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Abstract

This thesis covers work in mathematical and statistical aspects of population genetics.

In the first part of the thesis, we present the behaviour of two F -statistics, which are defined as

the difference in the allele frequency at a given time point in one population and the difference in

allele frequency between two populations, respectively. In order to calculate the first twomoments

of the allele frequency present in the mathematical expression of the F -statistics, mutation and

migration as linear evolutionary forces are incorporated into Wright-Fisher model. We give some

parameter conditions that cause the behaviour of the F -statistics to be non-monotonic over time,

that is, to increase and then decrease over time.

In the second part of the thesis, we propose a new method to evaluate the statistical fit of

principal component analysis (PCA) in admixture models and population structure inference.

Statistical tools such as residual and correlation coefficients are utilized to detect violations

of model assumptions. We give the mathematical expressions of two correlation coefficient

matrices of the residuals and some theorems about their properties. The method is demonstrated

in both simulated and real data through matrix visualization.

Finally, I introduce a mathematical definition and estimate of kinship coefficient based on

pedigree and genotype data. I propose a procedure for dividing the sample containing related

individuals who have alleles copied from a common ancestor into some data sets. Each data

set corresponds to the individual under study and is used in PCA method to estimate the allele

frequency of the studied individual present in the kinship coefficient. In the presence of population

structure, the proposed estimate performs well for the case of full-siblings.
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Resumé

Denne afhandling dækker arbejde i matematiske og statistiske aspekter af populationsgenetik.

I specialets første del præsenterer vi adfærden for to F -statistikker, der er defineret som

forskellen i allelfrekvensen på et givet tidspunkt i henholdsvis én population og forskellen i

allelfrekvensen mellem to populationer. For at beregne de første to momenter af allelfrekvensen,

der er til stede i det matematiske udtryk for F -statistikken, er mutation og migration som lineære

evolutionære kræfter inkorporeret i Wright-Fisher-modellen. Vi giver nogle parameterbetingelser,

der får F -statistikkens opførsel til at være ikke-monotonisk over tid, det vil sige, at den øges og

derefter falder over tid.

I anden del af afhandlingen foreslår vi en ny metode til at evaluere den statistiske tilpas-

ning af principal komponentanalyse (PCA) i blandingsmodeller og befolkningsstrukturinferens.

Statistiske værktøjer såsom residualer og korrelationskoefficienter bruges til at opdage brud på

modelantagelser. Vi giver de matematiske udtryk for to korrelationskoefficientmatricer af resid-

ualerne og nogle sætninger om deres egenskaber. Metoden demonstreres i både simulerede

og reelle data gennem matrixvisualisering.

Til sidst introducerer jeg en matematisk definition og estimat af slægtskabskoefficient baseret

på stamtavle og genotypedata. Jeg foreslår en procedure til at opdele prøven, der indeholder

relaterede individer, som har alleler kopieret fra en fælles forfader i nogle datasæt. Hvert

datasæt svarer til individet under undersøgelse og bruges i PCA-metoden til at estimere allel-

frekvensen for det undersøgte individ, der er til stede i slægtskabskoefficienten. I nærværelse af

befolkningsstruktur fungerer det foreslåede skøn godt for helsøskende.
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Chapter 1

Introduction

The main content of this thesis covers the three manuscripts. The first manuscript that makes up
chapter 2 is available on bioRxiv, while the second and third manuscripts are not public yet.

The first manuscript focuses on the application of F -statistics to population-specific allele
frequencies over time within and between populations. The Wright-Fisher model with mutation
and migration provides the first two moments expressions of allele frequency, allowing F -statistics
to be analyzed for the behaviour.

The second manuscript develops a method for evaluating inferred population structure using
the properties of the residuals, that is, the difference between the predicted and the observed
genotypes under the admixture model. We consider principal component analysis or clustering
algorithm to obtain the residuals. The visualization of residual correlation matrix based on simu-
lated and real data can be utilized to investigate cases that violate the assumptions of the model.

In the preliminary work of the third manuscript, the kinship coefficient is introduced to address
the issue of related individuals in structured populations and a formula of estimating kinship
coefficient based on genotype data is proposed. I consider the method of principal component
analysis to estimate individual-specific allele frequency parameters contained in the formula. Using
simulated scenarios with some population structure contexts, the implementation of the estimation
method in full-siblings case performs better than some existing methods, which can be motivated
to expand to other cases in the future.

The introduction is meant to provide the necessary background of the topics covered, thereby
deepening the familiarity with concepts and terms that appear in manuscripts. In section 1.2
of this chapter, I present the main contributions of the work done in my manuscripts, as well as
perspectives for the future research directions noted. The bibliography part is the list of references
cited in the introduction, and the references of each manuscript are in their own chapters.
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10 CHAPTER 1. INTRODUCTION

1.1 Background

When it comes to tracing the ancestral history of a specific allele, one can consider the relationship
between individuals and populations. Set some assumptions on the relationship, follow some laws
of heredity, simulate the evolution process and extract some information we are interested in, so
as to explore the genetic variation. As depicted in Figure 1.1, the source is defined as a population

Distant Ancestors

Pop1
Pop2

PopK

t0

t

Figure 1.1: Illustration of individuals in generation t tracing their ancestry to generation t0. The K
populations share the common distant ancestors and give rise to many current individuals. A particular

allele in an individual can be traced back to a population and further down to a distant ancestor. Green

circles represent populations, red circles represent individuals and rectangles represent alleles.

of distant ancestors. As a result of evolutionary forces and mating modes, the descendants of
ancestors continue to diverge into some distinct populations. Mating within and between popu-
lations leads to different individuals. This process is accompanied by the transmission of genetic
information. Extract such genetic information as data, which is used for analyzing many subjects
including population structure and individual genetic differences. Defining variables according to
different research priorities is the first step in using data efficiently, followed by the establishment
of theoretical models to describe these variables based on appropriate assumptions. The specific
statistics selected under the model can be used as indicators to explore the predicted trend of
changes in the corresponding variables. The issue of estimating the parameters involved in the
model and evaluating model fit leaves a lot of room for methodology. Meanwhile, the correlation
reflected in the data reveals the understanding of the relationship between individuals to which
data belongs. For the above mentioned I expand in the following sections.
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1.1.1 Variation and data

A DNA or RNA molecule is made of deoxynucleotides. Deoxynucleotides carry the important
functional group called the base and there are four kinds of bases in DNA: Adenine (A), Cytosine
(C), Guamine (G) and Thymine (T). A series of polynucleotides are joined together according
to the rules of base pairing and are arranged in sequence to form the helical structure of DNA.
Proteins are added as protective shells for DNA sequences, giving rise to the chromosomes of
eukaryotes, such as mammals. So cells appear, and then algae, multicellularity, plants, humans.
Humans are diploid creatures, carrying two copies of 22 autosomes and a pair of sex chromosomes.
The fact that individuals have such a set of chromosomes means that they share the genetic
information contained in the majority of DNA sequence. But the process by which chromosomes
divide to make copies is full of randomness. The variation that follows randomness is the evidence
that a population of individuals has evolved over time. The most common type of human genetic
variation, single nucleotide polymorphism (SNP), represents a difference at a single nucleotide,
such as base A being replaced by base G.

On average, SNPs occur once per 1,000 nucleotides. For example, a comparison of two parts
of the genome at the same location reveals a nucleotide substitution, then a SNP and two alleles
are said to be present. The two alleles are named the major and the minor allele based on the
frequency of occurrence in a population at that locus. In population genetics, the frequency of
an allele occurring at a locus in a population is a fraction or percentage to describe the amount
of variation, defined as allele frequency (Gillespie, 2004). If the major allele is marked “B” and
the minor allele is marked “b” at a locus, the term genotype is used to describe three different
combinations: Bb, BB and bb. An individual is homozygous at a locus if the genotype is BB or
bb, while is heterozygous at a locus if the genotype is Bb. The strand of DNA responsible for
carrying translatable information along the 5′-to-3′ direction is called the coding strand, where 5′

and 3′ are positions defined by chemical concepts. A pair of homologous chromosomes has two
coding strands, each of which is a sequence of different bases. At a given locus, the combination of
bases taken from the two coding strands also represents the genotype. For example, in Figure 1.2,
a diploid individual has two copies of each chromosome consists of DNA, which is composed of
the four bases A, T, C and G, then the genotype of SNP 1 is AT. Homozygotes and heterozygotes
are distinguished by genotype, for example, TT, CC and GG indicate that the individual is
homozygous for SNP 4,6,7,9 and 10, while AT, TG, GC and TC indicate that the individual is
heterozygous for SNP 1,2,3,5 and 8. For a population of individuals, most sites have only two
types of bases, but some sites could have three or all four. The pair could be any of six possible
AG, AC, AT, GC, TC and TG. Millions of SNPs have been reported in humans. By setting one of
the two simplest alleles at a locus as the reference allele and the other as the alternate allele, the
number of the reference allele is encoded as the genotype value (see Table 1.1). If the genotype
value is 0 or 2 then the individual is said to be homozygous at that locus, otherwise the individual
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SNP 1 2 3 4 5 6 7 8 9 10 · · ·

5′ · · · A T G T A T C T T G · · · 3′

5′ · · · T G C T T T C C T G · · · 3′

Figure 1.2: Two coding strands of the homologous chromosomes.

is heterozygous. The genotype value is an important entry point for linking data from variables.
In Table 1.1, the reference and alternate allele are randomly assigned. Note that the reference
allele is in practice determined by the reference genome, which is not the same as the major allele
depending on the frequency of occurrence in a particular population.

Table 1.1: The genotype value of two alleles combined in Figure 1.2

SNP ref alt value

1 A T 1

2 T G 1

3 G C 1

4 T C 2

5 T A 1

6 T C 2

7 A C 0

8 T C 1

9 T G 2

10 C G 0

In addition to single base substitutions, alleles arise from insertions and deletions of multiple
base pairs, which are classified as DNA mutations. Mutations, which occur during replication
or recombination or both, change the sequence of bases that represent a segment of DNA. The
base sequence shown in Figure 1.3 represents an allele that is altered by each of the three possible
mutations: substitution is replacing base C with base A, insertion is adding bases G and A to the
sequence, and deletion is removing bases G, C, T from the sequence.

Allele: A C T A G C T A G C T

Substitution: A C T A G A T A G C T

Insertion: A C T A G G C A T A G C T

Deletion: A C T A A G C T

Figure 1.3: Three types of DNA mutations.
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1.1.2 Model and theory

The Wright Fisher model

The simplest tool to describe the variation in the number of individuals carrying a reference allele
in a population of discrete, nonoverlapping generations and random mating is the Wright–Fisher
model (Fisher, 1930; Wright, 1931). Let Zt represent the number of haploid individuals with a
reference allele “A” in a population of constant size N at generation t and denote allele frequency
Xt = Zt/N . The Wright–Fisher model can be defined as follows in the form of a binomial
distribution

Zt+1|Xt = xt ∼ Bin(N, xt). (1.1)

The Wright-Fisher model focuses on the effects of genetic drift, assuming that other evolutionary
forces such as selection, mutation, and migration are not taken into account. Natural selection
plays an important role in population genetics, but the null model ignores the existence of natural
selection in the first place. The null model is based on the neutral theory proposed by Motoo
Kimura in 1968. The Wright-Fisher model can be considered neutral in the sense that each
offspring individual randomly selects a parent from the previous generation. Under the framework
of the Wright-Fisher model, the first two moments that are computed using the fact that the
expectation and variance of a binomial distribution are

E [Xt+1 | Xt = xt] = xt,

V [Xt+1 | Xt = xt] =
xt(1− xt)

N
,

(1.2)

where E and V are the expectation and variance operators, respectively. By the law of iterated
expectation, it can be seen that the expected frequency of each generation is the same and equal
to the given allele frequency of the first generation. Zt and Zt+1 are rewritten as i and j to denote
the number of individuals carrying the allele in generation t and t+1, respectively. The probability
of the allele being transferred from i to j is given

P (Zt+1 = j | Zt = i) := Pij =

(
N

j

)(
i

N

)j (
1− i

N

)N−j

, 0 ≤ i, j ≤ N. (1.3)

From the above definition, the Wright–Fisher model is a discrete time Markov process in which
the state space of allele frequency is xt = i/N . The absorbing states of this Markov chain are the
state 0 and N , which allows one to observe whether the final population loses or fixes an allele (see
Figure 1.4). Let ai be the probability that the final population contains only one allele type, and
the number of individuals carrying this allele at the starting is i. The calculation of ai is divided
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Figure 1.4: Shown is the probability transition matrix assuming N = 15.

into two parts, one is the probability of the transition from the initial state Z0 = i to the state
Z1 = j at the next time, and the other is the probability of reaching the absorbing state N from
the state j. The combination of the two probabilities is the following

ai =
N∑
j=0

Pijaj, i ∈ {1, 2, · · · , N}. (1.4)

With the transition probability (1.3), E [Z1 | Z0 = i] = i, i.e.
∑N

j=0 Pijj = i. Then ai = i/N ,
that means the probability that the allele will eventually be fixed is just its initial frequency
(Tavaré, 2004). Figure 1.5(a) shows an example of individuals carrying only one allele in a final
population using the Wright–Fisher model and Figure 1.5(b) illustrates the claim about ai. As can
be observed from Figure 1.5(b), the allele frequency trend of large population is often accompanied
by the lengthening of corresponding time scale. When the population size N is set large enough,
the allele frequency Xt converges to a specific constant, but with increasing time. Such limit
processes depend on population size and time. Unifying measures of time and population size on
a scale is a common way to obtain limits in population genetics. Note that time as a discrete
variable is the number of generations. Scale generations in units of N , i.e. t = bNuc and the allele
frequency becomes

YN(u) = N−1ZbNuc, u ≥ 0, (1.5)

where b·c is the rounding operation. As N → ∞, YN(u)
d−→ Yu, where Yu is a diffusion process

in [0, 1]. Diffusion theory (Crow and Kimura, 1970; Karlin and Taylor, 1980; Neuhauser, 2001)
provides some settings for Yu, including the definition of the first two moments. Based on the mo-
ments, further explorations of Yu are in the first manuscript. Under random mating, all alleles are
inherited independently, then a population consisting of N diploid individuals can be represented
by a haploid model of size 2N when applying the Wright-Fisher model. The Wright-Fisher model
can be extended to non-constant population sizes. In math, one can denote that the population
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Figure 1.5: (a) Shown is the allele frequency in the Wright-Fisher model varies with generation under

N = 100 and x1 = 0.5. (b) The initial allele frequencies are 0.2, 0.5 and 0.8, and population sizes are 10,
100 and 1000. The number of replicates and generations per simulation is 30 and 100, respectively. As

the population size increases, the noise decreases. Furthermore, when the initial frequency is smaller, it

corresponds to loss, and when the initial frequency is large, fixation is more likely.

sizes from generation 0 to t are N0, . . . , Nt, respectively. Compared with the constant population
size in the ideal model, the population size in the non-ideal model that fluctuates by generations is
close to the reality but difficult to use for some calculations. However, if the similarities between
the two models are captured, and the latter can be described by the former through transformation.
In this way, the non-ideal model (non-constant population sizes) can be converted into a new ideal
model (constant population size) for analysis. For example, in the Wright-Fisher model, the final
state of one allele is the absorbing state 0 or N , mean that the heterozygosity in the population is
lost. The loss rate of heterozygosity, if it is the same in both models, then the constant population
size defined in the ideal Wright-Fisher model is called the effective population size and denoted
as Ne (Wright, 1931). Let b0 be the probability that any two alleles in generation 0 are different,
similarly b1, . . . , bt. The probability that two alleles in generation 1 come from different parents
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in generation 0 is 1− 1/N0, similarly 1− 1/N1, . . . , 1− 1/Nt−1. Thus,

bt = (1− 1

N0

) · · · (1− 1

Nt−1

)b0.

From the above equation, it can be seen that heterozygosity decreases gradually. For the constant
population size N ,

bt = (1− 1

N
)tb0.

By the definition, the effective size for loss of heterozygosity is

Ne =
t

1
N0

+ . . .+ 1
Nt−1

.

The harmonic average of a set of numbers is often closer to the smallest of the numbers. This
makes the above effective population size value closer to the smallest size of the population, such
as a bottleneck. A population bottleneck is a drastic reduction in population size. Effective
population size is a widely used concept and can be similarly defined for variance, inbreeding and
coalescence versions.

Binomial distribution and Markov chain mathematize the effect of genetic drift on allele fre-
quencies to form the simplest Wright-Fisher model. Mutation, migration, and natural selection
are also expected to cause changes in allele frequency, depending on the form of mathematical
expression. Mutation and migration, as linear evolutionary forces like genetic drift, can be consid-
ered in a general and unified manner, while selection can be considered as nonlinear forms (Crow
and Kimura, 1970). Different forms need multiple versions of the Wright-Fisher model, which is
discussed in the first manuscript.

F -statistics

The level of heterozygosity in a population is reflected by the change of allele frequency. When the
frequency value of a specific allele at a certain locus in a population rises or falls significantly, it
means that the heterozygosity decreases sharply. A useful mathematical tool used to describe the
expected value of the difference in frequency between a population at different times, or between
different populations at any times, is the F -statistics. The term F -statistics, proposed by Reich
et al. (2009), are considered to measure the genetic difference between sets of populations when
only genetic drift occurs. In the F -statistics theory, there are three statistics labeled F2, F3 and
F4. Since the latter two can be represented by the F2, it is fundamental to consider the definition
of the F2. For two different populations P1 and P2, assume that the reference allele has frequency
Xt1,1 in P1 with population size Nt1,1 at time t1, and Xt2,2 in P2 with population size Nt2,2 at time
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t2, respectively. For P1 at time t1 and t′1, F2 is defined as

F2

(
Pt1,1, Pt′1,1

)
= E

[(
Xt1,1 −Xt′1,1

)2]
. (1.6)

For P1 and P2 at any given times, F2 is defined as

F2 (Pt1,1, Pt2,2) = E
[
(Xt1,1 −Xt2,2)

2] . (1.7)

The above F2 directly shows the variation of allele frequency influenced by genetic drift. Applica-
tions based on F2 are rapidly and widely used in population genetic studies, e.g., the testing for
tree-like structure and admixture history of related populations (Reich et al., 2009), the number of
founding populations for the European region (Lazaridis et al., 2014) and estimates of admixture
proportions (Patterson et al., 2012).

Equation (1.7) quantifies the genetic differences between two populations, and if such differ-
ences are affected by genetic structure, the Wright’s version of the F -statistics is another commonly
used mathematical tool called Fst or fixation index (Wright, 1951). Unfortunately, there is no fixed
definition of Fst. Wright originally defined Fst as a ratio of variances, while a more common defi-
nition is based on probabilities (Durrett, 2008). For example, the Fst of P1 and P2 can be defined
as

Fst (P1, P2) =
p− q

1− q
, (1.8)

where p represents the probability that two alleles in a population are the same and q represents
the probability that two alleles from different populations are the same. The interpretation of Fst

is that a higher value implies greater divergence between populations, while Fst = 0 indicates that
populations are randomly mating. It is worth noting that the statistics here are parameters which
are part of the model.

1.1.3 Two methods for inferring population structure

Population structure

The variation in population-specific allele frequencies focuses on quantifying the effects of evolu-
tionary forces on populations, namely splitting into some populations from distant ancestors (see
Figure 1.1). In population and individual parts, each individual can trace the line of descent from
the corresponding population. Specifically, alleles in the gene pool of the ancestral population
have a probability of being passed on to the offspring individuals. The nonrandom mating of
individuals divided into different populations causes differences in allele frequencies between pop-
ulations. Population structure is the concept proposed to describe such differences. Geographic
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reproductive isolation is a common factor in shaping population structure, such as the different
ethnic groups produced by the five continents of the Earth, which often become a known set of
ancestral populations. Other factors, such as migration and interpopulation mixing, contribute to
the proportion of individuals that have inherited alleles from each ancestral population, which is
the evidence of population structure. An example of SNPs on the homologous chromosomes of an
individual are shown in Figure 1.6, and the proportion of the corresponding ancestral population
occupying this segment is defined the admixture proportion of the individual.

A T G T A T C T T G

T G C T T T C C T G

14/20 6/20

Figure 1.6: The SNPs array on some segments of the homologous chromosomes of an individual

produced by two ancestral populations with admixture proportions 14/20 and 6/20. The pink and blue
segments are inherited from population 1 and 2, respectively.

Clustering

Clustering and principal component analysis (PCA) are methods widely used in the inference of
population structure, which focus on admixed individuals with different ancestry backgrounds. In
terms of genetic clustering algorithms, for example, Pritchard et al. (2000) developed the software
STRUCTURE based on Markov chain Monte Carlo theory, and Alexander et al. (2009) created
the software ADMIXTURE based on maximum likelihood. Compared with the former, the latter
improves the computing speed. The mathematical definition of the likelihood is as follows. Given
K ancestral populations, M biallelic SNPs and N individuals, then gsi is denoted as the genotype
value of individual i at SNP s. The individual-specific allele frequency πs

i is defined as follows
(Thornton et al., 2012),

πs
i =

K∑
k=1

f s
kqki, (1.9)

where qki, f
s
k ∈ [0, 1] are the admixture proportion of individual i and the the reference allele

frequency of the ancestral population k at SNP s, respectively, and
∑K

k=1 qki = 1. In admixture
models, (1.9) is written as matrix notation Π = FQ, where Π = (πs

i )M×N ,F = (f s
k)M×K ,Q =

(qki)K×N . In ADMIXTURE, the probabilities are proportional to a specific form, i.e.,

P (gsi | πs
i ) ∝ (πs

i )
gsi (1− πs

i )
2−gsi , gsi = 0, 1, 2.
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Figure 1.7: Shown is an example of admixture proportions obtained by applying real human data from the

1000 Genomes project to the software ADMIXTURE and setting K = 4 (Auton et al., 2015; Garcia-Erill
and Albrechtsen, 2020). The data includes 434 samples of five groups, which are 108 samples of the

Yoruba group from Nigeria (YRI), 61 samples of the group from Southwest US with African ancestry

(ASW), 99 samples of the Utah group with Northern and Western European ancestry (CEU), 63 samples

of the group from Los Angeles, California with Mexican ancestry (MXL) and 103 samples of the Han

Chinese group from Beijing, China (CHB).

That produces the logarithmic likelihood

L =
N∑
i=1

M∑
s=1

{
gsi ln

[
K∑
k=1

f s
kqki

]
+ (2− gsi ) ln

[
K∑
k=1

(1− f s
k) qki

]}
.

The above likelihood holds under the condition that individuals are independent of each other and
linkage disequilibrium is ignored. Linkage disequilibrium (LD) is the nonrandom association of
alleles of different locus. Recombination interacts in a complex way with selection, mutation and
genetic drift to determine levels of LD (Slatkin, 2008). Ignoring LD means that any two alleles are
said to be statistically independent. Some iterative optimization algorithms are used to estimate
the parameter matrices Q and F in the process of likelihood L maximization. The admixture
proportions estimated can be shown as a bar chart (see Figure 1.7).
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PCA

PCA is introduced by Menozzi et al. (1978) into population genetics to condense allelic information
in Europeans. Then PCA is applied to genetic data to study population structure on a solid
statistical basis (Patterson et al., 2006). PCA is an optimization method that projects the high-
dimensional data matrix to the first few uncorrelated principal components formed by the linear
combination of the considered variables, so as to capture the variance in the data as much as
possible, and discards the components corresponding to the smallest eigenvalues in the original
data matrix to reduce the dimension and at the same time minimize the loss of information. In
PCA method, the genotype data matrix G = (gsi )M×N is usually standardized first. Patterson
et al. (2006) set each entry in the standardized matrix G̃ is

g̃si =
gsi − 2ps√
ps(1− ps)

, (1.10)

where ps =
∑N

i=1 g
s
i /(2N). ps(1− ps) is the variance form often used in genetic drift and can also

be replaced by empirical variance of the data,

g̃si =
gsi − 2ps√

1
N−1

∑N
i=1 (g

s
i − 2ps)2

. (1.11)

And the more straightforward way is
g̃si = gsi − 2ps. (1.12)

(1.10), (1.11) and (1.12) can be used to deal with mean centering. However, when gsi is some
constant value at SNP s in the selected N individuals, the data of SNP s should be removed before
proceeding with (1.10) or (1.11). Denote the matrix T = G̃V as the new matrix obtained by
the transformation, where V = (vij)N×N and

∑N
i=1 v

2
ij = 1 such that the transformation does not

change the scale of the data. Take the first column vector t1 of T , then

tT1 t1 = v1G̃
T G̃v1,

where v1 = (v11, . . . , vN1)
T . When v1 is the eigenvector corresponding to the largest eigenvalue of

G̃T G̃, tT1 t1 takes the maximum value, which means that the first principal component captures the
maximum possible variance of the variable in the original data. Following this principle, the other
principal components capture the rest. Therefore, the resulting V is a matrix consisting of the
eigenvectors corresponding to the eigenvalues arranged from largest to smallest. Then TV T = G̃,
it can be seen that, in the coordinate system with each principal component as the new coordinate
axis, the elements in each row vector of V define the position of variables of the original data.

In PCA method, V is the matrix of the right singular vectors obtained by directly performing
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singular value decomposition (SVD) of G̃ or the matrix of the eigenvectors of G̃T G̃, i.e.

G̃ = UΣV T

or
G̃T G̃ = V Σ∗V T ,

where U is an M ×M matrix, Σ is an M × N rectangular diagonal matrix and Σ∗ = ΣTΣ is
an N × N square diagonal matrix. In order to reduce the dimension of the new data matrix T ,
only the first few principal components (PCs) are selected, which means that the eigenvectors
corresponding to smaller eigenvalues are discarded. The top ranked PCs reflect the largest sample
variation through the corresponding eigenvectors. The software EIGENSOFT (Price et al., 2006)
is developed to explicitly model ancestry differences between cases and controls. The eigenvectors
provide insights into variability among individuals and the axes of the eigenvectors with the
largest eigenvalues are usually important in describing genetic variations (Byun et al., 2017). In
practice, the first and second principal components are often selected to establish a two-dimensional
coordinate system to display the sample and the inferred population structure. Taking the example
from Figure 1.7, Figure 1.8 is the visualization of real human data using PCA method, which
distinguishes various sample populations by PC1 and PC2. The comparison of between Figure
1.8(a) and Figure 1.8(b) shows the influence of mean centering on the PCA, including the change
of the value range of two PC axes. In admixture models, estimating allele frequencies is often

−0.04 −0.02 0.00 0.02 0.04 0.06

−0
.0

6
−0

.0
2

0.
02

0.
04

0.
06

PC1

P
C

2

YRI: 108
ASW: 61
CEU: 99
MXL: 63
CHB: 103

(a) PCA on G̃

−0.0484 −0.0482 −0.0480 −0.0478 −0.0476 −0.0474

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

0.
06

PC1

P
C

2

(b) PCA on G

Figure 1.8: An example for PCA plotting the inferred population structure of real human data from the

1000 Genomes project (Auton et al., 2015; Garcia-Erill and Albrechtsen, 2020). (a) The PC plotting

obtained after mean centralized data processing. (b) The PC plotting obtained without mean centralized

data processing.
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achieved using PCA. Assume that two alleles at the same locus of individual i are treated as
identically distributed, and different locus are treated as independent of each other (Balding and
Nichols, 1995), the genotypes follow a binomial distribution, i.e.

gsi | πs
i ∼ Bin (2, πs

i ) .

Hao et al. (2016) propose that Π is estimated by forming the projection of G/2 onto the top PCs of
G with an explicit intercept. Set K < N < M , then the rank of Π is K−1 mean that the top K−1

PCs are selected by running SVD. The ALStructure algorithm (Cabreros and Storey, 2019) further
proposes the estimation of F and Q by considering the boundary conditions, which is a unification
of PCA-based and likelihood-based approaches. PCA can also be extended to infer population
structure in the presence of related individuals who have alleles originate from a common ancestor.
Conomos et al. (2015) perform PCA on those unrelated individuals separated from the sample as
a subset of identified ancestral representatives, and then predicts the component of variation for
all remaining related individuals based on genetic similarity.

1.1.4 Correlation of individuals

Related individuals issue

As described in the previous section, some parameters of unrelated individuals in the presence of
population structure can be estimated using the clustering and PCA method. In term of the clus-
tering methods, the admixture proportion estimated by running software such as ADMIXTURE
can be inaccurate in the presence of related individuals, even if the number of clusters is given
correctly in the population structure setting. Some close relatives may be considered clusters in
these methods, mistaken for ancestral populations. In PCA methods, the top PCs fail to reflect
the inferred population structure when related individuals are present in the data, but succeed
when these individuals are removed (Price et al., 2010). Genetic studies often involve related
individuals, which motivates the consideration of the parameters used to distinguish individual
relationships.

Pedigree-based kinship

The relationships between individuals are established between the red circles in Figure 1.1. Two
individuals are related if they have a recent common ancestor. Kinship or relatedness is a fun-
damental concept to describe the relationships between individuals, but it is difficult to define in
one way (Speed and Balding, 2015). The common definition is based on a pedigree, in which the
most recent common ancestor can also be defined. Non-random mating not only shapes popula-
tion structure at the ancestral level, but also establishes relationships among individuals in the
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pedigree. The pedigree is used to describe different members of a family and their relationships,
such as parents and siblings (see Figure 1.9). In a pedigree, it is customary to mark individuals
lacking parental lines as founders and others as non-founders.

1 2 3 4

5 6 7

8

Figure 1.9: A pedigree map of 8 members marked with numbers. In this pedigree, the sexes are

distinguished by squares and circles. Peers are connected by a horizontal line, parents and children are

connected by vertical or diagonal lines. Individuals 1,2,3 and 4 are founders, while individuals 5,6,7 and 8

are non-founders.

i

j

i

j

i

j

Figure 1.10: The blue square is the allele and line segment indicate that the connected pair of alleles are

IBD. The three IBD states in the last row all exclude inbreeding: the number of alleles with IBD status

from left to right is 2,1 and 0, respectively.

Two alleles that have originated from the replication of one single allele in a previous gener-
ation individual are said to be identical by descent (IBD) from that individual (Falconer, 1996;
Thompson, 2013). IBD provides a basis for measuring inter- and intra-individual correlations.
Figure 1.10 shows 9 IBD states of 4 alleles at a locus in two individuals. For a diploid individual i,
the probability that a pair of alleles from i are IBD is defined as ψi, also known as the inbreeding
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coefficient; and for two individuals i and j, the probability that a randomly selected allele from i

and a randomly selected allele from j are IBD is defined as ϕij, also known as the coancestry or
the kinship coefficient of two individuals . In addition, the coefficient of self-kinship is defined as
ϕii := (1 + ψi)/2. Two individuals are said to be outbred if the four alleles only have the three
possible cases in the last row of Figure 1.10, then ϕij,2, ϕij,1 and ϕij,0 are defined as the probability
that i and j share 2, 1 or 0 alleles of IBD at a locus, respectively, corresponding to three cases
from left to right. When ψi = ψj = 0, the kinship coefficient can be expressed as follows

ϕij =
1

2
ϕij,2 +

1

4
ϕij,1.

With the above concepts, take Figure 1.9 as an pedigree example and consider the kinship for
some pairs of individuals. Individual 8 has founders 1,2,3 and 4 as ancestors, individual 5 has
founders 1 and 2 as ancestors, so the most recent common ancestors of both are founders 1 and 2.
In the calculation of pedigree-based kinship, it is usually assumed that the founders are unrelated
to each other, then ψ5 = ψ6 = ψ7 = ψ8 = 0 and

ϕ58 =
1

2

2

4× 2
=

1

8
.

In Figure 1.9, it is observed that individuals 5 and 7 had no recent common ancestor in the
pedigree even though both have ancestors, implying that ϕ57 = 0. Such calculation of the kinship
coefficient depends on the structure of the pedigree and there is no complete pedigree in nature. As
more ancestors are added to the pedigree, previously unrelated individuals may share a common
ancestor and thus become related. In addition, the kinship coefficients may be the same for
different relationships, for example,

ϕ56 =
1

2

2

2× 2
=

1

4

and
ϕ68 =

1

2

1

1× 2
=

1

4

define siblings and parent-offspring, respectively. Further considering the index (ϕij,0, ϕij,1, ϕij,2)

above to define the relation, then

siblings: (ϕ56,0, ϕ56,1, ϕ56,2) = (
1

4
,
1

2
,
1

4
)

and
parent-offspring: (ϕ68,0, ϕ68,1, ϕ68,2) = (0, 1, 0).
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Genotype-based correlation

If the structure of pedigree is not observed, correlation coefficients based on genotype data can be
used to define the inbreeding and kinship coefficient in mathematical expression. Let gsi = gsi,1+g

s
i,2,

where gsi,1, gsi,2 ∈ {0, 1} indicate whether the first or second allele at SNP s in individual i is A.
Assume that at a locus s in a homogenous population of size N the frequency of allele A is ps
and P (gsi,1 = 1) = P (gsi,2 = 1) = ps. Using pedigree-based inbreeding coefficient, the following
expression

P (gsi = 2) = ψips + (1− ψi)p
2
s (1.13)

can be interpreted that if two alleles from individual i at SNP s are IBD with probability ψi, then
only one allele is considered; otherwise, the two alleles are independent. In addition, ψi = 0 means
that the individual is outbred. The estimated genotype frequencies for homozygotes at SNP s in
the population can be defined as follows,

f̂(AA) =

∑N
i=1 I{gsi=2}

N

and

f̂(aa) =

∑N
i=1 I{gsi=0}

N
.

where the function I{X=x} means if X = x then I = 1, otherwise I = 0. Then using (1.13) the
expected genotype frequencies in the presence of the inbreeding influence are

E[f̂(AA)] = p2s + ps(1− ps)ψ̄

and
E[f̂(aa)] = (1− ps)

2 + ps(1− ps)ψ̄,

where ψ̄ =
∑N

i=1 ψi/N . Compared the relationship between genotype and allele frequency de-
scribed by the Hardy-Weinberg equilibrium (Hardy, 1908), it can be seen that the expected geno-
type frequencies for homozygotes increase by ps(1 − ps)ψ̄ because of the inbreeding influence.
Clearly,

E(gsi,1) = E(gsi,2) = ps

V(gsi,1) = V(gsi,2) = ps(1− ps)

E(gsi,1gsi,2) = P (gsi = 2) = ψips + (1− ψi)p
2
s.

The inbreeding coefficient is then mathematically expressed as the following correlation coefficient

ψi =
E{[gsi,1 − E(gsi,1)][gsi,2 − E(gsi,2)]}√

V(gsi,1)V(gsi,2)
= ρ(gsi,1, g

s
i,2),
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where ρ is the correlation coefficient operator. Since ψi is constant across M SNPs, if ps is known
and gsi,1, g

s
i,2 are observed for all SNP s, an estimate of ψi can be presented as follows,

ψ̂i =
1

M

M∑
s=1

(gsi,1 − ps)(g
s
i,2 − ps)

ps(1− ps)
.

And inspired by that, similarly,

E(gsi ) = 2ps

V(gsi ) = 2ps(1− ps)(1 + ψi).

Using pedigree-based kinship coefficient, the following expression

P (gsi,a = 1, gsj,b = 1) = ϕijps + (1− ϕij)p
2
s (a = 1, 2; b = 1, 2) (1.14)

can be interpreted that if any two alleles from individual i and j at SNP s are IBD with probability
ϕij, then only one allele is considered; otherwise, the two alleles are independent. In addition,
ϕij = 0 means that individual i and j are unrelated. Clearly,

E(gsi gsj ) = E[(gsi,1 + gsi,2)(g
s
j,1 + gsj,2)].

The correlation between gsi and gsj is then mathematically expressed as follows,

ρ
(
gsi , g

s
j

)
=

E{[gsi − E(gsi )][gsj − E(gsj )]}√
V(gsi )V(gsj )

=
2ϕij√

(1 + ψi)(1 + ψj)
.

For two individuals that are not inbred, i.e. ψi = ψj = 0, the above expression can be simplified
to ρ

(
gsi , g

s
j

)
= 2ϕij, where 0 ≤ ϕij ≤ 0.5. Let ρij =

∑M
s=1 ρ

(
gsi , g

s
j

)
/M denote the correlation

between individual i and j, combined with the fact that ϕij is constant over M SNPs, then
ϕij = ρij/2 indicates that the kinship coefficient measures the degree of genetic similarity between
individuals. When ps is known and gsi , g

s
j are observed for all SNP s, an estimate of ϕij can be

presented as follows,

ϕ̂ij =
1

4M

M∑
s=1

(gsi − 2ps)(g
s
j − 2ps)

ps(1− ps)
. (1.15)

The above genotype-based correlation calculations require the assumption that alleles originate
from a homogeneous population, where ps is an known parameter. However, in practice, it makes
more sense to have the presence of population structure, where ps is replaced with the individual-
specific allele frequency and unknown. Then a new estimate ϕ̂′

ij is converted from (1.15) into the
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following form

ϕ̂′
ij =

1

4M

M∑
s=1

(gsi − 2π̂s
i )(g

s
j − 2π̂s

j )√
π̂s
i (1− π̂s

i )π̂
s
j (1− π̂s

j )
, (1.16)

where π̂s
i and π̂s

j are estimates of the individual-specific allele frequencies πs
i and πs

j , respectively.
Conomos et al. (2016) propose a complex approach called PC-Relate. This approach first uses PCs
combined with linear regression to estimate allele frequencies for all individuals including related
individuals, and then considers the following form

ϕ̂A
ij =

∑M
s=1(g

s
i − 2π̂s

i )(g
s
j − 2π̂s

j )

4
∑M

s=1

√
π̂s
i (1− π̂s

i )π̂
s
j (1− π̂s

j )
, (1.17)

as an estimate of the kinship coefficient. The difference between (1.16) and (1.17) is that the former
is the average of the ratios across SNPs, while the latter is the ratio of the two averages across
SNPs. For the convergence of the estimator, the former must satisfy more restrictive conditions
than the latter (Ochoa and Storey, 2021). The latter has a asymptotic bias when individuals are
related and have admixed ancestry. Instead of taking allele frequencies into account, Manichaikul
et al. (2010) propose KING-robust kinship coefficient estimator

κ̂ij =

∑M
s=1

[
gsi (1− gsi ) + gsj

(
1− gsj

)
+ gsi g

s
j

]∑M
s=1

[
gsi (2− gsi ) + gsj

(
2− gsj

)] (1.18)

based solely on genotype data. (1.18) is also used in PC-Relate method for preliminary screening
of related and unrelated individuals, which is a key step.

1.2 Contributions and perspectives

1.2.1 Manuscript 1

The main contribution of this paper is to explore the behavior of the variation in the allele
frequency over time by using the F -statistics, F2 and Fst. The evolutionary force factors affecting
allele frequency are set to function g : [0, 1] → [0, 1], and the Wright-Fisher model is modified
to describe the changes in the number of individuals carrying the reference allele in the following
form

Zt+1|Xt = xt ∼ Bin(Nt+1, g(xt)), (1.19)

where Zt+1 is the number of individuals carrying the allele with population size Nt+1 at generation
t+1 and Xt is the allele frequency at previous generation t. We consider pure drift, mutation and
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migration as linear evolutionary forces to give the form of g,

g(x) = (1− a)x+ b, 0 ≤ b ≤ a ≤ 1, (1.20)

where a and b are the two evolutionary force parameters that we use for analysis. In theory, we
only use the first two moments of model (1.19) to calculate the explicit expression results of F2

and Fst, which are proposed by Reich et al. (2009) and Wright (1951), respectively. On this basis,
we give the conditions for determining the increase and decrease of the genetics difference over
time and the specific parameter conditions satisfying the existence of the inflection point. We find
that migration may cause a non-monotonic behavior of genetic difference. Since most of the real
world population is affected by migration, then this leads to the conclusion that in most cases
the behavior of the F -statistic of the real world population will be non-monotonic (Li and Wiuf,
2022).

To explain the method more clearly in this paper, some proposed expressions are limited to
the case where the population size does not change over time, but are equally applicable to cases
where population size varies. Based on the definition of effective population size described in the
previous section, we can attempt to extend a similar analysis by giving such a value. In addition,
the setting of g is limited to linear evolutionary forces, and nonlinear cases such as natural selection
should also be included. For calculation methods involving only the first two moments, an explicit
expression for F -statistics does not necessarily exist. The application of Taylor’s expansion may
reveal some of these results. Meanwhile, the diffusion approximation is an effective method to
deal with the parameters, which simplifies the analysis and can be further extended to the case of
infinite population size.

1.2.2 Manuscript 2

The main contribution of the second paper is to evaluate the admixture model fit by visualizing
the correlation matrix of residuals defined as the differences between the observed and predicted
values. Using the notation in Manuscript 2, we consider the genotype value Gsi of individual
i ∈ {1, . . . , n} at SNP s ∈ {1, . . . ,m} as described by the following model

Gsi ∼ Bin(2,Πsi), (1.21)

where Πsi is individual-specific allele frequency defined in the previous section and depends on the
number of ancestral populations, their admixture proportions and the ancestral population allele
frequencies. Using the matrix notation, (1.21) is

G ∼ Bin(2,Πk), Πk = FkQk,
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where matrix Qk has dimension k × n, matrix Fk has dimension m × k, and k is the unknown
number of ancestral populations. The process of finding a predicted value is essentially taking an
estimate Π̂ of Π and plugging Π̂ into the following model

G′ ∼ Bin(2, Π̂)

to obtain data points. Thus, the expected value of the resulting data point, i.e. E(G′) = 2Π̂, is
taken as the predictive value. Let P̂k′ be an orthogonal projection onto a k′-dimensional subspace,
where k′ is a number of ancestral populations that we suggest. Denoting Π̂k′ = GP̂k′ , the m × n

matrix of residuals is defined as

R̂k′ = G− 2Π̂k′ = G(I − P̂k′).

According to different methods, we can give the corresponding expression of P̂k′ based on the data.

In Manuscript 2, we propose two correlation coefficient matrices of residuals. Define the n×n
empirical covariance matrix B̂ with entries

B̂ij =
1

m− 1

m∑
s=1

(R̂k′,si − R̄k′,i)(R̂k′,sj − R̄k′,j),

where

R̄k′i =
1

m

m∑
s=1

R̂k′,si

and R̂k′,si are entries of R̂k′ . The corresponding empirical correlation matrix is denoted as b̂ with
entries

b̂ij =
B̂ij√
B̂iiB̂jj

, i, j = 1, . . . , n.

The estimated covariance matrix is defined as

Ĉ = (I − P̂k′)D̂(I − P̂k′),

where, D̂ is the n× n diagonal matrix containing the average heterozygosities of each individual,
i.e.

D̂ii =
1

m

m∑
s=1

Gsi(2−Gsi), i = 1, . . . , n,

and the corresponding estimated correlation matrix is denoted as ĉ with entries

ĉij =
Ĉij√
ĈiiĈjj

.
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The above two kinds of correlation matrices are simple to compute and save the computational
power. When the model is correct and the number of SNPs is large enough, the two correlation
matrices are consistent. Therefore, the difference between two correlation matrices is expected to
be close to zero without violating the admixture model. If the difference is significantly greater
than zero, the model is misfit. In order to coordinate with the correlation matrix visualization,
we give several theorems.

By using different PCA methods and the software ADMIXTURE for simulated and real data,
the corresponding P̂k′ is obtained. The validity of the model fitting determination is investigated,
and it is in line with the expectation.

Correlation matrix visualization requires a given k′, the number of ancient populations. The
model fitting is affected by different k′, although the correctness of k′ does not mean the data
fitting model. When PCA method is used to infer population structure, unadmixed samples can
be distinguished through population number setting, which is reflected in the selection of the top
principal components. In Manuscript 2, we consider three PCA methods: one PCA (named
PCA 1 by us) proposed by Chen and Storey (2015) and the other two PCA methods proposed
by Patterson et al. (2006). In the application of PCA 1, due to uncentralized data, we omit the
principal component corresponding to the largest eigenvalue, which is different from the other two
PCA methods. In the follow-up work, the unification of PCA methods can be improved, which is
crucial for selecting k′. For data analysis, our results still need to be verified in many scenarios,
such as whether the violation of several assumptions of the admixture model can be reflected when
more possible Fst parameter values are taken into account. In addition, the genetic relationships
resulting from recent hybridization can shape the existence of related individuals and affect the
effectiveness of PCA for population structure inference. In such scenarios, the difference between
the two correlation coefficient matrices in our approach is not significant. It is worth noting that,
in principle, our approach requires a sufficient number of SNPs. The setting of the number of
SNPs and sample size should reflect the validity of the proposed method in different scenarios.

1.2.3 Manuscript 3

The third manuscript is the preliminary work on kinship that I am currently doing indepen-
dently. Let C be the number of founders shared by individuals i and j in a pedigree. Given
s ∈ {1, 2, . . . ,M} and the fact that the kinship coefficient is constant over SNPs, I present an
estimate of the kinship coefficient based on pedigree and genotype,

ϕ̂ij =
1

4
·

∑M
s=1 (y

s
i − 2π̂s

i )
(
ysj − 2π̂s

j

)
∑M

s=1
1
C

∑C
c=1 π̂

(i,j)s
c

(
1− π̂

(i,j)s
c

) , (1.22)
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where π̂s
i , π̂

s
j are the corresponding individual-specific allele frequencies estimators, and π̂

(i,j)s
c is

the allele frequency estimator for the shared founder c, c = 1, . . . , C. The difficulty of kinship
estimation method shown in equation (1.22) lies in the estimation of allele frequency, especially
for the part of shared founders. In the preliminary work of Manuscript 3, the full-siblings case is
considered and a new estimation formula based on equation (1.22) is proposed,

ϕ̂F
ij =

∑M
s=1 (y

s
i − 2π̂s

i )
(
ysj − 2π̂s

j

)∑M
s=1

[
(ysi − 2π̂s

i )
2 + (ysj − 2π̂s

j )
2
] . (1.23)

The estimation method of equation (1.23) only focuses on how to estimate individual-specific
allele frequency. I consider the PCA 1 method in the second manuscript to obtain the allele
frequency estimator. Before applying the PCA 1 method to the data set with the presence of
related individuals, I follow the KING-robust estimator formula to separate unrelated individuals
in the sample. In the simulation analysis, the validity of the estimation is verified.

The estimation formula and method proposed above have inspired me to extend to other
situations. The present work deals with the Full-siblings case, and other more general pedigree
cases have yet to be verified. For individuals with different admixture histories and population
structure backgrounds, one issue is whether the estimates provided by equations (1.22) and (1.23)

are better than those provided by other methods, such as PC-Relate and KING-robust estimator.
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The Behaviour of F-statistics over Time

Song Li† and Carsten Wiuf
Department of Mathematical Sciences, University of Copenhagen, Denmark

Abstract
We study the behaviour of the F2-statistic and Fst-statistic, respectively, over time

in a Wright-Fisher model with mutation and migration. We give precise conditions
for when the F2-statistic is non-monotonic, that is, increases over time until a certain
point and then starts decreasing. We show that even for small population sizes, the two
statistics are well approximated by population size scaled expressions.

Keywords: Allele frequency; F -statistics; Wright–Fisher model; Linear evolutionary force;
Finite population; Population genetics.

1 Introduction

The frequency of an allele in a population depends on various evolutionary forces. The

Wright–Fisher model (Fisher, 1930; Wright, 1931) in its simplest form describes the evolution

of the allele frequency at a single diploid site in a finite population, without overlapping

generations, in the absence of any other evolutionary forces such as mutation and selection.

For large populations sizes, using that the Wright-Fisher model can be regarded as a discrete

time Markov process, continuous time diffusion approximations can be derived by scaling

time and parameters in the population size (Crow and Kimura, 1970; Ewens, 2004; Karlin

and Taylor, 1980; Neuhauser, 2001). The diffusion process is essentially determined by its

first two moments, which greatly simplifies the exploration of the behavior of the allele

frequency over time in large populations. Recently, other approximations have been proposed

to study the distribution of the allele frequency over finitely many generations, based on

the Wright-Fisher model, e.g., Balding and Nichols (1995); Nicholson et al. (2002); Foll and

Gaggiotti. (2008); Coop et al. (2010); Gautier (2015); Haasl and Payseur (2016).

The main purpose of this paper is to explore the behavior of the two F -statistics, F2 and

Fst, that reflect frequency changes and population differentiation. These statistics depend
†Corresponding author. E-mail address: song.li@math.ku.dk
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on the first two moments of the allele frequency distribution. For multiple populations, F2

and Fst are related (Reich et al., 2009; Peter, 2016). The Fst, or the fixation index, is a

measurement of population differences in alelle frequency and can be defined in two ways

(Holsinger and Weir, 2009; Durrett, 2008). The Fst-statistic provides important insights

into frequency processes within and between populations. Pure drift considered in the

Wright-Fisher process is the simplest evolutionary force. However, evolution is complex

and random, involving other factors such as mutation, migration, and natural selection

(Cavalli-Sforza and Edwards, 1967). In general, evolutionary forces are divided into linear

and nonlinear forms (Crow and Kimura, 1970). Linear forces are typically mutation and

migration, which we also consider here. In this paper, we adoopt the definition of F2

proposed by Reich et al. (2009), and the definition of Fst proposed by (Wright, 1951). The

F2 is defined as the square of the difference in allele frequency between two populations and

has a range of mathematical properties (such as additivity) used in admixture inference

(Patterson et al., 2012; Peter, 2016; Soraggi and Wiuf, 2019). Here, we study how F2 and

Fst vary over time. In particular, we show that migration might give rise to non-monotome

behavior and analyse when this happens. We give precise conditions for when an inflection

point occurs, that is, a time point after which the statisitc starts decreasing. Under pure

drift, both statistics increase over time.

The paper is structured as follows. We describe the Wright-Fisher model in Section 2.1,

allowing for mutation and migration. In Section 2.2, we give the definition of the F2-statistic

and the Fst-statistic, and find expressions for how they vary over time. We end with a

discussion in Section 3. Proofs and mathematical details are collected in the Appendix.

2 Methods and Results

We consider a population of haploid individuals over generations. The frequency of the

reference allele is set to Xt ∈ [0, 1] in generation t ≥ 0, and we are interested in the evolution

of Xt over time. On this basis, we impose certain constraints on Xt, t ≥ 0, to establish a

model for its change.

Specifically, we consider a Wright-Fisher-like model with population size Nt in generation

t ≥ 0. The random number of individuals carrying the reference allele is denoted Zt, hence

2
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Xt = Zt/Nt. In line with the Wirght-Fisher model, we assume the allele frequency of the

next generation is determined by the previous generation and potentially external factors.

The external influence acting on the allele can be defined as a function g : [0, 1] → [0, 1],

and the model can be set up using a binomial distribution,

Zt+1|Xt = xt ∼ Bin(Nt+1, g(xt)). (1)

Here, Bin(n, p) is the binomial distribution with sample size n and probability p. The

mathematical form of the effect g will be discussed below. The Wright-Fisher model can be

extended to diploids by changing N to 2N , or to non-constant population sizes by taking

floating samples from each generation.

2.1 Linear evolutionary pressure model

We are mainly concerned with the influence of pure drift, mutation and migration on the

evolution of the allele frequency (Cavalli-Sforza and Edwards, 1967; Cavalli-Sforza, 1973).

The common characteristic is a linear constraint on how the frequency change (Siren, 2012).

Specifically, we address the following cases.

In the case of mutation, a1 is assumed to be the probability of mutation from the allele

‘A’ to the allele ‘a’, and b1 is the probability from ‘a’ to ‘A’. Therefore, if the frequency of

‘A’ carried by the parent is Xt, then we define

g(Xt) = Xt(1 − a1) + (1 − Xt)b1 = (1 − a1 − b1)Xt + b1.

In the simplest case of migration (Tataru et al., 2015, 2016), individuals have the

freedom to migrate in and out of the population. Assume that the probability of migration

between populations is m and an infinitely large population with a constant allele frequency

X∗ ∈ [0, 1]. Then, we get the calculation

g(Xt) = (1 − m)Xt + mX∗. (2)

We incorporate both the above mutation and migration into the model,

g(Xt) = [(1 − a1 − b1)Xt + b1](1 − m) + mX∗

= {1 − [m + (1 − m)(a1 + b1)]}Xt + (1 − m)b1 + mX∗

:= (1 − a3)Xt + b3,

(3)

3
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where, a3 = m + (1 − m)(a1 + b1), b3 = (1 − m)b1 + mX∗. Obviously, by taking Xt to be 1,

then 0 ≤ 1 − a3 + b3 ≤ 1, so we need 0 ≤ b3 ≤ a3 ≤ 1 as a constrain.

We describe the above results directly in terms of the function g,

g(x) = (1 − a)x + b, 0 ≤ b ≤ a ≤ 1, 0 ≤ x ≤ 1. (4)

In particular, when a = b = 0, the above model degenerates into the familiar pure drift case.

2.2 Definitions of F-statistics

In this section, we study the F2 (Reich et al., 2009) and the Fst (Wright, 1951). The F2 can

be used to measure the difference in allele frequencies in a single population at different

time points, and Fst describes this difference in multiple populations. The following parts

are our results.

2.2.1 The F2

In a single population, we consider two time points 0 and t, and express their allele frequencies

as X0 and Xt, respectively. Then the F2 is defined as,

F2(t) = F2 (X0, Xt) = E
[
(Xt − X0)2

]
. (5)

Since we are interested in the variation of the allele frequency from its starting point, we

assume throughout that X0 = x0, with 0 ≤ x0 ≤ 1, is fixed. Then F2(t) becomes

F2(t) = E[(Xt − x0)2] = V ar(Xt) + [E(Xt) − x0]2 . (6)

Under the linear evolutionary pressure model, let

α := N0a, γ := b

a
,

with the convention that 0/0 := 1, then 0 ≤ γ ≤ 1. The variance can be given recursively in

terms of the expectation, similarly to Tataru et al. (2015, 2016) and Siren (2012),

V ar(Xt) = 1
Nt

E(Xt)[1 − E(Xt)] +
(

1 − 1
Nt

)(
1 − α

N0

)2
V ar(Xt−1)

=
t∑

i=1

1
Ni

(
1 − α

N0

)2(t−i)
E(Xi)[1 − E(Xi)]

t∏
j=i+1

(
1 − 1

Nj

)
,

(7)

4
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and

[E(Xt) − x0]2 =
{(

1 − α

N0

)t

x0 + γ

[
1 −

(
1 − α

N0

)t
]

− x0

}2

=
[
1 −

(
1 − α

N0

)t
]2

(γ − x0)2 ,

(8)

where

E(Xi)[1 − E(Xi)] = −
(

1 − α

N0

)2i

(x0 − γ)2 +
(

1 − α

N0

)i

(x0 − γ) (1 − 2γ) + γ (1 − γ) .

(9)

Equation (8) only depends on the population size through N0. In contrast, (7) depends on

Nt. Specifically, the effect of Nt is to locally slow down or speed up (compared to N0) the

change in the variance: doubling the population size corresponds to slowing time by a factor

of two, at least for large population sizes.

Furthermore, by scaling the generation (time) and the parameter b in units of N0, we

introduce the notation,

β := N0b,

such that

γ = b

a
:= α

β

is independent of N0 and t = ⌊N0u⌋, where ⌊·⌋ is the rounding operation and u ∈ (0, ∞).

We allow the population size to vary in a slow way, that is, we assume that there is a positive

continuous function h : (0, ∞) → (0, ∞), such that

lim
N0→∞

N⌊N0u⌋
N0

= h(u).

Such assumptions are widely used in population genetics, for example, to derive the diffusion

limit of the Wright-Fisher model (Ewens, 2004).

Defining two limits D2 (x0, Yu) = limN0→∞ F2(⌊uN0⌋) and Yu = limN0→∞ X⌊uN0⌋

(Ewens, 2004), then we denote

D2(u) = D2 (x0, Yu) = V ar(Yu) + [E (Yu) − x0]2 , (10)

where, by defining Λ(u) =
∫ u

0 1/h(s)ds as the population-size intensity function (Griffiths

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.25.505252doi: bioRxiv preprint 

42 CHAPTER 2. MANUSCRIPT 1



and Tavaré, 1994),

V ar(Yu) = − (x0 − γ)2
[
e−2αu − e−Λ(u)−2αu

]
+ (x0 − γ) (1 − 2γ)

[
e−αu − e−Λ(u)−2αu − αe−Λ(u)−2αu

∫ u

0
eαr+Λ(r)dr

]
+ γ(1 − γ)

[
1 − e−Λ(u)−2αu − 2αe−Λ(u)−2αu

∫ u

0
e2αr+Λ(r)dr

]
,

and

[E (Yu) − x0]2 = (x0 − γ)2 (1 − e−αu)2.

Through the above definitions, we obtain the explicit expression F2(t) in the general case

and the limit expression D2(u) in the infinite size case. In the following part, we give some

theoretical properties through the discussion of parameters.

2.2.2 Properties for the F2

We first present results for a single population under pure drift in a population of any size.

In pure drift case, g(x) = x and the expectation of frequency is E(Xt) = E(Xt−1) = x0.

Then

F2(t) = V ar(Xt) = 1
Nt

E(Xt)[1 − E(Xt)] +
(

1 − 1
Nt

)
V ar(Xt−1).

It follows that

V ar(Xt) − V ar(Xt−1) = 1
Nt

[
E(Xt) − (E(Xt))2 − V ar(Xt−1)

]
= 1

Nt

[
E(Xt−1) − (E(Xt−1))2 − V ar(Xt−1)

]
= 1

Nt
E[Xt−1(1 − Xt−1)],

hence due to 0 ≤ Xt ≤ 1,

V ar(Xt) ≥ V ar(Xt−1).

Proposition below gives the performance of F2(t) under pure drift.

Proposition. Under pure drift, the variance and F2(t) are gradually increasing over

generations in a single population of any size (Barton and Turelli, 2004; Peter, 2016).

In the generous linear evolutionary pressure model, the change in F2(t) is not as

straightforward as the case of pure drift. We assume Nt ≡ N0 = N to simplify the analysis.

6
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Using (7), (8) and (9), we replace the expression for F2(t) in (6) by an expression without

the recursion,

F2(t) = γ (1 − γ)
1 −

(
1 − α

N

)2t
(
1 − 1

N

)t

1 + α
(
2 − α

N

) (
1 − 1

N

)
+ (1 − 2γ) (x0 − γ)

(
1 − α

N

)t 1 −
(
1 − α

N

)t (1 − 1
N

)t

1 + α
(
1 − 1

N

)
+ (γ − x0)2

[
1 − 2

(
1 − α

N

)t

+
(

1 − α

N

)2t (
1 − 1

N

)t
]

.

(11)

The expression above is consistent with the results in the literature (Siren, 2012; Tataru

et al., 2015). It follows that the parameters (x0, γ, α, N) and (1 − x0, 1 − γ, α, N) result in

the same F2(t) value. Thus, we might assume the parameter x0 lies in [0, 0.5].

Theorem 1 shows that F2(t) is not always increasing. Define ∆1 and ∆2 by

∆1 = (x0 − γ)

 1 − 2γ

1 + α
(
1 − 1

N

) + 2(γ − x0)

 ln
(

1 − α

N

)
,

∆2 =

 γ(1 − γ)
1 + α

(
2 − α

N

) (
1 − 1

N

) + (1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) − (γ − x0)2

 ln
[(

1 − α

N

)2 (
1 − 1

N

)]
.

Theorem 1. Suppose Nt ≡ N0 = N , then F2(t) has an inflection point if and only if

∆1 < 0, and F2(t) is non-increasing for all t > t̂, where

t̂ =
ln ∆1

∆2

ln
[(

1 − α
N

) (
1 − 1

N

)] .

We replace the condition ∆1 < 0 by

∆11∆12 > 0,

where,

∆11 = x0 − γ, ∆12 = 1 − 2γ

1 + α
(
1 − 1

N

) + 2(γ − x0).

Thus, ∆11 and ∆12 must have the same sign for the condition to hold. According to this

criterion, Figure 1 shows the region ∆1 < 0 for x0 = 0.2, 0.4 and N = 5, 10, 50, ∞. By

allowing the population size to vary over time, clearly more complicated behaviors of F2(t)

should be expected.

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 26, 2022. ; https://doi.org/10.1101/2022.08.25.505252doi: bioRxiv preprint 

44 CHAPTER 2. MANUSCRIPT 1



1 2 3 4 5 6 7 8 9 10

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

α

γ

x0 = 0.2

x0 = 0.4

Values of N

5

10

50

Inf

Figure 1: The region where ∆1 < 0. For x0 = 0.4, the region is divided by a gray horizontal line

γ = 0.4, axis of coordinates and a series of color lines at the top left corner of the figure; for x0 = 0.2,

the region is divided by a gray horizontal line γ = 0.2, axis of coordinates and a series of color lines

at the bottom right corner of the figure.

Note that t̂ in Theorem 1 is defined as the inflection point of F2(t) from increase to

decrease, whose visualization is analyzed in the following. Since the position of inflection

point involves parameters N, x0, α and γ, in order to display the change of F2(t) intuitively,

we choose fixed N = 100 and x0 = 0.2. By changing α and γ, we can give a heat map of

inflection points, which shows the early and late appearance (see Figure 2).
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Figure 2: Shown is the heat map of t̂ and r(F ) under the condition of N = 100 and x0 = 0.2.

As shown in Figure 2, we choose the inflection point is near 100 and get the parameters

α = 1.5158, γ = 0.12 that allow us to find the case where the inflection point should be (see

Figure 3). As can be seen from Figure 3, t̂ is marked as the moment when the variation

(compared to x0) of population allele frequency is the greatest, and t at infinity represents

a stationary state. The relative difference degree of F2(t) value between these two points

(namely peak and plateau value) is also an indicator to understand the population genetic

process. We give the following definition,

r(F ) = F2( t̂ ) − F2 (∞)
F2 (∞) .

Similarly, we show r(F ) for different α and γ in the heat map (see Figure 2). In general, we

find r(F ) might be up to 0.1.

0.027

0.029

0.031

0.033

0.035

100 200 300 400

t

F
2

Figure 3: Shown is the population genetic evolution process with parameters N = 100, x0 =

0.2, α = 1.5158, and γ = 0.12. The F2 has obvious peak and plateau value.

The case where N goes to infinity is defined as an infinite population model. In the

9
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infinite population case, we take some steps to get similar results. Under pure drift, we have

D2(u) = x0(1 − x0)
[
1 − e−Λ(u)

]
,

by setting h ≡ 1, D2(u) simplifies to

D2(u) = x0(1 − x0)
(
1 − e−u) .

D2(u) in this case is increasing with u. In the generous linear evolutionary pressure model

and by setting h ≡ 1, the expression (10) can be simplified to

D2(u) = (x0 − γ)2
[
1 − 2e−αu + e−(2α+1)u

]
+ 1

α + 1 (x0 − γ) (1 − 2γ)
[
e−αu − e−(2α+1)u

]
+ 1

2α + 1γ (1 − γ)
[
1 − e−(2α+1)u

]
.

(12)

The parameters (x0, γ, α) and (1 − x0, 1 − γ, α) result in the same D2(u) value. Theorem 2

below gives a similar result to that of Theorem 1. Define Θ1 and Θ2 by

Θ1 = α

α + 1(x0 − γ)(2x0α − 2γα + 2x0 − 1), (13)

Θ2 = Θ1 − x0(1 − x0). (14)

Theorem 2. Suppose h ≡ 1, then D2(u) has an inflection point if and only if Θ1 < 0, and

if this is the case then D2(u) is non-increasing for all u > û, where

û = 1
α + 1 ln Θ2

Θ1
.

For consistency with the finite N case, we replace the condition Θ1 < 0 by

Θ11Θ12 > 0,

where

Θ11 = x0 − γ, Θ12 = 1 − 2γ

1 + α
+ 2(γ − x0).

Thus, Θ11 and Θ12 must have the same sign for the condition to hold. According to this

criterion, Figure 4 shows the region Θ1 < 0 for x0 = 0.2, 0.4, 0.5, 0.6 and 0.8.

10
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Figure 4: The region Θ1 < 0 for different values of x0 in the case N → ∞. For each given x0, the

region is divided by a colored horizontal line γ = x0, a curve corresponding to the same color and

axis of coordinates. For x0 = 0.5, the region is empty.

As shown in the Figure 4, if x0 = 0.5, then Θ1 ≥ 0, that means D2(u) keeps increasing

for any γ and α. In contrast, the initial value x0 within a specified range can also determine

that the inflection point must exist. The following corollary shows this and gives the specific

location of the region.

Corollary. Let α ≥ 0, γ ∈ [0, 1] be given, such that γ ≠ 0.5, and let N be a natural number.

Then F2(t) has an inflection point for any x0 ∈ (x0L, x0R), where

x0L = min

γ, γ + 1 − 2γ

2
[
1 + α

(
1 − 1

N

)]
 , x0R = max

γ, γ + 1 − 2γ

2
[
1 + α

(
1 − 1

N

)]
 ;

Simialrly, D2(u) has an inflection point for any x0 ∈ (x0L, x0R), where

x0L = min
(

γ, γ + 1 − 2γ

2(1 + α)

)
, x0R = max

(
γ, γ + 1 − 2γ

2(1 + α)

)
.

11
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2.2.3 The Fst

For two or more populations, we study Fst which was first proposed by Sewall Wright

(Wright, 1951) to measure the differences of allele frequencies among populations. Note that

there are some different definitions of Fst (Nei, 1986; Holsinger and Weir, 2009; Durrett,

2008). For two different populations P1 and P2, we use the following definition of Fst in

terms of probability,

Fst (P1, P2) = q1 − q2
1 − q2

,

where q1 and q2 represent the probability that two given reference alleles are the same

from within and between populations, respectively. Suppose that the reference allele has

frequency Xt1,1, Xt2,2 in population P1 with population size Nt1,1 at time t1, and P2 with

population size Nt2,2 at time t2, respectively. Then, we define q1 and q2 as follows (Reich

et al., 2009)

q1 = 1 − Xt1,1(1 − Xt1,1) − Xt2,2(1 − Xt2,2),

q2 = Xt1,1Xt2,2 + (1 − Xt1,1)(1 − Xt2,2)

= 1 − Xt1,1 − Xt2,2 + 2Xt1,1Xt2,2.

(15)

Using equation (15), we have

q1 − q2 = (Xt1,1 − Xt2,2)2 ,

1 − q2 = Xt1,1 + Xt2,2 − 2Xt1,1Xt2,2.
(16)

As q1, q2 are stochastic variables, we adopt the following definition, replacing P1, P2, with

t1, t2, respectively,

Fst (t1, t2) = E (Xt1,1 − Xt2,2)2

E (Xt1,1 + Xt2,2 − 2Xt1,1Xt2,2) .

We regard Fst as a function that changes over time. For two different populations, if we

only consider the linear evolutionary pressure model, the two branching populations from a

common ancestral population are independent of each other in the subsequent evolutionary

process (Hansen and Martins, 1996), i.e., Cov(Xt1,1, Xt2,2 | X0) = 0. If X0 is fixed, indirectly,

we have Cov(Xt1,1, Xt2,2) = 0.

In the following, we set t1 = t2 = t, Nt1,1 = Nt2,2 = Nt, Nt ≡ N0 = N (indicating h ≡ 1),

Fst(t) = Fst(t, t) and using the previous notation, we denote Fst(t) as Dst(u) when N is

12
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large. To facilitate the application of the above results, according to the definitions (6) and

(10), we split Fst(t) and Dst(t) as follows,

Fst(t) = F2 (x0, Xt,1) + F2 (x0, Xt,2) − 2E (Xt,1 − x0)E (Xt,2 − x0)
E (Xt,1 + Xt,2) − 2E(Xt,1)E(Xt,2) (17)

and

Dst(u) = D2 (x0, Yu,1) + D2 (x0, Yu,2) − 2E (Yu,1 − x0)E (Yu,2 − x0)
E (Yu,1 + Yu,2) − 2E(Yu,1)E(Yu,2) , (18)

where Yu,i = limN→∞ X⌊uN⌋,i, i = 1, 2.

If pure drift only is considered in the evolution of two populations, then expression (17)

and (18) degenerate to

Fst(t) = Var(Xt)
x0(1 − x0) and Dst(u) = Var(Yu)

x0(1 − x0) .

Based on the results for F2(t) (and D2(u)), then Fst(t) (and Dst(u)) is gradually increasing

over generations for two different populations of any size under the pure drift. In the

previous section, we elaborated on the properties of F2(t) and D2(u), which are consistent,

and in the following, we only focus on the infinite population size case of Dst(u) and the

situation in which an inflection point occurs.

If we consider pure drift as the only evolutionary force factor for P1 and the general

linear evolutionary pressure model for P2, then (18) degenerates to

Dst(u) = V ar(Yu,1) + D2 (x0, Yu,2)
x0 + E(Yu,2) − 2x0E(Yu,2) ,

where,

E(Yu,2) = e−αu (x0 − γ) + γ,

V ar(Yu,1) = x0(1 − x0)
(
1 − e−u) ,

and using (13), (14), the expression (12) can be simplified to

D2 (x0, Yu,2) = −Θ1
α

e−αu + Θ2
2α + 1e−(2α+1)u + (x0 − γ)2 + γ(1 − γ)

2α + 1 .

Similar to D2, in order to find out whether Dst has an inflection point (from increasing to

decreasing), we make the following analysis. Consider two non-negative functions f1 and f2

are differentiable, the chain rule says,(
f1
f2

)′
= f

′
1f2 − f1f

′
2

f2
2

.

13
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We set

f1 = V ar(Yu,1) + D2 (x0, Yu,2) ,

f2 = (1 − 2x0)E(Yu,2) + x0.

If f
′
1f2 − f1f

′
2 < 0, then (f1/f2)′ < 0. We extract the sign of (f1/f2)′ by f

′
1f2 − f1f

′
2. In

the first step, the chain rule is used to find the approximate range of each parameter when

the inflection point exists. In the second step, the parameters are selected according to the

range to determine the approximate position of the inflection point. In the first step we

consider the following limiting form as a case and give a result under α < 1 (see Appendix

B.1),

f ′
1f2 − f1f ′

2
e−αu

→ Θ1 [x0 + γ (1 − 2x0)] + αx0 (1 − x0) (1 − 2x0) (x0 − γ)

+ α (1 − 2x0) (x0 − γ)3

+ α

2α + 1 (1 − 2x0) (x0 − γ) γ(1 − γ), as u → ∞.

The above limit result contains α (Θ1 also contains α) and Θ1 contains (x0 − γ), which

means that (1 − 2x0)(x0 − γ) determines the sign of all terms except Θ1x0 in the limit

result. Consider fixing a positive value of α, then take the parameters x0 and γ, s.t.

(1 − 2x0)(x0 − γ) < 0, and check the case where the limit is negative. Based on this process,

we get the parameters α = 0.1, γ = 0.31 and x0 = 0.3 as a case where the inflection point

should be (see Figure 5(a)). The above parameters were used to draw the curve of Dst with

u. As shown in Figure 5(a), the inflection point does exist and is near 14.

12 14 16 18 20
u

D
st

(a)

12 14 16 18 20
u

D
st

(b)

Figure 5: Shown is the curve of Dst with u. The inflection point does exist.
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If we consider the same linear evolutionary pressure model for P1 and P2, then (18) can

be simplified as

Dst(u) = D2 (x0, Yu) − (E(Yu) − x0)2

E(Yu) (1 − E(Yu)) ,

where,

E(Yu) = e−αu (x0 − γ) + γ,

D2 (x0, Yu) = −Θ1
α

e−αu + Θ2
2α + 1e−(2α+1)u + (x0 − γ)2 + γ(1 − γ)

2α + 1 .

We set

f1 = D2 (x0, Yu) − (E(Yu) − x0)2 ,

f2 = E(Yu) (1 − E(Yu)) ,

and take the limit to extract the sign part (see Appendix B.2),

f ′
1f2 − f1f ′

2
e−αu

→ (x0 − γ) (1 − 2γ)γ(1 − γ) −α2

(2α + 1)(α + 1) , as u → ∞.

Obviously, we only need to consider x0 and γ, s.t. (x0 − γ) (1 − 2γ) > 0. We give the

parameters, α = 0.1, γ = 0.4 and x0 = 0.6, to support our judgment (see Figure 5(b)). As

shown in Figure 5(b), the inflection point is near 15.

3 Random migration rates

In the case of migration, we study the simplest linear form,

g(Xt) = (1 − m)Xt + mX∗,

where the migration probability m is assumed to be fixed. In nature, however, populations

migrate differently over time. Environmental climate, population size and other factors al-

ways affect the probability of migration in and out. Taking time dependence and randomness

into account, we denote mt as the migration probability, s.t.,

mt
i.i.d∼ (m, σ2), and mt ⊥ Xt.

Note that the distribution of mt is ignored and only its first two moments are marked as

m, σ2 > 0. Assume X∗
t ≡ x∗, then

g(Xt) = (1 − mt)Xt + mtx
∗, 0 ≤ mt, x∗ ≤ 1.

15
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Following the Wright-Fisher model and approach taken in the previous section, we also give

explicit formula for F2(t) and D2(u). The first two moments of Xt can be obtained,

E(Xt) = E[g(Xt−1)] = E(1 − mt−1)E(Xt−1) + E(mt−1x∗)

= (1 − m)E(Xt−1) + mx∗

= ...

= (1 − m)t(x0 − x∗) + x∗,

(19)

and

V ar(Xt) = 1
Nt

E(Xt)(1 − E(Xt)) + (1 − 1
Nt

)V ar[g(Xt−1)]

= 1
Nt

E(Xt)(1 − E(Xt)) + (1 − 1
Nt

){E[g2(Xt−1)] − [E[g(Xt−1)]]2}

= 1
Nt

E(Xt)(1 − E(Xt)) + (1 − 1
Nt

)σ2[E(Xt−1) − x∗]2

+ (1 − 1
Nt

)[σ2 + (1 − m)2]V ar(Xt−1)

=
t∑

i=1

1
Ni

[σ2 + (1 − m)2]t−iE(Xi)(1 − E(Xi))
t∏

j=i+1
(1 − 1

Nj
)

+ σ2
t∑

i=1
[σ2 + (1 − m)2]t−i[E(Xi−1) − x∗]2

t∏
j=i

(1 − 1
Nj

)

=
t∑

i=1

1
Ni

[σ2 + (1 − m)2]t−i[(1 − m)i(x0 − x∗) + x∗][1 − (1 − m)i(x0 − x∗) − x∗]
t∏

j=i+1
(1 − 1

Nj
)

+ σ2
t∑

i=1
[σ2 + (1 − m)2]t−i(1 − m)2i(x0 − x∗)2

t∏
j=i

(1 − 1
Nj

),

(20)

then by (19) we get

[E (Xt) − x0]2 = [1 − (1 − m)t]2 (x∗ − x0)2 . (21)

Combining (20) and (21), we follow the definition (6)

F2(t) = [1 − (1 − m)t]2 (x∗ − x0)2

+ σ2
t∑

i=1
[σ2 + (1 − m)2]t−i(1 − m)2i(x0 − x∗)2

t∏
j=i

(1 − 1
Nj

)

+
t∑

i=1

1
Ni

[σ2 + (1 − m)2]t−i[(1 − m)i(x0 − x∗) + x∗][1 − (1 − m)i(x0 − x∗) − x∗]
t∏

j=i+1
(1 − 1

Nj
).

(22)

16
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By scaling parameters m and σ2 in units of N0, we introduce

ϵ1 := N0m, ϵ2 := N0σ2.

Following the previous definitions, we have

E (Yu) = e−ϵ1u (x0 − x∗) + x∗, (23)

and

Var (Yu) = − (x0 − x∗)2
[
e−2ϵ1u − e−Λ(u)−2ϵ1u+ϵ2u

]
+ (x0 − x∗) (1 − 2x∗)

[
e−ϵ1u − e−Λ(u)−2ϵ1u+ϵ2u − (ϵ1 − ϵ2)e−Λ(u)−2ϵ1u+ϵ2u

∫ u

0
e(ϵ1−ϵ2)r+Λ(r)dr

]
+ x∗(1 − x∗)

[
1 − e−Λ(u)−2ϵ1u+ϵ2u − (2ϵ1 − ϵ2)e−Λ(u)−2ϵ1u+ϵ2u

∫ u

0
e(2ϵ1−ϵ2)r+Λ(r)dr

]
,

(24)

then by (23) we get

[E (Yu) − x0]2 = (x0 − x∗)2 (1 − e−ϵ1u)2 . (25)

Combining (24) and (25), we follow the definition (10)

D2(u) = (x0 − x∗)2
[
1 − 2e−ϵ1u + e−Λ(u)−2ϵ1u+ϵ2u

]
+ (x0 − x∗) (1 − 2x∗)

[
e−ϵ1u − e−Λ(u)−2ϵ1u+ϵ2u − (ϵ1 − ϵ2)e−Λ(u)−2ϵ1u+ϵ2u

∫ u

0
e(ϵ1−ϵ2)r+Λ(r)dr

]
+ x∗(1 − x∗)

[
1 − e−Λ(u)−2ϵ1u+ϵ2u − (2ϵ1 − ϵ2)e−Λ(u)−2ϵ1u+ϵ2u

∫ u

0
e(2ϵ1−ϵ2)r+Λ(r)dr

]
,

(26)

With the expressions of F2(t) and D2(u), we can use the method in the paper to

reasonably discuss the parameters and the existence of inflection points. And the study of

Fst with respect to F2, further research results will be carried out in our future work.

4 Discussion

We found expressions for the F2-statistic and the Fst-statistic and how they vary over time.

In general, we find that even for small population sizes, the behavior of the two statistics are

well approximated by large population scaled expressions, considering time and paprameters

scaled in units of population size.

17
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Of particular interest is that migration might give rise to non-monotonic behavior. As real

world most populations are subjected to migration, then this points to the conclusion that the

behavior of the F -statistics for real world population in most cases will be non-monotonic.

It is worth mentioning that our proposed method only considers the first two moments of

the allele frequency Xt, which is also applicable to other cases as long as the second moment

exists. In such a case, we can still give reasonable results for the linear representation

of evolutionary forces, the expression of F -statistics and related parameters analysis. In

population genetic studies, nonlinear factors such as natural selection are usually considered

in order to explore the process of allele frequency change caused by evolutionary forces. In

such a complex study, it is not hard to imagine that there would be no explicit expression for

F -statistics. Therefore, the diffusion approximation of this setting is a mean of conducting

similar analysis (Ewens, 2004; Lacerda and Seoighe, 2014; Tataru et al., 2015). We consider

these as future research directions.
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Appendix A Proofs
In appendix, we prove the theorems and corollary stated in the main text.

Random mating leads to a count of A alleles in generation t + 1 that is binomially
distributed,

Zt+1|Xt = xt ∼ Bin(Nt+1, g(xt)). (27)

The goal is to account for effects of evolutionary and demographic forces on allele frequencies
over time. We first calculate the first two moments of the allele frequencies.

E(Xt) = E[E(Xt|Xt−1)] = E[g(Xt−1)] (28)

V ar(Xt) = 1
Nt

E(Xt)[1 − E(Xt)] +
(

1 − 1
Nt

)
V ar [g(Xt−1)] . (29)

In the following, we treat the general linear case

g(x) = (1 − a)x + b,

the mean and variance expression (28, 29) may be replaced by

E(Xt) = E[g(Xt−1)] = (1 − a)E(Xt−1) + b

= ...

= (1 − a)tx0 + b
t−1∑
i=0

(1 − a)i

= (1 − a)tx0 + b

a
[1 − (1 − a)t]

= (1 − a)t
(

x0 − b

a

)
+ b

a
,

(30)

V ar(Xt) = 1
Nt

E(Xt)[1 − E(Xt)] +
(

1 − 1
Nt

)
(1 − a)2V ar(Xt−1)

=
t∑

i=1

1
Ni

(1 − a)2(t−i)E(Xi)[1 − E(Xi)]
t∏

j=i+1

(
1 − 1

Nj

)
.

(31)

To consider approximations resulting from the infinite population limit, we take some
appropriate variable transformations,

u = t

N0
, r = i

N0
, s = j

N0
, (32)

and

h(u) = h( t

N0
) = Nt

N0
, (33)
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where u, r, s ∈ R+, i, j = 1, . . . , t ∈ N and h ∈ L1(R+). Using the Riemann sum and Taylor
approximation, let N0 be large enough, then

t∏
j=i+1

(
1 − 1

Nj

)
= exp

log
t∏

j=i+1

(
1 − 1

Nj

)
= exp

 t∑
j=i+1

log
(

1 − 1
Nj

)
= exp

 t∑
j=i+1

log
(

1 − 1
N0h(s)

)
= exp

N0

t∑
j=i+1

1
N0

log
(

1 − 1
N0h(s)

)
= exp

[
N0

∫ t
N0

i+1
N0

log
(

1 − 1
N0h(s)

)
ds

]

= exp
(

−
∫ u

r

1
h(s)ds

)
+ o(1),

(34)

where o(1) is an infinitesimally small quantity, which is negligible in the limit. Using previous
notations α = N0a and β = N0b, we have

(1 − a)t =
(

1 − α

N0

)t

=
(

1 − α

N0

)− N0
α

(
− t

N0

)
α

= e−αu + o(1).

Defining Yu = limN0→∞ X⌊uN0⌋ (Ewens, 2004), using (30),(31) and the Riemann sum, we
obtain the mean and variance as a function of the scaled time

E(Yu) = e−αu
(

x0 − β

α

)
+ β

α
, (35)

V ar(Yu) = e−2αu
∫ u

0

1
h(r)e2αrE(Yr)[1 − E(Yr)] exp

(
−
∫ u

r

1
h(s)ds

)
dr

= e−2αu
∫ u

0

1
h(r)e2αr

[
e−αr

(
x0 − β

α

)
+ β

α

] [
1 − e−αr

(
x0 − β

α

)
− β

α

]
exp

(
−
∫ u

r

1
h(s)ds

)
dr

= e−2αu
∫ u

0

1
h(r)e2αr

[
−e−2αr

(
x0 − β

α

)2]
exp

(
−
∫ u

r

1
h(s)ds

)
dr

+ e−2αu
∫ u

0

1
h(r)e2αr

[
e−αr

(
x0 − β

α

)(
1 − 2β

α

)]
exp

(
−
∫ u

r

1
h(s)ds

)
dr

+ e−2αu
∫ u

0

1
h(r)e2αr

[
β

α

(
1 − β

α

)]
exp

(
−
∫ u

r

1
h(s)ds

)
dr

= −e−2αu
(

x0 − β

α

)2 [
1 − exp

(
−
∫ u

0

1
h(s)ds

)]
+ e−2αu

(
x0 − β

α

)(
1 − 2β

α

)[
eαu − exp

(
−
∫ u

0

1
h(s)ds

)
−
∫ u

0
αeαrexp

(
−
∫ u

r

1
h(s)ds

)
dr

]
+ e−2αu β

α

(
1 − β

α

)[
e2αu − exp

(
−
∫ u

0

1
h(s)ds

)
−
∫ u

0
2αe2αrexp

(
−
∫ u

r

1
h(s)ds

)
dr

]
,

(36)
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where, the last step in (36) was obtained using integration by parts.

A.1 Proof of Theorem 1
Proof. Following expression (11), we consider the first derivative of F2 with respect to t,

∂F2
∂t

:= ∆1

(
1 − α

N

)t

− ∆2

[(
1 − α

N

)2 (
1 − 1

N

)]t

,

where

∆1 = (x0 − γ)

 1 − 2γ

1 + α
(
1 − 1

N

) + 2(γ − x0)

 ln
(

1 − α

N

)
, (37)

and

∆2 =

 γ(1 − γ)
1 + α

(
2 − α

N

) (
1 − 1

N

) + (1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) − (γ − x0)2

 ln
[(

1 − α

N

)2 (
1 − 1

N

)]
.

(38)

We want to observe where the inflection point of F2 occurs, so the following analysis is
introduced,

∂F2
∂t

<0

∆1

(
1 − α

N

)t

<∆2

[(
1 − α

N

)2 (
1 − 1

N

)]t

∆1 <∆2

[(
1 − α

N

)(
1 − 1

N

)]t

.

(39)

When ∆2 = 0, the last step in (39) indicates ∆1 < 0. However, by the definition (38),

γ(1 − γ)
1 + α

(
2 − α

N

) (
1 − 1

N

) + (1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) − (γ − x0)2 = 0

γ(1 − γ)
1 + α

(
2 − α

N

) (
1 − 1

N

) + (1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) = (γ − x0)2

(1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) ≤ 2(γ − x0)2.

The last step was obtained using the following,

γ(1 − γ)
1 + α

(
2 − α

N

) (
1 − 1

N

) ≥ 0. (40)

Hence, the definition (37) indicates ∆1 ≥ 0, that is a contradiction.
When ∆2 ̸= 0, (39) indicates[(

1 − α

N

)(
1 − 1

N

)]t

>
∆1
∆2

, ∆2 > 0, (41)
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or [(
1 − α

N

)(
1 − 1

N

)]t

<
∆1
∆2

, ∆2 < 0. (42)

For (41), if ∆1 ≤ 0, by (40) and the definition (37),

(1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) − 2(γ − x0)2 ≥ 0,

(1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) ≥ 2(γ − x0)2 ≥ (γ − x0)2,

(43)

we get ∆2 ≤ 0, this contradicts ∆2 > 0. If ∆1 > 0 and 0 < ∆2 < ∆1, then 1 < ∆1/∆2.
However, [(

1 − α

N

)(
1 − 1

N

)]t

< 1,

it contradicts (41). So, there may be an inflection point when 0 < ∆1 < ∆2, which makes
F2 have a decreasing trend. In this case, using (41), we can get the range

t <
ln ∆1

∆2

ln
[(

1 − α
N

) (
1 − 1

N

)] := t̂. (44)

We know when t = 0 then F2 = 0 and F2 ≥ 0 for all t. t̂ all depends on N, α, γ, x0 and t̂ > 0
then ∀t ∈ [0, t̂ ), by (41) ∂F2/∂t < 0, F2 (X0, Xt) < F2 (X0, X0) = 0, that is a contradiction.

From the above analysis, the existence of the inflection point of F2 means that (42)
holds. For some t > 0, we prove

(42) holds ⇐⇒ ∆1 < 0. (45)

1) “=⇒”
Consider proof by contradiction. Clearly, if ∆1 ≥ 0 then we get[(

1 − α

N

)(
1 − 1

N

)]t

> 0 ≥ ∆1
∆2

.

2) “⇐=”
Clearly,

ln
[(

1 − α

N

)2 (
1 − 1

N

)]
< 2 ln

(
1 − α

N

)
< ln

(
1 − α

N

)
< 0. (46)

Using ∆1 < 0 and the definition (37), then (43) and (40) are satisfied. We obtain

0 < (x0 − γ)

 1 − 2γ

1 + α
(
1 − 1

N

) + 2(γ − x0)

 <

 γ(1 − γ)
1 + α

(
2 − α

N

) (
1 − 1

N

) + (1 − 2γ)(x0 − γ)
1 + α

(
1 − 1

N

) − (γ − x0)2

 ,

(47)
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Combining (46) and (47),

∆2 < (x0 − γ)

 1 − 2γ

1 + α
(
1 − 1

N

) + 2(γ − x0)

 ln
[(

1 − α

N

)2 (
1 − 1

N

)]
< ∆1 < 0. (48)

(48) indicates t̂ > 0 and for all t > t̂, we have

t >
ln ∆1

∆2

ln
[(

1 − α
N

) (
1 − 1

N

)]
ln
[(

1 − α

N

)(
1 − 1

N

)]t

< ln ∆1
∆2[(

1 − α

N

)(
1 − 1

N

)]t

<
∆1
∆2

,

(49)

(42) holds.
All the above proof take into account that F2 is a continuous function of t, and even

though we only use t ∈ N, the conclusion still holds.

A.2 Proof of Theorem 2
Proof. Following expression (12), we consider the first derivative of D2(u) with respect to u,

∂D2(u)
∂u

=
[
2α (x0 − γ)2 − α

α + 1 (x0 − γ) (1 − 2γ)
]

e−αu

−
[
(2α + 1) (x0 − γ)2 − 2α + 1

α + 1 (x0 − γ) (1 − 2γ) − γ(1 − γ)
]

e−(2α+1)u

:= Θ1e−αu − Θ2e−(2α+1)u,

where,
Θ1 = (x0 − γ) α

α + 1(2x0α − 2γα + 2x0 − 1),

and
Θ2 = Θ1 − x0(1 − x0).

Refer to the proof of Theorem 1 (A.1), the following analysis is introduced,

∂D2(u)
∂u

<0

Θ1e−αu − Θ2e−(2α+1)u <0
Θ1e−αu <Θ2e−(2α+1)u

Θ1 <Θ2e−(α+1)u.

(50)

When Θ2 = 0, then Θ1 = x0(1 − x0) ≥ 0, that contradicts the last step indicating Θ1 < 0 in
(50). When Θ2 ̸= 0, then (50) can be further transformed into

e−(α+1)u >
Θ1
Θ2

, Θ2 > 0, (51)
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or
e−(α+1)u <

Θ1
Θ2

, Θ2 < 0. (52)

If Θ2 > 0 then Θ1 > Θ2 > 0, we have e−(α+1)u < 1 < Θ1/Θ2. For (51), D2(u) cannot have
an inflection point in its decreasing trend. If Θ2 < 0, Θ1 > 0, then Θ1/Θ2 < 0, that is not
possible; if Θ1, Θ2 < 0 and obviously, Θ2 < Θ1 < 0 indicates Θ2/Θ1 > 1, that is possible.
For (52), we can get the range,

u >
1

α + 1 ln Θ2
Θ1

:= û > 0, Θ1 < 0. (53)

The process details are similar to the proof of Theorem 1 (A.1) and are partially omitted
here.

A.3 Proof of Corollary
Proof. According to Theorem 1 and 2, the necessary and sufficient condition for the existence
of the inflection point is ∆1 < 0 and Θ1 < 0, respectively. To prove the corollary in 2.2.2,
we introduce the following analysis.

For ∆1 or Θ1, we set α, N, γ as constants, then ∆1 or Θ1 is a parabolic function of x0.
And for a parabolic function, the fact that existence of the roots depends on the sign of the
discriminant, which is exactly that the discriminant ∆ ≥ 0. In addition, since x0 ∈ [0, 1], we
consider the range of the roots to complete the proof.

For ∆1, we know
∆1 ∝ −∆11∆12,

where, ∆11 = x0 − γ and

∆12 = 1 − 2γ

1 + α
(
1 − 1

N

) + 2(γ − x0).

Then
∆1 < 0 ⇐⇒ ∆11∆12 > 0.

Defining ∆∗ = ∆11∆12, obviously,

∆∗ = 1
1 + α

(
1 − 1

N

) {(x0 − γ) (1 − 2γ) − 2 (x0 − γ)2
[
1 + α

(
1 − 1

N

)]}

:∝ −2
[
1 + α

(
1 − 1

N

)]
x2

0 +
[
2γ + 1 + 4γα

(
1 − 1

N

)]
x0 −

[
γ + 2γ2α

(
1 − 1

N

)]
.

(54)

Using the last expression in (54), we calculate the discriminant

∆ =
[
2γ + 1 + 4γα

(
1 − 1

N

)]2
− 8

[
1 + α

(
1 − 1

N

)] [
γ + 2γ2α

(
1 − 1

N

)]
= (2γ − 1)2.

(55)
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For ∀α ≥ 0, N ∈ N, γ ∈ [0, 1] and γ ̸= 0.5, ∆ > 0. And the expressions for the two roots are

γ, γ + 1 − 2γ

2
[
1 + α

(
1 − 1

N

)] ∈ [0, 1].

Hence, for a downward opening parabola, ∀x0 ∈ (x0L, x0R), where

x0L = min

γ, γ + 1 − 2γ

2
[
1 + α

(
1 − 1

N

)]
 , x0R = max

γ, γ + 1 − 2γ

2
[
1 + α

(
1 − 1

N

)]
 ,

then ∆∗ > 0 and ∆1 < 0. According Theorem 1, F2(t) has an inflection point.
For Θ1, the process details are similar to the above steps and are omitted here.

Appendix B The derivative and limit
For the Dst(u) in 2.2.3, the inflection point is sought by the derivative and limit. We describe
the calculations used in the formation of ideas as follows.

B.1 Pure drift for P1, the linear pressure model for P2

We have
Dst(u) = V ar(Yu,1) + D2 (x0, Yu,2)

x0 + E(Yu,2) − 2x0E(Yu,2) ,

where
E(Yu,2) = e−αu (x0 − γ) + γ,

D2 (x0, Yu,2) = −Θ1
α

e−αu + Θ2
2α + 1e−(2α+1)u + (x0 − γ)2 + γ(1 − γ)

2α + 1 ,

and
V ar(Yu,1) = x0(1 − x0)

(
1 − e−u) .

When two non-negative functions f1 and f2 are differentiable, the chain rule says,(
f1
f2

)′
= f

′
1f2 − f1f

′
2

f2
2

,

if f1
′ < 0 and f2

′ > 0, then (f1/f2)′ < 0. We set

f1 = V ar(Yu,1) + D2 (x0, Yu,2) ,

f2 = (1 − 2x0)E(Yu,2) + x0.

Using the above expressions, we get

f2
′ = −α(1 − 2x0)(x0 − γ) > 0 ⇐⇒ (1 − 2x0)(x0 − γ) < 0,

and

f1
′ = df1

du
= x0(1 − x0)e−u + Θ1e−αu − Θ2e−(2α+1)u

= (Θ1 − Θ2)e−u + Θ1e−αu − Θ2e−(2α+1)u

= Θ1e−u
(
1 + e(1−α)u

)
− Θ2e−u(1 + e−2αu),
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then
f1

′ < 0 ⇐⇒ Θ1
(
1 + e(1−α)u

)
< Θ2(1 + e−2αu),

so,
1 + e−2αu

1 + e(1−α)u >
Θ1
Θ2

, Θ2 > 0, (56)

or
1 + e−2αu

1 + e(1−α)u <
Θ1
Θ2

, Θ2 < 0. (57)

But from the previous analysis, we know that Θ2 < Θ1 and 0 < e−2αu < e(1−α)u, (56)
is not possible; (1 − 2x0)(x0 − γ) < 0 and Θ1 < 0 also cannot be held together in the
areas delineated by the Figure 4, (57) is also undesirable. The above preliminary judgment
inspires us to consider

f ′
1f2 − f1f ′

2 =e−ux0 (1 − x0) [x0 + γ (1 − 2x0)]
+ e−αu {Θ1 [x0 + γ (1 − 2x0)] + α (1 − 2x0) (x0 − γ) x0 (1 − x0)

+α (1 − 2x0) (x0 − γ)3 + α

2α + 1 (1 − 2x0) (x0 − γ) γ(1 − γ)
}

+ e−(α+1)ux0 (1 − x0) (1 − 2x0) (x0 − γ) (1 − α)
− e−(2α+1)uΘ2 [x0 + γ (1 − 2x0)]

− e−(3α+1)uΘ2 (1 − 2x0) (x0 − γ) α + 1
2α + 1 .

(58)

Letting e−u = λ, then (58) can be transformed into

f ′
1f2 − f1f ′

2 =λx0 (1 − x0) [x0 + γ (1 − 2x0)]
+ λα {Θ1 [x0 + γ (1 − 2x0)] + α (1 − 2x0) (x0 − γ) x0 (1 − x0)

+α (1 − 2x0) (x0 − γ)3 + α

2α + 1 (1 − 2x0) (x0 − γ) γ(1 − γ)
}

+ λ(α+1)x0 (1 − x0) (1 − 2x0) (x0 − γ) (1 − α)
− λ(2α+1)Θ2 [x0 + γ (1 − 2x0)]

− λ(3α+1)Θ2 (1 − 2x0) (x0 − γ) α + 1
2α + 1 .

(59)

Using (59), we introduce the following limit.
1) If α > 1, u → ∞, then

f ′
1f2 − f1f ′

2 = x0 (1 − x0) [x0 + γ (1 − 2x0)] λ + o(λ).

2) If α = 1, u → ∞, then

f ′
0f2 − f1f ′

2 ={2x2
0 (1 − x0)2 + Θ1 [x0 + γ (1 − 2x0)] + (1 − 2x0) (x0 − γ)3

+1
3 (1 − 2x0) (x0 − γ) γ(1 − γ)

}
λ + o(λ).

3) If α < 1, u → ∞, then

f ′
1f2 − f1f ′

0 ={Θ1 [x0 + γ (1 − 2x0)] + α (1 − 2x0) (x0 − γ) x0 (1 − x0)

+ α (1 − 2x0) (x0 − γ)3 + α

2α + 1 (1 − 2x0) (x0 − γ) γ(1 − γ)
}

λα + o(λα).
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Obviously, in the 1) f ′
1f2 − f1f ′

0 ≥ 0, and f ′
1f2 − f1f ′

0 is more likely to be negative in the 3)
than in the 2). We consider the 3) limiting form as a case and give a result under α < 1 in
the main text.

B.2 The same linear pressure model for P1 and P2

We consider

Dst(u) =D2 (x0, Yu,1) + D2 (x0, Yu,2) − 2E (Yu,1 − x0)E (Yu,2 − x0)
E (Yu,1 + Yu,2) − 2E(Yu,1)E(Yu,2) ,

and the same linear evolutionary pressure model for P1 and P2, then Dst(u) can be simplified
as

Dst(u) = D2 (x0, Yu) − (E(Yu) − x0)2

E(Yu) (1 − E(Yu)) ,

where,
E(Yu) = e−αu (x0 − γ) + γ,

D2 (x0, Yu) = −Θ1
α

e−αu + Θ2
2α + 1e−(2α+1)u + (x0 − γ)2 + γ(1 − γ)

2α + 1 .

We set
f1 = D2 (x0, Yu) − (E(Yu) − x0)2 ,

f2 = E(Yu) (1 − E(Yu)) ,

then in details,

f1 = (x0 − γ)2
[
e−(2α+1)u − e−2αu

]
+ 1

α + 1 (x0 − γ) (1 − 2γ)
[
e−αu − e−(2α+1)u

]
+ 1

2α + 1γ(1 − γ)
[
1 − e−(2α+1)u

]
=e−αu · 1

α + 1 (x0 − γ) (1 − 2γ)

− e−2αu (x0 − γ)2

+ 1
2α + 1γ(1 − γ)

+ e−(2α+1)u · Θ2
2α + 1(using(13), (14)),

f2 =e−αu (x0 − γ) (1 − 2γ) − e−2αu (x0 − γ)2 + γ(1 − γ).

We calculate two derivatives,

f ′
1 =e−αu −α

α + 1 (x0 − γ) (1 − 2γ) + e−2αu · 2α (x0 − γ)2 + e−(2α+1)u (−Θ2)

f ′
2 =e−αu(−α) (x0 − γ) (1 − 2γ) + e−2αu · 2α (x0 − γ)2 .

29
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Combining f ′
1 and f ′

2, we obtain

f ′
1f2 − f1f ′

2 =e−αuα (x0 − γ) (1 − 2γ)γ(1 − γ)
( 1

2α + 1 − 1
α + 1

)
+ e−2αu (x0 − γ)2 γ(1 − γ) 4α2

2α + 1
+ e−(2α+1)u (−θ2) γ(1 − γ)

+ e−3αu (x0 − γ)3 (1 − 2γ)
(

α − α

α + 1

)
+ e−(3α+1)uθ2 (x0 − γ) (1 − 2γ)

(
α

2α + 1 − 1
)

+ e−(4α+1)uθ2 (x0 − γ)2
(

1 − 2α

2α + 1

)
.

(60)

Letting e−u = λ and u → ∞, then (60) can be transformed into

f ′
1f2 − f1f ′

2
λα

= (x0 − γ) (1 − 2γ)γ(1 − γ) −α2

(2α + 1)(α + 1) + o(1).

Obviously, we only need to consider x0 and γ, s.t. (x0 − γ) (1 − 2γ) > 0 and give a case in
the main text.
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Abstract1

Principal component analysis (PCA) is commonly used in genetics to infer and visualize population structure and admixture between populations.
PCA is often interpreted in a way similar to inferred admixture proportions, where it is assumed that individuals belong to one of several
possible populations or are admixed between these populations. We propose a new method to assess the statistical fit of PCA (interpreted as
a model spanned by the top principal components) and to show that violations of the PCA assumptions affect the fit. Our method uses the
chosen top principal components to predict the genotypes. By assessing the covariance (and the correlation) of the residuals (the differences
between observed and predicted genotypes), we are able to detect violation of the model assumptions. Based on simulations and genome
wide human data we show that our assessment of fit can be used to guide the interpretation of the data and to pinpoint individuals that are not
well represented by the chosen principal components. Our method works equally on other similar models, such as the admixture model, where
the mean of the data is represented by linear matrix decomposition.
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Introduction1

Principal component analysis (PCA) and model-based clustering meth-2

ods are popular ways to disentangle the ancestral genetic history of3

individuals and populations. One particular model, the admixture4

model (Pritchard et al. 2000), has played a prominent role because of5

its simple structure and, in some cases, easy interpretability. PCA is6

often seen as being model free but as noted by Engelhardt and Stephens7

(2010), the two approaches are very similar. The interpretation of the8

results of a PCA analysis is often based on assumptions similar to those9

of the admixture model, such that admixed individuals are linear combi-10

nations of the eigenvectors representing unadmixed individuals. In this11

way, the admixed individuals lie in-between the unadmixed individuals12

in a PCA plot. As shown for the admixture model, there are many13

demographic histories that can lead to the same result (Lawson et al.14

2018a) and many demographic histories that violate the assumptions of15

the admixture model (Garcia-Erill and Albrechtsen 2020). As we will16

show, this is also the case for PCA, since it has a similar underlying17

model (Engelhardt and Stephens 2010).18

The admixture model states that the genetic material from each19

individual is composed of contributions from k distinct ancestral ho-20

mogeneous populations. However, this is often contested in real data21

analysis, where the ancestral population structure might be much more22

complicated than that specified by the admixture model. For example,23

the k ancestral populations might be heterogeneous themselves, the24

exact number of ancestral populations might be difficult to assess due25

to many smaller contributing populations, or the genetic composition26

of an individual might be the result of continuous migration or recent27

backcrossing, which also violates the assumptions of the admixture 28

model. Furthermore, the admixture model assumes individuals are un- 29

related, which naturally might not be the case. This paper is concerned 30

with assessing the fit of PCA building on the special relationship with 31

the admixture model (Engelhardt and Stephens 2010). In particular, 32

we are interested in quantifying the model fit and assessing the validity 33

of the model at the level of the sample as well as at the level of the 34

individual. Using real and simulated data we show that the fit from a 35

PCA analysis is affected by violations of the admixture model. 36

We consider genotype data G from n individuals and m SNPs, such 37

that Gsi ∈ {0,1,2} is the number of reference alleles for individual 38

i and SNP s. Typically, Gsi is assumed to be binomially distributed 39

with parameter Πsi, where Πsi depends on the number of ancestral 40

populations, k, their admixture proportions and the ancestral population 41

allele frequencies. For clustering based analysis such as ADMIXTURE 42

(Alexander and Lange 2011), k is the number of clusters while in PCA, 43

it is the k−1 top principal components. We give the specifics of the 44

admixture model in the next section and show its relationship to PCA 45

in the Material and methods section. 46

Several methods aim to estimate the best k in some sense (Alexander 47

and Lange 2011; Evanno et al. 2005; Pritchard et al. 2000; Raj et al. 48

2014; Wang 2019), but finding such k does not imply the data fit the 49

model (Lawson et al. 2018b; Janes et al. 2017). In statistics, it is 50

standard to use residuals and distributional summaries of the residuals 51

to assess model fit (Box et al. 2005). The residual of an observation 52

is defined as the difference between the observed and the predicted 53

value (estimated under some model). Visual trends in the residuals 54

(for example, differences between populations) are indicative of model 55

70 CHAPTER 3. MANUSCRIPT 2



2 Evaluation of model fit

misfit, and large absolute values of the residuals are indicative of1

outliers (for example due to experimental errors, or kinship). If the2

model is correct, a histogram of the residuals is expected to be mono-3

modal centered around zero (Box et al. 2005).4

In our context, Garcia-Erill and Albrechtsen (2020) argue that trends5

in the residual correlation matrix carries information about the underly-6

ing model and might be used for visual model evaluation. A method is7

designed to assess whether the correlation structure agrees with the pro-8

posed model, in particular, whether it agrees with the proposed number9

of homogeneous ancestral populations (Garcia-Erill and Albrechtsen10

2020). However, even in the case the model is correctly specified, the11

residuals are in general correlated (Box et al. 2005), and therefore,12

trends might be observed even if the model is true, leading to incor-13

rect model assessment. To adjust for this correlation, a leave-one-out14

procedure, based on maximum likelihood estimation of the admixture15

model parameters, is developed that removes the correlation between16

residuals in the case the model is correct, but not if the model is mis-17

specified (Garcia-Erill and Albrechtsen 2020). This approach could18

also be applied to PCA, where expected genotypes could be calculated19

using probabilistic PCA (Meisner et al. 2021). This leave-one-out20

procedure is, however, computationally expensive.21

To remedy the computational difficulties, we take a different ap-22

proach to investigate the correlation structure. We suggest two different23

ways of calculating the correlation matrix of the residuals. The first is24

simply the empirical correlation matrix of the residuals. The second25

might be considered an estimated correlation matrix, based on a model.26

Both are simple to compute. Under mild regularity assumptions, these27

two measures agree if the model is correct and the number of SNPs28

is large. Hence, their difference is expected to be close to zero, when29

the admixture model is not violated. If the difference is considerably30

different from zero, then this is proof of model misfit.31

To explore the adequacy of the proposed method, we investigate32

different ways to calculate the predicted values of the genotype (hence,33

the residuals), using Principal Component Analysis (PCA) in different34

ways. However, we also show that this approach can be used on esti-35

mated admixture proportions. Specifically, we use 1) an uncommon but36

very useful PCA approach (here, named PCA 1) based on unnormal-37

ized genotypes (Cabreros and Storey 2019; Chen and Storey 2015), 2)38

PCA applied to mean centred data (PCA 2), see Patterson et al. (2006),39

and 3) PCA applied to mean and variance normalised data (PCA 3)40

(Patterson et al. 2006). All three approaches are computationally fast41

and do not require separate estimation of ancestral allele frequencies42

and population proportions, as in Garcia-Erill and Albrechtsen (2020).43

Hence, the computation of the residuals are computationally inexpen-44

sive. Additionally, we show that this approach can also be applied to45

output from, for example, the software ADMIXTURE (Alexander et al.46

2009) to estimate Πsi for each s and i, and to calculate the residuals47

from these estimates. An overview of PCA can be found in Jolliffe and48

Cadima (2016).49

We demonstrate that our proposed method works well on simulated50

and real data, when the predicted values (and the residuals) are calcu-51

lated in any of the four mentioned ways. Furthermore, we back this52

up mathematically by showing that the two correlation measures agree53

(if the number of SNPs is large) under the correct admixture model54

for PCA 1 and PCA 2. For the latter, a few additional assumptions are55

required. The estimated covariance (and correlation coefficient) under56

the proposed model might be seen as a correction term for population57

structure. Subtracting it from the empirical covariance, thus gives a58

covariance estimate with baseline zero under the correct model, inde-59

pendent of the population structure. It is natural to suspect that similar60

can be done in models with population structure and kinship, which61

we will pursue in a subsequent study.62

In the next section, we describe the model, the statistical approach 63

to compute the residuals, and how we evaluate model fit. In addition, 64

we give mathematical statements that show how the method performs 65

theoretically. In the ‘Results’ section, we provide analysis of simulated 66

and real data, respectively. We end with a discussion. Mathematical 67

proofs are collected in the appendix. 68

Materials and methods 69

Notation 70

For an ℓ1 × ℓ2 matrix A = (Ai j)i, j, A⋆i denotes the i-th column of A,
Ai⋆ the i-th row, AT the transpose matrix, and rank(A) the rank. The
Frobenius norm of a square ℓ× ℓ matrix A is

∥A∥F =

√√√√ ℓ

∑
i=1

ℓ

∑
j=1

A2
i j.

A square matrix A is an orthogonal projection if A2 = A and AT = A. 71

A symmetric matrix has n real eigenvalues (with multiplicity) and 72

the eigenvectors can be chosen such that they are orthogonal to each 73

other. If the matrix is positive (semi-)definite, then the eigenvalues are 74

positive (non-negative). 75

For a random variable/vector/matrix X , its expectation is denoted 76

E[X ] (provided it exist). The variance of a random variable X is 77

denoted var(X), and covariance between two random variables X ,Y 78

is denoted cov(X ,Y ) (provided they exist). Similarly, for a random 79

vector X = (X1, . . . ,Xn), the covariance matrix is denoted cov(X). For 80

a sequence Xm, m = 0, . . . , of random variables/vectors/matrices, if 81

Xm → X0 as m → ∞ almost surely (convergence for all realisations 82

but a set of zero probability), we leave out ‘almost surely’ and write 83

Xm → X0 as m → ∞ for convenience. 84

The PCA and the admixture model 85

We consider a model with genotype observations from n individuals,
and m biallelic sites (SNPs), where m is assumed to be (much) larger
than n, m ≥ n. The genotype Gsi of SNP s in individual i is assumed to
be a binomial random variable

Gsi ∼ binomial(2,Πsi).

In matrix notation, we have G ∼ binomial(2,Π) with expectation 86

E(G | Π) = 2Π, where G and Π are m× n dimensional matrices. 87

Conditional on Π, we assume the entries of G are independent random 88

variables. 89

Furthermore, we assume the matrix Π takes the form Π = FQ,
where Q is a (possibly unconstrained) k×n matrix of rank k ≤ n, and
F is a (possibly unconstrained) m× k matrix, also of rank k (implying
Π likewise is of rank k, Lemma 13). Entry-wise, this amounts to

Πsi = (FQ)si =
k

∑
k=1

FskQki, s = 1, . . . ,n, i = 1, . . . ,m.

For the binomial assumption to make sense, we must require the entries 90

of Π to be between zero and one. 91

In the literature, this model is typically encountered in the form 92

of an admixture model with k ancestral populations, see for example, 93

Pritchard et al. (2000); Garcia-Erill and Albrechtsen (2020). The 94

general unconstrained setting which applies to PCA has also been 95

discussed (Cabreros and Storey 2019). In the case of an admixture 96

model, Q is a matrix of ancestral admixture proportions, such that the 97

proportion of individual i’s genome originating from population j is 98

Q ji. Furthermore, F is a matrix of ancestral SNP frequencies, such 99
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that the frequency of the reference allele of SNP s in population j is1

Fs j. In many applications, the columns of Q sum to one.2

While we lean towards an interpretation in terms of ancestral popu-3

lation proportions and SNP frequencies, our approach does not enforce4

or assume the columns of Q (the admixture proportions) to sum to one,5

but allow these to be unconstrained. This is advantageous for at least6

two reasons. First, a proposed model might only contain the major7

ancestral populations, leaving out older or lesser defined populations.8

Hence, the sum of ancestral proportions might be smaller than one.9

Secondly, when fitting a model with fewer ancestral populations than10

the true model, one should only require the admixture proportions to11

sum to at most one.12

The residuals13

Our goal is to design a strategy to assess the hypothesis that Π is a
product of two matrices. As we do not know the true k, we suggest a
number k′ of ancestral populations and estimate the model parameters
under this constraint. That is, we assume a model of the form

G ∼ binomial(2,Πk′ ), Πk′ = Fk′Qk′ ,

where each entry of G follows a binomial distribution. Qk′ has dimen-14

sion k′×n, Fk′ has dimension m×k′, and rank(Qk′ ) = rank(Fk′ ) = k′,15

hence also rank(Πk′ ) = k′. Throughout, we use the index k′ to indicate16

the imposed rank condition, and assume k′ ≤ k unless otherwise stated.17

The latter assumption is only to guarantee the mathematical validity of18

certain statements, and is not required for practical use of the method.19

Our approach is build on the residuals, the difference between ob-20

served and predicted data. To define the residuals, we let P : Rn → Rn
21

be the orthogonal projection onto the k-dimensional subspace spanned22

by the k rows of (the true) Q, hence P = QT (QQT )−1Q, and QP = Q.23

Let P̂k′ be an estimate of P based on the data G, and assume P̂k′ is an24

orthogonal projection onto a k′-dimensional subspace. Later in this25

section, we show how an estimate P̂k′ can be obtained from an estimate26

of Qk′ or an estimate of Πk′ . Estimates of these parameters might be27

obtained using existing methods, based on for example, maximum like-28

lihood analysis (Wang 2003; Alexander et al. 2009; Garcia-Erill and29

Albrechtsen 2020). Furthermore, for the three PCA approaches, an esti-30

mate of the projection matrix can simply be obtained from eigenvectors31

of a singular value decomposition (SVD) of the data matrix.32

We define the m×n matrix of residuals by

Rk′ = G−2Π̂ = G(I − P̂k′ ),

where G is the observed data and GP̂k′ , the predicted values. The latter33

might also be considered an estimate of 2Π, the expected value of34

G. This definition of residuals is in line with how the residuals are35

defined in a multilinear regression model as the difference between the36

observed data (here, G) and the projection of the data onto the subspace37

spanned by the regressors (here, GP̂k′ ). The essential difference being38

that in a multilinear regression model, the regressors are known and39

does not depend on the observed data, while P̂k′ is estimated from the40

data.41

We assess the model fit by studying the correlation matrix of the
residuals in two ways. First, we consider the empirical covariance
matrix B̂ with entries

B̂i j =
1

m−1

m

∑
s=1

(Rk′,si −Rk′,i)(Rk′,s j −Rk′, j)

=
1

m−1

m

∑
s=1

(Rk′,siRk′,s j −Rk′,i Rk′, j),

where

Rk′i =
1
m

m

∑
s=1

Rk′,si,

and the corresponding empirical correlation matrix with entries

b̂i j =
B̂i j√
B̂iiB̂ j j

,

i, j = 1, . . . ,n. Secondly, we consider the estimated covariance matrix

Ĉ = (I − P̂k′ )D̂(I − P̂k′ )

with corresponding estimated correlation matrix,

ĉi j =
Ĉi j√
ĈiiĈ j j

,

i, j = 1, . . . ,n. Here, D̂ is the n× n diagonal matrix containing the
average heterozygosities of each individual,

D̂ii =
1
m

m

∑
s=1

Gsi(2−Gsi), i = 1, . . . ,n.

Under reasonable regularity conditions, we can quantify the be-
haviour of B̂ and Ĉ as the number of SNPs become large. Specifically,
we assume the rows of F are independent and identically distributed
with distribution Dist(µ ,Σ), where µ denote the k-dimensional mean
vector of the distribution, and Σ the k×k-covariance matrix, that is,

Fs⋆ = (Fs1, . . . ,Fsk)
iid∼ Dist(µ ,Σ),

s = 1, . . . ,m. The matrix Q is assumed to be non-random, that is, fixed. 42

These assumptions are standard and typically used in simulation of ge- 43

netic data, see for example, Pickrell and Pritchard (2012); Cabreros and 44

Storey (2019); Garcia-Erill and Albrechtsen (2020). Often dist(µ ,Σ) 45

is taken to be the product of k independent uniform distributions in 46

which case µ = 0.5(1,1, . . . ,1) and Σ is a diagonal matrix with entries 47

1/12, though other choices have been applied, see for example Balding 48

and Nichols (1995); Conomos et al. (2016). 49

Let D be the diagonal matrix with entries

Dii = 2E[Πsi(1−Πsi)], i = 1, . . . ,n. (1)

It follows from Lemma 7 in the appendix, that D̂ converges to D as 50

m → ∞. Furthermore, as Dii is the variance of Gsi (it is binomial), then 51

D̂ii might be considered an estimate of this variance. The proofs of the 52

statements are in the appendix. 53

Theorem 1. Let k′ ≤ k. Under the given assumptions, suppose further
that P̂k′ →Pk′ as m→∞, for some matrix Pk′ . Then, Pk′ is an orthogonal
projection. Furthermore, the following holds,

B̂ → (I −Pk′ )(D+ 4QT ΣQ)(I −Pk′ ),

Ĉ → (I −Pk′ )D(I −Pk′ ),

as m → ∞. Hence, also

B̂ − Ĉ → 4(I −Pk′ )Q
T ΣQ(I −Pk′ )

= 4(P−Pk′ )Q
T ΣQ(P−Pk′ ),

as m → ∞. For k′ = k, if Pk = P, then the right hand side is the zero 54

matrix, whereas this is not the case in general for k′ < k. 55

Theorem 2. Assume k′ = k and Pk = P. Furthermore, suppose as in
Theorem 1 and that the vector with all entries equal to one is in the
space spanned by the rows of Q (this is, for example, the case if the
admixture proportions sum to one for each individual). Then,

∑
n
i=1 ∑

n
j=1,i ̸= j B̂i j

∑
n
i=1 B̂ii

→ −1, as m → ∞. (2)
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4 Evaluation of model fit

In addition, if Q takes the form

Q =


Q1 0 · · · 0

0 Q2 · · · 0
...

...
. . .

...

0 0 · · · Qr


where Qℓ has dimension kℓ×nℓ, ∑

r
ℓ=1 kℓ = k and ∑

r
ℓ=1 nℓ = n, then

(2) holds for each component of nℓ individuals. If Qℓ = (1 . . .1), then

b̂i j → − 1
nℓ−1

, as m → ∞,

for all individuals i, j in the ℓ-th component, irrespective the form of1

Qℓ′ , ℓ′ ̸= ℓ.2

Theorem 3. Assume k′ = k and Pk = P. Furthermore, suppose as in
Theorem 1 and that Q takes the form

Q =

Q1 Q2

0 Q3

 ,

where Q1 = (1 . . .1) has dimension 1×n1, n1 ≤ n. Then, b̂i j converges3

as m → ∞ to a value larger than or equal to − 1
n1−1 , for all i, j =4

1, . . . ,n1.5

The same statements in the last two theorems hold with B̂ and b̂6

replaced by Ĉ and ĉ, respectively.7

The three theorems provide means to evaluate the model. In par-8

ticular, Theorem 1 might be used to assess the correctness (or appro-9

priateness) of the proposed k′, while Theorem 2 and Theorem 3 might10

be used to assess whether data from a group of individuals (e.g., a11

modern day population) originates from a single ancestral population,12

irrespective, the origin of the remaining individuals. We give examples13

in the Results section.14

The work flow is shown in Algorithm 1. We process real and15

simulated genotype data using PCA 1, PCA 2, PCA 3, and the software16

ADMIXTURE, and evaluate the fit of the model.17

Algorithm 1 Work flow of the proposed method

1. Choose k′,

2. Compute an estimate P̂k′ of the projection P,

3. Calculate the residuals Rk′ = G(I − P̂k′ ),

4. Calculate the correlation coefficients, b̂ and ĉ,

5. Plot b̂ and the difference, the corrected correlation coefficients,
b̂− ĉ,

6. Assess visually the fit of the model.

Estimation of Pk′18

Estimation of Q,F , and Π has received considerable interest in the liter-19

ature, using for example, maximum likelihood (Wang 2003; Alexander20

et al. 2009), Bayesian approaches (Pritchard et al. 2000) or PCA (En-21

gelhardt and Stephens 2010).22

We discuss different ways to obtain an estimate P̂k′ of P.23

Using an estimate Q̂k′ of Qk′ An estimate P̂k′ might be obtained by
projecting onto the subspace spanned by the k′ rows of Q̂k′ ,

P̂k′ = Q̂T
k′ (Q̂k′ Q̂

T
k′ )

−1Q̂k′ ,

assuming rank(Q̂k′ ) = k′ for the calculation to be valid. 24

We apply this approach to estimate the projection matrix using 25

output from the software ADMIXTURE. 26

Using an estimate Π̂k′ of Πk′ Let Π̃k′ be k′ linearly independent
rows chosen from Π̂k′ (out of m rows). Then, an estimate P̂k′ of Pk′ is

P̂k′ = Π̃T
k′ (Π̃k′Π̃T

k′ )
−1Π̃k′ ,

assuming rank(Π̂k′ ) = k′ for the calculation to be valid. Alternatively, 27

one might apply the Gram-Schmidt method in which case the vectors 28

are orthonormal by construction and P̂k′ = Π̃T
k′Π̃k′ . The estimate P̂k′ is 29

independent of the choice of the k′ rows, provided rank(Π̂k′ ) = k′. 30

Using PCA 1 We consider a PCA approach, originally due to Chen 31

and Storey (2015), to estimate the space spanned by the rows of Q. We 32

follow the procedure laid out in Cabreros and Storey (2019). 33

Let Ĥ be the symmetric matrix

Ĥ =
1
m

GT G− D̂.

Since Ĥ is symmetric, all eigenvalues are real and the matrix is diag-
onalisable. Furthermore, Ĥ is a variance adjusted version of 1

m GT G,
see (1). Let u1, . . . ,uk′ be k′ ≤ k orthogonal eigenvectors belonging to
the k′ largest eigenvalues of Ĥ, counted with multiplicities. Define the
n×k′ matrix Uk′ = (u1, . . . ,uk′ ) and the n×n orthogonal projection
matrix

P̂k′ =Uk′ (U
T
k′ Uk′ )

−1UT
k′ =Uk′U

T
k′

onto the subspace given by the span of the vectors u1, . . . ,uk′ . 34

In this particular case, convergence of P̂k′ can be made precise. De- 35

fine the matrix H = 4QT (Σ+ µµT )Q. Then, H is symmetric and pos- 36

itive semi-definite because Σ and µµT both are positive semi-definite. 37

Hence, H has non-negative eigenvalues. Furthermore, according to 38

Lemma 8 in the appendix, Ĥ converges to H as m → ∞. 39

Theorem 4. Assume k′ ≤ k. Let λ1 ≥ . . .≥ λn ≥ 0 be the eigenvalues of
H, with corresponding orthogonal eigenvectors v1, . . . ,vn. In particular,
λk+1 = . . . = λn = 0, as Q has rank k. Let Pk′ be the orthogonal
projection onto the span of v1, . . . ,vk′ , that is,

Pk′ = Vk′ (V
T
k′ Vk′ )

−1V T
k′ = Vk′V

T
k′ ,

where Vk′ = (v1, . . . ,vk′ ). 40

Assume k′ = n or λk′ > λk′+1, referred to as the eigenvalue condi- 41

tion. Then, P̂k′ → Pk′ as m → ∞. If the eigenvalue condition is fulfilled 42

for k′ = k, then Pk = P, that is, Pk is the orthogonal projection onto the 43

span of the row vectors of Q. In particular, the eigenvalue condition 44

is fulfilled for k′ = k if and only if Σ+ µµT is positive definite. The 45

latter is the case if Σ is positive definite. 46

For k′ = k, the correct row space of Q is found eventually, but not 47

Q itself. If k′ < k, then a subspace of this row space is found, corre- 48

sponding to the k′ largest eigenvalues. As the data is not mean centred, 49

we discard the first principal component, and use the subsequent k′−1 50

eigenvectors and eigenvalues. 51
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Using PCA 2 (mean centred data) A popular approach to estimation1

of Π in the admixture model is PCA based on mean centred data, or2

mean and variance normalised data (Pritchard et al. 2000; Engelhardt3

and Stephens 2010; Patterson et al. 2006).4

Let G1 = G− 1
n GE = G(I − 1

n E) be the SNP-wise mean centred
genotypes, where E is an n× n matrix with all entries equal to one.
Following the exposition and notation in Cabreros and Storey (2019),
let G1 = U∆V T be the SVD of G1, where ∆V T consists of the row-
wise principal components of G1, ordered according to the singular
values. Define

Sk′ =

UT
1:(k′−1)

e

 ,

where e = (11 . . . 1) is a vector with all entries one, and UT
1:(k′−1)

contains the top k′−1 rows of UT . Then, an estimate of the projection
is

P̂k′ = ST
k′ (Sk′S

T
k′ )

−1Sk′ .

The squared singular values in the SVD decomposition of G1 are
the same as the eigenvalues of

Ĥ1 =
1
m

GT
1 G1 =

1
m

(
I − 1

n
E
)

GT G
(

I − 1
n

E
)

(Jolliffe 2002). We have

E[Ĥ1] =
1
m

(
I − 1

n
E
)

E[GT G]

(
I − 1

n
E
)

=

(
I − 1

n
E
)
(D+ 4QT (Σ+ µµ

T )Q)

(
I − 1

n
E
)

. (3)

Let H1 denote the right hand side of (3).5

Theorem 5. Let λ1 ≥ . . .≥ λn be the eigenvalues of H1, with corre-6

sponding orthogonal eigenvectors v1, . . . ,vn. In particular, vn = e and7

λn = 0. If D has all diagonal entries positive, then λn−1 > 0.8

Let k′ ≤ n and let Pk′ be the orthogonal projection onto the span of
v1, . . . ,vk′−1,e, that is,

Pk′ = Vk′ (V
T
k′ Vk′ )

−1V T
k′ ,

where Vk′ = (v1, . . . ,vk′−1,e). If k′ = n or λk′ > λk′+1, then P̂k′ → Pk′9

as m → ∞.10

There are no guarantees that for k′ = k, we have Pk = P and that the11

difference between B̂ and Ĉ converges to zero for large m. However,12

this is the case under some extra conditions, and appears to be the case13

in many practical situations, see the Results section.14

Theorem 6. Assume D = dI for some d > 0. Furthermore, assume15

the vector e is in the row space of Q (this is, for example, the case16

if the admixture proportions sum to one for each individual). Then,17

λk = . . .= λn−1 = d, and λn = 0.18

If Σ+ µµT is positive definite, then λk+1 > λk and Pk = P, where19

Pk is as in Theorem 4. As a consequence, with k′ = k in Theorem 1,20

B̂−Ĉ → 0 as m → ∞.21

Using PCA 3 (mean and variance normalised data) Let G2 =
W−1G1 be the SNP mean and variance normalised genotypes, where
W is an m′×m′ diagonal matrix with s-th entry being the observed
standard deviation of the genotypes of SNP s. All SNPs for which no
variation are observed are removed, hence the number of SNPs might
be smaller than the original number, m′ ≤ m. Following the same
procedure as for PCA 2, let G2 = U∆V T be the SVD of G2, where

∆V T consists of the row-wise principal components of G2, ordered
according to the singular values. Define

Sk′ =

V T
1:(k′−1)

e

 ,

where e = (11 . . . 1), and V T
1:(k′−1) contains the top k′−1 rows of V T . 22

Then, an estimate of the projection is P̂k′ = ST
k′ (Sk′ST

k′ )
−1Sk′ . 23

We are not aware of any theoretical justification of this procedure 24

similar to Theorem 1, but it appears to perform well in many practical 25

situations, according to our simulations. 26

Simulation of genotype data 27

We simulated genotype data from different demographic scenarios 28

using different sampling strategies. We deliberately choose different 29

sampling strategies to challenge the method. We first made simple 30

simulations that illustrate the problem of model fit as well as to demon- 31

strate the theoretical and practical properties of the residual correlations 32

that arise from having data from a finite number of individuals and a 33

large number of SNPs. An overview of the simulations are given in 34

Table 1. 35

In the first two scenarios, the ancestral allele frequencies are sim- 36

ulated independently for each ancestral population from a uniform 37

distribution, Fsi ∼ Unif(0,1) for each site s = 1, . . . ,m and each ances- 38

tral population i = 1, . . . ,k. In scenario 1, we simulated unadmixed 39

individuals from three populations with either an equal or an unequal 40

number of sampled individuals from each population. In scenario 2, 41

we simulated two ancestral populations and a population that is ad- 42

mixed with half of its ancestry coming from each of the two ancestral 43

populations. 44

In scenario 3, we set Fsi ∼ Unif(0.01,0.99) and simulated spatial 45

admixture in a way that resembles a spatial decline of continuous gene 46

flow between populations living in a long narrow island. We first 47

simulated a single population in the middle of the long island. From 48

both sides of the island, we then recursively simulated new populations 49

from a Balding-Nichols distribution with parameter Fst = 0.001 using 50

the R package ‘bnpsd’ (Ochoa and Storey 2019). In this way, each pair 51

of adjacent populations along the island has an Fst of 0.001. Additional 52

details on the simulation and an schematic visualization can be found 53

in Figure 2 of Garcia-Erill and Albrechtsen (2020). 54

In scenario 4, we first simulated allele frequencies for an ancestral 55

population from a symmetric beta distribution with shape parameter 56

0.03, Fsi ∼ Beta(0.3,0.3), which results in an allele frequency spec- 57

trum enriched for rare variants, mimicking the human allele frequency 58

spectrum. We then sampled allele frequencies from a bifurcating tree 59

(((pop1:0.1,popGhost:0.2):0.05,pop2:0.3):0.1,pop3:0.5), where pop1 60

and popGhost are sister populations and pop3 is an outgroup. Using the 61

Balding-Nichols distribution and the Fst branch lengths of the tree (see 62

Figure 5), we sampled allele frequencies in the four leaf nodes. Then, 63

we created an admixed population with 30% ancestry from popGhost 64

and 70% from pop2. We sampled 10 million genotypes for 50 individu- 65

als from each population except for the ghost population which was not 66

included in the analysis, and subsequently removed sites with a sample 67

minor allele frequency below 0.05, resulting in a total of 694,285 sites. 68

In scenario 5, we simulated an ancestral population with allele 69

frequencies from a uniform distribution Fsi ∼ Unif (0.05,0.95), from 70

which we sampled allele frequencies for two daughter populations 71

from a Balding Nicholds distributions with Fst = 0.3 from the ances- 72

tral population, using ’bnpsd’. We then created recent hybrids based 73

on a pedigree where all but one founder has ancestry from the first 74

population. The number of generations in the pedigree then deter- 75

mines the admixture proportions and the age of the admixture where F1 76
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6 Evaluation of model fit

individuals have one unadmixed parent from each population and back-1

cross individuals have one unadmixed parent and the other F1. Double2

backcross individuals have one unadmixed parent and the other is a3

backcross. We continue to quadruple backcross with one unadmixed4

parent and the other triple backcross. Note that for the recent hybrids5

the ancestry of the pair of alleles at each loci is no longer independent6

which is a violation of the admixture model.7

Results8

Scenario 19

In this first set-up, we demonstrate the method using PCA 1 only. We
simulated unadmixed individuals from k = 3 ancestral populations

Q =


1n1 0 0

0 1n2 0

0 0 1n3

 ,

where 1ni is a row vector with all elements being one, and n1 + n2 +10

n3 = n. We simulated genotypes for n = 60 individuals with sample11

sizes n1,n2 and n3, respectively, as detailed in the previous section. In12

Figure 1(A), we show the residual correlation coefficients for k′ = 2,313

and plot the corresponding major PCs. For the PCA 1 approach, the14

first principal component does not relate to population structure as the15

data is not mean centered, and we use the following k′−1 principal16

components.17

When assuming that there are only two populations, k′ = 2, we18

note that the empirical correlation coefficients appear largely consistent19

within each population sample, but the corrected correlation coeffi-20

cients are generally non-zero with different signs, which points to21

model misfit. In contrast, when assuming the correct number of pop-22

ulations is k′ = 3, the empirical correlation coefficients match nicely23

the theoretical values of − 1
ni−1 , which comply with Theorem 2 (see24

Table 2). A fairly homogeneous pattern in the corrected correlation25

coefficients appears around zero across all samples. This is a good in-26

dication that the model fits well and that the PCA plots using principal27

components 2 and 3 reflex the data well.28

Scenario 229

In this set-up we also include admixed individuals. We simulated
samples from two ancestral populations and individuals that are a mix
of the two. We then applied all three PCA procedures and the software
ADMIXTURE to the data. Specifically, we choose

Q =

1n1
1
2 1n2 0

0 1
2 1n2 1n3

 ,

with k = 2 true ancestral populations, and (n1,n2,n3) = (20,20,20)30

or (n1,n2,n3) = (10,20,30), see the previous section for details. We31

analysed the data with k′ = 1,2,3, and obtained the correlation structure32

shown in Figures 2 and 3, and Table 2. The two standard approaches33

PCA 2 and PCA 3 show almost identical results, hence only PCA 234

is shown in the figures. Both PCA 2 and PCA 3 use the top principal35

components, while PCA 1 disregards the first, hence the discrepancy36

in the axis labeling in Figures 2(b) and 3/b). For k′ = 1 none of the37

principal components are used and the predicted normalized genotypes38

is simply 0. All four methods show consistent results, in particular, for39

the correct k′ (= 2), while there are smaller discrepancies between the40

methods for wrong k′ = 1,3. This is most pronounced for PCA 1 and41

ADMIXTURE. We note that the average correlation coefficient of b̂42

within each population sample comply with Theorem 1 (see Table 2).43
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Figure 1 Results for simulated Scenario 1. (A) The upper triangle
in the plots shows the empirical correlation coefficients b̂ and the
lower triangle shows the corrected correlation coefficients b̂− ĉ. (B)
The major principal components (k′ = 3) result in a clear separation
of the three samples (all data points within each sample are almost
identical).

A fairly homogeneous pattern in the corrected correlation coefficients 44

appears around zero across all samples for k′ = 2, as in scenario 1, 45

which shows that the model fits well. However, unlike in scenario 1 the 46

bias for the empirical correlation coefficient is not a simple function of 47

the sample size (see Table 2). 48

In this case, and similarly in all other investigated cases, we don’t 49

find any big discrepancies between the four methods. Therefore, we 50

only show the results of PCA 1 for which we have theoretical justifica- 51

tion for the results. 52

Scenario 3 53

We simulated genotypes for n = 500 individuals at m = 88,082 sites 54

with continuous genetic flow between individuals, thus there is not 55

a true k. We analysed the data assuming k′ = 2,3, see Figure 4. In 56

the figure, the individuals are ordered according to the estimated pro- 57

portions of the ancestral populations, hence it appears there is a color 58

wave pattern in the empirical and the corrected correlation coefficients, 59

see Figure 4(A). As expected, the corrected correlation coefficients are 60

closer to zero for k′ = 3 than k′ = 2, though the deviations from zero 61

are still large. We thus find no support for the model for either value 62

of k′. This is consistent with the plots of the major PCs, that show 63

75



van Waaij et al. 7

Table 1 Overview of simulations.

Scenario kkk nnn mmm Description FFF is
a

1 3 20,20,20 500K Unadmixed Unif(0,1)

1 3 10,20,30 500K Unadmixed Unif(0,1)

2 2 20,20,20 500K Admixed Unif(0,1)

2 2 10,20,30 500K Admixed Unif(0,1)

3 500 100Kb Spatial with Fst = 0.001 Unif(0.01,0.99)

between adjacent populations

4 4 50,50,50,50,0c 10Md Ghost admixture Beta(0.3,0.3)

5 2 20,20,50 500K Recent hybrids Unif(0.05,0.95)
a Ancestral allele frequencies, i = 1, . . . ,k
b after applying MAF> 5% filtering, 88,082 remained.
c No reference samples are provided on the ghost population.
d after applying MAF> 5% filtering, 694,285 remained.

Table 2 The mean (standard deviation) of b̂ and b̂− ĉ within each population using PCA 1.

Scenario 1 kkk′ nnn pop1 pop2 pop3

3 (20,20,20) b̂ a -0.0526 (0.0015) -0.0526 (0.0016) -0.0526 (0.0016)

-0.0526 -0.0526 -0.0526

b̂− ĉ 0e-04 (0.0015) 0e-04 (0.0016) 0e-04 (0.0016)

(10,20,30) b̂ -0.1111 (0.0011) -0.0526 (0.0016) -0.0345 (0.0016)

-0.1111 -0.0526 -0.0345

b̂− ĉ 0e-04 (0.0012) 0e-04 (0.0016) 0e-04 (0.0016)

Scenario 2 kkk′ nnn pop1 admixed pop3

2 (20,20,20) b̂ -0.0419 (0.0015) -0.0192 (0.0015) -0.0420 (0.0015)

-0.0420 -0.0193 -0.0420

b̂− ĉ 0e-04 (0.0015) 0e-04 (0.0015) 0e-04 (0.0015)

(10,20,30) b̂ -0.0701 (0.0018) -0.0228 (0.0014) -0.0304 (0.0016)

-0.0701 -0.0229 -0.0304

b̂− ĉ 0e-04 (0.0017) 0e-04 (0.0014) 0e-04 (0.0016)

Scenario 4 kkk′′′ nnn pop1 pop2 pop3 pop4

3 (50,50,50,50) b̂ -0.0190 (0.0015) 0.0027 (0.0015) -0.0204 (0.0017) 0.0122 (0.0013)

b̂− ĉ 0.0009 (0.0015) 0.0147 (0.0015) 0e-04 (0.0017) 0.0208 (0.0013)

4 b̂ -0.0204 (0.0015) -0.0204 (0.0015) -0.0204 (0.0017) -0.0204 (0.0014)

b̂− ĉ 0e-04 (0.0015) 0e-04 (0.0015) 0e-04 (0.0017) 0e-04 (0.0013)
a The second line of b̂ in each case shows the theoretical value obtained from the limit in Theorem 1.

continuous change without grouping the data into two or three clusters,1

see Figure 4(B).2

Scenario 43

This case is based on the tree in Figure 5, which include an unsam-4

pled (so-called) ghost population, popGhost. The popGhost is sister5

population to pop1.6

We simulated genotypes for n = 200 individuals: 150 unadmixed7

samples from pop1, pop2, and pop3; and 50 samples admixed with 0.38

ancestry from popGhost and 0.7 ancestry from pop2 (as pop4), as de- 9

tailed in the previous section. As there is drift between the populations 10

and hence genetic differences, the correct k = 4 (pop1, pop2, pop3, 11

popGhost). This is picked up by our method that clearly shows k′ = 3 12

is wrong with large deviation from zero in the corrected correlation co- 13

efficients. In contrast, for k′ = 4, the corrected correlation coefficients 14

are almost zero (Figure 6). 15
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Figure 2 Results for simulated Scenario 2 with equal sample sizes. (A) For each of PCA 1, PCA 2 and ADMIXTURE, the upper left triangle in
the plots shows the empirical correlation b̂ and the lower right triangle shows the difference b̂− ĉ with sample sizes (n1,n2,n3) = (20,20,20). (B)
The major principal component for the PCA based methods for k′ = 2 (in which case there is only one principal component). Individuals within
each sample have the same color. (C) The estimated admixture proportions in the case of ADMIXTURE.

Scenario 51

In the last example, we simulated two populations (originating from2

a common ancestral population) and created admixed populations by3

backcrossing, as detailed in the previous section. Thus, the model does4

not fulfil the assumptions of the admixture model in that the number 5

of reference alleles are not binomially distributed, but depends on the 6

particular backcross and the frequencies of the parental populations. 7

We simulate genotypes for n = 90 individuals at m = 500,000 sites. 8
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Figure 3 Results for simulated Scenario 2 with unequal sample sizes. (A) For each of PCA 1, PCA 2 and ADMIXTURE, the upper left triangle
in the plots shows the empirical correlation b̂ and the lower right triangle shows the difference b̂− ĉ with sample sizes (n1,n2,n3) = (20,20,20).
(B) The major principal component for the PCA based methods for k′ = 2 (in which case there is only one principal component). Individuals within
each sample have the same color. (C) The estimated admixture proportions in the case of ADMIXTURE.

There are 20 homogeneous individuals from each parental population,1

and 10 different individuals from each of the different recent admixture2

classes. Then, we analysed the data with k′ = 2 and found the corrected3

correlation coefficients deviated consistently from zero, in particular4

for one of the parental populations (Figure 7). We are thus able to say 5

the admixture model does not provide a reasonable fit. 6
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10 Evaluation of model fit

1.3 Scenario 3
In scenario 3(the spatial case), we simulate genotypes for n = 500 individuals at
m = 88082 sites assuming k = 2. We demonstrate the method using the row space
PCA only and obtain inferred admixture proportions using the ADMIXTURE.
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Figure 4 Results for simulated scenario 3. (A) The upper triangle
in the plots shows the empirical correlation b̂ and the lower triangle
shows the difference b̂− ĉ. (B) The major principal components (only
one in the case of k′ = 2).

Figure 5 Schematic of the tree used to simulate population allele fre-
quencies for Scenario 4, including 5 populations: pop1, pop2, pop3,
pop4 and popGhost. The pop4 population is the result of admixture
between pop2 and popGhost, for which there are no individuals sam-
pled and is therefore a ghost population. The values in the branches
indicate the drift in units of FST . The values along the two admixture
edges are the admixture proportions coming from each population.

Real data1

We analysed a whole genome sequencing data set from the 10002

Genomes Project (Auton et al. 2015), see also Garcia-Erill and Al-3

brechtsen (2020) where the same data is used. It consists of data from4

five groups of different descent: a Yoruba group from Ibadan, Nigeria5

(YRI), residents from Southwest US with African ancestry (ASW),6

Utah residents with Northern and Western European ancestry (CEU),7

a group with Mexican ancestry from Los Angeles, California (MXL),8

and a group of Han Chinese from Beijing, China (CHB) with sample9

sizes 108,61,99,63 and 103, respectively, in total, n = 434. We kept10

only sites present in the Human Origins SNP panel (Lazaridis et al.11

2014), with a total of m = 406,279 SNPs were left after a MAF filter12

of 0.05.13
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Figure 6 Results for simulated scenario 4. (A) The upper triangle
in the plots shows the empirical correlation b̂ and the lower triangle
shows the difference b̂− ĉ. (B) The major principal components for
k′ = 4, that result in a clear separation of the four samples (all data
points within each sample are almost identical).

1.5 Scenario 5
In scenario 5(the recently admixed case), the simulations of recently admixed
individuals, to see if that violation of the model assumption can be detected by the
evaluation methods. We simulate genotypes for n = 90 individuals at m = 500000
sites. There are only 2 populations, with 20 homogenous individuals from each,
and 10 different individuals for each of these different recent admixture classes:

F1: one unadmixed parent from each population; Backross: one unadmixed
parent, the other F1; Double backross: one unadmixed parent, the other backcross;
Triple backross: one unadmixed parent, the other double backross; Quadruple
backross: one unadmixed parent, the other triple backross.
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Figure 7 Results for simulated scenario 5 (recent admixture). (A)
The upper triangle in the plots shows the empirical correlation b̂ and
the lower triangle shows the difference b̂− ĉ. (B) The major principal
component for k′ = 2.

We analyzed the data with k′ = 3,4. For k′ = 3, Figure 8 shows that 14

it is not possible to explain the relationship between MXL, CEU and 15

CHB, indicating that MXL is not well explained as a mixture of the two. 16

For k′ = 4, the color shades of the corrected correlation coefficients 17

are almost negligible within each population, pointing at a contribution 18

from a native american population. This is further corroborated in 19

Figure 8(D) that shows estimated proportions from the four ancestral 20

populations using the software ADMIXTURE. 21

Discussion 22

We have developed a novel approach to assess model fit of PCA and the 23

admixture model based on structure of the residual correlation matrix. 24

We have shown that it performs well for simulated and real data, using a 25

suit of different PCA methods, commonly used in the literature, and the 26

ADMIXTURE software to estimate model parameters. By assessing 27

the residual correlation structure visually, one is able to detect model 28

misfit and violation of modelling assumptions. 29

The model fit is assessed by comparing visually two matrices of 30

residual correlation coefficients. The theoretical and practical advan- 31

tage of our approach lie in three aspects. First, our approach is compu- 32

tationally simple and fast. Calculation of the two residual correlation 33

matrices and their difference is computationally inexpensive. Secondly, 34
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Figure 8 The residual correlation coefficient, the inferred population structure
and the admixture proportions of a real human data from 1000 Genomes
project. (A) The upper triangle in the plots shows the empirical correlation
coefficient b̂ and the lower triangle shows the difference b̂− ĉ. (B) The three
major principal component for PCA 1 for k′ = 4. (C) The eigenvalue for the
first PC is removed and the eigenvalues corresponding to the remaining PCs
are close to 0 after the forth PC. (D) The admixture proportions as estimated
with ADMIXTURE.

our approach provides a unified approach to model fitting based on1

PCA and clustering methods (like ADMIXTURE). In particular, it pro-2

vides simple means to assess the adequacy of the chosen number of top3

principal components to describe the structure of the data. Assessing4

the adequacy by plotting the principal components against each other5

might lead to false confidence. In contrast, our approach exposes model6

misfit by plotting the difference between two matrices of the residual7

correlation coefficients. Thirdly, it comes with theoretical guarantees8

in some cases. These guarantees are further back up by simulations9

in cases, we cannot provide theoretical validity. Finally, our approach10

might be adapted to work on NGS data without estimating genotypes11

first, but working directly on genotype likelihoods.12
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Appendix A 27

We first state the expectation and covariance matrix of Gs⋆ and Πs⋆,
respectively, under the given distributional assumptions,

E[Πs⋆] = µ
T Q, cov(Πs⋆) = QT ΣQ,

E[Gs⋆] = 2E[Fs⋆Q] = 2µ
T Q,

cov(Gs⋆) = E[cov(Gs⋆ | Π)]+ 4cov(Πs⋆) = D+ 4QT ΣQ,

for s = 1, . . . ,m, where

D = 2E[diag(Πs1(1−Πs1), . . . ,Πsn(1−Πsn))],

and

E[Πsi(1−Πsi)] = µ
T Q⋆i − (µT Q⋆i)

2 − (QT ΣQ)ii.

The unconditional columns Gs⋆, s = 1, . . . ,m, of G are independent 28

random vectors by construction. 29

The above implies that

1
m

E[GT G] = D+ 4QT (Σ+ µµ
T )Q. (4)

Auxiliary results are in appendix B. 30

Lemma 7. The estimator D̂ is an unbiased estimator of D, that is, 31

E[D̂] = D. Furthermore, it holds that D̂ → D as m → ∞. 32

Proof. Conditional on Πsi, using binomiality, we have E[Gsi(2 − 33

Gsi) | Πsi] = 2Πsi(1−Πsi), and the first result follows. For conver- 34

gence, note that Gsi(2−Gsi), s = 1, . . . ,m, unconditionally, form a 35

sequence of iid random variables with finite variance, hence the con- 36

vergence statement follows from the strong Law of Large Numbers 37

(Jacod and Protter 2004). 38

Lemma 8. The estimator Ĥ = 1
m GT G− D̂ is an unbiased estimator

of H = 4QT (Σ+ µµT )Q, that is, E[Ĥ] = H. Furthermore, it holds
that Ĥ → 4QT (Σ+ µT µ)Q as m → ∞, and

E
[
∥Ĥ −4QT (Σ+ µµ

T )Q∥2
F

]
≤ 16n2

m
.

Proof. Unbiasedness follows from (4) and Lemma 7. Consider the 39

(i, j)-th entry of 1
m GT G, namely, 1

m ∑
m
s=1 GsiGs j . The sequence GsiGs j , 40

s = 1, . . . ,m, is iid with finite variance, hence 1
m GT G converges to 41

E[GT G] as m → ∞ by the strong Law of Large Numbers (Jacod and 42

Protter 2004). Combined with Lemma 7 gives convergence of Ĥ to H 43

as m → ∞. 44

It remains to prove the inequality. Define

As,i j =

{
GsiGs j −4(QT (Σ+ µµT )Q)i j if i ̸= j,
2Gsi(Gsi −1)−4(QT (Σ+ µµT )Q)ii if i = j.

Then,

(Ĥi j −E[Ĥi j ])
2 =

(
1
m

m

∑
s=1

As,i j

)2

=
1

m2

m

∑
s=1

m

∑
t=1

As,i jAt,i j,

∥Ĥ −E[Ĥ]∥2
F =

1
m2

n

∑
i=1

n

∑
j=1

m

∑
s=1

m

∑
t=1

As,i jAt,i j .

Using E[As,i j ] = 0, independence of As,i j and At,i j for s ̸= t, and
|As,i j| ≤ 4, we have

E[∥Ĥ −E[Ĥ]∥2
F ] =

1
m2

n

∑
i=1

n

∑
j=1

m

∑
s=1

E[A2
s,i j ] ≤

1
m2 16mn2 =

16n2

m
,

which proves the claim. 45
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12 Evaluation of model fit

The convergence result is also in Chen and Storey (2015, theorem1

2). The second part provides the rate of convergence of Ĥ in the L2-2

norm. Convergence is contingent on large m, rather than large n, and3

requires m to increase at least like the square of n.4

Proof of Theorem 1. Since P̂k′ is assumed to be an orthogonal projec-5

tion, that is, P̂2
k′ = P̂k′ and P̂T

k′ = P̂k′ , then also the limit is an orthogonal6

projection, P2
k′ = Pk′ and PT

k′ = Pk′ .7

Consider the empirical covariance B̂. Define the variables Tk′ =
G(I −Pk′ ) with P̂k′ replaced by Pk′ , and the empirical covariance

B̃i j =
1

m−1

m

∑
s=1

(Tk′,siTk′,s j −T k′,iT k′, j)

=
1

m−1

m

∑
s=1

Tk′,siTk′,s j −
m

m−1
T k′,iT k′, j,

defined similarly to B̂i j, with T k′,i =
1
m ∑

m
s=1 Tk′,si. The sequences8

Tk′,siTk′,s j , s = 1,2, . . ., and Tk′,si, s = 1,2, . . ., are iid random variables,9

by the distributional assumptions on G. Furthermore, since Pk′ is an10

orthogonal projection, then ∥I −Pk′∥2
F ≤ n is bounded (Lemma 12).11

Therefore, also Tk′,si is bounded uniformly in s, i by 2
√

n ≤ 2n.12

Using boundedness, independence and the strong Law of Large
Numbers (Jacod and Protter 2004),

B̃i j → E[Tk′,1iTk′,1 j ]−E[Tk′,1i]E[Tk′,1 j ] = cov(Tk′,1i,Tk′,1 j), (5)

for m → ∞, and cov(Tk′,1i,Tk′,1 j) = (I −Pk′ )(D+ 4QT ΣQ)(I −Pk′ ).13

The latter equality follows from (4).14

Consider R=G(I−P̂k′ ) =G(I−Pk′ )+G(Pk′ −P̂k′ ) = T +G(Pk′ −
P̂k′ ). Hence,

|Rk′,i −T k′,i| ≤
1
m

m

∑
s=1

n

∑
i′=1

n

∑
j′=1

2|(Pk′ − P̂k′ )i′ j′ |

= 2
n

∑
i′=1

n

∑
j′=1

|(Pk′ − P̂k′ )i′ j′ | → 0,

as m → ∞ by assumption of the theorem. It follows that Rk′,i converges
to E[Tk′,1i] as m → ∞. Furthermore,

1
m−1

m

∑
s=1

Rk′,siRk′,s j −
1

m−1

m

∑
s=1

Tk′,siTk′,s j

=
1

m−1

m

∑
s=1

(Tsi +(G(Pk′ − P̂k′ ))si)(Ts j +(G(Pk′ − P̂k′ ))s j)

− 1
m−1

m

∑
s=1

Tk′,siTk′,s j

=
1

m−1

m

∑
s=1

Tsi(G(Pk′ − P̂k′ ))s j +
1

m−1

m

∑
s=1

(G(Pk′ − P̂k′ ))siTs j

+
1

m−1

m

∑
s=1

(G(Pk′ − P̂k′ ))si(G(Pk′ − P̂k′ ))s j.

The absolute value of the first term in the last line above is bounded by

4nm
m−1

n

∑
j′=1

|(Pk′ − P̂k′ ) j′ j|,

and similarly for the second term. The third is bounded by

4m
m−1

n

∑
i′=1

n

∑
j′=1

|(Pk′ − P̂k′ )i′i||(Pk′ − P̂k′ ) j′ j|.

All three terms converge to zero as m → ∞, hence we conclude from15

(5) that B̂i j → cov(Tk′,1i,Tk′,1 j) as m → ∞.16

The result for the estimated covariance Ĉ follows from convergence 17

of D̂ and by assumption of the theorem. The remaining part follows 18

from the convergence of B̂ and Ĉ. Note that QP = Q, hence the second 19

equation holds. The last statement of the theorem follows directly. 20

Proof of Theorem 2. Consider Tk = G(I −Pk) = G(1−P), where
P = QT (QQT )−1Q is the projection onto the row space of Q. Then, Tk
contains the residuals under multiple regression of the m rows of G on
the k rows of Q (Box et al. 2005). Since e is in the row space of Q, then
the sum of the residuals is zero for each s = 1, . . . ,m: ∑

n
i=1 Tk,si = 0

(the assumption that e is in the row space is equivalent to having an
intercept in the regression model) (Box et al. 2005). We have, for
s = 1, . . . ,m,

0 = var

(
n

∑
i=1

Tk,si

)
=

n

∑
i=1

var(Tk,si)+
n

∑
i=1

n

∑
j=1,i̸= j

cov(Tk,si,Tk,s j)

=
n

∑
i=1

var(Tk,1i)+
n

∑
i=1

n

∑
j=1,i̸= j

cov(Tk,1i,Tk,1 j),

since the distribution of Tk,si is independent of s. From the proof of
Theorem 4, it follows that B̂ converges to cov(Tk,1⋆) as m → ∞. Hence,

n

∑
i=1

B̂ii +
n

∑
i=1

n

∑
j=1,i ̸= j

B̂i j → 0, as m → ∞,

and the desired result follows by rearrangement. 21

If Q takes the given form, then the residuals under multiple re-
gression are independent between compartments, as the projection
is

P =


P1 0 · · · 0

0 P2 · · · 0
...

...
. . .

...

0 0 · · · Pr

 ,

where Pℓ = QT
ℓ (QℓQT

ℓ )
−1Qℓ has dimension nℓ× nℓ. It follows that

the computation above holds for each compartment. Finally, if
Qℓ = (1 . . .1), then the distribution of the random vector Tk,1⋆ is ex-
changeable, resulting in

0 = var

(
nℓ

∑
i=1

Tk,1i

)
=

nℓ

∑
i=1

var(Tk,1i)+
nℓ

∑
i=1

nℓ

∑
j=1,i̸= j

cov(Tk,1i,Tk,1 j)

= nℓ var(Tk,11)+ nℓ(nℓ−1)cov(Tk,11,Tk,12)

assuming the individuals in the ℓ-th compartment are numbered 1 to nℓ. 22

Rearranging terms and substituting b̂i j for the moments of Tk,i⋆ yields 23

the desired result. 24

Proof of Theorem 3. Consider Tk = G(I −Pk) = G(1−P), where
P = QT (QQT )−1Q is the projection onto the row space of Q. If Q1 =
(1 . . .1), then the distribution of the random variables Tk,11, . . . ,Tk,1n1

are exchangeable, resulting in

0 ≤ var

(
n1

∑
i=1

Tk,1i

)
=

n1

∑
i=1

var(Tk,1i)+
n1

∑
i=1

n1

∑
j=1,i̸= j

cov(Tk,1i,Tk,1 j)

= n1 var(Tk,11)+ n1(n1 −1)cov(Tk,11,Tk,12).

Rearranging terms and substituting b̂i j for the moments of Tk,i⋆ yields 25

the desired result. 26

Proof of Theorem 4. The convergence statement of the theorem is a 27

special case of Theorem 9 in Appendix B. Take Am = Ĥ (that depends 28
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on the number of SNPs m, and the particular realization), A = H, and1

k = k′ in the theorem (k is used as a generic index in Theorem 9). Then,2

EkET
k = Pk′ and Fm,k′FT

m,k = P̂k′ , and the conclusion of Theorem 4 holds.3

Convergence in Frobenius norm is equivalent to pointwise convergence4

(as n is fixed) P̂k′ → Pk′ as m → ∞ by definition.5

If Σ+ µµT is positive definite, then it has rank k. As rank(Q) = k6

by assumption, it follows from Lemma 13 that rank(H) = k. Con-7

sequently, there are k positive eigenvalues of H and λk+1 = 0, and8

the eigenvalue condition holds. Conversely, assume the eigenvalue9

condition holds. By definition rank(H) ≤ k. As λk > λk+1 ≥ 0 by10

assumption, then also rank(H) ≥ k and we conclude rank(H) = k.11

It follows that the rank of Σ+ µµT is k; consequently, it is positive12

definite.13

If k′ = k = n, then Pk = VkV T
k = I and P = I (as k = n), and14

Pk = P. So assume k′ = k < n. Since the eigenvalue condition is15

fulfilled, then from the above, we have rank(QT (Σ+ µµT )) = k, and16

Lemma 13 yields that the row space of H and Q agree. Similarly,17

we have H = Vk diag(λ1, . . . ,λk)V T
k and Lemma 13 yields that the18

row space of H and V T
k agree. This implies the row space of Q and19

V T
k agree. Consequently, Pk = QT (QQT )−1Q = P, and the statement20

holds.21

Proof of Theorem 5. It follows trivially that e is an eigenvector of22

H1 with eigenvalue 0. If D has all entries positive, then it is positive23

definite and D+ 4QT (Σ+ µµT )Q is also positive definite, hence has24

rank n. It follows from Lemma 13 that H1 has rank n− 1, hence25

λn−1 > 0.26

Similarly to the proof of Lemma 8 in Appendix B, one can show27

E[Ĥ1] = H1 and Ĥ1 → H1 as m → ∞, where H1 denotes the right hand28

side of (3). The remaining part of the theorem is proven similarly to29

Theorem 4.30

Proof of Theorem 6. Note that e is an eigenvector of H1 with eigen-
value 0. Consider an eigenvector v of H1, orthogonal to e with eigen-
value λ . Then, the following two equations are equivalent,(

I − 1
n

E
)
(D+ 4QT (Σ+ µµ

T )Q)

(
I − 1

n
E
)

v = λv,

4
(

I − 1
n

E
)

QT (Σ+ µµ
T )Q

(
I − 1

n
E
)

v = (λ −d)v, (6)

where it is used that D = dI and v ⊥ e. It shows that v is an eigenvector31

of K = 4(I− 1
n E)QT (Σ+µµT )Q(I− 1

n E) with eigenvalue µ = λ −d.32

Since Q has rank k and the vector e is in the space spanned by the rows33

of Q, then Q(I− 1
n E) has rank k−1. It follows that there are at most k−34

1 positive eigenvalues of K, that is, at most k−1 eigenvalues of H1 such35

that λ > d. Furthermore, there are precisely k−1 positive eigenvalues,36

provided Σ+ µµT is positive definite (Lemma 13). The remaining37

eigenvalues of K are zero, that is, the corresponding eigenvalues of H138

are λ = d.39

Assume Σ+ µµT is positive definite, then by the above argument40

there precisely are k−1 eigenvalues of H1 such that λ > d with cor-41

responding orthogonal eigenvectors v1, . . . ,vk−1. It follows from (6)42

that v1, . . . ,vk−1 are in the space spanned by the rows of Q(I − 1
n E),43

hence the eigenvectors are in the space spanned by the rows of Q. By44

assumption e is also in that row span. Hence, v1, . . . ,vk−1,e forms an45

orthogonal basis of the row span of Q, as Q has rank k. Thus, Pk = P.46

Appendix B47

Theorem 9. Let Am be a sequence of symmetric n×n-matrices that48

converges to a symmetric n×n-matrix A in the Frobenius norm, that is49

∥Am −A∥F → 0, as m → ∞. Let λ1 ≥ . . .≥ λn be the eigenvalues of A50

(with multiplicity, and not necessarily non-negative). Let k ≤ n be given51

and assume either k = n or λk > λk+1. Furthermore, let e1, . . . ,ek be 52

orthogonal eigenvectors corresponding to the eigenvalues λ1, . . . ,λk, 53

respectively, and let fm,1, . . . , fm,k be orthogonal eigenvectors corre- 54

sponding to the k largest eigenvalues of Am (with multiplicity). Then, 55

the orthogonal projection onto the span of fm,1, . . . , fm,k converges to 56

the orthogonal projection onto the span of e1, . . . ,ek in the Frobenius 57

norm. That is, define Ek = (e1, . . . ,ek) and Fm,k = ( fm,1, . . . , fm,k), 58

then ∥Fm,kFT
m,k −EkET

k ∥F → 0 as m → ∞. 59

Proof. If k = n, then EnET
n = I and Fm,nFT

m,n = I, and the statement 60

is trivial. Hence, assume k < n. Let e1, . . . ,en be eigenvectors of A 61

corresponding to eigenvalues λ1, . . . ,λn, respectively. Let fm,1, . . . , fm,n 62

be the eigenvectors of Am corresponding to the eigenvalues µm,1 ≥ 63

. . .≥ µm,n. All eigenvectors can be asssumed to be orthonormal. 64

As ∥A−Am∥2
F → 0 for m → ∞, then every entry of Am converges to

the corresponding entry of A. Consequently, the characteristic function
of Am converges to that of A, and the eigenvalues of Am converges to
those of A, that is, µm, j → λ j for j = 1, . . . ,n, and m → ∞. Let Tm be
such that En = Fm,nTm. As En and Fm,n are orthogonal matrices, hence
also Tm is orthogonal. Applying Lemma 10 in the first and third line
gives

∥A−Am∥2
F = ∥AE −AmEn∥2

F = ∥E diag(λ1, . . . ,λn)−AmFm,nTm∥2
F

= ∥Fm,nTm diag(λ1, . . . ,λn)−Fm,n diag(µm,1, . . . , µm,n)Tm∥2
F

= ∥Tm diag(λ1, . . . ,λn)−diag(µm,1, . . . , µm,n)Tm∥2
F

=
n

∑
i=1

n

∑
j=1

(λ jTm,i j −µm,iTm,i j)
2 =

n

∑
i=1

n

∑
j=1

T 2
m,i j(λ j −µm,i)

2.

By assumption, λk > λk+1. Hence, by convergence of eigenvalues, for 65

j ≤ k, i ≥ k+ 1, or j ≥ k+ 1, i ≤ k, we have Tm,i j → 0 as m → ∞. 66

Furthermore,

EkET
k −Fm,kFT

m,k =
k

∑
ℓ=1

(
eℓe

T
ℓ − fm,ℓ f T

m,ℓ

)
=

k

∑
ℓ=1

(( n

∑
a=1

fm,aTm,aℓ

)( n

∑
a=1

fm,aTm,aℓ

)T
− fm,ℓ f T

m,ℓ

)
=

k

∑
ℓ=1

(
n

∑
a=1

n

∑
b=1

Tm,aℓTm,bℓ fm,a f T
m,b − fm,ℓ f T

m,ℓ

)

=
n

∑
a=1

n

∑
b=1

k

∑
ℓ=1

Tm,aℓTm,bℓ fm,a f T
m,b −

k

∑
ℓ=1

fm,ℓ f T
m,ℓ.

= ∑
(a,b)∈{1,...,n}2\A1,k

( k

∑
i=1

Tm,aiTm,bi

)
fm,a f T

m,b

+ ∑
(a,a)∈A1,k

( k

∑
i=1

Tm,aiTm,ai −1
)

fm,a f T
m,a,

where Ai, j = {(a,a) : i ≤ a ≤ j}. 67

From Lemma 11, we have fm,a f T
m,b ⊥ fm,c f T

m,d for (a,b) ̸= (c,d)
in the Frobenius inner product. Moreover, ∥ fm,a f T

m,b∥F = 1 for all a,b.
Hence,

∥EkET
k −Fm,kFT

m,k∥2
F

= ∑
(a,b)∈{1,...,n}2\A1,k

( k

∑
i=1

Tm,aiTm,bi

)2
+ ∑

(a,a)∈A1,k

( k

∑
i=1

Tm,aiTm,ai −1
)2

.

= ∑
(a,b)∈{1,...,n}2\A1,n

( k

∑
i=1

Tm,aiTm,bi

)2
+ ∑

(a,a)∈Ak+1,n

( k

∑
i=1

Tm,aiTm,ai

)2
+ ∑

(a,a)∈A1,k

( k

∑
i=1

Tm,aiTm,ai −1
)2

. (7)
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14 Evaluation of model fit

As noted above, Tm,i j → 0 as m → ∞ for j ≤ k, i ≥ k+ 1, or j ≥
k+ 1, i ≤ k. Using this and orthogonality of Tm gives

k

∑
i=1

Tm,aiTm,bi =
n

∑
i=1

Tm,aiTm,bi −
n

∑
i=k+1

Tm,aiTm,bi →
{

0 if a ̸= b,
1 if a = b,

.

Inserting into (7) results in ∥EkET
k −Fm,kFT

m,k∥2
F → 0, as m → ∞.1

Lemma 10. Let A be an a×b matrix. Let U be a b×b orthogonal
matrix and V an a×a orthogonal matrix. Then,

∥A∥F = ∥VA∥F = ∥AU∥F = ∥VAU∥F .

Proof. See Golub and Loan (2013).2

Lemma 11. Let w,x,y,z ∈ Rb. For a×b-matrices A and B, let3

⟨A,B⟩F = ∑
a
i=1 ∑

b
j=1 Ai jBi j be the Frobenius inner product of A4

and B, and let ⟨ · , · ⟩ be the standard inner product on Rb. Then,5 〈
wxT ,yzT 〉

F = ⟨w,y⟩⟨x,z⟩. In particular, ∥wxT ∥F = ∥w∥2∥x∥2 and6

wxT ⊥ yzT if w ⊥ y or x ⊥ z.7

Proof. Note that

〈
wxT ,yzT

〉
=

b

∑
i=1

b

∑
j=1

wix jyiz j =
b

∑
i=1

wiyi

b

∑
j=1

x jz j = ⟨w,y⟩⟨x,z⟩ .

Hence, if either w ⊥ y or x ⊥ z, then wxT ⊥ yzT , and ∥wxT ∥2
F =8 〈

wxT ,wxT 〉 = ⟨w,w⟩⟨x,x⟩ = ∥w∥2
2∥x∥2

2, such that ∥wxT ∥F =9

∥w∥2∥x∥2.10

Lemma 12. Let v1, . . . ,vℓ be linearly independent vectors. An or-11

thogonal projection matrix on span(v1, . . . ,vℓ) has Frobenius norm12 √
ℓ.13

Proof. We may assume that v1, . . . ,vℓ are orthonormal. Then, we can14

write the projection matrix as P = v1vT
1 + . . .+ vℓvT

ℓ . By Lemma 11,15

vivT
i ⊥F v jvT

j for i ̸= j. So, again by Lemma 11, ∥P∥2
F = ∥v1vT

1 ∥2
F +16

. . .+ ∥vℓvT
ℓ ∥2

F = ℓ.17

Lemma 13. Let A be an a×b matrix and B an b× c matrix, both of18

rank b, such that a,c ≥ b. Let C = AB. Then, C is of rank b, and the19

row space of C coincides with the row space of B.20

Proof. First we show that rank(C) = b. Note that A has b linearly in-21

dependent rows 1 ≤ i1 < .. . < ib ≤ b, and B has b linearly independent22

columns 1 ≤ j1 < .. . < jb ≤ b. Let Ã and B̃ be the b× b matrices23

with Ãcd = Aicd and B̃cd = Bc jd . Then Ã and B̃ are invertible matrices.24

Hence, also C̃ = ÃB̃ = (Cia jb )a,b is invertible and has rank k. It follows25

that C has rank k. As Ã is invertible, then the span of the rows of ÃB is26

equal to the span of the rows of B. That is, the span of the rows of AB27

is equal to the span of the rows of B.28
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Coefficient
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Abstract

The kinship of individuals inferred from genetic data have important applications
in population genetics. The kinship coefficient between individuals in a pedigree
is a fundamental concept that quantified the probability of sharing ancestral alleles
potentially in the presence of complex population structure. This paper provides a new
estimation formula for the kinship coefficient and designs a procedure to obtain the data
set corresponding to the studied individual from the given sample, which can be used in
the principal component analysis (PCA) method to estimate the allele frequency of the
studied individual present in the formula. For the case of full-siblings, the validity of
the estimation is verified in simulated scenarios.

Keywords: Population genetics; Kinship coefficient; Population structure; PCA; Allele
frequency.

1 Introduction

Advances in array-based genotyping technology have enable researchers to obtain a

large amount of genotype data. The information contained in the data has led to the

development of a number of methods for inferring the ancestral origin of genes. Trying

to establish the relationship between individuals and their ancestors through the genetic

information they carry is a central issue. In population genetics, mathematical tools are

used to infer whether individuals come from a homogeneous or structured population by

looking for evidence in the data. However, existing population structure inference tools are

mainly developed for individuals that are assumed to be unrelated. Genetic studies include

related individuals, which motivates efforts to quantify relatedness between individuals.

Any alleles that are inherited copies of a common ancestral allele are said to be identical

by descent (IBD). The coefficients developed with the concept of IBD become measures of
∗Corresponding author.

E-mail address: song.li@math.ku.dk
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relatedness, where kinship coefficients are fundamental and depend on the choice of specific

pedigree (Speed and Balding, 2015). When pedigree information is limited or unavailable,

some kinship coefficient estimation formulas based on genotype data are proposed instead.

The estimators obtained by considering the likelihood function for unlinked loci show good

results in terms of bias in cases such as parent-offspring and full-siblings (Anderson and

Weir, 2007). The estimators obtained by calculating the moments are widely used for

the simplicity and effectiveness in large datasets. An estimator called KING-robust is

capable of deriving inference about the relationship of any pair of individuals, independent

of sample composition or population structure (Manichaikul et al., 2010). Different from the

KING-robust “one-step” estimation, some methods have been proposed to consider using

the genotype data to obtain the estimated values such as individual-specific allele frequency,

and then to calculate the moments, which can be said to be “two-step” estimation. The

estimated values of the individual-specific allele frequency is derived from the inference

of population structure, which is commonly done by the clustering and PCA. Clustering

algorithms, such as STRUCTURE (Pritchard et al., 2000) and ADMIXTURE (Alexander

et al., 2009), basically estimate the admixture proportion and allele frequencies in ancestral

populations. The two clustering algorithms require appropriate reference population panels

for the ancestries, which is also applicable to the REAP estimator of the kinship coefficient.

The REAP estimator uses a model-based population structure analysis method to make

individual-specific allele frequency estimable and thus realize the calculation of the moments

(Thornton et al., 2012). The PCA method is proposed to utilize the first few principal

components (PCs) to estimate allele frequencies (Hao et al., 2016). The usual practice of

PCs extraction is for unrelated individuals, which is also critical to the PC-Relate estimator.

Instead of using external reference population panels, the PC-Relate method estimates

allele frequencies for all individuals using the top PCs extracted from a set of unrelated

individuals separated from the sample according to the KING-robust estimator, and then

computes the moments (Conomos et al., 2016).

In PC-Relate, all individuals which are unrelated to each other are separated from the

sample containing related individuals and then are used to extract their top PCs, and next

the PC values of the remaining individuals in the sample are predicted based on these top

PCs, thus the complete top PCs of all individuals is obtained, so as to estimate individual-

2
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specific allele frequency through the linear regression of the complete top PCs. Inspired by

this, we design a procedure for each studied individual to obtain the corresponding data set

similar to that in PC-Relate, and use PCA to estimate allele frequencies.

In this paper, we propose a formula to estimate the recent kinship coefficient in the

presence of population structure. Similar to PC-Relate, we consider a strategy for building

the data set of each studied individual, followed by a PCA method proposed by Chen

and Storey (2015) on the data set to directly estimate individual-specific allele frequency

present in the the recent kinship coefficient formula. The validity of the estimate is verified

in full-siblings case by simulated data given different population structure contexts. The

paper is structured as follows. The mathematical expression and estimation method of

recent kinship coefficient are described in Section 2. In Section 3, we provide the process

of generating the simulated sample data and analyze some future work directions. Proof,

derivative and calculation are collected in the Appendix.

2 Material and Methods

2.1 Recent Kinship

We introduce the concept of IBD to describe possible scenarios of two alleles within and

between individuals. For a diploid individual i, we define the probability that a pair of alleles

from i are IBD as ψi, also known as the coefficient of inbreeding; and for two individuals

i and j, we define the probability that a randomly selected allele from i and a randomly

selected allele from j are IBD as φij , also known as the coancestry of two individuals or the

coefficient of kinship. If two alleles are randomly selected from the same individual i at one

locus, we denote the probability that such two alleles are IBD as φii, which is called the

coefficient of self-kinship, i.e., φii = (1 + ψi)/2.

Suppose N individuals and M loci are studied. A specific SNP site on the homologous

chromosome is labeled as s ∈ {1, 2, . . . ,M} and ys
i ∈ {0, 1, 2} (i = 1, 2, . . . , N) is a stochastic

variable counting the number of given reference alleles in the ith individual at locus s, which

is called the genotype value. We break y
s
i down into two dichotomous variables, namely,

y
s
i = y

s
i,1 + y

s
i,2, where ys

i,a ∈ {0, 1} (a = 1, 2) indicates whether the first or second allele is

the reference allele or not.

3
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In the common pedigree-based structure, there are some basic cases such as full-siblings,

parent-offspring and half-siblings (see Figure 1). The allele at each locus is passed to the

child by a parent who is also the founder of the basic pedigree. More complex pedigrees are

composed of these basic structures, and a more general sketch is formed when all the founders

of a pedigree are grouped together (see Figure 2). We give the following mathematical

framework.

(a) Full-siblings (b) Parent-offspring (c) Half-siblings

Figure 1: The pedigree-based structure. Ma or Ma0 is maternal, Pa is paternal, 1 and 2 are the individuals
sampled and studied.

A1 A2 A3 A4

Ma1 Ma2 Pa1 Pa2

i1 i2

(a) Real IBD

A1 A2 A3 A4

i1 i2

(b) Simplified IBD

A1 A2 A3 A4

i1 i2

(c) Non-IBD

Figure 2: Two alleles from the same individual i, classified according to IBD or not. Similar cases have
been omitted.

3.1 simple cases

Next, we add the factors of family tree structure. In the common pedigree-based structure, there are
typical cases such as parent-offspring, full-siblings and half-siblings (see Figure 1). Take full-siblings
model and concretely calculate the results of the correlation coefficients we are considering. In dealing
with the problem of population structure inference, we consider using PCA method to determine the
selection of weights. As most of the previous literature has done, the PCA method can fully capture
the parameters related to population structure (Conomos et al., 2016). For individuals i = 1, . . . , N
and SNPs s = 1, . . . , S, we assume (3) is an admixture model with K ancestral populations. Through
the principal component analysis of all individuals, we can find the corresponding weight values. Then
we set a linear regression model

Y = 2p + ✏,

= 2Wf + ✏,
(6)

where, for SNP s, ✏ is an error term with mean 0, Y = (Y s
1 , . . . , Y s

N)T is an individual genotype
value vector, p = (p1s, . . . , pNs)

T is an individual allele frequencies vector, W is an N ⇥K admixture
weights matrix obtained from PCA and f = (f1s, . . . , fKs)

T is an ancestral frequencies vector that
we don’t know in advance but we have to estimate. We consider the least squares estimator,

bf = arg min
f

(Y � 2Wf)2 =
1

2

�
WTW

��1
WTY.

It is worth noting that, in order to satisfy the invertibility of the matrix WTW, W should ensure
that its K column vector groups are linearly independent and K < N . According to the above LSE,

5

Figure 1: Three basic pedigree-based structures. Red, black and blue represent the shared founders

of two studied individuals, the other founders belonging to corresponding individuals, respectively.

For parent-offspring, red also represents one of the individuals studied.

1 2

L1
L2

Figure 2: Red, black and blue represent the shared founders of individual 1 and 2, the other founders

of individual 1 and individual 2, respectively. Individual 1 has L1 founders through generation

forward, and individual 2 has L2 founders.

Assume that the pedigree founder li who is the recent ancestor of individual i has the

studied allele with probability π(i)sli
∈ [0, 1] at locus s, where li = 1, . . . , Li, Li is the number

of i’s founders. We define the following probability

Pr (ys
i,a = 1) =

Li

∑
li=1

wiliπ
(i)s
li

, a = 1, 2, (1)

4
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where wili represents the probability that individual i copied the studied allele from founder

li and is called the weight. The sum of non-negative weights is required to be 1, i.e.,

∑Li

li=1wili = 1. (1) can be interpreted to mean that individual-specific allele frequency is

the weighted average value across frequencies of founders corresponding to the individual.

The generalization of individual-specific allele frequency has two intuitive examples: i)

if each founder li has π(i)sli
= π

s as its allele frequency, then (1) becomes Pr (ys
i,a = 1) =

∑Li

li=1wiliπ
s
= π

s; ii) if founders are weighted equally, then (1) becomes

Pr (ys
i,a = 1) = 1

Li

Li

∑
li=1

π
(i)s
li

∶= π
(i)s

. (2)

In general, weights allow adjustment for samples in various realistic scenarios. In the

following, we use equal weights to explore the recent kinship.

As shown in Figure 2, we can set that the pedigree founders of individuals 1 and 2

have the studied allele with probabilities π(1)sl1
and π

(2)s
l2

at s SNP, respectively, where

l1 ∈ {1, . . . , L1}, l2 ∈ {1, . . . , L2}. Let C be the number of shared founders from whom

individuals 1 and 2 obtain the IBD allele, where 0 ≤ C ≤ min[L1, L2]. For C > 0, assume

that π(1,2)s
c is defined as the allele frequency for the shared founder c, c = 1, . . . , C; for C = 0,

one says that two individuals are unrelated, i.e., φ12 = 0, π(1,2)s
0 = 0.

The kinship coefficient formula of individuals 1 and 2 at site s is obtained (details see

Appendix A),

φ
s
12 =

1
4 ⋅

Cov (ys
1, y

s
2)

1
C
∑C

c=1 π
(1,2)s
c (1 − π

(1,2)s
c )

. (3)

Considering the fact that the kinship coefficient is constant across all SNPs, then the

equation becomes,

φ12 =
1

4M ⋅
M

∑
s=1

Cov (ys
1, y

s
2)

1
C
∑C

c=1 π
(1,2)s
c (1 − π

(1,2)s
c )

=
1

4M ⋅
M

∑
s=1

E [(ys
1 − 2π(1)s) (ys

2 − 2π(2)s)]
1
C
∑C

c=1 π
(1,2)s
c (1 − π

(1,2)s
c )

.

(4)

Equation 4 is presented as a mathematical expression of the kinship coefficient based on

pedigree and genotype. When the parameters in the equation are estimated, we can measure

the kinship coefficient of a pair of individuals. For parameters π(1)s and π
(2)s, we can use

the PCA method introduced in the Section 2.2 to estimate. For the denominator part

5
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consisting of parameters π(1,2)s
c and C, due to the absence of genotype information from

ancestors or founders, it is difficult to estimate this part. In the Section 2.3, we consider a

substitution for the denominator part in the Full-siblings case to present the estimate.

2.2 Estimation of Individual-specific Allele Frequency

In this section, we elaborate on the method of the consistent estimation of the latent

linear space introduced by Chen and Storey (2015) to estimate individual-specific allele

frequency.

Denote Y = (ys
i )M×N as a matrix of observed variables and Θ = E [Y ∣ Q] = 2FQ =

(θs
i )M×N as the expectation, where Q = (qki)K×N is a matrix of K latent variables and

F = (fs
k)M×K is a matrix of parameters relating the latent variables to the observed variables.

We define DM =M
−1(Y − Θ)T (Y − Θ) and denote dM,ij =M

−1 ∑M
s=1 (y

s
i − θ

s
i ) (ys

j − θ
s
j)

as the (i, j)th entry of DM . Let δ̄M,ij = M
−1 ∑M

s=1 Cov [ys
i , y

s
j ∣ Q] be the column-wise

average covariance. Theorem 1 shows a convergence result.

Theorem 1. Assume independence of genotypes at different SNPs and uniformly bounded

4th conditional moments of ys
i − θ

s
i are satisfied. Then

lim
M→∞

∣dM,ij − δ̄M,ij∣ = 0 a.s. .

Theorem 1 implies that the estimation of δ̄M,ij can be applied equally to dM,ij , resulting

in an estimate of DM . We introduce the concept of admixture and define individual-specific

allele frequency πs
i as follows,

π
s
i =

K

∑
k=1

f
s
kqki. (5)

In admixture model, qki, f
s
k ∈ [0, 1] are the admixture proportion of individual i from the

ancestral population k ∈ {1, 2,⋯,K} and the the reference allele frequency of the ancestral

population k at SNP s, respectively. Let K be the number of ancestral populations and

Π = (πs
i )M×N = FQ be a matrix of individual-specific allele frequencies. Note that similar

to the weight, ∑K
k=1 qki = 1. We are interested in considering a binomial distribution with

the parameter πs
i to describe the genotype variable ys

i ,

y
s
i ∣ πs

i ∼ Bi (2, πs
i ) .

6
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If the genotypes of two individuals i and j on the same SNP are unrelated, then δ̄M,ij = 0

and δ̄M,ii = M
−1 ∑M

s=1 Var [ys
i ∣ πs

i ]. According to Lemma 7 and 8 in Chen and Storey

(2015), we set

δ̂M,i ∶=
1
M

M

∑
s=1

y
s
i (2 − y

s
i )

as an estimate of δ̄M,ii. And by Theorem 1, let D̂M = diag {δ̂M,1, . . . , δ̂M,N} be the estimate

of DM . To get a consistent estimator Q̂ of the latent space Q that spans Π, one can consider

the following eigenvalue decomposition when M is large enough,

1
M

YT Y − D̂M = Ṽ Σ̃Ṽ
T
, (6)

where Σ̃ is a diagonal matrix whose diagonal elements are eigenvalues, and Ṽ = (ṽij)N×N

is an orthonormal matrix composed of corresponding eigenvectors. Denote

Q̂ = Ṽ1∶K = (ṽij)K×N (7)

as the submatrix of eigenvectors corresponding to the top K positive eigenvalues. Using least

square estimation F̂ = argmin
F

ÂÂÂÂÂY − 2FQ̂ÂÂÂÂÂ = YQ̂T (Q̂Q̂T )−1
/2, we obtain an estimator of

Π,

Π̂ =
1
2YQ̂T (Q̂Q̂T )−1

Q̂. (8)

Note that when K < N , (8) is reduced to

Π̂ =
1
2YQ̂T Q̂. (9)

It can be seen from (7)-(9) that the allele frequency estimation is based on the combination

of the top K principal components selected, which is regarded as a PCA method. We

estimate allele frequencies of studied individuals based on the above PCA method, and

different individuals have corresponding data sets used in PCA. We design the following

procedure to divide the data set from the total sample.

Firstly, we calculate κ̂ij for all individual pairs in the sample according to the KING-

robust estimator formula (Manichaikul et al., 2010),

κ̂ij =
∑M

s=1 [y
s
i (1 − y

s
i ) + y

s
j (1 − y

s
j) + y

s
i y

s
j]

∑M
s=1 [ys

i (2 − ys
i ) + ys

j (2 − ys
j)]

. (10)

7
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Assume that individuals i and j are expected to be unrelated if κ̂ij ∈ [−0.025, 0.025]
(Conomos et al., 2015). By determining κ̂ij for all pairs of individuals in the sample, all

individuals which are unrelated to each other and do not include the two individuals under

study are collected into a set called the unrelated individual set. In the unrelated individual

set, we then reserve one sample that is related to the two individuals under study and all

samples which are not related to the two individuals. Next, the two studied individuals are

added to the unrelated individual set respectively to form two new data sets, which are

used to estimate the allele frequency of the corresponding individual by the PCA method

introduced above.

2.3 Estimation of Recent Kinship Coefficient

We show that the allele frequency of each individual in a pedigree also satisfies (5) form.

The founder li belonging to individual i have

π
(i)s
li

=

K

∑
k=1

f
s
kq

(i)
kli
, (11)

where q(i)kli
∈ [0, 1] is the admixture proportion of founder li derived from the ancestral

population k and ∑K
k=1 q

(i)
kli

= 1. And then we substitute (11) into (1)

Pr (ys
i,a = 1) =

Li

∑
li=1

wili

K

∑
k=1

f
s
kq

(i)
kli
,

∶=
K

∑
k=1

f
s
kqki,

(12)

where qki = ∑Li

li=1wiliq
(i)
kli

and ∑K
k=1 qki = 1. According to (2), we take the equal weights and

rewrite π(i)s as πs
i , then

π
s
i =

K

∑
k=1

f
s
kqki (qki =

1
L i

Li

∑
li=1

q
(i)
kli
)

is individual-specific allele frequency which can be estimated by the above PCA method .

We denote π̂s
i as the estimated value. Taking Full-siblings case in Figure 1, we come up

with an estimation of the kinship coefficient according to equation (4),

φ̂
F
ij =

∑M
s=1 (y

s
i − 2π̂s

i ) (ys
j − 2π̂s

j)
∑M

s=1 [(ys
i − 2π̂s

i )
2
+ (ys

j − 2π̂s
j)2]

. (13)
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To get equation (13), we consider the following analysis

Var(ys
i ) = Var (ys

c1→(i,1)) + Var (ys
c2→(i,2))

= π
s
c1 (1 − π

s
c1) + π

s
c2 (1 − π

s
c2) ,

(14)

where, ys
c→(i,a) means that the first or second allele at SNP s of individual i comes from

the parent c and parent c1, c2 genotypes are independent of each other. As a result, in

Full-siblings case we update equation (4)

φij =
1

4M ⋅
M

∑
s=1

E [(ys
i − 2πs

i ) (ys
j − 2πs

j)]
1
2 [π

s
c1 (1 − πs

c1) + πs
c2 (1 − πs

c2)]

=
1

4M ⋅
M

∑
s=1

E [(ys
i − 2πs

i ) (ys
j − 2πs

j)]
1
4 [Var(ys

i ) + Var(ys
j)]

=
1
M

⋅
M

∑
s=1

E [(ys
i − 2πs

i ) (ys
j − 2πs

j)]
E [(ys

i − 2πs
i )

2
+ (ys

j − 2πs
j)2]

.

(15)

The last item in (15) can be viewed as an average of the ratios. When genotype and allele

frequency are replaced by the observed and estimated values, respectively, ignoring the

expectation, if each ratio is biased then their average across locus will be also biased, even

as M → ∞ (Ochoa and Storey, 2021). If genetic linkage is not considered or genetic linkage

exists but the effective number of independent SNPs is large enough, adjusting to the ratio

of the two averages will make the estimated value perform better. According to Theorem 1,

the expectation in two averages can be omitted, so (13) is the estimation form we propose.

The PC-Relate kinship estimator’s consistency can not be shown in all kinds of popu-

lation structure scenarios for related pairs of individuals, and only in discrete population

substructure, this bias is small enough to ensure a consistent estimate (see Appendix A

in Conomos et al. (2016)). With the advantage of the KING-robust estimator that only

depends on the data, a set of unrelated individuals can be obtained in advance according to

κ̂ij ∈ [−0.025, 0.025]. Since PCA method is sensitive to the presence of related individuals,

the PC-Relate program uses κ̂ij to extract a set of unrelated individuals from the sample

when estimating allele frequencies. In the following section, we present simulations in a

series of scenarios to verify the validity of the formula and estimation. For the convenience

of comparing different estimation methods, the results of φ̂F
ij , the KING-robust estimator

and the PC-Relate kinship estimator in Full-siblings case are labeled as “phiF”, “phiK”

and “phiPC”, respectively.

9
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3 Simulation Studies

3.1 Simulated Data Setting

In pedigree, the founders are set as unrelated individuals and the following binomial

distribution describes the genotype of the founder l,

y
s
l ∣ πs

l ∼ Bi (2, πs
l ) , (16)

where, πs
l = ∑K

k=1 f
s
kqkl. Each founder has an admixture history between K subpopulations

and these subpopulations all descend from a common ancestral population. Then for the

descendants in pedigrees, we assign the alleles from the corresponding founders to them

as genotypes according to Mendelian laws of inheritance, and assume that different SNPs

are independent. Specifically, we consider that the allele frequency p
s of the common

ancestral population is derived from a uniform distribution U[0.1, 0.9], and the number

of subpopulations that diverge from the ancestral population is K = 3. The population-

specific allele frequency fs
k is derived from Beta(αs

k, β
s
k) with αs

k = p
s(1 − γk)/γk and βs

k =

(1−ps)(1−γk)/γk, where γk is a constant that refers specifically to the degree of population

divergences (Balding and Nichols, 1995). Here, we set γ ∶= (γ1, γ2, γ3) = (0.05, 0.15, 0.25).
Denote the admixture proportion vector of founder l as ql ∶= (q1l, q2l, q3l) ∼ Dirichlet(λl),
where λl ∶= (λ1l, λ2l, λ3l). The population structure depends on ql.

1 2

3 4

Figure 3: Simple pedigree configuration for the simulation studies

Figure 3 is the simple pedigree, which we use as the basic unit for building a pair of

siblings. The following is the specific process of forming the sample set through simulation.
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• Firstly, we simulate the genotypes of 80 unrelated individuals as the founder set

according to model (16).

• Secondly, two of the 80 individuals are randomly selected as fixed parent 1 and 2 in

Figure 3. We can get the genotypes of 50 siblings.

• Thirdly, one of the 50 siblings is randomly selected as fixed sibling 3 in Figure 3, and

49 cases of full-siblings are formed by sibling 3 and each of the remaining siblings who

could be regarded as sibling 4 in Figure 3. The sibling 3 and 4 are combined with the

founder set to form the sample set.

The two individual-specific allele frequencies are estimated by applying the method described

in section 2.2 to the sample set and the proposed kinship coefficient estimator in Full-

siblings case can be calculated from equation (13). With pedigree and ql, we give some

scenarios. In scenario 1, we set λl = (6, 2, 0.25) to mean that, on average, ancestral

contribution proportions of subpopulations 1, 2 and 3 to founder l are 0.73, 0.24 and

0.03, respectively. In scenario 2, we set λl = (1, 1, 1) to mean that, on average, each

subpopulation has an equal ancestral contribution to founder l. For each scenarios, we set

M = 100, 000 independent SNPs for each individual. In principle, it is expected that the

larger M is, the more accurate the estimate is.

3.2 Results and Discussion

We obtain the kinship coefficient estimation results from our proposed method, KING-

robust and PC-Relate for full-siblings under scenario 1 and 2, which are shown in Figure 4

and Table 1.
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(b) Scenario 2

Figure 4: The kinship coefficient estimation in full-siblings case.

Table 1: Comparison of kinship coefficient estimators in full-siblings case

Scenario Expected phiFa phiK phiPC

1 0.2500 0.2488(0.0010)b 0.2510(0.0011) 0.2500(0.0011)

2 0.2500 0.2496(0.0010) 0.2517(0.0012) 0.2521(0.0012)
a

φ̂
F
ij , the KING-robust estimator and the PC-Relate kinship estimator are labeled as “phiF”,

“phiK” and “phiPC”, respectively.
b The values presented in the table for each of the estimators are mean (standard deviation) of

the estimated kinship coefficients.

PC-Relate has the smallest bias in the simulated scenario 1, while the estimator φ̂F
ij

proposed by us has the smallest bias in the simulated scenario 2. In both scenarios, φ̂F
ij has

the smallest variability. The effect of population structure on estimation can be observed

from the setting of λl. In scenario 1, it is more likely that the first two populations contribute

alleles to the offspring, and the kinship coefficient estimated by PC-Relate is more accurate.

In scenario 2, when all populations had equal contributions, the PC-Relate estimator shows

a large bias, indicating that the PC-Relate estimator is sensitive to the population structure.

In terms of sensitivity to the two population structures, both φ̂F
ij and the KING-robust are

less than PC-Relate. In scenario 2, φ̂F
ij performs better than the KING-robust. φ̂F

ij tends to

have a negative bias, and the other two tend to have a positive bias.
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The results above inspire us to extend the approach to other relationship types, such

as parent-offspring and half-siblings in Figure 1. Comparison of the differences between

the proposed method and existing methods for different population structure backgrounds

will be one of future work. The validity of the method should also be reflected in more

simulated scenarios and real human data.
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Appendix A Kinship coefficient based on pedigree and
genotype

A.1 Kinship coefficient calculation at one locus
In Figure 2, clearly that φs

12 = 2C/(2L1 ⋅ 2L2) = C/(2L1L2) and we get

Pr (ys
1,a = 1) = 1

L1

L1

∑
l1=1

π
(1)s
l1

∶= π
(1)s

,

Pr (ys
2,a = 1) = 1

L2

L2

∑
l2=1

π
(2)s
l2

∶= π
(2)s

, a = 1, 2.

Then the following probability should be calculated to
Pr (ys

1,a = y
s
2,a = 1)

= φ
s
12

1
2C (2

C

∑
c=1

π
(1,2)s
c )

+ (1 − φ
s
12)

1
(2L1) ⋅ (2L2) − 2C

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝
2

L1

∑
l1=1

π
(1)s
l1

− 2
C

∑
c=1

π
(1,2)s
c

⎞
⎟
⎠
⎛
⎜
⎝
2

L2

∑
l2=1

π
(2)s
l2

⎞
⎟
⎠

+2
C

∑
c=1

π
(1,2)s
c

⎛
⎜
⎝
2

L2

∑
l2=1

π
(2)s
l2

− π
(1,2)s
c

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=
φ

s
12
C

C

∑
c=1

π
(1,2)s
c +

1 − φ
s
12

2L1L2 − C

⎡⎢⎢⎢⎢⎢⎢⎢⎣
2

L1

∑
l1=1

π
(1)s
l1

L2

∑
l2=1

π
(2)s
l2

−
C

∑
c=1

(π(1,2)s
c )

2⎤⎥⎥⎥⎥⎥⎥⎥⎦
φ

s
12=C/(2L1L2)

===============
1

L1L2

L1

∑
l1=1

π
(1)s
l1

L2

∑
l2=1

π
(2)s
l2

+
1

2L1L2

C

∑
c=1

π
(1,2)s
c (1 − π

(1,2)s
c ) .

(17)

Clearly,
E (ys

i ) = E (ys
i,1 + y

s
i,2)

= 2E (ys
i,a)

= 2Pr (ys
i,a = 1) , i = 1, 2,

E (ys
1y

s
2) = E [(ys

1,1 + y
s
1,2) (ys

2,1 + y
s
2,2)]

= 4E (ys
1,ay

s
2,a)

= 4Pr (ys
1,a = y

s
2,a = 1) .

And the covariance is obtained,
Cov (ys

1, y
s
2) = E (ys

1y
s
2) − (Eys

1) (Eys
2)

= 4 [Pr (ys
1,a = y

s
2,a = 1) − Pr (ys

1,a = 1)Pr (ys
2,a = 1)]

=
2

L1L2

C

∑
c=1

π
(1,2)s
c (1 − π

(1,2)s
c )

(L1L2)−1
=2φ

s
12/C

================
4φs

12
C

C

∑
c=1

π
(1,2)s
c (1 − π

(1,2)s
c ) .

15

100 CHAPTER 4. MANUSCRIPT 3



The kinship formula of individuals 1 and 2 at site s is obtained directly,

φ
s
12 =

1
4 ⋅

Cov (ys
1, y

s
2)

1
C
∑C

c=1 π
(1,2)s
c (1 − π

(1,2)s
c )

.

A.2 Kinship coefficient estimation
Given s ∈ {1, 2, . . . ,M} and the fact that the kinship coefficient is constant over SNPs,

for individuals i and j an average form of the kinship coefficient is the following,

φij =
1

4M ⋅
M

∑
s=1

E [(ys
i − 2π(i)s) (ys

j − 2π(j)s)]
1
C
∑C

c=1 π
(i,j)s
c (1 − π

(i,j)s
c )

. (18)

Here, founder c is updated as the shared founder of individuals i and j. By Theorem 1 and
convergence (Ochoa and Storey, 2021), an estimation form of the above kinship across M
SNPs is the following,

φ̂ij =
1
4 ⋅

∑M
s=1 (y

s
i − 2π̂(i)s) (ys

j − 2π̂(j)s)

∑M
s=1

1
C
∑C

c=1 π̂
(i,j)s
c (1 − π̂

(i,j)s
c )

, (19)

where π̂(i)s, π̂(j)s and π̂
(i,j)s
c are the corresponding estimators.

Appendix B Proof of Theorem 1
In this appendix section, we set out to prove the theorem stated in the main paper.

Proof. Consider the DM , whose (i, j)th entry dM,ij can be written as

dM,ij =M
−1

M

∑
s=1

d̃s,ij ,

where d̃s,ij = (ys
i − θ

s
i ) (ys

j − θ
s
j). Denote ỹs

i = y
s
i − θ

s
i , Ẽ[⋅] = E[⋅ ∣ Q] and Ṽ[⋅] = V[⋅ ∣ Q],

where E and V are the expectation and variance operator, respectively. Clearly,

Ẽ [d̃s,ij] = Cov [ys
i , y

s
j ∣ Q] .

By the independence of genotypes at different SNPs and uniformly bounded 4th conditional
moments of ỹs

i , we have

∑
M≥1

1
M

Ṽ [dM,ij] = ∑
M≥1

1
M3

M

∑
s=1

Ṽ [d̃s,ij]

≤ ∑
M≥1

1
M3

M

∑
s=1

Ẽ [d̃2
s,ij]

≤ ∑
M≥1

1
M3

M

∑
s=1

(Ẽ [(ỹs
i )4])1/2 (Ẽ [(ỹs

j)4])1/2

≤ C ∑
M≥1

1
M2 =

Cπ
2

6 ,

(20)
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where, C is a bounded constant. The second inequality in (20) is obtained by the Hölder’s
inequality. Denote

δ̄M,ij ∶=
1
M

M

∑
s=1

Ẽ [d̃s,ij] =
1
M

M

∑
s=1

Cov [ys
i , y

s
j ∣ Q] .

Therefore, Theorem 1 of Walk (2005) implies that

lim
M→∞

∣dM,ij − δ̄M,ij∣ = 0 a.s. .
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