t

0

(
r +

λ2αs
2

+
(r + µp −R− σ2

p)
2

2σ2
p

)
ds

+

∫ t

0

r + µp −R− σ2
p

σp
dW 0

s +

∫ t

0

λ
√
αs dW

1
s

}
> 0.

(7.G.5)

Noticing from BSDE (7.3.19) that G2,T = 0, we, in particular, have X∗
T > 0 at

time T from (7.G.5). Thus, condition (2) in Definition 7.2.7 is verified. Moreover,

we see that πS∗t and πI∗t given by (7.3.25) are F-progressively measurable since

processes X∗
t , G2,t,Λ0,t and αt are all clearly F-progressively measurable. Therefore,

we know that conditions (3) in Definition 7.2.7 is satisfied and the strategy π∗ =({
πS∗t

}
t∈[0,T ]

,
{
πI∗t
}
t∈[0,T ]

)
given by (7.3.25) is admissible, i.e. π∗ ∈ Πl. Finally,

from (7.G.2) and (7.G.4), we can conclude that π∗ is the optimal strategy and the

optimal value function is given by (7.3.26).
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7.H Proof of Proposition 7.3.27

Proof. We conjecture that the first component of the solution to BSDE (7.3.31),

Y3,t, has an affine form Y3,t = f3(t) + g3(t)αt + b3(t)L̃t, where f3(t), g3(t) and

b3(t) are undetermined differentiable functions of t with boundary conditions

f3(T ) = g3(T ) = b3(T ) = 0. Applying Itô’s formula to Y3,t yields

dY3,t =

[
dg3(t)

dt
αt + κ(θ − αt)g3(t) + L̃t

(
db3(t)

dt
+
(
µl − µp + σ2

p − σlσp − r
)
b3(t)

)
+
df3(t)

dt

]
dt+ (σl − σp)b3(t)L̃t dW

0
t + ρ1

√
αtg3(t) dW

1
t + ρ2

√
αtg3(t) dW

2
t .

(7.H.1)

Let M0,t = (σl − σp)b3(t)L̃t, M1,t = ρ1
√
αtg3(t) and M2,t = ρ2

√
αtg3(t), then the

generator of BSDE (7.3.31) turns out to be:(
λ2

2q̃
+ λρ1g3(t)−

q̃

2
ρ22g

2
3(t)

)
αt +

(
r + µp −R− σ2

p

σp
(σl − σp)b3(t) + η

)
L̃t

+
(r + µp −R− σ2

p)
2

2q̃σ2
p

.

(7.H.2)

Comparing the drift of SDE (7.H.1) and (7.H.2) and separating the dependence on

αt and L̃t, we find that functions f3(t), g3(t) and b3(t) must satisfy the following

ODEs:

dg3(t)

dt
= − q̃

2
ρ22g

2
3(t) + (κ+ λρ1)g3(t) +

λ2

2q̃
, g3(T ) = 0;

db3(t)

dt
= −

(
µl −R− σlσp −

r + µp −R− σ2
p

σp
σl

)
b3(t) + η, b3(T ) = 0;

df3(t)

dt
= −κθg3(t) +

(r + µp −R− σ2
p)

2

2q̃σ2
p

, f3(T ) = 0.

By solving the above ODEs explicitly, we arrive at (7.3.34)-(7.3.36).

7.I Proof of Proposition 7.3.28

Proof. Differentiating g3(t) with respect to t gives

dg3(t)

dt
=



2λ2

q̃ ∆g3e
√

∆g3(T−t)[
−(κ+ λρ1) +

√
∆g3

+
(
κ+ λρ1 +

√
∆g3

)
e
√

∆g3
(T−t)

]2 , if ∆g3 > 0 and ρ2 ̸= 0;

λ2

2q̃
e
(κ+λρ1)(t−T )

, if ρ2 = 0 and κ+ λρ1 ̸= 0;

−2q̃ρ22n
2
g3

(q̃ρ22(T − t)ng3
+ 2)2

, if ∆g3
= 0 and ρ2 ̸= 0.

The first two cases reveal that function g3(t) is strictly increasing over [0, T ], while

the last case shows that g3(t) is strictly decreasing over [0, T ]. This, in turn, implies

that g3(t) is bounded over [0, T ], and more precisely, we have |g3(t)| ≤ |g3(0)|.
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7.J Proof of Theorem 7.3.30

Proof. For any admissible strategy π ∈ Πe, using Itô’s formula to −eq̃(X̃π
t −Y3,t) and

applying some localization techniques lead to

E0

[
−e−q̃(X̃π

T∧τn
−Y3,T∧τn )

]
=− 1

2
q̃2E0

[∫ T∧τn

0

e−q̃(X̃π
t −Y3,t)

(
X̃π

t

(
πI
t − 1

)
σp −M0,t −

r + µp −R− σ2
p

q̃σp

)2

dt

]

− 1

2
q̃2E0

[∫ T∧τn

0

e−q̃(X̃π
t −Y3,t)

(
X̃π

t π
S
t σt −M1,t −

λ
√
αt

q̃

)2

dt

]
− e−q̃(x0−Y3,0),

(7.J.1)

where {τn}n∈N is the localizing sequence. Since for any admissible strategy π ∈ Πe,

the term in the expectation on the left-hand side of (7.J.1) is uniformly integrable,

and the terms in the expectations on the right-hand side of (7.J.1) are non-negative

and increasing with respect to n ∈ N. Hence, by applying the monotone convergence

theorem to the right-hand side of (7.J.1) and the equivalence between uniform

integrability and L1-convergence to the left-hand side of (7.J.1) upon recalling that

q̃X̃π
T = qXπ

T , we have

E0

[
−e−qX

π
T

]
=− 1

2
q̃2E0

∫ T

0

e−q̃(X̃
π
t −Y3,t)

(
X̃π
t

(
πIt − 1

)
σp −M0,t −

r + µp −R− σ2
p

q̃σp

)2

dt


− 1

2
q̃2E0

[∫ T

0

e−q̃(X̃
π
t −Y3,t)

(
X̃π
t π

S
t σt −M1,t −

λ
√
αt
q̃

)2

dt

]
− e−qe

rT (x0−Y3,0)

≤− e−qe
rT (x0−Y3,0).

This means that

sup
π∈Πe

E0

[
−e−qX

π
T

]
≤ − exp

{
−qerT (x0 − f3(0)− g3(0)α0 − b3(0)l0)

}
. (7.J.2)

When adopting the strategy πS∗t and πI∗t given in (7.3.37) and denoting by X∗
t and

X̃∗
t the associated (discounted) inflation-adjusted wealth processes respectively, we

have

d
(
−e−q̃(X̃

∗
t −Y3,t)

)
=− e−q̃(X̃

∗
t −Y3,t)

(
−
r + µp −R− σ2

p

σp
dW 0

t − λ
√
αt dW

1
t

+ q̃ρ2g3(t)
√
αt dW

2
t

)
.

(7.J.3)
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Solving SDE (7.J.3) explicitly, we have

− e−q̃(X̃∗
t −Y3,t)

=− e−qerT (x0−Y3,0) exp

{
−
∫ t

0

r + µp −R− σ2
p

σp
dW 0

s − 1

2

∫ t

0

(r + µp −R− σ2
p)

2

σ2
p

ds

}
× exp

{
−
∫ t

0

λ
√
αs dW

1
s +

∫ t

0

q̃ρ2g3(s)
√
αs dW

2
s − 1

2

∫ t

0

(
λ2 + q̃2ρ22g

2
3(s)

)
αs ds

}
.

This shows us the path-wise unique strong solution of X̃∗
t as well as ofX∗

t . Moreover,

it follows from Lemma 7.3.6 and Theorem 2.4 in Cherny (2006) that −e−q̃(X̃∗
t −Y3,t)

is an (F,P0)-martingale. Thus, we have

E0

[
−e−qX

∗
T

]
= − exp

{
−qerT (x0 − f3(0)− g3(0)α0 − b3(0)l0)

}
. (7.J.4)

Therefore, combining (7.J.2) and (7.J.4), we can conclude that the optimal invest-

ment strategy and optimal value function of problem (7.2.13) are given by (7.3.37)

and (7.3.38), respectively. The proof of the admissibility of the optimal strategy

π∗ =
({
πS∗t

}
t∈[0,T ]

,
{
πI∗t
}
t∈[0,T ]

)
is similar to that of Theorem 7.3.20 above, so

we omit here.
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Chapter 8

Optimal investment strategies for

asset-liability management with affine

diffusion factor processes and HARA

preferences

Abstract

This paper investigates an optimal asset-liability management prob-

lem within the expected utility maximization framework. The general

hyperbolic absolute risk aversion (HARA) utility is adopted to describe

the risk preference of the asset-liability manager. The financial market

comprises a risk-free asset and a risky asset. The market price of risk

depends on an affine diffusion factor process, which includes, but is not

limited to, the constant elasticity of variance (CEV), Stein-Stein, Schöbel

and Zhu, Heston, 3/2, 4/2 models, and some non-Markovian models,

as exceptional examples. The accumulative liability process is featured

by a generalized drifted Brownian motion with possibly unbounded and

non-Markovian drift and diffusion coefficients. Due to the sophisticated

structure of HARA utility and the non-Markovian framework of the

incomplete financial market, a backward stochastic differential equation

(BSDE) approach is adopted. By solving a recursively coupled BSDE

system, closed-form expressions for both the optimal investment strategy

and optimal value function are derived. Moreover, explicit solutions

to some particular cases of our model are provided. Finally, numerical

examples are presented to illustrate the effect of model parameters on

the optimal investment strategies in several particular cases.

Keywords: Asset-liability management; HARA utility; Affine diffusion factor
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process; Drifted Brownian motion; Backward stochastic differential equation.

8.1 Introduction

Asset-liability management (ALM) is of great importance not only for investment

institutions such as banks, pension funds, and life insurance companies but also for

individual investors who can ensure the match between assets and liabilities. The

ALM problem under Markowitz (1952)’s mean-variance criterion was first studied

by Sharpe and Tint (1990) in a single-period setting, and the multi-period case

was then investigated by Leippold, Trojani, and Vanini (2004). By employing the

stochastic linear-quadratic control theory and solving the corresponding Hamilton-

Jacobi-Bellman (HJB) equation, Chiu and Li (2006) extended the work of Leippold,

Trojani, and Vanini (2004) to a continuous-time framework with uncontrollable

liabilities driven by a geometric Brownian motion. Alternatively, Xie, Li, and Wang

(2008) studied a continuous-time mean-variance ALM problem with liabilities driven

by a drifted Brownian motion process. The works of Leippold, Trojani, and Vanini

(2004) and Chiu and Li (2006) were further extended to the case with Markovian

regime-switching market by Chen, Yang, and Yin (2008) and Chen and Yang (2011),

respectively. By applying a backward stochastic differential equation (BSDE)

approach, Chiu and Wong (2014a) investigated the case with cointegrated risky

assets. For other research outcomes of ALM problems under the continuous-time

mean-variance framework, one can refer to Zeng and Li (2011), Yu (2014), Chang

(2015), Pan and Xiao (2017c), Peng and Chen (2021), and references therein. Besides

the mean-variance criterion, ALM problems under the framework of expected utility

maximization have attracted the attention of quite a few researchers over the last

several years. For example, Chiu and Wong (2014b) studied an ALM problem with

stochastic interest rates for an insurer under power and logarithmic utility, where

the interest rate was modeled by an extended Cox–Ingersoll–Ross (CIR) process

and the liability followed a risk model of compound Poisson process. Liang and Ma

(2015) incorporated mortality and salary risks into an ALM problem under power

and exponential utility and derived the optimal approximation investment strategy

by using the martingale approach and the dynamic programming approach. Pan

and Xiao (2017b) considered an ALM problem with inflation risk and stochastic

interest rates, where the liability was governed by a geometric Brownian motion

and the interest rate followed the Hull-White model. For other relevant works along

this line, one may refer to Pan and Xiao (2017a) and Chen, Huang, and Li (2022),

to name but only a few.

Although ALM problems under the utility maximization and mean-variance

criteria have been extensively studied, two aspects are worthy of being further

explored. Firstly, most of the above-mentioned literature generally assumes that the
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risky asset price follows a geometric Brownian motion. In other words, the volatility

of risky asset price is a constant or a deterministic function, which cannot explain

the empirical observation that the implied volatility in option price data displays

the so-called volatility smile/skew. To articulate this issue, various stochastic (local)

volatility models have been proposed over the last several decades, such as the

constant elasticity of variance (CEV) model (Cox (1996)), Stein-Stein model (Stein

and Stein (1991)), Heston model (Heston (1993)), Schöbel and Zhu model (Schöbel

and Zhu (1999)), 3/2 model (Lewis (2000)), and 4/2 model (Grasselli (2017)).

Recently, there has been emerging interest in ALM problems under stochastic

volatility models. Using a BSDE approach, Zhang and Chen (2016) considered

a mean-variance ALM problem under the CEV model with multiple risky assets.

Li, Shen, and Zeng (2018) investigated the effect of derivatives trading on a mean-

variance ALM problem under the Heston model, where the liability process was

given by a generalized geometric Brownian motion. In Pan, Zhang, and Zhou

(2018), the liability was modeled by a drifted Brownian motion, and the explicit

solutions were derived under the mean-variance criterion for two special cases where

the two fundamental risk factors in the Heston model were perfectly correlated

or anti-correlated. Sun, Zhang, and Yuen (2020) stepped further by studying

a mean-variance ALM problem in a complete market with multiple risky assets,

where the volatility of risky assets was driven by an affine diffusion equation and

the analytical solutions were obtained by using a BSDE approach. Zhang (2023)

studied a mean-variance ALM problem under the CIR short rate of interest and

state-of-the-art 4/2 stochastic volatility model with derivatives trading. Besides

the mean-variance criterion, by using the dynamic programming approach, Pan,

Hu, and Zhou (2019) considered an ALM problem with exponential utility under

the Heston model.

Secondly, few papers on the ALM problems considers the hyperbolic absolute risk

aversion (HARA) utility function. Indeed, due to the flexibility of capturing risk

aversion preference, the HARA utility function includes power utility, exponential

utility, and logarithmic utility as exceptional cases in the utility theory. It is also

worth mentioning that the HARA utility is closely related to the mean-variance

criterion since the quadratic loss minimization (benchmark) problem embedded in

the mean-variance problem is a special case of HARA utility. Given the complicated

structure of HARA utility, two main approaches, the martingale approach and

the dynamic programming approach along with Legendre transform-dual theory

(Jonsson and Sircar (2002)), are generally applied to solving utility maximization

problems with HARA utility in recent years. For example, Tepla (2001) studied an

optimal portfolio selection problem with minimum performance constraints for a

HARA-utility investor and derived the explicit solution by using the martingale

approach. Grasselli (2003) investigated a HARA utility maximization problem

with stochastic interest rates in a complete market, where the interest rates were
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described by the Cox-Ingersoll-Ross (CIR) model. Alternative to Grasselli (2003),

Chang, Chang, and Lu (2014) studied an ALM problem with stochastic interest

rates, where the liability was driven by a drifted Brownian motion and the interest

rates followed an affine diffusion process. Jung and Kim (2012) considered an

optimal investment problem under the CEV model. Chang and Chang (2017)

focused on an optimal consumption-investment problem with multiple risky assets

and Vasicek interest rates. Escobar, Neykova, and Zagst (2017) studied a HARA

utility maximization problem in a Markov-switching bond-stock market, where

the stochastic volatility and stochastic interest rates were described by a Markov-

modulated Heston model and Markov-modulated Vasicek model, respectively. More

recently, Chang et al. (2020) solved a defined contribution pension problem with an

affine interest rate and mean-reverting returns under HARA utility explicitly. Zhang

and Zhao (2020) investigated an optimal reinsurance-investment problem under

the CEV model and HARA utility by using Legendre transform-dual technique.

For other previous works on HARA utility maximization problems, one can consult

Çanakoğlu and Özekici (2012), Zhang, Zhao, and Kou (2021), Liu et al. (2023), and

references therein.

To the best of our knowledge, there is no existing literature addressing the ALM

problem under stochastic volatility models and HARA utility preferences in an

incomplete market setting. The present paper aims to fill the gap. We assume

that the asset-liability manager has access to a financial market consisting of one

risk-free asset and one risky asset, and meanwhile, is subject to an uncontrollable

random liability. The liability process is modeled by a generalized drifted Brownian

motion with unspecified drift and diffusion coefficients and can be understood as

a subtraction of the real liability and stochastic income. In this sense, a negative

liability means that the real liability is smaller than the stochastic income. Unlike

most of the aforementioned literature, it is not a prerequisite to suppose that the

risky asset’s return rate and volatility are specifically Markovian processes. Instead,

we only assume that the market price of risk depends on an affine diffusion factor

process (Duffie and Kan (1996)). The general modeling framework includes not only

some well-known Markovian models, such as the Black-Scholes model, CEV model,

Stein-Stein model, Schöbel and Zhu model, Heston model, 3/2 model, and 4/2 model

but also some non-Markovian models, as exceptional examples (see Examples 8.2.2-

8.2.5). The incomplete market setting and the potentially non-Markovian structures

of risky asset price and random liability lead to the failure of an application of

the martingale representation theorem and Bellman’s optimality principle. In this

sense, neither the martingale approach nor the dynamic programming approach

along with Legendre transform-dual technique can be applied in the present paper

directly. We, therefore, adopt a BSDE approach to solve the ALM problem under

the general stochastic volatility model and HARA preference. Under an assumption

on the model parameters (see Assumption 8.3.6), we discuss the solvability of
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a recursively coupled BSDE system consisting of a backward stochastic Riccati

equation (BSRE) and two linear BSDEs and derive, in closed form, their respective

solutions. Explicit expressions for the optimal investment strategy and optimal

value function are then obtained via the solutions to the BSDEs. Moreover, the

results for several special cases of our model are provided (see Corollary 8.4.3-8.4.7

and Remark 8.4.2-8.4.6). Finally, some numerical examples are given to illustrate

the effect of model parameters on the optimal investment strategies under two

extensively studied models, the CEV model and 4/2 model.

The main contributions of this paper are as follows: (i) we pioneer to study an

ALM problem with a general class of stochastic volatility models and the HARA

utility in an incomplete financial market setting, in which the market price of risk

relies on an affine diffusion factor process but the return rate and volatility coefficient

are unspecified, while in Sun, Zhang, and Yuen (2020) the financial market is

complete and an investment-reinsurance problem under the mean-variance criterion

is considered; (ii) the liability process is modeled by a generalized drifted Brownian

motion rather than a geometric Brownian motion, which can be understood as

a subtraction of the real liability and stochastic income and distinguishes this

paper from some existing literature on ALM problems, such as Zhang and Chen

(2016), Li, Shen, and Zeng (2018), Sun, Zhang, and Yuen (2020), and etc; (iii) a

BSDE approach is applied to overcome the possibly incomplete and non-Markovian

financial market, which differentiates this paper from some published works on

HARA utility maximization problems by using either the martingale approach or

the Legendre transform-dual theory, such as Grasselli (2003), Jung and Kim (2012),

Chang et al. (2020), Zhang and Zhao (2020), Zhang, Zhao, and Kou (2021), Liu

et al. (2023), and etc.

The remainder of this paper is organized as follows. Section 8.2 formulates the

market model and ALM problem. Section 8.3 discusses the solvability of BSDEs

associated with the ALM problem and derives closed-form solutions to the BSDEs.

In Section 8.4, explicit expressions for the optimal investment strategy and optimal

value function are presented, and the results for several particular cases of our model

are recovered. Section 8.5 gives some numerical examples to illustrate theoretical

results. Finally, Section 8.6 concludes the paper.

8.2 General formulation

Let (Ω,F ,P) be a complete probability space, T > 0 be a finite constant standing

for the decision-making horizon, and F := {Ft}t∈[0,T ] be the right-continuous,

P-complete filtration generated by a two one-dimensional, mutually independent

standard Brownian motions {W1,t}t∈[0,T ] and {W2,t}t∈[0,T ]. Denote by E[·] the
expectation under P. In what follows, we introduce several spaces on (Ω,F ,F,P):
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• L0
F,P (0, T ;R): the space of all real-valued, F-adapted processes with P-a.s.

continuous sample paths;

• L2,loc
F,P (0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ]

with P-a.s. continuous sample paths such that P
(∫ T

0
|ft|2 dt <∞

)
= 1;

• L2
F,P(0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that E
[∫ T

0
|ft|2 dt

]
<∞;

• S2
F,P(0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that E
[
supt∈[0,T ] |ft|2

]
<∞;

• S∞
F,P(0, T ;R): the space of all real-valued, F-adapted uniformly bounded

processes with P-a.s. continuous sample paths.

8.2.1 The financial market and liability process

We consider a financial market consisting of a risk-free asset (money account) and

a risky asset (stock). The price process of the money account {Bt}t∈[0,T ] evolves

according to

dBt = rBt dt, B0 = 1,

where r ∈ R is the risk-free interest rate. The risky asset price {St}t∈[0,T ] follows

the dynamics

dSt = St (µS,t dt+ σS,t dW1,t) , S0 = s0 > 0, (8.2.1)

where µS,t and σS,t > 0 are two potentially unbounded and non-Markovian F-
adapted stochastic processes, which stand for the risky asset’s return rate and

volatility at time t, respectively. We denote the market price of volatility risk by

θt :=
µS,t − r

σS,t
(8.2.2)

for t ∈ [0, T ], and assume that the market price of volatility risk process {θt}t∈[0,T ]

depends on a stochastic factor process {Vt}t∈[0,T ] in the following way:

θt = λ
√
η1 + η2Vt, λ ∈ R \ {0} = R0,

where the stochastic factor process {Vt}t∈[0,T ] follows an affine diffusion equation

(Duffie and Kan (1996)):

dVt = (a− bVt) dt+
√
η1 + η2Vt(ρ1 dW1,t + ρ2 dW2,t), V0 = v0 > 0. (8.2.3)

To make our framework more general, no further conditions on parameters a, b, ρ1, ρ2
∈ R and η1 ≥ 0, η2 ≥ 0 are imposed at the present stage. Instead, we only assume

that the solution to the affine diffusion equation (8.2.3) is well-defined, i.e., η1+η2Vt
is non-negative P almost surely, for t ∈ [0, T ].
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Remark 8.2.1. For the case when η2 > 0, it can be checked that {η1 + η2Vt}t∈[0,T ]

follows a square-root diffusion process:

d (η1 + η2Vt) = (aη2 + bη1 − b(η1 + η2Vt)) dt+η2
√
η1 + η2Vt (ρ1 dW1,t + ρ2 dW2,t) .

It follows from Chapter 6.3 of Jeanblanc, Chesney, and Yor (2009) that the process

{η1 + η2Vt}t∈[0,T ] is non-negative P almost surely, if the parameters satisfy aη2 +

bη1 ≥ 0. Moreover, it is worth mentioning that although the diffusion coefficient of

the process {η1 + η2Vt}t∈[0,T ] does not satisfy the uniform Lipschitz continuity, a

unique strong solution such that E
[
supt∈[0,T ](η1 + η2Vt)

2
]
≤ CT exists, where the

upper bound CT depends on a, b, η1, η2, ρ1, ρ2, and T . For the simple case when

η2 = 0, the affine diffusion equation (8.2.3) is reduced to an Ornstein-Uhlenbeck

(OU) process:

dVt = (a− bVt) dt+
√
η1 (ρ1 dW1,t + ρ2 dW2,t) ,

of which the solution does exist (refer to Chapter 2.6 of Jeanblanc, Chesney, and

Yor (2009)).

It is worth mentioning that the above modeling framework is general and embraces

not only a wide class of stochastic (local) volatility models, such as the CEV model,

Stein and Stein model, Schöbel and Zhu model, Heston model, 3/2 model, and 4/2

model (see Examples 8.2.2-8.2.4) but also some non-Markovian models (Example

8.2.5), as particular cases.

Example 8.2.2 (CEV model). If we set µS,t = µ and σS,t = σSγt , where µ ̸= r

and σ are positive constants and γ ≤ − 1
2 is the elasticity parameter, then the risky

asset price follows the CEV model:

dSt = St (µdt+ σSγt dW1,t) , S0 = s0 > 0. (8.2.4)

By setting Vt = S−2γ
t , a = γ(2γ + 1)σ2, b = 2γµ, η1 = 0, η2 = 1, ρ1 = −2γσ, ρ2 =

0, λ = µ−r
σ and applying Itô’s formula to S−2γ

t , we have

dVt =
[
γ(2γ + 1)σ2 − 2γµS−2γ

t

]
dt− 2γσS−γ

t dW1,t

=(a− bVt) dt+
√
η1 + η2Vt (ρ1 dW1,t + ρ2 dW2,t) .

This shows that the CEV model (8.2.4) is a special case of the model given by

(8.2.1)-(8.2.3). In particular, when γ = 0, the condition aη2 + bη1 ≥ 0 still holds,

and the CEV model (8.2.4) is reduced to the Black-Scholes model.

Example 8.2.3 (The 4/2 model). If we set µS,t = r + λ
√
η2(c1Vt + c2), σS,t =

c1
√
Vt +

c2√
Vt
, η1 = 0, ρ1 = ρ ∈ [−1, 1], and ρ2 =

√
1− ρ2, where c1 ≥ 0, c2 ≥ 0,
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and η2 ∈ R+, then the risky asset price is governed by the family of 4/2 models

(Grasselli Grasselli, 2017):
dSt =St

[
(r + λ

√
η2(c1Vt + c2)) dt+

(
c1
√
Vt +

c2√
Vt

)
dW1,t

]
, S0 = s0 > 0,

dVt =(a− bVt) dt+
√
η2Vt

(
ρ dW1,t +

√
1− ρ2 dW2,t

)
, V0 = v0 > 0.

(8.2.5)

In this case, b ∈ R+ is the mean-reversion speed, a/b ∈ R+ is the long-run mean,

and
√
η2 is the volatility of the variance driver process Vt. The Feller condition

2a ≥ η2 is required, so that Vt is strictly positive P almost surely, for t ∈ [0, T ].

Particularly, by further specifying (c1, c2) = (1, 0), the 4/2 model (8.2.5) degenerates

to the Heston model (Heston (1993)), while the case (c1, c2) = (0, 1) corresponds to

the 3/2 model (Lewis (2000)).

Example 8.2.4 (The Schöbel and Zhu model). If we set µS,t = r + λ
√
η1Vt,

σS,t = Vt, η2 = 0, ρ1 = ρ ∈ [−1, 1], ρ2 =
√
1− ρ2, and η1 ∈ R+, then the risky

asset price follows the Schöbel and Zhu model (Schöbel and Zhu (1999)):dSt =St [(r + λ
√
η1Vt) dt+ Vt dW1,t] , S0 = s0 > 0,

dVt =(a− bVt) dt+
√
η1

(
ρ dW1,t +

√
1− ρ2 dW2,t

)
, V0 = v0 > 0.

(8.2.6)

Here, b ∈ R+ is the mean-reversion speed, a/b ∈ R+ is the long-run mean, and
√
η1

is the volatility of the instantaneous volatility process Vt. In particular, the case

ρ = 0 in (8.2.6) is known as the Stein-Stein model (Stein and Stein (1991)).

Example 8.2.5 (A path-dependent stochastic volatility model). If we set µS,t =

r + λ
√
η2
√
Vtσ̂(V[0,t]), σS,t = σ̂(V[0,t]) for some functional σ̂ : C([0, t];R) 7→ R+,

η1 = 0, η2 ∈ R+, ρ1 = ρ ∈ [−1, 1], and ρ2 =
√
1− ρ2, where V[0,t] := (Vs)s∈[0,t]

is the restriction of V ∈ C([0, T ];R) to C([0, t];R), i.e. the space of real-valued,

continuous functions defined on [0, t], then the risky asset price is governed by the

following path-dependent model:
dSt =St

[(
r + λ

√
η2Vtσ̂(V[0,t])

)
dt+ σ̂(V[0,t]) dW1,t

]
, S0 = s0 > 0,

dVt =(a− bVt) dt+
√
η2Vt

(
ρ dW1,t +

√
1− ρ2 dW2,t

)
, V0 = v0 > 0.

(8.2.7)

which is clearly a special case of non-Markovian models because the risky asset’s

return rate and volatility are path-dependent. For more details on model (8.2.7),

one may consult Siu (2012).

Denote by π := {πt}t∈[0,T ] the money amount invested in the risky asset and

Xπ
t the asset value process under the strategy π. Suppose that there are no

transaction costs as well as other restrictions in the financial market. Under a
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self-financing condition, the asset process Xπ
t evolves according to the following

stochastic differential equation (SDE):

dXπ
t = πt

dSt
St

+ (Xπ
t − πt)

dBt
Bt

= (rXπ
t + (µS,t − r)πt) dt+ πtσS,t dW1,t, (8.2.8)

with initial asset value X0 = x0 ∈ R+. Apart from investing in the above financial

market, we consider that the asset-liability manager is subject to an uncontrollable

liability commitment and assume that the accumulative liability process Lt follows

a generalized drifted Brownian motion, for t ∈ [0, T ]

dLt = µL,t dt+ σL,t dW1,t, L0 = l0 ∈ R. (8.2.9)

In the liability process (8.2.9), the drift and diffusion coefficients µL,t ∈ L0
F,P(0, T ;R)

and σL,t ∈ L0
F,P(0, T ;R0), and they are related to each other via

µL,t − µl
σL,t

= θt,

where the non-negative constant µl ≥ 0 is the drift coefficient. Notice that the

processes µL,t and σL,t are potentially unbounded and non-Markovian, and the

liability process adopted in this paper is in a general sense that it can be understood

as a subtraction of the real liability and stochastic income of the manager. Therefore,

negative liabilities are allowed, which means that the stochastic income is larger

than the real liability. Similar specifications on the liability process can be found in

some literature, such as Xie, Li, and Wang (2008), Pan, Zhang, and Zhou (2018),

and Pan, Hu, and Zhou (2019).

Definition 8.2.6 (Admissible strategy). An investment strategy π is said to be

admissible if it satisfies the following conditions:

(i) πt is a real-valued, F-adapted process such that πtσS,t ∈ L0
F,P(0, T ;R);

(ii) given (x0, l0, v0) ∈ R+×R×R+ fixed and given, the SDE (8.2.8) associated with

πt has a unique strong solution Xπ
t ∈ L0

F,P(0, T ;R) such that q
1−p (X

π
t −G1,tLt) +

βG2,t > 0 for t ∈ [0, T ];

(iii) the family
{

1−p
qp

(
q

1−p (X
π
T∧τn −G1,T∧τnLT∧τn) + βG2,T∧τn

)p
YT∧τn

}
n∈N

is

uniformly integrable, for any sequence of F-stopping times {τn}n∈N such that τn ↑ ∞,

P almost surely as n→ ∞, where Yt, G1,t, and G2,t are given by (8.3.5), (8.3.12),

and (8.3.15), respectively.

The set of all admissible strategies is denoted by A.

8.2.2 The optimization problem

The asset-liability manager aims to obtain an admissible strategy π ∈ A to maximize

the expected utility of the terminal surplus Xπ
T − LT at time T with the initial
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surplus x0 − l0. More specifically, the optimization problem can be formulated as

follows:

sup
π∈A

J(x0, l0, v0;π) = sup
π∈A

E [U(Xπ
T − LT )] , (8.2.10)

where the utility function U(·) is supposed to be a strictly increasing and concave

function characterizing the manager’s risk-averse preference, and J(·) is referred to

as the value function in the literature. In this paper, we investigate the solution of

ALM problem (8.2.10) in a general utility framework by considering the following

HARA utility function with parameters p, q, and β:

UHARA(x) =
1− p

qp

(
q

1− p
x+ β

)p
, q > 0, p < 0, β ∈ R (8.2.11)

such that q
1−px+ β > 0. It can be checked that the above general HARA utility

maximization framework (8.2.10)-(8.2.11) recovers the power, exponential, and

logarithmic utility functions as special cases. In particular,

• if we take β = 0 and q = 1−p in (8.2.11), we obtain the power utility function

case, i.e.,

Upower(x) =
1

p
xp;

• if we take β = 1 and compute the limit as p→ −∞ in (8.2.11), we have the

exponential utility function:

Uexp(x) = −1

q
e−qx;

• if we compute the limit as p→ 0 of the following modified HARA function

UmHARA(x) =
1− p

qp

[(
q

1− p
x+ β

)p
− 1

]
and take β = 0 and q = 1− p, we have the logarithmic utility function:

Ulog(x) = log(x).

It is worth mentioning that since the limit procedures in the above exponential

utility and logarithmic utility cases are only formal, the solutions for these two

cases cannot be derived as an immediate result of the HARA utility case (see, for

example, Grasselli (2003)).

Remark 8.2.7. Given the possibly non-Markovian structures of risky asset price

process (8.2.1), asset process (8.2.8), and liability process (8.2.9) as well as the

incomplete market setting, neither the dynamic programming (HJB) approach

along with Legendre transform-dual technique nor the martingale approach can
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be applied in the present paper. Therefore, we solve problem (8.2.10) in Section

8.3 and 8.4 by means of BSDE, which distinguishes this paper from some existing

literature on HARA utility maximization problems, for example, Grasselli (2003),

Jung and Kim (2012), Escobar, Neykova, and Zagst (2017), Chang et al. (2020),

Zhang and Zhao (2020), Zhang, Zhao, and Kou (2021), Liu et al. (2023), and etc.

8.3 Backward stochastic differential equations

In this section, we discuss the solvability of a recursively coupled BSDE system,

including a BSRE and two linear BSDEs, based on which ALM problem (8.2.10)

under HARA utility will be solved completely in the next section.

To find the BSDEs associated with problem (8.2.10), we first introduce the

following three continuous (F,P)-semi-martingales, Yt, G1,t, and G2,t, with canonical

decomposition: 
dYt =Ψt dt+ Z1,t dW1,t + Z2,t dW2,t,

dG1,t =H1,t dt+ Λ1,t dW1,t + Λ2,t dW2,t,

dG2,t =H2,t dt+ Γ1,t dW1,t + Γ2,t dW2,t,

where Ψt, H1,t, and H2,t are some F-adapted processes to be determined, and

Z1,t, Z2,t,Λ1,t,Λ2,t,Γ1,t, and Γ2,t lie in L2,loc
F,P (0, T ;R). We expect that the process

1−p
qp

(
q

1−p (X
π
t −G1,tLt) + βG2,t

)p
Yt is a (local) supermartingale for any admissible

strategy π ∈ A, and a (local) martingale for the optimal strategy by determining

the processes Ψt, H1,t, and H2,t in what follows. An application of Itô’s formula

shows that

d

(
1− p

qp

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p

Yt

)
=
1− p

qp

[
Ytp

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−1(
q

1− p

(
πtσS,t − LtΛ1,t −G1,tσL,t

)
+βΓ1,t

)
+

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p

Z1,t

]
dW1,t

− 1− p

qp

[
Ytp

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−1(
q

1− p
LtΛ2,t − βΓ2,t

)
−
(

q

1− p
(Xπ

t

−G1,tLt) + βG2,t

)p

Z2,t

]
dW2,t −

(p− 1)2

2q
Yt

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−2 [
βΓ1,t

+
q

1− p

(
πtσS,t − LtΛ1,t −G1,tσL,t

)
+

q
1−p

(Xπ
t −G1,tLt) + βG2,t

p− 1

(
Z1,t

Yt
+ θt

)]2
dt

− (p− 1)2

2q
Yt

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−2(
q

1− p
LtΛ2,t − βΓ2,t

)2

dt
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− 1− p

qp

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p
[(

1

2(p− 1)

(
Z1,t

Yt
+ θt

)2

− r

)
pYt −Ψt

]
dt

+
1− p

q

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−1

Yt

[
q

1− p
Lt

(
rG1,t + θtΛ1,t −

Z2,t

Yt
Λ2,t

−H1,t

)
+ β

(
H2,t − rG2,t − θtΓ1,t +

Z2,t

Yt
Γ2,t

)
− q

1− p
(µlG1,t + σL,tΛ1,t)

]
dt.

(8.3.1)

We expect that the above drift coefficients are non-positive for arbitrary π ∈ A and

zero for the optimal strategy. Therefore, the processes Ψt, H1,t, and H2,t can be

determined by formally letting the last two terms on the right-hand side of (8.3.1)

be zero. As a result, we obtain the following BSRE of (Yt, Z1,t, Z2,t) and two linear

BSDEs of (G1,t,Λ1,t,Λ2,t) and (G2,t,Γ1,t,Γ2,t):

dYt =

[(
p

2(p− 1)
θ2t − rp

)
Yt +

p

2(p− 1)

Z2
1,t

Yt
+

p

p− 1
θtZ1,t

]
dt+ Z1,t dW1,t

+ Z2,t dW2,t,

YT =1,

Yt >0, for all t ∈ [0, T ],

(8.3.2)dG1,t =

(
rG1,t + θtΛ1,t −

Z2,t

Yt
Λ2,t

)
dt+ Λ1,t dW1,t + Λ2,t dW2,t,

G1,T =1,

(8.3.3)

and
dG2,t =

[
rG2,t + θtΓ1,t −

Z2,t

Yt
Γ2,t +

q

β(1− p)
(µlG1,t + σL,tΛ1,t)

]
dt

+ Γ1,t dW1,t + Γ2,t dW2,t

G2,T =1.

(8.3.4)

Throughout the paper, by a solution to BSRE (8.3.2), we mean a triplet of stochastic

processes (Yt, Z1,t, Z2,t) ∈ S∞
F,P(0, T ;R+)×L2

F,P(0, T ;R)×L2
F,P(0, T ;R) and verifies

(8.3.2). In the same vein, solutions to linear BSDEs (8.3.3) and (8.3.4) are two triplets

of stochastic processes (G1,t,Λ1,t,Λ2,t) ∈ S∞
F,P(0, T ;R)×L2

F,P(0, T ;R)×L2
F,P(0, T ;R)

and (G2,t,Γ1,t,Γ2,t) ∈ S∞
F,P(0, T ;R)× L2

F,P(0, T ;R)× L2
F,P(0, T ;R), respectively.

Remark 8.3.1. Notice that BSDEs (8.3.2)-(8.3.4) constitute a coupled BSDE system,

and this coupling is recursive. More specifically, the generator of linear BSDE

(8.3.3) involves the solution of (Yt, Z1,t, Z2,t) to BSRE (8.3.2), while the generator

of linear BSDE (8.3.4) includes both the solutions of (Yt, Z1,t, Z2,t) to BSRE (8.3.2)

and of (G1,t,Λ1,t,Λ2,t) to BSDE (8.3.3). This observation implies that BSDEs

(8.3.2)-(8.3.4) shall be solved recursively forwards.
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Next, we derive respective solutions to BSDEs (8.3.2)-(8.3.4), and prove that

these solutions are unique.

Proposition 8.3.2. One candidate solution triplet (Yt, Z1,t, Z2,t) to BSRE (8.3.2)

is given by

Yt = exp {f1(t) + f2(t)Vt} , (8.3.5)

and {
Z1,t =f2(t)

√
η1 + η2Vtρ1Yt,

Z2,t =f2(t)
√
η1 + η2Vtρ2Yt,

(8.3.6)

where f1(t) and f2(t) are solutions to the following system of ordinary differential

equations (ODEs):
df1(t)

dt
+

1

2

(
ρ22 −

1

p− 1
ρ21

)
η1f

2
2 (t)−

(
λρ1η1p

p− 1
− a

)
f2(t)−

λ2η1p

2(p− 1)
+ rp = 0;

df2(t)

dt
+

1

2

(
ρ22 −

1

p− 1
ρ21

)
η2f

2
2 (t)−

(
λρ1η2p

p− 1
+ b

)
f2(t)−

λ2η2p

2(p− 1)
= 0,

(8.3.7)

with boundary conditions f1(T ) = f2(T ) = 0.

Proof. See Appendix 8.A.

In the following proposition, the solutions of functions f1(t) and f2(t) to ODE

system (8.3.7) are derived in closed form.

Proposition 8.3.3. Closed-form solutions to ODE system (8.3.7) are given by

f2(t) =



0, η2 = 0;

n1n2

(
1− e

√
∆(T−t)

)
n1 − n2e

√
∆(T−t)

, η2 ̸= 0 and ∆ > 0;

η2

(
1
p−1ρ

2
1 − ρ22

)
(T − t)n20

η2

(
1
p−1ρ

2
1 − ρ22

)
(T − t)n0 − 2

, η2 ̸= 0 and ∆ = 0;

n0 +

√
−∆

η2

(
ρ21
p−1 − ρ22

) tan

(
arctan

(
b+ λη2ρ1

p
p−1√

−∆

)

−
√
−∆

2
(T − t)

)
, η2 ̸= 0 and ∆ < 0;

(8.3.8)

and

f1(t) =

∫ T

t

{
1

2

(
ρ22 −

1

p− 1
ρ21

)
η1f

2
2 (s)−

(
λρ1η1p

p− 1
− a

)
f2(s)

}
ds

+ (T − t)

(
rp− λ2η1p

2(p− 1)

)
,

(8.3.9)
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where ∆, n0, n1, and n2 are given by

∆ =

(
b+

λρ1η2p

p− 1

)2

+

(
ρ22 −

ρ21
p− 1

)
λ2η22p

p− 1
, n0 =

−
(
b+ λρ1η2p

p−1

)
(

1
p−1ρ

2
1 − ρ22

)
η2
,

n1 =
−
(
b+ λρ1η2p

p−1

)
+
√
∆(

1
p−1ρ

2
1 − ρ22

)
η2

, n2 =
−
(
b+ λρ1η2p

p−1

)
−

√
∆(

1
p−1ρ

2
1 − ρ22

)
η2

.

(8.3.10)

Proof. See Appendix 8.B.

Remark 8.3.4. From Proposition 8.3.3, it is straightforward to verify that f2(t) is a

monotonically increasing function for the case when η2 ̸= 0 and ∆ > 0, while f2(t)

is monotonically decreasing for the case when η2 ̸= 0 and ∆ ≤ 0. These results

imply that |f2(t)| is bounded by |f2(0)| for t ∈ [0, T ].

To give the space where the candidate solution triplet (Yt, Z1,t, Z2,t) presented in

Proposition 8.3.2 lies in, let us recall the following result on the Laplace transform

of an integrated square-root diffusion process; see, for example, Pitman and Yor

(1982) or Zeng and Taksar (2013).

Lemma 8.3.5. Consider process {αt}t∈[0,T ] with the following square-root diffusion

dynamics:

dαt = κα(θα − αt) dt+ σα
√
αt dWt,

where Wt is a one-dimensional Brownian motion under P measure. When cα ≤
κ2α/2σ

2
α, the Laplace transform is well-defined, i.e.,

E

[
exp

{
cα

∫ T

0

αt dt

}]
<∞.

Inspired by the uniform boundedness of function f2(t), Lemma 8.3.5 and the

form of square-root diffusion process {η1 + η2Vt}t∈[0,T ], we impose the following

technical condition on the model parameters throughout out the rest of the paper.

Assumption 8.3.6. When η2 ̸= 0, the model parameters satisfy[(
1− 1

p− 1

)2

ρ21 + 2ρ22

]
f22 (0) + λ2

(
4p2

(p− 1)2
+

2p

p− 1
+

1

2

)
≤ b2

2η22
.

Remark 8.3.7. It is worth mentioning that the feasibility of Assumption 8.3.6 is

guaranteed by the monotonicity of function f2(t). In particular, when the investment

horizon T is small enough, f22 (0) decreases and converges to zero. This assumption

essentially assures the uniqueness results of BSRE (8.3.2) and linear BSDEs (8.3.3)-

(8.3.4) as well as the admissibility of the optimal investment strategy π∗
t given in
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(8.4.1). From an economic point of view, the above assumption gives an upper

bound for the slope λ of the market price of risk process θt = λ
√
η1 + η2Vt. Due to

the unboundedness of θt, taking risk might be rewarded too much by the market,

if there is no any restriction on the slope λ. As stated in Korn and Kraft (2004)

and Kraft (2005), in such a case, neither the finiteness of terminal utility nor the

uniqueness of optimal solution can be ensured.

Remark 8.3.8. For the simple case when η2 = 0, we observe that the market price of

risk reduces to the constant λ
√
η1. Consequently, the validity of Girsanov’s measure

change holds without any technical conditions on the model parameters in the proof

of Proposition 8.3.9, Theorem 8.3.10, and Proposition 8.3.12 and 8.3.13 below.

Proposition 8.3.9. Suppose Assumption 8.3.6 holds. The solution (Yt, Z1,t, Z2,t)

given in Proposition 8.3.2 lies in S∞
F,P(0, T ;R+)×S2

F,P(0, T ;R)×S2
F,P(0, T ;R). More

precisely, 0 < Yt < erp(T−t) for all t ∈ [0, T ], P almost surely.

Proof. See Appendix 8.C.

Having verified that the candidate solution (Yt, Z1,t, Z2,t) is indeed a solution

triplet to BSRE (8.3.2), we next prove the uniqueness of the solution using the

results of Kobylanski (2000).

Theorem 8.3.10. Suppose Assumption 8.3.6 holds. BSRE (8.3.2) admits a unique

solution (Yt, Z1,t, Z2,t), which is given by (8.3.5) and (8.3.6).

Proof. See Appendix 8.D.

Remark 8.3.11. In the proof of Theorem 8.3.10, the generator of quadratic BSDE

(8.D.2) is concave in the control components Z1,t/Yt and Z2,t/Yt of the solution,

so the uniqueness theorem for quadratic BSDEs in Briand and Hu (2008) can be

used if the random variable
∫ T
0
θ2t dt has exponential moments of all order (see

Assumption (A.2) in Briand and Hu (2008)), i.e., for sufficiently large constant

c ∈ R+, it holds that

E

[
exp

{
c

∫ T

0

θ2t dt

}]
<∞.

This assumption, however, violates the explosion criteria of integrated square-root

diffusion processes, namely, Lemma 8.3.5 above. Therefore, a comparison method

is applied in the above proof to eliminate the singular term p
2(p−1)θ

2
t − rp within

the generator of quadratic BSDE (8.D.2).
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Having solved BSRE (8.3.2) completely, we can simplify linear BSDE (8.3.3) of

(G1,t,Λ1,t,Λ2,t) as follows:dG1,t =
(
rG1,t + θtΛ1,t −

ρ2
λ
f2(t)θtΛ2,t

)
dt+ Λ1,t dW1,t + Λ2,t dW2,t,

G1,T =1.
(8.3.11)

Proposition 8.3.12. Suppose Assumption 8.3.6 holds. The unique solution to

linear BSDE (8.3.11) is given by

G1,t = e−r(T−t), (8.3.12)

and

(Λ1,t,Λ2,t) = (0, 0), for all t ∈ [0, T ]. (8.3.13)

Proof. See Appendix 8.E.

Relying on the preceding results on the solutions to BSRE (8.3.2) and linear

BSDE (8.3.3), linear BSDE (8.3.4) of (G2,t,Γ1,t,Γ2,t) can be reformulated as
dG2,t =

(
rG2,t + θtΓ1,t −

ρ2
λ
f2(t)θtΓ2,t +

q

β(1− p)
µle

−r(T−t)
)
dt

+ Γ1,t dW1,t + Γ2,t dW2,t,

G2,T =1.

(8.3.14)

Proceeding as in the proof of Proposition 8.3.12, we can obtain the unique solution

to BSDE (8.3.14) in Proposition 8.3.13 below.

Proposition 8.3.13. Suppose Assumption 8.3.6 holds. The unique solution to

linear BSDE (8.3.14) is given by

G2,t = e−r(T−t)
(
1− qµl

β(1− p)
(T − t)

)
, (8.3.15)

and

(Γ1,t,Γ2,t) = (0, 0). (8.3.16)

Remark 8.3.14. It is of importance to identify that the control components Λ2,t

and Γ2,t of linear BSDEs (8.3.3)-(8.3.4) are zeros, because of which the second drift

term on the right-hand side of (8.3.1) can be removed.

8.4 Solution to the optimization problem

In this section, we derive the main result of this paper, the optimal investment

strategy and optimal value function for ALM problem (8.2.10) under HARA utility,

which are represented in terms of the solutions to BSDEs (8.3.2)-(8.3.4) with explicit

expressions given in Proposition 8.3.2, Proposition 8.3.12 and 8.3.13, respectively.
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Theorem 8.4.1. Suppose Assumption 8.3.6 holds, then for any initial value of data

(x0, l0) satisfying
q

1−p (x0−G1,0l0)+βG2,0 > 0, the optimal investment strategy and

optimal value function of ALM problem (8.2.10) under HARA utility are respectively

given by

π∗
t =

(
1

1−p (X
∗
t −G1,tLt) +

β
qG2,t

)(
Z1,t

Yt
+ θt

)
+ σL,tG1,t

σS,t
, (8.4.1)

and

J(x0, l0, v0;π
∗) =

1− p

qp
Y0

(
q

1− p
(x0 −G1,0l0) + βG2,0

)p
, (8.4.2)

where Yt, Z1,t, G1,t, and G2,t are explicitly given by (8.3.5), (8.3.6), (8.3.12), and

(8.3.15). Moreover, the optimal investment strategy is admissible, i.e., π∗ ∈ A.

Proof. See Appendix 8.F.

Remark 8.4.2. If we set µl = l0 = µL,t = σL,t = 0 for all t ∈ [0, T ] in Theorem 8.4.1,

we obtain the closed-form solution to the case without random liability. Instead,

the specifications q = 1 − p and β = 0 lead to the results for the ALM problem

under power utility.

The next three corollaries provide the results for the CEV model, 4/2 model,

and Schöbel and Zhu model in Example 8.2.2-8.2.4, respectively.

Corollary 8.4.3 (CEV model). Suppose Assumption 8.3.6 holds, then for any

initial value of data (x0, l0) satisfying q
1−p (x0 − G1,0l0) + βG2,0 > 0, if the risky

asset price process follows the CEV model (8.2.4) in Example 8.2.2, the optimal

investment strategy of ALM problem (8.2.10) under HARA utility is given by

π∗
t =

(
1

1−p (X
∗
t −G1,tLt) +

β
qG2,t

)(
µ−r
σ − 2γσf̃2(t)

)
S−γ
t + σL,tG1,t

σSγt
,

and the optimal value function is given by

J(x0, l0, s0;π
∗) =

1− p

qp

(
q

1− p
(x0 −G1,0l0) + βG2,0

)p
exp

{
f̃1(0) + f̃2(0)s

−2γ
0

}
,

where G1,t and G2,t are explicitly given by (8.3.12) and (8.3.15), and functions

f̃1(t) and f̃2(t) are given by

f̃2(t) =

ñ1ñ2

(
1− e

√
∆̃(T−t)

)
ñ1 − ñ2e

√
∆̃(T−t)
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and

f̃1(t) = (rp+ γ(2γ + 1)σ2ñ2)(T − t)− (2γ + 1)(p− 1)

2γ
log

(
ñ1 − ñ2

ñ1 − ñ2e
√

∆̃(T−t)

)
,

with ∆̃, ñ1, ñ2 given by

∆̃ =
4γ2

(p− 1)2
[
(rp− µ)2 − (µ− r)2p

]
,

ñ1 =
2γ(µ− rp) + (p− 1)

√
∆̃

4γ2σ2
,

ñ2 =
2γ(µ− rp)− (p− 1)

√
∆̃

4γ2σ2
.

Proof. Substituting the specified parameters in Example 8.2.2 into Theorem 8.4.1

yields the above results.

Remark 8.4.4. When µl = l0 = µL,t = σL,t = 0 in Corollary 8.4.3, the optimal

investment strategy and optimal value function under the CEV model and HARA

utility without liability are provided, which are the same as Theorem 4.1 in Zhang

and Zhao (2020) (function Ĩ(t) therein reduces to zero if no reinsurance is considered)

and Theorem 3.2 in Jung and Kim (2012). If we further set q = 1− p and β = 0,

then Corollary 8.4.3 provides the results under power utility without liability, which

are consistent with Proposition 4.1 in Gao (2009).

Corollary 8.4.5 (4/2 model). Suppose Assumption 8.3.6 holds, then for any initial

value of data (x0, l0) satisfying q
1−p (x0 − G1,0l0) + βG2,0 > 0, if the risky asset

price process follows the 4/2 stochastic volatility model (8.2.5) in Example 8.2.3,

the optimal investment strategy of ALM problem (8.2.10) under HARA utility is

given by

π∗
t =

(
1

1−p (X
∗
t −G1,tLt) +

β
qG2,t

) (
f̄2(t)ρ+ λ

)√
η2Vt + σL,tG1,t

c1
√
Vt +

c2√
Vt

,

and the optimal value function is given by

J(x0, l0, v0;π
∗) =

1− p

p

(
q

1− p
(x0 −G1,0l0) + βG2,0

)p
exp

{
f̄1(0) + f̄2(0)v0

}
,

where G1,t and G2,t are explicitly given by (8.3.12) and (8.3.15), and functions
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f̄1(t) and f̄2(t) are given by

f̄2(t) =



n̄1n̄2

(
1− e

√
∆̄(T−t)

)
n̄1 − n̄2e

√
∆̄(T−t)

, ∆̄ > 0;

η2
(

p
p−1

ρ2 − 1
)
(T − t)n̄2

0

η2
(

p
p−1

ρ2 − 1
)
(T − t)n̄0 − 2

, ∆̄ = 0;

√
−∆̄

η2
(

p
p−1

ρ2 − 1
) tan

(
arctan

(
b+ λη2ρ

p
p−1√

−∆̄

)
−
√

−∆̄

2
(T − t)

)
+ n̄0, ∆̄ < 0;

and

f̄1(t) =



(rp+ an̄2)(T − t) +
a(n̄2 − n̄1)√

∆̄
log

(
n̄1 − n̄2

n̄1 − n̄2e
√

∆̄(T−t)

)
, ∆̄ > 0;

(rp+ an̄0)(T − t) −
2a(

p
p−1ρ

2 − 1
)
η2

log

 2

2 − η2
(

p
p−1ρ

2 − 1
)
(T − t)n̄0

 , ∆̄ = 0;

(rp+ an̄0)(T − t) −
2a(

p
p−1ρ

2 − 1
)
η2

[
log

(
cos

(
arctan

(
b+ λη2ρ

p
p−1√

−∆̄

)))

− log

(
cos

(
arctan

(
b+ λη2ρ

p
p−1√

−∆̄

)
−
√

−∆̄(T − t)

2

))]
, ∆̄ < 0,

with ∆̄, n̄0, n̄1, n̄2 given by

∆̄ = b2 + λη2(2bρ+ λη2)
p

p− 1
, n̄0 =

−
(
b+ λρη2p

p−1

)
(

p
p−1ρ

2 − 1
)
η2
,

n̄1 =
−
(
b+ λρη2p

p−1

)
+
√
∆̄(

p
p−1ρ

2 − 1
)
η2

, n̄1 =
−
(
b+ λρη2p

p−1

)
−

√
∆̄(

p
p−1ρ

2 − 1
)
η2

.

Proof. Plugging the specified parameters in Example 8.2.3 into Theorem 8.4.1 leads

to the above results immediately.

Remark 8.4.6. Notice that the case (c1, c2) = (1, 0) in Corollary 8.4.5 leads to the

optimal investment strategy and optimal value function under the Heston model.

If we further get rid of random liability by specifying µl = l0 = µL,t = σL,t = 0, the

degenerated results are the same as Lemma 4.2 and Eq. (67) in Zhang, Zhao, and

Kou (2021) (function I(t) therein degenerates to zero when reinsurance is ignored).

Instead, the specification (c1, c2) = (0, 1) corresponds to the 3/2 model. If we

specify q = 1−p and β = 0, explicit expressions for the optimal investment strategy

and optimal value function of ALM problem under power utility are obtained. In

this sense, our solutions generalize the results of Kraft (2005), Zeng and Taksar

(2013), and Cheng and Escobar (2021a) from the optimal investment problem under

power utility to the ALM problem under the more general HARA utility.
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Corollary 8.4.7 (Schöbel and Zhu model). Suppose Assumption 8.3.6 holds, then

for any initial value of data (x0, l0) satisfying q
1−p (x0 −G1,0l0) + βG2,0 > 0, if the

risky asset price process follows the Schöbel and Zhu model (8.2.6) in Example 8.2.4,

the optimal investment strategy of ALM problem (8.2.10) under HARA utility is

given by

π∗
t =

(
1

1−p (X
∗
t −G1,tLt) +

β
qG2,t

)
λ
√
η1 + σL,tG1,t

Vt
,

and the optimal value function is given by

J(x0, l0;π
∗) =

1− p

qp

(
q

1− p
(x0 −G1,0l0) + βG2,0

)p
exp

{(
rp− λ2η1p

p− 1

)
T

}
,

where G1,t and G2,t are explicitly given by (8.3.12) and (8.3.15).

Proof. Substituting the specifications in Example 8.2.4 into Theorem 8.4.1 gives

the above results.

Remark 8.4.8. It is interesting to see from Corollary 8.4.7 that although the optimal

investment strategy π∗
t hinges upon the instantaneous volatility Vt within the

Schöbel and Zhu model (8.2.6), the optimal value function J(x0, l0;π
∗) is not

affected by Vt. This finding can be explained by our specification of the market

price of risk process θt = λ
√
η1 + η2Vt. Indeed, when the Schöbel and Zhu model

(8.2.6) is considered, η2 turns out to be zero so that a constant market price of

risk λ
√
η1 is obtained over t ∈ [0, T ]. In other words, taking risks is rewarded the

same by the market. However, as discussed in Kraft (2005), we should be aware

that a constant market price of risk is a rather exceptional case. In the paper of

Schöbel and Zhu (1999), the market price of risk is assumed to be proportional

to the volatility process, i.e., θt = λ
√
η1Vt, but this specification cannot lead to

explicit expressions for both the optimal investment strategy and optimal value

function under the HARA utility framework. Our specification, however, retains

the mathematical tractability of ALM problem (8.2.10) as well as the form of

the risk-neutralized process under the risk-adjusted martingale measure; one may

consult Eqs. (1)-(2) in Schöbel and Zhu (1999).

8.5 Numerical examples

This section provides numerical examples to examine the effect of some model

parameters on the behavior of optimal investment strategies. We mainly focus on

two extensively studied models in the literature, the CEV model (8.2.4) and 4/2

stochastic volatility model (8.2.5). For simplicity but without loss of generality, the

diffusion coefficient of liability process (8.2.9) is chosen to be a non-zero constant,

i.e., σL,t = σl ∈ R0. Unless otherwise stated, the hypothetical values of model

parameters are as follows: p = − 1
2 , q = 2, β = 1, r = 0.05, µl = 0.02, σl = 0.15, x0 =
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1, l0 = 0.2, T = 5; in the CEV model µ = 0.12, σ = 0.2, γ = −0.7, and s0 = 0.5;

in the 4/2 model c1 = 0.9051, c2 = 0.023, η2 = 0.4356, λ = 2.9428, b = 7.3479, a =

0.24, ρ = 0.3, and v0 = 0.04. In the following numerical illustrations, we vary the

value of one parameter with others fixed each time.

8.5.1 Effect of parameters in the CEV model on the optimal

investment strategy

In this subsection, we focus on the results for the CEV model (8.2.4) given in

Corollary 8.4.3. Because π∗
t depends on the stochastic processes St, Lt, and X

∗
t , we

use the Monte Carlo simulation technique to analyze the effect of some parameters

in the CEV model on the optimal investment strategy π∗
t . More precisely, one

sample path of π∗
t is given in the following Figure 8.1-8.2.

Figure 8.1 shows the relationship between the parameters µ, σ, γ and the optimal

investment strategy π∗
t . We can observe that the optimal amount of money invested

in the risk asset is positively correlated with the parameter µ. The reason is that

in the CEV model (8.2.4), µ represents the return rate of the risky asset price.

When other parameters remain unchanged, a greater value of µ implies a higher

premium return of the risky asset. Consequently, the asset-liability manager is

more willing to invest in the risky asset. From Figure 8.1, we also find that the

optimal investment strategy decreases with respect to the parameter σ. This can

be explained by the fact that σ characterizes the risky asset’s local volatility. The

greater the volatility parameter σ is, the higher the risk of the risky asset becomes.

Therefore, the asset-liability manager will decrease the amount of money invested

in the risky asset to avoid volatility risk. We can draw from the right panel of

Figure 8.1 that the optimal amount of money invested in the risky asset has positive

relationships with the elasticity parameter γ. From the economic implication of γ,

the negativeness of γ means that the leverage effect is present, which, in turn, leads

to a more significant volatility risk since the instantaneous volatility increases as

the risky asset’s price decreases. Hence, when γ becomes less negative from −0.7

to −0.5, the volatility risk becomes less significant and the asset-liability manager

would increase the investment in the risky asset.

Figure 8.1: Effect of µ, σ, and γ on the optimal strategy π∗
t under the CEV model

Figure 8.2 depicts the effect of the parameters r, σl, µl on the optimal investment
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strategy π∗
t . From the left panel of Figure 8.2, we see that the optimal amount of

money invested in the risky asset decreases as the risk-free interest rate r increases

from 0.02 to 0.07. This is because the greater value of r means that the expected

return of the money account becomes higher. Therefore, the asset-liability manager

is willing to put more money into the risk-free money account to reduce the overall

risks. We also vary σl from 0.1 to 0.2, and find that the optimal amount of money

invested in the risky asset increases as the value of parameter σl becomes larger.

This is consistent with our intuition. Indeed, by Eq. (8.2.9), a greater value of

σl implies higher volatility of the uncontrollable liability. To hedge against the

increased volatility risk of liability, the asset-liability manager tends to adopt a

more aggressive investment strategy. In contrast, from the right panel of Figure 8.2,

we notice that µl exerts a negative effect on the optimal investment strategy. One

of the possible reasons is that when µl increases, the random liability’s drift rate

becomes larger while the volatility remains unchanged. Hence, the asset-liability

manager opts for a more conservative investment strategy instead of putting more

money into the risky asset, which might lead to mis-hedging against the volatility

risk.

Figure 8.2: Effect of r, σl, and µl on the optimal strategy π∗
t under the CEV model

8.5.2 Effect of parameters in the 4/2 model on the optimal

investment strategy

In this subsection, we are interested in the effect of some parameters in the 4/2

stochastic volatility model (8.2.5) on the optimal investment strategy π∗
t given in

Corollary 8.4.5. By using some Monte Carlo simulation techniques, one sample

path of π∗
t with respect to time is presented in Figure 8.3-8.4 below.

Figure 8.3 illustrates the effect of the parameters λ and b on the optimal invest-

ment strategy π∗
t . It is shown that as λ increases, the optimal amount of money

invested in the risky asset increases. This can be explained by the fact that λ

partially reflects the market price of volatility risk, and the asset-liability manager

can derive a higher volatility risk premium from the risky asset when λ becomes

larger. As such, the manager tends to invest more in the risky asset. We vary b from

5.3479 to 9.3479 in the right panel of Figure 8.3. As b increases, the instantaneous

variance driver of the 4/2 model reverts faster towards the long-run mean a/b. In

this case, the variance driver would stay in a smaller level for a longer period of
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time, which reduces the volatility risk and makes the asset-liability manager more

willing to invest in the risky asset.

Figure 8.3: Effect of λ and b on the optimal strategy π∗
t under the 4/2 model

Figure 8.4: Effect of ρ and η2 on the optimal strategy π∗
t under the 4/2 model

Figure 8.4 shows how the optimal investment strategy π∗
t changes with respect to

the parameters ρ and η2. We vary ρ from −0.8 to 0.8 in the left panel of Figure 8.4,

and find that the optimal investment strategy increases as ρ becomes larger. One

explanation is that as ρ increases, the risky asset price is less negatively correlated

and more positively correlated with the instantaneous variance driver. In this case,

the offset between the uncertainties of two fundamental risk factors, i.e., W1,t and

W2,t, is reduced, which amplifies the asset-liability manager’s exposure to the overall

risks. Therefore, the asset-liability manager needs to invest more in the risky asset

to hedge against the overall risks. It can be seen from the right panel of Figure 8.4

that the optimal amount of money invested in the risky asset increases with respect

to η2 which varies from 0.4356 to 0.6356. This can be possibly explained by the 4/2

model dynamic (8.2.5), from which we see that η2 influences not only the volatility

of the variance driver process but also the market price of volatility risk. On one

hand, as η2 increases, the fluctuation of the variance driver process becomes more

volatile. On the other hand, a greater value of η2 allows the asset-liability manager

to acquire a higher risk premium by bearing the same amount of volatility risk. In
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other words, the overall effect of η2 on the optimal investment strategy takes on

these two opposite sides. The increment of the optimal amount of money invested

in the risky asset shows that compared with the variance driver process itself, the

risk premium is more sensitive to the change of η2. Therefore, the asset-liability

manager tends to invest more money in the risky asset when η2 increases.

8.6 Conclusion

In this paper, we investigate an optimal ALM problem under the HARA utility

framework in the presence of stochastic volatility. The asset-liability manager has

access to a financial market consisting of a risk-free asset and a risky asset, in which

the market price of risk is described by an affine diffusion factor process and the

uncontrollable liability is featured by a generalized drifted Brownian motion. The

general modeling framework includes not only a wide class of Markovian models,

such as the CEV model, Stein-Stein model, Schöbel and Zhu model, Heston model,

3/2 model, and 4/2 model but also some non-Markovian models, as exceptional cases.

The asset-liability manager aims to determine the optimal investment strategy to

maximize the utility of terminal surplus. Given the potentially non-Markovian

and incomplete market setting, we apply a BSDE approach to solve the problem.

By solving a system of three related BSDEs, explicit expressions for the optimal

investment strategy and optimal value function are derived. Furthermore, closed-

form solutions to some particular cases of our model are obtained. Finally, we

provide some numerical experiments for two extensively studied models, the CEV

model and 4/2 model, to illustrate the effects of model parameters on the optimal

investment strategies. As far as we know, there is no literature discussing ALM

problems under the HARA utility preferences and stochastic volatility models in

such a non-Markovian and incomplete market setting. In this sense, this paper

extends the existing results and models on ALM problems.

In future research, some extensions of the present paper are worthy of being

further explored. For instance, since this paper only considers the case with a single

risky asset, one may extend the current framework to that with multiple risky assets,

where an appropriate adoption of a multi-dimensional market price of risk would be

critical. Once the relevant market price of risk is delicately chosen, the associated

BSDEs are expected to have resemblant structures to the ones considered in the

present paper. It is noteworthy that the complicated case with multiple risky assets

may lead to an ODE system with high dimensions, thus, resulting in no analytical

solutions to the problem in general. One may also introduce model ambiguity into

ALM problems in a non-Markovian market setting. In such a case, the generally

applied Hamilton-Jacobi-Bellman-Issacs (HJBI) approach in the literature cannot

be used, and therefore, a novel BSDE approach may be disentangled.
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8.A Proof of Proposition 8.3.2

Proof. We conjecture that the first component Yt of solution to BSRE (8.3.2) has

an exponential-affine form:

Yt = exp {f1(t) + f2(t)Vt} ,

where f1(t) and f2(t) are two undetermined differentiable functions with boundary

condition f1(T ) = f2(T ) = 0. An application of Itô’s formula to Yt yields

dYt =

(
df1(t)

dt
+
df2(t)

dt
Vt + (a− bVt)f2(t) +

1

2
(η1 + η2Vt)

(
ρ21 + ρ22)f

2
2 (t
))

Yt dt

+ f2(t)
√
η1 + η2Vtρ1Yt dW1,t + f2(t)

√
η1 + η2Vtρ2Yt dW2,t.

(8.A.1)

Comparing (8.A.1) and the first equation of BSRE (8.3.2) and separating the

dependence on Vt, we find that f1(t) and f2(t) must solve ODE system (8.3.7).

This verifies that (8.3.5) and (8.3.6) form one solution to BSDE (8.3.2).

8.B Proof of Proposition 8.3.3

Proof. We first solve the ODE of f2(t) because f1(t) can be immediately obtained

given that we know f2(t). When η2 = 0, the Riccati equation of f2(t) reduces to

the following first-order linear equation:

df2(t)

dt
− bf2(t) = 0, f2(T ) = 0,

from which we obtain f2(t) = 0. For the case when η2 ̸= 0, set ∆ =
(
b+ λρ1η2p

p−1

)2
+(

ρ22 − 1
p−1ρ

2
1

)
λ2η22p
p−1 . If ∆ > 0, we can reformulate the Riccati ODE of f2(t) as

follows:

df2(t)

dt
=
η2
2

(
1

p− 1
ρ21 − ρ22

)
(f2(t)− n1)(f2(t)− n2), (8.B.1)

where n1 and n2 are given by (8.3.10). By taking integration on both sides from t

to T , we obtain

f2(t) =
n1n2

(
1− e

√
∆(T−t)

)
n1 − n2e

√
∆(T−t)

.
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If ∆ = 0, we can simplify (8.B.1) as follows:

df2(t)

(f2(t)− n0)2
=
η2
2

(
1

p− 1
ρ21 − ρ22

)
dt

with n0 given in (8.3.10). Then implementing an integral calculation leads to

f2(t) =
η2

(
1
p−1ρ

2
1 − ρ22

)
(T − t)n20

η2

(
1
p−1ρ

2
1 − ρ22

)
(T − t)n0 − 2

.

If ∆ < 0, the terms within the Riccati equation of f2(t) can be rewritten as follows:

df2(t)

(f2(t)− n0)2 +
−∆

η22( 1
p−1ρ

2
1−ρ22)

2

=
η2
2

(
1

p− 1
ρ21 − ρ22

)
dt.

After doing some tedious calculations and noticing the boundary condition that

f2(T ) = 0, we obtain

f2(t) =

√
−∆

η2

(
1
p−1ρ

2
1 − ρ22

) tan

(
arctan

(
b+ λη2ρ1

p
p−1√

−∆

)
−

√
−∆

2
(T − t)

)
+ n0.

Finally, it follows from direct differentiation that f1(t) is given by (8.3.9). This

completes the proof.

8.C Proof of Proposition 8.3.9

Proof. Consider the reciprocal process of Yt and denote by Pt =
1
Yt
. Applying Itô’s

formula to Pt, we obtain the following linear BSDE of (Pt, Q1,t, Q2,t):
dPt =

[(
rp− p

2(p− 1)
θ2t

)
Pt +

(
p

p− 1
θt −

p− 2

2(p− 1)

Z1,t

Yt

)
Q1,t −

Z2,t

Yt
Q2,t

]
dt

+Q1,t dW1,t +Q2,t dW2,t,

PT =1,

(8.C.1)

where Q1,t = −Z1,t

Yt
and Q2,t = −Z2,t

Yt
. Under Assumption 8.3.6, it is straightforward

to check that Novikov’s condition holds for the following Radon-Nikodym derivative

dP̂
dP

∣∣∣
FT

=exp

{
− 1

2

∫ T

0

(
p

p− 1
θt −

p− 2

2(p− 1)

Z1,t

Yt

)2

dt−
∫ T

0

(
p

p− 1
θt

− p− 2

2(p− 1)

Z1,t

Yt

)
dW1,t −

1

2

∫ T

0

Z2
2,t

Y 2
t

dt+

∫ T

0

Z2,t

Yt
dW2,t

}
=exp

{
−1

2

∫ T

0

[(
p

p− 1
− p− 2

2(p− 1)

ρ1
λ
f2(t)

)2

+
ρ22
λ2
f2
2 (t)

]
θ2t dt−

∫ T

0

(
p

p− 1

− p− 2

2(p− 1)

ρ1
λ
f2(t)

)
θt dW1,t +

∫ T

0

ρ2
λ
f2(t)θt dW2,t

}
:=M1,T ,
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so that P̂ measure is well-defined on FT , where the second equality follows from

the expressions of (Yt, Z1,t, Z2,t) given in Proposition 8.3.2. By Girsanov’s theorem,

the two processes given by

Ŵ1,t =W1,t +

∫ t

0

(
p

p− 1
θs −

p− 2

2(p− 1)

Z1,s

Ys

)
ds

and

Ŵ2,t =W2,t −
∫ t

0

Z2,s

Ys
ds

are standard (F, P̂)-Brownian motions. Therefore, linear terms within the generator

of BSDE (8.C.1) can be removed, and we havedPt =
(
rp− p

2(p− 1)
θ2t

)
Pt dt+Q1,t dŴ1,t +Q2,t dŴ2,t,

PT =1.

(8.C.2)

Define

P̂t = Pt exp

{∫ t

0

(
−rp+ p

2(p− 1)
θ2s

)
ds

}
and

Q̂i,t = Qi,t exp

{∫ t

0

(
−rp+ p

2(p− 1)
θ2s

)
ds

}
, for i = 1, 2.

It follows from (8.C.2) that
dP̂t =Q̂1,t dŴ1,t + Q̂2,t dŴ2,t,

P̂T =exp

{∫ T

0

(
−rp+ p

2(p− 1)
θ2t

)
dt

}
.

(8.C.3)

BSDE (8.C.3) is clearly a standard linear BSDE with uniformly Lipschitz continuity
(El Karoui, Peng, and Quenez (1997)) since the generator is zero. Moreover, by
Cauchy-Schwarz inequality along with Assumption 8.3.6, we see that the boundary
value P̂T is square-integrable under measure P̂, i.e.,

Ê
[
exp

{∫ T

0

(
−2rp+

p

p− 1
θ
2
t

)
dt

}]
=E
[
M1,T exp

{∫ T

0

(
−2rp+

p

p− 1
θ
2
t

)
dt

}]

≤c
{
E
[
exp

{
−2

∫ T

0

[(
p

p− 1
−

p− 2

2(p− 1)

ρ1

λ
f2(t)

)2

+
ρ22
λ2
f
2
2 (t)

]
θ
2
t dt− 2

∫ T

0

(
p

p− 1

−
p− 2

2(p− 1)

ρ1

λ
f2(t)

)
θt dW1,t + 2

∫ T

0

ρ2

λ
f2(t)θt dW2,t

}]}1/2

×
{
E
[
exp

{∫ T

0

[(
p

p− 1
−

p− 2

2(p− 1)

ρ1

λ
f2(t)

)2

+
ρ22
λ2
f
2
2 (t) +

2p

p− 1

]
θ
2
t dt

}]}1/2

< ∞,

where c is a positive constant. Therefore, it follows from Proposition 2.2 in El

Karoui, Peng, and Quenez (1997) that

P̂t = Ê

[
exp

{∫ T

0

(
−rp+ p

2(p− 1)
θ2s

)
ds

}∣∣∣∣Ft
]
,
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and thus,

Yt =
1

Ê
[
exp

{∫ T
t

(
−rp+ p

2(p−1)θ
2
s

)
ds
} ∣∣∣∣Ft] < erp(T−t),

for any t ∈ [0, T ], P-almost surely. As a result, we find that

E

[
sup
t∈[0,T ]

Z2
i,t

]
≤ KiE

[
sup
t∈[0,T ]

(η1 + η2Vt)

]
≤ KiC

1
2

T <∞,

where Ki = f22 (0)e
2|rp|T ρ2i , for i = 1, 2. This completes the proof.

8.D Proof of Theorem 8.3.10

Proof. Applying Itô’s formula to log(Yt) shows that (log(Yt), Z1,t/Yt, Z2,t/Yt) solves

the following quadratic BSDE:
d log(Yt) =

[(
p

2(p− 1)
θ2t − rp

)
+

1

2(p− 1)

(
Z1,t

Yt

)2

− 1

2

(
Z2,t

Yt

)2

+
p

p− 1
θt
Z1,t

Yt

]
dt

+
Z1,t

Yt
dW1,t +

Z2,t

Yt
dW2,t,

log(YT ) =0.

(8.D.1)

By Assumption 8.3.6 and Lemma 8.3.5, it is clear that Novikov’s condition holds

for the following Radon-Nikodym derivative:

dP̄
dP

∣∣∣∣
FT

= exp

{
−
∫ T

0

p

p− 1
θt dW1,t −

1

2

∫ T

0

p2

(p− 1)2
θ2t dt

}
:=M2,T .

Thus, P̄ measure is well-defined and equivalent to P on FT . From Girsanov’s

theorem, BSDE (8.D.1) can be rewritten under P̄ measure:
d log(Yt) =

[(
p

2(p− 1)
θ2t − rp

)
+

1

2(p− 1)

(
Z1,t

Yt

)2

− 1

2

(
Z2,t

Yt

)2
]
dt

+
Z1,t

Yt
dW̄1,t +

Z2,t

Yt
dW̄2,t,

log(YT ) =0.

(8.D.2)

where W̄1,t =W1,t+
∫ t
0

p
p−1θs ds and W̄2,t =W2,t are two standard (F, P̄)-Brownian

motions. Suppose that (Ȳt, Z̄1,t, Z̄2,t) is another solution triplet to BSRE (8.3.2),

which might be different from (Yt, Z1,t, Z2,t) given in Proposition 8.3.2. Define the

difference between (log(Yt), Z1,t/Yt, Z2,t/Yt) and
(
log(Ȳt), Z̄1,t/Ȳt, Z̄2,t/Ȳt

)
by

(∆ log(Yt),∆Z1,t,∆Z2,t) :=

(
log(Yt)− log(Ȳt),

Z1,t

Yt
− Z̄1,t

Ȳt
,
Z2,t

Yt
− Z̄2,t

Ȳt

)
.
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Then it follows from (8.D.2) that (∆ log(Yt),∆Z1,t,∆Z2,t) solves the following

BSDE under P̄ measure:
d∆ log(Yt) =

[
1

2(p− 1)

(
Z2
1,t

Y 2
t

−
Z̄2
1,t

Ȳ 2
t

)
− 1

2

(
Z2
2,t

Y 2
t

−
Z̄2
2,t

Ȳ 2
t

)]
dt+∆Z1,t dW̄1,t

+∆Z2,t dW̄2,t,

∆ log(YT ) =0.

(8.D.3)

Define another probability measure P̃ by

dP̃
dP̄

∣∣∣∣
FT

=exp

{
−1

2

∫ T

0

1

(p− 1)2
Z2
1,t

Y 2
t

dt−
∫ T

0

1

p− 1

Z1,t

Yt
dW̄1,t

−1

2

∫ T

0

Z2
2,t

Y 2
t

dt+

∫ T

0

Z2,t

Yt
dW̄2,t

}
.

Indeed, by Assumption 8.3.6, Lemma 8.3.5, and Cauchy-Schwarz inequality, we see

that the following Novikov’s condition holds

Ē

[
exp

{
1

2

∫ T

0

[
1

(p− 1)2
Z2
1,t

Y 2
t

+
Z2
2,t

Y 2
t

]
dt

}]

=E

[
M2,T exp

{
1

2

∫ T

0

[
1

(p− 1)2
Z2
1,t

Y 2
t

+
Z2
2,t

Y 2
t

]
dt

}]

≤

{
E

[
exp

{
−2

∫ T

0

p

p− 1
θt dW1,t − 2

∫ T

0

p2

(p− 1)2
θ2t dt

}]}1/2

×

{
E

[
exp

{∫ T

0

[
p2

(p− 1)2
+
f22 (t)

λ2

(
ρ21

(p− 1)2
+ ρ22

)]
θ2t dt

}]}1/2

<∞.

Therefore, P̃ measure is well-defined and equivalent to P̄ on FT , and we can

reformulate BSDE (8.D.3) as follows:d∆ log(Yt) =−
[

1

2(p− 1)
∆Z2

1,t −
1

2
∆Z2

2,t

]
dt+∆Z1,t dW̃1,t +∆Z2,t dW̃2,t,

∆ log(YT ) =0,

(8.D.4)

where W̃1,t = W̄1,t +
∫ t
0

1
p−1

Z1,s

Ys
ds and W̃2,t = W̄2,t −

∫ t
0
Z2,s

Ys
ds are two standard

(F, P̃)-Brownian motions. Notice that BSDE (8.D.4) of (∆ log(Yt),∆Z1,t,∆Z2,t) is

a standard quadratic BSDE satisfying all the regularity conditions in Kobylanski

(2000). As a result of Theorem 2.3 and 2.6 in Kobylanski (2000), quadratic BSDE

(8.D.4) admits a unique solution triplet (∆ log(Yt),∆Z1,t,∆Z2,t) = (0, 0, 0). This

implies

Yt = Ȳt, Zi,t = Z̄i,t, for i = 1, 2.
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In other words, the solution triplet (Yt, Z1,t, Z2,t) given in Proposition 8.3.2 is the

unique solution to BSRE (8.3.2).

8.E Proof of Proposition 8.3.12

Proof. By Assumption 8.3.6, the following Radon-Nikodym derivative

dP̌
dP

∣∣∣∣
FT

= exp

{
−1

2

∫ T

0

(
1 +

ρ22f
2
2 (t)

λ2

)
θ2t dt−

∫ T

0

θt dW1,t +

∫ T

0

ρ2
λ
f2(t)θt dW2,t

}

is well-defined such that the equivalent probability measure P̄ is well-defined on FT .
Consequently, the following two processes defined by

W̌1,t =

∫ t

0

θs ds+W1,t

and

W̌2,t = −
∫ t

0

ρ2
λ
f2(s)θs ds+W2,t

are two standard (F, P̌)-Brownian motions according to Girsanov’s theorem. Hence,

linear BSDE (8.3.11) can be reformulated under P̌ as follows:{
dG1,t =rG1,t dt+ Λ1,t dW̌1,t + Λ2,t dW̌2,t,

G1,T =1,
(8.E.1)

which is clearly a linear BSDE with standard data (refer to El Karoui, Peng, and

Quenez (1997)). Hence, by Theorem 2.1 and Proposition 2.2 in El Karoui, Peng,

and Quenez (1997), (8.3.12) and (8.3.13) form the unique solution to linear BSDE

(8.3.11). This completes the proof.

8.F Proof of Theorem 8.4.1

Proof. It follows from (8.3.1)-(8.3.4) and results obtained in Proposition 8.3.2, 8.3.12

and 8.3.13 that

d

(
1− p

qp

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p

Yt

)
=
[
Yt

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−1(
πtσS,t − σL,tG1,t

)
+

1− p

qp

(
q

1− p
(Xπ

t

−G1,tLt) + βG2,t

)p

Z1,t

]
dW1,t +

1− p

qp

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p

Z2,t dW2,t

− (p− 1)2

2q
Yt

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−2 [
q

1− p

(
πtσS,t −G1,tσL,t

)
+

q
1−p

(Xπ
t −G1,tLt) + βG2,t

p− 1

(
Z1,t

Yt
+ θt

)]2
dt.

(8.F.1)
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Due to the pathwise continuity of Yt, X
π
t , πtσS,t, Lt, σL,t, G1,t, G2,t, θt,Λ1,t,Λ2,t,Γ1,t,

and Γ2,t, two stochastic integrals on the right-hand side of (8.F.1) are (F,P)-local
martingales, and thus, there exists a sequence of F-stopping times {τn}n∈N such

that τn ↑ ∞, P almost surely as n→ ∞, and the aforementioned local martingales

are indeed (F,P)-martingales when stopped by {τn}n∈N. Integrating both sides of

(8.F.1) from 0 to T ∧ τn and taking expectations, we obtain

E
[
1− p

qp

(
q

1− p
(Xπ

T∧τn −G1,T∧τnLT∧τn) + βG2,T∧τn

)p
YT∧τn

]
=− E

[∫ T∧τn

0

(p− 1)2

2q
Yt

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−2

×
[

q

1− p

(
πtσS,t −G1,tσL,t

)
+

q
1−p (X

π
t −G1,tLt) + βG2,t

p− 1

(
Z1,t

Yt
+ θt

)]2
dt

]

+
1− p

qp
Y0

(
q

1− p
(x0 −G1,0l0) + βG2,0

)p
.

(8.F.2)

Observe from Definition 8.2.6 that for any π ∈ A, the term in the expectation on

the left-hand side of (8.F.2) is uniformly integrable and the term in the expectation

on the right-hand side of (8.F.2) is non-negative and increasing with respect to n.

Then applying the equivalence between uniform integrability and L1 convergence

to the left-hand side of (8.F.2) and the monotone convergence theorem to the

right-hand side of (8.F.2), we have

E
[
1− p

qp

(
q

1− p
(Xπ

T − LT ) + β

)p]
=− E

[∫ T

0

(p− 1)2

2q
Yt

(
q

1− p
(Xπ

t −G1,tLt) + βG2,t

)p−2

×
[

q

1− p

(
πtσS,t −G1,tσL,t

)
+

q
1−p (X

π
t −G1,tLt) + βG2,t

p− 1

(
Z1,t

Yt
+ θt

)]2
dt

]

+
1− p

qp
Y0

(
q

1− p
(x0 −G1,0l0) + βG2,0

)p
,

which reads the optimal investment strategy π∗
t given by

π∗
t =

(
1

1−p (X
∗
t −G1,tLt) +

β
qG2,t

)(
Z1,t

Yt
+ θt

)
+ σL,tG1,t

σS,t
,

where X∗
t is the asset process associated with π∗

t , and the optimal value function is

given by (8.4.2).

We next verify the admissibility of optimal strategy π∗
t given in (8.4.1). To this

253



end, we insert π∗
t into (8.F.1) and obtain

d
(

1−p
qp

(
q

1−p
(X∗

t −G1,tLt) + βG2,t

)p
Yt

)
1−p
qp

(
q

1−p
(X∗

t −G1,tLt) + βG2,t

)p
Yt

=

(
1

1− p

Z1,t

Yt
+

p

1− p
θt

)
dW1,t +

Z2,t

Yt
dW2,t

=
f2(t)ρ1 + λp

λ(1− p)
θt dW1,t +

ρ2
λ
f2(t)θt dW2,t.

(8.F.3)

Under Assumption 8.3.6, the following Novikov’s condition holds

E

[
exp

{
1

2

∫ T

0

(
(f2(t)ρ1 + λp)2

λ2(1− p)2
+
ρ22f

2
2 (t)

λ2

)
θ2t dt

}]
<∞

for the process 1−p
qp

(
q

1−p (X
∗
t −G1,tLt) + βG2,t

)p
Yt, so that it is an (F,P)-uniformly

integrable martingale. Therefore, for any sequence of stopping times {τn}n∈N such

that τn ↑ ∞ P almost surely as n→ ∞, by Doob’s optional sampling theorem (see,

for example, Theorem 3.22 in Le Gall (2016)), we have

1− p

qp

(
q

1− p
(X∗

T∧τn −G1,T∧τnLT∧τn) + βG2,T∧τn

)p
YT∧τn

=E
[
1− p

qp

(
q

1− p
(Xπ

T − LT ) + β

)p ∣∣∣∣FT∧τn

]
Note that {FT∧τn}n∈N is a family of sub-σ-algebra of FT , i.e., FT∧τn ⊆ FT for

n ∈ N. Then it follows from Theorem 4.6.1 in Durrett (2019) that the family{
1− p

qp

(
q

1− p
(X∗

T∧τn −G1,T∧τnLT∧τn) + βG2,T∧τn

)p
YT∧τn

}
n∈N

is uniformly integrable. This confirms (iii) in Definition 8.2.6. Moreover, by

combining the asset equation (8.2.8) with πt replaced by π∗
t and linear BSDEs

(8.3.3)-(8.3.4), we have

d
(

q
1−p (X

∗
t −G1,tLt) + βG2,t

)
q

1−p (X
∗
t −G1,tLt) + βG2,t

=

(
r +

1

1− p

(
1 +

f2(t)ρ1
λ

)
θ2t

)
dt

+
1

1− p

(
1 +

f2(t)ρ1
λ

)
θt dW1,t.

(8.F.4)

Solving linear SDE (8.F.4) explicitly, we find that

q

1− p
(X∗

t −G1,tLt) + βG2,t

=exp

{∫ t

0

[
r +

(
1

1− p

(
1 +

f2(s)ρ1
λ

)
− 1

2(1− p)2

(
1 +

f2(s)ρ1
λ

)2)
θ2s

]
ds+∫ t

0

1

1− p

(
1 +

f2(s)ρ1
λ

)
θs dW1,s

}(
q

1− p
(x0 −G1,0l0) + βG2,0

)
> 0, P− a.s.

(8.F.5)
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whenever the initial value of (x0, l0) satisfies
q

1−p (x0 −G1,0l0) + βG2,0 > 0. This

result confirms condition (ii) in Definition 8.2.6. Finally, from (8.4.1), we know that

π∗
t is F-adapted and π∗

t σS,t ∈ L0
F,P(0, T ;R), namely, condition (i) in Definition 8.2.6

is verified. This ends the proof.
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Chapter 9

Robust optimal asset-liability management

under square-root factor processes and

model ambiguity: a BSDE approach

Abstract

This paper studies robust optimal asset-liability management problems

for an ambiguity-averse manager in a possibly non-Markovian environ-

ment with stochastic investment opportunities. The manager has access

to one risk-free asset and one risky asset in a financial market. The market

price of risk relies on a stochastic factor process satisfying an affine-form,

square-root, Markovian model, whereas the risky asset’s return rate and

volatility are potentially given by general non-Markovian, unbounded

stochastic processes. This financial framework includes, but is not limited

to, the constant elasticity of variance (CEV) model, the family of 4/2

stochastic volatility models, and some path-dependent non-Markovian

models, as exceptional cases. As opposed to most of the papers using

the Hamilton-Jacobi-Bellman-Issacs (HJBI) equation to deal with model

ambiguity in the Markovian cases, we address the non-Markovian case by

proposing a backward stochastic differential equation (BSDE) approach.

By solving the associated BSDEs explicitly, we derive, in closed form,

the robust optimal controls and robust optimal value functions for power

and exponential utility, respectively. In addition, analytical solutions to

some particular cases of our model are provided. Finally, the effects of

model ambiguity and market parameters on the robust optimal invest-

ment strategies are illustrated under the CEV model and 4/2 model with

numerical examples.

Keywords: Ambiguity aversion; Asset-liability management; Non-Markovian
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model; Square-root factor process; Backward stochastic differential equation

9.1 Introduction

Asset-liability management (ALM) is one of the important concerns not only for

financial institutions, such as pension funds, banks, and insurance companies but

also for individual investors who coordinate the existing and future assets and

liabilities to earn an adequate return. Based on Markowitz (1952)’s mean-variance

criterion, Sharpe and Tint (1990) first investigated the ALM problem in a single-

period setting, and Leippold, Trojani, and Vanini (2004) extended the results to

a multi-period setting. By applying the linear-quadratic control theory, Chiu and

Li (2006) and Xie, Li, and Wang (2008) considered the continuous-time mean-

variance ALM problems with uncontrollable liabilities described by a geometric

Brownian motion and a drifted Brownian motion, respectively. Chen, Yang, and

Yin (2008) and Chen and Yang (2011) further extended the results of Chiu and

Li (2006) and Leippold, Trojani, and Vanini (2004) to the case with Markovian

regime-switching markets. Chiu and Wong (2014a) studied an ALM problem with

asset correlation driven by a multivariate Wishart process. Under the framework of

expected utility maximization, Liang and Ma (2015) considered the ALM problems

under power and exponential utility with mortality and salary risks, and the optimal

approximation investment strategies were derived. Pan and Xiao (2017a,b) studied

an ALM problem with inflation risks and liquidity constraints, respectively. For

other relevant works on ALM problems, readers may refer to Zeng and Li (2011),

Chang (2015), Pan and Xiao (2017c), Peng and Chen (2021), and references therein.

The motivation for this paper is three-fold. First, most of the above-mentioned

literature on the ALM problems assumes that the volatility of risky asset’s price is

a constant or deterministic function, which violates the well-documented evidence

to support the existence of stochastic (local) volatility, mainly referred to French,

Schwert, and Stambaugh (1987), Heston (1993), Cox (1996), Lewis (2000), and

Grasselli Grasselli (2017). In the last decade, some papers have emerged that inves-

tigated the optimal ALM problems with various stochastic investment opportunities.

For example, Zhang and Chen (2016) studied a mean-variance ALM problem under

the constant elasticity of variance (CEV) model with multiple risky assets. Li, Shen,

and Zeng (2018) considered the derivative-based optimal investment strategy for

a mean-variance ALM problem under the Heston model. Zhang (2023) stepped

further by incorporating the Cox-Ingersoll-Ross (CIR) interest rate and the family

of 4/2 model (Grasselli (2017)) into an ALM problem with derivative trading. Sun,

Zhang, and Yuen (2020) studied a mean-variance ALM problem with a reinsurance

option in a complete market under an affine diffusion equation. Besides the mean-

variance criterion, Pan, Hu, and Zhou (2019) considered an ALM problem for the
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exponential utility function under the Heston model. Zhang (2022d) investigated

an ALM problem in an incomplete market setting with an affine diffusion factor

process for the hyperbolic absolute risk aversion utility function.

Second, most of the literature mentioned above on ALM problems assumes that

the asset-liability manager knows exactly the true probability measure. In many

situations, however, economic agents are skeptical about the true model, because,

for instance, as shown by Merton (1980) and Cochrane (1997), the drift parameters

are difficult to estimate with precision. In addition, experimental evidence from

Ellsberg (1961) and Bossaerts et al. (2010) demonstrate that economic agents display

not only risk aversion but also ambiguity aversion. In this sense, it is plausible to

incorporate model ambiguity into portfolio choice problems. In the pioneering work

of Andersen, Hansen, and Sargent (2003), a robust control approach was proposed to

address model ambiguity in continuous-time stochastic control problems, where the

agent regards a particular probability measure as a reference measure and considers

a set of alternative probability measures which are close to the reference measure

in terms of relative entropy. Maenhout (2004) refined the robust control approach

by proposing the homothetic robustness, and Uppal and Wang (2003) extended the

analysis of Maenhout (2004) by allowing different levels of ambiguity aversion about

the state variables. Maenhout (2006) considered a robust portfolio selection problem

with a mean-reverting expected stock return. Flor and Larsen (2014) studied a

robust investment problem in a setting with stochastic interest rates. Munk and

Rubtsov (2014) extended the work of Flor and Larsen (2014) by incorporating an

unobservable inflation rate. Escobar, Ferrando, and Rubtsov (2015) considered a

robust investment problem with derivatives trading under the Heston model. Zeng

et al. (2018) analyzed a robust derivative-based pension investment problem with

stochastic income and volatility. Recently, Cheng and Escobar (2021b) investigated

robust investment under the state-of-the-art 4/2 model. In the field of ALM,

Yuan and Mi (2022b) considered a robust investment problem for maximizing the

minimal expected utility of terminal wealth and minimizing the maximal cumulative

deviation, respectively. Chen, Huang, and Li (2022) studied a robust ALM problem

in a regime-switching market. As the literature on robust investment problems

is abundant, the above review is not exhaustive. Other works considering robust

investment problems under various scenarios include Yi et al. (2013), Zheng, Zhou,

and Sun (2016), Wang and Li (2018), Wang, Li, and Sun (2021), Chang, Li, and

Zhao (2022), Baltas et al. (2022), Wei, Yang, and Zhuang (2023), to name but only

a few.

Third, although robust investment problems have been extensively studied over

the last decade, one common feature shared by most of the existing works is that

the exogenous parameter processes are assumed to be only constants or Markovian

diffusion processes. In the Markovian case, such problems can be studied by using

the dynamic programming principle and solving the corresponding Hamilton-Jacobi-
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Bellman-Issacs (HJBI) equations (see, for example, Mataramvura and Øksendal

(2008)). These methods, however, cannot be applied directly to the non-Markovian

setting because the dynamic programming principle no longer works. To handle the

non-Markovian case, Øksendal and Sulem (2011) studied an optimal investment

problem under model ambiguity by proposing a backward stochastic differential

equation (BSDE) approach, where the performance functional (value function) is

written as the solution of an associated controlled BSDE and the comparison theorem

for BSDEs plays a key role. But this approach is strongly linked to the exponential

utility function. Øksendal and Sulem (2014) extended the analysis of Øksendal

and Sulem (2011) for general utility functions by developing a forward-backward

stochastic differential equation (FBSDE) approach. Following the methodology of

Øksendal and Sulem (2014), Peng, Chen, and Hu (2014) considered an optimal

investment-consumption and reinsurance problem under model ambiguity.

In this paper, we investigate a robust optimal ALM problem under model

ambiguity in the presence of stochastic volatility. The risk- and ambiguity-averse

manager has access to a financial market consisting of one risk-free asset (money

account) and one risky asset (stock) and is subject to an uncontrollable random

liability. Unlike most of the preceding literature on robust decision problems, it

is not a prerequisite to assume that the risky asset’s return rate and volatility are

specifically Markovian processes as they may depend on past values. Inspired by

Shen and Zeng (2015) and Zhang (2022c), we only suppose that the market price

of risk relies on an affine-form, square-root, Markovian process, which includes,

but is not limited to, the Black-Scholes model, CEV model, Heston model, 3/2

model, 4/2 model, and some non-Markovian models, as exceptional cases (see

Example 9.2.1-9.2.4). In the spirit of Maenhout (2004) and Uppal and Wang (2003),

the manager is assumed to have different levels of ambiguity aversion about the

risky’s asset price and volatility and aims to maximize the terminal surplus under

the worst-case scenario for power and exponential utility, respectively. Given the

potentially non-Markovian setting, the HJBI equation approach does not work, and

a BSDE approach is disentangled. Different from Øksendal and Sulem (2011, 2014),

where the value function is written as the value at time zero of the solution to a

controlled FBSDE and the comparison theorem for solutions to BSDEs is applied,

we propose to construct a stochastic process hinging upon any admissible control,

and such that its value at time zero does not depend on any admissible control

and its terminal value equals the utility of the terminal surplus penalized by model

ambiguity. The proposed stochastic process is shown to be either sub-martingale or

super-martingale for any admissible control, and even martingale for a particular

control under the reference measure, which then leads to the associated uncontrolled

BSDEs. By solving the BSDEs explicitly, we derive the analytical expressions for

the robust optimal controls and robust optimal value functions for the above two

utility maximization problems. Furthermore, several special cases of our model
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are discussed and the corresponding results are provided in closed form. Finally,

the economic effects of model ambiguity and model parameters on the behavior of

robust optimal investment strategies are analyzed by giving numerical examples.

To sum up, we think that this paper has three main contributions:

1. In the literature on the ALM problems, model ambiguity and stochastic

volatility are simultaneously taken into consideration in a potentially non-

Markovian modeling framework for the very first time, whereas in Yuan and

Mi (2022b) and Chen, Huang, and Li (2022), only Markovian cases were

investigated and stochastic volatility was not taken into account; Zhang and

Chen (2016), Li, Shen, and Zeng (2018), Pan, Hu, and Zhou (2019), Sun,

Zhang, and Yuen (2020), and Zhang (2023, 2022d) considered the presence of

stochastic volatility but not model uncertainty.

2. At the mathematical level, compared with the literature on the robust in-

vestment problems considering the Markovian models and using the HJBI

equation approach, such as Yi et al. (2013), Flor and Larsen (2014), Escobar,

Ferrando, and Rubtsov (2015), Zheng, Zhou, and Sun (2016), Wang and Li

(2018), Wang, Li, and Sun (2021), Cheng and Escobar (2021b), Chang, Li, and

Zhao (2022), Baltas et al. (2022), and Wei, Yang, and Zhuang (2023), a novel

BSDE approach, which has distinct differences with the FBSDE approach

proposed in Øksendal and Sulem (2011, 2014), is disentangled to deal with

the non-Markovian setting.

3. A general class of stochastic volatility models is considered for modeling the

risky asset’s price and volatility, embracing the CEV model, Heston model,

3/2 model, 4/2 model, and some path-dependent models, as particular cases.

Furthermore, closed-form expressions for the robust optimal controls and

robust optimal value functions are derived for the power and exponential

utility functions, and explicit solutions to some special cases of our model are

recovered, such as Gao (2009), Zheng, Zhou, and Sun (2016), Sun, Yong, and

Gao (2020), Cheng and Escobar (2021a,b), and Zhang (2022c).

The remainder of this paper is organized as follows. In Section 9.2, we formulate

the model and establish the robust optimal ALM problems for the power and

exponential utility functions. Section 9.3 and 9.4 derive the robust optimal solutions

to the power and exponential utility cases, respectively. Section 9.5 discusses the

effects of model ambiguity and model parameters on the robust optimal investment

strategies with numerical analysis. Section 9.6 concludes our work. All proofs are

given in the Appendix.

261



9.2 General formulation

In this paper, we consider the optimal ALM problems for an asset-liability manager

with ambiguity aversion under the expected utility maximization framework. We

assume that assets can be traded continuously, infinite short-selling and leverage

are allowed, and no transaction costs or taxes are involved. Let T > 0 be a

fixed constant describing the decision-making horizon and (Ω,F ,F,P) be a filtered

complete probability space satisfying the usual conditions on which are defined

two one-dimensional, mutually independent Brownian motions {W1,t}t∈[0,T ] and

{W2,t}t∈[0,T ]. The filtration F := {Ft}t∈[0,T ] is assumed to be generated by the two

Brownian motions, P stands for a real-world probability measure, and EP [·] denotes
the expectation associated with measure P. In what follows, we introduce several

spaces on (Ω,F ,F,P):

• L2,loc
F,P (0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ]

with P-a.s. continuous sample paths such that P
(∫ T

0
|ft|2 dt <∞

)
= 1;

• L2
F,P(0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that EP
[∫ T

0
|ft|2 dt

]
<∞;

• S2p
F,P(0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that EP
[
supt∈[0,T ] |ft|2p

]
<∞, p = 1, 2;

• S∞
F,P(0, T ;R): the space of all real-valued, F-adapted uniformly bounded

processes with P-a.s. continuous sample paths.

9.2.1 Financial market and random liability

Assume that the financial market consists of one risk-free asset (money account)

and one risky asset (stock). The price process {Bt}t∈[0,T ] of the risk-free asset

evolves according to

dBt = rBt dt, B0 = 1,

where the constant r ∈ R \ {0} = R0 is the risk-free interest rate. The price process

{St}t∈[0,T ] of the risky asset is described by the following stochastic differential

equation (SDE):

dSt = µtSt dt+ σtSt dW1,t, S0 = s0 ∈ R+, (9.2.1)

where µt and σt ∈ L2,loc
F,P (0, T ;R+) are two potentially unbounded and non-Markovian

F-adapted stochastic processes describing the risky asset’s return rate and volatility

at time t, respectively. Assume that the market price of risk is related to an affine
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form, square-root factor process {αt}t∈[0,T ] as follows:

µt − r

σt
= λ

√
αt, λ ∈ R0, (9.2.2)

where the dynamics of αt are given by

dαt = κ(θ − αt) dt+
√
αt (ρ1 dW1,t + ρ2 dW2,t) , α0 ∈ R+ (9.2.3)

with the speed of mean reversion κ, long-run level θ, and volatility
√
ρ21 + ρ22. In

line with Chapter 6.3 in Jeanblanc, Chesney, and Yor (2009), we assume that the

constants κ, θ ∈ R satisfy κθ ∈ R+ to ensure the process αt ≥ 0 for all t ∈ [0, T ], P
almost surely, while no specific conditions are imposed on the constants ρ1, ρ2 ∈ R.
Notice that we do not impose the Feller condition for strict positivity of αt, i.e.,

2κθ ≥ ρ21 + ρ22 in our case.

The above financial modeling framework (9.2.1)-(9.2.3) was studied in Shen (2015)

and Zhang (2022c) in the context of solving a mean-variance investment-reinsurance

problem and a defined contribution pension investment problem with stochastic

income and stochastic inflation, respectively. It is also worth mentioning that this

modeling framework is generally embracing not only a wide class of stochastic

(local) volatility models, such as the CEV model, Heston model, 3/2 model, and

4/2 model (see Examples 9.2.1 and 9.2.2) but also some non-Markovian models

(Example 9.2.4), as exceptional cases.

Example 9.2.1 (CEV model). If µt = µ and σt = σSβt , where µ ∈ R+, σ ∈ R+,

and β ≤ − 1
2 such that µ ̸= r, then the risky asset price St is given by the CEV

model:

dSt = St

(
µdt+ σSβt dW1,t

)
, S0 = s0 ∈ R+, (9.2.4)

where β is called the elasticity parameter. By setting αt = S−2β
t , κ = 2βµ,

θ = (β + 1
2 )
σ2

µ , ρ1 = −2βσ, ρ2 = 0 and λ = µ−r
σ , we have

dαt = 2βµ

[(
β +

1

2

)
σ2

µ
− S−2β

t

]
dt− 2βσS−β

t dW1,t

= κ(θ − αt) dt+
√
αt (ρ1 dW1,t + ρ2 dW2,t) .

For the particular case when β = 0, the condition κθ ≥ 0 is still met and the CEV

model degenerates to the Black-Scholes model.

Example 9.2.2 (The family of 4/2 models). If µt = r + λ(c1αt + c2), σt =

c1
√
αt +

c2√
αt
, Vt = αt, κ ∈ R+, θ ∈ R+, ρ1 = σvρ and ρ2 = σv

√
1− ρ2, where

c1 ≥ 0, c2 ≥ 0, σv ∈ R+, and ρ ∈ [−1, 1], then the risky asset price process St is
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governed by the family of 4/2 stochastic volatility models (Grasselli (2017)):
dSt = St

[
(r + λ(c1Vt + c2)) dt+

(
c1
√
Vt +

c2√
Vt

)
dW1,t

]
, S0 = s0 ∈ R+,

dVt = κ(θ − Vt) dt+ σv
√
Vt

(
ρ dW1,t +

√
1− ρ2 dW2,t

)
, V0 = v0 = α0 ∈ R+,

(9.2.5)

where Vt is the variance driver process with mean-reversion rate κ, long-run mean

θ, volatility σv, and correlation coefficient between the risky asset price and its

variance driver ρ. For the 4/2 model (9.2.5), we impose the Feller condition, i.e.,

2κθ ≥ σ2
v to keep the process Vt strictly positive for t ∈ [0, T ], P almost surely.

Remark 9.2.3. The 4/2 model (9.2.5) is featured by two embedded parsimonious

models, the Heston model (Heston (1993)) and 3/2 model (Lewis (2000)) via the

constants c1 and c2. Particularly, the case (c1, c2) = (1, 0) corresponds to the

Heston model, while the specification (c1, c2) = (0, 1) is known as the 3/2 model.

Example 9.2.4 (A path-dependent stochastic volatility model). If µt = r +

λ
√
αtσ̂(α[0,t]) and σt = σ̂(α[0,t]) for some functional σ̂ : C([0, t];R) 7→ R+, where

α[0,t] := (αs)s∈[0,t] is the restriction of α ∈ C([0, T ];R) to C([0, t];R), i.e., the space

of real-valued, continuous functions defined on [0, t]. In this case, the risky asset

price process St is given by the following path-dependent stochastic volatility model:{
dSt = St

[(
r + λ

√
αtσ̂(α[0,t])

)
dt+ σ̂(α[0,t]) dW1,t

]
, S0 = s0 ∈ R+,

dαt = κ(θ − αt) dt+
√
αt (ρ1 dW1,t + ρ2 dW2,t) , α0 ∈ R+.

(9.2.6)

Due to the path-dependence of the return rate and volatility of the risky asset price,

the model (9.2.6) is a special case of the non-Markovian stochastic volatility models.

For more details on (9.2.6), readers may consult Siu (2012).

Consider an asset-liability manager who is subject to an uncontrollable liability

commitment with an initial value l0. Similar to Zhang and Chen (2016) and Sun,

Zhang, and Yuen (2020), we assume that the liability process Lt is driven by the

following SDE:

dLt = Lt [µl dt+ σl (λαt dt+
√
αt dW1,t)] , L0 = l0 ∈ R+, (9.2.7)

where µl ∈ R is the drift coefficient and the constant σl ∈ R is a volatility scale

factor measuring how the risk source of the risky asset affects the random liability.

In the following subsection, we will formulate the robust optimal ALM problems

from the point of view of the manager.

9.2.2 Ambiguity and optimization problem

In the traditional framework of ALM problems, the asset-liability manager is

assumed to be ambiguity-neutral and completely convinced by the above dynamics
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of the available risky asset price, factor process, and random liability under the

real-world probability measure P. However, the fact is that the manager may

not know exactly the true model in many cases, for example, due to parameter

uncertainty, and thus, any particular probability measure used to describe the

model may lead to potential model misspecification. For this reason, it is desirable

to take model uncertainty into account for an ambiguity-averse manager when

he/she makes investment decisions. To incorporate model ambiguity, we assume

that the ambiguity-averse manager’s knowledge of ambiguity is characterized by

the measure P, which is referred to as the reference measure. The ambiguity-

averse manager is skeptical about the reference measure P and only regards it as

an approximation to the truly real-world measure. Therefore, he/she considers

some adverse alternative measures to seek robust optimal investment strategies.

In line with Andersen, Hansen, and Sargent (2003), the alternative measures

are assumed to be equivalent to, i.e., mutually absolutely continuous with the

reference measure P, and we denote by Q such a class of alternative measures Q, i.e.,

Q := {Q| Q ∼ P}. More specifically, for each Q ∈ Q, there is a two-dimensional F-
adapted process ϕ = (ϕ1, ϕ2) :=

(
{ϕ1,t}t∈[0,T ] , {ϕ2,t}t∈[0,T ]

)
, which can be referred

as the probability distortion process, such that the following Radon-Nikodym

derivative process φϕt :

dQ
dP

∣∣∣∣
Ft

:= φϕt = exp

{∫ t

0

ϕ1,s dW1,s +

∫ t

0

ϕ2,s dW2,s −
1

2

∫ t

0

(
ϕ21,s + ϕ22,s

)
ds

}
(9.2.8)

is a uniformly integrable (F,P)-martingale. For this, we shall only consider the

distortion process ϕ satisfying the following Novikov’s condition:

EP

[
exp

{
1

2

∫ T

0

(
ϕ21,t + ϕ22,t

)
dt

}]
< +∞, (9.2.9)

and denote by Φ the space of all distortion process ϕ such that (9.2.9) holds.

According to Girsanov’s theorem, the dynamics of the standard Brownian motions

WQ
1,t and W

Q
2,t under the alternative measure Q ∈ Q are given by

dWQ
1,t = dW1,t − ϕ1,t dt, dW

Q
2,t = dW2,t − ϕ2,t dt.

Suppose that the asset-liability manager has an initial wealth x0 ∈ R+. Denote by

πt the proportion of wealth invested in the risky asset at time t, then the process

π := {πt}t∈[0,T ] represents the investment strategy. Let Xπ := {Xπ
t }t∈[0,T ] be the

wealth process associated with strategy π. Under a self-financing condition, the

dynamics of Xπ
t are then given by

dXπ
t =(1− πt)X

π
t

dBt
Bt

+ πtX
π
t

dSt
St

= [r + (µt − r)πt]X
π
t dt+ σtπtX

π
t dW1,t

=[r + (µt − r + σtϕ1,t)πt]X
π
t dt+ σtπtX

π
t dW

Q
1,t, X

π
0 = x0.

(9.2.10)
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In this paper, we will subsequently consider two utility maximization problems

when the risk preferences of the ambiguity-averse manager are characterized by

a power utility function U(x) = xγ/γ with the relative risk aversion γ ∈ R− and

an exponential utility function U2(x) = −e−qx/q with the absolute risk aversion

q ∈ R+. To this end, we give below the formal definitions of the admissible strategies

for these two utility maximization problems, respectively.

Definition 9.2.5 (Admissible strategy for power utility). A control (π, ϕ) is said

to be admissible if the following conditions are satisfied:

1. π is F-adapted and ϕ ∈ Φ;

2. for any initial data (x0, α0, l0) ∈ R+ ⊗ R+ ⊗ R+ such that x0 + Ḡ1,0l0 ∈ R+,

the associated asset process (9.2.10) admits a pathwise unique solution such

that Xπ
t + Ḡ1,tLt > 0, P almost surely, for all t ∈ [0, T ], where Ḡ1,t is given

by (9.3.14) below;

3. either the family of random variables{
φϕ̂

τn∧T

(
Y1,τn∧T

(Xπ
τn∧T + Ḡ1,τn∧TLτn∧T )

γ

γ
+

∫ τn∧T

0

ϕ̂2
1,t

2ψ1,t
+

ϕ̂2
2,t

2ψ2,t
dt

)}
n∈N

is uniformly integrable under P measure for any sequence of F-stopping times

{τn}n∈N such that τn ↑ +∞ as n→ +∞, where ϕ̂ = (ϕ̂1, ϕ̂2) ∈ Φ is given in

(9.3.17) with X∗
t and π∗

t replaced by Xπ
t and πt, respectively, and ψ1,t, ψ2,t,

and Y1,t are given by (9.2.12) and (9.3.6) below, or the family of random

variables{
φϕ

τn∧T

(
Y1,τn∧T

(X π̂
τn∧T + Ḡ1,τn∧TLτn∧T )

γ

γ
+

∫ τn∧T

0

ϕ2
1,t

2ψ̂1,t

+
ϕ2
2,t

2ψ̂2,t

dt

)}
n∈N

is uniformly integrable under P measure for any sequence of F-stopping times

{τn}n∈N such that τn ↑ +∞ as n→ +∞, where π̂t = π∗
t is given in (9.3.17)

and ψ̂1,t and ψ̂2,t are given in (9.2.12) with Xπ
t replaced by X π̂

t .

The set of all admissible controls is denoted by Πp ⊗ Φ.

Remark 9.2.6. The technical condition 3 in Definition 9.2.5 implies that both the

controls (π, ϕ̂) and (π̂, ϕ) are immediately admissible whenever there exists at least

one control (π, ϕ) ∈ Πp ⊗Φ. For the sake of tractability, we suppose that the set of

admissible controls is not empty throughout the rest of the paper.

For the power utility case, the ambiguity-averse manager aims to seek a robust

investment strategy π to maximize the expected utility from the terminal surplus

Xπ
T − LT under the worst-case alternative measure. Inspired by Maenhout (2004),
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the robust optimal ALM problem for the ambiguity-averse manager is formulated

as

sup
π∈Πp

inf
ϕ∈Φ

Jp(π, ϕ) := sup
π∈Πp

inf
ϕ∈Φ

EQ

[
(Xπ

T − LT )
γ

γ
+

∫ T

0

(
ϕ21,t
2ψ1,t

+
ϕ22,t
2ψ2,t

)
dt

]
,

(9.2.11)

where Jp(π, ϕ) denotes the value function associated with admissible control (π, ϕ),

the minimization over ϕ ∈ Φ reflects the asset-liability manager’s aversion to

ambiguity, and ψ1,t and ψ2,t are two R+-valued, F-adapted stochastic processes

capturing the level of ambiguity aversion with respect to model misspecification.

The larger the levels of ambiguity ψ1,t and ψ2,t are, the more skeptical the manager

is about the reference measure P, and the smaller the penalty for a given deviation

from the reference measure is. For the extreme case where ψ1,t = ψ2,t = +∞, the

integral term within (9.2.11) vanishes and the manager considers all alternative

measures equally. For the other extreme case where ψ1,t = ψ2,t = 0, i.e., the

manager is completely confident that the reference measure P is the true measure,

any alternative measure deviating from the reference measure P will be severely

penalized. In this case, ϕ1,t = ϕ2,t = 0 must be required such that the integral term

within (9.2.11) disappears, and thus, the robust ALM problem (9.2.11) reduces to the

traditional ALM problem without model ambiguity, i.e., supπ∈Πp
EP
[
(Xπ

T−LT )γ

γ

]
.

For analytical tractability, we assume ψ1,t and ψ2,t are state-dependent. Similar

to the existing works, such as Maenhout (2004), Escobar, Ferrando, and Rubtsov

(2015), and Wang and Li (2018), we set

ψi,t =
βi

Y1,t(Xπ
t +G1,t)γ

, i = 1, 2, (9.2.12)

where G1,t and Y1,t are given by (9.3.5) and (9.3.6), respectively, and positive

constants βi ∈ R+, i = 1, 2, are called the ambiguity-aversion parameters. In

particular, β1 can be interpreted as the level of ambiguity about the risky asset

dynamics, while β2 represents the ambiguity aversion about the stochastic factor

process.

Definition 9.2.7 (Admissible strategy for exponential utility). A control (π, ϕ) is

said to be admissible if the following conditions are met:

1. π is F-adapted and ϕ ∈ Φ;

2. for any initial data (x0, α0, l0) ∈ R+ ⊗ R+ ⊗ R+, the associated asset process

(9.2.10) admits a pathwise unique solution;

3. either the family of random variables{
φϕ̌τn∧T

(
−e

−q(Xπ
τn∧TY2,τn∧T+G2,τn∧T )

q
+

∫ τn∧T

0

ϕ̌21,t
2η1,t

+
ϕ̌22,t
2η2,t

dt

)}
n∈N
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is uniformly integrable under P measure for any sequence of F-stopping times

{τn}n∈N such that τn ↑ +∞ as n→ +∞, where ϕ̌ = (ϕ̌1, ϕ̌2) ∈ Φ is given by

(9.4.17) with X∗
t and π∗

t replaced by Xπ
t and πt, respectively, and η1,t, η2,t, Y2,t,

and G2,t are given by (9.2.14), (9.4.4), and (9.4.7) below, or the family of{
φϕτn∧T

(
−e

−q(Xπ̌
τn∧TY2,τn∧T+G2,τn∧T )

q
+

∫ τn∧T

0

ϕ21,t
2η̌1,t

+
ϕ22,t
2η̌2,t

)}
n∈N

is uniformly integrable under P measure for any sequence of F-stopping times

{τn}n∈N such that τn ↑ +∞ as n→ +∞, where π̌t = π∗
t is given in (9.4.17)

and η̌1,t and η̌2,t are given in (9.2.14) with Xπ
t replaced by X π̌

t .

Denote by Πe ⊗ Φ the set of all admissible controls.

Remark 9.2.8. Similar to the above power utility case, in the rest of the paper, we

suppose that the set of admissible controls is not empty, i.e., there exists at least a

control (π, ϕ) ∈ Πe ⊗ Φ. As a result, both controls (π̌, ϕ) and (π, ϕ̌) are admissible

as well based on condition 3 in Definition 9.2.7.

The robust optimal ALM problem under the exponential utility case is formally

written as follows:

sup
π∈Πe

inf
ϕ∈Φ

Je(π, ϕ) := sup
π∈Πe

inf
ϕ∈Φ

EQ

[
−e

−q(Xπ
T−LT )

q
+

∫ T

0

(
ϕ21,t
2η1,t

+
ϕ22,t
2η2,t

)
dt

]
,

(9.2.13)

where Je(π, ϕ) denotes the value function associated with admissible control (π, ϕ),

and the two R+-valued, F-adapted stochastic processes η1,t and η2,t characterize

the level of ambiguity aversion with respect to model ambiguity. Again, for the sake

of tractability, we assume that ηi,t, i = 1, 2 are state-dependent. More specifically,

we make the following assumption on ηi,t, i = 1, 2:

ηi,t =
βi

e−q(X
π
t Y2,t+G2,t)

, i = 1, 2, (9.2.14)

where Y2,t and G2,t are given by (9.4.4) and (9.4.7), respectively, and positive

constants βi ∈ R+, i = 1, 2, denote the ambiguity-aversion parameters. For an

ambiguity-neutral manager, the robust optimization problem (9.2.13) degenerates

to finding an admissible investment strategy such that supπ∈Πe
EP
[
− e−q(Xπ

T −LT )

q

]
is attained.

Remark 9.2.9. Given the possibly non-Markovian structures of the market model,

the dynamic programming approach along with the HJBI equation (refer to

Mataramvura and Øksendal (2008)) is not applicable in our case. We, there-

fore, solve the above two utility maximization problems (9.2.11) and (9.2.13) in

Section 9.3 and 9.4 by proposing a novel BSDE approach. This distinguishes our
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paper from the published works considering robust investment problems in the

Markovian settings and using the HJBI approach; see, for example, Yi et al. (2013),

Flor and Larsen (2014), Munk and Rubtsov (2014), Escobar, Ferrando, and Rubtsov

(2015), Zheng, Zhou, and Sun (2016), Zeng et al. (2018), Wang and Li (2018), Wang,

Li, and Sun (2021), Cheng and Escobar (2021b), Chen, Huang, and Li (2022),

Chang, Li, and Zhao (2022), Baltas et al. (2022), Wei, Yang, and Zhuang (2023),

and etc.

9.3 Optimal investment strategies for the power utility case

This section is dedicated to deriving the robust optimal investment strategies for

the power utility maximization problem (9.2.11) by using a BSDE approach. To

this end, we introduce two continuous (F,P)-semi-martingales Y1,t and G1,t with

the following canonical decomposition:

dY1,t = P1,t dt+ Z1,t dW1,t + Z2,t dW2,t

and

dG1,t = H1,t dt+ Λ1,t dW1,t + Λ2,t dW2,t,

where P1,t and H1,t are two undetermined F-adapted processes, and Z1,t, Z2,t,Λ1,t,

and Λ2,t lie in L2,loc
F,P (0, T ;R). Applying Itô’s formula to φϕt

(
Y1,t

(Xπ
t +G1,t)

γ

γ +∫ t
0

ϕ2
1,s

2ψ1,s
+

ϕ2
2,s

2ψ2,s
ds

)
under P measure and using the method of completion of squares,

we have

dφ
ϕ
t

(
Y1,t

(Xπ
t +G1,t)

γ

γ
+

∫ t

0

ϕ2
1,s

2ψ1,s

+
ϕ2
2,s

2ψ2,s

ds

)

=φ
ϕ
t

[
(Y1,tϕ1,t + Z1,t)

(Xπ
t +G1,t)

γ

γ
+ Y1,t(X

π
t +G1,t)

γ−1
(X

π
t πtσt + Λ1,t) +

(∫ t

0

ϕ2
1,s

2ψ1,s

+
ϕ2
2,s

2ψ2,s

ds

)
ϕ1,t

]
dW1,t + φ

ϕ
t

[
(Y1,tϕ2,t + Z2,t)

(Xπ
t +G1,t)

γ

γ
+ Y1,t(X

π
t +G1,t)

γ−1
Λ2,t +

(∫ t

0

ϕ2
1,s

2ψ1,s

+
ϕ2
2,s

2ψ2,s

ds

)
ϕ2,t

]
dW2,t +

φϕ
t

2ψ1,t

[
ϕ1,t +

(
(Xπ

t +G1,t)
γ

γ
Z1,t + Y1,t

(
X

π
t +G1,t

)γ−1
(X

π
t πtσt

+Λ1,t)

)
ψ1,t

]2
dt+

φϕ
t

2ψ2,t

[
ϕ2,t +

(
(Xπ

t +G1,t)
γ

γ
Z2,t + Y1,t(X

π
t +G1,t)

γ−1
Λ2,t

)
ψ2,t

]2
dt

+
(γ − 1 − β1)φ

ϕ
t

2
Y1,t(X

π
t +G1,t)

γ−2

[
X

π
t πtσt + Λ1,t +

Xπ
t +G1,t

γ − 1 − β1

(
γ − β1

γ

Z1,t

Y1,t

+ λ
√
αt

)]2
dt

+
(γ − 1 − β2)φ

ϕ
t

2
Y1,t(X

π
t +G1,t)

γ−2
Λ

2
2,t dt−

β2φ
ϕ
t

γ
(X

π
t +G1,t)

γ−1
Z2,tΛ2,t dt

+ φ
ϕ
t (X

π
t +G1,t)

γ

[
P1,t

γ
+ rY1,t −

β1

2γ2

Z2
1,t

Y1,t

−
β2

2γ2

Z2
2,t

Y1,t

−
1

2(γ − 1 − β1)
Y1,t

(
γ − β1

γ

Z1,t

Y1,t

+λ
√
αt

)2]
dt+ φ

ϕ
t Y1,t(X

π
t +G1,t)

γ−1

(
H1,t − rG1,t − λ

√
αtΛ1,t +

Z2,t

Y1,t

Λ2,t

)
dt.

(9.3.1)
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We expect that by introducing the two continuous semi-martingales Y1,t and G1,t,

the stochastic process φϕt

(
Y1,t

(Xπ
t +G1,t)

γ

γ +
∫ t
0

ϕ2
1,s

2ψ1,s
+

ϕ2
2,s

2ψ2,s
ds
)

is a local (F,P)-
martingale under an admissible control (π∗, ϕ∗) ∈ Πp ⊗ Φ, a local (F,P)-super-
martingale for (π, ϕ̂) ∈ Πp⊗Φ, and a local (F,P)-sub-martingale for (π̂, ϕ) ∈ Πp⊗Φ,

respectively. For this, we can determine the process P1,t and H1,t by formally

letting the last two terms on the right-hand side of (9.3.1) be zeros. Inspired by

this result, we propose the following backward stochastic Riccati equation (BSRE)

of (Y1,t, Z1,t, Z2,t):

dY1,t =

[(
−rγ +

γ

2(γ − 1− β1)
λ2αt

)
Y1,t +

γ − β1
γ − 1− β1

λ
√
αtZ1,t

+
1

2γ

(
β1 +

(γ − β1)
2

γ − 1− β1

)
Z2

1,t

Y1,t
+
β2
2γ

Z2
2,t

Y1,t

]
dt+ Z1,t dW1,t + Z2,t dW2,t,

Y1,T =1,

Y1,t >0, for all t ∈ [0, T ),

(9.3.2)

and the linear BSDE of (G1,t,Λ1,t,Λ2,t):
dG1,t =

(
rG1,t + λ

√
αtΛ1,t −

Z2,t

Y1,t
Λ2,t

)
dt+ Λ1,t dW1,t + Λ2,t dW2,t,

G1,T =− LT .

(9.3.3)

Moreover, by separating the dependence of BSDE (9.3.3) on the liability value LT
and applying Itô’s formula, we can decompose the BSDE of (G1,t,Λ1,t,Λ2,t) into

the following linear BSDE of (Ḡ1,t, Λ̄1,t, Λ̄2,t):
dḠ1,t =

(
(r − µl)Ḡ1,t + (λ− σl)

√
αtΛ̄1,t −

Z2,t

Y1,t
Λ̄2,t

)
dt+ Λ̄1,t dW1,t + Λ̄2,t dW2,t,

Ḡ1,T =− 1,

(9.3.4)

and the solutions (G1,t,Λ1,t,Λ2,t) and (Ḡ1,t, Λ̄1,t, Λ̄2,t) are related via the following

linear formulation:

(G1,t,Λ1,t,Λ2,t) =
(
Ḡ1,tLt, (Λ̄1,t + Ḡ1,tσl

√
αt)Lt, Λ̄2,tLt

)
. (9.3.5)

Throughout this section, by a solution to BSRE (9.3.2), we mean a triplet of

stochastic processes (Y1,t, Z1,t, Z2,t) ∈ S∞
F,P(0, T ;R+)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R)

and satisfies (9.3.2). Similarly, the solution to linear BSDE (9.3.4) is a triplet of

stochastic process (Ḡ1,t, Λ̄1,t, Λ̄2,t) ∈ S∞
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R).

Remark 9.3.1. Note that the generator of BSRE (9.3.2) depends on the market

price of risk rather than the return rate and volatility of the risky asset price,

which implies that the solvability of BSRE (9.3.2) is completely determined by the

square-root factor process αt (9.2.3), and it is, therefore, unnecessary to specify

the return rate µt and volatility σt as Markovian processes. However, due to the

unboundedness of αt, the established theory of BSDEs (see, for example, El Karoui,
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Peng, and Quenez (1997), Bender and Kohlmann (2000), Kobylanski (2000), Briand

and Hu (2008)) cannot be applied to (9.3.2) directly. Similar to Shen and Zeng

(2015) and Zhang (2022c), we first propose one explicit solution to (9.3.2) by trial

and verify its uniqueness by using Girsanov’s measure change technique and the

standard results of quadratic BSDE with bounded terminal condition (Kobylanski

(2000)).

In this section, we impose the following assumption on the model parameters. This

guarantees that the factor process αt preserves affinity and square-root structure

under an equivalent probability measure P̃ which is well-defined in the proof of

Theorem 9.3.7.

Assumption 9.3.2. κ+ ρ1λ
γ−β1

γ−1−β1
̸= 0.

Proposition 9.3.3. One solution (Y1,t, Z1,t, Z2,t) to BSRE (9.3.2) is given by

Y1,t = exp {f1(t) + g1(t)αt} , (9.3.6)

and

(Z1,t, Z2,t) = (ρ1g1(t)
√
αtY1,t, ρ2g1(t)

√
αtY1,t) , (9.3.7)

where functions f1(t) and g1(t) solve the following ordinary differential equations
(ODEs):

dg1(t)

dt
=

(
γ − β1

2γ(γ − 1 − β1)
ρ
2
1 −

γ − β2

2γ
ρ
2
2

)
g
2
1(t) +

(
κ+

(γ − β1)λρ1

γ − 1 − β1

)
g1(t) +

γλ2

2(γ − 1 − β1)
,

(9.3.8)

and

df1(t)

dt
= −κθg1(t)− rγ (9.3.9)

with boundary conditions f1(T ) = g1(T ) = 0. Moreover, the closed-form solutions

to ODEs (9.3.8) and (9.3.9) are given by

g1(t) =
n
g+1
n
g−1

(
1− e

√
∆g1

(T−t)
)

n
g+1

− n
g−1
e
√

∆g1
(T−t)

, (9.3.10)

and

f1(t) =
(
rγ + κθn

g−1

)
(T − t) +

κθ
(
n
g−1

− n
g+1

)
√

∆g1

log

 n
g+1

− n
g−1

n
g+1

− n
g−1
e
√

∆g1 (T−t)

 ,

(9.3.11)

where ∆g1 , ng+1
, and n−g1 are given by

∆g1 =

(
κ+

(γ − β1)λρ1
γ − 1− β1

)2

− λ2

γ − 1− β1

(
γ − β1

γ − 1− β1
ρ21 − (γ − β2)ρ

2
2

)
,

n
g+1

=
−
(
κ+ (γ−β1)λρ1

γ−1−β1

)
+
√

∆g1

γ−β1
γ(γ−1−β1)

ρ21 −
γ−β2

γ
ρ22

, n
g−1

=
−
(
κ+ (γ−β1)λρ1

γ−1−β1

)
−
√

∆g1

γ−β1
γ(γ−1−β1)

ρ21 −
γ−β2

γ
ρ22

.

(9.3.12)
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Proof. See Appendix 9.A.

Remark 9.3.4. dg1(t)
dt =

2γλ2∆g1
e
√

∆g1 (T−t)

(γ−1−β1)
(

γ−β1
γ(γ−1−β1)

ρ21−
γ−β2

γ ρ22

)2
(
n
g
+
1
−n

g
−
1
e
√

∆g1
(T−t)

)2 > 0

due to γ ∈ R−. In other words, function g1(t) is strictly increasing over [0, T ], and

thus, we have g1(t) ∈ [g1(0), 0] and f1(t) ≤ rγ(T − t).

Proposition 9.3.5. The solution (Y1,t, Z1,t, Z2,t) proposed in Proposition 9.3.3

lies in S∞
F,P(0, T ;R+)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R). More precisely, Yt ≤ erγ(T−t),

for t ∈ [0, T ], P almost surely.

Proof. See Appendix 9.B.

Before verifying that the proposed solution (Y1,t, Z1,t, Z2,t) given in Proposi-

tion 9.3.3 is the unique solution to BSRE (9.3.2) in the space S∞
F,P(0, T ;R+) ⊗

L2
F,P(0, T ;R)⊗L2

F,P(0, T ;R), we present the following auxiliary result on the stochas-

tic exponential process of the square-root factor process αt (refer to Lemma A1 in

Shen and Zeng (2015)).

Lemma 9.3.6 (Bona-fide martingale property). If m1(t) and m2(t) are two bounded

functions over [0, T ], the following stochastic exponential process

exp

{∫ t

0

m1(s)
√
αs dW1,s +

∫ t

0

m2(s)
√
αs dW2,s −

1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αs ds

}
is an (F,P)-martingale.

Theorem 9.3.7. Suppose Assumption 9.3.2 holds true. The solution (Y1,t, Z1,t, Z2,t)

given in (9.3.6) and (9.3.7) is the unique solution to BSRE (9.3.2).

Proof. See Appendix 9.C.

After deriving the closed-form expression for the unique solution (Y1,t, Z1,t, Z2,t)

to BSRE (9.3.3), the linear BSDE (9.3.4) of (Ḡ1,t, Λ̄1,t, Λ̄2,t) can be reformulated

as follows:
dḠ1,t =

(
(r − µl)Ḡ1,t + (λ− σl)

√
αtΛ̄1,t − ρ2g1(t)

√
αtΛ̄2,t

)
dt+ Λ̄1,t dW1,t

+ Λ̄2,t dW2,t,

Ḡ1,T =− 1.

(9.3.13)

Proposition 9.3.8. The unique solution to linear BSDE (9.3.13) is given by

Ḡ1,t = −e(r−µl)(t−T ), (9.3.14)

and

(Λ̄1,t, Λ̄2,t) = (0, 0) . (9.3.15)
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Proof. See Appendix 9.D.

Remark 9.3.9. It is crucial to identify that the second control component Λ2,t of the

solution to linear BSDE (9.3.3) is zero from Proposition 9.3.8 and the relationship

between Λ2,t and Λ̄2,t given in (9.3.5) above, which, in turn, allows us to remove

the fourth and fifth drift terms on the right-hand side of (9.3.1).

After solving the associated BSDEs explicitly and deriving their unique results,

now we are ready to state our first main result.

Theorem 9.3.10. For any initial data (x0, α0, l0) ∈ R+ ⊗ R+ ⊗ R+ such that

x0 + Ḡ1,0l0 ∈ R+, suppose that Assumption 9.3.2 and the following conditions hold

max {k0, k1, k2} ≤ κ2

ρ21 + ρ22
(9.3.16)

with k0, k1, and k2 given by

k0 = sup
t∈[0,T ]

(120 + 32
√
14)

[
(β1ρ1g1(t) + λγβ1)

2

γ2(γ − 1− β1)2
+
β2
2ρ

2
2g

2
1(t)

γ2

]
,

k1 = sup
t∈[0,T ]

(2 +
√
2)

(8(γ − β1)ρ1g1(t) + 8γλ)2

(β1 + 1− γ)2
,

k2 = sup
t∈[0,T ]

32(γ − β1)λρ1g1(t) + 32λ2γ

β1 + 1− γ
+
(
128γ2 − 16γ

) ( γ−β1
γ

ρ1g1(t) + λ)2

(β1 + 1− γ)2
.

Then, for the following control (π∗, ϕ∗)

π∗
t =

1

X∗
t σt

[
X∗
t + Ḡ1,tLt
β1 + 1− γ

(
γ − β1
γ

Z1,t

Y1,t
+ λ

√
αt

)
− σl

√
αtḠ1,tLt

]
,

ϕ∗1,t =−
(
β1
γ

Z1,t

Y1,t
+
β1(X

∗
t π

∗
t σt + σl

√
αtḠ1,tLt)

X∗
t + Ḡ1,tLt

)
=

β1
γ(γ − 1− β1)

Z1,t

Y1,t

+
λβ1

γ − 1− β1

√
αt,

ϕ∗2,t = = −β2
γ

Z2,t

Y1,t
,

(9.3.17)

where X∗
t is the asset process associated with π∗

t , and the closed-form expressions

for Y1,t, Z1,t, and Ḡ1,t are given by (9.3.6), (9.3.7), and (9.3.14), respectively, we

have

(i) the distortion process ϕ∗ ∈ Φ, i.e., the Radon-Nikodym derivative process φϕ
∗

t is

a uniformly integrable (F,P)-martingale, and X∗
t + Ḡ1,tLt > 0, P almost surely, for

all t ∈ [0, T ];

(ii) φϕ
∗

t Y1,t
(X∗

t +Ḡ1,tLt)
γ

γ ∈ S4
F,P(0, T ;R+);

(iii) φϕ
∗

t

(∫ t
0

(ϕ∗
1,s)

2

2ψ∗
1,s

+
(ϕ∗

2,s)
2

2ψ∗
2,s

ds
)
∈ S2

F,P(0, T ;R+), where ψ∗
i,t =

βi

Y1,t(X∗
t +Ḡ1,tLt)γ

, for

i = 1, 2.
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In the affirmative, the control (π∗, ϕ∗) ∈ Πp ⊗Φ is the optimal control of the robust

ALM problem (9.2.11), and the optimal value function is given by

Jp(π
∗, ϕ∗) = Y1,0

(x0 + Ḡ1,0l0)
γ

γ
. (9.3.18)

Proof. See Appendix 9.E.

Remark 9.3.11. The feasibility of the technical condition (9.3.16) is guaranteed

by the monotonicity of function g1(t), and in essence, this sufficient condition is

imposed to show that (π∗, ϕ∗) is a saddle point of the value function Jp(π, ϕ) for

the robust control problem (9.2.11). More specifically, it helps prove that (i)-(iii) in

Theorem 9.3.10 hold for the control (π∗, ϕ∗) and then verifies the admissibility of

(π∗, ϕ∗) by confirming conditions 1-3 in Definition 9.2.5 above.

Remark 9.3.12. Note that although robust investment problems using BSDE ap-

proaches have been considered in the literature (see, for example, Øksendal and

Sulem (2011, 2014)), our BSDE approach is different from that in Øksendal and

Sulem (2011, 2014), where the value function is written as the solution to an

associated controlled BSDE and the comparison theorem for the solutions to BSDEs

is applied to show that the optimal control is a saddle point of the value function.

Recalling (9.3.1) and the proof of Theorem 9.3.10 above, we propose to construct

a stochastic process depending on any admissible control (π, ϕ) instead, and such

that its terminal value equals the sum of the utility of the terminal surplus and the

penalty term within the expectation of (9.2.11), which then leads to two uncontrolled

BSDEs (9.3.2)-(9.3.3).

Remark 9.3.13. To our knowledge, the results provided in Theorem 9.3.10 are not

reported in the existing literature. If we further set l0 = µl = σl = 0 in Theorem

9.3.10, then we derive the explicit solutions to the robust portfolio selection problem

under power utility and square-root factor processes. If we specify β1 = β2 = 0, the

analytical solutions to the optimal ALM problem without model uncertainty under

power utility and square-root factor processes are provided. In other words, the

benefits of Theorem 9.3.10 are two-fold.

The next three corollaries provide the explicit results for three particular cases

of our model, the CEV model (9.2.4), the family of 4/2 models (9.2.5), and non-

Markovian stochastic volatility model (9.2.6), respectively.

Corollary 9.3.14 (CEV model). If the risky asset price St follows the CEV model

(9.2.4) with any initial data (x0, s0, l0) ∈ R+⊗R+⊗R+ such that x0+ Ḡ1,0l0 ∈ R+,

and suppose that µ− r(γ − β1) ̸= 0 and the following conditions hold

max
{
k̃0, k̃1, k̃2

}
≤ µ2

σ2
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with k̃0, k̃1, and k̃2 given by

k̃0 = sup
t∈[0,T ]

(120 + 32
√
14)

(γ µ−r
σ

− 2βσg̃1(t))
2β2

1

γ2(γ − 1− β1)2
,

k̃1 = sup
t∈[0,T ]

(2 +
√
2)

(8γ µ−r
σ

− 16(γ − β1)βσg̃1(t))
2

(β1 + 1− γ)2
,

k̃2 = sup
t∈[0,T ]

32λ2γ − 64(γ − β1)(µ− r)βg̃1(t)

β1 + 1− γ
+ (128γ2 − 16γ)

(µ−r
σ

− 2βσ γ−β1
γ

g̃1(t))
2

(β1 + 1− γ)2
,

then, the optimal control and optimal value function of the robust ALM problem

(9.2.11) are, respectively, given by

π∗
t =

(µ− r)
(
X∗

t + Ḡ1,tLt

)
X∗

t σ
2S2β

t (β1 + 1− γ)
− 2(γ − β1)βσg̃1(t)(X

∗
t + Ḡ1,tLt) + (β1 + 1− γ)γσlḠ1,tLt

X∗
t σS

2β
t (β1 + 1− γ)γ

,

ϕ∗
1,t =

β1

(γ − 1− β1)S
β
t

(
µ− r

σ
− 2βσg̃1(t)

γ

)
,

ϕ∗
2,t =0,

and

Jp(π
∗, ϕ∗) =

(
x0 − Ḡ1,0l0

)γ
γ

exp
{
f̃1(0) + g̃1(0)s

−2β
0

}
,

where Ḡ1,t is given by (9.3.14), and functions f̃1(t) and g̃1(t) are given by

f̃1(t) =

(
rγ + (2β

2
+ β)σ

2
n
g̃
−
1

)
(T−t)+

(2β2 + β)σ2

(
n
g̃
−
1

− n
g̃
+
1

)
√

∆g̃1

log

 n
g̃
+
1

− n
g̃
−
1

n
g̃
+
1

− n
g̃
−
1
e

√
∆g̃1

(T−t)

 ,

and

g̃1(t) =

n
g̃
+
1
n
g̃
−
1

(
1 − e

√
∆g̃1

(T−t)
)

n
g̃
+
1

− n
g̃
−
1
e

√
∆g̃1

(T−t)

with ∆g̃1 , ng̃+1
, and ng̃−1

given by
∆g̃1 =4β2

[(
µ− (γ − β1)(µ− r)

γ − 1− β1

)2

− γ − β1
(γ − 1− β1)2

(µ− r)2
]
,

n
g̃+1

=
2β
(

γ−β1
γ−1−β1

(µ− r)− µ
)
+
√

∆g̃1

γ−β1
γ(γ−1−β1)

4β2σ2
, n

g̃−1
=

2β
(

γ−β1
γ−1−β1

(µ− r)− µ
)
−
√

∆g̃1

γ−β1
γ(γ−1−β1)

4β2σ2
.

Proof. Substituting the parameters specified in Example 9.2.1 into (9.3.16)-(9.3.18)

leads to the results immediately.

Corollary 9.3.15 (The family of 4/2 models). If the risky asset price process St
and the variance driver process Vt are governed by the family of 4/2 models (9.2.5)

with any initial data (x0, v0, l0) ∈ R+ ⊗ R+ ⊗ R+ such that x0 + Ḡ1,0l0 ∈ R+, and

suppose that κ+ σvρλ
γ−β1

γ−1−β1
̸= 0 and the following conditions hold

max
{
k̄0, k̄1, k̄2

}
≤ κ2

σ2
v
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with k̄0, k̄1, and k̄2 given by

k̄0 = sup
t∈[0,T ]

(120 + 32
√
14)

[
(β1σvρḡ1(t) + λγβ1)

2

γ2(γ − 1− β1)2
+
β2
2σ

2
v(1− ρ2)ḡ21(t)

γ2

]
,

k̄1 = sup
t∈[0,T ]

(2 +
√
2)

(8(γ − β1)σvρḡ1(t) + 8γλ)2

(β1 + 1− γ)2
,

k̄2 = sup
t∈[0,T ]

32(γ − β1)λσvρḡ1(t) + 32λ2γ

β1 + 1− γ
+
(
128γ2 − 16γ

) ( γ−β1
γ

σvρḡ1(t) + λ)2

(β1 + 1− γ)2
,

then, the optimal control and optimal value function of the robust ALM problem

(9.2.11) are, respectively, given by

π∗
t =

Vt

X∗
t (c1Vt + c2)

[
X∗

t + Ḡ1,tLt

β1 + 1− γ

(
γ − β1
γ

σvρḡ1(t) + λ

)
− σlḠ1,tLt

]
,

ϕ∗
1,t =

[
β1

γ(γ − 1− β1)
σvρḡ1(t) +

λβ1
γ − 1− β1

]√
Vt,

ϕ∗
2,t =− β2

γ
σv

√
1− ρ2ḡ1(t)

√
Vt,

and

Jp(π
∗, ϕ∗) =

(x0 − Ḡ1,0l0)
γ

γ
exp

{
f̄1(0) + ḡ1(0)v0

}
,

where Ḡ1,t is given by (9.3.14), and functions f̄1(t) and ḡ1(t) are given by

f̄1(t) =
(
rγ + κθn

ḡ−1

)
(T − t) +

κθ
(
n
ḡ−1

− n
ḡ+1

)
√

∆ḡ1

log

 n
ḡ+1

− n
ḡ−1

n
ḡ+1

− n
ḡ−1
e
√

∆ḡ1
(T−t)


and

ḡ1(t) =
n
ḡ+1
n
ḡ−1

(
1− e

√
∆ḡ1

(T−t)
)

n
ḡ+1

− n
ḡ−1
e
√

∆ḡ1
(T−t)

with ∆ḡ1 , nḡ+1
, and nḡ−1

given by
∆ḡ1 =

(
κ+

(γ − β1)λσvρ

γ − 1− β1

)2

− λ2σ2
v

γ − 1− β1

(
γ − β1

γ − 1− β1
ρ2 − (γ − β2)(1− ρ2)

)
,

n
ḡ+1

=
−
(
κ+ (γ−β1)λσvρ

γ−1−β1

)
+
√

∆ḡ1

σ2
v

(
γ−β1

γ(γ−1−β1)
ρ2 − γ−β2

γ
(1− ρ2)

) , n
ḡ−1

=
−
(
κ+ (γ−β1)λσvρ

γ−1−β1

)
−
√

∆ḡ1

σ2
v

(
γ−β1

γ(γ−1−β1)
ρ2 − γ−β2

γ
(1− ρ2)

) .
Proof. Plugging the specified parameters of the 4/2 model (9.2.5) into (9.3.16)-

(9.3.18) yields the above results.

Remark 9.3.16. Setting either (c1, c2) = (1, 0) or (c1, c2) = (0, 1) in the 4/2 model

(9.2.5), Corollary 9.3.15 provides the explicit expressions for the optimal controls and

optimal value functions of the robust ALM problem (9.2.11) under the Heston model

and 3/2 model, respectively, and neither of them is considered in the published

works.
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Remark 9.3.17. It is worth mentioning that Cheng and Escobar (2021b) recently

solves the robust portfolio selection problem under the 4/2 model in a complete

market. In this sense, Corollary 9.3.15 extends the results of Cheng and Escobar

(2021b) to the case with random liabilities in an incomplete market setting. Moreover,

if we ignore model ambiguity by imposing β1 = β2 = 0 in Corollary 9.3.15, it can

be verified that our result generalizes that of Cheng and Escobar (2021a) to the

case with random liabilities.

Corollary 9.3.18 (Non-Markovian path-dependent model). If the risky asset price

process St and its volatility driver process αt are governed by the path-dependent

stochastic volatility model (9.2.6) with initial data (x0, α0, l0) ∈ R+⊗R+⊗R+ such

that x0 + Ḡ1,0l0 ∈ R+, and suppose that Assumption 9.3.2 and condition (9.3.16)

hold true, then the optimal control and optimal value function of the robust ALM

problem (9.2.11) are, respectively, given by

π∗
t =

1

X∗
t σ̂(α[0,t])

[
X∗

t + Ḡ1,tLt

β1 + 1− γ

(
γ − β1
γ

Z1,t

Y1,t
+ λ

√
αt

)
− σl

√
αtḠ1,tLt

]
,

ϕ∗
1,t =

β1
γ(γ − 1− β1)

Z1,t

Y1,t
+

λβ1
γ − 1− β1

√
αt,

ϕ∗
2,t =− β2

γ

Z2,t

Y1,t
,

and

Jp(π
∗, ϕ∗) = Y1,0

(x0 + Ḡ1,0l0)
γ

γ
,

where the closed-form expressions for Y1,t, Z1,t, Z2,t and Ḡ1,t are given by (9.3.6),

(9.3.7), and (9.3.14), respectively.

Proof. Replacing σt in Theorem 9.3.10 by σ̂(α[0,t]) leads to the above results

immediately.

9.4 Optimal investment strategies for the exponential utility

case

In this section, we investigate the robust optimization problem under exponential

utility (9.2.13) by using a BSDE approach. Similar to the previous section, to find

the BSDEs associated with problem (9.2.13), we introduce the following continuous

(F,P)-semi-martingales Y2,t and G2,t with canonical decomposition as follows:

dY2,t = P2,t dt+M1,t dW1,t +M2,t dW2,t,

and

dG2,t = H2,t dt+ Γ1,t dW1,t + Γ2,t dW2,t,

where P2,t and H2,t are two undetermined F-adapted processes, andM1,t,M2,t,Γ1,t,

and Γ2,t belong to L2,loc
F,P (0, T ;R). An application of Itô’s formula to φϕt

(
−
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e−q(Xπ
t Y2,t+G2,t)

q +
∫ t
0

(
ϕ2
1,s

2η1,s
+

ϕ2
2,s

2η2,s

)
ds

)
leads to

dφ
ϕ
t

(
−
e−q(Xπ

t Y2,t+G2,t)

q
+

∫ t

0

(
ϕ2
1,s

2η1,s
+

ϕ2
2,s

2η2,s

)
ds

)

=φ
ϕ
t

[
e
−q(Xπ

t Y2,t+G2,t)
(
(σtπtY2,t +M1,t)X

π
t + Γ1,t

)
+ ϕ1,t

(∫ t

0

(
ϕ2
1,s

2η1,s
+

ϕ2
2,s

2η2,s

)
ds

−
e−q(Xπ

t Y2,t+G2,t)

q

)]
dW1,t + φ

ϕ
t

[
e
−q(Xπ

t Y2,t+G2,t)
(
M2,tX

π
t + Γ2,t

)
+

(∫ t

0

(
ϕ2
1,s

2η1,s

+
ϕ2
2,s

2η2,s

)
ds−

e−q(Xπ
t Y2,t+G2,t)

q

)
ϕ2,t

]
dW2,t +

φϕ
t

2η1,t

[
ϕ1,t + e

−q(Xπ
t Y2,t+G2,t)

(
(σtπtY2,t

+M1,t)X
π
t + Γ1,t

)
η1,t

]2
dt+

φϕ
t

2η2,t

[
ϕ2,t + e

−q(Xπ
t Y2,t+G2,t)

(
M2,tX

π
t + Γ2,t

)
η2,t

]2
dt

−
q + β1

2
φ

ϕ
t e

−q(Xπ
t Y2,t+G2,t)

[
(σtπtY2,t +M1,t)X

π
t + Γ1,t −

1

q + β1

(
λ
√
αt +

M1,t

Y2,t

)]2
dt

−
q + β2

2
φ

ϕ
t e

−q(Xπ
t Y2,t+G2,t)M

2
2,t(X

π
t )

2
dt− (q + β2)φ

ϕ
t e

−q(Xπ
t Y2,t+G2,t)M2,tX

π
t Γ2,t dt

+ φ
ϕ
t e

−q(Xπ
t Y2,t+G2,t)

H2,t +

(
λ
√
αt +

M1,t
Y2,t

)2

2(q + β1)
−
q + β2

2
Γ
2
2,t −

(
λ
√
αt +

M1,t

Y2,t

)
Γ1,t

 dt
+ φ

ϕ
t e

−q(Xπ
t Y2,t+G2,t)X

π
t

[
rY2,t + P2,t −

(
λ
√
αt +

M1,t

Y2,t

)
M1,t

]
dt.

(9.4.1)

We expect φϕt

(
− e−q(Xπ

t Y2,t+G2,t)

q +
∫ t
0

(
ϕ2
1,s

2η1,s
+

ϕ2
2,s

2η2,s

)
ds
)
is a local (F,P)-martingale

for an admissible control (π∗, ϕ∗) ∈ Πe ⊗ Φ, a local (F,P)-super-martingale for

(π, ϕ̌) ∈ Πe ⊗ Φ, and a local (F,P)-sub-martingale for (π̌, ϕ) ∈ Πe ⊗ Φ, respectively.

Inspired by this, the stochastic processes P2,t and H2,t can be determined by simply

letting the last two terms on the right-hand side of (9.4.1) be zeros. In other words,

we find the following BSRE of (Y2,t,M1,t,M2,t):
dY2,t =

[
−rY2,t +

(
λ
√
αt +

M1,t

Y2,t

)
M1,t

]
dt+M1,t dW1,t +M2,t dW2,t,

Y2,T =1,

(9.4.2)

and quadratic BSDE of (G2,t,Γ1,t,Γ2,t):
dG2,t =

[(
λ
√
αt +

M1,t

Y2,t

)
Γ1,t +

q + β2
2

Γ2
2,t −

1

2(q + β1)

(
λ
√
αt +

M1,t

Y2,t

)2
]
dt

+ Γ1,t dW1,t + Γ2,t dW2,t,

G2,T =− LT .

(9.4.3)

Here, a solution to BSRE (9.4.2) is a triplet of F-adapted processes (Y2,t,M1,t,M2,t)

such that (Y2,t,M1,t,M2,t) ∈ S∞
F,P(0, T ;R+)⊗L2

F,P(0, T ;R)⊗L2
F,P(0, T ;R); a solution

to quadratic BSDE (9.4.3) is a triplet of F-adapted processes (G2,t,Γ1,t,Γ2,t) ∈
L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R).
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Similar to Section 9.3, we make the following assumptions on the model pa-

rameters to ensure that αt is an affine-form, square-root factor process under the

well-defined probability measure P̂ in Theorem 9.4.4.

Assumption 9.4.1. κ+ λρ1 ̸= 0.

Proposition 9.4.2. The unique solution to BSRE (9.4.2) is given by

Y2,t = er(T−t), (9.4.4)

and

(M1,t,M2,t) = (0, 0). (9.4.5)

Proof. See Appendix 9.F.

After solving BSRE (9.4.2) explicitly, we can simplify quadratic BSDE (9.4.3) to

the following form:
dG2,t =

(
λ
√
αtΓ1,t +

q + β2
2

Γ2
2,t −

1

2(q + β1)
λ2αt

)
dt+ Γ1,t dW1,t + Γ2,t dW2,t,

G2,T =− LT .

(9.4.6)

Proposition 9.4.3. One solution (G2,t,Γ1,t,Γ2,t) to quadratic BSDE (9.4.6) is

given by

G2,t = f2(t) + g2(t)αt + h2(t)Lt (9.4.7)

and

(Γ1,t,Γ2,t) = ((ρ1g2(t) + σlh2(t)Lt)
√
αt, ρ2g2(t)

√
αt) , (9.4.8)

where functions f2(t), g2(t), and h2(t) solve the following ODEs:

dg2(t)

dt
=
q + β2

2
ρ22g

2
2(t) + (κ+ λρ1) g2(t)−

1

2(q + β1)
λ2, g2(T ) = 0, (9.4.9)

df2(t)

dt
= −κθg2(t), f2(T ) = 0, (9.4.10)

and
dh2(t)

dt
= −µlh2(t), h2(T ) = −1. (9.4.11)

Furthermore, the closed-form expressions for g2(t), f2(t), and h2(t) are given by

g2(t) =



− λ2

2(q + β1)
(t− T ), if ρ2 = 0 and κ+ λρ1 = 0;

− λ2

2(q + β1)(κ+ λρ1)

(
e(κ+λρ1)(t−T ) − 1

)
, if ρ2 = 0 and κ+ λρ1 ̸= 0;

n
g+2
n
g−2

(
1− e

√
∆g2

(T−t)
)

n
g+2

− n
g−2
e
√

∆g2
(T−t)

, if ρ2 ̸= 0,

(9.4.12)
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f2(t) =



κθλ2

4(q + β1)
(t− T )2, if ρ2 = 0 and κ+ λρ1 = 0;

−λ2κθ

2(q + β1)(κ+ λρ1)

(
1− e(κ+λρ1)(t−T )

κ+ λρ1
+ t− T

)
, if ρ2 = 0 and κ+ λρ1 ̸= 0;

κθn
g−2

(T − t) +
κθ
(
n
g−2

− n
g+2

)
√

∆g2

log

 n
g+2

− n
g−2

n
g+2

− n
g−2
e
√

∆g2
(T−t)

 , if ρ2 ̸= 0,

(9.4.13)

and

h2(t) = −eµl(T−t), (9.4.14)

where ∆g2 , ng+2
, and ng−2

are given by

∆g2 = (κ+ λρ1)
2
+
q + β2

q + β1

ρ
2
2λ

2
, n

g
+
2

=
−(κ+ λρ1) +

√
∆g2

(q + β2)ρ22
, n

g
−
2

=
−(κ+ λρ1) −

√
∆g2

(q + β2)ρ22
.

(9.4.15)

Proof. See Appendix 9.G.

In the next theorem, we show that the candidate solution (G2,t,Γ1,t,Γ2,t) pre-

sented in Proposition 9.4.3 lies in L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R) and

is the unique solution to quadratic BSDE (9.4.6).

Theorem 9.4.4. Suppose Assumption 9.4.1 holds true. The solution (G2,t,Γ1,t,Γ2,t)

given by (9.4.7) and (9.4.8) is the unique solution to BSDE (9.4.6) and belongs to

L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R).

Proof. See Appendix 9.H.

Having derived the closed-form solutions to BSDEs (9.4.2) and (9.4.3), we are

ready to state our second main result below.

Theorem 9.4.5. For any initial data (x0, α0, l0) ∈ R+ ⊗ R+ ⊗ R+, suppose that

Assumption 9.4.1 and the following conditions hold

max {b0, b1, b2} ≤ κ2

ρ21 + ρ22
(9.4.16)

with b0, b1, and b2 given by

b0 = sup
t∈[0,T ]

(120 + 32
√
14)

(
β2
1λ

2

(q + β1)2
+ β2

2ρ
2
2g

2
2(t)

)
,

b1 = sup
t∈[0,T ]

64(2 +
√
2)

(
λ2

(q + β1)2
+ ρ22g

2
2(t)

)
q2,

b2 = sup
t∈[0,T ]

128q2λ2

(q + β1)2
− 16qλ2

q + β1
+ (112q2 − 16qβ2)ρ

2
2g

2
2(t).
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Then, for the following control (π∗, ϕ∗)
π∗
t =

λ
q+β1

√
αt − Γ1,t

X∗
t σtY2,t

,

ϕ∗1,t = −β1 (σtπ∗
t Y2,tX

∗
t + Γ1,t) = − β1

q + β1
λ
√
αt,

ϕ∗2,t = −β2Γ2,t,

(9.4.17)

where X∗
t is the asset process associated with π∗

t , and the closed-form expressions

for Y2,t,Γ1,t, and Γ2,t are given by (9.4.4) and (9.4.8), respectively, we have

(i) the distortion process ϕ∗ ∈ Φ, i.e., the Radon-Nikodym derivative process φϕ
∗

t is

a uniformly integrable (F,P)-martingale;

(ii) −φϕ
∗

t
e−q(X∗

t Y2,t+G2,t)

q ∈ S4
F,P(0, T ;R);

(iii) φϕ
∗

t

(∫ t
0

(ϕ∗
1,s)

2

2η∗1,s
+

(ϕ∗
2,s)

2

2η∗2,s
ds
)
∈ S2

F,P(0, T ;R), where η∗i,t =
βi

e−q(X∗
t Y2,t+G2,t)

, for

i = 1, 2.

In the affirmative, the control (π∗, ϕ∗) ∈ Πe ⊗ Φ is the optimal control of the robust

ALM problem (9.2.13), and the optimal value function is given by

Je(π
∗, ϕ∗) = −e

−q(x0Y2,0+G2,0)

q
, (9.4.18)

where the explicit expression for G2,t is given by (9.4.7).

Proof. See Appendix 9.I.

Remark 9.4.6. To our knowledge, the results shown in Theorem 9.4.5 are not

reported in the existing literature. If we further consider the special case without

model ambiguity by setting β1 = β2 = 0, we obtain the explicit expressions for the

optimal investment strategy and optimal value function of the ALM problem under

exponential utility and square-root factor process. If we plug l0 = µl = σl = 0 into

Theorem 9.4.5, the analytical solutions to the robust optimal portfolio selection

problems under exponential utility are derived.

In the next three corollaries, we present the explicit expressions for the robust

optimal controls and robust optimal value functions under the CEV model, 4/2

model, and non-Markovian path-dependent model given in Example 9.2.1-9.2.4,

respectively.

Corollary 9.4.7 (CEV model). If the risky asset price St follows the CEV model

(9.2.4) with any initial data (x0, s0, l0) ∈ R+ ⊗ R+ ⊗ R+, and suppose that the

following conditions hold

max
{
b̃0, b̃1

}
≤ µ2

σ2
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with b̃0 and b̃1 given by


b̃0 =(120 + 32

√
14)

(µ− r)2β2
1

σ2(q + β1)2
,

b̃1 =64(2 +
√
2)

(µ− r)2q2

σ2(q + β1)2
,

then, the optimal control and optimal value function of the robust ALM problem

(9.2.13) are, respectively, given by

(
π∗
t , ϕ

∗
1,t, ϕ

∗
2,t

)
=

(
µ−r

σ(q+β1)
+ 2βσg̃2(t)− σlh2(t)Lt

X∗
t Y2,tσS

2β
t

,− β1
q + β1

µ− r

σSβ
t

, 0

)
,

and

Je(π
∗, ϕ∗) = −e

−q
(
x0Y2,0+f̃2(0)+g̃2(0)S

−β
0 +h2(0)l0

)
q

,

where Y2,t and h2(t) are given by (9.4.4) and (9.4.14), respectively, and functions

f̃2(t) and g̃2(t) are as follows:

f̃2(t) = −
(µ− r)2

(
β + 1

2

)
2(q + β1)r

(
1− e2βr(t−T )

2βr
+ t− T

)
and

g̃2(t) =
(µ− r)2

4βr(q + β1)σ2

(
1− e2βr(t−T )

)
.

Proof. Substituting the specified parameters of the CEV model (9.2.4) in Example

9.2.1 into Theorem 9.4.5 yields the above results. In addition, it is easy to see that

Assumption 9.4.1 always holds for the CEV model since 2βr ̸= 0.

Remark 9.4.8. If we ignore random liabilities by imposing l0 = µl = σl = 0, then

the optimal value function and optimal control for the robust portfolio selection

problem under the CEV model and exponential utility are provided, which are the

identical to that presented in Theorem 3.4 in Zheng, Zhou, and Sun (2016) when

no reinsurance is involved. If we further ignore model ambiguity by setting β1 = 0,

the optimal investment strategy recovers the results provided in Proposition 2 in

Gao (2009) and Sun, Yong, and Gao (2020).

Corollary 9.4.9 (The family of 4/2 model). If the risky asset price process St
and the variance driver process Vt follow the family of 4/2 models (9.2.5) with any

initial data (x0, v0, l0) ∈ R+ ⊗ R+ ⊗ R+, and suppose that κ + σvρλ ̸= 0 and the

following conditions hold

max
{
b̄0, b̄1, b̄2

}
≤ κ2

σ2
v
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with b̄0, b̄1, and b̄2 given by

b̄0 = sup
t∈[0,T ]

(120 + 32
√
14)

(
β2
1λ

2

(q + β1)2
+ β2

2σ
2
v(1− ρ2)ḡ22(t)

)
,

b̄1 = sup
t∈[0,T ]

64(2 +
√
2)

(
λ2

(q + β1)2
+ σ2

v(1− ρ2)ḡ22(t)

)
q2,

b̄2 = sup
t∈[0,T ]

128q2λ2

(q + β1)2
− 16qλ2

q + β1
+ (112q2 − 16qβ2)σ

2
v(1− ρ2)ḡ22(t),

then, the optimal control and optimal value function of the robust ALM problem
(9.2.13) are, respectively, given by

(
π
∗
t , ϕ

∗
1,t, ϕ

∗
2,t

)
=

Vt

(
λ

q+β1
− σvρḡ2(t) − σlh2(t)Lt

)
(c1Vt + c2)X∗

t Y2,t

,−
β1λ

q + β1

√
Vt,−β2σv

√
1 − ρ2ḡ2(t)

√
Vt

 ,

and

Je(π
∗, ϕ∗) = −e

−q(x0Y2,0+f̄2(0)+ḡ2(0)v0+h2(0)l0)

q
,

where Y2,t and h2(t) are given by (9.4.4) and (9.4.14), respectively, and functions

f̄2(t) and ḡ2(t) are given as follows:

f̄2(t) =


− λ2κθ

2(q + β1)(κ+ λσvρ)

(
1− e(κ+λσvρ)(t−T )

κ+ λσvρ
+ t− T

)
, if ρ = ±1;

κθn
ḡ−2

(T − t) +
κθ(n

ḡ−2
− n

ḡ+2
)√

∆ḡ2

log

 n
ḡ+2

− n
ḡ−2

n
ḡ+2

− n
ḡ−2
e
√

∆ḡ2
(T−t)

 , if ρ ̸= ±1,

and

ḡ2(t) =


− λ2

2(q + β1)(κ+ λσvρ)

(
e(κ+λσvρ)(t−T ) − 1

)
, if ρ = ±1;

n
ḡ+2
n
ḡ−2

(
1− e

√
∆ḡ2

(T−t)
)

n
ḡ+2

− n
ḡ−2
e
√

∆ḡ2 (T−t)
, if ρ ̸= ±1

with ∆ḡ2 , nḡ+2
, and nḡ−2

given by

∆ḡ2
= (κ+λσvρ)

2
+
q + β2

q + β1

σ
2
v(1−ρ

2
)λ

2
, n

ḡ
+
2

=
−(κ+ λσvρ) +

√
∆ḡ2

(q + β2)σ2
v(1 − ρ2)

, n
ḡ
−
2

=
−(κ+ λσvρ) −

√
∆ḡ2

(q + β2)σ2
v(1 − ρ2)

.

Proof. Substituting the specified parameters of the 4/2 model (9.2.5) in Example

9.2.2 into Theorem 9.4.5 leads to the results immediately.

Remark 9.4.10. By specifying (c1, c2) = (1, 0) and (c1, c2) = (0, 1) in Corollary 9.4.9,

we obtain the corresponding results for the embedded Heston model and 3/2 model,

respectively. Moreover, it is straightforward to verify that the optimal investment

strategy is in line with that in Corollary 3.22 in Zhang (2022c) when we impose

β1 = β2 = l0 = µl = σl = 0. In other words, Corollary 9.4.9 extends the recent

results of Zhang (2022c) to the case with random liabilities and model ambiguity.
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Corollary 9.4.11 (Non-Markovian path-dependent model). If the risky asset price

process St and its volatility driver process αt follow the path-dependent stochastic

volatility model (9.2.6) with any initial data (x0, α0, l0) ∈ R+ ⊗ R+ ⊗ R+, and

suppose that condition (9.4.16) holds true, then optimal control and optimal value

function of the robust ALM problem (9.2.13) are, respectively, given by

(
π∗
t , ϕ

∗
1,t, ϕ

∗
2,t

)
=

(
λ

q+β1

√
αt − Γ1,t

X∗
t σ̂(α[0,t])Y2,t

,− β1
q + β1

λ
√
αt,−β2Γ2,t

)
,

and

Je(π
∗, ϕ∗) = −e

−q(x0Y2,0+G2,0)

q
,

where the closed-form expressions for Y2,t, G2,t,Γ1,t, and Γ2,t are given by (9.4.4),

(9.4.7), and (9.4.8), respectively.

Proof. Replacing σt in Theorem 9.4.5 by the specification σ̂(α[0,t]) of the path-

dependent model (9.2.6) in Example 9.2.4 yields the above results immediately.

9.5 Numerical analysis

In this section, we devote ourselves to showing the effects of model parameters on the

behavior of the robust optimal investment strategy by giving numerical examples. In

the following numerical illustrations, we are mainly concerned about the exponential

utility case under the CEV model (9.2.4) and 4/2 stochastic volatility model (9.2.5)

since these two models are extensively studied in the literature in recent years and

the power utility case can be conducted in a similar manner. Throughout this

section, unless otherwise specified, the fundamental values of the model parameters

are given as follows: r = 0.02, µl = 0.01, σl = 0.2, x0 = 1, l0 = 0.5, T = 0.1, β1 =

1.5, β2 = 1, q = 2; in the 4/2 model, κ = 7.3479, θ = 0.0328, σv = 0.6612, ρ =

−0.7689, λ = 2.9428, c1 = 0.9051, c2 = 0.023, v0 = 0.04, mainly referred to Cheng

and Escobar (2021a); in the CEV model, µ = 0.05, σ = 0.25, β = −0.7, s0 = 0.5.

For simplicity but without loss of generality, we focus on the analysis at time t = 0

and vary the value of one parameter with others fixed at each time. The range

allowed for the parameters is the possibility that the conditions in Corollary 9.4.7

and 9.4.9 are respectively met.

9.5.1 Effects of parameters in the 4/2 model on the robust

investment strategy

In this subsection, we are interested in the effects of some model parameters in the

4/2 stochastic volatility model (9.2.5) on the robust optimal investment strategy

π∗ given in Corollary 9.4.9.

Figure 9.1 displays the effects of the ambiguity aversion parameters β1 and β2
and the risk aversion coefficient q on the robust optimal investment strategy π∗.
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(a) (b)

Figure 9.1: Effects of the ambiguity parameters β1 and β2 and the risk aversion coefficient
q on the robust optimal investment strategy π∗ under the 4/2 model (9.2.5)

From Figure 9.1(a), we find that π∗ decreases with respect to β1 and q. Along

with the growth of β1, the asset-liability manager is more ambiguity averse about

the risky asset dynamics. Hence, the manager is willing to reduce the investment

proportion in the risky asset. With the increase of q, the manager becomes more

risk averse and tends to accept a lower risk for the investment. So, less wealth

will be invested in the risky asset. For a similar reason, as the ambiguity aversion

parameter β2 becomes larger, the manager is more ambiguity averse about the risky

asset variance driver process. Therefore, the investment proportion in the risky

asset is reduced, which is consistent with the results shown in Figure 9.1(b).

(a) (b) (c)

Figure 9.2: Effects of parameters µl, σl, λ, ρ, κ, and σv on the robust optimal investment
strategy π∗ under the 4/2 model (9.2.5)

Figure 9.2 contributes to the evolution of the robust optimal investment strategy

π∗ with respect to the random liability parameters µl, σl, the slope of the market

price of volatility risk λ, the correlation between the risky asset price and instanta-

neous variance driver ρ, and the mean-reversion rate and volatility of the variance

driver process κ and σv. From Figure 9.2(a), we observe that π∗ increases slightly

with respect to µl. When µl is growing, the appreciation rate of the random liability

becomes larger. In this case, the manager is willing to increase the investment

proportion in the risky asset to obtain a higher terminal surplus. Figure 9.2(a) also

indicates that the investment proportion in the risky asset increases along with the

volatility scale factor σl. In fact, as σl increases, the volatility of the random liability
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caused by the risky asset becomes larger. As a result, the manager tends to invest

more wealth into the risky asset as a hedging instrument to reduce the volatility

risk of the random liability to an acceptable level. In addition, when ρ decreases

from 0.9 to −0.9, the investment proportion in the risky asset increases as revealed

by Figure 9.2(b). This is due to the fact that decreasing ρ leads the hedge demand

−σvρḡ2(t) (ḡ2(t) > 0) to increase. Figure 9.2(b) also shows that the investment

proportion in the risky asset increases with respect to λ. Since λ depicts the slope

of the market price of volatility risk, a larger value of λ implies that the manager

could obtain higher returns by investing in the risky asset. Finally, Figure 9.2(c)

illustrates that π∗ decreases along with κ but increases along with σv. Indeed, since

κ stands for the mean-reversion rate of the variance driver process, the variance

driver process moves faster towards the constant long-run level θ as κ increases.

Along with the growth of κ, the volatility risk of the risky asset becomes smaller,

and hence the investment proportion in the risky asset is reduced. Conversely, as

the volatility coefficient σv increases, the instantaneous variance of the risky asset

price fluctuates more dramatically and the manager faces a higher volatility risk.

As a result, a larger investment proportion in the risky asset is necessary to hedge

against the volatility risk.

9.5.2 Effects of parameters in the CEV model on the robust

investment strategy

This subsection focuses on the effects of some model parameters in the CEV model

(9.2.4) on the robust optimal investment strategy π∗ given in Corollary 9.4.7. More

specifically, Figure 9.3 describes how the robust optimal investment strategy π∗

evolves with respect to β1, q, σ, µ, r, and β.

Similar to the results shown in Figure 9.1(a) under the 4/2 model, we can observe

from Figure 9.3(a) that under the CEV model, the robust optimal investment

strategy π∗ has negative relationships with both the ambiguity aversion parameter

β1 and risk aversion coefficient q. In other words, the manager tends to put less

wealth into the risky asset when he/she becomes either more ambiguity-averse or

more risk-averse. Figure 9.3(b) shows that the robust optimal investment strategy

π∗ is positively correlated with the parameter µ under the CEV model. Along with

the growth of µ, the manager can earn a higher risk premium from the risky asset

as µ stands for the expected return rate of the risky asset. In this case, the manager

is willing to increase the proportion of wealth invested in the risky asset to derive a

higher terminal surplus. From Figure 9.3(b), we also find that π∗ decreases with

respect to σ, which can be interpreted by the fact that σ characterizes the risky

asset’s local volatility, and when σ becomes larger, the risky asset displays greater

local volatility. Therefore, the manager has the motivation to decrease the amount

of wealth invested in the risky asset to avoid amplified volatility risk. Finally, from
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Figure 9.3(c), we observe that the robust optimal investment strategy π∗ increases

when the elasticity parameter β increases from −1 to −0.7. This can be explained

by the economic implication of β; the negativeness of β indicates the existence of

the leverage effect, and when β becomes less negative, the volatility risk turns out

to be less significant, and thus, the manager would increase the investment in the

risky asset. Figure 9.3(c) also reveals that the optimal proportion of wealth invested

into the risky asset π∗ has a negative relationship with the risk-free interest rate r.

Varying r from 0.01 to 0.05, the expected rate return of the risk-free asset becomes

higher. Hence, the manager would invest more in the risk-free asset and less in the

risky asset to reduce the overall risk.

(a) (b) (c)

Figure 9.3: Effects of parameters β1, q, σ, µ, r and β on the robust optimal investment
strategy π∗ under the CEV model (9.2.4)

9.6 Conclusion

In this paper, we investigate robust ALM problems for a manager with both risk

and ambiguity aversion in the presence of stochastic volatility. The manager is

subject to random liabilities and has access to a financial market consisting of

one risk-free asset and one risky asset, where the market price of risk follows an

affine-form, square-root, Markovian model, while the return rate and volatility are

possibly non-Markovian, unbounded stochastic processes. The modeling framework

embraces the CEV model, the family of state-of-the-art 4/2 stochastic volatility

models, and some non-Markovian path-dependent models, as particular cases. The

manager is allowed to have different levels of ambiguity about the risky asset

price and volatility and aims to seek a robust optimal investment strategy against

the worst-case measure among the class of alternative measures equivalent to the

reference measure. In the non-Markovian case, the dynamic programming principle

along with the HJBI equation approach no longer works, and thus, a novel BSDE

approach is proposed. To find the associated BSDEs, we propose to construct a

stochastic process depending on any admissible control, and such that its value

at time zero does not rely on any admissible control and its terminal value equals

the utility of the terminal surplus penalized by model ambiguity. By solving the

BSDEs explicitly, we derive, in closed form, the robust optimal controls and robust

optimal value functions for the power and exponential utility functions, respectively.
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Moreover, analytical solutions to some special cases of our model are obtained.

Finally, the economic impacts of model ambiguity and model parameters on the

robust optimal investment strategies are analyzed with numerical examples, from

which we find that (1) the levels of ambiguity aversion about the risky asset’s price

and volatility both reduce the robust optimal investment proportion in the risky

asset; (2) the robust optimal investment strategy is more sensitive to the level of

ambiguity about the risky asset dynamics than to that about its volatility. As far

as we know, this paper is the first to address the ALM problems in the presence

of model ambiguity as well as stochastic volatility, and more importantly, there

is no existing literature using the above BSDE approach to study robust decision

problems in the non-Markovian setting. So, this study is meaningful from both

theoretical and practical perspectives.

Built on the current study, some promising directions for future research might be

followed. For instance, (1) this paper investigates the robust ALM problems within

the expected utility maximization framework. One may consider other non-utility

criteria, such as the mean-variance criterion. (2) In addition to model ambiguity,

the manager may also face partial information. (3) It may also be of interest

to apply the proposed BSDE approach to address robust pension investment or

investment-consumption problems in non-Markovian cases.
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9.A Proof of Proposition 9.3.3

Proof. Conjecture that the first component Y1,t of the solution to BSRE (9.3.2) has

the following exponential-affine form:

Y1,t = exp {f1(t) + g1(t)αt} ,

where f1(t) and g1(t) are two differentiable functions which shall be determined

later with terminal conditions f1(T ) = g1(T ) = 0. An application of Itô’s formula

to Y1,t then leads to

dY1,t =Y1,t

[
df1(t)

dt
+
dg1(t)

dt
αt + κ(θ − αt)g1(t) +

1

2

(
ρ21 + ρ22

)
g21(t)αt

]
dt

+ ρ1g1(t)
√
αtY1,t dW1,t + ρ2g1(t)

√
αtY1,t dW2,t.

(9.A.1)

Match the diffusive coefficients in (9.A.1) with BSRE (9.3.2) by letting Z1,t =
ρ1g1(t)

√
αtY1,t and Z2,t = ρ2g1(t)

√
αtY1,t. We can rewrite the generator of BSRE
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(9.3.2) as follows:

Y1,t

[(
γλ2

2(γ − 1 − β1)
+

(γ − β1)λρ1g1(t)

γ − 1 − β1

+
ρ21g

2
1(t)

2γ

(
β1 +

(γ − β1)
2

γ − 1 − β1

)
+
β2ρ

2
2g

2
1(t)

2γ

)
αt − rγ

]
.

(9.A.2)

Comparing (9.A.2) with the drift coefficient of (9.A.1) leads to the ODEs (9.3.8)

and (9.3.9) governing g1(t) and f1(t), respectively.

Denote by ∆g1 =
(
κ+ (γ−β1)λρ1

γ−1−β1

)2
− λ2

γ−1−β1

(
γ−β1

(γ−1−β1)
ρ21 − (γ − β2)ρ

2
2

)
> 0.

We can reformulate the Riccati ODE (9.3.8) as follows:

dg1(t)

dt
=

(
γ − β1

2γ(γ − 1− β1)
ρ21 −

γ − β2
2γ

ρ22

)(
g1(t)− n

g+1

)(
g1(t)− n

g−1

)
,

where ng+1
and ng−1

are given in (9.3.12). By using the separation method and some

simple calculations, the closed-form expression of g1(t) is given in (9.3.10). Finally,

noticing the boundary condition that f1(T ) = 0 and substituting g1(t) back into

ODE (9.3.9), we have the close-form expression of f1(t) given in (9.3.11).

9.B Proof of Proposition 9.3.5

Proof. The uniform boundedness of the process Y1,t follows immediately from the

negativeness of function g1(t) and the positiveness of the square-root factor process

αt, for t ∈ [0, T ]. More precisely, we have P almost surely,

Y1,t = exp {f1(t) + g1(t)αt} ≤ exp

{∫ T

t

κθg1(s) ds+ rγ(T − t)

}
≤ exp {rγ(T − t)} < +∞.

As a result, we find from (9.3.7) that

EP
[∫ T

0

Z2
i,t dt

]
≤ Ci

∫ T

0

EP [αt] dt = Ci

∫ T

0

(
α0e

−κt + κθ

∫ t

0

e−κ(t−s) ds

)
dt < +∞,

where Ci = ρ2i g
2
1(0)e

2|rγ|T , for i = 1, 2. This completes the proof.

9.C Proof of Theorem 9.3.7

Proof. First of all, it follows from Lemma 9.3.6 that the probability measure P̃
defined by

dP̃
dP

∣∣∣∣
FT

= exp

{
−
∫ T

0

γ − β1
γ − 1− β1

λ
√
αt dW1,t −

1

2

∫ t

0

(
γ − β1

γ − 1− β1

)2

λ2αt dt

}

is equivalent to the reference measure P. By Girsanov’s theorem, the following

processes W̃1,t and W̃2,t

W̃1,t =

∫ t

0

γ − β1
γ − 1− β1

λ
√
αs ds+W1,t and W̃2,t =W2,t
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are two standard Brownian motions under P̃. In addition, the P̃-dynamics of the

factor process αt is given by

dαt =

(
κ+ ρ1λ

γ − β1
γ − 1− β1

)(
κθ

κ+ ρ1λ
γ−β1

γ−1−β1

− αt

)
dt+

√
αt

(
ρ1 dW̃1,t + ρ2 dW̃2,t

)
,

which preserves the affine-form, square-root structure under Assumption 9.3.2.

Moreover, the BSRE (9.3.2) can be rewritten under P̃ measure as follows:

dY1,t =

[(
−rγ +

γ

2(γ − 1− β1)
λ2αt

)
Y1,t +

1

2γ

(
β1 +

(γ − β1)
2

γ − 1− β1

)
Z2

1,t

Y1,t
+
β2
2γ

Z2
2,t

Y1,t

]
dt

+ Z1,t dW̃1,t + Z2,t dW̃2,t,

Y1,T =1,

Y1,t >0, for all t ∈ [0, T ).

(9.C.1)

Denote by (Ỹ1,t, Z̃1,t, Z̃2,t) another solution to BSRE (9.3.2), which is different from

the proposed one given in Proposition 9.3.3. Define the following difference process:

(∆ log(Y1,t),∆Z1,t,∆Z2,t) =

(
log(Y1,t)− log(Ỹ1,t),

Z1,t

Y1,t
− Z̃1,t

Ỹ1,t

,
Z2,t

Y1,t
− Z̃2,t

Ỹ1,t

)
.

Apply Itô’s formula to ∆ log(Y1,t), we have the BSDE of (∆ log(Y1,t),∆Z1,t,∆Z2,t):
d∆log(Y1,t) =

1

2

β1 + (γ−β1)
2

γ−1−β1

γ
− 1

(Z2
1,t

Y 2
1,t

−
Z̃2

1,t

Ỹ 2
1,t

)
+

(
β2
γ

− 1

)(
Z2

2,t

Y 2
1,t

−
Z̃2

2,t

Ỹ 2
1,t

) dt
+∆Z1,t dW̃1,t +∆Z2,t dW2,t,

∆log(Y1,T ) =0.

(9.C.2)

Furthermore, since αt is still an affine-form, square-root factor process under P̃
measure, we can define the following equivalent probability measure P̂ on FT
as a result of Lemma 9.3.6 and the explicit expression of the proposed solution
(Y1,t, Z1,t, Z2,t) given in Proposition 9.3.3:

dP̂
dP̃

∣∣∣∣
FT

=exp

−
∫ T

0

β1 +
(γ−β1)2

γ−1−β1

γ
− 1

 ρ1g1(t)
√
αt dW̃1,t −

∫ T

0

(
β2

γ
− 1

)
ρ2g1(t)

√
αt dW̃2,t

−
1

2

∫ T

0


β1 +

(γ−β1)2

γ−1−β1

γ
− 1


2

ρ
2
1 +

(
β2

γ
− 1

)2

ρ
2
2

 g21(t)αt dt


=exp

−
∫ T

0

β1 +
(γ−β1)2

γ−1−β1

γ
− 1

 Z1,t

Y1,t

dW̃1,t −
∫ T

0

(
β2

γ
− 1

)
Z2,t

Y1,t

dW̃2,t

−
1

2

∫ T

0


β1 +

(γ−β1)2

γ−1−β1

γ
− 1


2

Z2
1,t

Y 2
1,t

+

(
β2

γ
− 1

)2 Z2
2,t

Y 2
1,t

 dt
 .
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So, by Girsanov’s theorem, the following processes Ŵ1,t and Ŵ2,t:

Ŵ1,t =

∫ t

0

β1 + (γ−β1)
2

γ−1−β1

γ
− 1

 Z1,s

Y1,s
ds+ W̃1,t and Ŵ2,t =

∫ t

0

(
β2
γ

− 1

)
Z2,s

Y1,s
ds+ W̃2,t

(9.C.3)

are two standard Brownian motions under P̂ measure. Therefore, it follows from

(9.C.2) and (9.C.3) that (∆ log(Y1,t),∆Z1,t,∆Z2,t) solves the following quadratic

BSDE under P̂ measure:
d∆log(Y1,t) =− 1

2

β1 + (γ−β1)
2

γ−1−β1

γ
− 1

∆Z2
1,t +

(
β2
γ

− 1

)
∆Z2

2,t

 dt
+∆Z1,t dŴ1,t +∆Z2,t dŴ2,t,

∆log(Y1,T ) =0.

This quadratic BSDE clearly satisfies all the regularity conditions in Kobylanski

(2000). Thus, by Theorem 2.3 and 2.6 in Kobylanski (2000), we can conclude that the

above quadratic BSDE admits a unique solution which is (∆ log(Y1,t),∆Z1,t,∆Z2,t) =

(0, 0, 0). In other words, the proposed solution (Y1,t, Z1,t, Z2,t) given in (9.3.6) and

(9.3.7) must be the unique solution to BSRE (9.3.2) in the space S∞
F,P(0, T ;R+)⊗

L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R). This completes the proof.

9.D Proof of Proposition 9.3.8

Proof. By Lemma 9.3.6, the following Radon-Nikodym derivative

dP̄
dP

∣∣∣∣
FT

=exp

{
−
∫ T

0

(λ− σl)
√
αt dW1,t +

∫ T

0

ρ2g1(t)
√
αt dW2,t −

1

2

∫ T

0

(
(λ− σl)

2
+ ρ

2
2g

2
1(t)

)
αt dt

}

is well-defined, and thus, the probability measure P̄ is also well-defined and equivalent

to P. By Girsanov’s theorem, the following two processes

W̄1,t =

∫ t

0

(λ− σl)
√
αs ds+W1,t and W̄2,t = −

∫ t

0

ρ2g1(s)
√
αs ds+W2,t

are two standard Brownian motions under P̄. So, linear BSDE (9.3.13) can be

reformulated under P̄ measure as follows:{
dḠ1,t =(r − µl)Ḡ1,t dt+ Λ̄1,t dW̄1,t + Λ̄2,t dW̄2,t,

Ḡ1,T =− 1,
(9.D.1)

which is linear BSDE with standard data (refer to El Karoui, Peng, and Quenez

(1997)) and has deterministic coefficients in the generator. Then by Theorem 2.1

and Proposition 2.2 in El Karoui, Peng, and Quenez (1997), we notice that (9.3.14)

and (9.3.15) form the unique solution to (9.D.1) and to (9.3.13) as well. This

completes the proof.
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9.E Proof of Theorem 9.3.10

Proof. In the first place, we show that ϕ∗ =
({
ϕ∗1,t

}
t∈[0,T ]

,
{
ϕ∗2,t

}
t∈[0,T ]

)
given in

(9.3.17) lies in Φ, i.e.,

EP
[
exp

{
1

2

∫ T

0

(
(ϕ∗

1,t)
2 + (ϕ∗

2,t)
2) dt}] < +∞.

Indeed, recalling from Remark 9.3.4 that g1(t) is bounded by [g1(0), 0] and using the

Laplace transform of an integrated square-root diffusion process (see, for example,

Theorem 5.1 in Zeng and Taksar (2013)) and condition (9.3.16), we have

EP
[
exp

{
1

2

∫ T

0

(
(ϕ∗

1,t)
2 + (ϕ∗

2,t)
2) dt}] ≤ EP

[
exp

{
k0
2

∫ T

0

αt dt

}]
< +∞,

where the constant k0 is given in (9.3.16). Substituting π∗
t into X∗

t and applying

Itô’ formula to X∗
t + Ḡ1,tLt under the reference measure P, we find that

d
(
X∗

t + Ḡ1,tLt

)
X∗

t + Ḡ1,tLt
=

[
r +

γ−β1
γ

λρ1g1(t) + λ2

β1 + 1− γ
αt

]
dt+

γ−β1
γ

ρ1g1(t) + λ

β1 + 1− γ

√
αt dW1,t.

(9.E.1)

Solving the linear SDE (9.E.1) explicitly, we have

X∗
t + Ḡ1,tLt =exp

{∫ t

0

[
r +

(
γ−β1

γ
λρ1g1(s) + λ2

β1 + 1− γ
−

( γ−β1
γ

ρ1g1(s) + λ)2

2(β1 + 1− γ)2

)
αs

]
ds

+

∫ t

0

γ−β1
γ

ρ1g1(s) + λ

β1 + 1− γ

√
αs dW1,s

}
× (x0 + Ḡ1,0l0) > 0,

(9.E.2)

for the initial data (x0, α0, l0) such that x0 + Ḡ1,0l0 ∈ R+. Then, it follows from

(9.E.2) and Proposition 9.3.5 that∣∣∣∣Y1,t
(X∗

t + Ḡ1,tLt)
γ

γ

∣∣∣∣8
≤c exp

{
8γ

∫ t

0

γ−β1
γ

ρ1g1(s) + λ

β1 + 1− γ

√
αs dW1,s − 32γ2

∫ t

0

( γ−β1
γ

ρ1g1(s) + λ)2

(β1 + 1− γ)2
αs ds

}
︸ ︷︷ ︸

K1,t

× exp

{∫ t

0

(
8(γ − β1)λρ1g1(s) + 8λ2γ

β1 + 1− γ
+ (32γ2 − 4γ)

( γ−β1
γ

ρ1g1(s) + λ)2

(β1 + 1− γ)2

)
αs ds

}
︸ ︷︷ ︸

K2,t

,

(9.E.3)

where c is a positive constant. We observe that K1,t is the stochastic exponential

process of continuous (F,P)-local martingale
∫ t
0

8(γ−β1)ρ1g1(s)+8γλ
β1+1−γ

√
αs dW1,s, and

thus, it follows from Theorem 15.4.6 in Cohen and Elliott (2015), Theorem 5.1 in
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Zeng and Taksar (2013) and condition (9.3.16) that

EP
[

sup
t∈[0,T ]

K
2
1,t

]
≤ 2

{
EP
[
exp

{
2 +

√
2

2

∫ T

0

(8(γ − β1)ρ1g1(t) + 8γλ)2

(β1 + 1 − γ)2
αt dt

}]}√
2+

√
2−1

2+
√

2

≤ 2

{
EP
[
exp

{
k1

2

∫ T

0

αt dt

}]}√
2+

√
2−1

2+
√

2
< +∞,

(9.E.4)

where the constant k1 is give in (9.3.16). Similarly, by using Theorem 5.1 in Zeng

and Taksar (2013) and condition (9.3.16), we have

EP

[
sup

t∈[0,T ]

K2
2,t

]
≤ EP

[
exp

{
k2
2

∫ T

0

αt dt

}]
< +∞, (9.E.5)

where the constant k2 is given by (9.3.16). Then, it follows from Hölder’s inequality

and (9.E.3)-(9.E.5) that

EP

[
sup

t∈[0,T ]

∣∣∣∣Y1,t
(X∗

t + Ḡ1,tLt)
γ

γ

∣∣∣∣8
]
< +∞. (9.E.6)

Hence, as a result of Theorem 15.4.6 in Cohen and Elliott (2015), Theorem 5.1 in
Zeng and Taksar (2013), condition (9.3.16), the explicit expressions for ϕ∗1,t and
ϕ∗2,t given in (9.3.17) and Hölder’s inequality, we obtain

EP
[

sup
t∈[0,T ]

∣∣∣∣φϕ∗
t Y1,t

(X∗
t + Ḡ1,tLt)

γ

γ

∣∣∣∣4
]

≤
{
EP
[

sup
t∈[0,T ]

|φϕ∗
t |8

]} 1
2
{
EP
[

sup
t∈[0,T ]

∣∣∣∣Y1,t
(X∗

t + Ḡ1,tLt)
γ

γ

∣∣∣∣8
]} 1

2

≤
√

8

7

{
EP
[
exp

{
k0

2

∫ T

0

αt dt

}]}√
120+32

√
14−1

240+64
√

14

{
EP
[

sup
t∈[0,T ]

∣∣∣∣Y1,t
(X∗

t + Ḡ1,tLt)
γ

γ

∣∣∣∣8
]} 1

2

< +∞,

(9.E.7)

More importantly, we find that

EP
[

sup
t∈[0,T ]

∣∣∣∣φϕ∗
t

(∫ t

0

(ϕ∗
1,s)

2

2ψ∗
1,s

+
(ϕ∗

2,s)
2

2ψ∗
2,s

ds

)∣∣∣∣2
]

≤
{
EP
[

sup
t∈[0,T ]

|φϕ∗
t |4

]} 1
2
{
EP
[∣∣∣∣ ∫ T

0

(ϕ∗
1,t)

2

2ψ∗
1,t

+
(ϕ∗

2,t)
2

2ψ∗
2,t

dt

∣∣∣∣4
]} 1

2

≤c
{
EP
[

sup
t∈[0,T ]

|φϕ∗
t |4

]} 1
2
{
EP
[

sup
t∈[0,T ]

|Y1,t(X
∗
t + Ḡ1,tLt)|8

]} 1
4
{
EP
[∣∣∣∣ ∫ T

0

αt dt

∣∣∣∣8]} 1
4

≤c
{
EP
[

sup
t∈[0,T ]

|φϕ∗
t |8

]} 1
4
{
EP
[

sup
t∈[0,T ]

|Y1,t(X
∗
t + Ḡ1,tLt)|8

]} 1
4
{
EP
[
exp

{∫ T

0

αt dt

}]} 1
4
< +∞,

(9.E.8)

where c is a positive constant which differs between lines, the first inequality follows

from Hölder’s inequality and the positiveness of ψ∗
1,t and ψ

∗
2,t due to X

∗
t +Ḡ1,tLt > 0

as shown in (9.E.2), the second inequality makes use of the explicit expressions

of ϕ∗1,t and ϕ∗2,t given in (9.3.17), the third inequality follows from the simple

algebraic result that x8 ≤ aex, x ∈ R+ for some constant a ∈ R+, and the last

293



strict inequality is due to (9.E.6) and (9.E.7), Theorem 5.1 in Zeng and Taksar

(2013), and condition (9.3.16).

Based on (9.E.7) and (9.E.8), for any sequence of stopping times {τn}n∈N such

that τn ↑ +∞ as n→ +∞, we know that

sup
τn∧T

EP

[∣∣∣∣φϕ∗

τn∧TY1,τn∧T
(X∗

τn∧T + Ḡ1,τn∧TLτn∧T )
γ

γ

∣∣∣∣4
]
< +∞,

and

sup
τn∧T

EP

[∣∣∣∣φϕ∗

τn∧T

(∫ τn∧T

0

(ϕ∗1,s)
2

2ψ∗
1,s

+
(ϕ∗2,s)

2

2ψ∗
2,s

ds

)∣∣∣∣2
]
< +∞.

From the above results, we know that
{
φϕ

∗

τn∧TY1,τn∧T
(X∗

τn∧T+Ḡ1,τn∧TLτn∧T )γ

γ

}
n∈N

and
{
φϕ

∗

τn∧T

(∫ τn∧T
0

(ϕ∗
1,s)

2

2ψ∗
1,s

+
(ϕ∗

2,s)
2

2ψ∗
2,s

ds
)}

n∈N
are two uniformly integrable families

under the reference measure P since both functions t1(x) = x4 and t2(x) = x2

are test functions of uniform integrability (see, for example, Proposition 11.7 in

Zitkovic (2010)). Thus, we can conclude from the above results that the control

(π∗, ϕ∗) ∈ Πp ⊗ Φ.

We next show that the control (π∗, ϕ∗) ∈ Πp ⊗ Φ is the optimal control of the

robust ALM problem (9.2.11). In fact, plugging (π∗
t , ϕ

∗
1,t, ϕ

∗
2,t) into (9.3.1) leads to

dφϕ∗

t

(
Y1,t

(X∗
t +G1,t)

γ

γ
+

∫ t

0

(ϕ∗
1,s)

2

2ψ∗
1,s

+
(ϕ∗

2,s)
2

2ψ∗
2,s

ds

)
= φϕ∗

t

[
(Y1,tϕ

∗
1,t + Z1,t)

(X∗
t +G1,t)

γ

γ
+ Y1,t(X

∗
t +G1,t)

γ−1(X∗
t π

∗
t σt + Λ1,t) +

(∫ t

0

(ϕ∗
1,s)

2

2ψ∗
1,s

+
(ϕ∗

2,s)
2

2ψ∗
2,s

ds

)
ϕ∗
1,t

]
dW1,t + φϕ∗

t

[
(Y1,tϕ

∗
2,t + Z2,t)

(X∗
t +G1,t)

γ

γ
+ Y1,t(X

∗
t +G1,t)

γ−1Λ2,t

+

(∫ t

0

(ϕ∗
1,s)

2

2ψ∗
1,s

+
(ϕ∗

2,s)
2

2ψ∗
2,s

ds

)
ϕ∗
2,t

]
dW2,t.

(9.E.9)

Due to the path-wise continuity of the stochastic integrals on the right-hand side
of (9.E.9), we see that they are (F,P)-local martingales. Therefore, there exists a
localizing sequence {τn}n∈N such that τn ↑ +∞ as n→ +∞ and when stopped by
such a sequence, the aforementioned local martingales are true (F,P)-martingales.
Then, integrating both sides of (9.E.9) from 0 to τn ∧ T and taking expectations,
we have

EP
[
φ

ϕ∗
τn∧T

(
Y1,τn∧T

(X∗
τn∧T +G1,τn∧T )γ

γ
+

∫ τn∧T

0

(ϕ∗
1,s)

2

2ψ∗
1,s

+
(ϕ∗

2,s)
2

2ψ∗
2,s

ds

)]
= Y1,0

(x0 + Ḡ1,0l0)
γ

γ
.

(9.E.10)

As we have shown that the term in the expectation on the left-hand side of (9.E.10)

is uniformly integrable, by using the equivalence between L1 convergence and
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uniformly integrability and sending n→ +∞, we have from (9.E.10)

Jp(π
∗, ϕ∗) =EQ∗

[
(X∗

T − LT )
γ

γ
+

∫ T

0

(ϕ∗
1,t)

2

2ψ∗
1,t

+
(ϕ∗

2,t)
2

2ψ∗
2,t

dt

]
=EP

[
φϕ∗

T

(
(X∗

T − LT )
γ

γ
+

∫ T

0

(ϕ∗
1,t)

2

2ψ∗
1,t

+
(ϕ∗

2,t)
2

2ψ∗
2,t

dt

)]
= Y1,0

(x0 + Ḡ1,0l0)
γ

γ
,

(9.E.11)

where Q∗ stands for the probability measure corresponding to the Radon-Nikodym

derivative φϕ
∗

T . In addition, on one hand, for the admissible strategy (π, ϕ̂) ∈ Πp⊗Φ,

by using some similar localization techniques, it follows from the first part of

condition 3 in Definition 9.2.5 and (9.3.1) that

Jp(π, ϕ̂) =
(γ − 1 − β1)

2
EP
[ ∫ T

0

φ
ϕ̂
t Y1,t(X

π
t +G1,t)

γ−2

[
X

π
t πtσt + Λ1,t +

Xπ
t +G1,t

γ − 1 − β1

(
γ − β1

γ

Z1,t

Y1,t

+ λ
√
αt

)]2
dt

]
+ Y1,0

(x0 + Ḡ1,0l0)
γ

γ
≤ Jp(π

∗
, ϕ

∗
),

which implies that

inf
ϕ∈Φ

sup
π∈Πp

Jp(π, ϕ) ≤ sup
π∈Πp

Jp(π, ϕ̂) ≤ Jp(π
∗, ϕ∗). (9.E.12)

On the other hand, for the admissible strategy (π̂, ϕ) ∈ Πp ⊗ Φ, from the second
part of condition 3 in Definition 9.2.5 and (9.3.1), we also find that

Jp(π̂, ϕ)

=EP
[ ∫ T

0

φϕ
t

2ψ̂1,t

[
ϕ1,t +

(
(Xπ̂

t +G1,t)
γ

γ
Z1,t + Y1,t

(
X

π̂
t +G1,t

)γ−1
(X

π̂
t π̂tσt + Λ1,t)

)
ψ̂1,t

]2

dt

]

+ EP
[ ∫ T

0

φϕ
t

2ψ̂2,t

[
ϕ2,t +

(
(Xπ̂

t +G1,t)
γ

γ
Z2,t + Y1,t(X

π̂
t +G1,t)

γ−1
Λ2,t

)
ψ̂2,t

]2
dt

]

+ Y1,0
(x0 + Ḡ1,0l0)

γ

γ
≥ Jp(π

∗
, ϕ

∗
).

This result indicates that

Jp(π
∗, ϕ∗) ≤ inf

ϕ∈Φ
Jp(π̂, ϕ) ≤ sup

π∈Πp

inf
ϕ∈Φ

Jp(π, ϕ). (9.E.13)

Since we always have inf(sup) ≥ sup(inf), we must have equality everywhere

in (9.E.12)-(9.E.13). This proves that supπ∈Πp
infϕ∈Φ Jp(π, ϕ) = Jp(π

∗, ϕ∗) =

Y1,0
(x0+Ḡ1,0l0)

γ

γ and (π∗, ϕ∗) ∈ Πp ⊗ Φ is the optimal control of the robust ALM

problem (9.2.11).

9.F Proof of Proposition 9.4.2

Proof. From Lemma 9.3.6 we know that the probability measure P̌ defined by

dP̌
dP

∣∣∣∣
FT

= exp

{
−
∫ T

0

λ
√
αt dW1,t −

1

2

∫ T

0

λ2αt dt

}
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is equivalent to the reference measure P. Then, the following processes W̌1,t and

W̌2,t

W̌1,t =

∫ t

0

λ
√
αs ds+W1,t and W̌2,t =W2,t

are two standard Brownian motions under P̌ due to Girsanov’s theorem. Applying

Itô’s formula to log(Y2,t) under P̌ measure, we have the following quadratic BSDE

of
(
log(Y2,t),

M1,t

Y2,t
,
M2,t

Y2,t

)
:


d log(Y2,t) =

[
−r + 1

2

(
M1,t

Y2,t

)2

− 1

2

(
M2,t

Y2,t

)2
]
dt+

M1,t

Y2,t
dW̌1,t +

M2,t

Y2,t
dW̌2,t,

log(Y2,T ) =0.

(9.F.1)

Clearly, quadratic BSDE (9.F.1) satisfies all the regularity conditions in Kobylanski

(2000). By Theorem 2.3 and 2.6 in Kobylanski (2000), we can conclude that

quadratic BSDE (9.F.1) admits a unique solution. Hence, BSRE (9.4.2) admits a

unique solution as well. Moreover, it is straightforward to verify that (9.4.4) and

(9.4.5) form the unique solution to BSRE (9.4.2). This completes the proof.

9.G Proof of Proposition 9.4.3

Proof. We conjecture that the first component G2,t of the solution to quadratic

BSDE (9.4.6) has the following affine form:

G2,t = f2(t) + g2(t)αt + h2(t)Lt,

where f2(t), g2(t), and h2(t) are three undetermined differentiable functions with

terminal conditions f2(T ) = g2(T ) = 0 and h2(T ) = −1. Using Itô’s formula to

G2,t, we derive

dG2,t =

[
df2(t)

dt
+ κθg2(t) +

(
dg2(t)

dt
− κg2(t)

)
αt +

(
(µl + λσlαt)h2(t) +

dh2(t)

dt

)
Lt

]
dt

+ (ρ1g2(t) + σlh2(t)Lt)
√
αt dW1,t + ρ2g2(t)

√
αt dW2,t.

(9.G.1)

Let Γ1,t = (ρ1g2(t) + σlh2(t)Lt)
√
αt and Γ2,t = ρ2g2(t)

√
αt and substitute them

into quadratic BSDE (9.4.6). Then, the generator of (9.4.6) can be rewritten as

follows: (
λρ1g2(t) +

q + β2
2

ρ22g
2
2(t)−

1

2(q + β1)
λ2

)
αt + λσlh2(t)αtLt. (9.G.2)

Comparing (9.G.2) and the drift coefficient of (9.G.1) and separating the dependence

on αt, Lt, and αtLt, we obtain the ODEs (9.4.9)-(9.4.11).

296



Moreover, when ρ2 ̸= 0, we denote by ∆g2 = (κ+ λρ1)
2
+ q+β2

q+β1
ρ22λ

2 > 0 and

rewrite the Riccati ODE (9.4.9) as follows:

dg2(t)

dt
=
q + β2

2
ρ22

(
g2(t)− n

g+2

)(
g2(t)− n

g−2

)
,

where ng+2
and ng−2

are given by (9.4.15). After some tedious calculations, we derive

the closed-form expression of g2(t) given in (9.4.12). When ρ2 = 0 and κ+ λρ1 ̸= 0,

the Riccati ODE (9.4.9) degenerates to the following linear ODE:

dg2(t)

dt
= (κ+ λρ1)g2(t)−

1

2(q + β1)
λ2,

and we immediately find that

g2(t) = − λ2

2(q + β1)(κ+ λρ1)

(
e(κ+λρ1)(t−T ) − 1

)
.

For the case when ρ2 = 0 and κ + λρ1 = 0, we have from (9.4.9) that g2(t) =

− λ2

2(q+β1)
(t− T ). Substituting (9.4.12) into the ODE (9.4.10) gives the closed-form

expressions of f2(t) in (9.4.13). Finally, by a simple calculation, the explicit solution

h2(t) to ODE (9.4.11) is given by (9.4.14).

9.H Proof of Theorem 9.4.4

Proof. In the first part of the proof, we show that the proposed solution (G2,t,Γ1,t,Γ2,t)

lies in the space L2
F,P(0, T ;R) ⊗ L2

F,P(0, T ;R) ⊗ L2
F,P(0, T ;R). For this, from the

P-dynamics of the random liabilities (9.2.7) we observe that

EP
[∫ T

0

L4
t dt

]
=l40

∫ T

0

e4µltEP
[
exp

{
(4λσl − 2σ2

l )

∫ t

0

αs ds+ 4σl

∫ t

0

√
αs dW1,s

}]
dt

≤l40
∫ T

0

e4µlt

{
EP
[
exp

{
(8λσl + 28σ2

l )

∫ t

0

αs ds

}]} 1
2

dt,

(9.H.1)

where the inequality follows from the Hölder’s inequality and the fact that the

stochastic exponential process exp
{
8σl
∫ t
0

√
αs dW1,s − 32σ2

l

∫ t
0
αs ds

}
is an (F,P)-

martingale by Lemma 9.3.6. To calculate the term EP
[
exp

{
(8λσl + 28σ2

l )
∫ t
0
αs ds

}]
,

let EP [·|Fu] be the conditional expectation under P given Fu, for u ≤ t. By using

the Markovian structure of the process αt, we have

EP
[
exp

{
(8λσl + 28σ2

l )

∫ t

u

αs ds

} ∣∣∣∣Fu

]
= F (αu, u), for u ≤ t, (9.H.2)

where F : R+ ⊗ [0, t] 7→ R+ is an unknown function. By the Feynman-Kac theorem,

we know that the function F is governed by the following partial differential equation

(PDE):
∂F

∂u
(x, u) + κ(θ − x)

∂F

∂x
(x, u) +

1

2

(
ρ21 + ρ22

)
x
∂2F

∂x2
(x, u) + (8λσl + 28σ2

l )xF (x, u) = 0,

F (x, t) = 1.

297



Furthermore, it can be shown that F (x, u) = exp {M(u; t)x+N(u; t)}, for u ∈ [0, t],

where M(u; t) and N(u; t) satisfy the following ODEs:

dM(u; t)

du
= −ρ

2
1 + ρ22
2

M2(u; t) + κM(u; t)−
(
8λσl + 28σ2

l

)
, M(t; t) = 0,

and
dN(u; t)

du
= −κθM(u; t), N(t; t) = 0.

As in Proposition 9.4.3, we can show the closed-form expressions for M(u; t) and

N(u; t) as follows:

M(u; t) =



n+Mn
−
M

(
1− e

√
∆M (t−u)

)
n+M − n−Me

√
∆M (t−u)

, if ∆M > 0;

(ρ21 + ρ22)(t− u)n2M
(ρ21 + ρ22)(t− u)nM + 2

, if ∆M = 0;

√
−∆M

−(ρ21 + ρ22)
tan

(
arctan

(
κ√

−∆M

)
−

√
−∆M

2
(t− u)

)
, if ∆M < 0,

(9.H.3)

and

N(u; t) =

∫ t

u

κθM(s; t) ds (9.H.4)

where ∆M , n
+
M , n

−
M , and nM are given by

∆M = κ2−2(ρ21+ρ
2
2)(8λσl+28σ2

l ), nM =
κ

ρ21 + ρ22
, n+

M =
−κ+

√
∆M

−(ρ21 + ρ22)
, n−

M =
−κ−

√
∆M

−(ρ21 + ρ22)
.

Then, combining (9.H.1)-(9.H.4) and using the law of total expectation, we derive

EP

[∫ T

0

L4
t dt

]
≤ l40

∫ T

0

exp

{
4µlt+

M(0; t)

2
α0 +

N(0; t)

2

}
dt < +∞.

Additionally, note that for all t ∈ [0, T ], the second moment of the square-root

factor process αt is explicitly given by

EP [α2
t

]
=
(
α0e

−κt + θ
(
1− e−κt

))2
+ α0

(ρ21 + ρ22)
(
e−κt − e−2κt

)
κ

+
θ(ρ21 + ρ22) (1− e−κt)

2

2κ
.

Therefore, from the explicit expressions for G2,t,Γ1,t and Γ2,t given in (9.4.7) and

(9.4.8) we derive

EP

[∫ T

0

G2
2,t + Γ2

1,t + Γ2
2,t dt

]
≤ c

[
1 +

∫ T

0

EP [α2
t

]
dt+ EP

[∫ T

0

L4
t dt

]]
< +∞,

where c is a positive constant. This finishes the first part of the proof.
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Next, we show that the proposed solution given by (9.4.7)-(9.4.8) is the unique

solution to quadratic BSDE (9.4.6). To this end, note from Proposition 9.4.2 that

the probability measure P̌ is equivalent to P on FT and the P̌-dynamics of the

square-root factor process αt is given by

dαt = (κ+ λρ1)

(
κθ

κ+ λρ1
− αt

)
dt+

√
αt

(
ρ1 dŴ1,t + ρ2 dŴ2,t

)
,

which preserves the affine-form, square-root structure under Assumption 9.4.1.

Reformulate BSDE (9.4.6) of (G2,t,Γ1,t,Γ2,t) under P̌ as follows:


dG2,t =

(
q + β2

2
Γ2
2,t −

1

2(q + β1)
λ2αt

)
dt+ Γ1,t dW̌1,t + Γ2,t dW̌2,t,

G2,T =− LT ,

(9.H.5)

and suppose that there exists another solution (Ĝ2,t, Γ̂1,t, Γ̂2,t) to (9.H.5), which is

different from the proposed solution given in Proposition 9.4.3. Then, the difference

process (∆G2,t,∆Γ1,t,∆Γ2,t) := (G2,t − Ĝ2,t,Γ1,t − Γ̂1,t,Γ2,t − Γ̂2,t) must solve the

following BSDE:

d∆G2,t =
q + β2

2

(
Γ2
2,t − Γ̂2

2,t

)
dt+∆Γ1,t dW̌1,t +∆Γ2,t dW̌2,t,

∆G2,T =0.

(9.H.6)

Furthermore, we notice from the explicit expression for Γ2,t given in (9.4.8) and

Lemma 9.3.6 that the following probability measure P̃ is well-defined and equivalent

to P̌ on FT :

dP̃
dP̌

∣∣∣∣
FT

=exp

{
−
∫ T

0

(q + β2)ρ2g2(t)
√
αt dW̌2,t −

∫ T

0

(q + β2)
2ρ22g

2
2(t)

2
αt dt

}
=exp

{
−
∫ T

0

(q + β2)Γ2,t dW̌2,t −
(q + β2)

2

2

∫ T

0

Γ2
2,t dt

}
,

and W̃2,t =
∫ t
0
(q + β2)Γ2,s ds+ Ŵ2,t and W̃1,t = Ŵ1,t are two standard Brownian

motions under P̃. Hence, BSDE (9.H.6) can be rewritten under P̃:

d∆G2,t =− q + β2
2

∆Γ2
2,t dt+∆Γ1,t dW̃1,t +∆Γ2,t dW̃2,t,

∆G2,T =0,

which is a quadratic BSDE satisfying all the regularity conditions in Kobylanski

(2000), and we can conclude that (∆G2,t,∆Γ1,t,∆Γ2,t) = (0, 0, 0) is the unique

solution by Theorem 2.3 and 2.6 in Kobylanski (2000). This proves that the proposed

solution given in Proposition 9.4.3 is the unique solution to BSDE (9.4.6).
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9.I Proof of Theorem 9.4.5

Proof. First of all, by Theorem 5.1 in Zeng and Taksar (2013), it follows from the
explicit expressions for ϕ∗ and Γ2,t given in (9.4.17) and (9.4.8) that

EP
[
exp

{
1

2

∫ T

0

(ϕ
∗
1,t)

2
+ (ϕ

∗
2,t)

2
dt

}]
= EP

[
exp

{
1

2

∫ T

0

(
β2
1λ

2

(q + β1)2
+ β

2
2ρ

2
2g

2
2(t)

)
αt dt

}]

≤ EP
[
exp

{
b0

2

∫ T

0

αt dt

}]
< +∞,

where the constant b0 is given in (9.4.16). This shows that ϕ∗ ∈ Φ. Plugging π∗
t

into X∗
t and using Itô’s formula to X∗

t Y2,t +G2,t under the reference measure P,
we derive

X∗
t Y2,t +G2,t =

∫ t

0

(
λ2

2(q + β1)
+
q + β2

2
ρ22g

2
2(s)

)
αs ds+

∫ t

0

λ

q + β1

√
αs dW1,s

+

∫ t

0

ρ2g2(s)
√
αs dW2,s + x0Y2,0 +G2,0,

from which it follows that

e
−8q(X∗

t Y2,t+G2,t)

=c exp

{∫ t

0

−8qλ

q + β1

√
αs dW1,s −

∫ t

0

8qρ2g2(s)
√
αs dW2,s − 32q

2
∫ t

0

(
λ2

(q + β1)2
+ ρ

2
2g

2
2(s)

)
αs ds

}
︸ ︷︷ ︸

K3,t

× exp

{∫ t

0

(
32q2λ2

(q + β1)2
−

4qλ2

q + β1

+ (28q
2 − 4qβ2)ρ

2
2g

2
2(s)

)
αs ds

}
︸ ︷︷ ︸

K4,t

,

where c is a positive constant. We notice that K3,t is the stochastic exponential pro-

cess of continuous (F,P)-local martingale
∫ t
0

−8qλ
q+β1

√
αs dW1,s−

∫ t
0
8qρ2g2(s)

√
αs dW2,s.

Then, applying the Hölder’s inequality, Theorem 5.1 in Zeng and Taksar (2013)

and Theorem 15.4.6 in Cohen and Elliott (2015), we derive

EP

[
sup
t∈[0,T ]

e−8q(X∗
t Y2,t+G2,t)

]

≤c

{
EP

[
sup
t∈[0,T ]

K2
3,t

]} 1
2
{
EP

[
sup
t∈[0,T ]

K2
4,t

]} 1
2

≤c

{
EP

[
exp

{
b1
2

∫ T

0

αt dt

}]}√
2+

√
2−1

4+2
√

2
{
EP

[
exp

{
b2
2

∫ T

0

αt dt

}]} 1
2

<+∞,

where the constant c might differ between lines, and b1 and b2 are given in (9.4.16).

Thus, using the explicit expressions for ϕ∗1,t and ϕ
∗
2,t given in (9.4.17) and applying

Theorem 15.4.6 in Cohen and Elliott (2015) and Theorem 5.1 in Zeng and Taksar
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(2013) again, we find that

EP

[
sup
t∈[0,T ]

∣∣∣∣φϕ∗

t

e−q(X
∗
t Y2,t+G2,t)

q

∣∣∣∣4
]

≤ 1

q4

{
E

[
sup
t∈[0,T ]

|φϕ
∗

t |8
]} 1

2
{
EP

[
sup
t∈[0,T ]

e−8q(X∗
t Y2,t+G2,t)

]} 1
2

≤ 1

q4

√
8

7

{
EP

[
exp

{
b0
2

∫ T

0

αt dt

}]}√
120+32

√
14−1

240+64
√

14
{
EP

[
sup
t∈[0,T ]

e−8q(X∗
t Y2,t+G2,t)

]} 1
2

<+∞.

Then, it follows from condition (9.4.16), the Hölder’s inequality, and the trivial

algebraic result that x8 ≤ aex, x ∈ R+ for some constant a ∈ R+ that

EP

[
sup

t∈[0,T ]

∣∣∣∣φϕ∗

t

(∫ t

0

(ϕ∗
1,s)

2

2η∗1,s
+

(ϕ∗
2,s)

2

2η∗2,s
ds

) ∣∣∣∣2
]

≤c

{
EP

[
sup

t∈[0,T ]

|φϕ∗

t |8
]} 1

4
{
EP

[
sup

t∈[0,T ]

e−8q(X∗
t Y2,t+G2,t)

]} 1
4 {

EP
[
exp

{∫ T

0

αt dt

}]} 1
4

<+∞,

where c is a positive constant. The above results prove (i)-(iii) in the statement

of Theorem 9.4.5, and thus, we know that the following two families of random

variables{
φϕ∗

τn∧T

−e−q(X∗
τn∧T Y2,τn∧T+G2,τn∧T )

q

}
n∈N

and

{
φϕ∗

τn∧T

∫ τn∧T

0

(ϕ∗
1,s)

2

2η∗1,s
+

(ϕ∗
2,s)

2

2η∗2,s
ds

}
n∈N

are uniformly integrable under the reference measure P, where {τn}n∈N is an

arbitrary sequence of F-stopping times such that τn ↑ +∞ as n→ +∞. Hence, we

can conclude that the control (π∗, ϕ∗) ∈ Πe ⊗ Φ. The proof for the optimality of

the admissible control (π∗, ϕ∗) given in (9.4.17) is similar to Theorem 9.3.10, so we

omit it here.
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Chapter 10

Non-zero-sum stochastic differential games

for asset-liability management with

stochastic inflation and stochastic

volatility

Abstract

This paper investigates the optimal asset-liability management prob-

lems for two managers subject to relative performance concerns in the

presence of stochastic inflation and stochastic volatility. The objective of

the two managers is to maximize the expected utility of their relative

terminal surplus with respect to that of their competitor. The problem of

finding the optimal investment strategies for both managers is modeled

as a non-zero-sum stochastic differential game. Both managers have

access to a financial market consisting of a risk-free asset, a risky asset,

and an inflation-linked index bond. The risky asset’s price process and

uncontrollable random liabilities are not only affected by the inflation risk

but also driven by a general class of stochastic volatility models including

the constant elasticity of variance model, the family of state-of-the-art

4/2 models, and some path-dependent models as particular cases. By

adopting a backward stochastic differential equation (BSDE) approach to

overcome the possibly non-Markovian setting, closed-form expressions for

the equilibrium investment strategies and corresponding value functions

are derived under power and exponential utility preferences. Moreover,

explicit solutions to some special cases of our model are provided. Finally,

we perform numerical studies to illustrate the impact of model parameters

on the equilibrium strategies and draw some economic interpretations.
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Keywords: Asset-liability management; Non-zero-sum game; Stochastic volatility;

Stochastic inflation; Backward stochastic differential equation

10.1 Introduction

Asset-liability management (ALM) is an important concern not only to financial

security systems such as banks, insurance complies, and pension funds but also

to individual investors who aim to ensure the match between assets and liabilities

and achieve management goals by continuously adjusting the investment amount in

accordance with financial markets and regulatory requirements. In recent years,

a great deal of research on the optimal ALM problems has been carried out

under various scenarios and objectives including searching for the pre-commitment

and time-consistent strategies under the mean-variance criterion, maximizing the

expected utility of terminal surplus, and minimizing the cumulative deviation.

Leippold, Trojani, and Vanini (2004) considered a multi-period ALM problem

under the mean-variance criterion and derived the explicit expressions for the

pre-commitment strategy and efficient frontier. Chiu and Li (2006) and Xie, Li,

and Wang (2008) investigated the pre-commitment strategies for the continuous-

time mean-variance ALM problems where the liability processes were driven by a

geometric Brownian motion and a drifted Brownian motion, respectively. Zhang and

Chen (2016) studied a mean-variance ALM problem under the constant elasticity

of variance (CEV) model. Li, Shen, and Zeng (2018) incorporated derivatives

trading into a mean-variance ALM problem where the price process of the risky

asset along with its volatility was described by the Heston model (Heston (1993)).

Zhang (2023) stepped further by investigating a derivative-based mean-variance

ALM problem where the short rate of interest and stochastic volatility were driven

by a Cox-Ingersoll-Ross (CIR) model and the state-of-the-art 4/2 model (Grasselli

(2017)), respectively. Sun, Zhang, and Yuen (2020) considered a mean-variance

ALM problem with an affine diffusion factor process and a reinsurance option.

Apart from the pre-commitment strategies, Wei et al. (2013) and Wei and Wang

(2017) derived the explicit solutions to the time-consistent strategies (Björk, Khapko,

and Murgoci (2017)) of mean-variance ALM problems under a Markov regime-

switching market and random coefficient setting, respectively. Zhang et al. (2017)

considered the time-consistent strategy of a mean-variance ALM problem with

state-dependent risk aversion and multiple risky assets. Within the framework of

expected utility maximization, Pan and Xiao (2017a) investigated an ALM problem

with liquidity constraints and stochastic interest rate. Pan, Hu, and Zhou (2019)

studied an ALM problem under the Heston model and exponential utility function.

Recently, some literature focuses on the impact of model ambiguity (Andersen,

Hansen, and Sargent (2003) and Maenhout (2004)) on the optimal investment

strategies of ALM problems. For example, Chen, Huang, and Li (2022) and Yuan
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and Mi (2022a) considered robust ALM problems in a regime-switching model and

jump-diffusion market with delay, respectively, and derived the explicit solutions by

solving the corresponding Hamilton-Jacobi-Bellman-Issac (HJBI) equations. By

adopting a BSDE approach, Zhang (2022e) investigated robust ALM problems in

a non-Markovian setting described by an affine-form, square-root factor process

for both the power and exponential utility functions. As the literature on ALM

problems is abundant, the above review is not exhaustive. For more related works,

one may refer to Zeng, Li, and Wu (2013), Yuan and Mi (2022b), Peng and Chen

(2021), and references therein.

Although ALM problems have been extensively studied over the last decade, one

common feature shared by the above-mentioned literature is that none of them

takes into account the strategic interaction among agents. However, as emphasized

in economic studies, such as Garcia and Strobl (2010) and Basak and Makarov

(2014), relative performance concerns play a key role in a competitive economy. To

model such interaction, Espinosa and Touzi (2015) formulated a continuous-time

optimal investment problem with relative performance concerns in the framework

of non-zero-sum stochastic differential games and investigated the Nash equilibrium

strategy for multiple agents. Their study proved the existence and uniqueness

of the Nash equilibrium for the cases of unconstrained and constrained agents

with exponential utilities in a Black-Scholes financial market. Recently, non-zero-

sum stochastic differential games with applications to finance and insurance have

received increasing attention. Bensoussan et al. (2014) considered a non-zero-sum

stochastic differential investment and reinsurance game between two insurance

companies whose surplus processes were driven by continuous-time Markov chains.

Meng, Li, and Jin (2015) studied an optimal reinsurance problem for two insurers

where the surplus processes were subject to quadratic risk processes. Guan and

Liang (2016) investigated a non-zero-sum stochastic investment game with inflation

risk for two DC pension funds. Kwok, Chiu, and Wong (2016) investigated the

impact of relative performance concerns on the longevity risk transfer market in

the presence of stochastic interest and mortality rates. Deng, Zeng, and Zhu (2018)

studied a non-zero-sum stochastic differential investment and reinsurance game

with default risk and Heston’s stochastic volatility. Hu and Wang (2018) considered

the optimal time-consistent investment and reinsurance strategies for two mean-

variance insurance managers with relative performance concerns in a Black-Scholes

market. Zhu, Cao, and Zhang (2019) and Zhu, Cao, and Zhu (2021) extended the

results of Hu and Wang (2018) to the cases with the Heston model and CEV model,

respectively. Other investigations regarding non-zero-sum stochastic differential

games with applications to finance and insurance can be found in Pun and Wong

(2016), Dong, Rong, and Zhao (2022), Savku and Weber (2022), and references

therein.

Another aspect worthy of being further explored is to take inflation risk into
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account in that ALM plans may involve quite a long period and inflation risk has

become one of the most anxious factors among the side effects of expansionary

monetary policy. To hedge against inflation risk, there has been a high demand

for inflation-linked securities in the financial market, such as Treasury Inflation-

Protected Securities (TIPS) in the US and gilt-edged securities in the UK. In

recent years, continuous-time portfolio optimization problems under inflation risk

have attracted the attention of quite a few scholars. Campbell and Viceira (2000)

and Brennan and Xia (2002) considered dynamic asset allocation problems with

stochastic inflation and stochastic interest rates and probed the importance of

inflation-linked index bonds for long-term and conservative investment. Battocchio

and Menoncin (2004) and Zhang and Ewald (2010) investigated DC pension man-

agement problems under inflation risk and derived explicit solutions for exponential

and power utility cases, respectively. Korn, Siu, and Zhang (2011) studied a DC

pension management problem in a regime-switching environment under inflation

risk. Kwak and Lim (2014) considered an optimal investment-consumption prob-

lem with life insurance under inflation risk and obtained the explicit solutions for

the power utility case using the martingale method. Wang, Li, and Sun (2021)

investigated a robust DC pension management problem with inflation risk and

mean-reverting risk premium under model ambiguity. Zhang (2022c) studied a DC

pension investment problem with stochastic income under inflation and volatility

risks. Particularly, in the field of ALM, Pan and Xiao (2017b,c) considered ALM

problems with stochastic interest rates and inflation risks under the mean-variance

criterion and expected utility maximization framework, respectively, and derived

the closed-form solutions by using the dynamic programming principle and solving

the associated Hamilton-Jacobi-Bellman (HJB) equations.

Inspired by the above works, in this paper, we investigate the optimal ALM

problems for two competitive managers with relative performance concerns under

the risks of stochastic inflation and stochastic volatility and formulate the problems

within a non-zero-sum stochastic differential game framework. In our problem

setting, the managers are subject to two different stochastic liability processes

and are allowed to invest in a risk-free asset, a risky asset, and an inflation-linked

index bond. It is assumed that the risky asset’s price process and uncontrollable

liability processes are not only driven by the dynamics of stochastic inflation but

also governed by a general class of stochastic volatility models, where the risk

premium and volatility of the risky asset are general non-Markovian, unbounded

stochastic processes, whereas the market price of risk satisfies an affine-form, square-

root factor process including the CEV model, the family of state-of-the-art 4/2

models, and some path-dependent models as exceptional cases. Both managers

aim at maximizing the expected utility of their relative terminal surplus after

stripping out inflation concerning that of their competitor and searching the Nash

equilibrium investment strategies. As opposed to most of the aforementioned
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literature investigating the portfolio selection problems with relative performance

concerns via the dynamic programming approach developed by Mataramvura and

Øksendal (2008), we extend and apply the BSDE techniques introduced by Hu,

Imkeller, and Müller (2005) to overcome the potentially non-Markovian setting. To

be more precise, we propose to construct a stochastic process that hinges upon

any admissible strategy for manager i whenever his/her competitor j’s strategy is

fixed and given and is such that its value at time zero does not depend on both

managers’ investment strategies and its terminal value equals the utility of manager

i’s relative terminal surplus with respect to that of manager j, where i ̸= j ∈ {1, 2}.
The proposed stochastic process is shown to be a (local) super-martingale for any

admissible response strategy taken by manager i, and even a (local) martingale for

the optimal response strategy to manager j’s strategy. The determination of such a

stochastic process leads to the associated BSDEs. By solving the BSDEs explicitly,

we derive the closed-form expressions for the Nash equilibrium strategies and value

functions under the exponential and power utility preferences. Moreover, several

particular cases of our modelling framework are discussed and the corresponding

analytical results are provided. Finally, the sensitivities of the equilibrium strategies

regarding model parameters and relative performance concerns are investigated

with numerical experiments. To summarize, the contributions of this paper are as

follows:

1. we pioneer to incorporate relative performance concerns, stochastic volatility,

and stochastic inflation simultaneously into the optimal ALM problems in

the framework of expected utility maximization;

2. comparing with the preceding literature on the optimal investment problems

with relative performance concerns using the dynamic programming approach

and solving a coupled HJB equation, such as Bensoussan et al. (2014), Guan

and Liang (2016), Deng, Zeng, and Zhu (2018), Dong, Rong, and Zhao

(2022), Savku and Weber (2022), etc, we apply a BSDE approach to solve

non-zero-sum stochastic differential game problems explicitly in a possibly non-

Markovian framework for both the exponential and power utility functions,

which extends the techniques developed by Hu, Imkeller, and Müller (2005)

for addressing single-agent optimization problems and differentiates from

Espinosa and Touzi (2015) where the exogenous parameter processes were

assumed to be uniformly bounded and only the existence and uniqueness

of solutions to the BSDEs under the exponential utility preference were

considered without presenting the closed-form solutions;

3. we derive the closed-form expressions for the Nash equilibrium strategies and

the corresponding value functions represented in terms of the explicit solutions

to the associated BSDEs, from which we find the herd effect on managers’

decisions, that is, each manager mimics the competitor’s strategy, and when
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relative performance concerns are taken into account, each manager will

adopt a riskier investment strategy than that without competition involved.

Furthermore, analytical solutions to some special cases of our model are

provided.

The remainder of this paper is organized as follows. Section 10.2 introduces the

model setup of two competitive asset-liability managers. Section 10.3 establishes the

optimal ALM problems with relative performance concerns within the framework

of non-zero-sum stochastic differential games. Section 10.4 and 10.5 derive the

closed-form expressions for the Nash equilibrium strategies and the corresponding

value functions under the exponential and power utility functions, respectively.

Section 10.6 provides detailed numerical experiments to discuss the impacts of

model parameters and relative performance concerns on the equilibrium strategies.

Section 10.7 concludes the paper.

10.2 Financial market and random liabilities

In this paper, let [0, T ] be a fixed time horizon and (Ω,F ,F,P) be a filtered complete

probability space satisfying the usual conditions, where three one-dimensional,

mutually independent Brownian motions, {Wi,t}t∈[0,T ] , i = 1, 2, 3 are defined, the

filtration F := {Ft}t∈[0,T ] is assumed to be generated by the three Brownian motions,

and P denotes the real-world probability measure. In what follows, we introduce

several spaces on (Ω,F ,F,P):

• L0
F,P (0, T ;R): the space of all real-valued, F-adapted processes with P-a.s.

continuous sample paths;

• L2,loc
F,P (0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ]

with P-a.s. continuous sample paths such that P
(∫ T

0
|ft|2 dt <∞

)
= 1;

• L2
F,P(0, T ;R): the space of all real-valued, F-adapted processes {ft}t∈[0,T ] with

P-a.s. continuous sample paths such that E
[∫ T

0
|ft|2 dt

]
<∞;

• S∞
F,P(0, T ;R): the space of all real-valued, F-adapted uniformly bounded

processes with P-a.s. continuous sample paths.

10.2.1 The financial market

We consider a financial market that consists of three tradable assets: a risk-free

asset (money account), a risky asset (stock), and an inflation-linked index bond.

The price process of the risk-free asset Bt is given by

dBt = RBt dt, B0 = 1,
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where the constant R ∈ R denotes the nominal interest rate. As mentioned in the

introduction, the risk of inflation cannot be ignored in a long-term investment cycle,

which leads to the devaluation of the wealth of asset-liability managers. To describe

the inflation risk, following some literature (see, for example, Zhang and Ewald

(2010), Korn, Siu, and Zhang (2011), and Kwak and Lim (2014)), we assume that

the price index Pt satisfies the following geometric Brownian motion:

dPt
Pt

= µp dt+ σp dW0,t, P0 = p0 ∈ R+, (10.2.1)

where the constants µp ∈ R and σp ∈ R+ stand for the expected rate and volatility

of the price level, respectively, and the price dynamics of the inflation-linked index

bond It are given by the following diffusion process:

dIt
It

= r dt+
dPt
Pt

= Rdt+ σp (λp dt+ dW0,t) , (10.2.2)

where the constant r ∈ R is the real interest rate and the constant λp =
r+µp−R

σp
∈ R

is the market price of inflation risk. As supported by some empirical analysis (see,

for example, Lee (2010)), the inflation rate usually has a direct or indirect impact

on the price of risky assets, we, therefore, assume that the price dynamics of the

risky assets St are given by

dSt
St

= Rdt+ σs(λp dt+ dW0,t) + (µt dt+ σt dW1,t), S0 = s0 ∈ R+, (10.2.3)

where the constant σs ∈ R characterizes how large the impact of the inflation risk

on the risky asset’s dynamics is, and µt and σt > 0 two potentially unbounded

and non-Markovian F-adapted stochastic processes describing the risky asset’s risk

premium and volatility generated by the fundamental risk source W1,t at time t. In

addition, we assume that the market price of volatility risk is linear in the square

root of an observable affine form, square-root factor process αt, i.e.,

µt
σt

= λ
√
αt, λ ∈ R \ {0} , (10.2.4)

and

dαt = κ(θ − αt) dt+
√
αt(ρ1 dW1,t + ρ2 dW2,t), α0 ∈ R+ (10.2.5)

where the constants κ, θ, and
√
ρ21 + ρ22 represent the mean reversion rate, long-run

level, and volatility of the factor process, respectively. In the spirit of Chapter 6.3

in Jeanblanc, Chesney, and Yor (2009), we suppose that the constants κ, θ ∈ R
satisfy κθ ≥ 0, which guarantees that the process αt ≥ 0 for all t ∈ [0, T ], P almost

surely, whereas no specific conditions are introduced to the constants ρ1, ρ2 ∈ R.
Moreover, it is worth mentioning that the Feller condition, i.e., 2κθ ≥ ρ21 + ρ22 is

not imposed in the current context to ensure that αt is strictly positive.

It should be noted that the above price dynamics of the risky asset excluding

the impact of the inflation rate, i.e., σs = 0 in (10.2.3) were considered in some
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existing literature for different research interests in recent years; for example, Shen

and Zeng (2015), Li et al. (2022), and Zhang (2022c,e). The reason we opt for

the above modeling framework for the risky asset’s price St is that we can take

a unified approach to address a class of stochastic (local) volatility models used

in practice, such as the CEV model, Heston model, 3/2 model, and 4/2 model as

well as some path-dependent models. For the reader’s convenience, these specific

models are listed below as examples.

Example 10.2.1 (CEV model). If µt = µ − R, σt = σSβt , and σs = 0 where

µ ∈ R+, σ ∈ R+, and β ≤ − 1
2 , then the risky asset price St is given by the CEV

model:

dSt = St

(
µdt+ σSβt dW1,t

)
, S0 = s0 ∈ R+, (10.2.6)

where β is called the elasticity parameter. By setting αt = S−2β
t , κ = 2βµ,

θ = (β + 1
2 )
σ2

µ , ρ1 = −2βσ, ρ2 = 0 and λ = µ−r
σ , we have

dαt = 2βµ

[(
β +

1

2

)
σ2

µ
− S−2β

t

]
dt− 2βσS−β

t dW1,t

= κ(θ − αt) dt+
√
αt (ρ1 dW1,t + ρ2 dW2,t) .

For the particular case when β = 0, the condition κθ ≥ 0 is still satisfied and the

CEV model is reduced to the Black-Scholes model.

Example 10.2.2 (The family of 4/2 models). If µt = λ(c1αt+c2), σt = c1
√
αt+

c2√
αt
,

κ ∈ R+, θ ∈ R+, ρ1 = σαρ and ρ2 = σα
√
1− ρ2, where c1 ≥ 0, c2 ≥ 0, σα ∈ R+,

and ρ ∈ [−1, 1], then the price dynamics of the risky asset St are governed by the

family of 4/2 stochastic volatility models:

dSt
St

= (R+ λ(c1αt + c2) + λpσs) dt+ σs dW0,t +

(
c1
√
αt

+
c2√
αt

)
dW1,t, S0 = s0 ∈ R+,

dαt = κ(θ − αt) dt+ σα
√
αt

(
ρ dW1,t +

√
1− ρ2 dW2,t

)
, α0 ∈ R+,

(10.2.7)

where αt is the variance driver process with mean-reversion rate κ, long-run mean

θ, volatility σα, and correlation coefficient between the risky asset price and its

variance driver ρ. For the 4/2 model (10.2.7), we impose the Feller condition, i.e.,

2κθ ≥ σ2
α to keep αt strictly positive for t ∈ [0, T ], P almost surely.

Remark 10.2.3. The 4/2 model (10.2.7) embraces two embedded parsimonious

models, the Heston model (Heston (1993)) and 3/2 model (Lewis (2000)) via the

constants c1 and c2. Particularly, the case (c1, c2) = (1, 0) corresponds to the

Heston model, while the specification (c1, c2) = (0, 1) is known as the 3/2 model.
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Example 10.2.4 (A path-dependent model). If µt = λ
√
αtσ̂(α[0,t]) and σt =

σ̂(α[0,t]) for some functional σ̂ : C([0, t];R) 7→ R+, where α[0,t] := (αs)s∈[0,t] is the

restriction of α ∈ C([0, T ];R) to C([0, t];R), i.e., the space of real-valued, continuous

functions defined on [0, t]. In this case, the price dynamics of the risky asset St are

featured by the following path-dependent stochastic volatility model:
dSt
St

=
(
R+ λ

√
αtσ̂(α[0,t]) + λpσs

)
dt+ σs dW0,t + σ̂(α[0,t]) dW1,t, S0 = s0 ∈ R+,

dαt = κ(θ − αt) dt+
√
αt (ρ1 dW1,t + ρ2 dW2,t) , α0 ∈ R+.

(10.2.8)

In view of the path-dependence of the return rate and volatility of the risky asset

price, the model (10.2.8) is a special case of the non-Markovian stochastic volatility

models. For more details on (10.2.8), readers may refer to Siu (2012).

Suppose that there are two asset-liability managers with an initial nominal wealth

x̃i,0 ∈ R+, i = 1, 2, at time zero, respectively. Denote by πSi,t and π
I
i,t, i = 1, 2, the

proportions of nominal wealth invested in the risky asset and inflation-linked index

bond at time t. Then, πi :=
{
πSi,t, π

I
i,t

}
t∈[0,T ]

denotes the investment strategy for

manager i. Let X̃πi
t be the nominal wealth process associated with πi, for i = 1, 2.

Under a self-financing condition, the nominal wealth process of manager i is given

by

dX̃πi
t

X̃πi
t

=
[
R+ πSi,tµt + (πSi,tσsλp + πIi,tσpλp)

]
dt+ (πSi,tσs + πIi,tσp) dW0,t

+ πSi,tσt dW1,t, X̃
πi
0 = x̃i,0.

Denote by Xπi
t := X̃πi

t /Pt the real wealth after stripping out inflation for manager

i, i = 1, 2, whose dynamics can be expressed as follows by using Itô’s formula:

dXπi
t

Xπi
t

=
[
r + πSi,tµt + (λp − µp)

(
πSi,tσs + (πIi,t − 1)σp

)]
dt+

(
πSi,tσs

+(πIi,t − 1)σp
)
dW0,t + πSi,tσt dW1,t, X

πi
0 = xi,0 = x̃i,0/p0 ∈ R+.

(10.2.9)

10.2.2 The asset-liability management

Apart from continuous investment in the above financial market, we consider that

the asset-liability manager i is subject to a nominal liability commitment with an

initial value ni,0 ∈ R+, for i = 1, 2. The nominal liability process Ni,t follows

dNi,t
Ni,t

= µi dt+ βi dW0,t + σi
√
αt(λ

√
αt dt+ dW1,t),

where the constant µi ∈ R is the drift coefficient, and βi, σi ∈ R+ are the volatility

coefficients measuring how large the impacts of inflation and volatility risks on
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the dynamics of random liability are, for i = 1, 2. In this paper, we consider the

case that the random liability Ni,t is uncontrollable, i.e., the manager i cannot

decide the value of liability by changing his/her investment strategy. Denote by

Li,t = Ni,t/Pt the inflation-adjusted liability. An application of Itô’s formula leads

to the following dynamics of Li,t for manager i:

dLi,t
Li,t

=
(
µi − µp + σ2

p − σpβi
)
dt+ (βi − σp) dW0,t + σi

√
αt(λ

√
αt dt+ dW1,t),

(10.2.10)

with the initial level of real liability li,0 = ni,0/p0 ∈ R+, for i = 1, 2.

10.3 Formulation of a non-zero-sum game

In this paper, the two asset-liability managers aim to choose an admissible strategy

(π1, π2) ∈ Π1 ⊗ Π2 to maximize their expected utility of terminal inflation-adjusted

surplus at time T , where the set of admissible strategies Π1⊗Π2 will be defined later.

In addition, each manager also cares about the difference between his/her terminal

surplus and the other’s and tries to fare better relative to his/her competitor. We

formulate the optimization problem as a non-zero-sum stochastic differential game

between the two competitive asset-liability managers. In line with some existing

literature, such as Bensoussan et al. (2014), Deng, Zeng, and Zhu (2018), and Savku

and Weber (2022), we focus on games with perfect observation, i.e., the managers’

strategies are instantaneously revealed to their opponent.

Given the initial values of state variables as above, we define a non-zero-sum

stochastic differential game with the following objective functions for j ̸= i ∈ {1, 2}:

J
(πi,πj)
i (xi,0, xj,0, li,0, lj,0, s0, α0)

:=E
[
Ui
(
(1− wi)(X

πi

T − Li,T ) + wi
(
(Xπi

T − Li,T )− (X
πj

T − Lj,T )
))]

=E
[
Ui
(
Xπi

T − Li,T − wi(X
πj

T − Lj,T )
)]
,

(10.3.1)

where Ui(·) is a strictly increasing and strictly concave smooth utility function for

each manager i, and the parameter wi ∈ [0, 1], i = 1, 2, describes the degree to

which manager i values the relevant performance with his/her competitor. A greater

value of wi implies that manager i cares more about his/her relative surplus. In

particular, for the case when wi = 0, manager i only considers his/her own terminal

inflation-adjusted surplus. Conversely, the specification wi = 1 corresponds to the

case when manager i is only interested in the relative surplus.

Definition 10.3.1 (Nash equilibrium strategy). The classical non-zero-sum stochas-

tic differential game problem is to find a Nash equilibrium strategy (π∗
1 , π

∗
2) ∈ Π1⊗Π2

such that

J
(π∗

1 ,π
∗
2 )

1 (x1,0, x2,0, l1,0, l2,0, s0, α0) ≥ J
(π1,π

∗
2 )

1 (x1,0, x2,0, l1,0, l2,0, s0, α0), (10.3.2)
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and

J
(π∗

2 ,π
∗
1 )

2 (x2,0, x1,0, l2,0, l1,0, s0, α0) ≥ J
(π2,π

∗
1 )

2 (x2,0, x1,0, l2,0, l1,0, s0, α0). (10.3.3)

If the above two inequalities (10.3.2) and (10.3.3) hold, then the value functions of

managers 1 and 2 are given by

J1(x1,0, x2,0, l1,0, l2,0, s0, α0) :=J
(π∗

1 ,π
∗
2 )

1 (x1,0, x2,0, l1,0, l2,0, s0, α0)

= sup
π1∈Π1

J
(π1,π

∗
2 )

1 (x1,0, x2,0, l1,0, l2,0, s0, α0),
(10.3.4)

and

J2(x2,0, x1,0, l2,0, l1,0, s0, α0) :=J
(π∗

2 ,π
∗
1 )

2 (x2,0, x1,0, l2,0, l1,0, s0, α0)

= sup
π2∈Π2

J
(π2,π

∗
1 )

2 (x2,0, x1,0, l2,0, l1,0, s0, α0),
(10.3.5)

and the Nash equilibrium pair (π∗
1 , π

∗
2) is called the competitively optimal investment

strategy.

To proceed, we consider two utility maximization problems when the risk prefer-

ences of the two asset-liability managers are characterized by the exponential and

power utility functions, respectively, i.e,

Ui(x) = − 1

qi
e−qix, x ∈ R, qi ∈ R+, i = 1, 2, (10.3.6)

and

Ui(x) =
xγi

γi
, x ∈ R+, γi ∈ R−, i = 1, 2. (10.3.7)

Definition 10.3.2. For the exponential utility preference (10.3.6), the set of

admissible strategies Π1 ⊗Π2 is the set of F-adapted processes (π1, π2) such that

1. SDE (10.2.9) has a unique strong solution Xπi
t ∈ L0

F,P(0, T ;R), for i = 1, 2;

2. the family
{
− 1
qi
e−qi(Yi,τn∧T (X

πi
τn∧T−wiX

πj
τn∧T )+Gi,τn∧T )

}
n∈N

is uniformly inte-

grable, for any sequence of F-stopping times such that τn → ∞, P almost

surely as n→ ∞, where i ̸= j ∈ {1, 2}, and processes Yi,t and Gi,t are given

by (10.4.4) and (10.4.7), respectively.

Similarly, the definition of the admissible strategies for the power utility case

(10.3.7) is formally given as follows.

Definition 10.3.3. For the power utility perference (10.3.7), the set of admissible

strategies Π1 ⊗Π2 is the set of F-adapted processes (π1, π2) such that
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1. the process Xπi
t − wiX

πj

t + G̃i,t is positive, P almost surely, for t ∈ [0, T ],

where G̃i,t is given by (10.5.9) and i ̸= j ∈ {1, 2};

2. SDE (10.2.9) has a unique strong solution Xπi
t ∈ L0

F,P(0, T ;R), for i = 1, 2;

3. the family
{
Ỹi,τn∧T

γi
(Xπi

τn∧T − wiX
πj

τn∧T + G̃i,τn∧T )
γi
}

is uniformly integrable,

for any sequence of F-stopping times such that τn → ∞, P almost surely as

n→ ∞, where i ̸= j ∈ {1, 2} and process Ỹi,t is given by (10.5.4).

In a Markovian market setting, the Nash equilibrium strategy can be constructed

as a solution to a system of coupled HJB partial differential equations; see, for

example, Bensoussan et al. (2014), Guan and Liang (2016), Deng, Zeng, and

Zhu (2018), and Savku and Weber (2022). However, due to the potentially non-

Markovian structures of the market model induced by the two stochastic processes

µt and σt in (10.2.3), the standard dynamic programming principle falls apart in the

current context, and so does the associated HJB equation. We, therefore, manage

to find the Nash equilibrium (π∗
1 , π

∗
2) for the problem (10.3.2)-(10.3.3) by opting for

a BSDE approach in the Section 10.4 and 10.5.

10.4 Non-zero-sum game for the exponential utility case

In this section, we address the non-zero-sum stochastic differential game (10.3.2)-

(10.3.3) for the exponential utility case (10.3.6) by means of BSDE and provide

explicit expressions for the competitively optimal investment strategy (π∗
1 , π

∗
2) as

well as the associated value functions (10.3.4) and (10.3.5).

We first introduce the following continuous semi-martingales Yi,t and Gi,t, for

i = 1, 2, with the canonical decomposition:

dYi,t = Ψi,t dt+ Zi,t dW0,t +Mi,t dW1,t + Pi,t, dW2,t,

and

dGi,t = Qi,t dt+Hi,t dW0,t + Λi,t dW1,t + Γi,t dW2,t,

where Ψi,t and Qi,t are some F-adapted processes that shall be determined in

what follows, and Zi,t,Mi,t, Pi,t, Hi,t,Λi,t,Γi,t ∈ L2,loc
F,P (0, T ;R), for i = 1, 2. Then,

applying Itô’s formula to the process − 1
qi
e−qi(Yi,t(X

πi
t −wiX

πj
t )+Gi,t) shows us the

following dynamics:

d

(
−

1

qi
e
−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

))

=e
−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

)[
(X

πi
t − wiX

πj
t )Zi,t + Yi,t

(
X

πi
t (π

S
i,tσs + (π

I
i,t − 1)σp)

− wiX
πj
t (π

S
j,tσs + (π

I
j,t − 1)σp)

)
+Hi,t

]
dW0,t + e

−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

)[
(X

πi
t − wiX

πj
t )Mi,t

314



+ Yi,t(X
πi
t π

S
i,t − wiX

πj
t π

S
j,t)σt + Λi,t

]
dW1,t + e

−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

) (
(X

πi
t − wiX

πj
t )Pi,t

+Γi,t) dW2,t −
qi

2
e
−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

) [
(X

πi
t − wiX

πj
t )Zi,t + Yi,t

(
X

πi
t (π

S
i,tσs

+(π
I
i,t − 1)σp) − wiX

πj
t (π

S
j,tσs + (π

I
j,t − 1)σp)

)
+Hi,t −

1

qi

(
λp − σp +

Zi,t

Yi,t

)]2
dt

−
qi

2
e
−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

) [
(X

πi
t − wiX

πj
t )Mi,t + Yi,t(X

πi
t π

S
i,t − wiX

πj
t π

S
j,t)σt + Λi,t

−
1

qi

(
λ
√
αt +

Mi,t

Yi,t

)]2
dt−

qi

2
e
−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

)
(X

πi
t − wiX

πj
t )

2
P

2
i,t dt

− qie
−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

)
(X

πi
t − wiX

πj
t )Pi,tΓi,t dt+ e

−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

)
(X

πi
t

− wiX
πj
t )

[
Ψi,t + rYi,t − Zi,t

(
λp − σp +

Zi,t

Yi,t

)
−Mi,t

(
λ
√
αt +

Mi,t

Yi,t

)]
dt

+ e
−qi

(
Yi,t(X

πi
t −wiX

πj
t )+Gi,t

)[
Qi,t +

(
λp − σp +

Zi,t
Yi,t

)2

2qi
+

(
λ
√
αt +

Mi,t
Yi,t

)2

2qi

−Hi,t

(
λp − σp +

Zi,t

Yi,t

)
− Λi,t

(
λ
√
αt +

Mi,t

Yi,t

)
−
qiΓ

2
i,t

2

]
dt, for i ̸= j ∈ {1, 2} .

(10.4.1)

We expect given any πj ∈ Πj , the stochastic process − 1
qi
e−qi(Yi,t(X

πi
t −wiX

πj
t )+Gi,t)

is a (local) super-martingale for any admissible strategy and is a (local) martingale

for the optimal response strategy. In other words, we expect that the drift in (10.4.1)

is non-positive for any πi ∈ Πi and zero for the optimal response strategy denoted

by π̃i ∈ Πi whenever πj ∈ Πj is fixed and given, where i ̸= j ∈ {1, 2}. Therefore,
the two stochastic processes Ψi,t and Qi,t can be determined by letting the last two

drift terms on the right-hand side of (10.4.1) be zeros. As a result, we have the

following BSRE of (Yi,t, Zi,t,Mi,t, Pi,t):
dYi,t =

[
−rYi,t +

(
λp − σp +

Zi,t
Yi,t

)
Zi,t +

(
λ
√
αt +

Mi,t

Yi,t

)
Mi,t

]
dt

+ Zi,t dW0,t +Mi,t dW1,t + Pi,t dW2,t,

Yi,T =1,

(10.4.2)

and quadratic BSDE of (Gi,t, Hi,t,Λi,t,Γi,t):

dGi,t =

(λp − σp +
Zi,t

Yi,t

)
Hi,t +

(
λ
√
αt +

Mi,t

Yi,t

)
Λi,t +

qi
2
Γ2
i,t −

(
λp − σp +

Zi,t

Yi,t

)2
2qi

−

(
λ
√
αt +

Mi,t

Yi,t

)2
2qi

 dt+Hi,t dW0,t + Λi,t dW1,t + Γi,t dW2,t,

Gi,T =− Li,T + wiLj,T .

(10.4.3)

where i ̸= j ∈ {1, 2}. It is worth mentioning that the terminal conditions in (10.4.2)

and (10.4.3) follow from the term in the expectation (10.3.1). Here, by a solution to
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BSDE (10.4.2), we mean a quadruplet of stochastic processes (Yi,t, Zi,t,Mi,t, Pi,t) ∈
S∞
F,P(0, T ;R) ⊗ L2

F,P(0, T ;R) ⊗ L2
F,P(0, T ;R) ⊗ L2

F,P(0, T ;R). Similarly, a solution

to BSDE (10.4.3) is a quadruplet of stochastic processes (Gi,t, Hi,t,Λi,t,Γi,t) ∈
L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R).

Remark 10.4.1. Note that BSDEs (10.4.2)-(10.4.3) form a coupled BSDE system.

The generator of quadratic BSDE (10.4.3) involves the solution to BSRE (10.4.2).

This finding shows that the two BSDEs shall be addressed recursively forwards

in the sequel. Lim (2004) shows the existence and uniqueness result for a BSRE

similar to (10.4.2) for the case with uniformly bounded random parameters in the

dynamics of asset prices. However, since the generator involves αt which is not

uniformly bounded, the results of Lim (2004) cannot be applied to our case. In

the following proposition, we derive a closed-form solution to BSRE (10.4.2) and

prove the uniqueness of the solution using the results of Kobylanski (2000) and

Girsanov’s measure change techniques.

For the reader’s convenience, we present the following auxiliary result (refer to

Lemma 4.3 in Zeng and Taksar (2013) or Lemma A1 in Shen and Zeng (2015))

assisting the proof in the main body of this paper.

Lemma 10.4.2 (Bona-fide martingale property). If a1(t) and a2(t) are two bounded

functions over [0, T ], the following stochastic exponential process

exp

{∫ t

0

a1(s)
√
αs dW1,s +

∫ t

0

a2(s)
√
αs dW2,s −

1

2

∫ t

0

(
a21(s) + a22(s)

)
αs ds

}
is an (F,P)-martingale.

Proposition 10.4.3. The unique solution (Yi,t, Zi,t,Mi,t, Pi,t) to BSRE (10.4.2),

for i = 1, 2, is given by

Yi,t = er(T−t), (10.4.4)

and

(Zi,t,Mi,t, Pi,t) = (0, 0, 0). (10.4.5)

Proof. See Appendix 10.A.

Remark 10.4.4. It is interesting to identify that the control components of BSRE

(10.4.2) are zeros, from which we find that the third and fourth drift terms on

the right-hand side of (10.4.1) vanish. Moreover, quadratic BSDE (10.4.3) can be

substantially simplified so that the generator of BSDE (10.4.3) does not involve the

solution to BSRE (10.4.2).
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Having solved BSRE (10.4.2) explicitly, we can rewrite BSDE (10.4.3) of (Gi,t, Hi,t,

Λi,t,Γi,t) as follows, for i ̸= j ∈ {1, 2},
dGi,t =

(
(λp − σp)Hi,t + λ

√
αtΛi,t +

qi
2
Γ2
i,t −

(λp − σp)
2

2qi
− λ2αt

2qi

)
dt

+Hi,t dW0,t + Λi,t dW1,t + Γi,t dW2,t

Gi,T =− Li,T + wiLj,T .

(10.4.6)

In the following proposition, we derive one explicit solution to BSDE (10.4.6)

by using the Markovian structures of factor process αt and liability processes

Li,t, i = 1, 2.

Proposition 10.4.5. One closed-form solution (Gi,t, Hi,t,Λi,t,Γi,t) to quadratic

BSDE (10.4.6) is given by

Gi,t = fi(t) + gi(t)αt + hi(t)Li,t − wimi(t)Lj,t (10.4.7)

and 
Hi,t =(βi − σp)hi(t)Li,t − wi(βj − σp)mi(t)Lj,t,

Λi,t =(ρ1gi(t) + σihi(t)Li,t − wiσjmi(t)Lj,t)
√
αt,

Γi,t =ρ2gi(t)
√
αt,

(10.4.8)

where functions fi(t), gi(t), hi(t), and mi(t) solve the following ordinary differential

equations (ODEs):

dgi(t)

dt
=
qi
2
ρ22g

2
i (t) + (κ+ λρ1)gi(t)−

λ2

2qi
, gi(T ) = 0;

dhi(t)

dt
=(λp(βi − σp) + µp − µi)hi(t), hi(T ) = −1;

dmi(t)

dt
=(λp(βj − σp) + µp − µj)mi(t), mi(T ) = −1;

dfi(t)

dt
=− κθgi(t) +

(λp − σp)
2

2qi
, fi(T ) = 0,

(10.4.9)

for i ̸= j ∈ {1, 2}.

Proof. See Appendix 10.B.

Proposition 10.4.5 transforms the problem of finding a solution to quadratic

BSDE (10.4.6) into the determination of solutions to ODEs (10.4.9). In the

following proposition, we derive, in closed form, the solutions to ODEs (10.4.9)

for i ̸= j ∈ {1, 2}. Before that, we impose the following assumption on the model

parameters through out the rest of this section:

Assumption 10.4.6. κ+ λρ1 ̸= 0.

317



Remark 10.4.7. It is worth mentioning that Assumption 10.4.6 does not simplify

the calculations for deriving the solutions to ODEs (10.4.9) but ensures that the

factor process αt preserves the affine-form, square-root structure under another

equivalent probability measure as shown in the proof of Proposition 10.4.10 below.

Proposition 10.4.8. Under Assumption 10.4.6, closed-form solutions to ODEs

(10.4.9) are given by

gi(t) =


− λ2

2qi(κ+ λρ1)

(
e(κ+λρ1)(t−T ) − 1

)
, if ρ2 = 0;

ng+i
ng−i

(
1− e

√
∆gi

(T−t)
)

ng+i
− ng−i

e
√

∆gi
(T−t)

, if ρ2 ̸= 0,

(10.4.10)

hi(t) = −e(λp(βi−σp)+µp−µi)(t−T ), (10.4.11)

mi(t) = −e(λp(βj−σp)+µp−µj)(t−T ), (10.4.12)

and

fi(t) =



−λ2κθ
(
1− e(κ+λρ1)(t−T )

)
2qi(κ+ λρ1)2

+

(
−λ2κθ

2qi(κ+ λρ1)
+

(λp − σp)
2

2qi

)
(t− T ), if ρ2 = 0;

κθ
(
n
g−i

− n
g+i

)
√

∆gi

log

 n
g+i

− n
g−i

n
g+i

− n
g−i
e
√

∆gi
(T−t)


+

(
(λp − σp)

2

2qi
− κθn

g−i

)
(t− T ), if ρ2 ̸= 0,

(10.4.13)

where ∆gi , ng+i
, and ng−i

are given by

∆gi = (κ+λρ1)
2+ρ22λ

2, ng+i
=

−(κ+ λρ1) +
√

∆gi

qiρ22
. ng−i

=
−(κ+ λρ1)−

√
∆gi

qiρ22
,

(10.4.14)

for i ̸= j ∈ {1, 2}.

Proof. See Appendix 10.C.

Remark 10.4.9. From Proposition 10.4.8, it is easy to verify that gi(t) is a positive

and bounded function on [0, T ], for i = 1, 2, which, combined with Assumption

10.4.6, implies that the hypothesis in Lemma 10.4.2 is satisfied under another

equivalent probability measure given in the proof of Proposition 10.4.10.

Combining Proposition 10.4.5 and 10.4.8, we have found one solution to BSDE

(10.4.6) in a closed-form, which is given by (10.4.7)-(10.4.8). In the following

proposition, we prove that it is the unique solution to BSDE (10.4.6).
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Proposition 10.4.10. Under Assumption 10.4.6, the solution (Gi,t, Hi,t,Λi,t,Γi,t)

given by (10.4.7)-(10.4.8) is the unique solution to quadratic BSDE (10.4.6) in

L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R), for i ∈ {1, 2}.

Proof. See Appendix 10.D.

We are now in the position to provide the explicit expressions of the competitively

optimal investment strategy (π∗
1 , π

∗
2) and the value functions of manager i, i = 1, 2,

for the non-zero-sum stochastic differential game problem (10.3.2)-(10.3.3), which

are expressed in terms of the unique solution to BSRE (10.4.2) and BSDE (10.4.6).

Theorem 10.4.11 (Nash equilibrium to the ALM game). Under Assumption

10.4.6, the Nash equilibrium pair (π∗
1 , π

∗
2) for the ALM game with the exponential

utility preference (10.3.6) is as follows:
πS∗i,t =

1

σtX
π∗
i

t (1− wiwj)

(
λ
qi

√
αt − Λi,t

Yi,t
+ wi

λ
qj

√
αt − Λj,t

Yj,t

)
,

πI∗i,t =
1

σpX
π∗
i

t (1− wiwj)

 λp−σp

qi
−Hi,t

Yi,t
+ wi

λp−σp

qj
−Hj,t

Yj,t

− σs
σp
πS∗i,t + 1,

(10.4.15)

and the value functions are given by

Ji(xi,0, xj,0, li,0, lj,0, s0, α0) = − 1

qi
exp {−qi(Yi,0(xi,0 − wixj,0) +Gi,0)} (10.4.16)

for i ̸= j ∈ {1, 2}, where the explicit expressions for Yi,t, Gi,t,Λi,t, and Hi,t are

given by (10.4.4), (10.4.7), and (10.4.8), respectively. Moreover, (π∗
1 , π

∗
2) ∈ Π1⊗Π2.

Proof. See Appendix 10.E.

Remark 10.4.12. From the proof of Theorem 10.4.11, we find the herd effect

on managers’ decisions, that is, managers will mimic their competitor’s strategy.

Specifically, it can be found from (10.E.4)-(10.E.5) that the optimal response

strategy given the competitor’s strategy can be decomposed into two parts. The

first part is the case where wi = 0, i.e., the manager i is only concerned about the

partial objective of maximizing the expectation of terminal surplus, which is similar

to Merton-type solution consisting of a multiplier, a myopic (time-independent)

component, and an inter-temporal hedging component. The second part shows

the effect of competition on their investment strategies. More precisely, when the

competitor j increases his/her risk exposure, i.e., X
π̂j

t (π̂Sj,tσs + (π̂Ij,t − 1)σp) and

X
π̂j

t π̂Sj,tσt to the two fundamental risk factors W0,t and W1,t, (10.E.4)-(10.E.5)

reveal that the manager i will adopt a riskier investment strategy, for i ̸= j ∈ {1, 2}.
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Remark 10.4.13. When w1 = w2 = 0, the equilibrium investment strategy πS∗i,t and

πI∗i,t given in (10.4.15), for i = 1, 2, is reduced to the classical optimal investment

strategy for ALM with inflation and volatility risks under exponential utility without

relative performance concerns.

Corollary 10.4.14 (Nash equilibrium to the investment game). Under Assumption

10.4.6, the Nash equilibrium pair (π∗
1 , π

∗
2) for the pure investment game with the

exponential utility preference (10.3.6) is given by
πS∗i,t =

1

σtX
π∗
i

t (1− wiwj)

(
λ
qi

− ρ1gi(t)

Yi,t
+ wi

λ
qj

− ρ1gj(t)

Yj,t

)
√
αt,

πI∗i,t =
1

σpX
π∗
i

t (1− wiwj)

(
λp − σp
qiYi,t

+ wi
λp − σp
qjYj,t

)
− σs
σp
πS∗i,t + 1,

and the value functions are given by

Ji(xi,0, xj,0, s0, α0) = − 1

qi
exp {−qi(Yi,0(xi,0 − wixj,0) + fi(0) + gi(0)α0)} ,

for i ̸= j ∈ {1, 2}.

Proof. Substituting the specification µi = βi = σi = li,0 = 0, i = 1, 2, into (10.4.15)

and (10.4.16) yields the above results.

Corollary 10.4.15 (Nash equilibrium to the ALM game under the 4/2 model). If

the risky asset price process St and the variance driver process αt follow the family

of 4/2 stochastic volatility model (10.2.7) and suppose that κ+ σαρλ ̸= 0, the Nash

equilibrium pair (π∗
1 , π

∗
2) for the ALM game with the exponential utility preference

(10.3.6) is given by
πS∗i,t =

1

(c1
√
αt +

c2√
αt
)X

π∗
i

t (1− wiwj)

(
λ
qi

√
αt − Λ̄i,t

Yi,t
+ wi

λ
qj

√
αt − Λ̄j,t

Yj,t

)
,

πI∗i,t =
1

σpX
π∗
i

t (1− wiwj)

 λp−σp

qi
−Hi,t

Yi,t
+ wi

λp−σp

qj
−Hj,t

Yj,t

− σs
σp
πS∗i,t + 1,

and the value functions are given by

Ji(xi,0, xj,0, li,0, lj,0, s0, α0) = − 1

qi
exp

{
−qi(Yi,0(xi,0 − wixj,0) + Ḡi,0)

}
,

where the explicit expressions for Ḡi,t and Λ̄i,t are as follows:

Ḡi,t = f̄i(t) + ḡi(t)αt + hi(t)Li,t − wimi(t)Lj,t,

and

Λ̄i,t = (σαρḡi(t) + σihi(t)Li,t − wiσjmi(t)Lj,t)
√
αt,
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where functions ḡi(t) and f̄i(t) are given by

ḡi(t) =


− λ2

2qi(κ+ λσαρ)

(
e(κ+λσαρ)(t−T ) − 1

)
, if ρ = ±1;

nḡ+i
nḡ−i

(
1− e

√
∆ḡi

(T−t)
)

nḡ+i
− nḡ−i

e
√

∆ḡi
(T−t)

, if ρ ̸= ±1,

and

f̄i(t) =



−λ2κθ
(
1 − e(κ+λσαρ)(t−T )

)
2qi(κ+ λσαρ)2

+

(
−λ2κθ

2qi(κ+ λσαρ)
+

(λp − σp)
2

2qi

)
(t− T ), if ρ = ±1;

κθ

(
n
ḡ
−
i

− n
ḡ
+
i

)
√

∆ḡi

log

 n
ḡ
+
i

− n
ḡ
−
i

n
ḡ
+
i

− n
ḡ
−
i
e
√

∆ḡi
(T−t)


+

(
(λp − σp)

2

2qi
− κθn

ḡ
−
i

)
(t− T ), if ρ ̸= ±1,

with ∆ḡi , nḡ+i
, nḡ−i

given by

∆ḡi
= (κ+ λσαρ)

2
+ σ

2
αλ

2
(1 − ρ

2
), n

ḡ
+
i

=
−(κ+ λσαρ) +

√
∆ḡi

qiσ2
α(1 − ρ2)

, n
ḡ
−
i

=
−(κ+ λσαρ) −

√
∆ḡi

qiσ2
α(1 − ρ2)

,

for i ̸= j ∈ {1, 2}.

Proof. Plugging the specified parameters of the 4/2 model (10.2.7) in Example

10.2.2 into Theorem 10.4.11 yields the above results immediately.

Remark 10.4.16. By specifying (c1, c2) = (1, 0) and (c1, c2) = (0, 1) in Corollary

10.4.15, we derive the Nash equilibrium strategies and the value functions for the

ALM games under the Heston model and 3/2 model with inflation risk, respectively.

To the best of our knowledge, these results are not provided in the existing literature.

10.5 Non-zero-sum game for the power utility case

This section solves the non-zero-sum stochastic differential game (10.3.2)-(10.3.3)

for the power utility case (10.3.7) by using a BSDE approach.

Similar to the previous section, we introduce the following two (F,P)-semi-

martingales Ỹi,t and G̃i,t to find the BSDEs associated with the problem:

dỸi,t = Ψ̃i,t dt+ Z̃i,t dW0,t + M̃i,t dW1,t + P̃i,t dW2,t,

and

dG̃i,t = Q̃i,t dt+ H̃i,t dW0,t + Λ̃i,t dW1,t + Γ̃i,t dW2,t,

where Ψ̃i,t and Q̃i,t are F-adapted processes that will be determined later, and

Z̃i,t, M̃i,t, P̃i,t, H̃i,t, Λ̃i,t, Γ̃i,t ∈ L2,loc
F,P (0, T ;R), for i = 1, 2. Then, an application of
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Itô’s formula to
Ỹi,t

γi
(Xπi

t −wiX
πj

t +G̃i,t)
γi combined with the method of completion

of squares yields

d

(
Ỹi,t

γi
(X

πi
t − wiX

πj
t + G̃i,t)

γi

)

=

[
(X

πi
t − wiX

πj
t + G̃i,t)

γi

γi
Z̃i,t + Ỹi,t(X

πi
t − wiX

πj
t + G̃i,t)

γi−1

(
X

πi
t (π

S
i,tσs + (π

I
i,t − 1)σp)

− wiX
πj
t (π

S
j,tσs + (π

I
j,t − 1)σp) + H̃i,t

)]
dW0,t +

[
(X

πi
t − wiX

πj
t + G̃i,t)

γi

γi
M̃i,t

+ Ỹi,t(X
πi
t − wiX

πj
t + G̃i,t)

γi−1

(
(X

πi
t π

S
i,t − wiX

πj
t π

S
j,t)σt + Λ̃i,t

)]
dW1,t

+

[
(X

πi
t − wiX

πj
t + G̃i,t)

γi

γi
P̃i,t + Ỹi,t(X

πi
t − wiX

πj
t + G̃i,t)

γi−1
Γ̃i,t

]
dW2,t +

γi − 1

2
Ỹi,t

× (X
πi
t − wiX

πj
t + G̃i,t)

γi−2

[
(X

πi
t π

S
i,t − wiX

πj
t π

S
j,t)σt + Λ̃i,t +

X
πi
t − wiX

πj
t + G̃i,t

γi − 1

(
M̃i,t

Ỹi,t

+ λ
√
αt

)]2
dt+

γi − 1

2
Ỹi,t(X

πi
t − wiX

πj
t + G̃i,t)

γi−2

[
X

πi
t (π

S
i,tσs + (π

I
i,t − 1)σp) − wiX

πj
t

× (π
S
j,tσs + (π

I
j,t − 1)σp) + H̃i,t +

X
πi
t − wiX

πj
t + G̃i,t

γi − 1

(
Z̃i,t

Ỹi,t

+ λp − σp

)]2
dt

+
γi − 1

2
Ỹi,t(X

πi
t − wiX

πj
t + G̃i,t)

γi−2
Γ̃
2
i,t dt+ (X

πi
t − wiX

πj
t + G̃i,t)

γi

[
Ψ̃i,t

γi
+ rỸi,t

−
1

2(γi − 1)
Ỹi,t

(
M̃i,t

Ỹi,t

+ λ
√
αt

)2

−
1

2(γi − 1)
Ỹi,t

(
Z̃i,t

Ỹi,t

+ λp − σp

)2]
dt

+ Ỹi,t(X
πi
t − wiX

πj
t + G̃i,t)

γi−1

(
Q̃i,t − rG̃i,t − λ

√
αtΛ̃i,t − (λp − σp)H̃i,t +

P̃i,t

Ỹi,t

Γ̃i,t

)
dt.

(10.5.1)

Given any admissible strategy πj of manager j, we expect that the stochastic

process
Ỹi,t

γi
(Xπi

t − wiX
πj

t + G̃i,t)
γi is a (local) super-martingale for any admissible

strategy πi, and even a (local) martingale for the optimal response strategy, which

indicates that we should opt for Ψ̃i,t and Q̃i,t such that the last two drift terms on
the right-hand side of (10.5.1) turn out to be zeros. This finding, combined with the

boundary condition at time T , leads to the following BSRE of (Ỹi,t, Z̃i,t, M̃i,t, P̃i,t):



dỸi,t =

[(
− rγi +

γi

2(γi − 1)
(λp − σp)

2
+

γi

2(γi − 1)
λ
2
αt

)
Ỹi,t +

γi

γi − 1
(λp − σp)Z̃i,t

+
γi

γi − 1
λ
√
αtM̃i,t +

γi

2(γi − 1)

Z̃2
i,t + M̃2

i,t

Ỹi,t

]
dt+ Z̃i,t dW0,t + M̃i,t dW1,t + P̃i,t dW2,t,

Ỹi,T =1,

Ỹi,t >0, for all t ∈ [0, T ),

(10.5.2)

and linear BSDE of (G̃i,t, H̃i,t, Λ̃i,t, Γ̃i,t):
dG̃i,t =

(
rG̃i,t + λ

√
αtΛ̃i,t + (λp − σp)H̃i,t −

P̃i,t

Ỹi,t
Γ̃i,t

)
dt+ H̃i,t dW0,t

+ Λ̃i,t dW1,t + Γ̃i,t dW2,t,

G̃i,T =− Li,T + wiLj,T .

(10.5.3)

For i = 1, 2, a solution to BSRE (10.5.2) is a quadruplet of stochastic processes

(Ỹi,t, Z̃i,t, M̃i,t, P̃i,t) ∈ S∞
F,P(0, T ;R) ⊗ L2

F,P(0, T ;R) ⊗ L2
F,P(0, T ;R) ⊗ L2

F,P(0, T ;R);
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similarly, a solution to BSDE (10.5.3) is a quadruplet of stochastic processes

(G̃i,t, H̃i,t, Λ̃i,t, Γ̃i,t) ∈ L2
F,P(0, T ;R) ⊗ L2

F,P(0, T ;R) ⊗ L2
F,P(0, T ;R) ⊗ L2

F,P(0, T ;R).
It is worth mentioning that the above BSRE (10.5.2) is essentially the same as Eq.

(15) in Zhang (2022c). Therefore, following the proof of Proposition 3.2 in Zhang

(2022c), we can immediately provide one explicit solution to BSRE (10.5.2) in the

next proposition.

Proposition 10.5.1. One closed-form solution (Ỹi,t, Z̃i,t, M̃i,t, P̃i,t) to BSRE (10.5.2),

for i = 1, 2, is given by

Ỹi,t = exp
{
f̃i(t) + g̃i(t)αt

}
, (10.5.4)

and (
Z̃i,t, M̃i,t, P̃i,t

)
=
(
0, ρ1g̃i(t)

√
αtỸi,t, ρ2g̃i(t)

√
αtỸi,t

)
, (10.5.5)

where g̃i(t) and f̃i(t) are as follows:

g̃i(t) =
ng̃+i

ng̃−i

(
1− e

√
∆g̃i

(T−t)
)

ng̃+i
− ng̃−i

e
√

∆g̃i
(T−t)

, (10.5.6)

and

f̃i(t) =

∫ T

t

(
rγi −

γi
2(γi − 1)

(λp − σp)
2 + κθg̃i(s)

)
ds

=
κθ
(
ng̃−i

− ng̃+i

)
√
∆g̃i

log

 ng̃+i
− ng̃−i

ng̃+i
− ng̃−i

e
√

∆g̃i
(T−t)


+

(
rγi −

γi
2(γi − 1)

(λp − σp)
2 + κθng̃−i

)
(T − t),

(10.5.7)

with ∆g̃i , ng̃+i
, and ng̃−i

given by


∆g̃i =

(
κ+ λρ1

γi
γi − 1

)2

−
(

1

γi − 1
ρ21 − ρ22

)
γi

γi − 1
λ2,

ng̃+i
=

−
(
κ+ λρ1

γi
γi−1

)
+
√
∆g̃i

1
γi−1ρ

2
1 − ρ22

, ng̃−i
=

−
(
κ+ λρ1

γi
γi−1

)
−
√

∆g̃i

1
γi−1ρ

2
1 − ρ22

.

Remark 10.5.2. From (10.5.6), it is easy to show that g̃i(t) is strictly increasing in

t, and thus, is a negative and bounded function over [0, T ]. It follows from (10.5.7)

that f̃i(t) ≤
(
rγi − γi

2(γi−1) (λp − σp)
2
)
(T − t), for i = 1, 2.

Proposition 10.5.3. The solution (Ỹi,t, Z̃i,t, M̃i,t, P̃i,t) given in (10.5.4)-(10.5.5)

belongs to S∞
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R), for i = 1, 2.
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Proof. It follows from the positivity of αt, (10.5.4), and Remark 10.5.2 that for

i = 1, 2,

Yi,t = exp
{
f̃i(t) + g̃i(t)αt

}
≤ exp

{(
rγi −

γi
2(γi − 1)

(λp − σp)
2

)
(T − t)

}
<∞,

and thus, we find from (10.5.5) that

E

[∫ T

0

Z̃2
i,t + M̃2

i,t + P̃ 2
i,t dt

]

≤(ρ21 + ρ22)g̃
2
i (0)e

2|rγi−
γi

2(γi−1)
(λp−σp)

2|T
∫ T

0

E[αt] dt

=(ρ21 + ρ22)g̃
2
i (0)e

2|rγi−
γi

2(γi−1)
(λp−σp)

2|T
∫ T

0

(
α0e

−κt + κθ

∫ t

0

e−κ(t−s) ds

)
dt <∞.

Through out the rest of this section, we impose the following assumptions on the

model parameters, which are in line with Assumption 3.1 in Zhang (2022c).

Assumption 10.5.4. κ+ ρ1λ
γi
γi−1 ̸= 0, for i = 1, 2.

Then, following almost the same arguments as in Theorem 3.6 in Zhang (2022c),

it can be verified that the solution presented in Proposition 10.5.1 is the unique

solution to BSRE (10.5.2). Therefore, we do not repeat the proof here.

Theorem 10.5.5. Suppose that Assumption 10.5.4 holds. Then, the solution

(Ỹi,t, Z̃i,t, M̃i,t, P̃i,t) given in (10.5.4)-(10.5.5) is the unique solution to BSRE

(10.5.2), for i = 1, 2.

Having derived the unique solution to BSRE (10.5.2) in a closed form, we can

rewrite linear BSDE (10.5.3) as follows:
dG̃i,t =

(
rG̃i,t + λ

√
αtΛ̃i,t + (λp − σp)H̃i,t − ρ2g̃i(t)

√
αtΓ̃i,t

)
dt+ H̃i,t dW0,t

+ Λ̃i,t dW1,t + Γ̃i,t dW2,t,

G̃i,T =− Li,T + wiLj,T ,

(10.5.8)

where i ̸= j ∈ {1, 2}. In the next proposition, we derive one explicit solution

to BSDE (10.5.8) by trial and then show its uniqueness by using the Girsanov’s

measure change techniques combined with the standard results of linear BSDEs

with uniformly Lipschitz continuity (refer to El Karoui, Peng, and Quenez (1997)).

Proposition 10.5.6. The unique solution (G̃i,t, H̃i,t, Λ̃i,t, Γ̃i,t) to linear BSDE

(10.5.8) is given by

G̃i,t = ãi(t)Li,t − wiãj(t)Lj,t, (10.5.9)
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and 
H̃i,t =ãi(t)(βi − σp)Li,t − wiãj(t)(βj − σp)Lj,t,

Λ̃i,t =(ãi(t)σiLi,t − wiãj(t)σjLj,t)
√
αt,

Γ̃i,t =0.

(10.5.10)

where i ̸= j ∈ {1, 2}, and ãi(t) is as follows:

ãi(t) = −e(r+µp−µi+λp(βi−σp))(t−T ), i = 1, 2. (10.5.11)

Proof. See Appendix 10.F.

Remark 10.5.7. It is crucial to find that the last control component of BSDE

(10.5.3) Γ̃i,t, i = 1, 2, is zero, which allows us to remove the third drift term from

the right-hand side of (10.5.1).

Based on the unique solutions to BSDEs (10.5.2) and (10.5.3), we are now ready

to state the second main result in this paper.

Theorem 10.5.8 (Nash equilibrium to the ALM game). Suppose that Assumption
10.5.4 holds and the initial data at time zero satisfies xi,0 + ãi(0)li,0 − wi(xj,0 +
ãj(0)lj,0) > 0, for i ̸= j ∈ {1, 2}. Then, the Nash equilibrium pair (π∗

1 , π
∗
2) for the

ALM game with the power utility preference (10.3.7) is as follows:



π
S∗
i,t =

X
π∗
i

t −wiX
π∗
j

t +G̃i,t
1−γi

(
M̃i,t

Ỹi,t
+ λ

√
αt

)
− Λ̃i,t + wi

(
X

π∗
j

t −wjX
π∗
i

t +G̃j,t
1−γj

(
M̃j,t

Ỹj,t
+ λ

√
αt

)
− Λ̃j,t

)
σtX

π∗
i

t (1 − wiwj)
,

π
I∗
i,t =

X
π∗
i

t −wiX
π∗
j

t +G̃i,t
1−γi

(λp − σp) − H̃i,t + wi

(
X

π∗
j

t −wjX
π∗
i

t +G̃j,t
1−γj

(λp − σp) − H̃j,t

)
σpX

π∗
i

t (1 − wiwj)
−
σs

σp

π
S∗
i,t + 1,

(10.5.12)

and the value functions are given by

Ji(xi,0, xj,0, li,0, lj,0, s0, α0) =
Ỹi,0
γi

(xi,0 + ãi(0)li,0 − wi(xj,0 + ãj(0)lj,0))
γi ,

(10.5.13)

for i ̸= j ∈ {1, 2}, where the explicit expressions for Ỹi,t, M̃i,t, H̃i,t, Λ̃i,t, and ãi(t)

are given by (10.5.4), (10.5.5), (10.5.10), and (10.5.11), respectively. Moreover,

(π∗
1 , π

∗
2) ∈ Π1 ⊗Π2.

Proof. See Appendix 10.G.

Remark 10.5.9. The herd effect on managers’ decisions can be found from the

optimal response strategy given in (10.G.4)-(10.G.5), which shows that when the

competitor j puts more wealth into the risky asset or the inflation-linked index

bond, i.e., when X
π̂j

t π̂Sj,t or X
π̂j

t π̂Ij,t increases, the manager i tends to adopt a riskier

investment strategy as well, for i ̸= j ∈ {1, 2}. This finding is also reflected in the

symmetric form of the Nash equilibrium strategy (10.5.12).

325



Remark 10.5.10. We should point out that different from the results for the expo-

nential utility case (10.4.15), where the risk exposure under the Nash equilibrium

strategy, i.e., (πS∗i,t σs + (πI∗i,t − 1)σp)X
π∗
i

t and πS∗t σtX
π∗
i

t , i = 1, 2 to the two fun-

damental risk factors W0,t and W1,t are independent of the wealth level of the

two managers, the counterparts under power utility (10.5.12) depend on both the

managers’ wealth level X
π∗
i

t and X
π∗
j

t , for i ̸= j ∈ {1, 2}. This result can be featured

by the constant absolute risk aversion coefficients qi, i = 1, 2, under the exponential

utility function, whereas the power utility function is characterized by relative risk

aversion. Moreover, we require a technical condition on the initial data in Theorem

10.5.8 ensuring the admissibility of the Nash equilibrium (10.5.12). It is also worth

mentioning that the admissibility condition (1) in Definition 10.3.3 serves as a

constraint on the scope of the investment strategies, under which not only the

regularity condition of power utility but also the martingale principle holds for any

admissibility strategy.

Remark 10.5.11. For the special case when there do not exist any relative perfor-

mance concerns, i.e, w1 = w2 = 0, the equilibrium investment strategies πS∗i,t and

πI∗i,t given in (10.5.12), for i = 1, 2, degenerate to the standard optimal investment

strategies for ALM with inflation and volatility risks, which, to our knowledge, are

not reported in the existing literature.

Corollary 10.5.12 (Nash equilibrium to the investment game). Suppose that

Assumption 10.5.4 holds and the initial data at time zero satisfies xi,0 −wixj,0 > 0,

for i ̸= j ∈ {1, 2}. Then, the Nash equilibrium pair (π∗
1 , π

∗
2) for the pure investment

game with the power utility preference (10.3.7) is as follows:
πS∗i,t =

X
π∗
i

t −wiX
π∗
j

t

1−γi

(
M̃i,t

Ỹi,t
+ λ

√
αt

)
+ wi

X
π∗
j

t −wjX
π∗
i

t

1−γj

(
M̃j,t

Ỹj,t
+ λ

√
αt

)
σtX

π∗
i

t (1− wiwj)
,

πI∗i,t =

X
π∗
i

t −wiX
π∗
j

t

1−γi (λp − σp) + wi
X

π∗
j

t −wjX
π∗
i

t

1−γj (λp − σp)

σpX
π∗
i

t (1− wiwj)
− σs
σp
πS∗i,t + 1,

and the value functions are given by

Ji(xi,0, xj,0, s0, α0) =
Ỹi,0
γi

(xi,0 − wixj,0)
γi ,

for i ̸= j ∈ {1, 2}.

Proof. Plugging the specification µi = βi = σi = li,0 = 0, i = 1, 2 into Theorem

10.5.8 leads to the above results immediately.

To end this section, we provide the equilibrium solution under the family of

state-of-the-art 4/2 stochastic volatility models.
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Corollary 10.5.13 (Nash equilibrium to the ALM game under the 4/2 model). If
the risky asset price process St and the variance driver process αt follow the family
of 4/2 stochastic volatility model (10.2.7) and suppose that κ+ σαρλ

γi
γi−1 ̸= 0 and

the initial data at time zero satisfies xi,0 + ãi(0)li,0 − wi(xj,0 + ãj(0)lj,0) > 0, for
i ̸= j ∈ {1, 2}. Then, the Nash equilibrium pair (π∗

1 , π
∗
2) for the ALM game with

the power utility preference (10.3.7) is given by



π
S∗
i,t =

X
π∗
i

t −wiX
π∗
j

t +G̃i,t
1−γi

(
M̌i,t

Y̌i,t
+ λ

√
αt

)
− Λ̃i,t + wi

(
X

π∗
j

t −wjX
π∗
i

t +G̃j,t
1−γj

(
M̌j,t

Y̌j,t
+ λ

√
αt

)
− Λ̃j,t

)
(
c1

√
αt +

c2√
αt

)
X

π∗
i

t (1 − wiwj)
,

π
I∗
i,t =

X
π∗
i

t −wiX
π∗
j

t +G̃i,t
1−γi

(λp − σp) − H̃i,t + wi

(
X

π∗
j

t −wjX
π∗
i

t +G̃j,t
1−γj

(λp − σp) − H̃j,t

)
σpX

π∗
i

t (1 − wiwj)
−
σs

σp

π
S∗
i,t + 1,

and the value functions are as follows:

Ji(xi,0, xj,0, li,0, lj,0, s0, α0) =
Y̌i,0
γi

(xi,0 + ãi(0)li,0 − wi(xj,0 + ãj(0)lj,0))
γi ,

where the explicit expressions for Y̌i,t and M̌i,t are given by

Y̌i,t = exp
{
f̌i(t) + ǧi(t)αt

}
,

and

M̌i,t = σαρǧi(t)
√
αtY̌i,t, (10.5.14)

where functions f̌i(t) and ǧi(t) are given by

f̌i(t) =
κθ
(
nǧ−i

− nǧ+i

)
√
∆ǧi

log

 nǧ+i
− nǧ−i

nǧ+i
− nǧ−i

e
√

∆ǧi
(T−t)


+

(
rγi −

γi
2(γi − 1)

(λp − σp)
2 + κθnǧ−i

)
(T − t),

and

ǧi(t) =
nǧ+i

nǧ−i

(
1− e

√
∆ǧi

(T−t)
)

nǧ+i
− nǧ−i

e
√

∆ǧi
(T−t)

,

with ∆ǧi , nǧ+i
, and nǧ−i

given by


∆ǧi =

(
κ+ λσαρ

γi
γi − 1

)2

−
(

γi
γi − 1

ρ2 − 1

)
γi

γi − 1
σ2
αλ

2,

nǧ+i
=

−
(
κ+ λσαρ

γi
γi−1

)
+
√
∆ǧi

γi
γi−1ρ

2 − 1
, nǧ−i

=
−
(
κ+ λσαρ

γi
γi−1

)
−
√

∆ǧi

γi
γi−1ρ

2 − 1
,

for i ̸= j ∈ {1, 2}.
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Proof. Substituting the specified parameters in the 4/2 model (10.2.7) in Example

10.2.2 into Theorem 10.5.8 leads to the above results.

Remark 10.5.14. Specifications (c1, c2) = (1, 0) and (c1, c2) = (0, 1) in Corollary

10.5.13 provide the Nash equilibrium strategies and value functions under the Heston

model and 3/2 model, respectively. Moreover, it can be checked that Corollary

10.5.13 generalizes the results of Kraft (2005) and Cheng and Escobar (2021a) from

pure investment problems for a single investor to ALM games for two competitive

managers with relative performance concerns and inflation risk.

10.6 Sensitivity analysis

In this section, we implement numerical experiments to illustrate the sensitivities of

the equilibrium strategies with respect to model parameters and relative performance

concerns. We are concerned about the 4/2 stochastic volatility model (10.2.7) for the

exponential utility case (10.3.6) in that the 4/2 model embracing the parsimonious

Heston model and 3/2 model has revealed practical significance in recent years and

numerical illustration for the power utility case can be conducted similarly. Through

out this section, unless otherwise stated, the base parameters we adopt are as follows:

κ = 7.3479, θ = 0.0328, σv = 0.6612, ρ = −0.7689, λ = 2.9428, c1 = 0.9051, c2 =

0.023, R = 0.05, r = 0.02, µp = 0.01, σp = 0.4, σs = 0.2, T = 1, v0 = 0.04; for

manager 1, µ1 = 0.02, β1 = 0.3, σ1 = 0.5, q1 = 2, w1 = 0.2, x1,0 = 1, l1,0 = 0.1; for

manager 2, µ2 = 0.03, β2 = 0.2, σ2 = 0.3, q2 = 1.2, w2 = 0.4, x2,0 = 2, l2,0 = 0.4. For

simplicity but without loss of generality, we focus on the analysis at time t = 0 and

vary the value of one parameter with others fixed at each time.

Figure 10.1 contributes to the evolution of the equilibrium strategy (π∗
1 , π

∗
2)

with respect to λ and w1. From Figure 10.1(a) and (b), we observe that as λ

increases, πS∗1 increases, whereas πI∗1 decreases. Since λ represents the slope of the

market price of risk induced by W1,t, when λ is growing, manager 1 can derive

higher returns and is willing to invest more in the risky asset. Figure 10.1(a) also

demonstrates that a larger w1 prompts manager 1 to invest more in the risky

asset as a response to the competition. In this case, manager 1 can maximize the

probability of generating a greater terminal surplus against his/her competitor at

the terminal date T . In addition, the dynamics of risky asset price (10.2.7) show

that the inflation risk can be partially hedged against by trading the risky asset,

and thus, the inflation-linked index bond is less needed to hedge against the same

amount of inflation risk when manager 1 invests more in the risky asset, which

explains why πS∗1 and πI∗1 move in the opposite direction as shown in Figure 10.1(a)

and (b). Figure 10.1(c) and (d) verify the existence of the herd effect (recall Remark

10.4.12), that is, manager 2 tends to take an investment strategy similar to his/her

competitor. Figure 10.2 describes the sensitivity of the equilibrium investment

328



(a) (b) (c) (d)

Figure 10.1: Effects of λ and w1 on π∗
1 and π∗

2

strategy (π∗
1 , π

∗
2) with respect to κ. From Figure 10.2(a) and (b), we find that the

equilibrium investment strategy for the risky asset decreases as κ increases, while

the strategy for the inflation-linked index bond increases as κ increases. Recall from

(10.2.7) that κ denotes the mean-reversion rate of the variance driver process under

the 4/2 model. Along with the growth of κ, the variance driver process Vt reverts

faster to its long-term mean θ, and thus, both the risky asset and random liability

have a more stable appreciation rate. In this case, manager 1 can invest less in

the risky asset facing the reduced volatility risk. Conversely, since the amount of

overall inflation risk is not affected by the changes in κ, manager 1 has to invest

more in the inflation-linked index bond to hedge against the inflation risk. Again,

the herd effect can be found by comparing Figure 10.2(c) and (d) with 10.2(a) and

(b); manager 2 mimics manager 1’s investment strategy in the competition.

(a) (b) (c) (d)

Figure 10.2: Effect of κ on π∗
1 and π∗

2

Figure 10.3 shows how the equilibrium strategy (π∗
1 , π

∗
2) changes with respect to

ρ. It is shown that both managers 1 and 2 tend to put less wealth into the risky

asset and more wealth into the inflation-linked index bond as ρ increases. One of the

possible reasons is that since ρ is the correlation coefficient between the dynamics

of the risky asset price and its variance driver, when ρ increases from −0.9 to 0.9,

the risky asset price and the variance process become less negatively correlated

and more positively correlated. As such, the offset between the risk caused by

fluctuations in the risky asset price and its variance driver becomes less. Therefore,

investing the same amount of wealth into the risky asset amplifies the two managers’

exposure to volatility risk, and thus, they tend to decrease the investments in the

risky asset and increase the investments in the inflation-linked index bond.

Figure 10.4 displays the effect of r on the equilibrium investment strategy (π∗
1 , π

∗
2).
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(a) (b) (c) (d)

Figure 10.3: Effect of ρ on π∗
1 and π∗

2

(a) (b) (c) (d)

Figure 10.4: Effect of r on π∗
1 and π∗

2

From Figure 10.4(a) and (c), we find that πS∗1 and πS∗2 move down as r becomes

larger, while Figure 10.4(b) and (d) show that πI∗1 and πI∗2 move upwards as r

becomes larger. These findings are in line with the economic implication of r. First

of all, since r stands for the real short rate of interest, a greater value of r allows

the two asset-liability managers to derive a higher expected return rate without

investing in the risky asset and the inflation-linked index bond, which can be verified

by setting πSi,t and π
I
i,t to zeros in (10.2.9). Second, r has a positive relationship

with the market price of inflation risk λp = (r + µp −R)/σp, i.e., λp increases as r

increases, whereas the market price of volatility risk λ
√
αt is not affected by the

changes in r. Consequently, the two managers can acquire higher inflation risk

premium bearing the same amount of inflation risk, and they are willing to put

more wealth into the inflation-linked index bond.

Figure 10.5 provides graphical illustrations of the effect of σ1 on the equilibrium

investment strategy (π∗
1 , π

∗
2). We observe from Figure 10.5(a) and (b) that manager

1 increases (decreases) the proportion of wealth into the risky asset (inflation-linked

index bond) as σ1 increases. This can be explained by the economic implication

of σ1 that characterizes the impact of the risk caused by the fluctuations in the

risky asset price on the instantaneous volatility of the uncontrollable liability L1,t.

A larger σ1 amplifies manager 1’s exposure to the risk. So, manager 1 has to put

more wealth into the risky asset to hedge against the risk and to maximize the

expectation of terminal surplus. Moreover, since investing in the risky asset can

partially hedge against the inflation risk, manager 1 can decrease his/her investment

in the inflation-linked index bond to hedge against the overall inflation risk that is

not influenced by the changes in σ1. It is shown from Figure 10.5(c) and (d) that

the equilibrium investment strategy of manager 2 does not change when σ1 varies
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from 0 to 1. On one hand, when facing a riskier approach taken by manager 1 to

the risky asset, manager 2 tends to increase his/her investment in the risky asset as

well, which can be verified by looking into the second term within the parenthesis

in (10.E.4). On the other hand, when a larger σ1 is perfectly revealed to manager

2, manager 2 realizes that his/her liability L2,t undertakes a relatively smaller risk

caused by the fluctuation in the risky asset price than manager 1’s liability L1,t does.

In this case, manager 2 has the incentive to decrease the investment in the risky

asset. The overall effect of σ1 on the equilibrium strategy πS∗2 takes on these two

opposite sides. Finally, since the overall inflation risk remains the same for manager

2, manager 2 will not change his/her trading position in the inflation-linked index

bond, which is consistent with Figure 10.5(d).

(a) (b) (c) (d)

Figure 10.5: Effect of σ1 on π∗
1 and π∗

2

10.7 Conclusion

In this paper, we investigate a class of non-zero-sum stochastic differential games for

ALM between two competitive asset-liability managers in a financial market under

the inflation and volatility risks. The two managers are subject to two different

uncontrollable random liabilities and allowed to allocate their wealth to a financial

market consisting of an inflation-linked index bond, a risk-free asset, and a risky

asset whose price process is governed by a general class of stochastic volatility

models, including the CEV model, the family of state-of-the-art 4/2 models, and

some non-Markovian models as exceptional cases. The goal of each manager is to

maximize the expected utility of his/her relative terminal surplus after stripping out

inflation with respect to that of the competitor. By applying a BSDE approach to

overcome the potentially non-Markovian market setting and solving the associated

BSDEs explicitly, we derive the closed-form expressions for the Nash equilibrium

strategies and the corresponding value functions for the games under the exponential

and power utility preferences, respectively. Moreover, analytical solutions to some

particular cases of our model are presented. Finally, numerical examples are provided

to explore the economic impacts of model parameters and relative performance

concerns on the equilibrium strategies. Results indicate that each manager mimics

the competitor’s strategy in the presence of relative performance concerns and

tends to increase the amount invested in the risky asset. In other words, relative
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performance concerns lead managers to deviate from rational decisions without

competition and become more risk-seeking.

Concerning future related works, there are several remaining interesting problems

to discuss. For example, one may introduce jumps and more general stochastic

volatility and stochastic inflation models to the optimal ALM problems with relative

performance concerns. It may also be of interest to involve fixed or proportional

transaction costs, although the derivation of closed-form solutions may not be easy.
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10.A Proof of Proposition 10.4.3

Proof. From Lemma 10.4.2, we know that the following stochastic exponential

process

exp

{
−
∫ t

0

λ
√
αs dW1,s −

1

2

∫ t

0

λ2αs ds

}
is an (F,P)-martingale. In addition, since Novikov’s condition obviously holds for

the following stochastic exponential process

exp

{
−
∫ t

0

(λp − σp) dW0,s −
1

2

∫ t

0

(λp − σp)
2 ds

}
.

Due to the pathwise continuity of the above two processes and the independence

between W1,t and W2,t, it follows from Theorem 2.4 in Cherny (2006) that the

product of these two stochastic exponential processes is also an (F,P)-martingale.

As a result, the probability measure denoted by P̃ is well-defined and equivalent to

P on FT via the following Radon-Nikodym derivative:

dP̃
dP

∣∣∣∣
FT

= exp

{
−
∫ T

0

(λp − σp) dW0,t −
∫ T

0

λ
√
αt dW1,t −

1

2

∫ T

0

(λp − σp)
2 + λ2αt dt

}
,

and the following three processes W̃k,t, for k = 0, 1, 2,

W̃0,t =

∫ t

0

(λp − σp) ds+W0,t, W̃1,t =

∫ t

0

λ
√
αs ds+W1,t, W̃2,t =W2,t

are three standard Brownian motions under measure P̃ by Girsanov’s theorem.

Therefore, reformulating BSRE (10.4.2) under measure P̃ and applying Itô’s formula
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to log(Yi,t) lead to the following quadratic BSDE of
(
log(Yi,t),

Zi,t

Yi,t
,
Mi,t

Yi,t
,
Pi,t

Yi,t

)
:

d log(Yi,t) =

[
−r + 1

2

(
Zi,t

Yi,t

)2

+
1

2

(
Mi,t

Yi,t

)2

− 1

2

(
Pi,t

Yi,t

)2
]
dt+

Zi,t

Yi,t
dW̃0,t

+
Mi,t

Yi,t
dW̃1,t +

Pi,t

Yi,t
dW̃2,t,

log(Yi,T ) =0.

(10.A.1)

Notice that quadratic BSDE (10.A.1) satisfies all the regularity conditions in

Kobylanski (2000). Hence, we can conclude that it admits a unique solution by

Theorem 2.3 and 2.6 in Kobylanski (2000), and so does BSRE (10.4.2). Furthermore,

it can be easily checked that (10.4.4)-(10.4.5) form the unique solution to BSRE

(10.4.2). This completes the proof.

10.B Proof of Proposition 10.4.5

Proof. We conjecture that the first component Gi,t of the solution to BSDE (10.4.6)

admits an affine form as follows:

Gi,t = fi(t) + gi(t)αt + hi(t)Li,t − wimi(t)Lj,t,

where i ̸= j ∈ {1, 2} and fi(t), gi(t), hi(t), and mi(t) are four differentiable functions

to be determined in what follows with boundary conditions fi(T ) = gi(T ) = 0 and

hi(T ) = mi(T ) = −1. Then, applying Itô’s formula to Gi,t reads

dGi,t =

[
dfi(t)

dt
+ κθgi(t) +

(
dgi(t)

dt
− κgi(t)

)
αt + Li,t

(
dhi(t)

dt
+ (µi − µp + σ2

p − βiσp

+λσiαt)hi(t)

)
− wiLj,t

(
dmi(t)

dt
+ (µj − µp + σ2

p − βjσp + λσjαt)mi(t)

)]
dt

+ (Li,t(βi − σp)hi(t)− wiLj,t(βj − σp)mi(t)) dW0,t

+ (ρ1gi(t) + σihi(t)Li,t − wiσjmi(t)Lj,t)
√
αt dW1,t + ρ2gi(t)

√
αt dW2,t.

(10.B.1)

Match the diffusion coefficients of (10.B.1) with the control components of BSDE

(10.4.6), i.e., 
Hi,t =(βi − σp)hi(t)Li,t − wi(βj − σp)mi(t)Lj,t,

Λi,t =(ρ1gi(t) + σihi(t)Li,t − wiσjmi(t)Lj,t)
√
αt,

Γi,t =ρ2gi(t)
√
αt,

and substitute the above expressions into the generator of BSDE (10.4.6). Then,

we have the reformulated generator as follows:(
λρ1gi(t) +

qi
2
ρ22g

2
i (t)−

λ2

2qi

)
αt + Li,t ((λp − σp)(βi − σp) + λσiαt)hi(t)

− wiLj,t ((λp − σp)(βj − σp) + λσjαt)mi(t)−
(λp − σp)

2

2qi
.

(10.B.2)
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Comparing the drift coefficient of (10.B.1) with (10.B.2) and separating the de-

pendence on αt, Li,t, and Lj,t, we obtain the ODE system governing functions

fi(t), gi(t), hi(t), and mi(t) given in (10.4.9), for i ∈ {1, 2}.

10.C Proof of Proposition 10.4.8

Proof. When ρ2 = 0, Riccati equation of gi(t) is reduced to the following first-order

linear equation:
dgi(t)

dt
= (κ+ λρ1)gi(t)−

λ2

2qi
.

Using some standard methods of solving first-order linear ODE upon noticing the

boundary condition that gi(T ) = 0, we have the first solution given in (10.4.10).

For the case when ρ2 ̸= 0, denote by ∆gi = (κ+λρ1)
2 + ρ22λ

2 > 0 and ng+i
and ng−i

given in (10.4.14). Then, we can rewrite Riccati ODE (10.4.9) of gi(t) as follows:

dgi(t)

dt
=
qi
2
ρ22

(
gi(t)− ng+i

)(
gi(t)− ng−i

)
.

By applying the separation variable method to the above ODE, we have

dgi(t)

gi(t)− ng+i
− dgi(t)

gi(t)− ng−i
=
√
∆gi dt. (10.C.1)

Integrating (10.C.1) on both sides with respect to t, combined with the boundary

condition gi(T ) = 0, we have the second solution given in (10.4.10). Substituting

(10.4.10) into the ODE (10.4.9) of fi(t) leads to the explicit expressions of fi(t)

given in (10.4.13). As for the first-order homogeneous linear equations of hi(t) and

mi(t), we have
dhi(t)

hi(t)
= (λp(βi − σp) + µp − µi) dt,

and
dmi(t)

mi(t)
= (λp(βj − σp) + µp − µj) dt.

By integrating the above two equations with respect to t from 0 to T and taking

into account the boundary conditions, we have the closed-form solutions given in

(10.4.11)-(10.4.12), respectively.

10.D Proof of Proposition 10.4.10

Proof. The proof is similar to that of Theorem 4.4 in Zhang (2022e). For the

reader’s convenience, we provide the modifications of the proof here.

To show the proposed solution (Gi,t, Hi,t,Λi,t,Γi,t) given in Proposition 10.4.5

belongs to the space L2
F,P(0, T ;R)⊗L2

F,P(0, T ;R)⊗L2
F,P(0, T ;R)⊗L2

F,P(0, T ;R), for
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i = 1, 2, we first recall from the dynamics of inflation-adjusted liability processes

(10.2.10) that

Li,t =li,0 exp

{∫ t

0

(
µi − µp + σ2

p − σpβi +

(
λσi −

σ2
i

2

)
αs −

(βi − σp)
2

2

)
ds

+

∫ t

0

(βi − σp) dW0,s +

∫ t

0

σi
√
αs dW1,s

}
.

Combined with Hölder’ inequality, it can be shown that

E

[∫ T

0

L4
i,t dt

]

≤c
∫ T

0

{
E
[
exp

{∫ t

0

8(βi − σp) dW0,s +

∫ t

0

8σi
√
αs dW1,s − 32

∫ t

0

(
(βi − σp)

2

+σ2
i αs
)
ds

}]} 1
2
{
E
[
exp

{
(8λσi + 28σ2

i )

∫ t

0

αs ds

}]} 1
2

dt

=c

∫ T

0

{
E
[
exp

{
(8λσi + 28σ2

i )

∫ t

0

αs ds

}]} 1
2

dt,

(10.D.1)

where c ∈ R+ and the equality follows the fact that the stochastic exponential

process exp

{∫ t
0
8(βi−σp) dW0,s+

∫ t
0
8σi

√
αs dW1,s−32

∫ t
0

(
(βi − σp)

2 + σ2
i αs
)
ds

}
is an (F,P)-martingale by Lemma 10.4.2 and Theorem 2.4 in Cherny (2006). Hence,

to ensure the right-hand side of (10.D.1) is finite, we need to calculate the term

E
[
exp

{
(8λσi + 28σ2

i )
∫ t
0
αs ds

}]
. To this end, denote by E[·| Fu] the conditional

expectation under P given Fu, ∀u ≤ t. Then, the Markovian structure of αt leads

to the following result:

E
[
exp

{
(8λσi + 28σ2

i )

∫ t

u

αs ds

}∣∣∣∣ Fu] = Fi(αu, u), for u ≤ t, (10.D.2)

where Fi : R+⊗ [0, t] 7→ R+ is an undetermined differentiable function, for i ∈ {1, 2}.
Then, we have the following PDE governing Fi from the Feynman-Kac theorem:

∂Fi

∂u
(x, u) + κ(θ − x)

∂Fi

∂x
(x, u) +

1

2

(
ρ
2
1 + ρ

2
2

)
x
∂2Fi

∂x2
(x, u) + (8λσi + 28σ

2
i )xFi(x, u) = 0,

Fi(x, t) = 1.

Conjecture that Fi(x, u) = exp
{
F̃i(u; t)x+ F̄i(u; t)

}
. The above PDE of Fi(x, u)

can be decomposed into the following two ODEs of functions F̃i(u; t) and F̄i(u; t):

dF̃i(u; t)

du
= −ρ

2
1 + ρ22
2

F̃ 2
i (u; t) + κF̃i(u; t)− (8λσi + 28σ2

i ), F̃i(t; t) = 0, (10.D.3)

and
dF̄i(u; t)

du
= −κθF̃i(u; t), F̄i(t; t) = 0,
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for i = 1, 2. Notice that (10.D.3) is a Riccati equation. Denote by

∆F̃i
= κ

2 − 2(ρ
2
1 + ρ

2
2)(8λσi + 28σ

2
i ), nF̃i

=
κ

ρ21 + ρ22
, n

+

F̃i
=

−κ+
√

∆F̃i

−(ρ21 + ρ22)
, n

−
F̃i

=
−κ−

√
∆F̃i

−(ρ21 + ρ22)
.

It can be shown that the closed-form expressions for F̃i(u; t) and F̄i(u; t) are given

by

F̃i(u; t) =



n+
F̃i
n−
F̃i

(
1− e

√
∆F̃i

(t−u)
)

n+
F̃i

− n−
F̃i
e
√

∆F̃i
(t−u)

, if ∆F̃i
> 0;

(ρ21 + ρ22)(t− u)n2
F̃i

(ρ21 + ρ22)(t− u)nF̃i
+ 2

, if ∆F̃i
= 0;√

−∆F̃i

−(ρ21 + ρ22)
tan

(
arctan

(
κ√
−∆F̃i

)
−
√
−∆F̃i

2
(t− u)

)
, if ∆F̃i

< 0,

and

F̄i(u; t) =

∫ t

u

κθF̃i(s; t) ds,

for i = 1, 2. Hence, from the above results, we find that

E

[∫ T

0

L4
i,t dt

]
≤ c

∫ T

0

exp

{
F̃i(0; t)

2
α0 +

F̄i(0, t)

2

}
dt <∞, for i = 1, 2.

Moreover, note that the following second-order moment of αt

E
[
α2
t

]
=
(
α0e

−κt + θ
(
1− e−κt))2+α0

(ρ21 + ρ22)
(
e−κt − e−2κt

)
κ

+
θ(ρ21 + ρ22)

(
1− e−κt

)2
2κ

.

is continuous in t over [0, T ]. Therefore, combining the above results with the
closed-form expressions for Gi,t, Hi,t,Λi,t and Γi,t given in (10.4.7) and (10.4.8), we
have

E
[∫ T

0

G
2
i,t +H

2
i,t + Λ

2
i,t + Γ

2
i,t dt

]
≤ c

[
1 +

∫ T

0

E
[
α

2
t

]
dt+ E

[∫ T

0

L
4
i,t + L

4
j,t dt

]]
< ∞,

for i ̸= j ∈ {1, 2}, which means that (Gi,t, Hi,t,Λi,t,Γi,t) ∈ L2
F,P(0, T ;R) ⊗

L2
F,P(0, T ;R)⊗ L2

F,P(0, T ;R)⊗ L2
F,P(0, T ;R) as desired.

In the second part of this proof, we show that the proposed solution given in

Proposition 10.4.5 is the unique solution to BSDE (10.4.6). In fact, the linear

terms within the generator of BSDE (10.4.6) can be eliminated by using Girsanov’s

measure change techniques. More precisely, define a new probability measure

dP̂
dP

∣∣∣∣
FT

= exp

{
−
∫ T

0

(λp − σp) dW0,t −
∫ T

0

λ
√
αt dW1,t −

1

2

∫ T

0

(λp − σp)
2 + λ2αt dt

}
.

Using Lemma 10.4.2 and Theorem 2.4 in Cherny (2006) again, the stochastic

exponential process associated with the above Radon-Nikodym derivative is a
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true (F,P)-martingale and thus, the newly-defined measure P̂ is well-defined and

equivalent to P on FT . It follows from Girsanov’s theorem that

Ŵ0,t =

∫ t

0

(λp − σp) ds+W0,t, Ŵ1,t =

∫ t

0

λ
√
αs ds+W1,t, Ŵ2,t =W2,t

are standard Brownian motions under P̂. Then, quadratic BSDE (10.4.6) can be

rewritten as follows:dGi,t =
(
qi
2
Γ2
i,t −

(λp − σp)
2

2qi
− λ2αt

2qi

)
dt+Hi,t dŴ0,t + Λi,t dŴ1,t + Γi,t dŴ2,t,

Gi,T =− Li,T + wiLj,T ,

(10.D.4)

for i ̸= j ∈ {1, 2}, and the factor process αt turns to be under P̂:

dαt = (κ+ λρ1)

(
κθ

κ+ λρ1
− αt

)
dt+

√
αt

(
ρ1 dŴ1,t + ρ2 dŴ2,t

)
,

which is still a square-root process due to Assumption 10.4.6. Let (Ĝi,t, Ĥi,t, Λ̂i,t, Γ̂i,t)

be any solution to BSDE (10.4.6), for i = 1, 2. Define

∆Gi,t = Gi,t − Ĝi,t, ∆Hi,t = Hi,t − Ĥi,t, ∆Λi,t = Λi,t − Λ̂i,t, ∆Γi,t = Γi,t − Γ̂i,t.

Then, the difference process (∆Gi,t,∆Hi,t,∆Λi,t,∆Γi,t) is a solution to the following

BSDE under P̂:d∆Gi,t =
qi
2

(
Γ2
i,t − Γ̂2

i,t

)
dt+∆Hi,t dŴ0,t +∆Λi,t dŴ1,t +∆Γi,t dŴ2,t,

∆Gi,T =0,

(10.D.5)

for i = 1, 2. By using the closed-form expression for Γi,t given in (10.4.8), uniform

boundedness of function gi(t) on [0, T ] and Lemma 10.4.2, the stochastic exponential

process associated with the following Radon-Nikodym derivative:

dP̌
dP̂

∣∣∣∣
FT

=exp

{
−
∫ T

0

qiρ2gi(t)
√
αt dŴ2,t −

∫ T

0

q2i ρ
2
2g

2
i (t)

2
αt dt

}

=exp

{
−
∫ T

0

qiΓi,t dŴ2,t −
∫ T

0

q2i Γ
2
i,t

2
dt

}

is an (F, P̂)-martingale, i.e., measure P̌ is well-defined and equivalent to P̂ on FT .
It follows from Girsanov’s theorem that

W̌0,t = Ŵ0,t, W̌1,t = Ŵ1,t, W̌2,t =

∫ t

0

qiΓi,s ds+ Ŵ2,t

are standard Brownian motions under measure P̌, for i = 1, 2. We then have the

following quadratic BSDE of (∆Gi,t,∆Hi,t,∆Λi,t,∆Γi,t) from (10.D.5) satisfying

337



all the regularity conditions in Kobylanski (2000):

d∆Gi,t =− qi
2
∆Γ2

i,t dt+∆Hi,t dW̌0,t +∆Λi,t dW̌1,t +∆Γi,t dW̌2,t

∆Gi,T =0,
(10.D.6)

for i = 1, 2. By Theorem 2.3 and 2.6 in Kobylanski (2000), we know that there is

a unique solution to BSDE (10.D.6), and it is easy to check that (0, 0, 0, 0) is the

unique solution, which indicates that (Gi,t, Hi,t,Λi,t,Γi,t) = (Ĝi,t, Ĥi,t, Λ̂i,t, Γ̂i,t) for

i = 1, 2. In other words, the proposed solution given in (10.4.7)-(10.4.8) must be

the unique solution to quadratic BSDE (10.4.6).

10.E Proof of Theorem 10.4.11

Proof. Given the competitor’s strategy π̂j :=
{
π̂Sj,t, π̂

I
j,t

}
∈ Πj and the associated

inflation-adjusted wealth process X
π̂j

t , it follows from (10.4.1), Remark 10.4.4 and

Proposition 10.4.3 that for manager i ̸= j ∈ {1, 2},

d

(
− 1
qi
e
−qi

(
Yi,t(X

πi
t −wiX

π̂j
t )+Gi,t

))
e
−qi

(
Yi,t(X

πi
t −wiX

π̂j
t )+Gi,t

)
=

[
Yi,t

(
Xπi
t (πSi,tσs + (πIi,t − 1)σp)− wiX

π̂j

t (π̂Sj,tσs + (π̂Ij,t − 1)σp)

)
+Hi,t

]
︸ ︷︷ ︸

K0,t

dW0,t

+
[
Yi,t(X

πi
t π

S
i,t − wiX

π̂j

t π̂Sj,t)σt + Λi,t

]
︸ ︷︷ ︸

K1,t

dW1,t + Γi,t dW2,t −
qi
2

[
Yi,t

(
Xπi
t (πSi,tσs

+ (πIi,t − 1)σp)− wiX
π̂j

t (π̂Sj,tσs + (π̂Ij,t − 1)σp)

)
+Hi,t −

1

qi
(λp − σp)

]2
dt

− qi
2

[
Yi,t(X

πi
t π

S
i,t − wiX

π̂j

t π̂Sj,t)σt + Λi,t −
1

qi
λ
√
αt

]2
dt.

(10.E.1)

Define the following stopping time γn:

γn = inf

{
t ≥ 0 :

∫ t

0

e
−qi

(
Yi,s(X

πi
s −wiX

π̂j
s )+Gi,s

)
(K0,s +K1,s + Λi,s)

2 ds ≥ n

}
.

We see that γn → ∞, P almost surely as n → ∞, and the stochastic integrals in

(10.E.1) are true (F,P)-martingales when stopped by {γn}n∈N. In other words,
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integrating (10.E.1) both sides from 0 to γn ∧ T and taking expectations, we have

E

[
− 1

qi
e
−qi

(
Yi,γn∧T (X

πi
γn∧T

−wiX
π̂j
γn∧T

)+Gi,γn∧T

)]

=− E

∫ γn∧T

0

qie
−qi

(
Yi,t(X

πi
t −wiX

π̂j
t )+Gi,t

)
2

[
Yi,t

(
Xπi

t (πS
i,tσs + (πI

i,t − 1)σp)− wiX
π̂j
t (π̂S

j,tσs

+(π̂I
j,t − 1)σp)

)
+Hi,t −

1

qi
(λp − σp)

]2
dt

]
− E

∫ γn∧T

0

qie
−qi

(
Yi,t(X

πi
t −wiX

π̂j
t )+Gi,t

)
2

×
[
Yi,t(X

πi
t πS

i,t − wiX
π̂j
t π̂S

j,t)σt + Λi,t −
1

qi
λ
√
αt

]2
dt

]
− 1

qi
e−qi(Yi,0(xi,0−wixj,0)+Gi,0).

(10.E.2)

Note that the terms in the expectations on the right-hand side of (10.E.2) are

non-negative and increasing with respect to n and the term in the expectation on

the left-hand side of (10.E.2) is uniformly integrable for any admissible strategy by

Definition 10.3.2. Applying the monotone convergence theorem and the equivalence

between uniform integrability and L1 convergence to the right-hand side and left-

hand side of (10.E.2), respectively, we obtain

E

[
− 1

qi
e
−qi

(
X

πi
T

−Li,T−wi(X
π̂j
T

−Lj,T )

)]

=− E

∫ T

0

qie
−qi

(
Yi,t(X

πi
t −wiX

π̂j
t )+Gi,t

)
2

[
Yi,t

(
Xπi

t (πS
i,tσs + (πI

i,t − 1)σp)− wiX
π̂j
t (π̂S

j,tσs

+(π̂I
j,t − 1)σp)

)
+Hi,t −

1

qi
(λp − σp)

]2
dt

]
− E

∫ T

0

qie
−qi

(
Yi,t(X

πi
t −wiX

π̂j
t )+Gi,t

)
2

×
[
Yi,t(X

πi
t πS

i,t − wiX
π̂j
t π̂S

j,t)σt + Λi,t −
1

qi
λ
√
αt

]2
dt

]
− 1

qi
e−qi(Yi,0(xi,0−wixj,0)+Gi,0)

≤− 1

qi
e−qi(Yi,0(xi,0−wixj,0)+Gi,0),

(10.E.3)

and the upper bound is attained when the terms in the expectations on the right-

hand side of (10.E.3) are zeros, from which we find that given the competitor’s

strategy π̂j , the optimal response strategy π̂i is given by

π̂Si,t =
1

X π̂i
t

(
λ
qi

√
αt − Λi,t

σtYi,t
+ wiX

π̂j

t π̂Sj,t

)
, (10.E.4)

and

π̂Ii,t =

[
1

X π̂i
t

( λp−σp

qi
−Hi,t

σpYi,t
+ wiX

π̂j

t

π̂Sj,tσs + (π̂Ij,t − 1)σp

σp

)
− σs
σp
π̂Si,t

]
+ 1,

(10.E.5)
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for i ̸= j ∈ {1, 2}. Then, solving (10.E.4) and (10.E.5) explicitly leads to the
strategy π∗

i , i = 1, 2, given in (10.4.15). Moreover, substituting the optimal response
strategy π̂i into (10.E.1) whenever π̂j ∈ Πj is given, we have

d

(
− 1

qi
e−qi(Yi,t(X

π̂i
t −wiX

π̂j
t )+Gi,t)

)

− 1
qi
e−qi(Yi,t(X

π̂i
t −wiX

π̂j
t )+Gi,t)

= − (λp − σp) dW0,t − λ
√
αt dW1,t − qiρ2gi(t)

√
αt dW2,t.

Solving the above linear SDE explicitly yields

− 1

qi
e−qi(Yi,t(X

π̂i
t −wiX

π̂j
t )+Gi,t)

=− 1

qi
e−qi(Yi,0(xi,0−wixj,0)+Gi,0) exp

{
−
∫ t

0

(λp − σp) dW0,s −
∫ t

0

λ
√
αs dW1,s

−
∫ t

0

qiρ2gi(s)
√
αs dW2,s −

1

2

∫ t

0

(λp − σp)
2 + (λ2 + q2i ρ

2
2g

2
i (s))αs ds

}
.

In view of this result, combined with Lemma 10.4.2 and Theorem 2.4 in Cherny

(2006), we know that − 1
qi
e−qi(Yi,t(X

π̂i
t −wiX

π̂j
t )+Gi,t) is an (F,P)-martingale. There-

fore, for i ̸= j ∈ {1, 2} we have

J
(π̂i,π̂j)
i (xi,0, xj,0, li,0, lj,0, s0, α0) =E

[
− 1

qi
e
−qi

(
X

π̂i
T −Li,T−wi(X

π̂j
T −Lj,T )

)]
=− 1

qi
e−qi(Yi,0(xi,0−wixj,0)+Gi,0).

(10.E.6)

Combining (10.E.3) and (10.E.6), we find that given any competitor’s strategy π̂j ,

for i ̸= j ∈ {1, 2},

sup
πi∈Πi

J
(πi,π̂j)
i (xi,0, xj,0, li,0, lj,0, s0, α0) ≤ J

(π̂i,π̂j)
i (xi,0, xj,0, li,0, lj,0, s0, α0).

(10.E.7)

In particular, when π̂j = π∗
j , we have π̂i = π∗

i . Then, it follows from (10.E.7) that

the pair (π∗
1 , π

∗
2) given in (10.4.15) is the Nash equilibrium of the non-zero-sum

stochastic differential game (10.3.2)-(10.3.3), and the values functions are given by

(10.4.16).

To end this proof, it remains to show that the Nash equilibrium strategy is admis-
sible. Clearly, the Nash equilibrium strategy given in (10.4.15) is F-adapted. In addi-

tion, since we have known that the stochastic process − 1
qi
e−qi(Yi,t(X

π̂i
t −wiX

π̂j
t )+Gi,t)

is an (F,P)-martingale, and for any sequence of F-stopping times {τn}n∈N such that
τn → ∞, P almost surely as n→ ∞, τn ∧ T and T are two bounded stopping times,
it follows from Doob’s optimal sampling theorem for bounded stopping times (refer
to Corollary 3.23 in Le Gall (2016)) that

−
1

qi
e
−qi

(
Yi,τn∧T (X

π̂i
τn∧T

−wiX
π̂j
τn∧T

)+Gi,τn∧T

)
= E

[
−

1

qi
e
−qi

(
X

π̂i
T

−Li,T −wi(X
π̂j
T

−Lj,T )

)∣∣∣∣ Fτn∧T

]
.

Note that {Fτn∧T }n∈N is family of sub-algebra of FT , by Theorem 4.6.1 in Durrett

(2019), we know that

{
− 1
qi
e
−qi

(
Yi,τn∧T (X

π̂i
τn∧T−wiX

π̂j
τn∧T )+Gi,τn∧T

)}
n∈N

is uniformly
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integrable. Particularly,

{
− 1
qi
e
−qi

(
Yi,τn∧T (X

π∗
i

τn∧T−wiX
π∗
j

τn∧T )+Gi,τn∧T

)}
n∈N

is also a

uniformly integrable family, for i ̸= j ∈ {1, 2}. This verifies admissibility condition

(2) in Definition 10.3.2. Finally, plugging (10.4.15) into the dynamics of the

inflation-adjusted wealth process (10.2.9) for manager i and applying Itô’s formula

to er(T−t)X
π∗
i

t , for i = 1, 2, we have

d
(
er(T−t)X

π∗
i

t

)
=

[
λ
√
αt

1− wiwj

(
λ
√
αt
qi

− Λi,t + wi

(
λ
√
αt
qj

− Λj,t

))
+
λp − µp
1− wiwj

(
λp − µp
qi

−Hi,t + wi

(
λp − σp
qj

−Hj,t

))]
dt

+
1

1− wiwj

(
λp − µp
qi

−Hi,t + wi

(
λp − σp
qj

−Hj,t

))
dW0,t

+
1

1− wiwj

(
λ
√
αt
qi

− Λi,t + wi

(
λ
√
αt
qj

− Λj,t

))
dW1,t.

(10.E.8)

Integrating both sides of (10.E.8) with respect t leads to the following explicit

expression for the inflation-adjusted wealth process governed by the Nash equilibrium

strategy for manager i = 1, 2:

X
π∗
i

t =xi,0e
rt + er(t−T )

∫ t

0

[
λ
√
αs

1− wiwj

(
λ
√
αs
qi

− Λi,s + wi

(
λ
√
αs
qj

− Λj,s

))
+
λp − µp
1− wiwj

(
λp − µp
qi

−Hi,s + wi

(
λp − σp
qj

−Hj,s

))]
ds

+ er(t−T )

∫ t

0

1

1− wiwj

(
λp − µp
qi

−Hi,s + wi

(
λp − σp
qj

−Hj,s

))
dW0,s

+ er(t−T )

∫ t

0

1

1− wiwj

(
λ
√
αs
qi

− Λi,s + wi

(
λ
√
αs
qj

− Λj,s

))
dW1,s,

which verifies admissibility condition (1) in Definition 10.3.2. Hence, we can conclude

that the Nash equilibrium strategy (π∗
1 , π

∗
2) given by (10.4.15) is admissible.

10.F Proof of Proposition 10.5.6

Proof. Inspired by the affinity of the terminal condition of BSDE (10.5.8), we

conjecture that the first component of the solution to BSDE (10.5.8) admits an

affine form as well, i.e, for i ̸= j ∈ {1, 2},

G̃i,t = ãi(t)Li,t − wib̃i(t)Lj,t, (10.F.1)

where ãi(t) and b̃i(t) are two differentiable functions that will be determined later

with boundary condition that ãi(T ) = b̃i(T ) = −1. Applying Itô’s formula to G̃i,t

341



shows that

dG̃i,t =

[(
dãi(t)

dt
+ ãi(t)(µi − µp + σ

2
p − βiσp + λσiαt)

)
Li,t −

(
db̃i(t)

dt
+ b̃i(t)(µj − µp + σ

2
p

−βjσp + λσjαt)

)
wiLj,t

]
dt+

(
ãi(t)(βi − σp)Li,t − wib̃i(t)(βj − σp)Lj,t

)
dW0,t

+
(
ãi(t)σiLi,t − wib̃i(t)σjLj,t

)√
αt dW1,t.

(10.F.2)

Let
H̃i,t =ãi(t)(βi − σp)Li,t − wib̃i(t)(βj − σp)Lj,t,

Λ̃i,t =
(
ãi(t)σiLi,t − wib̃i(t)σjLj,t

)√
αt,

Γ̃i,t =0.

Then, the generator of linear BSDE (10.5.8) turns out to be

Li,tãi(t) (r + λσiαt + (λp − σp)(βi − σp)) − wiLj,tb̃i(t) (r + λσjαt + (λp − σp)(βj − σp)) , (10.F.3)

where i ̸= j ∈ {1, 2}. A direct comparison between (10.F.3) and the drift coefficient

of (10.F.2) leads to the following linear homogeneous ODEs:

dãi(t)

dt
=(r + µp − µi + λp(βi − σp)) ãi(t), ãi(T ) = −1,

db̃i(t)

dt
=(r + µp − µj + λp(βj − σp)) b̃i(t), b̃i(T ) = −1,

from which we know that ãj(t) = b̃i(t), i ̸= j ∈ {1, 2} and the analytical expression

for ãi(t) is then given by (10.5.11), for i = 1, 2.

So far, we have found one solution to linear BSDE (10.5.8) which is given

in (10.5.9) and (10.5.10). Following almost the same arguments in the proof of

Proposition 10.4.10, it is easy to show that the solution (G̃i,t, H̃i,t, Λ̃i,t, Γ̃i,t) given in

(10.5.9) and (10.5.10) lies in the space L2
F,P(0, T ;R)⊗L2

F,P(0, T ;R)⊗L2
F,P(0, T ;R)⊗

L2
F,P(0, T ;R). So, we do not repeat them here.

To complete the proof, we now in the position to show that the solution (10.5.9)-

(10.5.10) forms the unique solution to linear BSDE (10.5.8). By Lemma 10.4.2 and

Theorem 2.4 in Cherny (2006), the following Radon-Nikodym derivative

dP̄
dP

∣∣∣∣
FT

=exp

{
−
∫ T

0

(λp − σp) dW0,t −
∫ T

0

λ
√
αt dW1,t +

∫ T

0

ρ2g̃i(t)
√
αt dW2,t

−1

2

∫ T

0

(λp − σp)
2 + (λ2 + ρ22g̃

2
i (t))αt dt

}
is well-defined and hence the probability measure P̄ is well-defined on FT , where
i = 1, 2. Due to the equivalence between P̄ and P and Girsanov’s theorem, the

processes W̄0,t, W̄1,t, W̄2,t defined by

W̄0,t =

∫ t

0

(λp−σp) ds+W0,t, W̄1,t =

∫ t

0

λ
√
αs ds+W1,t, W̄2,t = −

∫ t

0

ρ2g̃i(s)
√
αs ds+W2,t
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are standard Brownian motions under P̄. Then, linear BSDE (10.5.8) can be

simplified as follows:{
dG̃i,t =rG̃i,t dt+ H̃i,t dW̄0,t + Λ̃i,t dW̄1,t + Γ̃i,t dW̄2,t,

G̃i,T =− Li,T + wiLj,T .
(10.F.4)

Denoted by
(
Ǧi,t, Ȟi,t, Λ̌i,t, Γ̌i,t

)
any solution to BSDE (10.5.8). Then, it follows

from (10.F.4) that the difference process between
(
Ǧi,t, Ȟi,t, Λ̌i,t, Γ̌i,t

)
and the

solution given in (10.5.9)-(10.5.10) defined by

∆G̃i,t = G̃i,t − Ǧi,t, ∆H̃i,t = H̃i,t − Ȟi,t, ∆Λ̃i,t = Λ̃i,t − Λ̌i,t, ∆Γ̃i,t = Γ̃i,t − Γ̌i,t

must solve the following linear BSDE of (∆G̃i,t,∆H̃i,t,∆Λ̃i,t,∆Γ̃i,t) under measure

P̄: {
d∆G̃i,t =r∆G̃i,t dt+∆H̃i,t dW̄0,t +∆Λ̃i,t dW̄1,t +∆Γ̃i,t dW̄2,t,

∆G̃i,T =0,

for i = 1, 2. This is a linear BSDE with standard data (refer to El Karoui, Peng,

and Quenez (1997)). Then, it follows from Theorem 2.1 in El Karoui, Peng, and

Quenez (1997) that the above BSDE admits a unique solution, and particularly,

we notice that (0, 0, 0, 0) forms the unique solution, which indicates the solution

presented in (10.5.9)-(10.5.10) is the unique solution to BSDE (10.5.8).

10.G Proof of Theorem 10.5.8

Proof. The proof is similar to that of Theorem 10.4.11 for the exponential utility pref-
erences. Given any competitor’s investment strategy denoted by π̂j :=

{
π̂Sj,t, π̂

I
j,t

}
and the associated inflation-adjusted wealth process X

π̂j

t , we know from (10.5.1),
Remark 10.5.7, and the two unique solutions to BSDEs (10.5.2) and (10.5.3) that
for manager i, i ̸= j ∈ {1, 2},

d

(
Ỹi,t

γi
(X

πi
t − wiX

π̂j
t + G̃i,t)

γi

)

=

[
(X

πi
t − wiX

π̂j
t + G̃i,t)

γi

γi
Z̃i,t + Ỹi,t(X

πi
t − wiX

π̂j
t + G̃i,t)

γi−1

(
X

πi
t (π

S
i,tσs + (π

I
i,t − 1)σp)

− wiX
π̂j
t (π̂

S
j,tσs + (π̂

I
j,t − 1)σp) + H̃i,t

)]
dW0,t +

[
(X

πi
t − wiX

π̂j
t + G̃i,t)

γi

γi
M̃i,t

+ Ỹi,t(X
πi
t − wiX

π̂j
t + G̃i,t)

γi−1

(
(X

πi
t π

S
i,t − wiX

π̂j
t π̂

S
j,t)σt + Λ̃i,t

)]
dW1,t

+

[
(X

πi
t − wiX

π̂j
t + G̃i,t)

γi

γi
P̃i,t + Ỹi,t(X

πi
t − wiX

π̂j
t + G̃i,t)

γi−1
Γ̃i,t

]
dW2,t +

γi − 1

2
Ỹi,t

× (X
πi
t − wiX

π̂j
t + G̃i,t)

γi−2

[
(X

πi
t π

S
i,t − wiX

π̂j
t π̂

S
j,t)σt + Λ̃i,t +

X
πi
t − wiX

π̂j
t + G̃i,t

γi − 1

(
M̃i,t

Ỹi,t

+ λ
√
αt

)]2
dt+

γi − 1

2
Ỹi,t(X

πi
t − wiX

π̂j
t + G̃i,t)

γi−2

[
X

πi
t (π

S
i,tσs + (π

I
i,t − 1)σp) − wiX

π̂j
t

× (π̂
S
j,tσs + (π̂

I
j,t − 1)σp) + H̃i,t +

X
πi
t − wiX

π̂j
t + G̃i,t

γi − 1

(
Z̃i,t

Ỹi,t

+ λp − σp

)]2
dt.

(10.G.1)
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Using some localization techniques, integrating both sides of (10.G.1) from 0 to
τ̃n ∧ T , and taking expectations, where {τ̃n}n∈N is a sequence of F-stopping times
such that τ̃n → ∞, P almost surely as n → ∞ and the above three stochastic
integrals in (10.G.1) are true (F,P)-martingales when stopped by τ̃n, we then
obtain

E
[
Ỹi,τ̃n∧T

γi

(
X

πi
τ̃n∧T − wiX

π̂j
τ̃n∧T + G̃i,τ̃n∧T

)γi

]

=
γi − 1

2
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0

Ỹi,t(X
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t − wiX

π̂j
t + G̃i,t)

γi−2

[
(X

πi
t π

S
i,t − wiX

π̂j
t π̂

S
j,t)σt + Λ̃i,t

+
X

πi
t − wiX

π̂j
t + G̃i,t

γi − 1

(
M̃i,t

Ỹi,t

+ λ
√
αt

)]2
dt

]
+ E
[ ∫ τ̃n∧T

0

Ỹi,t(X
πi
t − wiX

π̂j
t + G̃i,t)

γi−2

×
[
X

πi
t (π

S
i,tσs + (π

I
i,t − 1)σp) − wiX

π̂j
t (π̂

S
j,tσs + (π̂

I
j,t − 1)σp) + H̃i,t +

X
πi
t − wiX

π̂j
t + G̃i,t

γi − 1

×
(
Z̃i,t

Ỹi,t

+ λp − σp

)]2
dt

]}
+
Ỹi,0

γi
(xi,0 + ãi(0)li,0 − wi(xj,0 + ãj(0)lj,0))

γi .

(10.G.2)

Since the terms in the expectations on the right-hand side of (10.G.2) are non-
negative and increasing with respect to n and the term in the expectation on the
left-hand side of (10.G.2) is uniformly integrable due to Definition 10.3.3, sending n
to the limit and applying the monotone-convergence theorem and the equivalence
between the uniform integrability and L1-convergence to the expectations on the
right-hand side and left-hand side of (10.G.2) respectively yield:

E
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X
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]
+ E
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(10.G.3)

Therefore, the optimal response investment strategy π̂i for manager i is given by

π̂Si,t =
1

X π̂i
t

− X
π̂i
t −wiX

π̂j
t +G̃i,t

γi−1

(
M̃i,t

Ỹi,t
+ λ

√
αt

)
+ Λ̃i,t

σt
+ wiX

π̂j

t π̂Sj,t

 , (10.G.4)

and

π̂Ii,t =

 1

X π̂i
t

−
X

π̂i
t −wiX

π̂j
t +G̃i,t

γi−1 (λp − σp) + H̃i,t
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t

π̂Sj,tσs + (π̂Ij,t − 1)σp

σp


−σs
σp
π̂Si,t

]
+ 1,

(10.G.5)
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for i ̸= j ∈ {1, 2}. Solving (10.G.4) and (10.G.5) then yields the strategy π∗
i,t,

i = 1, 2 given in (10.5.12). In addition, plugging the optimal response strategy π̂i
given in (10.G.4)-(10.G.5) into (10.G.1) whenever the competitor’s strategy π̂j is

given, we find that

d
(
Ỹi,t

γi
(X π̂i

t − wiX
π̂j

t + G̃i,t)
γi
)

Ỹi,t

γi
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ρ1g̃i(t) + γiλ

1− γi

√
αt dW1,t + ρ2g̃i(t)

√
αt dW2,t.

Solving this linear SDE explicitly and using Theorem 2.4 in Cherny (2006) and
Lemma 10.4.2 above, we know that
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γi

is an (F,P)-martingale, for i ̸= j ∈ {1, 2}. Then, the martingale property of
Ỹi,t

γi
(X π̂i

t − wiX
π̂j

t + G̃i,t)
γi leads to

J
(π̂i,π̂j)
i (xi,0, xj,0, li,0, lj,0, s0, α0) = E
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1
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(10.G.6)

From (10.G.3) and (10.G.6), we see that given any competitor’s strategy π̂j , for

i ̸= j ∈ {1, 2},

sup
πi∈Πi

J
(πi,π̂j)
i (xi,0, xj,0, li,0, lj,0, s0, α0) ≤ J

(π̂i,π̂j)
i (xi,0, xj,0, li,0, lj,0, s0, α0),

where the equalities are attained when the two managers opt for the optimal

response strategies at the same time. In other words, the pair (π∗
1 , π

∗
2) given in

(10.5.12) is the Nash equilibrium by the definition of the non-zero-sum stochastic

differential game (10.3.2)-(10.3.3). Note from (10.5.12) that the Nash equilibrium

strategy (π∗
1 , π

∗
2) is F-adapted. Moreover, when the initial data satisfies xi,0 +

ãi(0)li,0 − wi(xj,0 + ãj(0)lj,0) > 0, for i ̸= j ∈ {1, 2}, it follows from the above

results that the process X
π∗
i

t − wiX
π∗
j

t + G̃i,t > 0, P almost surely, for all t ∈ [0, T ],

which means that the admissibility condition (1) in Definition 10.3.3 is verified.

The admissibility conditions (2) and (3) for the Nash equilibrium strategy (π∗
1 , π

∗
2)

can be checked by following almost the same arguments in the proof of Theorem

10.4.11 above, so we omit it here.
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