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Abstract

This thesis covers five topics related to mortality modelling and forecasting with

two overarching themes: (coherent) multi-population models and scenario-based

projections. In the first part of the thesis, we study desirable model properties from

the practitioner’s point of view. We present a framework in which multiplicative

frailty can be used with stochastic mortality models, and we apply the methodology

in a case study of the SAINT mortality model used by the Danish Labour Mar-

ket Supplementary Pension Fund (ATP). Next, we show that cointegration-based

mortality models have more to offer than assuring non-diverging forecasts, and we

highlight the limitations of cointegration when applied to models only identifiable

under certain identification constraints. Following this, we propose a novel approach

to analyzing the global properties of the life expectancy sex gap implied by coherent

models, using which we challenge the status of coherence as a universally desirable

property. In the second part of the thesis, we formulate a generic causal mortality

model in the framework of potential outcomes, which facilitates a discussion of

interventions and their direct and indirect effects on forecasts. We show by example

the assumptions and data needed to operationalize an empirical analysis. Finally,

we introduce the basic ideas for how causal models can be estimated and used to

answer interventional queries when data consists of density estimates on marginal

distributions observed across multiple populations.
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Resumé

Denne afhandling behandler fem emner relateret til dødelighedsmodellering

og fremskrivning med to overordnede temaer: (kohærente) multipopulations

dødelighedsmodeller og scenariebaserede fremskrivninger. I den første del af af-

handlingen studerer vi attraktive modelegenskaber set ud fra et praktisk synspunkt.

Vi præsenterer en ramme hvori multiplikativ skrøbelighed (frailty) kan anvendes

sammen med stokastiske dødelighedsmodeller, og vi bruger metodikken i et casestu-

die af SAINT modellen som anvendes af Arbejdsmarkedets Tillægspension (ATP).

Dernæst viser vi, at kointegrationsbaserede dødelighedsmodeller har mere at byde

p̊a end blot at garantere ikke-divergerende fremskrivninger, og vi belyser begræns-

ningerne ved en kointegrationsanalyse, n̊ar denne anvendes p̊a modeller, som kun er

identificerbare under visse identifikationsbetingelser. Derefter foresl̊ar vi en ny tilgang

til, hvorledes man kan analysere de globale egenskaber af kønsforskellen i levetid i

kohærente modeller, gennem hvilken vi udfordrer status af kohærens som en universel

attraktiv modelegenskab. I den anden del af afhandlingen formulerer vi en kausal

dødelighedsmodel ved brug af ‘potential outcomes’ tilgangen, hvilket faciliterer en

diskussion af interventioner og deres direkte og indirekte effekter p̊a fremskrivningen.

Vi viser gennem et eksempel, hvilke antagelser og data der kræves for at kunne

operationalisere en empirisk analyse. Til slut introducerer vi en tilgang til, hvorledes

kausale modeller kan estimeres og anvendes til at besvare interventionsspørgsmål,

n̊ar data best̊ar af tæthedsestimater af marginale fordelinger observeret p̊a tværs af

populationer.
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Chapter 1

Introduction

The steady decline of mortality rates observed over the past decades has far-reaching

implications for many national economies, putting severe pressure on the sustainabil-

ity of pension systems and public finances as the share of the population aged 65 and

above continues to rise. With many of the consequences of an ageing population still

ahead of us, the societal importance of producing accurate and credible mortality

forecasts is greater than ever.

This thesis covers five topics related to mortality modelling and forecasting. The

main chapters can be divided into two categories. Chapters 2–4 focus primarily on

the development and application of multi-population forecasting methods. Chapters

5 and 6 consider causal models and address the opportunities and obstacles of an

explanatory approach to mortality forecasting using epidemiological information. The

present chapter introduces some important aspects of stochastic mortality modelling

and causal inference. The purpose is not to give a complete and exhaustive account

on the history of either mortality modelling or causality, but rather to provide the

necessary background and context in which this thesis should be read. Building on

this introduction, Section 1.4 provides an overview of the main contributions of the

thesis and their interconnections.

1.1 The Modern Rise of Life Expectancy

Life expectancy at birth has averaged between 10 and 40 years for most of human

history. From the age of hunter-gatherers, through the rise and fall of the Roman

empire and until quite recently, wars, food insecurity and infectious disease outbreaks

prevented most people from surviving into old ages. However, the epoch of high,

volatile death rates suddenly began to end two-hundred years ago. With general

living conditions improving in the wake of the industrial revolution, and with the

emergence of medical countermeasures for infectious diseases, life expectancy has

soared throughout the Western world since the mid- to late-1800s. As a testament to

1



2 CHAPTER 1. INTRODUCTION

this fact, Figure 1.1 shows the dramatic increase in life expectancy at birth observed

for the Nordic countries1 over the past two centuries. One can also observe the

reduction in volatility that followed the mass production and widespread availability

of antibiotics – penicillin in particular – after the Second World War.
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Figure 1.1: Evolution in period life ex-

pectancy at birth (i.e, the average number

of years one expects to live if one experiences

the age-specific death rates prevalent in a par-

ticular year) for the Nordic countries.

As in Jarner et al. (2008), we take

a closer look at the age-specific death

rates in Figure 1.2 that tell the story

behind the large secular increases. Al-

though reductions in mortality across

the entire span of ages have affected life

expectancy, the rapid gains made be-

tween 1800 and 1950 were due mainly

to reductions in infant and child mor-

tality. Throughout the 1800s, attrition

was very high at the young ages. The

probability of a newborn in the Nordics

surviving to age 20 was just barely over

50% in 1800. With such a high proba-

bility of death, only a select subgroup of

very robust individuals made it into adulthood. Indeed, life expectancy conditionally

on surviving to age 20 was 57.2 years, a staggering difference of 25.4 years compared

to life expectancy at birth. By 1950, the probability of surviving to age 20 had

increased to over 95%, almost exhausting the prospects for further gains from the

young age groups. Improvements in life expectancy have since been driven mostly

by reductions in adult and old-age mortality. Similar analyses confirm this evolution

for other developed countries, see e.g. Riley (2001).

The story can be told also by breaking down deaths into causes by category.

Historically, the share of deaths due to infectious diseases and malnutrition have

dominated the rankings, while today the majority of deaths are caused by non-

communicable diseases with deaths due to cancers and cardiovascular diseases being

the leading ones.2

It bears mentioning that the events that have led to the remarkable increases in

life expectancy historically are not repeatable – today, the probability of surviving

childhood is around 99.5% in most developed countries and infectious diseases are

almost eliminated through vaccination and antibiotics. Consequently, scholars have

argued that the prospects for further improvements in mortality have diminished,

1For the empirical illustrations, we use data from the Human Mortality Database (2022). This
dataset covers Denmark (from 1835), Finland (from 1878), Iceland (from 1838), Norway (from
1846) and Sweden (from 1751).

2See, for example, https://www.who.int/data/gho/data/themes/mortality-and-global-

health-estimates/ghe-leading-causes-of-death.

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
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and that a maximum expected lifespan may soon be reached. However, proposed

limits have been broken time and time again, and best practice life expectancy3 is

still increasing linearly by roughly two and a half years4 per decade (Oeppen and

Vaupel, 2002; Vaupel et al., 2021). In this light, even though one can imagine many

possible futures, both pessimistic and optimistic, it is not entirely unreasonable that

improvements in life expectancy will continue to occur at the historical pace.

1.1.1 Societal Response to Increased Longevity

Alongside the continued reductions in old-age mortality over the past decades,

financial liabilities associated with a longer lifespan have increased. It is important

to recognize that even a slight bias in the mortality expectations can have serious

consequences when scaled to, for example, the number of people expected to receive

pension benefits:

“If individuals live three years longer than expected – in line with underestimations

in the past – the already large costs of ageing could increase by another 50 percent

[of GDP in advanced economies].” — IMF (2012)

Mitigating the impact of demographic changes is therefore an increasing source of

concern and has called for both political and regulatory action.

The pension systems in most developed countries rest on a universal, public pension

pillar designed to deal explicitly with poverty alleviation by providing everyone with

a minimum level of income. Often, the public pension plans are not pre-funded, and

the pension benefits for current retirees are paid by current workers through taxation.

3The best practice life expectancy is usually defined as the empirical record average length of
life in a national population in a particular year.

4With the Nordics experiencing a life expectancy gain of 12.8 years in the period 1950–2020, cf.
Figure 1.2, improvements have been lower than the best-practice increase of 17.5 years (= 7 · 2.5
years). This slowdown is due to periods of stagnation in mostly Danish mortality caused by unhealthy
lifestyles, in particular the consumption of alcohol and tobacco (Juel, 2008; Lindahl-Jacobsen et al.,
2016; Kallestrup-Lamb et al., 2020).
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While there are many advantages to systems funded on such a pay-as-you-go basis,

they are particularly vulnerable to demographic changes. As life expectancy increases,

so does public expenditure on pension, threatening to undermine fiscal sustainability.

To improve the long-term sustainability of its pension system, Denmark was the

first country to introduce an automatic adjustment mechanism for its state pension

age in 2006, creating a one-to-one link between life expectancy and the statuatory

retirement age. Since then, six other OECD countries have followed suit with similar

links, while about two-thirds of the OECD countries currently employ some kind of

automatic adjustment for mandatory components of their pension systems (OECD,

2021). Apart from protecting the financial sustainability of a pension system, an

adjustment mechanism also enforces a sense of intergenerational fairness in that the

financial costs of living longer are shared between generations.

In the private pension industry, schemes are funded with “real” money in individual

or collective accounts. Still, life insurance companies and pension funds face major

challenges in relation to increasing lifespans. This risk is often categorized between

micro and macro longevity risk (Hári et al., 2008). The former is the risk that a

particular individual lives longer than expected, an unsystematic risk that can be

diversified away by the company having a sufficiently large portfolio. In contrast, the

latter is the risk that all insured on average live longer than expected, a systematic

risk that cannot be diversified away by pooling.

Historically, macro longevity risk has been managed by determining insurance

premiums on a conservative first-order technical basis; a set of assumptions concerning,

for example, mortality, designed to be prudent so that portfolios generate a systematic

surplus over time. For this purpose, insurance companies in Denmark used a common

first-order basis, i.e., the L66, U74 and G82 risk tables. But while these tables were

deemed prudent at the time they were made, the mortality assumptions were quickly

overtaken by reality as higher-than-expected improvements continued to materialize.

It soon became clear that a new way of managing longevity risk and setting “safe-side”

assumptions was needed.

In Denmark, and in many other countries, the solution has been projection-

based mortality tables.5 Since 2011, Danish life insurance companies and pension

funds have been required to take future, expected improvements in mortality into

account when calculating their reserves. At the same time, the Danish Financial

Supervisory Authority introduced a longevity benchmark to be used as the industry

standard by all Danish life insurance companies. Companies are allowed to deviate

from the benchmark only if their model provides a similar degree of prudence

5Also, many European insurers have moved away from guaranteed products and towards
products with only conditional, or no guarantees, e.g., unit-link contracts, a shift that has been
expedited by the low interest rate environment. For the insurance company, this enables a transfer
of both financial and longevity risk to the policyholder.
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(Finanstilsynet, 2010). Industry standard models, published and maintained by the

Actuarial Profession, are also used in, for example, the UK, the Netherlands and

Belgium (Continuous Mortality Investigation, 2016; Antonio et al., 2017).

Within the European Union, insurance regulation was updated and harmonised

with the Solvency II regulatory regime, which came into force January 2016. For

many insurance companies, Solvency II has become a catalyst of change, incentivizing

portfolio-specific stochastic modelling for quantitative risk assessment. The regime

dictates market-based valuation of liabilities alongside solvency capital requirements

(SCR’s) for various risks. The SCR for longevity risk is defined as the capital required

to cover all losses due to variation in mortality rates that may occur over a one-year

period with at least 99.5% probability. Performing this computation requires a

probabilistic model of mortality. Alternatively, the SCR may be calculated using

the “Standard Formula”, which is meant to reflect a conservative estimate of the

above, by evaluating the effects on the liabilities of a permanent, uniform reduction

of the mortality rates by 20%. While straightforward to apply, the sheer magnitude

of this stress leads to an excessively high solvency requirement for many companies –

especially those that update their mortality assumptions annually – pushing them to

develop their own internal stochastic models to assess their risks more accurately

(Börger, 2010; Jarner and Møller, 2015).

Consequently, stochastic mortality models have come to play a prominent role in

both actuarial applications and in policy-making processes for planning appropriate

responses to the consequences of population ageing.

1.2 Stochastic Mortality Modelling

Models of human mortality have a long history, dating back to Moivre (1725). The

first reasonably accurate model is due to Gompertz (1825), who made the simple

observation that mortality tends to increase exponentially as a person ages. Later,

Makeham (1867) proposed to add an age-independent component to the equation, the

rationale being that not all deaths are due to senescence. The modification resulted

in the famous Gompertz-Makeham law of mortality, which has proven surprisingly

effective as a model for the age-specific death rates of adults. Although the classical

parametric laws can be extended to a dynamic setting, they do not inherently allow

for death rates to evolve through time, and have mostly been used as a parsimonious

way of summarizing mortality profiles within shorter periods (Booth and Tickle,

2008; Pitacco et al., 2009).

The model of Lee and Carter (1992) marks the beginning of the modern era of

mortality modelling. Projection methods prior to the 1990s were primarily focused

on point forecasts, and to a large extent based on subjective judgements. In fact,

the common method of projection was to simply ask a group of experts, for example
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doctors and epidemiologists, to essentially guess the future level of mortality, and then

average out over these expectations (Olshansky et al., 2009).6 The Lee-Carter model

signified a move away from expert opinion towards objective, statistical methods,

enabling also a quantification of forecast uncertainty.

The overall ambition in stochastic mortality modelling is to specify an accurate,

predictive model for the population-level death rate (or transformations thereof). In

a continuous-time setting, the death rate is defined for age x ∈ R+ and time t ∈ R as

µ(t, x) := lim
∆→0+

P(x ≤ Yt−x < x+∆ | Yt−x ≥ x)/∆, (1.2.1)

where Yt−x is a non-negative random variable describing the lifetime of an individual

from the cohort born at time t− x. The lifetime, Y , can depend also on, e.g., sex or

socio-economic group, but for ease of notation we suppress this dependence.

A mortality model qualifies as being stochastic if it can produce a probability

distribution for the forecast mortality levels as opposed to a deterministic forecast

only. Even though a wide range of behavioural risk factors influence the probability

of death, traditional models do not consider population heterogeneity apart from

that described by chronological age, calendar time and sex. The rationale is to focus

on capturing the secular downward trend in mortality, without having to disentangle

the complex relationship between behavioural risks, diseases, genetics and death.

Thus, most stochastic mortality models take the form

µ(t, x) = Gθ(t, x, {εs,x}s≤t), (1.2.2)

where Gθ is the model parameterized in terms of θ, and the ε’s are random variables

that capture the stochastic nature of µ. For most applications, the data used to

estimate θ are aggregate summaries from vital statistics bureaus on total death counts

{D(t, x)}t∈T ,x∈X and total exposure-to-risk-of-death(-estimates) {E(t, x)}t∈T ,x∈X ,
that is, the number of person-years lived at age x during period t, for a given set of

ages X and periods T .

1.2.1 The Lexis Diagram and the Poisson Assumption

A common tool used for representing mortality data is the Lexis diagram (Lexis,

1875; Keiding, 1990). The Lexis diagram is a period-age coordinate system with

(calendar) time as abscissa and age as ordinate, see Figure 1.3 for an illustration.

Lifetimes of individuals are displayed as line segments of unity slope and deaths as

points in the diagram. The two time scales are typically divided into disjoint regions

by a partitioning of the coordinate plane into square segments. Let us consider a

6For some time, this method was used to generate projections by Statistics Denmark. Following
an expert prediction of life expectancy in some target year, a linear interpolation between current
life expectancy and target life expectancy was made. To obtain age-specific death rates, a baseline
mortality table was scaled to match the life expectancy estimate.
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tessellation of the Lexis plane into squares of the form Ωij := [ti−1, ti)× [xj−1, xj).

The usual unit is one-by-one cells, but other partitions may be used. For modelling

purposes, it is common to adopt an assumption of cellwise constant mortality over

these period-age cells, that is,

µ(t, x) = µij , (t, x) ∈ Ωij . (1.2.3)

𝜇(𝑡, 𝑥)

𝑡 - 𝑥 - 1 𝑡 - 𝑥 𝑡 - 𝑥 + 1

𝑥

𝑥 + 1

Age

Time

Figure 1.3: Illustration of the Lexis diagram

and cellwise constancy.

If individual life times are observable,

the total exposure Eij in Ωij can be cal-

culated exactly by adding up the length

of all life lines intersecting Ωij (and di-

viding by
√
2 to convert to person-years).

If we denote byDij the number of deaths

that occurred in Ωij , the observed or cen-

tral death rate is defined as the number

of occurrences divided by the exposures

mij := Dij/Eij . This quantity may also

be derived as the maximimum likelihood

estimate of µij under the assumption of

cellwise constancy. Suppose we have L

i.i.d. observations on Y
(l)
ij , the time in-

dividual l lived in Ωij , and let δ
(l)
ij be the indicator of whether individual l died in

Ωij or not. The log-likelihood for µij can be written as

logLij = log

L∏
l=1

µ
δ
(l)
ij

ij e−µijY
(l)
ij = Dij logµij − µijEij . (1.2.4)

Solving the score equation d
dµij

logLij = 0 for µij yields the occurrence-exposure

rate as desired.

One may notice that inference regarding µ can be drawn from a Poisson likelihood;

Lij is proportional to the likelihood obtained by treating Dij |Eij as Poisson random

variable with rate parameter µijEij . This shows that the aggregate quantities

available in standard life table data are sufficient statistics for the model. Inference

for a given specification of (1.2.2) is therefore often based on the assumption of

Poisson distributed deaths, see for example Brouhns et al. (2002) and Currie (2016).

A Short Digression on Period and Cohort Quantities

Life table related quantities such as survival functions and life expectancies are

derived from the time- and age-specific mortality rates. However, the interpretation

of these quantities is a common cause for confusion, rooted in the distinction

between the period and the cohort perspective. Quantities defined in period terms
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represent only the mortality experience in a given period. Portrayed on a Lexis

diagram, this means that only µ’s along the vertical axis enter the computation,

and, importantly, that future (expected) mortality improvements are not taken

into account. For instance, the survival function exp(−
∫ x
0
µ(t, y) dy) describes the

probability of surviving to age x, based on the assumption that one is subject to the

mortality rates experienced in period t throughout their entire life. In contrast, the

cohort analogue exp(−
∫ x
0
µ(t− x+ y, y) dy) uses µ’s along a diagonal of the Lexis

diagram, and describes the proportion of the cohort born at time t− x that is still

alive at time t.

The rationale for using period quantities is that they can be computed given the

past experience only, whereas quantities defined in cohort terms either require a very

long follow-up or a model for the future, expected rates of death. Since the choice of

perspective is often implicit from context, life expectancies in particular are often

misinterpreted by the uninitiated.

1.2.2 Forecasting the Secular Trend in Mortality

Extrapolative methods are at the heart of modern mortality forecasting procedures.

The basic idea is to exploit that death rates have been steadily declining in a

somewhat predictable pattern for a long time. Broadly speaking, if the future is

anything like the past, extending these trends ought to give a reasonable estimate of

the improvements to come.

The landmark model of Lee and Carter (1992) captures the temporal signal in

mortality data with a single time-varying component. Under the Poisson specification,

the model takes the form

D(t, x)|E(t, x) ∼ Pois(µ(t, x)E(t, x)), µ(t, x) = exp (αx + βxκt) , (1.2.5)

where the α’s and β’s are age-specific parameters governing respectively the level

of mortality and the rate of improvement in response to the time-varying κ’s. The

model’s fit to historical data is often very accurate because the dependence on age is

non-parametric.

While the Lee-Carter specification (1.2.5) itself stands as an important contribu-

tion, the pivotal methodological development was the introduction of a secondary

model for forecasting. After the parameters in (1.2.5) have been estimated, an

appropriate time series model is fitted to the time-varying κ’s. Typically, a random

walk with drift is chosen

κt = κt−1 + ξ + σωt, ωt ∼ N (0, 1), (1.2.6)

although other, more complex, time dynamics could also be used. The (adjusted)



1.2. STOCHASTIC MORTALITY MODELLING 9

sample mean and variance are used as estimators

ξ̂ =
1

T − 1

T∑
t=2

∆κt =
κT − κ1
T − 1

, σ̂2 =
1

T − 2

T∑
t=2

(
∆κt − ξ̂

)2
, (1.2.7)

given “observations” {κt}t∈{1,...,T} with ∆κt = κt − κt−1. The time series model

is then used to produce a forecast of the κ’s over a desired forecast horizon, and a

surface of projected mortality rates is obtained by inserting the forecasted κ’s along

with the estimated α’s and β’s into (1.2.5). This idea readily extends to any number

of time-varying factors, and, importantly, enables us to assess the probabilistic

uncertainty around the point forecasts.

There are several sources of uncertainty one can take into account. Usually, the

focus is on the systematic variability, which is the variability that is independent of

sample size. For mortality models under the Poisson error structure, we have by the

law of total variance that

Var[m(t, x)] = Var[E[m(t, x)|E(t, x)]] + E[Var[m(t, x)|E(t, x)]]

= Var[µ(t, x)] + E[µ(t, x)]/E(t, x), (1.2.8)

where the first term on the right-hand-side explains the systematic variability, while

the second term explains the unsystematic variability, which tends to zero as the

sample size increases.

The systematic variability includes uncertainty from model selection, sampling er-

rors in the parameters and structural uncertainty from the innovation noise from the

time series model (Cairns, 2000). Ignoring all sources of uncertainty apart from that

of the innovation noise, the uncertainty for the h-step-ahead value of the time-varying

parameters translates directly to the uncertainty for µ. To include uncertainty from

all of the estimated parameters, bootstrapping techniques can be used (Brouhns

et al., 2002, 2005; Koissi et al., 2006). Uncertainty from modelling choices can be

assessed through sensitivity analyses or by Bayesian methods.

1.2.3 The Role of Statistics in Mortality Modelling

Advocates of the extrapolative approach to mortality forecasting will emphasize that

the models are data-driven and widely based on objective, statistical methods. There

are, however, still many subjective choices to be balanced, some of which may turn

out to be decisive for the projections. In particular, comparisons between different

methods have shown that due to changing patterns of improvements, the choice of

data period used to calibrate the model is often more important than the choice

of model itself. From this perspective, there is certainly scope for debate about

whether the problem of predicting future mortality rates should be treated as any

other problem of statistical learning.
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Mortality models are special in that they need to capture both past and future

trends. When predictive performance is the leading priority, selecting the “best”

model is often based on measures of forecasting accuracy. But does it actually make

sense to perform model selection through purely statistical means?

From a time series perspective, the estimation window is generally rather short as

mortality data observed prior to the 1950s is seldom used.7 To assess the quality

of fit, a hold-out method is typically employed, which leaves around 70 data points

for estimation and validation, at best. Accuracy is measured in terms of mean

squared error (or some variant thereof), with predictions from the model contrasted

against the latest available data for a fixed period between 5 to upwards of 20 years.

However, in our view, it is debatable whether (narrowly) besting other models in

terms of forecast accuracy on such short- to medium horizons is a strong indicator

of a model’s ability to predict future trends.

Suppose for instance that the hold-out sample consists of data from the period

2010–2020, during which there have been multiple severe flu seasons and the outbreak

of coronavirus disease. The mortality excess caused by these events should arguably

not be defining for our view on the long-term trend, but based on this sample, we

would lean towards models with fairly modest rates of improvement.

For long-term forecasting, accuracy is to a large degree determined by assumptions

about future improvements at the high ages – assumptions that cannot be verified

against empirical data. As such, it seems more natural to draw up a list of desiderata

against which models can be assessed. A comprehensive list would of course elicit

some degree of subjectivity, depending on which features and stylized facts a domain

expert deems important. A relatively objective list of basic criteria can be found

in Cairns et al. (2008). In addition to this list, one could add some features for

the forecasts, for example that improvement rates should vary over time or that

mortality for certain populations, e.g. females and males, should evolve in parallel.

Expressing these features mathematically in a way that they arise endogenously in

the model is challenging, a problem we return to in Chapters 2–4.

Also, one might question whether the role of a mortality model is simply to

generate forecasts or if it should also provide insights into the dynamics of mortality,

cf. Chapter 3. As we stress in Chapter 2, there are many desirable qualities aside

from accuracy that a versatile mortality model should possess. One of those is

7As demonstrated in Section 1.1, mortality data can exhibit a number of structural breaks. While
it seems reasonable that trends in the (near) future closely resemble trends from the recent past,
future trends may be quite different from trends from more distant pasts. For example, a forecast
based on improvement patterns observed prior to the 1950s leads to a serious underestimation of
actual improvements in old-age mortality. Literature on finding an “optimal” data window agrees
with this view, concluding that the window should be chosen as wide as possible, so long as it
does not contain periods with radically different improvement patterns, see e.g. Booth et al. (2002).
Because mortality models are typically not designed to deal with structural breaks, data observed
prior to the 1950s is seldom used.
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explainability. From a forecasting perspective, it is important that the model is

“anchored in reality” with parameters that can be ascribed some degree of real world

meaning – at least if we want to justify extending their trends into the future. From

a practical point of view, being able to explain and justify the projected trends is

important when political or commercial decisions are based on the model’s output.

Nevertheless, mortality models of the form (1.2.2) are not equipped to provide

any insights as to what causes the drift in the time-varying parameters. If we want

to obtain an improved understanding of the underlying factors that drive the secular

trend, epidemiological information has to be included in the model.

1.3 Explanatory Models and Scenario-Based Projections

It is intuitively obvious to even the most casual observer that mortality is the result

of various biological processes that are, among other things, influenced by our choice

of lifestyle. Asking laypeople, they would probably even expect that mortality

projections are made conditionally on the prevalence of various risk factors such

as smoking and obesity. In practice, such explanatory models (for forecasting) are

still underdeveloped, although they represent a natural next step for obtaining more

solidly founded projections.

A model that “explains” mortality requires a functional link between observable

risk factors and cause-specific mortality. This comes with several challenges such as

unreliability in cause-of-death reporting, a lack of methods to forecast risk behaviour

and difficulties with discerning the cause-effect relations between risk factors and

disease outcomes. However, with the advent of better data and initiatives such as

the Global Burden of Disease Study that make epidemiological information easily

accessible, building explanatory models is becoming a realistic objective.

Integrating cause-effect relationships into mortality models is not necessarily

done for the purpose of improved best-estimate predictions, but rather to improve

our understanding of how mortality develops in the future and the mechanisms

responsible. This is achieved by studying the scenarios that arise from eliminating

certain causes of death or varying the risk factors we condition on. However, if such

interventions are to reflect real-world implementations, the model must be enhanced

with a causal interpretation.

1.3.1 The Difference between Probabilistic and Causal Models

A causal model is essentially a probabilistic model equipped with the capability of

describing a system when subject to external manipulation. For a given parametri-

zation θ, a probabilistic model θ 7→ Pθ specifies a single distribution over a system

of random variables, whereas a causal model θ 7→ {Pdo(i)
θ : i ∈ I} specifies an entire

family of distributions, one for each intervention. Here, I denotes the set of possible
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interventions, including the observational setting. We use the do-operator of Pearl,

e.g. Pearl (2009), to emphasize that do(i) is something that we actively do to the

system and not something we passively observe.

The distinction between seeing (i.e., conditioning by observation) and doing (i.e.,

conditioning by intervention) is cardinal. For example, seeing that someone currently

lives in a hospice expressly indicates that death is approaching that person. However,

actively relocating someone (healthy) to live in a hospice does not increase that

person’s risk of death. In this case, the observed association between hospice and

death can be explained through a common cause, namely a terminal illness, but

this relation does not translate into a causal link between being at a hospice and

imminent death.

While this example appears somewhat contrived, the conclusion carries over to

more elaborate applications, where the distinction may be less intuitively clear.

Suppose we wish to quantify the (causal) effect of smoking, X, on lung cancer, Y .

Both variables are affected by place of residence, Z, as people living in poor regions

tend to smoke more and are also more exposed to radon, another risk factor for lung

cancer. We say that the causal effect from X to Y is confounded by Z, as Z affects

both exposure and outcome.

For the sake of exposition, we assume that X,Y, Z are discrete random variables,

and are the only ones relevant for determining the effect from X on Y . We can write

p(x, y, z) = p(y|x, z)p(x|z)p(z), (1.3.1)

where, e.g., p(x|z) is used as short-hand for P(X = x|Z = z). While the same

formulation is possible using the definition of conditional probability, the above

relations are formed by recursively considering each variable conditionally on its

direct causes, and should be interpreted as autonomous generative mechanisms. That

is, we can think of the system as being generated by a program that first draws a z

from PZ , then an x from from PX|Z=z and finally a y from PY |X=x,Z=z (and precisely

in this order). The causal interpretation allows us to reason about interventions,

since we can replace one or several mechanisms without affecting the remaining ones.

Thus, intervening in one part of the system will bring about the “right” consequences

“downstream”.

In particular, conditioning on do(X = x∗) corresponds to an atomic intervention

that replaces the distribution of X given its cause(s) with a one-point measure. The

distinction between conditioning on {X = x∗} and conditioning on do(X = x∗) can

now be seen by contrasting the two formulas

p(x, y, z|do(x∗)) = p(y|x, z)p(x|z)p(z)
p(x|z)

∣∣∣∣
x=x∗

, (1.3.2)

p(x, y, z|x∗) = p(y|x, z)p(x|z)p(z)
p(x)

∣∣∣∣
x=x∗

. (1.3.3)
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To infer p(y|do(x∗)), the causal effect of smoking on lung cancer, we could perform

the experiment do(X = x∗) in a randomized controlled trial. Randomly assigning

people to different values of X breaks its dependence on Z, and renders the effect of

interest identifiable. In general, however, randomized controlled trials are expensive

and not always feasible. Here, for instance, assigning people to start smoking

would not be possible for ethical reasons. A central aspect of causal inference is

therefore to state assumptions under which causal quantities become identifiable

from observational quantities. In models without unobserved confounding, we can

use adjustment formulas, see e.g. Spirtes et al. (2000), Pearl (2009), and Hernán and

Robins (2020), but more advanced techniques are needed when the confounders are

hidden.

Different frameworks exist for specifying causal models. These include causal

graphical models (Spirtes et al., 2000), structural causal models (Pearl, 2009; Peters

et al., 2017) and the potential outcomes framework (Imbens and Rubin, 2015; Hernán

and Robins, 2020). Depending on context, one framework might be preferable over

another in terms of the ease with which assumptions and relationships can be

conveyed. In epidemiological and biomedical applications for instance, the potential

outcomes frameworks is the most prevalent one. This is the framework we adopt

in Chapter 5, while we work in the framework of structural causal models for the

purposes of Chapter 6. The frameworks will be introduced when they are needed.

1.4 Overview and Contributions

This thesis has been written as an industrial PhD project in collaboration with

the Danish Labour Market Supplementary Pension Fund (ATP), and is therefore

thematically motivated by real problems faced by ATP in the context of rising

life expectancies. Together with the Danish State Pension, ATP makes up the

compulsory part of the Danish pension system. Because ATP provides essentially

the entire Danish population with a whole life (nominally guaranteed) annuity,

mortality assumptions are a critical component for how ATP is operated. In 2007,

ATP developed the SAINT mortality model as part of a new market value annuity

product, see Jarner and Kryger (2011). To some extent, Chapters 2–4 build on

specific problems encountered during subsequent model revisions. Some of the

solutions have been implemented in production at ATP, while others have provided

valuable insights into the dynamics of mortality.

In Chapter 2 we survey the major changes made to the SAINT model since

Jarner and Kryger (2011) in response to user feedback and regulatory requirements.

This is followed by Chapters 3–4 that take a deep dive into some issues related to

multi-population forecasting, with a focus on joint modelling of females and males.

Generally, women live longer than men, and while this difference varies over time it

is believed to persist. However, separate models for the two sexes lead to diverging
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forecasts. Chapter 3 considers the use of cointegration techniques for constructing

non-diverging mortality projections, while Chapter 4 has life expectancy differentials

in multi-population mortality models as its focal point.

An overarching theme in Chapters 2–4 is the strive for a strong intuition and

understanding of various model components and how they affect the forecasts

produced by the model. Still, it may be difficult for a layperson to appreciate

the uncertainty inherent in such estimates, or for a board member to engage in a

discussion about varying abstract (model) assumptions.

With the purpose of developing scenario-based mortality projections that can be

communicated in a more straightforward, verbal manner, Chapters 5–6 consider an

explanatory approach to forecasting. Specifically, Chapter 5 discusses the assumptions

and data needed for a scenario-based analysis to be operationalized, while Chapter 6

addresses the issue that, in practice, samples from a joint distribution of risk factors

covering the entire population of interest is rarely available. Chapter 6 differs from

the remaining chapters in that it is written for a general audience with an interest in

causal models.

1.4.1 Stochastic Frailty Models and the SAINT Projection

Methodology

In Chapter 2 we go through the major evolutionary steps of the SAINT model since

Jarner and Kryger (2011) in response to changing demands arising from practical use

and user feedback, and present the SAINT model in its current form used by ATP.

The SAINT model features a frailty component as proposed by Vaupel et al.

(1979), that is, a non-negative stochastic quantity Z that acts multiplicatively on the

underlying baseline mortality rate, µ0. Thus, at the level of individuals, mortality

reads µ(t, x|Z) = Zµ0(t, x).

Multiplicative frailty is a mathematically tractable way of introducing population

heterogeneity and thereby effects of selection. The purpose is twofold: to improve the

fit of old-age mortality and to endogenously create changing rates of improvement.

The basic idea is that complex (observed) population dynamics may be the result

of much simpler (unobserved) individual-level dynamics. For example, frail people

have a tendency to die sooner than less frail people and this selection mechanism is

one possible explanation for the well-documented old-age mortality plateau (Perks,

1932; Beard, 1959; Vaupel et al., 1979; Kannisto et al., 1994; Thatcher et al., 1998;

Thatcher, 1999). In the same way, and perhaps more importantly in a forecasting

aspect, lack of historic improvements in mortality among the oldest-old could be

attributed to selection (Jarner and Kryger, 2011). This interpretation suggests

that improvements among the oldest-old will start to materialize once the frailty

composition at these ages begin to change.
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The primary theoretical development of the SAINT model since the original

version is the generalization of the frailty framework to allow for stochastic rather

than deterministic long-term trends. We define a stochastic frailty model as a model

for the population-level death rate of the form

D(t, x)|E(t, x) ∼ Pois(µ(t, x)E(t, x)), µ(t, x) = E[Z|t, x]µ0(t, x),

where E[Z|t, x] is the mean frailty among survivors of the cohort born at time

t − x. Since mean frailty is given endogenously within the model as a function

of µ0, it is either deterministic or stochastic depending on the nature of µ0. If

µ0 is deterministic, the model can be estimated and forecasted using standard

maximum likelihood and extrapolation techniques. If, on the other hand, µ0 is

stochastic then explicit expressions for E[Z|t, x] are no longer available. To overcome

this issue, we devise a novel method for estimation and forecasting based on a

Poisson pseudo-likelihood. The key idea is to replace E[Z|t, x] with a term that

does not depend on the parameters of the baseline mortality model. This leads to a

generally applicable procedure by which essentially any (stochastic) mortality model

for µ0 can be combined with frailty. The framework is also extended to allow for

frailty-independent mortality components.

Furthermore, we advocate the view that there are a range of other model properties

aside from forecasting accuracy that are important from a practitioner’s point of

view, namely stability, flexibility, explainability and credibility. Based on these

properties we motivate additional changes to the SAINT model. We propose to base

the long-term mortality trend on a model of the Gompertzian type,

µ0(t, x; θ) = exp
(
θ1t + θ2t x+ θ3t (x− 75)1{x≥75}

)
,

that, combined with Gamma distributed frailty and a Makeham component, provides

an excellent, parsimonious fit of the entire adult age span. Changes made to the

time dynamics for the trend are rooted in the findings of Chapter 3.

1.4.2 Cointegration-Based Mortality Models

In Chapter 3 we look at the pitfalls and merits of cointegration-based mortality

models. Cointegration-based mortality models were first suggested by Carter and

Lee (1992) in a follow-up paper on possible extensions for their original method. By

modelling the time-varying mortality indices for multiple populations jointly as a

cointegrated process, the indices exhibit a stationary relation that prevents them

from diverging, which, in turn, prevents the mortality projections from diverging.

The property of non-divergence is also known as coherence; a given forecast of

two-population mortality is said to be coherent if the mortality ratios converge to a

set of positive, finite age-specific constants (Li and Lee, 2005; Hyndman et al., 2013).

Today, cointegration is widely used as a tool for achieving coherence in multi-

population models. This includes the SAINT model that forecasts female and male
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time-varying parameters using an error correction model to achieve a common long-

run stochastic trend. However, with Chapter 3 we demonstrate that cointegration

has more to offer than assuring coherence – it is also a powerful inferential tool for

establishing the nature of the long-run dynamics.

We study a p-dimensional vector autoregressive process {Xt} with k lags written

in error correction form:

∆Xt := Xt −Xt−1 = ΠXt−1 +

k−1∑
i=1

Γi∆Xt−i +ΦDt + εt, εt ∼ N (0,Σ),

where Π is the p×pmatrix of autoregression coefficients. We suppose for cointegration

that rank(Π) = r < p such that Π = αβ⊤ for matrices α, β ∈ Rp×r of rank r. In

the context of mortality modelling, we think of Xt as a stacked vector of time-

varying mortality indices. Under some further technical conditions, the Granger

representation theorem can be used to decomposeXt into a stochastic and a stationary

part, namely

Xt = X0 + τ(t) + C

t∑
s=1

εs + Yt,

where C = I − α(β⊤α)−1β⊤, while τ(t) is a deterministic trend that depends on

the initial values, C
∑t
s=1 εs captures the stochastic trends and {Yt} is a stationary

process. As demonstrated in Chapters 2–3, using the Granger representation is

key for understanding the model’s short- and long run dynamics, an otherwise

surprisingly difficult task even in the two-dimensional case.

Cointegration theory offers a statistical framework for identifying and testing

stationary relations. The typical procedure for determining the rank of Π is sequential

likelihood-ratio testing (Johansen, 1995). However, in a mortality modelling context,

the structure is often imposed rather than tested. Some papers do test for cointe-

gration rank, but only as part of a model selection step. Formulating and testing

hypotheses on parameters is not part of the analysis. Considering deterministic

trends of the form ΦDt = ξ0 + ξ1t, we look at the model classes and hypothesis tests

relevant for mortality modelling.

Taking the Lee-Carter model as an example, we point out the limitations of a

cointegration analysis when applied to factors that are not fully identifiable. Because

the time-varying index in the Lee-Carter model (1.2.5) is only identified up to a linear

transformation, we are able to demonstrate that virtually all hypotheses of interest

are non-testable without allowing arbitrary identification constraints to influence the

analysis. In contrast, when cointegration is applied to identifiable factors a complete

analysis is possible, and we show by example the insights that can be obtained in

this case.

Cointegrated models yield forecasts of mortality indices that are “marginally”

similar to those obtained from applying separate random walk models but produce a
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more plausible dependency structure. However, even though the resulting forecasts

are well-behaved and empirically justified, they may not be coherent in the strict

mathematical sense. This indicates that the definition of coherence is too restrictive

– a theme we pursue further in Chapter 4.

1.4.3 Life Expectancy Differentials in Coherent Mortality Models

In Chapter 4 we study the behaviour of the life expectancy differential

R ∋ t 7→
∫ ω

0

[
exp

(
−
∫ y

0

µ1(t, z) dz

)
− exp

(
−
∫ y

0

µ2(t, z) dz

)]
dy.

Here, the subscripts on µ identify the mortality experience in two distinct populations,

while ω ∈ R+ is some age of truncation.

In the context of two-sex mortality in the Western world, the life expectancy gap

widened in favour of women throughout most of the 20th century, but has recently

started to close. This development is often attributed to different timings of shifts

in unhealthy behaviours. In particular, women adopting health-damaging habits,

such as smoking and drinking, is often suggested as an explanation for the reversal

of the trend that began during the 1980s. Interestingly, the same sex gap pattern

emerged in the SAINT model. That is, in a model with no behavioural effects,

and where temporal parameters develop almost linearly over time. This lead us to

investigate whether a more fundamental, mathematical reason was the driver behind

the dynamics of the gap.

We consider the life expectancy differential implied by two-sex coherent mortality

models. Since the introduction of coherence by Li and Lee (2005), a multitude of

coherent, multi-population models have been proposed. However, the theoretical

properties of the resulting forecasts are rarely studied. On the other hand, theoretical

results exist regarding the decomposition and interpretation of observed changes in

life expectancy and sex differentials, in particular, those of Glei and Horiuchi (2007)

and Cui et al. (2019). In Chapter 4 we review both branches of literature, and use

the decomposition results to provide theoretical insights on coherent forecasts.

Technically, we prove that a sufficient condition for the sex gap to be unimodal in

strongly coherent mortality models subject to uniform rates of improvement is that

∂

∂x
log

(
µm(t, I−1m (t, x))

µf (t, I
−1
f (t, x))

)
≤ 0,

for all t and x, where I−1g (t, z) denotes the age, x, at which

z = Ig(t, x) :=
∫ x
0
µg(y, t) dy and the g ∈ {f,m} subscript describes whether a quan-

tity relates to females or males. The condition holds for mortality schedules of the

same shape, for example when they are log-linear. When the condition holds, we
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are in a situation with fixed mortality ratios but where the life expectancy gap both

widens and narrows in two distinct epochs. It follows that the life expectancy sex

gap should not be used to draw conclusions about mortality “catch up”-effects.

We demonstrate that for Western European levels of male excess mortality (relative

to female mortality), the sex gap in the model typically peaks when female life

expectancy is between 30 to 50 years. Although only formally proven for a subclass

of coherent models, this insight carries over to other more “realistic” models as well,

and it explains why coherent two-sex models forecast closing sex gaps for almost all

Western European countries and all jump-off years since the 1950s – despite the fact

that the actual sex gap was widening until the 1980s. This inadequacy, combined

with the findings from Chapter 3, brings us to question the status of coherence as a

universally desirable property.

1.4.4 Towards Scenario-Based Projections and Causal Mortality

Models

In Chapter 5 we discuss how mortality forecasts are affected by interventions and

we show by example the assumptions and data needed for such an analysis to be

operationalized. From a communications standpoint, a target audience may be easier

to engage when scenarios are formulated in a verbal manner (i.e., as interventions)

compared to when scenarios are presented as projections under varying rates of

improvement or as quantiles of an excess lifetime distribution.

Generally, we are interested in interventions that target modifiable risk behaviour

and interventions that reduce or eliminate certain causes of death. Such queries are

inherently causal. To produce scenarios that conform with real-world implementa-

tions, we need a model that establishes a functional relationship between risk factors

and cause-specific mortality. On its own, discovering these cause-effect relationships

and estimating the corresponding dose-response curves is a comprehensive and chal-

lenging task. Therefore, realistically, a causal mortality model must be based on

existing epidemiological evidence from the literature.

Still, even if we have access to the true causal risk-outcome relationships, there is

an additional challenge unique to models that forecast population-level quantities.

From a modelling perspective, the joint dynamics of risk prevalence and mortality

can be divided into two sub-models describing:

1. The dynamics of the risk factors given survival;

2. The dynamics of survival given the risk factors (as a conditional hazards model).

The usual approach with explanatory mortality models is, however, to treat risk

prevalence as an exogenous process, determined independently of mortality. That is,
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we first project risk prevalence, and then plug these estimates into the conditional

hazards model to obtain a forecast of mortality. This approach is viable for most

predictive tasks, but because the dependence between risk prevalence and death only

goes one way, feedback effects due to selection are not produced if the system is

perturbed (i.e., under interventions).

To facilitate a discussion of interventions and their direct and indirect effects, we

formulate a causal mortality model in the framework of potential outcomes. We

use techniques from causal mediation theory to decompose the total effect of an

intervention into a part directly attributable to the action and a part due to selection.

Defining the potential death rate µK,π as the death rate in a world where causes

K are operating and risk prevalence is π, we decompose the total causal effect of

cause-elimination on a risk difference scale as

µK,π − µK∗,π∗︸ ︷︷ ︸
Total effect

= µK,π − µK∗,π︸ ︷︷ ︸
Direct effect

+µK∗,π − µK∗,π∗︸ ︷︷ ︸
Indirect effect

,

where K∗ ⊊ K is a reduced set of causes and π∗ is the risk prevalence in a world

where causes K∗ are operating. The direct effect corresponds to removal of causes

K \ K∗ while leaving all other death rates unaffected. The indirect effect is the effect

that arises due to changes in the post-intervention risk composition over time. If

risk prevalence is exogenous to the mortality model, the indirect effect is zero by

construction.

We highlight the significance of the indirect effect in both a numerical example

and in an application to U.S. mortality and risk data. An interesting direction for

future research would be to scale up this application, and explore the effects when a

large number of risk factors are included in the model. Increasing the number of

risk factors will, of course, also increase the data demands. In particular, a joint

distribution of all risk factors will probably not be available. This is an issue we

study in Chapter 6.

1.4.5 Aggregated Structural Causal Models

In Chapter 6 we consider a system of variables X = (Xv : v ∈ V ). Rather than

having access to a single dataset with i.i.d. samples from the joint distribution P,
we assume that we only have density estimates of marginal distributions observed

across multiple populations, for example for different countries or over time. Our

aim is to formulate a causal model at the level of the observed data, which can be

used to answer interventional queries concerning population-level behaviour.

Reasoning about the population of individuals as a whole instead of concentrating

on individuals as single entities is natural in a policy intervention context. For

instance, we are typically not interested in the reduction of individual i’s risk of

dying from ischaemic heart disease upon smoking cessation, but rather the reduction
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in population-level mortality (i.e., the distributional change) caused by lowering

smoking prevalence for the population as a whole. When interventions are formulated

as population-based strategies and the inferential target is a distribution, we do not

need to recover the full underlying causal structure but only certain aspects of it.

At the level of individuals, we suppose thatX is generated according to a structural

causal model (SCM) with a hierarchical structure in the errors:

Xv := Fv
(
Xpa(v), εv, ηv

)
, v ∈ V.

The set pa(v) ⊆ V \ {v} contains the indices of the parents (i.e., direct causes) of Xv.

The variables ε = (εv : v ∈ V ) and η = (ηv : v ∈ V ) are noise variables that have

a joint distribution with mutually independent marginals describing, respectively,

variation at the level of individuals and variation at the level of populations. The

SCM induces interventional distributions by replacing the structural assignment for

one or several variables. However, we do not have data at the level of the SCM that

can be used to estimate the Fv–map.

Introduce for a subset I ⊆ V the marginal distribution PI(A) = P(XI ∈ A|η) of
XI conditionally on η. By marginalizing out the individual level variables in the

SCM we derive a new structural model for the system, this time at the level of

distributions (at which we observe data) with structural equations of the form:

PI := GI
(
Ppa(I), ηI

)
, I ∈ I.

Identifying the aggregated structure may prove sufficient to answer causal questions

of interest. That is, if we know the GI–map we can compute the distribution of

XI under interventions that alter the distribution of its parents. We show that

the structural representation of the system in the aggregated SCM is equivalent to

the representation in the SCM, in the sense that both models produce the same

interventional distribution regardless of the order in which we aggregate and intervene.

Since GI remains invariant across populations, we can hope that our data samples

are sufficiently heterogeneous to reveal it. We outline a regression–based estimation

approach in a setting of discrete variables, and discuss how to approach the prob-

lem when we have parametric assumptions. Further, we present an algorithm for

determining a directed acyclic graph that represents the distributions necessary for

formulating the aggregated model as a structural one. We apply the methods in a

numerical study of risk factor interventions.



Chapter 2

The SAINT Model: A Decade Later

This chapter contains the manuscript Jarner and Jallbjørn (2022).

Abstract

While many of the prevalent stochastic mortality models provide ad-

equate short- to medium-term forecasts, only few provide biologically

plausible descriptions of mortality on longer horizons and are sufficiently

stable to be of practical use in smaller populations. Among the very first

to address the issue of modelling adult mortality in small populations was

the SAINT model, which has been used for pricing, reserving and longevity

risk management by the Danish Labour Market Supplementary Pension

Fund (ATP) for more than a decade. The lessons learned have broadened

our understanding of desirable model properties from the practitioner’s

point of view and have led to a revision of model components to address

accuracy, stability, flexibility, explainability and credibility concerns. This

paper serves as an update to the original version published 10 years ago

and presents the SAINT model with its modifications and the rationale

behind them. The main improvement is the generalization of frailty mod-

els from deterministic structures to a flexible class of stochastic models.

We show by example how the SAINT framework is used for modelling

mortality at ATP and make comparisons to the Lee-Carter model.

Keywords: SAINT model, Frailty, EM algorithm, Lee-Carter model, Mortality

modelling, Multi-population modelling.
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2.1 Introduction

Since the beginning of the 21st century, life annuity providers have faced an upsurge

of pensioners to provide for and the need for reliable, long-term mortality projections

is perhaps greater than ever. Indeed, the world-wide increases in life expectancy

show no signs of slowing down, and populations where mortality rates are already

low still experience rates of improvements of the same, or even higher, magnitude

than historically. The situation accentuates the importance of powerful predictive

models to handle the consequences of an ever older population.

From a practical point of view, there are two partly conflicting aims: (1) producing

accurate forecasts and (2) producing forecasts stable under (annual) updates. Accu-

rate forecasting has been the long-standing objective in actuarial and demographic

literature and is, broadly speaking, the goal of the academic, while stability is a

more recent requirement pertaining to the needs of the practitioner. When applied

in practice, the prevailing market value accounting regime dictates that a mortality

model should be updated annually to reflect the latest trends in the data. However,

many mortality modelling paradigms are very sensitive to the data period used for

calibration, and forecasts can therefore vary substantially from year to year. For an

annuity provider, large fluctuations or systematic underperformance of a mortality

model can lead to significant shifts in liabilities and capital requirements, resulting

in huge costs for either the company or the risk collective. Moreover, throughout

Europe, mortality models have become an integral part of policy-making as statutory

retirement ages are directly linked to gains in life expectancy. For these decisions,

stable short-, medium- and long-term forecasts are not just a requirement, but a

necessity.

Stability requirements are particularly difficult to meet when forecasting concerns

small populations, including, in fact, many countries. Because improvement patterns

in these populations exhibit a great deal of variability, simple extrapolations of past

trends tend to have poor predictive power over long horizons and projections are

prone to dramatic changes following data updates. This holds true for many of the

popular projection methodologies such as the model of Lee and Carter (1992). In

view of these accuracy and stability concerns, Jarner and Kryger (2011) developed

the SAINT model that has been used by the Danish, nationwide pension fund ATP,

since 2008.

The SAINT model was designed with the purpose of producing stable, biologically

plausible long-term projections for adult mortality. More precisely, projections with

smooth, increasing age-profiles and gradually changing rates of improvement over

time. With the main application of pricing and reserving for long-term pension

liabilities in mind, capturing long-term trends reliably were deemed more important

than, for example, short-term fit. However, more than a decade’s worth of experience
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with the SAINT model in use has broadened our understanding of model requirements

from the practitioner’s point of view. Even though the overarching structure of the

SAINT model has not changed, its components have been revised over the years

to address not only accuracy and stability concerns but also the model’s flexibility,

explainability and credibility. In this paper, we describe how the SAINT model has

evolved since Jarner and Kryger (2011) in response to changing demands arising

from practical use and user feedback.

In the years following the introduction of the first version of the SAINT model,

quantification of longevity risk became a regulatory requirement. As the deterministic

trend component used in Jarner and Kryger (2011) was not able to adequately assess

this risk, a version of the SAINT model with a stochastic trend was developed.

Eventually, this work led to a generally applicable class of stochastic frailty models,

which we present in this paper. This methodology constitutes the main theoretical

contribution of the paper.

The rest of the paper is organized as follows. Section 2.2 contains a survey of the

evolution of the SAINT model over the last decade. In Section 2.3 we discuss how

changing rates of improvements can be modelled using frailty. Section 2.4 formalizes

the notion of a stochastic frailty model and develops estimation and forecasting

procedures. This is followed by Section 2.5 presenting a comprehensive application

of the SAINT model to international and Danish data. The findings are discussed in

light of comparable results from the Lee-Carter model. Finally, Section 2.6 offers

some concluding remarks.

2.2 The Evolution of the SAINT Model

ATP is a funded supplement to the Danish state pension, guaranteeing most of

the population a whole-life annuity. In 2008, ATP introduced a new market value

(whole-life) annuity. The main characteristic of this annuity is that contributions are

converted to pension entitlements on a tariff based on prevailing market rates and an

annually updated, best estimate, cohort-specific mortality forecast. Once acquired,

pension entitlements are guaranteed for life. The structure gives a high degree of

certainty for the members, but it leaves ATP with a substantial longevity risk.

The SAINT model was developed as part of the market value annuity, with the

specific aim of producing accurate and stable forecasts in order to manage the

longevity risk of ATP. Clearly, accuracy is desirable to avoid long-run deficits due

to life expectancy increasing faster than expected (or, in the case of life expectancy

increasing slower than expected, pension entitlements being too small). However,

stability of forecasts is of equal importance. Each update of the model causes a

change in the size of technical provisions, which in turn affects the risk capital

allocated to cover longevity risk. Effectively, a stable mortality model is “cheaper”
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than a volatile model, because the former frees up risk capital to be used more

efficiently elsewhere, for example, to cover a higher market exposure.

Over the course of the last decade, the SAINT model has undergone a number of

changes due to changing demands and feedback from its users. Below, we give a brief

presentation of the original SAINT model, followed by a survey of the subsequent

major changes and their rationale.

2.2.1 The Original SAINT Model

The original SAINT model, as described in Jarner and Kryger (2011), has two core

model components:

� A reference population consisting of a large, pooled, international data set;

� A frailty model for modelling increasing rates of improvements over time.

The rationale for using a reference population, in addition to the target population,

is that it is easier to extract a long-term trend from a large dataset, than a small

dataset, since idiosyncratic features are typically more pronounced in the latter. The

mortality of the target population is subsequently linked to the long-term trend.

A similar idea, although differently implemented, was introduced by Li and Lee

(2005) in their multi-population extension of the Lee-Carter model. Since Jarner

and Kryger (2011), the concept of a reference population has appeared in a number

of models and applications, for example Cairns et al. (2011b), Dowd et al. (2011),

Börger et al. (2014), Villegas and Haberman (2014), Wan and Bertschi (2015), Hunt

and Blake (2017), Villegas et al. (2017), Menzietti et al. (2019), Li and Liu (2019),

and Li et al. (2019).

In the notation of the present paper, the SAINT model is of the form:

µtarget(t, x) = µref(t, x) exp(y
⊤
t rx), (2.2.1)

µref(t, x) = E[Z|t, x]µ0(t, x) + µb(t), (2.2.2)

where µtarget(t, x) and µref(t, x) are the force of mortality at age x and time t of

the target and reference population, respectively. The target mortality is linked

to the reference mortality by a set of age-dependent regressors, rx, with time-

dependent coefficients, yt, termed spread parameters. Further, the reference mortality

is modelled by the sum of a multiplicative frailty model with baseline mortality

µ0, and age-independent background mortality, µb. The term E[Z|t, x] denotes the
(conditional) mean frailty of the given cohort, and we will discuss this in detail later.

All mortality rates are gender-specific, although this is not shown explicitly in the

notation.
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Formally, the SAINT model in use today is still of form (2.2.1)–(2.2.2), but with a

different interpretation of the frailty term, and different specifications of time-series

dynamics, regressors, and baseline and background mortality. From a methodological

point of view, the new frailty model represents by far the greatest of these changes.

2.2.2 From Deterministic to Stochastic Frailty

The SAINT model uses frailty to forecast increasing rates of improvement in age-

specific mortality, thereby reducing the risk of underestimating future life expectancy

gains. Loosely speaking, changes in baseline mortality affect selection and thereby

mean frailty, E[Z|t, x], which in turn modifies the way baseline mortality affect

population-level mortality.

In the original SAINT model, µ0 and µb were assumed to be of a form equivalent

to

µ0(t, x) = exp(θ1 + θ2t+ θ3x+ θ4tx+ θ5x
2), µb(t) = exp(θ6 + θ7t). (2.2.3)

This allowed an explicit calculation of E[Z|t, x] and thereby of µref, assuming gamma-

distributed frailties, see (14)–(18) in Jarner and Kryger (2011) for details. The

resulting model for µref had 8 parameters (θ1 − θ7 and a frailty parameter) for each

sex, which were estimated by maximizing a standard Poisson likelihood. When

forecasting, the parametric form was used to extrapolate µref to form a deterministic

trend around which µtarget would vary. We refer to this as a deterministic frailty

model.

Despite its parsimonious structure, the estimated µref-surface provided a remark-

able fit to the international dataset. However, it soon became clear that the model was

not able to fit other datasets equally well. More importantly, assessment of longevity

risk was becoming a regulatory requirement, and for this purpose, a deterministic

trend model was insufficient.

The current version of the SAINT model features a stochastic frailty model, in

which µ0 and µb are stochastic processes. This implies that the frailty term, E[Z|t, x],
also becomes stochastic, and explicit expressions are no longer available. In order to

disentangle the dependence between µ0 and E[Z|t, x], a pseudo-likelihood approach,

reinterpreting the frailty term in terms of observable quantities, had to be devised.

This, in turn, led to a generally applicable “fragilization” method by which essentially

any frailty distribution can be combined with any baseline and background mortality

to form a model, cf. Section 2.4.

2.2.3 Cointegrating Gender Dynamics

In the original SAINT model, male and female mortality were modelled separately,

which resulted in a sex differential of just over 10 years in forecasted cohort life
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Figure 2.1: Age 60 actual (dots) and forecasted (lines) period life expectancy using the
SAINT model with and without restrictions on the A-matrix from Equation (2.5.5).

expectancies at birth. When the first version of the stochastic frailty model was

implemented, it was therefore decided to model the new stochastic processes via

cointegration to ensure better aligned forecasts. At the time, the baseline and

background mortality were modelled as

µ0(t, x) = exp(αt + βtx+ 2x2/104), µb(t) = exp(ζt), (2.2.4)

with the processes {αt, βt} governing µ0 being modelled as in Equation (2.5.5), but

with an unrestricted A-matrix. Cointegration reduced the life expectancy difference

at birth to about 5 years, and subsequent model development brought it further

down to 3.6 years.

In Equation (2.5.5), the B-matrix controls the cointegrating relations, while the

A-matrix controls the adjustments to these over time. It later became apparent that

an unrestricted A-matrix could lead to complex transitory effects when reestablishing

equilibrium relations, as seen on the dashed lines in Figure 2.1. The resulting

projections were hard to justify and communicate, and eventually structural zeros

were introduced in A to generate more linear projections. Allowing only pairwise

dependence between parameters also offered a greater degree of explainability as the

forecasting distribution simplified.

The cointegrating relations and the restrictions placed on the A-matrix were

imposed, rather than formally tested. Even though formal testing could be done

using the comprehensive statistical framework developed by Johansen (1995), it

was deemed problematic that the underlying time dynamics could change annually

following data updates as this would destabilize projections and potentially damage

the model’s credibility. Cointegration is therefore used merely as a modelling tool to

achieve reasonable projections, rather than to gain insights into the joint behaviour

of the time-varying mortality indices, see also Jarner and Jallbjørn (2020) for further

discussion on this point.
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2.2.4 Improving the Fit

The specification of µ0 in (2.2.4) was the result of an extensive model search among

“simple” models. At the time, it provided a reasonable fit, but eventually failed to

adequately capture old-age mortality. Generalizations of linear mortality models

typically involve adding a quadratic term to the age effect or introducing cohort

components, see for example Cairns et al. (2009). The natural candidate to replace

(2.2.4) was therefore the log-quadratic model µ0(t, x) = exp(αt + βtx+ κtx
2). But

despite a clearly superior fit, its parameter estimates turned out exceedingly difficult

to forecast.

After further research into the shape of the mortality age profile, the lack of fit

was found to be caused by an inflexibility of (2.2.4) at the younger ages, a typical

problem when fitting parsimonious models over a large age span. By replacing the

fixed quadratic term in (2.2.4) with an excess slope parameter, the low mortality

rates of the young were prevented from influencing the trend of the old. The baseline

model therefore became

µ0(t, x) = exp
(
α̃t + β̃tx+ κ̃t(x− 75)1{x≥75}

)
. (2.2.5)

The model’s parameters are linearized for forecasting purposes through reparametriza-

tion, achieved by setting αt = α̃t + 75β̃t, βt = β̃t + κ̃t, and κt = −κ̃t whereby

µ0(t, x) = exp
(
αt + βt(x− 75) + κt(x− 75)1{x<75}

)
. (2.2.6)

Figure 2.2 shows the clear improvement in the model’s fit. The fit is particularly

impressive at the higher ages and also matches the logistic type behaviour seen in

the data for the oldest-old as the frailty component comes into play.

Revisiting the Reference Population and Data Window

In the original paper, Jarner and Kryger (2011) used an aggregate of international

data over the years 1933–2005, including, notably, data from the US. Following the

first version of the stochastic frailty model, the left cut point of the data window

was updated to 1950, while the right cut point was updated annually to match the

most recent available data.

Over the years, it became apparent that the slowdown of the improvement rates

in the US had begun to manifest itself in the long-term trend. At the time, the US

constituted more than 40% of the reference population. In response, an extensive

review of the demographic transitions in the Western world was conducted country for

country. This work led to a new paradigm for putting together a more homogeneous

and balanced data pool, necessitating an exclusion of the US. In the new dataset, two

mortality regimes emerged, and, accordingly, the left cut point of the data window

was updated to 1970. We note that other countries have also shown recent stagnating
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Figure 2.2: Observed (dots) female death rates for select ages with SAINT fits (solid lines)
superimposed. The left panel shows the previous version of SAINT with µ0 as in (2.2.4),
estimated on a dataset with the US included and the window of calibration starting in 1950.
The right panel shows the current version of SAINT with µ0 as in (2.2.5), estimated on a
dataset with the US excluded and the window of calibration starting in 1970.

rates of improvement, for example the UK, but overall there has been a continued

improvement throughout the period, see Figure 2.3.

2.3 Modelling Changing Rates of Improvements

The mortality experience of several countries has shown increasing rates of improve-

ments for older age groups while rates for younger groups have been decelerating,

see for example Kannisto et al. (1994), Lee and Miller (2001), Booth et al. (2002),

Bongaarts (2005), Li et al. (2013), and Vékás (2019). For long-term projections, in

particular, it is important to model these changes to reduce the risk of underestimat-

ing future life expectancy gains.

2.3.1 Motivating Example

Although a plethora of models for modelling and forecasting mortality have been

proposed in recent years, see e.g. Booth and Tickle (2008) and Janssen (2018) for an

overview, the model of Lee and Carter (1992) is still by far the most widely used.

Lee and Carter (1992) model the (observed) death rate, m, at time t for age x in a
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log-bilinear fashion

logm(t, x) = ax + bxkt + εt,x, (2.3.1)

where a and b are age-specific parameters and k is a time-varying index in which all

temporal trends leading to improvements in mortality are encapsulated. The k-index

is typically modelled as a random walk with drift, extrapolating the index linearly

from the first to the last data point, resulting in constant rates of improvement in

forecasted age-specific mortality.

Figure 2.3 illustrates the problem with assuming constant rates of improvements

in forecasts. The figure shows actual and Lee-Carter forecasted period remaining

life expectancies at age 60 for Western Europe and Denmark. Except for Western

European females, the forecasts vary substantially with the estimation period due to

changing rates of improvement. Moreover, the forecasts generally underestimate the

future gains in life expectancy because rates of improvement for older age groups

tend to increase over time.
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Figure 2.3: Age 60 actual (dots) and forecasted (lines) period life expectancy using a
Lee-Carter model based on a rolling estimation window.

This phenomenon is not specific to the Lee-Carter model, but pertains to all

models with constant rates of improvements. Fitting these models to shorter, more

recent periods of data alleviates the downward bias to some extent, but it does

not address the fundamental issue of changing rates. Coherent, multi-population

mortality models, for example the model of Li and Lee (2005), can in principle

produce changing rates of improvement while the individual populations “lock on”

to common rates of improvement. However, the common rates are typically constant

over time. Thus, coherence in itself does not guarantee the type of ongoing change
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in improvement rates that we advocate. For a more detailed discussion of coherent

models and their pros and cons, see Jarner and Jallbjørn (2020) and the references

therein.

2.3.2 Frailty Theory

Frailty theory rests on the assumption that cohorts are heterogeneous and that some

people are more susceptible to death (frail) than others. The difference in frailty

causes selection effects in the population and leads to old cohorts being dominated

by low mortality individuals.

Frailty theory is well-established in biostatistics and survival analysis, and several

monographs are devoted to the topic, for example Duchateau and Janssen (2008),

Wienke (2010), and Hougaard (2012). In demographic and actuarial science frailty

models are also known as heterogeneity models. They have been used in mortality

modelling to fit the logistic form of old-age mortality, see e.g. Wang and Brown

(1998), Thatcher (1999), Butt and Haberman (2004), Olivieri (2006), Cairns et al.

(2006), Spreeuw et al. (2013), and Li and Liu (2019), and to allow for overdispersion

in mortality data, cf. Li et al. (2009). The SAINT model, however, employs frailty

theory with the dual purpose of fitting old-age mortality and generating changing

rates of improvement.

Below, we present a flexible class of continuous time models spanning multiple birth

cohorts, with additive frailty and non-frailty components. With additive models, we

can distinguish between “selective” mortality influenced by frailty and “background”

mortality not affected by frailty, for example accidents. Following Vaupel et al. (1979),

individual frailty is a non-negative stochastic quantity Z that acts multiplicatively

on an underlying baseline mortality rate. We assume that frailty is assigned at birth

(according to some distribution) and remains constant throughout an individual’s

life span. In this context, we can interpret frailty as individual (congenital) genetic

differences. Conditionally on frailty being Z, mortality at age x at time t takes the

form

µ(t, x|Z) = Zµ0(t, x) + µb(t, x), (2.3.2)

where µ0 is the baseline rate describing age-period effects influenced by individual

frailty and µb is background mortality common to all individuals regardless of their

respective frailties.

Equation (2.3.2) describes the mortality rate of an individual, but this quantity

is not observable in population-level data. In fact, we only observe an aggregate of

the death rates. We can derive an explicit expression for this aggregate, namely the

population-level rate, by writing up the survival function

S(t, x) = e−
∫ x
0
µ(t−x+u,u) du = E

[
e−

∫ x
0
µ(t−x+u,u|Z) du

]
(2.3.3)
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and differentiating − logS(t, x) to get

µ(t, x) = E[Z|t, x]µ0(t, x) + µb(t, x). (2.3.4)

Here, E[Z|t, x] is the mean frailty among the survivors of the cohort born at time t−x.
As a matter of convention, we assume without loss of generality that mean frailty is

one at birth. It is useful to introduce the Laplace transform L(s) = E[exp(−sZ)] of
the common frailty distribution in which case

E[Z|t, x] = −L
′(M0(t, x))

L(M0(t, x))
, (2.3.5)

whereM0(t, x) =
∫ x
0
µ0(t− x+ u, u) du is the cumulated baseline rate.

So far, the expressions above relating mean frailty to the baseline rate are standard

in survival analysis. For later use, we establish an additional relationship between

mean frailty and the cumulated cohort rate adjusted for background mortality,

namely

M(t, x) =

∫ x

0

(µ(t− x+ u, u)− µb(t− x+ u, u)) du, (2.3.6)

via its survival function

exp(−M(t, x)) = S(t, x)e
∫ x
0
µb(t−x+u,u) du = L(M0(t, x)). (2.3.7)

Introducing the function ν(·) = − logL(·), we have M(t, x) = ν(M0(t, x)) and

M0(t, x) = ν−1(M(t, x)) which gives us

E[Z|t, x] = ν′(M0(t, x)) = ν′(ν−1(M(t, x))), (2.3.8)

upon insertion into (2.3.5).

The relation between mean frailty and mortality described by Equation (2.3.8)

will be central to our estimation approach. Whereas M0 is given solely in terms

of the baseline rate,M can be estimated using empirical death rates. Substituting

M by such an estimate disentangles the frailty distribution from the baseline rate

which greatly simplifies the estimation procedure whenever parametric structures

have been imposed on µ0 and µb. We return to the specifics in Section 2.4.

To apply frailty theory in practice, we must identify suitable choices of frailty

distributions. A brief account of appropriate distributions is given in Appendix 2.A.

Essentially, useful distributions are the ones with an explicit Laplace transform. The

most commonly used distribution is the Gamma distribution which has a tractable

Laplace transform, see Example 2.4.1, along with other desirable properties.

2.3.3 Frailty leads to Changing Rates of Improvements

To clarify how the inclusion of frailty leads to changing rates of improvements, we

define the rate of improvement in selective mortality as

ρs(t, x) = −
∂

∂t
logE[Z|t, x]− ∂

∂t
logµ0(t, x), (2.3.9)
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where ρ0(t, x) = − ∂
∂t logµ0(t, x) is the rate of improvement in baseline mortality.

Suppose that we model the period effect so that baseline mortality is decreasing

over time, that is, µ0(t, x) → 0 as t → ∞ for fixed age x. Then, the cumulated

baseline will also be decreasing over time, that isM0(t, x)→ 0 as t→∞, while the

mean frailty in successive cohorts will be increasing over time due to less and less

selection of frail individuals, so E[Z|t, x]→ 1 as t→∞. From (2.3.9), we see that

improvements in cohort mortality are smaller than, but gradually increasing to, the

rate of improvement at the individual level.

m(t,100)

Time

High selection Transition Low selection

E[Z|t,100] » 0 E[Z|t,100] ® 1 E[Z|t,100] » 1

Figure 2.4: Illustration of population level mortality at age 100 over time. When selection
is high, observed mortality rates do not improve much even though rates are assumed to be
decreasing at the individual level. This is due to improvements in baseline mortality being
(partially) offset by increases in mean frailty. As mean frailty eventually approaches one,
observed improvements and improvements in the underlying mortality are approximately
equal.

This line of thinking offers an explanation to the small improvement rates observed

in old-age mortality, and it suggests that we might expect to see higher rates of

improvements in the future. At old ages where death rates – and thereby selection –

are high, the change in mean frailty over time can substantially offset improvements

in baseline mortality. This makes improvements in observed mortality close to zero,

cf. Equation (2.3.9), a behaviour illustrated in Figure 2.4. As improvements in

baseline mortality continue to occur at the individual level, the selection mechanism

gradually weakens and improvements in observed mortality get closer to the under-

lying improvement rates. The pattern of gradually changing improvement rates of

old-age mortality resembles what is seen in the data. We will return to this point in

Section 2.5.

The Difference between Frailty and the Traditional Cohort Perspective

While conditional mean frailty E[Z|t, x] may be regarded as a cohort component in

the sense that it focuses on the evolution of a cohort through time, the notion is

qualitatively different from the traditional cohort perspective in mortality modelling.

As an illustrative example, consider the cohort extended Lee-Carter model of Renshaw
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and Haberman (2006), that is

logµ(t, x) = ax + bxkt + ct−x. (2.3.10)

The cohort component exp(ct−x) assumes the role of a dummy variable and offsets

mortality by the same factor throughout the life span of individuals born at time t−x.
Although the multiple E[Z|t, x]µ0(t, x) does in principle contain the structure (2.3.10)

with µ0(t, x) = exp(ax + bxkt) being the Lee-Carter model, E[Z|t, x] is not constant
over time except in degenerate cases. Indeed, E[Z|t, x] progressively decreases for a

given cohort as selection intensifies and should therefore not be regarded as a cohort

component in the traditional sense.

2.3.4 Alternative Ways of addressing Changing Improvement

Rates

With a growing body of empirical evidence against the assumption of constant

age-specific rates of improvements, several other approaches have been developed to

address the issue. One suggestion involves finding an “optimal” calibration period for

which model assumptions are not violated. This usually involves fitting (Lee-Carter)

models to shorter and more recent periods of data, see for example Lee and Miller

(2001), Tuljapurkar et al. (2000), Booth et al. (2002), and Li and Li (2017). For

projections over longer horizons the problem persists; future increases in especially

old-age mortality beyond what has been seen historically cannot be captured by

making an informed decision about the period of calibration.

Within the Lee-Carter framework, another solution is to extend the original model

by replacing the time-invariant age-response with a time-varying version, so instead

of Equation (2.3.1) we would have

logm(t, x) = ax +Bt,xkt + εt,x. (2.3.11)

A freely varying Bt,x introduces far too many parameters, and some restrictions have

to be imposed. Li et al. (2013) suggest that Bt,x describe the “rotating” pattern of

mortality improvements, namely that improvement rates are declining for the young

but increasing for the old. Consequently, Equation (2.3.11) is sometimes referred

to as the rotated Lee-Carter model. Li et al. (2013) achieve rotation by letting the

bx’s from the original model converge (smoothly) to some assumed long-term target

Bx. The approach has since been adopted and adapted by a number of authors, for

example Vékás (2019) and Gao and Shi (2021).

Another idea is to model and project improvement rates directly as opposed to

projecting death rates, see for example Haberman and Renshaw (2012). Various

forms of projections built from age-specific improvement rates applied to reference

mortality tables are also becoming popular among actuarial practitioners, see for

example Jarner and Møller (2015) for a detailed account of the longevity benchmark
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employed by the Danish financial supervisory authority or the model used by the

Continuous Mortality Investigation (2016).

The alternative approaches mentioned above each have their own merits as ways

of addressing changing rates of improvements. Frailty, however, has the unique

advantage that it can be introduced into any existing mortality model to forecast

improvement rates higher than those observed historically, while preserving both the

original model structure and the underlying driver of the system.

2.4 Stochastic Frailty Models

In the following, we detail how frailty can be used with any stochastic mortality

model and we show how to estimate and forecast these models. The extension from

deterministic to stochastic frailty is a fundamental point in practical applications

where the ability to describe uncertainty of forecasts is essential for managing

longevity risk.

2.4.1 Data and Terminology

Data are assumed to be on the form of death counts, D(t, x), and corresponding

exposures, E(t, x), over time-age cells of the form [t, t+ 1)× [x, x+ 1) for a range of

calendar years t ∈ {tmin, . . . , tmax} = T ⊆ N and ages x ∈ {xmin, . . . , xmax} = X ⊆
N0. From the death counts and risk exposures, we define the observed (empirical)

death rate as the ratio

m(t, x) = D(t, x)/E(t, x). (2.4.1)

The empirical death rate is a nonparametric estimate of the underlying cohort rate,

µ(t, x), which for modelling purposes is also assumed constant over [t, t+1)×[x, x+1).

2.4.2 Modelling Framework

For ease of presentation, we will consider stochastic models for baseline and back-

ground mortality of the form

µ0(t, x) = F (θt, ηx), (2.4.2)

µb(t, x) = G(ζt, ξx), (2.4.3)

where F and G are functional forms taking parameters in the age-period dimension

as input. All quantities may be multidimensional, and further generalizations to

include cohort effects and general dependence structures are possible if so desired.

We assume that parameters are to be estimated from data, but they can also be

fixed or empty.
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We define a (generalized) stochastic frailty model as a model of the form

D(t, x) ∼ Poisson(µ(t, x)E(t, x)), (2.4.4)

µ(t, x) = E[Z|t, x]µ0(t, x) + µb(t, x), (2.4.5)

with µ0 and µb given by (2.4.2)–(2.4.3) while E[Z|t, x] denotes conditional mean

frailty as in Section 2.3.2. Note that E[Z|t, x] is now a stochastic quantity since

it depends on µ0. The frailty distribution at birth is the same for all cohorts,

and it is assumed to belong to a family indexed by ψ with Laplace transform Lψ
available in explicit form. The parameters of the model are thus (ψ, θ, η, ζ, ξ) where

all components can be vectors.

Based on (2.3.8) we can write

µ(t, x) = ν′ψ(M0(t, x))F (θt, ηx) +G(ζt, ξx) (2.4.6)

with νψ(·) = − logLψ(·) andM0(t, x) =
∑x−1
u=0 F (θu+t−x, ηu). Inserting the above

into (2.4.4), all parameters can be estimated jointly from the resulting likelihood.

This likelihood is, however, rather intractable with frailty and remaining parameters

occurring in a complex mix. Consequently, estimation has to be handled on a

case-by-case basis depending on the choice of frailty distribution and mortality model.

Below we propose an alternative, generally applicable pseudo-likelihood approach

which greatly simplifies the estimation task.

2.4.3 Pseudo-Likelihood Function

We seek to replace the problematic term E[Z|t, x] with an estimate that does not de-

pend on baseline parameters. From (2.3.8), we have that E[Z|t, x] = ν′ψ(ν
−1
ψ (M(t, x))),

whereM is the cumulated frailty-dependent part of mortality. At first sight this does

not seem to help much sinceM is even more complicated thanM0. However, in

contrast toM0 we can obtain an estimate ofM which does not involve the baseline

parameters. With a slight abuse of notation, suppressing the dependency on the

background parameters, we estimateM by

M̃(t, x) =

x−1∑
u=0

m̃(t− x+ u, u), (2.4.7)

where

m̃(t, x) =


m(tmin, x)−G(ζtmin

, ξx) for xmin ≤ x ≤ xmax and t < tmin,

m(t, x)−G(ζt, ξx) for xmin ≤ x ≤ xmax and tmin ≤ t ≤ tmax,

0 otherwise.

(2.4.8)

is an extension of the empirical death rates (with background mortality subtracted).

The extension is required because the summation in (2.4.7) falls partly outside the
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data window; we need to know the death rates from birth to the present or maximum

age for all cohorts entering the estimation. The gray area of Figure 2.5 illustrates

the “missing” death rates. The extension implies that selection prior to tmin has

happened according to initial rates (rather than actual rates) and that all cohorts

have mean frailty one at age xmin (rather than at birth).

xmin

xmax

0

Age

tmin - xmax tmin tmax Time

Data window Forecast

Figure 2.5: Data is available for years between tmin and tmax and for ages between xmin

and xmax. The grey area below and to the left of the data window illustrates the part
of the trajectories needed for calculation of M̃ that falls outside the data window. The
cross hatched area to the right illustrates the years and ages for which we wish to forecast
mortality.

We propose to base estimation of (2.4.4)–(2.4.5) on a likelihood function in which

the term E[Z|t, x] is replaced by ν′ψ(ν
−1
ψ (M̃(t, x))). The resulting approximate

likelihood function is referred to as a pseudo-likelihood function, cf. Besag (1975),

and corresponds to estimating the modified model

D(t, x) ∼ Poisson(µ(t, x)E(t, x)), (2.4.9)

µ(t, x) = ν′ψ(ν
−1
ψ (M̃(t, x)))F (θt, ηx) +G(ζt, ξx). (2.4.10)

Importantly, the cohort rate µ is separable in frailty and baseline parameters. The

model is therefore considerably easier to handle than (2.4.4)–(2.4.5) in the sense that

joint estimation can be based on marginal estimation procedures for the baseline

and background intensities, µ0 and µb. Equation (2.4.10) might still look daunting,

but it simplifies in specific cases.

Example 2.4.1. When Z follows a Gamma distribution with mean one and variance

σ2 the Laplace transform and conditional mean frailty are given by

L(s) =
(
1 + σ2s

)−1/σ2

, (2.4.11)

E[Z|t, x] =
(
1 + σ2M0(t, x)

)−1
= exp

(
−σ2M(t, x)

)
, (2.4.12)

whereby Equation (2.4.10) reads

µ(t, x) = exp
(
−σ2M̃(t, x)

)
F (θt, ηx) +G(ζt, ξx). (2.4.13)
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2.4.4 Maximum Likelihood Estimation

Maximum likelihood estimates of the model (2.4.9)–(2.4.10) can be obtained by

optimizing the profile (pseudo) log-likelihood function,

ℓ(ψ) = logL(ψ, θ̂(ψ), η̂(ψ), ζ̂(ψ), ξ̂(ψ)), (2.4.14)

where L is the likelihood resulting from (2.4.9)–(2.4.10) and θ̂(ψ), η̂(ψ), ζ̂(ψ) and

ξ̂(ψ) denote the maximum likelihood estimates for fixed value of ψ. Since the frailty

family is typically of low dimension, the profile log-likelihood function can usually

be optimized reliably by general purpose optimization routines. This is particularly

simple when µb(t, x) = 0 for all t ∈ T and x ∈ X .

In the general setting with non-zero background mortality, the model describes

a situation of competing risks. The interpretation is that individuals of age x at

time t are susceptible to death from two different, mutually exclusive sources with

intensities µs and µb. This structure is natural to consider in many contexts, but

the likelihood function is complicated and direct estimation of the parameters may

prove difficult even for fixed ψ.

Assuming that we have separate routines available for estimating the baseline

and background mortality models, we can exploit the additive structure of (2.4.9)–

(2.4.10) using the EM algorithm of Dempster et al. (1977). It can be shown that the

likelihood is increased in each step of the EM algorithm and thus converges to a local

maximum, although it may do so rather slowly. It is, however, a great advantage

that we can use the same top-level procedure to estimate virtually any combination

of mortality models, especially when estimation routines for the underlying models

are readily available. It is also straightforward to extend the EM algorithm to more

than two competing risks.

Alternatively, if computational efficiency is essential, we can carry out estimation

by Newton-Raphson sweeps over frailty and mortality model parameters, but this

requires a substantial amount of tailor-made code. We find that optimizing the

log-likelihood using the EM algorithm is both flexible, easy to implement and in

our experience sufficiently fast and robust to be of practical use. The algorithm is

detailed in Appendix 2.B.

2.4.5 Forecasting

Suppose that we have estimates (ψ̂, θ̂, η̂, ζ̂, ξ̂) available. Following the usual approach

in stochastic mortality modelling, death rates are to be projected using a time-series

model for the time-varying parameters {θt, ζt}t∈T . Typically a (multi-dimensional)

random walk with drift is used, see for example Lee and Carter (1992) or Cairns

et al. (2006), but models with more complex structure can also be applied. Let

an overbar denote projected parameters and assume that these are available for
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t ∈ {tmax + 1, . . . , tmax + h} given a forecasting horizon h ∈ N+. The forecast region

is illustrated as the cross-hatched box in Figure 2.5.

Baseline and background mortality rates are readily projected by inserting θ̄t and

η̂x into (2.4.2) and ζ̄t and ξ̂x into (2.4.3). Forecasting mean frailty is slightly more

involved. We notice that while it was convenient to specify mean frailty in terms

of M for estimation purposes, it is practical to express it in terms of M0 when

forecasting, becauseM0 can be computed directly from F throughout the forecast

region. Mortality is thus projected via

µ(t, x) = ν′
ψ̂
(M̃0(t, x))F (θ̄t, η̂x) +G(ζ̄t, ξ̂x), (2.4.15)

where M̃0(t, x) in the forecast region is given by the recursion

M̃0(t, x) =


M̃0(tmax, x− 1) + F (θ̂tmax , η̂x−1) for xmin < x and tmax + 1 = t,

M̃0(t− 1, x− 1) + F (θ̄tmax , η̂x−1) for xmin < x and tmax + 1 < t,

0 for xmin = x.

(2.4.16)

We underline that G does not enter M̃0 in the forecast, whereas in the data window

M̃0 is defined by the transformation M̃0(t, x) = ν−1
ψ̂

(M̃(t, x)) to ensure consistency

with the estimated model.

Example 2.4.2. Continuing Example 2.4.1 where frailty is Gamma distributed

with mean one and estimated variance σ̂2, we get using (2.4.12) in conjunction with

(2.4.15) that mortality should be forecasted via

µ(t, x) =
(
1 + σ̂2M̃0(t, x)

)−1
F (θ̄t, η̂x) +G(ζ̄t, ξ̂x), (2.4.17)

with M̃0 given by (2.4.16) in the forecast region. In the data window, M̃0(t, x) can

be expressed as M̃0(t, x) = [exp(σ̂2M̃(t, x))− 1]/σ̂2 using (2.4.12).

2.5 An Application to International Mortality

We consider the implementation of the stochastic frailty model currently used at ATP

and make comparisons to the usual Lee-Carter methodology. The application is based

on mortality data retrieved from the Human Mortality Database (2021). To allow

the reader to reproduce the results, we use Danish data to model the spread, rather

than proprietary ATP data. Sections 2.5.1–2.5.3 cover reference population mortality,

while Section 2.5.4 discusses spread modelling for target population mortality.

2.5.1 An International Reference Trend

The reference mortality trend, denoted µref, belongs to the class of stochastic frailty

models (2.4.2)–(2.4.3), and is gender-specific although this is not shown explicitly
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in the notation. The model assumes Gamma distributed frailty with mean one and

variance σ2 and takes the functional form

µref(t, x) = exp
(
−σ2M̃(t, x)

)
µ0(t, x) + µb(t), (2.5.1)

µ0(t, x) = exp
(
αt + βt(x− 75) + κt(x− 75)1{x<75}

)
, (2.5.2)

µb(t) = exp (ζt) . (2.5.3)

In (2.5.1), the variance of the frailty distribution expresses the amount of hetero-

geneity in the population, but since any estimate depends on the choice of µ0, the

quantity can only be interpreted in a model-specific context. On the other hand,

its influence on the mortality curve is clear. If death rates increase with age, the

function x 7→ exp(−σ2M̃(t, x)) decreases from one towards zero and describes how

µ0 is “dragged” down by the frailty component. If σ2 is close to zero, then mean

frailty is close to one for all ages. As the variance grows, the decline in mean frailty

steepens. This drags down the old-age part of the mortality curve and eventually so

much that the rates fall into a decline.

A Lee–Carter Baseline?

Instead of the Gompertzian model applied in (2.5.2), one could use a Lee-Carter

model for µ0, see Jarner (2014) for such an application. However, we find that the

parametric structure in (2.5.2) is favourable in terms of stability and preserving the

overall structure of the data and, in particular, smooth and increasing age-profiles,

which is not guaranteed in long-term Lee-Carter forecasts.

Moreover, the parameters of the Lee-Carter model are not identifiable without

additional constraints which precludes the use of more flexible time dynamics such

as error-correction models, a limitation the parametric (identifiable) structure does

not have, see for example Hunt and Blake (2018) and Jarner and Jallbjørn (2020)

for a detailed discussion.

Lastly, unlike the parametric form (2.5.2) that readily expands in the age dimension,

that is the model extends to ages not part of the estimation, the Lee-Carter model

applies only to the age span used in the calibration. This is a pronounced problem

at the highest ages where data are often sparse. To obtain reliable and stable rates

in both model and forecasts, one typically employs a Kannisto extension (Kannisto

et al., 1994), or a similar procedure, for example the methods discussed in Pitacco

et al. (2009), for the oldest-old. Irrespective of the extrapolation procedure, the

coupling of two separate models adds an additional layer of complexity and defeats

part of the purpose for introducing frailty, namely to capture the logistic type old-age

mortality behaviour seen in the data.
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Selecting a suitable Reference Population

To establish an international reference population, we have to decide on a suitable

list of countries to use. While all countries appear to follow the same long-term

trend, mortality improvements occur at different times for individual countries and

variation in improvement rates differ as well. Ideally, the reference trend should

consist of countries that reflect the prevalent mortality regime, but their historical

development ought to be comparable as well. That is, the countries chosen ought to

have undergone the same stages of demographic transition at roughly the same time.

It proves quite difficult to find a set of rules for selecting countries satisfying these

broad criteria. Kjærgaard et al. (2016) propose an out-of-sample selection criterion

as a way of constructing an “optimal” set of countries. Others have established hard

inclusion criteria based on various socio-demographic-indicators, for example the

Dutch actuarial society who base their official projections on a peer group of all

European countries with a per capita GDP above the European average (Antonio

et al., 2017).

We remain agnostic with regard to specific rules. Having populations entering or

leaving the data pool following (annual) data updates is almost certainly bound to

cause problems in terms of model stability. Our advice is to choose a wide range

of countries with the intention of sticking with them in the long term. With an

outset in the countries available from the Human Mortality Database and excluding

countries only if they clearly violate the criteria above, we are left with primarily the

western part of Europe. In particular, the SAINT model is currently based on pooled

data from the following 18 countries: Australia, Austria, Belgium, Canada, Denmark,

Finland, France, Germany (West), Iceland, Italy, Luxembourg, Netherlands, Norway,

Scotland, Spain, Sweden, Switzerland and UK (England and Wales).

2.5.2 Time Dynamics

The SAINT model (2.5.2)–(2.5.3) has four time-varying parameters that need to

be forecasted (for each sex). The Makeham component ζ and the excess slope κ

are nuisance parameters included in the model to add sufficient flexibility to fit the

historical data and to enhance interpretability of the level α and the slope β. Even

though {ζt}t∈T and {κt}t∈T appear non-stationary, see Figure 2.6, modelling their

trending behaviour has little effect on mortality projections. Striking a compromise

between model complexity and performance, we forecast these parameters using a

random walk without drift, so for any horizon h ∈ N0 we have

κtmax+h|κtmax ∼ N
(
κtmax , hσ

2
κ

)
and ζtmax+h|ζtmax ∼ N

(
ζtmax , hσ

2
ζ

)
, (2.5.4)

where σκ, σζ ∈ R+.
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Projecting {αt, βt} is a more delicate task. In particular, some thought should go

into the joint behaviour of the gender-specific forecasts. It is a well established fact

that women live longer than men and while this gender gap varies over time it is

believed to persist. Since forecasting even closely related populations independently

will lead to diverging forecasts, cf. Tuljapurkar et al. (2000), we must deal with the

problem through joint modelling in order not to have undesirable scenarios such as

projecting men to live longer than women.

An Error-Correction Model

To ensure that female and male parameters “stay together”, not just in a median

forecast but also for every stochastic realization, we need parameters to cointegrate,

that is a given linear combination of them should be stationary. This is achieved by

forecasting from the error-correction model

∆Yt = AB⊤Yt−1 + C + ωt, (2.5.5)

where ωt
iid∼ N4(0,Ω), ∆Yt = Yt − Yt−1, and

Yt =


αft
αmt
βft
βmt

 , A =


a11 0

a21 0

0 a32
0 a42

 , B =


1 0

−1 0

0 1

0 −1

 , C =


c1
c2
c3
c4

 , (2.5.6)

with superscript f and m denoting female and male parameter values, respectively.

Equation (2.5.6) contains two critical assumptions:

1. Structural zero’s have been placed in the A-matrix making parameter pairs

weakly exogenous, so that the relation between the α’s will not affect the

relation between the β’s and vice versa.

2. The B-matrix imposes two cointegrating relations, one between each parameter

pair, with coefficients of unity so that the model corrects any disequilibrium

that may arise in the difference between the parameters.

The error-correction behaviour of (2.5.5) can be made more precise by decomposing

the drift term. For a p×q matrix X of full rank, we say that another matrix X⊥ of full

rank and dimension p× (p− q) such that X⊤X⊥ = 0 is its orthogonal complement.

With M = A(B⊤A)−1B⊤ it can be shown that I − M = B⊥(A
⊤
⊥B⊥)

−1A⊤⊥, cf.

Chapter 3 of Johansen (1995). Using this identity we can rewrite (2.5.5) so that

∆Yt = A(B⊤Yt−1 − CD) + C∆ + ωt, (2.5.7)

where CD = −(B⊤A)−1B⊤C =
(
CDα , CDβ

)⊤
is the parameter difference in sta-

tionarity with CDα
= c1−c2

a21−a11 and CDβ
= c3−c4

a42−a32 , while C∆ = (I − M)C =
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(C∆α
, C∆α

, C∆β
, C∆β

)⊤ is the common drift with C∆α
= a21c1−a11c2

a21−a11 and C∆β
=

a42c3−a32c4
a42−a32 . From Equation (2.5.7), it is clear Yt is updated in response to the

disequilibrium error B⊤Yt−1 − CD with a force depending on the magnitude of the

a’s.

An explicit representation of the (median) forecast for a horizon h ∈ N0 can be

discerned via the Granger representation theorem, see e.g. Jarner and Jallbjørn

(2020). We have

E[Ytmax+h|Ytmax
] = Ytmax

+ C∆h−A(B⊤A)−1
(
1− λhα 0

0 1− λhβ

)
(B⊤Ytmax

− CD),

(2.5.8)

where λα = 1 + a11 − a21 and λβ = 1 + a32 − a42 are eigenvalues of I + AB⊤.

Equation (2.5.8) highlights the asymptotic random walk behaviour, with the initial

disequilibrium error decaying exponentially to zero provided that λα, λβ < 1.

Writing out the error-correction behaviour helps us identify means of ensuring

stable and robust forecasts. With this aim in mind, adjusting CD and C∆ to equal

desired long-term values might be preferable compared to unconstrained estimation.

Equation (2.5.8) details how the target equilibrium may severely affect projections.

It shows that the error-correction model can bring about a number of undesirable

features in the median forecast, like short- to medium-term increases in mortality for

one of the genders during the restoration of the equilibrium. It is difficult to justify

such behaviours in best estimate projections. To avoid them, we assume that B⊤Yt is

distributed according to its stationary distribution by equating CD to the difference

between jump-off values, namely ĈDθ
= θ̂ftmax

− θ̂mtmax
where θ is either α or β. This

makes the median forecast of the error-correction model coincide with the median

forecast of a random walk model, since the ultimate term in (2.5.8) vanishes. The

error-correction interpretation still applies, however, when considering a stochastic

realization of the process. Moreover, looking at the evolution of mortality through

the years, for example Figure 2.3, it is clear that female mortality has developed more

steadily than mortality for the males. We therefore use the empirical average of the

female parameters to model the common slope, that is Ĉ∆θ
= 1

tmax−tmin+1

∑
t∆θ̂

f
t

where θ is either α or β.

2.5.3 Model Fit and Forecast

Since international mortality develops more steadily than country-specific mortality,

we are able to use a relatively wide window of data for model calibration. The

endpoints should be chosen such that we do not introduce structural breaks if data

for some countries are missing. Balancing these concerns, we apply the model to

international mortality data, ages 20–100 and calendar years 1970–2017 with 2017

being the last year where data exist for all the countries considered at the time of
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Figure 2.6: Estimated parameters for baseline (2.5.2) and background (2.5.3) mortality
in the SAINT model.

writing. The model is estimated separately for females and males, and follows the

EM algorithm described in Appendix 2.B.

The estimated parameters of the SAINT model (2.5.2)–(2.5.3) are shown in

Figure 2.6. To justify the use of the error-correction model (2.5.5), the series {αt}t∈T
and {βt}t∈T must be integrated of order 1 for both genders, i.e. the stochastic part

of these processes must be non-stationary. We conclude from unit root tests (test

results not shown) that this is indeed the case. Further, we take the observed stable

difference between parameters as (weak) evidence that they engage in an equilibrium

correcting relationship.

In mortality forecasting applications, the choice of jump-off point is a key consid-

eration to match the start of the projection with recently observed data (Lee and

Miller, 2001). Because the SAINT model fits the empirical death rates very well,

cf. Figure 2.2, no jump-off correction is needed and we use the model values in the

jump-off year to determine the jump-off rates. Moreover, the Poisson assumption

(2.4.4) ensures that the model approximates the total number of deaths in the data,

see also the discussion in Brouhns et al. (2002).

Comparing SAINT and Lee–Carter Forecasts

To put forecasting into perspective, the SAINT projections are compared to projec-

tions generated by a Lee-Carter model. The Lee-Carter model is, in the spirit of

this paper, estimated under the Poisson assumption as in Brouhns et al. (2002) and

we use a random walk with drift for forecasting as is customary. Extrapolating the

time-varying index linearly implies that age-specific death rates decay exponentially

at a constant rate. We shall see that this assumption causes forecasts based on the



44 CHAPTER 2. JARNER & JALLBJØRN (2022)

31.0

25.7

31.8

28.0

31.2

28.5

31.5

29.1

Lee-Carter SAINT

1975 2000 2025 2050 2075 1975 2000 2025 2050 2075
15

20

25

30

35

Calendar year

L
if
e

 e
x
p

e
c
ta

n
c
y

Sex Female Male Estimation period 1970-1989 1970-1999 1970-2017

Figure 2.7: The panels show actual (dots) and forecasted (lines) remaining life expectancies
for age 60 females and males with pointwise 95% confidence bands based on expanding
estimation windows. Even though a rolling fixed-length data window is a more common
back test approach in the literature, an expanding data window corresponds to how a
mortality model is typically updated in practice.

Table 2.1: Empirical mean (and standard deviation in parentheses) of projected period
life expectancies for a 60-year-old based on 10,000 simulations for select years.

Model
Female Male

2020 2040 2060 2020 2040 2060

Calibration period: 1970–1989
Lee-Carter 27.01 (0.54) 29.50 (0.62) 31.74 (0.65) 21.63 (0.38) 23.73 (0.46) 25.71 (0.51)
SAINT 27.06 (0.81) 29.38 (1.15) 31.40 (1.47) 23.46 (0.76) 26.35 (1.14) 28.88 (1.51)
Calibration period: 1970–1999
Lee-Carter 26.73 (0.41) 29.04 (0.49) 31.04 (0.52) 22.18 (0.31) 24.39 (0.40) 26.36 (0.43)
SAINT 26.86 (0.53) 29.22 (0.78) 31.26 (1.07) 23.12 (0.53) 26.04 (0.90) 28.65 (1.49)
Calibration period: 1970–2017
Lee-Carter 26.72 (0.22) 29.02 (0.52) 31.01 (0.61) 23.28 (0.16) 25.83 (0.40) 28.04 (0.47)
SAINT 26.75 (0.25) 29.31 (0.71) 31.51 (1.00) 23.39 (0.25) 26.44 (0.71) 29.09 (1.04)

Lee-Carter methodology to have a tendency of underestimating the actual gains

in old-age mortality. The purpose of the comparison is not to show superiority of

SAINT over other models, but to illustrate the beneficial effects of cointegration and

frailty.

Forecasts are compared by considering period life expectancies. While cohort life

expectancies taking future improvements of mortality into account are generally of

more interest, the period life expectancy summarizes the level of mortality at a given

time and is better suited for illustrative purposes as it can be compared with the

actual experience. Recently, Arnold et al. (2019) added perspective on the stability

of period versus cohort tables, arguing that the former might be preferable for

practitioners looking to minimize capital adjustments following life tables updates.

Historical and forecasted life expectancies of a 60-year-old are shown in Figure 2.7.
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The figure shows that both models produce highly similar median forecasts for female

life expectancy and that predictions are quite robust to the choice of the data window

used to calibrate the model. This similarity can be attributed to the stable rates of

improvements observed since the 1970s. For the males, however, the improvement

rates considered during the period of estimation are considerably lower than the

actual rates in the periods that follow. The Lee-Carter model fails to capture this

development, and the median forecasts are a good way from agreeing with the actual

experience. Since improvement rates are increasing over time, predictions from the

Lee-Carter model grow increasingly optimistic as we include more recent data.

The SAINT model lends its strength in the stable female improvement rates by the

coupling of the genders described in Section 2.5.2. This leads to the forecasts being

decidedly more robust to the choice of estimation period, and the resulting almost

linear median life expectancy projections resemble the actual experience better than

the scattered Lee-Carter forecasts. In fact, it is quite remarkable how well even the

first SAINT forecast based on 1970-1989 predicts present day male life expectancy.

To contrast the forecasting uncertainty of the two methods, Table 2.1 reports sum-

mary statistics for the projected life time distributions based on 10,000 simulations.

Both the table and the figure reveal that there is a major difference in the forecasting

uncertainty between the two methods, even when point estimates are similar. It is

evident that the uncertainty is greatest in the SAINT model, while it is, at least

with hindsight, worryingly low for the Lee-Carter model. Specifically for the males

using the two earliest calibrations, we get no warning that the projections might be

well off target; the models do not capture the final years of observed data, let alone

the 1970–2017 model’s median projection, within their 95%-confidence bands.

Figure 2.8 compares the average improvement rates over a long horizon for select

high ages. For the females, improvement rates are similar in both models over the

short term; the height of the light-red bars align with the dashed lines. On longer

horizons, however, the SAINT model gives rise to increasing rates of improvements

endogenously within the model as the frailty composition changes over time. The

Lee-Carter model and many of its descendants cannot predict rates of improvements

higher than those observed historically and are therefore likely to be understating

future increases in old-age mortality, even for large and stable datasets. In fact, the

likeness between forecasts seen in Figure 2.7 is deceptive; the cohort life expectancy

for a newborn female in 2017 is 94.81 years in the SAINT model, but nearly 2 years

less in the Lee-Carter prediction at 92.96 years. For the males, the overall level of

the improvement rates is higher in the SAINT forecast as a result of the genders

being tied together compared to the Lee-Carter predictions where this is not so.
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Figure 2.8: The panels show predicted average rates of improvement for select ages using
the SAINT model estimated on the full data period 1970-2017. Female rates are shown in
the left panel and male rates in the right. The corresponding improvement rates for the
Lee-Carter model are superimposed as the dashed lines.

2.5.4 Spread Modelling

Given an underlying model for reference population mortality, we model mortality

in the target population as deviations from the trend. As the name suggests, the

trend should capture the main features of the mortality evolution and the spread

should therefore be a model flexible enough to adequately fit observed mortality in

the target population but introduce as little complexity as possible.

Since Plat (2009), common practice is to take a regression approach using a linear

structure

Dtarget(t, x) ∼ Poisson(µtarget(t, x)Etarget(t, x)), (2.5.9)

µtarget(t, x) = µref(t, x) exp
(
y⊤t rx

)
, (2.5.10)

with parameters yt = (y1,t, . . . , yp,t)
⊤ ∈ Rp describing the evolution of the spread

over time and age-dependent regressors rx = (r1,x, . . . , rp,x)
⊤ ∈ Rp. Any standard

GLM-routine can be used to fit the model by specifying a Poisson family with a

log-link.

The original version of SAINT used a parsimonious model for the spread describing

just its level, slope and curvature. While this model performed respectably, it

became clear from a practical point of view that the fit of target population mortality

was simply unconvincing when plotted on log-scale against empirical data, a plot

frequently reported to the FSA and the Board of Representatives. To improve the

fit, the three regressor model was replaced with a five regressor model

ri,x = min(1,max(0, xi − x)/20), i ∈ {1, . . . , 5}, (2.5.11)

where (x1, x2, x3, x4, x5) = (40, 60, 80, 100, 120), so that regressors are one until a

given breakpoint after which they decrease linearly to zero over the course of 20 years.

Even though a model with evenly spaced knots has obvious practical advantages,
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there are now methods available to explore the optimal choice of the number and

location of the knots in spline models, see Kaishev et al. (2016). The chief reason

for choosing the regressors above is that r2, r3, and r4 are equivalent to the three

regressor model specified by the Danish FSA for their longevity benchmark, cf. Jarner

and Møller (2015), giving credence to the credibility of (2.5.11) in the eyes of the

regulator.

Spread Forecast

Since it is the trend that governs long-term mortality behaviour, the time dynamics

used for forecasting should ensure that the spread remains bounded in probability.

We use a (stable) vector autoregressive model,

yt = Ayt−1 + υt, (2.5.12)

with A being a p× p matrix and υt mean-zero Gaussian errors. We note that even if

data appears stationary, e.g. Figure 2.9, maximum likelihood estimation of the VAR-

model (2.5.12) does not necessarily yield stationarity and more sophisticated models,

e.g. including additional lags, may have to be used. Alternatively, stationarity can

be imposed by putting a curb on the eigenvalues of A such that they lie within the

unit circle.

In practice, restricting A to be a diagonal matrix with diagonal elements 0 ≤
Aii < 1, works well in terms of stability and is easy to communicate to non-specialists

as deviation half-life. For instance, the Danish mortality curve moves more or less in

unison with the international trend and there are no signs of an impending catch-up.

Simply imposing A = 0.99I, with I being the identity matrix of size p, corresponds

to a deviation half-life of about 69 years and results in the forecast depicted in

Figure 2.9.

The figure epitomizes the advantage of the SAINT projection methodology. In a

typical country-specific projection, exemplified by the Lee-Carter forecast, the recent

stagnation in Danish life expectancy makes the data window a critical component of

the analysis. The Lee-Carter model extrapolates past trends and even if based on very

recent data periods, it is likely to understate future improvements in especially old-

age mortality. Using the SAINT methodology the long-term trend is determined by a

large pooled set of countries which serves as a stable reference for small populations

that exhibit substantial variability. Rather than basing long-term projections on

irregular national rates of improvements, we can frame the development as short- to

medium term deviations from the trend. Having a point of reference also makes it

possible – even for non-specialists – to visually gauge if the projection is reasonable.

Although only the Danish data are modelled here, the SAINT framework is easily

adapted to other populations of interest. All that is required is a separate VAR model

for the spread between the (new) target population and the trend. The assumed
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Figure 2.9: Actual and forecasted remaining period life expectancy for a 60-year-old.

stationarity of the spread will ensure that deviations from the trend are bounded.

Multi-population analyses will therefore not exaggerate short-term differences or

lead to diverging projections. All in all the SAINT methodology opens for a unified,

flexible and robust forecasting approach, which is applicable to a wide range of

populations despite their possibly unsteady development.

2.6 Concluding Remarks

A large and growing body of literature focuses on theoretical properties of mortality

models and achieving accurate mortality forecasts. However, there are a number of

desirable model properties besides theoretical ones that determine the success and

applicability of a mortality model in practice. In this paper, we reviewed the lessons

learned from more than a decade of experience with the SAINT model in use at

ATP and the model modifications that have followed.

The main improvement over the original SAINT model was the generalization of

frailty models from deterministic structures to a flexible class of stochastic mortality

models, offering a general way of combining essentially any mortality model with

frailty. This sets the work apart from the typical use of frailty which rely on

matching parametric forms with closed-form expressions. We demonstrated how

frailty extended mortality models dramatically improve the historical fit of even

simple age-period structures and provide more realistic projections of improvement

patterns on longer horizons. Obviously, frailty on its own is not enough to explain

the complex dynamics of mortality, but helps capture essential features observed in

the data otherwise addressed by ad hoc methods.

Although the original SAINT model was explicitly designed with stability in

mind, we underestimated the effect that annual data updates could have on best



2.A. POSITIVE STABLE FRAILTY 49

estimate projections. This lack of robustness was primarily rooted in the model’s

time dynamics whose parameters were estimated freely. In the trend, the long-run

equilibrium relation between male and female mortality was overly sensitive to

small changes in observed patterns, while the autoregressive model used to forecast

the spread between reference and target population mortality did not guarantee

stationarity. The issues were resolved by imposing sensible structural restrictions on

the time dynamics of the model.

Even with well-behaved time dynamics, model stability is still challenged by

outliers. In light of the COVID-19 crisis, it may not come as a surprise that a reference

population – even when built from a large and geographically dispersed group of

countries – will not guarantee stability under annual data updates. Nevertheless, we

were taken by surprise by how deeply events like severe flu seasons impact reference

mortality levels. Because of our globally connected world, infectious disease outbreaks

cannot be diversified away by simply adding more countries to the data pool. We

expect these types of fluctuations to be temporary rather than part of a lasting trend

and measures to dampen their effect are indispensable in practical applications. This

is an important issue for future research.

While accuracy, stability and flexibility requirements all pertain to model perfor-

mance, there are certain properties in practical applications that do not. Governance

rules entail an obligation on the part of the modeller to report, explain and justify

outputs, some of which might not even have any direct practical implication, for

example, in a pension fund context, how fitted death rates among the very young

compare to actual rates. A poor fit in this age group will not affect the calculation of

technical provisions in any way but may seriously detract from the model’s credibility

in the eyes of non-specialists. As modellers, we should be aware of this, partly

external, desire for model explainability.

Acknowledgements

The authors are indebted to Esben Masotti Kryger for numerous stimulating discus-

sions. The authors wish to thank two anonymous referees for their valuable input

which helped improve the manuscript. The work was partly funded by Innovation

Fund Denmark (IFD) under File No. 9065-00135B.

2.A Positive Stable Frailty

Hougaard (1986) introduced a family of generalized stable laws which includes the

two most often used frailty distributions for mortality modelling, namely the Gamma

and inverse Gaussian distributions, see e.g. Vaupel et al. (1979), Hougaard (1984),

Butt and Haberman (2004), Jarner and Kryger (2011), and Spreeuw et al. (2013).

The family is obtained by exponential tilting of stable densities with index α ∈ [0, 1).
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The stable laws themselves only have moments of order strictly less than α, while

moments of all orders exist for the exponentially tilted densities. From the original

three-parameter family we obtain a two-parameter family by imposing the condition

that mean frailty is one.

When Z follows a generalized stable law with index α ∈ [0, 1), mean one and

variance σ2 the Laplace transform and mean frailty are given by

L(s) = exp

1− α
α

1−
(
1 + σ2s

1−α

)α
σ2

 , (2.A.1)

E[Z|t, x] =
(
1 +

σ2

1− α
M0(t, x)

)α−1
=

(
1 +

α

1− α
σ2M(t, x)

)α−1
α

. (2.A.2)

The stated formulas are obtained from Hougaard (1986) using the parametrization

θ = (1− α)/σ2 and δ = [(1− α)/σ2]1−a.

The generalized stable law specializes to the inverse Gaussian distribution for

α = 1/2 and to the Gamma distribution for the limiting case α = 0 defined by

continuity. While both Gamma and inverse Gaussian densities exist in closed form,

generally (tilted) stable densities exist only as a series representation, cf. Hougaard

(1984). Since the closed form expressions for the Laplace transform and mean frailty

(2.A.1)-(2.A.2) are all we need for estimation and forecasting purposes, this is not

problematic.

Arguably, the Gamma distribution is the most widely used frailty distribution. It is

well-known that Gamma frailty in combination with Gompertz or Makeham baseline

intensities lead to a cohort rate of the logistic type, and has been found to describe

old-age mortality very well, see e.g. Thatcher (1999); Cairns et al. (2006). Gamma

distributed frailty is also mathematically tractable and allows explicit calculations of

many quantities of interest, e.g. frailty among survivors at a given age is Gamma

distributed with known scale and shape parameters, cf. Vaupel et al. (1979).

It is generally found that Gamma frailty and the associated logistic form provides

a better description of old-age mortality than inverse Gaussian frailty, see e.g. Butt

and Haberman (2004) and Spreeuw et al. (2013). Furthermore Abbring and Berg

(2007) show that for a large class of initial frailty distributions the frailty distribution

among survivors converges to a Gamma distribution as the cumulated rate tends to

infinity. Thus overall the Gamma distribution is a good default choice.

2.B Estimation of a Competing Risks Model

We consider the competing risk model of (2.4.9)–(2.4.10), i.e.

D(t, x) ∼ Poisson ([µs(ψ, θt, ηx, ζ, ξ) + µb(ζt, ξx)]E(t, x)) , (2.B.1)
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where we have made µs’s dependence on the vector of background parameters explicit.

Selective and background mortality are given by

µs(ψ, θt, ηx, ζ, ξ) = ν′ψ(ν
−1
ψ {M̃(t, x, ζ, ξ})F (θt, ηx), (2.B.2)

µb(ζt, ξx) = G(ζt, ξx), (2.B.3)

for a fixed value of ψ. Imagine that deaths were recorded according to the (hidden)

sources

Ds(t, x) ∼ Poisson (E(t, x)µs(ψ, θt, ηx, ζ, ξ)) , (2.B.4)

Db(t, x) ∼ Poisson (E(t, x)µb(ζt, ξx)) , (2.B.5)

with Ds and Db mutually exclusive so that D(t, x) = Ds(t, x) + Db(t, x). Even

though Ds and Db do not necessarily exist and hence are not “missing” in the usual

sense of the word, we can still use the EM-algorithm based on the missing data

interpretation of the model. Note that ζ and ξ are estimated from (2.B.5), while θ

and η are estimated from (2.B.4) with ζ and ξ kept fixed at their current value.

Omitting time and age indices for ease of notation the expectation step is then

to compute the complete data log-likelihood given death counts D and current

parameter estimates from iteration i− 1,

Q(θ, η, ζ, ξ) = E[ℓ(θ, η, ζ, ξ) | D, θi−1, ηi−1, ζi−1, ξi−1], (2.B.6)

where a death is distributed according to a Bernoulli trial with a success parameter

depending on the weight of the cause-specific death rate, i.e.

Ds|D, θi−1, ηi−1, ζi−1, ξi−1 ∼ Bin

(
D,

µs(θ
i−1, ηi−1, ζi−1, ξi−1)

µs(θi−1, ηi−1, ζi−1, ξi−1) + µb(ζi−1, ξi−1)

)
,

(2.B.7)

Db|D, θi−1, ηi−1, ζi−1, ξi−1 ∼ Bin

(
D,

µb(ζ
i−1, ξi−1)

µs(θi−1, ηi−1, ζi−1, ξi−1) + µb(ζi−1, ξi−1)

)
,

(2.B.8)

under the assumption that the likelihood factorizes so that

ℓ(θ, η, ζ, ξ) = ℓs(θ, η | Ds, ζ
i−1, ξi−1) + ℓb(ζ, ξ | Db). (2.B.9)

The maximization step consists of maximizing (2.B.6) to obtain the i’th parameter

estimate, i.e. estimating the two marginal mortality models with death counts

Ds = E
[
Ds | D, θi−1, ηi−1, ζi−1, ξi−1

]
, (2.B.10)

Db = E
[
Db | D, θi−1, ηi−1, ζi−1, ξi−1

]
. (2.B.11)

The E-step and M-step are iterated until converge.

In summary, the model (2.4.9)–(2.4.10) is estimated by optimizing the profile

log-likelihood function (2.4.14), which for fixed frailty parameter ψ is computed by

the following algorithm.
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1. Initialize θ0, η0, ζ0, ξ0 and set i = 1.

2. For all t and x in the data window compute M̃(t, x, ζi−1, ξi−1) and set

c(t, x) = ν′ψ(ν
−1
ψ {M̃(t, x, ζi−1, ξi−1)}). (2.B.12)

3. Compute θi and ηi as the maximum likelihood estimates of the model

Ds(t, x) ∼ Poisson (c(t, x)E(t, x)F (θt, ηx)) (2.B.13)

with death counts

Ds(t, x) = D(t, x)
c(t, x)F (θi−1t , ηi−1x )

c(t, x)F (θi−1t , ηi−1x ) +G(ζi−1t , ξi−1x )
. (2.B.14)

4. Compute ζi and ξi as the maximum likelihood estimates of the model

Db(t, x) ∼ Poisson (E(t, x)G(ζt, ξx)) (2.B.15)

with death counts

Db(t, x) = D(t, x)
G(ζi−1t , ξi−1x )

c(t, x)F (θi−1t , ηi−1x ) +G(ζi−1t , ξi−1x )
. (2.B.16)

5. Increase i by one.

6. Repeat steps 2–5 until convergence.



Chapter 3

Pitfalls and Merits of Cointegration-Based

Mortality Models

This chapter contains the manuscript Jarner and Jallbjørn (2020).

Abstract

In recent years, joint modelling of the mortality of related populations

has received a surge of attention. Several of these models employ cointe-

gration techniques to link underlying factors with the aim of producing

coherent projections, i.e. projections with non-diverging mortality rates.

Often, however, the factors being analysed are not fully identifiable and

arbitrary identification constraints are (inadvertently) allowed to influence

the analysis thereby compromising its validity. Taking the widely used

Lee-Carter model as an example, we point out the limitations and pitfalls

of cointegration analysis when applied to semi-identifiable factors. On the

other hand, when properly applied cointegration theory offers a rigorous

framework for identifying and testing long-run relations between popula-

tions. Although widely used as a model building block, cointegration as

an inferential tool is often overlooked in mortality analysis. Our aim with

this paper is to raise awareness of the inferential strength of cointegration

and to identify the time series models and hypotheses most suitable for

mortality analysis. The concluding application to UK mortality shows

by example the insights that can be obtained from a full cointegration

analysis.

JEL classification: C32, J11.

Keywords: Mortality modelling, Lee-Carter model, CBD-model, cointegration,

coherence, identification invariance.
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3.1 Introduction

Mortality models have many applications in areas such as demography, epidemiology,

economics and actuarial sciences. In some applications we are interested in a single

life expectancy projection, e.g. a unisex projection for a given country, but in

many cases we are more interested in simultaneous projections for groups of related

(sub)populations. Examples of the latter include joint modelling of males and females

in a population, coherent forecasts for countries in a given region, projecting the

life expectancy of smokers and non-smokers, modelling of insured lives relative to

a national population, and assessing the effectiveness of a mortality hedge with

the presence of basis risk; see e.g. Chen and Millossovich (2018), Kleinow (2015),

Bergeron-Boucher et al. (2017), Janssen et al. (2013), Jarner and Kryger (2011),

Cairns et al. (2011b), Dowd et al. (2011), and Cairns et al. (2011a).

Models applied independently to separate populations often lead to diverging

forecasts. This is the case even for closely related populations. Tuljapurkar et al.

(2000) found that applying the model of Lee and Carter (1992) separately to the G7

countries over a 50-year forecast horizon resulted in a life expectancy gap between

the countries as large as eight years; despite the countries sharing long-term trends in

mortality and convergence of social and economic factors. The projected divergence

is due to small differences in the timing and magnitude of historical improvements

being magnified by the separate analyses.

Joint mortality models are based on an assumption of non-divergence, or coherence,

of mortality rates of the group of populations under consideration. Coherence is

typically achieved by imposing a specific structure of the joint time series model used

for forecasting factors driving mortality improvements in each population. Formally,

the factors are assumed to cointegrate, i.e. to exhibit stationary relations preventing

them from diverging. Cointegration theory offers a rigorous statistical framework for

identifying and testing such stationary relations. However, this framework is rarely

exploited in full since the structure is often imposed rather than tested, see e.g. Li

and Lee (2005), Li and Hardy (2011), Dowd et al. (2011), and Cairns et al. (2011b).

The purpose of the present paper is twofold. First, we wish to advocate that

cointegration analysis has more to offer than assuring coherence. Indeed, we will

demonstrate the insights and “surprising” models that can arise from a full analysis.

Second, we wish to highlight some of the pitfalls and limitations of cointegration

analysis when applied to factors that are not fully identifiable, e.g. the mortality index

of the popular Lee-Carter model. The overall message is that cointegration-based

mortality models have much to offer as an inferential tool, but also that extreme

care must be exercised when dealing with semi-identifiable factors often encountered.
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3.1.1 Cointegration

Cointegration is rooted in econometrics. It was introduced by Engle and Granger

(1987) as a methodology for testing for stationary relations between non-stationary

time series. The basic idea is that if two variables share a (stochastic) trend, it

might be possible to find a linear combination of the variables that cancels the

trend resulting in a stationary process. The linear combination is referred to as a

cointegrating relation. The Engle-Granger methodology is limited to only a single

cointegrating relation, while the more general and comprehensive setup developed

by Johansen (1995) allows for an arbitrary number of variables and cointegrating

relations, at least in principle. In effect, each (linearly independent) cointegrating

relation reduces the dimension of the “driving forces” of the system by one.

While the aim of an econometric analysis is to infer and interpret the (economic)

system, the typical focus of a mortality analysis is to produce a plausible forecast with

proper quantification of the uncertainty. With the aim of improving gender-specific

mortality forecasts, Carter and Lee (1992) suggested cointegration as a possible

tool. In recent years, there has been a proliferation of papers using cointegration

techniques to obtain coherent forecasts, see e.g. Darkiewicz and Hoedemakers (2004),

Lazar and Denuit (2009), Njenga and Sherris (2011), Gaille and Sherris (2011),

Yang and Wang (2013), Hyndman et al. (2013), Zhou et al. (2014), Hunt and Blake

(2015c), Salhi and Loisel (2017), and Li and Lu (2017). Many of the authors arrive

at complex, high-dimensional models which are difficult to interpret, but potentially

good at forecasting.

We find that, although cointegration can certainly be used as a tool to impose

coherence, the real strength of cointegration lies in inference and interpretation.

We believe that this aspect is largely absent in the actuarial literature and that

important subject knowledge can be gained from a more statistical approach to

mortality modelling, a point also made by Arnold and Sherris (2016). A number of

the cited papers do in fact test for cointegration rank as part of their model selection,

but formulating and testing hypotheses on parameters is not part of the analysis.

The primary aim of this paper is to demonstrate the value of cointegration-based

inference in a mortality context.

Cointegration theory is a technically sophisticated field and some preliminary work

is needed to establish the type of cointegration models and hypotheses suitable for

mortality modelling. Once established, we present a cointegration analysis of male

and female UK mortality. We consider both a two-dimensional analysis based on the

Lee-Carter model and a four-dimensional analysis based on the logistic two-factor

model of Cairns et al. (2006). In principle, any number of factors can be analysed,

but to aid interpretation and the formulation of hypotheses it is useful to consider

only a moderate number of factors.
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3.1.2 Identifiability

Many mortality models, including the Lee-Carter model and its many variants, are

overparametrized and parameters are therefore only identifiable after adding one or

more constraints. In the Lee-Carter model, for example, two constraints are needed

to ensure identification of the time-varying index and the age-specific parameters.

By definition, the fitted mortality rates are unaffected by the identification scheme,

but the forecasted mortality rates are not necessarily unaffected. Forecasts are based

on time series models for the time-varying parameters and these models might not

be invariant to the identification scheme.

Several recent papers have addressed the issue of identifiability and forecasting

in mortality models, see in particular Nielsen and Nielsen (2014), Kuang et al.

(2008), Hunt and Blake (2015a,b), Hunt and Blake (2018), and Beutner et al. (2017).

In summary, this body of work shows that for forecasts to be unaffected by the

identification scheme the time series model should be flexible enough to “preserve”

reparametrizations, i.e. forecasting and reparameterizing should be interchangeable

operations. As Hunt and Blake (2018) point out, this seemingly innocent requirement

can in fact be at odds with model structures imposed to achieve coherence. We will

return to this point later in the paper.

Identifiability issues affect the interpretation of parameters and — unless properly

addressed — might lead to conclusions resting entirely on arbitrary constraints.

Non-trivial issues arise even in the standard setting of an age-period model of the

Lee-Carter type, and the complexity of the issues increase rapidly with the number

of time-varying indices, see Hunt and Blake (2015b). Further issues arise in joint

models with cointegrating parameters, which is the focus of this paper. In this case,

the semi-identifiability of the parameters severely limits the choice of meaningful

time series models and hypotheses.

To guarantee identification invariant inference, Nielsen and Nielsen (2014) advocate

an approach based on maximal invariants of reduced dimensionality in terms of

which all estimation and forecasting must be formulated. Although theoretically

elegant, researchers might be reluctant to adopt this idea, since the interpretation

of the original parametrization is lost. Also, we fear that the approach adds to the

impression held by many that identifiability concerns are an esoteric topic which

overcomplicate simple problems. In contrast to Nielsen and Nielsen (2014), we do

not develop any formal theory in this paper, but rather illustrate by examples some

of the pitfalls and problems of semi-identifiability. Hopefully, our exposition will

be both accessible and illuminating to a wide audience. We also prefer to retain

the original parametrization of the models to make the examples as relevant and

familiar as possible. In these respects, our work is similar in spirit to the analysis of

the gravity model presented in Hunt and Blake (2018).
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3.1.3 Outline

The rest of the paper is organized as follows. In Section 3.2 we introduce the

mortality models we will use as examples throughout and we discuss identification

issues in the familiar setup of the Lee-Carter model. Section 3.3 covers background

information on cointegration theory, while Section 3.4 specializes the discussion

of cointegration to mortality models and illustrates the problems with applying

cointegration to semi-identifiable parameters. Section 3.5 contains a comprehensive

analysis of UK mortality data applying cointegration techniques to both the semi-

identifiable Lee-Carter model and the fully identified model of Cairns et al. (2006).

Finally, Section 3.6 offers some concluding remarks.

3.2 Mortality Modelling

The object of study for mortality models is the age-specific death rates (ASDR’s)

in a given population. We assume that data consist of death counts, Dt,x, and

corresponding exposures, Et,x, over time-age cells of the form [t, t+1)× [x, x+1) for

a range of calendar years t and (integer) ages x. We also assume that the underlying

force of mortality, µt,x, is constant over each of these cells. It then follows that

E[Dt,x] = µt,xE[Et,x], where E denotes the expectation operator.1 The observed

death rate is defined as the ratio mt,x = Dt,x/Et,x. This is commonly used as an

(empirical) estimate of the underlying force of mortality. When considering more

than one population we add an identifying superscript, e.g., µit,x denotes the force of

mortality at time t and age x in population i.

Most mortality models capture the time evolution of mortality rates (the period

effect) by one, or more, time-varying indices (factors), kt. Below we introduce the

one-factor model of Lee and Carter (1992) and the two-factor model of Cairns et al.

(2006).

3.2.1 The Lee–Carter Model

The single population model proposed by Lee and Carter (1992) is used in a great

number of mortality studies due to its simplicity and ease of interpretation; the

ASDR’s are modelled by a log-linear relation where an age-dependent ax describes the

general shape of the force of mortality and a single time-varying index, kt, describes

the speed of mortality improvements, governed by an age response bx. The model is

given by

logmt,x = logµt,x + εt,x = ax + bxkt + εt,x, (3.2.1)

1More precisely, E denotes the conditional expectation given µt,x, since µt,x is itself a stochastic
quantity. Thus, E averages over the random times of death given the force of mortality. Note that
the exposure is also a stochastic quantity since it depends on the life spans. For modelling purposes,
we (implicitly) condition on the exposures by treating them as fixed.
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where εt,x are homoscedastic error terms with mean 0 and variance σ2
ε .

We note that the model is invariant under the parameter transformations

{ax , bx , kt} 7→ {ax − bxc , bx/d , d(kt + c)} , (3.2.2)

where c ∈ R and d ∈ R \ {0}, in the sense that these transformations all yield the

same model for logmt,x. In other words, the parameters are not fully identifiable

since kt is only determined up to a linear transformation, bx up to a multiplicative

constant, and ax up to a shift proportional to bx. To ensure identification, the

parameters are typically subject to the constraints∑
t

kt = 0,
∑
x

bx = 1. (3.2.3)

In Lee and Carter (1992) the parameters are estimated by ordinary least squares

(OLS), i.e. by minimization of the quantity
∑
t,x(logmt,x − ax − bxkt)2. Under the

constraints (3.2.3), âx equals the time average of logmt,x, and b̂x and k̂t can be

obtained from the first component of a singular value decomposition of the matrix

{logmt,x − âx}t,x. The parameter estimates thus obtained equal the maximum

likelihood estimates under the additional assumption that the errors are normally

distributed.2

The assumption of homoscedastic errors is questionable as we would expect

observed death rates to fluctuate more when death counts are low. In addition,

the use of OLS has the practical problem of how to handle cells with zero death

counts frequent in small data sets. In the application to UK data we use instead the

Poisson variant of the Lee-Carter model proposed by Brouhns et al. (2002). The two

Lee-Carter variants have the same parametric structure and the points made later

regarding identification issues in relation to forecasting and cointegration analysis

therefore apply to both of them.

Forecasting

The time-varying index is typically modelled as a random walk with drift,

kt = kt−1 + θ + εt, (3.2.4)

where θ is the drift and the εt’s are i.i.d. N (0, σ2). The drift and variance are

estimated by the sample mean and sample variance, respectively, of the differences

k̂t − k̂t−1.

Let T denote the last year of data. Forecasting is based on the conditional

distribution of kT+h given kT = k̂T ; we have for h ≥ 1

kT+h|kT = k̂T ∼ N
(
k̂T + hθ̂ , hσ̂2

)
, (3.2.5)

2Lee and Carter (1992) contains a second stage adjustment of the parameters to reproduce the
actual number of deaths each year. We do not consider this adjustment here.
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from which forecasts and confidence intervals can be derived. In particular, a (median)

forecast of future mortality rates is given by

µ̂T+h,x = exp
(
âx + b̂x

[
k̂T + hθ̂

])
= µ̂T,x exp

(
hθ̂b̂x

)
. (3.2.6)

Coherence

The concept of coherent forecasts was introduced by Li and Lee (2005) and formalized

by Hyndman et al. (2013). Mortality forecasts for two populations are said to be

coherent if the relative mortality rates converge for each age x,

µ̂1
t,x

µ̂2
t,x

→ Rx, t→∞, (3.2.7)

for positive, age-specific constants Rx. When producing forecasts for populations

with historically similar mortality evolutions, the concept of coherence formalizes

the intuitively desirable property that the forecasts should reflect these similarities.

On the other hand, coherence is a rather strict requirement which will generally

not be satisfied by forecasts obtained by applying e.g. the Lee-Carter model to

separate populations. Indeed, it follows from (3.2.6) that in a Lee-Carter setting a

necessary and sufficient condition for coherence is that θ̂1 = θ̂2 and b̂1x = b̂2x for all x.

In practice, of course, this will never happen. With the aim of obtaining coherent

forecasts for a group of populations, Li and Lee (2005) proposed the augmented

common factor model

logmi
t,x = logµit,x + εit,x = aix +BxKt + bixk

i
t + εit,x. (3.2.8)

This model produces coherent forecasts when the population specific indices, kit, are

modelled as stationary processes, e.g. AR(1)-processes. The common factor, Kt, can

be non-stationary, e.g. a random walk with drift as in the original Lee-Carter model.

The notion of coherence has undoubtedly been very influential in setting the

standard for joint forecasts. Indeed, many joint mortality models have been devised

with the specific aim of achieving coherence, as mentioned in the introduction. The

model of Li and Lee (2005) can be seen as an early and very direct way to ensure

coherence by equating the driving factors, while the more recent approaches typically

combine a specific structure with cointegrating relations, e.g. Dowd et al. (2011).

Generally, cointegrating relations do not guarantee coherence, although in the Lee-

Carter setting the two concepts are closely linked. We will return to this point in

Section 3.4.3.

It can be argued that coherence is too strict a requirement and that models enforc-

ing coherence risk violating the historic pattern of covariation between populations,

see Hunt and Blake (2018). Arguably, it is better to identify cointegrating relations

which restrict the joint forecasts in plausible ways, than to insist on coherence. This

point will be illustrated in the application section.
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3.2.2 The Cairns-Blake-Dowd model

Originally made to accommodate the British pension market, the model of Cairns

et al. (2006) focuses primarily on the post-age 60 mortality curve and the pricing of

immediate life annuities. The model fits the mortality curve by a logistic curve3

logit (qt,x)
∆
= log

(
qt,x

1− qt,x

)
= kt,1 + kt,2(x− x̄), (3.2.9)

where x̄ = 1
N

∑
i xi is the arithmetic mean of the N ages considered and qt,x =

1 − exp(−µt,x) is the probability for an individual aged x at time t to die before

t+ 1. Note that the logit transform is well-defined since q lies between 0 and 1. We

also note that qt,x ≈ µt,x for small µt,x.

Under the CBD model the logit-transformed curve of death probabilities is linear

in age with time-varying parameters. The first index is the level of the line, and a

decreasing trend in kt,1 thus represents an overall improvement in mortality over

time. The second index is the slope of the line, and an increasing trend in kt,2 thus

implies a steepening of the mortality curve. The model is fully identified, since there

are no invariant parameter transformations.

As is customary, we treat the model as a generalized linear model (GLM) within

the binomial family with its canonical logit-link function. In principle, parameters

can also be estimated by maximum likelihood assuming Poisson distributed death

counts, see Currie (2016) for a comparison of the two approaches. The points made

in this paper apply regardless of how parameters are estimated.

Forecasting

Forecasting is performed assuming a bivariate random walk with drift for the two

time-varying indices(
kt,1
kt,2

)
=

(
kt−1,1
kt−1,2

)
+

(
θ1
θ2

)
+ εt, εt ∼ N2 (0,Σ) . (3.2.10)

This projection method entails a dependency structure between the two time-varying

indices by allowing for covariation, but omits the possibility of the indices being

directly affected by the previous value of one another. As for the Lee-Carter model,

the argument for the use of a random walk with drift is that it is often adequate to

describe the data. Of course, if deemed necessary, more complicated ARIMA models

can be used.

In the application section we shall model female and male mortality by two CBD

models with cointegrating parameters. This will give rise to a sort of “logit coherence”

rather than the usual (log) coherence.

3The use of a logistic model as a suitable choice for examining age patterns of human adult
mortality is well established, see e.g. Thatcher (1999).



3.2. MORTALITY MODELLING 61

3.2.3 Identification Invariance

Identification issues arise in many fields of statistics, and mortality modelling is

no exception. The problem arises from the fact that many (mortality) models are

overparametrized such that there exist different sets of parameters yielding the same

fit. From a statistical point of view all these sets are equally good, but to perform

the analysis in practice the researcher has to choose one specific set. Therefore,

constraints are imposed identifying one of the equivalent parameter sets over the

others. The question now arises whether the (arbitrary) choice of constraints influence

the forecast, and more generally the statistical inference.

To illustrate the problem, consider the familiar case of the Lee-Carter model as

introduced above. Let (âx, b̂x, k̂t) denote parameter estimates under the constraints

(3.2.3), and consider the equivalent parameters (ãx, b̃x, k̃t) = (âx− b̂xc, b̂x/d, d[k̂t+ c])
for given c ∈ R and d ∈ R \ {0}. We forecast the time-varying index by the random

walk with drift of (3.2.4). Using the mean difference as estimator for the drift we

have θ̃ = dθ̂, and thereby θ̃b̃x = θ̂b̂x for all x. Since also µ̃T,x = µ̂T,x, it follows from

(3.2.6) that for h ≥ 1

µ̃T+h,x = µ̃T,x exp
(
hθ̃b̃x

)
= µ̂T,x exp

(
hθ̂b̂x

)
= µ̂T+h,x. (3.2.11)

This shows that the forecast obtained by the standard Lee-Carter method is in fact

invariant to the chosen identification scheme.

However, consider now the case where the time-varying index is modelled as the

random walk with drift of (3.2.4), but with a fixed drift term θ = θ0. We then have

µ̃T+h,x = µ̃T,x exp
(
hθ0b̃x

)
= µ̂T,x exp

(
hθ0b̂x/d

)
, (3.2.12)

which only equals µ̂T+h,x when θ0b̂x = 0. Hence, the forecasts will only be the same

if θ0 = 0 (or b̂x = 0 for all x). Mathematically, the problem is that forecasting and

reparametrization are no longer interchangeable operations or, in other words, the

restricted forecasting model has different meaning for different parametrizations. One

might argue that this is a contrived example as one would never consider this model,

but very similar problems arise in cointegrated models where the identification of

meaningful hypotheses is much less obvious.

Despite the ease with which specific problems related to lack of identification can

be identified, it is surprisingly hard to formulate and justify a general principle that

models and inferential procedures must adhere to.4 Indeed, suggested principles often

sound a bit vague: Hunt and Blake (2018) use the term “well-defined” for models

4Part of the problem seems to be that some researchers consider the constraints as an intrinsic
part of the model, and not merely as (arbitrary) mathematical constraints needed for identification.
From this perspective, different constraints imply different models and therefore “naturally” lead
to different forecasts (even though the models are statistically identical in terms of describing the
observed data).
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giving the same projected mortality rates for any set of identifiability constraints,

and Nielsen and Nielsen (2014) talk about “avoiding arbitrariness resulting from

the identification process”. We propose to use the term “identification invariance”

when reparametrization and inference (including forecasting) are interchangeable, cf.

Figure 3.1. We consider identification invariance a fundamental property of a sound

statistical analysis.

Schematically, identification invariance is similar to the classical notion of “para-

metrization invariance”, see e.g. Lindsey (1996). However, where parametrization

invariance requires inferential invariance to all one-to-one reparametrizations, identi-

fication invariance requires only invariance to parameter transformations induced by

different identification constraints. In practice, this amounts to inferential invariance

to a specific set of linear parameter transformations. Note that, since time-varying

parameters are typically modelled by linear time series models, the inference is

generally not invariant to non-linear parameter transformations, i.e. the inference is

generally not fully parametrization invariant.

Mortality
model

Mortality
model

Conclusion/
forecast

Conclusion/
forecast

Inference

Reparametrization

Reparametrization

Inference

Figure 3.1: Illustration of identification invariance whereby the same inferential conclusion
is reached for both the original and the reparameterized model. Here, inference refers to all
aspects of the statistical analysis, e.g., parameter estimation, model selection, hypothesis
testing, forecasting, prediction intervals etc.

3.3 Cointegration Theory

In the following we give a brief introduction to cointegrated vector autoregressive

(VAR) models, including interpretation and testing of hypotheses; unless explicitly

stated otherwise, the exposition relies on Johansen (1995). In the subsequent sections

this framework will be applied to mortality modelling.

A p-dimensional VAR(k)-model is a model of the form

yt = Π1yt−1 + . . .+Πkyt−k +ΦDt + εt, (3.3.1)
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where εt ∼ Np(0,Σ) are i.i.d. errors and Dt contains all deterministic terms such

as constant, trend and dummy variables. The evolution of each variable in the

VAR-model is based on its own lagged values as well as the lagged values of the

other variables in the system. This formulation highlights the short-term dynamics,

while possible long-run relations between the variables are hard to discern. In order

to study long-run relations we introduce the notion of cointegration. First a few

preliminary definitions.

A linear process is defined by yt =
∑∞
i=0 Ciεt−i, where εt are i.i.d. with mean

zero and finite variance and C(z) =
∑∞
i=0 Ciz

i is convergent for |z| < δ for some

δ > 1. An I(0) process is a linear process with the additional requirement that∑∞
i=0 Ci ̸= 0, or such a process with a deterministic trend added.5

The difference operator, ∆, is defined by ∆yt = yt − yt−1. A stochastic process

yt is called integrated of order 1, or I(1), if ∆(yt − E [yt]) is an I(0) process. Loosely

speaking, the stochastic component of an I(1) process behaves like a random walk.

Definition 3.3.1. Let yt be integrated of order 1. We say that yt is cointegrated

with cointegrating vector β ̸= 0 if β′yt − E
[
β′yt

]
admits a stationary distribution.

The cointegrating rank is the number of linearly independent cointegrating vectors,

and the cointegration space is the space spanned by the cointegrating vectors.

3.3.1 The Vector Error Correction Model

We are interested in conditions for the VAR-model to be integrated of order 1. For

this purpose we subtract yt−1 from both sides of (3.3.1) and rearrange terms to

obtain the equivalent vector error correction model (VECM), where the increment is

expressed in terms of differences, lagged differences and the level of the process itself

∆yt = Πyt−1 +

k−1∑
i=1

Γi∆yt−i +ΦDt + εt, (3.3.2a)

Π = (Π1 + . . .+Πk)− I, (3.3.2b)

Γi = − (Πi+1 + . . .+Πk) , i = 1, . . . , k − 1. (3.3.2c)

The behaviour of yt is most easily studied in terms of its characteristic polynomial

given by A(z) = (1− z)I−Πz − (1− z)
∑k−1
i=1 Γiz

i with determinant |A(z)|. If A
has a unit root then Π = −A(1) is singular and the process is non-stationary. In

this case, r = rank(Π) < p and there exist two p× r matrices α and β such that

Π = αβ′. (3.3.3)

This is essentially the requirement for I(1). However, to avoid explosive and seasonal

roots and to ensure invertibility we also need the following technical condition.

5Sometimes a deterministic trend is allowed in the definition of a linear process. Here, however,
we follow the terminology of Johansen (1995) whereby a linear process has mean zero.
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Condition 3.3.2. If |A(z)| = 0, then either |z| > 1 or z = 1. Further, the matrix

α′⊥Γβ⊥ has full rank, where Γ = I −
∑k−1
i=1 Γi and α⊥ and β⊥ are p × (p − r)

matrices spanning the orthogonal complement of span(α) and span(β), respectively.

None of the matrices α, α⊥, β or β⊥ are uniquely defined, but the conditions

and conclusions do not depend on which versions we use. Let Γ(z) = I−
∑k−1
i=1 Γiz

i

whereby Γ(1) = Γ and Γ(L)y0 = y0 −
∑k−1
i=1 Γiy−i, where L is the lag operator. We

can now formulate the celebrated Granger Representation Theorem in a version due

to Hansen (2005).

Theorem 3.3.3. If |A(1)| = 0 and Condition 3.3.2 is satisfied, then yt can be

represented as the sum of a random walk and a stationary process

yt = C

t∑
i=1

(εi +ΦDi) +

∞∑
i=0

C∗i (εt−i +ΦDt−i) +CΓ(L)y0, (3.3.4)

where C = β⊥ (α′⊥Γβ⊥)
−1
α′⊥, and C∗i is defined recursively by

C∗i = (I+Π)C∗i−1 +

k−1∑
j=1

Γj∆C∗i−j , i = 1, 2, . . . ,

with C∗0 = I−C and C∗−1 = . . . = C∗−k+1 = −C. In particular, if r > 0 then yt is a

cointegrated I(1) process with cointegrating vectors β.

Intuitively, the process evolves as a random walk in span(β⊥) while at the same

time it tries to establish the equilibrium relation for β′yt with a force that depends

on the adjustment coefficients α and the equilibrium error β′yt − E
[
β′yt

]
.

The factorization (3.3.3) defines the cointegration space, but the individual coin-

tegrating relations are not unique without further normalization. Johansen (1995)

suggests letting the first part of β be an r-dimensional identity matrix making for a

just-identified normalization and we adopt this approach throughout without further

notification.

3.3.2 Deterministic Terms and Trends

The deterministic term is an important part of the specification of the model

affecting both the trend of yt and the test statistics for cointegration rank. Under

the conditions of Theorem 3.3.3, the process yt has, in general, a trend of the form

CΦ
∑t
i=1 Di +

∑∞
i=0 C

∗
iΦDt−i. Note that we refer to the deterministic part of yt

as a trend, regardless of its order.

In general, the deterministic terms accumulate to a trend one order higher. More

precisely, however, it is only the terms CΦDt that accumulate to a higher order. To
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Table 3.1: Trending behaviour of the VECM for five nested models for the deterministic
term of form (3.3.5). Starting with no restrictions, the models are defined by successively
setting γ1, ρ1, γ0 and ρ0 to zero.

Model Deterministic term Trend in yt E [∆yt] E
[
β′yt

]
H0(r) θ0 + θ1t Quadratic Linear Linear
H∗0 (r) θ0 +αρ1t Linear Constant Linear
H1(r) θ0 Linear Constant Constant
H∗1 (r) αρ0 Constant Zero Constant
H2(r) 0 Zero Zero Zero

illustrate the implication of this in more detail, we consider deterministic terms of

the form

ΦDt = θ0 + θ1t, (3.3.5)

for p-dimensional vectors θ0 and θ1. Following Johansen (1995), we decompose each

θi as θi = α⊥γi +αρi. Since Cα = 0, it follows from the Granger representation

(3.3.4) that only α⊥γ0 + α⊥γ1i enters into the i’th term of the random walk

component. In particular, there is a quadratic trend in the level of process with

coefficient 1
2Cα⊥γ1.

The decomposition of θi gives rise to five nested models defined by restricting the

number of non-zero terms. The models and the trending behaviour they entail are

summarised in Table 3.1.

3.3.3 Cointegration Rank and Parameter Estimation

In some situations, the cointegration rank can be justified on the basis of prior

knowledge. Often, however, the cointegration rank needs to be inferred from the

data. Let H(r) denote the hypothesis that Π = αβ′ for two p× r matrices α and β.

Without further restrictions, this is equivalent to the hypothesis that rank(Π) ≤ r.
This creates a set of nested hypotheses

H(0) ⊂ · · · ⊂ H(r) ⊂ · · · ⊂ H(p).

The cointegration rank can be determined by testing these hypotheses sequentially,

starting from H(0) and stopping when the first acceptance is encountered. The

cointegration rank is r, say, if H(0), . . . ,H(r − 1) are rejected, while H(r) is ac-

cepted. Johansen (1995) derives the likelihood-ratio test, known as the trace test, for

performing these tests. The distribution of the test statistic is non-standard and it

depends on the specification of the deterministic term. Critical values are tabulated

in Section 15.3 of Johansen (1995) for the five models considered in Section 3.3.2.

The testing procedure is complicated by the fact that we might need to infer the
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model for the deterministic term and the cointegration rank simultaneously. We will

return to this point in the application section.

Given the (maximal) cointegration rank and specification of the deterministic

term, the maximum likelihood estimates of the parameters are obtained by reduced

rank regression. For completeness, the estimates and the trace test statistic can be

found in Appendix 3.A.

3.4 Cointegration in Mortality Models

In this section we first discuss the trend models most relevant in a mortality context.

Next, we show how the identification issues of the Lee-Carter model severely limit

the set of testable (cointegration) hypotheses. Finally, we comment on alternative

approaches to cointegration within the Lee-Carter framework.

3.4.1 Linear Trend Models

We restrict our attention to the case of analysing the period effect within a given

parametric mortality model. Assume that kt, consisting of the combined time-varying

indices of (separate) age-period models, can be shown to form an I(1) process. This

is a reasonable assumption, since we expect the period effect to cause at least one of

the time-varying indices (for each population) to accumulate annual improvements

over time and hence to behave like a random walk with drift. In general, the

drift term itself could be time-varying giving rise to trends of all shapes and orders.

Indeed, Arnold and Sherris (2016) find quadratic trends when analysing cause-specific

mortality. However, for the purpose of this exposition we focus on linear trends only,

which are, arguably, also the only type of trends suitable for robust forecasting.

To characterize the relevant models in more detail, let us consider deterministic

terms of the formΦDt = θ0+θ1t, where θi = α⊥γi+αρi for i = 0, 1, cf. Section 3.3.2.

The absence of a quadratic trend implies that γ1 = 0. Hence, in the current context

the largest model of interest is H∗0 (r) of Table 3.1. Under this model, kt has the

representation

kt = τ 0 + τ 1t+C

t∑
i=1

εi +

∞∑
i=0

C∗i εt−i +CΓ(L)k0; (3.4.1)

expressions for the intercept, τ 0, and slope, τ 1, can be found in Hansen (2005). It

can be shown that the cointegrating relations are trend stationary, i.e. they can be

decomposed as a linear trend and a stationary process, ut, as β
′kt = β

′τ 0−ρ1t+ut.
Thus parameters drift further and further apart over time even though they engage

in an equilibrium correcting relationship.

The second model of interest for mortality modelling is H1(r) of Table 3.1. This

model has ρ1 = γ1 = 0, i.e. the previous model with the further restriction that



3.4. COINTEGRATION IN MORTALITY MODELS 67

the cointegrating relations do not trend. The level of the process still possesses a

linear trend. Demographically, the lack of a trend in the cointegrating relations is

appealing, but it cannot be assumed in advance. In the application section we will

use the statistical setup of Johansen (1995) to test for ρ1 = 0.

Technically, it is also possible to test for further model restrictions, i.e. model H∗1 (r)

for absence of a linear trend altogether and model H2(r) for zero mean. However,

neither of these latter models are relevant for modelling mortality data with period

effects.

As described in Section 3.2, applications of the Lee-Carter model and the CBD-model

often employ a simple random walk with drift to describe the time-varying indices.

In the spirit of preserving as much of the marginal structure as possible, the natural

candidate for joint modelling is therefore the VECM with zero lagged differences

and no quadratic trend

∆kt = α
(
β′kt−1 + ρ1t

)
+ θ0 + εt = α

(
β′kt−1 + ρ0 + ρ1t

)
+α⊥γ0 + εt. (3.4.2)

For this model, the linear trend of (3.4.1) is given by τ 1 = Cθ0 − α
(
β′α

)−1
ρ1.

Further, if ρ1 = 0 then τ 1 = Cθ0 and E
[
β′k

]
= −

(
β′α

)−1
β′θ0, and we have

∆kt = αβ
′kt−1 + θ0 + εt = α

(
β′kt−1 − E

[
β′k

])
+ τ 1 + εt. (3.4.3)

Models (3.4.2)–(3.4.3) will be our workhorse models in the application section.

3.4.2 Identification Invariance of Cointegrated Lee–Carter

Models

The Lee-Carter model is the predominant single population mortality model. At first

thought, it therefore seems natural to use the Lee-Carter model as the underlying

model for a joint analysis of related populations. However, it turns out that the

identifiability issues of the Lee-Carter model severely limit its usefulness for this

purpose.

The lack of identifiability of the Lee-Carter model and the consequences for

interpretation and forecasting have also been studied by other authors, see in

particular Nielsen and Nielsen (2014) and Hunt and Blake (2018). In contrast

to these contributions, we here focus on how the identifiability issues restrict the

set of testable hypotheses, i.e. the hypotheses that can form part of a statistical

analysis. More precisely, we are interested in characterizing the identification invariant

cointegration models for the time-varying mortality index of two Lee-Carter models,

i.e. the cointegration models for which forecasting and reparametrization of the

underlying Lee-Carter models are interchangeable, cf. Section 3.2.3.

Let kt = (k1t , k
2
t )
′ denote the vector of mortality indices of two Lee-Carter models

with given identification schemes. Assume that we choose to model this as a VECM
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with a linear trend of class H∗0 (r),

∆kt =

l−1∑
i=1

Γi∆kt−i +α
(
β′kt−1 + ρ1t

)
+ θ0 + εt, εt ∼ N2(0,Σ). (3.4.4)

Now, consider a reparametrization of the underlying Lee-Carter models or, equiva-

lently, different identification schemes. According to (3.2.2) the vector of reparame-

terized mortality indices takes the form k̃t = D(kt+c), where D = diag(d1, d2) with

d1, d2 ∈ R\{0}, and c = (c1, c2)
′ with c1, c2 ∈ R. Applying the same transformation

to (3.4.4) yields

∆k̃t =

l−1∑
i=1

DΓiD
−1∆k̃t−i +Dα

(
β′
(
D−1k̃t−1 − c

)
+ ρ1t

)
+Dθ0 +Dεt (3.4.5)

=

l−1∑
i=1

Γ̃i∆k̃t−i + α̃
(
β̃′k̃t−1 + ρ1t

)
+ θ̃0 + ε̃t, (3.4.6)

where Γ̃i = DΓiD
−1, α̃ = Dα, β̃ = D−1β, θ̃0 = Dθ0 − Dαβ′c, and ε̃t ∼

N2(0,DΣD). Since D and D−1 have full rank, rank
(
αβ′

)
= rank

(
α̃β̃′

)
, and it

follows that (3.4.6) belongs to H∗0 (r) for the same value of r as in (3.4.4). Thus, in

the context of cointegrated Lee-Carter models, H∗0 (r) is identification invariant, cf.

Figure 3.1.

Similar calculations show that the first four model classes of Table 3.1 are all

identification invariant, while the fifth, H2(r), is not (unless r = 0). In other words,

constant and linear trends are preserved by linear transformations of the two indices

being modelled—as long as we allow all other parameters to vary freely.

While it is generally valid to impose different models for the deterministic terms,

e.g. H∗0 (r) or H1(r), for freely varying parameters, it is generally not valid to test

or impose further parameter constraints. Indeed, since D is a diagonal matrix with

an arbitrary, non-zero diagonal and since α̃ = Dα and β̃ = D−1β, constraints on

either α or β will typically not be satisfied by the transformed model. In particular,

the hypothesis of prime interest, β = (1,−1)′, is not testable, i.e. the corresponding

model is not identification invariant. Nor can we test hypotheses on the (relative)

magnitude of the adjustment coefficients. In fact, apart from the cointegration rank,

the only testable hypothesis of some demographic interest is ρ1 = ρ for given ρ. The

ρ1 parameter is identifiable and can be interpreted as a ’divergence’ measure between

(related) populations.

In summary, obeying identification invariance we can infer the cointegration rank

and distinguish between the two types of linear trend models most relevant for

mortality modelling (and also between other less relevant models). However, within a

given model class we can in general not restrict parameters further without violating

identification invariance, i.e. essentially all hypotheses of interest are non-testable.
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Table 3.2: Overview of models for deterministic terms (drift) and hypotheses for pa-
rameter constraints. A check mark indicates that the model/hypothesis is identification
invariant/testable in the context of a VECM for the mortality indices of two Lee-Carter
models, and a minus sign that it is not.

Model Drift Invariant Hypothesis Testable
H0(r) θ0 + θ1t ✓ α = Aψ ÷
H∗0 (r) θ0 +αρ1t ✓ β = Hφ ÷
H1(r) θ0 ✓ θ0 = θ ÷
H∗1 (r) αρ0 ✓ ρ0 = ρ ÷
H2(r) 0 ÷ ρ1 = ρ ✓

The situation is summarized in Table 3.2. For someone interested purely in joint

forecasting of two populations this might not pose a problem. However, if the aim is

to analyse the nature of the joint behaviour in more detail, cointegrated Lee-Carter

models are of limited use.

3.4.3 Alternative Approaches of the Lee–Carter Type

Arguably, the simplest way to avoid the problems due to lack of identifiability of the

Lee-Carter model is to use another model. Indeed, if we base our (joint) analysis

on a fully identifiable mortality model, e.g. the CBD model, all (joint) hypotheses

are well-defined and testable. However, due to the familiarity and widespread use of

the Lee-Carter model some researchers might be reluctant to follow this route. For

that reason, we consider below two alternative approaches to obtain identification

invariant inference within the Lee-Carter framework.

The first approach is to impose further restrictions on the parameters of the

underlying Lee-Carter models, thereby implicitly restricting the set of identification

invariant transformations of the mortality indices. As an example of this approach,

Zhou et al. (2014) assume equality of the age response parameters of two Lee-Carter

models, i.e. bx = b1x = b2x for all x,

logmi
t,x = logµit,x + εit,x = aix + bxk

i
t + εit,x for i = 1, 2. (3.4.7)

This is similar in spirit to the augmented common factor model of Li and Lee

(2005), cf. (3.2.8). Let kt = (k1t , k
2
t )
′ denote the vector of mortality indices for

given identification scheme. Due to the constraint on the b-parameters, different

identification schemes lead to mortality indices of the form k̃t = d(kt + c), with

d ∈ R \ {0}, and c = (c1, c2)
′ with c1, c2 ∈ R. The point to note is that, in contrast

to the situation in Section 3.4.2, the mortality indices are always scaled by the same

constant.

If kt is modelled by the VECM of (3.4.4) then k̃t satisfies (3.4.6) with α̃ = dα, β̃ =

d−1β and θ̃0 = dθ0−dαβ′c. We notice that the transformed adjustment coefficients



70 CHAPTER 3. JARNER & JALLBJØRN (2020)

and long-run relations are proportional to their previous values, hence hypotheses

on the relative magnitude of these parameters are testable, while hypotheses on the

“intercepts” θ0 and ρ0 are still not testable. In particular, β = (1,−1)′, imposed—but

not tested—by Zhou et al. (2014) in their analysis, is in fact a testable hypothesis.

In some sense the model of Zhou et al. (2014) “solves” the identification issue of

separate Lee-Carter models by imposing just enough additional structure to allow

the formulation of well-defined joint hypotheses of interest. However, it comes at

the price of a very restrictive parameter structure. It is unlikely that identical age

response parameters for two separate populations is a reasonable assumption, and in

general the model must be expected to fit data rather poorly. Also, it is a somewhat

indirect way to address the identification issue.6

In the generic mortality modelling setup considered so far one or more time-varying

factors are first extracted from data and then forecasted by a time series model. It is

tacitly assumed that the number of factors is low; the Lee-Carter model, for instance,

uses a single factor to capture the mortality evolution over time.

An alternative approach is to consider the vector of log mortality rates as a

multivariate time series (of high dimension) and model this series directly, i.e.

to model directly the N -dimensional series yt = (logmt,x1
, . . . , logmt,xN

). By

construction, there are no factors and hence no identification issues related to factor

identification, but due to the high dimension the time series models are more complex

and harder to interpret.

Lazar and Denuit (2009) use the cointegration methodology of Section 3.2 to model

yt. In this framework, the Lee-Carter model is a special case with cointegration rank

N −1 corresponding to one common stochastic trend. Lazar and Denuit (2009) focus

on single-population modelling, but the approach extends readily to multi-population

modelling by stacking the y-vectors. The VAR/VECM approach to modelling yt is

also explored in the recent papers by Salhi and Loisel (2017) and Li and Lu (2017).

As mentioned in Section 3.2.1, coherence has received much attention as a desirable

property of mortality forecasts. In the Lee-Carter setting of Section 3.4.2 coherence

corresponds to stationarity of b1xk
1
t − b2xk2t for all x. Note that, cointegrated mortality

indices, i.e. stationarity of β′kt for some β, does not in itself guarantee coherence.

Indeed, for (strict) coherence we must have bx ∝ β for all x, where bx = (b1x,−b2x)′.
In practice, this will never be (strictly) satisfied, unless enforced by design as in

Zhou et al. (2014). In contrast, when modelling yt directly non-diverging rates for

different populations (coherence) or for different ages within the same population

6In Zhou et al. (2014), the stated reason for assuming identical b-parameters is to obtain
non-divergent mortality rates. It is unclear whether the authors realize that this assumption also
ensures identification invariance. Indeed, Hunt and Blake (2018) in their otherwise careful paper
seem to overlook this subtlety in their critique of the model by failing to acknowledge the restricted
set of invariant transformations (the A-matrix of Equation (19) of Section 5 of Hunt and Blake
(2018) ought to have identical, rather than freely varying, diagonal terms).
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can more easily be obtained while preserving model flexibility, see e.g. the model of

Li and Lu (2017).

The VAR/VECM approach to modelling yt directly certainly has its merits as a

flexible method for forecasting capable of capturing the dependency structure across

ages. The approach also provides a useful framework for determining the number

of common stochastic trends, i.e. the dimension of the driving dynamics. However,

due to the high dimension the resulting models are often very complex and hard

to interpret. For the purpose of gaining demographic insights by formulating and

testing hypotheses we find that more parsimonious models with a limited set of

interpretable factors are better suited.

3.5 Applications to UK Mortality Data

In this section we present two applications of cointegration-based mortality models.

The applications focus on the inferential procedure, in particular hypothesis testing

and interpretation of the models, rather than on the resulting forecasts. We use UK

mortality data for males and females retrieved from the Human Mortality Database

(2019).7

The first application is based on the Lee-Carter model and illustrates the care with

which results must be interpreted due to semi-identifiability. The second application

is based on the fully identified CBD-model for which a more detailed analysis is

possible. In both cases, the analysis starts with a visual inspection of the mortality

indices being modelled and tests for non-stationarity.

3.5.1 Lee–Carter Application

The period remaining life expectancy is a useful summary measure for the mortality

conditions of a population at a given point in time. Figure 3.2 shows the period

remaining life expectancy at birth and at age 60 for UK males and females, calculated

using the observed death rates mt,x = Dt,x/Et,x. The most striking feature is the

remarkable increase in life expectancy over the period; an increase also seen in most

other developed countries. Another prominent feature is the degree of similarity

between the life expectancy evolution of the two genders. This prompts the scientific

question of whether the joint behaviour is the result of two random walk-type

processes with similar drift and correlated innovations, or whether the two processes

do in fact engage in a cointegrating relation? As a first attempt at answering

this question, we consider a cointegration analysis of the mortality indices of two

Lee-Carter models.

7Specifically, we use data for United Kingdom with HMD country code GBR NP.
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Figure 3.2: Empirical period remaining life expectancy for UK males and females at birth
(left panel) and at age 60 (right panel) for the period 1930–2016.

From Figure 3.2 we can identify a number of different periods in the life expectancy

evolution. After the steep and erratic initial part, the life expectancy evolution

changes character during the early 1950s and improvements are hereafter smoother.

Around 1970 improvements in male life expectancy pick up speed and the gender gap

begins to narrow. Finally, in the last part of the series, around 2010, improvements

slow down and life expectancy flattens for both sexes.

The choice of data period for the analysis is a compromise between including

as much information as possible versus using only data adequately described by

the models. Balancing these concerns we choose to use the period 1960–2016; a

period so long that it enables us to capture potential equilibrium relations. As

previously advertised we use the Poisson regression version of the Lee-Carter model

with the identification constraints of (3.2.3). The Lee-Carter model is estimated

separately for males and females over the period 1960–2016 and ages 0–100. Figure 3.3

shows the estimated mortality indices (k-index) and the age response parameters

(b-parameters). The mortality indices evolve quite similarly over time, while the age

response parameters are rather different between ages 20–80.

Cointegration Rank and Deterministic Structure

From unit root tests we conclude that k̂�t and k̂
�
t are indeed I(1)-processes (test

results not shown).8 The next objective of the analysis is to determine whether or

not the two indices engage in an equilibrium correcting relationship, i.e. do k̂�t and

k̂
�
t cointegrate?

8Specifically, we use the Augmented Dickey-Fuller test in conjunction with the Phillips-Perron,
see e.g. Said and Dickey (1984) and Phillips and Perron (1988).
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Figure 3.3: Parameters for Lee-Carter models fitted to UK male and female mortality
over the period 1960–2016 and ages 0–100. Left panel shows the mortality index, k̂t, and
right panel shows the age response parameters, b̂x.

To answer this question we employ the VECM of (3.4.2) and test for cointegration

rank and deterministic structure in this model. For given deterministic structure,

the test for cointegration rank is based on Johansen’s trace statistic, cf. (3.A.15).

The results are shown in Table 3.3. Recall that the null hypothesis of at most r

cointegrated relations, rank(Π) ≤ r, is tested against an unrestricted Π. Since the

test for cointegration rank is very dependent on the assumed deterministic structure,

the two must be determined jointly.

We first note that the two models H1(0) and H
∗
0 (0) are identical, since rank(Π) =

0 implies that α is zero. Table 3.3 presents two tests for this model against,

respectively, H1(2) and H
∗
0 (2). Both of these are rejected at the 5%-significance level.

Consequently, we conclude that the system cointegrates and we move on to test the

two cointegration models H1(1) and H
∗
0 (1). Both of these models are accepted and

we therefore take the simpler of these, H1(1), as describing our data

∆kt = αβ
′kt−1 + θ0 + εt = α

(
β′kt−1 − E

[
β′k

])
+ τ 1 + εt, (3.5.1)

where E
[
β′k

]
= −

(
β′α

)−1
β′θ0 and τ 1 = β⊥ (α′⊥β⊥)

−1
α′⊥θ0 are, respectively,

the stationary mean of the cointegrating relation and the trend in the level of the

process, cf. (3.4.3).

In an ordinary cointegration analysis model (3.5.1) would serve as a starting

point for formulating and testing hypotheses of interest on the parameters. However,

as described in Section 3.4.2, in the present context there are no further testable

hypotheses and all there is left is to interpret the model.
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Table 3.3: The trace test for cointegration rank for deterministic terms of class H1 and
H∗

0 . The table shows the likelihood ratio test statistic for test of H(r) in H(2) for r = 0, 1.
Critical values are the 95%-quantiles of the limiting distribution given in Section 15.3 of
Johansen (1995).

Model Cointegrating Deterministic Trace Critical
relations term statistic value

H1(0) 0 θ0 33.95 15.34
H1(1) 1 θ0 1.18 3.84
H∗0 (0) 0 θ0 34.05 25.47
H∗0 (1) 1 θ0 +αρ1t 1.28 12.39

Interpretation of the Cointegration Model

We obtain the following model, where we have used the just-identified normalization

of Section 3.3.1 by which the first element of β is 1,(
∆k�t
∆k

�
t

)
=

(
−0.084
0.018

)(
1 −1.235

)(k�t−1
k
�
t−1

)
+

(
−1.560
−1.526

)
+ εt

=

(
−0.084
0.018

)
(st−1 − 3.056) +

(
−1.817
−1.471

)
+ εt,

where st = β̂′kt = k�t − 1.235k
�
t and the drift term θ0 is decomposed as in

(3.5.1). Parameter estimates are obtained by reduced rank regression as described in

Appendix 3.A.

Note that the adjustment coefficients have opposite signs for males and females

such that the two indices are either pushed together or pushed apart in response to

disequilibrium errors. However, since the female coefficient is much smaller than the

male coefficient, the adjustments are primarily taken by the male index, while the

female index evolves essentially like a random walk.

It is tempting to interpret the fact that the β-coefficients are of the same magnitude

but opposite signs as suggesting that male and female mortality “follow each other

closely”, i.e. as approximate coherence. However, this is not a valid conclusion since

the (relative) magnitude of the β-coefficient has no significance by itself, but is

merely a result of the chosen identification schemes, cf. Section 3.4.2. The proper

conclusion is that forecasted mortalities will be approximately coherent for ages with

b̂
�
x ≈ 1.2b̂�x , and for these ages only. From the right panel of Figure 3.3 we see that

this relation is satisfied for only a small group of ages around age 25 and age 40.

Regarding the cointegrating relation, it follows from (3.5.1) that

st = (1 + β′α)
(
st−1 − E

[
β′k

])
+ E

[
β′k

]
+ ut, (3.5.2)

where ut = β′εt. Thus the cointegrating relation follows an autoregression with
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AR-coefficient of 1+β′α.9 We know from Section 3.4.2 that alternative identification

schemes in the underlying Lee-Carter models lead to a new set of adjustment and

long-run coefficients of the form α̃ = Dα and β̃ = D−1β. Observing that β̃′α̃ = β′α,

it follows that the AR-coefficient is in fact invariant to the identification scheme(s).

We can therefore conclude that the cointegrating relation is always mean-reverting

with an estimated AR-coefficient of 1 + β̂′α̂ = 0.89, implying a strong degree of

mean reversion. Due to non-identifiability no further inference can be drawn about

the nature of the joint behaviour under the cointegrated Lee-Carter model.

3.5.2 Cairns-Blake-Dowd Application

In contrast to the Lee-Carter model, the CBD model uses two, fully identified

factors to describe the mortality evolution of the population under study. In the

following we use the CBD model of Section 3.2.2 as the basis for a four-dimensional

cointegration analyses of UK male and female mortality. The higher dimension opens

for a richer, yet still interpretable, set of relations while factor identifiability enables

the formulation of testable hypotheses.

The CBD model is intended for modelling of pensioners’ mortality only and,

consequently, we apply it to ages 60–100, rather than the full age span. Figure 3.4

shows the two mortality factors of the CBD model estimated separately for UK

males and females over the period 1960–2016. The first factor represents the level of

mortality and the second factor represents the slope of the mortality curve. Both

factors show a clear trend over time. Not surprisingly, the level is generally declining

reflecting an overall decrease in mortality over the past decades for both genders.

We note that the profile of the level factor bears some resemblance to that of the

mortality index of the Lee-Carter model displayed in Figure 3.3. However, in contrast

to the mortality index of the Lee-Carter model the level factor of the CBD model

represents the absolute level of mortality and it is therefore markedly higher for

males than for females. The slope parameter, shown in the right panel of Figure 3.4,

is generally upward trending indicating greater mortality improvements at younger

ages than at older ages. While we observe a somewhat stable difference between

male and female levels of mortality, there appears to be no obvious relation between

the slope parameters for the two genders.

Cointegration Rank and Deterministic Structure

Proceeding as in Section 3.5.1, we first verify that the components of k̂t =

(k̂�t,1, k̂
�
t,1, k̂

�
t,2, k̂

�
t,2)
′ are I(1)-processes (test results not shown).

The next step of the analysis is to determine a suitable VECM for the composite

index in which we can subsequently formulate and test specific hypotheses. We

9Note that, since |A(z)| = |1− z||1− z(1 + β′α)| the first part of Condition 3.3.2 reduces to
|1 + β′α| < 1, i.e. stationarity of (3.5.2).
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Figure 3.4: CBD model fitted to UK male and female mortality. Left panel shows the
mortality level, k̂t,1, and right panel shows the mortality slope, k̂t,2.

employ again the VECM of (3.4.2) and test jointly for cointegration rank and

deterministic structure in this model. Table 3.4 shows the results of Johansen’s trace

test for rank(Π) ≤ r against an unrestricted Π for the two deterministic structures

of relevance, H1 and H∗0 . Figure 3.5 shows the relation between the various models;

note that H1(0) = H∗0 (0) corresponds to a (multivariate) random walk with drift

customarily used for forecasting in the CBD model, cf. Section 3.2.2.

H1(0) ⊂ H1(1) ⊂ H1(2) ⊂ H1(3) ⊂ H1(4)

= ∩ ∩ ∩ ∩
H∗0 (0) ⊂ H∗0 (1) ⊂ H∗0 (2) ⊂ H∗0 (3) ⊂ H∗0 (4)

Figure 3.5: Relation between the I(1)-models considered in Table 3.4.

It can be seen from Table 3.4 that the random walk hypothesis (rank(Π) = 0)

is rejected in both H1(4) and H∗0 (4), and we conclude a cointegration rank of at

least one. The smallest model of rank 1, H1(1), is also rejected, while H1(2) and

H∗0 (1) are both accepted. These two models represent the two smallest acceptable

models, cf. Figure 3.5. Neither of the models are contained in the other, but H∗0 (1) is

arguably the “simpler” model introducing only a single additional trend term while

H1(2) introduces an additional cointegrating relation. Consequently, we adopt H∗0 (1)

as our starting model, i.e. the VECM

∆kt = α
(
β′kt−1 + ρ1t

)
+ θ0 + εt, (3.5.3)

where α and β are four-dimensional vectors.
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Table 3.4: The trace test for cointegration rank for deterministic terms of class H1 and H∗
0 .

The table shows the likelihood ratio test statistic for test of H(r) in H(4) for r = 0, 1, 2, 3.
The critical value is the 95%-quantile of the limiting distribution given in Section 15.3 of
Johansen (1995).

Model Cointegrating Deterministic Trace Critical
relations term statistic value

H1(0) 0 θ0 80.29 47.21
H1(1) 1 θ0 38.87 29.38
H1(2) 2 θ0 12.95 15.34
H1(3) 3 θ0 0.51 3.84
H∗0 (0) 0 θ0 80.31 62.61
H∗0 (1) 1 θ0 +αρ1t 38.89 42.20
H∗0 (2) 2 θ0 +αρ1t 12.96 25.47
H∗0 (3) 3 θ0 +αρ1t 0.52 12.39

Hypothesis Testing and Interpretation

Having established that the system has a cointegration rank of one, we can now

investigate hypotheses on the nature of the equilibrium correcting relation. We are

primarily interested in investigating whether the mortality levels of the two genders

enter the cointegrating relation with coefficients of the same magnitude and opposite

signs, i.e. whether the distance between the level parameters is the quantity entering

the stable relation. In addition, we are also interested in investigating the degree

of dependence between the level and slope parameters which can be formulated as

restrictions on the adjustment coefficients. Other hypotheses of interest could be

formulated, but we restrict ourselves to these two.

We first formulate the hypothesis of main interest, namely that the first two

components of β are of the same magnitude and opposite signs. The last two

components of β are left unrestricted. At the same time we would like to test

for the absence of a linear drift in the cointegrating relation (ρ1 = 0), since this

term muddles the interpretation of the stationary relation. Hence, we consider the

composite hypothesis10

H0 : (β′, ρ1) = (1,−1, φ1, φ2, 0), (3.5.4)

where φ1, φ2 ∈ R are unrestricted parameters. The test statistic for this hypothesis is

χ2(2)-distributed with a value of 0.005 and a critical value of 5.99 at a 5%-significance

10For an in-depth description of this type of test, we refer to Johansen and Juselius (1992).
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level. Hence, we accept hypothesis (3.5.4) and obtain the model
∆k�t,1
∆k

�
t,1

∆k�t,2
∆k

�
t,2

 =


−0.105
−0.042
0.002

0.002




1

−1
21.66

−12.44


′

k�t−1,1
k
�
t−1,1

k�t−1,2
k
�
t−1,2

+


0.1103

0.0368

−0.0015
−0.0024

+ εt. (3.5.5)

The second question of interest is whether the joint behaviour of the level and

slope parameters can be simplified. In particular, whether the adjustment coefficients

for the slope parameters, k�t,2 and k
�
t,2, as well as the female level parameter, k

�
t,1,

are in fact zero, i.e. whether the slope parameters and the female level parameter are

weakly exogenous for the long-run coefficients β. This would imply that while the

slope parameters and the female level parameter influence the long-run relation, the

long-run relation has no influence on them. To test the hypothesis of weak exogeneity

while retaining the established model, we formulate a simultaneous linear restriction

on both the adjustment coefficients α and the long-run coefficients β11

H0 : (α′,β′, ρ1) = (ψ1, 0, 0, 0, 1,−1, φ1, φ2, 0), (3.5.6)

where ψ1, φ1, φ2 ∈ R are unrestricted parameters. The test statistic for this hy-

pothesis is χ2(5)-distributed with a value of 9.54 and a critical value of 11.07 at a

5%-significance level. We conclude that both slope parameters are weakly exogenous

and are therefore not impacted by the long-run relation. We obtain the following

final model
∆k�t,1
∆k

�
t,1

∆k�t,2
∆k

�
t,2

 =


−0.089

0

0

0




1

−1
11.78

−2.12


′

k�t−1,1
k
�
t−1,1

k�t−1,2
k
�
t−1,2

+


0.1061

−0.0138
0.0004

0.0002

+ εt,

=


−0.089

0

0

0

 (st−1 − 1.395) +


−0.0181
−0.0138
0.0004

0.0002

+ εt, (3.5.7)

where st = β̂
′kt = k�t,1 − k

�
t,1 + 11.78k�t,2 − 2.12k

�
t,2 and the drift term is decomposed

in the stationary mean of the cointegrating relation and the trend in the level of

the process, cf. (3.4.3). The cointegrating relation follows an AR-regression of form

(3.5.2) with an AR-coefficient of 1 + β̂′α̂ = 0.91.

The model can be interpreted as a “mixture” model where the original system

is partitioned into a conditional and a marginal system. The marginal system,

11Likelihood ratio tests for composite hypotheses on cointegrating relations are covered in
Johansen (1991).
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consisting of the slope parameters and the female level parameter, evolves as a

trivariate random walk with drift. Conditioned on these parameters, the male

level parameter evolves as the sum of a random walk with drift (and innovations

conditioned on the “marginal” innovations) and an error correction term. The error

correction term seeks to maintain the long-run relation between the level and slope

parameters, but it does so by affecting only the male level parameter.

Implications for Forecasting

Mortality modelling is often performed with the aim of forecasting and cointegration

models are often enforced to ensure coherence. In this paper we wish to promote the

broader use of cointegration as an inferential tool to obtain insights about mortality

factor dynamics. Also, we wish to demonstrate that although cointegration does not

necessarily imply coherence (in the strict sense of Section 3.2.1) it might still lead to

strongly coupled, joint forecasts. Forecasts which might indeed be more plausible

being inferred from data, rather than imposed. In this section we illustrate these

points for the model (3.5.7) obtained above.

For forecasting purposes, it is useful to rewrite the model on VAR-form as

kt = Π1kt−1 + θ0 + εt, εt ∼ N4 (0,Σ) , (3.5.8)

where Π1 = I + αβ′, cf. (3.3.1). From this we can readily generate stochastic

forecasts, and we also immediately have the forecasting distribution from which the

mean forecast and confidence intervals can be derived,

kT+h|kT ∼ N

(
Πh

1kT +

h−1∑
i=0

Πi
1θ0,

h−1∑
i=0

Πi
1Σ(Πi

1)
′

)
, (3.5.9)

where h ≥ 1 is the horizon and kT = k̂T is the last value of the estimated indices.

Equation (3.5.9) is a general result valid for all VAR(1)-models with constant drift.

This is useful for numerical computations, but the mean and variance structures are

not easily discerned. Using the cointegrating relations it is possible to obtain more

revealing expressions for the model at hand.

First, let B = α
(
β′α

)−1
β′ and C = β⊥ (α′⊥β⊥)

−1
α′⊥ and notice that I = C+B,

cf. Chapter 3 of Johansen (1995). Next, observe that Π1 has eigenvalues 1 and

λ = 1 + β′α with corresponding eigenspaces span(β⊥) and span(α), respectively.

Hence, for v ∈ R4 and i ≥ 0,

Πi
1v = Πi

1 (C+B)v = Πi
1 (Cv +Bv) = Cv + λiBv, (3.5.10)

since Cv ∈ span(β⊥) and Bv ∈ span(α). In words, Π1 acts on v by leaving intact

its β⊥-component, while shrinking its α-component by a factor of λ (< 1).
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Using (3.5.10) and the formula for the h first terms of a geometric series
∑h−1
i=0 λ

i =

(1 − λh)/(1 − λ), we find the following expression for the mean of the forecasting

distribution

Πh
1kT +

h−1∑
i=0

Πi
1θ0 = CkT + λhBkT +Cθ0h+ (1− λ)−1(1− λh)Bθ0

= τ 0 + τ 1h+ λhα(β′α)−1
[
β′kT − E(β′k)

]
, (3.5.11)

where τ 0 = CkT +α(β′α)−1E(β′k), τ 1 = Cθ0 and E(β′k) = −(β′α)−1β′θ0. We

see that asymptotically the mean of the process behaves like a random walk with a

drift term that preserves the cointegrating relation. The last term of (3.5.11) shows

how the initial disequilibrium error decays exponentially to zero. This term is not

present in the Granger representation of Theorem 3.3.3, since there we assume that

β′kT is distributed according to its stationary distribution, while in (3.5.11) we

condition on the entire vector kT .
12

For the variance of the forecasting distribution, it can be shown that

lim
h→∞

1

h

h−1∑
i=0

Πi
1Σ(Πi

1)
′ = CΣC′, (3.5.12)

see pp. 68–69 of Johansen (1995). Thus, asymptotically the variance of the process

accumulates linearly, with the variance from the random walk component on span(β⊥)

dominating the total variability.

To give a more intuitive understanding of the role of cointegration, we conclude with

a numerical example where we compare the (joint) forecast from the cointegration

model (3.5.7) with separate, gender-specific forecasts based on the bivariate random

walk model of Section 3.2.2. We compare the forecasted cohort remaining life

expectancy as it depends on the projected mortality surface over a long horizon and

it is therefore well suited to capture differences in dependency structures over time.

The two models describe and project the estimated CBD-parameters of Figure 3.4

differently. However, the models have similar deterministic structures and we

therefore expect similar mean forecasts. This is confirmed by Figure 3.6 which shows

the forecasting distributions of the cohort remaining life expectancy for a 60-year-old

Briton based on 100,000 simulations. The female distributions align perfectly since

the cointegration model (3.5.7) in fact results in a random walk forecast as well.

The male distribution is shifted slightly towards its female counterpart in the case

of the cointegrated model. This is the result of the male projection reacting to the

perceived “disequilibrium”.

12When kt has the form (3.5.8) Theorem 3.3.3 reads (in terms of expected value) E [kT+h] =

CkT +C
∑h

i=1 θ0+α (β′α)−1 ∑∞
i=0 (I +αβ′)i β′θ0 = CkT +Cθ0h−α (β′α)−1 (β′α)−1 β′θ0 =

τ0 + τ1h, i.e. (3.5.11) without the exponentially decaying error-correction term.
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Figure 3.6: Forecasting distributions of the cohort remaining life expectancy for the
random walk and the cointegration model based on 100,000 simulations. Left panel shows
the gender-specific life expectancy, ec60(2017), and the right panel shows the life expectancy
difference (spread) between females and males.

As the theoretical analysis showed, the cointegration model generally behaves

asymptotically like (coupled) random walks. Therefore, the marginal model for each

sex is (at least asymptotically) close to the corresponding random walk model, both

in terms of deterministic and stochastic behaviour. The dependency structure of the

two models is, however, very different. By construction, the random walk model

yields independent forecasts for men and women, while the cointegration model yields

highly dependent forecasts. This implies a much more narrow distribution for the

difference in life expectancy between men and women under the cointegration model

than under the random walk model, as illustrated in the right panel of Figure 3.6.

In summary, the cointegration model yields forecasts that are similar to those

obtained from the simpler random walk model for each sex, but with a more

plausible dependency structure. The cross-gender dependency is achieved by a single

cointegrating relation derived from data. The resulting forecasts are well-behaved

and empirically justified, but they are not coherent (in the strict mathematical

sense). This indicates that the current definition of coherence might be too strict

and too specific a requirement, and that other types of “coherence” might be equally

good—or even better—when judging the quality of joint forecasts.

3.6 Concluding Remarks

In this paper we have discussed the interlinked concepts of identifiability, coherence

and cointegration in the context of multi-population mortality modelling. We have

made the point that cointegration has an important role to play as an inferential tool

to obtain insights into the joint dynamics of mortality factors. This role goes beyond
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the typical usage of cointegration as merely a tool to obtain coherent forecasts –

defined as forecasts for which the relative age-specific mortality rates converge over

time.13

Since its introduction in Li and Lee (2005), the concept of coherence has served as

the gold standard for joint forecasts of related populations, and many models have

been designed with the explicit goal of achieving coherence. At first sight, coherence

seems like a reasonable property, but on further inspection it appears somewhat

arbitrary and specifically tailored to models of the Lee-Carter type with log-linear

modelling of mortality rates. Joint forecasts based on other model types, e.g. logistic,

can produce equally plausible dependency structures and thus be equally “coherent”,

even if they lack relative convergence. In our view, insisting on coherence is not a

suitable starting point, nor a reasonable restriction, for a joint analysis and might in

fact produce forecasts that are at odds with historic data.

In this paper we have focused on two types of linear trend models suitable for

analysing the period effect of age-period mortality models, and we have shown how

to interpret these models by use of the Granger decomposition. Cointegration is

a technical field, and the analysis and interpretation of models and hypotheses

are not straightforward. In many mortality models, e.g. Lee-Carter type models,

the factor(s) are only semi-identifiable in which case additional difficulties (and

pitfalls) arise. From a statistical point of view, it is in general meaningless to test,

or impose restrictions, on the long-run coefficients in the context of semi-identifiable

models. In contrast, fully identified models give access to the full inferential power of

cointegration and in our opinion this is a strong argument in favour of these models

if the aim is to gain subject matter insights.
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3.A Maximum Likelihood Estimation of the VECM

Consider the VAR(k) model in VECM form with Π = αβ′ for p× r matrices α and

β,

∆yt =

k−1∑
i=1

Γi∆yt−i +αβ
′yt−1 +ΦDt + εt, (3.A.1)

where εt ∼ Np(0,Σ) and independent. Based on data for t = 1, ..., T , maximum

likelihood estimates of the freely varying parameters (α,β,Γ1, ...Γk−1,Φ,Σ) can be

13Whether the goal of (statistical) models is to gain insights or to forecast is the object of a
long-standing, and still highly relevant, debate, see e.g. Breiman (2001) and Shmueli (2010).
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obtained by reduced rank regression. Following Juselius (2006), we introduce the

shorthand notation

Z0t = ∆yt, (3.A.2)

Z1t = yt−1, (3.A.3)

Z2t =
[
∆y′t−1, ...,∆y′t−k+1,D

′
t

]
, (3.A.4)

and write (3.A.1) on the form

Z0t = αβ
′Z1t +ΨZ2t + εt, (3.A.5)

where Ψ = [Γ1, ...,Γk−1,Φ]. Define the product moment matrices

Mij = T−1
T∑
t=1

ZitZ
′
jt, i, j = 0, 1, 2, (3.A.6)

and the sample-covariance matrices

Sij =M ij −M i2M
−1
22M2j , i, j = 0, 1. (3.A.7)

The maximum likelihood estimator of β is found by solving the eigenvalue problem

|λS11 − S10S
−1
00 S01| = 0, (3.A.8)

for eigenvalues 1 > λ̂1 > · · · > λ̂p > 0 with associated eigenvectors v̂1, ..., v̂p that

satisfy

λ̂iS11v̂i = S10S
−1
00 S01, i = 1, ..., p, (3.A.9)

V̂ ′S11V̂ = I, (3.A.10)

where V̂ = (v̂1, ..., v̂p). The cointegrating relations β̂ are given by the first r

eigenvectors

β̂ = (v̂1, ..., v̂r). (3.A.11)

The remaining parameters are estimated as

α̂(β) = S01β(β
′S11β)

−1, (3.A.12)

Σ̂(α,β) = S00 −α(β′S11β)α
′, (3.A.13)

Ψ̂(α,β) =M02M
−1
22 −αβ

′M12M
−1
22 , (3.A.14)

with β = β̂ and α = α̂(β̂).
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Trace Statistic for Test of Cointegration Rank

Recall that H(r) denotes the hypothesis that rank(Π) ≤ r, or equivalently that Π

has at most r non-zero eigenvalues. The likelihood ratio test statistic for H(r) in

H(p), known as the trace statistic, is given by

LRtrace(r) = −T
p∑

i=r+1

log(1− λ̂i), (3.A.15)

where λ̂i are the eigenvalues found by solving (3.A.8). The asymptotic distribution of

the trace statistic depends on the deterministic terms. Critical values are tabulated

in Section 15.3 of Johansen (1995) for the linear models in Section 3.3.2. Intuitively,

if rank(Π) = r then LRtrace(r) will be small, since λ̂r+1, . . . , λ̂p will all be close to

zero. Conversely, the test statistic will be large if rank(Π) > r, since at least λ̂r+1

will deviate from zero.



Chapter 4

Sex Differential Dynamics in Coherent

Mortality Models

This chapter contains the manuscript Jallbjørn and Jarner (2022).

Abstract

The main purpose of coherent mortality models is to produce plausible,

joint forecasts for related populations avoiding, e.g., crossing or diverging

mortality trajectories; however, the coherence assumption is very restrictive

and it enforces trends that may be at odds with data. In this paper we

focus on coherent, two-sex mortality models and we prove, under suitable

conditions, that the coherence assumption implies sex gap unimodality,

i.e., we prove that the difference in life expectancy between women and

men will first increase and then decrease. Moreover, we demonstrate that,

in the model, the sex gap typically peaks when female life expectancy

is between 30 to 50 years. This explains why coherent mortality models

predict narrowing sex gaps for essentially all Western European countries

and all jump-off years since the 1950s, despite the fact that the actual sex

gap was widening until the 1980s. In light of these findings, we discuss

the current role of coherence as the gold standard for multi-population

mortality models.

JEL classification: C32, J11.

Keywords: Life expectancy, Sex differential, Sex gap, Coherence, Mortality mod-

elling, Projection, Forecasting.
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4.1 Introduction

The aim of coherent multi-population mortality models is to forecast the mortality

of related populations preserving the structural differences observed in the past,

e.g., preserving differences between countries, regional differences within a country,

or higher mortality for men than for women. The idea is to prevent divergence or

implausible crossings of mortality trajectories that can arise from forecasting each

population individually. The concept of coherence was introduced by Li and Lee

(2005), as an extension to the popular Lee-Carter model (Lee and Carter, 1992),

and later formalized by Hyndman et al. (2013). Since then a number of coherent

models have been proposed, both within the Lee-Carter framework (Li and Hardy,

2011; Li, 2013; Zhou et al., 2014; Kleinow, 2015), with added cohort effects (Jarner

and Kryger, 2011; Cairns et al., 2011b; Börger and Aleksic, 2014), and based on

the functional data approach (Hyndman et al., 2013; Shang and Hyndman, 2017).

Today, coherence still serves as the gold standard for multi-population mortality

models.

Technically, coherence means that the ratio of age-specific mortality rates of

the populations being forecasted converges (to finite, age-specific constants). This

requirement ties the forecasts together and it ensures that differences in aggregate

characteristics, e.g., survival probabilities and life expectancies, remain bounded as

desired. The flip-side, however, is that converging mortality sex ratios may not be

supported by data and enforcing it can lead to unrealistic continuations of historic

trends despite the intention, see Hunt and Blake (2018) and Jarner and Jallbjørn

(2020). In this paper we investigate and exemplify the implications of coherence in

two-sex mortality models, in particular, the implications for the dynamics of the life

expectancy difference between the sexes.

The sex differential in life expectancy is a key statistic for summarizing and

communicating discrepancies in sex-specific mortality curves. The differential has

varied considerably over time, although its general shape has been fairly consistent

from country to country. In the Western world, the gap has the shape of a (unimodal)

hill; the differential widened substantially in favor of women throughout most of the

20th century, but the trend reversed around the 1980s and the gap has continued to

narrow since then (Trovato and Lalu, 1996; Glei and Horiuchi, 2007).

Studies have sought to explain the observed trends in the sex gap through changes

in behavioral, socioeconomic, and health factors, for example, smoking and drinking

habits (Retherford, 1972; Mäkelä, 1998; Preston and Wang, 2006), labor market

participation (Pampel and Zimmer, 1989; Trovato, 2005), risk behavior (Waldron,

1983), and cause-of-death contributions (Pampel, 2003; Trovato and Lalu, 2007;

Booth, 2016). The rationale being that changes in external risk factors explain

changes in mortality sex ratios, which in turn explain trends in the life expectancy
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differential. This common-sense reasoning assumes that changing mortality sex ratios

is the main driver of the sex gap, both when it increases and when it decreases.

However, demographic analyses have challenged this assumption. In particular, Glei

and Horiuchi (2007) and Cui et al. (2019) show that while the widening sex gap was

indeed caused by changing mortality sex ratios, the narrowing of the sex gap was

primarily caused by general mortality improvements for both sexes in combination

with heterogeneity in the death distributions. In simpler terms, the expanding

sex gap in the Western world was caused primarily by female mortality improving

faster than male mortality (i.e., changing mortality sex ratios), while the subsequent

narrowing of the gap was caused primarily by improvements in mortality for both

sexes, with women retaining their relative advantage (i.e., improvements under stable

mortality sex ratios).

In this paper, we demonstrate that coherent two-sex models generally imply

unimodal sex gap dynamics. At first sight, this might seem as an attractive feature

given that the sex gap in the Western world has also been unimodal, as described

above. It turns out, however, that in practice the forecasts are almost always on

the declining part of the sex gap trajectory. This in turn implies that coherent

models are ill-suited to forecast the mortality in periods with increasing sex gaps.

Coincidentally, the concept of coherence was introduced after a prolonged period of

narrowing sex gaps and the continuation of this trend was seen as an argument in

favor of coherent models, see Hyndman et al. (2013). That coherent models produce

sensible forecasts only in periods with narrowing sex gaps does however question

the status of coherence as a universally desirable feature in multi-population models.

We will return to this point towards the end of the paper.

The rest of the paper is organized as follows. First, we illustrate the evolution

of the sex gap in Western Europe since the 1950s and we survey the existing sex

gap decomposition methods, formalizing the ratio and level effects responsible for

the widening and the narrowing of the gap respectively. Second, we present our

main mathematical result showing sex gap unimodality in (strongly) coherent models

under certain conditions; we discuss the intuition behind the conditions and show by

example when multi-modality can occur. Third, we analyze a dynamic Gompertz

model as a simple example of a coherent model satisfying the conditions; we compute

the typical sex gap trajectories that can arise under this model and we use this to

explain why the forecasted sex gap will almost always be narrowing. Fourth, we apply

the coherent models of Li and Lee (2005) and Hyndman et al. (2013) to Western

European countries at selected jump-off years during the period with expanding

sex gaps; with reference to the mathematical results, we discuss why the majority

of these forecasts predict narrowing gaps. Finally, we end with some concluding

remarks.
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4.1.1 Data and Notation

Data is obtained from the Human Mortality Database (2022) and consists of death

counts, D(x, t), and central exposure-to-risk estimates, E(x, t), on Lexis A-sets, that

is, age-period cells of the form [x, x+ 1)× [t, t+ 1) for integer ages x ∈ {0, . . . , 110}
and calendar years t ∈ {1950, . . . , 2020} for countries in Western Europe. The

empirical death rate is estimated as

m(x, t) = D(x, t)/E(x, t). (4.1.1)

Death rates for Western Europe are obtained by pooling death and exposure counts

across individual countries. Throughout, (period) life expectancies are calculated by

numerical integration whenever a continuous mortality curve is available, and under

the assumption of piecewise constant mortality, whenever the mortality curve is only

available at integer ages. That is,

e(x, t) =
1

S(x, t)

∫ ω

x

S(y, t) dy =

∫ ω

x

e−
∫ y
x
µ(z,t) dz dy =

ω−1∑
i=x

1− e−µ(i,t)

µ(i, t)
e−

∑i−1
j=x µ(j,t),

(4.1.2)

where S(x, t) = exp(−
∫ x
0
µ(y, t) dy) is the (period) survival function, µ(x, t) the

force of mortality at age x and time t, and ω ∈ (0,∞) the age at truncation. Note

that ω is not necessarily the maximum attainable age, and we do not assume that

µ(x) =∞ for x > ω. We return to the role of the truncation age later in the paper.

The last equality in Equation (4.1.2) assumes piecewise constant mortality, a full

derivation is given in Appendix 4.C.

4.2 Changes in Mortality, Life expectancy and

Sex Differentials

In this section, we briefly survey the existing methods for decomposing changes in

life expectancy and the sex differential. This provides the basis for the subsequent

treatment of sex differentials in coherent mortality models.

4.2.1 Decomposing Changes in Life Expectancy

There are two main approaches for decomposing changes in life expectancy into

constituent parts. The first approach, pioneered by Pollard (1982) and Arriaga

(1984), focuses on the effect of changing mortality from one age-specific schedule to

another, and is typically used to assess how different age groups contribute in driving

life expectancy progress between two distinct points in time. The second approach,

popularized by Keyfitz (1977a), examines the effect of a local change to the mortality

curve by quantifying how various age-specific improvements in mortality,

ρ(x, t) := − µ̇(x, t)
µ(x, t)

= − ∂

∂t
logµ(x, t), (4.2.1)
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translate into changes in life expectancy. In (4.2.1) and throughout, a dot over a

function is used to denote its derivative with respect to time as in Vaupel and Romo

(2003).

Analyzing the effects of local change have been instrumental for understanding the

linkage between the age pattern of mortality and the trends in e(0, t) observed in data.

Indeed, studies have shown that the dispersion of the life table death distribution is

a main determinant of the pace at which life expectancy improves (Keyfitz, 1977a;

Vaupel, 1986; Goldman and Lord, 1986).

The average number of life-years lost due to death (lifespan disparity) is given by

e†(t) =

∫ ω

0

w(x, t) dx, (4.2.2)

where w(x, t) = µ(x, t)S(x, t)e(x, t) is the (life table) probability of dying at age x

times the remaining life expectancy at that age. Lifespan disparity, e†, is a dispersion

measure, i.e., it quantifies the effect of age of death being distributed across ages.

At one extreme, if e† is zero then everyone dies at the same age. Conversely, if e†

is large then the population experiences a high number of premature deaths and

large gains in e(0, t) can be made by reducing mortality. Improvements among the

young are particularly important as more life years are lost upon death at these ages.

This relation was formalized by Keyfitz (1977a) who showed that if the same rate of

mortality improvement, ρ(t), applies to all ages, then the change in life expectancy

can be expressed as ė(0, t) = ρ(t)e†(t). The absolute change in e(0, t) can thus be

interpreted as a product of the proportion of deaths averted (ρ) and the average

number of life-years gained (e†) by those who now survive.

Vaupel and Romo (2003) generalized Keyfitz’s formula to the case of age-dependent

improvement rates, and suggested that a change in life expectancy at birth be

decomposed into two components

ė(0, t) =

∫ ω

0

ρ(x, t)w(x, t) dx = ρ̄(t)e†(t) + Cov(ρ, e), (4.2.3)

where the first term captures the main effect of improvement, while the second term

arises due to heterogeneity in ρ(x, t) at different ages. In (4.2.3), ρ̄ denotes the

average rate of improvement and Cov(ρ, e) is the covariance between improvement

rates and life expectancy, see Vaupel and Romo (2003) for details. Equation (4.2.3) is

often taken as the basis for deriving the dynamics of life expectancy sex differentials.

4.2.2 The Rise and Fall of Sex Differentials in Western Europe

The difference in life expectancy at birth between females and males in a given

population (the sex gap) is defined as

θ(t) = ef (0, t)− em(0, t) =

∫ ω

0

e−
∫ x
0
µf (y,t) dy dx−

∫ ω

0

e−
∫ x
0
µm(y,t) dy dx, (4.2.4)



90 CHAPTER 4. JALLBJØRN & JARNER (2022)

where the subscripts f and m denote female and male quantities, respectively. In

applications we might be interested also in (remaining) life expectancy and sex

differential at other ages than 0; all formulas apply, mutatis mutandis, for a general

age, but for ease of notation we develop the theory for age 0 only.

Figure 4.1 shows the evolution of the sex gap over time since 1950 in Western

Europe. The overall pattern is the same across all countries with the gap being

shaped as a countryside hill. That is, the gap initially widened, but has since fallen

into a decline with differentials currently around 3–6 years. The timing of the turning

point varies by country, occurring first in the United Kingdom circa 1970 and lastly

in Spain towards the end of the 1990s.
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Austria Belgium Denmark Finland France Iceland
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Western Europe, 1950−2020
Sex differential in life expectancy at birth

Figure 4.1: Life expectancy sex gap across Western Europe (black dots) with a fitted
LOESS curve superimposed (blue line).

The rise and fall of sex differentials observed in the data has recently been studied

using demographic decompositions. The principal method of Glei and Horiuchi

(2007) separates change in θ into effects due to changing mortality ratios and effects

due to changing mortality levels, namely

θ̇(t) =

∫ ω

0

wm(x, t) + wf (x, t)

2

ċ(x, t)

c(x, t)
dx+

∫ ω

0

[wm(x, t)− wf (x, t)]
ζ̇(x, t)

ζ(x, t)
dx,

(4.2.5)

where c(x, t) = µm(x, t)/µf (x, t) is the mortality sex ratio, ζ(x, t) =
√
µm(x, t)µf (x, t)

the geometric average of the two mortality rates, and, wf and wm are as in
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Equation (4.2.2) for females and males, respectively. Note that ċ(x, t)/c(x, t) =
∂
∂t log c(x, t) = ρf (x, t) − ρm(x, t), and ζ̇(x, t)/ζ(x, t) = ∂

∂t log ζ(x, t) = −[ρf (x, t) +
ρm(x, t)]/2. It follows that the ratio effect is positive when ρf > ρm, while the sign

of the level effect depends on the relative size of mortality dispersion for the two

sexes (as measured by wf and wm); thus, the two effects can work either in the same

direction, or against each other.

Using (4.2.5) , Glei and Horiuchi (2007) show that the initial widening of θ seen

in Figure 4.1 is caused primarily by women experiencing comparatively larger rates

of mortality improvements than men (ρf > ρm), while the subsequent narrowing

is largely attributable to differential dispersion between the sexes (wm > wf ) in

combination with general improvements. These results are echoed by Cui et al.

(2019), who use (4.2.3) to separate θ̇ into three components of change through which

they obtain conditions for the sex gap to be widening, narrowing, or at a turning

point.

Pollard’s Paradox

Glei and Horiuchi (2007) and Cui et al. (2019) both stress that differential dispersion

plays a pivotal role in determining changes in θ. In fact, differential dispersion

may give rise to somewhat counter-intuitive changes. Pollard (1982), for example,

demonstrated that two populations may experience the same absolute change in

mortality, but, at the same time, a widening life expectancy differential. The

argument is as follows. For i ∈ {f,m}, consider an absolute decrease in mortality at

all ages, that is, µ̃i(x) = µi(x)− ε for some ε > 0. Let S̃i(x) = Si(x)e
εx denote the

new probability of surviving to age x. Assuming µf (x) < µm(x) for all x, the new

life expectancy differential is then larger than before,

θ =

∫ ω

0

[Sf (x)− Sm(x)] dx <

∫ ω

0

[Sf (x)− Sm(x)] eεx dx = θ(ε, ε), (4.2.6)

where θ(εf , εm) denotes the life expectancy differential when female mortality is

decreased by εf and male mortality by εm. If we subsequently increase female

mortality slightly, we obtain a situation with 0 < εf < ε and θ < θ(εf , ε), i.e., a

narrowing mortality differential with a widening life expectancy differential. This

phenomenon is sometimes referred to as Pollard’s paradox.

In a similar fashion we can argue that a narrowing life expectancy differential does

not guarantee narrowing mortality ratios. For instance, taking outset in Keyfitz’s

formula, when the rate of improvement is the same at all ages, we have

θ̇(t) = ρf (t)e
†
f (t)− ρm(t)e†m(t). (4.2.7)

Suppose e†m(t) > e†f (t), and let k = e†m(t)/e
†
f (t) > 1. If ρm(t) < ρf (t) < kρm(t),

then θ̇(t) < 0, even though ρm(t) < ρf (t). This situation could occur if female life
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expectancy is close to ω in which case e†f (t) is small, but male life expectancy is

not in which case e†m(t) is comparatively larger. In this scenario female mortality

can improve at a faster pace than male mortality, but because males benefit from

the improvements across a larger span of ages, they gain life expectancy faster than

females. Generally, constant mortality ratios can occur together with both increasing

and decreasing life expectancy differentials. Therefore, on its own, a narrowing life

expectancy differential cannot be interpreted as male mortality rates “catching-up”

to female mortality rates.

4.3 Sex Differentials in Coherent Mortality Models

In this section, we present our main mathematical result about sex gap unimodality

under coherence. Since coherence implies that the modeled mortality schedules

evolve in parallel, it is clear that the forecasted life expectancies approach the same

maximal age, or age of truncation, when time approaches infinity. Likewise, it is

clear that if we backcast, i.e., “run the model backwards”, both mortality schedules

will degenerate and the life expectancies converge to zero. Hence, in both limits the

sex gap converges to zero. The question is, what happens in between these limits? It

might appear obvious that the sex gap will first increase and then decrease, i.e., be

unimodal. However, in full generality, this is not true; assuming only coherence, the

sex gap can in general exhibit an arbitrary number of modalities. The condition we

provide indicates that the mortality schedules have to have the same “shape”, in a

sense to be made precise later, to guarantee unimodality of the sex gap. Although the

mathematical result may not cover most coherent mortality models used in practice,

the implications of the result in terms of the location of the peak seems to be valid

in much greater generality than proven. The result thereby provides an insight as to

why coherent mortality models almost always forecast closing sex gaps.

4.3.1 Coherent Mortality Modeling

In demographic applications it is often required to make forecasts of related pop-

ulations, e.g., Western, low-mortality countries, or males and females in a given

population. Separate forecasting of even very similar populations runs the risk

of exaggerating short-term differences leading to diverging projections, but such

outcomes seem implausible if the populations have evolved in parallel in the past.

For instance, in the case of females and males, we expect the mortality of both

groups to keep improving, but we also expect shorter life spans of men relative to

women to persist despite converging social and lifestyle factors (Kalben, 2000; Li and

Lee, 2005; Zarulli et al., 2018; Jarner and Jallbjørn, 2020). The intuitively appealing

property that forecasts of related populations should “stay together” is formalized

by the concept of coherence and its use is often motivated by a desire for preserving

historic relationships.
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Box 4.1. On the definition of coherence

The literature is marked by some confusion regarding the precise, mathematical

definition of coherence. Scholars seem to agree on the property as one ensuring

non-diverging forecasts, but one can find contradictory definitions depending on

the context in which the concept is used. In particular, it is often unclear whether

coherence is a property concerning deterministic or stochastic forecasts, especially

when authors define coherence as a property related to the mean forecast but

apply the concept in a stochastic setting. In the original paper by Li and Lee

(2005), coherence was directed at deterministic forecasts, namely “to avoid long-run

divergence in mean mortality forecasts” (p. 577) by “imposing shared rates of change

by age” (p. 575). The definition given by Hyndman et al. (2013) is often quoted as

the one formalizing coherence and labels “mortality forecasts as coherent when the

forecast age-specific ratios of death rates for any two subpopulations converge to a

set of appropriate constants” (p. 262). This definition, however, seems inappropriate

for stochastic models. The proper, mathematical definition of coherence in the spirit

of Hyndman et al. (2013) would be to label forecasts as coherent if the age-specific

mortality ratio converges to a stationary distribution π, that is,

µ1(x, t)/µ2(x, t)
d−→ πx, for each age x.

In this paper, however, we use the usual deterministic definition given in (4.3.1).

The notion of coherence was introduced by Li and Lee (2005) and later formalized

by Hyndman et al. (2013). Given a model for the mortality of two populations,

µi(x, t), we let µ̄i(x, t) denote the forecast for population i ∈ {1, 2}. The distinction

is, that µi is typically a stochastic process, while µ̄i is a deterministic forecast, e.g.,

obtained as the median projection of µi. The mortality forecasts are said to be

coherent if their ratio converges to positive, finite, age-specific constants c(x), that is

µ̄1(x, t)

µ̄2(x, t)
−−−→
t→∞

c(x), for each age x. (4.3.1)

Forecasts for a group of populations are coherent, if the forecasts are pairwise

coherent.

The model proposed by Li and Lee (2005), namely the augmented common-factor

model or colloquially the Li-Lee model, models the observed death rate in population

i as

logmi(x, t) = logµi(x, t) + εx,t,i = αx,i +BxKt + βx,iκt,i + εx,t,i, (4.3.2)

where Kt and κt,i are stochastic processes modeling common and population-specific

secular trends, respectively, and εx,t,i is the observation error, i.e., the difference

between the underlying mortality rates, µi(x, t), and the observed death rates,



94 CHAPTER 4. JALLBJØRN & JARNER (2022)

mi(x, t). Median forecasts are obtained by inserting the estimates for the age-specific

loadings, α̂x,i, B̂x and β̂x,i, and turning off the error terms, i.e., by

log µ̄i(x, t) = α̂x,i + B̂xK̄t + β̂x,iκ̄t,i, (4.3.3)

where K̄t and κ̄t,i denote median forecasts of the corresponding processes. The

model is coherent (i.e., it produces coherent forecasts) when the κt,i’s are modeled as

stationary, zero-mean processes, e.g., AR(1)-processes. This assumption ensures that

each κ̄t,i converges to zero, implying that asymptotically all population mortalities

are subject to the same age-specific rates of improvements, which is the content of

(4.3.1). The Li-Lee model is an archetypical coherent mortality model, and we recall

it here to remind the reader of the type of models that we are considering. We return

to this model in Section 4.5.

For the rest of the paper we focus on coherent, two-sex mortality models. Of

course, mathematically, it makes no difference whether the mortalities are interpreted

as sex-specific or not, but with the applications in mind and for ease of presentation,

from now on we phrase everything in terms of female and male mortality.

4.3.2 Example: Sex Gap Unimodality for Truncated

Exponential Distributions

To gain some intuition for the problem and method of proof, we start with a

simple example in which the calculations can be made explicit. Assume female

and male mortality are given by µf (x, t) = µ/t and µm(x, t) = cµ/t, respectively,

for 0 ≤ x ≤ ω < ∞ and t ∈ (0,∞), where µ > 0 and c > 1 are given constants.

Hence, the period life times are distributed as truncated exponential variates with

life expectancy

e(µ) =

∫ ω

0

e−xµ dx =
1

µ

(
1− e−ωµ

)
, (4.3.4)

expressed as a functional of the level of mortality. Defining θ(t) as in (4.2.4), we

then have

θ(t) = e(µ/t)− e(cµ/t) = t

µ

(
1− e−ωµ/t

)
− t

cµ

(
1− e−ωcµ/t

)
. (4.3.5)

For t tending to zero, both sexes die instantaneously after birth, while for t tending

to infinity, both sexes become immortal on [0, ω]. Thus, θ is zero in both limits,

while strictly positive for 0 < t <∞. Consequently, since θ is smooth, it must have

at least one stationary point, i.e., there must exist a t such that θ̇(t) = 0. If we can

prove that this is the only stationary point, it follows that θ is unimodal.

Now, note that if θ were to have more than one stationary point they cannot

all be local maxima, some of them have to be local minima or points of inflection.

From this observation, it follows that if we can prove that all stationary points are
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(local) maxima, there can be only one stationary point and we are done. This in

turn follows, if we can prove that θ̈(t) < 0 whenever θ̇(t) = 0. By direct calculations

we find

θ̇(t) = ė(µ/t)− ė(cµ/t) = µ

t2

∫ ω

0

x
[
e−xµ/t − ce−xcµ/t

]
dx, (4.3.6)

and

θ̈(t) = ë(µ/t)− ë(cµ/t) = ω2µ

t3

(
ce−ωcµ/t − e−ωµ/t

)
. (4.3.7)

Let t be a stationary point for θ, and define the functions p(x) = e−xµ/t and

q(x) = ce−xcµ/t for x ∈ [0, ω]. We want to prove p(ω) > q(ω), since that implies

θ̈(t) < 0 by (4.3.7). By assumption, θ̇(t) = 0 and it therefore follows from (4.3.6)

that
∫ ω
0
x[p(x) − q(x)] dx = 0. Since p(0) = 1 < c = q(0) and since p and q can

cross at most once (consider the straight lines x 7→ log p(x) and x 7→ log q(x)) we

must have that p(ω) > q(ω). Because otherwise the integrand would be strictly

negative Lebesgue almost surely on [0, ω], contradicting that the integral is zero.

This concludes the proof.

In this specific example we could of course also have investigated the monotonicity

properties of θ more directly to arrive at the same conclusion. However, the approach

of examining stationary points better extends to the general situation in which

explicit expressions for θ are not available.

Note that the existence of a maximum for θ hinges on θ being zero as time tends

to infinity. In the example, both sexes experience rectangularization of the survival

curve such that their life expectancies converge to the same, finite upper limit.

However, if we remove the truncation the situation changes. Without truncation,

the sex gap is θ(t) = t/µ− t/(cµ) = t(c− 1)/(cµ) with θ̇(t) = (c− 1)/(cµ) > 0. In

this case the sex gap is monotonically increasing to infinity as t tends to infinity.

Assuming that an upper limit on life expectancy exists is probably uncontroversial,

but it is worth noting that it is this assumption that forces a diminishing sex gap in

the limit.

4.3.3 Main Result

We are now ready to state our main mathematical result concerning sex gap uni-

modality in coherent models. Since our main purpose is to provide insights into the

role of coherence; we will only prove the result under the assumption of uniform

rates of improvement. More general versions of the result exist, but the conditions

become less intuitive, harder to interpret, and tedious to verify.

A twice continuously differentiable function f is called (strongly) unimodal on

A ⊆ R, if there exists an a ∈ A such that f is (strictly) increasing for t < a, and
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(strictly) decreasing for t > a. Let µ : [0, ω]× R→ (0,∞) be a twice continuously

differentiable function satisfying

lim
t→−∞

µ(x, t) =∞, and lim
t→∞

µ(x, t) = 0. (4.3.8)

We think of µ as the backcasted/forecasted mortality surface in a given mortality

model, but for ease of notation we leave out the bar over µ that we used in Section 4.3.1.

We assume that the relevant time limits are plus/minus infinity, but other limits

could also have been used, e.g., zero and infinity as in the example in Section 4.3.2.

Let µf (x, t) = µ(x, t) and µm(x, t) = µ(x, t)c(x) denote female and male mortality,

respectively. Thus, µm(x, t)/µf (x, t) = c(x) and the mortality forecasts are therefore

strongly coherent, in the sense that the limit in (4.3.1) is replaced with an equality.

In particular, females and males have the same rates of improvement at all ages

and times. As previously, let θ(t) = ef (0, t)− em(0, t) denote the sex gap. Finally,

for g ∈ {f,m}, let Ig(x, t) =
∫ x
0
µg(u, t) du, and let I−1g (z, t) denote the age, x, for

which Ig(x, t) = z.

Theorem 4.3.1. Assume − ∂
∂t logµ(x, t) = ρ(t) > 0 for all x, i.e., the rates of

improvement is the same for all ages and strictly positive at all times. If c(x) > 1

for all x, and

∂

∂x
log

(
µm(I−1m (x, t), t)

µf (I
−1
f (x, t), t)

)
≤ 0, (4.3.9)

for all t ∈ R, and all x where the argument is defined, then θ is strictly unimodal on

R.

The proof of Theorem 4.3.1 relies on a decision-theoretic argument and is given

in Appendix 4.A. As in the example in the previous section, the proof consists

in showing that stationary points are local maxima. In brief, the stationarity

assumption, ėf (0, t) = ėm(0, t), is used to construct two probability measures and

the monotonicity assumption (4.3.9) is used to show that these two measures are

stochastically ordered from which ëf (0, t) < ëm(0, t), and thereby local maximality,

can be deduced.

As demonstrated by the counterexample in Section 4.3.4, coherence on its own is

not enough to ensure sex gap unimodality. Specifically, exceedingly large jumps in

mortality levels can cause sex gap multimodality and, intuitively, the role of (4.3.9)

is to prevent such jumps. Increases in mortality levels are revealed by the cumulative

death rate I(x), which can be interpreted as the expected number of deaths that

would have occurred at age x had the event been repeatable. Thus I−1(x) is the age

at which we would have experienced x deaths. Equation (4.3.9) looks at the rate of

change in log-mortality differences, but with the age input transformed by I−1(·).
Because female mortality is lower than male mortality, I−1f (x) will be higher than
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I−1m (x). Loosely speaking, condition (4.3.9) states that “high age” female mortality

must increase faster than “low age” male mortality. This is typically, but not always,

satisfied. As age and thereby mortality increases, I−1(x) flattens. If there is a sharp

transition in the age-specific mortality curve, this flattening occurs at a comparatively

much lower x-value for females than for males and means that (4.3.9) is comparing

µf evaluated at a high age to µm evaluated at a much lower age. Figure 4.2 shows

I−1(x) and µ(I−1(x)) in the two-level mortality example from Figure 4.3 and for

two Gompertz mortality curves. Condition (4.3.9) is violated in the former case as

µ(I−1(x)) does not “jump” at the same time for both sexes, turning the left-hand

side of (4.3.9) positive once the male rate “jumps”. Although counterexamples as

these can be constructed, in practice, (modelled) female and male mortality schedules

are sufficiently aligned that (4.3.9) is satisfied.

0 ω

I−
1 (x

)

Two−level mortality curve

0 ω

I−
1 (x

)
Gompertz mortality curve

0 ω
Age

µ(
I−

1 (x
))

0 ω
Age

µ(
I−

1 (x
))

Sex Female Male

Figure 4.2: Illustration of I−1(x) and µ(I−1(x)) for the two-level mortality curve depicted
in Figure 4.3 (left panels) and a Gompertz mortality curve (right panels).

Theorem 4.3.1 formalizes Pollard’s paradox; under the stated conditions we have

a situation with fixed mortality ratios and a sex gap that is both widening and

narrowing, in two distinct epochs. In the terminology of Section 4.2, both the initial

widening and the subsequent narrowing of the sex gap are caused by the level effect,

since the ratio effect is absent by construction. Moreover, it is possible to characterize

the point where the sex gap peaks in terms of the life expectancy of one of the sexes,

e.g., females. This will be illustrated in Section 4.4.

4.3.4 Counterexample

The sex gap is not unimodal for arbitrary mortality profiles. As a counterexample,

consider a two-level piecewise constant mortality curve made continuous through
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quadratic interpolation

µ(x) =


µ , x ∈ [0, x0),

µδ[3(x− x0)2/ε2 − 2(x− x0)3/ε3] , x ∈ [x0, x0 + ε],

µδ , x ∈ (x0 + ε, ω],

(4.3.10)

for fixed constants µ, δ, ε > 0. That is, suppose the mortality schedule between ages

0 and x0 is constant at level µ, but is “bumped” to a new level µδ over the age range

x0 to x0 + ε for some large δ and small ε. The left panel in Figure 4.3 shows an

example mortality curve of this form, while the right panel shows the resulting life

expectancy differential when mortality is subject to the same fractional improvement

in the age-specific death rate at all ages; corresponding to µ(x, t) = µ(x) exp(−ρt)
for some ρ > 0. For reference, the unimodal curve shown as the dashed line is the

life expectancy differential had ω = x0.

µf(x)

µm(x)
Mortality ratio:

c(x) =
µm(x)

µf(x)
= 4

0  x0       x0 + ε ω
Age

µ(
x)

Mortality rates

Time

θ(
t)

=
e f

(0
,t)

−
e m

(0
,t)

Sex gap

Figure 4.3: Mortality rates and the resulting life expectancy differential over time when the
same, positive mortality improvement rate is applied to both sexes. In the right panel, the
superimposed dashed line is the sex gap had the life expectancy calculation been truncated
at x0. The curves are calculated using µ(x) = µ when x ∈ [0, x0) and µ(x) = µδ when
x ∈ (x0 + ε, ω] with µ = e−1, x0 = 60, δ = 50, ε = 5, and ω = 120. Continuity between x0

and x0 + ε is achieved by quadratic interpolation as in (4.3.10). The means of interpolation
is not important for the calculation; using any C2-interpolating curve or applying a bump
function to make µ(x) smooth and continuous yields virtually the same result.

The gap takes on a multimodal (“roller-coaster”) shape. The additional humps are

created by the jump in mortality after age x0, which creates a false life expectancy

barrier (if δ is sufficiently large). This barrier is broken by the females first, whereby

the life expectancy differential starts to rise again, creating another modality. Thus,

even with monotonically increasing hazards and µm(x, t)/µf (x, t) > 1, unimodality

is not guaranteed. The example could be extended to create any number of modes by

introducing more barriers. It is clear, however, that counterexamples are necessarily

somewhat contrived and that they do not arise in “normal” situations.
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4.4 The Dynamic Gompertz Model

Parametric models can be used for mortality projections by letting calendar year enter

the model through its parameters. That is, for each calendar year the parameters

of the model are estimated and then viewed as stochastic processes, forecasted by

standard time series methods. By linking the stochastic processes driving the models

of different populations, coherence and other dependency structures can be achieved,

see e.g. Jarner and Kryger (2011), Cairns et al. (2011b), and Jarner and Jallbjørn

(2020). In this section we will analyze a particularly simple, coherent mortality model

of this type. The model is too simple to be of practical use, but it is useful as an

illustration of the sex gap trajectories implied by coherence.

4.4.1 The Model

The Gompertz mortality law prescribes that mortality increases exponentially,

µ(x) = eα+βx, 0 ≤ x ≤ ω. (4.4.1)

This mortality profile is a remarkably good fit to adult mortality from age 20, say,

onwards. For younger ages, and in fact also for very old-ages, the profile is not

appropriate. A simple two-sex model for adult mortality can be constructed by

fitting a Gompertz law to period, sex-specific mortality data resulting in estimated

coefficients (αt,g, βt,g) for g ∈ {f,m} and t ranging over the years in the estimation

window.

If the parameters are modeled as random walks with the same drift for both sexes,

the median forecast for population g becomes

µ̄g(x, T + h) = exp {αT,g + βT,gx+ h(ξα + ξβx)} , (4.4.2)

where T denotes the projection jump-off year, h ∈ N0 is the forecasting horizon, and

ξα and ξβ are the (shared) drift terms of the α- and β-processes, respectively. By

design, the forecasts in (4.4.2) are (strongly) coherent since the mortality sex ratios

do not depend on h,

µ̄m(x, T + h)

µ̄f (x, T + h)
= exp {(αT,m − αT,f ) + (βT,m − βT,f )x} = c(x). (4.4.3)

More complicated time-series models could also be used, but the current structure

suffices for our purposes. Note that although h is assumed non-negative, we can

evaluate (4.4.2) for all values of h. Specifically, we can think of a forecast as the

right tail of an implied surface obtained by letting h range over all integers, negative

and positive.
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4.4.2 Sex Gap Unimodality Under Uniform Rates of

Improvement

Assuming uniform rates of improvement, the continuous-time analog of the dynamic

Gompertz model is given by

µ(x, t) = eα+βx−ρt, 0 ≤ x ≤ ω, (4.4.4)

with level parameter α, slope parameter β > 0, and rate of improvement ρ > 0.

As in Section 4.3.3, let µf (x, t) = µ(x, t) and µm(x, t) = µ(x, t)c(x), where c(x) =

exp(∆α +∆βx), with ∆β > −β, such that µm is also of form (4.4.4) with positive

slope. Thus, mortality for both sexes follow a Gompertz mortality schedule with, in

general, differing levels and slopes.

The cumulative death rate is

I(x, t) =

∫ x

0

µ(u, t) du = eα−ρt(eβx − 1)/β, (4.4.5)

while its inverse for fixed time t is I−1(x, t) = log(1 + xβ/(eα−ρt))/β, whereby

µ(I−1(x, t), t) = eα−ρt + βx. (4.4.6)

It follows that

∂

∂x
log

(
µm(I−1m (x, t), t)

µf (I
−1
f (x, t), t)

)
=

eα−ρt
[
∆β + β(1− e∆α)

]
[eα−ρt + βx] [eα+∆α−ρt + (β +∆β)x]

. (4.4.7)

In practice, we typically find excess male mortality relative to female mortality

with ∆α > 0 and ∆β < 0, that is, the level is higher for males than for females, but

the curve is less steep. In this situation, the right-hand side of (4.4.7) is negative,

since the numerator is negative while the denominator is positive. It then follows

from Theorem 4.3.1 that the sex gap is strictly unimodal.

We note that Theorem 4.3.1 only provides sufficient conditions for unimodality.

For instance, having c(x) < 1 at high ages does not imply that unimodality of the

gap will not occur. In fact, using empiric estimates we typically have this situation,

but still the sex gap is unimodal.

4.4.3 Sex Gap Trajectories

We define the sex gap trajectory as the pairs of female life expectancy and sex gap

that can occur together on a given two-sex mortality surface,

T = {(ef (0, t), θ(t)) : t ∈ R}, (4.4.8)

where as usual θ(t) = ef (0, t)− em(0, t) denotes the life expectancy differential (sex

gap). In the continuous-time version of the dynamic Gompertz model, we have

µf (x, t) = eα−ρteβx, µm(x, t) = eα−ρteβxe∆α+∆βx. (4.4.9)
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Since ρ > 0, we see that as t goes from minus infinity to plus infinity the common

factor, exp(α− ρt), takes all values in (0,∞), regardless of the value of α and ρ. It

follows that for the dynamic Gompertz model the sex gap trajectory is a function of

the female slope parameter and excess mortality only, i.e., T = T (β,∆α,∆β).

Based on mortality data from Western Europe 1950–2020, estimates of β are in

a narrow range around 0.10, while excess mortality shows greater variability from

country to country and over time. Figure 4.4 shows two sets of trajectories for typical

values of β; the left plot corresponds to the average male excess mortality profile in

the data, and the right plot corresponds to very high male excess mortality, as seen

in, e.g., Finland.
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Figure 4.4: The sex gap trajectory implied by a dynamic Gompertz model for different
values of the female slope parameter, β, for average and high excess male mortality. Left
plot has ∆α = 1.25 and ∆β = −0.012, right plot has ∆α = 2.2 and ∆β = −0.021.

We notice that although the size of the sex gap is different in the two plots, the

overall shape of the trajectory is almost the same in all cases. In particular, we

notice that the sex gap peaks when female life expectancy is in the range 30 to 50

years. This means that if a dynamic Gompertz model is fitted to data and forecasts

are produced from a jump-off year where female life expectancy is larger than 50

years then the model will forecast a closing sex gap; at least if the slope parameters

are relatively constant (i.e., if ξβ ≈ 0).

Note that the speed with which the sex gap trajectory is traversed in the forecast

depends on how fast female life expectancy evolves. We only know that as female life

expectancy increases beyond 50 years, the sex gap closes. Since female life expectancy

will not increase linearly, the shape of the sex gap in the forecast will typically not

resemble the shape of the sex gap trajectories in Figure 4.4.

That the coherent, dynamic Gompertz model typically produces narrowing sex
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gaps also for age-dependent rates of improvement, is illustrated in Figure 4.5. The

forecasts are produced by (4.4.2) for dynamic Gompertz models fitted to different

countries in different periods. The Gompertz models are calibrated using data

in the age range {20, . . . , 100} to avoid the poor fit at younger ages to influence

parameter estimates; for the same reason we look at the life expectancy differential

at age 20, instead of at birth. Parameters of the Gompertz models are estimated

by maximum likelihood assuming independent, Poisson-distributed death counts,

D(x, t)|E(x, t) ∼ Pois(E(x, t) exp(αt+ βtx)). The model’s parameters are calibrated

to the latest 30 years of data available before projection jump-off. If data does not

exist for all 30 years, only available data is used. We estimate and project the models

for all countries in Western Europe and for periods with jump-off in 1960, 1980,

2000, and 2020, respectively.
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Figure 4.5: Forecast of the life expectancy sex gap in Western Europe using a dynamic
Gompertz model with parameters forecasted as a random walk with drift, cf. Equation (4.4.2),
and varying jump-off years.

As seen, almost all forecasts in Figure 4.5 produce narrowing gaps. In some periods

the forecasts provide a good description of the future, e.g., the recent forecasts for

Finland, France, Portugal and Spain, but in most cases the forecasted sex gap does

not provide a sensible continuation of the historic trend. The problem is, that the

behavior of data leading up to the jump-off year matters very little; it is the assumed

coherence in the forecasts that produces the (implied) unimodal sex gap trajectory

and it is the fact that female life expectancy is larger than 50 years at all jump-offs

that places us on the declining part of that trajectory.
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We note in closing, that the dynamic Gompertz model does not always forecast

closing sex gaps. Periods with little or no mortality improvements for males (Denmark,

1980), or male mortality being very close to female mortality can lead to an increasing

sex gap at jump-off. In the latter case, the peak of the implied sex gap trajectory

can occur at a much higher age than indicated in Figure 4.4, cf. Box 4.2 “The outlier

Ireland” for an example of this rarely happening situation.

4.5 The Forecast of Closing Sex Gaps by Coherent

Mortality Models

In the previous section we demonstrated that the dynamic Gompertz model typically

forecasts closing sex gaps, both under uniform rates of improvement, as predicted by

Theorem 4.3.1, but also under age-dependent rates of improvement. In this section

we show that more “realistic”, coherent mortality models behave qualitatively similar

to the dynamic Gompertz model. On this basis, we conclude that closing sex gap

is indeed a general feature of coherent models. The analysis is in two parts. First,

we relax the parametric structure of the Gompertz curve but keep the uniform rate

of improvement. Second, we show closing sex gaps for coherent, semi-parametric

models with age-dependent rates of improvement.

4.5.1 Location of the Sex Gap Zenith under Uniform Rates of

Improvement

Based on the dynamic Gompertz model, we concluded in Section 4.4.3 that for

Western European data the implied sex gap peaks at an earlier age than the observed

female life expectancy, leading to closing sex gap forecasts. One might object to this

analysis that the Gompertz model allows for only a very limited set of mortality

profiles, and that the conclusion implicitly rests on this fact. Below we extend the

analysis to general, smooth mortality profiles, retaining the assumption of uniform

rates of improvement.

Consider a (strongly) coherent mortality surface with female and male mortality of

the form µf (x, t) = µf (x, T ) exp(−ρ(t−T )) and µm(x, t) = µf (x, t)c(x), respectively,

where T is a fixed year, µf (x, T ) is the female mortality at age x in year T , c(x) is

the male excess mortality at age x, and ρ > 0 is the (uniform) rate of improvement.

Recall from Equation (4.4.8) that the sex gap trajectory is defined as the set of

female life expectancies and sex gaps that can occur together when t varies. By

the same argument as in Section 4.4.3, this set does not depend on the rate of

improvement. In other words, assuming a uniform rate of improvement, the sex gap

trajectory depends only on the female mortality profile in any given year and the

excess mortality profile. In particular, for any female mortality profile, µf (·, T ), and
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any c-profile, we can define the (implied) sex gap zenith,

(amax, θmax) = (ef (0, tmax), θ(tmax)), where tmax = argmax θ(t), (4.5.1)

as the female life expectancy when the sex gap is at its maximum and the corre-

sponding (maximal) value of the sex gap. The notation (amax, θmax) is chosen to

reflect the abscissa and ordinate at the maximum point, cf. Figure 4.4.

We compute and compare (amax, θmax) for (i) a Gompertz model and (ii) a

graduated mortality curve, where the mortality curves obtained by graduation closely

represent the true underlying death rates. In short, the graduation procedure smooths

the empirical death rates by a cubic smoothing spline, while the Kannisto model

of old-age mortality is used at ages 80 and above. Further details are provided in

Appendix 4.B.

The sex gap zenith is presented in Table 4.1 for the two models for the countries

in Western Europe. For given year, mortality data for that year only is used to

estimate female and male mortality profiles from which the c-profile is derived. Next,

assuming a uniform rate of improvement, the implied sex gap trajectory (4.4.8) can

be computed. Finally, the female life expectancy and the size of the sex gap at the

zenith (4.5.1) of the trajectory are found. The computation is performed on data

from three calendar years that captures the different epochs of the period. In the

first year, 1950, all countries are on the widening part of the observed θ-curve. The

second year, 1985, is the middle of the period where the observed θ-curve peaks,

while the third year, 2020, is on the narrowing part of the curve, cf. Figure 4.1. If a

country does not have data at one or both of the endpoints, the nearest data point

is used instead.

Table 4.1: Female life expectancy (amax) when the implied sex gap trajectory is at its
maximum (θmax). For each country and model, the year refers to the data used to compute
the implied sex gap trajectory, see main text for details. Life expectancies are truncated at
the age of 110.

Gompertz mortality curve Graduated mortality curve

amax θmax amax θmax

Country Data avail. 1950 1985 2020 1950 1985 2020 1950 1985 2020 1950 1985 2020
1. Austria 1947–2019 33.2 34.5 32.1 6.9 13.5 11.5 47.5 43.8 41.4 5.3 10.6 7.8
2. Belgium 1841–2020 32.8 35.0 31.8 7.6 11.5 9.8 43.0 45.0 52.0 6.2 8.3 6.2
3. Denmark 1835–2020 28.0 36.7 32.0 3.5 8.4 6.7 27.5 33.8 29.8 4.5 8.0 8.5
4. Finland 1878–2020 35.6 36.3 33.8 12.2 15.6 14.4 49.2 49.2 45.7 8.9 12.2 11.0
5. France 1816–2018 35.4 36.8 34.7 7.7 15.4 13.4 54.3 56.0 58.6 5.9 10.9 8.6
6. Iceland 1838–2018 34.1 33.9 29.9 8.9 13.0 8.8 37.6 44.5 43.1 9.2 9.4 6.2
7. Ireland 1950–2017 87.9 35.8 30.7 2.0 8.1 8.1 73.7 36.0 37.9 1.7 8.4 8.9
8. Italy 1872–2018 31.7 34.3 31.3 5.6 12.1 9.8 48.1 44.1 39.0 4.0 9.1 7.4
9. Luxembourg 1960–2019 32.1 35.8 31.8 9.8 10.0 9.5 32.4 38.3 31.3 9.1 10.3 10.1
10. Netherlands 1850–2019 28.0 36.2 30.9 3.7 9.4 5.2 30.9 66.2 37.7 4.6 7.0 4.7
11. Norway 1846–2020 29.7 34.8 30.1 5.4 12.2 7.4 34.3 39.3 40.3 6.2 10.0 7.6
12. Portugal 1940–2020 38.0 34.8 34.3 7.2 12.9 15.5 55.9 43.6 62.0 5.0 11.2 9.2
13. Spain 1908–2018 37.8 34.5 33.3 6.4 13.8 13.3 54.5 47.6 64.8 4.9 10.4 7.7
14. Sweden 1751–2020 28.8 34.3 30.3 4.0 10.1 7.1 29.6 51.5 37.8 5.5 7.3 8.4
15. Switzerland 1876–2020 32.1 34.8 30.3 6.7 11.7 9.2 41.2 42.9 38.3 5.7 9.6 7.9
16. United Kingdom 1922–2018 38.1 39.3 31.4 5.2 6.9 8.0 61.5 35.2 42.2 4.5 6.6 6.7
17. West Germany 1956–2017 31.5 34.7 32.0 8.7 11.4 10.4 39.2 54.4 55.1 7.2 8.1 6.0
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Box 4.2. The outlier Ireland

The only outlier in Table 4.1 is Ireland, 1950. In this year, the observed life

expectancy for females is 66.7 years, but according to Table 4.1, this is well below

êf0 . Ireland is rather unique in a demographic context. Men outlived women at the

beginning of the 20th century, and by the 1930s, Ireland was the only country in

the West with higher survival rates for men than for women at any age (Coleman,

1992). This pattern has taken a while to reverse, and even though female mortality

is lower than male mortality in 1950 (at most ages), the curves lie almost directly

on top of each other as seen in the figure below. Interestingly, this fact makes the

sex gap widen for a prolonged period, that is, the slope of θ is rather moderate

before reaching the turning point. Once the turning is passed, however, the gap

will close quite rapidly; the slope on the narrowing part is much steeper compared

to the slope on the widening part of the curve as seen in the figure below. This

feature needs to be understood in the context of life span disparity, e†, and the

maximum attainable age, ω. Because the mortality profiles are similar not only in

slope but also in level, e†f stays higher than e†m for longer. Female life expectancy

at the turning point, amax, is, therefore, closer to ω than had the mortality levels

been further apart, causing the subsequent “catch-up” to happen much faster.
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Figure: Mortality and implied sex gap for Ireland, 1950. In the left panel, the Gompertz

fit is superimposed as solid lines.

The Gompertz model predicts a female life expectancy of around 30–40 years

when the sex gap is at its zenith, varying slightly from country to country and period

to period. For comparison, observed female life expectancy in 1950 is between 61.0

(Portugal) and 73.6 (Iceland) and increasing over the period. Thus, all countries

are on the declining part of the implied θ-curve, and continued improvements in

mortality will further narrow the gap. The only exception is Ireland, see Box 4.2.

Because the Gompertz curve constitutes a highly stylized mortality profile, the

life expectancy predictions from this model are fairly consistent across the different

countries and periods. The graduated mortality curve is more flexible, resulting
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in more diverse predictions, in particular, regarding the female life expectancy at

the sex gap zenith. The overall result is, however, qualitatively the same; with the

exception of Ireland, the implied sex gap peaks when female life expectancy is below

that observed at the estimation year (not shown). The takeaway message is that for

essentially all countries and jump-off years, both models project narrowing sex gaps.

4.5.2 Coherence Implies Closing Sex Gaps

Until now we have demonstrated sex gap unimodality and closing sex gap forecasts

under conditions imposed for mathematical tractability. In particular, strong co-

herence and uniform rates of improvement. Of course, coherent mortality models

used in practice are neither strongly coherent, nor do they have uniform rates of

improvement. Nevertheless, the conclusion extends to “realistic”, coherent models

also, and for the same reason. Calibrated to Western European mortality data, the

sex gap implied by the models peaks when female life expectancy is (much) lower

than levels observed after the Second World War.

Table 4.2 presents the slope of the sex gap following projection jump-off based on

the dynamic Gompertz model (4.4.2), the Li-Lee model (4.3.2), and the product ratio

model of Hyndman et al. (2013) for different jump-off years. For the Li-Lee model

(4.3.2), we use AR(1)-processes to describe the sex-specific time-varying indices. The

product ratio model is fitted and forecasted using the Demography package (available

on CRAN) in R.

Table 4.2: Direction of the sex gap five years after projection jump-off for different coherent
models and jump-off years. The table shows whether the gap is narrowing (↘) or widening
(↗). The models are calibrated to data in the period 1950 (or the earliest year where
data is available) to the listed jump-off year. No direction is shown if the model cannot be
calibrated (i.e., lack of data).

Gompertz model Li-Lee model The Product-Ratio model
Country 1960 1965 1970 1975 1980 1960 1965 1970 1975 1980 1960 1965 1970 1975 1980
1. Austria ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
2. Belgium ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
3. Denmark ↘ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘
4. Finland ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
5. France ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
6. Iceland ↘ ↘ ↘ ↘ ↘ ↗ ↗ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘
7. Ireland ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
8. Italy ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘
9. Luxembourg − ↗ ↗ ↗ ↘ − ↗ ↘ ↗ ↗ − ↘ ↗ ↘ ↗
10. Netherlands ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
11. Norway ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
12. Portugal ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘ ↘ ↘
13. Spain ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
14. Sweden ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
15. Switzerland ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↗ ↘ ↘ ↘ ↘ ↘
16. United Kingdom ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘
17. West Germany ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ − ↘ ↗ ↘ ↘

Except for the United Kingdom, the actual sex gap was widening at all jump-off

years, cf. Figure 4.1. Nevertheless, essentially all forecasts predict a narrowing sex

gap. Further, for those (few) forecasts where the gap is projected to widen, the
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historical trend is not reproduced. Rather, the apex of θ is predicted to be in the

near future with a gap that remains approximately constant on a short horizon (not

shown); the forecast trajectories resemble that of Denmark, 1980 seen in Figure 4.5

(green, dashed line).

In semi-parametric mortality models, e.g., the Lee-Carter model (Lee and Carter,

1992) or the Li-Lee model (Li and Lee, 2005), the fit to data is typically good

due to a large number of parameters. Even parsimonious model structures such

as the dynamic Gompertz model can capture many observed mortality patterns

when parameters are allowed to vary freely. Consequently, in the estimation window,

most mortality models allow flexible, if not freely varying, rates of improvement,

ρ(x, t). In the forecasting region, however, the improvement rates are often, directly

or indirectly, constrained by (i) assuming temporal constancy, e.g., in models of the

Lee-Carter type, and (ii) by imposing coherence:

ρ(x, t)
Time invariance−−−−−−−−−−→ ρ(x)

Coherence−−−−−−→ ρf (x) ≃ ρm(x).

Both assumptions might be at odds with (recent) trends in data, resulting in death

rate (median) trajectories that may not conform with those observed in the past.

Relaxing the assumption of time-invariant improvement rates can be achieved by

various techniques, for example, by imposing convergence to a long-term target (Li,

2013), or applying frailty theory (Jarner and Jallbjørn, 2022). This, however, is not

the focus of the present paper.

Although, formally only a condition in the limit, the coherence assumption built

into many multi-population mortality models all but eliminates the ratio effect,

identified by Glei and Horiuchi (2007) and Cui et al. (2019) as the main driver

of the widening sex gap in Western Europe until the 1980’s, cf. Section 4.2.2. In

periods where the sex gap is narrowing, the ratio effect is less important and the

coherence assumption agrees more with observed data. Narrowing sex gap projections

are produced as intended but are not guaranteed to replicate the latest trends, cf.

Figure 4.5. In summary, the implied sex gap trajectory of coherent models, being

driven mainly by the level effect, is too inflexible to adequately describe and forecast

the sex gap evolution since 1950.

4.5.3 Does Coherence Deserve Its Special Status?

The fact that the sex gap narrows in coherent projections at essentially all levels of

mortality observed in the West over the last 70 years challenges the desirability of

coherence as a modeling goal and adds to the recent criticism of coherence raised

by Hunt and Blake (2018) and Jarner and Jallbjørn (2020). At the time of its

development, coherence coincidentally appeared as a desirable property that (to

some extent) continued the narrowing of the sex gap that had been observed for some

time, unlike most independent methods that projected widening or diverging gaps, see
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for example Figure 5 in Hyndman et al. (2013). One can understand that Hyndman

et al. (2013) and others concluded that coherent forecasts were an improvement over

independent forecasts, but this verdict seems somewhat anchored in the sex gap

decline of the time. Imagine standing in a year between 1950–1980, observing sharp

transitions from widening to narrowing gaps such as those in Figure 4.5. It then

seems far less obvious that coherence is a property one should impose on a model

and certainly questions whether coherence deserves the special status it has been

given.

From the adversarial perspective, it is—at least in theory—possible for coherent

models to accommodate temporary ratio effects of varying (but bounded) size and

thereby produce trends in the sex gap that are in keeping with those recently

observed. In most applications, however, the ratio effect diminishes quickly, leading

to a misalignment between historic and projected trends as demonstrated in Table 4.2.

Arguably, a diminishing ratio effect is intentional, because otherwise, the rationale

for imposing coherence would be undermined. Even though coherence may be a

sensible restriction to impose when extrapolating the present mortality regime (for

some populations), it does not seem to be so historically and may not be so in

the future either. In our view, this suggests a revision of coherence as the guiding

principle for multi-population mortality modelling.

Moreover, as is also pointed out by Jarner and Jallbjørn (2020), coherence seems

too tailored to the log-linear common factor models for which the property was

introduced. Even though single population models can be coupled via cointegration

techniques to achieve coherence, the choice of scale, i.e., ratios of mortality rates,

remains somewhat arbitrary and effectively restricts the coherence label to models

of the Lee-Carter type. Therefore, we see a need for a broader definition that covers

a larger class of models and permits less restrictive dependency structures.

As a minimum, the coherence requirement should be relaxed to allow for observed

patterns of covariation to continue in forecasts. A possible approach to tackle this

issue could be to redefine coherence into a property that concerns modeling on the

parameter scale rather than modelling on the (log) data scale. In particular, it seems

more natural to identify cointegrating relations between (time-varying) parameters,

i.e., identifying linear combinations of the parameters that are stationary, rather

than requiring mean-reversion of mortality log differences. For further discussion on

this point, see Jarner and Jallbjørn (2020).

4.6 Conclusion

The notion of coherence has been one of the most influential ideas in multi-population

mortality modeling. When projecting groups of related populations, e.g., males

and females, or countries of similar affluence, which have evolved in parallel in
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the past, it is natural to expect these populations to “stay together” in the future

also. Coherence solves the problem of diverging, or crossing, forecasts that can

arise when projecting, even very similar, populations separately. It does so by

requiring converging mortality ratios, or, equivalently, asymptotically equal rates

of improvement at each age. At first sight, this seems an innocent and reasonable

requirement, but in practice coherent models enforce a rigid structure on the forecasts

that can be at odds with trends in data.

In this paper we discussed the implications of coherence in two-sex mortality

models with focus on the dynamics of the sex differential in life expectancy (sex gap).

We provided both theoretical and empirical evidence to support the conclusion that

coherent models forecast closing sex gaps for Western European countries for almost

all jump-off years since 1950. Despite the fact that the actual sex gap was widening

until the 1980s. Coincidentally, coherence was introduced after almost 20 years of

narrowing sex gaps, and a continued sex gap closing was seen as a desirable feature

of coherent models. However, the inadequacy of coherent models in the first half of

the period from 1950 till today, lead us to question coherence as a general modelling

principle.

Technically, we prove in the paper that strongly coherent models with a uniform

rate of improvement produce a unimodal sex gap trajectory. Further, we demon-

strate that for Western European levels of male excess mortality (relative to female

mortality) the implied sex gap trajectory typically peaks when female life expectancy

is in the range 30 to 50 years. Although formally proven only for a specific subclass

of coherent models, this insight applies in much greater generality and it explains

why forecasts from coherent two-sex models are almost always on the declining part

of the trajectory.

We also discussed the effects responsible for the observed widening and narrowing

sex gap in Western Europe from 1950 till today. In particular, with appeal to Glei

and Horiuchi (2007) we identified changing sex ratios (the ratio effect) as the main

driver of the widening sex gap, and differential disperson combined with general

improvements (the level effect) as the main driver of the subsequent narrowing of

the sex gap. In light of the similarity between the observed and implied sex gap

trajectories in Figure 4.1 and Figure 4.4, respectively, it is a priori surprising that

coherent models cannot be used to describe the observed sex gap dynamics over the

entire period. However, the implied sex gap trajectory peaks too early, in terms of

female life expectancy, and therefore cannot be aligned with the widening part of the

observed sex gap trajectory. Moreover, even on the narrowing part of the observed

sex gap trajectory, coherent forecasts often have a kink at jump-off, see Figure 4.5.

In conclusion, the implied sex gap trajectory of coherent models being driven purely,

or mainly, by the level effect is not sufficiently flexible to describe the observed sex

gap dynamics.
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To prove unimodality of the sex gap, we relied on the assumption that life

expectancies are bounded from above, implying that we eventually approach a life

expectancy plateau and that the sex gap therefore vanishes in the limit. Even

though life expectancy does not appear to be approaching a maximum at present

(Oeppen and Vaupel, 2002) and even though women have been shown to “always”

live longer than men (Kalben, 2000; Zarulli et al., 2018), it does seem reasonable

that a biological or genetic barrier to an infinite lifespan exists; however, if an upper

limit does not exist a vanishing sex gap is not guaranteed. It is also conceivable that

the present level of old-age mortality acts like a de facto barrier, but that continued

improvements can “break through” the barrier and move it to even higher ages.

Although we have presented the results and the analysis as pertaining to coherent

models and their properties, the unimodality result can also be given a real-world

interpretation. In Western Europe, males have historically had lower rates of improve-

ment than females, but currently the two sexes enjoy similar rates of improvement.

Combined with the unimodality result, this indicates that the observed sex gap will

continue to close in the future but it also points to factors that need to change for the

gap to start widening again. That is, (i) if mortality undergoes a (perhaps temporary)

regime change in which female rates of improvement substantially outweigh male

improvements, for instance, if certain diseases that primarily target females are

reduced or eradicated, or if sex-specific risk behaviour changes in favour of women;

(ii) if the current lifetime barrier is broken through, the sex gap dynamics could

“start over” and result in a multimodal curve similar to that exemplified in Figure 4.3.

It is also conceivable that a widening gap in favor of men could be brought about.

This can happen, e.g., if the sex-specific mortality curves continue to steepen in such

a way that high-age male mortality falls below high-age female mortality.

The paper focused on coherence in two-sex models. However, our main result

applies also to other coherent, multi-population models whenever an ordering of

the population-specific mortality rates exists. A noteworthy instance is mortality

rates between different socio-economic groups, a case that has attracted much recent

attention, see e.g. Bennett et al. (2018) and Cairns et al. (2019). Historically, the life

expectancy gap between the most and least affluent has widened for some time, and

the trend is expected to continue over the coming years by domain experts. However,

under the assumption of coherence, the gap may inadvertently be projected to close

right after projection jump-off. Other applications with mortality orderings expected

to persist over time include modelling of rich countries relative to poor countries,

insured lives relative to non-insured lives, and smokers relative to non-smokers. In

all these cases, coherent models are likely to produce immediately narrowing gaps

irrespective of the historic development leading up to jump-off.

Finally, since the main result hinges on excess mortality of one population relative

to another, it cannot be applied to situations where such an ordering does not exist.
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For example, when modeling a group of neighboring countries of similar affluence, we

cannot conclude that this will generally lead to closing gaps for all pairs of countries.

Arguably, even if we could, narrowing gaps would perhaps be less of a worry in this

context, at least in the long run.
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4.A Proofs and Lemmas

4.A.1 Stochastic Dominance

The following lemma gives a general result that is used to assess the sign of the

second derivative of the sex gap at a stationary point. The lemma has ties to the

concept of stochastic dominance, see e.g. Lindvall (2002). We say that a real-valued

random variable Y stochastically dominates another real-valued random variable X

if P (Y ≤ z) ≤ P (X ≤ z) for all z. Informally, this means that the distribution of

X is to the left of the distribution of Y . Various inequalities based on this partial

ordering can be derived. The result we need is stated below.

Lemma 4.A.1. Let f1 and f2 be strictly positive functions with compact support

[0,K1] and [0,K2], respectively, with 0 < K1 < K2 <∞, satisfying∫ K1

0

f1(x) dx =

∫ K2

0

f2(x) dx. (4.A.1)

Assuming that f1 and f2 have continuous first derivatives such that

∂

∂x
log f1(x) ≤

∂

∂x
log f2(x) for 0 < x < K1, (4.A.2)

then for any strictly increasing, differentiable function h : [0,K2]→ R,∫ K1

0

h(x)f1(x) dx <

∫ K2

0

h(x)f2(x) dx. (4.A.3)

Proof. Let m denote the common value in (4.A.1), and let ν1 and ν2 denote measures

concentrated on [0,K1] and [0,K2], respectively, so that g1(x) = f1(x)/m and

g2(x) = f2(x)/m are the Radon-Nikodym derivatives of ν1 and ν2 with respect to

Lebesgue measure. Further, let G1(x) =
∫ x
0
g1(u) du and G2(x) =

∫ x
0
g2(u) du be

the corresponding cdf’s.
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It suffices to show that G2(x) ≤ G1(x), ∀x ∈ [0,K2], with strict inequality at

some x, because then∫ K1

0

hdν1 −
∫ K2

0

hdν2 =

∫ K1

0

∫ x

0

h′(u) dudG1(x)−
∫ K2

0

∫ x

0

h′(u) dudG2(x)

=

∫ K1

0

h′(x) (1−G1(x)) dx−
∫ K2

0

h′(x) (1−G2(x)) dx

=

∫ K2

0

h′(x) (G2(x)−G1(x)) dx < 0, (4.A.4)

and (4.A.3) follows immediately. In the above, the first equality follows by writing

h(x) = h(0) +

∫ x

0

h′(u) du, (4.A.5)

and the second by reversing the order of integration. The latter computation is valid

by Tonelli’s theorem since h′ is non-negative.

We know that G1(0) = G2(0) = 0 and G2(x) ≤ G1(x) = 1 for x ∈ [K1,K2]. For

0 < z < w < K1 we have from (4.A.2) that

log
g1(w)

g1(z)
=

∫ w

z

∂

∂x
log f1(x) dx ≤

∫ w

z

∂

∂x
log f2(x) dx = log

g2(w)

g2(z)
, (4.A.6)

and thereby g1(w)/g1(z) ≤ g2(w)/g2(z), or, equivalently, g2(z)/g1(z) ≤ g2(w)/g1(w).
Hence, r(x) = g2(x)/g1(x) is monotonically increasing on (0,K1). Define the sets

A = {x | x ∈ (0,K1), r(x) < 1}, (4.A.7)

B = {x | x ∈ (0,K1), r(x) = 1}, (4.A.8)

C = {x | x ∈ (0,K1), r(x) > 1}, (4.A.9)

that collectively cover (0,K1). Since∫ K1

0

g1(x) dx =

∫ K2

0

g2(x) dx >

∫ K1

0

g2(x) dx =

∫ K1

0

r(x)g1(x) dx, (4.A.10)

A cannot be empty. Due to the monotonicity of r, C cannot be empty without B

being empty. If both B and C are empty or if only C is empty, we have that

G2(x) =

∫ x

0

r(u)g1(u) du <

∫ x

0

g1(u) du = G1(x), (4.A.11)

for all x ∈ (0,K1). If C is non-empty, suppose for contradiction that there exists

an x ∈ C for which G2(x) ≥ G1(x). Then, due to the monotonicity of r, we would

have G2(K1) ≥ G1(K1), but this contradicts (4.A.10). Thus, we conclude that

G2(x) < G1(x) for all x ∈ (0,K1).
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4.A.2 Proof of Theorem 4.3.1

For ease of reference, we recall the central definitions and assumptions used in

Theorem 4.3.1. Let µ : [0, ω] × R → (0,∞) be a twice continuously differentiable

function satisfying

lim
t→−∞

µ(x, t) =∞, and lim
t→∞

µ(x, t) = 0. (4.A.12)

Let µf (x, t) = µ(x, t) and µm(x, t) = µ(x, t)c(x) denote female and male mortality,

respectively. Let θ(t) = ef (0, t)− em(0, t) denote the sex gap. Note that θ is twice

continuously differentiable. The proof of Theorem 4.3.1 relies on Lemma 4.A.1 and

the following two lemmas.

Lemma 4.A.2. Assume c(x) > 1 for all x. The sex gap, θ, attains its global

maximum on R. In particular, θ has at least one stationary point.

Proof. We first note that θ(t) > 0 for all t ∈ R with limits

lim
t→−∞

θ(t) = lim
t→∞

θ(t) = 0 (4.A.13)

This follows from (4.A.12) and the assumption µf (x, t) < µm(x, t) for all x and t.

Choose an arbitrary real number t0 ∈ R. Because the limit of θ in either end of the

real line is zero, there exist numbers −∞ < tl < t0 < tu <∞ such that θ(t) ≤ θ(t0)
for t ≤ tl, and θ(t) ≤ θ(t0) for t ≥ tu. Since θ is continuous it attains a maximal

value at, say, tm on the compact interval [tl, tu], cf. Rudin (1976, Theorem 4.16).

This is also the global maximum by construction since t0 ∈ [tl, tu]. Hence, since θ is

continuously differentiable, it follows that θ̇(tm) = 0.

Lemma 4.A.3. Assume c(x) > 1 for all x. If stationary points of θ are local

maxima, that is, if

∀t ∈ R : θ̇(t) = 0⇒ θ̈(t) < 0, (4.A.14)

then θ is strongly unimodal on R.

Proof. Assume (4.A.14) holds. We start by showing that θ can have at most one

stationary point, or equivalently, that θ̇ can have at most one root. Assume for

contradiction that θ̇ has at least two roots a, b ∈ R with a < b. By (4.A.14), θ̈(a) < 0

and therefore there exists ε > 0 such that θ̇ is strictly negative on (a, a + ε]. Let

c = inf{t > a : θ̇(t) ≥ 0} be the first time θ̇ passes zero after a. The set defining c

is disjoint with (a, a+ ε] and it is non-empty because it contains b, by assumption.

In particular, c ̸= a. By continuity, θ̇(c) = 0, because if θ̇(c) > 0 there would exist

a+ ε < t < c with θ̇(t) = 0 contradicting the definition of c, see e.g. Rudin (1976,

Theorem 5.12). For the same reason, θ̇(t) < 0 for all t ∈ (a, c). Now, since θ is twice

differentiable at c, the limit

lim
t→c−

θ̇(t)− θ̇(c)
t− c

= lim
t→c−

θ̇(t)

t− c
(4.A.15)
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exists and equals θ̈(c). But since θ̇(t) < 0 in an interval to the left of c, we find

θ̈(c) ≥ 0 contradicting (4.A.14). We conclude that θ can have at most one stationary

point.

By Lemma 4.A.2 we know that θ attains its unique maximum at some tm ∈ R,
and as just shown this is the only stationary point. Consequently, θ̇(t) > 0 for all

t < tm, and θ̇(t) < 0 for all t > tm, and we conclude the θ is strongly unimodal.

Theorem 4.3.1. Assume − ∂
∂t logµ(x, t) = ρ(t) > 0 for all x, i.e., the rates of

improvement is the same for all ages and strictly positive at all times. If c(x) > 1

for all x, and

∂

∂x
log

(
µm(I−1m (x, t), t)

µf (I
−1
f (x, t), t)

)
≤ 0, (4.3.9)

for all t ∈ R, and all x where the argument is defined, then θ is strictly unimodal on

R.

Proof. By Lemma 4.A.3 it suffices to prove condition (4.A.14). The first and second

derivatives of θ are given by

θ̇(t) = ρ(t)

∫ ω

0

[
If (x, t)e

−If (x,t) − Im(x, t)e−Im(x,t)
]
dx, (4.A.16)

θ̈(t) = ρ̇(t)

∫ ω

0

[
If (x, t)e

−If (x,t) − Im(x, t)e−Im(x,t)
]
dx

+ ρ2(t)

∫ ω

0

[
(I2f (x, t)− If (x, t))e−If (x,t) − (I2m(x, t)− Im(x, t))e−Im(x,t)

]
dx.

(4.A.17)

Fix a t ∈ R for which θ̇(t) = 0. We then get from (4.A.16) that θ̈(t) reduces to

θ̈(t) = ρ2(t)

∫ ω

0

[
I2f (x, t)e

−If (x,t) − I2m(x, t)e−Im(x,t)
]
dx. (4.A.18)

Thus, to establish (4.A.14) it suffices to establish that the integral in (4.A.18) is

negative.

The proof relies on an invocation of Lemma 4.A.1. To bring θ̇(t) and θ̈(t) on a

form more suitable for this purpose, we introduce, with slight abuse of notation, the

variable transform z = I(x, t) and write

θ̇(t) = ρ(t)

[∫ If (ω,t)

0

ff (z, t) dz −
∫ Im(ω,t)

0

fm(z, t) dz

]
, (4.A.19)

θ̈(t) = ρ2(t)

[∫ If (ω,t)

0

zff (z, t) dz −
∫ Im(ω,t)

0

zfm(z, t) dz

]
, (4.A.20)
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where fg(z, t) = ze−z/µg(I
−1
g (z, t), t), for g ∈ {f,m}, is the (transformed) integrand

of the integrals in (4.A.16). We note that I is invertible by the inverse function

theorem, see e.g. Rudin (1976, Theorem 9.24).

Now, since assumption (4.A.2) of Lemma 4.A.1 is equivalent to assumption (4.3.9)

of Theorem 4.3.1, that is,

∂

∂z
log

(
ff (z, t)

fm(z, t)

)
=

∂

∂z
log

(
µm(I−1m (z, t), t)

µf (I
−1
f (z, t), t)

)
≤ 0, (4.A.21)

and since µm(x, t) > µf (x, t) for all x implies that Im(ω, t) > If (ω, t), we can invoke

Lemma 4.A.1 to get that∫ If (ω,t)

0

zff (z, t) dz <

∫ Im(ω,t)

0

zfm(z, t) dz. (4.A.22)

It immediately follows that the integral in (4.A.20), and thereby the integral in

(4.A.18), is negative, and we are done.

4.B Graduation of µ(x)

Suppose we have data on deaths, D(x), and exposures, E(x), for integer ages

x ∈ {0, . . . , 110}. By smoothing the empirical death rates, m(x) = D(x)/E(x), we

wish to obtain an improved representation of the true underlying mortality curve,

µ(x). An example of the graduation procedure described below applied to data is

shown in Appendix 4.6.

4.B.1 General Smoothing

Within the observed age range (0–110) we fit a cubic smoothing spline to the observed

death rates, i.e., we model m by an additive noise model m(x) = f(x) + ε(x) where

ε(x) is assumed iid with mean zero and the cubic smoothing spline estimate f̂ of f

minimizes ∑
x∈X

[
m(x)− f̂(x)

]2
+ λ

∫
f̂ ′′(u)2 du (4.B.1)

where the smoothing parameter λ is fitted through cross-validation and

X = {0, 1, 10, 20, 30, 40, 50, 60, 70, 80, 110}

is the set of knots used. From f̂ , we can obtain smoothed estimates µ̂spline(x) = f̂(x)

for general (non-integer) x.

4.B.2 Old-Age Smoothing

For the highest ages, we smooth the mortality curve by fitting a logistic function to

the observed death rates for ages 80 and above. That is, we fit the Kannisto model

logitµ(x; a, b) = a+ b(x− 80), (4.B.2)
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Figure 4.6: Empiric (dots) and graduated (line) death rates. The graduated mortality
curve is computed through (4.B.4).

with parameters a, b ∈ R, cf. Thatcher et al. (1998). The parameters are found by

maximizing a Poisson log-likelihood

logL(a, b) =

99∑
x=80

[D(x) logµ(x; a, b)− E(x)µ(x; a, b)] , (4.B.3)

for data in the age-range 80–99. Substituting the maximum likelihood estimates â

and b̂ into (4.B.2) yields smoothed death rates µ̂logit(x) = µ(x; â, b̂).

4.B.3 Mortality for the Combined Curve

We calculate smooth death rates for the entire age range by the weighted average

µ̂(x) = µ̂spline(x)(1− w(x)) + µ̂logit(x)w(x), (4.B.4)

with weights w(x) = min(1,max((x− 80)/20, 0)) for x ∈ [0, 110].

4.C Life Expectancy under Piecewise Constancy

Suppose that mortality is piecewise constant over squares of the form [x, x+1)×[t, t+1)

for integer ages x ∈ {0, . . . , 110} = X and calendar years t ∈ T , that is, suppose

µ(x+∆x, t+∆t) = µ(x, t), ∆x,∆t ∈ [0, 1),
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for all x ∈ X , t ∈ T . The assumption of piecewise constancy is convenient for

many calculations of life table related quantities. In particular, for any integer age

of truncation, ω ∈ {0, . . . , 111}, the (truncated) life expectancy can be evaluated

analytically as:

e(x, t) =

∫ ω

x

e−
∫ y
x
µ(z,t) dz dy

=

ω−1∑
i=x

∫ i+1

i

e−
∫ y
x
µ(z,t) dz dy

=

ω−1∑
i=x

(∫ i+1

i

e−
∫ y
i
µ(z,t) dz dy

)
e−

∫ i
x
µ(z,t) dz

=

ω−1∑
i=x

(∫ i+1

i

e−µ(i,t)(y−i) dy

)
e−

∑i−1
j=x

∫ j+1
j

µ(z,t) dz

=

ω−1∑
i=x

[
−e
−µ(i,t)(y−i)

µ(i, t)

]i+1

i

e−
∑i−1

j=x µ(j,t)

=

ω−1∑
i=x

1− e−µ(i,t)

µ(i, t)
e−

∑i−1
j=x µ(j,t).

We use ω = 110 throughout the paper.





Chapter 5

Forecasting, Interventions and Selection:

The Benefits of a Causal Mortality Model

This chapter contains the manuscript Jallbjørn et al. (2022).

Abstract

Integrating epidemiological information into mortality models offers the

promise of improved forecasting performance and opens the possibility for

assessing the gain of preventive measures that reduce disease risk. While

probabilistic models can be used to forecast mortality, predicting how a

system behaves under external manipulation is a causal query that requires

a causal model. Using the framework of potential outcomes, we discuss

how mortality forecasts are affected by interventions and we address the

assumptions and data needed to operationalize such an analysis. We

bring attention to a challenge unique to population-level mortality mod-

els. Common forecasting methods treat risk prevalence as an exogenous

process, determined outside the mortality model. While ignoring (part

of) the inter-dependency between risk and death makes the joint system

easier to forecast, it comes at the cost of the model’s ability to relay

selection-induced effects. Using techniques from causal mediation theory,

we pinpoint the selection effect usually missing in studies on cause-of-death

elimination and when analyzing actions that modify risk prevalence. In

particular, we decompose the total effect of an intervention into a part

directly attributable to the action and a part due to selection effects. We

illustrate the effects using U.S. data.

Keywords: Mortality modelling, risk factors, cause elimination, interventions,

causality.

119



120 CHAPTER 5. JALLBJØRN & JARNER & HANSEN (2022)

5.1 Introduction

Soaring life expectancies throughout the industrialized world have prompted a rapid

increase in research on mortality modelling and forecasting. Predominantly, models

focus on achieving accurate out-of-sample forecasts of future all-cause mortality

relying on age, calendar time, and birth-cohort as sole predictors, e.g. Lee and Carter

(1992), Cairns et al. (2006), and Renshaw and Haberman (2006). These models

serve their purpose well and have proven extremely difficult to beat when it comes

to predicting future death rates. None of them, however, include information about

the causal mechanisms responsible for past trends, but instead assume secular linear

trends at an aggregate level.

To foster a deeper understanding of mortality and its drivers, recent studies

have focused on enriching traditional models by taking into account risk behaviour

that exerts a strong influence on health. The aim is to disentangle the effects of

general health improvements from risk behaviour and its changes over successive

generations. Booth and Tickle (2008) characterize models exploiting relations between

risk prevalence and death as explanatory models but warn that such relationships

are still imperfectly understood. Nonetheless, various advances to make more precise

and better substantiated forecasts by integrating health and lifestyle related trends

have been made in recent years, see in particular Wang and Preston (2009), King

and Soneji (2011), Janssen et al. (2013), Preston et al. (2014), and Foreman et al.

(2018).

Thus far, however, little work exists on how explanatory models open the possibility

for assessing the impact of health interventions in demographic forecasts. Studying

how human longevity can be improved by curing or reducing the prevalence of

existing diseases or by modifying risk behaviour is of great interest with many

potential applications across a range of disciplines including demography, actuarial

risk management, and health economics. In practice, such analyses are difficult to

carry out because of their inherent causal nature, necessitating explicit assumptions

about the data generating process and parameters that can be adjusted to represent

interventions.

Moreover, current frameworks are generally incapable of analyzing the impact of

interventions in a realistic and consistent manner. Explanatory models has hitherto

regarded risk prevalence as an exogenous process, creating a one-sided dependence

structure where risk prevalence affects mortality but not vice versa. This approach

is incongruent with reality where the presence of individual risk factor differences

play a key role in determining who die at a given point in time, which then in turn

affects how much risk is left in the population at later times. Zeger and Liang (1991)

use the term feedback to refer to such inter-dependencies, where the response at

time t influences the risk factor distribution at future times s > t. Because the
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model’s ability to relay selection-induced effects rely on the feedback mechanism

through which the (risk) composition of the surviving population is changed in

accordance with the (risk) composition among those who die, appropriate joint

forecasting methods are required if interventions are to conform with real-world

implementations.

The purpose of this paper is to discuss how mortality forecasts are affected by

interventions and to show by example the assumptions and data needed for such an

analysis to be operationalized. To facilitate this discussion we use the framework

of potential outcomes, see e.g. Imbens and Rubin (2015) and Hernán and Robins

(2020). In particular, we seek to pinpoint the selection-induced feedback effect usually

missing in studies on alternative mortality scenarios. Based on techniques from

causal mediation theory, we propose a method that decomposes the total effect of

cause-of-death elimination into a part directly attributable to death rate deletion

and a part due to selection effects. The overall message is that if we want to make

accurate statements about the effect of an intervention, that is if we are to quantify

both the direct and the indirect effects of an intervention, risk prevalence must

be endogenous to the mortality model. We consider this work a first step towards

demographic forecasting of mortality under interventions.

5.2 When do we need a Causal Mortality Model?

The most pertinent use of a model describing the link between risk behaviour and

cause-specific mortality is to obtain more precise and better substantiated mortality

projections. In many countries, life expectancy has historically evolved in a complex

fashion with periods of near stagnation followed by rapid increases. This history is

hard to reconcile with current mortality models in which the assumption of secular

linear trends is often at odds with reality (Janssen and Kunst, 2007; Jarner and

Jallbjørn, 2022). In contrast, separating lifestyle-related risks and diseases from

mortality allows for a detailed understanding of the historic evolution which in turn

could lead to more solidly founded forward-looking projections.

In general modelling and forecasting (cause-specific) mortality is a problem of

prediction, for which a probabilistic model suffices. That is, if we wish to predict

mortality given the prevalence of concurrent health risks, it suffices to consider a

probabilistic model of the conditional hazard. In theory, it is also possible to use

such a model to study the impact of interventions by perturbing the distribution of

variables that have been conditioned on as is done in conventional stress-tests. But

this analysis will only give a realistic picture of the consequences of an intervention if

the conditional distribution of mortality does not change when the predictors change.
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Figure 5.1: An exam-

ple of confounding.

For example, suppose that we are interested in studying

the effect of the number of cigarettes smoked daily, S, on

the risk of death, D. There is an abundance of evidence

in the literature to support the conclusion that the more

one smokes, the higher one’s risk of death becomes. We can

represent this cause-effect relationship concisely as ‘Smoking

→ Risk of death’. Suppose we focus on the regression task of

learning s 7→ E[D|S = s]. It is then tempting to interpret E[D|S = s]− E[D|S = 0]

as the expected increase in survival for a smoker, who quits smoking. But such

an interpretation is invalid in the presence of confounding factors. A confounding

factor is any variable that influences both risk exposure and response. Here we

could imagine the relationship depicted in Figure 5.1. A lack of commitment to

not smoke tends to co-occur with a higher susceptibility to being obese through

various underlying social factors. Since associations between the risk factor ‘Smoking’

and the outcome may arise not only through the number of cigarettes smoked daily

but also through the underlying factors that determine general risk behaviour, the

parameters associated with E[D|S = s] may have no causal meaning.

In comparison, the distinctive feature of a causal model is its ability to represent

and update its prediction endogenously in response to changing conditions. This

ability stems from the property that the conditional distribution of a variable given

its causes is stable under interventions that only affect other variables. That is, the

generative mechanism for a variable not targeted by an intervention is left intact.

Several comprehensive books have been devoted to the topic of causal inference

and discovery, see e.g. Spirtes et al. (2000), Pearl (2009), Imbens and Rubin (2015),

Peters et al. (2017), and Hernán and Robins (2020), and we will thus not give an

in-depth account of the concepts and methods here. In the present paper we focus

on defining and decomposing the effects of interventions in demographic forecasts of

mortality with a particular emphasis on the role of selection.

5.2.1 When is a mortality model causal?

To give precise answers to causal questions, we need to invoke restrictive assumptions

about the data generating process. A formal account of the ones needed can be found

in, e.g., Robins (1998), Robins et al. (1999), and Hernán and Robins (2020). These

may hold by virtue of study design, for instance in a randomized controlled trial,

but generally we can only identify causal effects from observational data when there

is no unmeasured confounding. Because no regard is paid to confounding factors

in a standard regression analysis, these estimates cannot be endowed with a causal

interpretation. This issue is also well recognized in the mortality forecasting literature,

for instance by King and Soneji (2011) who carefully remark: “Indeed, none of our

results should be seen as claims about the causal effects of obesity, smoking, or any
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other factor.”.

Estimating causal effects is an ambitious task requiring specialized methods, sub-

ject matter expertise, and detailed individual-level health data. To operationalize a

causal mortality model, dose-response relationships must be based on epidemiological

evidence from the literature, supported by trial and cohort data. Recent advances

in the field of epidemiology, spearheaded by the Global Burden of Disease (GBD)

initiative, may assist in bridging this gap between mortality and its determinants.

In particular, Murray et al. (2020) gives a standardized and comprehensive account

of how 87 risk factors interact and affect different causes of death, covering in total

560 risk-outcome pairs based on a systematic review of partial studies. Using data

from the GBD, it is possible to construct a causally interpretable mortality model

with the aim of forecasting country specific mortality under varying scenarios. We

take up this task in the second part of the paper.

The modelling choices we make are close in spirit to the seminal work of Foreman et

al. (2018), who also build an explanatory model based on the GBD estimates with the

aim of substantiating mortality forecasts and exploring alternative health scenarios.

While Foreman et al. (2018) does evaluate better/worse scenarios, these are made

using a more conventional stress testing procedure, where the improvement rates of

the risk factors are varied. They stress that such scenarios are to be understood as

“[...] a signal on the scope for policy change”, rather than actual alternative scenarios.

We wish to expand on their method of analysis and explain which additional model

components are needed to evaluate actual interventions.

5.2.2 Feedback between mortality and risk prevalence

Building and calibrating a causal mortality model comes with the general challenges

intrinsic to causal modelling and discovery, some of which are described in the

previous section. In this paper we bring attention to an additional challenge which

is unique to predicting mortality under interventions in population-level models,

namely the second-order effects that arise due to selection over time and how these

can be quantified.

In general, perturbing any one part of a system has a ripple effect as the initial

disturbance propagates to the remaining system over time. This is also true when

concerned with the dynamics of mortality which is subject to a selection-induced

feedback mechanism: if the risk composition among the survivors change, the compo-

sition among those who die also change and vice versa. We aim to explicate the effect

relayed through the feedback mechanism under two types of interventions, namely

i) on actions that target the death rates directly (i.e., cause-of-death elimination),

and ii) on actions that modify behavioural risk factor prevalence thus targeting the

death rates indirectly.
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Cause-of-death elimination

The impact of eradicating certain causes of death is a topic widely debated in the

literature, dating back to Bernoulli’s discussion of a hypothetical world without

small-pox, presented before the French Academy of Sciences in 1760 (Karn, 1931).

The pivotal assumption made by Bernoulli, namely that individuals “saved” from the

eliminated cause are as susceptible to dying from the non-eliminated causes as the

general population, still permeates most cause-deleted lifetable calculations today.

Indeed, the prevailing methodology is to directly manipulate the cause-specific death

rates of interest, while leaving remaining rates unaffected. This is commonly referred

to as cause elimination under an assumption of independent competing risks, an

approach that typically overstates the actual effect because it fails to account for

subsequent selection, cf. Keyfitz (1977b).

Some papers recognize the issue of dependence among competing causes in their

estimates of cause-deleted life tables, e.g. Manton and Poss (1979), Mackenbach

et al. (1999), Kaishev et al. (2007), Dimitrova et al. (2013), Alai et al. (2015), and

Li and Lu (2019), but they do not explain the pathways through which dependence

originates. We give one way of explaining the dependence by linking individual risk

behaviour to cause-specific mortality. It is this link that allows us to explicate the

consequences of selection following cause elimination.

As a motivating example, suppose that we are able to prevent all deaths due to

lung cancer by some unusually successful targeted laser therapy1. In this hypothetical

world there will, at least initially, be fewer deaths compared to the world where

the cause still operates. But since everyone eventually dies, deaths are ultimately

redistributed among remaining causes. What is left is then to quantify how soon

those “saved” die from something else, and what they die from instead. Because

individuals who die from lung cancer are predominantly smokers, improvements in

the treatment of lung cancer will indirectly affect (and most likely increase) the

mortality rates for other tobacco-attributable causes such as heart diseases, following

the progressive build-up of smokers in the population. The initial decrease in the

aggregate death rate due to lung cancer being eradicated is thus partly offset by a

subsequent “harvesting” of the “saved” smokers. We will return to this point later

in the paper.

1The intervention ‘prevent all deaths due to cause k’ is ambiguous and it is crucial to define the
precise manner in which such elimination is achieved. Here, we focus on interventions that affect
the treatment of lung cancer, rather than interventions that affect the underlying risk factors. If, in
this example, the elimination of lung cancer was achieved by convincing the entire population to
never have smoked, the impact of the intervention would be far greater, because not only the lung
cancer rate but all tobacco-attributable death rates would be lowered.
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5.3 The Feedback Mechanism

To define interventions and their consequences on mortality, we will conceptualize

how risk mechanisms at the level of individuals transfer to the level of populations

in the framework of potential outcomes. We establish the basic relations in this

section and use them to obtain a visual representation of the feedback mechanism

through which mortality and risk prevalence influence each other. We then give an

instructive example that demonstrates the role of the mechanism in a scenario of

cause-of-death elimination.

For ease of exposition, we consider the dynamics of a single ageing (birth) cohort

followed until some maximum attainable age ω ∈ (0,∞). Since age and calendar time

advance synchronously in this case, we omit dependence on time in the following.

Consider i = 1, . . . , n independent lives endowed with an age-varying vector of

categorical2 covariates Z(i)(x) and denote by an overbar the history of the covariate

process, i.e. Z̄(x) = (Z(u) : 0 ≤ u ≤ x). Let z̄(x) = (z(x) : 0 ≤ u ≤ x) be a possible

(fixed) covariate trajectory and define X z̄ as the individual’s potential life time had

covariate exposure been z̄ with z̄’s dependence on x suppressed. For each possible

trajectory of z̄ the distribution of X z̄ is completely characterized by the hazard rate

µz̄(x) := lim
dx→0+

P
(
x ≤ X z̄ < x+ dx | X z̄ ≥ x

)
/dx. (5.3.1)

The superscript identifies that µz̄ is the hazard function for X z̄. We can relate the

potential outcome to the observed outcome by making the assumption of consistency,

namely that the two coincide for the observed covariate trajectory, i.e. X(i) = X z̄

when Z̄(i)(x) = z̄(x) for all 0 ≤ x ≤ X(i).

All-cause mortality is decomposed by considering k ∈ {1, . . . ,K} mutually exclu-

sive and exhaustive causes of death. This is a situation of competing risks, where

different causes compete to end the life of an individual and occurrence of one event

precludes occurrence of the remaining. The cause-specific hazard µz̄k characterizes

the instantaneous rate of death from cause k in the presence of competing causes

and is constructed such that
∑K
k=1 µ

z̄
k(x) = µz̄(x) for all x.

5.3.1 The relative risk model

To facilitate estimation and inference, some structure must be imposed on the hazard.

In epidemiological and biostatistical applications where the inferential goal is to

establish causal explanations for the etiology of disease and death, mortality is often

studied in the relative risk framework. Motivated by the framework used in the

GBD, we adopt a simplified paradigm3 in which the death rate is related to z̄ in a

2Covariates are, especially for large cohort studies, often reported as categorical variables even
when the underlying exposure is continuous.

3We note that (5.3.2) is a partly conditional model in the sense that it does not condition on
the entire covariate history of the individual but only on the concurrent exposure. Nonetheless,
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multiplicative fashion adhering to the form

µz̄k(x) = µ0k(x) exp
(
β⊤k z(x)

)
, (5.3.2)

where µ0k is the baseline hazard describing mortality for an individual with no excess

risk, and βk are coefficients governing the effect of risk exposure. Equation (5.3.2)

can be classified as a marginal structural model in the sense that it provides a

structural (and thereby causal) description of the marginal distribution of X z̄. This

interpretation will be important when arguing about the effects of interventions.

5.3.2 Mortality from the individual’s point of view

To visualize the inter-dependence between an individual’s exposure to risk and

probability of death, notice that the life time X(i) gives rise to the multivariate

counting processes N (i)(x) = (N
(i)
1 (x), . . . , N

(i)
K (x)) where N

(i)
k (x) = I(X(i) ≤ x, δ =

k) is an indicator function registering whether or not an individual has died at age

x from cause k, with δ designating cause. If we let D
(i)
k (x) denote the increment

of N
(i)
k (x) over an infinitesimally small interval [x, x+ dx), that is the number of

deaths observed in the interval, then, informally,

P(D
(i)
k (x) = 1 | individual i alive just before age x) = µ

(i)
k (x)Y (i)(x)dx (5.3.3)

where Y (i)(x) = I(X(i) ≥ x) denotes the at-risk indicator. Thus, the expected (local)

change in the death process is a function of the individual’s covariates and their

survivorship status. We note that Y (i) depends on the set of causes operating, but

we suppress this in the notation for now.

Let 0 = x0 < x1 < · · · < xJ−1 < xJ = ω be a partition of [0, ω]. We can then

depict the functional relationships of the joint model from the individual’s point of

view graphically as in the left panel of Figure 5.2. The graph is to be read as follows.

At a given age xj , we first observe if the individual is alive. In the affirmative, Z(i)(xj)

is defined with its current value depending on its previous state. The number of

events between xj and xj+1 is

D
(i)
k (xj) =

∫ ω

0

I(xj ≤ x < xj+1) dN
(i)
k (x) = I(X(i) ∈ [xj , xj+1), δ = k), (5.3.4)

for j ∈ {0, . . . , J −1}, and is observed immediately after Y (i)(xj) and Z
(i)(xj). Once

an individual experiences an event at some age xj , all future variables Y (i)(xj′) and

D(i)(xj′) are deterministically zero while covariates Z(i)(xj′) are undefined for j′ > j.

From a modelling perspective, the graph shows that the forecasting procedure can

be modularized by determining first the covariate dynamics (without regard to the

specific time of death) and subsequently the death rate given the covariates. Thus,

forecasting risk exposure prior to mortality is an admissible strategy at the level of

individuals.

(5.3.2) can also accommodate prior behaviours by making them explicit levels of the categorical
covariates.
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Figure 5.2: Directed acyclic graphs describing the functional relationship between death
and risk prevalence: (left panel) individual-level model, (right panel) population-level
model obtained by marginalizing over surviving individuals. The arrow D(xj) → Y (xj+1)
represents the feedback mechanism.

5.3.3 Moving to the population level

In demographic and actuarial studies of mortality the focus is on the aggregate

age-specific death rate. To relate the individual level model to the population

level we marginalize (5.3.2) over surviving individuals. The corresponding counting

process is N(x) = (N1(x), . . . , NK(x)) with increment D(x) = (D1(x), . . . , DK(x))

where Nk(x) =
∑n
i=1N

(i)
k (x) and Dk(x) =

∑n
i=1D

(i)
k (x). Importantly, the intensity

process for Nk(x) is

n∑
i=1

µz
(i)

k (x)Y (i)(x) = µ0k(x)

n∑
i=1

exp
(
β⊤k z

(i)(x)
)
Y (i)(x). (5.3.5)

Since covariates are categorical, we can assume a grouping of the individuals

based on their covariate configuration. We denote the G ∈ N+ different subgroups

of individuals by g ∈ {1, . . . , G} = G and their covariate configuration by zg. This

grouping depends on age, because it is performed on the basis of age-varying

covariates. The proportion of surviving individuals in group g at age x is πg(x) =

Yg(x)/
∑
g∈G Yg(x) where Yg(x) =

∑n
i=1 Y

(i)(x)I(z(i)(x) = zg) is the number of

individuals alive in group g. Now, with Rkg = exp(β⊤k zg) being the combined

relative risk of group g for cause k we can write (5.3.5) as a weighted average

µ0k(x)

n∑
i=1

exp
(
β⊤k z

(i)(x)
)
Y (i)(x) = µ0k(x)

∑
g∈G

πg(x)Rkg =: µπk (x), (5.3.6)

where π(x) ∈ {p ∈ [0, 1]G |
∑G
g=1 pg = 1} is the potential risk factor composition

identified by the superscript π.

The right panel of Figure 5.2 illustrates the aggregate equivalent model obtained

from collapsing the individual level variables. Importantly, Y (i) and Z(i) are collapsed

into a single node Y (x) = (Y1(x), . . . , YG(x)) representing the number of individuals

alive in the G groups at age x. The arrow D(xj)→ Y (xj+1) encodes feedback; the

risk composition among those who die at age xj affects the risk composition among
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those left alive at age xj+1. As a consequence, the forecast of risk prevalence Y

cannot be modularized without cost in the same way that the forecast of individual

level risk factors Z(i) can. If risk prevalence is exogenous in the sense that Y (xj+1) ⊥⊥
D(xj) | Y (xj) then there is no edge D(xj)→ Y (xj+1) whereby the model explicitly

ignores the feedback effect. Consequently, the risk composition becomes invariant to

any intervention that would cause a change in death rates. Thus, feedback must be

recognized if perturbations are to reflect real-world implementations of interventions.

An example: Changes in population composition due to cause elimination

It is instructive to see how eradication of a cause-of-death impacts the remaining

causes in the simplest possible setting. Consider therefore a closed population

consisting of two homogeneous subgroups, differing only by their exposure to a

binary risk factor Z ∈ {0, 1}. Suppose that there are two causes operating in this

world, governed by the individual-level model

µzk(x) =

{
µ0k(x), if z = 0,

µ0k(x)Rk, if z = 1,
(5.3.7)

with Rk > 1, µ0k(x) > 0 for all x ≥ 0 and both k ∈ {1, 2}. At the population

level, the cause-specific hazard is a weighted average of the healthy (z = 0) and the

unhealthy (z = 1) subpopulations

µπk (x) = π(x)µz=1
k (x) + (1− π(x))µz=0

k (x), (5.3.8)

where π(x) is the proportion of unhealthy individuals at age x, namely

π(x) =
π(0)Sz=1(x)

(1− π(0))Sz=0(x) + π(0)Sz=1(x)
=

[
1− π(0)
π(0)

Sz=0(x)

Sz=1(x)
+ 1

]−1
, (5.3.9)

with survival function Sz(x) = exp{−
∫ x
0
(µz1(u) + µz2(u)) du} and π(0) ∈ [0, 1] being

some initial state.

Now, consider the “reference” world with both causes operating, K = {1, 2}, and
a hypothetical world in which cause 1 has been eradicated, K∗ = {2}. Because of

competing risks, we need to be mindful that the cause k hazard is evaluated in

the presence of other causes. We make this explicit in the notation now with πK

identifying the risk proportion and SK,z the survival function in a world where a

specific (sub)set of causes K ⊆ {1, 2} are operating. By the assumptions above, we

have that

SK,z=0(x)

SK,z=1(x)
= exp

{∫ x

0

[µ01(u)(R1 − 1) + µ02(u)(R2 − 1)] du

}
≥ SK

∗,z=0(x)

SK∗,z=1(x)
,

(5.3.10)

which, combined with (5.3.9), implies that πK(x) < πK
∗
(x) for all x > 0. Thus,

eradicating cause 1 weakens the selection mechanism resulting in a progressive
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Figure 5.3: Example effect of cause elimination for a cohort aged 20. The initial
proportion of unhealthy individuals is π(0) = 1/3. Baseline mortality curves are given by
µ01(x) = exp(−11.69 + 0.074x) and µ02(x) = exp(−10.58 + 0.088x) and relative risks by
R1 = 5 and R2 = 2.5. The parameters are calibrated to reflect current death rates due
to cancer and residual causes. The upper right panel visualizes the build-up of unhealthy
individuals following cause-1 elimination, while the lower right panel pictures the subsequent
harvesting. The left panel shows the remaining life expectancies prior and post elimination.
In this example, the feedback effect reduces the life expectancy gained by about a quarter
of a year.

build-up of unhealthy individuals, which makes the cause 2 death rate rise at the

population level

µπ
K∗

2 (x)− µπ
K

2 (x) = µ02(x)(R2 − 1)
(
πK

∗
(x)− πK(x)

)
> 0, x > 0. (5.3.11)

Equation (5.3.11) describes an indirect effect of cause removal brought about by a

change to the risk composition through the feedback mechanism. We will formalize

the distinction between direct and indirect effects of cause removal later. For now,

notice that if the model ignored the feedback effect in the sense that πK was given in

advance, and not on the basis of (5.3.9), then the indirect effect would be zero since

πK(x) = πK
∗
(x) for all x. The effects of cause removal are exemplified in Figure 5.3.

5.4 A Causal Mortality Model

For the remainder of the paper, we switch focus to a model spanning multiple birth

cohorts and therefore consider a population defined in the rectangular age-period

region

Rdata = {(x, t) | xmin ≤ x ≤ xmax; tmin ≤ t ≤ tmax} . (5.4.1)

To give a proper justification for the declining mortality rates observed over the

past centuries, one needs to model the influence of both individual and contextual

factors on the risk of death. Contextual factors are the general living conditions to

which all individuals are exposed, while individual factors may be divided into two

types – observable and unobservable. We do not consider unobserved heterogeneity

in the following, although this could be modelled using standard frailty theory as
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in Vaupel et al. (1979). Our focus is instead on individual differences relating to

(observable) health and lifestyle related behaviour. Following the notation outlined in

the previous section, we assume that the cause-specific death rate under a potential

covariate trajectory z̄(x) follows the relative risk regression model

µz̄k(x, t;C(t)) = µ0k(x;C(t)) exp
(
β⊤k (x)z(x)

)
. (5.4.2)

Here, the pair (x, t) ∈ Rdata identifies the cohort in question. Individual risk

exposure is captured as a multiplicative effect on the baseline rate. The relative risk

coefficients βk vary with age but not over time. Age-related changes are consistent

with current epidemiological research which indicates that the relative effect of (most)

risk exposures dissipate over the course of a life span. Time invariance is, however,

only justifiable over short- to medium horizons as it renders the model unable to

capture temporal changes in the effect of exposure.

The process C(t) describes the evolution of contextual variables such as improve-

ments in food security, water supply, and sanitation, innovations in public health and

medicine, the development of a health care system, GDP, and so on. It plays a dual

role as a time-varying confounder process that must be controlled for to ensure that

the βk’s have a causal interpretation, and acts as an effect modifier by stratifying the

baseline death rate. Because the evolution of these environmental factors exhibits

high co-linearity with the calendar year in which they are measured, we typically

equate C(t) = t whereby calendar time acts as a surrogate confounder. This means

that death rates may change over time due to various unobserved factors, which is

then captured by distributional changes as a function of time.

The equivalent of (5.4.2) at the population level obtained through aggregation

under the assumption of categorical covariates reads

µπk (x, t;C(t)) = µ0k(x;C(t))
∑
g∈G

πg(x, t)Rkg(x), (5.4.3)

where Rkg(x) = exp(β⊤k (x)zg) collects the risks of individuals in group g associated

with each covariate and thus describes the combined relative risk of a given group.

Both the individual and population level models fit within the relative risk framework.

Whereas (5.4.2) relies on a specific covariate configuration, the aggregate model

collapses the entire heterogeneous population into a single risk weighted individual

with relative risk

Rπk (x, t) =
∑
g∈G

πg(x, t)Rkg(x). (5.4.4)

5.5 Forecasting, Interventions and Selection

We turn to the impact of interventions on demographic mortality forecasts. Demo-

graphic forecasting is centered around the projection of population level quantities
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Figure 5.4: Rolled graphs of models with and without interventions. The blue arrow
encodes feedback. Panel (A) shows the unintervened setting describing the relationship
between π, M, and C. Panels (B) and (C) are graphs of models where the death process
and the risk process are indexed by possible actions. In panel (B) the action is on the set
of causes operating and in panel (C) the action is an intervention on the risk distribution.

such as the aggregate death rate. Predominantly, the stochastic processes considered

are indexed by discrete time and standard time series methods are used for prediction.

Even though we also view our data as time series in the following, all the points

made can be extended to the continuous time case.

Our focus will be on time points in the forecast region τ ⊆ Z. We have three

processes we need to consider jointly. The multivariate process containing the

cause-specific death ratesM = {M(t)}t∈τ whereM(t) = (µ1(t), . . . , µK(t))⊤ with

components µk(t) = (µk(xmin, t), . . . , µk(xmax, t))
⊤, the multivariate risk prevalence

process π = {π(t)}t∈τ where π(t) = (π(xmin, t), . . . , π(xmax, t))
⊤, and the confounder

process C = {C(t)}t∈τ . To understand how interventions affect this system, we

must describe how the processes influence each other, and, in particular, whether

or not one process has predictive power over another. The concept of Granger

causality (Granger, 1969) known from econometrics formalizes the notion of influence

between processes, and is particularly useful for studying dynamic relationships in

multivariate time series. We give a precise definition and explain how the concept is

used to obtain graphical representations in Appendix 5.A.

We can represent the system by the graph shown in Figure 5.4 Panel (A). In the

graph each process is represented as a single node with time being implicit. Two nodes

are joined by a directed edge whenever a process at time t is predictive for another

process at a future time s > t. For instance, in a model with feedback the cycle

π →M→ π represents a mutual dependence betweenM and π. The level of risk

faced by the population at time t affects the death rate experienced between t and t+1,

which in turn affects risk prevalence at time t+1. Conversely, the absence of an edge

implies that a process is not predictive for another. Thus, in a model without feedback

there is no arrow pointing fromM to π because π(t+ h) ⊥⊥M(t) | (π(t), C(t)) for
any h ∈ N+. This relation is asymmetric in the sense that the risk composition

always predicts the death rateM(t+ 1) ⊥̸⊥ π(t) | (M(t), C(t)).
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5.5.1 Cause-of-death elimination

Inspired by Eichler and Didelez (2007, 2010), we consider a set of actions Aµ =

(A1, . . . , AK) that act on components ofM(t) through all points in time t ∈ τ . For
our purposes, each Ak takes values in {0, 1} describing two different regimes. Having

Ak = 0 corresponds to no action on the k’th component, while Ak = 1 is an atomic

intervention that forces µk(t) to be zero for all t ∈ τ . More general interventions

could also be considered but will not be pursued in the present paper.

We assume that intervening on the k’th component of M does not affect the

remaining components or the remaining processes in the system other than through

past variables that may develop differently depending on the intervention.4 We

can then represent an intervention on M by augmenting the graph in Figure 5.4

Panel (A) with an additional source node Aµ pointing intoM as shown in Panel (B).

Because Aµ is a decision variable it is represented graphically by a box and indicates

possible eradication of certain causes of death. The variable MK is a potential

outcome indexed by the set of causes operating following the action Aµ = a. Risk

prevalence πK is likewise indexed by this set as it may develop differently depending

on which components inM that are affected.

It follows that without feedback there is no causal effect of intervening inM on

π(t) for any t ∈ τ . Thus the figure with the blue feedback edge removed represents

a model where the action of cause removal only has a direct effect on the risk of

death, because there is no indirect effect through variables between time points t and

t+ h, h ∈ N+. In other words, while the action does prevent specific types of death,

thereby increasing the absolute number of deaths at later points in time because

of competing risks, it changes neither the relative risk composition nor the death

rates of non-eliminated causes. When the model includes feedback the risk process

acts as an intermediate variable that mediates an additional effect through the loop

M→ π →M. In this case, cause-elimination weakens the selection mechanism and

leads to larger (relative) concentration of high-risk individuals at future time points.

A decomposition of the death rate

The causal contrast of interest is the difference between the death rate in the reference

world where all causes are operating compared to the rate in a world where only a

subset of causes are operating. The all-cause death rate is

µK(x, t;C(t)) =
∑
k∈K

µ0k(x;C(t))
∑
g∈G

πK
g (x, t)Rkg(x). (5.5.1)

4Formally, we can write this assumption as (C(t), π(t),M−k(t)) ⊥⊥ Ak|(C̄(t−1), π̄(t−1),M̄(t−
1)) for all t ∈ τ where M−k(t) denotes M(t) without the k’th component. It is important to note
that Ak is not a stochastic variable thus altering slightly the meaning of the ⊥⊥–symbol. Here, ⊥⊥
expresses that the distribution of (C(t), π(t),M−k(t)) is the same regardless of the value of Ak, cf.
Dawid (2002).
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Here, µK is a single-world quantity where the K-index refers to both the set of causes

entering the sum and the world in which π is evaluated. Examining the impact of

an intervention Aµ = a∗ that leaves only a subset of causes K∗ ⊊ K = {1, . . . ,K}
operating comes down to evaluating the difference

TE(x, t) = µK(x, t)− µK
∗
(x, t), (5.5.2)

which constitutes the total causal effect. We have left the conditioning on C implicit

for readability. Comparing the total effect in the model without feedback to the

total effect in the model with feedback does tell us something about how much of the

effect is mediated via the risk process, but it does not give us a clean decomposition.

Instead, we consider the standard definitions of natural direct and indirect effects

from the mediation literature adapted to the present setup, cf. Robins and Greenland

(1992) and Pearl (2001).

We seek to measure the direct effect of the action Aµ = a∗ associated with

the arrow Aµ →MK∗
separately from the indirect effect associated with the loop

πK
∗ →MK∗ → πK

∗
. To this end, we introduce a cross-world model. Cross-world

models specify a joint distribution of processes corresponding to different values of

the action Aµ = a∗. We introduce the cross-world quantity µK
∗,πK

indexed by both

K∗ and K to denote the death rate in a world where causes K \ K∗ are eliminated,

but where the risk process develops as if all causes were still operating. To achieve

this, we need “to run”MK simultaneously to drive the risk process πK. Note that

µK,π
K
= µK and µK

∗,πK∗

= µK
∗
.

The total effect (5.5.2) may now be decomposed into a part directly attributable

to cause removal, i.e. the expected change in µ induced by replacing the set of causes

K with K∗ while keeping the “mediator” fixed at its reference value πK, and an

indirect effect relayed through the mediating variable. We write

TE(x, t) = µK,π
K
(x, t)− µK

∗,πK
(x, t)︸ ︷︷ ︸

def
= DE(x,t)

+µK
∗,πK

(x, t)− µK
∗,πK∗

(x, t)︸ ︷︷ ︸
def
= IE(x,t)

, (5.5.3)

where the natural direct (DE) and indirect (IE) effects are given by

DE(x, t) =
∑

k∈K\K∗

µ0k(x;C(t))
∑
g∈G

πKg (x, t)Rkg(x), (5.5.4)

IE(x, t) =
∑
k∈K∗

µ0k(x;C(t))
∑
g∈G

[
πKg (x, t)− πK

∗

g (x, t)
]
Rkg(x). (5.5.5)

We note that (5.5.4) marks the change in µ caused by simply subtracting the death

rates of causes K \ K∗ from the all-cause rate without adjusting risk prevalence.

This action coincides with the notion of cause removal in the setting of independent

competing risks in which elimination does not alter the composition of the surviving

population.
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5.5.2 Alternative risk prevalence distributions

Another type of intervention deals with the effect on mortality brought about

by changing risk prevalence from the reference distribution π to some alternative

distribution πa. We consider a set of interventions Aπ = {A(t)}t∈T for a subset of

time points T ⊆ τ . Each A(t) can be represented as a point in the G− 1 dimensional

probability simplex {p ∈ [0, 1]G |
∑G
g=1 pg = 1}, augmented by an additional state ∅

that represents no action. We assume that an intervention on π(t) is i) not predictive

for earlier or remaining contemporaneous variables; and that ii) future variables are

unaffected by the intervention other than through past variables.5 An intervention

on π is then represented graphically as in Figure 5.4 Panel (C) with π andM indexed

by the action Aπ = a.

Measuring again the total causal effect on the risk difference scale, we have

µπ
∅

k (x, t;C(t))− µπ
a

k (x, t;C(t)) = µ0k(x;C(t))
∑
g∈G

[
π∅g(x, t)− πag (x, t)

]
Rkg(x)

(5.5.6)

for cause k. The total effect can be decomposed in a similar manner to what we did

when the intervention was onM. We introduce the cross-world quantity πa,a
∗
where

the action on π is a, but the death rates behave as if it were a∗. The cross-world

process πa,∅ is thus the risk process when the action is a but with the death process

developing as if no intervention has been made. Omitting the dependency on C for

readability, we can then write the total effect of the action Aπ = a on cause k as

µπ
∅

k (x, t)− µπ
a

k (x, t) = µπ
∅,∅

k (x, t)− µπ
a,∅

k (x, t)︸ ︷︷ ︸
natural direct effect

+µπ
a,∅

k (x, t)− µπ
a,a

k (x, t)︸ ︷︷ ︸
natural indirect effect

. (5.5.7)

Because all effects are effectively mediated via π itself, the decomposition is com-

plicated to interpret. The direct effect is the effect as if there were no feedback. It

describes the change in the death rate following one or more perturbations of the risk

prevalence distribution in a world where mortality does not influence risk prevalence.

In other words, the risk prevalence prediction is completely unaffected by the fact

that the risk composition among those dying in the π∅-regime is different from that

in the πa-regime.

The indirect effect describes a self-exciting change to the death process due to it

developing differently within the πa-regime. It is helpful to have a concrete example

in mind. Suppose that we intervene on a “marginal” risk factor distribution. For

example, consider a situation where the proportion of obese has been substantially

increased. Because of competing risks, influencing the risk of any one event will also

influence the risk of the remaining (on a population level). Therefore, we expect

5Formally, these conditions read (M(t), π(t−1), C(t)) ⊥⊥ A(t) and {Q(t+h)}h∈N ⊥⊥ A(t) | Q(t),
where Q(t) = (M(t), π(t), C(t))⊤.
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smokers to die out faster on average compared to the reference scenario, because

their risk of death from obesity related causes has increased. Conversely, we expect

the death rates of tobacco-attributable causes to drop – even the death rates of

causes that are solely attributable to smoking behaviour such as chronic obstructive

pulmonary diseases. This is a selection-induced false protectivity phenomena; a

seemingly reverse association where an increase in obesity appears protective for

tobacco-attributable causes. The feedback mechanism is responsible for capturing

such change.

The strength of a model that preserves the feedback mechanism lies in its internal

consistency. The system is always able to determine risk prevalence endogenously

within the model based on a potential risk composition at projection jump-off, for

example given a single initial shock, but is also capable of describing a gradual

shift in prevalence towards some target distribution. Using a model for which risk

prevalence is exogenous, complex and detailed scenarios are difficult to produce in a

consistent manner, as we are only able to quantify mortality given all underlying risk

factors and their mutual temporal development throughout the entire forecasting

region. The problem of obtaining consistent scenarios of competing death rates is

then simply recast into a problem of producing a consistent and realistic development

of the risk factors.

5.6 An Application to US Data: Illustrating the Direct and

Indirect Effects of Cause-of-Death Elimination

We consider an application of the methodology outlined in the previous sections to

U.S. risk and mortality data. To keep the exposition concise we restrict the analysis

to the SNAP risk factors: smoking, poor nutrition, excess alcohol consumption,

and insufficient physical activity. These four modifiable lifestyle related risks are

associated with most causes of death.

5.6.1 Data sources

We use the relative risk estimates of Murray et al. (2020), part of the Global Burden

of Disease initiative, to describe the link between risk exposure and mortality. The

estimates are reported as time homogeneous quantities by sex and 5-year age groups.

To get single age estimates we perform linear interpolation with the age bucket

centroids as fixed points, see Appendix 5.C.

For smoking the risk-outcome relationship is listed by either current number of

cigarettes smoked daily or by pack-years. Pack-years collapses smoking intensity and

duration into a single variable, so that we do not have to condition on the entire

smoking history of an individual. One pack-year is the equivalent of having smoked

one pack of cigarettes (20) a day for a year. For a given sex, age, and risk-outcome
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pair the exposure category is listed in jumps of 10. We use natural cubic spline

interpolation between categories to obtain a continuous dose-response curve, see

Appendix 5.C.

As an indicator for nutritional status we use the Body Mass Index6 (BMI), which

is the dominant metric for categorizing individuals in terms of weight excess or

deficiency. The relative risk is reported per five-unit change in BMI with 20 to

25 kg/m2 being the baseline category. Risks for alcohol consumption are reported

directly in terms of grams consumed per day while the relative risk for physical

activity is measured in metabolic equivalents (METs) with one MET being the rate

of energy expenditure at rest.

Cause of death data is extracted from CDC WONDER (2020) and contains U.S.

specific mortality and population data through the years 1999–2018. The data is

based on death certificates on which a single underlying cause of death is registered.

Matching the data with risks from the GBD study of Murray et al. (2020), we

consider in total 35 causes of death known to be influenced by the risk factors. These

causes make up about two-thirds of the total age-specific deaths in the population

above the age of 35. To obtain an exhaustive list of causes such that the sum of

the cause-specific rates equals the all-cause rate, remaining causes are collected and

aggregated into a ‘residual’ category and assigned a relative risk of one for all risk

factors.

Risk prevalence data is collected from the IPUMS National Health Interview

Survey (NHIS) database (IPUMS, 2019). The NHIS is a large cross-sectional survey

conducted annually by the U.S. government and contains comprehensive health and

behaviour data at the level of individuals. The IPUMS NHIS data relies on sampling

weights to produce representative estimates. Each unit of study can thus be inflated

such that the sum of the weighted units constitutes the entire U.S. population.

The present analysis is based on adult individuals covering ages 20–84 and years

1999–2018. Observations with missing data are placed into the baseline category.

Pack-years of smoking exposure is constructed by assuming that the amount someone

currently smokes has not changed since they began smoking. Exposure among former

smokers is estimated using years since cessation and average cigarette consumption

of the respective cohort. Figure 5.5 shows the evolution of risk prevalence over time.

5.6.2 Baseline model

For modelling purposes we assume that the (true) hazard rate µk is constant over

the squares [x, x+ 1)× [t, t+ 1) for integer ages x and calendar years t. We consider

6Body Mass Index := weight in kilograms
(height in meters)2

. A BMI below 18.5 is considered underweight and a

BMI in the range 25–29.99 is considered overweight. A BMI of 30 or above is classified as obese,
subdivided into three categories: 30–34.99 is Class I, 35–39.99 is Class II, and 40 or greater is Class
III.
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Figure 5.5: U.S. risk proportions of BMI, smoking, alcohol consumption, and physical
activity based on IPUMS data for both sexes and ages 20–84. The data shown in the figure
is aggregated for the purpose of visual presentation. More granular data is used in the
application.

data on the form of cause-specific death counts, Dk(x, t), with corresponding central

exposure to risk estimates, E(x, t), and group-wise risk factor prevalence proportions,

πg(x, t), over age-time cells in the age-period grid, Rdata. From these quantities we

can define the empirical cause-specific death rate

mk(x, t) =
Dk(x, t)

E(x, t)
, (5.6.1)

an estimate of the underlying hazard µk. Furthermore, we assume to have collected

data on βk(x), making Rk(x, t) a known quantity. Consequently, only the baseline

in (5.4.3), parametrized in terms of some vector θ, needs to be estimated. This is

typically done via maximum likelihood, and it is customary to assume that

Dk(x, t) | E(x, t), Rk(x, t), C(t)
indep.∼ Pois (E(x, t)Rk(x, t)µ0k(x;C(t), θ)) . (5.6.2)

Contrary to all-cause mortality that is generally well-behaved as a function of age,

cause-specific mortality may exhibit several structural changes over the age span.
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Figure 5.6: Empirical (dotted), fitted (solid black), and baseline (solid grey) death rates
for the top 10 leading causes of death in the dataset. The gap between the black and grey
lines expresses the excess risk faced by the population due to deviations from baseline levels
of exposure in the risk factors considered.

Sudden rapid increases, periods of constancy, and even declines are not unusual. We

could in principle use different functional forms to model µ0k depending on cause,

however stating just a single parametric form that generalizes well to most settings

might be preferable in terms of interpretability. A simple yet widely used parametric

form is the log-linear model

µ0k(x, t;C(t), θ) = exp (θ0kx + θ1kxt) = µ0k(x, t; θ), (5.6.3)

which has been applied in settings similar to ours, for instance by King and Soneji

(2011) and Foreman et al. (2018). The model is easy to estimate (see Appendix 5.B),

flexible enough to capture the different shapes associated with cause-specific mortality,

and reflects that age is generally the most important driver of mortality regardless of

risk exposure. We use (5.6.3) as the baseline model in what follows. Figure 5.6 shows

the empirical female cause-specific death rates for the last year in the estimation

period with fits of the aggregate and baseline rates superimposed.

5.6.3 Joint forecasting

Generally speaking, straightforward extrapolative approaches for forecasting risk

prevalence are not recommended as they lead to an unabated continuation of historical

trends and likely poor out-of-sample performance. Many researches resort to models

that are specifically tailored to project the risk prevalence distributions in question,
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but existing methods are confined to working on the marginals and do not capture

selection-induced feedback effects either. Developing a scalable joint forecasting

procedure is an important topic of research, but it is beyond the scope of this paper.

For the demonstration we have in mind we make do with a somewhat elementary

state-transition model.

We aim at extrapolating the cohorts available in our sample until they reach age

xmax. We assume that there is no migration in or out of the composite population.

Define the (one-step) survival probabilities

pg(x, t) = exp

(
−

K∑
k=1

µ0k(x, t)Rkg(x)

)
, (5.6.4)

for group g and denote by mi,j(x, t) the probability of the cohort aged x at time

t changing its “risk-group membership” from i to j. We employ a cohort state-

transition model

Y (x+ 1, t+ 1) =M(x, t)Y (x, t), (5.6.5)

with Y (x, t) ∈ NG being the number of individuals in the G groups

and M(x, t) ∈ [0, 1]G×G a matrix of transition probabilities with elements

Mi,j(x, t) = pi(x, t)mi,j(x, t). Note that migration rates are only applied to the

surviving population. The estimated transition matrices are stated in Appendix 5.D.

Example death rate forecast

Figure 5.7 shows the empirical and forecasted female rates for ischaemic heart disease,

the leading cause of death in the dataset, and diabetes for select ages. To gauge the

effect of including additional covariates in the forecast, the superimposed dashed lines

are reference projections using the baseline model (5.6.3) fitted without additional

covariates.

Mortality projections are usually based on empirical regularities such as smooth

age profiles and small incremental mortality improvements, but the present projection

depends heavily on the cohort specific exposures causing it to exhibit a rather erratic

behaviour.7 Figures 5.6 and 5.7 suggest that this is particularly so for diabetes as a

large proportion of mortality is attributable to obesity and cohorts evidently differ

substantially in their exposure.

On the other hand, the inclusion of covariates caters for the fact that (baseline)

mortality levels ought to be consistently declining over time. While all-cause mortality

7For practical applications some smoothing is warranted. The type of smoothness violations
seen here prompted the Bayesian modelling approach developed by Girosi and King (2008), applied
by e.g. King and Soneji (2011) and Foreman et al. (2018), that down-weighs risk factor information if
contradicted by observed empirical patterns. These papers also use smoothed prevalence estimates,
whereas we simply apply the raw data.
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Figure 5.7: Historical (dotted) and estimated and projected (lines) female rates for
diabetes mellitus and ischaemic heart disease. The dashed lines are reference projections
using the baseline model fitted without additional covariates.

adheres to this pattern, historical cause-specific rates may have actually increased

over time – even recently as Figure 5.7 shows – for some causes and ages. This is an

ever-present issue widely acknowledged in cause-specific forecasting. The problem is

that increasing rates generally do not express that health care and treatment options

have worsened, but that mortality improvements have been substantially offset by

changes to the risk prevalence distribution. A purely extrapolative model is not able

to explain this development and will simply continue the observed trend unabated

as seen in the reference forecast for the youngest age groups in Figure 5.7. In the

long run this may result in the aggregate all-cause forecast being dominated by the

causes that have increased historically.

The causal model with covariate information is, in contrast, equipped to analyze

the historic evolution of death rates at a granular level and may disentangle the

effects of lifestyle related habits changing from generation to generation from general

health care improvements. Indeed, the model successfully separates risk prevalence

and mortality in this case by yielding negative slopes for the baseline for all age

groups considered in Figure 5.7. This shows that baseline mortality has improved,

despite the immediate trend in the raw rates suggesting otherwise, and hints at why

cause-specific modelling without additional information or assumptions ought to be

avoided.
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elimination of deaths due to neoplasms affected by smoking and/or obesity for the female
cohort aged 60 in 2018. The bars explain how the 9 percent of the cohort who previously
died from cancer are redistributed into other categories. The percentages listed on top of
the bars differentiate the part of the change due to direct and indirect effects respectively.

5.6.4 Cause-of-death elimination: What happens if cancer were

eradicated?

We now seek to answer the central question posed in the beginning of the paper. If

certain causes of death are eradicated, how soon will the individuals “saved” die

from something else and what will they die from instead? We illustrate this query

using the U.S. dataset by considering an elimination of deaths due to cancers. To

answer the questions precisely, we look at the cumulative incidence

Fk(u+ x | x) = 1

S(x)

∫ u

0

S(v + x)µk(v + x) dv, (5.6.6)

i.e., the probability of dying from cause k before or at age u+ x conditionally on

being alive at age x.

Figure 5.8 shows as an example how cumulative incidence for the cohort aged 60

in 2018 (tmax) is affected by the intervention. The figure explains the probability

of dying before or at age 84 (xmax). The cumulative incidences add up to the total

probability of death which is 38.7 percent prior to elimination. Cancers make up

roughly a quarter of all deaths with the cumulative incidence being 9 percent. An

elimination therefore initially causes the total death count to decrease to 29.7 percent

of the original cohort, while adjusting for the subsequent redistribution of deaths
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brings it up to 31.6 percent. The figure decomposes the redistribution into a part

attributable to competing risks and a part due to feedback, using the framework

developed and calibrated over the previous subsections.

The decomposition allows us to compare the model with feedback to its non-

feedback alternative, namely the same model but with the feedback mechanism

disengaged. Without feedback, individuals saved from cancer die according to the

rates observed in the population prior to the intervention. Because of competing

risks this leads to a rise in the cumulative incidence for every non-eliminated cause

(grey bars). This change occurs despite the fact that the corresponding death rates

are unaltered. Because the risk prevalence distribution among individuals who

previously died from cancer is not the same as that of the general population, there is

an additional effect (blue bars). In the model with feedback, higher-than-average-risk

individuals are carried forward in the system, causing an increase in the death rates

among remaining causes attributed to the SNAP risks. The number of deaths due

to diseases of the respiratory system is particularly amplified.

Overall, a simple deletion of cancer death rates that disregards feedback will

understate the total probability of death by 7.3 percent among those that are saved

and by more than 30 percent at the cause-specific level. These percentages are

naturally bounded by the number of risk factors included in the model. As additional

risk factors are introduced, and as the departure from population homogeneity

becomes more pronounced, selection-induced effects will carry even more weight.

Comparison to other non-feedback alternatives?

One might also take interest in comparing the method we have applied here to other

non-feedback alternatives. Such a comparison is, however, beside the point that we

are trying to make. We do not claim that our model is superior in predicting the

reference scenario compared to other models. In fact, other models with carefully

“sculptured” risk prevalence projections likely have better out-of-sample performance

compared to the method we have used.

Our focus has been on finding and discussing the magnitude of second-order effects.

We have shown that non-feedback models are unable to quantify these, making a

comparison between the effect of an intervention based on our proposed method

and an alternative somewhat fruitless. Often – especially when it comes to policy

making – it is tacitly assumed that second-order effects are small and can be more

or less deliberately ignored. However, to reveal the extent of such an assumption, we

need a method that allows us to realistically and consistently analyze the impact of

interventions. We have detailed how to do so in this paper.
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5.7 Concluding Remarks

In this paper we discussed how mortality forecasts were affected by interventions in

structural models that link individual risk behaviour to cause-specific mortality. We

saw that when these risk mechanisms were specified at the level of populations, the

model’s ability to relay selection effects hinged on a feedback mechanism controlling

how risk prevalence changed in response to differential mortality. We made the point

that perturbations of the system only conformed with real-world implementations of

interventions when risk prevalence was endogenous to the model.

We considered how death rates changed following the eradication of certain causes

of death. The prevalent approach directly manipulates the death rates of interest,

with little or no regard for subsequent effects on non-eliminated rates. However,

since individuals “saved” cannot be expected to follow the same pattern of mortality

as that observed in the population prior to the intervention, these methods are

too generous in their estimate of mortality reduction – but by how much? To

disentangle and quantify the magnitude of indirect effects we applied techniques

from causal mediation theory. This method gave us a straightforwardly interpretable

decomposition of the total effect of cause-elimination with a part directly attributable

to death rate deletion and a part due to disrupting the selection mechanism. The

latter effect is, however, only quantifiable when risk prevalence is endogenous to the

mortality model.

From a methodological perspective, our analysis of indirect effects is limited to

those induced by changes in behavioural risks. Other health indicators, such as exist-

ing or developing medical conditions that have an impact on the length of life, may

also be important contributing factors. To give one example, consider the COVID-19

vaccine which is highly effective at preventing serious disease, hospitalization, and

death. Those who would have died from COVID without the vaccine may instead

have a milder disease course although they could potentially still suffer from ‘long

COVID’. Such a delayed effect on their risk of death could be modelled using Barker

frailty (Palloni and Beltrán-Sánchez, 2017). Those who would have survived even

without the vaccine potentially never even contract the disease, thus producing a

feedback that raises the vitality of the population. Further, by avoiding overcrowded

hospitals due to COVID-related admissions, there could also be an effect on the

general access to health care. This example shows that assessing all higher-order

effects of an intervention can be extremely challenging and requires a comprehensive

modelling framework.

From a practical perspective, mortality models with integrated epidemiological

information are still in their infancy. A major challenge when building mortality

models that include covariates is the substantial data demand. Data is typically not

available at a sufficient granular level to warrant a model at the level of individuals,
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and it is in fact rarely the case that a single authoritative source contains a complete

set of the covariate distributions of interest, not even at an aggregate level. Instead,

researchers often have to collect (aggregate) prevalence data of marginal distributions

from multiple sources. In time, however, as the availability and quality of detailed

risk data continues to improve, causal models will inevitably gain a footing and

contribute to more precise and better substantiated long-term projections of mortality.

Moreover, the ability to formulate scenarios of interest in a straightforward and

verbal manner is key to engaging non-specialist and making results accessible to a

wider audience.
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5.A Granger Causality

In the following we give a brief overview of Granger causality and its use for describing

conditional (in)dependence relations. For an in-depth account of causal reasoning in

(graphical) time series models, we refer the interested reader to Eichler and Didelez

(2007, 2010) for the discrete time case and Didelez (2000) for the continuous time

analogue.

Granger causality was introduced by Granger (1969) and is a popular tool not

only within its origin of econometrics, but also for causal time series analysis.

Consider a multivariate time series Q = {Q(t)}t∈Z with Q(t) = (Q1(t), . . . , Qd(t))
⊤.

Let V = {1, . . . , d} be the index set and define for any U ⊆ V the subprocess

QU (t) = (Qu(t) : u ∈ U). Further, denote by an overbar QU (t) = {QU (s)}s≤t the
history of the series. Let A and B be two disjoint subsets of V . We say that QA is

Granger non-causal for QB up to horizon h ∈ N (w.r.t. Q) if

QB(t+ l) ⊥⊥ QA(t) | QV \A(t), ∀ l ∈ {1, . . . , h}, t ∈ Z. (5.A.1)

Here the ⊥⊥-symbol denotes independence. The formulation (5.A.1) of Granger

causality tacitly assumes that all relevant variables for predicting Q are available in

Q. This differs from the original formulation in which the information available is

that of the “entire universe”.

If (5.A.1) holds for h = 1, we say that QA is Granger non-causal for QB and we

write QA ↛ QB. Thus, a process QA is Granger non-causal for another process

QB if the past of QA up to time t does not give a better prediction of QB at time

t+ 1 given all information available up to time t but without that of QA. If QA is

Granger non-causal for QB at all horizons we write QA
(∞)↛ QB .
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5.A.1 Graphical representation

We can use the concept of Granger (non-)causality to obtain a graphical representation

of the conditional independence relations of the time series. A graph G = (V,E)

consists of a finite set of nodes V and a finite set of edges E. We only consider

graphs containing directed edges, that is E ⊆ V × V is a subset of ordered pairs

of nodes. We allow for multiple edges between two nodes if they are of different

orientation in which case there is a loop.

Instead of a full time graph in which time is made explicit, we are primarily

interested in a “rolled” version, also sometimes called a summary graph. To construct

such a graph based on the time series Q, we partition the index set V into mutually

disjoint subsets A1, . . . , Aq, q ≤ d, and associate with the corresponding sub-processes

the nodes V = {1, . . . , q}. We join two nodes a, b ∈ V by a directed edge if QAa

is Granger causal for QAb
at some horizon. Conversely, the absence of an edge

implies that QAa

(∞)↛ QAb
. Although not explicitly shown in the graphs, we assume

that all nodes have self-loops. Figure 5.9 gives an example of a rolled graph and a

corresponding unrolled version.
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Figure 5.9: An example of a rolling graph with three nodesA,B, and C and a corresponding
unrolled version. Since, e.g., A → B in the rolled version, the unrolled version could contain
edges from At to Bs for any s > t.

5.B Estimation of Baseline Parameters

Suppose we have data on cause-specific death counts, Dk, exposure-to-risk estimates,

E, and relative risk coefficients, Rk, each of dimension dx×dt with dx = xmax−xmin+1

being the length of the age span and dt = tmax − tmin + 1 being the length of the

time span. The model (5.6.2) with baseline hazard function (5.6.3) is

Dk(x, t) | E(x, t), Rk(x, t)
indep.∼ Pois (E(x, t)Rk(x, t) exp(θ0kx + θ1kxt)) . (5.B.1)

Since the predictor is linear we have the entire machinery of generalized linear models

at our disposal. Using a Poisson error structure, canonical logarithmic link function,

and stacking data into column vectors, that is, dk = vec(Dk), e = vec(E) and
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rk = vec(Rk), we have that

logE[dk | e, rk] = η + log(e ◦ rk) (5.B.2)

where the latter term on the right-hand side is treated as an offset while η =Mθ is

the linear predictor with θ being the vector containing the parameters and

M =
[
1dt : (tmin, . . . , tmax)

⊤
]
⊗ Ida (5.B.3)

being the model matrix. In the above, 1d a d-dimensional vector of ones, Id a

d-dimensional identity matrix, ◦ the Hadamard product, and ⊗ the Kronecker

product.

5.C Interpolation of Relative Risks: Examples

The relative risk estimates of Murray et al. (2020) are reported as risk-outcome pairs

by sex, age category, and exposure category. All quantities are time homogeneous.

For every risk-outcome pair the age category is listed in the groups 20–

24, 25–29, . . . , 90–94, 95–120. To obtain relative risk estimates for every

(integer) age, we perform linear interpolation with the age bucket centroids

X = {20, 22, 27, . . . , 92, 107.5, 120} as fixed points. Thus, for fixed risk-outcome

pair and sex and an age x ∈ [x0, x1) where x0 and x1 are two consecutive numbers

in X , the relative risk at age x given by

RR(x0) + (x− x0)
RR(x1)− RR(x0)

x1 − x0
,

where RR(·) supplies the relative risk estimate available in the data. An example is

given in the left panel of Figure 5.10.

For the risks “Number of cigarettes smoked daily” and “Pack years” the exposure

categories are listed in jumps of 10, specifically by 0, 10, 20, 30, 40, 50, or 60

cigarettes per day and 0, 10, . . . , 90, or 100 pack years. To obtain a dose-response

curve for any (integer) number of cigarettes smoked per day or number of pack years,

we extend the exposure categories using natural cubic spline interpolation for fixed

sex, age, and cause-of-death. A similar approach is used in the appendix of Murray

et al. (2020). An example is given in the right panel of Figure 5.10.

5.D Transition Matrices

Figure 5.5 shows a drift in the prevalence distributions for smoking, obesity and

physical activity, whereas alcohol consumption remains roughly constant over the

period. We opt for a migration model that captures the main effect, namely the
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Figure 5.10: Left panel: Female relative risk for diabetes mellitus by age (dots) using
linear interpolation with age-bucket centroids as fix points (solid line). Right panel: Age
60 female relative risk for tracheal, bronchus, and lung cancer by pack-years (dots) using
natural cubic spline interpolation (solid line).

net migration flow, using just the data at hand. We construct the number of net

migration events (NM) by balancing the equation of population change

Y (x+ 1, t+ 1) = Y (x, t)−D(x, t) +NM(x, t),

and by imposing that transitions occur only between neighbouring categories of

BMI and physical activity (in one year), while transitions for smoking are described

in terms of the probability of cessation. In the above, Y (x, t) is the number of

individuals alive at age x and time t while D(x, t) is the number of deaths. We

estimate transitions for each risk factor independently of one another and for both

sexes and all ages and calendar years combined. The resulting transition matrices

are shown below.
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Table 5.1: One-year smoking summary transition matrix.

(pct.)
Smoking transition matrix

Non-smoker 1–10 11–20 20+
Non-smoker 100 0 0 0
1–10 2.35 97.65 0 0
11–20 4.36 0 95.64 0
20+ 9.21 0 0 90.79

Table 5.2: One-year BMI summary transition matrix.

(pct.)
BMI transition matrix

Underweight Normal weight Overweight Obese class I Obese class II-III
Underweight 94.55 5.55 0 0 0
Normal weight 0 97.60 2.40 0 0
Overweight 0 0 98.25 1.75 0
Obese class I 0 0 0 98.23 1.77
Obese class II-III 0 0 0 0 100

Table 5.3: One-year physical activity summary transition matrix in terms of MET-minute-
categories given by the cut points 0, 600, 1200, 1800, 2400, 3000, 3600, and 4200.

(pct.)
Physical activity transition matrix

Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Cat. 6 Cat. 7 Cat. 8
Cat. 1 95.37 4.63 0 0 0 0 0 0
Cat. 2 0 100 0 0 0 0 0 0
Cat. 3 0 21.83 78.17 0 0 0 0 0
Cat. 4 0 0 43.43 56.57 0 0 0 0
Cat. 5 0 0 0 19.73 80.27 0 0 0
Cat. 6 0 0 0 0 14.52 85.48 0 0
Cat. 7 0 0 0 0 0 3.69 95.73 0.58
Cat. 8 0 0 0 0 0 0 0 100



Chapter 6

Aggregated Structural Causal Models

This chapter contains the manuscript Jallbjørn and Hansen (2022).

Abstract

Most approaches to causal inference assume a single dataset of i.i.d.

observations covering all variables. However, in practice, samples from the

joint distribution of two or more variables may not be available. In this

paper, we consider the situation where data consists of density estimates

on marginal distributions of variables observed across multiple populations,

and discuss how heterogeneity amongst these can be leveraged in concert

with causal knowledge to construct a joint causal model. For this purpose,

we introduce the basic ideas of how structural causal models at the level

of individuals can be transferred into structural causal models at the level

of populations, specifically in terms of the marginal distributions of the

variables. The resulting population-level models will be called aggregated

structural causal models, which we argue are causally consistent with

their individual level analogues. We present an algorithm for determining

a directed acyclic graph that represents the distributions necessary for

formulating the aggregated model as a structural one.

Keywords: Causality, Aggregation, Causal Consistency, Policy Interventions, Eco-

logical Inference.
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6.1 Introduction

Causal modelling is used within a wide range of disciplines to predict the behaviour

of a system when subject to external manipulation (Spirtes et al., 2000; Pearl,

2009; Peters et al., 2017). An increasingly important application concerns the

quantification of population-based interventional strategies, for example predicting

the efficacy of behaviour change in context of public health decision-making (WHO,

2009). However, obtaining representative data samples to enable identification of

causal relationships is seldom feasible when dealing with populations on, say, a

national scale. In these cases, interventions are studied under a presumed causal

structure, justified by systematic reviews and meta-analyses, and the effects are

calibrated to publicly available registry data. Since these data sources generally do

not carry granular information on the joint distribution of all the required variables,

we are tasked with inferring interventional effects from aggregate, population-level

data.

As a motivating example, suppose that we want to assess the burden of mortality

from heart diseases attributable to the combined effects of various risk factors. One

can find a wealth of evidence in the literature on both direct and distal causes as

well as potential confounders, see Figure 6.1. The figure illustrates the relationship

between the distributions of the background variables that act as confounders, the

modifiable lifestyle risks that comprise our interventional target and the physiological

response variables through which effects of the behavioural risks are mediated. If we

want to quantify the effect of lowering the number of smokers, say, on the prevalence

of ischaemic heart disease, we need estimates of the conditional distributions corre-

sponding to the edges in Figure 6.1. It is, however, often difficult or impractical to

Age

Education

Income

Sex

Background variables

Alcohol

Smoking

Overweight

Physical
activity

Lifestyle risks

Cholesterol

Blood 
pressure

Outcome

Ischaemic
heart disease

Physiological response

Figure 6.1: The causal links between some but not all variables associated with ischaemic
heart diseases, adapted from WHO (2009).
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obtain a single dataset covering the full joint distribution, but multiple datasets for

the marginal distributions may be available from registries and surveys – and such

data are often available for several spatially or temporally separated populations.

Moreover, data are often aggregated and thus only available in the form of tables

of relative frequencies or in the form of histograms – the latter being an empirical

estimate of a density. Models of relative frequencies, also known as compositional

data, or densities arise in many contexts, see for example Petersen et al. (2022) and

the references therein. The goal of this paper is to leverage such aggregated data

for causal inference – and specifically clarify under which assumptions such causal

inference is valid. We make two contributions.

Our first contribution is a simple, but valuable and practical, regression procedure

for estimating causal effects from data on the marginal distributions alone, provided

that we are willing to assume the causal structure and have access to datasets

containing measurements from different populations. Considering the problem of

estimating the effect of intervening on smoking prevalence in Figure 6.1, then since

we “know” the causal structure, we show how our procedure is able to come up

with a more qualified coupling of these distributions than the independence coupling

typically used in epidemiological applications (Ezzati et al., 2003).

Our second contribution is a novel aggregated causal model. Based on the ideas

exploited by the regression procedure, we ask if it is possible to cluster the variables

in a causal model in such a way that aggregate data on each cluster, but across

populations, is sufficient for estimating the entire causal model. To this end we relate

the individual level causal model to the population level aggregated causal model.

This way of looking at model abstraction is fundamentally different compared to what

is typically done. We propose that the aggregation should happen at the abstract

level of probability distributions and not at the level of variables. An immediate

advantage is that we achieve causal consistency between the micro- and macro level

in the sense that both models agree on the interventional distributions they entail.

In contrast, this is hardly ever possible when aggregation happens at the level of

variables (Rubenstein et al., 2017; Beckers and Halpern, 2019).

Considering Figure 6.1 again, the nodes represent at the individual level variables.

If we have access to the joint distribution for certain pairs of variables, for example,

the ones contained in the blue boxes, we can collapse these into single cluster nodes.

From aggregated data separately on background variables, lifestyle risks, physiological

responses and prevalence of ischaemic heart diseases we are able to obtain a causal

model at the population level that can predict how interventions of these cluster

nodes (changing the distribution of risk factors in the population, say) affect the

prevalence of ischaemic heart diseases.
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6.1.1 Related work

Ecological Inference The problem of reconstructing a joint probability distri-

bution given several marginal distributions observed across different populations is

a version of the ecological inference problem (Greenland and Robins, 1994; Mor-

genstern, 1995; Wakefield, 2008). The solution we suggest in the discrete case in

Section 6.3 is strongly linked to the seminal method of Goodman (1953, 1959).

Modern solutions to the ecological inference problem are mostly rooted in Bayesian

methods (King, 1997; Wakefield, 2004; Flaxman et al., 2015). Recently, the problem

has also been phrased as an optimal transport problem in which the transportation

plan is the unknown one seeks to recover (Muzellec et al., 2017; Frogner and Poggio,

2019).

Merging Data using Causal Information Causal models have previously been

suggested as a way to merge information from different datasets (Schölkopf et al.,

2012; Peters et al., 2016; Mooij et al., 2020). Tsamardinos et al. (2012) coined the

term integrative causal analysis for when a joint causal model is constructed on the

basis of multiple heterogeneous datasets covering only aspects of the full distribution.

Related work considers learning equivalence classes of graphs compatible with data

(Triantafillou et al., 2010; Tillman and Spirtes, 2011; Hyttinen et al., 2013), merging

marginal SCM’s (Janzing, 2018; Gresele et al., 2022), and obtaining a joint model

using the principle of maximum entropy (Mejia et al., 2022). In contrast to this

body of work, we do not require observations on overlapping subsets of variables.

Also, we are not trying to learn the causal structure in this work, but instead assume

that it is known through, e.g., various partial studies.

Causal Abstraction and Consistency A question that often arises when causal

consequences have to be understood in terms of aggregated features of micro-level

data, is whether or not two causal models describing the same system at different

levels of granularity yield conclusions that are consistent with each other (Chalupka

et al., 2015, 2016). Recent approaches have developed a formalism in terms of

variable transformations to answer whether such causal coarsenings or abstractions

are sensible (Rubenstein et al., 2017; Beckers and Halpern, 2019). However, in

practice, only few transformations yield causally consistent representations. This

fact has led to the development of the related notion of approximate abstraction,

where the abstracted model only approximates the underlying system up to some

error (Beckers et al., 2019). The concept of causal consistency, and the resulting

abstraction error, has also been formulated and studied using a category-theoretic

approach (Rischel and Weichwald, 2021; Otsuka and Saigo, 2022). We return to the

topic later in the paper.
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6.1.2 Outline

After presenting the relevant notions of causal modelling (§ 6.2), we consider how

causal knowledge may be leveraged to estimate a joint distribution from marginal

density data (§ 6.3). We then discuss how causal models at the level of individuals

can be transferred into causal models at the level of populations in terms of marginal

distributions of the variables, and explicate the causal consequences (§ 6.4). Finally,
we end on some concluding remarks (§ 6.5).

6.2 Causal Graphical Models

Throughout, let (Ω,F , P ) be a common background probability space. We consider

a collection of random variables X = (Xv : v ∈ V ) indexed by a finite set V

and a probability measure P over X. Each Xv takes values in a measurable space

(Xv,Av) and P is defined on the Cartesian product of these spaces (X ,A) :=

(×v∈V Xv,⊗v∈VAv). Even though the points made in this paper can be generalized

to any marginally continuous1 P, we assume for the sake of exposition that the state

spaces Xv are all discrete with the counting measure on X serving as the dominating

measure. In particular, each Xv then has distribution Pv with probability mass

function p(xv) = P (Xv = xv). We will use the shorthand notation (XI ,AI) =

(×v∈IXv,⊗v∈IAv) for any non-empty subset I ⊆ V . Similarly, we will write XI =

(Xv : v ∈ I) with possible values xI ∈ XI .

Causal Graphical Model (CGM) We assume that P is Markovian and faithful

with respect to a directed acyclic graph (DAG) D = (V,E) with vertex set V equal

to the indices of X and edge set E. That is, given disjoint sets A,B,C ⊆ V then

A ⊥D B | C ⇐⇒ XA ⊥⊥ XB | XC , where ⊥D denotes d-separation in D, see for

example Pearl (2009). Consequently, P factorizes so that its probability mass function

p has the form

p(x) = P (X = x) =
∏
v∈V

p
(
xv|xpa(v)

)
, (6.2.1)

where pa(v) := {j ∈ V : j → v} are the graphical parents of v and xv 7→ p(xv|xpa(v))
is the probability mass function of the conditional distribution Xv | Xpa(v) = xpa(v).

The triple (X,D,P) defines a causal graphical model, where P = (Pv)v∈V is the

collection of conditional distributions Pv = (Pv(·|Xpa(v) = x))x∈Xpa(v)
= Pv| pa(v).

Importantly, the graphical relations are equipped with a causal interpretation in the

sense that each Pv represents a stochastic assignment of Xv according to the values

of its parents. This assignment process remains invariant under perturbations that

do not affect Xv.

1Marginal continuity of P means that P is absolutely continuous with respect to a product
measure ν = ⊗v∈V νv for σ-finite measures νv on (Xv ,Av), v ∈ V . When a dominating measure for
P has been determined, the density of P is defined by the Radon-Nikodym derivative dP/ dν.
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Interventions The causal interpretation induces interventional distributions which

we, for the applications we have in mind, define in general form, see, for example,

Peters et al. (2017, Definition 6.32). At the level of individuals, using Pearl’s do-

operator, e.g. Pearl (2009), an intervention is an action do(Xk = xk) that fixes Xk

to a target value xk. It is unreasonable to only consider interventions at the level of

populations where all individuals get assigned the same fixed value of the variable(s)

we intervene upon. More realistically, we get to assign values to individuals from a

distribution with positive variance. A general intervention on Xk leads to a product

decomposition similar to (6.2.1) except that the term p(xk|xpa(k)) is replaced by

q(xk|xp̃a(k)), that is,

pdo(Xk:=q(·|xp̃a(k)))(x) = q(xk|xp̃a(k))
∏

v∈V \{k}

p(xv|xpa(v)), (6.2.2)

with
∑
xk∈Xk

q(xk|xp̃a(k)) = 1 and the (possibly) modified parents not introducing

any cycles in the graph. Further, we denote by IInd the set of all possible interventions

in the CGM, and we let ≤X be the partial ordering in which i ≤X j for i, j ∈ IInd if

and only if i intervenes on a subset of the nodes that j intervenes on and assigns

them the same distributions as j.

Graph terminology We briefly introduce some additional graphical terminology

needed later. We write ch(v) := {j ∈ V : v → j} to denote the children of v ∈ V . For

I ⊆ V , we define the expressions Pa(I) = ∪i∈I pa(i) \ I and Ch(I) = ∪i∈I ch(I) \ I.
We use the notation an(I) to denote all the ancestors of I not containing I itself,

and An(I) = an(I) ∪ I to denote the ancestors containing I. When not clear from

context, we will add a subscript to identify the graph to which the expressions

refer, for example, paD(v) refers to the parents of v in D. A bijective mapping

π : V → {1, . . . , |V |} is said to be a topological ordering if π(α) < π(β) whenever β

is a descendant of α, for nodes α, β ∈ V . Due to acyclicity, every DAG has at least

one topological ordering, and we tacitly assume throughout that V (and any subset

I ⊆ V ) is ordered in this way.

6.3 Aggregated Regression

In order to compute the effect of an intervention we need the causal graph as well as

the conditional distributions in (6.2.1). If we know the causal graph we can estimate

the conditional distribution of Xv given its parents from a dataset containing i.i.d.

observations from the joint distribution P{v}∪pa(v). In practice, we may not have

such data. In the example illustrated by Figure 6.1 we have data on lifestyle risks

from one dataset, while data on physiological responses are from another dataset. In

this section, we consider the situation where we have access to multiple datasets at

an aggregated level but separately for a node and its parents, e.g., annual data on

the prevalence of high cholesterol and separately annual data on the distribution of
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lifestyle risks. In general, we suppose that we have access to empirical estimates from

multiple populations of the two marginal2 distributions Pv and Ppa(v). Since there

exist many joint distributions on Xv × Xpa(v) that match such marginals, further

assumptions must be imposed to obtain a unique solution. The solution we present

is based on assuming that the variations between populations can be described by

independent noise variables.

6.3.1 A Coupling via Independent Noise

We suppose that we observe the marginals across multiple (heterogeneous) popula-

tions, and we explicate how population-level noise enters the system by a functional

characterization of the data generating process in terms of each parent-child relation

in D. We do so with a structural causal model M = (νε,η,S), consisting of a

distribution νε,η over ε = (εv : v ∈ V ) and η = (ηv : v ∈ V ) and |V | structural
assignments S:

Xv := Fv
(
Xpa(v), εv, ηv

)
, v ∈ V. (6.3.1)

To emphasize the hierarchical interpretation, we should think of the ε’s as variations at

the individual level and the η’s as variations across populations. Each Fv represents

a stable mechanism that does not change across populations (unless specifically

altered by an intervention). We will assume independence of all ε’s and η’s, that is,

νε,η is a product measure.

Fixing η, the structural assignments define a distribution Pη of X indexed by η.

Here and throughout, the η superscript is fixed and specific in each population but

varies between populations. The main idea is to exploit the variation in the observed

marginal distributions Pηv and Pηpa(v) across populations to estimate (sufficient aspects

of) the Fv–map to make it possible to reconstruct E(Pη{v}∪pa(v)).

Inferring the complete Fv–map from population-level data in a discrete setting

would require restrictive assumptions on the data generating process. However, fixing

η and Xpa(v) in (6.3.1), observe that Fv determines the conditional distribution in

(6.2.1) by

Fv(xpa(v), νεv , ηv)(A) = νεv
(
Fv(xpa(v), ·, ηv)−1(A)

)
= P ηv

(
Xv ∈ A | Xpa(v) = xpa(v)

)
, (6.3.2)

for A ∈ Av. Thus, in the discrete setting, the problem of inferring a joint distribution

amounts to estimating a number of conditional probabilities.

An application of the law of total probability in combination with (6.3.1) implies

pη(xv) =
∑

xpa(v)∈Xpa(v)

pηv
(
xv|xpa(v)

)
pη
(
xpa(v)

)
, (6.3.3)

2We refer to any distribution that can be obtained by marginalizing the full joint distribution
of X as a marginal distribution.
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where pη is used as short-hand for the probability mass function for fixed η. Since

we have access to empirical versions of Pηv and Pηpa(v), the linear structure of (6.3.3)

invites for a regression-based approach to determine the conditional Pηvv| pa(v). Since
pη
(
xpa(v)

)
only depends on (ηj)j∈an(v), p

ηv
(
xv|xpa(v)

)
and pη

(
xpa(v)

)
are indepen-

dent by independence of the η’s, whence a regression of observations of Pηv on

observations of Pηpa(v) yields an estimate of the expected conditional distribution∫
pηv (xv|xpa(v))νηv (dηv). (6.3.4)

In the special case where ηv is degenerate, and where the conditional distribution

thus does not depend on η, the regression will identify the conditional distribution

common across populations. In such a case the conditional distribution is said to be

invariant; (
Xζ
v |X

ζ
pa(v) = xpa(v)

)
d
=
(
Xψ
v |X

ψ
pa(v) = xpa(v)

)
, (6.3.5)

for any two populations ζ and ψ and all xpa(v) ∈ Xpa(v). This might be a reasonable

assumption in some scenarios. Indeed, (6.3.5) is the assumption that underlies the

principle of invariant causal prediction formulated by Peters et al. (2016). In such a

setting, one considers samples (Xη, Y η) where Xη is a vector of predictor variables

for some target Y η. Equation (6.3.5) is then only assumed to hold for the target

variable given its causal predictors.

In an observational setting, we would not generally expect (6.3.5) to hold for all

parent-child relations. Allowing for some variation means that we only identify the

expectation of the conditional distributions across populations, but this expectation

might still be a decent quantity to use with (6.3.3); in certain applications we may

be convinced that the conditional for a given population deviates only little from

the average. For example, in the context of Figure 6.1, it might be reasonable to

assume that most of the variation in the lifestyle risks observed across populations is

due to variation in demographic and socio-economic structures. That is, variation

in PηLifestyle is due mainly to variation in PηBackground and only to a small extent to

variation in ηLifestyle. In any case, the dispersion around the mean is picked up the

regression residuals, which could be used to provide some variability bands.

As for the regression, the coefficients should represent probabilities and thus fall in

the unit interval to enhance model interpretability. This can be achieved by solving

the constrained non-negative least squares problem3

β̂ :=
argminβ⪰0

1
2 ||Zβ − y||

2
2

Subject to Cβ = 1|Xpa(v)|,
(6.3.6)

3The least squares problem (6.3.6) can be solved by recasting it as a quadratic program under
the same positivity and equality constraints but with objective 1

2
β⊤Qβ − d⊤β where Q = Z⊤Z

and d = Z⊤y.
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where y = vec([p̂η(x)]η∈H,x∈Xv
) contains the empirical estimates of pη(xv) for each

population and value in the domain, while Z = I |Xv| ⊗ [p̂η(x)]η∈H,x∈Xpa(v)
is the

design matrix. Here, the vec-operator stacks the columns of a matrix into a vector, ⊗
denotes the Kroenecker product, Id is an identity matrix of size d, 1d a d-dimensional

vector of ones, while C = 1⊤|Xv| ⊗ I |Xpa(v)| specifies the sum constraint.

Alternatively, the regression coefficients can be parametrized in such a way that

they automatically satisfy the desired constraints. The multinomial-logit parametri-

zation achieved through the softmax-function

βi =
exp(β̃i)∑
j∈Ji

exp(β̃j)
, (6.3.7)

produces non-negative regression coefficients summing to unity where appropriate.

Under (6.3.7), the least-squares objective 1
2 ||Zβ(β̃)−y||

2
2 is non-linear as the regression

coefficients become a function of the free parameters β̃.

Ties to Ecological Regressions

The ecologic regression model proposed by Goodman (1953, 1959) is equivalent to the

contents of (6.3.6) without constraints on the coefficients. Goodman, however, does

not justify why the regression estimates ought to represent a conditional probability

distribution apart from asserting that the model should only be used “in very special

circumstances”. Framing the problem in terms of knowledge about the causal graph

as done here gives one way of rationalizing whether or not the regression produces a

valid approximation. We emphasize that the assumption of independent η’s is key

to justify the regression procedure.

An alternate solution to the ecological inference problem is the method of bounds

proposed by Duncan and Davis (1953). Although not a unique solution, observing

a set of marginals deterministically restricts the set of joint distribution that are

consistent with them, implying that the conditional probabilities we seek to estimate

may be bounded more narrowly than the unit interval. This suggests that the box

constraint of (6.3.6) could be modified to convey the deterministic bounds for the

conditional probabilities. Determining cell bounds for k-way contingency tables is

described in the statistical data privacy literature, see Dobra and Fienberg (2001)

and Dobra and Fienberg (2009).

6.3.2 Numerical Case-Study: Risk Factor Interventions

In this section, we present some numerical results for the example from the intro-

duction, that is, we consider the system described by the DAG in Figure 6.1. For

the risk factors, we use U.S. data from IPUMS (2022), NCD-RisC (2017), and CDC

(2022), which, after preprocessing, consists of dichotomous marginal distributions, see

Appendix 6.E. The data covers the period 1999–2018, that is, 20 different populations.
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We use (6.3.6) to determine the missing conditional distributions. Using the logistic

parametrization (6.3.7) yields virtually the same results for this data and is therefore

not shown.
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Figure 6.2: PIFs for U.S. females and males aged 50–54 in 2018. Using the estimates of
Murray et al. (2020), the relative risks for BMI are the same for both sexes, causing the
two PIF curves to coincide when (6.3.8) is evaluated under an assumption of independent
marginals.

The burden of disease from certain lifestyle related risks is defined as an interven-

tional query through the potential impact fraction (PIF) (Ezzati et al., 2003):

p 7→ Ep[RR]− Ep̃[RR]
Ep[RR]

, (6.3.8)

where RR is the relative risk at a given level of exposure, while p and p̃ describe

the distributions under which the expectation is evaluated. Using the relative risk

estimates of Murray et al. (2020), we compute (6.3.8) in Figure 6.2 for interventions

on the smoking and BMI marginals. This is slightly ambiguous as an intervention

replaces the entire conditional distribution PLifestyle|Background. We discuss how to

intervene on multiple nodes simultaneously in Section 6.4.5. For now, the interven-

tions are implemented as a proportional change to the original values. The reference

distribution p̃ is defined as the theoretical minimum exposure distribution as is

customary, that is, PSmoke = δNon-smoker in the smoking scenario and PBMI = δNormal

in the BMI scenario, with δ denoting the Dirac measure.

We generally expect the lifestyle risks to exhibit positive correlation as they are

all affected by the same background variables. Moreover, part of their effect on the

outcome is mediated through ‘blood pressure’ and ‘cholesterol’. Thus, we expect the

independence coupling to understate the risk burden, which is also what Figure 6.2

generally shows; the estimated PIF on the dotted line is able to take the joint
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effect of the risks into account, although, at least in this case where the number of

variables and categories are low, the difference between evaluating (6.3.8) under the

independence assumption and the proposed method is not drastic.

6.3.3 A Mixture-Model Example

Even though we generally focus on discrete distributions, it is illuminating to think

about how the idea from the discrete setup translates to a setting with parametric

assumptions, in which case the objective is to identify the causal parameters of the

model.

As an instructive example, consider the structural equations

X1 ∼ Bern(p(η1)) with p(η1) = P (X1 = 1 | η1),
X2 := β21X1 + σ2ε2 + τ2η2,

X3 := β31X1 + β32X2 + σ3ε3 + τ3η3,

where ε2, ε3, η2, η3 are i.i.d. N (0, 1) variables (independent of X1). Suppose that

samples from the joint distribution P{1,2,3} are not available, but that we instead

have density data on the marginals (P1,P2,P3) across multiple populations.

Written out, we have samples from

Pη1 = p(η1)δ1 + (1− p(η1))δ0,
Pη2 = p(η1)N (β21 + τ2η2, σ

2
2) + (1− p(η1))N (τ2η2, σ

2
2),

Pη3 = p(η1)N (β31 + β32(β21 + τ2η2) + τ3η3, β
2
32σ

2
2 + σ2

3)

+ (1− p(η1))N (β32τ2η2 + τ3η3, β
2
32σ

2
2 + σ2

3),

where δ denotes the Dirac measure. In particular, we imagine data of the form

X1ih for individuals i = 1, . . . , n1h and populations h = 1, . . . ,H. To simplify, let us

assume that the populations are from the same location but at different time points

t1, . . . , tH . We note that the data will generally not be on the same individuals, so

we do not have time series data at the level of individuals. The empirical distribution

of X1 can be represented as

p̂(th) =
1

n1j

n1h∑
i=1

X1ih,

which form a time series of probability estimates. For X2ih we have a similar data

structure, and for each time point, th, we have samples from the mixture

p(th)N
(
β21 + τ2η2(th), σ

2
2

)
+ (1− p(th))N

(
τ2η2(th), σ

2
2

)
.

From the empirical distribution of X21h, . . . , X2n2hh we can fit the parameters β21,

τ2η2(th) and σ
2
2 that enter into the mixture distribution. We can use the empirical
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distribution of X11h, . . . , X1n1hh to determine the mixing coefficients p(th), so these

do not have to be estimated. The time series of τ̂2η2(th) can be used to estimate τ2,

but just from the parameters estimated at time point th we have enough information

to deduce the F2-map and thus the coupling of P1 and P2. This is, of course, due

to the strong assumptions of Gaussian distributions, homogeneous variance, and

additive effects. For P3, however, there is not enough information in a single time

point to estimate all parameters. There are three unknown parameters in the mean

values, and, fitting a marginal mixture distribution, only two equations to determine

them from. Here, we really need the time series structure to identify all parameters.

6.4 Aggregating the Causal Model

We will now discuss how to transfer a causal model at the level of individuals into a

causal model at the level of populations in terms of the marginal distributions of

X. The resulting aggregate model may be used to formulate interventional queries

concerning the distribution of individual-level behaviour. In particular, we will argue

that conclusions drawn from the aggregate model will be consistent with the ones

drawn from the individual level model.

The techniques outlined in the previous section describe how and when conditional

distributions may be estimated from marginal density data. We do not necessarily

need to find these conditionals for every v ∈ V . It may suffice to determine

conditionals of certain bundles of variables, namely clusters of parents. We can then

specify the causal relation among the clusters, but leave their internal structure

unspecified.

Let a bar over a family of sets I denote its union, that is, I := ∪I∈II. To

specify an “aggregated” graph D∗ that still represents P, we introduce the following

properties:

P1 (Coverage) I = (Ik)k∈K is a family of non-empty subsets Ik ⊆ V s.t. I = V .

P2 (Parent preservation) A ∪ PaD(B) ⊆ paD∗(I) where A ⊆ I and B = I \A for

every I ∈ I.

P3 (Running intersection) For any node J on a path between I and I ′ in D∗ then
I ∩ I ′ ⊆ J , where I, I ′, J ∈ I.

P4 (Reduction) I is reduced, that is, ∄I, I ′ ∈ I such that I ⊆ I ′.

Definition 6.4.1 (Parental Decomposition). A parental decomposition (PD) of a

DAG D = (V,E) is a DAG D∗ = (I, E) satisfying P1–P4.

The motivation behind this construction is to specify how we can meaningfully

collapse nodes into “cluster-nodes”. In particular, observe that:
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Lemma 6.4.2. If D is a DAG, then D is a PD of itself.

By meaningful collapse, we mean that if a given DAG D∗ satisfy the above

properties, then the joint distribution factorizes according to D∗ into conditional

distributions of clusters of parents given other clusters, like in the individual-level

model (6.2.1). However, because we do not require I to be composed of disjoint

subsets of V , see for example the middle panel of Figure 6.4, the computations are a

bit more cumbersome. The factorization reads:

Proposition 6.4.3. If P factorizes according to D = (V,E), then for a PD D∗ =
(I, E) of D it holds that

p(x) =

∏
I∈I p(xI\paD∗ (I)

|x
paD∗ (I)

)∏
v∈V p(xv|xpaD(v))|C(v)|−1 =

∏
I∈I p(xI\paD∗ (I)

|x
paD∗ (I)

)∏
v∈V p(xv|xCpa

v
)|C(v)|−1 , (6.4.1)

for all x ∈ X , where Cv = {I ∈ I : v ∈ I, v /∈ paD∗(I)} and Cpa
v = {∩I∈CvpaD∗(I)}∪

{∩I∈Cv
{α ∈ I : π(α) < π(v)}}.

In Definition 6.4.1, we require I to be reduced to avoid superfluous nodes; otherwise

some distributions could be specified as marginalizations of others. For example, it

would in a sense be redundant to include P1 if P{1,2} is already included.

6.4.1 The Aggregated Structural Causal Model

The PD of an arbitrary DAG is obviously not unique. For example, there is always

a trivial decomposition consisting of a single node containing the entire vertex

set I = {V } and no edges. More meaningful representations of the conditional

independences encoded in D depend on the type of analysis we have in mind.

If we are only interested in interventions on specific variables, the PD can be

chosen to reflect this. For example, suppose that we want to quantify the causal

influence of a treatment X on a target Y in the presence of a confounder Z that

influences both X and Y , and another confounder C that influences Z and Y . In this

case, the interventional distribution can be calculated using backdoor adjustment,

pdo (X=q(·|z))(y) =
∑
x,z

p(y|x, z)q(x|z)p(z), (6.4.2)

without reference to C. That is, if we want to intervene on X it suffices to condition

on Z.

Typically the focus is on the more general – and more ambitious – goal of

obtaining a model that allows us to quantify all interventions at once via a structural

representation. For this purpose, let us introduce the additional property
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P5 (Connectivity) For every I ∈ I then J ⊥D J ′ for all J, J ′ ∈ paD∗(I) with

J ̸= J ′.

Definition 6.4.4. A PD+ of a DAG D = (V,E) is a DAG D∗ = (I, E) satisfying P1–

P5.

We can define a structural causal model for the probability measures (PηI : I ∈ I)
on such a graph, making PηI a function of its graphical parents and exogenous (noise)

variables ηI .

Definition 6.4.5 (Aggregated Structural Causal Model). LetMInd = (νε,η,SInd)
be an SCM for X with associated DAG D and let D∗ be a PD+ of D. An aggre-

gated structural causal model (ASCM) MAgg = (νη,SAgg) consists of the product

distribution νη and |I| structural assignments SAgg:

I ∈ I : PηI (xI) := GI

(
PηpaD∗ (I)

, η
I\paD∗ (I)

)
(xI), xI ∈ XI , (6.4.3)

where

GI

(
PηpaD∗ (I)

, η
I\paD∗ (I)

)
(xI) =

∑
x
paD∗ (I)\I

p
η
I\paD∗ (I)

(
x
I\paD∗ (I)

|x
paD∗ (I)

)

·
∏

J∈paD∗ (I)

pη(xJ). (6.4.4)

Intuitively, GI arises by fixing η in (6.3.1), the structural equations for X, and

computing the distribution of XI as transformations of ε. A general formulation of

the ASCM is possible using compositions of Markov kernels, cf. Appendix 6.A. We

return to how the PD+ can be chosen in Section 6.4.4.

By construction, the ASCM replicates the observational distribution over X

implied by the SCM. The joint distribution can be computed by noticing that

GI

(
⊗J∈paD∗(I)

δxJ
, ηI\paD∗(I)

)
(xI) = p

η
I\paD∗ (I)

(
x
I\paD∗ (I)

|x
paD∗ (I)

)
, (6.4.5)

and using (6.4.1). Since D∗ is a PD+, the denominator in (6.4.1) is only relevant when

D∗ consists of multiple components that contain overlapping subsets of variables.

6.4.2 Interventions

An intervention do(i) in the ASCM maps MAgg to MAgg;do(i) by replacing the

structural assignments for PηI . We denote the entailed interventional distribution

Pη;do(i).

To illustrate the basic principles for interventions in the ASCM, consider as an

example the SCM

Xη
1 := F1(ε1, η1), Xη

2 := F2(X
η
1 , ε2, η2), Xη

3 := F3(X
η
1 , X

η
2 , ε3, η3),
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for which a corresponding ASCM reads

Pη{1,2} := G{1,2}
(
η{1,2}

)
, Pη3 := G3

(
Pη{1,2}, η3

)
.

At the level of individuals, interventions are defined by fixing, for example, X1 = x1,

which results in the modified SCM

Xη
1 := x1, Xη

2 := F2(x1, ε2, η2), Xη
3 := F3(x1, X

η
2 , ε3, η3),

while an intervention on X2 results in

Xη
1 := F1(ε1, η1), Xη

2 := x2, Xη
3 := F3(X

η
1 , x2, ε3, η3).

In the ASCM, intervening on either X1 or X2 is done using a distribution Pdo
{1,2},

which corresponds to modifying (a number of) conditional distributions:

Intervention on X1 : Pη{1,2} := Pdo
1 ⊗G∗{1,2}

(
Pdo
1 , η2

)
, Pη3 := G3

(
Pη{1,2}, η3

)
,

Intervention on X2 : Pη{1,2} := G∗{1,2} (η1)⊗ Pdo
2 , Pη3 := G3

(
Pη{1,2}, η3

)
.

Not all interventions in the ASCM are meaningful. There may exist – arguably

hypothetical – interventions in the aggregated model for which there is no individual-

level analogue. For example, in the bottom DAG in the middle panel of Figure 6.4,

we could mathematically impose P{1,2} := Pdo
{1,2} and P{1,3} := Pdo

{1,3} that do not

agree on their respective P1–marginals. We want to avoid this situation and restrict

attention to the set of interventions induced by the individual-level model, namely

those that fulfil the deterministic constraints of the system.

Assumption 6.4.6. The distributions (P ηI : I ∈ I) implied by an ASCMMAgg;do(i),

i ∈ IAgg, through (6.4.3) satisfy for all v ∈ V that for any pair I, I ′ ∈ I both

containing v ∈ V , that is {v} ⊆ I and {v} ⊆ I ′, then

PηI (Av ×XI\{v}) = PηI′(Av ×XI′\{v}), Av ∈ Av,

with PηI and PηI′ defined on Xv ×XI\{v} and Xv ×XI′\{v}, respectively.

Thus, the set of admissible interventions in the aggregate model IAgg consists of

interventions for which nodes with overlapping subsets of variables agree on their

implied marginals.

6.4.3 Causal Consistency

Rubenstein et al. (2017) and Beckers and Halpern (2019) developed the notion

of causal consistency, which describes whether two models at different levels of

abstraction can sensibly be thought of as models of the same system. If the models
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Figure 6.3: Schematic of causal consistency whereby the same conclusions are reached for
both the original and the aggregated model. In Rubenstein et al. (2017) the ‘aggregation’
arrows correspond to the function τ , whereas they represent the transformation from SCM
to ASCM in this paper. The distribution P∅ refers to the observational distribution, while
i, j ∈ IInd are interventions such that i ≤X j.

are consistent, we expect them to produce the same interventional distributions

regardless of the order in which we do the aggregation and the interventions.

Formally, Rubenstein et al. (2017) defines causal consistency between two struc-

tural causal models with variables X and X ′ as commutativity of the implied

probability distributions on a (specific) set of partially ordered perfect, deterministic

interventions4 IInd:

τ
(
Pdo(i);Ind

)
= Pdo(w(i));Agg, ∀i ∈ IInd, (6.4.6)

where τ : X → X ′ is a variable mapping and w : IInd → IAgg a surjective, order-

preserving map between interventions. When (6.4.6) holds then the diagram in

Figure 6.3 commutes (Rubenstein et al., 2017, Thm. 6), and the operations of

intervening and aggregating are interchangeable. That is, performing an intervention

j ∈ IAgg in the aggregate model is equivalent to computing the push-forward measure

of the distribution resulting from any intervention i ∈ w−1({j}) in the individual-

level model using τ . Order-preservingness of w ensures that consistency also applies

to compositions of interventions, that is, the right square in Figure 6.3 commutes.

The above notion of consistency is, however, quite restrictive and does not extend

well to realistic settings. As τ maps variables into aggregate summaries, most models,

especially non-linear ones, incur an irreversible loss of information when transferred

to the aggregate level so that actions cannot be back-transformed to the individual

level without substantial ambiguity. This has led to the development of the related

notion of approximate abstraction or consistency (Beckers et al., 2019; Rischel and

Weichwald, 2021). As the name suggests, the requirement on the transformations is

4With perfect, deterministic interventions the target distribution of XI is a one-point measure
δxI .
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relaxed so that the aggregate model captures the underlying system only up to some

error.

With the ASCM, we look at model abstraction in a fundamentally different way

in the sense that the aggregation happens at the level of distributions rather than

at the level of variables. This means that the only detail that is “abstracted away”

is the specific labelling of individuals. So long as we are not concerned with which

particular unit is assigned what particular value xI ∈ XI , but only that individuals

are assigned according to the correct target distribution, this loss of information is

irrelevant.

While the transformation from SCM to ASCM cannot be defined in terms of a

variable mapping τ , and so does not fit into Equation (6.4.6), consistency between

the two models can still be defined as the diagram in Figure 6.3 commuting. Because

IAgg is restricted to interventions induced by the SCM, we have the following lemma.

Lemma 6.4.7. Under Assumption 6.4.6, there exists a surjective, order-preserving

map w : IInd → IAgg such that Pdo(i);Ind = Pdo(w(i));Agg, ∀i ∈ IInd.

Thus, all interventions in the ASCM have at least one corresponding intervention

in the SCM, and consistency follows as a corollary.

Corollary 6.4.8. Under Assumption 6.4.6, the ASCM is causally consistent with

the SCM in the sense that the diagram in Figure 6.3 commutes.

6.4.4 Constructing a Generic PD+

In the following, we describe the most important steps to Algorithm 1 which details

one way of constructing a PD+ of an arbitrary DAG D. We label the resulting

graph the aggregated DAG, or ADAG for short, and denote it by D+. The ADAG

is constructed in two steps. In the first step we find PD+’s of each sink node

s ∈ {v ∈ V : ch(v) = ∅}, namely directed rooted trees, where s is the root and all

edges point towards it (i.e., an anti-arborescence). Next, D+ is formed by the join of

the resulting trees, including a pruning step to remove superfluous nodes. Additional

details are given in Appendix 6.B.

Algorithm 1 can be viewed as a greedy algorithm. For some graphs, there

exists decompositions that offer an improvement over the ADAG in terms width,

maxI∈I |I|. Relaxing the requirement on how to choose the parents of a given I ∈ I
does, however, introduce a tricky path dependence whereby the optimal choice at

a given step depends on subsequent options. DAGs of similar structure will then

have different optimal aggregated versions depending on the number of nodes at

each level in the graph, see Appendix 6.D for examples.
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Algorithm 1: DAG to ADAG

Input : A DAG D = (V,E).
Output : The ADAG D+ = (I, E) of D w.r.t. π.

1 S ← sink nodes of V ;
2 for s ∈ S do
3 Ts ← TIBAL of s;
4 Ts ← separateLineage(Ts);
5 end
6 return JoinAndReduceπ ((Ts)s∈S)

For the first step, we use a recursive pairing strategy to build PD+’s, revolving

around the following sets.

Definition 6.4.9 (Ancestral Lineage). Let s ∈ {v ∈ V : ch(v) = ∅} be a terminal

vertex in D. For each such s, the ancestral lineage is defined recursively by the sets

Ik,s = {Pa(Ik−1,s \A) ∪A : A = An(Pa(Ik−1,s)) ∩ Ik−1,s}, (6.4.7)

for k = 1, . . . , Ls, with I0,s = {s}, and Ls being the depth of the lineage so that

ILs+n,s = ∅ for any n ∈ N+.

Starting from the bottom of the causal hierarchy, (6.4.7) traverses through the

graph generating for each I-node another node consisting of the union of parents.

Importantly, variables that reappear in a parent set at a higher level are always

retained, see for example the left panel of Figure 6.4.

Definition 6.4.10 (TIBAL). Let Is = (Ik,s)k∈{0,...,Ls} be the ancestral linage defined

by a sink node s of D. The tree implied by the ancestral lineage (TIBAL) is Ts =
(Is, Es) with vertices Is = (Ik,s)k∈{0,...,Ls} and edges Es = ((Ik,s, Ik−1,s))k∈{1,...,Ls}.

The ancestral lineage covers the sets we are after in the sense that a TIBAL of a

sink s is a PD+ of DAn(s).

Proposition 6.4.11. If D = (V,E) has exactly one terminal vertex and T = (I, E)
is the tree implied by the ancestral lineage, then T is a PD+ of D.

Because the ancestral lineage does not take unconditional separation statements

in the original graph into consideration we need an additional step to ensure that

these are properly displayed in T . For instance, if the input graph describes a

three variable V-structure 1 → 3 ← 2, we want T to show that P3 is a function

of the marginals (P1,P2) only since P{1,2} = P1 ⊗ P2. This leads to the function

separateLineage described in Appendix 6.B that improves the PD+ in terms of

width, maxI∈I |I|.
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Figure 6.4: Examples of how DAGs (top graphs) transfer to ADAGs (bottom graphs). Left
panel: The ancestral lineage retains variables appearing in multiple clusters. Middle panel:
A DAG for which the corresponding ADAG is determined up to a topological ordering; the
4-node can be a “child” of either {1, 2} or {1, 3}. If there was an additional arrow 2 → 3 in
the DAG, we prefer the arguably simpler graph structure {1, 2} → 4 over the construction
{1, 2} → {1, 3} → 4. Right panel: A DAG in which the unconditional separation statements
require special treatment.

Lemma 6.4.12. If D has exactly one terminal vertex and T is the tree implied

by the ancestral lineage, then separateLineage(T ) =: T̃ = (I, E) is a PD+ of D
satisfying ∀I ∈ I : ∄I ′ ⊊ I such that I ′ ⊥D (I \ I ′), making T̃ the PD+ of smallest

possible width under the restriction that the sink of D is also a sink in T̃ and that

P2 reads: A ∪ PaD(B) = paD∗(I) where A ⊆ AnD(PaD(I)) ∩ I and B = I \ A for

every I ∈ I.

Next, the ADAG is formed by joining each such tree of sinks in D. For this

purpose we define the operation JoinAndReduceπ that merges together any number

of input trees while removing all vertices that are contained in other vertices. The

subscript π refers to the order in which reduction is performed as for given I ∈ I
there may be multiple sets I ′ ∈ I that satisfy I ⊆ I ′. However, the pruning operation

is not inherently “safe” and there are a few non-trivial pitfalls to avoid in order to

not create cycles or produce a graph that violates P3 or P5, see Appendix 6.B.

Proposition 6.4.13. Algorithm 1 produces a PD+ of an input DAG D.

If only the marginal distribution of each variable is needed to define the aggregated

model, this is what the ADAG shows.

Proposition 6.4.14. If D = (V,E) is a DAG whose underlying undirected graph is

a forest, then the ADAG D+ is equal to D in the sense that D+ = (V,E).

This property suggest a natural use case for the aggregated model; when the

conditional independence structure is a tree, we do not require measurements on the

simultaneous distribution for any pair of variables to fit the ASCM. Obtaining the

data needed to fit the population-level model may therefore be considerably easier

than collecting the data required to fit the individual-level SCM.
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Separation statements in the ADAG are tricky since two I-nodes can have shared

variables among their ancestors and descendants even if the nodes appear in different

connected components, see for example the middle panel in Figure 6.4.

Proposition 6.4.15. If D+ = (I, E) is the ADAG determined from D and A,B,C ⊆
I are three mutually reduced families of sets, then

A ⊥D+ B | C =⇒ (A \ (C ∪D)) ⊥D (B \ (C ∪D)) | (C ∪D),

where D = IS
(
AnD+(A),AnD+(B),AnD+(C)

)
\anD+({J ∈ C : J ∈ AnD+({A,B})})

with IS(A,B,C) = (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C).

6.4.5 Case-Study: Risk Factor Interventions (Continued)
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Figure 6.5: PCA for the ilr-transformed risk

factor data (top panel). The bottom panel

shows the induced prevalence distributions

when intervening in the direction of the first

principal component (dashed line, top panel).

We continue with the example from Sec-

tion 6.3.2, and follow up on the idea that

relations among nodes in a cluster do

not necessarily have to be explicitly mod-

elled. In particular, we want to demon-

strate how one can make sensible inter-

ventions on the lifestyle cluster-node of

Figure 6.1.

The idea we pursue here is to apply

a principal components transformation

to the data, and intervene in the di-

rection of the first component that de-

scribes the direction of maximum vari-

ance (dashed line, top panel, Figure 6.5).

Because the data is compositional, we

need to apply an appropriate trans-

formation to it before applying PCA.

That is, we have to transform the data

from the standard simplex to the real

space. The usual transformations for

this purpose are either the centred-log-

ratio transformation (Aitchison, 1986)

or the isometric-log-ratio transformation

(Egozcue, 2003). We use the latter, see Appendix 6.F. For dimensionality reduction,

only the first two principal components are kept. Once the intervention has been

applied in the principal component space, the results are transformed back to the

original space.

Figure 6.5 shows the results for the risk factor data. Based on the induced marginal

distributions shown in the bottom panel, it is clear that the first principal component
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picks up the secular trend in the data. People are becoming increasingly overweight

over time, while other harmful lifestyle behaviours are reduced. Thus, an intervention

in the direction of the first principal component can be phrased as the question:

“what if the current development in lifestyle behaviour continues?”.

6.5 Conclusion

We have shown how a structural causal model may be specified at the level of

probability distributions rather than at the level of variables, and that conclusions

drawn from the aggregated model are consistent with the ones from its individual

level analogue. We have shown that the aggregated model can be estimated from

marginal density data observed across multiple populations given knowledge about

the causal graph. The proposed regression-based approach was formulated in a

discrete variable setting, motivated by applications to data from statistics bureaus

that provide discretized marginal distributions, that is, contingency tables of low

dimension.

Even with low dimensional data, the number of explanatory variables used to

estimate a given conditional probability may be substantial compared to the number

of available data points (i.e., populations) and may lead to inefficient prediction. One

might therefore want to study a regularized version of the problem, while remaining

aware of whether the regression coefficients have an appropriate interpretation (as

conditionals). For example, for dimension reduction, we could apply PCA to the

explanatory variables and use only a subset of the principal components as regressors.

A direction for future work would be to explicate solutions for when the variables

studied are continuous. With parametric assumptions this amounts to identifying

individual-level parameters from aggregated data by leveraging the heterogeneity

induced through the population-level noise variables. We gave an example of how to

approach the problem in a linear structural causal model, namely by writing out the

marginal distributions for which we have data. Still, it is not obvious how one can

best exploit all of the available information. Ideally, we want a top-down strategy

for estimating the parameters, taking as a starting point the variables at the highest

level of the causal hierarchy, and iteratively work our way down through the system.

The problem is then how we can estimate the parameters entering the structural

equation for Pv, while also taking into account data on (or estimated parameters

for) its causal parents.

On the practical side, it remains an interpretational challenge how one would

translate an actual policy change into a Pdo–intervention. Indeed, in the case study

of risk factor interventions, we did not specify how the (joint) interventions arise,

but simply examined the consequences of bringing PLifestyle risks to Pdo
Lifestyle risks.

For the purposes of policy-planning, associating a monetary cost with the possible
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interventions is another interesting direction for further research. This would open

for cost-effectiveness analyses in which one could compare the cost of a gain in a

pre-specified health outcome for different interventions. For example, this would

enable us to answer a questions like: “given that our interventional target is the set

of modifiable lifestyle risks, what is then the intervention that produces the most life

years gained at the cheapest cost?”.
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6.A The ASCM in the General Case

Suppose that X is generated according to an SCM with structural equations

Xv = Fv(Xpa(v), εv, ηv), v ∈ V, (6.A.1)

where the joint distribution νε,η =
⊗

v∈V (νεv ⊗ νηv) over the noise variables ε =

(εv)v∈V and η = (ηv)v∈V is a product distribution. We assume that νεv and νηv are

dominated by either the counting measure if the respective state space is discrete or

the Lebesgue measure otherwise for every v ∈ V . Thus, νε,η is marginally continuous

and all distributions have densities by the Radon-Nikodym theorem.

6.A.1 Markov Kernels

To formulate the SCM at the level of probability distributions, the notion of a Markov

kernel proves useful. The following exposition is based on Rønn-Nielsen and Hansen

(2014). Let (X ,A), (Y,B), and (Z, C) be measurable spaces. A Markov kernel from

X to Y is a family of probability measures (P x)x∈X on (Y,B) such that for every

fixed B ∈ B the map x 7→ P x(B) is A-measurable. If X = X1 × X2 and P is a

Markov kernel from X2 to Y, we can extend P to be a Markov kernel P̃ from X to

Y as P x2 = P̃ (x1,x2). We do not distinguish between P and its extension. Further,

we let P ⊛Q denote the composition of Markov kernels P from X to Y and Q from

Y to Z, which is again a Markov kernel from X to Y × Z, determined as

(P ⊛Q)x(B × C) =
∫
B

Qy(C) dP x(y), B × C ∈ B ⊗ C. (6.A.2)

The composition is associative by Tonelli’s theorem. A probability measure ν on X
can be viewed as a Markov kernel from a singleton set to X , and we can therefore

write the integration of (P x)x∈X w.r.t. ν as

(ν ⊛ P )(A×B) =

∫
A

P x(B) dν(x), A×B ∈ A⊗ B (6.A.3)

yielding a unique joint probability measure on the product space (X × Y,A⊗ B).
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6.A.2 The Aggregated Structural Causal Model

Conditionally on η, denote the distribution of XI for any ordered subset I ⊆ V as

µI(AI) = P (XI ∈ AI | η), AI ∈ AI . (6.A.4)

By fixing η in (6.A.1), the joint distribution µ on X can be written as a recursive kernel

factorization µ = ⊛v∈V Fv(·, νεv , ηv) where each Fv plays the role of a Markov kernel

from Xpa(v) to Xv, representing the conditional distribution Xv | Xpa(v) = xpa(v).

Here, Fv(xpa(v), νεv , ηv) is used as shorthand for the push-forward measure of νεv
obtained using the map ε 7→ Fv(xpa(v), ε, ηv). Further, since there exists a topological

ordering of V such that α < β for all α ∈ An(I) and β ∈ V \An(I), we can factorize

µ as

µ =
(
⊛v∈An(I)Fv(·, νεv , ηv)

)
⊛
(
⊛v∈V \An(I)Fv(·, νεv , ηv)

)
= µAn(I) ⊛Q. (6.A.5)

Thus, any µI -marginal can be obtained by computing it as transformations of νεAn(I)

by marginalizing µAn(I) in (6.A.5) over An(I) \ I.

The ASCM defines µI as a function of its graphical parents in a PD+ D+ and

exogenous noise variables ηI through assignments of the form

µI(AI) = GI(µpaD+ (I), ηI)(AI), AI ∈ AI . (6.A.6)

In the above, GI specifies a composition of Markov kernels

GI(µpaD+ (I), ηI)(AI) =
((
⊗J∈paD+ (I)µJ

)
⊛
(
⊛
v∈I\paD+ (I)

Fv(·, νεv , ηv)
))

(C),

(6.A.7)

where C =×v∈I∪paD+ (I)
Cv is a product set with Cv being Av ∈ Av if v ∈ I and equal

to Xv otherwise. In this way, distributions appearing among the parents are generally

marginalized out unless they also appear in I. It is possible for I to have more than

one parent, but this happens if and only if µ
paD+ (I)

= ⊗J∈paD+ (I)µJ , cf. P5. If the

first argument in (6.A.6) is empty, we can write µI = GI(ηI) = ⊛v∈IFv(·, νεv , ηv)
for short. Note that when I ∈ I is a singleton set {v} ⊆ V , we have

µv(Av) = (µpa(v) ⊛ Fv(·, νεv , ηv))(Xpa(v) ×Av) =
∫
Fv(x, νεv , ηv)(Av) dµpa(v)(x),

(6.A.8)

for Av ∈ Av.
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6.B Establishing the ADAG

The procedure for defining the aggregated DAG (i.e., the ADAG) is given in Algo-

rithm 1. Below, we expand on the steps in the algorithm.

The primary step of Algorithm 1 involves a construction of PD+’s of each sink

node of the input DAG D. The tree implied by an ancestral lineage of a sink node

s ∈ S := {v ∈ V : chD(v) = ∅} is Ts = (Is, Es) with vertices Is = (Ik,s)k∈{0,...,Ls} and

edges Es = ((Ik,s, Ik−1,s))k∈{1,...,Ls} where the ancestral lineages (Ik,s)k,s are given by

Definition 6.4.9. The resulting trees form PD+’s of sinks in D, cf. Proposition 6.4.11,

and can be improved in terms of tree width by taking unconditional separation

statements in D into account – without violating P1–P5. The following result is

useful for finding the relevant separation statements.

Lemma 6.B.1. Let D = (V,E) be a DAG. If A,B ⊆ V then AnD(A) ∩AnD(B) =

∅ ⇐⇒ A ⊥D B.

The lemma suggests that a bottom-up search for separation statements is advan-

tageous. Given an ancestral lineage I = (Ik)k∈{0,...,L}, we need to check whether

each I ∈ I should be split into multiple nodes.

Algorithm 2: separateSet

Input : DAG D = (V, E), Set I ⊆ V .
Output : A family of sets A satisfying the properties in Lemma 6.B.2.

1 Construct the undirected graph
U = (I, {{α, β} : AnD(α) ∩AnD(β) ̸= ∅, α, β ∈ I});

2 A ← connected components of U ;
3 return A;

Lemma 6.B.2. Consider a DAG D = (V,E) and a set of nodes I ⊆ V . The

separateSet-algorithm constructs a family of sets (Aj : j ∈ J ) such that ∪j∈JAj =
I, and Aj ⊥D Aj′ for all j, j′ ∈ J with j ̸= j′ and such that ∀j ∈ J there does not

exist an A ⊊ Aj : A ⊥D (Aj \A).

If an I-set is to be divided, new separate branches of the lineage can be formed

without ambiguities since the variables would have no common ancestors in the

original graph.

Corollary 6.B.3. Let T = (I, E) be a PD+ of a DAG D with a single terminal

vertex under the restriction that A = AnD(PaD(I)) ∩ I for every I ∈ I in P2.

Suppose there is an I0 ∈ I such that paT (Ik) = Ik+1 for all k ∈ {0, . . . , L}. If there

is an A ⊊ I0 such that B = I0 \ A satisfies AnD(A) ∩ AnD(B) = ∅, it holds that

T is still a PD+ in the modified graph where the nodes (Ik)k∈{0,...,L} are replaced
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by nodes ((Ik,1)k∈{0,...,L1}, (Ik,2)k∈{0,...,L2}), defined by Ik+n,1 := Ik ∩ AnD(A) and

Ik+n,2 := Ik ∩ AnD(B) for k ∈ {0, . . . , L} and the edges (Ik+1, Ik) are replaced by

edges (Ik+1,1, Ik,1) and (Ik+1,2, Ik,2) for k ∈ {0, . . . , L−1}, while the edge (I0, I−1) is

replaced by edges (I0,1, I−1) and (I0,2, I−1), whenever the sets involved are non-empty.

This leads to the function separateLineage described in Algorithm 3 that pro-

duces an improved PD+ of a sink in D in terms of width, cf. Lemma 6.4.12.

Algorithm 3: separateLineage

Input : TIBAL T = (I, E) of a sink s and the DAG D from which it is
constructed.

Output : A directed tree (I, E) being a PD+ of DAn(s) satisfying
∀I ∈ I : ∄I ′ ⊊ I such that I ′ ⊥D (I \ I ′).

1 L← depth of T ;
2 if L ≥ 1 then
3 for k ∈ {1, . . . , L} do
4 for I ∈ {H ∈ I : distT (H, {s}) = k} do
5 (Aj)j∈{1,...,J} ← separateSet(D, I);
6 if J ≥ 2 then
7 for j ∈ {2, . . . , J} do
8 T ← modify T as in Corollary 6.B.3 with I playing the

role of I0 and Aj the role of A;

9 end

10 end

11 end

12 end

13 end
14 return T ;

6.B.1 Joining the Trees

Once PD+’s of sinks S in D have been established, the first step of the algo-

rithm is complete. The ADAG is then defined as the join of the resulting trees

D+ := JoinAndReduceπ((Ts)s∈S) The full proposed algorithm is described in Algo-

rithm 4 for a given topological ordering π of D.

As a first step, we set D∗ = ⊔s∈STs denoting the disjoint union of trees that

treats nodes and edges as distinct regardless of their labels. Next, we modify the

vertex set to make it reduced. Consider two sets I, I ′ ∈ I for which I ⊆ I ′. Because
I ⊆ I ′ implies that AnD(I) ⊆ AnD(I

′) we should generally (i) add edges from I ′ to

nodes among chD∗(I), and (ii) remove nodes and edges among AnD∗(I). There are,

however, a few pitfalls to avoid.
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Figure 6.6: DAG structure leading to issues when pruning superfluous nodes. The nodes
in the graphs represent clusters of nodes. If there is an α such that (i) α ∈ A and α ∈ B
but α /∈ ch(I) in the PD+ and/or α /∈ I ′ then P3 is violated, while (ii) α ∈ B and α ∈ H
would cause a violation of P5, upon replacing the arrow I → ch(I) with I ′ → ch(I).

Firstly, for given I ∈ I there may be multiple sets I ′ ∈ I that satisfy I ⊆ I ′. To
decide which I ′ should become the new parent of chD∗(I), we rely on the following

adaptation of the topological ordering.

Definition 6.B.4 (Lineage ordering). Given a DAG D = (V,E) and a reduced

collection of sets I satisfying ∪I∈II = V , we say that I ∈ I is greater than I ′ ∈ I
in the lineage ordering ρπ with respect to a topological ordering π of D if (i) I ⊊ I ′,

or if (ii) for every α ∈ I \ I ′ and some β ∈ I ′ \ I then π(β) < π(α).

The reduction operation follows the lineage ordering in the sense that if multiple

I ′ satisfy I ⊆ I ′, we always attach the children of I to the I ′ lowest in the ordering.

In the case that I and I ′ are equal and when there does not exist an I ′′ ⊋ I, then

the above steps work as the graph union that simply merges vertices and edges with

shared labels.

Secondly, we might encounter nodes I ⊆ I ′ for which pruning according to the

above rules eventually causes a cycle in D∗ or results in a violation of P3 or P5. See

Figure 6.6 for the generic DAG structure leading to the above or Figures 6.7–6.9 for

concrete examples. There are more than one solution to this problem, and how such

conflicts should be resolved is not obvious. We give one way of merging the graphs

in Algorithm 4. See also the proof of Proposition 6.4.13 for additional details.
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Algorithm 4: JoinAndReduceπ
Input : PD+’s (Ts)s∈S of sinks S of D satisfying the postcondition of Algorithm 3 and a

topological ordering π of the DAG D from which they are constructed.

Output : A PD+ of D.

1 D∗ ← ⊔s∈STs = (I, E);
2 ρπ ← lineage ordering of I w.r.t. π;

3 Arrange I in descending order according to ρπ ;

4 i← 1;

5 while i < |I| do
6 I ← i’th element of I;
7 I′ ← element in I of lowest order in ρπ such that I ⊆ I′ if it exists; I′ ← ∅ otherwise;

8 i← i+ 1;

9 if I′ = ∅ then i← i+ 1 end;

10 else

11 if AnD∗ (I′) ∩ deD∗ (I) ⊆ I′ ∩ chD∗ (I) and(
AnD∗ (deD∗ (I)) \ AnD∗ (I)

)
∩ AnD∗ (I′) = ∅ then

12 for J ∈ chD∗ (I) do add edge (I′, J) to E end;

13 Remove I from I and all edges involving I from E;
14 end

15 else

16 if AnD∗ (I′) ∩ deD∗ (I) ⊈ I′ ∩ chD∗ (I) then

17 I∗ ← I ∪ (AnD∗ (I′) ∩ deD∗ (I));

18 Ĩ ← element in I of lowest order in ρπ such that I∗ ⊆ Ĩ if it exists; Ĩ ← ∅
otherwise;

19 if Ĩ = ∅ then D∗ ← addNodes(D∗, I∗,D) else I∗ ← Ĩ end;

20 for J ∈ chD∗ (I) do add edge (I∗, J) to E end;

21 for J ∈ deD∗ (I) do J ← J ∪ (∩{A:A on path from I∗ to J in D∗} A) in I end;

22 Remove I from I and all edges involving I from E;
23 end

24 else

25 I∗ ← I;

26 end

27 if
(
AnD∗ (deD∗ (I)) \ AnD∗ (I)

)
∩ AnD∗ (I′) ̸= ∅ then

28 I∗∗ ← I∗;

29 for J ∈ deD∗ (I∗) do

30 A← parent of J in D∗ for which there exists a path from I∗ to J;

31 for B ∈ {H ∈ paD∗ (J) :

∄ path from I∗ to J through H,AnD∗ (H) ∩ AnD∗ (I∗) ̸= ∅} do

32 C ← paD(J \ (A ∪ B)) \ (paD∗ (J) \ B);

33 if C ̸= ∅ then

34 Set A← A ∪ C in I;
35 I∗∗ ← I∗∗ ∪ C;

36 end

37 Delete the edge (B, J) in E;
38 end

39 end

40 Ĩ ← element in I of lowest order in ρπ such that I∗∗ ⊆ Ĩ if it exists; Ĩ ← ∅
otherwise;

41 if Ĩ = ∅ then D∗ ← addNodes(D∗, I∗∗,D) else I∗∗ ← Ĩ end;

42 for J ∈ chD∗ (I∗) do add edge (I∗∗, J) to E end;

43 for J ∈ deD∗ (I∗) do set J := J ∪ (∩{A:A on path from I∗∗ to J in D∗} A) in I
end;

44 Remove I∗ from I and all edges involving I∗ from E;
45 end

46 ρπ ← lineage ordering of I w.r.t. π;

47 Arrange I in descending order according to ρπ ;

48 i← 1;

49 end

50 end

51 end

52 Function addNodes(D∗, I∗,D):
53 T ← TIBAL of I∗ (treating I∗ as a sink node in D);

54 T ← separateLineage(T );

55 D∗ ← D∗ ⊔ T ;

56 return D∗
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Figure 6.7: In the middle graph there are redundancies since {1} ⊆ {1, 3} and {2} ⊆ {2, 3}.
Removing the nodes {1} and {2}, and replacing the edge ({1}, {2, 3}) by ({1, 3}, {2, 3}) and
the edge ({2}, {1, 3}) by ({2, 3}, {1, 3}) introduces a cycle (and either replacement causes a
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6.C Proofs

Lemma 6.4.2. If D is a DAG, then D is a PD of itself.

Proof. Immediate from the definition.

Proposition 6.4.3. If P factorizes according to D = (V,E), then for a PD D∗ =
(I, E) of D it holds that

p(x) =

∏
I∈I p(xI\paD∗ (I)

|x
paD∗ (I)

)∏
v∈V p(xv|xpaD(v))|C(v)|−1 =

∏
I∈I p(xI\paD∗ (I)

|x
paD∗ (I)

)∏
v∈V p(xv|xCpa

v
)|C(v)|−1 , (6.4.1)

for all x ∈ X , where Cv = {I ∈ I : v ∈ I, v /∈ paD∗(I)} and Cpa
v = {∩I∈Cv

paD∗(I)}∪
{∩I∈Cv

{α ∈ I : π(α) < π(v)}}.

Proof. For I ∈ I let BI := {v ∈ I : v /∈ paD∗(I)} and AI = I \ BI . For all

v ∈ paD∗(I)\ (AI ∪PaD(BI)) it holds that v /∈ deD(BI) any I ∈ I. Otherwise, there

exists a β ∈ BI such that β ∈ anD(v), which, due to P1–P2, implies the existence of

a node among the ancestors of I in D∗ also containing β, but then β ∈ paD∗(I) due

to P3, contradicting that β ∈ BI .

The above implies that for each I ∈ I we can write p(xI |xpaD∗ (I)
) = p(xBI

|xpaD(BI))

whenever BI is non-empty. Due to P1 and P2, (BI : I ∈ I) covers only and all nodes

of V , although some nodes v ∈ V may appear in multiple BI -sets. We therefore

have that∏
I∈I

p
(
xI |xpaD∗ (I)

)
=

∏
BI :I∈I

p
(
xBI
|xpaD(BI)

)
=

∏
BI :I∈I

∏
v∈BI

p
(
xv|xpaD(BI)∪{β∈BI :π(β)<π(v)}

)
=
∏
v∈V

p
(
xv|xpaD(v)

)|{BI :I∈I,v∈BI}|

=
∏
v∈V

p
(
xv|xpaD(v)

)|Cv|

= p(x)
∏
v∈V

p
(
xv|xpaD(v)

)|Cv|−1

= p(x)
∏
v∈V

p
(
xv|xCpa

v

)|Cv|−1
,

where the final equality follows from the fact that Cpa
v always contains all of v’s

parents but none of its descendants.
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Lemma 6.4.7. Under Assumption 6.4.6, there exists a surjective, order-preserving

map w : IInd → IAgg such that Pdo(i);Ind = Pdo(w(i));Agg, ∀i ∈ IInd.

Proof. Choose an intervention j ∈ IAgg. This intervention affects the distribution of

a subset of variables I ⊆ I = V . Due to Assumption 6.4.6 all overlapping marginal

distributions implied by the ASCM MAgg;do(j) are equal. Thus, the intervention

do(j) induces the interventional distribution

PAgg,do(j)(x) = p̃
(
xI |xp̃aD(I)

) ∏
v∈V \I

p
(
xv|xpaD(v)

)
, x ∈ X ,

through (6.4.1) using the conditionals defined by (6.4.5). The same interventional

distribution can be produced by the stochastic intervention do(XI := p̃(·|xp̃a(I)))
in the SCM. Let this intervention have index i ∈ IInd. The mapping w can then

be defined as an index-mapping such that i ∈ w−1({j}) and such that the partial

ordering ≤X on IInd is preserved.

Corollary 6.4.8. Under Assumption 6.4.6, the ASCM is causally consistent with

the SCM in the sense that the diagram in Figure 6.3 commutes.

Proof. The argument is analogous to the proof of Theorem 6 in Rubenstein et

al. (2017). Let i, j ∈ IInd be interventions such that i ≤X j. Commutativity

of the left square of the diagram follows from Lemma 6.4.7. Moreover, we have

that PInd,do(i) = PAgg,do(w(i)) and PInd,do(j) = PAgg,do(w(j)). Existence of the arrow

PAgg,do(w(i)) do(w(j))−−−−−→ PAgg,do(w(j)) follows from w being order-preserving.

Proposition 6.4.11. If D = (V,E) has exactly one terminal vertex and T = (I, E)
is the tree implied by the ancestral lineage, then T is a PD+ of D.

Proof. Since D only has one terminal vertex, the ancestral lineage is given by the

sets

Ik = {PaD(Ik−1 \A) ∪A : A = AnD(PaD(Ik−1)) ∩ Ik−1} , (6.C.1)

for k ∈ {1, . . . , L} with I0 = {s} being the sink node. Thus, T is the path graph

I0 ← · · · ← IL.

P1, P2 and P5 follow directly from the construction of T from (6.C.1).

For P3, let J be a node on the unique path from Ik+n to Ik, n ≥ 1, in T . It is

enough to establish that if α ∈ Ik ∩ Ik+n then α ∈ J . Let Ak := AnD(PaD(Ik)) ∩ Ik
for k ≥ 1. If n = 1 there is nothing to show. If n = 2, suppose for contradiction that

α /∈ Ak+1 ⊆ Ik+1. Then, since α ∈ Ik+2, there exists β ∈ Ik+1 such that α ∈ paD(β).

Thus, either β ∈ Ak or there exists a γ ∈ Ik \Ak such that β ∈ paD(γ). Since α ∈ Ik
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by assumption, both cases yield a contradiction. For n > 2, successive application of

this rule shows that α ∈ J for any J on the path from Ik+n to Ik.

If |V | ≤ 2 then P4 is immediate, so suppose |V | > 2. We will start by arguing

that the set A in (6.C.1) never makes up an entire set in the lineage, that is, we

cannot have Ik = An(Pa(Ik)) ∩ Ik for any k ∈ {1, . . . , L}. Let k be given. If

Ik = An(Pa(Ik)) ∩ Ik, or equivalently Ik ⊆ An(Pa(Ik)), then for every node α ∈ Ik
there is a directed path α→ · · · → β in D where β is another node in Ik. Suppose

|Ik| = n ∈ N+ and let {1, . . . , n} be the labels of Ik. Note that n cannot be one,

otherwise An(Pa(Ik)) would be empty, so suppose n ≥ 2. The first node, 1, cannot

have a path leading back to itself, otherwise there would be a cycle. Without loss

of generality, let there be a directed path 1→ · · · → 2. Likewise, 2 cannot have a

path leading back to 1 or to itself. If n = 2 this yields a contradiction, if not let

there be a directed path 2 → · · · → 3. Continuing this process up until the n’th

variable, we see that there must be a path n → · · · → i for some i ∈ {1, . . . , n},
introducing a cycle. Thus, we cannot have Ik = An(Pa(Ik)) ∩ Ik for any k meaning

that Ak := An(Pa(Ik)) ∩ Ik is always a proper (possibly empty) subset of Ik.

Consequently, at least one element from Ik−1 is always removed by the parent

condition when constructing Ik (and at least one element, namely a parent, is added).

Further, due to P3, once a variable is removed, it will not reappear. Therefore, we

have for any k ∈ {1, . . . , L} that

(i) at least one element in Ik is not in Ik+n for any n ∈ {1, . . . , L− k}, namely a

child among the nodes in Ik+1;

(ii) at least one element in Ik is not in Ik−n for any n ∈ {1, . . . , k}, namely a parent

among the nodes in Ik−1.

It follows from (i) that we cannot have Ik−n ⊆ Ik for any n ∈ {1, . . . , k} and from

(ii) that we cannot have Ik+n ⊆ Ik for any n ∈ {1, . . . , L− k}. P4 therefore holds,

and we conclude that the tree implied by the ancestral lineage is a PD+ of D.

Lemma 6.4.12. If D has exactly one terminal vertex and T is the tree implied

by the ancestral lineage, then separateLineage(T ) =: T̃ = (I, E) is a PD+ of D
satisfying ∀I ∈ I : ∄I ′ ⊊ I such that I ′ ⊥D (I \ I ′), making T̃ the PD+ of smallest

possible width under the restriction that the sink of D is also a sink in T̃ and that

P2 reads: A ∪ PaD(B) = paD∗(I) where A ⊆ AnD(PaD(I)) ∩ I and B = I \ A for

every I ∈ I.

Proof. We start by showing that T̃ := separateLineage(T ) = (I, E) is a PD+

of D with the additional property that there does not exists an I ′ ⊊ I such that

I ′ ⊥D (I \ I ′). We refer to the latter condition as (⋆). The proof is by induction on
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the depth of the ancestral lineage. Note that since D only has one terminal vertex,

the ancestral lineage is given by the sets

Ik = {PaD(Ik−1 \A) ∪A : A = AnD(PaD(Ik−1)) ∩ Ik−1} , (6.C.2)

for k ∈ {1, . . . , L} with I0 = {s} being the sink node and L being the depth.

For the base case (L = 0), the algorithm returns D itself; a graph containing only

a single node and no edges. In this case, the algorithm’s postcondition is trivially

satisfied.

For the induction case (L ≥ 1), suppose that after n iterations of the outer for-loop,

then T is a PD+ of DAn(s) satisfying (⋆) for all I ∈ {H ∈ I : distT (H, I0) ≤ n}.

In the second loop a set I ∈ {H ∈ I : distT (H, I0) = n+ 1} is used as the basis

for all computations. Due to the loop-invariant, it is not affected by any of the

previous w − 1 iterations, and will not affect subsequent iterations of the second

loop. That is, all computations in the second loop could, in principle, be performed

in parallel. In the w’th iteration, I is split into disjoint sets (Aj)j∈J through the

function separateSet. These sets have the properties described by Lemma 6.B.2.

For each j ∈ J the set splitting procedure opens for a branching of the lineage

as described by Corollary 6.B.3. If |J | = 1, no branching is performed; I is left

unaltered for every k ∈ {n+1, . . . , L}. If |J | ≥ 2, new separate branches are created

in the sense of Corollary 6.B.3. By the induction hypothesis, Lemma 6.B.2 and

successive application of Corollary 6.B.3, the loop-invariant holds at the end of the

n+ 1’th iteration of the outer loop. Upon termination at loop-exit (n+ 1 = L), the

invariant implies the postcondition.

Since T̃ has the property (⋆), the decomposition following the sets specified by

(6.C.2) cannot be improved further in terms of width under P5. What is left is then

to argue that these sets cannot be chosen differently under the restricted version of

P2 in the lemma, P2r say, which states that for every I-node the parent set in the

tree should be a clustering of the nodes A ∪ PaD(B) where A ⊆ AnD(PaD(I)) ∩ I
and B = I \ A. We note that the ancestral lineage selects A = AnD(PaD(I)) ∩ I,
that is, it always retains every node that reappears upstream.

The statement is trivial if |V | ≤ 2 or if paD(s) = V \{s}, because to satisfy P2r we

always have I0 = {s} and I1 = paD(s), so suppose that |V | > 2 and paD(s) ⊊ V \{s}.
Let Ak := AnD(PaD(Ik−1)) ∩ Ik−1 where Ik is defined as in (6.C.2). If Ak = ∅ for
all levels k ≥ 1, then (6.C.2) reduces to Ik = PaD(Ik−1) and we are done. If Ak is

not empty at every k, consider the first time, k ≥ 2, where Ak is non-empty and

where we wish to retain only some or no variables A∗k ⊊ Ak, redefining Ik to be

I∗k = A∗k ∪ PaD(Bk ∪ (Ak \A∗k)),

where Bk := Ik−1 \ Ak. For any excluded α ∈ Ak \ A∗k there exists a β ∈ I∗k such

that α ∈ anD(β), because otherwise α would not be in the set defining Ak. Due to
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P2, this implies the existence of an I∗k+n, n ≥ 1, containing α. Since α ∈ Ak implies

that α ∈ Ik−1, P3 states that α has to be included in I∗k . Thus, no elements among

Ak may be excluded from Ik, concluding the proof.

Proposition 6.4.13. Algorithm 1 produces a PD+ of an input DAG D.

Proof. By Lemma 6.4.12, the graphs plugged into JoinAndReduceπ satisfy the

precondition. To satisfy the postcondition, we will show that when the while loop

in JoinAndReduceπ finishes, D∗ will be a PD+ of D. If |I| = 1 this is trivial, so

suppose |I| ≥ 2. We propose the following loop invariant; at the end of any iteration

of the while loop then:

(a) D∗ is a DAG;

(b) D∗ satisfies P1, P2, P3 and P5;

(c) The i first elements in I are mutually reduced.

Before the loop iterates the first time i = 1 and the invariant trivially holds. Suppose

the invariant holds at the beginning of some iteration i > 1. If I ′ = ∅, nothing
happens save an increase of i by one. Since I was sorted in descending order according

to ρπ, there does not exist an Il ∈ I such that Il ⊆ I. Since I ′ = ∅ there does not

exist an Iu ∈ I such that Iu ⊇ I. Therefore, the invariant holds. Suppose I ′ ̸= ∅.
We have 2 cases.

Case I: AnD∗(I ′) ∩ deD∗(I) ⊆ I ′ ∩ chD∗(I) and
(
AnD∗(deD∗(I)) \AnD∗(I)

)
∩

AnD∗(I ′) = ∅. Since I ⊆ I ′, we get from the invariant that the ancestors of I ′

contain all the ancestors of I. Removing I and replacing the edge (I, J) with (I ′, J)

for every J ∈ chD∗(I) thus always preserves P1, P2 and P4. Since P3 holds at the

beginning of the iteration, P3 is intact following the replacement of the edge(s) if

and only if for every A ∈ deD∗(I) and B ∈ AnD∗(I ′) then A ∩B ⊆ J for every node

J on the path from B to A in the modified graph; or equivalently, if and only if

AnD∗(I ′) ∩ deD∗(I) ⊆ I ′ ∩ chD∗(I). Further, since P5 holds at the beginning of the

iteration, P5 is intact following the replacement of the edge(s) if and only if for every

A ∈ AnD∗(deD∗(I)) \ AnD∗(I) and B ∈ AnD∗(I ′) then A ⊥D B; or equivalently, if

and only if AnD∗(deD∗(I)) \AnD∗(I) ∩ AnD∗(I ′) = ∅, cf. Lemma 6.B.1. Thus, in

case I, we have ruled out the possibility that the edge replacement causes a violation

of P3 and P5. We conclude that (a) and (b) hold. Since only I is deleted from I, i
is left unchanged and takes the same value as at the beginning of the iteration, and

we get from the invariant that (c) also holds.

Case II: AnD∗(I ′) ∩ deD∗(I) ⊈ I ′ ∩ chD∗(I) or
(
AnD∗(deD∗(I)) \AnD∗(I)

)
∩

AnD∗(I ′) ≠ ∅. In the first case, pruning as above would yield a violation of P3. We
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introduce the node (if it does not already exist, lines 17–19) I∗ ⊇ AnD∗(I ′)∩deD∗(I)

that becomes the new parent of the children of I (instead of I ′, line 20), and update

all descendants of I so that P3 holds (line 21). The second case deals with sets that

would cause a violation of P5. Note that such a violation may occur whether or not

pruning would cause a violation of P3. To rectify the situation, we look for nodes

J among the descendants of I (or I∗ in the modified graph if P3 would have been

violated) for which there exists distinct paths into J with a non-empty intersection

(lines 29–39). If we come across such a set B, say, we remove the edge (B, J) to

maintain P5 (line 37). If B contains parents of J that are not among J ’s remaining

parents, this would cause a violation of P2. We therefore add missing parents to

the parent of J for which there is a path from I (or I∗) to J and also to I (or I∗,

lines 30-36). This potentially causes a violation of P3, so all descendants of I (or I∗)

have to be updated so that P3 holds (line 44). After these operations (a) and (b)

hold. Because we have modified sets of I, we have to update the lineage ordering,

rearrange I, and start over with i = 1 (lines 46–48). Thus, the invariant also holds

at the end of the iteration in case II.

Observe that if there are no “problem sets”, that is, if we are always in case I when

I ⊆ I ′, then, after each iteration of the while loop, |I| − i decreases by one. Thus,

if the loop continues to iterate, eventually i = |I|, whereupon the loop terminates.

If there is an I and an I ′ such that we enter case II, i resets and |I| may increase.

However, because all sets modified by operations in case II always grow in size,

then eventually, if the loop continues to iterate, we will not find ourselves in case II

again. Upon termination of the while loop, we have from the invariant that the final

contents of D∗ is a DAG satisfying P1–P5, and we are done.

Proposition 6.4.14. If D = (V,E) is a DAG whose underlying undirected graph is

a forest, then the ADAG D+ is equal to D in the sense that D+ = (V,E).

Proof. Let the skeleton ske(G) of a graph G be the undirected graph where two nodes

are connected in ske(G) if and only if they are adjacent in G, that is, ske(G) is the
underlying undirected graph of G. If ske(D) is a forest, the ADAG is a disjoint union

of the ADAG’s of the connected components of D. It suffices to consider the case

where ske(D) is a tree

Let S = {v ∈ V : chD(v) = ∅} be the set of sink nodes and fix an s ∈ S. We start

by showing that the ADAG of DAn(s), namely D+s = separateLineage(Ts) where
Ts is the TIBAL of s, is equal to DAn(s) itself. Notice that since ske(D) is a tree

then ske(DAn(s)) is also a tree. It follows that the ancestral lineage simplifies to the

union of parents, that is, I0 = {s} and

Ik = PaD(Ik−1), k ∈ {1, . . . , Ls}.
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Otherwise there is an Ik, k ≥ 2, with |Ik| ≥ 2 and Ak := AnD(PaD(Ik))∩Ik ̸= ∅ (since
Ak ⊊ Ik cf. the proof of Proposition 6.4.11), such that an α ∈ Ak and a β ∈ Ik \Ak
share at least one common descendant, contradicting that ske(DAn(s)) is a tree.

Moreover, for every Ik with |Ik| > 1 then α ⊥D β for every pair α, β ∈ Ik, α ̸= β,

because otherwise, if α ∼ β, there would be a cycle in ske(DAn(s)) as α and β always

share at least one common descendant. It follows from Lemma 6.4.12 that D+s is

equal to DAn(s).

If |S| = 1 we are done since Algorithm 4 would return its input. Suppose |S| > 1.

Since the width of D+s for any s ∈ S is one, there are no “cluster nodes”, and

Algorithm 4 works as the graph union, merging vertices and edges with shared labels.

Thus,

D = ∪s∈SDAn(s) = ∪s∈SD+s = D+,

concluding the proof.

Proposition 6.4.15. If D+ = (I, E) is the ADAG determined from D and A,B,C ⊆
I are three mutually reduced families of sets, then

A ⊥D+ B | C =⇒ (A \ (C ∪D)) ⊥D (B \ (C ∪D)) | (C ∪D),

where D = IS
(
AnD+(A),AnD+(B),AnD+(C)

)
\anD+({J ∈ C : J ∈ AnD+({A,B})})

with IS(A,B,C) = (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C).

Proof. Let Dm denote the moral graph of a DAG D, that is, the undirected graph

with the same vertex set as D and nodes α and β that are adjacent in Dm if and only

if α → β or β → α or α and β have a common child (Lauritzen, 1996). Similarly

for an ADAG D+ = (I, E), or any subgraph of it, we define the ADAG-moral graph

(D+)m
+

as the undirected graph with vertex set ∪I∈II and nodes α and β that are

adjacent in (D+)m
+

if and only if either

1. α, β ∈ I for any I ∈ I or,

2. α ∈ I, β ∈ I ′ s.t. α ̸= β and there is an edge I → I ′, or an edge I ′ → I, or I

and I ′ have a common child I ′′.

We start by showing that separation in D+ implies separation in the ADAG-moral

graph. Notice that the ADAG-moral graph can be constructed in two steps. The

first step is the usual moralization operation; all parents are married and directions

deleted. Next, the graph is “unclustered” so that two nodes are adjacent α ∼ β if

they appear in the same cluster node, that is α, β ∈ I, or if they appear in different

but adjacent cluster nodes, that is, α ∈ I, β ∈ I ′ with I ∼ I ′. Thus, if I is only

composed of disjoint subsets of V , we clearly have

A ⊥D+ B | C =⇒ A ⊥(
D+

An({A,B,C})

)m+ B | C,
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and there is no need to condition on additional variables. However, when some

members of I have a non-empty intersection, the “unclustering” step in the construc-

tion above may result in a walk w from α ∈ A \ (B ∪ C) to β ∈ B \ (A ∪ C) that
circumvents C in (D+

An({A,B,C}))
m+

. We need to rule out the possibility of these

walks, so generally we want to show that

A ⊥D+ B | C =⇒ (A \ (C ∪D)) ⊥(
D+

An({A,B,C})

)m+ (B \ (C ∪D)) | (C ∪D),

where

D =
((

AnD+(A) ∩AnD+(B)
)
∪
(
AnD+(C) ∩AnD+(A)

)
∪
(
AnD+(C) ∩AnD+(B)

))
\ anD+({J ∈ C : J ∈ AnD+({A,B})}).

Starting with the case C = ∅, consider a pair α ∈ A \ AnD+(B) and β ∈
B \ AnD+(A) such that there exists a walk w = {α := w1, . . . , wn =: β} in

(D+
An({A,B}))

m+

. Then there must exist an adjacent pair wj , wj+1 such that wj ∈
AnD+(A) \ AnD+(B) and wj+1 ∈ AnD+(B). Since A is separated from B by the

empty set in D+, we have by definition of the ADAG-moral graph that adjacency

between wj and wj+1 occurs if and only if wj ∈ J,wj+1 ∈ J ′ for J ∈ AnD+(A), J ′ ∈
AnD+(B) and either wj ∈ J ′ or wj+1 ∈ J . Hence, any walk between α and β must

pass through AnD+(A) ∩ AnD+(B), and we conclude that AnD+(A) ∩ AnD+(B)

separates A \AnD+(B) from B \AnD+(A) in (D+
An({A,B}))

m+

.

When C is non-empty, we can use an analogous argument to show that con-

ditioning further on (AnD+(C) ∩ AnD+(A)) ∪ (AnD+(C) ∩ AnD+(B)) would block

off any walk from from α ∈ A \ (B ∪ C) to β ∈ B \ (A ∪ C) that circumvents C

in (D+
An({A,B,C}))

m+

. However, conditioning on every common variable among the

ancestors is unnecessary; we can exclude some variables from this set. Suppose

J ∈ C is an ancestor of A (or B) and let J ′ be an ancestor of J in D+
An({A,B,C}).

Then there does not exist a path from J ′ to A (or B) that circumvents J , because

otherwise there would be a node on the path from J to A (or B) with incoming

arrows from two nodes, both sharing J ′ as an ancestor, contradicting P5. Thus, we

do not need to include J ′ in the conditioning set D.

Next, we wish to show that separation in the ADAG-moral graph implies sepa-

ration in the moral graph of D in the sense that (DAn(A∪B∪C∪D))
m = (V,E) is a

sub-graph of (D+
An({A,B,C}))

m+

= (V +, E+) so that V ⊆ V + and E ⊆ E+. Notice

first that

(A \ (C ∪D)) ∪ (B \ (C ∪D) ∪ (C ∪D) = A ∪B ∪ C ∪D.

Consider the moral graph (DAn(A∪B∪C∪D))
m with vertex set V = AnD(A∪B∪C∪D).

By definition, adjacency between two nodes α, β ∈ V in this graph occurs if and
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only if either (i) α→ β, or (ii) α← β, or (iii) α→ γ and β → γ for some γ ∈ V in

DAn(A∪B∪C∪D).

It follows from the definition of the ADAG that

AnD(A ∪B ∪ C ∪D) ⊆ AnD+({A,B,C}),

and thus V ⊆ V +. We want to argue that if either (i)–(iii) is true then α and β are

also adjacent in (D+
An({A,B,C}))

m+

. If α→ β in DAn(A∪B∪C∪D) we must have that

either α, β ∈ I for some I ∈ IAn({A,B,C}) or α ∈ I and β ∈ I ′ where (I, I ′) is an

edge in EAn({A,B,C}). The same is true with the roles are reversed, i.e. when α← β.

If α and β have a common child γ then either α and β appear in the same node I or

α ∈ I and β ∈ I ′ appear in two different nodes while γ may appear in either I, I ′

or in a third node I ′′. If γ ∈ I then there must be an arrow I ′ → I, if γ ∈ I ′ then
there must be an arrow I ′ → I, and if γ ∈ I ′′ then there must be arrows I → I ′′ and

I ′ → I ′′. By definition, α is adjacent to β in (D+
An({A,B,C}))

m+

in all of the above

cases and thus E ⊆ E+.

The statement in the proposition now follows as a corollary since

A ⊥D∗ B | C =⇒ (A \ (C ∪D)) ⊥(
D+

An({A,B,C})

)m+ (B \ (C ∪D)) | (C ∪D)

=⇒ (A \ (C ∪D)) ⊥(DAn(A∪B∪C∪D)))
m (B \ (C ∪D)) | (C ∪D)

=⇒ (A \ (C ∪D)) ⊥D (B \ (C ∪D)) | (C ∪D),

with the ultimate implication due to separation in the moral graph of the smallest

ancestral set containing all the variables involved being equivalent to d-separation.

Lemma 6.B.1. Let D = (V,E) be a DAG. If A,B ⊆ V then AnD(A) ∩AnD(B) =

∅ ⇐⇒ A ⊥D B.

Proof. It suffices to show that α ⊥D β for singletons α and β, because A ⊥D B if

and only if α ⊥D β for every pair of α ∈ A and β ∈ B. This follows since ⊥D is

a compositional graphoid, satisfying decomposition and composition in particular,

that is for disjoint subsets A,B,C of V then

A ⊥D (B ∪ C)⇐⇒ A ⊥D B and A ⊥D C.

The forward direction is immediate from the definition of d-separation. For the

backward direction we proceed by contraposition. Suppose that An(α) ∩An(β) ̸= ∅.
Then either (i) {α} ⊆ An(α) ∩An(β) in which case there is a directed path from α

to β, (ii) {β} ⊆ An (α) ∩An(β) in which case there is a directed path from β to α,
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or (iii) α and β share a common ancestor γ ∈ V from which there is a directed path

to both α and β. Thus, α is not d-separated from β by the empty set and the proof

is complete.

Lemma 6.B.2. Consider a DAG D = (V,E) and a set of nodes I ⊆ V . The

separateSet-algorithm constructs a family of sets (Aj : j ∈ J ) such that ∪j∈JAj =
I, and Aj ⊥D Aj′ for all j, j′ ∈ J with j ̸= j′ and such that ∀j ∈ J there does not

exist an A ⊊ Aj : A ⊥D (Aj \A).

Proof. It follows from Lemma 6.B.1 that the undirected graph

U = (I, {{α, β} : AnD(α) ∩AnD(β) ̸= ∅, α, β ∈ I}) ,

is equivalent to the undirected graph

(I, {{α, β} : α ̸⊥D β, α, β ∈ I}) .

A connected component of U is a subgraph in which any vertex is reachable from

any other vertex by traversing edges. Denote by A = (Aj , j ∈ J ) the connected

components of U . The component sets are non-empty, pairwise disjoint and collec-

tively cover I. The first two properties of the statement follow directly from these

facts. For the third property, suppose that there is an Aj for which there is proper

subset A ⊊ Aj such that A ⊥D (Aj \ A). But then β ∈ (Aj \ A) is not reachable

from α ∈ A in U contradicting that α ∈ Aj .

Corollary 6.B.3. Let T = (I, E) be a PD+ of a DAG D with a single terminal

vertex under the restriction that A = AnD(PaD(I)) ∩ I for every I ∈ I in P2.

Suppose there is an I0 ∈ I such that paT (Ik) = Ik+1 for all k ∈ {0, . . . , L}. If there

is an A ⊊ I0 such that B = I0 \ A satisfies AnD(A) ∩ AnD(B) = ∅, it holds that

T is still a PD+ in the modified graph where the nodes (Ik)k∈{0,...,L} are replaced

by nodes ((Ik,1)k∈{0,...,L1}, (Ik,2)k∈{0,...,L2}), defined by Ik+n,1 := Ik ∩ AnD(A) and

Ik+n,2 := Ik ∩ AnD(B) for k ∈ {0, . . . , L} and the edges (Ik+1, Ik) are replaced by

edges (Ik+1,1, Ik,1) and (Ik+1,2, Ik,2) for k ∈ {0, . . . , L−1}, while the edge (I0, I−1) is

replaced by edges (I0,1, I−1) and (I0,2, I−1), whenever the sets involved are non-empty.

Proof. Since any node in T has at most one child, the statement concerning the

edge I0 → I−1 is well-defined. To see this, suppose I ∈ I has at least two children

I ′, I ′′ ∈ I. If I ′ and I ′′ share a common descendant then P5 is violated. If I ′ and I ′′

do not have any descendants in common then D must have more than one sink node.

We want to argue that the modified graph is a PD+. Clearly, P1–P3 and P5

are satisfied by the construction of the two paths, but P4 requires an argument.

Let p = (IL, . . . , I0, I−1, . . . , I−n) be the unique path in T from IL to the sink

node I−n := {s}. Since T is a PD+, we have that Ik ⊥D I for all k ∈ {0, . . . , L}
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and I ∈ I that are not in p. Thus, it suffices to consider whether the family

of sets ((Ik,1)k∈{0,...,L1}, (Ik,2)k∈{0,...,L2}, (I−k)k∈{1,...,n}) is reduced. Since T is a

PD+, (I−k)k∈{1,...,n}, (Ik,1)k∈{0,...,L1} and (Ik,2)k∈{0,...,L2} are reduced. Further,

since A and B have no common ancestors, the intersection of any two sets Ik,1
and Ik,2, k, k

′ ∈ {0, . . . , L} is always empty and we cannot have Ik,1 ⊆ Ik′,2 or

Ik,1 ⊇ Ik′,2 (unless both sets are empty). For given w ∈ {1, 2}, if Ik,w ⊆ I−l for any
k ∈ {1, . . . , Lw} and l ∈ {1, . . . , n}, then, due to P3, Ik,w ⊆ Ik−1,w contradicting

that the two are mutually reduced. If I0,w ⊆ I−l, then I0,w ⊆ I−1 by P3, but, due to

the restricted version of P2 in the corollary, there will always be a β ∈ I0,w such that

β ∈ PaD(I−1), so this cannot be. Finally I−l ⊆ Ik,w any {0, . . . , Lw} is not possible
due to the construction of the I-sets following the restricted version of P2 in the

corollary. We conclude that P5 holds for the modified vertex set and we are done.

6.D Alternative Decompositions

Figures 6.10–6.11 give examples different decompositions satisfying P2. In the

graphs, each node represents a cluster of nodes with the number detailing how many

connected components each node contains. The colored boxes represent the parents

appearing in the corresponding parental decomposition. Figure 6.10 gives an example

of how two DAGs of similar structure lead to different optimal aggregated structures

(in terms of width) depending on the number of nodes within the clusters. Figure 6.11

gives an example of how the choice of a parents at a given level can depend on future

options.
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Figure 6.10: The graphs have the same overall structure. However, different sets of
parents are preferred in terms of width depending on the number of nodes in each cluster.
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Figure 6.11: The three viable parent sets in this graph structure. Choosing whether to
place the yellow box horizontally or diagonally depends on how one can subsequently place
the dark blue box.

6.E Description of Data

In this section, we describe the data and preprocessing steps used in the applications

in Section 6.3.2 and Section 6.4.5.

Data on the distributions of education level, income, alcohol consumption, activity

level, smoking behaviour and overweight is from IPUMS (2022). The Integrated

Public Use Microdata Series (IPUMS) database provides survey data at the individual

level based on the annual National Health Interview Survey. Specifically we have

used the following variables, mapped into dichotomous versions:

� Income: The variable ‘POORYN’ which indicates whether family income was

above or below poverty level is used as is.

� Education: The variable ‘EDUCREC2’ reports the respondent’s highest at-

tained level of education. We follow the standardized education recoding and

classify a respondent’s level of education as low if the highest attained level is

8th Grade or lower.

� Alcohol: The variable ‘ALCDAYSYR’, describing the frequency with which

respondents consumed alcohol, reported as number of days in the past year, is

combined with ‘ALCAMT’, describing average number of drinks on days drank,
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to determine daily average alcohol consumption. We classify respondents as

light drinkers if average consumption is less than 12 grams of alcohol per day.

� Physical activity: We use a combination of the variables ‘MOD10DMIN’ and

‘VIG10DMIN’, that describe the duration of moderate and vigorous activity

of 10+ minutes in minutes. We convert the time spent exercising into MET-

minutes by multiplying moderate activity minutes by 5 and vigorous activity

minutes by 9. We categorize respondents as being in the low physical activity

category if the number of daily MET-minutes falls below 600.

� Smoking: We use variable ‘SMOKESTATUS2’ to determine the current smoking

status of respondents.

� Overweight: We use the variable ‘BMI’ reporting the Body Mass Index, a

measure of body fat based on height and weight, to determine whether or not

an individual is overweight. Following the standard WHO classification, an

individual is categorized as being overweight if the BMI exceeds 25.

Missing observations are distributed proportionally among categories.

Data on the prevalence of adults who have high blood cholesterol is from CDC

(2022). The data is based on the Behavioral Risk Factor Surveillance System which is

an annual health-related telephone survey among U.S. residents. The respondents are

categorized as having high blood cholesterol if, after having their cholesterol checked,

they have ever been told by a health professional that it was high. After 1999, the

dataset covers unisex values for the years 1999, 2001, 2003, 2005, 2007, 2009, 2011,

2013, 2015, 2017 and 2019. To obtain prevalence estimates for all calendar years

in the period 1999–2018, a quadratic regression was fitted and used as a smoothed

estimate.

Data on the prevalence of adults who have raised blood pressure is from NCD-RisC

(2017). Raised blood pressure is defined as having a systolic blood pressure at or

above 140 mm Hg, or a diastolic blood pressure at or above 90 mm Hg. The dataset

covers all years in the period 1999–2015. To obtain data for 2016–2018, a quadratic

regression was fitted and used to predict missing values.

Data on relative-risks are obtained from Murray et al. (2020). The relative-risks

are reported in five-year age groups at various levels of exposure. We match the

risk distributions with the relative-risks estimates as follows. Light consumers of

alcohol are assigned the baseline relative risk of unity, while non-light consumers are

assigned the relative risk corresponding to a consumption of 36 g/day. Individuals at

low levels of activity are assigned a relative risk corresponding to 0 MET-minutes of

activity, while individuals at non-low levels are assigned a relative risk corresponding

to 1200 MET-minutes of activity. Non-smokers are assigned the baseline relative

risk of unity, while smokers are assigned the relative risk corresponding to smoking
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20 cigarettes a day. Non-overweight individuals are assigned the baseline relative

risk of unity, while overweight individuals are assigned a relative risk corresponding

to a Class I Obese (i.e., a BMI of 30–35). Individuals with non-high cholesterol are

assigned the baseline relative risk of unity, while individuals with high cholesterol

are assigned the relative risk associated with a heightened level of LDL cholesterol

of 1 mmol/L. Individuals with non-high blood pressure are assigned the baseline

relative risk of unity, while individuals with high blood pressure are assigned the

relative risk associated with a level heightened by 10 mm Hg.

6.F PCA for ilr-transformed Data

Consider a matrix X containing n observations of data from the d-dimensional

simplex, that is, each row of X corresponds to an observation from

Sd =

{
x = (x1, . . . , xd)

⊤ : x ≻ 0,

d∑
i=1

xi = 1

}
.

We want to transform each observation from Sd onto Rd (or Rd−1) so that standard

multivariate tools are at our disposal. In particular, we want to apply principal

component analysis. The usual transformations for this purpose are the centered-

log-ratio (clr) transformation (Aitchison, 1986) and the isometric-log-ratio (ilr)

transformation (Egozcue, 2003). The clr-transform centers the data around the

geometric mean. It is defined as

y = clr(x) :=

log
x1

d

√∏d
i=1 xj

, . . . , log
xd

d

√∏d
i=1 xj

⊤ ,
sending each composition x ∈ Sd to a vector y ∈ Rd satisfying

∑d
i=1 yi = 0. Thus,

the data are collinear; such a vector constitutes a d− 1 dimensional subspace of Rd.
The ilr-transformation is based on a choice of orthonormal basis V = (v1, . . . , vd−1)

of this subspace so that the transformed data ilr(x) := V ⊤ clr(x) are non-collinear.

Egozcue (2003) suggests using

Rd ∋ vi =
√

i

i+ 1

1

i
, . . . ,

1

i︸ ︷︷ ︸
i elements

,−1, 0, . . . , 0


⊤

, i = 1, . . . , d− 1,

which we also adopt here.

Let 1d denote a d-dimensional vector of ones and Id a d-dimensional identity
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matrix. In matrix notation, we then have

Original data : X ∈ Rn×d,

clr-transformed data : Y = log(X)C⊤ ∈ Rn×d,

ilr-transformed data : Z = Y V ∈ Rn×(d−1),

where C = Id − 1
d1d1

⊤
d . The (full) principal components decomposition of Z is then

Z∗ = (Z − 1nL(Z)
⊤)W,

where L(Z) contains the empirical means of the columns of Z, and W is the

weights-matrix obtained from an eigendecomposition WΛW⊤ of (Z⊤−L(Z)1⊤n )(Z−
1nL(Z)

⊤), where Λ is a diagonal matrix of eigenvalues and the columns of W are the

corresponding eigenvectors (i.e., the PC-loadings). Robust (covariance) estimation is

also an option when working in ilr-space, see Filzmoser et al. (2009).

For dimensionality reduction, only the p < d first principal components are used.

We can then back-transform the (truncated) transformed data from ilr-space to

clr-space, and finally back onto the simplex:

X̂ = C
[
exp

{(
Z∗pW

⊤
p + 1nL(Z)

)
V ⊤
}]
,

where the p-subscript is used to denote extraction of the p first columns of a matrix,

exp is applied element-wise and C[M ] = M ⊘ ((M1d)⊗ 1⊤d ) for a n× d matrix M

with ⊘ denoting Hadamard-division and ⊗ the Kroenecker product.
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Vékás, P. (2019). Rotation of the age pattern of mortality improvements in the

European Union. Central European Journal of Operations Research, 28(1), pp. 1–

18. doi: 10.1007/s10100-019-00617-0.

Wakefield, J. (2004). Ecological inference for 2 x 2 tables. Journal of the Royal

Statistical Society: Series A (Statistics in Society), 167(3), pp. 385–425. doi:

10.1111/j.1467-985x.2004.02046_1.x.

Wakefield, J. (2008). Ecologic studies revisited. Annu. Rev. Public Health, 29(1),

pp. 75–90.

Waldron, I. (1983). Sex differences in human mortality: The role of genetic factors.

Social Science & Medicine, 17(6), pp. 321–333. doi: 10.1016/0277-9536(83)

90234-4.

https://doi.org/10.1038/35015561
https://doi.org/10.1080/0032472031000141896
https://doi.org/10.2307/2061224
https://doi.org/10.1353/dem.2003.0018
https://doi.org/10.1073/pnas.2019536118
https://doi.org/10.1080/10920277.2013.866034
https://doi.org/10.1017/asb.2017.18
https://doi.org/10.1007/s10100-019-00617-0
https://doi.org/10.1111/j.1467-985x.2004.02046_1.x
https://doi.org/10.1016/0277-9536(83)90234-4
https://doi.org/10.1016/0277-9536(83)90234-4


BIBLIOGRAPHY 211

Wan, C. and Bertschi, L. (2015). Swiss coherent mortality model as a basis for

developing longevity de-risking solutions for Swiss pension funds: A practical

approach. Insurance: Mathematics and Economics, 63, pp. 66–75. doi: 10.1016/

J.INSMATHECO.2015.03.025.

Wang, H. and Preston, S. (2009). Forecasting United States mortality using cohort

smoking histories. Proceedings of the National Academy of Sciences of the United

States of America, 106, pp. 393–398. doi: 10.1073/pnas.0811809106.

Wang, S. and Brown, R. (1998). A Frailty Model for Projection of Human Mortality

Improvements. Journal of Actuarial Practice, 6, pp. 221–241.

WHO (2009). Global Health Risks: Mortality and burden of disease attributable to

selected major risks. World Health Organization, pp. 1–70. url: https://apps.

who.int/iris/handle/10665/44203.

Wienke, A. (2010). Frailty models in Survival Analysis. Chapman & Hall/CRC

biostatistics series. Boca Raton: Taylor & Francis. isbn: 0-429-13960-8.

Yang, S. S. and Wang, C.-W. (2013). Pricing and securitization of multi-country

longevity risk with mortality dependence. Insurance: Mathematics and Economics,

52(2), pp. 157–169. doi: 10.1016/j.insmatheco.2012.10.004.

Zarulli, V., Jones, J. A. B., Oksuzyan, A., Lindahl-Jacobsen, R., Christensen, K., and

Vaupel, J. W. (2018). Women live longer than men even during severe famines and

epidemics. Proceedings of the National Academy of Sciences, 115(4), E832–E840.

doi: 10.1073/pnas.1701535115.

Zeger, S. L. and Liang, K.-Y. (1991). Feedback models for discrete and continuous

time series. Statistica Sinica, 1, pp. 51–64.

Zhou, R., Wang, Y., Kaufhold, K., Li, J. S.-H., and Tan, K. S. (2014). Modeling

period effects in multi-population mortality models: Applications to Solvency II.

North American Actuarial Journal, 18(1), pp. 150–167. doi: 10.1080/10920277.

2013.872553.

https://doi.org/10.1016/J.INSMATHECO.2015.03.025
https://doi.org/10.1016/J.INSMATHECO.2015.03.025
https://doi.org/10.1073/pnas.0811809106
https://apps.who.int/iris/handle/10665/44203
https://apps.who.int/iris/handle/10665/44203
https://doi.org/10.1016/j.insmatheco.2012.10.004
https://doi.org/10.1073/pnas.1701535115
https://doi.org/10.1080/10920277.2013.872553
https://doi.org/10.1080/10920277.2013.872553



	Abstract
	Resumé
	Preface
	List of papers
	Introduction
	The Modern Rise of Life Expectancy
	Societal Response to Increased Longevity

	Stochastic Mortality Modelling
	The Lexis Diagram and the Poisson Assumption
	Forecasting the Secular Trend in Mortality
	The Role of Statistics in Mortality Modelling

	Explanatory Models and Scenario-Based Projections
	The Difference between Probabilistic and Causal Models

	Overview and Contributions
	Stochastic Frailty Models and the SAINT Projection Methodology
	Cointegration-Based Mortality Models
	Life Expectancy Differentials in Coherent Mortality Models
	Towards Scenario-Based Projections and Causal Mortality Models
	Aggregated Structural Causal Models


	The SAINT Model: A Decade Later
	Introduction
	The Evolution of the SAINT Model
	The Original SAINT Model
	From Deterministic to Stochastic Frailty
	Cointegrating Gender Dynamics
	Improving the Fit

	Modelling Changing Rates of Improvements
	Motivating Example
	Frailty Theory
	Frailty leads to Changing Rates of Improvements
	Alternative Ways of addressing Changing Improvement Rates

	Stochastic Frailty Models
	Data and Terminology
	Modelling Framework
	Pseudo-Likelihood Function
	Maximum Likelihood Estimation
	Forecasting

	An Application to International Mortality
	An International Reference Trend
	Time Dynamics
	Model Fit and Forecast
	Spread Modelling

	Concluding Remarks
	Positive Stable Frailty
	Estimation of a Competing Risks Model

	Pitfalls and Merits of Cointegration-Based Mortality Models
	Introduction
	Cointegration
	Identifiability
	Outline

	Mortality Modelling
	The Lee–Carter Model
	The Cairns-Blake-Dowd model
	Identification Invariance

	Cointegration Theory
	The Vector Error Correction Model
	Deterministic Terms and Trends
	Cointegration Rank and Parameter Estimation

	Cointegration in Mortality Models
	Linear Trend Models
	Identification Invariance of Cointegrated Lee–Carter Models
	Alternative Approaches of the Lee–Carter Type

	Applications to UK Mortality Data
	Lee–Carter Application
	Cairns-Blake-Dowd Application

	Concluding Remarks
	Maximum Likelihood Estimation of the VECM

	Sex Differential Dynamics in Coherent Mortality Models
	Introduction
	Data and Notation

	Changes in Mortality, Life expectancy and Sex Differentials
	Decomposing Changes in Life Expectancy
	The Rise and Fall of Sex Differentials in Western Europe

	Sex Differentials in Coherent Mortality Models
	Coherent Mortality Modeling
	Example: Sex Gap Unimodality for Truncated Exponential Distributions
	Main Result
	Counterexample

	The Dynamic Gompertz Model
	The Model
	Sex Gap Unimodality Under Uniform Rates of Improvement
	Sex Gap Trajectories

	The Forecast of Closing Sex Gaps by CoherentMortality Models
	Location of the Sex Gap Zenith under Uniform Rates of Improvement
	Coherence Implies Closing Sex Gaps
	Does Coherence Deserve Its Special Status?

	Conclusion
	Proofs and Lemmas
	Stochastic Dominance
	Proof of Theorem 4.3.1

	Graduation of (x)
	General Smoothing
	Old-Age Smoothing
	Mortality for the Combined Curve

	Life Expectancy under Piecewise Constancy

	Forecasting, Interventions and Selection: The Benefits of a Causal Mortality Model
	Introduction
	When do we need a Causal Mortality Model?
	When is a mortality model causal?
	Feedback between mortality and risk prevalence

	The Feedback Mechanism
	The relative risk model
	Mortality from the individual's point of view
	Moving to the population level

	A Causal Mortality Model
	Forecasting, Interventions and Selection
	Cause-of-death elimination
	Alternative risk prevalence distributions

	An Application to US Data: Illustrating the Direct and Indirect Effects of Cause-of-Death Elimination
	Data sources
	Baseline model
	Joint forecasting
	Cause-of-death elimination: What happens if cancer were eradicated?

	Concluding Remarks
	Granger Causality
	Graphical representation

	Estimation of Baseline Parameters
	Interpolation of Relative Risks: Examples
	Transition Matrices

	Aggregated Structural Causal Models
	Introduction
	Related work
	Outline

	Causal Graphical Models
	Aggregated Regression
	A Coupling via Independent Noise
	Numerical Case-Study: Risk Factor Interventions
	A Mixture-Model Example

	Aggregating the Causal Model
	The Aggregated Structural Causal Model
	Interventions
	Causal Consistency
	Constructing a Generic PD+
	Case-Study: Risk Factor Interventions (Continued)

	Conclusion
	The ASCM in the General Case
	Markov Kernels
	The Aggregated Structural Causal Model

	Establishing the ADAG
	Joining the Trees

	Proofs
	Alternative Decompositions
	Description of Data
	PCA for ilr-transformed Data

	Bibliography

