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Abstract

In this thesis, we derive various entropy upper bounds for self-shrinkers of

the mean curvature flow which admit a symmetry, including several appli-

cations.

In our first paper, which is a joint work with Niels Martin Møller and

John Ma, we study the space of complete embedded rotationally symmetric

self-shrinkers. We first derive explicit entropy upper bounds for this class

of self-shrinkers. The proof is purely geometric and relies on an application

of the general Toponogov’s theorem from metric geometry to derive length

upper bounds on simple closed geodesics in an incomplete surface with

curvature bounded from below by a positive constant. We then apply the

entropy bounds to first prove a smooth compactness theorem for this space

of self-shrinkers. Second, we show that there are finitely many such self-

shrinkers which additionally are symmetric with respect to the hyperplane

perpendicular to the axis of rotation.

In our second paper, which is a joint work with John Ma, we generalize

the entropy bounds obtained in our first work in two directions. We modify

the proof of the embedded class to include entropy upper bounds for com-

pact non-spherical immersed rotationally symmetric self-shrinkers. We also

obtain entropy bounds for a larger class of embedded self-shrinkers which

are constructed through the theory of isoparametric foliations of the sphere

and which contain the space of complete embedded rotationally symmetric

self-shrinkers as a special case.
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Resumé

I denne afhandling udleder vi adskillige entropi øvre grænser for middelkrumn-

ingsflow selv-skrumpere med en vis symmetri, inklusive flere anvendelser.

I vores første artikel, som er udført i samarbejde med Niels Martin Møller

og John Ma, studerer vi rummet af fuldstændige indlejrede rotationssym-

metriske self-skrumpere. Først udleder vi eksplicitte entropi øvre grænser

for denne klasse af selv-skrumpere. Beviset er rent geometrisk og er baseret

p̊a en anvendelse af den generelle Toponogovs sætning fra metrisk geometri

for at udlede længde øvre grænser p̊a simple, lukkede geodæter i en ufuld-

stændig flade hvor krumningen er nedre-begrænset af en positiv konstant.

Først anvender vi entropi grænserne for at bevise en glat kompakthedssæt-

ning for dette rum af selv-skrumpere. Dernæst viser vi at der findes endelige

mange s̊adanne selv-skrumpere som derudover er symmetriske med hensyn

til den plan som er vinkelret p̊a rotationsaksen.

I vores anden artikel, som er udført i samarbejde med John Ma, gener-

aliserer vi de entropi grænser fra vores første arbjede i to retninger. Vi mod-

ificerer beviset af den indlejrede klasse til at inkludere entropi øvre grænser

for kompakte, ikke-sfæriske immerserede rotationssymmetriske selv-skrumpere.

Vi finder ogs̊a entropi grænser for en større klasse af selv-skrumpere som

er konstrueret igennem teorien for isoparametriske foliationer af kuglen og

som indeholder rummet af fuldstændige indlejrede rotationssymmetriske

self-skrumpere som et specialtilfælde.
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Chapter 1

Introduction

The mean curvature flow is the most studied extrinsic geometric curvature

flow. In a classical setting, it is the study of how immersed hypersurfaces Σn

in Rn+1 evolve in the normal direction as prescribed by the mean curvature.

A most motivating reason to study the mean curvature flow is exhibited in

the fact that it is the (negative) gradient flow of the area functional, and on

a first look its equation bears a resemblance to the classical heat equation -

but deep inside there are important differences that arise from the inherent

nonlinearity. On a short time-scale the flow acts by smoothing and evening

of the solution, and this opens up for numerous physical and mathematical

applications: how can we understand a complicated geometric object by de-

forming it in a natural way - by minimizing it’s area as efficiently as possible

- so that we end up with a simpler object which is easier to understand.

However, with the passage of time the flow inevitably develops singularities,

and hence to better understand and appreciate the flow one must under-

stand the singularities it goes through. Indeed, much of the work done in

the field is in one way or another related to the singularities of the flow.

The equation of the mean curvature flow made its first appearance in

the work of Mullins [Mul56] in the context of material science. Mullins used

the flow to study the motion of idealized grain boundaries in the annealing

process of metals. He also wrote down some of the first known solutions

to the flow such as the famous translating grim reaper. In a fundamen-

tal work, Ken Brakke [Bra78] studied a weak notion of the flow using the

language of geometric measure theory. A few years later, inspired by the

work of Richard Hamilton [Ham82] on the intrinsic counterpart, the Ricci

flow, Gerhard Huisken [Hui84] studied the flow from the PDEs point of view

and proved the first important theorem in the field which states that convex

hypersurfaces evolve under the flow into a spherical singularity in finite time.
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Almost four decades since the work of Husiken [Hui84], the mean cur-

vature flow remains an active and rich field in geometric analysis. The

four decades have led into many important mathematical results includ-

ing applications to topology and geometry, such as the proof of the Rie-

mannian Penrose inequality using inverse mean curvature flow by Husiken-

Ilmanen [HI01], the classification of two-convex hypersurfaces by Huisken-

Sinestrari [HS09], the proof of path-connectedness of the moduli spaces

of two-convex embedded tori and spheres by Buzano-Haslhofer-Hershkovits

[BHH19], [BHH21], the classification of low-entropy hypersurfaces by Bernstein-

Wang [BW18] and the optimal isoperimetric inequalities for surfaces in

Cartan-Hadamard manifolds by Schulze [Sch20], just to mention a few.

As one of the most important models of singularities for the mean cur-

vature flow, self-shrinkers have been extensively studied ever since the early

work of Huisken [Hui84], with so much yet to be understood. This thesis

is devoted to the study of self-shrinkers which admit a symmetry. In par-

ticular, the space of rotationally symmetric self-shrinkers constitute a main

topic in this thesis.

Structure of the thesis

This thesis is structured as follows. In chapter 2 we briefly present some

background to mean curvature flow, including a discussion on singularities

with special focus on self-shrinkers and the entropy functional.

In chapter 3 we give a short overview of our results. First we briefly touch

on the space of rotationally symmetric self-shrinkers. We state Toponogov’s

theorem from comparison geometry which is a main tool in the results

obtained in this thesis, and then we provide a summary of paper I [MMM22]

and paper II [MM23].

Paper I and II are contained as separate and independent chapters in

this thesis as chapter 4 and chapter 5, respectively.
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Chapter 2

Preliminaries

The goal of this chapter is to provide a brief overview on singularity forma-

tion in hypersurfaces flowing by mean curvature flow in Rn+1, with special

emphasis on self-shrinkers as an important class of singulariy models for

the flow. It is not our aim to be comprehensive or to provide details to

well-known results, as many excellent books and surveys provide all the de-

tails of what we are about to present here, e.g. the books [Man11], [Eck04]

and [ACGL20], and the nice survey paper [CMP15]. Instead, the aim is to

provide a selective storyline which serves as preliminaries to the work of this

thesis. We will restrict to the setting of hypersurfaces in Rn+1, although

numerous results have been established in higher codimension and on mean

curvature flow in more general ambient Riemannian manifolds.

Notation

In this thesis, Σn will by default denote a smooth orientable immersed

hypersurface in Rn+1. A unit normal vector field will be denoted by n⃗

and sometimes ν, and the second fundamental form will be denoted by A.

The scalar mean curvature will be denoted by H and is given by the trace

of A. The mean curvature vector is given by H⃗ = −n⃗H. Sometimes we

add a Σ-subscript to geometric quantities when needed. A hypersurface Σ

is called mean convex if there exists a choice of unit normal n⃗ such that

H ≥ 0, and convex if there exists a choice of unit normal n⃗ such that A is

positive semidefinite. Following [CM12a], a hypersurface Σ ⊆ Rn+1 is said

to have polynomial volume growth if for any fixed point x ∈ Rn+1 there

exist constants C and d such that for all r ≥ 1

Vol (Br(x) ∩ Σ) ≤ Crd,

where Br(x) denotes the Euclidean ball centered at x and with radius r.
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2.1 Mean curvature flow

Let X : Mn × I → Rn+1 be smooth 1-parameter family of immersions. We

say that X is a mean curvature flow if it satisfies

(
∂X

∂t
(x, t)

)⊥
= H⃗(x, t) for all (x, t) ∈ Mn × I (1)

Where H⃗(·, t) is the mean curvature vector of the immersion X(·, t). We

will sometimes write Mt := X(M, t). By the identity ∆X = H⃗, the mean

curvature flow can be seen as a natural nonlinear analogue to the classical

heat equation.

By a choice of gauge to break the diffeomorphism invariance of (1), to-

gether with standard parabolic theory for quasilinear equations, one obtains

short time existence. For example, in the compact case we have [ACGL20,

Proposition 6.8]:

Proposition 1. Let X0 : Mn → Rn+1 be a smooth immersion of a closed

manifold M . There exists ε > 0 and a unique smooth solution X : M ×
[0, ε) → Rn+1 to the mean curvature flow equation (1) with X(·, 0) = X0.

Example 1. Let M0 be a minimal hypersurface in Rn+1. Since the mean

curvature vanishes, this gives rise to a stationary solution for (1) defined on

I = R.

Example 2. Let M0 = Sn
R, i.e. the n-sphere of radius R. One can show

that the mean curvature flow is given by homothetically shrinking spheres

with radius R(t) =
√
R2

0 − 2nt. The flow is defined on [0, Tmax), where

Tmax = R2
0/(2n).

A powerful tool for studying mean curvature flow is the avoidance prin-

ciple. See e.g. [Man11, Theorem 2.2.1] for a proof.

Theorem 2 (Avoidance Principle). Let Xi : Mi × I → Rn+1 for i = 1, 2 be

mean curvature flows on compact hypersurfaces. Then the distance between

X1(M1, t) and X2(M2, t) is non-increasing in t.

The theorem also holds if one of Xi(Mi, t) is properly immersed for all

t ∈ I. The avoidance principle demonstrates the abundance of singularities

in mean curvature flow, as one expects of a nonlinear evolution equation.

Indeed, any closed hypersurface M becomes singular in finite time under

the mean curvature flow X : M × [0, T ) → Rn+1. This can be seen by

enclosing M by a sufficiently large sphere, so T ≤ Tmax, where Tmax is from

example 2.

Theorem 2 above utilizes a maximum principle argument. This is a very
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important tool in the study of the mean curvature flow. Further important

consequences of the maximum principle include the preservation of embed-

dedness, convexity and mean convexity under the flow.

We say that a solution X : M × [0, T ) → Rn+1 is maximal if it has

no smooth extension to a larger time interval, and we often denote the

maximal time T by Tmax as in example 2. The following theorem gives

a useful characterization of the maximal time Tmax, see e.g. [ACGL20,

Theorem 6.20] for a proof.

Theorem 3 (Long time existence). Let X : M×[0, T ) → Rn+1 be a solution

to (1), where M is compact. If X is a maximal solution and T < ∞, then

sup
M×[0,T )

|A| = ∞.

Weak formulations

Ultimately one would like to understand the structure of the singular set

of the flow. As we will see in the next section, this set is quite compli-

cated. A weak formulation of the flow allows to continue the flow across the

singularities it encounters. One way to formulate a weak notion of mean

curvature flow is through the pioneering work of Ken Brakke [Bra78]. He

introduced the Brakke flow in the language of varifolds within geometric

measure theory. This formulation makes it possible to take various lim-

its through compactness theorems, as done in for example the existence of

weak tangent flows (see Theorem 8 below). Furthermore, Brakke’s general

regularity theorem [Bra78], [Ton19] is a powerful tool in studying the mean

curvature flow. A version of this due to White [Whi05] can also be proven

in the smooth setting, see also [Eck04].

Another important weak formulation is the level-set flow developed inde-

pendently by Evans and Spruck [ES91], and Chen, Giga and Goto [CGG91].

2.2 Singularities

Before taking a closer look at the study of singularities for n ≥ 2, let us pause

for a moment at the n = 1 case. The flow is then commonly called the curve

shortening flow, and example 2 is simply a shrinking circle. the following

theorem by Grayson [Gra87] shows that any embedded closed curve becomes

extinct at a ”round point”, i.e. rescalings of the curve converge smoothly

to an embedding X̃ whose image is a unit circle:

Theorem 4 (Grayson’s theorem). Let X0 : M → R2 be a smooth embedding

of a closed curve. Then the solution of (1) with initial data X0 exists on
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the maximal interval [0, Tmax) and converges to a round point x0 ∈ R2 as

t → Tmax.

The theorem was first proven by Gage and Hamilton [GH86] when the

initial embedding X0 is convex. Grayson then improved it by showing that

any closed curve eventually becomes convex under the flow.

For n ≥ 2, Huisken proved in [Hui84] a similar result for compact, convex

hypersurfaces in Rn+1: the hypersurface remains convex and contracts to a

round point in finite time. The general case for n ≥ 2 is however quite more

complicated, and Grayson’s theorem is false in higher dimensions. This

was demonstrated first by Grayson [Gra89] by constructing a particular

dumbbell where a pinching singularity arises before the extinction of the

entire hypersurface. Later, Angenent [Ang92] used his celebrated doughnut

self-shrinking solution to prove the same statement using theorem 2.

Blow-up analysis: rescaling and the monotonicity for-

mula

We have seen how two hypersurfaces diffeomorphic to Sn can develop dif-

ferent types of singularities under the mean curvature flow. Convex hyper-

surfaces develop so-called spherical singularities, while the first singularity

arising in Grayson’s dumbbell is an example of a cylindrical singularity.

Blow-up analysis allows for a more systematic study of singularities and is

based on two elements: rescaling and a monotonicity formula.

Let Φ be the function defined on Rn+1 × (−∞, 0) and which is given by

Φ(x, t) =
1

(−4πt)
n
2

e
|x|2
4t (2)

The function Φ looks like the backward heat kernel on Rn, but it is ex-

tended to Rn+1. We also define its space-time translations Φ(x0,t0) on Rn+1×
(−∞, t0) by the expression

Φ(x0,t0)(x, t) = Φ(x− x0, t− t0) =
1

(4π(t0 − t))
n
2

e
−|x−x0|2
4(t0−t) , (3)

where (x0, t0) ∈ Rn+1 × R. The following monotonicity formula due to

Huisken [Hui90] is a fundamental tool in blow-up analysis:

Theorem 5 (Monotonicity formula). Let (x0, t0) ∈ Rn+1 × R, and assume

that (Mt)t∈I is a mean curvature flow such that
∫
Mt

Φ(x0,t0) < ∞ for all
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t < t0. Then

d

dt

∫

Mt

Φ(x0,t0) = −
∫

Mt

∣∣∣∣H⃗ − (x− x0)
⊥

2(t0 − t)

∣∣∣∣
2

Φ(x0,t0) (4)

To study singularities in a more general setting, one often introduces the

following terminology on the rate at which singularities form:

Definition 6. Let X : M × [0, Tmax) → Rn+1 be a mean curvature flow,

where Tmax < ∞. X is said to develop a type-I singularity if

sup
M×[0,Tmax)

(Tmax − t)|A|2 < ∞,

and a type-II singularity if

sup
M×[0,Tmax)

(Tmax − t)|A|2 = ∞.

We shall now introduce the idea behind blow-up analysis. Let (xj, tj) ∈
Rn+1 × R be a sequence of space-time points, and let (λj) be a sequence

of scales λj → ∞. Note that equation (1) is invariant under space-time

translations and parabolic rescaling. Hence if (Mt)t∈[0,T ) solves the mean

curvature flow, then the rescaled family

Mt,j := λj(Mλ−2
j t+tj

− xj) (5)

is also a solution to the mean curvature flow. Such a sequence (xj, tj) is

called a blow-up sequence, and any flow arising as a subsequential limit of

such a blow-up sequence is called a limit flow. A particular important case

is when the blow-up sequence is constant, i.e. (xj, tj) = (x0, t0). In this

case, a limit flow is called a tangent flow.

The idea behind blow-up analysis is that it provides us with a zooming

mechanism as the flow approaches a singularity. Under some conditions,

Huisken’s monotonicity formula (Theorem 5) can then be used to show that

the limit flow is a simpler solution to mean curvature flow: a self-similar

flow which can be regarded as a singularity model.

Singularity models

First, under the type-I hypothesis, one can prove the following theorem

[ACGL20, Theorem 11.26].

Theorem 7. Let X : M× [0, T ) → Rn+1 be a compact solution to (1) which

develops a type-I singularity. Let (xj, tj) ∈ M × [0, T ) be a sequence such

13



that lim supj→∞ |A|(xj, tj) → ∞, then the sequence of rescaled solutions

Xj : M × Ij → Rn+1 given by

Xj(x, t) = λj

(
X(x, λ−2

j t + tj) −X(xj, tj)
)
, Ij = [−λ2

j tj, 0),

and λj = (T − tj)
− 1

2 , has a subsequence which converges locally uniformly

in the smooth topology to a self-similar shrinking solution X∞.

We will review self-shrinkers in the next section. One can further-

more prove that all tangent flows on type-I singularities are self-shrinkers.

Huisken [Hui90] proved a version of this theorem using a smart choice of

rescaling which gives what is usually called the rescaled (or normalized)

mean curvature flow X̃. The rough idea is that by the type-I hypothesis,

the rescaled flow X̃ will have uniformly bounded second fundamental form.

This allows an application of a compactness theorem to subsequentially ob-

tain a limit. Finally the monotonicity formula then dictates that the limit

has to be self-similar shrinking solution.

Without the type-I hypothesis, it is still true that tangent flows are self-

similarly shrinking solutions, although one needs to take the convergence

and the resulting limit in the weak sense of Brakke flow. The following

theorem is proven in the work of Ilmanen [Ilm95b], see also [Whi97].

Theorem 8 (Weak tangent flows). Let (Mt)t∈[0,T ) be a mean curvature flow

on a compact hypersurface. Let (x0, t0) ∈ Rn+1×R and let (λj)j∈N such that

λj → ∞. Define the sequence (Mt,j)t∈Ij

Mt,j = λj(Mλ−2
j t+t0

− x0), Ij = [−λ2
j t0, 0)

Then there is a subsequence of (Mt,j) which converges to a limit integral

self-similarly shrinking Brakke flow {µt}t∈(−∞,0).

Note that the two theorems above say nothing about the uniqueness

of the obtained limits, i.e. given different choices of the scale sequence

(λj)j∈N, is the resulting tangent flow the same? This is a fundamental prob-

lem in the field and it has been settled in only a few special cases. Of

course, by the combined work of Gage-Hamilton-Grayson [GH86], [Gra87]

and Huisken [Hui84], the uniqueness of tangent flows is established for the

curve shortening flow and convex mean curvature flow in Rn+1 for n ≥ 2,

respectively. Furthermore, by the combined work of Schulze [Sch14] and

Colding-Minicozzi [CM15], every tangent flow arising from mean curvature

flow of an embedded, compact mean convex hypersurface is unique. Fur-

thermore, Schulze and Chodosh [CS21] proved uniqueness of multiplicity-
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one asymptotically conical tangent flows.

Tangent flows constitute a very important example of limit flows, but

there are situations when they do not provide the most accurate descrip-

tion of a singularity formation. A classical example of this is seen in the

degenerate rotationally symmetric neckpinches of Angenent and Velázquez

[AV97]. Huisken and Sinestrari [HS99] studied type-II singularities in the

context of mean convex mean curvature flows. In this setting, they proved

the existence of a blow-up sequence such that the singularity is modelled

by a convex self-similar translating soliton. A hypersurface Σn ⊂ Rn+1 is

called a translator if it is a time-slice of a mean curvature flow that evolves

by translation, i.e.

HΣ(x) = −⟨e, n⃗(x)⟩, x ∈ Σ, (6)

for some e ∈ Rn+1. More precisely, we have the following theorem on type-II

singularities, see [HS99] or [ACGL20, Theorem 11.32]:

Theorem 9. Let X : M×[0, T ) → Rn+1 be a compact mean convex solution

to (1) which develops a type-II singularity at time T . Then there is a blow-

up sequence (xj, tj) ∈ M × [0, T ) and a sequence of scales (λj)j∈N such that

the sequence of rescaled solutions Xj : M × Ij → Rn+1, where

Xj(x, t) = λj

(
X(x, λ−2

j t + tj) −X(xj, tj)
)
, Ij = [−λ2

j tj, λ
2
j(T − tj − j−1)),

has a subsequence which - up to rigid motion - converges locally uniformly in

the smooth topology to {Rm×Σn−m
t }t∈(−∞,∞) for some m ∈ {0, 1, · · · , n−1},

where {Σn−m
t } is a locally uniformly convex self-similar translator.

Theorem 7, 8 and 9 tell us that self-shrinkers and translators are models

for singularity formation for the mean curvature flow. These are examples

of self-similar flows, also called solitons. As exhibited by these theorems,

to obtain these self-similar flows as limit flows one has to impose some as-

sumptions, e.g. type-I assumption in theorem 7 and mean convexity for

the type-II assumption in theorem 9. While it is true that limit flows at a

singularity are always ancient solutions, i.e. flows that exist for the infinite

past, it is unknown whether these will in general be self-similar. Neverthe-

less, self-shrinkers and translators still cover a large class of singularities

and much of the field is devoted to their study.
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The entropy

We finish this section with the definition of a very important and useful

quantitiy. Let Σn ⊆ Rn+k be a submanifold, and let x0 ∈ Rn+k, t0 > 0. The

F -functional is defined as the weighted area functional

Fx0,t0(Σ) :=
1

(4πt0)n/2

∫

Σ

e
−|x−x0|2

4t0 dµΣ. (7)

The entropy functional λ(Σ) is defined by taking the supremum of Fx0,t0

over x0 ∈ Rn+1, t0 > 0:

λ(Σ) = sup
(x0,t0)∈Rn+k×R>0

Fx0,t0(Σ). (8)

This functional was introduced by Colding and Minicozzi [CM12a] (see also

[MM09]) and has since become a powerful tool in the study of singularities.

The entropy is invariant under dilations, translations and rotations. Fur-

thermore, by Theorem 5, it follows that the entropy is nonincreasing along

a mean curvature flow (Mt)t∈I , i.e.

λ(Mt1) ≥ λ(Mt2)

for all t1 ≤ t2 in I. We also note that the definition of the entropy extends to

Radon measures. In the next section we will briefly review how the entropy

was used in [CM12a] to study generic singularities.

The following theorem relates the entropy to a more geometric quantity

which is typically denoted the area growth or the maximal density ratio

(the supremum quantity in equation (9) below), see e.g. [Whi21, Theorem

9.1] for a proof.

Theorem 10. Let Mm be an m-dimensional submanifold in Rn. There is

a constant cm > 0 such that

sup
x∈Rn,r>0

H m (M ∩Br(x))

Vmrm
≥ λ(M) ≥ cm sup

x∈Rn,r>0

H m (M ∩Br(x))

Vmrm
. (9)

Where H m denotes the m-dimensional Hausdorff measure, and Vm is the

volume of the unit m-ball.

Hence, bounded entropy is equivalent to bounded area growth.
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2.3 Self-shrinkers

The previous section demonstrates the importance of self-shrinkers in the

study of singularities of the mean curvature flow. A hypersurface Σn ⊂ Rn+1

is called a self-shrinker if

HΣ(x) =
1

2
⟨x, n⃗(x)⟩, x ∈ Σ. (10)

A self-shrinker Σ is a time-slice of a one-parameter family of a homotheti-

cally shrinking solution to (1) given by

Σt =
√
−tΣ, t ∈ (−∞, 0).

One can study self-shrinkers from a variational point of view: they are

critical points of the F -functional Σ 7→ F0,1(Σ) as defined in (7). Equiva-

lently, they are minimal hypersurfaces in Rn+1 with respect to the conformal

metric

gß = e−
∥x∥2
2n δ, (11)

where δ denotes the usual Euclidean metric. We note that this metric is

incomplete, and furthermore the scalar curvature does not have a sign and

diverges for |x| → ∞.

Generic self-shrinkers

In the influential work [CM12a], Colding and Minicozzi studied the stability

properties of self-shrinkers. Let Σs be any normal variation of a self-shrinker

Σ given by fn⃗. Then the second variation of F0,1 at a self-shrinker Σ is given

by

∂2

∂s2
F0,1(Σs)

∣∣∣∣
s=0

= −(4π)−
n
2

∫

Σ

fLfe−
|x|2
4 dµΣ,

where

L = ∆ + |A|2 − 1

2
⟨x,∇(·)⟩ +

1

2
,

is the corresponding stability (or Jacobi) operator. Recall that as a minimal

hypersurface in (Rn+1, gß), we say that Σ is L-stable if for all compactly
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supported functions u we have

−
∫

Σ

(uLu) e−
|x|2
4 dµΣ ≥ 0.

Due to the the constant 1
2

term in L, one can prove the following lemma.

See e.g. [CM12b] for a proof.

Lemma 11. There are no L-stable, smooth and complete self-shrinkers

without boundary and with polynomial volume growth in Rn+1.

As argued in [CM12a], this apparent instability comes from the fact

that in the second variation formula above we only take variations in Σ,

while x0, t0 are fixed. A more natural variation will include all the three

variations: let Σs be a normal variation, and let xs, ts be variations with

x0 = 0, t0 = 1, and letting

∂s
∣∣
s=0

Σs = fn⃗, ∂s
∣∣
s=0

xs = y, ∂s
∣∣
s=0

ts = h,

then we obtain the following second variation formula at a critical point Σ

F ′′ = −(4π)−
n
2

∫

Σ

e−
|x|2
4

(
fLf + 2fhH − h2H2 + f⟨y, n⃗⟩ − ⟨y, n⃗⟩2

2

)
dµΣ

Where F ′′ denotes ∂ss|s=0Fxs,ts(Σs). This gives rise to a new and more suit-

able notion of stability which is called F -stability. The reason for this is

that the additional variations xs and ts take account of space-time transla-

tions, and we will now have F -stable self-shrinkers. Another related notion

of stability is the so-called entropy stability. A self-shrinker Σ is called

entropy-stable if it is a local minimum for the entropy functional (8). It is

shown in [CM12a] that the entropy is attained for any self-shrinker Σ with

polynomial volume growth:

λ(Σ) = F0,1(Σ),

and that furthermore F -stability and entropy-stability are equivalent for

self-shrinkers that do not split off a line isometrically.

Using the considerations above, Colding and Minicozzi were able to char-

acterize the self-shrinking singularities of generic mean curvature flows, i.e.

the self-shrinkers that arise as tangent flows and which cannot be perturbed

away. Note that by the propreties of the entropy functional, if Σ is a self-

shrinker which arises as a tangent flow from a mean curvature flow (Mt)t∈I
starting from M0, then λ(M) ≤ λ(M0). Let C denote the set of generalized

18



cylinders Sk × Rn−k, where Sk is a sphere of radius
√

2k. One of the main

results of [CM12a] is the following theorem:

Theorem 12. Let Σn be a smooth complete embedded self-shrinker with

∂Σ = ∅ and with polynomial volume growth.

1. If Σ /∈ C, then for any m there is a graph Σ̃ over Σ of a function with

arbitrarily small Cm norm so that λ(Σ̃) < λ(Σ).

2. If Σ is not Sn and does not split off a line, the function in (1) can be

taken to have compact support.

In either case, Σ cannot arise as a tangent flow to the mean curvature flow

starting from Σ̃.

The theorem above tells us that the only entropy stable self-shrinkers

are the set of generalized cylinders C, and hence the set C represents the

set of generic self-shrinkers, i.e. ones that cannot be perturbed away. A

key element in the proof is the classification of mean convex self-shrinkers,

initiated by Abresch and Langer [AL86] for n = 1 and Huisken [Hui90],

[Hui93] for n ≥ 2, and finalized in [CM12a]. Under the same assumptions

stated in Theorem 12, mean convex self-shrinkers are given by the general-

ized cylinders C, see [CM12a, Theorem 0.17].

Huisken famously conjectured (see [Ilm03, #8]) that generic embedded

mean curvature flow should only encounter spherical and cylindrical sin-

gularities. In a series of papers [CCMS20], [CCMS21], [CCS23] further

advancemenets have been made towards this conjecture. In particular it

was shown in [CCS23] that for generic surfaces M ⊂ R3, the mean curva-

ture flow starting at M encounters only a spherical or cylindrical singularity

until the first time it encounters a singularity with multiplicity N ≥ 2. The

higher multiplicity N ≥ 2 is conjectured not to occur, see [Ilm03].

Examples beyond the generalized cylinders

The generalized cylinders are in a sense the simplest examples of self-

shrinkers. By now there are a wealth of examples of self-shrinkers con-

structed using various techniques, both embedded and immersed. Angenent

[Ang92] was the first to construct an example beyond the generalized cylin-

ders. The Angenent’s doughnuts are embedded, rotationally symmetric,

diffeomorphic to Sn−1 × S1 and are constructed using shooting method in

ODEs. For a long time these were the only known examples until the

construction of noncompact, high-genus embedded examples independently
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by Kapouleas-Kleene-Møller [KKM18] and Nguyen [Ngu14] by gluing tech-

niques. Further examples by gluing techniques are given in [Møl11] and

[KM23], and examples using min-max techniques are constructed in [Ket16]

and [BNS21]. Drugan and Nguyen [DN18] used a modified curvature flow

to construct embedded Sn−1 × S1 self-shrinkers similar to Angenent’s con-

struction, leaving open the question whether the two constructions coincide.

More examples constructed using shooting method can be found in [Rie23],

[DK17]; see also [DLN18] for a survey on those.

Many of these examples, together with numerical examples such as those

by Ilmanen [Ilm95a] and Chopp [Cho94] (see also [AIC95]), indicate that

a complete classification of self-shrinkers in dimension n ≥ 2 is not to be

expected, even in the embedded case.

The entropy and some rigidity results

Knowing the numerical value of the entropy for self-shrinkers is often very

useful. Recall that for self-shrinkers, the supremum in (8) is attained. The

hyperplanes have the least entropy λ(Rn) = 1, and by applying Brakke’s

regularity theorem (see [Whi05]) one can show that there is ε = ε(n) > 0

such that if Σ is any non-flat self-shrinker in Rn+1, then λ(Σ) ≥ 1 + ε,

i.e. there is a gap to the next lowest attained value for the entropy by a

self-shrinker. By a computation due to Stone [Sto94], the entropy of the

n-spheres is a strictly decreasing sequence in n and their numerical values

are given by

λ(Sn) =
( n

2πe

)n
2
ωn(Sn)

Where ωn is the surface area of Sn. Furthermore, by the product property

for the entropy

λ(N1 ×N2) = λ(N1)λ(N2),

for any submanifods N1, N2 in Rn+1, the entropy of the family of generalized

cylinders C are also determined.

Using theorem 12, it was shown by Colding, Minicozzi, Ilamanen and

White [CIMW13] that the round sphere has the least entropy among all

closed self-shrinkers, and that there is a gap to the next lowest attained

value by a closed self-shrinker. Furthermore, by the work of [BW16] and

[Zhu20], any closed hypersurface in Rn+1 has entropy bounded from below

by λ(Sn), settling a conjecture in [CIMW13].
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Similar to the study of minimal and constant-H hypersurfaces, being

able to prove rigidity theorems is a gateway to obtaining further insight

into the space of self-shrinkers. Even in the case of complete embedded self-

shrinkers this proves very challenging, except perhaps for the n = 1 case

where Abresch and Langer [AL86] have proven that the circle is the only

simple closed self-shrinker. One typically needs to impose some assumptions

to obtain such results, and bounds on the entropy often prove useful in this

regard.

As we have already seen, the mean convex self-shrinkers with polyno-

mial volume growth are generalized cylinders. Colding-Minicozzi proved in

[CM12b] a smooth compactness theorem on the space of embedded self-

shrinkers Σ2 ⊂ R3 with bounded genus and bounded entropy. The assump-

tion on genus was later relaxed to a fixed genus By Sun and Wang [SW20].

Wang [Wan14] proved the uniqueness of embedded self-shrinkers with con-

ical ends, while Brendle [Bre16] proved that the round sphere is the only

embedded genus zero self-shrinker in R3.

Mramor and Wang [MW20] proved that any genus g closed embedded

self-shrinker is isotopic to the standard genus g surface in R3. The result

has since been generalized by Mramor [Mra20] to include noncompact self-

shrinkers which contain a single asymptotically conical end. Furthermore

Mramor [Mra21b], [Mra20] has proven various rigidity and topological re-

sults on asymptotically conical self-shrinkers.

In general, if a certain class of solitons (such as translators or self-

shrinkers) are known to possess explicit entropy bounds, it may be used to

obtain a rigidity or a classification result on that class as demonstrated in

some of the results mentioned above. More examples where entropy bounds

are utilized include the classification of ancient low entropy flows in R3

by Choi, Haslhofer and Hershkovits [CHH22] and the classification of low-

entropy closed hypersurfaces in R4 by Bernstein and Wang [BW18]. In the

pursue of classification theorems on translating solitons, entropy bounds are

often used as assumptions, see e.g. [Chi20], [GMM22], [MOP22], [IMR23],

just to mention a few.
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Chapter 3

Entropy bounds: an overview

3.1 Rotationally symmetric self-shrinkers

The study of the space of complete, embedded rotationally symmetric self-

shrinkers Σn
σ ⊂ Rn+1 with profile curve σ : I → H was initiated with the

construction of the S1 × Sn−1 diffeomorphic Angenent solutions [Ang92].

Kleene and Møller [KM14] obtained a partial classification of this space: it

is made of the hyperplane, the round sphere, the round cylinder and dough-

nuts S1×Sn−1. The latter category is still not well understood. In particular

it is still unknown whether Angenent’s solution is the only member in this

category. This is related to the following more general open problem in

n = 2, see [DLN18, section 7]:

Open problem: Is Angenet’s torus the only closed, embedded, genus

1 self-shrinker in R3?

By the work of Drugan and Kleene [DK17], we note that infinitely many

immersed examples exist of each one of the topological types included in

the classification theorem of [KM14] mentioned above.

The rotational symmetry reduces the minimality of Σn
σ in (Rn+1, gß),

where gß is given in (11), to the minimality of the profile curve σ in (H, gA),

where H is the upper half-plane and gA is derived from gß:

gA = r2(n−1)e−
x2+r2

2 (dx2 + dr2), H = {(x, r) ∈ R2 : r > 0}.

Even though the 2-manifold (H, gA) is incomplete, it does have one good

geometric property: the Gaussian curvature KA is positive and is bounded

from below by a constant κ > 0. Spaces of sectional curvature bounded
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from below (or above) allow the use of theorems from comparison geome-

try, although without some notion of completeness not much can be done.

Nevertheless, as we will see in the summary below, the following general

theorem ([BBI01, Theorem 10.3.1]) plays a vital role in the results obtained

in [MMM22] and [MM23].

Theorem 13 (Toponogov’s Theorem). Let X be a complete length space of

curvature ≥ κ. Then X has curvature ≥ κ in the large.

3.2 Summary of paper I and II

Paper I [MMM22]:

In this paper, we first derive explicit entropy bounds for the space of com-

plete embedded self-shrinkers with rotational symmetry [MMM22, Theorem

1.1]:

Theorem 14. For each n ≥ 2, there is a positive number En such that

1 ≤ λ(Σ) ≤ En.

for any complete embedded rotationally symmetric self-shrinker Σn ⊆ Rn+1.

It is worthwhile to note that the proof of this theorem does not directly

use the self-shrinker equation. It is rather a reflection of the geometric

structure of (gA,H). Theorem 14 is a direct consequence of the following

theorem [MMM22, Theorem 3.1].

Theorem 15. Let (M, g) be a 2-dimensional Riemannian manifold so that

M is homeomorphic to R2 and Kg ≥ κg > 0, where Kg is the Gauss cur-

vature of (M, g). Then every simple closed geodesic in (M, g) has length at

most ≤ 2π/
√
κg.

The proof of this theorem utilizes Toponogov’s theorem (theorem 13

above). Most of the work goes into showing that any simple closed geodesic

in M bounds a compact region Ω which is a complete length space of cur-

vature ≥ κ. This relies on two facts: first is the fact that the boundary of

Ω is a simple closed geodesic, and hence any two points in Ω can be con-

nected by a geodesic in Ω which is a shortest path among C1-curves inside

Ω. Second is the fact that the curvature bound K ≥ κ > 0 of M implies

a similar one on Ω. We then use a clever argument inspired by [Kli95] to

finalize the proof.

Equipped with the entropy bounds we are then able to show the following

smooth compactness theorem [MMM22, Theorem 1.2]:

23



Theorem 16. For each n ≥ 2, the space of complete embedded rotationally

symmetric self-shrinkers Σn ⊆ Rn+1 is compact in the C∞
loc-topology.

The proof is by contradiction and we sketch the idea here: Let (Σσk
) be a

sequence in this space. By the classification result of Kleene-Møller [KM14],

one may assume that (Σσk
) are doughnuts, i.e. of the type S1 × Sn−1. We

then find a limit hypersurface Σ∞ for which a subsequence converges to on

compact sets. If Σ∞ is a doughnut then the convergence is smooth and we

are done. If not, then once again by [KM14], Σ∞ must be the plane, the

cylinder or the sphere. We show that in this case the convergence above is

in multiplicity N ≥ 2 and by using arguments from [CM12b] this will imply

that the limit Σ∞ is L-stable, which is not possible by lemma 11.

Finally, we show that there are finitely many self-shrinkers in this class

if one furthermore assumes a symmetry with respect to the hyperplane per-

pendicular to the axis of rotation. We note that embeddedness is necessary

here, as infinitely many immersed examples with this symmetry have been

constructed in [DK17]. The proof is based on the ideas of Mramor [Mra21a].

We note that our compactness and finiteness theorems are an improvement

to previously obtained results in [Mra21a].

Paper II [MM23]

In this paper we expand on the entropy bounds obtained in paper I [MMM22].

We generalize the entropy bounds in the rotational symmetric case to in-

clude entropy bounds on the set of immersed rotationally symmetric self-

shrinkers of the doughnut type S1 × Sn−1. Examples of these have been

constructed in [DK17] using shooting method. We prove the following the-

orem [MM23, Theorem 1.2]:

Theorem 17. Let Σ = Σσ be a compact immersed non-spherical rota-

tionally symmetric self-shrinker in Rn+1, where the profile curve σ has k

self-intersection points counted with multiplicity. Then

λ(Σ) ≤ (k + 1)En.

An immersed closed geodesic in (gA,H) will enclose a number of domains

Ωi. To prove Theorem 17 we first need to generalize Theorem 15 to include

piecewise smooth geodesic curves which arise as boundaries of such domains

Ωi. The rest of the proof is to take care of technical details.

Riedler [Rie23] constructed new examples of embedded self-shrinkers

using the theory of isoparametric foliations of Sn which include Angenent’s

solution [Ang92] in particular. The problem of finding theses self-shrinkers
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is by a reduction to finding geodesics in a Riemannian surface with similar

properties to (H, gA). We show the following theorem [MM23, Theorem 1.1]

which expands on the family of entropy bounds obtained in Paper I.

Theorem 18. Let M = {Mφ}φ∈(0,π/g) be an isoparametric foliation of Sn

of type (g,m,m), and let N be a f -invariant embedded closed self-shrinker

diffeomorphic to S1 ×M , where M is diffeomorphic to a regular fiber of the

foliation M . Then there is a positive number Eg,m such that λ(N) ≤ Eg,m.
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shrinkers with rotational symmetry.
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Entropy Bounds, Compactness and Finiteness

Theorems for Embedded Self-shrinkers with

Rotational Symmetry

John Man Shun Ma, Ali Muhammad, Niels Martin Møller

Abstract

In this work, we study the space of complete embedded rota-

tionally symmetric self-shrinking hypersurfaces in Rn+1. First, using

comparison geometry in the context of metric geometry, we derive

explicit upper bounds for the entropy of all such self-shrinkers. Sec-

ond, as an application we prove a smooth compactness theorem on

the space of all such shrinkers. We also prove that there are only

finitely many such self-shrinkers with an extra reflection symmetry.

1 Introduction

An n-dimensional smooth hypersurface Σn ⊆ Rn+1 is a self-shrinker if

HΣ(x) =
1

2
⟨x, n⃗⟩, for all x ∈ Σ.

Here HΣ is the mean curvature of Σ with respect to the outward unit normal

n⃗. Given a self-shrinker, one obtains by scaling a one parameter family of

hypersurfaces

Σt =
√
−tΣ, t ∈ (−∞, 0)

which solves the mean curvature flow (MCF) equation,

(
∂Σt

∂t

)⊥
= H⃗Σt , (1.1)

The authors were partially supported by DFF Sapere Aude 7027-00110B, by CPH-
GEOTOP-DNRF151 and by CF21-0680 from respectively the Independent Research
Fund Denmark, the Danish National Research Foundation and the Carlsberg Foundation.
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where H⃗Σ = −HΣn⃗ denotes the mean curvature vector of Σ.

Most importantly, self-shrinkers serve as singularity models for the MCF:

under the Type I condition on the singularity, Huisken [Hui90] showed that

a rescaling of a MCF around a singularity converges locally smoothly subse-

quentially to a self-shrinker, and proved that closed shrinkers with positive

mean curvature are round spheres. Later Ilmanen [Ilm94] proved the subse-

quential weak convergence of the tangent flow of any MCF to a self-shrinking

solution.

For n = 1, all compact immersed self-shrinkers in R2 were found in

[AL86], the circle being the only embedded example. For n = 2, Brendle

[Bre16] proved the long-standing conjecture that the round sphere of radius

2 is the only closed embedded genus zero self-shrinker in R3. For higher

genus, embedded examples are constructed in [Ang92], [DN18], [KKM18],

[Ngu14], [Ket16], [Møl11], [BNS21], [KM23]. In general, the space of embed-

ded self-shrinkers is not well-understood, even in the case of e.g. topological

2-tori in R3.

In this paper we direct our attention to the class of complete embedded

self-shrinking hypersurfaces in Rn+1 with a rotational symmetry, for n ≥ 2.

Using a shooting method in ODEs, Angenent constructed in [Ang92] the

first nontrivial self-shrinkers in Rn+1 besides the round sphere, the general-

ized cylinders and the plane. These self-shrinkers constructed in [Ang92] are

rotationally symmetric, embedded, diffeomorphic to Sn−1×S1 and are com-

monly called Angenent doughnuts. They were used in a parabolic maximum

principle argument in [Ang92] to prove that, when n ≥ 2, mean curvature

flows may develop thin neck-pinch singularities.

In [KM14], Kleene and the third named author proved a partial classifi-

cation of all complete embedded rotationally symmetric self-shrinkers in any

dimension (see also [Son14]). Mramor proved in [Mra21] several compact-

ness and finiteness results on the space of all such shrinkers. It is conjectured

that, at least in dimension 2, the Angenent doughnut (which when n = 2 is

topologically a torus) is unique and gives the only embedded self-shrinking

torus in R3. This conjecture is still open, even in the rotationally symmetric

case [DLN18].

The goal of this paper is to study various properties of the space of all

complete embedded rotationally symmetric self-shrinkers in Rn+1.

For any hypersurface Σ in Rn+1, let λ(Σ) be the entropy of Σ defined in

[CM12a], [MM09] (see also Section 2 for the definition).
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Theorem 1.1. For each n ≥ 2, there is a positive number En such that

1 ≤ λ(Σ) ≤ En.

for any complete embedded rotationally symmetric self-shrinker Σn ⊆ Rn+1.

The constants En we obtain in Theorem 1.1 are explicit (see (3.1)).

For example, when n = 2 we have E2 ∼ 2.24759, while the 2-dimensional

Angenent torus constructed in [Ang92] has entropy around 1.85122, as com-

puted numerically in [BK21b],[GN21]. We remark that for n = 1, there is

no upper entropy bound for the family of Abresch-Langer immersed self-

shrinking curves [AL86]. We also remark that if we exclude the stationary

plane, the lower bounds can be improved to λ(Sn) ([CIMW13], [BW16]); if

we consider only self shrinking doughnuts, the lower bound can be improved

to λ(S1) =
√

2π/e ∼ 1.52035, since they all have non-trivial fundamental

groups [HW19].

The proof of Theorem 1.1 will make essential use of the fact that An-

genent’s Riemannian metrics have Gaussian curvatures bounded below by

strictly positive constants (see Section 2 for the definition of the Angenent

metrics).

As an application, our next theorem gives a smooth compactness result

for the space of embedded rotationally symmetric self-shrinkers.

Theorem 1.2. For each n ≥ 2, the space of complete embedded rotationally

symmetric self-shrinkers Σn ⊆ Rn+1 is compact in the C∞
loc-topology.

Under some extra assumptions on the bounds on entropy and genus,

there are already several smooth compactness results for self-shrinkers. Cold-

ing and Minicozzi proved in [CM12b] the smooth compactness of the set of

all complete embedded self-shrinkers Σ2 ⊆ R3 with bounded genus and Eu-

clidean volume growth (see also [DX13, Theorem 1.4]). Later Sun and Wang

proved in [SW20] a similar compactness theorem for embedded self-shrinkers

in R3 with fixed genus and uniformly bounded entropy. In particular, the

n = 2 case of Theorem 1.2 follows from the main theorem in [SW20] and

Theorem 1.1. We remark that there are more compactness results for two

dimensional self-shrinkers in general, even in higher codimension [CM18]. In

the rotationally symmetric situation, Mramor [Mra21] proved several com-

pactness results on the space of compact embedded rotationally symmetric

self-shrinkers in Rn+1 with various assumptions on n, bounds on entropy

and convexity of the profile curves. Theorem 1.2 is a natural generalization

of the results therein.
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Theorem 1.2 has several consequences, which include an index upper

bound (Corollary 4.7), finiteness of the set of possible entropy values (Corol-

lary 4.8) and the following finiteness theorem.

Theorem 1.3. For each n ≥ 2, up to rigid motions there are only finitely

many complete embedded rotationally symmetric self-shrinkers in Rn+1 which

are symmetric with respect to the hyperplane perpendicular to the axis of ro-

tation.

We remark that embeddedness is necessary: there are infinitely many

immersed rotationally symmetric self-shrinkers constructed in [DK17] with

this extra reflection symmetry.

In Section 2, we recall the basic definitions and results needed. In Section

3 we prove Theorem 1.1. In Section 4 we prove Theorem 1.2 and 1.3.

2 Background

2.1 Entropy and Self-shrinkers

We follow the notations in [CM12a]. Let Σ ⊂ Rn+1 be an n-dimensional

properly embedded hypersurface. For each x0 ∈ Rn+1, t0 > 0, define the

F -functional

Fx0,t0(Σ) :=
1

(4πt0)n/2

∫

Σ

e
−|x−x0|2

4t0 dµ,

where dµ is the volume form of Σ. The entropy of Σ (see [MM09]) is defined

as

λ(Σ) = sup
x0,t0

Fx0,t0(Σ).

Using Huisken’s monotonicity formula [Hui90], it was proved in [CM12a]

that if {Σt}t∈I satisfies the MCF equation (1.1), then the entropy t 7→ λ(Σt)

is non-increasing, and is constant if and only if Σt is self-shrinking. We recall

the following lemma proved in [CM12a, Section 7.2].

Proposition 2.1. Let Σ be a properly embedded self-shrinker. Then λ(Σ) =

F0,1(Σ).

A hypersurface Σ is a self-shrinker if and only if Σ is critical with re-

spect to the functional Σ 7→ F0,1(Σ) [CM12a, Proposition 3.6]. The second
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variation of F0,1 at a self-shrinker is calculated in [CM12a, Section 4]: for

any normal variation Σs of Σ given by fn⃗, we have

∂2

∂s2
F0,1(Σs)

∣∣∣∣
s=0

= −
∫

Σ

fLfe−
|x|2
4 dµΣ,

where

L = ∆ + |A|2 − 1

2
⟨x,∇(·)⟩ +

1

2
(2.1)

is the stability operator on Σ. It is also shown that all self-shrinkers in Rn+1

are L-unstable ([CM12a], see also [CM12b, Theorem 0.5]).

2.2 Rotationally symmetric self-shrinkers; Angenent

doughnuts

Let l be any line in Rn+1 passing through the origin. A hypersurface Σ of

Rn+1 is rotationally symmetric with respect to l if RΣ = Σ for all rotations

R ∈ SO(n + 1) fixing l. Assume n ≥ 2 and let Sn−1 ⊂ Rn be the (n − 1)-

dimensional unit sphere. We denote the upper half-plane by

H = {(x, r) ∈ R2 : r > 0}.

Definition 2.2. Let I be any interval in R, or I = S1. Let σ : I → H be a

smooth embedding. Then the embedded hypersurface Σσ in Rn+1 with profile

curve σ(s) = (x(s), r(s)) is given by

Σσ = {(x(s), ωr(s)) : ω ∈ Sn−1, s ∈ I}.

The hypersurface Σσ is rotationally symmetric with respect to ℓ = Re1.

Proposition 2.3. Given a profile curve σ. Then Σσ is a self-shrinker if

and only if σ is a geodesic in (H, gA), where gA is the incomplete Angenent

metric given by

gA = r2(n−1)e−
x2+r2

2 (dx2 + dr2). (2.2)

Direct calculations give

F0,1(Σσ) = (4π)−n/2ωn−1LA(σ),

where ωn−1 is the surface area of Sn−1 and LA(σ) is the length of σ in
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(H, gA). Hence if Σσ is a self-shrinker,

λ(Σσ) = (4π)−n/2ωn−1LA(σ) (2.3)

by Proposition 2.1.

Using a shooting method in ODEs, Angenent constructed in [Ang92]

a compact embedded rotationally symmetric self-shrinker in Rn+1 for each

n ≥ 2. The profile curve of the examples in [Ang92] are convex and symmet-

ric with respect to the r-axis. The self-shrinkers so constructed are called

Angenent doughnuts. More recently, Drugan and Nguyen in [DN18] used a

geometric flow to construct compact embedded rotationally symmetric self-

shrinkers in Rn+1 with the same property of the profile curve for all n ≥ 2.

It is not known if both constructions in [Ang92] and [DN18] resulted in the

same self-shrinkers. On the other hand, Kleene and the third named author

proved the following partial classification, which we will be making use of

in the present paper:

Theorem 2.4. [KM14, Theorem 2] Let Σ be a complete embedded rota-

tionally symmetric self-shrinker in Rn+1. Then up to rigid motion, Σ is

either

(i) the hyperplane P = {0} × Rn,

(ii) the round sphere S of radius
√

2n,

(iii) the round cylinder C = R× Sn−1 with radius
√

2(n− 1), or

(iv) diffeomorphic to S1 × Sn−1.

Note that in the last case of Theorem 2.4, Σ = Σσ for some simple closed

geodesic σ in (H, gA). This theorem is essential to the proof of Theorem 1.2.

As a first simple but useful consequence, note that if a complete rotationally

symmetric self-shrinker is embedded, it is automatically properly embedded.

3 Entropy bound for embedded rotationally

symmetric self-shrinkers

In this section we prove Theorem 1.1. By a direct calculation using (2.2),

the Gauss curvature of the Angenent metric gA is

K =
r2 + (n− 1)

r2n
e

x2+r2

2 .
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Note that K is strictly positive. For each n, let κn be the (positive) minimum

of K. By simple calculus, one can find

κn =
yn + (n− 1)

ynn
e

yn
2 , where yn =

n− 1 +
√

9(n− 1)2 + 8(n− 1)

2
.

We will prove the following more general result.

Theorem 3.1. Let (M, g) be a 2-dimensional Riemannian manifold so that

M is homeomorphic to R2 and Kg ≥ κg > 0, where Kg is the Gauss cur-

vature of (M, g). Then every simple closed geodesic in (M, g) has length at

most ≤ 2π/
√
κg.

Theorem 1.1 follows directly from Theorem 3.1 and (2.3). Indeed, the

constants En in Theorem 1.1 are given by

En =
2πωn−1

(4π)n/2
√
κn

. (3.1)

In the Appendix we show that 2 < En ≤ E2 for all n ≥ 2 and

lim
n→∞

En =

√
4π

3
∼ 2.04665.

When M is homeomorphic to S2, Theorem 3.1 is a classical theorem

in comparison geometry, where a proof can be found in [Kli95, Theorem

3.4.10]; in our situation, (M, g) is non-compact and incomplete, and we are

not able to find an exact reference in this generality. As a result, we provide

a proof of Theorem 3.1 using the globalization theorem in metric geometry

[BBI01].

Let σ be a simple closed geodesic in (M, g). Since M is homeomor-

phic to R2, by the Jordan curve theorem σ divides M into two connected

components, where exactly one of them has compact closure.

Definition 3.2. Given a simple closed geodesic σ in (M, g), let Ω be the

compact domain in (M, g) with ∂Ω = Im(σ).

Lemma 3.3. Let p, q ∈ Ω. Then there is a simple geodesic γ in Ω joining

p, q, which is shortest among all piecewise C1 curves in Ω joining p and q.

Moreover,

(i) if one of p, q is in the interior of Ω, γ also lies in the interior of Ω

(except possibly at the other end point),
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(ii) if both p, q are in Im(σ) = ∂Ω, then either γ lies completely in ∂Ω, or

the interior of γ lies inside the interior of Ω.

Proof. Let p, q ∈ Ω. Since the case p = q is trivial, we assume p ̸= q. Let

dΩ(p, q) = inf
γ
L(γ),

where L(γ) =
∫ √

g(γ̇, γ̇) is the length of γ and the infimum is taken among

all piecewise C1 curves γ : [0, 1] → Ω so that γ(0) = p and γ(1) = q. It is

easy to check that dΩ is a metric on Ω. In particular, dΩ(p, q) > 0.

Let γj : [0, 1] → Ω be a sequence of piecewise C1 curves, parametrized

proportional to arc length, joining p, q so that L(γj) → dΩ(p, q) as j →
∞. Since Ω is compact, by passing to a subsequence if necessary, we may

assume that (γj) converges uniformly in dΩ to a Lipschitz continuous curve

γ : [0, 1] → Ω as j → ∞. If γ(t0) = q for some t0 < 1, we replace γ by

γ|[0,t0]. Hence we can assume γ−1({q}) = {1}.

First we prove (i). Assume that p ∈ Ω \ ∂Ω. We claim that

γ(t) /∈ ∂Ω, for all t < 1. (3.2)

We argue by contradiction: if not, let t0 be the infimum of the set γ−1(∂Ω \
{q}). Since p /∈ ∂Ω, we have t0 > 0 and γ([0, t0)) lies in the interior of

Ω. This together with the definition of γ implies that γ|[0,t0] is a geodesic.

Let U be a small geodesically convex neighborhood in (M, g) centered at

γ(t0) not containing q. Then there is ϵ > 0 such that γ(t) lies in U for all

t ∈ [t0 − ϵ, t0 + ϵ] and γ(t0 ± ϵ) ̸= γ(t0). Let σ0 be the shortest geodesic

in U connecting γ(t0 ± ϵ). Since ∂Ω ∩ U is a portion of the geodesic σ and

U is geodesically convex, σ0 does not intersect with ∂Ω ∩ U at more than

one points. Hence the image of σ0 except possibly at γ(t0 + ϵ) must lie

in the connected component of U \ ∂Ω containing γ(t0 − ϵ). As a result,

the image of σ0 also lies in Ω ∩ U . Since γ is length minimizing, up to

reparametrization we have γ|[t0−ϵ,t0+ϵ] = σ0 and thus γ|[t0−ϵ,t0+ϵ] is a smooth

geodesic. Since γ, σ are tangential at γ(t0) (recall that ∂Ω = Imσ) and

both are geodesics, we have γ = σ locally around γ(t0). This contradicts

the choice of t0 and thus (3.2) is shown. This immediately implies (i).

Next we prove (ii). Assume that p, q ∈ ∂Ω. Let (pk) be a sequence of

points in the interior of Ω converging to p. For each k ∈ N, let γk : [0, 1] → Ω

be a shortest geodesic in Ω joining pk to q constructed in (i). By the smooth

dependence of solutions to the geodesic equation and picking a subsequence

if necessary, (γk) converges smoothly to a geodesic γ : [0, 1] → Ω joining
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p, q. Using the triangle inequality

L(γk) = dΩ(pk, q) ≤ dΩ(pk, p) + dΩ(p, q)

and taking k → ∞, we have L(γ) ≤ dΩ(p, q). Thus γ is a length minimizing

geodesic in Ω. Then either γ lies completely inside the interior of Ω away

from the endpoints, or γ touches ∂Ω at some point in ∂Ω \ {p, q}, which

implies that γ lies completely in ∂Ω since both of them are geodesics. This

finishes the proof of (ii).

We will need some definitions and notations from metric geometry. We

use the reference [BBI01]. For the convenience of the reader, we summarize

the basic facts that we shall need to prove Theorem 3.1.

A length space (X, d) is a metric space such that the metric d can be

obtained as a distance function associated to a length structure (see [BBI01]

for a definition). The metric d is called an intrinsic metric in this case. If

every pair of points p, q in X can be joined by a (possibly non-unique)

shortest path, then the metric d is called strictly intrinsic. We recall that

a shortest path is a curve γ where the length L(γ) is given by the distance

between the endpoints of γ. A length space whose metric is strictly intrinsic

is called a complete length space.

From Lemma 3.3 we conclude

Proposition 3.4. (Ω, dΩ) is a complete length space.

A triangle ∆pqr in (X, d) is a set of points {p, q, r} together with three

shortest paths [pq], [qr], [rp]. The length of a triangle is the sum of the

lengths of its sides. For each κ > 0 and for each triangle ∆pqr in X with

length < 2π/
√
κ, we can associate a unique (up to an isometry) compar-

ison geodesic triangle ∆p̄q̄r̄ in S2
1/

√
κ

with vertices {p̄, q̄, r̄} such that the

corresponding sides of the geodesic triangle ∆p̄q̄r̄ have the same lengths

as the sides of the triangle ∆pqr. Here S2
1/

√
κ

is the 2-sphere with radius

1/
√
κ. For a triangle ∆pqr in X, we denote the angles by ∠p,∠q,∠r, and

if confusion arises we will e.g write ∠pqr for the angle ∠q. We shall not

need the definition of an angle between two shortest paths in a length space,

but one can show that on a Riemannian manifold M , if c1 and c2 are two

geodesics starting at p = c1(0) = c2(0), then the angle ∠p ∈ [0, π] between

the shortest paths c1 and c2 is equal to the usual Riemannian angle between

c1 and c2. See Corollary 1A.7 in [BH99] for a proof. For the comparison

triangle ∆p̄q̄r̄ in S2
1/

√
κ

we denote the angles by ∠p̄,∠q̄,∠r̄.

There are several definitions of a space of curvature ≥ κ. We shall use

the following angle comparison definition.
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Definition 3.5. Let X be a complete length space, and let κ > 0. We

say that X is a space of curvature ≥ κ if for any point x ∈ X there is a

neighborhood Ux of x such that for all triangles ∆pqr ⊂ Ux the corresponding

angles satisfy the inequalities

∠p ≥ ∠p̄, ∠q ≥ ∠q̄, ∠r ≥ ∠r̄, (3.3)

for a comparison triangle ∆p̄q̄r̄ in S2
1/

√
κ
. Furthermore, for any two shortest

paths [ab] and [cd] in X where c is an interior point on [ab], the following

holds.

∠acd + ∠bcd = π

Remark 3.1. The last statement in Definition 3.5 above can be summarized

as “the sum of adjacent angles equals π”. It is needed to prove the equiv-

alence to other definitions of spaces of curvature ≥ κ. See [BBI01, Section

4.3].

Proposition 3.6. The complete length space (Ω, dΩ) has curvature ≥ κg,

where κg is the lower bound of the Gaussian curvature of (M, g) in Theorem

3.1.

Proof. Let x ∈ Ω and let Vx be a geodesically convex neighborhood in

(M, g) centered at x. When x is in the interior of Ω, we choose Vx ⊂ Ω. Let

Ux = Ω ∩ Vx. For any p, q ∈ Ux, let γ be the unique shortest geodesic in

Vx joining p and q. Note that γ must lie inside Ux: this holds when x is in

the interior of Ω, since Ux = Vx. When x ∈ ∂Ω, if γ is not in Ux, there are

t1 < t2 such that γ|(t1,t2) lies in Vx \Ux and γ(t1), γ(t2) are in ∂Ω∩Vx. Since

∂Ω ∩ Vx is also a geodesic passing through γ(t1), γ(t2), this contradicts the

fact that Vx is a geodesically convex neighborhood.

In particular, triangles of (Ω, dΩ) in Ux are also triangles of (M, g) in

Vx. Together with the assumption that (M, g) has Gaussian curvature K ≥
κg > 0, we can argue as in the case for Riemannian manifolds without

boundary to show that (Ω, dΩ) has curvature ≥ κg; see Theorem 6.5.6. in

[BBI01].

We will denote the inequalities in (3.3) by the angle comparison con-

dition. If X is a complete length space, then Toponogov’s globalization

theorem [BBI01, Theorem 10.3.1] globalizes this local curvature condition

to the entirety of X, not only in a neighborhood Ux of each point x:

Theorem 3.7 (Globalization Theorem). Let X be a complete length space

of curvature ≥ κ for some κ > 0. Then the angle comparison condition
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(3.3) is satisfied for any triangle ∆pqr in X for which there is a unique (up

to isometry) comparison triangle ∆p̄q̄r̄ in S2
1/

√
κ
.

Let us remind that when κ > 0, a comparison triangle only exists if the

length of ∆pqr does not exceed 2π/
√
κ. As mentioned earlier, we can asso-

ciate a unique comparison triangle when the length of ∆pqr is strictly less

than 2π/
√
κ. If the length is equal to 2π/

√
κ, then we have two situations:

• All the sides have length strictly less than π/
√
κ. Then a comparison

triangle is a unique great circle, i.e. all of its angles are equal to π.

• One of the sides has length equal to π/
√
κ, say [pq]. The sum of

lengths of the two other sides [qr] and [rp] is then equal to π/
√
κ. In

this case there does not exist a unique comparison triangle, but we can

fix the comparison triangle ∆p̄q̄r̄ where the side [p̄q̄] passes through

the point r̄.

Thus, with this convention, the conclusion of Theorem 3.7 holds for every

triangle ∆pqr in X with length ≤ 2π/
√
κ. In fact, as a corollary of theorem

3.7 one can show that any triangle in X has length no greater than 2π/
√
κ,

where X is a space of curvature ≥ κ for some κ > 0. See [BBI01, Corollary

10.4.2.]. We shall use this fact in the proof of Theorem 3.1 below.

Before proving Theorem 3.1, we recall the following elementary lemma

in spherical geometry. We recall that a convex polygon in the sphere is a

polygon so that the interior angle at each vertex is less than or equal to π.

Lemma 3.8. Let P be a convex n-gon in S2
1/

√
κ
, and denote the length of

P by |P |. Then |P | ≤ 2π/
√
κ.

Proof of Theorem 3.1. The idea of this proof is similar to the proof pre-

sented in [Kli95, Theorem 3.4.10]. Let Ω be the compact domain bounded by

the geodesic σ : [0, 1] → M as defined in Definition 3.2, so that σ(0) = σ(1).

By Proposition 3.4 and Proposition 3.6, (Ω, dΩ) is a complete length space

with curvature ≥ κg.

Let L0 := L(σ) be the length of σ. Take numbers t1, t2, t3, t4 ∈ I, where

t1 = 0, t4 = 1, such that each of the subarcs σ|[t1,t2], σ|[t2,t3] and σ|[t3,t4] has

length L0/3. Let ∆σ(t1)σ(t2)σ(t3) be a triangle in (Ω, dΩ). By Proposition

3.4 each of the sides of this triangle either lies completely in ∂Ω or has

interior contained in the interior of Ω. Using [BBI01, Corollary 10.4.2.]

we deduce that the length of this triangle is not greater than 2π/
√
κg. If

the sides of the triangle ∆σ(t1)σ(t2)σ(t3) coincide with the images of the

subarcs σ|[t1,t2], σ|[t2,t3] and σ|[t3,t4], then we are done.

If not, then build new triangles
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• ∆σ(t1)σ(t1,2)σ(t2),

• ∆σ(t2)σ(t2,3)σ(t3) and

• ∆σ(t3)σ(t3,1)σ(t1),

where ti,k ∈ (ti, tk) are chosen such that σ(ti,k) define midpoints of the

corresponding subarcs. To each one of these triangles, we associate a unique

comparison triangle in S2
1/

√
κg

. We put the triangles together along their

common sides and obtain a comparison 6-gon O6 in S2
1/

√
κg

. From Theorem

3.7 we know that the angles in the comparison triangles are not greater than

the corresponding angles in Ω. This implies that the angles of the vertices

in O6 are not bigger than π. Hence O6 is convex. By Lemma 3.8, the length

of O6 satisfies

|O6| ≤
2π
√
κg

If the sides of the constructed 6-gon in Ω coincide with the arcs of σ, then

we are done.

If not, then we continue to construct more triangles as above, and build

the corresponding comparison n-gons On for increasingly large n ∈ N. By

Lemma 3.8 again,

|On| ≤
2π
√
κg

For n large enough, the arcs of σ will be the unique shortest paths between

the vertices of the constructed n-gon on Ω. This follows from the fact that

shortest paths in (Ω, dΩ) are geodesics in (M, g), and that each side of the

n-gon will be contained in a geodesically convex neighborhood in M . In

such a neighborhood, every two points are connected by a unique shortest

path. This implies the desired bound since for n large enough we have

L(σ) = |On| ≤
2π
√
κg

.
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4 Compactness and Finiteness of Embedded

Self-Shrinkers With Rotational Symmetry

In this section we prove Theorem 1.2, 1.3 and some other related results.

We start with the following well known lemma.

Lemma 4.1. Let Σ1, Σ2 be two properly embedded self-shrinkers in Rn+1

such that one of them is compact. Then Σ1 and Σ2 must intersect.

When both self-shrinkers are compact, this is proved in [WW09, Theo-

rem 7.4]. Recently, it was proved in [IPR21] that any two properly embed-

ded self-shrinkers that are sufficiently separated at infinity must intersect.

See also [CCMS20, Corollary C.4] for the statement for F -stationary vari-

folds.

Next we restrict attention to complete embedded rotationally symmetric

self-shrinkers in Rn+1. By Theorem 2.4, there are only two types of non-

compact examples - cylinders and hyperplanes through the origin, and all

such pairs also intersect. Thus we have

Lemma 4.2. Any two complete embedded rotationally symmetric self-shrinkers

in Rn+1 intersect.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. Let (Σk) be a sequence of complete embedded rota-

tionally symmetric self-shrinkers in Rn+1 each with axis of rotation ℓk. After

taking a subsequence, a limit axis exists, to which each Σk can be rotated,

thus it is enough to consider the case where all axes of rotation are identical.

By a further rotation, we assume the limit axis is ℓ = Re1 ⊆ Rn+1.

By Theorem 2.4, it suffices to assume that Σk is a self-shrinking dough-

nut for each k. Thus Σk = Σσk
, where

σk : [−dk, dk] → H

is a unit speed geodesic in (H, gA) so that L(σk) = 2dk and σk(−dk) =

σk(dk). Since all self-shrinkers have entropy larger than or equal to λ(Rn) =

1, we have dk ≥ d > 0 for all k by (2.3) for some dimensional constant d.

Let σa be the profile curve of the Angenent doughnut constructed in

[Ang92]. By Lemma 4.2, each σk intersects σa. Reparametrizing each σk if

necessary, we assume that σk(0) ∈ Imσa for each k. Taking a subsequence

if necessary, since Im σa is compact, we have

σk(0) → p, σ′
k(0) → v (4.1)
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as k → ∞. Note that ∥v∥ = 1 since each σk is of unit speed. Let σ∞ : I → H
be the maximally defined geodesic in (H, gA) with σ∞(0) = p, σ′

∞(0) = v,

where I is an open interval.

For any R > 1, let

KR = [−R,R] × [R−1, R] ⊂ H.

Then there is R0 > 1 so that Im(σa) ⊂ KR for all R ≥ R0. For each k ∈ N
and R ≥ R0, let Ik,R be the connected component of σ−1

k (KR) in [ − dk, dk]

containing 0. Since each σk is a geodesic in (H, gA), by (4.1) and the smooth

dependence on initial data of the ODE within each KR, (σk|Ik,R) converges

smoothly to σ∞|IR in KR, where IR is the connected component of σ−1
∞ (KR)

containing 0.

Since each σk|Ik,R is embedded and (σk|Ik,R) converges smoothly to σ∞|IR ,

it is clear that σ∞ does not admit transverse self-intersection. Thus if

σ∞(s) = σ∞(t) for some s ̸= t, then σ′
∞(s) = ±σ′

∞(t) and this implies

that σ∞ is periodic. In this case, σ∞ is a simple closed geodesic in (H, gA)

and (σk) converges smoothly to σ∞. Thus we are done.

From now on we may therefore assume that σ∞ is not a closed geodesic.

Since (σk|Ik,R) converges smoothly to σ∞ in each KR and ∪R≥R0KR = H, σ∞
is properly immersed. Since σ∞ is injective, Σσ∞ is a complete embedded

rotationally symmetric self-shrinker in Rn+1. By Theorem 2.4, Σσ∞ is either

the plane P , the sphere S or the cylinder C.

First we assume that Σσ∞ is the sphere S and we will derive a contra-

diction. After that, we consider the hyperplane P and the cylinder C and

point out the necessary changes for the contradiction argument.

We split the argument into several lemmas.

Lemma 4.3. There is R1 ≥ R0 so that the following holds: for all R ≥ R1,

there is k1 = k1(R) so that for all k ≥ k1, Imσk ∩KR contains a connected

component different from σk(Ik,R) which intersects KR1.

Proof of Lemma 4.3. First let s ∈ (0, 1) be small so that the scaling of the

Angenent doughnut sΣσa lies completely inside the sphere Σσ∞ = S: that

is, x2 + r2 < 2n for all (x, r) ∈ s Imσa. Let δ = d0(sΣσa ,Σσ∞ ∪ ℓ), where

ℓ ⊂ Rn+1 is the axis of rotation and d0 is the Euclidean distance. Note

that δ > 0. Let R1 = max{R0, 2δ
−1, 3

√
2n}. For any R > R1, since σk|Ik,R

converges to σ∞|IR in KR uniformly, there is k1(R) > 0 so that

d0(σk(Ik,R), σ∞(IR)) <
δ

2
(4.2)
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for all k ≥ k1. By the choice of δ, we have

σk(Ik,R) ∩ s(Imσa) = ∅, for all k ≥ k1.

Now we fix k ≥ k1 and show that Im σk ∩KR has more than one com-

ponent which intersects KR1 . Assume the contrary, then Imσk ∩ KR1 =

σk(Ik,R) ∩KR1 . Let

Kδ
R1

= KR1 \ {(x, r) ∈ H |
√
x2 + r2 <

√
2n + δ}.

Note that Kδ
R1

is connected. By (4.2), Kδ
R1

is disjoint from Imσk. Since

σk is a simple closed curve, by the Jordan curve theorem, its image divides

H into two connected components, where exactly one of them is compact.

There are two cases:

(i) Kδ
R1

lies in the compact component (see Figure 1). Let

σ̃a := sσa + (2
√

2n, 0)

be the horizontal translation of sσa by (2
√

2n, 0). Since R1 > 3
√

2n

and R−1
1 < δ, σ̃a lies completely inside Kδ

R1
and thus in the com-

pact component (see Figure 1). The translation is horizontal, hence

the MCF {Σt
σ̃a
} starting at Σσ̃a is also self-shrinking, centered at

(2
√

2n, 0). Since s < 1, it becomes extinct before the MCF {Σt
σk
}

starting at Σσk
does. This implies that Σt

σ̃a
intersects Σt

σk
for some

t > 0, which contradicts the maximum principle since Σσ̃a and Σσk

are disjoint.

(ii) Kδ
R1

lies in the non-compact component (see Figure 2): let

Hδ
R1

= {(x, r) : KR1 |
√
x2 + r2 ≤

√
2n− δ}.

Since Hδ
R1

is a subset of KR1 and is disjoint from σk(Ik,R), Hδ
R1

also

lies in a component of H \ Im(σk). Since Kδ
R1

, Hδ
R1

are separated by

σk(Ik,R), then Hδ
R1

and Kδ
R1

lie in different components of H \ Imσk.

Thus Hδ
R1

is in the compact component bounded by Imσk. By the

choice of R1 and since R > R1, s Imσa lies in the compact component

(see Figure 2). By considering the MCF starting at sΣσa as in (i), we

again arrive at a contradiction.

Hence both cases are impossible, and we conclude that Imσk∩KR must

contain more than one component which intersects KR1 for all k ≥ k1. This

finishes the proof of Lemma 4.3.
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x

r

√
2n

σ̃a

Kδ
R1

Hδ
R1

R1−R1 −
√
2n

σk

Figure 1: σ̃a is enclosed by σk.

x

r

√
2n

sσa

Kδ
R1

Hδ
R1

R1−R1 −
√
2n

σk

Figure 2: sσa is enclosed by σk.

Let R1 < R2 < . . . < Rk < . . . be any sequence such that Rk ↗ +∞ as

k → ∞. Using Lemma 4.3 and picking a subsequence of (σk)∞k=1 if necessary,

we may assume that Imσk ∩ KRk
has more than one component which

intersects KR1 . For each k, let Nk ≥ 2 be the number of such connected

components. Since there is a uniform positive lower bound on dA(KR1 ,H \
KRk

) for all k ≥ 2, Nk is uniformly bounded by Theorem 1.1 (see also (2.3)).

Taking a further subsequence if necessary, we may assume that N := Nk is

constant.

Thus for each k, write Imσk ∩KRk
as the disjoint union

Imσk ∩KRk
= Imσ1

k ∪ · · · ∪ ImσN
k ∪ σC

k , (4.3)

where each σi
k, i = 1, · · · , N is a simple geodesic arc parametrizing a con-

nected component of Im σk ∩KRk
which intersects KR1 and σC

k is the union

of any connected components of Imσk ∩KRk
which do not intersect KR1 .

For each k ∈ N, let ik ∈ {1, · · · , N} be arbitrary. Up to reparametriza-
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tion, there are ck > 0 such that

σik
k : [−ck, ck] → H

is a unit speed geodesic. Since the image of σik
k intersects KR1 , one has

2ck ≥ dA(KR1 ,H \KR2) > 0,

and there are c̄k ∈ [−ck, ck] such that σik
k (c̄k) ∈ KR1 . Taking a further

subsequence if necessary, by compactness of KR1 , we may assume that

σik
k (c̄k) → q, (σik

k )′(c̄k) → w

as k → ∞. Let σ̃∞ : J → H be the unique complete maximal geodesic with

σ̃∞(0) = q and σ̃′
∞(0) = w.

As in the construction of σ∞, (σik
k ) converges smoothly to σ̃∞ in KR for

all R > R1 and σ̃∞ is an embedded geodesic in (H, gA).

Lemma 4.4. Up to reparametrization, σ̃∞ = σ∞.

Proof of Lemma 4.4. We may assume that σik
k ̸= σk|Ik,Rk

for all large k,

since otherwise we have σ̃∞ = σ∞ up to reparametrization. This implies

that Im(σk|Ik,Rk
) and Imσik

k have empty intersection since both of them are

connected components of Imσk∩KRk
. Assume the contrary, that σ̃∞ ̸= σ∞.

By Lemma 4.2 and that σ̃∞, σ∞ are both complete geodesics, they must

intersect transversally. Assume that the intersection is in KR for some

R > R1. Since σk|Ik,R converges locally smoothly to σ∞ in KR, σk(Ik,R)

also intersects σ̃∞ for k large enough. On the other hand, σik
k converges

smoothly to σ̃∞, thus σik
k also intersects σk|Ik,R in KR for large k. This

contradicts the assumption on σik
k and hence the lemma is proved.

Thus the union of subarcs Im σ1
k∪· · ·∪ImσN

k of Imσk converge as k → ∞
to σ∞ locally smoothly with multiplicity N . While σC

k defined in (4.3) might

not be empty, we can show that (by passing to a subsequence if necessary)

it also stays close to σ∞.

Lemma 4.5. By passing to a subsequence of (σk) if necessary,

|
√
x2 + r2 −

√
2n| < R−1

k (4.4)

for all (x, r) ∈ Im(σk) ∩KRk
and for all k ∈ N.

Proof of Lemma 4.5. Let k ∈ N be fixed. First we show that there is nk so

that (4.4) holds for all (x, r) ∈ Im(σi) ∩KRk
and for all i ≥ nk. To see this
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we argue by contradiction: if not, then there is a subsequence of (σkj) of

(σk) and (xj, rj) ∈ Im(σkj) ∩KRk
so that

|
√

x2
j + r2j −

√
2n| ≥ R−1

k

for all j. Since KRk
is compact, we may assume that (xj, rj) → (x∞, r∞) ∈

KRk
, and thus there is a sequence (σ̃j) of subarcs of (σkj) which converges

locally smoothly to an embedded complete geodesic in (H, gA), which is

different from σ∞ since (x∞, r∞) /∈ Im(σ∞). Arguing similarly as in the

proof of Lemma 4.4, this is impossible. Lastly, the lemma is proved by

passing to a subsequence of (σk).

A priori, as k → ∞ some portions of Imσk might escape to infinity (as

x2 + r2 → ∞) or collapse to the rotational axis r = 0. The next lemma

shows that this is not the case.

Lemma 4.6. The sequence of self-shrinkers (Σσk
)∞k=1 converges in Haus-

dorff distance to the round sphere Σσ∞ as k → ∞.

Proof of Lemma 4.6. We use a maximum principle argument similar to that

in the proof of Lemma 4.3. Let ϵ > 0. Let t0 ∈ (−1, 0) be given by

√
−t0 =

√
2n + 0.5ϵ√

2n + ϵ
. (4.5)

Let kϵ ∈ N be large such that R−1
kϵ

< ϵ/2 and the following holds: there are

two horizontal translations and scalings of the Angenent torus Σā± so that

• the image of ā+ and ā− lie in KRkϵ
,

•
√

2n + R−1
kϵ

<
√
x2 + r2 <

√
2n + ϵ for all (x, r) ∈ Im ā+,

•
√

2n− ϵ <
√
x2 + r2 <

√
2n−R−1

kϵ
for all (x, r) ∈ Im ā−, and

• the MCF starting at Σā± at t = −1 shrinks to (
√

2n± 0.5ϵ, 0) at time

te < t0.

By Lemma 4.5, ā± do not intersect with σk when k ≥ kϵ.

Now we claim that

√
2n− ϵ <

√
x2 + r2 <

√
2n + ϵ, for all (x, r) ∈ Imσk, k ≥ kϵ. (4.6)

By Lemma 4.5 and that R−1
kϵ

< ϵ, it suffices to consider points outside KRkϵ
.

Fix any k ≥ kϵ. If there is (x, r) ∈ Im(σk) so that
√
x2 + r2 ≥

√
2n + ϵ,
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√
2n+R−1

kϵ

√
2n−R−1

kϵ

√
2n− ϵ

√
2n+ ϵ

x
r = R−1

kϵ

a+a−

Figure 3: Choices of ā±.

then since each σk is connected, there is a subarc β of σk connecting (x, r)

and Im(σk) ∩KRkϵ
passing through the region

[
√

2n,
√

2n + ϵ] × (0, Rkϵ ].

But this is impossible: by (4.5), for all −1 < t < t0,
√−tβ contains a point

{
√

2n+0.5ϵ}×(0, Rkϵ). Hence the MCF starting at Σā+ (at time −1) would

intersect with
√−tβ for some t ∈ (−1, te) and this contradicts the parabolic

maximum principle, since Σσk
and Σā+ are disjoint. Using Σā− and arguing

similarly, we conclude that
√
x2 + r2 ≤

√
2n− ϵ is also impossible.

a+ a−

√
2n+ ϵ

√
2n− ϵ

σk
σk

Figure 4: A subarc β of σk passing through {x =
√

2n + ϵ} (left) or {x =√
2n− ϵ} (right).

Thus (4.6) is shown and this implies d0(p,Σσ∞) < ϵ for all k ≥ kϵ and

p ∈ Σσk
. On the other hand, since (σk|Ik,Rk

) converges smoothly to σ∞ in

K2/ϵ, by choosing a larger kϵ if necessary, we may assume that d0(p,Σσk
) <

ϵ/2 for all p = (x, rω) ∈ Σσ∞ with (x, r) ∈ K2/ϵ, k ≥ kϵ and ω ∈ Sn−1.

Thus d0(p,Σσk
) < ϵ for all p ∈ Σσ∞ and k ≥ kϵ. By the definition of the
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Hausdorff distance dH,

dH(Σσ∞ ,Σσk
) = max{ sup

p∈Σσk

d0(p,Σσ∞), sup
p∈Σσ∞

d0(p,Σσk
)} < ϵ

for all k ≥ kϵ. Since ϵ > 0 is arbitrary, (Σσk
)∞k=1 converges in Hausdorff

distance to the round sphere Σσ∞ and this finishes the proof of Lemma

4.6.

To summarize, we have shown that the sequence of self-shrinkers (Σσk
)

converges in Hausdorff distance to the sphere Σσ∞ . Moreover, for all ϵ > 0,

the set

Σσk
\ (B(

√
2n,0)(ϵ) ∪ (B(−

√
2n,0)(ϵ))

decomposes into N disjoint graphs Σ1
k, · · ·ΣN

k over Σσ∞ for large enough k,

where N ≥ 2, and for each i = 1, · · · , N , the convergence

Σi
k → Σσ∞ \ (B(

√
2n,0)(ϵ) ∪ (B(−

√
2n,0)(ϵ)), as k → ∞,

is smooth graphical convergence.

Thus we can apply [CM12b, Proposition 3.2] to conclude that Σσ∞ is

L-stable. Although [CM12b, Proposition 3.2] is stated only for n = 2, the

same proof, which we now briefly describe, works for all n ≥ 2 with only

notational changes.

For each fixed k, since Σ1
k, · · · ,ΣN

k are disjoint, we can order these N

sheets by height (with respect to the outward unit normal of Σσ∞ = S). Let

the top and the bottom layers be represented respectively by two functions

w+
k , w−

k defined on Ωk ⊂ S \{(±
√

2n, 0)} so that w+
k > w−

k , Ωk ⊂ Ωk+1 and

∪kΩk = S \ {(±
√

2n, 0)}. Fixing x0 ∈ S, then the sequence of functions

uk =
w+

k − w−
k

w+
k (x0) − w−

k (x0)

converges locally smoothly on S\{(±
√

2n, 0)} to a smooth function u which

satisfies Lu = 0, where L is the stability operator (2.1). Using the Harnack

inequality for linear second order elliptic equations and a maximum princi-

ple for minimal hypersurfaces (this is where Lemma 4.6 is used), one can

bound u uniformly. Hence u extends across {(±
√

2n, 0)} by the removable

singularities lemma for L-harmonic functions [Ser64]. Thus we have con-

structed a positive function on S which satisfies Lu = 0 and this is sufficient

to conclude that S is L-stable (see [CM12b] for more details and [FCS80]

for a general statement). Since all properly embedded self-shrinkers in Rn+1
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are L-unstable ([CM12a], see also [CM12b, Theorem 0.5]), we have arrived

at a contradiction and hence Σσ∞ is not the sphere S.

Next we argue by contradiction that Σσ∞ is also not the plane P nor

the cylinder C. The arguments are similar to those for S, thus we just point

out the differences.

If Σσ∞ is the plane P , then σk|Ik,R converges smoothly to the r-axis

in KR. Hence there is k1 = k1(R) ∈ N so that
√
x2 + r2 < R−1 for all

(r, x) ∈ Imσk ∩KR and k ≥ k1. For any R ≥ R1, let

K±
R := {(x, r) ∈ KR : ±x ≥ R−1}

One can argue that either one of K±
R1

must intersect the image of σk when

k ≥ k1: if not, then either one of K±
R1

would lie in the compact region

bounded by σk. This would lead to a contradiction by putting in suitably

scaled and horizontally translated Angenent doughnuts in K±
R1

.

Similar to the previous argument for the sphere S, there is N ≥ 2 so

that for all k ∈ N, Imσk ∩ KRk
contains N connected components which

intersect KR1 , and Im σk∩KRk
converges smoothly graphically to the r-axis

with multiplicity N .

As in the proof of Lemma 4.6, for all R > R1, one can show that Imσk∩
KR converges (locally) in Hausdorff distance to Imσ∞ ∩ KR as k → ∞
(unlike the case of the sphere, there might be mass loss as R → ∞). This

is still sufficient for us to apply [CM12b, Proposition 3.2] to conclude that

the plane is L-stable, which is impossible [CM12a].

For the remaining case for the cylinder C, the curves σk|Ik,R converge

smoothly to {r =
√

2(n− 1)} in KR. Hence there is k1 = k1(R) ∈ N such

that |r −
√

2(n− 1)| < R−1 for all (x, r) ∈ Imσk ∩ KR and k ≥ k1. By

fitting Angenent doughnuts inside

K>
R1

= {(x, r) ∈ KR1 : r >
√

2(n− 1) + R−1},
K<

R1
= {(x, r) ∈ KR1 : r <

√
2(n− 1) −R−1}

respectively (in K>
R1

we insert a large Angenent doughnut), there is N ≥ 2

so that Imσk ∩ KRk
converges smoothly graphically to {r =

√
2(n− 1)}

with multiplicity N . Then again we apply [CM12b, Proposition 3.2].

To sum up, Σσ∞ is neither the plane P nor the cylinder C nor the sphere

S. By the classification Theorem 2.4, σ∞ is an embedded closed geodesic in

(H, gA) and the convergence Σσk
→ Σσ∞ is smooth. This finishes the proof

of Theorem 1.2.
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Remark 4.1. In the proof of Theorem 1.2, we argued by contradiction using

L-stability that Σσ∞ is neither the sphere S, nor the cylinder C nor the plane

P . In this remark we give an alternative argument ruling out S and C by

instead using the entropy bound En ≤ E2 (see Lemma 5.1). By Lemma 4.3

and Lemma 4.4, for each k large, one can find N disjoint subarcs σ1
k · · · , σN

k

of σk so that for each i = 1, · · · , N , (σi
k) converges locally smoothly to σ∞

as k → ∞. In particular,

lim
k→∞

LA(σk) ≥ NLA(σ∞).

By (2.3), we obtain

E2 ≥ En ≥ lim
k→∞

λ(Σσk
) ≥ Nλ(Σσ∞).

If Σσ∞ = S or C, then

λ(Σ∞) >
√

2

by [Sto94, A.4 Lemma]. Thus

N
√

2 ≤ E2,

which is impossible as N ≥ 2 and E2 ∼ 2.2476 < 2
√

2. Since En > 2 and

λ(P) = 1, this argument is however not sufficient to show Σσ∞ ̸= P .

Next we prove several consequences of Theorem 1.2.

First, a simple contradiction argument using Theorem 1.2 shows that

the profile curve of every embedded rotationally symmetric self-shrinking

doughnut must lie in a fixed compact subset in H. Together with Theorem

1.1 and [BK21a, Theorem 1.1], we obtain an upper bound on the index.

(for the definition of index of a self-shrinker, see [BK21a, Definition 2.18].)

Corollary 4.7. There is I ∈ N so that for any complete embedded rotation-

ally symmetric self-shrinker Σ in R3, one has

i(Σ) ≤ I,

where i(Σ) is the index of Σ.

Unlike our Theorem 1.1, the bound I in the above corollary is not ex-

plicit.

The next corollary and Theorem 1.3 generalize [Mra21, Theorem 1.3] to

any dimension and by allowing rotationally symmetric self-shrinkers with
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non-convex profile curve and is a consequence of the fact that the Angenent

metrics gA are real analytic. See also [CM21] for a similar theorem for

Lagrangian self-shrinking tori in R4.

Corollary 4.8. For each n ≥ 2, there is a finite set Sn ⊂ [1, En] so that

λ(Σ) ∈ Sn for all complete embedded rotationally symmetric self-shrinkers

Σ in Rn+1.

Proof. By Theorem 2.4, it suffices to consider only rotationally symmetric

self-shrinkers that are diffeomorphic to Sn−1×S1. Let σ be the profile curve

of a rotationally symmetric self-shrinking doughnut in Rn+1. Thus σ is a

geodesic in (H, gA). Since gA is real analytic, the mapping

γ 7→ EA(γ) :=
1

2

∫

S1
gA(γ̇, γ̇)

is a real analytic functional defined on all closed curves γ close to σ. Note

that DEA(γ) = 0 if and only if γ is a geodesic, here DEA(γ) is the L2-

gradient of EA at γ. By the celebrated  Lojasiewicz-Simon gradient inequal-

ity [Sim83, equation (2.2)], there is C2 > 0 and θ ∈ (0, 1/2) so that

|EA(γ) − EA(σ)|1−θ ≤ C2∥DEA(γ)∥L2 ,

for all γ which are C2,α-close to σ. Hence if γ is another geodesic close to

σ, we have EA(γ) = EA(σ). Since geodesics are parametrized by constant

length, one has

LA(γ) = LA(σ).

Thus the length functional γ 7→ LA(γ) is locally constant on the space of all

closed geodesics. Since the space of simple closed geodesics is compact by

Theorem 1.2, the length functional has a finite image. Together with (2.3),

this finishes the proof of the corollary.

Lastly, we prove Theorem 1.3.

Proof of Theorem 1.3. In [Mra21, section 5], Mramor studies the Poincaré

map of the (up to renormalization of length) geodesic equation in (H, gA)

x′ = cos θ, r′ = sin θ, θ′ =
x

2
sin θ +

(
n− 1

r
− r

2

)
cos θ. (4.7)

For any R > 0 and θ, let (xR,θ(t), yR,θ(t), θR,θ(t)) be the maximal solution

to (4.7) with initial value (0, R, θ). Let T ∗ = T ∗(R, θ) be the second time
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at which xR,θ = 0 occurs.

By [Mra21, Lemma 5.1], the fixed points of the Poincaré map

P : R× (0,∞) → R× (0,∞), P (R, θ) = (rR,θ(T
∗), θR,θ(T

∗))

are either isolated points or analytic curves in R × (0,∞). Arguing as in

the proof of [Mra21, Theorem 1.3], the map

Pf : (0,∞) → (0,∞), Pf (R) = rR,0(T
∗(R, 0), 0)

has isolated fixed points. Since the profile curve of any embedded self-

shrinker with reflectional symmetry must intersect the fixed points of Pf ,

together with Theorem 1.2, Theorem 1.3 has been proven.

5 Appendix: the sequence (En)

In this appendix, we show the following lemma.

Lemma 5.1. The sequence (En) defined in (3.1) satisfies 2 < En ≤ E2 and

lim
n→∞

En =

√
4π

3
. (5.1)

Proof. It is proved in [Sto94, A.4 Lemma] that the entropy of the n-sphere

λ(Sn) satisfies

λ(Sn) =
( n

2πe

)n/2

ωn (5.2)

and the sequence (λ(Sn)) is strictly decreasing. Also,

lim
n→∞

λ(Sn) =
√

2. (5.3)

From (3.1) and (5.2) we obtain

En =

√
2π

3

1 + xn

1 + 2xn/3

(
1

e
(1 + xn)1/xn

)an/4

λ(Sn−1), (5.4)

where

an = yn − 2(n− 1), xn =
an

2(n− 1)
.
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Direct calculations give

1

2
< an <

2

3
, 0 < xn < 1 (5.5)

and

lim
n→∞

an =
2

3
, lim

n→∞
xn = 0. (5.6)

Using (5.4), (5.3) and (5.6), one obtains (5.1).

Next we show 2 < En ≤ E2. By the Taylor expansion of ln(1 + x), we

have

x + x3/3 > ln(1 + x) > x− x2/2 for all x ∈ (0, 1).

Thus

e
x2

3 >
1

e
(1 + x)1/x > e−

x
2 , for all x ∈ (0, 1).

Together with λ(Sn−1) >
√

2, (5.5) and (5.4),

√
2π(3 + (n− 1)−1)

3
e

1
162(n−1)2 λ(Sn−1) > En >

√
4π

3
e−

1
36(n−1) . (5.7)

Since λ(Sn−1) is decreasing, the upper bound in (5.7) is strictly decreasing

in n. Also, the lower bound in (5.7) is strictly increasing in n. Plugging in

n = 4 in the upper and lower bound of (5.7) gives

2.21823 ∼
√

10π

e1093/729
> En >

√
4π

3
e−

1
108 ∼ 2.02780, for all n ≥ 4.

The inequality implies 2 < En < E2 for all n ≥ 4. The case n = 2, 3 can be

checked directly.
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Chapter 5

Paper II: Entropy Bounds for

Self-shrinkers with Symmetries

This chapter includes the paper:

[MM23] John Man Shun Ma and Ali Muhammad. Entropy bounds for

self-shrinkers with symmetries
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Entropy Bounds for Self-shrinkers with

Symmetries

John Man Shun Ma, Ali Muhammad

Abstract

In this work we derive explicit entropy bounds for two classes of

closed self-shrinkers: the class of embedded closed self-shrinkers re-

cently constructed in [Rie23] using isoparametric foliations of spheres,

and the class of compact non-spherical immersed rotationally sym-

metric self-shrinkers. These bounds generalize the entropy bounds

found in [MMM22] on the space of complete embedded rotationally

symmetric self-shrinkers.

1 Introduction

A smooth hypersurface Σ in Rn+1 is called a self-shrinker if

HΣ(x) =
1

2
⟨x, ν⟩, for all x ∈ Σ. (1.1)

Here ν is the unit normal vector field on Σ, HΣ = div ν is the mean curvature

of Σ and x is the position vector. Self-shrinkers are central objects of study

in the mean curvature flow (MCF) since they serve as singularity models

[Hui90], [Ilm94]. Besides the generalized cylinders, different techniques have

been used to construct explicit examples of self-shrinkers [AL86], [Ang92],

[KKM18], [BNS21], [Ngu14], [DN18], [KM23], [Rie23].

In the seminal paper [CM12a] (see also [MM09]), Colding and Minicozzi

defined the entropy λ(Σ) of any smooth hypersurface Σ. The entropy is

a scaling and translation invariant quantity. More importantly, if {Σt} is

a solution to the MCF, then t 7→ λ(Σt) is non-increasing and is constant

The authors were supported by the Danish National Research Foundation CPH-
GEOTOP-DNRF151.
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if and only if (up to rescaling and space-time translation) Σt =
√−tΣ for

t ∈ (−∞, 0), where Σ is a self-shrinker.

The entropy of the generalized cylinders were computed in [Sto94], and

the entropy of the Angenent doughnuts were numerically computed in [BK21],

[GN21]. In general, upper bounds for the entropy are of great interest, since

they normally imply surprising topological and geometrical consequences

[Mra21], [BW16], [CHH22], [MMM22].

In [MMM22], the authors and Møller proved an entropy upper bound

for complete embedded rotationally symmetric self-shrinkers in Rn+1. Using

that, several compactness and finiteness results for the space of such self-

shrinkers were obtained. The goal of this paper is to generalize the entropy

upper bounds obtained in [MMM22, Theorem 1.1] in two directions.

Using the theory of isoparametric foliations of spheres, Riedler con-

structed in [Rie23] new examples of closed embedded self-shrinkers in Rn+1

with topology S1 ×M , where M ⊂ Sn is diffeomorphic to an isoparametric

hypersurface of Sn for which the multiplicities of the principal curvatures

agree. This is done by applying a reduction theorem from [PT86] to reduce

the self-shrinker equation to a geodesic equation in an open subset of R2. In-

deed, the construction generalizes the classical work by Angenent [Ang92]

for rotationally symmetric self-shrinkers. Our first result is the following

theorem which provides entropy bounds for this class of self-shrinkers.

Theorem 1.1. Let M = {Mφ}φ∈(0,π/g) be an isoparametric foliation of Sn

of type (g,m,m), and let N be a f -invariant embedded closed self-shrinker

diffeomorphic to S1 ×M , where M is diffeomorphic to a regular fiber of the

foliation M . Then there is a positive number Eg,m such that λ(N) ≤ Eg,m.

We remark that the constants Eg,m are explicit and depend only on

the pair (g,m). We refer the reader to section 3 for the terminology on

isoparametric foliations appearing in Theorem 1.1.

Our second result is Theorem 1.2 below which gives entropy bounds for

immersed rotationally symmetric self-shrinkers diffeomorphic to S1 × Sn−1.

Drugan and Kleene constructed in [DK17] infinitely many complete im-

mersed rotationally symmetric self-shrinkers of various topological types.

In the following theorem, we obtain an entropy upper bound for compact

immersed non-spherical rotationally symmetric self-shrinkers in terms of

the number of self-intersections of the corresponding profile curve. For each

n ≥ 2, let En denote the entropy upper bound for complete embedded ro-

tationally symmetric self-shrinkers in Rn+1 obtained in [MMM22, equation

(3.1)].
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Theorem 1.2. Let Σ = Σσ be a compact immersed non-spherical rota-

tionally symmetric self-shrinker in Rn+1, where the profile curve σ has k

self-intersection points counted with multiplicity. Then

λ(Σ) ≤ (k + 1)En. (1.2)

We refer the reader to section 4 and 5 for the terminology on rotationally

symmetric self-shrinkers appearing in Theorem 1.2. Both Theorem 1.1 and

Theorem 1.2 are proven using comparison theorems ([MMM22, Theorem

3.1] and Theorem 4.8 respectively), which provide estimates for the length

of closed geodesics σ in a simply connected Riemannian surface with strictly

positive Gaussian curvature. Theorem 4.8 also implies an entropy bound

for a class of closed immersed f -invariant self-shrinkers (see remark 5.1).

The organization of this paper is as follows. In section 2, we recall the

definitions of self-shrinkers and the entropy of a hypersurface. In section

3, we recall the construction in [Rie23] and prove Theorem 1.1. In section

4, we prove a general comparison theorem (Theorem 4.8) and in the last

section, we prove Theorem 1.2.

The first author would like to thank Hojoo Lee for their discussion on

immersed rotationally symmetric self-shrinkers. The authors would also like

to thank Alexander Mramor for fruitful discussions.

2 Self-shrinkers and the entropy

Let Σ be a properly immersed smooth hypersurface in Rn+1. For any x0 ∈
Rn+1 and t0 > 0, the functional Fx0,t0 is defined in [CM12a] as

Fx0,t0(Σ) =
1

(4πt0)n/2

∫

Σ

e
− ∥x−x0∥2

4t0 dµ, (2.1)

Where dµ is the volume form of Σ. It is well known (e.g. [CM12b, section

1]) that the following statements are equivalent:

• Σ is a self-shrinker;

• Σ is a minimal hypersurface in Rn+1 with respect to the conformal

(Gaußian) metric gß, where

(gß)ij = e−
∥x∥2
2n δij (2.2)

and δ denotes the Euclidean metric on Rn+1;
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• Σ is a critical point of the F -functional F = F0,1.

The entropy of a hypersurface Σ is defined by ([CM12a], [MM09])

λ(Σ) = sup
(x0,t0)∈Rn+1×R>0

Fx0,t0(Σ). (2.3)

We also need the following fact about the entropy of self-shrinkers [CM12a,

section 7.2].

Lemma 2.1. Let Σ be a properly immersed self-shrinker in Rn+1. Then

λ(Σ) = F0,1(Σ).

3 Closed embedded self-shrinkers constructed

by isoparametric foliations

In this section we prove Theorem 1.1. First, we recall the construction of

the closed embedded self-shrinkers in [Rie23] using the theory of isopara-

metric foliations of spheres, which generalizes the classical construction of

rotationally symmetric self-shrinkers by Angenent [Ang92]. The definition

of isoparametric foliations and the properties of such foliations of spheres, in

particular, the structural theorems proved by Münzner in [Mün80], [Mün81],

are neatly summarized in [Rie23, section 2] and we closely follow their no-

tation. For a general introduction, see for example [CR15, Chapter 3]. We

start by briefly recalling the necessary background on the theory. We then

proceed to describe how the problem of finding self-shrinkers in the setting

of [Rie23] is reduced to finding geodesics in a certain open subset of R2

equipped with a family of (incomplete) metrics hg,m = h with Gaussian

curvature bounded from below by strictly positive numbers.

3.1 Background on Isoparametric Foliations of Sn

A smooth function F : Sn → R is called isoparametric if there exist smooth

functions ϕ1, ϕ2 : F (Sn) → R such that

∥gradF∥2 = ϕ1 ◦ F, ∆F = ϕ2 ◦ F,

where gradF and ∆F denote the gradient and the Laplacian of F , respec-

tively. Foliations of Sn that arise from a family of level sets of an isopara-

metric function are called isoparametric foliations of Sn. Such level sets

are then the fibers of a given foliation. By the work of Münzner [Mün80],
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the isoparametric function of a given foliation is a restriction to Sn of a

homogeneous polynomial F : Rn+1 → R of degree g which satisfies cer-

tain differential equations, where g ∈ {1, 2, 3, 4, 6}. Such a polynomial F

is called the Cartan-Münzner polynomial. The foliation has exactly two

singular fibers V± = (F |Sn)−1(±1), and each regular fiber is given by

Mφ = {x ∈ Sn| dist0(x, V−) = φ}, (3.1)

where φ ∈ (0, π/g) and dist0 is the distance function on the round Sn. On

each Mφ, there are g (the degree of the Cartan-Münzner polynomial F ) dis-

tinct principal curvatures, and they each assume a constant value on a given

regular fiber. Furthermore, there are at most two distinct multiplicities for

the principal curvatures which we denote by m1 and m2, and we have the

following relation n− 1 = g
2
(m1 +m2). Also, for each φ ∈ (0, π/g) we have:

Vol0(Mφ) = c sin
(g

2
φ
)m1

cos
(g

2
φ
)m2

, (3.2)

where c is some constant independent of φ and Vol0(Mφ) is the volume of

Mφ with respect to the round metric on Sn.

We shall call an isoparametric foliation M = {Mφ} of type (g,m1,m2)

if the fibers have g distinct principal curvatures with corresponding mul-

tiplicities m1 and m2. In the following we shall restrict to the case where

the multiplicities agree, i.e. m1 = m2 and hence consider foliations of type

(g,m,m). In this case we have n = mg + 1 and we shall use n and m

interchangeably through this relation.

In the next lemma we determine the number c in (3.2) in terms of g

and m. We start by recalling the following useful result: let π : (E, gE) →
(B, gB) be a surjective Riemannian submersion between two Riemannian

manifolds with compact fibers. Let v : B → R be v(x) = VolgE(π−1(x)).

By the co-area formula [Nic11, Theorem 2.1], for all submanifolds M of B

we have

VolgE(M̃) =

∫

M

v(x)dµM(x), (3.3)

where M̃ = π−1(M) and dµM is the volume form of M in (B, gB).

Lemma 3.1. Given an isoparametric foliation {Mφ} of Sn of type (g,m,m),

we have

Vol0(Mφ) =
gωn

s(m)
sinm(gφ) (3.4)

for every regular fiber Mφ, φ ∈ (0, π/g). Here n = mg+1, ωn is the volume
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of Sn and

s(m) =

∫ π

0

sinm t dt. (3.5)

Proof. Since m1 = m2 = m we have from (3.2)

Vol0(Mφ) =
c

2m
sinm(gφ), (3.6)

hence it suffices to find c. By the relation (3.1) we know that the mapping

Sn \ (V− ∪ V+) →
(

0,
π

g

)
,

x ∈ Mφ 7→ φ,

is a Riemannian submersion, with respect to the standard metric on Sn and

the Euclidean metric on the interval (0, π/g). Using (3.3) and (3.6),

ωn := Vol0(Sn) =

∫ π/g

0

Vol0(Mφ)dφ =
c

g2m

∫ π

0

sinm t dt.

Hence c = g2mωns(m)−1 and Lemma 3.1 is proved.

For simplicity, from now on we write

cg,m =
gωn

s(m)
. (3.7)

3.2 The Reduction Theory; Proof of Theorem 1.1

Equip Rn+1\R≥0 · (V+ ∪ V−) with the metric gß defined in (2.2), and let

gS = e−
r2

2n (dr2 + r2dφ2) (3.8)

be a metric on (0,∞) × (0, π/g). Define the map

f : Rn+1\R≥0 · (V+ ∪ V−) → (0,∞) ×
(

0,
π

g

)
, (3.9)

x 7→
(
∥x∥, arccos(F (x/∥x∥))

g

)
.

Here F is the corresponding Cartan-Münzner polynomial and V± = (F |Sn)−1(±1)

are the singular fibers of the foliation. It can be shown that f is a Rieman-

nian submersion. A set N ⊂ Rn+1 is called f -invariant if there exists a set

C ⊂ (0,∞) × (0, π/g) such that N = f−1(C).
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Using [PT86, Theorem 4], it is proved in [Rie23, Proposition 2.4] that

an f -invariant hypersurface N ⊂ Rn+1 is a closed self-shrinker if and only

if C := f(N) is a closed geodesic in (0,∞) × (0, π/g) with respect to the

metric h defined by

h(r, ϕ) := Volgß(f
−1(r, φ))2gS(r, ϕ). (3.10)

Note that for any (r, φ) ∈ (0,∞) × (0, π/g), we have by Lemma 3.1

Volgß(f
−1(r, φ)) = Volgß(rMφ)

= e−
(n−1)r2

4n Vol0(rMφ)

= rn−1e−
(n−1)r2

4n Vol0(Mφ)

= cg,mr
n−1e−

(n−1)r2

4n sinm(gφ).

Using (3.8) we hence obtain the following expression for the metric h1

h(r, ϕ) = c2g,mr
2mge−r2/2 sin (gφ)2m (dr2 + r2dφ2). (3.11)

By a direct calculation, the Gaussian curvature K = Kg,m of h is given by

K =
er

2/2

c2g,mr
2n sin (gφ)2m

(
r2 +

(n− 1)g

sin2(gφ)

)
.

It is clear that K is strictly positive and that K → +∞ as (r, φ) tend to the

boundary of (0,∞) × (0, π/g). By simple calculus, the Gaussian curvature

K is bounded from below by κ = κg,m > 0, where

κg,m =
e

yg,m
2

c2g,my
n
g,m

(yg,m + (n− 1)g) (3.12)

and

yg,m =
(n− 1)(2 − g) +

√
(g − 2)2(n− 1)2 + 8ng(n− 1)

2
. (3.13)

Moreover, by (3.10), (3.3) and (2.2), the length Lh(C) of the curve C with

1In equation (4) of [Rie23], the metric has the term e−r2 instead of e−r2/2 since they
use a different scaling convention for self-shrinkers.
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respect to the metric h is given by

Lh(C) =

∫

C

Volgß(f
−1(r, φ))dµC(r, ϕ)

= Volgß(f
−1(C))

= Volgß(N)

=

∫

N

e−
∥x∥2

4 dµN . (3.14)

Where dµC is the volume form of C in ((0,∞) × (0, π/g), gS).

Proof of Theorem 1.1. For each pair (g,m) let

Eg,m =
2π

(4π)n/2
√
κg,m

. (3.15)

Let N be a f -invariant embedded self-shrinker in Rn+1. Then C := f(N) is

the image of an embedded geodesic in (0,∞)× (0, π/g) with metric h given

in (3.10). Note that N is diffeomorphic to S1 ×M if and only if f(N) is an

embedded closed geodesic. Hence we can apply [MMM22, Theorem 3.1] to

conclude that

Lh(C) ≤ 2π
√
κg,m

.

Together with (3.14) and Lemma 2.1, one obtains the entropy bound λ(N) ≤
Eg,m.

Remark 3.1. When g = 1, the isoparametric foliation of Sn is given (up to

congruence) by a family of (n− 1)-spheres

Mφ = {cosφ} × sinφ Sn−1, φ ∈ (0, π) (3.16)

and f -invariant hypersurfaces are percisely the rotationally symmetric hy-

persurfaces. In [MMM22], the authors and Møller derived entropy bounds

for complete embedded rotationally symmetric self-shrinkers. We remark

that the entropy bounds found in [MMM22] are a special case of the ones

obtained here: when g = 1, then m = n− 1 and we obtain from (3.15) that

E1,n−1 =
2π

(4π)n/2
√
κ1,n−1

.
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From (3.12) and κn found in [MMM22, section 3], we have

√
κ1,n−1 =

1

c1,n−1

√
κn.

Together with the identity ωn = s(n − 1)ωn−1, (3.7) and the expression of

En in [MMM22, equation (3.1)], we have E1,n−1 = En for all n ≥ 2.

4 Length upper bound on immersed closed

geodesics in Riemannian surfaces with pos-

itive curvature

In this section we prove Theorem 4.8, which gives an upper bound on the

length of closed immersed geodesics in a simply connected Riemannian sur-

face with Gaussian curvature bounded below by a strictly positive constant

κ. We start with a short outline of the section.

An immersed closed geodesic σ encloses a number of domains. In Propo-

sition 4.4 we determine the number of these domains in terms of the number

of self-intersection points of σ. The proof of Theorem 4.8 then reduces to

proving an estimate of the length of the boundary of each domain. This is

done by showing that the domains are complete length spaces of curvature

≥ κ, for which one can prove an analogous result as in [MMM22, Theorem

3.1]. The necessary technical details are provided in Lemma 4.5 and Propo-

sition 4.6.

Let V be a Riemannian 2-manifold homeomorphic to R2.

Definition 4.1. Let γ : S1 → V be an immersed closed curve. Let Image(γ)

denote the image of γ. A point p in Image(γ) is called a self-intersection

point if γ−1(p) has more than one element. A self-intersection point p is

transverse if for all t, s ∈ γ−1(p), the pair γ′(s), γ′(t) are not parallel to each

other. Let S be the set of all self-intersection points of γ and let k ∈ N. We

say that γ has k self-intersection points counted with multiplicity if

∑

p∈S
(|γ−1(p)| − 1) = k. (4.1)

Definition 4.2. Let γ be an immersed closed curve in V with only trans-

verse self-intersections. A pre-compact connected component of V\Image(γ)

is called a domain enclosed by γ.
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Proposition 4.3. Let γ : S1 → V be an immersed closed curve in V with

only transverse self-intersections. Then the boundary ∂U of each domain U

enclosed by γ is piece-wise smooth and at each corner of ∂U , the interior

angle is less than π.

Proof. It is clear that the boundary of U is piece-wise smooth. At each

corner, the interior angle θ is not π since γ has transverse self-intersections.

If θ > π, then there is a sub-arc β of γ which lies in the interior of U and

β is not part of ∂U . Let β be the boundary of a domain Ũ enclosed by

γ. But since β lies in the interior of U , we must have U = Ũ , which is a

contradiction that β is not part of ∂U . Hence we have θ < π.

Proposition 4.4. Let γ be an immersed closed curve in V with k transverse

self-intersections counted with multiplicity. Then γ encloses exactly k + 1

domains.

Proof. Let U1, · · · , Uf be the domains enclosed by γ. For every j = 1, · · · , f
the closure of the domain Uj has a piece-wise smooth boundary consisting

of subarcs of γ. Let α1, · · · , αe be the collection of those sub-arcs. Let

S = {p1, · · · , pℓ} be the set of self-intersection points of γ and let

W = U1 ∪ · · · ∪ Uf

. Since W is simply connected, the Euler formula implies

χ(W ) = 1 = ℓ− e + f, (4.2)

where χ(W ) is the Euler characteristic of W . Let si = |γ−1(pi)|. By def-

inition there are 2si sub-arcs with vertices pi (in the case where there is

a loop, i.e., a sub-arc which starts and ends at pi, that sub-arc would be

counted twice). Since each sub-arc has exactly two vertices (also counted

with multiplicity), we have

e =
ℓ∑

i=1

si

and hence

f = 1 + e− ℓ = 1 +
ℓ∑

i=1

(si − 1) = 1 + k (4.3)

by (4.1). This finishes the proof of the proposition.

Let h be a Riemannian metric on V such that the Gaussian curvature K

satisfies K ≥ κ > 0 for some positive constant κ, and let σ be an immersed
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closed geodesic in (V, h). By the uniqueness theorem of solutions to ODE,

any self-intersection point of σ must be transverse. We shall now describe

the type of domains U ⊂ V that can be realized as the domains enclosed

by σ.

Let U be a precompact, connected open subset in (V, h) and let Ω :=

U ⊂ V. Assume further that the boundary ∂Ω is parameterized by a curve

β : S1 → (V, h) consisting of piece-wise smooth geodesic arcs, and which

furthermore satisfies the following properties: identifying S1 with [0, d], with

0 and d identified, then there is a partition

P = {0 = t0 < t1 < · · · < ta = d(= 0)}

so that




β|S1\P is injective,

for each j = 0, · · · , a− 1, β|[tj ,tj+1] is a geodesic in (V, h), and

for each j = 0, · · · , a− 1 the interior angle at qj := β(tj) is less than π.

(4.4)

We remark that if β is injective, then each vertex qj is joined by only

two geodesic arcs β|[tj−1,tj ], β|[tj ,tj+1].

Assume first that ∂Ω is parametrized by an injective curve β which

satisfies (4.4). Using Lemma 4.5 below, we will define as in [MMM22,

Section 3] a metric structure dΩ on Ω using the Riemannian metric h and

show that (Ω, dΩ) is a complete length space with curvature ≥ κ, where κ

is the strictly positive lower bound of the Gaussian curvature of (V, h). See

[BBI01] or [MMM22, Section 3] for the terminology and notation needed

from metric geometry.

For each p, q ∈ Ω, let

dΩ(p, q) = inf
γ
Lh(γ),

where the infimum is taken among piece-wise C1 curves γ : [0, 1] → Ω with

γ(0) = p, γ(1) = q and

Lh(γ) =

∫ 1

0

√
h(γ′(t), γ′(t))dt (4.5)

is the length of γ in (V, h). The following lemma is proved in [MMM22,

Lemma 3.3] when ∂Ω has no corners.

Lemma 4.5. Let Ω be as above, i.e. a compact connected set in (V, h) so
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that the boundary ∂Ω is parametrized by an injective curve β which satisfies

(4.4). Let p, q ∈ Ω. Then there is a simple geodesic γ in Ω joining p and

q which is shortest among all piece-wise C1 curves in Ω joining p and q.

Moreover,

(i) γ(t) /∈ {q1, · · · , qa} for all t ∈ (0, 1).

(ii) if one of p, q is in the interior of Ω, then γ also lies in the interior of

Ω (except possibly at the other end point),

(iii) if both p, q are in Image(β) = ∂Ω, then either γ lies completely in the

image of β|[tj ,tj+1] for some j = 0, · · · , a− 1, or the interior of γ lies

inside the interior of Ω.

Proof. The Lemma follows from the same arguments used in the proof of

[MMM22, Lemma 3.3]. We only sketch the minor modifications here.

Let p, q ∈ Ω, p ̸= q. As in the proof of [MMM22, Lemma 3.3], using a

minimizing sequence we construct a Lipschitz length minimizing curve γ :

[0, 1] → Ω with γ(0) = p, γ(1) = q, and we may assume that γ−1(q) = {1},

γ−1(p) = {0}.

First we show (i) by contradiction: if not, let s0 ∈ (0, 1) be the first time

such that γ(s0) = qj for some j. Let B be the closed geodesic ball of radius

ϵ in (V, h) centered at qj. For ϵ small enough, p, q are not in B. Hence there

are s1, s2 ∈ (0, 1) so that s1 < s0 < s2 and γ(si) ∈ ∂B for i = 1, 2. Note

that since β|[tj−1,tj ] and β[tj ,tj+1] are both geodesics, under geodesic polar

coordinates centered at qj, the set B ∩ Ω is of the form

{(r, θ) : 0 ≤ r ≤ ϵ, θ1 ≤ θ ≤ θ2} (4.6)

with θ2 − θ1 < π by the third assumption in (4.4). Assuming ϵ is small

enough so that g is nearly Euclidean in U . Together with θ2 − θ1 < π, the

(Euclidean) straight line ℓ joining γ(s1), γ(s2) has length

Lh(ℓ) < dh(γ(s1), qj) + dh(qj, γ(s2)) ≤ Lh(γ|[s1,s2]).

Thus γ cannot be length minimizing in Ω and hence (i) is proved. Part (ii)

and (iii) of the Lemma can be proven similarly as in the proof of [MMM22,

Lemma 3.3] and are skipped.

From Lemma 4.5 it follows that (Ω, dΩ) is a complete length space.

Proposition 4.6. Let Ω be as in Lemma 4.5. Then the complete length

space (Ω, dΩ) has curvature ≥ κ, where κ is the lower bound of the Gaussian

curvature of (S, h).
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Proof. Let x ∈ Ω and let Vx be a geodesically convex neighborhood in

(V, h) centered at x. When x is in the interior of Ω, we choose Vx ⊂ Ω. Let

Ux = Ω ∩ Vx. For any p, q ∈ Ux, let γ be the unique shortest geodesic in

Vx joining p and q. Arguing as in the proof of [MMM22, Proposition 3.6],

it suffices to show that γ lies in Ux. The argument there works in our case

when x /∈ {q1, · · · , qa}. For the case x ∈ {q1, · · · , qa}, one may assume that

Vx is of the form (4.6) for some r0 > 0 and θ2 − θ1 < π. Arguing as in

the proof of [MMM22, Proposition 3.6], one shows that γ lies in Hθ0 for all

θ0 ∈ [θ2, θ1 + π], where in geodesic polar coordinates

Hθ0 = {(r, θ) : 0 ≤ r ≤ r0, θ0 − π ≤ θ ≤ θ0}.

Since

Ux =
⋂

θ0∈(θ2,θ1+π)

Hθ0 ,

one concludes that γ lies in Ux.

Using exactly the same proof, by approximating the boundary of Ω

by geodesic polygons, one has the following generalization of [MMM22,

Theorem 3.1].

Theorem 4.7. Let Ω be as in Lemma 4.5. Then the boundary ∂Ω satisfies

|∂Ω| := Lh(β) ≤ 2π√
κ
. (4.7)

Now we are ready to prove the main theorem in this section.

Theorem 4.8. Let σ be an immersed geodesic loop in (V, h) with k self-

intersection points counted with multiplicity. Then the length Lh(σ) of σ

satisfies

Lh(σ) ≤ (k + 1)
2π√
κ
. (4.8)

Proof. By Proposition 4.4, the immersed geodesic loop σ encloses k + 1

domains, denote the closure of these domains by Ω1, · · · ,Ωk+1. Fix each

i = 1, · · · , k + 1 and write Ω = Ωi for simplicity. The boundary ∂Ω of Ω

is parametrized by a closed curve β : S1 → (V, h) consisting of piece-wise

smooth geodesic arcs which satisfies (4.4), but which may not be injective.

Let q be any vertex of ∂Ω (i.e. q = β(tj) for some j = 0, · · · , a). Let

s = |β−1(q)|. For any small ϵ > 0, let B = Bϵ(q) be the closed geodesic ball

in (V, h) centered at q with radius ϵ. Then β intersects ∂B at 2s points,
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given by expq(ϵe
iθ0), · · · , expq(ϵe

iθ2s−1) in geodesic polar coordinates (r, θ)

centered at q. Moreover, we have

Ω ∩B = {expq(re
iθ) : 0 ≤ r ≤ ϵ, θ2m ≤ θ ≤ θ2m+1,m = 0, · · · , s− 1}.

For each m, let βm be the shortest geodesic in B joining expq(ϵe
iθ2m) and

expq(ϵe
iθ2m+1). Arguing as in the proof of Proposition 4.6, βm also lies inside

Ω. Let ∆m be the geodesic triangle in Ω with vertices q, expq(ϵe
iθ2m) and

expq(ϵe
iθ2m+1). Let Dϵ be the collection of all such triangles constructed

for all vertices of ∂Ω. Let Ωϵ = Ω \ Dϵ. Note that the interior of Ω is

homeomorphic to the interior of Ωϵ. Hence Ωϵ is connected. Moreover, the

boundary ∂Ωϵ is parametrized by an injective curve consisting of piece-wise

smooth geodesic arcs which satisfies (4.4). Thus we can apply Theorem 4.7

to conclude

|∂Ωϵ| ≤
2π√
κ
.

Taking ϵ → 0, we obtain

|∂Ω| ≤ 2π√
κ

and hence

Lh(σ) ≤
k+1∑

i=1

|∂Ωi| ≤ (k + 1)
2π√
κ
.

5 Entropy bounds for immersed non-spherical

closed self-shrinkers

We recall that for any immersed curve σ : I → H, where H is the upper

half space, the immersed rotationally symmetric hypersurface Σσ in Rn+1

with profile curve σ(s) = (x(s), r(s)) is given by

Σσ := {(x(s), r(s)ω) : s ∈ I, ω ∈ Sn}.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. By [MMM22, Proposition 2.3], Σσ is a self-shrinker

if and only if σ is a geodesic in (H, gA), where gA is given by

gA = r2(n−1)e−
x2+r2

2 (dx2 + dr2). (5.1)
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Since Σσ is compact, either I = S1 and Σσ is an immersion from S1 × Sn−1.

Or I = (a, b), σ(a+), σ(b−) lie in ∂H and Σσ is an immersion from Sn.

Since Σσ is non-spherical, the latter case is excluded and thus σ is a closed

immersed geodesic. By Theorem 4.8, the length of σ satisfies

L(σ) ≤ (k + 1)
2π√
κn

,

where κn is the lower bound of the Gaussian curvature of gA computed in

[MMM22, section 3]. Together with

λ(Σσ) = (4π)−n/2ωn−1LA(σ) (5.2)

and the numbers En from [MMM22, equation (3.1)], given by

En =
2πωn−1

(4π)n/2
√
κn

we obtain (1.2).

Remark 5.1. As in the proof of Theorem 1.2, one can use Theorem 4.8

to prove an entropy upper bound for the class of f -invariant closed self-

shrinkers N such that f(N) is a closed immersed geodesic with k self-

intersections in (0,∞)×(0, π/g) with respect to the metric h given in (3.11).

However, as of now no such examples are known to the authors’ knowledge.
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