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Abstract

In this thesis, I prove a general h-principle for algebraic sections of vector bundles, and use it to
investigate the homology of moduli spaces of smooth algebraic hypersurfaces. The thesis consists
of an introduction followed by three papers, the last of which is joint with Ronno Das.
In the first paper, I consider spaces of algebraic sections of vector bundles subject to differential
relations. On smooth projective complex varieties, I prove that the homology of such a space
coincides in a range with that of a space of continuous sections of an associated bundle. As an
immediate consequence, I show stability of the rational cohomology for complement of discrim-
inants in linear systems of hypersurfaces of increasing degree. This paper is the most technical
and its results are used repeatedly throughout the thesis.
In the second paper, I study the locus of smooth hypersurfaces inside the Hilbert scheme of a
smooth complex projective variety. Using the results of the first paper, I show how part of its
cohomology can be computed via an h-principle akin to a scanning map. I also explain how
to compare the rational cohomology to that of classifying spaces of diffeomorphisms groups of
hypersurfaces.
In the third paper, Ronno Das and I study the cohomology of the universal smooth hypersurface
bundle with marked points. We adapt the arguments of the first paper to show another h-principle.
Using rational models, we deduce rational homological stability for this space.

Resumé

I denne afhandling viser jeg et h-princip vedrørende algebraiske sektionsrum af vektorbundter,
og bruger det til at studere homologien af moduli rummene af glatte hyperflader. Afhandlingen
består af en introduktion og tre artikler, hvoraf den sidste er et samarbejde med Ronno Das.
I den første artikel studerer jeg rum af algebraiske sektioner af vektorbundter, der opfylder differ-
entialrelationer. For glatte projektive komplekse varieteter viser jeg, at en del af sektionsrummets
homologi er lig med den af et rum af kontinuerte sektioner af et relateret bundt. Som ummidelbar
korollar beviser jeg, at den rationelle kohomologi af komplementerer af diskriminanter i lineære
systemer af hyperflader stabiliserer, når hyperfladers grad stiger. Denne artikel er den mest teknisk
krævende i afhandlingen, og indeholder resultater, som bruges gennem hele afhandlingen.
I den anden artikel undersøger jeg locusen af glatte hyperflader i Hilbert-skemaet af en glat projek-
tiv kompleks varietet. Jeg viser, hvordan en del af dens kohomologi kan beregnes via et h-princip,
der ligner en skanningsafbildning. Jeg forklarer også, hvordan den rationelle kohomologi kan
sammenlignes med den af klassificerende rum af diffeomorfisme grupper af hyperflader.
I den trejde artikel, som er et samarbejde med Ronno Das, studerer vi kohomologien af det uni-
verselle glatte hyperfladerbundt med markerede punkter. Vi tilpasser beviserne fra den første
artikel til at vise et andet h-princip. Ved hjælp af rationelle modeller deducerer vi rationel homol-
ogisk stabilitet for dette rum.
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Résumé

Dans cette thèse, je montre un h-principe général concernant les sections algébriques de fibrés
vectoriels, et l’utilise pour étudier l’homologie d’espaces de modules d’hypersurfaces lisses. Cette
thèse comprend une introduction ainsi que trois articles, le dernier étant écrit en collaboration
avec Ronno Das.
Dans le premier article, je considère des espaces de sections algébriques de fibrés vectoriels sujets
à des relations différentielles. Dans le cas de variétés complexes lisses et projectives, je prouve que
l’homologie d’un tel espace coı̈ncide jusqu’à un certain degré avec celle d’un espace de sections
continues d’un fibré auxiliaire. En guise d’application, je montre de la stabilité homologique ra-
tionnelle pour les complémentaires des discriminants dans des systèmes linéaires d’hypersurfaces
de degrés croissants. Ce papier est certainement le plus technique et contient des résultats utilisés
tout au long de cette thèse.
Dans le second article, j’étudie le lieu géométrique des hypersurfaces lisses à l’intérieur du schéma
de Hilbert d’une variété complexe lisse et projective. En utilisant les résultats du premier papier,
je montre qu’une partie de sa cohomologie peut être calculée via un h-principe s’apparentant
aux méthodes de scanographie topologique. J’en profite pour aussi expliquer comment com-
parer la cohomologie rationnelle à celle d’espaces classifiants de groupes de difféomorphismes
d’hypersurfaces.
Dans le troisième article, Ronno Das et moi-même étudions la cohomologie du fibré universel
des hypersurfaces lisses avec des points marqués. On adapte les arguments de mon premier pa-
pier pour prouver un autre h-principe. On en déduit un phénomène de stabilité homologique en
utilisant des modèles rationnels.



5

Acknowledgements

First and foremost, I would like to heartily thank Søren for his guidance during the last four years.
I have benefited immensely from his insights, suggestions, questions, encouragements… needless
to say, this thesis would not exist without him. Thanks for giving me the freedom to find my own
path, whilst making sure I was not completely going astray. I could not have asked for a better
adviser, both mathematically and humanly. Tak Søren!
The beginning of my Danish journey can be traced back to the summer of 2017. I am grateful
to Jesper for generously hosting me back then, and for his constant cheerfulness. Many thanks
are also due to Oscar for introducing me to the beautiful world of manifolds in Cambridge, and
for enlightening mathematical discussions during my PhD. I am thankful to Nathalie, not only for
chairing my thesis committee, but also for creating such a joyful atmosphere at the GeoTop center.
Thanks to Ronno for exchanging good and bad puns, and for our mathematical collaboration. I
have learned a lot from our discussions.
I am pleased to have had great office mates over the years, and special thanks are due to Kaif and
Jeroen for delightful office nonsense. It is a pleasure to thank Vignesh, both for being an important
honorary member of the office, and also for sharing his mathematical enthusiasm. Thanks to
Calista for helpful advice and being a great academic sister, and to Severin for being a friendly
housemate. I would also like to extend my thanks to my fellow PhD students and everyone else
in the topology group and the administration for pleasant collegiality.
I am also very grateful to have had a happy life during my years spent in Copenhagen. Special
thanks to Nanna for being a good friend and PhD companion over the years, and to Nena for
great culinary collaborations and being a worthy board game rival. En stor tak til alle fægtere i
Frederiksberg Slots Fægteklub, især til Pia for hendes varme velkomst, et à Quentin pour de belles
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Thesis Statement

This thesis consists of an introduction and three papers.

The first paper is reproduced, with minor modifications, from my Master Thesis at the University
of Copenhagen. As part of my 4+4 PhD programme at the University of Copenhagen, I submitted
my Master Thesis after two years, in August 2021, and defended it in September 2021. The paper
is now publicly available at arXiv: 2112.00326. It has been submitted to a journal for publication
and is currently under review.

The third paper is written jointly with Ronno Das. A co-authorship statement was signed and
given to the secretariat at the Institut for Matematiske Fag.

The image on the front page was made by Anna-Julia Plichta for the department of mathematical
sciences, and is reproduced here with the authorisation of Jim Høyer.
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Part I

Introduction



Much of the work in this thesis can be seen as my attempt to understand linear systems of smooth
divisors. These are arguably the simplest moduli spaces in algebraic geometry, and I will explain
in this introduction what they are and what I can say about them. This introduction is meant to
be understandable to non-experts, and not supposed to be precise in any way.

Moduli of hypersurfaces

Loosely speaking, a bundle over T consists of objectsEt for each t ∈ T which depend continuously
on t. This is often written altogether as E → T and the Et are called fibres. Given a family of
objects F , we have a moduli functor

T 7−→ {E → T | Et ∈ F , ∀t ∈ T}
which records the set of bundles with fibres in the family. The word “functor” reflects the fol-
lowing important construction: given a bundle E → T and a map f : S → T , we can form the
pullback f ∗E → S by letting (f ∗E)s = Ef(s) for each s ∈ S. A moduli functor can sometimes be
representable, and in fact those appearing in this thesis will indeed be. In that case, there exists a
bundle

π : U →M
with the special property that each fibre is an element of the family F , and any bundle E → T
with fibres in F is pulled back from π along a unique map T →M. ThenM is called the moduli
space andU the universal bundle representing the moduli functor. I have been deliberately vague to
encompass two situations appearing in this thesis: the topological and the algebraic geometrical.
In the former, bundles are smooth and proper maps with fibres manifolds. In the later, they are
flat morphisms with fibres varieties.
The objects in the familyF of choice in this thesis are called hypersurfaces or divisors. By definition,
they are the subvarieties of codimension 1 in a chosen complex variety X . More concretely, a
hypersurface Z ⊂ X is locally given by a single equation, i.e. X can be covered by open subsets
Ui where

Z ∩ Ui = {x ∈ X | si(x) = 0}
with si : Ui → C a non-zero polynomial. In fact these polynomials can be glued to form, not a
global functionX → C, but rather a global section s : X → L of a line bundle p : L → X . In other
words, p is a bundle in the above sense with fibres C, and p ◦ s = id. Let me write

Γ(X,L) = {s : X → L | p ◦ s = id}
for the vector space of global sections of p : L → X , and given a non-zero section s ∈ Γ(X,L) \ 0

V (s) = {x ∈ X | s(x) = 0}
for its vanishing locus, i.e. the hypersurface it defines. Let me also notice that the solutions to the
equation s(x) = 0 do not change if s is multiplied by a non-zero scalar λ ∈ C×. Thus any element
in the projectivisation (

Γ(X,L) \ 0
)
/C× = P

(
Γ(X,L)

)

has a well-defined vanishing locus attached to it. Fixing L, the hypersurfaces obtained this way
are called linearly equivalent, and the set of those is the complete linear system |L|. This is the
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fundamental example in this thesis: when X is smooth and projective, the moduli functor on the
category of complex varieties

T 7−→ {E → T flat morphism | ∀t ∈ T, Et ⊂ X is in |L|}
is represented by the flat family

{
(s, x) ∈ P

(
Γ(X,L)

)
×X

∣∣ s(x) = 0
}
−→ P

(
Γ(X,L)

)

and P
(
Γ(X,L)

) ∼= |L|.
Let me now introduce an interesting geometric property. If V (s) is a hypersurface given as the
vanishing locus of a global section s, it is called smooth if the derivative ds(x) ̸= 0 for all x ∈ V (s).
There exists in fact a direct characterisation found by Cayley [Cay48] in the 19th century, who
constructed the discriminant

∆: Γ(X,L) −→ C
as a homogeneous polynomial such that ∆(s) ̸= 0 if and only if V (s) is smooth. By the discussion
above, the Zariski open subset

Mhyp(L) =
{
s ∈ P

(
Γ(X,L)

) ∣∣ ∆(s) ̸= 0
}
⊂ P

(
Γ(X,L)

)

is the moduli space representing the functor of bundles with fibres smooth hypersurfaces in the
family |L|. A large part of this thesis is dedicated to computing its homology.

Homology and stability

Outside of a few rare cases, computing the whole homology of a moduli of smooth hypersurfaces
is out of reach. Instead, I focus in this thesis on a phenomenon known as homological stability.
Broadly speaking, a sequence of spaces {Yd}d∈N satisfies homological stability if given an i the
homology group Hi(Yd) is independent of d for d ≫ 0 large enough. This group is then known
as the ith stable homology, and computing it is an interesting question. In the context of moduli
spaces, this is hardly a new idea. For instance, Harer showed that the moduli spaces of smooth
curves of genus g exhibit homological stability when the genus increases [Har85]. An expres-
sion for the stable rational homology was a conjecture of Mumford [Mum83] resolved by Madsen
and Weiss [MW07]. More recently, Galatius and Randal-Williams greatly extended these results
(both stability and computation of the stable homology) to moduli spaces of higher dimensional
manifolds in the series of papers [GRW14, GRW17, GRW18].
To even state homological stability for moduli spaces of smooth hypersurfaces, we first need a
sequence of them. A natural candidate is given by the sequence

Mhyp(L), Mhyp(L⊗2), Mhyp(L⊗3), . . .

of moduli associated to tensor powers of a chosen line bundle L. Vakil and Wood had conjectured
[VW15] that the rational homology of this sequence stabilises when L is an ample line bundle.
This was proved by Tommasi for L = OPn(1) [Tom14], and I managed to prove the conjecture
in full generality in [Aum22]. Although unusual, there are to my knowledge no maps between
any two spaces in the sequence that could induce isomorphisms on the stable homology groups.
Instead I showed stability as a by-product of the computation of the, a fortiori stable, homology. In
the continuation of this work, Ronno Das and I computed in [AD23] the stable rational homology
of the universal bundle aboveMhyp(L⊗d).



14

In their work I alluded to above, Galatius and Randal-Williams have explained how to compute
the stable homology of the classifying space BDiff(M) of the diffeomorphism group Diff(M) of
a manifold M . From the point of view of this introduction, BDiff(M) is the topological moduli
space parameterising smooth manifold bundles with fibre isomorphic to M . Of course, when M
happens to be a hypersurface given as the vanishing locus of a section s ∈ Γ(X,L), there is
also the algebraic moduli spaceMhyp(L) parameterising algebraic bundles of varieties with fibre
linearly equivalent toM . In the paper [Aum23], I relate the stable homologies of these two moduli
spaces using tangential structures. These are additional data on the tangent space of the manifold,
and I use them to record special properties of a hypersurface deduced from the algebraic geometry.
Finally, one can wonder what happens when linear equivalence is replaced by homological equiva-
lence. For this latter relation, two hypersurfaces given as vanishing loci of sections of line bundles
L andL′ are equivalent ifL andL′ have equal Chern classes. In my work [Aum23], I show that the
homology of the larger moduli space of those hypersurfaces can be computed using a technique
from algebraic topology known as scanning.

Homotopy principle

In this final section of the introduction, I want to highlight the main technical result of my thesis. It
takes the form of a homotopy principle, or h-principle for short. As the name suggests, h-principles
are part of a general heuristic to transform geometric problems into homotopical ones. They have
been wonderfully exposed in general in other places, e.g. [EM02]. In this section, I want to focus
on how they look like in the context of the moduli of smooth hypersurfaces.
As defined earlier, smoothness of a section s of a line bundle L → X is a twofold condition
expressed on both its value and its derivative. Indeed, recall that s is smooth if (s, ds)(x) ̸= 0 for
all x ∈ X . Let us write

j1(s) = (s, ds)

for that couple, so that s is smooth if and only if j1(s) never vanishes. As for the notation, j1(s) is
called the first jet expansion of s and is a global section of an auxiliary bundle J1L named the first
jet bundle of L. With this shift of perspective, smoothness is a single condition on the value only
of a global section. Although it does not seem to achieve much, this reformulation is very useful
for two reasons. Firstly the space of never vanishing continuous sections of the jet bundle

ΓC0

(
X, J1L \ 0

)

is amenable to techniques from homotopy theory. Secondly the h-principle predicts that
{s ∈ Γ(X,L) | s is smooth} −→ ΓC0

(
X, J1L \ 0

)

s 7−→ j1(s)

induces an isomorphism on homology. This was shown by Vassiliev in the context of C∞ sections
of bundles on manifolds [Vas94]. In [Aum22], I adapt his methods to the context of algebraic
sections, at the price of only obtaining an isomorphism in a range of degrees.
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PAPER A

An h-principle for complements of discriminants

This chapter contains the preprint version of the following paper:

Alexis Aumonier. An h-principle for complements of discriminants. 2022.

The paper is reproduced, with minor modifications, from my Master Thesis at the University of
Copenhagen. The preprint version is publicly available at arXiv: 2112.00326.
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AN H-PRINCIPLE FOR COMPLEMENTS OF DISCRIMINANTS

ALEXIS AUMONIER

Abstract. We compare spaces of non-singular algebraic sections of ample vector bundles to spaces
of continuous sections of jet bundles. Under some conditions, we provide an isomorphism in
homology in a range of degrees growing with the jet ampleness. As an application, when L is a very
ample line bundle on a smooth projective complex variety, we prove that the rational cohomology
of the space of non-singular algebraic sections of L⊗d stabilises as d→∞ and compute the stable
cohomology. We also prove that the integral homology does not stabilise using tools from stable
homotopy theory.

Contents
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2. Statement of the main theorem 4
3. Resolution of singularities 8
4. Cohomology groups on the E1-page 13
5. Interpolating holomorphic and continuous sections 20
6. Comparison of spectral sequences 24
7. Comparison of holomorphic and continuous sections 32
8. Applications 33
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1. Introduction

The purpose of this paper is to study spaces of non-singular holomorphic sections of vector
bundles by comparing them to spaces of continuous sections of appropriate jet bundles. The latter
are particularly amenable to computations using tools from homotopy theory.

Given a holomorphic line bundle L on a smooth projective complex variety X , one may consider
the vector space of all holomorphic global sections Γhol(X;L). To each section s ∈ Γhol(X;L) is
associated a geometric object: its vanishing set

V (s) := {x ∈ X | s(x) = 0} ⊂ X,

and s is called non-singular whenever its derivative ds ∈ Γhol(Ω
1
X ⊗ L) does not vanish on V (s).

This implies in particular that V (s) is a smooth subvariety of X . It has been known for a century
now that when L is a very ample line bundle, Bertini theorem implies that a generic section is
non-singular. There is thus a Zariski open subset

Γhol,ns(X;L) ⊂ Γhol(X;L)
consisting of those non-singular sections, which geometrically can be interpreted as a moduli
space of equations of certain smooth hypersurfaces in X . A prime example being the space

1
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Γhol,ns(CPn;O(d)) (sometimes modded out by C∗ orGLn+1(C)) of smooth hypersurfaces of degree
d in the complex projective space CPn.

The cohomology ring of Γhol,ns(X;L), sometimes known as the ring of characteristic classes, is
therefore an important object in the study of hypersurface bundles. In this article, we give a way
of computing it in a range.

Before revealing our main theorem, we will extend the classical situation above in two directions.
To begin, instead of limiting ourselves to line bundles, we will look at sections of bundles of possibly
higher rank. Furthermore, we observe that being non-singular imposes conditions on the value
and derivative of a global section. We will generalise this situation by looking at a broader class
of conditions on higher order derivatives, thus encompassing various other flavours of moduli
spaces: hypersurfaces with simple nodes, smooth complete intersections, etc. (Although explicit
computations of cohomology rings will only appear in forthcoming work.)

Having said this, let X be a smooth projective complex variety and E be a holomorphic vector
bundle on X . One can construct a new holomorphic vector bundle JrE called the r-th jet bundle of
E together with a map on global sections jr : Γhol(E)→ Γhol(J

rE). Intuitively, for a section s of E ,
the associated section jr(s) of the jet bundle records all derivatives of s up to order r. For T ⊂ JrE
a subset which we think of as “forbidden derivatives”, we say that a section s of E is non-singular if
jr(s)(x) ̸∈ T for all x ∈ X . For instance, when E is a line bundle and T ⊂ J1E is the zero section,
we recover the classical notion of non-singular sections discussed at the beginning of this article.

Theorem 1.1 (see Theorem 2.13 for full generality). Let X be a smooth complex projective variety
and E be a holomorphic vector bundle on it. Let r ≥ 0 be an integer and T ⊂ JrE be a closed
subvariety of the r-th jet bundle of E of codimension at least dimCX + 1. We write

Γhol,ns (E) := {s ∈ Γhol(E) | ∀x ∈ X jr(s)(x) ̸∈ T}
for the space of non-singular holomorphic sections of E . If E is d-jet ample, the composition

Γhol,ns (E) jr−→ Γhol (J
rE − T) ↪→ ΓC0 (JrE − T)

induces an isomorphism in integral homology in the range of degrees ∗ < d−r
r+1

.

The theorem above can be strengthened, and in Section 2 we introduce a more general class
of allowed subsets T ⊂ JrE of the jet bundle as well as give a sharper range of degrees. We also
take advantage of that section to give the definition of jet ampleness and jet bundles in algebraic
geometry.

1.1. Motivations and applications. Motivated by their stabilisation result in the Grothendieck
ring of varieties [VW15], Vakil and Wood conjectured that for a very ample line bundle L on
a smooth projective complex variety, the space of non-singular sections of L⊗d should exhibit
cohomological stability. In the special case of the projective space, Tommasi obtained the following
result.

Theorem 1.2 (Tommasi, [Tom14]). Let d, n ≥ 1 be integers. Let Ud,n be the space of non-singular
holomorphic sections of O(d) on CPn. The rational cohomology of Ud,n is isomorphic to the rational
cohomology of the space GLn+1(C) in degrees ∗ < d+1

2
.
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In work in progress, she furthermore investigates an extension of this result to arbitrary smooth
projective varieties [Tom23]. Using different techniques, O. Banerjee also confirmed the conjecture
of Vakil and Wood in the case of smooth projective curves [Ban21].

The present work was strongly motivated by the result of Tommasi and the wish to understand
the stable cohomology from a more homotopy theoretic point of view. At the time of writing, let
us in particular mention the following result:

Theorem 1.3 (Tommasi, work in progress in [Tom23]). LetX be a smooth projective complex variety
of dimension n and L be a very ample line bundle on X . Let d ≥ 1 be an integer and Ud be the space
of non-singular holomorphic sections of L⊗d. There is a Vassiliev spectral sequence converging to the
homology of Ud. Working with rational coefficients, this spectral sequence degenerates on the E2-page
in the stable range if and only if the stable cohomology is a free commutative graded algebra on the
cohomology of X shifted by one degree.

Assuming this degeneration, the rational cohomology of Ud in degrees ∗ < ⌊d+1
2
⌋ is given by the

free commutative graded algebra Λ (H∗−1(X;Q)) on the cohomology of X shifted by one degree.

In the last section (Section 8) of this paper, we apply our main theorem to spaces of smooth
hypersurfaces to prove a homological stability result with rational coefficients.

Theorem 1.4 (see Theorem 8.2). LetX be a smooth projective complex variety and L be a very ample
line bundle on X . The rational cohomology ring of the space Γhol,ns(Ld) of non-singular sections (in
the classical sense) of the d-th tensor power of L is isomorphic to Λ (H∗−1(X;Q)) in degrees ∗ < d−1

2
.

Firstly, let us point out that this agrees with the work in progress of Tommasi. In fact, one can
use our main theorem to show the degeneration of the Vassiliev spectral sequence she constructed.
Secondly, in contrast to many other instances of homological stability, one should remark that
there are no natural stabilisation maps from spaces of non-singular sections of Ld to those of Ld+1.
Thus, we only mean that the cohomology rings abstractly stabilise, and the answer only depends on
X and not on L. After the apparition of the first version of the present article, and using different
tools, Das and Howe proved a version of the above theorem for hypersurfaces in algebraic varieties
over any algebraically closed field [DH22].

On the other hand, we find it quite interesting to notice that there is in general no integral
homological stability. In fact, we prove the following result about the moduli space of smooth
hypersurfaces of degree d in CP2:

Theorem 1.5 (see Proposition 8.10). Let d ≥ 6 be an integer. We have:

H2(Γhol,ns(CP2,O(d));Z/2) ∼=
{
Z/2 d ≡ 0 mod 2

0 d ≡ 1 mod 2.

Besides the phenomenon this result illustrates, its proof showcases the potential of homotopical
methods allowed by our main theorem. Indeed, the computation comes down to simple manipula-
tions of Steenrod squares where the parity of d is reflected in the Chern class of O(d). In contrast,
a more classical approach following the work of Vassiliev [Vas99] would require knowledge of
non-trivial differentials in spectral sequences that quickly grow out of hand when d increases.

For good measure, we also study the p-torsion in the homology of Γhol,ns(Ld) and show that it
stabilises when p ≥ dimCX + 2 and d→∞. (See Proposition 8.15.)
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The results of this paper are also inspired by analogies with theorems in arithmetic probabili-
ties, such as Poonen’s Bertini theorem over finite fields [Poo04], and in motivic statistics in the
Grothendieck ring of varieties as in [VW15] or [BH19]. The recent results of Bilu and Howe partic-
ularly influenced the current formulation of our main theorem and we would like to recommend
the introduction of their paper [BH19] to the reader interested in an overview of these analogies.
Finally, we also wish to mention that I. Banerjee recently announced a result relating non-singular
sections of a line bundle on an algebraic curve and smooth sections of the same line bundle [Ban20].
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his encouragement and many helpful discussions. I would also like to thank Orsola Tommasi for
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this project. I was supported by the Danish National Research Foundation through the Copenhagen
Centre for Geometry and Topology (DNRF151) as well as the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 682922).

2. Statement of the main theorem

We begin by a few preliminary definitions before stating precisely our main theorem. Throughout
this article, X is a smooth projective complex variety and E is a holomorphic vector bundle on X .
We denote by Γ the space of sections of a vector bundle, and decorate it with subscripts “hol” or C0
to indicate respectively holomorphic or continuous sections. We will make extensive use of Čech
(or sheaf, as they will agree in our setting) cohomology with compact support which we denote by
Ȟ∗

c and refer to [Bre97] for its definition and standard properties. All homology and cohomology
groups will be taken with integral coefficients, unless otherwise specified. We recall the following
definition of jet ampleness.

Definition 2.1 (Compare [BDRS99]). Let k ≥ 0 be an integer. Let x1, . . . , xt be t distinct points
in X and (k1, . . . , kt) be a t-uple of positive integers such that

∑
i ki = k + 1. Denote by O the

structure sheaf of X and by mi the maximal ideal sheaf corresponding to xi. We regard the tensor
product ⊗t

i=1m
ki
i as a subsheaf of O under the multiplication map ⊗t

i=1m
ki
i → O. We say that E is

k-jet ample if the evaluation map

Γhol (E) −→ Γhol

(
E ⊗

(
O/⊗t

i=1 m
ki
i

)) ∼=
t⊕

i=1

Γhol

(
E ⊗

(
O/mki

i

))

is surjective for any x1, . . . , xt and k1, . . . , kt as above.

Example 2.2. A vector bundle E is 0-jet ample if and only if it is spanned by its global sections. In the
case of a line bundle, 1-jet ampleness corresponds to the usual notion of very ampleness. On a curve,
a line bundle is k-jet ample whenever it is k-very ample. However, on higher dimensional varieties,
a k-jet ample line bundle is also k-very ample but the converse is not true in general. Finally, and
most importantly for us, if A and B are holomorphic vector bundles which are respectively a- and
b-jet ample, then their tensor product A⊗ B is (a+ b)-jet ample. (See [BDRS99, Proposition 2.3].)

To ease the readability of various statements throughout the paper, we will use the following
notation.
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Definition 2.3. For a holomorphic vector bundle E on X and an integer r ∈ N, we define
N(E , r) ≥ 0 to be the largest integer N such that E is ((N + 1) · (r + 1)− 1)-jet ample. If no such
integer exists, we set N(E , r) = −1, although we shall never consider such a case in this paper.

Let us also recall the construction of the jet bundle from [Gro67, IV.16.7] (where it is called the
sheaf of principal parts). The diagonal morphism ∆: X → X ×X gives a surjection of sheaves
∆♯ : ∆∗OX×X → OX . Denoting by I the kernel, we have OX

∼= ∆∗OX×X/I . For an integer
r ≥ 0, we define the r-th jet bundle of OX to be

JrOX := ∆∗OX×X/Ir+1.

The projections pi : X ×X → X give two OX-algebra structures on JrOX and, unless otherwise
specified, we use the one given by the first projection p1. The other morphism induced by p2 is
denoted by

drX : OX −→ JrOX .

For a holomorphic vector bundle E on X , we define its r-th jet bundle to be
JrE := JrOX ⊗OX

E (1)
where JrOX is seen as an OX-module via the morphism drX for the tensor product, and the result
is regarded as an OX-module again via p1. It comes with the morphism

drX,E := drX ⊗ E : E −→ JrOX ⊗OX
E = JrE .

Taking global sections, we obtain the jet map:
jr = Γ(drX,E) : Γhol(E) −→ Γhol(J

rE). (2)
The most important observation for us is the following: if x ∈ X is a point with maximal ideal sheaf
m, the fibre (JrE)|x is naturally identified with the complex vector space Ex/mr+1

x Ex. Furthermore,
the composition

Ex
(drX,E)x−→ (JrE)x −→ (JrE)|x = Ex/mr+1

x Ex
is the natural quotient map. (Here, and everywhere else, we write Ex for the stalk of the sheaf E
and E|x = Ex/mxEx for the fibre of the bundle E .) Intuitively, for a holomorphic section s of E , one
should think of the value of jr(s) at a point x ∈ X as the tuple of all derivatives of s at x up to
order r. In particular, the following lemma is a direct consequence of the definitions.

Lemma 2.4. Let E be a holomorphic vector bundle on X and let N(E , r) be as in Definition 2.3. Let
(x0, . . . , xp) be a tuple of p+ 1 distinct points in X . If p ≤ N(E , r), the simultaneous evaluation of
the jet map (2) at these points

jr(x0,...,xp) : Γhol(E) −→ (JrE)|x0 × · · · × (JrE)|xp

s 7−→ (jr(s)(x0), . . . , j
r(s)(xp))

is surjective. □
We shall now explain what we precisely mean by restricting the behaviour of sections of E . In

particular, we will require certain subsets of the jet bundle to be “semi-algebraic”. This is a technical
condition which is quite arbitrary. We believe that a clearer and more general notion could be
used, but we were unfortunately not able to make the arguments of Section 4 work without it.
Our arguments rely on multiple properties of these sets: they admit cell decompositions, have a
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well-defined dimension, and they behave well under projections and closure. (See Section 4.2 for
their single but crucial use.)

There is a well-studied concept of real semi-algebraic subsets of an Euclidean space. They are
subsets defined by polynomial equations and inequalities.

Definition 2.5 (Compare [BCR98]). A semi-algebraic subset of Rn is a union of finitely many
subsets of the form

{x ∈ Rn | P (x) = 0, Q1(x) > 0, . . . , Ql(x) > 0} ,
where l ∈ N and P,Q1, . . . , Ql ∈ R[X1, . . . , Xn].

We adapt the definition to families, i.e. to subsets of vector bundles, by demanding the standard
definition to be satisfied locally in charts. This is well-defined because an algebraic variety X has
an atlas whose transition functions are algebraic, hence respect the semi-algebraicity.

Let us be more precise. First, we briefly recall the notion of an algebraic atlas on X . To lighten
the notation, we let n be the complex dimension of X and m be the complex rank of JrE . We
denote by V (−) the vanishing set of the tuple of polynomials.

The variety X can be covered by Zariski open subsets, each of the form
U ∼= V (f1, . . . , fd−n) ⊂ Cd

for some integer d ≥ 1 and polynomials f1, . . . , fd−n. Furthermore, if U and W are Zariski open
subsets of X with α : U ∼= V (f1, . . . , fd−n) ⊂ Cd and β : W ∼= V (g1, . . . , gd′−n) ⊂ Cd′ , the
homeomorphism on the intersection

α(W ∩ U) ∩ V (f1, . . . , fd−n)
∼=−→ W ∩ U ∼=−→ β(U ∩W ) ∩ V (g1, . . . , gd′−n)

is given by a rational function whose domain is a subset of Cd and codomain is a subset of Cd′ .
Recall also that the algebraic vector bundle JrE is equivalently given by the data of trivialising
Zariski open subsets Ui ⊂ X (over which JrE|Ui

∼= Ui ×Cm) and transition functions on overlaps
Ui ∩ Uj → GLm(C). Most importantly for us, the transition functions are regular morphisms.

Definition 2.6. Let n be the complex dimension of X and m be the complex rank of JrE . A subset
T ⊂ JrE is real semi-algebraic if there exists a cover X =

⋃
Ui by Zariski open subsets such that

the following conditions hold for each i:
(1) the jet bundle may be trivialised over Ui via a map φi : J

rE|Ui

∼=→ Ui × Cm;
(2) there is a chart ϕi : Ui

∼=→ V (f i
1, . . . , f

i
di−n) ⊂ Cdi for some polynomials f i

1, . . . , f
i
di−n;

(3) and the image in R2(di+m) of T|Ui
via the map

JrE|Ui

φi−→ Ui × Cm ϕi×id−→ V (f i
1, . . . , f

i
di−n)× Cm ⊂ Cdi+m ∼= R2(di+m)

is a real semi-algebraic subset. (Here T|Ui
is the restriction of T above Ui.)

We will often drop the adjective “real” as we will never consider any complex analogue. In
essence, a subset T ⊂ JrE is semi-algebraic in the sense of Definition 2.6 when it is semi-algebraic
in the usual way when “read in charts”. As all the change-of-coordinates maps described above
are rational functions, being semi-algebraic is independent of the choice of the cover. Indeed, the
image of a semi-algebraic set by a rational function is still semi-algebraic (see [BCR98, Section
2.2]).
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A semi-algebraic subset has a well-defined dimension (as in [BCR98, Section 2.8]) which can be
thought of as the maximal dimension in a decomposition into cells of the form ]0, 1[d (see [BCR98,
Corollary 2.8.9]). We therefore get a well-defined dimension for a semi-algebraic subset T ⊂ JrE
by looking at the dimensions when “reading in charts”:
Definition 2.7. Let T ⊂ JrE be a semi-algebraic subset. Let X =

⋃
Ui by a finite cover as in

Definition 2.6 (the finiteness can always be arranged by compactness ofX) and writeTUi
⊂ R2(di+m)

for the semi-algebraic sets obtained using the condition (3). Each of them has a well-defined
dimension and we let the dimension of T be their maximum.

In the following definition, we denote by rkCJ
rE the complex rank of JrE .

Definition 2.8. We say that a subset T ⊂ JrE is an admissible Taylor condition if it is closed,
real semi-algebraic and has dimension at most 2(rkCJrE − 1). We will use the notation T|x :=
(JrE)|x ∩ T for the fibre above a point x ∈ X .
Remark 2.9. Although our definition is quite technical and general, the typical admissible Taylor
conditions arise as subvarieties of high enough codimension. Indeed, any closed subvariety
T ⊂ JrE of the jet bundle of complex codimension at least dimCX + 1 defines an admissible
Taylor condition.

Motivated by the previous remark, and to help general bookkeeping throughout the paper, we
will use the following notation.
Definition 2.10. The (real) excess codimension of an admissible Taylor condition T is defined to be
the number e(T) = codimRT− dimRX ≥ 2, where codimRT is the real codimension of T in the
jet bundle JrE .

We are now ready to define what it means for a section to be singular with respect to an
admissible Taylor condition T.
Definition 2.11. A holomorphic section s of the vector bundle E is said to be singular if there
exists a point x ∈ X such that jr(s)(x) ∈ T|x. Similarly, a (continuous) section s of the vector
bundle JrE is said to be singular if there exists a point x ∈ X such that s(x) ∈ T|x. A section that
is not singular is said to be non-singular.
Example 2.12. If E is a line bundle, we may take T to be the zero section of J1E . It is an admissible
Taylor condition and a singular section is one that vanishes at a point onX where its derivative also
vanishes. In particular, if s is a non-singular section, its zero set Z(s) := {x ∈ X | s(x) = 0} ⊂ X
is a smooth submanifold.

When talking about spaces of sections Γ, we will use the subscript “ns” to denote the subspace
of non-singular sections. The following is our main result.
Theorem 2.13. Let r ≥ 0 and N ≥ 1 be integers. Let E be an ((N + 1) · (r + 1)− 1)-jet ample
vector bundle on X and let T ⊂ JrE be an admissible Taylor condition. The composition

Γhol,ns (E) jr−→ Γhol,ns (J
rE) ↪→ ΓC0,ns (J

rE)
induces an isomorphism in homology:

H∗ (Γhol,ns(E);Z) −→ H∗ (ΓC0,ns(J
rE);Z)

in the range of degrees ∗ < N · (e(T)− 1) + e(T)− 2.
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2.1. Outline of the paper. There are two key ingredients in the proof of the main theorem 2.13.
The first one is a spectral sequence à la Vassiliev (see [Vas94, Chapter III] for an analogous statement
in the case of smooth sections, and [Vas99] for more explicit computations in small degrees). The
starting idea is that one should study the space of singular sections and deduce the homology of
the space of non-singular sections via Alexander duality. The former has a natural filtration given
by counting the number of singularities and it is used to construct a spectral sequence converging
to its cohomology. Comparing spectral sequences allows us to compare sections of E and JrE . The
second ingredient is a version of the classical Stone–Weierstrass theorem adapted from the work
of Mostovoy [Mos06] which allows us to compare holomorphic and continuous sections of JrE .

We first explain how to resolve the singular subspaces and construct the Vassiliev spectral
sequence in Section 3. We study its first page in Section 4. In Section 5, we explain how to go
from holomorphic sections to continuous sections. Then, in Section 6, we construct a morphism of
spectral sequences and use it to compare various spaces of sections. We finish proving our main
theorem in Section 7. Lastly, in Section 8, we apply our results to study spaces of non-singular
sections of a very ample line bundle on a projective variety.

3. Resolution of singularities

In this section, we choose an admissible Taylor condition T ⊂ JrE inside the r-th jet bundle of
a holomorphic vector bundle E on X , and we will write for brevity

Γ = Γhol (E) and Σ = Γhol (E)− Γhol,ns (E)
for the vector space Γ of all holomorphic sections of E and its subspace Σ of singular sections. We
also define the singular space of a section f ∈ Γ

Sing(f) := {x ∈ X | jr(f)(x) ∈ T} ⊂ X (3)
as the space of points where f is singular (as in Definition 2.11). Our final goal, Theorem 2.13, is to
understand the homology of the space of non-singular sections Γhol,ns (E) = Γ− Σ. By Alexander
duality

Ȟ i
c(Σ)

∼= H̃2 dimC Γ−i−1(Γ− Σ),

it is equivalent to understand the compactly supported Čech cohomology of its complement Σ.
To achieve that, we want to construct a spectral sequence converging to Ȟ∗

c (Σ). This spectral
sequence arises from a resolution of the space Σ which we define in this section.

3.1. Construction of the resolution. We will construct a space RX→ Σ mapping surjectively
to the singular subspace Σ. The inverse image of a section f ∈ Σ with j + 1 singularities will be a
j-simplex ∆j . This will allow us to show that RX→ Σ induces an isomorphism in cohomology
with compact supports (up to some modifications). The spaceRX will be advantageously filtered by
subspaces RjX related via pushout diagrams resembling the skeletal decomposition of a simplicial
space. This filtration then yields a spectral sequence computing the cohomology of RX, hence that
of Σ.

This is inspired by the so-called truncated resolution of Mostovoy [Mos12] but written in a more
functorial way as in [Vok07].

In what follows, the space Γ is given its canonical topology coming from the fact that it is a
finite dimensional complex vector space. Let F be the category whose objects are the finite sets
[n] := {0, . . . , n} for n ≥ 0 and whose morphisms are all maps of sets [n] → [m]. Let Top be
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the category of topological spaces and continuous maps between them. We define the following
functor

X : Fop −→ Top

[n] 7−→ X[n] := {(f, s0, . . . , sn) ∈ Γ×Xn+1 | ∀i, si ∈ Sing(f)} (4)

where X[n] is given the subspace topology from Γ × Xn+1. On morphisms, for a map of sets
g : [n]→ [m], we define

X(g) : X[m] −→ X[n]

(f, s0, . . . , sm) 7−→ (f, sg(0), . . . , sg(n)).

For an integer k ≥ 0, we denote by F≤k the full sub-category of F on objects [n] for n ≤ k. Let us
also write

|∆n| = {(t0, . . . , tn) | ∀i, 0 ≤ ti ≤ 1 and t0 + · · ·+ tn = 1} ⊂ Rn+1

for the standard topological n-simplex, and denote by ∂|∆n| its boundary. In particular, the
assignment [n] 7→ |∆n| gives a functor F→ Top. For an integer j ≥ 0, we define the j-th geometric
realisation of X by the following coend:

RjX :=

∫ [n]∈F≤j

X[n]× |∆n|

=

( ⊔

0≤n≤j

X[n]× |∆n|
)
/ ∼

(5)

where the equivalence relation∼ is generated by (X(g)(z), t) ∼ (z, g∗(t)) for all maps g : [n]→ [m]
in F. (Here g∗ : |∆n| → |∆m| denotes the usual map induced on the simplices by functoriality.) This
is of course reminiscent of the classical geometric realisation of a simplicial space. Note however
that here a cell |∆n| in the geometric realisation is indexed by an unordered set of singularities,
even though the functor X is defined using ordered tuples. Indeed, all the permutations [n]→ [n]
are valid morphisms in our category F.

Let j ≥ 1 be an integer. We now describe how RjX may be obtained from Rj−1X via a pushout
diagram. Let Lj be the following set:

Lj := {(f, s0, . . . , sj) ∈ Γ×Xj+1 | ∃l ̸= k such that sl = sk} ⊂ X[j] (6)
topologised as a subspace of X[j]. This should be thought of as the analogue of the “latching object”
of a simplicial space. We denote by

Lj ×Sj+1
|∆j|

the quotient space of Lj × |∆j| by the symmetric group Sj+1 acting on Lj by permuting the
singularities si, and on |∆j| by permuting the coordinates. Denote by ·̂ the omission of an element
in a tuple.

Lemma 3.1. The formula

((f, s0, . . . , sj), (t0, . . . , tj)) 7−→
{(

(f, s0, . . . , ŝl, . . . , sj), (t0, . . . , tk + tl, . . . , t̂l, . . . , tj)
)

if there exists k ̸= l such that sl = sk

gives a well-defined map Lj ×Sj+1
|∆j| → Rj−1X.

29



10 ALEXIS AUMONIER

Proof. The formula appears ill-defined as we are choosing arbitrarily two indices k and l. The
identifications made by the coend formula (5) show that any choice will yield the same class in the
quotient. □

Recall that a point t = (t0, . . . , tj) ∈ |∆j| is in the boundary ∂|∆j| if one of its coordinates
vanishes. An argument similar to the proof of Lemma 3.1 above gives the following.

Lemma 3.2. The formula

((f, s0, . . . , sj), (t0, . . . , tj)) 7−→
(
(f, s0, . . . , ŝl, . . . , sj), (t0, . . . , t̂l, . . . , tj)

)
if tl = 0

gives a well-defined map X[j]×Sj+1
∂|∆j| → Rj−1X. □

Consider the following pushout diagram of spaces:
Lj ×Sj+1

∂|∆j| X[j]×Sj+1
∂|∆j|

Lj ×Sj+1
|∆j|

(
Lj ×Sj+1

|∆j|
)⋃ (

X[j]×Sj+1
∂|∆j|

)
.

⌜

Equivalently, the pushout is the union of the top-right and bottom-left spaces inside X[j]×Sj+1
|∆j|.

The maps defined above in Lemma 3.1 and Lemma 3.2 glue to a continuous map

αj−1 :
(
Lj ×Sj+1

|∆j|
)⋃(

X[j]×Sj+1
∂|∆j|

)
−→ Rj−1X.

The natural map X[j]× |∆j| → RjX factors through the quotient by the symmetric group action
and gives a map

βj : X[j]×Sj+1
|∆j| −→ RjX.

From the coend formula (5) and the inclusion of the full sub-category F≤j−1 ⊂ F≤j , we also get a
natural map Rj−1X→ RjX. We are now ready to state the

Proposition 3.3. The following square is a pushout diagram of topological spaces:
(
Lj ×Sj+1

|∆j|
)⋃ (

X[j]×Sj+1
∂|∆j|

)
Rj−1X

X[j]×Sj+1
|∆j| RjX.

αj−1

⌜
βj

(7)

Proof. We may construct the pushout P as the quotient

P :=
(
Rj−1X

⊔
X[j]×Sj+1

|∆j|
)
/ ∼ .

One may check that the map βj together with the natural map Rj−1X→ RjX gives a map from
the disjoint union above which factors through the quotient. Hence we get a well-defined map
P → RjX. We now construct a continuous inverse. Recall that RjX is defined in (5) as a quotient
of ( ⊔

0≤n≤j−1

X[n]× |∆n|
)⊔(

X[j]× |∆j|
)
.

The natural map
(⊔

0≤n≤j−1X[n]× |∆n|
)
→ Rj−1X→ P together with the identity of X[j]×|∆j|

gives a map from the disjoint union that factors through the quotient and yields a well-defined
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map RjX → P . One may finally verify that it is the inverse of the map P → RjX constructed
above. □

We now turn to proving some topological results about our constructions.

Lemma 3.4. For any integer n ≥ 0, the subspace X[n] ⊂ Γ×Xn+1 defined in (4) is closed.

Proof. Let ev : Γ×Xn+1 → (JrE)n+1 be the simultaneous evaluation of the jet map jr (defined
in (2)) at (n + 1) points of X . We observe directly from the definitions that X[n] = ev−1(Tn+1),
hence is closed as the inverse image of a closed set. □
Lemma 3.5. For any n ≥ 0, the map ρn : X[n]→ Γ given by (f, s0, . . . , sn) 7→ f is a proper map.

Proof. The projection onto the first factor Γ×Xn+1 → Γ is proper as Xn+1 is compact. Hence so
is its restriction ρn to the closed subspace X[n]. □

In particular, the map ρn is closed, so Σ = ρ1(X[1]) is closed in Γ. We have natural projections
maps X[n]× |∆n| → X[n]

ρn→ Γ for any n ≥ 0. They give rise to a map
τj : R

jX −→ Σ (8)
for every integer j ≥ 0.

Lemma 3.6. For any integer j ≥ 0, the map τj : RjX→ Σ is a proper map.

Proof. We have to show that the preimage of any compact set is compact. Equivalently, because Σ
is locally compact and Hausdorff, we will show that τj is a closed map with compact fibres. From
Lemma 3.5, for anyn, the map ρn is closed and hence so is the compositionX[n]×|∆n| → X[n]

ρn→ Γ.
This implies that τj is closed. It remains to see that it has compact fibres. If f ∈ Σ, we observe that
τ−1
j (f) = βj

(
ρ−1
j (f)

)
which is compact as ρ−1

j (f) is, by Lemma 3.5. □
A major advantage of the pushout square (7) is that it allows us to prove the following topological

lemma.

Lemma 3.7. For any integer j ≥ 0, the space RjX is paracompact and Hausdorff. Furthermore, the
natural map Rj−1X→ RjX is a closed embedding.

Proof. Firstly, from Lemma 3.4, we know that R0X = X[0] ⊂ Γ ×X is a closed subset, hence is
itself paracompact Hausdorff. Then the lemma is proven inductively using the pushout diagram (7)
together with the fact that

((
Lj ×Sj+1

|∆j|
)⋃(

X[j]×Sj+1
∂|∆j|

))
↪→ X[j]×Sj+1

|∆j|
is a closed embedding. □

In the sequel, using the closed embedding of Lemma 3.7 just above, we will simply write
Rj−1X ⊂ RjX. For an integer j ≥ 0, we let

Yj := {(f, s0, . . . , sj) ∈ X[j] | sl ̸= sk if l ̸= k} = X[j]− Lj ⊂ X[j] (9)
be the subspace of X[j] where the singularities are pairwise distinct. For later use, we record the
following homeomorphism, which is a direct consequence of the pushout square (7) and the fact
that the vertical maps therein are closed embeddings:

RjX−Rj−1X ∼= Yj ×Sj+1
Interior(|∆j|). (10)
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Let us now discuss why τj : RjX → Σ needs to be slightly modified to obtain a meaningful
“resolution” of Σ. The fibre τ−1

j (f) above a section f ∈ Σ that has at most j + 1 singularities
is by construction a j-simplex. Hence it is contractible and one might hope that τj induces an
isomorphism in cohomology. This is unfortunately not the case. Indeed, τ−1

j (f) is not contractible
if f has at least j + 2 singularities. To fix this problem, we will modify Rj(Σ) by gluing a cone
over each fibre τ−1

j (f) which is not contractible. The precise construction is as follows.

Let N ≥ 0 be an integer. We let
Σ≥N+2 := {f ∈ Γ | #Sing(f) ≥ N + 2} ⊂ Σ (11)

denote the subspace of those sections with at least N + 2 singularities. We denote by Σ≥N+2

its closure in Σ (or equivalently, in Γ). Observe that the surjectivity of the map τN implies the
following equality:

τN
(
τ−1
N

(
Σ≥N+2

))
= Σ≥N+2.

We glue fibrewise a cone over each f ∈ Σ≥N+2 by defining the space RN
cone(Σ) as the following

homotopy pushout:
τ−1
N

(
Σ≥N+2

)
RNX

Σ≥N+2 RN
coneX.

τN
ho⌜

(12)

All three defining spaces in the corners of (12) map to Σ, hence we obtain a surjective projection
map

π : RN
coneX −→ Σ. (13)

We want to prove that π induces an isomorphism in Čech cohomology with compact supports. We
begin with a couple of lemmas.
Lemma 3.8. The map π : RN

coneX −→ Σ is proper.

Proof. We will prove that is it closed with compact fibres, which implies the properness. By
definition of the homotopy pushout, RN

coneX is a quotient of the following disjoint union:

RNX
⊔

τ−1
N

(
Σ≥N+2

)
× [0, 1]

⊔
Σ≥N+2.

The map π is induced by the following three maps: the projection τN : RNX→ Σ, the projection
τ−1
N

(
Σ≥N+2

)
× [0, 1] → τ−1

N

(
Σ≥N+2

)
→ Σ, and the inclusion Σ≥N+2 ↪→ Σ. The first two are

closed by Lemma 3.6 and the last one is the inclusion of a closed subset, hence closed.
Finally, we prove that the fibres of π are compact. We saw in the proof of Lemma 3.6 that for

any f ∈ Σ, the fibre τ−1
N (f) was compact. Now, π−1(f) is either τ−1

N (f) if f ∈ Σ − Σ≥N+2 or a
cone over it if f ∈ Σ≥N+2. In any case it is compact. □
Lemma 3.9. The space RN

coneX is paracompact, locally compact, and Hausdorff.

Proof. The paracompactness and Hausdorffness follow from the definition as a homotopy pushout
and Lemma 3.7. It is locally compact as its maps properly to the locally compact space Σ. □

These topological properties will justify our subsequent manipulations of compactly supported
Čech cohomology, which agrees with sheaf cohomology with compact supports in this context.
The most important corollary is the following
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Proposition 3.10. The map π : RN
coneX −→ Σ induces an isomorphism in Čech cohomology with

compact supports.

Proof. The properness of π proved in Lemma 3.8 implies that it induces a well-defined map in
cohomology with compact supports. We also observed in the proof of that lemma that a fibre of π is
either a simplex or a cone, hence contractible. The proposition then follows from the Vietoris–Begle
theorem [Bre97, V.6.1]. □
3.2. Construction of the spectral sequence. Let N ≥ 1 be an integer. Recall from Lemma 3.7
that we have closed embeddings Rj−1X ⊂ RjX. We define the following filtration on RN

coneX:
F0 = R0X ⊂ F1 = R1X ⊂ · · · ⊂ FN = RNX ⊂ FN+1 = RN

coneX.

Following standard arguments, we obtain from the filtration a spectral sequence:
Ep,q

1 = Ȟp+q
c (Fp, Fp−1) ∼= Ȟp+q

c (Fp − Fp−1) =⇒ Ȟp+q
c (RN

coneX)

where the isomorphism between the cohomology groups on the first page follows from [Bre97,
II.12.3]. Using Proposition 3.10 and Alexander duality, we obtain:

Ȟp+q
c (RN

coneX)
∼= Ȟp+q

c (Σ) ∼= H̃2 dimC Γ−(p+q)−1(Γ− Σ)

where H̃ denotes reduced singular homology. Letting s = −p−1 and t = 2dimC Γ−q, we regrade
our spectral sequence and obtain the following

Proposition 3.11. There is a spectral sequence on the second quadrant s ≤ −1 and t ≥ 0:

E1
s,t = Ȟ2 dimC Γ−1−s−t

c (F−s−1 − F−s−2;Z) =⇒ H̃s+t(Γ− Σ;Z).
The differential dr on the r-th page of the spectral sequence has bi-degree (−r, r − 1), i.e. it is a
morphism drs,t : E

r
s,t → Er

s−r,t+r−1.

4. Cohomology groups on the E1-page

As in the last section, we choose a holomorphic vector bundle E on X and an admissible Taylor
condition T ⊂ JrE inside the r-th jet bundle of E . For the remainder of this section, we also let

N = N(E , r)
be the largest integer N ≥ 0 such that E is ((N + 1) · (r + 1)− 1)-jet ample as in Definition 2.3.
As discussed in the introduction, we assume that such an N exists. If not, the statements in this
section are either trivially false, or trivially true as they describe elements of the empty set. For
brevity, we still use the following notations

Γ = Γhol (E) and Σ = Γhol (E)− Γhol,ns (E)
as well as X for the associated functor Fop → Top as in (4).

We will study the first page of the spectral sequence from Proposition 3.11 converging to the
cohomology of RN

coneX:
E1

s,t = Ȟ2 dimC Γ−1−s−t
c (F−s−1 − F−s−2;Z).

We will first show that for−N−1 ≤ s ≤ −1 the groupsE1
s,t can be written, via Thom isomorphisms,

in terms of the cohomology of T. We will then study qualitatively the cohomology of FN+1 − FN ,
i.e. the column E1

−N−2,∗, and show that it does not have any influence on the cohomology of the
limit in a range of degrees up to around N . Later in Section 5 we will construct spectral sequences
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14 ALEXIS AUMONIER

for spaces of sections of J1E \T, and in Section 6 we will compare them. The explicit computations
of the present section will show that these various spectral sequences are isomorphic in a range
from the first page and onwards.

4.1. The first steps of the filtration. For an integer j ≥ 0, recall from (9) the space
Yj = {(f, s0, . . . , sj) ∈ X[j] | sl ̸= sk if l ̸= k} ⊂ X[j].

Lemma 4.1. For 0 ≤ j ≤ N(E , r), there is a fibre bundle:

Interior
(
|∆j|

)
−→ Fj − Fj−1 −→ Yj/Sj+1.

Proof. Recall from the definition of the filtration on RN
coneX that Fj = RjX for 0 ≤ j ≤ N .

As a consequence of the pushout square (7), we observed in (10) that we have the following
homeomorphism:

RjX−Rj−1X ∼= Yj ×Sj+1
Interior(|∆j|).

Projecting down to the first factor gives the required fibre bundle. □
By an affine bundle we mean a torsor for a vector bundle. In the sequel, they will arise naturally

from fibrewise surjective linear maps between vector bundles. For any integer j ≥ 1, the bundle
(JrE)j projects down toXj and we may consider its restriction to the open subset Confj(X) ⊂ Xj

of those tuples of points which are pairwise distinct. The symmetric group Sj acts on these spaces
by permuting the coordinates. In particular, it acts on the subspace Tj ⊂ (JrE)j and we let

T(j) :=
(
Tj|Confj(X)

)
/Sj (14)

be the orbit space of the restriction of Tj over the subspace Confj(X) ⊂ Xj .

Lemma 4.2. Let 0 ≤ j ≤ N(E , r) be an integer and recall from (9) the space Yj of those tuples
(f, s0, . . . , sj) ∈ Γ×Confj+1(X) where f is singular at the si. We may simultaneously evaluate the
jet map at these points:

Yj −→ Tj+1|Confj+1(X)

(f, s0, . . . , sj) 7−→ (jr(f)(s0), . . . , j
r(f)(sj)).

Taking Sj+1-orbits on the domain and codomain of this map yields an affine bundle:

Yj/Sj+1 −→ T(j+1)

whose fibre has complex dimension dimC Γ− (j+1)rkCJ
rE . (Here rkCJrE denotes the complex rank

of the vector bundle JrE .)

Proof. The simultaneous evaluation of the jet map gives a map

Γ× Confj+1(X) (JrE)j+1|Confj+1(X)

Confj+1(X)

(15)

of vector bundles over the configuration space Confj+1(X). Under the assumption 0 ≤ j ≤
N(E , r), Lemma 2.4 shows that this map of bundles is fibrewise surjective. Therefore the top map
of (15) is an affine bundle. Subtracting the ranks, we obtain that its fibre has complex dimension
dimC Γ− (j + 1)rkCJ

rE .
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Now, the pullback of the affine bundle (15) to the subspace Tj+1|Confj+1(X) is an affine bundle
with total space Yj . Finally taking Sj+1-orbits yields the following affine bundle:

Yj/Sj+1 −→
(
Tj+1|Confj+1(X)

)
/Sj+1 = T(j+1)

which still has the rank that we have computed above. □

The quotient maps Yj → Yj/Sj+1 and Tj+1|Confj+1(X) → T(j+1) are principal Sj+1-bundles and
hence are classified by (homotopy classes of) maps to the classifying space BSj+1. Composing
with the sign representation BSj+1

Bsign−→ BZ/2, we obtain two well-defined homotopy classes of
maps:

Yj/Sj+1 −→ BZ/2 and T(j+1) −→ BZ/2.
We will write Zsign for the corresponding local coefficient systems.

Proposition 4.3. Let −N(E , r)− 1 ≤ s ≤ −1. Then, we have the following isomorphism:

E1
s,t
∼= Ȟ−t−2s·rkCJrE

c (T(−s);Zsign)

where T(−s) is the space defined in (14) and Zsign is the local coefficient system described above.

Proof. Recall from Proposition 3.11 that the first page of the spectral sequence is given by

E1
s,t = Ȟ2 dimC Γ−1−s−t

c (R−s−1X−R−s−2X;Z).

Via a homeomorphism Interior (|∆j|) ∼= Rj , we see that the fibre bundle of Lemma 4.1 is homeo-
morphic to a vector bundle. Applying the Thom isomorphism to the latter, we obtain:

E1
s,t
∼= Ȟ2 dimC Γ−t

c (Y−s−1/S−s;Zsign).

Another application of the Thom isomorphism using Lemma 4.2 yields

E1
s,t
∼= Ȟ−t−2s·rkCJrE

c (T(−s);Zsign). □

4.2. The last step of the filtration. We study the last non-trivial part of the E1-page, that is the
column s = −N(E , r)− 2 where:

E1
−N−2,t = Ȟ2 dimC Γ+1+N−t

c (RN
coneX−RNX;Z).

The methods from the last section do not apply to the space RN
coneX − RNX and we will not be

able to express the cohomology groups E1
−N−2,t in terms of other “known” groups. However, using

the technical assumptions made in Definition 2.8 about the Taylor condition T, we will obtain a
vanishing result for E1

−N−2,t. This will be enough for the proof of our main theorem.

Recall the projection map τN : RNX→ Σ from (8). From the homotopy pushout square (12), we
obtain the following homeomorphism:

RN
coneX−RNX ∼=

((
τ−1
N

(
Σ≥N+2

)
×]0, 1]

)⊔
Σ≥N+2

)
/ ∼

where (z, 1) ∈ τ−1
N

(
Σ≥N+2

)
×]0, 1] is identified with τN(z) ∈ Σ≥N+2 in the quotient. Indeed,

there is a natural continuous bijection from the right-hand side to the left-hand side. It is in fact a
homeomorphism, as the top arrow in the homotopy pushout square (12) is the inclusion of a closed
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subset. In other words, this is the fibrewise (for the map τN ) open cone over Σ≥N+2. We stratify
this space by the following locally closed subspaces (this is analogous to [Tom14, Lemma 18]):

Str−1 := Σ≥N+2,

Str0 :=
(
τ−1
N

(
Σ≥N+2

)
×]0, 1[

)
∩
(
R0X×]0, 1[

)
,

Strj :=
(
τ−1
N

(
Σ≥N+2

)
×]0, 1[

)
∩
(
(RjX−Rj−1X)×]0, 1[

)
for 1 ≤ j ≤ N.

For 0 ≤ j ≤ N , let
Y ≥N+2
j :=

{
(f, s0, . . . , sj) ∈ Γ× Confj+1(X) | f ∈ Σ≥N+2 and si ∈ Sing(f)

}
⊂ Yj. (16)

Using the homeomorphism (10) identifying the difference between two consecutive steps of the
resolution, we have a homeomorphism

Strj ∼=
(
Y ≥N+2
j ×Sj+1

˚|∆j|
)
×]0, 1[. (17)

for 0 ≤ j ≤ N , where ˚|∆j| denotes the interior of the simplex.
It is easier to think about this stratification by looking at one fibre π−1(f) at a time. Then,

we are just decomposing an open cone over a union of simplices into the following pieces: the
apex (corresponding to Str−1 ∩ π−1(f)), the open segments from the 0-simplices to the apex
(corresponding to Str0 ∩ π−1(f)), the open (filled) triangles between the 1-simplices and the apex,
etc. Figure 1 below shows the strata in a single fibre π−1(f) when f has 3 singular points and
N = 1. In this case, τ−1

N (f) consists of three 1-simplices glued together (i.e. a triangle), so π−1(f)
is the cone over that triangle.

π−1(f) π−1(f) ∩ Str−1 π−1(f) ∩ Str0 π−1(f) ∩ Str1
(the three sides only)

Figure 1. Decomposition of the open cone.

If we find an integer D ≥ 0 such that Ȟk
c (Strj) = 0 for all −1 ≤ j ≤ N and all k > D, then

the same result will hold for the union, i.e. Ȟk
c (R

N
coneX−RNX) = 0 for k > D. In what follows,

we set out to find such a D as small as we can. With that in mind, we make the following ad hoc
definition of cohomological dimension:

Definition 4.4. We say that a space Z has cohomological dimension D with respect to a local
coefficient system A if D is the smallest integer such that Ȟk

c (Z;A) = 0 for all k > D. We will
denote it by cohodim(Z,A), or simply cohodim(Z) if A = Z.
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The only non-trivial local coefficient system we will need is Zsign, which is induced on the
quotient Y ≥N+2

j /Sj+1 by the sign representation Sj+1 → Z/2.

Lemma 4.5. For 0 ≤ j ≤ N , we have

cohodim(Strj) = 1 + j + cohodim
(
Y ≥N+2
j /Sj+1,Zsign

)
.

Proof. From the homeomorphism (17), we have a trivial fibre bundle

]0, 1[−→ Strj −→ Y ≥N+2
j ×Sj+1

˚|∆j|.

This implies that cohodim(Strj) = 1 + cohodim
(
Y ≥N+2
j ×Sj+1

˚|∆j|
)

. Now, we have another
fibre bundle:

˚|∆j| −→ Y ≥N+2
j ×Sj+1

˚|∆j| −→ Y ≥N+2
j /Sj+1.

Hence, by the Thom isomorphism, we obtain:

cohodim
(
Y ≥N+2
j ×Sj+1

˚|∆j|
)
= j + cohodim

(
Y ≥N+2
j /Sj+1,Zsign

)
. □

We thus have reduced our problem to studying the cohomology of Y ≥N+2
j /Sj+1 for 0 ≤ j ≤ N ,

as well as that of Σ≥N+2. We shall do so by comparing these spaces to a known one, namely the
space

YN = {(f, s0, . . . , sN) ∈ Γ× ConfN+1(X) | si ∈ Sing(f)} .
First, let us introduce some notation. Using charts on X , we may cover YN by finitely many
semi-algebraic sets, whose intersections are also semi-algebraic. Recall, e.g. from [BCR98, Theorem
2.3.6], that every semi-algebraic set is the disjoint union of cells, each homeomorphic to an open
disc ]0, 1[d for some d ≥ 0. The largest d in such a decomposition is called the dimension of the
semi-algebraic set. Let dimYN be the largest of the dimensions of the semi-algebraic sets in a
cover of YN . (It depends a priori of the chosen cover, but we suppress this from the notation.) The
following lemma is a crucial result for controlling our spectral sequence.

Lemma 4.6. For 0 ≤ j ≤ N , we have

dimYN ≥ cohodim
(
Y ≥N+2
j /Sj+1,Zsign

)
.

Proof. Forgetting the last singularity yields a map
YN+1 −→ YN , (f, s0, . . . , sN+1) 7−→ (f, s0, . . . , sN)

and we will write Y ≥N+2
N ⊂ YN for its image. As the projection map is semi-algebraic (when read

in charts), its image is semi-algebraic (in charts) and dimY ≥N+2
N ≤ dimYN . Let 0 ≤ j ≤ N . Only

remembering the (j + 1)st singularities gives a map

Y ≥N+2
N −→ Y ≥N+2

j

(f, s0, . . . , sN) 7−→ (f, s0, . . . , sj).
(18)

Notice that this map is not surjective, as it may happen that a section f ∈ Σ≥N+2 has fewer than
N + 1 singularities. We study the map (18) locally via charts. Let U0, . . . , UN ⊂ X be charts on X
as in Definition 2.6. Then the subsets

U :=
{
(f, s0, . . . , sj) ∈ Σ≥N+2 × U0 × · · · × Uj | sk ∈ Sing(f), si ̸= sj∀i ̸= j

}
⊂ Y ≥N+2

j
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18 ALEXIS AUMONIER

and
V := {(f, s0, . . . , sN) ∈ Γ× U0 × · · · × UN | sk ∈ Sing(f), si ̸= sj∀i ̸= j} ∩ Y ≥N+2

N ⊂ Y ≥N+2
N

are semi-algebraic. Indeed, they are the preimages of the semi-algebraic set Tj+1 (respectively
TN+1) via the simultaneous evaluation of the jet map which is algebraic, hence semi-algebraic.
(See [BCR98, Proposition 2.2.7].) The restriction of the map (18) to U and V is an algebraic map,
hence semi-algebraic map, ϕ : V → U between semi-algebraic sets. Using [BCR98, Theorem 2.8.8],
we obtain the following inequality on the dimensions (as defined above using cell decompositions):

dim(V ) ≥ dim(ϕ(V )).

Furthermore, the definition of Y ≥N+2
j implies that the semi-algebraic map ϕ : V → U has dense

image, i.e. ϕ(V ) = U . Using that the closure has the same dimension ( [BCR98, Proposition 2.8.2])
and the inequality above, we obtain:

dim(V ) ≥ dim(U).

Varying the charts U0, . . . , UN ⊂ X , we may cover the domain and codomain of (18) by subsets
defined like U and V . If U ′ and V ′ are two other such subsets, then U ∩ U ′ and V ∩ V ′ are also
semi-algebraic sets because they are intersections of semi-algebraic sets. (This follows from the
Definition 2.5.) Hence the argument shows that the inequality on the dimensions holds also on
intersections. Let dimY ≥N+2

j denote the maximum of the dimensions in a cover of Y ≥N+2
j by

semi-algebraic sets. Then, an argument using the Mayer–Vietoris spectral sequence shows that the
cohomological dimension of Y ≥N+2

j is less than its dimension dimY ≥N+2
j . Therefore

dimYN ≥ dimY ≥N+2
N ≥ dimY ≥N+2

j ≥ cohodim
(
Y ≥N+2
j

)
. (19)

Finally, from the principal Sj+1-bundle Y ≥N+2
j → Y ≥N+2

j /Sj+1, we see that the dimension of the
orbit space is the same as that of Y ≥N+2

j . Therefore the inequality (19) holds when replacing the
rightmost term with cohodim(Y ≥N+2

j /Sj+1,Zsign). □

Repeating the proof with the map Y ≥N+2
N → Σ≥N+2, (f, s0, . . . , sN) 7→ f yields the

Lemma 4.7. The following inequality holds:

dimYN ≥ cohodim(Σ≥N+2,Z). □
The final computation to be made is the content of the following lemma. It uses the notation e(T)
of excess codimension established in Definition 2.10.

Lemma 4.8. The dimension of YN satisfies:

dimYN ≤ 2 dimC Γ− (N + 1)e(T).

Proof. The proof of Lemma 4.2 shows that the simultaneous evaluation of the jet map
YN −→ TN+1|ConfN+1(X)

(f, s0, . . . , sN) 7−→ (jr(f)(s0), . . . , j
r(f)(sN))

is an affine bundle whose fibre has complex dimension dimC Γ− (N + 1)rkCJ
rE . Therefore, on

dimensions:
dimYN ≤ dim(TN+1|ConfN+1(X)) + 2 dimC Γ− 2(N + 1)rkCJ

rE .
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Now, because T is a semi-algebraic subset of JrE of dimension less than 2rkCJ
rE − e(T), we

obtain that:
dim(TN+1|ConfN+1(X)) ≤ (N + 1)(2rkCJ

rE − e(T)).
The lemma is then proven by combining these two inequalities. □

Assembling all the estimations we have obtained so far, we can state and prove the following.

Proposition 4.9. The cohomology groups in the column s = −N(E , r)− 2 on the first page of the
spectral sequence:

E1
−N−2,t = Ȟ2 dimC Γ+1+N−t

c (RN
coneX−RNX;Z)

vanish for t < N · e(T) + e(T).

Proof. We had set up the stratification Strj , −1 ≤ j ≤ N , on RN
coneX−RNX so that

cohodim
(
RN

coneX−RNX
)
≤ max

j
cohodim (Strj) .

For 0 ≤ j ≤ N , combining Lemma 4.5, Lemma 4.6, and Lemma 4.8, we get:
cohodim (Strj) ≤ 1 + j + 2dimC Γ− (N + 1)e(T) ≤ 2 dimC Γ−N(e(T)− 1)− (e(T)− 1).

Similarly, using Lemma 4.7 and Lemma 4.8, we obtain:
cohodim (Str−1) ≤ 2 dimC Γ− (N + 1)e(T).

Therefore cohodim
(
RN

coneX−RNX
)
≤ 2 dimC Γ − N(e(T) − 1) − (e(T) − 1) and the result

follows. □
4.3. Differentials and summary. Summing up all the results so far, we have the following
proposition.

Proposition 4.10. Let E be a holomorphic vector bundle on X and T ⊂ JrE be an admissible Taylor
condition. Let N = N(E , r). The resolution and its filtration described in Section 3 give rise to a
spectral sequence on the second quadrant s ≤ −1 and t ≥ 0 converging to the homology of the space
of non-singular sections Γhol,ns(E):

E1
s,t = Ȟ2 dimC Γ−1−s−t

c (F−s−1 − F−s−2;Z) =⇒ H̃s+t(Γhol,ns(E);Z).
The differentials on the r-th page have bi-degree (−r, r − 1). Furthermore, for −N − 1 ≤ s ≤ −1,
we have the following isomorphisms for all t ≥ 0:

E1
s,t
∼= Ȟ−t−2s·rkCJrE

c (T(−s);Zsign).

(The space T(−s) is defined in (14).) Moreover, for t < N · e(T) + e(T):

E1
−N−2,t = 0.

We briefly describe the zones in Figure 2 below, where we have chosen to fix e(T) = 2 to
lighten the notation. Firstly, the only possibly non-vanishing groups lie in the coloured squares.
All groups Er

s,t with s ≤ −N − 3 are zero as the filtration finishes after N + 1 steps. According to
Proposition 4.9, the groups below the horizontal solid line in the column s = −N − 2 vanish. The
differentials coming from the groups below the upper staircase never hit groups in the column
where s = −N − 2 and t ≥ 2N + 2. Finally, the lower staircase delimits the zone of total degree
∗ ≤ N − 1. We have also drawn some differentials dr to the group Er

−N−2,2N+2 for r = 1, 2, 3 and
N + 1.
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s

t

−1−2−3· · ·· · ·-N-1-N-2-N-3

1

2

3

...

N+1

N+2

N+3

...

...

2N+1

2N+2

2N+3

Figure 2. First page of the spectral sequence when e(T) = 2.

5. Interpolating holomorphic and continuous sections

In this section, we introduce and study section spaces that lie in-between holomorphic and
continuous sections of the jet bundle JrE . They will be written as combinations of holomorphic and
“anti-holomorphic” sections. We first explain how to take the complex conjugate of a holomorphic
section. We then construct these spaces and finish by explaining how the resolution and the
spectral sequence from the previous sections can be adapted to them.

5.1. Complex conjugation of sections. Using the fact that X is projective, we choose once and
for all a very ample holomorphic line bundle L on it as well as a basis z0, . . . , zM of the complex
vector space of holomorphic global sections Γhol(L).
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We denote by L the complex conjugate line bundle of L. It is obtained from the underlying
real vector bundle of L by having the complex numbers act by multiplication by their complex
conjugates. We regard it as a smooth complex line bundle. We now define a complex conjugation
operation L → L. Recall that the line bundle L may be constructed as a quotient

L :=

(⊔

i

Ui × C

)/
(x, vi) ∼ (x, tji(vi))

from the data ({Ui}i, (tij)i,j) of trivialising open setsUi ⊂ X and transition functions tij : Ui∩Uj →
GL1(C) = C∗ satisfying a cocycle condition. Similarly, L may be constructed via such a quotient
by replacing the transition functions by their complex conjugates tij . The formula

⊔

i

Ui × C −→
⊔

i

Ui × C

(x, v) 7−→ (x, v)

then gives a well defined R-linear isomorphism L → L. On continuous global sections, we thus
obtain an R-linear complex conjugation operation:

· : ΓC0(L) −→ ΓC0(L). (20)

For a complex vector space V , we denote by V the C-vector space whose underlying set is V
with the C-module structure given by multiplication by the complex conjugate. We get a C-linear
map:

Γhol (L) ↪→ ΓC0 (L) (20)−→ ΓC0(L). (21)

We let

η :=
M∑

j=0

zj ⊗ zj ∈ Γhol (L)⊗C Γhol (L). (22)

Its image via the composition of the the map (21) and the multiplication map ΓC0(L)⊗C ΓC0(L)→
ΓC0(L ⊗ L) is a never vanishing section. It therefore gives an explicit trivialisation of the smooth
complex line bundle L ⊗ L ∼= X × C. In particular, we obtain an isomorphism on the level of
continuous sections

ΓC0(L ⊗ L) ∼= ΓC0(X × C) = C0(X,C). (23)

5.2. Stabilisation. For every integer k ≥ 0, we now construct the following commutative diagram.

Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

ΓC0 (JrE)

Γhol

(
(JrE)⊗ Lk+1

)
⊗C Γhol (Lk+1)

φk

γk

φk+1

(24)
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The horizontal maps are given by the composition

φk : Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

−→ ΓC0

(
JrE ⊗ Lk

)
⊗C ΓC0

(
Lk
)

−→ ΓC0

(
JrE ⊗ Lk ⊗ Lk

)
∼= ΓC0 (JrE)

(25)

where the first arrow is induced by the map (21), the second arrow is the multiplication map, and
the last isomorphism is (23) applied to

(
L ⊗ L

)k ∼= Lk ⊗ Lk.
We construct the vertical map in the diagram (24) as the composition:

γk : Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

−→ Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)⊗C

(
Γhol (L)⊗C Γhol (L)

)

∼=
(
Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (L)

)
⊗C

(
Γhol (Lk)⊗C Γhol (L)

)

−→ Γhol

(
(JrE)⊗ Lk+1

)
⊗C Γhol (Lk+1)

(26)

where the first arrow is given by tensoring with the element η defined in (22), the isomorphism is
given by reordering the factors, and the last arrow is given by the multiplication maps.

The commutativity of the diagram (24) follows directly from the fact that η is sent to the
constant function equal to 1 via the isomorphism (23). Loosely speaking, the vertical map γk is a
“multiplication by η”, which amounts to multiplying a continuous section of JrE by the constant
function 1 after using the chosen identification (23).

Example 5.1. It is illuminating to think about the case X = CPn, L = O(1) and E = O(d+1). In
this example, Γhol(E) is the space of homogeneous polynomials of degree d+ 1 in n+ 1 variables.
One may also prove an isomorphism J1(O(d+ 1)) ∼= O(d)⊕(n+1) as holomorphic vector bundles.
(See [DRS00, Proposition 2.2] for a proof.)

We may then view Γhol

(
(J1E)⊗ Lk

)
⊗CΓhol (Lk) as the space of (n+1)-uples of homogeneous

polynomials of bi-degree (d+ k, k): that is of degree d+ k in the variables zi and of degree k in the
complex conjugate variables zi. In this case, the image of η inΓC0

(
L ⊗ L

)
is |z|2 := z0z0+· · ·+znzn.

The isomorphism ΓC0

(
L ⊗ L

) ∼= C0(X,C) corresponding to (23) sends a section s to the map

z = [z0 : . . . : zn] ∈ CPn 7−→ s(z)

|z|2 ∈ C.

Under these identifications, the map γk is then:
(f0, . . . , fn) 7−→ ((z0z0 + · · ·+ znzn) · f0, . . . , (z0z0 + · · ·+ znzn) · fn)

which sends a tuple of polynomials of bi-degree (d+ k, k) to one of bi-degree (d+ k + 1, k + 1).
(Compare [Mos06] for a related situation.)

We will need the following small result, analogous to Lemma 2.4. Let (x0, . . . , xp) be a tuple of
points in X . We may evaluate a continuous section of JrE simultaneously at all these points:

ev(x0,...,xp) : ΓC0 (JrE) −→ (JrE)|x0 × · · · × (JrE)|xp

s 7−→ (s(x0), . . . , s(xp)) .
(27)
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Lemma 5.2. Let E be a holomorphic vector bundle on X and N(E , r) ∈ N be as in Definition 2.3. Let
(x0, . . . , xp) be a tuple of p+ 1 distinct points in X . If p ≤ N(E , r), the composition

Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

φk−→ ΓC0 (JrE) −→ (JrE)|x0 × · · · × (JrE)|xp

of the map φk of (25) and the simultaneous evaluation (27) is surjective.

Proof. The case k = 0 is a direct consequence of Lemma 2.4. The result for k ≥ 1 then follows from
the commutativity of the diagram (24). □
5.3. Non-singular sections. We define

N (k) ⊂ Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

to be subspace of elements sent to non-singular sections of JrE (as in Definition 2.11) under the
map φk defined in (25). We say that an s ∈ Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk) is non-singular if it is

in the subspace N (k). We define the singular subset to be the complement

S(k) :=
(
Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

)
−N (k).

Remark 5.3. When k = 0, N (0) ⊂ Γhol(J
rE) is the usual subspace of non-singular sections of

JrE as in Definition 2.11.

Example 5.4. In the caseX = CPn, L = O(1) and E = O(d+1), recall from Example 5.1 that the
space Γhol

(
(J1E)⊗ Lk

)
⊗C Γhol (Lk) corresponds to (n+ 1)-uples of homogeneous polynomials

of degree d+ k in the holomorphic variables zi and of degree k in the complex conjugate variables
zi. Under this identification, if the Taylor condition T ⊂ J1(O(d + 1)) is the zero section, the
space of non-singular sectionsN (k) contains exactly those (n+1)-uples of polynomials that never
vanish simultaneously.

5.4. Resolution and spectral sequence. We now explain how the results from Section 3 can be
adapted to the case

Γ = Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk) and Σ = S(k)

to construct a resolution of S(k) and a spectral sequence converging to its cohomology, or equiva-
lently to the homology of N (k) by Alexander duality. In this case, the definition of the singular
space (3) of f ∈ Γ has to be changed to

Sing(f) := {x ∈ X | φk(f)(x) ∈ T} ⊂ X.

In particular, in the case k = 0, it agrees with Definition 2.11. The topological results about the
resolution just follow from the fact that T ⊂ JrE is closed. In particular, Lemma 3.4 still holds
with its proof nearly unchanged: one has to replace the jet map jr by φk. The construction of the
spectral sequence is then unchanged.

The computations of cohomology groups on the E1-page from Section 4 can also be adapted
in this case. We first describe what to adapt for the first steps of the filtration. The analogue
of Lemma 4.2 with the jet map jr replaced by φk still holds as the key point is the surjectivity
established in Lemma 5.2. The other result, Lemma 4.1, remains unchanged. Hence, Proposition 4.3
is true in our new setting.

The adaptations are similar to examine the last stepRN
coneX−RNX. Indeed, the same stratification

works, as well as the cohomological dimension estimates. In details, Lemma 4.5 is unchanged, and
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Lemma 4.8 is proved similarly by just replacing the jet map by φk. The other two results, Lemma 4.6
and Lemma 4.7, also hold when rewriting the proof by changing the jet map jr by φk. Indeed, the
key ingredients were the semi-algebraicity of the Taylor condition T (which remains unchanged),
and the fact that the jet map was complex algebraic, hence real semi-algebraic. The map φk is
no longer complex algebraic, but is given by a ratio of algebraic maps and complex conjugates of
algebraic maps. In particular, it is real semi-algebraic. This is enough for the proof to go through.

To sum up, we have the following analogue of Proposition 4.10.
Proposition 5.5. Let E be a holomorphic vector bundle on X and T ⊂ JrE be an admissible Taylor
condition. Let

Γ = Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

and N (k) ⊂ Γ be the subspace of non-singular sections. Let N = N(E , r). The resolution and its
filtration described in Section 3 give rise to a spectral sequence on the second quadrant s ≤ −1 and
t ≥ 0 converging to the homology of the space of non-singular sections:

E1
s,t = Ȟ2 dimC Γ−1−s−t

c (F−s−1 − F−s−2;Z) =⇒ H̃s+t(N (k);Z).
The differentials on the r-th page have bi-degree (−r, r − 1). Furthermore, for −N − 1 ≤ s ≤ −1,
we have the following isomorphisms for all t ≥ 0:

E1
s,t
∼= Ȟ−t−2s·rkCJrE

c (T(−s);Zsign).

Moreover, for t < N · e(T) + e(T):
E1

−N−2,t = 0.

Lastly, let us mention that in the particular example where X = CPn, L = O(1), E = O(d+ 1)
and T ⊂ J1E is the zero section, the spectral sequence is completely analogous to that of [Mos12].

6. Comparison of spectral seqences

From our definition of non-singularity, it follows that the jet map jr sends a non-singular section
f of E to a non-singular section jr(f) of JrE . Likewise, the stabilisation map described in (26) sends
elements in N (k) to elements in N (k + 1). We shall see that these maps induce isomorphisms in
homology in a range of degrees up to around N = N(E , r). We first explain the argument for the
jet map jr and then go through the required modifications for the stabilisation map.

6.1. The case of the jet map. Reading Proposition 4.10 and Proposition 5.5, we may observe that
we have similar looking spectral sequences, one converging to the homology of Γhol,ns(E) and the
other one to that of Γhol,ns(J

rE). In particular, in the range −N − 1 ≤ s ≤ −1, the terms E1
s,t are

given by the same cohomology groups
E1

s,t
∼= Ȟ−t−2s·rkCJrE

c (T(−s);Zsign)

in both spectral sequences. If we had a morphism of spectral sequences that happened to be an
isomorphism in this range, then, using the vanishing result E1

−N−2,t = 0 for t < N · e(T) + e(T),
the morphism induced on the E∞-page would be an isomorphism in the range of degrees ∗ <
N(e(T)−1)+e(T)−2. (See Figure 2 where we have drawn some differentials.) We shall construct
such a morphism of spectral sequences, whilst making sure that it is compatible with the morphism
induced on homology by the jet map jr:

H̃s+t(Γhol,ns(E)) −→ H̃s+t(Γhol,ns(J
rE)).
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For the sake of completeness, we recall when a morphism is compatible with a morphism of
spectral sequences. (See e.g. [Wei94, Section 5.2].) If two spectral sequences Er

p,q and E ′r
p,q converge

respectively to H∗ and H ′
∗, we say that a map h : H∗ → H ′

∗ is compatible with a morphism
f : E → E ′ if h maps FpHn to FpH

′
n (here Fp denotes the filtration) and the associated maps

FpHn/Fp−1Hn → FpH
′
n/Fp−1H

′
n correspond to f∞

p,q : E
∞
p,q → E

′∞
p,q (where q = n − p) under the

isomorphisms E∞
p,q
∼= FpHn/Fp−1Hn and E ′∞

p,q
∼= FpH

′
n/Fp−1H

′
n. The main point being that if f is

an isomorphism in a range, then h also is an isomorphism in a range. (See [Wei94, Comparison
Theorem 5.2.12].)

Let d1 := 2 dimC Γhol(E) and d2 := 2 dimC Γhol(J
rE) be the real dimensions of the complex

vector spaces of sections. We define the shriek morphism j! as the unique morphism making the
following square commutative:

H̃∗(Γhol,ns(E)) H̃∗(Γhol,ns(J
rE))

Ȟd1−1−∗
c (Γhol(E)− Γhol,ns(E)) Ȟd2−1−∗

c (Γhol(J
rE)− Γhol,ns(J

rE))

∼=

(jr)∗

∼=

j!

(28)

where the vertical isomorphisms are given by Alexander duality and the top map is induced by the
jet map jr in homology. As our spectral sequences actually converge to the Čech cohomology with
compact support of the singular subspaces, we will construct our morphism of spectral sequences
such that it is compatible with j!.

The spectral sequences arose from filtrations, so we now recall some notation from Section 3. We
let X be the functor Fop → Top constructed there using Γ = Γhol(E) and Σ = Γhol(E)− Γhol,ns(E).
As we have explained in Section 5.4, the resolution also works for Γhol(J

rE) and its singular
subspace, and we let Y : Fop → Top be the associated functor in this case. We denote the filtration
of RN

coneX by
F 1
−1 = ∅ ⊂ F 1

0 = R0X ⊂ · · · ⊂ F 1
N = RNX ⊂ F 1

N+1 = RN
coneX,

and the analogous one of RN
coneY by

F 2
−1 = ∅ ⊂ F 2

0 = R0Y ⊂ · · · ⊂ F 2
N = RNY ⊂ F 2

N+1 = RN
coneY. (29)

We will slightly abuse notation and also write
j! : Ȟ∗

c (R
N
coneX)→ Ȟ∗+d2−d1

c (RN
coneY) (30)

for the bottom map defined by making the following square commutative:

Ȟ∗
c (Γhol(E)− Γhol,ns(E)) Ȟ∗+d2−d1

c (Γhol(E)− Γhol,ns(J
rE))

Ȟ∗
c (R

N
coneX) Ȟ∗+d2−d1

c (RN
coneY)

∼=

j!

∼=

j!

Recall from the general theory that the spectral associated to the filtration F i
∗, i = 1, 2, arises from

an exact couple (Ȟ•
c (F

i
∗), Ȟ

•
c (F

i
∗ − F i

∗−1)). The map of spectral sequences that we want is then
constructed via a map of exact couples as in the following lemma.
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Lemma 6.1. Let δ = d2 − d1 = 2(dimC Γhol(E) − dimC Γhol(J
rE)). There exists a morphism of

exact couples
(
j!p, j

!
(p)

)
p≥0

:
(
Ȟ∗

c (F
1
p ), Ȟ

∗
c (F

1
p − F 1

p−1)
)
−→

(
Ȟ∗+δ

c (F 2
p ), Ȟ

∗+δ
c (F 2

p − F 2
p−1)

)

satisfying the following two assertions:

(1) For 0 ≤ p ≤ N , the map j!(p) in the following diagram is an isomorphism:

Ȟ∗
c (F

1
p − F 1

p−1) Ȟ•
c (T

(p+1);Zsign)

Ȟ∗+δ
c (F 2

p − F 2
p−1) Ȟ•

c (T
(p+1);Zsign)

j!
(p)

∼=

∼=

(31)

where

• = ∗ − 2 dimC Γhol(E)− p+ 2(p+ 1)rkCJ
rE

and the horizontal isomorphisms are given by Thom isomorphisms as in Proposition 4.3.
(2) The map j!N+1 is equal to the shriek map (30).

Unpacking the definition of a morphism of exact couples, we see that it amounts to providing
morphisms j!p and j!(p) for 0 ≤ p ≤ N + 1 such that the following diagram commutes

Ȟ∗−1
c (F 1

p−1) Ȟ∗
c (F

1
p − F 1

p−1) Ȟ∗
c (F

1
p ) Ȟ∗

c (F
1
p−1)

Ȟ∗−1+δ
c (F 2

p−1) Ȟ∗+δ
c (F 2

p − F 2
p−1) Ȟ∗+δ

c (F 2
p ) Ȟ∗+δ

c (F 2
p−1)

j!p−1 j!
(p) j!p j!p−1

where the horizontal morphisms in the diagram are given by the long exact sequence of the pair
(F i

p, F
i
p−1) for i = 1, 2.

This result says exactly what we need: there a morphism of spectral sequences compatible with
j! (by (2)) and giving an isomorphism in the vertical strip −N − 1 ≤ s ≤ 1 (by (1)). The lemma, as
well as the strategy of proof, is adapted from [Vok07, Proposition 4.7]. First, let us state the most
important consequence:

Proposition 6.2. For a holomorphic vector bundle E on X , the jet map

jr : Γhol,ns(E) −→ Γhol,ns(J
rE)

induces an isomorphism in homology in the range of degrees ∗ < N(E , r) · (e(T)−1)+e(T)−2. □

To understand how to construct the degree-shifting morphisms of Lemma 6.1, it is helpful to
give a description of the shriek map between cohomology groups arising from Alexander duality
as in the diagram (28). We shall do so generally first (following [Vok07, Appendix D]) and then
specialise to our situation to prove the lemma at hand.
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6.1.1. Alexander duality and shriek maps. Let p : E → B be a vector bundle between oriented
paracompact topological manifolds of dimension n and m respectively. Let j : K ⊂ E be a closed
subset, and let i : B ↪→ E be the zero section. We will see B as a submanifold of E via i. Using
Alexander duality (the vertical isomorphisms in the diagram below), we may define the shriek map

i! : Ȟ∗
c (B ∩K)→ Ȟ∗+(n−m)

c (K) (32)
to be the unique morphism making the following diagram commute:

H∗(B,B −B ∩K) H∗(E,E −K)

Ȟm−∗
c (B ∩K) Ȟn−∗

c (K)

i∗

∼=

i!

∼=

The goal of this section is to give a more intrinsic definition of i! that will allow us to define the
required morphisms in Lemma 6.1.

Firstly, Vokřı́nek proves in [Vok07, Proposition D.1] the following:

Lemma 6.3. The diagram below commutes:

H∗(B,B −B ∩K) H∗(E,E −K)

Ȟm−∗
c (B ∩K) Ȟm−∗

p−1c (K) Ȟn−∗
c (K)

i∗

∼=

k∗ −∪j∗τ

∼=

where the vertical isomorphisms are given by Alexander duality, k : B ∩K ↪→ K is the inclusion,
τ ∈ Hδ(D(E), S(E)) is the Thom class of p, and p−1c is the family of supports defined as:

p−1c =
{
F ⊂ K

∣∣∣ F closed and p(F ) ⊂ B ∩K is compact
}

so that Ȟ∗
p−1c denotes Čech cohomology with supports in p−1c. (See e.g. [Bre97, Chapter II.2].)

Sketch of proof. We repeat Vokřı́nek’s proof here for convenience. First, we explain the morphisms
in Alexander duality. Recall from e.g. [Bre97, Corollary V.10.2] that we have fundamental classes
[B] ∈ HBM

m (B) and [E] ∈ HBM
n (E), where HBM

∗ denotes Borel–Moore homology (also known as
homology with closed support). Using the proper inclusions (E,∅) ↪→ (E,E−K) and (B,∅) ↪→
(B,B −B ∩K), they give rise to classes oE ∈ HBM

n (E,E −K) and oB ∈ HBM
m (B,B −B ∩K).

If U ⊂ E is a closed neighbourhood of K , we get a morphism

Ȟn−∗
c (U)

−∩oE |U−→ H∗(U,U −K) −→ H∗(E,E −K)

where oE|U is the image of oE via the excision isomorphism HBM
n (E,E−K) ∼= HBM

n (U,U −K).
(Note that it is important for U to be closed, so that the inclusion U ↪→ E is proper, hence induces
a morphism in Borel–Moore homology.) Likewise, we get a morphism

Ȟm−∗
c (B ∩ U) −∩oB |U−→ H∗(B ∩ U,B ∩ (U −K)) −→ H∗(B,B −B ∩K).

Now, the isomorphisms in Alexander duality are given by taking the colimit over all closed
neighbourhoodsU ofK of the two morphisms constructed above. (This is explained in [Bre97, V.9].)
Hence, to prove the lemma, it suffices to check commutativity of the following diagram:
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H∗(B ∩ U,B ∩ (U −K)) H∗(U,U −K)

Ȟm−∗
c (B ∩ U) Ȟm−∗

p−1c (U) Ȟn−∗
c (U)

g∗

−∩oB |U

g∗ −∪h∗τ

−∩g∗(oB |U) −∩oE

where g : B ∩ U ↪→ U and h : U ↪→ E are the inclusions. The left part commutes by naturality
of the cap products. The right part commutes by observing that the fundamental classes can be
chosen to correspond under the Thom isomorphism, which implies that h∗τ ∩ oE|U = g∗oB|U ,
and finishes the proof. □

In the statement of Lemma 6.3, if the morphism k∗ were invertible, the shriek map (32) would be
given by “(k∗)−1” followed by taking the cup product with the “Thom class” j∗τ . However, it is not
invertible in general. There is nevertheless a way around that problem which we explain below,
using ε-small neighbourhoods of B ∩K in K and the continuity property of Čech cohomology.

We choose, once and for all, a bundle metric on p : E → B. For a real number ε > 0, denote by
Dε (resp. Sε, D̊ε) the closed disc (resp. sphere, open disc) sub-bundle of E → B of radius ε (for the
chosen metric). In [Vok07, Lemma D.2], Vokřı́nek proves:

Lemma 6.4. The following diagram commutes:

H∗(B,B −B ∩K) H∗(E ∩ D̊ε, (E −K) ∩ D̊ε) H∗(E,E −K)

Ȟm−∗
c (B ∩K) Ȟn−∗

c (K ∩ D̊ε) Ȟn−∗
c (K)

Ȟm−∗
c (K ∩Dε) Ȟn−∗

c (K ∩Dε, K ∩ Sε)

∼=

∼=

∼= ∼=

(lε)∗

−∪τε
(33)

where the vertical isomorphisms on the first row are given by Alexander duality, the one on the second
row follows from general results about cohomology with compact supports, lε : B ∩K ↪→ K ∩Dε is
the inclusion, τε is the restriction of the Thom class of E → B, and the rightmost horizontal arrows
are induced by the inclusions. (Recall that cohomology with compact supports in covariant for open
inclusions.)

Sketch of proof. The left part of the diagram can be shown to commute by a proof analogous to
that of Lemma 6.3. The right-hand square is seen to commute by a direct verification. □

Taking the limit ε→ 0, the morphisms (lε)∗ induce a morphism from the colimit

colim
ε→0

Ȟm−∗
c (K ∩Dε) −→ Ȟm−∗

c (B ∩K)

which is an isomorphism by the continuity property of Čech cohomology with compact supports
(see, e.g. [Bre97, Theorem 14.4] where it is stated using sheaf cohomology which agrees with Čech
cohomology here). We finally obtain another description of the shriek map i!:
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Proposition 6.5 (Compare [Vok07, Theorem D.3]). The shriek map i! defined in (32) is equal to the
composite obtained as one goes along the bottom path in the diagram (33) above, i.e.:

i! : Ȟm−∗
c (B ∩K)

∼=←− colim
ε→0

Ȟm−∗
c (K ∩Dε)

−→ colim
ε→0

Ȟn−∗
c (K ∩Dε, K ∩ Sε) ∼= colim

ε→0
Ȟn−∗

c (K ∩ D̊ε)

−→ Ȟn−∗
c (K).

Furthermore, in the case where both E and B are themselves vector bundles over a same base, K = E,
and i : B ↪→ E is the inclusion of a sub-bundle, the shriek map i! is the Thom isomorphism of the
bundle E → B given by choosing a splitting of i.

Proof. The first part follows from Lemma 6.3 and Lemma 6.4. The second part is shown by direct
inspection of the construction. □
6.1.2. The proof of Lemma 6.1. We shall apply the general theory described in the last section to
our case. To lighten the notation, we write

Γ1 := Γhol(E), Σ1 := Γhol(E)− Γhol,ns(E)
and

Γ2 := Γhol(J
rE), Σ2 := Γhol(J

rE)− Γhol,ns(J
rE).

The jet map jr gives a linear embedding of Γ1 into Γ2 such that the image of the singular subspace
is precisely given by the intersection with the bigger singular subspace, i.e.

jr(Σ1) = jr(Γ1) ∩ Σ2.

Choosing a complementary linear subspace of jr(Γ1) inside Γ2, we obtain a projection giving a
vector bundle

Γ2 −→ jr(Γ1) ∼= Γ1 (34)
of real rank δ = d2 − d1. Below, we apply Vokřı́nek’s results to this situation.

We first set up the notation. Let ε > 0 be a positive real number and denote by Dε (resp. Sε, D̊ε)
the closed disc (resp. sphere, open disc) sub-bundle of radius ε of the vector bundle (34). Recall
from (29) the functor Y giving rise to the resolution of Σ2. We also define YDε : F

op → Top to be
the sub-functor of Y given by

YDε [n] := {(f, s0, . . . , sn) ∈ Y[n] | f ∈ Dε}
and likewise for YSε ⊂ Y and YD̊ε

⊂ Y using only sections f ∈ Sε or D̊ε. Let τε ∈ Hδ(Σ2 ∩
Dε,Σ2 ∩ Sε) be the restriction of the Thom class of the vector bundle (34) to Σ2. (Recall that the
Thom class is an element of Hδ(Dε, Sε).) In all what follows, we see Γ1 ⊂ Γ2 via the embedding
j = jr. Let lε : Σ1 ↪→ Σ2 ∩ Dε be the inclusion (which is proper, hence induces a morphism
on compactly supported cohomology). We explained in Proposition 6.5 that the shriek map j! is
obtained from the zigzag

Ȟ∗
c (Σ1)

(lε)∗← Ȟ∗
c (Σ2 ∩Dε)

−∪τε→ Ȟ∗+δ
c (Σ2 ∩Dε,Σ2 ∩ Sε) ∼= Ȟ∗+δ

c (Σ2 ∩ D̊ε)→ Ȟ∗+δ
c (Σ2)

by taking a colimit as ε→ 0.

We mimic that construction at the level of the resolutions. Let 0 ≤ p ≤ N + 1 be an integer.
Recall from (29) that F i

p denoted the p-th step of the filtration of the resolution of Σi. We denote by
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F 2
p,Dε

, F 2
p,Sε

, and F 2
p,D̊ε

the analogous filtrations on the resolutions obtained from the subfunctors
YDε , YSε and YD̊ε

respectively. Because a singular point of a section f ∈ Γ1 is also a singular
point of jr(f) ∈ Γ2, the jet map gives a map on resolutions

X[p] −→ Y[p]

(f, s0, . . . , sp) 7−→ (jr(f), s0, . . . , sp).

which preserves the filtrations. Let l̃ε : F 1
p ↪→ F 2

p,Dε
be the induced inclusion. Let γε ∈ Hδ(F 2

p,Dε
, F 2

p,Sε
)

be the pullback of τε along (F 2
p,Dε

, F 2
p,Sε

)→ (Σ2 ∩Dε,Σ2 ∩ Sε). The following diagram then com-
mutes by naturality of all the constructions involved:

Ȟ∗
c (F

1
p ) Ȟ∗

c (F
2
p,Dε

) Ȟ∗+δ
c (F 2

p,Dε
, F 2

p,Sε
) ∼= Ȟ∗+δ

c (F 2
p,D̊ε

) Ȟ∗+δ
c (F 2

p )

Ȟ∗
c (Σ1) Ȟ∗

c (Σ2 ∩Dε) Ȟ∗+δ
c (Σ2 ∩Dε,Σ2 ∩ Sε) ∼= Ȟ∗+δ

c (Σ2 ∩ D̊ε) Ȟ∗+δ
c (Σ2)

(l̃ε)∗ −∪γε

(lε)∗ −∪τε

where all the vertical maps are induced by the proper projections F i
p → Σi. The morphism

j!p : Ȟ
∗
c (F

1
p ) → Ȟ∗+δ

c (F 2
p ) is then defined as the colimit, when ε → 0, of the top composition

in the diagram above. (Recall that (l̃ε)∗ is an isomorphism in the colimit, by continuity of Čech
cohomology.) In particular, when p = N + 1, the vertical map are isomorphisms (by 3.10), which
proves the assertion (2) of Lemma 6.1 by noticing that the bottom composition is the shriek map j!.

The morphisms j!(p) : Ȟ∗
c (F

1
p − F 1

p−1)→ Ȟ∗+δ
c (F 2

p − F 2
p−1) are defined analogously, i.e. by the

colimit as ε→ 0 of the zig-zag:

Ȟ∗
c (F

1
p − F 1

p−1)←− Ȟ∗
c (F

2
p,Dε
− F 2

p−1,Dε
)

−→ Ȟ∗+δ
c (F 2

p,Dε
− F 2

p−1,Dε
, F 2

p,Sε
− F 2

p−1,Sε
) ∼= Ȟ∗+δ

c (F 2
p,D̊ε
− F 2

p−1,D̊ε
)

−→ Ȟ∗+δ
c (F 2

p − F 2
p−1)

where, as before, the first morphism is induced by the inclusion, the second morphism is the cup
product with the Thom class, and the third is induced covariantly by the open inclusion.

One may check, using naturality of the various constructions involved, that the morphisms j!p
and j!(p) give a morphism of exact couples. This amounts to staring at the following commutative
diagram.
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Ȟ∗−1
c (F 1

p−1) Ȟ∗
c (F

1
p − F 1

p−1) Ȟ∗
c (F

1
p ) Ȟ∗

c (F
1
p−1)

Ȟ∗−1
c (F 2

p−1,Dε
) Ȟ∗

c (F
2
p,Dε
− F 2

p−1,Dε
) Ȟ∗

c (F
2
p,Dε

) Ȟ∗
c (F

2
p−1,Dε

)

Ȟ∗−1+δ
c (F 2

p−1,Dε
, F 2

p−1,Sε
) Ȟ∗+δ

c (F 2
p,Dε
− F 2

p−1,Dε
, F 2

p,Sε
− F 2

p−1,Sε
) Ȟ∗+δ

c (F 2
p,Dε

, F 2
p,Sε

) Ȟ∗+δ
c (F 2

p−1,Dε
, F 2

p−1,Sε
)

Ȟ∗−1+δ
c (F 2

p−1,D̊ε
) Ȟ∗+δ

c (F 2
p,D̊ε
− F 2

p−1,D̊ε
) Ȟ∗+δ

c (F 2
p,D̊ε

) Ȟ∗+δ
c (F 2

p−1,D̊ε
)

Ȟ∗−1+δ
c (F 2

p−1) Ȟ∗+δ
c (F 2

p − F 2
p−1) Ȟ∗+δ

c (F 2
p ) Ȟ∗+δ

c (F 2
p−1)

∼= ∼= ∼= ∼=

To conclude the proof, we verify the assertion (1) of Lemma 6.1, i.e. that the morphism

j!(p) : Ȟ
∗
c (F

1
p − F 1

p−1) −→ Ȟ∗+δ
c (F 2

p − F 2
p−1)

is an isomorphism. Recall from (10) that

F 2
p − F 2

p−1
∼= Yp(Y)×Sp+1

˚|∆p| and F 1
p − F 1

p−1
∼= Yp(X)×Sp+1

˚|∆p|
where we defined as in (9) the subspace

Yp(Y) := {(f, s0, . . . , sp) ∈ Y[p] | sl ̸= sk if l ̸= k} ⊂ Y[p]

and likewise for Yp(X) ⊂ X[p]. Recall also that these spaces were vector bundles over T(p+1). (See
Section 4.) Hence, we have an inclusion of vector bundles:

F 1
p − F 1

p−1 F 2
p − F 2

p−1

T(p+1)

Now, the second part of Proposition 6.5 applies and finishes the proof. □

6.2. The case of the stabilisation map. Choose some integer k ≥ 0. We now describe how the
argument of the previous section can be made with the stabilisation map

γk : Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk) −→ Γhol

(
(JrE)⊗ Lk+1

)
⊗C Γhol (Lk+1)

from (26). First of all, it is a linear embedding. Hence, by choosing a complementary subspace, we
get a vector bundle

Γhol

(
(JrE)⊗ Lk+1

)
⊗C Γhol (Lk+1) −→ γk

(
Γhol

(
(JrE)⊗ Lk

)
⊗C Γhol (Lk)

)

analogous to the one in (34). From the commutativity of the diagram (24), we see that a singularity
x ∈ X for f ∈ S(k) is also a singularity of γk(f) ∈ S(k+1). Therefore, we also get a map induced
on the respective resolutions of S(k) and S(k + 1). Together with the fact that non-singular
sections are sent to non-singular sections, this is enough for the argument to be repeated in that
case.
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Proposition 6.6. The restriction of the stabilisation map γk to the non-singular subspaces

γk : N (k) −→ N (k + 1)

induces an isomorphism in homology in the range of degrees ∗ < N(E , r) · (e(T)−1)+e(T)−2. □
Combining Proposition 6.2 and Proposition 6.6, we obtain the following.

Proposition 6.7. Each map in the composition

Γhol,ns(E) −→ Γhol,ns(J
rE) = N (0) −→ colim

k→∞
N (k)

induces an isomorphism in homology in the range of degrees ∗ < N(E , r) · (e(T)−1)+e(T)−2. □

7. Comparison of holomorphic and continuous sections

We shall relate colimkN (k) to the space ΓC0,ns (J
rE) of non-singular continuous sections of the

jet bundle. Recall from the stabilisation diagram (24) that every non-singular space N (k) maps via
φk to ΓC0,ns (J

rE). The aim of this section is to prove the following result about the map induced
from the colimit.

Proposition 7.1. The map
colim
k→∞

N (k) −→ ΓC0,ns (J
rE) (35)

is a weak homotopy equivalence.

Combining this result with Proposition 6.7 readily implies Theorem 2.13. Proposition 7.1 is a
direct consequence of the openness of the subspace of non-singular sections, which follows from
the fact that the admissible Taylor condition T ⊂ JrE is closed (see the discussion after Lemma 3.5),
and the following

Lemma 7.2. Let F be a finite CW-complex. The map

C0
(
F, colim

k→∞
N (k)

)
−→ C0

(
F, ΓC0,ns (J

rE)
)

induced by (35) has a dense image.

As in [Mos06], we will need an adaptation of the classical Stone–Weierstrass theorem for real
vector bundles.

Theorem 7.3 (Stone–Weierstrass). Let E → B be a finite rank real vector bundle over a compact
Hausdorff space. Let A ⊂ C0(B,R) be a subalgebra and {sj}j∈J be a set of sections such that

(1) the subalgebra A separates the points of B: for any x, y ∈ B, there exists h ∈ A such that
h(x) ̸= h(y);

(2) for any x ∈ B, there exists h ∈ A such that h(x) ̸= 0;
(3) for any x ∈ B, the fibre Ex is spanned by the sj(x) as an R-vector space.

Then the A-module generated by the sj is dense for the sup-norm (induced by the choice of any inner
product on E) in the space of all continuous sections of E.

Proof of Lemma 7.2. Let F be a finite CW-complex. By adjunction, a continuous map F →
ΓC0,ns (J

rE) corresponds to a section of the underlying real vector bundle of JrE × F → X × F .
We shall apply Theorem 7.3 to that vector bundle.
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Recall that we have chosen in Section 5 a very ample line bundle L on X and explained how to
define the complex conjugate s of a section s of L. For any integer k ≥ 0, define the squared norm
of a holomorphic section of L by

| · |2 : Γhol(Lk) −→ ΓC0(Lk ⊗ Lk
) ∼= C0(X,C)

s 7−→ |s|2 := ss

where the isomorphism with continuous maps was obtained in (23). Notice that |s|2 is in fact a
real valued function X → R ⊂ C. We also let

Ak :=
{
|g(·, ·)|2 : X × F → R | g ∈ C0(F,Γhol(Lk))

}
⊂ C0(X × F,R)

where if g ∈ C0(F,Γhol(Lk)), we see g(·, ·) as a map from X × F to Lk by adjunction. Keeping
the notation from Theorem 7.3, we let A to be the subalgebra of C0(X × F,R) generated by all the
Ak for k ≥ 0. For the set of sections as in Theorem 7.3, we take the following:

{
(x, u) 7→ (s(x, u), u) : X × F → JrE × F | s ∈ C0(F,Γhol(J

rE))
}

(36)
where again, for s ∈ C0(F,Γhol(J

rE)), we see s(·, ·) as a map from X × F to JrE by adjunction.
We may now check the conditions of Theorem 7.3.

(1) Let (x, u) ̸= (x′, u′) ∈ X ×F . Consider the first case where x ̸= x′. For k ≥ 2, Lk is 2-very
ample (see Example 2.2). Hence there exists a section s ∈ Γhol(L2) such that s(x) ̸= 0
and s(x′) = 0. Then the map (x, u) 7→ |s(x)|2 is in Ak and separates (x, u) and (x′, u′)
as |s(x)|2 ̸= 0 and |s(x′)|2 = 0. In the other case where x = x′, we have that u ̸= u′.
By the 1-very ampleness of L we may choose s ∈ Γhol(L) such that s(x) = s(x′) ̸= 0.
Let ρ : F → R+ be a bump function such that ρ(u) = 0 and ρ(u′) = 1. Then the map
(x, u) 7→ |ρ(u)s(x)|2 is in A1 and separates the points. Indeed it is vanishing at (x, u) but
non-vanishing at (x′, u′).

(2) The second point is exactly what we have just proved in the first case of the first point
above.

(3) It suffices to prove that the fibre of JrE above x ∈ X is spanned by the sections s(x) for
s ∈ Γhol(J

rE). This is implied by the 0-jet ampleness of E (see Example 2.2).
By construction, any element in the image of the map

C0
(
F, colim

k→∞
N (k)

)
−→ C0

(
F, ΓC0,ns (J

rE)
)

is, by adjunction, in the A-module generated by the set (36). □

8. Applications

8.1. Non-singular sections of line bundles. Our first application concerns the case of non-
singular sections of line bundles, which was the starting motivation for this work. Here, a direct
corollary of our main theorem reads as:

Corollary 8.1. Let X be a smooth projective complex variety and L be a very ample line bundle on
it. Let d ≥ 1 be an integer. The jet map

j1 : Γhol,ns

(
Ld
)
−→ ΓC0,ns

(
J1Ld

)

from non-singular holomorphic sections of Ld to continuous never vanishing sections of J1Ld, induces
an isomorphism in homology in the range of degrees ∗ < d−1

2
.
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Proof. It is a straightforward application of Theorem 2.13 by taking the admissible Taylor condition
T to be the zero section of J1Ld and recalling from Example 2.2 that if L is very ample, then the
tensor power Ld is d-very ample. □

More interestingly, we can furthermore compute the stable rational cohomology. This agrees
with a computation also made by Tommasi in [Tom23].

Theorem 8.2. Let n = dimCX be the complex dimension of X . For d ≥ 1, there is a rational
homotopy equivalence:

ΓC0,ns

(
J1Ld

) ≃Q−→
2n+1∏

i=1

K (Hi−1(X;Q), i) .

In particular, the rational cohomology of ΓC0,ns

(
J1Ld

)
is given by the free commutative graded

algebra
Λ
(
H∗−1(X;Q)

)

on the cohomology of X shifted by one degree.

Remark 8.3. This result implies in particular that the rational (co)homology of Γhol,ns

(
Ld
)

sta-
bilises as d→∞. As we will see below, the integral cohomology does not stabilise in general.

Remark 8.4. The stable cohomology only depends on the topology ofX . This is in accordance with
the analogies between topology and arithmetic and motivic statistics mentioned in the introduction.
In both the results of Poonen and Vakil–Wood, the limit is expressed by a zeta function which only
depends on X .

Example 8.5. For X = CPn and L = O(1), we find that the stable rational cohomology is the
exterior algebra

ΛQ(t1, t3, . . . , t2n+1)

where ti is in degree i. This agrees with the result of Tommasi in [Tom14].

Proof of Theorem 8.2. Recall that the non-singular sections of J1Ld are precisely the never-vanishing
ones. We choose a Riemannian metric once and for all and denote by Sph

(
J1Ld

)
→ X the unit

sphere bundle of the vector bundle J1Ld. We may scale a never vanishing section to have norm
equal to 1 (for the chosen metric) in each fibre. We thus obtain a homotopy equivalence:

ΓC0,ns

(
J1Ld

)
≃−→ ΓC0

(
Sph

(
J1Ld

) )
.

We now rationalise the sphere bundle in the following sense. By [Lle85, Theorem 3.2], there is a
fibration S2n+1

Q → Sph
(
J1Ld

)
Q → X and a morphism of fibrations:

S2n+1 S2n+1
Q

Sph
(
J1Ld

)
Sph

(
J1Ld

)
Q

X
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such that the map induced on the fibres S2n+1 → S2n+1
Q ≃ K(Q, 2n + 1) is a rationalisation.

As X is homotopy equivalent to a finite CW-complex and S2n+1 is nilpotent (it is indeed simply
connected), we may use [Mø87, Theorem 5.3] that shows that the map Sph

(
J1Ld

)
→ Sph

(
J1Ld

)
Q

induces a map
ΓC0

(
Sph

(
J1Ld

) ) ≃Q−→ ΓC0

(
Sph

(
J1Ld

)
Q

)

which is a rationalisation. (In general, one has to restrict to some path component. However both
spaces are connected in our situation.) Now, oriented rational odd sphere bundles are classified by
their Euler class (see e.g. [FHT01, II.15.b]). In our situation, the orientation is induced from the
canonical one on the complex vector bundle J1Ld and the Euler class vanishes for dimensional
reasons. It follows directly that Sph

(
J1Ld

)
Q → X is a trivial bundle. Therefore

ΓC0

(
Sph

(
J1Ld

)
Q

)
∼= map(X,K(Q, 2n+ 1))

where map(−,−) denotes the space of continuous functions with its compact open topology.
Finally, in [Tho56] (see also [Hae82] for an accessible reference), Thom proves that this mapping
space is homotopy equivalent to a product of Eilenberg–MacLane spaces

map(X,K(Q, 2n+ 1)) ≃
2n+1∏

i=0

K
(
H2n+1−i(X;Q), i

)
≃

2n+1∏

i=0

K (Hi−1(X;Q), i)

where the last equivalence comes from Poincaré duality. More precisely, he proves that if
ev : map(X,K(Q, 2n+ 1))×X −→ K(Q, 2n+ 1)

is the evaluation map, and χ ∈ H2n+1(K(Q, 2n+ 1);Q) is the fundamental class, we may write

ev∗(χ) =
∑

i

χi

where χi ∈ H i(map(X,K(Q, 2n+ 1));H2n+1−i(X;Q)). Then the projection

map(X,K(Q, 2n+ 1))→ K(H2n+1−i(X;Q), i)

is determined by the cohomology class χi. □

8.1.1. Geometric description of the stable classes and Mixed Hodge Structures. As a Zariski open
subset of the affine space Γhol(Ld), the subspace Γhol,ns(Ld) inherits a structure of complex variety
and its cohomology thus has a natural mixed Hodge structure. On the other hand, we may endow
the stable cohomology computed in Theorem 8.2 with a mixed Hodge structure defined as follows.
Recall that the cohomology H∗(X;Q) can be equipped with a mixed Hodge structure using
the structure of complex variety on X , and denote by Q(−1) the Tate–Hodge structure of pure
weight 2. By first tensoring these structures and then applying the symmetric algebra functor (see
e.g. [PS08, Section 3.1]), we obtain a mixed Hodge structure on the stable cohomology. In this
section, we show the following.

Proposition 8.6. The morphism of Theorem 8.2

Λ
(
H∗−1(X;Q)⊗Q(−1)

)
−→ H∗(Γhol,ns(Ld);Q)

is compatible with the mixed Hodge structures.
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Proof. By the universal property of the (graded) symmetric algebra, it is enough to see that the
morphism

H∗−1(X;Q)⊗Q(−1) −→ H∗(Γhol,ns(Ld);Q)

respects the mixed Hodge structures. We will do this by giving a more geometric description of
this map. Let

π : Γhol,ns(Ld)×X −→ Γhol,ns(Ld)

be the trivial fibre bundle, and let

j : Γhol,ns(Ld)×X −→ J1Ld − {0}
be the jet evaluation. By integrating along the fibres of π, we obtain in cohomology a morphism of
mixed Hodge structures:

π! ◦ j∗ : H∗(J1Ld − {0})⊗Q(n) −→ H∗−2n(Γhol,ns(Ld)).

The extra Tate twist Q(n) comes from the definition of the Gysin map π! via Poincaré duality.
(See [PS08, Corollary 6.25].) As the Euler class of the jet bundle vanishes for dimensional reasons,
we compute that

H∗(J1Ld − {0};Q) ∼= H∗(X;Q)⊗H∗(Cn+1 − {0};Q).

Now H2n+1(Cn+1 − {0};Q) ∼= Q(−n − 1), so we have obtained a morphism of mixed Hodge
structures:

π! ◦ j∗ : H∗(X)⊗Q(−1) −→ H∗+1(Γhol,ns(Ld)).

We claim that this coincides with the morphism given in Theorem 8.2. The proof is an exercise in
algebraic topology and uses the description of the mapping space given at the end of the proof of
Theorem 8.2. □

8.2. Integral homology and stability. In this section, we focus on the special case where
X = CP1 and L = O(1). That is, we study the space

Ud := Γhol,ns

(
CP1,O(d)

)

of non-singular homogeneous polynomials in two variables of degree d. From Corollary 8.1, we
know that the jet map

j1 : Ud −→ ΓC0,ns

(
J1O(d)

)

induces an isomorphism in integral homology in the range of degree ∗ < d−1
2

. We prove that the
section space on the right-hand side does not depend on d ≥ 1, hence that the integral homology
of Ud stabilises.

Theorem 8.7. For d ≥ 1, we have a homotopy equivalence

ΓC0,ns

(
J1OCP1(d)

)
≃ map(S2, S3).

In particular
H∗(Ud;Z) ∼= H∗(map(S2, S3);Z)

in the range of degrees ∗ < d−1
2

.
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Remark 8.8. 1 Using the Lie group structure on S3 we obtain a homotopy equivalence

map(S2, S3) ≃ S3 ×map∗(S
2, S3) = S3 × Ω2S3

which can be used to compute the integral homology. This can be done one prime at a time. Indeed,
the p-primary elements have order exactly p by [Nei10, Corollary 10.16.5]. This p-primary part
can then be computed directly from the Bockstein spectral sequence and the knowledge of the
Z/p-homology, which is recalled in [Nei10, Corollary 10.16.4].

Remark 8.9. In the next section, we will show that one cannot expect integral homological stability
in general. The case X = CP1 should be seen as a very particular phenomenon.

Proof. Recall from the proof of Theorem 8.2 that we have to study continuous sections of the sphere
bundle of the jet bundle:

S3 −→ Sph(J1OCP1(d)) −→ CP1.

One sees that this bundle is classified by the second Stiefel–Whitney class of the jet bundle, i.e.
the reduction modulo 2 of its first Chern class. Using that d ≥ 1 and [DRS00, Proposition 2.2], we
obtain an isomorphism of vector bundles:

J1OCP1(d) ∼= OCP1(d− 1)⊕2.

We compute the first Chern class to be

c1(J
1OCP1(d)) = c1(OCP1(d− 1)⊕2) = 2c1(OCP1(d− 1))

so its reduction modulo 2 vanishes regardless of d. As the sphere bundle was classified by this
class, this shows that it is trivial. Therefore:

ΓC0,ns

(
J1OCP1(d)

)
≃ ΓC0

(
Sph(J1OCP1(d))

)
≃ map(S2, S3). □

8.3. Integral homology and non-stability. As we indicated in Remark 8.3, the rational co-
homology groups of the spaces Γhol,ns(Ld) stabilise. That is, for a fixed i ≥ 0, the i-th rational
cohomology group is independent of d as long as i ≤ d−1

2
. In this section, to contrast with the very

special case of the previous one, we show that one cannot expect integral stability in general.
Let us fix some notation for the remainder of this section: d ≥ 1 is an integer, L is a very ample

line bundle on a smooth projective complex variety X and n = dimCX is the complex dimension
of X . As we will only be considering spaces of continuous sections, we will use Γ as a shorthand
for ΓC0 .

The main result of this section is Theorem 8.11 below. To show its computational potential, we
will show the following:

Proposition 8.10. Let d ≥ 6 be an integer. We have:

H2(Γhol,ns(CP2,O(d));Z/2) ∼=
{
Z/2 d ≡ 0 mod 2

0 d ≡ 1 mod 2.

Furthermore, the same result holds for the quotient Γhol,ns(CP2,O(d))/C∗.

1Many thanks to Antoine Touzé for explaining this computation to me.
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8.3.1. A comparison map. As stated in Corollary 8.1, we are reduced to studying the homotopy
type of the space of continuous sections of the sphere bundle Sph(J1Ld). Even though this is a
purely homotopy theoretic problem, its resolution is quite hard. We will therefore “linearise it” in
the homotopical sense using spectra. This is made precise in the following result:

Theorem 8.11. Let TX be the tangent bundle of X , and let XJ1Ld−TX denote the Thom spectrum of
the virtual bundle J1Ld − TX of rank 2. There is a 2n-connected map:

Γ(Sph(J1Ld)) −→ Ω∞+1XJ1Ld−TX .

Our proof uses very lightly the theory of parametrised pointed spaces/spectra and is written
using∞-categories. We feel that the latter choice helps in conveying the main ideas more clearly.
The unfamiliar reader is encouraged to think of bundles of pointed spaces/spectra, whilst resting
assured that there exists a theory which renders all statements made here literally true. An
encyclopedic reference is [MS06]. As we shall only use basic adjunctions and Costenoble–Waner
duality, we suggest to simply look at [Lan21, Appendix A] for a very readable introduction.

We denote respectively by S∗ and Sp the∞-categories of pointed spaces and spectra. Likewise,
we let S∗/X = Fun(X, S∗) and Sp/X = Fun(X, Sp) be the∞-categories of parametrised pointed
spaces/spectra over X . (In the definitions, X is seen as an∞-groupoid.) We let r : X → ∗ be the
unique map to the point. We will use the following three standard functors:

the restriction functor: r∗ : S∗ −→ S∗/X ,

its right adjoint: r∗ : S∗/X −→ S∗,

its left adjoint: r! : S∗/X −→ S∗.

The right and left adjoint are given respectively by right and left Kan extensions. In other words, r∗
takes the limit of a functor F ∈ S∗/X = Fun(X, S∗), whilst r! takes its colimit. We will also use the
analogous functors in the case of parametrised spectra with the same notation. It will be clear from
the context which one we are using. The crucial fact for us is that for any bundle Y → X equipped
with a section s (this gives the data of a pointed space over X), r∗(Y ) is the path component of s
in the section space.

As a last piece of notation, we will use Σ∞
/X ⊣ Ω∞

/X to denote the infinite suspension/loop space
adjunction between parametrised pointed spaces and spectra, and use Σ∞ ⊣ Ω∞ to denote the
usual adjunction in the unparametrised setting.

On our way to the proof of Theorem 8.11, we first make some formal observations. Loosely
speaking, we would like to say that the section space of a fibrewise infinite loop space is the infinite
loop space of the “section spectrum”. This is made precise in the lemma below.

Lemma 8.12. Let Y ∈ S∗/X be a parametrised space over X . We have a natural equivalence of
pointed spaces:

Ω∞r∗(Σ
∞
/XY ) ≃ r∗(Ω

∞
/XΣ

∞
/XY ).
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Proof. We use the Yoneda lemma and the adjunction r∗ ⊣ r∗. Let Z ∈ S∗ be a pointed space. We
have:

mapS∗(Z,Ω
∞r∗(Σ

∞
/XY )) ≃ mapSp(Σ

∞, r∗(Σ
∞
/XY ))

≃ mapSp/X
(r∗Σ∞Z,Σ∞

/XY )

≃ mapSp/X
(Σ∞

/Xr
∗Z,Σ∞

/XY )

≃ mapS∗/X
(r∗Z,Ω∞

/XΣ
∞
/XY )

≃ mapS∗(Z, r∗(Ω
∞
/XΣ

∞
/XY )).

Almost all manipulations follow from the standard adjunctions. The third equivalence uses the
fact that r∗Σ∞Z is the trivial parametrised spectrum with fibre Σ∞Z , hence is equivalent to
Σ∞

/Xr
∗Z . □

We will need two more facts before proving Theorem 8.11. The first one is the following simple
observation. If V → X is a vector bundle such that its associated sphere bundle Sph(V ) → X
has a section s, then we may take the fibrewise infinite suspension Σ∞

/XSph(V ) ∈ Sp/X using s to
give a basepoint in each fibre. On the other hand, we could have taken the fibrewise one-point
compactification and then suspend using the added point at infinity as a basepoint in each fibre.
Up to a suspension, these are the same parametrised spectra.

Lemma 8.13. Let V → X be a vector bundle with a non-vanishing section, and let Sph(V )→ X be
its associated sphere bundle. Let SV

X denote the fibrewise infinite suspension of the fibrewise one-point
compactification of V (using the point at infinity as the basepoint in each fibre). Then:

Σ∞
/XSph(V ) ≃ ΩXSV

X

where ΩX denotes the desuspension in the category Sp/X .

Proof. Let us scale a non-vanishing section s of V to that it has image in the sphere bundle. We
write D(V ) ⊂ V for the unit disc bundle of V which we point using s, and V + for the fibrewise
one-point compactification. We obtain the lemma by applying the fibrewise infinite suspension
Σ∞

/X to the cofibre sequence Sph(V )→ D(V )→ V + of parametrised pointed spaces over X . □

Recall that the∞-category Sp/X is symmetric monoidal, with monoidal unit SX := r∗(S). (Here,
and everywhere else, S denotes the sphere spectrum.) The usefulness of the whole machinery set
up so far is contained in the following result. A classical reference is [MS06, Chapter 18]. In the
language of∞-categories, one may read the second section of [Lan21, Appendix A].

Lemma 8.14 (Costenoble–Waner duality). The Costenoble–Waner dualising spectrum of X is S−TX
X ,

the spherical fibration associated to the stable normal bundle of X . That is, we have an equivalence of
functors:

r∗(−) ≃ r!(−⊗SX S−TX
X ).

We are now ready to prove the result announced at the beginning of this section.

Proof of Theorem 8.11. We start by choosing once and for all a section s of the sphere bundle
Sph(J1Ld), which provides us with a basepoint in every fibre. We may therefore apply the free
infinite loop space functor Q = Ω∞Σ∞ : S∗ → S∗ fibrewise and obtain the following diagram of
fibrations:
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S2n+1 Ω∞Σ∞S2n+1

Sph(J1Ld) Ω∞
/XΣ

∞
/XSph(J

1Ld)

X X

It is a standard fact that the map S2n+1 → Ω∞Σ∞S2n+1 is (4n+ 1)-connected. Hence, on section
spaces, the map

Γ(Sph(J1Ld))→ Γ(Ω∞
/XΣ

∞
/XSph(J

1Ld))

is 2n-connected. (Notice that both spaces are connected, so the choice of s was immaterial.) Using
Lemma 8.12, we obtain:

Γ(Ω∞
/XΣ

∞
/XSph(J

1Ld)) ≃ r∗(Ω
∞
/XΣ

∞
/XSph(J

1Ld)) ≃ Ω∞r∗(Σ
∞
/XSph(J

1Ld)).

We now make the purely formal following computation:
r∗(Σ

∞
/XSph(J

1Ld)) ≃ r!(Σ
∞
/XSph(J

1Ld)⊗SX S−TX
X )

≃ r!(ΩXSJ1Ld

X ⊗SX S−TX
X )

≃ r!(ΩXSJ1Ld−TX
X )

≃ Ωr!(SJ1Ld−TX
X )

≃ ΩXJ1Ld−TX

where we used Lemma 8.14 for the first equivalence, Lemma 8.13 for the second, and recognised
that the value of r! on a spherical fibration is the associated Thom spectrum. Summing up, we get
the result.

□
8.3.2. An example when X = CP2. To show how Theorem 8.11 can be applied in practice, we use
it to prove Proposition 8.10. We hope that this will convince the reader of the computational power
of homotopy theoretic methods to study spaces of algebraic sections.

Following Theorem 8.11, we should investigate Ω∞+1XJ1Ld−TX when X = CP2 and L = O(1).
Because J1Ld − TX is of rank 2, the spectrum ΩXJ2Ld−TX is 1-connective and the bottom
homotopy group is π1 ∼= Z by Hurewicz theorem. We consider the fibration

F −→ Ω∞+1XJ1Ld−TX −→ S1

where F is the homotopy fibre of the right-most map, which is taken to induce an isomorphism on
π1. A generator of π1(Ω∞+1XJ1Ld−TX) ∼= Z gives a section of that fibration, and we obtain:

Ω∞+1XJ1Ld−TX ≃ S1 × F.
In particular, F is 2-connective with π2(F ) ∼= π2(Ω

∞+1XJ1Ld−TX). By Hurewicz theorem and the
universal coefficient theorem, H2(F ;Z/2) ∼= H2(F ;Z)⊗ Z/2 ∼= π2(F )⊗ Z/2. We thus wish to
compute π2(Ω∞+1XJ1Ld−TX), which we will do using the Adams spectral sequence at the prime 2:

Es,t
2 = Exts,tA

(
H∗(XJ1Ld−TX ;Z/2),Z/2

)
=⇒ π∗(X

J1Ld−TX)∧2 .
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(Hence we will only compute the 2-completed group, but this will be enough for our purposes.)
The E2-page is computed by knowing the cohomology H∗(XJ1Ld−TX ;Z/2) as an algebra over the
mod 2 Steenrod algebra A. (See [BC18, Section 3.3] for a very readable introduction.) If U denotes
the Thom class of J1Ld − TX , the classes in the cohomology of the Thom spectrum XJ1Ld−TX

are given via the Thom isomorphism as yU where y ∈ H∗(X;Z/2). At the prime 2, the Steenrod
squares can then be computed from the formula:

Sqk(yU) =
∑

i+j=k

Sqi(y)Sqj(U) =
∑

i+j=k

Sqi(y)wjU

where wj is the j-th Stiefel–Whitney class of J1Ld − TX . In our case, writing Z/2[x]/(x3) for the
cohomology ring of X = CP2, the total Stiefel–Whitney class is given by:

w(J1Ld − TX) =

{
1 d ≡ 0 mod 2

1 + x d ≡ 1 mod 2.

We used the handy tool [CC] to compute the E2-page for us, and obtained the following:

a. Case d ≡ 0 mod 2 b. Case d ≡ 1 mod 2

Following the established convention, we use the Adams grading: the horizontal
axis is indexed by t− s, the vertical one by s. Every dot represents a copy of Z/2.
The vertical lines represent multiplication by h0 ∈ Ext1,1A (Z/2,Z/2). We suggest to
the unfamiliar reader to look at [BC18, Section 4.3] for more explanations.

From this, standard arguments about differentials (see e.g. [BC18, Section 4.8]) show that

π3(X
J1Ld−TX)∧2

∼=
{
Z/2 d ≡ 0 mod 2

0 d ≡ 1 mod 2.
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Therefore

H2(F ;Z/2) ∼= π2(F )⊗ Z/2 ∼= π3(X
J1Ld−TX)⊗ Z/2 ∼=

{
Z/2 d ≡ 0 mod 2

0 d ≡ 1 mod 2.

Using Künneth theorem, we obtain:

H2(Ω
∞+1XJ1Ld−TX ;Z/2) ∼= H2(S

1 × F ;Z/2) ∼= H2(F ;Z/2)
which finishes the proof of Proposition 8.10.

8.4. Stability of p-torsion. In this final section, we study the p-torsion in the homology of the
space ΓC0

(
Sph(J1Ld)

)
. On the one hand, we have just seen in Proposition 8.10 that it depends on

d in general. On the other hand, the result below shows that when the prime p is slightly bigger
the dimension of X , the p-torsion is independent of L.

Proposition 8.15. Let X be a smooth complex projective variety of complex dimension n and L be a
holomorphic line bundle on it. Let p be a prime such that p ≥ n+ 2. Then the fibrewise p-localisation
of the sphere bundle Sph(J1L)→ X is trivial. In particular, we have an equivalence of p-local spaces

ΓC0

(
Sph(J1L)

)
(p)
≃ map(X,S2n+1

(p) ).

As an immediate consequence, combining the proposition above with Corollary 8.1 shows that
the p-torsion in the homology of Γhol,ns(X;Ld) stabilises when p ≥ dimCX + 2 and d→∞.

The proof uses the following result which we learned from [BM14, Proposition 4.1].

Lemma 8.16. For p ≥ k
2
+ 3

2
, the space map1(S

k
(p), S

k
(p)) of maps homotopic to the identity is

(k − 1)-connected.

Proof. The proof is given in [BM14], but we sketch it here for convenience. We shall assume that k
is odd, as we will only use this case in this paper. Recall the evaluation fibration

Ωk
1S

k
(p) −→ map1(S

k
(p), S

k
(p)) −→ Sk

(p).

Using the associated long exact sequence of homotopy groups, it suffices to show that πi(Ωk
1S

k
(p))

vanishes for i ≤ k − 1. Using the assumption p ≥ k
2
+ 3

2
, this follows from Serre’s calculations on

p-torsion in the homotopy groups of spheres. □
Proof of Proposition 8.15. Let

S2n+1
(p) −→ Sph(J1L)(p) −→ X

be the fibrewise p-localisation of Sph(J1L)→ X . By [Mø87, Theorem 5.3], we have a homotopy
equivalence

ΓC0

(
Sph(J1L)

)
(p)
≃ ΓC0

(
Sph(J1L)(p)

)
.

As the sphere bundle is canonically oriented (using the complex orientation of J1L), the fibration
Sph(J1L)(p) → X is classified by a map

X −→ Bmap1(S
2n+1
(p) , S2n+1

(p) ).

By Lemma 8.16, the codomain of that map is (2n+1)-connected. As the domain has real dimension
2n, the classifying map must be null-homotopic thus showing that the fibration is trivial. □
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SCANNING THE MODULI OF EMBEDDED SMOOTH HYPERSURFACES

ALEXIS AUMONIER

Abstract. We study the locus of smooth hypersurfaces inside the Hilbert scheme of a smooth
projective complex variety. In the spirit of scanning, we construct a map to a continuous section
space of a projective bundle, and show that it induces an isomorphism in integral homology in a
range of degrees growing with the ampleness of the hypersurfaces. When the ambient variety is
a curve, this recovers a result of McDuff and Segal about configuration spaces. We compute the
rational cohomology of the section space and exhibit a phenomenon of homological stability for
hypersurfaces with first Chern class going to infinity. For simply connected varieties, the rational
cohomology is shown to agree with the stable cohomology of a moduli space of hypersurfaces, with
a peculiar tangential structure, as studied by Galatius and Randal-Williams.

1. Introduction

A hypersurface in a smooth projective complex variety X is the zero locus V (s) of a non-zero
global section s ∈ H0(X,L) of an algebraic line bundle L:

V (s) := {x ∈ X | s(x) = 0} ⊂ X.

Such a hypersurface is said to be smooth when the derivative ds(x) ̸= 0 for all x ∈ V (s). Smooth
hypersurfaces obtained from sections ofL are parameterised by the complement of the discriminant
inside the complete linear system |L| = P

(
H0(X,L)

)
, a classical object dating back to the early

days of complex geometry. To allow variations of the line bundle, Grothendieck introduced
in [Gro62] the functor of relative effective Cartier divisors. We follow his footsteps and, for a given
polynomial P ∈ Q[x], consider the functor on the category of complex schemes

Msm,P : SchopC −→ Set

T 7−→



Z ⊂ X × T

∣∣∣∣∣∣

Z → T is flat and proper and for all t ∈ T
Zt ⊂ Xt is a smooth effective Cartier divisor
with Hilbert polynomial χ

(
Zt, I−1

Zt
(n)
)
= P (n)





As already discovered by Grothendieck, this functor is representable by an open subscheme
Msm,P ⊂ Hilb(X) of the Hilbert scheme of X . Under conditions on the polynomial P , it can in
fact be explicitly constructed using projective bundles [BLR90]. Recording the isomorphism class
of a Cartier divisor produces the Abel–Jacobi morphism

Msm,P −→ PicP (X), Z 7−→ [I−1
Z ]

to the Picard scheme. Given a cohomology class α ∈ NS(X) ⊂ H2(X;Z) in the Néron–Severi
group of X , the component Picα(X) ⊂ Pic(X)(C) parameterises holomorphic line bundles on X
with first Chern class α. Our main object of interest in this article is the moduli space of smooth
hypersurfaces with fixed Chern class

Mα
hyp −→ Picα(X)

1
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obtained by restricting the Abel–Jacobi morphism after analytification. It is the parameter space

Mα
hyp
∼= {Z ⊂ X smooth hypersurface with c1(OX(Z)) = α}

whose points are smooth complex hypersurfaces embedded inside X . In particular, the fibre of the
Abel–Jacobi map above an isomorphism class of a line bundle [L] ∈ Picα(X) is the complement of
the discriminant inside the linear system |L|.

In the present work, we investigate the topology ofMα
hyp using tools from algebraic topology.

To state our results, we write d(α) for the largest integer d such that all line bundles with first
Chern class α are d-jet ample.

Theorem 1.1 (See Theorem 4.6 for a precise version). Let X be a smooth projective complex variety
and let α ∈ NS(X) be ample enough. Taking the first jet yields a map

Mα
hyp −→ ΓC0

(
P(J1OX)

)

which induces an isomorphism in integral homology onto the path component that it hits, in degrees
∗ < d(α)−3

2
.

Remark 1.2. In fact, π0
(
ΓC0(P(J1OX))

) ∼= H2(X;Z) and the jet map hits the component corre-
sponding to α ∈ NS(X) ⊂ H2(X;Z).

We recall in Section 2 the notion of jet ampleness, and explain in Appendix A how to estimate
the number d(α). Among other things, we show that given any integer M ≥ 0 and classes
α, β ∈ NS(X) with β ample, we have that d(α + kβ) ≥ M for all large enough k ≫ 0. (See
Proposition A.7.) In particular, the degree range of our main theorem can be arbitrarily big. In the
remainder of this introduction, we describe applications of our main theorem and connect our
results to the existing literature on moduli spaces of manifolds.

1.1. Rational computations and stability. A main advantage of our main theorem resides in
the fact that the homotopy type of spaces of continuous sections can be approached by purely ho-
motopical methods. This is particularly effective if one is willing to look at the rational information
only. Using tools from rational homotopy theory, we show:

Theorem 1.3 (See Theorem 6.5 for a precise version). Let n be the complex dimension of X . Let
α ∈ H2(X;Z) and denote by Γα

C0(P(J1OX)) the component hit by the jet map fromMα
hyp. The

rational cohomology of that section space is computed by the cohomology of the following commutative
differential graded algebra:

Sym∗
gr

(
Qz ⊕H1(X;Q)⊕H∗(X;Q)[1]

)
,

with d(z) = 0, d(H1(X;Q)) = 0, and d(x) = φ(x) for x ∈ H∗(X;Q)[1].

Here Sym∗
gr denotes the free graded commutative algebra on a graded vector space, [1] increases the

grading by one, and Qz is a one-dimensional vector space generated by z in degree 2. The differential is
encoded by a morphism φ : H∗(X;Q)→ Sym∗

gr(Qz ⊕H1(X;Q)) which can be computed explicitly
in terms of the Chern classes of J1OX and α.

Let us also mention another application of our main theorem in the form of a rational homological
stability phenomenon:
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Theorem 1.4 (See Corollary 6.8). LetX be a smooth projective complex variety whose tangent bundle
is a topologically trivial complex vector bundle. Let α ∈ NS(X) be ample and assume that d(α) ≥ 1.
Then, for any integer k ≥ 1, there is map

Mkα
hyp −→ Mapα(X,Pn

Q)

inducing an isomorphism in rational homology in the range of degrees ∗ < k·d(α)−3
2

. In particular, the
rational homology stabilises as k →∞.

Remark 1.5. By a theorem of Wang [Wan54], if the tangent bundle of X is holomorphically trivial
then X is an abelian variety. If we only require topological triviality as in the theorem above, other
examples exist such as products of abelian varieties with curves [SA15].

1.2. Configuration spaces on curves. On an algebraic curve, the first Chern class of a line bundle
is simply its degree under the identification H2(X;Z) ∼= Z. The vanishing locus of a non-zero
global section of a line bundle of degree d > 0 is a set of d points counted with multiplicity. In
fact, such a section is non-singular precisely when these d points are distinct. In that case, the
moduli space of embedded hypersurfaces is the classically studied configuration space and our
main theorem recovers parts of a result of McDuff and Segal [McD75, Seg79] (see also [RW13] for
improved ranges):

Theorem 1.6 (See Theorem 7.2). Let X be a smooth projective complex curve of genus g. Let
α ∈ H2(X;Z) ∼= Z be such that α > 2g − 2. The jet map

UConfα(X) ∼=Mα
hyp −→ Γα

C0(P(J1OX)) ∼= Γα
C0( ˙TX)

induces an isomorphism in integral homology in the range of degrees ∗ < α−2g−3
2

.

1.3. Characteristic classes and moduli spaces of manifolds. Let H = V (s) ⊂ X be a
hypersurface defined by a non-singular section of a line bundle L on X . In the series of papers
[GRW14, GRW17, GRW18], Galatius and Randal-Williams have investigated the homology of
moduli spaces of manifolds. In this article, we have tried to compare their results to ours in the
case where the manifold under investigation is H . Deferring the technical details to Section 8.2,
we describe here the main contents.

Let n be the complex dimension of X , so that H is of real dimension 2n− 2. Given a tangential
structure ℓ : H → B on H with θ : B → BO(2n − 2), Galatius and Randal-Williams study the
moduli spaceMθ(H, ℓ) classifying smooth H-bundles with θ-structure. One could wonder which
tangential structure is the most natural on H . In the last section of this article, we find a reasonable
candidate and show:

Theorem 1.7 (See Theorem 8.11 and Corollary 8.15 for a precise version). Let X be a simply
connected smooth complex projective variety of dimension n ≥ 4 and L be a very ample line bundle
on it. Let

Γns(L) :=
{
s ∈ H0(X,L) | j1(s)(x) ̸= 0 for all x ∈ X

}

be the subspace of non-singular global sections. There is a map θ : B → BO(2n − 2) such that a
hypersurface H defined by a non-singular section of L inherits a tangential structure ℓ : H → B. In
other words, for this tangential structure there is a map classifying the universal bundle:

Γns(L) −→Mθ(H, ℓ).
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Furthermore, writing ∆ for the discriminant, the subgroup of (deg∆)-th roots of unity µdeg∆ ⊂ C×

acts onMθ(H, ℓ) and the induced map on the quotients

Γns(L)/C× −→Mθ(H, ℓ)/µdeg∆

induces an isomorphism in rational cohomology in the stable ranges.

1.4. Outline. In Section 2 we recall known properties about the Picard scheme, jet bundles, jet
ampleness, and the topology of smooth hypersurfaces. In Section 3 we define precisely the moduli
spaceMα

hyp. In Sections 4 and 5 we state and prove our main theorem. The rest of the paper is
dedicated to applications. We make rational computations in Section 6 and describe the relation
to scanning and characteristic classes of manifold bundles in Sections 7 and 8. Finally, we have
assembled in Appendix A various results concerning jet ampleness.

1.5. The proof strategy for the main theorem. As explained in the introduction, we have a
sequence of spaces

|L| \∆ −→Mα
hyp −→ Picα(X) (1)

where ∆ ⊂ |L| is the discriminant hypersurface. It turns out not to be a fibration, but only a
microfibration. On the other hand, we have an actual fibration

ΓC0(J1L \ 0)/C× −→ Γα
C0(P(J1OX)) −→ B

(
Map(X,C×)/C×) (2)

obtained by modding out by the constant functions C× ⊂ Map(X,C×) and delooping the
Map(X,C×)-principal fibration

Map(X,C×) −→ ΓC0(J1L \ 0) −→ Γα
C0(P(J1OX))

sending a section in the total space to its projectivisation. We observe the weak homotopy equiva-
lences

B
(
Map(X,C×)/C×) ≃ K(H1(X;Z), 1) ≃ Picα(X)

and have proved in the earlier work [Aum22] that the jet map
|L| \∆ −→ ΓC0(J1L \ 0)/C×

induces an isomorphism in homology in a range of degrees. In essence, the proof consists in
comparing with two (micro)fibrations (1) and (2): we will leverage the homotopy (resp. homology)
equivalence of their bases (resp. fibres) to obtain a homology equivalence between their total
spaces.
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2. Preliminary material

2.1. The Picard scheme. We begin with recollections on line bundles on smooth projective
complex varieties and their moduli. A more precise, and much more general, account of this
standard material can be found in Kleiman’s notes [Kle05]. In what follows, X is a connected
smooth projective complex variety.

Definition 2.1. The absolute Picard group of a complex scheme T is the set Picabs(T ) of isomorphism
classes of algebraic line bundles on T equipped with the group law given by the tensor product.

Definition 2.2. The Picard functor of X

T −→ Picabs(X × T )/Picabs(T )
from complex schemes to abelian groups is represented by a scheme Pic(X) called the Picard scheme
of X (relative to Spec(C)).

Remark 2.3. The analytification of Pic(X), sometimes called the Picard space in this article, is the
group of isomorphism classes of holomorphic line bundles on X .

Lemma 2.4 (Compare [Kle05, Exercise 4.3]). There exists a (non-unique) algebraic line bundle P on
Pic(X)×X satisfying the following property: given any complex scheme T and a line bundle L on
X × T , there exists a unique morphism h : T → Pic(X) such that

L ∼= (1× h)∗P ⊗ f ∗N
for f : X × T → T the projection map and N some line bundle on T . □

Definition 2.5. Any choice of a line bundle P as in Lemma 2.4 will be called a Poincaré line bundle
on X .

The Picard scheme Pic(X) only parameterises isomorphism classes of line bundles on X . One
should think of the choice of a Poincaré line bundle as making compatible choices of representatives
of those isomorphisms classes.

We will need a further decomposition of the Picard scheme into components. To introduce it,
we let OX(1) be a very ample line bundle on X and write F(n) = F ⊗OX(1)

⊗n for any sheaf of
OX-modules F and n ∈ Z.

Definition 2.6. Let C ⊂ k be a field extension, and write Xk = X ×Spec(C) Spec(k) for the base
change. The Hilbert polynomial of a closed subscheme Z ⊂ Xk is the function

PZ : N −→ Z, n 7−→ χ(Z,OZ(n))

where OZ is the structure sheaf of Z .
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Given a polynomial P ∈ Q[x], let PicP (X)(−) ⊂ Pic(X)(−) be the subfunctor of the Picard
functor whose T -points are represented by the line bundles L on X × T such that

χ(Xt,L−1
t (n)) = P (n) for all t ∈ T

where Xt and Lt denote the base change to t.

Proposition 2.7 (Compare [Kle05, Theorems 4.8 and 6.20]). The Picard functor PicP (X)(−) is
represented by a complex quasi-projective scheme denoted PicP (X). The Picard scheme is the disjoint
union of the PicP (X) when P runs over all polynomials P . □

Passing to complex points, the picture is vastly simplified by Hodge theory as recalled in the
following two results.

Definition 2.8. The Néron–Severi group of X , denoted NS(X), is the image of the morphism
c1 : Pic(X)→ H2(X;Z) sending an isomorphism class of a line bundle to its first Chern class.

Proposition 2.9. The Picard space Pic(X) a disjoint union of connected components indexed by the
Néron–Severi group

Pic(X) =
⊔

α∈NS(X)

Picα(X).

Each space Picα(X) is a torus, non-canonically isomorphic to H1(X;OX)/H
1(X;Z), and parame-

terises isomorphism classes of holomorphic line bundles on X with Chern class α. □

2.2. Jet bundles. We recall the definition of jet bundles in algebraic geometry and explain the
construction of the jet evaluation map which will be used throughout this article. The main
reference for this section is [Gro67, Section 16.7]. In this section only, the full generality offered by
schemes will be convenient, so we momentarily work in this setting.

Let f : Y → S be a morphism of schemes, ∆: Y → Y ×S Y be the diagonal and I be its ideal
sheaf. We let pi : Y ×S Y → Y be the two projections for i = 1, 2.

Definition 2.10. Let F be an OY -module. Its relative r-jet bundle is defined by

Jr
Y/SF := (p1)∗

(
OY×SY /Ir+1 ⊗ p∗2F

)
.

The two projections pi give two morphisms of sheaves of rings OY → Jr
Y/SOY . We choose the one

given by p1 to define an OY -module structure. The other one, induced by p2, is denoted by

drY/S : OY → Jr
Y/SOY

and is called the jet map. In particular Jr
Y/SF = Jr

Y/SOY ⊗OY
F where Jr

Y/SOY is seen as a right
OY -module via drY/S . We will also write drY/S : F → Jr

Y/SF for the tensor of the jet map with F .

The fibre of the jet bundle at a closed point y ∈ Y with maximal ideal sheaf m is (Jr
Y/SF)|y ∼=

F/mr+1F . Intuitively, the jet map should be thought of as taking the r-th Taylor expansion of
a function. In particular, as the Leibniz rule for differentation shows, it is not a morphism of
OX-modules when r > 0. On the contrary, taking the derivative of a function commutes with
multiplication by a constant. At the level of the relative jet bundles, the functions on S play the
role of the scalars, and this fact is expressed by the following:
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Lemma 2.11. The pushforward of the jet map

f∗d
r
Y/S : f∗F −→ f∗J

r
Y/SF

is a morphism of OS-modules.

Proof. The claim can be checked locally on an affine cover. We can thus assume that f : SpecB →
SpecA is a morphism between affine schemes, F = M̃ is a B-module, and I is the kernel of the
multiplication map B ⊗A B → B. Then f∗Jr

X/SF corresponds to

(B ⊗A B)/Ir+1 ⊗B⊗AB ((B ⊗A B)⊗B M)

and f∗F is M , both seen as A-modules via f . In these coordinates, the jet map is
m 7−→ (1⊗ 1)⊗ ((1⊗ 1)⊗m)

which is visibly A-linear. □
Definition 2.12. Let F be an OY -module. The fibrewise jet evaluation map is the composition of
the pushforward of the jet map followed by the counit:

f ∗f∗F −→ f ∗f∗J
r
Y/SF −→ Jr

Y/SF .
To explain the definition above, we assume that Y and S are complex varieties for the rest of

this section. As we will alternate between two points of view on vector bundles (as sheaves or
as spaces over the base), it will sometimes be convenient to be explicit about which viewpoint is
adopted:
Definition 2.13. Let F be a vector bundle (i.e. a locally free sheaf ofOY -modules of finite rank) on a
complex variety Y . The total space of the associated geometric vector bundle is

V(F) := Spec
Y

(
Sym∗(F∨)

)an

where (−)an denotes the analytification functor.

Suppose now that F is a vector bundle on Y such that f∗F is also a vector bundle on S. As sets,
we have an identification

V(f∗F) = {(s, σ) | s ∈ S, σ ∈ H0(Ys;F|Ys)}
where Ys = f−1(s) ⊂ Y is the fibre above s. In particular, when S = SpecC is a point, this is
the space of global sections H0(Y ;F). In general, it should be thought of as a space of fibrewise
sections.
Lemma 2.14. Under the above assumptions, the counit map f ∗f∗F → F induces the evaluation map

V(f ∗f∗F) ∼= V(f∗F)×S Y −→ V(F)
((s, σ), y) 7−→ σ(y)

on geometric realisation.

Proof. Recall first that f ∗f∗F is the sheafification of U 7−→ F(f−1f(U))⊗OS(f(U))OY (U). (When
f(U) is not open, we mean taking the colimit over all open subsets of S containing it.) Chasing
through the adjunction, the counit map is then seen to be the sheafification of the map

F(f−1f(U))⊗OS(f(U)) OY (U) −→ F(U)
a⊗ r 7−→ r · a|U
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and the claim follows. □
Summarising the situation, we see that the fibrewise jet evaluation map

V(f∗F)×S Y −→ V(Jr
Y/SF)

is given above a point s ∈ S by
H0(Ys;F|Ys)× Y −→ V(JrF|Ys)

(σ, y) 7−→ jrσ(y) ∈ F|Ys

/
mr+1F|Ys

where m is the maximal ideal sheaf of y ∈ Ys. In other words, it takes the Taylor expansion of σ at
y up to order r.

2.3. Jet ampleness. Having now defined jet bundles, we state the crucial definition of jet ample-
ness of a line bundle on a smooth projective complex variety X .

Definition 2.15 (Compare [BRS99]). Let k ≥ 0 be an integer. Let x1, . . . , xt be t distinct points
in X and (k1, . . . , kt) be a t-uple of positive integers such that

∑
i ki = k + 1. Denote by OX the

structure sheaf of X and by mi the maximal ideal sheaf corresponding to xi. We regard the tensor
product ⊗t

i=1m
ki
i as a subsheaf of OX under the multiplication map ⊗t

i=1m
ki
i → OX . We say that a

line bundle L is k-jet ample if the evaluation map

Γ (L) −→ Γ
(
L ⊗

(
OX/⊗t

i=1 m
ki
i

)) ∼=
t⊕

i=1

Γ
(
L ⊗

(
OX/m

ki
i

))

is surjective for any x1, . . . , xt and k1, . . . , kt as above.

Example 2.16. Being 0-jet ample corresponds to being spanned by global sections. Furthemore, 1-jet
ampleness is the usual notion of very ampleness. On a curve, a line bundle is k-jet ample whenever it
is k-very ample. However, on higher dimensional varieties, a k-jet ample line bundle is also k-very
ample but the converse is not true in general.

The following proposition is the main tool to produce line bundles having a very high degree of
jet ampleness.

Proposition 2.17 (See [BRS99, Proposition 2.3]). If A and B are respectively a- and b-jet ample line
bundles, then their tensor product A⊗ B is (a+ b)-jet ample.

Definition 2.18. LetX be a smooth projective complex variety and α ∈ H2(X;Z). We write d(X,α)
for the largest integer d ≥ −1 such that all line bundles on X with first Chern class equal to α are
d-jet ample. (By convention, we declare that being (−1)-jet ample is an empty condition.)

We refer to Appendix A for how to compute d(X,α) in some special cases. Given an integer d,
we also explain in Proposition A.7 how to find an α such that d(X,α) ≥ d.

2.4. The topology of hypersurfaces. It is well known that all smooth degree d complex hypersur-
faces in Pn are diffeomorphic. As a way of justifying the study of the moduli space of hypersurfaces
of a given Chern class, we observe that such hypersurfaces are also all diffeomorphic, provided the
Chern class is ample enough. First, recall that ampleness is a numerical property:

Theorem 2.19 (Nakai–Moishezon criterion). A line bundle L on a proper scheme over a field is
ample if and only if

∫
Y
c1(L)dimY > 0 for every integral subscheme Y ⊂ X .
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Definition 2.20. A Chern class α ∈ NS(X) is called ample if it satisfies the Nakai–Moishezon
criterion.

We recall the following classical definition which is central in our work:

Definition 2.21. A global section s ∈ Γ(X,L) of a line bundle L on a smooth projective complex
variety X is called non-singular if for all x ∈ X we have (s(x), ds(x)) ̸= 0.

Remark 2.22. Given a non-singular section s ∈ Γ(X,L), its vanishing locus

V (s) := {x ∈ X | s(x) = 0} ⊂ X

is a smooth hypersurface.

Any hypersurface H can be seen as a Weil divisor, hence a Cartier divisor (X is smooth), and
therefore has an attached line bundle OX(H). If H = V (s) with s ∈ Γ(X,L), then OX(H) ∼= L.
The following bit of language will be convenient:

Definition 2.23. The Chern class of a hypersurface H is the first Chern class of its associated line
bundle c1(OX(H)).

Proposition 2.24. Let X be a smooth projective complex variety with canonical sheaf KX . Let
α ∈ NS(X) be a Chern class ample enough such that:

(1) the class α− c1(KX) is ample;
(2) for any line bundle L of Chern class α, the subspace Γns(L) ⊂ Γ(L) consisting of the non-

singular global sections is non empty.
Then all the smooth hypersurfaces of Chern class α are diffeomorphic to one another.

Remark 2.25. Let us make some remarks on the two assumptions of the proposition above. Let L be a
very ample line bundle on X . Then K−1

X ⊗L⊗k is very ample for k ≫ 0 big enough, and α = c1(L⊗k)
satisfies the first assumption. Furthermore, by Bertini theorem, the subspace Γns(L) ⊂ Γ(L) is dense.
The second assumption is thus satisfied as soon as all line bundles of Chern class α are very ample. We
explain how to arrange this in Appendix A.

Proof. We first briefly recall the classical proof in the case of a single linear system. Let L be a line
bundle on X with Chern class α and denote by Γns(L) ⊂ Γ(L) the subset of those global sections
that are non-singular. The projection from the incidence variety

{(s, x) ∈ Γns(L)×X | s(x) = 0} −→ Γns(L).
is a proper surjective submersion between smooth manifolds, with fibres the smooth hypersurfaces.
By Ehresmann’s lemma, it is a fibre bundle and therefore all the fibres over a connected component
are diffeomorphic. Finally, Γns(L) ⊂ Γ(L) is the complement of the discriminant which has
codimension at least 1, hence it is connected.

Now we adapt the proof in families. Let Picα(X) be the connected component of the Picard
space classifying isomorphism classes of line bundles of Chern class α, and let P be a Poincaré
line bundle on Picα(X) ×X . For [L] ∈ Picα(X), we write P[L] for the line bundle on X which
represents the isomorphism class [L]. Let p : Picα(X) × X → Picα(X) be the projection. By
cohomology and base change [Har77, Theorem III.12.11], the sheaf p∗P is a vector bundle provided
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that H1(X,P[L]) = 0 for all [L] ∈ Picα(X). This follows by the Kodaira vanishing theorem and
the assumption that α− c1(KX) is ample. Let

V(p∗P)ns ⊂ V(p∗P) = {([L], s) | [L] ∈ Picα(X), s ∈ Γ(P[L])}
be the subset of those sections that are non-singular. The incidence variety

{([L], s, x) ∈ V(p∗P)ns ×X | s(x) = 0} −→ V(p∗P)ns

is a smooth fibre bundle by Ehresmann’s lemma. The base is connected by our second assumption
on the ampleness of α, therefore all the fibres are diffeomorphic. □

3. The moduli of hypersurfaces

In this section, we precisely define our main object of interest in this paper: the moduli of smooth
hypersurfaces. From now on, we adopt the following conventions:

• X is a connected smooth complex projective variety;
• Pic(X) is its associated Picard scheme or space (see Definition 2.2);
• p : Pic(X)×X → Pic(X) is the first projection;
• P is a choice, once and for all, of a Poincaré line bundle (see Definition 2.5);
• if L is a line bundle on X , we write Γns(L) ⊂ Γ(L) for the subspace of non-singular

sections.

3.1. Moduli functors and the Hilbert scheme. In this subsection, we define the moduli functor
of smooth hypersurfaces in X and show that it is representable by an open subscheme of the
Hilbert scheme of X . We give an explicit description of the representing moduli scheme using the
theory of linear systems of divisors. Although providing motivation and context, this subsection is
logically independent of the rest of the article. We must also say that the results presented here are
well known to algebraic geometers, but we have chosen to recall them in detail to be self-contained.
The reader unfamiliar with the algebro-geometric language used here is invited to jump to the
following subsection where we provide a point-set model for the analytification of the moduli
scheme, which will be thereafter used throughout the article.

Given a polynomial P ∈ Q[x], we may consider the Hilbert functor HilbP (X)(−) parame-
terising flat proper families of closed subschemes in X with given Hilbert polynomial P (recall
Definition 2.6). In other words

HilbP (X)(−) : SchopC −→ Set

T 7−→
{
Z ⊂ X × T

∣∣∣∣
Z → T is flat and proper
and ∀t ∈ T, PZt(n) = P (n)

}

where SchC is the category of schemes over Spec(C) and Zt ⊂ Xt is the fibre1 of Z → T
above t ∈ T . More generally, the Hilbert functor Hilb(X)(−) of X is the disjoint union of the
HilbP (X)(−) as P runs over all polynomials.

Theorem 3.1 (Grothendieck [Gro61]). The Hilbert functor HilbP (X)(−) is represented by the Hilbert
scheme HilbP (X) which is projective over Spec(C).

1If k is the residue field of t ∈ T , then Zt = Z ×T Spec(k) ⊂ Xt = Xk .
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Families of hypersurfaces are more commonly known as relative effective Cartier divisors. (See
[The23, Tag 056P].) Following [Kle05, Part 3], we recall the definition of their moduli functor:

Definition 3.2. Let P ∈ Q[x] be a polynomial. The moduli functor of effective divisors with Hilbert
polynomial P is the functor

MP : SchopC −→ Set

T 7−→



Z ⊂ X × T

∣∣∣∣∣∣

Z → T is flat and proper and for all t ∈ T
the ideal sheaf IZt is a line bundle and is
such that χ(Xt, I−1

Zt
(n)) = P (n)





We define Msm,P ⊂MP to be the subfunctor2 where Zt is furthermore required to be smooth over the
residue field Spec(κ(t)) at t ∈ T .

Remark 3.3. The moduli functor MP is visibly a subfunctor of the Hilbert functor. Though, because
of our conventions, the indexing Hilbert polynomials are different. If Z ⊂ X is an effective Cartier
divisor and P (n) = χ(X, I−1

Z (n)), we let P ′ be the associated polynomial P ′(n) = χ(Z,OZ(n)).
The subfunctor inclusion then reads MP ⊂ HilbP ′

(X).

We are here working with a general projective variety X with non-necessarily discrete Picard
space, which can be confusing. To counteract that feeling, we remind the reader of the more
classical, and enlightening, situation of linear systems of divisors:

Example 3.4 (Compare [Kle05, Definition 3.12 and Theorem 3.13]). Let X = Pn and let P ′ ∈ Q[x]
be the Hilbert polynomial of a hypersurface of degree d ≥ 1. One can show that the Hilbert scheme is
in this case the complete linear system

HilbP ′
(Pn) = |O(d)| = P

(
H0(Pn,O(d))

)
.

Therefore HilbP ′
(Pn)(−) = MP (−) is represented by a projective space of complex dimension

dimCH
0(Pn,O(d))− 1. The subfunctor Msm,P is represented by the complement of the discriminant

hypersurface.

In general, we have the following general representability result:

Theorem 3.5. The subfunctor MP (−) ⊂ HilbP ′
(X)(−) is represented by a union of connected

components of the Hilbert scheme HilbP ′
(X).

Proof. 3 By [Kol96, Theorem 1.13], MP (−) is represented by an open subscheme U of the Hilbert
scheme such that the inclusion U ⊂ Hilb(X) is universally closed (this uses that X is smooth over
Spec(C)). As the Hilbert scheme is separated (because projective), U must be a union of connected
components. □

Our goal in now to give an explicit description of the scheme representing MP (−). For the
remainder of this section, we fix a polynomial P ∈ Q[x], denote by PicP (X) ⊂ Pic(X) the
subscheme defined in Proposition 2.7, and still write P for the restriction of the chosen Poincaré
line bundle to it. Recall that p : PicP (X)×X → PicP (X) denotes the first projection. Let

K := ker
(
p∗p∗P → P

)

2Recall that smoothness is preserved under base change.
3I have learned this result from Bejleri’s lecture notes, and I thank him for pointing me to Kollár’s book.
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be the kernel sheaf of the counit of p∗ ⊣ p∗. From the monoidality of p∗ and standard properties of
the relative Proj construction, we have an isomorphism

Proj
PicP (X)×X

(
Sym p∗(p∗P)∨

) ∼= Proj
PicP (X)

(
Sym(p∗P)∨

)
×X.

Using the surjection of sheaves p∗(p∗P)∨ ↠ K∨ we thus obtain a closed immersion

Proj
PicP (X)×X

(
SymK∨) ⊂ Proj

PicP (X)

(
Sym(p∗P)∨

)
×X.

Definition 3.6. We define the universal family to be the morphism

U := Proj
PicP (X)×X

(
SymK∨) −→ Proj

PicP (X)

(
Sym(p∗P)∨

)
=:M

obtained by projecting onto the first coordinate.

The following is the main theorem of this section:

Theorem 3.7. Assume that H1(Xt,Pt) = 0 for all t ∈ PicP (X). Then the universal family U →M
represents the moduli functor MP (−).

Proof. This is explained in [BLR90, Proposition 8.2.7]. To translate to the notation in that book:
take f to be the structure morphism X → Spec(C), T to be PicP (X), and L to be P . The
flatness assumption on L is implies by our assumption using cohomology and base change [Har77,
Theorem III.12.11]. □

Remark 3.8. The analytification of the universal family is simply the incidence variety
{
(x, [L], [s]) with x ∈ X, [L] ∈ PicP (X), [s] ∈ PΓ(P[L]) such that s(x) = 0

}

{
([L], [s]) with [L] ∈ PicP (X), [s] ∈ PΓ(P[L])

}

above the projectivisation of the vector bundle V(p∗P)→ PicP (X).

Definition 3.9. The morphism of functors

MP (T ) −→ PicP (X)(T ), (Z ⊂ X × T ) 7−→ [I−1
Z ]

is represented by the projection morphism

M = Proj
PicP (X)

(
Sym(p∗P)∨

)
−→ PicP (X)

which is usually called the Abel–Jacobi morphism.

We now explain how to obtain a scheme representing Msm,P (−). We assume that the evaluation
morphism p∗p∗P → P is surjective. Recall the jet evaluation morphism

p∗p∗P −→ J1
PicP (X)×X/PicP (X)

P

from Definition 2.12. We have a commutative diagram with middle row a short exact sequence:
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(
J1
PicP (X)×X/PicP (X)

P
)∨

0 P∨ p∗(p∗P)∨ K∨ 0

Q

0

0

where Q is defined to be the cokernel of the dual of the jet evaluation, and

P∨ −→
(
J1
PicP (X)×X/PicP (X)

P
)∨

is the dual of the projection morphism from the first jet bundle to the zeroth jet bundle J0P = P .
The composition P∨ → p∗(p∗P)∨ → Q is the zero morphism, and we thus obtain a surjective
morphism K∨ ↠ Q.

Corollary 3.10. Assume that the counit morphism p∗p∗P → P is surjective, and thatH1(Xt,Pt) = 0
for all t ∈ PicP (X). Then the moduli functor Msm,P (−) is represented by an open subscheme ofM,
hence of the Hilbert scheme of X . More precisely, let π : U →M be the universal family and

Z := Proj
PicP (X)×X

(
SymQ

)
↪→ U

be the closed subscheme determined by the surjection K∨ ↠ Q. Then Msm,P (−) is represented by
M\ π(Z).
Remark 3.11. The sheaf Q is only a coherent sheaf of OPicP (X)×X-modules and Z is therefore not a
vector bundle in general. Nonetheless, if we furthermore assume that the jet evaluation morphism is
surjective (e.g. if all line bundles parameterised by PicP (X) are very ample), thenQ is the dual of the
kernel of a surjective morphism of locally free sheaves, hence itself locally free.

Remark 3.12. In the notation of Remark 3.8, Zan consists of those points (x, [L], [s]) such that
j1(s)(x) = 0, i.e. s is singular at x.

Proof. Smoothness is an open condition: the projection π is flat and of finite presentation, so [The23,
Tag 01V9] applies and Msm,P (−) is seen to be represented by an open subscheme ofM. The
subscheme M \ π(Z) ⊂ M is open because π is proper. It represents the moduli functor as
smoothness can be checked locally using the Jacobian criterion. □

We close this section with some general remarks about our assumptions in Corollary 3.10. We
show that, although stated scheme-theoretically, they can be checked after analytification.

Lemma 3.13. Let Pan denote the analytic sheaf associated to P . If the counit morphism p∗p∗Pan →
Pan is surjective, then the same is true before analytification.

Proof. This follows from exactness of the analytification of sheaves functor. □
Lemma 3.14. Let P ∈ Q[x] be a polynomial and suppose that H1(X,L) = 0 for all [L] ∈
PicP (X)(C). Then H1(Xt,Pt) = 0 for all t ∈ PicP (X).
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Proof. By upper semicontinuity of cohomology, the subscheme
{
t ∈ PicP (X) | H1(Xt,Pt) = 0

}
⊂ PicP (X)

is open. Assume that its complement is non empty. Then it contains a complex point: it is of
locally of finite type over Spec(C) and Hilbert’s Nullstellensatz applies. This cannot be the case by
assumption. □

We finally comment on the relation between Hilbert polynomials and Chern classes. For a
holomorphic line bundle L onX , recall the Hirzebruch–Riemann–Roch theorem giving an equality

χ(X,L) =
∫

X

ch(L) td(X)

where ch(−) is the Chern character and td(X) is the Todd class of X . In particular, if Z ⊂ X
is an effective Cartier divisor, its Hilbert polynomial only depends on the first Chern class of its
associated line bundle OX(Z). We thus obtain a numerical criterion:
Lemma 3.15. Let P ∈ Q[x] and let C be the collection of Chern classes

C :=
{
c1(L) | [L] ∈ PicP (X)(C)

}
.

If α− c1(KX) is ample for all α ∈ C , then H1(Xt,Pt) = 0 for all t ∈ PicP (X).

Proof. This follows from Lemma 3.14 whose assumption is verified by the Kodaira vanishing
theorem. □
3.2. A convenient point-set model. In this section, we unravel the result of Corollary 3.10 and
give an explicit point set model for the moduli space of smooth hypersurfaces.

We begin with notations which we will use throughout the rest of the article. If [L] ∈ Pic(X) is
an isomorphism class of a line bundle, we write P[L] for the representative of that isomorphism
class given by the restriction of P to X ∼= {[L]} × X ⊂ Pic(X) × X . If α ∈ NS(X) we recall
from Proposition 2.9 that Picα(X) ⊂ Pic(X) denotes the connected component parameterising
line bundles of Chern class α, and we will write Pα for the restriction of the Poincaré line bundle
to that component.
Definition 3.16. The first jet bundle of P relative to the projection p (see Definition 2.10) is denoted

J1
pP := J1

Pic(X)×X/Pic(X)P .
When restricted to Picα(X) for some α ∈ NS(X), we will write J1

pPα := J1
Picα(X)×X/Picα(X)Pα.

Lemma 3.17. Let KX be the canonical sheaf of X . Let α ∈ NS(X) be such that α − c1(KX) is
ample. Then p∗Pα is a vector bundle and the fibrewise jet evaluation map gives a map of vector bundles

p∗p∗Pα −→ J1
pPα.

As sets, the geometric realisations are given by

V(p∗p∗Pα) = V(p∗Pα)×X =
{
([L], x, s) | [L] ∈ Picα(X), x ∈ X, s ∈ Γ(P[L])

}

and
V(J1

pPα) =
{
([L], x, v) | [L] ∈ Picα(X), x ∈ X, v ∈ J1P[L]|x

}
.

Under these identifications, the jet evaluation map is given by

jev : ([L], x, s) 7−→ ([L], x, j1s(x)).
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Proof. The fact that p∗Pα is a vector bundle follows directly from cohomology and base change
and the Kodaira vanishing theorem under the assumption that α− c1(KX) is ample. The rest of
the lemma follows from the results recalled in Section 2.2. □

Recall from Corollary 3.10 the schemeM\ π(Z) representing the moduli functor of smooth
hypersurfaces. After analytification, we may restrict the Abel–Jacobi map

(
M\ π(Z)

)an −→ Pic(X)an (3)

to the connected component Picα(X) ⊂ Pic(X) (we will from now on drop the superscript “an”),
recalled in Proposition 2.9, provided that α is ample enough:

Definition 3.18. Let α ∈ NS(X) be such that α−c1(KX) is ample. The moduli of embedded smooth
hypersurfaces in X of Chern class α is defined to be the preimage of Picα(X) by the Abel–Jacobi
map (3). In other terms, we have a homeomorphism:

Mα
hyp
∼=
(
V(p∗Pα) \ proj(jev−1(0))

)
/C×

where the scalars act fibrewise over Pic(X), and proj : V(p∗p∗P)→ V(p∗P) is the projection induced
by p.

Remark 3.19. As sets, we have an identification

Mα
hyp = {([L], [s]) | [L] ∈ Picα(X), [s] ∈ Γns(P[L])/C×}.

That is, it will be technically convenient to think of a smooth hypersurface as a tuple consisting of a
line bundle L and a non-singular global section of it (up to isomorphism and scaling action). However,
the name of moduli space is justified by the previous section: we have a homeomorphism

Mα
hyp
∼= {Z ⊂ X smooth hypersurface with c1(OX(Z)) = α} ⊂ Hilb(X)an.

4. Statement of the main theorem

In this section, we construct a topological counterpart to the moduli of smooth hypersurfaces
described in Definition 3.18. We then state our main theorem comparing the two objects.

4.1. A topological counterpart. We begin with some generalities about the topology of continu-
ous section spaces. Let E → A× B be a fibre bundle on a topological space A× B. We denote
a point of E as a tuple (a, b, e) where a ∈ A, b ∈ B and e ∈ E|(a,b) is in the fibre. All mapping
spaces are given the compact open topology.

Definition 4.1. The space of fibrewise sections of E over A is defined to be the subspace

ΓC0,fib(E → A) := {(a, s) | a ∈ A, s ∈ ΓC0(E|a×B)} ↪→ Map(B,E)

(a, s) 7→ [b 7→ (a, b, s(b))].

Post-composition with the projection maps E → A × B → A gives a continuous map
Map(B,E) → Map(B,A) which, when restricted to fibrewise sections, yields the projection
map

ΓC0,fib(E → A) −→ A, (a, s) 7−→ a.

In particular, this projection map is continuous.
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Remark 4.2. Let Z be a topological space. A continuous map Z → ΓC0,fib(E → A) is the same
datum as a continuous map f : Z × B → E over B such that proj ◦ f(z,−) : B → E → A is
constant for any z ∈ Z .

Remark 4.3. When A and B are smooth projective complex varieties, one can modify the definition
above by using the spaces of holomorphic maps instead of the whole mapping spaces. In fact, assume
that E = V(E) is also a vector bundle and that π∗E is a vector bundle, where π : A×B → A is the
first projection. Then the holomorphic fibrewise section space is exactly V(π∗E). Let us notice however
that the holomorphic mapping spaces are more naturally topologised using the analytic topology of
the Hom scheme. Fortunately, Douady shows in [Dou66] that the inclusion inside the whole mapping
space is continuous.

To lighten the notation, and as no confusion can arise, we will from now on drop the symbol
V(−) when considering continuous sections of a vector bundle.

Definition 4.4. Taking fibrewise, over Pic(X), continuous global sections of J1
pP which are never

vanishing, we obtain the space

ΓC0,fib(J
1
pP \ 0) := ΓC0,fib(J

1
pP \ 0→ Pic(X))

=
{
([L], s) | [L] ∈ Pic(X), s ∈ ΓC0(J1P[L] \ 0)

}
.

The group C× acts by multiplying the sections by scalars and we let ΓC0,fib(J
1
pP \ 0)/C× be the

quotient for that action.

4.2. The main theorem. By Remark 4.3, the fibrewise jet map followed by the inclusion of the
space of holomorphic sections inside continuous sections gives rise to a continuous map

j1 :Mα
hyp −→ ΓC0,fib(J

1
pPα \ 0)/C×.

Denote by P(J1OX) the projectivisation of the first jet bundle of OX on X . We will make use of
the following:

Proposition 4.5 (Compare [CS84, Lemma 2.5]). The connected components of the section space
ΓC0(P(J1OX)) are in one-to-one correspondence with H2(X;Z). For a given Chern class α, the
associated connected component Γα

C0(P(J1OX)) consists of those sections s such that the pullback
s∗O(1) of the tautological bundle has Chern class α.

It follows from the proposition that if L is a line bundle with Chern class α, the quotient map
ΓC0(J1L \ 0) −→ ΓC0(P(J1L)) ∼= ΓC0(P(J1OX))

has image inside the connected component Γα
C0(P(J1OX)). Here we have used that J1L ∼=

J1OX ⊗ L and the fact that the projectivisation of a vector bundle is invariant under tensoring
with a line bundle.

Now, let L0 be a chosen line bundle with Chern class α. By choosing an isomorphism of
topological line bundles L0

∼= P[L] for each [L] ∈ Picα(X), we obtain a map

ΓC0,fib(J
1
pPα \ 0)/C× −→ ΓC0(P(J1L0)) ∼= ΓC0(P(J1OX)) (4)

which factors through Γα
C0(P(J1OX)). As any two choices of isomorphisms L0

∼= P[L] differ by
a non-zero constant, we see that the map is indeed uniquely well-defined and continuous. The
following is our main result:
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Theorem 4.6. LetX be a smooth projective complex variety. Let α ∈ NS(X) be such that α−c1(KX)
is ample. The jet map

j1 :Mα
hyp −→ Γα

C0(P(J1OX))

induces an isomorphism in integral homology in the range of degrees ∗ < d(X,α)−3
2

. (See Definition 2.18.)

5. Proof of the main theorem

The proof of the main theorem is executed in two steps. In Section 5.1, we first prove:

Proposition 5.1. Let X and α be as in Theorem 4.6. The jet map

j1 :Mα
hyp −→ ΓC0,fib(J

1
pPα \ 0)/C×

induces an isomorphism in integral homology in the range of degrees ∗ < d(X,α)−3
2

.

Then, in Section 5.2, we show the following:

Proposition 5.2. The map defined in (4)

ΓC0,fib(J
1
pPα \ 0)/C× −→ Γα

C0(P(J1OX))

is a weak homotopy equivalence.

5.1. The homology isomorphism. The jet map fits in the following diagram where the top row
is its restriction to a fibre above an [L] ∈ Picα(X):

Γns(P[L])/C× ΓC0(J1P[L] \ 0)/C×

Mα
hyp ΓC0,fib(J

1
pPα \ 0)/C×

Picα(X) Picα(X)

The uppermost map was studied in [Aum22] where the following result was proved:

Theorem 5.3 (Compare [Aum22, Corollary 8.1]). Let L be a d-jet ample line bundle on a smooth
projective complex variety X . Then the jet map

Γns(L)/C× −→ ΓC0(J1L \ 0)/C×

induces an isomorphism in homology in the range of degrees ∗ < d−1
2

.

Now, if both lower vertical maps were fibrations, a comparison of the associated Serre spectral
sequence would prove the main theorem of the present paper. This is indeed the case for the map
on the right-hand side. The other map is only a microfibration, which turns out to be sufficient for
the argument to go through. We start by reviewing this technical notion popularised by Weiss
in [Wei05].

Definition 5.4. A map π : E → B is called a Serre microfibration if for any k ≥ 0 and any
commutative diagram
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{0} ×Dk E

[0, 1]×Dk B

u

π

v

there exists an ε > 0 and a map h : [0, ε]×Dk → E such that h(0, x) = u(x) and π◦h(t, x) = v(t, x)
for all x ∈ Dk and t ∈ [0, ε].

Remark 5.5. Any Serre fibration is a microfibration. More generally, the restriction of a Serre fibration
to an open subspace of the total space is a microfibration.

Contrary to the case of fibrations, the homotopy types of the fibres of a microfibration can vary.
Nonetheless, we have the very useful comparison theorem of Raptis generalising a result of Weiss:

Theorem 5.6 (Compare [Rap17, Theorem 1.3]). Let p : E → B be a Serre microfibration, q : V → B
be a Serre fibration, and f : E → V a map over B. Suppose that fb : p−1(b)→ q−1(b) is n-connected
for some n ≥ 1 and for all b ∈ B. Then the map f : E → V is n-connected.

In the present situation, we only have access to Theorem 5.3 which provides an isomorphism in
homology, rather than on homotopy groups. The remedy chosen here is to suspend to work with
simply connected spaces and apply the homology Whitehead theorem.

Definition 5.7. For a map p : E → B, its fibrewise (unreduced) kth suspension is defined to be

Σk
BE =

(
E × [0, 1]× Sk−1

)/(
(e, 0, s) ∼ (e, 0, s′) and (e, 1, s) ∼ (e′, 1, s) if p(e) = p(e′)

)
.

The fibre of the natural map Σk
Bp : Σ

k
BE → B induced by p is the unreduced kth suspension of the

fibre of p (here modelled as the join with the sphere Sk−1):

(Σk
Bp)

−1(b) = Σkp−1(b), ∀b ∈ B.
Lemma 5.8. The map

ΓC0,fib(J
1
pPα \ 0)/C× −→ Picα(X)

is a fibre bundle.

Proof. Let U ⊂ Picα(X) be a small contractible open subset. A topological vector bundle being
trivial over a contractible base, we obtain an isomorphism of vector bundles

ψ : J1
pPα|U×X

∼=−→ U × J1P[L0]

over U ×X , with [L0] ∈ U a chosen basepoint. The map
(
ΓC0,fib(J

1
pPα \ 0)/C×) |U −→ U × ΓC0(J1P[L0] \ 0)

([L], s) 7−→ ([L], ψ ◦ s)
is then a homeomorphism over U exhibiting the local triviality of the fibre bundle. □

We will say that a map A → B is homology m-connected if it induces an isomorphism on
homology groups Hi(A)→ Hi(B) for i < m and a surjection when i = m.
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Lemma 5.9. Let q : V → B be a fibre bundle, and p : U → B be the restriction of a fibre bundle
E → B to an open subset U ⊂ E. Let f : U → V be a map over B and suppose that for every b ∈ B,
the restriction to the fibre

fb : p
−1(b) −→ q−1(b)

is homology m-connected. Then f : U → V is homology m-connected.

Proof. For any b ∈ B, the suspension of f on the fibre
Σ2fb : Σ

2p−1(b) −→ Σ2q−1(b)

induces an isomorphism in homology in degrees ∗ ≤ m+ 1 and a surjective morphism in degree
∗ = m+ 2. As both spaces are simply connected, the homology Whitehead theorem implies that
this map is (m + 2)-connected. We would like to apply Theorem 5.6 to Σ2

Bf , but Σ2
BU ⊂ Σ2

BE
is not open and it is unclear if Σ2

BU → B is a microfibration. We resolve the issue by enlarging
slightly the space to a homotopy equivalent one. More precisely, let

W =
(
Σ2

BU
)
∪
(
(E × (0.5, 1]× S1))/ ∼

)
⊂ Σ2

BE,

and denote by Eb,Wb, Ub the fibres of the respective spaces above a point b ∈ B. Using in each
fibre the homotopy equivalence

(
(Eb × (0.5, 1] × S1)/ ∼

)
≃ S1 given by collapsing gives a

homotopy equivalence
(W,Wb)

≃−→ (Σ2
BU,Σ

2Ub)

for all b ∈ B. Now, the fibrewise suspension of the fibre bundles E → B and V → B are fibre
bundles. As W ⊂ Σ2

BE is open, the restriction W → B is a microfibration. Applying Theorem 5.6
to the composite

W
≃−→ Σ2

BU
Σ2

Bf−→ Σ2
BV

and using that the first map is a homotopy equivalence, we obtain that Σ2
Bf : Σ

2
BU → Σ2

BV is
(m + 2)-connected. Hence it is homology (m + 2)-connected. Comparing the Mayer–Vietoris
sequences of the fibrewise suspensions finally shows that f : U → B is homologym-connected. □
Proof of Proposition 5.1. By Definition 3.18, the map Mα

hyp → Picα(X) is the restriction of the
projective bundleP(p∗Pα)→ Picα(X) to the open subsetMα

hyp. Using Theorem 5.3 and Lemma 5.8,
we can apply Lemma 5.9 to conclude. □

5.2. The homotopy type of the space of fibrewise sections. We begin by making explicit
some basic results in algebraic topology about homotopy fibres. The specific point-set models
chosen will be useful for the proof of Proposition 5.2. For a pointed space (A, a), we let P (A, a) =
Map∗(([0, 1], 0), (A, a)) be the space of paths in A starting at a. We will write cte∗ for the constant
loop based at a point ∗.
5.2.1. The homotopy fibre of a homotopy fibre. Let π : (E, e0) → (B, b0) be a fibration between
pointed spaces, F = π−1(b0) be the fibre, and Ωb0B be the loop space of B based at b0. Writing
i : F ↪→ E for the inclusion, the space

Hi := {(e, α) ∈ F × P (E, e0) | α(1) = e}
is a model of its homotopy fibre. It is well known that Hi and Ωb0B are homotopy equivalent, and
the goal of this small section is to give an explicit description of the induced bijection on connected
components.
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We write
Hπ := {(e, γ) ∈ E × P (B, b0) | γ(1) = π(e)}

for the homotopy fibre of π. Let j : Hπ → E be the map (e, γ) 7→ e, whose homotopy fibre is
given by

Hj := {(e, γ, α) ∈ Hπ × P (E, e0) | α(1) = e}
∼= {(γ, α) ∈ P (B, b0)× P (E, e0) | γ(1) = π ◦ α(1)}.

The map Ωb0B → Hj given by γ 7−→ (γ, ctee0) is a homotopy equivalence (see [Die08, Note 4.7.1]).
The situation is summarised in the following diagram:

Hi F

Hj Hπ E B

Ωb0B

≃ ≃ i

j π

≃

Lemma 5.10. Let γ : [0, 1]→ B be a loop based at b0. Let α : [0, 1]→ E be a lift of that loop starting
at e0. The map on connected components

π0(Ωb0B) −→ π0(Hi)

[γ] 7−→ [(α(1), α)]

is well-defined and is a bijection.

Proof. The natural map F → Hπ is a homotopy equivalence as π is a fibration. Hence the induced
map Hi → Hj given by (e, α) 7→ (cteb0 , α) is a homotopy equivalence. Therefore it suffices to
show that (γ, ctee0) and (α(1), α) are in the same connected component of Hj. Both are in the
same component as (γ, α), as seen by deforming either the first or the second path. □

5.2.2. Homotopy fibre of a principal bundle. In this subsection, π : (E, e0) → (B, b0) is now a
principal G = π−1(b0)-bundle. We let α : [0, 1]→ B be a path from b0 to a point b1, and we choose
a point e1 ∈ π−1(b1). As before, recall that a model for the homotopy fibre of π is given by

Hπ := {(e, γ) ∈ E × P (B, b0) | γ(1) = π(e)}.
We may choose a lift of the path α to a path β : [0, 1] → E such that π ◦ β = α. We define
e1 = β(1). As the action of G on π−1(b1) is free and transitive, there exists a unique g1 ∈ G such
that g1 · e1 = e′1 (where · denotes the action).

Lemma 5.11. We keep the notation as above. Then the points (e′1, α) and (g1 · e0, ctee0) are in the
same connected component of the homotopy fibre Hπ.

Proof. The map g1 ·β : [0, 1]→ E is a path from g1 · e0 to g1 · e1 = e′1, and is such that π ◦ (g1 ·β) =
π ◦ β = α. Thus the map

[0, 1] −→ Hπ

t 7−→
(
(g1 · β)(t), α(t · −)

)

is a path from (e′1, α) to (g1 · e0, ctee0) in Hπ. □
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5.2.3. The proof of Proposition 5.2. For concreteness, we start by fixing basepoints. Let [L0] ∈
Picα(X), and let s0 ∈ ΓC0(J1P[L0] \ 0). We will use these as basepoints, as well as the images
[s0] ∈ ΓC0(J1P[L0] \ 0)/C× and Ps0 ∈ Γα

C0(P(J1OX)).
Pointwise multiplication of maps gives Map(X,C×) the structure of a topological group. By

[CS84, Proposition 2.6], there is a principal Map(X,C×)-bundle:

Map(X,C×) −→ ΓC0(J1P[L0] \ 0) −→ Γα
C0(P(J1OX)). (5)

There is also the subgroup C× ⊂ Map(X,C×) of the constant functions, and modding out fibrewise
gives a principal bundle:

Map(X,C×)/C× −→ ΓC0(J1P[L0] \ 0)/C× −→ Γα
C0(P(J1OX)). (6)

We obtain a commutative diagram where each row is a fibration sequence

F1 ΓC0(J1P[L0] \ 0)/C× ΓC0,fib(J
1
pPα \ 0)/C×

F2 ΓC0(J1P[L0] \ 0)/C× Γα
C0(P(J1OX))

and the spaces F1 and F2 are defined as the respective homotopy fibres (at the basepoints chosen
above). Using the 5-lemma and the long exact sequence of homotopy groups associated to a
fibration, Proposition 5.2 follows directly from the next lemma.

Lemma 5.12. Using the notation as above, the map induced on the homotopy fibres F1 → F2 is a
homotopy equivalence.

Proof. We already know that F1 ≃ Ω[L0]Pic
α(X) and F2 ≃ Map(X,C×)/C×, which are both

homotopy equivalent to the discrete space H1(X;Z). Therefore we only need to verify that the
map F1 → F2 induces a bijection on the set of connected components. We have a diagram of sets

π0
(
Ω[L0]Pic

α(X)
)

π0(F1)

π0
(
Map(X,C×)/C×) π0(F2)

∼=

∼=

where the right vertical map is induced from F1 → F2, the top horizontal map is explained in
Lemma 5.10, the bottom horizontal map is induced by the inclusion of the fibre inside the homotopy
fibre, and the dotted arrow is defined by composition. It suffices to show that this last arrow is a
bijection.

Let γ ∈ Ω[L0]Pic
α(X) be a loop. We choose a lift to a path α : [0, 1] → ΓC0,fib(J

1
pPα \ 0)/C×

starting at [s0] and ending at some [s′1], and write Pα for its image in Γα
C0(P(J1OX)). We may

furthermore lift that path to a path β in ΓC0,fib(J
1
pPα \ 0)/C× starting at [s0] and ending at some

point [s1]. Using the principal bundle (6), there is a unique class of a map [φ1] ∈ Map(X,C×)/C×

such that [φ1 · s1] = [s′1]. By Lemmas 5.10 and 5.11 the dotted arrow is given by

[γ] 7−→ [φ1].

In particular, it follows directly that it is surjective. One may furthermore check that it is compatible
with the group structures: on the source given by composition of loops, and on the target given by
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multiplication of maps. As both groups are isomorphic to H1(X;Z) this shows that the surjective
morphism is fact an isomorphism. □

6. Rational computations and stability

In this part, we show how Theorem 4.6 can be used to make explicit computations of the rational
cohomology ofMα

hyp. Assuming that the underlying variety X is topologically parallelisable, we
will also exhibit a phenomenon of homological stability.

We will first recall a general strategy, dating back to Haefliger [Hae82], to compute the cohomol-
ogy of continuous section spaces. In Theorem 6.5 below, we provide a commutative differential
graded algebra (CDGA) computing the rational cohomology of the section space of the projective
bundle. We hope that this will convince the reader that the homotopical approach taken in this
paper may be useful in practical computations. We will freely use the notations and results from
rational homotopy theory. A textbook account can be found in [FHT01]. In particular, we write
Λ(−) for the free commutative graded algebra. We let n be the complex dimension of X .

6.1. Haefliger’s tower of section spaces. Although Theorem 4.6 provides an integral homology
isomorphism, we will mainly be interested in the rational cohomology groups for computational
reasons. Fibrewise rationalisation (denoted (−)fQ) yields a fibration

Pn
Q −→ P(J1OX)fQ −→ X. (7)

By [Mø87, Theorem 5.3], the natural map P(J1OX) → P(J1OX)fQ induces a map on section
spaces

ΓC0(P(J1OX)) −→ ΓC0(P(J1OX)fQ)

which is a rationalisation when restricted to a connected component on the source and target.
(Beware the fact that the source has H2(X;Z) many connected components, while the target
has H2(X;Q) many of them.) We apply the general strategy described in [Hae82, Section 1.3]
to compute the rational homotopy type of the section space ΓC0(P(J1OX)fQ). The fibration (7)
admits a Moore–Postnikov decomposition of the form

K(Q, 2n+ 1) Y2 ≃ P(J1OX)fQ

K(Q, 2) Y1 K(Q, 2n+ 2)

Y0 = X K(Q, 3)

p2

p1

k1

k0

where each pi : Yi → Yi−1 is a principal fibration classified by the k-invariant ki−1. The latter were
computed by Møller:

Lemma 6.1 (Compare [Mø85, Lemma 2.1]). The k-invariant k0 is trivial. In particular Y1 ≃
X ×K(Q, 2). Writing z ∈ H2(K(Q, 2);Q) for the generator, k1 corresponds to the cohomology class

n+1∑

i=0

(−1)ici(J1OX)⊗ zn+1−i ∈ H∗(X;Q)⊗H∗(K(Q, 2);Q). □
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Let s ∈ Γα
C0(P(J1OX)fQ) with α ∈ H2(X;Q). The map p2 ◦ s is a section of Y1 → X , and we

denote by Γ1 ⊂ ΓC0(Y1 → X) its connected component. As k0 is trivial by Lemma 6.1, there is a
homotopy equivalence

ΓC0(Y1 → X) ≃ Map(X,K(Q, 2)) ≃ K(Q, 2)×K(H1(X;Q), 1)×H2(X;Q).

and Γ1 corresponds to the connected component indexed by α.

Lemma 6.2 (Compare [Mø85, Lemma 2.2]). Let Ψ be the composite

Ψ: K(Q, 2)×K(H1(X;Q), 1)×X ≃ Γ1 ×X ev−→ Y1
k1−→ K(Q, 2n+ 2). (8)

Let z ∈ H2(K(Q, 2);Q) be the generator. Let {xj} be a basis of H1(X;Z) and let {x′j} be the dual
basis of H1(K(H1(X;Z), 1);Z) ∼= H1(X;Z)∨. The morphism induced in cohomology Ψ∗ sends the
generator χ ∈ H2n+2(K(Q, 2n+ 2);Q) to the class:

Ψ∗(χ) =
n+1∑

i=0

(−1)i
(
1⊗ 1⊗ ci(J1OX)

)
∪
(
z ⊗ 1⊗ 1 + 1⊗ 1⊗ α+

∑

j

1⊗ x′j ⊗ xj
)n+1−i

. □

Let k1 : Γ1 → K(Q, 2n + 2)X be the adjoint of the map (8). There is a homotopy equivalence
(see [Hae82, Section 1])

K(Q, 2n+ 2)X ≃
2n+2∏

i=2

K(H2n+2−i(X;Q), i). (9)

Lemma 6.3 (Compare [Hae82]). Let φi be the map to the i-th factor of the product:

φi : Γ1
k1−→ K(Q, 2n+ 2)X −→ K(H2n+2−i(X;Q), i).

The morphism induced in cohomology is given explicitly by:

φ∗
i : H

2n+2−i(X;Q)∨ ∼= H i(K(H2n+2−i(X;Q);Q) −→ H i(Γ1;Q)

y′ 7−→ y′ ∩Ψ∗(χ).

Here, for w ⊗ y ∈ H∗(Γ1)⊗H∗(X) and y′ ∈ H∗(X)∨, we write y′ ∩ (w ⊗ y) = y′(y)w. □

Proposition 6.4 (Compare [Hae82]). There is a fibration

K(Q, 2n+ 1)X −→ Γα
C0(P(J1OX)fQ) −→ Γ1

pulled back from the path space fibration over K(Q, 2n+ 2)X via the map k1. □

Theorem 6.5. Let z and {x′j} be as in Lemma 6.2. Let {y′ik} be a basis of the rational cohomology
of (9) where y′ik ∈ H2n+2−i(X;Q)∨ is in degree i. The rational cohomology of Γα

C0(P(J1OX)fQ) is
given by the cohomology of the following commutative differential graded algebra:

Λ
(
z, x′j, s

−1y′ik
)
, d(z) = 0, d(x′j) = 0, d(s−1y′ik) = φ∗

i (y
′
ik)

where z is in degree 2, each x′j is in degree 1, each s−1y′ik is in degree i − 1, and φ∗
i is given as in

Lemma 6.3.

Proof. By Proposition 6.4, there is a homotopy pullback square:
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Γα
C0(P(J1OX)fQ) ∗

Γ1 K(Q, 2n+ 2)X
k1

By the Eilenberg–Moore theorem, the cohomology of the pullback is given by the derived tensor
product

Λ(z, x′j)⊗L
Λ(y′ik)

Q

which can be computed by choosingΛ(y′ik)→
(
Λ(s−1y′ik, y

′
ik), d(s

−1y′ik) = y′ik
)
≃ Q as a cofibrant

replacement. □

Example 6.6. Let X be a smooth curve (n = 1) of genus 1 (i.e. a torus). It is a framed manifold,
hence its jet bundle has trivial Chern classes. Write a, b for the standard basis of H1(X;Z) such that
a2 = b2 = 0 and u = ab generates H2(X;Z). Let a′, b′ be the dual basis. Let α = d · u for some
d ∈ Z. With the notations of Lemma 6.2 we have

Ψ∗(χ) =
(
z ⊗ 1⊗ 1 + 1⊗ 1⊗ α + 1⊗ a′ ⊗ a+ 1⊗ b⊗ b′

)2

= (2d(z ⊗ 1)− 2(1⊗ a′b′))⊗ u+ 2(z ⊗ a′ ⊗ a) + 2(z ⊗ b′ ⊗ b) + z2 ⊗ 1⊗ 1.

The morphisms φ∗
i of Lemma 6.3 are given by

φ∗
2 : u

′ 7−→ u′ ∩Ψ∗(χ) = 2d(z ⊗ 1)− 2(1⊗ a′b′)
φ∗
3 : a

′ 7−→ a′ ∩Ψ∗(χ) = 2(z ⊗ a′)
b′ 7−→ b′ ∩Ψ∗(χ) = 2(z ⊗ b′)

φ∗
4 : 1 7−→ 1 ∩Ψ∗(χ) = z2 ⊗ 1.

Therefore the cohomology of Γα
C0(P(J1OX)) ≃ Mapα(X,P2) is given by the cohomology of the CDGA:

Λ(z, a′, b′, y1, y2, y
′
2, y3), d(y1) = 2dz − 2a′b′, d(y2) = 2za′, d(y′2) = 2zb′, d(y3) = z2

where the indices on the last four variables indicate their degrees. (See [Mø85, Section 3] for related
computations.)

6.2. Homological stability. Despite the formula given in Theorem 6.5, it is unclear to us how
the cohomology varies when α does. Nonetheless, when X is topologically parallelisable, we can
make the following qualitative remark:

Proposition 6.7. Let X be a smooth projective complex variety such that Ω1
X is a topologically trivial

vector bundle, and let α ∈ H2(X;Q). Then there is a homotopy equivalence

Γα
C0(P(J1OX)fQ) ≃ Γkα

C0 (P(J1OX)fQ)

for any non-zero rational number k ∈ Q×.

Proof. As X is topologically parallelisable, the jet bundle J1OX is topologically trivial. Hence the
section space is the mapping space into the fibre:

Γkα
C0 (P(J1OX)fQ) ≃ Mapkα(X,Pn

Q)
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where the subscript kα on the right-hand side indicates the connected component of the maps
which pullback the generator in cohomology to kα. Post-composing with a self map of Pn

Q of
degree 1/k gives a homotopy equivalence

Mapkα(X,Pn
Q) ≃ Mapα(X,Pn

Q). □

Corollary 6.8. Let X be a smooth projective complex variety which is topologically parallelisable.
Let α ∈ NS(X) be ample, and assume that d(X,α) ≥ 1 (see Definition 2.18). Then, for any integer
k ≥ 1, there is map

Mkα
hyp −→ Mapα(X,Pn

Q)

inducing an isomorphism in rational cohomology in the range of degrees ∗ < k·d(X,α)−3
2

. In particular,
the rational cohomology stabilises as k →∞. □

Remark 6.9. The rational homotopy type of the mapping space Map(X,Pn
Q) can be easily computed

without the results of the last section. In [Ber15], Berglund gives an explicit L∞-algebra model whose
underlying graded Q-vector space is given by

H∗(X;Q)⊗Q · {u,w}
where H i(X) sits in degree −i, and u,w are respectively in degrees 1 and 2n. (This uses that X
is a formal space.) For the connected component corresponding to α ∈ H2(X;Q), the associated
Maurer–Cartan element is τ = α ⊗ u. In particular, the only possibly non-vanishing brackets are
given by

[x1 ⊗ u, . . . , xr ⊗ u]τ = ± (n+ 1)!

(n+ 1− r)!(α
n+1−rx1x2 · · ·xr)⊗ w.

In fact, in the case of the torus, the Chevalley–Eilenberg complex associated to this L∞-algebra is the
CGDA given in Example 6.6.

7. Scanning and configuration spaces on curves

In this last section, we explain how the present article fits into the general philosophy of scanning
maps in topology. In Theorem 7.2, we recover a special case of a result of McDuff about the homology
of configuration spaces of points on a curve. We then turn our attention to characteristic classes.
We explain in Theorem 8.11 a relation between the stable cohomology of Γns(L) and that of moduli
spaces of manifolds as studied by Galatius and Randal-Williams.

7.1. Scanning. We begin with a brief and intuitive exposition of the general idea behind scanning.
Suppose given M ⊂ N , a d-dimensional submanifold of an n-dimensional manifold. We can try to
see what M looks like by looking locally at each point of N . One can imagine looking through a
magnifying glass: either we are far from M and see nothing, or close to M and see a first-order
approximation of M , i.e. a tangent space, together with a small vector from the center of the lens
to M . To formalise this intuition, recall the tautological quotient bundle over the Grassmannian of
d-dimensional planes in Rn:

Rn−d −→ γ⊥d,n := {(H, v) | H ∈ Gr(d,Rn), v ∈ Rn/H} −→ Gr(d,Rn).

One thinks of a point (H, v) ∈ γ⊥d,n as a d-dimensional plane together with a normal vector. The
Thom space Gr(d,Rn)γ

⊥
d,n is obtained by one-point compactifying the total space. This construction
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can be done fibrewise to the tangent bundle TN ofN , and we denote by Gr(d, TN)γ
⊥
d,n the resulting

bundle over N . The submanifold M then gives a section

N −→ Gr(d, TN)γ
⊥
d,n

obtained by sending a point far away from M to the point at infinity (in the Thom space), and
sending a point x ∈ N close to a point y ∈M to the tangent space TyM ⊂ TyN together with the
vector pointing from y to x. Of course this requires to be made precise, e.g. by choosing a tubular
neighbourhood of M inside N . In many cases, this idea can be implemented in families to obtain a
map from a parameter space of submanifolds to a section space.

We are now ready to give an interpretation of the jet map of Theorem 4.6 in the spirit of scanning.
We take X and α as in the assumptions of that theorem. We also denote by n = dimCX the
complex dimension of X . The main observation is the following:

Lemma 7.1. For integers d,m, let Gr(d,Cm) be the Grassmannian of complex d-dimensional planes
in Cm and γ⊥d,m be the tautological quotient bundle. There is a homeomorphism

γ⊥d,m
∼=−→ Gr(d+ 1,Cm ⊕ C) \Gr(d+ 1,Cm)

(H, v) 7−→ (H, 0)⊕ (v, 1)

where Gr(d+ 1,Cm) is embedded inside Gr(d+ 1,Cm ⊕ C) via P 7→ (P, 0). □
When V is an n-dimensional complex vector space, the tautological quotient bundle over

Gr(n− 1, V ) = P(V ) is homeomorphic to P(V ⊕ C) \ {∗}. Hence its Thom space is P(V ⊕ C).
From the isomorphism J1OX

∼= Ω1
X ⊕OX as smooth complex vector bundles, we see that

P(J1OX) ∼= Gr(n− 1,Ω1
X)

γ⊥
n−1,n ∼= Gr(n− 1, TX)γ

⊥
n−1,n .

Under these identifications, the jet map

Mα
hyp −→ ΓC0

(
Gr(n− 1, TX)γ

⊥
n−1,n

)

is very close to the general idea of scanning described above. Given a hypersurface V (s) ⊂ X ,
the derivative x 7→ ds(x) records the tangent space when non-zero, i.e. near the hypersurface,
and x 7→ s(x) records in some sense the distance to the hypersurface, an analogue of the normal
vector.

7.2. Configuration spaces on curves. Let us now describe the case n = 1 in more details. The
variety X is then a curve and we think of α ∈ NS(X) as an integer under the isomorphism
NS(X) ⊂ H2(X;Z) ∼= Z given by the complex orientation. A hypersurface of Chern class α is
simply an unordered configuration of α points and we have a homeomorphism

Mα
hyp

∼=−→ UConfα(X)

([L] ∈ Picα(X), [s] ∈ Γns(P[L])/C×) −→ V ([s]).

There is also an identification
P(J1OX) ∼= Gr(0, TX)γ

⊥
0,1 ∼= ˙TX

with the fibrewise one-point compactification of the tangent bundle. In [McD75], McDuff studied
a scanning map on configuration spaces of points on a manifold, i.e. spaces of 0-dimensional
submanifolds. In the present work, we instead study (complex) codimension 1 submanifolds. On a
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curve these agree and we recover a special case of McDuff’s theorem, although our scanning map
is now more algebraic in nature:

Theorem 7.2. Let X be a smooth projective complex curve of genus g. Let α ∈ H2(X;Z) ∼= Z be
such that α > 2g − 2. The jet map

UConfα(X) ∼=Mα
hyp −→ Γα

C0(P(J1OX)) ∼= Γα
C0( ˙TX)

induces an isomorphism in integral homology in the range of degrees ∗ < α−2g−3
2

.

Proof. This is a direct consequence of Theorem 4.6. To verify the assumption on the ampleness of
α− c1(KX), recall that the canonical divisor has degree 2g − 2 and that a line bundle of positive
degree is ample. The final bound is obtained by computing d(X,α) = α− 2g using Riemann–Roch
as explained in Lemma A.1. □

Remark 7.3. The observations above lead us to ask about subvarieties of greater codimension: could
the spaces Gr(n− c,Ω1

X)
γ⊥
n−c,n be related to Hilbert schemes of codimension c smooth subvarieties?

8. Characteristic classes and manifold bundles

In this section, we comment on the stable rational cohomology of Γns(L)/C×. Our main motiva-
tion is trying to relate it to the stable cohomology of moduli spaces of manifolds as investigated
by Galatius and Randal-Williams [GRW14, GRW17, GRW18]. None of this section uses the new
results of this article, and will in fact be deduced entirely from [Aum22]. Nonetheless, we think
that its fits naturally with the “moduli space point of view” adopted in this paper.

We will assume that dimCX = n ≥ 4 and that the fundamental group ofX is virtually polycyclic
to apply the results of [GRW19, Fri17]. We also choose a very ample line bundle L on X .

8.1. Recollections on stable classes. We begin by recalling from [Aum22] the geometric in-
terpretation of the stable classes in the rational cohomology of Γns(L). As we are here mostly
interested in the quotient by the scalars C×, we point out the following observation that we learned
from [Das21, Lemma 2.7]:

Lemma 8.1. There is an isomorphism of H∗(Γns(L);Q)-modules:

H∗(Γns(L);Q) ∼= H∗(Γns(L)/C×;Q)⊗H∗(C×;Q).

Proof. Let ∆: Γ(L)→ C be the discriminant (see [GKZ94]) so that Γns(L) = Γ(L)\∆−1(0). There
is a fibre bundle

C× −→ Γns(L) −→ Γns(L)/C×

and for any fibre the map C× ↪→ Γns(L) ∆→ C× is of degree deg(∆) ̸= 0, hence an isomorphism
on rational cohomology. The lemma then follows by the Leray–Hirsch theorem. □

Consider the universal bundle of hypersurfaces:

V (s) −→ U(L) := {(s, x) ∈ Γns(L)×X | s(x) = 0} π−→ Γns(L).
At each point (s, x) ∈ U(L), the derivative ds(x) is non-zero, thus giving a map

j : U(L) −→ Ω1
X ⊗ L \ 0.
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For L ample enough such that the Euler class of Ω1
X ⊗L is non zero, the cohomology of the target

of j in degrees ∗ ≥ 2n is

H∗≥2n(Ω1
X ⊗ L \ 0;Z) ∼= H∗≥1(X;Z)[2n− 1],

where [2n− 1] indicates a shift of degrees.

Proposition 8.2 (Compare [Aum22, Proposition 8.6]). Let L be a d-jet ample line bundle on a
smooth projective complex variety X . Suppose furthermore that the Euler class of Ω1

X ⊗L is non-zero.
Then the morphism given by pulling back along j and integrating along the fibres of π

π! ◦ j∗ : Λ(H∗≥2n(Ω1
X ⊗ L \ 0;Q)) −→ H∗(Γns(L);Q) −→ H∗(Γns(L)/C×;Q)

is an isomorphism in the range of degrees ∗ < d−1
2

. (The second arrow is obtained from Lemma 8.1 by
projecting away from the second tensor factor.) □

8.2. Comparison with diffeomorphisms. Let us fix a non-singular section s ∈ Γns(L) and
write H := V (s) for the associated hypersurface. From the point of view of the Hilbert scheme
developed in Section 3, the subspace Γns(L)/C× classifies algebraic bundles with fibres equivalent
to H (as divisors) and embedded in X . Seeing H only as a smooth oriented real manifold, one can
consider the classifying space BDiffor(H) of its group of orientation preserving diffeomorphisms.
By definition, this latter space classifies fibre bundles with fibre H and structure group Diffor(H).
In particular, there is a map

Γns(L)/C× −→ BDiffor(H) (10)
classifying the universal bundle

U(L)/C× := {([s], x) ∈ Γns(L)/C× ×X | s(x) = 0} π−→ Γns(L)/C×. (11)

One could wonder if the map (10) induces an isomorphism in rational cohomology in a range of
degrees. This was shown to be false when X = Pn and L = O(d) by Randal-Williams [RW19].
On the other hand, one could alter the situation by considering diffeomorphisms preserving other
kinds of tangential structures: we have picked orientation, but could have chosen a spin structure in
some cases, or a map to a background space, etc. We describe below a peculiar tangential structure
θ such that the map classifying the universal bundle

Γns(L) −→ BDiffθ(H)

is “very close” to being a rational homology isomorphism in a range of degrees.

Remark 8.3. Although the space Γns(L)/C× is more geometrically natural, we will only be able to
produce a map to BDiffθ(H) from Γns(L). Nevertheless, by Lemma 8.1 the quotient map induces an
injection in rational cohomology

H∗(Γns(L)/C×;Q) ↪→ H∗(Γns(L);Q)

which will be good enough for our arguments.

Choose maps [TX] : X → BU(n) and [L] : X → BU(1) classifying respectively the tangent
bundle of X and L as topological complex vector bundles. Let B be the space defined by the
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following homotopy pullback square:

B X

BU(n− 1)×BU(1) BU(n)×BU(1)

(
[TX], [L]

)

(
“⊕”, pr2

)

(12)

where “⊕ ”: BU(n− 1)× BU(1)→ BU(n) classifies taking the direct sum of vector bundles.
We will adopt the point of view of spaces over BO(2n − 2) to describe tangential structures.
(See [GRW19, Section 4.5] for a discussion.) In this language our tangential structure is the map:

θ : B −→ BU(n− 1)×BU(1) pr1−→ BU(n− 1) −→ BO(2n− 2).

Remark 8.4. Informally, a θ-structure on a (2n− 2)-manifold M is the datum of a lift of the map
classifying the tangent bundle:

B

M BO(2n− 2)

θ

[TM ]

up to homotopy. By the universal property of the homotopy pullback, this amounts to providing two
maps

M −→ BU(n− 1)×BU(1) and M −→ X

which become homotopic after further composing toBU(n)×BU(1) and such thatM → BU(n−1)
classifies the tangent bundles ofM . In other words, this is the data of a map ι : M → X and a complex
line bundle L′ (corresponding to M → BU(1)) such that TH ⊕L′ ∼= ι∗TX and ι∗L ∼= L′. Therefore,
a θ-structure on M should be intuitively interpreted as a choice of an immersion ι : M → X with
normal bundle ι∗L.

We have chosen to construct B via the homotopy pullback (12) as it allowed us to informally
understand the geometric meaning of a θ-structure. But it turns out that we can give more familiar
expressions for B and the bundle classified by θ as explained in the following two lemmas.

Lemma 8.5. There is a homotopy equivalence above X

B ≃ Ω1
X ⊗ L \ 0.

Proof. We will use the following explicit point set models:
BU(j) := {P ⊂ C∞ | P is a j-dimensional plane},

γj := {(P, v) | P ∈ BU(j), v ∈ P},
γ∨j := {(P, φ) | P ∈ BU(j), φ : P → C linear map},

for the classifying space, and its tautological vector bundle and the dual of it. Recall that the
classical fibration sequence

Cn \ 0 −→ BU(n− 1) −→ BU(n)

can be modelled by the sphere bundle of the dual tautological bundle using the homeomorphism
γ∨n \ 0 ∼= BU(n− 1), (P, φ : P ↠ C) 7→ ker(φ).
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From the pullback square

BU(n− 1) BU(n)

BU(n− 1)×BU(1) BU(n)×BU(1)

⌟

(“⊕”,pr2)

we see that the homotopy fibre of the bottom map is Cn \ 0. In fact, we can likewise model the
fibre sequence

Cn \ 0 −→ BU(n− 1)×BU(1) (“⊕”,pr2)−→ BU(n)×BU(1)
by the sphere bundle γ∨n ⊠ γ1 \ 0. Indeed, we may write

γ∨n ⊠ γ1 \ 0 ∼= {(P,L, φ⊗ v) | P ∈ BU(n), L ∈ BU(1), φ⊗ v ∈ P∨ ⊗ L \ 0}
and use the homeomorphism

γ∨n ⊠ γ1 \ 0 ∼= BU(n− 1)×BU(1), (P,L, φ⊗ v) 7→ (ker(φ⊗ v), L).
Under these identifications, one can check that the map “⊕ ” can be modelled by

(P,L, φ⊗ v) 7−→ ker(φ⊗ v)⊕ L ⊂ C∞ ⊕ C∞ ∼= C∞.

Hence, by pulling back along ([TX], [L]), one sees that B ≃ Ω1
X ⊗ L \ 0. □

Lemma 8.6. Let q : Ω1
X ⊗ L \ 0→ X be the projection. The virtual vector bundle q∗(TX − L) is in

fact the genuine vector bundle θ∗γ classified by the map θ : Ω1
X ⊗ L \ 0→ BO(2n− 2).

Proof. We will use the homeomorphism
Ω1

X ⊗ L \ 0 ∼= {(x, φ) | x ∈ X, φ : TX|x ↠ L|x surjective linear map}
given by identifying a non-zero vector of (Ω1

X ⊗ L)|x with a surjective linear map. As one sees
from the point set models described in the proof of Lemma 8.5, the pullback vector bundle θ∗γ
classified by θ is equivalent to the one whose fibre above a point (x, φ) is given by the kernel of φ.
Writing out the vector bundles

q∗TX = {(x, φ, v) | (x, φ) ∈ Ω1 ⊗ L \ 0, v ∈ TX|x},
q∗L = {(x, φ, v) | (x, φ) ∈ Ω1 ⊗ L \ 0, v ∈ L|x},

we identify θ∗γ as the kernel of the morphism of vector bundles
q∗TX −→ q∗L, (x, φ, v) 7−→ (x, φ, φ(v)).

We thus obtain the short exact sequence of vector bundles
0 −→ θ∗γ −→ q∗TX −→ q∗L −→ 0

which proves the lemma. □

Let H = V (s) be a smooth hypersurface with s ∈ Γns(L). Using non-singularity, we obtain a
map ℓ : H → Ω1

X ⊗ L \ 0 given by ℓ(x) = ds(x).

Lemma 8.7. The map ℓ : H → Ω1
X ⊗ L \ 0 is (n− 1)-connected.
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Proof. The inclusion ι : H ↪→ X factors as

H
ℓ−→ Ω1

X ⊗ L \ 0 −→ X

where the second map is the projection map of the bundle, hence (2n− 1)-connected. Therefore it
suffices to show that ι : H → X is (n−1)-connected. But this is precisely the Lefschetz hyperplane
theorem. □

The maps ℓ for all hypersurfaces assemble to equip the universal bundle with our tangential
structure:

Proposition 8.8. The universal bundle U(L)→ Γns(L) admits the structure of a smooth fibre bundle
with θ-structure given by ℓ in each fibre.

Proof. Let TvU(L) be the vertical tangent bundle of the universal bundle. We have to provide the
horizontal maps in the following diagram to construct a vector bundle map

TvU(L) θ∗γ

U(L) Ω1
X ⊗ L \ 0

which restricts to a linear isomorphism in each fibre. Using the notation from the proof of Lemma 8.6,
we write

Ω1
X ⊗ L \ 0 = {(x, φ) | x ∈ X, φ : TX|x ↠ L|x surjective linear map}

and
θ∗γ = {(x, φ, v) | (x, φ) ∈ Ω1

X ⊗ L \ 0, v ∈ ker(φ)}.
Differentiating a non-singular section s : X → L yields a short exact sequence of vector bundles

0 −→ TV (s) −→ TX
ds−→ L −→ 0

which shows that ker(ds(x)) = TV (s)|x. Hence, taking

U(L) −→ Ω1
X ⊗ L \ 0, (s, x) 7−→ ds(x)

and its fibrewise vertical differential gives the wanted square. □

Let us now look at hypersurfaces of higher degree. For every integer d ≥ 1, we pick a section
sd ∈ Γns(L⊗d) and write Hd = V (sd) ⊂ X for the associated hypersurface. Replacing L by L⊗d

in the diagram (12), we obtain spaces Bd ≃ Ω1
X ⊗ L⊗d \ 0. We write θd : Bd → BO(2n− 2) for

the tangential structure and ℓd : Hd → Bd for the tangential structure on Hd induced from the
inclusion inside X . Let

Mθd(Hd, ℓd)

be the connected component of (Hd, ℓd) in the classifying space of Hd-bundles with θd-structure.
(See [GRW19, Section 2.2] and the references therein for precise definitions.) Work of Galatius and
Randal-Williams provides the following:
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Theorem 8.9 (Compare [GRW19, Theorem 4.5]). Using the notations as above, let α = c1(L) and
N :=

∫
X
αn+1 ̸= 0. There is a map

Mθd(Hd, ℓd) −→ Ω∞MTθd ≃ Ω∞(Ω1
X ⊗ L⊗d \ 0

)q∗L⊗d−q∗TX

which, when regarded as a map onto the path component that it hits, induces an isomorphism in
integral homology in degrees ∗ ≤ 1

3
Cdn+1+O(dn), for some constantC depending on n and satisfying

1
2
· 13
15
N ≤ C .

Proof. The connectivity assumption of [GRW19, Theorem 4.5] is verified in Lemma 8.7. The
identification of the Thom spectrum is given by Lemma 8.6. Finally, the range given is explained
in [GRW19, Remark 5.6] □
Lemma 8.10. Suppose that the Euler class of Ω1

X⊗L⊗d does not vanish. Then there is an isomorphism
of commutative rings

H∗(Mθd(Hd, ℓd);Q
) ∼= Λ

(
H2n−1(X)[1]⊕H1(X)[2]⊕H2(X)[3]⊕ · · · ⊕H2n(X)[2n+ 1]

)

=: Λ
(
H2n−1(X)[1]

)
⊗ Λ

(
H•>0(X)[•+ 1]

)

where H i(X)[j] denotes the graded Q-vector space H i(X;Q) placed in degree j.

Proof. This is a well-known computation in rational homotopy theory using the Thom isomorphism.
See for example [GRW19, Remark 4.2]. □

By Proposition 8.8, the universal bundle is pulled back along a map
Γns(L⊗d) −→Mθd(Hd, ℓd).

Our work describes the stable rational cohomology of the domain, whereas Galatius and Randal-
Williams compute the one of the codomain. The relation between the two rings of characteristic
classes is summarised in the following result:

Theorem 8.11. Let i ≥ 0 be an integer and let d≫ 0 be big enough so that

H∗(Mθd(Hd, ℓd);Q) ∼= Λ
(
H2n−1(X)[1]

)
⊗ Λ

(
H•>0(X)[•+ 1]

)

and
H∗(Γns(L⊗d)/C×;Q) ∼= Λ

(
H•>0(X)[•+ 1]

)

in degrees ∗ ≤ i. The map classifying the universal bundle

Γns(L⊗d) −→Mθd(Hd, ℓd)

induces a ring morphism in rational cohomology with the following properties in cohomological degrees
∗ ≤ i:

(i) Its restriction to Λ
(
H•>0(X)[•+ 1]

)
⊂ H∗(Mθd(Hd, ℓd);Q) is injective.

(ii) Its restriction to Λ
(
H2n−1(X)[1]

)
⊂ H∗(Mθd(Hd, ℓd);Q) is zero.

In particular, its image in degrees ∗ ≤ i is the subring H∗(Γns(L)/C×;Q) ⊂ H∗(Γns(L);Q).

Remark 8.12. In other words, under the identifications of the theorem, the morphism induced by
the classifying map in cohomology in degrees ∗ ≤ i coincides with the projection away from the first
tensor factor

Λ
(
H2n−1(X)[1]

)
⊗ Λ

(
H•>0(X)[•+ 1]

)
−→ Λ

(
H•>0(X)[•+ 1]

)
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up to an automorphism of the target (depending on the exact representatives chosen for the stable
classes).

Proof. Recall from [GRW19, Section 3.1] that the characteristic classes of θd-bundles are given by
integration along the fibres. From the similar description given in Proposition 8.2, we see that, in
degrees ∗ ≤ i, a basis of

H•>0(X)[•+ 1] ⊂ H∗(Mθd(Hd, ℓd);Q)

is sent to a basis of
H•>0(X)[•+ 1] ⊂ H∗(Γns(L⊗d);Q)

under the morphism induced by the map classifying the universal bundle. This proves the first
point. To prove the second, we recall that the image of a element w ∈ H2n−1(X) is the fibre
integration

π!(i
∗w) ∈ H∗(Γns(L⊗d);Q)

where π is the universal bundle, and i : U(L⊗d) → X × Γns(L⊗d) → X is the map (f, x) 7→ x.
From the commutative diagram

U(L⊗d) Γns(L⊗d)×X

Γns(L⊗d) Γns(L⊗d)

π pr2

we compute that
π!(i

∗w) = (pr2)!(1⊗ w) = w ∩ [X] = 0.

The final remark about the image follows from Lemma 8.1. □
Corollary 8.13. Suppose that H2n−1(X;Q) vanishes (e.g. X is simply connected) and let i, d be as
in Theorem 8.11. Then the maps in the zigzag

Γns(L⊗d)/C× ←− Γns(L⊗d) −→Mθd(Hd, ℓd)

induce inclusions in rational cohomology in degrees ∗ ≤ i with the same image. In particular, the
outer spaces have isomorphic rational cohomology in degrees ∗ ≤ i. □
8.3. The C× action and the classifying map on the quotient. It might be unsatisfying to only
have a zigzag of maps in Corollary 8.13. This situation can be improved if one is willing to map
to a certain quotient ofMθd(Hd, ℓd) as we now explain. To lighten the notation, we drop the
subscript d everywhere and first work with a hypersurface H = V (s) given by a non-singular
section s ∈ Γns(L) as in the beginning of the previous part. Recall the following point-set model
(see e.g. [GRW14, Definition 1.5]):

Mθ(H, ℓ) =
(
EDiff(H)× Bun(TH, θ∗γ; ℓ)

)
/Diff(H)

where Bun(TH, θ∗γ; ℓ) denotes the connected component of ℓ in the space of bundle maps4. Recall
also from the proof of Proposition 8.8 the point-set model:

θ∗γ = {(x, φ, v) | (x, φ) ∈ Ω1
X ⊗ L \ 0, v ∈ ker(φ)}.

4As in the previous part, we slightly abuse notation by writing ℓ for both the map H → B and the map TH → θ∗γ
covering it. We started doing this in Proposition 8.8.
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The group C× acts fibrewise on the vector bundle Ω1
X ⊗ L, thus on θ∗γ via

λ · (x, φ, v) = (x, λ · φ, v) for λ ∈ C×,

and therefore acts onMθ(H, ℓ) by post-composition on bundle maps.
Let ∆: Γns(L)→ C× be the discriminant (see [GKZ94] for a reference) and let

µdeg∆ ⊂ C×

be the cyclic subgroup of the (deg∆)th roots of unity. There is a commutative diagram whose top
two rows and leftmost two columns are fibre bundles:

µdeg∆ ∆−1(1) ∆−1(1)/µdeg∆

C× Γns(L) Γns(L)/C×

C×/µdeg∆ C×

∼=

∆

∼=

The inverse of the homeomorphism

∆−1(1)/µdeg∆

∼=−→ Γns(L)/C×

is explicitly given by s 7→ ∆(s)−1/deg∆ · s. This readily implies:

Proposition 8.14. The zigzag of Corollary 8.13 can be extended to a commutative diagram:

Γns(L) Mθ(H, ℓ)

Γns(L)/C× Mθ(H, ℓ)/µdeg∆

where both vertical arrows are quotient maps and the bottom arrow is the induced map

Γns(L)/C× ∼= ∆−1(1)/µdeg∆ −→Mθ(H, ℓ)/µdeg∆. □
Corollary 8.15. Let i, d and X be as in Corollary 8.13. Then the map5

Γns(L⊗d)/C× −→Mθd(Hd, ℓd)/µdeg∆

induces an isomorphism in rational cohomology in the range of degrees ∗ ≤ i.

Proof. It suffices to see that the quotient map
Mθd(Hd, ℓd) −→Mθd(Hd, ℓd)/µdeg∆

induces an isomorphism in rational cohomology. As the action is free, the quotient is the homotopy
orbit and we thus have a fibration:

Mθd(Hd, ℓd) −→Mθd(Hd, ℓd)/µdeg∆ −→ Bµdeg∆.

The monodromy action of π1(Bµdeg∆) = µdeg∆ on the cohomology of the fibre is trivial as it
can be extended to the connected group C×. A finite group has trivial rational cohomology, here
H∗(Bµdeg∆;Q) = Q, and the result follows. □

5The discriminant ∆ depends on d but we suppress this in the notation.
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Remark 8.16. By general theory, a map from a space T to the homotopy orbit spaceMθ(H, ℓ)//µdeg∆

is given by a principal µdeg∆-bundle P → T and an equivariant map P →Mθ(H, ℓ). From that
point of view, the map

Γns(L)/C× −→Mθ(H, ℓ)/µdeg∆

is given by the datum of a θ-structure on the pullback of the universal bundle along the étale cover

∆−1(1) −→ Γns(L)/C×

with Galois group µdeg∆.

8.4. En rød sild. We finish this section by a remark on the infinite loop space from Theorem 8.9.
As explained in [Aum22, Theorem 8.11], there is a map

Γns(L⊗d) −→ Ω∞+1XJ1L⊗d−TX

which induces an isomorphism in rational cohomology in the range of degrees ∗ < d−1
2

. 6 To
compare this infinite loop space with the one appearing above, we will use the following well-known
lemma:

Lemma 8.17. Let V,W be two vector bundles on a space Z . We may assume that W is a virtual
vector bundle. Then there is a cofibre sequence of Thom spectra:

S(V )W −→ ZW −→ ZV⊕W .

Proof. The Thom space ZV is defined by collapsing the sphere bundle S(V ) inside the disc bundle
D(V ). Thus there is a cofibre sequence of spaces

S(V ) ↪→ D(V ) −→ ZV .

The lemma follows by passing to Thom spectra with respect to the virtual bundle W and using the
equivalence D(V ) ≃ Z . □

Applying the lemma to Z = X , V = Ω1
X ⊗ L⊗d and W = L⊗d − TX yields the fibre sequence

of spaces

Ω∞+1XJ1L⊗d−TX −→ Ω∞S(Ω1
X ⊗ L⊗d)L

⊗d−TX −→ Ω∞XL⊗d−TX ,

in which we recognise the two infinite loop spaces appearing earlier in this section. Finally, let us
remark that the rational homotopy type of the rightmost space

(Ω∞XL⊗d−TX)Q ≃ H2(X;Q)×K(H1(X;Q), 1)

is not far from that of Pic(X). This was one of the starting observations for the present article,
although it now seems to me to be red herring.

6To be precise, [Aum22, Theorem 8.11] only states that the map is 2n-connected. However the connectivity solely
appears as the connectivity of the map S2n+1 → Ω∞Σ∞S2n+1. The latter is a rational equivalence, and the proof can
be repeated after rationalisation.
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Appendix A. Range estimates for jet ampleness

A.1. The case of curves. When X is a curve, that is of dimension 1, one can give an explicit
formula for the jet ampleness of a line bundle depending only on its degree.

Lemma A.1. Let X be a smooth projective complex curve of genus g. Let L be a line bundle on X
and denote by c1(L) ∈ H2(X;Z) ∼= Z its degree, i.e. its first Chern class. Let d ≥ 1 be an integer. If
c1(L) > 2g − 1 + d then L is d-jet ample.

Proof. As there is only tangent direction at each point on a curve, to show that L is d-jet ample it
suffices to show that the restriction map

H0(L) −→ H0(L ⊗OZ)

is surjective for all subschemes Z ⊂ X of length d+ 1. Recall the short exact sequences of sheaves
0 −→ IZ −→ OX −→ OZ −→ 0

where IZ denotes the ideal sheaf of Z . From the long exact sequence in cohomology, we see that it
suffices to show that

H1(L ⊗ IZ) = 0.

By Serre duality, this group is isomorphic toH0(KX⊗L−1⊗I−1
Z ) whereKX is the canonical sheaf.

It is now enough to show that KX ⊗L−1 ⊗ I−1
Z has negative degree under the assumptions of the

lemma. This follows by computing that deg I−1
Z = d+1, degL−1 = −c1(L) and degKX = 2g− 2

by Riemann–Roch. □

A.2. The case of toric varieties. When X is a smooth projective toric variety, its fundamental
group is trivial, hence the Picard scheme is discrete. In that case the results of this paper are simply
obtained from [Aum22]. We nevertheless comment on how to compute the jet ampleness of a line
bundle to give a sense of the difficulty of the problem.

The basic idea is as follows: if L is a d-jet ample line bundle on X , then so is its restriction to any
rational curve on X . On such a rational curve C ∼= P1, a line bundle is of the form OP1(a) and is
d-jet ample if and only if a ≥ d. Now there are some distinguished curves on X , namely the ones
invariant under the torus action, and it turns out to be enough to check jet ampleness on them:

Theorem A.2 (Compare [Roc99]). Let L be a line bundle on a smooth projective toric variety. Then
L is d-jet ample if and only if L · C ≥ d for any torus invariant curve C ⊂ X .

In [Roc99], Di Rocco also proves two more equivalent criteria for jet ampleness in terms of
convexity of the support function of L and Seshadri constants at each point of X . We refer to
that paper for the full details. Importantly for us, the criterion shows that d-jet ampleness can be
checked by a finite number of inequations.

A.3. Fujita’s conjecture and jet ampleness on surfaces. Whereas Kleiman’s criterion shows
that ampleness is a numerical property, jet ampleness, or even just very ampleness or global
generation, is a trickier question to settle. In 1985, Fujita proposed the following conjecture which
remains unsolved in general:

Conjecture A.3 (Compare [Fuj87]). Let X be a smooth projective complex variety of dimension n.
Let A be an ample line bundle on X . Then KX + (n+1)A is globally generated, and KX + (n+2)A
is very ample.

102



SCANNING THE MODULI OF EMBEDDED SMOOTH HYPERSURFACES 37

In dimension 1, the conjecture follows from the Riemann–Roch theorem. In higher dimension,
the approach taken for curves would require proving a Kodaira-type vanishing theorem for non-
invertible sheaves. However, in dimension 2, the conjecture was solved by Reider by different
means:

Theorem A.4 (Compare [Rei88]). Fujita’s conjecture is true for n = 2.

We recommend the lecture notes of Lazarsfeld [Laz94] for a beautiful introduction to Fujita’s
conjecture and Reider’s theorem.

A.4. A few general remarks. Although effective vanishing theorems like Riemann–Roch do not
exist in higher dimension, there exist alternatives that can be used to provide qualitative statements
about jet ampleness. The starting observation is the following cohomological criterion:

Lemma A.5. Let L be a line bundle on a smooth projective variety X of dimension n. Let d ≥ 1 be
an integer. Then L is d-jet ample if the cohomology groups

H1(L ⊗ IZ)

vanish for all 0-dimensional subschemes Z ⊂ X of length
d∑

j=0

(
n+j−1

j

)
, and ideal sheaf IZ .

Proof. By definition, L is d-jet ample if the evaluation map

H0(L) −→ H0(L/mk1
1 · · ·mkl

l )
∼=

l⊕

i=1

H0(L/mki
i )

is surjective for all distinct closed pointsx1, . . . , xl with associated maximal ideal sheavesm1, . . . ,ml,
and all integers ki ≥ 1 such that

∑
ki = d+ 1. For a closed point with ideal sheaf m and k ≥ 1 an

integer, the subscheme given by the ideal mk has length
∑k−1

j=0

(
n+j−1

j

)
. Therefore the subscheme

Z given by the ideal sheaf mk1
1 · · ·mkl

l has length

l(Z) =
l∑

i=1

ki−1∑

j=0

(
n+ j − 1

j

)
≤

d∑

j=0

(
n+ j − 1

j

)
.

Now, if Z is a subscheme with ideal sheaf IZ , then surjectivity ofH0(L)→ H0(L⊗OZ) is implied
by vanishing of the cohomology group H1(L ⊗ IZ) as one sees from the long exact sequence in
cohomology associated to the short exact sequence of sheaves 0→ IZ → OX → OZ → 0. □
Remark A.6. The results of [Aum22] are stated in terms of the jet ampleness of L, which is why we
use the same phrasing in this paper. But in fact, as we are only concerned with conditions on the first
order derivatives of sections, we could settle for the following ad hoc weaker notion: a line bundle L is
d-good if the evaluation map

H0(L) −→
l⊕

i=1

H0(L/m2
i )

is surjective for all distinct closed points x1, . . . , xl with associated maximal ideal sheaves m1, . . . ,ml,
and 2l ≤ d+ 1. We claim that the proofs of [Aum22] go through to study Γns(L) with this weaker
assumption. However, as the bounds we obtain to estimate d-goodness or jet ampleness are not very
explicit, we have opted for the stronger assumption of jet ampleness which is more commonly studied.
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Proposition A.7. Let X be smooth projective complex variety. For any integer d ≥ 1, there exists a
class α ∈ NS(X) such that all line bundles of first Chern class equal to α are d-jet ample.

Proof. The plan of attack is to start from any component of the Picard scheme and tensor all line
bundles on it by a chosen very ample line bundle. This yields an isomorphism with another Picard
component, where one hopes that the locus of those line bundles that are not d-jet ample has been
shrunk. By repetitively doing this procedure one should arrive at a component that only contains
d-jet ample line bundles. Let M =

∑d
j=0

(
n+j−1

j

)
and define

Eα := {(Z,L) ∈ HilbM(X)× Picα(X) | H1(L ⊗ IZ) ̸= 0} ⊂ HilbM(X)× Picα(X)

for any Chern class α ∈ NS(X). Here HilbM(X) denotes the Hilbert scheme of length M 0-
dimensional subschemes of X . By upper semicontinuity of cohomology, Eα is a closed subscheme.
Let p : HilbM(X) × Pic(X) → Pic(X) be the second projection. By properness of the Hilbert
scheme, the image p(Eα) ⊂ Picα(X) is closed. This image is exactly those line bundles which
do not satisfy the cohomological criterion of Lemma A.5. By properness of Picα(X), it has only
finitely many irreducible components. We will want to reduce their number, up to changing the
Chern class α.

Let L0 ∈ p(Eα) and consider the subscheme

E(L0) := {Z ∈ HilbM(X) | H1(L0 ⊗ IZ) ̸= 0} ⊂ HilbM(X).

Again, upper semicontinuity of cohomology shows that it is a closed subscheme. Let Z ∈ E(L0).
Its ideal sheaf IZ is a coherent sheaf on X , so by Serre vanishing theorem there exists a very ample
line bundleA onX such thatH1(L0⊗A⊗IZ) = 0. Furthermore, if Z ′ was another 0-dimensional
subscheme such that H1(L0 ⊗ IZ′) = 0, then H1(L0 ⊗A⊗ IZ′) = 0 also. Therefore, we have a
strict inclusion of closed subschemes

E(L0 ⊗A) ⊊ E(L0).

By properness of HilbM(X), the same argument can be repeated a finite amount of times to obtain
a very ample line bundle A′ such that E(L0 ⊗A′) is empty.

Now consider the isomorphism given by tensoring with A′:

−⊗A′ : Picα(X)
∼=−→ Picα+α′

(X)

where α′ = c1(A′). By what we have seen

p(Eα+α′) ⊊ p(Eα)⊗A′,

so that p(Eα+α′) has strictly fewer irreducible components than p(Eα) (if non empty). Repeating
this argument reduces the number of irreducible components until we find a β ∈ NS(X) such
p(Eβ) is empty. For this Chern class, all line bundles are d-jet ample by Lemma A.5. □

Remark A.8. For surfaces, there is a simpler and more explicit proof using Fujita’s conjecture. Indeed,
the image of the ample cone under the map A 7→ KX + (n + 2)A is a cone, and any line bundle
having Chern class in that cone is very ample by Reider’s theorem. If L is a very ample line bundle,
the component of the Picard scheme corresponding to KX + (n+ 2)A+ (d− 1)L only contains line
bundles that are d-jet ample.
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HOMOLOGICAL STABILITY FOR THE SPACE OF HYPERSURFACES
WITH MARKED POINTS

ALEXIS AUMONIER AND RONNO DAS

Abstract. We study the space of smooth marked hypersurfaces in a given linear system. More
specifically, we prove an h-principle relating its homology to that of a space of sections of an
appropriate bundle. Using rational models, we explain how to compute its rational cohomology in a
range of degrees, and deduce a homological stability result for hypersurfaces of increasing degree.
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1. Introduction

Consider a connected smooth complex projective variety X with a line bundle L. Let U(L) ⊂
Γhol(L) be the open subset of non-singular holomorphic global sections of L and consider the
incidence variety:

Z(L) =
{
(f, x) ∈ U(L)×X

∣∣ f(x) = 0
}
⊂ Γhol(L)×X .

1
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2 ALEXIS AUMONIER AND RONNO DAS

If we take the sections modulo scalar multiples, i.e. quotient by the action of C×, we get the
space of L-hypersurfaces given by Ud/C× and the universal non-singular L-hypersurface given by
Z(L)/C×.1 In rational homology the C× behaves like a direct factor, see Lemma 3.2, and we will
not worry about this quotient in the rest of the paper.

More generally, let Zr(L) be the bundle over U(L) whose fiber over f is Fr(V(f)), the configu-
ration space of r distinct points on the vanishing locus V(f) of f , topologized as a subspace of
U ×Xr. Explicitly,

Zr(L) =
{
(f, x1, . . . , xr) ∈ Γhol(L)×Xr

∣∣ f ∈ U(L), f(xi) = 0, xi ̸= xj for i ̸= j
}

is the space of L-hypersurface sections with r distinct marked points.
Theorem A. Assume that X is simply connected. Suppose L is ample and fix r ≥ 1. Then for each i,
there exists2 a d0 such that for all d ≥ d0, we have an isomorphism

H i(Zr(L⊗d);Q) ∼= H i(Ar(L))
where Ar(L) is the commutative differential graded algebra explicitly described in Construction 5.5.
This isomorphism is Sr equivariant and preserves cup products (when d is appropriately large). In
particular, H i(Zr(L⊗d);Q) stabilizes with d, as an Sr-representation.

We conjecture that the classes in H i(Zr(L⊗d);Q) for different d that are identified by these
isomorphisms should also have the same Hodge weights (see Section 5.5). As a supporting fact,
the consequent stabilization of Hodge–Euler characteristics was observed by Howe [How19]. The
analogous statement for r = 0 was proved for X = Pn by Tommasi [Tom14] and for general X in
[Aum22] and [DH22].

There are no obvious maps between Zr(L⊗d) for varying d and the stability in Theorem A
is (to our knowledge) not induced by such maps of spaces. Nevertheless, the isomorphism in
Theorem A is not just an abstract isomorphism once we ascribe more meaning to Ar(L). As an
algebra it is generated by a CDGA model for Fr(X), a shifted copy of H∗(X;Q), and 2r additional
classes, r each in degrees 2n and 2n− 1, where n = dimX . These extra classes correspond to the
fundamental classes of the tangent spaces and jet spaces of X at the r marked points.
Remark 1.1. The dependence of the CDGA Ar(L) on X and L is only via the graded ring H∗(X),
its Poincaré pairing, and the Chern class of L. Therefore the same is true for the stable cohomology
in Theorem A.

In fact, in Theorem 5.9 Ar(L) is identified3 as a rational model for a continuous analog of
Zr(L⊗d). Explicitly, let J1L be the first-order jet bundle of L and define Zr

C0(L) by imitating
the construction above while replacing U(L) by an analogous open subset UC0(L) of the space
ΓC0(J1L) of continuous sections; see Section 3 for a precise definition. There is a jet-expansion map

j1 : Γhol(L)→ ΓC0(J1L)
which lies below an Sr-equivariant map Zr(L)→ Zr

C0(L), which we will also call a jet-expansion
map and denote by j1.

1In a different language, these spaces are respectively the open locus of smooth divisors inside the complete linear
system |L| and the restriction of the universal flat family above it.

2It suffices to take d0 = 1 +max(|χ(X)|, k(2i+ 2r + 3)), with k such that L⊗k is very ample, by combining the
bounds in Theorem B and Remark 5.11.

3Even though Ar(L) does not depend on d, the identification of the generators does and also crucially requires
rational coefficients, cf. the proof of Theorem 5.9.
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Recall that if L is very ample then L⊗d is d-jet ample (see Definition 2.7 for the definition of jet
ampleness). Then the following theorem, combined with the computation of H∗(Zr

C0(L);Q) from
Theorem 5.9 and Proposition 5.12, refines Theorem A:

Theorem B. Let r ≥ 1 and L be d-jet ample for some d > 2i+ 2r + 3. Then the jet expansion map
j1 induces an isomorphism

Hi(Z
r(L);Z) ∼−−→ Hi(Z

r
C0(L);Z) .

For the rest of the introduction we will use cohomology with rational coefficients but will
suppress it from the notation for the sake of brevity and readability.

Theorem 1.1 in [Aum22] (see also [DH22; Tom14]) should be thought of as the r = 0 case of
Theorem B, comparing just the space U(L) of nonsingular sections, without any markings, with
the analogous continuous section space UC0(L). Given this result and the definition of Zr(L), it
seems reasonable to use the Serre spectral sequence of the fiber bundle Zr(L)→ U(L), which for
r = 1 in fact degenerates on the E2 page (by the Deligne degeneration theorem). The terms of this
spectral sequence are given by the cohomology of U(L) with certain local coefficients, with stalk
H∗(V(f)) at f ∈ U(L). However, the usual technique for controlling the cohomology of U(L) (in
[Aum22] and elsewhere) is to pass to the complement in Γhol(L) by Alexander duality and any
non-trivially twisted coefficients on U(L) cannot possibly extend to this contractible space.

In contrast, what actually lets us make progress is the other projection Zr(L)→ Fr(X). While
we do get a Serre spectral sequence for the fibration Zr

C0(L)→ Fr(X), on the algebraic side the map
Zr(L)→ Fr(X) is not4 a fibration even when L is highly jet ample. It is however a microfibration
(see Definition 4.3). In Section 4.1 we use this fact to reduce the proof of Theorem B to establishing
a homology isomorphism (in an appropriate range) on each fiber. To be more precise, we establish
such a fiberwise homology isomorphism in Theorem 6.1, after replacing the map Zr(L)→ Fr(X)
by the map Zr(L)→ (Ω1

X ⊗ L)r|Fr(X),
(f, x1, . . . , xr) 7→ (df(x1), . . . , df(xr)) ,

that records not just the marked points but also the (necessarily non-zero) derivatives of the section
at each of these points.

The special case of r = 1, X = Pn (and L = O(d) for large d) was treated in [Ban21]. It general
the r = 1 case has a slightly different flavor than r > 1, partly because the fiber F1(L) = Z(L)→
U(L) is projective. We discuss this case in more detail in Section 1.1.2.

1.1. Applications and computations.

1.1.1. Unordered marked points. While the configuration spaces in the rest of the paper are ordered,
let us deal with the unordered case here. The symmetric group Sr acts on Zr(L) ⊂ Γhol(L)×Fr(X)
by permuting the coordinates of Fr(X). The map Zr(L) → U(L) descends to the quotient
Zr(L)/Sr → U(L), and this map is also a fiber bundle, now with fiber Fr(V(f))/Sr, the unordered
configuration space of V(f), over f ∈ U(L). The analog of Theorem B holds with the same proof,
or with rational coefficients we can just use the transfer isomorphisms

H∗(Zr(L)/Sr;Q) ∼= H∗(Zr(L);Q)Sr .
In particular we have the following analog of Theorem A:

4At least not in general, excepting when Aut(X) acts transitively on Fr(X).
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Corollary 1.2. If L is very ample and d is sufficiently large then

H i(Zr(L⊗d)/Sr;Q) ∼= H i(Ar(L)Sr) .

In particular, dimH i(Zr(L⊗d)/Sr;Q) stabilizes for large d. □
1.1.2. Marking a single point. For r = 1, the space Z1(L) = Z(L) is the “universal L-hypersurface”.
In this case the computation ofH∗(A1(L)) is relatively simple and we recover the following explicit
description:
Corollary 1.3. Assume that X is simply connected. Suppose L is d-jet ample. Writing Ω1

X ⊗ L− 0
for the complement of the zero section of Ω1

X ⊗ L, we have the following isomorphism in the range
∗ < d−3

2
:

H∗(Z(L);Q) ∼= H∗(Ω1
X ⊗ L− 0;Q

)
⊗ Symgr

(
H∗−1(X − pt)

)
.

In the range ∗ < 2n − 2 (and for d sufficiently large) this follows from Nori’s connectivity
theorem [Nor93]. Taking X = Pn, we recover the stabilization (and stable cohomology) from
[Ban21, Theorem 1.1].
Remark 1.4. Corollary 1.3 gives us an exact criterion for when the stable cohomology of Z(L)
is finite dimensional: H i(Z(L)) vanishes for i large and L sufficiently jet ample (depending on
i) if and only if H∗(X) is concentrated in even degrees. For instance, this holds if X is Pn or
a Grassmannian but fails if X is a curve of positive genus. In contrast, for r > 1 the stable
cohomology is necessarily non-zero in infinitely many degrees for any X , this is already visible
in the weightwise Euler characteristic described in Section 5.5 and was noted in [How19] as a
required feature.
Acknowledgements. We are grateful to Oscar Randal-Williams for pointing out the relevance of
microfibrations, which are a crucial ingredient in our arguments. We thank Søren Galatius, Florian
Naef and Dan Petersen for helpful conversations throughout various stages of the project.

AA was supported by the Danish National Research Foundation through the Copenhagen Centre
for Geometry and Topology (DNRF151) as well as the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 682922).
RD was supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 772960), by the Danish National
Research Foundation through the Copenhagen Centre for Geometry and Topology (DNRF151), as
well as by Dan Petersen’s Wallenberg Academy fellowship during various parts of the project.

2. Configuration spaces and jet bundles

In this section, we provide a reminder on configuration spaces and jet bundles. As in the
introduction, X is a connected smooth complex projective variety of complex dimension n. We
write Γhol(−) for the space of holomorphic global sections of a bundle on X .

2.1. Configuration spaces. For any topological space S, let Fr(S) be the configuration space of
r ordered points in S

Fr(S) :=
{
(x1, . . . , xr) ∈ Sr

∣∣ xi ̸= xj for i ̸= j
}

.
The symmetric group Sr acts on Fr(S) by permuting coordinates. More generally, for Z → S,
define the fiberwise configuration space

Fr
S(Z) := Fr(Z) ∩ Z×Sr,
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where Z×Sr denotes the r-fold fiber product Z ×S Z ×S · · · ×S Z . Denoting the fiber of Z over
s ∈ S by Zs, we have a natural identification

Fr
S(Z) =

{
(s, z1, . . . , zr)

∣∣ (z1, . . . , zr) ∈ Fr(Zs)
}
⊂ S × Fr(Z) ⊂ S × Zr .

In particular, the projection map Fr
S(Z) → S has fiber Fr(Zs) over s ∈ S. For convenience, we

define F1
S(Z) = Z and F0

S(Z) = S.

2.2. Jet bundles. In this work, we use jet bundles to suitably talk about derivatives of sections
of vector bundles. For the unfamiliar reader, we offer a minimal overview of the general theory
developed in [Gro67].

Let L be a holomorphic line bundle on X . Its bundle of first order jets, defined in [Gro67,
Section 16.7], will be denoted by J1L. It is a holomorphic vector bundle on X of complex rank
dimCX + 1 which fits in an exact sequence of holomorphic vector bundles

0 −→ Ω1
X ⊗ L −→ J1L −→ L −→ 0 (2.1)

where Ω1
X is the cotangent bundle of X . Although this short exact sequence does not split in

general (in the category of holomorphic vector bundles), it informally indicates that the jet bundle
records the value (in L) and the first derivative (in Ω1

X ⊗ L) of sections of L. More precisely:

Definition 2.2. The short exact sequence above splits after taking holomorphic global sections.
Writing df for the derivative of a global section f of L, the morphism

j1 : Γhol(L) −→ Γhol(J
1L) = Γhol(L)⊕ Γhol(Ω

1
X ⊗ L)

f 7−→ (f, df)

is called the (first order) jet expansion.

Example 2.3. Let us consider in more details the case whereX = Pn andL = O(k) with k ≥ 1. The
space of global sections Γhol(O(k)) can be identified with the complex vector space of homogeneous
polynomials of degree k in n+ 1 variables. Writing z0, . . . , zn for the variables, Euler’s identity

∑

i

zi
∂f

∂zi
= k · f

shows that knowing the n+ 1 partial derivatives of a section f in the homogeneous coordinates
amounts to knowing the section. This fact can be leveraged to an isomorphism of holomorphic
vector bundles J1O(k) ∼= O(k − 1)⊕n+1. (For a proof, see [DS98]. Note however that such a
splitting is very peculiar to projective spaces.) In that case, the jet expansion is given by

f ∈ Γhol(O(k)) 7−→
(
∂f

∂z0
, . . . ,

∂f

∂zn

)
∈ Γhol(O(k − 1))⊕n+1.

Definition 2.4. A global section f ∈ Γhol(L) is said to be singular at x ∈ X if the first jet
j1(s)(x) = 0. It is called non-singular if it does not admit any singular point.

Remark 2.5. The vanishing locus of any non-zero global section f ∈ Γhol(L) is the subvariety given
by V (f) :=

{
x ∈ X

∣∣ f(x) = 0
}
⊂ X . When f is non-singular, V (f) is a smooth subvariety.

Example 2.6. In the situation of Example 2.3, a global section f is singular at a point x ∈ Pn

precisely when ∂f
∂zi

(x) = 0 for all i = 0, . . . , n. This is indeed the more classical Jacobian criterion.
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The following property, jet ampleness, is the technical key to many arguments in this work:

Definition 2.7 (Compare [BRS99]). Let L be a holomorphic line bundle on X . Let k ≥ 0 be an
integer. Let x1, . . . , xt be t distinct points in X and (k1, . . . , kt) be a t-uple of positive integers
such that

∑
i ki = k+ 1. Write mi for the maximal ideal sheaf corresponding to xi, and Lxi

for the
stalk of L at xi. We say that L is k-jet ample if the evaluation map

Γhol (L) −→
t⊕

i=1

Lxi
/mki

i Lxi

is surjective for any x1, . . . , xt and k1, . . . , kt as above.

Remark 2.8. In the definition above, we wrote L for the sheaf of sections of the line bundle to be
able to talk about its stalk. We shall be guilty of this slight abuse of notation throughout this article.
The back-and-forth between the two viewpoints is explained by Serre’s GAGA theorems [Ser56].

Remark 2.9. Let x ∈ X , denote by mx the corresponding maximal ideal sheaf, and by Lx the stalk
of L at x. The fiber of J1L at x is naturally identified with Lx/m

2
xLx and the jet map is the natural

quotient map.

3. Marked hypersurfaces and section spaces

We continue with the notation from the previous section. For a holomorphic bundle E → X ,
recall that we denote the space of its holomorphic global sections by Γhol(E). We will write ΓC0(E)
for the larger space of continuous global sections. Both section spaces are topologized as subspaces
of the continuous mapping space map(X,E), the latter being endowed with the compact-open
topology.

Let U(L) ⊂ Γhol(L) be the subspace of non-singular sections. The incidence variety

Z(L) :=
{
(f, x)

∣∣ f(x) = 0
}
⊂ U(L)×X

is equipped with projections toU(L) andX ; the fiber over f ∈ U(L) is the smooth “L-hypersurface”
V (f) ⊂ X .

Definition 3.1. For r ≥ 0, the space of L-hypersurfaces with r (ordered) marked points is

Zr(L) := Fr
U(L)(Z(L)) ⊂ Γhol(L)×Xr .

The space Zr(L) comes with two projection maps: to U(L) and to Fr(X). The fiber of the first
one over f ∈ U(L) is the configuration space Fr(V (f)). As V (f) = V (λf) for any λ ∈ C×, it
is perhaps more geometrically meaningful to consider a quotient of Zr(L) by C×. However, our
constructions are easier to be made before taking any quotient. Fortunately, we will mostly be
interested in the rational cohomology of Zr(L) and the following lemma shows that it is mostly a
matter of convenience:

Lemma 3.2. For r ≥ 0, let C× act on Zr(L) ⊂ U(L)× Fr(X) by acting by scalar multiplication on
U(L) and trivially on Fr(X). Then this action is free and we have an isomorphism:

H∗(Zr(L);Q) ∼= H∗(Zr(L)/C× × C×;Q) .
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Proof. From the general theory of discriminants (see e.g. [GKZ94]) we get that U(L) ⊂ Γhol(L) is
the complement of a hypersurface defined by a polynomial ∆. Then for any (f, x⃗) ∈ Zr(L), the
composite

C× λ 7→λ·(f,x⃗)−−−−−−→ Zr(L)→ U(L) ∆−→ C×

is a map of degree deg(∆) ̸= 0 and hence induces an isomorphism on rational cohomology. The
claim follows by applying the Leray–Hirsch theorem. □

The constructions above can be adapted and repeated in the setting of continuous sections. More
precisely, we write

UC0(L) :=
{
s ∈ ΓC0(J1L)

∣∣ s(x) ̸= 0, ∀x ∈ X
}
= ΓC0(J1L − 0).

To define the analogue of the incidence variety Z(L), we have to find a corresponding notion
of vanishing at a point for sections of the jet bundle. Remark that the evaluation of a section
f ∈ ΓC0(J1L) at a point x ∈ X is an element

f(x) = (f1(x), f2(x)) ∈ (J1L)|x = (Ω1
X ⊗ L)|x ⊕ L|x

where (−)|x denotes the fiber at x. If f = j1(g), then f2(x) = g(x) is simply the value of g at x.
We take a cue from this situation and define

ZC0(L) :=
{
(s, x) ∈ UC0(L)×X

∣∣ s(x) ∈ (Ω1
X ⊗ L)|x ⊕ 0 ⊂ (Ω1

X ⊗ L)|x ⊕ L|x
}

.

The following pullback square of topological spaces is then a direct consequence of the definitions:

Z(L) ZC0(L)

U(L) UC0(L)

j1×id

j1

More generally, denoting Fr
UC0 (L)(ZC0(L)) by Zr

C0(L), we get a pullback square

Zr(L) Zr
C0(L)

U(L) UC0(L)

j1×id

j1

4. The main theorem

Having defined the spaces Zr(L) and Zr
C0(L) above, we are now ready to state our main theorem.

Its proof will occupy the rest of this section.

Theorem 4.1. Let X be a connected smooth complex projective variety, r ≥ 1 an integer, and L a
d-jet ample line bundle on X . Then the map

j1 × id : Zr(L) −→ Zr
C0(L)

induces an isomorphism in integral homology in the range of degrees ∗ < d−3
2
− r.
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We now proceed towards the proof of the theorem, beginning with some notation. Given a fiber
bundle E → X , we denote by Er|Fr(X) the restriction to Fr(X) of the product bundle Er on Xr.
We will mostly be concerned with

(Ω1
X ⊗ L− 0)r|Fr(X) and (J1L − 0)r|Fr(X)

which are respectively (Cn − 0)r and (Cn+1 − 0)r bundles over Fr(X). We will also make use of
the evaluation map

ev : UC0(L)× Fr(X) −→ (J1L − 0)r|Fr(X)

(f, x1, . . . , xr) 7−→ (f(x1), . . . , f(xr)).

It follows directly from the definitions that we have two pullback squares:

Zr(L) U(L)× Fr(X)

Zr
C0(L) UC0(L)× Fr(X)

(Ω1
X ⊗ L− 0)r|Fr(X) (J1L − 0)r|Fr(X)

j1×id

ev

Over a point v⃗ =
(
(x1, v1), . . . , (xr, vr)

)
∈ (J1L − 0)r|Fr(X), denote the fiber of the composition

ev ◦(j1 × id) by

U(v⃗) :=
{
f ∈ U(L)

∣∣ j1(f)(xi) = (xi, vi) for each i = 1, . . . , r
}

and the fiber of ev by

UC0(v⃗) :=
{
s ∈ ΓC0(J1L − 0)

∣∣ s(xi) = (xi, vi) for each i = 1, . . . , r
}

.

We summarize the situation in the following commutative diagram:

U(v⃗) UC0(v⃗)

Zr(L) Zr
C0(L)

(J1L − 0)r|Fr(X)

j1×id

ev ◦(j1×id) ev

(4.2)

Our strategy to prove the main theorem rests on the diagram (4.2). Suppose for a moment that
ev and ev ◦(j1 × id) are Serre fibrations. Then Theorem 4.1 follows by a Serre spectral sequence
argument from proving that the map between the fibers induces a homology isomorphism in a
range of degrees. We will indeed show the latter in Section 6, specifically Theorem 6.1. However,
although we will see shortly that ev is a fiber bundle (Lemma 4.9), the map ev ◦(j1 × id) is only a
Serre microfibration (Lemma 4.10). We recall this notion below, and explain why it is sufficient to
carry out the outlined strategy.
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4.1. A micro review of microfibrations. We start by recalling the definition of a microfibration.

Definition 4.3. A map E → B of topological spaces is a Serre microfibration if for any k ≥ 0,
given a commutative diagram

Dk × {0} E

Dk × [0, 1] B

there is an ε > 0 and a map Dk × [0, ε]→ E making the following diagram commute:

Dk × {0} E

Dk × [0, ε]

Dk × [0, 1] B

An abundant source of examples comes from the following direct consequence of the definition:

Lemma 4.4. If p : E → B is a Serre fibration and U ⊂ E is open, then p|U : U → B is a Serre
microfibration. □

In this paper, wherever we use the terms fibration and microfibration, we mean Serre fibration
and Serre microfibration respectively. Contrary to the case of fibrations, the homotopy types
of the fibers of a general microfibration can vary. Nonetheless, comparing the total spaces of a
microfibration and a fibration can done via a result originally due to Weiss and further generalized
by Raptis.

Theorem 4.5 ([Rap17, Theorem 1.3]). Let p : E → B be a Serre microfibration, q : V → B be a
Serre fibration, and f : E → V a map over B. Suppose that fb : p−1(b)→ q−1(b) is n-connected for
some n ≥ 1 and for all b ∈ B. Then the map f : E → V is n-connected.

As we are interested in homology rather than homotopy groups, we will need to slightly adapt
Raptis’ theorem to our needs. We first introduce some notation.

Definition 4.6. For a map p : E → B, its fiberwise (unreduced) kth suspension is defined to be

Σk
BE =

(
E × [0, 1]× Sk−1

)/(
(e, 0, s) ∼ (e, 0, s′) and (e, 1, s) ∼ (e′, 1, s) when p(e) = p(e′)

)
.

The fiber of the natural map Σk
Bp : Σ

k
BE → B induced by p is the unreduced kth suspension of

the fiber of p (here modeled as the join with the sphere Sk−1):

(Σk
Bp)

−1(b) = Σkp−1(b) ∀b ∈ B.
Definition 4.7. For a natural number m, a map of topological spaces A→ B is called homology
m-connected if it induces an isomorphism on homology groups Hi(A)→ Hi(B) for i < m and a
surjection when i = m.

117



10 ALEXIS AUMONIER AND RONNO DAS

Lemma 4.8. Let q : V → B be a fiber bundle, and p : U → B be the restriction of a fiber bundle
E → B to an open subset U ⊂ E. Let f : U → V be a map over B and suppose that for every b ∈ B,
the restriction to the fiber

fb : p
−1(b) −→ q−1(b)

is homology m-connected. Then f : U → V is homology m-connected.

Proof. See [Aum23, Lemma 5.9]. □

4.2. Finishing the proof of the main theorem. As promised, we show that the maps in the
diagram (4.2) are respectively a microfibration and a fibration.

Lemma 4.9. The evaluation map

ev : UC0(L)× Fr(X) −→ (J1L − 0)r|Fr(X)

(f, x1, . . . , xr) 7−→ (f(x1), . . . , f(xr))

is a fiber bundle. Therefore, so is the pullback Zr
C0(L)→ (Ω1

X ⊗ L− 0)r|Fr(X).

Proof. We first treat the case r = 1 to lighten the notation. Let (x, v) ∈ J1L − 0, with x ∈ X and
0 ̸= v ∈ (J1L)x. Using charts on the manifold X , we choose a small open ball B(x, 1) ⊂ R2n ⊂ X
centered at x and of radius 1. Using the local triviality of the jet bundle, we obtain a homeomorphism
(J1L− 0)|U ∼= U × (R2n+2 − 0). We choose a small ε > 0 and let B(v, ε) ⊂ R2n+2 − 0 be a small
open ball neighborhood of v. Pick continuous maps

φ : B(v, ε/4) −→ Homeo(B(v, ε))

and
ϕ : B(x, 1/4) −→ Homeo(B(x, 1))

such that φ(w) is a homeomorphism sending v to w and is the identity outside B(v, ε/2), and ϕ(y)
is a homeomorphism sending x to y and is the identity outsideB(x, 1/2). Slightly abusing notation,
we still denote by φ(w) and ϕ(y) the homeomorphisms of J1L − 0 and X respectively obtained
by extending by the identity. We use them to construct a local trivialization of the evaluation map
above the subset A = B(x, 1/4)×B(v, ε/4) ⊂ J1L − 0 as follows:

A× {s ∈ UC0(L) | s(x) = v} ∼=←→ ev−1(A) = {(y, s) | y ∈ B(x, 1/4), s(y) ∈ B(v, ε/4)}
(
(y, w), s

)
7−→

(
y, φ(w) ◦ s ◦ ϕ(y)−1

)
(
y, s(y), φ(s(y))−1 ◦ s ◦ ϕ(y)

)
7−→
(
y, s
)
.

One directly checks that the two given maps are inverse to each other.
We now return to the general case where r ≥ 2. To construct a local trivialization above a neigh-

borhood of a point
(
(x1, v1), . . . , (xr, vr)

)
∈ (J1L − 0)r|Fr(X), it suffices to pick neighborhoods

of the xi and apply the argument above at each of them. By choosing the neighborhoods small
enough and disjoint, the homeomorphisms constructed as above may be composed to obtain a
local trivialisation. □

On the algebraic side, for the jet evaluation map to even be surjective, we need the line bundleL to
have enough sections. As a direct consequence of the definition of jet ampleness (see Definition 2.7),
we have the following refinement of [VW15, Lemma 3.2].
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Lemma 4.10. Suppose that L is (2r − 1)-jet ample. Then the map
{
(f, x1, . . . , xr) ∈ Γhol(L)× Fr(X)

∣∣ ∀i, f(xi) = 0
}
−→ (Ω1

X ⊗ L)r|Fr(X)

(f, x1, . . . , xr) 7−→ (df(x1), . . . , df(xr))

is a fiber bundle. The subset Zr(L) is open in the domain, hence the restriction

Zr(L) −→ (Ω1
X ⊗ L− 0)r|Fr(X)

is a microfibration.

Proof. The map of the lemma is the pullback of
Γhol(L)× Fr(X) −→ (J1L)r|Fr(X)

(f, x1, . . . , xr) 7−→ (j1(f)(x1), . . . , j
1(f)(xr))

along the inclusion (Ω1
X ⊗ L)r|Fr(X) ↪→ (J1L)r|Fr(X). It is then enough to show that this latter

map is a fiber bundle. Both the domain and codomain are vector bundles on Fr(X) and the map is
linear in each fiber. By the assumption on the jet ampleness of L it is also fiberwise surjective, and
is therefore an affine bundle. The second part of the lemma follows directly from Lemma 4.4. □
Proof of Theorem 4.1. It suffices to apply Lemma 4.8 to the diagram (4.2). Its assumptions are fulfilled
by virtue of Lemmas 4.9 and 4.10, and Theorem 6.1. □

5. Stability with rational coefficients

In this section, we construct a commutative differential graded algebra (CDGA) modelling
the rational homotopy type of Zr

C0(L). Our construction only depends on known models for
configuration spaces and mapping spaces, as well as basic methods from rational homotopy. We
first recall the former, and use the latter to deduce Theorem A.

Assumption 5.1. As we will use rational homotopy theory throughout this section, we furthermore
assume that X is a simply connected space. We believe that many arguments could be carried out with
X only assumed nilpotent, and that the cohomological results could even hold without any restriction.
However, we report such careful work to the future.

5.1. Recollections on the rational homotopy of configuration spaces. Fulton and MacPher-
son first gave a rational model in the sense of Sullivan for the configuration spaces of points on a
smooth projective complex variety in [FM94]. This model was later improved by Křı́ž [Kri94] and
Totaro [Tot96] and we recall its construction here.

Construction 5.2. Let r ≥ 1 be a natural number. For any integers 1 ≤ a, b ≤ r, a ̸= b, denote
by πa : Xr → X and πab : Xr → X2 the obvious projections. Let Cr be the quotient of the graded
commutative algebra

H∗(Xr;Q)[Gab]

where the Ga,b are generators in degree 2n− 1 for 1 ≤ a, b ≤ r, a ̸= b, modulo the following relations:

Gab = Gba

(Gab)
2 = 0 (automatic from graded commutativity)

GabGac +GbcGba +GcaGcb = 0 for a, b, c distinct

π∗
a(x)Gab = π∗

b (x)Gab for a ̸= b, x ∈ H∗(X;Q).

119



12 ALEXIS AUMONIER AND RONNO DAS

Define a differential d on Cr by
d(Gab) = π∗

ab(∆)

where ∆ ∈ H2n(X2;Q) is the class of the diagonal. Then the CDGA (Cr, d) is a rational model for
the configuration space Fr(X).

5.2. Recollections on the rational homotopy of section spaces. We recall the results from
[Aum22, Section 8.1] concerning the rational cohomology of the continuous section spaceΓC0(J1L−
0). The rational homotopy equivalences

ΓC0(J1L − 0) ≃Q map(X,K(Q, 2n+ 1)) ≃
2n+1∏

i=0

K(H2n+1−i(X;Q), i)

imply that

H∗(ΓC0(J1L − 0);Q) ∼= Symgr

(⊕

i

H2n+1−i(X;Q)∨[i]

)

where H∗(X;Q)∨ = Hom(H∗(X;Q),Q) denotes the dual vector space, and [i] indicates that it is
placed in degree i. Using that homology is linearly dual to cohomology and Poincaré duality, we
have isomorphisms:

H∗−1(X) ∼= H2n+1−∗(X) ∼= H2n+1−∗(X)∨

which can be used to rewrite

H∗(ΓC0(J1L − 0);Q) ∼= Symgr

(⊕

i

H i−1(X;Q)[i]

)
. (5.3)

We will need to understand the morphism induced in cohomology by the evaluation map

ev : map(X,K(Q, 2n+ 1))×X −→ K(Q, 2n+ 1).

This is explained by Haefliger in [Hae82, Section 1.2] and we transcribe here his words in our
notation. Let {bj} be a homogeneous basis of the graded vector space H∗(X;Q). Let {b∨j } be the
dual basis under the Poincaré pairing, so that |b∨j | = 2n− |bj| and bi ⌣ b∨j = δij[X] if |bi| = |bj|.
Here δij is the Kronecker delta, and [X] ∈ H2n(X;Q) denotes the top generator in cohomology.
Under the isomorphism (5.3), each bj corresponds to a class of degree |bj|+ 1 in the cohomology
of ΓC0(J1L − 0) which we denote by sbj (the shifted class).

Lemma 5.4. Let χ ∈ H2n+1(K(Q, 2n+ 1);Q) be the canonical generator. The morphism induced
in cohomology by the evaluation map

ΓC0(J1L − 0)×X ≃Q map(X,K(Q, 2n+ 1))×X ev−→ K(Q, 2n+ 1)

sends χ to ∑

j

sbj ⊗ b∨j ∈ H∗(ΓC0(J1L − 0);Q)⊗H∗(X;Q).

Proof. To avoid cluttering the argument with too much notation, we first explain the general case of
a map f : Z×X → K(Q, 2n+1) by closely following Haefliger’s argument. (We will later take f to
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be the evaluation map.) By adjunction, f is the same datum as a map g : Z → map(X,K(Q, 2n+1)).
Let gi be the composition of g with the projection onto the i-th factor:

Z −→ map(X,K(Q, 2n+ 1)) ≃
2n+1∏

j=0

K(H2n+1−j(X;Q), j) −→ K(H2n+1−i(X;Q), i).

Haefliger then explains that the morphism induced in cohomology is given by
g∗i : H

i(K(H2n+1−i(X;Q), i);Q) ∼= H2n+1−i(X;Q)∨ −→ H i(Z;Q)

a 7−→ a ∩ f ∗(χ)

where a ∩ (z ⊗ x) = a(x)z for a ∈ H∗(X)∨, x ∈ H∗(X) and z ∈ H∗(Z). We now take f to be
the evaluation map, hence g to be the identity. Decomposing in the chosen bases, we may a priori
write

ev∗(χ) =
∑

|bj |=|bk|
λjk · (sbj)⊗ b∨k

for some constants λjk ∈ Q. Using that g is the identity, we have for all a ∈ H2n+1−i(X)∨ ∼=
H i−1(X):

a ∩ ev∗(χ) = sa .
Varying a through {bj} finishes the proof. □

5.3. A rational model for the continuous section space with marked points. We are now
ready to construct a CDGA which we will shortly show models the rational homotopy type of the
space Zr

C0(L).
Construction 5.5. Let r ≥ 1 be a natural number. We define Ar(L) to be the commutative graded
algebra

Ar(L) = Cr ⊗ Symgr

(⊕

k

Hk−1(X;Q)[k]⊕Q⟨α1, . . . , αr⟩ ⊕Q⟨η1, . . . , ηr⟩
)

, (5.6)

where each αi is in degree 2n − 1, each ηi is in degree 2n, and Cr is the rational model of Fr(X)
recalled in Construction 5.2. Let πi : Fr(X)→ X be the i-th projection. Define

εi :=
∑

j

π∗
i (bj)⊗ sb∨j ∈ Cr ⊗ Symgr

(⊕

k

Hk−1(X;Q)[k]

)
.

which is an element in degree 2n+1. In fact, by Lemma 5.4, it is the class represented by the composite

ΓC0(J1L−0)×Fr(X)
id×πi−→ ΓC0(J1L−0)×X ≃Q map(X,K(Q, 2n+1))×X ev−→ K(Q, 2n+1).

We define a differential on Ar(L) by the tensor product of the differential on Cr and the differential
on the second tensor factor given by

d(αi) = π∗
i (e(Ω

1
X ⊗ L))

and
d(ηi) = εi − π∗

i (c1(L))αi

(and the other generators to 0).

Remark 5.7. To lighten the notation, we will often write H∗−1(X;Q) :=
⊕

kH
k−1(X;Q)[k].
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Remark 5.8. We can define a Sr action on Ar(L) by acting on Cr by permuting coordinates of Xr,
trivially on H∗−1(X) and by permuting the αi and ηi. It is clear that the differential defined above
is Sr-equivariant.

Theorem 5.9. Suppose that X is simply connected. The commutative differential graded algebra
Ar(L) of Construction 5.5 is a rational model of Zr

C0(L). In particular, there is an Sr-equivariant
isomorphism

H∗(Zr
C0(L);Q) ∼= H∗(Ar(L)) .

We will prove this theorem in the next section. But first, we collect a few direct computational
consequences.

Proposition 5.10. LetL be an ample line bundle. Then there exists a d0 ≥ 1 such that e(Ω1
X⊗Ld) ̸= 0

for all d ≥ d0.

Proof. For an integer d, we compute the Euler class:

e(Ω1
X ⊗ Ld) = cn(Ω

1
X ⊗ Ld) =

n∑

i=0

ci(Ω
1
X)c1(Ld)n−i =

n∑

i=0

ci(Ω
1
X)c1(L)n−idn−i.

Recall, e.g. from the Nakai–Moishezon criterion, that ampleness of L implies that c1(L)n[X] > 0.
In particular

e(Ω1
X ⊗ Ld)[X] = (c1(L)n[X])dn + o(dn)

is a polynomial in d of degree n. Thus, there exists a d0 ≥ 1 such that this polynomial does not
vanish when evaluated at all d ≥ d0. □

Remark 5.11. The rational root theorem implies that d0 = 1 + |χ(X)| suffices in the proposition.
For curves the polynomial is ad− χ(X) with a = c1(L)[X] ≥ 1, so d0 = 3 is sufficient. We are
not aware of a bound that is uniform in all X of a given dimension n for general n > 1.

We can now state and prove our main stability result:

Proposition 5.12. Suppose that X is simply connected. Let L be an ample line bundle, and let d0 be
as in Proposition 5.10. Then for all d ≥ d0, the CDGA Ar(Ld) is isomorphic to Ar(Ld0).

Proof. The Euler class e(Ω1
X ⊗Ld) is in cohomological degree 2n and H2n(X;Z) ∼= Z. Let us write

f(d) = e(Ω1
X ⊗Ld)[X] ∈ Z for that number. By assumption, we have f(d) ̸= 0 for all d ≥ d0. We

construct an explicit morphism:
Ar(Ld0) −→ Ar(Ld)

given by the identity on the Cr tensor factor and sending the generators accordingly as follows:

sbj 7→
d0f(d0)

df(d)
sbj, αi 7→

f(d0)

f(d)
αi, ηi 7→

d0f(d0)

df(d)
ηi.

One directly checks that this defines a morphism of CDGAs. Furthermore it is visibly an isomor-
phism, whose inverse is given by swapping d0 and d in the formulas above. □
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5.4. Proof ofTheorem 5.9. The proof of Theorem 5.9 relies on recognizing Zr
C0(L) as the following

pullback:
Zr
C0(L) F r(X)× ΓC0(J1L − 0)

(Ω1
X ⊗ L− 0)⊠r|F r(X) (J1L − 0)⊠r|F r(X)

ev

which is also a homotopy pullback, as Lemma 4.9 shows that the right-hand vertical arrow is a
fibration. Our strategy is then to apply the Eilenberg–Moore theorem. In order to make explicit
computations of rational models, we will need to model the bottom arrow as a cofibration between
CDGAs. This in turn will follow from making explicit its Moore–Postnikov tower.

Let us introduce some notation. Write
ι : Ω1

X ⊗ L− 0 ↪→ J1L − 0

for the inclusion. We define the product of the two bundles above X as the pullback:

(Ω1
X ⊗ L− 0)×X (J1L − 0) J1L − 0

Ω1
X ⊗ L− 0 X

p2

p1

q1

q2

(5.13)

with pi and qi the projections. Notice that we also have a map
(id, ι) : Ω1

X ⊗ L− 0 ↪→ (Ω1
X ⊗ L− 0)×X (J1L − 0)

given by the identity on the first factor and the inclusion on the second. Writing a ∈ H2n−1(Cn−0)
for the generator, the Serre spectral sequence of the bundle q2 : Ω1

X ⊗ L− 0→ X shows that
H2n+1(Ω1

X ⊗ L− 0;Q) ∼= H2(X;Q)⊗Qa.
Although a does not survive in the spectral sequence if e(Ω1

X ⊗ L) ̸= 0, we will write
x · a ∈ H2n+1(Ω1

X ⊗ L− 0;Q)

for x ∈ H2(X) using the isomorphism above. We will also write
b ∈ H2n+1(Cn+1 − 0) = H2n+1(J1L − 0)

for the generator. We will need the following computation:

Lemma 5.14. In the cohomology group H2n+1(Ω1
X ⊗L− 0), we have the equality ι∗(b) = c1(L) · a.

Proof. The integration along the fibres of q2, or Gysin map, gives an isomorphism

(q2)! : H
2n+1(Ω1

X ⊗ L− 0)
∼=−→ H2(X)

such that (q2)!(x · a) = x in our notation. It thus suffices to check that (q2)!(ι∗(b)) = c1(L). This
follows by functoriality of the Gysin maps and the push-pull formula:

(q2)!(ι
∗(b)) = (q1)! ◦ ι!(ι∗(b))

= (q1)!(b ∪ ι!(1))
= (q1)!(b ∪ (q1)

∗(c1(L)))
= c1(L),

123



16 ALEXIS AUMONIER AND RONNO DAS

where we have used the standard fact that ι!(1) is the first Chern class of the normal line bundle of
the inclusion Ω1

X ⊗ L− 0 ⊂ J1L − 0. □
We are now ready to describe explicitly the Moore–Postnikov factorization of the rationalization

of ι. Concerning notation, we write (−)Q for the rationalization of a space.
Lemma 5.15. There is a tower:

K(Q, 2n) (Ω1
X ⊗ L− 0)Q

K(Q, 2n− 1)
(
(Ω1

X ⊗ L− 0)×X (J1L − 0)
)
Q K(Q, 2n+ 1)

(J1L − 0)Q K(Q, 2n)

(id,ι)

p1

k2

k1

where the vertical maps are principal fibrations classified by the maps k1 and k2. These are given, as
cohomology classes, as follows:

k1 = q∗1(e(Ω
1
X ⊗ L)) ∈ H2n(J1L − 0;Q)

and
k2 = p∗1(b)− p∗2(c1(L) · a) ∈ H2n+1((Ω1

X ⊗ L− 0)×X (J1L − 0);Q).

Proof. Let us first show that the bottom vertical arrow p1 is a principal fibration classified by k1.
For this, we have two squares:

(Ω1
X ⊗ L− 0)×X (J1L − 0) Ω1

X ⊗ L− 0 ∗

J1L − 0 X K(Q, 2n)

p1

q1 e(Ω1
X⊗L)

The square on the left-hand is a pullback by definition. The square on the right-hand is a pullback
after rationalisation. So the outer square is a pullback after rationalisation.

Let us now deal with the second vertical map. First, observe that the composition

Ω1
XL − 0

(id,ι)−→ (Ω1
X ⊗ L− 0)×X (J1L − 0)

k2−→ K(Q, 2n+ 1)

is null-homotopic. Indeed, this is the content of Lemma 5.14. Thus, if we consider the homotopy
pullback square:

P ∗

(
(Ω1

X ⊗ L− 0)×X (J1L − 0)
)
Q K(Q, 2n+ 1)

k2

we obtain a map Ω1
X ⊗ L − 0 → P by universal property. We claim that this map is a rational

cohomology equivalence, hence a rational equivalence. (Here we have used that X is simply
connected, hence nilpotent.) By the Eilenberg–Moore theorem applied to the principal fibration
classified by k1, a rational model of (Ω1

X ⊗ L− 0)×X (J1L − 0) is given by
H∗(X)⊗ Λ(x2n+1, y2n−1), d(x) = 0, d(y) = e(Ω1

X ⊗ L).
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Here the indices on the variables indicate the cohomological degree, and Λ(−) is the free graded
commutative algebra functor. We have also used that X is formal to use its cohomology as a model.
Again using the Eilenberg–Moore theorem, we obtain a model for P of the form

H∗(X)⊗ Λ(x2n+1, y2n−1, z2n), d(x) = 0, d(y) = e(Ω1
X ⊗ L), d(z) = x− c1(L)y.

By Lemma 5.17 below (in the notation of that lemma, z is x− c1(L) for us and the assumption is
verified using Lemma 5.18 below), the cohomology of this CDGA is isomorphic to the cohomology
of the following CDGA:

(
H∗(X)⊗ Λ(x2n+1, y2n−1)

)/(
x− c1(L)

)
, d(x) = 0, d(y) = e(Ω1

X ⊗ L),
which is also isomorphic to(

H∗(X)⊗ Λ(y2n−1)
)
, d(y) = e(Ω1

X ⊗ L),
and whose cohomology is H∗(Ω1

X ⊗ L− 0;Q). The morphism induced in rational cohomology by
the map

(id, ι) : Ω1
X ⊗ L− 0 ↪→ (Ω1

X ⊗ L− 0)×X (J1L − 0)

is surjective. Indeed this can be checked using the Eilenberg–Moore theorem applied to the pullback
square (5.13). Therefore, using commutativity of the triangle

Ω1
X ⊗ L− 0 P

(
(Ω1

X ⊗ L− 0)×X (J1L − 0)
)
Q

we see that the morphism on cohomology
H∗(P ;Q) −→ H∗(Ω1

X ⊗ L− 0;Q)

is surjective. As shown above, both sides of this morphism are abstractly isomorphic rational
vector spaces of finite dimension. Hence the morphism must be an isomorphism. □

We are now ready to give a rational model of ι in the form of a cofibration of CDGAs (see [FHT01,
Chapter 14] for more details on the model structure):

Lemma 5.16. The map induced by the inclusion

(Ω1
X ⊗ L− 0)r|Fr(X) −→ (J1L − 0)r|Fr(X)

is modelled rationally by the inclusion

Cr ⊗ Λ(x1, . . . , xr) ↪→ Cr ⊗ Λ(x1, . . . , xr, y1, . . . , yr, z1, . . . , zr)

where Cr is the model of the configuration space Fr(X) recalled in Construction 5.2, the classes
have degrees |xi| = 2n + 1, |yi| = 2n − 1, |zi| = 2n, and the differentials are given by d(xi) = 0,
d(yi) = π∗

i (e(Ω
1
X ⊗ L)) and d(zi) = xi − π∗

i (c1(L))yi.
Proof. In the case of r = 1, this follows directly by applying the Eilenberg–Moore theorem twice
on the tower provided by Lemma 5.15. For a general r ≥ 1, it suffices to take the r-fold product of
the case r = 1 and restrict to the configuration space Fr(X) ⊂ Xr. □

The proof of our main computational theorem now follows:
Proof of Theorem 5.9. It suffices to apply the Eilenberg–Moore theorem to the pullback diagram
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Zr
C0(L) F r(X)× ΓC0(J1L − 0)

(Ω1
X ⊗ L− 0)⊠r|F r(X) (J1L − 0)⊠r|F r(X)

ev

and to note that the model of Lemma 5.16 is a cofibration of CDGAs. The computation of the
derived tensor product then follows. □
5.4.1. Two lemmas in homological algebra. In the proof above, we have made use of the following
two lemmas in homological algebra. These are surely well-known, but we could not track a
reference.

For a CDGA (A, dA), a homogeneous cocycle z ∈ Ai+1 (i.e. with dAz = 0) for some i > 0 and
a free variable x, denote by (A[x], dx = z) (or just A[x] if z is understood) the CDGA A⊗ Λ(x)
with |x| = i and with differential d determined by dx = z and da = dA(a) for a ∈ A. Note that
dA descends to a differential on A/zA since dz = 0; we will denote this CDGA by simply A/zA.
There is a map of CDGAs A[x] → A/zA taking x 7→ 0. The parity assumptions in the lemmas
below are not crucial but are the only cases we need and these assumptions simplify both the
statements and the proofs.
Lemma 5.17. Suppose i is even (so that z is in odd degree) and z is such that zA = {a ∈ A | az = 0}.
Then the map A[x]→ A/zA induces an isomorphism on cohomology.

Proof. Consider A[x] as a double complex
(A[x])p,q = Ap+(i+1)qx−q

(supported on q ≤ 0) with p-differential dA : Ap+(i+1)qx−q → Ap+1+(i+1)qx−q and q-differential
dp,qz : Ap+(i+1)qx−q → Ap+(i+1)q+(i+1)x−q−1 = Ap+(i+1)(q+1)x−(q+1)

defined by dp,qz (ax−q) = (−1)p+q+1q · azx−q−1. Then we have the spectral sequence
Ep,q

1 = Hq(A[x]p,•, dz) =⇒ Hp+q(A[x]).

But at any q < 0, the differential dp,qz is, up to a non-zero scalar, multiplication by z. So by the
assumption on z we have the exactness Ker dp,qz = Im dp,q−1

z for q < 0 and arbitrary p. Therefore
E1 is supported on q = 0 with

Ep,0
1 = Ap/zAp

and differential d1 induced by dA. So the spectral sequence collapses on E2 and we get the claimed
isomorphism. □

In practical cases, to verify the assumptions of Lemma 5.17 above it is useful to use the following
result:
Lemma 5.18. Suppose i is odd, A is of the form B[t] with |t| = i and z ∈ λt+Bi for some λ ∈ Q×.
Then zA = {a ∈ A | az = 0}.
Proof. Reduce to the case λ = 1 without loss of generality, so z = t + b for some b ∈ Bi. Since
|z| = i is odd, z2 = 0, so a ∈ zA =⇒ az = 0. So suppose za = 0, and assume a is homogeneous
of degree j. Then a = b1t+ b0 for some b0 ∈ Bj , b1 ∈ Bj−i. Now

0 = az = (b1t+ b0)(t+ b) = b1tb+ b0t+ b0b = (b0 − b1b)t+ b0b =⇒ b0 = b1b,

since t2 = 0 and tb = (−1)i2bt = −bt. But now a = (b1t+ b1b) = b1z ∈ zA. □
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5.5. Hodge weights. Since Zr(L) and U(L) are quasiprojective varieties, their rational cohomol-
ogy are canonically equipped with mixed Hodge structures. In fact, the mixed Hodge structure on
the stable cohomology ofH∗(U(L);Q) is compatible with its description as Symgr(H

∗−1(X)(−1)).
This was shown in [Aum22, Proposition 8.6], and in [DH22, Theorem 1] after passing to the associ-
ated weight graded. Concretely, the vector space map

Symgr(H
∗−1(X;Q)(−1)) −→ GrWH

∗(U(L);Q)

is an isomorphism of mixed Hodge structures. Here the (−1) denotes a Tate twist, in particular
if bj has weight w then sbj in the notation of Section 5.2 has weight w + 2. Similarly, the Křı́ž–
Totaro CDGA, due to its identification with the Leray spectral sequence of the algebraic inclusion
Fr(X) ↪→ Xr, has a mixed Hodge structure which is compatible with that on H∗(Fr(X)) after
passing to the weight graded. If we identify αi and ηi with the fundamental classes (with a degree
shift in the case of ηi) that they correspond to (i.e. identifyQ⟨αi⟩ ∼= Q(−n) andQ⟨ηi⟩ ∼= Q(−n−1)),
we can carry out Construction 5.5 of Ar(L) in the category of mixed Hodge structures.

Conjecture 5.19. With the mixed Hodge structure defined above, the isomorphisms in Theorem A
are isomorphisms of mixed Hodge structure after passing to the weight graded.

Proving Conjecture 5.19 plausibly involves carrying out the computation in the previous section
in an appropriate category of CDGAs equipped with mixed Hodge structures. However, such a
lift of the computation seems far from straightforward using available technology and is at least
beyond the scope of this project. Instead, we strongly believe that if we assign weights to the
generators of Ar as predicted by Conjecture 5.19 then we obtain the correct weights on H∗(Zr(L)).
The following is stated as a conjecture, with an idea of a proof, because a fully detailed proof
seemed to involve too much bookkeeping.

Conjecture 5.20. With the above weight grading on Ar(L), which makes the differentials weight
preserving, the isomorphisms in Theorem A are weight preserving.

Idea of a proof. Consider the Leray spectral sequence of the composition of the jet map and the
projection

π : Zr(L) −→ (Ω1
X ⊗ L− 0)r|Fr(X).

Since this map is algebraic, the spectral sequence is of mixed Hodge structures, and computes the
correct weights in cohomology. But π and any restriction π|π−1(V ) for V open in the codomain is
also a microfibration. By Lemma 4.8 and Theorem 6.1, we may compare the Leray sheaves of π and
πC0 in the diagram

Zr(L) Fr
C0(L)

(Ω1
X ⊗ L− 0)r|Fr(X) (Ω1

X ⊗ L− 0)r|Fr(X)

π

j1

πC0

and obtain thatRqπ∗Q is locally constant in the stable range. Therefore the Leray spectral sequence
for π agrees with the Leray–Serre spectral sequence for πC0 , starting from the E2 page. It should
now be possible to compute the differentials in this Serre spectral sequence using rational models,
following Grivel [Gri79]. In essence, he shows how the Serre spectral sequence arises from a
relative Sullivan extension modelling the fibration by filtering the base CDGA by the degree. It
remains however to relate Ar(L) to such a relative Sullivan extension. □
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If Z is a complex quasiprojective variety, its Euler characteristic χ(Z) has a lift

χHS(Z) :=
∑

i

(−1)i[H i(Z)] ,

taking values in the Grothendieck ring K0(MHS) of mixed Hodge structures. If Z further has an
algebraic action by a group G then for any (finite-dimensional) G-representation V over Q we can
define

χHS(Z;V ) :=
∑

i

(−1)i[H i(Z)⊗G V ] .

By Deligne’s bounds on weights, cohomology classes of a given weight only occur in a fixed range
of degrees. Thus Conjecture 5.19 would imply:

Theorem 5.21 ([How19, Theorem A]). If L is very ample and V is a finite-dimensional Sr represen-
tation, then χHS(Fr(L⊗d);V ) stabilizes weightwise to χHS(Ar(L)⊗Sr V ) as d→∞.

Taking the weightwise Euler characteristic of Conjecture 5.20, which is well-defined since a given
weight w can only appear in cohomology in degrees ∗ ≤ w, we recover a version of Theorem 5.21.
In [How19] Howe also shows analogous stabilization results for arithmetic statistics of Fr(L⊗d)
and related spaces. However these quantities a priori have contributions from cohomology in all
degrees simultaneously (just like usual Euler characteristic) so our results do not concretely imply
anything about them.

6. The h-principle

Let (x1, . . . , xr) ∈ Fr(X) be r distinct points and vi ∈ (J1L− 0)|xi
be non-zero vectors at these

points. To lighten the notation, we will abbreviate the whole tuple by

v⃗ :=
(
(x1, v1), . . . , (xr, vr)

)
∈ (J1L − 0)r .

The space of holomorphic sections with derivatives prescribed by v⃗ is defined to be:

Γhol(v⃗) :=
{
f ∈ Γhol(L)

∣∣ j1(f)(xi) = (xi, vi) for each i = 1, . . . , r
}

.

This is an affine subspace of the vector space of global sections Γhol(L) and contains as an open
subspace the previously defined

U(v⃗) := Γhol(x⃗) ∩ U(L) .

Similarly, we have an analogous space defined by continuous sections of J1L with prescribed
values at the xi:

UC0(v⃗) :=
{
s ∈ ΓC0(J1L)

∣∣ s(xi) = (xi, vi) for each i = 1, . . . , r
}
⊂ ΓC0(J1L − 0) .

The jet expansion j1 restricts to these subspaces and the goal of this section is to prove the following
result:

Theorem 6.1. For a d-jet ample line bundle L, the jet map

j1 : U(v⃗) −→ UC0(v⃗)

induces an isomorphism in integral homology in the range of degrees ∗ < d−1
2
− r.
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The proof follows that of [Aum22] but we could not find a direct way of applying the theorem
therein. Indeed, there are two main differences. Firstly, we apply a Vassiliev-style argument to an
affine subspace Γhol(v⃗) ⊂ Γhol(L) of the vector space of global sections. This is in contrast with
[Aum22] where the full space of global sections is considered. Secondly, a section f ∈ Γhol(v⃗) can
only be singular at points in X − {x1, . . . , xr} because it has non-vanishing derivatives at the
special chosen points xi. As the proofs of [Aum22, Section 3] relied on compactness of X which
we lose when removing points, we will need to adapt them to our case.

6.1. Constructing the Vassiliev spectral sequence. The space U(v⃗) is an open subset in the
complex affine space Γhol(v⃗) of complex dimension dimC Γhol(v⃗), whose complement we denote
by Σ(v⃗). We topologize them using the canonical topology on the ambient complex affine space.
By Alexander duality, there is an isomorphism

Ȟ i
c(Σ(v⃗))

∼= H̃2 dimC Γhol(v⃗)−1−i(U(v⃗)).

We want to compute the homology ofU(v⃗), but we will equivalently study the compactly supported
Čech cohomology of its complement. This is technically advantageous: the complement admits a
filtration by the number of singularities of a section f ∈ Σ(v⃗), which allows the construction of a
spectral sequence à la Vassiliev. In practice, it is easier to work with an auxiliary filtered space
mapping properly down to Σ(v⃗) with acyclic fibers. We construct this space and its associated
spectral sequence below.

We write X◦ := X − {x1, . . . , xr} to denote the punctured space. Define
Sing(f) :=

{
y ∈ X◦ | f is singular at y

}
⊂ X◦

to be the singular subspace of a section f ∈ Σ(v⃗). Let F be the category whose objects are the
finite sets [n] := {0, . . . , n} for n ≥ 0 and whose morphisms are all maps of sets [n]→ [m]. Let
Top be the category of topological spaces and continuous maps between them. On objects, define
the following functor:

X : Fop −→ Top

[n] 7−→ X[n] := {(f, y0, . . . , yn) ∈ Γhol(v⃗)× (X◦)n+1 | ∀i, yi ∈ Sing(f)}
where X[n] is given the subspace topology from Γhol(v⃗)× (X◦)n+1. On morphisms, for a map of
sets g : [n]→ [m], we define it by:

X(g) : X[m] −→ X[n]

(f, y0, . . . , ym) 7−→ (f, yg(0), . . . , yg(n)).

For an integer k ≥ 0, let F≤k be the full sub-category of F on objects [n] for n ≤ k. Write
|∆n| = {(t0, . . . , tn) | ∀i, 0 ≤ ti ≤ 1 and t0 + · · ·+ tn = 1} ⊂ Rn+1

for the standard topological n-simplex, and denote by ∂|∆n| its boundary. In particular, the
assignment [n] 7→ |∆n| gives a functor F→ Top. For an integer j ≥ 0, we define the j-th geometric
realization of X by the following coend:

RjX :=

∫ [n]∈F≤j

X[n]× |∆n| =


 ⊔

0≤n≤j

X[n]× |∆n|


 / ∼
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where the equivalence relation∼ is generated by (X(g)(z), t) ∼ (z, g∗(t)) for all maps g : [n]→ [m]
in F. Here g∗ : |∆n| → |∆m| denotes the usual map induced on the simplices by functoriality. Note
that the main difference between our construction and the geometric realisation of a simplicial
space resides in the fact that we allow all maps of sets, in particular the permutations [n]→ [n] are
morphisms in F.

As for simplicial spaces, RjX is obtained from Rj−1X via a pushout diagram along a subspace,
which can be thought of as a kind of latching object. More precisely, define

Lj := {(f, y0, . . . , yj) ∈ Γhol(v⃗)× (X◦)j+1 | ∃l ̸= k such that yl = yk} ⊂ X[j]

topologized as a subspace of X[j], and write Lj×Sj+1
|∆j| for the quotient space of Lj×|∆j| by the

symmetric group Sj+1 acting on Lj by permuting the singularities yi, and on |∆j| by permuting
the coordinates. The following result is immediate from the definitions.

Lemma 6.2 ([Aum22, Proposition 3.3]). There is a pushout square of topological spaces:
(
Lj ×Sj+1

|∆j|
)⋃ (

X[j]×Sj+1
∂|∆j|

)
Rj−1X

X[j]×Sj+1
|∆j| RjX

where the left vertical map is a closed embedding. □
Using the lemma inductively, one sees that the spaces RjX are paracompact and Hausdorff, and

that the natural map Rj−1X → RjX is a closed embedding. Another direct consequence is the
following homeomorphism:

RjX−Rj−1X ∼= Yj ×Sj+1
|∆̊j| (6.3)

where
Yj :=

{
(f, y0, . . . , yj) ∈ X[j] | yl ̸= yk if l ̸= k

}
= X[j]− Lj ⊂ X[j]

is the subspace of X[j] where the singularities are pairwise distinct, and |∆̊j| is the interior of the
simplex. The next lemma is stated in [Aum22, Lemma 3.5] but its proof needs to be adapted here to
account for the fact that X◦ is not compact.

Lemma 6.4. For any n ≥ 0, the map ρn : X[n]→ Γhol(v⃗) given by (f, y0, . . . , yn) 7→ f is a proper
map.

Proof. Let K ⊂ Γhol(v⃗) be compact. Then
{
(f, x) ∈ K ×X

∣∣ x /∈ Sing(f)
}

is open in K × X and contains K × {xi} for i = 1, . . . , r. By the tube lemma, it must contain
some K × V , where V ⊂ X is a neighborhood of {x1, . . . , xr}. Then ρ−1

n (K) is a closed subset of
K × (X − V )n+1 and hence is compact. □

The natural projections maps X[n] × |∆n| → X[n]
ρn→ Γhol(v⃗) give rise to a map from the

geometric realization τj : R
jX → Σ(v⃗). The proof of [Aum22, Lemma 3.6] using the adapted

Lemma 6.4 above then shows that:

Lemma 6.5. For any integer j ≥ 0, the map τj : RjX→ Σ(v⃗) is proper. □
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We are now half-way through the construction of a replacement of Σ(v⃗): the space RjX maps
properly down to it, but the fibers are not all acyclic. Indeed, the fiber τ−1

j (f) above a section
f ∈ Σ(v⃗) that has at most j + 1 singularities is a (possibly degenerate) j-simplex whose vertices
are indexed by the singular points of f . Hence its homology vanishes in positive degrees. On the
contrary, if f has at least j + 2 singularities the fiber is not contractible nor acyclic in general. This
issue is fixed by the following construction. Let N ≥ 0 be an integer and let

Σ(v⃗)≥N+2 :=
{
f ∈ Γhol(v⃗) | #Sing(f) ≥ N + 2

}
⊂ Σ(v⃗)

be the subspace of those sections with at least N + 2 singular points. We denote by Σ(v⃗)≥N+2 its
closure in Σ(v⃗). Define RN

coneX by the following homotopy pushout:

τ−1
N

(
Σ≥N+2

)
RNX

Σ≥N+2 RN
coneX.

τN
ho⌜

The three other spaces map to Σ(v⃗), thus yielding a map from the homotopy pushout π : RN
coneX→

Σ(v⃗).

Proposition 6.6 ([Aum22, Lemma 3.8, Lemma 3.9, Proposition 3.10]). The space RN
coneX is para-

compact, locally compact and Hausdorff. The map π : RN
coneX → Σ(v⃗) is proper and induces an

isomorphism in cohomology with compact supports. □

Using the closed embeddings Rj−1X ⊂ RjX obtained in Lemma 6.2, we define the following
filtration on RN

coneX:
F0 = R0X ⊂ F1 = R1X ⊂ · · · ⊂ FN = RNX ⊂ FN+1 = RN

coneX.

By standard arguments on spectral sequences associated to filtered complexes, we obtain:

Proposition 6.7 ([Aum22, Proposition 3.11]). There is a spectral sequence on the first quadrant
s, t ≥ 0:

Es,t
1 = Ȟs+t

c (Fs − Fs−1;Z) =⇒ Ȟs+t
c (RN

coneX;Z) ∼= H̃2 dimC Γhol(v⃗)−1−s−t(U(v⃗);Z).
The differential dr on the r-th page of the spectral sequence has bi-degree (r, 1−r), i.e. it is a morphism
ds,tr : Es,t

r → Es+r,t−r+1
r . □

6.2. Analyzing the spectral sequence. In this section, we describe the terms on the E1-page of
the spectral sequence given in Proposition 6.7. The constructions of the previous section and the
spectral sequence depend on an integer N that we are a priori free to choose. We will follow the
following convention for the remainder of this article:

Convention 6.8. Let N be the largest integer such that L is (2(r +N + 1)− 1)-jet ample.

We will consider two cases separately:
(1) When 0 ≤ s ≤ N , we have Fs − Fs−1 = RsX − Rs−1X whose cohomology can be

understood using the homeomorphism (6.3).
(2) When s = N + 1, we have Fs − Fs−1 = RN

coneX−RNX whose cohomology we will bound.
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Note that outside the band 0 ≤ s ≤ N + 1, all the terms Es,t
1 vanish as the filtration giving rise to

the spectral sequence is indexed from 0 to N + 1.

6.2.1. Cohomology in the columns 0 ≤ s ≤ N . We first treat the cases where 0 ≤ s ≤ N . Let us
recall the homeomorphism (6.3):

Fs − Fs−1 = RsX−Rs−1X ∼=
{
(f, y0, . . . , ys) ∈ X[s] | yl ̸= yk if l ̸= k

}
×Ss+1

˚|∆s|

where the symmetric group Ss+1 acts on the left by permuting the singular points yi and on the
right by permuting the vertices of the simplex. There is a natural map down to the configuration
space Fs+1(X◦) which forgets the simplex and the section f . An argument similar to that of
[Aum22, Section 4.1] then shows that this map is a fiber bundle.

Lemma 6.9. For 0 ≤ s ≤ N , the natural map

Fs − Fs−1
∼=
{
(f, y0, . . . , ys) ∈ X[s] | yl ̸= yk if l ̸= k

}
×Ss+1

˚|∆s| −→ Fs+1(X◦)

[(f, y0, . . . , ys), λ] 7−→ {y0, . . . , ys}

is a fiber bundle. The fiber above a point y⃗ = {y0, . . . , ys} ∈ Fs+1(X◦) is the product

˚|∆s| ×
{
f ∈ Γhol(v⃗) | y⃗ ⊂ Sing(f)

}
,

where the right-hand term is the complex affine subspace of Γhol(v⃗) of those sections having all points
in y⃗ as singularities. It is of complex dimension dimC Γhol(v⃗)− (s+ 1)(dimCX + 1).

Proof sketch. The main point is to see that the affine spaces
{
f ∈ Γhol(v⃗) | y⃗ ⊂ Sing(f)

}
all have

the same dimension regardless of y⃗ ∈ Fs+1(X◦). They are given by (s+1)(dimCX +1) equations:
a section f is singular at yi when both the value f(yi) and all the partial derivatives of f at yi vanish.
In total, this imposes 1 + dimCX equations on f . The lemma is then proven if these equations are
linearly independent. The line bundle L is (2(r + s+ 1)− 1)-jet ample by Convention 6.8, so the
evaluation map

Γhol(L) −→
r⊕

i=1

(J1L)|xi
⊕

s⊕

j=0

(J1L)|yi

is surjective. This directly implies that the considered equations are linearly independent. □

Remark 6.10. The proof above follows very closely the one given for [Aum22, Lemma 4.2], except
for the fact that we also impose derivatives at the fixed xi to get the existence of sections in Γhol(v⃗).
This is reflected by the appearance of the constant r in the required jet ampleness of L.

Applying the Thom isomorphism for cohomology with compact supports yields:

Lemma 6.11 (Compare [Aum22, Proposition 4.3]). For 0 ≤ s ≤ N , we have an isomorphism

Es,t
1
∼= Ȟ t−2 dimC Γhol(v⃗)+2(s+1)(dimC X+1)

c (Fs+1(X◦);Zsign)

where Zsign is the local coefficients system on the configuration space given by the sign representation.
□
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6.2.2. Cohomology in the column s = N + 1. We now turn our attention to the last column on the
first page of the spectral sequence. In this case s = N + 1 and the groups are

EN+1,t
1 = ȞN+1+t

c (RN
coneX−RNX;Z).

We shall show that these group vanish for t big enough. More precisely, following [Aum22,
Section 4.2] we obtain:
Lemma 6.12 (Compare [Aum22, Proposition 4.9]). For t > 2 dimC Γhol(v⃗)− 2N − 2 we have

EN+1,t
1 = ȞN+1+t

c (RN
coneX−RNX;Z) = 0.

Proof sketch. The proof of [Aum22, Proposition 4.9] actually applies to this situation, but we sketch
the main ideas in the particular case at hand. By construction, the space RN

coneX − RNX is the
fiberwise (for the map τN : RNX→ Σ(v⃗)) open cone over Σ(v⃗)≥N+2. It can be stratified by

Str−1 := Σ(v⃗)≥N+2,

Str0 :=

(
τ−1
N

(
Σ(v⃗)≥N+2

)
×]0, 1[

)
∩
(
R0X×]0, 1[

)
,

Strj :=

(
τ−1
N

(
Σ(v⃗)≥N+2

)
×]0, 1[

)
∩
(
(RjX−Rj−1X)×]0, 1[

)
for 1 ≤ j ≤ N.

Furthermore, the homeomorphism (6.3) shows that for 0 ≤ j ≤ N we have a homeomorphism

Strj ∼=
(
Y ≥N+2
j ×Sj+1

˚|∆j|
)
×]0, 1[

where
Y ≥N+2
j :=

{
(f, y0, . . . , yj) ∈ Γhol(v⃗)× Fj+1(X◦) | f ∈ Σ(v⃗)≥N+2 and yi ∈ Sing(f)

}
.

One sees that this latter space Y ≥N+2
j is a real semi-algebraic set and that the natural forgetful map

{
(f, y0, . . . , yN) ∈ Γhol(v⃗)× FN+1(X◦) | yi ∈ Sing(f)

}
−→ Y ≥N+2

j

is algebraic and has dense image. This implies that the dimension of Y ≥N+2
j is at most that of

the space on the left-hand side. One computes it to be at most 2 dimC Γhol(v⃗) − 2(N + 1) (see
[Aum22, Lemma 4.8]), implying that all the strata have dimension at most 2 dimC Γhol(v⃗)−N − 1.
Therefore the compactly supported cohomology of their union vanishes above this dimension, i.e.
ȞN+1+t

c (RN
coneX−RNX;Z) = 0 whenever N + 1 + t > 2 dimC Γhol(v⃗)−N − 1. □

6.3. From holomorphic to continuous sections. In the previous sections, we have constructed
a spectral sequence converging to the homology of U(v⃗) and have described some features of its
first page. We would like to do the same for UC0(v⃗) as well as provide a morphism of spectral
sequences that is an isomorphism in a range on the first page. But the space of continuous sections
of J1L is not finite dimensional, hence Alexander duality cannot be applied directly. This problem
can be remedied by introducing a growing filtration

U(v⃗)
j1−→ U0(v⃗) := Γhol(J

1L − 0) −→ U1(v⃗) −→ · · · −→ colim
k→∞

Uk(v⃗)
≃−→ UC0(v⃗)

where every map Uk(v⃗)→ Uk+1(v⃗) is shown to be a homology isomorphism in a range using a
spectral sequence similar to the one above, and the colimit of the Uk(v⃗) is homotopy equivalent to
UC0(v⃗).
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6.3.1. Definition of the filtration. We follow [Aum22, Section 5] to describe roughly how the spaces
Uk(v⃗) are constructed, but refer to that article for the full details. The main idea is to consider the
complex conjugate (or equivalently the dual) line bundle L of L. Taking the complex conjugates of
the values of a section gives an R-linear morphism:

· : ΓC0(L) −→ ΓC0(L).
For a complex vector space V , we will denote by V the complex vector space with the same
underlying abelian group, but where the C-module structure is given by multiplication by the
complex conjugate. Complex conjugation thus gives a C-linear morphism Γhol(L)→ ΓC0(L). As
the tensor product L⊗L is the trivial line bundle X ×C one can consider the multiplication map:

Γhol(L)⊗C Γhol(L) ⊂ ΓC0(L)⊗C ΓC0(L) −→ ΓC0(L ⊗ L) ∼= ΓC0(X × C). (6.13)
Likewise, for any integer k ≥ 0, one gets a multiplication map

µk : Γhol((J
1L)⊗ Lk)⊗C Γhol(Lk) −→ ΓC0((J1L)⊗ Lk ⊗ Lk) ∼= ΓC0(J1L).

Definition 6.14. For any integer k ≥ 0, we define
Γk(v⃗) := µ−1

k (ΓC0(v⃗))

and
Uk(v⃗) := µ−1

k (UC0(v⃗)).

Importantly for us, the space Γk(v⃗) is an affine subspace of the finite dimensional complex vector
space Γhol((J

1L)⊗ Lk)⊗C Γhol(Lk), hence is itself finite dimensional. We now describe the maps
Uk(v⃗)→ Uk+1(v⃗). Using the triviality of L ⊗ L, we can choose an element

η ∈ Γhol(L)⊗C Γhol(L)
corresponding to the constant function with value 1 under the multiplication map (6.13). Multiply-
ing sections by this element gives a commutative square:

Γhol((J
1L)⊗ Lk)⊗C Γhol(Lk) ΓC0(J1L)

Γhol((J
1L)⊗ Lk+1)⊗C Γhol(Lk+1) ΓC0(J1L)

·η

µk

µk+1

This commutativity readily implies that the left vertical map restricts to a map
·η : Uk(v⃗) −→ Uk+1(v⃗).

6.3.2. Comparing spectral sequences. As explained in [Aum22, Section 5.4], the construction of the
spectral sequence and the analysis of its first page can be carried out for the spaces Uk(v⃗) ⊂ Γk(v⃗).
We summarize the results here:

Proposition 6.15 (Compare [Aum22, Proposition 5.5]). LetN be as in Convention 6.8. For any integer
k ≥ 0, there is a cohomologically-indexed spectral sequence supported on the strip 0 ≤ s ≤ N + 1
and t ≥ 0:

Es,t
1 =⇒ H̃2 dimC Γk(v⃗)−1−s−t(Uk(v⃗);Z).

When 0 ≤ s ≤ N , there is an isomorphism

Es,t
1
∼= Ȟ t−2 dimC Γk(v⃗)+2(s+1)(dimC X+1)

c (Fs+1(X◦);Zsign)
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where Zsign is the local coefficients system on the configuration space given by the sign representation.
And when s = N + 1 and t > 2 dimC Γk(v⃗)− 2N − 2 we have

EN+1,t
1 = 0. □

For any k ≥ 0 the groups on the first page in the range 0 ≤ s ≤ N are all given in terms of the
cohomology of configuration spaces of points in X◦. The only subtle difference is that these groups
are indexed differently, as the degree shift depends on the dimension of Γk(v⃗) which varies with
k. This degree shift is also apparent on the abutment of the spectral sequence. Thus, if we could
construct a morphism of spectral sequences shifting the total degree by dimC Γk+1(v⃗)−dimC Γk(v⃗),
we would obtain on the abutment a morphism

H̃∗(Uk(v⃗);Z) −→ H̃∗(Uk+1(v⃗);Z).
Suppose furthermore that we could construct this morphism of spectral sequences such that it
were an isomorphism on the Es,t

1 groups when 0 ≤ s ≤ N (which we recall are equal up to this
degree shift). Then the vanishing result in the column s = N + 1 would imply that the morphism
on the abutment would be an isomorphism in the range of degrees ∗ < N .

In [Aum22, Section 6], it is explained how to construct this morphism such that the induced mor-
phism H̃∗(Uk(v⃗);Z)→ H̃∗(Uk+1(v⃗);Z) is the one induced by ·η : Uk(v⃗)→ Uk+1(v⃗) in homology.
Likewise, the argument works for the jet map j1 : U(v⃗)→ U0(v⃗). To sum up, we have:
Proposition 6.16 (Compare [Aum22, Proposition 6.6]). Let N be as in Convention 6.8. Let k ≥ 0
be an integer. The map ·η : Uk(v⃗)→ Uk+1(v⃗) induces an isomorphism in homology in the range of
degrees ∗ < N . Similarly, the jet map j1 : U(v⃗)→ U0(v⃗) induces an isomorphism in homology in the
same range. □
6.3.3. The Stone–Weierstrass theorem. In view of Proposition 6.16, it suffices to show that

colim
k→∞

Uk(v⃗) −→ UC0(v⃗)

is a weak homotopy equivalence to finish the proof of Theorem 6.1. The proof is analogous to that
given in [Aum22, Section 7], but using the following version of the Stone–Weierstrass theorem
with interpolation.
Theorem 6.17 (Stone–Weierstrass). Let E → B be a finite rank real vector bundle over a compact
Hausdorff space. Let A ⊂ C0(B,R) be a subalgebra, {sj}j∈J be a set of sections, and A be the
A-module generated by the sj . Let P = {b1, b2, . . . , bk} ⊂ B be a finite (possibly empty) set of
distinct points, and V = {v1, v2, . . . , vk} ⊂ E be vectors vi ∈ E|bi in the fibers above the bi. Define

AP,V := {f ∈ A | ∀i, f(bi) = vi} ⊂ A
and

ΓP,V
C0 (E) := {f ∈ ΓC0(E) | ∀i, f(bi) = vi} ⊂ ΓP,V

C0 (E)

to be the subsets of sections with prescribed values at the bi. Suppose that
(1) the subalgebra A separates the points of B: for any x, y ∈ B, there exists h ∈ A such that

h(x) ̸= h(y);
(2) for any x ∈ B, there exists h ∈ A such that h(x) ̸= 0;
(3) for any x ∈ B, the fiber Ex is spanned by the sj(x) as an R-vector space.

Then AP,V is dense for the sup-norm (induced by the choice of any inner product on E) in the space
ΓP,V
C0 (E).
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Sketch of a proof. The theorem follows from the original Stone–Weierstrass theorem for functions
from a compact space to the real line when the set P is empty, and its variations allowing interpola-
tion in general (see e.g. [Deu66, Theorem 1]). Indeed, by compactness, we may find a finite number
of sections s1, . . . , sn such that s1(x), . . . , sn(x) span the fiber at each x ∈ B. Then A contains
all sections of the form a1s1 + · · · + ansn for ai ∈ A, and every continuous section of E can be
written as f1s1 + · · ·+ fnsn with fi ∈ C0(B,R). We may finally use the usual Stone–Weierstrass
theorem, or its adaptation with interpolation, for the functions fi. □
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