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Abstract

The topics of this thesis are projections and sensitivities, respectively, of life insurance

liabilities. The first three chapters study projections of life insurance liabilities.

We consider projections of balances in with-profit life insurance, and focus on

calculation of the future bonus payments of an insurance contract. The first chapter

studies the inclusion of the policyholder behavior options free-policy and surrender

in the projection model. The following two chapters consider the forward-backward

dependence structure that arises if we let the future bonus allocation strategy

depend on prospective reserves. We study both a simulation based approach and an

analytical approach to handle the interdependence. The last three chapters of the

thesis consider sensitivities of life insurance liabilities. Life insurance companies are

exposed to systematic insurance risks if assumptions on for instance future mortality

or disability rates change. We study two methods to hedge systematic insurance risks.

One is natural hedging, and we describe how to construct portfolios of different

insurance products where the insurance liabilities are invariant to shifts in the

underlying assumptions on for instance mortality and disability rates. Next, we study

de-risking strategies where we assume there exists a market for trading securities

linked to for instance mortality or disability rates, and we describe the optimization

problem to find the hedging strategy that minimizes systematic insurance risks. The

risk margin can be considered a measure of systematic insurance risk, and lastly, we

describe how to calculate the risk margin with a scenario-based model for the future

Solvency Capital Requirement.
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Resumé

Denne PhD-afhandling omhandler henholdsvis projektioner og følsomheder af livs-

forsikringshensættelser. De første tre kapitler studerer projektioner af livsforsikrings-

hensættelser. Vi betragter projektioner af balancen for gennemsnitsrenteprodukter,

og fokuserer p̊a beregningen af fremtidige bonusbetalinger for en forsikringskontrakt.

Det første kapitel studerer inklusionen af forsikringstageroptionerne fripolice og

genkøb i modellen til projektion af hensættelser. De følgende to kapitler betragter

den fremadrettede-bagudrettede afhængighedsstruktur der opst̊ar hvis beslutninger

om fremtidig bonus afhænger af prospektive reserver. Vi studerer b̊ade en simula-

tionsbaseret og en analytisk tilgang til at løse problemet. De sidste tre kapitler i

afhandlingen omhandler følsomheder af livsforsikringshensættelser. Livsforsikrings-

selskaber er eksponeret for systematisk forsikringsrisiko, hvis antagelser om for

eksempel dødeligheds- eller invaliderater ændrer sig. Vi studerer to metoder til at

hedge systematisk forsikringsriskiko. En er natural hedging, og vi beskriver hvordan

man konstruerer porteføljer af forskellige forsikringsprodukter, hvor hensættelserne

er invariante over for forskydninger i de underliggende antagelser om for eksempel

dødeligheds- og invaliderater. Derudover studerer vi de-risking strategier, hvor vi

antager at der eksisterer et marked for handel med derivater, der knytter sig til

for eksempel dødeligheds- og invaliderater, og vi beskriver optimeringsproblemet til

at finde den optimale hedgingstrategi, der minimerer systematisk forsikringsrisiko.

Risikomargen kan betragtes som et m̊al for systematisk forsikringsrisiko, og til sidst

beskriver vi hvordan man kan regne risikomargen med en scenarie-baseret model for

det fremtidige solvenskapitalkrav.
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Chapter 1

Introduction

This PhD thesis deals with aspects of projections and sensitivities of life insurance

liabilities. The Chapters 2, 3, and 4 consider projections and the last three chapters

(Chapters 5, 6, and 7) consider sensitivities. In the introductory chapter, we present

the background on projections of life insurance liabilities and sensitivities of life

insurance liabilities, respectively, that precedes the results in the six chapters. We

give an overview of the chapters and describe how they are related. The introduction

only contains few references to existing literature, and for additional references, we

refer to the introductions of the individual chapters, where contributions from this

thesis are related to existing literature.

1.1 The classical setup in multi-state life insurance

The classical multi-state setup in life insurance is the starting point of the topics

covered in this thesis; projections and sensitivities of life insurance liabilities. A

life insurance contract is an agreement between an insurer and an insured, where

the insured agrees to pay a premium in return of insurance benefits payed by the

insurer. Future benefit and premium payments link to the future (unknown) state of

life of the insured, for instance Active, Disabled, or Dead. Therefore, for the insurer

to be able to valuate the contractual payments both for accounting purposes and

for determining the premium, a model for the state of the insured is needed. A

tractable and therefore popular model is the multi-state Markov model, that dates

back to Hoem (1969) and Norberg (1991). Here, the state of life of the insured is

described by a Markovian jump process, Z =
(
Z(t)

)
t≥0

, on a finite dimensional

state space J = {0, 1, ..., J}, where each state corresponds to a biometric state of

the insured. The transition probabilities of Z are given by

pij(t, s) = P
(
Z(s) = j

∣∣ Z(t) = i
)
,

1



2 Chapter 1. Introduction

for i, j ∈ J and t ≤ s. Usually, the distribution of Z is described through the

transition intensities

µjk(t) = lim
h↓0

pjk(t, t+ h)

h
,

and we assume the transition intensities exist and are well-defined for j, k ∈ J ,

j ̸= k.

Payments of the insurance contract are associated with either the sojourn in a state or

the transition between states. The sojourn payments are continuous with intensity

bj(t) and the payments upon transition are given by bjk(t) for j, k ∈ J , j ≠ k.

Premium payments are negative, and benefit payments are positive. The stochastic

payments of the insurance contract are then described by the payment process B

with dynamics

dB(t) = bZ(t)(t)dt+
∑

k ̸=Z(t−)

bZ(t−)k(t)dNk(t),

where Nk(t) is a counting process counting the number of jumps of Z into state k

before time t.

The expected present value of future contractual insurance payments is denoted the

prospective reserve and is given by

V Z(t)(t) = E
[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Z(t) ],
where r(t) is the interest rate and n denotes termination of the insurance contract.

If the interest rate is deterministic, a classical method to calculate the state-wise

reserve is as the solution to Thiele’s differential equation. If the interest rate is

stochastic and independent of Z, a cash flow approach for computation of the reserve

is efficient.

As the title indicates, this PhD thesis covers topics on projections and sensitivities of

life insurance liabilities. The prospective reserve V Z(t)(t) is the classical example of

an insurance liability, since it is the amount the insurance company should set aside

today to be able to meet the expected future payments of the insurance contract.

1.2 Projections of life insurance liabilities

The topic of the Chapters 2, 3, and 4 is projections of life insurance liabilities. Here,

we give an overview of projections of insurance liabilities and describe the extensions

studied in each of the three chapters.

1.2.1 With-profit life insurance

We study projections of life insurance liabilities in the context of with-profit life

insurance. In with-profit life insurance, valuation of insurance liabilities is performed
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under two bases; one is the technical basis that consists of prudent assumptions of the

interest rate and transition intensities and is denoted by r∗ and µ∗
jk, j, k ∈ J , j ̸= k.

The other is the market basis that consists of the model of the actual future

development of the interest rate and the transition intensities and is denoted by

r and µjk, j, k ∈ J , j ̸= k. The technical basis is deterministic and modelled in

advance. The model of the market basis, and therefore also valuation of insurance

liabilities under the market basis, is strongly connected to present legislation. This

thesis is part of the project ”Projection of Balances and Benefits in Life Insurance”,

and the purpose of the project is to develop methods to calculate insurance liabilities

to be compliant with the Solvency II regulation. Therefore, the methods presented

here relate to valuation of liabilities under the market basis.

Premiums and benefits of a with-profit life insurance contract are settled according

to the principle of equivalence on the technical basis. The principle of equivalence

states that the expected present value of future benefits should equal the expected

present value of future premiums at initialization of the insurance contract. One can

state that an insurance contract is fair if it satisfies the principle of equivalence. Still,

the technical basis is chosen to be on the safe side with the result that premiums are

intentionally conservative and too high, which gives rise to a surplus. If the world

behaves exactly according to the technical basis, no surplus is generated. Hopefully,

it turns out that the prudent technical basis is in fact prudent, which results in a

positive surplus. Most of the surplus belongs to the policyholders, since they pay

an abundant premium, and the rest of the surplus is a payment to the insurance

company for taking on risks. In the case, where the technical basis turns out not

to be prudent, an example is interest rate guarantees of up to 4% on insurance

contracts signed in the 1980’s and 1990’s, the insurance company has to cover the

loss caused by increasing liabilities, since they are contractually bounded and cannot

increase the premiums.

The surplus is paid back to the policyholders in terms of bonus. A typical Danish

product design is to use bonus payments to buy additional benefits for the insured,

which complicates the setup, since the additional benefits themselves give rise to a

surplus. One of the main tasks in a projection model of life insurance liabilities is

to model the future bonus payments to get a better understanding of how bonus is

distributed and to be able to calculate the balance sheet accurately.

1.2.2 The balance sheet

The liabilities of an insurance contract can be decomposed in different ways. One

decomposition consists of the expected present value of future guaranteed benefits

(GB), the expected present value of future discretionary benefits (FDB), and the

expected future profit (FP). New legislation regarding the calculation of FDB for

solvency purposes has been introduced 1/1-2023, and the purpose of the project
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”Projection of Balances and Benefits in Life Insurance” has, broadly speaking, been

to build a model for calculation of the FDB in accordance with the new legislation.

A widely used method for calculation of the balance sheet item GB in the Danish

insurance industry is to calculate the cash flow of the expected future payments

guaranteed at the time of the calculation, and then discount the cash flow with

the relevant risk free interest rate. The future guaranteed payments are, up to the

future state of the insured, deterministic and established methods for calculation of

the cash flow exist under the assumption that Z is independent of the interest rate.

The new solvency legislation requires that calculation of the FDB is performed by

discounting a cash flow of the future bonus payments. This introduces the need of a

model for the future distribution of bonus. The distribution of bonus is denoted the

dividend allocation strategy. Decisions on how to distribute bonus are part of the

management actions of the insurance company, and may depend on a lot of different

factors as for instance the interest rate, the balance sheet items or the financial

situation of the insurance company. Therefore, a model for the cash flow of future

bonus payments requires the modeling of future management actions, and since they

are complex by nature and most likely depend on the interest rate, we cannot use

existing methods. Instead, we turn to simulation techniques.

The idea is to simulate paths or scenarios of the financial market, project the

insurance liabilities as for instance the FDB in each scenario, and then average

the relevant quantities to form Monte Carlo estimates of the insurance liabilities.

Our projection model of the insurance liabilities takes an economic scenario as

input and models insurance liabilities within the scenario. Therefore, in this thesis,

we consider the economic scenario as given, and we do not study the generation

of economic scenarios. We focus on the modelling of life insurance liabilities in

with-profit life insurance including bonus, in particular possibilities and limitations

in the calculation of the future bonus payments and the FDB.

1.2.3 The basic projection model

The basic projection model studied in the project ”Projection of Balances and

Benefits in Life Insurance” is described in Bruhn and Lollike (2020), that present a

basic model for projection of insurance liabilities in an economic scenario. Here, we

give a brief overview of the results of Bruhn and Lollike (2020), and describe how

the Chapters 2, 3, and 4 of this thesis extend the basic projection model.

To be able to project the FDB in with-profit life insurance, we need a model of the

future bonus payment under the bonus scheme additional benefits, where bonus is

used to buy extra insurance benefits. The model of the insurance payments consists

of two payment streams, one consists of the fixed payments, and another of the

benefits that are increased by bonus. A process Q(t) then measures how many extra

benefits that are bought for bonus. Hence, a model of Q(t) enables us to model the
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bonus cash flow and therefore also the FDB. The evolution of Q(t) is connected

to the amount of bonus the insurance company distributes, which depends on the

financial scenario. The future management actions describe the amount of bonus

distributed, and in the projection model, we put the future management actions

on mathematical formulas to be able to project the amount of bonus distributed in

each scenario.

The insurance company distributes bonus from the surplus to the policyholders’

savings accounts by increasing the benefits. Therefore, a natural modeling choice

is that the amount of bonus and also the future management actions depend on

the surplus and the savings account. The savings account, X(t), and the surplus,

Y (t), are retrospective in the sense, that they depend on the payments and the

surplus generated up till time t, whereas the prospective reserves as for instance GB

and FDB depend on payments and bonus in the future. With the bonus scheme

additional benefits, the process Q(t) depends linearly on the savings account, X(t),

and therefore it makes no difference whether we model Q(t) or X(t).

The future bonus payments depend on Q(t) or equivalently X(t), and the expected

future bonus payments (the bonus cash flow) depend on the state-wise projection of

Q(t) (or X(t)). Bruhn and Lollike (2020) derives a system of forward differential

equations for the state-wise projections of the savings account and the surplus in the

case, where future management actions in terms of the dividend allocation strategy

are linear in the savings account and the surplus. This implies that if we put up

rules for the future dividend allocation strategy such that it is linear in the savings

account and the surplus, we are able to calculate the state-wise projection of the

savings account, and therefore also the cash flow of expected future bonus payments,

in each financial scenario as the solution to a system of forward differential equations.

Then, in each scenario, we discount the cash flow of the future bonus payments

to obtain a value for the FDB, and by averaging the resulting values, we obtain a

Monte Carlo estimate of the FDB.

1.3 Overview of the Chapters 2, 3, and 4

Bruhn and Lollike (2020) provide a basic projection model, where we are able to

calculate the FDB correctly under the assumption, that the future dividend allocation

strategy is linear in the savings account and the surplus. This model paves the ways

for various extensions. The extensions studied in this thesis are the inclusion of the

policyholder behavior options surrender and conversion to free-policy (Chapter 2),

and to allow for a broader range of dividend allocation strategies that depends on

prospective reserves as GB and FDB (Chapters 3 and 4). Other extensions include

the study of non-linear dividend allocation strategies, how to make the projection

model more efficient, and the study of optimal dividend allocation strategies.
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We give an overview of and describe the main contributions of each chapter related

to projection of life insurance liabilities. It is not necessarily clear, how the various

chapters relate to the basic projection model, and the focus in this section is to

describe, how the contributions of this thesis extend the basic projection model.

1.3.1 Chapter 2: Retrospective reserves and bonus with

policyholder behavior

This chapter is a direct extension of the projection model from Bruhn and Lollike

(2020). The extension concerns the inclusion of the policyholder behavior options

surrender and conversion to free-policy in the projection model. We describe the

extension of the model in one simulated scenario of the interest rate, and therefore,

throughout the manuscript, the interest rate is assumed to be deterministic.

The surrender option allows the policyholder to cancel the insurance contract and in

return receive a single benefit. With the free-policy option, the policyholder cancels

all future premiums, and then the future benefits are reduced by a free-policy factor.

The two policyholder behavior options are modelled as random transitions of the

Markov process Z by extending the state space J .

The projection model from Bruhn and Lollike (2020) relies on linearity of the future

dividend allocation strategy in the savings account and the surplus, since then the

dynamics of the two retrospective accounts, the savings account and the surplus,

are linear. This is the basis of the derivation of the system of differential equations

for the state-wise projection of the savings account, which enables us to calculate

the future bonus cash flow. The linearity of the dynamics is preserved with the

introduction of the surrender option, and under the assumption of a linear dividend

allocation strategy. The free-policy option conflicts with the linearity assumption,

since the optimal choice of free-policy factor is non-linear in the savings account,

with the result that the payment process, and therefore also the dynamics of the

savings account, are non-linear in the savings account. This implies that we are not

in general able to calculate the state-wise projection of the savings account with the

optimal choice of free-police factor, and hence, we cannot calculate the cash flow of

future bonus payments.

In the manuscript, we consider a special case, where all benefits are regulated by

bonus. In this special case, we are actually able to calculate the state-wise projection

of the savings account, and also calculate the bonus cash flow, with the optimal

choice of free-policy factor. The same bonus cash flow arises if we use a specific

approximation of the optimal free-policy factor that is in fact linear in the savings

account. Therefore, based on the special case, we consider the approximation of

the optimal free-policy factor a reasonable approximation, and we derive a system

of differential equations for the state-wise projection of the savings account using
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the approximated free-policy factor outside the special case. This allows us to

calculate the bonus cash flow and the FDB including policyholder behavior under

the assumption that the future dividend allocation strategy is linear in the savings

account and the surplus.

1.3.2 Bonus allocation dependent on FDB

Chapters 3 and 4 consider the same extension of the basic projection model. Namely

the entanglement that arises if we allow the future management actions in terms of

the future dividend allocation strategy to depend on the FDB. The retrospective

accounts, X(t) and Y (t), satisfy forward stochastic differential equations. The

prospective reserves as the GB and the FDB are known to be zero at termination

of the insurance contract, since at termination, there are no future payments, and

they satisfy backward stochastic differential equations. The backward stochastic

differential equation of the FDB depend on the savings account, since the bonus

payments depend on X(t). Therefore, in order to calculate the FDB and the

bonus cash flow, we first solve the forward problem as the solution of the forward

differential equations for the state-wise projection of X(t) and then, we are able to

solve the backward problem and calculate the FDB and the bonus cash flow. If the

future dividend allocation strategy depends on the FDB, the solution of the forward

problem (calculation of X(t)) depends on the solution of the backward problem

(calculation of the FDB), but the solution of the backward problem depends on

the solution of the forward problem. It is this entanglement, the Chapters 3 and 4

untangle; Chapter 3 studies a simulation based approach, and Chapter 4 studies an

analytical approach.

1.3.3 Chapter 3: An intrinsic value approach to valuation with

forward-backward loops in dividend paying stocks

In this chapter, we study a solution to the forward-backward problem in a general

financial market with the same dependence structure as in the projection model

with a future dividend allocation strategy that depends on the FDB. The asset S(t)

has dynamics

dS(t) = g
(
t, S(t), r(t), V (t)

)
dt+ σ

(
t, S(t), r(t), V (t)

)
dW (t),

where W (t) is a Brownian motion, r(t) is the stochastic interest rate, and V (t) is

the value of an option given by

V (t) = E

[∫ T

t

e−
∫ τ
t

r(s)dsϕ
(
τ, S(τ), r(τ), V (τ)

)
dτ + e−

∫ T
t

r(s)dsΦ
(
S(T )

) ∣∣∣∣∣ Ft

]
.

The asset, the interest rate and the value of the option stipulate a forward-backward

stochastic differential equation. In relation to the projection model, the asset plays
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the role as the retrospective accounts, X(t) and Y (t), and the value of the option

as the FDB. Here, the feedback of V (t) in the dynamics of S(t) corresponds to the

feedback of the FDB in the dynamics of X(t) when allowing for a FDB-dependent

dividend allocation strategy.

The challenging aspect of this problem is the forward-backward structure, since it

is not clear, where to start the simulation. The simulation method to solve the

forward-backward problem, proposed in this chapter, bases on intrinsic values of S(t)

and V (t). The fundamental idea is to set up a deterministic as-if market of intrinsic

values, and then assume a parametric relation between the intrinsic value of the

option and the option value itself to use in a forward simulation of the asset. The

simulation algorithm is divided in three parts. First, the forward-backward element

is handled by solving a system of ordinary forward-backward differential equations

in the deterministic as-if market of intrinsic values using either a perturbation or a

shooting method. Second, we assume a parametric relation between the intrinsic

value of the option calculated in the first step and the option value and perform

a standard forward Monte Carlo simulation of the asset for a given parameter.

Third, the simulation in the second step is performed a number of times for iterated

determination of the parameter. We demonstrate the simulation technique in a

numerical example.

1.3.4 Chapter 4: Reserve-dependent management actions in life

insurance

This chapter considers the calculation of the market reserve in with-profit life

insurance in the case where future management actions including the future dividend

allocation strategy depend on the market reserve itself. Since the market reserve is

the sum of the GB and the FDB, this is the exact same entanglement of retrospective

and prospective reserves as described in Section 1.3.2 above.

In the paper, we consider the market reserve as a function of the savings account,

the surplus, and the stochastic interest rate, and derive a partial differential equation

(PDE) for the market reserve. If we are able to solve the PDE for all possible values

of the savings account, the surplus, and the interest rate, the market reserve can

be expressed in terms of the retrospective accounts. Then, the expression can be

plugged into the dividend allocation strategy, which solves the forward-backward

problem. Solving the PDE on the high dimensional grid consisting of all possible

values of the savings account, the surplus, and the interest rate is computationally

demanding if even possible, and if possible, it is not certain, that the solution fits

into the linearity assumption in the basic projection model. Therefore, we study

analytical solutions of the PDE in the case, where the future dividend allocation

strategy is linear in the savings account, the surplus, and the market reserve. Then
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the state-wise market reserve, V j(t, x, y, r) has representation

V j(t, x, y, r) = hj0(t, r) + hj1(t, r) · x+ hj2(t, r) · y,

where the functions hji (t, r) for j ∈ J and i = 0, 1, 2 satisfy a system of PDE’s, and

x is the value of the savings account and y is the value of the surplus. Hence, the

linearity of the future dividend allocation strategy is inherited in the expression of

the market reserve, and it fits into the basic projection model. To calculate the

market reserve, we still need to solve the PDE for the h-functions, but the dimension

of the PDE is significantly reduced compared to the case without linearity.

If the interest rate is deterministic, the PDE for the h-functions reduces to a system

of ordinary backward differential equations. This motivates an approximation of

the stochastic interest rate with the deterministic forward interest rate. Based on

the approximation and the assumption of linearity of the future dividend allocation

strategy, we are able to calculate the market reserve as a linear function of the savings

account and the surplus where the coefficients (the h-functions) are calculated by

solving ordinary differential equations, which is computationally more tractable than

solving PDE’s.

1.4 Sensitivities of life insurance liabilities

The topic of the Chapters 5, 6, and 7 is sensitivities of life insurance liabilities.

Changes in the valuation basis (r, µ) affect the life insurance liabilities, as for instance

the low interest rate environment throughout the 2010’s and the accelerating decrease

in mortality rates in recent times. This constitutes a risk for insurance companies,

since liabilities increase, and therefore, it is of interest for risk management purposes

to consider sensitivities of life insurance liabilities with respect to the valuation

basis.

Life insurance liabilities are exposed to broadly speaking two types of risk: financial

risks and insurance risks. Financial risks in relation to life insurance liabilities regard

changes in the interest rate. Studies of and methods for hedging this type of risk are

well-established in the literature of financial mathematics. The focus of this thesis is

insurance risks, which are usually divided in two types: unsystematic and systematic

insurance risks. We model the biometric state of the insured by the Markov chain Z,

and for calculation of liabilities, we take the expected value of future payments linked

to Z. Unsystematic insurance risks cover the risk that the future realized payments

differ from the expected value i.e. the liabilities. This type of risk is diversifiable by

the law of large numbers, since for a large insurance portfolio the future payments

converge towards the expected value. The distribution of Z is modelled by specifying

the transition intensities µjk(t). Systematic insurance risks cover the risks that

the transition intensities of the Markov model are not as expected. An example is

the accelerating decrease in the mortality intensity in recent years. Life insurance
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liabilities are sensitive towards changes in the transition intensities, and it constitutes

a large, non-diversifiable, risk for life insurance companies. The focus of the thesis

is studies and hedging of systematic insurance risks.

1.5 Overview of the Chapters 5, 6, and 7

In this section, we give an overview of the last three chapters of this thesis, and

describe their relations to sensitivities of life insurance liabilities. The Chapters 5

and 6 consider methods for hedging systematic insurance risks, and the last chapter

of this thesis, Chapter 7, studies calculation of the risk margin with a scenario-based

model for the Solvency Capital Requirement (SCR).

1.5.1 Chapter 5: Natural hedging in continuous time life

insurance

This chapter studies natural hedging of life insurance liabilities. We consider the

prospective reserve (or life insurance liability) as a function of time and of the

valuation basis µ = (µij)i,j∈J ,i̸=j and study directional shifts of the valuation basis

given by ∆µ. The objective is to construct a portfolio of different insurance products

such that the change in the insurance liability due to the shift in the transition

intensities is neutralized, i.e.

V i(t, µ+∆µ)− V i(t, µ) = 0. (1.5.1)

We denote this natural hedging, and it is a method for hedging systematic insurance

risk since the insurance liability is immunized to changes in the transition intensities.

In the paper, we find a sufficient condition for (1.5.1) to be approximately satisfied

based on a first order Taylor approximation of (1.5.1), that depends on the sensitivity

of the liabilities with respect to the directional shift in the transition intensities.

We use directional (Gateaux) derivatives to measure the sensitivities, and derive a

system of Thiele-inspired differential equations for the Gateaux derivatives of the

life insurance liabilities. Furthermore, we calculate the natural hedging strategy in

two numerical examples.

As a risk management tool for systematic insurance risks, natural hedging has its

limitations. The insurance market is governed by supply and demand, and the

insurance company cannot require that its policyholders have a specific composition

of their insurance coverages such as life insurance and disability insurance to obtain

a natural hedge.

1.5.2 Chapter 6: De-risking in multi-state life insurance

In this chapter, we study an alternative to natural hedging for the hedging of

systematic insurance risks. We assume that the vector of transition intensities, µ, is
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modelled by a diffusion process, that liabilities are evaluated under a deterministic

basis µ̂, and that there exists a market for trading two types of µ-linked securities,

the de-risking option and the de-risking swap. The life insurance company is exposed

to systematic insurance risk if the development of µ differs from the valuation basis,

µ̂, and may reduce this risk by investing in µ-linked securities. We develop a model

that quantifies the systematic insurance risk, and describe the optimization problem

the insurance company faces to choose the amount of de-risking that minimizes risk.

The approach for hedging systematic insurance risk presented in this chapter is

unrealistic in the sense that in reality there exist very few µ-linked securities and

they are all linked to the mortality intensity. The purpose of the model is to quantify

systematic insurance risk in a multi-state model and to study the sensitivity of the

optimal choice of de-risking to various parameters of the model.

1.5.3 Chapter 7: Risk margin calculations with a scenario-based

model for the Solvency Capital Requirement

The Solvency II legislation states that insurance companies should report the risk

margin as part of their balance sheet. The risk margin is the amount another

company would be expected to require to take over the insurance obligation for

taking over systematic insurance risks. Therefore, the risk margin can be considered

measure of systematic insurance risks of the life insurance liabilities.

The Solvency II legislation suggests a cost-of-capital formula to calculate the risk

margin that depends on the SCR for all future years. Calculation of the future

SCR using the standard model is cumbersome and computationally challenging,

and therefore, the legislation suggests four approximation methods to calculate the

risk margin. In the paper, we compare the approximation methods and suggest

a scenario-based model for the SCR to use in the cost-of-capital formula. The

scenario-based model bases on a stress on the transition intensities, µε, and the SCR

is the difference between the stressed and the unstressed liabilities

SCRi(t) = V i(t, µε)− V i(t, µ).

The SCR above is similar to the natural hedging condition in Equation (1.5.1).

One connection is that the risk margin for an insurance portfolio where the natural

hedging condition is satisfied should be equal to zero since systematic insurance risk

is eliminated by natural hedging. Therefore, the SCR in the scenario-based model

to use for calculation of the risk margin is also equal to zero if the natural hedging

condition is satisfied. In the paper, we discuss the choice of stress on the transition

intensities, and describe the calculation of the risk margin in the scenario-based

model.





Chapter 2

Retrospective reserves and bonus with

policyholder behavior

This chapter contains the paper Falden and Nyegaard (2021).

Abstract

Legislation imposes insurance companies to project their assets and lia-

bilities in various financial scenarios. Within the setup of with-profit life

insurance, we consider retrospective reserves and bonus, and we study

projection of balances with and without policyholder behavior. The pro-

jection resides in a system of differential equations of the savings account

and the surplus, and the policyholder behavior options surrender and

conversion to free-policy are included. The inclusion results in a structure

where the system of differential equations of the savings account and

the surplus is non-trivial. We consider a case, where we are able to find

accurate differential equations and suggest an approximation method

to project the savings account and the surplus including policyholder

behavior in general. To highlight the practical applications of the results

in this paper, we study a numerical example.

Keywords: With-profit life insurance; Bonus; Surplus; Dividends; Projection of

balances; Retrospective reserve; Policyholder behavior.

2.1 Introduction

In with-profit life insurance, prudent assumptions about the interest rate and

biometric risks at initialization of an insurance contract result in a surplus emerging

over time. This surplus belongs to the policyholders and must be paid back in

terms of bonus. The redistribution of bonus contains certain degrees of freedom,

which is part of the Management Actions. Furthermore, bonus must be taken into

13
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account when insurance companies determine their assets and liabilities. Legislation

imposes insurance companies to project their balance sheet, and companies must be

able to perform projections of assets and liabilities in a number of scenarios of the

financial market. This requires a specification of the future dividend strategy and,

in general, a specification of the Future Management Actions. Management actions

may depend on the financial scenario, the present as well as the past entries of the

balance sheet and their relations, and other aspects of the financial situation of the

insurance company. Therefore, future management actions have a complex nature

and are difficult to predict and formalize mathematically. In this paper, we model

the projection of the savings account and the surplus of an insurance contract, where

we assume the future dividend strategy has a simple structure. How the dividend

strategy is designed in practise to fit the model is beyond the scope of this paper,

but the model establishes a foundation for projecting balances in life insurance. In

the projection model, biometric risks play an important role as well. We model the

state of the policyholder using a Markov model, and study state-wise projections of

the savings account and the surplus.

The modeling of surplus and bonus in life insurance is not new. Norberg (1999)

introduces the individual surplus of a life insurance contract, and Steffensen (2006)

derives differential equations for prospective reserves in the case, where dividends are

linked to the surplus. In our model, we also consider dividends linked to the surplus,

but distinct from Steffensen (2006), we derive differential equations for the projected

savings account and surplus. Jensen and Schomacker (2015) study the valuation of

an insurance contract with the bonus scheme spoken of as additional benefits, where

dividends are used to buy more insurance, in a scenario-based model for the financial

market. Our paper has some similarities with Jensen and Schomacker (2015) in the

sense that we also study a scenario-based model with additional benefits. In Jensen

and Schomacker (2015) the bonus allocation is discretized, while we allocate bonus

continuously, resulting in difference equations in Jensen and Schomacker (2015)

and ordinary differential equations in our model. Furthermore, we study state-wise

projections of the savings account and the surplus, whereas Jensen and Schomacker

(2015) study the expected savings account and the expected surplus.

Steffensen (2006) considers prospective reserves, while we focus on the savings

account, which is a retrospective reserve including past bonus, and the surplus of an

insurance contract. The retrospective approach without bonus is studied in Norberg

(1991) and studied with bonus in Asmussen and Steffensen (2020). Bruhn and Lollike

(2020) also reflect on the retrospective perspective, and study retrospective reserves

with and without bonus. They model the savings account and the surplus of an

insurance contract, and derive differential equations for the state-wise projections.

The retrospective approach is practicable when considering projection of liabilities

in various financial scenarios, since the retrospective reserves depend on the past

interest rate, whereas prospective reserves depend on the unknown future interest
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rate.

This paper serves as an extension to Bruhn and Lollike (2020). The extension resides

in the incorporation of the policyholder behavior options surrender and conversion

to free-policy. Upon surrender, the policyholder receives a single payment and all

future payments cancel, and with the free-policy option, all future premiums cancel

and benefits are reduced by a free-policy factor. We model policyholder behavior

as random transitions in the Markov model from the classical life insurance setup

extended with surrender and free-policy states as studied in for instance Henriksen

et al. (2014). This is in contrast to modeling rational policyholder behavior as in

Steffensen (2002). Buchardt and Møller (2015) study the calculation of prospective

reserves without bonus including policyholder behavior using a cash flow approach,

and Buchardt, Møller, and Schmidt (2014) consider the inclusion of policyholder

behavior in semi-Markov models. A general extension of the concepts to non-

Markovian models is studied in Christiansen and Djehiche (2020), where in addition

payments are allowed to depend on prospective reserves. In our model, payments

depend on the retrospective savings account. In Ahmad, Buchardt, and Furrer (2022),

they study a setup similar to ours with bonus and policyholder behavior, but they are

included separately. We include policyholder behavior options in combination with

bonus in our model of the retrospective savings account and surplus, and our approach

is based on differential equations of the state-wise projections. Buchardt and Møller

(2015) introduce the notion of modified probabilities to calculate prospective reserves

including conversion to free-policy. The same modified probabilities appear in our

system of differential equations for the state-wise projections of the savings account

and the surplus.

We propose here a framework for the projection of liabilities in various financial

scenarios with a general model of the future management actions, among these the

redistribution of bonus. Furthermore, any policyholder response to the financial

market and the savings account and the surplus can be implemented in our framework.

Other papers derive or suggest specific rules for management and/or policyholder

decision making. In both financial and actuarial literature, optimization of life

insurance payments are discussed, typically from an individual point of view over

the life cycle. Seminal works are Richard (1975) and Campbell (1980), but the

area continues to attract interest, see for instance Chen et al. (2006), Chiappori

et al. (2006), and Kraft and Steffensen (2008). Browne and Kim (1993) discuss life

insurance demand from a macroeconomic perspective, and Nielsen (2005) considers

optimal distribution of surplus on a corporate level. Modeling or derivation of optimal

policyholder behavior is a recurrent topic in actuarial literature. De Giovanni (2010)

models surrender risk adapted to the financial market, and the modeling and

statistical examination of surrender on macroeconomic conditions are studied in for

instance Loisel and Milhaud (2011) and Barsotti, Milhaud, and Salhi (2016). The

modeling of free-policy behavior is most often assumed random and uncorrelated
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across the portfolio, see for instance Henriksen et al. (2014) and Buchardt and Møller

(2015).

In Section 2.2, we present the general life insurance setup and the model of the

savings account, the surplus, and the dividends. We define the projection of the

savings account and the surplus without policyholder behavior and state the results

from Bruhn and Lollike (2020) in Section 2.3. Section 2.4 extends the setup from

Section 2.2 to include policyholder behavior. Section 2.5 consists of the key results

in this paper. We consider the ideal free-policy factor in our retrospective setup

including bonus, but this free-policy factor does not satisfy the simple structure

of the model in Section 2.3. Therefore, the result concerning the projection of

the savings account and the surplus in Section 2.3 does not apply with the ideal

free-policy factor. We consider the case with all benefits regulated by bonus. In

this case, we show that we actually can project the savings account and the surplus

with the ideal free-policy factor. Furthermore, we suggest an approximation of the

free-policy factor, for which the state-wise projections of the savings account and

the surplus coincide with the state-wise projections using the ideal free-policy factor.

This is one of the two main results of the paper. The second main result is a method

to project the savings account and the surplus with the approximated free-policy

factor in a general case. In Section 2.6, we present a numerical example to emphasize

the practical applications of our results. Section 2.7 concludes the paper.

2.2 Life Insurance Setup

The classic multi-state setup in life insurance is taken as a starting point, and

we extend this with policyholder behavior in Section 2.4. A Markov process,

Z =
(
Z(t)

)
t≥0

, in a finite state space J ◦ = {0, 1, ..., J − 1} describes the state of the

holder of a life insurance contract, and payments in the contract link with sojourns

in states and transitions between states. The transition probabilities of Z are

pij(s, t) = P
(
Z(t) = j

∣∣ Z(s) = i
)
,

for i, j ∈ J ◦ and s ≤ t. We assume that the transition intensities

µij(t) = lim
h↓0

1

h
pij(t, t+ h),

exist for i, j ∈ J ◦, i ̸= j.

The transition probabilities satisfy the Kolmogorov’s differential equations (see for

instance Buchardt and Møller (2015) Proposition 4).

The processes Nk(t) for k ∈ J ◦ count the number of jumps of Z into state k up to

time t.

Nk(t) = #{s ∈ (0, t] | Z(s−) ̸= k, Z(s) = k},
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where Z(s−) = limh↓0 Z(s− h).

We consider with-profit life insurance products, where payments specified in the

contract are based on prudent assumptions about interest rate and transition

intensities. These assumptions are called the technical basis, and denoted by

(r∗, µ∗
ij) for i, j ∈ J ◦, i ≠ j. The market basis models the actual development of the

interest rate and transition intensities of the insurance portfolio. The market basis

is denoted by (r, µij) for i, j ∈ J ◦, i ̸= j. The market interest rate is stochastic,

and practice is to simulate a number of scenarios of the interest rate and study the

projection model in each scenario, as we do in the numerical simulation study in

Section 2.6. Available information about the market interest rate is represented by

the filtration Fr =
(
Fr

t

)
t≥0

, where Fr
t = σ

(
r(s)

∣∣0 ≤ s ≤ t
)
. We assume the market

transition intensities are deterministic.

Due to the prudent technical basis, a surplus arises, which by legislation is to be

paid back to the policyholders as bonus. We use the bonus scheme spoken of as

additional benefits, where bonus is used to buy more insurance. This is denoted as

defined contributions since premiums are fixed and benefits are increased by bonus

in contrast to defined benefits, where bonus is used to lower premiums and benefits

are fixed.

The accumulated payments of an insurance contract is decomposed into two payment

streams; one that contains the payments not regulated by bonus, B1, and one that

contains the profile of payments regulated by bonus, B2, as presented in Asmussen

and Steffensen (2020). An example is an insurance contract consisting of a life

annuity and a term insurance. Often only the life annuity is scaled by bonus and

the term insurance as well as the premiums are fixed. Then the payment stream

B1 consists of the term insurance and the premiums, and the payment stream B2

consists of the life annuity.

The dynamics of the payment streams are in the following form for i = 1, 2

dBi(t) = b
Z(t)
i (t)dt+

∑
k:k ̸=Z(t−)

b
Z(t−)k
i (t)dNk(t), (2.2.1)

where bji (t) denotes the payment rate during sojourn in state j and bjki (t) the

single payment upon transition from state j to state k at time t. The payment

functions bji (t) and b
jk
i (t) are assumed to be deterministic and sufficiently regular.

For notational convenience, we disregard lump sum payments at fixed time points

during sojourn of states, even though it does not impose mathematical difficulties.

Definition 2.2.1. The prospective technical reserve at time t ≤ n for payment

stream dBi(t), i = 1, 2 is given by

V
∗Z(t)
i (t) = E∗

[∫ n

t

e−
∫ s
t
r∗(u)dudBi(s)

∣∣∣∣∣ Z(t)
]
,
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where n denotes termination of the contract and E∗ means that the technical transition

intensities, µ∗
jk, j, k ∈ J ◦, j ̸= k, are used in the distribution of Z.

Since the technical interest rate and transition intensities are determined at initializa-

tion of the insurance contract and therefore known for all t ∈ [0, n], the prospective

technical reserves are deterministic conditional on Z(t) = j. The principle of

equivalence states that V
∗Z(0)
1 (0) + V

∗Z(0)
2 (0) = 0.

2.2.1 The Savings Account, the Surplus and the Dividends

Similar to Asmussen and Steffensen (2020), the surplus is returned to the insured

through a dividend payment stream D. A process Q(t) denotes the number of

payment processes B2 bought up to time t. Additional benefits are bought under

the technical basis, and as dividends are used to buy B2(t) at the price of V ∗
2 (t), we

must have that

dDZ(t)(t) = dQ(t)V
∗Z(t)
2 (t). (2.2.2)

The policyholder experiences the total payment process with dynamics

dB(t) = dB1(t) +Q(t−)dB2(t),

which is the payment process guaranteed at time t. A decreasing Q results in

decreasing guaranteed benefits, which from a practical point-of-view is unreasonable.

A negative value of Q results in benefit payments from the insured to the insurance

company which is unrealistic. We do not require that Q is non-decreasing or that Q

is non-negative in this setup in order to obtain a simple mathematical model.

The savings account of an insurance contract is denoted by X(t), and it is the

technical value of future payments guaranteed at time t ≥ 0, i.e. the following

relation between X(t) and Q(t) holds

X(t) = V
∗Z(t)
1 (t) +Q(t−)V

∗Z(t)
2 (t) ⇔ Q(t−) =

X(t)− V
∗Z(t)
1 (t)

V
∗Z(t)
2 (t)

.

The savings account is equal to zero at the beginning of the insurance contract,

X(0−) = 0. Then by the principle of equivalence, V
∗Z(0−)
1 (0−) + V

∗Z(0−)
2 (0−) = 0,

the initial condition Q(0−) = 1 holds.

Due to the relationship between X and Q, the payment process, dB(t), is a linear

function in X

dB(t,X(t)) = bZ(t)(t,X(t))dt+
∑

k:k ̸=Z(t−)

bZ(t−)k(t,X(t−))dNk(t), (2.2.3)
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where

bj(t, x) = bj1(t) +
x− V ∗j

1 (t)

V ∗j
2 (t)

bj2(t),

bjk(t, x) = bjk1 (t) +
x− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t).

Proposition 2.2.2. The savings account, X, has dynamics

dX(t) = r∗(t)X(t)dt− dB(t,X(t)) + dDZ(t)(t)

+
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−))
(
dNk(t)− µ∗

Z(t−)k(t)dt
)
,

where the sum-at-risk is given by

R∗jk(t, x) = bjk(t, x) + χjk(t, x)− x,

and

χjk(t, x) = V ∗k
1 (t) +

x− V ∗j
1 (t)

V ∗j
2 (t)

V ∗k
2 (t),

is the technical value of guaranteed payments after the transition from state j to

state k.

Proof. See Asmussen and Steffensen (2020), Chapter 6.7.

The surplus Y (t) is the difference between past premiums less benefits over time

[0, t] accumulated with the market interest rate and the savings account at time t.

Y (t) = −
∫ t

0

e
∫ t
s
r(u)dudB(s,X(s))−X(t).

The market interest rate over time [0, t] is known at time t such that Y (t) only

depends on the market interest rate prior to time t, and Y (0−) = 0.

Proposition 2.2.3. The surplus, Y , has dynamics

dY (t) = r(t)Y (t)dt− dDZ(t)(t) + cZ(t)(t,X(t))dt

−
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−))
(
dNk(t)− µZ(t−)k(t)dt

)
,

where the surplus contribution is given by

cj(t, x) = (r(t)− r∗(t))x+
∑
k:k ̸=j

R∗jk(t, x)(µ∗
jk(t)− µjk(t)).
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Proof. See Asmussen and Steffensen (2020), Chapter 6.7.

We assume that the technical basis is prudent compared to the market basis such

that the surplus contribution, cj(t, x), is non-negative. A prudent technical basis

chosen several years ago may not be prudent today due to the current low interest

rate environment and therefore the interest rate part of the surplus contribution

may be negative resulting in a possibly negative surplus. In practice, a negative

surplus would be covered by the equity of the insurance company, but in this setup,

we allow the surplus to be negative.

The dividend payments stream, dDZ(t)(t), describes how the surplus is returned to

the insured. We assume that the dividend process is continuous and depends on the

savings account and the surplus, such that the dynamics are

dDZ(t)(t) = δZ(t)(t,X(t), Y (t))dt.

The dynamics of the savings account and the surplus are affine if and only if the

dividend process is. The main results of this paper rely on affinity in the dynamics

of the savings account and the surplus, and therefore we make the assumption that

the dividend process is affine in X(t) and Y (t)

δj(t, x, y) = δj0(t) + δj1(t) · x+ δj2(t) · y, (2.2.4)

for sufficiently regular and deterministic functions δj0, δ
j
1 and δj2, j ∈ J ◦. This is

a restriction in the degree of freedom in the dividend allocation strategy of the

insurance companies, and therefore of the future management actions in the model.

How the dividend strategy is chosen in practise to cope with our model is beyond the

scope of this paper, but other papers derive specific rules for management actions

and agents behavior, see for instance Nielsen (2005), Chen et al. (2006), and Kraft

and Steffensen (2008). The restriction that the dividends are affine may lead to

negative dividends, which results in a decreasing Q and that the insurance company

lowers the guaranteed benefits. From a practical point-of-view this is unreasonable,

but affine dividends turn out to be mathematical tractable, and therefore we make

the assumption of affine dividends in our model. The user of the model must be

aware of the possibility of negative dividends.

2.3 State-wise Projections without Policyholder Behavior

In order to satisfy legislation, insurance companies and present research focus on

the projection of balances in life insurance using simulation methods. Both the

savings account, X, and the surplus, Y , are entries of the balance sheet, and in

order to project these, we simulate scenarios of the interest rate and study the

projection of the savings account and the surplus in each scenario. To account for
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the biometric risks, one approach is to use simulation methods. In practice, it can

be computational heavy to simulate the biometric history of an entire insurance

portfolio, and therefore we study state-wise projections to eliminate the biometric

part of the simulation.

Definition 2.3.1. The state-wise projections of the savings account, X, and the

surplus, Y , are

X̃j(t) = EZ(0)

[
1{Z(t)=j}X(t)

∣∣∣ Fr
t

]
,

Ỹ j(t) = EZ(0)

[
1{Z(t)=j}Y (t)

∣∣∣ Fr
t

]
,

for j ∈ J ◦. The subscript Z(0) denotes that the expectation is the conditional

expectation given Z(0). The expectation is taken under the market basis conditional

on Z(0) and the interest rate filtration at time t. Therefore, the market interest rate

is known up to and including time t, but information about the state process Z is

only known at time 0.

Bruhn and Lollike (2020) derive differential equations for the state-wise projections

of the savings account and the surplus from Definition 2.3.1 to use for projection in

a given interest rate scenario. The theorem below states the main result of Bruhn

and Lollike (2020), and the purpose of this paper is to extend these differential

equations to a setup including policyholder behavior.

Lemma 2.3.2. The dynamics of the savings account, X, from Proposition 2.2.2

and the dynamics of the surplus, Y , from Proposition 2.2.3 are in the form

dX(t) =
(
α
Z(t)
0,X (t) + α

Z(t)
1,X (t)X(t) + α

Z(t)
2,X (t)Y (t)

)
dt

+
∑

k:k ̸=Z(t−)

(
λ
Z(t−)k
0,X (t) + λ

Z(t−)k
1,X (t)X(t−)

)
dNk(t),

dY (t) =
(
α
Z(t)
0,Y (t) + α

Z(t)
1,Y (t)X(t) + α

Z(t)
2,Y (t)Y (t)

)
dt

+
∑

k:k ̸=Z(t−)

(
λ
Z(t−)k
0,Y (t) + λ

Z(t−)k
1,Y (t)X(t−)

)
dNk(t),

for deterministic functions αj
i,H and λjki,H for i = 0, 1, 2, H = X,Y and j, k ∈ J ◦,

j ̸= k.

See Appendix 2.A for the expressions of α and λ for the savings account and the

surplus.

Theorem 2.3.3. Let X and Y have dynamics in the form of Lemma 2.3.2. Then

the state-wise projections of X and Y from Definition 2.3.1 satisfy the following
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system of ordinary differential equations

d

dt
X̃j(t) =

∑
k:k ̸=j

µkj(t)X̃
k(t)−

∑
k:k ̸=j

µjk(t)X̃
j(t)

+ αj
0,X(t)pZ(0)j(0, t) + αj

1,X(t)X̃j(t) + αj
2,X(t)Ỹ j(t)

+
∑
k:k ̸=j

µkj(t)
(
λkj0,X(t)pZ(0)k(0, t) + λkj1,X(t)X̃k(t)

)
,

d

dt
Ỹ j(t) =

∑
k:k ̸=j

µkj(t)Ỹ
k(t)−

∑
k:k ̸=j

µjk(t)Ỹ
j(t)

+ αj
0,Y (t)pZ(0)j(0, t) + αj

1,Y (t)X̃
j(t) + αj

2,Y (t)Ỹ
j(t)

+
∑
k:k ̸=j

µkj(t)
(
λkj0,Y (t)pZ(0)k(0, t) + λkj1,Y (t)X̃

k(t)
)
,

and X̃j(0−) = Ỹ j(0−) = 0 for j ∈ J ◦.

Proof. See Bruhn and Lollike (2020).

Kolmogorov’s forward differential equations can be used to calculate the transition

probabilities in Theorem 2.3.3.

2.4 Life Insurance Setup Including Policyholder Behavior

Now, we extend the setup from Section 2.2 to include policyholder behavior. We

include the policyholder behavior options surrender and conversion to free-policy.

Upon surrender, the policyholder receives a single payment and all future payments

cancel. With the free-policy option, all future premiums cancel, and benefits

are reduced by a free-policy factor, f , that depends on the time at which the

policyholder goes from premium paying to free-policy. We study how the introduction

of policyholder behavior affects the dynamics of the savings account, X, from

Proposition 2.2.2 and the surplus, Y , from Proposition 2.2.3. The objective is to

be able to perform state-wise projections of the savings account and the surplus

including policyholder behavior.

Policyholder behavior is modelled in the classic way by extending the state space

of the Markov chain, Z, to include surrender and free policy states as presented

in Henriksen et al. (2014), and the state space of Z from Section 2.2 is extended

as illustrated in Figure 2.1. We do not consider the modeling or derivation of the

surrender rate and the free-policy rate. The modeling of optimal surrender rates is

studied in for instance De Giovanni (2010), Loisel and Milhaud (2011), and Barsotti,

Milhaud, and Salhi (2016), but little attention has been paid in existing literature

to the choice of free-policy rate, which is often modelled as a deterministic intensity

as in Henriksen et al. (2014) and Buchardt and Møller (2015). The extension of the
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0 1

J − 1

· · ·

J

J

J + 1 J + 2

2J

· · ·

2J + 1

J
f

Figure 2.1: Multi-state model including policyholder behavior options

state space in Figure 2.1 can also be obtained as a specific case of the more general

state space expansion in Christiansen and Djehiche (2020).

The state J corresponds to surrender, and we assume that surrender can only happen

from state 0. The state space J f denotes the free-policy states, and it is a copy

of J in the sense that it holds the same number of states and that state i ∈ J f

corresponds to state i− (J + 1) ∈ J . We assume that conversion to free-policy can

only occur from state 0 and that the transition intensities in J f equal the transition

intensities in J . We assume throughout the rest of this paper that Z(0) ∈ J . The

classical 7-state model from for example Buchardt and Møller (2015) is contained in

this setup, where state 0 in our model corresponds to the premium-paying active

state.

In order to model payments including policyholder behavior, the payment streams

from Equation (2.2.1) are decomposed in benefits, dB+
i (t) and premiums, dB−

i (t) for

i = 1, 2. The sojourn payments and payments upon transition are then decomposed

in bj+i and bj−i , and bjk+i and bjk−i respectively. We consider defined contributions

such that the payment stream increased by bonus only contains benefits i.e. bj−2 (t) =

bjk−2 (t) = 0 for all t ≥ 0 and j, k ∈ J , j ̸= k.

The technical benefit and premium reserves respectively in the non-free-policy states,
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Z(t) ∈ J , are given by

V
∗Z(t)±
i (t) = E∗

[∫ n

t

e−
∫ s
t
r∗(u)dudB±

i (s)

∣∣∣∣∣ Z(t)
]
,

for i = 1, 2, and where n is termination of the insurance contract.

Defined contributions imply that

V
∗Z(t)
2 (t) = V

∗Z(t)+
2 (t) + V

∗Z(t)−
2 (t) = V

∗Z(t)+
2 (t), (2.4.1)

for Z(t) ∈ J .

The duration U in the free-policy states is

U(t) = inf{s ∈ [0, t] | Z(t− s) ∈ J }.

Payments in the free-policy states equal a free-policy factor, f ∈ [0, 1], times the

benefits in the corresponding premium-paying state. We allow the free-policy

factor to depend on the savings account, i.e. f(t,X(t)), and the benefits are

reduced with the free-policy factor evaluated at the time of conversion to free-

policy, f(t−U(t), X(t−U(t))). We introduce the mapping of Z(t) that returns the

corresponding premium-paying state if Z(t) ∈ J f

g
(
Z(t)

)
= 1{Z(t)∈J f}

(
Z(t)− (J + 1)

)
.

Policyholder behavior is modelled solely on the market basis, and therefore µ∗
0J (t) =

µ∗
0(J+1)(t) = 0 for all t ≥ 0. The remaining transition intensities in J f equal the

corresponding transition intensities in J on the technical basis. Hence, the technical

reserve in a free-policy state equals the free-policy factor times the technical benefit

reserve in the corresponding premium-paying state

V
∗Z(t)
i (t) = f(t− U(t), X(t− U(t)))V

∗g(Z(t))+
i (t),

for i = 1, 2 and Z(t) ∈ J f .

The inclusion of policyholder behavior changes the payment process from Equation

(2.2.3) and the sum-at-risk from Proposition 2.2.2. Now, the payment process

and the sum-at-risk depend on time, the savings account, and the duration in the

free-policy states.

Proposition 2.4.1. The total payment process guaranteed at time t including

policyholder behavior is

dB(t,X(t), U(t), X(t− U(t)))

= bZ(t)(t,X(t), U(t), X(t− U(t)))dt

+
∑

k:k ̸=Z(t−)

bZ(t−)k(t,X(t−), U(t), X((t− U(t))−))dNk(t),
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where the continuous payment function during sojourns in states and the payment

function upon transition between states are

bj(t, x,u, xf )

= 1{j∈J}

(
bj1(t) +

x− V ∗j
1 (t)

V ∗j+
2 (t)

bj2(t)
)

+ 1{j∈J f}

(
f(t− u, xf )b

g(j)+
1 (t) +

x− V
∗g(j)+
1 (t)f(t− u, xf )

V
∗g(j)+
2 (t)

b
g(j)+
2 (t)

)
,

bjk(t, x,u, xf )

= 1{j,k∈J , j ̸=k}

(
bjk1 (t) +

x− V ∗j
1 (t)

V ∗j+
2 (t)

bjk2 (t)
)

+ 1{j,k∈J f , j ̸=k}f(t− u, xf )b
g(j)g(k)+
1 (t)

+ 1{j,k∈J f , j ̸=k}
x− V

∗g(j)+
1 (t)f(t− u, xf )

V
∗g(j)+
2 (t)

b
g(j)g(k)+
2 (t),

for j, k ∈ J ∪ J f , j ̸= k. We assume that there are no continuous payments in the

surrender states, and that there is no payment upon transition between J and J f .

Proposition 2.4.2. Including policyholder behavior, the sum-at-risk from Proposi-

tion 2.2.2 is

R∗jk(t, x,u, xf )

= bjk(t, x, u, xf )

+ 1{j,k∈J , j ̸=k}

(
V ∗k
1 (t) +

x− V ∗j
1 (t)

V ∗j+
2 (t)

V ∗k+
2 (t)− x

)
+ 1{j,k∈J f , j ̸=k}V

∗g(k)+
1 (t)f(t− u, xf )

+ 1{j,k∈J f , j ̸=k}

(
x− V

∗g(j)+
1 (t)f(t− u, xf )

V
∗g(j)+
2 (t)

V
∗g(k)+
2 (t)− x

)
+ 1{j=0, k=J+1}

(
V

∗g(k)+
1 (t)f(t, x) +

x− V ∗j
1 (t)

V ∗j+
2 (t)

V
∗g(k)+
2 (t)f(t, x)− x

)
.

The last line corresponds to the sum-at-risk upon conversion to free-policy, where

u = 0.

Remark 2.4.3. In the last line of the sum-at-risk from Proposition 2.4.2, g(k) =

g(J + 1) = 0 = j, and by Equation (2.4.1), the sum-at-risk upon conversion to

free-policy is (
x− V ∗0−

1 (t)
)
f(t, x)− x.
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The dynamics of the savings account, X, and the surplus, Y , including policyholder

behavior are equal to the dynamics in Proposition 2.2.2 and Proposition 2.2.3,

where the payment process and the sum-at-risk are given by Proposition 2.4.1 and

Proposition 2.4.2. Thus, the dynamics of the savings account are

dX(t) = r∗(t)X(t)dt− dB(t,X(t), U(t), X(t− U(t))) + δZ(t)(t,X(t), Y (t))dt

+
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−), U(t−), X((t− U(t−))−))

×
(
dNk(t)− µ∗

Z(t−)k(t)dt
)
, (2.4.2)

and the dynamics of the surplus are

dY (t) = r(t)Y (t)dt− δZ(t)(t,X(t), Y (t))dt+ cZ(t)(t,X(t), U(t), X(t− U(t)))dt

−
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−), U(t−), X((t− U(t−))−))

×
(
dNk(t)− µZ(t−)k(t)dt

)
, (2.4.3)

where the surplus contribution is given by

cj(t, x, u, xf ) = (r(t)− r∗(t))x+
∑
k:k ̸=j

R∗jk(t, x, u, xf )(µ∗
jk(t)− µjk(t)).

The dividend strategy δ is given by Equation (2.2.4).

The above dynamics of the savings account and the surplus contain the free-policy

factor, f , and the duration, U(t), which implies that they are not in the form of

Lemma 2.3.2. Therefore, Theorem 2.3.3 cannot be used to project the savings

account and the surplus including policyholder behavior.

2.5 State-wise Projections Including Policyholder Behavior

In this section, the main results of the paper are presented by extending the result

from Section 2.3 to include policyholder behavior. First, we describe the inclusion

of policyholder behavior in the life insurance setup with bonus and the choice of

free-policy factor. In general, the inclusion of the ideal choice of free-policy factor

breaks the linearity assumption of Section 2.3. We consider a certain case where the

linearity assumption is satisfied, and suggest an approximation of the ideal free-policy

factor. The main results of this paper are that in the certain case, the state-wise

projections of the savings account and the surplus with the ideal free-policy factor

and the approximated free-policy factor respectively coincide, and that we extend

Theorem 2.3.3 to include policyholder behavior in a general case.

2.5.1 Policyholder Behavior Including Bonus

The extension of the classic life insurance setup without bonus to include policyholder

behavior is described in existing literature. See Buchardt, Møller, and Schmidt
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(2014) or Buchardt and Møller (2015) for a description of this extension. Without

bonus, the payment upon surrender is usually chosen to be the technical reserve in

state 0, b0J(t) = V ∗0(t), such that the insured receive their savings account upon

surrender, the sum-at-risk upon surrender is equal to zero, and the modeling of

surrender can be omitted on the technical basis. Without bonus, the technical

reserve, V ∗(t), is the technical value of future payments guaranteed at time t, since

all payments are guaranteed. In our setup with bonus, this corresponds to the

savings account, X(t). The payment upon surrender in the setup with bonus is equal

to the savings account X(t) such that bonus obtained prior to time t is included

in the payment upon surrender. Then the sum-at-risk of the savings account upon

surrender is equal to zero. This complies with the assumption that payments are

linear in the savings account.

Without bonus, the free-policy factor is usually chosen according to the principle of

equivalence such that there is no jump in the technical reserve upon conversion to

free-policy, i.e.

f◦(t) =
V ∗0(t)

V ∗0+(t)
,

where the superscript ◦ refer to the setup without bonus.

To resemble the setup without bonus, the ideal free-policy factor in the setup with

bonus is the free-policy factor, where the sum-at-risk of the savings account upon

conversion to free-policy is equal to zero, resulting in no jump in X upon conversion

to free-policy. The sum-at-risk upon conversion to free-policy is given in Remark

2.4.3, and setting this equal to zero implies that

f(t,X(t−)) =
X(t−)

X(t−)− V ∗0−
1 (t)

. (2.5.1)

This free-policy factor is nonlinear in the savings account, which implies that the

dynamics of the savings account and the surplus from Equations (2.4.2) and (2.4.3)

do not satisfy the linearity assumption in Lemma 2.3.2 with this choice of free-policy

factor.

The objective when including policyholder behavior is to ensure that the savings

account is unaffected when the behavior option is exercised. This is achieved when

the sum-at-risk is equal to zero upon surrender and upon conversion to free-policy.

In the study of prospective reserves, Christiansen and Djehiche (2020) denote this

concept actuarial equivalence, and obtain adjustment factors similar to our free-

policy factor, but their adjustment factors depend on the prospective reserve where

our free-policy factor depends on the retrospective savings account.

Let Xid be the savings account and let Yid be the surplus with the ideal free-policy

factor from Equation (2.5.1) above. Similar to Definition 2.3.1, the state-wise
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projections of the savings account and the surplus are given by

X̃j
id(t) = EZ(0)

[
1{Z(t)=j}Xid(t)

∣∣∣ Fr
t

]
, (2.5.2)

Ỹ j
id(t) = EZ(0)

[
1{Z(t)=j}Yid(t)

∣∣∣ Fr
t

]
, (2.5.3)

for j ∈ J ∪ J f .

2.5.2 The Case with All Benefits Regulated by Bonus

We consider the case, where all benefits are regulated by bonus such that the payment

stream not increased by bonus, B1, only contains premiums i.e. B+
1 = 0. In this

case, we show that the dynamics of the savings account and the surplus with the

ideal free-policy factor from Equation (2.5.1), are in the form of Lemma 2.3.2 such

that Theorem 2.3.3 can be used to find differential equations for the state-wise

projections of the savings account and the surplus including policyholder behavior.

In the example of an insurance contract consisting of a life annuity and a term

insurance, both products are regulated by bonus in the case B+
1 = 0, in contrast to

the case where only the life annuity is scaled by bonus.

The assumptions of defined contributions and B+
1 = 0 imply that the total payment

process has dynamics

dB−
1 (t) +Q(t−)dB+

2 (t),

where Q(0−) = 1 due to the principle of equivalence.

In the continuous payment functions during sojourns in states and the payment

functions upon transition between states from Proposition 2.4.1, the terms including

the free-policy factor are multiplied by either bj+1 , bjk+1 or V ∗j+
1 for j, k ∈ J . In the

case B+
1 = 0, these are all equal to zero and therefore the free-policy factor does not

appear in the payment functions.

The continuous payment functions during sojourns in states and the payment

functions upon transition between states from Proposition 2.4.1 are in this case

bj(t, x) = 1{j∈J}

(
bj−1 (t) +

x− V ∗j−
1 (t)

V ∗j+
2 (t)

bj+2 (t)
)

+ 1{j∈J f}

( x

V
∗g(j)+
2 (t)

b
g(j)+
2 (t)

)
, (2.5.4)

bjk(t, x) = 1{j,k∈J , j ̸=k}

(
bjk−1 (t) +

x− V ∗j−
1 (t)

V ∗j+
2 (t)

bjk+2 (t)
)

+ 1{j,k∈J f , j ̸=k}

( x

V
∗g(j)+
2 (t)

b
g(j)g(k)+
2 (t)

)
, (2.5.5)
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for j, k ∈ J ∪ J f .

Similar to the payment functions, the terms including the free-policy factor in the

sum-at-risk from Proposition 2.4.2 are multiplied by V ∗j+
1 for j ∈ J , except for

the sum-at-risk upon conversion to free-policy. Thus, in the case B+
1 = 0, the

sum-at-risk is

R∗jk(t, x) = bjk(t, x) + 1{j,k∈J , j ̸=k}

(
V ∗k−
1 (t) +

x− V ∗j−
1 (t)

V ∗j+
2 (t)

V ∗k+
2 (t)− x

)
+ 1{j,k∈J f , j ̸=k}

(
x

V
∗g(j)+
2 (t)

V
∗g(k)+
2 (t)− x

)
+ 1{j=0, k=J+1}

((
x− V ∗j−

1 (t)
)
f(t, x)− x

)
. (2.5.6)

With the free-policy factor from Equation (2.5.1), the last line in the sum-at-risk

above is equal to zero. Therefore, in the case B+
1 = 0 with the free-policy factor

from Equation (2.5.1), neither the payment functions (2.5.4) and (2.5.5) nor the

sum-at-risk (2.5.6) depend on the duration in the free-policy states, and they are

linear in the savings account. This implies that the dynamics of Xid(t) and Yid(t)

are in the form of Lemma 2.3.2, leading to the result in Theorem 2.3.3. Hence, in

this case, we actually have differential equations for the projected savings account

and the projected surplus with the free-policy factor from Equation (2.5.1) given by

d

dt
X̃j

id(t) =
∑
k:k ̸=j

µkj(t)X̃
k
id(t)−

∑
k:k ̸=j

µjk(t)X̃
j
id(t)

+ α̂j
0,X(t)pZ(0)j(0, t) + α̂j

1,X(t)X̃j
id(t) + α̂j

2,X(t)Ỹ j
id(t)

+
∑
k:k ̸=j

µkj(t)
(
λ̂kj0,X(t)pZ(0)k(0, t) + λ̂kj1,X(t)X̃k

id(t)
)
, (2.5.7)

d

dt
Ỹ j
id(t) =

∑
k:k ̸=j

µkj(t)Ỹ
k
id(t)−

∑
k:k ̸=j

µjk(t)Ỹ
j
id(t)

+ α̂j
0,Y (t)pZ(0)j(0, t) + α̂j

1,Y (t)X̃
j
id(t) + α̂j

2,Y (t)Ỹ
j
id(t)

+
∑
k:k ̸=j

µkj(t)
(
λ̂kj0,Y (t)pZ(0)k(0, t) + λ̂kj1,Y (t)X̃

k
id(t)

)
, (2.5.8)

and X̃j
id(0−) = Ỹ j

id(0−) = 0 for j ∈ J ∪ J f . The expressions for α̂j and λ̂jk are in

Appendix 2.B.

We compare the differential equations of the projected savings account and the

projected surplus in the case B+
1 = 0 using the free-policy factor from Equation

(2.5.1) with the differential equations without policyholder behavior. This comes

down to a comparison of the coefficients αj and λjk from Appendix 2.A and α̂j and

λ̂jk from Appendix 2.B. The coefficient αj and the corresponding α̂j consist of the
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same terms, but α̂j is decomposed in the cases j ∈ J and j ∈ J f in the same sense

as the payment functions and the sum-at-risk from Equations (2.5.4), (2.5.5) and

(2.5.6), since there are only benefits in the free-policy states. This also goes for λjk

and λ̂jk.

Remark 2.5.1. The case B+
1 = B+

2 corresponds to the case B+
1 = 0, since the total

payment process when B+
1 = B+

2 is

dB1(t) +Q(t−)dB+
2 (t) = dB−

1 (t) + (1 +Q(t−)︸ ︷︷ ︸
=Q̃(t−)

)dB+
2 (t),

which has the same form as the payment process in the case B+
1 = 0, but where

Q̃(0−) = 2 since Q(0−) = 1 due to the principle of equivalence. When the benefits

in B1 are equal to the benefits in B2, all benefits are regulated equally by bonus,

and therefore the case B+
1 = B+

2 can be rewritten to be in the form of B+
1 = 0.

Hence, the results above also apply for B+
1 = B+

2 .

If benefits not regulated by bonus cancel due to conversion to free-policy, B+
1 = 0

after conversion to free-policy, and the result above still applies. An example is an

insurance contract consisting of a life annuity and a term insurance, where the life

annuity is regulated by bonus, and the term insurance cancels upon conversion to

free-policy. Throughout this paper, we assume that payments in the free-policy states

equal a free-policy factor times the benefits in the corresponding premium-paying

state. The example does not comply with this assumption, but we can easily extend

our setup to include this case.

2.5.3 Approximation of the Free-policy Factor

In the general setup, B+
1 (t) ≥ 0 for t ≥ 0, we cannot project the savings account and

the surplus including policyholder behavior by Theorem 2.3.3, since the assumptions

are violated. The dynamics of the savings account and the surplus depend on the

duration in the free-policy states, U . Furthermore, the derivation of Theorem 2.3.3

relies on linearity of X and Y in the dynamics from Lemma 2.3.2, which breaks

when the free-policy factor depends on the savings account. This motivates an

approximation of the ideal free-policy factor from Equation (2.5.1), which does not

depend on X.

Just before conversion to free-policy, the policyholder must be premium paying

and active, i.e. Z(t−) = 0. A reasonable approximation of the free-policy factor is

therefore

f̂(t) = EZ(0)

[
1{Z(t−)=0}f(t,X(t))

∣∣∣ Fr
t

]
= EZ(0)

[
1{Z(t−)=0}

X(t−)

X(t−)− V
∗Z(t−)−
1 (t)

∣∣∣∣∣ Fr
t

]
.
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We have not developed methods to calculate the projection of a fraction containing

the savings account, X(t), in both the nominator and the denominator. Therefore,

we cannot continue with the approximation above. Alternatively, the nominator

and denominator in the free-policy factor can be projected separately

f̃(t) =
EZ(0)

[
1{Z(t−)=0}X(t−)

∣∣∣ Fr
t

]
EZ(0)

[
1{Z(t−)=0}

(
X(t−)− V

∗Z(t−)−
1 (t)

) ∣∣∣ Fr
t

]
=

X̃0(t)

X̃0(t)− pZ(0)0(0, t)V
∗0−
1 (t)

. (2.5.9)

The above free-policy factor does not depend on the savings account, but on the

state-wise projection of the savings account. This approximation of the ideal free-

policy factor motivates one of the main results of this paper presented in Corollary

2.5.2 below.

Corollary 2.5.2. Let Xid be the savings account and Yid be the surplus modeled

with the ideal free-policy factor from Equation (2.5.1), and let Xap be the savings

account and Yap be the surplus modeled with the approximated free-policy factor from

Equation (2.5.9). The state-wise projections are given by Equations (2.5.2) and

(2.5.3), and

X̃j
ap(t) = EZ(0)

[
1{Z(t)=j}Xap(t)

∣∣∣ Fr
t

]
,

Ỹ j
ap(t) = EZ(0)

[
1{Z(t)=j}Yap(t)

∣∣∣ Fr
t

]
,

for j ∈ J ∪ J f , respectively.

In the case where all benefits are regulated by bonus, B+
1 = 0

X̃j
id(t) = X̃j

ap(t),

Ỹ j
id(t) = Ỹ j

ap(t),

for j ∈ J ∪ J f .

Proof. Assume all benefits are regulated by bonus, B+
1 = 0. The state-wise projec-

tions of the savings account and the surplus with the ideal free-policy factor satisfy

the differential equations in Equations (2.5.7) and (2.5.8).

Equations (2.5.4), (2.5.5) and (2.5.6) in Section 2.5.2 state that only the sum-at-risk

depends on the free-policy factor. The sum-at-risk with the approximated free-policy
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factor, f̃ , is

R∗jk(t, x) = bjk(t, x) + 1{j,k∈J , j ̸=k}

(
V ∗k−
1 (t) +

x− V ∗j−
1 (t)

V ∗j+
2 (t)

V ∗k+
2 (t)− x

)
+ 1{j,k∈J f , j ̸=k}

(
x

V
∗g(j)+
2 (t)

V
∗g(k)+
2 (t)− x

)
+ 1{j=0, k=J+1}

((
x− V ∗j−

1 (t)
)
f̃(t)− x

)
. (2.5.10)

The dynamics of Xap and Yap are in the form of Equations (2.4.2) and (2.4.3) with

the payment functions from Equations (2.5.4) and (2.5.5) and the sum-at-risk from

Equation (2.5.10). This implies that the dynamics of Xap and Yap are in the same

form as in Lemma 2.3.2, since they do not depend on the duration, U , and they are

linear in Xap(t) and Yap(t).

Theorem 2.3.3 gives differential equations of the state-wise projections of the savings

account and the surplus, X̃j
ap and Ỹ j

ap. These differential equations can be expressed

in terms of α̂ and λ̂ from the differential equations (2.5.7) and (2.5.8)

d

dt
X̃j

ap(t) =
∑
k:k ̸=j

µkj(t)X̃
k
ap(t)−

∑
k:k ̸=j

µjk(t)X̃
j
ap(t)

+ α̂j
0,X(t)pZ(0)j(0, t) + α̂j

1,X(t)X̃j
ap(t) + α̂j

2,X(t)Ỹ j
ap(t)

+ 1{j=J+1}µ
∗
0j(t)

(
X̃0

ap(t) + f̃(t)
(
pZ(0)0(0, t)V

∗0−
1 (t)− X̃0

ap(t)
))

+
∑
k:k ̸=j

µkj(t)

(
λ̂kj0,X(t)pZ(0)k(0, t) + λ̂kj1,X(t)X̃k

ap(t)

− 1{k=0, j=J+1}

(
X̃0

ap(t) + f̃(t)
(
pZ(0)0(0, t)V

∗0−
1 (t)− X̃0

ap(t)
)))

,

(2.5.11)

d

dt
Ỹ j
ap(t) =

∑
k:k ̸=j

µkj(t)Ỹ
k
ap(t)−

∑
k:k ̸=j

µjk(t)Ỹ
j
ap(t)

+ α̂j
0,Y (t)pZ(0)j(0, t) + α̂j

1,Y (t)X̃
j
ap(t) + α̂j

2,Y (t)Ỹ
j
ap(t)

− 1{j=J+1}µ
∗
0j(t)

(
X̃0

ap(t) + f̃(t)
(
pZ(0)0(0, t)V

∗0−
1 (t)− X̃0

ap(t)
))

+
∑
k:k ̸=j

µkj(t)

(
λ̂kj0,Y (t)pZ(0)k(0, t) + λ̂kj1,Y (t)X̃

k
ap(t)

+ 1{k=0, j=J+1}

(
X̃0

ap(t) + f̃(t)
(
pZ(0)0(0, t)V

∗0−
1 (t)− X̃0

ap(t)
)))

.

(2.5.12)

By inserting the expression for f̃ from Equation (2.5.9), the differential equations

(2.5.11) and (2.5.12) are equal to the differential equations (2.5.7) and (2.5.8).
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Furthermore, the initial conditions are

X̃j
id(0) = Ỹ j

id(0) = X̃j
ap(0) = Ỹ j

ap(0) = 0,

for j ∈ J ∪ J f . This implies that

X̃j
id(t) = X̃j

ap(t),

Ỹ j
id(t) = Ỹ j

ap(t),

for j ∈ J ∪ J f as desired.

Corollary 2.5.2 implies that in the case B+
1 = 0, we can project the savings account

and the surplus with the approximated free-policy factor and actually obtain the

same accurate projections as with the ideal free-policy factor. Based on this result,

we consider f̃ to be a reasonable approximation of f , that does not depend on the

savings account, but instead on the projected savings account.

2.5.4 Projections with the Approximated Free-policy Factor

In the general setup, B+
1 (t) ≥ 0 for t ≥ 0, with the approximated free-policy factor

from Equation (2.5.9), the dynamics of the savings account and the surplus are

linear, but they also depend on the duration through the payment functions from

Proposition 2.4.1 and the sum-of-risk from Proposition 2.4.2. Therefore, we cannot

use Theorem 2.3.3 to project the savings account and the surplus. This motivates

an extension of Theorem 2.3.3 including duration dependence, where linearity in

the dynamics of the savings account and the surplus is preserved.

Lemma 2.5.3. The dynamics of the savings account, Xap, from Equation (2.4.2)

and the dynamics of the surplus, Yap, from Equation (2.4.3), with the approximated

free-policy factor, f̃ , from Equation (2.5.9), can be written in the form

dXap(t) =

(
ᾱ
Z(t)
0,X (t) + ᾱ

Z(t)
1,X (t)Xap(t) + ᾱ

Z(t)
2,X (t)Yap(t) + f̃(t− U(t))β̄

Z(t)
0,X (t)

)
dt

+
∑

k:k ̸=Z(t−)

(
λ̄
Z(t−)k
0,X (t) + λ̄

Z(t−)k
1,X (t)Xap(t−)

+ f̃(t− U(t))γ̄
Z(t−)k
0,X (t)

)
dNk(t),

dYap(t) =

(
ᾱ
Z(t)
0,Y (t) + ᾱ

Z(t)
1,Y (t)Xap(t) + ᾱ

Z(t)
2,Y (t)Yap(t) + f̃(t− U(t))β̄

Z(t)
0,Y (t)

)
dt

+
∑

k:k ̸=Z(t−)

(
λ̄
Z(t−)k
0,Y (t) + λ̄

Z(t−)k
1,Y (t)Xap(t−)

+ f̃(t− U(t))γ̄
Z(t−)k
0,Y (t)

)
dNk(t),
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for deterministic functions ᾱj
i,H , β̄

j
i,H , λ̄

jk
i,H , γ̄

jk
i,H for i = 0, 1, 2, H = X,Y and

j, k ∈ J ∪ J f , j ̸= k, where

β̄j
0,X(t) = β̄j

0,Y (t) = γ̄jk0,X(t) = γ̄jk0,Y (t) = 0,

for all t ≥ 0 and j ∈ J .

See Appendix 2.C for the expressions of ᾱ, β̄, λ̄ and γ̄ for the savings account and

the surplus.

We consider the difference between the case with all benefits regulated by bonus,

B+
1 = 0, with the free-policy factor from Equation (2.5.1) from Section 2.5.2 and the

general case, B+
1 ≥ 0, with the approximated free-policy factor. This comes down

to a comparison of the coefficients α̂ and λ̂ from Appendix 2.B with the coefficients

ᾱ, β̄, λ̄ and γ̄ from Appendix 2.C. Apart from the sum-at-risk upon conversion to

free-policy and the duration dependent terms, the coefficients are equal. In the first

case, the sum-at-risk upon conversion to free-policy is equal to zero, while in the

second case, it is added to λ̄. The duration dependent terms from Propositions 2.4.1

and 2.4.2 are equal to zero in the case with all benefits regulated by bonus, while in

the general case they appear in β̄ and γ̄.

The dynamics of the savings account and the surplus in Lemma 2.5.3 allow for an

extension of the dividend strategy from Equation (2.2.4) to be duration dependent.

Dividends in form

δj(t, x, y, u) = δj0(t, u) + δj1(t) · x+ δj2(t) · y,
δj0(t, u) = 1{j∈J}δ

j
0(t) + 1{j∈J f}f̃(t− u)δj0(t),

comply with the dynamics in Lemma 2.5.3.

Now, we extent the result of Theorem 2.3.3 to include duration dependence in the

approximated free-policy factor from the dynamics of the savings account and the

surplus in Lemma 2.5.3.

Theorem 2.5.4. Let Xap and Yap have dynamics in the form of Lemma 2.5.3 and

Z(0) ∈ J . The state-wise projections of the savings account and the surplus, X̃j
ap

and Ỹ j
ap, satisfy the system of differential equations below

d

dt
X̃j

ap(t) =
∑
k:k ̸=j

µkj(t)X̃
k
ap(t)−

∑
k:k ̸=j

µjk(t)X̃
j
ap(t)

+ ᾱj
0,X(t)pf̃Z(0)j(0, t) + ᾱj

1,X(t)X̃j
ap(t) + ᾱj

2,X(t)Ỹ j
ap(t)

+
∑
k:k ̸=j

µkj(t)
(
λ̄kj0,X(t)pf̃Z(0)k(0, t) + λ̄kj1,X(t)X̃k

ap(t)
)

+ β̄j
0,X(t)pf̃Z(0)j(0, t) +

∑
k:k ̸=j

µkj(t)γ̄
kj
0,X(t)pf̃Z(0)k(0, t),
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d

dt
Ỹ j
ap(t) =

∑
k:k ̸=j

µkj(t)Ỹ
k
ap(t)−

∑
k:k ̸=j

µjk(t)Ỹ
j
ap(t)

+ ᾱj
0,Y (t)p

f̃
Z(0)j(0, t) + ᾱj

1,Y (t)X̃
j
ap(t) + ᾱj

2,Y (t)Ỹ
j
ap(t)

+
∑
k:k ̸=j

µkj(t)
(
λ̄kj0,Y (t)p

f̃
Z(0)k(0, t) + λ̄kj1,Y (t)X̃

k
ap(t)

)
+ β̄j

0,Y (t)p
f̃
Z(0)j(0, t) +

∑
k:k ̸=j

µkj(t)γ̄
kj
0,Y (t)p

f̃
Z(0)k(0, t),

where X̃j
ap(0−) = Ỹ j

ap(0−) = 0, f̃ is the approximated free-policy factor from

Equation (2.5.9), and pf̃Z(0)j(0, t) are the f̃ -modified probabilities

pf̃Z(0)j(0, t) = EZ(0)

[
1{Z(t)=j}f̃(t− U(t))1{j∈Jf}

]
,

for Z(0) ∈ J , j ∈ J ∪ J f , and t ≥ 0.

Proof. See Appendix 2.D.

Buchardt and Møller (2015) derive forward differential equations for the same

f̃ -modified probabilities in the case where j ∈ J f . In the case where j ∈ J ,

the f̃ -modified probabilities are the ordinary transition probabilities that satisfy

Kolmogorov’s forward differential equations. Therefore, for a general j ∈ J ∪ J f ,

the f̃ -modified probabilities satisfy the following forward differential equations

d

dt
pf̃Z(0)j(0, t) = 1{j=J+1}p

f̃
Z(0)0(0, t)µ0(J+1)(t)f̃(t)− pf̃Z(0)j(0, t)

∑
k:k ̸=j

µjk(t)

+ 1{j∈J f}
∑
k∈J f

k ̸=j

pf̃Z(0)k(0, t)µkj(t) + 1{j∈J}
∑
k∈J
k ̸=j

pf̃Z(0)k(0, t)µkj(t).

We consider Theorem 2.5.4 as one of the main results of the paper, since it enables us

to project the savings account and the surplus in a general setup with the policyholder

behavior options surrender and free-policy with the approximated free-policy factor

from Equation (2.5.9). For instance in the example with an insurance contract

consisting of a life annuity and a term insurance, where the life annuity is regulated

by bonus and the term insurance and the premiums are fixed.

Remark 2.5.5. Let the savings account and the surplus have dynamics in the form

of Lemma 2.5.3, but with a general free-policy factor, f̄ , that does not depend on

the savings account. Then Theorem 2.5.4 holds with f̄ -modified probabilities.

In the Danish life insurance business, it is common to scale all benefits (both those

regulated by bonus and those not regulated by bonus) with the free-policy factor



36 Chapter 2. Falden & Nyegaard (2021)
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2 3
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Figure 2.2: Survival model in the numerical example

upon conversion to free-policy. We can imagine an insurance contract where only

the benefits not regulated by bonus, B+
1 , are scaled with the free-policy factor upon

conversion to free-policy and where Q(0−) = 0. Then the free-policy factor does

not depend on the savings account, and Theorem 2.5.4 applies.

2.6 Numerical Simulation Example

In this section, we emphasize the practical applications of our results in a numerical

simulation example, and study the state-wise projections of the savings account and

the surplus in a survival model including free-policy.

To illustrate this example, we assume the interest rate follow a Vasicek model with

dynamics

dr(t) = (ϕ+ ψ r(t)) dt+
√
θ dW (t),

where
(
W (t)

)
{t≥0} is a Brownian motion, see for instance Björk (2009). Any other

model of the interest rate can be chosen.

The survival model including free-policy is illustrated in Figure 2.2, where state 0

corresponds to alive and state 1 corresponds to dead in the non-free-policy states

and state 2 and state 3 corresponds to alive and dead, respectively, in the free-policy

states. We consider an insured male at age a0 at initialization of the insurance

contract at time 0. The insurance contract consists of premiums paid continuously in

state 0 until retirement age n, a term insurance not regulated by bonus payable upon

dead before retirement age, and a life annuity regulated by bonus paid continuously

when alive after retirement age. Hence, in this example, B+
1 ≥ 0 and we use Theorem
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Table 2.1: Components in the numerical example

Component Value
Age of policyholder, a0 30
Age of retirement, n 65
Termination 80
Premium, π(t) 0.3021694 · 1{a0+t<n}
Annuity, b02(t) 1 · 1{a0+t≥n}
Term insurance, b011 (t) 5 · 1{a0+t<n}
Z(0) 0
µ∗
01(t) 0.0005 + 105.88+0.038(t+a0)−10

µ02(t) 0.015 · 1{a0+t<n}
r∗(t) 0.01
r(0) 0.05
ϕ 0.008127
ψ -0.162953
θ 0.000237

2.5.4 in the projection. The payment process is

dB(t,X(t)) =

1{Z(t)=0}

((
X(t)− V ∗0

1 (t)

V ∗0
2 (t)

b02(t)− π(t)

)
dt+ b011 (t)dN1(t)

)

+ 1{Z(t)=2}

(
X(t)− f̃(t− U(t))V ∗0

1 (t)

V ∗0
2 (t)

b02(t)dt+ f̃(t− U(t))b011 (t)dN3(t)

)
.

The premium rate is determined according to the principle of equivalence on the

technical basis, and we use the approximated free-policy factor from Equation (2.5.9).

Inspired by Bruhn and Lollike (2020), we choose a dividend strategy equal to

δZ(t)(t,U(t), X(t), Y (t)) =

0.5 ·
(
r(t)− r∗(t)

)+
X(t) + 0.01 · Y (t)

+ 0.5 ·
∑

k:k ̸=Z(t)

R∗Z(t)k(t, U(t), X(t))
(
µ∗
Z(t)k(t)− µZ(t)k(t)

))
,

where R∗Z(t)k is the sum-at-risk from Proposition 2.4.2 with the approximated

free-policy factor. The dividend strategy resembles the surplus contribution, but

with (r(t) − r∗(t))+ instead of r(t) − r∗(t). This is to avoid negative dividends

if r∗(t) > r(t). The market death intensity is the mortality benchmark from the

Danish FSA from 2019. We project the savings account and the surplus in states

0 and 2, since there are no payments in the death states. The components in the

projection are stated in Table 2.1.
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Figure 2.3: Simulations of the interest rate in the numerical example

Figure 2.4: Left: State-wise projections of the savings account in the three simulated
scenarios of the interest rate. Right: The mean and confidence intervals of the projected
savings account.

Figure 2.3 illustrates three simulated paths of the interest rate, simulated with an

Euler scheme based on the dynamics of the interest rate. For each path of the

interest rate, we project the savings account and the surplus in state 0 and 2 using

Theorem 2.5.4, and illustrate the state-wise projections in Figure 2.4 (left) and

Figure 2.5 (left).

The projected savings account is larger in state 0 than in the free-policy-state, since

premiums cancel upon conversion to free-policy, which lowers the savings account.

The interest rate impacts the projected surplus in Figure 2.5 (left) significantly. A

high (low) interest rate results in a high (low) surplus contribution, which effects

the projected surplus as illustrated in simulation 3 (2). A high interest rate results

in high dividends in our numerical example, and therefore the projected savings

accounts are highest in simulation 3. For the effects of changing the dividend strategy,

see Bruhn and Lollike (2020). With these calculations, the insurance company can
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Figure 2.5: Left: State-wise projections of the surplus in the three simulated scenarios of
the interest rate. Right: The mean and confidence intervals of the projected surplus.

monitor the development of the insurance contract in various scenarios of the interest

rate, and for instance assess the effects of the chosen dividend strategy.

Based on 1000 simulations of the interest rate, we estimate the mean, the 2.5%-

quantile, and the 97.5%-quantile of the projected savings account (see Figure 2.4

(right)) and the projected surplus (see Figure 2.5 (right)). This illustrates that

within the Vasicek model with the chosen parameters and with the chosen dividend

strategy, the 95%-confidence interval of the projected savings account is widest,

when the insured retires at time 35, and the 95%-confidence interval of the projected

surplus spans from −2.2 to 27.7, which indicates to the insurance company that the

development of the surplus is uncertain.

The insurance company is interested in communicating the expected life annuity

payment to the insured, since it is regulated by bonus, and the amount of future

bonus is unknown at initialization of the insurance contract. Figure 2.6 (left)

illustrates the life annuity rate in the three simulated scenarios of the interest rate

conditional on the insured being alive and in the non-free-policy state at the time

of the payment. In scenario 3, the savings account is higher resulting in a high

life annuity. Scenario 2 has a negative surplus due to a low interest rate, which

results in negative dividends with the chosen dividend strategy, and therefore the

life annuity gets below 1 in this scenario. At initialization of the insurance contract,

the insurance company promises the insured a life annuity of 1 given alive and

non-free-policy, and hence scenario 2 is bad for the company. The projection in

Figure 2.6 (left) holds information to the insurance company, that when the interest

rate is low, the insurance company should react and change their dividend strategy.

Figure 2.6 (right) illustrates the expected life annuity and a 95% confidence interval

of the life annuity as a function of age. The life annuity is weighted with the

probability of dying and conversion to free-policy, hence it is lower than the life
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Figure 2.6: Left: The expected life annuity in the three simulated scenarios of the interest
conditional in the insured being alive and non-free-policy. Right: The expected life annuity
and confidence intervals.

annuity in Figure 2.6 (left) where we condition in being alive and non-free-policy.

2.7 Conclusion

The paper presents a method for projecting the savings account and the surplus of a

life insurance contract including policyholder behavior in various financial scenarios.

We present differential equations of the projected savings account and the projected

surplus without policyholder behavior, which is the result of Bruhn and Lollike

(2020). When including policyholder behavior, we cannot in general project the

savings account and the surplus with an ideal free-policy factor using the methods

from Bruhn and Lollike (2020).

In this paper, we show that in the case, where all benefits are regulated by bonus,

we can actually find accurate differential equations for the state-wise projections of

the savings account and the surplus with the ideal free-policy factor. We suggest an

approximation to the ideal free-policy factor, and one of the main results is that in

the case, where all benefits are regulated by bonus, the projections of the savings

account and the surplus based on the ideal free-policy factor coincide with the

projections based on the approximated free-policy factor. Therefore, we consider the

approximated free-policy factor a reasonable approximation of the ideal free-policy

factor.

We are able to project the savings account and the surplus with the approximated

free-policy factor in a general case, and we present differential equations of the

state-wise projections of the savings account and the surplus with the approximated

free-policy factor. We consider this result as a key result in the projection of
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balances in life insurance and a good extension of Bruhn and Lollike (2020) to

include policyholder behavior outside the case, where all benefits are regulated by

bonus. We illustrate a numerical simulation example in three scenarios of the interest

rate to highlight the practical application of our findings. This results in a projection

of the savings account and the surplus for a chosen dividend strategy, which enables

the insurance company to assess the effects of their chosen management actions.

Furthermore, we study distributional properties of the projections.

This paper studies a simple dividend strategy which is linear in the savings account

and the surplus. In order to use this model, insurance companies must choose their

future dividend strategy according to this simple setup. Future research involves

extending the model to include a more complex dividend strategy and allow for

dependence of for instance assets and market values. Another branch is the study

of how to choose an optimal dividend strategy in this multi-state setup, see for

instance Nielsen (2005).
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2.A Additions to Lemma 2.3.2

The coefficients in the dynamics of the savings account and surplus from Lemma

2.3.2 in the setup without policyholder behavior.

αj
0,X(t) = δj0(t)− bj1(t)−

V ∗j
1 (t)

V ∗j
2 (t)

bj2(t)

−
∑
k:k ̸=j

(
bjk1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t) + V ∗k
1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

V ∗k
2 (t)

)
µ∗
jk(t),

αj
1,X(t) = r∗(t) + δj1(t)−

bj2(t)

V ∗j
2 (t)

−
∑
k:k ̸=j

(
bjk2 (t)

V ∗j
2 (t)

+
V ∗k
2 (t)

V ∗j
2 (t)

− 1

)
µ∗
jk(t),

αj
2,X(t) = δj2(t),

λjk0,X(t) = V ∗k
1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

V ∗k
2 (t),

λjk1,X(t) =
V ∗k
2 (t)

V ∗j
2 (t)

− 1

αj
0,Y (t) = − δj0(t) +

∑
k:k ̸=j

(
bjk1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t) + V ∗k
1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

V ∗k
2 (t)

)
µ∗
jk(t),

αj
1,Y (t) = − δj1(t) + r(t)− r∗(t) +

∑
k:k ̸=j

(
bjk2 (t)

V ∗j
2 (t)

+
V ∗k
2 (t)

V ∗j
2 (t)

− 1

)
µ∗
jk(t),

αj
2,Y (t) =r(t)− δj2(t),

λjk0,Y (t) = − bjk1 (t) +
V ∗j
1 (t)

V ∗j
2 (t)

bjk2 (t)− V ∗k
1 (t) +

V ∗j
1 (t)

V ∗j
2 (t)

V ∗k
2 (t),

λjk1,Y (t) = − bjk2 (t)

V ∗j
2 (t)

− V ∗k
2 (t)

V ∗j
2 (t)

+ 1.
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2.B Addition to the case B+
1 = 0-functions

The coefficients in the dynamics of the savings account and surplus from Lemma

2.3.2 in the case B+
1 = 0 with the ideal free-policy factor.

α̂j
0,X(t) = − 1{j∈J}

(
bj−1 (t)− V ∗j−

1 (t)

V ∗j+
2 (t)

bj+2 (t)
)
+ δj0(t)

− 1{j∈J}
∑
k:k ̸=j
k∈J

(
bjk−1 (t) + V ∗k−

1 (t)− V ∗j−
1 (t)

V ∗j+
2 (t)

(
bjk+2 (t) + V ∗k+

2 (t)
))
µ∗
jk(t),

α̂j
1,X(t) = r∗(t)− 1{j∈J}

bj+2 (t)

V ∗j+
2 (t)

− 1{j∈J f}
b
g(j)+
2 (t)

V
∗g(j)+
2 (t)

+ δj1(t)

− 1{j∈J}
∑
k:k ̸=j
k∈J

(
bjk+2 (t) + V ∗k+

2 (t)

V ∗j+
2 (t)

− 1

)
µ∗
jk(t)

− 1{j∈J f}
∑
k:k ̸=j

k∈J f

(
b
g(j)g(k)+
2 (t) + V

∗g(k)+
2 (t)

V
∗g(j)+
2 (t)

− 1

)
µ∗
jk(t),

α̂j
2,X(t) = δj2(t),

λ̂jk0,X(t) = 1{j,k∈J ,j ̸=k}

(
V ∗k−
1 (t)− V ∗j−

1 (t)

V ∗j+
2 (t)

V ∗k+
2 (t)

)
,

λ̂jk1,X(t) = 1{j,k∈J ,j ̸=k}

(
V ∗k+
2 (t)

V ∗j+
2 (t)

− 1

)
+ 1{j,k∈J f ,j ̸=k}

(
V

∗g(k)+
2 (t)

V
∗g(j)+
2 (t)

− 1

)
.

α̂j
0,Y (t) = − δj0(t) + 1{j∈J}

∑
k:k ̸=j
k∈J

(
bjk−1 (t) + V ∗k−
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k∈J

(
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2 (t)
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− 1

)
µ∗
jk(t)
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(
b
g(j)g(k)+
2 (t) + V

∗g(k)+
2 (t)

V
∗g(j)+
2 (t)

− 1

)
µ∗
jk(t),
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2,Y (t) = r(t)− δj2(t),

λ̂jk0,Y (t) = − 1{j,k∈J , j ̸=k}

(
bjk−1 (t) + V ∗k−

1 (t)− V ∗j−
1 (t)

V ∗j+
2 (t)

(
bjk+2 (t) + V ∗k+

2 (t)
))
,

λ̂jk1,Y (t) = − 1{j,k∈J ,j ̸=k}

(bjk+2 (t) + V ∗k+
2 (t)

V ∗j+
2 (t)

− 1
)
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V
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− 1
)
.
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2.C Additions to Lemma 2.5.3

The coefficients in the dynamics of the savings account and surplus from Lemma

2.5.3.

ᾱj
0,X(t) = δj0(t)− 1{j∈J}

(
bj1(t)−

V ∗j
1 (t)

V ∗j+
2 (t)

bj2(t)

)

− 1{j∈J}
∑
k:k ̸=j
k ̸=J+1

(
bjk1 (t)− V ∗j

1 (t)

V ∗j+
2 (t)

bjk2 (t) + V ∗k
1 (t)− V ∗j

1 (t)

V ∗j+
2 (t)

V ∗k+
2 (t)

)
µ∗
jk(t),

ᾱj
1,X(t) = r∗(t) + δj1(t)− 1{j∈J}

(
bj2(t)

V ∗j+
2 (t)

+
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,
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(
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2 (t)
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2 (t)
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µ∗
jk(t),
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2 (t)
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2 (t)
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(
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2 (t)

V ∗j+
2 (t−)

− 1
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ᾱj
0,Y (t) = − δj0(t) + 1{j∈J}
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2.D Proof of Theorem 2.5.4

We only present the proof of the differential equation for X̃j , since the differential

equation for Ỹ j is obtained using the same calculations. All calculations are

conditioned on the interest rate filtration Fr
t .

Due to the result in Theorem 2.3.3, it suffices to prove the result for

ᾱj
0,X = ᾱj

1,X = ᾱj
2,X = λ̄jk0,X = λ̄jk1,X = 0,

for all j, k, j ̸= k.

We consider the integral equation for X̃j(t)

X̃j(t) = pZ(0)j(0, t)X(0)

+

∫ t

0

∑
g∈J∪J f

EZ(0)

[
1{Z(s−)=g}EZ(0)

[
1{Z(t)=j}dX(s)

∣∣ Z(s−) = g
]]
.

We calculate EZ(0)

[
1{Z(t)=j}dX(s)

∣∣ Z(s−) = g
]
for both terms in the dynamics of

X(t) from Lemma 2.5.3.

EZ(0)

[
1{Z(t)=j}f̃(s− U(s−))β̄

Z(s−)
0,X (s)

∣∣ Z(s−) = g
]

= 1{g∈J f}β̄
g
0,X(s)pgj(s, t)EZ(0)

[
f̃(s− U(s−))

∣∣ Z(s−) = g, Z(t) = j
]

= 1{g∈J f}β̄
g
0,X(s)pgj(s, t)EZ(0)

[
f̃(s− U(s−))

∣∣ Z(s−) = g
]

= 1{g∈J f}β̄
g
0,X(s)pgj(s, t)

pf̃Z(0)g(0, s)

pZ(0)g(0, s)
,

where we use that β̄
Z(s−)
0,X (s) = 0 for Z(s−) ∈ J and that U(s−)|Z(s−) = g ⊥

⊥ Z(t) = j for g ∈ J f and s ≤ t. The f̃ -modified probabilities, pf̃Z(0)g(0, s), are

defined as

pf̃Z(0)g(0, s) = EZ(0)

[
1{Z(s)=g}f̃(s− U(s))1{g∈Jf}

]
,

for Z(0) ∈ J and s ≥ 0.

EZ(0)

[
1{Z(t)=j}f̃(s− U(s−))γ̄

Z(s−)k
0,X (s)dNk(s)

∣∣ Z(s−) = g
]

= 1{g∈J f}γ̄
gk
0,X(s)

pf̃Z(0)g(0, s)

pZ(0)g(0, s)
µgk(s)pkj(s, t)ds,

where we use that γ̄
Z(s−)k
0,X (s) = 0 for Z(s−) ∈ J and U(s−)|Z(s−) = g ⊥⊥ Z(t) = j

for g ∈ J f and s ≤ t and that

EZ(0)

[
1{Z(t)=j}dN

k(s)
∣∣ Z(s−) = g

]
= pgj(s, t)EZ(0)

[
dNk(s)

∣∣ Z(s−) = g, Z(t) = j
]

= µgk(s)pkj(s, t)ds,
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see Norberg (1991) Equation (4.12).

Inserting in the integral equation for X̃j(t)

X̃j(t) = pZ(0)j(0, t)X(0) +
∑
g∈J f

∫ t

0

(
pf̃Z(0)g(0, s)

(
pgj(s, t)β̄

g
0,X(s)

+
∑
k:k ̸=g

µgk(s)pkj(s, t)γ̄
gk
0,X(s)

))
ds

We use Leibniz’s rule to differentiate X̃j(t) and use that plk(t, t) = 1{l=k} for

l, k ∈ J ∪ J f .

d

dt
X̃j(t) =

d

dt
pZ(0)j(0, t)X(0)

+ 1{j∈J f}β̄
j
0,X(t)pf̃Z(0)j(0, t) +

∑
k:k ̸=j

1{k∈J f}µkj(t)γ̄
kj
0,X(t)pf̃Z(0)k(0, t)

+
∑
g∈J f

∫ t

0

(
pf̃Z(0)g(0, s)

( d

dt
pgj(s, t)β̄

g
0,X(s)

+
∑
k:k ̸=g

µgk(s)
d

dt
pkj(s, t)γ̄

gk
0,X(s)

))
ds.

Kolmogorov’s forward differential equations for the transition probabilities gives the

result.



Chapter 3

An intrinsic value approach to valuation

with forward-backward loops in dividend

paying stocks

This chapter contains the paper Nyegaard, Ott, and Steffensen (2021).

Abstract

We formulate a claim valuation problem where the dynamics of the

underlying asset process contain the claim value itself. The problem

is motivated here by an equity valuation of a firm, with intermediary

dividend payments that depend on both the underlying, that is, the assets

of the company, and the equity value itself. Since the assets are reduced

by the dividend payments, the entanglement of claim, claim value, and

underlying is complete and numerically challenging because it forms a

forward–backward stochastic system. We propose a numerical approach

based on disentanglement of the forward–backward deterministic system

for the intrinsic values, a parametric assumption of the claim value in its

intrinsic value, and a simulation of the stochastic elements. We illustrate

the method in a numerical example where the equity value is approximated

efficiently, at least for the relevant ranges of the asset value.

Keywords: Corporate finance; With-profit insurance; Forward–backward stochastic

differential equations; Intrinsic value.

3.1 Introduction

We propose and demonstrate a simulation technique for claim valuation in a situation

where this is fundamentally challenging, namely for non-simple contingent claims

where both the claim payments and the underlying price process depend on the
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option value itself. A key motivating example is the equity valuation in a corporate

finance framework for a dividend-paying company with a dividend strategy that

depends on the equity value itself. A similarly challenging situation arises in

with-profit insurance when dividends to policy holders depend on prospectively

calculated liabilities themselves. The fundamental idea proposed here is to set up a

deterministic as-if market of intrinsic values of both the price and the claim value

process, and then assume a parametric relation between the value and the intrinsic

value of the claim. From a practical point of view, the intrinsic value is particularly

apt as a deterministic basis since it has a clear economic interpretation. We carry

out all details and demonstrate the idea in a numerical example for the special case

where the option value is approximated as a linear function of its intrinsic value.

Motivating examples, where the claim value appears in the dynamics of the underly-

ing, can be found in both finance and insurance. In corporate finance, a main task is

to calculate equity value as a claim on the assets in the presence of debt. This was

first studied by Merton (1974), but the problem continues to attract interest, see

for instance, Leland (1994) and Broadie and Kaya (2007). If the company pays out

dividends and these dividends depend on the equity value itself, we have a situation

where the contingent claim consists of equity-dependent dividends and an ultimate

sharing of assets with creditors. However, since the dividends are financed by the

company’s assets, even the underlying asset process is influenced by the equity value.

Then, we have a triangular interdependence between the underlying, the claim on

the underlying, and the value of the claim. The feedback effect from the value of

the claim to the underlying is non-standard, and is well-motivated by this corporate

finance example, but is notoriously difficult to handle from a numerical point of view.

Another example in with-profit insurance is where a situation similar to the one

in corporate finance arises for the valuation of liabilities. In with-profit insurance,

the insurance company redistributes profits to the collective of policy holders in terms

of dividends to policy holders but the extent and the timing are partly regulated

by the financial authorities. In market valuation based accounting and solvency

rules, the future redistribution strategy must be formalized in terms of so-called

Future Management Actions that also include future investment decisions. It is

natural to base the Future Management Actions, and thus the dividends to policy

holders, on the future prospective liability value itself and, thereby, the involved

forward–backward system appears again. The underlying assets of the company are

reduced by dividends to policy holders and, thus, the assets, the dividends, and the

liability value of policy holder dividends are completely entangled. The simpler

case, where dividends depend on the assets (and other quantities that are easily

calculated at every time point in a simulation), has only recently been formalized, for

example, in Bruhn and Lollike (2020) and Falden and Nyegaard (2021). The Future

Management Actions in with-profit insurance naturally motivate our study but we

stick to the corporate finance story when we present our method and numerical
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example below.

Feeding back the claim value into the underlying price dynamics creates a stochastic

forward–backward differential system since the known side condition of the underlying

(given the claim value) exists at the initial time point, whereas the known side

condition of the claim value (given the underlying) exists at the terminal time point.

For example, for standard diffusive financial markets, such a situation is solvable

by PDE methods where the claim value is calculated for all asset values backward.

In general markets (or if one for other reasons prefers, or is forced, to simulate),

the feed-back feature is challenging. Our proposal is to disentangle the problem

into essentially three parts. First, the forward–backward element of the problem is

handled by an iteration in a deterministic world where both asset prices and claim

prices are represented by their intrinsic values. Two iterative methods are proposed

here. Second, based on assuming a parametric relation between the claim value

and the intrinsic value of the claim, a standard forward Monte Carlo simulation is

performed for a given parameter. Third, the simulation is performed a number of

times for iterated determination of the parameter value consistent with the input

value (current asset price) and the ultimate output value (current claim value) of

the system.

Numerical techniques in general, and simulation techniques in particular, for the

valuation of contingent claims are challenged by fundamental relations between the

claims themselves, claim values and underlying state processes. A canonical example

is the simulation for the valuation of American options where the decision about

whether to exercise, and therefore the actual claim, depends on the value itself.

Thus, in that case, there is a relation between claims and claim values but claim

values are (usually) not fed back into the underlying stock price dynamics. For the

American option case, least-squares Monte Carlo has become a dominant numerical

technique, both theoretically and practically, since Longstaff et al. (2001) introduced

that idea to the domain.

The least-squares Monte Carlo is an example of a numerical method tailor-made

for a specific version of a general forward–backward stochastic differential equation.

Similar to that, other methods have also been proposed but they are typically

constructed for certain cases with a special entanglement of the forward and backward

equations. Compared to the American option valuation, we add here a layer of

complexity and allow the underlying stock price dynamics to also depend on the

value of the contingent claim. This completely entangles the forward and backward

equations. It is outside the scope of this paper to clarify whether the least-squares

Monte Carlo techniques and/or other specific approximation methods to other types

of forward–backward stochastic differential equations can (be generalized to) cope

with our case of value dependence in the underlying stock price. Even if they

could, our approximation method based on an intrinsic value projection can be
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justified as a practical alternative since the intrinsic value in finance and insurance

is well-understood and has its clear intuitive meaning and merits.

The entanglement of claim and claim value is standard from American option theory

and is acknowledged to be numerically challenging. Therefore, upper and lower

bounds have been sought and found via a dual formulation of the optimal stopping

problem by, for example, Rogers (2003), Haugh and Kogan (2004), and Andersen and

Broadie (2004). The upper and lower bounds obtained by Ibáñez and Velasco (2020)

are particularly interesting in relation to our work as they also use the intrinsic value

of the option as a state process in a recursive procedure. To calculate and simulate

under the feedback effect into the asset price dynamics is new, to our knowledge,

although both the corporate finance and the with-profit insurance applications and

interpretations seem obvious.

After having discussed the relation to numerical techniques for American option

valuation, we find it important to stress one final difference. Along with Ameri-

can option valuation comes the optimal stopping problem, and solving the value

and the optimal stopping strategy are two sides of the same story. There is no

optimization going on in our problem, which is a pure valuation problem. The com-

putational difficulty arises purely from the specification of the dividend payment

strategy and is, at least in this exposition, completely separated from any question

about whether such a strategy is optimal in any sense. Therefore, our work also

contains no discussion about optimal versus sub-optimal strategies such as, for

example, that studied by Ibáñez and Paraskevopoulos (2010). It is, though, an in-

teresting discussion—but also beyond our scope—to learn about which objective

functions lead to equity-dependent dividends when considering dividends as an

optimal control process.

The structure of the paper is as follows: in Section 3.2, we formalize and motivate the

problem of the main application of equity valuation. In Section 3.3, we approximate

the value of the claim that is presented by means of its intrinsic value and several

iterative methods to calculate it. Section 3.4 presents the simulation part of the

valuation and the second layer of iteration. A numerical study in Section 3.5 shows

the quality of our method for the equity valuation.

3.2 The Problem

We consider a general financial market consisting of an (possibly stochastic) interest

rate process r =
(
r(t)

)
t≥0

and an asset S =
(
S(t)

)
t≥0

. We assume the financial

market is free of arbitrage resulting in the existence of a (not necessarily unique)

martingale measure Q. We let
(
Ω,A,Q

)
be a complete probability space governing

a 2-dimensional Brownian motion W =
(
W1,W2

)
, and denote by F =

(
Ft

)
t≥0

the

natural filtration of W . We assume that W1 and W2 are independent for simplicity,
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but the extension to correlated dynamics is straightforward.

In this model, the dynamics of the asset depend on the value process of an option

derived from the asset itself. The option is a payment stream with continuous

payments with a (possibly stochastic) payment rate ϕ and a lump sum payment

Φ
(
S(T )

)
at time T . We denote the value of the future payments of the option at

time t ≤ T by V (t), and assume that ϕ is in the form ϕ
(
t, S(t), r(t), V (t)

)
for a

deterministic function ϕ : R2
+ × R2 7→ R. The dynamics of the asset are of the form

dS(t) = g
(
t, S(t), r(t), V (t)

)
dt+ σ

(
t, S(t), r(t), V (t)

)
dW1(t), (3.2.1)

for deterministic functions g : R2
+ × R2 7→ R and σ : R2

+ × R2 7→ R. If S is

the price process of an asset without a cash flow, we have g(t, s, r, v) = r · s,
since Equation (3.2.1) represents the dynamics under the martingale measure Q.

The general formulation of the function g allows the asset to have a cash flow, which

depends on the interest rate and the value process of the option.

We model the interest rate with a one-factor model with dynamics

dr(t) = b
(
t, r(t)

)
dt+ γ

(
t, r(t)

)
dW2(t), (3.2.2)

for deterministic functions b : R+ × R 7→ R and γ : R+ × R 7→ R. The extension to

multi-factor models of the interest rate is straight forward. Let B denote the money

account with dynamics

dB(t) = r(t)B(t)dt,

B(0) = b0 > 0.

We let P ( · , T̄ ) be the price process of a zero coupon bond with maturity T̄ > T ,

satisfying

P (t, T̄ ) = EQ
[
e−

∫ T̄
t

r(s)ds
∣∣∣ Ft

]
= e−

∫ T̄
t

f(t,s)ds,

for t ≤ T̄ . The existence of the zero coupon bond enables us to find the forward

rates f(t, s) for 0 ≤ t ≤ T and t ≤ s ≤ T , f(t, t) = r(t).

The value of the option can be represented in the following way:

V (t) = EQ

[∫ T

t

e−
∫ τ
t

r(s)dsϕ
(
τ, S(τ), r(τ), V (τ)

)
dτ + e−

∫ T
t

r(s)dsΦ
(
S(T )

) ∣∣∣∣∣ Ft

]
.

The asset, the interest rate and the value process stipulate a forward–backward

stochastic differential equation. We assume that the functions g, σ, b, γ, ϕ and Φ are

sufficiently regular and refer to Antonelli (1993) for the existence and uniqueness of

a solution. Since the functions g, b, σ and γ in the dynamics of the asset and the

interest rate in Equations (3.2.1) and (3.2.2) are deterministic,
(
S, r
)
is Markov.
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Hence, we write

V (t, S(t), r(t)) = EQ

[∫ T

t

e−
∫ τ
t

r(s)dsϕ
(
τ, S(τ), r(τ), V (τ, S(τ), r(τ))

)
dτ

+ e−
∫ T
t

r(s)dsΦ
(
S(T )

) ∣∣∣∣∣ S(t), r(t)
]
,

(3.2.3)

with a slight misuse of notation since V is now a function, V : R+×R2 7→ R, and not

the stochastic value process itself. Furthermore, we write

dS(t) = g
(
t, S(t), r(t), V (t, S(t), r(t))

)
dt+ σ

(
t, S(t), r(t), V (t, S(t), r(t))

)
dW1(t).

(3.2.4)

In this model setup, there is a triangular interdependence between the underlying

asset, S, the process of claims on the underlying, ϕ and Φ, and the value process,

V . The key motivating example is the corporate finance example from Miller and

Modigliani (1958) and Merton (1974), elaborated in Example 3.2.1 below.

Example 3.2.1. Consider a firm with a debt of K payable at time T with con-

tinuous coupon payments on the loan with continuous rate c paid until time T .

The underlying assets of the firm are denoted by S. In corporate finance, a task

is to calculate the equity value, V , of the firm. We assume that the firm pays out

continuous dividends to its shareholders with rate δ. In the event that the firm

cannot pay its debt at time T , the lending institution immediately takes over the

firm. Then the equity value, V , the value of the debt, V d, and the dynamics of the

assets under the risk neutral measure Q are

V (t, S(t), r(t)) = EQ
[ ∫ T

t

e−
∫ τ
t

r(s)dsδ
(
τ, S(τ), r(τ), V (τ, S(τ), r(τ))

)
dτ

+ e−
∫ T
t

r(s)ds max
(
S(T )−K, 0

) ∣∣∣∣ S(t), r(t) ],
V d(t, S(t), r(t)) = EQ

[ ∫ T

t

e−
∫ τ
t

r(s)dsc
(
τ, S(τ), r(τ), V (τ, S(τ), r(τ))

)
dτ

+ e−
∫ T
t

r(s)ds min
(
S(T ),K

) ∣∣∣∣ S(t), r(t) ],
dS(t) = r(t)S(t)dt− δ

(
t, S(t), r(t), V (t, S(t), r(t))

)
d t

− c
(
t, S(t), r(t), V (t, S(t), r(t))

)
dt

+ σ
(
t, S(t), r(t), V (t, S(t), r(t))

)
dW1(t).

The equity value is the expected present value of future dividends plus the remaining

part of the assets when the debt is paid at time T . The value of the debt is the

expected present value of future coupon payments plus the debt payment at time
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T , which is the minimum of the assets and K. Dividends and coupon payments

are withdrawn from the asset. It is sufficient to model either V (t, S(t), r(t)) or

V d(t, S(t), r(t) since

V (t, S(t), r(t)) + V d(t, S(t), r(t)) = S(t).

As an extension to Merton (1974), this setup allows the dividends, the coupon

payments and the investment strategy of the asset, σ, to depend on the equity value

(or similarly the value of the debt). To be consistent with Merton (1974), and for

simplicity, we disregard taxation of dividends, including possible tax benefits from

paying out dividends. Adding taxation would complicate the picture further as a

third party beyond debt and equity holders is entitled to a tax cash flow, which may

or may not be a function of current balance scheme entries. One of the benefits of

this simplicity is that we can directly compare the methods presented in Sections 3.3

and 3.4 with a relatively simple numerically exact solution in Section 3.5.

Example 3.2.2. In with-profit life insurance, payments guaranteed in the insurance

contract are based on prudent assumptions regarding future interest rate and

mortality. This results in a surplus which, by legislation, is to be paid back to the

policyholders as a bonus. The redistribution of the bonus contains certain degrees

of freedom for the insurance company and depends on their dividend strategy.

References Bruhn and Lollike (2020) and Falden and Nyegaard (2021) describe a

projection model of the balance sheet of a with-profit life insurance company where

a bonus is used to buy more insurance (spoken of as additional benefits). The model

from Bruhn and Lollike, 2020; Falden and Nyegaard, 2021 contains simplifying

assumptions about the future dividend strategy, and an obvious extension of the

model is to allow for a broader range of dividend strategies. A relevant extension of

the model from Bruhn and Lollike, 2020; Falden and Nyegaard, 2021 is to allow the

future dividend strategy of the company to depend on the market reserve of future

payments and future additional benefits and, in that case, a dependence structure

similar to our model setup arises.

Let B denote the payment process of both the guaranteed payments and the

additional benefits of a with-profit insurance contract. The payments are linked

to states of the insured as, for instance, ‘Active’, ‘Disable’, and ‘Dead’, usually

modelled by a Markov chain
(
Z(t)

)
t≥0

on a finite state space J with corresponding

counting processes Nij(t), i, j ∈ J , counting jumps from state i to state j. Payments

are divided in continuous payments during sojourn in state i, bs(t, i), and payments

upon jump from state i to state j, bj(t, i, j). The market reserve of future payments

from the insurance company to the insured is
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V (t) = EQ
[ ∫ T

t

e−
∫ τ
t

r(s)dsdB(τ)

∣∣∣∣ F(t)

]
,

= EQ
[ ∫ T

t

e−
∫ τ
t

r(s)ds
(
bs(τ, Z(τ))dτ

+
∑

j:j ̸=Z(τ−)

bj(t, Z(τ−), j)dNZ(τ−)j(τ)
) ∣∣∣∣ F(t)

]
,

where T is the termination of the insurance contract, r is the stochastic interest

rate, and F(t) is the formalized information available at time t. The market reserve

above has a similar representation to that of the claim value from Equation (3.2.3),

although in this example, we also model payments when there are jumps in the

underlying Markov process
(
Z(t)

)
t≥0

.

In Bruhn and Lollike (2020) and Falden and Nyegaard (2021), the authors derive the

dynamics of the so-called savings account and the surplus of a with-profit insurance

contract (see Equations (8) and (9) in Bruhn and Lollike (2020)), where the dividend

strategy depends on the savings account and the surplus only. If we allow the

dividend strategy to also depend on the market reserve, V , the dynamics of the

savings account X and the surplus Y are in the form

dX(t) = gx
(
t,X(t), Y (t), r(t), V (t), Z(t)

)
dt

+ σx
(
t,X(t), Y (t), r(t), V (t), Z(t)

)
dW1(t)

+
∑

j:j ̸=Z(t−)

hx
(
t,X(t−), Y (t−), V (t−), Z(t−), j

)
dNZ(t−)j(t),

X(0) = x0 ∈ R,

dY (t) = gy
(
t,X(t), Y (t), r(t), V (t), Z(t)

)
dt

+ σy
(
t,X(t), Y (t), r(t), V (t), Z(t)

)
dW1(t)

+
∑

j:j ̸=Z(t−)

hy
(
t,X(t−), Y (t−), V (t−), Z(t−), k

)
dNZ(t−)j(t),

Y (0) = y0 ∈ R.

We choose not to write out the expressions for the functions gx, gy, σx, σy, hx, and hy.

The dynamics of the savings account and the surplus above are in the form of the

dynamics of the asset from Equation (3.2.1), except that the dynamics also include a

dNij(t)-term that models changes in the savings account and the surplus due to jumps

of the state process
(
Z(t)

)
t≥0

. Since V appears as an argument in the coefficients of

X and Y and, further, the payment coefficients in the market reserve are themselves

dependent on X and Y , we find that the ultimate computational challenge of a

forward–backward system is exactly the same in this example as in the previous one.
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That challenge is, however, here better hidden behind generalized notation, jump

risk, and a conceptual world specific to the domain of with-profit insurance.

The with-profit insurance example is here proven to be both conceptually and

notationally cumbersome, and we choose not to continue with this application in

focus. The structure and the idea of our approach are much easier to comprehend in

a version of the problem where the jump processes and the domain specific notions

of profit-sharing are peeled away. What is important is that the forward–backward

dependence structure that we study in this paper arises as a natural and practically

relevant extension of the model from Bruhn and Lollike (2020) and Falden and

Nyegaard (2021), when allowing for dividends to depend on the market reserve.

The feed-back of the value process into the dynamics of the underlying is challenging

from a simulation point of view. We disentangle the simulation of the underlying and

the estimation of the value process in three parts. First, in Section 3.3, we set up a

deterministic world where asset prices, processes of claims, and the value process are

represented by their intrinsic values. In this deterministic as-if market, the forward–

backward element of the problem is solved by an iteration procedure. Second, based

on the assumption that there is a parametric relation between the value process

and its intrinsic value, we perform a standard forward Monte Carlo simulation in

Section 3.4 for a given parameter. Third, in Section 3.4.2, the forward Monte Carlo

simulation is performed a number of times for the iterated determination of the

parameter value.

There is a separate issue of existence and uniqueness to the system formalized by the

feed-back construction of the problem. The question is about for which specifications

of ϕ, Φ, g and σ there exist a unique solution to our value problem. While the answer

to that question is of obvious relevance, our contribution is completely different.

This paper contains only a financial engineering approach to the construction of an

approximation technique based on the intrinsic value deterministic basis.

3.3 Intrinsic Value

3.3.1 Definition of Intrinsic Value

Our definition of intrinsic values is based on the idea of setting up a hypothetical

market at a fixed time point t with an underlying process, a process of claims on

the underlying, and prices as-if the market were deterministic. The hypothetical

market is fixed at time t, consistent with all market prices and therefore measurable

with respect to Ft. Thereby, the interest rate r can be replaced by the forward

interest rate f(t, ·) everywhere in the hypothetical market, and the dynamics of

the asset S are replaced by the dynamics of the intrinsic value of the asset SIV.
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The intrinsic value of the value process is defined as the value of the claim in this

as-if deterministic market.

Definition 3.3.1. We define the intrinsic value of the asset and the value process,

SIV and V IV, at time u calculated at a fixed time t ≤ u by interchanging the interest

rate with the forward interest rate calculated at time t and by eliminating uncertainty

from the financial market from time t onwards, hence:

d

du
SIV(t, u) = g

(
u, SIV(t, u), f(t, u), V IV(u, S(t), r(t))

)
,

SIV(t, t) = S(t),

V IV(u, S(t), r(t)) =

∫ T

u

e−
∫ τ
u

f(t,s)dsϕ
(
τ, SIV(t, τ), f(t, τ), V IV(τ, S(t), r(t))

)
dτ

+ e−
∫ T
u

f(t,s)dsΦ
(
SIV(t, T )

)
,

with the functions g, ϕ, and Φ as defined in the previous section.

The intrinsic value of the asset u 7→ SIV(t, u) and the value process

u 7→ V IV(u, S(t), r(t)) are measurable with respect to Ft.

It is appropriate to relate the intrinsic value definition above with the conventional

intuition of the intrinsic value being the option value if the option is exercised now.

There, one must carefully distinguish European options from American options.

For a European option, the decision to exercise now means, for example in the case

of a call option, that you must decide now whether you want to buy, at maturity,

the stock at strike price K. Consider the classic Black–Scholes model; since you

can buy the stock today at price S(t) and the strike price K at price e−r(T−t)K,

the intrinsic value of the option becomes (S(t)−e−r(T−t)K)+. This intrinsic value of

a European call option conforms with our intrinsic value definition. In the European

call case it is not an option of when to buy, only whether to buy. The intrinsic value

of a European put option becomes (e−r(T−t)K − S(t))+.

For the American option, things are more complicated. The conventional intrinsic

value of an American call (put) is (S(t)−K)+ ((K − S(t))+). That is the value if

the option is exercised today, and exercise here means both choosing to buy and

actually buying. We did not even speak of exercise timing options in our definition,

but the natural generalization is to maximize the intrinsic value over exercise times

in an as-if market. Then, in the Black–Scholes model with r > 0, our intrinsic

value of the American call option becomes (S(t)− e−r(T−t)K)+, since it maximizes

the intrinsic value to exercise at time T , even in the as-if market. Note that our

intrinsic values of the European and American calls coincide but that our intrinsic

value of the American call does not conform with the conventional definition. In the

case of an American put, the intrinsic value is maximized by exercising now in
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the as-if market such that our intrinsic value becomes (K − S(t))+. Note that our

intrinsic values for the European and American puts do not coincide but that our

intrinsic value of the American put does conform with the conventional definition.

The difference between the call and the put is of course related to the fact that the

American call should not be exercised prematurely, not even in the as-if market,

whereas the American put should, even in the as-if market.

A different way to think of our intrinsic value is that it is the value of the option in

the original stochastic market in the case where the decision about whether to buy

or not to buy (in the case of a call) is made on the basis of the information one has

today. Our intrinsic value is the value of the option as-if one does not learn more

about the realization of S before deciding to exercise the option to buy (in the case

of a call).

We now consider a decomposition of the value process in its intrinsic value and

time value

V (t, S(t), r(t)) = V IV(t, S(t), r(t)) + V TV(t, S(t), r(t)). (3.3.1)

Such a decomposition is standard. Following our definition of the intrinsic value,

the time value represents the value added from being allowed to base optional

decisions in the future on future values and not just on the current values. Thus,

time value is the value of information added over time. For the conventional intrinsic

value (see above), the time value can be thought of as the value of not having to

exercise necessarily today but being able to time the exercise better. For plain

vanilla options, this has a clear meaning. For more general options, this idea may

be more difficult to generalize, whereas our definition can be directly generalized.

Obviously, one can write

V TV(t, S(t), r(t)) = α(t, S(t), r(t))V IV(t, S(t), r(t)),

for some function α. We are going to work with an approximation of the time

value where we disregard some of the arguments in the function α, for example, not

allowing for a stochastic α means approximating, for a deterministic and possibly

parametric function α, by

V TV(t, S(t), r(t)) ≈ α(t)V IV(t, S(t), r(t)).

This approximation reflects the idea that options lose their time value over time.

This is obviously true when the time value reflects the value added by information

added in the future. However, it is obviously an approximation to assume that the

function is independent of the (S(t), r(t)). Even simpler is the approximation

V TV(t, S(t), r(t)) ≈ αV IV(t, S(t), r(t)),
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for a constant α. This implies

V (t, S(t), r(t)) ≈ (1 + α)V IV(t, S(t), r(t)). (3.3.2)

Note that

V (T, S(T ), r(T )) = Φ
(
S(T )

)
= V IV(T, S(T ), r(T )).

Therefore, if approximated by a function α, one would prefer a function fulfilling

α(T ) = 0. The approximation by a constant α ̸= 0 is also necessarily inaccurate at

time T .

In the following, we approximate the value via a parametric relation between the

claim value, V , and the intrinsic value of the claim value, V IV. The assumption

is that the value process is linear in its intrinsic value. This does not mean that

we truly believe that the value is linear in the intrinsic value. This is instead a

first approximation that can be intuitively thought of as being based on a first

order expansion of the value around the intrinsic value. Thus, we know that we

already lose accuracy at this state. Other more involved parametric forms could

be proposed and the steps of our method, as explained in the next section, could

be properly adapted to any parametric form. We stress that our way of working

with the intrinsic value, as a key to break down the original and utterly complicated

problem into a series of solvable sub-problems, does not as such depend on the

special case of linearity. That is merely chosen as a simple case of demonstration,

and its merits and drawbacks are made visible in Section 3.5.

Remark 3.3.2. Assume that the interest rate is deterministic and that the drift term

in the dynamics of the asset and the claim processes are linear in the underlying

and the value process in the sense that the functions g, ϕ and Φ are in the form

g(t, s, v) = g0(t) + g1(t) · s+ g2(t) · v,
ϕ(t, s, v) = ϕ0(t) + ϕ1(t) · s+ ϕ2(t) · v,
Φ(s) = Φ0 +Φ1 · s,

for deterministic functions gi and ϕi, i = 0, 1, 2 and Φ0,Φ1 ∈ R. Then the value

process is given by

V (t, S(t)) = h0(t) + h1(t) · S(t),

and the intrinsic value of the value process is given by

V IV(u, S(t)) = h0(u) + h1(u) · SIV(t, u),

for functions h0 and h1 that solve a system of ordinary differential equations. Hence,

in the case with a deterministic interest rate and full linearity,

V (t, S(t)) = V IV(t, S(t)),
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and the time value of the value process is equal to zero. See Chapter 3 in Nyegaard

(2019) for the derivation of the system of ordinary differential equations for h0 and

h1.

Appendix 3.A investigates the quality of the intrinsic value approximation for ϕ = 0.

3.3.2 Calculation of the Intrinsic Value

In this section, we solve the forward–backward element by an iteration in a determin-

istic as-if market. We study how to calculate the intrinsic value of the underlying

and the intrinsic value of the value process. From Definition 3.3.1, we see that in

order to calculate V IV(t, S(t), r(t)), we must solve the following system of differential

equations

d

du
SIV(t, u) = g

(
u, SIV(t, u), f(t, u), V IV(u, S(t), r(t))

)
,

SIV(t, t) = S(t),

d

du
V IV(u, S(t), r(t)) = f(t, u)V IV(u, S(t), r(t))

− ϕ
(
u, SIV(t, u), f(t, u), V IV(u, S(t), r(t))

)
,

V IV(T, S(t), r(t)) = Φ
(
SIV(t, T )

)
.

(3.3.3)

The intrinsic value of the underlying and the intrinsic value of the value process

satisfy a deterministic forward–backward system of ordinary differential equations

given by (3.3.3). We propose two iteration methods to solve the forward–backward

system of ordinary differential equations. The starting point of both methods is to

suppress the entanglement of S and V that prevents us from solving the system of

differential equations. The iteration procedures are performed in the hypothetical

market set up at fixed time t ≤ T and are measurable with respect to Ft, thus the

price process of the asset S, the interest rate r, and the price of the process of the

zero coupon bond P (·, T̄ ) are known up to and including time t.

The first method is a perturbation argument, where the forward–backward nature

of the equations is preserved but the equations are decoupled. The second method

is a shooting method where the boundary conditions are modified but we preserve a

system of coupled equations. In both methods, the modification takes place in the

first iteration to trigger the iteration procedure. We describe the first and the kth

iteration for k ≥ 2 in both methods. The objective of both methods is to solve the

system of differential equations in Equation (3.3.3) in order to calculate the function

u 7→ V IV(u, S(t), r(t)).
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Method I: Perturbation Method

The modification in the perturbation argument is a substitution in the differen-

tial equation of SIV(t, u) in Equation (3.3.3), where we substitute the unknown

V IV(u, S(t), r(t)) with a known function, which is measurable with respect to Ft.

We denote the function u 7→ v(u, S(t), r(t)).

Iteration 1 In the first iteration, the intrinsic value of the stock index satisfies

the differential equation

d

du
SIV,(1)(t, u) = g

(
u, SIV,(1)(t, u), f(t, u), v(u, S(t), r(t))

)
,

SIV,(1)(t, t) = S(t),

and the intrinsic value of the value process satisfies the differential equation

d

du
V IV,(1)(u, S(t), r(t)) = f(t, u)V IV,(1)(u, S(t), r(t))

− ϕ
(
u, SIV,(1)(t, u), f(t, u), V IV,(1)(u, S(t), r(t))

)
,

V IV,(1)(T, S(t), r(t)) = Φ
(
SIV,(1)(t, T )

)
.

This is a solvable system of differential equations. In the numerical study in

Section 3.5, we choose v(u, S(t), r(t)) = 0.

Iteration k We use the fact that we know the intrinsic value of the value process

from the previous iteration and insert this into the differential equation of SIV.

The intrinsic value of the stock index satisfies the differential equation

d

du
SIV,(k)(t, u) = g

(
u, SIV,(k)(t, u), f(t, u), V IV,(k−1)(u, S(t), r(t))

)
,

SIV,(k)(t, t) = S(t).

The intrinsic value of the value process satisfies the differential equation

d

du
V IV,(k)(u, S(t), r(t)) = f(t, u)V IV,(k)(u, S(t), r(t))

− ϕ
(
u, SIV,(k)(t, u), f(t, u), V IV,(k)(u, S(t), r(t))

)
,

V IV,(k)(T, S(t), r(t)) = Φ
(
SIV,(k)(t, T )

)
.

This is a solvable system of differential equations.

Stopping Criteria We suggest the stopping criteria

min
k≥2

{∣∣∣V IV,(k)(t, S(t), r(t))− V IV,(k−1)(t, S(t), r(t))
∣∣∣ < ε

}
,
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for ε > 0. Another criteria is to fix the number of iterations. Let κ be the resulting

number of iterations. With the perturbation method, we estimate the solution to

the system of the differential equations given by Equation (3.3.3), and the resulting

estimate of the intrinsic value of the value process is

u 7→ V IV,(κ)(u, S(t), r(t)).

Method II: Shooting Method

The modification in the shooting method is the assumption that we know the

boundary condition at time t in the differential equation of the intrinsic value of the

value process in Equation (3.3.3). We assume that V IV(t, S(t), r(t)) = Ṽ (t, S(t), r(t))

for a known function Ṽ , which is measurable with respect to Ft. In the numerical

study in Section 3.5, we choose Ṽ (t, S(t), r(t)) = 0.

Iteration 1 We assume that

V IV,(1)(t, S(t), r(t)) = Ṽ (t, S(t), r(t)). (3.3.4)

We solve the following system of forward differential equations

d

du
SIV,(1)(t, u) = g

(
u, SIV,(1)(t, u), f(t, u), V IV,(1)(u, S(t), r(t))

)
,

SIV,(1)(t, t) = S(t),

d

du
V IV,(1)(u, S(t), r(t)) = f(t, u)V IV,(1)(u, S(t), r(t))

− ϕ
(
u, SIV,(1)(t, u), f(t, u), V IV,(1)(u, S(t), r(t))

)
,

V IV,(1)(t, S(t), r(t)) = Ṽ (t, S(t), r(t)).

This is a solvable system of differential equations.

If we solve the differential equations from Equation (3.3.3) with the boundary

condition in Equation (3.3.4), we obtain

V IV,(1)(T, S(t), r(t)) = Ṽ (t, S(t), r(t))e
∫ T
t

f(t,s)ds

−
∫ T

t

e
∫ T
τ

f(t,s)dsϕ
(
τ, SIV,(1)(t, τ), f(t, τ), V IV,(1)(τ, S(t), r(t))

)
dτ.

The boundary condition in Equation (3.3.3) states that

V IV(T, S(t), r(t)) = Φ
(
SIV(t, T )

)
.

The difference V IV,(1)(T, S(t), r(t))− Φ
(
SIV,(1)(t, T )

)
is an estimate of how wrong

our assumption is that V IV,(1)(t, S(t), r(t)) = Ṽ (t, S(t), r(t)). We use the estimate
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to adjust the boundary condition of the intrinsic value of the value process at time t

in the next iteration, such that we, in the second iteration, assume that

V IV,(2)(t, S(t), r(t))

= Ṽ (t, S(t), r(t))− e−
∫ T
t

f(t,s)ds
(
V IV,(1)(T, S(t), r(t))− Φ

(
SIV,(1)(t, T )

))
=

∫ T

t

e−
∫ τ
t

f(t,s)dsϕ
(
τ, SIV,(1)(t, τ), f(t, τ), V IV,(1)(τ, S(t), r(t))

)
dτ

+ e−
∫ T
t

f(t,s)dsΦ
(
SIV,(1)(t, T )

)
,

which is the solution to the differential equation of V IV from Equation (3.3.3) with

the boundary condition V IV(T, S(t), r(t)) = Φ
(
SIV,(1)(t, T )

)
.

Iteration k In the kth iteration, we assume that

V IV,(k)(t, S(t), r(t))

=

∫ T

t

e−
∫ τ
t

f(t,s)dsϕ
(
τ, SIV,(k−1)(t, τ), f(t, τ), V IV,(k−1)(τ, S(t), r(t))

)
dτ

+ e−
∫ T
t

f(t,u)duΦ
(
SIV,(k−1)(t, T )

)
.

We solve the forward system of differential equations with the boundary condi-

tion above

d

du
SIV,(k)(t, u) = g

(
u, SIV,(k)(t, u), f(t, u), V IV,(k)(u, S(t), r(t))

)
,

SIV,(k)(t, t) = S(t),

d

du
V IV,(k)(u, S(t), r(t)) = f(t, u)V IV,(k)(u, S(t), r(t))

− ϕ
(
u, SIV,(k)(t, u), f(t, u), V IV,(k)(u, S(t), r(t))

)
.

Hopefully, we have that∣∣∣V IV,(k)(T, S(t), r(t))−Φ
(
SIV,(k)(t, T )

)∣∣∣ < ∣∣∣V IV,(k−1)(T, S(t), r(t))−Φ
(
SIV,(k−1)(t, T )

)∣∣∣,
such that we in the kth iteration are closer to the true value of the intrinsic value of

the value process at time T than in the previous iteration.

Stopping Criteria We suggest the stopping criteria

min
k

{∣∣∣∣ ∣∣∣V IV,(k)(T, S(t), r(t))− Φ
(
SIV,(k)(t, T )

)∣∣∣
−
∣∣∣V IV,(k−1)(T, S(t), r(t))− Φ

(
SIV,(k−1)(t, T )

)∣∣∣∣∣∣∣ < ε

}
,
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for ε > 0. Another criteria is to fix the number of iterations. Let κ be the resulting

number of iterations. The resulting estimate of the intrinsic value of the value

process is

u 7→ V IV,(κ)(u, S(t), r(t)).

3.4 Intrinsic Value Monte Carlo

We perform a standard forward Monte Carlo simulation based on the paramet-

ric relation between the value process and the intrinsic value of the value from

Equation (3.3.2) for a given parameter α ∈ R. The objective is to estimate the value

process V from Equation (3.2.3), when the price process of the underlying asset has

the dynamics in Equation (3.2.4). Solutions to the system of ordinary differential

equations in the deterministic as-if market from Section 3.3.2 are used as input in

the Monte Carlo simulation.

Valuation of the value process in the setup from Section 3.2 is beyond a standard

Monte Carlo simulation since the asset itself depends on the value process. The in-

trinsic value approximation of the value process enables us to simulate the assets

despite the dependence of the value process.

Our objective is to use a Monte Carlo simulation to estimate the value process at a

fixed time t0

V̂ (t0, S(t0), r(t0)) =
1

N

N∑
i=1

(∫ T

t0

e
−

∫ τ
t0

ri(u)duϕ
(
τ, Si(τ), ri(τ), V (τ, Si(τ), ri(τ))

)
dτ

+ e
−

∫ T
t0

ri(u)duΦ
(
Si(T )

))
,

(3.4.1)

for independent realizations
(
S1(T ), (r1(u))u∈[t0,T ]

)
, ...,

(
SN (T ), (rN (u))u∈[t0,T ]

)
of

the asset and the interest rate. How to simulate the asset is not obvious when

its dynamics depend on the unknown value process, nor is how to calculate the

continuous payments ϕ since they also depend on the unknown value process.

3.4.1 Simulation of the Asset

We divide the interval [t0, T ] in M equidistant subintervals

t0 < t1 < ... < tM = T,

tj − tj−1 = ∆.

We simulate N paths of the interest rate according to a Euler scheme based on its

dynamics from Equation (3.2.2)

ri(tj+1) = ri(tj) + b
(
tj , ri(tj)

)
∆+ γ

(
tj , ri(tj)

)√
∆Yi,j ,
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for i.i.d. Yi,j ∼ N (0, 1) for i = 1, ..., N and j = 0, ...,M − 1. The forward interest

calculated at time tj for path i is based on ri(tj) is u 7→ fi(tj , u) for u ≥ tj .

We assume that the forward interest rates are known based on the simulated

interest rates.

We simulate the underlying asset according to a Euler scheme based on its dynamics

from Equation (3.2.4), and simulate N paths in the grid (t0, t1, ..., tM ). The Euler

scheme is

Si(tj+1) = Si(tj) + g
(
tj , Si(tj), ri(tj), V (tj , Si(tj), ri(tj))

)
∆

+ σ
(
tj , Si(tj), ri(tj), V (tj , Si(tj), ri(tj))

)√
∆Zi,j ,

(3.4.2)

for i.i.d. Zi,j ∼ N (0, 1) for i = 1, ..., N and j = 0, ...,M − 1. We cannot simulate

from this Euler scheme since it depends on the unknown value process. Our solution

is to use the intrinsic value approximation of the value process from Equation (3.3.2).

The method is an iteration procedure, where we iterate over the value of α in the

intrinsic value approximation in Equation (3.3.2). We also suggested two iteration

methods for calculating the intrinsic value of the value process in Section 3.3.2. We

denote the iteration over α as the outer iteration and the iteration to calculate V IV

as the inner iteration. The outer iteration procedure is described in Section 3.4.2.

For now, we assume that the value of α is fixed, and we describe the simulation of

the asset for a general value of α.

Inserting the intrinsic value approximation of the value process from Equation (3.4.2)

in the Euler scheme yields

Si(tj+1) = Si(tj) + g
(
tj , Si(tj), ri(tj), (1 + α)V IV(tj , Si(tj), ri(tj))

)
∆

+ σ
(
tj , Si(tj), ri(tj), (1 + α)V IV(tj , Si(tj), ri(tj))

)√
∆Zi,j .

We see in Section 3.3.2 above that we need an iteration procedure (denoted as the

inner iteration) to calculate the intrinsic value of the value process, V IV(t, S(t), r(t)),

for fixed t and S(t) known. This implies that, with the Euler scheme above, we need

to perform the inner iteration procedure N × (M − 1) + 1 times in order to simulate

N independent realizations of S(T ). Therefore, we implement the possibility of

calculating the intrinsic value of the value process in a looser partition of the interval

[t0, T ] than in the partition in the Euler scheme above. Let L ≤M − 1 and choose

t0 = τ0 < τ1 < ... < τL < T,(
τ0, τ1, ..., τL

)
⊆
(
t0, t1, ..., tM−1

)
.

We define the mapping

h(t) = max
l=0,...,L

{
τl
∣∣ τl ≤ t

}
, for t ∈ [t0, T ].
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Then, h(t) returns the largest τl less than t. This results in the Euler scheme

Si(tj+1) = Si(tj) + g
(
tj , Si(tj), ri(tj), (1 + α)V IV(tj , Si(h(tj)), ri(h(tj)))

)
∆

+ σ
(
tj , Si(tj), ri(tj), (1 + α)V IV(tj , Si(h(tj)), ri(h(tj)))

)√
∆Zi,j .

(3.4.3)

If tj = τl for some l = 0, ..., L, we insert the intrinsic value of the value process at time

tj calculated at time tj , V
IV(tj , Si(tj), ri(tj)), which depends on Si(tj) and ri(tj).

If instead tj ̸= τl for any l = 0, ..., L, we insert the intrinsic value of the value process

at time tj calculated at the largest τl less than tj , V
IV(tj , Si(h(tj)), ri(h(tj))), which

does not depend on Si(tj) and ri(tj), since we have not updated the calculation of

V IV with new information about the asset and the interest rate. We need N ×L+1

calculations of V IV with the inner iteration procedure to simulate N independent

realizations of the asset if we simulate from the Euler scheme in Equation (3.4.3).

In the case L = 0, we only estimate the intrinsic value of the value process once,

using one of the iteration procedures (the perturbation argument or the shooting

method) based on S(t0) and insert V IV(tj , S(t0), r(t0)) into the Euler scheme. This

is the choice of L with the lowest computation time, since we only need one inner

iteration procedure.

By solving the Euler scheme, we obtain N independent paths of the asset and the

intrinsic value of the value process. We calculate a Monte Carlo estimate of the

value process at time t0 as

V̂ (t0, S(t0), r(t0))

=
1

N

N∑
i=1

(∫ T

t0

e
−

∫ τ
t0

ri(u)duϕ
(
τ, Si(τ), ri(τ), (1 + α)V IV(τ, Si(τ), ri(τ))

)
dτ

+ e
−

∫ T
t0

ri(u)duΦ
(
Si(T )

))
,

with appropriate approximations of the integrals.

3.4.2 The Choice of α-functions

In this section, we describe the outer iteration procedure used in the determination

of the parameter value in the intrinsic value approximation of the value process.

Simulation of the asset from the Euler scheme in Equation (3.4.3) depends on

the choice of α in the intrinsic value approximation of the value process from

Equation (3.3.2).

The intention is to choose α such that the approximation is exact at time t0

V (t0, S(t0), r(t0)) = (1 + α)V IV(t0, S(t0), r(t0)).
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With the intrinsic value Monte Carlo method described above, we need the value of

α to estimate V (t0, S(t0), r(t0)), and therefore, we iterate over the value of α. This

is denoted by the outer iteration.

In the first outer iteration, we choose α = α(I). Based on this value of α, we

simulate the asset according to the Euler scheme in Equation (3.4.3), which includes

N × L + 1 inner iterations of either the perturbation argument or the shooting

method, and calculate a Monte Carlo estimate of the value process at time t0:

V̂ (I)(t0, S(t0), r(t0))

=
1

N

N∑
i=1

(∫ T

t0

e
−

∫ τ
t0

ri(u)duϕ
(
τ, Si(τ), ri(τ), (1 + α(I))V IV(τ, Si(τ), ri(τ))

)
dτ

+ e
−

∫ T
t0

ri(u)duΦ
(
Si(T )

))
,

with appropriate approximations of the integrals. For the second outer iteration, we

choose α such that

V̂ (I)(t0, S(t0), r(t0)) = (1 + α(II))V IV(t0, S(t0), r(t0)),

and estimate the value process at time t0 based on this value of α. We continue the

outer iteration procedure until α (or equivalently the estimate of the value process)

reaches a fixed point.

3.4.3 Relations to Least-Squares Monte Carlo and

Nested Simulation

Simulation of the asset from the Euler scheme from Equation (3.4.2) requires that

we know or can estimate the value process at time tj > t0, V (tj , Si(tj), ri(tj)).

The value process from Equation (3.2.3) is a conditional expectation. The estimation

of future conditional expectations also appears in the valuation of American options

to establish when to exercise the option. The authors of Longstaff et al. (2001)

proposed least-squares Monte Carlo for estimating future conditional expectations

when valuing American options. Another solution is nested simulation.

The main difference between our intrinsic value Monte Carlo method and Longstaff et

al. (2001) is that, in Longstaff et al. (2001), they are able to simulate the underlying

whereas in our setup, the underlying depends on the conditional expectation since we

feed back the value process into the dynamics of the underlying, which complicates

the simulation. A perturbation argument, as described in Section 3.3.2, on the

dynamics of the asset from Equation (3.2.4), combined with the least-squares Monte

Carlo method, is an alternative to the intrinsic value Monte Carlo method in order

to estimate the value process in Equation (3.2.3), but the clarification of this is

beyond the scope of this paper. If the feedback of the value process into the
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underlying is eliminated and the dependence of the value process V only appears in

the process of claims, ϕ, classical least-squares Monte Carlo can be used to estimate

the value process.

3.5 Numerical Study

In this section, we illustrate our approximation methods with an example. Specifi-

cally, we consider the corporate finance example (Example 3.2.1) with the underlying

assets of a firm, S(t), governed by a Black–Scholes like market with dividends that

depend on the value of the equity, V (t, S(t)), which again depends on the assets in

the future. For simplicity, we choose the dividends to be linear in the equity value.

In this situation, Equation (3.2.1) reduces to

dS(t) =
(
rS(t)− δV (t, S(t))

)
dt+ σS(t)dW (t), (3.5.1)

with the constant interest rate r, the dividend yield δV (t, S(t)) for δ ∈ R, which
depend on the value of the equity, and σ > 0 is the volatility. When the interest

rate is constant, f(t, u) = r for all t ≥ 0 and u ≥ t.

For the example model, the Euler scheme, Equation (3.4.2), reduces to

Si(tj+1) = Si(tj) +
(
rSi(tj)− δV (tj , Si(tj))

)
∆+ σSi(tj)

√
∆Zi,j , (3.5.2)

and the Monte Carlo simulation of the option value, Equation (3.4.1), reduces to

V̂ (t0, S(t0)) =
1

N

N∑
i=1

(∫ T

t0

e−(τ−t0)rδV (τ, Si(τ))dτ+e
−(T−t0)rΦ

(
Si(T )

))
, (3.5.3)

with Φ(s) =
(
s−K

)+
, where K is the debt of the firm payable at time T . Equa-

tions (3.5.2) and (3.5.3) illustrate the problem that we aim to solve. The two

equations depend on each other, and the asset is governed by a forward equation

while the value is governed by a backward equation. This entanglement is solved by

the approximation methods described in this paper.

3.5.1 Approximation Method Details

The approximation methods consist of a combination of two iteration schemes, which

we call the inner and the outer iterations. We describe the schemes separately below

and note that we have sketched the numerical schemes in Appendix 3.B.

The Outer Iteration

The outer iteration is based on the intrinsic value Monte Carlo method described

in Section 3.4. The method is to approximate the value V (tj , Si(tj)) in the Euler
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scheme in Equation (3.5.2) by assuming that it is proportional to the intrinsic value

defined in Section 3.3. The Euler scheme is then given by

Si(tj+1) = Si(tj) +
(
rSi(tj)− δ(1 + α)V IV(tj , Si(tj))

)
∆+ σSi(tj)

√
∆Zi,j . (3.5.4)

This way, the asset dynamics are disentangled from the value process. The propor-

tionality factor 1 + α is then determined in an iterative way such that the value of

the factor in the next iteration would make the intrinsic value approximation correct.

The calculation of the intrinsic value is the subject of the next section.

The Inner Iteration

The calculation of the intrinsic value involves solving a forward–backward system

of equations. Although the equations are deterministic, this is not a trivial task in

itself. In the paper, we have presented two approximation methods and, since both

of the methods are iterative, we call this step the inner iteration.

In this example, the intrinsic value of the asset and the value process at a fixed time

t satisfy the differential equations

d

du
SIV(t, u) = rSIV(t, u)− δV IV(u, S(t)),

SIV(t, t) = S(t),

d

du
V IV(u, S(t)) = (r − δ)V IV(u, S(t)),

V IV(T, S(t)) = Φ
(
SIV(t, T )

)
.

(3.5.5)

In the present case, the intrinsic value can actually be calculated analytically, but this

is not always the case. Instead, we use the two approximation methods described in

Sections 3.3.2 and 3.3.2.

Perturbation Method In the perturbation method, the forward–backward nature

of the equations is preserved, but the equations are decoupled. This is done by

initially assuming that, to the lowest order, the dividend is small such that it is

negligible in the differential equation of the intrinsic value of asset, which can then

be used to calculate an approximation of the intrinsic value of the equity, which

then in turn can be used to calculate a better approximation of the intrinsic value of

the asset and so on. That is, the k’th iteration of Equation (3.5.5) can be written as

d

du
SIV,(k)(t, u) = rSIV,(k)(t, u)− δV IV,(k−1)(u, S(t)),

SIV,(k)(t, t) = S(t),

d

du
V IV,(k)(u, S(t)) = (r − δ)V IV,(k)(u, S(t)),

V IV,(k)(T, S(t)) = Φ
(
SIV,(k)(t, T )

)
,
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for V IV,(0)(u, S(t)) = 0 for all u ≥ t.

Shooting Method In the shooting method, the forward–backward nature of the

equations is removed while preserving a system of coupled equations. This is done

by guessing an initial value of the value process and then solving the coupled forward

equations. The result is checked against the actual final value of the value process,

then the initial value is adjusted, and the system of equations is solved again. That

is, the k’th iteration of Equation (3.5.5) can be written as

d

du
SIV,(k)(t, u) = rSIV,(k)(t, u)− δV IV,(k)(u, S(t)),

SIV,(k)(t, t) = S(t),

d

du
V IV,(k)(u, S(t)) = (r − δ)V IV,(k)(u, S(t)),

V IV,(k)(t, S(t)) = e−(r−δ)(T−t)Φ
(
SIV,(k−1)(t, T )

)
,

for Φ
(
SIV,(0)(t, T )

)
= 0.

3.5.2 Finite Difference Method

For our example model in Equation (3.5.1), an exact numerical solution of the value,

V , can be obtained by numerically solving the partial differential equation (PDE)

given by the corresponding Feynmann–Kac formula

∂V

∂t
= −rs∂V

∂s
+ δV

∂V

∂s
− 1

2
σ2s2

∂2V

∂s2
+ rV − δV,

with the boundary condition given by the payoff V (T, s) = Φ(s).

We solve the PDE on a rectangular grid for the spot and time dimensions. In the time

dimension, we transform to a forward equation and use the explicit Euler method

for the time stepping. For the spot dimension, we make the usual transformation

into a log spot grid, x = ln s, for numerical stability and choose a central difference

scheme. Other numerical schemes can be used, but we remind the reader to ensure

numerical stability when choosing a solution method.

3.5.3 Numerical Results

After having described the different numerical schemes, we are now ready to present

the resulting values calculated by the schemes. We calculate the value as a function

of the initial spot, both in units of K. The numerical parameters are described

in the caption of Figure 3.1, where we show the value, V (S0, t0), as a function of

initial spot, S0, as calculated using the approximation methods and compared to

the numerically exact solution of the PDE. The left plots show the perturbation

method and the right plots show the shooting method. The value is calculated for
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different dividend rates δ from 0.0, corresponding to no dividends (lower plots) and

up to 0.5 corresponding to paying half the value in dividends (top plots). In each

plot, the solid graph is the numerically exact value as calculated by the PDE while

the values given by the approximation methods are calculated with either one, two,

or five updates of the intrinsic value in the Monte Carlo simulation. All the plots

have the same axis for better visual comparison. Let us carefully walk through what

can be seen.

Let us first notice that the two approximation methods (the perturbation method

and the shooting method) yield very similar results and, for this reason, we need not

distinguish between these. Let us next look at the lower plots corresponding to no

dividend, that is, a pure Black–Scholes market. In this case, the market is decoupled

from the value and the outer iteration reduces to a Monte Carlo simulation of the

Black–Scholes market, see Equation (3.5.4). For this reason, the accuracy of the

approximation methods are independent of the number of updates of the intrinsic

value, Nt. Lastly, as we increase the dividend ratio (middle and top plots), the

market and the value are no longer decoupled and simple Monte Carlo no longer

suffices. Therefore, we need the methods presented in this paper. If we turn our

attention to the top plots where the dividend rate is largest, the value calculated

with only one update of the intrinsic value overestimates the actual value, but as we

increase the number of updates of the intrinsic value, the approximation methods

converge to the exact value. Specifically, we note that the methods reach the

accuracy of the Monte Carlo simulation with five updates of the intrinsic value.

An interesting feature of the intrinsic value methods is that it is directly possible to

find the time value of the value process from Equation (3.3.1), which represents the

value added from being allowed to base optimal decisions in the future on future

values, since α is the ratio between the time value and the intrinsic value. This

is shown in Figure 3.2 for δ = 0.5 for both methods and with a different number

of updates of the intrinsic value, Nt. We note three observations. First, the two

methods yield similar α, as they should. Second, when the intrinsic value is not

updated frequently enough, the approximation methods overestimate the time value

in the present example. Third, α decreases as we are increasingly in-the-money.

This is also what we would expect since stochasticity has less influence on the value

far from the strike.

Lastly, in Figure 3.3, we show the value (top plot) and α (bottom plot) as a function

of the initial spot, S0, including the crossover from being in-the-money to being out-

of-the-money at S0 = 1 for different dividends. When out-of-the-money, the intrinsic

value, V IV, is equal to zero and the outer iteration in Equation (3.5.4) becomes

independent of α and reduces to a Monte Carlo simulation in a pure Black–Scholes

market for all values of the dividend rate δ. Therefore, our calculations for the three

values of δ coincide when out-of-the-money. A significant part of the value is caused
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Figure 3.1: The value as a function of the initial spot as calculated using the perturbation
and shooting methods for different dividend rates, δ, and number of updates of the intrinsic
value, Nt. The calculated values are compared to numerically exact values calculated by the
PDE. The PDE is calculated on a grid with 102 spot and 103 time points. The intrinsic value
methods are calculated with 104 Monte–Carlo paths that have 102 time points. The inner
and outer iterations are stopped after 5 iterations.

Figure 3.2: The proportionality factor, α, as a function of the initial spot, S0, calculated
using the perturbation and shooting methods for a dividend rate of δ = 0.5 and for various
numbers of updates of the intrinsic value, Nt.
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by the time value when the initial spot is close to the strike, and therefore the value

of α increases when the initial spot approaches the strike. The consequence is that

our method is unstable close to the strike around S0 = 1. When in-the-money,

the method is stable and we saw already in Figure 3.1 that it converges fast and

properly to the true equity value.

In this section, we have discussed the performance and quality of the approximation

method proposed in this paper. We have seen that our method estimates quite

accurately the equity value of a firm in a corporate finance setup with dividend

payments linear in the equity value itself. This is clearly a numerically challenging

problem but in our example it is possible to disentangle, without really losing

accuracy, the forward–backward equation for the intrinsic value and the stochastic

simulation via an assumption of the time value relation to the intrinsic value.

The specific numerical illustration relies on the choice of dividend function (here

linearity), the choice of parametric relation (here linearity), and terminal claim

(here the standard call option payoff). Although both the parametric relation and

the terminal claim are here chosen naturally, the lack of correctness when out-of-

the-money and the instability at-the-money are a consequence of their relation. It

is left to future works to better understand how sensitive the high quality of the

approximation is to these assumptions and how the parametric relation might be

improved to avoid problems when not in-the-money. However, for this particular

corporate value example, one may note the following. When not in-the-money, that

is, when the asset value does not exceed the value of the debt, a delicate equity

valuation is predominantly relevant for areas such as credit risk assessment. Then,

the firm is probably bankrupt by solvency rules that do not rely on the market

valuation performed here. So, within that context, we live with our method being

approximately accurate only when in-the-money. Of course, introducing premature

bankruptcy in the arguments calls for introducing premature bankruptcy within the

model. This is also left for future studies.
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Figure 3.3: The value and the proportionality factor, α, as a function of the initial
spot, S0, on an interval including the cross over from being out-of-the-money to being
in-the-money at S0 = 1 for different dividends rates, δ, and with 5 updates of the intrinsic
value, Nt = 5.

3.A Quality of the Intrinsic Value Approximation

We study the quality of the approximation in Equation (3.3.2) under the assumption

that there is no continuous process of claims, ϕ = 0, and that the claim Φ is infinitely

differentiable. The Taylor series of Φ
(
S(T )

)
around SIV(t, T ) is

Φ
(
S(T )

)
=

∞∑
n=0

1

n!
Φ(n)

(
SIV(t, T )

)(
S(T )− SIV(t, T )

)n
,

where Φ(n)(s) = dn

dsnΦ(s). With the Taylor series above, we may write

V (t, S(t), r(t))

= EQ
[
e−

∫ T
t

r(s)dsΦ
(
S(T )

) ∣∣∣ S(t), r(t) ]
= EQ

[
e−

∫ T
t

r(s)ds
∞∑

n=0

1

n!
Φ(n)

(
SIV(t, T )

)(
S(T )− SIV(t, T )

)n ∣∣∣ S(t), r(t) ]
=

(
1 +

∞∑
n=1

Φ(n)
(
SIV(t, T )

)
n!Φ

(
SIV(t, T )

)
× EQ

[
e−

∫ T
t

(r(s)−f(t,s))ds
(
S(T )− SIV(t, T )

)n ∣∣∣ S(t), r(t) ])× V IV(t, S(t), r(t)).

Hence, the quality of the approximation in Equation (3.3.2) relies on how well we

can approximate α(t, S(t), r(t)) with a constant α. We study the approximation

analytically in the classic Black-Scholes market.

Example 3.A.1. Let the asset have dynamics

dS(t) = rS(t)dt+ σS(t)dW (t),
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for a deterministic interest rate r ∈ R and volatility σ > 0, and where W is a

Brownian motion under the risk neutral measure Q. Since the interest rate is

deterministic, the forward interest rate is equal to r. The intrinsic value of the asset

is

SIV(t, u) = S(t)er(u−t),

and

EQ
[
S(T )− SIV(t, T )

∣∣∣ S(t) ] = 0,

EQ
[(
S(T )− SIV(t, T )

)2 ∣∣∣ S(t) ] = SIV(t, T )2
(
eσ

2(T−t) − 1
)
.

We consider a first order polynomial claim

Φ(s) = a+ b · s ⇒ α(t, S(t)) = 0.

Hence, for a first order polynomial claim, the approximation in Equation (3.3.2) is

exact for α = 0 in the classic Black-Scholes market.

For a second order polynomial claim, we have that

Φ(s) = a+ b · s+ c · s2 ⇒ α(t, S(t)) =
2 · c · SIV(t, T )2

(
eσ

2(T−t) − 1
)

2
(
a+ b · SIV(t, T ) + c · SIV(t, T )2

) .
For a = b = 0, the function α depends solely on time to maturity and the volatility.

Therefore, if we allow for a time dependent α in the approximation in Equation (3.3.2),

the approximation is exact with the claim Φ(s) = c · s2.

In general, for a polynomial claim in the form Φ(s) = c · sM , M ∈ N, in the classic

Black-Scholes market, the approximation in Equation (3.3.2) is exact if we allow for

an α which depends on time.

In general, the quality of the intrinsic value approximation of the value process

depends on how well SIV(t, T ) approximates S(T ) and the behaviour of Φ and its

derivatives. The size of the terms EQ
[(
S(T ) − SIV(t, T )

)n ∣∣∣ S(t) ], n ∈ N, in the

expression of α(t, S(t)) depends on the volatility function σ and a time to maturity

T − t, since we disregard the volatility in the interval [t, T ] when we define SIV(t, T ).
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3.B Sketch of Algorithms

3.B.1 Outer Iteration

The algorithm for the outer iteration can be sketched as follows

alpha[1] = alpha_0

for n_alpha = 1 : N_alpha

S[:,1] = S_0

V_IV[1:N_t] = CalculateIntrinsicValue(t[1:N_t], S_0)

for i = 1 : N_MC

for j = 1 : N_t-1

if j in t_IV

V_IV[j:N_t] =

CalculateIntrinsicValue(t[j:N_t], S[i,j])

end

S[i,j+1] = Euler(t[j], S[i,j], (1+alpha[n_alpha])*

V_IV[j:N_t])

end

end

V = CalculateMonteCarloValue(t[:], S[:,:])

if V_IV[1] != 0

alpha[n_alpha + 1] = V/V_IV[1] - 1

else

alpha[n_alpha + 1] = alpha[n_alpha]

end

end

3.B.2 Inner Iteration

Perturbation Method

The algorithm for the perturbation method iteration can be sketched as follows

V_IV[:] = 0

for k = 1 : N_k

S_IV[1] = S_0

for j = 1 : N_t-1

S_IV[j+1] = Euler(t[j], S_IV[j], V_IV[j])

end

V_IV[N_t] = Phi(S:IV[N_t])

for j = N_t : 1

V_IV[j-1] = BackwardEuler(t[j], V_IV[j], S_IV[j])
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end

end

Shooting Method

The algorithm for the shooting method iteration can be sketched as follows

V_IV[1] = V_0

for k = 1 : N_k

S_IV[1] = S_0

for j = 1 : N_t-1

S_IV[j+1] = Euler(t[j], S_IV[j], V_IV[j])

V_IV[j] = Euler(t[j], S_IV[j])

end

V_IV[1] = Discount(t[1], t[Nt], S_IV[Nt])

end



Chapter 4

Reserve-dependent management actions in

life insurance

This chapter contains the paper Falden and Nyegaard (2023).

Abstract

In a set-up of with-profit life insurance including bonus, we study the

calculation of the market reserve, where Management Actions such as

investment strategies and bonus allocation strategies depend on the reserve

itself. Since the amount of future bonus depends on the retrospective

savings account, the introduction of Management Actions that depend on

the prospective market reserve results in an entanglement of retrospective

and prospective reserves. We study the complications that arise due

to the interdependence between retrospective and prospective reserves,

and characterize the market reserve by a partial differential equation

(PDE). We reduce the dimension of the PDE in the case of linearity, and

furthermore, we suggest an approximation of the market reserve based

on the forward rate. The quality of the approximation is studied in a

numerical example.

Keywords: With-profit life insurance; Bonus; Prospective reserves; Management

actions.

4.1 Introduction

In this paper, we study the calculation of the market reserve of a with-profit life

insurance contract in a set-up, where the so-called Management Actions have a

complex structure. The market reserve is the expected present value of future

guaranteed and non-guaranteed payments from the insurer to the insured, and the

Management Actions influence the payments of a life insurance contract, for instance,

79
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through the investment strategy and the bonus allocation strategy. Especially, the

non-guaranteed payments are influenced by future Management Actions. The life

insurance company takes many considerations into account when deciding on its

Management Actions, and the decisions depend on the financial situation of the

company, which is measured by the balance sheet. A fair redistribution of bonus is

of great importance in with-profit life insurance, such that the policyholders who

contributed to the surplus receive a reasonable amount of bonus. In order to fairly

model the future bonus allocation strategy, we need a sophisticated model that takes

the entire balance sheet into account. In our model, we allow the future Management

Actions to depend on all balance sheet items, and the dependence on the market

reserve complicates the set-up.

The modelling of bonus in with-profit life insurance is studied in Norberg (1999),

Steffensen (2006) and Asmussen and Steffensen (2020). We extend the model from

Asmussen and Steffensen (2020) to allow for a broader range of investment and bonus

allocation strategies, and characterize the prospective market reserve within this

model. The core of the model is the surplus that arises due to prudent assumptions

about the interest rate and insurance risks on which payments are specified at

initialization of the life insurance contract. By legislation, the surplus is to be

paid back to the policyholders as bonus. We use the bonus scheme spoken of as

additional benefits, where bonus is used to buy more insurance, and therefore, the

savings account of the insurance contract is influenced by bonus in terms of dividend

payments. This results in a link between the savings account and the guaranteed

payments, which is different from the set-up in Steffensen (2006),where dividends

only depend on the surplus, and guaranteed payments are not influenced by dividends.

With the introduction of Management Actions that depend on the market reserve,

the stochastic differential equation of the retrospective savings account and the

retrospective surplus depend on the prospective market reserve. This paper studies

the complications that arise due to the interdependence between retrospective and

prospective reserves caused by the structure of the Management Actions. The result

is a characterization of the market reserve by a partial differential equation (PDE)

for a general model of the financial market with methods inspired by Steffensen

(2000). We reduce the dimension of the PDE under the assumption of linearity of

the dividend strategy with calculations similar to those in Steffensen (2006), and

suggest an approximation of the market reserve based on the forward interest rate.

The quality of the approximation is studied in a numerical example.

Christiansen, Denuit, and Dhaene (2014) study reserve-dependence in benefits and

costs in a life insurance set-up without bonus, and characterize the prospective

market reserve by a Thiele differential equation. The inclusion of bonus in our

set-up prevents us from applying the results from Christiansen, Denuit, and Dhaene

(2014). The results in this paper combine the modelling of bonus in life insurance

from Asmussen and Steffensen (2020) with reserve-dependence from Christiansen,
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Denuit, and Dhaene (2014). Djehiche and Löfdahl (2016) study nonlinear reserve-

dependence in life insurance payments in a set-up without bonus and derive a

backward stochastic differential equation (BSDE) of the prospective reserve. Under

the Markov assumption, Djehiche and Löfdahl (2016) derive the nonlinear Thiele’s

equation from the BSDE. We use a similar Markov assumption to derive the PDE

of the prospective market reserve in our set-up with bonus. From a simulation point

of view, the entanglement of retrospective and prospective reserves is notoriously

difficult to handle, and Nyegaard, Ott, and Steffensen (2021) propose a simulation

method to disentangle the problem based on intrinsic values. The derivation of the

PDE of the prospective market reserve under the assumption of reserve-dependent

Management Actions draws parallels to the valuation of contingent claims and

option pricing of financial derivatives. Especially the valuation of American options,

where the decision to exercise depends on the value of the option itself. Valuation

of American options is studied in, for instance, Rogers (2003) and Haugh and

Kogan (2004), but our model contains an additional layer of complexity, since the

underlying savings account depends on the prospective reserve. Therefore, we cannot

use existing valuation methods for American options as presented in for instance

Rogers (2003) and Haugh and Kogan (2004) to calculate the prospective reserve

in our model. Bruhn and Lollike (2020) and Ahmad, Buchardt, and Furrer (2022)

focus on a projection model of the retrospective savings account and surplus in

a setting similar to ours, but where the dividend strategy is restricted to depend

on the state of the insured, the savings account and the surplus. The inclusion of

the prospective market reserve in the specification of the dividend strategy makes

projection of the savings account and the surplus with the methods developed in

Bruhn and Lollike (2020) and Ahmad, Buchardt, and Furrer (2022) impossible.

The structure of the paper is the following. In Section 4.2, we present the set-up of

with-profit life insurance including bonus, introduce a model of the financial market,

define the assets and liabilities of the insurance company, and link Management

Actions in terms of investments and dividends to the market reserve. Calculation of

the market reserve is studied in Section 4.3, where we derive the PDE, and study

the case of linearity. A numerical example in Section 4.4 emphasizes the practical

applications of our result.

4.2 Reserves in Life Insurance

We introduce the set-up of with-profit life insurance including bonus from Asmussen

and Steffensen (2020) in a general financial market. Two decompositions of the

liabilities of the insurer are presented, and we link Management Actions in terms of

dividends and the investment strategy to the liabilities.
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4.2.1 Set-up

We consider the classical model of a life insurance contract, as presented in, for

instance, Norberg (1991), where a Markov process Z =
(
Z(t)

)
{t≥0} on a finite state

space J describes the state of the policyholder of a life insurance contract. Payments

in the contract link with sojourns in states and transitions between states.

The transition probabilities of Z are given by

pij(s, t) = P
(
Z(t) = j

∣∣ Z(s) = i
)
,

for i, j ∈ J and s ≤ t. We assume that the transition intensities

µij(t) = lim
h↓0

1

h
pij(t, t+ h),

exist for i, j ∈ J , i ̸= j and are suitably regular. The process Nk(t) counts the

number of jumps of Z into state k ∈ J up to and including time t

Nk(t) = #
{
s ∈ (0, t]

∣∣ Z(s−) ̸= k, Z(s) = k
}
,

where Z(s−) = limh↓0 Z(s − h). Let FZ =
(
FZ

t

)
t≥0

be the natural filtration

generated by the state process Z.

We consider a general financial market, where the insurance company invests in a

money market account governed by the interest rate r and K traded assets. The

financial market is assumed to be free of arbitrage resulting in the existence of a

(not necessarily unique) martingale measure Q. All quantities in the model of the

financial market are modelled directly under the martingale measure.

The interest rate is modelled as a diffusion process with dynamics

dr(t) = αr(t, r(t))dt+ σr(t, r(t))dWr(t), (4.2.1)

where Wr is a Brownian motion under the martingale Q, and αr : [0,∞)× R → R
and σr : [0,∞)× R → (0,∞) are deterministic and sufficiently regular functions.

The general market consists of a money market account with dynamics

dS0(t) = r(t)S0(t)dt,

and K traded assets S(t) =
(
S1(t), ..., SK(t)

)T
with dynamics

dS(t) = r(t)S(t)dt+ σ̃(t, S(t), r(t))dW (t), (4.2.2)
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where W (t) = (W1(t), ...,WM (t))T is a M -dimensional Brownian motion under Q
independent of Wr(t), and where

σ̃(t, s, r) =


σ11(t, s, r) · s1 σ12(t, s, r) · s1 . . . σ1M (t, s, r) · s1

σ21(t, s, r) · s2
. . .

...
...

. . .
...

σK1(t, s, r) · sK σK2(t, s, r) · sK . . . σKM (t, s, r) · sK

 ,

for s ∈ RK and sufficiently regular and deterministic functions σij : [0,∞)×RK×R →
(0,∞). The natural filtration generated by the financial market is FS =

(
FS

t

)
t≥0

,

and the combined information about the state process Z and the financial market at

time t is given by Ft = FS
t ∪FZ

t . We assume independence between the state process

Z and the financial market. With this specification of the financial market, the

interest rate and the traded assets,
(
r(t), S(t)

)
, are Markov, and the ideas presented

in this paper rely on the Markov property of the financial market. Our results

generalize directly to any financial market, that is Markov and independent of the

state process Z.

Furthermore, we assume the existence of a suitable regular forward interest rates

u 7→ f(t, u) for t ≥ 0, which satisfies

EQ
[
e−

∫ s
t
r(u)du

∣∣∣∣ FS
t

]
= e−

∫ s
t
f(t,u)du,

and f(t, t) = r(t) for all 0 ≤ t ≤ s. The forward interest rate u 7→ f(t, u) is

measurable with respect to FS
t .

The insurance company invests in an account G that consists of investments in the

money market account and in the traded assets. We assume that the proportion of

G invested in risky asset k is given by qk(t). The account G has dynamics

dG(t) =
(
1−

K∑
k=1

qk(t)
)
G(t)

dS0(t)

S0(t)
+

K∑
k=1

qk(t)G(t)
dSk(t)

Sk(t)

= r(t)G(t)dt+G(t)q(t)Tσ(t, S(t), r(t))dW (t), (4.2.3)

where q(t) = (q1(t), ..., qK(t))T , and

σ(t, s, r) =


σ11(t, s, r) σ12(t, s, r) . . . σ1M (t, s, r)

σ21(t, s, r)
. . .

...
...

. . .
...

σK1(t, s, r) σK2(t, s, r) . . . σKM (t, s, r)

 .
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4.2.2 With-profit Life Insurance

In with-profit life insurance, payments specified in the insurance contract are based

on prudent assumptions about insurance risks and the return in the financial market.

We denote these assumptions the first-order (technical) basis. The first-order basis

consists of the technical interest rate r∗ and the technical transition intensities µ∗
ij ,

i, j ∈ J , i ̸= j. Assumptions about the interest rate and transition intensities on the

first-order basis are prudent compared to the expectation of the actual development

of the market interest rate and transition intensities. The actual future development

of the market interest rate and the market transition intensities µij is unknown and

needs to be modelled. Throughout, we assume that the market transition intensities

are modelled in advance, and consider µij as externally given, which is also practise

in, for instance, Danish life insurance industry. The model of the market interest

rate is specified in Equation (4.2.1).

Due to the prudent first-order basis, a surplus arises which by product design is to

be paid back to the policyholders in terms of bonus. The redistribution of bonus is

governed by legislation (in Denmark denoted Kontributionsbekendtgørelsen), and

life insurance companies have certain degrees of freedom in the redistribution of

bonus, which is part of the Management Actions of the company. We use the

bonus scheme spoken of as additional benefits where bonus is used to buy more

insurance. Inspired by Asmussen and Steffensen (2020) Chapter 6, the payments

of the insurance contract consist of two types of payments. The payment stream

B1 represents payments not regulated by bonus, and B2 represents the profile of

payments regulated by bonus. The payment streams contain benefits less premiums

of the insurance contract

dBi(t) = dB
Z(t)
i (t) +

∑
k:k ̸=Z(t−)

b
Z(t−)k
i (t)dNk(t),

and

dBj
i (t) = bji (t)dt+∆Bj

i (t)dϵn(t),

for j ∈ J and where ϵn(t) = 1{t≥n−} is the Dirac measure, bji denotes continuous

payments during sojourn in state j, and bjki denotes the single payment upon

transition from state j to state k. There is a lump sum payment of size ∆Bj
i (n−)

just before the contract terminates at time n. Other lump sum payments at fixed

time points during sojourn in states are disregarded in this set-up. We assume that

the payment functions bji , b
jk
i and ∆Bj

i are deterministic and sufficiently regular.

The technical reserve for the payment stream Bi for i = 1, 2 in this set-up is the



4.2. Reserves in Life Insurance 85

present value of future payments discounted with the technical interest rate

V
∗Z(t)
i (t) = E∗

[∫ n

t

e−
∫ s
t
r∗(u)dudBi(s)

∣∣∣∣∣ Z(t)
]
,

where E∗ implies that we use the first-order transition intensities in the distribution

of Z. See Asmussen and Steffensen (2020) Chapter 6 Section 4 for the dynamics of

V
∗Z(t)
i (t).

Bonus is distributed from the insurance company to the insured through a dividend

payment stream D. With the bonus scheme additional benefits, bonus is used to

buy more insurance, and we denote by Q(t) the number of payment processes B2

bought up to time t. Additional benefits are bought under the technical basis, and

as we then use dividends to buy B2(t) at the price of V ∗
2 (t), we must have that

dD(t) = V
∗Z(t)
2 (t)dQ(t).

The payment process guaranteed the policyholder at time t is

dB(s) = dB1(s) +Q(t)dB2(s).

4.2.3 Assets and Liabilities

The assets, U(t), of the insurance company are given by past premiums less benefits

accumulated with the capital gains from investing in G, which consists of investments

in the money market account, S0, and the risky assets, S,

U(t) = −
∫ t

0

G(t)

G(s)

(
dB1(s) +Q(s)dB2(s)

)
, (4.2.4)

under the assumption that U(0) = 0.

We consider two decompositions of the liabilities of the insurance company. One

decomposition is in the savings account of the policyholder and the surplus. The

savings account X of an insurance contract is the technical value of future payments

guaranteed at time t, i.e.

X(t) = V
∗Z(t)
1 (t) +Q(t)V

∗Z(t)
2 (t).

The savings account X(t) depends on the process Q(t), which denotes the number

of payment processes B2 bought up to time t. We can express Q(t) in terms of the

savings account and link the payment stream experienced by the policyholder to

the savings account

dB(t) = dB(t,X(t))

= bZ(t)(t,X(t))dt+∆BZ(t−)(t,X(t−))dϵn(t)

+
∑

k:k ̸=Z(t−)

bZ(t−)k(t,X(t−))dNk(t),
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where

bj(t, x) = bj1(t) +
x− V ∗j

1 (t)

V ∗j
2 (t)

bj2(t),

∆Bj(t, x) = ∆Bj
1(t) +

x− V ∗j
1 (t)

V ∗j
2 (t)

∆Bj
2(t),

bjk(t, x) = bjk1 (t) +
x− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t).

Note that since V ∗j
i (n−) = ∆Bj

i (n−), the lump sum payment at termination of the

contract is equal to the savings account, ∆Bj(n−, x) = x.

The surplus Y is the difference between the assets and the savings account

Y (t) = U(t)−X(t). (4.2.5)

We assume that the proportion of the account G invested in the risky asset Sk can

be written in the form

qk(t) =
π̃k(t)Y (t)

U(t)
,

where π̃k is a sufficiently regular process. The investment strategy of the insurance

company is π̃(t) = (π̃1(t), ..., π̃K(t))T . Hence, the proportion of G invested in the

risky asset k is proportional to the surplus divided by the assets, leading to a larger

investment if the surplus is large compared to the savings account.

Proposition 4.2.1. The savings account, X, and the surplus, Y , have dynamics

dX(t) = r∗(t)X(t)dt− dB(t,X(t)) + dD(t)

+
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−))
(
dNk(t)− µ∗

Z(t−)k(t)dt
)
,

dY (t) = r(t)Y (t)dt+ Y (t)π̃(t)Tσ(t, S(t), r(t))dW (t)− dD(t) + cZ(t)(t,X(t))dt

−
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−))
(
dNk(t)− µZ(t−)k(t)dt

)
,

where

R∗jk(t, x) = bjk(t, x) + χjk(t, x)− x,

χjk(t, x) = V ∗k
1 (t) +

x− V ∗j
1 (t)

V ∗j
2 (t)

V ∗k
2 (t),

cj(t, x) = (r(t)− r∗(t))x+
∑
k:k ̸=j

(
µ∗
jk(t)− µjk(t)

)
R∗jk(t, x).
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Proof. See Asmussen and Steffensen (2020) Chapter 6 Section 7, for the dynamics

of the savings account. For the surplus, insert the dynamics of the account G from

Equation (4.2.3) and the dynamics of the savings account

dY (t) = − dG(t)

∫ t

0

1

G(s)

(
dB1(s) +Q(s)dB2(s)

)
−
(
dB1(t) +Q(t)dB2(t)

)
− dX(t)

= r(t)
(
−
∫ t

0

G(t)

G(s)

(
dB1(s) +Q(s)dB2(s)

)
−X(t)

)
dt+ r(t)X(t)dt

+
(
−
∫ t

0

G(t)

G(s)

(
dB1(s) +Q(s)dB2(s)

)) π̃(t)TY (t)

U(t)
σ(t, S(t), r(t))dW (t)

− r∗(t)X(t)dt− dD(t)

−
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−))
(
dNk(t)− µ∗

Z(t−)k(t)dt
)

= r(t)Y (t)dt+ Y (t)π̃(t)Tσ(t, S(t), r(t))dW (t) + cZ(t)(t,X(t)dt− dD(t)

−
∑

k:k ̸=Z(t−)

R∗Z(t−)k(t,X(t−))
(
dNk(t)− µZ(t−)k(t)dt

)
,

which completes the proof.

Based on the principle of equivalence on the technical basis, a natural constraint is

that the savings account and the surplus are equal to zero at initialization of the

contract i.e. X(0−) = 0 and Y (0−) = 0. This assumption implies that the savings

account and the surplus are retrospective reserves. Hence, the decomposition of

the liabilities into the savings account and the surplus is a decomposition based

on retrospective reserves. Another decomposition of the liabilities is based on

prospective reserves, and the natural constraint on the prospective reserves is that

they are equal to zero at termination of the insurance contract. The prospective

reserves are the market value of guaranteed payments, the market value of future

bonus payments, also denoted as Future Discretionary Benefits (FDB), and future

profits.

Uncertainties in future payments arise from two different types of risk. There is

the risk associated with the state of the insured described by the state process

Z, and the risk from investments in the risky assets. Inspired byAsmussen and

Steffensen, 2020 Chapter 6 Section 3, we evaluate the risk associated with Z under

the physical measure P due to diversification, and evaluate financial risks under the

risk-neutral measure Q determined by the financial market. Therefore, valuation of

future payments is performed under the product measure P⊗Q.

The market value of the guaranteed payments, V g,Z(t)(t), is the expected present
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value of the future payments that are guaranteed the insured at time t

V g,Z(t)(t) = EP⊗Q
[∫ n

t

e−
∫ s
t
r(u)du

(
dB1(s) +Q(t)dB2(s)

) ∣∣∣∣ Ft

]
.

Remark 4.2.2. We can express the market value of the guaranteed payments in

terms of the savings account

V g,Z(t)(t) = EP⊗Q
[∫ n

t

e−
∫ s
t
r(u)du

(
dB1(s) +Q(t)dB2(s)

) ∣∣∣∣ Ft

]
= EP⊗Q

[∫ n

t

e−
∫ s
t
r(u)dudB1(s)

∣∣∣∣ Z(t),FS
t

]
+Q(t) · EP⊗Q

[∫ n

t

e−
∫ s
t
r(u)dudB2(s)

∣∣∣∣ Z(t),FS
t

]
= EP

[∫ n

t

e−
∫ s
t
f(t,u)dudB1(s)

∣∣∣∣ Z(t), r(t) ]
+Q(t) · EP

[∫ n

t

e−
∫ s
t
f(t,u)dudB2(s)

∣∣∣∣ Z(t), r(t) ],
since Q(t) is measurable with respect to Ft, Z is Markov, and Q(t) is a function

of X(t). The forward rate can be inserted in the discount factor, since the state

process Z and the financial market are independent, such that the market value of

the payment streams dB1 and dB2 consists of the valuation of risks associated with

Z only and can be performed under P independent of the financial market.

The market value of the future bonus payments (FDB) is

V b,Z(t)(t) = EP⊗Q
[∫ n

t

e−
∫ s
t
r(u)du

(
Q(s)−Q(t)

)
dB2(s)

∣∣∣∣ Ft

]
.

The market reserve is the expected present value under the market basis of future

guaranteed and non-guaranteed payments, and therefore it is the sum of the market

value of the guaranteed payments and the market value of the future bonus payments

V Z(t)(t) = V g,Z(t)(t) + V b,Z(t)(t)

= EP⊗Q
[∫ n

t

e−
∫ s
t
rdu
(
dB1(s) +Q(s)dB2(s)

) ∣∣∣∣ Ft

]
.

Future profit is the difference between the assets and the market reserve, V p,Z(t)(t) =

U(t)−V Z(t)(t). The market reserve is the expected present value of future payments

from the insurance company to the insured, while future profit is the expected

present value of payments allotted the insurance company for taking on risks.

Note that in the first decomposition of the liabilities, the sum of the retrospective

savings account and surplus is equal to the assets, and in the second decomposition,

the sum of the prospective market reserve and future profit is equal to the assets.

Hence, U(t) = X(t) + Y (t) = V p,Z(t)(t) + V Z(t)(t).
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4.2.4 Reserve-dependent Dividends and Investments

Calculation of the balance sheet items requires a specification of the investment

strategy and the dividend payment stream. These are part of the Management

Actions of the insurance company, and the determination of the investment strategy

and the dividend payment stream holds certain degrees of freedom.

We assume that dividends are allocated continuously such that

dD(t) = δ̃(t)dt,

where δ̃ is the dividend strategy of the insurance company.

When deciding the investment strategy and the dividend allocation strategy, the

insurance company considers its financial situation in terms of relations between

balance sheet items. Therefore, an attractable model of the Management Actions

includes the possibility that dividends and investments depend on all balance sheet

items.

We consider a set-up where the investment strategy of the insurance company

depends on the savings account, the surplus, the market reserve, the interest rate,

and the traded assets

π̃k(t) = πk
(
t,X(t), Y (t), V Z(t)(t), r(t), S(t)

)
, (4.2.6)

for deterministic and sufficiently regular functions πk, k = 1, ...,K. In the same

way, we allow dividends to depend on the savings account, the surplus, the market

reserve, the interest rate, and the traded assets

δ̃(t) = δZ(t)
(
t,X(t), Y (t), V Z(t)(t), r(t), S(t)

)
, (4.2.7)

for a deterministic and sufficiently regular function δ. Due to the relations between

the balance sheet items, this specification of the investment strategy and the dividend

strategy above also allow investments and dividends to depend on the assets, U(t),

the market value of guaranteed payments, V g,Z(t)(t), the market value of future

bonus payments, V b,Z(t)(t), and future profits, V p,Z(t)(t). It is reasonable to assume

that the dividend process depends on FDB, since it is likely that the amount of

bonus depends on the reserve of future bonus. Hedging of interest rate risks in the

market value of guaranteed payments, V g,Z(t)(t), is of great interest of the insurance

company, and the general specification of the investment strategy above enables

this. To find such an investment strategy, the insurance company must compute

the interest rate sensitivity of V g,Z(t)(t) and then choose an investment strategy πk
with the same interest rate sensitivity.

With this specification of the investment strategy and the dividend strategy, there is a

forward-backward entanglement of the prospective market reserve in the retrospective
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savings account and surplus, since the investment strategy and the dividend strategy

appear in the dynamics from Proposition 4.2.1.

4.3 Calculation of the Market Reserve

The set-up with investments and dividends linked to all balance sheet items is

attractable, since the Management Actions of the insurance company may depend

on the entire balance sheet. Calculation of the market reserve within this set-up

is complicated due to the interdependence between retrospective and prospective

reserves. We characterize the market reserve by a PDE and consider the case of

linearity that leads to a reduction in the dimension of the PDE.

4.3.1 PDE of the Market Reserve

Informally,
(
X(t), Y (t), r(t), S(t), Z(t)

)
is seen to be Markov with the specification

of the investment strategy and the dividend strategy in Equations (4.2.6) and

(4.2.7), since the dynamics of the savings account and the surplus depend solely on(
X(t), Y (t), r(t), S(t), Z(t)

)
. Hence, with a slight misuse of notation where V is now

a function and not a stochastic process, we write the market reserve as

V Z(t)(t,X(t), Y (t), r(t), S(t)) =

EP⊗Q
[∫ n

t

e−
∫ s
t
r(u)du

(
dB1(s) +Q(s)dB2(s)

) ∣∣∣∣ X(t), Y (t), r(t), S(t), Z(t)

]
.

(4.3.1)

Since the savings account and the surplus depend on the stochastic interest rate and

the traded assets, the market reserve also depends on r(t) and S(t).

Proposition 4.3.1. Assume that V j(t, x, y, r, s) is sufficiently differentiable. Then

the market reserve satisfies the following PDE

∂

∂t
V j(t, x, y, r, s) = rV j(t, x, y, r, s)− bj(t, x)−

∑
k:k ̸=j

Rjk(t, x, y, r, s)µjk(t)

−DxV
j(t, x, y, r, s)−DyV

j(t, x, y, r, s)

−DrV
j(t, x, y, r, s)−DsV

j(t, x, y, r, s),

V j(n−, x, y, r, s) = x, (4.3.2)
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where

DxV
j(t, x, y, r, s) =

∂

∂x
V j(t, x, y, r, s)

(
r∗(t)x− bj(t, x)

+ δ(t, x, y, V j(t, x, y, r, s), r, s)−
∑
k:k ̸=j

R∗jk(t, x)µ∗
jk(t)

)
,

DyV
j(t, x, y, r, s) =

∂

∂y
V j(t, x, y, r, s)

(
ry − δ(t, x, y, V j(t, x, y, r, s), r, s) + cj(t, x)

+
∑
k:k ̸=j

R∗jk(t, x)µjk(t)

)
+

1

2

∂2

∂y2
V j(t, x, y, r, s)y2σ2

y,

DrV
j(t, x, y, r, s) =

∂

∂r
V j(t, x, y, r, s)αr(t, r) +

1

2

∂2

∂r2
V j(t, x, y, r, s)σ2

r(t, r),

DsV
j(t, x, y, r, s) =

K∑
k=1

∂

∂sk
V j(t, x, y, r, s)rsk

+
1

2

K∑
k=1

K∑
l=1

∂2

∂sk∂sl
V j(t, x, y, r, s)sksl

M∑
m=1

σkm(t, r, s)σlm(t, s, r),

Rjk(t, x, y, r, s) = bjk(t, x) + V k(t, χjk(t, x), y −R∗jk(t, x), r, s)− V j(t, x, y, r, s),

and

σ2
y = π(t, x, y, V j(t, x, y, r, s), r, s)Tσ(t, s, r)σ(t, s, r)Tπ(t, x, y, V j(t, x, y, r, s), r, s).

Conversely, if a function V j(t, x, y, r, s) satisfies the PDE above, it is indeed the

market reserve defined in Equation (4.3.1).

Proof. See Appendix 4.A.

The boundary condition is due to the lump sum payment at time n−.

Remark 4.3.2. In the Black-Scholes model of the financial market, where the interest

rate is constant and deterministic, r(t) = r ∈ R, and the volatility is constant,

σ(t, s, r) = σ > 0, the state-wise market reserve is a function of the savings account

and the surplus, and is independent of the traded asset, S, given the savings account

and the surplus, under the condition that the dividend strategy and the investment

strategy do not depend on S. The function V j(t, x, y) satisfies a PDE equal to the

PDE in Proposition 4.3.1, but where DrV
j(t, x, y, r, s) = DsV

j(t, x, y, r, s) = 0 and

σy = σπ(t, x, y, V j(t, x, y)). This result also applies in the Black-Scholes model with

a deterministic and time-dependent interest rate r(t).

In order to calculate the market reserve, we must solve the PDE from Proposition

4.3.1 for all values of j, x, y, r and s, which is computationally demanding if even

possible. One way to reduce the dimension of the PDE is to assume a more specific
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model for the financial market, which is the case in Remark 4.3.2. Another approach

is to study the special case of linearity in the dividend strategy.

4.3.2 Linearity

The payment stream, dB(t, x), and the sum-at-risk, R∗jk(t, x), are by construction

linear in the savings account. Therefore, the dynamics of the savings account and

the surplus from Proposition 4.2.1 are linear in the savings account, the surplus and

the market reserve if and only if the investment strategy from Equation (4.2.6) and

the dividend strategy from Equation (4.2.7) are linear.

Proposition 4.3.3. Assume that the dividend strategy from Equation (4.2.7) is in

the form

δj(t, x, y, v, r) = δj0(t, r) + δj1(t, r) · x+ δj2(t, r) · y + δj3(t, r) · v,

for deterministic functions δj0, δ
j
1, δ

j
2 and δj3. Then the market reserve is given by

V j(t, x, y, r) = hj0(t, r) + hj1(t, r) · x+ hj2(t, r) · y, (4.3.3)

where the functions h0, h1, and h2 satisfy the system of PDEs stated in Appendix

4.B.

Proof. Since the function V j(t, x, y, r) = hj0(t, r) + hj1(t, r) · x+ hj2(t, r) · y satisfies

the PDE in Proposition 4.3.1, when hj0(t, r), h
j
1(t, r) and h

j
2(t, r) satisfy the system

of PDEs in Appendix 4.B for all j ∈ J , Proposition 4.3.1 gives the result.

It is worth noticing that linearity of the dividend strategy is enough to make sure

that the market reserve does not depend on the risky assets, S, when dividends

are independent of S, and therefore the result applies for any choice of investment

strategy. Therefore, the insurance company can choose an investment strategy that

hedges interest rate risk in the market value of guaranteed payments. The existence

of a solution is not certain, but if the system of PDEs has a solution, Proposition

4.3.1 gives that Equation (4.3.3) is in fact the market reserve. The linear structure of

the market reserve in Equation (4.3.3) is similar to the results in Steffensen (2006),

where linearity of the surplus in the dividend strategy is inherited in the prospective

reserve.

The result in Proposition 4.3.3 reduces the dimension of the PDE of the market

reserve compared to the case without linearity. This simplifies the calculation of the

market reserve, since it is less computational heavy to solve the system of PDEs for

the h functions for all values of r, compared to finding the solution to the PDE in

Proposition 4.3.1 for all values of x, y, r and s.
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Remark 4.3.4. In the Black-Scholes model of the financial market, still under the

assumption of linearity of the dividend strategy, the market reserve has representation

V j(t, x, y) = hj0(t) + hj1(t) · x+ hj2(t) · y,

where the functions h0, h1 and h2 satisfy a system of ordinary differential equations

(ODEs). Hence, despite the forward-backward entanglement of the market reserve

in the savings account and the surplus, the market reserve can be calculated as the

solution to a system of backward ODEs in this case. The result also apply in the

case, where the interest rate is time-dependent and deterministic.

From a computational point of view, it is demanding to solve PDEs, and therefore it

is a desirable result that a combination of linearity of the dividend strategy and the

Black-Scholes model of the financial market, reduces the dimension of the PDE from

Proposition 4.3.1 in such a way that we are able to calculate the market reserve as

the solution to a system of ODEs. The ODEs in Remark 4.3.4 fit into the class of

Riccati equations. It is not certain that Riccati equations have solutions, but if a

solution exists it is relatively easy to solve the system of ODEs numerically. The

existence of solutions highly depends on the choice of the dividend strategy. With

the choice in Example 4.3.5 below, we actually have an analytical solution.

Example 4.3.5. When dividends are equal to the surplus contribution from Propo-

sition 4.2.1

δj(t, x, y, v) = cj(t, x),

the dividends are linear in the savings account and the market reserve is given by

V j(t, x, y, r) = x,

since the functions hj0(t, r) = hj2(t, r) = 0 and hj1(t, r) = 1 solve the PDEs from

Appendix 4.B for all j ∈ J . Hence, the market reserve is equal to the savings

account. In this case, the technical basis become redundant since the surplus that

arise due to the prudent technical basis is immediately distributed as dividends to

the savings account. In this case, the surplus, Y (t), is equal to zero, and the same

holds for future profits.

For the majority of dividend strategies, an analytical expression for the market

reserve is difficult to obtain, and the market reserve must be calculated numerically.

4.3.3 Approximation of the Market Reserve

In general, it is computationally more demanding to solve PDEs compared to solving

ODEs by numerical methods, and there exist more precise methods for solving ODEs.
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Under the assumption of linearity in the dividend strategy, we are able to calculate

the market reserve as the solution to a system of backwards PDEs by Proposition

4.3.3. In a Black-Scholes model of the financial market, we actually obtain a system

of ODEs by Remark 4.3.4.

It may be desirable to lose some accuracy in order to decrease computation time by

making approximations that result in ODEs instead of PDEs. Therefore, we aim

to approximate the model with a stochastic interest rate in Equation (4.2.1) by a

Black-Scholes model. To do this, we replace the stochastic interest rate with the

deterministic forward interest rate. Due to linearity in the dividend strategy, the

market reserve does not depend on the risky assets, S, by Proposition 4.3.3, and

therefore we only approximate the stochastic interest rate. When calculating the

market reserve, this corresponds to approximating the solution of the PDEs for the

h functions from Proposition 4.3.3 by the solution to a system of ODEs based on

the forward interest rate. We consider the approximation

r(t) ≈ f(0, t),

hji (t, r) ≈ h̃ji (t),

for i = 0, 1, 2 and j ∈ J . The functions h̃ji satisfy the system of ODEs given by

the equations in Appendix 4.B, where hji (t, r) is replaced by h̃ji (t), r is replaced by

f(0, t), and it is noted that ∂
∂r h̃

j
i (t) = 0.

In a set-up without bonus, the market reserve is the expected present value of

future payments discounted by the forward interest rate. Therefore, we consider the

forward interest rate an appropriate approximation of the stochastic interest rate.

Due to linearity of the dividend strategy, calculation of the market reserve does not

depend on the investment strategy, and therefore the quality of the approximation

does not depend on the choice of investment strategy. When we approximate the

interest rate with the forward interest rate, the quality of the investment strategy

decreases (for instance the investment strategy, where the insurance company hedges

interest rate risk in the market value of guaranteed payments), but the examination

of this is out of the scope of this paper, since our focus is the calculation of the

market reserve. We investigate the quality of the approximation with the forward

interest rate in a numerical example.

4.4 Numerical Study

In this section, we emphasize the practical applications of our results in a numerical

example. Within a survival model with a stochastic interest rate and linearity in the

dividend strategy, we solve the PDEs in Proposition 4.3.3 and compare the resulting

market reserve with the solution of the ODEs obtained by approximating with the

forward interest rate as described in Section 4.3.3.
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0 1

Figure 4.1: Survival model in the numerical example

Table 4.1: Components in the numerical example

Component Value
Age of policyholder, a0 65
Termination, n 45
Premium 15.22021
Annuity, b02(t) 1
Z(0) 0
µ∗
01(t) 0.0005 + 105.6+0.04(t+a0)−10

µ01(t) 1.1 · µ∗
01(t)

r∗(t) 0.01
r(0) 0.05
ϕ 0.008127
ψ -0.162953
θ 0.000237

The survival model is illustrated in Figure 4.1, where state 0 corresponds to alive and

state 1 corresponds to dead. We consider an insured male at age a0 at initialization

of the insurance contract, and the insurance contract consists of a life annuity

regulated by bonus, which is paid by a single premium of V ∗0
2 (0) at time 0. Then

the savings account at time 0 is equal to the single premium, X(0) = V ∗0
2 (0), and

dB1 = 0, since all payments are regulated by bonus. The payment process is

dB(t,X(t)) = 1{Z(t)=0}
X(t)

V ∗0
2 (t)

b02(t)dt.

We assume the interest rate from Equation (4.2.1) follows a Vasicek model with

dynamics

dr(t) = (ϕ+ ψ r(t)) dt+
√
θ dW (t), (4.4.1)

where
(
W (t)

)
{t≥0} is a Brownian motion under the risk-neutral measure Q. Let

u 7→ f(t, u) be the forward interest rate calculated at time t ≥ 0.

The components in this example are stated in Table 4.1. The parameters in the

interest rate model are inspired by Falden and Nyegaard (2021), and the technical

mortality rate is the same as in Bruhn and Lollike (2020). The market mortality

rate in this example is chosen to be 1.1 · µ∗(t), such that the technical basis is

prudent compared to the market basis. The premium is determined according to

the principle of equivalence.
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There are only dividends in state 0, since upon death all payments cancel. We

assume the dividend process is in the form

δ0(t) =λ1(t)c
0(t,X(t)) + λ2(t)V

b,0(t)

=λ1(t)X(t)
(
r(t)− r∗(t) + µ01(t)− µ∗

01(t)
)

+ λ2(t)
(
V 0(t,X(t), Y (t))− X(t)

V ∗0
2 (t)

V g,0
2 (t, r(t))

)
,

where V g,0
2 (t, r) = EP

[∫ n

t
e−

∫ s
t
f(t,u)dudB2(s)

∣∣∣∣ Z(t), r(t) ] and c0 is the surplus

contribution from Proposition 4.2.1.

The case where λ1(t) = 1 and λ2(t) = 0 corresponds to Example 4.3.5, and in this

case the market reserve is equal to the savings account. It is reasonable to assume

that λ1(t) ∈ (0, 1), since a part of the surplus contribution is then immediately

distributed as dividends. We let λ1(t) = 0.5 and λ2(t) = 0.05, hence half of the

surplus contribution and 5 % of FDB are distributed as bonus.

In this example, the PDEs from Proposition 4.3.3 result in h00(t, r) = 0, h02(t, r) = 0

and

∂

∂t
h01(t, r) =− h01(t, r)

2λ2(t)−
b02(t)

V ∗0
2 (t)

+ h01(t, r)

(
(1− λ1(t))

(
r − r∗(t) + µ01(t)− µ∗

01(t)
)

+
b02(t)

V ∗0
2 (t)

+
λ2(t)V

g,0
2 (t, r)

V ∗0
2 (t)

)

− (ϕ+ ψr)
∂

∂r
h01(t, r)−

θ

2

∂2

∂r2
h01(t, r),

h01(n, r) = 1,

for the model with stochastic interest rate, which reduces to an ODE when inserting

the forward interest rate

d

dt
h̃01(t) =− h̃01(t)

2λ2(t)−
b02(t)

V ∗0
2 (t)

+ h̃01(t)

(
(1− λ1(t))

(
f(0, t)− r∗(t) + µ01(t)− µ∗

01(t)
)

+
b02(t)

V ∗0
2 (t)

+
λ2(t)V

g,0
2 (t)

V ∗0
2 (t)

)
,

h̃01(n) = 1.
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Table 4.2: The market reserve at time zero

PDE solution ODE solution Relative difference
13.16423 13.24555 0.00618

Figure 4.2: The retrospective and the prospective decomposition of the liabilities at time 0
in the numerical example. The market reserve is calculated using the PDE method.

The PDE for the function h01 is solved numerically using the Explicit finite difference

method, and the ODE for the function h̃01 is solved numerically using the Runge

Kutta forth-order method.

We calculate the market reserve at time zero by computing the function h01 as the

solution to the PDE and by solving the ODE for h̃01 based on the deterministic

forward interest rate. The results are presented in Table 4.2.

In this example, there is a small difference in the value of the market reserve at time

zero. When we approximate using the forward interest rate, the market reserve is

larger than in the model with the stochastic interest rate. Hence, the approximation

method is conservative from an accounting point-of-view.

The decomposition of the liabilities based on retrospective and prospective reserves,

respectively, at time 0 for this example is illustrated in Figure 4.2. The surplus is equal

to zero at initialization of the contract, and therefore, the retrospective decomposition

only consists of the savings account. The market value of the guaranteed payments

constitutes around two thirds of the prospective decomposition, and FDB is almost

equal to future profits.

In order to get a better understanding of the difference between the two methods to

calculate the market reserve, we compare the function t 7→ h̃01(t), which is the solution

of the ODE, to the mean, the 2.5%-quantile, and the 97.5%-quantile of the stochastic
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Figure 4.3: Illustration of the functions h̃1 and h1. The red is h̃1 based on the forward
interest rate, the blue is h1 based on the simulated interest rate paths, where the mean is
the solid line, and the 2.5%-quantile and the 97.5%-quantile is the dashed line.

process t 7→ h01(t, r(t)), since the market reserve is V 0(t, x, r) = h01(t, r) · x, and the

approximated market reserve is Ṽ 0(t, x) = h̃01(t) · x. We compute E
[
h01(t, r(t))

]
by

simulating 1000 interest rate paths, simulated with an Euler scheme based on the

dynamics of the interest rate in Equation (4.4.1), interpolate the solution to the

PDE of h01 over r, consider the function for each simulated interest rate path and

calculate the empirical mean.

In this example, the market reserve is decreasing since benefits are paid out im-

mediately after the premium payment at time 0. The market reserve at time t

is V (t,X(t)) = h01(t, r) ·X(t), and therefore the development of the h01 functions

in Figure 4.3 does not have a one-to-one correspondence with the development of

the market reserve. Based on the values of E [h1(t, r(t))] and h̃
0
1(t) in Figure 4.3,

the development of the market reserve is similar to the development of the savings

account, which is also a decreasing process in this example. When the contract

terminates, the market reserve equals zero since there are no future payments. The

payment of X(n−) at termination of the insurance contract results in the boundary

conditions h01(n−, r) = h̃01(n−) = 1, and is consistence with V (n,X(n)) = 0, since

X(n) = Q(n)V ∗0
2 (n) = 0.

The approximation h̃01(t) is in general larger than, but close to E
[
h01(t, r(t))

]
. There-

fore based on this example, we consider the approximation with the forward interest

rate reasonable, since h̃01 is close to the estimated mean and within the 95% confidence

interval of h01(t, r(t)). The computation time for solving the ODE is significantly
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lower than for solving the PDE, and therefore the approximation is useful if one can

accept the relative difference.
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4.A Proof of Proposition 4.3.1

Construct a martingale m as

m(t) = EP⊗Q

[∫ n

0

e−
∫ s
0
r(u)du

(
dB1(s) +Q(s)dB2(s)

) ∣∣∣∣∣ Ft

]

=

∫ t

0

e−
∫ s
0
r(u)du

(
dB1(s) +Q(s)dB2(s)

)
+ e−

∫ t
0
r(u)duV Z(t)(t,X(t), Y (t), r(t), S(t)).

The dynamics of m are

dm(t) = e−
∫ t
0
r(u)du

(
dB1(t) +Q(t)dB2(t) + r(t)V Z(t)(t,X(t), Y (t), r(t), S(t))dt

+ dV Z(t)(t,X(t), Y (t), r(t), S(t))
)
.

By the multidimensional Itô formula, we have the dynamics of the market reserve

dV Z(t)(t,X(t), Y (t), r(t), S(t)) =

∂

∂t
V Z(t)(t,X(t), Y (t), r(t), S(t))dt

+DxV
Z(t)(t,X(t), Y (t), r(t), S(t))dt

+DyV
Z(t)(t,X(t), Y (t), r(t), S(t))dt+

∂

∂y
V Z(t)(t,X(t), Y (t), r(t), S(t))

× Y (t)π
(
t,X(t), Y (t), V Z(t)(t,X(t), Y (t), r(t), S(t))

)T
σ(t, S(t), r(t))dW (t)

+DrV
Z(t)(t,X(t), Y (t), r(t), S(t))dt

+
∂

∂r
V Z(t)(t,X(t), Y (t), r(t), S(t))σr(t, r(t))dWr(t)

+DsV
Z(t)(t,X(t), Y (t), r(t), S(t))dt

+

K∑
k=1

∂

∂sk
V Z(t)(t,X(t), Y (t), r(t), S(t))Sk(t)

M∑
m=1

σkm(t, S(t), r(t))dWm(t)

+
∑

k:k ̸=Z(t−)

(
V k(t, χZ(t−)k(t,X(t−)), Y (t−)−R∗Z(t−)k(t,X(t−)), r(t), S(t))

− V Z(t−)(t,X(t−), Y (t−), r(t), S(t))
)
dNk(t). (4.A.1)
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Combining this, the dynamics of m(t) are

dm(t) = e−
∫ t
0
r(u)du

(
bZ(t)(t,X(t)) + r(t)V Z(t)(t,X(t), Y (t), r(t), S(t))

+
∂

∂t
V Z(t)(t,X(t), Y (t), r(t), S(t)) +DxV

Z(t)(t,X(t), Y (t), r(t), S(t))

+DyV
Z(t)(t,X(t), Y (t), r(t), S(t))

+DrV
Z(t)(t,X(t), Y (t), r(t), S(t))

+DsV
Z(t)(t,X(t), Y (t), r(t), S(t))

+
∑

k:k ̸=Z(t)

RZ(t)k(t,X(t), Y (t), r(t), S(t))µZ(t)k(t)
)
dt

+ e−
∫ t
0
r(u)du∆BZ(t)(t,X(t))dϵn(t) + e−

∫ t
0
r(u)dudM(t),

where M is a martingale with dynamics

dM(t) =

∂

∂r
V Z(t)(t,X(t), Y (t), r(t), S(t))σr(t, r(t))dWr(t)

+
∂

∂y
V Z(t)(t,X(t), Y (t), r(t), S(t))

× Y (t)π
(
t,X(t), Y (t), V Z(t)(t,X(t), Y (t), r(t), S(t))

)T
σ(t, S(t), r(t))dW (t)

+

K∑
k=1

∂

∂sk
V Z(t)(t,X(t), Y (t), r(t), S(t))Sk(t)

M∑
m=1

σkm(t, S(t), r(t))dWm(t)

+
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−), Y (t−), r(t), S(t))
(
dNk(t)− µZ(t−)k(t)dt

)
.

Since e−
∫ t
0
r(u)dudM(t) also are the dynamics of a martingale and since m(t) is a

martingale, the term in front of dt in the dynamics of m(t) must be equal to zero for

all t,X(t), Y (t), r(t), and S(t) which results in the PDE for the market reserve. Due

to the lump sum payment at time n−, ∆B(n−, X(n−)) = X(n−), the boundary

condition of the PDE is V j(n, x, y, r, s) = x.

Now, assume that a function V̄ j(t, x, y, r, s) satisfies the PDE in Equation (4.3.2).

We show that this function is in fact the market reserve in Equation (4.3.1). Consider

an investment strategy and dividend strategy given by

π̃k(t) = πk
(
t,X(t), Y (t), V̄ Z(t)(t,X(t), Y (t), r(t), S(t)), r(t), S(t)

)
,

dDZ(t)(t) = δ
(
t,X(t), Y (t), V̄ Z(t)(t,X(t), Y (t), r(t), S(t)), r(t), S(t)

)
dt,

for k = 1, ...,K.

The multidimensional Itô formula, the dynamics from Equation (4.A.1) with V̄

inserted instead of V , and the fact that V̄ satisfies the PDE in Equation (4.3.2)
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yield that

d
(
e−

∫ t
0
r(u)duV̄ Z(t)(t,X(t), Y (t), r(t), S(t))

)
= − r(t)V̄ Z(t)(t,X(t), Y (t), r(t), S(t))dt

+ e−
∫ t
0
r(u)dudV̄ Z(t)(t,X(t), Y (t), r(t), S(t))

= e−
∫ t
0
r(u)du

( ∑
k:k ̸=Z(t−)

R̄Z(t−)k(t,X(t−), Y (t−), r(t), S(t))

×
(
dNk(t)− µZ(t−)k(t)dt

)
− bZ(t)(t,X(t))dt

−
∑

k:k ̸=Z(t−)

bZ(t−)k(t,X(t−))dNk(t)

+
∂

∂y
V̄ Z(t)(t,X(t), Y (t), r(t), S(t))Y (t)

× π
(
t,X(t), Y (t), V̄ Z(t)(t,X(t), Y (t), r(t), S(t))

)T
σ(t, S(t), r(t))dW (t)

+
∂

∂r
V Z(t)(t,X(t), Y (t), r(t), S(t))σr(t, r(t))dWr(t)

+

K∑
k=1

∂

∂sk
V Z(t)(t,X(t), Y (t), r(t), S(t))Sk(t)

M∑
m=1

σkm(t, S(t), r(t))dWm(t)

)
.

Integrating over the interval [t, n) and taking the P⊗Q expectation conditioning on

Ft give that

e−
∫ n
0

r(u)du V̄ Z(n−)(n,X(n−), Y (n−), r(n−), S(n−))︸ ︷︷ ︸
=X(n−)

− e−
∫ t
0
r(u)duV̄ Z(t)(t,X(t), Y (t), r(t), S(t))

= − EP⊗Q
[ ∫ n

t

e−
∫ s
0
r(u)du

(
bZ(s)(s,X(s))ds

+
∑

k:k ̸=Z(s−)

bZ(s−)k(s,X(s−))dNk(s)
) ∣∣∣∣ Ft

]
,

since the remaining terms in the dynamics of V̄ Z(t)(t,X(t), Y (t), r(t), S(t)) are

martingales with respect to the filtration F . Multiplying by − exp(−
∫ t

0
r(u)du) and

including the boundary condition at time n− in the payment stream gives that

V̄ j(t, x, y, r, s) is the market reserve.
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4.B PDEs for h-functions

∂

∂t
hj0(t, r) = rhj0(t, r)− bj1(t) +

V ∗j
1 (t)

V ∗j
2 (t)

bj2(t)−
∑
k:k ̸=j

µjk(t)

×
(
bjk1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t) + hk0(t, r) + hk1(t, r)
(
V ∗k
1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

V ∗k
2 (t)

)
− hk2(t, r)

(
bjk1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t) + V ∗k
1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

V ∗k
2 (t)

)
− hj0(t, r)

)
− hj1(t, r)

(
− bj1(t) +

V ∗j
1 (t)

V ∗j
2 (t)

bj2(t) + δj0(t) + δj3(t)h
j
0(t, r)

−
∑
k:k ̸=j

µ∗
jk(t)

(
bjk1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t) + V ∗k
1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

V ∗k
2 (t)

))
− hj2(t, r)

(
− δj0(t)− δj3(t)h

j
0(t, r)

+
∑
k:k ̸=j

µ∗
jk(t)

(
bjk1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

bjk2 (t) + V ∗k
1 (t)− V ∗j

1 (t)

V ∗j
2 (t)

V ∗k
2 (t)

))
− ∂

∂r
hj0(t, r)αr(t, r)−

1

2

∂2

∂r2
hj0(t, r)σ

2
r(t, r),

hj0(n−, r) = 0,

∂

∂t
hj1(t, r) = rhj1(t, r)−

1

V ∗j
2 (t)

bj2(t)−
∑
k:k ̸=j

µjk(t)

(
1

V ∗j
2 (t)

bjk2 (t)− hj1(t, r)

+ hk1(t, r)
1

V ∗j
2 (t)

V ∗k
2 (t)− hk2(t, r)

( 1

V ∗j
2 (t)

bjk2 (t) +
1

V ∗j
2 (t)

V ∗k
2 (t)− 1

))

− hj1(t, r)
(
r∗(t)− 1

V ∗j
2 (t)

bj2(t) + δj1(t) + δj3(t)h
j
1(t, r)

−
∑
k:k ̸=j

µ∗
jk(t)

( 1

V ∗j
2 (t)

bjk2 (t) +
1

V ∗j
2 (t)

V ∗k
2 (t)− 1

))
− hj2(t, r)

(
− δj1(t)− δj3(t)h

j
1(t, r) + r − r∗(t)

+
∑
k:k ̸=j

µ∗
jk(t)

( 1

V ∗j
2 (t)

bjk2 (t) +
1

V ∗j
2 (t)

V ∗k
2 (t)− 1

))
− ∂

∂r
hj1(t, r)αr(t, r)−

1

2

∂2

∂r2
hj1(t, r)σ

2
r(t, r),

hj1(n−, r) = 1,
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∂

∂t
hj2(t, r) = −

∑
k:k ̸=j

µjk(t)
(
hk2(t, r)− hj2(t, r)

)
− hj1(t, r)

(
δj2(t) + δj3(t)h

j
2(t, r)

)
+ hj2(t, r)

(
δj2(t) + δj3(t)h

j
2(t, r)

)
− ∂

∂t
hj2(t, r)αr(t, r)−

1

2

∂2

∂r2
hj2(t, r)σ

2
r(t, r),

hj2(n−, r) = 0.



Chapter 5

Natural hedging in continuous time life

insurance

This chapter contains the paper Nyegaard (2023).

Abstract

Life insurance companies face several types of risks including financial

risks and insurance risks. Financial risks can to a large extent be hedged

by trading in the financial market, but there exists no such market for

insurance risks. We suggest an alternative to hedge insurance risks. In

a multi-state setup in continuous time life insurance, we describe the

concept of natural hedging, which enables us to compose a portfolio

of different insurance products where the liabilities are unaffected by

shifts in the transition intensities. We describe how to find and how

to calculate the natural hedging strategy using directional derivatives

(Gateaux derivatives) to measure the sensitivity of the life insurance

liabilities with respect to shifts in the transition intensities of a Markov

chain governing the state of the insured. Furthermore, we implement the

natural hedging strategy in two numerical examples based on the survival

model and the disability model, respectively.

Keywords: Life insurance; Natural hedging; Risk management; Multi-state models.

5.1 Introduction

An important aspect of the life insurance business is to maintain a reserve, such

that insurance companies are able to meet future liabilities towards its policyholders.

Valuation of future liabilities is based on the choice of valuation basis, that consists

of estimates of for instance future interest rates, mortality rates and disability rates.

For risk management purposes, the insurance company and regulatory authorities
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are interested in sensitivities of the future liabilities towards the valuation basis.

Broadly speaking, life insurance companies face two types of risks: Financial risks

and insurance risks. Sensitivities of insurance liabilities towards financial risks such

as interest rate can to a large extent be hedged by trading in the financial market.

Methods for risk management of insurance risks are few, and the market for trading

for instance mortality or disability linked securities is not developed. Systematic

insurance risks in continuous time life insurance refer to the uncertain development

of the transition intensities of a Markov chain governing the state of the insured. We

use directional derivatives (Gateaux derivatives) to measure the sensitivity of life

insurance liabilities with respect to shifts in the transition intensities. The liabilities

of different insurance products such as life annuities and term insurances have

different sensitivities towards changes in the transition intensities, and the objective

of this paper is to make use of this netting effect to construct a portfolio of different

insurance products, where the total liabilities of the portfolio are invariant to changes

in the transition intensities, and in this way minimize systematic insurance risks

for the portfolio. We denote this the natural hedging problem, and based on a

first order Taylor approximation, we formulate the natural hedging strategy that

solve the natural hedging problem. The natural hedging strategy is derived starting

from a shift or stress of the transition intensities. In two numerical examples in the

survival model and the disability model, respectively, we find the natural hedging

strategy and discuss the practical applications of natural hedging.

Sensitivities of liabilities in life insurance with respect to valuation bases are studied

in depth in Kalashnikov and Norberg (2003) and Christiansen (2008a). The focus

of this paper is how sensitivities of liabilities with respect to transition intensities

relate to natural hedging. Christiansen (2011) discusses netting effects in relation

to natural hedging and different risk measures, and investigates the netting effect

between two different products under a stress on the mortality intensity in two

numerical examples. We discover the same effect in our first numerical example of a

natural hedging strategy in the survival model, and in our second numerical example

in the disability model we use the netting effect between four different insurance

product to find the natural hedging strategy under which the liabilities are invariant

to changes in the mortality intensity, disability intensity and the recovery intensity.

The idea of a portfolio consisting of a mixture between life annuities and death

benefits to make use of the effect that the liabilities of the two products move in

different directions when the mortality intensity changes is not new and studied in

for instance Cox and Lin (2007) and Wang et al. (2010), and is denoted natural

hedging. Lin and Tsai (2020) extend hedging of mortality risks using natural hedging

strategies, and study immunization strategies that hedge changes in mortality and

interest rate simultaneously. In this paper, we move away from the survival model

and study natural hedging in a general multi-state model of the state of the insured,

which enables us to construct natural hedging strategies against for instance disability
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risks and lapse risks. It is not obvious how to hedge for instance disability risks, but

the model framework we present in this paper enables us to investigate if natural

hedging of disability risk is possible. Levantesi and Menzietti (2017) describe the

concept of natural hedging in a disability model in discrete time, and our results

are a continuous time version of the natural hedging strategy described in Levantesi

and Menzietti (2017). Our formulation of the natural hedging strategy applies for

any choice of model for instance the survival model and the disability model.

The paper is structured as follows. In Section 5.2, we present the multi-state setup

in continuous time life insurance and define the liabilities of an insurance contract.

The definition of the natural hedging problem and the natural hedging strategy are

described in Section 5.3, where we also discuss calculation of the natural hedging

strategy using directional derivatives. Two numerical examples in the survival model

and the disability model, respectively, in Section 5.4 show implementations of natural

hedging strategies. We conclude the paper in Section 5.5

5.2 Setup

We assume the classical setup in life insurance, where the state of the holder of an

insurance contract is modelled by a continuous time Markov chain Z =
(
Z(t)

)
t≥0

on a finite dimensional state space J . The transition probabilities of Z are

pij(t, s) = P
(
Z(s) = j | Z(t) = i

)
,

for i, j ∈ J . We assume the transition intensities

µij(t) = lim
h↓0

pij(t, t+ h)

h
,

exists for i, j ∈ J , i ̸= j, and let

µ = (µjk)j,k∈J ,j ̸=k,

denote the vector of transition intensities of the Markov chain Z. The number of

possible transitions of Z is given by K = #
{
(j, k), j ̸= k | µjk(t) > 0 for t ∈ [0, n]

}
.

The processes Nk(t) count the number of jumps of Z into state k ∈ J up to and

including time t

Nk(t) = #
{
s ∈ (0, t] | Z(s−) ̸= k, Z(s) = k

}
,

where Z(s−) = limh↓0 Z(s−h). Let F =
(
Ft

)
t≥0

be the natural filtration generated

by the state process Z.
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Payments of the insurance contract link to sojourns in states and transitions between

states. The payment stream has dynamics

dB(t) = bZ(t)(t)dt+
∑

k:k ̸=Z(t−)

bZ(t−)k(t)dNk(t),

where bj and bjk for j, k ∈ J , j ̸= k are deterministic functions. Payments specified

by bj link to continuous payments during sojourn in state j and bjk links to payments

upon transition from state j to state k. We do not consider lump sum payments

during sojourn in states, and assume that the interest rate t→ r(t) is a deterministic

function.

The insurance company is interested in the valuation of future payments of the

insurance contract, which is the liabilities towards its policyholders. The liabilities

or prospective reserve of the payment stream B is the expected present value of

future payments

V (t) = E
[ ∫ n

t

e−
∫ s
t
r(u)dudB(s) | Ft

]
= E

[ ∫ n

t

e−
∫ s
t
r(u)dudB(s) | Z(t)

]
,

due to the Markov property of Z, and where n denotes termination of the insurance

contract. Conditioning on Z(t) = i, we arrive at the state-wise prospective reserve

V i(t, µ) = Eµ

[ ∫ n

t

e−
∫ s
t
r(u)dudB(s) | Z(t) = i

]
, (5.2.1)

where the superscript µ denotes that the distribution of Z has transition intensities

µ. Our interest in this paper lies in the sensitivity of the liabilities with respect to

the choice of transition intensities of Z, and therefore we write V i(t, µ) to emphasize

the dependence on µ. The derivative of the state-wise prospective reserve with

respect to t is well known and is given by Thiele’s differential equation

∂

∂t
V j(t, µ) = r(t)V j(t, µ)− bj(t)−

∑
k:k ̸=j

µjk(t)R
jk(t, µ), (5.2.2)

V j(n, µ) = 0,

where Rjk is the sum-at-risk upon transition from state j to state k and is given by

Rjk(t, µ) = bjk + V k(t, µ)− V j(t, µ).

5.3 Natural hedging

Natural hedging exploits the fact that insurance liabilities for different insurance

products may move in opposite directions in response to changes in the valuation
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basis. Our aim is to compose a portfolio of different insurance products for which

the liabilities are unaffected by changes in the transition intensities. The concept

of natural hedging is described in discrete time in the disability model without

reactivation in Levantesi and Menzietti (2017), where constant shifts of the transition

probabilities are studied, and we develop the concept in continuous time in a general

multi-state model.

We assume the insurance company sells P different products. The payment functions

in product p is bj(p)(t) and b
jk
(p)(t), j, k ∈ J , j ̸= k, and the liabilities in state i of

product p is

V i
(p)(t, µ) = Eµ

[ ∫ n

t

e−
∫ s
t
r(u)dudB(p)(s) | Z(t) = i

]
,

where dB(p)(t) is the payment stream for product p given by

dB(p)(t) = b
Z(t)
(p) (t)dt+

∑
k:k ̸=Z(t−)

b
Z(t−)k
(p) (t)dNk(t).

The weight w(p)(t) is the proportion of the total liabilities in product p at time t,

and we have the condition that the weights sum to 1. The total liability of the

portfolio is then

V i(t, µ) =

P∑
p=1

w(p)(t)V
i
(p)(t, µ).

5.3.1 The natural hedging problem

The basis of the natural hedging problem is the change in the transition intensities.

We denote the change by ∆µ = (∆µjk)j,k∈J ,j ̸=k, such that the changed or shifted

transition intensities become µ+∆µ.

The changes or shifts of the transition intensities may come in many different

varieties. Here, we consider shifts in the form

∆µjk(t) = εjkgjk(t),

where the vector g(t) = (gjk(t))j,k∈J ,j ̸=k is the direction of the shift and ε =

(εjk)j,k∈J ,j ̸=k ∈ RK is the magnitude of the shift. Two examples of shifts of

the transition intensities are what we denote additive shifts, where the direction

of the shift is a constant function, gaddjk (t) = 1[0,n](t), and what we denote as

multiplicative shifts, where the shifts are proportional to the transition intensities,

gmul
jk (t) = µjk(t)1[0,n](t). The shifts are restricted to the course of the insurance

contract that runs from time 0 to time n. The multiplicative shifts are similar to

the stresses on the transition intensities that appear in the Standard Formula of

Solvency II.
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The objective is to compose a portfolio of different insurance products such that the

change in the liabilities due to the shift in the transition intensities is neutralized.

This is a so-called natural hedging strategy against systematic insurance risks. Hence,

the objective is to choose weights,
(
w(1)(t), ..., w(P )(t)

)T
, such that

V i(t, µ+∆µ)− V i(t, µ) = 0. (5.3.1)

To find a sufficient condition to ensure that Equation (5.3.1) is (approximately)

satisfied, we study a first order Taylor approximation. The Taylor approximation

depends on the sensitivities of the liabilities with respect to the directional shift in

the transition intensities, ∆µ. First, we note that the sensitivity of the liabilities

with respect to a directional shift in the transition intensity µjk, j, k ∈ J , j ≠ k, in

the direction gjk can be described by the directional (Gateaux) derivative

∂

∂ηjk
V i(t, µ+ ηg)

∣∣∣
η=0

,

where η = (ηjk)j,k∈J ,j ̸=k. The vector of sensitivities with respect to directional

shifts is given by

∂

∂η
V i(t, µ+ ηg)

∣∣∣
η=0

=

(
∂

∂ηjk
V i(t, µ+ ηg)

∣∣∣
η=0

)
j,k∈J ,j ̸=k

.

For the shift in the direction g with magnitude ε, a first order Taylor approximation

yields that

V i(t, µ+∆µ)− V i(t, µ) ≈ ∂

∂η
V i(t, µ+ ηg)

∣∣∣
η=0

· ε

=
∑
j∈J

∑
k:k ̸=j

∂

∂ηjk
V i(t, µ+ ηg)

∣∣∣
η=0

εjk. (5.3.2)

In Section 5.3.2, we describe how to calculate the directional derivative above. The

directional derivative of the total liabilities is given by

∂

∂η
V i(t, µ+ ηg)

∣∣∣
η=0

=

P∑
p=1

w(p)(t)
∂

∂η
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

.

We define the natural hedging strategy as the weights that, independent of the

magnitude of the shifts in the transition intensities, ensure that the right hand side

of Equation (5.3.2) is equal to zero, and formalize the natural hedging problem.

Definition 5.3.1 (The natural hedging strategy). The natural hedging strategy is
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the weights that solve

P∑
p=1

w(p)(t) = 1,

P∑
p=1

w(p)(t)
∑
j∈J

∑
k:k ̸=j

∂

∂ηjk
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

εjk = 0,

for fixed t ∈ [0, n], i ∈ J and for all choices of magnitudes of the shifts, ε.

A sufficient condition to ensure that the natural hedging problem has a solution is

that all of the directional derivatives of the total liabilities are equal to zero. This

results in K equations. Combined with the condition that the weights sum to 1, we

need K + 1 unknowns to solve the system of equations, and therefore the number of

insurance products, P , should be equal to K + 1. Then, we find the weights as the

solution to the following system of K + 1 equations

P∑
p=1

w(p)(t) = 1,

P∑
p=1

w(p)(t)
∂

∂ηjk
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

= 0,

for all j, k ∈ J , j ̸= k.

The natural hedging strategy is independent of the magnitude of the shift, but

since the directional derivative (obviously) depends on the direction of the shift, the

weights of the natural hedging strategy will depend on the choice of g. This implies

that the total liabilities with the natural hedging strategy are insensitive to shifts of

the transition intensities in only one specific direction. To compose portfolios that

are insensitive to shifts of the transition intensities in any direction, the framework

of directional derivatives is insufficient. Christiansen (2008a) introduces functional

gradients and shows that there exist functions h = (hjk)jk,∈J ,j ̸=k (given in Theorem

4.3 in Christiansen (2008a)) such that

∂

∂ηjk
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

=

∫ ∞

0

hjk(s)gjk(s)ds.

If we can compose a portfolio, where the functional gradients h are equal to zero,

we would have a perfect hedge towards shifts in any direction, but the study of this

is beyond the scope of this paper.

Remark 5.3.2. Consider a specific choice of direction, ḡ = (ḡjk)j,k∈J ,j ̸=k, of the

shifts, and a specific choice of magnitude of the shifts, ε̄ = (ε̄jk)j,k∈J ,j ̸=k, such that

∆µ = (ε̄jkḡjk)j,k∈J ,j ̸=k. If d of the entries in ∆µ are equal, hence we consider the
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same shift in d of the K transition intensities of Z, it is sufficient to have a portfolio

of P = K − (d− 1) + 1 different insurance products to solve the natural hedging

problem in Definition 5.3.1.

Levantesi and Menzietti (2017) have a similar result in discrete time in the disability

model without reactivation. They need two different insurance products or lines

of business to find the natural hedging strategy in the case where the transition

probabilities in the disability model without recovery change of the same size, and

four products of the changes in the transition probabilities are of difference size and

sign. We have a general formulation of the result in Remark 5.3.2, since we do not

put restrictions on the state-space of the insured and study a general multi-state

model of the state of the insured.

5.3.2 Solving the natural hedging problem

Solving the natural hedging problem and finding the natural hedging strategy in

Definition 5.3.1 require calculation of the directional derivative of the liabilities. The

directional (Gateaux) derivative of the liabilities is studied in Christiansen (2008a).

An expression for ∂
∂ηjk

V i
(p)(t, µ+ ηg)

∣∣∣
η=0

is given in Equation (A.13) in Christiansen

(2008a).

In this paper, we study a different approach for the calculation of the directional

derivative of the liabilities. The approach is similar to and inspired by the methods

presented in Kalashnikov and Norberg (2003), where the authors derive differential

equations for the derivative of the reserve with respect to an underlying parameter

θ that influences the valuation basis and the payment functions. Here, we derive

a system of differential equations for ∂
∂ηjk

V i
(p)(t, µ + ηg)

∣∣∣
η=0

for i ∈ J . Using

Thiele’s differential equation from Equation (5.2.2) and interchanging the order of

differentiation, we obtain that

∂

∂t

∂

∂ηjk
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

=
∂

∂ηjk

∂

∂t
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

=
∂

∂ηjk

(
r(t)V i

(p)(t, µ+ ηg)− bi(p)(t)−
∑
l:l ̸=i

(
µil(t) + ηilgil(t)

)
Ril

(p)(t, µ+ ηg)
)∣∣∣

η=0

=

(
r(t)

∂

∂ηjk
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

− 1{i=j}gjk(t)R
jk
(p)(t, µ) (5.3.3)

−
∑
l:l ̸=i

µil(t)
( ∂

∂ηjk
V l
(p)(t, µ+ ηg)

∣∣∣∣
η=0

− ∂

∂ηjk
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

))
,
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where

Ril
(p)(t, µ) = bil(p)(t) + V l

(p)(t, µ)− V i
(p)(t, µ).

Now, we have obtained a system of differential equations for the directional derivative

of the liabilities in Equation (5.3.3) above with boundary condition ∂
∂ηjk

V i
(p)(n, µ+

ηg)
∣∣
η=0

= 0.

A numerical procedure to calculate ∂
∂ηjk

V i
(p)(t, µ + ηg)

∣∣
η=0

is to solve the system

of differential equations that consists of the equations in Equation (5.3.3) for all

i ∈ J and Thiele’s differential equation in Equation (5.2.2). This results in a system

of at most J × P + J ×K × P differential equations. Based on the calculation of
∂

∂ηjk
V i
(p)(t, µ+ ηg)

∣∣
η=0

, we can find the natural hedging strategy as the solution to

the problem in Definition 5.3.1.

5.4 Examples

Now, we calculate the natural hedging strategy in two examples, the survival model

and the disability model, respectively, with two choices of directions of the shifts, g.

The first choice is the additive shift, where gaddjk (t) = 1[0,n](t) and the shift equals

∆µadd
jk (t) = εjk1[0,n](t) for εjk ∈ R. The second choice is the multiplicative shift,

where gmul
jk (t) = µjk(t)1[0,n](t) and the shift equals ∆µmul

jk (t) = εjkµjk(t)1[0,n](t) for

εjk ∈ R.

5.4.1 Example 1: Survival model

We consider the survival model where the state space of the Markov model consists

of two states, Alive and Dead, with one transition from Alive to Dead with intensity

µ(t). The survival model is illustrated in Figure 5.1.

0: Alive 1: Dead
µ

Figure 5.1: The survival model

The insurance company offers two insurance products, an annuity if alive after

retirement (Product 1) and a term insurance paid upon death (Product 2). The

non-zero benefit payment functions for the two products are

b0(1)(t) = a0(1) · 1{t≥T},

b01(2)(t) = a01(2),
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where T is the time of retirement and a0(1) and a
01
(2) are constants. Both products are

paid by the same continuous premium while alive before retirement with payment

intensity π0(t) = π0 · 1{t≤T}, where π
0 is a constant. The payment intensity is the

same for both products and the size of the benefits for both products is settled

according to the principle of equivalence at time 0

V 0
(1)(0, µ) = 0, V 0

(2)(0, µ) = 0.

The natural hedging is according to Definition 5.3.1, the weights that solve the

following system of equations

w1(t) + w2(t) = 1,

w1(t)
∂

∂η
V 0
(1)(t, µ+ ηg)

∣∣
η=0

+ w2(t)
∂

∂η
V 0
(2)(t, µ+ ηg)

∣∣
η=0

= 0.

We calculate the weights for two different choices of the direction g, namely gadd(t) =

1[0,n](t) and g
mul(t) = µ(t)1[0,n](t), numerically. We solve the system of differential

equations that consists of Thiele’s differential equation in Equation (5.2.2) and the

differential equation of the directional derivative of the liabilities in Equation (5.3.3),

and then solve the natural hedging problem above numerically. The components of

the numerical example are reported in Table 5.1.

Component Value
Age of policyholder at t = 0, x0 30
Termination, n 80
Time of retirement, T 35
π0 1
Annuity, a0(1) 4.14

Term insurance, a01(2) 60.04

r 0.02

Table 5.1: Components in the numerical example

The mortality intensity is given by

µ(t) = 0.0005 + 105.6+0.04·(t+x0)−10.

The calculated weights for both choices of g are illustrated in Figure 5.2. We note

that the weights at the end points at time 0 and time n are right and left limits,

respectively, since the prospective reserve at time 0 and time n by construction is

equal to zero.

The natural hedging strategy in this example depends on the direction of the shift,

although after retirement the additive shift and the multiplicative shift result in the
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Figure 5.2: Weights in the numerical example

same natural hedging strategy. Before retirement, the weight for the life annuity

(Product 1) is decreasing and the weight for the term insurance is increasing towards

stable levels at retirement for both choices of shift, but the increase and decrease,

respectively, are larger for the additive shift than the multiplicative shift.

The natural hedging strategy cannot be a perfect hedge, since it is based on a first

order Taylor approximation in Equation (5.3.2). In this example, we study how

good the natural hedging strategy with the multiplicative shift hedges insurance

risk by applying it against a multiplicative stress on the transition intensities. We

consider a stress where the mortality intensity is lowered by 10%, and measure the

quality of the natural hedging strategy by comparing V 0(t, µ) and V 0(t, µ+∆µ),

where ∆µ = −0.1µ, calculated with the weights from the natural hedging strategy

with a multiplicative stress. The comparison is illustrated in Figure 5.3.

In Figure 5.3 (left), there is no visual difference between the total liabilities calculated

with and without the stress in the mortality intensity. The difference in Figure

5.3 (right) is largest with value −0.025 close to termination of the contract. The

difference between the liabilities with and without the stress is due to inaccuracy of

the Taylor approximation.

To evaluate the quality of the natural hedging strategy against a multiplicative

shift in the transition intensities, we compare with the change in the liabilities for

each product due to the shift, which is illustrated in Figure 5.4. The change in the

mortality intensity to 0.9 ·µ decreases the liabilities of the term insurance, since with

a lower mortality intensity, less people is expected to die. For the life annuity, the
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Figure 5.3: The total liabilities with and without stress in the mortality intensity (left).
The difference in the total liabilities after the stress (right).

liabilities increase with the stress in the mortality intensity since we expect people

live a longer and hence receive the life annuity for a longer period of time. The

differences in the liabilities of the two products are significantly higher than the

difference of the total liabilities, where we use the weights from the natural hedging

strategy with the multiplicative shift.

The example illustrated here is simple in the sense that there is only one possible

transition from Alive to Dead, and the liabilities for the two products, the life annuity

and the term insurance, respectively, increase and decrease, when the mortality

intensity decreases. Since the liabilities for the two products change in different

directions, when the mortality intensity change, we expect that there exist a natural

hedging strategy, where the liabilities of a portfolio with a certain combination of

the two products are immune to changes in the mortality intensity. In Christiansen

(2011), this is described as a netting effect in the portfolio consisting of the life

annuity and the term insurance, and the example we study here is similar to Example

3.1 in Christiansen (2011).

The weights in the natural hedging strategy for both the additive and the multiplica-

tive shift in this example are time-dependent, and insurance contracts are long-term

agreements between the insured and the insurer and typically not terminable by the

insurer. In order to fully implement the natural hedging strategies in this example,

the insurance company must continuously cancel life annuity contracts and obtain

new term insurance contracts until the time of retirement from where the weights

stabilize, see Figure 5.2. In practice, this is not possible, since the insurance company
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Figure 5.4: Changes in the liabilities for Product 1 and Product 2 due to the multiplicative
shift in the mortality intensity (left). The difference of the liabilities for Product 1 and for
Product 2 (right).

is contractually bounded and cannot cancel contracts, and the market for insurance

is governed by supply and demand. Therefore, natural hedging strategies with

time-dependent weights are not implementable in practice, but they may serve as a

guideline for the insurance company of the sensitivity of the liabilities of a portfolio

of insurance products towards changes in the transition intensities. The weights for

the multiplicative shift are more constant than the weights for the additive shift

in this example, and therefore we believe that a portfolio that consists of constant

weights equal to w1(T ) and w2(T ), is more robust towards a multiplicative shift in

the mortality intensity than towards an additive shift.

An alternative to obtain the natural hedging strategy is to let the payments of the

contract, the life annuity and the term insurance in this example, be time-dependent

and dependent on the weights from the natural hedging strategies such that the

insured experiences the payments w1(t) ·a0(1) as the annuity at time t and w2(t) ·a01(2)
as the payment upon death at time t. In this case, the insured must buy both the

life annuity and the term insurance, and cannot buy more of for instance the life

annuity since that would break the natural hedge included in the product design. It

is still unrealistic that insurance companies can sell such contracts in practice, since

we assume the policyholders demand stable insurance payments that do not vary

over time, and since the relation between the life annuity and the term insurance

is decided by the natural hedging strategies, and not necessarily the needs of the

policyholder.
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0 Active 1 Disabled

2 Dead

Figure 5.5: Disability model

5.4.2 Example 2: Disability model

In this section, we extend the model of the state space from Section 5.4.1 to the

disability model illustrated in Figure 5.5.

We assume that the direction and the magnitude of the shift in the transition

intensities is the same for the transitions to state 2, Dead, hence ε02 = ε12 and

g02(t) = g12(t), and the objective is to find weights such that a portfolio of insurance

products is invariant towards shifts in the disability intensity, µ01, the recovery

intensity, µ10, and towards the same shift in the death intensity as both active and

disabled. We find the weights for two choices of direction of the shift namely the

additive shift gaddjk (t) = 1[0,n](t) and the multiplicative shift gmull
jk (t) = µjk(t)1[0,n](t).

A sufficient condition such that the natural hedging problem has a solution, is that

the number of insurance product is equal to four, P = 4. The insurance company

offers four products, an annuity if alive after retirement (Product 1), a disability

annuity as disabled (Product 2), a term insurance paid upon death as active or

disabled (Product 3), and a payment upon transition to state 1, Disabled (Product

4). The non-zero benefit payment functions for the four products are

b0(1)(t) = a0(1) · 1{t≥T},

b1(2)(t) = a1(2),

b02(3)(t) = b12(3)(t) = a02(3),

b01(4)(t) = a01(4),

where T is the time of retirement and a0(1), a
1
(2), a

02
(3) and a01(4) are constants. All

products are paid by a continuous premium while active before retirement with

payment intensity π0(t) = π0 ·1{t≤T}, where π0 is a constant. The payment intensity

is the same for all products and the size of the benefits for all products is settled

according to the principle of equivalence at time 0

V 0
(1)(0, µ) = 0, V 0

(2)(0, µ) = 0, V 0
(3)(0, µ) = 0, V 0

(4)(0, µ) = 0.
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The natural hedging strategy is according to Definition 5.3.1, the weights that solve

4∑
p=1

wp(t) = 1,

4∑
p=1

wp(t)

(
∂

∂η01
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

ε01 +
∂

∂η10
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

ε10

+
∂

∂η02
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

ε02 +
∂

∂η12
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

ε12

)
= 0.

where g ∈ {gadd, gmul}.

Since we in this example assume that the direction of the shift in the death intensities

is the same, g02 = g12, and the magnitudes of the shifts are the same ε02 = ε12, a

solution to the natural hedging problem is the weights that solve the following four

equations

4∑
p=1

wp(t) = 1,

4∑
p=1

wp(t)
∂

∂η01
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

= 0,

4∑
p=1

wp(t)
∂

∂η10
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

= 0,

4∑
p=1

wp(t)

(
∂

∂η02
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

+
∂

∂η12
V i
(p)(t, µ+ ηg)

∣∣∣
η=0

)
= 0.

We calculate the weights for two different choices of the direction g, namely gaddjk (t) =

1[0,n](t) and g
mul
jk (t) = µjk(t)1[0,n](t). The directional derivatives of the liabilities in

this example is calculated numerically by solving Thiele’s differential equation from

Equation (5.2.2) and the differential equation for the directional derivative of the

liabilities in Equation (5.3.3), and then solve the four equations above numerically.

The components of the numerical example are reported in Table 5.2.

The transition intensities are given by

µ01(t) = 0.0004 + 104.54+0.06·(t+x0)−10,

µ10(t) = 2.0058 · e−0.117·(t+x0),

µ02(t) = µ12(t) = 0.0005 + 105.6+0.04·(t+x0)−10.

The weights with the additive and multiplicative stress, respectively, are reported in

Figure 5.6, and we note that the weights at the end points at time 0 and time n are
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Component Value
Age of policyholder at t = 0, x0 30
Termination, n 80
Time of retirement, T 35
π0 1
Life annuity, a0(1) 8.60

Disability annuity, a1(2) 6.03

Term insurance, a02(3) 58.13

Payment upon transition to Disabled, a01(4) 76.42

r 0.02

Table 5.2: Components in the numerical example

Figure 5.6: Weights in the numerical example

right and left limits, respectively, since the prospective reserve at time 0 and time n

by construction is equal to zero.

The natural hedging strategy in this example depends on the direction of the shift,

although after the time of retirement, the two choices of shift result in the same

natural hedging strategy, as we also see in the example in Section 5.4.1. The main

difference between the natural hedging strategies for the two choices of shift is that

for the additive shift, the weight in Product 4 is negative before retirement, whereas

for the multiplicative shift all weights are non-negative. Hence, to have a portfolio

where the insurance liabilities are invariant to an additive shift of the transition

intensities, the insurance company should buy Product 4. It is worth noticing that

all weights are stable from retirement until the insured is more than 100 years
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old. After the time of retirement, the natural hedging strategy does not consists

of Product 4, and it is sufficient with Product 1, Product 2, and Product 3 to

perform the natural hedge against additive and multiplicative shifts in the transition

intensities. It is possible to hedge disability risk and mortality risk simultaneously in

this example, and the natural hedging strategy is the same after retirement for both

choices of direction, g. The weight of the term insurance is predominant compared

to the weight of the life annuity and the disability annuity, and this composition

of an insurance portfolio might not meet the demand of the insured. The example

illustrates that after retirement some disability risk is hedged by a combination of

the three insurance products: the life annuity, the disability annuity, and the term

insurance.

Christiansen (2011) studies a similar example, and investigates the netting effect

between a term insurance and a disability annuity towards changes in the death

intensity as both active and disabled, but the disability and the recovery intensities

are fixed. Christiansen (2011) concludes that there is a netting effect and the

possibility to make a natural hedge with a combination of term insurance and

disability annuity towards changes in the death intensity. In our example, we study

an extended model where we also allow for changes of the disability and recovery

intensity, and therefore we need more products to perform the natural hedge. We see

a similar netting effect as in Christiansen (2011) after retirement, where a portfolio

that consists of the life annuity, the disability annuity and the term insurance hedges

against shifts in all the transition intensities in the directions gjk(t) = 1[0,n](t) and

gjk(t) = µjk(t).

Similar to the first example in Section 5.4.1, we study the quality of the natural

hedging strategy in the direction g = µ by applying it to a multiplicative stress on

the transition intensities. The stress is an increase in the disability intensity, µ01(t),

of 10%, a decrease in the mortality intensity as both Active and Disabled, µ02(t) and

µ12(t), of 10%, and a decrease in the rehabilitation intensity µ10(t) of 10%. Since

the natural hedging strategy is based on a first order Taylor approximation, we do

not expect a perfect hedge. The comparison of the total liabilities calculated with

the weights from the natural hedging strategy and with and without the stressed

transition intensities is illustrated in Figure 5.7.

There is no visual difference between the total liabilities calculated with and without

the multiplicative stress in the transition intensities in Figure 5.7 (left). The difference

in Figure 5.7 (right) is (numerically) highest at initialization of the insurance contract

at time t = 0 with value −0.35 and decreases to below 0.05 at the time of retirement.

The difference in Figure 5.7 is due to inaccuracy of the Taylor approximation.

Compared to the differences between the liabilities for each of the four products with

and without the stress illustrated in Figure 5.8, the difference for the total liabilities

is significantly lower, and we conclude again that the natural hedging strategy works
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Figure 5.7: The total liabilities with and without stress in the transition intensities (left).
The difference in the total liabilities after the stress (right).

as intended.

Compared to the previous example in Section 5.4.1, where we study the survival

model, the example studied in this section is complex in the sense that it contains

multiple possible transitions and the possibility to return to a state after leaving it,

see Figure 5.5. It is not clear up front how a simultaneous change in the transition

intensities effects the liabilities of each of the four products, and therefore not obvious

whether there exists a good natural hedging strategy. The natural hedging strategy

with g(t) = 1[0,n](t) in this example contains a negative weight in Product 4 at

initialization of the contract, and hence to implement this natural hedging strategy

at time 0, the insurance company should buy Product 4, which is unrealistic in

practice. In line with the discussion in the end of Section 5.4.1, the implementation

of a natural hedging strategy with time-dependent weights is not possible in practice,

even if the weights are non-negative.

In both examples, the age of the policyholders in the portfolio at initialization is

fixed, and we only study one cohort of policyholders. A topic for future research is

the study of netting effects or natural hedging strategies between policyholders of

different ages.

5.5 Conclusion

We study natural hedging as a risk management tool in continuous time life insurance.

There is an obvious netting effect between a life annuity and a term insurance in
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Figure 5.8: Changes in the liabilities for Product 1, Product 2, Product 3, and Product
4 due to the multiplicative shift in the transition intensities (left). The difference of the
liabilities for all products (right).

the survival model, since when mortality decreases, the liabilities of the life annuity

increase and the liabilities of the term insurance decrease and vice versa. In this

paper, we search for similar netting effects in multi-state models using natural

hedging by studying sensitivities of the liabilities towards directional shifts of the

transition intensities. Our implementation of the natural hedging strategy in the

survival model in Section 5.4.1 shows the obvious netting effect between a life annuity

and a term insurance, but it also shows that the weights of the natural hedging

strategy are time-dependent, and that they stabilize after retirement. The natural

hedging strategy depends on the direction of the shift, but we see in this example

that the natural hedging strategies against an additive and a multiplicative shift,

respectively, are equal after the time of retirement. We investigate the natural

hedging strategy in the disability model with reactivation in Section 5.4.2. After

retirement, the weights of the natural hedging strategy are stable, and there is a

netting effect between a life annuity, a disability annuity, and a term insurance,

which enables natural hedging of mortality and disability risk simultaneously. Again,

the natural hedging strategy depends on the direction of the shift, but also in this

example, the natural hedging strategies against an additive and a multiplicative

shift, respectively, are equal after the time of retirement.
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Chapter 6

De-risking in multi-state life insurance

This chapter contains the paper Levantesi, Menzietti, and Nyegaard (2023).

Abstract

Calculation of insurance liabilities bases on assumptions of mortality rates,

disability rates, etc., and insurance companies face systematic insurance

risks if assumptions about these rates change. In the paper, we assume

there exists a market for trading two securities linked to for instance

mortality and disability rates, the de-risking option and the de-risking

swap, and we describe the optimization problem to find the de-risking

strategy that minimizes systematic insurance risks in a multi-state setup.

We illustrate the results in two numerical examples in the survival model

and in the disability model, respectively, and the results imply that

systematic insurance risks decrease significantly with the use of de-risking

strategies.

Keywords: Life insurance; de-risking; risk management; systematic insurance risks.

6.1 Introduction

Insurance companies are exposed to different kinds of risks, and risk management is an

important aspect of the insurance business. One type of risk is financial risks, that to

a large extent, can be hedged by trading in the financial market. Another type of risk

is insurance risk. We refer to unsystematic insurance risks as an adverse development

of the insurance portfolio and assume that unsystematic insurance risks are negligible

for a large portfolio of insurance contracts. Systematic insurance risks refer to the

risks that the future development of the underlying mortality intensities, disability

intensities, lapse rates etc. differs from the expected development. Insurance

contracts are typically long-term obligations for the insurance company, and therefore

an unforeseen development of for instance the underlying mortality of an insurance

125
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portfolio may result in large losses, and in the worst-case scenario ruin, for the

insurance company.

Possibilities for hedging insurance risks are few. One proposal is the so-called

natural hedging, which utilizes that liabilities of different insurance products have

different sensitivities towards changes in the underlying transition intensities of a

Markov process describing the state of the insured. This enables the construction

of portfolios of insurance products that are invariant to changes in the transition

intensities. The classical example is in the survival model, where the liabilities of

a life annuity increase (decrease) and the liabilities of a term insurance decrease

(increase), respectively, when the death intensity decreases (increases). Therefore, we

can construct a portfolio with a combination of the two products where the liabilities

are immune to changes in the death intensity. This is denoted natural hedging and

is studied in Cox and Lin (2007) and Wang et al. (2010). Natural hedging in a

multi-state setup with the possibility to hedge for instance disability risks is studied

in Levantesi and Menzietti (2017) and Nyegaard (2023). Natural hedging turns out

to be an insufficient tool for risk management of systematic insurance risks since the

optimal natural hedging portfolios differ a lot from the demands of the insurance

market.

Another proposal is in with-profit life insurance, where systematic insurance risks,

illustrated by uncertainty in the development of future transition intensities, are

handled by choosing prudent transition intensities for the pricing of insurance

benefits. The expected surplus is then returned to the policyholders as a bonus. For

a long-term agreement, as an insurance contract typically is, what seems as safe-side

transition intensities at initialization may not be on the safe side 20 or 30 years

later. This is for instance the case for death rates, where longevity improvements

have occurred faster than expected during the last 40 years.

What constitutes safe-side transition intensities depends on the insurance product.

For a life annuity, a low death intensity is on the safe side, while for term insurance,

a high death intensity is on the safe side. Insurance companies face different types

of risks, and what is characterized as an adverse development of future transition

intensities varies from company to company. Therefore, the demand for hedging

systematic insurance risks depends on the type of business. In this paper, we

consider a multi-state setup in continuous-time life insurance, where the state of the

insured is modelled by a continuous-time Markov process. We model the vector of

transition intensities of the Markov process, µ, by a diffusion process, and develop a

model for the unfunded liabilities quantifying the systematic insurance risk of the

insurance company. The unfunded liabilities describe a potential loss of an insurance

company and consist of terms that are linear in the future unknown and stochastic

transition intensities. Hence, it would be convenient for the insurance company

if there existed a market for µ-linked securities to be able to hedge systematic
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insurance risks. We assume in the paper that there exists a market for trading

two types of µ-linked securities, the de-risking option and the de-risking swap, and

describe the optimization problem faced by the insurance company to choose the

optimal amount of de-risking. The model presented here is unrealistic in the sense

that very few µ-linked securities exist in the market, and in the sense that the model

is very simple. The purpose of the model is to quantify systematic insurance risks in

a multi-state setup and identify the kinds of hedging strategies that minimise risks.

We illustrate the de-risking strategies in two numerical examples in the survival

model and the disability model, respectively, and study sensitivities of the optimal

choice of de-risking to the parameters of the model. The numerical examples are

based on the stochastic model for the transition intensities. For the example in

the survival model, we model the mortality intensity with a Feller process and use

parameters from Luciano, Spreeuw, and Vigna (2008). In the disability model, we

model the transition intensities from active to disabled and from active to dead,

respectively, with a CIR process, and we estimate the parameters on data of a

cohort of the Italian population qualified for a disability benefit paid by the Italian

Government to disabled people.

The stochastic process µ is, in contrast to for instance stock prices and interest rates,

not observable, and it is based on assumptions about the state space and possible

transitions of the insured. There exist a lot of statistical methods to estimate µ and

a derivative with µ as the underlying is special since its value depends on the data

from which µ is estimated. This introduces basis risk for an insurance company

buying the derivative if the portfolio of the insurance company differs from the data

basis of the derivative. We disregard this kind of basis risk in our model.

Existing literature on this topic focuses on mortality-linked securities to hedge

mortality risks or longevity risks in the survival model. Two examples of traded

mortality-linked securities, the Swiss Re mortality bond and the EIB/BNP longevity

bond, are discussed in Blake, Cairns, and Dowd (2006). In general, Blake, Cairns,

and Dowd (2006) and Blake et al. (2019) discuss the concept of and the issues that

arise with mortality-linked securities. Mortality-linked securities are also studied in

Dahl (2004) and Lin and Cox (2005). Pricing of mortality-linked securities requires

a stochastic model of the mortality intensity. Biffis (2005) studies affine models of

the mortality intensity, and Luciano, Spreeuw, and Vigna (2008) model mortality

intensities for dependent lives.

The aim of this paper is to go beyond the survival model and investigate how

to manage systematic insurance risks in a multi-state setup by studying µ-linked

securities and not only mortality-linked securities in the survival model. Disability-

linked securities are studied in D’Amato, Levantesi, and Menzietti (2020) as a

possibility to hedge systematic disability risks for long-term care insurance modelled

in discrete time. Our formulation applies to any choice of state space of the Markov
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model, and we study de-risking in continuous time.

The structure of the paper is as follows. In Section 6.2, we introduce the double-

stochastic multi-state Markov setup and model the assets, the liabilities, and the

unfunded liabilities. Section 6.3 introduces the de-risking strategies: the de-risking

option and the de-risking swap. The optimization problem is described in Section

6.4. In Section 6.5, we illustrate the de-risking strategies in two numerical examples.

6.2 Setup

6.2.1 Doubly-stochastic Markov setup

Let (Ω,F,P) be a probability space, and J = {0, 1, ..., J} be some finite state-space.

As in Buchardt, Furrer, and Steffensen (2019), we consider a doubly-stochastic

Markov setup, where the state of the holder of an insurance contract is described by

a stochastic (jump) process on (Ω,F,P) taking values in J . The number of possible

transitions in the state-space is denoted by K, and we consider a K-dimensional

stochastic process µ(t) = (µjk)j,k∈J ,j ̸=k on (Ω,F,P) with continuous sample paths

taking values in [0,∞)K . The dynamics of µ are assumed to be in the form

dµ(t) = αµ(t, µ(t))dt+ σµ(t, µ(t))dW (t), (6.2.1)

where W is a P dimensional Brownian motion, αµ : [0,∞)K+1 7→ RK is a determin-

istic and sufficiently regular function, and

σµ(t, µ) =


σµ
11(t, µ) σµ

12(t, µ) . . . σµ
1P (t, µ)

σµ
21(t, µ)

. . .
...

...
. . .

...

σµ
K1(t, µ) σµ

K2(t, µ) . . . σµ
KP (t, µ)

 ,

for deterministic and sufficiently regular functions σµ
ij : [0,∞)K+1 7→ [0,∞). We

omit the age of the insured in the notation since we assume it is a one-cohort model

where the age of the insured is x0 at time 0.

The assumption that the transition intensities are modelled by a diffusion process

is in line with assumptions on the models of the mortality intensity in for instance

Dahl (2004) and Jevtić, Luciano, and Vigna (2013). Luciano, Spreeuw, and Vigna

(2008) has a similar model for the mortality intensity, where a jump measure in the

dynamics of the mortality intensity is included. The natural filtration generated by

the stochastic process µ is Fµ =
(
Fµ

t

)
t≥0

, where Fµ
t = σ(µ(s) : 0 ≤ s ≤ t), and we

interpret Fµ as all information about µ(t) for t ∈ [0,∞).

Similar to Buchardt, Furrer, and Steffensen (2019), we can construct a jump process

Z =
(
Z(t)

)
t≥0

on (Ω,F,P) taking values in J with Z(0) = 0, where Z conditional on

Fµ is a continuous time Markov chain with transition intensities µ. We assume that
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Z indicates the state (e.g. Active, Disabled or Dead) of the holder of an insurance

contract who is x0 years old at time t = 0. The natural filtration generated by

Z is given by FZ =
(
FZ

t

)
t≥0

, and we interpret FZ as information about Z(s) for

s ∈ [0, t]. There exist transition probabilities of Z conditional on µ given by

P
(
Z(s) = j

∣∣ FZ
t ,Fµ

)
= P

(
Z(s) = j

∣∣ Z(t),Fµ
)
:= pµZ(t)j(t, s),

since Z is Markov conditional on Fµ. The fact that Z has transition intensities µ

conditional on Fµ implies that

µij(t) = lim
h↓0

pµij(t, t+ h)

h
,

for all t ≥ 0, and i, j ∈ J , i ̸= j. The transition probabilities conditional on µ

satisfy Kolmogorov’s backward and forward differential equations. We introduce the

processes Nk(t) that count the number of jumps of Z into state k ∈ J up to and

including time t

Nk(t) = #
{
s ∈ (0, t]

∣∣ Z(s−) ̸= k, Z(s) = k
}
,

where Z(s−) = limh↓0 Z(s−h). If µ is a deterministic process, this setup corresponds

to the classical Markov chain setup in life insurance as described in e.g. Hoem (1969)

and Norberg (1991).

6.2.2 Insurance contract

Now, we model the payments of an insurance contract. Payments link to sojourns

in states and transitions between states and therefore payments depend on Z. The

payment stream has dynamics

dB(t) = bZ(t)(t)dt+
∑

k:k ̸=Z(t−)

bZ(t−)k(t)dN
k(t),

where bj and bjk for j, k ∈ J , j ̸= k are deterministic functions. The payments bj
link to continuous benefits or premiums during sojourn in state j, and the payments

bjk link to payments upon transition from state j to state k. Benefit payments are

positive and premium payments are negative.

6.2.3 Assets and liabilities

The basis of our model is an insurance company that sells insurance contracts with

payments specified by dB(t) to a cohort of policyholders aged x0 at time t = 0.

The assets and liabilities of the insurance company are affected by the underlying

mortality rate, disability rate etc. of the portfolio modelled by the stochastic process

µ. Hence, the insurance company is exposed to systematic insurance risks if its

valuation basis differs from the realized µ. We assume that the portfolio is large such
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that unsystematic insurance risks are negligible. Our aim is to quantify the effect

of systematic insurance risks on the assets and liabilities of the portfolio under the

assumption that µ is modelled by Equation (6.2.1). Insurance companies are also

exposed to financial risks. Since the focus of this paper is systematic insurance risks,

we make the assumption that the interest rate is a deterministic function t 7→ r(t)

and that the insurance company invests in an account with interest rate r(t). The

interest rate r(t) is also used for discounting the value of future payments.

Model of the assets

The expected assets at time t are given by the expectation of premiums minus

benefits in the interval [0, t] accumulated with the interest rate. We denote the

expected assets at time t by Ã(t)

Ã(t) = A0e
∫ t
0
r(u)du + E

[ ∫ t

0

e
∫ t
s
r(u)du

(
− dB(s)

)]
, (6.2.2)

where A0 is the initial assets. The assets depend on the stochastic process µ since

the payment stream depends on Z, that in the doubly-stochastic Markov setup,

depends on µ. Calculation of the expectation in Equation (6.2.2) is non-trivial, and

instead of focusing on Ã(t), we study the expected assets conditioned on µ

A(t) = A0e
∫ t
0
r(u)du + E

[ ∫ t

0

e
∫ t
s
r(u)du

(
− dB(s)

) ∣∣∣∣ Fµ

]
,

with the relation

Ã(t) = E
[
A(t)

]
.

Due to the Markov property of Z conditioned on µ and that Z(0) = 0, we have that

A(t) = A0e
∫ t
0
r(u)du −

∫ t

0

e
∫ t
s
r(u)du

∑
i∈J

pµ0i(0, s)
(
bi(s) +

∑
j:j ̸=i

µij(s)bij(s)
)
ds.

Model of the liabilities

The liabilities are the expected present value of future payments of the insurance

contract. We assume that the insurance company uses a deterministic valuation

basis for the calculation of the liabilities given by assumptions on the interest rate

r̂(t) and assumptions on the transition intensities µ̂(t). We assume that r̂(t) = r(t)

and that µ̂(t) is deterministic and independent of the stochastic process µ. With

deterministic transition intensities, we are in the classical Markov chain setup in life

insurance. The liabilities at time t are given by

Eµ̂

[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ FZ
t

]
= Eµ̂

[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Z(t) ] := V̂ Z(t)(t),
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where the superscript µ̂ denotes that Z has transition intensities µ̂. The state-wise

liabilities, V̂ i(t), where we condition on Z(t) = i for i ∈ J , are deterministic and

satisfy Thiele’s differential equation

d

dt
V̂ i(t) = r(t)V̂ i(t)− bi(t)−

∑
j:j ̸=i

µ̂ij(t)R̂
ij(t), (6.2.3)

V̂ i(n) = 0,

where R̂ij is the sum-at-risk upon transition from state i to state j and is given by

R̂ij(t) = bij(t) + V̂ j(t)− V̂ i(t).

The liabilities at time t depend on the state of the insured at time t, Z(t), and are

therefore stochastic. Hence in the doubly-stochastic Markov model, the liabilities

depend on the stochastic process µ. Similar to the model of the assets, we model

the expected liabilities at time t

Ṽ (t) = E
[
V̂ Z(t)(t)

]
= E

[
V (t)

]
,

for

V (t) = E
[
V̂ Z(t)(t)

∣∣ Fµ
]
=
∑
i∈J

pµ0i(0, t)V̂
i(t).

The unfunded liabilities

The insurance company faces a potential loss or gain if the development of µ is

different from the valuation basis µ̂. Our aim is to quantify the loss or gain as a

basis for deciding whether a de-risking strategy described in Section 6.3 is useful for

the insurance company. The expected unfunded liabilities at time t are given by

L̃(t) = Ṽ (t)− Ã(t) = E
[
L(t)

]
,

for L(t) = V (t)−A(t). We refer to L(t) as the unfunded liabilities. If the unfunded

liabilities are positive, the insurance company faces a potential loss, since the

liabilities exceed the assets, and the insurance company faces a potential gain if L(t)

is negative. Using Kolmogorov’s forward differential equations for the transition

probabilities and Thiele’s differential equation in Equation (6.2.3) we obtain that

d

dt
L(t) = r(t)L(t) +

∑
i∈J

∑
j:j ̸=i

pµ0i(0, t)
(
µij(t)− µ̂ij(t)

)
R̂ij(t),

= r(t)L(t) +
∑
i∈J

∑
j:j ̸=i

lij(t), (6.2.4)

L(0) = V̂ 0(0)−A0,

for lij(t) = pµ0i(0, t)
(
µij(t)− µ̂ij(t)

)
R̂ij(t).
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The differential equation in Equation (6.2.4) above yields that the unfunded liabilities

gain interest rate and increase or decrease with a rate, lij(t), that is a probability-

weighted sum of all possible transitions in the state space with terms that depends

on the difference between the stochastic transition intensity, µij , and the transition

intensity from the valuation basis, µ̂ij , times the sum-at-risk. The rate lij(t) is

similar to the surplus contribution rate (see e.g. (3.7) in Norberg (1999)) in with-

profit life insurance, where the surplus increases due to the difference between

prudent technical transition intensities used for pricing and the best estimate market

transition intensities used for valuation.

The unfunded liabilities have a solution given by

L(t) = (V̂ 0(0)−A0)e
∫ t
0
r(u)du +

∫ t

0

e
∫ t
s
r(u)du

∑
i∈J

∑
j:j ̸=i

lij(s)ds. (6.2.5)

The representations in Equations (6.2.4) and (6.2.5) illustrate what affects the

unfunded liabilities, and the effect is highest when the difference between µ and µ̂

is large. For instance, if the realized mortality or disability rates of the insurance

portfolio differ from the rates in the valuation basis. The unfunded liabilities are

stochastic since they depend on µ, and the insurance company faces a potential

loss upon an adverse development of µ. Therefore, the insurance company has an

interest in hedging the unfunded liabilities against systematic insurance risks.

6.3 De-risking strategies

In this section, we introduce µ-linked securities as a risk management tool for

insurance companies to reduce systematic insurance risks. We assume that the

insurance company can invest in K µ-linked securities each of them paying a

continuous rate or cash flow of dij
(
t, µij(t)

)
for i, j ∈ J , i ̸= j. There is a risk

that the counterpart providing the de-risking defaults. This is denoted credit risks

and is not studied here. D’Amato, Levantesi, and Menzietti (2020) implement the

possibility that the counterpart defaults in their model as a binomial variable in

discrete time.

If the insurance company invests in the securities for de-risking purposes, the

unfunded liabilities including de-risking are given by

LD(t)

= L(t)−
∑
i∈J

∑
j:j ̸=i

hijDij(t),

= (V̂ 0(0)−A0)e
∫ t
0
r(u)du +

∫ t

0

e
∫ t
s
r(u)du

(∑
i∈J

∑
j:j ̸=i

(
lij(s)− hijdij(s, µij(s))

))
ds.
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where hij is the amount of µij-linked security bought. Let

lDij (t, µij(t)) = lij(t)− hijdij(t, µij(t)).

We define the hedging price of the µij-linked de-risking strategy, Pij , as the sum of

the expected present value of the payments of the derivative and the hedging costs,

Pij = hij

(
aij + E

[ ∫ n

0

e−
∫ t
0
r(u)dudij(t, µij(t))dt

])
,

where aij is the hedging cost for the derivative with cash flow dij(t, µij(t)). The

hedging costs are a risk premium on top of the expected value of the de-risking cash

flow for the counterpart to take in the risk.

We consider two different types of de-risking strategies with different choices of

dij(t, µij(t)). The first is a de-risking option, and the second is a de-risking swap,

and we discuss the advantages and drawbacks of each type.

6.3.1 De-risking option

The insurance company is interested in hedging against a scenario where µ differs

a lot from µ̂ since then the insurance company faces a potential loss. A possible

choice of dij(t, µij(t)) is

dij(t, µij(t)) = max{uij(t)− µ̂ij(t), 0}R̂ij(t), (6.3.1)

with a European call option structure exercised at time t with strike µ̂ij . For this

de-risking option, the rate lDij (t, µij(t)) becomes

lDij (t, µij(t)) =

{
(pµ0i(0, t)− hij)(µij(t)− µ̂ij(t))R̂

ij(t), if µij(t) > µ̂ij(t)

−pµ0i(0, t)(µ̂ij(t)− µij(t))R̂
ij(t), if µij(t) ≤ µ̂ij(t)

The rate above is always negative if hij > pµij(0, t) and if the sum-at-risk, R̂ij(t),

is positive. The sign of the sum-at-risk depends on the insurance product, and it

is possible that R̂ij(t) is positive for some t ∈ [0, n] and negative for others. The

insurance company should only choose to invest in a de-risking option with a call

option structure if the sum-at-risk is positive. Otherwise, the investment increases

the unfunded liabilities and introduces basis risk for the insurance company. If the

sum-at-risk is negative, a European put option structure is preferred to minimize

lDij (t, µij(t))

dij(t, µij(t)) = −max{µ̂ij(t)− µij(t), 0}R̂ij(t). (6.3.2)

To make a perfect hedge of the rate lij in the unfunded liabilities, the transition

probabilities should be included in the de-risking cash flow. This is not possible,
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since we assume that dij(t, µij(t)) depends on µij(t) and p
µ
ij(0, t) depends on other

transition intensities as well.

Here, the cash flow of the de-risking option depends on the sum-at-risk of an

insurance product, such that the option is designed to reduce systematic insurance

risks of a specific product. Another possibility is a de-risking option where the rate

only depends on the difference between the stochastic µ and µ̂. This introduces

more basis risk for the insurance company since the option is not designed for a

specific insurance product, but for the counterpart selling de-risking strategies, it is

a more liquid product. In this case, the European call option structure is

dij(t, µij(t)) = max{µij(t)− µ̂ij(t), 0}, (6.3.3)

and the European put option structure is

dij(t, µij(t)) = max{µ̂ij(t)− µij(t), 0}. (6.3.4)

To reduce systematic insurance risks, a de-risking option is only optimal if the

sum-at-risk has the same sign throughout the course of the insurance contract. In

the survival model, the sum-at-risk of a life annuity is negative, and the sum-at-risk

of a life insurance or term insurance is positive. A combination of the two products

may have a changing sign of the sum-at-risk and requires a combination of a put

and a call option to avoid basis risk for the insurance company. D’Amato, Levantesi,

and Menzietti (2020) study a disability option on the transition probabilities for

hedging disability risks of long-term care insurance in discrete time. For long-term

care insurance products, the sum-at-risk for the transition from Active to Disabled is

positive, and D’Amato, Levantesi, and Menzietti (2020) use a European call option

structure on the transition probability from Active to Disabled.

We assume that the hedging costs of the de-risking option are proportional to the

expected present value of the de-risking cash flow

aij = δ · E
[ ∫ n

0

e−
∫ t
0
r(u)dudij(t, µij(t))dt

]
.

6.3.2 De-risking swap

Inspired by D’Amato, Levantesi, and Menzietti (2020), we consider a plain vanilla

de-risking swap with µij(t) as the underlying. The cash flow of the swap is the

difference between a fixed and a floating leg. We assume that the fixed leg depends

on µ̂, and that the floating leg depends on the stochastic transition intensities µ.

By buying this contract, the insurance company agrees to pay the fixed leg to the

counterpart in return of the floating leg, and the hedging cash flow is the difference

between the fixed and the floating leg. One possible choice of the hedging cash flow

dij(t, µij(t)) is

dij(t, µij(t)) =
(
µij(t)− µ̂ij(t)(1 + ρ)

)
R̂ij(t), (6.3.5)
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where ρ is a fixed proportional risk premium for the counterpart to take on the risk of

paying a stochastic, floating leg, µij(t)R̂
ij(t) is the floating leg, and µ̂ij(t)(1+ρ)R̂

ij(t)

is the fixed leg.

For this choice of de-risking swap, the rate lDij (t, µij(t)) becomes

lDij (t, µij(t)) =
(
pµ0i(0, t)− hij

)(
µij(t)− µ̂ij(t)

)
R̂ij(t) + hijρµ̂ij(t)R̂

ij(t).

The interest of the insurance company is that lD(t, µij(t)) is low and preferably

negative to keep the unfunded liabilities at a minimum. The contributions to the

unfunded liabilities are stochastic since they depend on µ, and the insurance company

faces the risk of adverse development of µ. The de-risking swap seek to minimize the

variation of lDij
(
t, µij(t)

)
by interchanging the uncertainty in µ with the deterministic

µ̂ to reduce risk for the insurance company

As with the de-risking option, the rate of de-risking swap presented in Equation

(6.3.5) depends on the sum-at-risk of a specific insurance product or combination

of insurance products. For the counterpart selling the de-risking strategies, a more

liquid product is to let the hedging cash flow depend on the difference between the

stochastic µ and µ̂ such that

dij(t, µij(t)) = µij(t)− µ̂ij(t)(1 + ρ), (6.3.6)

since then, the de-risking swap does not depend on a specific type of insurance

product. For this choice of de-risking swap, the contribution rate to the unfunded

liabilities is

lDij (t, µij(t)) =
(
pµ0i(0, t)R̂

ij(t)− hij
)(
µij(t)− µ̂ij(t)

)
+ hijρµ̂ij(t),

which introduces more basis risk to the insurance company.

For the de-risking swap, we set the hedging cost to be

aij = −E
[ ∫ n

0

e−
∫ t
0
r(u)dudij(t, µij(t))dt

]
,

such that the hedging price is equal to zero.

6.4 The optimization problem

The insurance company faces a potential loss if the liabilities exceed the assets, i.e.

the unfunded liabilities are positive. The unfunded liabilities are affected by the

stochastic process µ, and if µ behaves in an adverse way, the insurance company

may face a loss. Therefore, it is in the interest of the insurance company to buy

de-risking strategies to minimize the risk of a potential loss and for risk management

of systematic insurance risks. We assume that insurance companies can buy all the

presented de-risking options from Section 6.3.1 and de-risking swaps from Section
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6.3.2 in a frictionless market. The insurance company must choose the amount of

de-risking to buy by choosing hij for all possible transitions. In this section, we

formulate an optimization model to choose the optimal amount of de-risking for

the insurance company. The formulation is inspired by Lin, MacMinn, and Tian

(2015), where the authors study de-risking for defined benefit plans in the survival

model, and D’Amato, Levantesi, and Menzietti (2020), where the authors formulate

an optimization model to choose the amount of de-risking of disability risks in the

disability model without reactivation in discrete time. Our formulation is for a

general multi-state model in continuous time.

We assume that there is a capital cash flow for each transition with the rate kij(t)

such that the insurance company amortizes the unfunded liabilities. Hence, if the

unfunded liabilities increase there is a capital injection with the change, and if the

unfunded liabilities decrease there is a withdrawal with the change, such that

kij(t) = lDij
(
t, µij(t)

)
,

where we ignore that the unfunded liabilities gain interest. Let

k(t) =
∑
i∈J

∑
j:j ̸=i

kij(t)

The total discounted costs of all the de-risking strategies are

TC =
∑
i∈J

∑
j:j ̸=i

hijaij (6.4.1)

+

∫ n

0

e−
∫ t
0
r(u)du

(
max{k(t), 0}(1 + ψ1)−max{−k(t), 0}(1− ψ2)

)
dt,

where ψ1 and ψ2 are penalty factors on the capital inflow and outflow, respectively.

Inspired by Lin, MacMinn, and Tian (2015), we assume that the objective of the

insurance company is to minimize its expected total costs when choosing the de-

risking strategy at time 0. The constraints in the optimization problem are that

the expected unfunded liabilities at termination of the contract are less than zero

such that, in expectation, the assets exceed the liabilities during the course of the

contract, and that the hedging price of all de-risking strategies should be lower than

the assets minus the liabilities at time 0. To control the worst-case scenarios or

downside risk, we impose a constraint on the conditional value-at-risk (CVaR) of

the unfunded liabilities again inspired by Lin, MacMinn, and Tian (2015).
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Now, we formulate the optimization problem

min
(hij)i,j∈J ,i ̸=j

E
[
TC
]
,

subject to (6.4.2)

E
[
LD(n)

]
≤ 0,

CV aRα

(
LD(n)

)
≤ τ,∑

i∈J

∑
j:j ̸=i

hijPij ≤ A0 − V̂ 0(0).

We note that the optimization problem is non-linear in hij . Calculation of the

expectations and the CVaR that appear in the optimization problem requires

simulation-based methods.

6.5 Numerical examples

6.5.1 The survival model

We consider a life annuity in the survival model (see Figure 6.1) which is paying a

rate of b while the insured is alive and which is paid by a one-time premium, π, at

initialization of the insurance contract. In this model, there is only one transition

with intensity µ(t).

0: Alive 1: Dead
µ

Figure 6.1: The survival model

The insured is x0 years old at time t = 0, and inspired by Luciano, Spreeuw, and

Vigna (2008), we model the mortality intensity with a Feller process, which is a

non-mean-reverting modification of the traditional Cox-Ingersoll-Ross (CIR) model,

dµ(t) = ϕµ(t)dt+ σ
√
µ(t)dW (t),

where W (t) is a standard Brownian motion. This is in accordance with the model

assumption in Equation (6.2.1). The parameters in the numerical example are

reported in Table 6.1.

The parameters in the model for the mortality intensity is from Luciano, Spreeuw,

and Vigna (2008). We assume that the deterministic valuation basis is given by

µ̂(t) = 1.05 · E[µ(t)], and we choose the target level, τ , for the conditional value at

risk as τ = 0.5 · CV aRα

(
L(n)

)
.

We calculate the expected total costs, E
[
TC
]
, the expected total unfunded lia-

bilities, E
[
LD(n)

]
, and the conditional value-at-risk of the unfunded liabilities,
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Table 6.1: Components in numerical example

Component Value Component Value
Age of insured, x0 68 r(t) 0.01
ϕ 0.0810051 V (0) 14.55
σ 0.0002400 A(0) = π 15.26
µ(0) 0.0204276 δ 0.10
Termination, n 42 ρ −0.03
Premium, π 15.26 ψ1 0.10
Annuity rate, b 1 ψ2 0.10
Z(0) 0 α 0.99

CV aRα

(
LD(n)

)
without de-risking and for various levels, h, of the different de-

risking strategies based on 5000 simulations of µ(t).

In this example with a life annuity, the sum-at-risk from state 0 (Alive) to state

1 (Dead) is negative, and therefore, we consider the de-risking option with the

European put option structure. First, we consider the four different types of de-

risking described in Section 6.3: The de-risking option including the sum-at-risk

(6.3.2), the de-risking option without the sum-at-risk (6.3.4), the de-risking swap

with the sum-at-risk (6.3.5), and the de-risking swap without the sum-at-risk (6.3.6).

In Figures 6.2 and 6.3, we illustrate the constraints from the optimization problem

in Equation (6.4.2) with the standard parameters from Table 6.1 and the expected

total costs as functions of the amount of de-risking, h.

Figure 6.2: Illustration of the optimization problem for the de-risking option

(a) De-risking option with the sum-at-risk (b) De-risking option without the sum-at-risk

Figures 6.2 and 6.3 show that in all four cases the expected total costs, the expected

unfunded liabilities and the CVaR are decreasing when the amount of de-risking

increases. For the de-risking option, the limitation on the amount of de-risking is
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Figure 6.3: Illustration of the optimization problem for the de-risking swap

(a) De-risking swap with the sum-at-risk (b) De-risking swap without the sum-at-risk

the hedging price. The expected total costs with the optimal h for the de-risking

option with and without the sum-at-risk are −0.209 and −0.186, respectively, and

hence the de-risking option including the sum-at-risk is better than the de-risking

option without the sum-at-risk. This indicates that there is more basis risk without

the sum-at-risk, as we expect. The expected total costs without de-risking are

0.3632, which is higher than including de-risking. This illustrates that the use of

de-risking strategies reduces systematic insurance risks. For the de-risking swap,

there is no limitation on the amount of de-risking the insurance company should

buy since E
[
TC
]
, E
[
LD(n)

]
, and CV aRα

(
LD(n)

)
are all decreasing in the amount

of de-risking and the hedging price is equal to zero.

The de-risking option with and without the sum-at-risk behaves in the same way,

which is also the case for the de-risking swap with and without the sum-at-risk.

Hence, when we now study sensitivities of the optimal amount of de-risking to the

parameters δ, ρ, ψ1 and ψ2, we only consider the de-risking option and de-risking

swap with the sum-at-risk since we obtain similar results without the sum-at-risk.

The δ-parameter affects the hedging price and the total costs for the de-risking

option. The insurance company can afford less de-risking when δ increases, and

therefore the optimal value of h is decreasing in δ, which is illustrated in Figure

6.4(a). The expected total costs for the optimal h are increasing in δ since the

hedging costs are increasing in δ, see Figure 6.4(a). Figure 6.2 shows that the

expected total costs are decreasing in h making the highest feasible h optimal. For δ

close to 1, the expected total costs are increasing for high h as illustrated in Figure

6.4(b) for δ = 0.984 and as a result it is not the highest feasible h that is optimal.

The cash flow of the de-risking swap depends on the ρ-parameter, see Equation
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Figure 6.4: The optimal h for varying δ and the optimization problem for high δ

(a) The optimal h and the expected total costs
as a function of δ for the de-risking option

(b) Optimization problem for the de-risking
option for δ = 0.984

(6.3.5). The higher ρ is, the higher is the fixed leg of the swap, and since an insurance

company selling life annuities, as in this example, is at risk if the mortality intensity

is low, a high fixed leg is attractable. The expected total cost, the expected unfunded

liabilities and the CVaR for different values of ρ are illustrated in Figure 6.5. The

expected total cost and the expected unfunded liabilities are decreasing in h for

all the values of ρ considered here, and decreasing the most for high ρ’s since a

high fixed leg is attractable to the insurance company. For lower values for ρ than

those considered here, the expected total costs and the expected unfunded liabilities

are increasing in h since it is unfavourable for the insurance company to buy the

de-risking swap for even lower values of ρ. The CVaR is increasing for ρ = −0.045

and ρ = −0.04 and decreasing for ρ = −0.035 and ρ = −0.03, and therefore, for the

values of ρ considered here, the optimization problem only has a feasible solution for

ρ = −0.035 and ρ = −0.03. Since the expected total costs are decreasing in h, it is

optimal for the insurance company to buy as many de-risking swaps as possible as

we also see in Figure 6.3. Hence for the de-risking swap in this example with a life

annuity, it is either optimal to buy h = ∞ swaps or h = 0 depending on the value of

ρ. Therefore, we only consider the de-risking option, when we study sensitivities

towards ψ1 and ψ2.

The ψ1 and ψ2-parameters only affect the total costs of the insurance company

(see Equation (6.4.1)), and therefore, the region of feasible h’s in the optimization

problem in Equation (6.4.2) does not change when ψ1 and ψ2 change. Hence, if

the expected total cost is decreasing in h, the highest h will always be optimal. In

Figure 6.6, we illustrate the optimal h, which is constant, and the expected total

costs as a function of ψ in three cases: ψ = ψ1 = ψ2 (case 1), ψ = ψ1 and ψ2 is

fixed (case 2), and ψ = ψ2 and ψ1 is fixed (case 3) for the de-risking option. The
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Figure 6.5: The expected total cost, the expected unfunded liabilities and the conditional
value at risk for different values of ρ

(a) The expected total cost and the expected un-
funded liabilities as a function of h for different
values of ρ for the de-risking swap

(b) The conditional values at risk as a function
of h for different values of ρ for the de-risking
swap

optimal h is constant and equal to 0.68 for all choices of ψ in all three cases, and

the expected total cost is increasing in ψ, so the higher the penalty factors are, the

higher are the total cost. The penalty factor ψ1 affects the capital inflow and ψ2

affects the capital outflow, and Figure 6.6 illustrates that the expected total costs

are more sensitive to an increase in ψ1 than to an increase in ψ2.

6.5.2 The disability model

In this section, we study an example of the de-risking strategies in the disability

model (see Figure 6.7). The disability model is more complex than the survival model

from the previous example in the sense that there are two possible transitions from

the initial state Active: The policyholder can become disabled or the policyholder

can die. The insurance product is a payment upon disability, b, paid by a one-time

premium, π, at time 0. The policyholder is x0 years old at the initialization at time

0, and the insurance contract terminates at time n.

First, we model the stochastic process for the transition intensities in Section 6.5.2,

and second, we solve the optimization problem and study sensitivities in Section

6.5.2.

Modelling intensities

Following Christiansen and Niemeyer, 2015 that study the sufficient and necessary

conditions under which general transition forward rates are consistent with respect

to the relevant insurance claims, we assume that µ01(t), µ12(t), and (µ02(t) −
µ12(t)) are independent. Christiansen and Niemeyer, 2015 demonstrate that this

assumption implies that µ02(t) and µ12(t) are dependent. It follows that µ01(t)
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Figure 6.6: The optimal h and the expected total costs in the three cases

0 Active 1 Disabled

2 Dead

µ01

µ02 µ12

Figure 6.7: The disability model

can be independently estimated using a standard diffusion process (e.g., CIR), and

the same can be done for µ02(t) or µ12(t). The difference (µ02(t)− µ12(t)) can be

modelled as a constant, deterministic function or stochastic but independent with

respect to µ02(t).

We model µ01(t) and µ02(t) with two different time-inhomogeneous Cox-Ingersoll-

Ross (CIR) processes. The CIR process has been widely used in the actuarial
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literature for modelling the mortality intensity (see, e.g., Dahl, 2004; Biffis, 2005;

Henriksen and Møller, 2015; Zeddouk and Devolder, 2020; Huang et al., 2022).

Furthermore, we assume that the difference (µ02(t)− µ12(t)) is a time-dependent

constant.

Therefore, the estimated dynamics of the transition intensities are given by

dµ01(t) = ϕ01
(
β01 − µ01(t)

)
+ σ01

√
µ01(t)dW1(t),

dµ02(t) = ϕ02
(
β02 − µ02(t)

)
+ σ02

√
µ02(t)dW2(t),

µ02(t)− µ12(t) = ∆(t),

where ∆ is a deterministic function, W1(t) and W2(t) are two independent Brownian

motions.

We estimate the parameters of the CIR model for µ01(t) (or µ02(t)) from the survival

probabilities that a person in state 0 at age x in the year t will remain in state 0 at

age x+n and year t+n, assuming that only the cause of decrement j = 1 (or j = 2)

is operating, p′01(t, t+ n) (or p′02(t, t+ n)) (to simplify notation, we have omitted

the age). The procedure followed is described in Appendix 6.A.

We have calibrated the processes to the cohort of the Italian population aged x0 = 50

in 2013 (the initialization time t = 0) and set n = 30. Data has been taken from

Baione et al., 2016, which fitted the transition probabilities to the people qualified

for a disability benefit paid by the Italian Government to disabled people, consisting

of a universal cash benefit not subject to age limitations and unconnected to a

means’ test. The data set provides the mortality of active people, the mortality of

disabled people, and the transition from active to disabled.

The values of the ϕ’s, β’s and σ’s are reported in Table 6.2 below.

Table 6.2: Parameter values

Parameter Value
ϕ01 0.127580663
β01 0.002728047
σ01 0.027736810

µ01(0) 0.000721773
ϕ02 0.000006236
β02 2.981109000
σ02 0.000854003

µ02(0) 0.002157350

Solving the optimization problem

The parameters in the example are reported in Table 6.3. We remind that the

policyholder is 50 years old at the initialization at time 0 and holds an insurance
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contract paying a sum of b = 5 upon disability before termination at time n = 30 at

the age of 80.

Table 6.3: Components in numerical example

Component Value Component Value
Age of insured, x0 50 r(t) 0.01
Termination, n 30 ψ1 0.10
Z(0) 0 ψ2 0.10
Annuity rate, b 5 δ 0.10
Premium, π 15.26 ρ 0.01
V (0) 14.55 α 0.99
A(0) = π 15.26 τ 0.13

In this example, the liabilities in state 1 and state 2 are equal to zero, since the only

payment is upon a transition between state 0 and 1, Therefore, the expected unfunded

liabilities do not depend on the transition intensity µ12(t), and the sum-at-risk R̂12(t)

is equal to zero for all t. It is only necessary to define the valuation basis by the two

transition intensities µ̂01(t) and µ̂02(t). We assume that µ̂01(t) = 0.95 ·E
[
µ01(t)

]
and

µ̂02(t) = 1.05 ·E
[
µ02(t)

]
. We choose the target level for the conditional value-at-risk

as τ = 0.5 · CV aRα(L(n)).

As in the example in Section 6.5.1, we calculate the expected total costs, the expected

total unfunded liabilities, and the conditional value-at-risk of the unfunded liabilities

with and without de-risking based on 5000 simulations of µ01(t) and µ02(t). We

study the de-risking option with and without the sum-at-risk and the de-risking

swap with and without the sum-at-risk. The sum-at-risk from state 0 (Active) to

state 1 (Disabled) is positive, and therefore, we consider the de-risking option with

the European call option structure for this transition. Contrary, the sum-at-risk

from state 0 (Active) to state 2 (Dead) is negative, and therefore, we consider the de-

risking option with a European put option structure for this transition. The solution

to the optimization problem is the pair (h01, h02) that minimizes the expected total

costs.

First, we consider the four different types of de-risking: The de-risking option

including the sum-at-risk (6.3.1) and (6.3.2), the de-risking option without the

sum-at-risk (6.3.3) and (6.3.4), the de-risking swap with the sum-at-risk (6.3.5), and

the de-risking swap without the sum-at-risk (6.3.6). We consider the same type

of de-risking cash flow for both the transition from Active to Disabled and from

Active to Dead. In Figures 6.8 and 6.9, we illustrate the expected total costs and

the constraints from the optimization problem as a function of h01 for two values

of h02 for all the de-risking strategies. The optimal values of h01 and h02 for the

de-risking option are reported in Table 6.4.

In all four cases, the expected total costs and the unfunded liabilities are decreasing
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Figure 6.8: Illustration of the optimization problem for the de-risking option

(a) De-risking option with the sum-at-risk (b) De-risking option without the sum-at-risk

Figure 6.9: Illustration of the optimization problem for the de-risking swap

(a) De-risking swap with the sum-at-risk (b) De-risking swap without the sum-at-risk

Table 6.4: Optimal amounts for the de-risking option

With sum-at-risk Without sum-at-risk
h01 0.6635 3.0560
h02 1.0100 0.4600
E[TC] -0.0200 -0.0197

in the amount of de-risking. For the de-risking option, the limitation on the amount

of de-risking is, as in the example in Section 6.5.1 the hedging price. The expected

total costs with the optimal de-risking strategy for the de-risking option are lower

with the sum-at-risk than without the sum-at-risk (see Table 6.4). This indicates that

there is more basis risk without the sum-at-risk. Different from the first numerical
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example in the survival model, the CVaR for the de-risking swap has a parable

shape (see Figure 6.9), which limits the optimal amount of h01. The expected total

costs decrease when we increase h02 for the de-risking swap with the sum-at-risk,

and therefore the optimal amount of de-risking is to buy as much as possible of

de-risking for the transition from Alive (0) to Dead (2) and then the amount h01
that minimizes the expected total costs and satisfies the criterion on the CVaR. For

the de-risking swap without the sum-at-risk, the expected total costs are increasing

in h02 since the sum-at-risk, R̂02(t), is negative. Therefore, the optimal strategy for

the de-risking swap without the sum-at-risk is h02 = 0 and the optimal amount for

the transition from Active (0) to Disabled (1) is h01 = 9.217.

Now, we study sensitivities of the optimal choice of de-risking and the conditions

in the optimization problem to changes in the parameters δ, ρ, ψ1 and ψ2. The

de-risking option with and without the sum-at-risk behave in similar ways (see Figure

6.8), and therefore we only study the de-risking option including the sum-at-risk in

the sensitivity analysis.

The δ-parameter affects the hedging price and the expected total costs of the de-

risking option. When δ increases, the insurance company can afford less de-risking.

We illustrate this in Figure 6.10, where the optimal h01 is decreasing in δ for fixed h02.

The expected total costs are increasing in δ, since the hedging costs are increasing

in δ. For δ > 0.5 there is no feasible values of h01 when fixing h02 = 5. The amount

of de-risking of disability risks, h01, is lower for h02 = 5 than for h02 = 0.5 since the

insurance company can afford less h01 for high values of h02.

The ρ-parameter influences the size of the fixed leg of the de-risking swap. The

sum-at-risk upon transition from state Active to state Disabled is positive, and

therefore a low fixed leg is favorable for the insurance company when buying a swap

linked to µ01, but the sum-at-risk upon transition from state Active to state Dead

is negative and a high fixed leg is favorable. We illustrate the expected total costs,

the expected unfunded liabilities and the CVaR for three different values of ρ for

the de-risking swap with and without the sum-at-risk as a function of h01 for fixed

values of h02 in Figures 6.11 and 6.12. For the de-risking swap with the sum-at-risk,

the expected total costs, the unfunded liabilities, and the CVaR are increasing in

ρ for h02 = 0.5 and decreasing for h02 = 5 for fixed h01. A high fixed leg for the

transition from state 0 to state 2 is attractable, since the sum-at-risk is negative,

and therefore the expected total costs are lowest for the highest considered value of

h02 and h01 = 0. For ρ = 0.1, it is optimal not to choose hedging of disability risks,

h01 = 0, since the expected total costs are increasing in h01. For ρ = 0 and ρ = −0.1

the boundary conditions of the optimization problem depend on the CVaR. The

expected total costs and the expected unfunded liabilities are increasing in ρ for both

h02 = 0.5 and h02 = 2 for the de-risking swap without the sum-at-risk. For this type

of de-risking, there are no feasible solutions for ρ = 0.1, and the insurance company



6.5. Numerical examples 147

Figure 6.10: The optimal h01 as a function of δ for fixed h02

is doing worse if it buys de-risking since the expected total costs are increasing in

both h01 and h02. For ρ = −0.1, h02 > 0 is optimal different from the case with the

standard parameters in Figure 6.9 (right).

The parameters ψ1 and ψ2 only affect the total costs and therefore the feasible region

of h01 and h02 in the optimization problem is unchanged when ψ1 and ψ2 vary. We

illustrate the expected total costs as a function of ψ in three cases: ψ = ψ1 = ψ2,

ψ = ψ1 (ψ2 fixed), and ψ = ψ2 (ψ1 fixed) for the de-risking option with the sum-

at-risk and for the de-risking swap without the sum-at-risk in Figure 6.13. We do

not consider the de-risking swap with the sum-at-risk, since it is optimal to buy

an infinite amount of h02. The expected total costs are increasing in ψ in all cases,

which is obvious in the sense that the higher the penalty factors are, the higher

are the total costs. The parameter ψ1 affects the capital inflow, and ψ2 affects the

capital outflow. Figure 6.13 shows that both the de-risking option and the de-risking

swap are more sensitive to an increase in the penalty factor on the capital inflow

than to an increase in the penalty factor on the capital outflow.
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Figure 6.11: Varying ρ for the de-risking swap with the sum-at-risk

(a) E[TC] (b) E[LD(n)] (c) CV aRα(LD(n))

Figure 6.12: Varying ρ for the de-risking swap without the sum-at-risk

(a) E[TC] (b) E[LD(n)] (c) CV aRα(LD(n))

6.A Appendix

Consider the single decrement probability p′ij(t, t+ 1) with i ̸= j, that a person in

state i at a given age x in the year t, will be in the state j at age x+ 1 in the year

t+1 (note that we omit the age for convenience). For each cause j, the collection of

values
{
p′ij(t, t+ 1)

}
for various year t is known as the associated single-decrement

table for cause j. These are annual probabilities of failure for the particular cause j,

assuming that no other causes of decrement are operating.

Following Promislow (2015), the relationship between the two sets of probabilities

(one set from the multiple-decrement table providing p01(t, t+1) and p02(t, t+1), and

the other set from the single-decrement table providing p′01(t, t+1) and p′02(t, t+1))

is as follows:

p01(t, t+ 1) + p02(t, t+ 1) = p′01(t, t+ 1) + p′02(t, t+ 1)− p′01(t, t+ 1)p′02(t, t+ 1)
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Figure 6.13: Varying ψ

(a) Varying ψ for the de-risking option with the
sum-at-risk

(b) Varying ψ for the de-risking swap without
the sum-at-risk

Assuming a uniform distribution of failures for each part, over each year, we have:

p01(t, t+ 1) = p′01(t, t+ 1)− 1

2
p′01(t, t+ 1)p′02(t, t+ 1),

p02(t, t+ 1) = p′02(t, t+ 1)− 1

2
p′01(t, t+ 1)p′02(t, t+ 1).

Moreover, the following relation holds:

p01(t, t+ 1)− p02(t, t+ 1) = p′01(t, t+ 1)− p′02(t, t+ 1)

Therefore, we obtain the following Promislow (2015):

p01(t, t+ 1) = p′01(t, t+ 1)− 1

2
[p′01(t, t+ 1)]

2
+

1

2
p′01(t, t+ 1)∆

where ∆ = p01(t, t+1)−p02(t, t+1). Finally, we get the single decrement probabilities

from a multiple-decrement table with two decrements, disability (cause 1), and death

(cause 2), from:

p′01(t, t+ 1) = 2 +∆−
√
(2 + ∆)2 − 8p01(t, t+ 1),

p′02(t, t+ 1) = p′01(t, t+ 1)−∆.

Now, we can calculate the survival probabilities p′00(1)(t, t+n) that a person in state

0 in the year t will remain in state 0 after n years (i.e. in the year t+ n), assuming

that only the cause of decrement 1 (disability) is operating by:

p′00(1)(t, t+ n) =

t+n−1∏
k=t

[1− p′01(k, k + 1)]
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Similarly, we calculate the survival probabilities p′00(2)(t, t+n) that a person in state

0 in the year t will remain in state 0 after n years, assuming that only the cause of

decrement 2 (death) is operating by:

p′00(2)(t, t+ n) =

t+n−1∏
k=t

[1− p′02(k, k + 1)]

In the CIR case, we have for j = 1, 2:

p′00(j)(t, t+ n) = eη0j(n)+θ0j(n)µ0j(t),

where:

η0j(n) = −2ϕ0jβ0j
σ2
0j

ln

(
f0j + g0je

c0jn

c0j

)
+
ϕ0jβ0j
f0j

n,

θ0j(n) =
1− ec0jn

f0j + g0jec0jn
,

with

c0j = −
√
ϕ20j + 2σ2

0j ,

f0j =
c0j − ϕ0j

2
,

g0j =
c0j + ϕ0j

2
.



Chapter 7

Risk margin calculations with a

scenario-based model for the Solvency

Capital Requirement

This chapter contains the paper Nyegaard and Steffensen (2023).

Abstract

We propose a scenario-based model for the Solvency Capital Requirement

(SCR) to use for the calculation of the risk margin. The suggested cost-

of-capital approach in the Solvency II directive for the calculation of the

risk margin is cumbersome if the SCR is calculated using the standard

model, resulting in approximation methods for the risk margin. The

scenario-based model for the SCR bases on a bad- or worst-case scenario,

and results in an accurate calculation of the risk margin. We discover

similarities between the risk margin approximations from the Solvency II

legislation and the risk margin from the scenario-based model and propose

approximations of the SCR and the risk margin within the scenario-based

model. We illustrate the SCR and the risk margin calculations in a

numerical example.

Keywords: Life insurance; Risk margin; SCR; Solvency II; Stress scenarios.

7.1 Introduction

According to the Solvency II directive, life insurance companies must divide liabilities

into the best estimate and the risk margin. The best estimate is according to

European Commission, 2008 article 77(2) the probability-weighted average of future

cash-flows, taking account of the time value of money, using the relevant risk-free

interest rate term structure, and calculation of the best estimate shall be based on

151
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applicable and relevant actuarial and statistical methods. There exist well-established

methods for the calculation of the best estimate. The risk margin is described in

European Commission, 2008 article 77(3) and is the amount another company would

be expected to require to take over the insurance obligations. The suggested method

in the Solvency II directive for the calculation of the risk margin is the cost-of-capital

approach described in European Commission, 2014 article 37, which depends on

the future Solvency Capital Requirement (SCR). Usually, the SCR is calculated

using the standard formula described in European Commission, 2008 Annex IV. In

practice, calculation of SCR with the standard model for all future time points is

cumbersome and computationally challenging; therefore, approximation methods

for the risk margin are needed. Four approximation methods to calculate the risk

margin are suggested in Guidelines on the valuation of technical provisions EIOPA,

2015 article 1.114.

This paper proposes a scenario-based model for the SCR to use in the cost-of-

capital formula for the risk margin as an alternative to the approximation methods

suggested in Guidelines on the valuation of technical provisions EIOPA, 2015. The

scenario-based model for the SCR is based on a stress of the transition intensities of

the Markov chain governing the state of the insured within the classical multi-state

setup in continuous time life insurance. The SCR is the difference between the

best estimate liabilities calculated with the stressed and the unstressed transition

intensities. The resulting risk margin calculated with the SCR in the scenario-based

model resembles a duration of a payment stream that depends on the sums-at-risk

calculated with the stressed transition intensities. This is a crucial observation since

the third approximation method of the risk margin from the guideline also resembles

a duration, but the duration of the original insurance payments. Furthermore, we

derive that the second and third approximation methods of the risk margin from

the guideline result in the same approximation of the risk margin. The SCR in the

scenario-based model has a representation that contains a mix of valuation with

and without stress. This leads to two approximations of the SCR. We compare the

approximations of the SCRs and the resulting risk margins. We calculate the SCR

and the risk margin in the scenario-based model in a numerical example, where we

compare the resulting risk margin to the approximations from the guideline and

compare approximations of the SCR and approximations of the risk margin.

Throughout, we are going to study SCRs, corresponding risk margins, and ap-

proximations of these. The construction of the bad-case scenario underlying the

calculation of the SCRs partly determines the structure of both the accurate expres-

sions and their approximations. The construction of bad- and worst-case scenarios

both for SCRs and for safe-side valuation in with-profit life insurance has been

intensively studied in the actuarial literature.

The classic idea of with-profit life insurance is to set a first-order scenario such
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that the first-order reserve and the first-order equivalence premium are prudent; see

Norberg (1985, 1999) and Ramlau-Hansen (1988). More recent studies look more

closely into the set from which the bad- or worst-case scenarios are drawn, driven by

the idea that not only first-order reserves and premiums but also probabilistic SCRs

may be based on these scenarios. Christiansen and Denuit (2010) compare situations

where not only the death intensity but instead its integral or derivative stem from

a certain set. Christiansen (2010) realize the need for simultaneous calculation of

worst-case intensities and reserves. Christiansen and Steffensen (2013) generalize

to a situation where the set from which worst-case intensities is not rectangular

due to the dependence structure in the intensities. In continuation of that work,

Christiansen et al. (2016) unveil a forward-backward problem if not only reserves

but expected reserves are in focus. In contrast to all these references, our discussion

of the scenarios is not driven by the probabilistic set from which the real-world

scenario is drawn. Rather, it is driven by the mathematical structure of the SCR

and risk margin formulas these scenarios give rise to. This gives rise to new ideas

about how to construct these scenarios, and some comparisons are made.

Connected with the literature on the construction of worst-case scenarios is also the

literature on the sensitivity of reserves with respect to the intensity assumptions; see

Kalashnikov and Norberg (2003), Christiansen (2008a) and Christiansen (2008b).

Finally, worth mentioning here is related work on immunization and natural hedging

techniques; see Christiansen (2011), Levantesi and Menzietti (2017), and Nyegaard

(2023). Although the purpose of that work is substantially different from ours, some

mathematical techniques and patterns of thinking are common.

The structure of the paper is as follows. In Section 7.2, we describe the multi-state

setup in continuous time life insurance. The formula for the risk margin from the

guideline and the four approximation methods are studied in Section 7.3. We present

the scenario-based model for the SCR, and study approximations of the SCR and

the choice of stress in Section 7.4. Section 7.5 studies the risk margin calculated

with the SCR from the scenario-based model. A numerical example in Section 7.6

shows an implementation of the scenario-based model to calculate the SCR and the

risk margin.

7.2 Setup

We consider the classical multi-state setup in life insurance. A continuous time

Markov chain Z =
(
Z(t)

)
t≥0

on a finite-dimensional state space J = {1, 2, ..., J}
models the state of the policyholder, corresponding to for instance ’Active’, ’Disabled’,

or ’Dead’. The transition probabilities of Z are

pij(t, s) = P
(
Z(s) = j

∣∣ Z(t) = i
)
,
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for i, j ∈ J . We assume the transition intensities,

µij(t) = lim
h↓0

pij(t, t+ h)

h
,

exist for i, j ∈ J , i ̸= j. The counting processes Nk(t) denote the number of jumps

of Z into state k ∈ J up to and including time t, i.e.,

Nk(t) = #
{
s ∈ (0, t]

∣∣ Z(s−) ̸= k, Z(s) = k
}
,

where Z(s−) = limh↓0 Z(s − h). We let F =
(
Ft

)
t≥0

be the natural filtration

generated by the state process Z.

The insurer and the insured agree on premium payments and benefits of the insurance

contract, and the payments link to sojourns in states and transitions between states.

The payment stream has dynamics

dB(t) = bZ(t)(t)dt+∆BZ(t)(t)dεn(t) +
∑

k:k ̸=Z(t−)

bZ(t−)k(t)dNk(t),

where bj ,∆Bj(t) and bjk for j, k ∈ J , j ̸= k are deterministic functions and denote

benefits minus premiums. Payments specified by bj link to continuous payments

during sojourn in state j, the payment ∆Bj(t) is a lump sum payment upon

termination of the contract at time n, and bjk links to payments upon transition

from state j to state k. We assume that the instantaneous forward interest rate is

given by r(t) with a slight misuse of notation since r(t) in Equation (7.3.1) in the

section below is the risk-free interest rate for the maturity of t years.

The expected present value of future payments of the insurance contract is given by

V (t) = E
[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Ft

]
= E

[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Z(t) ],
where we use that Z is Markov. We denote by V the prospective reserve of the

insurance contract, and conditioning on Z(t) = i, we arrive at the state-wise

prospective reserve

V i(t) = E
[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Z(t) = i

]
. (7.2.1)

A different representation of the prospective reserve is as the present value of the

(conditional expected) cash flow of the payment stream B

V i(t) =

∫ n

t

e−
∫ s
t
r(u)du

∑
j∈J

pij(t, s)

(
bj(s) +

∑
k:k ̸=j

bjk(s)µjk(s)

)
ds

+ e−
∫ n
t

r(u)du
∑
j∈J

pij(t, n)∆B
j(n). (7.2.2)
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As previously stated, the best estimate of the insurance liabilities is according to

the Solvency II directive the probability-weighted average of future cash flows, taking

account of the time value of money, using the relevant risk-free interest rate term

structure. The cash flow in Equation (7.2.2) is a probability-weighted average of the

future payments in each state, and it is discounted with the interest rate r(t). If we

assume that r(t) is the relevant risk-free interest rate term structure, the prospective

reserve V Z(t)(t) can be considered the best estimate of the liabilities. Calculation of

the prospective reserve is, for instance, obtained by numerical computation of the

cash flow or as the solution to Thiele’s differential equation

d

dt
V j(t) = r(t)V j(t)− bj(t)−

∑
k:k ̸=j

µjk(t)R
jk(t), (7.2.3)

V j(n−) = ∆Bj(n),

where Rjk is the sum at risk upon transition from state j to state k given by

Rjk(t) = bjk(t) + V k(t)− V j(t).

7.3 Risk margin from the guideline

A formula to calculate the risk margin is described in European Commission, 2014

article 37, and it states that the risk margin should be equal to

RM = CoC ·
∑
t≥0

SCR(t)(
1 + r(t+ 1)

)t+1 , (7.3.1)

where CoC is the Cost-of-Capital rate,
∑

t≥0 is the sum of all integers greater or

equal to zero, and r(t+1) denotes the basic risk-free interest rate for the maturity of

t+1 years. Hence, calculating risk margins requires the calculation of SCR(t) for all

integer t ≥ 0. Usually, the current SCR calculated at time t = 0 is determined using

the standard formula described in European Commission, 2008 Annex IV. However,

calculating the SCR with the standard model is cumbersome and computationally

complex. Therefore, in practice, the calculation of SCR with the standard model

for all future time points is unrealistic, and alternative methods to calculate the

risk margin are needed. Guidelines on the valuation of technical provisions EIOPA,

2015 article 1.114 suggests four approximation methods to calculate the risk margin,

and in this section, we describe and compare the four methods. An alternative to

approximate the risk margin is to model the SCR with a different model than the

standard model. This is the topic of Section 7.4.

7.3.1 Continuous version of the risk margin

We model the payments of an insurance contract for one insured, and the prospective

reserve or best estimate for this policyholder at time t is given by V Z(t)(t). Hence,
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the liabilities of the insurance contract depend on the state of the insured. It is

likely to assume that future SCRs for this insurance contract also depend on the

future state of the insured and are stochastic variables. A reasonable estimate of

future SCRs is to take the mean value, which results in a slightly modified formula

for the risk margin from Equation (7.3.1),

RM = CoC · E

[∑
t≥0

SCR(t)(
1 + r(t+ 1)

)t+1

]
. (7.3.2)

The SCR at time t in the formula above corresponds to the time interval [t, t+ 1].

or as the SCR per year at time t. Instead, we may think of SCR(t) as the SCR per

year at time t, that is, as the SCR intensity at time t. If we think of the SCR as

an intensity, a more correct definition of the risk margin in Equation (7.3.2) is the

integral

RM = CoC · E

[∫ n

0

e−
∫ t
0
r(u)duSCR(t)dt

]
, (7.3.3)

where t → r(t) is now the instantaneous forward interest rate. We denote the

definition of the risk margin in Equation (7.3.3) as the continuous version of the risk

margin. Throughout the rest of the paper, we use the definition (7.3.3) to compare

different methods to calculate the risk margin.

The risk margin in Equation (7.3.3) above is the risk margin at time t = 0, and does

not say anything about the future risk margin for t > 0. Therefore, we also study

the risk margin runoff given by

RM(t) = CoC · E

[∫ n

t

e−
∫ s
t
r(u)duSCRZ(s)(s)ds

]

= CoC ·
∑
j∈J

pZ(0)j(0, t) · E

[∫ n

t

e−
∫ s
t
r(u)duSCRZ(s)(s)ds

∣∣∣∣∣ Z(t) = j

]
.

7.3.2 Approximation methods from the guideline

The Guidelines on the valuation of technical provisions EIOPA, 2015 article 1.114

suggest four approximation methods to approximate the SCR to calculate the risk

margin. In addition, the guideline EIOPA, 2015 states that the approximation

methods are hierarchical. In this section, we describe the approximation methods

from the guideline and calculate the resulting risk margin approximations with the

continuous definition of the risk margin in Equation (7.3.3).

Approximation 1

The first approximation method from the guideline concerns approximating the

modules and sub-modules from the standard model when calculating future SCR to
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insert in the formula for the risk margin. This method requires specific knowledge

about the insurance company’s business, so we do not look further into it.

Approximation 2

The second method from the guideline assumes that the ratio between SCR at time

0 and future SCRs equals the ratio between the best estimate at time 0 and the

future best estimate. We assume that the SCR at time 0 is known and calculated

with, for instance, the standard formula and the approximations concerning future

values of the SCR. We interpret the best estimate as the prospective reserve of the

insurance liabilities from Equation (7.2.1). Hence, the relation between the SCR

and the prospective reserve is assumed to be

SCR(t)

SCR(0)
=
V Z(t)(t)

V Z(0)(0)
.

The resulting approximation of the risk margin with the second method is

RM(2) = CoC · SCR(0)
V Z(0)(0)

E

[∫ n

0

e−
∫ t
0
r(u)duV Z(t)(t)dt

]

= CoC · SCR(0)
V Z(0)(0)

E

[∫ n

0

e−
∫ t
0
r(u)duE

[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Z(t) ]dt
]

= CoC · SCR(0)
V Z(0)(0)

E

[∫ n

0

∫ n

t

e−
∫ s
0
r(u)dudB(s)dt

]

= CoC · SCR(0)
V Z(0)(0)

E

[∫ n

0

e−
∫ s
0
r(u)du

∫ s

0

dtdB(s)

]

= CoC · SCR(0)
V Z(0)(0)

E

[∫ n

0

te−
∫ t
0
r(u)dudB(t)

]
. (7.3.4)

We used here the risk margin definition from Equation (7.3.3), inserted the prospec-

tive reserve from Equation (7.2.1), and interchange the order of integration. The

risk margin runoff with this approximation is

RM(2)(t) = CoC · SCR(0)
V Z(0)(0)

E

[∫ n

t

(s− t)e−
∫ s
t
r(u)dudB(s)

]
.

Approximation 3

The third method uses the modified duration of the insurance liabilities as a pro-

portionality factor to approximate the discounted sum of all future SCRs in the

definition of the risk margin in Equation (7.3.1). The risk margin with the third

approximation method is

RM(3) = CoC · SCR(0) ·D(0), (7.3.5)
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where D(0) is the modified duration of the insurance liabilities at time 0. A natural

question is how to define the modified duration of the insurance liabilities. The

definition presented here is inspired by Møller and Steffensen (2007), where the

duration of a bond issued at time τ0 with payments c1, ..., cn at given times τ1, ..., τn
is defined by

Dbond =

∑n
i=1 τie

−y·τici
PV

. (7.3.6)

Here, y is the yield to maturity, and PV is the present value of the bond at time τ0
given by

PV =

n∑
i=1

e−y·τici.

The idea is to generalize the definition of the duration of a bond above to cover

insurance liabilities. First, for the denominator of Equation (7.3.6), we notice

that the present value of future insurance payments is given by the prospective

reserve from Equation (7.2.1). The future payments are weighed with the time

until the payment occurs and discounted to time zero in the nominator of Equation

(7.3.6). Regarding insurance payments, future payments of the insurance contract

are stochastic since they link to the insured’s state. We consider the expected

present value of future payments weighed with the time they occur conditioned on

the present state of the insured. The nominator of Equation (7.3.6) generalized

to insurance payments is E
[ ∫ n

t
(s − t)e−

∫ s
t
r(u)dudB(s)|Z(t)

]
, and we define the

duration of the insurance liabilities as

DZ(t)(t) =
E
[ ∫ n

t
(s− t)e−

∫ s
t
r(u)dudB(s)

∣∣∣ Z(t) ]
V Z(t)(t)

=
E
[ ∫ n

t
(s− t)e−

∫ s
t
r(u)dudB(s)

∣∣∣ Z(t) ]
E
[ ∫ n

t
e−

∫ s
t
r(u)dudB(s)

∣∣∣ Z(t) ] .

This implies that the risk margin with the third approximation method is

RM(3) = CoC · SCR(0)
V Z(0)(0)

E

[∫ n

0

te−
∫ t
0
r(u)dudB(t)

]
.

This is equal to the approximation of the risk margin with the second method,

and therefore the risk margin runoff for this method is the same as for the second

method, RM(3)(t) = RM(2)(t). Another definition of the modified duration of the

insurance liabilities in the third method would lead to a different approximation of

the risk margin.
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Approximation 4

In the fourth method from the guideline, the risk margin is approximated as a

percentage of the best estimate

RM(4) = q · V Z(0)(0), (7.3.7)

for q ∈ (0, 1). The formula for the risk margin in Equation (7.3.1) depends on the

future SCR in each year, and it is difficult to believe that the complexity in that

formula is captured well as a percentage of the best estimate or prospective reserve

at time 0. The four approximation methods from the guideline lead to two different

approximations for the risk margin in Equations (7.3.4) and (7.3.7) since the first

method requires specific knowledge of the business of the insurance company, and

since the second and third approximation method result in the same expression for

the approximated risk margin. In Section 7.4 below, we describe a scenario-based

model for the SCR, and within this model, we calculate the resulting risk margin in

Section 7.5 and compare it to the risk margin calculated with the approximation

methods from the guideline. A numerical comparison is performed in Section 7.6.

7.4 Scenario-based model for the SCR

Valuation of insurance liabilities in the multi-state setup described in Section 7.2 is

based on best estimates of the valuation basis that consists of the market interest

rate and the transition intensities in the Markov model. The foundation of our

scenario-based model is a valuation basis, as if we are in a bad or worst-case scenario.

Then the SCR is the difference between the liabilities calculated with the bad

scenario and with the best estimate valuation basis.

The risk margin corresponds to the amount another company would require to

take over the insurance obligations as a payment to take over risks associated

with managing the insurance portfolio. In the case, where another company takes

over the insurance obligations, they take over the liabilities of the portfolio and

the corresponding assets. The assumptions under which the risk margin should

be calculated are described in article 38 in the delegated regulation European

Commission, 2014. Paragraph h in article 38 states that the assets are selected in

such a way that they minimise the Solvency Capital Requirement for market risk that

the reference undertaking is exposed to. Hence, when calculating the risk margin,

it is assumed that the insurance company that takes over the insurance liabilities

invests the corresponding assets in such a way that they minimize the market risk.

Therefore, when we choose the stressed valuation basis in the scenario-based model

for the SCR, we disregard stresses on market risks and focus on stresses on biometric

risks modelled as stresses on the transition intensities.
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We assume that the stressed transition intensities in the scenario-based model are

given by
(
µε
jk(t)

)
j,k∈J ,j ̸=k

, and define the difference between the stressed intensities

and the original intensities as

∆µjk(t) = µε
jk(t)− µjk(t).

Specific choices of stress are discussed in Section 7.4.3.

We denote the prospective reserve calculated with the stressed transition intensities

by V
Z(t)
ε (t) and have that

V Z(t)
ε (t) = Eε

[ ∫ n

t

e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Z(t) ],
where the superscript ε denotes that the distribution of Z has transition intensities(
µε
jk(t)

)
j,k∈J ,j ̸=k

.

The SCR in the scenario-based model, U j(t), is assumed to be the difference between

the liabilities calculated with the stressed intensities and the best estimate,

UZ(t)(t) = V Z(t)
ε (t)− V Z(t)(t). (7.4.1)

From the stress scenario, one may want or even require that V j
ε (t) ≥ V j(t), to

ensure a positive SCR. Such a requirement corresponds to the similar requirement

of a first-order prudent valuation basis. In that context, the topic was studied by

Christiansen (2010). He showed that a sufficient condition for this is that

sign(∆µjk(t)) = sign(Rjk
ε (t)), (7.4.2)

where Rjk
ε (t) is the sum-at-risk calculated with the stressed transition intensities

and is given by

Rjk
ε (t) = bjk(t) + V k

ε (t)− V j
ε (t).

We assume that the condition in Equation (7.4.2) is met.

The scenario-based model aims to model the future SCR so that we can calculate the

risk margin in Equation (7.3.3) without using approximation methods. Therefore,

we study a different representation of the SCR, UZ(t)(t), in the scenario-based

model. Using Thiele’s differential equation for the state-wise prospective reserve

from Equation (7.2.3), we obtain a differential equation for the state-wise SCR,

U j(t)

d

dt
U j(t) =

d

dt
V j
ε (t)−

d

dt
V j(t)

= r(t)V j
ε (t)− bj(t)−

∑
k:k ̸=j

µε
jk(t)R

jk
ε (t)

−
(
r(t)V j(t)− bj(t)−

∑
k:k ̸=j

µjk(t)R
jk(t)

)
.
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Collecting terms yields that

d

dt
U j(t) = r(t)U j(t)−

∑
k:k ̸=j

µjk(t)

(
∆µjk(t)

µjk(t)
Rjk

ε (t) + Uk(t)− U j(t)

)
,

U j(n) = 0. (7.4.3)

Hence, the SCR in the scenario-based model satisfies Thiele’s differential equation

and has the representation

UZ(t)(t) = E
[ ∫ n

t

e−
∫ s
t
r(u)dudBε(s)

∣∣∣∣ Z(t) ], (7.4.4)

for

dBε(t) =
∑

k:k ̸=Z(t−)

∆µZ(t−)k(t)

µZ(t−)k(t)
RZ(t−)k

ε (t)dNk(t). (7.4.5)

The SCR is the expected present value of a payment stream consisting of payments

upon jumps between states given by the stressed sum-at-risk weighted with the

relative change in the transition intensities due to the stress scenario. We use this

representation of the SCR to calculate the risk margin in Section 7.5, but first, we

study approximations of the SCR that follows in continuation of the representation

in Equation (7.4.4).

7.4.1 Approximations of the SCR

The expression in Equation (7.4.4) contains a mix of valuation with and without

stress. The payment process Bε(t) is based on valuation under stress since it contains

the stressed sum-at-risk, but the conditional expectation is unstressed. This is not

necessarily a problem, but the observation leads to two approximations of UZ(t)(t),

each based on full valuation without or with stress. They are, respectively,

ŨZ(t)(t) = E
[ ∫ n

t

e−
∫ s
t
r(u)dudB̃ε(s)

∣∣∣∣ Z(t) ], (7.4.6)

ÛZ(t)(t) = Eε

[ ∫ n

t

e−
∫ s
t
r(u)dudBε(s)

∣∣∣∣ Z(t) ], (7.4.7)

where

dB̃ε(t) =
∑

k:k ̸=Z(t−)

∆µZ(t−)k(t)

µZ(t−)k(t)
RZ(t−)k(t)dNk(t).

The relations between the true SCR from the scenario-based model, UZ(t)(t), and

the approximations cannot be deduced from the representations above. Instead, one

may use that U i(t) satisfies the differential equation in Equation (7.4.3) and the



162 Chapter 7. Nyegaard & Steffensen (2023)

approximations Ũ i(t) and Û i(t) from Equations (7.4.6) and (7.4.7) satisfy similar

differential equations. This results in the following representation of the differences

U i(t)− Ũ i(t)

=

∫ n

t

e−
∫ s
t
r(u)du

∑
j∈J

pij(t, s)
∑
k:k ̸=j

∆µjk(s)
(
Uk(s)− U j(s)

)
ds, (7.4.8)

Û i(t)− U i(t)

=

∫ n

t

e−
∫ s
t
r(u)du

∑
j∈J

pij(t, s)
∑
k:k ̸=j

((
∆µjk(s)

)2
µjk(s)

Rjk
ε (s)

+ ∆µjk(s)
(
Ûk(s)− Û j(s)

)
ds. (7.4.9)

The differences depend on the choice of stress-scenario through ∆µjk(t), R
jk
ε (t),

U j(t), and Û j(t). Under the assumption in Equation (7.4.2), we cannot, in general,

make conclusions about the relation between UZ(t)(t), ŨZ(t)(t) and ÛZ(t)(t), but in

the survival model, we have a result about the relations reported in Example 7.4.1

below.

Example 7.4.1. In the survival model consisting of the states Active (0) and Dead

(1) and one transition intensity µ(t) from state 0 to state 1, the differences between

the SCR and the approximations in Equations (7.4.8) and (7.4.9) reduce to

U0(t)− Ũ0(t) =

∫ n

t

e−
∫ s
t
r(u)+µ(u)du∆µ(s)

(
−
(
V 0
ε (s)− V 0(s)

))
ds, (7.4.10)

Û0(t)− U0(t) =

∫ n

t

(
e−

∫ s
t
r(u)+µε(u)duµε(s)

− e−
∫ s
t
r(u)+µ(u)duµ(s)

)
Rε(s)

∆µ(s)

µ(s)
ds.

Here it is only relevant to consider U0(t) since U1(t) = 0. If the stressed sum at risk

has the same sign for all t ∈ [0, n] and under the assumption in Equation (7.4.2),

Equation (7.4.10) states that

U0(t) ≤ Û0(t) and U0(t) ≤ Ũ0(t) if sign(Rε(t)) = 1 for all t ∈ [0, n],

U0(t) ≥ Û0(t) and U0(t) ≥ Ũ0(t) if sign(Rε(t)) = −1 for all t ∈ [0, n].

(7.4.11)

Similarly, there is a relation between the two approximations, Û0(t) and Ũ0(t), given

by

Û0(t)− Ũ0(t) =

∫ n

t

e−
∫ s
t
r(u)+µε(u)duµε(s)

∆µ(s)

µ(s)
Rε(s)ds

−
∫ n

t

e−
∫ s
t
r(u)+µ(u)du∆µ(s)R(s)ds.
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Examples of contracts in the survival model, where the stressed sum at risk has the

same sign throughout the contract and therefore fits into the framework of Example

7.4.1, are, for instance, a life annuity, a term insurance or a pure endowment.

7.4.2 Comparisons to with-profit life insurance

The SCR in the scenario-based model studied here consists of the difference between

the insurance liabilities evaluated under two bases; an original and a stressed basis.

This draws parallels to with-profit life insurance, where a set of technical (prudent)

transition intensities, {µ∗
jk(t)}(j,k),j ̸=k, and the technical (prudent) interest rate r∗

are chosen for pricing insurance contracts, and the market transition intensities,

{µm
jk(t)}(j,k),j ̸=k, and the interest rate rm are used for valuation of the liabilities.

The purpose of the technical valuation basis is to ensure that premiums are on

the safe side. A possible surplus is then paid back to the policyholders as a bonus.

The level of the difference between µε and µ, and µm and µ∗, and the motive

for choosing the stressed intensities in the scenario-based model and the technical

transition intensities in with-profit life insurance, respectively, might differ. Still,

the mathematics turn out to have a lot of similarities.

Calculation of the expectation in Equation (7.4.4) yields that

UZ(t)(t) =

∫ n

t

e−
∫ s
t
r(u)du

∑
j∈J

pZ(t)j(t, s)
∑
k:k ̸=j

(
µε
jk(s)− µjk(s)

)
Rjk

ε (s)ds, (7.4.12)

The individual bonus potential, V IB, of a with-profit life insurance contract from

Chapter 2 of Møller and Steffensen (2007) is given by

V IB(t) =

∫ n

t

e−
∫ s
t
rm(u)du

∑
j∈J

pZ(t)j(t, s)

((
rm(s)− r∗(s)

)
V ∗j(s)

+
∑
k:k ̸=j

(
µ∗
jk(s)− µm

jk(s)
)
R∗jk(s)

)
ds,

where V ∗ is the expected present value of future payments under the technical basis

and R∗jk is the sum at risk on the technical basis. The last part of the expression

above resembles the SCR from the scenario-based model in Equation (7.4.12) in the

sense that it is the difference between the technical transition intensities and the

market transition intensities times the sum at risk on the technical basis.

The surplus contribution process from Asmussen and Steffensen (2020) (Chapter 6,

Proposition 4.3) in with-profit life insurance, including bonus, is equal to

cj(t) =
(
rm(t)− r∗(t)

)
V ∗j(t) +

∑
k:k ̸=j

(
µ∗
jk(t)− µm

jk(t)
)
R∗jk(t).

The last part of the surplus contribution rate above resembles the individual bonus

potential and the SCR from the scenario-based model.
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It holds that for the surplus contribution rate, the individual bonus, and the SCR

from the scenario-based model to be positive, the prudent transition intensities (or

the stressed transition intensities in the scenario-based model) must be chosen in

such a way that the sign of the technical (stressed) intensities minus {µjk(t)}(j,k),j ̸=k

is equal to the sign of the technical (stressed) sums-at-risk, which is precisely the

condition in Equation (7.4.2). Therefore, the choice of stress in the scenario-based

model is closely connected to the choice of a prudent basis for the transition intensities

in with-profit life insurance.

7.4.3 The choice of stress

In this section, we present different choices of the stressed transition intensities,(
µε
jk(t)

)
j,k∈J ,j ̸=k

. A criterion for the stress to be successful is that the SCR in the

scenario-based model is positive. A sufficient condition for UZ(t)(t) to be positive is

that the sign of the change in the transition intensities due to the stress equals the

sign of the stressed sum-at-risk, see Equation (7.4.2).

One choice presented in Christiansen (2010) is where the stressed intensities are

chosen from a confidence band around µjk(t) given by ljk(t) ≤ µjk(t) ≤ ujk(t). The

stressed intensities are then given by

µε,cb
jk (t) =

{
ljk(t) if Rjk

ε (t) < 0,

ujk(t) if Rjk
ε (t) ≥ 0.

The consequence is that, in general, the functions µε,cb
jk (t) and Rjk

ε (t) have to

be determined simultaneously. The stressed sums-at-risk can be calculated as the

solution to a system of Thiele-inspired differential equations presented in Christiansen

(2010), Equation (3.8). This choice of stress satisfies the condition in Equation

(7.4.2).

A different choice is a parametric stress on the transition intensities given by

µε,pa
jk (t) =

(
1 + βjk(t)

)
µjk(t) + εjk(t), (7.4.13)

for j, k ∈ J , j ̸= k, where εjk(t) is a stress on the level, and βjk(t) a stress on the

trend of the transition intensities. The SCR in the scenario-based model with this

choice of stress is given by

UZ(t)(t) = E
[ ∫ n

t

e−
∫ s
t
r(u)du

∑
j∈J

1{Z(s−)=j}

×
∑
k:k ̸=j

(
βjk(s) +

εjk(s)

µjk(s)

)
Rjk

ε (s)dNk(s)

∣∣∣∣ Z(t) ].
The risk of loss due to changes in the level and the trend of mortality and disability

rates is included in the life risk module of the standard formula for the SCR described
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in European Commission, 2008, Article 105. Therefore, parametric stress seems like

a reasonable choice of stress in a stress-based model of the SCR. This choice of stress

does not necessarily satisfy the condition in Equation (7.4.2), but εjk(t) and βjk(t)

can be chosen such that Equation (7.4.2) holds. Otherwise, the SCR, UZ(t)(t), can

still be positive even though the condition in Equation (7.4.2) is not satisfied.

Remark 7.4.2. For the parametric stress in Equation (7.4.13), the approximation

based on the valuation without stress, ŨZ(t)(t) in Equation (7.4.6), has a connection

to the directional (Gateaux) derivative of the value of the original payment process,

dB(t). If the stresses are constant, i.e. εjk(t) = εjk ∈ R and βjk(t) = βjk ∈ R, it
holds that the approximation from Equation (7.4.6) is equal to

E
[ ∫ n

t

e−
∫ s
t
r(u)dudB̃ε(s)

∣∣∣∣ Z(t) ] =∑
j∈J

∑
k:k ̸=j

(
βjk

∂

∂ηjk
V Z(t)(t, µ+ ηµ) + εjk

∂

∂ηjk
V Z(t)(t, µ+ ηe)

)
,

where V Z(t)(t, µ) is the prospective reserve from Equation (7.2.1) and η = (ηjk)j,k∈J ,j ̸=k

and e = (1jk)j,k∈J ,j ̸=k. Hence, the approximation UZ(t)(t) ≈ ŨZ(t)(t) can be con-

sidered as a sum of the first order Taylor approximations in the directions µ and

e. A Thiele-inspired differential equation for the directional derivative is studied in

Nyegaard (2023).

One specific choice of parametric stress is where the level of prudence depends on

the stressed sum-at-risk. We work with a stress on the trend, βjk, and set εjk = 0.

We design the stress such that

βjk(t) = cRjk
ε (t), (7.4.14)

for a constant c ≥ 0. Since the intensities are positive, we immediately see that the

choice of stress in Equation (7.4.14) fulfills the condition in Equation (7.4.2). The

stress and the stressed sums-at-risk have to be determined simultaneously. This

feature is a consequence of βjk depending on the stress through Rjk
ε (t).

With the particular stress in Equation (7.4.14), we can calculate the SCR via the

representation in Equation (7.4.4) based on the payment process

dBε(t) = c
∑

k:k ̸=Z(t−)

(RZ(t−)k
ε (t))2dNk(t), (7.4.15)

and obtain that

UZ(t)(t) = c · E
[ ∫ n

t

e−
∫ s
t
r(u)du

∑
k:k ̸=Z(s−)

(RZ(s−)k
ε (s))2dNk(s)

∣∣∣∣ Z(t) ].
Similarly to Section 7.4.1, this representation is a mix of valuations with and

without stress since the expectation is unstressed. Still, the payment stream dBε(t)
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depends on the stressed sums-at-risk. Following Section 7.4.1, we now have two

approximations, one based on full valuation under stress and another based on

valuation without stress corresponding to

˜̃UZ(t)(t) = c · E
[ ∫ n

t

e−
∫ s
t
r(u)du

∑
k:k ̸=Z(s−)

(RZ(s−)k(s))2dNk(s)

∣∣∣∣ Z(t) ], (7.4.16)

ÛZ(t)(t) = c · Eε

[ ∫ n

t

e−
∫ s
t
r(u)du

∑
k:k ̸=Z(s−)

(RZ(s−)k
ε (s))2dNk(s)

∣∣∣∣ Z(t) ], (7.4.17)

where Equation (7.4.17) corresponds to Equation (7.4.7). The approximation in

Equation (7.4.16) does not correspond to the approximation ŨZ(t)(t) in Equation

(7.4.6) since the payment stream dBε(t) from Equation (7.4.15) consists of both the

stressed sum-at-risk from the stressed intensities (Equation (7.4.14)) and from the

original payment stream dBε(t) in Equation (7.4.5), and here we approximate them

both with the unstressed sum-at-risk. Therefore, we denote the approximation by a

double tilde.

It is a delicate observation that these two approximations are also well-known under

different names. They are, namely,

˜̃UZ(t)(t) = cV
[ ∫ n

t

e−
∫ s
t

1
2 r(u)dudB(s)

∣∣∣∣ Z(t) ],
ÛZ(t)(t) = cVε

[ ∫ n

t

e−
∫ s
t

1
2 r(u)dudB(s)

∣∣∣∣ Z(t) ],
where V and Vε denote the conditional variance under the two measures without

and with stress, respectively. Note that we must halve the interest rate in these

expressions to make the representations work. It is a striking feature of the stress

design in Equation (7.4.14) that the SCR relates to the variances of the original

payment streams under the two valuation measures.

It is possible to determine a stress scenario for which the approximation based on

the unstressed measure, ˜̃UZ(t)(t), is not an approximation but the true solvency

capital requirements. It is straightforward to see that the variance based on the

unstressed measure occurs if

βjk(t) = c
Rjk(t)

Rjk
ε (t)

Rjk(t).

Also, the condition in Equation (7.4.2) is fulfilled for this stress. We already knew,

though, that the SCR, i.e., the difference between the unstressed and the stressed

reserves, is positive since the variance is always positive.

7.5 Risk margin in the scenario-based model

In this section, we calculate the risk margin using the SCR from the scenario-based

model in Section 7.4. We use the expression for the SCR in Equation (7.4.4) and
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insert in the continuous definition for the risk margin from Equation (7.3.3), and

denote the risk margin in the scenario-based model by RMsce

RMsce = CoC · E

[∫ n

0

e−
∫ t
0
r(u)duUZ(t)(t)dt

]

= CoC · E

[∫ n

0

e−
∫ t
0
r(u)duE

[ ∫ n

t

e−
∫ s
t
r(u)dudBε(s)

∣∣∣∣ Z(t) ]dt
]

= CoC · E

[∫ n

0

te−
∫ t
0
r(u)dudBε(t)

]
, (7.5.1)

where we use calculations similar to those in Equation (7.3.4). The risk margin

resembles the duration of the modified payment stream dBε(t) that depends on the

stressed sums-at-risk.

The risk margin RMsce is the risk margin at time 0. The risk margin runoff in the

scenario-based model is given by

RMsce(t) = CoC ·
∑
j∈J

pZ(0)j(0, t) · E

[∫ n

t

(s− t)e−
∫ s
t
r(u)dudBε(s)

∣∣∣∣∣ Z(t) = j

]
.

The scenario-based model proposed here is simple, and it is unrealistic that financial

authorities would accept it. Still, we consider it a way to gain intuition about

the analytical calculation of risk margins without approximating the SCR. The

expression for the risk margin in the scenario-based model in Equation (7.5.1) is

determined without approximation and under the assumption that the SCR is the

difference between stressed insurance liabilities and the best estimate insurance

liabilities. We consider RMsce an excellent alternative to the approximations of

the risk margin from the guideline since we can calculate the risk margin without

approximations. Below, we compare the scenario-based model’s risk margin with

the guideline’s approximated risk margins.

7.5.1 Comparison with approximations from the guideline

The risk margin from the scenario-based model resembles the risk margin with

approximation methods two and three from the guideline in Equation (7.3.4) in

the sense that it resembles a duration. However, it is not the duration of the

insurance payments but the duration of a different payment stream that depends on

the sum-at-risk calculated with the stressed transition intensities. We denote the

duration of the payment process dBε(t) in Equation (7.4.5) by Dε and it is given by

Dε =
E
[ ∫ n

0
te−

∫ t
0
r(u)dudBε(t)

]
E
[ ∫ n

0
e−

∫ t
0
r(u)dudBε(t)

] .
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We denote the SCR from the scenario-based model by SCRε(t) and note that

SCRε(t) = UZ(t)(t). Then, the risk margin with the scenario-based model for the

future SCR is

RMsce = CoC · SCRε(0) ·Dε,

which is similar to the risk margin calculated with the third approximation method

from the guideline from Equation (7.3.5), although with the duration of a different

payment stream as the proportionality factor. This indicates that a different duration

in the third approximation method for the risk margin from the guideline may result

in a more accurate risk margin since RMsce is calculated without approximations.

In the second approximation method from the guideline, it is assumed that the ratio

between the best estimate and the SCR is fixed such that

SCR(t)

SCR(0)
=
V Z(t)(t)

V Z(0)(0)
.

With the scenario-based model, it holds, without approximation, that

SCRε(t)

SCRε(0)
=
UZ(t)(t)

UZ(0)(0)
,

since the SCR is simply the expected present value of the payment stream dBε(t),

which is denoted by UZ(t)(t).

7.5.2 Risk margin with approximations of the sum-at-risk

The SCR from the scenario-based model, UZ(t)(t) from Equation (7.4.4), consists of

a mix of valuation with and without stress. This leads to two approximations of

the SCR: One based on valuation without stress, ŨZ(t)(t) from Equation (7.4.16),

and one based on full valuation under stress, ÛZ(t)(t) from Equation (7.4.17). Two

approximations of the risk margin then follow immediately from (7.5.1). These

approximations are based on valuation without and with stress, respectively, and are

R̃Msce = CoC · E
[ ∫ n

0

te−
∫ t
0
r(u)dudB̃ε(t)

]
, (7.5.2)

R̂Msce = CoC · Eε

[ ∫ n

0

te−
∫ t
0
r(u)dudBε(t)

]
, (7.5.3)

and the runoffs of the risk margin approximations are

R̃Msce(t) = CoC · E
[ ∫ n

t

(s− t)e−
∫ s
t
r(u)dudB̃ε(s)

]
,

R̂Msce(t) = CoC · Eε

[ ∫ n

t

(s− t)e−
∫ s
t
r(u)dudBε(s)

]
.
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0: Alive 1: Dead
µ

Figure 7.1: The survival model

Table 7.1: Components in numerical example

Component Value
Age of insured, a0 30
Termination, n 40
Interest rate r(t) 0.01
Pure endowment, ∆B 2
Term insurance, b 1.5

The same relations as in Example 7.4.1 in the survival model hold between RMsce

and R̃Msce, but since the expectation in R̂Msce (see Equation (7.5.3)) is taken under

the stressed measure, we cannot conclude that the relation between RMsce and

R̂Msce is the same as the relation between UZ(t)(t) and ÛZ(t)(t). We illustrate the

relation between the approximations and the resulting risk margins in a numerical

example in Section 7.6.

7.6 Numerical example

We consider the survival model illustrated in Figure 7.1. The transition intensity

between state 0 and state 1 is given by

µ(t) = 0.0005 + 105.6+0.04∗(t+a0)−10,

where a0 is the age of the insured at time t = 0. The insurance company offers two

products: A pure endowment paying ∆B if the insured is alive at time n and a term

insurance paying b upon death before time n.

The choice of stress is inspired by Christiansen (2010) and chosen as the worst-case

stress within the boundaries

0.8 · µ(t) = l(t) ≤ µ(t) ≤ u(t) = 1.2 · µ(t),

hence

µε(t) =

{
l(t) if Rε(t) < 0,

u(t) if Rε(t) ≥ 0.

This implies that we simultaneously determine the stress and the stressed sum at

risk. The components in the numerical example are given in Table 7.1.
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Figure 7.2: Stressed sum at risk for four combinations of the two products

7.6.1 Approximations of the SCR

First, we calculate the approximations of the SCR from Section 7.4.1 for different

combinations of the two products: the pure endowment and the term insurance.

In Figure 7.2, the stressed sum at risk for the term insurance is positive for all t, it

is negative for all t for the pure endowment, and for the products that consist of a

combination of the term insurance and the pure endowment, the stressed sum at

risk changes sign.

The SCR from the scenario-based model in Equation (7.4.4) and the approximations

of the SCR in Equations (7.4.6) and (7.4.7) are plotted in Figure 7.3. The relation

between the approximations and the true SCR from Equation (7.4.11) holds for

the pure endowment and the term insurance since the stressed sum at risk has the

same sign throughout the contract, which is also illustrated in Figure 7.3(a). For

the products that consist of a combination of the pure endowment and the term

insurance, where the stressed sum at risk changes sign, the order of U0(t), Ũ0(t)

and Û0(t) is not the same as illustrated in Figure 7.3(b). For the product where the

sum upon death is b = 1.5, the true SCR, U0(t), is the highest, and for b = 1.9, the

approximation based on the full stress is the highest.

7.6.2 Calculation of the risk margin

We calculate the risk margin and the risk margin runoff based on the true SCR

from the scenario-based model, the approximations of the SCR, and with the
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Figure 7.3: SCR and approximations from the scenario-based model

(a) The true SCR, U0(t), and the approxima-

tions, Û0(t) and Ũ0(t), for the pure endowment
and the term insurance.

(b) The true SCR, U0(t), and the approxima-

tions, Û0(t) and Ũ0(t), for combinations of the
pure endowment and the term insurance.

approximation method from the guideline i.e.

RMsce(t) = CoC · p00(0, t) · E

[∫ n

t

(s− t)e−
∫ s
t
r(u)dudBε(s)

∣∣∣∣ Z(t) = 0

]
,

R̃Msce(t) = CoC · p00(0, t) · E

[∫ n

s

(s− t)e−
∫ s
t
r(u)dudB̃ε(s)

∣∣∣∣ Z(t) = 0

]
,

R̂Msce(t) = CoC · pµ
ε

00 (0, t) · Eε

[∫ n

t

(s− t)e−
∫ s
t
r(u)dudBε(s)

∣∣∣∣ Z(t) = 0

]
,

RM(2)(t) = RM(3)(t) =

CoC · p00(0, t) ·
SCR(t)

V 0(t)
E

[∫ n

0

(s− t)e−
∫ s
t
r(u)dudB(s)

∣∣∣∣ Z(t) = 0

]
,

where we assume that SCR(t) = U0(t) (SCR from scenario-based model) and

CoC = 0.06.

Figure 7.4 illustrates the risk margin runoffs. The risk margin approximation from

the guideline, RM(2), is either higher or lower than all the other risk margins. The

order of the SCR and its approximations from the scenario-based model are kept

when calculating the risk margin, hence if U0(t) > Ũ0(t) > Û0(t), then it holds that

RMsce(t) > R̃Msce(t) > R̂Msce(t).
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Figure 7.4: Risk margin runoffs

(a) The risk margin runoff calculated with the
true SCR and the approximations for the pure
endowment and the term insurance.

(b) The risk margin runoff calculated with the
true SCR and the approximations for combi-
nations of the pure endowment and the term
insurance.
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