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Abstract

Local laws describe the phenomenon that eigenvalues of random matrices converge
to deterministic densities on scales just slightly above the typical eigenvalue spacing
as the dimension of the matrices tends to infinity. This thesis explores both the nature
of such limiting densities as well as the local laws that describe the convergence to
these limiting densities for specific ensembles of both Hermitian and non-Hermitian
random matrices.

The class of random matrices we are studying in the Hermitian realm are non-
commutative quadratic polynomials of multiple independent Wigner matrices. We
prove that, with the exception of some specific reducible cases, the limiting spectral
density of the polynomials always has a square root growth at its edges and prove
an optimal local law around these edges. Combining these two results, we establish
that, as the dimension N of the matrices grows to infinity, the operator norm of
such polynomials converges to a deterministic limit with a rate of convergence of
N−2/3+o(1). Here, the exponent in the rate of convergence is optimal. For the specific
reducible cases, we also provide a classification of all possible edge behaviours.

For non-Hermitian matrices X and Y with centered, independent and identically
distributed (i.i.d.) entries, it has been shown that the eigenvalues of the rational
function Y−1X converge to a uniform density after being projected onto the Riemann
sphere. We provide a simple proof of a local law for this ensemble by reducing the
problem to the local circular law, a well-established result that the eigenvalues of a
single centered i.i.d. matrix converge to the uniform distribution on the complex unit
disc on all scales larger than the typical eigenvalue spacing.





Resumé

Lokale love beskriver det fænomen, at egenværdier af tilfældige matricer konvergerer
til deterministiske tætheder på skalaer, der en smule større end den typiske afstand
mellem egenværdier, når matricernes dimension går mod uendelig. Denne afhandling
undersøger både arten af sådanne begrænsende tætheder og de lokale love, der
beskriver konvergensen til disse begrænsende tætheder for specifikke ensembler af
både hermitiske og ikke-hermitiske tilfældige matricer.

Den klasse af tilfældige matricer, vi studerer i det hermitiske område, er ikke-
kommutative kvadratiske polynomier af flere uafhængige Wigner-matricer. Med
undtagelse af nogle specifikke reducerbare tilfælde beviser vi, at den begrænsende
spektrale tæthed af polynomierne altid har en kvadratrodsvækst ved sin rand, og
vi beviser en optimal lokal lov omkring randen. Ved at kombinere disse to resul-
tater fastslår vi, at når dimensionen N af matricerne går mod uendelig, konvergerer
operatornormen for sådanne polynomier til en deterministisk grænse med en kon-
vergensrate på N−2/3+o(1). Her er eksponenten i konvergenshastigheden optimal.
For de specifikke reducerbare tilfælde giver vi også en klassifikation af al mulig
randadfærd.

For ikke-Hermitiske matricer X og Y med centrerede, uafhængige og identisk
fordelte (i.i.d.) indgange er det blevet vist, at egenværdierne af den rationelle funktion
Y−1X konvergerer til en ensartet tæthed efter projektion på Riemannsfæren. Vi
giver et simpelt bevis på en lokal lov for dette ensemble ved at reducere problemet
til den lokale cirkulære lov, et veletableret resultat, at egenværdierne for en enkelt
centreret i.i.d. matrix konvergerer til den ensartede fordeling på den komplekse
enhedsskive på alle skalaer, der er større end den typiske egenværdiafstand.





Contributions and structure

The thesis is split into two parts. The first part, consisting of Chapters 1-3, is dedi-
cated to the study of Hermitian random matrices and mostly focuses on multivariate
quadratic polynomials of independent random matrices. Our main results for this
part are given in Section 2.2. The second part discusses non-Hermitian random
matrix theory and its main result is given in Theorem 5.2.1.

• Chapter 1 provides an introduction to local laws and Hermitian random matrix
theory. The resolvent method and the Dyson equation are introduced and we
explain in detail how eigenvalue rigidity and eigenvector delocalization can be
derived from local laws for the resolvent.

• Chapter 2 consists of a reproduction of the preprint arXiv:2308.16778: [35].
In it, we analyse the edge behaviour of multivariate quadratic polynomials
of independent Wigner matrices. We establish the asymptotic behaviour of
the limiting spectral density for all such polynomials and prove that, with
the exception of some specific reducible cases, their density always shows
a square root growth. Combined with an optimal local law, which we also
prove around all edges with a square root growth, we then derive a norm
convergence rate with an optimal exponent. Note that there is some overlap
between the explanations given in Chapter 1 and those given in Chapter 2
due to the self-containedness of Chapter 2. The preprint is a joint work with
Torben Krüger and Yuriy Nemish.

• In Chapter 3 we give some examples of polynomials to highlight some notable
features of the limiting spectral measure analysed in Chapter 2. The author
gratefully acknowledges the help of Paula Belzig in the creation of the plots
displayed in this chapter.

• Capter 4 contains a short introduction to non-Hermitian random matrices. In
particular, we introduce Girko’s trick and explain how it is used to prove the
circular law.

• In Chapter 5 we introduce the spherical ensemble, an example of a rational
function of non-Hermitian random matrices. We prove a local law for the
spherical ensemble and include a short discussion on how this trick can be
extended to more general rational functions.
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Chapter 1

Introduction

Random matrices were first introduced by Wishart in 1928, who studied the distribu-
tion of random covariance matrices [69]. The natural question about their spectral
statistics, that is, the nature of their eigenvalue and eigenvector distributions, was
only brought up about thirty years later in a seminal work by Wigner [68].

The crucial observation by Wigner was that as the dimension N of many random
matrices grows to infinity, their eigenvalue distribution tends to a deterministic
limiting distribution. This statement can be formalized in the following way. Let
H be a random matrix. Throughout this introduction, we always assume that H is
Hermitian, i.e. its entries hij satisfy hij = h̄ji. Let λi, i ∈ {1, . . . , N}, denote the
eigenvalues of H ∈ CN×N with algebraic multiplicity. Then all eigenvalues of H
are real and we define the empirical eigenvalue distribution ρN of H by

ρN :=
1

N

N∑
i=1

δλi
, (1.0.1)

where δx denotes the normalized point mass at x ∈ R. Clearly, ρN is a probability
measure for all N ∈ N and since H is a random matrix, ρN is itself a random
variable. If there is a deterministic probability measure ρ such that limN→∞ ρN = ρ
weakly in probability, then we call ρ the limiting spectral measure and we say that
H obeys a global law.

A famous example of a random matrix ensemble that obeys such a global law is the
Wigner ensemble. We define Wigner matrices W ∈ CN×N as follows.

Definition 1.0.1 (Wigner matrix). Let ξ0 be a real random variable and let ξ1 be a
random variable independent of ξ0 that is either real or complex. Let them both be
centered, have unit variance and finite moments, i.e.

E[ξi] = 0, E[|ξi|2] = 1 and E[|ξi|p] ≤ Cp (1.0.2)

for i = 0, 1 and some constant Cp for all p ∈ N. Here, E[·] denotes the expectation
value of a random variable. A Hermitian matrix W ∈ CN×N with entries wi,j is
called a Wigner matrix if (wij, wji) are independent copies of (ξ1, ξ̄1) for i > j and

11



12 Chapter 1. Introduction

wii are independent copies of ξ0. In other words, Wigner matrices are Hermitian
random matrices with centered and up to the Hermitian symmetry independent
entries with uniform variance.

Remark. The condition that all moments of ξ0 and ξ1 are finite is not necessary for
the statements discussed here. We still demand it for simplicity, since we are not
trying to optimize the moment conditions.

Remark. The
√
N normalization ensures that most eigenvalues λi will be of order

1, since we have

1

N

N∑
i=1

E[λ2
i ] =

1

N
E[TrW2] =

1

N

N∑
i,j=1

E[|wij|2] = 1. (1.0.3)

It has been shown that the limiting spectral measure of W is given by the semi-circle
distribution ρsc, an absolutely continuous probability measure with density given by

ρsc(E) =

{
1
π

√
4− E2 if |E| ≤ 2

0 if |E| > 2.
(1.0.4)

This is known as the semi-circle law and it was first proved by Wigner himself [68].
However, since the eigenvalues of Wigner matrices are all functions of the same
random variables, that is, the entries of the matrix, we expect them to be strongly
correlated and one can ask the question if the convergence of the empirical density
to the limiting spectral measure also occurs on a local scale. More precisely, while a
global law implies that

lim
N→∞

1

ε
|{λ ∈ Spec(W) : λ ∈ [a, a+ε]}| = 1

ε

∫ a+ε

a

ρsc(E)dE (1.0.5)

in probability for all ε > 0 and a ∈ R, we ask if

lim
N→∞

1

εN
|{λ ∈ Spec(W) : λ ∈ [a, a+εN ]}| = lim

N→∞

1

εN

∫ a+εN

a

ρsc(E)dE = ρsc(a).

(1.0.6)
also holds in probability for sequences (εN)N∈N with εN → 0. We call such results
local laws. It is clear that for a local law to hold for all a ∈ R, we must require
εN ≫ N−1, as for εN ∼ N−1, we would start to see the individual eigenvalues and
we can no longer expect them to average out their density. However, it turns out
to be sufficient to choose εN = N−1+γ for fixed γ > 0 arbitrarily small. This is
formalized in the following theorem.

Theorem 1.0.2 (Local law for the empirical eigenvalue density). Let W be a Wigner
matrix as introduced in Definition 1.0.1. For all γ ∈ (0, 1) and all D ∈ N there is a
Cγ,D > 0 such that

P

(
N1−γ

∣∣∣∣∣∣∣Spec(W) ∩ [a, a+N−1+γ]
∣∣−∫ a+N−1+γ

a

ρsc(E)dE

∣∣∣∣∣ ≥ N− γ
2

)
≤ Cγ,DN

−D

(1.0.7)
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holds uniformly for all a ∈ R.

Notations

We denote the average trace of a matrix R ∈ Cn×n by ⟨R⟩ = 1
n
TrR and its operator

norm by ∥R∥. The Hermitian adjoint of R is denoted by R∗. For vectors v,w ∈ Cn

we use ⟨v,w⟩ to denote their standard scalar product. The matrix R is called positive
(semi-)definite if it satisfies ⟨v,Rv⟩ > 0, (⟨v,Rv⟩ ≥ 0) for all v ∈ Cn \ {0}. It is
called negative (semi-)definite if −R is positive (semi-)definite. The identity matrix
is denoted by In ∈ Cn×n. If this does not create any ambiguity, we often compactly
write ζIn = ζ for multiples of the identity matrix.

The letter z always denotes a complex number. Throughout Chapters 1-3 we always
use E = Re z and η = Im z. In Chapters 4 and 5 we deviate from this notation
and instead η denotes a positive number independent of z. The imaginary unit is
denoted by i to distinguish it from summation indices often denoted by i. We still
usually avoid using them together in the same expression, instead opting for other
summation indices if the imaginary unit is explicitly displayed.

We say that a sequence of event A = AN , N ∈ N, holds with high probability if for
all D ∈ N there is a constant C = C(D) such that we have

P(A) ≥ 1− CN−D. (1.0.8)

The notation JnK := {1, 2, . . . , n} is used for the natural numbers up to n. If X
and Y are positive quantities, we use the notation X ≲ Y if there is some constant
c > 0 such that X ≤ cY . If the constant c depends on any parameters α, we write
X ≲α Y . In particular, the constant will never depend on the dimension of our
random matrices, N . If both X ≲ Y and Y ≲ X hold true, we write X ∼ Y .
If X ≲ Y , we sometimes also write X = O(Y ) and if limN→∞ Y −1X = 0, the
notation X = o(Y ) is used.

Note that some more notations that are commonly used only in the preprint that
makes up Chapter 2 are given in the dedicated notations section of the preprint in
Section 2.1.

1.1 The resolvent method

A method that has proven extraordinarily successful at proving local laws is the
resolvent method and we introduce it in this section. It allows for much stronger local
law statements than Theorem 1.0.2 and we will show how Theorem 1.0.2 follows as
a corollary of Theorem 1.1.2 below. See e.g. [9, 31, 63] and references therein for
an overview of the resolvent method and its historical development.
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1.1.1 The Stieltjes transform
Let µ be a probability measure with real support. For z ∈ C \ supp(µ), we define its
Stieltjes transform mµ by

mµ(z) :=

∫
R

µ(dx)

x− z
. (1.1.1)

Furthermore, let H denote the upper half-plane, i.e.

H := {z ∈ C : Im z > 0}. (1.1.2)

Since µ has real support, mµ is well defined on all of H. The following lemma
summarizes some basic properties of the Stieltjes transform.

Lemma 1.1.1. Let µ be a real probability measure and let mµ be its Stieltjes
transform, which was introduced in (1.1.1). Then the following holds true.

1. The function mµ is analytic on all of H.

2. The probability measure µ is uniquely defined by its Stieltjes transform on H,
i.e. if µ′ is another probability measure such that mµ = mµ′ on all of H, then
we have µ = µ′.

3. Let (µN)N∈N be a sequence of real probability measures such that

lim
N→∞

mµN
(z) = mµ(z) (1.1.3)

for all z ∈ H. Then, µN converges weakly to µ.

4. For any interval I with neither endpoint on an atom of µ we have

µ(I) = lim
η→0

1

π

∫
I

Immµ(E + iη)dE. (1.1.4)

Proof. Statements 1. and 2. are clear. For Statement 3. and Statement 4. see e.g. [6,
Chapter 2.4].

The resolvent G of a matrix H at spectral parameter z ∈ C \ Spec(H) is defined by

G := (H− z)−1 ∈ CN×N , (1.1.5)

where we have used the notation z = INz. Since H − z is non-invertible if and
only if z ∈ Spec(H), the resolvent is well defined and for Hermitian H, we have
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Spec(H) ⊂ R and its resolvent is defined on all of H. The Stieltjes transform of the
empirical measure ρN , introduced in (1.0.1), of H is given by

mρN (z) =
1

N

N∑
i=1

1

λi − z
=

1

N
Tr(G) =: ⟨G⟩, (1.1.6)

where we have introduced the shorthand notation ⟨·⟩ for the averaged trace of a
matrix. Therefore, we can establish a global law for a random matrix H, if we are
able to prove that the averaged trace of its resolvent ⟨G⟩ converges pointwise to the
Stieltjes transform m = mρ of some deterministic measure ρ and this also proves
that ρ is the limiting spectral measure.

1.1.2 The Dyson equation and the local law for the resolvent
To prove convergence of ⟨G⟩, we first look for a promising candidate for the limiting
object. To do so, we first consider a Wigner matrix W with complex Gaussian
entries and note that W and its resolvent G satisfy

WG = IN + zG. (1.1.7)

Using the cumulant expansion formula, [29, Proposition 3.2], combined with the fact
that all cumulants of order greater than two vanish for Gaussian random variables,
we find that the expectation value of WG satisfies

E[WG] = E[Ẽ[W̃∇W̃G]] = −E[Ẽ[W̃GW̃]], (1.1.8)

where W̃ denotes an independent copy of W and Ẽ its expectation. ∇RF(H) =
d
dε
F(H + εR)|ε=0 denotes the directional derivative for any differentiable matrix

valued function F : CN×N → CN×N . In the second step we have used ∇RG =
−GRG, which holds since G is a resolvent. This motivates the definition of D as
an error term by

D := S[G]G+WG with S[R] := E[WRW], (1.1.9)

where S is called the self-energy operator. Indeed, using [29, Proposition 3.2] twice,
we find

E|⟨D⟩|2 ≲ |⟨G∗G⟩|2

N
=

|⟨ImG⟩|
Nη

, (1.1.10)

strongly indicating that D is a small object in some sense for η ≫ N−1 (See [29,
Equation (4.4) and below] for the detailed calculation). In the last step in (1.1.10)
we have used the Ward identity

G∗G =
ImG

Im z
, (1.1.11)

that holds true for the resolvent of all Hermitian matrices. With the definition of the
error term (1.1.9), the resolvent G satisfies the equation

IN + (z + S[G])G = D. (1.1.12)
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If the error term in (1.1.12) vanishes, the equation takes the form

IN + (z + S[M])M = 0 (1.1.13)

and it is known as the Dyson equation. The resolvent G has positive imaginary part
for all z = E + iη ∈ H since it is a normal matrix and its eigenvalues

1

λj − z
=

1

(λj − E)2 + η2
(λj − E + iη) (1.1.14)

have positive imaginary part for all j ∈ JNK. As we are interested in solutions to
(1.1.13) that are in some sense close to G, we also condition on ImM > 0. Under
this condition it has been shown in [46] that there is a unique solution to (1.1.13).

Remark. The set-up presented here holds in a much more general setting. For a
random matrix H with non-vanishing expectation value the Dyson equation (1.1.13)
becomes

IN + (z − E[H] + S[M])M = 0 with S[R] = E[(H− E[H])R(H− E[H])].
(1.1.15)

The existence of a unique solution the constraint ImM > 0 is guaranteed for all
z ∈ H by [46]. For a rigorous result on the smallness of the error term (1.1.9) in
appropriate norms for a wide range of random matrix ensembles we refer to [29,
Theorem 4.1].

Recall that the Stieltjes transform of the empirical measure ρN is given by ⟨G⟩.
Therefore, assuming that G is close to M our candidate for the Stieltjes transform
of the limiting spectral measure is given by

msc = lim
N→∞

⟨M⟩. (1.1.16)

In case the non-diagonal entries of W have vanishing second moment, i.e. E[ξ21 ] = 0,
the self-energy operator takes the simple form

S[R] = ⟨R⟩IN . (1.1.17)

Then it is easy to see that M is of the form M = mscIN and msc satisfies the
quadratic equation

m2
sc + zmsc + 1 = 0. (1.1.18)

For z ∈ H, the unique solution to (1.1.18) with positive imaginary part is given by

msc = msc(z) =
1

2

(√
z2 − 4− z

)
, (1.1.19)

where
√
· denotes the square root function that maps the positive real axis to itself

and with Im
√
w ≥ 0 for all w ∈ C. Using Lemma 1.1.1, we find that msc is indeed

the Stieltjes transform of ρsc introduced in (1.0.4).



Chapter 1. Introduction 17

Remark. For E[ξ21 ] ̸= 0, the self-energy (1.1.17) has an additional O(N−1) term
but this does not affect the limiting Stieltjes transform msc = limN→∞⟨M⟩.

Indeed, it turns out that M is a good approximation for G for large N as can be seen
from the following Theorem 1.1.2, below. This kind of result is also referred to as
a local law and in fact, we will see that it is a generalization to Theorem 1.0.2. To
distinguish the result from Theorem 1.0.2, we denote it by the name local law for
the resolvent here. For the result in this precise form see [29] (bulk regime and
regime away from the spectrum) as well as [3] (edge regime).

Theorem 1.1.2 (Local law for the resolvent). For a large, fixed C > 0 define the set

Dγ := {z ∈ H : Im z ≥ N−1+γ, |z| ≤ NC}. (1.1.20)

Let W be a Wigner matrix as in Definition 1.0.1. For all ε, γ,D > 0 and z =
E + iη ∈ Dγ the isotropic local law

P

(
|⟨x, (G−mscIN)y⟩| > ∥x∥∥y∥N ε

(
Immsc√

Nη
+

1

Nη

))
≲ε,γ,D N−D

(1.1.21)
holds for all deterministic x,y ∈ CN . Moreover, the averaged local law

P

(
|⟨B(G−mscIN)⟩| > ∥B∥N

ε

Nη

)
≲ε,γ,D N−D (1.1.22)

holds for all deterministic B ∈ CN×N . If additionally |E| > 2, an improved
averaged local law of the form

P

(
|⟨B(G−mscIN)⟩| > ∥B∥

(
N ε

N(η + κE)
+

N ε

(Nη)2
√
η + κE

))
≲ε,γ,D N−D

(1.1.23)
holds. Here, κE := min{|E + 2|, |E − 2|} denotes the distance of E to the edge of
the limiting density.

1.2 Eigenvalue rigidity and eigenvector delocalization

Theorem 1.1.2 implies immediately that W obeys a global law in the sense of (1.0.5).
It does however not only do that. For one, the quantitative bounds allow us to estab-
lish eigenvalue rigidity, meaning that all eigenvalues are very close to their position
predicted by the limiting density. This result is presented in Corollary 1.2.1. Addi-
tionally, Theorem 1.1.2 does not only track the Stieltjes transform of the empirical
density, i.e. the averaged trace of the resolvent, but also of the entries of the resolvent
itself in an arbitrary deterministic basis and thereby also contains information about
the eigenvectors of W. This can be used to prove eigenvector delocalization in the
form stated in Corollary 1.2.2.
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Corollary 1.2.1 (Eigenvalue rigidity). Let W be a Wigner matrix as introduced in
Definition 1.0.1 and denote the classical index of the eigenvalue close to energy
E ∈ supp(ρsc) \ ∂supp(ρsc) = (−2, 2) by

k(E) :=

⌈
N

∫ E

−∞
ρsc(E

′)dE ′
⌉
, (1.2.1)

with ⌈·⌉ being the ceiling function. All eigenvalues of W are close to their classical
position in the following sense. For all ε,D > 0 and E ∈ (−2, 2) we have

P

(
supE|λk(E) − E| ≥ min

{
N ε

NκE

,
N ε

N
2
3

})
≲D,ε N

−D, (1.2.2)

where κE := min{|E + 2|, |E − 2|} denotes the distance of E to the edge of the
limiting density.

Corollary 1.2.2 (Eigenvector delocalization). Let W be a Wigner matrix as intro-
duced in Definition 1.0.1 and let v be a normalized eigenvector of W with eigenvalue
λ. For all ε,D > 0 we have

sup
x∈CN×N ,∥x∥=1

P
(
|⟨x,v⟩| ≥ N− 1

2
+ε
)
≲D,ε N

−D. (1.2.3)

We prove both Corollary 1.2.1 and Corollary 1.2.2 assuming Theorem 1.1.2. Addi-
tionally, we conclude the eigenvalue density form of the local law, Theorem 1.0.2,
to prove that it is indeed a direct consequence of Theorem 1.1.2. Our proof of
Corollary 1.2.1 follows the strategy of [31, Chapter 11], see also [27, Theorem 7.6].
Before we can start the proof, we need some preparatory notions and lemmata. We
start by giving the definition of stochastic domination, a notion of a high probability
bound tailored to our needs. It was first introduced in [26] and we use it in the form
of [27].

Definition 1.2.3 (Stochastic domination). Let X = (X(N))N∈N and Y = (Y (N))N∈N

be families of non-negative random variables. We say X is stochastically dominated
by Y if for all (small) ε > 0 and (large) D > 0

P
(
X(N) ≥ N εY (N)

)
≲D,ε N

−D. (1.2.4)

We denote this relation by X ≺ Y . If the constant in the definition depends on any
other parameters α, we write X ≺α Y .

Next, we give the following lemma that asserts that with very high probability W has
no eigenvalues away from the support of ρsc. More precisely, we have the following
statement.
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Lemma 1.2.4 (Exclusion of eigenvalues away from supp(ρsc). Let W be a Wigner
matrix as introduced in Definition 1.0.1. For all ε > 0 there is no eigenvalue further
away from the support of the limiting spectral measure supp(ρsc) = [−2, 2] than
N−2/3+ε with high probability, i.e. we have

P
(
∃λ ∈ Spec(W) : |λ| ≥ 2 +N− 2

3
+ε
)
≲ε,D N−D. (1.2.5)

Remark. The scale N−2/3 is indeed the optimal scale, since close to an edge, where
the density grows like a square root, the typical eigenvalue spacing is N−2/3 and we
expect to see the fluctuation of the individual eigenvalues on that scale.

Proof. We only prove the absence of eigenvalues λ to the right of the spectrum with
λ ≥ 2 +N−2/3+ε, the absence of eigenvalues with λ ≤ −2−N−2/3+ε follows by
symmetry. Now, fix ε > 0 and assume there is a λ ∈ Spec(W) with λ ≥ 2+N−2/3+ε.
Then, ImG has eigenvalue η−1 at spectral parameter z = λ + iη. Since ImG is
positive definite this implies

⟨ImG⟩ ≥ 1

Nη
. (1.2.6)

On the other hand we have with high probability from (1.1.23) that

⟨ImG⟩ ≤ Immsc + |⟨G⟩ −msc| ≲
η√
κ
+

N
ε
3

Nκ
+

N
ε
3

(Nη)2
√
κ

(1.2.7)

with κ = λ − 2 ≥ N−2/3+ε. Note that we replaced ε from (1.1.23) by ε
3
, which is

possible since the statement holds with high probability for ε > 0 arbitrary. We
now choose η = N−2/3, then (1.2.6) is bounded from below by N−1/3 and (1.2.7)
is bounded from above by CN−1/3−ε/6 for some C > 0. These two bounds are
mutually exclusive and therefore there are with high probability no eigenvalues λ
with λ ≥ N−2/3+ε.

We denote the cumulative distribution functions of the empirical density by nN and
the cumulative distribution function of the semi-circle density by nsc, i.e.

nN(E) :=
1

N
|{λ ∈ Spec(W) : λ ≤ E}| , nsc(E) :=

∫ E

−∞
ρsc(x)dx. (1.2.8)

and we prove the following convergence result for nN .

Lemma 1.2.5 (Convergence of the cumulative distribution function). For all D, ε >
0 we have

P

(
sup
E∈R

|nN(E)− nsc(E)| ≥ N−1+ε

)
≲ε,D N−D. (1.2.9)
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Proof. By Lemma 1.2.4 we have nN(E) = nsc(E) for all E with |E| > 3 with
high probability. Therefore it is sufficient to prove Lemma (1.2.5) for |E| ≤ 3. Let
m∆ := ⟨G⟩ − msc and ρ∆ := ρN − ρsc, i.e. ρ∆ is a signed measure and m∆ its
Stieltjes transform if we extend the definition to also include signed measures. By
the averaged local law (1.1.22), we have

|m∆| ≺γ
1

Nη
for N−1+γ ≤ |η| ≤ 1. (1.2.10)

Fix a γ > 0 and let 0 < η ≤ η0 =: N−1+γ . From the spectral decomposition of G,
it follows that η Im⟨G(E + iη)⟩ increases monotonously in η > 0 for all E ∈ R.
Therefore we have

η| Imm∆(E + iη)| ≤ ηIm⟨G(E + iη)⟩+ η Imm(E + iη)

≤η0|m∆(E + iη0)|+ 2η0|m(E + iη0)| ≺γ η0,
(1.2.11)

where we have also used the monotonicity of η 7→ η Imm(E + iη) in the second
step and (1.2.10) as well as |m| ≲ 1 in the last estimate. Dividing (1.2.11) by η and
combining it with (1.2.10), we obtain

| Imm∆| ≺γ
Nγ

Nη
(1.2.12)

for all γ > 0 and 0 < η < 1. It is easy to check that A ≺γ NγB for all γ > 0
implies A ≺ B and therefore (1.2.12) implies

| Imm∆| ≺ 1

Nη
(1.2.13)

for all η ∈ (0, 1]. To prove Lemma 1.2.5, we translate the bounds on m∆, Equa-
tion (1.2.10) and (1.2.13), to a bound on ρ∆. This is done in the following lemma.

Lemma 1.2.6. Let E ∈ R, η > N−1+γ and let fE,η ∈ C2(R) be a monotonously
decreasing function such that fE,η(x) = 1 for x ≤ E, fE,η(x) = 0 for x ≥ E + η as
well as |f ′

E,η(x)| ≲ η−1 and |f ′′
E,η(x)| ≲ η−2. Then∣∣∣∣∫
R
fE,η(λ)ρ

∆(dλ)

∣∣∣∣ ≺γ η. (1.2.14)

Proof. Let χ be a real and smooth function such that χ(x) = 1 for |x| ≤ 1
2

and
χ(x) = 0 for |x| ≥ 1. For any twice differentiable, compactly supported, real
function f ∈ C2

0(R) we have the Helffer-Sjöstrand formula

f(λ) =
1

π

∫
R2

iyf ′′(x)χ(y) + (if(x)− yf ′(x))χ′(y)

λ− x− iy
dxdy. (1.2.15)
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Let E0 < E and f̃E,η ∈ C2
0(R) such that f̃E,η(x) = fE,η(x) for x ≥ E0, f̃E,η(x) = 0

for x ≤ E0 − η as well as |f̃ ′
E,η(x)| ≲ η−1 and |f̃ ′′

E,η(x)| ≲ η−2. Integrating f̃E,η

against ρ∆ and using (1.2.15) we obtain∣∣∣∣∫
R
f̃E,η(λ)ρ

∆(dλ)

∣∣∣∣ = ∣∣∣∣Re∫
R
f̃E,η(λ)ρ

∆(dλ)

∣∣∣∣
≲

∣∣∣∣∫
R2

yf̃ ′′
E,η(x)χ(y) Imm∆(x+ iy)dxdy

∣∣∣∣
+

∫
R2

|f̃E,η(x)||χ′(y)|| Imm∆(x+ iy)|dxdy

+

∫
R2

|y||f̃ ′
E,η(x)||χ′(y)||Rem∆(x+ iy)|dxdy.

(1.2.16)

We separately bound all terms in (1.2.16) and we split the y integral in the first term
in the regimes |y| ≤ η and |y| ≥ η. We only prove the bounds for the y > 0 regime.
The bounds for y < 0 follow by symmetry since m∆(E + iη) = m̄∆(E − iη). For
y ≤ η we find∣∣∣∣∫

R

∫
0<y≤η

yf̃ ′′
E,η(x)χ(y) Imm∆(x+ iy)dxdy

∣∣∣∣ ≺ η

N

∫
R
|f̃ ′′

E,η(x)|dx ≲
1

N
≤ η,

(1.2.17)
where we have used |y Imm∆(x+ iy)| ≺ 1

N
from (1.2.13) in the first estimate. The

second step follows from |f̃ ′′
E,η(x)| ≲ η−2 as well as µℓ(supp(f

′′
E,η)) ≲ η, where µℓ

denotes the Lebesgue measure. For y ≥ η we have by partial integration in x that∫
R

∫
y≥η

yf̃ ′′
E,η(x)χ(y) Imm∆(x+ iy)dxdy

=−
∫

R

∫
y≥η

yf̃ ′
E,η(x)χ(y)∂x Imm∆(x+ iy)dxdy.

(1.2.18)

By analyticity of m∆ away from the real axis we have ∂x Imm∆(x + iy) =
−∂y Rem

∆(x+ iy). After a partial integration in y we arrive at∫
R

∫
y≥η

yf̃ ′′
E,η(x)χ(y) Imm∆(x+ iy)dxdy

=−
∫

R

∫
y≥η

f̃ ′
E,η(x)(yχ(y))

′Rem∆(x+ iy)dxdy

−
∫

R
f̃ ′
E,η(x)ηχ(η) Rem

∆(x+ iη)dx.

(1.2.19)

Using |(yχ(y))′| ≲ 1, |f̃ ′
E,η(x)| ≲ η−1 and µℓ(supp(f

′
E,η)) ≲ η, as well as (1.2.10)

we obtain∫
R

∫
y≥η

|f̃ ′
E,η(x)||(yχ(y))′||Rem∆(x+ iy)|dxdy ≺γ

1

N
| log(η)| ≲γ η (1.2.20)
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for the first term on the right-hand side of (1.2.19). The second term (1.2.19) is
bounded by ∫

R
|f̃ ′

E,η(x)|ηχ(η)||Rem∆(x+ iη)|dx ≺γ
1

N
≤ η (1.2.21)

by an analogous argument. Similarly, we find∫
R2

|f̃E,η(x)||χ′(y)|| Imm∆(x+ iy)|dxdy ≺ 1

N
≤ η (1.2.22)

and∫
R2

|y||f̃ ′
E,η(x)||χ′(y)||Rem∆(x+ iy)|dxdy ≺ η

∫
R
|f̃ ′

E,η(x)|dx ≲ η. (1.2.23)

for the second and third term on the right-hand side of (1.2.16). Combining (1.2.20),
(1.2.21), (1.2.22) and (1.2.23) we find∣∣∣∣∫

R
f̃E,η(λ)ρ

∆(dλ)

∣∣∣∣ ≺γ η (1.2.24)

and Lemma 1.2.6 follows since∫
R
f̃E,η(λ)ρ

∆(dλ) =

∫
R
fE,η(λ)ρ

∆(dλ) (1.2.25)

if we choose E0 ≤ min supp ρ∆.

We have

nN(E)− nsc(E) =

∫
R
fE,η(λ)ρ

∆(dλ)−
∫ E+η

E

fE,η(λ)ρ
∆(dλ). (1.2.26)

The last term on the right hand side of (1.2.26) satisfies

−
∫ E+η

E

fE,η(λ)ρ
∆(dλ) ≤

∫ E+η

E

fE,η(λ)dρsc(λ) ≤ Cη (1.2.27)

for some C > 0. Here, we have used the positivity of ρN in the first estimate and the
boundedness of the density of ρsc in the second. We combine (1.2.14) with (1.2.27)
to achieve a high probability upper bound to (1.2.26) in the form of

nN(E)− nsc(E) ≤ N−1+ε. (1.2.28)

The corresponding lower bound

nN(E)− nsc(E) ≥ −N−1+ε (1.2.29)

is obtained by an analogous argument using

nN(E)− nsc(E) =

∫
R
fE−η,η(λ)ρ

∆(dλ) +

∫ E

E−η

(1− fE−η,η(λ)ρ
∆(dλ). (1.2.30)
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Proof of Corollary 1.2.1. We only treat the case E ∈ (−2, 0]. The case E > 0 then
follows by symmetry. Recall the definition of k(E) in (1.2.1). We have∫ E

λk(E)

ρsc(x)dx = (nsc(E)− nN(λk(E))) + (nN(λk(E))− nsc(λk(E))). (1.2.31)

We first show that the above integral is small and conclude that λk(E) is close to E
with high probability from there. We begin by considering the first summand, we
have

nN(λk(E)) =
1

N

∣∣{λ ∈ Spec(W) : λ ≤ λk(E)}
∣∣ = k(E)

N

=
1

N

⌈
N

∫ E

−∞
ρsc(x)dx

⌉
=

1

N
⌈Nnsc(E)⌉ .

(1.2.32)

and therefore

|nsc(E)− nN(λk(E))| =
1

N
|Nnsc(E)− ⌈Nnsc(E)⌉ | ≤ 1

N
. (1.2.33)

The second summand on the right hand side of (1.2.31) is bounded by N−1+ε for all
ε > 0 with high probability by Lemma 1.2.5. Combined with (1.2.33) we have∣∣∣∣∣

∫ E

λk(E)

ρsc(x)dx

∣∣∣∣∣ ≺ N−1. (1.2.34)

From (1.0.4) it follows that
ρsc(x) ∼

√
2 + x (1.2.35)

for x ∈ [−2, 1) and therefore∣∣∣∣∣
∫ E

λk(E)

ρsc(x)dx

∣∣∣∣∣ ∼ ∣∣∣(E + 2)
3
2 − (λk(E) + 2)

3
2
+

∣∣∣ , (1.2.36)

where we have used the notation (x)+ := max{x, 0} for x ∈ R. First consider
E + 2 ≥ N−2/3+ε for a fixed ε > 0. Then we have with high probability

(E + 2)
3
2 ∼ (E + 2)

3
2 − |(E + 2)

3
2 − (λk(E) + 2)

3
2
+|

≲ (λk(E) + 2)
3
2
+ ≲ (E + 2)

3
2 + |(E + 2)

3
2 − (λk(E) + 2)

3
2
+| ∼ (E + 2)

3
2 ,

(1.2.37)

where we have used that with high probability

(E + 2)
3
2 ≥ N−1+ 3

2
ε ≥ N

ε
2 |(E + 2)

3
2 − (λk(E) + 2)

3
2
+|. (1.2.38)

Equation (1.2.37) implies in particular that (λk(E) + 2)+ = λk(E) + 2 and therefore

E + 2 ∼ λk(E) + 2 and thus ρsc(E) ∼ ρsc(λk(E)). (1.2.39)
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Combining (1.2.34) and (1.2.39) it follows from the mean value theorem that

|E − λk(E)| ≺ N−1ρsc(E)−1 ≲
1

N |E − κ|
. (1.2.40)

Now, let 0 < E + 2 ≤ N−2/3+ε. Then we have by (1.2.36) that

λk(E) + 2 ≤ (λk(E) + 2)+ ≲ (E + 2) +

∣∣∣∣∣
∫ E

λk(E)

ρsc(x)dx

∣∣∣∣∣
2
3

≲ N− 2
3
+ε (1.2.41)

again with high probability. This gives the upper bound

λk(E) − E ≤ N− 2
3
+ε. (1.2.42)

The lower bound
λk(E) − E ≥ λk(E) − 2 ≥ −N− 2

3
+ε (1.2.43)

follows directly from Lemma 1.2.4

Proof of Corollary 1.2.2. Let vi ∈ CN , i ∈ JNK, be the eigenvectors of W with
eigenvalue λi and let x ∈ CN be a normalized deterministic vector. By (1.1.21) we
have with high probability at z = λj + iη that

1 ≳ Im⟨x,G(λj + iη)x⟩
∑
i=1

η

η2 + (λj − λi)2
|⟨x,vi⟩|2 ≥

|⟨x,vj⟩|2

η
(1.2.44)

for all j ∈ JNK, η ≥ N−1+ε and ε > 0. Therefore we have with high probability

|⟨x,vj⟩| ≲
√
η ≤ N−1+ ε

2 (1.2.45)

and (1.2.3) follows.

Proof of Theorem 1.0.2. It is straightforward to prove Theorem 1.0.2 as a conse-
quence of eigenvalue rigidity, but it also follows directly from Lemma 1.2.5. Note
that we have∣∣Spec(W) ∩ [a, a+N−1+γ]

∣∣ = nN(a+N−1+γ)− nN(a) (1.2.46)

and ∫ a+N−1+γ

a

ρsc(E)dE = nsc(a+N−1+γ)− nsc(a), (1.2.47)

where the cumulative distribution functions nN and nsc were introduced in (1.2.8).
Taking the difference between the two above equations we find∣∣∣∣∣∣∣Spec(W) ∩ [a, a+N−1+γ]

∣∣−∫ a+N−1+γ

a

ρsc(E)dE

∣∣∣∣∣ ≤ 2 sup
E∈R

|nN(E)−Nsc(E)|.

(1.2.48)
The right-hand side of the above impression is bounded by N−1+ε with high proba-
bility for all ε > 0. Theorem 1.0.2 follows by choosing ε = γ

2
.
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1.3 Multivariate polynomials of random matrices
A natural continuation to the study of single Wigner matrices is the study of polyno-
mials which have Wigner matrices as their variables. For polynomials q in a single
Wigner matrix, this a straight-forward matter, since for a Wigner matrix W with
eigenvalues λi, i ∈ JNK, the eigenvalues of q(W) are given by q(λi), i ∈ JNK, while
the eigenvectors are completely invariant under the polynomial. Hence, analogous
results to Theorem 1.1.2, Corollary 1.2.1 and Corollary 1.2.2 can be directly derived
from their respective counterpart in the Wigner case, as can the limiting spectral
density.

Once we consider polynomials in multiple independent Wigner matrices, however,
there is no such shortcut, and studying their spectral statistics becomes a non-trivial
endeavour. The strong correlation between the entries of any polynomial of at least
degree two makes it impossible to directly apply the resolvent method we have
introduced in this chapter. This problem is resolved by introducing linearizations
of the polynomial instead. The method of linearizations was first developed in the
context of automata theory in [47] and [58] and it was first used in the context of
random matrix theory in [43] and [42]. We briefly outline the main idea of the method
here. The linearization L ∈ CkN×kN , k ≥ 2, of a polynomial q(W1, . . .Wl) ∈
CN×N in l independent Wigner matrices is a larger dimensional block matrix that
has the individual matrices W1, . . . ,Wl as block entries but only in a linear fashion.
We define a generalized resolvent G of L by

G := (L− zJ)−1 ∈ CkN×kN , (1.3.1)

where J ∈ CkN×kN is some projection. The generalized resolvent of L is connected
to the resolvent g := (q(W1, . . .Wl)− z)−1 of q(W1, . . .Wl) by

g = G11 ∈ CN×N , (1.3.2)

where the (1,1) entry is understood blockwise. Consider the following example of a
polynomial and its linearization. Let

q(W1,W2) = W1W2 +W2W1, (1.3.3)

i.e. q(W1,W2) denotes the anti-commutator of two independent Wigner matrices.
Also, define the pair L and J, by

L :=

 0 W1 W2

W1 0 −IN
W2 −IN 0

 ∈ C3N×3N , J :=

IN 0 0
0 0 0
0 0 0

 ∈ C3N×3N . (1.3.4)

Using the Schur complement formula to obtain the (1,1) block of G = (L−zJ)−1 ∈
C3N×3N , we find

G11 = (W1W2 +W2W1 − z)−1 = (q(W1,W2)− z)−1 ∈ CN×N . (1.3.5)
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Due to the much simpler correlation structure of the entries of L, we expect to be
able to use the Dyson equation

I3N + (zJ− E[L] + S[M])M = 0 with S[R] = E[(L− E[L])R(L− E[L])].
(1.3.6)

to obtain a good deterministic approximation M ∈ C3N×3N for G and to prove a
local law in the form of Theorem 1.1.2 for G−M. If we are able to obtain a local
law for G−M, then a local law for g −M11 = G11 −M11 follows immediately
as G11 and M11 are submatrices of G and M respectively.

In the preprint that is reproduced in the next chapter, we investigate precisely this
problem, not only for the anti-commutator but for all self-adjoint quadratic poly-
nomials. We analyse the limiting spectrum close to the edge and characterize its
behaviour. We show that, with very few specific exceptions, the polynomials only
have regular edges, i.e. edges with a square root growth of their density. This result
is presented in Proposition 2.2.7 and Proposition 2.2.8. We also prove an optimal
local law around any regular edge. This result is given in Theorem 2.2.9. These two
results are then combined to prove a norm convergence rate with optimal exponent
in Theorem 2.2.2.

Remark. In the preprint we do not give a proof of the eigenvalue rigidity statement,
Corollary 2.2.12, for reasons of conciseness. However, in addition to the local law
Theorem 1.1.2, the proof of eigenvalue rigidity for Wigner matrices, Corollary 1.2.1,
used only the square root growth of the limiting density close to its edges. There-
fore, the proof of Corollary 2.2.12 is completely analogous to the proof given for
Corollary 1.2.1 in Section 1.2.
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Chapter 2. Norm Convergence Rate for Multivariate Quadratic Polynomials of

Wigner Matrices

arXiv:2308.16778:

Norm Convergence Rate for Multivariate Quadratic Polynomials of Wigner
Matrices

Jacob Fronk1, Torben Krüger1, Yuriy Nemish

Abstract

We study Hermitian non-commutative quadratic polynomials of multiple
independent Wigner matrices. We prove that, with the exception of some
specific reducible cases, the limiting spectral density of the polynomials always
has a square root growth at its edges and prove an optimal local law around
these edges. Combining these two results, we establish that, as the dimension
N of the matrices grows to infinity, the operator norm of such polynomials q
converges to a deterministic limit with a rate of convergence of N−2/3+o(1).
Here, the exponent in the rate of convergence is optimal. For the specific
reducible cases, we also provide a classification of all possible edge behaviours.

Keywords: polynomials of random matrices, local laws, Dyson equation, extreme
eigenvalues
AMS Subject Classification: 60B20, 15B52

2.1 Introduction
The empirical spectral distribution of a random matrix is typically well approximated
by a deterministic measure as its dimension grows to infinity. A clear contender for
the most famous example of such a convergence is the celebrated semi-circle law.
It states that the spectral measure of a Wigner matrix, a Hermitian N ×N -matrix
X with centered i.i.d. entries xij above the diagonal and E|xij|2 = N−1, converges
to the semi-circle distribution, supported on the interval [−2, 2] [68]. In particular,
the largest and smallest eigenvalues of X converge to the respective edges of the
support, implying the convergence ∥X∥ → 2 of the operator norm, provided the
fourth moments of the entries of

√
NX are finite [11, 10].

For non-commutative Hermitian polynomials Q = q(X1, . . . ,Xl) in several inde-
pendent Wigner matrices Xi an analogous statement holds. In this setup the limit

1 Partially supported by VILLUM FONDEN research grant no. 29369
E-mail addresses: jf@math.ku.dk (J. Fronk), torben.krueger@fau.de (T. Krüger), ynemish@ucsd.edu
(Yu. Nemish)
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of the eigenvalue distribution equals the distribution associated to the polynomial
q = q(s1, . . . , sl), where the matrices are replaced by free semicircular random
variables within a non-commutative probability space, i.e. si can be interpreted
as operators acting on an infinite dimensional Hilbert space. This result was first
established for Gaussian random matrices in [67] and extended to Wigner matrices
in [25]. Similarly, the convergence of the norms ∥Q∥ → ∥q∥ was first shown by
Haagerup-Thorbjørnsen [43] in the Gaussian case and the Wigner case was proven
by Anderson in [4]. Such results have also been shown when some Xi are replaced
by non-random matrices [15, 53]. For non-Hermitian polynomials convergence of
the spectral measure to the limiting Brown measure, predicted by free probability
theory, is known only for very specific cases, e.g. for products of random matrices
[41, 55] and for quadratic polynomials [24].

Determining the limiting spectral measure ρ of Hermitian polynomials Q, or equiva-
lently the distribution of q, becomes a nontrivial task beyond particular computable
cases. Several works have been devoted to the analysis of the regularity properties
of ρ. It has been shown that ρ has a single interval support [42] and does not contain
any atoms [52, 59]. The cumulative distribution function of ρ is Hölder-continuous
[12], and if q is a monomial or a homogeneous quadratic polynomial then ρ is even
absolutely continuous [22, 28].

In the present paper we consider the case when q is a general polynomial of de-
gree two, i.e. we study self-adjoint polynomials in l independent Wigner matrices
X1, . . . ,Xl of the form

q(X1, . . . ,Xl) =
l∑

i,j=1

XiAijXj+
l∑

i=1

biXi + c, (2.1.1)

where 0 ̸= A = (Aij) ∈ Cl×l is a Hermitian matrix, b = (bi) ∈ Rl and c ∈ R.
For these polynomials we classify the edge behaviour of ρ and show (see Propo-
sition 2.2.7 below) that at both edges the limiting spectral measure is absolutely
continuous and apart from specific reducible cases its density exhibits a square
root growth. The reducible cases are, up to a shift and change in sign, of the form
Y∗Y, where Y is an affine combination of the underlying Wigner matrices. Such
polynomials still have a square root edge at the rightmost point of the spectrum, but
have a density blow-up at the leftmost point if it is equal to zero. All these cases are
classified in Proposition 2.2.8 below.

The square root growth of the limiting spectral distribution is a well-known phe-
nomenon, that is already present in the semicircle law for Wigner matrices X. In
this setup the rate of convergence for the norm of X is ∥X∥ = 2 +O(N−2/3+o(1))
with very high probability [27] and several tail estimates have been established
[7, 8, 30]. In fact, for Wigner matrices the distribution of the largest eigenvalue
is known to be universal and given by the Tracy-Widom law [32, 60, 62]. This
distribution was first identified by Tracy and Widom for the Gaussian ensembles
[65, 66] and necessary and sufficient conditions for its universality in the context of
Wigner matrices identified in [51].
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Edge universality has been extended to many other Hermitian random matrix models,
including invariant ensembles [19], covariance matrices [34, 57], deformed Wigner
matrices [50], deterministic matrices with Gaussian perturbations [49] and models
with correlations [3, 56]. Such universality results often rely on control of the
eigenvalue location on mesoscopic scales between O(1) and O(N−1), i.e. on a local
law.

Local laws arose in the context of Wigner matrices [27, 64] and have subsequently
been extended to the more complex models listed above. For non-commuting polyno-
mials of several random matrices local laws are known only in specific cases, starting
with Anderson’s work on the anti-commutator X1X2 +X2X1 of Wigner matrices
[5] that controls the deviation of bulk eigenvalues from their expected position on the
scale O(N−1/2). For general polynomials, that satisfy certain checkable conditions,
an optimal local law in the bulk regime was proved in [28]. Related results are [13]
and [14], where it was shown that for two random matrices satisfying a local law
and whose eigenvectors are in generic direction to each other also their sum satisfies
a local law at the edge and in the bulk. This result covers e.g. X2

1 +X3
2 if one of

these matrices is a Gaussian unitary ensemble. For non-Hermitian polynomials the
results [54] and [40] cover products of independent matrices with i.i.d. entries. and
[24] quadratic polynomials.

Currently the best estimate on the convergence rate of the norm for general poly-
nomials of GUE matrices is −N−ε ≤ ∥Q∥ − ∥q∥ ≤ CN−1/4, for some ε < 1

3

and C > 0 established in [23]. Our work improves this bound for polynomials
Q = q(X1, . . . ,Xl) of the form (2.1.1) to the optimal rate of N−2/3+o(1) with square
root growth at the edges of the spectral density and extends the result to Wigner ma-
trices. The main novelty here is a detailed analysis of the Dyson equation, describing
a generalized resolvent of the linearization matrix associated with the polynomial
in the limit N → ∞ and, consequently, the resolvent of Q itself. The idea of
linearising polynomials of random matrices in this way stems from [42, 43] and has
been used in many works since, in particular in [4, 6, 16, 44, 45]. In particular, we
perform a comprehensive stability analysis of the Dyson equation that allows us (i)
to prove a square root growth of the limiting spectral density ρ and (ii) to establish
an optimal bound on the difference between the solution to the Dyson equation and
the generalized resolvent by using a modification of the bound on the random error
matrix in the Dyson equation from [29]. The main insight is that the matrix Dyson
equation for the linearization, which has a linear self-energy term, can be reduced to
a scalar equation for a function m = m(z) of the form

− 1

m
= z + γ(m), (2.1.2)

where the self-energy term γ(m) is now a non-linear function of m. This representa-
tion allows us to identify the values of the spectral edges in terms of the coefficients
of q and study the quadratic singularity at these edge points.
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Notations
In this section, we introduce some definitions commonly used throughout the paper.
The standard scalar product of vectors v, w ∈ Cn will be denoted by ⟨v, w⟩ and
the standard euclidean norm by ∥v∥ =

√
⟨v, v⟩. A vector v is called normalized if

∥v∥ = 1.

Matrices R ∈ Ck×n for (fixed) k, n ∈ N are usually denoted by non-boldfaced roman
letters and matrices R ∈ CkN×nN are usually denoted by boldfaced roman letters. In
particular, we denote the identity matrix on Ck×k by Ik and the identity matrix on
CkN×kN by IkN . For any k, n ∈ N we embed Ck×n in Ck×n ⊗ CN×N by identifying
R ∈ Ck×n with R⊗ IN ∈ Ck×n ⊗ CN×N ∼= CkN×nN and write compactly

R = R⊗ IN ∈ CkN×nN . (2.1.3)

Matrices R ∈ Ck×n, which are embedded into CkN×nN , get still denoted by non-
boldfaced letters.

For R, T ∈ Cn×n we denote the normalized trace by ⟨R⟩ = 1
n
TrR and define a

scalar product by ⟨R, T ⟩ := ⟨R∗T ⟩. We use the standard operator norm and the
Hilbert-Schmidt norm, which are given by

∥R∥ = sup
∥x∥≤1

∥Rx∥ and ∥R∥hs =
√

⟨R∗R⟩. (2.1.4)

For vectors of matrices V = (Vi)i∈JlK ∈ (Cn×n)l we denote by ∥V ∥ the maximum of
the operator norms of the entries, i.e.

∥V ∥ = max
i∈JlK

∥Vi∥. (2.1.5)

For random matrices R ∈ CkN×kN the isotropic and averaged p-norms are defined
by

∥R∥p := sup
∥x∥,∥y∥≤1

(E|⟨x,Ry⟩|p)
1
p and ∥R∥avp := sup

∥B∥≤1

(E|⟨BR⟩|p)
1
p . (2.1.6)

For a block matrix R ∈ CkN×nN with blocks Rij ∈ CN×N , i ∈ JkK and j ∈ JnK, we
define the blockwise (averaged) trace R ∈ Ck×n by

Rij = ⟨Rij⟩. (2.1.7)

A matrix R is said to be positive definite if ⟨v,Rv⟩ > 0 for all v ∈ Cn×n\{0} and we
write R > 0. It is called positive semi-definite if ⟨v,Rv⟩ ≥ 0 for all v ∈ Cn×n \ {0}
and we write R ≥ 0. R is called negative (semi-)definite, denoted by R < 0 (R ≤ 0),
if −R is positive (semi)-definite. For S ∈ Cn×n Hermitian we write S ≥ R if
S −R ≥ 0 and S > R if S −R > 0.

For linear operators acting on matrix spaces, we denote by ∥ · ∥sp the norm induced
by the Hilbert-Schmidt norm, ∥ · ∥hs. The identity map between matrix spaces is
denoted by 1, i.e. 1[R] = R for all R ∈ Ck×n.
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The upper half-plane will be denoted by H, i.e.

H = {z ∈ C : Im z > 0} (2.1.8)

and JnK := {1, 2, . . . , n} is used for the natural numbers up to n. If X and Y are
positive quantities, we use the notation X ≲ Y if there is some constant c > 0 such
that X ≤ cY . The constant will in general depend on the coefficients of q. If it also
depends on some other parameters α, we write X ≲α Y . In particular, the constant
will never depend on the dimension of our random matrices, N . If both X ≲ Y and
Y ≲ X hold true, we write X ∼ Y .

Acknowledgements
We thank Peter Henning Thomsen Krarup for his valuable contributions in the early
stages of the project.

2.2 Main results

Assumption. Let ζ0 be a real-valued and ζ1 be a complex-valued random variable
and let ζ0 and ζ1 be independent. For i = 0, 1, they are to satisfy

E[ζi] = 0, E[|ζi|2] = 1 and E[|ζi|p] ≤ Cp (2.2.1)

for all p ∈ N and some constants Cp > 0, depending on p. Let W ∈ CN×N be a
Hermitian random matrix characterized by its entry distribution:

1. The diagonal entries {wii : i ∈ JNK} and off-diagonal entries {(wij, wji) :
i, j ∈ JNK, i < j} are independent;

2. {wii : i ∈ JNK} consists of independent copies of 1√
N
ζ0,

3. {(wij, wji) : i, j ∈ JNK, i < j} consists of independent copies of 1√
N
(ζ1, ζ̄1).

For a fixed l ∈ N we define X = (Xi)i∈JlK ∈ (CN×N)l, a vector of random matrices,
where each Xi, i ∈ JlK, is an independent copy of W.

To present our results we first need to distinguish between shifted reducible and
non-reducible quadratic polynomials.

Definition 2.2.1 (Shifted reducible and non-reducible second degree polynomial).
We call any non-commutative quadratic polynomial of the matrices X = (Xi)i∈JlK

which is of the form

qr(X) = α(v∗X− ξ)(v∗X− ξ)∗ − β (2.2.2)

for some α, β, ξ ∈ R, α ̸= 0, ξ ≥ 0 and v ∈ Cl with ∥v∥ = 1 a shifted reducible
quadratic polynomial. Any polynomial not of this form is called a non-reducible
quadratic polynomial.
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Remark. Shifted reducible quadratic polynomials are exactly the polynomials of
the form (2.1.1) with coefficients A = αvv∗, b = −αξ(v + v̄) and c = α|ξ|2 − β for
some α, β, ξ ∈ R with α ̸= 0, ξ ≥ 0 and normalised v ∈ Cl. Note that our definition
of a shifted reducible polynomial also allows for polynomials of the form (2.2.2)
with ξ ∈ C since (v∗X− ξ)(v∗X− ξ)∗ = (eiφv∗X− eiφξ)(eiφv∗X− eiφξ)∗ for all
φ ∈ R and we used this invariance to restrict to ξ ∈ R≥0 w.l.o.g..

Shifted reducible polynomials are those where the edge characteristics reduce to
understanding the singular value statistics of some (not necessarily Hermitian) first
order polynomial in X, whereas non-reducible polynomials are those where such
a simplification is not possible. The main focus of this work are non-reducible
polynomials, but we also characterize the limiting spectral measure of the shifted
reducible polynomials.

For non-reducible polynomials, we prove the convergence of the norm of q(X) to a
deterministic τ∗ in the following sense:

Theorem 2.2.2 (Convergence of the matrix norm). Let q be a non-reducible quadratic
polynomial of the form (2.1.1). There is a deterministic τ∗ > 0, only depending on
the coefficients A, b, c of q, such that for all ε,D > 0 the operator norm of q(X)
satisfies the estimate

P
(
|∥q(X)∥ − τ∗| ≥ N− 2

3
+ε
)
≤ Cε,DN

−D.

Remark. The deterministic value τ∗ in Theorem 2.2.2 is the value of the norm as
predicted by the limiting spectral measure

ρ := lim
N→∞

1

N

∑
µ∈Spec(q(X))

δµ, (2.2.3)

where δµ denotes the Dirac measure at point µ and the sum runs over all eigenvalues
of q(X) accounting also for multiplicity. That is, we have τ∗ = max{|τ+|, |τ−|},
where supp(ρ) = [τ−, τ+] (see Definition 2.2.5 below). The points τ+ and τ− can be
obtained by solving an explicit polynomial equation, for details see Lemma 2.3.5
below.

To obtain the main theorem we need several intermediate results. They establish that
the eigenvalue density of any non-reducible polynomial q(X) approximately shows
a square root behaviour around its edge. For reducible polynomials, we classify the
different edge behaviours.

The central object of our interest is the Stieltjes transform of the limiting spectral
measure ρ, which we denote by m. The function m is uniquely defined by the
following proposition.
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Proposition 2.2.3 (Existence and uniqueness of the Stieltjes transform). Let A ∈
Cl×l, A = A∗, A ̸= 0, b ∈ Rl and c ∈ R. There is a unique function m : H → H
such that

1. m is complex analytic on all of H;

2. limz→∞ zm(z) = −1;

3. For all z ∈ H the equation

−m−1 = z + γ(m), (2.2.4)

with

γ(m) := −TrA(Il+Am)−1+mbt
(
(Il + 2mÂ)−2(Il +mÂ)

)
b−c, (2.2.5)

is satisfied for m = m(z). Here, the notation Â = 1
2
(A+ At) was used.

The proof of Proposition 2.2.3 is deferred to Appendix 2.6.3.

Definition 2.2.4 (Self-consistent density of states). By Conditions 1 and 2 the
function m in Proposition 2.2.3 is the Stieltjes transform of a unique probability
measure ρ on the real line, i.e.

m(z) =

∫
R

ρ(dx)

x− z
(2.2.6)

for all z ∈ H. We call ρ the self-consistent density of states corresponding to q(X).

Remark. By the global law, [28, Proposition 2.17], the self-consistent density of
states is indeed the limiting spectral measure.

Note that since A is Hermitian, the matrix Â = 1
2
(A+At) denotes the entrywise real

part of A. This should not be confused with the algebraic definition of the real part
of a matrix, ReR = 1

2
(R + R∗). Let I ⊂ R be an interval and E ∈ I . Due to the

Stieltjes inversion formula, the limiting spectral measure and its Stieltjes transform
are related by the equation

ρ(E) = lim
η↘0

1

π
Imm(E + iη), (2.2.7)

whenever that limit exists for all E ∈ I (see e.g. [36, Equation (1.4)]). It was shown
in [59, Theorem 1.1 (3)] that supp(ρ) is a single compact interval on the real line. In
particular, this means that ρ has no internal edges. We use the following definition.

Definition 2.2.5 (Edges of the limiting spectral measure). Let τ+ denote the position
of the right edge of ρ and let τ− denote the position of the left edge of ρ, i.e., we have

supp(ρ) = [τ−, τ+] (2.2.8)
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We also introduce the notion of a regular edge.

Definition 2.2.6. Let τ0 ∈ {τ−, τ+}. The limiting spectral measure ρ is said to have
a regular edge at τ0 if ρ(dE) = ρ(E)dE has a Lebesgue density (also denoted by ρ)
in a neighborhood of τ0 and

lim
E∈supp(ρ)

E→τ0

ρ(E)√
|τ0 − E|

(2.2.9)

exists and does not equal 0.

In other words, regular edges are those that show a square root decay of the density ρ.
Our next two results concern the edge characterization of reducible and non-reducible
polynomials.

Proposition 2.2.7 (Edges of non-reducible polynomials). Let q be a non-reducible
quadratic polynomial and ρ its associated limiting spectral measure defined in
(2.2.3). Then the measure ρ has regular edges both at τ− and at τ+.

Next, we consider shifted reducible polynomials of the form

qr(X) = (v∗X− ξ)(v∗X− ξ)∗ (2.2.10)

for some ξ ∈ R≥0 and normalized v ∈ Cl.

Remark. Compared to the general case defined in (2.2.2) we restrict here to α = 1
and β = 0. As these constants only constitute a scaling and a shift respectively, the
following result, Proposition 2.2.8, generalizes in a straightforward manner to all
α ̸= 0 and β ∈ R. For α < 0 the roles of the left and the right edge are reversed.

We introduce the quantities σ = ∥Re v∥, µ = ⟨Re v, Im v⟩ and for σ ∈ (0, 1) we
define s > 0 with

s2 :=


(
(σ2 + a2+(1− σ2) + 2a+µ)(σ

2 + a+µ)
)−1

+
(
(σ2 + a2−(1− σ2) + 2a−µ)(σ

2 + a−µ)
)−1 if µ ̸= 0,

σ−4 if µ = 0,

(2.2.11)

where for µ ̸= 0 we also set the constant a± ∈ R to

a± =
1− 2σ2

2µ
±

√(
1− 2σ2

2µ

)2

+ 1. (2.2.12)

The edges of the shifted reducible polynomial are then characterized as follows.
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Proposition 2.2.8 (Edges of shifted reducible polynomials). Let qr be a shifted
reducible polynomial as in (2.2.10) for some ξ ∈ R≥0 and normalized v ∈ Cl.
Then the limiting spectral measure ρ has a regular edge at τ+ = max supp(ρ).
Furthermore there is a κ > 0 such that the behaviour of ρ on (τ−, τ− + κ) with
τ− = min supp(ρ) is given by

ρ(E) ∼



(E − τ−)
− 1

2 if ξ = 0

(E − τ−)
− 1

2 if v ∈ Rl and ξ < 2

(E − τ−)
− 1

4 if v ∈ Rl and ξ = 2

(E − τ−)
− 1

2 if v ∈ Cl \ eiφRl for all φ ∈ (−π, π] and sξ < 2

(E − τ−)
− 1

3 if v ∈ Cl \ eiφRl for all φ ∈ (−π, π] and sξ = 2.
(2.2.13)

In all other cases the left edge is also regular, i.e. ρ(E) ∼ (E − τ−)
1/2.

Remark. The reason behind this result is that the edge behaviour near the left edge
follows from the distribution of small singular values of v∗X− ξ. It follows that ρ
has singularities precisely if ξ is in the asymptotic spectrum of v∗X, with stronger
singularities being observed if ξ is in the bulk of the spectrum and weaker ones if ξ
is on the edge of the spectrum.

Secondly we prove that mIN , where IN is the identity matrix on CN×N , well approx-
imates the resolvent g = (q(X)− zIN)

−1 ∈ CN×N of q(X) around any regular edge
and away from the spectrum. More precisely we prove uniform convergence of the
quadratic form of g on the set

Dκ0
γ := {E + iη ∈ H : |E − τ0| ≤ κ0, N

−1+γ ≤ η ≤ 1} (2.2.14)

for some κ0 ∼ 1 and for all γ > 0, as well as on the set

GC,η0
γ := {E + iη ∈ H : C−1 ≤ dist(E, supp(ρ)) ≤ C, N−1+γ ≤ η ≤ η0}

(2.2.15)
for all C, γ > 0 and some η0 depending on C.

Theorem 2.2.9 (Local law for regular edges of polynomials). Let q be a polynomial
of the form (2.1.1) and let ρ have a regular edge at τ0 ∈ {τ−, τ+}. There is a
κ0 > 0, depending only on the coefficients of q, such that for all ε, γ,D > 0 and
z = E + iη ∈ Dκ0

γ the isotropic local law

P

(
|⟨x, (g −m)y⟩| > ∥x∥∥y∥N ε

(
Imm√
Nη

+
1

Nη

))
≲ε,γ,D N−D (2.2.16)

holds for all deterministic x,y ∈ CN . Moreover, the averaged local law

P

(∣∣∣∣ 1N Tr(B(g −m))

∣∣∣∣ > ∥B∥N
ε

Nη

)
≲ε,γ,D N−D (2.2.17)
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holds for all deterministic B ∈ CN×N . If additionally E /∈ supp(ρ), an improved
averaged local law of the form

P

(∣∣∣∣ 1N Tr(B(g −m))

∣∣∣∣ > ∥B∥

(
N ε

N |z − τ0|
+

N ε

(Nη)2
√

|z − τ0|

))
≲ε,γ,D N−D

(2.2.18)
holds.

Away from the spectrum, we will also prove the following form of an averaged local
law

Proposition 2.2.10 (Local law away from the spectrum). Let q be a polynomial of
the form (2.1.1). For all C > 0 there is an η0 > 0, depending only on the coefficients
of q, such that an averaged local law of the form

P

(∣∣∣∣ 1N Tr(B(g −m))

∣∣∣∣ > ∥B∥N ε

(
1

N
+

1

(Nη)2

))
≲ε,γ,D,C N−D (2.2.19)

holds true for all deterministic B ∈ CN×N , γ, ε,D > 0 and z ∈ GC,η0
γ .

The local laws, Theorem 2.2.9 and Proposition 2.2.10, are proved in Section 2.5.
They give us very precise control over the spectral properties of q(X) close to any
regular edge as can be seen from the following corollaries,

Corollary 2.2.11 (Edge eigenvector delocalization). Let the assumptions of Theo-
rem 2.2.9 be satisfied and v be a normalized eigenvector of q(X) with eigenvalue
λ. Then there is a κ0 > 0, only depending on the coefficients of q, such that if
|λ− τ0| ≤ κ0 then we have for all ε,D > 0 that

sup
x∈CN×N ,∥x∥=1

P
(
|⟨x,v⟩| ≥ N− 1

2
+ε
)
≲D,ε N

−D (2.2.20)

Corollary 2.2.12 (Eigenvalue rigidity). Denote the classical index of the eigenvalue
close to energy E ∈ supp(ρ) by

k(E) :=

⌈
N

∫ E

−∞
ρ(E ′)dE ′

⌉
, (2.2.21)

with ⌈·⌉ being the ceiling function. Let ρ have a regular edge at τ0. All eigenvalues
around τ0 are close to their classical position in the following sense. There is a
κ0 > 0, only depending on the coefficients of q, such that

P

(
supE|λk(E) − E| ≥ min

{
N ε

N |E − τ0|
,
N ε

N
2
3

})
≲D,ε N

−D. (2.2.22)

holds for all ε,D > 0 and E ∈ supp(ρ) with |E − τ0| ≤ κ0.

Proof of Theorem 2.2.2. As the norm of any Hermitian matrix H with non-decreasing
eigenvalues λi, i ∈ JnK, is given by ∥H∥ = max{|λ1|, |λn|}, Theorem 2.2.2 follows
as a special case of Corollary 2.2.12 in conjunction with Proposition 2.2.7, which
states that all edges of non-reducible polynomials are regular.
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2.3 Properties of the spectral density
We first state two propositions which describe the behaviour of the Stieltjes transform
in the upper half-plane close to the edges of the spectrum. The first proposition con-
cerns non-reducible polynomials, whereas the second one covers shifted reducible
polynomials. Subsequently, we conclude Propositions 2.2.7 and 2.2.8 from Proposi-
tions 2.3.1 and 2.3.2 and state Corollary 2.3.3. It summarizes important properties
of the Stieltjes transform close to any regular edge and is used to prove the local law,
Theorem 2.2.9. Afterwards, we prove Propositions 2.3.1 and 2.3.2 in the remainder
of the section.

Proposition 2.3.1 (Stieltjes transform for non-reducible polynomials). Let q be a
non-reducible quadratic polynomial. Then we have the following behaviour of m
close to the edges.

1. There are m+ < 0, c+ > 0 and u > 0 such that for all z ∈ H with |z−τ+| ≤ u
the Stieltjes transform of the limiting spectral density m = m(z) satisfies

m−m+ = c+
√
z − τ+ +O(|z − τ+|). (2.3.1)

2. There are m− > 0, c− > 0 and u > 0 such that for all z ∈ H with |z−τ+| ≤ u
the Stieltjes transform of the limiting spectral density m = m(z) satisfies

m−m− = −c−
√
τ− − z +O(|τ− − z|). (2.3.2)

Here,
√
· denotes the square root function that maps the positive real axis to itself

and with a branch cut along the negative real axis.

Proposition 2.3.2 (Stieltjes transform for shifted reducible polynomials). Let q be
a shifted reducible polynomial of the form (2.2.10). Then we have the following
behaviour of m close to the edges.

1. There are m+ < 0, c+ > 0 and u > 0 such that for all z ∈ H with |z−τ+| ≤ u
the function m = m(z) satisfies

m−m+ = c+
√
z − τ+ +O(|z − τ+|). (2.3.3)

2. There are c− > 0 and u > 0 such that for all z ∈ H with |z − τ−| ≤ u the
function m = m(z) satisfies

m =



c−(τ− − z)−
1
2 +O(1) if ξ = 0

c−(τ− − z)−
1
2 +O(1) if v ∈ Rl, ξ < 2

c−(τ− − z)−
1
4 +O(1) if v ∈ Rl, ξ = 2

c−(τ− − z)−
1
2 +O(1) if v ∈ Cl \eiφRl for all φ ∈ (−π, π], sξ < 2

c−(τ− − z)−
1
3 +O(1) if v ∈ Cl \eiφRl for all φ ∈ (−π, π], sξ = 2,

(2.3.4)
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where s was defined in (2.2.11). If none of the above conditions is satisfied,
there is additionally an m− > 0 such that for all z ∈ H with |z − τ−| ≤ u we
have

m−m− = −c−
√
τ− − z +O(|τ− − z|). (2.3.5)

The function ζ 7→ ζp is chosen such that the positive real axis is mapped to
itself and with a branch cut along the negative real axis for all p ∈ R \ Z.

Corollary 2.3.3. Let q(X) have a regular edge at τ0 and m0 = m(τ0). There is a
u > 0 such that the function m = m(z) satisfies

|z − τ0| ∼ |m−m0|2 (2.3.6)

and

Imm ∼

{√
|E − τ0|+ η if E ∈ supp(ρ)

η√
|E−τ0|+η

if E /∈ supp(ρ)
(2.3.7)

for all z = E + iη ∈ H with |z − τ0| ≤ u.

Proof of Proposition 2.2.7 and Proposition 2.2.8. By (2.2.7) we have

ρ(E) = lim
η↘0

π−1m(E + iη) (2.3.8)

on any interval I ⊂ R on which the limit exists for all E ∈ I . For the cases in
Proposition 2.3.1 and Proposition 2.3.2 where m−m0 shows a square root behaviour
around an edge τ0, we take the limit on (τ0 − u, τ0 + u) to prove that the edge is
regular. For the cases in Proposition 2.3.2 where m diverges at τ−, we take the limit
on (τ− − u, τ− + u) \ {τ−} to obtain the respective asymptotic behaviour.

Let µi ∈ R denote the eigenvalues of A, µ̂i ∈ R the eigenvalues of Â and let wi ∈ Rl

be an orthonormal set of eigenvectors of Â corresponding to the µ̂i. By (2.2.5) the
function γ is defined in terms of these quantities as

γ(m) = −
l∑

i=1

µi

1 +mµi

+
l∑

i=1

|⟨wi, b⟩|2(1 +mµ̂i)

(1 + 2mµ̂i)2
m− c. (2.3.9)

From now on we consider γ to be defined on its maximal domain, C \ S (γ), where

S (γ) := {−µ−1
i ∈ R : µi ̸= 0} ∪ {−(2µ̂i)

−1 ∈ R : µ̂i ̸= 0 and ⟨wi, b⟩ ≠ 0}
(2.3.10)

denotes the poles of γ. We also require the function h, which we define as follows.

Definition 2.3.4. Let h : C \ S (h) be given by

h(m) :=
1

m2
− γ′(m) =

1

m2
−

l∑
i=1

µ2
i

(1 +mµi)2
−

l∑
i=1

|⟨wi, b⟩|2

(1 + 2mµ̂i)3
. (2.3.11)

Here, S (h) := S (γ)∪ {0} denotes the set of poles of h and γ′(m) is the derivative
of γ with respect to m.
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Proposition 2.2.3 asserts that m is a Stieltjes transform of the measure ρ, which has
real and compact support. Thus m is analytic and has positive imaginary part on H.
We take the derivative of (2.2.4) with respect to z on H to find

m′ =
1

h(m)
. (2.3.12)

As m is a Stieltjes transform of ρ, its analyticity extends to C \ supp(ρ) and the
above equation holds on H \ supp(ρ), where H = H ∪ R. Next, we define

m∗
− =

{
min((0,∞) ∩ S (h)) if (0,∞) ∩ S (h) ̸= ∅
∞ otherwise,

(2.3.13)

m∗
+ =

{
max((−∞, 0) ∩ S (h)) if (−∞, 0) ∩ S (h) ̸= ∅
−∞ otherwise.

(2.3.14)

In other words, (m∗
+, 0) and (0,m∗

−) are the maximal intervals to the left and the
right of the origin, where h is continuous. The following lemmata describe the
existence and characterization of roots of h both for the shifted reducible and the
non-reducible case on (m∗

+, 0) and (0,m∗
−).

Lemma 2.3.5. Let q be a non-reducible quadratic polynomial. Then we have the
following.

1. The function h has a unique root m− in (0,m∗
−) and h has a unique root m+

in (m∗
+, 0). Both of them are of first order. More precisely, they satisfy

±h′(m±) > 0. (2.3.15)

2. The positions of the edges τ±, defined in Definition 2.2.5, are given in terms of
m± by

τ± = −m−1
± − γ(m±). (2.3.16)

Lemma 2.3.6. Let h be the function introduced in Definition 2.3.4 for a reducible
polynomial q = qr of the form (2.2.10) with normalized v ∈ Cl and ξ ≥ 0. Then the
following holds true.

1. The function h has a unique root m+ in (m∗
+, 0), which is of first order and

satisfies
h′(m+) > 0. (2.3.17)

2. The function h is continuous on (0,∞). It has no root in (0,∞) if and only if
one of the following hold true:

a) ξ = 0;

b) or v ∈ Rl and ξ ≤ 2;
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c) or v ∈ Cl \ eiφRl for all φ ∈ (−π, π] and sξ ≤ 2.

If none of the above conditions are satisfied, h does have a unique root
m− ∈ (0,∞), which is of first order and satisfies

h′(m−) < 0. (2.3.18)

If h does not have any roots in (0,∞), the following asymptotic behaviour is
observed for m → ∞:

h(m) ∼



m−3 if ξ = 0

m−3 if v ∈ Rl and ξ < 2

m−5 if v ∈ Rl and ξ = 2

m−3 if v ∈ Cl \ eiφRl for all φ ∈ (−π, π] and sξ < 2

m−4 if v ∈ Cl \ eiφRl for all φ ∈ (−π, π] and sξ = 2.
(2.3.19)

Here s was defined in (2.2.11).

3. The positions of the edges τ±, defined in Definition 2.2.5, are given by

τ+ = −m−1
+ − γ(m+) (2.3.20)

and

τ− =

{
−m−1

− − γ(m−) if m− > 0 with h(m−) = 0 exists;
0 otherwise.

(2.3.21)

The proof of the lemmata is deferred until after the proof of Propositions 2.3.1 and
2.3.2.

Proof of Propositions 2.3.1 and 2.3.2. In both the non-reducible and the shifted re-
ducible cases the function h has a unique root m+ in (m∗

+, 0). For all m ∈ (m+, 0)
the derivative of the inverse z = z(m) of m = m(z) with respect to m is given by

d

dm
z = h(m). (2.3.22)

Then, by Lemma 2.3.5 and Lemma 2.3.6, there is an r ∼ 1 and a c+ > 0, only
depending on the coefficients of q, such that for all m ∈ (m+,m+ + r) we have

d

dm
z = h(m) = 2c2+(m−m+)(1 +O(m−m+)) (2.3.23)

and thus
z − τ+ = c2+(m−m+)

2(1 +O(m−m+)). (2.3.24)

Taking the square root of the above equation, we obtain

m−m+ = c+
√
z − τ+ +O(|z − τ+|) (2.3.25)
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for all z ∈ (τ+, τ+ + u) for some u > 0. As m is holomorphic on H ∪ (τ+,∞) and
has positive imaginary part on H, the relation (2.3.25) also holds for all z ∈ H with
|z − τ+| ≤ u for some u > 0.

In all cases, where h has a root m− in (0,m∗
−), we find by the same argument that

m−m− = −c−
√
τ− − z +O(|τ− − z|) (2.3.26)

for all z ∈ H with |z − τ+| ≤ u for some u, c− > 0.

Finally, in the cases where h does not have a root in (0,∞), it is continuous on the
whole interval and we have that for all m ∈ (0,∞) the derivative of z with respect
to m is given by

d

dm
z = h(m). (2.3.27)

Then, by Lemma 2.3.6, there is an R ∼ 1 and a c0 > 0, only depending on the
coefficients of q, such that for all m ∈ (R,∞) we have

d

dm
z = h(m) = c0m

−p(1+O(m−1)) and thus z = −c0m
−(p−1)

p− 1
(1+O(m−1)),

(2.3.28)
with p ∈ {3, 4, 5}. Inverting the relation, we obtain

m = c−(−z)−
1

p−1 +O(1) (2.3.29)

for all z ∈ (−u, 0) and some u, c− > 0. Again, as m is holomorphic on H∪ (−∞, 0)
and has positive imaginary part on H, the relation (2.3.29) also holds for all z ∈ H
with |z| ≤ u for some u > 0.

Proof of Lemma 2.3.5 and Lemma 2.3.6. We prove both lemmata simultaneously
and remark where it becomes necessary to distinguish the different polynomials
q. We first investigate the existence and order of roots of h. Let hq denote the
rational function (2.3.11) with the dependence on q being made explicit. We have
hq(−m) = h−q(m). Therefore any root of hq on (0,∞) corresponds to a root of h−q

on (−∞, 0). For simplicity, the proofs are thus only formulated for m ∈ (−∞, 0).
To obtain the corresponding result for m ∈ (0,∞) for the function hq, we consider
the function h−q on (−∞, 0) instead.

We now prove for all polynomials q as in (2.1.1) that h′(m) > 0 for all m ∈ (m∗
+, 0)

with h(m) ≥ 0 and thus h can only have first-order roots on the interval.

Note that on (m∗
+, 0) the inequality h ≥ 0 is equivalent to

l∑
i=1

(mµi)
2

(1 +mµi)2
+

l∑
i=1,

⟨wi,b⟩≠0

(m|⟨wi, b⟩|)2
1

(1 + 2mµ̂i)3
≤ 1 (2.3.30)
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and that on (m∗
+, 0) the inequality h′ > 0 is equivalent to

l∑
i=1

(mµi)
3

(1 +mµi)3
+

l∑
i=1,

⟨wi,b⟩≠0

(m|⟨wi, b⟩|)2
3(mµ̂i)

(1 + 2mµ̂i)4
< 1. (2.3.31)

For m ∈ (m∗
+, 0) we have also that mµi > −1 for all i ∈ JlK and mµ̂i > −1

2
for

all i ∈ JlK such that ⟨wi, b⟩ ≠ 0 by the definition of m∗
+ in (2.3.14). Furthermore,

Lemma 2.6.1 ensures that maxi∈JlK{mµi} ≥ maxi∈JlK{mµ̂i}. Thus the desired
implication, h ≥ 0 implies h′ > 0, follows directly from the following lemma by
identifying (2.3.32) and (2.3.33) right below with (2.3.30) and (2.3.31) respectively.

Lemma 2.3.7. Let n, k ∈ N with n ≥ k. Let yi, i ∈ JnK and let ŷj , j ∈ JkK be
collections of real numbers, both of them sorted in non-increasing order, y1 ≥ y2 ≥
. . . ≥ yn and ŷ1 ≥ ŷ2 ≥ . . . ≥ ŷk. Suppose they satisfy

1. y1 ≥ ŷ1;

2. yn > −1 and ŷk > −1
2
.

Furthermore let cj > 0, j ∈ JkK. Then the inequality

n∑
i=1

y2i
(yi + 1)2

+
k∑

j=1

c2j
1

(2ŷj + 1)3
≤ 1 (2.3.32)

implies
n∑

i=1

y3i
(yi + 1)3

+ 3
k∑

j=1

c2j
ŷj

(2ŷj + 1)4
≤ 1− ν (2.3.33)

for some ν > 0, depending only on y1.

The proof of the lemma is deferred to the end of the section.

To characterize the existence of roots of h we introduce the following notions. If
A is a rank one matrix with real entries, then Â = A and Â is a rank one matrix as
well. We will denote its non-zero eigenvalue by µ and the corresponding normalized
eigenvector by w. If, on the other hand, A is a rank one matrix with A ∈ Cl×l \ Rl×l,
then Â is a rank two matrix by Lemma 2.6.1 in the appendix. We denote its non-zero
eigenvalues by µ± and the corresponding normalized eigenvectors by w±.

Lemma 2.3.8. Let m∗
+ be defined as in (2.3.14). The function h has no root in

(m∗
+, 0) if and only if A is a negative semi-definite rank one matrix, b ∈ Image(Â)

and either

1. A ∈ Rl×l and ∥b∥ ≤ 4∥A∥;
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2. or A ∈ Cl×l \ Rl×l and

|⟨b, w+⟩|2

r3+
+

|⟨b, w−⟩|2

r3−
≤ (4∥A∥)2, (2.3.34)

with r± := −∥A∥−1µ±.

If h has no root in (m∗
+, 0), then we have m∗

+ = −∞ and the asymptotic behaviour
of h for m → −∞ is given by

h(m) ∼


1

(−m)3
A ∈ Rl×land ∥b∥ < 4∥A∥

1
(−m)5

A ∈ Rl×land ∥b∥ = 4∥A∥
1

(−m)3
A ∈ Cl×l \ Rl×l and |⟨b,w+⟩|2

|r+|3 + |⟨b,w−⟩|2
|r−|3 < (4∥A∥)2

1
(−m)4

A ∈ Cl×l \ Rl×l and |⟨b,w+⟩|2
|r+|3 + |⟨b,w−⟩|2

|r−|3 = (4∥A∥)2.

(2.3.35)

The proof of the lemma is also deferred to the end of the section.

Note that h can have at most one root on (m∗
+, 0). To see this, recall that h(m) ≥ 0

implies h′(m) > 0. Therefore, if m+ is a root of h on (m∗
+, 0), we know that h is

strictly monotonously increasing on (m+, 0). Thus, any root of h on (m∗
+, 0) is also

the largest one on the interval; therefore it must be the unique root.

Now let q be a non-reducible polynomial. If rankA ≥ 2, then h has a root in
(−∞, 0) by Lemma 2.3.8. If rankA = 1, we can express A as A = αww∗ for
some α ∈ R \ {0} and normalized w ∈ Cl. The vector b cannot be of the form
b = α1Rew + α2 Imw for any α1, α2 ∈ R as q would be reducible otherwise. Thus
b /∈ ImageA and again h has a root in (−∞, 0) by Lemma 2.3.8, completing the
proof of Statement 1 of Lemma 2.3.5.

Next, consider a shifted reducible polynomial q = qr for qr as in (2.2.10). If we
write q in terms of (2.1.1) we have A = vv∗ ≥ 0. Applying Lemma 2.3.5 we obtain
that h has a root in (−∞, 0) and thereby prove Statement 1 of Lemma 2.3.6.

Finally, consider q = −qr for qr as in (2.2.10). Then the coefficients A and b
associated with q are given by A = −vv∗ and b = 2ξRe v. The matrix A is a
negative semi-definite rank one matrix. For µ = ⟨Re v, Im v⟩ ̸= 0 the non-zero
eigenvalues of Â = −1

2
(v∗v + vv∗) = −(Re v)∗Re v − (Im v)∗ Im v are given by

µ± = σ2 + µa±, (2.3.36)

where σ = ∥Re v∥ and a± was defined in (2.2.12). The corresponding normalized
eigenvectors are

w± =
1

σ2 + a±(1− σ2) + 2a±µ
(Re v + a± Im v) . (2.3.37)
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For µ = 0 the eigenvector-eigenvalue pairs are given by

(w+, µ+) =

(
Im v

1− σ2
, 1− σ2

)
, (w−, µ−) =

(
Re v

σ2
, σ2

)
. (2.3.38)

Now recall that hq(m) = h−q(−m) = hqr(−m) and Statement 2 of Lemma 2.3.6
now follows from applying Lemma 2.3.8 to hq.

It remains to prove the relations between m± and τ± stated in (2.3.16), (2.3.20) as
well as (2.3.21). Let q be either a non-reducible polynomial or a reducible polynomial
of the form (2.2.10). For m̃ ∈ (m∗

+, 0) define

z(m̃) := − 1

m̃
− γ(m̃). (2.3.39)

The function z is real analytic on (m∗
+, 0) with derivative z′(m̃) = h(m̃). By

Lemma 2.3.5, Part 1 and Lemma 2.3.6, Part 1, the function h has a unique root m+

in (m∗
+, 0) and h(m̃) > 0 for all m̃ ∈ (m+, 0). Therefore,the function z is invertible

on (m+, 0) and its inverse function m̃ : (z+,∞) → (m+, 0), with z+ := z(m+), is
also real analytic and monotonically increasing. Since z′(m+) = h(m+) = 0, the
analyticity of m̃ cannot be extended onto any neighbourhood of z+.

By (2.3.39), the function m̃ satisfies (2.2.4) and has the asymptotic behaviour
m̃ = −z−1 + O(z2) for z → ∞. At the same time, m, the function uniquely
defined by Proposition 2.2.3, is a Stieltjes transform of a probability measure with
support [τ−, τ+]. As such, it can be analytically extended to C \ [τ−, τ+] but not
to a neighbourhood of τ+ and the extension is real-valued on R \ [τ−, τ+]. As an
extension it also satisfies (2.2.4) on C \ [τ−, τ+] and has the asymptotic behaviour
m = −z−1 + O(z2). In particular, the restriction of the extension to R \ [τ−, τ+],
called mR, is a real analytic function that also satisfies (2.2.4), has the asymptotic be-
haviour mR = −z−1+O(z2) and cannot be analytically extended to a neighbourhood
of τ+. As satisfying (2.2.4) and having the asymptotic behaviour m = −z−1+O(z2)
uniquely define an analytic function on a neighbourhood of ∞, we have m̃ = mR on
(C,∞) for some C > 0. If we assume that τ+ > z+, then m̃ would be an analytical
continuation of mR to some neighbourhood of τ+, which is a contradiction and vice
versa. Therefore we must have z+ = τ+. In particular, we have

τ+ = z(m+) = − 1

m+

− γ(m+). (2.3.40)

By an analogous argument to the left of the spectrum we find

τ− = z(m−) = − 1

m−
− γ(m−) (2.3.41)

if m− exists. Now, let q = qr be a shifted reducible polynomial of the form (2.2.10)
such that h has no root on (0,∞). Then the function z(m̃) defined on (0,∞) by
(2.3.39) is a monotonously increasing analytic function on the entirety of its domain.
It is therefore invertible and its inverse function, m̃, is analytic on (−∞, z∞) with
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z∞ := limx→∞ z(x) but cannot be analytically extended to a neighbourhood of z∞.
Along the lines of the above argument, mR would be an analytical continuation of m̃
in a neighbourhood of z∞ if τ− > z∞ and m̃ would be an analytical continuation of
mR in a neighbourhood of τ− if z∞ > τ−. Thus we have τ− = z∞ and in particular

τ− = lim
x→∞

−1

x
− γ(x). (2.3.42)

For reducible qr as in (2.2.10), we have A = vv∗, b = −ξ(v+ v̄) and c = ξ2. Taking
the limit (2.3.42) with these parameters we obtain τ− = 0.

Proof of Lemma 2.3.7. Let y ∈ (−1,∞) and ŷ ∈ (−1
2
,∞). We define

h1(y) =
y

y + 1
and h2(ŷ) =

1

2ŷ + 1
. (2.3.43)

Using this notation, (2.3.32) can be expressed as

g(y, ŷ, c) :=
n∑

i=1

h1(yi)
2 +

k∑
j=1

c2jh
3
2(ŷj) ≤ 1 (2.3.44)

and (2.3.33) as

f(y, ŷ, c) :=
n∑

i=1

h1(yi)
3 + 3

k∑
j=1

c2j ŷjh
4
2(ŷj) ≤ 1− ν (2.3.45)

To prove the lemma it is then sufficient to show that g ≤ 1 implies f ≤ 1− ν.

First assume g = 0. Since all summands of g are non-negative, it follows that yi = 0
for all i ∈ JnK and cj = 0 for all j ∈ JkK and so f vanishes as well. Thus we assume
g ̸= 0 from now on and we will prove that g ≤ 1 implies f < g.

We will prove the cases ŷ1 ≤ 1
2
, 1

2
< ŷ1 < 1 and ŷ1 ≥ 1 separately and start

with ŷ1 ≤ 1
2
. Then ŷj ≤ 1

2
for all j. Note that ŷjh

4
2(ŷj) ≤ ŷ1h2(ŷ1)h

3
2(ŷj)

and h3
1(yi) ≤ h1(y1)h

2
1(yi) hold for all i and j since ŷ 7→ ŷh2(ŷ) and h1 are

monotonously increasing and the ŷj and yi are sorted in non-increasing order. Thus

f(y, ŷ, c) ≤ h1(y1)
n∑

i=1

h2
1(yi) + 3ŷ1h2(ŷ1)

k∑
j=1

c2jh
3
2(ŷj)

≤ h1(y1)
n∑

i=1

h2
1(yi) +

3

4

k∑
j=1

c2jh
3
2(ŷj) ≤ max

{
y1

1 + y1
,
3

4

}
g(y, ŷ, c).

(2.3.46)

The second inequality holds since 3ŷ1h2(ŷ1) ≤ 3
4

due to ŷ1 ≤ 1
2

and the third one
because all summands in both sums are non-negative. The relation f ≤ 1− ν for
g ≤ 1 then follows in this regime.
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For 1
2
< ŷ1 < 1, we estimate every summand in f but the y1 term by the correspond-

ing term in g and we find

f(y, ŷ, c) ≤ g(y, ŷ, c)− h1(y1)
2 + h1(y1)

3. (2.3.47)

This upper bound is valid since ŷj ≤ ŷ1 < 1 for all j. Thus for g ≤ 1 we find

f(y, ŷ, c) ≤ g(y, ŷ, c)−
(

y1
y1 + 1

)2
1

1 + y1
< 1− 2

27
, (2.3.48)

where in the last step we used y1 ≥ ŷ1 >
1
2
.

Now let ŷ1 ≥ 1. Let k0 be the largest integer such that ŷk0 ≥ 1. Then

f0(y, ŷ, c) :=
n∑

i=2

h3
1(yi) +

k∑
j=k0+1

3c2j ŷjh
4
2(ŷj)

≤
n∑

i=2

h2
1(yi) +

k∑
j=k0+1

c2jh
3
2(ŷj) =: g0(y, ŷ, c)

(2.3.49)

is concluded by again estimating each term individually (either of the sums might be
empty). Note that g0 ≥ 0. Therefore we only need to prove that

g1(y, ŷ, c) := (g − g0)(y, ŷ, c) = h2
1(y1) +

k0∑
j=1

c2jh
3
2(ŷj) ≤ 1 (2.3.50)

implies

f1(y, ŷ, c) := (f − f0)(y, ŷ, c) = h3
1(y1) +

k0∑
j=1

3c2j ŷjh
4
2(ŷj) ≤ g1(y, ŷ, c)− ν

(2.3.51)
for some ν > 0, only depending on y1, to conclude the proof of the lemma.

For ŷ ∈ [1,∞) the inequality h3
2(ŷ) ≤ 3ŷh4

2(ŷ) is satisfied and consequently

k0∑
j=1

h3
2(ŷj) ≤

k0∑
j=1

3ŷjh
4
2(ŷj) (2.3.52)

holds. Therefore for any fixed (y, ŷ, c) and r ∈ R+ the difference (g1−f1)(y, ŷ, rc)
decreases monotonically in r. Hence we only need to prove (g1− f1)(y, ŷ, r

∗c) ≥ ν
for

r∗ := sup{r ≥ 0| g1(y, ŷ, rc) ≤ 1}. (2.3.53)

On the other hand g1(y, ŷ, rc) increases monotonically in r and therefore

g1(y, ŷ, r
∗c) = 1.
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It is thus sufficient to prove that g1 = 1 implies f1 ≤ 1 − ν. Hence we assume
g1 = 1. Then

k0∑
j=1

c2jh
3
2(ŷj) = 1− h2

1(y1) (2.3.54)

and

f1(y, ŷ, c) = h3
1(y1) +

k0∑
j=1

3c2j ŷjh
4
2(ŷj) ≤ h3

1(y1) + max
j∈Jk0K

{3ŷjh2(ŷj)}
k0∑
j=1

c2jh
3
2(ŷj)

≤ h3
1(y1) + 3ŷ1h2(ŷ1)(1− h2

1(y1)) ≤ h3
1(y1) + 3y1h2(y1)(1− h2

1(y1))

=
1

(1 + y1)3
(y31 + 3y21 + 3y1) = 1− 1

(1 + y1)3
.

(2.3.55)

The inequalities holds because yh2(y) increases monotonically in y and y1 ≥ ŷ1 ≥ ŷj
for all j. Combining this with (2.3.46) and (2.3.48) concludes the proof of the
lemma.

Proof of Lemma 2.3.8. Note that h(m) > 0 for m close to 0, since the m−2 term is
dominating h from (2.3.11) in this regime. First, we consider the situation, where h
has a pole in (−∞, 0). In other words, we have m∗

+ > −∞, where m∗
+ was defined

in (2.3.14). All poles of h on (−∞, 0) are either of order two or of order three so
the pole at m∗

+ will be as well. If the pole is of order two, then the behaviour around
m∗ is given by limm→m∗

+
h(m) = −∞ and if it is of order three h behaves like

limm↘m∗
+
h(m) = −∞ and limm↗m∗

+
h(m) = ∞. Since h is continuous outside of

its poles, the existence of a pole thus implies the existence of a root in (m∗
+, 0). Now

let h have no poles in (−∞, 0), i.e. m∗
+ = −∞. Then h is analytic on (−∞, 0) and

h has a root in (−∞, 0) if and only if h(m) is negative for some m ∈ (−∞, 0).

We separate multiple cases.

Case 1 (rank(A) ≥ 2). Either h has a pole in (−∞, 0) or bt(1 + 2mÂ)−3b ≥ 0 for
all m ∈ (−∞, 0), thus

h(m) ≤ 1

m2
− TrA2(1 +mA)−2 = −rank(A)− 1

m2
+O(m−3) < 0 (2.3.56)

for sufficiently large −m and h has a root either way.

Case 2 (rank(A) = 1 and A ≥ 0). The matrices A and Â have a positive eigenvalue,
therefore h will have a pole in (−∞, 0) and thus also a root.

Case 3 (rank(A) = 1, A ≤ 0 and b /∈ Image Â). In this case, h has no pole on
(−∞, 0) and there is a vector w0 in the kernel of Â such that ⟨w0, b⟩ ̸= 0. From
(2.3.11) we have that h is estimated

h(m) ≤ 1

m2
− |⟨w0, b⟩|2 < 0, (2.3.57)

where the last inequality holds for −m sufficiently large and so h has a root as well.
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Case 4 (rank(A) = 1, A ≤ 0, b ∈ Image Â and A ∈ Rl×l). Since A is real-
symmetric, we have A = Â and Â is also a rank one matrix and h has no poles in
(−∞, 0). Either b = 0 or b is an eigenvector of Â with eigenvalue µ = −∥A∥ since
A = Â, rankA = 1 and A ≤ 0. In both cases h becomes

h(m) =
1

m2

(
1− (µm)2

(1 + µm)2

)
− ∥b∥2 1

(1 + 2µm)3
(2.3.58)

To find the asymptotics for m → −∞ consider 0 < ζ < 1, with ζ = (µm)−1. We
find

h(m)

=∥A∥2ζ2
(
1− 1

(ζ + 1)2

)
− ∥b∥2

8

ζ3

(1
2
ζ + 1)3

=ζ3

(
∥A∥2

∞∑
k=0

(k + 2)(−ζ)k − ∥b∥2

8

∞∑
k=0

(k + 1)(k + 2)

2
(−1

2
ζ)k

)

=

(
2∥A∥2 − ∥b∥2

8

)
ζ3 + 3

(
∥b∥2

16
− ∥A∥2

)
ζ4 +

(
4∥A∥2 − 3∥b∥2

8

)
ζ5 +O(ζ6).

(2.3.59)

Therefore h has a root if ∥b∥ > 4∥A∥. If ∥b∥ ≤ 4∥A∥ then the leading order
coefficient of the expansion is positive. Since h(m) ≥ 0 implies h′(m) > 0 this
implies h(m) > 0 for all m ∈ (−∞, 0). Therefore there is no root and the first two
cases in (2.3.35) follow.

Case 5 (rank(A) = 1, A ≤ 0, b ∈ Image Â and A ∈ Cl×l \ Rl×l). Since A is not
real-symmetric, we have rank Â = 2 by Lemma 2.6.1 and h has no poles in (−∞, 0).
Since b ∈ Image Â, the function h can be expressed as

h(m) =
1

m2

(
1− (µm)2

(1 + µm)2

)
−|⟨b, w+⟩|2

1

(1 + 2µ+m)3
−|⟨b, w−⟩|2

1

(1 + 2µ−m)3

(2.3.60)
To find the asymptotics for m → −∞ consider 0 < ζ < 1, with ζ = (−∥A∥m)−1.
We find

h(m) =∥A∥2ζ2
(
1− 1

(ζ + 1)2

)
−|⟨b, w+⟩|2

8r3+

ζ3

( 1
2r+

ζ + 1)3
− |⟨b, w−⟩|2

8r3−

ζ3

( 1
2r+

ζ + 1)3

=

(
2∥A∥2 − |⟨b, w+⟩|2

8r3+
− |⟨b, w−⟩|2

8r3−

)
ζ3

+ 3

(
|⟨b, w+⟩|2

16r4+
− |⟨b, w−⟩|2

16r4−
− ∥A∥2

)
ζ4 +O(ζ5).

(2.3.61)

By an analogous consideration to the above case, h has a root if and only if

|⟨b, w+⟩|2

r3+
+

|⟨b, w−⟩|2

r3−
> (4∥A∥)2 (2.3.62)
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and the remaining two cases in (2.3.35) follow.

2.4 Linearization
Throughout the remainder of the paper, we suppress the index of the identity matrix
if it is in dimension l + 1 or in (l + 1)N , i.e. I := Il+1 ∈ C(l+1)×(l+1) and I :=
I(l+1)N ∈ C(l+1)N×(l+1)N . In all other cases, we still write out the dimension in the
index.

To prove that g converges towards m in the sense laid out in Theorem 2.2.9, we use
the linearization method, which we briefly introduce here. For more details on the
construction of linearizations in the context of random matrices, see e.g. [28, 42, 43].
First, assume that A is invertible. We define the linearization L of q as

L = K0 +
l∑

j=1

Kj ⊗Xj ∈ C(l+1)N×(l+1)N , (2.4.1)

where

K0 =

(
c 0
0 −A−1

)
∈ C(l+1)×(l+1) and Kj =

(
bj etj
ej 0

)
∈ C(l+1)×(l+1) (2.4.2)

for j ∈ JlK and ej being the jth standard euclidean base vector. Here we made use of
our convention to identify any matrix R ∈ Ck×n, k, n ∈ N with R⊗ IN ∈ CkN×nN

introduced in Section 2.1. Let J ∈ C(l+1)×(l+1) be the orthogonal projection onto the
first entry. For δ ∈ [0, 1] and z = E + iη ∈ H we define

Gδ = (L− zJ − iηδ(I− J))−1 ∈ C(l+1)N×(l+1)N (2.4.3)

Gδ is a generalized resolvent and using the Schur complement formula we obtain

Gδ =

(
gδ gδX

tAδ

AδXgδ −Aδ + AδXgδX
tAδ

)
, (2.4.4)

where

Aδ =A(Il + iδηA)−1 ∈ Cl×l,

gδ =
(
XtA(Il + iδηA)−1X+ btX+ c− z

)−1 ∈ CN×N .
(2.4.5)

Note that Il + iδηA is invertible for all η > 0 and δ ∈ [0, 1] as A is Hermitian. In
particular we find

(G0)11 = g ∈ CN×N . (2.4.6)

This justifies why L is called the linearization of q. The δ ̸= 0 case adds an additional
regularization, which we use to prove the local law, Proposition 2.4.3, for δ = 0. Gδ

satisfies the equation

I+ (zJ + iηδ(I− J)−K0 + S[Gδ])Gδ = D, (2.4.7)
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where
S[R] = E[(L− E[L])R(L− E[L])] (2.4.8)

is called the self-energy operator and D is the error term. It is defined by

D := S[Gδ]Gδ + (L−K0)Gδ. (2.4.9)

We split the self-energy term into Γ̃ and So, i.e. S = Γ̃ + So. The first part, Γ̃,
depends only on the averaged trace of its argument, i.e. for all R ∈ C(l+1)N×(l+1)N

we have
Γ̃[R] = Γ[R]. (2.4.10)

The blockwise trace, R, was introduced in (2.1.7) and Γ : C(l+1)×(l+1) → C(l+1)×(l+1)

is given by

Γ

[(
ω vt

w T

)]
=

(
ω∥b∥2 + bt(v + w) + TrT ωbt + wt

ωb+ v ωIl

)
, (2.4.11)

where ω ∈ C, v, w ∈ Cl and T ∈ Cl×l. In (2.4.10) we have made use of our
convention to identify Γ[R] with Γ[R]⊗ IN

The second term So : C(l+1)N×(l+1)N → C(l+1)N×(l+1)N is given by

So

[(
ω Vt

W T

)]
=

1

N
Eζ21

(
∥b∥2ω(o)+bt(V(o)+W(o))+TrbT

(o) ω(o)bt +W(o)

ω(o)b+ (Vt)(o) Il ⊗ ω(o)

)
,

(2.4.12)
where ω ∈ CN×N , V = (Vi)i∈JlK ∈ (CN×N)l, W = (Wi)i∈JlK ∈ (CN×N)l and
T ∈ ClN×lN . For any R = (Rij)i∈JkK,j∈JnK ∈ CkN×nN , n, k ∈ N, we define R(o)

by (R(o))ij := Rt
ji − diag(Rji) ∈ CN×N . For R = (Rij)i,j∈JlK ∈ ClN×lN the

block-trace Trb is defined by

TrbR =
l∑

i=1

Rii ∈ CN×N . (2.4.13)

Equation (2.4.7) without the error term and So is called the Dyson equation (DE)
and its solution is denoted by Mδ = Mδ(z) ∈ C(l+1)×(l+1), i.e.

I + (zJ + iηδ(I − J)−K0 + Γ[Mδ])Mδ = 0 ∈ C(l+1)×(l+1). (2.4.14)

In the next subsection, we will lay out in what sense Gδ is close to Mδ. [28,
Lemma 2.6] asserts the existence of a unique analytic solution to (2.4.14) for δ = 0
and [46, Theorem 2.1] guarantees a unique solution for δ ∈ (0, 1]. For mδ ∈ C,
vδ, wδ ∈ Cl and M̂δ ∈ Cl×l we partition Mδ as

Mδ :=

(
mδ vtδ
wδ M̂δ

)
. (2.4.15)
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Since Mδ solves (2.4.14) it is invertible and by the Schur complement formula its
inverse is given by

M−1
δ =

m−1 +m−2vtδ

(
M̂δ − wδm

−1
δ vtδ

)−1

wδ −m−1vtδ

(
M̂δ − wδm

−1
δ vtδ

)−1

−m−1
(
M̂δ − wδm

−1
δ vtδ

)−1

wδ

(
M̂δ − wδm

−1
δ vtδ

)−1


(2.4.16)

At the same time by (2.4.14) the inverse of Mδ can be expressed as

M−1
δ =

(
−z −mδb

tb− bt(vδ + wδ)− Tr M̂δ −mδb
t − wt

δ

−mδb− v −A−1 − (mδ + iηδ)Il

)
. (2.4.17)

Comparing the two expressions for M−1
δ , we obtain a set of equations for mδ, vδ, wδ

and M̂δ. Solving them, we find explicit expressions for vδ, wδ and M̂δ in terms of
mδ. In other words, Mδ = Mδ[mδ] can be expressed purely in terms of its (1,1) entry
with Mδ[x] given by

Mδ[x] :=

(
x −xbtVδ(x)Aδ

−xAδVδ(x)b −Aδ(Il + xAδ)
−1 + xAδVδ(x)bb

tVδ(x)Aδ

)
(2.4.18)

with
Vδ(x) := x(Il + 2xÂδ)

−1. (2.4.19)

Note that we use square brackets to denote Mδ as a function of its (1,1) entry. This is
done to avoid confusion with Mδ(z), which denotes Mδ as a function of the spectral
parameter z. The two functions are related by Mδ[mδ(z)] = Mδ(z). The entry mδ

satisfies the equation
−m−1

δ = z + γδ(mδ), (2.4.20)

where

γδ(x) := −TrAδ(Il + Aδx)
−1 + bt(Vδ(x)− Vδ(x)ÂδVδ(x))b− c. (2.4.21)

and Âδ =
1
2
(Aδ +At

δ). For δ = 0, Equation (2.4.20) corresponds precisely to (2.2.4).
From here on we no longer assume that A is invertible and instead, we use the
Equations (2.4.4), (2.4.9) and (2.4.18) as the definition for Gδ, D and Mδ = Mδ[mδ]
respectively. Note that this is also well defined for (2.4.9) as K0 and L, defined in
(2.4.2) and (2.4.1) respectively, depend on A−1, but L−K0 does not. The function
mδ is uniquely defined by the following lemma.

Lemma 2.4.1. Let ρ have a regular edge at τ± and let δ ∈ (0, 1]. The function mδ

is uniquely defined by the following criteria around the edge and away from the
spectrum.

1. There is a u > 0 only depending on the coefficients of q such that for all z ∈ H
with |z − τ±| < u there is a unique function mδ = mδ(z) that solves (2.4.20)
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and satisfies

Immδ ∼

{√
κ+ η if E ∈ supp(ρ)
η√
κ+η

if E /∈ supp(ρ)
as well as |mδ −m±|2 ∼ |z− τ±|,

(2.4.22)
with κ = |E − τ±| and m± = limη↘0m(τ± + iη).

2. For all C > 0 there is an η0 such that for all z = E + iη ∈ H with C−1 <
dist(E, supp(ρ)) < C and η < η0 there is a unique function mδ = mδ(z) that
solves (2.4.20) and satisfies

Immδ ∼C η as well as |mδ(z)−m(E)| ∼ η, (2.4.23)

with m(E) = limη↘0m(E + iη).

In each case Mδ = Mδ[mδ] is also the unique solution to (2.4.14) with ImMδ > 0
if the coefficient matrix A is invertible.

The lemma is proven in Appendix 2.6.3.

2.4.1 Local law for the linearization

Definition 2.4.2 (Shifted square of a Wigner matrix). A polynomial q as in (2.1.1)
with A ∈ Rl×l, rankA = 1 and b = 0 is called a shifted square of a Wigner matrix.

Remark. If a polynomial q satisfies the above definition, then there is some v ∈ Rl

with v ̸= 0 and
q(X) = ±(vtX)2 + c. (2.4.24)

Here, W := 1
∥v∥v

tX is a Wigner matrix, normalised such that E|wij|2 = 1
N

and we
have

q(X) = ±∥v∥2W2 + c. (2.4.25)

This justifies the terminology in the above definition.

In case q is not a shifted square of a Wigner matrix, we will prove that M0 and G0

are close to each other around any regular edge. As m and g are sub-matrices of M0

and G0 respectively, this also implies closeness of g and m. This result, a local law
for the linearization, is presented below in Propositions 2.4.3 and 2.4.4. For q being
a shifted square of a Wigner matrix, we will prove the local law, Theorem 2.2.9 and
Proposition 2.2.10, directly without the use of a linearization. The reason why we
prove this case separately is that the stability operator L , defined below in (2.4.33),
does have an additional unstable direction.
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Proposition 2.4.3 (Edge local law for the linearization). Let q be a polynomial of the
form (2.1.1) that is not a shifted square of a Wigner matrix and let the corresponding
ρ have a regular edge at τ0. There is a κ0 > 0, depending only on the parameters
of q, such that for all ε, γ,D > 0, δ ∈ {0, 1} and z = E + iη ∈ Dκ0

γ , the isotropic
local law

P

(
|⟨x, (Gδ −Mδ)y⟩| > ∥x∥∥y∥N ε

(
Imm√
Nη

+
1

Nη

))
≲ε,γ,D N−D (2.4.26)

holds for all deterministic x,y ∈ C(l+1)N . Moreover, the averaged local law

P

(
|⟨B(Gδ −Mδ)⟩| > ∥B∥N

ε

Nη

)
≲ε,γ,D N−D (2.4.27)

holds for all deterministic B ∈ C(l+1)N×(l+1)N . For E /∈ supp(ρ), an improved
averaged local law of the form

P

(
|⟨B(Gδ −Mδ)⟩| > ∥B∥N ε

(
1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

))
≲ε,γ,D N−D,

(2.4.28)
with κ = |E − τ0|, is obtained.

Proposition 2.4.4 (Local law for the linearization away from the spectrum). Let q
be a polynomial of the form (2.1.1) that is not a shifted square of a Wigner matrix.
For all C > 0 there is an η0 > 0, depending only on the coefficients of q, such that
an averaged local law of the form

P

(
|⟨B(Gδ −Mδ)⟩| > ∥B∥N ε

(
1

N
+

1

(Nη)2

))
≲ε,γ,D,C N−D (2.4.29)

holds true for all deterministic B ∈ C(l+1)N×(l+1)N , ε, γ,D > 0 and z ∈ GC,η0
γ .

To obtain Theorem 2.2.9, we only require the δ = 0 case, but to prove it we will
require the δ = 1 case, thus we state both cases together in the proposition. The
proof of Proposition 2.4.3 has two major ingredients. For one we show that the error
term D in (2.4.7) is indeed small, this is done in Proposition 2.4.5, which we import
from [29, Theorem 4.1] and adjust to our setting. Additionally, we need to prove
that (2.4.14) is stable under small perturbations. This is done in Proposition 2.4.6.

Proposition 2.4.5. Let ε > 0, p ∈ N and δ ∈ [0, 1]. Then there is a c > 0 such that

∥D∥p ≲p,ε N
ε

√
∥GδG∗

δ∥p0
N

(1 + ∥Gδ∥p0)
c
(
1 +N− 1

4∥Gδ∥p0
)cp

(2.4.30)

and

∥D∥avp ≲p,ε N
ε∥G∗

δGδ∥p0
N

(1 + ∥Gδ∥p0)
c
(
1 +N− 1

4∥Gδ∥p0
)cp

(2.4.31)

where we defined p0 = cp
4

ε
.
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Proof. First, consider the case of A being invertible. Then Gδ = (L− zJ − iηδ(I−
J))−1 and our proof follows the proof of [29, Theorem 4.1] line by line with the
exception that the Ward identities, (51a) and (51b), do not apply for δ = 0. Thus, we
cannot replace the G∗

δGδ terms by η−1 ImGδ and we are instead left with the upper
bounds (2.4.30) and (2.4.31).

Now consider A being non-invertible. Then A + ε is invertible for all ε ∈ (0, u)
for some u ∼ 1. We denote the Gδ associated with A + ε by Gε

δ and we have
limε→0G

ε
δ = Gδ. We thus only need to prove that the constants in (2.4.30) and

(2.4.31) are uniform in ε to obtain the proposition in this case. This is non-trivial as
[29, Theorem 4.1] states as a condition that E[L] is bounded and this is clearly not
the case in the ε → 0 limit. The assumption is only used, however, to ensure that
G∗

δGδ satisfies the lower bound ∥G∗
δGδ∥p0 ≳ 1. In our case, this follows instead

from ∥G∗
δGδ∥p0 ≥ ∥g∗

δgδ∥p0 ≳p0 ∥g∗g∥p0 . Since g is the resolvent of q(X) we have
∥g∗g∥q ≥ E[∥q(X)∥−1] ≳ 1 uniformly in z for bounded z. Here, the last inequality
holds true since q(X) satisfies the inequality

∥q(X)∥ ≤
l∑

i,j=1

|Aij|∥Xi∥∥Xj∥+
l∑

i=1

|bi|∥Xi∥+ |c| (2.4.32)

and E[∥Xi∥] ≲ 1 for all i ∈ JlK since the Xi are Wigner matrices. Therefore the
proposition also holds for non-invertible A.

The following result concerns the stability of the Dyson equation. The stability
operator L : C(l+1)N×(l+1)N → C(l+1)N×(l+1)N is given by

L [R] = R−MδS[R]Mδ (2.4.33)

and we will prove

Proposition 2.4.6 (Control of L ). Let q be a polynomial of the form (2.1.1) that
is not a shifted square of a Wigner matrix and let the corresponding ρ have a
regular edge at τ0. There exists a u ∼ 1 such that for all z = E + iη ∈ H with
|z − τ0| < u and δ ∈ [0, 1] there exists an eigenvalue β with corresponding left and
right eigenvectors L,B ∈ C(l+1)×(l+1) of L such that

∥L −1∥sp ∼ (κ+ η)−
1
2 , ∥(1 − P)L −1∥sp ≲ 1, |β| ∼ (κ+ η)

1
2 ,

|⟨L,B⟩| ∼ 1, ∥L∥+ ∥B∥ ∼ 1, |⟨L,MδS[B]B⟩| ∼ 1,
(2.4.34)

with 1 being the identity operator, P being the spectral projection onto B, i.e.

P = (⟨L⊗ IN , B ⊗ IN⟩)−1⟨L⊗ IN , ·⟩(B ⊗ IN) (2.4.35)

and κ = |E − τ0|.

Furthermore, for any C > 0 and E = Re z with C−1 < dist(E, supp(ρ)) < C,
there is an η0 > 0 such that we have

∥L −1∥sp ∼C 1 (2.4.36)

uniformly for all η ≤ η0.
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The proof will be given in Section 2.4.2.

Remark. B and L being right and left eigenvectors of L with eigenvalue β is
understood in the sense of

L [B] = βB and L ∗[L] = β̄L. (2.4.37)

Here, we used the notation R = R⊗ IN ∈ C(l+1)N×(l+1)N introduced in (2.1.3). The
adjoint is defined with respect to the scalar product ⟨R,T⟩ = ⟨R∗T⟩.

Corollary 2.3.3, as well as Propositions 2.4.5 and 2.4.6 are the main ingredients to
Proposition 2.4.3 and are in fact sufficient for δ = 1. For δ = 0 however, extra care
is needed as the Ward identity for resolvents G,

GG∗ =
ImG

η
, (2.4.38)

does not translate to generalized resolvents. Instead, we will estimate G0G
∗
0 by

G1G
∗
1, which allows us to obtain the local law for δ = 0 from the δ = 1 case.

The proof of Proposition 2.4.3 will be given in Section 2.5 and follows the general
strategy from [3], modified to accommodate for the lack of a Ward identity.

2.4.2 Proof of Proposition 2.4.6

Proof of Proposition 2.4.6. We split the stability operator into L = L (0) + L (1)

with
L (0)[R] := L [R] and L (1)[R] := L [R−R]. (2.4.39)

By (2.4.11) and (2.4.12), we have Γ̃[R−R] = So[R] = 0. Thus we have

L (0)[R] = L[R]⊗ IN and L (1)[R] = R−R−MδSo[R]Mδ (2.4.40)

with L : C(l+1)×(l+1) → C(l+1)×(l+1) defined as

L[R] := R−MδΓ[R]Mδ. (2.4.41)

The image of L (0) is given by

{R ∈ C(l+1)N×(l+1)N : R = R} =: U (2.4.42)

and its kernel is given by U⊥, the orthogonal complement of U . At the same time
the image of L (1) is contained in U⊥ and U is contained in the kernel of L (1).
That is, L decomposes into L (0) acting on U and L (1) acting on its orthogonal
complement.

The behaviour of L is summarized in the following lemma.
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Lemma 2.4.7. Let q be a polynomial of the form (2.1.1) that is not a shifted square of
a Wigner matrix and let the corresponding ρ have a regular edge at τ0. There exists
an u ∼ 1 such that for all z = E + iη ∈ H with |z − τ0| < u and δ ∈ [0, 1] there
exists an eigenvalue β with corresponding normalized left and right eigenvectors L
and B of L such that

∥L−1∥sp ∼ (κ+ η)−
1
2 , ∥(1 − P)L−1∥sp ≲ 1, |β| ∼ (κ+ η)

1
2 ,

|⟨L,B⟩| ∼ 1, |⟨L,MδΓ[B]B⟩| ∼ 1,
(2.4.43)

with P being the spectral projection onto B, i.e. P = (⟨L,B⟩)−1⟨L, ·⟩B and
κ = |E − τ+|.

Furthermore, for any C > 0 and E = Re z with C−1 ≤ dist(E, supp(ρ)) ≤ C
there is an η0 > 0 such that we have

∥L−1∥sp ∼C 1 (2.4.44)

uniformly for all η ≤ η0.

The proof of Lemma 2.4.7 is deferred to the end of the section. For So we find

∥So[R]∥hs ≲
1

N
∥R∥hs (2.4.45)

for all R ∈ C(l+1)N×(l+1)N . Thus So is bounded by

∥So∥sp ≲
1

N
. (2.4.46)

By Corollary 2.3.3, Lemma 2.4.1 and (2.4.18) we have ∥Mδ∥ ≲ 1 for all z such
that |z − τ0| ≤ u and some u > 0. Combined with (2.4.46) it follows that there is a
C > 0 such that

∥L (1)∥sp ≤ 1 + CN−1 and Spec
(
L (1)|U⊥

)
⊂ BCN−1(1), (2.4.47)

where Bε(x) denotes the ε neighborhood of x. Thus for sufficiently large N the
smallest eigenvalue of L equals that of L and the corresponding left and right
eigenvectors of L are given by L⊗ IN and B ⊗ IN . The norm of the inverse of L
is bounded by

∥L −1∥sp ≤ max{1 + CN−1, ∥L−1∥sp} (2.4.48)

and
∥(1 − P)L −1∥sp ≤ max{1 + CN−1, ∥(1 − P)L−1∥sp}, (2.4.49)

completing the proof of Proposition 2.4.6

Proof of Lemma 2.4.7. First, we prove that L has exactly one vanishing eigenvalue
at τ0, and from there on we conclude the proof with the help of a perturbative
argument. We define

CJ [R] = JRJ, (2.4.50)
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i.e. CJ is the projection onto the (1, 1) entry and in particular CJ [M0] = mJ . We
also set C⊥

J R := R − CJR and C̃(l+1)×(l+1) := Image C⊥
J . For any R ∈ C(l+1)×(l+1)

we denote r := R11 and R̃ := C⊥
J [R], i.e. R = rJ + R̃. Let Tz be the matrix

Tz =

(
1 0
0 zA

)
∈ C(l+1)×(l+1) (2.4.51)

as well as

F :

{
C × C̃(l+1)×(l+1) × H → C(l+1)×(l+1)

(r, R̃, z) 7→ rJ + R̃ + Tz(z + Γ[rJ + R̃]Tz)
−1.

(2.4.52)

Then F (m, M̃, z) = 0 for M = M0[m] defined in (2.4.18). For δ = 0, the stability
operator L is the derivative of F in the sense that

L[R] = DRF (m, M̃, z), (2.4.53)

where DRF = d
dε
F (m + εr, M̃ + εR̃, z)|ε=0 is the directional derivative of F in

the direction R. We first consider the case when A is invertible. The case of non-
invertible A will be treated afterwards. We define B := CM−1L on z ∈ R \ supp(ρ),
where m(z) is defined as the unique analytical continuation to C \ supp(ρ). Since
F (m, M̃, z) = 0 we have

B[R] = DR[CM−1F ]

= DrJCJ [CM−1F ] +DR̃CJ [CM−1F ] +DrJC⊥
J [CM−1F ] +DR̃C

⊥
J [CM−1F ],

(2.4.54)

where we used the linearity of the derivatives as well as the linearity of B in the
second equality and we omitted the arguments of F . The above equation de-
composes B into a two-by-two block operator with diagonal blocks B11[rJ ] :=

DrJCJ [CM−1F ], B22[R̃] := DR̃C⊥
J [CM−1F ] and off-diagonal blocks B12[R̃] :=

DR̃CJ [CM−1F ], B21[rJ ] := DrJC⊥
J [CM−1F ].

A tedious but straightforward calculation shows that B22 is invertible on the image
of C⊥

J and its inverse is given by

(B22)
−1

[(
0 rt12
r21 R̂

)]
=

(
0 ht

12

h21 Ĥ

)
(2.4.55)

with

h12 =− AtV0(mA(r21 −m−1R̂w0) + (1 +mA)(r12 −m−1R̂tv0))

h21 =− AV0(mAt(r12 −m−1R̂tv0) + (1 +mAt)(r21 −m−1R̂w0))

Ĥ =
A

1 +mA
R̂

A

1 +mA

− AV0(mAt(r12 −m−1R̂tv0) + (1 +mAt)(r21 −m−1R̂w0))m
−1vt

− wm−1((rt21 −m−1wt
0R̂)mAt + (rt12 −m−1vt0R̂)(1 +mAt))V0A,

(2.4.56)
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where V0 = V0(m) was introduced in (2.4.19) and v0 and w0 where defined in
(2.4.15). Their explicit form in terms of m = m0 is given in (2.4.18). From F = 0,
we also have C⊥

J CM−1F = 0 and both M̃ = M̃0 and z are uniquely defined by m
(see (2.4.18) and (2.2.4)). Therefore the total derivative of C⊥

J CM−1F with respect to
m is well defined and vanishes as well, i.e.

0 =
d

dm
C⊥
J CM−1F = C⊥

J DJCM−1F + C⊥
J DM̃ ′CM−1F + z′(m)

∂

∂z
C⊥
J CM−1F

= B21[J ] + B22[M̃
′]

(2.4.57)

where M̃ ′ := ∂M̃
∂m

and z′ denote the derivative of C⊥
J [M [m]] and z with respect to m.

In the last step we also used ∂
∂z
C⊥
J CM−1F = 0, which follows from (2.4.14). Since

B22 is invertible on its image, (2.4.57) is equivalent to

(B22)
−1B21[J ] = −M̃ ′. (2.4.58)

Therefore the Schur complement of B22 is given by

(B11 − B12(B22)
−1B21)[J ] =

∂

∂m
CJ [CM−1F ] +DM̃ ′CJ [CM−1F ]. (2.4.59)

In other words, the Schur complement of B22 is the total derivative of CJ [CM−1F ]
with respect to m for fixed z. Calculating it, we find

(B11 − B12(B22)
−1B21)[J ] =

(
1

m2
− γ′(m)

)
J = h(m)J, (2.4.60)

where h was introduced in Definition 2.3.4. By Lemma 2.3.5, Lemma 2.3.6 and
Lemma 2.6.3 we have h(m) ̸= 0 for all z ∈ R \ supp(ρ). Therefore, the Schur
complement of B22 is invertible on the image of CJ for all z ∈ R \ supp(ρ). Since
both B22 and its Schur complement are invertible on their respective images for all
z ∈ R \ supp(ρ), the operator B for all z ∈ R \ supp(ρ) is also invertible with its
inverse given by the Schur complement formula

B−1[R]

=
(
1 − (B22)

−1B21

)(
B11 − B12(B22)

−1B21

)−1
[
rJ − B12(B22)

−1[R̃]
]
+ (B22)

−1[R̃]

=h(m)−1
(
r −

〈
J,B12(B22)

−1[R̃]
〉)

M ′ + (B22)
−1[R̃],

(2.4.61)

where M ′ = J + M̃ ′ is the derivative of M with respect to m and the inverse of
the Schur complement is acting on span(J). Therefore, L is also invertible with
inverse L−1 = B−1CM−1 for z ∈ R \ supp(ρ). Now let A be non-invertible. Then,
A + ε is invertible for all ε ∈ (0, u] for some u > 0. We use an ε subscript to
denote quantities with A being replaced by Aε := A + ε, e.g. Lε, (B−1)ε etc.
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We have Lε(B−1CM−1)ε = 1 for all ε ∈ (0, u] and both the limits limε↘0 Lε and
limε↘0(B−1CM−1)ε exist. Indeed, Lε is the derivative of F ε, which is smooth at
ε = 0, proving the existence of limε↘0 Lε. Furthermore we explicitly calculate
the expression for (B−1CM−1)ε in terms of Aε and mε by using (2.4.17), (2.4.55),
(2.4.56) and (2.4.61). In the resulting expression, (Aε)−1, appearing in (2.4.17),
cancels and therefore the limit limε↘0(B−1CM−1)ε exists. We leave the details
to the reader. Therefore, L is also invertible for z ∈ R \ supp(ρ) and we have
L−1 = limε↘0(B−1CM−1)ε.

For any C > 0 the norm of the operator L−1 is bounded on the compact subset
C−1 ≤ dist(z, supp(ρ)) ≤ C of R \ supp(ρ), i.e. ∥L−1∥sp ∼C 1. By continuity,
there is some η0 > 0, depending on C, such that ∥L −1∥sp ∼C 1 still holds for
z = E + iη ∈ H with C−1 ≤ dist(E, supp(ρ)) ≤ C and η ≤ η0 and we have
therefore shown (2.4.44).

Let QM ′ be the projection onto the orthogonal complement of M ′. By (2.4.55),
(2.4.56) and (2.4.61) we have

∥QM ′L −1∥sp ≲

∥∥∥∥ 1

1 + Am

∥∥∥∥+ ∥V0∥

≲ dist (−1, Spec(mA)) + dist

(
−1

2
, Spec(mÂ)

) (2.4.62)

uniformly in z ∈ R \ supp(ρ). At z = τ0 we have h(m) = 0 and thus∥∥∥∥ (mA)2

(1 +mA)2

∥∥∥∥ ≤ Tr

(
(mA)2

(1 +mA)2

)
+ bt

(
V0

m

)3

b = 1. (2.4.63)

In the above equation, we have equality if and only if rankA = 1 and b = 0.
Therefore, we have Spec(mA) ⊂ [−1

2
,∞) and −1

2
∈ Spec(A) if and only if

rankA = 1 and b = 0. By Lemma 2.6.1, we have min Spec(mÂ) = min Spec(mA)

if and only if mA ∈ Rl×l. Therefore we have −1
2
∈ Spec(mÂ) if and only if

rankA = 1, A ∈ Rl×l and b = 0. That is, −1
2
∈ Spec(mÂ) at τ0 if and only if A is

a shifted square of a Wigner matrix. If A is not a shifted square of a Wigner matrix,
then (2.4.62) is uniformly bounded in some neighbourhood of τ0. Thus L can at
most have one vanishing eigenvalue at τ0. Indeed let

H(m, z) := F (m, M̃ [m], z) = M [m] + Tz(z + Γ[M [m]]Tz)
−1,

where M [m] is given by the right hand side of (2.4.18). The spectral parameter z is
also uniquely defined by m (see (2.2.4)), i.e. H(m,z(m)) = 0 with

z(m) := − 1

m
− γ(m).

Taking the derivative with respect to m we find

0 =
d

dm
H(m, z(m)) = ∂mH +

dz

dm
∂zH. (2.4.64)
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By Corollary 2.3.3 the derivative dz
dm

vanishes at the edge. Therefore at z = τ0 the
above equation simplifies to

∂mH = 0. (2.4.65)

Calculating this we obtain

0 = M ′ −MΓ[M ′]M = L[M ′], (2.4.66)

with M ′ = M ′[m] the derivative M with respect to m and we used H = 0. Therefore
B = M ′[m] is the critical right eigenvector at τ0. Next, we obtain the critical left
eigenvector L. The adjoint of the stability operator L is

L∗[R] = R− Γ[M∗RM∗]. (2.4.67)

At any regular edge, we have ImM = 0, i.e. M = M∗. Therefore

0 = Γ[L[B]] = Γ[B]− Γ[CM [Γ[B]]] = L∗[Γ[B]] (2.4.68)

at z = τ0. Thus the critical left eigenvector is given by

L = Γ[B]. (2.4.69)

Note that L ̸= 0 since Lii = B11 = 1 for all 1 < i ≤ l + 1 by the expression for Γ
in (2.4.11). As L and B belong to the same non-degenerate eigenvalue they cannot
be orthogonal and since L does not depend on N they satisfy

|⟨L,B⟩| ∼ 1 (2.4.70)

at τ0. Equation (2.4.70) is also satisfied in a u neighbourhood of τ0, with u ∼ 1,
since L and B vary continuously in z.

To obtain |⟨L,MΓ[B]B⟩| we calculate the second total derivative

0 =
d2

dm2
H(m, z(m))

= ∂2
mH(m, z(m)) +

d2z

dm2
∂zH(m, z(m))

+
dz

dm

(
dz

dm
∂2
zH(m, z(m)) + 2∂m∂zH(m, z(m))

)
.

(2.4.71)

At the edge, dz
dm

once again vanishes, whereas d2z
dm2 = c0 ̸= 0 does not by Corol-

lary 2.3.3 and Lemma 2.4.1. Thus calculating the derivatives, we arrive at

0 = −c0MJM +M ′′ −MΓ[M ′′]M − 2MΓ[M ′]MΓ[M ′]M

= −c0MJM + L[M ′′]− 2MΓ[M ′]M ′,
(2.4.72)

where we used H = 0 multiple times and (2.4.66) in the last step. Next, we solve
for the last term, use M ′ = B and take an inner product with L:

⟨L,MΓ[B]B⟩ = 1

2
(⟨L,L[M ′′]⟩ − c0⟨L,MJM⟩)

=
1

2
(⟨L∗[L],M ′′⟩ − c0⟨MLM,J⟩) = −c0

2
B11 ̸= 0.

(2.4.73)
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In the last equality, MLM = MΓ[B]M = B was used. By continuity the relation
|⟨L,MΓ[B]B⟩| ∼ 1 also holds in a u neighbourhood of τ0 with u ∼ 1. At τ0, the
operator L is independent of δ and therefore its vanishing eigenvectors L and B
are as well. Consequently, (2.4.70) and (2.4.73) also hold for all δ ∈ [0, 1] and as
both expressions are also continuous in z for all δ, they also hold in some order one
neighborhood of τ0.

Next we study how L varies in z around τ0 for arbitrary δ ∈ [0, 1] and we make the
dependence explicit by writing L = Lz, Mδ = M z

δ , etc. and define Ez := Lz − Lτ0 .
As the eigenvalues of Lz depend continuously on z, there is a u > 0 such that Lz

has an isolated small eigenvalue βz for all |z − τ0| < u. By perturbation theory βz is
given by

βz = (⟨Lτ0 , Bτ0⟩)−1⟨Lτ0 ,E z(Bτ0)⟩+O(∥E z∥2sp). (2.4.74)

To estimate the right hand side, we first evaluate Ez[Bτ0 ] and find

Ez[Bτ0 ] = Lz[Bτ0 ]− Lτ0 [Bτ0 ] = CMz
δ
[Lτ0 ]− CM

τ0
δ
[Lτ0 ]

= M τ0
δ Lτ0(M τ0

δ −M z
δ ) + (M τ0

δ −M z
δ )L

τ0M z
δ .

(2.4.75)

We take the scalar product with Lτ0 and use the cyclic invariance of the trace to
obtain

|⟨Lτ0 , Ez[Bτ0 ]⟩| = |⟨Lτ0(M τ0
δ +M z

δ )L
τ0(M τ0

δ −M z
δ )⟩|

= 2|⟨Lτ0M τ0
δ Lτ0(M τ0

δ −M z
δ )⟩|+O(|mz

δ −mτ0
δ |

2)

= 2|⟨Lτ0M τ0
δ Lτ0(M τ0

0 )′⟩(mτ0
δ −mz

δ)|+O(|mz
δ −mτ0

δ |
2 + ηδ)

= 2|⟨Lτ0 ,M τ0
δ Γ[Bτ0 ]Bτ0⟩||mτ0

δ −mz
δ |+O(|mz

δ −mτ0
δ |

2 + ηδ)

∼ |mτ0
δ −mz

δ | ∼
√
κ+ η.

(2.4.76)

Here, the third equality follows from the fact that Mδ[mδ] = M0(mδ) +O(ηδ) and
M0 is analytic in mδ at mτ0

δ = mτ0 . In the fourth line we used (2.4.69), M ′ = B
and in the fifth line that |⟨Lτ0 ,M τ0

δ Γ[Bτ0 ]Bτ0⟩| is non-vanishing. In the last relation,
we used Corollary 2.3.3 and Lemma 2.4.1. Taking the absolute value (2.4.74), the
asymptotic behaviour of |βz| follows from (2.4.76) and (2.4.70), i.e.

|βz| ∼
√
κ+ η +O(∥E z∥2sp) ∼

√
κ+ η. (2.4.77)

In the last step, we used that

∥E z∥sp = O(|mz
δ −mτ0

δ |). (2.4.78)

2.5 Proof of the local law
In this section, we prove Theorem 2.2.9 and Proposition 2.2.10. For shifted squares
of Wigner matrices (see Definition 2.4.2), we provide a direct proof below in
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Lemma 2.5.1. The Stieltjes transform m and the resolvent g are submatrices of M0

and G0, introduced in (2.4.18) and (2.4.4), respectively. For polynomials that are not
shifted squares of Wigner matrices, the local laws are therefore a direct consequence
of Proposition 2.4.3 and Proposition 2.4.4, the local laws for the linearization around
regular edges and away from the spectrum, and we will spend most of the section
proving them. The main steps of our proof for the edge local law, Proposition 2.4.3,
follow the general strategy of [3, Proposition 3.3]. Here, we briefly describe the main
ideas of the proof. Throughout this section we will use the notation ∆δ := Gδ −Mδ.
First, we establish a global law away from the spectrum, stated below in Propo-
sition 2.5.7. Then, we use the global law as a starting point for a bootstrapping
process. The bootstrapping proposition, Proposition 2.5.8, establishes a local law
iteratively on scales ever closer to the optimal scale, η ∼ N−1+ε. Lemmata 2.5.4,
2.5.5 and 2.5.6 are auxiliary results used in the bootstrapping process. Lemma 2.5.5
establishes a bound for ∆δ in terms of the error D and Θδ, the projection of ∆δ

onto its unstable direction, as well as an approximate quadratic equation for Θδ.
Lemma 2.5.6 transforms the quadratic bound on Θδ into a linear bound. The most
crucial difference between our proof and that of [3, Proposition 3.3] is addressed in
Lemma 2.5.4. It provides a naive upper bound for G∗

0G0 and allows us to estimate
G∗

0G0 in terms of G∗
1G1. Unlike G0, the matrix G1 is a resolvent and thus satisfies

G∗
1G1 = η−1 ImG1. As D is in turn bounded by G∗

δGδ this step is necessary to
obtain the correct upper bound for G0 −M0. The proof of the local law away from
the spectrum, Proposition 2.4.4, makes use of a similar but more simple strategy
since L does not have an unstable direction away from supp ρ.

Lemma 2.5.1. Let q be a shifted square of a Wigner matrix as introduced in Defini-
tion 2.4.2 and let ρ have a regular edge at τ0.

1. There is a κ0 > 0, depending only on the coefficients of q, such that for
all ε, γ,D > 0 and z ∈ Dκ0

γ the isotropic local law (2.2.16) holds for all
deterministic x,y ∈ CN and the averaged local law (2.2.17) holds for all
deterministic B ∈ CN×N . If additionally E /∈ supp(ρ), we also have the
improved local law (2.2.18).

2. For all C > 0 there is an η0 > 0, depending only on the coefficients of q, such
that the averaged local law (2.2.19) holds true for all deterministic B ∈ CN×N ,
γ, ε,D > 0 and z ∈ GC,η0

γ .

Proof. By assumption, q is a shifted square of a Wigner matrix. Thus it is of the
form

q(X) = qa,c(W) := aW2 + c, (2.5.1)

with a, c ∈ R, a ̸= 0 and W being a Wigner matrix. By ga,c we denote the
resolvent of (2.5.1) and by ma,c the solution of (2.2.4) for (2.5.1) with explicitly
stated dependence on a, c. We have

ga,c(z) =
1

aW2 + c− z
=

1

a
g1,0

(
z − c

a

)
(2.5.2)
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and

ma,c(z) =
1

a
m1,0

(
z − c

a

)
. (2.5.3)

Therefore qa,c has a regular edge at aτ0 + c if and only if q1,0 has a regular edge at
τ0 and Theorem 2.2.9 for general a, c follows from a = 1, c = 0. Thus let w.l.o.g.
a = 1, c = 0 and we drop the subscripts again from m and g.

For ζ ∈ H let gW := 1
W−ζ

be the resolvent of W at spectral parameter ζ . We have

g(z) =
1

2
√
z

(
gW(

√
z) + g−W(

√
z)
)
, (2.5.4)

where again the square root function is chosen such that the positive real axis is
mapped to itself and with a branch cut along the negative real axis. Let ρsc(x) :=
1
2π

√
(4− x2)+ with (y)+ := max{y, 0} be the semi-circle density and msc its

Stieltjes transform. By explicitly solving (2.2.4) for q = W2 and msc we find

m(z) =
1√
z

(
−
√
z +

√
z − 4

)
=

1√
z
msc(

√
z). (2.5.5)

for all z ∈ H. The semi-circle density ρsc has regular edges at ±2, therefore ρ has
exactly one regular edge at τ0 = 4. Its left edge is a hard edge and has a singularity
at zero. Combining (2.5.4) and (2.5.5) we find

g(z)−m(z) =
1

2
√
z

(
(gW(

√
z)−msc(

√
z)) + (g−W(

√
z)−msc(

√
z))
)
. (2.5.6)

Note that −W is also a Wigner matrix. Therefore, Statement 1 of Lemma 2.5.1
around τ0 = 4a+ c follows from [3, Theorem 2.6] and Statement 2 of Lemma 2.5.1
Proposition 2.2.10 from [29, Theorem 2.1].

From now on we assume that q is not a shifted square of a Wigner matrix. To prove
Proposition 2.4.3 and Proposition 2.4.4, we will require several intermediate results,
which we state below. Throughout the remainder of the section, we assume w.l.o.g.
that there is some α > 0 such that

∥Xi∥ ≲ Nα. (2.5.7)

The assumption can be removed by a standard argument using Chebyshev’s inequality
and our moment assumption (2.2.1).

We also introduce stochastic domination, a commonly used notation used to state high
probability bounds in a way well adapted to our needs. It has first been introduced in
a slightly different form in [26], for the form stated here see e.g. [27].

Definition 2.5.2 (Stochastic domination). Let X = (X(N))N∈N and Y = (Y (N))N∈N

be families of non-negative random variables. We say X is stochastically dominated
by Y if for all (small) ε > 0 and (large) D > 0

P
(
X(N) ≥ N εY (N)

)
≲D,ε N

−D. (2.5.8)
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We denote this relation by X ≺ Y . If the constant in the definition depends on any
other parameters α, we write X ≺α Y .

Furthermore, we introduce the norm ∥ · ∥∗ := ∥ · ∥K,x,y
∗ for deterministic x,y ∈ CkN

and k,K ∈ N. Our definition follows that of [3] and it goes back to [29] and we
refer to those two works for details. First, we define the set

I0 := {x,y} ∪ {ea, L∗
a· : a ∈ JkNK}, (2.5.9)

where ea is the ath standard base vector. Replacing a scalar index by a dot denotes
the vector that runs over the entire range of the index, e.g. Ra· := (Rab)b∈JkNK is the
ath row vector of a matrix R. For j ∈ N we define the set Ij recursively by

Ij+1 := Ij∪{Mδu : u∈ Ij}∪{κc((Mδu)a, b·), κd((Mδu)a, ·b) : u∈ Ij, a, b∈ JkNK},
(2.5.10)

where κ(ab, cd) denotes the cumulant of the (a, b) entry and the (c, d) entry of∑l
j=1 Kj ⊗Xj and κc and κd denote the decomposition of κ into its direct and its

cross contribution according to the Hermitian symmetry. In (2.5.10) we also use the
shorthand notation κ(xb, cd) :=

∑
a xaκ(ab, cd). Then ∥ · ∥∗ is defined as

∥R∥∗ :=
∑

0≤j≤K

N− j
2K ∥R∥Ij +N− 1

2 max
u∈IK

∥Ru∥
∥u∥

, ∥R∥Ij := max
u,v∈Ij

|⟨v,Ru⟩|
∥u∥∥v∥

(2.5.11)

The notion of stochastic domination is closely related to bounds in p-norms as can
be seen from the following lemma.

Lemma 2.5.3 ([29, Lemma 5.4]). Let R ∈ CkN×kN , k ∈ N, be a random matrix
and Φ be a stochastic control parameter. Then the following holds true

1. If Φ ≳ N−C and ∥R∥ ≲ NC for some C > 0 and |⟨x,Ry⟩| ≺ Φ∥x∥∥y∥ for
all x,y, then ∥R∥p ≲ε,p N

εΦ for all ε > 0, p ∈ N.

2. If ∥R∥p ≲ε,p N εΦ for all ε > 0, p ∈ N then ∥R∥K,x,y
∗ ≺ Φ for any fixed

K ∈ N and x,y ∈ CN .

Lemma 2.5.4 (A priori bound). G0 satisfies the a priori bound

G∗
0G0 ≲

1

η2
(1 + ∥X∥4) (2.5.12)

uniformly in z ∈ H with η ≲ 1.

Proof. We recall that G0 is given by

G0 =

(
g gXtA

AXg −A+ AXgXtA

)
. (2.5.13)
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We estimate G0 blockwise to obtain

G0G
∗
0 ≤ ∥G0∥2 ≲ ∥g∥2(1 + ∥X∥4) ≤ 1

η2
(1 + ∥X∥4). (2.5.14)

The last inequality holds because g is a resolvent.

The lemma is used in the last step of the following estimate on G∗
0G0,

G∗
0G0 ≤ 2(G∗

1G1 + (G0 −G1)
∗(G0 −G1))

= 2(G∗
1G1 + η2G∗

1(Il+1 − J)G∗
0G0(Il+1 − J)G1) ≲ (1 + ∥X∥4)G∗

1G1.

(2.5.15)

In the first inequality, we applied Lemma 2.6.2 from the appendix with R = G1 and
T = G0 −G1. In the second step, we used

G0 −G1 = G0(G
−1
1 −G−1

0 )G1 = −iηG0(Il+1 − J)G1. (2.5.16)

Taking the p-norm on both sides of (2.5.15) and applying Hölder’s inequality we
obtain

∥G∗
0G0∥p ≲p (1 + ∥∥X∥4∥2p)∥G∗

1G1∥2p ≲p ∥G∗
1G1∥2p =

∥ ImG1∥2p
η

(2.5.17)

for all p ∈ N. Here we use ∥Y ∥p := (E[|Y |p])1/p for scalar random variables Y . In
the second to last step, we used ∥X∥p ≲p 1, which follows from Lemma 2.5.3 since
∥X∥ ≺ 1 and ∥X∥ ≤ NC by assumption (2.5.7).

We define the sets

Dκ0 := {z ∈ H : |E − τ0| ≤ κ0},
GC,η0 := {z ∈ H : C−1 < dist(E, supp(ρ)) < C, η ≤ η0}

(2.5.18)

and the random variable

Θδ :=
⟨L⊗ IN ,∆δ⟩

⟨L⊗ IN , B ⊗ IN⟩
. (2.5.19)

With Θδ we can write the projection of ∆δ onto the critical direction (see (2.4.35))
as P[∆δ] = ΘδB. Furthermore, let χ(A) denote the indicator function on event A.
We import following lemmata from [3, Proposition 3.3] and [3, Lemma 3.9].

Lemma 2.5.5 ([3, Proposition 3.3]). Let δ ∈ {0, 1} and ∥ · ∥∗ = ∥ · ∥K,x,y
∗ . There is

a κ0 ∼ 1 and deterministic matrices Ri with ∥Ri∥ ≲ 1 for i = 1, 2 such that

∆δχ(∥∆δ∥∗ ≤ N− 3
K ) = (ΘδB − L −1[(1 − P)[MδD]] + E)χ(∥∆δ∥∗ ≤ N− 3

K ),
(2.5.20)

with an error function E of size

∥E∥∗ = O
(
N

2
K (|Θδ|2 + ∥D∥2∗)

)
(2.5.21)
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and Θδ satisfying the approximate quadratic equation(
ξ1Θδ + ξ2Θ

2
δ

)
χ(∥∆δ∥∗ ≤ N− 3

K ) = O
(
N

2
K ∥D∥2∗ + |⟨R1,D⟩|+ |⟨R2,D⟩|

)
(2.5.22)

with ξ1 ∼
√
κ+ η, ξ2 ∼ 1 uniformly in x,y ∈ C(l+1)N and z ∈ Dκ0 .

Proof. The proof of [3, Proposition 3.3] uses [3, Proposition 3.1] as an input. After
replacing [3, Proposition 3.1] by our analogous Proposition 2.4.6 the proof follows
theirs line by line.

Lemma 2.5.6 ([3, Lemma 3.9]). Let d = d(η) be a monotonically decreasing
function in η ≥ N−1 and assume 0 ≤ d ≲ N−ε for some ε > 0. Suppose there are
κ0, γ > 0 such that

|ξ1Θδ + ξ2Θ
2
δ| ≲ d for all z ∈ Dκ0

γ ,

|Θδ| ≲ min

{
d√
κ+ η

,
√
d

}
for some z0 ∈ Dκ0

γ .
(2.5.23)

Then also |Θδ| ≲ min{d/
√
κ+ η,

√
d} for all z′ ∈ Dκ0

γ with Re z′ = Re z0 and
Im z′ ≤ Im z0.

Proposition 2.5.7 (Global Law). For all C > 0 and some κ0 > 0 with κ0 ∼ 1 there
is an η0 > 0 such that for all δ ∈ [0, 1], z ∈ Dκ0 ∪ GC,η0 and ε,D > 0 the isotropic
global law,

P

(
|⟨x,∆δy⟩| > ∥x∥∥y∥ N ε

√
N

)
≲ε,D,η,C N−D (2.5.24)

holds for all deterministic x,y ∈ C(l+1)N . Additionally, we have a global averaged
law,

P

(
|⟨B∆δ⟩| > ∥B∥N

ε

N

)
≲ε,D,η,C N−D, (2.5.25)

for all deterministic B ∈ C(l+1)N×(l+1)N .

Proof. First, consider δ = 1 and A being invertible. Then for any z ∈ H the matrix
G1 is a resolvent of the Hermitian random matrix L− EJ with spectral parameter
iη. In this regime the global law is covered by [29, Theorem 2.1].

Now consider A to be non-invertible. Then there is a u > 0 s.t. A+ ε is invertible
for all 0 < ε < u and a global law for A+ ε also follows from [29, Theorem 2.1].
For C > 0 fix a z ∈ Dκ0 ∪ GC,η0 with κ0, η0 sufficiently small for Proposition 2.4.6
to be applicable. L is continuous in ε ∈ [0, u] for sufficiently small u ∼ 1 and
Proposition 2.4.6 holds true uniformly for sufficiently small ε. As M1 and G1

are also continuous in ε ∈ [0, u] for some u ∼ 1, the proposition follows from a
stochastic continuity argument.

For δ ∈ [0, 1) and arbitrary A the global law follows from another stochastic
continuity argument as Mδ, Gδ and L are also continuous in δ.
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Before starting our bootstrapping argument, we introduce the following notions for
isotropic and averaged stochastic dominance for random matrices R and determinis-
tic control parameters Λ,

|R| ≺ Λ in D ⇔ ∥R∥K,x,y
∗ ≺ Λ uniform in x,y and z ∈ D

|R|av ≺ Λ in D ⇔ |⟨BR⟩|
∥B∥

≺ Λ uniform in B ̸= 0 and z ∈ D.
(2.5.26)

Proposition 2.5.8 (Bootstrapping). Assume the following:

1. The isotropic and averaged local laws,

|∆δ| ≺ N
2
K

(√
Imm

Nη
+

N
2
K

Nη

)
,

|∆δ|av ≺


N

2
K

Nη
, E ∈ suppρ,

N
2
K

N(η + κ)
+

N
4
K

N2η2
√
η + κ

, E /∈ suppρ,

(2.5.27)

hold on z = E + iη ∈ Dκ0
γ0

for some γ0, κ0, K and δ ∈ {0, 1}.

2. The isotropic and averaged local laws,

|∆δ| ≺C N
2
K

(
1√
N

+
N

2
K

Nη

)
, |∆δ|av ≺C

(
1

N
+

N
4
K

(Nη)2

)
(2.5.28)

hold on z = E + iη ∈ GC,η0
γ0

for some γ0, C, η0, K and δ ∈ {0, 1}.

Then, for all γ > 0 with γ ≥ 100
K

there is a γs > 0 independent of γ0 such that the
local laws (2.5.27) also hold on Dκ0

γ1
with γ1 = max{γ, γ0 − γs} and the local laws

(2.5.28) also hold on GC,η0
γ1

with γ1 = max{γ, γ0 − γs}.

Proof. We first prove the local law (2.5.27) for z ∈ Dκ0
γ1

and then comment on the
modifications necessary to prove (2.5.28) for z ∈ GC,η0

γ1
. We begin by proving that

η 7→ η∥Gδ∥p is monotonically non-decreasing in η. For δ = 1, the proof is given
in the proof of [29, Proposition 5.5]. For δ = 0, the proof modifies as follows. Let
ε > 0. For fixed E, we define f(η) := η∥G0(E + iη)∥p. It satisfies

lim inf
ε→0

f(η + ε)− f(η)

ε

= lim inf
ε→0

∥G0(E + i(η + ε))∥p +
η(∥G0(E + i(η + ε))∥p − ∥G0(E + iη)∥p)

ε

≥∥G0(E + iη)∥p − lim
ε→0

η

∥∥∥∥G0(E + i(η + ε))−G0(E + iη)

ε

∥∥∥∥
p

=∥G0(E + iη)∥p − η∥G0(E + iη)JG0(E + iη)∥p
(2.5.29)
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To obtain a bound for the last term, we estimate

η|⟨x,G0JG0y⟩| ≤
η

2
(⟨x,G0JG

∗
0x⟩+ ⟨y,G∗

0JG0y⟩)

=
1

2
(⟨x, ImG0x⟩+ ⟨y, ImG0y⟩)

(2.5.30)

for x,y ∈ C(l+1)N . In the last step, we used the Ward identity for generalized
resolvents,

G0JG0 =
ImG0

η
. (2.5.31)

Thus we find

η∥G0JG0∥p ≤ sup
∥x∥,∥y∥=1

(
E

(
1

2
(⟨x, ImG0x⟩+ ⟨y, ImG0y⟩)

)p) 1
p

≤ ∥G0∥p,

(2.5.32)
where we used

|⟨x, ImRx⟩| ≤ |⟨x,Rx⟩| (2.5.33)

in the last step. Therefore

lim inf
ε→0

f(η + ε)− f(η)

ε
≥ 0 (2.5.34)

and the claim follows.

For δ = 0, 1, assume the local law (2.5.27) on Dκ0
γ0

. Then ∥Gδ∥p ∼p 1 on Dκ0
γ0

and
by monotonicity of η∥Gδ∥p we find

∥Gδ∥p ≲p N
γs . (2.5.35)

on Dκ0
γ1

. We choose γs <
1
4
. Then Proposition 2.4.5 yields

∥D∥p ≲p,ε N
ε+cγs

√
∥GδG∗

δ∥q
N

and ∥D∥avp ≲p,ε N
ε+cγs

∥GδG
∗
δ∥q

N
. (2.5.36)

For δ = 0 estimate the quadratic term by making use of (2.5.17) and then use the
Ward identity on G1G

∗
1 for both δ = 0, 1 to obtain

∥D∥p ≲p,ε N
ε+cγs

√
∥ ImG1∥2q

ηN
≲p

N
c′
2
γs

√
ηN

,

∥D∥avp ≲p,ε N
ε+cγs

∥ ImG1∥2q
ηN

≲p
N c′γs

ηN
.

(2.5.37)

on Dκ0
γ1

for sufficiently small ε > 0 and some modified c′ > 0. Note that we are
allowed to exchange the q norm in the bound for δ = 1 by a 2q norm as the norm
is increasing in q. After using Lemma 2.5.3 to turn the p-norm bound in the first
equation of (2.5.37) into a bound on the *-norm bound, we get from Lemma 2.5.5

|ξ1Θδ + ξ2Θ
2
δ|χ(∥∆δ∥∗ ≤ N− 3

K ) ≺ N
2
K
+c′γs

ηN
(2.5.38)
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on Dκ0
γ1
. The left hand side is also Lipschitz continuous with Lipschitz constant

≺ η−2 ≤ N2. Thus the inequality

|ξ1Θδ + ξ2Θ
2
δ|χ(∥∆δ∥∗ ≤ N− 3

K ) ≤ N− 10
K (2.5.39)

holds with very high probability on all of Dκ0
γ1

for sufficiently large K and sufficiently
small γs. By our assumption the local law, (2.5.27), holds on Dκ0

γ0
. In conjunction

with another stochastic continuity argument, we also get the bound

|Θδ| ≤ min

{
N− 10

K

√
κ+ η

,N− 5
K

}
(2.5.40)

on all of Dκ0
γ0

with very high probability. Therefore Lemma 2.5.6 can be applied with
d = N−10/K and we obtain

|Θδ|χ(∥∆δ∥∗ ≤ N− 3
K ) ≺ N− 5

K . (2.5.41)

Next, we turn this into a bound on ∆δ. To do so we again use the *-norm bound ob-
tained from applying Lemma 2.5.3 to (2.5.37) to find ∥D∥∗ ≺ N− 7

K for sufficiently
small γs and sufficiently large K. Using both bounds on (2.5.20) we get

∥∆δ∥∗χ(∥∆δ∥∗ ≤ N− 3
K ) ≲

(
|Θδ|+N

2
K ∥D∥∗

)
χ(∥∆δ∥∗ ≤ N− 3

K ) ≺ N− 5
K .

(2.5.42)
We have thus found a “forbidden” area for ∥∆δ∥∗. With the aid of a standard
stochastic continuity argument, we remove the indicator function from the bounds
(2.5.41) and (2.5.42) to get to the rough bounds

∥∆δ∥∗ ≺ N− 5
K and |Θδ| ≺ N− 5

K . (2.5.43)

Since x and y were arbitrary we the first bound becomes |∆δ| ≺ N−5/K . Now,
assume that max{|∆0|, |∆1|} ≺ Λ and max{|Θ0|, |Θ1|} ≺ θ for some deterministic
θ ≤ Λ ≤ N−3/K . Then we know from Lemma 2.5.5 and Proposition 2.4.5 as well
as (2.5.17) that

max
i

{|∆i|} ≺ θ+N
2
K

√
Imm+ Λ

Nη
and max

i
{|ξ1Θi+ξ2Θ

2
i |} ≺ N

2
K
Imm+ Λ

Nη
(2.5.44)

are also deterministic bounds. Here, we also used Imm ∼ ⟨ImM1⟩ by Corol-
lary 2.3.3, Lemma 2.4.1 as well as (2.4.18). The first bound in (2.5.44) self-
improving and applying it iteratively yields

max
i

{|∆i|} ≺ θ +N
2
K

(
N

2
K

Nη
+

√
Imm+ θ

Nη

)
(2.5.45)

and therefore the second bound in (2.5.44) improves to

max
i

{|ξ1Θi + ξ2Θ
2
i |} ≺ N

2
K
Imm+ θ

Nη
+N

4
K

1

(Nη)2
. (2.5.46)
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Now we separately treat Re z ∈ supp(ρ) and Re z /∈ supp(ρ) and we start with the
former. Then by Corollary 2.3.3 we know that Imm ∼

√
κ+ η. For fixed θ we

apply Lemma 2.5.6 with

d = N
2
K

√
κ+ η + θ

Nη
+N

4
K

1

(Nη)2
(2.5.47)

to obtain

max
i

{|Θi|} ≺ min

{
d√
κ+ η

,
√
d

}
. (2.5.48)

This is also a self-improving bound and iterating it gives

max
i

{|Θi|} ≺ N
2
K

1

Nη
, hence max

i
{|∆i|} ≺ N

2
K

{√
Imm

Nη
+

N
2
K

Nη

}
.

(2.5.49)
For Re z /∈ supp(ρ) we have Imm ∼ η√

κ+η
, again by Corollary 2.3.3. Analogously

to the Re z ∈ supp(ρ) we obtain

max
i

{|Θi|} ≺ N
2
K

1

N(η + κ)
+N

4
K

1

(Nη)2
√
κ+ η

. (2.5.50)

Finally we use (2.5.20), (2.4.31) and the bounds on maxi{|Θi|} to arrive at the
averaged bounds

max
i

{|∆i|av} ≺ N
2
K


1
Nη

if Re z ∈ suppρ1
1

N(η+κ)
+ N

2
K

N2η2(η+κ)
1
2

if Re z /∈ suppρ1.
(2.5.51)

This concludes the proof of (2.5.27) on Dκ0
γ1

.

Now, assume (2.5.28) on GC,η0
γ0

. From (2.4.33) we have

L [∆δ] = −MδD+MδS[∆δ]∆δ. (2.5.52)

We apply L −1 to the equation and take its *-norm for some deterministic x, y to
find

∥∆δ∥∗ ≤ ∥L −1[MδD]∥∗ + ∥L −1[MδS[∆δ]∆δ]∥∗
≤ ∥L −1∥∗→∗ (∥MδD∥∗ + ∥MδS[∆δ]∆δ∥∗)
≲C N

2
K ∥D∥∗ +N

2
K ∥∆δ∥2∗.

(2.5.53)

Here, ∥L −1∥∗→∗ denotes the operator norm of L −1 with respect to the *-norm.
In the last estimate, we have used ∥L −1∥∗→∗ ≲ ∥L −1∥sp ≲C 1 by [29, Equa-
tion (70c)] and Proposition 2.4.6 as well as

∥MδR∥∗ ≲ N2/K∥R∥∗ and ∥MδS[R]R∥∗ ≲ N2/K∥R∥2∗

by [29, Equation (70a) and (70b)]. Equation (2.5.42) also holds on GC,η0
γ1

by the same
argument as in the case z ∈ Dκ0

γ1
and for sufficiently large K and sufficiently small
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γs we have in particular ∥D∥∗ ≺ N− 7
K for δ ∈ {0, 1}. We use this bound on with

(2.5.53) to estimate

∥∆δ∥∗χ(∥∆δ∥∗ ≤ N− 3
K ) ≺C N− 5

K . (2.5.54)

By a stochastic continuity argument, we establish the rough bound

∥∆δ∥∗ ≺C N− 5
K and therefore |∆δ| ≺C N− 5

K (2.5.55)

since x and y were arbitrary. Now, assume maxi{|∆i|} ≺C Λ for some deterministic
Λ ≤ N−3/K . Then we have another deterministic bound in the form of

max
i

{|∆i|} ≺C N
2
K

√
Imm+ Λ

Nη
. (2.5.56)

Iterating this self-improving bound and using Imm ∼C η from Lemma 2.6.3 we
find

max
i

{|∆i|} ≺C
N

4
K

Nη
+N

2
K

1√
N
. (2.5.57)

Finally from (2.5.57), (2.5.52) and (2.4.31) we obtain the averaged bound

max
i

{|∆i|av} ≺C
N

4
K

(Nη)2
+

1

N
. (2.5.58)

Therefore we have shown that (2.5.28) holds on GC,η0
γ1

.

Proof of Propositions 2.4.3 and 2.4.4. For all K > 0 Equation (2.5.27) holds on
Dκ0

1 for some κ0 and (2.5.28) on GC,η0
1 for all C > 0 and some η0 depending on

C due to the global law, Proposition 2.5.7. The local laws, Proposition 2.4.3 and
Proposition 2.4.4, follow immediately from applying Proposition 2.5.8 finitely many
times in the respective domains.

This concludes the proof of Theorem 2.2.9 and Proposition 2.2.10 and we are left
with proving their Corollaries, 2.2.11 and 2.2.12.

Proof of Corollary 2.2.11. Let λi, i ∈ JNK, denote the eigenvalues of q(X) with
eigenvectors vi. let x ∈ CN be a deterministic and normalized vector and let v
be an eigenvector of q(X) with eigenvalue λ such that |λ − τ0| < κ0 for κ0 from
Theorem 2.2.9. Evaluating g at spectral parameter λ + iη have with very high
probability that

1 ≳ Im⟨x,g(λ+ iη)x⟩ =
N∑
i=1

η
η

η2 + (λ− λi)2
|⟨x,vi⟩|2 ≥

|⟨x,vi⟩|2

η
(2.5.59)

for all η ≥ N−1+ε and all ε > 0. As the deterministic vector x was arbitrary, the
eigenvalue delocalization, (2.2.20), follows.
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Proof of Corollary 2.2.12. Let q have regular edge at τ0. W.l.o.g. we can assume
that τ0 = τ+ is a right edge. Otherwise, consider the right edge of −q. From (2.2.18)
and Proposition 2.2.10 it follows that

P

(
|⟨B(g −m)⟩| > ∥B∥N ε

(
1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

))
≲ε,γ,D,C N−D

(2.5.60)
for all deterministic B ∈ CN×N and z ∈ Dκ0

γ ∪GC,η0
γ with E /∈ supp(ρ). In particular,

this holds true for C ≥ κ−1
0 . Following [31, Chapter 11.1], this implies for all ε > 0

that with very high probability there are no eigenvalues λ such that λ /∈ supp(ρ) and
N−2/3+ε ≤ λ− τ+ ≤ C, i.e.

P
(
∃λ ∈ Spec(q(X)) : N− 2

3
+ε ≤ λ− τ+ < C

)
≲ε,D,C N−D. (2.5.61)

Additionally, it follows from the trivial bound (2.4.32) that there is a K > 0 such
that

P (∥q(X)∥ ≥ K) ≲D N−D. (2.5.62)

Combining (2.5.61) for some C > 0 such that C + τ0 ≥ K and (2.5.62), we have

P
(
∃λ ∈ Spec(q(X)) : λ− τ+ ≥ N− 2

3
+ε
)
≲ε,D N−D. (2.5.63)

By a standard argument, (2.5.63) in conjunction with the averaged local law, (2.2.17),
implies eigenvalue rigidity around the edge as in Theorem 2.2.12 (see e.g. [31,
Chapter 11.2-11.4]).

2.6 Appendix

2.6.1 The entrywise real part of a Hermitian matrix.

Let n ∈ N and H ∈ Cn×n be a Hermitian matrix and Ĥ = 1
2
(H + H t) be its

entrywise real part. The following lemma summarizes how the two matrices are
related.

Lemma 2.6.1. Let hi and ĥi be the eigenvalues of H and Ĥ respectively, both
arranged in non-increasing order. The following holds true

1. h1 ≥ ĥ1 and hn ≤ ĥn.

2. ∥H∥ ≥ ∥Ĥ∥.

3. If H ≥ 0, then Ĥ ≥ 0 and conversely H ≤ 0 implies Ĥ ≤ 0.

4. Let additionally rankH = 1. Then we have rank Ĥ = 1 if and only if
H ∈ Rl×l. Otherwise we have rank Ĥ = 2.
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Proof. Let H̃ = 1
2i
(H−H t) be the entrywise imaginary part of H, i.e. H = Ĥ+iH̃ .

First, we will prove h1 ≥ ĥ1. Note that for all a ∈ R the norms of H+a and Ĥ+a are
given by ∥H+a∥ = max{h1+a,−hn−a} and ∥Ĥ+a∥ = max{ĥ1+a,−ĥn−a}.
Thus for sufficiently large a ∈ R (depending on H) we have ∥H + a∥ = h1 + a and
∥Ĥ + a∥ = ĥ1 + a. For such an a let v1 ∈ Rn be a normalized eigenvector of Ĥ + a

corresponding to the eigenvalue ĥ1 + a (it can be chosen purely real since Ĥ is a
real symmetric matrix). Then

h1 + a = ∥H + a∥ ≥ ∥(H + a)v1∥ =

√
∥(Ĥ + a)v1∥2 + ∥H̃v1∥2

≥ ∥(Ĥ + a)v1∥ = ĥ1 + a.
(2.6.1)

Here the second equality holds since H̃v1 is a purely imaginary vector. The claim
h1 ≥ ĥ1 follows. Choosing a sufficiently small, we find hn ≤ ĥn by a similar
argument. Since ∥H∥ = max{h1,−hn} and ∥Ĥ∥ = max{ĥ1,−ĥn}, the inequality
∥H∥ ≥ ∥Ĥ∥ follows. Next, let H ≥ 0. Then hn ≥ 0 and thus ĥn ≥ hn ≥ 0. The
inequality Ĥ ≥ 0 follows. Similarly, H ≤ 0 implies Ĥ ≤ 0.

Now let rankH = 1. Then rank Ĥ = 1 if H ∈ Rn×n is clear. Let on the other
hand H ∈ Cn×n \ Rn×n. Then H = αvv∗ for some α ∈ R \ {0} and normalized
v ∈ Cn \ eiφRn for all φ ∈ R. Then Ĥ = α

2
(vv∗ + v̄v̄∗) and since v and v̄ are only

linearly dependent if v ∈ eiφRn the claim rank Ĥ = 2 follows.

2.6.2 Matrix inequality
Here we provide a proof for the matrix inequality used in (2.5.15).

Lemma 2.6.2. Let R, T ∈ Cn×n be arbitrary matrices. Then the following inequality
holds:

(R + T )∗(R + T ) ≤ 2(R∗R + T ∗T ). (2.6.2)

Proof. We first note that

(R + T )∗(R + T ) = R∗R + T ∗T +R∗T + T ∗R (2.6.3)

and it is thus sufficient to bound the last two terms. Let v ∈ Cn be arbitrary. Since
R∗T + T ∗R is Hermitian, ⟨v, (R∗T + T ∗R)v⟩ ∈ R and we estimate

⟨v, (R∗T + T ∗R)v⟩ = 2Re(⟨Rv, Tv⟩) ≤ 2∥Rv∥∥Tv∥
≤ ∥Rv∥2 + ∥Tv∥2 = ⟨v, (R∗R + T ∗T )v⟩,

(2.6.4)

where we used the Cauchy-Schwarz inequality in the second step. As v was arbitrary,
R∗T +R∗T ≤ R∗R + T ∗T follows and we conclude the lemma.



Chapter 2. Norm Convergence Rate for Multivariate Quadratic Polynomials of
Wigner Matrices 75

2.6.3 Some properties of the solution of the Dyson Equation

Proof of Proposition 2.2.3. There can at most be one analytic function in the upper
half-plane that satisfies (2.2.4) and limz→∞ zm(z) = −1 since (2.2.4) is stable at
infinity. Thus we are left with proving existence. First, consider the case of A
being invertible. Let {s1, . . . , sl} be a family of free semi-circular variables in a C∗

probability space (S , τ) (see [28, Appendix B]) and let s := (si)i∈JlK. Define

Lsc = K0 ⊗ 1 +
l∑

j=1

Kj ⊗ sj. (2.6.5)

Following the proof of [28, Lemma 2.6], the matrix-valued function M0 : H →
C(l+1)×(l+1), given by

M0(z) = (id⊗ τ)(Lsc − zJ ⊗ 1)−1, (2.6.6)

is a solution to (2.4.14) for δ = 0. Thus its (1,1) entry satisfies (2.4.20) for δ = 0
and therefore (2.2.4). Using the Schur complement formula, we find

(M0(z))11 = τ(q(s)− z ⊗ 1)−1. (2.6.7)

The polynomial q(s), defined in (2.1.1) is self-adjoint, thus (M0)11 is analytic on H,
has positive imaginary part and limz→∞ z(M0(z))11 = −1. Therefore m := (M0)11
is the unique function that satisfies all conditions of Proposition 2.2.3.

Now, let A be non-invertible. Then there is a u ∼ 1 such that Aε := A + ε is
invertible for all 0 < ε < u. Let qε and γε be the objects given by replacing A with
A + ε in the definitions of q in (2.1.1) and γ in (2.2.5), respectively. By the above
argument, the function

mε(z) := τ(qε(s)− z ⊗ 1)−1 (2.6.8)

is a solution to the equation

− 1

mε
= z + γε(mε). (2.6.9)

For any fixed z ∈ H, both mε and γε are continuous in ε at ε = 0. Thus m := m0

solves (2.2.4) and m is analytic on H, has positive imaginary part and satisfies
limz→∞ zm(z) = −1. Therefore it is the unique function that satisfies all conditions
of Proposition 2.2.3.

The function m is a Stieltjes transform of a real-valued probability measure ρ with
compact support. As such it can be analytically extended to C \ supp(ρ). The
following lemma summarizes the properties of the extension, also called m, on and
above the real axis outside of the spectrum

Lemma 2.6.3. For the analytical extension of m to C\supp(ρ) we have the following.
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1. The function m is real-valued on R \ supp(ρ) and m′(E) > 0 for all E ∈
R \ supp(ρ).

2. For all C > 0 there is an η0 > 0 such that for all z = E + iη with C−1 ≤
dist(E, supp(ρ)) ≤ C and 0 < η ≤ η0 we have Imm ∼C η.

Proof. The fact that m(E) ∈ R for all R \ supp(ρ) follows immediately for from
(2.2.6) and taking the derivative of (2.2.6) we find

m′(E) =

∫
R

ρ(dx)

(x− E)2
> 0. (2.6.10)

Using m(E) ∈ R we have for z ∈ H

Imm(z) = Im(m(z)−m(E)) = ηm′(E) +O(η2). (2.6.11)

By (2.6.10) and continuity of the derivative, we have that m′(E) is bounded from
above and bounded away from 0 on all compact subsets of R\supp(ρ). Therefore we
have m′(E) ∼C 1 for all C > 0 and E such that C−1 ≤ dist(E, supp(ρ)) ≤ C.

Proof of Lemma 2.4.1. The function m is a Stieltjes transform and as such analyti-
cally extendable to C \ supp(ρ). Since, by assumption, ρ has a regular edge at τ± it
can also be continuously extended to τ±. For x ∈ (R \ supp(ρ)) ∪ {τ±} we denote
this extension by m(x). By continuity it satisfies

− 1

m(x)
= x+ γ(m(x)). (2.6.12)

Consider (2.4.20) at z ∈ H as a perturbation to (2.6.12). More precisely, consider
the following equation in the unknown function m̃δ(z),

1

m(x)
− 1

m̃δ(z)
= γδ(m̃δ(z))− γ0(m(x)) + (z − x), (2.6.13)

where we have used γ0 = γ. Define by γ̇δ(y) := ∂tγ t
iη
(y)|t=iδη the partial derivative

with respect to iδη and by γ′
δ(y) := ∂yγδ(y) the derivative with respect to its variable.

Expanding (2.6.13) in mδ(z)−m(x) and iδη we find(
1

m(x)2
− γ′

0(m(x))

)
(m̃δ(z)−m(x))−

(
1

m(x)3
+

1

2
γ′′
0 (m(x))

)
(m̃δ(z)−m(x))2

= iγ̇0(m(x))δη + (z − x) +O(|m̃δ(z)−m(x)|3 + |m̃δ(z)−m(x)|η + η2).

(2.6.14)

We identify 1
m2 − γ′

0(m) = h(m) and − 2
m3 − γ′′

0 (m) = h′(m) with h defined in
(2.3.11). Now let x = τ± and note that m(τ±) = m±. By Lemma 2.3.5 as well as
Lemma 2.3.6 we have

h(m±) = 0, |h′(m±)| ∼ 1 and ± h′(m±) > 0. (2.6.15)
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Furthermore one finds γ̇0(y) > 0 for all y ∈ R \ S (γ). Thus (2.6.14) constitutes an
approximate quadratic equation in m̃δ(z) −m± and there are u, u1 ∼ 1 such that
for all z ∈ H with 0 < |z − τ±| ≤ u, there are exactly two solutions m̃δ(z) with
|m̃δ(z)−m±| ≤ u1. One of them has positive imaginary part and one of them has
negative imaginary part. Combining (2.6.14) and (2.6.15), we find that the unique
solution with positive imaginary part satisfies both parts of (2.4.22) and we denote it
by mδ.

Now let C > 0, x = E = Re z and C−1 < dist(E, supp(ρ)) < C. Then we have

h(m(E)) = (m′(E))−1 ∼C 1 (2.6.16)

by Lemma 2.6.3 and the fact that C−1 < dist(E, supp(ρ)) < C constitutes a
compact subset of R\supp(ρ)). Therefore (2.6.14) is an approximate linear equation
in m̃δ(z)−m(E). Hence there are u, u1 ∼ 1 such that for all 0 < |z − E| = η ≤ u
there is a unique solution m̃δ(z) with |m̃δ(z)−m(E)| ≤ u1 to (2.6.14). We denote
this solution by mδ and combining (2.6.15) with (2.6.16) we find that it satisfies both
parts of (2.4.23).

From now on, let A be invertible and

Mδ(z) = (id⊗ τ)(Lsc − (zJ + δη(I − J))⊗ 1)−1, (2.6.17)

where Lsc was defined in (2.6.5). For all η > 0, the imaginary part of zJ+ δη(I−J)
is positive. Therefore, by Lemma [43, Lemma 5.4], the function Mδ is the unique
solution to (2.4.14) with ImMδ(z) > 0. In particular, this implies that its (1,1) entry
satisfies (2.4.20). By the Schur complement formula, it is given by

(Mδ(z))11 = τ(qδ(s)− z ⊗ 1)−1, (2.6.18)

where qδ denotes the polynomial q, defined in (2.1.1), with A replaced by Aδ. For
E /∈ supp(ρ) consider

(Mδ)11 −m = τ((qδ(s)− z ⊗ 1)−1 − (q0(s)− z ⊗ 1)−1)

= τ((qδ(s)− z ⊗ 1)−1(q0(s)− qδ(s))(q0(s)− z ⊗ 1)−1).
(2.6.19)

The middle factor satisfies

∥q0(s)− qδ(s)∥ =

∥∥∥∥∥
l∑

i,j=1

(A− Aδ)sisj

∥∥∥∥∥ ≲ ηδ. (2.6.20)

Since E /∈ supp(ρ), the term q0(s)− E is invertible and by continuity in η we have

∥(q0(s)− z ⊗ 1)−1∥ ≲E 1 (2.6.21)

uniformly in η for 0 < η ≤ 1. In particular, for η sufficiently small (depending on
E), we have

∥(q0(s)− z ⊗ 1)−1(q0(s)− qδ(s))∥ ≤ 1

2
. (2.6.22)
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Therefore the first factor in (2.6.19) factorizes further into

(qδ(s)− z⊗1)−1 = (1⊗1+(q0(s)− z⊗1)−1(q0(s)− qδ(s)))
−1(q0(s)− z⊗1)−1

(2.6.23)
and

∥(1⊗ 1 + (q0(s)− z ⊗ 1)−1(q0(s)− qδ(s)))
−1∥ ≤ 2. (2.6.24)

Combining (2.6.19) with (2.6.20), (2.6.21), (2.6.23) and (2.6.24), we find

|(Mδ)11 −m| ≲E δη. (2.6.25)

As shown in the first part of the proof, there are u, u1 > 0 such that (2.6.13) has
a unique solution mδ with positive imaginary part and |mδ(z) −m±| ≤ u1 for all
z ∈ H such that |z − τ±| ≤ u. For such u, u1 we choose a u2 with 0 < u2 < u
such that |mz − m±| ≤ u1

2
for all z ∈ H with |z − τ±| ≤ u2 (such a u2 exists by

Corollary 2.3.3). Fix E /∈ supp(ρ) with |E − τ±| < u2. We choose η = Im z
sufficiently small such that |z − τ±| < u2 and |(Mδ)11 −m| ≲ u1

2
(which is possible

by (2.6.25)). Thus there is a z ∈ H with |z − τ±| ≤ u such that

|(Mδ)11(z)−m±| ≤ |(Mδ)11(z)−m(z)|+ |m(z)−m±| ≤ u1. (2.6.26)

Since this condition is unique among solutions to (2.4.20) with positive imaginary
part, we must have (Mδ)11(z) = mδ(z) for some z ∈ H with |z − τ±| ≤ u. By
continuity of both mδ and (Mδ)11 we must have (Mδ)11(z) = mδ(z) for all z ∈ H
with |z − τ±| ≤ u.

For C > 0 and E with C−1 < dist(E, supp(ρ)) < C we find similarly from
Lemma 2.6.3 and (2.6.25) that for all u1 > 0 there is an η > 0 such that

|(Mδ)11(z)−m(E)| ≤ |(Mδ)11(z)−m(z)|+ |m(z)−m(E)| ≤ u1. (2.6.27)

Thus (Mδ)11(z) must be the unique solution to (2.4.20) that satisfies (2.4.23), which
concludes the proof of the lemma.
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Examples

In this chapter, we present a number of examples of quadratic polynomials to
illustrate some interesting features in their limiting density. Recall that a self-adjoint
quadratic polynomial q in l Wigner matrices X = (Xi)i∈JlK is of the form

q(X1, . . . ,Xl) =
l∑

i,j=1

XiAijXj+
l∑

i=1

biXi + c. (3.0.1)

The Stieltjes transform m of its limiting density is uniquely defined by Proposi-
tion 2.2.3. In particular, m satisfies the self-consistent equation

−m−1 = z − TrA(Il + Am)−1 +mbt
(
(Il + 2mÂ)−2(Il +mÂ)

)
b− c. (3.0.2)

One notable feature of the equation is that for homogeneous polynomials, that is
polynomials for which all first and zeroth order coefficients are vanishing, m only
depends on the eigenvalues of A, not however on its eigenvectors. This can be seen
very well when comparing the polynomials

q1(X1,X2) := X1X2+X2X1+rX1 and q2(X1,X2) := i(X1X2−X2X1)+rX1.
(3.0.3)

with r ∈ R. The respective matrices of the second-order coefficients are given by

A1 =

(
0 1
1 0

)
and A2 =

(
0 i
−i 0

)
. (3.0.4)

They both have eigenvalues ±1 and therefore have the same limiting density for
r = 0. For r ̸= 0, they are visibly different, however. We display the eigenvalue
density of p1 for r = 0 and r = 1 in Figure 3.1 and of p2, also for r = 0 and r = 1,
in Figure 3.2.

Remark. All plots in this chapter show the limiting density, obtained by solving
(3.0.2) for m(z) and then taking the limit ρ(E) = limη↘0

1
π
Imm(E + iη). The

limiting density is shown as a red line. The histograms additionally displayed in the
plots have been obtained by a single sampling of the respective polynomials of GOE
Wigner matrices of dimension N = 104.
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Figure 3.1: Eigenvalue distribution for q1(X1,X2) = X1X2 +X2X1 + rX1

Next, we consider reducible polynomials. Recall that reducible polynomials are, up
to a shift and scaling, of the form

qr = (Y − ξ)(Y − ξ)∗ (3.0.5)

where ξ ≥ 0 is a positive real number and Y = v∗X ∈ CN×N , for some normalized
v ∈ Cl, see also Definition 2.2.1. In Proposition 2.2.8, we have proved that reducible
polynomials have hard edges if ξ ≤ ξc for ξc = 2s−1 and s was defined in (2.2.11).
For ξ < ξc, the density ρ has an inverse square root singularity at its hard edge and
for ξ > ξc, the density has two regular edges. At ξ = ξc, a different behaviour can be
seen depending on if Y is Hermitian or non-Hermitian. If Y is Hermitian, then we
have ρ(E) ∼ E1/4 for E ↘ 0 and if Y is non-Hermitian, then we have ρ(E) ∼ E1/3
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Figure 3.2: Eigenvalue distribution for q2(X1,X2) = i(X1X2 −X2X1) + rX1

for E ↘ 0. This difference can be seen for the polynomials

q3(X) := (X− ξ)2

q4(X1,X2) :=

(√
4

5
X1 + i

√
1

5
X2 − ξ

)(√
4

5
X1 + i

√
1

5
X2 − ξ

)∗

.
(3.0.6)

The matrix Y for the polynomial q3 is clearly Hermitian, whereas in the case of
q4, Y is a (non-Hermitian) elliptic matrix (see e.g. [39]). For q3, the critical value
is given by ξc = 2 and for q4, we have ξc = 8

5
. In Figure 3.3 and Figure 3.4, we

display the eigenvalue density of q3 and q4 respectively for different values of ξ. It is
clearly visible, that the eigenvalue density of q4 has a stronger singularity at 0 for
ξ = ξc than q3, while for ξ ̸= ξc, both eigenvalue densities show the same asymptotic
behaviour.
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Figure 3.3: Eigenvalue distribution for q3(X) = (X− ξ)2
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Figure 3.4: Eigenvalue distribution for

q4(X1,X2) =
(√
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)(√
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√
1
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X2 − ξ

)∗





Chapter 4

Introduction to Non-Hermitian
Random Matrix Theory

So far we have only discussed ensembles of Hermitian random matrices. An im-
portant feature of them is that their eigenvalues are confined to the real line. If we
drop the Hermitian symmetry constraint, this is no longer the case and in general, we
expect to see eigenvalues on the whole of the complex plane. As a consequence, the
resolvent method as described in Section 1.1 is no longer directly applicable as the
method relied on being able to control the distance between the spectral parameter
and the spectrum, which is always bounded from below by the imaginary part of the
spectral parameter. This makes understanding the spectral statistics of non-Hermitian
random matrices a much harder endeavour compared to their Hermitian counterpart.
Despite this, a lot of progress has been made over the last few years. Here, we
introduce a method that allows us to extract information about the spectrum of a
non-Hermitian matrix by instead studying a larger dimensional Hermitian block
matrix. The method is originally due to Girko and it has been used by Tao and Vu to
prove a global law for matrices with centered i.i.d. entries. We refer to such matrices
as Girko matrices and more precisely, we define them as follows.

Definition 4.0.1 (Girko matrix). Let X ∈ CN×N be a random matrix whose entries
are i.i.d. copies of 1√

N
ζ , where ζ is a random variable satisfying

E[ζ] = 0, and E[|ζ|2] = 1. (4.0.1)

Furthermore, ζ satisfies the exponential decay property

P (|ζ| > λ) ≤ 1

ϑ
e−ϑλ (4.0.2)

for all λ > 0 and some ϑ > 0. Then X is called a Girko matrix.

Remark. Some of the statements covered here also hold under weaker assumptions
than (4.0.2). However, for the purpose of this introduction, we will not worry about
the best possible moment assumptions.
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If the entries of a Girko matrix follow a complex Gaussian distribution, the joint
probability density function of the eigenvalues can be explicitly calculated and it is
given by

φN(z1, . . . , zN) =
1

Z

( ∏
1≤i<j≤N

|zi − zj|2
)
exp

(
−

N∑
k=1

|zk|2
)
, (4.0.3)

where Z is a normalizing constant. This was first done by Ginibre [37] and Girko
matrices with (real or complex) Gaussian entries are therefore also called (real or
complex) Ginibre matrices. Ginibre also showed that the limiting density σc for
complex Ginibre matrices is given by the uniform distribution on the unit disc, i.e.

σc(z) :=
1

π

{
1 if |z| ≤ 1

0 if |z| > 1.
(4.0.4)

For more general distributions there is no explicit formula for the joint probability
density function for finite N . Nonetheless, we still expect the eigenvalues to converge
to the same limiting distribution that only depends on the model data in the form
of entry variance and expectation value but not on the specific distribution of the
entries. This result was first proven under optimal conditions on the global scale by
Tao and Vu in [61] and on an optimal local scale in a series of papers by Bourgade,
Yau and Yin [20, 21, 70]. For an overview of the circular law, we refer to [18]. The
following form of the local circular law is given in [70].

Theorem 4.0.2 (The local circular law). Let X ∈ CN×N be a Girko matrix with
eigenvalues µj , j ∈ JNK. Furthermore, let z0 ∈ C, α ∈ (0, 1

2
), f ∈ C2

0(C) and
fN,z0(z) = N2αf(Nα(z − z0)). Then we have the local law∣∣∣∣∣ 1N

N∑
j=1

fN,z0(µj)−
∫

C
fN,z0(z)σc(z)d

2z

∣∣∣∣∣ ≺ ∥∆f∥L1

N1−2α

uniformly in z0 and f .

4.1 Proof strategy of Theorem 4.0.2
The main idea to prove Theorem 4.0.2 is to replace the matrix X− z with a related
Hermitian matrix. This method is known as Girko’s Hermitization trick and was
first introduced in [38]. There are two standard procedures to Hermitizise X − z.
One consists of studying

H̃z := (X− z)(X∗ − z̄) ∈ CN×N (4.1.1)

and the other of studying

Hz :=

(
0 X− z

X∗ − z̄ 0

)
∈ C2N×2N . (4.1.2)
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Here, X∗ denotes the adjoint matrix of X. Bourgade, Yau and Yin used (4.1.1) in
their original proof of the local circular law. We, however, will utilize (4.1.2). To
our knowledge this Hermitization method was first used in [33] and our explanations
follow the overview given in [1]. We will only discuss the bulk case, i.e. throughout
this section we assume that

z0 ∈ D< := {z ∈ C : |z| ≤ 1− τ∗} (4.1.3)

for some fixed τ∗ > 0. The constants in our bounds will in general depend on τ∗.
Furthermore, we will assume that the entries of X are absolutely continuous and
their density satisfies the following assumption.

Assumption 4.1.1. Let X ∈ CN×N be a Girko matrix whose entries are i.i.d. copies
of 1√

N
ζ. We assume that ζ has a density, i.e. there is a probability density function

p : C → [0,∞) such that

P(ζ ∈ B) =

∫
B

p(z)d2z (4.1.4)

for all Borel sets B ⊂ C. Also, we assume there are α, β > 0 such that p ∈ L1+α(C)
and

∥p∥L1+α ≲ Nβ. (4.1.5)

The central observation by Girko was that the first term on the left-hand side of
(4.0.2) can be expressed in terms of the log-determinant of X − zIN for z ∈ C.
Namely, we have

1

N

N∑
j=1

fN,z0(µj) =
1

2πN

∫
C
∆fN,z0(z) log | det(X− zIN)|d2z. (4.1.6)

The above equation holds true since

1

2π
log | det(X− zIN)| =

1

2π

N∑
i=1

log(|µi − z|) (4.1.7)

and (2π)−1 log | · | is the Green’s function of the Laplace operator in two dimensions.
The log determinant of X − z and the one of its Hermitization, Hz, which was
defined in (4.1.2), are connected by

log | det(X− z)| = 1

2
log | det(Hz)|. (4.1.8)

From here on for the rest of this thesis, we no longer use η for the imaginary part of
z. Instead, η > 0 denotes a positive real number independent of z. Let G ∈ C2N×2N

denote the resolvent of Hz at spectral parameter iη for η > 0, i.e.

G = Gz(iη) := (Hz − iη)−1. (4.1.9)
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For all T > 0, the log-determinant of Hz and its resolvent are connected by

log | det(Hz)| = log | det(Hz − iT )| − 2N

∫ T

0

Im⟨Gz(iη)⟩dη. (4.1.10)

This equality can be seen by evaluating the integral on the right hand side. Combining
(4.1.6), (4.1.8) and (4.1.10), we have

1

N

N∑
i=1

fN,z0(µi) =
1

4πN

∫
C
∆fN,z0(z) log | det(Hz − iT )|d2z

− 1

2π

∫
C
∆fN,z0(z)

∫ T

0

Im⟨Gz(iη)⟩dηd2z.

(4.1.11)

Now, since G is the resolvent of a Hermitian matrix with independent entries, it is
known that it satisfies the following averaged local law uniformly in z ∈ D< and
N c > η > N−1+ε for all c, ε > 0:

|⟨Gz(iη)⟩ −mz(iη)| ≺

{
1
Nη

if N−1+ε ≤ η ≤ 1
1

Nη2
if 1 ≤ η ≤ N c.

(4.1.12)

Here, mz(iη) is the unique solution with positive imaginary part to the scalar Dyson
equation

− 1

mz(iη)
= iη +mz(iη)− |z|2

iη +mz(iη)
. (4.1.13)

For a proof of this local law see e.g. [1, Theorem 5.2] or [2, Theorem 5.2]. The
solution mz is connected to the limiting spectral measure (4.0.4) by

σc(z) = − 1

2π

∫ ∞

0

∆z(Immz(iη)− h(η))dη (4.1.14)

for any function h that is independent of z (see e.g. Equation (4.8) combined with
Equation (3.5) in [1]). For T > 0 we choose

h(η) = χ[T,∞)(η)
1

η
, (4.1.15)

where χ[T,∞) denotes the indicator function on the interval [T,∞). Since Immz(iη) =
η−1+O(η−2) for η → ∞, this choice of h ensures that Immz(iη)−h(η) = O(η−2)
for η → ∞. Therefore, we can use Green’s identity to obtain∫

C
fN,z0(z)σc(z)d

2z = − 1

2π

∫
C
∆fN,z0(z)

∫ ∞

0

(Immz(iη)− h(η)) dηd2z.

(4.1.16)
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Combining (4.1.11) and (4.1.16) we find

1

N

N∑
j=1

fN,z0(µj)−
∫

C
fN,z0(z)σc(z)d

2z

=
1

4πN

∫
C
∆fN,z0(z) log |det(Hz − iT )| d2z

− 1

2π

∫
C
∆fN,z0(z)

∫ T

0

(Im⟨Gz(iη)⟩ − Immz(iη)) dηd2z

+
1

2π

∫
C
∆fN,z0(z)

∫ ∞

T

(
Immz(iη)− 1

η

)
dηd2z.

(4.1.17)

It is straightforward to see that the first and third term on the right-hand side of
(4.1.17) are stochastically dominated by N−(1−2α)∥∆f∥L1 for the choice T = NC

for some large but fixed C > 0. We omit the details. The second term can be
bounded with the aid of the following lemma.

Lemma 4.1.2 ([1, Lemma 5.8]). Define I(z) by

I(z) :=

∫ T

0

|Im⟨Gz(iη)⟩ − Immz(iη)| dη. (4.1.18)

For every δ > 0 and p ∈ N, we have the moment bound

sup
z∈D<

E[I(z)p] ≲δ,p N
−p(1−δ). (4.1.19)

The lemma leads to the desired bound in (4.0.2) for the second term in (4.1.17) since

E

∣∣∣∣∫
C
∆fN,z0(z)

∫ T

0

(Im⟨Gz(iη)⟩ − Immz(iη)) dηd2z

∣∣∣∣p
≤
∫

Cp

p∏
j=1

|∆fN,z0(zj)|E[I(z)p]
1
pd2zj ≲p,δ ∥∆f∥p1Np(1−δ−2α).

(4.1.20)

Here, we have used Hölder’s inequality in the first estimate and Lemma 4.1.2 in
the second estimate. Using Chebyshev’s inequality, we transform the high moment
bound into the stochastic domination bound∣∣∣∣∫

C
∆fN,z0(z)

∫ T

0

(Im⟨Gz(iη)⟩ − Immz(iη)) dηd2z

∣∣∣∣ ≺ ∥∆f∥1N−1+2α. (4.1.21)

To prove Lemma 4.1.2, we first split I(z) into several terms. We denote the eigenval-
ues of Hz by λi, i ∈ J2NK and sort them in a non-increasing order, i.e. λi ≥ λi+1.
Due to the block structure of Hz, its eigenvalues come in symmetric pairs around the
origin, i.e. λi = −λ2N+1−i for all i ∈ JNK. Furthermore, the positive eigenvalues
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of Hz correspond exactly to the singular values of X− z and in particular we have
λN = ∥(X− z)−1∥−1.

As a consequence of the eigenvalue symmetry we have∫ x

0

Im⟨Gz(iη)⟩dη =
1

2N

n∑
i=1

log

(
1 +

x2

λ2
i

)
(4.1.22)

for all x ≥ 0. Splitting the η integral in I(z) into η ≤ N−1+ε and η > N−1+ε and
using (4.1.22) we find for any k ∈ N that

I(z) ≤ 1

2N

∑
λi∈[0,N−k]

log

(
1 +

N−2+2ε

λ2
i

)
+

1

2N

∑
λi>N−k

log

(
1 +

N−2+2ε

λ2
i

)

+

∫ N−1+ε

0

Immz(iη)dη +

∫ T

N−1+ε

|Im⟨Gz(iη)⟩ − Immz(iη)| dη.

(4.1.23)

The exponent k will be fixed later. The moment bound (4.1.19) is proved separately
for each term in (4.1.23). For the bounds of the second, third and fourth term in
(4.1.23) we refer to the proof of Lemma 5.8 in [1], but we present the estimate of the
first term, as it shows how the smallest singular value estimate of X− z, presented
in Proposition 4.1.3 below, enters the proof of the circular law. We estimate the pth

moment of the first term by

E

 1

2N

∑
λi∈[0,N−k]

log

(
1 +

N−2+2ε

λ2
i

)p

≤ E

[
logp

(
1 +

N−2+2ε

λ2
N

)
χ(λN ≤ N−k)

]
≲ E

[
| log λN |pχ(λN ≤ N−k)

]
.

(4.1.24)

The expectation value of the last term is given by

E
[
| log λN |pχ(λN ≤ N−k)

]
= p

∫ ∞

k logN

P(λN ≤ e−t)tp−1dt. (4.1.25)

This expression is estimated with the help of the following proposition.

Proposition 4.1.3 ([1, Proposition 5.7]). Under Assumption 4.1.1 we have

P
(
∥(X− z)−1∥−1 ≤ u

N

)
≲α u

2α
1+αNβ+1 (4.1.26)

uniformly in u > 0 and z ∈ C.

Using Proposition 4.1.3 for u = e−tN to estimate (4.1.25) and consequently (4.1.24),
we find

E

 1

2N

∑
λi∈[0,N−k]

log

(
1 +

N−2+2ε

λ2
i

)p

≲αN
β+1+ 2α

1+α

∫ ∞

k logN

e−
2αt
1+α tp−1dt ≲α,β,p N

−p,

(4.1.27)
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where the last step holds for sufficiently large k depending on p.

Remark. In the general case, without Assumption 4.1.1, Proposition 4.1.3 is no
longer valid. Instead, the following theorem by Tao and Vu is used.

Theorem 4.1.4 ([61, Theorem 2.1]). Let A,C1 be positive constants, and let w be
a complex-valued random variable with non-zero finite variance (in particular, the
second moment is finite). Then there are positive constants B and C2 such that the
following holds: if W ∈ CN×N is the random matrix of order N whose entries are
i.i.d. copies of w, and M ∈ CN×N is a deterministic matrix of order N with spectral
norm at most NC1 , then,

P
(
∥(M+W)−1∥ ≥ NB

)
≤ C2N

−A. (4.1.28)

It requires a different technique to estimate I(z) though, since Theorem 4.1.4 is not
sufficient to estimate (4.1.25).





Chapter 5

The Spherical Ensemble

5.1 Introduction
In the last chapter, we have been studying the eigenvalue distribution of Girko
matrices X. This is equivalent to asking about the distribution of solutions to the
eigenvalue equation det(X− zIN) = 0 for z ∈ C. A natural continuation of that
question is to replace the identity matrix with another Girko matrix Y, independent
of X, and ask for the distribution of solutions to the equation

det(X− zY) = 0. (5.1.1)

Equations of this kind are known as generalized eigenvalue equations. If Y is
invertible, which is the case with high probability if Y is a Girko matrix (see
Theorem 4.1.4), then z ∈ C being a solution to (5.1.1) is equivalent to z being an
eigenvalue Y−1X. This is a simple example of a multivariate rational function of
non-Hermitian random matrices and we explore its eigenvalue density throughout
this chapter.

We denote the eigenvalues of Y−1X by µi, i ∈ JNK and its empirical eigenvalue
distribution by σN , i.e.

σN :=
1

N

N∑
i=1

δµi
. (5.1.2)

First, we aim to find a candidate for the limiting spectral measure of Y−1X. To do
so, consider XG,YG to be complex Ginibre matrices and denote the eigenvalues of
(YG)−1XG by µG

i and its empirical eigenvalue distribution by σG
N . Krishnapur made

the observation in [48] that we have

E[σG
N ] = σs (5.1.3)

for all N ∈ N. Here, σs denotes the absolutely continuous distribution with density

σs(z) :=
1

π

1

(1 + |z|2)2
(5.1.4)

93
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and we briefly present Krishnapur’s argument. Note that σs corresponds exactly to
the uniform distribution under projection onto the Riemann sphere. Rotations on the
sphere are given by the Möbius transformations of the type

z 7→ zα− β̄

zβ − ᾱ
(5.1.5)

with α, β ∈ C such that |α|2 + |β|2 = 1 and we show that the distribution of
eigenvalues of (YG)−1XG is invariant under (5.1.5). To do so define X̃G, ỸG by

X̃G := αXG − βYG and ỸG := β̄XG − ᾱYG. (5.1.6)

Then, (X̃G, ỸG) has the same distribution as (XG,YG) since XG,YG are Ginibre
matrices. Therefore, the solutions to det

(
XG − zYG

)
= 0 have the same distribu-

tion as the solutions to det
(
X̃G − zỸG

)
= 0. At the same time we have

det
(
X̃G − zỸG

)
= det

(
(zα− β̄)XG − (zβ − ᾱ)YG

)
= (zβ − ᾱ)N det

(
zα− β̄

zβ − ᾱ
XG −YG

)
.

(5.1.7)

Therefore, the zeros of det
(
X̃G − zỸG

)
are precisely given by the set{

µG
i α− β̄

µG
i β − ᾱ

}
i∈JNK

(5.1.8)

and it has the same distribution as {µG
i }i∈JNK. Since the rotation was chosen ar-

bitrarily, (5.1.3) follows. Beyond the expectation value of the empirical measure,
Krishnapur also calculated the exact joint probability density function φN of the
eigenvalues in the Ginibre case. He showed that

φN(z1, . . . , zN) =
1

Z

( ∏
1≤i<j≤N

∥φ(zi)− φ(zj)∥2R3

)
, (5.1.9)

where Z denotes a normalization constant, φ the projection onto the Riemann sphere
and ∥ · ∥R3 denotes the euclidean distance on the sphere as a subset of R3.

As in the other ensembles studied before, we expect that the equality in expectation,
(5.1.3) also holds in a sense of weak convergence in probability for N → ∞ and
that this limit does not depend on the precise entry distribution. Indeed both of
these claims were proved by Bordenave, who established a global law under optimal
assumptions in [17]. As the empirical eigenvalue distribution of Y−1X tends to the
uniform distribution after projection on the sphere, the ensemble is known as the
spherical ensemble.
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5.2 The local law for the spherical ensemble
It turns out that the convergence of σN to σs does not only hold on a global scale but
also on all local scales above the typical eigenvalue spacing. This local spherical
law is stated and proven under Assumption 4.1.1 in this section.

Theorem 5.2.1 (The local spherical law). Let C > 0 be a large but fixed number,
α ∈ (0, 1

2
) and let X,Y ∈ CN×N be two independent Girko matrices satisfying

assumption 4.1.1 and let µj , j ∈ N denote the eigenvalues of Y−1X. For z0 ∈ C,
|z0| ≤ NC , f ∈ C2

0(C), we define fN,z0 by fN,z0(z) = N2αf(Nα(z − z0)). Then we
have the local law∣∣∣∣∣ 1N

N∑
j=1

fN,z0(µj)−
∫

C
fN,z0(z)σs(z)d

2z

∣∣∣∣∣ ≺ ∥∆f∥L1

N1−2α
(5.2.1)

uniformly in z0 and f .

Proof. As in (4.1.6), we express the eigenvalues of Y−1X in terms of an integral
over its log-determinant by

1

N

N∑
j=1

fN,z0(µj) =
1

2πN

∫
C
∆fN,z0(z) log

∣∣det(Y−1X− z
)∣∣ d2z. (5.2.2)

From the multiplicativity of the determinant we have

log | det
(
Y−1X− z

)
|

= log
(
| det(Y)−1|| det(X− zY)|

)
= log(| det(X− zY)|)− log(|Y|).

(5.2.3)

The crucial observation is that the second term does not depend on z. Integrating
it against ∆fN,z0 for f ∈ C2

0 in (5.2.2) yields therefore no contribution. Next, we
define Hz

s ∈ C2N×2N , the Hermitization of X− zY, by

Hz
s =

(
0 X− zY

X∗ − z̄Y∗ 0

)
. (5.2.4)

Then

log(| det(X− zY)|) = 1

2
log
(
|X− z̄Y|2

)
=

1

2
log | detHz

s |. (5.2.5)

We define the resolvent of Hz
s at spectral parameter iη, η > 0 by Gz

s (iη) := (Hz
s −

iη)−1. Analogous to (4.1.10), we have

log | detHz
s | = log | det(Hz

s − iT )| − 2N

∫ T

0

⟨ImGz
s (iη)⟩dη (5.2.6)

for all T > 0.
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By assumption, X and Y are independent Girko matrices. Therefore

Z := v(z)−1/2(X− zY), with v(z) := (1 + |z|2) (5.2.7)

is also a Girko matrix. Consequently, up to an overall scaling factor of
√

v(z),
the Hermitization of the spherical ensemble Hz

s has the same distribution as the
Hermitization for the circular ensemble, (4.1.2), evaluated at z = 0. From [1,
Theorem 5.2], we therefore have the local law

|⟨Gz
s (iη)⟩ −mz

s (iη)| ≺
1

Nη
(5.2.8)

uniformly for z ∈ C and N−1+ε ≤ η ≤ N2C for ε > 0 and C > 0 from the statement
of the theorem. Here, mz

s is given by

mz
s (iη) := i

1

2v(z)

(√
4v(z) + η2 − η

)
. (5.2.9)

It is connected to σs by

σs(z) = − 1

2π

∫ ∞

0

∆z Immz
s (iη)dη =

1

π

1

(1 + |z|2)2
. (5.2.10)

This can be seen by evaluating the integral on the right-hand side, using the explicit
form of mz

s given in (5.2.9). We combine (5.2.10), (5.2.2), (5.2.3), (5.2.5) and (5.2.6)
to obtain the following expression for the left-hand side of (5.2.1)

1

N

N∑
j=1

fN,z0(µj)−
∫

C
fN,z0(z)σ(z)d

2z

=
1

4πN

∫
C
∆fN,z0(z) log |det(Hz

s − iT )| d2z

− 1

2π

∫
C
∆fN,z0(z)

∫ T

0

⟨ImGz
s (iη)⟩ − Immz

s (iη)dηd
2z

+
1

2π

∫
C
∆fN,z0(z)

∫ ∞

T

(
Immz

s (iη)−
1

η

)
dηd2z.

(5.2.11)

As in the case of (4.1.17), we have freely added the η−1 term in the last integral
to ensure convergence of the integral at infinity. We estimate all terms in (5.2.11)
separately along the lines of [1] and start with the first term. We have

log |det(Hz
s − iT )| = 2N log T +

N∑
j=1

log

(
1 +

λ2
j

T 2

)
. (5.2.12)

Since the first term on the right-hand side does not depend on z, its integral against
∆fN,z0(z) vanishes and we have∫

C
∆fN,z0(z) log |det(Hz

s − iT )| d2z ≤
∫

C
∆|fN,z0(z)|

Tr((Hz
s )

2)

T 2
d2z, (5.2.13)
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where we have used log(x+ 1) ≤ x. For our choice T = N2C we estimate the trace
term by

sup
|z|≤Nc

Tr((Hz
s )

2)

T 2
= sup

|z|≤Nc

1

T 2

N∑
i,j=1

(xij − zyij)(x̄ij − z̄ȳij)

≤ sup
|z|≤Nc

1

T 2

N∑
i,j=1

|xij|2 + |z|2|yij|2 ≺ sup
|z|≤Nc

N
|z|2

T 2
≤ N−2C+1.

(5.2.14)

For the upper bound of the second term in (5.2.11), recall that v(z)−1/2Hz
s has the

same distribution as Hz from (4.1.2) at z = 0. The resolvent of Hz
s satisfies

Gz
s (iη) =

1√
v(z)

(
1√
v(z)

Hz
s − i

η√
v(z)

)−1

(5.2.15)

and therefore it has the same distribution as v(z)−1/2G0(iv(z)−1/2η), where Gz is
the resolvent of Hz. Similarly, we have mz

s (iη) = v(z)−1/2m0(iv(z)−1/2η), where
mz was defined as the unique solution with positive imaginary part to (4.1.13). Then
we have for all p ∈ N that

E

[(∫ T

0

|⟨ImGz
s (iη)⟩ − Immz

s (iη)|dη
)p]

=E

[(
1√
v(z)

∫ T

0

∣∣∣∣∣
〈
ImG0

(
iη√
v(z)

)〉
− Imm0

(
iη√
v(z)

)∣∣∣∣∣ dη
)p]

=E

[(∫ T√
v(z)

0

|⟨ImG0(iη)⟩ − Imm0(iη)|dη

)p]
≤ E[I(0)p]

(5.2.16)

where I(z) was defined in (4.1.18). The last inequality holds since the integrand is
positive and v(z) ≥ 1. Therefore, Lemma 4.1.2 can be applied to obtain the estimate

E

[(∫ T

0

|⟨ImGz
s (iη)⟩ − Immz

s (iη)|dη
)p]

≲δ,p N
−p(1−δ). (5.2.17)

By an argument analogous to (4.1.20) and (4.1.21), this moment bound is converted
into the stochastic domination bound∣∣∣∣∫

C
∆fN,z0(z)

∫ T

0

⟨ImGz
s (iη)⟩ − Immz

s (iη)dηd
2z

∣∣∣∣ ≺ ∥∆f∥1N−1+2α. (5.2.18)

Lastly, the term integrand in the last term in (5.2.11) satisfies

| Immz
s (iη)−

1

η
| = O

(
v(z)

η3

)
= O(η−2), (5.2.19)
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for η ≥ T . The last estimate follows from v(z) = 1 + |z|2 ≲ N2C = T. Therefore
we have∣∣∣∣∫

C
∆fN,z0(z)

∫ ∞

T

(
Immz

s (iη)−
1

η

)
dηd2z

∣∣∣∣ ≲ ∥∆f∥1
T

= N−2C∥∆f∥1.

(5.2.20)
Using (5.2.14), (5.2.18) and (5.2.20) to estimate (5.2.11), we conclude the proof of
Theorem 5.2.1.

Remark. The idea behind the proof of Theorem 5.2.1 can be easily generalized to
other rational functions of random matrices. For any rational function of the type

R = Q−1P ∈ CN×N , (5.2.21)

with Q,P ∈ CN×N , a proof of a local law for R reduces to a proof of a local law
for the Hermitization

Hz
R =

(
0 P− zQ

P∗ − z̄Q∗ 0

)
∈ CN×N (5.2.22)

as well as a smallest singular value estimate for P−zQ in the form of Theorem 4.1.4
for all z ∈ C. Two examples of rational functions for which both of these results are
readily available are

R1 := (εY+
√
1− ε2Z)−1(εX+

√
1− ε2Z) and R2 := (εY+

√
1− ε2IN)

−1X,
(5.2.23)

where X,Y,Z are independent Girko matrices and ε ∈ (0, 1] for R1 and ε ∈ [0, 1]
for R2. The ensemble R1 describes a generalization of the spherical ensemble, where
we allow for correlation between the respective entries of Q1 and P1. For ε = 1, we
recover the spherical ensemble and for ε → 0, the ensemble approaches the identity
matrix. The ensemble R2 describes an interpolation between the spherical and the
Girko ensemble. For ε = 1, we again recover the spherical ensemble and for ε = 0,
we recover the Girko ensemble.
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[28] L. Erdős, T. Krüger, and Yu. Nemish. “Local laws for polynomials of Wigner
matrices”. J. Funct. Anal. 278(12): 108507 (2020).
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