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Abstract

In this thesis, we study the homotopy theory of fixed points using methods from equiv-
ariant homotopy theory. Given a compact topological space with the action of a p-group,
the fixed points and their cohomological properties are studied via the so-called Smith
theory. We indicate several different categorifications of this theory.

The thesis consists of four main parts:

In the first part (Chapter 3), we investigate the relation between genuine fixed points
of a finite G-space and power operations. We analyse the theory of perfect E8 k-
algebras for k a characteristic p field and the perfection functor called tilting. Using this
theory, we recover the homotopy type of genuine fixed points from the Borel equivariant
cohomology.

In the second part (Chapter 4), we study the Segal conjecture for Z{p; more precisely,
given a spectrum X, when is the Tate construction with respect to trivial Z{p is the p-
completion. For X finite spectra, this is the celebrated theorem of Lin and Gunawardena.
In this chapter, we give examples of several non-finite spectra that satisfy the Segal
conjecture and extend this result to a larger class of spectra.

In the third part (Chapter 5), we compute homotopy fixed points of certain actions
of based loops on a compact Lie group and certain p-compact groups coming from
geometric representation theory. In certain cases, we also compare the homotopy fixed
points to the genuine fixed points.

In the fourth and final part (Chapters 6 and 7), we study a categorification of Smith
theory for sheaf cohomology building on the works of D. Treumann.
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Resume

I denne afhandling bruger vi ækvivariant homotopiteori til at studere homotopiteori
for fikspunkter. Givet en virkning af en p-gruppe på et kompakt topologisk rum, kan
fikspunkterne og deres kohomologiske egenskaber studeres via såkaldt Smithteori. Vi
indikerer en række kategorificeringer af denne teori.

Afhandlingen består af fire hoveddele:

I den første del (Kapitel 3) undersøger vi forholdet mellem ægte fikspunkter af et
endeligt G-rum og potensoperationer. Vi analyserer teorien om perfekte E8-k-algebraer
for k et legeme af karakteristik p og perfektionsfunktoren ‘tilting’. Ved at bruge denne
teori genskaber vi homotopitypen af de ægte fikspunkter fra den Borel-ækvivariante
kohomologi.

I den anden del (Kapitel 4) studerer vi Segalformodningen for Z{p; mere præcist, givet
et spektrum X, hvornår er det så tilfældet at Tatekonstruktionen med hensyn til den
trivielle Z{p-virkning er lig med p-fuldstændiggørelsen. Når X er et endeligt spektrum,
er dette en kendt sætning af Lin og Gunawardena. I dette kapitel giver vi eksempler
på ikke-endelige spektra der opfylder Segalformodningen og udvider dette resultat til en
større klasse af spektra.

I den tredje del (Kapitel 5) beregner vi homotopifikspunkter af visse virkninger af
løkker på en kompakt Liegruppe og visse p-kompakte grupper fra geometrisk repræsen-
tationsteori. I nogle tilfælde sammenligner vi også homotopifikspunkter til de ægte
fikspunkter.

I den fjerde og sidste del (Kapitel 6 og 7) studerer vi en kategorificering af Smithteori
for knippekohomologi, der bygger på D. Treummans arbejde.

Thesis Statement

Chapter 2 is material covered in [MNN17; MNN19], we don’t claim any originality of
contents appearing in this chapter.

Chapters 3 and 4 are joint work with Robert Burklund. The version appearing in the
thesis is written by the author.

Chapter 6 is joint work with Oscar Bendix Harr.
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1 Introduction

The subject of homotopy theory aims to classify topological spaces, more specifically
CW-complexes, up to homotopy by associating for every topological space a natural
algebraic object that is invariant under homotopy. That is a functor

F : S Ñ C

from the category of spaces to a suitable algebraic category.

In an ideal world, we would like to come up with functor F that distinguishes between
spaces X and Y , which are not homotopic, but there is the question of how computable
F is. There is constant trade between computability and how powerful the functor F
is.

To a real smooth manifold M , we can associate the de-Rham cohomology H˚
dRpMq

and moreover, if M is a compact manifold, the alternating sum of dimensions of the
cohomology

χpMq “
ÿ

i

p´1qidimpH i
dRpMqq

provides a useful invariant called the Euler characteristic which is an integer.

A striking result of 19th century mathematics is the classification of surfaces using
the Euler characteristic. This says, given an orientable smooth surface, that is, a real
2-dimensional compact, smooth manifold that is orientable, the Euler characteristic
classifies the surface up to diffeomorphism.

So is the Euler characteristic good enough to distinguish between spaces? If we take
our two spaces to be spheres of dimension 2 and 4, then χpS2q » χpS4q “ 2. But we
can do something better by remembering the F2-based singular homology as a graded
abelian group; we have H˚pS2q ‰ H˚pS4q.

Even homology has limitations, if we take X “ S2 _S4 and Y “ CP 2. Both X and Y
have 1 cell in degree 0, 2 and 4, giving us H˚pX;F2q “ H˚pY ;F2q. This leads us to look
at the F2-cohomology groups H˚pX;F2q and H˚pY ;F2q, which comes with a graded
commutative ring structure given by cup product of cohomology classes, which helps us
distinguish between X and Y .

We can go further and look at X “ ΣS2 _ S4 » S3 _ S5 and Y “ ΣCP 2. Now, given
a space of the form ΣZ, the cup product on H˚pΣZq is trivial. How do we fix this?

Note that for a space X, we have H˚pX;F2q » π˚C
˚pX;F2q, by passing to the ho-

motopy groups we have lost a lot of structure. The chain complex C˚pX;F2q is not
commutative on the nose but only commutative upon passing to the homotopy groups.

This is really a feature rather than a bug. The failure of commutativity on the nose
provides a family of operations called the power operations. In particular, we can
distinguish between X “ ΣS2_S4 » S3_S5 and Y “ ΣCP 2, since the power operation
Sq1 acts trivially on cohomology of X and nontrivially on cohomology of Y .
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1 Introduction

In this thesis, we explore how power operations help us understand the fixed points of
group action on spaces.

Let X be a G-CW complex, where G is a p-group, then X is built by attaching cells
of the form Sn ˆ G{H where H is the isotropy of the cell. Then we can rewrite the
expression for Euler characteristic: χpXq “

ř

ip´1qidimpH ipXqq by splitting into two
parts, one made of cells of the form Sn ˆ G{G, that is, those cells that are fixed by G
and the rest:

χpXq “ χpXGq ` pχpXq ´ χpXGqq

Since G is a p-group, we have χpXq ´ χpXGq is multiple of p. Then we have

χpXq ” χpXGq mod p

This leads us to wonder if there is a cohomological relationship between X and XG.
The earliest instance of investigation of this phenomenon is due to P. A. Smith [Smi34].

We say a CW-complex X, is a mod-p homology n-sphere if H ipX;Fpq “ Fp for i “ 0, n
and trivial in all other degree.

Theorem 1.0.0.1 (P. A. Smith). [Smi34] Let G be a p-group and X a finite G-CW
complex and is a mod-p homology n-sphere, then the genuine fixed points XG is either
empty or a mod-p homology i-sphere for i ď n

The theory of studying the relationship between cohomological properties of X and
its fixed points XG is called Smith theory. The case of S1-action was studied by A.
Borel [BBF+60], M. Atiyah and R. Bott [AB84], D. Quillen [Qui71a; Qui71b] and by
W. Dwyer and C. Wilkerson [DW88]. We state the most refined version of the result
proved in [DW88]

Theorem 1.0.0.2. [DW88] Let G be an elementary abelian group pZ{pqn. Let X be a
finite G-CW complex then we have:

H˚pXGq » Fp bH˚pBGq UnpH˚pXhGqre´1sq

where e P H˚pXhGq is the Euler class described 2.1.3, coming from group cohomol-
ogy H˚pBGq and UnpH˚pXhGqre´1sq is the largest unstable Steenrod algebra inside
H˚pXhGqre´1s.

The above statement is extremely surprising because we are able to get access to the
cohomology of genuine fixed points using the Borel equivariant cohomology.

Question 1.0.0.3. Could we recover the homotopy type of the genuine fixed points
from the Borel equivariant cohomology?

We address this question in Chapter 2. In joint work with R. Burklund, we investigate
the theory of perfect algebras in the land of higher algebra.

Given any E8-algebra over F̄p, we construct two different perfection functor p´q# and
p´q5, which are adjoints to the inclusion CAlgFrF̄p

ãÑ CAlgF̄p
. We refer to the right adjoint

p´q5 as tilting.

12



More than just constructing the adjoint p´q5, we also prove a recipe to compute the
homotopy groups of A5 for A an E8-algebra over F̄p.

Proposition 1.0.0.4. (Homotopy groups of A5) [Proposition 3.3.2.5] For a finite type1

E8-algebra A the homotopy groups of A5 is given by π˚A
5 » lim

ÐÝn
π˚A where the se-

quential inverse limit is taken along the operation Q0.

As an application, we give a spectrum-level statement of the result of Dwyer and
Wilkerson:

Theorem 1.0.0.5 (Theorem 3.4.1.4). For G, an elementary abelian group and X,
a finite G-CW complex. The tilt of the algebra C˚pX; kqτG » C˚pX; kqhGre´1s is
equivalent to C˚pXG ˆ BG; kq. Where p´qτG is the proper Tate construction.

In Chapter 2, we recall the required background about proper Tate construction.

In section 3.4.2, we recall results from p-adic homotopy theory in the sense of M.Mandell
[Man01] and recover the p-local homotopy type of XG.

The ideas involved in chapter 3 are heavily inspired by the proofs of Sullivan conjecture
which, as if for a given fintie G-CW complex X and G a p-group, when is the comparison
map XG Ñ XhG, from the genuine fixed points to the homotopy fixed points Fp-
equivalence.

In chapter 4, we revisit a stable analogue of the Sullivan conjecture, the Segal conjec-
ture. For G “ Z{p, the Segal conjecture ask if the map pSGqG Ñ pSGqhG an equivalence
after the p-completion. Where SG is the genuine G-sphere spectrum, which is the unit
of the category SpG of genuine G-spectra.

Equivalently the above theorem can be stated as when is the canonical map S Ñ StZ{p

from the sphere spectrum to its Tate construction with respect to trivial action of
Z{p a p-adic equivalence. This is answered to be true by W. H. Lin [Lin80] and J.
H. Gunawardena [Gun80]. In fact, as an immediate consequence, we can replace the
sphere spectrum with any finite spectra X, and we still have a p-complete equivalence
X Ñ XtZ{p.

We introduce the notion of an I-nilpotent spectra (Definition 4.3.1.9) and prove the
following theorem:

Theorem 1.0.0.6 (Theorem 4.3.1.10). Let X be a bounded below spectrum, p-complete
and I-nilpotent, then X satisfies the Segal conjecture for Z{p. That is, X Ñ XtZ{p is
an equivalence, where the Tate construction is with respect to trivial action.

The class of I-nilpotent spectra include many non-finite spectra. A rich source of
example comes from the class of spectra with cohomology, which is finite type and
locally finite (see Definition 4.3.1.11).

In chapter 5, the main object of study is based loops on a compact lie group G.
Turns out there is an algebro-geometric object called the affine Grassmannian GrG
whose underlying analytic space is homotopic to ΩK, where K is the maximal compact
subgroup of G. The affine Grassmannian GrG comes with a natural Gm-action. In

1We say A is of finite type if πnA finite dimensional all n
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1 Introduction

[RW22a], the authors compute the genuine fixed points Gr
Z{p
G . In this article, we give a

recipe to compute the homotopy fixed points for any compact Lie group.

In the case of G “ GLn, we compute the homotopy fixed points:

Theorem 1.0.0.7. Let G “ GLnpCq, then the homotopy fixed points pΩUpnqqhZ{pn is
equivalent to pΩUpnqqhZ{pn »

Ů

ρPReppZ{pn,Upnqq ΩUpnq ˆ Upnq{Cpρq.

Finally, the last part of the thesis is chapters 6 and 7. We set up foundations for
equivariant sheaf theory and categorify the localisation theorem for sheaves.

In chapter 6, joint work with Oscar Bendix Harr, we write down an 8-categorical
version of six functor formalism using the formalism developed in [Man22].

In the final chapter, we introduce two constructions of localisation of sheaves, the first
based on the construction of D. Treumann [Tre19], and we give a construction that is
valid for equivariant sheaves on locally compact space valued in the 8-category of R-
modules, for R a commutative ring spectrum and a finite groups G in the defect base
of R.

The second is based on inverting the Euler class on the category of equivariant sheaves.
But in order to get a non-trivial category, we perform the localisation in the 8-category
of stable presentable dualisable categories Prdualst .

Conventions

In this thesis, by category, we mean 8-category as developed by [Lur09], and even 1-
categories are viewed as discrete 8-categories. By commutative algebra, we mean an
algebra over the E8-operad and by algebra, we mean an algebra over the E1-operad.

For a ring or a ring spectrum R, by ModR, we mean the stable 8-category of R-
modules. The categories, Cat8 denote the 8-category of all 8-category, PrL denote
the 8-category of all presentable 8-category, PrLst denote 8-category of all stable pre-
sentable 8-category and Prdualst denote 8-category of all stable presentable 8-category
which are dualisable.

All functors are derived by convention. For example, we denote the tensor product in
the derived category of R-modules simply by ´ bR ´. we will specify when performing
an underived construction.

For an object X in the 8-category of spaces. By a functor F : X Ñ C, we mean a
functor from X, thinking of X as an 8-groupoid in the sense of [Lur09].

14



2 Preliminaries

2.1 G-Spectra and proper Tate construction

2.1.1 Localisations in Higher Algebra

Let Cb be stable, presentably symmetric monoidal 8-category1 let A P AlgpCbq. We
recall some general theories of completion, acyclisation and localisation with respect to
the algebra A. Recall how this theory applies to SpG, the category of genuine G-spectra;
much of the material presented here has appeared in [MNN17; MNN19]; we recall it here
for exposition and claim no originality.

Remark 2.1.1.1. By AlgpCq we always mean the 8-category of algebras over the as-
sociative operad E1 and similarly by CAlgpCq we mean the 8-category of algebras over
the commutaive operad E8 as developed in [Lur17, Section 3, 4].

Definition 2.1.1.2 (A-complete). [MNN17, Definition 2.15] Let X P C, we say X is
A-complete/local, if we have mapCpY,Xq “ 0 whenever A b Y » 0.

Let CA´cpl be the full subcategory of C spanned by A-complete objects. Since A-
complete objects are defined via mapping in property; we have by definition the subcat-
egory of A-complete objects are closed under small limits.

The category of CA´cpl is the localisation of C at morphisms

S “ tf : X Ñ Y | f b A is an equivalenceu.

We can construct a left adjoint [MNN17, Definition 2.19] LA : C Ñ CA´cpl to the inclu-
sion functor CA´cpl Ă C called the completion functor. Following [MNN17], we get
this adjoint since by [Lur09, Proposition 5.5.4.16], we have S is a strongly saturated class
of morphisms of small generation and by invoking the theory of Bousfield localisation
in [Lur09, Proposition 5.5.4.15] we have that CA´cpl is a presentable category and that
the inclusion of the complete objects has a left adjoint.

Example 2.1.1.3. For C “ DpZq, the unbounded derived category of Z-modules, which
is also the category of Z-modules in spectra. Let A “ Z{p, then the completion functor
LZ{p recovers the classical derived p-completion functor.

We work under further assumptions of Hypothesis 2.26 of [MNN17, Hypothesis 2.26]:

Let pCb, 1q be a presentably symmetric monoidal 8-category satisfying

• The unit is compact. (which implies all dualisable objects are compact)

• The algebra A is dualisable
1means C is commutative algebra object in PrLst

15



2 Preliminaries

• C is generated by dualisable objects under small colimits.

Definition 2.1.1.4 (A-torsion). [MNN17, Definition 3.1] Let Cb be a presentably sym-
metric monoidal 8-category and A P AlgpCq. The subcategory of A-torsion objects
CA´tors is the localising subcategory generated by A b X, where X P C ranges over all
dualisable objects.

By definition, the subcategory of CA´tors is closed under colimits; hence the inclusion
functor CA´tors Ă C is a left adjoint by the adjoint functor theorem and admits a right
adjoint ACycA : C Ñ CA´tors called the acyclisation functor [MNN17, Construc-
tion 3.2]. By Proposition 3.3 of [MNN17] we have that CA´tors is a localising b-ideal
generated by A.

Example 2.1.1.5. Revisting the examples of C “ DpZq and A “ Z{p, we have
ACycApZq “ Σ´1Z{p8. Where Z{p8 is the Püfer group Zrp´1s{Z.

Definition 2.1.1.6 (A´1-local). [MNN17, Definition 3.10] We call an object X in C to
be A´1-local if for every A-torsion object T we have HomCpT,Xq » 0. Let us denote
the class of A´1-local objects by CrA´1s following [MNN17].

We also have another way to test if an object is A´1-local by Proposition 3.11 of
[MNN17]:

Proposition 2.1.1.7. [MNN17, Proposition 3.11] Let C be an 8 category satisfying
hypothesis 2.26 stated above, and X P C, X P CrA´1s ðñ X b A is contractible.

By definition, the subcategory A´1-local objects is closed under all small limits. More-
over, it is also closed under colimits because of 2.1.1.7 and the tensor product b pre-
serves colimits in each variable. Which in turn gives us the A´1-localisation functor
p´qrA´1s : C Ñ CrA´1s [MNN17, Construction 3.12], the left adjoint to the inclusion of
A´1-local objects.

Example 2.1.1.8. Let R be a discrete commutative ring and C “ DpRq and A “ R{f
for some f P R. Then we have pR{fq´1-localisation is given by smashing with Rrf´1s.

Morally speaking, A´1-localisation picks out information away from the algebra A,
which is made precise by Proposition 2.1.1.7 and the Example 2.1.1.8.

We have abstractly set up three different localisations of a symmetric monoidal category
Cb:

1. A-completion LAp´q

2. A-acyclisation AcyAp´q

3. A´1-localisation p´qrA´1s

with respect to an algebra A P AlgpCq. We now follow [MNN17, Section 2, 3] to give
formulas to compute these localisations functors in these cases.

Let us set up a few notations to help us state the formulas for these localisations. As
usual let C be a stable, presentably symmetric monoidal category satisfying Hypothesis
2.26 of [MNN17] and A P AlgpCq then we make the following construction:

16



2.1 G-Spectra and proper Tate construction

Construction 2.1.1.9. [MNN17, Construction 2.2] Let I be the fiber of the unit 1 Ñ A,
tensoring the unit map with Ibn we have:

Ibn Ñ A b Ibn

take the fiber to get Ibn`1 which gives maps Ibn`1 Ñ Ibn for all n ě 0.

This assembles into a tower called the A-Adams Tower:

Ibpn`1q Ñ Ibn Ñ ... Ñ Ib2 Ñ I Ñ 1 (2.1)

which is the universal A-Adams tower and by tensoring (2.1) with M P C we obtain
A-Adams Tower of M . We will denote the A-Adams tower of an object M P C by
AdamspA,Mq‚.

In the case of C “ DpZq and A “ Z{p we have the unit map is the mod p reduction
Z Ñ Z{p with fiber Z and the map I Ñ 1 given by multiplication by p, Z p

ÝÑ Z. Hence
the Z{p-Adams Tower in DpZq is given by:

...
p
ÝÑ Z p

ÝÑ Z p
ÝÑ Z (2.2)

A closely related construction to the A-Adams tower is the cobar construction.
Given an algebra A P AlgpCq we get maps Abn Ñ Abn`1 and Abn Ñ Abpn´1q using the
units and multiplication. In the case n “ 2, we have A Ñ AbA given by a ÞÑ 1ba and
a ÞÑ a b 1 and the multiplication gives map A b A

m
ÝÑ A. These coherently assemble

into a cosimplicial diagram ∆ Ñ C called the cobar construction:

CB‚pAq “ A A b A ...

The coherence of the above diagram crucially depends on the highly coherent multi-
plication structure of A, coming from the fact that A is an algebra over the E1-operad.
To set up the above diagram infinity categorically with all the coherence, we refer the
reader to Construction 2.7 of [MNN17].

To see how the cobar construction is related to the Adams tower, we use the 8-
categorical Dold-Kan Correspondence, which gives an 8-categorical equivalence by
J.Lurie [Lur17]:

Funp∆,Cq » CZop
ě0

where the equivalance is given by given a functor X‚ : ∆ Ñ C sent to tower TowpX‚q:

n ÞÑ TotnpX‚q

where TotnpX‚q is the limit of the diagram X‚ restricted to ∆ďn.

Now we can state the relation between the Adams tower and the tower associated to
the cobar construction. We have a map from the Adams tower to the constant tower
AdamspA, 1q‚ Ñ 1.

17
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Proposition 2.1.1.10. [MNN17, Proposition 2.14] Let TowpCB‚pAqq be the tower
associated to the cobar construction; we have

TownpCB‚pAqq “ cofibpAdamspA, 1qn Ñ 1q » cofibpIbn Ñ 1q

infact we have cofiber sequence of towers AdamspA, 1q‚ Ñ 1 Ñ TowpCB‚pAqq

We continue to work under Hypothesis 2.26 of [MNN17]. We have the following
formula for the completion of X with respect to an algebra A.

Proposition 2.1.1.11. For X P C, we have the map X Ñ TotpX b CB‚pAqq which
exhibits CB‚pAqq as the A-completion of X.

which means using Proposition 2.1.1.10 we have

TotpX b CB‚pAqq » lim
ÐÝ
n

cofibpIbn b X Ñ Xq.

Recall the Adams tower from 2.2 where C “ DpZq and A “ Z{p, we have cofibpIbn Ñ

1q “ cofibpZ pn
ÝÑ Zq “ Z{pn. Hence Z{p-completion of any object X P DpZq is given by

LZ{ppXq “ lim
ÐÝ
n

X{pn

Remark 2.1.1.12. Note that Z{p in the category of spectra Sp does not satisfy the
Hypothesis 2.26 of [MNN17], in particular, Z{p is not a dualisable object. So the above
formula does not hold for Z{p-completion but ends up being completion with respect
to homotopy ring S{p where the two completions coincide in the case of bounded below
spectra X.

Finally, we can categorify the above construction with the following proposition.

Proposition 2.1.1.13. [MNN17, Theorem 2.30] Let A P CAlgpCq, where Cb is a stable,
presentably symmetric monoidal 8-category. Then we have,

CA´cpl » lim
ÐÝn

!

ModCpAq ModCpA b Aq ...
)

where the limit is taken in CAlgpPrLstq the 8-category of presentably symmetric monoidal
8-categories.

Now we give formula for acyclisation and A´1-localisation, we have the Adams tower
AdamspA, 1q‚

... Ñ Ibn Ñ Ibpn´1q Ñ ... Ñ I Ñ 1

Since we are working under the condition that the algebra A is dualisable. We have
the I “ fibp1 Ñ Aq is dualisable; in fact, each term appearing in the Adams tower
AdamspA, 1q‚ is dualisable, following [MNN17] we write the dualised tower as
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2.1 G-Spectra and proper Tate construction

1 Ñ U1 Ñ ... Ñ Ui Ñ

where Ui :“ DpIbnq and define UA “ colimiUi [MNN17, Construction 3.4] which comes
with a map 1 Ñ UA. Taking fiber, we have

VA Ñ 1 Ñ UA

Proposition 2.1.1.14. [MNN17, Proposition 3.5] The acyclisation functor ACycA :
C Ñ CA´tors is given by X b VA, that is X b VA Ñ X as a co-localisation with respect
A-torsion. Similarly, the A´1-localisation is given by smashing with UA, i.e, X Ñ XbUA

exhibits the target as the A´1-localisation.

Returning back to the examples of C “ DpZq and A “ Z{p, then we have the dualised
Adams tower:

Z p
ÝÑ Z p

ÝÑ Z p
ÝÑ

hence we have UZ{p “ Zrp´1s and since we have the fiber sequence VA Ñ 1 Ñ UA we
have that VZ{p “ Σ´1pZrp´1s{Zq.

2.1.2 Localisations in the category of genuine G-spectra

This section covers some basic facts about the 8-category of G-spectra and the proper
Tate construction.

Let G be a finite group; to it we can associate the 8-category SpG of G-spectra which is
a presentably symmetric monoidal 8-category, we refer the reader to [MNN17; GM95;
Bar17; AMR22] we will take a rather model-independent approach by assuming the
following facts:

1. (Elmendorf Theorem) Let OG be the orbit category whose objects are cosets G{H
for all subgroups H ď G subgroups and morphisms G-equivariant maps. Then the
8-cateogry of G-spaces (denoted by SG) is the presheaf category FunpO

op
G , Sq. This

category can be promoted to a symmetric monoidal 8-category with underlying
category SG, obtained from the pointwise product from the above description.

2. There exists a stable 8-category SpG of genuine G-spectra with a symmetric
monoidal structure such that we have a symmetric monoidal functor

Σ8
G : SG,˚ Ñ SpG

from pointed G-spaces to genuine G-spectra which preserve colimits and compact
objects. Hence this gives us an adjunction:

SG,˚ SpG

Σ8
G

Ω8
G

3. The category of G-spectra is compactly generated by dualisable objects
Σ8
G,`pG{Hq where H ranges over all subgroups. This means a G-spectra X is

contractible if and only if the mapping spectra mapSpGpΣ8
G,`G{H,Xq denoted by

XH is contractible where H runs over all subgroups.
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2 Preliminaries

4. Mapping out of Σ8
G,`pG{Hq gives a functor p´qH : SpG Ñ Sp called categorical

fixed points or genuine fixed points. Which are colimit and limit preserving,
lax-monoidal for all subgroups H ď G.

5. The functor p´qG : SpG Ñ Sp is a right adjoint with left adjoint i˚ : Sp Ñ SpG
called the inflation functor, which can also be seen as the unit map

Spb Ñ Spb
G,

since Spb
G is a presentably symmetric monoidal category, we can consider of Spb

G

with the symmetric monoidal structure as an object in CAlgpPrLstq.

The category CAlgpPrLstq is symmetric monoidal where the monoidal structure
comes from the Lurie tensor product on PrLst and Spb as the unit. Hence the
inflation functor is a symmetric monoidal functor which is a left adjoint.

6. (H-homotopy groups) For every subgroup H ď G we define

πH
˚ pXq “ π˚mapSpGpΣ8

G,`G{H,Xq “ π˚pXHq

a morphism f : X Ñ Y is an equivalence if and only if πH
˚ pfq is an equivalence

for all subgroups H.

7. for all subgroups H ď G, we have the restriction functor

ResGH : SpG Ñ SpH

which is a symmetric monoidal, colimit-preserving functor which has both a left
adjoint induction IndGH and a right adjoint CoindGH .

SpG SpH
ResGH

IndGH

CoindGH

such that for K ď H ď G ResHK ˝ ResGH » ResGK . We have IndGH ˝ IndHK » IndGK
and CoindGH ˝ CoindHK » CoindGK .

8. (Projection formula) Furthermore we have

pIndGHXq b Y » IndGHpX b pResGHY qq

pCoindGHXq b Y » CoindGHpX b pResGHY qq

9. For a finite group we have the Wirthmüller isomorphism which is a natural
equivalence

IndGH » CoindGH

.

Given a subgroup H ď G, we can indentify the CoindGH : SpH Ñ SpG, the right adjoint
to the restriction functor applied to the H-spectrum SH with internal mapping object
F pG{H`, SGq.
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2.1 G-Spectra and proper Tate construction

Since the restriction functor is symmetric monoidal, the right adjoint can be lifted
to a lax monoidal functor, hence CoindGHpSHq receives a natural commutative algebra
structure.

The commutative algebra structure can be identified as follows, G{H as a G-space is
a commutative coalgebra via the diagonal map, hence mapping out of the commutative
algebra SG makes F pG{H`,SGq into a commutative algebra.

The commutative algebra F pG{H`,SGq lets us identify SpH as a modules category in
SpG by the result of [BDS15]:

Proposition 2.1.2.1 ([BDS15]). The functor SpH Ñ ModSpGpF pG{H`,SGqq is an
equivalance of symmetric monoidal 8-categories.

The functor described in the above proposition is described as follows because of
the lax-monoidality of the functor CoIndGH . We have that CoIndGHpXq is naturally
CoIndGHpSHq-module, hence the coninduction functor lands in F pG{H`, SGq-modules.

We now go on to apply the theory of completion, acyclisation and A´1-localisation in
the category of genuine G-spectra with respect to a certain algebra AF. Before that, let
us set up some notations,

Definition 2.1.2.2. [MNN17, Definition 6.1] We say a collection of subgroups F of G,
a family of subgroup if H 1 is a subgroup subconjugate H P F then H

1

P F.

Given a family of subgroups, then we can define a commutative algebra AF “
ś

HPF F pG{H`, SGq.
This leads to the following set of definitions:

Definition 2.1.2.3. [MNN17, Definition 6.2] Given a family of subgroups F. Then:

1. Given an object X P SpG we say it is F-torsion if X belongs to the smallest localis-
ing subcategory generated by AF. Equivalently the smallest localising subcategory
generated by F pG{H`,SGq where H P F.

2. Given an object X P SpG we say it is F-complete if it is complete with respect to
AF.

3. Given an object X P SpG we say it is F´1-local if it is A´1
F -local.

As discussed in the section 2.1.1, we have completion, acyclisation and p´qrA´1s with
respect to algebra AF. Which we refer to as F-complete, F-acyclisation and F´1-
localisation.

Given a family of subgroup we can form a universal G-space EF, with the following
properties

EFH “

#

˚ H P F

ϕ H R F

Let OFpGq be the full subcategory of G-spaces spanned by G{H where H P P referred
to as F-orbit category, let i : OFpGq ãÑ SG be the inclusion of subcategory. By [MNN19,
A.1] we have

EF » ColimOFpGqi (2.3)

21
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We then have a cofiber sequence of pointed G-space referred to as isotropy seperation
sequence [MNN17, Proposition 6.5]:

EF` Ñ S0
G Ñ ẼF

where the ẼF as a G-space is unique upto equivalance

ẼF
H

“

#

˚ H P F

S0 H R F

Recall from Proposition 2.1.1.14 A-acyclisation and A´1-localisation are given by
smashing with a certain object VA and UA respectively, obtained via the A-Adams
tower of the unit. The following proposition [MNN17, Prop 6.5] identifies these object
in the category of G-spectra for F-acyclisation and F´1-localisation.

Proposition 2.1.2.4. The F´1-localisation of SG is given by Σ8
G ẼF and F-acyclisation

is given by Σ8
G,`EF.

We also have the F-completion (ref. [MNN17, Prop 6.6]) as:

Proposition 2.1.2.5. The F-completion of a G-spectra X is given by F pEF`, Xq.

Let P be the family of proper subgroups of a G. We can look at the smallest localising
subcategory SpPG generated by G{H` in SpG (where H runs over all proper subgroups).
Note that SpPG is precisely the AP-torsion objects. Localising away from this subcategory
we have SpGrA´1

P s the full subcategory of F´1-local objects.

We can describe the geometric fixed points functor as the total composite:

SpG
p´qrA´1

P
s

ÝÝÝÝÝÝÑ SpGrA´1
P s

p´qG

ÝÝÝÑ Sp

In particular by Proposition 2.1.2.4 we have ΦGpXq “ pẼP b XqG. So we get a lax-
monoidal transformation of functors p´qG Ñ ΦGp´q coming from the map of pointed
G-spaces S0

G Ñ ẼP.

Since F´1-localisation kills all the F-torsion objects we have ΦGpG{H`q » 0. It turns
out by this; the geometric fixed points functor is universal with respect to these prop-
erties, that is,

Proposition 2.1.2.6. p´qG Ñ ΦGp´q is a lax-monoidal transformation, and it is initial
among functors which kills the b-ideal of P-torsion objects (denoted by ă P ą). That
is, for any lax-monoidal functor F : SpG Ñ Sp which vanishes on the ideal ă P ą

and comes with a natural transformation η : p´qG Ñ F there is a essentially unique
factorisation of lax-monoidal transformations

p´qG ΦGp´q

F p´q
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2.1 G-Spectra and proper Tate construction

Given a G-spectrum X we can tensor X with the isotropy separation sequence EP Ñ

S0
G Ñ ẼP and apply p´qG and use the fact that p´qG commutes with all limits and

colimits to get the cofiber sequence:

colim
G{HPOPpGq

XH Ñ XG Ñ ΦGpXq (2.4)

One can ask how is the category of spectra with a G-action, that is, FunpBG, Spq

related to the category of genuine G-spectra. This can be answered as follows:

Let F “ teu be the family of trivial group, by the expression 2.3 we see that EF “ EG
and AF “ F pG`,SGq, we refer to the category of AF-complete object as Borel com-
plete spectra denoted by SpBorel

G and the completion functor is called Borelification.

The completion functor β : SpG Ñ SpBorel
G following Proposition 2.1.2.5 is given by:

X ÞÑ F pEG`, Xq.

In particular, a spectrum X is Borel complete if X Ñ F pEG`, Xq is an equivalence
this gives as a consequence the map:

XH Ñ XhH

is an equivalence for all subgroups H ď G. Where the target is the homotopy fixed
points with respect to the subgroup H considering X as a spectrum with a G-action.

This suggests that a Borel spectrum has no "new information" other than homotopy
fixed point of the underlying spectrum with G-action. This can be made more precise
with the help of Proposition 2.1.1.13 we obtain the category of SpBorel

G is equivalent
to FunpBG, Spq the category of spectra with G-action.

Definition 2.1.2.7 (Proper Tate construction). Let X be a genuine G-spectra, we
define the proper Tate construction as XτG :“ ΦGpβXq “ pẼP b F pEG`, XqqG.
Let F be a family of subgroups then we can define F-Tate construction as XτFG :“
pẼF b F pEG`, XqqG

So the proper Tate construction is Borelification followed by geometric fixed points. A
priory proper Tate construction does not require the notion of genuine spectra; it turns
out from the work of [NS18] we can completely perform the construction in the world
of Borel spectra.

Let P be the localising b-ideal in FunpBG,Spq generated by IndGHpSq “ Σ8
`G{H

where H runs over all proper subgroups. Similar to Proposition 2.1.2.6, the proper
Tate construction p´qτG is the initial lax-monoidal approximation of p´qhG such that it
vanishes on the ideal P.

From the definition 2.1.2.7 and 2.4 we have the cofiber sequence:

colim
G{HPOFpGq

XhH Ñ XhG Ñ XτFG

In particular, if we have F “ teu, we get the cofiber sequence for the classical Tate
construction:

XhG Ñ XhG Ñ XτteuG
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2.1.3 Euler class and localisation

In this section, we introduce the notion of Euler class using which we can define the
proper Tate construction as a certain localisation with respect to an Euler class;
these ideas are very classical and due to Quillen and Carlsson. We refer the reader to
[MNN19; AMR23] for a modern account.

Let G be a finite group and V be a finite dimensional real representation such that it is
orthogonal (i.e., the representation is given by ρ : G Ñ OpV q), let SV be the one-point
compactification, we regard pSV ,8q as a pointed space. Hence we define the Euler
class eV as the pointed G-map eV : S0 Ñ SV .

Let SpV q be the unit sphere of the representation V ; since the representation is orthog-
onal, we have that SpV q Ă V is G-invariant. We have a finite G-CW complex structure
on SpV q, where H is an isotropy subgroup if and only if V H ‰ 0. Finally, we cofiber
sequence:

SpV q` Ñ S0 Ñ SV

where the map SpV q` Ñ S0 is given by sending SpV q to the non-base point.

Let G be a finite group and ρ̃G be the reduced regular representation and P be the
family of proper subgroups, then using [MNN19, Prop 2.7] we identify EP and ẼP as:

EP » colim
n

Spnρ̃Gq ẼP » colim
n

Snρ̃G (2.5)

Recall from Definition 2.1.2.7 we have the proper Tate construction given by

ΦGpβXq » pẼP b F pEG`, XqqG

now using from equitation 2.5 and the fact that Snρ̃ is dualisable we can deduce the
following proposition [AMR23, Prop 5.10]:

Proposition 2.1.3.1. Let G be a finite group and R P SpG, then the proper Tate
construction is given by:

RτG » colim
n

pSnρ̃G b RqhG

Moreover, if R is complex oriented commutative ring spectrum, then

RτG » RhGre´1s

where e P π´2p|G|´1q is a class obtained from the complex reduced representation ρ̃C,G
via the complex oritentation.

Example 2.1.3.2. Some examples of complex oriented ring spectrum include KU^
p the

complex K-theory, MU complex cobordism ring, Z, Fp, Epnq the height n Lubin Tate
theory.

Let X be a finite G-CW complex and R be any spectrum; then RX the R-valued
chains on X, can be considered as G-spectrum. We can then compute the proper Tate
construction of RX as follows:
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2.1 G-Spectra and proper Tate construction

The R-valued cochains, RX as the limit of the constant diagram R indexed by X,
where the limit is taken in Sp. Since X is a finite complex, the limit is a finite limit,
and since the proper Tate construction is exact, we can then commute the limits. That
is, we have

pRXqτG » pRτGqX

Since X is a G-CW complex obtained from attaching cells of the form G{H ˆSn. The
proper Tate construction kills G{H ˆSn if H is a proper subgroup. So the limit indexed
over the subcomplex spanned by cells with isotropy groups G, i.e., the fixed points XG.
Hence we have:

pRXqτG » pRτGqX
G

Now let R be a complex oriented ring spectrum, then we obtain:

pRXqτG » pRXqhGre´1s » pRXhGqre´1s

This leads us to the localisation theorem investigated in the literature by Borel,
Atiyah-Bott, Atiyah-Segal, Quillen, and Dwyer-Wilkerson.

Theorem 2.1.3.3 (Localisation theorem). Let G be a finite group, X a finite G-CW
complexes and R a complex oriented ring spectra, then we have

pRXqτG » pRXhGqre´1s » ppRhGqre´1sqX
G

» pRτGqX
G
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3 Fixed points via Tilting

The material presented in this chapter is a joint work with Robert Burklund. The
version appearing in the thesis is written by the author.

3.1 Introduction

Given a space X, inspired by arithmetic, we can study the homotopy type of X one
prime at a time and try to reconstruct the space using certain glueing data.

This idea was made precise by D.Sullivan [Sul70]. Given a prime p ą 0 and a space
X, we can associate the space X^

p , the p-completion of X and the rationalisation XQ.
The subject of rational homotopy theory has seen many advances over the years due to
the work of D.Sullivan [Sul77] and D.Quillen [Qui69].

The above works show that rational homotopy theory is completely algebraic. More
precisely, the 8-category of 1-connected rational spaces is equivalent to the 8-cateogry
of differential graded 1-connected Lie algebras or the 8-category of differential graded
coconnective commutative algebras with π´1 “ 0.

Given a rational space, the associated CDGA is equivalent to the rational cochains
C˚pX;Qq. Sullivan in [Sul77] introduces the theory of minimal models, which is ex-
tremely useful in computations. In general, rational homotopy theory helps transfer a
topological problem into the algebraic world.

One can ask for similar models in the world of p-complete spaces. This was answered
by the following theorem of Mandell:

Theorem 3.1.0.1. [Man01] Let F̄p be an algebraic closure of Fp. The functor

C˚p´; F̄pq : pSpqop Ñ CAlgF̄p

X ÞÑ C˚pX; F̄pq

from the category of p-complete space to the category of E8-F̄p-algebras, sending a space
X to its F̄p-valued cochains is fully faithful when restricted to nilpotent spaces of finite
type.

The image of the above functor lands inside CAlgFrFp
the category of perfect algebras

(see 3.2.3.8); a more refined version of the above theorem is proved in [Lur11]. Which
states:

Theorem 3.1.0.2. [Lur11, Theorem 3.5.8] Let F̄p be an algebraic closure of Fp. The
F̄p-valued cochains functor C˚p´; F̄pq : pSProppqqop Ñ CAlgF̄p

from the opposite category
of p-profinite spaces to the category of commutative algebras over F̄p is fully faithful
and its essential image is identified with the category of perfect algebras.
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In this chapter, we study the theory of perfect algebras and associated perfection
functors. The inclusion CAlgFrF̄p

ãÑ CAlgF̄p
of the category of perfect algebras into the

category of commutative algebras admits both adjoints. We denoted the left adjoint by
p´q# and the right adjoint by p´q5; the right adjoint is referred to as tilting. We think
of these as perfection functors in the land of higher algebra.

More than just constructing the right adjoint, we provide a formula for the homotopy
groups of A5 assuming certain finiteness conditions on A.

Proposition 3.1.0.3. (Homotopy groups of A5, Proposition 3.3.2.5) For a finite type1

E8-algebra A, the homotopy groups of A5 is given by π˚A
5 » lim

ÐÝn
π˚A where the

sequential inverse limit is taken along the operation Q0, where Q0 is the 0-th power
operation.

We then apply the above result to the study of the homotopy type of fixed points of
group action.

Let X be a finite G-CW complex; then, there are two different notions of fixed points
that one can talk about. Namely, the genuine fixed points XG which depend on the
G-CW complex structure and homotopy fixed points XhG, which only depend on the
underlying space with group action.

There is a natural comparison map XG Ñ XhG. One can ask when this is an equiva-
lence. Here is a conjecture of Sullivan:

Conjecture 3.1.0.4 (Sullivan). Let G be a finite p-group and X be a finite G-CW
complex. Is the natural map XG Ñ XhG is an equivalence after p-completion?

Even the case of the trivial action is complicated. For trivial action, the Sullivan
conjecture asks for a finite space X. Is there an isomorphism between XG » X and
XhG » mappBG,Xq?

The conjecture is one of the landmarks of equivariant homotopy theory and was an-
swered to be true by the celebrated works of G. Carlsson [Car91], H. Miller [Mil84] and
J. Lannes [Lan92].

The proof of the Sullivan conjecture investigated deep relations between the cohomol-
ogy of fixed points and Fp-cohomology operations. Here is a theorem of Dwyer and
Wilkerson [DW88], which computes the cohomology of fixed points from Borel equivari-
ant cohomology.

Theorem 3.1.0.5. [DW88] Let G be an elementary abelian group pZ{pqn. Let X be a
finite G-CW complex then we have:

H˚pXGq » Fp bH˚pBGq UnpH˚pXhGqre´1sq

where e P H˚pXhGq is the Euler class described 2.1.3, coming from group cohomol-
ogy H˚pBGq and UnpH˚pXhGqre´1sq is the largest unstable Steenrod algebra inside
H˚pXhGqre´1s.

We prove an analogous theorem which computes the fixed points from Borel cohomol-
ogy using the notion of perfection.

1We say A is of finite type if πnA finite dimensional all n
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Theorem 3.1.0.6 (Theorem 3.4.1.4). Let G be an elementary abelian group and X,
a finite G-CW complex. The tilt of the algebra C˚pX; kqτG » C˚pX; kqhGre´1s is
equivalent to C˚pXG ˆ BG; kq. Where p´qτG is the proper Tate construction.

So combining with Mandell’s theorem, we can recover the homotopy type of genuine
fixed points from the Borel equivariant cohomology.

3.2 Power Operations on commutative Fp-algebras

3.2.1 Recollection of power operations

This section recalls some preliminaries of power operations and their relations to coho-
mology operations on spaces. Much of the material presented here is well known; we
recall them for clarity.

Given X P S, we can associate the Fp-valued cochains C˚pX;Fpq and using the diago-
nal map ∆ : X Ñ XˆX we get an operation m2 : C

˚pX;FpqbC˚pX;Fpq Ñ C˚pX;Fpq,
which is not commutative on the nose as a map of chain complexes but is graded com-
mutative after taking homology. The cohomology H˚pX;Fpq carries the structure of a
graded commutative ring.

The failure of m2 to be commutative is a feature rather than a bug, this gives
rise to a family of operations known as the Fp-power operations or the Fp-Steenrod
operations.

P i : HnpX;Fpq Ñ Hn`2ipp´1qpX;Fpq.

Before discussing more about the properties of the Steenrod operations, we recall how
they arise.

Let Cb “ DpFpqb be the presentably symmetric monoidal category whose underlying
category is the derived category of modules over Fp. Let A P CAlgpCq, which means we
have for all n P N, operations mn : Ab Ñ A along with factorisations:

Abn A

Abn
hΣn

mn

mn

where the vertical map is the quotient map of the Σn-action on Abn by permuting the
factors.

Example 3.2.1.1. Let X P S, then Σ8
`X is naturally an E8-co-algebra in Spb. Which

in-turn gives an E8-algebra structure on C˚pX;Fpq » mapSppΣ8
`X,Fpq.

Let us sketch the construction of the Steenrod operation in the case p “ 2. Let
A P CAlgpCq and xn P πnpAq be class in degree n, which can be represented by a
F2-linear map

xn : F2rns Ñ A
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3 Fixed points via Tilting

We then form

pxnqb2 : pF2rnsqb2 Ñ Ab2

taking the equivariant quotient of xb2
n by Σ2 and composing with m̄2 : A

b2
hΣ2 Ñ A gives

us

m̄2 ˝ pxnq
b2
hΣ2

: pF2rnsq
b2
hΣ2

Ñ A (3.1)

Identifying pF2rnsqb2 with F2r2ns, we see that Σ2-action on F2r´ns is given by E1-map

Σ2 Ñ EndpF2r2nsq » F2.

Since there are no nontrivial units in F2, we have no nontrivial Σ2-action on F2r2ns.
Hence, pF2rnsq

b2
hΣ2

» BΣ2 b F2r2ns, we rewrite equation (3.1) as

BΣ2 b F2r2ns » C˚pBΣ2;F2qr2ns Ñ A

we have

πi`2nC˚pBΣ2;F2qr2ns “

#

F2tti b e2nu, i ě 0

0, otherwise

the image of ti b e2n gives us a class Qn`ipxnq P π2n`ipAq. In the literature, these are
often referred to as Dyer-Lashof operations or generalised Steenrod operations.
A more detailed exposition can be found in [BMM+86], and a modern account can be
found in [Law20; GL20].

Given an E8-algebra A P DpFpq , there is a family of operations on the homotopy
groups π˚pAq,

For p = 2:

Qi : πnpAq Ñ πn`ipAq @ i P Z

satisfying the following properties:

1. Additivity: Qipx ` yq “ Qipxq ` Qipyq.

2. Cartan Formula: Qipxq “ Σj`k“iQ
jpxqQkpxq

3. Squaring: Q|x|pxq “ x2.

4. Instability: Qipxq “ 0 @ i ă |x|

5. Adem relations: QiQjpxq “ Σk

`

k´j´1
2k´i

˘

Qi`j´kQkpxq

The case of p ą 2 :

P i : πnpXq Ñ πn`2ipp´1qpAq

and
βP i : πnpAq Ñ πn`2ipp´1q´1pAq

30



3.2 Power Operations on commutative Fp-algebras

where i P Z. We use uniform notation βϵP i where ϵ P t0, 1u to state the Dyer-Lashof
relations:

1. Additivity: βϵP ipx ` yq “ βϵP ipxq ` βϵP ipyq.

2. Cartan Formula:
P ipxyq “ Σj`k“iP

jpxqP kpxq

βP ipxyq “ Σj`k“iβP
jpxqP kpyq ` Σj`k“iP

jpxqβP kpyq

3. Squaring: P |x|{2pxq “ x2.

4. Instability: βϵP ipxq “ 0 @ 2i ` ϵ ă |x|

5. Adem relations:

P iP j “ Σk

ˆ

pp ´ 1qpk ´ jq ´ 1

pk ´ i

˙

P i`j´kP k

P iβP jpxq “ Σk

ˆ

pp ´ 1qpk ´ jq ´ 1

pk ´ i

˙

βP i`j´kP k

´Σk

ˆ

pp ´ 1qpk ´ jq ´ 1

pk ´ i ´ 1

˙

P i`j´kβP k

Remark 3.2.1.2. We can replace the above construction with a field k of characteristic
p. The approach above could be uniformly applied to commutative algebra object E in
Sp; we see that understanding power operations is essentially understanding E˚pBΣnq.
In particular, working with a field k of characteristic zero, we do not have non-trivial
power operations since C˚pBΣn; kq » k.

Proposition 3.2.1.3. Let X P S and k a field of characteristic p ą 0, then the action
of Qi and βϵP i on the homotopy groups of C˚pX; kq is trivial for all i ą 0.

Example 3.2.1.4. Let X “ BCp, then we have

π˚C
˚pBCp;Fpq “

#

Fprxs, | x |“ ´1 for p = 2
Fprxs b Λpyq, | y |“ ´1 | x |“ ´2 for p odd

By using the above identities, we have:

In the case p “ 2,

Qipxnq “

#

0, @i ą 0
`

n
´i

˘

xn´i, @i ď 0

All our argument goes through for both even and odd primes. We choose to demon-
strate the calculations for only the prime p “ 2.

It is useful to organise these operations into an algebra as considered in [Man01],

Definition 3.2.1.5 (Mandell). Let Bp be the free associative algebra generated by Qi

for p “ 2 and P i and βP i for p ą 2 where i P Z and quotient with respect to the two-
sided ideal generated by the Adem relations. The algebra Bp is called the Dyer-Lashof
algebra or the generalised Steenrod algbera
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3 Fixed points via Tilting

For p “ 2, let I “ pi1, i2, ..., inq be a tuple of length n, where ik P Z. We define
QI “ Qi1Qi2 ...Qin and the excess epIq “ in `

řn´1
k“1pik ´ 2ik`1q. We say that I is

admissible if ik ě 2ik`1 @ 1 ď k ă n.

For p ą 2, let I “ pϵ1, i1, ϵ2, i2, ..., ϵn, inq we say its of length n, where ik P Z and
ϵk P t0, 1u. We define P I “ βϵ1P i1βϵ2P i2 ...βϵnP in and the excess

epIq “ 2in `

n´1
ÿ

k“1

2pik ´ pik`1q ` ϵ0 ´ ϵ1 ` ...p´1qnϵn

.

We can state the following proposition of [Man01, Proposition 11.2]:

Proposition 3.2.1.6 (Mandell). The algebra Bp considered as an Fp vector space for
p odd has a basis tP I | I is admissibleu (resp. for p “ 2 tQI | I is admissibleu).

On the other hand, given a spectrum X, the Fp cohomology MapSppΣ8
`X;Fpq has

an action of the E1-algebra EndSpFpq. The elements of Ap “ π˚pEndSpFpqq are called
Fp-cohomology operations and the algebra Ap is the p-Steenrod algebra.

We now state a result of Mandell [Man01, Theorem 1.4], which relates Dyer-Lashof
algebra and the p-Steenrod algebra.

Theorem 3.2.1.7 (Mandell). The algebra obtained Bp quotient by the two-sided ideal
p1 ´ P 0q (respectively p1 ´ Q0q for p “ 2) is isomoprhic to Ap.

3.2.2 Tate-valued Frobenius

In this section, we recall the notion of Tate valued Frobenius, which records the total
power operations. a detailed exposition of the material presented here can be found in
[Wil19], and these ideas are due to [Lur11; NS18].

We start with the following result of J.Lurie [Lur11] and Nikolaus-Scholze [NS18]:

Theorem 3.2.2.1. [Lur11, Propostion 2.2.3] [NS18, Proposition III.1.1] The functor
Tp : Sp Ñ Sp taking a spectrum X to pXbpqtCp is exact.

Theorem 3.2.2.2. [NS18, Proposition III.1.2] For any exact functor F : Sp Ñ Sp,
there is an equivalence between the space of natural transformations in exact functors
mapFunexpSp,Spqpid, F q and mapSppS, F pSqq » Ω8F pSq

Definition 3.2.2.3. [NS18, Definition III.1.4] We define the Tate diagonal to be the
natural transformation ∆p : idSp Ñ Tp corresponding to the map S Ñ ShCp Ñ StCp »

SbptCp .

Where S is endowed with the trivial action, hence we get a map S Ñ ShCp and compose
with the map from the homotopy fixed point to the Tate construction.

We restrict to the case of p “ 2.

The power operations for E8-algebras over a field k of characteristic 2 are constructed
in two different ways. The first one is due to Lurie [Lur11, Construction 2.2.6] and the
second using Tate diagonal due to Nikolaus-Scholze [NS18].
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3.2 Power Operations on commutative Fp-algebras

Let T2 : Modk Ñ Modk be the functor V ÞÑ pV b2qtC2 , then tthere is a colimit preserv-
ing approximation T̃2 Ñ T2. More concretely, we have T̃2 as the left Kan extension:

Perfk Modk Modk

Modk

T2

T̃2

Since the functor T̃2 : Modk Ñ Modk is colimit preserving, by Morita theory [Lur17,
Proposition 7.1.2.4] we have

T̃2pMq » M b B

where B is a F2-bimodule, so we can identify B with T2pkq » ktC2 as left modules, this
implies that T̃2pV q » V b B and the natural transformation gives us a map V b B Ñ

T2pV q.

Construction 3.2.2.4 (Lurie [Lur11]). Let A be an E8-algebra; we can define

Qi : ΣiA Ñ A.

We have π˚pktC2q » krt, t´1s where | t | “ ´1. From t´pi`1q we get a map of the right
modules Σik Ñ Σ´1B, tensoring with A using the right module structure gives a map
of spectra

Σik b A Ñ Σ´1B b A.

We have the Tate cofiber sequence of Ab2 with respect to the swap action

pAb2qhC2 Ñ pAb2qhC2 Ñ pAb2qtC2 » T2pAq.

Rotating the sequence gives you

Σ´1T2pAq Ñ Ab2
hC2

,

and since A is an E8-algebra we have map

m̄2 : pAb2qhC2 Ñ A.

This assembles into the map:

Qi : Σik b A Ñ Σ´1B b A Ñ Σ´1T2pAq Ñ pAb2qhC2

m̄2
ÝÝÑ A.

Note that since the first map is just a map of spectra, this map Qi is not k-linear.

The second approach by [NS18] is to use the Tate diagonal to define the Tate valued
Frobenius, which encodes the total power operation.

Construction 3.2.2.5 (Tate-valued Frobenius). Let A P CAlgpModF2q. Then we define
the Tate-valued Frobenius as

Qptq : A Ñ pAb2qtC2 m̄2
ÝÝÑ AtC2
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3 Fixed points via Tilting

where the target is equipped with trivial action. Therefore, π˚A
tC2 » π˚Apptqq where

| t | “ ´1. At the level of homotopy groups, we have,

Qptqpxq “ Σait
i

where x P πnpAq and we define Qipxq :“ ai P πn`ipAq. As a map of spectra we can
extract Qi : ΣiA Ñ A as the composite

A Ñ AtC2 t´pi`1q

ÝÝÝÝÑ Σ´pi`1qAtC2 Ñ Σ´iAhC2 Ñ Σ´iA.

Remark 3.2.2.6 (Naturality). Given an E8-ring map A Ñ B (not necessarily map of
k-modules), we have the commuting square

A AtC2

B BtC2

QA

QB

The three definitions of Qi agree; the proof can be found in [Wil19, Section 3.5].

Proposition 3.2.2.7 (Cartan formula). Let A be an E8-algebra, x, y P π˚A, then
Qptqpx b yq “ Qptqpxq.Qptqpyq

Remark 3.2.2.8. The case of p ą 2 is treated in the upcoming article of S. Bharkan in
a very general context.

3.2.3 Perfect algebras

In this section, we define the category of perfect E8-algebras over k, a field of character-
istic p, as a presentable 8-category. In order to do that, we recall the algebra of stable
power operations for an E8-algebra as introduced by [GL20] and [Lur07].

Construction 3.2.3.1 (Lurie,Glasman-Lawson). Let E be a commutative ring spec-
trum. We have the forgetful functor F : CAlgpModEq Ñ Sp from the 8-category of
commutative E-algebra to the category of spectra.

Let us define C :“ FunpCAlgpModEq,Spq, which is a stable 8-category with F P C,
which gives us an E1-algebra EndCpF q and we call this the algebra of stable power
operations following [GL20] and denote it by PowpEq.

Let A be a commutative E-algebra; then there is an action of PowpEq on A. Now let X
be a space, then the E-valued cochains C˚pX;Eq » mapSppΣ8

`X,Eq is a commutative
E-algebra so it has a natural action of PowpEq on C˚pX;Eq, and also an action of
EndpEq and these actions are compatible [GL20, Theorem 1.1].

We can summarise this following the result of [GL20, Theorem 1.1]:
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3.2 Power Operations on commutative Fp-algebras

Theorem 3.2.3.2. (Glasma-Lawson) Given a commutative ring spectrum E, we have
a map of E1-algebras:

E Ñ PowpEq Ñ EndpEq

such that the action of PowpEq is compatible with the action of EndpEq on C˚pX;Eq.
In particular, we have the following commutative diagram:

Sop ModEndpEq

ModPowpEq

CAlgE ModE

C˚p´;Eq

C˚p´;Eq

forget

where the forgetful functor CAlgE Ñ ModE factors through the category ModPowpEq.

We can justify calling PowpEq, the algebra of power operation with the following
theorem [GL20, Theorem 10.3]:

Theorem 3.2.3.3. Let E “ Fp, then π˚PowpEq is the completion of the algebra Bp

(refer 3.2.1.5) with respect to the excess filtration. The map PowpEq Ñ EndpEq on
homotopy groups is the quotient with respect to the two-sided ideal p1 ´ P 0q (and
p1 ´ Q0q for p “ 2).

In particular the algebra π˚PowpFpq is generated by βϵP i (Qi for p “ 2). Given an
E8-algebra A over Fp, it is naturally a module over PowpFpq, and this also gives a
spectrum-level action of the power operations on any commutative Fp-algebra.

Let ModFrPowpkq denote the full subcategory of Powpkq-modules on which Q0 P π˚pPowpkqq

acts via isomorphism. We refer to these objects as Frobenius perfect modules or Q0-
local modules.

In order to do this, we check the right Ore-condition for the multiplicative closed subset
spanned by Q0 in π˚Powpkq. We will demonstrate the Ore-condition at the prime 2,
and a similar proof works for odd primes as well.

Definition 3.2.3.4 (Right Ore condition). In a graded associative ring called R, a set S
of homogeneous elements is said to satisfy the right Ore condition [Lur17, Section 7.2.3]
if the following three conditions hold:

1. S is multiplicatively closed.

2. Given r P R, s P S there exist r1 P R and s1 P S such that rs1 “ sr1

3. x P R and s P S such that sx “ 0, there exist s1 such that xs1 “ 0

We begin with the following proposition, which we use repeatedly.
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3 Fixed points via Tilting

Lemma 3.2.3.5. For i ą 0, QipQ0qi “ 0.

Proof. We recall the Adem relations for prime p “ 2,

QiQj “ Σk

ˆ

k ´ j ´ 1

2k ´ i

˙

Qi`j´kQk

where the sum is non-zero if i
2 ď k ă i ´ j.

For the base case, i “ 1 and j “ 0, the sum is taken over empty set, hence Q1Q0 “ 0.
Now we work by induction. Let us look at

QiQ0 “ Σk

ˆ

k ´ 1

2k ´ i

˙

Qi´kQk

where i
2 ď k ă i. Hence the terms appearing in the sum consist of terms when composed

with pQ0qi´1 on the right is zero by induction on i.

Proposition 3.2.3.6. The collection S “ tpQ0qiu for i ě 0 in π˚pPowpkqq, (where by
convention we take pQ0q0 “ 1) satisfy the right Ore-condition.

Proof. We have to check the conditions of 3.2.3.4, and we see that the condition 1 is
satisfied by definition.

Now let us check condition 2, that is given an r P π˚pPowpkqq and s P S, we need to
provide r1 P π˚pPowpkqq and s1 P S such that rs1 “ sr1.

Let us verify the Ore-condition on r “ QI “ Qi1Qi2 ...Qin for I “ pi1, i2, ..., inq admis-
sible and s “ pQ0qk. If one of the ik is positive, then by admissibility in ą 0. By 3.2.3.5
we have that QIpQ0qin “ 0, this implies we can take s1 “ pQ0qin and r1 “ 0.

So without loss of generality, we can assume that ik ă 0 for all k ă 0 in r “ QI “

Qi1Qi2 ...Qin where I “ pi1, i2, ..., inq. We proceed by induction on the length of I. Let
us start with the following observation of what Q0Q´j is for j ą 0. By Adem relations,
we have

Q0Q´j “ Σk

ˆ

k ` j ´ 1

2k

˙

Q´j´kQk

where 0 ď k ď j ´ 1, which in turn gives us

Q0Q´j ´ Q´jQ0 “ Σk

ˆ

k ` j ´ 1

2k

˙

Q´j´kQkpxq

where 1 ď k ď j´1. Observe the right-hand side vanishes upon multiplying by pQ0qj´1

by 3.2.3.5, so this gives us the following identity

Q0Q´jpQ0qj´1 “ Q´jpQ0qj .

In particular, we have

pQ0qi`1Q´jpQ0qj´1 “ Q´jpQ0qj`i,
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3.2 Power Operations on commutative Fp-algebras

so given r “ Q´j and s “ pQ0qi we can choose r1 “ Q´jpQ0qj´1 and s1 “ pQ0qj`i´1 to
get

Q´jpQ0qj`i´1 “ pQ0qiQ´jpQ0qj´1.

Now let QI be an admissible monomial with I “ pi1, i2, ..., inq and ik ă 0 @k. The
induction hypothesis is, for I of length n and QI admissible and any pQ0qj , we can find
an N such that

QIpQ0qN “ pQ0qjQIpQ0qN´j .

Note that the above calculation verifies the case of length 1 by taking N “ i1 ` j ´ 1.
Now assume by induction we have proved for I of length n ´ 1, then we for I of length
n, we have for N ě in ´ 1

QIpQ0qN “ Qi1Qi2 ...QinpQ0qN “ Qi1Qi2 ...Qin´1pQ0qN´in´1QinpQ0qin´1

So we reduce to the case of QI 1 where I 1 “ pi1, i2, ...in´1q which follows from induction.

Finally, for condition (3) of 3.2.3.4, we proceed similar to the previous case, given
r “ QI and if I has an ik ą 0 then we have in ą 0 hence for s1 “ pQ0qin we have
rs1 “ QIpQ0qin “ 0.

So without loss of generality, we can assume that ik ď 0 for all 1 ď k ď n. But we
have seen that there exists an N such that:

QIpQ0qN “ pQ0qsQIpQ0qN´s,

so if we have pQ0qsQI “ 0 by multiplying suitable pQ0qN on the right we get

pQ0qsQIpQ0qN “ 0.

However pQ0qsQIpQ0qN “ QIpQ0qN`s “ 0, hence we have proved criteria 3 of 3.2.3.4.
This concludes the proof of the proposition.

Remark 3.2.3.7. The category of Frobenius perfect modules ModFrPowpkq is Bousfield
localisation of ModPowpkq and it is presentable [Lur17, Section 7.2.3].

Definition 3.2.3.8 (Perfect algebras). We define the category of perfect algebras
CAlgFrFp

as the pullback:

CAlgFrk CAlgk

ModFrPowpkq ModPowpkq

{

That is the full subcategory of CAlgk, such that the power operation Q0 acts by
isomorphism.

Proposition 3.2.3.9. The category of perfect algebras CAlgFrk is a full subcategory of
CAlgpkq, and it is a presentable 8-category.
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Proof. The categories ModPowpkq, ModFrPowpkq, CAlgk are presentable. The forgetful
functor F : CAlgk Ñ ModPowpkq and the inclusion of ModFrPowpkq ãÑ ModPowpkq are right
adjoints. Hence the diagram that we want to take pullback lives in PrR and inclusion
PrR Ă Cat8 preserves limits. This proves that CAlgFrFp

is presentable.

Since the inclusion ModFrPowpkq ãÑ ModPowpkq is fully faithful, we obtain a fully faithful
inclusion CAlgFrk ãÑ CAlgk. This is because the mapping space in CAlgFrk is computed
as a pullback of mapping spaces; hence fully faithful inclusion of categories is stable
under pullback.

3.3 Tilting

In this section, we construct two adjoints to the inclusion CAlgFrk Ñ CAlgk, the right
adjoint to the inclusion is called tilting, and we give an explicit formula for the com-
putation of the homotopy groups of the tilt A5 of an E8-algebra A.

3.3.1 Construction of tilting

We first start with proving the existence of the left adjoint p´q# : CAlgk Ñ CAlgFrk .

Proposition 3.3.1.1. There exists a left adjoint to the inclusion functor CAlgFrk Ñ

CAlgk.

Proof. Recall the category CAlgFrk is defined as a pullback:

CAlgFrk CAlgk

ModFrPowpkq ModPowpkq

{

Since the diagram is a diagram in PrR and the inclusion PrR Ă Cat8 preserves limits,
so the pullback is taken internally to PrR; in particular, we have CAlgFrk ãÑ CAlgk is a
right adjoint. Hence we have a left adjoint.

Definition 3.3.1.2. We denote the left adjoint to ModFrPowpkq ãÑ CAlgk by

p´q# : CAlgk Ñ CAlgFrk

we refer to this functor as colimit perfection.

Remark 3.3.1.3. We can also observe that the subcategory CAlgFrk is closed under
limits by checking the action of Q0 on the homotopy groups of the limits.

Now in order to construct the left adjoint, we prove that perfect algebras are closed
under colimits. We begin with the following observation:

Lemma 3.3.1.4. Let A be a perfect algebra over k, i.e. A P CAlgFrk , then A is cocon-
nective and the action Qi : π˚A Ñ π˚`iA is 0, for all i ą 0.
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3.3 Tilting

Proof. For any A P CAlgk, we have by QipQ0qi “ 0 for all i ą 0 by Lemma 3.2.3.5.
Now if A P CAlgFrk , we have Q0 acting by isomorphism on homotopy groups. Hence
Qi “ 0.

Let x P πipAq where i ą 0, by instability condition we have Q0pxq “ 0, but if A is
perfect Q0 must be isomorphism, hence x “ 0. Since x was an arbitrary element in a
positive degree, we have A is coconnective.

Proposition 3.3.1.5. The subcategory of perfect algebras CAlgFrk is closed under col-
imits.

Proof. In order to prove the closure under all small colimits, it’s enough to check perfect
algebras are closed under taking sifted colimits and finite coproducts. The forgetful
functor U : CAlgk Ñ Modk preserves sifted colimit and factors through the category of
ModPowpkq followed by the forgetful functor ModPowpkq Ñ Modk, which admits both left
and a right adjoint. This implies the factorisation U : CAlgk Ñ ModPowpkq preserves
sifted colimits. Hence, for sifted, it is enough to check the underlying module over power
operations is Frobenius perfect.

Let
A “ colim

kPK
Ak

with Ak perfect for all k P K and K sifted and since the category of Frobenius per-
fect modules ModFrPowpkq inclusion into ModPowpkq is closed under colimits we have A is
Frobenius perfect.

The only case remaining is that of finite coproducts, that is, given A,B P CAlgFrk we
need to prove A b B P CAlgFrk . Let x b y P πnpA b Bq where x P πipAq, y P πjpBq and
i ` j “ n. We can compute Q0px b yq using the Cartan formula:

Q0px b yq “ Σj`k“0Q
jpxqQkpyq “ ΣiQ

ipxqQ´ipyq

Since A,B P CAlgFrk and by lemma 3.3.1.4 we have Qi “ 0 @i ą 0, so the above
expression reduces to Q0pxb yq “ Q0pxq bQ0pyq. Again due to the perfectness of A,B,
we have Q0 acts via isomorphism on each factor; this proves A b B is perfect.

Since the inclusion CAlgFrk ãÑ CAlgk preserves colimits, and since both CAlgFrk and
CAlgk are presentable 8-category, we can apply the adjoint functor theorem to get the
right adjoint to the inclusion.

Definition 3.3.1.6 (Tilting). The right adjoint to the inclusion functor CAlgFrk ãÑ

CAlgk is called tilting and denoted by

p´q5 : CAlgk Ñ CAlgFrk .

Remark 3.3.1.7. Since the functor CAlgFrk Ñ CAlgk is fully faithful, the left and right
adjoints are Bousfield localisations and co-localisation, respectively.

This means that given A P CAlgk, one can universally approximate A by perfect
algebras from the left A5 Ñ A and from the right A Ñ A# with the universal property
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3 Fixed points via Tilting

given B P CAlgFrk and A Ñ B a map in CAlgk, we have up to contractible choice a
unique factorisation:

A B

A#

Similarly given a map B Ñ A with B P CAlgFrk , upto contractible choice we have a
unique factorisation:

B

A5 A

This will become useful for us to analyse fixed points later in the section 3.3.

3.3.2 Homotopy groups of tilt

In this section, we give a more explicit formula for the tilting construction under certain
finiteness assumptions on the homotopy groups of A.

The forgetful functor CAlgk Ñ Modk admits a left adjoint [Lur17, Section 3.1];

Free : Modk Ñ CAlgk.

More explicitly, given V P Modk we have the free algebra on V given by:

FreepV q »

8
à

j“0

V bj
hΣj

And we call it the Free functor. By free algebra on a generator of degree n, we mean
the free algebra functor applied to krns, and we denote it by ktxnu.

We start with the following input about the homotopy groups of free algebras[BMM+86]:

Proposition 3.3.2.1. Let ktxnu be the free algebra of degree n, we have π˚ktxnu is the
free polynomial algebra on the vector space M , where M is generated by basis QIpxnq,
where I is admissible and excess epIq ě n.

Remark 3.3.2.2. We can describe the power operation on π˚ktxnu as follows,

Qi : πmktxnu Ñ πm`iktxnu

given by
QIpxnq ÞÑ QiQIpxnq

and we apply the Adem relations to QiQIpxnq to rewrite in terms of the basis described
in the above proposition.
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3.3 Tilting

Since ktxnu is a free algebra, to give a map of commutative algebra from ktxnu to a
commutative algebra A is equivalent to giving a map of modules krns Ñ A because of
the adjunction we get

mapCAlgk
pktxnu, Aq Ñ mapCAlgk

pFreepkrnsq, Aq » mapModk
pkrns, Aq.

In particular, a map of commutative algebras ktxnu Ñ A is equivalent to picking an
element α P πnpAq and we donote it by

ktxnu
xn ÞÑα
ÝÝÝÝÑ A

and refer to it as a map induced by sending xn to α.

This gives us a map for n ă 0:

ktxnu
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

which extends to a filtered diagram:

ktxnu
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu...

we denote

C “ colimpktxnu
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu...q

where the colimit is taken in CAlgk. Now we prove the main theorem of this section
which is crucial in computing the homotopy groups of the tilt.

Theorem 3.3.2.3. The colimit C of the filtered diagram above is a perfect algebra.

Proof. We then have forgetful functor CAlgk Ñ Sp, which preserves sifted colimit. In
particular, the underlying spectrum can be calculated as a colimit in the category of
spectra.

Also, taking homotopy groups commutes with taking filtered colimits. Since perfectness
can be tested on homotopy groups,so we proceed to compute the filtered colimit of
homotopy groups.

Recall the homotopy groups π˚ktxnu from 3.3.2.1 is a polynomial algebra on a vector
space M , with basis QIpxnq with I admissible and epIq ě n.

The map ktxnu
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu on homotopy groups is the unique map induced by

sending
QIpxnq ÞÑ QIQ0pxnq

Which takes M to M . Hence we can compute the filtered colimit on M , and then take
polynomial algebra in the resulting vector space:

M̃ “ colimpM
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ M

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ M

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ M...q
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3 Fixed points via Tilting

Note that M is a bimodule over the Dyer-Lashof algebra (cf 3.2.1.6) in a natural way.

Hence the vector space M̃ is a module over

B̃p “ colimpBp
Q0

ÝÝÑ Bp
Q0

ÝÝÑ Bp Ñ ...q

where the colimit is taken over multiplication on the right. This colimit can be com-
puted since we checked in 3.2.3.6, the collection S satisfy the right Ore condition.

We can identify B̃p » BprpSq0q´1s with AprpSq0q˘s the steenrod algebra adjoint a
formal variable Sq0 and its inversion, via the map

AprpSqq˘s Ñ BprpSq0q´1s

Sqi ÞÑ Sqi{Sq0

for i ą 0 and
Sq0 ÞÑ Sq0

So Sq0 acts invertible on both the left and right side of the bimodule M̃ .

Corollary 3.3.2.4. The algebra C in the above proposition is equivalent to ktxnu#,
where p´q# is left adjoint to the the inclusion CAlgFrk ãÑ CAlgk.

Proof. Since the colimits C is perfect, we have

C » C# » rcolimpktxnu
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu...qs#

using the fact that p´q# is a left adjoint we have

C » colimpktxnu#
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu#

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu#

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu#...q

where the transition maps are isomorphisms by definition on perfect algebras. Hence
we have C » ktxnu#.

Proposition 3.3.2.5. (Homotopy groups of A5) For a finite type2 E8-algebra A the
homotopy groups of A5 is given by π˚A

5 » lim
ÐÝn

π˚A where the sequential inverse limit
is taken along the operation Q0.

Proof. We can use the above results and compute the homotopy groups of the tilt A5. A
natural thing to do is to map in from the free algebra ktxnu into A5. Since the homotopy
groups of mapCAlgpktxnu, A5q can be computed via the free-forgetful adjunction:

mapCAlgk
pktxnu, A5q » mapModk

pkrns, A5q

for i ą 0, this implies

πipmapCAlgk
pktxnu, A5qq » πimapModk

pkrns, A5q » π0mapSppkrn ` is, A5q » πn`iA
5.

Now since A5 is perfect, any map ktxnu Ñ A5 by universal property factors as follows:
2We say A is of finite type if πnA finite dimensional all n
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3.4 Fixed points and tilting

ktxnu ktxnu#

A5

Hence we have

mapCAlgk
pktxnu, A5q » mapCAlgk

pktxnu#, A5q.

But we also have

mapCAlgk
pktxnu#, A5q » mapCAlgk

pktxnu#, Aq,

since p´q5 is a colocalisation.

Now by 3.3.2.4 we can identify ktxnu# with

colimpktxnu
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ ktxnu...q

we have

mapCAlgk
pktxnu#, Aq » limp...

xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ mapCAlgk

pktxnu, Aq
xn ÞÑQ0pxnq
ÝÝÝÝÝÝÝÑ mapCAlgk

pktxnu, Aqq

This gives us a formula for homotopy groups of tilt via,

π˚pmapCAlgk
pktxnu, A5qq » π˚pmapCAlgk

pktxnu#, Aqq » π˚plim
ÐÝ
i

mapCAlgk
pktxnu, Aqq

π˚`nA
5 » π˚plim

ÐÝ
i

mapCAlgk
pktxnu, Aqq

We can compute the homotopy groups of sequential inverse limits lim
ÐÝn

Xi using Milnor
lim1 exact sequence. But there is no contribution from the lim1 term due to the finite
type condition on A; that is, all the groups are finite; hence, the image in the limit
diagram is eventually constant, which is the Mittag-Leffler condition for the vanishing
of lim1. Hence we obtain,

πi`nA
5 » lim

ÐÝ
Q0

πipmapCAlgk
pktxnu, Aqqq » lim

ÐÝ
Q0

πi`nA

This proves the claim.

Remark 3.3.2.6. Note that for n ă 0, mapCAlgk
pktxnu, A5qq sees only the homotopy

groups πiA
5 for i ą n since the mapping space has no negative homotopy groups. This

is taken care of by varying n.

3.4 Fixed points and tilting

Let G be an elementary abelian group, X a finite G-CW complex, we use the formal-
ism of tilting to recover the p-local homotopy type of XG from the Borel equivariant
cohomology of X.
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3 Fixed points via Tilting

3.4.1 Proper Tate construction

Let k be a field of charpkq “ p, G “ pZ{pqn, we have

π˚C
˚pBG; kq “ π˚k

hG “

#

krrx1, x2, ..., xnss, for p =2
krrx1, x2, ..., xnss b Λpϵ1, ϵ2, ..., ϵnq, otherwise

where | xi |“ ´1 for p “ 2 and | xi |“ ´2, | ϵi |“ ´1 for p ą 2.

Let I Ă t1, 2, ..., nu and denote xI “
ř

iPI xi, we define the Euler class e P π˚k
hG as

discussed in 2.1.3 as a product:

e “
ź

IĂt1,2,...,nu

xI

where the product is over I non-empty subsets of t1, 2, ..., nu.

Theorem 3.4.1.1 (Localisation theorem). Let X be a finite G-CW complex, we have
the fibration which records the G-action:

X XhG

BG

a

to get an induced map a˚ : C˚pBG; kq Ñ C˚pXhG; kq, we then have

C˚pXhG; kqre´1s » C˚pXG ˆ BG; kqre´1s

we XG is the genuine fixed point.

Remark 3.4.1.2. The above theorem, as pointed out in 2.1.3.3, can be stated as

C˚pX; kqτG » C˚pXG; kqτG

where p´qτG is the proper Tate construction (cf. 2.1.2.7), where the target is equipped
with trivial action. It is also important to note that the above isomorphism is an
isomorphism of E8-algebras.

Question 3.4.1.3. Let A be the E8-algebra C˚pX; kqτG, what is A5?

Theorem 3.4.1.4. For G an elementary abelian group and X, a finite G-CW complex.
The tilt of the algebra C˚pX; kqτG is equivalent to C˚pXG ˆ BG; kq.

Proof. We have pC˚pX; kqτGq5 » pC˚pXG; kqτGq5 by the localisation theorem. The
proper Tate construction p´qτG is an exact functor hence

pC˚pXG; kqτGq5 » ppkτGqX
G

q5.

By construction, p´q5 is a right adjoint to the inclusion CAlgFrk ãÑ CAlgk so tilting
commutes with taking limits. This gives:

pC˚pXG; kqτGq5 » ppkτGq5qX
G
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3.4 Fixed points and tilting

So it is enough to understand what pkτGq5 is with respect to the trivial G-action on k.
The homotopy groups of kτG are finite dimensional in each degree. Hence to calculate
the homotopy groups of the tilt pkτGq5, we can use Proposition 3.3.2.5.

We have π˚pkτGq5 » lim
ÐÝi

π˚pkτGq, where the inverse limit is taken with respect to the
operation Q0, so we try to understand how Q0 acts on homotopy groups of kτG.

We have the map of E8-algebras

khG Ñ kτG

given by localisation at the Euler class described above. Since the Tate valued Frobe-
nius is natural with respect to the map of E8-algebra (cf 3.2.2.6), we get the total power
operation:

Qptqpxiq “ xi ` x2i t
´1

Similarly, for all classes that come from khG. So the only classes remaining are the
ones that arise from localisation, so we can ask what is Qptqp 1

xi
q?. We can compute it

using the Cartan formula (3.2.2.7) as follows:

QptqpxiqQptqp
1

xi
q “ Qptqp1q “ 1

Qptqp
1

xi
q “

1

Qptqpxiq

“
1

xi ` x2i t
´1

“
t

x2i
.

1

p1 ` t
xi

q

“
t

x2i
.p1 `

t

xi
`

t2

x2i
` ...q

“
t

x2i
`

t2

x3i
`

t3

x4i
` ...q

this implies Q0p 1
xi

q “ 0. Now by using Cartan formula we get Q0p 1
xn
i

q “ 0 for all n
and the same calculation goes through for Q0p 1

xI
q “ 0.

Since khG is a perfect algebra, we have a factorisation:

khG kτG

pkτGq5

The above computation shows that khG Ñ pkτGq5 is an equivalence. This proves the
claim C˚pX; kqτG is equivalent to C˚pXG ˆ BG; kq.
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3 Fixed points via Tilting

Corollary 3.4.1.5. Given G an elementary abelian group and X a finite G-CW complex
then we have isomorphism of E8-algebras:

pC˚pX; kqτGq5 bkhG k » C˚pXG; kq.

3.4.2 p-adic homotopy theory

In this section, we recall some results from p-adic homotopy theory from [Lur11]. To
recover the homotopy type of the genuine fixed points from Borel cohomology using
results from the previous section.

Definition 3.4.2.1. [Lur11, Definition 2.4.1] Let p be a prime number.Let X P S is a
p-finite space if the following condition holds:

1. X is n-truncated for some n.

2. π0pXq is a finite set.

3. For all x P X, the homotopy groups πkpX,xq is finite p-group for all k ě 1.

We denote by Sp´fin Ă S the full spanned by p-finite spaces.

Definition 3.4.2.2. [Lur11, Definition 3.1.1] For C an accessible 8-category with all
finite limits, we can definite the 8-category of pro-objects PropCq as the full subcate-
gory of FunpC, Sqop spanned by functors which are accessible and preserve finite limits.

For C as above, there is a fully faithful embedding j : C Ñ PropCq [Lur11, Re-
mark 3.1.4], which sends an object X P C to be the presheaf co-represented by X.

The category of pro-objects PropCq is obtained by formally adding co-filtered limits to
C, and satisfies the following universal property:

Proposition 3.4.2.3. [Lur11, Proposition 3.1.6] For C, an accessible category with all
finite limits and D category with all co-filtered limits. Then there is an equivalence

FunfilpPropCq,Dq ÝÑ FunpC,Dq

where the category on the right is the full subcategory of FunpPropCq,Dq, which pre-
serves cofiltered limits.

Definition 3.4.2.4. [Lur11, Definiiotn 3.1.12] We define the category of p-profinite
spaces PropSp´finq as the pro-category of p-finite spaces. We denote it by SProppq.

Let k be a field of characteristic p. The functor C˚p´; kq : Sp´fin Ñ CAlgopk preserves
finite limits. To see this, it is enough to check the functor C˚p´; kq preserves finite
products and pullbacks.

By Kunneth theorem C˚p´; kq takes product X ˆY to C˚pX; kq bk C
˚pY ; kq which is

the product in CAlgopk . Now let us consider the pullback of p-finite spaces:
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3.4 Fixed points and tilting

X 1 Y 1

X Y

{

Since the spaces in the pullback are p-finite, we have π0Y is finite, and the π1pY, yq is a
finite p-group for all y P Y , so the action of π1pY, yq on cohomology of the fiber of X Ñ Y
is nilpotent. Hence we have the Eilenberg-Moore theorem [Lur11, Corollory 1.1.10],
which says the induced map

θ : C˚pY
1

; kq bC˚pY ;kq C
˚pX; kq ÝÑ C˚pX

1

; kq

is an equivalence of E8-algebras.

The functor C˚p´; kq : Sp´fin Ñ CAlgopk extend to a functor C˚p´; kq : SProppq Ñ

CAlgopk which preserves all small limits and this extension is essentially unique by [Lur09,
Proposition 5.5.1.9].

Theorem 3.4.2.5. [Lur11, Proposition 3.1.16][Mandell, Lurie] Let k be a separably
closed field of characteristic p. Then the functor C˚p´; kq : SProppq Ñ CAlgopk is a fully
faithful embedding.

Theorem 3.4.2.6. [Lur11, Theorem 3.5.8] Let k be an algebraically closed field, then
the functor C˚p´; kq : SProppq Ñ CAlgopk has the essential image identified with the full
subcategory CAlgFrk of perfect algebras.

So the perfection functors p´q# and p´q5 constructed in section 3.3, universally ap-
proximates an E8-algebra A by cochains of profintie spaces A# and A5.

Let Snil,fin´type be the category p-complete nilpotent spaces of finite type which is a
full subcategory of SProppq. So we have Mandell’s theorem:

Theorem 3.4.2.7. [Man01] Let k be an algebraically closed field of characteristic p.
C˚p´; kq : Snil,fin´type ãÑ CAlgopk is fully faithful and given X P Snil,fin´type we can
recover the homotopy type of X by mapping into k. That is,

mapCAlgk
pC˚pX; kq, kq » X.

Recall from Corollary 3.4.1.5, given G an elementary abelian group, k an algebraic
closed field of characteristic p and X a finite G-CW complex we have isomorphism of
E8-algebras:

pC˚pX; kqτGq5 bkhG k » C˚pXG; kq

Combining this with Mandell’s theorem, we have:

Corollary 3.4.2.8. Let G be an elementary abelian group and X a finite G-CW com-
plex such that XG is nilpotent, then the p-local homotopy type of XG is equivalent to
mapCAlgF̄p

pA, kq, where A » pC˚pX; kqτGq5 bkhG k

Remark 3.4.2.9. In principle, we can drop the assumption on XG being nilpotent and
always recover the homotopy type of XG as a profinite space using Mandell’s theorem.
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4 A remark on Segal conjecture

The material presented in this chapter is a joint work with Robert Burklund. The
version appearing in the thesis is written by the author.

4.1 Introduction

The Sullivan conjecture asserts that for G a p-group and X a finite G-CW complex,
then the natural comparison map between the genuine fixed points and the homotopy
fixed points

XG Ñ XhG

is an equivalence after p-completion.

The stable analogue of this question is the Segal conjecture, which asks if, for a p-group
G, the natural comparison

pSGqG Ñ pSGqhG

an equivalence after p-completion. Where SG is the genuine G-sphere, which is the
unit in the category of genuine G-spectra, pSGqG denote the genuine G-fixed points and
pSGqhG denote the homotopy fixed points.

The conjecture was answered to be true by a sequence of progress, for G “ Z{2 by
W. H. Lin [Lin80], for G “ Z{p for odd primes by J. H. Gunawardena [Gun80], for
elementary abelian groups by J. F. Adams, J. H. Gunawardena, H. Miller [Ada74] and
G. Carlsson [Car83] and finally for all groups by G.Carlsson [Car84].

In the case of G “ Z{p, the Segal conjecture is equivalent to asking if the canonical
map S Ñ StZ{p from the sphere spectrum to the Tate construction with respect to trivial
Z{p action exhibits StZ{p as the p-completion of S. This is answered to be true by W.
H. Lin [Lin80] and J. H. Gunawardena [Gun80].

Since both p-completion and Tate construction are exact functors, the result extends
to all finite spectra. That is, for any finite spectrum X with trivial Z{p-action, the map
X Ñ XtZ{p is an equivalence after p-completion.

In this chapter, we investigate for which non-finite spectra we can extend the Segal
conjecture for Z{p. We introduce the notion of I-nilpotent spectra:

Definition 4.1.0.1 (Definition 4.3.1.9). Let I be the augmentation ideal of the Steen-
rod algebra ϵ : Ap Ñ Fp. We say a spectrum X is I-nilpotent if we have H˚pXq »

lim
ÐÝn

H˚pXq{In.

this helps us state the Segal conjecture for non-finite spectra. In particular, we have:

Theorem 4.1.0.2 (Theorem 4.3.1.10). Let X be a bounded below spectrum, p-complete
and I-nilpotent, then X satisfies the Segal conjecture for Z{p. That is, X Ñ XtZ{p is
an equivalence, where the Tate construction is with respect to trivial action.
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4 A remark on Segal conjecture

We also discuss examples of non-finite spectra in this chapter. One particular class of
example, if X is a space with locally finite cohomology (see Definition 4.3.1.11) and is
of finite type, then the suspension spectrum Σ8

`X satisfy the Segal conjecture.

This result is very similar to the result of H. Miller [Mil84] in the unstable world,
which asserts that for a locally finite space with trivial action of a p-group G, the map
X Ñ mappBG,Xq » XhG is an equivalence after p-completion.

4.2 Preliminaries

In this section, we recall some important objects and constructions that feature in the
proof of the Segal conjecture and state the Segal conjecture for G “ Z{p in terms of the
Adams spectral sequence.

4.2.1 Segal conjecture for Z{p

Before starting the discussion on Segal conjecture, we recall the completion theorem of
Athiyah and Segal. Let KUG be the genuine equivariant complex K-theory as defined
by [Seg68].

Given a G-space X we can consider two types of cohomology, the equivariant K-theory
KUX

G and the Borel equivariant K-theory KUXhG and a comparison map between them

KU˚
GpXq Ñ KU˚pXhGq.

In the case of X “ ˚ we have π0KUGp˚q is the representation ring RpGq of G. the
Atiyah-Segal completion theorem [Ati61a; AS69] says

RpGq^
I – π0KUBG

is an equivalence, where RpGq^
I is the completion with respect to the augmentation ideal

I.

Motivated by this, G. Segal replaced the genuine K-theory by the genuine equivariant
sphere SG and conjectured is the natural comparison map:

ApGq^
I – π0SBG`

is an equivalence for any finite group G, where ApGq is the Burnside ring which can be
identified with πG

0 pSGq and I the augmentation ideal.

The conjecture was answered to be true by a sequence of progress, for G “ Z{2 by
W. H. Lin [Lin80], for G “ Z{p for odd primes by J. H. Gunawardena [Gun80], for
elementary abelian groups by J. F. Adams, J. H. Gunawardena, H. Miller [Ada74] and
G. Carlsson [Car83] and finally for all groups by G.Carlsson [Car84].

There is a spectrum-level statement of the above statement. Let G be a finite p-
group. SpG be the category of genuine equivariant spectra, with unit object SG the
G-equivariant sphere. Then the Segal conjecture can be stated as the comparison map:

pSGqG Ñ pSGqhG

is an equivalence after p-completion.
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4.2 Preliminaries

Let G “ Z{p, for any X P SpG we have the Tate pullback square:

XZ{p ΦZ{ppXq

XhZ{p XtZ{p

{

This implies to get the equivalence

pSGqG Ñ pSGqhG

if and only if
ΦZ{ppSGq » S Ñ StZ{p

is an equivalence after p-completion.

Theorem 4.2.1.1. [Lin80; Gun80] Let G “ Z{p, then S^
p » StZ{p.

We have the inflation functor i : Sp Ñ SpG, which is a symmetric monoidal functor
and a left adjoint. Using this, any spectrum X can be seen as genuine G-spectrum
whose underlying Borel spectrum X with a trivial action of G.

Since i is symmetric monoidal we have ipSq “ SG and since i is also a left adjoint for
any X P Sp, ipXq “ ipSq b X1.

We can then ask the following question:

Question 4.2.1.2. For a spectrum X and G “ Z{p, is the map ipXqG Ñ ipXqhG is an
equivalence after p-completion ? or equivalently, is the map X Ñ XtZ{p is an equivalence
after p-completion, where the underlying action on the spectrum is trivial?.

Remark 4.2.1.3. By Theorem 4.2.1.1 and observing both p-completion and Tate con-
struction are exact, we can say the answer to 4.2.1.2 is true if X is a finite spectrum.

In this note, we extend this result beyond finite spectra and give some examples of
non-finite spectra that satisfy the version of the Segal conjecture mentioned above.

Remark 4.2.1.4. There are also many non-examples to the question 4.2.1.2, for exam-
ple, set X “ KU^

p , then the Tate construction XtZ{p with respect to trivial action is a
rational algebra but KU^

p is not rational.

We recall the following formula of Tate construction with respect to trivial Z{p-action
(cf. [Lin80; Sad92]).

Construction 4.2.1.5 (Stunted projective space). [Ati61b] Let G “ Z{2 and σ be the
sign representation on R, we can then form the representation sphere Skσ for all k P Z.
We define

RP8
k “ pSkσqhC2

for k ą 0, RP8
k “ Σ8cofibpRPk´1 Ñ RP8q. In general, for all k P Z, RP8

k has one cell
on each degree greater than equal to k.

1Which makes sense, since SpG is a stable, presentably symmetric monoidal 8-category, so we can
tensor with respect any object X P Sp
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4 A remark on Segal conjecture

For p ą 2, we replace σ with λ, where λ is the representation whose underlying vector
space is the complex plane and Z{p acts via p-th roots of unity. Then we define

Pk “ pSkλqhCp

which is a version of stunted lens space.

Remark 4.2.1.6. I. M. James [Jam59] first introduced the definition of stunted pro-
jective space via James periodicity; the above description was revisited in [Ati61b].

Proposition 4.2.1.7. [Lin80] In this form, we can express the Tate construction for
the trivial action:

XtZ{2 » lim
ÐÝ
k

pX b ΣRP8
k q

for odd primes,
XtZ{p » lim

ÐÝ
k

pX b ΣPkq

4.2.2 Adams spectral Sequence

Let us recall some definitions ([Pst22, Definition 3.13, 3.14]), fix E a homotopy associa-
tive ring,

Definition 4.2.2.1 (finite E-projective). [Pst22, Definition 3.13] A spectrum X is said
to be finite E-projective if X is a finite, E˚X is finitely generated and projective over
the graded ring E˚.

Definition 4.2.2.2 (Adams-type spectrum). [Pst22, Definition 3.14] A homotopy asso-
ciative ring E is said to be of Adams-type, if E is written as a filtered colimit E » lim

ÝÑ
Eα,

where each Eα is a finite E-projective and we have the E-cohomology of Eα is dual to
its homology, i.e,

E˚Eα » HomE˚
pE˚Eα, E˚q

Example 4.2.2.3. Examples of Adams-type spectrum include MU the complex cobor-
dism spectrum, KUp the p-adic complex K-theory, any Landweber exact cohomology
theory (which consists of the previous example), Fp the Eilenberg Maclane spectrum.

Let E be an Adams-type spectrum. We can associate the 8-category of synthetic
spectra in the sense of [Pst22].

Before spelling out what is the category of synthetic spectra, we start with some
motivations,

For E an Adams-type spectrum, Y finite E-projective and X any spectrum J.F. Adams
[Ada74] constructed a spectral sequence

E2
s,t » Exts,tE˚E

pE˚Y,E˚Xq ùñ πt´spmappY,X^
E qq
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where the Ext groups are calculated in the category of comodules over E˚E and X^
E

denote the E-completion of the spectrum X.

The Adams spectral sequence plays a crucial role in the computation of stable homo-
topy groups of spheres by setting E “ Fp, Y “ S, X “ S to get

E2
s,t » ExtFp˚

FppFp˚
X,Fp˚

Y q ùñ π˚pS^
p q

where Fp˚
Fp is identified with A_

p is the mod-p dual Steenrod algebra.

Remark 4.2.2.4. Given R an E1-ring, we can form the Amitsur complex or the cobar
construction:

S R R b R R b R b R ¨ ¨ ¨ .

The Adams spectral sequence is the associated descent spectral sequence which con-
verges to the R-completion of the sphere spectrum. To identify the E2 page above,
we must impose certain flatness conditions on R. For example, R is an Adams-type
spectrum.

Remark 4.2.2.5. Let f : X Ñ Y be a map of spectra if we want to prove that f is
a p-adic equivalence (i.e., completion with respect to S{p), a useful strategy is to prove
the E2 page of the Adams spectral sequence is an isomorphism to get an isomorphism
of p-complete homotopy groups of X and Y .

Remark 4.2.2.6. So a reformulation of the question 4.2.1.2 is: is the limit in 4.2.1.7
for a spectrum X is equivalent to its p-completion? So in the spirit of 4.2.2.5, Lin
[Lin80] establishes an isomorphism between Adams spectral sequence for X and XtZ{p

for a finite spectrum X. We wish to follow the same calculation and extend this result
for a larger class of spectra.

4.2.3 Synthetic Spectra

To carry out our computations with the Adams spectral sequence, we use synthetic
spectra introduced by P. Pstragowski [Pst22], where a synthetic spectrum is a categori-
fication of the Adams spectral sequence.

Let E be an Adams-type spectrum2, to it we can associate the category SynE of E-
based synthetic spectra. We refer the reader to [Pst22] for its construction, and we recall
some important properties to prove our results.

Proposition 4.2.3.1. [Pst22, Proposition 4.2] The category of E-based synthetic spec-
tra SynE is a stable, presentably symmetric monoidal 8-category.

Lemma 4.2.3.2 (Synthetic analogue). [Pst22, Lemma 4.4] There is a functor

νE : Sp Ñ SynE

is canonically lax-symmetric monoidal and preserves filtered colimits.
2refer to Definition 4.2.2.2
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4 A remark on Segal conjecture

Lemma 4.2.3.3 (Symmetric monoidality). [Pst22, Lemma 4.24] Let X be a spectrum
such that its filtered colimit of finite E-projective spectra, then the comparison map

νpXq b νpY q Ñ νpX b Y q

is an equivalence

Corollary 4.2.3.4. In particular for E “ Fp any finite spectrum is finite Fp-projective.
Therefore any spectrum can be written as a filtered colimit of finite Fp-projective spec-
trum; hence νFp is symmetric monoidal.

In this note, we will only work with E “ Fp; hence we can assume ν is symmetric
monoidal.

Definition 4.2.3.5 (Bigraded Sphere). [Pst22, Definition 4.6] We define the bigraded
sphere:

St,t :“ νpStq

Ss,t :“ Σs´tνpStq » Σs´tSt,t

In general, the synthetic analogue functor ν : Sp Ñ SynE does not preserve all colimits.
By lemma 4.2.3.2, we have that ν preserves all filtered colimits. Here is a criterion for
when ν preserves fiber sequences.

Lemma 4.2.3.6. [Pst22, Lemma 4.23] Given a fiber sequence X Ñ Y Ñ Z in Sp, then
νX Ñ νY Ñ νZ is a fiber sequence if and only if we have a short exact sequence of
E˚E comodules 0 Ñ E˚pXq Ñ E˚pY q Ñ E˚pZq Ñ 0.

Definition 4.2.3.7 (The map τ). [Pst22] In particular, ν does not preserve suspensions.
There is a natural comparison map:

ΣνpXq Ñ νpΣXq

setting X = S´1 we get a map τ : S0,´1 Ñ S0,0 and for any synthetic spectrum X we
get a map τ b X : Σ0,´1X Ñ Σ0,0X “ X.

Definition 4.2.3.8 (τ -complete and τ -invertible). [Pst22; BHS22] Let Cτ denote the
cofiber of (τ : S0,´1 Ñ S0,0) and we refer to Cτ as the cofiber of τ . We say a synthetic
spectrum X is τ -invertible if the map τ b X : Σ0.´1X Ñ X is an equivalence and
τ -complete if the map X Ñ lim

ÐÝn
X b Cτn is an equivalence. This is same as being

complete with respect to the dualisable algebra Cτ in the sense of 2.1.1.

We denote SynErτ´1s and Synτ´cpl
E for the full subcategories of τ -invertible and τ -

complete synthetic spectra respectively.

Proposition 4.2.3.9. [Pst22, Proposition 4.33] The inclusion of τ -invertible synthetic
spectra τ : SynErτ´1s ãÑ SynE admits a left adjoint p´qrτ´1s : SynE Ñ SynErτ´1s.
Given a synthetic spectrum X then the τ -inversion is given by

Xrτ´1s “ lim
ÝÑ

pX
τ
ÝÑ Σ0,1X

τ
ÝÑ Σ0,2X

τ
ÝÑ ...q

the colimit over τ . In particular, the localisation is smashing with S0,0rτ´1s.
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Theorem 4.2.3.10. [Pst22, Theorem 4.7 and Proposition 4.40] The composition of

functors Sp
ν
ÝÑ SynE

p´qrτ´1s
ÝÝÝÝÝÑ SynErτ´1s is an equivalence and identifies SynErτ´1s

with the category of spectra Sp. The synthetic analogue functor ν : Sp Ñ SynE is fully
faithful. For any X P Sp, then

νpXqrτ´1s » X.

Proposition 4.2.3.11. [Pst22, Corollory 4.30] The cofiber of τ , Cτ has a unique E8-
algebra structure such that S0,0 Ñ Cτ is map of E8-algebras.

Theorem 4.2.3.12. [Pst22, Theorem 4.46] For E a homotopy commutative ring spec-
trum, then there is a fully faithful inclusion ModCτ ãÑ StableE˚E from the category
of Cτ -modules to the category is stable 8-category of E˚E-comodules (in the sense of
Hovey3). The functor νp´q b Cτ : Sp Ñ ModCτ is identified with the functor E˚p´q

such that the following diagram commutes

ModCτ StableE˚E

Sp

νp´qbCτ
E˚p´q

Following [Pst22], we think of SynE as a "one-parameter deformation of the category
of spectra" with τ , the deformation parameter. Setting τ “ 0, that is tensoring with Cτ
lands in ModCτ and inverting τ lands in Sp, we have the following diagram summarising
the above discussion:

Sp

SynE

Sp ModCτ

ν

τ´1

id

Cτb´

E˚p´q

From now on, set E “ Fp, then the bigraded sphere Sa,b form a system of compact
generators of SynFp

, and define the synthetic homotopy groups of X P SynFp
to be the

homotopy class of maps rSa,b, Xs “ π0pmapSynFp
pSa,b, Xqq [Pst22, Definition 4.9]. Then

a map of synthetic spectra f : X Ñ Y is an equivalence if and only if it induces an
isomorphism of bigraded homotopy groups.

For X P Sp, νX is a categorification of the Fp based Adam spectral sequence, by the
following result [Pst22, Lemma 4.56]. For X,Y P Sp then

πt´s,tpHomSynFp
pνX, νY b Cτqq » Exts,tFp˚

Fp
pH˚pXq, H˚pY qq

which is the E2-page of the Fp-based Adams spectral sequence converging to the homo-
topy groups of mapSppX,Y ^

p q and by definition there is an action of τ on the bi-graded
homotopy groups, which encodes information about differentials in Adams spectral se-
quence for more details refer to [BHS22, Section 9].

3refer to [Pst22, Section 3.2]
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4 A remark on Segal conjecture

4.3 Segal Conjecture for I-nilpotent spectra

4.3.1 Proof of the main theorem

Definition 4.3.1.1. [BHS22, Definition 9.16] A spectrum X is said to be E-nilpotent
complete if E-Adams resolution of X converges to X.

Example 4.3.1.2. Let X be p-complete, bounded below spectrum, then X is Fp-
nilpotent [Bou79].

Proposition 4.3.1.3. [BHS22, Proposition A.11] Given X P Sp, then the following are
equivalent:

1. X is E-nilpotent

2. νX is τ -complete

In particular, νX is τ -complete if X is bounded below p-complete spectrum.

Remark 4.3.1.4. Given any two τ -complete objects X,Y P SynFp
and a map f : X Ñ

Y such that f b Cτ is an equivalence then f is an equivalence. In particular,

f rτ´1s : Xrτ´1s Ñ Y rτ´1s

is an equivalence.

Let us come back to the Segal conjecture for Z{p, which asks, given a spectrum X,
when is the canonical map X Ñ XtZ{p an equivalence, where the Tate construction is
with respect to the trivial action. We can transport the problem into the category of
Fp-based synthetic spectra and try to answer it in SynFp

.

Remark 4.3.1.5. We will carry out the discussion from now on for prime p “ 2. The
results for odd primes follow by replacing RP8

k with Pk defined in Construction 4.2.1.5.

Let us assume X is bounded below spectra, p-complete. Then νpX b ΣRP8
k q is a

τ -complete spectrum for all k P Z. Where RP8
k is the stunted projective spectrum as

constructed in 4.2.1.5.

Since the category τ -complete synthetic spectra spectrum is closed under limits, we
have Y “ lim

ÐÝk
νpX b ΣRP8

k q is also τ -complete. After inverting τ we get Y rτ´1s »

lim
ÐÝk

X b ΣRP8
k » XtZ{p.

So, in particular, we have a map X Ñ lim
ÐÝk

pX b ΣRP8
k q » XtZ{p after applying ν we

get map
νX Ñ νplim

ÐÝ
k

X b ΣRP8
k q Ñ lim

ÐÝ
k

νpX b ΣRP8
k q

Hence if we prove that the map νX Ñ lim
ÐÝk

νpXbΣRP8
k q is an equivalence of synthetic

spectra, we obtain the Segal conjecture after inverting τ . In general, τ -inversion does
not preserve limits, but the limit in question is preserved. This is because τ -inversion is
given by taking colimit along multiplication by τ , which acts eventually by isomorphism.
Hence we can commute the limit across an eventually constant limit.

Both νX and lim
ÐÝk

νpX b ΣRP8
k q are τ -complete; therefore, it is enough to prove the

equivalence after tensoring with Cτ . Hence we have the following reformulation:
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4.3 Segal Conjecture for I-nilpotent spectra

Proposition 4.3.1.6. Let X be a bounded below p-complete spectrum then X Ñ XtZ{p

is an equivalence if and only if νX Ñ lim
ÐÝk

νpXbΣRP8
k q is an equivalence after tensoring

with Cτ .

Recall that Cτ » Cofibpτ : S0,´1 Ñ S0,0q, where both S0,´1 and S0,0 are dualisable,
hence Cτ is also dualisable. So we have

Cτ b lim
ÐÝ
k

νpX b ΣRP8
k q » lim

ÐÝ
k

Cτ b νpX b ΣRP8
k q

since Cτ b νp´q » H˚p´q we have,

» lim
ÐÝ
k

H˚pX b ΣRP8
k q » lim

ÐÝ
k

H˚pXq b H˚pΣRP8
k q.

So we have to prove that the natural map:

H˚pXq Ñ lim
ÐÝ
k

H˚pXq b H˚pΣRP8
k q

is an equivalence.

We now prove a useful lemma which we will use repeatedly,

Lemma 4.3.1.7. Let Y be bounded below spectrum, which is of finite type, that is,
the k-th skeleton of Y is finite for all k. Let N be the poset of natural numbers and
Xp´q : N Ñ Sp be a functor such that Xi is uniformly bounded below spectrum for all
i P N. Then

Y b lim
i

Xi » lim
i

Y b Xi.

Similarly, for product
ś

iPI Xi we obtain,

Y b
ź

iPI

Xi »
ź

iPI

Y b Xi.

Proof. We will prove the case of N-indexed limit and the case of product is similar.

Since Y is of finite type, we have Y » colim
k

Y pkq, where Y pkq is a finite spectrum for
all k. Hence we have:

Y b lim
i

Xi » colim
k

Y pkq b lim
i

Xi

since Y pkq is finite, hence dualisable, we can commute the limit to obtain:

colim
k

Y pkq b lim
i

Xi » colim
k

lim
i

Y pkq b Xi

we have the map:
colim

k
lim
i

Y pkq b Xi Ñ lim
i

Y b Xi

to prove it is equivalence enough to prove isomorphism on homotopy groups. So let us
fix an integer b and try to prove that the comparison map is an isomorphism on πb.

Since Y pkq Ñ Y be is k-connective and since Xi is uniformly bounded below for all i.
Let us say πnpXiq “ 0 for all n ă a. Then, the cofiber of

colim
k

lim
i

Y pkq b Xi Ñ lim
i

Y b Xi

is a`k-connected. So for k large enough, we have a`k ąą b, hence it is πb-isomorphism.
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The category of synthetic spectra carries a natural t-structure [Pst22, Section 4.2] with
heart E˚E-comodules with respect to which we can run the same argument above and
get the following lemma which looks exactly as the above.

Lemma 4.3.1.8. Let Y be a bounded below synthetic spectrum of finite type. Let N
be the poset of natural numbers and Xp´q : N Ñ SynE be a functor such that Xi is
uniformly bounded below for all i P N. Then

Y b lim
i

Xi » lim
i

Y b Xi.

Similarly, for product
ś

iPI Xi we obtain,

Y b
ź

iPI

Xi »
ź

iPI

Y b Xi.

Let us introduce a definition before stating the main theorem; given a spectrum X,
the Fp-homology has an action of the Steenrod algebra Ap such that for Sqi P Ap and
x P HnpXq then Sqipxq P Hn´ipXq.

Definition 4.3.1.9. Let I be the augmentation ideal of the Steenrod algebra ϵ : Ap Ñ

Fp. We say a spectrum X is I-nilpotent if we have have H˚pXq » lim
ÐÝn

H˚pXq{In.

Theorem 4.3.1.10. Let X be a bounded below spectrum, p-complete and I-nilpotent,
then X satisfies the Segal conjecture for Z{p. That is, X Ñ XtZ{p is an equivalence,
where the Tate construction is with respect to trivial action.

Proof. So we need to prove

H˚pXq Ñ lim
k

H˚pΣRP8
k q b H˚pXq

is an equivalence. Without loss of generality, we can assume X is connective after
suspending enough times.

Since X is an I-nilpotent spectrum, we get

lim
k

H˚pΣRP8
k q b H˚pXq » lim

k
H˚pΣRP8

k q b lim
n

H˚pXq{In.

Since ΣRP8
k is bounded below and of finite type for all k, we have by lemma 4.3.1.8

lim
k

H˚pΣRP8
k q b lim

n
H˚pXq{In » lim

k,n
H˚pΣRP8

k q b H˚pXq{In.

So to prove
lim
n

H˚pXq{In Ñ lim
k,n

H˚pΣRP8
k q b H˚pXq{In

is an equivalence, it is enough to prove equivalence on the associated graded

Kn “ fibpH˚pXq{In`1 Ñ H˚pXq{Inq.

That is, prove that Kn Ñ lim
k

H˚pΣRP8
k q b Kn is an equivalence. Where Kn has a

trivial action of Ap, so Kn »
À

iě0 Fpris‘Ji where i P I.
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lim
k

H˚pΣRP8
k q b Kn » lim

k
H˚pΣRP8

k q b
à

iě0

Fpris‘Ji

» lim
k

H˚pΣRP8
k q b

ź

lě0

Fpris‘Ji

again ΣRP8
k is bounded below of finite type, so by lemma 4.3.1.8, we can commute

the product all the way outside to get

lim
k

H˚pΣRP8
k q b

ź

lě0

Fpris‘Ji »
ź

lě0

lim
k

H˚pΣRP8
k q b Fpris‘Ji

So we have to prove

Kn »
ź

lě0

Fpris‘Ji Ñ
ź

lě0

lim
k

H˚pΣRP8
k q b Fpris‘Ji » lim

k
H˚pΣRP8

k q b Kn

is an equivalence. In order to prove the product is an equivalence, it is enough to prove
equivalence termwise. This reduces to proving

Fpris‘Ji Ñ lim
k

H˚pΣRP8
k q b Fpris‘Ji

is an equivalence. So if we write Fpris‘Ji as a retract of FprisˆIi and apply 4.3.1.8 to
reduce to proving,

ź

iPIi

Fpris Ñ
ź

iPIi

lim
k

H˚pΣRP8
k q b Fpris

So again, we can prove equivalence termwise to reduce to proving:

Fpris Ñ lim
k

H˚pΣRP8
k q b Fpris

is an equivalence. This is the case of the classical Segal conjecture, that is, in SynFp

the bigraded homotopy groups on both sides are Ext-groups shown to be equivalence
by [LDM+80].

Definition 4.3.1.11. Given a spectrum X, we say it has locally finite Fp-cohomology
if for any element x P H˚pXq, the Ap submodule generated by x is finite dimensional
Fp-vector space.

Proposition 4.3.1.12. Any bounded below spectrum with Fp-cohomology locally finite
and of finite type, then the Fp-homology is I-nilpotent.

Proof. We need to verify that H˚pXq » lim
ÐÝn

H˚pXq{In is in the category of comodules
over the dual Steenrod algebra.

We can calculate the homotopy groups of the derived limit using Milnor’s lim1-sequence
for the underlying graded abelian group since the objects in the sequential inverse limit
are uniformly bounded below (all of them are connective) the forgetful functor from the
category of comodules to graded abelian group preserve this particular limits and it is
also conservative.

The transition maps are all surjective; hence, by the Mittag-Leffler condition, the de-
rived limit is the ordinary sequential inverse limit. So we want the desired equivalence on
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the underlying graded abelian groups, and now by conservativity we have isomorphism
H˚pXq » lim

ÐÝn
H˚pXq{In in the category of comoudles.

Let us look at a fixed degree HipXq because the finite type assumption HipXq is finite
dimensional for all i and hence H ipXq » HipXq_. The locally finite assumption implies
for all x P H ipXq, the Ap-submodule generated is finite dimensional. Hence for all
t P HipXq we have In.t “ 0 for n large enough.

Therefore the inverse limit lim
ÐÝn

H˚pXq{In is eventually constant in a fixed degree d
and isomorphic to HdpXq, so we have H˚pXq » lim

ÐÝn
H˚pXq{In.

Example 4.3.1.13. For X, a compact space and simply connected, then we have ΩX
has a finite type, locally finite Fp-cohomology. Therefore H˚pΩXq is I-nilpotent. Hence
Σ8

`ΩX after p-completion is equivalent to pΣ8
`ΩXqtZ{p.

Example 4.3.1.14. Let X be a finite dimensional spectrum; then the Fp-homology is
finite dimensional. Hence H˚pXq is I-nilpotent complete.

Example 4.3.1.15. Recall for O an operad the free O-algebra on a spectrum X is given
by:

FreeOpXq »
à

n

Xbn bΣn Opnq.

Let O be an operad, then the n-th space of arity Opnq has an Σn-action. Let us assume
Opnq is a finite Σn space such that only the isotropy group is identity. Examples of such
operad include En-operad for finite n4.

For an operad with above properties, Xbn bΣn Opnq has finite Fp-homology for each n.
Moreover, if we assume that X has minimal cell structure such that the least dimensional
cell is in degree 1, then the connectivity of Xbn bΣn Opnq increases as n increases this
implies for FreeOpXq is I-nilpotent, hence satisfies the Segal conjecture for Z{p.

Remark 4.3.1.16. The above argument also applies to an operad valued in spectra as
well, with each arity spectrum bounded below and having a finite Σn-cell structure and
isotropy groups just the identity.

4that is except for E8
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5 Homotopy fixed points of the loop
rotation

5.1 Introduction

For G, a complex reductive group, we can associate the Langlands dual group G_, which
is a central character in the Langlands program. When first introduced, the construction
of G_ appeals to the classification of reductive algebraic groups due to Chevalley [Che55].
One could try to attempt to canonically recover the dual group starting with G.

This was successfully achieved by the work of I. Mirkovic and K. Vilonen [MV07]
called the Geometric Satake correspondence. Starting from G, a reductive algebraic
group over C, we can associate an infinite dimensional algebro-geometric object GrG
called the affine Grassmannian and the abelian category of algebraic representations of
G_ as certain stratified local systems on GrG.

Theorem 5.1.0.1 (Geometric Satake Correspondence). [MV07] Let PervL`GpGrGrq be
the abelian category L`G-equivariant perverse sheaf on the affine Grassmannian, which
has a monoidal structure called the convolution product, then there is a symmetric
monoidal equivalence between PervL`GpGrGq and the representation 1-category of the
dual group ReppG_q.

In particular, the more we understand the geometry of GrG, the more we understand
the category ReppG_q. The underlying analytic space of the affine Grassmannian GrG
is homotopy equivalent to ΩK, the based loops space on the maximal compact subgroup
of GpCq.

The affine Grassmannian GrG has a S1-action coming from loop rotation. In [RW22a],
the authors study the relationship between the loop rotation action and the Frobenius
twisting of representations in positive characteristics. They also compute the Z{p-fixed
points Gr

Z{p
G .

In this chapter, we give a recipe to compute the homotopy fixed points of this action,
and in the case of G “ GLnpCq, we have the following theorem:

Theorem 5.1.0.2. Let G “ GLnpCq, then the homotopy fixed points pΩUpnqqhZ{pn is
equivalent to

Ů

ρPReppZ{pn,Upnqq ΩUpnq ˆ Upnq{Cpρq.

The proof of Sullivan conjecture by H. Miller showed if a space X has locally finite
cohomology, then with respect to trivial action of a p-group

X » XG Ñ XhG » mappBG,Xq

is an equivalence after p-completion.
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We can also ask if the Sullivan conjecture is true for spaces with locally finite cohomol-
ogy and non-trivial action. In particular, the cohomology of ΩUpnq is locally finite (see
Definition 4.3.1.11) and is of finite type. We compare the genuine fixed points computed
in [RW22a] and homotopy fixed points with respect to the loop rotation action.

5.2 Homotopy Fixed points

5.2.1 Affine Grassmannian and Geometric Satake

This section briefly recalls results about the affine Grassmannian GrG, a certain infinite-
dimensional algebraic variety that plays a central role in geometric representation theory.

The theory is extremely rich, and the interested reader can find detailed expositions in
[Zhu16; BR18]. For our purpose, we are interested in the homotopical side of the story.
Hence we will quickly recall the necessary theory to set up the context.

Let G be a linear algebraic group over R; then we can define the loop stack LG as the
presheaf

LGpSq “ GpSpptqqq

where S is a R-algebra. Similarly define L`G as the presheaf

L`GpSq “ GpSrrtssq

where S is a R-algebra. Where Srrtss is the power series ring in one variable t and Spptqq

is the Laurent power series ring.

Then we define the affine Grassmannian GrG associated to the group G, as the fpqc
sheafification of

GrG “ LG{L`G.

From this point, we set G to be a reductive algebraic group over the algebraically
closed field k.

The following is an important theorem about the geometry of affine Grassmannian.

Theorem 5.2.1.1. Let G be a reductive algebraic group, then the affine Grassmannian
GrG is represented by an ind-scheme of finite type and is also in-projective. That is,
GrG is the colimit lim

ÝÑn
Grn where each Grn is of projective and finite type.

There exist more geometric interpretations of GrG using the Beauville-Laszlo theorem.
For more details, see [Zhu16, Section 1.4].

Definition 5.2.1.2. Let X be a curve over a field k (for us k “ C) and x P Xpkq a
smooth k-point and G be a reductive group over k. Then we define GrG,x to be:

GrG,xpRq “ tpE, βq | E a principle G-bundle on XR and β a trivialization on pXzxqRu

We have GrG,x is the sheaf of sets on the site of commutative algebra with respect to
the fpqc-topology. We then have the following theorem:

Theorem 5.2.1.3. The fpqc-sheaf GrG,x is equivalent to the affine Grassmannian GrG.
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Let us introduce some notation:

Let T Ă G be the maximal torus of G. Given a co-character λ : Gm Ñ T we can get a
map

λ̃ : Cppxqqrt, t´1s “ GmCppxqq Ñ LG “ GpCppxqqq

we denote tλ to be the image of t under the map λ̃.

Proposition 5.2.1.4. (Cartan Decomposition) Let G be a reductive group over k and
choose a maximal torus T Ă G. Then there is a double closet decomposition

LG “
ğ

λPX‚pT q`

L`GtλL
`G

where X‚pT q` Ă X‚pT q is the set of dominant coweights.

Remark 5.2.1.5. There is Cartan decomposition for all reductive groups over local
fields, as investigated by [BT72; BT84]. The Cartan decomposition is also often referred
to as Bruhat decomposition.

For any reductive group, G and fix T Ă B Ă G, B a Borel subgroup and T a maximal
torus, then we have the Bruhat decomposition:

G “
ğ

wPW

BwB,

where W is the Weyl group of G defined as the quotient NGpT q{T .

Then we can form the flag variety G{B, and the Bruhat decomposition gives a cell
structure on the underlying analytic variety of G{B with one cell for each w P W given
by the image of BwB in the quotient G{B denoted by Cw.

The Weyl group, W , has an ordering called the Bruhat ordering, and this gives a
stratification on G{B. That is, let Cw be the cell corresponding to w, then C̄w “
Ů

w1
ďw Cw1 .

Studying stratified local systems with respect to this stratification has deep connections
with representations of Lie algebra of G via the Beilinson-Bernstein localisation theorem
[Bei81] and Riemann-Hilbert Correspondence [Kas79; Kas84].

In a similar spirit, the affine Grassmannian GrG “ LG{L`G is a certain affine flag
variety, which is stratified over X‚pT q` by L`G.tλ (refer to [Zhu16, Lecture II]).

A reductive group G over an algebraically closed field is classified by the root datum
pX‚pT q, R,X‚pT q, R_q [Che55] where T is a fixed maximal torus of G. Given a root
datum pX‚pT q, R,X‚pT q, R_q we can form the dual root datum pX‚pT q, R_,X‚pT q, Rq

by swapping roots and co-roots, then appealing to the existence results of Chevalley we
get the Langlands dual group G_ associated to the dual root datum.

One could ask if there is a more canonical way to obtain the Langlands dual group
G_. This is done using the Geometric Stake Correspondence using certain stratified
local systems on the affine Grassmannian GrG.
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5 Homotopy fixed points of the loop rotation

Theorem 5.2.1.6 (Geometric Satake Correspondence). [MV07] Let PervL`GpGrGrq be
the abelian category L`G-equivariant perverse sheaf on the affine Grassmannian, which
has a monoidal structure called the convolution product, then there is a symmetric
monoidal equivalence between PervL`GpGrGq and the representation 1-category of the
dual group ReppG_q.

So there is a more geometrical way of approaching the category of representation over
the dual group G_, in particular, the affine Grassmannian has a Gm-action called the
loop rotation action.

Let µp Ă Gm be the cyclic group. We can ask what are the fixed points with respect
to this action. Turns out the µp-fixed points have a deep connection with the Frobenius
operator on representations of G_. This is investigated in the recent work of S. Riche
and G. Williamson in [RW22a].

The ideas in [RW22a] involve developing a categorified Smith theory for etale sheaves
following D. Treumann [Tre19]. Riche-Williamson studies the genuine fixed points of
the µp-action, and in this article, we study the homotopy fixed points of this action for
all cyclic group Z{pn.

We state the following result of G. Segal and A. Pressley for G “ GLn [Pre86, Sec-
tion 8.3] and for more general reductive groups by D. Nadler [Nad04, Section 4].

Proposition 5.2.1.7. Let G be a reductive group over C and K Ă G be the maximal
compact subgroup; then we have a homotopy equivalence

ΩK » GrGpCq,

between the based loops on K and the complex points of the affine Grassmannian.

5.2.2 Loop Rotation and fixed points

In this section, we recall some facts about mapping spaces between classifying spaces, in
particular, the work of [DZ06], which will be useful in the computation of certain fixed
points.

Let G be a compact lie group and P a finite p group. Given a representation ρ : P Ñ G,
i.e. a homomorphism, we obtain a group homomorphism Cpρq ˆ P Ñ G where Cpρq is
the centraliser of the representation. This in turn gives a map of classifying spaces

BpP ˆ Cpρqq » BP ˆ BCpρq Ñ BG

by adjunction, we obtain a map:

BCpρq Ñ mappBP,BGq

varying ρ we get:
ğ

ρPReppP,Gq

BCpρq Ñ mappBP,BGq

ReppP,Gq is the collection of all possible representations ρ : P Ñ G upto conjugation,
(i.e, we say two representations ρ1 amd ρ2 are equivalent if there exist a g P G such that
ρ2 “ gρ1g

´1q.

The main theorem of [DZ06] state that:
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5.2 Homotopy Fixed points

Proposition 5.2.2.1. The map
ğ

ρPReppP,Gq

BCpρq Ñ mappBP,BGq

is a mod p-equivalence.

Let G be a reductive group over C. We have seen that the homotopy type of the
affine Grassmannian GrG is equivalent to the based loop space ΩK where K is the
maximal compact subgroup of G. By the recognition principle we have ΩK » Ω2BK »

map˚pS2;BKq where the base point of S2 by convention is the "south pole".

There is a natural S1-action on S2 as a pointed space by rotation along the equator.
Hence we get a Z{pn-action for n P N. By identifying ΩK with map˚pS2, BGq, we get
an S1-action on ΩK, which is classically called the "loop rotation" action.

One can always get a loop rotation action on the free loop space LX on any space X
given by:

S1 ˆ LX Ñ LX

pz, γq ÞÑ γz

where γzpz
1

q “ γpz.z
1

q. In general, there is no such action on the based loop space
ΩX for any space X since the base points are not preserved, but one can fix this if X
happens to be a topological group we have an S1-action by sending pz, γq ÞÑ γz.γpzq´1.

Remark 5.2.2.2. Note that we do not need X to be a topological group. We only need
it to be a grouplike E1-space which by the recognition theorem is a based loop on some
space Y .

Question 5.2.2.3. With the Z{pn loop rotation action mentioned above on ΩK, what
is the homotopy fixed points pΩKqhZ{pn?.

There is a loop rotation action of S1 and Z{pn on the affine Grassmannian GrG for
some reductive group G. We know the affine Grassmannian is homotopy equivalent to
ΩK, but apriori, there is no reason for the fixed points to be homotopy equivalent since
the notion of fixed points is not a homotopy invariant notion.

This leads us to the above question of homotopy fixed points. We do have Gr
hZ{pn

G »

pΩKqhZ{pn for all n. We devote the rest of the section to answering Question 5.2.2.3
by analysing maps between classifying spaces and a closed form expression in the case
of G “ GLnpCq with maximal compact K “ Upnq.

Identify ΩK with map˚pS2, BKq, we have

map˚pS2, BGqhZ{pn » lim
BZ{pn

map˚pS2, BGq » map˚pcolim
BZ{pn

pS2q, BKq » map˚pS2
hZ{pn,˚, BGq

where S2
hZ{pn,˚ is the homotopy quotient with respect to the rotation action in the

8-category S˚ of pointed spaces.
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5 Homotopy fixed points of the loop rotation

As an unpointed space S2 is written as the pushout:

S1 pt

pt S2

x

It turns out this is a Z{pn-equivariant pushout where the cell structure can be repre-
sented by the following diagram:

This lets you compute S2
hZ{pn as:

S1 BZ{pn

BZ{pn S2
hZ{pn

where the map S1 » BZ Ñ BZ{pn is given by the quotient map Z Ñ Z{pn, by
identifying S1 with BZ.

This lets us compute the pushout S2
hZ{pn,˚ in pointed space:

S1 BZ{pn

˚ S2
hZ{pn , ˚

by collapsing the BZ{p factor on the base point.

Since pΩKqhZ{pn » map˚pS2
hZ{pn,˚, BGq, we can compute the homotopy fixed points

via the pullback:

66



5.2 Homotopy Fixed points

pΩKqhZ{pn map˚pBZ{pn, BGq

˚ map˚pBZ, BGq

We also have a further fiber sequence to compute pointed mapping space:

map˚pX,Y q mappX,Y q

˚ Y

putting this together, we get a fiber sequence:

pΩKqhZ{pn
Ů

ρPReppZ{pn,Kq K{Cpρq

ΩBK » K

where we identify: map˚pBZ{pn, BKq »
Ů

ρPReppZ{pn,Gq K{Cpρq from Proposition 5.2.2.1.

The map,

K{Cpρq Ñ K

is given as follows:

We have map K Ñ K given by g ÞÑ gρp1qg´1. Since all element of Cpρq commutes
with ρp1q by definition, we have a factorisation:

K K

K{Cpρq

note that the map K{Cpρq Ñ K is not a group homomorphism, in fact K{Cpρq is not
even a group. We have the following lemma to begin with:

Lemma 5.2.2.4. For a connected group K, the map f : K Ñ K given by g ÞÑ gρp1qg´1

is null-homotopic.

Proof. Let γ be a path from ρp1q to e, the identity element of the group G. We have a
continuous family of maps ft : G Ñ G, given by g ÞÑ gγptqg´1, where f0 “ f and f1 is
the constant map at e, showing that f is nullhomotopic.

So if we can say the homotopy factors through the centraliser, the pullback computing
pΩKqhZ{p reduces to the following square:
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5 Homotopy fixed points of the loop rotation

pΩKqhZ{p
Ů

ρPReppP,Kq K{Cpρq

˚

˚ K

If that is true, we have:

Theorem 5.2.2.5. If the map K{Cpρq Ñ K is null-homotopic for all ρ P ReppZ{pn,Kq,
then pΩKqhZ{pn »

Ů

ρPReppP,Kq ΩK ˆ K{Cpρq after p-completion.

So the question reduces to, when does the null-homotopy of g ÞÑ gρp1qg´1 factor
through K{Cpρq or more broadly, if there exists any null-homotopy of the map K{Cpρq Ñ

K, to obtain the above theorem.

Example 5.2.2.6. Let us start with G “ SL2pCq, then the maximal compact K “

SUp2q and we have SUp2q » S3. Given a representation ρ : Z{p Ñ S3, the image of a
generator of Z{p is an order p matrix with determinant 1, hence any representation up
to conjugation is given by:

„

λ 0
0 λ´1

ȷ

where λ is a pth-root of unity.

If λ “ t1,´1u then the centralizer Cpρq “ S3, so K{Cpρq “ ˚ and for non-trivial values,
i.e., λ R t1,´1u then Cpρq “ S1 hence K{Cpρq “ S2. In particular, K{Cpρq Ñ K is
null homotopic because there is no nontrivial map from S2 Ñ S3.

Hence,
pΩS3qhZ{p » ΩS3 \

ğ

p´1

ΩS3 ˆ S2.

after p-completion.

We can also uniformly analyse the case of G “ GLnpCq and K “ Upnq given in the
following proposition:

Proposition 5.2.2.7. Let G “ GLnpCq and ρ : Z{pn Ñ K be a representation. Then
Upnq{Cpρq Ñ Upnq is nullhomotopic. In particular

pΩUpnqqhZ{pn »
ğ

ρPReppZ{pn,Upnqq

ΩUpnq ˆ Upnq{Cpρq.

after p-completion on both sides

Proof. Let σ be the generator of Z{pn, we will also refer to the image of σ under ρ as
σ. We can get a path γ in Upnq from σ to e, the identity element of G, giving a null
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5.2 Homotopy Fixed points

homotopy by Lemma 5.2.2.4. The null hoomtpy factors through Upnq{Cpρq if Cpγptqq

constains Cpρq for all t.

Upnq ˆ I Upnq

Upnq{Cpρq ˆ I

Let us diagonalise the σ and express it in terms of the block matrices of the form

λiId

where λiId is the scalar matrix of scalar λi.

Let pλ1, λ2, ..., λkq be the distinct eigenvalues of σ.

Let | λi | be the dimension of the eigenspace corresponding to λi, then the centraliser of
σ is Up| λ |q ˆ ...ˆUp| λk |q identified as a subgroup of Upnq as block diagonal matrices.

Choosing paths γi from λi to 1 in C˚, we can construct a path γ from σ to the identity
id P Upnq and the centraliser of γptq contains Up| λ |q ˆ ... ˆ Up| λk |q for all t. Hence
we have the null-homotopy that factors through Upnq{Cpρq.

In conclusion, Upnq{Cpρq Ñ Upnq is nullhomotopic, and particularly

pΩUpnqqhZ{pn »
ğ

ρPReppZ{pn,Kq

ΩUpnq ˆ Upnq{Cpρq.

Remark 5.2.2.8. The above approach does not work in general. For example let
G “ SL3pCq and K “ SUp3q and p “ 3, then for representation ρ : Z{ptσu Ñ SUp3q,
then σ can be diagonalised with diagonal entries given by p-th roots of unity. Let
us consider the representation diagpω, ω, ωq where ω “ e

2πi
3 ; then, the path consider

will not be in SUp3q. Since the representation lands in the centre and the centre of
SUp3q is disconnected, there is no path γ from σ to identity such that Cpγptqq contains
Cpρq “ SUp3q.

However, the above argument does work for all prime p other than 3, which enforces
not all eigenvalues are equal.

5.2.3 Genuine fixed points and comparison

In this section, we comment on the genuine fixed points and compare them to homotopy
fixed points.

For X a G-CW complex, such that G a p-group, then there is a natural comparison
map

XG Ñ XhG.

The Sullivan conjecture asks, when is this map an equivalence after p-completion?
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5 Homotopy fixed points of the loop rotation

Theorem 5.2.3.1. (G. Carlsson, H. Miller, J. Lannes) If X is finite G-CW complex
then XG » XhG after p-completion.

Here is a way to calculate the cohomology of the homotopy fixed points following
[DW88]. Let G be an elementary abelian group and X a finite G-CW complex, then
there exist fiber sequence:

X XhG

BG

There exists an Euler class e P H˚pBGq (see 2.1.3), there is the induced map of graded
rings H˚pBGq Ñ H˚pXhGq localising H˚pXhGq at the Euler class gives an equivalence

H˚pXhGqre´1s » H˚pXGq b H˚pBGqre´1s

From this, we can recover the cohomology of the fixed points XG following W. Dwyer
and C. Wilkerson [DW88]. The localised algebra H˚pXhGqre´1s is a module over the
Steenrod algebra and let UnpH˚pXhGqre´1sq be the largest unstable algebra inside
H˚pXhGqre´1s.

Proposition 5.2.3.2. (Dwyer-Wilkerson) For an elementary abelian group G and X
a finite G-CW complex, The largest unstable algebra UnpH˚pXhGqre´1sq is isomorphic
to H˚pXG ˆ BGq, in particular

UnpH˚pXhGqre´1sq bH˚pBGq Fp » H˚pXGq.

Dwyer and Wilkerson show in [DW91], that for a H˚pBCpq bAp-module M such that
M is finite dimensional, the above construction UnpM re´1sq bH˚pBGq Fp is equivalent
to the Fix functor constructed by J.Lannes [Lan92] which computes the cohomology
homotopy fixed points. For an Ap-module N , the Fix functor applied to H˚pBGq b N
is the T -functor constructed by Lannes.

Proving the Sullivan conjecture for spaces with trivial action1 is equivalent to prov-
ing that the Lannes T -functor applied to H˚pXq is H˚pXq, that is TV pH˚pXqq »

H˚pmappBV,Xqq » H˚pXq for V an elementary abelian group.

In this form, H. Miller proved the T -functor acts as identity on all unstable modules,
which are locally finite. Let us recall the definition of locally finite modules:

Definition 5.2.3.3. (Locally finite module) A module M over the Steenrod algebra.
We say it is locally finite if, for any x P M , the Ap-submodule spanned by x is a finite
dimensional Fp-vector space. If X is a space which has locally finite cohomology, we say
it is a locally finite space.

Let X be a nilpotent compact space, then the cohomology of the based loop space ΩX
is a locally finite module over the Steenrod algebra.

1i.e., X^
p » mappBV,Xq

^
p
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5.2 Homotopy Fixed points

Motivated by this, we can ask if the Sullivan conjecture is valid for locally finite spaces
for non-trivial actions.

The initial approach that we took to compute the Z{p-fixed points of GrG using the
theorem 5.2.3.2, but for the locally finite space, there are several difficulties in carrying
out the computation:

• We might try to compute H˚ppΩKqhZ{pq using the Serre spectral sequence applied
to the fiber sequence

ΩK ΩKhZ{p

BZ{p

but the cohomology H˚pΩKq is a divided power algebra, and the Serre spectral
sequence has infinitely many generators to analyse.

• Even if we succeed in computing the cohomology H˚pΩKhZ{pq, the Serre spectral
sequence is not a module over the Steenrod algebra, i.e. not all differential com-
mutes with Steenrod operations. Hence figuring out the Steenrod module structure
becomes impossible.

• Finally, this is under the assumption that the approach of theorem 5.2.3.2 com-
putes the cohomology of genuine fixed points.

The Z{p genuine fixed points of GrG is computed by Williamson-Riche [RW22a] as

Gr
Z{p
G »

ğ

λPX‚{Wp

Flλ

where the indexing set is the quotient of co-root lattice by the p-dilated dot action (refer
to [RW22a] for more details on the dot action).

In the example of G “ SL3pCq and K “ SUp3q, following remark 5.2.2.8 we have that

pΩSUp3qqhZ{2 »
ğ

ρPReppZ{2,SUp3qq

ΩSUp3q ˆ SUp3q{Cpρq

after 2-completion. In particular, the indexing set has cardinality two, given by id,
the trivial representation and diagp1,´1,´1q. However, there are more than two Wp

orbits in X‚, which means the genuine fixed points has more path components than the
homotopy fixed points, this provided a counter-example:

Proposition 5.2.3.4. For SL3pCq, the genuine fixed points and the homotopy fixed
points with respect to the rotation action restricted to Z{2 on GrSL3pCq are not equiva-
lent.

Remark 5.2.3.5. Finally, we would like to point out that J. Hahn and A. Yuan in
[HY19] construct a filtered E2-structure on GrG, where each of the filtered pieces is
compact. One could hope to compute the cohomology of genuine fixed point using
5.2.3.2.
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5 Homotopy fixed points of the loop rotation

5.2.4 p-compact groups

In this section, we comment on what is the homotopy fixed points for certain p-compact
groups. We will refer the reader to [Gro10] for a quick review.

Definition 5.2.4.1 (p-compact group). [DW94] [Gro10, Definition 2.1] A p-compact
groups is a triple pX,BX, eq, such that e : X » ΩBX, where BX is a pointed, connected,
p-completed space such that Fp cohomology H˚pX;Fpq is finite.

Example 5.2.4.2. Given a compact Lie group G, then G^
p as an example of a p-compact

group.

There are exotic examples which do not come from compact Lie groups. Here is an
example constructed by Sullivan:

Example 5.2.4.3. Let p be a prime and d a divisor of p ´ 1, then Z{d ď Z˚
p . So there

is a natural action of Z{d on KpZp, 2q giving a fiber sequence:

KpZp, 2q KpZp, 2qhZ{d

BZ{d

Using the Serre spectral sequence, we have the Fp-cohomology of KpZp, 2qhZ{d is a
polynomial algebra with a generator in degree 2d.

We set
BY “ KpZp, 2qhZ{d,

so ΩBY ^
p has Fp-cohomology an exterior algebra with generator in degree 2d´1. Hence

ΩBY ^
p » S2d´1^

p . So the triple pΩBY ^
p , BY ^

p , eq is a p-compact group.

Remark 5.2.4.4. At first glance, this should be surprising because for an odd sphere
of dimension greater than 7, by the Hopf invariant one problem, there is no H-space
structure. But after p-completing at certain primes, you get an E1-structure. We refer
to these as Sullivan spheres

The theory of p-compact groups is very rich. They behave very much like a compact
Lie group. Given a p-compact group X, it admits a p-adic maximal torus [DW94],
and to every p-compact group, we can associate a p-adic root datum. Similar to the
classification theorem of Chevalley, p-compact groups are classified by their root datum
[Gro10].

However, there is no well-developed representation theory of p-compact groups. We
hope methods from geometric representation theory could help us investigate more in
this direction. In this spirit, we have the following proposition:

Proposition 5.2.4.5. Let p be a prime, d divides p ´ 1, then we have

pΩS2d´1qhZ{p » ΩS2d´1 \
ğ

p´1
d

ΩS2d´1 ˆ CP d´1

after p-completion on both sides.
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Proof. There is p´1
d ` 1 representations of Z{p into pS2d´1q^

p up to conjugation, i.e
ReppZ{p, pS2d´1q^

p q “
p´1
d ` 1 where the centraliser for p´1

d many of them is pS1q^
p

and for the trivial representation the centraliser is pS2d´1q^
p . This implies we have an

equivalence K{Cpρq » CP d´1 » S2d´1{S1 after p-completion in the case Cpρq “ S1
p and

K{Cpρq » ˚ for the trivial representation. Hence, we have the pullback:

pΩpS2d´1q^
p qhZ{p ˚ \

Ů

p´1
d

pCP d´1q^
p

˚

˚ pS2d´1q^
p

Since the dimension of CP d´1 is 2d ´ 2, the map pCP d´1q^
p Ñ S2d´1

p is nullhomotopic
because of cellular approximation. Hence we can compute the pullback as pΩS2d´1q^

p \
Ů

p´1
d

pΩS2d´1q^
p ˆ pCP d´1q^

p .
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6 Six functor formalism for equivariant
sheaves

The material presented in this chapter is joint work with Oscar Bendix Harr.

6.1 Equivariant Sheaves and Six functor formalism

In this section, we will recall some definitions and properties of the sheaf category and
introduce the six functor formalism for equivariant sheaves.

Much of the material about the non-equivariant setup here is known to experts; an 8-
cateogorical version can be found [Lur17; Lur09] in we present it here to have coherent
documentation for the reader.

Let G be a topological group acting continuously on a topological space X. For a fixed
discrete ring R, Bernstein and Lunts [BL94] define a triangulated category DGpX;Rq

of derived G-equivariant R-valued sheaves on X. When the group G is locally com-
pact Hausdorff, they also show that the assignment X ÞÑ DGpX;Rq can be fleshed out
into a six-functor formalism for equivariant sheaves on locally compact Hausdorff G-
spaces, generalising the non-equivariant six-functor formalism of Verdier [Ver65], and
thus providing a natural context for understanding, among other things, certain equiv-
ariant duality phenomena. More specifically, the Bernstein–Lunts category DGpX;Rq

sees Borel-type properties of the G-space X, in the sense that if one takes the derived
global sections of a constant equivariant sheaf on a nice space X, one gets the Borel
cohomology of X.

In this paper, we briefly show how to generalise the construction of Bernstein–Lunts
to allow coefficients in an 8-category. In particular, when the coefficient 8-category
is stable, one gets a full1 six-functor formalism for equivariant sheaves by invoking the
general results in an appendix of [Man22].

6.1.1 The 8-topos of Borel Equivariant Sheaves

Let G be a topological group. In this section, we introduce the ‘non-abelian Borel
equivariant derived category’ ShvhGpXq associated with a G-space X, which is a Borel
equivariant version of the non-abelian derived category ShvpXq of sheaves of anima
on X. The objects of ShvhGpXq are, informally, G-equivariant sheaves of anima on X.
Although, in general, ShvhGpXq cannot be realised as ShvpY q for a topological space Y ,
it is an 8-topos, meaning that it enjoys many of the same properties as the 8-category
of sheaves of anima on a topological space, e.g.

1having all the coherence
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6 Six functor formalism for equivariant sheaves

• To an equivaraint sheaf F P ShvhGpXq we can associate an anima ΓpX,Fq of
‘derived global sections’.

• For an arbitrary 8-category C, we can define an 8-category of C-valued sheaves on
ShvhGpXq, which we will denote by ShvhGpX;Cq :“ ShvpShvhGpXq;Cq. If C hap-
pened to be an ordinary category, then ShvhGpX;Cq precisely recovers the classical
notion of equivariant C-valued sheaves on X, and if C “ DpRq is the unbounded
derived category of a ring R, then the triangulated category hShvhGpX; DpRqq

agrees for reasonable spaces with the unbounded derived category of equivariant
sheaves studied by Bernstein and Lunts [BL94].

• The 8-topos ShvhGpXq has a homotopy type, namely its shape Π8pShvhGpXqq P

PropSq, which, when X and G are nice, parametrizes locally constant equivariant
sheaves on X.

By a purely formal calculation, it will turn out that in good cases, we have

Π8pShvhGpXqq » Π8pXqhG,

where Π8pXqhG is the Borel construction on Π8pXq. By invoking Lurie’s monodromy
equivalence for 8-topoi [Lur17, Theorem A.4.2], this will allow us to interpret the Borel
cohomology of a well-behaved G-space X with respect to some Borel equivariant spec-
trum E as the homotopy groups of the spectrum of derived global sections ΓpX;EXq of
a certain equivariant spectral sheaf EX on X, which we think of as a ‘constant sheaf at
E’.

Definition and basic properties

Let G be a topological group acting continuously on X. The action groupoid associated
to this action is a topological groupoid with object space X, and such that morphisms
from x to x1 correspond to elements g P G with gx “ x1. We denote the bar construction
of the action groupoid, which is a simplicial space, by

rX {{ Gs‚ ¨ ¨ ¨ G ˆ G ˆ X G ˆ X X=
...

So the face maps are given by

di : pg0, . . . , gp´1, xq ÞÑ

#

pg0, . . . , gi´1, gigi`1, gi`2, . . . , gp´1, xq if 0 ď i ă p,

pg0, . . . , gp´2, gp´1xq

and the degeneracy maps are the obvious ones.

Let Shv˚ : Top Ñ RTop8 denote the covariant functor given informally by sending
a space X to the 8-category of S-valued sheaves ShvpXq, and by sending a morphism
f : X Ñ Y to the pushforward f˚ : ShvpXq Ñ ShvpY q. We then define:

Definition 6.1.1.1. Let X be a G-space, where G is a topological group. We put

ShvhGpXq :“ lim
ÝÑ
∆op

Shv˚prX{Gs‚q,

where the colimit is taken in the 8-category of 8-topoi RTop8 and morphism geometric
morphisms.
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For an arbitrary 8-category C, we define

ShvhGpX;Cq :“ FunlexpShvhGpXq,Cq,

where FunlexpShvhGpXq,Cq Ď FunpShvhGpXq,Cq is the full subcategory spanned by
functors that preserve small limits.

That is, ShvhGpX;Cq is the 8-category ShvpShvhGpXq;Cq of C-valued sheaves on the
8- topos ShvhGpXq in the sense of [Lur09]. We think of ShvhGpX;Cq as the 8-category
of Borel equivariant C-valued sheaves on X. The Yoneda embedding gives an equivalence

ShvhGpXq
»
ÝÑ ShvhGpX; Sq,

so ShvhGpXq is the 8-topos of Borel equivariant sheaves of anima on X.

One should think of ShvhGpXq as the non-abelian Borel equivariant derived category of
X, in the same way that for a non-equivariant space X, the 8-topos ShvpXq of sheaves
of anima on X is the non-abelian derived category of X [Lur09], cf. [Gir71].

Comparison with classical notions

When C is an ordinary category, there is a classical notion of an equivariant C-valued
sheaf on X. These form the objects of an 1-category, which we will temporarily denote by
ShvGpX;Cq. We first briefly recall the definition of this category. Recall the simplicial
space rX {{ Gs‚ : ∆op Ñ Top from above. Let ∆ď2 Ă ∆ denote the full subcategory
spanned by the ordinals 0,1 and 2. We let rX {{ Gs‚ď2 : ∆op

ď2 Ñ Top denote the
precomposition of rX {{ Gs‚ with the inclusion ∆ď2 Ă ∆. Then

ShvGpX;Cq :“ lim
ÐÝ
∆ď2

Shv˚prX {{ Gs‚ď2q

where the limit is the p2, 1q-limit in the p2, 1q-category of ordinary categories. Thus,
objects of ShvGpX;Cq are pairs pF, θq where F P ShvpX;Cq and θ : d˚

1F
»
ÝÑ d˚

0F is an
equivalence in ShvpX ˆ G;Cq such that the following diagrams commute

s˚
0d

˚
1F s˚

0d
˚
0F

F F

» »

d˚
2d

˚
1F d˚

2d
˚
0F d˚

0d
˚
1F d˚

0d
˚
0F

d˚
1d

˚
1F d˚

1d
˚
0F

d˚
1 pθq

»

d˚
2 pθq » d˚

0 pθq

»

Proposition 6.1.1.2. Let C be an ordinary category. Then there is an equivalence

ShvhGpX;Cq » SGpX;Cq

In particular the 8-category ShvhGpX;Cq is 1-truncated.
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More generally for C an pn, 1q-category where n ă 8, then ShvhGpX;Cq is equivalent
to the pn ` 1, 1q-limit

lim
ÐÝ

∆ďn`1

Shv˚pX;Cq

computed in the pn ` 1, 1q-category of pn, 1q-categories. This follows from the following
description of the C-valued equivariant sheaves on a topological space X:

Proposition 6.1.1.3. Let C be an 8-category. There is an equivalence

ShvhGpX;Cq » lim
ÐÝ
∆

Shv˚prX {{ Gs‚;Cq

where the limit is computed in the 8-category Cat8 of 8-categories, and Shv˚p´;Cq :
Top Ñ Cat8 is the contravariant functor given by X ÞÑ ShvpX;Cq on objects, and by
sending f : X Ñ Y to the pullback f˚ : ShvpY ;Cq Ñ ShvpX;Cq.

Proof. We have

ShvhGpX;Cq » FunlexpShvhGpXq,Cq

» Funlexplim
ÐÝ
∆

Shv˚prX {{ Gs‚q,Cq

» lim
ÐÝ
∆

FunlexpShv˚prX {{ Gs‚q,Cq,

where Shv˚ : Topop Ñ LTop8 denotes the functor given informally by X ÞÑ ShvpXq

on objects and f ÞÑ f˚ on morphisms. Equivalently, Shv˚ is the composition of the
functor Shv˚ described earlier with the antiequivalence RTopop

8 » LTop8 of [Lur09,
Cor 6.3.1.8].

Funtoriality

The construction of the 8-topos ShvhGpX;Cq is functorial over the G-space X; indeed
it is the composition of functors

G-Top Top∆
op

RTop∆
op

8 RTop8 Cat8

r´{{Gs‚ Shv˚
lim
ÐÝ Funlex

which to a G-equivariant map f : X Ñ Y induces a geometric morphism that we will
denote by

f˚ : ShvhGpXq Ñ ShvhGpY q (pushforward)

similarly, the left adjoint of f˚ will denoted by

f˚ : ShvhGpY q Ñ ShvhGpXq (6.1)

The 8-topos ShvhGpXq is also functorial in the topological group G. Given a morphism
φ : H Ñ G of groups and a G-space X, we can view X as a H-space by restricting along
φ. There is then a geometric morphism

Resφ : ShvhHpXq Ñ ShvhGpXq (restriction)
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6.1 Equivariant Sheaves and Six functor formalism

which is induced by the map of simplicial spaces rX {{Hs‚ Ñ rX {{Gs‚ given by φn ˆX :
Hˆn ˆ X Ñ Gˆn ˆ X on n-simplicies. If φ is an inclusion, we will also write ResGH
instead of Resφ.

We can view the functionality in the space and group direction simultaneously by
considering Shvhp´qp´q as a functor on the global equivariant category Topglob. Here
we define Topglob to be the ordinary category which has, as its objects, pairs pG,Xq,
where G is a topological group and X is a G-space, and such that a map from pH,Y q

to pG,Xq is a pair pf, φq where f : Y Ñ X is a continuous map and φ : H Ñ G is a
continuous homomorphism, satisfying that fphyq “ φphqfpyq.

Then there is a functor Shvhp´qp´q : Topglob Ñ RTop8 given informally on objects by
sending pG,Xq to ShvhGpXq and on morphisms by sending pf, φq : pH,Y q Ñ pG,Xq to
the geometric morphism

pf, φq˚ : ShvhHpY q Ñ ShvhGpHq

induced by the map of simplicial spaces rY {{ Hs‚ Ñ rX {{ Gs‚ given by φˆn ˆ f :
Hˆn ˆ Y Ñ Gˆn ˆ X on n-simplices. Just as when we had a fixed group, functoriality
follows from the fact that Shvhp´qp´q is by construction equal to the composition

Topglob
r´{{´s‚
ÝÝÝÝÑ Top∆

op Shv˚p´q
ÝÝÝÝÝÑ RTop∆

op

8

lim
ÝÑÝÝÑ RTop8,

Here it is easy to check that the first arrow is a functor as both the source and target
are ordinary categories.

Relation to ShvpXq and ShvpX{Gq

Given a G-space X, the simplicial space rX {{ Gs‚ admits an augmentation rX {{ Gs‚ Ñ

X{G. Hence there is an induced geometric morphism

ShvhGpXq Ñ ShvX{G, (6.2)

natural in X, which compares equivariant sheaves on X to non-equivariant sheaves on
the orbit space X{G. On the other hand, the universal cone for ShvhGpXq come with a
geometric morphism

ShvpXq Ñ ShvhGpXq; (6.3)

we think of the left adjoint of this morphism as the functor which forgets that a sheaf
F P ShvhGpXq is equivariant. Indeed, the right adjoint can alternatively be described
as the restriction map ResGe : ShvhGpXq Ñ ShvhepXq » ShvpXq, where e P G is the
identity element. Both (6.2) and (6.3) are natural in X.

Principal G-spaces

In general, the comparison maps given above are both very far from being equivalences.
Nevertheless, there is a condition which ensures that (6.2) is an equivalence, and this
observation will furnish us with our first calculations of the 8-topos of equivariant
sheaves. For us, a principal G-space is a G-space X such that X can be covered by
G-invariant open sets U , where U is G-equivariantly homeomorphic to a G-space of the
form G ˆ V , where G acts by left multiplication on the G-factor and trivially on the
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6 Six functor formalism for equivariant sheaves

V -factor. In particular, any principal G-space is free, but a free G-space need not be
principal.

We then have:

Proposition 6.1.1.4 (Torsor descent). Let G be a topological group and X be principal
G-space. Then (6.2) gives an equivalence

ShvhGpXq » ShvpX{Gq

with the 8-topos of non-equivariant sheaves on X{G.

Proof. Let p : X Ñ X{G “: X̄ denote the projcetion, and let N‚ denotes its Čech nerve

N‚ ¨ ¨ ¨ X ˆX X ˆX X X ˆX X X=
...

Using that G acts freely on X, we find that there is an isomorphism of simplicial spaces
rX {{ Gs‚ Ñ N‚ over X, given on n-simplices by

px, g1, g2, ..., gnq Ñ px, g1x, ..., gnxq,

so the statement of the proposition is equivalent to the claim that the projection p is of
descent type. But this follows from the fact that p has local sections.

Note that torsor descent is the categorified version of the statement that the equivariant
cohomology of a principal G-space X is the same as the ordinary cohomology of X{G.

6.1.2 The six operations for equivariant sheaves

Above we showed how to construct, for any 8-category C, a theory of G-equivariant C-
valued sheaves on G-spaces, which to any G-space X associates the 8-category ShvhGpX;Cq

and to a continuous function f : X Ñ Y associates the adjunction

f˚ : ShvhGpX;Cq Õ ShvhGpY ;Cq :f˚. (pushforward/pullback)

As in the non-equivariant case, we can say a great deal more if the coefficient category
C is stable (and we restrict ourselves to considering a locally compact Hausdorff group
G acting continuously on locally compact Hausdorff spaces). In that case, one also has,
for every an adjunction

f ! : ShvhGpY ;Cq Õ ShvhGpX;Cq :f!, (exceptional pushforward/pullback)

encoding equivariant Verdier duality. If C is furthermore presentably symmetric monoidal,
in the sense that C P AlgE8

pPrL,bstabq, then there are two more operations: the functor
ShvhGp´;Cq : Topop Ñ PrLstab factors through the forgetful functor AlgE8

pPrL,bstabq Ñ

PrLstab, i.e. for each G-space X the 8-category ShvhGpX;Cq is canonically a presentably
symmetric monoidal 8-category, and hence in particular closed symmetric monoidal,
giving two more operations: the tensor product of sheaves bX and the internal Hom-
functor HomX . Together, these six operations form a ‘six functor formalism’ after
the philosophy of Grothendieck–Verdier. For the classical choice of coefficient category
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C “ DpRq, the six functor formalism for equivariant sheaves was described by Bernstein
and Lunts [BL94] in the language of triangulated categories. Recent work of [LZ17;
Man22] has clarified what is needed to construct a six functor formalism, with all the
desired compatibilities and coherence, and in this subsection we will describe the six
operations for equivariant sheaves from this perspective.

We start by briefly recalling the framework developed in [Man22]. A geometric setup
is a pair pT, Eq where T is an 8-category admitting all pullbacks and E is a class of
morphisms in T, subject to three conditions: (i) E contains all equivalences; (ii) E is
stable under composition; and (iii) E is stable under pullback along any morphism in T.2

We think of T as being a category of ‘geometric objects’ (e.g. spaces or stacks with extra
structure), and E as being a class of ‘admissible’ morphisms between these geometric
objects.3 Associated to the geometric setup pT, Eq is a category of correspondences,
which [Man22] denotes by CorrpTqE,all. The objects of CorrpTqE,all are the same as
those of T, and a morphism from X to Y is given by a diagram

X Ð X 1 Ñ Y,

where X 1 Ñ Y lies in E.4 A 2-simplex in CorrpTqE,all is a commutative diagram

X 1 ˆY Y 1

X 1 Y 1

X Y Z

in C, where the top square is a pullback; in CorrpTqE,all, the 2-simplex corresponding
to this diagram has vertices X, Y , and Z, and edges X Ð X 1 Ñ Y , Y Ð Y 1 Ñ Z,
and X Ð X 1 ˆY Y 1 Ñ Z. In particular, although the geometric setups that we have
in mind—namely, T “ G-Top for some topological group G—are ordinary categories,
the category of correspondences CorrpTqE,all is not, essentially because pullbacks are
only unique up to equivalence, so the composition of two spans is only defined up to
equivalence.

We will identify Top with the wide subcategory of CorrpTqE,all whose morphisms are
exactly those spans of the form

X Ð Y
id
ÝÑ Y.

Similarly, letting TE denote the wide subcategory of T whose morphisms are exactly E,
then TE will be identified with the wide subcategory of CorrpTqE,all whose morphisms
are spans of the form

X
id

ÐÝ X Ñ Y.

The category CorrpTqE,all has the canonical structure of an 8-operad

CorrpTq
b
E,all Ñ Fin˚. (6.4)

2Note that (i) and (iii) imply in particular that if f P E and g » f , then g P E.
3In topological contexts such as ours, one typically wants E to be the class of all morphisms in C. The

flexibility of allowing E to be a smaller class of morphism is needed in algebraic geometry, where it
may be the case for instance that the exceptional functors f! and f ! are only defined for separated
morphisms.

4The reason for the subscript ‘all’ is that no condition is imposed on the morphism X Ð X 1. A more
general construction specifies a class of morphisms F to which X Ð X 1 must belong as well, but this
is not relevant here.
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6 Six functor formalism for equivariant sheaves

If finite products exist in T, then (6.4) is a cocartesian fibration, so the category of
correspondences CorrpTqE,all receives in fact the structure of a symmetric monoidal
8-category. In that case, the monoidal structure is given informally on objects by
X b Y “ X ˆ Y , i.e. it is simply the product in T. More generally, the inclusion
Top Ď CorrpTqE,all admits canonically the structure of a map of 8-operads

pTopq\ Ñ CorrpTq
b
E,all, (6.5)

where pTopq\ is the coproduct monoidal structure on Top, which in case products exist
in T is given by those.

A pre-six-functor formalism [Man22, Def A.5.7] is a map of 8-operads

SH: CorrpTq
b
E,all Ñ Catˆ

8,

where Catˆ
8 denotes the symmetric monoidal 8-category of large 8-categories, with the

product monoidal structure. We think of SHpXq as being an 8-category of ‘sheaves’
on the geometric object X P T, compatible with the geometric structure. Note that the
datum of a map of 8-operads as above gives rise to the following:

• By restricting along pTopq\ Ñ CorrpTq
b
E,all, we get in a particular a functor of

8-operads
SH˚ : pTopq\ Ñ Catˆ

8,

meaning in particular that for each X P T, the category SHpXq admits canonically
the structure of a symmetric monoidal category. Furthermore, given a morphism
f : X Ñ Y , we write

f˚ “ SH˚pfq : SH˚pY qb Ñ SH˚pXqb

for the corresponding symmetric monoidal functor, which we refer to as the pull-
back along f .

• By restricting along TE Ď CorrpTqE,all, we get a functor

SH! : TE Ñ Catop
8 .

Given f : X Ñ Y in E, we will write

f! “ SH!pfq : SH˚pXq Ñ SH˚pY q

for the corresponding functor, which we refer to as the exceptional pushforward
along f .

A pre-six-functor formalism SH as above is said to be a six-functor formalism if it
satisfies the following two conditions:

(i) For each X P T, the symmetric monoidal 8-category SHpXq is closed, with corre-
sponding internal Hom-functor denoted Hom; and

(ii) The functors f˚ and f! admit right adjoints, which we denote f˚ and f ! respec-
tively.5

5Although right adjoints are not uniquely defined, it is possible to make a coherent choice; i.e. there is
an antiequivalence CatR8 » pCatL8q

op, where CatR8 resp. CatL8 denotes the 8-category of 8-categories
with functors that admit left adjoints resp. right adjoints between them.
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6.1 Equivariant Sheaves and Six functor formalism

It is in general hopeless to try to build a morphism of 8-operads SH: CorrpTq
b
E,all Ñ

Catˆ
8 cell-wise by hand. The key contribution of [LZ17; Man22] is to give various usable

machines for producing such a functor from the in practice often readily available datum
of a functor SH˚ : Top Ñ Cat8. As is sometimes the case in higher category theory, it
then turns out that for all the necessary coherence structure to exist, it is in good cases
only necessary to make certain pointwise checks.

Although several machines for constructing six-functor formalisms are described in
[Man22], we only have need of one. A suitable decomposition of a geometric setup
pT, Eq is a pair of subsets I, P Ď E, such that (i) each f P E admits a factorization
f » p ˝ i for p P P and i P I; (ii) each f P I X P is n-truncated for some n ě ´2; (iii) I
and P contain all equivalences and are stable under pullback along all morphisms in T;
and (iv) if g P I (resp. g P P ) and

Y

X Z

gf

g˝f

is a 2-cell, then g ˝ f P I (resp. g ˝ f P P ) if and only if f P I (resp. f P P ). In
applications, I will typically be a suitable class of ‘immersions’ and P will be a suitable
class of ‘proper maps’, hence the notation. Mann then shows:

Theorem 6.1.2.1 ([Man22]). Suppose SH˚ : pTopq\ Ñ Catˆ
8 is a morphism of 8-

operads, and write f˚ “ SH˚pfq for each morphism f in T. Suppose that:

(i) For each j : U Ñ X in I, the pullback j˚ admits a left adjoint j! such that

• for each f : Y Ñ X, the diagram

SHpXq SHpY q

SHpUq SHpU ˆX Y q

f˚

i˚ ,

formed by applying SH˚ to a pullback square of U Ñ X Ð Y , is left ad-
jointable; and

• for all F P SHpUq and G P SHpXq, the canonical map

j!pF b j˚Gq Ñ j!F b G

is an equivalence.

(ii) For each p : Y Ñ X in P , the pullback p˚ admits a right adjoint p˚ such that

• for each g : X 1 Ñ X, the diagram

SHpXq SHpX 1q

SHpY q SHpY ˆX X 1q

f˚

i˚ ,

formed by applying SH˚ to a pullback square of Y Ñ X Ð X 1, is right
adjointable; and

83



6 Six functor formalism for equivariant sheaves

• for all F P SHpY q and G P SHpXq, the canonical map

p˚pF b j˚Gq Ñ p˚F b G

is an equivalence.

(iii) For each pullback square

V Y

U X

q

j

p

i

in T in which i, j P E and p, q P P , the canonical map i!q˚ Ñ p˚j! is an equivalence.

Then SH˚ extends canonically to a pre-six functor formalism, in the sense that there is
a commutative diagram

CorrpTq
b
E,all

pT opq\ Catˆ
8

SH

SH˚

in the 8-category of 8-operads.

As the difference between a six-functor formalism and a pre-six-functor formalism is
also just a short list of pointwise checks, one gets a usable machine for constructing
six-functor formalisms.

The conditions of the theorem are easily verified for the functor Shv˚
hGp´;Cq con-

structed above, where now C is some presentably symmetric monoidal stable 8-category
such as the unbounded derived category DpRq for an ordinary ring R or more generally
the 8-category of modules ModR over an E8-ring R. For our geometric setup, we take
T “ G-LCHaus to be the category of locally compact Hausdorff G-spaces for a locally
compact Hausdorff group G and E “ all to be the set of all morphisms. We let I resp.
P be the class of G-equivariant maps that are immersions resp. proper on underlying
spaces.

Proposition 6.1.2.2. The functor ShvhG : pG-LCHausopq\ Ñ Catˆ
8 satisfies the con-

ditions of the preceding theorem.

Proof. We first check that maps from I and P give rise to the desired adjoints. We
have already seen that for any G-equivariant map p : X Ñ Y , the pullback p˚ has a
right adjoint p˚. If p is proper, the required base change property follows from the
non-equivariant case and [Lur17, Cor 4.7.4.18]. The projection formula holds non-
equivariantly, and hence after each projection from the limit ShvhGpX;Cq “ lim

ÐÝ∆
ShvprX{{

Gsq‚; since the projections are jointly conservative, this shows that it holds in the cat-
egory of equivariant sheaves. Similarly arguments reduce the pointwise verifications for
morphisms in I to the non-equivariant case, where they are known to hold. The only
part of the proof which is not an argument of this type is the verification that each
morphism f in G-Top admits a factorization of the prescribed form, namely f “ p ˝ i
where p is proper and i is an immersion. Here we write f as the composition

X ãÑ βGX ˆβGY Y Ñ Y,
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where βG´ is the G-equivariant Stone-Čech compactification (see the next section).

The map βGX ˆβGY Y Ñ Y is pullback of the proper map βGX Ñ βGpY q hence it is
proper. By Corollary 6.1.3.8 we have the map Y ãÑ βGY is an open immersion hence
we have βGX ˆβGY Y Ñ βGX is an immersion and again the map X ãÑ βGX is an
immersion this gives us the map X ãÑ βGX ˆβGY Y is an immersion by the 2 out of 3
property of immersion.

6.1.3 Equivariant Stone-Cech compactification

Equivariant compactifications have been constructed in high generality by Jan de Vries
[Vri77]. For our purposes, we may assume that every space in sight is locally compact
Hausdorff, which makes several proofs easier. We include these proofs for completeness.

Let G be a topological group acting continuously on a locally compact Hausdorff space
X. There is a canonical action of G on the non-equivariant Stone–Cech compactification
βX. Recall that βX is the maximal ideal space of the C˚-algebra CbpXq of bounded
continuous complex valued functions on X. Thus G acts on CbpXq from the right by
sending pf, tqCbpXq ˆ G to the function f tpxq “ fptxq. However, this action and the
resulting action on βX fail to be continuous even for good transformation groups.

The equivariant Stone–Cech compactification will instead be constructed as the maxi-
mal ideal space of a certain C˚-subalgebra of CbpXq, on which the canonical discontin-
uous G-action restricts to a continuous action:

Definition 6.1.3.1. A function f P CbpXq is right-uniform continuous if the map
G Ñ CbpXq given by t Ñ f t is continuous. We denote by Cb

rupXq Ă CbpXq the subset
consisting of right-uniform continuous functions.

Lemma 6.1.3.2. Cb
rupXq ia a unital C˚-subalgebra of CbpXq

Proof. It is clear that Cb
rupXq is an unital ˚-subalgebra, so it suffices to show that it is

closed. For this, suppose fλ Ñ f is a convergent net in CbpXq with each fλ a right-
uniform continuous function. Let tµ Ñ t be a net in G. We must show that f tµ Ñ f t

in CbpXq. Given ϵ ą 0, pick λ so that }f ´ fλ}u ă ϵ{3. Since fλ is right-uniform
continuous, we have for sufficiently large µ that }f t

λ ´ f t
µ}u ă ϵ{3, and hence

}f t ´ f tµ}u ď }f t ´ f t
λ}u ` }f t

λ ´ f
tµ
λ }u ` }f

tµ
λ ´ f tµ}u

“ }f ´ fλ}µ ` }f t
λ ´ f

tµ
λ } ` }fλ ´ f}u

ă ϵ

Lemma 6.1.3.3. G acts continuously on Cb
rupXq

Proof. This is essentially by construction. Let pfλ, tλq Ñ pf, tq be a convergent net in
Cb
rupXq ˆ G. Given ϵ ą 0, we then have that for sufficiently large λ, both }f t ´ f tµ}u

and }f ´ fλ}u are strictly less than ϵ{2, so

}f t ´ f
tµ
λ }u ď }f t ´ f tλ}u ` }f tλ ´ f tλ

λ } “ }f t ´ f tλ}u ` }f ´ fλ} ă ϵ
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Lemma 6.1.3.4. Cb
rupXq contains C0pXq as a subalgebra.

Proof. To see this, suppose f P C0pXq and let tλ Ñ t be a net in G. Suppose for
contradiction that f tλ does not converge to f t in CbpXq. Then there is ϵ ą 0 so that

Λ
1

“ tλ | }f t ´ f tλ} ě ϵu Ă Λ

is cofinal. Thus for each λ
1

P Λ
1 there is xλ1 P X with

| fptxλ1 q ´ fptλ1xλ1 q |ě ϵ. (6.6)

As f P C0pXq there is a compact set K Ă X with | fpxq |ă ϵ{2 for x R K. Hence
by (6.6), we get that either ptxλ1 q or ptλ1xλ1 q is completely contained in K. If ptλ1xλ1 q

is all contained in K, then we can pass to a convergent subsequence tλ2xλ2 Ñ y. By
continuity of the G-action, we get that xλ2 Ñ t´1y “: x. Hence

| fpptxλ1 qq ´ fptλ1xλ1 q |Ñ| fptxq ´ fptxq |“ 0

which is a contradiction. A similar argument works in the case where ptxλ1 q is contained
in K.

As a corollary, we obtain that:

Corollary 6.1.3.5. If X is a compact Hausdorff G-space, then Cb
rupXq “ CpXq

Proof. The statement of the corollary follows from the previous lemma and the following
inclusions

CpXq “ C0pXq Ă Cb
rupXq Ă CbpXq “ CpXq

Lemma 6.1.3.6. If ϕ : X Ñ Y is a G-equivariant map with Y compact Hausdorff, then
the precomposition map φ˚ : CpY q Ñ CbpXq lands in Cb

rupXq

Proof. Let f P CpY q. Note that

pφ˚fqtpxq “ fpφptxqq “ fptφpxqq “ f tpφpxqq

for all t P G, where the second equality uses that φ is equivariant. Given a convergent
net tλ Ñ t in G, we thus have

}pφ˚fqt ´ pφ˚fqtλ}u ď }f t ´ f tλ |uÑ 0,

as desired.

Now we can state the main theorem of this section,

Theorem 6.1.3.7. Let X be a locally compact Hausdorff G-space. Then there is a
compact Hausdorff G-space βGX and an equivariant embedding i : X ãÑ βGX, so that
ipXq is dense in βGX. Furthermore, if f : X Ñ Y is a G-equivariant map with Y a
compact Hausdorff G-space, then there is a unique dashed equivariant map making the
following diagram commute:
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X βGpXq

Y

Proof. As in [Vri77, Theorem 1.1], using Gelfand duality, there is a correspondence be-
tween compactifications and closed subalgebras of CbpXq that contains constants and
closed under complex conjugation. The universal property follows from Lemma 6.1.3.6,
which gives a factorisation of the desired form, and by Gelfand duality, any such fac-
torisation must arise in this way.

We would also like to record the following result, which shows the desired factorisation
in the previous section.

Corollary 6.1.3.8. Let X be a locally compact Hausdorff G-space then we have the
map X ãÑ βGX is an open immersion

Proof. By Theorem 6.1.3.7 essentially due to [Vri77], we have that the map X Ñ βGX
is injective and has a dense image, which is a compactification in the sense of [Loe69]
and since X is locally compact by [Loe69, Theorem 1.1 (vi)] we have that X ãÑ βGX is
an open embedding.
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7 Equivariant sheaves and localisation

7.1 Localisation of Equivariant Sheaves

In this section, we introduce two different equivariant localisation functors in the context
of equivariant sheaves on a topological space.

Let X be a space and G be a finite group, the classical localisation theorem relates
the equivariant cohomology of a space X to its fixed point, this can be thought of as a
statement relating the equivariant sheaf cohomology on the space X and its fixed points
XG with respect to a constant local system.

We can go further and try to generalise these methods on more general sheaves, in the
first part we carry out these ideas on the subcategory of constructible sheaves, which
are stratified versions of locally constant sheaves.

Localisations in sheaf theory are certainly not a new idea, and goes back to the work
of Tom Braden [Bra03] commonly known as "hyperbolic localisation".

Where they consider the case of a Gm-action on a normal variety X over a field of k
characteristic p and constructs a certain localisation functor

DetpXq Ñ DetpX
T q

where DetpXq denote the derived category of l-adic étale sheaves, where l ‰ p. These
methods prove to be extremely useful in the proof of the Geometric Stake isomorphism
[MV07].

In algebraic topology, the localisation theorem is true for other groups as well, such
as the cyclic group Z{p in modular characteristics. This raises the question of whether
we can perform localisation of Z{p-equivariant sheaves. This was answered by the work
of David Treumann [Tre19], where one can consider a complex analytic variety or more
generally, a real sub-analytic set with an action of Z{p and get a localisation functor:

Shvbc,Z{ppX;Fpq Ñ SmithpXZ{pq

the category on the left is bounded equivariant constructive sheaves and the target is a
certain Verdier localisation, the localisation functor is referred to as Smith localisation.
There have also been analogues of these constructions on étale sheaves for Z{p-action
due to Riche and Williamson [RW22b] for finite type schemes and for locally of finite
type by Feng [Fen23].

Similar to Branden’s hyperbolic localisation, the Z{p - Smith localisation has found
applications in the Geometric Langlands program, where Riche and Williamson [RW22b]
studies the loop rotation action coming from Z{p on the affine Grassmannian GrG and
obtain a geometric proof of the linkage principle.
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7 Equivariant sheaves and localisation

In the first part of this section, we revisit the work of Treumann and give an 8-
categorial account, and indicate how to extend to arbitrary groups with respect to
suitable coefficients.

In the second part of the section, we restrict ourselves to compact manifolds with an
action of a finite group and introduce a different localisation functor, which is more in
the spirit of the localisations theorem considered in equivariant homotopy theory.

7.1.1 Localisation after Treumann

Let X be a real sub-analytic space with an action of a finite group G. We consider the
category Shvc,GpX;Cq of constructible equivariant sheaves valued in compactly gener-
ated presentable 8-category C.

This is a full subcategory of equivariant sheaves ShvhGpX;Cq, spanned by objects F

such that there exist a stratification X Ñ P with strata tXpup P P , where each strata
Xp is G-invariant and the underlying sheaf F |Xp is locally constant.

Let Z be the closed subspace of X, which is G-invariant, and U be the complement of
Z, and let i : Z ãÑ X and j : U ãÑ X be the corresponding inclusions. Since i : Z ãÑ X
is a closed embedding iG,˚ “ iG,! and j : U ãÑ X is a open embedding, hence we have
j!G “ j˚

G.

We can organise this information as a stable recollement in the sense of [Lur17, A.8]:

ShG,cpZq ShG,cpXq ShG,cpUq
i˚,G“i!,G j˚

G“j!G

i˚
G

i!G

j!,G

j˚,G

where the middle sequence is a localisation sequence, i.e. a fiber-cofiber sequence in
PrL [Lur17; AMR22].

(In the rest of the section, we will drop the group G as it makes the notations cleaner)

Given an object F P Shvc,GpXq by [BG16] we have a two cofiber sequences i!i
!F Ñ

F Ñ j˚j
˚F and j!j

!F Ñ F Ñ i˚i
˚F.

Given an object F P Shvc,GpXq, we can recover F from its restriction to the closed and
open part via a fracture square, i.e. there is pullback square.

F i˚i
˚F

j˚j
˚F i˚i

˚j˚j
˚F

{

In fact we get Shvc,GpXq is a lax-limit of Shvc,GpUq and Shvc,GpZq, or in the language
of [AMR22]; Shvc,GpXq is stratified over the poset 0 ă 1.

Remark 7.1.1.1. One first observes there is a recollement at the level of the category
of sheaves, and by [BL94, Section 1.10], the six functors preserve constructability since
we have assumed X is real sub-analytic.

90



7.1 Localisation of Equivariant Sheaves

Let the closed subspace Z “ XG, since the action on XG is trivial, we have ShvhGpX;Cq »

ShvpX;ChGq, where ChG » FunpBG,Cq. We will primarily be interested in the case
where C “ ModR the stable 8-category of modules over an E8-ring spectrum R1. By
Schwede-Shipley theorem [Lur17, Theorem 7.1.2.1] we can identify FunpBG,ModRq »

ModRrGs.

Definition 7.1.1.2 (Proper ideal). Let P be the subcategory of Shvbc,GpXGq, spanned
by sheaves whose stalks lie in the thick b-ideal of ModRrGs generated by RrG{Hs where
H runs over all proper subgroups. We call this the proper ideal.

Definition 7.1.1.3. We define SmithpXG;Rq » Shvbc,GpX;Rq{P to be the Verdier quo-
tient.

Let X “ ˚ and R “ Fp and G a p-group, then we have:

Smithp˚;Fpq » ModbFprGs{P

In particular, IndpSmithp˚;Fpqq » ModpFτG
p q, where FτG

p is the proper Tate con-
struction [Mat15].

Note that for Fp, the proper Tate construction with respect to the trivial action is
non-zero if and only if G is an elementary abelian group. This has to do with the fact
that the derived defect base2 of the ring Fp is exactly the elementary abelian groups (in
the sense of [MNN19]).

This suggests that given an E8-ring, it is crucial to work with something within the
defect base of the ring R. For example, in the case R “ KU^

p we have defect base, all
cyclic group. More generally, Epnq the height n Morava E-theory has defect base as all
abelian groups G, such that the maximal elementary subgroup has rank ď n.

The following is the main theorem in [Tre19] for cyclic and coefficient Fp. We state a
modified version to accommodate all coefficients R, an E8-ring and all finite groups in
the defect base of R.

Theorem 7.1.1.4. Let X be a G-space and i the inclusion of fixed points i : XG ãÑ X.
Then the cofiber of the natural transformation η : i! Ñ i˚ lies in the proper ideal P.

Proof. Let F be an object in Shvbc,GpX;Fpq and x P XG. To show the cofiber of η :

i!F Ñ i˚F belongs to the proper ideal P, we need to compute the stalk of cofiber of η
at the point x. For which we can use the cofiber sequence coming from recollement:

i!i
!F Ñ F Ñ j˚j

˚F

where i : XG ãÑ X and j : U ãÑ X. Using this, the stalk can be computed as follows:
we can choose a regular neighbourhood V of x and V

1

“ V zXG, such that V is invariant
under the action of G and V 1 is a subset of U “ XzXG, i.e.,V 1 has no fixed points. Using
the localisation sequence i!i

!F Ñ F Ñ j˚j
˚F the stalk cofibpηqpFqx is the global section

of F |V 1 .
1readers who are unfamiliar with the formalism of E8 rings can think of ordinary commutative rings

and ModR to be the derived category of R
2derived defect base of ring R is those groups G such that RτG for the trivial action is non zero
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7 Equivariant sheaves and localisation

We claim that, ΓpF |V 1 q P FunpBG,ModRq is in the thick b-ideal I generated by
RrG{Hs where H runs over proper subgroups.

To prove this, we can establish a general result that for any space Y with a free G-
action, the global section of an equivariant constructible sheaf F belongs to the ideal
I. Note that the category of constructible sheaves are generated by sheaves which are
constant on a closed invariant space and zero outside.

So, let us assume F is a sheaf of which is constant on a closed invariant subspace
zero on Z and Y zZ. The global section of F is cochains on Z with respect to the
constant coefficient. For constant sheaves on finite G-CW complex, the result follows
as the cohomology of the finite colimit of ΣnRrG{Hs where H ď G belongs to isotropy
subgroups of the action. Hence, we have ΓpFq lies in the ideal I Ă FunpBG,ModRq.

The above calculations can be suitably modified in the context of étale sheaves over
algebraic varieties in the case of field coefficients to a more general setup as indicated
by [RW22b].

In particular, in order to understand the loop rotation action for Z{pn Ă Gm on the
affine Grassmannian GrG and carry out the calculation in [RW22b] we can work with
coefficients such as KU^

p , the p-complete complex K-theory, whose defect base is the
cyclic groups and proper Tate construction pKU^

p qτZ{pn is rational.

7.1.2 Localisation in Dualisable categories

In this section, we will indicate a different categorification of the Smith localisation and
several obstructions for such a construction.

Let X be a finite G-CW complex, where G is an elementary abelian group. Recall that
we can study the Fp-valued singular cohomology of fixed points XG up to a localisation.
That is,

H˚pXhG;F2qre´1s » H˚pXG;F2qrrt1, ..., tnssre´1s, p “ 2

H˚pXhG;Fpqre´1s » H˚pXG;Fpqrrβ1, ..., βn, t1, ..., tnssre´1s p odd

where e is the Euler class discussed in section 2.1.3. In this section, we will indicate a
version of the categorification of this statement, that is,

ShvhGpX;Fpqre´1s » ShvhGpXG;Fpqre´1s.

Here we recall a few facts about presentable dualisable categories, which would be
essential in stating the main construction.

Let PrLst be the 8-category of presentable stable 8-categories, with morphism left
adjoint functors, which can be equipped with a symmetric monoidal structure called
the Lurie tensor product. A commutative algebra object in PrLst is a presentably3

symmetric monoidal 8-category.

3i.e., the colimits commute with tensor products in each variable
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7.1 Localisation of Equivariant Sheaves

Definition 7.1.2.1 (Dualisable Categories). A presentable stable 8-category C P PrLst
is said to be dualisable if it is dualisable with respect to the Lurie tensor product.

Here are useful and equivalent characterisations of dualisable categories found in [Lur18,
Appendix D.7.3.1] :

Theorem 7.1.2.2. [Lur18, Appendix D.7.3.1] Let C P PrLst, The following conditions
are equivalent:

1. C is a dualisable category.

2. The colimit evaluation functor colim : IndpCq Ñ C admits a left adjoint ŷ : C Ñ

IndpCq.

3. There is a localisation sequence such that C Ñ D Ñ E, where D and E are
compactly generated.

4. C is a retract of a compactly generated category, where the retract is taken in PrLst.

To start with, all compactly generated categories are dualisable. There are also more
examples coming from geometry, i.e., for a locally compact Hausdorff space X, we have
the category of sheaves ShpX;Cq, which almost never compactly generated [Nee01].
However, the Verdier duality for the category of sheaves [Lur17; Vol17], along with the
six functors formalism, express this category as a dualisable object in PrLst.

Definition 7.1.2.3. Let Prdualst be the 8-category of presentable stable categories, which
are dualisable and functors between them left adjoints, whose right adjoint preserves
colimits.

Note that the category Prdualst is only a subcategory of PrLst but not a full subcategory.
The category Prdualst admits all limits and colimits. In fact, we learned the following
from Maxime Ramzi:

Theorem 7.1.2.4 (M. Ramzi). The category Prdualst of presentable stable dualisable
8-categories is presentable.

Theorem 7.1.2.5 (A. Efimov). The inclusion Prdualst ãÑ PrLst preserves colimits.

Remark 7.1.2.6. This gives us an idea of how to think of colimits in Prdualst , as they
are the same as colimits in PrLst, but practically speaking, colimits in PrLst are not very
transparent. One can compute colimits in PrLst, as follows: given F : I Ñ PrLst, we use
the fact that

PrLst » pPrRstq
op

where the equivalence is given by passing to the adjoints.

We then get a diagram F op : Iop Ñ PrRst, with colim
I

F identified with the limit

lim
Iop

F op.Since PrRst ãÑ Cat8 preserve limits, we compute the limit in Cat8.

The notion of a dualisable 8-category seemed to have the right "size". For example,
let C be a large category, say ModR, then the K-theory of ModR vanishes because of
the Eilenberg swindle. But due to the recent work of A. Efimov, we can extend the
definition of K-theory to large categories.
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7 Equivariant sheaves and localisation

Theorem 7.1.2.7 (A. Efimov). The localising invariant E on Catperf8 uniquely extend
to a localising invariant Econt on Prdualst and any localising invariant on Prdualst comes
from this extension referred to as the continuous extension.

This leads us to ask what the algebraic K-theory of ShvpX;Cq for X locally compact
Hausdorff. In the classical sense, you get zero as the category is large, but here is an
interesting result of Efimov

Theorem 7.1.2.8 (A. Efimov). Let X be a locally compact Hausdorff space, and let E
be a localising invariant on Catperf8 valued in spectra, and it preserves filtered colimits.
Then EcontpShvpX;Cqq » ΓcpX;EpCqq.

Where the target is compactly supported cohomology with respect to the constant
sheaf on X, valued in Sp. The proof of this above theorem is available in notes by Marc
Hoyois4

Let PrL,ωst be the 8-category of compactly generated stable presentable categories, with
morphisms left adjoint functors that preserve compact objects.

Remark 7.1.2.9. [Mat16, Corollory 2.9] The category PrL,ωst is a presentable 8-cateogry.
We have an equivalence Catperf8 » PrL,ωst . Furthermore there is a fully faithful inclusion

PrL,ωst ãÑ Prdualst .

Proposition 7.1.2.10. The inclusion PrL,ωst ãÑ Prdualst admits a right adjoint Prdualst Ñ

PrL,ωst given by
C ÞÑ IndpCωq

Let M be a compact manifold with an action of a finite group G. This gives a G-CW
complex structure on M . Let MG be the subspace of fixed points, and for the rest of the
section we set U :“ MzMG. We denote the inclusions of MG and U by i : MG ãÑ M
and j : U Ñ M . This gives us a stable recollement of the category of sheaves (refer
[Lur17, Appendix A.8]):

ShpMG;Cq ShpX;Cq ShpU ;Cq
i!“i˚ j!“j˚

i˚

i!

j!

j˚

Where the sheaves are valued in a presentable stable 8-category C.

Construction 7.1.2.11. Let M be a locally compact Hausdorff space with a G-action,
where G is a finite group.

Then ShvpX;Cq is an object of Prdualst , and moreover if we assume M to be compact
then ShvpX;Cq is a G-object in Prdualst . That is a functor

BG Ñ Prdualst ,

4https://hoyois.app.uni-regensburg.de/papers/efimov.pdf
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7.1 Localisation of Equivariant Sheaves

We define the category of equivariant dualisable sheaves ShvhGpX;Cqdual as the limit in
Prdualst over BG.

Remark 7.1.2.12. Note the construction above looks similar to the definition of the
equivariant sheaf category as in definition 6.1.1.1, but since the inclusion Prdualst ãÑ PrLst
does not preserve limits, the two definitions are genuinely different.

Here is an important result of A. Efimov, which is crucial for our construction of Smith
localisation:

Theorem 7.1.2.13 (A. Efimov). Let C,D,E P FunpBG,Prdualst q and C
f
ÝÑ D

g
ÝÑ E be

a localisation sequence such that f, g are morphism in FunpBG,Prdualst q, i.e, they are
equivariant. Then the induced sequence

ChG fhG

ÝÝÑ DhG ghG
ÝÝÑ D

is a localisation sequence in Prdualst .

The above theorem can be applied to the category of equivariant sheaves to obtain a
localisation sequence:

ShvhGpU ;Cqdual Ñ ShvhGpX;Cqdual Ñ ShvhGpXG;Cqdual

Where X is a compact Hausdorff space with an action of a finite group G.

We can identify

ShvhGpXG;Cqdual » ShvpXG;Spq b ChG,dual,

since the action on XG is trivial and ShvpXG;Spq is dualisable hence we have:

lim
BG

pShvpXG;Cqq » lim
BG

pShvpXG;Spq b Cq » ShvpXG;Spq b lim
BG

C

We are particularly concerned about the case of C “ ModR.

Note that any stable symmetric monoidal category Cb and 1 P Cb then Endp1q is an
E8-algebra in spectra. For any objects X,Y , the mapping spectra mapCpX,Y q has a
natural action of Endp1q, informally the action is as follows, given f : X Ñ Y and an
endomorphism η : 1 Ñ 1, we get pη 9fq “ f b η : X Ñ Y .

Construction 7.1.2.14 (Inverting Euler class). The category ShvhGpX;Fpqdual is a
module over the category ModFhG

p
so we can base change it to the category ModFτG

p
,

modules over the proper Tate construction:

ShvhGpX;Fpqdual bModFhGp
ModFτG

p
.

We denote it by ShvhGpX;Fpqdualre´1s.

95



7 Equivariant sheaves and localisation

Now let us work with a compact manifold M with a G-action. Since M is compact, it
admits a finite G-CW complex structure. Recall that we have a localisation sequence

ShvhGpU ;Fpqdual Ñ ShvhGpM ;Fpqdual Ñ ShvhGpMG;Fpqdual

where U is the complement of the fixed points MG. The enodmorphism of the unit,
Endp1q in ShvhGpU ;Fpqdual is an algebra over the equivariant cohomology C˚pUhG;Fpq

and the base changed category is a module over C˚pUhG;Fpqre´1s, where e is an Euler
class described in section 2.1.3.

Since U does not have any fixed point, we have C˚pUhG;Fpqre´1s » 0 by the localisation
theorem 2.1.3.3. Hence ShvhGpU ;Fpqdualre´1s » 0. Combining this with the above, we
have the following proposition:

Proposition 7.1.2.15. Let M be a compact manifold with an action of a group G,
then ShvhGpX;Fpqdualre´1s » ShvhGpXG;Fpqdualre´1s.

Let us investigate the category ShvhGpXG;Fpqdualre´1s » ShvpX; SpqbModhG,dual
Fp

re´1s.

It is enough to analyse what ModhG,dual
Fp

re´1s is. First let us understand compact objects

of ModhG,dual
Fp

, which we can do using the right adjoint:

Prdualst Ñ Catperf8

C ÞÑ Cω

pModhG,dual
Fp

qω » lim
BG

pModFpqω » FunpBG,PerfFpq.

We have the Tate cofiber sequence:

P “ PerftG{H | H proper subgroupu Ñ PerfpFpqhG Ñ PerfpFpqτG

We identify PerfpFpqτG » PerfpFτG
p q due to unipotence of representations, i.e., every

representation of a p-group V in characteristic p can be filtered:

0 Ă V1 Ă V2 Ă V3 Ă ... Ă Vn “ V

such that Vi{Vi´1 » Fp, for a more detailed discussion, we refer the reader to [MNN17,
Section 7].

we can apply ´ bPerfpFhG
p q PerfpFτG

p q to the Tate cofiber sequence above.

On perfect modules, the base change inverts the Euler class on mapping space which
kills all the mapping spaces in P, hence the category P bPerfpFhG

p q PerfpFτG
p q » 0. So we

have:
PerfpFpqhG bPerfpFhG

p q PerfpFτG
p q » PerfpFτG

p q bPerfpFhG
p q PerfpFτG

p q

We have FτG
p is an idempotent algebra over FhG

p because it is given by localisation of
Euler class; hence we have:
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7.1 Localisation of Equivariant Sheaves

PerfpFτG
p q bPerfpFhG

p q PerfpFτG
p q » PerfpFτG

p q

Now we can take G to be an elementary abelian group, so the proper Tate construction
FτG
p is non-zero.

From this we get, the compact objects of ModhG,dual
Fp

re´1s are exactly given by ModFτG
p

,

but we dont know if the category ModhG,dual
Fp

re´1s is compactly generated, since ModhG,dual
Fp

need not be compactly generated.

Remark 7.1.2.16. Note that the limit ModhGR in PrLst is identified with the category
FunpBG,ModRq whose compact objects are PerfpRrGsq. This implies the limits in Prdualst

and PrLst are genuinely different.

Remark 7.1.2.17. Since the compact objects of ModhGFp
are PerfpFprGsq, inverting the

Euler class on ModhGFp
would kill all the compact objects, hence we get ModhGFp

re´1s » 0.
This is the crucial reason to work in the category of presentable dualisable categories.

Finally, we would like to end the section with the following questions.

Question 7.1.2.18. Is the category ModhG,dual
Fp

re´1s, compactly generated?

We have established in Proposition 7.1.2.15 for M be a compact manifold with an
action of a group G, then ShvhGpX;Fpqdualre´1s » ShvhGpXG;Fpqdualre´1s.

The localised categories are still in Prdualst . Hence can we compute some localising
invariant on both sides?

Question 7.1.2.19. What is the topological Hochschild homology applied to the ex-
pression ShvhGpX;Fpqdualre´1s » ShvhGpXG;Fpqdualre´1s give us?
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