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Abstract

In this thesis, we study the ground state energy of one-dimensional
dilute quantum systems with repulsive pair potentials. We review part
of the general theory of many-body quantum mechanics. We then prove
results describing conditions under which, we can associate a unique self-
adjoint many-body Hamiltonian to certain repulsive pair-potential.

The point-interacting solvable models in one dimension, i.e. the Lieb-
Liniger and Yang-Gaudin models, are reviewed and certain results related
to their ground state energy in the dilute limit are proved.

We proceed by proving a ground state energy expansion for the Bose gas.
This is done by proving first an upper bound and next a matching lower
bound. The ground state energy is found, up to next-to-leading order, to
depend on the potential only through the scattering length. Thus the sys-
tem exhibits universality similar to that observed for higher dimensional
systems. Our result covers the well known results on the ground state
energy of the Lieb-Liniger model in the Tonks-Girardeau (dilute) limit.
However, our result allows for a very general class of potentials, including
potential that differ significantly from the point interacting d-potentials
for example by having positive scattering length. As corollaries, we find
similar result for spin polarized Fermi gases and gases with intermediate
particle statistics, i.e. anyons.

Finally we study the spin—1/2 Fermi gas. Here we conjecture a ground
state energy expansion based on the solvable models at hand. The up-
per bound from the bosonic case is generalized by realizing the spins,
in a given trial state, to be described by an effective antiferromagnetic
Heisenberg chain. Thereby, we prove an upper bound matching our con-
jecture. As corollaries, we find similar results for spin-1/2 bosons and
for fermions and particles with spatial symmetry with spin-dependent
potentials. Furthermore, we generalize parts of the lower bound proof
from the bosonic case, and prove in this case for spin—1/2 fermions a
lower bound related to the Lieb-Liniger-Heisenberg ground state energy.
We notice that for spin-dependent potentials in certain regimes iden-
tified with a ferromagnetic phase, the lower bound is reduced to that
of the Lieb-Liniger model. Thus a lower bound, matching the previous
upper bound, is proved in the ferromagnetic phase for spin-dependent

potentials.
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Resumé

I denne athandling studerer vi grundtilstandsenergien af endimen-
sionelle kvantegasser med frastodende parpotentialer ved lav teethed.
Vi opsummerer dele af den generelle teori omkring mangelegemekvan-
temekanik. Derefter beviser vi under hvilket betingelser en unik selvad-
jungeret mangelegeme Hamilton-operator kan associeres til et givet par-
potentiale. De punktinteragerende lgsbare modeller i én dimension, dvs.
Lieb-Liniger og Yang-Gaudin modellerne, opsummeres og visse resultater
relateret til deres grundtilstandsenergi i lavtaethedsgraensen bevises.

Vi forsaetter ved at bevise en udvikling af grundtilstandsenergien for
Bose-gassen. Dette ggres ved at vise forst en gvre begreensning og
derefter en matchende nedre begraensning. Det vises at grundtilstand-
senergien, til neestledende orden, kun afhsenger af potentialet igennem
spredningsleengden. Dermed udviser systemet universalitet, som ligner
den observeret i tilsvarende hgjeredimensionelle systemer. Vores resul-
tat deekker det velkendte resultat vedrgrende grundtilstandenergien af
Lieb-Liniger modellen i Tonks-Girardeau graensen, altsa den lavtaetheds-
graensen. Dog holder vores resultat for mere generelle parpotentialer,
inklusiv potentialer der afviger markant fra d-potentialer ekspemelvis ved
at have positiv spredningsleengde. Som korollarer finder vi lignende resul-
tater for den spin-polariserede Fermi-gas og gasser med mellemliggende
partikelstatistikker, altsa anyoner.

Endeligt studederer vi spin-1/2 Fermi-gassen. Her praesenterer vi, som
en formodning, en udvikling af grundtilstandsenergien baseret pa kendte
lgsbare modeller. Den gvre begraensning fra det bosoniske tilfzelde gener-
aliseres ved at indse, at partiklernes spin, i en givet variationsbglgefunktion,
kan beskrives ved en effektiv antiferromagnetisk Heisenberg-keede. Dermed
beviser vi en gvre begrzensning, der tilsvarer den fremsatte formodning.
Som korollarer finder vi lignende resultater for spin—1/2 bosoner og for
fermioner og partikler med rumlig symmetri med spin-athaengige po-
tentialer. Ydermere generaliserer vi dele af beviset for den nedre be-
greensning fra det bosoniske tilfzelde, og vi beviser i dette tilfeelde en
nedre begrzensning for spin—1/2 fermioner, der relaterer grundtilstand-
senergien til dén fra Lieb-Liniger-Heisenberg modellen. Vi bemaerker, at
for spin-afheengige potentialer i visse regimer, som vi identificerer med
en ferromagnetisk fase, reducerer den nedre begraensing til dén af Lieb-
Liniger modellen. Dermed bevises en nedre begreensning, der matcher
den fgrviste gvre begraensning i netop den ferromagnetiske fase for spin-

afheengige potentialer.
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Chapter 1

Introduction

Since the seminal work of Lee, Huang, and Yang in 1957 [LHY57, LY57,
HY57], there has been a tremendous interest in dilute quantum gases and
their ground state energy expansions. Finding good approximations for the
bosonic ground state energy, at least in two and three dimensions, is inti-
mately related to understanding the formation of Bose-Einstein condensates.
Furthermore, such ground state energy expansions often exhibit universality.
More specifically, the ground state energy of dilute systems tends to depend
on the interaction potential only through the scattering length. This interest
has in the mathematical physics literature grown during the last decades cul-
minating in the recent completion of a rigorous proof of the Lee-Huang-Yang
formula in 2019 [YY09, FS20]'. With the problem essentially solved for the
three dimensional Bose gas, it is natural to seek similar ground state energy ex-
pansions in other dimensions or with different particle statistics. Recently, the
two dimensional bosonic ground state energy expansion was proven to analo-
gous precision in [FGJT22], and previously the fermionic ground state energy
expansions have been studied in both two and three dimensions [LSS05].
The general one-dimensional dilute Bose gas, or quantum gas in general,
has been surprisingly little studied both in the physics and mathematics lit-
erature. This may be partly due to the presence of solvable models in one
dimension. In 1963 Lieb and Liniger showed that the one-dimensional Bose
gas with point (delta-function) interactions is solvable by Bethe ansatz [LL63].

In practice, this means that one may obtain algebraic equations for the ground

"While the lower bound was made fully general in terms of assumptions on the interaction
potential in 2021 [FS21], weakening the assumptions under which the upper bound can be
proven is still an active field of research.
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state and excited energies, by realizing the eigenstates to be superpositions
of plane waves with suitable scattering boundary conditions. Similarly, in
1967, the one-dimensional spin—1/2 Fermi gas with point interactions was
shown, in the physics literature, to be solvable by means of a generalized
Bethe ansatz [Yan67]. This argument was one year later further generalized
to accommodate any symmetry of the domain and hence any spin [Sut68].
Some effort has since then gone into arguing that various confined three di-
mensional systems may be well approximated by such point interacting sys-
tems in one dimension, leaving the analysis of the spectrum already complete
[01s98, PSW00, DLOO01, LSY03, LSY04, SY08]. In [LSY03, LSY04, SY08] it
was shown that such an approximation indeed is valid in certain confinement
regimes. We call this regime the weak confinement regime, and it is described
by having the trapping length scale, in the transverse direction much longer
than the three dimensional scattering length scale. This means that transverse
excitations cannot be neglected. On the other hand, one may instead consider
the strong confinement regime, described by having the transverse trapping
length scale much shorter than the scattering length scale. In this regime,
the spectrum will presumably be well described by a purely one-dimensional
system, with the three dimensional potential simply restricted to a line. A
crucial difference in this case, is that the one-dimensional scattering length
arising from such confinements may be positive, as opposed to the effective
Lieb-Liniger model in which the one-dimensional scattering length always is
negative.

In this thesis, we analyze ground state energies of general one-dimensional
dilute gasses. This covers the strongly point interacting models but further
extends the result to models with positive scattering lengths. The ground
state energy expansion for one-dimensional dilute bosons and spin polarized
fermions was recently obtained in [ARS22], which appears, in a revised edition,
as Chapter 3 of this thesis. The expansion obtained will exhibit similar univer-
sality to the three and two dimensional cases. However, one major difference is
apparent in the analysis and phenomenology of the one-dimensional gas: There
is no Bose-Einstein condensation. This fact may be traced back to the cele-
brated theorem of Hohenberg, Mermin, and Wagner [Hoh67, MW66], which
excludes longe-range order for one-dimensional interacting systems. Thus the
formation of a condensate is broken by the interaction in one dimension. This

famous result is in agreement with the results found in this thesis, where we



explicitly verify that the ground state energy shows greater similarity to en-
ergies arising from Slater determinant states than to energies arising from a
condensate.

The proof of a ground state energy expansion for the one-dimensional dilute
Bose gas and spin polarized Fermi gas leaves the question of whether there
is a similar expansion for the total ground state of the spin—1/2 fermionic
system. Such an expansion is conjectured in Chapter 3 ([ARS22]), based on
the solvable models at hand for such a system. We present in Chapter 4 a
proof of an upper bound matching this conjecture. In the proof, we define a
trial state in which the spin part is determined variationally. Interestingly, the
variational problem determining the spin part is that of the one-dimensional
Heisenberg chain. In the case of the usual spin—1/2 fermions, we get the an-
tiferromagnetic Heisenberg chain. However, we will show that for models of
a different symmetry or with spin-dependent potentials, the spin chain may
be both ferro- or antiferromagnetic. Furthermore, we will present an idea of
how to prove a corresponding lower bound. We do this by proving results
that are analogous to findings of Chapter 3 ([ARS22]). However, it will be
apparent that certain results do not generalize for the spin—1/2 Fermi system
straightforwardly. We then present a conjecture which, if proven true, allows
us to complete the generalization of the Chapter 3 results. We give heuristic
arguments for the validity of this conjecture, but also highlight where these
arguments are lacking in mathematical rigor. Finally, we notice that the re-
sult of Chapter 3 do generalize for spin—1/2 systems with other symmetries or

spin-dependent potentials exactly when the system is in a ferromagnetic phase.

We summarize here overall the structure of this thesis: In Chapter 2, we
review relevant concepts in many-body quantum mechanics. Furthermore,
since we will allow for quite general interactions in the later analysis, we
review under which conditions on the interaction potential the dynamics of
quantum systems can be defined in terms of a lower bounded self-adjoint
Hamiltonian. We prove a result stating that in one dimension this is possible
for any interaction potential that is the sum of a o-finite measure and an
absolutely continuous measure. After this we review the concept of diluteness
and known results about dilute quantum gases. Finally, we both review and
prove certain result about two solvable models in one dimension. In Chapter 3,

we find and prove ground state energy expansions for both the one-dimensional
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Bose and spin polarized Fermi gas. In Chapter 4, we generalize some results
from Chapter 3 in order to prove an upper bound on the ground state energy
of the one-dimensional dilute spin—1/2 Fermi gas. Furthermore, we generalize
certain results related to the lower bound in Chapter 3. Finally, we notice that
completing the proof of a lower bound for the spin—1/2 Fermi gas, is possible
by proving a conjecture on the ground state energy of a model known as the
Lieb-Liniger-Heisenberg model in its antiferromagnetic phase. We also note,
in the ferromagnetic phase, that a tight lower bound on the Lieb-Liniger-
Heisenberg model is trivially valid. Thus for certain other symmetries or
spin-dependent potential, we find a tight lower bound exactly when they are
in a ferromagnetic phase in this sense. In Chapter 5, we give a final summary

of our findings and discuss open problems.



Chapter 2

Many-Body Quantum

Mechanics

In this chapter, we give a brief introduction to many-body quantum mechanics.
The chapter will serve to define relevant quantities, set up the mathematical

framework, and state some preliminary results.

2.1 Many-body Wave Functions

In quantum mechanics, a system is described by a state or wave function in

an underlying Hilbert space.

Definition 2.1. A quantum system at a fized time is a pair
(¥, H), with¥ € H and ||¥] =1,

where H is a Hilbert space. Here ¥ is called the state or wave function of the

system.

In this thesis, we are mostly interested in a quantum system consisting
of N particles in a region Q C R¢, possibly with spin degrees of freedom
{Sitic1,..n. We will take Q to be open, connected, and with a Lipschitz
boundary, or the closure of such a set. We refer to d as the dimension of the

system. Such a system is described by having
N
i=1

5
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where S; is the spin of the ith particle. Since we are more specifically interested
in identical particles we will further restrict the structure of the underlying

Hilbert space below.

Identical particles: Bosons and fermions

In the case when the particles in question are identical, i.e. indistinguishable,
it turns out that one should restrict the underlying Hilbert space, to have
certain symmetries. Considering IV indistinguishable particles, we restrict to
the physical configuration space Cp, v = Cn /Sy, with Cn := {(z1,...,2n) €
ON|x; # x;if i # j} on which the symmetric group, Sy, act freely. For
d > 2, we then require the wave function of the system to take values in a
unitary irreducible representation of the fundamental group m1(C)p n), where
we noted that the physical configuration space is path-connected in order for

71(Cp, N, ) to be independent of z € Cp n.

Remark 2.2. For d > 3 we have m(Cpn) = Sy, for d = 2 we have
m1(Cp,n) = By, where By is the braid group with N strands. For d = 1
we have m(Cp n) = {1}. In the somewhat special case of d = 1, Cp, Ny =
{1 <z9 <...<an}. In this configuration space, one can never interchange
particles without crossing the singular excluded incidence (hyper)planes. Thus
the allowed particle statistics are determined by the possible permutation in-
variant dynamics on this space. In Chapter 3 we will see examples of different

particle statistics in one dimension.

Remark 2.3. Adding spin to the above considerations amounts to having

Cy = {(zl,.. . ,ZN) € (Q X {_S;- . -75})N ’(zl)l 7& (Zj)l ZfZ 7&]}’

and Cp n = Cn/SN. In this case, C, N is not path connected, however, for
each configuration of spins s = (s1,...,sn5) € {=S,..., S the configuration

spaces

Cpns ={((x1,51),...,(zNn,5Nn)) € (2 X {—S,...,S})N |z # x; if i # j}/SN

are path connected and their fundamental groups are isomorphic to the funda-
mental group in the spinless case independent of s.
Alternatively, one can view the wave function as a (25 + 1)V -dimensional

vector bundle over the physical (spinless) configuration space.
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In this thesis, we will mainly be interested in the two irreducible rep-
resentations that are the symmetric representation and the anti-symmetric
representation, in which we refer to the particles as bosons and fermions re-
spectively. It is an empirical fact that bosons and fermions are the only
types of elementary particles that are encountered in nature. Hence for
bosons, we restrict to wave functions in the symmetric (or bosonic) subspace
L? ((Q x {=S,..., S})N> >~ v L2 (Q;C?*5*1) and for fermions, we restrict
to wave-functions in the anti-symmetric (or fermionic) subspace
12 ((Q x {=8,..., S})N) = AN L2 (Q; C25+1).

To recap we list the following important definitions:

Definition 2.4. A quantum system of N spin—S bosons in Q C R? at fized
time 1s a pair
(U, H), with ¥ € H and ||¥] =1,

where H is a closed subspace of L? ((Q x {=S,... 7S})N) >~ N L2 (Q;C? ),
and thus a Hilbert space.

Definition 2.5. A quantum system of N spin-S fermions in Q C R? at fized
time is a pair
(¥, H), with ¥ € H and ||¥] =1,

where H is a closed subspace of L? ((Q x {—=S,... ,S})N) =~ AN L2 (Q;C25H),
and thus a Hilbert space.

2.2 Observables, Dynamics, and Energy

In general, we call any self-adjoint operator on H an observable. Physically,
observables represent quantities that, in principle, can be measured in an ex-
periment. It is a postulate of quantum mechanics that given an observable
0= fo(@) AdPy, where {Px}xcq(0) is the projection valued measure associ-
ated with O by the spectral theorem [RS81], the probability of measurement
of O in the state ¥ € D (O) having any outcome A such that A € M C R
is given by P((O,¥) € M) = [,_,, (¥, PAV). Furthermore, we define the

expected value of an observable.

Definition 2.6. The expectation value of an observable O in state ¥ €
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D (0) is
(0 = /A o P

where { P} xeo(0) 18 the projection valued measure associated with O by the

spectral theorem.

In the previous section, we defined a quantum system at a fixed time.
However, we are often interested in the dynamics of the system. In quantum
mechanics, time evolution is modeled by the infinitesimal generator of time
evolution, H, also known as the Hamiltonian. We will in this thesis take H
to be a (time-independent) lower bounded self-adjoint operator on H. A state

evolves in time according to the Schrodinger equation
U(t) = exp (—iH (t — ty)) ¥(to),

where we have set A = 1.

Remark 2.7. By Stone’s theorem [RS81], the existence of a self-adjoint
Hamiltonian, H, is guaranteed for any time evolution described by V(t) =
Ut — to)V(tg), when U(t) is a strongly continuous one-parameter unitary

group.

Since the Hamiltonian, H, is self-adjoint, it represents an observable which
we call energy. Furthermore, as H is lower bounded, there is a natural notion

of the lowest energy of H.
Definition 2.8. The ground state energy of H is defined by

(U, HD)

Eo(H) = ALLLSN
o) = ) T

(2.2.1)

Furthermore, we define the notion of a ground state of H as

Definition 2.9. We say that a (normalized) state ¥ € D(H) C H is a
ground state of H if
(H)y = Eo(H).

Remark 2.10. [t follows from the spectral theorem (see [RS81]) that the

ground state enerqy is given by

Eo(H) = inf(o(H)),
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where o(H) denotes the spectrum of H.

Remark 2.11. [t is straightforward to show that the quadratic form D (H) >
U — (U, HV) is lower bounded and closable since H is lower bounded and
self-adjoint.

Definition 2.12. Given a Hamiltonian, H, we define the associated energy
quadratic form, g : D(Ey) — R, as the closure of the quadratic form
D(H) >V — (V,HV). When H is given from the context, we will often

write £ as short for Eg.

Remark 2.13. From the definition of Eg and from Definition 2.8 it follows
straightforwardly that we have

. Ex (V) :
Eo(H) = f = f  Er(V), 2.2.2
o(H) ‘IJEIDH(SH) o2 qjei?l%gﬁ’)’ (V) ( )

as D (H) is form core for Ex.

We refer to both (2.2.1) and (2.2.2) as the variational principle. We will
often, in this thesis, take (2.2.2) as the very definition of the ground state
energy. Furthermore, one can also define the dynamics of a quantum system

by specifying an energy quadratic form in the following sense:

Remark 2.14 ([RS81] Theorem VIIL.15). Given a densely defined, lower
bounded, closable, quadratic form £ : D(E) — R there exists a unique
lower bounded, self-adjoint operator He, such that E(V) = (U, HeW) for all
U € D(Hg), and D (Hg) is form core for €, i.e. the form closure of (-, He")

s equal to the form closure of £.

Thus we will frequently switch between the two equivalent formulations of
the dynamics of a quantum system. Namely, the the operator, H, formulation

and the quadratic form, £, formulation.

Many-body Hamiltonians

Until this point, we have not specified the class of Hamiltonians that we will
be interested in. We have stated that we will care mainly about Hamiltonians
defined on the bosonic or fermionic subspace, however, no specification has

been made about the dynamics on these subspaces. We are interested in
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modeling N particles in some region  C R? that interact locally with each
other. For the remainder of this subsection, we will ignore spin, remarking
that including spin degrees of freedom is completely analogous. In practice,
and for suitably mild interactions, this means that the Hamiltonian formally
(meaning restricted to the fermionic or bosonic subspace of C§°(QY)) takes
the form
N
H=> T,+U(x,...,zy) (2.2.3)
i=1
where T; is the kinetic energy operator for particle ¢ and the potential U is a
multiplication operator which models the local interaction among the particles.

The kinetic energy operator is taken to be!

1
T, = — A; h=1 2.2.4
oA (=) (2:2.4)

since we are interested in identical particles, we will from this point onward
choose m; = 1/2. As for the potential, V', we of course immediately restrict
to permutation-invariant function, U, for identical particles. However, in the
following, we will further restrict to a combination of having a trapping po-
tential and radial pair potentials, which model pairwise interactions that only

depend on the distances between particles. Such potentials take the form

N

U(z,...,xN) = Zv(xz —wj)—l—ZV(xi) (2.2.5)

i<j i=1

where we take v to be a radial function and V' is called the trapping potential.
We will generally take v to be repulsive, meaning v > 0, with compact support.
The trapping potential we will disregard i.e. V' = 0. We will then in general
take the true Hamiltonian to be a self-adjoint extension of the symmetric
formal Hamiltonian. Now some models of stronger interactions, e.g. the
hard core interaction, require a more delicate construction with respect to the
initial definition of the formal Hamiltonian. However, the construction of the
Hamiltonian can be done in a more unified manner when constructing the

energy quadratic form.

Definition 2.15. For a system of N bosons/fermions in region Q € R, we

LThis is usually justified by going through a canonical quantization procedure for the
classical Hamiltonian function of the system we are interested in modeling.
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define for o € [0,00| the energy quadratic forms

N
Erpo (T :/ VUl + vz — \1'2—1—0/ T2, (226
(v,0)(¥) ; DIV +) o ) ] a(QN)I | (2.2.6)

N
i=1 i<j

with domain D (£(,,5)) = {¥ € (C’OO(QN))b/f|5(v7U)(\IJ) < oo}. With (C=(QN)),
meaning the bosonic/fermionic subspace of C® (). o = oo is taken to mean

Dirichlet boundary conditions.

Of course &, 5y > 0 for any o € [0, 00] and v > 0. However, the closability
of £ ) is not evident. In fact for general v, &g, , will be neither densely

defined nor closable on Lz /G(QN ). However, it will be densely defined on a

closed subspace H, ) := D ((‘,’(v,o))”.||2 of L?

s/a

(), hence we take H, ) to
be the Hilbert space of the system when this is the case. Closability of &, )

on H(, ) is not necessarily satisfied. Thus we make the following definition

Definition 2.16. We say a potential v > 0 is allowed in dimension d, if

E(v,o) is closable on Hy 5y =D (E(Uyg))”.HQ C Lg/a(QN) for any o € [0, o0].

Remark 2.17. There are plenty of allowed potentials, but the notion does
depend on the dimension, d. For example, v = &y, i.e. the delta function
potential, is allowed in dimension d = 1, but not in dimension d > 2. This can
be seen from the fact that for d = 1 the incidence planes are of co-dimension 1,
and hence the trace theorem gives closability, but for d > 2 where the incidence
planes are of co-dimension > 2 it is known that the trace of H' is not contained
in L2.

Remark 2.18. For any radial measurable v : R — [0,00] (note this implies
that x — v(z; — x;) is measurable since RN > 2 — 2; — x; € R is Lebesgue-
Lebesgue measurable), £, ») is the quadratic form associated with a self-adjoint
operator on some Hilbert space H, o) C Lg/a(QN).

It is well known that € ) 1s closable on Hg o) 2 H(y,s)- Hence 5(070)|D(5<v,a>)

is closable on H, ,). Thus closability of &, ,) amounts to showing that

U —>H.”2 0 as n — oo and (P )neny C L2 QN;ZU(%’ - xj)d/\N Cauchy,
1<j

=d ey
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22 @M du)

implies 1, ————— 0.

Hz2 @ apu)

This is evident from the fact that 1, ———""% f for some f € L?(QN, du,)
by completeness. Now 1, has a subsequence that converges NN —almost every-
where to 0, and this subsequence further has a subsequence that converges
Ly —almost everywhere to f. Hence f = 0 p,—almost everywhere, as fr, < \V.
Thus there is a corresponding self-adjoint operator H, ) to £y o) 0n Hy o),

which we shall formally write as H, ;) = — Zf\il Aj+ 3 i<icien V(T — 25).

The argument from the previous remark may be generalized slightly in
the case of d = 1, in order to show that any o—finite symmetric measure
v(x; — ) dA(w; — x5) := dpy,; is an allowed potential. Notice that we slightly
abuse notation and write v(x; — z;) dA\(x; — ;) even when v is a singular
measure and thus has no density. However, we do think of v a being a one-
dimensional measure in the sense that

v(x; — ;) AN = dpp,, x A

(zi—x;)= fixed’

where we defined )\é\; :133')_ fixeq 1O be the measure such that d\NV = d(z; —
7 )=

xj) X d)\f\; f_lm,)f fxeq: Lhe uniqueness of the product measure is guaranteed
[ j)=
by o-finiteness of v (u,). We will need the following essential lemma, where

we use the notation )\iv_l = [Tin Ai).

Lemma 2.19. Let (fn)nen C HY(QY) be a sequence such that || fu| g2 — 0 as
n — oo. Then defining f*(t,7%) = fuo(x1,...,Tp_1,t, Thet,...,2N) for any
k=1,...,N, we have that (f¥),en has a subsequence that converges pointwise
(in't) to 0, )\év_lfa.e. forallk=1,...,N.

Proof. We pass first to a subsequence, which we also denote f,,, such that f,
converges pointwise AV -a.e. to 0. Since f, € H'(QV), we know for any k =
1,..., N that f¥(t,7%) are in H'(Q) (as functions of t) )\kaflfa.e. [[EGI1] The-
orem 2 p. 164]. Now consider the H'(Q) norms g (z*) := Hfrlf<7fk)HH1(Q)
Clearly g* constitute L? functions, with norms converging to 0 as n — oco.
Hence there exists a subsequence that converges pointwise )\iv ~L_almost ev-
erywhere to 0. So a subsequence f,’fi exists, such that for )\Zkv “Lae 7,
JE (-, %) converges to 0 in H'(2). But then f% (-, ") converges, by Morrey’s

inequality, pointwise to 0, for )\kN “Lae. Tk 0

Using this lemma, we may prove the following Proposition
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Proposition 2.20. Let d = 1, then for any o-finite measure, v, we have that
E(v,0) 18 the quadratic form associated with a unique lower bounded self adjoint

operator H, 5y on some Hilbert space H, o).

Proof. As previously, we define H, ,) := mwllz and
dpo = X 1cicijon v(i — ) d\N. Clearly E(v,0) 1s lower bounded and densely

H'”L2(QN7dAN>

defined in H, ). Closability amounts to showing that iy
and (Vn)nen C D (E0)) C L (2, dpy) Cauchy w.r.t the norm ||-H5(v o=

H'”LQ N g
— L@ dm)y ), Now since (¥n)nen is a Cauchy

Ewey () + [I1|3, implies 1,
sequence in L? (QN , d,uv), it has a subsequence that converges p,—almost ev-
erywhere to some function f € L? (QN , duv). Furthermore, this subsequence
has a further subsequence that converges to 0, A\ -almost everywhere. How-
ever, since (n)nen converges to 0 in HY(QN,dA\Y), by passing to a sub-
sequence and after a linear coordinate transformation, Lemma 2.19 implies
that for (x; — ;) fixed (¥n)nen converges )\f\;:xj): fxeq A€ to 0. But v,

also converges, by Tonelli’s theorem, for u,,;—almost every (z; — z;) to f,
N-1

(i—;)= fixe 4—almost everywhere , and hence f = 0 p,,;—almost everywhere,
N

(i—2;)= fixe 4almost everywhere. Thus we conclude, again by Tonelli’s the-
7 Jj)=
orem, that f = 0 u,—almost everywhere. The proposition now follows from

Remark 2.14. O

Remark 2.21. By the very definition of the domain D (€, ), it is not hard
to see that in one dimension, a potential of the form v = c0dy, i.e. an infinite
point mass, is allowed. This potential creates a Dirichlet boundary condition

on the incidence (hyper)planes in the domain.

Remark 2.22. [t is clear that if vi and v are allowed potentials, then vi+ve is

an allowed potential. Defining H'Hg(v = \/ €we) (1) + I-I3, this follows from

the fact a Cauchy sequence w.r.t. the norm |- s similarly Cauchy

’5(v1+v27a)
w.r.t. ”.Hg(vl,o') and H-ngw). In fact we have

2 2
max (H'Hgm,o) ’ ||'H5<v2,a>> = ”'Hf(vmzm = \/”'Hgmm T H'”‘g(uz,o)‘

Remark 2.23. Combining Proposition 2.20, Remarks 2.18, 2.21, and 2.22 we
conclude that potentials of the form v = Vs_finite +Vmeas. + 00, with ¢ € {0, 00},
are allowed in one dimension, d = 1. Here Vs finite 15 a o-finite measure

and Umeas. : R — [0,00] is a measurable function. Of course cdy may be
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absorbed in the o-finite measure when ¢ < 0o, so only the ¢ = 0o case requires
Remark 2.21. We will in Chapters 3 and 4 obtain results about the ground

state energies of such systems.

Remark 2.24. We emphasize that one can construct dynamics of a quan-
tum system that are not given by a pair potential in the sense of the discus-
sion above. It is, for example, possible to study point interactions in d > 2,
however, they cannot be seen as arising from a potential (e.g. a d-function
potential). Instead, one studies in this case the self-adjoint extensions of the
Laplacian on functions supported away from the incidence planes of the par-
ticles. [AGHKH12].

2.3 The Scattering Length

When analyzing the dynamics of a quantum system, it is natural to define cer-
tain length scales, on which different processes take place. These length scales
often play important roles in understanding the physics of the system, and
thus often appear naturally in expressions for the energies of the system. One
such length scale that will be of particular importance throughout this thesis is
the scattering length. The intuition behind the name is that scattering occurs
on this length scale. This intuition will be important throughout the the-
sis, especially when constructing low-energy trial states in order to estimate
ground state energies by applying the variational principle. The scattering
length has multiple equivalent definitions in the literature, but we shall here
define it conveniently from a variational principle.

Consider the two-body problem in Q = R with a spherically symmetric pos-
itive potential of compact support v > 0. We allow for the potential, v, to be
a measure when it makes sense, i.e. when it is allowed. Let Ry > 0 be such
that supp(v) C Bp,. Many assumptions on v can be weakened, but these
conditions are sufficient for the scope of this thesis. The formal Hamiltonian

can be written as

1 1
Hy=——A ——A — ). 2.3.1
2 oy 1 9y 2 +v(x1 — 2) ( )
For now, we keep the masses, but we will be, for the most part, interested
in the case m; = mg = 1/2. Defining the center of mass coordinate X =

(myz1 + max2)/(m1 + me) and the relative coordinate y = x1 — x2, we see
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that the kinetic energy may be rewritten as

d 2
1 1 1 Jvy; 0X;
b L (g, 2, )

2m1 2m2 i1 2m1 (xl)z yi 6(:51)1

+ 27TL2 <8(l’2)2 8‘% + 8(%2),8XL>

d 1 m 2
-y L (8% N 18)@) (2.3.2)
= 2m

mi + mso
1 mo 2
— | =0, + ————0x,
+27TL2 < y1+m1+m2 XZ)
1 1
A - Ay,
2u 2(my + ma)
where p = % Thus we have separated the center of mass and relative

motion and the Hamiltonian may be decomposed into
H = Hem + Hrels (2.3.3)

with Hoy = —mAx and Hye = —ﬁAy + v(y). In scattering theory,
we will generally be interested in the relative motion of particles. A natural
question is whether we can locally minimize the relative energy of the two
particles when they are near each other. The answer is affirmative, which can
be seen by the following:

Consider the (R-local, relative) energy functional
£ _ 1 2 2
w) = [ o VU 4ol (234)
Bp 4K
with R > Ry. Then we have

Theorem 2.25 (Theorem A.1 in [LYO1]). Let R > Ry, then in the class of

functions
{¢p € HY(BR) | ¢(x) =1, for x € Sg},

with Sg the sphere of radius R, there is a unique ¢g that minimizes Er. This
function is non-negative and spherically symmetric, ¢o(x) = fo(|x|) for some
f >0, and it satisfies the equation

1
—— Ady + = 2.3.
2,Uz ¢O U¢0 Oa ( 3 5)



16 CHAPTER 2. MANY-BODY QUANTUM MECHANICS

in the sense of distributions on BR.

For Ry < r < R we have

(r—a)/(R—a) ford=1
fo(r) = < In(r/a)/In(R/a) ford=2 (2.3.6)
(1—ar*™)/(1 —aR?>™) ford>3

for some length, a, which we call the (s-wave) scattering length.

The minimum value of Eg is

1/i(R—a) ford=1
Er(do) = § /[nIn(R/a)] ford=2 (2.3.7)
7 2a/[ul(n/2)(1 — aR>™™)]  ford > 3.

We note that in d > 3, the scattering length is not actually a length in
the sense of units. This is purely an artifact of the conventions used in the

definition.

Remark 2.26. The scattering length is independent of R. This is seen by
realizing that for a minimizer, ¢o, of Er satisfying ¢o(x) = 1 for x € Sk, we
have that ﬁﬂfw% with Ry < R’ < R is a minimizer Err satisfying

(fo(lR/)]lBR'éO> (x) =1, forxz e Sp.

The definition above defined only the s-wave scattering length. One can
proceed to define different kinds of scattering lengths depending on which
asymptotic behavior (boundary condition) we demand of the minimizer of
Er. We will be, for the most part, interested in different kinds of scattering
lengths in dimension d = 1, with the masses m; = mg = 1/2. Thus we define

the scattering lengths of interest:

Definition 2.27. Let f. € HY(R) be the unique solutions of the equation

1

—fi(@) + Fv(@) fe = 0, (2.3.8)

in the sense of distributions on Bg, with boundary conditions f.(R) =1 and
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fe(=R) = 1. Then we have

4
R—a.’

/ ﬂﬂf+MﬁF: (2.3.9)
Br

for some length, ae, called the even wave scattering length.

Definition 2.28. Let f, € H'(R) be the unique solutions of the equation
4 1
—fo(x) + iv(x)fo =0, (2.3.10)
in the sense of distributions on Bg, with boundary conditions fo(R) =1 and

fo(=R) = —1. Then we have

4

21717 +v|f)? = , 2.3.11
[, 2 oial = g2 (2311)

for some length, a,, called the odd wave scattering length.

Remark 2.29. In dimension one, when the odd wave scattering length plays
no role, we will often refer to the even wave scattering length, ae, as “the

scattering length” and denote it by a, as in Theorem 2.25.

Remark 2.30. We did not prove the uniqueness of the solutions above. In
Definition 2.27, it follows from Theorem 2.25 by noting that any solution of
(2.3.8) is a minimizer of Er. In Definition 2.28 it follows from the fact that
by Theorem 2.25 there is a unique solution that vanishes at the origin (simply
consider the solution of (2.3.8) with potential v/ = v 4+ cody and multiply by
sign(x)). Thus the odd part of f, is unique. The even part of f, vanishes at
x = R, and since (2.3.10) is the Fuler-Lagrange equation for Eg, we see that
(fo)even = 0, since this is the only local extremum of Er with zero boundary

conditions.

Remark 2.31. The even wave scattering length, ae, need not be non-negative
as is the case for the s-wave scattering length in d > 2. However, we do have

ao > 0. This is easily seen by noticing that the minimizer of

/ 2|11, (2.3.12)
Br

with boundary condition f(R) = —f(—R) =1, is f(z) = (1/R)x on Bg, which

has enerqgy %. Thus adding a positive potential must increase the energy.
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Alternatively, we may see this by noting that the odd wave scattering length is
equivalent to the s-wave scattering length in d = 3 with potential v(|-|) since
(2.3.10) is ezactly the radial scattering equation in d = 3 when restricted to

[0, R).

Remark 2.32. We also have a, > ae by the fact that | f,| is a trial state for
Er with even boundary conditions, and its energy is 4/(R —a,) > 4/(R — ae).

We give two examples of the scattering length in the following:

Example 2.33. Consider v = c¢d. For the even wave scattering length, we
solve, in this case, the equation

#(z) =0, (2.3.13)
on the interval [0, R], with the boundary condition f'(01) = §f(0) and f(R) =
1. The solution is fe(x) = ot2/c forx € [0, R]. We conclude that a, = —2/c.

— R+2/c’
For the odd wave scattering length, we notice that having v # 0, does not

change the scattering solution from the v = 0 case, and we have fo(x) = %.

We conclude that a, = 0.

Example 2.34. Consider v = ocol_g, gy, €. the hard core. In this case

() =0, forz € (Ro, R] (2.3.14)
and feo(w) =0 for x € [0, Ro] constitutes scattering equation on [0, R]. Thus
find that

0 z € [0, Ro]
fe/o(x) = 2R (2315)
R—R% T e (Ro, R]

solves the scattering equation. We conclude that a. = a, = Ry.

2.4 The Ground State Energy of Dilute Gases

To put the results of this thesis into context, we here summarize the currently
known results about the ground state energies of dilute Bose gases. To begin

with, we define what is meant by “dilute”.



2.4. THE GROUND STATE ENERGY OF DILUTE GASES 19

Definition 2.35. For the d-dimensional (d = 1,2,3) system of bosons, with

the formal Hamiltonian

N
H=-Y A+ > oz —x)), (2.4.1)
=1

1<i<j<N

we say that the system is in the dilute limsit or that the Bose gas is dilute
if p/d la] < 1. Notice that the absolute value on a is only important when

d =1, since only then can the s-wave scattering length be negative.

Definition 2.36. For the one-dimensional system of fermions with the formal
Hamiltonian
N
H=- Z@f + Z v(z; —xj), (2.4.2)
i=1 1<i<j<N
we say that the system is in the dilute limit or that the Fermi gas is dilute
if pmax(||ae|,ao]) < 1.

Remark 2.37. For fermions in dimension d = 2,3, one can similarly define
diluteness. The diluteness parameter will in this case depend on the spin
configuration. For example will the vanishing total spin-z gas have the same
definition as for bosons, since the p-wave scattering contribution to the energy
s sub-leading. However, for spin-polarized gases the p-wave scattering length

will appear in the diluteness parameter.

Remark 2.38. For d = 1 the free Bose gas, i.e. with v =0, has |a.| = co.

Hence the free Bose gas cannot be considered dilute at any density.

In the following, we will list some of the known results about dilute gases
in dimensions d = 2,3. We will then in the remainder of this thesis shed light

on the corresponding results in one dimension.

The dilute Bose gas in three dimensions

The three dimensional dilute Bose gas is probably the most well-studied exam-
ple of a dilute quantum gas. Historically the most famous result on the three
dimensional dilute Bose gas is due to Lee, Huang, and Yang [LHY57]. Interest-
ingly, the energy was found, to second order, to depend on the potential only
through the scattering length. The mathematical literature is quite rich, and
we refer to the papers [Dys57, LY98, LY99, LY01, YY09, FS20, FS21, BCS21]
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for more details. The latest results are very recent, and it was only in 2020
that the Lee-Huang-Yang formula was rigorously established to second order
when Fournais and Solovej proved a second order lower bound. Without giv-
ing details about assumptions needed on the potential, the Lee-Huang-Yang

formula takes the form

&3P (p) = dnpa (1 + 1;%;; a3 + 0 (W)) , (2.4.3)

P(p) = N%glw%, and E3P(N, L) is the ground state of the
N}LS:p

Bose gas with N bosons in = [0, L]? with dynamics given by the Hamiltonian
N
H=-37"1A+ Zl§i<j§]\f o(|zi — x4).

where e

The dilute Bose gas in two dimensions

In the two dimensional scenario, the ground state energy of the dilute Bose
gas again possesses an expansion that, to second order, only depends on the
potential through the scattering length, analogous to the Lee-Huang-Yang
result in three dimensions. The first derivation of this expansion to leading
order was given for the hard sphere case in [Sch71] and higher order terms
were first given in [HFMT78]. To leading order, a rigorous understanding was
only reached in 2001 by Lieb and Yngvason in [LY01], and very recently the
full proof was given at next to leading order by Fournais et al. in [FGJT22].
Without giving details on assumptions on the potential, the formula takes the

form
e*P(p) = 4mp*y (1 —Y |In(Y)| + <27 + % + 1n(7r)> Y + o(Y)> . (2.4.4)

with v being the Euler-Mascheroni constant and Y := |ln(pa2)‘_1. Above

e?P(p) = nggm%, and E?P(N,L) is the ground state of the Bose
N/L?=p

gas with N bosons in € = [0, L]? with dynamics given by the Hamiltonian
N

H==3"00 A + 2 <icjen V2 — 25).

The dilute spin—S5 Fermi gas in three dimensions

The establishment of expansions for the ground state energy of the dilute Bose

gas in terms of the scattering length led to the natural question of whether
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a similar expansion exists for the spin—1/2 Fermi gas. The asymptotics were
first derived in [HY57, LY57], however, it was not until 2004 that the result
was rigorously proven in [LSS05]. Recently the error has been improved to
be almost “optimal” [Lau23], i.e. the order of magnitude is almost equal to
that of the conjectured next term in the expansion. Furthermore, for smooth
potentials, the error was recently improved in [FGHP21] and a proof with
optimal error was given in [Gia22]. Without giving details on the assumptions

on the potential, the formula takes the form
eHs(p) = < (6m)*° Z p* + 8ma > pipj+o(pta). (2.4.5)
i=—5 —S<i<j<8

where p; denotes the density of particles with spin-z ¢ and the 1ndex 1 runs
S(N L)

over integers or half integers. Furthermore, 3 S(p) = lim 5, and
’ N,L—o0
N/L3=p
E%%(N , L) is the ground state of the spin—S Fermi gas with N spin—S fermions
in Q = [0,L])® with dynamics given by the Hamiltonian H = — Zf\il A; +

Yi<icien V(T — z5)).

We may note, that a, denotes the s-wave scattering length. The p-wave scat-
tering length is relevant when two Fermions of the same species/spin interact,
however, this is lower order since fermions of the same spin tend to localize
away from each other due to the Pauli exclusion principle. Recently an upper
bound was proven in the spin-polarized case in [LLS23], in which the relevant
scattering length is the p-wave scattering length, analogous to the odd-wave

scattering length in one dimension defined above in Definition 2.28.

The dilute spin—S5 Fermi gas in two dimensions

n [LSS05], the two dimensional result was also proved. The intuition be-
hind the two dimensional result is, in this case, understood by considering
the bosonic result, where to first order one replaces the scattering length a
with ln(‘paQD_l. Furthermore, the kinetic energy term is of course replaced
by the free Fermi energy in two dimensions. Without giving details on the

assumptions on the potential, the formula takes the form

eFS =27 Z P2+ paQD Z pip; + o (p2 ln(‘pa2’)_1) . (2.4.6)
i=—S —S5<i<j<s
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where p; denotes the density of particles with spin ¢ and the inDdeX 1 runs
E2D.(N,L

over integers or half integers. Furthermore, €27 (p) = lim % and
’ N,L—o0
N/L?=p

E%%(N , L) is the ground state of the spin—S Fermi gas with N spin—S fermions

in Q = [0, L)? with dynamics given by the Hamiltonian H = — Zf\il A+

Zl§i<j§N v(|z; — x51).

2.5 The Lieb-Liniger Model: A Solvable Model in

One Dimension

In 1960 a one-dimensional model of impenetrable bosons was solved by Gi-
rardeau [Gir60]. This initialized the study of solvable models of particles in
the continuum in one dimension. The next major breakthrough was in this
context made in 1963 by Lieb and Liniger, who posed and solved a model of
one-dimensional point interacting bosons [LL63]. Their solution generalized
the solution of the impenetrable bosons by Girardeau. The technique that
was used is known as Bethe ansatz or Bethe’s hypothesis after it was invented
by Bethe to solve the one-dimensional Heisenberg chain [Bet31]. We will in
this section, for self-containment, go through the solution of the Lieb-Liniger
model, as the solution and more generally the ground state energy is of impor-
tance later in the thesis when studying the ground state energy of the dilute
one-dimensional Bose gas. We follow the steps given in [LL63] and present a
few more general results.

The Lieb-Liniger model is a model of bosons in 2 = [0, L] with dynamics given

by the Hamiltonian

N
Hpp=-> Ai+2 Y 6z — ), (2.5.1)
=1

1<i<j<N

where the right-hand side is defined in the sense of quadratic forms. More
precisely on a sector, {o} = {o1,09,...,0n} = {0 < gy < T, < ... <
ZToy < L}, where o € Sy is a permutation of {1,..., N}, the Hamiltonian
acts as — ZZ]L A;, and by elliptic regularity, ([Grill], Theorem 3.2.3.1), the
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domain is given by

D(Huy) = (v € B0, L)) | ¥, € H({o}) for any o € Sy
and (0; — 8j)¢|xi:xj+ - cMI":xﬂ'} '

The Bethe ansatz then prescribes that we, on a sector {1,2,..., N}, seek
solutions to the eigenvalue equation, Hy v = E, of the form

N
Y(x) = Z a(P) exp (ZZK‘PZ:{}@> , (2.5.2)
i=1

PeSy

where a(P) € C are suitably chosen coefficients and (k;)i=1 2. n are non-equal
real numbers.

The boundary conditions

(aj+1 - aj)¢|$j+1=mj = C¢|$¢=Ij7

are satisfied if for P = (P, P»,...,Pj = o, Pjy1 = f,...,Py) and Q =
(P1, P2,...,Qj = B,Qj+1 = a,..., Px), we have i(kg — ko) (a(P) — a(Q)) =
c(a(P) 4+ a(Q)) implying

c—i(kg — ka)

U = iy — k)

a(P) = —exp(ifs,q)a(P) (2.5.3)
where we have defined
ki — k;
0 = —2arctan (CJ> . (2.5.4)

We note that we require k; # k; for ¢ # j in order for ¢ to be non-vanishing.
Defining a(I) = 1, it is simple to see that by the relations (2.5.3), all a(P) are
fixed. In fact that a(P) is uniquely determined by (2.5.3) follows from the fact
that in going from the identity I to some permutation P, the same elements
are eventually transposed, by any path of transpositions.

The values of the pseudo momenta k; are now determined by the periodic

boundary conditions, which on the sector {1,2,..., N} take the form

(0,22, 23,...,2N) = Y(x2,23,..., 2N, L), (2.5.5)

(Oup(w, 22,23, ..., 7N)) ‘x:() = (Opp(22, 23, ..., 2N, T)) ‘a::L'
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With the ansatz state above, these equations correspond to the N equation

(=1)N L exp(—ik; L) = exp ( ZH’J) (2.5.6)

with the definition 6;; := 0. Although the “pseudo” momenta k; cannot be
regarded as being true momenta, one can construct the total momentum of
a state. We notice that P = ZZ]\; 1 ki is constant across different sectors,
and hence it may be regarded as the true total momentum. Furthermore, we
see that if the set (k;);c(1,.., N} solves the equations (2.5.6), then the set (k; =
ki +2mno/L)icqu,... N}, With any ng € Z, solves it as well. This corresponds to
changing the total momentum to P/, = Piot. + 27nop, with p := N/L. Thus
we may restrict to finding all solutions with —mp < Piot. < mp, then all other

solutions are related by a constant change in “pseudo” momenta. Ordering

the “pseudo” momenta such that k1 < ke < ... < ky, another consequence
of (2.5.6) is that Zf\il k; = 27n/L for some integer —N/2 < n < N/2, since
9,’7j = —9]'72'.
Now we define
N
(57; = (ki+1 — kil)L = Z(Gsﬂ- - 9871'4_1) + 27Tni, (257)
s=1

where n; are integers and the second equality follows from (2 5. 6) Since 0y ; is
strictly increasing in 7, we see that n; > 1. Notice that k; — ZJ L5 for
j > i, hence (2.5.7) is a set of equations determining (51)2-6{1"“’]\;_1}. Given
a set of (1;);eq1,.. . n—1} and a solution of (2.5.7), (0i)ief1,...n—1}, We merely
choose k; to satisfy (2.5.6) by having

. 292 - @ e(iv), (2.5.8)

where m is some integer determined by —mp < Piot. < mp and

0 if NV is odd,
e(N) = .
7w if N is even

The right-hand side of (2.5.8) depends only on the ds. The proof of existence

of solutions for (2.5.7) that varies continuously with ¢, was given in [YY69).
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The Ground State

It is clear that within the set of ansatz states, the variational ground state

must have n; = 1 for all7=1,..., N — 1, this is to pack the pseudo-momenta

k; as closely as possible. In this case, we have by symmetry and uniqueness

of the ground state that k; = —kny_;+1. Thus, since Pio. = ZN ki = Nky +
N-1 .

%ijl (N —j)0; =0 we find

1 N—
ki = —ky = N—Z

We may also ask whether the true ground state is attained among these
ansatz states. This turns out to be the case, which may be seen by the follow-
ing results. We denote in this section by Er the periodic spin-polarized (spin-
less) free Fermi ground state energy Ep = inf (€0(¢)[Y € Cg2,, ([0, L]Y)),

with C2%er ([O, LN ) denoting anti-symmetric periodic smooth functions.

Lemma 2.39. Let V. denote the (true) ground state and E. denote the (true)
ground state energy of Hpr with coupling ¢ > 0. Then lim E.=FEr =Fy,
Cc— 00

where Er is the free Fermi ground state energy and V. — U in L*([0, L]Y)

as ¢ — 0oQ.

Proof. By going to the quadratic form representation of Hyy, it is clear by
a trial state argument that E, < Ep for any ¢ < oco. Now assume that
E. < £ < Ep for all ¢ < oo where £ is independent of ¢. Then the ground
state at coupling W, of Hyy, is uniformly (in ¢) bounded in H'. Hence for any
sequence (c¢p)neny C Ry, we find that W, is, by possibly passing to a subse-
quence, weakly convergent in H' to some ¥ € H'. By the Rellich-Kondrachov
theorem U, converges in L2 norm to the same limit. Now assuming ¢, — 0o
as n — oo we have ¥, (z; = x;) — 0 in L2([0,L]¥"1) as n — oo for any
i # j in order for the potential energy to stay finite. But then the limit ¥
also satisfies ¥(x; = x;) = 0 (in L%([0, L]N~1)) for any i # j. This follows
from the fact that §(z; — ;) f(x4) € H([0, L)) for any f € L*([0, L]V~
and from weak H' convergence of W, . Notice that VU is a trial state for the
impenetrable boson model (¢ = c0). However, clearly we have Ey < £ < Ep

by weak lower semi-continuity of the H'-norm, which contradicts Er being



26 CHAPTER 2. MANY-BODY QUANTUM MECHANICS

the ground state energy of the impenetrable boson model. Hence we conclude
FEy = Er = E4, but then by uniqueness of the ground state in the impene-
trable bosons model, ¥ = ¥,. Since ¢, — 00 as n — oo was arbitrary, we
conclude that any subsequence of W, has a further subsequence V., such

that W, — Vo, as i — oo, and the proof is complete. O

Proposition 2.40. Let Wy (c) be the variational ground state (in the Bethe

ansatz class, as given above) of Hyp, then WUy (c) is the true ground state.

Proof. Consider first the limit ¢ — oo. Here it is easily verified that ¥y (¢) —
|U | in L?, where U is the free Fermi ground state, i.e. a Slater determinant
state and that Ey(c) — Ep, where Ef is the free Fermi energy. This is the
non-degenerate ground state energy at ¢ = oo, i.e. the impenetrable bosons.
Now by the uniqueness of the bosonic ground state and continuity of the (true
and variational) ground state energy in 1/c, as well as the fact that ¥y (c) is
an eigenstate, we conclude that the variational ground state must remain the
true ground state, as 1/c varies. If this was not the case, there would be an
orthogonal true ground state, implying a degeneracy either at ¢ = oo or at
some ¢ > 0.
Continuity of the true ground state energy, in ¢, can be seen by perturbation
theory [RS78], or by a simple trial state argument, using V. (the ground state
of Hyr(c)) as a trial state for €, | (cye)-

O

We note that while Proposition 2.40 holds for the ground state, its proof
cannot be generalized to excited states, since there is no unique nth excited
state in the Bose gas. In this case, we refer to the more involved proof of
completeness of the Bethe ansatz states by Dorlas [Dor93]. Proposition 2.40
of course follows from this result as well.

Although it is not needed for our analysis, we note that one may strengthen the
result regarding convergence of ¥, as ¢ — oco. This is shown in the following

result.

Proposition 2.41. Let V. denote the (true) ground state of Hyy with cou-
pling c. If (¢n, > 0)pnen is a sequence of couplings then there exist a subsequence
Ve, , such that W, converges in C*°({1,2,...,N}) as i — oo.

Proof. Since ¥, are ground states we know —AWV, =\, V. , with \,, < Ep
for all n € N. Since {1,2,..., N} is convex, we have by elliptic regularity
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([Grill], Theorem 3.2.3.1) that
Ve llgemgio,.. N1 < CmAn' 1Weullp2qi 2, vy < CmEE.

By the Rellich-Kondrachov theorem [AdaT75], there exist for each m € N a sub-
sequence W' such that U7 converges in H?>"1({1,2,...,N}). By a diago-

nal argument we find a subsequence, \I/én , which converges in H*({1,2,...,N})
for all £ € N. Hence, by the Sobolev embedding theorem ([Ada75], Theorem
5.4), Wi converges to ¥ in C*({1,2,...,N}). O

Proposition 2.41 generalizes to exited states, by bounding )\g ) < Eg), with
A and El(pz) denoting the ith exited eigenvalues in the proof.

Interestingly, it is possible to study the thermodynamic limit (N, L — oo
with N/L = p) of the system by the use of the Bethe ansatz solution. To do

this, we define K () := limy 1o kn where v = ¢/p. Of course, the energy
N/L=p
will grow with the particle number, so we are, in this case, interested in the

energy per volume (length)
. 1
e(y):= lim —E. (2.5.9)

N,L—oo L
N/L=p

Since we have k;11 — k; < 2m/L, we conclude

2C(l€l’+1 - kz)

es,i - 95,i+1 = -

So by (2.5.7) we see for the ground state (n; = 1) that

N
2w 1 2C(k‘i+1 — kl) 2
kit — k=" — ) ——— 1/(cL)?). 2.5.11
Ak =T LY e PO @8y

Now let f be such that k;11 — ki = 1/(Lf(k;)). Then we may approximate

the sum by an integral in the L — oo limit, and we have

o fk) —1 = 26/K I®) 4yt cqer)), (2.5.12)

K c2+(p—k‘)2

with e(z) — 0 as x — 0. The very definition of f implies f_KK f(p)dp = p,
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with ground state energy

N K
E=) k== k2 f (k) dk, 2.5.13
> p/K £(k) (2.5.13)

and it follows from the definition of f and k; < k;41 that f > 0.

It is now a matter of a simple coordinate transformation
g(z) = f(Kzx), c:=K\ (2.5.14)
to find the equations for the ground state energy in the thermodynamic limit:

! 9(y)

2rrg(x) — 1 =2\ /1 My —a) Y, (2.5.15)
3 1
e(y) = p3% /_1 r2g(x)dx, (2.5.16)
1
1= 1/_19(35) da. (2.5.17)

The first equation is an inhomogeneous Fredholm equation of the second kind
which is solved by the Liouville-Neumann series. Notice that our equation for
e() differs from that of Lieb and Liniger by a factor p?, since we have absorbed
this factor as part of e(y). This difference is also present when comparing to
Chapter 3, where the convention of Lieb and Liniger is followed. In Lemma
16 of Chapter 3 we prove the following lemma on the thermodynamic ground
state energy of the Lieb-Liniger model. This lemma will be important in the

proof of a lower bound on the ground state energy for the dilute Bose gas.

Lemma 2.42 (Lemma 16 in Chapter 3 ([ARS22])). Let e(y) be the solution
of (2.5.15)~(2.5.17). Then for v > 0 we have

72 2
e() = Tp’ <77+2> . (2.5.18)

Here we would like to give the equivalent result for a finite number of

particles.

Lemma 2.43. Let (kz)f\il satisfy k1 < ko < ... < kn and (2.5.11). Then we
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have
Y 1\ «° P\~ pp
>N — ) — (142 2.5.1
g " ( LQ) 3 < * c) +O(CCL> (2.5.19)

Proof. By discarding the term (ks — k;)? in the denominator inside the sum
in (2.5.11) we find straightaway that

ki1 — ki > f (1+2 ) +pO (1/(cL)?).
For the ground state where k; = —kn_;11 it follows that

les| > 2% (1+ 2%)_1 (i — (N +1)/2) + pO (1/(cL)?), for all i = 1,..., N.
(2.5.20)

Therefore we find the lower bound on the energy

N 2

1 —
Zksz( 2—L2> %(1+2§) +(’)(i§L> (2.5.21)
=1

O

2.6 The Yang-Gaudin Model

Similarly to the Lieb-Liniger model, the Yang-Gaudin model is exactly solv-
able, by use of a generalized Bethe ansatz. This was originally done in [Yan67],
and we shall briefly review the methods in this section. The model of interest
describes N spin—1/2 fermions and is given using the same formal Hamiltonian

as for the Lieb-Liniger model
Hyg = 282 +2 Y Owi—xy), (2.6.1)
1<i<j<N
however, the domain is not, for the moment being, taken to have any given
spatial symmetry.
Labeling the symmetries

To analyze the problem, Yang considers the possible spatial symmetries that

may appear in the problem. Having combined spin-space anti-symmetry re-
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quires that any irreducible representation of Sy determining the spatial sym-
metry must have a corresponding conjugate spin symmetry. As an example
consider the two particle case where the wave function is either symmetric
and the spin state is the singlet, or the wave function is anti-symmetric and
the spin state is in the triplet. If you have more particles, the picture is more
complicated, although similar. Notice that one cannot have 3 spin—1/2 parti-
cles that are mutually in the singlet state with each other. It turns out, that
one way to label the symmetry of a spin state is by Young tableaux, i.e. a
diagram of boxes with numbers obeying the rule that numbers increase along
all rows and columns. A tableau labels a subspace of spin states. To construct
the subspace consider all states that are symmetrized in particle labels in the
same rows. Next anti-symmetrize, in these states, all particle labels in the

same columns. For example:

L2 | = span (11 — [4H) . [144) — [14)) (2.6.2)
; 3] span (11419 — (11 14140 — [1449). (2.6.3)

— span (1) 1143 FEUD) + 1) + [0 PR + 10) + 141))

(2.6.4)
By the before mentioned fact that one cannot anti-symmetrize three 1/2—spins,
Young tableaux of spin—1/2 states have at most two rows. An interesting fact
with this labeling of spin states is that the structure of a given tableau is
related to the total spin of the state. To see this, notice that all columns of
lengths two carry vanishing total spin because they form a singlet state. On
the other hand, all columns of length one are symmetrized with each other.
Hence it is well known that they carry maximal total spin. In the subspace la-
beled by a tableau with M columns of length 2 and N —2M columns of length
1, all states are of the form [So) ® |S(y_2ar)/2), Where [Sp) is some spin state
of total spin 0 and |S(x_2ar)/2) is some spin state of total spin (N —2M)/2.
Remembering that irreducible representations of SU(2) are labeled by the to-
tal spin, we conclude that a Young diagram, which is just a Young tableau

with blank entries, labels the irreducible SU(2) representations.
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Remember that we may label the irreducible representation of Sy determin-
ing the spatial symmetry also by Young diagrams, [WJ91]. Recall that for

irreducible representations of Sy we have the relation

Ny = {A} ® sgn
- ] e L.

— (2.6.5)

Thus we see that a wave function, which is anti-symmetric under (spin-space)

permutations, and which spatially transforms in the irreducible representation

— space

must be defined in the spin subspace

[

spin

We notice that this restricts the spatial symmetries that spin—1/2 fermions
can possess, since the spin diagrams have at most two rows. In the following,
we will denote the diagram consisting of a row with NV — M boxes and a row
with M boxes by [N — M, M|, and diagrams consisting of a column of N — M

boxes and a column of M boxes by [2M, 1V=2M],

Recap of the findings of Yang: Solution by Bethe-Yang ansatz

The solution found by Yang in [Yan67], relies on a generalization of the Bethe
ansatz, which we saw in the previous section solved the Lieb-Liniger model.

The generalized Bethe ansatz is also known as the Yang-Bethe hypothesis or
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Yang-Bethe ansatz. We recap here, without proof, the findings of Yang. For
references on these results, we point to [Gau67, Yan67, Sut68, Fun81, Gaul4].
The model is solved by applying a standard Bethe ansatz state: On the sector
{o} define
=Y Epoexp(kpTo + ...+ kpyTay), (2.6.6)
PeSy
with energy F = Zfil kf Similarly to in the Lieb-Liniger case, in order to

satisfy the right boundary condition, we have

po =Y %00, (2.6.7)
when Q = (P1,..., 2 ,..., 1 ,...,Py) and
i J

P=(P,..., 1 ..., 2 ,...,Pyn), where we defined

(k: — k;)(12) — ic
(kﬁl — k?]) +ic ’

12
Y;i© = (2.6.8)
with (12) acting by interchanging o1 and oo. We see that we recover the
Lieb-Liniger result if v is symmetric and a Slater determinant if 1 is anti-
symmetric.

A crucial observation by Yang is that we have the following identities, of which

the second is famously known as the Yang-Baxter equation.

vy =1

aby bcyab bey aby be (2'6'9)
Y Y Yy =Y Y Y.
These make the equations (2.6.7) mutually consistent.
The condition of periodic boundary conditions may now be written
Ai€ro = X(j+1) X (j12)5 - - XN X155 - X(j-1)5810 (2.6.10)
with \; = exp(ik; L) and X;; = P;;V;7.
Now, restricting to 1 in some irreducible representation R = [2M 1V—2M]

one easily sees that, using X;; = (1 — P;jx45)/(1 + x;5), we may equivalently
consider a spin state, ®, of total spin N — 2M, satisfying the equation

!/ / / !/ /
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with X/, = (1+ Pf;”:rw)/(l + ;;), where R denotes the conjugate representa-
tion, so Pff is acting on the spins i.e. Pilj% = —F;;.

Now considering instead a spin chain of total z—spin (N —2M)/2, we know that
this chain can have components with total spin N/2, (N—1)/2,...(N—2M)/2.
Notice that P;j; = 1/2 + 25; - S;, for spin-1/2 particles, which commute with
the total spin operator. Hence we may find eigenvalues, p;, in each total spin
sector separately. However, since these eigenvalues correspond to eigenvalues
of (2.6.1), the theorem of Lieb and Mattis [LM62b]? tells us that the eigen-
value p1; yielding the smallest eigenvalue of (2.6.1) must come from the total
spin sector N — 2M, i.e. minimal total spin in the case when N/2 is an odd
integer.

The Bethe-Yang hypothesis states that

M
Oy, ym) = Y Ap [ F(Ap, ), (2.6.12)
PeSnN i=1

where y; denotes the positions of the spin downs, and with

y—1 . .

ik; — i\ —¢/2
F(Ay) = 2
(A,9) jl;llikj+1—iA+C/2’

(2.6.13)

2A detail often left out in the literature: This theorem is only proved in the paper
[LM62b] for Dirichlet or Neumann boundary conditions. One may prove that the absolute
ground state is in the total spin S = 0 subspace even with periodic boundary conditions
when N/2 is an odd integer. The proof requires N/2 to be an odd integer in order to have
a positive periodic ground state on an ordered sector

{z1 <22 <...<xnjpand 2y/241 < Tnjo42 < ... < TN}

Furthermore, in this case, the ground state is unique.
The exact statement of the theorem is then: Denote by F(S) the lowest energy of any state
with total spin S. Then the following theorem holds:

Theorem 2.44 (Lieb and Mattis, [LM62b], for periodic boundary conditions, d = 1). If N/2
is an odd integer and S > 2n for some integer n then E(S) > E(2n), unless the potential,
V', is pathological, in which E(S) > E(2n). Furthermore, when V is not pathological, the
ground state with energy E(0) is unique.

Proof. The proof follows the proof of Theorem I in [LM62b] with M = 2n and N/2 odd, in
order for !Lpo(:m, o TNj2—2n|TN 2= 1y e xN)‘ to be a continuous anti-symmetric peri-
odic wave function on the above mentioned sector. O

For more details on the notion of “pathological” and the proof, we refer to the original
paper by Lieb and Mattis.
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and N u
ik; —iho —c/2 H —iAg+iAy —c

ikj —ilg +¢/2 AL —iAg+iN, +¢

(2.6.14)
j=1 B=1
One may verify that ® has total spin N — 2M. Yang then finds

M

,uj(kvcv [N—M,M]) = H
B=1

ikj —ihg — c/2
ik‘j —Z'A5+C/2'

(2.6.15)

Thus the energy is determined by the equation

M . .
_ ikj —iAg —c/2
exp(ik;L) = S R : (2.6.16)
I [EzkaquLc/Q

Taking the logarithm of (2.6.14) and (2.6.16) and adding certain integers to

get a well defined ¢ — oo limit, as we did in Section 2.5, one finds

— ) 02A—2k)=2mJy— > 6(A-A),

k‘E{k‘j}j A'E(Aa)a

(2.6.17)
kL = 2rl, — Z 0(2k — 2A"),
ANe(Aa)a
with the usual (z) := —2arctan(z/c). For N even and M odd we have for
ground state (among the ansatz states)
Jr € {—(M —=1)/2,.... (M —1)/2},
(O =120, (0 - 1)/2) o)

I e {1—N/2,... ,N/2}.

Going to the thermodynamic limit, i.e. N, M, L — oo proportionally, one then
find the equations for the energy

(B 2co(A) AN Q@ def(k)dk

B co / /
2 f(k) :1+/_Bc24+4<(f\k)_(if\,)2, (2.6.20)
=N/L = ¢ k) dk M/L = 7 A)dA 2.6.21
p=NJ —/%f(), / —[%a() , (2.6.21)

Q
e=FE/L= / E*f(k)dk, (2.6.22)
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with f,o0 > 0. We see that taking B = oo, and integrating over (2.6.19), one

finds by interchanging the order of integration

2rM/L = —/Oo

—0o0

Q
2mo(A) dA’+27r/ f(k)dk, (2.6.23)
-Q

where we used [*° 42 = 1. So using (2.6.21) we find 2M = N, and thus

oo 1422 —

the total spin is Sior. = 0. By a theorem of Lieb and Mattis [LM62b], this is
then the total ground state.

Lower bound of the Yang-Gaudin model

Now the following lemma will prove useful in obtaining a lower bound for
the thermodynamic “ground state energy” (in the sense that it comes from a
solution of integral equations (2.6.19)-(2.6.22)) of the Yang-Gaudin model.

Lemma 2.45. For any m € N4, the equations (2.6.19)-(2.6.22) imply that

o0 2m — 1)co (A" y
27Tf(k) =1+ (_1)m+14/_ ((2m (_ 1)202 _)~_ 4((k —)A”)Q) dA

. %))
‘”53 02 [ e i %

(2.6.24)

Proof. We give a proof by induction: For the induction base case, we notice
that the m = 1 statement is simply (2.6.20). For the induction step, assume
that (2.6.24) hold for m = myg, we may plug the right-hand side of (2.6.19) into
(2.6.24). By Tonelli’s theorem, we may interchange the order of integration

and we find

2nf(k)—1=
(_1)m0+2 o] 00 802(2777,0 — 1)0’(A//) / "
/ / CQ / A”)Q)((2mo _ 1>202 + 4<k _ A/)2> dA dA
m0+1 4202(2m0 — 1)f(k‘l) ! 1./
/ | i a e e i w
mo—1

2 : )" 2¢(2n) f(K') ’
2 +1/ ((2n)2c? + 4(k — K)?) di.
(2.6.25)
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Using the formulas

/°° m 4 — (m+ 2)
—oo (LH (2" —2”)?)(m? + 4(y — 7)) (2+m)? +4(y — a")?’
(2.6.26)

/°° m Qo' — (m+1)
—oo (L +4(Y —2')2)(m? + 4(y — 2/)) 2((m+1)2+4(y —y)?)’

(2.6.27)
for any z”,y,y’ € R and m € N, we find
o0 2(mo+1) — 1)co(A”)
o f(k) =1+ (-1 m0+24/ ( dA”
TR =1 DT ] @+ 1) - D2 + 4k - A7)

2¢(2n) f (K ,
+QZ n+1/ ( n)2c2( _|_)4j(1§€ _) k:’)2) dk ’

(2.6.28)

which proves the required result. O

We will aim at proving a lower bound. To do this, notice that in Lemma

2.45 the second term in (2.6.24) vanishes in the limit m — oo by the estimate

00 (2m — 1)co(A”) ” 1 e 1 1
| @t f Y S G | o0 (26.29)

. M/L
- (2m—1)c

For the third term in (2.6.24), we need the estimate of the following lemma:
Lemma 2.46. For any mg € Ny we have

— wir [ 2¢(2n) f(K') , n 2f(K) .,
;(—1) +1 /_Q e i WS Z +1 /_Q S i
(2.6.30)

Proof. Essentially we want to throw away the (k — k’)? in the denominator
on the left-hand side of (2.6.30) to get an upper bound. For all terms with

positive coefficients, this can be done by the inequality

2f (k) oo [© 2c(2n) f (k') ,
/Q e = /Q (@2 + 4tk —hy2) (2.6.31)
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However, for the terms with a negative sign, this estimate cannot be used.
Thus we use the following strategy instead: In order to deal with the signs we

estimate the differences

O[O (2 2e@n)f(K) ,
A”‘(/Q one /Q (@n)2 + a(k — ky2) )

_< /Q 21 () /Q 26(2(n + 1)) f(K) - dk,)

_o2(n+1)c o (@ +1))22 1 4(k — k)2
(2.6.32)
A straightforward computation shows
A,
/Q n(n + 1
2¢(2n) [(2(n + 1)) + 4(k — K')?]
22 +4(k — )2 [(2(n + 1))22 + 4(k — k/)?]
—2¢(2(n + 1)) [(2n)2E2 + 4(k — K)?] o
[6(2271) 1Ak~ B (200 1)) + d(k — )2 ])f(k)dk 2633
_ [T 2K
B /_Q 2n(n+1)c
2¢-8n(n+1)c? — 4c- 4(k — k')? N 1)
T+ 4tk — R [0 + )2 gk — )
Q de - 4(k — k)2 P
/Q 2 a0k — )7 [(2(n + 1)) + 4(k — wyy ! Kk
>0
It follows for any mg that
S _qynit [ 2e(@n)f(K) ,
nzo(_l) - /_Q (2n)2 + (i — )2y
mo , Lmo/2]
< Z(—l)”“/Q 2*’;7(;2) dE' — Y Ay (2.6.34)
n=1 - =1
- _1\n+1 2f(k,) /
< n:o( 1) / o 2nec dk’.

Here the first inequality is an equality if mg is even, and the inequality when
mo is odd follows from (2.6.31) with n = my. O
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We notice that we may upper bound f:

Lemma 2.47. Let f be a solution of (2.6.19)—(2.6.21), then

o (D)™ @) o, 2In(2)
27rf(k)§1+2; - /_Q oAk =14 =, (2.6.35)

Proof. By Lemma 2.45 with m — oo using (2.6.29) and Lemma 2.46 the result
follows. O

We are ready to give a lower bound for the “ground state” energy of the

Yang-Gaudin model.

Proposition 2.48. Let e be a solution of (2.6.19)—(2.6.22), then

2
2
T 3 1
e>T 3~ ). (2.6.36)
Proof. We notice that the expression for e = f—QQ f(k)k? dk, given f—QQ f(k)dk =
p and f < K, is minimized by having f = K1[_,/2K),/(2K)], in which case
J&, fk)k?dk = 2K ()°. That p/(2K) < Q follows straight away from
p= f_QQf(k) dk < 2KQ. By Lemma 2.47, we find f < &= (1 + 21%(2)/)), so it

2
2 3 1
follows that e > %&-p (HQI%)) . O]

We will, in Chapter 4, find a matching upper bound for the Yang-Gaudin

ground state energy in the dilute limit.

A Small Caveat

There is an issue in the analysis of the Yang-Gaudin model: It is safe to say
that in the physics/integrability literature, the “ground state” of (2.6.1) is
widely believed to be the one found above. However, there is, to the best of
our knowledge, no rigorous proof in the literature that the true ground state
of (2.6.1) is among the Yang-Bethe ansatz states. In fact, there seems to be

no proof of the existence of a solution to the equations (2.6.17) given two

sets of integers (Ij)évzl and (J,)M_ . This is in contrast to the analysis of the
Lieb-Liniger model, in which both the existence of solutions as well as the
completeness of the Bethe ansatz states is known, [Dor93]. Since we will not

use the results from this section for any rigorous analysis in the remainder of
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the thesis, we leave the establishment of these facts for future work. We will
in Chapter 4 refer to the e coming from a solution of (2.6.19)—(2.6.22) as the
ground state energy of the Yang—Gaudin model, however this non-rigorous use
of the terminology is never used in any rigorous setting.

We may state, for good measure, what is needed to make statements about

the ground state rigorous:

e Establish existence of solutions of (2.6.17) for any two sets of integers

(I, Ja)j.a» at any ¢ > 0 such that k;, A, varies continuously with c.
e Either of the two:

1. Establish that Yang finds full multiplicity of solution converging to
the ground state in the limit ¢ — oco. (In this case the theorem
of Lieb and Mattis [Theorem 2.44]) implies that no extra ground

state can exist.

2. Justify rigorously Gaudin’s findings in the ¢ — 0 limit, where the
ground state is unique [Gau67]. In this case, the ground state is of
Bethe-Yang ansatz form in this limit. It is then implied that this
is the case for all ¢ > 0 again by the theorem of Lieb and Mattis.






Chapter 3

The Ground State Energy of
the One-dimensional Dilute

Bose Gas (Preprint)

This chapter contains a revised edition of the preprint, [ARS22], written as
part of a collaboration with Robin Reuvers and Jan Philip Solovej. To em-
phasize the independence of this preprint from the rest of thesis, the title page
with abstract and authors is included. Furthermore, the labeling of equations,
theorems, lemma, and references is kept separate from the rest of the thesis.
Repetitions from the preceding chapters of this thesis might occur, and repe-
titions of the content in this preprint may also occur in the following chapters.
When referring to the results of this preprint, we shall state “from Chapter
3” explicitly and refer to the labeling in this chapter.
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Ground state energy of dilute Bose gases in 1D

Johannes Agerskov!, Robin Reuvers?, and Jan Philip Solovej!

1. Department of Mathematics, University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen ), Denmark
2. Universita degli Studi Roma Tre, Dipartimento di Matematica e Fisica, L.go S. L.
Murialdo 1, 00146 Roma, Italy
May 17, 2023

Abstract

We study the ground state energy of a gas of 1D bosons with density p, interact-
ing through a general, repulsive 2-body potential with scattering length a, in the dilute
limit pla| < 1. The first terms in the expansion of the thermodynamic energy density are
72p3/3(1 + 2pa), where the leading order is the 1D free Fermi gas. This result covers the
Tonks—Girardeau limit of the Lieb—Liniger model as a special case, but given the possibility
that a > 0, it also applies to potentials that differ significantly from a delta function. We in-
clude extensions to spinless fermions and 1D anyonic symmetries, and discuss an application

to confined 3D gases.

1 Introduction

The ground state energy of interacting, dilute Bose gases in 2 and 3 dimensions has long been

a topic of study. Usually, a Hamiltonian of the form

N
—ZA%—I— Z v(z; —xj) (1.1)
i=1

1<i<j<N

is considered (h =2m = 1), in a box [0, L]d of dimension d = 2, 3, and with a repulsive 2-body
interaction v > 0 between the bosons. Diluteness is defined by saying the density p = N/L? of
the gas is low compared to the scale set by the scattering length a of the potential (see Appendix
C in [30] for a discussion, and also Section 1.2 for d = 1 below). That is, pa? < 1 in 2D, and
pa® < 1 in 3D.

In the thermodynamic limit, the diluteness assumption allows for surprisingly general ex-

pressions for the ground state energy. Take, for example, the famous energy expansion to second
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order in pa® < 1 by Lee-Huang-Yang [27], derived for 3D bosons with a hard core of diameter

a,

128
47N p*3(pa®)/3 <1 + NG pa® + o (\/pa?’)) . (1.2)

After early rigorous work by Dyson [11], Lieb and Yngvason [31] proved that the leading term
in this expansion holds for a very general class of potentials v, and a similar result was obtained
for the second-order term [3, 14, 15, 50].

The situation is similar in 2D. The leading order in the energy expansion for pa? < 1 derived
by Schick [43] was proved rigorously by Lieb and Yngvason [36]. A second-order term has also

been derived and was equally predicted to be general [1, 13, 38], resulting in the expansion

ﬂ ,ln“n(pGZ)‘ ¢ o ( |In(pa® -1
[In(pa?)| (1 n(pa?)] (o) (Iinpa®) )) (1.3)

for some constant C'. This was recently shown rigorously [12].

Remarkably, it seems the existence of a similar, general expansion in 1D was never studied
in similar depth. It was, however, suggested in [2] by considering two exactly-known special
cases, as we will do now as well.

The first is the famous Lieb-Liniger model [33]. Many of its features can be calculated
explicitly with Bethe ansatz wave functions, but for our purpose we return to something basic:
the ground state energy. Consider Lieb and Liniger’s Hamiltonian for a gas of N one-dimensional
bosons on an interval of length L (periodic b.c.), with a repulsive point interaction of strength
2¢ > 0,

N
=30k 42 Y b(wi— ). (1.4)
i=1 1<i<j<N
The ground state can be found explicitly [33], and in the thermodynamic limit L — oo with
density p = N/L fixed, its energy is

EvL = Np®e(c/p), (1.5)

where e(c/p) is described by integral equations. Since ¢/p is the only relevant parameter,
diluteness, or low density p, should imply ¢/p > 1. In this case, the ground state energy can
be expanded as ([33]; see, for example, [21, 25]),

Err = Np2e(e/p) = N7;)2p2 ((1 + 25)_2 +O (i’)‘q’) . (1.6)

Recall that the dilute limit is pa? < 1 in 2D and pa® < 1 in 3D. This seems easy to generalize
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to 1D, but it turns out the Lieb—Liniger potential 2¢d has scattering length a = —2/c. That is,
in 1D the scattering length can be negative even if the potential is positive, and we should be
careful to define the dilute limit as p|a| < 1. This then matches the limit ¢/p > 1 mentioned

above, and we can write (1.6) as

2
By, = N%Pz ((1 —pa)2 + O(Pa)g)
2

= ]\77%;)2 (14 2pa + 3(pa)® + O(pa)?®) .

(1.7)

This expansion should now be a good candidate for the 1D equivalent of (1.2) and (1.3).
This is supported by the fact that 1D bosons with a hard core of diameter a have an exact

thermodynamic ground state energy of [2, 17]

2 N 2 2
N = Np%2(1=pa)2. 1.
(o)~ (18)

This is the 1D free Fermi energy on an interval shortened by the space taken up by the hard
cores (the ground state is of Girardeau type; see Remark 2 and the discussion of the Girardeau
wave function in Section 1.2).

With two explicit examples satisfying (1.7) to second order, it seems likely we can expect this
expansion to be general [2], just like (1.2) and (1.3) in three and two dimensions. Indeed, our

main result confirms the validity of (1.7) to first order, for a wide class of interaction potentials.

1.1 Main theorem

Throughout the paper, we will assume that the 2-body potential v is a symmetric measure with
a finite range, supp(v) C [—Ry, Ro]. Furthermore, we assume v = Vreg + Uh.c., Where vpeg is a

finite measure, and vy, ¢, is a positive linear combination of ‘hard-core’ potentials of the form

00 |z| € [z1, 2]
Uiy ] (@) 1= e (1.9)
0 otherwise

for 0 < 21 < 29 < Rp.! We will consider the N-body Hamiltonian

N
Hy = — Zaﬁz + Z ’U(.%'i — :Ej) (1.10)
=1

1<i<j<N

'Note we allow 0 < 1 = z2 < Rp, by which we mean that impenetrable delta potentials of the form
h(d—z, + dz,) with A — oo can freely be included. This amounts to a zero boundary condition at |z| = 1.
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on the interval [0, L] with any choice of (local, self-adjoint) boundary conditions. Let D (Hy) be
the appropriate bosonic domain of symmetric wave functions with these boundary conditions.

The ground state energy is then

E(N,L):= inf (V|Hyx|¥)= inf &(V), (1.11)
VED(Hy) VED(HnN)
(=1 w|=1

with energy functional

N
5(@):/ S ouPe S vy w. (1.12)
0,01

i=1 1<i<j<N

Theorem 1 (bosons). Consider a Bose gas with repulsive interaction v = Vypeg+ Up.c. as defined
above. Write p = N/L. For pla|] and pRy sufficiently small, the ground state energy can be

expanded as
m° 2 6/5 6/5 —2/3
E(N,L) :ng <1+2pa+(9((p]a\) + (pRo)*> + N )> , (1.13)

where a is the scattering length of v (see Lemma 4 below). A precise expression for the error is

given in the upper and lower bounds (2.1) and (3.1).

To obtain this result, we prove an upper bound in the form of Proposition 8 in Section 2, and
a matching lower bound in the form of Proposition 15 in Section 3. We use Dirichlet boundary
conditions for the upper bound and Neumann boundary conditions for the lower bound, as
these produce the highest and lowest ground state energy respectively. This way, Theorem 1

holds for a wide range of boundary conditions.

Remark 2. As a special case, Theorem 1 covers the ground state energy expansion (1.6) of
the Lieb—Liniger model (1.4) in the limit c/p > 1, as discussed in the introduction. This is
known as the Tonks—Girardeau limit. Crucially, in this limit, the leading order term is the
energy of the 1D free Fermi gas Nw2p?/3, as first understood by Girardeau [17] (see also the
discussion around (1.15) and (1.16) below).>2 Theorem 1 shows this holds for general potentials
as well. That means that the dilute limit in 1D s very different from the one in two and three
dimensions, where the zeroth-order term in the energy is that of a perfect condensate at zero
momentum and the first-order term can be extracted using Bogoliubov theory [6]. In particular,

the free Bose gas (v =0) in 1D cannot be considered dilute, because it has infinite |a|.

Remark 3. An interesting feature of Theorem 1 is that the scattering length, a, can be both

2Note that Girardeau studied the ¢/p — oo case before Lieb and Liniger, who then generalized his work to
obtain and solve the complete Lieb-Liniger model (1.4).
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positive and negative. In this sense, our result covers cases that do not necessarily resemble the
Lieb—Liniger model, which always has a negative scattering length. We discuss this further in
Section 1.4.

Note that zero scattering length can be achieved, which means the error in (1.13) cannot just

be written in terms of (pla|)® for some s > 1, but that (pRo)® also appears.

1.2 Proof strategy

The most important ingredient in our proof is the following lemma, which follows from straight-
forward variational calculus. It is based on work by Dyson on the 3D Bose gas [11] and is present

in Appendix C in [30].

Lemma 4 (The 2-body scattering solution and scattering length). Suppose v is a repulsive
interaction v = vn.c. + Ureg @S defined in the previous section. In particular, v is symmetric and
supp(v) C [~Ro, Ro]. Let R > Ry. For all f € H'[—R, R)] subject to f(R) = f(—R) =1,

“R-a

R 4
|20 ol f@P e > 2 (1.14)

There is a unique fo attaining the minimum energy: the scattering solution. It satisfies the
scattering equation 02 fo = %vfo in the sense of distributions, and fo(z) = (x —a)/(R — a) for

x € [Ro, R]. The parameter a is called the scattering length, which need not be positive in 1D.

Similar lemmas play an important role in the understanding of the ground state energy
expansions (1.2) and (1.3) in higher dimensions [11, 31, 36], but there are a number of things
we need to do differently. These relate to the fermionic behaviour of the bosons in the limit
pla| < 1 (see Remark 2 above).

What does this mean in practice? For the upper bound in Section 2, it suffices to find a
suitable trial state by the variational principle (1.11). Good trial states for dilute bosons in 2D
and 3D are close to a pure condensate, but in 1D the state will have to be close to the free Fermi
ground state obtained in the limit p|a| — 0. To achieve this, we can rely on Girardeau’s solution
[17] of the ¢/p — oo limit of the Lieb-Liniger model. In that case, the delta function in (1.4)
enforces a zero boundary condition whenever two bosons meet, so the bosons are impenetrable.
The wave function is then found by minimizing the kinetic energy subject to this boundary
condition. If we only consider the sector 0 < z; < --- < xy < L (which suffices by symmetry),

this is exactly the free Fermi problem. For periodic boundary conditions on the interval [0, L],
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the (unnormalized) free Fermi ground state is®

V(. en) = ] sin<7r"5i;”:j>. (1.15)

1<i<j<N

Of course, the ground state for impenetrable bosons should be symmetric rather than antisym-

metric, and to correctly extend it beyond 0 < z; < --- < zxy < L we need to remove the

. XTi — Ty
— . 1.1
sin <7r T )’ (1.16)

This is Girardeau’s ground state for impenetrable bosons, and it still produces the free Fermi

signs,

‘\I/%er‘(l'l,...,x]v): H

1<i<j<N

kinetic energy N7?/3p? in the thermodynamic limit.*

Returning to the problem of finding a suitable trial state, (1.16) should be a good departure
point. To account for the effect of the interaction potential, we should modify the sin(m(xz; —
xj)/L) terms in (1.16) on the scale set by a. Lemma 4, and the scattering solution fy, are
designed to provide the right 2-body wave function in the presence of the potential, so it seems

natural to replace the sine by

fo(x)sin(wb/L) lz| <b

1.17
sin(r |z| /L) |z| > b 17

on some suitable scale |a] < b < L. This is the idea we rely upon for the upper bound proved
in Section 2.

For the lower bound in Section 3, we equally need to find a way to obtain the free Fermi
energy to leading order. We use Lemma 4 in combination with the known expansion (1.6) for

the Lieb—Liniger model. Choosing a suitable R > Ry, the idea is that (1.14) can be written as

R 2
/ 2(0:f” + v(@)| f(z)* do > R a /(5R(w) + 6_g(2))|f(2)]? dz, (1.18)
R

thus lower bounding the kinetic and potential energy on [—R, R] by a symmetric delta poten-
tial at radius R. Heuristically, we proceed by repeatedly applying (1.18) to an N-body wave
function W to obtain the symmetric delta potential for any neighbouring pairs of bosons. Then—
crucially—we throw away the regions where |z;41 — z;| < R, which is inspired by a similar step
in [35]. This produces a lower bound since v is repulsive. With these regions removed, the two

delta functions at radius |z;4+1 —z;| = R collapse into a single delta at |z; 41 —x;| = 0, with value

3This expression can be found by creating a Slater determinant of momentum eigenstates, and noting this is
a Vandermonde determinant. See Section 2.1 for the calculation for Dirichlet boundary conditions.

“The wave functions U2 and |¥2"| have the same energy and that is all we will need in this paper. However,
their momentum distributions are very different, which is discussed further in Section 1.5.
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4/(R — a). This gives the Lieb-Liniger model on a reduced interval, evaluated on some wave
function, which can then be lower bounded using the Lieb—Liniger ground state energy (1.6)
(appropriately corrected for finite N, and the loss of norm of ¥ from the thrown-out regions).

All this may seem rather radical, but the heuristics work out: starting with an interval of
length L, we cut it back to length L — (N — 1) R, so that the Lieb—Liniger expansion (1.6) with
¢=2/(R— a) and new density N/(L — (N —1)R) = p(1+ pR+ ...) produce

2 2

N%pQ(l Y 2R+ .. )1 —-2p(R—a)+...) = N%pz(l +20a+...). (1.19)

We show that, a priori, the ground state wave function has little weight in the regions that get
thrown out, so that (1.19) is accurate. The rigorous procedure used to obtain the Lieb-Liniger

model and the expansion (1.19) are outlined in Section 3.

1.3 Spinless fermions and anyons

The expansion in Theorem 1 generalizes to spinless fermions in 1D. Given the antisymmetry
of the fermionic wave function, the result involves the odd-wave scattering length ayqq of v,
obtained from Lemma 4 by replacing the symmetric boundary condition f(R) = f(—R) =1 by
an antisymmetric one, f(R) = —f(—R) = 1.

Theorem 5 (spinless fermions). Consider a Fermi gas with repulsive interaction v = Vyeg+ Up,c.
as defined before Theorem 1. Let ayqq be the odd-wave scattering length of v. Define Dp(Hy) to
be the appropriate domain of antisymmetric wave functions, and let Er(N, L) be its associated
ground state energy. Write p = N/L. For pa,qq and pRy sufficiently small, the ground state

energy can be expanded as
w? 2 6/5 —2/3
Er(N,L) = N (1 + 2pa0gi+ O ((pRg) +N )) . (1.20)

This theorem follows from Theorem 1 by using Girardeau’s insight [17] that fermions and
impenetrable bosons in 1D are unitarily equivalent, and hence have the same energy. It suffices
to know the wave function on a single sector 0 < z1 < -+ < xny < L, after which we can
extend to any other sector by adding the correct sign for either bosons or fermions (note, any
acceptable wave function is zero whenever z; = x;). Flipping these signs is exactly the nature
of the unitary operator; see for example the equivalence between (1.15) and (1.16) discussed
above. Given that Theorem 1 holds for impenetrable bosons, we can apply it as long as we use
a zero boundary condition at z = 0 in Lemma 4. By similar reasoning, this produces the same
scattering length as using the fermionic boundary condition f(R) = —f(—R) = 1 in Lemma 4.

Theorem 5 is therefore a corollary of Theorem 1.
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Remark 6 (spin-1/2 fermions). Consider the case of spin-1/2 fermions. If we study the usual,
spin-independent Lieb—Liniger Hamiltonian (1.4), the ground state will have a fized total spin
S. In fact, it is possible to study the ground state energy in each spin sector, and it will be
monotone increasing in S according to work by Lieb and Mattis [32]. For each of these sectors,
an ezplicit solution in terms of the Bethe ansatz exists [16, 49]. In certain cases, these can be
expanded in the limit c¢/p > 1 [22], and the analogue to (1.6) and (1.7) can be obtained. The
ground state energy for spin-1/2 fermions (S = 0 by Lieb—Mattis) gives [18, 22]

772 7['2
N (1 - 4§ In(2) + (’)(p/c)2> = Np? (14 2In(2)pa + O(pa)?). (1.21)

Both the Lieb—Liniger exact solution and the expansions can be generalized to higher spins (or
Young diagrams) [23, 47]. Note the leading order will be the free Fermi Nw2p?/3 in all cases,
since the delta potential does not influence the energy for impenetrable particles.

For general potentials, the zeroth-order Fermi term is still expected to be correct, but the first-
order term in (1.21) has to be more complicated. Given that two spin-1/2 fermions can form
symmetric and antisymmetric combinations, both the even-wave scattering length aepen, = a and
the odd-wave scattering length a.qq of the potential will play a role. In the Lieb—Liniger example
(1.21), apqqg = 0, since the delta interaction does not affect antisymmetric wave functions.
However, for hard-core fermions of diameter a, ao4q = Geyen, = a, and the energy should be (1.8)

since the spin symmetry plays no role. These two examples suggest that the correct formula is

2
N%p2(1 +210(2) paeven + 2(1 — 10(2))pa.oaa + O(p max(|acven|, dodd))?)- (1.22)

We will discuss this expansion in a future publication.

The approach followed to obtain Theorem 5 can actually be taken further. What if, starting
from some wave function on a sector 0 < z1 < -+ < zy < L, we want to add anyonic
phases e with 0 < k < 7, whenever two particles are interchanged? It turns out this can
be made to work, going back to, amongst others, [26, 28] (see [7, 41] for a historical overview
of this approach, comparisons with other versions of 1D anyonic statistics, and a discussion
of experimental relevance). Just like fermions are unitarily equivalent to impenetrable bosons,
these 1D anyons are equivalent to bosons with a certain choice of boundary conditions whenever
two bosons meet. This can be related to the Lieb-Liniger model with certain ¢ [41], since the
delta function potential in (1.4) also imposes boundary conditions whenever two bosons meet.
Hence, the (bosonic) Lieb—Liniger model can be viewed as a description of a non-interacting
gas of anyons, with the ¢/p — oo case being equivalent to fermions (x = 7) as understood by

Girardeau.
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Somewhat confusingly, this does not complete the picture, because many authors study
gases of 1D anyons themselves interacting through a Lieb—Liniger potential, see for example
[4, 24]. In this case, there are two parameters: the statistical parameter x describing the phase
e upon particle exchange, and the Lieb-Liniger parameter ¢. Not surprisingly, this set-up is
again unitarily equivalent to the bosonic Lieb—Liniger model, with an interaction potential of
2¢dp/ cos(k/2).5 This means Theorem 1 can be applied. We provide more details about the

set-up, and prove the following theorem as a corollary of Theorem 1, in Section 4.

Theorem 7 (anyons). Let ¢ > 0 and consider 1D anyons with statistical parameter r € [0, 7]
and repulsive interaction v = Ureg + Un.c. + 2¢0y, where vy . is defined before Theorem 1, and
Ureg 1S a finite measure with vieg({0}) = 0. Define a, to be the scattering length associated with
potential v = Vp.c. + Vpeg + 008(2%50. Write p = N/L. For plas| and pRy sufficiently small,
the ground state energy E(mc)(N, L) of the anyon gas can be expanded as

2
T _
B (N.L) = N=p? (1 + 200, + O ((placl) /% + (pRo)*/* + N7} ). (1.23)

1.4 Physical applications and confinement from 3D to 1D

Given the general expansions (1.2) and (1.3) for the energy of dilute Bose gases in three and
two dimensions, it is perhaps surprising that the possibility of a 1D equivalent was only hinted
at in [2], and never studied in depth. On the other hand, given the existence of the Lieb—Liniger
model, this is perhaps not surprising at all. Not only can we calculate everything explicitly in
that case, Lieb—Liniger physics also naturally shows up in experimental settings in which 3D
particles are confined to a 1D environment [34, 35, 40, 45]. Nevertheless, we would like to argue
that our result adds something that goes beyond the Lieb—Liniger model: it allows for positive
scattering lengths a.

Mathematically, this seems clear. The scattering length of the Lieb—Liniger model with
¢>01isa=—2/c <0, but Theorem 1 is also valid for potentials with a positive scattering
length. There are plenty of interesting potentials with this property, and the energy shift has
the opposite sign compared to the Lieb—Liniger case. (Note the Lieb-Liniger model with ¢ < 0
can be solved explicitly [8], but that it has a clustered ground state of energy —O(N?) [33, 37],
so that scattering is irrelevant.)

Physically, the issue can seem more subtle. In the lab, 1D physics can be obtained by
confining 3D particles with 3D potentials to a one-dimensional setting [19, 20, 39, 44]. As
mentioned, the Lieb—Liniger model is very relevant to such set-ups [34, 35, 40, 45], but only

in certain parameter regimes. In these references, the confinement length /| in the trapping

’From the viewpoint of the energy, the combination 2c/cos(x/2) is the only relevant parameter. This is
different for the momentum distribution, see Section 1.5.
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direction (a length that is necessarily small on some scale to create 1D physics) is much bigger
than the range of atomic forces (or 3D scattering length). This allows excited states in the
trapping direction to play a role in the problem, making the mathematical analysis complicated.
The assumption that [; > agp is sometimes referred to as weak confinement [5].

There should also be a ‘strong confinement’ regime || < asp, in which the excited states
in the trapping direction play no role at all (presumably simplifying the mathematical steps
needed to go from 3D to 1D). The problem would then essentially be 1D, and take on the form
considered in Theorem 1, thus allowing for positive 1D scattering lengths. We do not know

whether the strong confinement regime is currently experimentally accessible.

1.5 Open problems

1. The second-order term. The second-order expansions (1.2) and (1.3) of the ground
state energy of the dilute Bose gas in 3D and 2D hold for a wide class of potentials. As
motivated in the introduction, the same might be true in the 1D expansion (1.7), but the

techniques used in higher dimensions are not expected to be applicable to 1D.

2. Momentum distribution. As mentioned in Footnote 4, even though the 1D free Fermi
ground state (1.15) and Girardeau’s bosonic equivalent (1.16) have the same energy, their
momentum distributions differ. In the thermodynamic limit, the free Fermi ground state
has a uniform momentum distribution, up to the Fermi momentum |k| < kp = 7p.
Girardeau’s state has the same quasi-momentum distribution, but the momentum distri-
bution itself diverges like 1/v/k for small k [29, 48]. At finite N, the k = 0 occupation is
O(1) for fermions, while it is O(v/N) for bosons.

It is also possible to study the Lieb—Liniger ground state in this way [9]. The bosonic

zero-momentum occupation \g in the limit ¢/p > 1 is predicted to be

Ao ~ N3+H2+0(p/) _ N5—pa+O(pa)® (1.24)

and one can ask if this holds for general potentials as well. The same question can be

posed in the context of anyons [9], as the full prediction seems to be [4, 9]

Do ~ NETEes(5)) (12(5)°) +0Wcostr/D/eP _ N (3=pae) (1=(5)")+00en® (1 oy

3. Positive temperature. For T' > 0, one can again ask if quantities like the chemical
potential and free energy only depend on pa to lowest orders. Starting from the ideal
Fermi gas and excluding volume as in the case of hard-core bosons (the equivalent of

(1.8)), it is possible to generate appropriate expressions that might be universal [10].

10
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Proving these for a wide class of potentials is an open problem.

2 Upper bound in Theorem 1

Proposition 8 (Upper bound in Theorem 1). Consider a Bose gas with repulsive interaction
U = Upeg+Up.c. as defined above Theorem 1, with Dirichlet boundary conditions. Write p = N/L.
There exists a constant C'yy > 0 such that for pla|, pRo < C’El, the ground state energy EP (N, L)

satisfies

2

1/2
EP(N,L) < N%pz (1 +2pa + Cy (((p la])8/® + (pRg)3/2) <1 + pR} /vreg> - N‘1>) .
(2.1)

As explained in Section 1.2, the proof relies on a trial state constructed from the free Fermi
ground state. With Dirichlet boundary conditions, we cannot use }\If%er‘ from (1.16), and shall
instead have to construct its Dirichlet equivalent, denoted by |¥ | in this section. This will be

done in Section 2.1. Given a suitable scale b > Ry to be fixed later on, the trial state will be

T () = w(R(x)) i R(z) < b ”
) |V r ()] if R(z) > b, ‘

where w(z) = fo(x)b is constructed from the scattering solution fp from Lemma 4 (R = b), and
R(x) := min;<;(|x; — ;|) is the distance between the closest pair of particles (uniquely defined
almost everywhere). In other words, we only modify |¥ | with the scattering solution for the
closest pair. This is convenient for technical reasons, and will turn out to suffice if the number
of particles NV is not too big.

For this and other reasons, we will need another technical step: an argument that produces
a trial state for arbitrary N (and L) using the ¥, defined in (2.2). This is done in Section 2.4
by dividing [0, L] into small intervals, and patching copies of ¥,,,.

First, we focus on the small-IV trial state ¥,,. Our goal will be the following lemma. In the

following we will take b to satisfy b > max(2a, Rp).

Lemma 9. Let Ey = N%QpQ(l + O(1/N)) the ground state energy of the (Dirichlet) free Fermi
gas. The energy of the trial state ¥, defined in (2.2) can be estimated as

N
£(W,) :=/ Do+ D i

[0,L1N b 1<i<j<N () (2.3)
. n
— + const. (N(pb)3 [1 + pb? /vreg} + paN>) .

11
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To prove this lemma, it is useful divide the configuration space into various sets. For ¢ < j,

define
B:={z cRY | R(z) < b}

Ay = {x e RY||z; — zj| < b} (2.4)
Bij = {zr e RY|R(z) < b, R(z) = |z; — x;]} C Ayj.
Note that W¥,, equals |[Ur| on the complement of B, and that B;; equals B intersected with

the set {“particles i and j are closer than any other pair”}. On the set Aj2, we will use the

Vp(z)
(z1—22)°

shorthand ¥y9 := w(z1 — x2) and define the energies

N N
N
Ey = <2> /A Z |0;W 12| + Z (Veeg)ij | W12|” — Z 0V p|?,

12 =] 1<i<j<N i=1
B = <N> N i 10,0 | (25)
2 2 AIQQAIS — 7 F )
N\ (N -2 al
(05 e
2 2 A12NAzs ;4

Recall By = N %2/02(1 + O(1/N)) is the ground state energy of the (Dirichlet) free Fermi gas.
The following estimate then holds.

Lemma 10.
E(W,) < Eo+ E1 + B + E. (2.6)

The plan to prove the upper bound for Theorem 1 (Proposition 8) is as follows. We first
prove Lemma 10 below. We then study the Dirichlet free Fermi ground state ¥ in Section 2.1,
laying the ground work for the estimates of E1, Eél) and E§2) . We estimate F; in Section 2.2
and Egl) and E§2) in Section 2.3. Altogether, these prove Lemma 9, which will then be used to

construct a successful trial state for large in IV in Section 2.4.

Proof of Lemma 10. Since v has supported in the interval [—b,b], and ¥, = |V | except in the

region B = {x € RN|R(z) < b}, we can write, using the diamagnetic inequality®,

N N
E(W,) < E0+/ DI P NI L N [oX o (2.7)
B =1 i=1

1<i<j<N

with Fy = N%QpQ(l + O(1/N)) the ground state energy of the free Fermi gas. Using symmetry
under the exchange of particles and the fact that B;;NBy; = 0 for (i,7) # (k,1) and (4, 5) # (1, k),

SStrictly speaking, the diamagnetic inequality is not needed, as the estimate can be shown to be an equality
in this case.

12
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and using diamagnetic inequality in the first sum in the second line, we find

N N
N
E(W,) < By + <2>/ ST+ D v [T =D 0|
B i=1

12 =1 1<i<j<N

N N
N
< Ep+ <2> /B Z |0;W12]* + Z (Vreg)ij W) — Z AT

12 =1 1<i<j<N i=1

(2.8)

where we have used that W, = 0 on the support of (vn. )i for all 4,j. Since we have vyeg > 0,

it follows that

N N
N
£(W,) < By + (2> JAD SR S B

12 =1 1<i<j<N i=1
N al -
— (2) / Z |0, U1]% + Z (Vreg)ij Wyo|? — Z 10, | (2.9)
A12\B12 ;3 1<i<j<N i=1
N N
§E0+E1+<2>/ pREA 72
A12\B12 ;7

Noting that € A2\ Big implies « € A;; for some (i, ) # (1,2), we may, by antisymmetry of

U, estimate

[ Slaws<an Siowr+ (Y, %) [ > lovef’
A12\B12 (A12\B12)NA13 ;4 (A12\B12)NA34 ;4
< 2N 10,0 1| + < ) / 10,0 p 2.
A12NAig ; Z 2 A12NAsg ; '
(2.10)
Thus we find £(V,) < By + Ei + By + B as desired. 0

2.1 The free Fermi ground state with Dirichlet b.c.

The Dirichlet eigenstates of the Laplacian are ¢;(x) = /2/Lsin(mjz/L). Thus, the Dirichlet

free Fermi ground state is

el _ g~ e2y1 _ o201 giNy1 _ o—iNy
N 2 1 N | giy2 _ g=iy2 e2y2 _ o—12y2  giNy2 _ o—iNy2
Vp(z) = det (¢; (xz’))i,j:1 =V \9
ein — efin ei2yN — efi2yN . eiNyN — efiNyN
(2.11)

13
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where we defined y; = F;. Defining z = € and using the relation (z" — y")/(z — y) =

ol 1 zFy" 1% we find

-1 N—-1 _2k—N+1
1 21+ 2 ey k=0 21
N-1 Zk N+1

N N N -1
2 1 _ 22+ 29 ... k=0 %2
Up(z) =4 T (21) H(Zi -z : : . : ' (2.12)
i=1 : . . :

-1 N—-1 _2k—N+1
I any+2y ... k=0 ZN

[u—

Notice that (z +z71)" = > (})z%7". For 1 <i < N —1, we add ((N;l) (];[ 11)) times

column N — ¢ to column N. This does not change the determinant, so

1 z1+zf1 EkN[fz%k N+1 (zl—l—zfl)N_l
N-2 2k-N+1 (z2+Z2—1)N—1

N N N -1
9 1 1 2+ 2 E=0 %2
Up(z) =4/ 7 (21) H(Zi ) : : . :
y 1 . . . .

1 ZN—f-ZR/l 502 ]2\;“ N+l (ZN—i—zR,l)N_l
(2.13)
N—2

For1 <¢ < N -2, we add ((N,L_Z) — (Z.__l)> times column N — 1 — 4 to column N — 1, and

continue this process. That is, for 3 < j < N and 1 < i < N — j, we add <(Nl_7) — (];[:1j)>

times column N — 1 — ¢ to column N — j + 1. This gives

1 o247t (+27H? o (V!
N N N -1 —1\2 —1\N-1
2 1 1z 42 (224257)° ... (2242 )
Up(z) = VT <2z> H(Zz’_zi b : : : . : - (2.14)
i=1 : : : . :
1 oan+2yt (v +23)? o0 (ev + )V

This is a Vandermonde determinant and we conclude
N N N N

Up(z) = % <211> kl_Il(zk — Zk_l) H ((zZ + z,—l) — (2 + zj—1))

1<j

[ [T xk)mcos(L ) - cos (%) .15
2007 fln o) Fom (2522) i (252).

1<)

14
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2.1.1 1-body reduced density matrix

The 1-particle reduced density matrix of the Dirichlet free Fermi ground state is

N . 1 : 1
2. (7. N (7. N sin(m(p+gp)(@—y) sin(r(p+qr)(@+y))
W) (o)) = 2 n T _ 2L _ 2L
Y (zy) = sin ( —jz ) sin (—jy ) = —— T :
L; (L ) (L ) 2Lsin (5 (z — y)) 2Lsin (5 (z +y))
(2.16)
We can write v(1)(z;y), as well as its translation invariant part 5((z;y), in terms of the
Dirichlet kernel D, (z) = 5= .7 W% = sin((nt1/2)z)

= 27 Zuj=-n 2msin(z/2)
T T — T+

AW (z;y) == ( Dy (= V) — Dy (»21Y ,
L L L (2.17)

(1) () m r—Yy .

7 (@y) = 7 DN <7r ik

A consequence is that
1 k1+ko+1
6’;16527(1)(x;y)’ < ;(2N)k}1+k‘2+1 (%) R 7.rkl-i—kg(Qp)kl—‘,-k;z—f—l' (2.18)

Combined with Wick’s theorem, which we discuss in the next subsection, (2.18) implies bounds
on (derivatives of) higher-order reduced density matrices of the free Fermi ground state, that
are uniform in all coordinates. Note the relevant power of p can be obtained directly from
dimensional analysis. This will be used later on to do Taylor expansions.

Other useful bounds, which will be used in the proof of Lemma 11 are

/ ‘p(l)" < const. pIn(N),
(0,L]

/ ‘p(l)//
[0,L]

which follow from the textbook bound on the L!-norm of the mth derivative of Dirichlet’s kernel

(2.19)
< const. p*In(N),

HamD]\[HLl([OQﬂ.D < const. N™ h’l(N)

2.1.2 k-body reduced density matrices and Wick’s theorem
Given a wave function ¥ € L2([0, L]"V), its k-particle reduced density matrix is given by

()( N!

k
’Y\l/ $17"'7$k;y17"'7yk> == (

Nk:)'/[ " k\I/<3717---737N)q/(y1a---vyk;karlaa?N)dkarl-~-d37N-
— k) Jjo,nv-

(2.20)

15
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Similarly, we define the the k-particle reduced density by

p$)(x1, oy TE) = ’y\(I,k)(:cl, ey T} Ty eeny T ). (2.21)

We will frequently abbreviate 7\(1,2 as v(*) and pfli)w as p¥). For a quasi-free state, Wick’s

theorem states that the k-point function may be expressed solely in terms of sums of products
of two-point functions, with appropriate signs (see e.g. [46], Theorem 10.2). For the free Fermi

ground state (which has a fixed particle number), it implies

YD (z;m) Y Oaiye) o YO w)
D) (- W) (g0 - cee AW
v (1:273/1) vy ($2ay2) v (anyk)
VB (@1, oy s Y1, ) = , , _ ‘ : (2.22)
’Y(l)(ﬂck; y1) 7(1)(33k3 y2) T 7(1) (l‘k; Yk)

We use this to compute p) below. Using Taylor expansion and (2.18), it will also be used to

bound various reduced densities and density matrices.

2.1.3 Useful bounds on various reduced density matrices of U

Lemma 11. For the 2-body reduced density p?) of the free Fermi ground state, it holds that

2

PP (@1, m9) = (7;/)4 + f(m)) (21— 22)* + O(p° (21 — w2)"), (2.23)

with f[o I |f(x2)|dze < const. p?In(N).

Proof. Note that by translation invariance, we may Taylor expand (1) (z;y), defined in (2.17),

in x — y around 0. Only even terms can appear as Dy is even. Using (2.18), we find

7T2
W (@y) - (p+1/(2L)) = g(ﬂ?’ +p*O(1/L)) (1 — x2)* + O(p* (21 — x2)"). (2.24)

Furthermore, it is easy to check that (M (z1; z0) —pM) (21 + 22)/2) = 3D (21; 29) — (p+1/(2L)).
Now, by Wick’s theorem (2.22),

p B (21, 22) = pM (21)p (22) — YV (w15 22)7 D (w25 21). (2.25)

16



CHAPTER 3. THE GROUND STATE ENERGY OF THE
58 ONE-DIMENSIONAL DILUTE BOSE GAS (PREPRINT)

Note that by Taylor’s theorem and (2.18),

p0(a1) = o1 +22)/2) + p (1 + 2} /2) P
1 Tr1 — T2 2 (226)
by (b)) (D5 2) 4 0o - ),
p W (x2) = pM (21 + 22)/2) + pV (21 + xz)/Q).fL'Q ; 1
(2.27)

2
# 30 G /2) () O - ),

where both expressions can be expanded further if needed. Using that 41 is symmetric in its

coordinates, we conclude from the previous three equations that

2
P (an,a2) = oV (o1 +22)/2 =2 Do) = [0 (a1 + a2)])” (2572
(2.28)

ry — 2

2
T (4 22)/20p V" (@1 + 22)/2) ( ) O (a1 — ).

Terms of order O(p®(z1 — 2)?) must cancel due to symmetry.
Now, notice that 0 < p(*) < 2p and ‘p(l)/‘ < 87p? by (2.18). Together with (2.19), this implies,

P (@1, 22) = pW (w1 + 22)/2)* — vV (213 22)% + g1(21 + 22) (w1 — 22) + O(p5 (21 — 22)*),
(2.29)
for some function g; satisfying f[o 1 lg1| < const. p3In(N). Furthermore, notice that by (2.24)

and the remark below it, we have

PO (w1 + 22)/2)% = YV (21; 22)?
= (P (a4 22)/2) = 4D (wrs22)) (0 (21 +22)/2) 7D (a1:22))

= |p+1/@L) =30 @i a)] |~ = 1/2L) +7V (@1:2) + 200 (1 +22)/2)]
2
=~ |p+1/0) =3 (@i29)| +2[p+1/(20) = 3O (@129 | 9D (21 + 2)/2)

7'('2 T
=2 (6(p +1/(2L0))3 (21 — 22)? + O(p° (21 — x2)4)> (p + % — 7 D ((an + xz)/(2L>)>

2

304(901 — 22) + ga(@1 — 22) (21 — 32)* + O(p%(21 — 2)"),

3

(2.30)
where we have chosen go(x) = %Qp?’ (copst- 4 ‘%DN(Q?/(QL))D which clearly satisfies f[o 192 <

const. p3In(N). Combining (2.29) and (2.30) now proves the lemma. ]
P g

17
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Lemma 12.

2

P (@1, 23, 23) < const. p (w1 — w2)? (v — 2%,

2 2

p(4) (21,2, 23,24) < const. pg(xl — 29)° (g — x4)7,

2
Z 827,’)/(2) (‘Tla T2;Y1, y?)‘y:x S const. p6(x1 - 1:2)2’
i=1
(2) .
851 <fy (xl,x%?ﬂﬂﬁ)) < const. p6 |x1 - x2| 7
Y1 — Y2
Yy=x
2 ’ (2) .
Z(—l)z_layi Y (21, 225 Y1, y2) < const. p8(z1 — 22)%, (2.31)
P Y1 — Y2 y=2

< const. pY(z1 — x9)%(x3 — 29)?,

> <8xi8yi'y(3) (1,2, ¥3; Y1, Y2, 2/3))

i=1 y=x
3
Z (351.7(3) (21,2, T3; Y1, Y2, y3)> < const. Pg(Il - $2)2($3 - 902)2,
i=1 y=x

x1=x2+b
] < const. pSb(zz — 4)°.
Yy=x1

4
lagﬂ( (21, T, T3, T4} Y, T2, T3, T4)
x1=x2—b

Proof. The bounds follow straightforwardly from Taylor’s theorem and the symmetries of the
left-hand sides. We give, in the following, two examples which we find to be representative for
the general strategy.

Example 1: Consider 23:1 8§i7(2) (21, 22;y1,Y2)|y=c. Notice first that 23:1 85[7(2) (z1,22;Y1,Y2)
is antisymmetric in (21, 22) and in (y1,y2). As we discussed after (2.18), all derivatives of (*)
are bounded uniformly in its coordinates by a constant times p* for some k € N, we can Taylor
expand 827(2) . By expanding 1 around z2 and y; around yo, we see that antisymmetry implies
2?21 Bi,’y@) (w1, 22;y1,y2) < const. pb(x1 — x2)(y1 — y2), where the power of p can be found by

dimensional analysis.

Example 2: Consider |32 (~1)""19,, ( M) . We start by defining the coordi-

Yi1—y2

y=z
nates z, = (y1—¥2)/2, 2, = (Y1 +v2)/2, 2z = (1 —22)/2, and 2, := (z1 +22)/2. Furthermore,
define 4®) (2, 25; 2, zy) = Y@ (2 + 2L, 2L — 252y + 2y, %y — %y). By the antisymmetry of ~(2)
in x1,z9 and y1, y2, we see that '3/(2) is odd in z; and z,.

In this case, we notice that Zle(—ni—layi = 0., and thus we find

22

P <:Y(2)(zxa Z;US 2y, Z;)) . Zyazy'?@) (zma z;? 2y, Z;) - ;)/(2)(230, 22:5 2y, zgl/)
Zy - .
Yy

2y

18
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Taylor expanding both terms the numerator in z, and z, around 0 to order zng gives

+ zZzx2 38%83 [6%&(2)(%, z;? 2y, Z;)}

szyazgc |:6zy7( )(Zx, Z;? 2y, Zé)}

2z =2y=0 =2y =0

L 39, 08 (4O (a ol in o
e §zxzyazzazy {W (22, 23 zy,zy)}

~(2 .
—Zmzyazzazy [’7( )(Zxa Zg; 2y ZZ/J)] 2o =2y =0 (2.32)

+0 (p¥(202 +z3z§’))

< const. p6 ‘zxz?’

y )

where we used that '?(2) (22, 25 2y, z;) is odd in 2z, and z,, to conclude that all even order terms
vanish when Taylor exanding in these variables around 0. The desired result follows.
O

2.2 Estimating F;

Recall A1y = {x € RN | |21 — 22| < b} and Uya(z) = M\I/F(m), as well as

T (m-z2)

N
< >/ Zyaqu\ ) (Vreg)is [T = D 05| (2.33)

A2 =y 1<i<j<N i=1
We prove the following bound.

Lemma 13. For b > max(2a, Ry) we have

Ea + const. < N(pb)* [1 + pb? /vreg] + paln(]\]f\[)>> : (2.34)

Proof. We estimate E; by splitting it into four terms Fy = Eil) + E?) + Eig) + EYI), with

N
EM = <2> / 2(01 W1,
A2
2) N -
2) 2 , 2

E1 < EO <2,0ab

=3
3) (2.35)
E( < )/ vreg)ij‘q/12’27
A2 1<2<]<N
o= (3) [, o
121' 3

19
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By partial integration of x; in E{l), we find

N e N — r1=x2+b
Eil) -9 ( 5 ) / W9 (—8%\:[/12) + 2 < 2> / [\111281\1/12] wizmii—b dzsy...dxy. (236)
A1z

The boundary term can be calculated explicitly, and we find

N R — w(z] —x w2+b
2<2>/@31‘I/12]x1xzfzd@---dxjv:/ [w(xl xz)a < (@1 2)>P(2)($1,$2)] dxo

1
|21 — 22 |21 — 22

z2—b
+b
w(m - .IQ) 2 (2) 2
+ oz ) N (7 (@1, w; y,:cz)> ds.

21 — 22 -~
(2.37)
Since the function ﬂgil:;j) is continuously differentiable and satisfies “];””11:;22‘) =z 1;3'_“ e U =]

for |z1 — x| > b, we see that
w(z1 — x2) a
O\ T —— 7 =4 (2.38)
|331 - $2| z1=z2+b b(b — CL)

Using Lemma 11, we find

_ _ z2+b 2
/|:OJ(5U1 xz)a (w(:rl x2))ﬂ(2)($17$2)] des 32% b N <1+const. m(}\iﬁ)

|x1 — 9| ! |x1 — 9| oob —a 3
(2.39)
Furthermore, we denote
(21— 2)\? o
w(x) —x
/ <12) o (7(2)(3?1,362;11,332)) dzo

lz1 — a2 y=o1] 5y
- (2.40)

= / [31 <7(2)(5617502;y,$2)) ] dxg =: k1.

Y=T11 z5—b

Thus, we have

> In(N N
BV < TN 20)—— (1 + const. LICLPR IVPH / To(—0%0p0).  (2.41)
3 b—a N 2) Jas,

20
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For EP), we find

N
/ (2 EAZIEESY ya,-\IxFF)
A1z

) .
1=3
N
N _— ) N r1=x2+b
=- < 2) / Z Up(=0;¥F) — 2( 2) / RTEZ 2]
A = (2.42)
N xo+b
= —Eo<2> / Wpl* - / [aw@)(ﬂfl,xz;y,$2)|y=x1} dzy
Ao T2—b
K1
< —Kk1,
Part of Eig) can be estimated as follows. First, notice that using |w| < b, we find
N N N
DI D
Az \ 9<icy k=3
1
< const. b? / Vreg (|73 —$4|)72p(4)(x1,x2,x3,:p4) (2.43)
{la1 22| <B}Msupp (vrex)24) (21— 22)
+/ Ureg (|22 — 3)) p® (21, w2, 23) | .
{|z1—z2|<b}Nsupp((vreg)23) e (.%'1 - 1‘2)2
Hence, by Lemma 12,
N N N
(5) [ | 2 el 90 + 3 (onhoe 92
A1z \ 9<icj k=3
(2.44)

< const. (NQ(pb)3p3/x2vreg(a:) dx+N(pb)3p3/x2vreg(a:) dx)

< const. NQ(pb)5p/vreg = const. EqN(pb)? <pb2/vreg> ,

S O 3) [ (e IS ol Lo P
< 5 Nplag— 2) |, 12(—07)¥12 2 2. iW12 5 V12 V12 (2.45)

+ const. Ey <N(pb)3 (pb2 / vreg> + palng\jfv)> :

21
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Using the two-body scattering equation 9%w = %vw from Lemma 4, this implies

272 b N Up 5, 0 Up
E, < =—Np? ar—+2 / W (- 0)
! 3 P b— <2> A1a ($1 - xz) ( 1)(371 - 952)

) fe O

N (2.46)
0H) W
< > ~/Alg ; I']_ - 352 ( )
In(NV
+ const. Ej <N(pb)3 <p62 /vmg> + pa ngv )> )
Furthermore, we have
N
N — w?
< 2) /A Z WF7($1 ~ ) (—07) U
12 =3 (2.47)
N w 2 (N) / — WP )
= F — VU -2 Vp———(—07)¥
0<2)/Au (w1 —2) 2) Jay, F(Sﬂl—mz)Q( ¥
By Lemma 11 and |w| < b, it follows that, it follows that
N 2 @)
( ) / L\PF < b2/ Ll’x?z)dxl dxy < const. N(pb)?, (2.48)
2) Jap (21 — 22) (o1 —z2|<b} |T1 — 22
and by Lemma 12
2<N> / TL( 07 — 2Dz, m; ))
9 Ay F(.’L‘l — x2)2 1 F " .'L'l — x2 2 yz 1,22;Y1,Y2 - (249)

< const. Np (pb)3,

so that we find that the third line of (2.46) is bounded by const. EqN (pb)3.

For the first line, again by Lemma 12, we find that
? 52 Y (@1, 22391, 2) ‘
. (y1 —v2) y=x

w

< const. Np?(pb)3.

Ty — X2

(2.50)
For the second line of (2.46), by using the scattering equation 9%w = %vw > 0 which implies

22
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0 < w'(z) <w'(b) = 52 for || < b, we find that

1(3) [, e ()|

2

—9 12/ Y (1) — 9)0y, (7(2)(961’962;%’?/2)) ‘ (2.51)

2+ Jay, 11— 22 Y1 — 2

b
< t. —— Np2(pb)3.
< const. ——Np(pb)

Combining everything, we get the desired result.

O
2.3 Estimating Eél) + Eéz)
Recall that
N N
B = ( >2N AT
2 A12NA1s ;4
N (2.52)
N\ /N -2
- ()5, St
2 2 A12NAszg 5
with A;; := {z € RY||z; — x;] < b}. We prove the following bound.
Lemma 14.
EMN + B < By (N(pb)* + N2(pb)S) . (2.53)

Proof. We start by splitting Eél) and E§2) in two terms each and using partial integration.
Consider first Eél),

N N
1
EY = (2>2N PACA 73
A12NA2s ;4 (2.54)
3 N '
N N
_ ( >2N S el + ( )zzv S 10wsf
2 A12NA2s 5 2 A12NA2s
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For the second term, we perform partial integration to find

N
N 0 = ( ) Tr(—020 )
( > A12NAg3 ; A12NAzs ;

3

N N —
< Eo< >2N U pf® — ( )2N > Up(—07Tr)
2 A1aNAas 2 A12NAz3 i=1

S 3E0 / / / p(S) (ZL‘l, o, 133) dZL‘g d:Ul dl‘Q
[O,L] [xg—b,m2+b] [a:z—b,.rg-}—b}

3

N) .
— 2N ‘I’F(—ag‘I’F)-
<2 A12NA23 ; '

(2.55)

Lemma 12 implies

3E0/ / / p(3) (21,2, x3) drs dry dze < const. NEo(pb)G. (2.56)
0,L xo—b I2+b} [502 b IQ-H)]

Furthermore, Lemma 12 and antisymmetry imply

( >2N Z 10,V > — Up(— a%pp)) < const. p?Lb% = const. Ey(pb)®.  (2.57)
A12NA23 ;4

Collecting everything, we find
EY < const. N Eg(pb)®. (2.58)
(2)

To estimate F5”, we use an identical strategy. Integration by parts and antisymmetry give

By = (JQV) <N2_2> /AWM (Zw p|? +Z|8 r )

=1
N

N N —2 T1=T U~
DOz St
|z3—z4|<b A120434 1 (259)

r1=x2+b
4
= 4/ / ay17( )(x17$2,3737$43?/1,37271’371’4)
22€[0,L] J|z3—z4|<b Y1=01 ] 4 gy b

+E0/ pD(xy,. .. 24).
A12NAszy

Lemma 12 implies

r1=x2+b
] < const. EqN(pb)?,
y1=a1

r1=x2—b

4/ / [8y17(4)(x17x27x3;x4§y17x2;x3;x4)
22€[0,L] J|z3—x4|<b
(2.60)
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and
EO/ pW (a1, ... x4) < const. EgN?(pb)®, (2.61)
A12NA3zg
which finishes the estimate of Eé?)_ OJ

2.4 Constructing the trial state for arbitrary N

Together, Lemmas 10, 13 and 14 provide a proof of Lemma 9, which is the upper bound
for small N obtained from the trial state ¥, (2.2). To construct a trial state for arbitrary
N, we glue together copies of ¥, on small intervals. This is straightforward with Dirichlet

boundary conditions since the wave functions vanish at the boundaries. We therefore consider

the state W = [[;21 Yoo, .. .,xi\?), where (2}, .. ,:U%[) arg the p‘osmons of the particles
in box i and ¢ is the length of each box. Of course, UM {xi,... @2} = {z1,..., 2y} and

{mzl,,x%[} N {le,,acgv} = () for i # j, such that” MN = N. The boxes are of length®
¢ = L/M — b, and are equally spaced throughout [0, L], leaving a distance of b between each
box. This is to prevent particles in different boxes from interacting.

We can now prove the upper bound needed for Theorem 1.

Proof of Proposition 8. From Lemma 9, the energy of the full trial state described above is
bounded by

b - In(N
E < Mey (1 + 2paz—— -+ const. <N(,5b)3 {1 —i—ﬁbQ/vreg] + pa a(/ )>> JIT)?, (2.62)

N

with eg = %2]\7/32(1 + const. %) and p= N/l =p/(1 - ") < p(1+20M/L) for bM/L < 1/2.
Notice that ﬁa%

seen by considering the cases N < (pa)~! and N > (pa)~! separately. Thus this term is sub-

< C.max(N~1, (pa)?>=¢) with some e dependent constant C,. This is easily

leading, and we will absorb it into other error terms. Clearly, we have ||, [* > 1— [ 5|V Fl? >
1- J]21fx2l<b PP (x1,22) > 1 — const. N(pb)3, where the last inequality follows from Lemma
11. Thus, choosing M such that bM/L < 1, we have

o NW—Q , (1 + 2090 4 const. M+ const. 2pabM /L + const. N(pb)® (1 + pb? fvreg)>
R 1— N(b)3 |
(2.63)

"Of course there might not, for a given N, exist desirable integers N and M such that this relation is satisfied.
However, below when choosing N, we think of M as being [N/N—‘ In this case the number of particles in each
box will be [N/M7 or [N/M — 1]. The energy, in the two cases, will differ only at sub-leading order, and the
difference may be absorbed in the error terms.

8In fact, given that a boxes can have [N/M] or [N/M — 1] particles, we may choose the respective length of
these boxes as {[n/n = p ' [N/M] — b and Uinyv—1] = p ' [N/M —1] —b.
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First assume that N > (pb)~%/2 (1 +p62fvreg)1/2. Now, we would choose N = N/M =
pL/M > 1, or equivalently M /L < p. Setting x = M /N, we see that the error is

const. |(1+2p%ab?/(b—a))z 4z~ (bp)® <1 + pb* / vreg” , (2.64)

Here, we used the fact that N(pb)? < 1/2, so that we have
1/(1 — N(pb)®) < 1+ 2N(pb)>. Optimizing in z, we find z = M/N =

(50)*/2 (1496 [ vreg)

~

1+2p2ab -
(bp)/? (1 + pb® [ vreg) 1/2, which gives the error
1/2
const. (bp)>/? <1 + pb2/vreg> . (2.65)
Now, choose b = max(p~/3 |a|*® | Ry). Then, for (p|a|)}/5 < 1/2,
b
;o S1+2/b< 1+2(pla))*/>. (2.66)
Notice that
(pb)*? = max ((p |a))*?, (pR0)*?) < (plal)*/® + (pFRo)*'2 (2.67)

Now, for N < (pb —3/2 (14 pb? [ Ve 1/2, the result follows from (2.62) with M =1, as well as
g
pa—lnng) < Cemax(N7L, (pa)?~e). o

3 Lower bound in Theorem 1

Proposition 15 (Lower bound in Theorem 1). Consider a Bose gas with repulsive interaction
U = Uyeg+p.c. as defined above Theorem 1, with Neumann boundary conditions. Write p = N/L.

There exists a constant Cp, > 0 such that the ground state energy E™ (N, L) satisfies
2
EN(N,L) > Nop? (14200 = o ((pla)® + (pRo) P+ N73) ). (3.)

As mentioned in Section 1.2, the proof is based on a reduction to the Lieb-Liniger model
combined with Lemma 4. Similar to the upper bound, this idea only provides a useful lower
bound for small IV, which we obtain in Proposition 24 and Corollary 25 at the end Section 3.2,
after preparatory estimates on the Lieb—Liniger model in Section 3.1. Then, in Section 3.3, this

lower bound will be generalized to arbitrary N, proving Proposition 15.
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3.1 Lieb-Liniger model: preparatory facts

The thermodynamic ground state energy of the Lieb-Liniger model is determined by the system

of equations [33]

3 1
e(y) = % /_1 g(z):r:2 dzx, (3.2)
_ b g
2rg(y) =1+ 2)\/_1 pEp p—r dz, (3.3)

1
A= ’y/ g(x)dx, (3.4)

-1
with g > 0. This allows for a rigorous lower bound.

Lemma 16 (Lieb-Liniger lower bound). For v > 0,

e(y) > 7;2 (712>2 > 7;2 (1 - i) : (3:5)

Proof. Neglecting (z — y)? in the denominator of (3.3), we see that g < % + 71)\ fil g(x)dx.

1 xT "EQ x
On the other hand, (3.2) and (3.4) imply e(y) = (ff_llg(())dd)?"
2, 9(2) de

g < % (1 + %) = % (1 + %) Now, we minimize the expression for e(y) in g subject to this
bound. This gives ¢ = K1 Mo with K = % (1 + %), resulting in f_ll g(z)z?dr = %%

Now, e() > %ﬁ for v > 0, and (3.5) follows. O

Denote fil g(z)dx = M, so that

The thermodynamic Lieb-Liniger energy behaves like np?e(c/p), and the next result corrects

the lower bound from (3.5) to obtain an estimate for finite particle numbers n.

Lemma 17 (Lieb-Liniger lower bound for finite n). The Lieb—Liniger ground state energy with

Neumann boundary conditions can be estimated by

2 1
EYN (n,¢,c) > 7Lnp2 1—4p/c — const. —— | . (3.6)
3 n2/3

This will be proved after the following lemma due to Robinson. Note we use the superscripts
N and D to denote Neumann and Dirichlet boundary conditions, respectively. For simplicity,
we will consider the Lieb-Liniger model on [—L/2, L/2] in this subsection, and use the notation

A :=[—5/2,5/2].

Lemma 18 (Robinson [42]). Let v be symmetric and decreasing (that is, voc¢ > v for any

contraction ¢). For any b > 0,
2n

D N
ER, o < BN, + 55

(3.7)
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Proof. The idea of the proof is given on page 66 of [42], but we shall give a more explicit
proof here. In order to compare energies with different boundary conditions, consider a cut-off

function h with the property that
1. h is real, symmetric, and continuously differentiable on Asy,
2. h(z) =0 for |x| > L/2+,
3. h(z) =1 for |z| < L/2 —b,
4. h(L/2 —z)?> + h(L/2+2)? =1 for 0 < z < b,

5. h\ < 4, and h? < 1.

Gl <

Let f € D(E',J\VL ). Define f by extending f to Asy by reflecting f across each face of its
domain in Azp. Define then V : L2(Az) — L*(Apy2) by Vf(z) := f(x) [1; h(z). Tt is not
hard to show that V is an isometry, this is shown in Lemma 2.1.12 of [42]. Also, we clearly
have V f € D(E/\DH%). Let 1 be the ground state for E/]\VL, and define the trial state Y0 = V).
Without the potential, the bound (3.7) is obtained in Lemma 2.1.13 of [42]. Hence, we need
only prove that no energy is gained by the potential in the trial state. To see this, define 9 to
be 1 extended by reflection as above and notice that for |xs] < L/2 — b, we have

L/2+b 5
[ el = aal) [5@)| 2w o <

—L/2-b
L/2-b N s(L/2) 2
/ o(la1 - @) [ (e \ deg+ Y / o(fer = 2al) [F@)|” (hn)? + (L — 21)%) day
—L/2+b se(1ay Js@/2-b)
L/2 -2
= [ vl — ) [@)] o,
—L/2

(3.8)
where we used that v is symmetric decreasing in the first inequality, as well as the fact that
h(z)? 4+ h(L—2)? =1for L/2—b < x < L/2, which is just property 4 of h. Furthermore, when
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|xa| > L/2 — b we find

L/2+b L/2+b 2
|x1 — ZL‘Q’ ’Lﬁ ’ h(.%'l)zh(.%'g)z d.%’g diL'l
L/2-b L/2-b

L/2 L/2 9 ) )
= 5152/ / |.T1—l’2| ‘QJZ) ‘ h(.’El) h(.’Eg) dZEle‘l

(81,32)6{ 1,1}2 L/2—s1b JL/2—s2b

= Z // (|s1y1 — s2y2|) ‘w L/2 = s1y1, L)2 — soya, T" )

(s1,82)€{—1,1}2

3.9
h(L/2 — slyl)zh(L/2 — 32y2)2 dyg dy1 ( )
b b . 9
< [ ot = @2 = . n/2 - .5
X > h(L/2 = s1y1)*h(L/2 — s212)” dya dys
(s1,82)e{—1,1}2
b b B 2
= /0 /0 v(ly1 — yal) W(L/2 —y1, L/2 — yz,fl’z)‘ dys dyi,
where we write Z12 as shorthand for (x3,...,zy). In the third line, we use the definition of ),

as well as the fact that [s1y;1 — s2ya| > |y1 — y2| for y1,y2 > 0. In the last, line we used property

4 of h. By combining the two bounds above, we clearly have

L/2+b L/2+b 2
/ / ‘1'1 — ZE2| ‘¢ ‘ h(l’1)2h(1’2)2 dl’l dZEQ

L/2—bJ—L/2—b
L2 L2 (3.10)
/ / v(|xy — x2)) ‘w ‘ dz dzs.
L2J-r)2
The result now follows from the fact that V is an isometry. O
Proof of Lemma 17. Lemma 18 implies that for any b > 0
EN (n,0,¢) > EP, (n,€ +b,¢) — const. —. (3.11)

b2

Since the range of the interaction in the Lieb-Liniger model is zero, we see that ef 1 (2Mn, 2", c) ==
2,}1 eED (2™n,2™¢, c) is a decreasing sequence. To see this, simply split the box of size 2™/
in two boxes of size 27"/. Now, there are no interactions between the boxes so by us-
ing the product state of the two 2™ 'n-particle ground states in each box as a trial state,

we see that ED (2mn,2m¢) < 2EP, (2m~1n,2m=1¢). Since we also have e, (2™n,2™¢,c) >
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err(2™n,2™l, c) — err(n/l,c) as m — oo [33], we see that

EN (n,6,¢) > erp(n/(€+b),c)(f +b) — const.

b2
2 . (3.12)
> 3N (1—4p/c—const. <3b/€ 2b2)> .
Here, p = n /¢, and the second inequality follows from Lemma 16. Optimizing in b, we find
N 7T2 1
Erp(n,lc) > — 1—4p/c—const. —= | . (3.13)
3 n2/3
O

3.2 Lower bound for small particle numbers n

In this subsection, we work our way towards Proposition 24 and Corollary 25, which provide
lower bounds on the Neumann ground state energy. The proof strategy followed is that in
Section 1.2.

We start by removing the relevant regions of the wave function. Throughout this section,
let ¥ be the Neumann ground state of €& and let R > max (Ry,2|a|) be a length, to be fixed
later. Define the continuous function 1 € L2([0,¢ — (n — 1)R]") by

Y(x1,z2,. .., xn) = V(x1,R+22,...,(n—1)R+z,) for 0<z; <-- <z, <l—(n—1)R,

(3.14)
extended symmetrically to other orderings of the particles. Our first goal is to prove that almost
no weight is lost in going from ¥ to v, so that the heuristic calculation (1.19) has a chance of

success. The following lemma will be useful.

Lemma 19. For any function ¢ € H*(R) such that ¢(0) =

2> */R. 1
100 = ol /7 .15

)

Proof. Write ¢(z) = [ ¢/(t) d¢, and find that
x)yg/ ()] dt. (3.16)
0

1/2
Hence maxcio m |6(2)| < Jy"10/(8)] dt < VE ([ |o/(t) at) " O
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We can estimate the norm loss in the following way

iy =1- [ pz1-30 [ e, (3.17)

1<J

where B := {z € R"|min;;|z; —2;| < R} and D;; := {z € R"|y(z) = |z; —zj| < R}
with v;(z) := min;4(Jz; — x;|). Note Dj; is not symmetric in ¢ and j, and that for j # j’,
D;; N D;jv = 0 up to sets of measure zero. Also note B = U;<;D;;j. To give a good bound on
the right-hand side of (3.17), we need the following lemma, upper bounding the norm loss to

an energy.

Lemma 20. For v defined in (3.14), we have

1—(Y[y) <8 RQZ/D” |3¢W\2+R(R—a)2/vij]\1/]2 : (3.18)

1<j 1<J

Proof. Note that (3.15) implies that for any ¢ € H1,

()] — |o()||* < |o(x) — ¢(a”)]* < R (/ |3¢\2> , (3.19)
[0,R]
for z, 2’ € [0, R]. Furthermore,

p()]* — |o(a")]* = (Ip(2)] — |o(a”)])* +2 (Jo(x)] — |o(=")]) |o(a”)]

e 2 (3.20)
< 2 (Jp(2)] — [¢(a)])” + [o(=")]".
It follows that
2<2R/ ¢ +2 mi 7. 3.21
e |¢(o)f” < . }\ O +2 min |o(z")]| (3.21)
Viewing ¥ as a function of x;, we have
2 min |w? > max  |U* —4R / 10,97 | . (3.22)
vi(@)=lzi—z;|<R vi(z)=|zi—z;|<R i (2)=|zi—a;|<R
Hence,
22/1)1]\1’2222/ ’Ul'j|\If|2
i<j i<j / Dij
> </v> Z/ (mz}x\\ll\g —4R (/ lai\IIIdeZ)) dz’ (3.23)
i<j D Di;
> — U|“ —4R o ,
_R_agj(zR/ljij\ oan r)
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where D;; := {z; € R|v;(z) = [z; — 2| < R} and dz’ is shorthand for integration with respect
to all variables except z;. In the last line we used [v > 4/(R — a). Now, rewriting and (3.17)
give the result. O

To make (1.19) in the proof outlined in Section 1.2 precise, we relate the Neumann ground
state energy to the Lieb—Liniger energy in Lemma 22. First, we state a direct adaptation of

Lemma 4, more suited to our purpose here.

Lemma 21 (Dyson’s lemma). Let R > Ry = range(v) and ¢ € H'(R), then for any interval
30

2,1 9 / 1 2
= > | —— (6 0_ .24
/Zlf?sol +ovlel” 2 IR—a(R+ r) lel”, (3.24)
where a is the scattering length.

Lemma 22. Let R > max (Rp,2|a|) and € € [0,1]. For ¢ defined in (3.14),

10w 4 5 gy 1w = i (2 ) ol + Cpoonst, (1 wiv). (325)

— a
i#£]
where { :=={ — (n —1)R.

Proof. Splitting the energy functional into two parts, and using Lemma 21 on one term (see
also (1.18)), we find

1
JO 2D DI T
A

i#j
2 1 2
/; |az\If| ]lti(x)>R + 6; ﬁé(tl(x) - R) |\Il| (326)

+(1—e Z/D”mixp%/zvijy\py? :

1<j 1<j

where v;(x) = minj4(|z; — x;|) and the nearest neighbor delta interaction can be written
d(vi(z) — R) = <Z#i [0(x; —xj — R)+0(z; —xj + R)]) li,r)>r- The nearest-neighbor inter-
action is obtained by, for each i in the sum above, dividing the integration domain of x; into
Voronoi cells around zp with k # i. Then, for each k, restricting to the cell around particle k
and using Lemma 21 gives the desired nearest neighbor interaction. This technique is also used
n [30]. With the use of Lemma 20 with R > 2|a| in the last term, and by realizing that the
first two terms can be obtained by using 1 as a trial state in the Lieb-Liniger model (since the

two delta functions collapse to a single delta of twice the strength when volume R is removed
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between particles), we obtain

[0+ X oo > £ (n 22 ) ol + S Deonst. (-l 20
i i#]

O]

The next lemma will continue the process of bounding the norm loss in going from ¥ of
norm 1 to ¢ in (3.14).

Lemma 23. For n(pR)? < 16%%, pR < 3 and R > 2|a| we have

(Y|) > 1 — const. (n(pR)3 + n1/3(pR)2> . (3.28)

Proof. From the known upper bound, i.e. Proposition 8, and by Lemma 22 with e = 1/2, it
follows that

2

o, 6/5\ > N (o 71
np <1+2pa+const. (pR) ) > Eryp, <n,f7 R—a) (Wly) +

1
16 R?

(1= (l)). (3.29)

Subtracting EIJ-JVL (n, Z, Rl_a) on both sides, and using Lemma 17 on the left-hand side, we find

2 2
717%,02 (1 + 2pa + const. (pR)6/5) — n%ﬁQ <1 — 4p(R — a) — const. n*2/3>

h VI (3.30)
>(— _E — ) )a-
> (1o~ B8 (ml ) ) (- wle),
with 5 = n/f = p/(1 — (p — 1/£)R). Using the upper bound EN, (n,g, lea) < n%252 on the
right-hand side, as well as 2p > p > p(1 + pR), we find
2 p2 6/5 —2/3 1 o 4%
const. np°R (pR+ (pR)*° +n ) > 6~ R n—gp (1= (p)). (3.31)
It follows that we have
($|y) > 1 — const. (n(pR)3 n n1/3(pR)2) . (3.32)
]
For n < k(pR)~/° with k = ﬁ% and pR < 3, we find
() > 1 — const. n(pR)®> =1 — const. (pR)%/°. (3.33)
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It is now straightforward to show the following two results, finishing the bounds for small n.

Proposition 24. For n(pR)? < 16?;2 £, PR < § and R > 2|a| we have

71_2

EN(n, ) > n?pQ (1 + 2pa + const. (21/3 +n(pR)® + nl/z(pR)2>> . (3.34)
n

Proof. By Lemma 22 with € = 1, we reduce to a Lieb-Liniger model with volume l, density p,
n

and coupling ¢, and we have £ = ¢ — (n — 1)R, p = % and ¢ = . Notice that p(1 4 pR) <
p < p(1+2pR). Hence, by Lemmas 17 and 23,

EN(n7£) > EgL(nagv C) WW)
2

3.35)
T 2 DU _ 3, .1/3 2 (
>n W <1+2pa const. n2/3) <1 const. (n(pR) +n/?(pR) ))
O
Corollary 25. For %(pR)_g/E’ <n < 7(pR)~° with T = 16%% and pR < 3,
2
EN(n, ) > n%p2 (1 + 2pa — const. ((pR)6/5 + (pR)7/5)> . (3.36)

3.3 Lower bound for arbitrary N

The lower bound in Corollary 25 only applies to particle numbers of order (pR)_g/ 5. In this
subsection, we generalize to any number of particles by performing a Legendre transformation
in the particle number and going to the grand canonical ensemble. First, we justify that only

—9/5 are relevant for a certain choice of the

particle numbers of order less than or equal to (pR)
chemical potential, u.
Let C denote the constant in Corollary 25, we will then in the following, assuming Zpa > —1/4

and C(pR)%/° < 1/4, fix Z large enough for the following bound to hold

2
8
%E%pf’) (1 + 22pa — C(pR)6/5) > 72 p? <1 + 3pa> Epl.

Notice E = 4 suffices.

Lemma 26. Assume that C(pR)%/> < 1/4 and let E be fired as above. Also let n = mEZpl + ng

with ng € [0,Epl) for some m € N, with %(pR)*g/E’ < pl =n*< %(pR)*E’/E’ and T = 163772é'

Furthermore, assume that Zpa > —1/4 and let p = % p? (1 + %pa). Then,

EN(n, ) — pn > EN (no, £) — pnq. (3.37)
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Proof. By Corollary 25, we have

2

EN(Ept, 0) > %535;)3 (1 +25pa — C(pR)6/5> . (3.38)

Superadditivity caused by the positive potential implies
EN(n,0) —un>m (EN(EpK,E) — u=Epl) + EN (ng, £) — pung. (3.39)
The result, therefore, follows from the fact that

2 8
%E3€p3 (1 + 2E5pa — C’(pR)6/5) > 72 p? <1 + 3pa> Epl. (3.40)

We are ready to prove the lower bound for general particle numbers.

Proof of Proposition 15. For the case N < 7(pR)~/°, the result follows from Proposition 24.
For N > 7(pR)~%/%, notice that

EN(N,L) > FN(u, L) + puN, (3.41)
where FN(p, L) = inf v (EN(N', L) — uN'). Clearly, since v is repulsive, we have
FN(u, L) > MFN(u, 0), (3.42)

with £ = L/M and M € N,. Now, let Z be fixed as above and choose M such that 5= (pR)~Y° <
n*=pl < L (pR)™/® and p = w2p? (14 2pa) (notice that p = d%(%p‘%(l + 2pa))). Further-

6 — 6 e 1
more, assume that C(pR)%/® < 1/4 and Zpa > —1/4 (the cases of C(pR)%/® > 1/4 or Epa < —1

are trivial, by choosing a sufficiently large constant in the error term). By Lemma 26,

FN(pu, 0) == i%f (EN(n,0) — pn) = inf (EN(n,£) —un). (3.43)

n<En*
It is known from Proposition 24 that for n < =Zn*,

2 1
EN(n, ) > nlﬁ (1 + 2pa — const. <n?/3 + n(ﬁR)3 + n1/3(pR)2>>

7I'2

3

(3.44)
np? (14 2p0) = 0?0 ((pR)*/%)

where p = n/¢ (notice that now p = N/L = n*/{ # n/l) and where we used p < Zp. Thus, we
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have
FN(u.0) > inf (g(p) ~ pp)t =0 ((or)), (3.45)

1+ 2pa) for p < Zp. Note that g is a convex C!-function with invertible

where g(p) = % %
> —%. Hence,

2
72
3P
derivative for =pa

2
EN(N,L) > M(FN(u,0) + pn*) > Mn*%pQ <1 4 2pa—0O ((pR)6/5>>

9 (3.46)
_ T a7 2 _ 6/5
= 3Np <1+2pa O((pR) >>,
where the equality follows from the specific choice of u = ¢'(p). O

4 Anyons and proof of Theorem 7

In Theorem 5 and below, we discussed the fact that the fermionic ground state energy can be
found from Theorem 1 by means of a unitary transformation. It was also mentioned that this
concept can be generalized to a version of 1D anyonic symmetry [7, 28, 41]. We will now define
our interpretation of such anyons, depending on a statistical parameter £ € [0, 7| that defines
the phase e accumulated upon particle exchange. We also include a Lieb-Liniger interaction
of strength 2¢ > 0, such as in [4, 24, 26].

To start, divide the configuration space into sectors X, := {Zy, < Tg, < -+ < gy} C RY
indexed by permutations o = (o1,...,0n), and the diagonal Ay = U, jen{zi = 25}

Consider the kinetic energy operator on RV \ Ay,

N
i=1
with domain
D(Hy) = {go = e_i%A(x)f(ac) f is continuous, symmetric in z1,...,zy, smooth on each X,

and (8; — 9;)¢|"7 — (3 — 9))p|” = 2¢ e 128 f1Y for all i # j}.
(4.2)
Here, | and |6j mean the function should be evaluated for x; — xj[ and z; = x; respectively,

and
1 for x >0

Ax) = Z €z — xj) with e(x)y=¢—-1 forz<0-. (4.3)
0 forxz=0
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The idea is that the (perhaps rather artificial) boundary condition in (4.2) encodes the presence

of a delta potential of strength 2c, just like it would for bosons.

Proposition 27. Let 0 < k < 7. Hy is symmetric with corresponding quadratic form

2
., . 4.4
z/MN P+ s ;Lo o) e (4.4
Proof. Let ¢, € D(Hy). Then, by partial integration,
(0| Hn ) / 992 ¢
Wiy Z RM\Ay
_ 9,00, / 90, 0|7 — D0,
S [ T [ 3 (Pl ool

NTNAN-1

z .

N
= 8$i198$i<p+/ 9B, — 0 )p| L —0(0a, — B2 )07 ) .
i=1 /RN\AN RN—I\ANJ;J'( ( el ( %l )
(4.5)
Let f, g be the functions such that ¢ = e 2% f and ¥ = e~*2g. Then,
N — ..
V| Hyp) = / 8361.1983;1.@4—/ G(0g, — Ox,) f O, — O ) f1”
i) ; RM\Ay RN_l\AN—IZJ:(( e M ) (4.6)

N
B ;/RN\AN 8%#98&:180 * /I%Nl\AN 1 22 ( T xj f| ) )

1<J

where the last equality follows from the symmetry of f. Note that the boundary condition on
D(Hy) imply

(0:=05) |1~ (0i=0))pl” = e 59 (0,-0)) fI1 e 720 (@0,-0)) S = 2¢l] = 7 F52f|,
(4.7)
where S := A — €(z; — x;). By symmetry of f, it follows that

e 2@, — ) fI] — e, - 0) f17 = e T, — 9)) ST + 72U (0, — 9y) 11
= ¢ "592 cos(r/2) (9 — ;) |
= e "552¢f[7,
(4.8)

so that
2c

i _
2005 = 9115 ~ cos(k/2)

fI6- (4.9)
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Hence, it follows that

N
litxe) =3 /R

_ 2¢ __
as D, 00, () + oD ; 8(x; — 2)0(x)p(x) AV . (4.10)

Starting from (Hxnv|¢), we can arrive at (4.10) by the same steps, proving that Hp is symmetric.
O

Remark 28. Since & . is non-negative and closable, it follows that Hyn has a self-adjoint
Friedrichs extension, Hy. This is what we regard as the Hamiltonian of the 1D anyon gas
with statistical parameter k and Lieb—Liniger interaction of stremgth 2cdy that is relevant for
Theorem 7.

We are now ready to provide a proof of Theorem 7 along the lines outlined in Section 1.3.

Proof of Theorem 7. Let &. denote the bosonic quadratic form with potential v. = v+ 2¢dy. By
Proposition 27 and the observation that the quadratic form is independent of the phase factors,
we see that the unitary operator U, : f — e izA f provides a unitary equivalence of the bosonic
and anyonic set-ups. That is, U,D (5070/(705(5/2)) = D (Ex,e) With Ex (U f) = Eo.c/cos(r/2)([f)-

Hence, the result follows from Theorem 1. ]
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Chapter 4

The Ground State Energy of
the One-dimensional Dilute

Spin—% Fermi Gas

In the preprint of Chapter 3, we proved an upper and a lower bound for the
ground state energy of a dilute Bose gas in one dimension. It was also shown
that, as a corollary, the ground state energy of a one-dimensional dilute spin
polarized Fermi gas admitted similar bounds. In this chapter, we seek to
analyze instead the full spin—1/2 Fermi gas. Due to an important theorem of
Lieb and Mattis, [LM62b], it is known that the ground state of a repulsively
interacting spin—1/2 Fermi gas (with an even number of particles), will have
vanishing total spin. Therefore, will our bound, in the following, essentially
give estimates on the total spin 0 sector of the one-dimensional dilute spin—1/2

Fermi gas.

4.1 The Model

We consider a gas of fermions, each with spin—1/2, interacting through a
repulsive pair potential v > 0. The assumptions on v will be similar to those
in Chapter 3, i.e. v has compact support, say in the ball Bg,, and can be

decomposed in v = Vreg + Vn.c. , Where v is a finite measure and vy, ¢ is a
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positive linear combination of hard cores. Formally, we write the Hamiltonian

N
H=- 2812 + Z v(z; — xj), (4.1.1)
i=1

1<i<j<N

and with a domain contained in the Hilbert space L2, <([0, L] x {0, 1})N> =
(LQ([O, L)) ® (CZ)/\N. We recap here the conjecture, from Remark 6 of Chapter

3, about the ground state energy for such a system.

Conjecture 4.1. Let v > 0 satisfy the assumption from above, then the
ground state energy of the dilute spin—1/2 Fermi gas satisfies
T 2 2
E = N?p (1+2p(In(2)ac + (1 — In(2))a,) + O(p” max(|ac|, as)?)) .
(4.1.2)

4.2 Upper Bound

In this section, we prove an upper bound for the ground state energy of the
model (4.1.1). The upper bound matches, to next-to-leading order, Conjecture
4.1. To prove the desired upper bound, some prerequisites are needed. We
have already covered the definition of the scattering length and scattering
wave function in Chapter 2, and the free Fermi ground state was found in
Chapter 3. For the spin—1/2 gas, we furthermore need knowledge about how
to handle the spin degrees of freedom. For this purpose, we give some heuristic
arguments based on physical intuition and utilize this intuition in constructing
a trial state giving the correct upper bound. The main result of this section

is the following theorem.

Theorem 4.2. Let v > 0 satisfy the assumption from above, then the ground

state energy of the dilute spin—1/2 Fermi gas satisfies

2
E< N%;ﬁ (1 +2p (In(2)ae + (1 — In(2))a,) + O ((pR)6/5 + N-l)) :
(4.2.1)
with R = max(|ae| , ao, Rp).
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Constructing a trial state

In constructing a trial state for the dilute Fermi gas, we may restrict to a sector
of the form {o} = {01,09,...,0n} = {0 < 25, < T4, < ... < Zyy < L}, then
the trial state is given by anti-symmetrically extending to other sectors. Of
course, this means that certain boundary conditions need to be satisfied at the
boundary {z,, = %,,,,} for this extension to be in the relevant domain. This
boundary condition is exactly that Pi’iﬂ \If|{xai N 0. Here Pi’j denotes
the spin-projection onto the triplet of particles i and j, and equivalently we
will denote the spin-projection onto the singlet of particles ¢ and j by Pé’j.
In terms of spin operators S = %E, with @ = (01,02, 03) being the vector of
Pauli matrices, we have P52/ = 1/4 — S; - S; and P}/ = 3/4 + S; - S;, where
Si=1I®... ®\S;/® ...® 1. We recall from Chapter 3 that the ground state
;th

energy (of the Blose gas or spin polarized Fermi gas) may be well approximated
in the dilute limit, by a state that resembles a free Fermi state when particles
are far apart, and resembles the two-particle scattering solution when a pair
is close. With this in mind, we may construct a variational trial state on a
sector {1,2,..., N} as follows

ZE ((nwl + (1 = n)wl) PR+wR PRy, R(z) <b

U, = R , (4.2.2)
Up, R(z) > b
where x is some spin state, b > Ry, R(z) = min;; |; — 5], w@o(:c) =

Ws/o(R(z)) = bfs/o(R(x)) (see Definitions 2.27 and 2.28 with R replaced by
b), and for R(x) = |z; — x;|, we have Plz/gx) = P:}?’h(]) with h(i) being the

spin-index of the particle with coordinate 2;'. Furthermore, 7 is a continuous

and almost everywhere differentiable function with the property n(z) = 0

"When we are on the sector {0} and we are defining
v ((ZBO-I ’ 50'1)7 (ZE0'27 30'2)7 ) (xO'Nv‘SUN)) ’
we have h(i) = 4. On the other hand, if we seek to define
v ((x01731)7 (56527 52), -5 (Toys SN)) )

we have h(i) = ¢~ '(i). This is only relevant for considering symmetries different from the
fermionic spin-space anti-symmetry, as

v ((1'1,81), (m2782)v SRR (ﬁstN)) = sgn(a)\IJ ((mfflvsﬂl)? (m027802)7 ERRR (mf’N’SUN))a

for fermionic wave functions. Hence, in this section, we may as well think of h as h(i) = i.
A different symmetry is considered below in Section 4.3.
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when Ra(w) = b, where Ro(x) = ming; j)x(x, max(|x; — ;] , |z — 74]) is the

distance between the second closest pair. More precisely we define

0, if RQ(ZL‘) S b
n(x) = (R@(@ - 1) . if b < Ra(x) < 2b (4.2.3)
L, if Ro(z) > 20b.
In this case, we see that Pi’j Vly,=2; = 0 due to the boundary condition

satisfied by w,. We notice that a potential discontinuity could arise from
PR since these projection are discontinuous at points where Ra(z) = R(z).

s/t
However, since p) —i—PZz(x)

= 1, we see that ¥ is continuous due to the
inclusion of 7. The extension of ¥ to other sectors {o} is then defined by anti-
symmetry in the space-spin variables. In this case, due to the symmetry of
the Hamiltonian/energy quadratic form, the energy is determined completely
by the energy on the sector {1,2,..., N}.

As was the case in Chapter 3, the trial state given in (4.2.2) produces an
error that grows with the particle number. This is undesirable for proving
Theorem 4.2. However, as before, we may construct the full trial state by
localizing it to smaller intervals. This is done by splitting the interval [0, L]
into smaller intervals I, := [m({ +b),(m + 1){ +mb] m =0,1,2,... M — 1,
where ¢ = L/M — b. We then consider the trial state given by a product

sz, on) = [[ U@y, 2%), (4.2.4)

where N = N/M and zi" =z, 5, and the superscribt I, in \Ifim means that
we take the state W, constructed on I,,, instead of [0, L]. Notice that there

are no interactions between boxes since b > Ry.

Remark 4.3. Of course, dividing the particles in this way, might not be pos-
sible with desirable integers N and M. However, for a desirable N (not neces-
sarily integer), we may take M = {N/N—‘ , and then the particles in each box
will be [N/M] or [N/M — 1] in such a way that the total number of particles
remain N . In this case, the length of a given box may also be chosen, accord-
ing to the number of particles it contains, to be £rn/nr = p L[N/M] —b and
Unp—1] = p L [N/M —1]—b. This technical detail produces only errors that

are small compared to existing errors in the proof of Theorem 4.2 below, and
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thus for simplicity we ignore it.

We saw in Chapter 3 that the scattering solution, when particles are close,
leads to a correction to the free Fermi energy that is of order 2pa,/,Er. Since
P =1/4-8;- S; and Pi’j =3/44 5;-S;j, we expect (ignoring the effect of

n) that the correction we obtain from the variational state W, is of the order

1 1 3
2p <(ao — Q) <X N Z Si + Sit1 x> + Zae + 4a0> Er.

The minimizer (in x) xo is known, and in this case, since a, > ae, it is

given by the ground state of the periodic antiferromagnetic Heisenberg chain
X0 = |GSuar). This ground state is known explicitly, as it is of Bethe ansatz
form [Bet31]. Furthermore, the ground state energy of the antiferromagnetic
Heisenberg chain is known to be [Hul38, Mat12] (See lemma 4.11 below)

1
<GSHAF v Z Si - Sis1

Hence we find the correction 2p (In(2)ae + (1 — In(2))a,) Er as desired.

4

GSHAF> L neroan). @2s)

Proof of Theorem 4.2

In this section, we give the rigorous proof of Theorem 4.2. The idea was
already sketched in the previous section, and the goal is thus to make the
statements in the previous section rigorous. An important, although com-

pletely trivial, fact is the following lemma.

Lemma 4.4. Let n be defined as above, then we have

2
|Vn| < \bf’ a.e. (4.2.6)
The quantity of interest in the following will be the energy of the trial
state
N
5‘(\I/X) = /[0 B Z |az‘\I/X|2 + Z Vij |\I/X|2 . (4,2_7)

i=1 1<i<j<N

We will henceforth assume x to be translation invariant. This assumption is

not needed, when we have periodic boundary conditions, see Appendix A. As
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was done in Chapter 3, we rewrite this by use of the diamagnetic inequality

E(T,) <EF+/Z\apr +Y i) —Zyaq/F\

1<i<j<N

e+ () [ Somfe Y wln -3 o,
Biz ;1 1<i<j<N i=1
(4.2.8)
where B = {z € [0,L]Y|R(z) < b}, and Bz = {z € [0,L]N|R(z) =
|1 — 22| < b}. Now due to the presence of n in the trial state, we need
to further divide the integration domain. We list here different domains of

integration that will be relevant in this section

Bf = Bia N {Ry(z) > 2b},

B3 = Bia N {Ra(x) = |2 — w3] < 2b},
By = Bz N {Ra(z) = |3 — 24| < 20},
Ay ={x € [0, L)V ||a1 — 29| < b},
A2 = Ay N {|ze — 23] < 20},

A3 = A N {|z3 — 4] < 20}

(4.2.9)

In (4.2.8) the last term is dealt with in the same way as in Chapter 3. It is also
obvious that we may replace v by vree, as the trial state vanishes whenever
a pair is inside the outermost hard core. Now due to the anti-symmetry, we
conclude from (4.2.8)

5(‘I’x)§EF+(];r>/B>§:|@‘Px!2+2 (5 )/B%wa

12 ¢=1 12 =1

12 =1
N
OV LS e (3) [ St
B2 1<icj<n Biz2 j—
(4.2.10)
Defining
)\ v

(P12 == ——wi? and (Wo)12 == —— —wi?, (4.2.11)
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we find by the fact that B, C Aja,

/BZ AN (/Awg}|a< 1z|><><a\P”}><o>

* toyesie (4.2.12)
1,2
([, 0w (et o)
{o}€Sa Al?”{"}
where PiV/tN o= Pi\;tl and Y, is the spin state y with spins permuted by

(1,...,N) — (01,.. O'N) and
S19 = {sectors {c} | (ok,0k+1) = (1,2) or (ok,0k+1) = (2,1) for some k}.

Using the translation invariance of x we see that
Ok,Ok+1

N N
(o P ) = 23 B ) = 3 45 )

k=1 k=
is independent of o € S15 and that

—_

Considering (4.2.10) again, we see from the trivial relation

¥ (2 O s o) =

k=1 k=1

and from the fact that Bis C A1 and the observation that w, < w, implying

v < L35l

k=1

PR oal + (x [P 3 1(W0)ral)

(4.2.14)
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on B that we have the following upper bound for the energy

Pf’k+1‘x> (/A g:laz‘(‘l’e)u\z

12 =1

N
(vreg)ij |(Te)r2]? — /B > |&«PF12)

12 =1

ey <ot (G )y X (n

1
—I— /
A12 1<ij<N

+ Z>$i<X‘Pf’kH‘X> </A i|ai(\ljo)l2|2

k=1 12 4=1

N
/A (Vreg)ij | (Wo)12|* — > |3¢\IJF|2>

12 ] <i<j<N Bz =1

N
N\ /N -2 )
<(5)(727) [y e

12 =1

+2(N —2) @[) /323 i 0,0, |

12 =1

N
k=

(4.2.15)

+

We see that this reduces proving an upper bound to a case we have already
analyzed in Chapter 3, except for the last two terms, which we then need to

estimate. Let us denote the two quantities by

N
N\ /N -2

34 . E: ) 2

o '_<2>< 2 >/B O

12 =1

N N
=2 -2 (5) [ S,

12 =1

(4.2.16)

The following lemmas, which we prove below, provide estimates of these quan-

tities.

Lemma 4.5. Let E35 and V. be defined as above, then we have the following
bound:
1o < const. Ep (N (pb)* + N=(pb) ) . (4.2.17)

where Er denotes the free spin polarized (spinless) Fermi energy.
Lemma 4.6. Let E% and V. be defined as above, then we have the following

bound:
E2 < const. Ep ((pb)4 + N(pb)6> . (4.2.18)
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where Er denotes the free spin polarized (spinless) Fermi energy.

Using Lemmas 4.5 and 4.6, we deduce, from (4.2.15) the following upper

bound on the trial state energy

N N
ey < Bt (5 )y DO [ S awonr
2/ N k=1 A1z
N
LD SO AN DY |ain|2>
A2 1<ici<N Bz =1
N N
N 1 (4.2.19)
+ 2)N > (P ) ( | oot
k=1 12 =1
N
+/ (Vreg)i | (Wo)12|* — > I&"PF\Q)
A2 1<ici<N Bz =1

+ Ep (N(pb)* + N2(pb)°) .

Defining the quantities

N N N
El,e::(2)< | S awans ¥ (vregmwamr?—;@w?),

12 =1 1<i<j<N
N N
N
By, = (2) < JAD IR S AR yain|2>,
A1z 1 1<i<j<N i=1
(4.2.20)

and the quantities from Chapter 3:

) N
1) . ) 2
B = <l2'>2N LA TR

A12NAis ;4

N
(05 o S
ES = o
? <2 2 A12NA34 Zz; | F‘

we see by noting x € Ays \ By implies z € Ao N A;; for some {i,j} # {1,2}

(4.2.21)
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that (4.2.19) implies

1

E(Wy) < Br+ 5 (x [PEF x) (B + BSY + V)

1
+

M= T

(e [PE ) (Bro + BS + B (42.22)

S
i

+ Er (N (pb)* + N*(pb)°)

Here E) ./, corresponds to the quantity Ey in Chapter 3 with the even/odd
wave scattering solution in the trial state. Proving the equivalent bound for
the E) ./, amounts to following the same proof strategy and we have the

equivalent lemma;:

Lemma 4.7 (Lemma 13 of Chapter 3). Let F; ./, be defined as above. For
b > max(2a,, Ry) we have

b
E < Ep|?2

l,efo = F( pae/ob — /o

(4.2.23)
In(N
+ const. <N(pb)3 [1 +pb2/vreg] + pae/o HEV )) >
We also recall the lemma
Lemma 4.8 (Lemma 14 of Chapter 3).

ESY + BP) < Bp (N(pb)* + N2(pb)°) . (4.2.24)

Using Lemmas 4.7 and 4.8 we find the result

Lemma 4.9. For N(pb)? <1 and b > max(2a,, Ry) we have

N
ZSk Skt X>]
k=1

+ const. <N(pb)3 [1 + pb* / vreg} +paoln§év)>>,
(4.2.25)

1~+3~ +(~ ~)1
Qe Ao Qo aeN X

5(‘;[/)()<EF(1+2,0 1 1

~ . b
where ag, = Oe/ob a5
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Proof. This lemma follows directly by combining (4.2.22) with Lemmas 4.7
and 4.8. 0

It is then immediately clear that on the right-hand side of (4.2.25), given

that a, > a., the optimal choice for x is the ground state of the periodic
antiferromagnetic Heisenberg chain, which due to the Marshall-Lieb-Mattis
theorem, [LM62a, Marb5], is translation invariant. Of course, if a, = a, the
choice of x is irrelevant for the right-hand side of (4.2.25).
We thus conclude that the ground state energy of the antiferromagnetic Heisen-
berg chain is of importance. Fortunately, this model is exactly solvable, as
shown by Bethe [Bet31], and the ground state energy can be found in the
thermodynamic limit, as shown by Hulthén [Hul38]:

Lemma 4.10 ([Mat12], Eq. (5.171)). Let |GSuar) denote the ground state

of the periodic antiferromagnetic Heisenberg chain. Then

N

5205k Sk

1i
Ngnoo < GSHAF 1 4

GSHAF> 1 m (4.2.26)

This lemma gives the ground state energy of the Heisenberg chain in the
thermodynamic limit, however, we need an estimate for the finite chain. This

is given by the following lemma:

Lemma 4.11. Let |GSgar) denote the ground state of the periodic antiferro-

magnetic Heisenberg chain. Then

<GSHAF

Proof. Denoting the Dirichlet (edge spin down) energy of the spin chain EN

N
1 1
N ];1 Sk - Sk+1 GSHAF> =1 In(2) + O(Nfl) (4.2.27)

with NV sites and the periodic energy E}].Y , we have Eg < E]g . This follows di-
rectly from the variational principle. On the other hand we have the following
bound 5

ENT2<EN + T (4.2.28)
To see this, consider a periodic chain of length N in its ground state. Add
a spin-down at each edge, making the chain of length N + 2. The resulting
state is now a trial state for the Dirichlet chain of energy at most Eﬁ + % and

(4.2.28) follows. Furthermore, it is not hard to see that for any integer m > 1
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we have ETN < Eg‘N —mHl < mEN. The first inequality follows simply from
the fact that extending a Dirichlet state by Néel ordering (alternating spin)
to a larger chain, lowers the energy, hence ground state energy in the larger
chain must also be lower. The second inequality follows by constructing a trial
state for the Dirichlet chain of length mN —m + 1 by gluing m ground states
of the Dirichlet chain of length N, such that they share a spin down at the
gluing points. Collecting everything we have
1

1 1 1
mNEgLN < —EBN < —EN < =

mN =N (ngz + 3/4) : (4.2.29)

It is clear that by a trial state argument and by translation invariance, which
follows from the Marshall-Lieb-Mattis theorem (uniqueness of the ground
state), we have Eg < %Eﬁ/[ + % for M > N, simply take the ground state
of chain length M, truncate it at length N, and use that all terms in the
Hamiltonian have equal expectation values by translation invariance. Hence

we get

1 N-2 1
mN P = N N-2

N-2/1 1

EN-2 34)< —EM_ =

(P +3/4) < N \aP TN 3
(4.2.30)

taking the limits m — oo and M — oo we have

N 3 1 vy 1
< EN-2<epfo—n 4.2.31
N2 P T INSN_2P =P iN_9 (4.2.31)

where ep = A}im %Eg . The desired result follows from Lemma 4.10. ]
—00

We are now ready to collect everything to give the proof of Theorem 4.2:

Proof of Theorem 4.2. Consider now the full trial state as given in (4.2.4) (See
optionally Remark 4.3). Because of the spacing between intervals, I,,, there
are no interactions between particles in different intervals. Hence the energy

of such a state

EWy fun)/ 1¥y fun]| = Mg(\p{g)/ H\II{Q - (4.2.32)
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Combining lemmas 4.9 and 4.11, we find

2

M
g(\yx,full) < N%ﬁ2 (1 +2p [ln(Z)&e + (1 - IH(Q))ZLO] -+ const. N
Nl (/M)
+ const. (M(pb) [1 + pb /Ureg:| + pa, N ,
(4.2.33)

with p < p = % <p(1 +2%pb) for %pb <1/2.

Similarly to the case in Chapter 3, term pa, lng\]]\/fﬁ/l ) satisfies

In(N/M)
N/M

pao < max(const. M/N,Ce(pa,)*™°).

It is therefore sub-leading and can be absorbed in other error terms. Thus we
will neglect this term.

For N > (pb)=3/% (1 + pb? [ vreg)
Choosing M/N = (pb)*/2 (1 + pb? [ vreg) Y2 we find

-1/2,

E(Wy fun) < Nﬂ;pQ <1 + 2p [In(2)ae + (1 — In(2))a,) +

1/2
+ const. (pb)3/2 <1+p62/vreg) >7

~1/2,

(4.2.34)

For N < (pb)~3/2 (14 pb? [ vreg)
We see that (4.2.34) follows from choosing M = 1.

Furthermore choosing b = max(p~1/° |0Le|4/5 , p*1/5a§/5, Rg) we see that a./, <
defo = ae/oﬁ < e/ (1+2(pR)1/5) for (pR)/®> < 1/2 and the desired

result follows from the simple estimate on the norm

[l 2 1= [ p o) 21— const. Ny
Are (4.2.35)

>1— const. (pb)*/? >1— const. (pR)%/".

Estimating F3}; (proof of lemma 4.5)

Proof of Lemma 4.5. Estimating F35 is a straightforward computation that

goes as follows:
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Define

T = ( (n(lzs — zal)we?(Jo1 — wa]) + (1 — (|23 — za]))w,?(l21 — 22])) Py?

b (a1 — w2 PP ) xo

(4.2.36)
on A3 N {c}, for all sectors {o} € S§5, with
3 = = {sectors {0} | (1,2) = (0, O41) or
2,1) = (o, 0 for some k
(2,1) = (0%, Op41) (4.2.37)

and (3,4) = (01,0141) or
(4,3) = (07, 0441) for some 1}.

We then see that ¥, = &3 ‘m o] on B33: Hence defining

(&13), = n(jz2 — z3))w(Jor — 22]) + (1 — n(|lze — 23])ws*(l21 — 22]),

(&85), = wo(|o1 — w2l),
(4.2.38)

we find using B33 C A%}

E — _2 34)
t=(y ) [ S (e e

g@f)z(zv— DY Y (e PP xo) (4.2.39)

ac{st} {o}€S3
| ]

2

Y 34 Up
o <( 12), |22 —$1|>

X
[/A?%ﬂ{o} ZZ;

One may use that <Xa ‘P;2| Xa> is independent of o, however, since we are

not interested in finding the optimal constant in Lemma 4.5 we instead use
the cruder bound, <Xa ‘P}lz‘ XJ> <1, to find

Ei”%g@)z( e{st}[/ 5o < a|x\PFx1|)

2

127,1

/ Z “Ifﬁ |<%m>

127,5

(4.2.40)

where we used integration by parts and [ |, yesi (A3 n{o}) C A3, with
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| | meaning disjoint union. Using that ¥ is an eigenfunction of (—A), with
eigenvalue Er we further find
2
A 34

N 123
E} < 2 e —
12_<2) ( e{ t}[ 12 =1 < a|m 371’)

/AM Z )a ‘m o] (( ), W) (4.2.41)

12 =1

+ Er /
A34
Thus, using ‘( i”%)af < b? and restricting to b > 2a, > 2a., we find

_Yr
@ |xg — 21

(€12)

12

ly2 — 1| |22 — 1]

(35 () (€34 (2
<4 Z / (Zayza ) W )( 12) ( )’7(4)@17:927Z/37y4;$1,»’627$3,$4)

ae{s,t}

|$2*.’L’1’ Z y17y27y3ay4a$171‘27x3,134)
y=x
GORGI
+EF o2 —71| p (1, 22,23, 24)

< const. Ep (N (pb)4 + N2 (Pb)6>
(4.2.42)

where we used the following bounds

< const. p8,

5.8 YD (y1, Y2, Y3, ya; 21, T2, T3, 24)
Yi YTy
|z2 — 21| [y2 — 1

y=r

P YD (y1, Y2, Y3, Ya; 21, T2, T3, T4)

» < const.p® |3 — x4/,
22 — z1] [y2 — y1

y=z
YD (y1, Y2, y3, ya; 21, T2, T3, 24)
|z2 — 21| [y2 — 1

< const.p® x5 — x4]?,

y=r

2 10 2 2
E 02 D (y1,y2, Y3, ya; 71, T2, 3, T4) < const.p |x1 — x2|” |23 — 247,

Yy=x
(4.2.43)

and

,0(4) (1,2, 3,24) < const.p® |z — :U2]2 |zg — x4 2 , (4.2.44)

y=z
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which all follows from Taylor expansion of the free Fermi reduced density

(matrices). Furthermore, we used the bounds

0: (¢84),I” <bma><<\f - ! >§2, (&8) P <b  (4.245)

which follows from properties of the scattering solution, monotonicity of its

derivative, and Lemma 4.4. ]

Estimating E% (proof of Lemma 4.6)

Proof of Lemma 4.6. Estimating E%3 is, similarly to the estimation of E33, a
straightforward computation. We retrace the steps of the previous calculation,
suitably modified for E%, in the following:

Defining

0= ( (w2 — z3))w*(lx1 — @a|) + (1 = 0|22 — w3]))wy’(Jz1 — @2])) PL?

(a1 — w2) PP ) xo

(4.2.46)
on A%} N {c}, for all sectors {0} € S%, with
= ¢sectors {o 2,3) = (0k,0k11,0 or
St = { {o} | (1,2,3) = (0%, Ok+1, Ok 2) (4.2.47)
(3,2,1) = (o), 041, 0k+2) for some k}
. We then see that ¥, = 73 \xf—iﬂ on B%3: Hence defining
(£85), = nllwa — wa)we?(Jo1 — wa]) + (1 — n(|lza — w3]))w,? (|21 — wal),
(€53), = wo’ (Ja1 — a2)),
(4.2.48)

we find using B% C A23

E12_< ) N-2) /Bfg; <23~’61|>

g(‘];[)w\f— DY Y (e [P xo) (4.2.49)

a€q{s,t} {U}ES%S’
2]

N
) 23 Vi
o <( 2)a |22 —$1\>

X
J>

2
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One may use that <Xa ‘P}f’ Xa> is independent of o, however, since we are
not interested in finding the optimal constant in Lemma 4.6 we instead use
the cruder bound, <Xa ‘Pé2| Xa> < 1, to find

sy <))o - e{st}[/ > o (6, )

1221

[ e (aCE)

1214

2

(4.2.50)

where we used integration by parts and |_|{U}€523 (A3 N {o}) C A33. Using
that Up is an eigenfunction of (—A), with eigenvalue Fr we further ﬁnd

£ < )2 - ae{st}[/ 3o 1GiR=)

2

121,1

/AQS Z )a ‘x o (( 2)a m> (4.2.51)

12 =1

+ Er /
A23
Thus, using ‘( f%)af < b? and restricting to b > 2a, > 2a., we find

_Yr
@ |rg — 21

(€12)

12

5 <4 Z / (Zﬁy, i 12), ) (&52), (x)’Y(S)(yl,y2,y3;f131,362,333)

\y2 —y1| |z2 — @]

ac{s,t} y=x
( 23
+ ylvy27y37$17$27503
|l‘2 - 951! Z ) -
23 2
Xz
\332 - a:1|

< const. Ep ((pb)4 + N (Pb)6)
(4.2.52)
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where we used the following bounds

ayiaxi 7(3) (yl’ Y2,Y3; 21,22, 903)

< const.p7,
\932 - 561| |y2 - y1|

y=a

9 _7(3)(y17y2,y3;3?1,962,963)
Y ey — x| ly2 — i

< const.p’ |z — x3],
y=x
7(3)(y1,y2,y3;x1,x2,x3)

\932 - 561| |y2 - y1|

< const.p” |zg — x3)?,

y=x
3
23§i7(3)(y17y2, Y3 T1, T2, T3) < COHS‘G-PH |21 — $2|2 |zo — $3|2 |21 — $3|2 )
i=1 y=z
(4.2.53)
and
p®) (z1, 29, x3) < const.p” |x1 — xo|* |22 — x3|? |21 — 23)°, (4.2.54)

which all follows from Taylor expansion of the free Fermi reduced density
(matrices) and Wick’s theorem, as in Chapter 3. Furthermore, we used the

bounds

10; (¢2),|” < bmax (f b_lao> <2, 1(63) P <b  (4.2.55)

which follows from properties of the scattering solution, monotonicity of its

derivative, and Lemma 4.4. ]

4.3 Extending the Upper Bound to Other
Symmetries and Spin-Dependent Potentials
We present here corollaries that follow directly, mutatis mutandis, from the

proof of Theorem 4.2. We also apply one of the results to a model where the

new upper bound improves the up to now best-known result.

Spin-1/2 Bosons

Going through the proof of Theorem 4.2 (and the lemmas used), we obtain
an immediate corollary. Changing spin-space anti-symmetry to spin-space

symmetry, we obtain the equivalent result for bosons. The change of symmetry
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interchanges the even and odd condition in the singlet and triplet, hence
constructing the trial state (4.2.2), we must interchange Ps and P;. Thus

we get,

‘PF
g, = |7 (8 + QmeF) PEAEP . Ry <t g

The proof is unchanged except for the choice of x. In this case, since a, > a,
and the roles of a, and a, are exchanged, the optimal choice for y is a spin

polarized state. Hence we get the following corollary:

Corollary 4.12 (Bosonic version of Theorem 4.2). Let v satisfy the assump-
tion from above, then the ground state energy of the dilute spin-1/2 Bose gas

satisfies
2

E< N%pQ (1 + 2pac + O ((pR)6/5 + N*l)) (4.3.2)

Here R = max(|ac|, Ro).

Spin-Dependent Potentials

Interestingly, the proof of Theorem 4.2 we gave in the last section, allows for

a slight generalization to potentials that are of the form
v(z; — x5) = ve(; — 25) PY 4v,(z; — x5) pi (4.3.3)

With ve/o = Ve/onc. T Vejoreg €ach satisfying the assumptions on v. In this

case the Fy ./, becomes

e e )

A2 1<i<j<N i=1
N
( > (/ Z’a 12’ + Z Uoreg ij \Ijo)l2|2_zmi‘l’F|2>,
Az 4 1<i<j<N i=1
(4.3.4)

Consequently, Theorem 4.2 still holds, with a. the even-wave scattering length
of ve and a, the odd wave scattering length of v,. We summarize this obser-

vation in the following corollary
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Corollary 4.13 (Spin-dependent version of Theorem 4.2). Let v = ve Ps 4v, Py
be repulsive (v > 0) satisfy the assumption from above, then the ground state
energy of the dilute spin—1/2 Fermi gas satisfies
2
B < NTp? (1 +2p (In(2)ae + (1 — In(2))a,) + O ((pR)6/5 + N—l)) :
(4.3.5)
if ap > a. and

E< Nﬁ,ﬂ (1 + 2pap + O ((pR)6/5 + N—1)> : (4.3.6)

if ap < ae.
Here R = max(|ae|, a0, Ro). Furthermore, a. denotes the even-wave scattering

length of ve and a, the odd wave scattering length of v,.

Proof. Repeat the proof of Theorem 4.2 but change w,/, to even/odd wave
scattering solutions of v,/,. Notice that it is no longer clear that a, > a. and
hence the choice of y is the periodic antiferromagnetic Heisenberg chain when
a, > ae and a spin polarized state when a. > a,, both of which are translation
invariant. Furthermore, (4.2.14) is no longer clear, as w, > w, might not be
satisfied. Instead, one may notice that (4.2.14) is actually an equality on B127

and use that

N hy 9 i 2
<2) / N Z ve(x; — ) ‘PQJ ‘Ijx‘ + vo(xi — ;) | Py \I/X‘
Bi2\Bi3 1<icj<N
N 2
<(3) [ X e+t - )y
B12\Bh; 1<i<j<N
1
< const. b2/ v(z) — &72)7/)(3)(331,332,(1'3)
A12NAag (:El - :1:2)2
+ const. / v(zy — 332)*,0“”(301 X9, X3,24)
A12NAsy (.’I;l - w2)2 ’ 7 ’
1
-+ const. 2/ Ty — 965)72P(5)(331,$2,3€373747$5)
A120A23QA45 (Jfl - ‘/172)

1
2 6
-+ const. / x5 — %)72 P( )(561, €2,X3,T4,T5, 936)
A120A34QA56 (xl - CL'Q)

< const. Ey (N(pb) +N2pb))pb2</v>.

which can be absorbed in other errors. Alternatively, one use a trial state of
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the form
Ye (APRL£HPR) Y, R(z)<b
\I/X: R (fl s f2 t )X ( ) : (437)
Up, R(z)>1b

with fi = min (we, (nwX + (1 — N)wl¥)) and fo = min (w,, (nWX + (1 — p)wk)).
In this case (4.2.14) is valid and the trial state is unchanged in 3122- With this
trial state, the proofs of Lemmas 4.5 and 4.6 are proved in the same way as
before. O

An interesting application of a version of Corollary 4.13 given below in
Corollary 4.14 is the Lieb-Liniger-Heisenberg model introduced by Girardeau
in [Gir06]. In his paper, an upper bound is given by a trial state argument in

the case ¢ > ¢/. Girardeau finds
Errg < Erp(In(2)d + (1 —1n(2))e), (4.3.8)

where Er 1 (+) is the ground state energy of the Lieb-Liniger model as a function
of the coupling strength. The Lieb-Liniger-Heisenberg model is defined with

the formal Hamiltonian

Hipom = — Z 07 +2 Z (c’ f’i’j +c 15?]) Sz — xj), (4.3.9)
i i<j

where the spin projectors, P/, are defined on the sector {o} to be

pij/t _ PZ;(Z')G”(J‘)7

with o~ (i) defined such that o,-1(;y = i, and the domain of (4.3.9) is taken to
be wave functions that are symmetric in the spatial coordinates. This means
that under combined spin-space coordinate exchange (z;,0;) < (z;,0;) the
(i, j)-singlet part of the wave function is anti-symmetric and (4, j)-triplet part
is symmetric. For spatially symmetric systems, we require in general potentials
to of the form

vs(x; — ) Pij +up(z; — x;) 15?, (4.3.10)

with v/, satisfying the same conditions as v/, above. This is to ensure that
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the total energy is determined by the energy on any ordered sector?. This of
course implies that Corollary 4.13 is not directly useful in this case. However,
Going through the proof of Theorem 4.2, we see that we may as well get the

following corollary.

Corollary 4.14 (Spatially symmetric, spin-dependent version of Theorem
4.2). Let v = vy f’s +vy f’t > 0 satisfy the assumption from above, then the
ground state energy of the dilute spin—1/2 spatially symmetric gas satisfies

E< Nﬁﬁ (1 +2p (In(2)as + (1 — In(2))ar) + O ((pR)6/5 v N—l)) ,
(4.3.11)
if ax > as and

E< Nﬂ;pQ (1 200, + O ((pR)6/5 n N-l)) , (4.3.12)

if ar < ag.
Here R = max(|as|, |at|, Ro). Furthermore, as denotes the even wave scatter-

ing length of vs and a; the even wave scattering length of vy.

Proof. Repeat the proof of Theorem 4.2, with the same modifications as in
Corollary 4.13 (including lemmas used) but change w,/, to the even wave
scattering solution of v,/ and extend the trial state to all sectors, {o}, by
spatial symmetry instead of spin-space anti-symmetry. The choice of y is
the periodic antiferromagnetic Heisenberg chain when a; > as and a spin
polarized state when as > a;. Whenever anti-symmetry was used in the proof
of Theorem 4.2 the same step may be justified by spatial symmetry. To see
this, we note that (4.2.10) can be derived by use of only spatial symmetry.

2This is case for potentials of the form (4.3.10) since for spatially a symmetric function
we have on the sector {o}

/;U}U(xi_Wj) Z )
/{U} v(z; — x5) Z

]isi,/jtq/)((‘rlysl)7 (3727 52)7 .. (.’L‘N, 5]\]'))’2 =

’ 2

Pi/jt 1/1((9901,501% (1'02,802), s (xUN7SG'N))

o)1) :
Ps/t ’ 1/)((561,81),(ZCQ,SQ),...($N,SN)) s

where we used spatial symmetry and relabeled the spin indices by i — o~ !(i) in the first
equality. We then relabeled the particle coordinates z; — x,, and the spin indices ¢ — o;
in the second equality.
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However, in (4.2.12) we find instead

/B> |82-\IIX\2 < Z </A12m{a} ’67:(\1]6)12‘2> <X ‘ngl(l)va’l(@‘ X>

12 {c}€S12
o—1(1).0—1
+ Z (/ |8i(‘110)12|2> <X ‘Pt (1)7 (2)‘ X> .
{0’}6512 Amﬁ{o’}
(4.3.13)

This is a consequence of the fact that the spins are not permuted when defining
the trial state using the spatial symmetry (see Footnote 1 above in Section
4.2). A similar modification is made in the proofs of Lemmas 4.5 and 4.6.

From this point, the proof proceeds as before by noticing that

N
o1 (1),0 1 (2) 1 kk+1
<X P ‘X> - N Z <X Pt ‘X>
is independent of o € S12 because of translation invariance of x. O

We see that the upper bound given by Corollary 4.14 (up to a small error

in the dilute limit) is

1
Errw < Erp <<lnc(,2) 41 ln(2)> ) , (4.3.14)

Cc

when ¢ > ¢/. By the weighted harmonic-arithmetic mean inequality it is clear
“~ — 0.

However, (4.3.8) gives just the free Fermi energy on the right-hand side when

that our bound improves (4.3.8). The two bounds agree in the limit

¢ — 00, whereas our bound reduces to the correct Yang-Gaudin energy, to

leading order, in this limit.

Remark 4.15. In the settings of Corollaries 4.18 and 4.14 we will refer to the
regimes where a, < a or a; < as as the ferromagnetic phase and the regimes

where a, > a. or a; > as as the antiferromagnetic phase.

4.4 Lower Bound

In this section, we will further motivate the Conjecture 4.1, however, a com-
plete proof of a lower bound matching the upper bound in Theorem 4.2 is still

missing. One may try to apply the same technique as was used in Chapter 3,
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however, we will see that there are obstacles in this strategy.

Solvable Cases

To begin with, we may analyze the solvable models at hand. We will see that

these are in agreement with Conjecture 4.1.

The hard core model: The first solvable case is the hard core model,

with v = 00l [_g 4], With ac = a, = a by Example 2.34. In this case, we have

2
E =Ep (L - L) = N%pQ (1—pa) 2+ O(p?), (4.4.1)

1—pa

with Fp (L — ﬁL) denoting the spin polarized free Fermi energy in a box

of length ﬁL. Of course since since a. = a, = a in this case we have

E = JVfﬂ;p2 (1 —In(2)pae — (1 — In(2))pas) " + O(p?), (4.4.2)

which match Conjecture 4.1.

The Yang-Gaudin model: This model was studied in Section 2.6. In
this case, we have a, = —2/c and a, = 0 by Example 2.33 Of course the upper
bound from Theorem 4.2 applies. Furthermore, we found in Proposition 2.48
the bound

2
e=¢“ lim E/L” >~ p3 [(1 —In(2)pa.) "2 . (4.4.3)
N,L—00 3
N/L=p

[1%]

Here is used to emphasize that e is strictly speaking not known to be
the true ground state energy (see Subsection 2.6). Hence we conclude e =
%2,03 (14 21In(2)pac + O(p|ae|)%/®), which is in agreement with Conjecture

4.1.

The General Case

In the case of a general potential, v, where the resulting model is not solvable,
we might attempt to mimic the proof from the bosonic/spin polarized case in
Chapter 3. We will here follow this strategy. We note first that Lemmas 19

and 20 of Chapter 3 do not depend on any symmetry of the wave function.
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Dyson’s lemma (Lemma 21 of Chapter 3) is modified slightly in the following

way: Let H!

even/oda denote even/odd H! functions, then we have the following

lemma.

Lemma 4.16 (Dyson’s lemma spin—1/2 fermions). Let R > Ry = range(v)

and ¢ € <Helven(R) ® Ps ((C2)2>) ® (Hédd(R) ® Py <((C2)2>>, then for any
interval Z > 0

s 1, / 1 1
— > A.
L10el+5olel = [ 7 (o Pt gma Pt ) Grt6n)p (444)

where a is the s-wave scattering length.

Proof. The lemma follows straightforwardly from the Definitions 2.27 and
2.28. O

Thus we may prove the equivalent of Lemma 22 of Chapter 3: In the

following ¥ denotes the spin—1/2 fermionic (Neumann) ground state of

N
H=-) 07+ >  olzi—u1)). (4.4.5)
=1

1<i<j<N

We shall also define the continuous function ¢ € (L*([0,L — (N — 1)R]) ® C2)®N,
with R > max (Rp, 2 |ac|,2a,), such that for0 <27 <--- <zny < L—(N-1)R

Y(x1,z2,...,2n) = V(r, R+ 22,...,(n — 1) R+ znN), (4.4.6)

and extended by spatial symmetry.

Lemma 4.17. Let R > max (Rp,2|a|) and € € [0,1]. For defined in (4.4.6),

2 1 2 N = 2€ 2¢
/Z|8ﬁ\1j| +Z§UU|\I}| > Errn NjL’R—(Ie’R—CLO (ly)
i i (4.4.7)

+(1R_26)const. (1= (@ly)).

where L == L — (n — 1)R, the superscript “N” denotes Neumann boundary
condition, and Erpg (N, L, c) is the ground state energy of the Lieb-Liniger-
Heisenberg model in (4.3.9).
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Proof. We mimic the proof of Chapter 3 ([ARS22]): Splitting the energy func-
tional into two parts, and using Lemma 20 from Chapter 3% on one term and
Lemma 4.16 on the other, we find

1
JOATED SEAI T
7

i#]
[ e Fe St~ ) (g P i) v

+(1—¢) Z/D__yaiqj|2+/zvij|\1z|2 ,

1<j 1<j

(4.4.8)
where vi(z) = minj;(|z; — xj]), ji = j with v(z) = |z; — x|, is unique
a.e., and the nearest neighbor delta interaction can be written §(v;(z) — R) =
(Ej# 0(x; —xj — R) +6(x; —x; + R)]) Ii,()>r- The nearest-neighbor in-
teraction is obtained from Lemma 4.16 in the following manner: For each
term in the sum ), fix all particles x; # x;, then divide the integration
domain in x; into Voronoi cells around all remaining particles, and integrate
over all Voronoi cells individually.

With the use of Lemma 20 of Chapter 3 with R > 2 |a.| in the last term, and
by realizing that the first two terms can be obtained by using 1 as a trial state
in the Lieb-Liniger-Heisenberg model

, we obtain

2 1 2 N ~ 2€ 2€
[ 100 43 S 0 = B (ML e ) (010)

i£]
(1-¢
R2

+ const. (1 — (Y[¢)),

which is the desired result. O

3In this case Lemma, 20 from Chapter 3 is valid with a replaced by a..
4To see this, notice that on {o} we have

- ¥

2

P?/jt \Ij((xcn ) 301)7 (R + Toy, Sﬂz)a ) ((N - 1)R oy, SUN))

P 2
P;’/Jt w((‘rfflast"l)a (xf"zvso'z)v ety (:EO'N7'SUN))

Pi/jtw((xlvsl)a ('T2752)7 sy (xstN))‘z
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We may also prove the equivalent of Lemma 23 of Chapter 3, by using
that Erpp (N, I:,c’,c) > ELL(N.E,C’) when ¢ > ¢.

Lemma 4.18. For n(pR)? <

have

< 16”2 8, pR < < and R > 2max(|ac|,as, Ry) we

(|y) > 1 — const. (n(pR)3 + nl/g(pR)Q) . (4.4.9)

Proof. We mimic the proof of Lemma 23 in Chapter 3 ([ARS22]): From the
known upper bound, i.e. Theorem 4.2, and by Lemma 4.17 with e = 1/2, it
follows that

]\77;2;)2 (1 +2p (In(2)ae + (1 — In(2)a,)) + const. (pR)6/5)

1 1 1

~ (4.4.10)
> Erin (N,L, T R_@) (W) + 1552 (1 — (1)),

Subtracting ELLH (N L, R a.’ R—au

) on both sides, and using
Epiu(N,L,d,c) > Ep (N.L,c),

and Lemma 17 of Chapter 3 on the left-hand side, we find

n7;2 <p2 (1 +2p(In(2)ae + (1 —In(2)a,)) + const. (pR)6/5>

—p° (1 —4p(R — ae) — const. n_2/3> ) (4.4.11)
(161RQ — Elin (N,E, R—lae’ R—1a0>> (1= (@),
with 5 =n/l = p/(1 - (p—1/O)R).

Using the upper bound ELLH (N L, R o R a ) <n' ,o on the right-hand
side, as well as 2p > p > p(1 4 pR), we find

Vv

2 2 6/5 —2/3 2 4r® 2
const. np“R (pRJr (pR)"”” +n > 16 -R n—=p (1= (|y)) .
(4.4.12)

It follows that we have

(|w) > 1 — const. (n(pR)3 + n1/3(pR)2) . (4.4.13)
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O

We continue the generalizations from Chapter 3 and prove the following

equivalent of Proposition 24 of Chapter 3:

Proposition 4.19. For n(pR)? < 1251, pR < § and R > 2max(|ac| , a0, Ro)

1672 87
we have
EN(N,L) > EN <N£ 2 2 )
) = LLH y My 05 Yy T
R—ac R—a, (4.4.14)
X (1 — const. <n(pR)3 + n1/3(pR)2>> .
Proof. This follow by using Lemma 4.17 with ¢ = 1 and 4.18. O

We now see that this is where the strategy of Chapter 3 is obstructed.
The obstruction lies with the Lieb-Liniger-Heisenberg model not being Yang-
Baxter solvable, meaning that the Bethe ansatz approach no longer gives exact
solutions for the eigenvalue problem, as the Yang-Baxter equation is no longer
satisfied. This being said, there is still hope that one might obtain a tight lower
bound for the ground state energy of the Lieb-Linger-Heisenberg model in the

dilute limit. We may even conjecture such a lower bound:

Conjecture 4.20. Let Er;g denote the ground state energy of the Lieb-
Liniger-Heisenberg model (4.3.9). Then we have

Eppg > Nﬂ;pQ <1 ~4p <1nc(,2) 1= lcn@))) . (4.4.15)

We that this conjecture is in line with both the Lieb-Liniger scenario,
¢ = ¢, and the Yang-Gaudin scenario, ¢ = oo. The validity of Conjecture 4.20,
would give us the desired lower bound in Proposition 4.19. In the following

subsection, we will give some heuristics for such a lower bound.

The Lieb-Liniger-Heisenberg Ground State Energy: Heuristics

In this subsection, we give only heuristic arguments for a lower bound of
the Lieb-Liniger-Heisenberg (LLH) ground state energy, Frrp. We do not
claim the arguments given to be rigorous. For simplicity, we restrict to having

periodic boundary conditions.
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Degenerate perturbation theory
The first natural approach to estimating Errf, is to do first-order pertur-
bation theory. To do this let is rewrite the LLH Hamiltonian (4.3.9) on the
sector {1,2,..., N} as follows

282 + 2 Z <C + 3¢ (C — C/)Si . Si+1> (5(:@ — xi+1), (4.4.16)

1<i<N

with ¢ > ¢/. We restrict to the regime ¢, > p, €
dilute regime. We consider Hy = — va 1 83 +2 ZlgigN %5(1‘2‘ — Zi4+1) the
“unperturbed” Hamiltonian, which is a Lieb-Liniger (LL) model with coupling

~ _ c+3c
4

¢ = . This model is of course, due to the presence of spin, degenerate

(with finite multiplicity). The Perturbation is then

—2 Z C—C S Sz—i—l) (5( 1‘Z‘+1>.

1<i<N

We restrict to analyzing the problem on the sector {1,2,..., N}, since all
other sectors are related by symmetry. In this case first-order (finitely degen-
erate) perturbation theory, [RS78], dictates that the perturbed eigenvalue is
approximated by
Eppp ~ Epp(@)+  inf (U] x |H'|¥5.x), (4.4.17)
XEspin states

with \Il‘z ; begin the LL ground state at coupling ¢. For the Lieb-Liniger model,

we have by the Feynman-Hellmann theorem and translation invariance

10
(UG [6(z; — 2441)| UG L) = N6~ELL( é). (4.4.18)

x> (4.4.19)

Therefore, it follows that we have

B c—c 0 .
Errg =~ Erp(¢) + ——==FEr1(¢) inf <X i+1

N oOc¢ X Espin states
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and by Lemma 4.11, we find

1
_|_

2 4 B 1 A
~NT 2 (1—? 1- (—ln(2)> c CD

3 c 4 ¢

9 A :1 5 . (4.4.20)
~ N2 P
NN?p (1_62 _ZC,—}—ZC— (4—111(2)) (c—c’)})

5 -
T 4p [ (1
NNEp <l—~2 -(2—ln(2)) d + <2+1n(2)> c])

Now by Taylor expanding in ¢’ around ¢ we find
2 In(2)¢ 1—In(2
Eiin ~ N%pQ (1 —4p < n(2)c 4 L= )>> (4.4.21)
c c

which agrees with Conjecture 4.20.

Lower bound by adding space Consider the two particle case. By
translation invariance we expect the ground state to depend only on the
distance between the two particles, x; — x2, and by spatial symmetry, we
may further restrict to |z; — z2|. Now we may define new coordinates on
the sector {1,2} given by y1 = 1, y2 = z2 + t. Let ¥(|x; — x2|) denote
the LLH ground state, then we may define the extended state W(|y; — yo|) =
U(lyr — y2 +t|), when y2 > y; + v, and extended to the whole [0, L + t] by
P, ¥(r) =P, ¥(0) (1 — $r) and Py ¥(r) = P, ¥(0) (1 - %r) for r < v. Notice
that we defined ¥ such that we have the boundary conditions 2P, ¥'(04) =
(02 — 01) Py W|pp—sy, = cP¢¥(0) and 2P, ¥/ (04) = (02 — 01) Ps ¥lap—zy, =

¢ Ps U(0). With this definition, we see that
L+t 2 _ 2 L 9 5
2/ Pt ()| dr e [Pii)] = 2/ P, W/ () dr + ¢ [P, T(0)
0 0
(4.4.22)

If Lc2e [W(0) |2+ [ (0)[? (1 — $v)% = ¢|W(0)?, that is & = 7 And similarly,

we find

L+t _ 2 5 2 L 9
2/ P, W/ (r)| dr+¢& PS\IJ(O)‘ :2/ [Py ¥/ (r)|"dr + ¢ [Py T(0)?
0 0
(4.4.23)
if # = —<—. Now of course we have H@H > |||, so by using ¥ as a

1-5v

trial state for Hng, i.e. the LLH model with couplings ¢ and ¢, we find
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Erru(2,L,¢,¢) > Erpu(2,L +v,¢,¢) = Errn (27L+t722_t722_>- We

may choose t = %, in which case we find

2 (1 1\!
ELLH(27L7 C,,C) Z ELLH (27L + ) ( - ) 7OO>
C

d ¢

2 /1 1\t
“vo (2o 2 (5 1)) 1431
C C C

> 27;2p2 (1 —2p {111(2) (cl, - 1) + iD

where we used Proposition 2.48, and recall that the last inequality strictly

speaking is conjecture (see Subsection 2.6).

4.5 Lower Bound for Other Symmetries

Recall the Corollaries 4.12, 4.13, and 4.14. For these, we may in some cases
prove a lower bound. This is always the case for the bosonic case, and exactly
the case when a, < a. in the spin-dependent fermionic case, and when a; < ay

in the spin dependent spatially symmetric case. Hence we have

Theorem 4.21. Consider a spin—1/2 Bose gas with repulsive interaction v =
Ureg. + Un.c. as defined above. Then there exists a constant Cp, > 0 such that
the ground state energy EN (N, L) satisfies

N T _ 6/5 -2/3
E (N,L)2N3p 1+ 2pa. — Cr ((pR)*° + N . (4.5.1)

R = max(|ac|, Ro)

Proof. This follows simply from the fact that the spin—1/2 bosonic ground
state energy is greater than or equal to the spinless bosonic ground state

energy and hence from Proposition 15 in Chapter 3. O

Theorem 4.22. Consider a spin-1/2 Fermi gas with repulsive interaction
v = ve Ps+v,Py. Assume furthermore that a, < a.. Then there exists a
constant Cp, > 0 such that the ground state energy EN(N, L) satisfies

N T 5 _ 6/5 ~2/3
E (N,L)ZN?)p 14 2pa, — Cr ((pR)*° + N : (4.5.2)



CHAPTER 4. THE GROUND STATE ENERGY OF THE
116 ONE-DIMENSIONAL DILUTE SPIN—% FERMI GAS

Here R = max(|ae|, ao, Ro)

Proof. This follows from Proposition 4.19 (the proof hold regardless of the

more general potential), and from the fact that for a, < a., we have

.9 2 .2
EN N L, ——— >EN (N, L
LLH( ) ’R—ae’R—a()) LL( ) ’R—a(,)

The remainder of the proof is identical to the proof of Chapter 3 from

Proposition 24 of Chapter 3 and down. O

Theorem 4.23. Consider a spin—1/2 spatially symmetric gas with repulsive
interaction v = vy 155 +u; 15,5. Assume furthermore that a; < as. Then there

exists a constant Cp, > 0 such that the ground state energy EN (N, L) satisfies

2
EN(N,L) > N%,ﬂ (1 +2pay — C}, ((pR)6/5 + N*2/3)> . (4.5.3)

Here R = max(|as|,|a¢|, Ro)

Proof. This follows from Proposition 4.19 (the proof hold regardless of the
more general potential and different symmetry), and from the fact that for
ar < ag, we have

_ 9 2 -2
EN (N L, —"— >N (N L, —"—
LLH( ’ 7R—aéfl%—at)_ LL< ’ ’R—at>

The remainder of the proof is identical to the proof of Chapter 3 from
Proposition 24 of Chapter 3 and down. O

We see that combining these results with the Corollaries 4.12, 4.13, and
4.14 we obtain ground state energy expansions to next-to-leading order in the

diluteness parameter in all these cases.



Chapter 5

Conclusion and Outlook

In this chapter, we summarize both the findings of this thesis and questions

that are left open.

5.1 Conclusion

In Chapter 2, we started by reviewing basic many-body quantum mechanics.
Here we defined relevant systems and quantities. We also proved results on
the generality of the potentials that would be allowed for the energy quadratic
form to be associated with a unique self-adjoint Hamiltonian. In particular, we
showed that in one dimension potentials of the form v = v fnite + Vmeas. + ¢do
with ¢ € {0, 00}, were allowed. We then proceeded by reviewing the scattering
length and known results on dilute quantum systems in dimensions two and
three. We also revisited the bosonic and fermionic one-dimensional point
interacting models, i.e. the Lieb-Liniger model and the Yang-Gaudin model.
For the Yang-Gaudin model, we proved a lower bound on the thermodynamic
ground state (within the Yang-Bethe ansatz states).

Chapter 3 consisted of a preprint written in collaboration with Robin
Reuvers and Jan Philip Solovej. Here we proved matching upper and lower
bounds on the ground state energy of the one-dimensional dilute Bose gas, re-
sulting in a next-to-leading order ground state energy expansion. As a corol-
lary, we found a ground state energy expansion for spinless or equivalently
spin polarized (spin-aligned) fermions as well. Finally, as another corollary,
we found the ground state energy expansion for a one-dimensional dilute gas

of anyons. Interestingly, the expansions we found in one dimension exhibit

117
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universality, as is the case in dimensions two and three. However, in one
dimension, the error must depend on the range of the potential, as the scat-
tering length may vanish. The one-dimensional expansion also suggests that
no Bose-Einstein condensate is formed. This is evident in the proof, where
the formation of a Bose-Einstein condensate is absent both in the low-energy
trial state and in the lower-bounding Lieb-Liniger model. The ground state
energy expansion also appears to resemble a perturbed Fermi sea, rather than
a perturbed condensate, as the leading order term is equal to the free Fermi

energy.

In Chapter 4, we generalized some of the results obtained in Chapter 3 to
the spin—1/2 Fermi gas, and to other symmetries or spin-dependent potentials.
Most noteworthy, we proved an upper bound, which we conjectured to be tight
based on the solvable models at hand. This upper bound exhibits the same
universality as was found for the Bose or spin polarized Fermi gases. Perhaps
even more interestingly, the upper bound seemed connected with magnetism
in terms of the Heisenberg chain. For spin—1/2 fermions, with a, > a., we
found that the energy of the variational trial state was related to the antifer-
romagnetic (Heisenberg chain) energy of the spin part on an ordered sector.
Thus the optimal spin part of the variational trial state on a sector was shown
to be the antiferromagnetic Heisenberg ground state. Phrased differently, the
energy of the variational trial state was shown to be determined by an effective
Heisenberg chain model. For other symmetries or spin-dependent potentials,
both the ferro- and antiferromagnetic Heisenberg chains were shown to be ef-
fective models for the energy of the variational trial state.

We then proceeded in Chapter 4 by motivating a matching lower bound for
the ground state energy of the spin—1/2 fermions. We generalized in this
case certain results from Chapter 3. However, the lower bounding model in
these generalizations was shown to be the Lieb-Liniger-Heisenberg model. We
stated a conjecture about the ground state energy of this model in the antifer-
romagnetic phase that, if proven true, implies a rigorous lower bound on the
one-dimensional dilute spin—1/2 Fermi gas. This conjecture was further mo-
tivated by heuristic arguments, but never proven. Finally, we noted that for
certain different symmetries of the domain and properties of the interaction
potential or certain spin-dependent interaction potentials, the lower bounding
(ferromagnetic) Lieb-Liniger-Heisenberg model admits a tight lower bound by

a Lieb-Liniger model. This reduced the completion of the lower bound proof



5.2. OUTLOOK AND OPEN PROBLEMS 119

to the case of Chapter 3. Hence for these symmetries and potentials, and
spin-dependent potentials, we obtained a lower bound, matching the upper

bound already found previously.

5.2 Outlook and Open Problems

In the making of this thesis, we have encountered some problems which are,
at the time of writing, still left open. We give an overview of these problems

here:

e The first problem, which, to the best of our knowledge, seems to have
been left open in the literature, is proving that the ground state of the
Yang-Gaudin model is among the Yang-Bethe ansatz states. Further-
more, a proof of the existence of solutions to the equations (2.6.19)—
(2.6.22) seems also to be absent. Solving this problem appears to be a
key ingredient in giving a rigorous proof of Conjecture 4.20 and thus,

this may be a step in the direction of proving Conjecture 4.1.

e The proof of Conjecture 4.1. We have already identified a possible strat-
egy by proving Conjecture 4.20. However, one may also consider follow-

ing entirely different strategies.

e Conjecture 4.20, was heuristically motivated but ultimately left open.
Given a solution to the first open problem above, we showed in Chapter 4
that the conjecture, in the case of two particles, can be proved by adding
space and reducing the model to a Yang-Gaudin model. This may be a
strategy for more than two particles as well, if one can suitably generalize
the methods. It may also be possible to prove the conjecture in certain
regimes of the couplings ¢, ¢ by making degenerate perturbation theory

rigorous.

Some of the content in this thesis also open up the possibility of pursuing new

results in the future. We list some of these in the following:

e Finding the next order term in the ground state energy expansion. Al-
though we obtain ground state energy expansions to next-to-leading or-
der (first order in the diluteness parameter) in the bosonic case, the
solvable models seem to suggest that the expansion may be valid even

to second order in the diluteness parameter.
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e Giving an approximate momentum distribution of the ground states of
dilute quantum gases in one dimension. In Chapter 3 it was briefly
touched upon in (1.24) and (1.25) of Chapter 3 that the momentum
distributions of these ground states are predicted to exhibit some uni-

versality as well.

e Making rigorous the effective Heisenberg chain model for spin-1/2 fermions
(and the other symmetries and spin-dependent potential analyzed in
Chapter 4). In the upper bound proof, this effective model was evi-
dent. Similarly, such effective models are predicted for point interacting

models in one dimension in recent physics literature [YC16, VPVT15].

e Generalizing the results of Chapter 4 to higher spin. For higher spin,
the upper bound from Chapter 4 seems to have a straightforward gener-
alization. However, we have no intuition for whether this bound is still
tight. To answer this, one may start by lower bounding the Yang-Gaudin

ground state energy for higher spin models.



Appendix A

Upper Bound with Periodic

Boundary Conditions

If we, in the upper bound for spin—1/2 fermions, consider the case with periodic
boundary conditions in the box, one may actually, without the assumption
of translation invariance on x, show that the antiferromagnetic Heisenberg
ground state, is the optimal spin state in the trial state. Starting from (4.2.12),

where no properties of y have been used, we find, using translation invariance
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equation (4.2.13) follows. But from (4.2.13) it is clear that the antiferromag-
netic Heisenberg ground state is optimal. Thus we circumvented the use of

translation invariance of y.
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