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Abstract

In this thesis, I prove a general h-principle for algebraic sections of vector bundles, and use it to
investigate the homology of moduli spaces of smooth algebraic hypersurfaces. The thesis consists
of an introduction followed by three papers, the last of which is joint with Ronno Das.

In the first paper, I consider spaces of algebraic sections of vector bundles subject to differential
relations. On smooth projective complex varieties, I prove that the homology of such a space
coincides in a range with that of a space of continuous sections of an associated bundle. As an
immediate consequence, I show stability of the rational cohomology for complement of discrim-
inants in linear systems of hypersurfaces of increasing degree. This paper is the most technical
and its results are used repeatedly throughout the thesis.

In the second paper, I study the locus of smooth hypersurfaces inside the Hilbert scheme of a
smooth complex projective variety. Using the results of the first paper, I show how part of its
cohomology can be computed via an h-principle akin to a scanning map. I also explain how
to compare the rational cohomology to that of classifying spaces of diffeomorphisms groups of
hypersurfaces.

In the third paper, Ronno Das and I study the cohomology of the universal smooth hypersurface
bundle with marked points. We adapt the arguments of the first paper to show another h-principle.
Using rational models, we deduce rational homological stability for this space.

Resumé

I denne athandling viser jeg et h-princip vedrerende algebraiske sektionsrum af vektorbundter,
og bruger det til at studere homologien af moduli rummene af glatte hyperflader. Afhandlingen
bestar af en introduktion og tre artikler, hvoraf den sidste er et samarbejde med Ronno Das.

I den forste artikel studerer jeg rum af algebraiske sektioner af vektorbundter, der opfylder differ-
entialrelationer. For glatte projektive komplekse varieteter viser jeg, at en del af sektionsrummets
homologi er lig med den af et rum af kontinuerte sektioner af et relateret bundt. Som ummidelbar
korollar beviser jeg, at den rationelle kohomologi af komplementerer af diskriminanter i linesere
systemer af hyperflader stabiliserer, nar hyperfladers grad stiger. Denne artikel er den mest teknisk
kreevende i athandlingen, og indeholder resultater, som bruges gennem hele athandlingen.

I den anden artikel underseger jeg locusen af glatte hyperflader i Hilbert-skemaet af en glat projek-
tiv kompleks varietet. Jeg viser, hvordan en del af dens kohomologi kan beregnes via et h-princip,
der ligner en skanningsafbildning. Jeg forklarer ogsa, hvordan den rationelle kohomologi kan
sammenlignes med den af klassificerende rum af diffeomorfisme grupper af hyperflader.

I den trejde artikel, som er et samarbejde med Ronno Das, studerer vi kohomologien af det uni-
verselle glatte hyperfladerbundt med markerede punkter. Vi tilpasser beviserne fra den forste
artikel til at vise et andet h-princip. Ved hjeelp af rationelle modeller deducerer vi rationel homol-
ogisk stabilitet for dette rum.



Résumeé

Dans cette these, je montre un h-principe général concernant les sections algébriques de fibrés
vectoriels, et I'utilise pour étudier 'homologie d’espaces de modules d’hypersurfaces lisses. Cette
these comprend une introduction ainsi que trois articles, le dernier étant écrit en collaboration
avec Ronno Das.

Dans le premier article, je considere des espaces de sections algébriques de fibrés vectoriels sujets
a des relations différentielles. Dans le cas de varietes complexes lisses et projectives, je prouve que
I’homologie d’un tel espace coincide jusqu’a un certain degre avec celle d’'un espace de sections
continues d’un fibré auxiliaire. En guise d’application, je montre de la stabilite homologique ra-
tionnelle pour les complémentaires des discriminants dans des systemes linéaires d’hypersurfaces
de degrés croissants. Ce papier est certainement le plus technique et contient des résultats utilisés
tout au long de cette these.

Dans le second article, j’étudie le lieu géométrique des hypersurfaces lisses a I'intérieur du schema
de Hilbert d’une variétée complexe lisse et projective. En utilisant les résultats du premier papier,
je montre qu’une partie de sa cohomologie peut étre calculée via un h-principe s’apparentant
aux meéthodes de scanographie topologique. J’en profite pour aussi expliquer comment com-
parer la cohomologie rationnelle a celle d’espaces classifiants de groupes de diffeomorphismes
d’hypersurfaces.

Dans le troisieme article, Ronno Das et moi-méme étudions la cohomologie du fibré universel
des hypersurfaces lisses avec des points marqués. On adapte les arguments de mon premier pa-
pier pour prouver un autre h-principe. On en déduit un phénomene de stabilité homologique en
utilisant des modeles rationnels.
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Part 1

Introduction



Much of the work in this thesis can be seen as my attempt to understand linear systems of smooth
divisors. These are arguably the simplest moduli spaces in algebraic geometry, and I will explain
in this introduction what they are and what I can say about them. This introduction is meant to
be understandable to non-experts, and not supposed to be precise in any way.

Moduli of hypersurfaces

Loosely speaking, a bundle over 1" consists of objects F; for each ¢t € T' which depend continuously
on t. This is often written altogether as £ — 7' and the E; are called fibres. Given a family of
objects F, we have a moduli functor

T—{E—-T|E ecF vVteT}

which records the set of bundles with fibres in the family. The word “functor” reflects the fol-
lowing important construction: given a bundle £ — 7 and a map f: S — T, we can form the
pullback f*E — S by letting (f*E)s = Ey (s for each s € S. A moduli functor can sometimes be
representable, and in fact those appearing in this thesis will indeed be. In that case, there exists a

bundle
U = M

with the special property that each fibre is an element of the family F, and any bundle £ — T
with fibres in F is pulled back from 7 along a unique map 7" — M. Then M is called the moduli
space and U the universal bundle representing the moduli functor. I have been deliberately vague to
encompass two situations appearing in this thesis: the topological and the algebraic geometrical.
In the former, bundles are smooth and proper maps with fibres manifolds. In the later, they are
flat morphisms with fibres varieties.

The objects in the family J of choice in this thesis are called hypersurfaces or divisors. By definition,
they are the subvarieties of codimension 1 in a chosen complex variety X. More concretely, a
hypersurface Z C X is locally given by a single equation, i.e. X can be covered by open subsets
U; where

ZNU; ={x € X |s;(x) =0}

with s;: U; — C a non-zero polynomial. In fact these polynomials can be glued to form, not a
global function X — C, but rather a global section s: X — L of aline bundle p: £ — X. In other
words, p is a bundle in the above sense with fibres C, and p o s = id. Let me write

M'X,L)={s: X = L]|pos=id}
for the vector space of global sections of p: £ — X, and given a non-zero section s € I'(X, £) \ 0
V(s)={x € X | s(z) =0}

for its vanishing locus, i.e. the hypersurface it defines. Let me also notice that the solutions to the
equation s(z) = 0 do not change if s is multiplied by a non-zero scalar A\ € C*. Thus any element
in the projectivisation

([(X, £)\0)/C* = P((X, £)

has a well-defined vanishing locus attached to it. Fixing £, the hypersurfaces obtained this way
are called linearly equivalent, and the set of those is the complete linear system |L|. This is the
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fundamental example in this thesis: when X is smooth and projective, the moduli functor on the
category of complex varieties

T — {E — T flat morphism |Vt € T, E;, C X isin |L|}
is represented by the flat family
{(s,2) e P(T(X, L)) x X | s(z) =0} — P(['(X, L))
and P(I'(X, £)) = |L].
Let me now introduce an interesting geometric property. If V' (s) is a hypersurface given as the
vanishing locus of a global section s, it is called smooth if the derivative ds(z) # O forallxz € V (s).
There exists in fact a direct characterisation found by Cayley [Cay48] in the 19" century, who
constructed the discriminant
A:T(X, L) —C
as a homogeneous polynomial such that A(s) # 0 if and only if V'(s) is smooth. By the discussion
above, the Zariski open subset

Miyo(L) = {s € P(I'(X, L)) | A(s) # 0} C P(D(X, L))

is the moduli space representing the functor of bundles with fibres smooth hypersurfaces in the
family |£|. A large part of this thesis is dedicated to computing its homology.

Homology and stability

Outside of a few rare cases, computing the whole homology of a moduli of smooth hypersurfaces
is out of reach. Instead, I focus in this thesis on a phenomenon known as homological stability.
Broadly speaking, a sequence of spaces {Yj}4en satisfies homological stability if given an i the
homology group H;(Y;) is independent of d for d > 0 large enough. This group is then known
as the ith stable homology, and computing it is an interesting question. In the context of moduli
spaces, this is hardly a new idea. For instance, Harer showed that the moduli spaces of smooth
curves of genus g exhibit homological stability when the genus increases [Har85]. An expres-
sion for the stable rational homology was a conjecture of Mumford [Mum83] resolved by Madsen
and Weiss [MW07]. More recently, Galatius and Randal-Williams greatly extended these results
(both stability and computation of the stable homology) to moduli spaces of higher dimensional
manifolds in the series of papers [GRW 14, GRW17, GRW18].

To even state homological stability for moduli spaces of smooth hypersurfaces, we first need a
sequence of them. A natural candidate is given by the sequence

Mhyp(£)= Mhyp(£®2>> Mhyp(£®3)=

of moduli associated to tensor powers of a chosen line bundle £. Vakil and Wood had conjectured
[VW15] that the rational homology of this sequence stabilises when £ is an ample line bundle.
This was proved by Tommasi for £ = Opn (1) [Tom14], and I managed to prove the conjecture
in full generality in [Aum22]. Although unusual, there are to my knowledge no maps between
any two spaces in the sequence that could induce isomorphisms on the stable homology groups.
Instead I showed stability as a by-product of the computation of the, a fortiori stable, homology. In
the continuation of this work, Ronno Das and I computed in [AD23] the stable rational homology
of the universal bundle above My, (L%?).
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In their work I alluded to above, Galatius and Randal-Williams have explained how to compute
the stable homology of the classifying space BDiff (M) of the diffeomorphism group Diff (M) of
a manifold M. From the point of view of this introduction, BDiff (M) is the topological moduli
space parameterising smooth manifold bundles with fibre isomorphic to M. Of course, when M
happens to be a hypersurface given as the vanishing locus of a section s € I'(X, £), there is
also the algebraic moduli space My, (L) parameterising algebraic bundles of varieties with fibre
linearly equivalent to M. In the paper [Aum23], I relate the stable homologies of these two moduli
spaces using tangential structures. These are additional data on the tangent space of the manifold,
and I use them to record special properties of a hypersurface deduced from the algebraic geometry.

Finally, one can wonder what happens when linear equivalence is replaced by homological equiva-
lence. For this latter relation, two hypersurfaces given as vanishing loci of sections of line bundles
L and L’ are equivalent if £ and £’ have equal Chern classes. In my work [Aum23], I show that the
homology of the larger moduli space of those hypersurfaces can be computed using a technique
from algebraic topology known as scanning.

Homotopy principle

In this final section of the introduction, I want to highlight the main technical result of my thesis. It
takes the form of a homotopy principle, or h-principle for short. As the name suggests, h-principles
are part of a general heuristic to transform geometric problems into homotopical ones. They have
been wonderfully exposed in general in other places, e.g. [EM02]. In this section, I want to focus
on how they look like in the context of the moduli of smooth hypersurfaces.

As defined earlier, smoothness of a section s of a line bundle £ — X is a twofold condition
expressed on both its value and its derivative. Indeed, recall that s is smooth if (s, ds)(z) # 0 for
all z € X. Let us write
j'(s) = (s,ds)

for that couple, so that s is smooth if and only if j*(s) never vanishes. As for the notation, j!(s) is
called the first jet expansion of s and is a global section of an auxiliary bundle J' £ named the first
jet bundle of L. With this shift of perspective, smoothness is a single condition on the value only
of a global section. Although it does not seem to achieve much, this reformulation is very useful
for two reasons. Firstly the space of never vanishing continuous sections of the jet bundle

Teo (X, J'L\0)
is amenable to techniques from homotopy theory. Secondly the h-principle predicts that
{s € T(X, L) | sis smooth} — I'co(X,J'L\0)
s+ j'(s)

induces an isomorphism on homology. This was shown by Vassiliev in the context of C* sections
of bundles on manifolds [Vas94]. In [Aum22], I adapt his methods to the context of algebraic
sections, at the price of only obtaining an isomorphism in a range of degrees.
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An h-principle for complements of discriminants
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Alexis Aumonier. An h-principle for complements of discriminants. 2022.

The paper is reproduced, with minor modifications, from my Master Thesis at the University of
Copenhagen. The preprint version is publicly available at arXiv: 2112.00326.
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AN H-PRINCIPLE FOR COMPLEMENTS OF DISCRIMINANTS

ALEXIS AUMONIER

ABSTRACT. We compare spaces of non-singular algebraic sections of ample vector bundles to spaces
of continuous sections of jet bundles. Under some conditions, we provide an isomorphism in
homology in a range of degrees growing with the jet ampleness. As an application, when L is a very
ample line bundle on a smooth projective complex variety, we prove that the rational cohomology
of the space of non-singular algebraic sections of L2 stabilises as d — oo and compute the stable
cohomology. We also prove that the integral homology does not stabilise using tools from stable

homotopy theory.
CONTENTS
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4. Cohomology groups on the E'-page 13
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6. Comparison of spectral sequences 24
7. Comparison of holomorphic and continuous sections 32
8. Applications 33
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1. INTRODUCTION

The purpose of this paper is to study spaces of non-singular holomorphic sections of vector
bundles by comparing them to spaces of continuous sections of appropriate jet bundles. The latter
are particularly amenable to computations using tools from homotopy theory.

Given a holomorphic line bundle £ on a smooth projective complex variety X, one may consider
the vector space of all holomorphic global sections I',(X; £). To each section s € ', (X; £) is
associated a geometric object: its vanishing set

V(s):={x e X |s(z)=0} C X,

and s is called non-singular whenever its derivative ds € T';,,;(2% ® £) does not vanish on V(s).
This implies in particular that V' (s) is a smooth subvariety of X. It has been known for a century
now that when L is a very ample line bundle, Bertini theorem implies that a generic section is
non-singular. There is thus a Zariski open subset

11hol,ns (X7 »C) - Fhol()(; *C)

consisting of those non-singular sections, which geometrically can be interpreted as a moduli

space of equations of certain smooth hypersurfaces in X. A prime example being the space
1
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IMorns(CP™; O(d)) (sometimes modded out by C* or GL,,11(C)) of smooth hypersurfaces of degree
d in the complex projective space CP".

The cohomology ring of Iy ns(X; £), sometimes known as the ring of characteristic classes, is
therefore an important object in the study of hypersurface bundles. In this article, we give a way
of computing it in a range.

Before revealing our main theorem, we will extend the classical situation above in two directions.
To begin, instead of limiting ourselves to line bundles, we will look at sections of bundles of possibly
higher rank. Furthermore, we observe that being non-singular imposes conditions on the value
and derivative of a global section. We will generalise this situation by looking at a broader class
of conditions on higher order derivatives, thus encompassing various other flavours of moduli
spaces: hypersurfaces with simple nodes, smooth complete intersections, etc. (Although explicit
computations of cohomology rings will only appear in forthcoming work.)

Having said this, let X be a smooth projective complex variety and £ be a holomorphic vector
bundle on X. One can construct a new holomorphic vector bundle J"€ called the r-th jet bundle of
& together with a map on global sections j": T'ho1(E) — Tho1(J7E). Intuitively, for a section s of &,
the associated section j"(s) of the jet bundle records all derivatives of s up to order r. For ¥ C J"E
a subset which we think of as “forbidden derivatives”, we say that a section s of £ is non-singular if
j"(s)(z) € T for all z € X. For instance, when & is a line bundle and ¥ C J'£ is the zero section,
we recover the classical notion of non-singular sections discussed at the beginning of this article.

Theorem 1.1 (see Theorem 2.13 for full generality). Let X be a smooth complex projective variety
and &€ be a holomorphic vector bundle on it. Let r > 0 be an integer and T C J"E be a closed
subvariety of the r-th jet bundle of £ of codimension at least dimc X + 1. We write

Tholns (€) :={s € Tha(€) | Vz € X j7(s)(x) € T}
for the space of non-singular holomorphic sections of £. If € is d-jet ample, the composition
Fhol,ns (5) J—T> Fhol (Jrg — ‘Z) — FCO (JTS — CZ)

induces an isomorphism in integral homology in the range of degrees x <

d—=r
r+1°

The theorem above can be strengthened, and in Section 2 we introduce a more general class
of allowed subsets T C J"E of the jet bundle as well as give a sharper range of degrees. We also
take advantage of that section to give the definition of jet ampleness and jet bundles in algebraic
geometry.

1.1. Motivations and applications. Motivated by their stabilisation result in the Grothendieck
ring of varieties [VW15], Vakil and Wood conjectured that for a very ample line bundle £ on
a smooth projective complex variety, the space of non-singular sections of £%? should exhibit
cohomological stability. In the special case of the projective space, Tommasi obtained the following
result.

Theorem 1.2 (Tommasi, [Tom14]). Let d,n > 1 be integers. Let U, ,, be the space of non-singular
holomorphic sections of O(d) on CP". The rational cohomology of U, is isomorphic to the rational
cohomology of the space GL,,,1(C) in degrees x < “1

5 -
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In work in progress, she furthermore investigates an extension of this result to arbitrary smooth
projective varieties [Tom23]. Using different techniques, O. Banerjee also confirmed the conjecture
of Vakil and Wood in the case of smooth projective curves [Ban21].

The present work was strongly motivated by the result of Tommasi and the wish to understand
the stable cohomology from a more homotopy theoretic point of view. At the time of writing, let
us in particular mention the following result:

Theorem 1.3 (Tommasi, work in progress in [Tom23]). Let X be a smooth projective complex variety
of dimension n and L be a very ample line bundle on X. Let d > 1 be an integer and U, be the space
of non-singular holomorphic sections of L. There is a Vassiliev spectral sequence converging to the
homology of U,. Working with rational coefficients, this spectral sequence degenerates on the Es-page
in the stable range if and only if the stable cohomology is a free commutative graded algebra on the
cohomology of X shifted by one degree.

Assuming this degeneration, the rational cohomology of U, in degrees x < L%J is given by the
free commutative graded algebra A (H*~1(X; Q)) on the cohomology of X shifted by one degree.

In the last section (Section 8) of this paper, we apply our main theorem to spaces of smooth
hypersurfaces to prove a homological stability result with rational coefficients.

Theorem 1.4 (see Theorem 8.2). Let X be a smooth projective complex variety and L be a very ample
line bundle on X. The rational cohomology ring of the space 'y ns(£) of non-singular sections (in
the classical sense) of the d-th tensor power of L is isomorphic to A (H*~(X; Q)) in degrees x < 1.

Firstly, let us point out that this agrees with the work in progress of Tommasi. In fact, one can
use our main theorem to show the degeneration of the Vassiliev spectral sequence she constructed.
Secondly, in contrast to many other instances of homological stability, one should remark that
there are no natural stabilisation maps from spaces of non-singular sections of £? to those of £+,
Thus, we only mean that the cohomology rings abstractly stabilise, and the answer only depends on
X and not on L. After the apparition of the first version of the present article, and using different
tools, Das and Howe proved a version of the above theorem for hypersurfaces in algebraic varieties
over any algebraically closed field [DH22].

On the other hand, we find it quite interesting to notice that there is in general no integral
homological stability. In fact, we prove the following result about the moduli space of smooth
hypersurfaces of degree d in CP%:

Theorem 1.5 (see Proposition 8.10). Let d > 6 be an integer. We have:

Z/2 d=0 mod 2

H2(Fhol,n8(C]P27 O(d));Z/2) = {O d=1 mod 2

Besides the phenomenon this result illustrates, its proof showcases the potential of homotopical
methods allowed by our main theorem. Indeed, the computation comes down to simple manipula-
tions of Steenrod squares where the parity of d is reflected in the Chern class of O(d). In contrast,
a more classical approach following the work of Vassiliev [Vas99] would require knowledge of
non-trivial differentials in spectral sequences that quickly grow out of hand when d increases.

For good measure, we also study the p-torsion in the homology of Fhol,ns(ﬁd) and show that it
stabilises when p > dim¢ X + 2 and d — o0. (See Proposition 8.15.)
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The results of this paper are also inspired by analogies with theorems in arithmetic probabili-
ties, such as Poonen’s Bertini theorem over finite fields [Poo04], and in motivic statistics in the
Grothendieck ring of varieties as in [VW15] or [BH19]. The recent results of Bilu and Howe partic-
ularly influenced the current formulation of our main theorem and we would like to recommend
the introduction of their paper [BH19] to the reader interested in an overview of these analogies.
Finally, we also wish to mention that I. Banerjee recently announced a result relating non-singular
sections of a line bundle on an algebraic curve and smooth sections of the same line bundle [Ban20].
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2. STATEMENT OF THE MAIN THEOREM

We begin by a few preliminary definitions before stating precisely our main theorem. Throughout
this article, X is a smooth projective complex variety and £ is a holomorphic vector bundle on X.
We denote by I the space of sections of a vector bundle, and decorate it with subscripts “hol” or C°
to indicate respectively holomorphic or continuous sections. We will make extensive use of Cech
(or sheaf, as they will agree in our setting) cohomology with compact support which we denote by
H?* and refer to [Bre97] for its definition and standard properties. All homology and cohomology
groups will be taken with integral coefficients, unless otherwise specified. We recall the following
definition of jet ampleness.

Definition 2.1 (Compare [BDRS99]). Let £ > 0 be an integer. Let x1, . .., x; be ¢ distinct points
in X and (k1, ..., k) be a t-uple of positive integers such that ) _, k; = k + 1. Denote by O the
structure sheaf of X and by m; the maximal ideal sheaf corresponding to z;. We regard the tensor
product ®_,m* as a subsheaf of @ under the multiplication map ®!_,m* — O. We say that £ is
k-jet ample if the evaluation map

Thot (£) — Thot (E® (O @1y mf")) = P That (€ @ (O/mf?))

=1

is surjective for any x4, ...,x; and kq, . .., k; as above.

Example 2.2. A vector bundle £ is 0-jet ample if and only if it is spanned by its global sections. In the
case of a line bundle, 1-jet ampleness corresponds to the usual notion of very ampleness. On a curve,
a line bundle is k-jet ample whenever it is k-very ample. However, on higher dimensional varieties,
a k-jet ample line bundle is also k-very ample but the converse is not true in general. Finally, and
most importantly for us, if A and B are holomorphic vector bundles which are respectively a- and
b-jet ample, then their tensor product A ® B is (a + b)-jet ample. (See [BDRS99, Proposition 2.3].)

To ease the readability of various statements throughout the paper, we will use the following
notation.
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Definition 2.3. For a holomorphic vector bundle £ on X and an integer » € N, we define
N(&,r) > 0to be the largest integer NV such that € is ((N + 1) - (r + 1) — 1)-jet ample. If no such
integer exists, we set N (&, r) = —1, although we shall never consider such a case in this paper.

Let us also recall the construction of the jet bundle from [Gro67, IV.16.7] (where it is called the
sheaf of principal parts). The diagonal morphism A: X — X x X gives a surjection of sheaves
At A*Oxyx — Ox. Denoting by Z the kernel, we have Ox = A*Oxyx/Z. For an integer
r > 0, we define the r-th jet bundle of Ox to be

JTOX = A*OXX)(/IT—"_I‘

The projections p;: X x X — X give two O x-algebra structures on J"Oy and, unless otherwise
specified, we use the one given by the first projection p;. The other morphism induced by p, is
denoted by

dTXI O X — JO X-
For a holomorphic vector bundle £ on X, we define its r-th jet bundle to be

J'E:=J0x ®oy (1)

where J"Oy is seen as an Ox-module via the morphism d’ for the tensor product, and the result
is regarded as an O x-module again via p;. It comes with the morphism

dg(,g = er RE:E— JOx Koy E=JE.
Taking global sections, we obtain the jet map:
J"=T(dx¢): Thol(€) — Tnaa(J"E). (2)

The most important observation for us is the following: if z € X is a point with maximal ideal sheaf
m, the fibre (J”E)|, is naturally identified with the complex vector space £, /m’1&,. Furthermore,
the composition

(d% ¢)x

Eo ~5 (JTE)y — (JE)|o = Eu/mLTE,

is the natural quotient map. (Here, and everywhere else, we write &, for the stalk of the sheaf £
and £|, = &, /m,&, for the fibre of the bundle £.) Intuitively, for a holomorphic section s of £, one
should think of the value of j"(s) at a point € X as the tuple of all derivatives of s at = up to
order 7. In particular, the following lemma is a direct consequence of the definitions.

Lemma 2.4. Let £ be a holomorphic vector bundle on X and let N (&, r) be as in Definition 2.3. Let
(%o, ..., xp) be atuple of p+ 1 distinct points in X. If p < N(E, ), the simultaneous evaluation of
the jet map (2) at these points

j(rzco o) Phol(g) — (Jr5)|x0 X e X (Jrg>|xp

s (4" (s) (o), -, 7" (5)(25))
is surjective. ]
We shall now explain what we precisely mean by restricting the behaviour of sections of £. In
particular, we will require certain subsets of the jet bundle to be “semi-algebraic”. This is a technical
condition which is quite arbitrary. We believe that a clearer and more general notion could be

used, but we were unfortunately not able to make the arguments of Section 4 work without it.
Our arguments rely on multiple properties of these sets: they admit cell decompositions, have a
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well-defined dimension, and they behave well under projections and closure. (See Section 4.2 for
their single but crucial use.)

There is a well-studied concept of real semi-algebraic subsets of an Euclidean space. They are
subsets defined by polynomial equations and inequalities.

Definition 2.5 (Compare [BCR98]). A semi-algebraic subset of R" is a union of finitely many
subsets of the form

{r eR" | P(z) =0, Qi(x) >0,..., Qx) >0},
wherel € Nand P,Qy,...,Q; € R[X,..., X,].

We adapt the definition to families, i.e. to subsets of vector bundles, by demanding the standard
definition to be satisfied locally in charts. This is well-defined because an algebraic variety X has
an atlas whose transition functions are algebraic, hence respect the semi-algebraicity.

Let us be more precise. First, we briefly recall the notion of an algebraic atlas on X. To lighten
the notation, we let n be the complex dimension of X and m be the complex rank of J"E. We
denote by V' (—) the vanishing set of the tuple of polynomials.

The variety X can be covered by Zariski open subsets, each of the form

U=V(fi,..., fan) CC
for some integer d > 1 and polynomials fi, ..., f4—,. Furthermore, if U and W are Zariski open

subsets of X with a: U = V(f1,...,fs-n) C Cland B: W = V(gi,...,ga—n) C C%, the

homeomorphism on the intersection

aWNU)NV (i, fan) — WNU = BUNW)YNV (g1, .. gar—n)

is given by a rational function whose domain is a subset of C? and codomain is a subset of C".
Recall also that the algebraic vector bundle J"€ is equivalently given by the data of trivialising
Zariski open subsets U; C X (over which J"E|y, = U; x C™) and transition functions on overlaps
U; NU; = GL,,,(C). Most importantly for us, the transition functions are regular morphisms.

Definition 2.6. Let n be the complex dimension of X and m be the complex rank of J"E. A subset
T C J"E is real semi-algebraic if there exists a cover X = | J U; by Zariski open subsets such that
the following conditions hold for each :

(1) the jet bundle may be trivialised over U; via a map ¢;: J"E|y, = U, x C™
(2) there is a chart ¢;: U; = V(fi ... ,féifn) C C% for some polynomials fi, ..., féifn;
(3) and the image in R2%*™) of T|;;. via the map

JEly, 25 Uy x C™ ¢ixid V(fi, ..., féi_n) % O™ Cditm o R2Aditm)
is a real semi-algebraic subset. (Here T |y, is the restriction of ¥ above U;.)

We will often drop the adjective “real” as we will never consider any complex analogue. In
essence, a subset ¥ C J"E is semi-algebraic in the sense of Definition 2.6 when it is semi-algebraic
in the usual way when “read in charts”. As all the change-of-coordinates maps described above
are rational functions, being semi-algebraic is independent of the choice of the cover. Indeed, the
image of a semi-algebraic set by a rational function is still semi-algebraic (see [BCR98, Section
2.2]).
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A semi-algebraic subset has a well-defined dimension (as in [BCR98, Section 2.8]) which can be
thought of as the maximal dimension in a decomposition into cells of the form |0, 1[¢ (see [BCRYS,
Corollary 2.8.9]). We therefore get a well-defined dimension for a semi-algebraic subset T C J"E
by looking at the dimensions when “reading in charts”:

Definition 2.7. Let ¥ C J"E be a semi-algebraic subset. Let X = |J U; by a finite cover as in
Definition 2.6 (the finiteness can always be arranged by compactness of X) and write T;, ¢ R2(di+m)
for the semi-algebraic sets obtained using the condition (3). Each of them has a well-defined
dimension and we let the dimension of ‘T be their maximum.

In the following definition, we denote by rkcJ”E the complex rank of J"&.

Definition 2.8. We say that a subset T C J"& is an admissible Taylor condition if it is closed,
real semi-algebraic and has dimension at most 2(rkcJ"E — 1). We will use the notation ¥|, :=
(J7E)|x N'T for the fibre above a point x € X.

Remark 2.9. Although our definition is quite technical and general, the typical admissible Taylor
conditions arise as subvarieties of high enough codimension. Indeed, any closed subvariety
% C J"E of the jet bundle of complex codimension at least dim¢ X + 1 defines an admissible
Taylor condition.

Motivated by the previous remark, and to help general bookkeeping throughout the paper, we
will use the following notation.

Definition 2.10. The (real) excess codimension of an admissible Taylor condition ¥ is defined to be
the number ¢(T) = codimg® — dimg X > 2, where codimg¥ is the real codimension of ¥ in the
jet bundle J"E.

We are now ready to define what it means for a section to be singular with respect to an
admissible Taylor condition %.

Definition 2.11. A holomorphic section s of the vector bundle £ is said to be singular if there
exists a point € X such that j"(s)(z) € ¥|,. Similarly, a (continuous) section s of the vector
bundle J"€ is said to be singular if there exists a point # € X such that s(x) € ¥|,. A section that
is not singular is said to be non-singular.

Example 2.12. If £ is a line bundle, we may take T to be the zero section of J'£. It is an admissible
Taylor condition and a singular section is one that vanishes at a point on X where its derivative also
vanishes. In particular, if s is a non-singular section, its zero set Z(s) := {x € X | s(x) =0} C X
is a smooth submanifold.

When talking about spaces of sections I', we will use the subscript “ns” to denote the subspace
of non-singular sections. The following is our main result.

Theorem 2.13. Letr > 0 and N > 1 be integers. Let £ be an (N + 1) - (r + 1) — 1)-jet ample
vector bundle on X and let T C J"E be an admissible Taylor condition. The composition

Photas (€) <= Thotns (J7€) < Teo s (J°€)
induces an isomorphism in homology:

H. (Tholns(€); Z) — Hy (Teons(J'E); Z)
in the range of degrees x < N - (e(T) — 1) + (%) — 2.
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2.1. Outline of the paper. There are two key ingredients in the proof of the main theorem 2.13.
The first one is a spectral sequence a la Vassiliev (see [Vas94, Chapter III] for an analogous statement
in the case of smooth sections, and [Vas99] for more explicit computations in small degrees). The
starting idea is that one should study the space of singular sections and deduce the homology of
the space of non-singular sections via Alexander duality. The former has a natural filtration given
by counting the number of singularities and it is used to construct a spectral sequence converging
to its cohomology. Comparing spectral sequences allows us to compare sections of £ and J"E. The
second ingredient is a version of the classical Stone-Weierstrass theorem adapted from the work
of Mostovoy [Mos06] which allows us to compare holomorphic and continuous sections of J"E.

We first explain how to resolve the singular subspaces and construct the Vassiliev spectral
sequence in Section 3. We study its first page in Section 4. In Section 5, we explain how to go
from holomorphic sections to continuous sections. Then, in Section 6, we construct a morphism of
spectral sequences and use it to compare various spaces of sections. We finish proving our main
theorem in Section 7. Lastly, in Section 8, we apply our results to study spaces of non-singular
sections of a very ample line bundle on a projective variety.

3. RESOLUTION OF SINGULARITIES

In this section, we choose an admissible Taylor condition ¥ C J"€ inside the r-th jet bundle of
a holomorphic vector bundle £ on X, and we will write for brevity

I'= Fhol (5) and X = Fhol (g) - 1—‘hol,ns (8)

for the vector space I of all holomorphic sections of £ and its subspace ¥ of singular sections. We
also define the singular space of a section f € I'

Sing(f) :={x € X [j"(f)(z) e T} C X (3)

as the space of points where f is singular (as in Definition 2.11). Our final goal, Theorem 2.13, is to
understand the homology of the space of non-singular sections I'no1 s (£) = I' — 3. By Alexander
duality

H\(Y) = Hagimer—i—1 (I = X),
it is equivalent to understand the compactly supported Cech cohomology of its complement Y.
To achieve that, we want to construct a spectral sequence converging to (). This spectral
sequence arises from a resolution of the space > which we define in this section.

3.1. Construction of the resolution. We will construct a space RX — X mapping surjectively
to the singular subspace .. The inverse image of a section f € X with j + 1 singularities will be a
j-simplex A7 This will allow us to show that RX — Y induces an isomorphism in cohomology
with compact supports (up to some modifications). The space RX will be advantageously filtered by
subspaces R’ X related via pushout diagrams resembling the skeletal decomposition of a simplicial
space. This filtration then yields a spectral sequence computing the cohomology of RX, hence that
of 2.

This is inspired by the so-called truncated resolution of Mostovoy [Mos12] but written in a more
functorial way as in [VokO07].

In what follows, the space I' is given its canonical topology coming from the fact that it is a
finite dimensional complex vector space. Let F be the category whose objects are the finite sets
[n] := {0,...,n} for n > 0 and whose morphisms are all maps of sets [n] — [m]. Let Top be
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the category of topological spaces and continuous maps between them. We define the following
functor

X:F® — Top
[n] — X[n] :={(f, s0,.--,8n) € X bdan | Vi, s; € Sing(f)}

where X[n] is given the subspace topology from I' x X" 1. On morphisms, for a map of sets
g: [n] = [m], we define

(4)

X(g): X[m] — X|n]
(f? S0y - - 7Sm) — (f7 Sg(0)s - - - 759(”))'

For an integer k& > 0, we denote by F;, the full sub-category of F on objects [n] for n < k. Let us
also write

A" = {(to,...,tn) | Vi,0<t;<landty+---+t, =1} C R"™

for the standard topological n-simplex, and denote by 0|A"| its boundary. In particular, the
assignment [n] — |A”"| gives a functor F — Top. For an integer j > 0, we define the j-th geometric
realisation of X by the following coend:

, [n]eF<;
R'X ::/ X[n] x |A"|

)
=< || Xln) x |A“|>/~

0<n<j

where the equivalence relation ~ is generated by (X(g)(2),t) ~ (2, g«(t)) forallmaps g: [n] — [m]
in F. (Here g.: |A™| — |A™| denotes the usual map induced on the simplices by functoriality.) This
is of course reminiscent of the classical geometric realisation of a simplicial space. Note however
that here a cell |A"| in the geometric realisation is indexed by an unordered set of singularities,
even though the functor X is defined using ordered tuples. Indeed, all the permutations [n| — [n]
are valid morphisms in our category F.

Let j > 1 be an integer. We now describe how /X may be obtained from R/~!X via a pushout
diagram. Let L; be the following set:

Lj:={(f,50,---,5;) €[ x X1 | 31 # k such that 5; = s;,} C X[/] (6)

topologised as a subspace of X[j]. This should be thought of as the analogue of the “latching object”
of a simplicial space. We denote by ‘

|A7]

the quotient space of L; x |A’| by the symmetric group &, acting on L; by permuting the
singularities s;, and on |A’| by permuting the coordinates. Denote by ~ the omission of an element
in a tuple.

Lj X6j+1

Lemma 3.1. The formula

((f7507~--;é\la-”usj);(t(]w--7tk+tl;---7aa---7tj))
if there exists k # | such that s; = sy,

((f, 807...,8j),(t0,...7tj)> — {

gives a well-defined map L; Xg,,, AV — RITIX.
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Proof. The formula appears ill-defined as we are choosing arbitrarily two indices k and [. The
identifications made by the coend formula (5) show that any choice will yield the same class in the
quotient. 0

Recall that a point t = (to,...,¢;) € |A7] is in the boundary d|A| if one of its coordinates
vanishes. An argument similar to the proof of Lemma 3.1 above gives the following.

Lemma 3.2. The formula
((f,505---+8)s (tos -1 )) = ((Fy 805281523 85)s (Foy - o sty ey 1)) ift; =0
gives a well-defined map X[j] xs,,, O|N| - RI7'X. O
Consider the following pushout diagram of spaces:

Lj X6j+1 a|A]| © ” :{[j] X6j+1 a’A]‘

l -

Lj XS ’Ajl — (Lj XS4 ‘AJD U (%[]] X& 41 a‘AJD

Equivalently, the pushout is the union of the top-right and bottom-left spaces inside X[j] X, |A7].
The maps defined above in Lemma 3.1 and Lemma 3.2 glue to a continuous map

aj1: (L xe, [A) [ (R[] 6,0, 0187]) — R

The natural map X[j] x |A?| — R’X factors through the quotient by the symmetric group action
and gives a map ' .

Bi: X[j] X, |A| — R'X.
From the coend formula (5) and the inclusion of the full sub-category F<,;_; C F<;, we also get a
natural map R/7'X — R’X. We are now ready to state the

Proposition 3.3. The following square is a pushout diagram of topological spaces:

(Li %o, 187]) U (R[] xe,,, 01A]) RIT1%

[ l

r

x[]] XG]'-H |AJ| B8; ’ RJ:{

a1

Proof. We may construct the pushout P as the quotient
pP.= <Rj‘13€ HESHET |Aj|> o~

One may check that the map j3; together with the natural map B/~'X — R/X gives a map from
the disjoint union above which factors through the quotient. Hence we get a well-defined map
P — RIX. We now construct a continuous inverse. Recall that /X is defined in (5) as a quotient

of
( || %] x IA"|> | ] (x5 > A7) .

0<n<j—1
The natural map <|_|0§n§j_1 X[n] x |A”|) — RV71X — P together with the identity of X[j] x |A|

gives a map from the disjoint union that factors through the quotient and yields a well-defined
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map R’X — P. One may finally verify that it is the inverse of the map P — R’X constructed
above. 0

We now turn to proving some topological results about our constructions.
Lemma 3.4. For any integern > 0, the subspace X[n] C T' x X" defined in (4) is closed.

Proof. Let ev: I' x X"1 — (J"E)""! be the simultaneous evaluation of the jet map ;" (defined
in (2)) at (n + 1) points of X. We observe directly from the definitions that X[n] = ev™!(T"*1),
hence is closed as the inverse image of a closed set. U

Lemma 3.5. For anyn > 0, the map p,,: X[n| — I given by (f, so,...,sn) — [ is a proper map.

Proof. The projection onto the first factor I' x X! — T'is proper as X" is compact. Hence so
is its restriction p,, to the closed subspace X[n]. O

In particular, the map p,, is closed, so ¥ = p;(X[1]) is closed in I". We have natural projections
maps X[n] x |A"| — X[n] 2 T for any n > 0. They give rise to a map

7t RIX — % (8)

for every integer 7 > 0.
Lemma 3.6. For any integer j > 0, the map 7;: R'X — X is a proper map.
Proof. We have to show that the preimage of any compact set is compact. Equivalently, because X

is locally compact and Hausdorff, we will show that 7; is a closed map with compact fibres. From

Lemma 3.5, for any n, the map p,, is closed and hence so is the composition X[n] x |A"| — X[n] 2 T
This implies that 7; is closed. It remains to see that it has compact fibres. If f € X, we observe that
7 '(f) = B; (p; ' (f)) which is compact as p; ' (f) is, by Lemma 3.5. O

A major advantage of the pushout square (7) is that it allows us to prove the following topological
lemma.

Lemma 3.7. For any integer j > 0, the space RIX is paracompact and Hausdorff. Furthermore, the
natural map R~'X — R’X is a closed embedding.

Proof. Firstly, from Lemma 3.4, we know that R°X = X[0] C T’ x X is a closed subset, hence is
itself paracompact Hausdorff. Then the lemma is proven inductively using the pushout diagram (7)
together with the fact that

((LJ X&j1 |AJ’) U (%[j] XG4 a|AJ’)> — %[J] XG4 |AJ’
is a closed embedding. 0J

In the sequel, using the closed embedding of Lemma 3.7 just above, we will simply write
RI='X C R/X. For an integer j > 0, we let

Y, ={(f,s0,...,5;) € X[j] | s # s if | # k} = X[j] — L; C X]Jj] 9)

be the subspace of X[j| where the singularities are pairwise distinct. For later use, we record the

following homeomorphism, which is a direct consequence of the pushout square (7) and the fact
that the vertical maps therein are closed embeddings:

RIX — R7'X 2 Y] xg,,, Interior(|A]). (10)
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Let us now discuss why 7;: R7¥ — ¥ needs to be slightly modified to obtain a meaningful
“resolution” of X.. The fibre Tj-’l( f) above a section f € ¥ that has at most j + 1 singularities
is by construction a j-simplex. Hence it is contractible and one might hope that 7; induces an
isomorphism in cohomology. This is unfortunately not the case. Indeed, Tj_l (f) is not contractible
if f has at least j + 2 singularities. To fix this problem, we will modify R’(%) by gluing a cone
over each fibre Tj_l (f) which is not contractible. The precise construction is as follows.

Let N > 0 be an integer. We let
Yoy = {f €| #Sing(f) = N +2} C X (11)

denote the subspace of those sections with at least N + 2 singularities. We denote by > n2
its closure in ¥ (or equivalently, in I'). Observe that the surjectivity of the map 7 implies the
following equality:

™ (73" (Bsn42)) = Sonse
We glue fibrewise a cone over each f € Y- .9 by defining the space RY () as the following
homotopy pushout:

T&I(EZN+Q L———ﬁ.RNx

L

E]zzpq4,2 _— }%]V EE

cone :

All three defining spaces in the corners of (12) map to ¥, hence we obtain a surjective projection
map
T RN X — 2. (13)

We want to prove that 7 induces an isomorphism in Cech cohomology with compact supports. We
begin with a couple of lemmas.

Lemma 3.8. The map 7: Rﬁﬁne

X — X is proper.
Proof. We will prove that is it closed with compact fibres, which implies the properness. By

definition of the homotopy pushout, R X is a quotient of the following disjoint union:

RYX | | 73" (Sone2) x [0,1] | | Sonie

The map 7 is induced by the following three maps: the projection 7 : RYX — 3, the projection
7'];1 (22N+2) x [0,1] — 7'];1 (ZZNJFQ) — 3, and the inclusion X5 4o < Y. The first two are
closed by Lemma 3.6 and the last one is the inclusion of a closed subset, hence closed.

Finally, we prove that the fibres of 7 are compact. We saw in the proof of Lemma 3.6 that for
any f € %, the fibre 7' (f) was compact. Now, 7 (f) is either 7' (f) if f € ¥ — Xsyp0ra
cone over it if f € Y>n19. In any case it is compact. OJ

N
cone

Lemma 3.9. The space R., X is paracompact, locally compact, and Hausdorff.

Proof. The paracompactness and Hausdorfiness follow from the definition as a homotopy pushout
and Lemma 3.7. It is locally compact as its maps properly to the locally compact space .. 0J

These topological properties will justify our subsequent manipulations of compactly supported
Cech cohomology, which agrees with sheaf cohomology with compact supports in this context.
The most important corollary is the following
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Proposition 3.10. The map 7: RN X — ¥ induces an isomorphism in Cech cohomology with
compact supports.

Proof. The properness of 7 proved in Lemma 3.8 implies that it induces a well-defined map in
cohomology with compact supports. We also observed in the proof of that lemma that a fibre of 7 is
either a simplex or a cone, hence contractible. The proposition then follows from the Vietoris—Begle
theorem [Bre97, V.6.1]. O

3.2. Construction of the spectral sequence. Let N > 1 be an integer. Recall from Lemma 3.7
that we have closed embeddings R7/~!X C R/X. We define the following filtration on R X:

Fob=RXCF=RXcC---CFy=R"XC Fy, =RY X

cone

Following standard arguments, we obtain from the filtration a spectral sequence:
EY* = HIY(Fy, Fyoy) = HIP(F, — Fyoa) = HIY(Rg, X)

cone

where the isomorphism between the cohomology groups on the first page follows from [Bre97,
I1.12.3]. Using Proposition 3.10 and Alexander duality, we obtain:

APY(RY, %) = HP(S) 2 Hgime r—(prg)-1 (I = 5)

cone

where H denotes reduced singular homology. Letting s = —p—1and ¢ = 2dim¢ ' — ¢, we regrade
our spectral sequence and obtain the following

Proposition 3.11. There is a spectral sequence on the second quadrant s < —1 andt > 0:
B, = g2imel=l=s—t(p | F  5:7) = H,, (T -3;Z).

The differential d" on the r-th page of the spectral sequence has bi-degree (—r,7 — 1), i.e. it is a
morphismdg,: E¢, — E¢_ 0. 4.

4. COHOMOLOGY GROUPS ON THE El-paAGE

As in the last section, we choose a holomorphic vector bundle £ on X and an admissible Taylor
condition ¥ C J"& inside the r-th jet bundle of £. For the remainder of this section, we also let

N=N(,r)

be the largest integer N > 0 such that £ is (N + 1) - (r + 1) — 1)-jet ample as in Definition 2.3.
As discussed in the introduction, we assume that such an NV exists. If not, the statements in this
section are either trivially false, or trivially true as they describe elements of the empty set. For
brevity, we still use the following notations

I'=Twi () and ¥ =Th () — Thotns (£)

as well as X for the associated functor F°® — Top as in (4).
We will study the first page of the spectral sequence from Proposition 3.11 converging to the
cohomology of RN X:

cone

Eslt sznn(cl“ 1—s— t(F—s |- F—s—ZSZ)-

We will first show that for —N—1 < s < —1 the groups E! 51 can be written, via Thom isomorphisms,
in terms of the cohomology of ¥. We will then study quahtatlvely the cohomology of Fiy1 — F,
i.e. the column E! ~—2.> and show that it does not have any influence on the cohomology of the
limit in a range of degrees up to around V. Later in Section 5 we will construct spectral sequences
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for spaces of sections of J'€ \ T, and in Section 6 we will compare them. The explicit computations
of the present section will show that these various spectral sequences are isomorphic in a range
from the first page and onwards.

4.1. The first steps of the filtration. For an integer j > 0, recall from (9) the space
Vi ={(f,50,...,5;) € X[j] | s # s, if | # k} C X[j].
Lemma 4.1. For0 < j < N(&,r), there is a fibre bundle:
Interior (|A7|) — F; — Fj_1 — Y;/6 1.
Proof. Recall from the definition of the filtration on RY X that [; = R/X for 0 < j < N.

As a consequence of the pushout square (7), we observed in (10) that we have the following

homeomorphism: ' ‘ '
RIX — R7'X 2 Y, xg,,, Interior(|A7]).

Projecting down to the first factor gives the required fibre bundle. 0J

By an affine bundle we mean a torsor for a vector bundle. In the sequel, they will arise naturally
from fibrewise surjective linear maps between vector bundles. For any integer j > 1, the bundle
(J7E)? projects down to X7 and we may consider its restriction to the open subset Conf;(X) C X’
of those tuples of points which are pairwise distinct. The symmetric group &; acts on these spaces
by permuting the coordinates. In particular, it acts on the subspace T/ C (J"E)’ and we let

T = (Y cont, (x)) /S; (14)
be the orbit space of the restriction of T’ over the subspace Conf;(X) C X7,

Lemma 4.2. Let 0 < j < N(&,r) be an integer and recall from (9) the space Y; of those tuples
(f,50,-..,85) € I' x Confj;1(X) where f is singular at the s;. We may simultaneously evaluate the
jet map at these points:

Y; — ‘Zj+1|COHfj+1(X)
(f5 50, 585) — (3" (f)(s0), -, 5" (F)(s5))-
Taking & ;1 -orbits on the domain and codomain of this map yields an affine bundle:
/61— TUH

whose fibre has complex dimension dim¢ I' — (j + 1)rkcJ"E. (Here vk J"E denotes the complex rank
of the vector bundle J"E.)

Proof. The simultaneous evaluation of the jet map gives a map

I' x Confj,(X) » (JEY T cont, 41 (x)

\ / (15)

COHfj+1 (X)

of vector bundles over the configuration space Conf; ;(X). Under the assumption 0 < j <
N(&,r), Lemma 2.4 shows that this map of bundles is fibrewise surjective. Therefore the top map
of (15) is an affine bundle. Subtracting the ranks, we obtain that its fibre has complex dimension
dim(c I — (j + 1)I‘kcJTS.
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Now, the pullback of the affine bundle (15) to the subspace T/*! ]COnfj .1(x) is an affine bundle
with total space Y;. Finally taking &, -orbits yields the following affine bundle:

Yj/6j+1 N (Ij+1’Conf (X)) /Gj—s-l — g(+D)

which still has the rank that we have computed above. 0

Jj+1

The quotient maps Y; — Y;/&;1 and T conr,, (x) — TU*D are principal & ;-bundles and
hence are classified by (homotopy classes of) maps to the classifying space B&,;. Composing

with the sign representation B&;; e pz /2, we obtain two well-defined homotopy classes of
maps:
Y;/G;41 — BZ/2 and TYUTY — BZ/2.
We will write Z*'#" for the corresponding local coefficient systems.
Proposition 4.3. Let —N(&,r) — 1 < s < —1. Then, we have the following isomorphism:
Eslt ~ f{c—t—Qs-rkCJTS(T(—s); Zsign)
where T(%) is the space defined in (14) and Z¥" is the local coefficient system described above.

Proof. Recall from Proposition 3.11 that the first page of the spectral sequence is given by
E;,t — HCZ dim¢ Fflfsft(Rfsflx . Rfsf2%; Z)

Via a homeomorphism Interior (|A7|) = R/, we see that the fibre bundle of Lemma 4.1 is homeo-
morphic to a vector bundle. Applying the Thom isomorphism to the latter, we obtain:

Esl,t ~ HCQ dim¢ F—t(Y_S_I/G_S; Zsign)‘
Another application of the Thom isomorphism using Lemma 4.2 yields

E;t ~ ﬁ;t—2s-rkCJT€(:z(—s); Zsign). 0

4.2. The last step of the filtration. We study the last non-trivial part of the E'-page, that is the
column s = —N(&,r) — 2 where:

E£N72t — H? dim¢ F+1+N7t<RN X — RN%, Z)

cone

The methods from the last section do not apply to the space RY X — RV X and we will not be
able to express the cohomology groups E* N_g, in terms of other “known” groups. However, using
the technical assumptions made in Definition 2.8 about the Taylor condition T, we will obtain a

vanishing result for £! N_24- This will be enough for the proof of our main theorem.

Recall the projection map 7y : RV X — X from (8). From the homotopy pushout square (12), we
obtain the following homeomorphism:

Rl = BV 2 (13! (Sansa) X10.11) | Sonia) / ~

where (2,1) € 75" (X>n42) x]0,1] is identified with 7yv(2) € X>n4» in the quotient. Indeed,
there is a natural continuous bijection from the right-hand side to the left-hand side. It is in fact a
homeomorphism, as the top arrow in the homotopy pushout square (12) is the inclusion of a closed
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subset. In other words, this is the fibrewise (for the map 7x) open cone over Y= 2. We stratify
this space by the following locally closed subspaces (this is analogous to [Tom14, Lemma 18]):
Str 1 == Ysnio,
Stro := (75" (Ssn+2) x]0,1[) N (R%Xx]0,1]),
Strj := (5" (Zsn12) x]0,1]) N ((R7X — R77'X)x]0,1[) for1 < j < N.
For0 < j < N, let

YN = {(f,s0,....8;) € x Confy1(X) | f € Ssnizand s; € Sing(f)} CVj.  (16)

Using the homeomorphism (10) identifying the difference between two consecutive steps of the
resolution, we have a homeomorphism

Sty 2 (VP4 e, 129]) x]0, 1] (17)
for 0 < j < N, where |AJ| denotes the interior of the simplex.

It is easier to think about this stratification by looking at one fibre 77!(f) at a time. Then,
we are just decomposing an open cone over a union of simplices into the following pieces: the
apex (corresponding to Str_; N 7~ !(f)), the open segments from the 0-simplices to the apex
(corresponding to Stro N 7~ 1(f)), the open (filled) triangles between the 1-simplices and the apex,
etc. Figure 1 below shows the strata in a single fibre 77!(f) when f has 3 singular points and
N = 1. In this case, 7' (f) consists of three 1-simplices glued together (i.e. a triangle), so 7 (f)
is the cone over that triangle.

7 (f) 7 (f) N Str_, 7= 1(f) N Stry 7 (f) N Stry
(the three sides only)

FIGURE 1. Decomposition of the open cone.

If we find an integer D > 0 such that Hf(Strj) =0forall -1 < j < Nandall k > D, then
the same result will hold for the union, i.e. H*(RY X — RVNX) = 0 for k > D. In what follows,
we set out to find such a D as small as we can. With that in mind, we make the following ad hoc

definition of cohomological dimension:

Definition 4.4. We say that a space Z has cohomological dimension D with respect to a local
coefficient system A if D is the smallest integer such that H*(Z; A) = 0 for all k > D. We will
denote it by cohodim(Z, A), or simply cohodim(Z7) if A = Z.
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The only non-trivial local coefficient system we will need is 758" which is induced on the
quotient Y}ENH /S ;41 by the sign representation S, — Z/2.

Lemma 4.5. For0 < j < N, we have
cohodim(Str;) = 1+ j + cohodim (Y2 /& 1, Z7") .
Proof. From the homeomorphism (17), we have a trivial fibre bundle
0, 1[— Str; — Y2V xg,, |AI].

This implies that cohodim(Str;) = 1 + cohodim (Y;-ZN +2 X641 \AJ \) Now, we have another
fibre bundle: . )
‘AJ| — )/ijJrQ X6j+1 ‘AJ| — Y;‘ENJFZ/Gj-l-I-

Hence, by the Thom isomorphism, we obtain:
cohodim (V72 e, |A1]) = j + cohodim (V;V2/;,,, 275 0

We thus have reduced our problem to studying the cohomology of Y]-ZNJr2 /Gt for0<j <N,

as well as that of X5 y2. We shall do so by comparing these spaces to a known one, namely the
space

Yv =A{(f,s0,...,sn) € ' x Confy,1(X) | s; € Sing(f)}.

First, let us introduce some notation. Using charts on X, we may cover Yy by finitely many
semi-algebraic sets, whose intersections are also semi-algebraic. Recall, e.g. from [BCR98, Theorem
2.3.6], that every semi-algebraic set is the disjoint union of cells, each homeomorphic to an open
disc |0, 1[* for some d > 0. The largest d in such a decomposition is called the dimension of the
semi-algebraic set. Let dim Yy be the largest of the dimensions of the semi-algebraic sets in a
cover of Yy. (It depends a priori of the chosen cover, but we suppress this from the notation.) The
following lemma is a crucial result for controlling our spectral sequence.

Lemma 4.6. For0 < j < N, we have

dim Yy > cohodim ( ].ZNH/Gjﬂ7 Zsign) .

Proof. Forgetting the last singularity yields a map

Y — YN, (fys0,---,8n41) — (f, S0y -, SN)

and we will write Y]\?NH C Yy for its image. As the projection map is semi-algebraic (when read

in charts), its image is semi-algebraic (in charts) and dim Y]\?NH < dimYy.Let0 <7 < N. Only
remembering the (j + 1)*' singularities gives a map

YNt szN+2
(18)

(fis0s--ysn) —> (f,S0,---585).

Notice that this map is not surjective, as it may happen that a section f € X5y has fewer than
N + 1 singularities. We study the map (18) locally via charts. Let Uy, ..., Uy C X be charts on X
as in Definition 2.6. Then the subsets

U:={(f 50,-.-,5;) € Ssnyz x Uy x -+ x U; | s, € Sing(f), s; # s;Vi # j} C Y72
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and
Voi={(f,50,---,85) €T x Uy x -~ x Uy | 8, € Sing(f),si # s,Vi # j} N YV Ccyg"*?

are semi-algebraic. Indeed, they are the preimages of the semi-algebraic set T/*! (respectively
TN*1) via the simultaneous evaluation of the jet map which is algebraic, hence semi-algebraic.
(See [BCR98, Proposition 2.2.7].) The restriction of the map (18) to U and V' is an algebraic map,
hence semi-algebraic map, ¢: V' — U between semi-algebraic sets. Using [BCR98, Theorem 2.8.8],
we obtain the following inequality on the dimensions (as defined above using cell decompositions):

dim(V) > dim(a(V)).

Furthermore, the definition of YjZNJr2 implies that the semi-algebraic map ¢: V' — U has dense

image, i.e. (V') = U. Using that the closure has the same dimension ( [BCR98, Proposition 2.8.2])
and the inequality above, we obtain:

dim(V) > dim(U).

Varying the charts Uy, ..., Uy C X, we may cover the domain and codomain of (18) by subsets
defined like U and V. If U’ and V"’ are two other such subsets, then U N U’ and V N V"’ are also
semi-algebraic sets because they are intersections of semi-algebraic sets. (This follows from the
Definition 2.5.) Hence the argument shows that the inequality on the dimensions holds also on
intersections. Let dim szN *2 denote the maximum of the dimensions in a cover of szN 2 by

semi-algebraic sets. Then, an argument using the Mayer—Vietoris spectral sequence shows that the

. . . >N+2 . . . . . >N4+2
cohomological dimension of Y;~ 2 is less than its dimension dim Y/ *2_ Therefore

dim Yy > dim Y§N+2 > dim szN+2 > cohodim (szN+2) ) (19)

Finally, from the principal &, ;-bundle szN+2 — YJZN+2 /S 11, we see that the dimension of the
orbit space is the same as that of szN 2 Therefore the inequality (19) holds when replacing the
rightmost term with cohodim(YjZNJr2 /61, Z58"). O

YVt = Sonia (f, 50, .., 5n) — f yields the

Repeating the proof with the map
Lemma 4.7. The following inequality holds:
dim Yy > cohodim(X>n 42, Z). O

The final computation to be made is the content of the following lemma. It uses the notation (%)
of excess codimension established in Definition 2.10.

Lemma 4.8. The dimension of Yy satisfies:
dimYy < 2dimc ' — (V + 1)e(T).
Proof. The proof of Lemma 4.2 shows that the simultaneous evaluation of the jet map
Yy — T contyn ()
(fs 80,5 8n) — (" (f)(s0), -, 5" (f)(sw))

is an affine bundle whose fibre has complex dimension dim¢ I' — (N + 1)rkcJ"E. Therefore, on
dimensions:

dim Yy < dim(TV " conty, s (x)) + 2dime T — 2(N + 1)rke J7E.
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Now, because ¥ is a semi-algebraic subset of J"E of dimension less than 2rkeJ"E — e(%), we
obtain that:
dim(i ’COHfNJrl(X)) (N +1)(2rkcJ"E — e(%)).

The lemma is then proven by combining these two inequalities. 0J
Assembling all the estimations we have obtained so far, we can state and prove the following.

Proposition 4.9. The cohomology groups in the column s = —N(E,1) — 2 on the first page of the
spectral sequence:

EiN_Q L= FIQ dime I'+1+N— t(RN % . RNx’ Z)
vanish fort < N - e(%) + e(%).

Proof. We had set up the stratification Str;, —1 < j < N,on RY X — RVX so that

cone

cohodim (RY,.X — RV X) < max cohodim (Str;) .
j

cone

For 0 < j < N, combining Lemma 4.5, Lemma 4.6, and Lemma 4.8, we get:
cohodim (Str;) <14 j+2dimcI — (N 4+ 1)e(T) < 2dimeI' — N(e(T) — 1) — (e(%) — 1).
Similarly, using Lemma 4.7 and Lemma 4.8, we obtain:
cohodim (Str_;) < 2dimc ' — (N + 1)e(%).
Therefore cohodim (RY, X — RVX) < 2dimc I’ — N(e(T) — 1) — (e(%) — 1) and the result

cone

follows. O

4.3. Differentials and summary. Summing up all the results so far, we have the following
proposition.

Proposition 4.10. Let £ be a holomorphic vector bundle on X andT C J"E be an admissible Taylor
condition. Let N = N(E,r). The resolution and its filtration described in Section 3 give rise to a
spectral sequence on the second quadrant s < —1 andt > 0 converging to the homology of the space
of non-singular sections I'y,o1 ns(E):

Eslt H2d1mCF 1=s= t(F—s 1 _F—s QaZ) - Hs—i—t(rhol,ns(g);z)'

The differentials on the r-th page have bi-degree (—r,r — 1). Furthermore, for —N —1 < s < —1,
we have the following isomorphisms for allt > 0:

Eslt ~ H t—2s- rkCJ”E(:z(fs); Zsign).
(The space T\=*) is defined in (14).) Moreover, fort < N - e(T) + e(%):
EiN—Q,t = 0.

We briefly describe the zones in Figure 2 below, where we have chosen to fix ¢(T) = 2 to
lighten the notation. Firstly, the only possibly non-vanishing groups lie in the .
All groups E¢, with s < —N — 3 are zero as the filtration finishes after N + 1 steps. According to
Proposition 4.9, the groups below the horizontal solid line in the column s = —N — 2 vanish. The
differentials coming from the groups below the upper staircase never hit groups in the column
where s = —N — 2and ¢t > 2N + 2. Finally, the delimits the zone of total degree
* < N — 1. We have also drawn some differentials d" to the group E” ;5 oy, forr =1,2,3 and
N+ 1.
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2N+3

{g\i 2N+2

2N+1

N+3

N+2

N+1

~

-N-3{-N-2-N-1 -3 | -2 ‘ —1 S

FIGURE 2. First page of the spectral sequence when ¢(%) = 2.

5. INTERPOLATING HOLOMORPHIC AND CONTINUOUS SECTIONS

In this section, we introduce and study section spaces that lie in-between holomorphic and
continuous sections of the jet bundle J"E. They will be written as combinations of holomorphic and
“anti-holomorphic” sections. We first explain how to take the complex conjugate of a holomorphic
section. We then construct these spaces and finish by explaining how the resolution and the
spectral sequence from the previous sections can be adapted to them.

5.1. Complex conjugation of sections. Using the fact that X is projective, we choose once and
for all a very ample holomorphic line bundle £ on it as well as a basis zy, . .., 2)s of the complex
vector space of holomorphic global sections I',1(£).
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We denote by £ the complex conjugate line bundle of £. It is obtained from the underlying
real vector bundle of £ by having the complex numbers act by multiplication by their complex
conjugates. We regard it as a smooth complex line bundle. We now define a complex conjugation
operation £ — L. Recall that the line bundle £ may be constructed as a quotient

L= <|_| U; x C) /(:U,vi) ~ (o,t5i(v;))

from the data ({U; }4, (t;):;) of trivialising open sets U; C X and transition functions ¢;; : U;NU; —
GL;(C) = C* satisfying a cocycle condition. Similarly, £ may be constructed via such a quotient
by replacing the transition functions by their complex conjugates ¢;;. The formula

7

|_|U1X(C—>|_|UZ><C

(z,v) — (z,0)

then gives a well defined R-linear isomorphism £ — £. On continuous global sections, we thus
obtain an R-linear complex conjugation operation:

“: Teo (,C) — T'co (Z) (20)

For a complex vector space V, we denote by V the C-vector space whose underlying set is V'

with the C-module structure given by multiplication by the complex conjugate. We get a C-linear
map:

T (£) < To (£) 5 Do (2). @
We let
M
n:= Z Zj X Z € I'al (E) ®c hot (K') (22)
=0

Its image via the composition of the the map (21) and the multiplication map I'co (L) ®@¢c T'co (L) —
[eo(L£ ® L) is a never vanishing section. It therefore gives an explicit trivialisation of the smooth
complex line bundle £ ® £ = X x C. In particular, we obtain an isomorphism on the level of
continuous sections

Teo(L® L) = Teo(X x C) =CX,C). (23)
5.2. Stabilisation. For every integer £ > 0, we now construct the following commutative diagram.

Fhol ((Jrg) X ﬁk) Q¢ 1_‘hol (‘Ck)
Tk \ Leo (J7E) (24)

Pk+1

Thot ((J7E) @ L¥) @¢ Tyl (L4
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The horizontal maps are given by the composition
it Thot ((J7€) © £F) ®@¢ Tt (£F)
— Teo (JTE ® Ek) ®c Leo <Zk> (25)
— L'eo (Jrg ® LF ®Zk> =T (J°E)
where the first arrow is induced by the map (21), the second arrow is the multiplication map, and

the last isomorphism is (23) applied to (£ ® Z)k ~rhe L.
We construct the vertical map in the diagram (24) as the composition:

et Thot (7€) ® £¥) @¢ Tt (£F)
—+ Tt (7€) © £8) @c Tt (2F) 9 (Thor (£) ©c Tt (2))
= (T (7€) ® £4) @ Do (£)) O (Tt (£9) 8 o (2))
— Thot ((J7E) ® L) ®¢ Thor (£FHT)

where the first arrow is given by tensoring with the element 7 defined in (22), the isomorphism is
given by reordering the factors, and the last arrow is given by the multiplication maps.

The commutativity of the diagram (24) follows directly from the fact that 7 is sent to the
constant function equal to 1 via the isomorphism (23). Loosely speaking, the vertical map ~; is a
“multiplication by 7”, which amounts to multiplying a continuous section of J"E by the constant
function 1 after using the chosen identification (23).

Example 5.1. It is illuminating to think about the case X = CP", L = O(1)and £ = O(d+1). In
this example, I',,1(£) is the space of homogeneous polynomials of degree d + 1 in n + 1 variables.
One may also prove an isomorphism J*(O(d + 1)) = O(d)®"*1) as holomorphic vector bundles.
(See [DRS00, Proposition 2.2] for a proof.)

We may then view ['o1 ((J'€) ® L¥) @c Thol (L*) as the space of (n + 1)-uples of homogeneous
polynomials of bi-degree (d + k, k): that is of degree d + k in the variables z; and of degree k in the
complex conjugate variables z;. In this case, the image of ninI'co (£ @ L) is |2|? := zZ0+- -+ 2,70
The isomorphism I'co (£ ® £) = C°(X, C) corresponding to (23) sends a section s to the map

z:[zo:...:zn]GCP”»%ﬂéC
|22
Under these identifications, the map +; is then:

(va:fn)'—>((ZOZ_O++Zn%)f077(202_0++2n5)fn>

which sends a tuple of polynomials of bi-degree (d + k, k) to one of bi-degree (d + k + 1,k + 1).
(Compare [Mos06] for a related situation.)

We will need the following small result, analogous to Lemma 2.4. Let (o, . .., x,) be a tuple of
points in X. We may evaluate a continuous section of J"E simultaneously at all these points:

o Teo (J7€) — (7€) g 5 -+ x (JE),
s — (s(zg),...,s(xp)).

.....

(27)
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Lemma 5.2. Let £ be a holomorphic vector bundle on X and N (E,r) € N be as in Definition 2.3. Let
(%o, ...,xp) be atuple of p + 1 distinct points in X. If p < N(E,r), the composition

Thot ((J7E) @ L*) ®¢ Thot (LF) 5 Teo (J7E) — (J7E)|uy X -+ X (J'E),
of the map oy, of (25) and the simultaneous evaluation (27) is surjective.

Proof. The case k = (0 is a direct consequence of Lemma 2.4. The result for £ > 1 then follows from
the commutativity of the diagram (24). O

5.3. Non-singular sections. We define
N(k) C Fhol ((Jrg) X £k) ®(C Fhol (£k>
to be subspace of elements sent to non-singular sections of J"E (as in Definition 2.11) under the

map ¢y, defined in (25). We say that an s € T’y ((JTE) ® Ek) ®c T'hot (L£F) is non-singular if it is
in the subspace N (k). We define the singular subset to be the complement

S(k) == (rhol ((J7€) ® L") @ Thar (Ek)> — N(k).

Remark 5.3. When k£ = 0, N(0) C T'j,o1(J"E) is the usual subspace of non-singular sections of
J"E as in Definition 2.11.

Example 5.4. In the case X = CP", L = O(1) and £ = O(d + 1), recall from Example 5.1 that the
space [',o1 ((J &Y ® L’k) ®c T'hot (LF) corresponds to (n + 1)-uples of homogeneous polynomials
of degree d + k in the holomorphic variables z; and of degree £ in the complex conjugate variables
Z. Under this identification, if the Taylor condition T C J'(O(d + 1)) is the zero section, the
space of non-singular sections N\ (k) contains exactly those (n + 1)-uples of polynomials that never
vanish simultaneously.

5.4. Resolution and spectral sequence. We now explain how the results from Section 3 can be
adapted to the case

['=Tho ((J7E) @ LF) ®c Thot (CF)  and ¥ = S(k)

to construct a resolution of S(k) and a spectral sequence converging to its cohomology, or equiva-
lently to the homology of NV(k) by Alexander duality. In this case, the definition of the singular
space (3) of f € I" has to be changed to

Sing(f) :={z € X [ ¢r(f)(x) € T} C X.

In particular, in the case £ = 0, it agrees with Definition 2.11. The topological results about the
resolution just follow from the fact that T C J"€ is closed. In particular, Lemma 3.4 still holds
with its proof nearly unchanged: one has to replace the jet map j” by ¢. The construction of the
spectral sequence is then unchanged.

The computations of cohomology groups on the E'-page from Section 4 can also be adapted
in this case. We first describe what to adapt for the first steps of the filtration. The analogue
of Lemma 4.2 with the jet map j" replaced by ¢y, still holds as the key point is the surjectivity
established in Lemma 5.2. The other result, Lemma 4.1, remains unchanged. Hence, Proposition 4.3
is true in our new setting.

The adaptations are similar to examine the last step RY X — RV X. Indeed, the same stratification

cone
works, as well as the cohomological dimension estimates. In details, Lemma 4.5 is unchanged, and
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Lemma 4.8 is proved similarly by just replacing the jet map by . The other two results, Lemma 4.6
and Lemma 4.7, also hold when rewriting the proof by changing the jet map j” by . Indeed, the
key ingredients were the semi-algebraicity of the Taylor condition T (which remains unchanged),
and the fact that the jet map was complex algebraic, hence real semi-algebraic. The map ¢y, is
no longer complex algebraic, but is given by a ratio of algebraic maps and complex conjugates of
algebraic maps. In particular, it is real semi-algebraic. This is enough for the proof to go through.

To sum up, we have the following analogue of Proposition 4.10.

Proposition 5.5. Let £ be a holomorphic vector bundle on X and ¥ C J"E be an admissible Taylor
condition. Let

[I' =T ((Jrg) ® ﬁk) ®c Thot (L£F)
and N (k) C T be the subspace of non-singular sections. Let N = N(E,r). The resolution and its
filtration described in Section 3 give rise to a spectral sequence on the second quadrant s < —1 and
t > 0 converging to the homology of the space of non-singular sections:

B!, = grdmet=l=—t(p | F  57) = H,(N(k);Z).

The differentials on the r-th page have bi-degree (—r,r — 1). Furthermore, for —N —1 < s < —1,
we have the following isomorphisms for allt > 0:

E51,t ~ Hc—t—2s~rk¢;JT€(T(—s); Zsign).

Moreover, fort < N - e(%) + e(%):
EEN—Z,t =0.

Lastly, let us mention that in the particular example where X = CP™, £L = O(1), € = O(d + 1)
and ¥ C J'& is the zero section, the spectral sequence is completely analogous to that of [Mos12].

6. COMPARISON OF SPECTRAL SEQUENCES

From our definition of non-singularity, it follows that the jet map j" sends a non-singular section
f of € to a non-singular section j"( f) of J"E. Likewise, the stabilisation map described in (26) sends
elements in NV (k) to elements in N'(k + 1). We shall see that these maps induce isomorphisms in
homology in a range of degrees up to around N = N (&, r). We first explain the argument for the
jet map 7" and then go through the required modifications for the stabilisation map.

6.1. The case of the jet map. Reading Proposition 4.10 and Proposition 5.5, we may observe that
we have similar looking spectral sequences, one converging to the homology of 'y ,s(€) and the
other one to that of ', ns(JJ7E). In particular, in the range —N — 1 < s < —1, the terms E;t are
given by the same cohomology groups

El ~ Hcft72s-rkc.]’“£(¢z(fs); Zsign)

s,t
in both spectral sequences. If we had a morphism of spectral sequences that happened to be an
isomorphism in this range, then, using the vanishing result E' y, _,, = 0fort < N - ¢(%) + e(%),
the morphism induced on the £°°-page would be an isomorphism in the range of degrees * <
N(e(%)—1)+e(T) —2. (See Figure 2 where we have drawn some differentials.) We shall construct
such a morphism of spectral sequences, whilst making sure that it is compatible with the morphism
induced on homology by the jet map ;":

ﬁ[ert(Fhol,ns(g)) — ﬁs+t<rhol,ns(t]r5))-
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For the sake of completeness, we recall when a morphism is compatible with a morphism of
spectral sequences. (See e.g. [Wei94, Section 5.2].) If two spectral sequences F} , and E;,fq converge
respectively to H, and H!, we say that a map h: H, — H. is compatible with a morphism
f+ E — E"if h maps F,H, to F,H, (here F, denotes the filtration) and the associated maps
FH,/F, 1H, — F,H, /F, |H, correspond to f;%: E>° — E]/)?;’ (where ¢ = n — p) under the
isomorphisms E%°, = F,H, /F,_1H, and E,° = F,H!, /F, | H]. The main point being that if f is
an isomorphism in a range, then h also is an isomorphism in a range. (See [Wei94, Comparison
Theorem 5.2.12].)

Let dy := 2dim¢ 'yo1(€) and dy := 2dime ' (J7E) be the real dimensions of the complex
vector spaces of sections. We define the shriek morphism j' as the unique morphism making the
following square commutative:

ﬁ*<rhol,ns((€)) U > E*(Fhol,ns(Jrg))
% F (28)
Hgl_l_*(Fhol(g) — Fhol,ns((‘:)) ------ !—----> HgQ_l_*(Fh()](Jrg) - Fhol,ns(JT(c:))

where the vertical isomorphisms are given by Alexander duality and the top map is induced by the
jet map j” in homology. As our spectral sequences actually converge to the Cech cohomology with
compact support of the singular subspaces, we will construct our morphism of spectral sequences
such that it is compatible with ;.

The spectral sequences arose from filtrations, so we now recall some notation from Section 3. We
let X be the functor F°® — Top constructed there using I' = I'y1(€) and X = ', (€) — Tholns(E)-
As we have explained in Section 5.4, the resolution also works for I';,,(J"E) and its singular
subspace, and we let 2): F°® — Top be the associated functor in this case. We denote the filtration
of RY X by

cone

Fli=@CF =RXC- CFy=RECFy, =R},X

cone )

and the analogous one of RY_9) by
F’=0CF/=RYC---CF;=R"YCFy,=RLYD. (29)
We will slightly abuse notation and also write
J' HY (RegneX) — HIH20 (R, ) (30)

for the bottom map defined by making the following square commutative:

!

H(Thot(€) — Thoins(£)) S AN Hx+ 2= (T (E) — Thons(J7E))

% lg

H¥ (RN %)~ > Htd-di(RN )

cone

Recall from the general theory that the spectral associated to the filtration F ‘i = 1,2, arises from
an exact couple (H?(F?"), H?(F! — F'_,)). The map of spectral sequences that we want is then
constructed via a map of exact couples as in the following lemma.
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Lemma 6.1. Let § = dy — d; = 2(dimg ['yo1(E) — dime Dyo1(J7E)). There exists a morphism of
exact couples

(U Ji) g * (HEE), HI(Ey = Fy ) — (H(F), HI (B = FLy))

satisfying the following two assertions:

(1) For0 < p < N, the map jép) in the following diagram is an isomorphism:

]:I: (Fg} - Fpl_l) ; Hg(‘Z(p"rl)’ Zsign)
H:H(FPQ - FpQA) — = F[;(‘,Z(PH); 7sien)

where
® — *x — 2d1m(c Fhol(g) —p + 2(]) —+ 1)1‘kcJT5

and the horizontal isomorphisms are given by Thom isomorphisms as in Proposition 4.3.
(2) The map jy ., is equal to the shriek map (30).

Unpacking the definition of a morphism of exact couples, we see that it amounts to providing
morphisms j, and j;,, for 0 < p < N + 1 such that the following diagram commutes

(R ——— (R = FLy) —— B (B —— H(FL)

| 3] | |
l]pfl l](rﬂ) l]b l]pfl

H;7W(F ) —— HIP(Fy = FpLy) —— HIP(F)) —— HIP(F))

where the horizontal morphisms in the diagram are given by the long exact sequence of the pair
(F2, Fi ) fori=1,2.

This result says exactly what we need: there a morphism of spectral sequences compatible with
4* (by (2)) and giving an isomorphism in the vertical strip — N — 1 < s < 1 (by (1)). The lemma, as
well as the strategy of proof, is adapted from [Vok07, Proposition 4.7]. First, let us state the most
important consequence:

Proposition 6.2. For a holomorphic vector bundle £ on X, the jet map
jT : Fhol,ns (5> — 1_‘hol,ns(JT((:)

induces an isomorphism in homology in the range of degrees x < N(E,r)-(e(T)—1)+e(%)—2. O

To understand how to construct the degree-shifting morphisms of Lemma 6.1, it is helpful to
give a description of the shriek map between cohomology groups arising from Alexander duality
as in the diagram (28). We shall do so generally first (following [Vok07, Appendix D]) and then
specialise to our situation to prove the lemma at hand.
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6.1.1. Alexander duality and shriek maps. Let p: E — B be a vector bundle between oriented
paracompact topological manifolds of dimension n and m respectively. Let j: K C E be a closed
subset, and let i: B < FE be the zero section. We will see B as a submanifold of F via i. Using
Alexander duality (the vertical isomorphisms in the diagram below), we may define the shriek map

i H'(BNK) — H*(K) (32)
to be the unique morphism making the following diagram commute:

H.(B,B-BNK) —"— H,(E,E - K)

The goal of this section is to give a more intrinsic definition of i' that will allow us to define the
required morphisms in Lemma 6.1.

Firstly, Vokfinek proves in [Vok07, Proposition D.1] the following:
Lemma 6.3. The diagram below commutes:

H.(B,B—-BNK) sy H.(E,E — K)

]

where the vertical isomorphisms are given by Alexander duality, k: BN K — K is the inclusion,
7 € H(D(E), S(E)) is the Thom class of p, and p~'c is the family of supports defined as:

ple= {F C K | F closed andp(F) C BN K is compact}

so that ﬁ;,lc denotes Cech cohomology with supports in p~'c. (See e.g. [Bre97, Chapter I1.2].)

Sketch of proof. We repeat Vokiinek’s proof here for convenience. First, we explain the morphisms
in Alexander duality. Recall from e.g. [Bre97, Corollary V.10.2] that we have fundamental classes
[B] € HEM(B) and [E] € HPM(FE), where H?M denotes Borel-Moore homology (also known as
homology with closed support). Using the proper inclusions (F, @) — (£, E — K) and (B, @) —
(B, B— BN K), they give rise to classes oy € HPM(E,F — K) and op € H3M(B,B— BN K).
If U C E is a closed neighbourhood of K, we get a morphism

) "8Y g (U,U — K) — H.(E, E — K)

where op|U is the image of oy via the excision isomorphism H?M(E E — K) =2 HBM(U, U — K).
(Note that it is important for U to be closed, so that the inclusion U — FE is proper, hence induces
a morphism in Borel-Moore homology.) Likewise, we get a morphism

am=+BnU) 2" H(BNU,BN(U - K)) — H.(B,B — BNK).
Now, the isomorphisms in Alexander duality are given by taking the colimit over all closed
neighbourhoods U of K of the two morphisms constructed above. (This is explained in [Bre97, V.9].)
Hence, to prove the lemma, it suffices to check commutativity of the following diagram:
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H.(BNUBN (U - K)) o » H(U,U — K)
1
—ﬂoB|UT —Ngx«(0p|U) T_OOE
—
H(BNU) AT — ﬁ;TZ(U) o H~(U)

where g: BNU — U and h: U — E are the inclusions. The left part commutes by naturality
of the cap products. The right part commutes by observing that the fundamental classes can be
chosen to correspond under the Thom isomorphism, which implies that h*7 N og|U = g.05|U,
and finishes the proof. O

In the statement of Lemma 6.3, if the morphism k* were invertible, the shriek map (32) would be
given by “(k*)~!” followed by taking the cup product with the “Thom class” j*7. However, it is not
invertible in general. There is nevertheless a way around that problem which we explain below,
using e-small neighbourhoods of B N K in K and the continuity property of Cech cohomology.

We choose, once and for all, a bundle metric on p: £/ — B. For a real number ¢ > 0, denote by
D, (resp. S., D.) the closed disc (resp. sphere, open disc) sub-bundle of £ — B of radius ¢ (for the
chosen metric). In [Vok07, Lemma D.2], Vokfinek proves:

Lemma 6.4. The following diagram commutes:

H.(B,B—BNK) s H(END.,(E—K)ND.) — H,(E,E — K)
H"*(BNK) H*(K N D.) > H*(K)

H*(KND.) —5— H™*(KND.,KnNS)

(33)
where the vertical isomorphisms on the first row are given by Alexander duality, the one on the second
row follows from general results about cohomology with compact supports,l.: BN K — K N D, is
the inclusion, 7. is the restriction of the Thom class of &' — B, and the rightmost horizontal arrows
are induced by the inclusions. (Recall that cohomology with compact supports in covariant for open
inclusions.)

Sketch of proof. The left part of the diagram can be shown to commute by a proof analogous to
that of Lemma 6.3. The right-hand square is seen to commute by a direct verification. 0J

Taking the limit ¢ — 0, the morphisms (), induce a morphism from the colimit

colim H™ ™ (KND,) — H" (BN K)

e—

which is an isomorphism by the continuity property of Cech cohomology with compact supports
(see, e.g. [Bre97, Theorem 14.4] where it is stated using sheaf cohomology which agrees with Cech
cohomology here). We finally obtain another description of the shriek map i':
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Proposition 6.5 (Compare [Vok07, Theorem D.3]). The shriek mapi' defined in (32) is equal to the
composite obtained as one goes along the bottom path in the diagram (33) above, i.e.:

i H (BN K) +— colim H;" (K N D)
e
— colim H™(K N D, K N S.) 2 colim Ay~ (K N D.)
e—>

e—0
— H"(K).
Furthermore, in the case where both E and B are themselves vector bundles over a same base, K = F,

andi: B < FE is the inclusion of a sub-bundle, the shriek map i' is the Thom isomorphism of the
bundle E — B given by choosing a splitting of i.

Proof. The first part follows from Lemma 6.3 and Lemma 6.4. The second part is shown by direct
inspection of the construction. 0J

6.1.2. The proof of Lemma 6.1. We shall apply the general theory described in the last section to
our case. To lighten the notation, we write

Iyi=Tha(€), X1 :=Tha(€) = Tholus(E)
and
FQ = Fhol(Jr(C:), EQ = Fhol((]Tg) — F}IOLHS(JT(C:).
The jet map j" gives a linear embedding of I'; into I's such that the image of the singular subspace
is precisely given by the intersection with the bigger singular subspace, i.e.
7 () = 5" (I1) N 2.

Choosing a complementary linear subspace of j"(I'y) inside 'y, we obtain a projection giving a
vector bundle
Py — j"(Ih) =T (34)

of real rank 0 = dy — d;. Below, we apply Vokfinek’s results to this situation.

We first set up the notation. Let ¢ > 0 be a positive real number and denote by D, (resp. S, ZO)E)
the closed disc (resp. sphere, open disc) sub-bundle of radius ¢ of the vector bundle (34). Recall
from (29) the functor ¥) giving rise to the resolution of >. We also define ) p_: F°® — Top to be
the sub-functor of ) given by

Do.[n] = {(f: 50, -, 5n) €DIn] | f € De}

and likewise for 9)s. C Q) and Y p. C QY using only sections f € S; or ZODE. Let 7. € H5(22 N
D.,¥5 N S.) be the restriction of the Thom class of the vector bundle (34) to ¥s. (Recall that the
Thom class is an element of H 5(DE, S:).) In all what follows, we see 'y C I'y via the embedding
j = j". Letl.: X1 — Y5 N D, be the inclusion (which is proper, hence induces a morphism
on compactly supported cohomology). We explained in Proposition 6.5 that the shriek map ;' is
obtained from the zigzag

() € i, N D) " (S, N D., Sy N S.) & H(8, N D,) — HH(5,)
by taking a colimit as ¢ — 0.

We mimic that construction at the level of the resolutions. Let 0 < p < N + 1 be an integer.
Recall from (29) that F] denoted the p-th step of the filtration of the resolution of %;. We denote by
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FI? D.> Fp s.» and Fp2 b the analogous filtrations on the resolutions obtained from the subfunctors

Dp., Ys. and P p_ respectively. Because a singular point of a section f € I'y is also a singular
point of j"(f) € 'y, the jet map gives a map on resolutions

X[p] — Dpl
(fyS0s--vysp) —> (G7(f)sS05- -, Sp)-

which preserves the filtrations. Let [, : F, < F?p_betheinducedinclusion. Lety. € H oF o Frs)
be the pullback of 7. along (F, , F25.) = (32 N De, X5 N S.). The following diagram then com-
mutes by naturality of all the constructions involved:

T (l;)* T % —U7e T % * T
H}(F)) «——— HX(F.p.) — H P (F2 ), F2g ) = H +‘S(F;DE) — HP(F2)
H* (%)) +—— H* (%3N D) —— H*+5(E2 ND,,SyNS.) = HH(S,ND,) —— HF(,)

(le)«

where all the vertical maps are induced by the proper projections F]f — ;. The morphism
jhe Hi(FY) — H;t9(F?) is then defined as the colimit, when ¢ — 0, of the top composition
in the diagram above. (Recall that (l;)* is an isomorphism in the colimit, by continuity of Cech
cohomology.) In particular, when p = N + 1, the vertical map are isomorphisms (by 3.10), which
proves the assertion (2) of Lemma 6.1 by noticing that the bottom composition is the shriek map ;.

The morphisms jép) : ]:I:(F; -F )= H*+5(F F?_,) are defined analogously, i.e. by the
colimit as € — 0 of the zig-zag:

Hi(F) = Fyy) «— HX(Fyp, = Fyoip,)
— H:;'HS(FP%DE — FpQ—l,D ,F2

v — s ) ZHM(F, —F?
— HP(F? = F7))

p, Ds p*l,ﬁs)

where, as before, the first morphism is induced by the inclusion, the second morphism is the cup
product with the Thom class, and the third is induced covariantly by the open inclusion.

One may check, using naturality of the various constructions involved, that the morphisms jl!)
and ] ) give a morphism of exact couples. This amounts to staring at the following commutative
dlagram
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{2 (F)-y) H:(Fy — F)_)) {2 (F)) ————— HI(F))
H:il(Fg—l,Dg) H:(FPQ,DE - Fprl,Dg) H:(F;?,DE) — H:(FP{LDE)

| | | |

rTx—1+68 2 2 rTx+8 2 2 2 2 rT%+0 2 2 rTx+8 2 2
H: (Fp—l,DE’ Fp—l,SE) H: (Fp,DE - Fp—l,Dg7 F‘p,SE - Fp—l,Sg) H(* (F Deg> F, SE) H: (Fp—l,D57 F,

: ! L r

x—14+8( 172 rTx+0 (12 2 *+0 (2 *+8 (12
HW(F? )~ HP(E2 )y —F? ) HP(F ) —————— HIP(F )
H; 1 H0(F2) HIH(F2 = F2y) HE () —————— HIP(F2)

To conclude the proof, we verify the assertion (1) of Lemma 6.1, i.e. that the morphism
jép): H:(Fpl - Fpl—l) — ﬁ:+6(F732 - F;?—l)
is an isomorphism. Recall from (10) that
= F2, 2 V@) xe,, |A7] and  F}— Fl, = ¥,(X) x
where we defined as in (9) the subspace
o) =A{(f.50,---,5p) € Dlp] | s # s if L # k} C Yp]

and likewise for Y,,(X) C X[p]. Recall also that these spaces were vector bundles over TP*1. (See
Section 4.) Hence, we have an inclusion of vector bundles:

|Ar|

p+1

F!' - Fl, « > FP—F2
g(p+1)
Now, the second part of Proposition 6.5 applies and finishes the proof. U

6.2. The case of the stabilisation map. Choose some integer £ > 0. We now describe how the
argument of the previous section can be made with the stabilisation map

Vi Thot ((J7€) ® L%) ®¢ Thot (£F) — Thot ((J7E€) @ L5) @¢ Tt (LFH1)

from (26). First of all, it is a linear embedding. Hence, by choosing a complementary subspace, we
get a vector bundle

Thot ((J7€) ® L) @¢ Thot (LFH1) — <Fh01 ((J7€) ® L*) ®¢ T (ﬁk)>

analogous to the one in (34). From the commutativity of the diagram (24), we see that a singularity
x € X for f € S(k) is also a singularity of v, (f) € S(k+ 1). Therefore, we also get a map induced
on the respective resolutions of S(k) and S(k + 1). Together with the fact that non-singular

sections are sent to non-singular sections, this is enough for the argument to be repeated in that
case.



52
32 ALEXIS AUMONIER

Proposition 6.6. The restriction of the stabilisation map ~yy, to the non-singular subspaces
Ye: N(k) — N(k+1)
induces an isomorphism in homology in the range of degrees x < N(E,r)-(e(T)—1)+e(¥)—2. O
Combining Proposition 6.2 and Proposition 6.6, we obtain the following.

Proposition 6.7. Each map in the composition

Fhol,ns(g) — Fhol,ns(t]rg) - N(O) — COth(k)

k—o0

induces an isomorphism in homology in the range of degrees x < N(E,r)-(e(T)—1)+e(¥)—2. O

7. COMPARISON OF HOLOMORPHIC AND CONTINUOUS SECTIONS

We shall relate colim, N (k) to the space I'co s (J"E) of non-singular continuous sections of the
jet bundle. Recall from the stabilisation diagram (24) that every non-singular space A (k) maps via
o to T'co s (J7E). The aim of this section is to prove the following result about the map induced
from the colimit.

Proposition 7.1. The map
colim N (k) — Teo ns (J7E) (35)

k—o0

is a weak homotopy equivalence.

Combining this result with Proposition 6.7 readily implies Theorem 2.13. Proposition 7.1 is a
direct consequence of the openness of the subspace of non-singular sections, which follows from
the fact that the admissible Taylor condition ¥ C J"€ is closed (see the discussion after Lemma 3.5),
and the following

Lemma 7.2. Let F' be a finite CW-complex. The map
CO(F, colim N (k)) — C°(F, Tco s (J7E))
k—o0

induced by (35) has a dense image.

As in [Mos06], we will need an adaptation of the classical Stone-Weierstrass theorem for real
vector bundles.

Theorem 7.3 (Stone-Weierstrass). Let EF — B be a finite rank real vector bundle over a compact
Hausdorff space. Let A C C°(B, R) be a subalgebra and {s;}jc; be a set of sections such that

(1) the subalgebra A separates the points of B: for any x,y € B, there exists h € A such that
h(z) # h(y);

(2) for any x € B, there exists h € A such that h(x) # 0;

(3) for any x € B, the fibre E, is spanned by the s;(x) as an R-vector space.

Then the A-module generated by the s; is dense for the sup-norm (induced by the choice of any inner
product on E) in the space of all continuous sections of E.

Proof of Lemma 7.2. Let F' be a finite CW-complex. By adjunction, a continuous map F' —
['co s (J7E) corresponds to a section of the underlying real vector bundle of J"E x F' — X x F.
We shall apply Theorem 7.3 to that vector bundle.
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Recall that we have chosen in Section 5 a very ample line bundle £ on X and explained how to
define the complex conjugate 5 of a section s of L. For any integer k£ > 0, define the squared norm
of a holomorphic section of £ by

|- [2: Thor(£F) — Teo(£F @ L) = CO(X, C)
s+ |s]* =55
’2

where the isomorphism with continuous maps was obtained in (23). Notice that |s|* is in fact a

real valued function X — R C C. We also let
A ={lg(-, )P X x F 5> R| g€ C'(F,Twa(L"))} C COX x F|R)

where if g € CO(F, T',o1(L")), we see g(-, ) as a map from X x F to £ by adjunction. Keeping
the notation from Theorem 7.3, we let A to be the subalgebra of C°(X x F,R) generated by all the
Ay for k > 0. For the set of sections as in Theorem 7.3, we take the following:

{(z,u) = (s(z,u),u): X x F = J'EXF|s€C(Fha(JE))} (36)

where again, for s € CO(F,T,,1(J"E)), we see s(-,-) as a map from X x F to J"E by adjunction.
We may now check the conditions of Theorem 7.3.

(1) Let (z,u) # (2/,u') € X x F. Consider the first case where z # 2’. For k > 2, L¥ is 2-very
ample (see Example 2.2). Hence there exists a section s € I'l,,)(£?) such that s(z) # 0
and s(2’) = 0. Then the map (z,u) > |s(z)|? is in Ay and separates (z,u) and (z/,u)
as |s(z)|> # 0 and |s(z')|> = 0. In the other case where z = 2/, we have that u # u'.
By the 1-very ampleness of £ we may choose s € ['},,1(£) such that s(z) = s(z’) # 0.
Let p : F — R, be a bump function such that p(u) = 0 and p(v’) = 1. Then the map
(x,u) — |p(u)s(x)|? is in A; and separates the points. Indeed it is vanishing at (z, u) but
non-vanishing at (z/, ).

(2) The second point is exactly what we have just proved in the first case of the first point
above.

(3) It suffices to prove that the fibre of J"E above x € X is spanned by the sections s(x) for
s € T'hoi(J7E). This is implied by the 0-jet ampleness of £ (see Example 2.2).

By construction, any element in the image of the map
CO(F, colim N (k)) — C*(F, Tco s (J7E))
k—o0
is, by adjunction, in the A-module generated by the set (36). OJ

8. APPLICATIONS

8.1. Non-singular sections of line bundles. Our first application concerns the case of non-
singular sections of line bundles, which was the starting motivation for this work. Here, a direct
corollary of our main theorem reads as:

Corollary 8.1. Let X be a smooth projective complex variety and L be a very ample line bundle on
it. Letd > 1 be an integer. The jet map

jli Fhol,ns (Ed) — FCO,HS (Jlﬁd)

from non-singular holomorphic sections of L to continuous never vanishing sections of J' L%, induces
. . . . d—1
an isomorphism in homology in the range of degrees x < *-.
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Proof. 1t is a straightforward application of Theorem 2.13 by taking the admissible Taylor condition
T to be the zero section of J'£¢ and recalling from Example 2.2 that if £ is very ample, then the
tensor power L is d-very ample. 0

More interestingly, we can furthermore compute the stable rational cohomology. This agrees
with a computation also made by Tommasi in [Tom23].

Theorem 8.2. Let n = dim¢ X be the complex dimension of X. For d > 1, there is a rational
homotopy equivalence:

N 2n+1

Teows (J'£%) = T[ K (Hioa(X;Q),1).
i=1
In particular, the rational cohomology of I'co s (Jlﬁd) is given by the free commutative graded
algebra
A(HH(X;Q)

on the cohomology of X shifted by one degree.

Remark 8.3. This result implies in particular that the rational (co)homology of I'yo1 ns (Ed) sta-
bilises as d — 0o. As we will see below, the integral cohomology does not stabilise in general.

Remark 8.4. The stable cohomology only depends on the topology of X. This is in accordance with
the analogies between topology and arithmetic and motivic statistics mentioned in the introduction.
In both the results of Poonen and Vakil-Wood, the limit is expressed by a zeta function which only
depends on X.

Example 8.5. For X = CP" and £ = O(1), we find that the stable rational cohomology is the
exterior algebra
A@(tl, t3, e ,t2n+1>

where t; is in degree ¢. This agrees with the result of Tommasi in [Tom14].
Proof of Theorem 8.2. Recall that the non-singular sections of J' £ are precisely the never-vanishing
ones. We choose a Riemannian metric once and for all and denote by Sph (J 1£d) — X the unit

sphere bundle of the vector bundle .J! £L?. We may scale a never vanishing section to have norm
equal to 1 (for the chosen metric) in each fibre. We thus obtain a homotopy equivalence:

Teo s (T'£7) =5 Teo(Sph (1£7) ).

We now rationalise the sphere bundle in the following sense. By [Lle85, Theorem 3.2], there is a
fibration S5"*! — Sph (J'L7) o — X and a morphism of fibrations:

82n+1 y S(2@n+1
Sph (JL£4) » Sph (J'£%),

~

X
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such that the map induced on the fibres S***1 — Sé"“ ~ K(Q,2n + 1) is a rationalisation.

As X is homotopy equivalent to a finite CW-complex and S?"*! is nilpotent (it is indeed simply
connected), we may use [M@87, Theorem 5.3] that shows that the map Sph (Jl,Cd) — Sph (Jlﬁd)@
induces a map

I'co (Sph (Jlﬁd) ) = Leo (Sph (Jlﬁd)@>

which is a rationalisation. (In general, one has to restrict to some path component. However both
spaces are connected in our situation.) Now, oriented rational odd sphere bundles are classified by
their Euler class (see e.g. [FHTO01, I1.15.b]). In our situation, the orientation is induced from the
canonical one on the complex vector bundle J' £? and the Euler class vanishes for dimensional
reasons. It follows directly that Sph (J ! Ed) 0~ X is a trivial bundle. Therefore

To (sph (J'c?) Q) ~ map(X, K(Q,2n + 1))

where map(—, —) denotes the space of continuous functions with its compact open topology.
Finally, in [Tho56] (see also [Hae82] for an accessible reference), Thom proves that this mapping
space is homotopy equivalent to a product of Eilenberg—MacLane spaces

2n+1 2n+1

map(X, K(Q,2n + 1) H K (H>™(X;Q),i H K (Hi-1(X;Q),1)

=0

where the last equivalence comes from Poincaré duality. More precisely, he proves that if
ev: map(X, K(Q,2n+1)) x X — K(Q,2n+1)

is the evaluation map, and y € H*"™(K(Q, 2n + 1); Q) is the fundamental class, we may write
= Z Xi

where y; € H (map(X, K(Q,2n + 1)); H*"*'7*(X;Q)). Then the projection
map(X, K(Q,2n + 1)) — K(H*"™(X;Q), 1)
is determined by the cohomology class x;. 0J

8.1.1. Geometric description of the stable classes and Mixed Hodge Structures. As a Zariski open
subset of the affine space I',,1(£?), the subspace [ ns(£?) inherits a structure of complex variety
and its cohomology thus has a natural mixed Hodge structure. On the other hand, we may endow
the stable cohomology computed in Theorem 8.2 with a mixed Hodge structure defined as follows.
Recall that the cohomology H*(X;Q) can be equipped with a mixed Hodge structure using
the structure of complex variety on X, and denote by Q(—1) the Tate-Hodge structure of pure
weight 2. By first tensoring these structures and then applying the symmetric algebra functor (see
e.g. [PS08, Section 3.1]), we obtain a mixed Hodge structure on the stable cohomology. In this
section, we show the following.

Proposition 8.6. The morphism of Theorem 8.2
A(HH(XQ) @ Q(-1)) — H' (Thotus(£9); Q)

is compatible with the mixed Hodge structures.
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Proof. By the universal property of the (graded) symmetric algebra, it is enough to see that the
morphism

HYX;Q) @ Q(—1) — H*(Thorns(£); Q)

respects the mixed Hodge structures. We will do this by giving a more geometric description of
this map. Let

([ 1_‘hol,ns(ACd) X X — I‘hol,ns<£d>
be the trivial fibre bundle, and let
3¢ Thotns(£9) x X — J'LT — {0}

be the jet evaluation. By integrating along the fibres of 7, we obtain in cohomology a morphism of
mixed Hodge structures:

mo i H (J'L — {01) @ Q(n) — H* 2" (Thorns(L£Y).

The extra Tate twist Q(n) comes from the definition of the Gysin map m via Poincaré duality.
(See [PS08, Corollary 6.25].) As the Euler class of the jet bundle vanishes for dimensional reasons,
we compute that

H*(J'£ = {0};Q) = H*(X;Q) @ H*(C"' — {0}; Q).

Now H?"1(C"™' — {0}; Q) = Q(—n — 1), so we have obtained a morphism of mixed Hodge
structures:

moj* H*(X) ® Q(—1) — H* ™ (Thorns(£Y)).

We claim that this coincides with the morphism given in Theorem 8.2. The proof is an exercise in
algebraic topology and uses the description of the mapping space given at the end of the proof of
Theorem 8.2. O

8.2. Integral homology and stability. In this section, we focus on the special case where
X = CP! and £ = O(1). That is, we study the space
Ud = Fhol,ns ((C]P)l, O(d))

of non-singular homogeneous polynomials in two variables of degree d. From Corollary 8.1, we
know that the jet map

§' Ug — Teo g (Jl(’)(d))

induces an isomorphism in integral homology in the range of degree * < %. We prove that the

section space on the right-hand side does not depend on d > 1, hence that the integral homology
of Uy stabilises.

Theorem 8.7. Ford > 1, we have a homotopy equivalence
Lo ns (J'Ocpi(d)) ~ map(S?, 5%).

In particular
H,(Ug; Z) = H.(map(S?, $%); Z)

; d—1
in the range of degrees * < “5=.



57
AN H-PRINCIPLE FOR COMPLEMENTS OF DISCRIMINANTS 37

Remark 8.8. ' Using the Lie group structure on S we obtain a homotopy equivalence
map(S?, 5?) ~ S® x map, (52, 5*) = S° x Q*S°

which can be used to compute the integral homology. This can be done one prime at a time. Indeed,
the p-primary elements have order exactly p by [Neil0, Corollary 10.16.5]. This p-primary part
can then be computed directly from the Bockstein spectral sequence and the knowledge of the
Z /p-homology, which is recalled in [Neil0, Corollary 10.16.4].

Remark 8.9. In the next section, we will show that one cannot expect integral homological stability
in general. The case X = CP! should be seen as a very particular phenomenon.

Proof. Recall from the proof of Theorem 8.2 that we have to study continuous sections of the sphere
bundle of the jet bundle:

S? — Sph(J'O¢pi (d)) — CP.
One sees that this bundle is classified by the second Stiefel-Whitney class of the jet bundle, i.e.

the reduction modulo 2 of its first Chern class. Using that d > 1 and [DRS00, Proposition 2.2], we
obtain an isomorphism of vector bundles:

JOcp1 (d) = Ocpr (d — 1)%2.
We compute the first Chern class to be
cl(Jl(’)@u (d)) = Cl(O(CIpﬂ (d — 1)692) = 261((9@[@1 (d — 1))

so its reduction modulo 2 vanishes regardless of d. As the sphere bundle was classified by this
class, this shows that it is trivial. Therefore:

Leons (/' Ocpr(d)) = Teo (Sph(J' Ocpr(d))) ~ map(S?, 5%). O

8.3. Integral homology and non-stability. As we indicated in Remark 8.3, the rational co-
homology groups of the spaces ['yo1s(£?) stabilise. That is, for a fixed i > 0, the i-th rational
cohomology group is independent of d as long as i < %. In this section, to contrast with the very
special case of the previous one, we show that one cannot expect integral stability in general.

Let us fix some notation for the remainder of this section: d > 1 is an integer, £ is a very ample
line bundle on a smooth projective complex variety X and n = dim¢ X is the complex dimension
of X. As we will only be considering spaces of continuous sections, we will use I" as a shorthand
for I'co.

The main result of this section is Theorem 8.11 below. To show its computational potential, we
will show the following:

Proposition 8.10. Let d > 6 be an integer. We have:

Z/2 d=0 mod 2

HQ(Fhol,ns((C]P)27 O(d))7 Z/Q) = {0 d=1 mod 2

Furthermore, the same result holds for the quotient I'y,o) ,s(CP?, O(d))/C*.

!Many thanks to Antoine Touzé for explaining this computation to me.
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8.3.1. A comparison map. As stated in Corollary 8.1, we are reduced to studying the homotopy
type of the space of continuous sections of the sphere bundle Sph(.J*£%). Even though this is a
purely homotopy theoretic problem, its resolution is quite hard. We will therefore “linearise it” in
the homotopical sense using spectra. This is made precise in the following result:

Theorem 8.11. Let T'X be the tangent bundle of X, and let X7'ETX denote the Thom spectrum of
the virtual bundle J' L* — T X of rank 2. There is a 2n-connected map:

F(Sph(Jlﬁd)) oot x T LA-TX

Our proof uses very lightly the theory of parametrised pointed spaces/spectra and is written
using oo-categories. We feel that the latter choice helps in conveying the main ideas more clearly.
The unfamiliar reader is encouraged to think of bundles of pointed spaces/spectra, whilst resting
assured that there exists a theory which renders all statements made here literally true. An
encyclopedic reference is [MS06]. As we shall only use basic adjunctions and Costenoble-Waner
duality, we suggest to simply look at [Lan21, Appendix A] for a very readable introduction.

We denote respectively by S, and Sp the co-categories of pointed spaces and spectra. Likewise,
we let S, = Fun(X,S,) and Sp,x = Fun(X, Sp) be the co-categories of parametrised pointed
spaces/spectra over X. (In the definitions, X is seen as an co-groupoid.) We let r: X — * be the
unique map to the point. We will use the following three standard functors:

the restriction functor: r*: S, — S, Jx
its right adjoint: Fat Six — Si,
its left adjoint: T S*/X — S,.

The right and left adjoint are given respectively by right and left Kan extensions. In other words, .
takes the limit of a functor ' € S, x = Fun(X,S.), whilst r, takes its colimit. We will also use the
analogous functors in the case of parametrised spectra with the same notation. It will be clear from
the context which one we are using. The crucial fact for us is that for any bundle Y — X equipped
with a section s (this gives the data of a pointed space over X), r,(Y") is the path component of s
in the section space.

As a last piece of notation, we will use X795 = €27 to denote the infinite suspension/loop space
adjunction between parametrised pointed spaces and spectra, and use >*° < Q2 to denote the
usual adjunction in the unparametrised setting.

On our way to the proof of Theorem 8.11, we first make some formal observations. Loosely
speaking, we would like to say that the section space of a fibrewise infinite loop space is the infinite
loop space of the “section spectrum”. This is made precise in the lemma below.

Lemma 8.12. LetY € S
pointed spaces:

«,x be a parametrised space over X. We have a natural equivalence of

Qr (37%Y) = r QX% Y).
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Proof. We use the Yoneda lemma and the adjunction r* 4 r,. Let Z € S, be a pointed space. We
have:

maps, (7, QOOT*(E;’}Y)) ~ mapg, (X~ r*(Z/XY))
~ maps, (r'¥>Z,35%Y)
~ maps, (Z/Xr Z, E/XY)
~ maps, (7“ Z, Q5% E%Y)
~ maps, (Z r (N EY)).

Almost all manipulations follow from the standard adjunctions. The third equivalence uses the
fact that »*X>°Z is the trivial parametrised spectrum with fibre >°°Z, hence is equivalent to
LT U

We will need two more facts before proving Theorem 8.11. The first one is the following simple
observation. If V' — X is a vector bundle such that its associated sphere bundle Sph(V) — X
has a section s, then we may take the fibrewise infinite suspension E‘;‘}Sph(‘/) € Sp, x using s to
give a basepoint in each fibre. On the other hand, we could have taken the fibrewise one-point
compactification and then suspend using the added point at infinity as a basepoint in each fibre.
Up to a suspension, these are the same parametrised spectra.

Lemma 8.13. Let V' — X be a vector bundle with a non-vanishing section, and let Sph(V') — X be
its associated sphere bundle. Let S% denote the fibrewise infinite suspension of the fibrewise one-point
compactification of V' (using the point at infinity as the basepoint in each fibre). Then:

Sph(V) ~ QxS¥
where Q2 x denotes the desuspension in the category Spx.

Proof. Let us scale a non-vanishing section s of V' to that it has image in the sphere bundle. We
write D(V') C V for the unit disc bundle of V' which we point using s, and V' for the fibrewise
one-point compactification. We obtain the lemma by applying the fibrewise infinite suspension
X% to the cofibre sequence Sph(V') — D(V') — V' of parametrised pointed spaces over X. [

Recall that the co-category Sp, y is symmetric monoidal, with monoidal unit Sy := r*(S). (Here,
and everywhere else, S denotes the sphere spectrum.) The usefulness of the whole machinery set
up so far is contained in the following result. A classical reference is [MS06, Chapter 18]. In the
language of co-categories, one may read the second section of [Lan21, Appendix A].

Lemma 8.14 (Costenoble-Waner duality). The Costenoble~-Waner dualising spectrum of X is Sy %,
the spherical fibration associated to the stable normal bundle of X . That is, we have an equivalence of

functors:
ro(=) = (= ®sy SYY).

We are now ready to prove the result announced at the beginning of this section.

Proof of Theorem 8.11. We start by choosing once and for all a section s of the sphere bundle
Sph(J1£4), which provides us with a basepoint in every fibre. We may therefore apply the free
infinite loop space functor () = 2*°¥>: S, — S, fibrewise and obtain the following diagram of
fibrations:
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SQn—i—l Qoozoos@n—‘rl

| |

Sph(J'L?) —— Q%% Sph(J'LY)

| !

X X

It is a standard fact that the map S?"™! — Q%> 5?"*! is (4n + 1)-connected. Hence, on section
spaces, the map

T(Sph(J'L7)) = T(Q7% S5 Sph(J'LY))
is 2n-connected. (Notice that both spaces are connected, so the choice of s was immaterial.) Using
Lemma 8.12, we obtain:

T(Q55 5% Sph(J' L)) ~ r Q% E75Sph(J' L)) ~ Q%r, (X% Sph(J' LY)).
We now make the purely formal following computation:
ro (335 Sph(J' £7)) ~ r(37%Sph(J' L) @ SXT)
~ T!(ngggﬁd ®SX S;(TX)
~ 1y (QxSE <)
~ Qr (Sggﬁd_TX)
~ 0 XJlﬁdfTX
where we used Lemma 8.14 for the first equivalence, Lemma 8.13 for the second, and recognised
that the value of 1 on a spherical fibration is the associated Thom spectrum. Summing up, we get

the result.
O

8.3.2. An example when X = CP2. To show how Theorem 8.11 can be applied in practice, we use
it to prove Proposition 8.10. We hope that this will convince the reader of the computational power
of homotopy theoretic methods to study spaces of algebraic sections.

Following Theorem 8.11, we should investigate Q>+ X 7' £~TX when X = CP? and £ = O(1).

Because J'L£% — TX is of rank 2, the spectrum X J?LI=TX js 1-connective and the bottom
homotopy group is m; = Z by Hurewicz theorem. We consider the fibration

1p,d_
F_>Qoo+1XJ£ TX_>51

where [’ is the homotopy fibre of the right-most map, which is taken to induce an isomorphism on
1. A generator of 7y (1 X/ LA-TX ) = Z gives a section of that fibration, and we obtain:

QOO+1XJ1£d7TX ~ Sl % F.
In particular, F' is 2-connective with m5(F) 2 15 (T X 7' £*~TX) By Hurewicz theorem and the
universal coefficient theorem, Hy(F;Z/2) = Hy(F;Z) @ Z/2 = 715(F') ® Z/2. We thus wish to

compute o (T X/ LASTX ), which we will do using the Adams spectral sequence at the prime 2:

E;,t _ Extff (H*(legd_:rx; Z/Q),Z/2) N ﬂ_*(XJlL‘,d_TX)é\'
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(Hence we will only compute the 2-completed group, but this will be enough for our purposes.)
The F,-page is computed by knowing the cohomology H* (X’ 'i-TX. 7 /2) as an algebra over the
mod 2 Steenrod algebra A. (See [BC18, Section 3.3] for a very readable introduction.) If U denotes
the Thom class of J'£¢ — T'X, the classes in the cohomology of the Thom spectrum X7/ LA-TX
are given via the Thom isomorphism as yU where y € H*(X;7Z/2). At the prime 2, the Steenrod
squares can then be computed from the formula:

Sq*(yU) = Z Sq'(y)Sd’ (U) = Z Sq' (y)w;U

where w; is the j-th Stiefel-Whitney class of J'£? — T'X. In our case, writing Z/2[z]/(z?) for the
cohomology ring of X = CP?, the total Stiefel-Whitney class is given by:

w(J'LY—TX) =

1 d=0 mod 2
1+2 d=1 mod 2.

We used the handy tool [CC] to compute the Es-page for us, and obtained the following:

A.Cased =0 mod 2 B.Cased =1 mod 2

Following the established convention, we use the Adams grading: the horizontal
axis is indexed by ¢ — s, the vertical one by s. Every dot represents a copy of Z/2.
The vertical lines represent multiplication by hy € Ext’'(Z/2,Z/2). We suggest to
the unfamiliar reader to look at [BC18, Section 4.3] for more explanations.

From this, standard arguments about differentials (see e.g. [BC18, Section 4.8]) show that

1Lpd_ L 1Z/2 d=0 mod 2
(X7 TX)Q:{O/ d=1 mod 2.
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Therefore

1 7/2 = 2
HQ(F,Z/Q)%71'2<F)®Z/2gﬂ.3<XJ ﬁd_TX)@Z/Qg / d 0 mod
0 d=1 mod 2.

Using Kiinneth theorem, we obtain:
Hy(QH X T, 7,09) o Hy(S' x Fy2/2) = Hy(F; 2/2)
which finishes the proof of Proposition 8.10.

8.4. Stability of p-torsion. In this final section, we study the p-torsion in the homology of the
space ['co (Sph(J 1,Cd)). On the one hand, we have just seen in Proposition 8.10 that it depends on
d in general. On the other hand, the result below shows that when the prime p is slightly bigger
the dimension of X, the p-torsion is independent of L.

Proposition 8.15. Let X be a smooth complex projective variety of complex dimension n and L be a
holomorphic line bundle on it. Let p be a prime such that p > n + 2. Then the fibrewise p-localisation
of the sphere bundle Sph(J' L) — X is trivial. In particular, we have an equivalence of p-local spaces

Lo (Sph(JlL'))(p) ~ map(X, Sg™).

As an immediate consequence, combining the proposition above with Corollary 8.1 shows that
the p-torsion in the homology of T'yo1us(X; £%) stabilises when p > dimg X + 2 and d — oc.

The proof uses the following result which we learned from [BM14, Proposition 4.1].

Lemma 8.16. Forp > £ + 3, the space mapl(Sé"p), Sé“p)) of maps homotopic to the identity is
(k — 1)-connected.

Proof. The proof is given in [BM14], but we sketch it here for convenience. We shall assume that k
is odd, as we will only use this case in this paper. Recall the evaluation fibration

k ok ko ok k
25 —> mapy (S, S) — S
Using the associated long exact sequence of homotopy groups, it suffices to show that 7;(QFS, é‘:p))

vanishes for i < k& — 1. Using the assumption p > g + %, this follows from Serre’s calculations on
p-torsion in the homotopy groups of spheres. U

Proof of Proposition 8.15. Let
Soy — Sph(J' L)) — X
be the fibrewise p-localisation of Sph(J'£) — X. By [M@87, Theorem 5.3], we have a homotopy

equivalence

Leo (Sph(J'L)) ) = Teo (SPh(J L)) -

As the sphere bundle is canonically oriented (using the complex orientation of J' L), the fibration
Sph(J'L)(,) — X is classified by a map

2n+1 2n+1
X — Bmapy (S, Sy)-
By Lemma 8.16, the codomain of that map is (2n + 1)-connected. As the domain has real dimension
2n, the classifying map must be null-homotopic thus showing that the fibration is trivial. 0
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SCANNING THE MODULI OF EMBEDDED SMOOTH HYPERSURFACES

ALEXIS AUMONIER

ABSTRACT. We study the locus of smooth hypersurfaces inside the Hilbert scheme of a smooth
projective complex variety. In the spirit of scanning, we construct a map to a continuous section
space of a projective bundle, and show that it induces an isomorphism in integral homology in a
range of degrees growing with the ampleness of the hypersurfaces. When the ambient variety is
a curve, this recovers a result of McDuff and Segal about configuration spaces. We compute the
rational cohomology of the section space and exhibit a phenomenon of homological stability for
hypersurfaces with first Chern class going to infinity. For simply connected varieties, the rational
cohomology is shown to agree with the stable cohomology of a moduli space of hypersurfaces, with
a peculiar tangential structure, as studied by Galatius and Randal-Williams.

1. INTRODUCTION

A hypersurface in a smooth projective complex variety X is the zero locus V' (s) of a non-zero
global section s € H°(X, L) of an algebraic line bundle £:

V(s):={r e X |s(z)=0} C X.

Such a hypersurface is said to be smooth when the derivative ds(z) # 0 for all z € V(). Smooth
hypersurfaces obtained from sections of £ are parameterised by the complement of the discriminant
inside the complete linear system |£| = P(H°(X, L)), a classical object dating back to the early
days of complex geometry. To allow variations of the line bundle, Grothendieck introduced
in [Gro62] the functor of relative effective Cartier divisors. We follow his footsteps and, for a given
polynomial P € Q[z], consider the functor on the category of complex schemes

1)) G Sch — Set

Z — T is flat and proper and for all t € T’
T— < ZcCcXxT| Z; C X;isasmooth effective Cartier divisor
with Hilbert polynomial x (Z, Z;'(n)) = P(n)

As already discovered by Grothendieck, this functor is representable by an open subscheme
MeP  Hilb(X) of the Hilbert scheme of X. Under conditions on the polynomial P, it can in
fact be explicitly constructed using projective bundles [BLR90]. Recording the isomorphism class
of a Cartier divisor produces the Abel-Jacobi morphism

M Picl (X)), Z v [T,]

to the Picard scheme. Given a cohomology class o« € NS(X) C H?*(X;Z) in the Néron—Severi
group of X, the component Pic®(X) C Pic(X)(C) parameterises holomorphic line bundles on X
with first Chern class a. Our main object of interest in this article is the moduli space of smooth
hypersurfaces with fixed Chern class

b — Pic®(X)

hyp
1
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obtained by restricting the Abel-Jacobi morphism after analytification. It is the parameter space

b =2 {Z C X smooth hypersurface with ¢;(Ox(Z)) = a}

hyp
whose points are smooth complex hypersurfaces embedded inside X. In particular, the fibre of the
Abel-Jacobi map above an isomorphism class of a line bundle [£]| € Pic®(X) is the complement of
the discriminant inside the linear system |L]|.

In the present work, we investigate the topology of My using tools from algebraic topology.
To state our results, we write d(«) for the largest integer d such that all line bundles with first
Chern class « are d-jet ample.

Theorem 1.1 (See Theorem 4.6 for a precise version). Let X be a smooth projective complex variety
and let o € NS(X) be ample enough. Taking the first jet yields a map

s Teo (B(J1Ox))

which induces an isomorphism in integral homology onto the path component that it hits, in degrees

* < —d(ag =3,

Remark 1.2. In fact, 7o (Tco (P(J'Ox))) = H?(X;Z) and the jet map hits the component corre-
sponding toa € NS(X) C H*(X;Z).

(0%
hyp

We recall in Section 2 the notion of jet ampleness, and explain in Appendix A how to estimate
the number d(«). Among other things, we show that given any integer M > 0 and classes
a, B € NS(X) with § ample, we have that d(a + k) > M for all large enough k& > 0. (See
Proposition A.7.) In particular, the degree range of our main theorem can be arbitrarily big. In the
remainder of this introduction, we describe applications of our main theorem and connect our
results to the existing literature on moduli spaces of manifolds.

1.1. Rational computations and stability. A main advantage of our main theorem resides in
the fact that the homotopy type of spaces of continuous sections can be approached by purely ho-
motopical methods. This is particularly effective if one is willing to look at the rational information
only. Using tools from rational homotopy theory, we show:

Theorem 1.3 (See Theorem 6.5 for a precise version). Let n be the complex dimension of X. Let
o € H*(X;7Z) and denote by T3, (P(J'Ox)) the component hit by the jet map from Mg, . The
rational cohomology of that section space is computed by the cohomology of the following commutative
differential graded algebra:

Symy, (Qz ® Hi(X; Q) ® H.(X;Q)[1]),
withd(z) =0, d(H,(X;Q)) =0, and d(x) = p(z) forx € H.(X;Q)[1].

Here Symy, denotes the free graded commutative algebra on a graded vector space, [1] increases the
grading by one, and Qz is a one-dimensional vector space generated by z in degree 2. The differential is
encoded by a morphism ¢: H,(X;Q) — Symg, (Qz © H,(X;Q)) which can be computed explicitly
in terms of the Chern classes of J*Ox and a.

Let us also mention another application of our main theorem in the form of a rational homological
stability phenomenon:
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Theorem 1.4 (See Corollary 6.8). Let X be a smooth projective complex variety whose tangent bundle
is a topologically trivial complex vector bundle. Let o € NS(X) be ample and assume that d(a)) > 1.
Then, for any integer k > 1, there is map

Mﬁ;’,‘p — Map,, (X, Pg)

k-d(a)—
2

inducing an isomorphism in rational homology in the range of degrees ¥ < 3 In particular, the

rational homology stabilises as k — oc.

Remark 1.5. By a theorem of Wang [Wan54], if the tangent bundle of X is holomorphically trivial
then X is an abelian variety. If we only require topological triviality as in the theorem above, other
examples exist such as products of abelian varieties with curves [SA15].

1.2. Configuration spaces on curves. On an algebraic curve, the first Chern class of a line bundle
is simply its degree under the identification H*(X;Z) = Z. The vanishing locus of a non-zero
global section of a line bundle of degree d > 0 is a set of d points counted with multiplicity. In
fact, such a section is non-singular precisely when these d points are distinct. In that case, the
moduli space of embedded hypersurfaces is the classically studied configuration space and our
main theorem recovers parts of a result of McDuff and Segal [McD75,Seg79] (see also [RW13] for
improved ranges):

Theorem 1.6 (See Theorem 7.2). Let X be a smooth projective complex curve of genus g. Let
o € H*(X;Z) 2 7Z be such that o > 2g — 2. The jet map
UConf,(X) = Mg, — T8 (P(J'Ox)) 2 T (TX)

a—2g—3

induces an isomorphism in integral homology in the range of degrees * < =—

1.3. Characteristic classes and moduli spaces of manifolds. Let H = V(s) C X be a
hypersurface defined by a non-singular section of a line bundle £ on X. In the series of papers
[GRW14, GRW17, GRW18], Galatius and Randal-Williams have investigated the homology of
moduli spaces of manifolds. In this article, we have tried to compare their results to ours in the
case where the manifold under investigation is H. Deferring the technical details to Section 8.2,
we describe here the main contents.

Let n be the complex dimension of X, so that H is of real dimension 2n — 2. Given a tangential
structure {: H — B on H with §: B — BO(2n — 2), Galatius and Randal-Williams study the
moduli space M?(H, () classifying smooth H-bundles with #-structure. One could wonder which
tangential structure is the most natural on H. In the last section of this article, we find a reasonable
candidate and show:

Theorem 1.7 (See Theorem 8.11 and Corollary 8.15 for a precise version). Let X be a simply
connected smooth complex projective variety of dimensionn > 4 and L be a very ample line bundle
on it. Let

Tos(L) :={s € H'(X,L) | j'(s)(x) #£ 0 forallz € X}

be the subspace of non-singular global sections. There is a map 0: B — BO(2n — 2) such that a
hypersurface H defined by a non-singular section of L inherits a tangential structure {: H — B. In
other words, for this tangential structure there is a map classifying the universal bundle:

Tow(L) — MO(H,0).
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Furthermore, writing A for the discriminant, the subgroup of (deg A )-th roots of unity figeg o C C*
acts on M°(H, () and the induced map on the quotients

Tos(L)/C* — MO(H, 0)/ fideg A
induces an isomorphism in rational cohomology in the stable ranges.

1.4. Outline. In Section 2 we recall known properties about the Picard scheme, jet bundles, jet
ampleness, and the topology of smooth hypersurfaces. In Section 3 we define precisely the moduli
space My . In Sections 4 and 5 we state and prove our main theorem. The rest of the paper is
dedicated to applications. We make rational computations in Section 6 and describe the relation
to scanning and characteristic classes of manifold bundles in Sections 7 and 8. Finally, we have
assembled in Appendix A various results concerning jet ampleness.

1.5. The proof strategy for the main theorem. As explained in the introduction, we have a
sequence of spaces

LI\ A — My, — Pic*(X) (1)
where A C |L£] is the discriminant hypersurface. It turns out not to be a fibration, but only a
microfibration. On the other hand, we have an actual fibration

Leo(J'LN\ 0)/C* — Tg(P(J'Ox)) — B(Map(X,C*)/C*) ()
obtained by modding out by the constant functions C* C Map(X,C*) and delooping the
Map(X, C*)-principal fibration

Map(X,C*) — Teo(J'L\ 0) — T%(P(J'Ox))

sending a section in the total space to its projectivisation. We observe the weak homotopy equiva-
lences

B(Map(X,C*)/C*) ~ K(H'(X;Z),1) ~ Pic*(X)
and have proved in the earlier work [Aum22] that the jet map
L]\ A — Teo(J'L\ 0)/C*

induces an isomorphism in homology in a range of degrees. In essence, the proof consists in
comparing with two (micro)fibrations (1) and (2): we will leverage the homotopy (resp. homology)
equivalence of their bases (resp. fibres) to obtain a homology equivalence between their total
spaces.
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2. PRELIMINARY MATERIAL

2.1. The Picard scheme. We begin with recollections on line bundles on smooth projective
complex varieties and their moduli. A more precise, and much more general, account of this
standard material can be found in Kleiman’s notes [Kle05]. In what follows, X is a connected
smooth projective complex variety.

Definition 2.1. The absolute Picard group of a complex scheme T is the set Picaps(T') of isomorphism
classes of algebraic line bundles onI" equipped with the group law given by the tensor product.

Definition 2.2. The Picard functor of X
T — Picaps(X X T)/Picaps(T)
from complex schemes to abelian groups is represented by a scheme Pic(X) called the Picard scheme

of X (relative to Spec(C)).

Remark 2.3. The analytification of Pic(X), sometimes called the Picard space in this article, is the
group of isomorphism classes of holomorphic line bundles on X.

Lemma 2.4 (Compare [Kle05, Exercise 4.3]). There exists a (non-unique) algebraic line bundle P on
Pic(X) x X satisfying the following property: given any complex scheme T' and a line bundle L on
X X T, there exists a unique morphism h: T — Pic(X) such that

LE(AXh)'P® [N
for f: X x T — T the projection map and N some line bundle on T 0J

Definition 2.5. Any choice of a line bundle P as in Lemma 2.4 will be called a Poincaré line bundle
on X.

The Picard scheme Pic(X) only parameterises isomorphism classes of line bundles on X. One
should think of the choice of a Poincaré line bundle as making compatible choices of representatives
of those isomorphisms classes.

We will need a further decomposition of the Picard scheme into components. To introduce it,
we let Ox (1) be a very ample line bundle on X and write F(n) = F ® Ox(1)®" for any sheaf of
Ox-modules F and n € Z.

Definition 2.6. Let C C k be a field extension, and write X, = X Xgpec(c) Spec(k) for the base
change. The Hilbert polynomial of a closed subscheme Z C X, is the function

P;:N—7Z, nr— x(Z,0z(n))
where Oy is the structure sheaf of Z.
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Given a polynomial P € Q[z], let Pic”(X)(—) C Pic(X)(—) be the subfunctor of the Picard
functor whose T-points are represented by the line bundles £ on X x T such that

X(Xi, L7 (n)) = P(n) forallt €T
where X; and £; denote the base change to t.

Proposition 2.7 (Compare [Kle05, Theorems 4.8 and 6.20]). The Picard functor Pic"” (X)(—) is
represented by a complex quasi-projective scheme denoted Pic” (X). The Picard scheme is the disjoint
union of the Pic” (X) when P runs over all polynomials P. U

Passing to complex points, the picture is vastly simplified by Hodge theory as recalled in the
following two results.

Definition 2.8. The Neéron-Severi group of X, denoted NS(X), is the image of the morphism
c1: Pic(X) — H?(X;Z) sending an isomorphism class of a line bundle to its first Chern class.

Proposition 2.9. The Picard space Pic(X) a disjoint union of connected components indexed by the
Néron—Severi group
Pic(X) = || Pic*(X).
a€eNS(X)

Each space Pic®(X) is a torus, non-canonically isomorphic to H (X ; Ox)/H'(X;Z), and parame-
terises isomorphism classes of holomorphic line bundles on X with Chern class . O

2.2. Jet bundles. We recall the definition of jet bundles in algebraic geometry and explain the
construction of the jet evaluation map which will be used throughout this article. The main
reference for this section is [Gro67, Section 16.7]. In this section only, the full generality offered by
schemes will be convenient, so we momentarily work in this setting.

Let f: Y — S be a morphism of schemes, A: Y — Y x¢ Y be the diagonal and Z be its ideal
sheaf. Welet p;: Y xXgY — Y be the two projections for i = 1, 2.

Definition 2.10. Let F be an Oy -module. Its relative r-jet bundle is defined by
Jy s F = (P1)+ (Oyxgy /T @ Py.F).

The two projections p; give two morphisms of sheaves of rings Oy — J{,/SOy. We choose the one
given by p; to define an Oy -module structure. The other one, induced by p,, is denoted by

dy,5: Oy — J3,50y

and is called the jet map. In particular Jy, o F = J{//SOY ®o, F where J;/SOY is seen as a right
Oy -module via d;,/s. We will also write dy, o - F — J{,/S}" for the tensor of the jet map with F.

The fibre of the jet bundle at a closed point y € Y with maximal ideal sheaf m is (Jj, oF)|, =

F /m" 1 F. Intuitively, the jet map should be thought of as taking the r-th Taylor expansion of
a function. In particular, as the Leibniz rule for differentation shows, it is not a morphism of
Ox-modules when > 0. On the contrary, taking the derivative of a function commutes with
multiplication by a constant. At the level of the relative jet bundles, the functions on S play the
role of the scalars, and this fact is expressed by the following:
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Lemma 2.11. The pushforward of the jet map
fedy gt foF — fudy g F
is a morphism of Og-modules.

Proof. The claim can be checked locally on an affine cover. We can thus assume that f: Spec B —

Spec A is a morphism between affine schemes, F = Misa B -module, and [ is the kernel of the
multiplication map B ®4 B — B. Then f,J% /sF corresponds to

(B®a B)/I"" @pe,n (B®aB)®p M)
and f,F is M, both seen as A-modules via f. In these coordinates, the jet map is
m— (1®1)®(1®1) ®@m)
which is visibly A-linear. OJ
Definition 2.12. Let F be an Oy -module. The fibrewise jet evaluation map is the composition of
the pushforward of the jet map followed by the counit:
[ L F — [ Ly g F — Jy s F.

To explain the definition above, we assume that Y and .S are complex varieties for the rest of

this section. As we will alternate between two points of view on vector bundles (as sheaves or

as spaces over the base), it will sometimes be convenient to be explicit about which viewpoint is
adopted:

Definition 2.13. Let F be a vector bundle (i.e. a locally free sheaf of Oy -modules of finite rank) on a
complex variety Y. The total space of the associated geometric vector bundle is

V(F) = Spec,, ( Sym* (}"V))an
where (—)*" denotes the analytification functor.

Suppose now that F is a vector bundle on Y such that f.F is also a vector bundle on S. As sets,
we have an identification

V(f.F)={(s,0)|s€8, o0 € H(Y,; Fly.)}

where Y, = f7!(s) C Y is the fibre above s. In particular, when S = Spec C is a point, this is
the space of global sections H°(Y’; F). In general, it should be thought of as a space of fibrewise
sections.

Lemma 2.14. Under the above assumptions, the counit map f* f.J — F induces the evaluation map
V(o F) =2 V(fF) xs Y — V(F)
((s,0),y) — a(y)
on geometric realisation.

Proof: Recall first that f* f,F is the sheafification of U — F(f~' f(U)) ®og(sw)) Oy (U). (When
f(U) is not open, we mean taking the colimit over all open subsets of S containing it.) Chasing
through the adjunction, the counit map is then seen to be the sheafification of the map

F(I70) ®os(swy Or(U) — F(U)
aQr—T-aly
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and the claim follows. [
Summarising the situation, we see that the fibrewise jet evaluation map
V(fF) xs Y —> V(Jy s F)
is given above a point s € S by

HO(Y;;}"

Ys) XY — V(JTF Ys)
(0,y) —> j'o(y) € F

Y, /mr-‘rlf

where m is the maximal ideal sheaf of y € Y. In other words, it takes the Taylor expansion of o at
y up to order 7.

Ys

2.3. Jet ampleness. Having now defined jet bundles, we state the crucial definition of jet ample-
ness of a line bundle on a smooth projective complex variety X.

Definition 2.15 (Compare [BRS99]). Let k > O be an integer. Let x1, ..., x; bet distinct points
in X and (ky, ..., k) be at-uple of positive integers such that ), k; = k + 1. Denote by Ox the
structure sheaf of X and by m; the maximal ideal sheaf corresponding to x;. We regard the tensor
product @_ m" as a subsheaf of Ox under the multiplication map @'_ ,m" — Ox. We say that a
line bundle L is k-jet ample if the evaluation map

t
I'(L) —T (L@ (0x/®iy mfz)) = @F (L® (Ox/mfi))
i=1
is surjective for any x1,...,x; and ky, ..., k; as above.

Example 2.16. Being 0-jet ample corresponds to being spanned by global sections. Furthemore, 1-jet
ampleness is the usual notion of very ampleness. On a curve, a line bundle is k-jet ample whenever it
is k-very ample. However, on higher dimensional varieties, a k-jet ample line bundle is also k-very
ample but the converse is not true in general.

The following proposition is the main tool to produce line bundles having a very high degree of
jet ampleness.

Proposition 2.17 (See [BRS99, Proposition 2.3]). If A and B are respectively a- and b-jet ample line
bundles, then their tensor product A ® B is (a + b)-jet ample.

Definition 2.18. Let X be a smooth projective complex variety and o« € H?*(X ;7). We write d(X, «)
for the largest integer d > —1 such that all line bundles on X with first Chern class equal to o are
d-jet ample. (By convention, we declare that being (—1)-jet ample is an empty condition.)

We refer to Appendix A for how to compute d( X, ) in some special cases. Given an integer d,
we also explain in Proposition A.7 how to find an « such that d(X, «) > d.

2.4. The topology of hypersurfaces. It is well known that all smooth degree d complex hypersur-
faces in P" are diffeomorphic. As a way of justifying the study of the moduli space of hypersurfaces
of a given Chern class, we observe that such hypersurfaces are also all diffeomorphic, provided the
Chern class is ample enough. First, recall that ampleness is a numerical property:

Theorem 2.19 (Nakai—-Moishezon criterion). A line bundle L on a proper scheme over a field is
ample if and only if [, ¢ (L)Y™Y > 0 for every integral subscheme Y C X.
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Definition 2.20. A Chern class o« € NS(X) is called ample if it satisfies the Nakai—Moishezon
criterion.

We recall the following classical definition which is central in our work:

Definition 2.21. A global section s € I'(X, L) of a line bundle L on a smooth projective complex
variety X is called non-singular if for all v € X we have (s(x),ds(x)) # 0.

Remark 2.22. Given a non-singular section s € I'(X, L), its vanishing locus
V(s)={reX|s(x) =0} C X
is a smooth hypersurface.

Any hypersurface H can be seen as a Weil divisor, hence a Cartier divisor (X is smooth), and
therefore has an attached line bundle Ox(H). If H = V (s) with s € ['(X, £), then Ox(H) = L.
The following bit of language will be convenient:

Definition 2.23. The Chern class of a hypersurface H is the first Chern class of its associated line
bundle ¢, (Ox(H)).

Proposition 2.24. Let X be a smooth projective complex variety with canonical sheaf Kx. Let
a € NS(X) be a Chern class ample enough such that:

(1) the class o — ¢1(Kx) is ample;
(2) for any line bundle L of Chern class «, the subspace I',s(L) C T'(L) consisting of the non-
singular global sections is non empty.

Then all the smooth hypersurfaces of Chern class « are diffeomorphic to one another.

Remark 2.25. Let us make some remarks on the two assumptions of the proposition above. Let L be a
very ample line bundle on X. Then Ky' ® LZ is very ample for k >> 0 big enough, and o = ¢1(L®F)
satisfies the first assumption. Furthermore, by Bertini theorem, the subspace I',s(L) C I'(L) is dense.
The second assumption is thus satisfied as soon as all line bundles of Chern class o are very ample. We
explain how to arrange this in Appendix A.

Proof. We first briefly recall the classical proof in the case of a single linear system. Let £ be a line
bundle on X with Chern class a and denote by I',s(£) C I'(£) the subset of those global sections
that are non-singular. The projection from the incidence variety

{(s,2) € Tog(L) x X | s(z) = 0} —» (L),

is a proper surjective submersion between smooth manifolds, with fibres the smooth hypersurfaces.
By Ehresmann’s lemma, it is a fibre bundle and therefore all the fibres over a connected component
are diffeomorphic. Finally, I',s(£) C I'(£) is the complement of the discriminant which has
codimension at least 1, hence it is connected.

Now we adapt the proof in families. Let Pic®(X') be the connected component of the Picard
space classifying isomorphism classes of line bundles of Chern class «, and let P be a Poincare
line bundle on Pic*(X) x X. For [£] € Pic®(X), we write P for the line bundle on X which
represents the isomorphism class [£]. Let p: Pic®(X) x X — Pic®(X) be the projection. By
cohomology and base change [Har77, Theorem II1.12.11], the sheaf p, P is a vector bundle provided
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that H'(X, P|z) = 0 for all [£] € Pic*(X). This follows by the Kodaira vanishing theorem and
the assumption that o — ¢; (K yx) is ample. Let

V(p.P)™ C V(p.P) = {([£], ) | [£] € Pic*(X), s € [(Pig)}
be the subset of those sections that are non-singular. The incidence variety
{([£];s,2) € V(p.P)™ x X | s(x) = 0} — V(p.P)™

is a smooth fibre bundle by Ehresmann’s lemma. The base is connected by our second assumption
on the ampleness of «, therefore all the fibres are diffeomorphic. OJ

3. THE MODULI OF HYPERSURFACES

In this section, we precisely define our main object of interest in this paper: the moduli of smooth
hypersurfaces. From now on, we adopt the following conventions:

e X is a connected smooth complex projective variety;

e Pic(X) is its associated Picard scheme or space (see Definition 2.2);

e p: Pic(X) x X — Pic(X) is the first projection;

e P is a choice, once and for all, of a Poincare line bundle (see Definition 2.5);

e if £ is a line bundle on X, we write I'\s(£) C I'(£) for the subspace of non-singular
sections.

3.1. Moduli functors and the Hilbert scheme. In this subsection, we define the moduli functor
of smooth hypersurfaces in X and show that it is representable by an open subscheme of the
Hilbert scheme of X. We give an explicit description of the representing moduli scheme using the
theory of linear systems of divisors. Although providing motivation and context, this subsection is
logically independent of the rest of the article. We must also say that the results presented here are
well known to algebraic geometers, but we have chosen to recall them in detail to be self-contained.
The reader unfamiliar with the algebro-geometric language used here is invited to jump to the
following subsection where we provide a point-set model for the analytification of the moduli
scheme, which will be thereafter used throughout the article.

Given a polynomial P € Q[z], we may consider the Hilbert functor Hilb" (X)(—) parame-
terising flat proper families of closed subschemes in X with given Hilbert polynomial P (recall
Definition 2.6). In other words

Hilb”(X)(—): Sch?? — Set

T»—>{ZCX><T

Z — T is flat and proper
andVt € T, Pz (n) = P(n)

where Schc is the category of schemes over Spec(C) and Z; C X; is the fibre' of Z — T
above t € T. More generally, the Hilbert functor Hilb(X)(—) of X is the disjoint union of the
Hilb”(X)(—) as P runs over all polynomials.

Theorem 3.1 (Grothendieck [Gro61]). The Hilbert functor Hilb” (X)(—) is represented by the Hilbert
scheme Hilb” (X)) which is projective over Spec(C).

Yf k is the residue field of ¢ € T, then Z; = Z x1 Spec(k) C X; = X.
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Families of hypersurfaces are more commonly known as relative effective Cartier divisors. (See
[The23, Tag 056P].) Following [Kle05, Part 3], we recall the definition of their moduli functor:

Definition 3.2. Let P € Q|x] be a polynomial. The moduli functor of effective divisors with Hilbert
polynomial P is the functor

M Sch? — Set
Z — T'is flat and proper and for allt € T
Tv+—— < Z C X xT | theideal sheaf I, is a line bundle and is
such that x(X;,Z,'(n)) = P(n)
We define ™8 C NP to be the subfunctor’ where Z; is furthermore required to be smooth over the
residue field Spec(k(t)) att € T.

Remark 3.3. The moduli functor M is visibly a subfunctor of the Hilbert functor. Though, because
of our conventions, the indexing Hilbert polynomials are different. If Z C X is an effective Cartier
divisor and P(n) = x(X,Z,'(n)), we let P' be the associated polynomial P'(n) = x(Z,Oz(n)).
The subfunctor inclusion then reads " C Hilb” / (X).

We are here working with a general projective variety X with non-necessarily discrete Picard
space, which can be confusing. To counteract that feeling, we remind the reader of the more
classical, and enlightening, situation of linear systems of divisors:

Example 3.4 (Compare [Kle05, Definition 3.12 and Theorem 3.13]). Let X = P" and let P’ € Q|[z]
be the Hilbert polynomial of a hypersurface of degree d > 1. One can show that the Hilbert scheme is
in this case the complete linear system

Hilb” (P") = |0(d)| = P(H(P", O(d))).

Therefore Hilb" (P") (=) = 9P (=) is represented by a projective space of complex dimension
dime H(P", O(d)) — 1. The subfunctor M™T is represented by the complement of the discriminant
hypersurface.

In general, we have the following general representability result:

Theorem 3.5. The subfunctor MY (=) C Hilb” (X)(=) is represented by a union of connected
components of the Hilbert scheme Hilb” (X).

Proof. * By [Kol96, Theorem 1.13], 97 (—) is represented by an open subscheme U of the Hilbert
scheme such that the inclusion U C Hilb(X) is universally closed (this uses that X is smooth over
Spec(C)). As the Hilbert scheme is separated (because projective), U must be a union of connected
components. OJ

Our goal in now to give an explicit description of the scheme representing 9"’ (—). For the
remainder of this section, we fix a polynomial P € Q[z], denote by Pic”(X) C Pic(X) the
subscheme defined in Proposition 2.7, and still write P for the restriction of the chosen Poincare
line bundle to it. Recall that p: Pic”(X) x X — Pic”(X) denotes the first projection. Let

IC := ker (p*p*P — 77)

ZRecall that smoothness is preserved under base change.
3I have learned this result from Bejleri’s lecture notes, and I thank him for pointing me to Kollar’s book.
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be the kernel sheaf of the counit of p* - p.. From the monoidality of p* and standard properties of
the relative Proj construction, we have an isomorphism

ProjPiCP(X)XX(Symp*(p*P)V) = ProjPiCP(X)(Sym(p*P)v) x X.
Using the surjection of sheaves p*(p,P)" — K" we thus obtain a closed immersion

Proj,, » X)xX(Sym ’CV) < EPiCP(X) ( Sym(p*P)v) XX

(
Definition 3.6. We define the universal family to be the morphism

U= ProjPiCP(X)XX( SymK") — ProjPiCP(X)(Sym(p*P)v) = M
obtained by projecting onto the first coordinate.

The following is the main theorem of this section:

Theorem 3.7. Assume that H'(X,,P,) = 0 for allt € Pic”(X). Then the universal familyU — M
represents the moduli functor IM” (—).

Proof. This is explained in [BLR90, Proposition 8.2.7]. To translate to the notation in that book:
take f to be the structure morphism X — Spec(C), T' to be Pic”’(X), and £ to be P. The
flatness assumption on £ is implies by our assumption using cohomology and base change [Har77,
Theorem II1.12.11]. O

Remark 3.8. The analytification of the universal family is simply the incidence variety

{(x,[L],[s]) withx € X, [£] € Pic”(X), [s] € P[(P|g) such that s(z) = 0}

|

{([£]. [s]) with [£] € Pic"(X), [s] € PT(Pg) }
above the projectivisation of the vector bundle V(p,P) — Pic”(X).
Definition 3.9. The morphism of functors

M (T) — Pic"(X)(T), (ZC X xT)—[I,']
is represented by the projection morphism
M = EPiCP(X)(Sym(p*P)V) — Pic”(X)
which is usually called the Abel-Jacobi morphism.

We now explain how to obtain a scheme representing 9™ (—). We assume that the evaluation
morphism p*p, P — P is surjective. Recall the jet evaluation morphism

* 1
ppsP — ‘]PicP(X)xX/PicP(X)P

from Definition 2.12. We have a commutative diagram with middle row a short exact sequence:
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(7 P

Pic? (X)x X /PicP (X)

i

where O is defined to be the cokernel of the dual of the jet evaluation, and
PV — (J} P)"

Pic? (X)x X /PicP (X)
is the dual of the projection morphism from the first jet bundle to the zeroth jet bundle J°P = P.

The composition PY — p*(p,P)¥ — Q is the zero morphism, and we thus obtain a surjective
morphism Y — Q.

Corollary 3.10. Assume that the counit morphism p*p, P — P is surjective, and that H*(X;, P;) = 0
for allt € Pic”(X). Then the moduli functor ™ (—) is represented by an open subscheme of M,
hence of the Hilbert scheme of X. More precisely, let m: U — M be the universal family and

(X)XX(Sym Q) — U

be the closed subscheme determined by the surjection K" — Q. Then 9M*™F(—) is represented by

Remark 3.11. The sheaf Q is only a coherent sheaf of Op;.r x)x x-modules and Z is therefore not a
vector bundle in general. Nonetheless, if we furthermore assume that the jet evaluation morphism is
surjective (e.g. if all line bundles parameterised by Pic” (X)) are very ample), then Q is the dual of the
kernel of a surjective morphism of locally free sheaves, hence itself locally free.

Z .= ProjPiCP

Remark 3.12. In the notation of Remark 3.8, Z*" consists of those points (z,[L], [s]) such that
gH(s)(z) = 0, i.e. s is singular at x.

Proof. Smoothness is an open condition: the projection 7 is flat and of finite presentation, so [The23,
Tag 01V9] applies and 991°™7(—) is seen to be represented by an open subscheme of M. The
subscheme M \ m(Z) C M is open because 7 is proper. It represents the moduli functor as
smoothness can be checked locally using the Jacobian criterion. 0J

We close this section with some general remarks about our assumptions in Corollary 3.10. We
show that, although stated scheme-theoretically, they can be checked after analytification.

Lemma 3.13. Let P*" denote the analytic sheaf associated to P. If the counit morphism p*p,P** —
P is surjective, then the same is true before analytification.

Proof. This follows from exactness of the analytification of sheaves functor. 0

Lemma 3.14. Let P € Q[z] be a polynomial and suppose that H'(X, L) = 0 for all [L] €
Pic”(X)(C). Then H'(X;,P;) = 0 for allt € Pic”(X).
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Proof. By upper semicontinuity of cohomology, the subscheme
{t € Pic"(X) | H'(X;,P;) = 0} C Pic”(X)
is open. Assume that its complement is non empty. Then it contains a complex point: it is of

locally of finite type over Spec(C) and Hilbert’s Nullstellensatz applies. This cannot be the case by
assumption. 0J

We finally comment on the relation between Hilbert polynomials and Chern classes. For a
holomorphic line bundle £ on X, recall the Hirzebruch-Riemann—Roch theorem giving an equality

X(X, L) = /X ch(£) td(X)

where ch(—) is the Chern character and td(X) is the Todd class of X. In particular, if Z C X
is an effective Cartier divisor, its Hilbert polynomial only depends on the first Chern class of its
associated line bundle Ox (7). We thus obtain a numerical criterion:

Lemma 3.15. Let P € Q[x] and let C be the collection of Chern classes
C = {a(L) | [£] € Pic"(X)(C)} .
Ifa — ¢ (Kx) is ample for all a € C, then H'(X;,P;) = 0 for allt € Pic”(X).

Proof. This follows from Lemma 3.14 whose assumption is verified by the Kodaira vanishing
theorem. O

3.2. A convenient point-set model. In this section, we unravel the result of Corollary 3.10 and
give an explicit point set model for the moduli space of smooth hypersurfaces.

We begin with notations which we will use throughout the rest of the article. If [£] € Pic(X) is
an isomorphism class of a line bundle, we write P for the representative of that isomorphism
class given by the restriction of P to X = {[£]} x X C Pic(X) x X. If « € NS(X) we recall
from Proposition 2.9 that Pic®(X) C Pic(X) denotes the connected component parameterising
line bundles of Chern class «, and we will write P, for the restriction of the Poincaré line bundle
to that component.

Definition 3.16. The first jet bundle of P relative to the projection p (see Definition 2.10) is denoted
J;P = ‘]Pl’ic(X)xX/Pic(X)P'
When restricted to Pic*(X) for some a € NS(X), we will write J) P, = J%,ica(X)XX/Pica (x) Pa-
Lemma 3.17. Let Kx be the canonical sheaf of X. Let o« € NS(X) be such that « — ¢;(Kx) is
ample. Then p,’P,, is a vector bundle and the fibrewise jet evaluation map gives a map of vector bundles
p*p*Pa — Jplpa-
As sets, the geometric realisations are given by
V(p'pPa) = V(pPa) x X = {([£], 2,5) | [£] € Pic™(X), z € X, s € [(Pyg)}
and
V(J;Pa) = {([,C],x,v) | [£] € Pic*(X), x € X, v € J173m|$}.

Under these identifications, the jet evaluation map is given by

jeve ([£],2,5) — ([£], 2, 5" s(x)).
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Proof. The fact that p,P, is a vector bundle follows directly from cohomology and base change
and the Kodaira vanishing theorem under the assumption that o — ¢;(Kx) is ample. The rest of
the lemma follows from the results recalled in Section 2.2. 0

Recall from Corollary 3.10 the scheme M \ 7(Z) representing the moduli functor of smooth
hypersurfaces. After analytification, we may restrict the Abel-Jacobi map

(M\7(2))" — Pic(X)™ (3)
to the connected component Pic®(X) C Pic(X) (we will from now on drop the superscript “an”),

recalled in Proposition 2.9, provided that « is ample enough:

Definition 3.18. Let o« € NS(X) be such that a—c; (K x ) is ample. The moduli of embedded smooth
hypersurfaces in X of Chern class « is defined to be the preimage of Pic®(X) by the Abel-Jacobi
map (3). In other terms, we have a homeomorphism:

My = (V(piPa) \ proj(jev=(0))) /C*
where the scalars act fibrewise over Pic(X), and proj: V(p*p,P) — V(p.P) is the projection induced
by p.
Remark 3.19. As sets, we have an identification

nyp = {([£] [s]) [ [£] € Pic®(X), [s] € Tus(Prey)/C}-

hyp

That is, it will be technically convenient to think of a smooth hypersurface as a tuple consisting of a
line bundle £ and a non-singular global section of it (up to isomorphism and scaling action). However,
the name of moduli space is justified by the previous section: we have a homeomorphism

bon = {Z C X smooth hypersurface with c;(Ox(Z)) = a} C Hilb(X)*".

hyp

4. STATEMENT OF THE MAIN THEOREM

In this section, we construct a topological counterpart to the moduli of smooth hypersurfaces
described in Definition 3.18. We then state our main theorem comparing the two objects.

4.1. A topological counterpart. We begin with some generalities about the topology of continu-
ous section spaces. Let £ — A x B be a fibre bundle on a topological space A x B. We denote
a point of E as a tuple (a,b,e) wherea € A, b € B and e € E|(,3) is in the fibre. All mapping
spaces are given the compact open topology.

Definition 4.1. The space of fibrewise sections of E over A is defined to be the subspace
Feosn (B — A) :={(a,s) |a€ A, s €co(Eloxp)} — Map(B, E)
(a,s) — [b— (a,b,s(D))].
Post-composition with the projection maps £ — A x B — A gives a continuous map
Map(B, E) — Map(B, A) which, when restricted to fibrewise sections, yields the projection
map
FCO’ﬁb(E — A) — A, (CL, S) — a.

In particular, this projection map is continuous.
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Remark 4.2. Let Z be a topological space. A continuous map Z — T'co g,(E — A) is the same
datum as a continuous map f: Z x B — E over B such that projo f(z,—): B - E — A'is
constant for any z € Z.

Remark 4.3. When A and B are smooth projective complex varieties, one can modify the definition
above by using the spaces of holomorphic maps instead of the whole mapping spaces. In fact, assume
that E = V() is also a vector bundle and that 7€ is a vector bundle, where m: A x B — A is the
first projection. Then the holomorphic fibrewise section space is exactly V(m,.E). Let us notice however
that the holomorphic mapping spaces are more naturally topologised using the analytic topology of
the Hom scheme. Fortunately, Douady shows in [Dou66] that the inclusion inside the whole mapping
space is continuous.

To lighten the notation, and as no confusion can arise, we will from now on drop the symbol
V(—) when considering continuous sections of a vector bundle.

Definition 4.4. Taking fibrewise, over Pic(X), continuous global sections ofJZ}P which are never
vanishing, we obtain the space

Leoib(JoP\ 0) :=Teo (S P\ 0 — Pic(X))
= {([£],s) | [£] € Pic(X), s € Leo(J' Py \ 0) }

The group C* acts by multiplying the sections by scalars and we let T'co g, (J)P \ 0)/C* be the
quotient for that action.

4.2. The main theorem. By Remark 4.3, the fibrewise jet map followed by the inclusion of the
space of holomorphic sections inside continuous sections gives rise to a continuous map

jli ﬁyp — Fcoﬁb(t];lpa\())/(cx.

Denote by P(J'Ox) the projectivisation of the first jet bundle of Ox on X. We will make use of
the following:

Proposition 4.5 (Compare [CS84, Lemma 2.5]). The connected components of the section space
Lco(P(J'Ox)) are in one-to-one correspondence with H*(X;Z). For a given Chern class «, the
associated connected component 'S, (P(J'Ox)) consists of those sections s such that the pullback
s*O(1) of the tautological bundle has Chern class «.

It follows from the proposition that if £ is a line bundle with Chern class ¢, the quotient map
Loo(JPLN 0) — Teo(P(J'L)) = Teo (P(J'Ox))

has image inside the connected component 'S, (P(J'Ox)). Here we have used that J'L =
J'Ox ® L and the fact that the projectivisation of a vector bundle is invariant under tensoring
with a line bundle.

Now, let £, be a chosen line bundle with Chern class «. By choosing an isomorphism of
topological line bundles Ly = Py for each [£] € Pic*(X'), we obtain a map

Lo gin(J3Pa \ 0)/C* — Teo(P(J'Lo)) = Teo (P(J'Ox)) (4)

which factors through I'S, (P(J'Ox)). As any two choices of isomorphisms £, = P differ by
a non-zero constant, we see that the map is indeed uniquely well-defined and continuous. The
following is our main result:
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Theorem 4.6. Let X be a smooth projective complex variety. Let o € NS(X) be such that o — ¢; (K x)

is ample. The jet map
Gl MR — T%(P(J'Ox))

hyp

induces an isomorphism in integral homology in the range of degrees x < %. (See Definition 2.18.)

5. PROOF OF THE MAIN THEOREM

The proof of the main theorem is executed in two steps. In Section 5.1, we first prove:

Proposition 5.1. Let X and « be as in Theorem 4.6. The jet map
gt hyp — Leo ﬁb(J P, \0)/C*

induces an isomorphism in integral homology in the range of degrees x < %.

Then, in Section 5.2, we show the following:
Proposition 5.2. The map defined in (4)

Leo ib(J,Pa \ 0)/C* — T (P(J'Ox))

is a weak homotopy equivalence.

5.1. The homology isomorphism. The jet map fits in the following diagram where the top row
is its restriction to a fibre above an [£] € Pic®(X):

Fns<'P[£])/CX e FC()(Jl'P[g] \0)/CX

| |

hyp _— Fco ﬁb(e] 73 \0)/CX

| !

The uppermost map was studied in [Aum22] where the following result was proved:

Theorem 5.3 (Compare [Aum22, Corollary 8.1]). Let L be a d-jet ample line bundle on a smooth
projective complex variety X. Then the jet map

[as(L)/C* — Teo(J'L\ 0)/C*
induces an isomorphism in homology in the range of degrees x < %.

Now, if both lower vertical maps were fibrations, a comparison of the associated Serre spectral
sequence would prove the main theorem of the present paper. This is indeed the case for the map
on the right-hand side. The other map is only a microfibration, which turns out to be sufficient for
the argument to go through. We start by reviewing this technical notion popularised by Weiss
in [Wei05].

Definition 5.4. A map 7: £ — B is called a Serre microfibration if for any k > 0 and any
commutative diagram
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{0y x D¥ —“ E
[ f
0,1] x D¥ —— B

there existsanc > 0 and a map h: [0, €] x D¥ — E such that h(0, x) = u(z) andmoh(t,r) = v(t, )
forallz € D* andt € [0, €].

Remark 5.5. Any Serre fibration is a microfibration. More generally, the restriction of a Serre fibration
to an open subspace of the total space is a microfibration.

Contrary to the case of fibrations, the homotopy types of the fibres of a microfibration can vary.
Nonetheless, we have the very useful comparison theorem of Raptis generalising a result of Weiss:

Theorem 5.6 (Compare [Rap17, Theorem 1.3]). Let p: £ — B be a Serre microfibration, q: V — B
be a Serre fibration, and f: E — V a map over B. Suppose that f,: p~(b) — ¢ 1(b) is n-connected
for somen > 1 and for allb € B. Then the map f: E — V is n-connected.

In the present situation, we only have access to Theorem 5.3 which provides an isomorphism in
homology, rather than on homotopy groups. The remedy chosen here is to suspend to work with
simply connected spaces and apply the homology Whitehead theorem.

Definition 5.7. For a map p: E — B, its fibrewise (unreduced) k'™ suspension is defined to be
SEE = (Ex[0,1] x $*7) / ((e,0,5) ~ (e,0,5') and (e, 1,5) ~ (¢, 1,5) if ple) = p(€')).
The fibre of the natural map ¥%p: X% E — B induced by p is the unreduced k™ suspension of the

fibre of p (here modelled as the join with the sphere S*~1):
(S5p) (b)) =X (b), Wbe B.

Lemma 5.8. The map
Lo fin(Jy P \ 0)/C* — Pic*(X)
is a fibre bundle.

Proof. Let U C Pic®(X) be a small contractible open subset. A topological vector bundle being
trivial over a contractible base, we obtain an isomorphism of vector bundles

b I Polusx — U x J'Pigy)
over U x X, with [£y] € U a chosen basepoint. The map

(Teo in(J3Pa \ 0)/C*) [y — U x Teo(J Pyeyp \ 0)
([£],s) — ([L], ¢ 0s)

is then a homeomorphism over U exhibiting the local triviality of the fibre bundle. U

We will say that a map A — B is homology m-connected if it induces an isomorphism on
homology groups H;(A) — H;(B) for i < m and a surjection when i = m.
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Lemma 5.9. Let q: V' — B be a fibre bundle, and p: U — B be the restriction of a fibre bundle
E — B toan open subset U C F. Let f: U — V be a map over B and suppose that for everyb € B,
the restriction to the fibre

forpH(b) — ¢ (b)
is homology m-connected. Then f: U — V is homology m-connected.

Proof. For any b € B, the suspension of f on the fibre
S2f,: 2L (5) — T2 (0)

induces an isomorphism in homology in degrees * < m + 1 and a surjective morphism in degree
* = m + 2. As both spaces are simply connected, the homology Whitehead theorem implies that
this map is (m + 2)-connected. We would like to apply Theorem 5.6 to 3% f, but ¥3U C Y3 F
is not open and it is unclear if ¥4U — B is a microfibration. We resolve the issue by enlarging
slightly the space to a homotopy equivalent one. More precisely, let

W= (Z3U) U ((E % (0.5,1] x S*))/ ~) C Z}E,

and denote by Ej,, W}, U, the fibres of the respective spaces above a point b € B. Using in each
fibre the homotopy equivalence ((E, x (0.5,1] x S')/ ~ ) ~ S given by collapsing gives a
homotopy equivalence

(W, W) — (Z3U, 52Us)
for all b € B. Now, the fibrewise suspension of the fibre bundles £ — B and V' — B are fibre
bundles. As W C Y4 F is open, the restriction W — B is a microfibration. Applying Theorem 5.6
to the composite

~ 2
w s y2y 2l vzy
and using that the first map is a homotopy equivalence, we obtain that 3% f: ¥3U — Y3V is

(m + 2)-connected. Hence it is homology (m + 2)-connected. Comparing the Mayer—Vietoris
sequences of the fibrewise suspensions finally shows that f: U — B ishomology m-connected. [J

Proof of Proposition 5.1. By Definition 3.18, the map Mf  — Pic®(X) is the restriction of the
projective bundle P(p.P,) — Pic*(X) to the open subset Mf_ . Using Theorem 5.3 and Lemma 5.8,
we can apply Lemma 5.9 to conclude. 0J

5.2. The homotopy type of the space of fibrewise sections. We begin by making explicit
some basic results in algebraic topology about homotopy fibres. The specific point-set models
chosen will be useful for the proof of Proposition 5.2. For a pointed space (A, a), we let P(A, a) =
Map, (([0,1],0), (A, a)) be the space of paths in A starting at a. We will write cte, for the constant
loop based at a point .

5.2.1. The homotopy fibre of a homotopy fibre. Let w: (E,ey) — (B, by) be a fibration between
pointed spaces, F' = 7~1(by) be the fibre, and (), B be the loop space of B based at by. Writing
1: F' — E for the inclusion, the space

Hi:={(e,a) € F x P(E,¢ep) | a(1) = ¢}
is a model of its homotopy fibre. It is well known that /{7 and €2, B are homotopy equivalent, and

the goal of this small section is to give an explicit description of the induced bijection on connected
components.



86
20 ALEXIS AUMONIER
We write
Hrn :={(e,y) € E x P(B,by) | v(1) = m(e)}

for the homotopy fibre of 7. Let j: Hr — E be the map (e, y) — e, whose homotopy fibre is
given by

Hj:={(e,v,a) € Hr x P(E,¢eg) | a(1) = e}
=~ {(y,a) € P(B,by) x P(E,eq) | v(1) =mwoa(l)}.

The map €2,, B — Hj given by v —— (7, cte,, ) is a homotopy equivalence (see [Die08, Note 4.7.1]).
The situation is summarised in the following diagram:

Hi —— F

LN

Hj —— Hr —— E » B

q '

Qb

B

0

Lemma 5.10. Lety: [0, 1] — B be a loop based at by. Let «: [0, 1] — E be a lift of that loop starting
at eq. The map on connected components
70(Qpy B) — mo(H1)
] — [(a(1), )]
is well-defined and is a bijection.
Proof. The natural map F' — H is a homotopy equivalence as 7 is a fibration. Hence the induced
map Hi — Hj given by (e, a) — (ctey,, @) is a homotopy equivalence. Therefore it suffices to

show that (v, cte.,) and («(1), ) are in the same connected component of Hj. Both are in the
same component as (7, ), as seen by deforming either the first or the second path. 0

5.2.2. Homotopy fibre of a principal bundle. In this subsection, 7: (E,¢y) — (B, by) is now a
principal G = 7~ !(by)-bundle. We let a: [0, 1] — B be a path from by to a point by, and we choose
apoint e; € 7 1(by). As before, recall that a model for the homotopy fibre of 7 is given by

Hrm:={(e,y) € E x P(B,by) | v(1) = m(e)}.

We may choose a lift of the path « to a path 3: [0,1] — E such that 7 o § = a. We define
e; = ((1). As the action of G on 7 !(b;) is free and transitive, there exists a unique g; € G such
that g; - e; = €] (where - denotes the action).

Lemma 5.11. We keep the notation as above. Then the points (€}, «) and (g - €y, cte.,) are in the
same connected component of the homotopy fibre Hr.

Proof. The map ¢, - 3: [0,1] — E is a path from g; - ¢y to g - e; = €, and is such that mo (g, - f) =
7o 3 = a. Thus the map

0,1) — H7
t— ((g1- B)(), oft-—))

is a path from (€}, ) to (g; - eg, cte,) in Hr. O
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5.2.3. The proof of Proposition 5.2. For concreteness, we start by fixing basepoints. Let [£y] €
Pic*(X), and let sy € I'co(J'Pig,; \ 0). We will use these as basepoints, as well as the images
[s0] € Teo(J Pz \ 0)/C* and Psy € 'S (P(J'Ox)).

Pointwise multiplication of maps gives Map (X, C*) the structure of a topological group. By
[CS84, Proposition 2.6], there is a principal Map (X, C*)-bundle:

Map(X, C*) — Teo(J*Piey \ 0) — T%(P(J'Ox)). (5)

There is also the subgroup C* C Map(X, C*) of the constant functions, and modding out fibrewise
gives a principal bundle:

Map(X,C*)/C* — Tco(J"Pigy) \ 0)/C* — Lo (P(J'Ox)). (6)
We obtain a commutative diagram where each row is a fibration sequence
F— FcO(le[[;D] \ O)/CX E— FCO’ﬁb(J;Pa \ 0)/CX

| ! |

Fy —— Teo(J' Py \ 0)/C* ——— T8 (P(J'Ox))

and the spaces F and F; are defined as the respective homotopy fibres (at the basepoints chosen
above). Using the 5-lemma and the long exact sequence of homotopy groups associated to a
fibration, Proposition 5.2 follows directly from the next lemma.

Lemma 5.12. Using the notation as above, the map induced on the homotopy fibres Fy — F is a
homotopy equivalence.

Proof. We already know that F} ~ Q. Pic*(X) and F>, ~ Map(X,C*)/C*, which are both
homotopy equivalent to the discrete space H'(X;Z). Therefore we only need to verify that the
map F} — F5 induces a bijection on the set of connected components. We have a diagram of sets

7o (o Pic™ (X)) ——— mo(F)

I |

mo(Map(X, ©)/C*) —g— m(F)

where the right vertical map is induced from F; — Fj, the top horizontal map is explained in
Lemma 5.10, the bottom horizontal map is induced by the inclusion of the fibre inside the homotopy
fibre, and the dotted arrow is defined by composition. It suffices to show that this last arrow is a
bijection.

Let v € Qiz,Pic®(X) be a loop. We choose a lift to a path ov: [0,1] = Teo gy (J;Pa \ 0)/C*
starting at [s] and ending at some [s}], and write P for its image in 'S (P(J'Ox)). We may
furthermore lift that path to a path 3 in o g1,(J) Pa \ 0)/C* starting at [so] and ending at some
point [s1]. Using the principal bundle (6), there is a unique class of a map [¢1] € Map(X,C*)/C*
such that [ - 1] = [s]]. By Lemmas 5.10 and 5.11 the dotted arrow is given by

(V] — [io1]-

In particular, it follows directly that it is surjective. One may furthermore check that it is compatible
with the group structures: on the source given by composition of loops, and on the target given by
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multiplication of maps. As both groups are isomorphic to H'(X; Z) this shows that the surjective
morphism is fact an isomorphism. 0

6. RATIONAL COMPUTATIONS AND STABILITY

In this part, we show how Theorem 4.6 can be used to make explicit computations of the rational
cohomology of Mf . Assuming that the underlying variety X is topologically parallelisable, we
will also exhibit a phenomenon of homological stability.

We will first recall a general strategy, dating back to Haefliger [Hae82], to compute the cohomol-
ogy of continuous section spaces. In Theorem 6.5 below, we provide a commutative differential
graded algebra (CDGA) computing the rational cohomology of the section space of the projective
bundle. We hope that this will convince the reader that the homotopical approach taken in this
paper may be useful in practical computations. We will freely use the notations and results from
rational homotopy theory. A textbook account can be found in [FHTO01]. In particular, we write
A(—) for the free commutative graded algebra. We let n be the complex dimension of X.

6.1. Haefliger’s tower of section spaces. Although Theorem 4.6 provides an integral homology
isomorphism, we will mainly be interested in the rational cohomology groups for computational
reasons. Fibrewise rationalisation (denoted (—)sg) yields a fibration

P& — ]P)(JIOX)fQ — X. (7)

By [Mo87, Theorem 5.3], the natural map P(J'Ox) — P(J'Ox)q induces a map on section
spaces

Teo(P(J'Ox)) — Teo(P(J'Ox) )

which is a rationalisation when restricted to a connected component on the source and target.
(Beware the fact that the source has H?(X;Z) many connected components, while the target
has H%(X;Q) many of them.) We apply the general strategy described in [Hae82, Section 1.3]
to compute the rational homotopy type of the section space I'co(P(J'Ox)q). The fibration (7)
admits a Moore-Postnikov decomposition of the form

K(Q,2n+ 1) — Y, ~ P(Jlox)ﬂ@

|7

K(Q,2) » Y

|

Yo=X — ™ 5 K(Q,3)

k1

> K(Q,2n+2)

where each p;: Y; — Y;_; is a principal fibration classified by the k-invariant k;_;. The latter were
computed by Meller:

Lemma 6.1 (Compare [M@85, Lemma 2.1]). The k-invariant kqy is trivial. In particular Yy =~
X x K(Q,2). Writing z € H*(K(Q, 2); Q) for the generator, k; corresponds to the cohomology class

n+1
Z<_1)ici(J10X) ® Zn+1fz' e H*(X,Q) ® H*(K(Q, 2);(@)_ O

1=0
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Let s € I'% (P(J'Ox) ) with « € H?*(X; Q). The map p, o s is a section of Y7 — X, and we
denote by I'y C T'co(Y7 — X)) its connected component. As ky is trivial by Lemma 6.1, there is a
homotopy equivalence

Peo(Yi = X) = Map(X, K(Q,2)) = K(Q.2) x K(H'(X;Q), 1) x H(X;Q),
and I'y corresponds to the connected component indexed by «.

Lemma 6.2 (Compare [M@85, Lemma 2.2]). Let U be the composite
U: K(Q,2) x K(H(X;Q),1) x X ~T; x X <5 v, 25 K(Q,2n + 2). (8)

Let z € H*(K(Q,2); Q) be the generator. Let {x;} be a basis of H'(X;Z) and let {;} be the dual
basis of H'( K (HY(X;Z),1);Z) = H*(X;Z)". The morphism induced in cohomology U* sends the
generator y € H*""2(K(Q, 2n + 2); Q) to the class:

n+1 n+l1—i
U*(y) = Z(—l)i<1®1®ci(J1(9X)) U <z®1®1+1®1®a+21®x;®xj> . O
J

1=0

Let ky: Ty — K(Q,2n + 2)¥X be the adjoint of the map (8). There is a homotopy equivalence
(see [Hae82, Section 1])

2n+2
K(Q.2n+2)% ~ [[ K(E"7(X;Q),i). (9)

=2
Lemma 6.3 (Compare [Hae82]). Let ¢; be the map to the i-th factor of the product:
o 1 0 K(Q, 20+ 2)X — K(H™271(X;Q),4).
The morphism induced in cohomology is given explicitly by:
i HPU(XG Q)Y = HY(K(H7(X;Q);Q) — H'(I'; Q)

y =y N (x).
Here, forw @y € H*(I'1) ® H*(X) andy’ € H*(X)", we writey' N (w ® y) = ¢/ (y)w. O
Proposition 6.4 (Compare [Hae82]). There is a fibration

K(Q,2n + 1) — I'g%(P(J'Ox) o) — T

pulled back from the path space fibration over K (Q, 2n + 2)X via the map k;. 0J

Theorem 6.5. Let z and {x;} be as in Lemma 6.2. Let {y;,.} be a basis of the rational cohomology
of (9) where y}, € H***2>7/(X;Q)" is in degree i. The rational cohomology of T'% (P(J'Ox)q) is
given by the cohomology of the following commutative differential graded algebra:

Az, @), s7'yly),  d(z) =0, d(z}) =0, d(s"yi) = ©F (Yix)
where z is in degree 2, each x’; is in degree 1, each sl is in degree i — 1, and o} is given as in

Lemma 6.3.

Proof. By Proposition 6.4, there is a homotopy pullback square:
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e (P(J'Ox) o) ———— =

I |

I, —M 5 K(Q,2n+2)%

By the Eilenberg—Moore theorem, the cohomology of the pullback is given by the derived tensor
product

Az, 7) @4y, Q
which can be computed by choosing A(y;,) — (A(s™ ¥k, ¥ix.), d(s™yi) = vj),) ~ Qasa cofibrant

replacement. O

Example 6.6. Let X be a smooth curve (n = 1) of genus 1 (i.e. a torus). It is a framed manifold,
hence its jet bundle has trivial Chern classes. Write a, b for the standard basis of H'(X; Z) such that
a’* = b* = 0 and u = ab generates H*(X;Z). Let a’,V be the dual basis. Let o« = d - u for some
d € 7. With the notations of Lemma 6.2 we have
V()= (:0101+10la+10d@at+10ba1)’
=2d(:z®1)-21@dV)Qu+2:®d®a)+2:20 b)) + 21 ® 1.

The morphisms ©} of Lemma 6.3 are given by

2d(z®1) —2(1 ®d't))

s d — d NI (x) =2(z®d)
Vs 0 T (x) = 2(2 @ )

Wil 1NT*(x) =22 ® 1.

oy u —u ' NT*(x)

Therefore the cohomology of ', (P(J'Ox)) ~ Map,, (X, P?) is given by the cohomology of the CDGA:
A<27 a,7 bla Y1, y27y;7 y3)7 d(yl) = 2dz — 2alb/> d(?b) = 2261/, d<yé) = 22bl7 d(yS) = 2

where the indices on the last four variables indicate their degrees. (See [M@85, Section 3] for related
computations.)

6.2. Homological stability. Despite the formula given in Theorem 6.5, it is unclear to us how
the cohomology varies when o does. Nonetheless, when X is topologically parallelisable, we can
make the following qualitative remark:

Proposition 6.7. Let X be a smooth projective complex variety such that Q0 is a topologically trivial
vector bundle, and let « € H*(X; Q). Then there is a homotopy equivalence

eo(P(J'Ox) o) ~ Ted (P(J'Ox)q)
for any non-zero rational number k € Q*.

Proof. As X is topologically parallelisable, the jet bundle J!Oy is topologically trivial. Hence the
section space is the mapping space into the fibre:

I'E3(P(J'Ox) rq) ~ Mapy, (X, Pg)
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where the subscript ka on the right-hand side indicates the connected component of the maps
which pullback the generator in cohomology to k«. Post-composing with a self map of Pg of
degree 1/k gives a homotopy equivalence

Map,,, (X, Pg) ~ Map, (X, Pg). O

Corollary 6.8. Let X be a smooth projective complex variety which is topologically parallelisable.
Let o € NS(X) be ample, and assume that d(X, «) > 1 (see Definition 2.18). Then, for any integer
k > 1, there is map

MEe s Map,, (X, Po)

hyp
inducing an isomorphism in rational cohomology in the range of degrees * < % In particular,

the rational cohomology stabilises as k — oo. 0

Remark 6.9. The rational homotopy type of the mapping space Map(X,IPy) can be easily computed
without the results of the last section. In [Ber15], Berglund gives an explicit L..-algebra model whose
underlying graded Q-vector space is given by

H*(X;Q) @ Q- {u, w}

where H'(X) sits in degree —i, and u,w are respectively in degrees 1 and 2n. (This uses that X
is a formal space.) For the connected component corresponding to o € H?*(X;Q), the associated
Maurer—Cartan element is T = o ® w. In particular, the only possibly non-vanishing brackets are
given by

[Ty Qu,...,z, Qul, =+

1)!
(n+ ) '(Ozn+1_TCE1:L“2---ZET)®w.

n+1-—r)
In fact, in the case of the torus, the Chevalley—Filenberg complex associated to this L..-algebra is the
CGDA given in Example 6.6.

7. SCANNING AND CONFIGURATION SPACES ON CURVES

In this last section, we explain how the present article fits into the general philosophy of scanning
maps in topology. In Theorem 7.2, we recover a special case of a result of McDuft about the homology
of configuration spaces of points on a curve. We then turn our attention to characteristic classes.
We explain in Theorem 8.11 a relation between the stable cohomology of I',s(£) and that of moduli
spaces of manifolds as studied by Galatius and Randal-Williams.

7.1. Scanning. We begin with a brief and intuitive exposition of the general idea behind scanning.
Suppose given M C N, a d-dimensional submanifold of an n-dimensional manifold. We can try to
see what M looks like by looking locally at each point of V. One can imagine looking through a
magnifying glass: either we are far from M and see nothing, or close to M and see a first-order
approximation of M, i.e. a tangent space, together with a small vector from the center of the lens
to M. To formalise this intuition, recall the tautological quotient bundle over the Grassmannian of
d-dimensional planes in R™:

R"4 — ~7, = {(H,v) | H € Gi(d,R"), v € R"/H} — Gr(d,R").

One thinks of a point (H,v) € 7, as a d-dimensional plane together with a normal vector. The

Thom space Gr(d, R")”in is obtained by one-point compactifying the total space. This construction
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can be done fibrewise to the tangent bundle T'N of N, and we denote by Gr(d, TN )ﬁ’" the resulting
bundle over N. The submanifold M then gives a section
N — Gr(d, TN)Yin

obtained by sending a point far away from M to the point at infinity (in the Thom space), and
sending a point x € N close to a point y € M to the tangent space T, M C T, N together with the
vector pointing from y to x. Of course this requires to be made precise, e.g. by choosing a tubular
neighbourhood of M inside V. In many cases, this idea can be implemented in families to obtain a
map from a parameter space of submanifolds to a section space.

We are now ready to give an interpretation of the jet map of Theorem 4.6 in the spirit of scanning.
We take X and « as in the assumptions of that theorem. We also denote by n = dim¢ X the
complex dimension of X. The main observation is the following:

Lemma 7.1. For integers d, m, let Gr(d, C™) be the Grassmannian of complex d-dimensional planes
in C™ and ydL’m be the tautological quotient bundle. There is a homeomorphism
Yim — Gr(d +1,C" @ C) \ Gr(d + 1,C™)
(H,v) — (H,0) & (v, 1)

where Gr(d + 1,C™) is embedded inside Gr(d + 1,C™ & C) via P — (P,0). O

When V' is an n-dimensional complex vector space, the tautological quotient bundle over
Gr(n —1,V) = P(V) is homeomorphic to P(V & C) \ {*}. Hence its Thom space is P(V & C).
From the isomorphism J!Ox = Q% & Oy as smooth complex vector bundles, we see that

P(J'Ox) = Gr(n — 1,04 )10 = Gr(n — 1, TX) -1,

Under these identifications, the jet map
— Deo(Gr(n — 1, TX)-10)

is very close to the general idea of scanning described above. Given a hypersurface V' (s) C X,
the derivative x +— ds(x) records the tangent space when non-zero, i.e. near the hypersurface,
and x — s(z) records in some sense the distance to the hypersurface, an analogue of the normal
vector.

(0%
hyp

7.2. Configuration spaces on curves. Let us now describe the case n = 1 in more details. The
variety X is then a curve and we think of @ € NS(X) as an integer under the isomorphism
NS(X) C H*(X;Z) = 7Z given by the complex orientation. A hypersurface of Chern class « is
simply an unordered configuration of o points and we have a homeomorphism

hyp =5 UConf,(X)

(€] € Pic*(X), [s] € Tus(Pyg))/C*) — V([s]).
There is also an identification
P(J'Ox) = Gr(0, TX)%1 2 TX

with the fibrewise one-point compactification of the tangent bundle. In [McD75], McDuff studied
a scanning map on configuration spaces of points on a manifold, i.e. spaces of 0-dimensional
submanifolds. In the present work, we instead study (complex) codimension 1 submanifolds. On a
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curve these agree and we recover a special case of McDuff’s theorem, although our scanning map
is now more algebraic in nature:

Theorem 7.2. Let X be a smooth projective complex curve of genus g. Let « € H*(X;7Z) = 7 be
such that o > 2g — 2. The jet map

UConf,(X) =2 M2 — T%(P(J'Ox)) 2 T8 (TX)

— 77 hyp
. . . .. . a—2g—3
induces an isomorphism in integral homology in the range of degrees * < =——.

Proof. This is a direct consequence of Theorem 4.6. To verify the assumption on the ampleness of
a — ¢1(Kx), recall that the canonical divisor has degree 2g — 2 and that a line bundle of positive
degree is ample. The final bound is obtained by computing d(X, o) = o — 2¢g using Riemann-Roch
as explained in Lemma A.1. 0J

Remark 7.3. The observations above lead us to ask about subvarieties of greater codimension: could
the spaces Gr(n — c, Q}()%iw be related to Hilbert schemes of codimension c smooth subvarieties?

8. CHARACTERISTIC CLASSES AND MANIFOLD BUNDLES

In this section, we comment on the stable rational cohomology of I',s(£)/C*. Our main motiva-
tion is trying to relate it to the stable cohomology of moduli spaces of manifolds as investigated
by Galatius and Randal-Williams [GRW 14, GRW17, GRW18]. None of this section uses the new
results of this article, and will in fact be deduced entirely from [Aum22]. Nonetheless, we think
that its fits naturally with the “moduli space point of view” adopted in this paper.

We will assume that dim¢ X = n > 4 and that the fundamental group of X is virtually polycyclic
to apply the results of [GRW19,Fri17]. We also choose a very ample line bundle £ on X.

8.1. Recollections on stable classes. We begin by recalling from [Aum22] the geometric in-
terpretation of the stable classes in the rational cohomology of I',s(L). As we are here mostly
interested in the quotient by the scalars C*, we point out the following observation that we learned
from [Das21, Lemma 2.7]:

Lemma 8.1. There is an isomorphism of H*(T',s(L); Q)-modules:
H*(Tns(£); Q) = H*(I'ns(£)/C Q) @ HY(C; Q).

Proof. Let A: T'(L) — C be the discriminant (see [GKZ94]) so that I",s(£) = T'(£) \ A~1(0). There
is a fibre bundle

C* — D(L) — Do(L)/C

and for any fibre the map C* — I',,s(£) 3 C*is of degree deg(A) # 0, hence an isomorphism
on rational cohomology. The lemma then follows by the Leray-Hirsch theorem. O

Consider the universal bundle of hypersurfaces:
V(s) — U(L) :=={(s,x) € Tis(L) x X | s(x) = 0} == T's(L).
At each point (s, z) € U(L), the derivative ds(x) is non-zero, thus giving a map
j:UL) — Q% ® L\ 0.
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For £ ample enough such that the Euler class of 4 ® L is non zero, the cohomology of the target
of j in degrees * > 2n is

H=ZM(Q4 @ £\ 0;Z) = HZYX; Z)[2n — 1],
where [2n — 1] indicates a shift of degrees.

Proposition 8.2 (Compare [Aum?22, Proposition 8.6]). Let L be a d-jet ample line bundle on a
smooth projective complex variety X . Suppose furthermore that the Euler class of Q% ® L is non-zero.
Then the morphism given by pulling back along j and integrating along the fibres of m

mo s A(HZM(Q © £ 0;Q)) — H*(D(L£);Q) — H*(Tus(£)/C*5 Q)

is an isomorphism in the range of degrees x < %. (The second arrow is obtained from Lemma 8.1 by
projecting away from the second tensor factor.) 0J

8.2. Comparison with diffeomorphisms. Let us fix a non-singular section s € I';(£) and
write H := V(s) for the associated hypersurface. From the point of view of the Hilbert scheme
developed in Section 3, the subspace I',,s(L£)/C* classifies algebraic bundles with fibres equivalent
to H (as divisors) and embedded in X. Seeing H only as a smooth oriented real manifold, one can
consider the classifying space BDiff" (H) of its group of orientation preserving diffeomorphisms.
By definition, this latter space classifies fibre bundles with fibre H and structure group Diff*" (H).
In particular, there is a map

I's(L)/C* — BDIft™ (H) (10)
classifying the universal bundle

U(L)/C* = {(|s],2) € Twe(L)/T* x X | s(z) = 0} " Tpo(L)/C*. (11)

One could wonder if the map (10) induces an isomorphism in rational cohomology in a range of
degrees. This was shown to be false when X = P" and £ = O(d) by Randal-Williams [RW19].
On the other hand, one could alter the situation by considering diffeomorphisms preserving other
kinds of tangential structures: we have picked orientation, but could have chosen a spin structure in
some cases, or a map to a background space, etc. We describe below a peculiar tangential structure
6 such that the map classifying the universal bundle

(L) — BDift?(H)
is “very close” to being a rational homology isomorphism in a range of degrees.

Remark 8.3. Although the space I',,s(L)/C* is more geometrically natural, we will only be able to
produce a map to BDift?(H) from T's(L). Nevertheless, by Lemma 8.1 the quotient map induces an
injection in rational cohomology

H*(Ths(£)/C Q) — H¥(Ths(£); Q)

which will be good enough for our arguments.

Choose maps [T'X|: X — BU(n) and [£]: X — BU(1) classifying respectively the tangent
bundle of X and L as topological complex vector bundles. Let B be the space defined by the
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following homotopy pullback square:
B > X

l l([TX], 1<) (12)
BU(n — 1) x BU(1) ———— BU(n) x BU(1)

(o )

where “@®”7: BU(n — 1) x BU(1) — BU(n) classifies taking the direct sum of vector bundles.
We will adopt the point of view of spaces over BO(2n — 2) to describe tangential structures.
(See [GRW 19, Section 4.5] for a discussion.) In this language our tangential structure is the map:

0: B—s BU(n—1) x BU(1) 2% BU(n—1) — BO(2n — 2).

Remark 8.4. Informally, a O-structure on a (2n — 2)-manifold M is the datum of a lift of the map
classifying the tangent bundle:

-
-
-
-
- 0
-
-
-

up to homotopy. By the universal property of the homotopy pullback, this amounts to providing two
maps
M — BU(n—1)x BU(1) and M — X

which become homotopic after further composing to BU (n) x BU (1) and such that M — BU (n—1)
classifies the tangent bundles of M. In other words, this is the data of a map : M — X and a complex
line bundle L' (corresponding to M — BU(1)) such that TH ® L' = *T X and .*L = L'. Therefore,
a 0-structure on M should be intuitively interpreted as a choice of an immersion v: M — X with
normal bundle .* L.

We have chosen to construct B via the homotopy pullback (12) as it allowed us to informally
understand the geometric meaning of a f-structure. But it turns out that we can give more familiar
expressions for B and the bundle classified by 6 as explained in the following two lemmas.

Lemma 8.5. There is a homotopy equivalence above X
B~Qy®L\DO0.
Proof. We will use the following explicit point set models:
BU(j) := {P c C* | Pisa j-dimensional plane},
2y = {(P,v) | P € BU(j), ve P},
v, = {(P,¢) | P € BU(j), ¢: P — C linear map},

for the classifying space, and its tautological vector bundle and the dual of it. Recall that the
classical fibration sequence

C*"\0 — BU(n—1) — BU(n)
can be modelled by the sphere bundle of the dual tautological bundle using the homeomorphism
YWN\NO0X BU(n—1), (P,g: P — C)+ ker(p).
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From the pullback square

BU(n —1) > BU(n)
Lo !
BU(n —1) x BU(l)(M)BU(n) x BU(1)

we see that the homotopy fibre of the bottom map is C" \ 0. In fact, we can likewise model the
fibre sequence

C"\ 0 — BU(n —1) x BU(1) "2%? BU(n) x BU(1)
by the sphere bundle 7’ X v; \ 0. Indeed, we may write
YRy \0={(P,L,po®v)| PeBU(n), L€ BU(1), p@ve P’ ®L\O0}
and use the homeomorphism
WXy \0= BU(n—1) x BU(1), (P,L,o®v)r (ker(p ®@v),L).
Under these identifications, one can check that the map “ @ ” can be modelled by
(P,L,p®@v) — ker(p®@v)d L C C*qC®=C™.
Hence, by pulling back along ([T'X], [£]), one sees that B ~ Q} @ £\ 0. O

Lemma 8.6. Let q: QY ® £\ 0 — X be the projection. The virtual vector bundle ¢*(TX — L) is in
fact the genuine vector bundle 0*~y classified by the map 0: Q% @ L\ 0 — BO(2n — 2).

Proof. We will use the homeomorphism
D@L\ {(z,9) |z € X, ¢: TX|, - L|, surjective linear map}

given by identifying a non-zero vector of (2% ® £)|, with a surjective linear map. As one sees
from the point set models described in the proof of Lemma 8.5, the pullback vector bundle 6%~
classified by 6 is equivalent to the one whose fibre above a point (z, ¢) is given by the kernel of ¢.
Writing out the vector bundles

¢TX ={(2,0,0) | (x,0) €A RL\O, veETX|,},
L ={(z,0,0) | (2,0) €V ®L\O, v L}
we identify 0 as the kernel of the morphism of vector bundles
(TX — gL, (z,0,0) — (2,0, 0(v)).
We thus obtain the short exact sequence of vector bundles
0 — 0"y —q¢gTX —q¢L—0
which proves the lemma. U

Let H = V/(s) be a smooth hypersurface with s € I',;(£). Using non-singularity, we obtain a
map (: H — QL ® £\ 0 given by {(x) = ds(z).

Lemma 8.7. The map (: H — Q% @ £\ 0 is (n — 1)-connected.
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Proof. The inclusion ¢: H — X factors as
H-50 oL\0— X

where the second map is the projection map of the bundle, hence (2n — 1)-connected. Therefore it
suffices to show that .: H — X is (n — 1)-connected. But this is precisely the Lefschetz hyperplane
theorem. O

The maps ¢ for all hypersurfaces assemble to equip the universal bundle with our tangential
structure:

Proposition 8.8. The universal bundle U(L) — I'ns(L) admits the structure of a smooth fibre bundle
with 6-structure given by { in each fibre.

Proof. Let T, U(L) be the vertical tangent bundle of the universal bundle. We have to provide the
horizontal maps in the following diagram to construct a vector bundle map

T,U(L) —— 0%y

| !

UL) —— QL ® L\ 0

which restricts to a linear isomorphism in each fibre. Using the notation from the proof of Lemma 8.6,
we write

QD @L\NO={(2,9) |2 € X, ¢: TX|, — L], surjective linear map}
and

0y = {(x,0,v) | (x,0) € QA @ L\O, v E ker(p)}.

Differentiating a non-singular section s: X — L yields a short exact sequence of vector bundles

0—TV(s) —TX 2 £—0
which shows that ker(ds(z)) = TV (s)|.. Hence, taking
UL) — Q@ L\0, (s,2)— ds(z)
and its fibrewise vertical differential gives the wanted square. 0J

Let us now look at hypersurfaces of higher degree. For every integer d > 1, we pick a section
sq € Tps(L£L®?) and write Hy = V (s4) C X for the associated hypersurface. Replacing £ by £%¢
in the diagram (12), we obtain spaces By ~ Q% ® £%¢\ 0. We write 0;: By — BO(2n — 2) for
the tangential structure and ¢;: H; — B, for the tangential structure on H,; induced from the
inclusion inside X. Let

M4 (Hy, lg)
be the connected component of (H,, ¢;) in the classifying space of H,-bundles with 6,;-structure.

(See [GRW19, Section 2.2] and the references therein for precise definitions.) Work of Galatius and
Randal-Williams provides the following:
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Theorem 8.9 (Compare [GRW 19, Theorem 4.5]). Using the notations as above, let « = ¢1(L) and
N = [, a1 £ 0. There is a map

Med(Hdagd) — QCMTO,; ~ Q> (Qﬁ( ® L4 \ 0)‘1*5®d—q*TX

which, when regarded as a map onto the path component that it hits, induces an isomorphism in
integral homology in degrees * < %Cal’”rl +0O(d"), for some constant C' depending onn and satisfying
L BN <

2 15t =

Proof. The connectivity assumption of [GRW19, Theorem 4.5] is verified in Lemma 8.7. The
identification of the Thom spectrum is given by Lemma 8.6. Finally, the range given is explained
in [GRW19, Remark 5.6] 0

Lemma 8.10. Suppose that the Euler class of 0} ® £ does not vanish. Then there is an isomorphism
of commutative rings

H*(M%(Hy, 03);Q) 2 A(H™ ' (X)[1] @ H'(X)[2] ® H*(X)[3] & - -- @ H*(X)[2n + 1))
= A(H (X)[1)) © A(H*(X)[o + 1)
where H'(X)[j] denotes the graded Q-vector space H'(X; Q) placed in degree j.

Proof. This is a well-known computation in rational homotopy theory using the Thom isomorphism.
See for example [GRW 19, Remark 4.2]. O

By Proposition 8.8, the universal bundle is pulled back along a map
Lo (L27) — M (Hy, Ly).

Our work describes the stable rational cohomology of the domain, whereas Galatius and Randal-
Williams compute the one of the codomain. The relation between the two rings of characteristic
classes is summarised in the following result:

Theorem 8.11. Let i > 0 be an integer and let d > (0 be big enough so that
H* (M (Hy, €2); Q) = A(H*""H(X)[1]) @ A(H**(X)[e +1])
and
H*([an(£50)/C5 Q) 2 A(H*(X)fo +1])
in degrees x < i. The map classifying the universal bundle
Fns(£®d) — Med (Hd, gd)

induces a ring morphism in rational cohomology with the following properties in cohomological degrees
* < g:

(i) Its restriction to A(H*>°(X)[e + 1]) C H*(MP(Hy, £y); Q) is injective.

(ii) Its restriction to A(H*"(X)[1]) € H*(M(Hqy, £4); Q) is zero.
In particular, its image in degrees x < i is the subring H*(T',s(£)/C*; Q) C H*(T'ws(£); Q).
Remark 8.12. In other words, under the identifications of the theorem, the morphism induced by

the classifying map in cohomology in degrees x < i coincides with the projection away from the first
tensor factor

AHTHX)[1]) @ A(H(X)[o + 1]) — A(H*>(X)[e +1])
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up to an automorphism of the target (depending on the exact representatives chosen for the stable
classes).

Proof. Recall from [GRW19, Section 3.1] that the characteristic classes of ;-bundles are given by
integration along the fibres. From the similar description given in Proposition 8.2, we see that, in
degrees * < i, a basis of

H*>(X)[e +1] € H*(M"(Hy, l); Q)
is sent to a basis of
H*>(X)[e +1] € H*(Tus(L5); Q)
under the morphism induced by the map classifying the universal bundle. This proves the first
point. To prove the second, we recall that the image of a element w € H?" !(X) is the fibre
integration
m(i*w) € H*(Dp(£%%); Q)
where 7 is the universal bundle, and i: U(£®?) — X x [',o(£®?) — X is the map (f, x) — .
From the commutative diagram

U(L£87) — To(£89) x X

a Jpre

Do (L8 =—= T,,x(LE%)

we compute that
m(i*w) = (proh(1 @ w) = wN [X] = 0.
The final remark about the image follows from Lemma &.1. O]

Corollary 8.13. Suppose that H*"~(X; Q) vanishes (e.g. X is simply connected) and let i, d be as
in Theorem 8.11. Then the maps in the zigzag

[ (L8 /C* — Ty (L8 — MO (Hy, 0y)

induce inclusions in rational cohomology in degrees x < ¢ with the same image. In particular, the
outer spaces have isomorphic rational cohomology in degrees * < 1. 0

8.3. The C* action and the classifying map on the quotient. It might be unsatisfying to only
have a zigzag of maps in Corollary 8.13. This situation can be improved if one is willing to map
to a certain quotient of M%(H,, {4) as we now explain. To lighten the notation, we drop the
subscript d everywhere and first work with a hypersurface H = V (s) given by a non-singular
section s € I',5(£) as in the beginning of the previous part. Recall the following point-set model
(see e.g. [GRW 14, Definition 1.5]):

MO (H,t) = (EDiff(H) x Bun(TH, 6*v; ()) /Diff (H)

where Bun(T H, 6*~; ¢) denotes the connected component of ¢ in the space of bundle maps®. Recall
also from the proof of Proposition 8.8 the point-set model:

0"y ={(z,0,0) | (z,9) € Ax ® L\ 0, v € ker()}.

*As in the previous part, we slightly abuse notation by writing ¢ for both the map H — B and the map TH — 0*~
covering it. We started doing this in Proposition 8.8.
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The group C* acts fibrewise on the vector bundle Q% ® L, thus on 0*y via
A (z,0,0) = (2, A - p,v) for A € C*¥,

and therefore acts on M?(H, £) by post-composition on bundle maps.
Let A: I's(£) — C* be the discriminant (see [GKZ94] for a reference) and let

Hdeg A C CX

be the cyclic subgroup of the (deg A)" roots of unity. There is a commutative diagram whose top

two rows and leftmost two columns are fibre bundles:

ftaega — A1) —— A1)/ ptaega

[

C* —— (L) — T's(L£)/C*
L
C*/geg n —— C*
The inverse of the homeomorphism
A1)/ paeg s — Tus(£)/C*
is explicitly given by s +— A(s)~/ €2 . 5 This readily implies:
Proposition 8.14. The zigzag of Corollary 8.13 can be extended to a commutative diagram:
[(L) ———— MY(H, ()
! !
[ (L)/C* —— MO(H, )/ tigeg A
where both vertical arrows are quotient maps and the bottom arrow is the induced map
Lus(L£)/C* 2= ATH1) Jptacg s —> M (H, 0)/pacg - ]
Corollary 8.15. Leti,d and X be as in Corollary 8.13. Then the map’
o (L54)/C — M4 (Hy, lq) [ pracg &
induces an isomorphism in rational cohomology in the range of degrees * < 1.
Proof. 1t suffices to see that the quotient map
MO (Hy, bg) — MO (Hy, 0g)/ fhaeg A

induces an isomorphism in rational cohomology. As the action is free, the quotient is the homotopy
orbit and we thus have a fibration:

MO (Hy, bg) — MO (Hy, 0g)/ ftaeg s — Blldeg A-

The monodromy action of 71 (Bfigega) = fldega On the cohomology of the fibre is trivial as it
can be extended to the connected group C*. A finite group has trivial rational cohomology, here
H*(Bligeg a; Q) = Q, and the result follows. O

The discriminant A depends on d but we suppress this in the notation.
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Remark 8.16. By general theory, a map from a spaceT' to the homotopy orbit space M®(H, () [/ ftaeg A
is given by a principal [14eg n-bundle P — T and an equivariant map P — M°(H, (). From that
point of view, the map

Tus(£)/C* — M(H, )/ praeg &
is given by the datum of a 0-structure on the pullback of the universal bundle along the étale cover
A1) — Ts(L)/C*
with Galois group fiqeg A-

8.4. En red sild. We finish this section by a remark on the infinite loop space from Theorem 8.9.
As explained in [Aum22, Theorem 8.11], there is a map

Fns(ﬁé@d) SN Qoo+1Xch®d—TX

which induces an isomorphism in rational cohomology in the range of degrees * < %. ° To
compare this infinite loop space with the one appearing above, we will use the following well-known
lemma:

Lemma 8.17. Let V, W be two vector bundles on a space Z. We may assume that W is a virtual
vector bundle. Then there is a cofibre sequence of Thom spectra:

SV — 2V — 2V,

Proof. The Thom space Z" is defined by collapsing the sphere bundle S(V/) inside the disc bundle
D(V'). Thus there is a cofibre sequence of spaces

S(V) < D(V) — ZV.

The lemma follows by passing to Thom spectra with respect to the virtual bundle W and using the
equivalence D(V) ~ Z. O

Applying the lemma to Z = X,V = Q% @ L% and W = L®? — T X yields the fibre sequence
of spaces

QX TN 080 @ LON)ETTN e £

in which we recognise the two infinite loop spaces appearing earlier in this section. Finally, let us
remark that the rational homotopy type of the rightmost space

(XN = HA(X; Q) x K(H'(X;Q), 1)
is not far from that of Pic(.X). This was one of the starting observations for the present article,

although it now seems to me to be red herring.

®To be precise, [Aum22, Theorem 8.11] only states that the map is 2n-connected. However the connectivity solely
appears as the connectivity of the map S?"*1 — °°3°° 527 +1 The latter is a rational equivalence, and the proof can
be repeated after rationalisation.
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APPENDIX A. RANGE ESTIMATES FOR JET AMPLENESS

A.1. The case of curves. When X is a curve, that is of dimension 1, one can give an explicit
formula for the jet ampleness of a line bundle depending only on its degree.

Lemma A.1. Let X be a smooth projective complex curve of genus g. Let L be a line bundle on X
and denote by ¢ (L) € H*(X;Z) = 7 its degree, i.e. its first Chern class. Let d > 1 be an integer. If
c1(L) > 2g — 1+ d then L is d-jet ample.

Proof. As there is only tangent direction at each point on a curve, to show that L is d-jet ample it
suffices to show that the restriction map

H(L) — H°(L® Oy)
is surjective for all subschemes Z C X of length d 4 1. Recall the short exact sequences of sheaves
0 —2Z;, —0x — 0z —0

where 7, denotes the ideal sheaf of Z. From the long exact sequence in cohomology, we see that it
suffices to show that

HY(L®I;)=0.
By Serre duality, this group is isomorphic to H(Ky ® L~'®Z,"') where K x is the canonical sheaf.
It is now enough to show that Kx ® £7! ® Z,' has negative degree under the assumptions of the
lemma. This follows by computing that deg Z,* = d +1,deg £L~! = —¢; (L) and deg Kx = 29 — 2
by Riemann-Roch. OJ

A.2. The case of toric varieties. When X is a smooth projective toric variety, its fundamental
group is trivial, hence the Picard scheme is discrete. In that case the results of this paper are simply
obtained from [Aum22]. We nevertheless comment on how to compute the jet ampleness of a line
bundle to give a sense of the difficulty of the problem.

The basic idea is as follows: if £ is a d-jet ample line bundle on X, then so is its restriction to any
rational curve on X. On such a rational curve C' =~ P!, a line bundle is of the form Op:(a) and is
d-jet ample if and only if @ > d. Now there are some distinguished curves on X, namely the ones
invariant under the torus action, and it turns out to be enough to check jet ampleness on them:

Theorem A.2 (Compare [Roc99]). Let L be a line bundle on a smooth projective toric variety. Then
L is d-jet ample if and only if L - C' > d for any torus invariant curve C' C X.

In [Roc99], Di Rocco also proves two more equivalent criteria for jet ampleness in terms of
convexity of the support function of £ and Seshadri constants at each point of X. We refer to
that paper for the full details. Importantly for us, the criterion shows that d-jet ampleness can be
checked by a finite number of inequations.

A.3. Fujita’s conjecture and jet ampleness on surfaces. Whereas Kleiman’s criterion shows
that ampleness is a numerical property, jet ampleness, or even just very ampleness or global
generation, is a trickier question to settle. In 1985, Fujita proposed the following conjecture which
remains unsolved in general:

Conjecture A.3 (Compare [Fuj87]). Let X be a smooth projective complex variety of dimension n.
Let A be an ample line bundle on X. Then Kx + (n + 1)A is globally generated, and K x + (n+2)A
is very ample.
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In dimension 1, the conjecture follows from the Riemann—-Roch theorem. In higher dimension,
the approach taken for curves would require proving a Kodaira-type vanishing theorem for non-
invertible sheaves. However, in dimension 2, the conjecture was solved by Reider by different
means:

Theorem A.4 (Compare [Rei88]). Fujita’s conjecture is true forn = 2.

We recommend the lecture notes of Lazarsfeld [Laz94] for a beautiful introduction to Fujita’s
conjecture and Reider’s theorem.

A4. A few general remarks. Although effective vanishing theorems like Riemann-Roch do not
exist in higher dimension, there exist alternatives that can be used to provide qualitative statements
about jet ampleness. The starting observation is the following cohomological criterion:

Lemma A.5. Let L be a line bundle on a smooth projective variety X of dimensionn. Let d > 1 be
an integer. Then L is d-jet ample if the cohomology groups

HY L ®Iy)

d .

vanish for all 0-dimensional subschemes Z C X of length (”J“;*l), and ideal sheaf 7.
=0

J

Proof. By definition, L is d-jet ample if the evaluation map
l
H(L) — HO(L/my" - my") = D HO(L/myY)
i=1

is surjective for all distinct closed points x1, . . . , x; with associated maximal ideal sheavesmy, ..., my,
and all integers k; > 1 such that > k; = d + 1. For a closed point with ideal sheaf m and k£ > 1 an
integer, the subscheme given by the ideal m* has length Zf;é ("Jrj*l). Therefore the subscheme

7 given by the ideal sheaf m}" - . mfl has length

I k-1 : d :
\ n+j—1 n+j—1
2=y ("= (")
i=1 j=0 J =0 J

Now, if Z is a subscheme with ideal sheaf Z, then surjectivity of H°(£) — H°(L ® Oy) is implied

by vanishing of the cohomology group H'(L ® Z) as one sees from the long exact sequence in
cohomology associated to the short exact sequence of sheaves0 -7, - Ox - O, — 0. U

Remark A.6. The results of [Aum22] are stated in terms of the jet ampleness of L, which is why we
use the same phrasing in this paper. But in fact, as we are only concerned with conditions on the first
order derivatives of sections, we could settle for the following ad hoc weaker notion: a line bundle L is
d-good if the evaluation map

H(L) — @ HO(L/m3)

is surjective for all distinct closed points x1, ..., x; with associated maximal ideal sheavesmy, ..., my,
and 2l < d + 1. We claim that the proofs of [Aum22] go through to study I',,s(L) with this weaker
assumption. However, as the bounds we obtain to estimate d-goodness or jet ampleness are not very
explicit, we have opted for the stronger assumption of jet ampleness which is more commonly studied.
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Proposition A.7. Let X be smooth projective complex variety. For any integer d > 1, there exists a
class o € NS(X) such that all line bundles of first Chern class equal to v are d-jet ample.

Proof. The plan of attack is to start from any component of the Picard scheme and tensor all line
bundles on it by a chosen very ample line bundle. This yields an isomorphism with another Picard
component, where one hopes that the locus of those line bundles that are not d-jet ample has been
shrunk. By repetitively doing this procedure one should arrive at a component that only contains
d-jet ample line bundles. Let M = Z;l:o (”+j _1) and define

E. :={(Z,L) € Hilby (X) x Pic*(X) | H'(L ® Tz) # 0} C Hilby (X) x Pic*(X)

for any Chern class @ € NS(X). Here Hilby/(X) denotes the Hilbert scheme of length M 0-
dimensional subschemes of X. By upper semicontinuity of cohomology, E, is a closed subscheme.
Let p: Hilby (X) x Pic(X) — Pic(X) be the second projection. By properness of the Hilbert
scheme, the image p(E,) C Pic®(X) is closed. This image is exactly those line bundles which
do not satisfy the cohomological criterion of Lemma A.5. By properness of Pic®(.X), it has only
finitely many irreducible components. We will want to reduce their number, up to changing the
Chern class a.
Let £y € p(E,) and consider the subscheme

E(Lo) := {Z € Hilby (X) | H (Lo ® Ty) # 0} C Hilby (X).

Again, upper semicontinuity of cohomology shows that it is a closed subscheme. Let Z € E(Ly).
Its ideal sheaf 7 is a coherent sheaf on X, so by Serre vanishing theorem there exists a very ample
line bundle A on X such that H'(Ly® A®Z;) = 0. Furthermore, if Z’ was another 0-dimensional
subscheme such that H'(Ly ® Zz/) = 0, then H'(Ly ® A ® Iz ) = 0 also. Therefore, we have a
strict inclusion of closed subschemes

E(Ly® A) € E(Ly).

By properness of Hilb,, (X ), the same argument can be repeated a finite amount of times to obtain
a very ample line bundle A’ such that £(Ly ® A’) is empty.
Now consider the isomorphism given by tensoring with A’:

o

— @ A’: Pic®(X) — Pic®™ (X)
where o/ = ¢;(A’). By what we have seen
P(Eotar) G p(Es) @ A,

so that p(FE, ) has strictly fewer irreducible components than p(E,) (if non empty). Repeating
this argument reduces the number of irreducible components until we find a § € NS(X) such
p(Ej) is empty. For this Chern class, all line bundles are d-jet ample by Lemma A.5. 0

Remark A.8. For surfaces, there is a simpler and more explicit proof using Fujita’s conjecture. Indeed,
the image of the ample cone under the map A — Kx + (n + 2)A is a cone, and any line bundle
having Chern class in that cone is very ample by Reider’s theorem. If L is a very ample line bundle,
the component of the Picard scheme corresponding to Kx + (n + 2)A + (d — 1)L only contains line
bundles that are d-jet ample.
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HOMOLOGICAL STABILITY FOR THE SPACE OF HYPERSURFACES
WITH MARKED POINTS
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ABSTRACT. We study the space of smooth marked hypersurfaces in a given linear system. More
specifically, we prove an h-principle relating its homology to that of a space of sections of an
appropriate bundle. Using rational models, we explain how to compute its rational cohomology in a
range of degrees, and deduce a homological stability result for hypersurfaces of increasing degree.
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1. INTRODUCTION

Consider a connected smooth complex projective variety X with a line bundle L. Let U(L) C
['ho1(£) be the open subset of non-singular holomorphic global sections of £ and consider the
incidence variety:

Z(L)={(f,2) e U(L) x X | f(z) =0} C That(L) x X.
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If we take the sections modulo scalar multiples, i.e. quotient by the action of C*, we get the
space of L-hypersurfaces given by U;/C* and the universal non-singular L-hypersurface given by
Z(L)/C*." In rational homology the C* behaves like a direct factor, see Lemma 3.2, and we will
not worry about this quotient in the rest of the paper.

More generally, let Z" (L) be the bundle over U(L) whose fiber over f is F"(V(f)), the configu-
ration space of r distinct points on the vanishing locus V(f) of f, topologized as a subspace of
U x X". Explicitly,

Z2(L) = {(f,21,...,2;) €ETha(L) x X" | f € U(L), f(x;) =0, x; # x; fori # j}
is the space of L-hypersurface sections with r distinct marked points.

Theorem A. Assume that X is simply connected. Suppose L is ample and fix r > 1. Then for each 1,
there exists’ a dy such that for all d > d, we have an isomorphism

HY(Z (L), Q) = H'(A,(L))
where A,.(L) is the commutative differential graded algebra explicitly described in Construction 5.5.

This isomorphism is &, equivariant and preserves cup products (when d is appropriately large). In
particular, H/(Z"(L%%); Q) stabilizes with d, as an &, -representation.

We conjecture that the classes in H*(Z"(£®%); Q) for different d that are identified by these
isomorphisms should also have the same Hodge weights (see Section 5.5). As a supporting fact,
the consequent stabilization of Hodge—Euler characteristics was observed by Howe [How19]. The
analogous statement for r = 0 was proved for X = P" by Tommasi [Tom14] and for general X in
[Aum22] and [DH22].

There are no obvious maps between Z"(£L??) for varying d and the stability in Theorem A
is (to our knowledge) not induced by such maps of spaces. Nevertheless, the isomorphism in
Theorem A is not just an abstract isomorphism once we ascribe more meaning to A,(£). As an
algebra it is generated by a CDGA model for F"(.X), a shifted copy of H*(X;Q), and 2r additional
classes, r each in degrees 2n and 2n — 1, where n = dim X. These extra classes correspond to the
fundamental classes of the tangent spaces and jet spaces of X at the » marked points.

Remark 1.1. The dependence of the CDGA A, (L) on X and L is only via the graded ring H*(X),
its Poincaré pairing, and the Chern class of L. Therefore the same is true for the stable cohomology
in Theorem A.

In fact, in Theorem 5.9 A,(L) is identified’ as a rational model for a continuous analog of
77 (L£®?). Explicitly, let J'L be the first-order jet bundle of £ and define Z,(£) by imitating
the construction above while replacing U (L) by an analogous open subset Ugo (L) of the space
[co(J'L) of continuous sections; see Section 3 for a precise definition. There is a jet-expansion map

jl : Fhol(£) — Fco<J1£)

which lies below an &,.-equivariant map Z" (L) — Zjo(L), which we will also call a jet-expansion
map and denote by j!.

UIn a different language, these spaces are respectively the open locus of smooth divisors inside the complete linear
system |£| and the restriction of the universal flat family above it.

21t suffices to take do = 1 4+ max(|x(X)|, k(2i + 2r + 3)), with k such that £L®* is very ample, by combining the
bounds in Theorem B and Remark 5.11.

3Even though A,.(£) does not depend on d, the identification of the generators does and also crucially requires
rational coefficients, cf. the proof of Theorem 5.9.
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Recall that if £ is very ample then £%? is d-jet ample (see Definition 2.7 for the definition of jet
ampleness). Then the following theorem, combined with the computation of H*(Zj0(L£); Q) from
Theorem 5.9 and Proposition 5.12, refines Theorem A:

Theorem B. Letr > 1 and L be d-jet ample for some d > 2i + 2r + 3. Then the jet expansion map
j' induces an isomorphism

Hi(Z"(L); Z) = H;(Zpo(L): Z) .

For the rest of the introduction we will use cohomology with rational coefficients but will
suppress it from the notation for the sake of brevity and readability.

Theorem 1.1 in [Aum22] (see also [DH22; Tom14]) should be thought of as the » = 0 case of
Theorem B, comparing just the space U(L) of nonsingular sections, without any markings, with
the analogous continuous section space Uco(L). Given this result and the definition of Z"(£), it
seems reasonable to use the Serre spectral sequence of the fiber bundle Z"(£) — U(L), which for
r = 1 in fact degenerates on the Fs page (by the Deligne degeneration theorem). The terms of this
spectral sequence are given by the cohomology of U(L) with certain local coefficients, with stalk
H*(V(f)) at f € U(L). However, the usual technique for controlling the cohomology of U (L) (in
[Aum22] and elsewhere) is to pass to the complement in I',,) (L) by Alexander duality and any
non-trivially twisted coefficients on U(L) cannot possibly extend to this contractible space.

In contrast, what actually lets us make progress is the other projection Z"(£) — F"(X). While
we do get a Serre spectral sequence for the fibration Zgo (£) — F"(X), on the algebraic side the map
Z"(L) — F"(X) is not" a fibration even when L is highly jet ample. It is however a microfibration
(see Definition 4.3). In Section 4.1 we use this fact to reduce the proof of Theorem B to establishing
a homology isomorphism (in an appropriate range) on each fiber. To be more precise, we establish
such a fiberwise homology isomorphism in Theorem 6.1, after replacing the map Z" (L) — F"(X)
by the map Z" (L) — (% ® L) |5 (x),

(faxla“-»xr) = (df($1)7,df(337»)),

that records not just the marked points but also the (necessarily non-zero) derivatives of the section
at each of these points.

The special case of r = 1, X = P" (and £ = O(d) for large d) was treated in [Ban21]. It general
the r = 1 case has a slightly different flavor than r > 1, partly because the fiber F'(£) = Z(£) —
U(L) is projective. We discuss this case in more detail in Section 1.1.2.

1.1. Applications and computations.

1.1.1. Unordered marked points. While the configuration spaces in the rest of the paper are ordered,
let us deal with the unordered case here. The symmetric group &, acts on Z" (L) C T'po1(£) x F"(X)
by permuting the coordinates of F"(X). The map Z"(£) — U(L) descends to the quotient
7Z"(L)/6, — U(L), and this map is also a fiber bundle, now with fiber F"(V(f))/&,, the unordered
configuration space of V(f), over f € U(L). The analog of Theorem B holds with the same proof,
or with rational coefficients we can just use the transfer isomorphisms

H*(Z'(£)/6,;Q) = H'(Z'(£); Q).

In particular we have the following analog of Theorem A:

“At least not in general, excepting when Aut(X) acts transitively on F"(X).
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Corollary 1.2. If L is very ample and d is sufficiently large then
HY(Z'(£5)/6",Q) = H'(A,(L)").
In particular, dim H'(Z"(L®?)/&,; Q) stabilizes for large d. O

1.1.2. Marking a single point. For r = 1, the space Z'(£) = Z(L) is the “universal L-hypersurface”.
In this case the computation of H*(A;(L)) is relatively simple and we recover the following explicit
description:

Corollary 1.3. Assume that X is simply connected. Suppose L is d-jet ample. Writing Q% @ L — 0
for the complement of the zero section of Q% ® L, we have the following isomorphism in the range
x < %:
H*(Z(£);Q) = H* (2% ® £ — 0;Q) ® Sym,, (H*'(X —pt)).
In the range * < 2n — 2 (and for d sufficiently large) this follows from Nori’s connectivity

theorem [Nor93]. Taking X = P", we recover the stabilization (and stable cohomology) from
[Ban21, Theorem 1.1].

Remark 1.4. Corollary 1.3 gives us an exact criterion for when the stable cohomology of Z(L£)
is finite dimensional: H*(Z(L)) vanishes for i large and £ sufficiently jet ample (depending on
i) if and only if H*(X) is concentrated in even degrees. For instance, this holds if X is P" or
a Grassmannian but fails if X is a curve of positive genus. In contrast, for » > 1 the stable
cohomology is necessarily non-zero in infinitely many degrees for any X, this is already visible
in the weightwise Euler characteristic described in Section 5.5 and was noted in [How19] as a
required feature.
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2. CONFIGURATION SPACES AND JET BUNDLES

In this section, we provide a reminder on configuration spaces and jet bundles. As in the
introduction, X is a connected smooth complex projective variety of complex dimension n. We
write I',;(—) for the space of holomorphic global sections of a bundle on X.

2.1. Configuration spaces. For any topological space S, let F" () be the configuration space of
r ordered points in .S

F(S) = {(z1,...,3,) €S | w; £ xjfori#j}.

The symmetric group &, acts on F"(S5) by permuting coordinates. More generally, for Z — S,
define the fiberwise configuration space

Fi(Z) = F(Z)N 2%,
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where Z*s" denotes the r-fold fiber product Z xg Z X g --- X g Z. Denoting the fiber of Z over
s € S by Z,, we have a natural identification

Fo(Z)={(s,21,...,2) | (z1,...,2) €F(Z)} CSxF(Z)Cc SxZ".

In particular, the projection map F'g(Z) — S has fiber F"(Z;) over s € S. For convenience, we
define F§(Z) = Z and F4(Z) = S.

2.2. Jet bundles. In this work, we use jet bundles to suitably talk about derivatives of sections
of vector bundles. For the unfamiliar reader, we offer a minimal overview of the general theory
developed in [Gro67].

Let £ be a holomorphic line bundle on X. Its bundle of first order jets, defined in [Gro67,
Section 16.7], will be denoted by J' L. It is a holomorphic vector bundle on X of complex rank
dim¢ X + 1 which fits in an exact sequence of holomorphic vector bundles

0— QoL —JL—L—0 (2.1)

where )} is the cotangent bundle of X. Although this short exact sequence does not split in
general (in the category of holomorphic vector bundles), it informally indicates that the jet bundle
records the value (in £) and the first derivative (in Q) ® L) of sections of L. More precisely:

Definition 2.2. The short exact sequence above splits after taking holomorphic global sections.
Writing d f for the derivative of a global section f of £, the morphism

3" Thot(£) — Thot(J'L) = Thot(L) @ That(Qx @ £)
fr—=(f,df)
is called the (first order) jet expansion.

Example 2.3. Let us consider in more details the case where X = P" and £ = O(k) with k > 1. The
space of global sections I',,;(O(k)) can be identified with the complex vector space of homogeneous
polynomials of degree k£ in n + 1 variables. Writing 2y, . . ., 2,, for the variables, Euler’s identity

shows that knowing the n + 1 partial derivatives of a section f in the homogeneous coordinates
amounts to knowing the section. This fact can be leveraged to an isomorphism of holomorphic
vector bundles J'O(k) = O(k — 1)®"*1. (For a proof, see [DS98]. Note however that such a
splitting is very peculiar to projective spaces.) In that case, the jet expansion is given by

af af
€T (OK)) — [ ==, ..., = ] € Ta(O(k — 1))® 1,
e TualOW) — (5L, 5 ) € Pua(Oh = 1)
Definition 2.4. A global section f € D', (L) is said to be singular at x € X if the first jet
7(s)(x) = 0. It is called non-singular if it does not admit any singular point.

Remark 2.5. The vanishing locus of any non-zero global section f € I', (L) is the subvariety given
by V(f) :={z € X | f(z) =0} C X. When f is non-singular, V(f) is a smooth subvariety.

Example 2.6. In the situation of Example 2.3, a global section f is singular at a point z € P"

precisely when %(m) = 0forallz =0,...,n. This is indeed the more classical Jacobian criterion.
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The following property, jet ampleness, is the technical key to many arguments in this work:

Definition 2.7 (Compare [BRS99]). Let £ be a holomorphic line bundle on X. Let £ > 0 be an
integer. Let x1, ..., x; be t distinct points in X and (&, ..., k;) be a t-uple of positive integers
such that ). k; = k + 1. Write m,; for the maximal ideal sheaf corresponding to x;, and L, for the
stalk of £ at z;. We say that L is k-jet ample if the evaluation map

t
[hot (£) — EB Ly /mii Ly,
i=1

is surjective for any 1, ..., x; and kq, .. ., k; as above.

Remark 2.8. In the definition above, we wrote £ for the sheaf of sections of the line bundle to be
able to talk about its stalk. We shall be guilty of this slight abuse of notation throughout this article.
The back-and-forth between the two viewpoints is explained by Serre’s GAGA theorems [Ser56].

Remark 2.9. Let x € X, denote by m,, the corresponding maximal ideal sheaf, and by £, the stalk
of £ at x. The fiber of J' L at x is naturally identified with £, /m2L, and the jet map is the natural
quotient map.

3. MARKED HYPERSURFACES AND SECTION SPACES

We continue with the notation from the previous section. For a holomorphic bundle & — X,
recall that we denote the space of its holomorphic global sections by I'y,o1 (E). We will write I'co(E)
for the larger space of continuous global sections. Both section spaces are topologized as subspaces
of the continuous mapping space map(X, F), the latter being endowed with the compact-open

topology.

Let U(L) C I'noi(L) be the subspace of non-singular sections. The incidence variety
2(£) == {(f,2) | f(x) =0} C U(L) x X

is equipped with projections to U (L) and X; the fiber over f € U(L) is the smooth “L-hypersurface”
V(f) C X.

Definition 3.1. For r > 0, the space of L-hypersurfaces with r (ordered) marked points is
Z'(L) == Fp(Z(L)) CTha(L) x X"

The space Z" (L) comes with two projection maps: to U(L) and to F"(X). The fiber of the first
one over f € U(L) is the configuration space F"(V(f)). As V(f) = V(Af) for any A € C*, it
is perhaps more geometrically meaningful to consider a quotient of Z"(£) by C*. However, our
constructions are easier to be made before taking any quotient. Fortunately, we will mostly be
interested in the rational cohomology of Z"(L£) and the following lemma shows that it is mostly a
matter of convenience:

Lemma 3.2. Forr > 0, let C* acton Z" (L) C U(L) x F"(X) by acting by scalar multiplication on
U(L) and trivially on F"(X). Then this action is free and we have an isomorphism:

HY(Z"(£);Q) = HY(Z'(£)/C* x C*; Q).
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Proof. From the general theory of discriminants (see e.g. [GKZ94]) we get that U (L) C I',qi(£) is
the complement of a hypersurface defined by a polynomial A. Then for any (f,Z) € Z" (L), the
composite

C* 220D 7riey 5 U(L) B e

is a map of degree deg(A) # 0 and hence induces an isomorphism on rational cohomology. The
claim follows by applying the Leray-Hirsch theorem. O

The constructions above can be adapted and repeated in the setting of continuous sections. More
precisely, we write

Ueo (L) :={s € Teo(J'L) | s(x) #0, Vo € X} =Teo(J'L = 0).

To define the analogue of the incidence variety Z(L), we have to find a corresponding notion
of vanishing at a point for sections of the jet bundle. Remark that the evaluation of a section
f €Tco(J'L) at a point x € X is an element

f(@) = (fi(2), f2(2)) € (J'L)|o = (U ® L)|o & L]

where (—)|, denotes the fiber at z. If f = j!(g), then f5(x) = g(x) is simply the value of g at .
We take a cue from this situation and define

Zeo(L) :={(s,2) € Ueo (L) x X | s(z) € (Ax @ L), ®0C (A ® L), ® L]}

The following pullback square of topological spaces is then a direct consequence of the definitions:

Z(£) 229 7.0(2)

4. THE MAIN THEOREM

Having defined the spaces Z" (L) and Z (L) above, we are now ready to state our main theorem.
Its proof will occupy the rest of this section.

Theorem 4.1. Let X be a connected smooth complex projective variety, r > 1 an integer, and L a
d-jet ample line bundle on X . Then the map

GUxids Z7(L) — Zh(L)

. . . .. . d—3
induces an isomorphism in integral homology in the range of degrees x < 5= —r.
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We now proceed towards the proof of the theorem, beginning with some notation. Given a fiber
bundle £ — X, we denote by E”|pr(x) the restriction to F"(X') of the product bundle £” on X".
We will mostly be concerned with

(Qk (029 £ — O)r’Fr(X) and (Jlﬁ — O)rlp'r‘(x)

which are respectively (C" — 0)” and (C"™! — 0)” bundles over F"(X). We will also make use of
the evaluation map

ev: Ueo(£) x F'(X) — (J'L = 0)[prx)
(f,x1, ., zp) — (f(x1), ..., fz)).

It follows directly from the definitions that we have two pullback squares:

Z'(L) —— U(L) x F"(X)

| o

"o(L) ————— Upo(L) x F"(X)

(2 © L =0)"erx) — (J'£L=0)"]erx)
Over a point 7 = ((z1,v1), ..., (z,,v,)) € (J'L — 0)"|pr(x), denote the fiber of the composition
evo(j! xid) by
U@) :={feUL)|j'(f)(x) = (;v;) foreachi=1,...,r}
and the fiber of ev by
Uco(9) :={s € Teo(J'L = 0) | s(x;) = (w;,v;) foreachi=1,...,r}.

We summarize the situation in the following commutative diagram:

U(3) s Ugo(7)
Z'(L) S s 700 (L) (4.2)

ev o(]m /

(JIL = 0)"rr(x)

Our strategy to prove the main theorem rests on the diagram (4.2). Suppose for a moment that
ev and evo(j! x id) are Serre fibrations. Then Theorem 4.1 follows by a Serre spectral sequence
argument from proving that the map between the fibers induces a homology isomorphism in a
range of degrees. We will indeed show the latter in Section 6, specifically Theorem 6.1. However,
although we will see shortly that ev is a fiber bundle (Lemma 4.9), the map ev o(j! x id) is only a
Serre microfibration (Lemma 4.10). We recall this notion below, and explain why it is sufficient to
carry out the outlined strategy.
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4.1. A micro review of microfibrations. We start by recalling the definition of a microfibration.

Definition 4.3. A map E — B of topological spaces is a Serre microfibration if for any k > 0,
given a commutative diagram

DF x {0} —— E
D* x [0,1] —— B
there is an ¢ > 0 and a map D* x [0,¢] — E making the following diagram commute:

DF x {0} —— F

!

D* x [0, €]

|

D* x[0,1] —— B
An abundant source of examples comes from the following direct consequence of the definition:

Lemma 4.4. Ifp : E — B is a Serre fibration and U C FE is open, then p|y : U — B is a Serre
microfibration. O

In this paper, wherever we use the terms fibration and microfibration, we mean Serre fibration
and Serre microfibration respectively. Contrary to the case of fibrations, the homotopy types
of the fibers of a general microfibration can vary. Nonetheless, comparing the total spaces of a
microfibration and a fibration can done via a result originally due to Weiss and further generalized
by Raptis.

Theorem 4.5 ([Rap17, Theorem 1.3]). Let p: E — B be a Serre microfibration, q: V — B be a
Serre fibration, and f: E — V a map over B. Suppose that f,: p~(b) — ¢ (b) is n-connected for
somen > 1 and for allb € B. Then the map f: E — V isn-connected.

As we are interested in homology rather than homotopy groups, we will need to slightly adapt
Raptis’ theorem to our needs. We first introduce some notation.

Definition 4.6. For a map p: F — B, its fiberwise (unreduced) kth suspension is defined to be
YEE = (E x [0,1] x Sk_1> /((670, s) ~ (e,0,s') and (e,1,s) ~ (¢, 1, 5) when p(e) = p(e)).
The fiber of the natural map ¥%p : ¥%E — B induced by p is the unreduced kth suspension of
the fiber of p (here modeled as the join with the sphere S¥~1):

(Skp)~'(b) =Sfp~'(b)  VbeB.

Definition 4.7. For a natural number m, a map of topological spaces A — B is called homology
m-connected if it induces an isomorphism on homology groups H;(A) — H;(B) fori < m and a
surjection when i = m.
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Lemma 4.8. Let q: V' — B be a fiber bundle, and p: U — B be the restriction of a fiber bundle
E — B toan open subset U C F. Let f: U — V be a map over B and suppose that for everyb € B,
the restriction to the fiber

Forp7H(b) —> a7 (D)
is homology m-connected. Then f: U — V is homology m-connected.

Proof. See [Aum23, Lemma 5.9]. 0

4.2. Finishing the proof of the main theorem. As promised, we show that the maps in the
diagram (4.2) are respectively a microfibration and a fibration.

Lemma 4.9. The evaluation map
ev: Ueo(L) x F'(X) — (J'L = 0)"|prx)
(frx1, .. zp) — (f(x1), ..., f(z))
is a fiber bundle. Therefore, so is the pullback Zgo (L) — (% @ L — 0)"|pr(x).

Proof. We first treat the case r = 1 to lighten the notation. Let (z,v) € J'£ — 0, with z € X and
0 # v € (J'L),. Using charts on the manifold X, we choose a small open ball B(z,1) C R* C X
centered at z and of radius 1. Using the local triviality of the jet bundle, we obtain a homeomorphism
(JIL —0)|y 2 U x (R**2 — ). We choose a small ¢ > 0 and let B(v,&) C R*"*2 — () be a small
open ball neighborhood of v. Pick continuous maps

¢: B(v,e/4) — Homeo(B(v,¢))

and

¢: B(x,1/4) — Homeo(B(z, 1))
such that ¢(w) is a homeomorphism sending v to w and is the identity outside B(v,e/2), and ¢(y)
is a homeomorphism sending z to y and is the identity outside B(x, 1/2). Slightly abusing notation,
we still denote by (w) and ¢(y) the homeomorphisms of J!£ — 0 and X respectively obtained
by extending by the identity. We use them to construct a local trivialization of the evaluation map
above the subset A = B(x,1/4) x B(v,e/4) C J'L — 0 as follows:

Ax {s € Up(L) | s(z) = v} +— ev '(A) = {(y,5) | y € B(x,1/4), s(y) € B(v,/4)}
((y,w), s) — (y, p(w) 0 s0¢(y)~")
(v, 5(), o(s(y) o s09(y)) «— (v, 5).

One directly checks that the two given maps are inverse to each other.

We now return to the general case where r > 2. To construct a local trivialization above a neigh-
borhood of a point ((z1,v1), ..., (%, v,)) € (J'L — 0)"|pr(x), it suffices to pick neighborhoods
of the x; and apply the argument above at each of them. By choosing the neighborhoods small
enough and disjoint, the homeomorphisms constructed as above may be composed to obtain a
local trivialisation. O

On the algebraic side, for the jet evaluation map to even be surjective, we need the line bundle £ to
have enough sections. As a direct consequence of the definition of jet ampleness (see Definition 2.7),
we have the following refinement of [VW15, Lemma 3.2].
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Lemma 4.10. Suppose that L is (2r — 1)-jet ample. Then the map
{(f,z1,. .. 2) € That(L) x F'(X) | Vi, f(zi) =0} — (Qk ® L) |5 (x)
(fyx1,...,zp) —> (df(xq),...,df(x.))

is a fiber bundle. The subset Z" (L) is open in the domain, hence the restriction

Z7(L) — (Qx @ L= 0)"]pr(x)
is a microfibration.
Proof. The map of the lemma is the pullback of

Thot(£) X F'(X) — (J'L)" |prx)
(fozr,esae) — (5 () (@), 3 () (=)

along the inclusion (Q% ® £)"|pr(x) < (J'L)"|pr(x). It is then enough to show that this latter
map is a fiber bundle. Both the domain and codomain are vector bundles on F"(X') and the map is
linear in each fiber. By the assumption on the jet ampleness of L it is also fiberwise surjective, and
is therefore an affine bundle. The second part of the lemma follows directly from Lemma 4.4. [

Proof of Theorem 4.1. It suffices to apply Lemma 4.8 to the diagram (4.2). Its assumptions are fulfilled
by virtue of Lemmas 4.9 and 4.10, and Theorem 6.1. O

5. STABILITY WITH RATIONAL COEFFICIENTS

In this section, we construct a commutative differential graded algebra (CDGA) modelling
the rational homotopy type of Z{o(£). Our construction only depends on known models for
configuration spaces and mapping spaces, as well as basic methods from rational homotopy. We
first recall the former, and use the latter to deduce Theorem A.

Assumption 5.1. As we will use rational homotopy theory throughout this section, we furthermore
assume that X is a simply connected space. We believe that many arguments could be carried out with
X only assumed nilpotent, and that the cohomological results could even hold without any restriction.
However, we report such careful work to the future.

5.1. Recollections on the rational homotopy of configuration spaces. Fulton and MacPher-
son first gave a rational model in the sense of Sullivan for the configuration spaces of points on a
smooth projective complex variety in [FM94]. This model was later improved by Kriz [Kri94] and
Totaro [Tot96] and we recall its construction here.

Construction 5.2. Letr > 1 be a natural number. For any integers 1 < a,b < r, a # b, denote
by ma: X" — X and my: X" — X2 the obvious projections. Let C,. be the quotient of the graded
commutative algebra
H*(X";Q)[Ga)
where the G, are generators in degree2n — 1 for1 < a,b < r, a # b, modulo the following relations:
Gab = Gba
(Gw)? =0 (automatic from graded commutativity)
GapGac + GpeGro + GGy = 0 fora, b, ¢ distinct
72(2) Gy = m (@) Gy fora # b, € H'(X;Q).

a
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Define a differential d on C, by

d(Gap) = mop(A)
where A € H*"(X?;Q) is the class of the diagonal. Then the CDGA (C,.,d) is a rational model for
the configuration space F" (X).

5.2. Recollections on the rational homotopy of section spaces. We recall the results from
[Aum22, Section 8.1] concerning the rational cohomology of the continuous section space I'co (J' L—
0). The rational homotopy equivalences

2n+1
Teo(J'L = 0) ~g map(X, K(Q,2n + 1)) ~ [[ K(H™(X;Q), )

=0

imply that
H*(Leo(J'L —0); Q) = Sym,, (@H%“i()(; @)V[Z]>

where H*(X; Q)Y = Hom(H*(X;Q), Q) denotes the dual vector space, and [¢] indicates that it is
placed in degree i. Using that homology is linearly dual to cohomology and Poincare duality, we
have isomorphisms:

H*—1<X) ~ H2n+1_*(X) ~ H2n+1—*(X)V

which can be used to rewrite
H* (oo (L2 — 0); @) = Sym, (EB H™(X;Q) m) . (53)

We will need to understand the morphism induced in cohomology by the evaluation map
ev: map(X, K(Q,2n+1)) x X — K(Q,2n +1).

This is explained by Haefliger in [Hae82, Section 1.2] and we transcribe here his words in our
notation. Let {b;} be a homogeneous basis of the graded vector space H*(X; Q). Let {b)} be the
dual basis under the Poincaré pairing, so that [b)| = 2n — |b;| and b; — b} = 0;;[X] if |b;| = [b;].
Here ;; is the Kronecker delta, and [X] € H*"(X; Q) denotes the top generator in cohomology.
Under the isomorphism (5.3), each b; corresponds to a class of degree |b;| 4 1 in the cohomology

of Tco(J'L — 0) which we denote by sb; (the shifted class).

Lemma 5.4. Let y € H*"™ (K (Q,2n + 1); Q) be the canonical generator. The morphism induced
in cohomology by the evaluation map

Too(J'L —0) x X ~g map(X, K(Q,2n +1)) x X =% K(Q,2n +1)

sends x to
> sb; @b/ € H (Teo(J'L —0);Q) ® H'(X; Q).
J
Proof. To avoid cluttering the argument with too much notation, we first explain the general case of
amap f: ZxX — K(Q,2n+1) by closely following Haefliger’s argument. (We will later take f to
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be the evaluation map.) By adjunction, f is the same datumasamap g: Z — map(X, K(Q, 2n+1)).
Let g; be the composition of g with the projection onto the ¢-th factor:

2n—+1
Z — map(X, K(Q.2n+ 1) = [[ KHZM(X;Q),j) — K(HZ M7 (X;Q), ).
=0
Haefliger then explains that the morphism induced in cohomology is given by
gi+ H(K(H*7(X;Q),1);Q) = B 7(X;Q)Y — HY(Z;Q)
ar—an f*(x)
where a N (z @ z) = a(z)z fora € H*(X)Y, z € H*(X) and z € H*(Z). We now take f to be

the evaluation map, hence g to be the identity. Decomposing in the chosen bases, we may a priori
write
v (X) = D A (shy) @b
1b; |=lbx|

for some constants \j; € Q. Using that g is the identity, we have for all « € H***1 (X )V
H=(X):

I

aNev'(y) = sa.
Varying a through {b,} finishes the proof. O

5.3. A rational model for the continuous section space with marked points. We are now
ready to construct a CDGA which we will shortly show models the rational homotopy type of the
space Zjo(L).

Construction 5.5. Let r > 1 be a natural number. We define A, (L) to be the commutative graded
algebra

A,(L) = C, @ Sym,, (@Hkl(X; Q)k]) & Qlaq,...,an) ®Q(ny, ... ,77T>> ,  (5.6)
k

where each «; is in degree 2n — 1, each n; is in degree 2n, and C, is the rational model of F"(X)
recalled in Construction 5.2. Let ; : F"(X) — X be the i-th projection. Define

g = Zﬁ;‘(bj) ® sb] € C, ® Sym,, <€BHk_1(X;Q)[k]).
J k

which is an element in degree 2n + 1. In fact, by Lemma 5.4, it is the class represented by the composite
Teo(J'L—0) x F7(X) 25 Teo(J'L—0) x X ~g map(X, K(Q,2n+1)) x X =5 K(Q, 2n+1).

We define a differential on A, (L) by the tensor product of the differential on C,. and the differential
on the second tensor factor given by

d(a;) = 7} (e(Qy © L))
and

d(m;) = ei — m; (c1(£)) e
(and the other generators to 0).

Remark 5.7. To lighten the notation, we will often write H*~'(X; Q) := @, H* 1(X; Q)[k].
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Remark 5.8. We can define a &, action on A, (L) by acting on C, by permuting coordinates of X,
trivially on H*~!(X) and by permuting the a; and 7;. It is clear that the differential defined above
is G, -equivariant.

Theorem 5.9. Suppose that X is simply connected. The commutative differential graded algebra
A, (L) of Construction 5.5 is a rational model of Z¢o(L). In particular, there is an S, -equivariant
isomorphism

H*(Z¢o(£); Q) = H(Ar(L)).

We will prove this theorem in the next section. But first, we collect a few direct computational
consequences.

Proposition 5.10. Let £ be an ample line bundle. Then there exists ady > 1 such thate(QL, @ L?) # 0
foralld > d.
Proof. For an integer d, we compute the Euler class:

e(Q% @ L) = c, () @ £9) = Z () (LD =Y ¢(Q%)e (L) dn .
i=0 i=0
Recall, e.g. from the Nakai-Moishezon criterion, that ampleness of £ implies that ¢; (£)"[X] > 0.
In particular

e(Qx ® LY)[X] = (e1(£)"[X])d" + o(d")

is a polynomial in d of degree n. Thus, there exists a dy > 1 such that this polynomial does not
vanish when evaluated at all d > d,. O

Remark 5.11. The rational root theorem implies that dy = 1 + |x(X)| suffices in the proposition.
For curves the polynomial is ad — x(X) with a = ¢;(£)[X] > 1, so dy = 3 is sufficient. We are
not aware of a bound that is uniform in all X of a given dimension n for general n > 1.

We can now state and prove our main stability result:

Proposition 5.12. Suppose that X is simply connected. Let L be an ample line bundle, and let d, be
as in Proposition 5.10. Then for all d > dy, the CDGA A, (L%) is isomorphic to A,.(L%).

Proof. The Euler class e(Q} @ £?) is in cohomological degree 2n and H>"(X;Z) = Z. Let us write
f(d) = e(Q% @ LY)[X] € Z for that number. By assumption, we have f(d) # 0 for all d > dy. We
construct an explicit morphism:

Ap(L%) — A, (LY

given by the identity on the C, tensor factor and sending the generators accordingly as follows:

do f (do) fldo) —  dof(do)
df (d) Fa@) T apa) "

One directly checks that this defines a morphism of CDGAs. Furthermore it is visibly an isomor-
phism, whose inverse is given by swapping d; and d in the formulas above. 0

Sbj —

sb;, oy
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5.4. Proof of Theorem 5.9. The proof of Theorem 5.9 relies on recognizing Z o (L) as the following
pullback:
bo(L) —————— F"(X) x Teo(J'L —0)

(U ® L= 0) |pri) —— (J'£=0)F|prx)

which is also a homotopy pullback, as Lemma 4.9 shows that the right-hand vertical arrow is a
fibration. Our strategy is then to apply the Eilenberg—Moore theorem. In order to make explicit
computations of rational models, we will need to model the bottom arrow as a cofibration between
CDGA:s. This in turn will follow from making explicit its Moore—Postnikov tower.

Let us introduce some notation. Write

LB RL—-0—=JL-0
for the inclusion. We define the product of the two bundles above X as the pullback:
QL ®L—0)xx (JIL-0) L= JIL-0

p2l lql (5.13)

Qx®L-0 y X

q2

with p; and ¢; the projections. Notice that we also have a map
(id,1): QY RL -0 = (A ® L —0) xx (J'L—0)

given by the identity on the first factor and the inclusion on the second. Writing a € H*"~!(C" —0)
for the generator, the Serre spectral sequence of the bundle ¢»: Q4 ® £ — 0 — X shows that

H™(Qk ® £ - 0;Q) = H*(X;Q) ® Qa.

Although a does not survive in the spectral sequence if e(Q} ® L) # 0, we will write

r-a€ H"N QY @ £ —-0;Q)
for z € H?(X) using the isomorphism above. We will also write

be 7T (C —0) = H* Y (JL - 0)
for the generator. We will need the following computation:
Lemma 5.14. In the cohomology group H*"*1(QY ® £ — 0), we have the equality .*(b) = ¢1(L) - a.
Proof. The integration along the fibres of ¢, or Gysin map, gives an isomorphism
(g2)r: H QL @ £ —0) — H*(X)

such that (¢2)1(x - @) = x in our notation. It thus suffices to check that (g2)i(¢*(b)) = ¢1(£). This
follows by functoriality of the Gysin maps and the push-pull formula:

(@) (¢*(D)) = (q1)r o u(c* (b))
= (@) (bUu(1))

= (@) (bU (1) (1 (£)))
= 01(‘6)7
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where we have used the standard fact that ¢/(1) is the first Chern class of the normal line bundle of
the inclusion Q% ® £L — 0 C J'L — 0. O

We are now ready to describe explicitly the Moore—Postnikov factorization of the rationalization
of ¢. Concerning notation, we write (—)g for the rationalization of a space.

Lemma 5.15. There is a tower:

K(Q,2n) » (Qx @ L—0)g

l(id,t)

K@ 2 —1) — (@ L —0) xx (JIL—0)), —2> K(Q,2n+1)

(J'L —0)g » K(Q,2n)

where the vertical maps are principal fibrations classified by the maps k; and k. These are given, as
cohomology classes, as follows:

ki =qi(e(Qy ® L)) € H™(J'L - 0;Q)

k1

and
ko = pi(b) — py(er(£) -a) € HH((Q ® L —0) xx (J'L —0);Q).

Proof. Let us first show that the bottom vertical arrow p, is a principal fibration classified by ;.
For this, we have two squares:

Qe @L—0)xx (JIL-0) — Qe @RL-0 —— *

2 | l

1 _ \ \
JL—0 - » X — oo K@2n)

The square on the left-hand is a pullback by definition. The square on the right-hand is a pullback
after rationalisation. So the outer square is a pullback after rationalisation.
Let us now deal with the second vertical map. First, observe that the composition

OLL— 09 QL @£ —0) xy (J'L—0) 22 K(Q,2n+1)

is null-homotopic. Indeed, this is the content of Lemma 5.14. Thus, if we consider the homotopy
pullback square:

P S %

! !

(Qx ®L-0)xx (J'L-0), —— K(Q2n+1)

we obtain a map Q4 ® £ — 0 — P by universal property. We claim that this map is a rational
cohomology equivalence, hence a rational equivalence. (Here we have used that X is simply
connected, hence nilpotent.) By the Eilenberg—Moore theorem applied to the principal fibration
classified by &, a rational model of (Q} ® £ — 0) xx (J'£ — 0) is given by

H*(X) @ Man+1,Y2n-1), d(z) =0, d(y) = e(Qx @ L).
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Here the indices on the variables indicate the cohomological degree, and A(—) is the free graded
commutative algebra functor. We have also used that X is formal to use its cohomology as a model.
Again using the Eilenberg—Moore theorem, we obtain a model for P of the form

H*(X) @ MToni1, Yon_1, 22n), d(x) =0, d(y) = e(Q @ L), d(2) =z — 1 (L)y.

By Lemma 5.17 below (in the notation of that lemma, z is © — ¢;(£) for us and the assumption is
verified using Lemma 5.18 below), the cohomology of this CDGA is isomorphic to the cohomology
of the following CDGA:

(H*(X) ® M#20+1, Y20-1)) / (2 — 1 (L)), d(z) =0, d(y) = e(Qx @ L),
which is also isomorphic to

and whose cohomology is H*(Q2}; ® £ — 0; Q). The morphism induced in rational cohomology by
the map

(id,1): QR L -0 = (A @ L —0) xx (J'L—0)
is surjective. Indeed this can be checked using the Eilenberg—Moore theorem applied to the pullback
square (5.13). Therefore, using commutativity of the triangle

ABL-0 y P

\ l

(@ L—0)xx (J'L-0)),

we see that the morphism on cohomology
H'(P;Q) — H'(2x ® L - 0;Q)

is surjective. As shown above, both sides of this morphism are abstractly isomorphic rational
vector spaces of finite dimension. Hence the morphism must be an isomorphism. O

We are now ready to give a rational model of ¢ in the form of a cofibration of CDGAs (see [FHTO01,
Chapter 14] for more details on the model structure):

Lemma 5.16. The map induced by the inclusion
(Qx @ L = 0)"|prix) — (JL = 0)"]er(x)
is modelled rationally by the inclusion
Cr @MNx1,...,x) = Co @NXy, o Ty Yty oy Yy 215+ o5 2r)

where C,. is the model of the configuration space F" (X)) recalled in Construction 5.2, the classes
have degrees |z;| = 2n + 1, |y;| = 2n — 1, |2;| = 2n, and the differentials are given by d(x;) = 0,
d(y;) = m; (e(Qx ® L)) and d(z;) = x; — 77 (c1(L))i.

Proof. In the case of » = 1, this follows directly by applying the Eilenberg—Moore theorem twice
on the tower provided by Lemma 5.15. For a general r > 1, it suffices to take the r-fold product of
the case 7 = 1 and restrict to the configuration space F"(X) C X". O

The proof of our main computational theorem now follows:

Proof of Theorem 5.9. It suffices to apply the Eilenberg—Moore theorem to the pullback diagram
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Eo(ﬁ) I — FT(X) X FC()(JlL— 0)

(U ® L = 0)*"|pr(x) —— (J'L = 0)"]pr(x)

and to note that the model of Lemma 5.16 is a cofibration of CDGAs. The computation of the
derived tensor product then follows. O

5.4.1. Two lemmas in homological algebra. In the proof above, we have made use of the following
two lemmas in homological algebra. These are surely well-known, but we could not track a
reference.

For a CDGA (A, d4), a homogeneous cocycle z € A (i.e. with d4z = 0) for some i > 0 and
a free variable z, denote by (A[z], dx = 2) (or just Alz] if z is understood) the CDGA A ® A(x)
with |z| = i and with differential d determined by dz = z and da = d(a) for a € A. Note that
d 4 descends to a differential on A/zA since dz = 0; we will denote this CDGA by simply A/zA.
There is a map of CDGAs A[z] — A/zA taking = — 0. The parity assumptions in the lemmas
below are not crucial but are the only cases we need and these assumptions simplify both the
statements and the proofs.

Lemma 5.17. Suppose i is even (so that z is in odd degree) and z is such that zA = {a € A | az = 0}.
Then the map Alx| — A/zA induces an isomorphism on cohomology.

Proof. Consider A[z] as a double complex
(A[x])p’q — APt(+1)a,—a
(supported on ¢ < 0) with p-differential d 4 : APT0HDag=0 — APHI+(E+Da0 and ¢-differential
dPa- APTEHDa =g _y AP Dg+H(i+1) fo—a=1 _ Ap+(i+1)(a+1) ;.—(¢+1)

defined by d9(ax~9) = (—1)P*9"1q - azz~7"'. Then we have the spectral sequence
EPT = HY(Alz]"®,d.) = H"™(Al]).

But at any ¢ < 0, the differential d?? is, up to a non-zero scalar, multiplication by z. So by the
assumption on z we have the exactness Ker d? = Im d27! for ¢ < 0 and arbitrary p. Therefore
E) is supported on ¢ = 0 with

EP = AP )z AP
and differential d; induced by d 4. So the spectral sequence collapses on E5 and we get the claimed
isomorphism. 0

In practical cases, to verify the assumptions of Lemma 5.17 above it is useful to use the following
result:

Lemma 5.18. Suppose i is odd, A is of the form B[t] with |t| =i and z € At + B® for some A\ € Q*.
Then zA ={a € A | az = 0}.

Proof. Reduce to the case A = 1 without loss of generality, so z = t + b for some b € B". Since
|z] =iisodd, 22 =0,s0a € zA = az = 0. So suppose za = 0, and assume «a is homogeneous
of degree j. Then a = byt + by for some by € B’, by € B?~". Now

0=az= (blt + bo)(t + b) = bltb + bot + b()b = (bo - blb)t + b()b — b() = blb,
since t2 = 0 and th = (—1)”bt = —bt. But now a = (byt + b1b) = b1z € zA. O
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5.5. Hodge weights. Since Z" (L) and U(L) are quasiprojective varieties, their rational cohomol-
ogy are canonically equipped with mixed Hodge structures. In fact, the mixed Hodge structure on
the stable cohomology of H*(U(L); Q) is compatible with its description as Sym,, (H*~'(X)(—1)).
This was shown in [Aum22, Proposition 8.6], and in [DH22, Theorem 1] after passing to the associ-
ated weight graded. Concretely, the vector space map

Sym,, (H*(X;Q)(—1)) — Gry H*(U(L); Q)

is an isomorphism of mixed Hodge structures. Here the (—1) denotes a Tate twist, in particular
if b; has weight w then sb; in the notation of Section 5.2 has weight w + 2. Similarly, the Kiiz-
Totaro CDGA, due to its identification with the Leray spectral sequence of the algebraic inclusion
F"(X) < X7, has a mixed Hodge structure which is compatible with that on H*(F" (X)) after
passing to the weight graded. If we identify «; and n; with the fundamental classes (with a degree
shift in the case of 7);) that they correspond to (i.e. identify Q(«;) = Q(—n) and Q(n;) = Q(—n—1)),
we can carry out Construction 5.5 of A,.(£) in the category of mixed Hodge structures.

Conjecture 5.19. With the mixed Hodge structure defined above, the isomorphisms in Theorem A
are isomorphisms of mixed Hodge structure after passing to the weight graded.

Proving Conjecture 5.19 plausibly involves carrying out the computation in the previous section
in an appropriate category of CDGAs equipped with mixed Hodge structures. However, such a
lift of the computation seems far from straightforward using available technology and is at least
beyond the scope of this project. Instead, we strongly believe that if we assign weights to the
generators of A, as predicted by Conjecture 5.19 then we obtain the correct weights on H*(Z"(L)).
The following is stated as a conjecture, with an idea of a proof, because a fully detailed proof
seemed to involve too much bookkeeping.

Conjecture 5.20. With the above weight grading on A, (L), which makes the differentials weight
preserving, the isomorphisms in Theorem A are weight preserving.

Idea of a proof. Consider the Leray spectral sequence of the composition of the jet map and the
projection

T ZT<£) — (Q% QL — O)T’FT(X).
Since this map is algebraic, the spectral sequence is of mixed Hodge structures, and computes the
correct weights in cohomology. But 7 and any restriction 7|7 ~*(V') for V open in the codomain is
also a microfibration. By Lemma 4.8 and Theorem 6.1, we may compare the Leray sheaves of 7 and
Teo in the diagram

7" (L) 2 s Flo(L)
! b
(Qx ® L= 0)|prx) == (Qx ® L —0)"[pr(x)

and obtain that R?7,Q is locally constant in the stable range. Therefore the Leray spectral sequence
for 7 agrees with the Leray-Serre spectral sequence for 7o, starting from the E page. It should
now be possible to compute the differentials in this Serre spectral sequence using rational models,
following Grivel [Gri79]. In essence, he shows how the Serre spectral sequence arises from a
relative Sullivan extension modelling the fibration by filtering the base CDGA by the degree. It
remains however to relate A, (L) to such a relative Sullivan extension. O
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If Z is a complex quasiprojective variety, its Euler characteristic x(Z) has a lift
xus(Z) =Y (~1)'[H'(Z)],
taking values in the Grothendieck ring Ky(MHS) of mixed Hodge structures. If Z further has an

algebraic action by a group G then for any (finite-dimensional) G-representation V' over Q we can
define

xus(Z:V) =) (~1)'[H(Z) ©c V].
By Deligne’s bounds on weights, cohomology classes of a given weight only occur in a fixed range
of degrees. Thus Conjecture 5.19 would imply:

Theorem 5.21 ([How19, Theorem A)). If L is very ample and V' is a finite-dimensional S, represen-
tation, then xpus(Fy,(L%?); V) stabilizes weightwise to xus(A,(L) ®s, V) as d — oo.

Taking the weightwise Euler characteristic of Conjecture 5.20, which is well-defined since a given
weight w can only appear in cohomology in degrees * < w, we recover a version of Theorem 5.21.
In [How19] Howe also shows analogous stabilization results for arithmetic statistics of F" (£®?)
and related spaces. However these quantities a priori have contributions from cohomology in all
degrees simultaneously (just like usual Euler characteristic) so our results do not concretely imply
anything about them.

6. THE H-PRINCIPLE

Let (z1,...,x,) € F"(X) be r distinct points and v; € (J'L —0)|,, be non-zero vectors at these
points. To lighten the notation, we will abbreviate the whole tuple by

7= ((z1,01),..., (2, 0,) € (J'L=0)".
The space of holomorphic sections with derivatives prescribed by ¥ is defined to be:
Thot(7) := {f € That(L) | 5" (f) (i) = (wi,v;) foreachi =1,...,7}.

This is an affine subspace of the vector space of global sections I'y,1(£) and contains as an open
subspace the previously defined

U(ﬁ) = Fhol(d_f) N U(£> .

Similarly, we have an analogous space defined by continuous sections of J'£ with prescribed
values at the z;:

Ueo(9) :={s € Teo(J'L) | s(z;) = (ws,v;) foreachi=1,...,7} CTeo(J'L—0).

The jet expansion j' restricts to these subspaces and the goal of this section is to prove the following
result:

Theorem 6.1. For a d-jet ample line bundle L, the jet map
jl : U(’U) — UCO('U)

. . . . . d—1
induces an isomorphism in integral homology in the range of degrees x < “5= —r.
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The proof follows that of [Aum22] but we could not find a direct way of applying the theorem
therein. Indeed, there are two main differences. Firstly, we apply a Vassiliev-style argument to an
affine subspace 'y, 1 (V) C I'yo1(L) of the vector space of global sections. This is in contrast with
[Aum22] where the full space of global sections is considered. Secondly, a section f € T',(7) can
only be singular at points in X — {1, ..., z,} because it has non-vanishing derivatives at the
special chosen points ;. As the proofs of [Aum22, Section 3] relied on compactness of X which
we lose when removing points, we will need to adapt them to our case.

6.1. Constructing the Vassiliev spectral sequence. The space U (%) is an open subset in the
complex affine space ['},,)(¥) of complex dimension dim¢ I',0; (7)), whose complement we denote
by 3(¥)). We topologize them using the canonical topology on the ambient complex affine space.
By Alexander duality, there is an isomorphism

HE(X(0)) = Hadime 0y (3)-1-i(U (7))
We want to compute the homology of U (%), but we will equivalently study the compactly supported
Cech cohomology of its complement. This is technically advantageous: the complement admits a
filtration by the number of singularities of a section f € (%), which allows the construction of a
spectral sequence a la Vassiliev. In practice, it is easier to work with an auxiliary filtered space
mapping properly down to () with acyclic fibers. We construct this space and its associated
spectral sequence below.

We write X° := X — {x1,...,x,} to denote the punctured space. Define
Sing(f) := {y € X°| f is singular at y} C X°

to be the singular subspace of a section f € Y (7). Let F be the category whose objects are the
finite sets [n] := {0, ..., n} for n > 0 and whose morphisms are all maps of sets [n] — [m]. Let
Top be the category of topological spaces and continuous maps between them. On objects, define
the following functor:

X:F® — Top
[n] — X[n] :== {(f,Y0s - -, Yn) € That(¥) x (X°)"™ | Vi, y; € Sing(f)}

where X[n] is given the subspace topology from I'y,o (') X (X°)""!. On morphisms, for a map of
sets g: [n] — [m], we define it by:

X(g): X[m] — X[n]
(90, Ym) = (f,Yg(0)> - - Ygm))-
For an integer k > 0, let F<;, be the full sub-category of F on objects [n] for n < k. Write
A" = {(to,...,tn) | Vi,0<t;<landto+---+t, =1} C R"™

for the standard topological n-simplex, and denote by 0|A"| its boundary. In particular, the
assignment [n] — |A"| gives a functor F — Top. For an integer j > 0, we define the j-th geometric
realization of X by the following coend:

. [n]eF<;
Rfae::/ o x (A7 = | | ] x[)x jam |/ ~

0<n<j
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where the equivalence relation ~ is generated by (X(g)(2),t) ~ (2, g«(t)) forallmaps g: [n] — [m]
in F. Here g,: |A™| — |A™| denotes the usual map induced on the simplices by functoriality. Note
that the main difference between our construction and the geometric realisation of a simplicial
space resides in the fact that we allow all maps of sets, in particular the permutations [n] — [n] are
morphisms in F.

As for simplicial spaces, R/ X is obtained from R/~!X via a pushout diagram along a subspace,
which can be thought of as a kind of latching object. More precisely, define
Ly ={(f,%0,.-,9;) € That(¥) x (X°)*! | Il # k such that y; = y, } C X[j]

topologized as a subspace of X[j], and write L; X, |A7| for the quotient space of L; x |A/| by the
symmetric group &, acting on L; by permuting the singularities y;, and on |A’| by permuting
the coordinates. The following result is immediate from the definitions.

Lemma 6.2 ([Aum22, Proposition 3.3]). There is a pushout square of topological spaces:
(LJ XGJ‘H ’AJD U (x[]] XG]'H 8’AJD E— Rj_l%

/

%[J] X&;411 |A]’ » RIX

where the left vertical map is a closed embedding. 0

Using the lemma inductively, one sees that the spaces RIX are paracompact and Hausdorff, and
that the natural map R/~!X — R/X is a closed embedding. Another direct consequence is the
following homeomorphism:

RX—R'X2Y, xe ., |A] (6.3)

41
where

Y= {(f,y0,-.,y;) € X[j] | i # yr if l # k} = X[j] — L; C X[J]

is the subspace of X[j] where the singularities are pairwise distinct, and |AJ] is the interior of the
simplex. The next lemma is stated in [Aum22, Lemma 3.5] but its proof needs to be adapted here to
account for the fact that X° is not compact.

Lemma 6.4. For anyn > 0, the map p,,: X[n] — Tho (V) given by (f,vo,-..,Yyn) — f is a proper
map.

Proof. Let K C I'y,(¥)) be compact. Then
{(f,a:) e K xX | xé Sing(f)}

is open in K x X and contains K x {z;} fori = 1,...,r. By the tube lemma, it must contain
some K x V, where V' C X is a neighborhood of {z1, ..., z,}. Then p, ' (K) is a closed subset of
K x (X — V)" and hence is compact. O

The natural projections maps X[n] x [A"] — X[n] % Thol(¥) give rise to a map from the
geometric realization 7;: R’X — X(¥). The proof of [Aum22, Lemma 3.6] using the adapted
Lemma 6.4 above then shows that:

Lemma 6.5. For any integer j > 0, the map 7;: RX — X(0) is proper. O
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We are now half-way through the construction of a replacement of 3(¥): the space R/ X maps
properly down to it, but the fibers are not all acyclic. Indeed, the fiber Tj_l( f) above a section
f € X(¥) that has at most j + 1 singularities is a (possibly degenerate) j-simplex whose vertices
are indexed by the singular points of f. Hence its homology vanishes in positive degrees. On the
contrary, if f has at least j + 2 singularities the fiber is not contractible nor acyclic in general. This
issue is fixed by the following construction. Let N > 0 be an integer and let

S(D)snte = {f € That(?) | #Sing(f) > N + 2} C %(7)

be the subspace of those sections with at least NV + 2 singular points. We denote by 3(¥)> 2 its
closure in Y(77). Define RY__X by the following homotopy pushout:

cone

! (22N+2) « 4 RVX

o]

E};iAﬁ+2 EEE—— }{[J X

cone ‘

The three other spaces map to (%), thus yielding a map from the homotopy pushout 7: RY X —
X(7).

Proposition 6.6 ([Aum22, Lemma 3.8, Lemma 3.9, Proposition 3.10]). The space RY X is para-

compact, locally compact and Hausdorff. The map w: RY X — 3(¥) is proper and induces an

cone
isomorphism in cohomology with compact supports. 0J

Using the closed embeddings R/~'X C R’X obtained in Lemma 6.2, we define the following
filtration on RY X:

cone*~ "

Fob=RXCF =R'XC---CFy=R"XC Fys: =RY X%

cone

By standard arguments on spectral sequences associated to filtered complexes, we obtain:

Proposition 6.7 ([Aum22, Proposition 3.11]). There is a spectral sequence on the first quadrant
s,t>0:

Ep' = HY'F, = FoosZ) = HM(RE,EZ) 2 Hadime (o -1-5-1(U (1) 2),

cone

The differential d” on the r-th page of the spectral sequence has bi-degree (r, 1 —r), i.e. it is a morphism
ds,t . Es’t N E‘H_T’t_H—l. O

6.2. Analyzing the spectral sequence. In this section, we describe the terms on the £;-page of
the spectral sequence given in Proposition 6.7. The constructions of the previous section and the
spectral sequence depend on an integer N that we are a priori free to choose. We will follow the
following convention for the remainder of this article:

Convention 6.8. Let N be the largest integer such that L is (2(r + N + 1) — 1)-jet ample.

We will consider two cases separately:
(1) When 0 < s < N, we have F, — F,_; = R’X — R*"'X whose cohomology can be
understood using the homeomorphism (6.3).
(2) When s = N + 1, we have F, — F,_; = RN X — R¥X whose cohomology we will bound.

cone
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Note that outside the band 0 < s < N + 1, all the terms E;" vanish as the filtration giving rise to
the spectral sequence is indexed from 0 to N + 1.

6.2.1. Cohomology in the columns 0 < s < N. We first treat the cases where 0 < s < N. Let us
recall the homeomorphism (6.3):

Fy—F,_ = R°X — RS?l%g {(f7y07"'7ys) € %[S] | Y 7A Yk if [ 7& k} XGst1 |AOS’

where the symmetric group G, acts on the left by permuting the singular points y; and on the
right by permuting the vertices of the simplex. There is a natural map down to the configuration
space F**!(X°) which forgets the simplex and the section f. An argument similar to that of
[Aum22, Section 4.1] then shows that this map is a fiber bundle.

Lemma 6.9. For(0 < s < N, the natural map
Fo—Fy 2 {(f.v0,-- . ys) € Xls) |y # i if 1 £ B} X, |A7] — FH(X0)
[(fr 0, ws) Al — {0, -, 4}
is a fiber bundle. The fiber above a point ij = {yo, . ..,ys} € F*"1(X°) is the product
A% x {f € Tha(¥) | 5  Sing(f)} .

where the right-hand term is the complex affine subspace of 'y, (0) of those sections having all points
in § as singularities. It is of complex dimension dim¢ ') (V) — (s + 1)(dime X + 1).

Proof sketch. The main point is to see that the affine spaces { f € I'noi(7) | ¥ C Sing(f)} all have
the same dimension regardless of 5/ € F**!(X°). They are given by (s + 1)(dim¢ X + 1) equations:
a section f is singular at y; when both the value f(y;) and all the partial derivatives of f at y; vanish.
In total, this imposes 1 + dim¢ X equations on f. The lemma is then proven if these equations are
linearly independent. The line bundle £ is (2(r 4+ s 4+ 1) — 1)-jet ample by Convention 6.8, so the
evaluation map

Fhol(ﬁ) — @(Jlﬁﬂxz S¥ @(Jlﬁﬂyz

is surjective. This directly implies that the considered equations are linearly independent. U

Remark 6.10. The proof above follows very closely the one given for [Aum22, Lemma 4.2], except
for the fact that we also impose derivatives at the fixed x; to get the existence of sections in I',o (7).
This is reflected by the appearance of the constant r in the required jet ampleness of L.

Applying the Thom isomorphism for cohomology with compact supports yields:
Lemma 6.11 (Compare [Aum22, Proposition 4.3]). For0 < s < N, we have an isomorphism

Ef’t ~ Hé—? dime o1 (0)4+2(s+1) (dime X +1) (Fs+1 (Xo); ZSign)

where Z58" is the local coefficients system on the configuration space given by the sign representation.
O
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6.2.2. Cohomology in the column s = N + 1. We now turn our attention to the last column on the
first page of the spectral sequence. In this case s = N + 1 and the groups are

By = HYTHY(RE % — RYX; 7).

cone

We shall show that these group vanish for ¢ big enough. More precisely, following [Aum22,
Section 4.2] we obtain:

Lemma 6.12 (Compare [Aum22, Proposition 4.9]). Fort > 2 dim¢ 'y (V) — 2N — 2 we have
BV = ANTYY(RY X — RYX;Z) = 0.

cone

Proof sketch. The proof of [Aum22, Proposition 4.9] actually applies to this situation, but we sketch
the main ideas in the particular case at hand. By construction, the space RY X — RV X is the

fiberwise (for the map 7 : RYX — %(¢)) open cone over X(0)s v . It can be stratified by

Str_y = X(0)>n+2,
Strg = <T]\_[1 (M) x]0, 1[) N (R°xx]0,1]),

Str; 1= (T&l (E(mzm) x]0, 1[) N <(M — RI'X)x]0, 1[) for1 <j <N.
Furthermore, the homeomorphism (6.3) shows that for 0 < 7 < N we have a homeomorphism

Sty 2 (V7Y e, 187]) <10, 1]

where

YRV = {(f, Yo+ Y;) € Toot(0) x FITY(X®) | f € S(0)anse and y; € smg(f)} .

One sees that this latter space szN” is a real semi-algebraic set and that the natural forgetful map

{(£.90 - un) € Tua(@) x FYFHXC) |y € Sing(f)} — V72

is algebraic and has dense image. This implies that the dimension of YJZN“ is at most that of

the space on the left-hand side. One computes it to be at most 2 dim¢ ', (7) — 2(N + 1) (see
[Aum22, Lemma 4.8]), implying that all the strata have dimension at most 2 dim¢ ', 1(¥) — NV — 1.
Therefore the compactly supported cohomology of their union vanishes above this dimension, i.e.
HNHHYRN % — RVNX;7) = 0 whenever N + 1 4t > 2dime Iy (7) — N — 1. O

cone

6.3. From holomorphic to continuous sections. In the previous sections, we have constructed
a spectral sequence converging to the homology of U(¥) and have described some features of its
first page. We would like to do the same for Ugo(¥) as well as provide a morphism of spectral
sequences that is an isomorphism in a range on the first page. But the space of continuous sections
of J1L is not finite dimensional, hence Alexander duality cannot be applied directly. This problem
can be remedied by introducing a growing filtration

U(@) 2 Un(@) 1= Dho (£ = 0) — Us(7) —> -+ — colim Ux(7) = Upo (7)
—00

where every map Uy (V) — Uyy1() is shown to be a homology isomorphism in a range using a
spectral sequence similar to the one above, and the colimit of the Uy (%) is homotopy equivalent to

U (7).
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6.3.1. Definition of the filtration. We follow [Aum22, Section 5] to describe roughly how the spaces
Uy (¥) are constructed, but refer to that article for the full details. The main idea is to consider the
complex conjugate (or equivalently the dual) line bundle £ of £. Taking the complex conjugates of
the values of a section gives an R-linear morphism:

i Teo(L) — Teo(L).

For a complex vector space V, we will denote by V' the complex vector space with the same
underlying abelian group, but where the C-module structure is given by multiplication by the

complex conjugate. Complex conjugation thus gives a C-linear morphism Thot(£) = Teo(L). As
the tensor product £ ® L is the trivial line bundle X x C one can consider the multiplication map:

Thot(£) ®¢ Thot(£) C Teo(L) @c Teo (L) — Teo (L @ L) 22 Teo (X x C). (6.13)
Likewise, for any integer £ > 0, one gets a multiplication map
pis Thot((J'£) © L£F) @ Thal(LF) — Teo((J'L) @ L* @ LF) = Teo(J'L).
Definition 6.14. For any integer & > 0, we define
L(0) = gy, (Teo (7))

and

Unl®) = i (U ().

Importantly for us, the space I';(¥) is an affine subspace of the finite dimensional complex vector

space ol ((J'£) ® L¥) ®c Thoi(LF), hence is itself finite dimensional. We now describe the maps
Ui (V) — U1 (V). Using the triviality of £ ® £, we can choose an element

1 € Thol(£) ®c Thol(£)

corresponding to the constant function with value 1 under the multiplication map (6.13). Multiply-
ing sections by this element gives a commutative square:

Fhol((Jl,C) (029 ,Ck) KRc Fhol(ﬁk) — FCO(Jl,C)

i |
Fhol((Jlﬁ) ® £k+1> ®(C Fh01(£k+1) W Fco(Jlﬁ)

This commutativity readily implies that the left vertical map restricts to a map

1 Uk<17) — Uk+1(v)

6.3.2. Comparing spectral sequences. As explained in [Aum22, Section 5.4], the construction of the
spectral sequence and the analysis of its first page can be carried out for the spaces Uy (¥) C T'x (7).
We summarize the results here:

Proposition 6.15 (Compare [Aum22, Proposition 5.5]). Let N be as in Convention 6.8. For any integer
k > 0, there is a cohomologically-indexed spectral sequence supported on the strip )0 < s < N + 1
andt > 0: N
EYY = Hodimer,()-1-s—1(Uk(7); Z).
When 0 < s < N, there is an isomorphism
Ef’t ~ [j[ét—Q dimg Ty (9)4+2(s+1) (dime X +1) (Fs—i-l (XO); Zsign)
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where Z5" is the local coefficients system on the configuration space given by the sign representation.
And when s = N + 1 andt > 2dim¢ 'y (¢) — 2N — 2 we have

EYTHY = 0. O

For any k > 0 the groups on the first page in the range 0 < s < NN are all given in terms of the
cohomology of configuration spaces of points in X °. The only subtle difference is that these groups
are indexed differently, as the degree shift depends on the dimension of I';(¢) which varies with
k. This degree shift is also apparent on the abutment of the spectral sequence. Thus, if we could
construct a morphism of spectral sequences shifting the total degree by dim¢ 'y 1 (¢) — dim¢ ' (9),
we would obtain on the abutment a morphism

H, (Ux(0);Z) — H(Ups1(V); Z).
Suppose furthermore that we could construct this morphism of spectral sequences such that it
were an isomorphism on the £ groups when 0 < s < N (which we recall are equal up to this
degree shift). Then the vanishing result in the column s = N + 1 would imply that the morphism
on the abutment would be an isomorphism in the range of degrees * < N.

In [Aum22, Section 6], it is explained how to construct this morphism such that the induced mor-
phism H, (Uy,(7); Z) — H,(Uy41(7); Z) is the one induced by -n: Uy, () — Ugs1 (%) in homology.
Likewise, the argument works for the jet map j': U(¥) — Uy(?). To sum up, we have:
Proposition 6.16 (Compare [Aum?22, Proposition 6.6]). Let N be as in Convention 6.8. Let k > 0
be an integer. The map -n: Uy (V) — U1 (V) induces an isomorphism in homology in the range of

degrees * < N. Similarly, the jet map j': U(U) — Uy(¥) induces an isomorphism in homology in the
same range. 0

6.3.3. The Stone—Weierstrass theorem. In view of Proposition 6.16, it suffices to show that
colim Uy (V') — Ugo(7)
k—o0

is a weak homotopy equivalence to finish the proof of Theorem 6.1. The proof is analogous to that
given in [Aum22, Section 7], but using the following version of the Stone—Weierstrass theorem
with interpolation.

Theorem 6.17 (Stone-Weierstrass). Let ' — B be a finite rank real vector bundle over a compact
Hausdorff space. Let A C C°(B,R) be a subalgebra, {s;};c; be a set of sections, and A be the
A-module generated by the s;. Let P = {by,bs,...,b,} C B be a finite (possibly empty) set of
distinct points, and V' = {vy,vq,...,vx} C E be vectorsv; € E|y, in the fibers above the b;. Define

APV =1 fc A|Vi, f(b)=v}C A
and
I3V (E) == {f € Teo(E) | Vi, f(b;) =v;} CTi (E)
to be the subsets of sections with prescribed values at the b;. Suppose that
(1) the subalgebra A separates the points of B: for any x,y € B, there exists h € A such that

h(z) # h(y);
(2) for any x € B, there exists h € A such that h(x) # 0;
(3) for any x € B, the fiber E, is spanned by the s;(x) as an R-vector space.
Then APV is dense for the sup-norm (induced by the choice of any inner product on E) in the space
LV (E).
Cco
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Sketch of a proof. The theorem follows from the original Stone-Weierstrass theorem for functions
from a compact space to the real line when the set P is empty, and its variations allowing interpola-
tion in general (see e.g. [Deu66, Theorem 1]). Indeed, by compactness, we may find a finite number
of sections s1, ..., s, such that s;(z),...,s,(z) span the fiber at each z € B. Then A contains
all sections of the form a;s; + - - - + a,s, for a; € A, and every continuous section of F can be
written as fis; + - -+ + fns, with f; € C°(B,R). We may finally use the usual Stone-Weierstrass
theorem, or its adaptation with interpolation, for the functions f;. OJ
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