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Abstract

In this thesis, we study the homotopy theory of fixed points using methods from equiv-
ariant homotopy theory. Given a compact topological space with the action of a p-group,
the fixed points and their cohomological properties are studied via the so-called Smith
theory. We indicate several different categorifications of this theory.

The thesis consists of four main parts:

In the first part (Chapter 3), we investigate the relation between genuine fixed points
of a finite GG-space and power operations. We analyse the theory of perfect Ey k-
algebras for k a characteristic p field and the perfection functor called tilting. Using this
theory, we recover the homotopy type of genuine fixed points from the Borel equivariant
cohomology.

In the second part (Chapter 4), we study the Segal conjecture for Z/p; more precisely,
given a spectrum X, when is the Tate construction with respect to trivial Z/p is the p-
completion. For X finite spectra, this is the celebrated theorem of Lin and Gunawardena.
In this chapter, we give examples of several non-finite spectra that satisfy the Segal
conjecture and extend this result to a larger class of spectra.

In the third part (Chapter 5), we compute homotopy fixed points of certain actions
of based loops on a compact Lie group and certain p-compact groups coming from
geometric representation theory. In certain cases, we also compare the homotopy fixed
points to the genuine fixed points.

In the fourth and final part (Chapters 6 and 7), we study a categorification of Smith
theory for sheaf cohomology building on the works of D. Treumann.






Resume

I denne afhandling bruger vi sekvivariant homotopiteori til at studere homotopiteori
for fikspunkter. Givet en virkning af en p-gruppe pa et kompakt topologisk rum, kan
fikspunkterne og deres kohomologiske egenskaber studeres via sakaldt Smithteori. Vi
indikerer en raekke kategorificeringer af denne teori.

Afhandlingen bestar af fire hoveddele:

I den forste del (Kapitel 3) undersgger vi forholdet mellem e&gte fikspunkter af et
endeligt G-rum og potensoperationer. Vi analyserer teorien om perfekte E,-k-algebraer
for k et legeme af karakteristik p og perfektionsfunktoren ‘tilting’. Ved at bruge denne
teori genskaber vi homotopitypen af de eegte fikspunkter fra den Borel-szkvivariante
kohomologi.

I den anden del (Kapitel 4) studerer vi Segalformodningen for Z/p; mere preecist, givet
et spektrum X, hvornar er det sa tilfzeldet at Tatekonstruktionen med hensyn til den
trivielle Z/p-virkning er lig med p-fuldsteendigggrelsen. Nar X er et endeligt spektrum,
er dette en kendt sztning af Lin og Gunawardena. I dette kapitel giver vi eksempler
pa ikke-endelige spektra der opfylder Segalformodningen og udvider dette resultat til en
storre klasse af spektra.

I den tredje del (Kapitel 5) beregner vi homotopifikspunkter af visse virkninger af
lgkker pa en kompakt Liegruppe og visse p-kompakte grupper fra geometrisk repraesen-
tationsteori. I nogle tilfelde sammenligner vi ogsd homotopifikspunkter til de segte
fikspunkter.

I den fjerde og sidste del (Kapitel 6 og 7) studerer vi en kategorificering af Smithteori
for knippekohomologi, der bygger pa D. Treummans arbejde.

Thesis Statement

Chapter 2 is material covered in [MNN17; MNN19|, we don’t claim any originality of
contents appearing in this chapter.

Chapters 3 and 4 are joint work with Robert Burklund. The version appearing in the
thesis is written by the author.

Chapter 6 is joint work with Oscar Bendix Harr.
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1 Introduction

The subject of homotopy theory aims to classify topological spaces, more specifically
CW-complexes, up to homotopy by associating for every topological space a natural
algebraic object that is invariant under homotopy. That is a functor

F:8—¢C

from the category of spaces to a suitable algebraic category.

In an ideal world, we would like to come up with functor F' that distinguishes between
spaces X and Y, which are not homotopic, but there is the question of how computable
F is. There is constant trade between computability and how powerful the functor F
is.

To a real smooth manifold M, we can associate the de-Rham cohomology H (M)
and moreover, if M is a compact manifold, the alternating sum of dimensions of the
cohomology

X(M) = Y (=1)'dim(Hgg(M))
i
provides a useful invariant called the Euler characteristic which is an integer.

A striking result of 19" century mathematics is the classification of surfaces using

the Euler characteristic. This says, given an orientable smooth surface, that is, a real
2-dimensional compact, smooth manifold that is orientable, the Euler characteristic
classifies the surface up to diffeomorphism.

So is the Euler characteristic good enough to distinguish between spaces? If we take
our two spaces to be spheres of dimension 2 and 4, then x(S2?) ~ x(S*) = 2. But we
can do something better by remembering the Fs-based singular homology as a graded
abelian group; we have H,(S?) # H.(S%).

Even homology has limitations, if we take X = S2 v S* and Y = CP?. Both X and Y’
have 1 cell in degree 0,2 and 4, giving us H,(X;Fy) = H.(Y;F2). This leads us to look
at the Fa-cohomology groups H*(X;F2) and H*(Y;F3), which comes with a graded

commutative ring structure given by cup product of cohomology classes, which helps us
distinguish between X and Y.

We can go further and look at X = £82 v §% ~ §3 v 85 and Y = ©CP?. Now, given
a space of the form X7, the cup product on H*(X7) is trivial. How do we fix this?

Note that for a space X, we have H*(X;Fs) ~ m,C*(X;F3), by passing to the ho-
motopy groups we have lost a lot of structure. The chain complex C*(X;F3) is not
commutative on the nose but only commutative upon passing to the homotopy groups.

This is really a feature rather than a bug. The failure of commutativity on the nose
provides a family of operations called the power operations. In particular, we can
distinguish between X = £5?v §% ~ §3v §% and Y = LCP?, since the power operation
Sq' acts trivially on cohomology of X and nontrivially on cohomology of Y.

11



1 Introduction

In this thesis, we explore how power operations help us understand the fixed points of
group action on spaces.

Let X be a G-CW complex, where G is a p-group, then X is built by attaching cells
of the form S™ x G/H where H is the isotropy of the cell. Then we can rewrite the
expression for Euler characteristic: x(X) = Y.,(—1)'dim(H*(X)) by splitting into two
parts, one made of cells of the form S™ x G/G, that is, those cells that are fixed by G
and the rest:

X(X) = x(X) + (x(X) = x(X9))

Since G is a p-group, we have x(X) — x(X%) is multiple of p. Then we have

X(X) = x(X%) mod p

This leads us to wonder if there is a cohomological relationship between X and X©.
The earliest instance of investigation of this phenomenon is due to P. A. Smith [Smi34].

We say a CW-complex X, is a mod-p homology n-sphere if H(X;F,) = F, for i = 0,n
and trivial in all other degree.

Theorem 1.0.0.1 (P. A. Smith). [Smi34| Let G be a p-group and X a finite G-CW
complex and is a mod-p homology n-sphere, then the genuine fixed points X is either
empty or a mod-p homology i-sphere for i < n

The theory of studying the relationship between cohomological properties of X and
its fixed points X< is called Smith theory. The case of S'-action was studied by A.
Borel [BBF+60], M. Atiyah and R. Bott [AB84], D. Quillen [Qui7la; Qui71b] and by
W. Dwyer and C. Wilkerson [DW88|. We state the most refined version of the result
proved in [DW8§]

Theorem 1.0.0.2. [DWS88| Let G be an elementary abelian group (Z/p)". Let X be a
finite G-CW complex then we have:

H*(XY) ~ Fp @+ () Un(H* (Xpe)[e ')

where e € H*(X}) is the Euler class described 2.1.3, coming from group cohomol-
ogy H*(BG) and Un(H*(Xpe)[e™!]) is the largest unstable Steenrod algebra inside
H*(Xpa)[e 1]

The above statement is extremely surprising because we are able to get access to the
cohomology of genuine fixed points using the Borel equivariant cohomology.

Question 1.0.0.3. Could we recover the homotopy type of the genuine fixed points
from the Borel equivariant cohomology?

We address this question in Chapter 2. In joint work with R. Burklund, we investigate
the theory of perfect algebras in the land of higher algebra.

Given any E.-algebra over F », we construct two different perfection functor (=) and
(=), which are adjoints to the inclusion CAlgIEF: — CAlgI-Fp. We refer to the right adjoint

(=) as tilting.

12



More than just constructing the adjoint (—)b7 we also prove a recipe to compute the

homotopy groups of A° for A an E.-algebra over Fp.

Proposition 1.0.0.4. (Homotopy groups of A”) [Proposition 3.3.2.5| For a finite type’
E.-algebra A the homotopy groups of A’ is given by m, A’ ~ lim | m+A where the se-
quential inverse limit is taken along the operation Q.

As an application, we give a spectrum-level statement of the result of Dwyer and
Wilkerson:

Theorem 1.0.0.5 (Theorem 3.4.1.4). For G, an elementary abelian group and X,
a finite G-CW complex. The tilt of the algebra C*(X;k)™% ~ C*(X;k)"“[e7!] is
equivalent to C*(X% x BG; k). Where (—)7¢ is the proper Tate construction.

In Chapter 2, we recall the required background about proper Tate construction.

In section 3.4.2, we recall results from p-adic homotopy theory in the sense of M.Mandell
[Man01] and recover the p-local homotopy type of X¢.

The ideas involved in chapter 3 are heavily inspired by the proofs of Sullivan conjecture
which, as if for a given fintie G-CW complex X and G a p-group, when is the comparison
map X¢ — X"G from the genuine fixed points to the homotopy fixed points Fp-
equivalence.

In chapter 4, we revisit a stable analogue of the Sullivan conjecture, the Segal conjec-
ture. For G = Z/p, the Segal conjecture ask if the map (Sg)® — (Sg)"“ an equivalence
after the p-completion. Where Sq is the genuine G-sphere spectrum, which is the unit
of the category Sp. of genuine G-spectra.

Equivalently the above theorem can be stated as when is the canonical map S — S*%/?
from the sphere spectrum to its Tate construction with respect to trivial action of
Z/p a p-adic equivalence. This is answered to be true by W. H. Lin [Lin80| and J.
H. Gunawardena |[Gun80|. In fact, as an immediate consequence, we can replace the

sphere spectrum with any finite spectra X, and we still have a p-complete equivalence
X — X/,

We introduce the notion of an I-nilpotent spectra (Definition 4.3.1.9) and prove the
following theorem:

Theorem 1.0.0.6 (Theorem 4.3.1.10). Let X be a bounded below spectrum, p-complete
and I-nilpotent, then X satisfies the Segal conjecture for Z/p. That is, X — X tZ/p ig
an equivalence, where the Tate construction is with respect to trivial action.

The class of I-nilpotent spectra include many non-finite spectra. A rich source of
example comes from the class of spectra with cohomology, which is finite type and
locally finite (see Definition 4.3.1.11).

In chapter 5, the main object of study is based loops on a compact lie group G.
Turns out there is an algebro-geometric object called the affine Grassmannian Grg
whose underlying analytic space is homotopic to QK , where K is the maximal compact
subgroup of GG. The affine Grassmannian Grg comes with a natural G,,-action. In

We say A is of finite type if 7, A finite dimensional all n

13



1 Introduction

[RW22a], the authors compute the genuine fixed points Gri~". In this article, we give a
recipe to compute the homotopy fixed points for any compact Lie group.

Z/p
G

In the case of G = GL,,, we compute the homotopy fixed points:

Theorem 1.0.0.7. Let G = GL,(C), then the homotopy fixed points (QU (n))"/P" is
equivalent to (QU (n))""/7" ~ || gy /.y QU (R) x U(n)/C(p).

Finally, the last part of the thesis is chapters 6 and 7. We set up foundations for
equivariant sheaf theory and categorify the localisation theorem for sheaves.

In chapter 6, joint work with Oscar Bendix Harr, we write down an co-categorical
version of six functor formalism using the formalism developed in [Man22].

In the final chapter, we introduce two constructions of localisation of sheaves, the first
based on the construction of D. Treumann [Trel9], and we give a construction that is
valid for equivariant sheaves on locally compact space valued in the oo-category of R-
modules, for R a commutative ring spectrum and a finite groups G in the defect base
of R.

The second is based on inverting the Euler class on the category of equivariant sheaves.
But in order to get a non-trivial category, we perform the localisation in the co-category

of stable presentable dualisable categories Prifal.

Conventions

In this thesis, by category, we mean oco-category as developed by [Lur09], and even 1-
categories are viewed as discrete co-categories. By commutative algebra, we mean an
algebra over the E-operad and by algebra, we mean an algebra over the E;-operad.

For a ring or a ring spectrum R, by Modg, we mean the stable co-category of R-
modules. The categories, Cato, denote the oo-category of all co-category, Pr’ denote
the oco-category of all presentable co-category, PrsLt denote oco-category of all stable pre-
sentable oco-category and Plrgt“al denote co-category of all stable presentable co-category

which are dualisable.

All functors are derived by convention. For example, we denote the tensor product in
the derived category of R-modules simply by — ®r —. we will specify when performing
an underived construction.

For an object X in the oo-category of spaces. By a functor F' : X — €, we mean a
functor from X, thinking of X as an co-groupoid in the sense of [Lur09].

14



2 Preliminaries

2.1 G-Spectra and proper Tate construction

2.1.1 Localisations in Higher Algebra

Let C® be stable, presentably symmetric monoidal co-category! let A € Alg(C®). We
recall some general theories of completion, acyclisation and localisation with respect to
the algebra A. Recall how this theory applies to Sp;, the category of genuine G-spectra;
much of the material presented here has appeared in [MNN17; MNN19]; we recall it here
for exposition and claim no originality.

Remark 2.1.1.1. By Alg(C) we always mean the oo-category of algebras over the as-
sociative operad E; and similarly by CAlg(C) we mean the oo-category of algebras over
the commutaive operad Eo, as developed in [Lurl7, Section 3, 4].

Definition 2.1.1.2 (A-complete). [MNN17, Definition 2.15] Let X € C, we say X is
A-complete/local, if we have mape(Y, X) = 0 whenever AQ Y ~ 0.

Let €4_¢p be the full subcategory of € spanned by A-complete objects. Since A-
complete objects are defined via mapping in property; we have by definition the subcat-
egory of A-complete objects are closed under small limits.

The category of C4_p is the localisation of € at morphisms
S={f: X ->Y | f®Ais an equivalence}.

We can construct a left adjoint [MNN17, Definition 2.19] L4 : € — €C4_¢p to the inclu-
sion functor C4_¢y < € called the completion functor. Following [MNN17], we get
this adjoint since by [Lur09, Proposition 5.5.4.16], we have S is a strongly saturated class
of morphisms of small generation and by invoking the theory of Bousfield localisation
in [Lur09, Proposition 5.5.4.15] we have that C4_., is a presentable category and that
the inclusion of the complete objects has a left adjoint.

Example 2.1.1.3. For C = D(Z), the unbounded derived category of Z-modules, which
is also the category of Z-modules in spectra. Let A = Z/p, then the completion functor
Ly, recovers the classical derived p-completion functor.

We work under further assumptions of Hypothesis 2.26 of [MNN17, Hypothesis 2.26]:

Let (€%, 1) be a presentably symmetric monoidal oo-category satisfying

e The unit is compact. (which implies all dualisable objects are compact)

e The algebra A is dualisable

means € is commutative algebra object in PrL,

15



2 Preliminaries

e ( is generated by dualisable objects under small colimits.

Definition 2.1.1.4 (A-torsion). [MNN17, Definition 3.1] Let C® be a presentably sym-
metric monoidal co-category and A € Alg(C). The subcategory of A-torsion objects
CA—_tors is the localising subcategory generated by A ® X, where X € € ranges over all
dualisable objects.

By definition, the subcategory of €4_¢-s is closed under colimits; hence the inclusion
functor Co_tors < € is a left adjoint by the adjoint functor theorem and admits a right
adjoint ACycy : € — Ca_sors called the acyclisation functor [MNN17, Construc-
tion 3.2]. By Proposition 3.3 of [MNN17] we have that C4_;s is a localising ®-ideal
generated by A.

Example 2.1.1.5. Revisting the examples of ¢ = D(Z) and A = Z/p, we have
ACycy(Z) = ©71Z/p®. Where Z/p® is the Piifer group Z[p~!]/Z.

Definition 2.1.1.6 (A~ !-local). [MNN17, Definition 3.10] We call an object X in € to
be A~1-local if for every A-torsion object T we have Home(T, X) ~ 0. Let us denote
the class of A~!-local objects by C[A™!] following [MNN17].

We also have another way to test if an object is A~'-local by Proposition 3.11 of
[MNN17]:

Proposition 2.1.1.7. [MNN17, Proposition 3.11] Let € be an o category satisfying
hypothesis 2.26 stated above, and X € €, X € C[A~!] «= X ® A is contractible.

By definition, the subcategory A~!-local objects is closed under all small limits. More-
over, it is also closed under colimits because of 2.1.1.7 and the tensor product ® pre-
serves colimits in each variable. Which in turn gives us the A~ !-localisation functor
(—)[A71]: € — C[A7!] [MNN17, Construction 3.12], the left adjoint to the inclusion of
A~ 1-]ocal objects.

Example 2.1.1.8. Let R be a discrete commutative ring and € = D(R) and A = R/ f
for some f € R. Then we have (R/f) ™ !-localisation is given by smashing with R[f~!].

Morally speaking, A~ !-localisation picks out information away from the algebra A,
which is made precise by Proposition 2.1.1.7 and the Example 2.1.1.8.

We have abstractly set up three different localisations of a symmetric monoidal category
c®:
1. A-completion L 4(—)
2. A-acyclisation Acy,(—)
3. A~ l-localisation (—)[A™]
with respect to an algebra A € Alg(C). We now follow [MNN17, Section 2, 3| to give
formulas to compute these localisations functors in these cases.

Let us set up a few notations to help us state the formulas for these localisations. As
usual let € be a stable, presentably symmetric monoidal category satisfying Hypothesis
2.26 of [MNN17] and A € Alg(C) then we make the following construction:

16



2.1 G-Spectra and proper Tate construction

Construction 2.1.1.9. [MNN17, Construction 2.2] Let I be the fiber of the unit 1 — A,
tensoring the unit map with I®" we have:

%" AR I®"

take the fiber to get I®"*! which gives maps /"1 — I®" for all n > 0.

This assembles into a tower called the A-Adams Tower:

O+l @, 59 L1 (2.1)

which is the universal A-Adams tower and by tensoring (2.1) with M € € we obtain
A-Adams Tower of M. We will denote the A-Adams tower of an object M € C by
Adams(A, M),.

In the case of € = D(Z) and A = Z/p we have the unit map is the mod p reduction

Z — Z/p with fiber Z and the map I — 1 given by multiplication by p, Z 2, Z. Hence
the Z/p-Adams Tower in D(Z) is given by:

275757 (2.2)

A closely related construction to the A-Adams tower is the cobar construction.
Given an algebra A € Alg(C) we get maps A®" — A®"+1 and A®" — A®(—1) yging the
units and multiplication. In the case n = 2, we have A - A® A given by a — 1®a and
a — a® 1 and the multiplication gives map A ® A — A. These coherently assemble
into a cosimplicial diagram A — C called the cobar construction:

—
CB.(A) = A——T AQRA — ...

The coherence of the above diagram crucially depends on the highly coherent multi-
plication structure of A, coming from the fact that A is an algebra over the E;-operad.
To set up the above diagram infinity categorically with all the coherence, we refer the
reader to Construction 2.7 of [MNN17].

To see how the cobar construction is related to the Adams tower, we use the co-
categorical Dold-Kan Correspondence, which gives an oo-categorical equivalence by
J.Lurie [Lurl7]:

Fun(A, @) ~ %o

where the equivalance is given by given a functor X* : A — € sent to tower Tow(X*):

n > Tot, (X*)

where Tot,, (X*) is the limit of the diagram X* restricted to AS™.

Now we can state the relation between the Adams tower and the tower associated to
the cobar construction. We have a map from the Adams tower to the constant tower
Adams(A,1)s — 1.

17



2 Preliminaries

Proposition 2.1.1.10. [MNN17, Proposition 2.14] Let Tow(CB.(A)) be the tower
associated to the cobar construction; we have

Tow,, (CB4(A)) = cofib(Adams(A4,1),, — 1) ~ cofib(I®" — 1)
infact we have cofiber sequence of towers Adams(A4,1)s — 1 — Tow(CB.(A))

We continue to work under Hypothesis 2.26 of [MNN17|. We have the following
formula for the completion of X with respect to an algebra A.

Proposition 2.1.1.11. For X € €, we have the map X — Tot(X ® CB.(A)) which
exhibits CB4(A)) as the A-completion of X.

which means using Proposition 2.1.1.10 we have

Tot(X @ CB,4(A)) ~ lim cofib(I*" @ X — X).

n

Recall the Adams tower from 2.2 where € = D(Z) and A = Z/p, we have cofib(I®" —
1) = cofib(Z £ Z) = Z/p". Hence Z/p-completion of any object X € D(Z) is given by

LZ/p(X) = linX/pn

n

Remark 2.1.1.12. Note that Z/p in the category of spectra Sp does not satisfy the
Hypothesis 2.26 of [MINN17], in particular, Z/p is not a dualisable object. So the above
formula does not hold for Z/p-completion but ends up being completion with respect
to homotopy ring S/p where the two completions coincide in the case of bounded below
spectra X.

Finally, we can categorify the above construction with the following proposition.

Proposition 2.1.1.13. [MNN17, Theorem 2.30] Let A € CAlg(C), where €% is a stable,
presentably symmetric monoidal co-category. Then we have,

—
CoAepl ~ ann{Mode(A) T Mode(A®A) ¥— }
_—

where the limit is taken in CAlg(Prk) the co-category of presentably symmetric monoidal
oo-categories.

Now we give formula for acyclisation and A~ '-localisation, we have the Adams tower
Adams(A4, 1),

DI N N |
Since we are working under the condition that the algebra A is dualisable. We have

the I = fib(1 — A) is dualisable; in fact, each term appearing in the Adams tower
Adams(A4, 1), is dualisable, following [MNN17] we write the dualised tower as
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2.1 G-Spectra and proper Tate construction

1-U1—> ..U, —

where U; := D(I®") and define U4 = colim;U; [MNN17, Construction 3.4] which comes
with a map 1 — U4. Taking fiber, we have

Vi—>1->Uy

Proposition 2.1.1.14. [MNN17, Proposition 3.5| The acyclisation functor ACyc, :
C — Ca_tors is given by X ® V4, that is X ® V4 — X as a co-localisation with respect
A-torsion. Similarly, the A~!-localisation is given by smashing with Uy, i.e, X — X®U4
exhibits the target as the A~!-localisation.

Returning back to the examples of C = D(Z) and A = Z/p, then we have the dualised
Adams tower:

727272

hence we have Uz, = Z[p~'] and since we have the fiber sequence V4 — 1 — Uy we
have that Vy,, = S~ 1(Z[p~']/Z).

2.1.2 Localisations in the category of genuine G-spectra

This section covers some basic facts about the co-category of G-spectra and the proper
Tate construction.

Let G be a finite group; to it we can associate the co-category Sp of G-spectra which is
a presentably symmetric monoidal co-category, we refer the reader to [MNN17; GM95;
Barl7; AMR22| we will take a rather model-independent approach by assuming the
following facts:

1. (Elmendorf Theorem) Let O¢ be the orbit category whose objects are cosets G/H
for all subgroups H < G subgroups and morphisms G-equivariant maps. Then the
co-cateogry of G-spaces (denoted by 8¢) is the presheaf category Fun(O¢, 8). This
category can be promoted to a symmetric monoidal co-category with underlying
category 8¢, obtained from the pointwise product from the above description.

2. There exists a stable oco-category Sps of genuine G-spectra with a symmetric
monoidal structure such that we have a symmetric monoidal functor

22 : SG7* —> SpG
from pointed G-spaces to genuine G-spectra which preserve colimits and compact

objects. Hence this gives us an adjunction:

=%
—
G

3. The category of G-spectra is compactly generated by dualisable objects
G.+(G/H) where H ranges over all subgroups. This means a G-spectra X is
contractible if and only if the mapping spectra mapsg, (28 .G/H, X) denoted by

X*H is contractible where H runs over all subgroups.
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2 Preliminaries

. Mapping out of X7 , (G/H) gives a functor (=) : Spe; — Sp called categorical

fixed points or genuine fixed points. Which are colimit and limit preserving,
lax-monoidal for all subgroups H < G.

. The functor (=) : Spg — Sp is a right adjoint with left adjoint i, : Sp — Spg

called the inflation functor, which can also be seen as the unit map
Sp® — Spg,

since Sp% is a presentably symmetric monoidal category, we can consider of Sp(é)
with the symmetric monoidal structure as an object in CAlg(PrL;).

The category CAlg(PrsLt) is symmetric monoidal where the monoidal structure
comes from the Lurie tensor product on PrsLt and Sp® as the unit. Hence the
inflation functor is a symmetric monoidal functor which is a left adjoint.

. (H-homotopy groups) For every subgroup H < G we define

wl(X) = mamapg,, (58 . G/H, X) = mu (X ")

a morphism f : X — Y is an equivalence if and only if 72 (f) is an equivalence
for all subgroups H.

. for all subgroups H < G, we have the restriction functor

Res% : Spe — Spy

which is a symmetric monoidal, colimit-preserving functor which has both a left
adjoint induction Indg and a right adjoint Coind%.

G
Ind

v ResG O\

Spe —% Spu

N S

0 AG
Coind %

such that for K < H < G Resfl o Res§ ~ Res&. We have Ind% o Indf ~ Ind%
and Coind$ o Coind ~ Coind%.

. (Projection formula) Furthermore we have

(Ind%X)®Y ~ Ind§ (X @ (Res§Y))

(Coind% X) ®Y ~ Coind% (X @ (Res§Y))

. For a finite group we have the Wirthmiiller isomorphism which is a natural

equivalence
Ind% ~ Coind%

Given a subgroup H < G, we can indentify the Coind% : Spy — Spg, the right adjoint
to the restriction functor applied to the H-spectrum Sy with internal mapping object
F(G/H,,Sq).
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2.1 G-Spectra and proper Tate construction

Since the restriction functor is symmetric monoidal, the right adjoint can be lifted
to a lax monoidal functor, hence Coind%(SH) receives a natural commutative algebra
structure.

The commutative algebra structure can be identified as follows, G/H as a G-space is
a commutative coalgebra via the diagonal map, hence mapping out of the commutative
algebra Sg makes F(G/H,,S¢) into a commutative algebra.

The commutative algebra F(G/H4,S¢) lets us identify Spy as a modules category in
Spg by the result of [BDS15]:

Proposition 2.1.2.1 ([BDS15]). The functor Spy — Modsy, (F(G/H,,Sg)) is an
equivalance of symmetric monoidal co-categories.

The functor described in the above proposition is described as follows because of
the lax-monoidality of the functor CoInd%. We have that Colnd%(X) is naturally
CoInd% (S )-module, hence the coninduction functor lands in F(G/H, ,S¢)-modules.

We now go on to apply the theory of completion, acyclisation and A~ '-localisation in
the category of genuine G-spectra with respect to a certain algebra As. Before that, let
us set up some notations,

Definition 2.1.2.2. [MNN17, Definition 6.1] We say a collection of subgroups ¥ of G,
a family of subgroup if H is a subgroup subconjugate H € F then H € .

Given a family of subgroups, then we can define a commutative algebra Ay = [ [ .4 F(G/H4+,Sq).
This leads to the following set of definitions:

Definition 2.1.2.3. [MNN17, Definition 6.2] Given a family of subgroups &. Then:

1. Given an object X € Sp we say it is F-torsion if X belongs to the smallest localis-
ing subcategory generated by Ag. Equivalently the smallest localising subcategory
generated by F'(G/Hy,Sq) where H € J.

2. Given an object X € Sps we say it is F-complete if it is complete with respect to
Ag.

3. Given an object X € Spy we say it is F~1-local if it is A;l—local.

As discussed in the section 2.1.1, we have completion, acyclisation and (—)[A~!] with
respect to algebra Ag. Which we refer to as F-complete, F-acyclisation and F!-
localisation.

Given a family of subgroup we can form a universal G-space EF, with the following
properties

BeH _ x Hed
¢ H¢F

Let O5(G) be the full subcategory of G-spaces spanned by G/H where H € P referred
to as F-orbit category, let i : O5(G) — S¢ be the inclusion of subcategory. By [MNN19,
A.1] we have

E? ~ COlimOg(G)/L' (23)
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2 Preliminaries

We then have a cofiber sequence of pointed G-space referred to as isotropy seperation
sequence [MNN17, Proposition 6.5]:

EF, - S% - EF

where the EF as a G-space is unique upto equivalance

ESFH _ {* HeTJ
SO He¢d
Recall from Proposition 2.1.1.14 A-acyclisation and A~!-localisation are given by
smashing with a certain object V4 and Uj respectively, obtained via the A-Adams
tower of the unit. The following proposition [MNN17, Prop 6.5] identifies these object
in the category of G-spectra for F-acyclisation and F~!-localisation.

Proposition 2.1.2.4. The F~!-localisation of S¢ is given by ZOGOE? and F-acyclisation
is given by X7 | EF.

We also have the F-completion (ref. [MNN17, Prop 6.6]) as:
Proposition 2.1.2.5. The F-completion of a G-spectra X is given by F(EF,, X).

Let P be the family of proper subgroups of a G. We can look at the smallest localising
subcategory Spg generated by G/Hy in Sp (where H runs over all proper subgroups).
Note that Spgé is precisely the Ap-torsion objects. Localising away from this subcategory
we have SpG[Aa)l] the full subcategory of F~!-local objects.

We can describe the geometric fixed points functor as the total composite:

)45 ()7

(=)I[A57] _
Spa L SpelA;'] —— Sp

In particular by Proposition 2.1.2.4 we have ®%(X) = (EP ® X)%. So we get a lax-
monoidal transformation of functors (—)¢ — ®%(—) coming from the map of pointed
G-spaces Sg — EP.

Since F~!-localisation kills all the F-torsion objects we have ®%(G/H,) ~ 0. It turns
out by this; the geometric fixed points functor is universal with respect to these prop-
erties, that is,

Proposition 2.1.2.6. (—)¢ — ®%(—) is a lax-monoidal transformation, and it is initial
among functors which kills the ®-ideal of P-torsion objects (denoted by < P >). That
is, for any lax-monoidal functor F' : Sps; — Sp which vanishes on the ideal < P >
and comes with a natural transformation 7 : (—=)¢ — F there is a essentially unique
factorisation of lax-monoidal transformations
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2.1 G-Spectra and proper Tate construction

Given a G-spectrum X we can tensor X with the isotropy separation sequence EP —
S% — EP and apply (—) and use the fact that (—)¢ commutes with all limits and
colimits to get the cofiber sequence:

colim X7 — X% - 0% (X) (2.4)
G/He0»(G)
One can ask how is the category of spectra with a G-action, that is, Fun(BG, Sp)
related to the category of genuine G-spectra. This can be answered as follows:

Let F = {e} be the family of trivial group, by the expression 2.3 we see that EF = EG
and Ay = F(G4,S¢q), we refer to the category of Ag-complete object as Borel com-
plete spectra denoted by SpgOrEI and the completion functor is called Borelification.

The completion functor 5 : Sp; — Sp(Bf’rel following Proposition 2.1.2.5 is given by:

X — F(EG,, X).

In particular, a spectrum X is Borel complete if X — F(EG4, X) is an equivalence
this gives as a consequence the map:

XH N XhH

is an equivalence for all subgroups H < GG. Where the target is the homotopy fixed
points with respect to the subgroup H considering X as a spectrum with a G-action.

This suggests that a Borel spectrum has no "new information" other than homotopy
fixed point of the underlying spectrum with G-action. This can be made more precise
with the help of Proposition 2.1.1.13 we obtain the category of SpgOrel is equivalent

to Fun(BG, Sp) the category of spectra with G-action.

Definition 2.1.2.7 (Proper Tate construction). Let X be a genuine G-spectra, we
define the proper Tate construction as X™¢ := ®%(5X) = (EP® F(EG.,X)).
Let F be a family of subgroups then we can define F-Tate construction as X77¢ :=
(EF ® F(EG,,X))¢

So the proper Tate construction is Borelification followed by geometric fixed points. A
priory proper Tate construction does not require the notion of genuine spectra; it turns
out from the work of [NS18] we can completely perform the construction in the world
of Borel spectra.

Let P be the localising ®-ideal in Fun(BG, Sp) generated by Ind%(S) = Y*G/H
where H runs over all proper subgroups. Similar to Proposition 2.1.2.6, the proper
Tate construction (—)7¢ is the initial lax-monoidal approximation of (—)"“ such that it
vanishes on the ideal P.

From the definition 2.1.2.7 and 2.4 we have the cofiber sequence:

colim XM _, xh¢ _, x7G
G/He0+(G)

In particular, if we have F = {e}, we get the cofiber sequence for the classical Tate
construction:

XhG N XhG _ XT{E}G
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2 Preliminaries

2.1.3 Euler class and localisation

In this section, we introduce the notion of Euler class using which we can define the
proper Tate construction as a certain localisation with respect to an Euler class;
these ideas are very classical and due to Quillen and Carlsson. We refer the reader to
[MNN19; AMR23]| for a modern account.

Let G be a finite group and V be a finite dimensional real representation such that it is
orthogonal (i.e., the representation is given by p : G — O(V)), let SV be the one-point
compactification, we regard (SV, ) as a pointed space. Hence we define the Euler
class ey as the pointed G-map ey : SO — SV,

Let S(V') be the unit sphere of the representation V'; since the representation is orthog-
onal, we have that S(V) < V is G-invariant. We have a finite G-CW complex structure
on S(V), where H is an isotropy subgroup if and only if V¥ # 0. Finally, we cofiber
sequence:

S(V)y - 8- sV

where the map S(V); — S° is given by sending S(V) to the non-base point.

Let G be a finite group and pg be the reduced regular representation and P be the
family of proper subgroups, then using [MNN19, Prop 2.7] we identify EP and EP as:

EP ~ colim S(npg) EP ~ colim §™PG (2.5)

Recall from Definition 2.1.2.7 we have the proper Tate construction given by

PY(BX) ~ (EP® F(EG, X))"

now using from equitation 2.5 and the fact that S™ is dualisable we can deduce the
following proposition [AMR23, Prop 5.10]:

Proposition 2.1.3.1. Let G be a finite group and R € Spg, then the proper Tate
construction is given by:

R ~ colim(S™¢ @ R)"
n
Moreover, if R is complex oriented commutative ring spectrum, then
RTG' ~ RhG[e—l]

where e € m_5(|g|—1) is a class obtained from the complex reduced representation pc ¢
via the complex oritentation.

Example 2.1.3.2. Some examples of complex oriented ring spectrum include KU," the
complex K-theory, MU complex cobordism ring, Z, F,, E(n) the height n Lubin Tate
theory.

Let X be a finite G-CW complex and R be any spectrum; then R the R-valued

chains on X, can be considered as G-spectrum. We can then compute the proper Tate
construction of RX as follows:

24



2.1 G-Spectra and proper Tate construction

The R-valued cochains, RX as the limit of the constant diagram R indexed by X,
where the limit is taken in Sp. Since X is a finite complex, the limit is a finite limit,
and since the proper Tate construction is exact, we can then commute the limits. That
is, we have

(RX)TG ~ (R’TG)X
Since X is a G-CW complex obtained from attaching cells of the form G/H x S™. The
proper Tate construction kills G/H x S™ if H is a proper subgroup. So the limit indexed

over the subcomplex spanned by cells with isotropy groups G, i.e., the fixed points X&.
Hence we have:

(RX)TG ~ (RTG)XG
Now let R be a complex oriented ring spectrum, then we obtain:
(R*)¢ =~ (RN)"[e™!] =~ (RM9)[e7']

This leads us to the localisation theorem investigated in the literature by Borel,
Atiyah-Bott, Atiyah-Segal, Quillen, and Dwyer-Wilkerson.

Theorem 2.1.3.3 (Localisation theorem). Let G be a finite group, X a finite G-CW
complexes and R a complex oriented ring spectra, then we have

(RX)™C ~ (RYno)[e}] ~ (RM)[e X" ~ (RTO)X®
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3 Fixed points via Tilting

The material presented in this chapter is a joint work with Robert Burklund. The
version appearing in the thesis is written by the author.

3.1 Introduction

Given a space X, inspired by arithmetic, we can study the homotopy type of X one
prime at a time and try to reconstruct the space using certain glueing data.

This idea was made precise by D.Sullivan [Sul70]. Given a prime p > 0 and a space
X, we can associate the space X, the p-completion of X and the rationalisation Xq.
The subject of rational homotopy theory has seen many advances over the years due to
the work of D.Sullivan [Sul77] and D.Quillen [Qui69].

The above works show that rational homotopy theory is completely algebraic. More
precisely, the co-category of 1-connected rational spaces is equivalent to the co-cateogry
of differential graded 1-connected Lie algebras or the oco-category of differential graded
coconnective commutative algebras with m_; = 0.

Given a rational space, the associated CDGA is equivalent to the rational cochains
C*(X;Q). Sullivan in [Sul77| introduces the theory of minimal models, which is ex-
tremely useful in computations. In general, rational homotopy theory helps transfer a
topological problem into the algebraic world.

One can ask for similar models in the world of p-complete spaces. This was answered
by the following theorem of Mandell:

Theorem 3.1.0.1. [Man01] Let F,, be an algebraic closure of F,. The functor
C* (= Fp) : (8)” — CAlgg,

X = C*(X;Fp)

from the category of p-complete space to the category of Ew—lﬁ‘p—algebras, sending a space
X to its F-valued cochains is fully faithful when restricted to nilpotent spaces of finite
type. O

r

The image of the above functor lands inside CAlgﬁp the category of perfect algebras
(see 3.2.3.8); a more refined version of the above theorem is proved in [Lurll]. Which
states:

Theorem 3.1.0.2. [Lurll, Theorem 3.5.8] Let F, be an algebraic closure of F,. The
Fp-valued cochains functor C*(—;F,) : (§Prop)yor _, CAlgI-Fp from the opposite category
of p-profinite spaces to the category of commutative algebras over F, is fully faithful
and its essential image is identified with the category of perfect algebras.
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In this chapter, we study the theory of perfect algebras and associated perfection
functors. The inclusion CAlgg; — CAlngp of the category of perfect algebras into the
category of commutative algebras admits both adjoints. We denoted the left adjoint by
(—)# and the right adjoint by (—); the right adjoint is referred to as tilting. We think
of these as perfection functors in the land of higher algebra.

More than just constructing the right adjoint, we provide a formula for the homotopy
groups of A” assuming certain finiteness conditions on A.

Proposition 3.1.0.3. (Homotopy groups of AP Proposition 3.3.2.5) For a finite type!
E.-algebra A, the homotopy groups of A” is given by 1A’ ~ lim | w4+ A where the
sequential inverse limit is taken along the operation Q°, where @ is the 0-th power
operation.

We then apply the above result to the study of the homotopy type of fixed points of
group action.

Let X be a finite G-CW complex; then, there are two different notions of fixed points
that one can talk about. Namely, the genuine fixed points X¢ which depend on the
G-CW complex structure and homotopy fixed points X*“, which only depend on the
underlying space with group action.

There is a natural comparison map X¢ — X"&_ One can ask when this is an equiva-
lence. Here is a conjecture of Sullivan:

Conjecture 3.1.0.4 (Sullivan). Let G be a finite p-group and X be a finite G-CW
complex. Is the natural map X¢ — X"C is an equivalence after p-completion?

Even the case of the trivial action is complicated. For trivial action, the Sullivan
conjecture asks for a finite space X. Is there an isomorphism between X¢ ~ X and
X"G ~ map(BG, X)?

The conjecture is one of the landmarks of equivariant homotopy theory and was an-
swered to be true by the celebrated works of G. Carlsson [Car91], H. Miller [Mil84] and
J. Lannes [Lan92].

The proof of the Sullivan conjecture investigated deep relations between the cohomol-
ogy of fixed points and [F)-cohomology operations. Here is a theorem of Dwyer and
Wilkerson [DW88], which computes the cohomology of fixed points from Borel equivari-
ant cohomology.

Theorem 3.1.0.5. [DWS88| Let G be an elementary abelian group (Z/p)". Let X be a
finite G-CW complex then we have:

H*(XY) ~ F, ®p+pc) Un(H*(Xpe)[e ')

where e € H*(Xj) is the Euler class described 2.1.3, coming from group cohomol-
ogy H*(BG) and Un(H*(Xpg)[e™!]) is the largest unstable Steenrod algebra inside
H*(th)[e_l].

We prove an analogous theorem which computes the fixed points from Borel cohomol-
ogy using the notion of perfection.

We say A is of finite type if 7, A finite dimensional all n
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Theorem 3.1.0.6 (Theorem 3.4.1.4). Let G be an elementary abelian group and X,
a finite G-CW complex. The tilt of the algebra C*(X;k)™¢ ~ C*(X;k)"“[e7'] is
equivalent to C*(X% x BG;k). Where (—)"¢ is the proper Tate construction.

So combining with Mandell’s theorem, we can recover the homotopy type of genuine
fixed points from the Borel equivariant cohomology.

3.2 Power Operations on commutative F -algebras

3.2.1 Recollection of power operations

This section recalls some preliminaries of power operations and their relations to coho-
mology operations on spaces. Much of the material presented here is well known; we
recall them for clarity.

Given X € 8, we can associate the F,-valued cochains C*(X;F,) and using the diago-
nal map A : X — X x X we get an operation mg : C*(X;F,)®@C*(X;F,) — C*(X;F)),
which is not commutative on the nose as a map of chain complexes but is graded com-
mutative after taking homology. The cohomology H*(X;F,) carries the structure of a
graded commutative ring.

The failure of mo to be commutative is a feature rather than a bug, this gives
rise to a family of operations known as the [F,-power operations or the [F,-Steenrod
operations.

P! H'(X;F,) — H*20-D(X,F)).
Before discussing more about the properties of the Steenrod operations, we recall how
they arise.

Let €® = D(F,)® be the presentably symmetric monoidal category whose underlying
category is the derived category of modules over F,,. Let A € CAlg(€C), which means we
have for all n € N, operations m,, : AY — A along with factorisations:

A®n Ty 4

|

Xn
Ath

where the vertical map is the quotient map of the ¥,-action on A®¥" by permuting the
factors.

Example 3.2.1.1. Let X € 8, then X7 X is naturally an E-co-algebra in Sp®. Which
in-turn gives an Ey-algebra structure on C*(X;Fp) ~ mapg, (¥ X, Fp). O

Let us sketch the construction of the Steenrod operation in the case p = 2. Let

A e CAlg(C) and z, € m,(A) be class in degree n, which can be represented by a
Fo-linear map

Zn : Fa[n] — A
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We then form

(2n)®? ¢ (F2[n])®? — A%

taking the equivariant quotient of 2®? by 33 and composing with my : A%§2 — A gives

us

Mo © (ﬂvn)(}?;2 : (IF'Q[n]);?%2 — A (3.1)
Identifying (F2[n])®? with F3[2n], we see that Yp-action on Fy[—n] is given by Ej-map
22 i EIld(]FQ [277,]) >~ Fg.

Since there are no nontrivial units in Fo, we have no nontrivial ¥s-action on Fg[2n].
Hence, (F2 [n])%é2 ~ B ® Fy[2n], we rewrite equation (3.1) as

BYs @ Fo[2n] ~ Cy(BYy; Fa)[2n] — A

we have

Ti+onCu(BE2; F2)[2n] = otherwise

)

{]FZ{ti ®ean}, =0

the image of ¢; ® ea, gives us a class Q" (x,) € T,1:(A). In the literature, these are
often referred to as Dyer-Lashof operations or generalised Steenrod operations.
A more detailed exposition can be found in [BMM+86], and a modern account can be
found in [Law20; GL20].

Given an Ej-algebra A € D(F,) , there is a family of operations on the homotopy
groups mx(A),

For p = 2:

Q- Tn(A) > myi(A) VieZ
satisfying the following properties:

1. Additivity: Qi(z +y) = Q'(z) + Q'(y).

2. Cartan Formula: Q(z) = Ej+k:in(3:)Qk($)

3. Squaring: Q*l(z) = 2.

4. Instability: Q'(z) =0V i < |z|

5. Adem relations: Q'Q’(x) = ¥, (k;k]_fll) QU I~FQk ()

The case of p > 2 :

Plimy(X) — Tnt2i(p—1) (A)

and ‘
P (A) — 7Tn+2i(p—1)—1(A)
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where i € Z. We use uniform notation 5P’ where € € {0,1} to state the Dyer-Lashof
relations:

1. Additivity: 8P (z + y) = BPi(z) + BPi(y).

2. Cartan Formula: 4 A
P(zy) = Sjpn—i P’ (x)PF(z)

BP!(zy) = Bjir—iBP’ () PM(y) + Bjsn—i P’ () BP* (y)
3. Squaring: PI*/2(z) = 22.
4. Instability: B°P!(z) =0V 2i + ¢ < |z|

5. Adem relations:

pk —1i

P'BPI(z) = %y ((p — Dk —j) - 1) Bpiti—kpk

pk —1
Y (p— 1)(]?‘—]) -1 piti—kgpk
pk—1i—1

Remark 3.2.1.2. We can replace the above construction with a field k of characteristic
p. The approach above could be uniformly applied to commutative algebra object E in
Sp; we see that understanding power operations is essentially understanding E*(BX,,).
In particular, working with a field k of characteristic zero, we do not have non-trivial
power operations since C*(BX,,; k) ~ k. O

Proposition 3.2.1.3. Let X € S and k a field of characteristic p > 0, then the action
of Q% and B°P* on the homotopy groups of C*(X;k) is trivial for all i > 0. O

Example 3.2.1.4. Let X = BC), then we have

F,[z], |z |=—1 forp =2

«C*(BC,;F,) =
" ( ’ p) {Fp[x] ®A(y)a | Yy ‘: —1 | xT ’: -2 forp odd

By using the above identities, we have:

In the case p = 2,

ioomy )0, Vi>0
Q(w)_{(fi)x"_i, Vi <0

O

All our argument goes through for both even and odd primes. We choose to demon-
strate the calculations for only the prime p = 2.

It is useful to organise these operations into an algebra as considered in [Man01],

Definition 3.2.1.5 (Mandell). Let B, be the free associative algebra generated by Q'
for p = 2 and P? and BP’ for p > 2 where i € Z and quotient with respect to the two-
sided ideal generated by the Adem relations. The algebra B, is called the Dyer-Lashof
algebra or the generalised Steenrod algbera O
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3 Fixed points via Tilting

For p = 2, let I = (i1,142,...,i,) be a tuple of length n, where i, € Z. We define
Q' = Q1Q™...Q"™ and the excess e(I) = i, + Zz;ll(zk — 2igy1). We say that I is
admissible if i > 2i,1 V1 <k <n.

For p > 2, let I = (ey,11,¢€2,%2,...,€n,1,) We say its of length n, where i € Z and
er € {0,1}. We define P! = g1 P32 pi2 3 Pin and the excess

n—1

e(I) = 2i, + Z 2(ig — pigs1) + €0 — €1+ ...(—1) "€,
k=1

We can state the following proposition of [Man01, Proposition 11.2]:

Proposition 3.2.1.6 (Mandell). The algebra B, considered as an [, vector space for
p odd has a basis { P | I is admissible} (resp. for p = 2 {Q' | I is admissible}). O

On the other hand, given a spectrum X, the [, cohomology Mapg,(X¥ X;F,) has
an action of the [E;-algebra Endg(F,). The elements of 2, = m,(Endg(F,)) are called
[F)-cohomology operations and the algebra 2, is the p-Steenrod algebra.

We now state a result of Mandell [Man01, Theorem 1.4|, which relates Dyer-Lashof
algebra and the p-Steenrod algebra.

Theorem 3.2.1.7 (Mandell). The algebra obtained B, quotient by the two-sided ideal
(1 — P%) (respectively (1 — Q) for p = 2) is isomoprhic to 2. O

3.2.2 Tate-valued Frobenius

In this section, we recall the notion of Tate valued Frobenius, which records the total
power operations. a detailed exposition of the material presented here can be found in
[Will9], and these ideas are due to [Lurll; NS18§].

We start with the following result of J.Lurie [Lurll| and Nikolaus-Scholze [NS18]:

Theorem 3.2.2.1. [Lurll, Propostion 2.2.3] [NS18, Proposition III.1.1] The functor
T, : Sp — Sp taking a spectrum X to (X®P)!C» is exact. O

Theorem 3.2.2.2. |[NS18, Proposition III.1.2| For any exact functor F' : Sp — Sp,
there is an equivalence between the space of natural transformations in exact functors
mappypes (sp,sp) (1d; F) and mapg, (S, F(S)) ~ Q*F(S) O

Definition 3.2.2.3. [NS18, Definition III.1.4] We define the Tate diagonal to be the
natural transformation A, : idg, — T}, corresponding to the map S — S — St ~
S® . O

Where S is endowed with the trivial action, hence we get a map S — S"» and compose
with the map from the homotopy fixed point to the Tate construction.

We restrict to the case of p = 2.

The power operations for Eo-algebras over a field k of characteristic 2 are constructed
in two different ways. The first one is due to Lurie [Lurll, Construction 2.2.6] and the
second using Tate diagonal due to Nikolaus-Scholze [NS18|.
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3.2 Power Operations on commutative IF)-algebras

Let Ty : Mody, — Mody, be the functor V — (V®2)!C2 then tthere is a colimit preserv-
ing approximation T — T5. More concretely, we have T5 as the left Kan extension:

Perfk — Modk i)/7 Modk

Modk .

Since the functor T : Modj, — Mody, is colimit preserving, by Morita theory [Lurl?,
Proposition 7.1.2.4] we have )
To(M) ~ M ® B

where B is a Fa-bimodule, so we can identify B with Ty(k) ~ k'C2 as left modules, this
implies that T5(V) ~ V ® B and the natural transformation gives us a map V® B —
To(V).

Construction 3.2.2.4 (Lurie [Lurll]). Let A be an Ey-algebra; we can define
Q' : YA — A
We have m, (k'“?) ~ k[t,t='] where | ¢t | = —1. From ¢t~(*1 we get a map of the right

modules ¥'k — Y7 B, tensoring with A using the right module structure gives a map
of spectra

Yh®A > Y 'B®A.
We have the Tate cofiber sequence of A®? with respect to the swap action
(A%, — (ABHC 5 (AF2)C2 Ty (A).
Rotating the sequence gives you
STy (A) — ASZ
and since A is an E-algebra we have map
my : (A®%)0, — A
This assembles into the map:
Q :Yk®A->TIBRQA - ST (A) - (A®?) 40, 22 A
Note that since the first map is just a map of spectra, this map Q" is not k-linear. [

The second approach by [NS18] is to use the Tate diagonal to define the Tate valued
Frobenius, which encodes the total power operation.

Construction 3.2.2.5 (Tate-valued Frobenius). Let A € CAlg(Modp,). Then we define
the Tate-valued Frobenius as

Q(t) CA s (A®2)t02 ma AtCe
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3 Fixed points via Tilting

where the target is equipped with trivial action. Therefore, m, A*“2 ~ 7, A((t)) where
| t | = —1. At the level of homotopy groups, we have,

Q(t)(z) = Da;t’

where r € 7,(A) and we define Q*(x) := a; € T,44(A). As a map of spectra we can
extract Q' : ¥'A — A as the composite

¢—(i+1)
_

A — AtCQ E*(iJrl)AtC’z N EiiAhCz LY AL

O]

Remark 3.2.2.6 (Naturality). Given an E,-ring map A — B (not necessarily map of
k-modules), we have the commuting square

A QA At02

|

B QB BtCa

The three definitions of Q° agree; the proof can be found in [Will9, Section 3.5].

Proposition 3.2.2.7 (Cartan formula). Let A be an Ey-algebra, =,y € m.A, then
Q) (z®y) = Q(t)(2)-Q()(y) O

Remark 3.2.2.8. The case of p > 2 is treated in the upcoming article of S. Bharkan in
a very general context. O

3.2.3 Perfect algebras

In this section, we define the category of perfect E-algebras over k, a field of character-
istic p, as a presentable oco-category. In order to do that, we recall the algebra of stable
power operations for an Eq-algebra as introduced by [GL20] and [Lur07].

Construction 3.2.3.1 (Lurie,Glasman-Lawson). Let F be a commutative ring spec-
trum. We have the forgetful functor F' : CAlg(Modg) — Sp from the oco-category of
commutative E-algebra to the category of spectra.

Let us define € := Fun(CAlg(Modg), Sp), which is a stable co-category with F' € C,
which gives us an Eq-algebra Ende(F') and we call this the algebra of stable power
operations following [GL20] and denote it by Pow(E). O

Let A be a commutative E-algebra; then there is an action of Pow(E) on A. Now let X
be a space, then the E-valued cochains C*(X; E) ~ mapg, (X3 X, F) is a commutative
E-algebra so it has a natural action of Pow(E) on C*(X;FE), and also an action of
End(E) and these actions are compatible [GL20, Theorem 1.1].

We can summarise this following the result of [GL20, Theorem 1.1
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3.2 Power Operations on commutative IF)-algebras

Theorem 3.2.3.2. (Glasma-Lawson) Given a commutative ring spectrum E, we have
a map of E;-algebras:

E — Pow(E) — End(E)

such that the action of Pow(E) is compatible with the action of End(E) on C*(X; E).
In particular, we have the following commutative diagram:

SOp w—_E; MOdEnd(E)

C*(—ZE) MOdPOW(E)

1

where the forgetful functor CAlgy — Modg factors through the category Modpoy(g)-
O

We can justify calling Pow(FE), the algebra of power operation with the following
theorem [GL20, Theorem 10.3]:

Theorem 3.2.3.3. Let E = F,,, then m,Pow(FE) is the completion of the algebra B,
(refer 3.2.1.5) with respect to the excess filtration. The map Pow(FE) — End(FE) on
homotopy groups is the quotient with respect to the two-sided ideal (1 — PY) (and
(1—QY for p =2). O

In particular the algebra 7 Pow(F,) is generated by 3P (Q° for p = 2). Given an
E,-algebra A over F,, it is naturally a module over Pow(F,), and this also gives a
spectrum-level action of the power operations on any commutative [Fj-algebra.

Let Modggw( ) denote the full subcategory of Pow (k)-modules on which Q" € T (Pow(k))

acts via isomorphism. We refer to these objects as Frobenius perfect modules or Q°-
local modules.

In order to do this, we check the right Ore-condition for the multiplicative closed subset
spanned by Q° in m,Pow(k). We will demonstrate the Ore-condition at the prime 2,
and a similar proof works for odd primes as well.

Definition 3.2.3.4 (Right Ore condition). In a graded associative ring called R, a set S
of homogeneous elements is said to satisfy the right Ore condition [Lurl7, Section 7.2.3|
if the following three conditions hold:

1. § is multiplicatively closed.
2. Given r € R, s € S there exist v’ € R and s’ € S such that rs’ = sr’

3. v € R and s € S such that sz = 0, there exist s’ such that s’ =0
We begin with the following proposition, which we use repeatedly.
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3 Fixed points via Tilting

Lemma 3.2.3.5. For i > 0, Q*(Q")" = 0.

Proof. We recall the Adem relations for prime p = 2,

Q'Q =% (k o 1) QIHQ!

where the sum is non-zero if § <k < — j.

For the base case, i = 1 and j = 0, the sum is taken over empty set, hence Q'Q" = 0.
Now we work by induction. Let us look at

k—1

10 _ i—k )k
Q'Q —zk<2k_l)cz Q

where % < k < i. Hence the terms appearing in the sum consist of terms when composed
with (Q°)*~! on the right is zero by induction on 1. O

Proposition 3.2.3.6. The collection S = {(Q°)} for i = 0 in m,(Pow(k)), (where by
convention we take (Q°)? = 1) satisfy the right Ore-condition.

Proof. We have to check the conditions of 3.2.3.4, and we see that the condition 1 is
satisfied by definition.

Now let us check condition 2, that is given an r € m,(Pow(k)) and s € S, we need to
provide 7’ € m,(Pow(k)) and s’ € S such that rs’ = sr’.

Let us verify the Ore-condition on r = Q! = Q" Q™...Q" for I = (iy, 42, ...,4,) admis-
sible and s = (Q°)*. If one of the i, is positive, then by admissibility 4,, > 0. By 3.2.3.5
we have that Q(Q")"» = 0, this implies we can take s’ = (Q°) and r’ = 0.

So without loss of generality, we can assume that i, < 0 for all k < 0inr = Q! =
Q"Q"™...Q" where I = (iy,1i2,...,in). We proceed by induction on the length of I. Let
us start with the following observation of what QYQ~7 is for j > 0. By Adem relations,
we have

@ -n (" e e

where 0 < k < j — 1, which in turn gives us

k+j—1

QOQ_j—Q_jQ°=Ek< o )Q‘j"“Q’“(m)

where 1 < k < j—1. Observe the right-hand side vanishes upon multiplying by (Q°)7~1
by 3.2.3.5, so this gives us the following identity

QRUQ(QYY T =Q I (Q").

In particular, we have

(@) QT(QYY ™ = Q@
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3.2 Power Operations on commutative IF)-algebras

so given 1 = Q7 and s = (Q°)7 we can choose ' = Q7I(Q")1~ and &' = (Q*)7+! to
get

QI(Q) T = (QVQI(QYY .

Now let @' be an admissible monomial with I = (iy,4s,...,i,) and i, < 0 Vk. The
induction hypothesis is, for I of length n and Q' admissible and any (Q°)7, we can find
an N such that

QIQY)N = (Q°)Q" Q)N .

Note that the above calculation verifies the case of length 1 by taking N =iy + j — 1.
Now assume by induction we have proved for I of length n — 1, then we for I of length
n, we have for N >4, — 1

QNQNY = Q"Q=..Q"(Q")N = Q"Q™..Q (Q)N QM (@)
So we reduce to the case of QI, where I' = (i1, i2, ...ip—1) which follows from induction.

Finally, for condition (3) of 3.2.3.4, we proceed similar to the previous case, given
r = Q' and if I has an i;, > 0 then we have i, > 0 hence for s’ = (Q°)» we have

r = QN(Q)" = 0.
So without loss of generality, we can assume that i, < 0 for all 1 < k£ < n. But we
have seen that there exists an N such that:

QNQ")N = (Q°)P QN ("),
so if we have (Q°)*Q' = 0 by multiplying suitable (Q°)" on the right we get
(@) Q1@ =0.

However (Q°)*QT(Q°)N = QT(Q°)N** = 0, hence we have proved criteria 3 of 3.2.3.4.
This concludes the proof of the proposition. O

Remark 3.2.3.7. The category of Frobenius perfect modules Modggw(k) is Bousfield
localisation of Modpgy(k) and it is presentable [Lurl?7, Section 7.2.3]. O

Definition 3.2.3.8 (Perfect algebras). We define the category of perfect algebras
CAlg]E; as the pullback:

CAlgl" ——— CAlg,

MolefOW(k) —— Modpoyw(r)

That is the full subcategory of CAlg,, such that the power operation Q° acts by
isomorphism. O

Proposition 3.2.3.9. The category of perfect algebras CAlggr is a full subcategory of
CAlg(k), and it is a presentable co-category.
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3 Fixed points via Tilting

Proof. The categories Modpgy (k) Modgf)w(k), CAlg;, are presentable. The forgetful
functor F': CAlg;, — Modpgy () and the inclusion of Modgf)w(k) — Modpgy (k) are right

adjoints. Hence the diagram that we want to take pullback lives in Pr and inclusion
Prft ¢ Cato, preserves limits. This proves that CA]gEZ is presentable.

Since the inclusion Modggw(k) — Modpoy (k) is fully faithful, we obtain a fully faithful

inclusion CA]gI,:r — CAlg,,. This is because the mapping space in CAlggr is computed
as a pullback of mapping spaces; hence fully faithful inclusion of categories is stable
under pullback. O

3.3 Tilting

In this section, we construct two adjoints to the inclusion CAlgEr — CAlg,,, the right
adjoint to the inclusion is called tilting, and we give an explicit formula for the com-
putation of the homotopy groups of the tilt A” of an E..-algebra A.

3.3.1 Construction of tilting
We first start with proving the existence of the left adjoint (—)# : CAlg;, — CAlg}".

Proposition 3.3.1.1. There exists a left adjoint to the inclusion functor CAlgEr —

Proof. Recall the category CAlgl,jr is defined as a pullback:

CAlgl" ——— CAlg,

MolefOW(k) —— Modpoyw(x)

Since the diagram is a diagram in Pr® and the inclusion Prf* ¢ Caty, preserves limits,
so the pullback is taken internally to Prf%; in particular, we have CAlgl,:r — CAlg;, is a
right adjoint. Hence we have a left adjoint. O

Definition 3.3.1.2. We denote the left adjoint to Modpy,, ;) <> CAlgy, by
(=) : CAlg, — CAlg}”
we refer to this functor as colimit perfection. O

Remark 3.3.1.3. We can also observe that the subcategory CAlggr is closed under
limits by checking the action of Q° on the homotopy groups of the limits. O

Now in order to construct the left adjoint, we prove that perfect algebras are closed
under colimits. We begin with the following observation:

Lemma 3.3.1.4. Let A be a perfect algebra over k, i.e. A€ CAlggr, then A is cocon-
nective and the action Q°: T4 A — T4y ;A is 0, for all i > 0.
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3.3 Tilting

Proof. For any A € CAlg, we have by Q*(Q")’ = 0 for all i > 0 by Lemma 3.2.3.5.
Now if A € CAlg}?, we have QU acting by isomorphism on homotopy groups. Hence
Q' =0.

Let x € m;(A) where i > 0, by instability condition we have Q°(z) = 0, but if A is
perfect Q¥ must be isomorphism, hence z = 0. Since z was an arbitrary element in a
positive degree, we have A is coconnective. ]

Proposition 3.3.1.5. The subcategory of perfect algebras CAlgE’r is closed under col-
imits.

Proof. In order to prove the closure under all small colimits, it’s enough to check perfect
algebras are closed under taking sifted colimits and finite coproducts. The forgetful
functor U : CAlg;, — Mody, preserves sifted colimit and factors through the category of
Modpoy(r) followed by the forgetful functor Modpgy, )y — Mody, which admits both left
and a right adjoint. This implies the factorisation U : CAlgy, — Modpgy, (k) preserves
sifted colimits. Hence, for sifted, it is enough to check the underlying module over power
operations is Frobenius perfect.

Let
A = colimA,,
keK
with Ay perfect for all k € K and K sifted and since the category of Frobenius per-

fect modules Modgf)w(k) inclusion into Modpgy () is closed under colimits we have A is

Frobenius perfect.

The only case remaining is that of finite coproducts, that is, given A, B € CAlg}jr we
need to prove A® B e CAlg}". Let 2 ® y € T,(A® B) where x € m;(A),y € m;(B) and
i+ j =n. We can compute Q°(x ® y) using the Cartan formula:

Q2 ®Y) = j1k-0Q’ (2)Q"(y) = ZiQ'(x)Q " (y)

Since A, B € CAlg}:r and by lemma 3.3.1.4 we have Q' = 0 Vi > 0, so the above
expression reduces to Q%(z®y) = Q%(z) ® Q°(y). Again due to the perfectness of A, B,
we have QU acts via isomorphism on each factor; this proves A ® B is perfect. O

Since the inclusion CAlg}:r — CAlg,, preserves colimits, and since both CAlg?r and
CAlg,, are presentable co-category, we can apply the adjoint functor theorem to get the
right adjoint to the inclusion.

Definition 3.3.1.6 (Tilting). The right adjoint to the inclusion functor CAlgk’ <
CAlg, is called tilting and denoted by

(=)’ : CAlg, — CAlgl™.
O

Remark 3.3.1.7. Since the functor CAlgEr — CAlg,, is fully faithful, the left and right
adjoints are Bousfield localisations and co-localisation, respectively.

This means that given A € CAlg,, one can universally approximate A by perfect
algebras from the left A — A and from the right A — A# with the universal property

39



3 Fixed points via Tilting

given B € CAlgl,jr and A — B a map in CAlg;, we have up to contractible choice a
unique factorisation:

Similarly given a map B — A with B € CAlggr, upto contractible choice we have a
unique factorisation:

B
A A

This will become useful for us to analyse fixed points later in the section 3.3.

3.3.2 Homotopy groups of tilt

In this section, we give a more explicit formula for the tilting construction under certain
finiteness assumptions on the homotopy groups of A.

The forgetful functor CAlg;, — Mody admits a left adjoint [Lurl7, Section 3.1];

Free : Mody, — CAlg;,.
More explicitly, given V' € Mody, we have the free algebra on V' given by:

w .
Free(V) ~ @ V,%J_
j=0

And we call it the Free functor. By free algebra on a generator of degree n, we mean
the free algebra functor applied to k[n], and we denote it by k{x,}.

We start with the following input about the homotopy groups of free algebras|[BMM -+ 86]:
Proposition 3.3.2.1. Let k{xz,} be the free algebra of degree n, we have m,k{x,} is the

free polynomial algebra on the vector space M, where M is generated by basis Q' (z,,),
where I is admissible and excess e(I) = n. O

Remark 3.3.2.2. We can describe the power operation on 7m,k{x,} as follows,

Qi s Tmk{Tn} — Tmyik{xn}

given by ‘

Q' (wn) = Q'Q' (wn)
and we apply the Adem relations to Q'Q’(x,) to rewrite in terms of the basis described
in the above proposition. O
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3.3 Tilting

Since k{z,} is a free algebra, to give a map of commutative algebra from k{z,} to a
commutative algebra A is equivalent to giving a map of modules k[n] — A because of
the adjunction we get

mapCAng(k{xn}a A) — mapcalg,, (Free(k[n]), A) ~ mapModk(k[n]’ A).

In particular, a map of commutative algebras k{x,} — A is equivalent to picking an
element « € 7, (A) and we donote it by

k{an) 222% A

and refer to it as a map induced by sending x,, to a.

This gives us a map for n < 0:

Zn—Q0 (zn
B} 2, )

which extends to a filtered diagram:

Tnt— 0 Tn Tnt—> 0 Tn Tnp— 0 Tn
f{an} ), gy I @), gy Eem @) Gy

we denote

T 0 Tn Tp—> 0 Tn Tnpr—> 0 Tn
C = colim(k{z,} 228, gy @) gy @) g v )

where the colimit is taken in CAlg;,. Now we prove the main theorem of this section
which is crucial in computing the homotopy groups of the tilt.

Theorem 3.3.2.3. The colimit C of the filtered diagram above is a perfect algebra.

Proof. We then have forgetful functor CAlg; — Sp, which preserves sifted colimit. In
particular, the underlying spectrum can be calculated as a colimit in the category of
spectra.

Also, taking homotopy groups commutes with taking filtered colimits. Since perfectness
can be tested on homotopy groups,so we proceed to compute the filtered colimit of
homotopy groups.

Recall the homotopy groups m.k{x,} from 3.3.2.1 is a polynomial algebra on a vector
space M, with basis Q!(x,) with I admissible and e(I) = n.

xn'_’QO (In)

The map k{z,}
sending

k{x,} on homotopy groups is the unique map induced by

Ql(wn) = QIQO(SUVL)

Which takes M to M. Hence we can compute the filtered colimit on M, and then take
polynomial algebra in the resulting vector space:
xn'_’QO(xn)

In’_’QO(In) anQo(xn)

M = colim(M M M M..)
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3 Fixed points via Tilting

Note that M is a bimodule over the Dyer-Lashof algebra (cf 3.2.1.6) in a natural way.

Hence the vector space M is a module over

~ 0 0
B, = colim(B, L B, L B, - ..

where the colimit is taken over multiplication on the right. This colimit can be com-
puted since we checked in 3.2.3.6, the collection S satisfy the right Ore condition.

We can identify B, ~ 98,[(Sq®) '] with A,[(Sq*)*] the steenrod algebra adjoint a
formal variable Sq” and its inversion, via the map

Apl(Sa)*] — B,[(Sq") ']
Sq’ — Sq'/Sq”

for 4 > 0 and
SqO . SqO

So Sq° acts invertible on both the left and right side of the bimodule M. O

Corollary 3.3.2.4. The algebra C in the above proposition is equivalent to k{xn}#,
where (—)# is left adjoint to the the inclusion CAlg}" < CAlg,.

Proof. Since the colimits C' is perfect, we have
C ~ C% ~ [colim(k{z,} @), k{z,} @), k{z,} 2nQ@n), k{zn}..)]"
using the fact that (—)# is a left adjoint we have
C ~ colim(k{x, }* 22 @an), k{x, )7 ineiON k{x,}* i CON E{zn}7..)

where the transition maps are isomorphisms by definition on perfect algebras. Hence
we have C' ~ k{z,}7. O

Proposition 3.3.2.5. (Homotopy groups of A”) For a finite type® En-algebra A the
homotopy groups of A° is given by m, A ~ lim m+A where the sequential inverse limit
is taken along the operation Q°.

Proof. We can use the above results and compute the homotopy groups of the tilt 4°. A

natural thing to do is to map in from the free algebra k{z,} into AP Since the homotopy
groups of mapcag(k{zn}, A) can be computed via the free-forgetful adjunction:

mapcalg, (k{l‘n}, Ab) = IaPpjed,, (k[n]a Ab)
for ¢ > 0, this implies

mi(mapeasg, (Fan}, A7) = mimapygaq, (k[nl, A7) = momapg, (k[n + i, A7) = w4, 4"

Now since A’ is perfect, any map k{z,} — A’ by universal property factors as follows:

2We say A is of finite type if 7, A finite dimensional all n
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Hence we have

mape g, (F{n}, A°) ~ mape g, (K}, A7),

But we also have
mapaag, (k{zn}?, A’) ~ mapg g, (K{zn}¥#, A),

> is a colocalisation.

since (—)
Now by 3.3.2.4 we can identify k{z,}” with

T 0 Tn Tnt—> 0 Tn Tn— 0 In
colim(k{a,) S0, gy T2 Qan) gy I @) 1)

we have

anQO(zn)

” ) 2 —>Q%(zn)
mapcalg, (k{zn}", A) ~ lim(... mapcalg, (k{zn}, A) ———> mapgypyg, (k{zn}, A4))

This gives us a formula for homotopy groups of tilt via,

me(mapeayg, (k{n}, 4°)) = me(mapeag, (5{za)#, 4)) = m (lm mapeay, (i}, A)

)

Topn A’ ~ my(lim mapcayg, (k{zn}, 4))
1
We can compute the homotopy groups of sequential inverse limits Linn X; using Milnor
lim! exact sequence. But there is no contribution from the lim! term due to the finite
type condition on A; that is, all the groups are finite; hence, the image in the limit
diagram is eventually constant, which is the Mittag-LefHer condition for the vanishing
of lim'. Hence we obtain,

Tipn A’ ~ Liglm(mapcAlgk(k{xn}a A))) = limmi A
Q° Q°

This proves the claim. O

Remark 3.3.2.6. Note that for n < 0, mapcayg, (k{zn}, A)) sees only the homotopy

groups ;A for i > n since the mapping space has no negative homotopy groups. This
is taken care of by varying n. O

3.4 Fixed points and tilting

Let G be an elementary abelian group, X a finite G-CW complex, we use the formal-
ism of tilting to recover the p-local homotopy type of X¢ from the Borel equivariant
cohomology of X.
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3 Fixed points via Tilting

3.4.1 Proper Tate construction

Let k be a field of char(k) = p, G = (Z/p)", we have

E[[x1, 2, ..., zn]], for p =2

1:C*(BG; k) = m k" =
kl[z1, 22, ..., zn]] ® A1, €2, ..., €,), otherwise

where | z; |= =1 for p=2and | z; |= =2, | ¢ |= —1 for p > 2.

Let I < {1,2,...,n} and denote x; = >, ; x;, we define the Euler class e € 7 k"C as
discussed in 2.1.3 as a product:

i
Ic{1,2,...,n}

where the product is over I non-empty subsets of {1,2,...,n}.

Theorem 3.4.1.1 (Localisation theorem). Let X be a finite G-CW complex, we have
the fibration which records the G-action:

X*)th

a

BG

to get an induced map a* : C*(BG; k) — C*(Xpg; k), we then have

C*(Xna; k)[e Y] =~ C*(XY x BG; k)[e™ Y]
we X© is the genuine fixed point. O

Remark 3.4.1.2. The above theorem, as pointed out in 2.1.3.3, can be stated as
C*(X; k‘)TG ~ C*(XG; k,)TG

where (=)™ is the proper Tate construction (cf. 2.1.2.7), where the target is equipped
with trivial action. It is also important to note that the above isomorphism is an
isomorphism of E-algebras. O

Question 3.4.1.3. Let A be the Ey-algebra C*(X; k)™C, what is A"? O

Theorem 3.4.1.4. For G an elementary abelian group and X, a finite G-CW complex.
The tilt of the algebra C*(X;k)™¢ is equivalent to C*(X% x BG; k).

Proof. We have (C*(X;k)™%)" ~ (C*(X%; k)™@)" by the localisation theorem. The
proper Tate construction (—)TG is an exact functor hence
(C*(XG;k)TG)b ~ ((k‘rG>XG)b.

By construction, (—)b is a right adjoint to the inclusion CAIg}? — CAlg;, so tilting

commutes with taking limits. This gives:

(C*(XG; k)TG)b ~ ((kTG)b)XG
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3.4 Fixed points and tilting

k,‘rG

So it is enough to understand what (k7¢)" is with respect to the trivial G-action on k.
are finite dimensional in each degree. Hence to calculate
the homotopy groups of the tilt (k:TG)b, we can use Proposition 3.3.2.5.
kTC.

The homotopy groups of

We have 7, (k7¢)" ~ lim, 7. (k™), where the inverse limit is taken with respect to the

operation Q°, so we try to understand how Q° acts on homotopy groups of

We have the map of E,-algebras
th N kTG

given by localisation at the Euler class described above. Since the Tate valued Frobe-

nius is natural with respect to the map of Eq-algebra (cf 3.2.2.6), we get the total power

2t71

operation:
=T, +T;

Q1) (i)
Similarly, for all classes that come from k"¢. So the only classes remaining are the
ones that arise from localisation, so we can ask what is Q(t)(z%)‘? We can compute it

using the Cartan formula (3.2.2.7) as follows:

@(txxi)@(w(;) Q1) =1
1 1
QG = S
B 1
Com+ z3t—1
ot
w7 (14 )
t +2
:?(1"1‘;“1‘?4-)
t 2 3
= ? + ? + ? + )

this implies QO(I%) = 0. Now by using Cartan formula we get Qo(x%) = 0 for all n

and the same calculation goes through for Qo(é) =0.
is a perfect algebra, we have a factorisation:

Since kMG

The above computation shows that k"¢ — (k7¢)" is an equivalence. This proves the
]

claim C*(X; k)™ is equivalent to C*(X% x BG; k).
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3 Fixed points via Tilting

Corollary 3.4.1.5. Given G an elementary abelian group and X a finite G-CW complex
then we have isomorphism of Ey-algebras:

(C*(X;k)C) @pne k ~ C*(XY; k).

3.4.2 p-adic homotopy theory

In this section, we recall some results from p-adic homotopy theory from [Lurll]. To
recover the homotopy type of the genuine fixed points from Borel cohomology using
results from the previous section.

Definition 3.4.2.1. [Lurll, Definition 2.4.1] Let p be a prime number.Let X € § is a
p-finite space if the following condition holds:

1. X is n-truncated for some n.

2. mo(X) is a finite set.

3. For all x € X, the homotopy groups (X, z) is finite p-group for all k£ > 1.

We denote by SP~fi" = § the full spanned by p-finite spaces.

Definition 3.4.2.2. [Lurll, Definition 3.1.1] For € an accessible co-category with all
finite limits, we can definite the co-category of pro-objects Pro(C) as the full subcate-
gory of Fun(€, 8)°P spanned by functors which are accessible and preserve finite limits.

For € as above, there is a fully faithful embedding j : € — Pro(C) [Lurll, Re-
mark 3.1.4], which sends an object X € € to be the presheaf co-represented by X.

The category of pro-objects Pro(€) is obtained by formally adding co-filtered limits to
G, and satisfies the following universal property:

Proposition 3.4.2.3. [Lurll, Proposition 3.1.6] For €, an accessible category with all
finite limits and D category with all co-filtered limits. Then there is an equivalence

Funf!(Pro(€), D) — Fun(€, D)

where the category on the right is the full subcategory of Fun(Pro(C), D), which pre-
serves cofiltered limits.

Definition 3.4.2.4. [Lurll, Definiiotn 3.1.12] We define the category of p-profinite
spaces Pro(SP~f") as the pro-category of p-finite spaces. We denote it by gPro(®)

Let k be a field of characteristic p. The functor C*(—; k) : 8P~ — CAlg}? preserves
finite limits. To see this, it is enough to check the functor C*(—; k) preserves finite
products and pullbacks.

By Kunneth theorem C*(—; k) takes product X x Y to C*(X; k) ®, C*(Y; k) which is
the product in CAlg;”. Now let us consider the pullback of p-finite spaces:
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3.4 Fixed points and tilting

X —Y
o
X —Y

Since the spaces in the pullback are p-finite, we have myY is finite, and the m (Y, y) is a
finite p-group for all y € Y, so the action of 71 (Y, y) on cohomology of the fiber of X — Y
is nilpotent. Hence we have the Eilenberg-Moore theorem [Lurll, Corollory 1.1.10],
which says the induced map

0: C*(Y's k) ®cx (v CF (X3 k) — C*(X s k)
is an equivalence of E-algebras.

The functor C*(—; k) : 8P~ — CAlg” extend to a functor C*(—;k) : 8PP —
CAlg;? which preserves all small limits and this extension is essentially unique by [Lur09,
Proposition 5.5.1.9].

Theorem 3.4.2.5. [Lurll, Proposition 3.1.16||[Mandell, Lurie] Let k be a separably
closed field of characteristic p. Then the functor C*(—; k) : 8PP — CAlgf is a fully
faithful embedding.

Theorem 3.4.2.6. [Lurll, Theorem 3.5.8] Let k be an algebraically closed field, then
the functor C*(—; k) : 877°(P) — CAlg}” has the essential image identified with the full
subcategory CAlggr of perfect algebras.

So the perfection functors (—)# and (—)” constructed in section 3.3, universally ap-
proximates an E.-algebra A by cochains of profintie spaces A# and A’.
Let $nilfin—type he the category p-complete nilpotent spaces of finite type which is a

full subcategory of 8F™(). So we have Mandell’s theorem:

Theorem 3.4.2.7. [Man01| Let k£ be an algebraically closed field of characteristic p.
C*(—; k) : Suibfin=type , CAlg? is fully faithful and given X e SMLA=WPe we can
recover the homotopy type of X by mapping into k. That is,

mapcag, (C*(X; k), k) ~ X.

Recall from Corollary 3.4.1.5, given G an elementary abelian group, k£ an algebraic
closed field of characteristic p and X a finite G-CW complex we have isomorphism of
Ey-algebras:

(C*(X; k)Y @pne k ~ C*(XC; k)

Combining this with Mandell’s theorem, we have:

Corollary 3.4.2.8. Let G be an elementary abelian group and X a finite G-CW com-
plex such that X© is nilpotent, then the p-local homotopy type of X© is equivalent to
mapcag. (A, k), where A ~ (C*(X;; k)T @pne k

P

Remark 3.4.2.9. In principle, we can drop the assumption on X being nilpotent and
always recover the homotopy type of X as a profinite space using Mandell’s theorem.
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4 A remark on Segal conjecture

The material presented in this chapter is a joint work with Robert Burklund. The
version appearing in the thesis is written by the author.

4.1 Introduction

The Sullivan conjecture asserts that for G a p-group and X a finite G-CW complex,
then the natural comparison map between the genuine fixed points and the homotopy
fixed points

XG N XhG
is an equivalence after p-completion.

The stable analogue of this question is the Segal conjecture, which asks if, for a p-group
G, the natural comparison
(Sa)¥ = (Se)"“

an equivalence after p-completion. Where Sg is the genuine G-sphere, which is the
unit in the category of genuine G-spectra, (Sg)“ denote the genuine G-fixed points and
(Sg)"@ denote the homotopy fixed points.

The conjecture was answered to be true by a sequence of progress, for G = Z/2 by
W. H. Lin [Lin80|, for G = Z/p for odd primes by J. H. Gunawardena [Gun80], for
elementary abelian groups by J. F. Adams, J. H. Gunawardena, H. Miller [Ada74| and
G. Carlsson [Car83] and finally for all groups by G.Carlsson [Car84].

In the case of G = Z/p, the Segal conjecture is equivalent to asking if the canonical
map S — S*2/? from the sphere spectrum to the Tate construction with respect to trivial
Z/p action exhibits S!Z/P as the p-completion of S. This is answered to be true by W.
H. Lin [Lin80] and J. H. Gunawardena [Gun80.

Since both p-completion and Tate construction are exact functors, the result extends
to all finite spectra. That is, for any finite spectrum X with trivial Z/p-action, the map
X — X'/P is an equivalence after p-completion.

In this chapter, we investigate for which non-finite spectra we can extend the Segal
conjecture for Z/p. We introduce the notion of I-nilpotent spectra:

Definition 4.1.0.1 (Definition 4.3.1.9). Let I be the augmentation ideal of the Steen-
rod algebra € : A, — F,. We say a spectrum X is [-nilpotent if we have H,(X) ~
lim H,(X)/I".

this helps us state the Segal conjecture for non-finite spectra. In particular, we have:

Theorem 4.1.0.2 (Theorem 4.3.1.10). Let X be a bounded below spectrum, p-complete
and I-nilpotent, then X satisfies the Segal conjecture for Z/p. That is, X — X tZ/p ig
an equivalence, where the Tate construction is with respect to trivial action.
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4 A remark on Segal conjecture

We also discuss examples of non-finite spectra in this chapter. One particular class of
example, if X is a space with locally finite cohomology (see Definition 4.3.1.11) and is
of finite type, then the suspension spectrum X% X satisfy the Segal conjecture.

This result is very similar to the result of H. Miller [Mil84] in the unstable world,
which asserts that for a locally finite space with trivial action of a p-group G, the map
X — map(BG, X) ~ X" is an equivalence after p-completion.

4.2 Preliminaries

In this section, we recall some important objects and constructions that feature in the
proof of the Segal conjecture and state the Segal conjecture for G = Z/p in terms of the
Adams spectral sequence.

4.2.1 Segal conjecture for Z/p

Before starting the discussion on Segal conjecture, we recall the completion theorem of
Athiyah and Segal. Let KUg be the genuine equivariant complex K-theory as defined
by [Seg68].

Given a G-space X we can consider two types of cohomology, the equivariant K-theory
KU, é( and the Borel equivariant K-theory KUX"¢ and a comparison map between them

KUZ(X) — KU*(Xpq).

In the case of X = % we have moKUg(*) is the representation ring R(G) of G. the
Atiyah-Segal completion theorem [Ati6la; AS69| says

R(G)} =~ mgKUBY

is an equivalence, where R(G)7 is the completion with respect to the augmentation ideal

1.
Motivated by this, G. Segal replaced the genuine K-theory by the genuine equivariant
sphere S and conjectured is the natural comparison map:
A(G)} = mpSPo+
is an equivalence for any finite group G, where A(G) is the Burnside ring which can be
identified with 7§/(S¢) and I the augmentation ideal.

The conjecture was answered to be true by a sequence of progress, for G = Z/2 by
W. H. Lin [Lin80|, for G = Z/p for odd primes by J. H. Gunawardena [Gun80]|, for
elementary abelian groups by J. F. Adams, J. H. Gunawardena, H. Miller [Ada74] and
G. Carlsson [Car83] and finally for all groups by G.Carlsson [Car84].

There is a spectrum-level statement of the above statement. Let G be a finite p-
group. Sps be the category of genuine equivariant spectra, with unit object Sg the
G-equivariant sphere. Then the Segal conjecture can be stated as the comparison map:

(Sa)¥ — (Se)"@

is an equivalence after p-completion.
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4.2 Preliminaries

Let G = Z/p, for any X € Sp we have the Tate pullback square:

X2r — 5 o%/r(X)
l :
Xhep thZ/p
This implies to get the equivalence
(Se)® — (Sa)"“
if and only if
LP(Sq) ~ S — SH/P

is an equivalence after p-completion.
Theorem 4.2.1.1. [Lin80; Gun80] Let G = Z/p, then S} ~ St/p, O

We have the inflation functor ¢ : Sp — Sp, which is a symmetric monoidal functor
and a left adjoint. Using this, any spectrum X can be seen as genuine G-spectrum
whose underlying Borel spectrum X with a trivial action of G.

Since ¢ is symmetric monoidal we have i(S) = S¢ and since ¢ is also a left adjoint for
any X € Sp, i(X) =i(S)® X'

We can then ask the following question:

Question 4.2.1.2. For a spectrum X and G = Z/p, is the map i(X)¢ — i(X)"“ is an
equivalence after p-completion ? or equivalently, is the map X — X tZ/P i an equivalence
after p-completion, where the underlying action on the spectrum is trivial?. O

Remark 4.2.1.3. By Theorem 4.2.1.1 and observing both p-completion and Tate con-
struction are exact, we can say the answer to 4.2.1.2 is true if X is a finite spectrum. O

In this note, we extend this result beyond finite spectra and give some examples of
non-finite spectra that satisfy the version of the Segal conjecture mentioned above.

Remark 4.2.1.4. There are also many non-examples to the question 4.2.1.2, for exam-
ple, set X = KU,', then the Tate construction X YZ/p with respect to trivial action is a
rational algebra but K'U;" is not rational. O

We recall the following formula of Tate construction with respect to trivial Z/p-action
(cf. |Lin80; Sad92]).

Construction 4.2.1.5 (Stunted projective space). [Ati61b| Let G = Z/2 and o be the
sign representation on R, we can then form the representation sphere Sk for all k € Z.
We define

RPI?O = (Ska)hcz
for k > 0, RP? = ¥%cofib(RP;_; — RP®). In general, for all k£ € Z, RP has one cell
on each degree greater than equal to k.

!Which makes sense, since Spy, is a stable, presentably symmetric monoidal co-category, so we can
tensor with respect any object X € Sp
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4 A remark on Segal conjecture

For p > 2, we replace o with A, where ) is the representation whose underlying vector
space is the complex plane and Z/p acts via p-th roots of unity. Then we define

Py = (S"e,
which is a version of stunted lens space. ]

Remark 4.2.1.6. I. M. James [Jamb9| first introduced the definition of stunted pro-
jective space via James periodicity; the above description was revisited in [Ati61b]. [

Proposition 4.2.1.7. [Lin80] In this form, we can express the Tate construction for
the trivial action:
X'/2 ~ lim(X ® SRPY)
k
for odd primes,
X'2P ~ lim(X ® BF)
k

4.2.2 Adams spectral Sequence

Let us recall some definitions ([Pst22, Definition 3.13, 3.14]), fix E' a homotopy associa-
tive ring,

Definition 4.2.2.1 (finite E-projective). [Pst22, Definition 3.13] A spectrum X is said
to be finite F-projective if X is a finite, F,X is finitely generated and projective over
the graded ring Fi. O

Definition 4.2.2.2 (Adams-type spectrum). [Pst22, Definition 3.14] A homotopy asso-
ciative ring E is said to be of Adams-type, if E'is written as a filtered colimit £ ~ lim E,,
where each F, is a finite E-projective and we have the E-cohomology of F, is dual to
its homology, i.e,

E*E, ~ Hompg, (ExE,, E)

O

Example 4.2.2.3. Examples of Adams-type spectrum include MU the complex cobor-
dism spectrum, KU, the p-adic complex K-theory, any Landweber exact cohomology
theory (which consists of the previous example), F,, the Eilenberg Maclane spectrum. [

Let E be an Adams-type spectrum. We can associate the oco-category of synthetic
spectra in the sense of [Pst22].

Before spelling out what is the category of synthetic spectra, we start with some
motivations,

For E an Adams-type spectrum, Y finite F-projective and X any spectrum J.F. Adams
[AdaT4] constructed a spectral sequence

E2 NEthiE(E*Y’E*X) = Wth(map(Y’Xﬁ))

s,t —
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4.2 Preliminaries

where the Ext groups are calculated in the category of comodules over EyF and X
denote the F-completion of the spectrum X.

The Adams spectral sequence plays a crucial role in the computation of stable homo-
topy groups of spheres by setting £ = F),,Y =S, X =S to get

E527t = EXtFP*FP (FP*X’ IFP*Y) = T« (S]/o\)
where ), ), is identified with A is the mod-p dual Steenrod algebra.

Remark 4.2.2.4. Given R an Eq-ring, we can form the Amitsur complex or the cobar
construction:

——
H %
S—— R . R®R-—>R®R®R---.

The Adams spectral sequence is the associated descent spectral sequence which con-
verges to the R-completion of the sphere spectrum. To identify the Es page above,
we must impose certain flatness conditions on R. For example, R is an Adams-type
spectrum. ]

Remark 4.2.2.5. Let f : X — Y be a map of spectra if we want to prove that f is
a p-adic equivalence (i.e., completion with respect to S/p), a useful strategy is to prove
the Es page of the Adams spectral sequence is an isomorphism to get an isomorphism
of p-complete homotopy groups of X and Y. O

Remark 4.2.2.6. So a reformulation of the question 4.2.1.2 is: is the limit in 4.2.1.7
for a spectrum X is equivalent to its p-completion? So in the spirit of 4.2.2.5, Lin
[Lin80] establishes an isomorphism between Adams spectral sequence for X and X%/
for a finite spectrum X. We wish to follow the same calculation and extend this result
for a larger class of spectra. O

4.2.3 Synthetic Spectra

To carry out our computations with the Adams spectral sequence, we use synthetic
spectra introduced by P. Pstragowski [Pst22], where a synthetic spectrum is a categori-
fication of the Adams spectral sequence.

Let E be an Adams-type spectrum?, to it we can associate the category Syng of E-
based synthetic spectra. We refer the reader to [Pst22| for its construction, and we recall
some important properties to prove our results.

Proposition 4.2.3.1. [Pst22, Proposition 4.2] The category of E-based synthetic spec-
tra Syng is a stable, presentably symmetric monoidal co-category. O

Lemma 4.2.3.2 (Synthetic analogue). [Pst22, Lemma 4.4] There is a functor
vg 1 Sp — Syng

is canonically lax-symmetric monoidal and preserves filtered colimits. O

2refer to Definition 4.2.2.2
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4 A remark on Segal conjecture

Lemma 4.2.3.3 (Symmetric monoidality). [Pst22, Lemma 4.24] Let X be a spectrum
such that its filtered colimit of finite F-projective spectra, then the comparison map

v(X)@vY) - v(X®Y)
is an equivalence O
Corollary 4.2.3.4. In particular for £ = F,, any finite spectrum is finite [F-projective.

Therefore any spectrum can be written as a filtered colimit of finite IF-projective spec-
trum; hence vp, is symmetric monoidal. O

In this note, we will only work with £/ = [Fj; hence we can assume v is symmetric
monoidal.

Definition 4.2.3.5 (Bigraded Sphere). |[Pst22, Definition 4.6] We define the bigraded
sphere:

St = p(Sh)
Ss,t = Es_tl/(St) ~ Es—tSt,t
]

In general, the synthetic analogue functor v : Sp — Syny does not preserve all colimits.
By lemma 4.2.3.2, we have that v preserves all filtered colimits. Here is a criterion for
when v preserves fiber sequences.

Lemma 4.2.3.6. [Pst22, Lemma 4.23| Given a fiber sequence X — Y — Z in Sp, then
vX — vY — vZ is a fiber sequence if and only if we have a short exact sequence of
E.E comodules 0 — Ey(X) — E.(Y) - E«(Z) — 0.

Definition 4.2.3.7 (The map 7). [Pst22] In particular, v does not preserve suspensions.
There is a natural comparison map:

Yr(X) > v(EX)

setting X = S7! we get a map 7 : S%71 — S%0 and for any synthetic spectrum X we
get a map 7® X : Yo-1x , »00x = x|

Definition 4.2.3.8 (7-complete and 7-invertible). [Pst22; BHS22| Let C'7 denote the
cofiber of (7 : S%~1 — §%0) and we refer to C as the cofiber of 7. We say a synthetic
spectrum X is 7-invertible if the map 7 ® X : 71X — X is an equivalence and
T-complete if the map X — LiﬂlnX ® C7™ is an equivalence. This is same as being
complete with respect to the dualisable algebra C'7 in the sense of 2.1.1.

We denote Synp[r~!] and Synj ' for the full subcategories of r-invertible and 7-
complete synthetic spectra respectively. ]

Proposition 4.2.3.9. [Pst22, Proposition 4.33] The inclusion of 7-invertible synthetic
spectra 7 : Syng[r71] < Syny admits a left adjoint (—)[7~!] : Syng — Syng[r~1].
Given a synthetic spectrum X then the 7-inversion is given by

X[ =lp(X 55%x 592X 5 )

the colimit over 7. In particular, the localisation is smashing with S%°[7~1]. O
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Theorem 4.2.3.10. [Pst22, Theorem 4.7 and Proposition 4.40] The composition of

_ —1
functors Sp - Syng il Syng[r!] is an equivalence and identifies Syng[r}]
with the category of spectra Sp. The synthetic analogue functor v : Sp — Synpy is fully
faithful. For any X € Sp, then

v(X)[r 1 ~ X.

Proposition 4.2.3.11. [Pst22, Corollory 4.30] The cofiber of 7, C'7 has a unique E-
algebra structure such that S0 — C7 is map of E-algebras.

Theorem 4.2.3.12. [Pst22, Theorem 4.46] For F a homotopy commutative ring spec-
trum, then there is a fully faithful inclusion Mod¢c, < Stableg,p from the category
of Ct-modules to the category is stable oo-category of F,E-comodules (in the sense of
Hovey?). The functor v(—) ® C7 : Sp — Modc; is identified with the functor E,(—)
such that the following diagram commutes

Mod¢c; — Stableg,E

V(—)@CTT /
Ex(-)
Sp

Following [Pst22], we think of Syny as a "one-parameter deformation of the category
of spectra" with 7, the deformation parameter. Setting 7 = 0, that is tensoring with Ct
lands in Mod¢; and inverting 7 lands in Sp, we have the following diagram summarising
the above discussion:

Sp
ly By (-)
Syng
CT&
Modc

From now on, set I/ = [F), then the bigraded sphere S%b form a system of compact
generators of Syan, and define the synthetic homotopy groups of X € Synﬂ;p to be the
homotopy class of maps [S*?, X] = m (rnapsyan (S*?, X)) [Pst22, Definition 4.9]. Then
a map of synthetic spectra f : X — Y is an equivalence if and only if it induces an
isomorphism of bigraded homotopy groups.

For X e Sp, vX is a categorification of the F, based Adam spectral sequence, by the
following result [Pst22, Lemma 4.56]. For X,Y € Sp then

s t(Homsyn, (X, 1Y ® 7)) ~ Exty o (H(X), Hi(Y))

which is the F>-page of the Fj,-based Adams spectral sequence converging to the homo-
topy groups of mapg,(X,Y,") and by definition there is an action of 7 on the bi-graded
homotopy groups, which encodes information about differentials in Adams spectral se-
quence for more details refer to [BHS22, Section 9].

Srefer to [Pst22, Section 3.2|
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4.3 Segal Conjecture for /-nilpotent spectra

4.3.1 Proof of the main theorem

Definition 4.3.1.1. [BHS22, Definition 9.16] A spectrum X is said to be E-nilpotent
complete if F-Adams resolution of X converges to X.

Example 4.3.1.2. Let X be p-complete, bounded below spectrum, then X is F,-
nilpotent [BouT79].

Proposition 4.3.1.3. [BHS22, Proposition A.11] Given X € Sp, then the following are
equivalent:

1. X is E-nilpotent
2. vX is T-complete

In particular, v.X is 7-complete if X is bounded below p-complete spectrum. O

Remark 4.3.1.4. Given any two 7-complete objects X,Y € Syan and amap f: X —
Y such that f ® C'7 is an equivalence then f is an equivalence. In particular,

fFlr ' X[r 1 - Y[
is an equivalence.

Let us come back to the Segal conjecture for Z/p, which asks, given a spectrum X,
when is the canonical map X — X'/P an equivalence, where the Tate construction is
with respect to the trivial action. We can transport the problem into the category of
F)-based synthetic spectra and try to answer it in Syan.

Remark 4.3.1.5. We will carry out the discussion from now on for prime p = 2. The
results for odd primes follow by replacing RP° with P} defined in Construction 4.2.1.5.

Let us assume X is bounded below spectra, p-complete. Then v(X ® YRP°) is a
T-complete spectrum for all k € Z. Where RP* is the stunted projective spectrum as
constructed in 4.2.1.5.

Since the category T-complete synthetic spectra spectrum is closed under limits, we
have Y = lim v(X ® XRP°) is also 7-complete. After inverting 7 we get Y[r 1] ~
lim X @ SRPP ~ X'2/P,

So, in particular, we have a map X — Lglk(X ®XRPF) ~ X tZ/p after applying v we
get map
vX — v(lim X ® XRP?) — limv(X @ XRP°)
k k

Hence if we prove that the map vX — lim V(X ®XRPP) is an equivalence of synthetic
spectra, we obtain the Segal conjecture after inverting 7. In general, T-inversion does
not preserve limits, but the limit in question is preserved. This is because T-inversion is
given by taking colimit along multiplication by 7, which acts eventually by isomorphism.
Hence we can commute the limit across an eventually constant limit.

Both vX and Lglk V(X ® XRPYF) are T-complete; therefore, it is enough to prove the
equivalence after tensoring with C'r. Hence we have the following reformulation:
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4.3 Segal Conjecture for I-nilpotent spectra

Proposition 4.3.1.6. Let X be a bounded below p-complete spectrum then X — X tZ/p
is an equivalence if and only if v X — mk v(X®XRP) is an equivalence after tensoring
with C'T.

Recall that C7 ~ Cofib(r : %1 — 8§%9), where both S%~! and S"° are dualisable,
hence C'T is also dualisable. So we have

Cr ®lim (X ® SRPY) ~ lim C7 @ v(X ® SRPY)
k k

since CT @ v(—) ~ H,(—) we have,
~ lim Hy (X ® ERP) ~ lim Hy(X) ® Hy(ERP).
k k
So we have to prove that the natural map:
Ho(X) — lim Hy (X) © Hy(SRPY)
k
is an equivalence.

We now prove a useful lemma which we will use repeatedly,

Lemma 4.3.1.7. Let Y be bounded below spectrum, which is of finite type, that is,
the k-th skeleton of Y is finite for all k. Let N be the poset of natural numbers and
X~y : N — Sp be a functor such that X; is uniformly bounded below spectrum for all
i € N. Then

Y®li£n X; ~ lign Y ® X;.

X,; we obtain,

Y@HXZ»:H Y ® X;.

el el

Similarly, for product [ |

el

Proof. We will prove the case of N-indexed limit and the case of product is similar.
Since Y is of finite type, we have Y ~ co}ﬁim Y®) where Y(¥) is a finite spectrum for

all k. Hence we have:

Y @lim X; ~ colim Y @lim X;

K2 (]
since Y(®) is finite, hence dualisable, we can commute the limit to obtain:
colim Y @lim X; ~ colim lim Y @ X;
K3 K3

we have the map:

colim lim Y®H @ X; > 1limY ®X;

1 K3

to prove it is equivalence enough to prove isomorphism on homotopy groups. So let us
fix an integer b and try to prove that the comparison map is an isomorphism on 7.

Since Y®) — Y be is k-connective and since X; is uniformly bounded below for all i.
Let us say m,(X;) = 0 for all n < a. Then, the cofiber of

colim lim YH @ X; > 1limY ® X;
1 (3

is a+k-connected. So for k large enough, we have a+k >> b, hence it is mp-isomorphism.
O
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4 A remark on Segal conjecture

The category of synthetic spectra carries a natural t-structure [Pst22, Section 4.2| with
heart E, F-comodules with respect to which we can run the same argument above and
get the following lemma which looks exactly as the above.

Lemma 4.3.1.8. Let Y be a bounded below synthetic spectrum of finite type. Let N
be the poset of natural numbers and X(_y : N — Synp be a functor such that X; is
uniformly bounded below for all ¢ € N. Then

Y ®@lim X; ~ lim ¥ ® X;.
7 3
Similarly, for product [ [,.; X; we obtain,

Y®HXZ~2H Y ® X;.

el el

O]

Let us introduce a definition before stating the main theorem; given a spectrum X,
the F)-homology has an action of the Steenrod algebra A, such that for Sq¢' € A, and
r € Hy(X) then S¢'(z) € Hy—i(X).

Definition 4.3.1.9. Let I be the augmentation ideal of the Steenrod algebra € : A, —
Fp. We say a spectrum X is I-nilpotent if we have have Hy(X) ~ lim H,(X)/I".

Theorem 4.3.1.10. Let X be a bounded below spectrum, p-complete and I-nilpotent,
then X satisfies the Segal conjecture for Z/p. That is, X — X tZ/p is an equivalence,
where the Tate construction is with respect to trivial action.

Proof. So we need to prove

Hy(X) = lim Hy(SRPY) ® H(X)

is an equivalence. Without loss of generality, we can assume X is connective after
suspending enough times.

Since X is an I-nilpotent spectrum, we get
lilin H,(XRP°)® Hy(X) ~ li]?1 H.(XRPY) ®li£n H.(X)/1"
Since XRP;° is bounded below and of finite type for all k£, we have by lemma 4.3.1.8
Iilgn H.(XRPY) ®li£n H.(X)/I" ~ lérs H,.(XRP?)® H.(X)/I".
So to prove
ligln H.(X)/I" — llirfll H,(XRP?)® H((X)/I"
is an equivalence, it is enough to prove equivalence on the associated graded
Ky = fib(Hy(X) /1™ — Hy(X)/I").

That is, prove that K, — 1i’£n H*(XRP) ® K, is an equivalence. Where K, has a

trivial action of Ay, s0 Ky, ~ @, Fp[i]®/ where i e I.
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4.3 Segal Conjecture for I-nilpotent spectra

lim Hy(SREY) ® Ky ~ lim Hy(SRPY) ® (D F,[i]>"

=0

~ lim H.(SRPY") ® [ [Foli]®”

=0

again XRP° is bounded below of finite type, so by lemma 4.3.1.8, we can commute
the product all the way outside to get

lim H.(SRP{) ® [TFl®7 =~ ] lim H,(SRP) ® F,[i]®”:

=0 =0

So we have to prove

K, = [ [F[i]® — Hlilgn H,(ERPP) @ F,[i]®/ ~ lim H (SRP") @ Koy

=0 =0

is an equivalence. In order to prove the product is an equivalence, it is enough to prove
equivalence termwise. This reduces to proving

F,[i]® — lim H,(XRPP) ®F,[i]®

Ji

is an equivalence. So if we write F,[i]®/i as a retract of F,[i]*!i and apply 4.3.1.8 to

reduce to proving,
[[Folil = ] ] lim H, (SRP) @ Fypi]
Z'Gli iEIi

So again, we can prove equivalence termwise to reduce to proving:
Fp,li] — lilin H,.(ERPF) ®Fpi]

is an equivalence. This is the case of the classical Segal conjecture, that is, in SanFp
the bigraded homotopy groups on both sides are Ext-groups shown to be equivalence
by [LDM+80]. O

Definition 4.3.1.11. Given a spectrum X, we say it has locally finite F,-cohomology
if for any element z € H*(X), the A, submodule generated by z is finite dimensional
[Fp-vector space.

Proposition 4.3.1.12. Any bounded below spectrum with F,-cohomology locally finite
and of finite type, then the [F)-homology is I-nilpotent.

Proof. We need to verify that H,(X) ~ lim H*(X)/I" is in the category of comodules
over the dual Steenrod algebra.

We can calculate the homotopy groups of the derived limit using Milnor’s lim!-sequence
for the underlying graded abelian group since the objects in the sequential inverse limit
are uniformly bounded below (all of them are connective) the forgetful functor from the
category of comodules to graded abelian group preserve this particular limits and it is
also conservative.

The transition maps are all surjective; hence, by the Mittag-Leffler condition, the de-
rived limit is the ordinary sequential inverse limit. So we want the desired equivalence on
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4 A remark on Segal conjecture

the underlying graded abelian groups, and now by conservativity we have isomorphism
H,(X) ~lim H*(X)/I" in the category of comoudles.

Let us look at a fixed degree H;(X) because the finite type assumption H;(X) is finite
dimensional for all 4 and hence H*(X) ~ H;(X)". The locally finite assumption implies
for all z € H(X), the A,-submodule generated is finite dimensional. Hence for all
t € H;(X) we have I".t = 0 for n large enough.

Therefore the inverse limit lim H,(X)/I" is eventually constant in a fixed degree d
and isomorphic to Hg(X), so we have Hy(X) ~ lim H.,(X)/I". O

Example 4.3.1.13. For X, a compact space and simply connected, then we have QX
has a finite type, locally finite F)-cohomology. Therefore H,(€2X) is I-nilpotent. Hence
ETQX after p-completion is equivalent to (3FQX Y2/, O

Example 4.3.1.14. Let X be a finite dimensional spectrum; then the F,-homology is
finite dimensional. Hence H,(X) is I-nilpotent complete. O

Example 4.3.1.15. Recall for O an operad the free O-algebra on a spectrum X is given
by:
Freep(X) ~ P X®" ®s, O(n).

Let O be an operad, then the n-th space of arity O(n) has an ¥, -action. Let us assume
O(n) is a finite %, space such that only the isotropy group is identity. Examples of such
operad include E,-operad for finite n?.

For an operad with above properties, X®" ®s,  O(n) has finite F p-homology for each n.
Moreover, if we assume that X has minimal cell structure such that the least dimensional
cell is in degree 1, then the connectivity of X®* ®y, O(n) increases as n increases this
implies for Freeg(X) is I-nilpotent, hence satisfies the Segal conjecture for Z/p. O

Remark 4.3.1.16. The above argument also applies to an operad valued in spectra as
well, with each arity spectrum bounded below and having a finite 3,-cell structure and
isotropy groups just the identity. O

4that is except for Eo
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5 Homotopy fixed points of the loop
rotation

5.1 Introduction

For G, a complex reductive group, we can associate the Langlands dual group GV, which
is a central character in the Langlands program. When first introduced, the construction
of GV appeals to the classification of reductive algebraic groups due to Chevalley [Che55].
One could try to attempt to canonically recover the dual group starting with G.

This was successfully achieved by the work of I. Mirkovic and K. Vilonen [MV07]
called the Geometric Satake correspondence. Starting from G, a reductive algebraic
group over C, we can associate an infinite dimensional algebro-geometric object Grg
called the affine Grassmannian and the abelian category of algebraic representations of
GV as certain stratified local systems on Grg.

Theorem 5.1.0.1 (Geometric Satake Correspondence). [MVO07] Let Pervy+q(Grg,) be
the abelian category L' G-equivariant perverse sheaf on the affine Grassmannian, which
has a monoidal structure called the convolution product, then there is a symmetric
monoidal equivalence between Pervy+o(Grg) and the representation 1-category of the
dual group Rep(G").

In particular, the more we understand the geometry of Grg, the more we understand
the category Rep(GY). The underlying analytic space of the affine Grassmannian Grg
is homotopy equivalent to 2K, the based loops space on the maximal compact subgroup
of G(C).

The affine Grassmannian Grg has a S!-action coming from loop rotation. In [RW22a],
the authors study the relationship between the loop rotation action and the Frobenius
twisting of representations in positive characteristics. They also compute the Z/p-fixed

points Grg/ P,

In this chapter, we give a recipe to compute the homotopy fixed points of this action,
and in the case of G = GL,(C), we have the following theorem:

Theorem 5.1.0.2. Let G = GL,(C), then the homotopy fixed points (QU (n))"/P" is
equivalent to | | cgepz/pm vy QU () x U(n)/C(p).

The proof of Sullivan conjecture by H. Miller showed if a space X has locally finite
cohomology, then with respect to trivial action of a p-group

X ~ X% 5 XhY ~ map(BG, X)

is an equivalence after p-completion.
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5 Homotopy fixed points of the loop rotation

We can also ask if the Sullivan conjecture is true for spaces with locally finite cohomol-
ogy and non-trivial action. In particular, the cohomology of QU (n) is locally finite (see
Definition 4.3.1.11) and is of finite type. We compare the genuine fixed points computed
in [RW22a] and homotopy fixed points with respect to the loop rotation action.

5.2 Homotopy Fixed points

5.2.1 Affine Grassmannian and Geometric Satake

This section briefly recalls results about the affine Grassmannian Grg, a certain infinite-
dimensional algebraic variety that plays a central role in geometric representation theory.

The theory is extremely rich, and the interested reader can find detailed expositions in
[Zhul6; BR18]. For our purpose, we are interested in the homotopical side of the story.
Hence we will quickly recall the necessary theory to set up the context.

Let G be a linear algebraic group over R; then we can define the loop stack LG as the
presheaf
LG(S) = G(S((1)))

where S is a R-algebra. Similarly define L*G as the presheaf
LTG(S) = G(SIItD

where S is a R-algebra. Where S[[t]] is the power series ring in one variable ¢ and S((t))
is the Laurent power series ring.

Then we define the affine Grassmannian Grg associated to the group G, as the fpqc
sheafification of
Grg = LG/L*G.

From this point, we set G to be a reductive algebraic group over the algebraically

closed field k.

The following is an important theorem about the geometry of affine Grassmannian.
Theorem 5.2.1.1. Let G be a reductive algebraic group, then the affine Grassmannian
Grg is represented by an ind-scheme of finite type and is also in-projective. That is,

Grg is the colimit lim | Gr"™ where each Gr" is of projective and finite type.

There exist more geometric interpretations of Grg using the Beauville-Laszlo theorem.
For more details, see [Zhul6, Section 1.4].

Definition 5.2.1.2. Let X be a curve over a field £ (for us £ = C) and =z € X(k) a
smooth k-point and G be a reductive group over k. Then we define Grg ;, to be:

Grgz(R) = {(E,B) | E a principle G-bundle on Xr and B a trivialization on (X\z)r}

We have Grg,; is the sheaf of sets on the site of commutative algebra with respect to
the fpgc-topology. We then have the following theorem:

Theorem 5.2.1.3. The fpgc-sheaf Grg , is equivalent to the affine Grassmannian Grg.
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5.2 Homotopy Fixed points

Let us introduce some notation:

Let T' < G be the maximal torus of G. Given a co-character A : G,,, — T we can get a
map

A C((@)[tt7] = Ge(@)) — LG = G(C((x)))
we denote t) to be the image of £ under the map A

Proposition 5.2.1.4. (Cartan Decomposition) Let G be a reductive group over k and
choose a maximal torus 7' < G. Then there is a double closet decomposition

LG= || L*éunrta
AeXe(T) +

where X (7)+ < Xo(T) is the set of dominant coweights.

Remark 5.2.1.5. There is Cartan decomposition for all reductive groups over local
fields, as investigated by [BT72; BT84|. The Cartan decomposition is also often referred
to as Bruhat decomposition.

For any reductive group, GG and fix T' < B — G, B a Borel subgroup and T a maximal
torus, then we have the Bruhat decomposition:

G = || BuwB,
weW

where W is the Weyl group of G defined as the quotient Ng(T')/T.

Then we can form the flag variety G/B, and the Bruhat decomposition gives a cell
structure on the underlying analytic variety of G/B with one cell for each w € W given
by the image of BwB in the quotient G/B denoted by C,.

The Weyl group, W, has an ordering called the Bruhat ordering, and this gives a
stratification on G/B. That is, let Cy be the cell corresponding to w, then C,, =
|—|w/<w w'*

Studying stratified local systems with respect to this stratification has deep connections

with representations of Lie algebra of GG via the Beilinson-Bernstein localisation theorem
[Bei81] and Riemann-Hilbert Correspondence [Kas79; Kas84].

In a similar spirit, the affine Grassmannian Grg = LG/L*G is a certain affine flag
variety, which is stratified over Xo(7)+ by L*G.t) (refer to [Zhul6, Lecture IIJ).

A reductive group G over an algebraically closed field is classified by the root datum
(X*(T), R, Xe(T'), RV) [Cheb5| where T' is a fixed maximal torus of G. Given a root
datum (X*(7),R,X(T),RY) we can form the dual root datum (X.(7),R",X*(T), R)
by swapping roots and co-roots, then appealing to the existence results of Chevalley we
get the Langlands dual group GV associated to the dual root datum.

One could ask if there is a more canonical way to obtain the Langlands dual group
GV. This is done using the Geometric Stake Correspondence using certain stratified
local systems on the affine Grassmannian Grg.
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5 Homotopy fixed points of the loop rotation

Theorem 5.2.1.6 (Geometric Satake Correspondence). [MVO07] Let Pervy+5(Grgy) be
the abelian category L' G-equivariant perverse sheaf on the affine Grassmannian, which
has a monoidal structure called the convolution product, then there is a symmetric
monoidal equivalence between Pervy+q(Grg) and the representation 1-category of the
dual group Rep(G"Y).

So there is a more geometrical way of approaching the category of representation over
the dual group GV, in particular, the affine Grassmannian has a G,,-action called the
loop rotation action.

Let p, < Gy, be the cyclic group. We can ask what are the fixed points with respect
to this action. Turns out the y,-fixed points have a deep connection with the Frobenius
operator on representations of GV. This is investigated in the recent work of S. Riche
and G. Williamson in [RW22a].

The ideas in [RW22a] involve developing a categorified Smith theory for etale sheaves
following D. Treumann [Trel9]. Riche-Williamson studies the genuine fixed points of
the p,-action, and in this article, we study the homotopy fixed points of this action for
all cyclic group Z/p™.

We state the following result of G. Segal and A. Pressley for G = GL,, [Pre86, Sec-
tion 8.3] and for more general reductive groups by D. Nadler [Nad04, Section 4].

Proposition 5.2.1.7. Let GG be a reductive group over C and K < G be the maximal
compact subgroup; then we have a homotopy equivalence

QK ~ Grg(C),

between the based loops on K and the complex points of the affine Grassmannian.

5.2.2 Loop Rotation and fixed points

In this section, we recall some facts about mapping spaces between classifying spaces, in
particular, the work of [DZ06], which will be useful in the computation of certain fixed
points.

Let G be a compact lie group and P a finite p group. Given a representation p: P — G,
i.e. a homomorphism, we obtain a group homomorphism C(p) x P — G where C(p) is
the centraliser of the representation. This in turn gives a map of classifying spaces

B(P x C(p)) ~ BP x BC(p) » BG
by adjunction, we obtain a map:
BC(p) — map(BP, BG)

varying p we get:
| | BC(p) > map(BP, BG)
peRep(P,G)
Rep(P, G) is the collection of all possible representations p : P — G upto conjugation,
(i.e, we say two representations p; amd py are equivalent if there exist a g € G such that
p2 = gp1g ).
The main theorem of [DZ06] state that:
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5.2 Homotopy Fixed points

Proposition 5.2.2.1. The map

| | BC(p) > map(BP, BG)
peRep(P,G)

is a mod p-equivalence.

Let G be a reductive group over C. We have seen that the homotopy type of the
affine Grassmannian Grg is equivalent to the based loop space 2K where K is the
maximal compact subgroup of G. By the recognition principle we have QK ~ Q?BK ~
map, (S?; BK) where the base point of S? by convention is the "south pole".

There is a natural S'-action on S? as a pointed space by rotation along the equator.
Hence we get a Z/p"-action for n € N. By identifying QK with map, (S?, BG), we get
an S'-action on QK , which is classically called the "loop rotation" action.

One can always get a loop rotation action on the free loop space LX on any space X
given by:

S'x LX - LX

(2,7) =~

where v%(z') = ~(z.z'). In general, there is no such action on the based loop space
QX for any space X since the base points are not preserved, but one can fix this if X
happens to be a topological group we have an S!-action by sending (z,v) — v*.y(z) L.

Remark 5.2.2.2. Note that we do not need X to be a topological group. We only need
it to be a grouplike [E;-space which by the recognition theorem is a based loop on some
space Y.

Question 5.2.2.3. With the Z/p™ loop rotation action mentioned above on QK , what
is the homotopy fixed points (QK)M/P"7.

There is a loop rotation action of S! and Z/p" on the affine Grassmannian Grg for
some reductive group G. We know the affine Grassmannian is homotopy equivalent to
QK , but apriori, there is no reason for the fixed points to be homotopy equivalent since
the notion of fixed points is not a homotopy invariant notion.

This leads us to the above question of homotopy fixed points. We do have Grgz/ P
(QK)M2/P" for all n. We devote the rest of the section to answering Question 5.2.2.3
by analysing maps between classifying spaces and a closed form expression in the case
of G = GL,(C) with maximal compact K = U(n).

Identify QK with map, (S?, BK), we have

map, (S, BG)"/P" ~ Jim map, (5%, BG) ~ map*(%%i;g(SQ), BK) ~ map, (5% 1z +, BG)

where S2hZ/pn,* is the homotopy quotient with respect to the rotation action in the
oo-category S, of pointed spaces.
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5 Homotopy fixed points of the loop rotation
As an unpointed space S? is written as the pushout:

St —— pt

|

pt —— 2

It turns out this is a Z/p"-equivariant pushout where the cell structure can be repre-
sented by the following diagram:

u

Nv;

\

This lets you compute S,%Z Jpn B

St ——— BZ/p"

| !

BZ/p" — Spzpm

where the map S! ~ BZ — BZ/p" is given by the quotient map Z — Z/p", by
identifying S' with BZ.

This lets us compute the pushout Siz o in pointed space:

St ——— BZ/p"

| !

2
o 82y

by collapsing the BZ/p factor on the base point.

Since (QK)M/P" ~ map, (S
via the pullback:

,QZZ T 0 BG@G), we can compute the homotopy fixed points
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5.2 Homotopy Fixed points

(QK)hZ/pn —— map,(BZ/p", BG)

| |

* —— map, (BZ, BG)
We also have a further fiber sequence to compute pointed mapping space:
map, (X7 Y) — ma'p<X7 Y)

! |

* Y

putting this together, we get a fiber sequence:

(QE)NEP" ——y U perep(z/pn.x) 5K/C ()

|

OBK ~ K

where we identify: map, (BZ/p", BK) ~ || cgep(z/pm,c) 5/C(p) from Proposition 5.2.2.1.
The map,

K/C(p) = K

is given as follows:

We have map K — K given by g — gp(1)g~!

with p(1) by definition, we have a factorisation:

. Since all element of C(p) commutes

1

K/C(p

note that the map K/C(p) — K is not a group homomorphism, in fact K/C(p) is not
even a group. We have the following lemma to begin with:

Lemma 5.2.2.4. For a connected group K, the map f : K — K given by g — gp(1)g~!
is null-homotopic.

Proof. Let v be a path from p(1) to e, the identity element of the group G. We have a
continuous family of maps f; : G — G, given by g — gy(t)g~!, where fo = f and f is
the constant map at e, showing that f is nullhomotopic. O

So if we can say the homotopy factors through the centraliser, the pullback computing
(QK)M%/P reduces to the following square:

67



5 Homotopy fixed points of the loop rotation

(QK)hZ/p E— LlpeRep(P,K) K/C(p>

i
:

If that is true, we have:

Theorem 5.2.2.5. If the map K/C(p) — K is null-homotopic for all p € Rep(Z/p"™, K),

then (QK)M/P" ~ Ll serep(p, i) 2K x K/C(p) after p-completion.

So the question reduces to, when does the null-homotopy of g — gp(1)g~! factor
through K /C(p) or more broadly, if there exists any null-homotopy of the map K /C(p) —
K, to obtain the above theorem.

Example 5.2.2.6. Let us start with G = SLy(C), then the maximal compact K =
SU(2) and we have SU(2) ~ S3. Given a representation p : Z/p — S3, the image of a
generator of Z/p is an order p matrix with determinant 1, hence any representation up
to conjugation is given by:

where X is a p*P-root of unity.

If A = {1, —1} then the centralizer C(p) = S3, so K/C(p) = * and for non-trivial values,
i.e., A ¢ {1,—1} then C(p) = S* hence K/C(p) = S%. In particular, K/C(p) — K is
null homotopic because there is no nontrivial map from S? — S3.

Hence,
QS ~ Q8 L | | 08% x §2.
p—1

after p-completion. O

We can also uniformly analyse the case of G = GL,(C) and K = U(n) given in the
following proposition:

Proposition 5.2.2.7. Let G = GL,(C) and p : Z/p" — K be a representation. Then
U(n)/C(p) — U(n) is nullhomotopic. In particular

QU ~ || QUm) x Um)/Cl).
peRep(Z/p™,U(n))

after p-completion on both sides

Proof. Let o be the generator of Z/p™, we will also refer to the image of o under p as
o. We can get a path v in U(n) from o to e, the identity element of G, giving a null
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homotopy by Lemma 5.2.2.4. The null hoomtpy factors through U(n)/C(p) if C(vy(t))
constains C(p) for all ¢.

Un) x I —— Un)

l /

Let us diagonalise the o and express it in terms of the block matrices of the form

U(n)

Ald

where \;Id is the scalar matrix of scalar \;.
Let (A1, A2, ..., Ag) be the distinct eigenvalues of o.

Let | A; | be the dimension of the eigenspace corresponding to A;, then the centraliser of
oisU(| A]) x ... x U(] A\ |) identified as a subgroup of U(n) as block diagonal matrices.

Choosing paths v; from A; to 1 in C*, we can construct a path v from ¢ to the identity
id € U(n) and the centraliser of «(¢) contains U(] A |) x ... x U(] Ag |) for all t. Hence
we have the null-homotopy that factors through U(n)/C(p).

In conclusion, U(n)/C(p) — U(n) is nullhomotopic, and particularly

QU@ ~ || QU®n) xUm)/Cp).

peRep(Z/p™,K)

O]

Remark 5.2.2.8. The above approach does not work in general. For example let
G = SL3(C) and K = SU(3) and p = 3, then for representation p : Z/p{c} — SU(3),
then o can be diagonalised with diagonal entries given by p-th roots of unity. Let
us consider the representation diag(w,w,w) where w = e%; then, the path consider
will not be in SU(3). Since the representation lands in the centre and the centre of
SU(3) is disconnected, there is no path « from o to identity such that C'(y(t)) contains
Clp) = SU(3).

However, the above argument does work for all prime p other than 3, which enforces
not all eigenvalues are equal.

O

5.2.3 Genuine fixed points and comparison

In this section, we comment on the genuine fixed points and compare them to homotopy
fixed points.

For X a G-CW complex, such that G a p-group, then there is a natural comparison
map
X% - xhe,

The Sullivan conjecture asks, when is this map an equivalence after p-completion?
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5 Homotopy fixed points of the loop rotation

Theorem 5.2.3.1. (G. Carlsson, H. Miller, J. Lannes) If X is finite G-CW complex
then X¢ ~ XhC after p-completion.

Here is a way to calculate the cohomology of the homotopy fixed points following
[DW88]. Let G be an elementary abelian group and X a finite G-CW complex, then
there exist fiber sequence:

X%th

|

BG

There exists an Euler class e € H*(BG) (see 2.1.3), there is the induced map of graded
rings H*(BG) — H*(Xnq) localising H*(X}¢) at the Euler class gives an equivalence

H*(Xpg)le '] ~ H*(X®) @ H*(BG)[e ']

From this, we can recover the cohomology of the fixed points X following W. Dwyer
and C. Wilkerson [DW88]. The localised algebra H*(X,)[e™!] is a module over the
Steenrod algebra and let Un(H*(Xpg)[e™!]) be the largest unstable algebra inside
H* (th)[e_l].

Proposition 5.2.3.2. (Dwyer-Wilkerson) For an elementary abelian group G and X
a finite G-CW complex, The largest unstable algebra Un(H*(X,g)[e~!]) is isomorphic
to H*(X% x BQ@), in particular

Un(H*(Xne)[e']) @uw oy Fp ~ H*(XE).
O

Dwyer and Wilkerson show in [DW91], that for a H*(BC)) ® A,-module M such that
M is finite dimensional, the above construction Un(M[e™1]) ®m+(Ba) Fp is equivalent
to the Fix functor constructed by J.Lannes [Lan92] which computes the cohomology
homotopy fixed points. For an A,-module N, the Fix functor applied to H*(BG) ® N
is the T-functor constructed by Lannes.

Proving the Sullivan conjecture for spaces with trivial action' is equivalent to prov-
ing that the Lannes T-functor applied to H*(X) is H*(X), that is Ty (H*(X)) ~
H*(map(BV, X)) ~ H*(X) for V an elementary abelian group.

In this form, H. Miller proved the T-functor acts as identity on all unstable modules,
which are locally finite. Let us recall the definition of locally finite modules:

Definition 5.2.3.3. (Locally finite module) A module M over the Steenrod algebra.
We say it is locally finite if, for any x € M, the Aj,-submodule spanned by x is a finite
dimensional Fp-vector space. If X is a space which has locally finite cohomology, we say
it is a locally finite space.

Let X be a nilpotent compact space, then the cohomology of the based loop space QX
is a locally finite module over the Steenrod algebra.

Yie., X, ~map(BV,X),
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5.2 Homotopy Fixed points

Motivated by this, we can ask if the Sullivan conjecture is valid for locally finite spaces
for non-trivial actions.

The initial approach that we took to compute the Z/p-fixed points of Grg using the
theorem 5.2.3.2, but for the locally finite space, there are several difficulties in carrying
out the computation:

e We might try to compute H*((2K);z/,) using the Serre spectral sequence applied
to the fiber sequence

QK —— QKhZ/p

|

BZ/p

but the cohomology H*(2K) is a divided power algebra, and the Serre spectral
sequence has infinitely many generators to analyse.

e Even if we succeed in computing the cohomology H*(Q2K},z/,), the Serre spectral
sequence is not a module over the Steenrod algebra, i.e. not all differential com-
mutes with Steenrod operations. Hence figuring out the Steenrod module structure
becomes impossible.

e Finally, this is under the assumption that the approach of theorem 5.2.3.2 com-
putes the cohomology of genuine fixed points.

The Z/p genuine fixed points of Grg is computed by Williamson-Riche [RW22a] as

g’ ~ || gi
AeXe/Wp

where the indexing set is the quotient of co-root lattice by the p-dilated dot action (refer
to [RW22a] for more details on the dot action).

In the example of G = SL3(C) and K = SU(3), following remark 5.2.2.8 we have that

(QSU (3))"%/2 ~ | | QSU(3) x SU(3)/C(p)
peRep(Z/2,5U(3))

after 2-completion. In particular, the indexing set has cardinality two, given by id,
the trivial representation and diag(1,—1,—1). However, there are more than two W),
orbits in X,, which means the genuine fixed points has more path components than the
homotopy fixed points, this provided a counter-example:

Proposition 5.2.3.4. For SL3(C), the genuine fixed points and the homotopy fixed
points with respect to the rotation action restricted to Z/2 on Grg L3(C) are not equiva-
lent.

Remark 5.2.3.5. Finally, we would like to point out that J. Hahn and A. Yuan in
[HY19] construct a filtered Eg-structure on Grg, where each of the filtered pieces is
compact. One could hope to compute the cohomology of genuine fixed point using
5.2.3.2.
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5 Homotopy fixed points of the loop rotation

5.2.4 p-compact groups

In this section, we comment on what is the homotopy fixed points for certain p-compact
groups. We will refer the reader to [Grol0] for a quick review.

Definition 5.2.4.1 (p-compact group). [DW94] [Grol0, Definition 2.1] A p-compact
groups is a triple (X, BX, e), such that e : X ~ QBX, where BX is a pointed, connected,
p-completed space such that F, cohomology H*(X;F),) is finite.

Example 5.2.4.2. Given a compact Lie group G, then G, as an example of a p-compact
group.

There are exotic examples which do not come from compact Lie groups. Here is an
example constructed by Sullivan:

Example 5.2.4.3. Let p be a prime and d a divisor of p — 1, then Z/d < Z5. So there
is a natural action of Z/d on K(Z,,2) giving a fiber sequence:

K(Zp,2) — K(Zp,2)nz/4

|

BZ/d

Using the Serre spectral sequence, we have the Fj,-cohomology of K (Zp,2)hz/d is a
polynomial algebra with a generator in degree 2d.

We set
BY = K(Zp,2)nz/d:

so Q1BY," has [F)-cohomology an exterior algebra with generator in degree 2d —1. Hence
QBY," ~ Szd_lg. So the triple (QBY,", BY,", e) is a p-compact group.

Remark 5.2.4.4. At first glance, this should be surprising because for an odd sphere
of dimension greater than 7, by the Hopf invariant one problem, there is no H-space
structure. But after p-completing at certain primes, you get an E;-structure. We refer
to these as Sullivan spheres

The theory of p-compact groups is very rich. They behave very much like a compact
Lie group. Given a p-compact group X, it admits a p-adic maximal torus [DW94],
and to every p-compact group, we can associate a p-adic root datum. Similar to the
classification theorem of Chevalley, p-compact groups are classified by their root datum
[Gro10].

However, there is no well-developed representation theory of p-compact groups. We
hope methods from geometric representation theory could help us investigate more in
this direction. In this spirit, we have the following proposition:

Proposition 5.2.4.5. Let p be a prime, d divides p — 1, then we have
(Qs2d71)hZ/p ~ 952d71 L |_| 952d71 % (defl
p—1

d

after p-completion on both sides.
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Proof. There is % + 1 representations of Z/p into (SQd_l)ﬁ up to conjugation, i.e
Rep(Z/p, (S*4=1))) = p%l + 1 where the centraliser for 21 many of them is (SH))
and for the trivial representation the centraliser is (Sgd_l)lf. This implies we have an
equivalence K /C(p) ~ CP?~! ~ §2d=1/G1 after p-completion in the case C(p) = S} and
K/C(p) ~ = for the trivial representation. Hence, we have the pullback:

QS —— w1 e (CPTY)

* (SQd—l)I/)\

Since the dimension of CP?~! is 2d — 2, the map ((CPd_l)}ﬁ — Sf,d_l is nullhomotopic
because of cellular approximation. Hence we can compute the pullback as (QSQd_l)g U
Lot (824-1) x (CPA-1). 0

d
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6 Six functor formalism for equivariant
sheaves

The material presented in this chapter is joint work with Oscar Bendix Harr.

6.1 Equivariant Sheaves and Six functor formalism

In this section, we will recall some definitions and properties of the sheaf category and
introduce the six functor formalism for equivariant sheaves.

Much of the material about the non-equivariant setup here is known to experts; an co-
cateogorical version can be found [Lurl7; Lur09] in we present it here to have coherent
documentation for the reader.

Let G be a topological group acting continuously on a topological space X. For a fixed
discrete ring R, Bernstein and Lunts [BL94| define a triangulated category Dg(X; R)
of derived G-equivariant R-valued sheaves on X. When the group G is locally com-
pact Hausdorff, they also show that the assignment X — Dg(X; R) can be fleshed out
into a six-functor formalism for equivariant sheaves on locally compact Hausdorff G-
spaces, generalising the non-equivariant six-functor formalism of Verdier [Ver65], and
thus providing a natural context for understanding, among other things, certain equiv-
ariant duality phenomena. More specifically, the Bernstein—Lunts category Dg(X; R)
sees Borel-type properties of the G-space X, in the sense that if one takes the derived
global sections of a constant equivariant sheaf on a nice space X, one gets the Borel
cohomology of X.

In this paper, we briefly show how to generalise the construction of Bernstein—Lunts
to allow coefficients in an oo-category. In particular, when the coefficient co-category
is stable, one gets a full' six-functor formalism for equivariant sheaves by invoking the
general results in an appendix of [Man22|.

6.1.1 The co-topos of Borel Equivariant Sheaves

Let G be a topological group. In this section, we introduce the ‘non-abelian Borel
equivariant derived category’ Shupg(X) associated with a G-space X, which is a Borel
equivariant version of the non-abelian derived category Shv(X) of sheaves of anima
on X. The objects of Shv,s(X) are, informally, G-equivariant sheaves of anima on X.
Although, in general, Shv,;(X) cannot be realised as Shv(Y") for a topological space Y,
it is an co-topos, meaning that it enjoys many of the same properties as the co-category
of sheaves of anima on a topological space, e.g.

Thaving all the coherence
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6 Six functor formalism for equivariant sheaves

e To an equivaraint sheaf F € Shvy,g(X) we can associate an anima I'(X,JF) of
‘derived global sections’.

e For an arbitrary oo-category C, we can define an co-category of C-valued sheaves on
Shvpe(X), which we will denote by Shvy,g(X;€) := Shv(Shv,g(X);C). If € hap-
pened to be an ordinary category, then Shv,g(X; €) precisely recovers the classical
notion of equivariant C-valued sheaves on X, and if ¢ = D(R) is the unbounded
derived category of a ring R, then the triangulated category hAShv,g(X;D(R))
agrees for reasonable spaces with the unbounded derived category of equivariant
sheaves studied by Bernstein and Lunts [BLI4|.

e The oo-topos Shvyg(X) has a homotopy type, namely its shape Iy (Shvyg (X)) €
Pro(8), which, when X and G are nice, parametrizes locally constant equivariant
sheaves on X.

By a purely formal calculation, it will turn out that in good cases, we have
Il (Shvpg (X)) >~ oo (X)ne,

where I (X ) is the Borel construction on I, (X). By invoking Lurie’s monodromy
equivalence for co-topoi [Lurl7, Theorem A.4.2], this will allow us to interpret the Borel
cohomology of a well-behaved G-space X with respect to some Borel equivariant spec-
trum E as the homotopy groups of the spectrum of derived global sections I'(X; E'x) of
a certain equivariant spectral sheaf E'x on X, which we think of as a ‘constant sheaf at
B,

Definition and basic properties

Let G be a topological group acting continuously on X. The action groupoid associated
to this action is a topological groupoid with object space X, and such that morphisms
from x to 2’ correspond to elements g € G with gz = /. We denote the bar construction
of the action groupoid, which is a simplicial space, by

¢ — —
[X/G]l, = -+ ! GxGxX "S5 GxX+—X
— —
— ’

So the face maps are given by

90y -+ -+ 9i—1,GiGi+15Gi+2, - - - gp—1,x) if 0 <7 < p,
di: (90, -+ gp—1,2) = ( i—1, 9i9i+15 Ji+ 1)
(905 - -+ Gp—2, Gp—1)

and the degeneracy maps are the obvious ones.

Let Shv, : Top — RTop,, denote the covariant functor given informally by sending
a space X to the oo-category of 8-valued sheaves Shv(X), and by sending a morphism
f: X =Y to the pushforward f, : Shv(X) — Shv(Y). We then define:

Definition 6.1.1.1. Let X be a G-space, where G is a topological group. We put

Shvpg(X) := lim Shv, ([X/G].),
Aop

where the colimit is taken in the co-category of co-topoi RTop,, and morphism geometric
morphisms.
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6.1 Equivariant Sheaves and Six functor formalism

For an arbitrary co-category €, we define
Shvig(X; @) := Fun'®(Shvpg(X), €),

where Fun'®™(Shv,g(X),€) < Fun(Shv,g(X),€) is the full subcategory spanned by
functors that preserve small limits.

That is, Shvyg(X; €) is the oo-category Shv(Shvyg(X); €) of C-valued sheaves on the
o0- topos Shvy,(X) in the sense of [Lur09]. We think of Shv,g(X; C) as the co-category
of Borel equivariant C-valued sheaves on X. The Yoneda embedding gives an equivalence

Shvj,(X) = Shvia(X;8),

so Shvy(X) is the co-topos of Borel equivariant sheaves of anima on X.

One should think of Shvjo(X) as the non-abelian Borel equivariant derived category of
X, in the same way that for a non-equivariant space X, the co-topos Shv(X) of sheaves
of anima on X is the non-abelian derived category of X [Lur09], cf. [Gir71].

Comparison with classical notions

When € is an ordinary category, there is a classical notion of an equivariant C-valued
sheaf on X. These form the objects of an 1-category, which we will temporarily denote by
Shvg(X; C). We first briefly recall the definition of this category. Recall the simplicial
space [X / Gle : A°? — Top from above. Let A<y © A denote the full subcategory
spanned by the ordinals 0,1 and 2. We let [X / Gle<o : AZ, — Top denote the
precomposition of [X / G]s with the inclusion A<o © A. Then

Shvg(X;C) = lim Shv*([X / Gle<2)
Aga

where the limit is the (2,1)-limit in the (2,1)-category of ordinary categories. Thus,
objects of Ghvg(X;C) are pairs (F,6) where F € Shv(X;C) and 6 : dfF = diJF is an
equivalence in Shv(X x G;C) such that the following diagrams commute

s5di T —— sidp T

% l:

F—7F

gl lg

d¥ (e
didiF 1©) s didiF

Proposition 6.1.1.2. Let € be an ordinary category. Then there is an equivalence
Shvpa(X;0) ~ S¢(X;C)

In particular the co-category Shvpg(X;C) is 1-truncated.
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6 Six functor formalism for equivariant sheaves

More generally for € an (n, 1)-category where n < oo, then Shv,g(X;C) is equivalent
to the (n + 1, 1)-limit
lim Shv*(X;C)
Agcnt1
computed in the (n + 1, 1)-category of (n, 1)-categories. This follows from the following
description of the C-valued equivariant sheaves on a topological space X:

Proposition 6.1.1.3. Let € be an oco-category. There is an equivalence

Shvpe(X;€) ~ lim Shv*([X / G].; C)
A

where the limit is computed in the oo-category Caty, of co-categories, and Shv*(—; C) :
Top — Caty, is the contravariant functor given by X — Shv(X;€) on objects, and by
sending f: X — Y to the pullback f*: Shv(Y;C€) — Shv(X;C).

Proof. We have

Shvii(X; @) ~ Fun'®™ (Shvj,q(X), @)

~ Funlex(l%n Shv*([X / G].), €)

~ LiLnFunleX(ShV*([X / Gle), @),
A

where Shv*: Top®® — LTop,, denotes the functor given informally by X — Shv(X)
on objects and f — f* on morphisms. Equivalently, Shv* is the composition of the
functor Shv, described earlier with the antiequivalence RTopes ~ LTop,, of [Lur09,
Cor 6.3.1.8]. O

Funtoriality

The construction of the co-topos Shv,g(X; €) is functorial over the G-space X; indeed
it is the composition of functors

— /G . o o lim lex
G-Top L=/cls Top™™ Shvs, RTop2” ——— RTop,, Fan™ Cate

which to a G-equivariant map f : X — Y induces a geometric morphism that we will
denote by

fw 2 Shvpa(X) — Shvpa(Y) (pushforward)
similarly, the left adjoint of f, will denoted by

¥ Shvpg(Y) — Shvpa(X) (6.1)
The oo-topos Shvyg(X) is also functorial in the topological group G. Given a morphism
@ : H — G of groups and a G-space X, we can view X as a H-space by restricting along

. There is then a geometric morphism

Res, : Shvpp(X) — Shvpe(X) (restriction)
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6.1 Equivariant Sheaves and Six functor formalism

which is induced by the map of simplicial spaces [X / H|os — [X /G]s given by ¢" x X :
H*™ x X - G*™ x X on n-simplicies. If ¢ is an inclusion, we will also write Resg
instead of Res,.

We can view the functionality in the space and group direction simultaneously by
considering Shvy_)(—) as a functor on the global equivariant category Topy,. Here
we define Topg,, to be the ordinary category which has, as its objects, pairs (G, X),
where G is a topological group and X is a G-space, and such that a map from (H,Y)
to (G, X) is a pair (f, ) where f : Y — X is a continuous map and ¢ : H — G is a
continuous homomorphism, satisfying that f(hy) = ¢(h)f(y).

Then there is a functor Shvy,_)(—) : Topg,), — RTop,, given informally on objects by
sending (G, X) to Shv,g(X) and on morphisms by sending (f,¢) : (H,Y) — (G, X) to
the geometric morphism

(f,¢)s : Shvpg(Y) — Shvug(H)

induced by the map of simplicial spaces [Y / H|e — [X / G]e given by ¢*" x f :
H*" xY — G*™ x X on n-simplices. Just as when we had a fixed group, functoriality
follows from the fact that Shvj,_)(—) is by construction equal to the composition

[—/-]s

op Shvy(— op LM
ToDyoh Top™” 220 RTops™ = RTop,,,
Here it is easy to check that the first arrow is a functor as both the source and target
are ordinary categories.

Relation to Shv(X) and Shv(X/G)

Given a G-space X, the simplicial space [X / G]. admits an augmentation [X / Gl. —
X/G. Hence there is an induced geometric morphism

Shvpg(X) — Shv X /G, (6.2)

natural in X, which compares equivariant sheaves on X to non-equivariant sheaves on
the orbit space X /G. On the other hand, the universal cone for Shvy,s(X) come with a
geometric morphism

Shv(X) — Shvpa(X); (6.3)

we think of the left adjoint of this morphism as the functor which forgets that a sheaf
F € Shvyg(X) is equivariant. Indeed, the right adjoint can alternatively be described
as the restriction map ResC : Shvg(X) — Shvp.(X) ~ Shv(X), where e € G is the
identity element. Both (6.2) and (6.3) are natural in X.

Principal G-spaces

In general, the comparison maps given above are both very far from being equivalences.
Nevertheless, there is a condition which ensures that (6.2) is an equivalence, and this
observation will furnish us with our first calculations of the oo-topos of equivariant
sheaves. For us, a principal G-space is a G-space X such that X can be covered by
G-invariant open sets U, where U is G-equivariantly homeomorphic to a G-space of the
form G x V, where G acts by left multiplication on the G-factor and trivially on the

79



6 Six functor formalism for equivariant sheaves

V-factor. In particular, any principal G-space is free, but a free G-space need not be
principal.

We then have:

Proposition 6.1.1.4 (Torsor descent). Let G be a topological group and X be principal
G-space. Then (6.2) gives an equivalence

Shvjg(X) ~ Shv(X/G)
with the oco-topos of non-equivariant sheaves on X/G.

Proof. Let p: X — X /G =: X denote the projcetion, and let N, denotes its Cech nerve

D

A — —
— E—

- —

Using that G acts freely on X, we find that there is an isomorphism of simplicial spaces
[X / G]e — No over X, given on n-simplices by

(%, 91,92, s gn) = (T, 91, ..., gn),

so the statement of the proposition is equivalent to the claim that the projection p is of
descent type. But this follows from the fact that p has local sections. O

Note that torsor descent is the categorified version of the statement that the equivariant
cohomology of a principal G-space X is the same as the ordinary cohomology of X /G.

6.1.2 The six operations for equivariant sheaves

Above we showed how to construct, for any oo-category C, a theory of G-equivariant G-
valued sheaves on G-spaces, which to any G-space X associates the co-category Shvy,q(X; C)
and to a continuous function f: X — Y associates the adjunction

fw: Shvpg(X;€) 2 Shvpa(Y;C) - f*. (pushforward /pullback)

As in the non-equivariant case, we can say a great deal more if the coefficient category
C is stable (and we restrict ourselves to considering a locally compact Hausdorff group
G acting continuously on locally compact Hausdorff spaces). In that case, one also has,
for every an adjunction

f' Shvpa(Y;€) 2 Shvig(X;C) : fi, (exceptional pushforward/pullback)

encoding equivariant Verdier duality. If € is furthermore presentably symmetric monoidal,

in the sense that C € Algg (PrSLtﬁ?)), then there are two more operations: the functor

Shvjg(—; €): Top®® — Prl,, factors through the forgetful functor Algg (PrSLt’a@b) —
Prftab, i.e. for each G-space X the co-category Shv,a(X; €C) is canonically a presentably
symmetric monoidal co-category, and hence in particular closed symmetric monoidal,
giving two more operations: the tensor product of sheaves ®x and the internal Hom-
functor Homy. Together, these six operations form a ‘six functor formalism’ after

the philosophy of Grothendieck—Verdier. For the classical choice of coefficient category
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C = D(R), the six functor formalism for equivariant sheaves was described by Bernstein
and Lunts [BL94] in the language of triangulated categories. Recent work of [LZ17;
Man22] has clarified what is needed to construct a six functor formalism, with all the
desired compatibilities and coherence, and in this subsection we will describe the six
operations for equivariant sheaves from this perspective.

We start by briefly recalling the framework developed in [Man22]. A geometric setup
is a pair (7, F) where T is an co-category admitting all pullbacks and E is a class of
morphisms in T, subject to three conditions: (i) E contains all equivalences; (ii) F is
stable under composition; and (iii) £ is stable under pullback along any morphism in 7.2
We think of T as being a category of ‘geometric objects’ (e.g. spaces or stacks with extra
structure), and E as being a class of ‘admissible’ morphisms between these geometric
objects.® Associated to the geometric setup (T, E) is a category of correspondences,
which [Man22| denotes by Corr(T)gan. The objects of Corr(T)gan are the same as
those of T, and a morphism from X to Y is given by a diagram

X X Y,

where X’ — Y lies in E.* A 2-simplex in Corr(7) E,all is a commutative diagram

X' Xy Y’
e N
X' Y’

N N
X Y A

in €, where the top square is a pullback; in Corr(T)g an, the 2-simplex corresponding
to this diagram has vertices X, Y, and Z, and edges X «— X' - Y,V « Y’ — Z,
and X <« X' xy Y’ — Z. In particular, although the geometric setups that we have
in mind—namely, T = G-Top for some topological group G—are ordinary categories,
the category of correspondences Corr(7T)g an is not, essentially because pullbacks are
only unique up to equivalence, so the composition of two spans is only defined up to
equivalence.

We will identify T°P with the wide subcategory of Corr(7T)g a1 whose morphisms are
exactly those spans of the form
X—vLy.
Similarly, letting Tr denote the wide subcategory of T whose morphisms are exactly F,

then Tg will be identified with the wide subcategory of Corr(T)g a1 whose morphisms
are spans of the form

X x v
The category Corr(T)g an has the canonical structure of an co-operad

Corr(T)$ .y — Fin.. (6.4)

*Note that (i) and (iii) imply in particular that if f € E and g ~ f, then g € E.

3In topological contexts such as ours, one typically wants E to be the class of all morphisms in C. The
flexibility of allowing F to be a smaller class of morphism is needed in algebraic geometry, where it
may be the case for instance that the exceptional functors fi and f' are only defined for separated
morphisms.

4The reason for the subscript ‘all’ is that no condition is imposed on the morphism X «— X’. A more
general construction specifies a class of morphisms F' to which X < X’ must belong as well, but this
is not relevant here.
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If finite products exist in T, then (6.4) is a cocartesian fibration, so the category of
correspondences Corr(7) E,all Teceives in fact the structure of a symmetric monoidal
oo-category. In that case, the monoidal structure is given informally on objects by
X®Y = X xY, ie. it is simply the product in T. More generally, the inclusion
TP < Corr(7) g an admits canonically the structure of a map of co-operads

(TP) — Corr(ﬂ')%vall, (6.5)

where (T°P)“ is the coproduct monoidal structure on T°P, which in case products exist
in T is given by those.

A pre-siz-functor formalism [Man22, Def A.5.7] is a map of co-operads
SH: Corr(T)®,, — Cat,

where Cat/;, denotes the symmetric monoidal co-category of large oo-categories, with the
product monoidal structure. We think of SH(X) as being an co-category of ‘sheaves’
on the geometric object X € 7T, compatible with the geometric structure. Note that the
datum of a map of co-operads as above gives rise to the following:

e By restricting along (T°P)~ — Corr(‘J’)%’aH, we get in a particular a functor of
co-operads
SH*: (T°P)" — Caty,

meaning in particular that for each X € T, the category SH(X) admits canonically
the structure of a symmetric monoidal category. Furthermore, given a morphism
f: X =Y, we write

f* =SH*(f): SH*(YV)® — SH*(X)®
for the corresponding symmetric monoidal functor, which we refer to as the pull-

back along f.

e By restricting along T < Corr(7) E,all, We get a functor
SH,: T — CatP.
Given f: X —» Y in E, we will write
fi = SHL(f): SH¥(X) — SH*(Y)
for the corresponding functor, which we refer to as the exceptional pushforward

along f.

A pre-six-functor formalism SH as above is said to be a siz-functor formalism if it
satisfies the following two conditions:

(i) For each X € T, the symmetric monoidal co-category SH(X) is closed, with corre-
sponding internal Hom-functor denoted Hom; and

(i) The functors f* and f; admit right adjoints, which we denote f, and f' respec-
tively.®

5 Although right adjoints are not uniquely defined, it is possible to make a coherent choice; i.e. there is
an antiequivalence CatZ ~ (Catl )°P, where Catf resp. CatZ denotes the oo-category of co-categories
with functors that admit left adjoints resp. right adjoints between them.
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6.1 Equivariant Sheaves and Six functor formalism

It is in general hopeless to try to build a morphism of co-operads SH: Corr(ﬂ’)%’all —
Cat, cell-wise by hand. The key contribution of [LZ17; Man22] is to give various usable
machines for producing such a functor from the in practice often readily available datum
of a functor SH*: T°P — Caty,. As is sometimes the case in higher category theory, it
then turns out that for all the necessary coherence structure to exist, it is in good cases
only necessary to make certain pointwise checks.

Although several machines for constructing six-functor formalisms are described in
[Man22|, we only have need of one. A suitable decomposition of a geometric setup
(T, E) is a pair of subsets I, P < F, such that (i) each f € E admits a factorization
f~poiforpe Pandice€l; (i) each f € I n P is n-truncated for some n > —2; (iii) [
and P contain all equivalences and are stable under pullback along all morphisms in T;
and (iv) if g € I (resp. g € P) and

/\

is a 2-cell, then go f € I (resp. go f € P) if and only if f € I (resp. f € P). In
applications, I will typically be a suitable class of ‘immersions’ and P will be a suitable
class of ‘proper maps’, hence the notation. Mann then shows:

gOf

Theorem 6.1.2.1 (|[Man22|). Suppose SH*: (T°P)~ — Cat}, is a morphism of oo-
operads, and write f* = SH*(f) for each morphism f in 7. Suppose that:

(i) For each j: U — X in I, the pullback j* admits a left adjoint j; such that
e for each f: Y — X, the diagram

SH(X) —I" 5 SH(Y)

SH(U) —— SH(U xxY)

formed by applying SH* to a pullback square of U — X « Y, is left ad-
jointable; and

e for all F e SH(U) and G € SH(X), the canonical map
WFP®F*G) - )iFeG

is an equivalence.
(ii) For each p: Y — X in P, the pullback p* admits a right adjoint p, such that
e for each g: X’ — X, the diagram

SH(X) —" 5 SH(XY)

i |

SH(Y) —— SH(Y xx X')

formed by applying SH* to a pullback square of Y — X « X', is right
adjointable; and
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6 Six functor formalism for equivariant sheaves

e for all F'e SH(Y) and G € SH(X), the canonical map
p*(F®j*G) - PG

is an equivalence.

(iii) For each pullback square

Vv 15y
q lp
U—— X
in T in which ¢, j € E and p, ¢ € P, the canonical map #1g. — ps /i is an equivalence.

Then SH* extends canonically to a pre-six functor formalism, in the sense that there is
a commutative diagram

Corr (‘J’)% all

T \\\\\SH
\\>l

SH*
(ToP)0 ST CatX

in the co-category of co-operads.

As the difference between a six-functor formalism and a pre-six-functor formalism is
also just a short list of pointwise checks, one gets a usable machine for constructing
six-functor formalisms.

The conditions of the theorem are easily verified for the functor Shvy.(—;€) con-
structed above, where now € is some presentably symmetric monoidal stable co-category
such as the unbounded derived category D(R) for an ordinary ring R or more generally
the co-category of modules Modg over an Ey,-ring R. For our geometric setup, we take
T = G-LCHaus to be the category of locally compact Hausdorff G-spaces for a locally
compact Hausdorff group G and E = all to be the set of all morphisms. We let I resp.
P be the class of G-equivariant maps that are immersions resp. proper on underlying
spaces.

Proposition 6.1.2.2. The functor Shv,g: (G-LCHaus®P)- — Cat/j, satisfies the con-
ditions of the preceding theorem.

Proof. We first check that maps from I and P give rise to the desired adjoints. We
have already seen that for any G-equivariant map p: X — Y, the pullback p* has a
right adjoint p.. If p is proper, the required base change property follows from the
non-equivariant case and [Lurl7, Cor 4.7.4.18]. The projection formula holds non-
equivariantly, and hence after each projection from the limit Shv,e(X; €) = lim \ Shv([X/
G]).; since the projections are jointly conservative, this shows that it holds in the cat-
egory of equivariant sheaves. Similarly arguments reduce the pointwise verifications for
morphisms in I to the non-equivariant case, where they are known to hold. The only
part of the proof which is not an argument of this type is the verification that each
morphism f in G-Top admits a factorization of the prescribed form, namely f = poi
where p is proper and ¢ is an immersion. Here we write f as the composition

X = fBaX xg,y Y =Y,
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6.1 Equivariant Sheaves and Six functor formalism

where Sg— is the G-equivariant Stone-Cech compactification (see the next section).

The map S X xg,y Y — Y is pullback of the proper map e X — f¢(Y) hence it is
proper. By Corollary 6.1.3.8 we have the map Y < SBgY is an open immersion hence
we have fgX xg,v Y — BgX is an immersion and again the map X — BgX is an
immersion this gives us the map X — X xg,y Y is an immersion by the 2 out of 3
property of immersion. ]

6.1.3 Equivariant Stone-Cech compactification

Equivariant compactifications have been constructed in high generality by Jan de Vries
[Vri77]. For our purposes, we may assume that every space in sight is locally compact
Hausdorff, which makes several proofs easier. We include these proofs for completeness.

Let G be a topological group acting continuously on a locally compact Hausdorff space
X. There is a canonical action of G on the non-equivariant Stone—Cech compactification
BX. Recall that BX is the maximal ideal space of the C*-algebra C*(X) of bounded
continuous complex valued functions on X. Thus G acts on C?(X) from the right by
sending (f,t)C?(X) x G to the function f!(x) = f(tz). However, this action and the
resulting action on BX fail to be continuous even for good transformation groups.

The equivariant Stone—Cech compactification will instead be constructed as the maxi-
mal ideal space of a certain C*-subalgebra of C*(X), on which the canonical discontin-
uous G-action restricts to a continuous action:

Definition 6.1.3.1. A function f € C%(X) is right-uniform continuous if the map
G — C%(X) given by t — f* is continuous. We denote by C%,(X) = C*(X) the subset
consisting of right-uniform continuous functions.

Lemma 6.1.3.2. C%, (X) ia a unital C*-subalgebra of C*(X)

Proof. Tt is clear that C%,(X) is an unital *-subalgebra, so it suffices to show that it is
closed. For this, suppose fy — f is a convergent net in C®(X) with each fy a right-
uniform continuous function. Let ¢, — ¢ be a net in G. We must show that f* — f*
in C*(X). Given € > 0, pick X so that |f — fal. < €/3. Since fy is right-uniform
continuous, we have for sufficiently large u that || f§ — f]lu < €/3, and hence

1= £l < FE = il + 155 = A+ 15 = £
=1f = Al + 1= B+ 1 = Fla

<€

Lemma 6.1.3.3. G acts continuously on C?,(X)

Proof. This is essentially by construction. Let (f,tx) — (f,t) be a convergent net in
C?,(X) x G. Given € > 0, we then have that for sufficiently large A, both | ft — ftu],
and | f — fi| are strictly less than €/2, so

IFE = A < U= 2+ 1 = f2 ) = 17— 2+ | = o] < e
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6 Six functor formalism for equivariant sheaves

Lemma 6.1.3.4. C%,(X) contains C°(X) as a subalgebra.

Proof. To see this, suppose f € C%(X) and let ty — ¢ be a net in G. Suppose for
contradiction that f% does not converge to f* in C*(X). Then there is ¢ > 0 so that

N={f =P =eeh

is cofinal. Thus for each A" € A’ there is z NS X with

| Fltay) = Fltyay) > e (6.6)

As f € CY(X) there is a compact set K < X with | f(z) |< €¢/2 for z ¢ K. Hence
by (6.6), we get that either (tx,s) or (t,/z,/) is completely contained in K. If (¢, z,/)
is all contained in K, then we can pass to a convergent subsequence ty»x,» — y. By
continuity of the G-action, we get that z,, — t~ly =: z. Hence

| F((zy)) = gy ) [=] ftr) = ftr) [= 0

which is a contradiction. A similar argument works in the case where (tz,/) is contained
in K. O

As a corollary, we obtain that:
Corollary 6.1.3.5. If X is a compact Hausdorff G-space, then C?,(X) = C(X)

Proof. The statement of the corollary follows from the previous lemma and the following
inclusions

C(X) = Co(X) = C4,(X) = CY(X) = C(X)
O

Lemma 6.1.3.6. If ¢ : X — Y is a G-equivariant map with Y compact Hausdorff, then
the precomposition map * : C(Y') — C®(X) lands in C,(X)

Proof. Let f e C(Y). Note that

(")) = fotz)) = f(to(x)) = f'(o(z))

for all t € G, where the second equality uses that ¢ is equivariant. Given a convergent
net ty — t in G, we thus have

1) = @* N u < IfF = f> lu— 0,

as desired. O
Now we can state the main theorem of this section,

Theorem 6.1.3.7. Let X be a locally compact Hausdorff G-space. Then there is a
compact Hausdorff G-space S5 X and an equivariant embedding i : X — S5 X, so that
i(X) is dense in fgX. Furthermore, if f : X — Y is a G-equivariant map with Y a
compact Hausdorff G-space, then there is a unique dashed equivariant map making the
following diagram commute:
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6.1 Equivariant Sheaves and Six functor formalism

X — ﬁg(X)

N

Y

Proof. As in [Vri77, Theorem 1.1], using Gelfand duality, there is a correspondence be-
tween compactifications and closed subalgebras of C?(X) that contains constants and
closed under complex conjugation. The universal property follows from Lemma 6.1.3.6,
which gives a factorisation of the desired form, and by Gelfand duality, any such fac-
torisation must arise in this way. O

We would also like to record the following result, which shows the desired factorisation
in the previous section.

Corollary 6.1.3.8. Let X be a locally compact Hausdorff G-space then we have the
map X — B¢ X is an open immersion

Proof. By Theorem 6.1.3.7 essentially due to [Vri77|, we have that the map X — X
is injective and has a dense image, which is a compactification in the sense of [Loe69]
and since X is locally compact by [Loe69, Theorem 1.1 (vi)| we have that X — S5 X is
an open embedding. O
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7 Equivariant sheaves and localisation

7.1 Localisation of Equivariant Sheaves

In this section, we introduce two different equivariant localisation functors in the context
of equivariant sheaves on a topological space.

Let X be a space and G be a finite group, the classical localisation theorem relates
the equivariant cohomology of a space X to its fixed point, this can be thought of as a
statement relating the equivariant sheaf cohomology on the space X and its fixed points
X& with respect to a constant local system.

We can go further and try to generalise these methods on more general sheaves, in the
first part we carry out these ideas on the subcategory of constructible sheaves, which
are stratified versions of locally constant sheaves.

Localisations in sheaf theory are certainly not a new idea, and goes back to the work
of Tom Braden [Bra03] commonly known as "hyperbolic localisation".

Where they consider the case of a G,,-action on a normal variety X over a field of k
characteristic p and constructs a certain localisation functor

Do(X) = Dgy(XT)

where D, (X) denote the derived category of l-adic étale sheaves, where [ # p. These
methods prove to be extremely useful in the proof of the Geometric Stake isomorphism
[MVO7].

In algebraic topology, the localisation theorem is true for other groups as well, such
as the cyclic group Z/p in modular characteristics. This raises the question of whether
we can perform localisation of Z/p-equivariant sheaves. This was answered by the work
of David Treumann [Trel9], where one can consider a complex analytic variety or more
generally, a real sub-analytic set with an action of Z/p and get a localisation functor:

Shv? (X F,) — Smith(X%/7)

the category on the left is bounded equivariant constructive sheaves and the target is a
certain Verdier localisation, the localisation functor is referred to as Smith localisation.
There have also been analogues of these constructions on étale sheaves for Z/p-action
due to Riche and Williamson [RW22b] for finite type schemes and for locally of finite
type by Feng [Fen23|.

Similar to Branden’s hyperbolic localisation, the Z/p - Smith localisation has found
applications in the Geometric Langlands program, where Riche and Williamson [RW22b]
studies the loop rotation action coming from Z/p on the affine Grassmannian Grg and
obtain a geometric proof of the linkage principle.
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7 Equivariant sheaves and localisation

In the first part of this section, we revisit the work of Treumann and give an co-
categorial account, and indicate how to extend to arbitrary groups with respect to
suitable coefficients.

In the second part of the section, we restrict ourselves to compact manifolds with an
action of a finite group and introduce a different localisation functor, which is more in
the spirit of the localisations theorem considered in equivariant homotopy theory.

7.1.1 Localisation after Treumann

Let X be a real sub-analytic space with an action of a finite group G. We consider the
category Shv.c(X;C) of constructible equivariant sheaves valued in compactly gener-
ated presentable co-category C.

This is a full subcategory of equivariant sheaves Shvs(X;C), spanned by objects F
such that there exist a stratification X — P with strata {X,}, ¢ p, where each strata
X, is G-invariant and the underlying sheaf J |x, is locally constant.

Let Z be the closed subspace of X, which is G-invariant, and U be the complement of
Z,and let i : Z — X and j : U — X be the corresponding inclusions. Since i : Z — X
is a closed embedding ig s« = ig,) and j : U — X is a open embedding, hence we have
i =&

We can organise this information as a stable recollement in the sense of [Lurl7, A.8]:

il jiRel
/_\ /\
Shgvc(Z).ﬁ ShG,c(X) ﬁ ShG’c(U)
1y, G=U.G Jo=ia
~_ ~_
l‘G J%,G

where the middle sequence is a localisation sequence, i.e. a fiber-cofiber sequence in
Prl [Lurl7; AMR22].

(In the rest of the section, we will drop the group G as it makes the notations cleaner)

Given an object F € Shv.g(X) by [BG16] we have a two cofiber sequences ii'F —
F — juj*F and jij'T — F — i,i*TF.

Given an object F € Shv. ¢(X), we can recover JF from its restriction to the closed and
open part via a fracture square, i.e. there is pullback square.

F —— ,i*F
Jud*F —— 007 4 J*F

In fact we get Shv. g (X) is a lax-limit of Shv. ¢(U) and Shv.(Z), or in the language
of [AMR22]; Shv, g(X) is stratified over the poset 0 < 1.

Remark 7.1.1.1. One first observes there is a recollement at the level of the category
of sheaves, and by [BL94, Section 1.10], the six functors preserve constructability since
we have assumed X is real sub-analytic.
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Let the closed subspace Z = X, since the action on X is trivial, we have Shv;,q(X; @) ~
Shv(X; €"%), where €"¢ ~ Fun(BG,C). We will primarily be interested in the case
where @ = Modp the stable co-category of modules over an E,-ring spectrum R'. By
Schwede-Shipley theorem [Lurl7, Theorem 7.1.2.1] we can identify Fun(BG, Modg) ~
MOdR[G].

Definition 7.1.1.2 (Proper ideal). Let P be the subcategory of Shng(XG), spanned
by sheaves whose stalks lie in the thick ®-ideal of Mod (] generated by R[G/H ] where
H runs over all proper subgroups. We call this the proper ideal.

Definition 7.1.1.3. We define Smith(X%; R) ~ Shvg’G(X; R)/? to be the Verdier quo-
tient.

Let X = * and R = I, and G a p-group, then we have:

Smith(x; Fy) > Modf, (/P

In particular, Ind(Smith(x; F},)) ~ Mod(IE‘;G), where IF';G is the proper Tate con-
struction [Mat15].

Note that for F,, the proper Tate construction with respect to the trivial action is
non-zero if and only if G is an elementary abelian group. This has to do with the fact
that the derived defect base? of the ring [F,, is exactly the elementary abelian groups (in
the sense of [MNN19]).

This suggests that given an Eq-ring, it is crucial to work with something within the
defect base of the ring R. For example, in the case R = KU, we have defect base, all
cyclic group. More generally, E(n) the height n Morava E-theory has defect base as all
abelian groups G, such that the maximal elementary subgroup has rank < n.

The following is the main theorem in [Trel9] for cyclic and coefficient F),. We state a

modified version to accommodate all coefficients R, an E-ring and all finite groups in
the defect base of R.

Theorem 7.1.1.4. Let X be a G-space and i the inclusion of fixed points i : X& «— X.
Then the cofiber of the natural transformation 7 : ' — i* lies in the proper ideal P.

Proof. Let J be an object in ShVZG(X;Fp) and z € XY To show the cofiber of 7 :

i'F — i*F belongs to the proper ideal P, we need to compute the stalk of cofiber of 7
at the point . For which we can use the cofiber sequence coming from recollement:

Wi'F - F > gt T

where i : X¢ < X and j : U — X. Using this, the stalk can be computed as follows:
we can choose a regular neighbourhood V' of z and V' = V\XY, such that V is invariant
under the action of G and V"’ is a subset of U = X\ X, i.e.,V' has no fixed points. Using
the localisation sequence ii'F — F — j,j*F the stalk cofib(n)(F), is the global section
of F ‘V’ .

lreaders who are unfamiliar with the formalism of E rings can think of ordinary commutative rings
and Modgr to be the derived category of R
2derived defect base of ring R is those groups G such that R for the trivial action is non zero
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We claim that, I'(F |») € Fun(BG, Modg) is in the thick ®-ideal I generated by
R[G/H] where H runs over proper subgroups.

To prove this, we can establish a general result that for any space Y with a free G-
action, the global section of an equivariant constructible sheaf F belongs to the ideal
I. Note that the category of constructible sheaves are generated by sheaves which are
constant on a closed invariant space and zero outside.

So, let us assume JF is a sheaf of which is constant on a closed invariant subspace
zero on Z and Y\Z. The global section of F is cochains on Z with respect to the
constant coefficient. For constant sheaves on finite G-CW complex, the result follows
as the cohomology of the finite colimit of ¥"R[G/H| where H < G belongs to isotropy
subgroups of the action. Hence, we have I'(¥) lies in the ideal I ¢ Fun(BG, Modg). O

The above calculations can be suitably modified in the context of étale sheaves over
algebraic varieties in the case of field coefficients to a more general setup as indicated
by [RW22b].

In particular, in order to understand the loop rotation action for Z/p™ < G,, on the
affine Grassmannian Grg and carry out the calculation in [RW22b| we can work with
coefficients such as KU,', the p-complete complex K-theory, whose defect base is the

cyclic groups and proper Tate construction (K UPA)TZ/ P" is rational.

7.1.2 Localisation in Dualisable categories

In this section, we will indicate a different categorification of the Smith localisation and
several obstructions for such a construction.

Let X be a finite G-CW complex, where G is an elementary abelian group. Recall that
we can study the IF,-valued singular cohomology of fixed points X & up to a localisation.
That is,

H*(Xpe; Fa)le ] ~ H*(X Fo)[[t1, ... ta]][e '], p =2

H*(Xpe; Fp)le '] =~ H* (XY F)[[B1s s Brs t1y oo tn]][e 1] p odd

where e is the Euler class discussed in section 2.1.3. In this section, we will indicate a
version of the categorification of this statement, that is,

Shvie(X;Fp)[e ] ~ Shvpg (XY Fp)le .

Here we recall a few facts about presentable dualisable categories, which would be
essential in stating the main construction.

Let PrsLt be the oo-category of presentable stable co-categories, with morphism left
adjoint functors, which can be equipped with a symmetric monoidal structure called
the Lurie tensor product. A commutative algebra object in PrsLt is a presentably?
symmetric monoidal co-category.

3i.e., the colimits commute with tensor products in each variable
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Definition 7.1.2.1 (Dualisable Categories). A presentable stable oo-category C e Prk
is said to be dualisable if it is dualisable with respect to the Lurie tensor product.

Here are useful and equivalent characterisations of dualisable categories found in [Lurl8,
Appendix D.7.3.1] :

Theorem 7.1.2.2. [Lurl8, Appendix D.7.3.1] Let € € Prk, The following conditions
are equivalent:

1. € is a dualisable category.

2. The colimit evaluation functor colim : Ind(C) — € admits a left adjoint ¢ : € —
Ind(@).

3. There is a localisation sequence such that ¢ — D — &, where D and & are
compactly generated.

4. Cis a retract of a compactly generated category, where the retract is taken in PrsLt.

To start with, all compactly generated categories are dualisable. There are also more
examples coming from geometry, i.e., for a locally compact Hausdorff space X, we have
the category of sheaves Sh(X;C), which almost never compactly generated [NeeOl].
However, the Verdier duality for the category of sheaves [Lurl7; Voll7|, along with the
six functors formalism, express this category as a dualisable object in PrSLt.

Definition 7.1.2.3. Let Pr‘sjglal be the co-category of presentable stable categories, which
are dualisable and functors between them left adjoints, whose right adjoint preserves
colimits.

Note that the category Prgf al

is only a subcategory of PrSLt but not a full subcategory.
The category Prd*® admits all limits and colimits. In fact, we learned the following

from Maxime Ramzi:

Theorem 7.1.2.4 (M. Ramzi). The category Prif® of presentable stable dualisable
oo-categories is presentable.

Theorem 7.1.2.5 (A. Efimov). The inclusion Prd*® < Prl preserves colimits.

Remark 7.1.2.6. This gives us an idea of how to think of colimits in Prd"®! as they

are the same as colimits in PrsLt, but practically speaking, colimits in PrsLt are not very
transparent. One can compute colimits in PrsLt, as follows: given F' : [ — PrsLt, we use
the fact that

Prl ~ (prftyer

where the equivalence is given by passing to the adjoints.

We then get a diagram F° : I°? — Prf with colIimF identified with the limit

st

llig)lF °P Since Prﬁ — Caty, preserve limits, we compute the limit in Catg,.

The notion of a dualisable co-category seemed to have the right "size". For example,
let C be a large category, say Modpg, then the K-theory of Modg vanishes because of
the Eilenberg swindle. But due to the recent work of A. Efimov, we can extend the
definition of K-theory to large categories.
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Theorem 7.1.2.7 (A. Efimov). The localising invariant E on Caty™ uniquely extend
to a localising invariant E°°™ on PrduaLl and any localising invariant on Prdual comes

from this extension referred to as the continuous extension.

This leads us to ask what the algebraic K-theory of Shv(X;C) for X locally compact
Hausdorff. In the classical sense, you get zero as the category is large, but here is an
interesting result of Efimov

Theorem 7.1.2.8 (A. Efimov). Let X be a locally compact Hausdorff space, and let E

be a localising invariant on Catgfrf valued in spectra, and it preserves filtered colimits.
Then E“™(Shv(X;€)) ~ T.(X; E(C)). O

Where the target is compactly supported cohomology with respect to the constant
sheaf on X, valued in Sp. The proof of this above theorem is available in notes by Marc
Hoyois?

Let PrSLt’w be the co-category of compactly generated stable presentable categories, with
morphisms left adjoint functors that preserve compact objects.

Remark 7.1.2.9. [Mat16, Corollory 2.9] The category PrSLt’w is a presentable co-cateogry.
We have an equivalence Cat2™™" ~ PrL’w. Furthermore there is a fully faithful inclusion

PrSLtw — Prdual.

Lw Prdual dual _

Prop051t10n 7.1.2.10. The inclusion Pr; admits a right adjoint Pr§}

Prst given by
C — Ind(C¥)

O]

Let M be a compact manifold with an action of a finite group G. This gives a G-CW
complex structure on M. Let ME be the subspace of fixed points, and for the rest of the
section we set U := M\M%. We denote the inclusions of M“ and U by i : MY — M
and j : U — M. This gives us a stable recollement of the category of sheaves (refer
[Lurl7, Appendix A.8]):

i* Ji

’Ll ’I,*

Sh(MY;e) =% sn(x:e) L% su;e)
\_/K_/

il Jx

Where the sheaves are valued in a presentable stable co-category C.

Construction 7.1.2.11. Let M be a locally compact Hausdorff space with a G-action,
where G is a finite group.

Then Shv(X;@€) is an object of Prdtal and moreover if we assume M to be compact
then Shv(X;€) is a G-object in Prél. That is a functor

BG — Pri,

“https://hoyois.app.uni-regensburg.de/papers/efimov.pdf

94



7.1 Localisation of Equivariant Sheaves

We define the category of equivariant dualisable sheaves Shv,g(X; @)l as the limit in
Prg,}lal over BG. ]

Remark 7.1.2.12. Note the construction above looks similar to the definition of the

equivariant sheaf category as in definition 6.1.1.1, but since the inclusion Pr‘;}lal — Prk

does not preserve limits, the two definitions are genuinely different. O

Here is an important result of A. Efimov, which is crucial for our construction of Smith
localisation:

Theorem 7.1.2.13 (A. Efimov). Let €,D, & € Fun(BG, Pré*!) and € LD L ebe

a localisation sequence such that f,g are morphism in Fun(BG, Prgfal), i.e, they are

equivariant. Then the induced sequence

th

hG
ehG DhG g D

is a localisation sequence in Prdpal, O

The above theorem can be applied to the category of equivariant sheaves to obtain a
localisation sequence:

Sth(;(U; G)dual — SthG(X; e)dual N Shva(XG; e)dual
Where X is a compact Hausdorff space with an action of a finite group G.
We can identify
Shvya (XG; e)dual ~ ShV(XG; Sp) ® ehG,dual7

since the action on X is trivial and Shv (X G, Sp) is dualisable hence we have:
lim (Shv(X%;@)) ~ lim (Shv(X%; Sp) ® €) ~ Shv(X%; S lim @
lim (Shv(X™; €)) ~ lim (Shv(X™;5p) ® €) V(X 5p) © lim

We are particularly concerned about the case of € = Modpg.

Note that any stable symmetric monoidal category C® and 1 € €® then End(1) is an
E-algebra in spectra. For any objects X,Y, the mapping spectra mape(X,Y) has a
natural action of End(1), informally the action is as follows, given f : X — Y and an
endomorphism 7 : 1 — 1, we get (nf) =f®n: X ->Y.

Construction 7.1.2.14 (Inverting Euler class). The category Shvjg(X;F,)dul is a
module over the category Mongc so we can base change it to the category Mongc,
modules over the proper Tate construction:

Shv,a (X; Fp)dual ®MothG MOdF;G .
P

We denote it by Shvg(X;F,)uale1]. O
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7 Equivariant sheaves and localisation

Now let us work with a compact manifold M with a G-action. Since M is compact, it
admits a finite G-CW complex structure. Recall that we have a localisation sequence

Shvy,a(U; [Fp)dueﬂ — Shvyg(M; Fp)dual — Shva(MG; Fp)dual

where U is the complement of the fixed points M&. The enodmorphism of the unit,
End(1) in Shvy,g(U;F,)dual is an algebra over the equivariant cohomology C*(Upg; Fp)
and the base changed category is a module over C*(Upg; Fp)[e™!], where e is an Euler
class described in section 2.1.3.

Since U does not have any fixed point, we have C*(Uyg; Fp)[e 1] =~ 0 by the localisation
theorem 2.1.3.3. Hence Shv,,g(U;F,)48![e7!] ~ 0. Combining this with the above, we
have the following proposition:

Proposition 7.1.2.15. Let M be a compact manifold with an action of a group G,
then Shvy,g(X;F,)dal[e1] ~ Shvy,q (XY F,)dual[e~1].

Let us investigate the category Shvg (X9 Fp)du8l[e71] ~ Shv(X; Sp)®Mod$pG’dual [e71].
It is enough to analyse what Modgf’dual [e~!] is. First let us understand compact objects

of Mod?f’dual, which we can do using the right adjoint:

Prgfal — Catgoe]rf

C—c¥

hG,dualyw __ 1: w
(Mode ) _lé%l(Mode) ~ Fun(BG, Perfy,).

We have the Tate cofiber sequence:

P = Perf{G/H | H proper subgroup} — Perf(F,)"“ — Perf(F,)™

We identify Perf(FF,)7¢ ~ Perf(F;G) due to unipotence of representations, i.e., every
representation of a p-group V in characteristic p can be filtered:

OcVicWcVzc..cV,=V

such that V;/V;_; ~ IF,, for a more detailed discussion, we refer the reader to [MNN17,
Section 7].

we can apply — ®Perf(F];;G) Perf (IF;G) to the Tate cofiber sequence above.

On perfect modules, the base change inverts the Euler class on mapping space which
kills all the mapping spaces in P, hence the category P Operf(FiC) Perf (IE‘;G) ~ (0. So we
have:

Perf(IF,)"¢ ®perf(rrc) Perf (IF;G) ~ Perf (F;G) perf(rhc) Pert (IF;G)

We have IE‘;G is an idempotent algebra over F ZG because it is given by localisation of
Euler class; hence we have:
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7.1 Localisation of Equivariant Sheaves

Perf (IF';G) Qpert(rhc) Perf (FIT)G) ~ Perf (F;G)

Now we can take G to be an elementary abelian group, so the proper Tate construction
IF;G is non-zero.
From this we get, the compact objects of Modgf’dual [e~!] are exactly given by ModF;G,

but we dont know if the category Modgf’dual [e~!] is compactly generated, since Modgf’d“al
need not be compactly generated.

Remark 7.1.2.16. Note that the limit ModI}%G in PrSLt is identified with the category
Fun(BG, Modg) whose compact objects are Perf(R[G]). This implies the limits in Prdzal
and Prl, are genuinely different.

Remark 7.1.2.17. Since the compact objects of Modfﬁf are Perf(F,[G]), inverting the

Euler class on Modﬁf would kill all the compact objects, hence we get Mod%pG [e71] ~ 0.
This is the crucial reason to work in the category of presentable dualisable categories.

Finally, we would like to end the section with the following questions.
. hG,dualp —1
Question 7.1.2.18. Is the category Mode [e™"], compactly generated?
We have established in Proposition 7.1.2.15 for M be a compact manifold with an

action of a group G, then Shvg(X;F,)d [e71] ~ Shv,q(XY;F,)dale1].

The localised categories are still in Prd'®. Hence can we compute some localising

invariant on both sides?

Question 7.1.2.19. What is the topological Hochschild homology applied to the ex-
pression Shvy,g(X;F,)da[e™1] ~ Shvy,q (XY F,)dual[e~1] give us?
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