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Preface

This thesis has been prepared in partial fulfilment of the requirements for the PhD
degree at the Department of Mathematical Sciences, Faculty of Science, University of
Copenhagen. The project has been supervised by professor Rolf Poulsen from the same
department and was conducted in the period between March 2019 and March 2022.

I first wish to thank Rolf Poulsen for encouraging me to apply for a PhD position and for
the many interesting discussions we had about the joint paper that we wrote. I would
also like to thank Elisa Nicolato from Aarhus University for letting me stay for a week
at the end of my PhD now that travelling abroad became difficult amid the Covid-19
pandemic. I much appreciate the discussions we had about rough volatility and I like-
wise do for the many other people that I discussed the topic with on e-mail. Lastly, I
am thankful for the many helpful colleagues that I met at the department during my time.

The thesis consists of an introduction and three self-contained papers. Notation may
change between the papers, though, it will always be properly introduced. It should
therefore not cause any confusion.

Sigurd Emil Rømer
Østerbro, March 2022
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Abstract

This thesis deals with stochastic volatility for financial markets with a special focus on the
recent paradigm of rough volatility. We start with an investigation of how the volatility-
of-volatility of the S&P 500 index depends on volatility. Our main conclusion is that
volatility behaves more like a log-normal model than a square-root model. Moreover,
we find that an accurate specification of the level-dependence matters for the predictive
quality, including for the effective hedging of options. Next, we propose the hybrid
multifactor scheme for the simulation of stochastic Volterra equations with completely
monotone kernels, rough volatility especially. We prove convergence and develop efficient
methods for computation of the VIX index for a number of volatility models: multifactor
Volterra Bergomi, quadratic Volterra Heston, generalised CEV Volterra. We observe
good numerical convergence except for a specific parameter choice under rough Heston
where a large positivity bias appears. We then look at the problem of calibrating to SPX
options and jointly to SPX and VIX options. The key observations are as follows: We
find that the one-factor rough Bergomi model falls short on solving the SPX calibration
problem in two ways: (1) it fails to sufficiently separate the volatility-of-volatility that is
implied by option prices at short and long expiries, (2) it fails to create a term structure
of smile (a)symmetry; the latter is needed as we find short-term option smiles to be
more symmetric, generally. We propose an alternative volatility model driven by two
Ornstein-Uhlenbeck processes that uses a non-standard transformation function. We
demonstrate that our model can calibrate almost perfectly to SPX options and very well
to SPX and VIX options jointly. This suggests that the SPX and VIX options markets
can largely be reconciled with two-factor classical volatility, all without roughness and
jumps.
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Resumé

Denne afhandling omhandler stokastisk volatilitet for finansielle markeder med et specielt
fokus p̊a det nylige paradigme rough volatilitet. Vi begynder med en undersøgelse af hvor-
dan volatiliteten-af-volatiliteten p̊a S&P 500 indekset afhænger af volatiliteten selv. Vi
bemærker at volatiliteten opfører sig mere som en log-normal model end en kvadra-
trodsmodel. Endvidere bemærker vi at en korrekt specifikation af niveauafhængighe-
den er væsentligt for den prædiktive kvalitet, herunder til at hedge optioner effektivt.
Derefter foresl̊ar vi hybrid multifaktor skemaet til simulation af stokastiske Volterra
ligninger med fuldstændigt monotone kernels, rough volatilitet specielt. Vi beviser
konvergens og udleder effektive metoder til beregning af VIX indekset for en række
volatilitetsmodeller: multifaktor Volterra Bergomi, kvadratisk Volterra Heston, gener-
aliseret CEV Volterra. Vi observerer god numerisk konvergens bortset fra et specifikt
parametervalg under rough Heston hvor et betydeligt positivitetsbias opst̊ar. Vi tager
derefter et kig p̊a kalibreringsproblemet til SPX optioner og det til SPX og VIX optioner
samlet. De vigtigste observationer er som følger: Vi bemærker at et-faktor rough Bergomi
modellen kommer til kort p̊a to m̊ader i forhold til at løse SPX kalibreringsproblemet:
(1) modellen kan ikke i tilstrækkelig grad afkoble den volatilitet-af-volatilitet der er un-
derforst̊aet i markedspriserne p̊a henholdsvis korte og lange tidshorisonter, (2) modellen
er ikke i stand til at skabe en tidsstruktur af (a)symmetri; det sidste er nødvendigt idet vi
finder at optionssmil for korte tidshorisonter er mere symmetriske, generelt. Vi foresl̊ar
en alternativ model drevet af to Ornstein-Uhlenbeck processer der benytter en ikke-
standard transformationsfunktion. Vi demonstrerer at vores model kan kalibrere næsten
perfekt til SPX optioner og meget godt til SPX og VIX optioner samlet. Observationen
antyder at SPX og VIX markederne kan forenes med to-faktor klassisk volatilitet, helt
uden roughness og spring.
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Summary

This dissertation is based on three self-contained papers. Their abstracts are given below:

• How does the volatility of volatility depend on volatility? We investigate
the state dependence of the variance of the instantaneous variance of the S&P 500
index empirically. Time-series analysis of realized variance over a 20-year period
shows strong evidence of an elasticity of variance of the variance parameter close
to that of a log-normal model, albeit with an empirical autocorrelation function
that one-factor diffusion models fail to capture at horizons above a few weeks.
When studying option market behavior (in-sample pricing as well as out-of-sample
pricing and hedging over the period 2004–2019), messages are mixed, but system-
atic, model-wise. The log-normal but drift-free SABR (stochastic-alpha-beta-rho)
model performs best for short-term options (times-to-expiry of three months and
below), the Heston model—in which variance is stationary but not log-normal—is
superior for long-term options, and a mixture of the two models does not lead to
improvements.

• Hybrid multifactor scheme for stochastic Volterra equations with com-
pletely monotone kernels. We propose a hybrid scheme for the simulation of
stochastic Volterra equations with completely monotone kernels. Our scheme is a
mix of the hybrid scheme for Brownian semistationary processes of Bennedsen et
al. [Financ. Stoch., 21(4), 931-965, 2017] and the multifactor approximations of
Abi Jaber et al. [SIAM J. Finan. Math., 10(2), 309-349, 2019]. Merging the two
methods allow us to both accurately capture singularities and efficiently track the
inherent path dependence. We consider a forward process that is easily computable
under our scheme and show how it facilitates simulation of the VIX index for a
number of volatility models of the Volterra type. Numerical experiments indicate
good convergence for rough Bergomi type models and the quadratic rough Heston
model. Experiments on rough Heston, where we had to truncate values in zero,
sometimes resulted in a large positive bias.

• Empirical analysis of rough and classical stochastic volatility models to
the SPX and VIX markets. We conduct an empirical analysis of rough and
classical stochastic volatility models to the SPX and VIX options markets. Our
analysis focusses primarily on calibration quality and is split in two parts. In the
first part, we perform a historical calibration to SPX options over the years 2004-
2019 of a selection of models that include the one-factor rough Bergomi model.
In the second part, we consider three calibration dates with low, typical, and
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high volatility, but examine a wide selection of models and calibrate to both SPX
options and jointly to SPX and VIX options. The key results are as follows:
The rough Bergomi model fails to create a term structure of smile effect that
is sufficiently pronounced for SPX options. Moreover, we discover that short-
expiry SPX smiles generally are more symmetric than long-expiry smiles, a feature
we neither find that the rough Bergomi model can reproduce. We propose an
alternative volatility model driven by two Ornstein-Uhlenbeck processes that uses
a non-standard transformation function. Calibrating it to SPX options we obtain
almost perfect fits and calibrating it jointly to SPX and VIX options we obtain
very decent fits. This suggests—contrary to what one might be led to believe based
on much of the existing literature—that the joint SPX-VIX calibration problem
is largely solvable with classical two-factor volatility, all without roughness and
jumps.
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Sammenfatning

Afhandlingen baserer sig p̊a tre selvstændige artikler. Resuméer gives nedenfor:

• How does the volatility of volatility depend on volatility? Vi undersøger
tilstandsafhængigheden af variansen af den instantane varians af S&P 500 indek-
set empirisk. Tidsserieanalyse p̊a realiseret varians over en 20-̊arig periode viser
stærk evidens for en elasticitet af variansen af variansparameteren der er tæt p̊a
den for en log-normal model, dog med en empirisk autokorrelationsfunktion som
et-faktor diffusionsmodeller ikke kan reproducere p̊a tidshorisonter udover et par
uger. N̊ar vi undersøger adfærden p̊a optionsmarkedet (in-sample prisning s̊avel
som out-of-sample prisning og hedging over perioden 2004–2019), da er konklusion-
erne blandede, men systematiske, modelmæssigt. Den log-normale men driftfrie
SABR (stokastisk-alpha-beta-rho) model performer best for kortsigtede optioner
(tid-til-udløb p̊a tre m̊aneder eller derunder), Heston modellen—hvor variansen er
stationær men ikke log-normal—er overlegen for langsigtede optioner, og en bland-
ing af de to modeller giver ikke nogen forbedringer.

• Hybrid multifactor scheme for stochastic Volterra equations with com-
pletely monotone kernels. Vi foresl̊ar et hybrid skema til simulation af stokastiske
Volterra ligninger med fuldstændigt monotone kernels. Vores skema er en blanding
af hybrid skemaet for Brownske semistationære processer af Bennedsen et al. [Fi-
nanc. Stoch., 21(4), 931-965, 2017] og multifaktor approksimationerne af Abi Jaber
et al. [SIAM J. Finan. Math., 10(2), 309-349, 2019]. Ved at sl̊a de to metoder sam-
men er vi i stand til b̊ade at h̊andtere singulariteter og at holde styr p̊a den iboende
stiafhængighed. Vi betragter en forward process der er let at udregne under vores
skema og viser hvorledes den faciliterer simulation af VIX indekset for en række
Volterra volatilitetsmodeller. Numeriske eksperimenter indikerer god konvergens
for rough Bergomi type modeller og den kvadratiske rough Heston model. Eksper-
imenter med rough Heston, hvor vi m̊atte trunkere værdierne i nul, resulterede til
tider i et stort positivitetsbias.

• Empirical analysis of rough and classical stochastic volatility models to
the SPX and VIX markets. Vi udfører en empirisk analyse af rough og klassiske
stokastiske volatilitetsmodeller til SPX og VIX optionsmarkederne. Vores analyse
fokuserer primært p̊a kalibreringskvalitet og best̊ar af to dele. I den første del
udfører vi en historisk kalibrering til SPX optioner over årene 2004-2019 af et
udvalg af modeller der inkluderer et-faktor rough Bergomi modellen. I den anden
del betrager vi tre kalibreringsdage med henholdsvis lav, typisk, og høj volatilitet,
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men undersøger en bred selektion af modeller og kalibrerer til b̊ade SPX optioner
og samlet til SPX og VIX optioner. De vigtigste resultater er som følger: Rough
Bergomi modellen er ikke i stand til at skabe en kurve for smil-effekten der er
tilstrækkeligt markant for SPX optioner. Endvidere observerer vi at smilene for
kortsigtede SPX optioner generelt er mere symmetriske end dem for langsigtede
optioner. Rough Bergomi modellen er ligeledes ikke i stand til at genskabe dette
kendetegn. Vi foresl̊ar i stedet en klassisk volatilitetsmodel drevet af to Ornstein-
Uhlenbeck processer der benytter en ikke-standard transformationsfunktion. Ved
kalibrering til SPX optioner opn̊ar vi næsten perfekte fits og ved kalibrering til SPX
og VIX optioner meget anstændige fits. Dette antyder—i modsætning til hvad man
kunne forledes til at tro baseret p̊a meget af den eksisterende litteratur—at det
samlede SPX-VIX kalibreringsproblem mere eller mindre kan løses med klassisk
to-faktor volatilitet, helt uden roughness og spring.
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Chapter 1

Introduction

The goal of the PhD project has been to contribute to the literature on stochastic volatil-
ity for financial markets with a special focus on the recent paradigm of rough volatility.
Our work is partly on empirical aspects (we look at realized volatility and derivatives
prices), partly on simulation of stochastic rough, and more generally Volterra, models.
To understand how our contributions relate to the existing literature, it is worth giving
some highlights of the history of volatility modelling, starting with the Black-Scholes
model of [6] (published 1973) going all the way up to today’s rough volatility models.

In the Black-Scholes model the asset price is assumed to have constant volatility and no
jumps. Due to its simplicity there is an explicit (log-normal) solution for the asset price.
Analytical pricing formulas may then be derived for many option types (European calls
and puts most notably) making implementation easy and robust. Its simplicity, however,
is also its downfall. A constant volatility model with no jumps is inconsistent with (1)
’skews’ or ’smiles’ when looking at (Black-Scholes) implied volatility across strikes, (2)
the fatter than Gaussian log-returns observed for many assets. To reproduce these fea-
tures, more realistic stochastic volatility models have since appeared. The Heston model
of [13] (published 1993) is an early example that has been widely adopted in banks
due to the fast Fourier pricing methods that apply and which are a consequence of its
affine structure. Another example is the SABR (stochastic-alpha-beta-rho) model of [12]
(published 2002) which likewise has been widely adopted also largely due to tractability;
there is an analytical approximation formula for implied volatility, commonly known as
’Hagan’s formula’. Multifactor stochastic volatility models that offer more flexibility have
also appeared. The n-factor Bergomi model is a well-known example; the two-factor and
discrete n-factor versions are formulated in [5] (published 2005).

Another modelling approach is to introduce jumps. While some might say that jumps
are a natural feature of financial prices, the authors of [7] argue with the use of high-
frequency data that by far most of the price movements on many assets can be explained
by volatility, not jumps. In this project, we shall limit ourselves to pure stochastic
volatility which then is justified.

Lastly, we come to our main focus, rough volatility. Motivated by empirical observations
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of realized volatility, the authors of [10] (published 2018) show that volatility trajectories
are less smooth than those of Brownian motion, more generally SDE’s. Combined with
the evidence of [7] that the jump-component is small, it suggests to look for a continuous-
path stochastic volatility model that lies beyond classical ones (Heston, SABR, and the
n-factor Bergomi model, are all driven by SDE’s and are thus ’classical’ in our termi-
nology). The authors of [10] more precisely argue that log-volatility behaves much like
fractional Brownian motion (fBm) with a Hurst exponent H around 0.1. Fractional
Brownian motion is a Gaussian process that generalizes Brownian motion to allow the
increments to correlate. The correlation is negative if H < 1

2 , positive if H > 1
2 , and

zero if H = 1
2 giving ordinary Brownian motion; H is restricted to (0, 1). The sample

paths are Hölder continuous of all orders less than H. When the process is less smooth
than Brownian motion (i.e. H < 1

2 ) we call it rough. The observation H ≈ 0.1 therefore
suggests a process with very erratic (rough) sample paths. The authors propose the
RFSV (’Rough Fractional Stochastic Volatility’) model that effectively is based on fBm
and which they find is consistent with many empirical observations of realized volatility.

The RFSV model is a special case of the FSV (’Fractional Stochastic Volatility’) model
of [8] (published 1998), where the authors in contrast choose H > 1

2 to allow for long-
memory (a feature of volatility that effectively says that the autocorrelations should
decay ’slowly’ at long time horizons and which there are indications of in e.g. [3]). The
RFSV model does not allow for long-memory as such but as shown in [10] statistical tests
applied to sample paths generated by the model may result in false positive detections
of long-memory. In [2], the rough Bergomi pricing model was derived by application of a
deterministic change of measure to the RFSV model. The authors show that the model
can be remarkably consistent with quoted SPX options. A central feature of the volatil-
ity surface for European calls and puts is the term-structure of (at-the-money) skew; we
write Skew(T ) where T is the expiry. For SPX options, we often observe Skew(T ) ∼ cTα
where c is an anonymous constant and α ≈ −0.4. The rough Bergomi model reproduces
this relationship with α = H − 1

2 and is therefore consistent with H ≈ 0.1. Classical
one-factor models such as Heston are unable to reproduce the power-law term structure
of skew; see [9, pp. 35] for an approximate skew formula for the Heston model.

With all the evidence pointing towards rough volatility, it is no wonder that the topic
has gained so much attention in recent years.

In the remaining chapters, we will look at volatility through the lenses of both clas-
sical and rough volatility as well as cover simulation aspects. We outline the chapters
below.

In Chapter 2, we limit ourselves to classical volatility. We consider the question of
how the volatility-of-volatility of the S&P 500 index depends on volatility. We look at
both realized volatility and derivatives prices. In terms of the latter, we conduct cal-
ibration and hedge experiments, comparing mainly the (square-root diffusion) Heston
model with the (log-normal) SABR model. Our evidence indicates that the volatility-of-
volatility depends on volatility more like that of a log-normal model than a square-root
one. Moreover, we find that an accurate specification of the volatility-of-volatility level-
dependence matters for the predictive quality, in particular, for the effective hedging of
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options. On a side-note, calibrating a one-factor classical volatility model (with linear
drift) to realized volatility, we find that the autocorrelations fail to match empirical es-
timates at horizons beyond a few weeks. This suggests the need for a more complex
’mean-reversion’ specification such as that of rough, or multifactor classical, volatility.

In Chapter 3, we consider the simulation of stochastic Volterra equations. These are
equations of the form

Xt = g0(t) +
∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, t ≥ 0, (1.1)

where g0,K, b, σ are deterministic functions, (Wt)t≥0 is Brownian motion, and we look
for a solution (Xt)t≥0. With the fractional kernel K(t) = tH−

1
2 where H ∈ (0, 1

2 ), we
get, under mild conditions, a process that has the same regularity, i.e. smoothness, as
(rough) fractional Brownian motion with Hurst exponent H. The main challenges from
a simulation perspective are: (a) The convolutional nature of (1.1), which for a naive
Euler discretisation results in costs O(n2) where n is the number of steps. (b) That K
is approximated poorly by such Euler (i.e. piecewise constant) approximations if singular.

Many alternative discretisations of Volterra processes exist in the literature. Two im-
portant examples are the hybrid scheme of [4] and the multifactor approximations of [1].
While the models covered in these papers do not fully overlap with (1.1), the ideas to a
large extent generalise to that equation. Under the hybrid scheme of [4] K is used with-
out error near the origin and approximated by a step function elsewhere. Extrapolated
to (1.1), the coefficient processes b(X·), σ(X·) are approximated piecewise constant ev-
erywhere. For the multifactor approximations of [1] K is assumed completely monotone,
which covers most conceivable positive, decreasing, and smooth functions, including the
rough fractional kernel K(t) = tH−

1
2 . The kernel K is approximated by a weighted sum

of exponential functions which results in a multifactor Markovian model. This model can
then be discretised with an Euler scheme. Our contribution is to merge the two ideas by
using K without error near the origin and to approximate it by a sum-of-exponentials
elsewhere. Our reasoning is that it is costly to capture a singularity with exponentials
as they are non-singular, whereas they can be very efficient for the non-singular part.
This is backed up by our numerical experiments. We provide a comprehensive guide to
the resulting discretisation which we call the hybrid multifactor scheme.

In Chapter 4, we perform an empirical analysis of classical and rough volatility models
to the SPX and VIX markets. Our analysis focuses mainly on calibration quality and is
motivated by a lack of thorough testing of rough volatility pricing models in the existing
literature, especially fair comparisons against classical models. We test a wide selection
of models, including the Heston and rough Bergomi models, a quadratic rough Heston
model akin to [11], and several two-factor models. Our results shed new light on what
is required of a continuous-path stochastic volatility model to calibrate to the SPX and
VIX options markets. Some key observations are this: While we find that rough Bergomi
calibrates better to SPX options than classical Heston, it falls short in two ways. The
first is that, as we discover, short-term SPX smiles are more symmetric than long-term
smiles, generally. We are unable to reproduce this (a)symmetry term-structure with one-
factor models such as rough Bergomi. We even find that the widely reported relationship
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Skew(T ) ∼ cTα sometimes do not hold for the market data due to the symmetry of the
short term smiles. The second way rough Bergomi falls short in calibrating to SPX
options, is that it fails to sufficiently decouple the smile effect at short and long expiries.
Extending to a two-factor volatility framework, we obtain mostly better results, though,
we find no meaningful differences between comparable rough and classical models. We
construct a classical two-factor volatility model that can calibrate very well to even the
joint SPX-VIX calibration problem. This demonstrates that the joint problem can be
solved without roughness and jumps. Our analysis is extensive and offers many other
insights into the volatility dynamics that are implied by quoted SPX and VIX options.
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Chapter 2

How does the volatility of volatility
depend on volatility?

Sigurd Emil Rømer Rolf Poulsen1

Abstract

We investigate the state dependence of the variance of the instantaneous
variance of the S&P 500 index empirically. Time-series analysis of realized
variance over a 20-year period shows strong evidence of an elasticity of vari-
ance of the variance parameter close to that of a log-normal model, albeit
with an empirical autocorrelation function that one-factor diffusion models
fail to capture at horizons above a few weeks. When studying option market
behavior (in-sample pricing as well as out-of-sample pricing and hedging over
the period 2004–2019), messages are mixed, but systematic, model-wise. The
log-normal but drift-free SABR (stochastic-alpha-beta-rho) model performs
best for short-term options (times-to-expiry of three months and below), the
Heston model—in which variance is stationary but not log-normal—is supe-
rior for long-term options, and a mixture of the two models does not lead to
improvements.

Keywords: Stochastic volatility; Elasticity of variance of variance; Heston;
SABR.

2.1 Introduction
The aim of this paper is to investigate the elasticity of variance of variance of the S&P
500 index. As that concept is not part of the standard financial nomenclature2, let us
introduce the general set-up. We consider a probability space (Ω,F , (Ft)t≥0 ,P) whose
filtration is generated by two independent Brownian motions W1,t and W⊥,t. Letting

1 Department of Mathematical Sciences, University of Copenhagen.
2 A Google search on ”elasticity of variance of variance” in late March 2020 gave only seven hits.

6



2.2. EVIDENCE FROM REALIZED VARIANCE

St denote the value of the S&P 500 index at time t, we model dynamics under the real
world probability measure P as:

dSt = µstStdt+
√
VtStdW1,t (2.1)

with
dVt = µvt dt+ ηV λvt dW2,t (2.2)

and where we have defined the Brownian motion W2,t = ρW1,t +
√

1− ρ2W⊥,t for a
ρ ∈ [−1, 1], meaning that 〈dW1,t, dW2,t〉 = ρdt. We assume that µst and µvt are general
(but suitable) adapted processes. We refer to Vt as the (instantaneous) variance. Our
main focus will be the elasticity parameter3 λv, which controls the level dependence of
variance-of-variance with respect to the instantaneous variance Vt itself. We will see that
determining λv is not merely an academic exercise. Empirically the parameter choice is
important for model performance, including the effective hedging of options.

There is an abundance of both theoretical and empirical work on stochastic volatil-
ity in financial markets. However, as succinctly formulated by [10], ”Often it is observed
that a specific stochastic volatility model is chosen not for particular dynamical features,
but instead for convenience and ease of implementation”. In this short paper we aim for
an empirical cross-examination of models, methods, and markets. It means that either
of the separate analyses may be described—or dismissed—as ”quite partial”, but we be-
lieve that the sum of their parts brings to the fore some insights that were not hitherto
available. In Section 2.2 we estimate the elasticity from a time series of realized vari-
ance, thus extending the analysis in [24], where only pre-specified values of elasticity were
considered. We end the section with an investigation of features that are not captured
by one-factor diffusion-type stochastic volatility models, or long-memory or long-range
dependence in particular. In Section 2.3 we turn our attention to option prices to in-
vestigate the two—by far—most widely used models, the square-root model from [14]
and the log-normal SABR (stochastic-alpha-beta-rho) model from [19], as well a simple
hybrid of the two models. We study in-sample calibration issues along the lines of [13]
as well as prediction and hedge performance, adding to the analyses in [22] and [21].

2.2 Evidence from realized variance
In this section we present four different methods for estimating λv from time series data,
investigate their biases in a simulation experiment, and finally show the estimates on
publicly available empirical data—the realized variance obtained from the Oxford-Man
Institute’s ”realized library”.4 In [24] it is demonstrated that it is possible to discriminate
between common diffusion-type stochastic volatility models when measuring realized
variance from a 5-minute observation frequency, so we chose that data (denoted ”rv5”
in the files) among the many time series in the Oxford-Man data.5 Our dataset thus
3 Mathematically, the elasticity of a function f is xf ′(x)/f(x). The variance of variance Vt is η2V 2λv

t ,
and thus pedants can rightly claim that 2λv is the elasticity of variance of variance.

4 https://realized.oxford-man.ox.ac.uk/
5 The use of 5-minute observations to measure instantaneous variance is common and we think it is a

reasonable compromise, but we should stress that it does not tell the whole story about what goes
on at higher frequencies; see for instance [9].
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consists of daily observations between the 3rd of January 2000 and the 3rd of September
2019. After filtering out non-positive variance estimates and removing the day of the
Flash Crash (6th of May 2010) we were left with a total of 4935 observations. We should
also remark that since we focus on the λv-parameter, the estimation methods will all
solely focus on estimating the variance (or volatility) process. That is, we leave out a
joint estimation also including the index price.

Let us now start by assuming a mean-reverting variance model of the form

dVt = κ(θ − Vt)dt+ ηV λvt dW2,t (2.3)

with κ, θ > 0 being additional parameters. To estimate the parameters we can apply
an Euler discretisation and then use maximum likelihood. Let t0 < t1 < ... < tn with
n = 4934 denoting the observation time points. We will, for simplicity, assume the
time points are equidistant with step sizes of ∆t = 1 trading day with 252 trading days
assumed per year. We then approximate

∆Vti = κ(θ − Vti)∆t+ ηV λvti ∆W2,ti (2.4)

for i = 0, 1..., n−1, where we write ∆Xti = Xti+1−Xti for a general process X. Under the
approximative model (2.4), the joint density of (Vt1 , ..., Vtn) is a product of conditional
densities, which are all Gaussian. To obtain maximum approximate likelihood estimates
we plug in the observed time series and numerically maximize the log of this joint density,
the log-likelihood function, over the model parameters6 and use the Hessian matrix of the
log-likelihood at the maximum to give us standard errors. Another model specification
is to use a mean-reverting model for the volatility process σt :=

√
Vt instead,

dσt = κ(θ − σt)dt+ ησλσt dW2,t. (2.5)

Ito’s formula applied to the squared solution of (2.5) reveals that while the mean-reverting
volatility and variance models are not equivalent as the functional forms of the drifts are
different, we do have

dVt = ...dt+ 2ηV (λσ+1)/2
t dW2,t (2.6)

so that λv = (λσ + 1)/2 and the maximum approximate likelihood technique applied
to the volatility process gives us an alternative way to estimate the elasticity.7 The
final two estimators we will consider are based on the concept of quadratic variation.
Following proposition 4.21 of [15] the quadratic variation of a continuous semimartingale
X over the interval [0, t], here denoted 〈X,X〉t, can be characterised as follows: Let
0 = tn0 < tn1 < ... < tnp(n) = t with p(n) ∈ N for n = 1, 2, ... be an increasing sequence of
partitions of [0, t] satisfying sup1≤i≤p(n) |tni − tni−1| → 0 as n→∞. Then

〈X,X〉t = lim
n→∞

p(n)∑
i=1

(
Xtn

i
−Xtn

i−1

)2
(2.7)

6 We exclude here the θ-parameter by instead fixing it at the time series mean of Vt. We find this
produces a more reasonable estimation.

7 In case Vt from Equation (2.3) can hit zero, applying the
√
x-function to get back an elasticity for

σt is problematic. However, all our estimators suggest λv is above 1
2 , in which case zero (see for

instance [3]) is unattainable, so we will use the relationship λv = (λσ + 1)/2 without worry.
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with convergence in probability. For the Vt in the general model (2.2) the quadratic
variation is:

〈V, V 〉t =
∫ t

0
η2V 2λv

s ds. (2.8)

Combining (2.7) and (2.8) leads to the approximation (Vti − Vti−1)2 ≈ η2V 2λv
ti−1

∆t, or in
logarithm terms

log((Vti − Vti−1)2) ≈ 2 log(η) + 2λv log(Vti−1) + log(∆t). (2.9)
This means we can estimate λv and η from a linear regression between the samples
Xi := log(Vti−1) and Yi := log((Vti − Vti−1)2). Applying the same reasoning to the
squared increments of the volatility process,

log((σti − σti−1)2) ≈ 2 log(η) + 2λσ log(σti−1) + log(∆t), (2.10)
gives way to estimate λσ and η by a linear regression.

The four estimators presented all suffer from several sources of bias: discretization bias,
small sample bias, and a possible error from model misspecification; if the variance has
linear drift, then the volatility does not, and vice versa. Hence to validate the esti-
mators we conducted a simulation experiment, whose results, shown in Table 2.1, we
shall now briefly describe. For the experiment we assumed either the mean-reverting
volatility or the mean-reverting variance model to be the true model, and simulated
1000 sample paths with 2520 steps per year across a total of 4935 days, thus mimicking
the empirical set-up. Using only daily observations, we then applied each of the four
methods to estimate λv and λσ and averaged across the paths. We performed this entire
experiment for different choices of λv ∈

[ 1
2 , 1
]

and λσ ∈
[ 1

2 , 1
]
. For a realistic set-up,

the remaining parameters (except for θ under (2.3)) were chosen by running the relevant
likelihood estimation on the Oxford-Man dataset with λv or λσ held fixed at the true
value. The experiment shows that both regression estimators are fairly robust under
the two different models as well as across different elasticities. The same is true when
using maximum approximate likelihood on Equation (2.5). For these three estimators,
the bias when estimating λv is mostly less than 0.05. Maximum approximate likelihood
estimation on Equation (2.3) performed much worse, with a consistent downwards bias
of 0.1–0.2 depending on the true modeling assumptions and the elasticity used.

In Table 2.2 we show estimates on the actual dataset using each of the four meth-
ods. We include the R2 statistic for the regression methods and show standard errors
in parenthesis. There is a high correspondence between the elasticities estimated un-
der all methods—except using likelihood on Equation (2.3), which we just saw to be
problematic. We found λv-values in the range 0.91–0.97. In this range, the bias is still
mostly less than 0.05 and the estimated standard errors are less than 0.02, so we are
quite confident that the elasticity is in that range. The estimates in Table 2.2 also show
that instantaneous variance is characterized by a combination of strong mean-reversion
and high volatility of volatility (both κ and η are high compared to many other sources),
which—if one were to think briefly beyond the realm of diffusion models—could point
towards so-called rough volatility models as suggested by [12].8
8 A very useful source for the rapidly expanding field of rough volatility is

https://sites.google.com/site/roughvol/home.
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2.2. EVIDENCE FROM REALIZED VARIANCE

We end this section by looking into some of the problems with modeling volatility by a
one-dimensional diffusion process. First, the long-memory properties of volatility that
have been widely documented; an example is the paper [4]. To have a precise discussion
let us introduce some notation: Consider a covariance-stationary process X and pick an
arbitrary time point t. We then define the autocorrelation function of the X-process at
lag h as:

ACF(h) = Cov (Xt, Xt+h)
Var (Xt)

. (2.11)

Several slightly different definitions of long-memory can be found in the literature. As an
example, in [4] the autocorrelation function of the log-volatility is assumed to decay as
ACF(h) ∼ c|h|−β for |h| → ∞, where c, β > 0 are constants. The volatility process is
then said to have long-memory exactly if

∫∞
0 |ACF(h)|dh = ∞, which happens when

β ∈ (0, 1). In our context, with daily observations, a reasonable test for long-memory is
therefore to see if the sums

k∑
i=0

ÂCF (i/252) , for k = 0, 1, 2... (2.12)

converge, where ÂCF(h) denotes an empirical estimate of (2.11).

In Figure 2.1, we show the sums in (2.12) for lags up to around 1 year. Specifically,
the blue and orange lines show the sums (2.12) for the realized variance and volatility,
respectively, both obtained from the Oxford-Man dataset. The lines indicate that there
is detectable autocorrelation even at horizons of up to one year (although it is most pro-
nounced looking at realized volatility). This can then be compared to what our diffusion
model specifications from (2.3) and (2.5) are able to produce. To this end, we conducted
a simulation experiment, where we simulated each model in the same way as done for the
bias-experiment shown in Table 2.1, though this time using the estimated parameters
from Table 2.2. For each such simulated path we then computed the empirical auto-
correlation function ÂCF(h) at various lags h. Repeating the simulations 10,000 times,
averaging the autocorrelations and computing the running sums in Equation (2.12), we
get the yellow line (simulation of Equation (2.3)) and purple line (simulation of Equa-
tion (2.5)). Here it is clear that while the autocorrelations closely match the empirical
ones for the first few lags, the fit is very bad at longer horizons—where in fact ”longer”
does not have to mean more than a few weeks.

To interpret the figure we once again cite [4], where it was assumed that the auto-
correlation function of log-volatility behaves as 1−ACF(h) ∼ c|h|2α+1 when |h| → 0 and
where c > 0 and α ∈ (−1/2,∞) are constants. Volatility is then said to be rough when
α ∈ (−1/2, 0). That is, roughness is exactly related to how the autocorrelation function
behaves for very short lags. With this knowledge and together with our high κ and η
estimates we interpret the good fits for short lags in Figure 2.1 as evidence that our
one-factor diffusion models have attempted to mimic roughness. The model-structure
then does not allow us to simultaneously capture the memory in the process at medium
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Table 2.2: Estimated parameters under each of the four estimation methods discussed. Stan-
dard errors are shown in parenthesis where applicable.

Method κ θ η λv λσ R2

Max. approx. likelihood on Equation (2.3) 18.62
(1.07)

0.162 7.37
(0.27)

0.80
(0.01)

0.60
(0.02)

Max. approx. likelihood on Equation (2.5) 36.01
(2.65)

0.14
(0.01)

4.04
(0.16)

0.91
(0.01)

0.83
(0.02)

Regression on Equation (2.9) 3.92
(0.27)

0.93
(0.02)

0.85
(0.03) 0.42

Regression on Equation (2.10) 2.35
(0.16)

0.97
(0.01)

0.94
(0.03) 0.17
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Figure 2.1: Cumulative sums of the empirical (absolute-value) autocorrelations. Blue and
orange lines show the sums for the realized variance and volatility and that using the Oxford-
Man dataset, respectively. The yellow and purple lines show the sums for the model (2.3) and
(2.5), respectively. These values are computed in a simulation experiment using the parameters
from Table 2.2. For these curves, the standard errors of each autocorrelation value were all less
than 0.01.

and long lags.

An extension that would allow for both roughness and long-memory would be to model Vt
(alternatively σt) as a mean-reverting stochastic Volterra equation (SVE).9 Specifically,
one could model

Vt = V0 +
∫ t

0
K(t− s)κ (θ − Vs) ds+

∫ t

0
K(t− s)ηV λvs dW2,s, (2.13)

where K is a kernel function that if chosen appropriately and exactly would allow Vt
to display both of these properties. Although an estimation of the more general Equa-
9 The reader can consult [1] for some mathematical theory on stochastic Volterra equations.
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tion (2.13) would certainly be a worthwhile pursuit, we leave it as an open hypothesis
whether or not this will change the λv-estimates. Two other examples—among several—
of models that can capture long-memory are [25] and [5].

Another objection to our models is the lack of jumps in the asset price. However, as shown
in [8] using high-frequency data on numerous different financial assets, the jump propor-
tion of the total variation of the asset price is generally small compared to the volatility
component—at least when market micro-structure effects are properly accounted for. It
is therefore very possible that adding jumps to the asset price will only slightly change the
λv-estimates. On the other hand, one could also consider jumps in the volatility process.
Then again, with the current evidence in favor of rough volatility one could hypothesize
that the most variation in the true volatility process can also be explained by contin-
uous but rough (i.e., explosive) movements and not jumps. As with the long-memory
objections, we leave a proper analysis for future research.

2.3 Evidence from option prices
We now turn our attention to options, more specifically to the market for European call
and put options on the S&P 500 index. In an ideal world, one would specify flexible
parametric structures for the drift function in Equation (2.2) and for the market price of
volatility risk, solve the associated pricing PDE, and then choose the parameter-values
that minimize the distance—suitably measured—between market data and model prices.
However, genuinely efficient methods for option price calculations exist only for a few
quite specific models. We shall restrict our interest to the two most common models,
the square-root model from [14] that sparked a revolution in affine models and transform
methods, and the SABR (stochastic-alpha-beta-rho) model from [19] that made stochas-
tic volatility a household object in banks.

We used the End-of-Day Options Quote Data obtained from https://datashop.cboe.
com. This dataset contains bid and ask quotes on SPX European options at 15:45 East-
ern Time (ET) and again at the close of the market. We used the 15:45 quotes for
liquidity reasons and applied a number of filters to (a) clean the data and (b) compute
the zero coupon bond and dividend yields implied by the put-call parity (and used in
the subsequent analysis). Finally, we used smoothing and interpolation techniques on
the mid quotes to obtain prices on a continuous set of strikes on each of the fixed set of
expiries 1, 3, 6, 12, 18, and 30 months.10 The cleaned dataset contains observations on
3783 trading days between the 3rd of May 2004 and the 15th of May 2019.

We will now briefly define the pricing models we use in our experiments. The mod-
els are therefore stated under an equivalent risk-neutral probability measure Q. Note
that Girsanov’s theorem tells us that the elasticity parameter is unaffected by equivalent
measure changes. Thus, there is no a priori conflict between λv-estimates obtained from
time series observations of Vt (”under P”) from the previous section and risk-neutral val-
ues affecting option prices that we shall be looking at in this section. For simplicity we
will abuse notation and write W1,t and W2,t to also denote two Q-Brownian motions s.t.
10 We used the arbitrage free smoothing spline from [11] on expiry-slice.
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〈dW1,t, dW2,t〉 = ρdt for a ρ ∈ [−1, 1]. Denoting the interest rate by r and the dividend
yield by q we then have

dSt = (r − q)Stdt+
√
VtStdW1,t. (2.14)

Under the Heston model of [14], the variance process (Vt)t≥0 is then modeled as a square-
root diffusion of the form

dVt = κ(v̄ − Vt)dt+ η
√
VtdW2,t (2.15)

with κ, v̄, η, V0 > 0. The model thus has elasticity λv = 1
2 , which (Feller condition issues

notwithstanding) is equivalent to λσ = 0. We compute option prices using numerical
integration with the techniques from [17]. The SABR model from [19] (here with their
β = 1) instead assumes

dσt = ασtdW2,t (2.16)

with α, σ0 > 0. To compute option prices we use here the approximation formula also
found in [19]. In elasticity-terms, the log-normal SABR model has λv = λσ = 1. Finally,
we consider a third hybrid or mixture model, where we assume that the price of any
vanilla European option is the average of the prices under both the Heston and SABR
models. Specifying such a mixture model is exactly equivalent to specifying the marginal
distributions of St for all t > 0 but nothing more. The mixture model allows us to incor-
porate a marginal distribution for St somewhere between Heston and SABR. The model
is underspecified, as it does not contain information on the dynamical structure of the
asset price St; see the paper [20] on mixture models and their pitfalls. However, be-
cause vanilla option prices under the mixture model are convex combinations of prices
from the arbitrage-free models Heston and SABR, the mixture model is free from static
arbitrages; it could thus at the very least be supported by a local volatility model for S.11

As explained, our choice of pricing models has been restricted to those that are tractable.
As a downside, each model has its own problems in terms of matching the empirical styl-
ized facts of volatility. Some of these problems are related to the topic of this paper,
i.e., what should the elasticity of variance-of-variance be. Specifically, in Section 2.1 we
estimated λv ≈ 1 while Heston has λv = 1/2. Likewise, in [24] it is shown that while
a log-normal model fits the marginal distribution of volatility well, Heston does not.
Given our topic, having differences in λv is of course exactly as desired. In an ideal
controlled experiment this would be the only difference between the models. This is not
quite true. The Heston model has mean-reversion and SABR does not. Furthermore,
any inability to match empirical facts, even if shared by both models, could make other
parts of the models and the results move in unexpected and hard-to-explain ways. As an
example, both models suffer from the inability to match the entire term structure of
autocorrelations (as shown in Section 2.1). With all of this taken together, it would be
naive to think that we can reasonably fit and/or accurately model multiple expiries at
11 [16] presents a fully specified mean-reverting, lognormal-ish volatility model that allows for explicit

call option prices. However, in the author’s own words, ”The bad news is that the integrand requires
the infinite sum at (37). I truncate that sum, and make some use of Mathematica’s Parallelize.
This case is really computationally tedious: results can take a half-hour or more.” Hence the model
is not suitable for our analysis.
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2.3.1. CALIBRATION AND IN-SAMPLE MODEL PERFORMANCE

once. In an attempt to mend some of these problems we therefore chose to model each
expiration-slice with a separate model.12 The hope is that this will help the models
capture the temporal properties that are the most important to modeling the particular
expiration in question. Ideally this would also mean that the models approximately only
differ by their elasticity. The reality is of course not so simple. We will make our best
attempt at analyzing the results despite these a-priori objections.

2.3.1 Calibration and in-sample model performance
In this subsection we perform a calibration experiment, where we calibrate the models
separately on each expiry. We perform the calibration on a given expiry by minimizing
the mean absolute error in Black–Scholes implied volatilities across a number of observed
contracts, n. Let σ̂obsi denote the implied volatility of the i’th contract as observed on
the market, and let σ̂modeli denote the corresponding implied volatility for the model in
question and that for a particular choice of parameters. We thus calibrate each model
by minimizing

1
n

n∑
i=1

∣∣σ̂obsi − σ̂modeli

∣∣ (2.17)

with respect to the model parameters. On each day and for each expiry we aim to
calibrate to 7 options: those with Black–Scholes call Deltas 0.05, 0.2, 0.3, 0.5, 0.7, 0.8,
and 0.95.13 When calibrating the Heston model to a single expiry-slice it is difficult to
separate the speed of mean-reversion parameter κ from the volatility-of-volatility param-
eter η, as well as separating the current instantaneous variance V (t) from its long-term
mean v̄; see also [13]. Hence we use the following two-step procedure: first, optimize the
fit to all implied volatilities over (κ, η, ρ, V (t), v̄); second, keep the κ-estimate from the
first step fixed and then optimize each expiry-slice separately and under the constraint
V (t) = v̄.

In the left-hand side of Table 2.3 we show average calibration errors in basis points
(bps) as well as their standard deviations (shown in parentheses). The main observation
is that on average, SABR calibrates better for short expiries (less than 6 months) and
Heston calibrates better for long expiries (more than one year). Specifically, the average
error for the 1 month expiry is 28.7 bps for Heston and 11.2 bps for SABR, whereas for
the 2.5 years’ expiry, the average error is 14.2 bps for Heston and 23.6 bps for SABR. 14

To understand this result, remember (see [23]) that call option prices are determined by
the (risk-neutral) distribution of instantaneous variance integrated over the life-time of

12 The r and q values of Equation (2.14) will therefore be the interest rate yield and dividend yield for
the particular expiration in question.

13 To be precise: on a given day and for a given expiry we first attempt to interpolate the values
0.3, 0.5, and 0.7 (if that is not possible we discard that expiry on that day). Next we attempt to
choose Black–Scholes deltas closest to the remaining shown values on each of the intervals [0.05,0.15],
[0.15,0.30], [0.7,0.85], and [0.85,0.95]. Depending on the available range of strikes we thus in practice
(on a smaller number of days) calibrate to fewer than seven quotes.

14 For comparison, in our dataset (and before interpolation and smoothing) the medians (across days)
of the smallest bid–ask spreads within ±10% of at-the-money and for each of the expiration groups
0–3 months, 3–12 months, and 12–36 months are 17, 32, and 47 bps of implied volatility, respectively.
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Table 2.3: The left part of the table shows average calibration errors in basis points. Standard
deviations are shown in parentheses. The right part of the table shows the average of the
per-day differences in calibration errors between each pair of models. I.e., the column ”Heston
vs. SABR” shows statistics on the time series constructed, where on each day we subtract the
Heston error from the SABR (stochastic-alpha-beta-rho) error.

Expiry Heston SABR Mixture
Heston

vs.
SABR

Heston
vs.

Mixture

SABR
vs.

Mixture
1 month 28.7

(14.8)
11.2
(9.9)

18.4
(10.3)

17.4
(15.2)

10.3
(7.3)

−7.1
(8.4)

3 months 22.7
(10.1)

9.1
(7.7)

13.1
(5.7)

13.6
(14.6)

9.5
(7.3)

−4.1
(8.5)

6 months 14.8
(8.9)

11.8
(8.9)

9.9
(6.0)

2.9
(14.4)

4.8
(8.0)

1.9
(7.6)

1 year 9.5
(7.3)

17.7
(9.9)

11.2
(8.7)

−8.2
(8.5)

−1.7
(6.0)

6.4
(4.4)

1.5 years 10.3
(9.2)

20.9
(10.7)

14.7
(10.0)

−10.6
(7.1)

−4.5
(4.3)

6.2
(3.5)

2.5 years 14.2
(10.0)

23.6
(12.1)

18.4
(10.9)

−9.4
(7.5)

−4.3
(4.4)

5.2
(3.5)

the option (τ),
1
τ

∫ t+τ

t

σ2
udu. (2.18)

For short times to expiry (small τ), the dominant feature in determining this distribu-
tion is the dW -term in the dynamics of instantaneous volatility, while for longer times to
expiry temporal dependence (such as mean-reversion) becomes more important. The em-
pirical analysis in Section 2.2 shows that the SABR model (with λv = 1) captures the
functional form of the variance of instantaneous variance better than the Heston model
(that has λv = 1

2 ). On the other hand, that analysis also shows that instantaneous vari-
ance has a quite significant mean-reversion, which is something that the Heston model
captures but the SABR model does not. As Figure 2.2 shows, there is, however, a subtlety
to this; the risk-neutral (Q) speed of mean-reversion is considerably lower (2–4 typically)
than the real-world (P) estimates (18.62 from Table 2.2 is directly comparable).15 It is
widely documented in the literature that the short-expiry at-the-money implied volatility
is typically higher than realized volatility, i.e., long-term levels are different between P
and Q (v̄ > θ), which can be explained by investor risk-aversion as a stochastic volatility
model is, in option pricing terms, incomplete. The effect of investor preferences on the
speed of mean-reversion is however less well documented. With that mean-reversion
vs. elasticity reasoning in mind, a natural conjecture would be that a mixture model,
a convex combination of SABR and Heston, would outperform both these models; that
there would be a benefit from model diversification. However, such an effect is far from

15 [7] show that for square-root processes measure changes that change both the long-term level and the
speed of mean-reversion are allowed.
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Figure 2.2: Estimates of the Heston model’s κ under the risk-neutral measure Q obtained
from the two-step calibration procedure.

evident in the data. With the 6-month horizon as the only exception, the errors from
the mixture model fall between those of SABR and Heston—often right in the middle.

Average errors do not tell the whole story; the variation (between days) of calibration
errors (as measured by their standard deviations) are of the same order of magnitude
as the averages. In the right-hand part of Table 1, we give paired comparisons of the
models. On each day (and for all three combinations) we subtract one model’s calibra-
tion error from an other model’s and report averages (that could be calculated from the
left-hand part of the table) and standard deviations (that cannot). Let us first note that
this shows that the differences in average that we comment on are all highly statistically
significant (thus we have not cluttered the table with indications of this). However, we
also note that the differences display a variation that is quite similar to the individual
calibration errors themselves. Hence when the average Heston error is 14.2 bps for 2.5-
year options and it is 23.6 bps for SABR, it by no means implies that Heston calibrates
around 10 bps better each and every day, as the standard deviation of the difference is
7.5 bps.

As a final in-sample investigation, let us look at the time evolution of the calibration
errors and the model parameters. In Figures 2.3–2.5 we therefore show such results for,
respectively, 1 month, 6 months, and 2.5 years expiries. The calendar and expiry time
variation that one would expect from the results in Table 2.3 is evident. Around the
2008–2009 financial crisis we see deterioration in model performance in various guises;
Heston calibration errors for 1 month options more than double, and the model never
really recovers; the crisis leads to extreme (negative) correlation for SABR. But over-
all, nothing off-the-scale happened. One thing that stands out visually is how high the
Heston’s variance-of-variance parameter η (left-hand side columns, 2nd panel) correlates
with the level of volatility (left-hand columns, 1st panel); the average (across expires)
correlation is 0.53. This is consistent with our previous elasticity estimation: The He-
ston model’s elasticity of 1

2 does not allow the variance of variance to react as strongly
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to changes in the variance level as empirically observed in time-series (λv around 0.91–
0.97), and that manifests itself as changes in the η-estimate. For SABR, the (volatility,
vol-of-vol) correlation is mildly negative (−0.28 on average), which is also consistent
with that model slightly overstating the elasticity. A final note to make (based on the
top left panel in Figure 2.3) is that even though implied, at-the-money volatility goes
to instantaneous volatility σt as time to expiry goes to 0, a one month expiry is not
sufficiently small for this asymptotic result to have kicked in.

2.3.2 Predictions and hedging; Out-of-sample performance
Figures 2.3–2.5 show that calibrated model parameters change both over calendar time
and across expiries. A cynic would say, ”Therefore they are not parameters—which is
a crucial assumption in analytical work with the models, e.g., derivation of option price
formulas. So: back to the drawing-board”. Our defense against that argument is prag-
matism as formulated in the famous quote from statistician George Box that ”all models
are wrong, some are useful”. Thus we now investigate the practical usefulness of the
SABR and Heston models. More specifically, we look at the quality of predictions and
at how helpful they are for constructing hedge portfolios; two aspects that are central
to financial risk management. Both investigations are done in out-of-sample fashion; the
predictions or portfolios made at time t use only information that is available at time t.

To study prediction quality, we conducted the following experiment: on each trading day
we calibrated the parameters and volatility. We then moved forward in time, updated
observable market variables, such as the index price as well as yields, and recalibrated
the volatility (which is allowed to change in the model)—but not the parameters. We
performed the experiment by moving 1 to 20 trading days ahead (the horizon) and con-
sidering all possible starting dates. Figure 2.6 shows the results, and more specifically
average absolute errors at different horizons and for different expiries for the SABR and
Heston models.16 The results are consistent with what we have observed so far. SABR
works better for short expiries (where errors are generally larger), while Heston does bet-
ter for longer expiries. Average absolute errors are well fitted by square-root functions
(which is how we would a priori expect standard deviation-like quantities to grow with
time), and the difference between the models is stable across horizons.

Finally, we turn to the hedge performance of the models. We will attempt to hedge
out-of-the-money options by trading appropriately in the underlying asset, the risk-free
asset as well as an at-the-money option of the same type as the out-of-the-money option
(i.e., call or put). We performed the analysis on out-of-the-money options with strikes
corresponding to Black–Scholes Delta values of 0.1, 0.3, 0.7, and 0.9. Thus, if the Delta
is below 0.5 we hedged a call option and otherwise hedged a put option.

The details of the experiment are as follows: on each day we sell the out-of-the-money
option and form a portfolio that according to the calibrated model perfectly hedges this
option. Let us write ht := (hbt , hst , hat , hot ) to denote the entire portfolio time t, where hbt
16 Since the mixture model is underspecified and therefore does not imply a specific dynamic structure,

we cannot move the model forward in time without further assumptions. We therefore excluded it
from this experiment.
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Figure 2.3: Calibration to the 1 month expiry. To improve visibility, we have in the bottom
left plot excluded the extreme errors on the 21st of November 2008 of 260 bps (Heston) and 352
bps (SABR).
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Figure 2.4: Calibration to the 6 month expiry.
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Figure 2.5: Calibration to the 30 months (2.5 years) expiry.
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denotes the number of units in the risk-free asset, hst the number of units in the under-
lying asset, hat the number of units in the at-the-money option, and hot the number of
units in the out-of-the-money option. We set hot = −1 as mentioned. Let us also write
πot and πat to denote the observed values of the out- and at-the-money option, respectively.

For compactness of presentation, let us consider a general hedge model

dSt = St(r − q)dt+ St
√
VtdW1,t (2.19)

dVt = a(t, St, Vt)dt+ b(t, St, Vt)η
√
VtdW2,t (2.20)

where 〈dW1,t, dW2,t〉 = ρdt and where a and b are functions. We get Heston with
a(t, s, v) = κ(v̄ − v), b(t, s, v) = 1, and SABR with a(t, s, v) = α2v, b(t, s, v) =

√
v and

η = 2α. We can write the price of the out-of-the-money option at time t as F (t, St, Vt; θ)
for an appropriate function F and a parameter vector θ depending on model specifics;
θ := (η, ρ, v̄, r, q) for Heston and θ := (α, ρ, r, q) for SABR. Similarly, the price of the
at-the-money option can be written as G(t, St, Vt; θ) for an appropriate function G. To
determine the perfectly replicating portfolio under the hedge model we start by com-
puting our models Delta and Vega, which for the out-of-the-money option with function
F (t, s, v; θ) will be defined as F s := ∂F

∂s and F v := ∂F
∂v , respectively.17 Our hedge will

now consist of

hat = F vt
Gvt

(2.21)

in the at-the-money option, and

hst = F st − hat ·Gst (2.22)

in the underlying asset. The joint portfolio will then be kept self-financing with the
risk-free asset. With these choices the associated value process will exactly be a function
of the current state (t, St, Vt). Computing the dynamics of it using Ito’s Formula and
applying the principle of no arbitrage proves that ht is in fact a perfect hedge of the
out-of-the-money option—assuming we are using the correct model. For the mixture
model the whole problem of finding a perfectly replicating portfolio is ill-defined, since
the dynamical structure is unspecified. We therefore instead test a mixed portfolio that
is the average of the portfolios under Heston and SABR. While this portfolio may not
perfectly replicate the option it will be a valid self-financing strategy, which we can com-
pare to the pure Heston and SABR strategies.

Consider now discrete hedging between two trading days ti and ti+1 with ∆t = ti+1−ti =
1/252 assumed for simplicity. Letting V ht denote the actual value of the portfolio at time
t we record (with a few discrete approximations) the change in the value process from ti
to ti+1 as

∆V hti = hbtiBtirti∆t+ hsti∆Sti + hati∆π
a
ti + hoti∆π

o
ti + hstiStiqti∆t. (2.23)

17 As done here, we will often suppress the input arguments to simplify the notation. We will also write
F st := ∂

∂s
F (t, St, Vt; θ), etc. when we need to stress the time point used. We will use similar notation

to denote other derivatives of F and do all of this also for the function G(t, s, v; θ).
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where Bt is the value of the risk-free asset. We then define the (relative and discounted)
hedge error as

Hedge error
(relative and discounted) = 100×

e−rti∆t∆V hti
πoti

. (2.24)

and summarize the performance of each model by taking the standard deviation of this
across all trading days.

Table 2.4: Hedge errors (in the scaled standard deviation sense of Equation (2.24)) from daily
hedging for each expiry, model and moneyness (measured by the Black–Scholes call Delta ∆BS).
The symbols ‡ and † indicate significance at the 1% and 5% levels for testing if the standard
deviation of Heston and the mixed portfolio, respectively, are different from SABR. The symbols
therefore only appear for rows related to Heston and the mixed portfolio. Significance is tested
using the Brown–Forsythe test of [6] with the central locations estimated by the medians.

Standard Deviation of Hedge Error (Daily Hedging)
Expiry Model ∆BS = 0.9 ∆BS = 0.7 ∆BS = 0.3 ∆BS = 0.1
1 month Heston 9.8 3.2 6.2 ‡ 16.6 ‡

SABR 9.3 3.2 4.3 14.7
Mixed portfolio 9.3 3.2 5.1 ‡ 15.2

3 months Heston 5.3 1.4 2.5 ‡ 9.5 ‡
SABR 5.2 1.4 1.8 8.8
Mixed portfolio 5.2 1.4 2.1 ‡ 8.9

6 months Heston 3.7 1.0 1.4 ‡ 5.7
SABR 3.7 1.0 1.2 5.5
Mixed portfolio 3.7 1.0 1.3 5.4

1 year Heston 3.1 0.8 1.0 4.5 ‡
SABR 3.1 0.8 1.0 4.8
Mixed portfolio 3.1 0.8 1.0 4.6 †

1.5 years Heston 2.5 0.6 0.9 ‡ 3.5 ‡
SABR 2.5 0.7 1.0 3.9
Mixed portfolio 2.5 0.7 0.9 3.6 ‡

2.5 years Heston 3.7 0.8 1.1 4.4 ‡
SABR 3.8 0.8 1.2 4.7
Mixed portfolio 3.7 0.8 1.1 4.5

In Table 2.4 we show the results across expires, moneyness, and models. We first note
that the more out-of-the-money the target option is, the more difficult it is to hedge;
not surprising, particularly because the at-the-money option is one of the hedge instru-
ments. Short-expiry options are more difficult to hedge; above 6 months expiry standard
deviations are quite stable. For low-strike options (i.e., out-of-the-money puts) the dif-
ferences between models are small: at most 0.5 percentage (the 1 month, lowest-strike
case), and none of the differences are statistically significant at the 5%-level. But there
is an asymmetry. For high strikes (i.e., for out-of-the-money calls) differences in hedge
errors are statistically significant across models; SABR outperforms Heston for expiries
of three months and below, but is beaten by Heston for expiries above one year, albeit
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with a lower absolute margin. We also see that except in a single, statistically insignif-
icant case (highest strike, 6 months expiry) the mixture strategy is dominated in terms
of hedge performance by either Heston or SABR, i.e., there are no benefits from model
”averaging” or ”diversification”. Results (not reported) are qualitatively similar in a
hedge experiment where Vega-hedging is done only weekly.

2.4 Conclusions
The one-word answer to the question in the title would be ”lognormal-ish”. We find
that the dynamics of the instantaneous variance of the S&P 500 index is best described
by a model with elasticity slightly below one, i.e., a model with a close-to lognormal
volatility structure. However, one-factor diffusion models fail to capture the empirical
auto-correlation structure of instantaneous volatility at horizons above a few weeks; long-
memory even in the rather short run, as it were. For option pricing, the lognormal SABR
model performs best for short-expiry options (expiries of 1–3 months) and the Heston
model performs best for expiries of one year and longer. We ascribe the latter effect to
the Heston model’s mean-reversion—which one should treat with care as its force is quite
different under P and Q. A simple mixture of the two models does not yield benefits.
These results are robust across time (15 years of option data) and both in-sample and
out-of-sample, including predictions and hedging.
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Chapter 3

Hybrid multifactor scheme for
stochastic Volterra equations with
completely monotone kernels

Sigurd Emil Rømer

Abstract

We propose a hybrid scheme for the simulation of stochastic Volterra equa-
tions with completely monotone kernels. Our scheme is a mix of the hybrid
scheme for Brownian semistationary processes of Bennedsen et al. [Financ.
Stoch., 21(4), 931-965, 2017] and the multifactor approximations of Abi Jaber
et al. [SIAM J. Finan. Math., 10(2), 309-349, 2019]. Merging the two meth-
ods allow us to both accurately capture singularities and efficiently track
the inherent path dependence. We consider a forward process that is easily
computable under our scheme and show how it facilitates simulation of the
VIX index for a number of volatility models of the Volterra type. Numerical
experiments indicate good convergence for rough Bergomi type models and
the quadratic rough Heston model. Experiments on rough Heston, where we
had to truncate values in zero, sometimes resulted in a large positive bias.

Keywords: Stochastic Volterra equations; Complete monotonicity; Simula-
tion; Rough volatility; Option pricing.

3.1 Introduction
We present a simulation scheme for a class of stochastic Volterra equations. We say that
X = (Xt)t≥0 solves a stochastic Volterra equation (SVE) if it satisfies an equation of the
form

Xt = g0(t) +
∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, t ≥ 0, (3.1)
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where W = (Wt)t≥0 is Brownian motion, K ∈ L2
loc(R+), and g0 : R+ → R, b, σ : R→ R

are continuous. We consider only continuous and adapted solutions X that live on some
filtered probability space (Ω,F , (Ft)t≥0 ,P) where the filtration (Ft)t≥0 is assumed to
satisfy the usual hypothesis. Throughout we define Brownian motion relative to the
given filtration in the sense of [37, Definition 3.11]. Existence and uniqueness results can
be found in [3]; we recite parts of them in Appendix 3.B. In Appendix 3.A, we also pro-
vide some theory on convolutions and resolvents which will be used, explicitly or not, as
we go along. We will sometimes abuse notation and write bt = b(Xt), σt = σ(Xt), t ≥ 0.1

Our paper is motivated by an observation from quantitative finance showing that volatil-
ity on many financial assets exhibits roughness [8, 22]. A stochastic process is rough if
the sample paths are less Hölder continuous than those of Brownian motion. A SVE can
generate roughness when K(t) ∼ ctα in the limit t→ 0+ where c ∈ R \ {0}, α ∈

(
− 1

2 , 0
)
;

by ’∼’ we signify informally that the left-hand side behaves like the right-hand side
in the given limit. Affine SVE’s have attracted special attention as they, when used
to model the instantaneous variance, allow efficient option pricing by Fourier methods
[2, 4, 5, 16, 17, 18, 25]. Generally, however, we rely on Monte Carlo for pricing. The rough
Bergomi model of [7] is a well-known non-affine model where the asset price S = (St)t≥0
is modelled as

dSt = St
√
VtdW1,t, S0 > 0, (3.2)

Vt = ξ0(t) exp
(
η
√

2α+ 1
∫ t

0
(t− s)αdW2,s −

η2

2 t
2α+1

)
, t ≥ 0, (3.3)

where ξ0 : R+ → R+, α ∈ (− 1
2 , 0), η > 0, and (W1,t,W2,t)t≥0 is Brownian motion with

dW1,tdW2,t = ρdt, ρ ∈ [−1, 1].2

Although the rough Bergomi model can calibrate very well to SPX options (see [7]),
naive simulation of V = (Vt)t≥0 is slow; the authors of [7] simulate V exactly (note that
log(Vt) is Gaussian) which has a computational complexity of O(n2), n being the number
of steps, even rising to O(n3) if the covariance-matrix-factorisation is accounted for.

The literature on the simulation of Volterra processes has grown significantly since then
leading to many new insights and improved methods [1, 2, 4, 9, 13, 20, 21, 30, 32, 40, 46].
An important contribution is [9] where simulation of Brownian semistationary (BSS) and
truncated BSS (T BSS) processes is considered. The latter are processes of the form

Xt =
∫ t

0
K(t− s)σsdWs, t ≥ 0, (3.4)

where (σt)t≥0 is some stochastic process and K is a deterministic function that behaves
as K(t) ∼ ctα in the limit t → 0+ where c ∈ R+, α ∈ (− 1

2 ,
1
2 ) \ {0}; consult the paper

1 We shall also remark that we only consider continuous versions of any processes that are of the form
Zt =

∫ t
0 K̃(t−s)a1,sds+

∫ t
0 K̃(t−s)a2,sdW̃s, t ≥ 0, where K̃ ∈ L2

loc(R+), W̃ = (W̃t)t≥0 is Brownian
motion, and (a1,t)t≥0, (a2,t)t≥0 are given locally bounded and progressively measurable processes.
We refer to the comment in [4, Section A.1] for the existence of a continuous version of (Zt)t≥0.

2 The model is stated in risk-neutral terms with zero interest rates and dividends assumed; the latter
is without loss of generality up to deterministic values.
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for all the assumptions. The Volterra integral of (3.3) is nested in σt = 1, K(t) = tα.
A naive discretisation of (3.4) would be to approximate both (σt)t≥0 and K by step
functions. However, as the authors of [9] show, that works poorly when K is singular.
They propose instead a hybrid scheme where the power-law part of K is used without
error for some κ steps near the origin and only otherwise approximated piecewise con-
stant. For the singular case (α < 0) the numerical solution turns out to be accurate
for even low, but non-zero, κ’s. Consequently, the cost related to the power-law part
of K is small. The remainder of the approximations amounts to a discrete convolution.
With a loop the cost of that is O(n2), though, when (σt)t≥0 can be pre-simulated, the
fast Fourier transform (FFT) can be used lowering it to O(n log2 n). The FFT applies
e.g. for the rough Bergomi model and their scheme therefore beats exact simulation for it.

Another important contribution is [4] where focus is on a class of SVE driven volatil-
ity models, but see also [2]. In these papers, it is suggested that we approximate
K(t) ≈

∑m
i=1 cie

−γit for coefficients (ci, γi)mi=1, m ∈ N. The approximation is justi-
fied essentially if and only if K is completely monotone (CM).3 The CM assumption
covers most conceivable positive, decreasing, and smooth functions and is therefore mild
in a volatility context. If we replace K in (3.1) by the sum-of-exponentials approxi-
mation, we obtain a m-factor Markovian model—also called a lifted model. Simulation
with an Euler scheme results in costs O(mn) scaling even better, linearly, in n. That
analysis, however, is in general too simplistic as it disregards realistic values of m and n.
Indeed, as exponential functions are non-singular, a large m may be needed to capture
a singular K, and even if the given singularity is captured by the exponentials, a large
n may be needed for convergence. Therefore, although the multifactor approximation
scales better in n as such, the scheme need not be efficient for practical values of m and n.

To exploit only the best aspects of each method, we in this work propose to merge
the hybrid scheme of [9] with the multifactor approximations of [2, 4]. More precisely,
we suggest to handle K without error for a number of steps κ near the origin and
to approximate the remainder by a sum-of-exponentials. We call our method the hy-
brid multifactor scheme. As we will demonstrate, the hybrid multifactor scheme is more
accurate than a pure multifactor approximation and faster than the hybrid scheme of [9].

Another contribution of ours is a detailed review of methods for finding the exponential
terms, including those of [2, 4]. An efficient kernel approximation is vital as the compu-
tational costs are related directly to the number of exponentials. Our research has here
led us to the method of [10] which, to our knowledge, have not previously been used in
the context of SVE’s. By example on the rough fractional kernel, we demonstrate that
it outperforms the methods of [2, 4] by a notable margin. Inspired by [3], we consider
also a forward process g = (gt)t≥0 defined by

gt(τ) = g0(t+ τ) +
∫ t

0
K(t+ τ − s)b(Xs)ds+

∫ t

0
K(t+ τ − s)σ(Xs)dWs, (3.5)

3 A real-valued function f is completely monotone (CM) on (0,∞) if it is infinitely differentiable on
the same set and (−1)nf (n)(t) ≥ 0 for all t > 0 and n ∈ N0. If f is also continuous at zero, we say it
is CM on [0,∞). Whenever we write CM without specifying the interval, we refer to (0,∞) only.
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for t, τ ≥ 0 and which nests Xt = gt(0). We will show how our scheme facilitates easy
computation of g and will demonstrate how one can use that to compute the VIX in-
dex for a number of volatility models of the Volterra type. Moreover, we shall prove
strong convergence for the scheme assuming that b, σ are Lipschitz continuous. A Mat-
lab implementation is made available at: https://github.com/sigurdroemer/hybrid_
multifactor_scheme.

The paper is structured as follows: In Section 3.2, we outline the scheme and discuss it
against the ideas of [2, 4, 9]. In Section 3.3, we motivate the forward process and show
how to compute it numerically under the scheme. In Section 3.4, we present our conver-
gence result. Sections 3.5-3.7 are more practical. In Section 3.5, we review methods for
choosing the sum-of-exponentials approximation, in Section 3.6, discuss simulation of the
VIX index for three Volterra volatility models, and in Section 3.7, present a number of
simulation and option pricing experiments. In Section 3.8, we conclude on our work and
outline ideas for future research. We have delegated most of the proofs to the appendix.

Notation: For a matrix A ∈ Ck×k, k ∈ N, we write A> for the transpose, Ā for the com-
plex conjugate, A∗ = (A)> for the conjugate transpose. We write also A = {Ai,j}ki,j=1
where Ai,j refers to the element of row i, column j. Given x, y ∈ Ck we write x · y
for their element-by-element product here assuming that they both are either row or
column vectors. Unless written otherwise, we consider elements of Ck as column vec-
tors. Given x = (x1, ..., xk) ∈ Ck, k ∈ N, we write ||x||2 =

√
|x1|2 + ...+ |xk|2 and

||x||∞ = max{|x1|, ..., |xk|} where | · | is the complex modulus. When the specific norm
on Ck (especially Rk) is subordinate to our statements we write || · || for an arbitrary
one; recall that all norms on Ck (in particular Rk) are equivalent—we use this in our
convergence proofs. We write x+ = max{0, x}, x∧ y = min{x, y}, x∨ y = max{x, y} for
x, y ∈ R. Given p ≥ 1 and an interval I ⊂ R we write Lp(I) for the space of real-valued
functions whose p’th moment is absolutely integrable on I. The corresponding norm is
written

||f ||Lp(I) =
(∫

I

|f(t)|pdt
)1/p

, f ∈ Lp(I).

By Lploc(I) we denote the set of real-valued functions that are Lp integrable on all compact
subsets of I. Given a filtration (Ft)t≥0 on a probability space, we write for any t ≥ 0,
Et(·) = E(·|Ft) and Vart(·) = Var(·|Ft) for the conditional expectation and variance
operators. By ∆h, h ≥ 0, we denote the shift operator, i.e. for a function f : ∆hf(t) =
f(t+h). If f is right-continuous on R+ and of locally bounded variation we write df for
the measure that is induced by its distributional derivative so f(t) = f(0) +

∫
[0,t] df(s),

t ≥ 0. The convolution operator is written ’*’. We define it rigorously in Appendix 3.A.

3.2 The hybrid multifactor scheme

We assume that (3.1) has a solution X which we now fix. The goal is to simulate X over
the time interval [0, T ] for some T > 0. For n ∈ N define ti := i

n , i = 0, 1, ..., bnT c, as
well as ∆n := n−1 and t−n := bntc/n, t+n := dnte/n, for t ≥ 0. As lies at the core of our
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scheme, we will approximate K by the function

Kmn(t) := 1(t≤κ∆n)K(t) + 1(t>κ∆n)Km(t), t > 0, (3.6)

where κ ∈ {0, 1, ..., bnT c} andKm(t) :=
∑m
i=1 c

m
i e
−γmi t, t > 0, m ∈ N, cm = (cm1 , ..., cmm)>,

γm = (γm1 , ..., γmm)> ∈ Rm. To validly simulate (Xt)t∈[0,T ] we need Kmn to approximate
K on [0, T ], equivalently Km to approximate K on [κ∆n, T ].4 We will need to extend
the approximation interval when we later consider computation of the forward process
g. The approximation by Km is justified, at least heuristically, if K is CM: Note by [51,
Corollary 7.12] that K being CM is equivalent to it having the representation

K(t) =
∫

[0,∞)
e−γtµ(dγ), t > 0, (3.7)

for a non-negative Borel measure µ.5 Consider now the possibility of approximating
µ ≈ µ̂m :=

∑m
i=1 c

m
i δγmi for a given m and appropriate coefficients (cm, γm); here δγm

i

denotes the Dirac measure with point mass in γmi , i = 1, ...,m. If the coefficients (cm, γm)
are chosen non-negative—this is natural given that µ is non-negative and the integral
in (3.7) is over [0,∞)—we obtain, replacing µ by µ̂m in (3.7), the function Km. If K is
CM, it is then conceivable that we should be able to find a sequence {(cm, γm)}∞m=1 so
Km (and thereby Kmn) converges to K on [0, T ] in some given sense in the limit m→∞.6

As claimed earlier, the CM assumption is mild for volatility modelling. Examples are
the exponential kernel K(t) = ce−λt, c, λ ≥ 0, the rough fractional kernel K(t) = ctα,
α ∈ (− 1

2 , 0], c ≥ 0, and the shifted power-law kernel K(t) = (1 + t)β , β ≤ 0; check
the definition in footnote 3. Since complete monotonicity is preserved by products and
sums [43, Theorem 1], we can easily construct more flexible kernels from basic building
blocks such as these. It should be noted that CM functions are always non-negative,
non-increasing, and smooth (C∞); check again the definition. Although our scheme ef-
fectively can only be justified if K is CM, we will not explicitly invoke the assumption
unless needed for theoretical results or otherwise. For now it is simply assumed that
Kmn for given m, n and (cm, γm) approximates K on [0, T ] in some unspecified sense.

In what follows, we derive the scheme. This goes in three steps: First we replace K
by Kmn which results in a number of auxiliary stochastic processes. Next, we discretise
all coefficient processes that appear with Euler approximations. This will give us a nu-
merical solution on the time points t0, t1, ..., tbnTc. Next we extend the solution to the
full interval [0, T ]. We end with a discussion of the computational costs and accuracy.
4 The results that we present in Section 3.4 suggests that K ≈ Kmn should hold in the Lp([0, T ]) sense

for some p > 2; we suspect that this could be strengthened to p = 2. It is as expected that the kernel
approximation should be valid in some Lp([0, T ]) sense as K only appears inside integrals (ordinary
or stochastic). When we say that Kmn or Km approximates K on some interval it should thus not
be understood in a pointwise sense (unless otherwise stated); it is then meaningful to e.g. state that
Kmn = Km (say κ = 0) should approximate K on [0, T ] even if K is singular at the origin.

5 Equation (3.7) extends to t = 0 if K is CM on [0,∞) in which case µ is finite [51, Theorem 7.11]. Note
that if K is CM on [0,∞) then it is non-singular. This should be kept in mind for later discussions.

6 We have been unable to find rigorous results stating that a sequence {(cm, γm)}∞m=1 exists for an
arbitrary CM kernel K so Km convergences to it in some given sense. The papers [2, 4] contain
limited results. For a general CM kernel we rely on our heuristic justification.
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3.2.1 Applying the kernel approximation
Replacing K by Kmn in (3.1), we obtain the equation

Xmn
t = g0(t) +

∫ t

0
Kmn(t− s)b(Xmn

s )ds+
∫ t

0
Kmn(t− s)σ(Xmn

s )dWs, t ≥ 0, (3.8)

for a stochastic process Xmn = (Xmn
t )t≥0. A solution to (3.8) need not exist, especially

not on the same probability space as X. To ease the exposition, we will nevertheless
precisely assume that a continuous adapted solution Xmn exists on the same filtered
probability space as X and which is driven by the same Brownian motion—thus we
write only W . This will be true under the assumptions of our convergence result.

We now rewrite (3.8) to facilitate further numerical approximation. We will abuse no-
tation and write bmnt = b(Xmn

t ), σmnt = σ(Xmn
t ) for t ≥ 0. Plugging (3.6) into (3.8):

Xmn
t = g0(t) +

∫ (t−κ∆n)+

0
Km(t− s)bmns ds+

∫ (t−κ∆n)+

0
Km(t− s)σmns dWs (3.9)

+
∫ t

(t−κ∆n)+
K(t− s)bmns ds+

∫ t

(t−κ∆n)+
K(t− s)σmns dWs, t ≥ 0. (3.10)

Define

Umni,t :=
∫ t

0
e−γ

m
i (t−s)bmns ds+

∫ t

0
e−γ

m
i (t−s)σmns dWs, i = 1, ...,m, t ≥ 0. (3.11)

Since b, σ are assumed continuous, the above are well-defined as continuous semimartin-
gales. We derive their dynamics for later use: Let i ∈ {1, ...,m} and define for t ≥ 0,
Y mni,t :=

∫ t
0 e

γmi sbmns ds+
∫ t

0 e
γmi sσmns dWs so Umni,t = e−γ

m
i tY mni,t . By Ito’s lemma then

dUmni,t = −γmi Umni,t dt+ e−γ
m
i tdY mni,t (3.12)

=
(
bmnt − γmi Umni,t

)
dt+ σmnt dWt. (3.13)

Note that∫ (t−κ∆n)+

0
Km(t− s)bmns ds+

∫ (t−κ∆n)+

0
Km(t− s)σmns dWs (3.14)

=
m∑
i=1

cmi

(∫ (t−κ∆n)+

0
e−γ

m
i (t−s)bmns ds+

∫ (t−κ∆n)+

0
e−γ

m
i (t−s)σmns dWs

)
(3.15)

=
m∑
i=1

cmi e
−γmi κ∆n

(∫ (t−κ∆n)+

0
e−γ

m
i (t−κ∆n−s)(bmns ds+ σmns dWs)

)
(3.16)

=
m∑
i=1

cmi e
−γmi κ∆nUmni,(t−κ∆n)+ , t ≥ 0. (3.17)

The last line should be clear for t ≥ κ∆n where (t− κ∆n)+ = t− κ∆n. To make sense
of it for t ∈ [0, κ∆n] where (t− κ∆n)+ = 0 note that Umni,0 = 0, i = 1, ...,m.
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Combining (3.9)-(3.10) and (3.14)-(3.17), we conclude

Xmn
t = g0(t) +

m∑
i=1

cmi e
−γmi κ∆nUmni,(t−κ∆n)+ (3.18)

+
∫ t

(t−κ∆n)+
K(t− s)bmns ds+

∫ t

(t−κ∆n)+
K(t− s)σmns dWs, t ≥ 0. (3.19)

The above will form the basis of our numerical approximation of X.

3.2.2 Discretising the equations
In this and the next subsection, we will construct numerical solutions of Xmn

t and
Umnt := (Umn1,t , ..., U

mn
m,t)> for t ∈ [0, T ]. They will be denoted X̂mn

t and Ûmnt :=
(Ûmn1,t , ..., Û

mn
m,t)>, t ∈ [0, T ]. In the current subsection, we apply Euler approximations to

(3.12)-(3.13) and (3.18)-(3.19) to produce solution values (X̂mn
t , Ûmnt ) on the grid points

t ∈ {t0, t1, ..., tbnTc}. In the next subsection, we extend to a general time point in [0, T ].

To simplify notation, we will, given a numerical solution X̂mn
t for some t ∈ [0, T ],

write b̂mnt := b(X̂mn
t ) and σ̂mnt := σ(X̂mn

t ). Define now ∆Wn
i := Wti+1 − Wti , i =

0, 1, ..., bnT c− 1. Let j ∈ {1, ...,m}. An explicit Euler scheme for (3.12)-(3.13) results in

Ûmnj,ti+1
= Ûmnj,ti +

(
b̂mnti − γ

m
j Û

mn
j,ti

)
∆n + σ̂mnti ∆Wn

i , i = 0, 1, ..., bnT c − 1, (3.20)

where Ûmnj,0 = 0 is the initial condition. Alternatively, we can let Umnj,t be implicit in
(3.13). This results in the explicit-implicit equation:7

Ûmnj,ti+1
= 1

1 + γmj ∆n

(
Ûmnj,ti + b̂mnti ∆n + σ̂mnti ∆Wn

i

)
, i = 0, 1, ..., bnT c − 1. (3.21)

The choice (3.21) coincides with that used in [2] for the rough Heston model. Since im-
plicit terms tend to improve numerical stability, see e.g. Chapter 14 of [44], the numerical
experiments of Section 3.7 are based on (3.21). The convergence result we present in
Section 3.4 though uses (3.20) as we found the proof more manageable with that equation.

For κ > 0, define now

W̃n
i,k =

∫ ti+1

ti

K(ti+k − s)dWs, i = 0, 1, ..., bnT c − 1, k = 1, 2, ..., κ, (3.22)

and

wk =
∫ k

n

k−1
n

K(s)ds, k = 1, ..., κ. (3.23)

7 Technically we need 1 + γmj ∆n 6= 0. This is trivially satisfied if γmj ≥ 0 as is natural given (3.7).
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Inspired by (3.18)-(3.19), we for i = 0, 1, ..., bnT c, define and rewrite

X̂mn
ti := g0(ti) +

m∑
j=1

cmj e
−γmj κ∆nÛmnj,(ti−κ∆n)+ (3.24)

+
∫ ti

(ti−κ∆n)+
K(ti − s)b̂mns−

n
ds+

∫ ti

(ti−κ∆n)+
K(ti − s)σ̂mns−

n
dWs (3.25)

= g0(ti) +
m∑
j=1

cmj e
−γmj κ∆nÛmnj,(ti−κ∆n)+ (3.26)

+
min{i,κ}∑
k=1

(
b̂mnti−k

∫ ti−k+1

ti−k

K(ti − s)ds+ σ̂mnti−k

∫ ti−k+1

ti−k

K(ti − s)dWs

)
(3.27)

= g0(ti) +
m∑
j=1

cmj e
−γmj κ∆nÛmnj,ti−κ +

min{i,κ}∑
k=1

(
b̂mnti−kwk + σ̂mnti−kW̃

n
i−k,k

)
. (3.28)

By convention, we interpret the sum of (3.27) and the second sum of (3.28) as zero when
i = 0 or κ = 0. We likewise interpret the first sum of (3.28) as zero when i < κ.

Given access to the Brownian increments and the stochastic integrals of (3.22), we can it-
erate and evaluate (3.20) or (3.21) and (3.28) to obtain (X̂mn

ti , Ûmnti ) for i = 0, 1, ..., bnT c.

To sample the stochastic terms ∆Wn
i and W̃n

i,k for i = 0, 1, ..., bnT c− 1, and k = 1, ..., κ,
we follow [9] and note that they are contained in the κ+ 1 dimensional vectors

Wn
i :=

(
∆Wn

i , W̃
n
i,1, W̃

n
i,2, ..., W̃

n
i,κ

)>
, i = 0, ..., bnT c − 1, (3.29)

which are i.i.d. mean-zero Gaussians. For sampling we need the covariance matrix which
we denote by Σ = {Σj,k}κ+1

j,k=1. The entries can be found with the Ito isometry: Take an
arbitrary i ∈ {0, 1, ..., bnT c − 1}. Then Σ1,1 = E[(∆Wn

i )2] = 1
n and for k = 2, ..., κ+ 1:

Σ1,k = E

[∫ ti+1

ti

dWs

∫ ti+1

ti

K(ti+k−1 − s)dWs

]
=
∫ k−1

n

k−2
n

K(s)ds. (3.30)

For j, k = 2, ..., κ+ 1, so j ≤ k:

Σj,k = E

[∫ ti+1

ti

K(ti+j−1 − s)dWs

∫ ti+1

ti

K(ti+k−1 − s)dWs

]
(3.31)

=
∫ j−1

n

j−2
n

K (s)K (s+ (k − j)/n) ds. (3.32)

The remaining values follow by symmetry. Note that the integrals of (3.23) coincide with
those of (3.30).

While semi-analytical expressions for (3.30)-(3.32) can be found in [9] for the fractional
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kernel, we generally have to use numerical integration. As standard integration algo-
rithms may struggle for singular integrands let us suggest the following when K is singu-
lar: We will make the mild assumption that K(t) =

∑d
i=1 cit

αiKi(t), t > 0, where d ∈ N
and for i = 1, 2, ..., d, Ki ∈ L2

loc(R+) are CM and non-singular, ci ∈ R+, αi ∈ (− 1
2 , 0].

The terms of (3.30)-(3.32) that can have singular integrands then all reduce to a se-
ries of integrals of the form

∫ b
0 f(s)ds where b > 0 and f is a function that behaves

as f(s) ∼ sαh(s) in the limit s → 0+ where α ∈ (−1, 0] and h is a non-singular and
continuous function. For robust numerical integration let us then suggest to choose a
small number δ ∈ (0, b] and approximate∫ b

0
f(s)ds =

∫ δ

0
f(s)ds+

∫ b

δ

f(s)ds ≈ 1
α+ 1δ

α+1h(0) + h(δ)
2 +

∫ b

δ

f(s)ds

where the second term should be digestible for a standard integration algorithm.

3.2.3 Extending the solution
We extend to an arbitrary time point as

X̂mn
t = X̂mn

t−n
, Ûmni,t = Ûmn

i,t−n
, i = 1, ...,m, 0 ≤ t ≤ T.

The above avoids foresight in the solution values as is critical for some applications.

3.2.4 Algorithm
We summarise the scheme below.

Definition 3.2.1. (The hybrid multifactor scheme) Set X̂mn
0 = g0(0) and Ûmni,0 = 0 for

i = 1, ...,m. Perform the following steps for i = 1, ..., bnT c:

1. Simulate Wn
i−1 ∼ N (0,Σ) .

2. Update the b- and σ-processes:

b̂mnti−1
= b(X̂mn

ti−1
), σ̂mnti−1

= σ(X̂mn
ti−1

).

3. Update the U -factors, for j = 1, ...,m, as

Ûmnj,ti = Ûmnj,ti−1
+
(
b̂mnti−1

− γmj Ûmnj,ti−1

)
∆n + σ̂mnti−1

∆Wn
i−1 (3.33)

or, assuming 1 + γmj ∆n 6= 0, as

Ûmnj,ti = 1
1 + γmj ∆n

(
Ûmnj,ti−1

+ b̂mnti−1
∆n + σ̂mnti−1

∆Wn
i−1

)
. (3.34)

4. Update the X-process as

X̂mn
ti = g0(ti) +

m∑
j=1

cmj e
−γmj κ∆nÛmnj,ti−κ +

min{i,κ}∑
k=1

(
b̂mnti−kwk + σ̂mnti−kW̃

n
i−k,k

)
(3.35)

where the first sum should be interpreted as zero if i < κ, the second sum if κ = 0.
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Extend the solution to an arbitrary time point as:

X̂mn
t = X̂mn

t−n
, Ûmni,t = Ûmn

i,t−n
, i = 1, ...,m, 0 ≤ t ≤ T. (3.36)

Let us give two initial remarks on a practical implementation.

Firstly, to implement bullet point 1, note the following: Because Σ is a covariance matrix
it is symmetric and positive semi-definite. Simulation of W i−1 for a given i can then be
achieved by first factorising Σ = AA> where A is a (κ+1)×(κ+1) dimensional lower tri-
angular matrix.8 It then follows by standard results that simulating Zi−1 ∼ N (0, Iκ+1),
where Iκ+1 is the κ+ 1 dimensional identity matrix, and setting W i−1 = AZi−1 returns
a sample from the correct distribution. We can expect the factorisation to cost little
time as it only needs to be done once even if multiple paths are to be simulated and
because κ, as the reader will see, is recommended low, though not necessarily zero.

Secondly, it should be noted that even if Xt lives in a restricted region of R, the numeri-
cal solution X̂mn

t is unrestricted as we use a locally Gaussian approximation. Sometimes
it is important that X̂mn

t satisfies the same restrictions as Xt. One example is that of
modelling the instantaneous variance or volatility of an asset where a typical equation, if
we model either directly, would have a non-negative solution. For the classical case [39]
gives a thorough analysis of non-negativity fixes for a class of stochastic volatility mod-
els driven by SDE’s. We will not perform a similar detailed analysis of how to restrict
values under our scheme (to the non-negative numbers or otherwise). A simple, though
not necessarily efficient, solution is to truncate values in bullet point 4 of the scheme.

3.2.5 Computational costs and accuracy
We discuss the computational costs and accuracy. We start with a discussion of the
choice of κ and consider the extremal values first. Setting κ = 0 we get

X̂mn
ti = g0(ti) +

m∑
j=1

cmj Û
mn
j,ti , i = 0, 1, ..., bnT c, (3.37)

which is a discrete version of a Markovian lift of the model. The computational com-
plexity is O(mn). Setting κ = bnT c gives

X̂mn
ti = g0(ti) +

i∑
k=1

(
b̂mnti−kwk + σ̂mnti−kW̃

n
i−k,k

)
, i = 0, 1, ..., bnT c, (3.38)

where the sum should be interpreted as zero when i = 0. The above represents exact
simulation up to approximating the coefficient processes piecewise constant. To compute
(3.38) at all time points, in general, costs O(n2). If we include simulation of the W i’s,
it even rises to O(n3) as each of the computations AZi, i = 0, 1, ..., bnT c−1, costs O(n2).
8 This is known as the Cholesky factorisation for the positive definite case and it is unique. The

factorisation is also possible in the semi-definite case though it need not be unique [26, Chapter 4.2].
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The choice of κ involves a trade-off between accuracy and computational costs. While
higher values improve the approximation of K near the origin it also increases the di-
mensions of W n

i , i = 0, ..., bnT c − 1, and adds more terms to the second sum of (3.35);
as noted, for κ = bnT c the cost is even cubic in n. For singular kernels, the experiments
of Section 3.7 suggest that we should choose κ non-zero but low. Indeed, in the singular
case, we find a dramatic reduction in the error using κ = 1 instead of κ = 0, but little
improvement with higher values. For non-singular kernels we find that κ = 0 suffices.
We should therefore prefer the hybrid multifactor scheme over the pure multifactor ap-
proximation as it, at least in the singular case, achieves a much lower error at almost the
same cost; of course when κ = 0 our scheme is the pure multifactor approximation. Note
also that for κ fixed, not necessarily zero, the computational complexity is still O(mn).

It remains, among other things, to discuss the practical aspects of the sum-of-exponentials
approximation Km. Since m is related directly to the computational costs, we want an
accurate approximation to K on the relevant domain with as few terms as possible. It
is for now unclear how this should be done. Moreover, given some hopefully efficient
method for choosing Km it is unclear what m’s we can expect for a reasonable approx-
imation and therefore if the scheme is practically feasible. Lastly, it is unclear how m
should, or will as it turns out, relate to n and therefore how the complexity O(mn) can be
compared with other schemes (we are thinking of the hybrid scheme of [9] in particular)
that only refine the solution in a number of steps n. We discuss the above in what fol-
lows and will to that end draw on numerical evidence from the future Sections 3.5 and 3.7.

For our discussion we will, as we also suggest, implicitly assume κ > 0 when K is
singular, κ = 0 otherwise. Based on the review we give in Section 3.5, we recommend
the method of [10] for choosing m and (cm, γm). We give an overview of the method
as we propose to use it: Let n and an error tolerance ε > 0 be given. First we sample
values of K on equidistant points on [κ∆n, T ]. We assume that the number sampling
points, up to rounding, is a constant times the number of simulation steps on [κ∆n, T ].
When we later consider computation of the forward values the interval will be changed
to [κ∆n, T

∗] for a time horizon T ∗ ≥ T ; the current discussion does not depend on this
generalisation. The method of [10] can return m (we write also m(n, ε)) and coefficients
(cm, γm) so the normalised l2-error between K and Km on the sampled points is less
than or close to ε.9 Numerical evidence suggests that the resulting approximation is
close to optimal in the sense that m(n, ε) is about the minimal number of terms that
ensures a normalised l2-error below ε. For reasonable n and ε, we obtain m(n, ε) in
the range 1–10; this includes singular kernels. Consequently, we can expect the scheme’s
practical cost to be manageable in terms of m when Km is chosen with the method of [10].

We turn our attention to the scheme’s complexity when Km is chosen as described.
Note that we may now write the complexity as O(m(n, ε)n). For X̂mn

t to converge to
Xt, intuition tells us that we need both n → ∞ (to refine the scheme’s step size and
sample more points on K per unit of time10) and ε → 0 (to refine the kernel approxi-

9 Let y, ŷ ∈ Rk, k ∈ N, y 6= 0. We define the normalised l2-error of ŷ against y by ||ŷ − y||2/||y||2.
10 Because [κ∆n, T ] is bounded in n, the number of sampling points per time unit goes to∞ as n→∞.
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mation on the given points). Consider now how we can expect m(n, ε) to depend on n
and ε: For fixed ε, we can in the limit n→∞, for a singular K, expect a larger m(n, ε)
primarily to keep the normalised l2-error below ε as [κ∆n, T ] grows towards the singu-
larity where exponential functions work relatively worse. This effect will not exist for
non-singular kernels where we, per the recommendation for κ, will fit to the full interval
[0, T ]. For both singular and non-singular kernels, we can for a larger n expect a further
increase in m(n, ε) as the number of sampling points per time unit goes up; evidence
though suggests that this effect is very small. For fixed n, we can in the limit ε→ 0, in
both cases, expect m(n, ε) to grow to lower the error on the (here fixed) interval [κ∆n, T ].

Although a natural conjecture is that both n and ε should tend (to ∞ resp. 0) for
convergence, an experiment of Section 3.7 suggests that X̂mn

t converges to Xt signifi-
cantly faster in ε than in n. It is therefore our view that it practically suffices to keep ε
fixed at some low but reasonable value and only consider the convergence in n. To arrive
at a complexity that we can compare with e.g. the hybrid scheme of [9] it then only
remains to determine how m(n, ε) scales in n. An experiment of Section 3.5 to this end
suggest for a fixed ε that m(n, ε) = O(log2 n) when K is singular in the power-law sense,
m(n, ε) = O(1) when it is non-singular.11 Consequently we can expect a practical com-
plexity of O(n log2 n) when K is power-law singular and of O(n) when it is non-singular.

In what follows, we shall compare our scheme against the hybrid scheme of [9]. We
therefore switch focus to the T BSS process of (3.4) and temporarily let Xt refer to the
stochastic integral of that equation. In [9] the notion that the kernel behaves like a
power-law in the short-time limit is formalised by assuming K(t) = tαLK(t) where LK
is slowly varying at zero. The latter implies that LK is dominated by the power-law near
the origin. Let X̂n

t denote the numerical approximation of Xt under their scheme. Then

X̂n
ti =

i∑
k=κ+1

K

(
b∗k
n

)
σ̂nti−k∆Wn

i−k +
min{i,κ}∑
k=1

LK

(
k

n

)
σ̂nti−kW̃

n
i−k,k, i = 0, 1, ..., bnT c, (3.39)

where κ ∈ {0, 1, ..., bnT c}, σ̂nt is an approximate or exact sample of σt for a given t, and
b∗k ∈ [k − 1, k] \ {0}, k = κ + 1, κ + 2, ..., are optimal values from their Proposition 2.8.
By convention the first sum is zero when i < κ+ 1, the second sum when i = 0 or κ = 0.
Also, in this context:

W̃n
i,k =

∫ ti+1

ti

(ti+k − s)αdWs, i = 0, 1, ..., bnT c − 1, k = 1, 2..., κ.

Their scheme generalises in the obvious way to SVE’s of the form (3.1).

From the second sum of (3.39), we see that they handle K near the origin much like
we do—a slight difference is that they treat LK piecewise constant whereas we treat K
without error in its entirety. The authors of [9] too find small non-zero κ’s to be sufficient
when α < 0. Thus the second sum of (3.39) is of negligible cost. Their scheme mainly
differs from ours in that the remainder of the stochastic integral in (3.4) is approximated
11 Our experiments do not allow us to conjecture what the complexity is for kernels that are singular in

a non power-law way.
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by a Riemann sum; we refer to the first sum in (3.39). To compute the sums across all
time points in general costs O(n2). However, if {σ̂nti}

bnTc−1
i=0 can be pre-simulated that

can be lowered to O(n log2 n) with the FFT algorithm; the reason is that we may view
the first sum in (3.39) across i = 0, 1, ..., bnT c, as a discrete convolution. The FFT algo-
rithm applies e.g. in the Gaussian case where σt is deterministic, in particular constant.12

The experiments of Section 3.7 suggest that the scheme of [9] is about equally accu-
rate to ours for the same n. To rank them in terms of performance, it then suffices
to compare their computational costs. In the general case where the FFT cannot be
used, the hybrid multifactor scheme is notably faster with running times of O(n) for
non-singular K and of O(n log2 n) for power-law singular K whereas the scheme of [9]
displays costs O(n2). Our scheme is likewise faster when K is non-singular and the FFT
can be used (O(n) versus O(n log2 n) running time). At a glance, we should observe
similar performance both with complexity O(n log2 n) when the FFT can be used and
K is power-law singular. However, as the numerical tests of Section 3.7 show, the con-
stant in front of O(n log2 n) is smaller under our scheme. The reason, we believe, is
that m(n, ε) even in the singular case scales only very slowly in n; we refer to Section
3.5 for details. We conclude that our scheme should be preferred in all the discussed cases.

We end by highlighting a potential problem that could materialise when K is singular
and which is related to the piecewise constant approximations we apply to the coeffi-
cient processes bt and σt: Consider the stochastic integral

∫ ti
ti−1

K(ti− s)σsdWs for some
i ∈ {1, 2, ..., bnT c} and think of s 7→ K(ti − s) as giving weights to the terms ”σsdWs”.
When K is singular by far most of the weight is placed on the upper end of the integration
interval [ti−1, ti]. It follows that the estimate∫ ti

ti−1

K(ti − s)σsdWs ≈ σti−1W̃
n
i−1,1 (3.40)

could be very inaccurate. The same comment applies to our drift approximations,
though, it is likely to be less of a problem as the drift-integral (by definition) is or-
dinary. Despite the warning, our experiments suggests that the above is only sometimes
a notable problem. We refer to Section 3.7 for details.

3.3 The forward process
We discuss the forward process g. We start with some theoretical considerations to
improve our understanding of the object. Our main results are that it under certain
12 The discrete convolution between two vectors x and y can be written x ∗ y = DFT−1(DFT(x) · DFT(y))

where DFT is the discrete Fourier transform, DFT−1 its inverse; this is subject to zero padding. We refer
to [41, Chapter 3] for details. If the lengths are of order O(n) the cost with the FFT is O(n log2 n).
However, as x and y has to be inputted in their entirety, we cannot in our context when σt is state-
dependent use the FFT to achieve costs O(n log2 n) when evaluating the first sum of (3.39) across
all time points. For that we need σ̂nti , i = 0, ..., bnT c − 1, pre-simulated. Although a little pedantic,
let us also state the following to avoid misinterpretations: In the main text, we say that the FFT
can (cannot) be used to mean that it can (cannot) be used with the vectors for the given convolution
inputted in their entirety at once; technically we can always use the FFT iteratively to compute the
convolution, though, the cost of that is worse than O(n2).
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conditions represents a Markov state and under other conditions are the conditional
expectations of X. We end by showing how to compute it under the scheme.

3.3.1 Markov property, conditional expectations, and more
For our theoretical results, we need assumptions that guarantee a solution to (3.1). We
start with a hypothesis for K.

Hypothesis (H0): K ∈ L2
loc(R+) and there exists a γ̃ ∈ (0, 2] so

∫ h
0 K(t)2dt = O(hγ̃)

and
∫ T̃

0 (K(t+ h)−K(t))2dt = O(hγ̃) for every T̃ ∈ [0,∞).

We view (H0) as a mild condition. It is e.g. satisfied by the rough fractional kernel
K(t) = ctα, c ≥ 0, α ∈ (− 1

2 , 0], with γ̃ = 2α + 1, and by any kernel that is locally
Lipschitz on [0,∞) with γ̃ = 1; we refer to [5, Example 2.3] for these facts. Note that
kernels that are continuously differentiable on [0,∞), e.g. kernels that are CM on [0,∞),
are locally Lipschitz on [0,∞). From [5, Example 2.3] we also have the following: If K1
satisfies (H0) with some γ̃ and K2 is locally Lipschitz then K1K2 satisfies (H0) with the
same γ̃. Also, if K1 and K2 satisfies (H0) with some common γ̃ then so does K1 +K2.

Define

Hφ := {g0 : R+ → R, locally Hölder continuous of all orders strictly less than φ}.

By Theorem A.1 of [3] (for reference see also Theorem 3.B.1 in our appendix) the below
assumptions guarantee a unique continuous strong (under part (i)) or continuous weak
(under part (ii)) solution X to (3.1).

Assumption 3.3.1. K satisfies (H0) for some γ̃ ∈ (0, 2] and g0 ∈ Hγ̃/2. Additionally
at least one of the following statements hold: (i) b and σ are Lipschitz continuous,13 (ii)
b and σ are continuous with linear growth and K has a resolvent of first kind L.

Invoke Assumption 3.3.1 and fix a continuous solution X which exists. Define

ζt(u) := g0(u) +
∫ t

0
K(u− s)b(Xs)ds+

∫ t

0
K(u− s)σ(Xs)dWs, 0 ≤ t ≤ u. (3.41)

Since gt(τ) = ζt(t + τ) for t, τ ≥ 0, the above is just a reformulation of g. Both are
well-defined for the following reasons: The stochastic integral of (3.41) is well-defined as∫ t

0
K(u− s)2σ(Xs)2ds <∞, 0 ≤ t ≤ u,

which holds since X and σ are continuous and K ∈ L2
loc(R+). The Lebesgue integral of

(3.41) is well-defined as X and b are continuous and K ∈ L1
loc(R+) especially.

While (gt(τ))t≥0 for a fixed τ is not generally a semimartingale, the process (ζt(u))t∈[0,u]

13 Lipschitz continuity in particular implies linear growth, i.e. the existence of a positive constant C so
for all x ∈ R: |b(x)|+ |σ(x)| ≤ C(1 + |x|). We use this fact in many of our proofs.
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for a fixed u is. Despite this, we will formulate our results entirely in terms of g.

In the following, we argue that g may be Markov. It will be useful to treat the case
of a non-negative solution X separately and we therefore briefly consider additional as-
sumptions that guarantee the existence of such. We start with an extra hypothesis for K.

Hypothesis (H1): K is non-negative, not identically zero, non-increasing and con-
tinuous on (0,∞), and its resolvent of first kind L is non-negative and non-increasing in
the sense that s 7→ L([s, s+ t]) is non-increasing for all t ≥ 0.

We shall always use (H1) together with (H0). The assumptions that K is non-negative,
not identically zero, and non-increasing on (0,∞), combined with the condition K ∈
L2

loc(R+) of (H0) by [27, Theorem 5.5.5] guarantees that the resolvent L of (H1) exists.

The hypothesis (H1) is satisfied by all K ∈ L2
loc(R+) that are CM on (0,∞) and not

identically zero; use [27, Theorem 5.5.4]. This was also pointed out in [5, Example 3.7].

Consider now the following condition for g0 which is meaningful under (H0)–(H1):

∆hg0 − (∆hK ∗ L)(0)g0 − d(∆hK ∗ L) ∗ g0 ≥ 0, h ≥ 0. (3.42)

Define also:

Hγ̃/2+ := {g0 ∈ Hγ̃/2 satisfying (3.42) and g0(0) ≥ 0}.

If Assumption 3.3.1 holds, K satisfies (H1), and also g0 ∈ Hγ̃/2+ , b(0) ≥ 0, σ(0) = 0, then
(3.1) has a continuous non-negative weak solution X as follows by Theorem 3.B.2.

The reader may think that (3.42) looks somewhat abstract (we would concur). In [3,
Example 2.2] the following was however proved: Say that K satisfies (H0)–(H1) and
that g0 = X0 + K ∗ θ with X0 ≥ 0 and θ ∈ L2

loc(R+) such that θ(t)dt + X0L(dt) is
a non-negative measure. Then g0 ∈ Hγ̃/2+ . Explicit expressions for L can be found in
[5, Table 1] for some specific kernels that include the fractional one. Non-negativity of
θ(t)dt+X0L(dt) can then in many cases be ensured with an explicit inequality for θ.

Define for t0, t ≥ 0: Xt0
t := Xt0+t, gt0t := gt0+t, W t0

t := Wt0+t −Wt0 , F t0t := Ft0+t.

The result below is key to make our point about g being Markov. It effectively gener-
alises [3, Theorem 3.1] for the Volterra Heston model. It is not a complete generalisation
by technicality as the authors of [3] consider the joint system of an asset price and its
instantaneous variance—as modelled by the Volterra Heston equation—and we do not.14

Theorem 3.3.2. Invoke Assumption 3.3.1 and let X be a continuous solution of (3.1).
Fix t0 ≥ 0. Then

Xt0
t = gt0(t) +

∫ t

0
K(t− s)b(Xt0

s )ds+
∫ t

0
K(t− s)σ(Xt0

s )dW t0
s , t ≥ 0, (3.43)

14 The g-process of [3] is expressed as a conditional expectation but does match that of our paper.
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where (W t0
t )t≥0 is Brownian motion with respect to (F t0t )t≥0 which also satisfies the

usual hypothesis and gt0 ∈ Hγ̃/2 is Ft0 -measurable. More generally, we have for t, τ ≥ 0:

gt0t (τ) = gt0(t+ τ) +
∫ t

0
K(t+ τ − s)b(Xt0

s )ds+
∫ t

0
K(t+ τ − s)σ(Xt0

s )dW t0
s . (3.44)

Assume additionally that K satisfies (H1) and that g0 ∈ Hγ̃/2+ , b(0) ≥ 0, σ(0) = 0, and
X is non-negative. Then gt0 ∈ H

γ̃/2
+ .

Proof. The proof is a simple extension of that for [3, Theorem 3.1]. We refer to the
appendix for the details.

As in the theorem, invoke Assumption 3.3.1 and let X be a continuous solution of (3.1)
on some filtered probability space (Ω,F , (Ft)t≥0,P). Let also t0 ≥ 0. Note that condi-
tionally on Ft0 , Equation (3.43) for Xt0 = (Xt0

t )t≥0 viewed with the shifted filtration
(F t0t )t≥0 resembles Equation (3.1) for X but with an updated initial curve gt0 . It should
here be noted that gt0 is Ft0 -measurable and lies in Hγ̃/2 like g0 is required to and that
W t0 = (W t0

t )t≥0 is Brownian motion under the shifted filtration. It suggests that the
dynamics of Xt0 conditionally on Ft0 can also be obtained by restarting the process in
the original equation (3.1) with ’gt0 in place of g0’. In other words, Theorem 3.3.2 alludes
to g as a Markov state. We discuss this prospect in more detail in the coming paragraphs.

As a start assume additionally that b, σ are Lipschitz continuous, i.e. that specifi-
cally part (i) of Assumption 3.3.1 holds. We then conjecture that the suggested Markov
property holds: By Theorem 3.B.1 part (i), which now for sure applies, the equation

X̃t0
t = gt0(t) +

∫ t

0
K(t− s)b(X̃t0

s )ds+
∫ t

0
K(t− s)σ(X̃t0

s )dW t0
s , t ≥ 0, (3.45)

has a unique continuous strong solution X̃t0 = (X̃t0
t )t≥0 on the filtered probability space

(Ω,F , (F t0t )t≥0,P) and where we stress that W t0 in (3.45) is the same as in (3.43).
By strong uniqueness X̃t0 coincides with Xt0 . The inputs we have used in Theorem
3.B.1 to conclude the solution X̃t0 which are not fixed are gt0 which is Ft0 -measurable
and W t0 which is independent of Ft0 . It follows that we can expect the distribution
of Xt0 conditionally on Ft0 to be fully determined by gt0 . Stated differently: g should
be a Markov state for X. By (3.44) we can also expect g to be a Markov state for itself.15

A different strategy to establish the Markov property relies on weak uniqueness. Such
an argument was carried out in [3] for the Volterra Heston model. We briefly outline
it in our own words but only for the Volterra Heston equation itself, i.e. not the joint
system with an asset price: The Volterra Heston equation is defined by assuming that K
satisfies (H0)–(H1) and that g0 ∈ Hγ̃/2+ , b(x) = −λx, σ(x) = ν

√
x, x ≥ 0, (λ, ν) ∈ R2

+. A
continuous non-negative weak solution X exists by Theorem 3.B.2. From the last part
of Theorem 3.3.2 (alternatively their Theorem 3.1) we have gt0 ∈ H

γ̃/2
+ which means

that (3.45) also has a continuous non-negative weak solution X̃t0 . Although it need
15 One should ideally formalise beyond what is provided here, though, we do not pursue it. For reference,

a formal proof of the Markov property for SDE’s with b, σ Lipschitz is that of [53, Theorem 7.1.2].
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not be driven by the same Brownian motion as X, or even live on the same probability
space, as it is weak, the authors prove weak uniqueness for X and g by characterising
the Fourier-Laplace transform, respectively, the characteristic functional. They are then
able to conclude that g is a Markov state.

We find it likely that the Markov property should hold in much larger generality than
the Lipschitz and Volterra Heston cases, though, the existence and uniqueness results
that are currently available in the literature puts a limit on what can be argued for now.

The other useful property of the forward process is that whenever the drift is deter-
ministic (in the sense that b = 0) it also represents the conditional expectations of X:

Theorem 3.3.3. Invoke Assumption 3.3.1 and assume that b = 0. Let X be a continuous
solution of (3.1). Then Et(Xt+τ ) = gt(τ), t, τ ≥ 0.

Proof. By linear growth of σ, the moment bound (3.141), and that K ∈ L2
loc(R+), we

have with the use of Jensen’s inequality and Tonelli’s theorem

E

(∫ t

0
K(u− s)2σ(Xs)2ds

)
≤ C

(
1 + sup

s≤t
E(|Xs|2)

)
||K||2L2([0,u]) <∞, 0 ≤ t ≤ u,

where C is a positive (finite) constant. Consequently, for a fixed u ≥ 0, the process(∫ t

0
K(u− s)σ(Xs)dWs

)
t∈[0,u]

(3.46)

is a true martingale. It follows that

Et(Xu)− g0(u) = Et

(∫ u

0
K(u− s)σ(Xs)dWs

)
=
∫ t

0
K(u− s)σ(Xs)dWs, 0 ≤ t ≤ u.

To complete the proof, rearrange, recognise ζt(u) = gt(u− t), and set τ = u− t.

If we are in a financial context and X is the instantaneous variance of an asset, its con-
ditional expectations are known to as forward variances. Integrals of these are related
directly to important financial objects like variance swaps and the VIX index. We con-
sider a class of instantaneous variance models of the form (3.1) with b = 0 in Section 3.6.3.

The next theorem shows that b = 0 is not as restrictive as one might initially think.

Theorem 3.3.4. Consider the equation

Xt = X0 +
∫ t

0
K(t− s)λ(θ(s)−Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, t ≥ 0, (3.47)

where X0 = x0 ∈ R, λ > 0, K satisfies (H0) for some γ̃ ∈ (0, 2], θ ∈ L2
loc(R+), and

σ : R→ R is continuous of linear growth. Then g0 := X0 + λK ∗ θ ∈ Hγ̃/2. If also:

(i) σ is Lipschitz continuous then (3.47) has a unique continuous strong solution X.

44



3.3.1. MARKOV PROPERTY, CONDITIONAL EXPECTATIONS, AND MORE

(ii) K has a resolvent of first kind L then (3.47) has a continuous weak solution X.

Let (i) or (ii) additionally hold and X be a continuous solution of (3.47). Then

Xt = g̃0(t) + 1
λ

∫ t

0
Rλ(t− s)σ(Xs)dWs, t ≥ 0, (3.48)

where Rλ ∈ L2
loc(R+) is the resolvent of second kind of λK and g̃0 := X0 +Rλ ∗ (θ−X0).

Moreover, it holds that Rλ satisfies (H0) with the same γ̃ as K and g̃0 ∈ Hγ̃/2.

Say in addition that K is CM and not identically zero, σ(0) = 0, λθ(t)dt + X0L(dt)
is a non-negative measure, and X0 ≥ 0. Then K has a resolvent of first kind L and
satisfies (H1), g0 ∈ Hγ̃/2+ , and (3.47) has a continuous non-negative weak solution X.

Furthermore, it holds that Rλ is CM and not identically zero with a resolvent of first kind
given by L̃(dt) = λ−1L(dt) + dt for which it satisfies (H1), that (θ(t)−X0)dt+X0L̃(dt)
is a non-negative measure, and g̃0 ∈ Hγ̃/2+ .

Proof. We refer to the appendix.

Remark 3.3.1. Similar results already exists for the rough Heston equation elsewhere in
the literature; see e.g. [18, Proposition 6.3].

Theorems 3.3.3-4 suggest that if we have an equation with linear drift of the form (3.47)
and desire numerical computation of the conditional expectations, it may be worthwhile
to reformulate it to (3.48). More precisely, it then suffices to evaluate the forward values
to which end we provide a numerical approximation in the next subsection. Note that
many properties of original equation (3.47) hold for (3.48) also: The initial curve g̃0 is
e.g. yet locally Hölder continuous of orders less than γ̃/2 and 1

λRλ is (like K) locally
square integrable and satisfies (H0) with the same γ̃; the 1

λ scaling does not change
this. The results of Sections 3.4 and 3.7 show that γ̃ controls the convergence rate for
the strong error under the hybrid multifactor scheme, though, there are many nuances
to this statement, see later. Consequently, whether we solve (3.47) or (3.48) with the
scheme we can expect the same asymptotic convergence speed. For this whole discussion,
it should be noted that if K is CM then so is 1

λRλ [27, Theorem 5.3.1] and therefore if
we can apply the hybrid multifactor scheme to (3.47) we can also apply it to (3.48).16

For practical use of (3.48) we need to know Rλ. While analytical expressions are not
always available, they are in certain cases. Consider the rough fractional kernel

K(t) = tα−1

Γ(α) , t > 0, α ∈ (1/2, 1], (3.49)

which satisfies (H0). As is common in some parts of the literature, we have let the
roughness parameter α lie in ( 1

2 , 1] instead of (− 1
2 , 0]. By [5, Table 1] (see also Proposition

3.A.1 in our appendix) the resolvent of second kind of λK under (3.49) is given by

Rλ(t) = λtα−1Eα,α (−λtα) , t > 0, (3.50)
16 Note that (3.47) is nested in (3.1) with g0 = X0 + λK ∗ θ, b(x) = −λx, and where σ,K are the same.
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where

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β) , z, α, β ∈ C, Re(α),Re(β) > 0, (3.51)

is the so-called Mittag-Leffler function.17

For the general case, note that Rλ by definition solves

Rλ = λK − λK ∗Rλ. (3.52)

Consequently, if we assume that K is CM on [0,∞), we can obtain Rλ by solving (3.52)
with the scheme where λK (also) takes the role of ’g0’ compared with (3.1). If K is CM
on (0,∞) and singular, we are bound to need a modified version of the scheme to prop-
erly handle the initial curve which now also is singular. We leave this for a future project.

In what follows, we shed more light on how 1
λRλ relates to K. We will assume that

K is CM and will also use that K ∈ L2
loc(R+) as is nested in (H0). Note first that (3.52)

implies 1
λRλ = K −K ∗Rλ. Since K and 1

λRλ are CM they are non-negative. It follows
that 0 ≤ 1

λRλ ≤ K, i.e. the scaled resolved kernel is bounded by the original one. But we
can say more: By [27, Theorem 5.3.1] we have Rλ ∈ L1(R+) which, because Rλ is non-
negative and non-increasing as follows by complete monotonicity, implies Rλ(t) → 0 in
the limit t→∞.18 Moreover, as K ∈ L2

loc(R+) it holds that Rλ ∈ L2
loc(R+) by Remark

3.A.1 of the appendix. Choose now a number t∗ > 0 so Rλ(t) ≤ 1 for all t ≥ t∗ as is pos-
sible since Rλ decays to zero. By Rλ ∈ L2

loc(R+) and Rλ ∈ L1(R+) it then follows that
||Rλ||2L2(R+) ≤ ||Rλ||

2
L2([0,t∗]) + ||Rλ||2L1([t∗,∞)) <∞ and we conclude that 1

λRλ ∈ L
2(R+).

The above shows that if K ∈ L2
loc(R+) is CM then 1

λRλ is dampened compared to
K, both pointwise and in terms of square integrability. For the latter, note that K de-
fined by (3.49) has ||K||L2(R+) =∞ (recall that

∫∞
1 xβdx =∞ when β ≥ −1) whereas we

just argued that 1
λRλ ∈ L

2(R+) always when K is CM and locally square integrable. To
highlight a practical implication, consider (3.47)-(3.48) in the Gaussian case where σ is
constant. Under the assumptions on K then supt≥0 Var(Xt) ∝ ||Rλ||2L2(R+) <∞ always
when λ > 0 whereas supt≥0 Var(Xt) ∝ ||K||2L2(R+) when λ = 0 and which could equal
∞ as we noted for (3.49). We suspect that uniformly (or equivalently: asymptotically)
bounded variance holds more generally when λ > 0 although we will not attempt a proof.

Theorem 3.3.4 and the above discussion suggests that when K is CM, the effect of
linear drift is mainly that of dampening the original kernel, perhaps most importantly
to get square integrability, and to create a mean term structure via the relation g̃0 =
X0 + Rλ ∗ (θ − X0). However, there is no loss of generality in modelling directly on
the form (3.1) with a general initial curve g0 ∈ Hγ̃/2 and the restrictions b = 0 and
K ∈ L2(R+). In fact, we expect this to be more practical as the conditional expecta-
tions, if we desire the numerical computation of these, then immediately coincide with
17 For our numerical experiments, we use the implementation https://www.mathworks.com/

matlabcentral/fileexchange/48154-the-mittag-leffler-function coded by Roberto Garrappa
(retrieved December 1, 2021).

18 If not limt→∞Rλ(t) = 0 then Rλ(t) ≥ c for some c > 0 for all t > 0 which contradicts Rλ ∈ L1(R+).
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the forward values without having to first determine Rλ and rewrite (3.47) to (3.48).

Given that the forward process in many cases represents a Markov state and/or the
conditional expectations of the underlying process, we see there can be good value in
being able to compute it. We will need the forward process in Section 3.6 when we show
how to compute the VIX index for a number of volatility models of the Volterra type.

There is a final theorem that we wish to state in this subsection. Before we can show it,
we need another assumption on K.

Hypothesis (H∗2 ): K is CM on (0,∞) with representation (3.7) for a non-negative
Borel measure µ that satisfies

∫
[0,∞)(1 ∧ γ

− 1
2 )µ(dγ) <∞.

We have labelled the assumption (H∗2 ) as the integrability criterion is similar to that
of hypothesis (H2) of [3]; the latter in fact implies the former. It should be noted that
(H∗2 ) is satisfied by any kernel that is CM on [0,∞) since µ then is finite as remarked in
footnote 5 and (1 ∧ γ− 1

2 ) ≤ 1 for all γ ≥ 0. By Table 1 of [3] (H∗2 ) is also satisfied by
the gamma kernel which we define by

K(t) = e−λt
tα−1

Γ(α) , t > 0, λ ≥ 0, α ∈ (1/2, 1]. (3.53)

It is therefore our expectation that (H∗2 ) is a mild assumption on K.

We can now state the theorem. Under the given conditions, it shows that gt, in particular
Xt, can be expressed in terms of an infinite set of mean-reverting semimartingales. We
will need the result in Section 3.6.3 when we derive an equation for the VIX index for
a class of Volterra volatility models with deterministic drift. The theorem also hints at
the numerical approximation of g that we will present in the next subsection. Similar
but less general results exist in [2, 3, 4]; for the purely Gaussian case see also [14, 29].

Theorem 3.3.5. Invoke Assumption 3.3.1 and assume that K satisfies (H∗2 ). Let X be
a continuous solution of (3.1). Define

Ut(γ) :=
∫ t

0
e−γ(t−s)b(Xs)ds+

∫ t

0
e−γ(t−s)σ(Xs)dWs, t, γ ≥ 0.

For any γ ≥ 0 then

dUt(γ) = (b(Xt)− γUt(γ))dt+ σ(Xt)dWt, U0(γ) = 0. (3.54)

Furthermore

gt(τ) = g0(t+ τ) +
∫

[0,∞)
e−γτUt(γ)µ(dγ), t, τ ≥ 0. (3.55)

In particular

Xt = g0(t) +
∫

[0,∞)
Ut(γ)µ(dγ), t ≥ 0. (3.56)
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Proof. See the appendix.

Note that (3.56) resembles (3.37) (our approximation of X when κ = 0). The approxi-
mation we momentarily will suggest for g will analogously resemble (3.55) when κ = 0.19

3.3.2 Numerical approximation
We will denote our approximation of gt(τ) by ĝmnt (τ). It will not be justified for any
τ ≥ 0 even if t ∈ [0, T ]. Instead the set of valid τ ’s will depend on the domain where
Kmn approximates K. To allow explicit control of the set of valid τ ’s, we introduce a
forward horizon T ∗ ≥ T and will now assume that Kmn approximates K on [0, T ∗], i.e.
that Km approximates K on [κ∆n, T

∗]. The definition of gt(τ) (c.f. (3.5)) for given
t, τ ≥ 0 uses values of K on the interval [τ, τ + t]. Therefore if Kmn approximates K
on [0, T ∗] and we have simulated (X̂mn

t , Ûmnt )t∈[0,T ], we should be able to approximate
gt(τ) for values t, τ ≥ 0 that satisfy t ≤ T and τ + t ≤ T ∗. Below we define formally the
set of points (t, τ) where the approximation gt(τ) ≈ ĝmnt (τ) will be justified:

A := {(t, τ) ∈ R2
+ : t ≤ T and τ + t ≤ T ∗}. (3.57)

To define the numerical solution ĝmn = (ĝmnt (τ))(t,τ)∈A, we consider first the forward
values that arise under (3.8):

gmnt (τ) := g0(t+ τ) +
∫ t

0
Kmn(t+ τ − s) (bmns ds+ σmns dWs) , t, τ ≥ 0. (3.58)

The above is well-defined because Xmn is continuous and adapted, and since b, σ are also
continuous, and Kmn ∈ L2

loc(R+) which holds due to the fact that K,Km ∈ L2
loc(R+).

Say that (t, τ) ∈ A are so τ ≥ κ∆n. Then

gmnt (τ) = g0(t+ τ) +
∫ t

0
Km(t+ τ − s)bmns ds+

∫ t

0
Km(t+ τ − s)σmns dWs (3.59)

= g0(t+ τ) +
m∑
i=1

cmi e
−γmi τUmni,t . (3.60)

Next let (t, τ) ∈ A such that τ ∈ [0, κ∆n]. Then

gmnt (τ) = g0(t+ τ) +
∫ (t+τ−κ∆n)+

0
Km(t+ τ − s)(bmns ds+ σmns dWs) (3.61)

+
∫ t

(t+τ−κ∆n)+
K(t+ τ − s)(bmns ds+ σmns dWs) (3.62)

= g0(t+ τ) +
m∑
i=1

cmi e
−γmi κ∆nUmni,(t+τ−κ∆n)+ (3.63)

19 Equations (3.55)-(3.56) also allude to (Ut(γ))γ≥0 as a Markov state for gt and Xt. We refrain from
making that precise but the reader should note that the Volterra Heston equation is treated in [3].
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+
∫ t

(t+τ−κ∆n)+
K(t+ τ − s)(bmns ds+ σmns dWs). (3.64)

Let i ∈ {0, 1, ..., bnT c} and say that τ = l∆n for l ∈ {0, 1, ..., κ}. By (3.61)-(3.64) then

gmnti (τ) ≈ g0(ti+l) +
m∑
j=1

cmj e
−γmj κ∆nUmnj,(ti+l−κ∆n)+

+
min{i,κ−l}∑

k=1

(
bmnti−k

∫ ti−k+1

ti−k

K(ti+l − s)ds+ σmnti−k

∫ ti−k+1

ti−k

K(ti+l − s)dWs

)

= g0(ti+l) +
m∑
j=1

cmj e
−γmj κ∆nUmnj,(ti+l−κ∆n)+ +

min{i,κ−l}∑
k=1

(
bmnti−kwk+l + σmnti−kW̃

n
i−k,k+l

)
where the second sums should be interpreted as zero when i = 0 or l = κ.

The just stated derivations and approximations forms the basis of our numerical ap-
proximation ĝmnt (τ), which as noted is valid for (t, τ) ∈ A. We define it formally below:

Definition 3.3.1. Let i ∈ {0, 1, ..., bnT c} and τ be such that (ti, τ) ∈ A. Define then

ĝmnti (τ) :=



g0(ti + τ) +
∑m
j=1 c

m
j e
−γmj τ Ûmnj,ti

, τ ≥ κ∆n,

g0(ti+l) +
∑m
j=1 c

m
j e
−γmj κ∆nÛmnj,(ti+l−κ∆n)+

+
∑min{i,κ−l}
k=1

(
b̂mnti−kwk+l + σ̂mnti−kW̃

n
i−k,k+l

)
, τ = l∆n, l ∈ {0, 1, ..., κ},

∆n−(τ−τ−
n )

∆n
ĝmnti (τ−n ) + τ−τ−

n

∆n
ĝmnti (τ+

n ), τ ∈ [0, κ∆n]

and extend the definition as

ĝmnt (τ) := ĝmn
t−n

(τ), (t, τ) ∈ A. (3.65)

The piecewise linear interpolation that is used to define ĝmnti (τ) for i ∈ {0, 1, ..., bnT c}
and τ ∈ [0, κ∆n ∧ (T ∗ − ti)] is justified under Assumption 3.3.1 if X is continuous since
gti(·) then likewise is by Theorem 3.3.2. The reader may check that Definition 3.3.1
is consistent with itself where there is overlap in the specification of ĝmn. It is also
consistent with X̂mn since ĝmnt (0) = X̂mn

t for t ∈ [0, T ]. Note also that if we need values
of gt(τ) for all (t, τ) ∈ [0, T ]× [0, τ∗] for some τ∗ ≥ 0, we can set T ∗ = T +τ∗; c.f. (3.57).

Remark 3.3.2. For the alternative process (3.41) the approximation ζ̂mnt (u) := ĝmnt (u−
t) ≈ ζt(u) is justified for points (t, u) that satisfy 0 ≤ t ≤ T and t ≤ u ≤ T ∗.

3.4 Strong convergence
We present our convergence result. The main assumptions are collected below.
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Assumption 3.4.1. K is CM and satisfies (H0) for some γ̃ ∈ (0, 2]. There exists a
β > 1 so ||K||L2β([0,T∗]) < ∞ and limm→∞ ||K − Km||L2β([0,T∗]) = 0. Moreover g0 is
locally Hölder continuous of order γ̃/2 and b and σ are Lipschitz continuous, i.e. there
exists a positive constant C so |b(x)− b(y)|+ |σ(x)− σ(y)| ≤ C|x− y| for all x, y ∈ R.

We need g0 to be locally Hölder continuous of order γ̃/2—and not just all orders strictly
smaller as in Assumption 3.3.1—to avoid weakening the convergence rate of Theorem
3.4.3 (to be presented) by an arbitrarily small number. Together with the assumption
that K satisfies (H0) and Lipschitz continuity of b, σ it implies that there exists a unique
continuous strong solution X to (3.1) as follows by Theorem 3.B.1. The assumption that
there exists a β > 1 so ||K||L2β([0,T∗]) <∞ and limm→∞ ||K −Km||L2β([0,T∗]) = 0 could
be criticized. While the integrability condition is satisfied by most conceivable kernels20,
we are unaware of results that under general conditions guarantee the existence of a se-
quence {(cm, γm)}∞m=1 so limm→∞ ||K−Km||L2β([0,T∗]) = 0 for a β > 1. Proposition 3.3
and Remark 3.4 of [4] give conditions on K and {(cm, γm)}∞m=1 that ensure convergence
with β = 1. We are nevertheless hopeful that our assumptions could be relaxed to β = 1
or that their results could be extended to β > 1 under reasonable conditions.

The below shows that Kmn under Assumption 3.4.1 satisfies (H0) with rate γ̃ ∧ 1.
Corollary 3.4.2. Say that K is CM and satisfies (H0) for some γ̃ ∈ (0, 2]. Let m,n ∈ N.
Then Kmn ∈ L2

loc(R+),
∫ h

0 Kmn(t)2dt = O(hγ̃∧1), and
∫ T̃

0 (Kmn(t + h) −Kmn(t))2dt =
O(hγ̃∧1) for every T̃ ∈ [0,∞).

Proof. The result is a direct implication of Proposition 3.F.2 of the appendix.

Remark 3.4.1. The rate γ̃ ∧ 1 of Corollary 3.4.2 can be strengthened to 1 when κ = 0 as
then Kmn = Km where Km is locally Lipschitz on [0,∞); c.f. [5, Example 2.3 part (i)].
Combining Corollary 3.4.2 and Theorem 3.B.1 we note that Assumption 3.4.1 for any
m,n guarantees also the existence of a unique continuous adapted solution Xmn to (3.8)
on the same probability space as X driven by the same Brownian motion W . Using
moreover continuity of b, σ we conclude that gmn of (3.58) likewise is well-defined on the
same probability space. We need this so we can meaningfully compute the strong error.

Remark 3.4.2. To avoid misunderstandings, we stress that we for Theorem 3.4.3 stated
below keep the following quantities fixed: g0,K, b, σ, T, T

∗, κ, {(cm, γm)}∞m=1, β, γ̃. The
constants Cp and Cp,m that appear in the theorem therefore implicitly depend on them.

Our main result is that below.
Theorem 3.4.3. Invoke Assumption 3.4.1 and assume that Equation (3.33) of Defini-
tion 3.2.1 is used. For p ≥ 2β

β−1 and m ∈ N there then exist positive constants Cp and
Cp,m, the first of which depends on p only, the latter on both p and m, so

sup
(t,τ)∈A

E [|gt(τ)− ĝmnt (τ)|p] ≤ Cp||K −Kmn||pL2β([0,T∗]) + Cp,mn
− p2 (γ̃∧1), n ∈ N. (3.66)

20 Consider K(t) = ctα with c ≥ 0 and α ∈ (− 1
2 , 0]. Then ||K||L2β([0,T∗]) < ∞ when 2αβ > −1.

For α ∈ (−1/2, 0) the values β ∈ (1,− 1
2α ) work. For α = 0 arbitrary β > 1 can be used. As the

integrability condition is preserved under multiplication by functions that are continuous on [0,∞)
and sums, we consider it mild.
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Proof. We provide a full proof in Appendix 3.G. Below we give a (very) brief summary
as we need it to discuss the theorem: Let p ≥ 2β

β−1 and m,n ∈ N. By Jensen’s inequality:

sup
(t,τ)∈A

E [|gt(τ)− ĝmnt (τ)|p] ≤ 2p−1 sup
(t,τ)∈A

E [|gt(τ)− gmnt (τ)|p]

+ 2p−1 sup
(t,τ)∈A

E [|gmnt (τ)− ĝmnt (τ)|p] .

As we show in the appendix, we may bound the above terms as

2p−1 sup
(t,τ)∈A

E [|gt(τ)− gmnt (τ)|p] ≤ Cp||K −Kmn||pL2β([0,T∗]),

2p−1 sup
(t,τ)∈A

E [|gmnt (τ)− ĝmnt (τ)|p] ≤ Cp,mn−
p
2 (γ̃∧1).

The result follows.

The below is more or less immediate.

Theorem 3.4.4. Invoke Assumption 3.4.1 and assume that Equation (3.33) of Defini-
tion 3.2.1 is used. For p ≥ 1 then

lim
m→∞

lim
n→∞

sup
(t,τ)∈A

E [|gt(τ)− ĝmnt (τ)|p] = 0. (3.67)

Proof. Note for arbitrary m,n that ||K−Kmn||L2β([0,T∗]) ≤ ||K−Km||L2β([0,T∗]). Equa-
tion (3.67) then follows for any p ≥ 2β

β−1 > 2 by combining this with (3.66) and taking
limits. That (3.67) holds for a general p ≥ 1 follows by the fact that convergence in Lp

implies convergence in Lq for any 1 ≤ q < p <∞ on probability spaces.

We discuss the results in the following.

Note first that the left-hand side of (3.66) is estimated by two terms. The proof shows
that the first term represents the error between g and gmn (the error incurred by ap-
proximating K by Kmn), the second term that between gmn and ĝmn (the error incurred
by discretising). As the first term is bounded by Cp||K − Km||pL2β([0,T∗]) it suggests
for convergence a double limit first in n → ∞ to make the discretisation error vanish,
then in m→∞ to make the kernel error vanish; this is also reflected in Theorem 3.4.4.
There is no rate estimate for the first term and we neither expect such without addi-
tional assumptions on {(cm, γm)}∞m=1. The convergence rate for the discretisation error
is 1

2 (γ̃ ∧ 1); we always discuss it after normalisation by the moment p. For a kernel that
is CM on [0,∞), non-singular especially, may set γ̃ = 1 to attain a convergence rate of
1
2 . For the rough fractional kernel K(t) = ctα, c ≥ 0, α ∈ (− 1

2 , 0], we may set γ̃ = 2α+ 1
and thus attain a rate of α + 1

2 . We refer to our discussion on page 41 for the validity
of the γ̃-values; for the tightest estimates, we consider only the largest known valid γ̃’s.
More generally the convergence rate is related to the regularity of the spot process: In-
deed, X is locally Hölder continuous of all orders strictly less than γ̃/2 by Theorem 3.B.1.
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The rate estimate of 1
2 when K is CM on [0,∞) coincides with that of the Euler scheme

for SDE’s; c.f. [45, Theorem 10.2.2] although it only covers the case of p = 1.21 This is
meaningful: When κ = 0 the factors Umn = (Umnt )t≥0 form a multidimensional SDE.
The reason is that Xmn

t = g0(t) +
∑m
i=1 c

m
i U

mn
i,t which is plugged into the coefficient

functions b and σ then is a simple time-dependent (according to g0) function of Umnt .
Since also gmnt (τ) = g0(t+ τ) +

∑m
i=1 c

m
i e
−γmi τUmni,t is a simple time-dependent function

of Umnt , ĝmnt (τ) similarly of Ûmnt , the error between gmn and ĝmn is that of an Euler
scheme for a SDE.22 The same logic does not apply when κ > 0 as Xmn

t and gmnt (τ),
respectively X̂mn

t and ĝmnt (τ), then are functions of more stochastic terms than only
Umn, respectively Ûmn. However, since we have assumed K non-singular it makes sense
that setting κ > 0 should not change the asymptotic behaviour. That is, we also find it
meaningful that we should attain the Euler rate 1

2 when κ > 0 and K is CM on [0,∞).

The rate estimate α + 1
2 for the discretisation error under the rough fractional ker-

nel coincides with that derived in [9] for their hybrid scheme and in [46] for their Euler
scheme. It should however be mentioned that the convergence rate 1

2 (γ̃ ∧ 1) for the dis-
cretisation error under our scheme can be improved when γ̃ < 1 (such as when K(t) = tα,
α ∈ (− 1

2 , 0)) and κ = 0 and g0 is locally Hölder continuous of order 1
2 : Invoke the three

mentioned extra assumptions, the latter only so the approximation error of g0 does not
dominate. A careful reading of our proof then shows that the convergence rate 1

2 (γ̃ ∧ 1)
for the discretisation error can be strengthened to 1

2 . The result is unsurprising as we
for κ = 0 have Kmn = Km so, regardless of the properties of K, the kernel for the
discretisation error, Kmn, is CM on [0,∞). A naive interpretation is that we should set
κ = 0 always to achieve the Euler rate 1

2 even when γ̃ < 1, assuming also local 1
2 -Hölder

continuity of g0. However, as we see it, there is no free lunch. The error that results from
improper treatment of K near the origin when singular is instead, in a sense, transferred
to the first error term of (3.66). In any case, as we have also mentioned several times,
the choice κ > 0 is recommended for a practical implementation when K is singular.

In Section 3.7, we examine numerically the strong convergence rate for the Gaussian
case, though, under the explicit-implicit equation (3.34) and with m = m(n, ε) as a
function of n where ε is fixed.

3.5 Sum-of-exponentials approximation
In this section, we examine five methods for choosing the sum-of-exponentials approx-
imation Km(t) =

∑m
i=1 c

m
i e
−γmi t. There are three subsections. In the first we describe

the methods, in the second compare them numerically in terms of speed and accuracy,
and, in the third, investigate numerically the recommended method, that of [10], in more
detail. Our focus will mainly, though not exclusively, be on the rough fractional kernel.

21 In Theorem 3.4.3 we instead require p ≥ 2β
β−1 > 2 but this could simply be a limitation of our proof.

22 Technically, for a full argument, it should also be noted that g0 is locally Hölder continuous of order
1
2 when γ̃ = 1 so the error that arises from approximation of g0 does not worsen the 1

2 convergence
rate; recall that we e.g. truncate the solution values down to the nearest grid point in (3.36) and
(3.65).
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3.5.1 Description of methods
We start with the paper [4] where multifactor approximations are discussed for a class
of rough volatility models with kernels of the form

K(t) = cαt
α, t > 0, cα = Γ(1 + α)−1, α ∈ (−1/2, 0) . (3.68)

For a given m, the authors choose a set of auxiliary exponents ηm = (ηm0 , ηm1 , ..., ηmm) ∈
Rm+1 that satisfy 0 = ηm0 < ηm1 < ... < ηmm and set the coefficients as

cmi =
∫ ηmi

ηm
i−1

µ(dγ), γmi = 1
cmi

∫ ηmi

ηm
i−1

γµ(dγ), i = 1, ...,m, (3.69)

where
µ(dγ) = γ−α−1

Γ(1 + α)Γ(−α)dγ. (3.70)

The measure (3.70) is that of the representation (3.7) for the kernel (3.68). Explicit
expressions for (cm, γm) are obtained by plugging (3.70) into (3.69) and integrating.
The problem is reduced to that of choosing ηm. For a given T > 0, the authors show
that

||K −Km||L2([0,T ]) ≤ f (2)
m (ηm) (3.71)

where

f (2)
m (ηm) = T 5/2

2
√

5

m∑
i=1

∫ ηmi

ηm
i−1

(γ − γmi )2µ(dγ) + 1
(α+ 1

2 )Γ(1 + α)Γ(−α)
√

2
(ηmm)−(α+ 1

2 ).

Thus convergence in L2([0, T ]) norm is ensured if ηm is chosen so
m∑
i=1

∫ ηmi

ηm
i−1

(γ − γmi )2µ(dγ)→ 0 and ηmm →∞ as m→∞. (3.72)

The equidistant choice ηmi = iπm, i = 0, 1, ...,m, for a number πm > 0 is explored in
detail. Under that choice the authors minimise f (2)

m (ηm) with respect to πm to obtain

πm = m−
1
5

T

(√
10(−2α)
4− 2α

) 2
5

(3.73)

and

||K −Km||L2([0,T ]) ≤ Cαm−
4
5 (α+ 1

2 ) (3.74)

where Cα is a positive constant depending on α; the inequality (3.74) shows that conver-
gence is ensured under the choice (3.73). We include this method for choosing (cm, γm)
in our experiments and refer to it as AJEE2019. To obtain a higher degree of accu-
racy, it is alternatively suggested that we set ηm by numerically minimising f

(2)
m (ηm)

subject to 0 = ηm0 < ηm1 < ... < ηmm . That is, to minimise without additional constraints
on ηm. We likewise include this method in our test and refer to it as AJEE2019-optim.
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In [2], Eduardo Abi Jaber considers a Markovian approximation of the rough Heston
model and therefore also focusses on the kernel (3.68). The coefficients are set as

cmi = (r−αm − 1)rα(1+m/2)
m

Γ(1 + α)Γ(1− α) r−αim , γmi = α

α− 1
r1−α
m − 1
r−αm − 1

ri−1−m/2
m , i = 1, ...m, (3.75)

in terms of a free parameter rm > 1. The above is equivalent to the geometric parti-
tioning ηmi = r

i−m/2
m , i = 0, 1, ...,m, for the auxiliary exponents of [4]. It is shown that

limm→∞ ||K − Km||L2([0,T ]) = 0 for any T > 0 if {rm}∞m=1 is chosen so rm → 1 and
m log(rm)→∞ in the limit m→∞. Though explicit sequences {rm}∞m=1 yielding con-
vergence may be constructed,23 the author finds the fixed choice m = 20 and r20 = 2.5
to work well for practical purposes. Alternatively, it is for a given m suggested that we
solve

minrm>1

N∑
i=1

wi||K −Km||L2([δ,Ti]) (3.76)

where N is a positive integer, (w1, ..., wN ) ∈ RN weights, (T1, ..., TN ) ∈ RN+ time points,
and δ = 0. We include the method defined by (3.76) in our experiments, except we use
it with N = 1 and let δ ≥ 0 be more general; we refer to it as AJ2019-optim.

The methods that we have introduced so far have several limitations and are generally
suboptimal: Firstly, by their construction they all restrict (cm, γm) to limited regions
of R2m. Secondly, those of [4] minimise an upper bound on the error. Thirdly, that of
[2] is tailored to the rough fractional kernel and is therefore not applicable in general.
Lastly, although the authors of [4] argue that their approach generalises to other kernels,
we note that it relies on an explicit expression for µ which may not always be available.24

In search of higher accuracy and more generality, we include an additional method in
our tests which we refer to as l2-optim: We consider a general CM kernel K to be
approximated on an interval [δ, T ] where 0 ≤ δ < T . In the singular case we need to
assume δ > 0, though, of course, it can be chosen arbitrarily small. Let m,n ∈ N and
define the equidistant points ti = δ + (T − δ) i−1

n−1 , i = 1, ..., n. Define also yi = K(ti),
i = 1, ..., n, and set y = (y1, ..., yn)>. What we propose is then to minimise the l2-error
between K and Km across the sampled points. That is, to set the coefficients as

(cm, γm) := argmin
c,γ∈Rm

||y −A(γ)c||22 subject to 0 ≤ γ1 < γ2 < ... < γm, (3.77)

where for a vector γ = (γ1, ..., γm) ∈ Rm we define A(γ) as the n × m dimensional
matrix with (i, j)’th entry e−γjti . When γ is held fixed (3.77) reduces to a least squares
minimisation problem with respect to c. The minimum norm solution is c = A+(γ)y
where A+(γ) is the pseudoinverse of A(γ) [36, pp. 291]. We may therefore instead solve

γm := argmin
γ∈Rm

||y −A(γ)c(γ)||22 subject to 0 ≤ γ1 < γ2 < ... < γm, (3.78)

23 In the paper, the sequence rm = 1 + 10m−0.9 is tested. Their Figure 2 however shows that upwards
of m = 100 terms are needed for convergence of the volatility smiles for an example where α = −0.4.

24 We refer to their Remark 3.4 where the authors for a general CM kernel K (satisfying a certain
integrability condition) state that setting the coefficients as in (3.69) for a ηm satisfying (3.72) yet
results in limm→∞ ||K −Km||L2([0,T ]) = 0. However, as we note, to evaluate (3.69) we must know
µ.
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where c(γ) := A+(γ)y and set cm := c(γm). This is how we implement the method.25

Lastly, we shall examine the method of [10] where the authors, in a very general set-
ting, consider the efficient approximation of functions by exponential sums. We refer to
their method as BM2005. To our knowledge, it has not been used in our context before
and we will therefore be rather elaborate on how it works and specialises to the CM case.

Basic setup: We consider a continuous function f̃ : [a, b] → C, a, b ∈ R, a < b, to
be approximated by a sum of exponentials.26,27 We will normalise the situation and
work with the equivalent mapping f : [0, 1] → C defined by f(x) := f̃(a + (b − a)x),
x ∈ [0, 1]. The goal is to find m ∈ N and c = (c1, ..., cm), γ = (γ1, ..., γm) ∈ Cm so
f(x) ≈

∑m
i=1 cie

−γix, x ∈ [0, 1]. For the original function f̃ then:

f̃(x) = f

(
x− a
b− a

)
≈

m∑
i=1

c̃ie
−γ̃ix, x ∈ [a, b], c̃i := cie

γi
a
b−a , γ̃i := γi

b− a
, i = 1, ...,m.

In what follows, we outline the method of [10] for selecting m and (c, γ). We will comment
on the CM case as we go along, and will to that end introduce the following assumption:
Assumption 3.5.1. f̃ is the restriction to the domain [a, b] of a function K that is CM
on an interval that covers [a, b] and which has representation (3.7) for a measure µ ≥ 0.

Naturally, we will under the assumption need to assume a ≥ 0 and if K is CM on (0,∞)
only, more restrictively that a > 0. Assumption 3.5.1 implies for x ∈ [0, 1] that

f(x) = f̃(a+ (b− a)x) =
∫

[0,∞)
e−γ(a+(b−a)x)µ(dγ) =

∫
[0,∞)

e−γ(b−a)xµ̂(dγ), (3.79)

where µ̂ := e−(·)a ·µ (like µ) is non-negative. The representation (3.79) justifies a sum-of-
exponentials approximation to f with real-valued non-negative coefficients. We explicitly
state whenever we work under Assumption 3.5.1. Otherwise we work in the general setup.

Because the method of [10] is formulated for a discrete set of points and not directly
functions, we start by sampling f at 2N + 1, N ∈ N, equidistant points on its domain as

hk := f

(
k

2N

)
, k = 0, 1, ..., 2N.

For future use, let h := (h0, h1, ..., h2N ). For practical purposes, we consider the problem
of finding m and coefficients (c, γ) so

hk ≈
m∑
i=1

cie
−γi k

2N , k = 0, 1, ..., 2N. (3.80)

25 We use Matlab’s fmincon function to solve the optimisation problem; we also use it for AJEE2019-
optim and AJ2019-optim.

26 It might seem surprising that we should be able to approximate more general functions with exponen-
tials. However, in this setting, the coefficients will be allowed complex. Theorem 2 of [10], which we
recite later, adds more rigour. It also suggests that perhaps we could do multifactor approximations
for SVE’s with non CM but continuous kernels if we work in C. We leave that for a future project.

27 To approximate a function on (a, b] that is singular in a, we should consider it on [a+ δ, b] for some
small δ > 0.
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If (3.80) holds and N is large enough, i.e. we have oversampled f , we can by continuity
expect f(x) ≈

∑m
i=1 cie

−γix for a general x ∈ [0, 1], which means that we have solved the
original problem. Define ρi := exp(− γi

2N ), i = 1, ...,m, and ρ := (ρ1, ..., ρm). We may,
and indeed will, then reformulate the problem (3.80) to that of finding m and (c, ρ) so

hk ≈
m∑
i=1

ciρ
k
i , k = 0, 1, ..., 2N. (3.81)

We recover the original formulation as γi = −2N log(ρi), i = 1, ...,m.

The Hankel matrix defined by h is central to the authors’ method. More precisely,
we consider the matrix H = {Hi,j}N+1

i,j=1 := {hi+j−2}N+1
i,j=1 or written in matrix form:28

H =



h0 h1 ... hN−1 hN

h1
. . . . . . . . . hN+1

... . . . . . . . . . ...

hN−1
. . . . . . . . . h2N−1

hN hN+1 ... h2N−1 h2N


.

We need to apply a number of non-standard concepts to H that we briefly introduce: For
a matrix A ∈ Cn×n, n ∈ N, the con-eigenvalue problem is that of solving the equation

Au = σū

for u ∈ Cn, u 6= 0, and σ ∈ C.29 For a solution {σ, u} we refer to σ as a con-eigenvalue
and to u as a con-eigenvector [31, Definition 4.6.5]. For a con-eigenvalue σ all other com-
plex numbers of the same modulus are also con-eigenvalues [31, pp. 245]. We refer to a
real non-negative con-eigenvalue σ representing all con-eigenvalues of the same modulus
as a c-eigenvalue; to avoid confusion we stress that the ’c’ in this context does not refer
to the weights of (3.81). A con-eigenvector corresponding to a c-eigenvalue is referred to
as a c-eigenvector and a solution {σ, u} where σ is a c-eigenvalue as a c-eigenpair. The
c-eigenpairs of H play a central role for the approximation of h under the method of [10].

The result below gives a useful characterisation of the c-eigenvalues.

Proposition 3.5.2. (Proposition 4.6.6 of [31]) Let A ∈ Cn×n and σ be a real and non-
negative number. Then σ is a c-eigenvalue of A if and only if σ2 is an eigenvalue of
AA.

In what follows, we discuss the problem of finding c-eigenpairs of H. We focus on locating
pairs for all c-eigenvalues only. The c-eigenvalues are of primary concern because, as the
reader will see, they control the accuracy of the approximation to h. Following [10] we
28 Definition: A ∈ C(n+1)×(n+1), n ∈ N0, is a Hankel matrix if A = {Ai,j}n+1

i,j=1 = {ai+j−2}n+1
i,j=1 for a

sequence of numbers a0, a1, ..., a2n.
29 The reader should note that some of the definitions and results we recite from [31] have been slightly

reformulated to remain consistent with [10].
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consider the Takagi factorisation [31, Corollary 4.4.4] which exists for any symmetric
complex matrix. The factorisation applied to H—that indeed is symmetric—results in

H = UΣU∗ (3.82)

where U is a unitary complex matrix and Σ = diag(σ0, ..., σN ) is a real-valued diagonal
matrix with non-negative entries. To see why the factorisation is useful, note that

HH = UΣU∗UΣU∗ = UΣU>UΣU∗ = UΣ2U∗. (3.83)

Consequently, the matrices HH and Σ2 are similar. It follows by [31, Corollary 1.3.4]
that the eigenvalues of HH coincide with those of Σ2 which are {σ2

0 , ..., σ
2
N}. From

Proposition 3.5.2, we deduce that the c-eigenvalues of H are the numbers {σ0, ..., σN} of
the Takagi factorisation. Rewriting (3.82) to

HU = UΣ

we also note that the columns of U are corresponding c-eigenvectors. Therefore, to find
c-eigenpairs for all c-eigenvalues it suffices to perform a Takagi factorisation.

Nevertheless, as we will argue in the following, a regular eigendecomposition is enough
in the CM case. We start with the below result.

Proposition 3.5.3. Under Assumption 3.5.1 the eigenvalues of H are real and non-
negative.

Proof. Because K is CM it is real-valued. Then so is f and it follows that H is both
symmetric and real and therefore that the eigenvalues are real too [31, pp. 38]. The
eigenvalues are non-negative because H is positive semi-definite30 which is a consequence
of the representation (3.79); we prove the details in the appendix.

Let us temporarily invoke Assumption 3.5.1: Then because H is real and symmetric, we
can perform an eigendecomposition [31, Theorem 4.1.5] to write

H = UΣU> (3.84)

where Σ = diag(σ0, ..., σN ) is a real-valued diagonal matrix consisting of the eigenval-
ues of H and U is an orthonormal real matrix of corresponding eigenvectors. Since the
eigenvalues {σ0, ..., σN} are real and non-negative as follows from Proposition 3.5.3, and
U is real, the eigendecomposition (3.84) coincides with the Takagi factorisation (3.82).
In particular, the eigenvalues and c-eigenvalues coincide. We conclude that it in the CM
case suffices to perform an eigendecomposition to find c-eigenpairs for all c-eigenvalues.

Consider now the following theorem which is taken from [10]. Given certain c-eigenpairs
of H it alludes to an approximation of h of the form (3.81). For the result we need the
definition Pv(z) :=

∑N
k=0 vkz

k, z ∈ C, v = (v0, v1, ..., vN ) ∈ CN+1.
30 Say that H is positive semi-definite. Let σ be an eigenvalue. Because both H and σ are real, we may

find a real eigenvector u. Then Hu = σu where all components are real. This implies u>Hu = σu>u
where u>Hu ≥ 0 since H is positive semi-definite and u>u ≥ 0. It follows that σ ≥ 0.
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Theorem 3.5.4. (Theorem 2 of [10]) Let {σ, u} be a c-eigenpair of H and assume that
Pu has N distinct roots which we denote by χ = (χ1, ..., χN ) ∈ CN . Then, for each
integer L > 2N , there exists a unique vector ω = (ω1, ..., ωN ) ∈ CN so

hk =
N∑
i=1

ωiχ
k
i + σd

(L)
k , k = 0, 1, ..., 2N, (3.85)

where d(L) = (d(L)
0 , ..., d

(L)
L−1)> ∈ CL is that of [10, Equation (18)] and which has unit

l2-norm.

Remark 3.5.1. Note that while ω is not explicitly stated in Theorem 3.5.4, it is implicitly
given as the unique solution of the Vandermonde system defined by the first N equations
of (3.85). The system is invertible since {χ1, ..., χN} are assumed distinct; we refer to
[31, pp. 29].

Remark 3.5.2. We stress that the theorem only applies when Pu has N distinct roots.
When we in the following discuss approximations of h inspired by the result, we will
therefore exactly assume that N distinct roots exists. According to Remark 5 of [10] the
assumption can be relaxed some. Also, the algorithm we end up with can be adjusted
when there are fewer roots although we then, of course, cannot appeal to the theorem.

For a c-eigenpair {σ, u} so Pu has N distinct roots and an integer L > 2N , the theorem
alludes to the approximation

hk ≈
N∑
i=1

ωiχ
k
i , k = 0, 1, ..., 2N. (3.86)

Let ĥ(0)
k :=

∑N
i=1 ωiχ

k
i , k = 0, 1, ..., 2N, ĥ(0) := (ĥ(0)

0 , ..., ĥ
(0)
2N ). Then (3.86) is valid in the

following sense: By (3.85) and that d(L) has unit l2-norm, we have ||h− ĥ(0)||2 ≤ σ and
may thus control the error by selecting a valid c-eigenpair with a low enough σ. If H is
singular then σ = 0 is a (c-)eigenvalue which makes the lowest possible error attainable
if an applicable c-eigenvector can be found. If H is non-singular, we can make it singular
by extending h,31 though, it is unclear if a corresponding valid c-eigenvector can be found.

Consider also the approximation that arises if we set the weights, here denoted cLS =
(cLS1 , ..., cLSN ) ∈ CN , as the solution of the below least squares problem:

cLS := argmin
(ĉ1,...,ĉN )∈CN

2N∑
k=0

(
hk −

N∑
i=1

ĉiχ
k
i

)2

. (3.87)

Define ĥ(1)
k :=

∑N
i=1 c

LS
i χki , k = 0, 1, ..., 2N, ĥ(1) := (ĥ(1)

0 , ..., ĥ
(1)
2N ). Since cLS minimises

the l2-error, we conclude that ||h− ĥ(1)||2 ≤ ||h− ĥ(0)||2 ≤ σ. Also, because cLS is inde-
pendent of L, the construction of ĥ(1) only requires us to choose a valid c-eigenpair {σ, u}.
31 More precisely: Add two extra elements h2N+1 and h2N+2 to h. Then, with a cofactor expansion,

select them so the corresponding Hankel matrix has determinant zero. We add two elements because
the extended h vector must have an odd number of elements as required for the Hankel matrix.
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However, even if ĥ(1) results in a lower error than ĥ(0), we can expect both approxima-
tions to be inefficient because N , which is also the number of terms in the approximating
sums, must be large to oversample f . The authors suggest a procedure for reducing the
number of terms: Assume the c-eigenvalues are ordered as

σ0 ≥ σ1 ≥ ... ≥ σN ≥ 0.

Fix a c-eigenvalue σ = σm for some index m (say m ≥ 1 for now) and let u ∈ CN+1 be
a corresponding c-eigenvector. We assume again that Pu has N distinct roots denoted
χ = (χ1, ..., χN ) ∈ CN . The goal is now an approximation of h that uses fewer terms than
ĥ(1) but results in a l2-error that is only slightly worse. For this purpose, we carefully
select m of the roots which we denote by {ρ1, ..., ρm} ⊂ {χ1, ..., χN} (we explain how in
a moment) and let c = (c1, ..., cm) ∈ Cm solve the below least squares problem:

c := argmin
(ĉ1,...,ĉm)∈Cm

2N∑
k=0

(
hk −

m∑
i=1

ĉiρ
k
i

)2

. (3.88)

Define ĥ(2)
k :=

∑m
i=1 ciρ

k
i , k = 0, 1, ..., 2N, ĥ(2) := (ĥ(2)

0 , ..., ĥ
(2)
2N ). Although the l2-error

under ĥ(2) can only deteriorate compared to ĥ(1), the authors of [10] make the empirical
observation that if {ρ1, ..., ρm} are chosen in the ’significant region’ of C where the
associated weights are large, the error need not worsen much. One may then hope that
the l2-error is still roughly bounded by σ = σm. In some cases the ’significant region’ can
be reasoned from properties of f . Under Assumption 3.5.1, Equation (3.79) e.g. suggest
to consider roots in (0, 1] only as that corresponds to exponents in [0,∞); recall that
γi = −2N log(ρi), i = 1, ...,m. In our experiments with CM functions, we consistently
observe exactly m distinct roots in (0, 1], which makes the root selection obvious.

Remark 3.5.3. The approximation ĥ(2) can also be constructed if there are less than N
distinct roots, except, as noted, we then cannot appeal to Theorem 3.5.4. If some roots
have a higher multiplicity than one, we can consider distinct ones only, and, if there are
fewer than m distinct ones overall, we may select however many are available resulting in
a shorter sum. If there are no roots at all, we can always approximate h by a constant.32

We see that in choosing m and thus σm, we can, if the roots are chosen in the ’significant
region’, under the suggested hypothesis, expect a l2-error with ĥ(2) that is below or at
least close to σm. As m is also the number of terms in the sum-of-exponentials approxi-
mation, and because we desire an efficient approximation with as few terms as possible,
we should make sure to choose the smallest index m so σm is below the desired error level.
However, instead of selecting an index m directly, let us for practical purposes suggest
to first choose an ε > 0 which will represent a normalised l2-error tolerance and set m as
the smallest index so σm ≤ ε||h||2. If it truly holds that ||h− ĥ(2)||2 is less than or close
to σm, we can expect the normalised l2-error, which we define as ||h − ĥ(2)||2/||h||2, to
be less than or close to ε; we here rather reasonably assume that h is not the zero vector.

32 We can do likewise if we, for whatever reason, decide to let m = 0.
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An noteworthy observation of [10] is that the c-eigenvalues σ0, σ1, ..., σN , decay rapidly
in the index for many problems. Consequently, we often do not need m to be very large
for a good approximation. Additionally, as we will demonstrate numerically for CM
functions, we even find that the solution ĥ(2) is close to optimal in the sense that the
resulting m roughly is the minimal choice that ensures a normalised l2-error below ε.33

From our discussion, we propose the following algorithm which specialises that of [10]
to the CM case. A few corner cases are not covered. We comment on how they can be
handled in Remark 3.5.4 further down:

Say f : [0, 1] → R is constructed from a CM function in the sense of Assumption 3.5.1.
Let ε > 0, N ∈ N. Then do as follows:

1. Set hk = f( k
2N ), k = 0, 1, ..., 2N . Construct the Hankel matrix H = {hi+j−2}N+1

i,j=1.

2. Order the eigenvalues of H as σ0 ≥ σ1 ≥ ... ≥ σN ≥ 0. Choose the smallest index
m so σm ≤ ||h||2ε. Find a real eigenvector u ∈ RN+1 that corresponds to σm.

3. Select m distinct roots {ρ1, ..., ρm} of Pu in the interval (0, 1].

4. Solve the least squares problem (3.88) for the weights {c1, ..., cm}.34

5. Set γi = −2N log(ρi), i = 1, ...,m.
The weights {c1, ..., cm} and exponents {γ1, ..., γm} may be translated to those of f̃ =
K
∣∣
[a,b] as explained on page 55.

Remark 3.5.4. On step 2: It could happen that the smallest eigenvalue σN satisfies
σN > ||h||2ε which makes the step impossible. While the often observed rapid decay of
the eigenvalues suggests it is unlikely to happen, one could handle it by extending h to
make the associated Hankel matrix singular (c.f. footnote 31). On step 3: If there are
fewer than m distinct roots in (0, 1], we may choose however many are available to get
an approximation with fewer terms. If there are more than m, one must prioritise. If
there are no roots or m = 0 we can default to approximate h by a constant.

Remark 3.5.5. A few comments are in order on a practical implementation: Firstly,
because N must be large to oversample f , the matrix H will also be relatively large.
Consequently, recovering all eigenvalues in step 2 may significantly slow down the algo-
rithm. However, because the eigenvalues tend to decay rapidly in the index, we often
only need to iterate a few times starting from the largest until an index m is found so
σm ≤ ||h||2ε; we refer to [47] for an overview of methods that can recover eigenpairs in
order of the eigenvalues.35 Secondly, to find roots in step 3, there are several approaches.
We do as follows for our experiments: Let Nz ∈ N. Then note down all sign changes in
Pu(z) over the points z ∈ { i

Nz
}Nzi=0 to isolate intervals where there must be roots. Lastly

run a local optimizer to find a root in each interval. If Nz is large enough, the procedure
should recover all roots. We set Nz = 104 for our experiments.
33 The authors of [10] also provide arguments why the m of their algorithm is approximately minimal.
34 The weights will be real-valued because both h and ρ are real.
35 Regardless, for our numerical tests, we do as follows: We use Matlab’s eigs function to compute, at

once, eigenpairs for the 20 largest eigenvalues and then select the appropriate index m. We found the
cost of this approach to be negligible for our experiments and never had the need for more values.
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Let us briefly illustrate the method on the kernel K(t) = t−0.4 which we will limit to
the domain

[ 1
500 , 1

]
. That we exclude the singularity is as required for the method for

a singular function but also as recommended for the hybrid multifactor scheme for this
case. We set N = 250 and thus sample 501 equidistant points on the domain and then
construct the Hankel matrix H. In Figure 3.1 (left) we show the 20 largest eigenvalues
of H. The values decay exponentially which suggests that a good approximation with
a few terms is possible. Indeed, setting ε = 10−3, the smallest index m so σm ≤
||h||2ε is m = 6. With that choice we then locate a real eigenvector u for σ6. We
note that the corresponding polynomial Pu has 250 distinct roots, which we show in
the right plot. Precisely six of them lie in (0, 1]. Selecting those six roots, we solve
the least squares problem (3.88) for the weights. The final solution (after rescaling)
comes out as Km(t) =

∑m
i=1 c̃ie

−γ̃it where c̃ = (8.54, 4.28, 2.44, 1.55, 1.23, 1.37) and γ̃ =
(599.72, 156.52, 46.90, 14.89, 4.03, 0.33). The solution reflects the fact that the rough
fractional kernel requires both fast and slowly decaying terms as (3.70) also suggests.
The normalised l2-error across the 501 sampled points is 6.10 · 10−4 and which is less
than the desired 10−3. This shows that it suffices to select only m roots in (0, 1], at least
for this example. We show the fit in Figure 3.2.
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Figure 3.1: Left: The 20 largest eigenvalues of H as constructed for K(t) = t−0.4 with domain
[ 1
500 , 1] where N = 250. Right: The 250 roots of Pu where u is a real eigenvector of H that is

associated with the seventh largest eigenvalue σ6. There are six roots in (0, 1]; three are very
close to 1 and are therefore difficult to distinguish visually in the plot.

3.5.2 Numerical comparison
In what follows, we compare the methods numerically. We use the rough fractional ker-
nel (3.68) with domain

[ 1
500 , 1

]
and α = −0.4 as our test case. For l2-optim and BM2005

we sample 501 equidistant points. For AJ2019-optim and l2-optim we set δ = 1
500 . We

let AJEE2019 generate initial guesses for AJEE2019-optim, use rm = 2.5 as an initial
guess for AJ2019-optim, and let AJ2019-optim generate those for l2-optim. For BM2005
we consider choices of m (and not ε) to remain consistent with the other methods.
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Figure 3.2: Approximation of K(t) = t−0.4 under BM2005.

In Figure 3.3, we show the fits under each method for different m. We note first that
AJEE2019 and AJEE2019-optim are unable to capture the steep part of the rough frac-
tional kernel with even several hundred terms. Both are outperformed by AJ2019-optim,
which results in a very decent approximation using about 20 terms.36 We note that l2-
optim produces the most accurate approximation for a given m, which is as expected
given that it by construction is optimal in the l2-sense; numerical issues may though
arise, see later. With that method only about 5 terms are needed for a visually in-
distinguishable approximation. Remarkably, BM2005, which does not optimise over γ,
performs effectively the same as l2-optim. Further results to be presented show that
BM2005 produces close to optimal solutions across a wide range of kernels and settings.

We perform an additional experiment to examine the convergence behaviour in more
detail and also the running times. In Figure 3.4, we show the normalised l2-error across
the 501 sampled points, respectively, the running time, against m.37 The left plot shows
that l2-optim and BM2005 converge the fastest by a notable margin again. However,
the convergence of l2-optim is unstable at larger m’s. A likely reason is that (3.78) be-
comes more challenging to solve numerically in higher dimensions as we can expect more
local minima. For low values of m (where l2-optim is numerically stable) note also how
remarkably close BM2005 is to the optimal l2-error. Combined with the numerical in-
stability of l2-optim, we should thus favour BM2005 based on the convergence behaviour
alone. In terms of speed, we also see that l2-optim is much slower taking around 0.5
seconds for m’s in the range 5-10, whereas BM2005 only sets us back around 0.01 seconds.

Our experiments suggest that BM2005 should be preferred as it results in a close to
optimal approximation with a low computational time. Additionally, it is more practical
as one can input an error tolerance ε and have the number of terms m be computed
endogenously. This also makes the method easier to use and more robust as m need
not be manually readjusted or reoptimised for different kernels and intervals. Lastly, as

36 With m = 20, we obtain r20 = 2.69, which almost is the fixed choice r20 = 2.50 suggested in [2].
37 All our computational times are recorded on a laptop that runs a 1.6-3.4 GHz Intel Core i5 8250U

CPU with 4 cores (8 logical processors) and 8 GB RAM. The code is run in Matlab 2019a.
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opposed to the approach taken in [2, 4], it works in the general case where µ is unknown.

3.5.3 Robustness, optimality, and scaling of m under BM2005
In this subsection, we examine BM2005 in more detail. The main purposes are to check
if it is robust to different inputs and settings, to verify more thoroughly the supposed
optimality, and to provide part of the evidence needed to back up the claims we made
in Section 3.2 about the complexity of our scheme when combined with the method.

We start with an experiment where we run BM2005 for a wide range of inputs. We
will consider two kernel types. The first is the rough fractional kernel K(t) = tα for
which we fit to intervals of the form [ 1

n , 1] for a given n and always sample n+ 1 points.
This corresponds to setting κ = 1 and T ∗ = 1 for the hybrid multifactor scheme; the
choice of κ is as recommended and T ∗ = 1, we believe, a reasonable time horizon. We
then run BM2005 with the following 980 combinations of settings and parameters:

(n, ε, α) ∈ {100, 250, 500, 1000} × {10−1, 10−2, ..., 10−5} × {−0.49,−0.48, ...,−0.01}.

We consider also the non-singular kernel K(t) = (1 + t)β for which we fit to the interval
[0, 1] and sample n + 1 points for a given n. For this kernel, we run BM2005 with the
following 1000 combinations of settings and parameters:

(n, ε, β) ∈ {100, 250, 500, 1000} × {10−1, 10−2, ..., 10−5} × {−50,−49, ...,−1}.

We present the results of the experiment in Table 3.1 split by the kernel type. In rows
3 and 4 we show the number of times we record the polynomial from step 3 of the
algorithm to have N distinct roots in C, respectively, m distinct roots in (0, 1].38 We
observe, in all cases, precisely N distinct roots in C. Consequently, Theorem 3.5.4 is in
effect across the entire dataset. Additionally, we always observe m roots in (0, 1]. There
is then no ambiguity about which roots to select. In rows 5-7 we show statistics on the
computational time. The method runs in about one hundred of a second, which is in
line with the numbers of the previous subsection and shows that the algorithm also more
generally is very fast. In rows 8-10 we show statistics on the ratios ||h− ĥ(2)||2/(ε||h||2).
We observe values in the range 0.00-1.03 which demonstrates that the algorithm works
as intended in that it constructs solutions with normalised l2-errors below or close to ε.

The last rows of the table are included to argue, with more rigour, that BM2005 is
close to optimal. In this context, we will say that a solution is optimal if it has a mini-
mal m and coefficients so the normalised l2-error is below ε. For each observation that
underlie the table, we compute an optimal solution as follows: We iterate over increasing
values of m, starting from m = 1, and each time run l2-optim on the interval [ 1

n , 1] when
K(t) = tα and on [0, 1] when K(t) = (1 + t)β always using n+ 1 sampling points; we use
initial guesses produced by BM2005 with corresponding settings. The first solution with
a normalised l2-error below ε is optimal. We denote its approximation to h by ĥ(3).

38 We measure two roots as equal if the modulus of their difference is less than 10−6. The code is run
in double precision which has 16 significant digits.
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Figure 3.3: Approximations of K defined by (3.68) with α = −0.4 and domain [ 1
500 , 1].

Approximating functions are of the form Km(t) =
∑m

i=1 cie
−γit where various methods are

used to find the coefficients (ci, γi)mi=1. Red lines refer to K, the rest to Km for different m.
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Figure 3.4: Errors and running times against the number of exponential terms m. To improve
visibility BM2005 is shown for smaller m’s only. Running times are averaged over 1000 runs;
standard errors are less than 5% of the averages.

In rows 11-13, we show statistics on the ratios ||h − ĥ(3)||2/(ε||h||2). The values are
overall comparable to those obtained under BM2005, though, by construction never
above 1. In the last rows we compare the number of exponential terms m produced by
BM2005 with the number produced by the optimal solution. More precisely, we show
counts of the differences in m as they fall into different categories. We see that the num-
ber of terms for BM2005 in all cases fall within 1 of the optimal solution and mostly is
either equal or 1 higher. The few cases where BM2005 results in fewer terms correspond
to those few cases where ||h − ĥ(2)||2/||h||2 is (slightly) above ε. Since BM2005 results
in normalised l2-errors below or close to ε and has m’s close to the optimal number, we
conclude that the method, in fact, is almost optimal. In Table 3.2 we show a few specific
examples that compare BM2005 with the optimal solution in terms of errors and m.

Remark 3.5.6. Overall BM2005 results in some striking and consistent empirical obser-
vations. This includes the exponential decay of the eigenvalues shown in Figure 3.1 (see
also Figure 3.5), that we observe exactly N distinct roots in C, exactly m in (0, 1], that
the roots in (0, 1] suffices for a l2-error roughly below σm, and lastly that the approxima-
tions are almost optimal. We find it likely that the observations could be backed up by
additional theoretical results, though, we leave a deeper investigation for future work.

In the following, we provide part of the necessary numerical evidence to back up our
claims about the complexity of the hybrid multifactor scheme when combined with
BM2005. We consider again the kernels K(t) = tα and K(t) = (1 + t)β and for a
given n fit to, respectively, the intervals [ 1

n , 1] and [0, 1] using n+ 1 sampling points. We
will study how m, which we also write as m(n, ε), depends on n, and for completeness ε.

In Figure 3.6 we show m(n, ε) as a function of n keeping ε = 10−3 fixed. We note
for the rough fractional kernels that m(n, ε) ≈ c log2 n for constants c and for the (non-
singular) shifted power-law kernels that m(n, ε) = O(1). However, for the former kernel
type we also note that the c’s are fairly small meaning that m(n, ε) scales only very
slowly in n. In fact, going from n = 24 = 16 to n = 214 = 16384 (a factor 1024 in-
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Table 3.1: Test of BM2005 across a wide range of configurations and kernels. We refer to the
main text for a description of the experiment.

Test of BM2005 K(t) = tα K(t) = (1 + t)β

# Observations 980 1000
# Observations with N distinct roots in C 980 1000
# Observations with m distinct roots in (0, 1] 980 1000

Running times
(in seconds)

Min. 0.003 0.003
Median 0.008 0.006
Max. 0.037 0.020

Error ratios (BM2005): ||h−ĥ
(2)||2

ε||h||2

Min. 0.04 0.00
Median 0.41 0.09
Max 1.03 0.92

Error ratios (optimal solution): ||h−ĥ
(3)||2

ε||h||2

Min. 0.04 0.01
Median 0.46 0.15
Max. 1.00 1.00

Number of terms m under BM2005 minus
number of terms under the optimal solution

(# observations per category)

> 1 0 0
1 238 233
0 736 767
−1 6 0
< −1 0 0

crease) the value of m(n, ε) only goes up from about 2–3 to 7–10 (a factor 3 increase
roughly). Although unreported, we observe the same scaling behaviour for other fixed ε’s.

We hypothesize that m(n, ε) = O(1) holds for all non-singular (CM) kernels, m(n, ε) =
O(log2 n) for all power-law singular (CM) kernels, and that more generally when fitting
to intervals of the form [κ∆n, T

∗] in the setup of our scheme where κ = 0 when K is
non-singular, κ > 0 otherwise, and the number of sampling points, up to rounding, is
proportional to the number of steps of length ∆n over the interval. Our reasoning is as
follows: That we observe m(n, ε) = O(1) for the shifted power-law kernel where the inter-
val is fixed suggests more generally that adding more sampling points to an interval, the
number of exponentials m(n, ε) eventually stops growing. As the rough fractional kernel
can be viewed as a shifted power-law when the domain is bounded away from zero, the
m(n, ε) = O(log2 n) scaling is likely the result of the fitting interval (here [ 1

n , 1]) moving
towards the power-law singularity. We believe it is a mild extrapolation to suggest that
the two scaling relationships should hold for more general intervals of the form [κ∆n, T

∗]
in the given setup. However, it would be speculative to suggest, based on our results,
that m(n, ε) = O(log2 n) should hold for kernels that are singular in a non power-law way.

Let us briefly examine how m(n, ε) depends on ε. We refer to Figure 3.7 where we
fix n = 500 and vary ε. We observe for all kernels logarithmic scaling of the form
m(n, ε) ≈ c log10(ε) where the c’s are negative. The scaling in ε is mild, just like that in
n; for ε = 10−6 we observe around 10 terms for the rough fractional kernels and around
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Table 3.2: Comparison of BM2005 and the optimal solution for different kernels and error
tolerances. Errors are reported as normalised l2-error. We refer to the main text for details.

K(t) = t−0.4 K(t) = t−0.1

BM2005 Optimal BM2005 Optimal
ε error m error m error m error m

10−1 4.58 · 10−2 3 2.75 · 10−2 3 1.80 · 10−2 2 5.54 · 10−2 1
10−2 2.75 · 10−3 5 6.88 · 10−3 4 5.51 · 10−3 3 3.63 · 10−3 3
10−3 6.10 · 10−4 6 3.70 · 10−4 6 3.31 · 10−4 5 8.74 · 10−4 4
10−4 2.69 · 10−5 8 2.69 · 10−5 8 7.24 · 10−5 6 7.23 · 10−4 6
10−5 5.41 · 10−6 9 5.44 · 10−6 9 3.09 · 10−6 8 3.09 · 10−6 8
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Figure 3.5: The first few eigenvalues of H shown in descending order where N = 250 computed
for different kernels considered on [ 1

500 , 1] (left plot) and [0, 1] (right plot).

5 for the shifted power-laws. We can report comparable observations for other fixed n’s.

3.6 Simulating the VIX index
We discuss simulation of the VIX index for a series of volatility models of the Volterra
type. Our motivation is the pricing of VIX options with Monte Carlo. Throughout we
assume a risk-neutral model of the form (3.2) for some instantaneous variance V . We will
assume that V is locally bounded and progressively measurable (e.g. locally bounded,
left- or right-continuous, and adapted), non-negative, and satisfies supt≤T E[Vt] <∞ for
all T > 0. The assumptions will hold for any of the models of the coming subsections.
It should be noted that setting

St = S0 exp
(∫ t

0

√
VsdW1,s −

1
2

∫ t

0
Vsds

)
, t ≥ 0, (3.89)

ensures that S satisfies (3.2) as follows by Ito’s lemma. The pricing model (3.2) is thus
guaranteed to have a solution once a valid instantaneous variance is specified.
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Figure 3.6: Number of terms m(n, ε) when using BM2005 with ε = 10−3 to fit kernels K
on intervals of the form

[
1
n
, 1
]

(left plot) and [0, 1] (right plot) using n + 1 sampling points.
Actual errors are all below the target. Left: K(t) = tα. Observed values are shown as points,
regressions of the form m(n, ε) = c log2(n) for constants c as lines. Right: K(t) = (1 + t)β .

We define the VIX index squared by

VIX2
t := 1002

∆vix

∫ ∆vix

0
ξ̃t(τ)dτ, t ≥ 0, ∆vix := 1

12 , (3.90)

where ξ̃t(τ) := Et(Vt+τ ), t, τ ≥ 0, are the forward variances and (Ft)t≥0 is the market
filtration which we will assume satisfies the usual hypothesis; we use ’∼’ as a super-
script to avoid conflict with the common notation ξt(u) = Et(Vu), 0 ≤ t ≤ u. The
definition (3.90) roughly coincides with that of the VIX whitepaper (downloadable via
https://www.cboe.com/education/research, accessed July 25, 2021); we refer to e.g.
[23]. A VIX option is either a put or call option on VIXT for some expiry T > 0.

We will consider three classes of models for V . They will all be driven by SVE’s with
deterministic drift, though, it should be kept in mind that this is without loss of gen-
erality up linear drift in the sense of Theorem 3.3.4. As will become clear, to compute
the VIX index, we recommend different methods for each model class. However, one
starting point for an approximation that we will discuss, and which applies regardless of
the model, is to start with a trapezoidal rule applied to (3.90) as

VIX2
t ≈

1002

nv

nv∑
i=0

aiξ̃t(τi), t ≥ 0, (3.91)

where nv ≥ 2 is an integer and a0 = anv = 1
2 , ai = 1, i = 1, 2, ..., nv − 1, τi = i∆vix

nv
,

i = 0, 1, ..., nv.39 Sampling VIX then amounts to sampling a finite number of forward
variances.
39 Convergence is ensured in the limit nv → ∞ assuming only that ξ̃t(·) on [0,∆vix] is piecewise

continuous and bounded with finitely many discontinuities since (3.90) then is valid as a Riemann
integral; recall that the trapezoidal rule averages the left and right Riemann sums. Continuity of
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Figure 3.7: Number of terms m(n, ε) in the sum-of-exponentials approximation when using
BM2005 to fit kernels K on the interval

[
1
n
, 1
]

(left plot) and [0, 1] (right plot) using n + 1
sampling points where n = 500. Actual errors are all below the target. Observed values are
shown as points, regressions of the form m(n, ε) = c log10(ε) for constants c as lines.

3.6.1 Multifactor Volterra Bergomi model
We consider a multifactor Volterra Bergomi model defined by

Vt = ξ0(t) exp
(
η

d∑
i=1

θiXi,t −
η2

2 θ
>Λ(t)θ

)
, (3.92)

Xi,t =
∫ t

0
Ki(t− s)dWi+1,s, t ≥ 0, i = 1, ..., d, (3.93)

where d ∈ N, ξ0 : R+ → R+ is left- or right-continuous, supt≤T |ξ0(t)| < ∞ for all
T > 0, θ = (θ1, ..., θd)> ∈ [0, 1]d,

∑d
i=1 θi = 1, η ≥ 0, Ki ∈ L2

loc(R+), i = 1, ..., d,
W = (W1,t,W2,t, ...,Wd+1,t)t≥0 is d + 1 dimensional correlated Brownian motion, and
Λ(t) ∈ Rd×d is the covariance matrix of X = (X1,t, ..., Xd,t) for t ≥ 0. The Λ-function is
computable with Ito’s isometry and numerical integration. We assume that the filtration
(Ft)t≥0 is generated by W and augmented so the usual hypothesis holds. The model
nests the rough and two-factor Bergomi models of [7, 11]. Note that our assumptions on
ξ0 allows it to be a step function as is a common parameterisation for these models.

Define

gi,t(τ) =
∫ t

0
Ki(t+ τ − s)dWi+1,s, t, τ ≥ 0, i = 1, ..., d, (3.94)

ξ̃t(·) will hold for the quadratic Volterra Heston model of Section 3.6.2 and the generalised CEV
Volterra volatility model of Section 3.6.3. The multifactor Volterra Bergomi model of Section 3.6.1
is easily parameterised so ξ̃t(·) on [0,∆vix] is piecewise continuous and bounded with finitely many
discontinuities.
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which are the forward values for the components of X. The forward variances are
expressible in terms of the forward values as:

ξ̃t(τ) = ξ0(t+ τ) exp
(
η

d∑
i=1

θi

∫ t

0
Ki(t+ τ − s)dWi+1,s −

η2

2 θ
>Λ(t+ τ)θ

)
(3.95)

Et

(
exp

(
η

d∑
i=1

θi

∫ t+τ

t

Ki(t+ τ − s)dWi+1,s

))
(3.96)

= ξ0(t+ τ) exp
(
η

d∑
i=1

θigi,t(τ)− η2

2 θ
> (Λ(t+ τ)− Λ(τ)) θ

)
, t, τ ≥ 0. (3.97)

Remark 3.6.1. By Theorem 3.3.2, the mappings gi,t(·), i = 1, ..., d, are continuous on
R+. Thus, if we parameterise ξ0 (say) bounded and piecewise continuous with finitely
many discontinuities, then (3.91) is valid as an approximation of (3.90); c.f. footnote 39.

For the present model, we consider only sampling methods that are based on (3.91).
To sample VIXT for some T > 0 we must then jointly sample ξ̃T (τj), j = 0, ..., nv. By
(3.95)-(3.97) that boils down to sampling jointly gi,T (τj) for i = 1, ..., d, j = 0, ..., nv, or∑d
i=1 θigi,T (τj) for only j = 0, ..., nv. We outline three methods to this end.

Exact sampling: We sample
∑d
i=1 θigi,T (τj), j = 0, 1, ..., nv, directly from its nv + 1

dimensional normal distribution. The covariances are computable with Ito’s isometry
and numerical integration. The means are zero.

The next two methods rely on the hybrid multifactor approach. For these we shall
therefore assume that Ki, i = 1, ..., d, are CM.

Hybrid multifactor scheme: We use the hybrid multifactor scheme to simulate
(Xi,t)0≤t≤T , i = 1, ..., d, and then evaluate (gi,T (τj))nvj=0, i = 1, ..., d, with Definition
3.3.1. The kernel approximations must be valid on, at minimum, the interval [0, T+∆vix].

Hybrid multifactor approach with direct sampling: We use the hybrid multi-
factor approach, but not the scheme itself, to sample directly the variables that are
necessary to compute the forward values (gi,T (τj))nvj=0, i = 1, ..., d, as in Definition 3.3.1:
Let κ ∈ N0, n ∈ N, and assume for simplicity that κ∆n ≤ ∆vix where we keep the
definition ∆n := n−1. Say furthermore for i = 1, ..., d, that Ki(t) ≈ 1(t≤κ∆n)Ki(t) +
1(t>κ∆n)

∑mi
j=1 cije

−γijt for t ∈ [0, T + ∆vix] where (cij , γij)mij=1 ∈ R2mi , mi ∈ N. Define

Uij,T :=
∫ T

0
e−γij(T−s)dWi+1,s, i = 1, ..., d, j = 1, ...,mi. (3.98)

Let i ∈ {1, ..., d}. The derivations of Section 3.3 for κ = 0 suggest

gi,T (τ) ≈
mi∑
j=1

cije
−γijτUij,T , τ ∈ [0,∆vix], (3.99)
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and for κ = 1 that

gi,T (τ) ≈
mi∑
j=1

cije
−γijτUij,T , τ ∈ [∆n,∆vix], (3.100)

gi,T (τ) ≈ ∆n − τ
∆n

Xi,T + τ

∆n
gi,T (∆n), τ ∈ [0,∆n]. (3.101)

To obtain samples of (gi,T (τj))nvj=0, i = 1, ..., d, for κ = 0, we can thus sample the variables
(3.98) from their joint normal distribution and use (3.99). For κ = 1, we can use (3.100)-
(3.101) if we additionally as part of the joint sample include the, also Gaussian, terms
Xi,T , i = 1, ..., d. The idea generalises to κ > 1 though yet more Gaussians must be
sampled. Since, as noted, κ = 0 or κ = 1 generally suffices, the latter for the singular case
even, we do not spell out the details for κ > 1. It is useful to note that the covariances
among (3.98) are analytical: Let ν1, ν2 ∈ R, ν1 + ν2 6= 0, and say that (Z1,t, Z2,t)t≥0 is
two-dimensional Brownian motion such that dZ1,tdZ2,t = ρdt, ρ ∈ [−1, 1]. Then

E

(∫ T

0
e−ν1(T−t)dZ1,t

∫ T

0
e−ν2(T−t)dZ2,t

)
= ρ

ν1 + ν2

(
1− e−(ν1+ν2)T

)
. (3.102)

When ν1 + ν2 = 0 the left-hand side equals ρT . If other covariances are required they
will in general have to be computed with Ito’s isometry and numerical integration.

We briefly compare the methods from a high level perspective. A numerical compar-
ison is provided in Section 3.7 for the pricing of VIX options.40 The evidence provided
there suggest nv ≈ 16 or 32 about suffices for all three methods. For our discussion, we
will therefore assume that such nv’s are chosen. One observation we have made is that
if VIX options are to be priced at a single expiry then running the scheme from scratch
is slower by a good margin compared to sampling exactly or directly under the hybrid
multifactor approach. This is likely because nv and mi, i = 1, ..., d, need not be that
large so the sampling dimensions of the former methods is small compared to the cost
of first simulating the scheme, then computing the forward values with Definition 3.3.1.

The ranking of the methods could change when option prices are desired at more ex-
piries. The reason is that the exact and direct sampling methods have to be completely
rerun to compute values at different time points. In contrast, having run the scheme
over some fixed time interval, we only need to reuse Definition 3.3.1 to evaluate forward
values at additional time points. Our numerical evidence suggest that we must price
options on least a handful of expiries before running the scheme from scratch is faster
than the direct sampling methods. The feasibility of this however also depends on the
degree to which we can use the same total number of steps for all expiries in some given
fixed interval. We also find that if the hybrid multifactor scheme has been run for other
purposes already, the extra cost of evaluating the VIX index is much less than the other
methods. Such a situation arises when options on S and the VIX index both need to be
priced and is relevant for the joint SPX-VIX calibration problem; a recent paper on the
latter is [24]. Lastly, our experiments suggest that exact and direct sampling under the
40 Technically we test on a two-factor mixed rough Bergomi model, though, we believe the overall

conclusions are applicable in more generality. We explain how mixtures can be handled further down.
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hybrid multifactor approach are about equally efficient, the latter slightly faster.

By linearity of conditional expectations, the derivations and sampling methods of the
present subsection transfer without complications to models for V that are mixtures with
log-normal terms of the form (3.92).41 We exemplify how that works in Section 3.7.3.

In terms of the existing literature, we note that exact sampling was also considered
in [33] for a comparable class of log-normal Volterra models and in [34] for the rough
Bergomi model; the latter work contains additional methods that are disjoint from those
examined here.

3.6.2 Quadratic Volterra Heston model
We define the quadratic Volterra Heston model by

Vt = a(Zt − b)2 + c, (3.103)

Zt = g0(t) +
∫ t

0
K(t− s)η

√
VsdW2,s, t ≥ 0, (3.104)

where a, c, η ≥ 0, b ∈ R, K ∈ L2
loc(R+) satisfies (H0) for some γ̃ ∈ (0, 2], g0 ∈ Hγ̃/2,

W2 = (W2,t)t≥0 is Brownian motion, dW1,tdW2,t = ρdt, ρ ∈ [−1, 1]. As the diffusion
coefficient of (3.104) is Lipschitz continuous (in ’Zs’) there by Theorem 3.B.1 exists a
unique continuous strong solution (V,Z) which we fix for the rest of the subsection.42

We let the filtration (Ft)t≥0 be that generated by (W1,W2) and augmented so the usual
hypothesis holds. The model generalises the quadratic rough Heston model of [24].

The theorem below will be useful for computation of the VIX index.

Theorem 3.6.1. Under the stated setup and assumptions, it holds that

ξ̃t(τ) = ft(τ) + aη2
∫ τ

0
K(τ − s)2ξ̃t(s)ds, t, τ ≥ 0, (3.105)

where

ft(τ) = a(gt(τ)− b)2 + c, (3.106)

gt(τ) = g0(t+ τ) +
∫ t

0
K(t+ τ − s)η

√
VsdW2,s, t, τ ≥ 0. (3.107)

Equation (3.105) has the unique solution

ξ̃t(τ) = ft(τ)−
∫ τ

0
R̃(τ − s)ft(s)ds, t, τ ≥ 0, (3.108)

41 Log-normal models tend to produce almost flat VIX smiles whereas market smiles are typically upward
sloping, see [33]. Log-normal mixtures precisely allow the creation of a skew; c.f. [12, 15, 28].

42 Proof of Lipschitz claim: Define f(x) =
√
a(x− b)2 + c, x ∈ R. Say c = 0. Lipschitz continuity

then follows from the reverse triangle inequality: |f(x) − f(y)| =
√
a||x − b| − |y − b|| ≤

√
a|x − y|,

x, y ∈ R. Let c > 0. One may then show that supx∈R |f ′(x)| =
√
a from which we conclude Lipschitz

continuity by use of the mean-value theorem.
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where R̃ ∈ L1
loc(R+) is the resolvent of second kind of K̃ := −aη2K2. The mapping ξ̃t(·)

is continuous on R+ for any t ≥ 0. Furthermore

VIX2
t = 1002

∆vix

∫ ∆vix

0

[
1− R̄(∆vix − τ)

]
ft(τ)dτ, t ≥ 0, (3.109)

where R̄(t) =
∫ t

0 R̃(s)ds, t ≥ 0.

Proof. Let t, τ ≥ 0. By gt(τ) = Et(Zt+τ ) as follows from Theorem 3.3.3, we have

Et(Z2
t+τ ) = Vart (Zt+τ ) + gt(τ)2, (3.110)

where the moment exists by (3.141). From the Ito isometry, we obtain

Vart(Zt+τ ) = Et

([∫ t+τ

t

K(t+ τ − s)η
√
VsdW2,s

]2)
(3.111)

= η2
∫ τ

0
K(τ − s)2ξ̃t(s)ds, (3.112)

where we have also used Fubini’s theorem and applied a change of variables.

Expanding the square in (3.103):

Vt+τ = aZ2
t+τ − 2abZt+τ + ab2 + c. (3.113)

Taking conditional expectation, using (3.110)-(3.112), and gt(τ) = Et(Zt+τ ):

ξ̃t(τ) = agt(τ)2 − 2abgt(τ) + ab2 + c+ aη2
∫ τ

0
K(τ − s)2ξ̃t(s)ds (3.114)

= ft(τ) + aη2
∫ τ

0
K(τ − s)2ξ̃t(s)ds. (3.115)

For a fixed t the above is a linear Volterra equation for ξ̃t(·). By [27, Theorem 2.3.5] a
unique locally integrable solution exists if K2 and ft(·) are locally integrable. The first
follows by the assumption K ∈ L2

loc(R+), the second because gt(·) and thus ft(·) are
continuous on R+; c.f. Theorem 3.3.2. Theorem 2.3.5 of [27] then gives the solution as

ξ̃t(τ) = ft(τ)−
∫ τ

0
R̃(τ − s)ft(s)ds, t, τ ≥ 0, (3.116)

where R̃ ∈ L1
loc(R+) is the resolvent of second kind of K̃ = −aη2K2. From [27, Theorem

2.3.5] we also get that ξ̃t(·) is continuous since ft(·) is.

Lastly, by (3.116), Fubini’s theorem, and the definition of R̄:

VIX2
t = 1002

∆vix

∫ ∆vix

0
ξ̃t(τ)dτ

= 1002

∆vix

∫ ∆vix

0

(
ft(τ)−

∫ τ

0
R̃(τ − s)ft(s)ds

)
dτ
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= 1002

∆vix

[∫ ∆vix

0
ft(τ)dτ −

∫ ∆vix

0

∫ ∆vix

s

R̃(τ − s)ft(s)dτds
]

= 1002

∆vix

[∫ ∆vix

0
ft(τ)dτ −

∫ ∆vix

0
R̄(∆vix − s)ft(s)ds

]

= 1002

∆vix

∫ ∆vix

0

[
1− R̄(∆vix − τ)

]
ft(τ)dτ, t ≥ 0.

Remark 3.6.2. Since ξ̃t(·) is continuous on R+ as follows from the theorem, it holds that
(3.91) is valid as an approximation of (3.90).

We see three main ways to use Theorem 3.6.1 for computation of the VIX index. We
present them in the following. In all cases, we will assume that K is CM and that Z has
been simulated with the hybrid multifactor scheme across some time horizon which shall
remain unspecified; by (3.103) we have values of V as well. Depending on the simulation
horizon and the forward horizon to which we have fitted the kernel approximation, we
have also values of g and f via Definition 3.3.1 and (3.106). The first method we consider
is to apply a trapezoidal rule to (3.109) as

VIX2
t ≈

1002

nv

nv∑
i=0

ai
[
1− R̄(∆vix − τi)

]
ft(τi), t ≥ 0, (3.117)

where again nv ≥ 2 is an integer and a0 = anv = 1
2 , ai = 1, i = 1, ..., nv − 1, τi = i∆vix

nv
,

i = 0, 1, ..., nv. The approximation is valid because ft(·) and R̄ are continuous, the former
since gt(·) is continuous (we refer to Theorem 3.3.2), the latter by absolute continuity of
the Lebesgue integral for (locally) integrable functions such as R̃. The values

R̄(∆vix − τi) =
∫ ∆vix−τi

0
R̃(s)ds, i = 0, 1, ..., nv, (3.118)

are computable with numerical integration if we can evaluate R̃. The cost is negligible
in a Monte Carlo setting as the terms are deterministic.

As noted, resolvents such as R̃ do not always have analytical expressions. Consider
though the gamma kernel whose definition we restate below:

K(t) = e−λt
tα−1

Γ(α) , t > 0, λ ≥ 0, α ∈ (1/2, 1] . (3.119)

Under (3.119) we have

K̃(t) = −aη2K(t)2 = c∗e−λ
∗t t

α∗−1

Γ(α∗) , t > 0,

where α∗= 2α − 1, c∗=−aη2Γ(α∗)Γ(α)−2, λ∗= 2λ. It follows that K̃ also is a (scaled)
gamma kernel. By [5, Table 1] or Proposition 3.A.1, we then, in fact, have an expression:

R̃(t) = c∗e−λ
∗ttα

∗−1Eα∗,α∗(−ctα
∗
), t > 0. (3.120)

74



3.6.3. GENERALISED CEV VOLTERRA MODEL

For the general case, we could, like what we suggested for Rλ in Section 3.3, try to
solve numerically with the scheme the equation R̃ = K̃ − K̃ ∗ R̃ that defines R̃; note
that −K̃ = aη2K2 is CM given that K is as complete monotonicity is preserved under
products. As remarked in Section 3.3, there is however an unresolved problem in terms
of how to handle the possibly singular initial curve that appears (here via K̃). We are
hopeful that a modified version of the scheme could be constructed to handle it.

In Section 3.7, we test (3.117) for the pricing of VIX options. The results that we present
there show that convergence is reasonably fast in nv and that values around 64 roughly
suffices. Despite this, let us briefly outline two alternative methods that are based on
(3.91): The first method is to compute the relevant forward variances with (3.108) using
knowledge of R̃ and ft combined with a discretisation of the integral that appears. The
second method is to compute the relevant forward variances by solving (3.105) with the
hybrid multifactor scheme. We expect a discretisation of (3.108) combined with (3.91)
to be less efficient than (3.117) as the former involves nested integration; so does (3.117)
but one dimension is pre-computable. Also, although solving (3.105) does not rely on
knowledge of R̃, we expect it to be even less efficient as we have to run the scheme.

3.6.3 Generalised CEV Volterra model
We consider the model

Vt = ξ0(t) +
∫ t

0
K(t− s)η(Vs)dW2,s, t ≥ 0, (3.121)

where K ∈ L2
loc(R+) is not identically zero and satisfies (H0) for some γ̃ ∈ (0, 2] and

(H∗2 ). Using [27, Theorem 5.5.4], the assumptions imply that K also satisfies (H1) as
we will need in the following. We shall furthermore assume that η : R → R is con-
tinuous of linear growth so η(0) = 0, that W2 = (W2,t)t≥0 is Brownian motion with
dW1,tdW2,t = ρdt, ρ ∈ [−1, 1], and that ξ0 ∈ Hγ̃/2+ . We fix a non-negative continuous
weak solution V which exists by Theorem 3.B.2 and let the market filtration (Ft)t≥0 be
that generated by (W1,W2, V ) and augmented; for a strong solution we can let it be gen-
erated by (W1,W2) and augmented. We call (3.121) a generalised CEV Volterra volatility
model as we allow η more general than the CEV case where η(x) = xβ for some β ∈ [0, 1].

By Theorem 3.3.3 we have

ξ̃t(τ) = ξ0(t+ τ) +
∫ t

0
K(t+ τ − s)η(Vs)dW2,s, t, τ ≥ 0. (3.122)

Define
Ut(γ) :=

∫ t

0
e−γ(t−s)η(Vs)dW2,s, t, γ ≥ 0.

We may then express VIX2
t as a functional of (Ut(γ))γ∈[0,∞) as shown below.

Theorem 3.6.2. Under the stated setup and assumptions it for t ≥ 0 holds that

VIX2
t = 1002

∆vix

[∫ ∆vix

0
ξ0(t+ τ)dτ +Ut(0)µ({0})∆vix +

∫
(0,∞)

1
γ

(1− e−γ∆vix)Ut(γ)µ(dγ)
]
.
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Proof. Note that (3.122) is the forward process for V . Then using Theorem 3.3.5 and
Fubini’s theorem:43∫ ∆vix

0
ξ̃t(τ)dτ =

∫ ∆vix

0
ξ0(t+ τ)dτ +

∫ ∆vix

0

(∫
[0,∞)

e−γτUt(γ)µ(dγ)
)
dτ

=
∫ ∆vix

0
ξ0(t+ τ)dτ +

∫
[0,∞)

(∫ ∆vix

0
e−γτdτ

)
Ut(γ)µ(dγ)

=
∫ ∆vix

0
ξ0(t+ τ)dτ+ Ut(0)µ({0})∆vix+

∫
(0,∞)

1
γ

(1− e−γ∆vix)Ut(γ)µ(dγ).

The result follows.

The formula of Theorem 3.6.2 resembles the numerical approximation of VIX2
t that we

will momentarily suggest for the case of a pure multifactor approximation. To explain
our approximation, also for the general case, we invoke the below additional setup.

Additional setup: We assume the hybrid multifactor scheme of Definition 3.2.1 as ap-
plied with X = V , W = W2, g0 = ξ0, b = 0, σ = η, and K as given in the current
subsection. We retain the setup and notation of Section 3.2. In particular, we consider
also a simulation interval [0, T ] for some T > 0, though, we will more restrictively as-
sume that the forward horizon satisfies T ∗ ≥ T + ∆vix to justify our approximations
of VIX2

t for any t ∈ [0, T ]. In other words, we will need Kmn to approximate K on
at minimum the interval [0, T + ∆vix]; this will be made rigorous in Theorem 3.6.3
further down (our convergence result). For any m,n we especially also keep the defini-
tions of Xmn

t =: V mnt , Umnt = (Umn1,t , ..., U
mn
m,t)>, gmnt (τ) =: ξ̃mnt (τ) for t, τ ≥ 0 and of

X̂mn
t =: V̂ mnt , Ûmnt = (Ûmn1,t , ..., Û

mn
m,t)>, ĝmnt (τ) =: ξ̂mnt (τ) for (t, τ) ∈ A. To ease the

exposition, we will assume κ∆n ≤ ∆vix. We will also assume that V mn = (V mn)t≥0
for any m,n has a unique continuous adapted solution on the same probability space
as V and which is driven by the same Brownian motion W2. This will be true under
the assumptions of our convergence result, where we will assume more strictly that η is
Lipschitz; c.f. Theorem 3.B.1 combined with Corollary 3.4.2 for why that suffices.

By Corollary 3.4.2 and Theorem 3.3.3, the below holds and is well-defined:

ξ̃mnt (τ) = Et(V mnt+τ ) = ξ0(t+ τ) +
∫ t

0
Kmn(t+ τ − s)η(V mns )dW2,s, t, τ ≥ 0.

We then define

VIX2
mn,t := 1002

∆vix

∫ ∆vix

0
ξ̃mnt (τ)dτ, t ≥ 0. (3.123)

Note that we cannot claim V mn to be non-negative since Kmn need not satisfy (H1)
and which is needed for Theorem 3.B.2. As an example Kmn need not be continuous
on (0,∞). Consequently, we cannot interpret V mn as an instantaneous variance and

43 The integrability required by Fubini’s theorem follows by that implied in Theorem 3.3.5.

76



3.6.3. GENERALISED CEV VOLTERRA MODEL

therefore VIX2
mn,t, although well-defined, cannot in general be interpreted as a VIX in-

dex squared in the sense of the official VIX white paper, neither can we claim it to be
non-negative. However, we can still expect ξ̃mnt (τ) to approximate ξ̃t(τ) for (t, τ) ∈ A;
Lemma 3.G.2 of the appendix makes this rigorous under Assumption 3.4.1. It follows that
we can also expect VIX2

mn,t to approximate VIX2
t for t ∈ [0, T ]; recall that T ∗ ≥ T+∆vix.

To derive our numerical approximation, note that

VIX2
mn,t = 1002

∆vix

[ ∫ κ∆n

0
ξ̃mnt (τ)dτ +

∫ ∆vix

κ∆n

ξ0(t+ τ)dτ

+
∫ ∆vix

κ∆n

∫ t

0
Km(t+ τ − s)η(V mns )dW2,sdτ

]
, t ≥ 0,

where∫ ∆vix

κ∆n

∫ t

0
Km(t+ τ − s)η(V mns )dW2,sdτ =

∫ ∆vix

κ∆n

(
m∑
i=1

cmi e
−γmi τUmni,t

)
dτ

=
∑

i=1,...,m
γmi 6=0

cmi
γmi

(e−γ
m
i κ∆n − e−γ

m
i ∆vix)Umni,t

+
∑

i=1,...,m
γmi =0

cmi (∆vix − κ∆n)Umni,t , t ≥ 0.

It follows that we for t ≥ 0 may write

VIX2
mn,t = 1002

∆vix

[ ∫ κ∆n

0
ξ̃mnt (τ)dτ +

∫ ∆vix

κ∆n

ξ0(t+ τ)dτ

+
∑

i=1,...,m
γmi 6=0

cmi
γmi

(e−γ
m
i κ∆n − e−γ

m
i ∆vix)Umni,t +

∑
i=1,...,m
γmi =0

cmi (∆vix − κ∆n)Umni,t

]
.

We then define our numerical approximation by

V̂IX
2
mn,ti := 1002

∆vix

[
∆n

2

κ∑
k=1

[
ξ̂mnti ((k − 1)∆n) + ξ̂mnti (k∆n)

]
+
∫ ∆vix

κ∆n

ξ0(ti + τ)dτ (3.124)

∑
j=1,...,m
γmj 6=0

cmj
γmj

(e−γ
m
j κ∆n − e−γ

m
j ∆vix)Ûmnj,ti +

∑
j=1,...,m
γmj =0

cmj (∆vix − κ∆n)Ûmnj,ti

]
(3.125)

for i ∈ {0, 1, ..., bnT c} and extend it as

V̂IX
2
mn,t := V̂IX

2
mn,t−n

, 0 ≤ t ≤ T. (3.126)
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The first sum in (3.124) is the trapezoidal rule for
∫ κ∆n

0 ξ̂mnti (τ)dτ and we interpret it
as zero when κ = 0. It is justified by continuity of ξ̃mnti (·) as follows by Theorem 3.3.2
and Corollary 3.4.2. The values of the trapezoidal discretisation are computable with
Definition 3.3.1. The second term in (3.124) is left without further approximation as it is
straightforward to evaluate with numerical integration independent of the given sample.

If κ, n are chosen so κ∆n = ∆vix then (3.124)-(3.125) collapses to the trapezoidal rule
(3.91) (with ξ̂mnt in place of ξ̃t). Since κ is recommended low for the kernel approxima-
tion (κ = 0 if non-singular, κ = 1 otherwise) and since (3.124)-(3.125) exploits the fact
that the exponential terms are analytically integrable, we expect it to be more efficient.

Remark 3.6.3. There is no guarantee that V̂IX
2
mn,t is non-negative (as with VIX2

mn,t)
even if the notation suggests so. In practise, we thus recommend to truncate it in zero.

We provide a convergence result for the Lipschitz case below.

Theorem 3.6.3. Invoke the stated setup and assumptions. Assume moreover that
Equation (3.33) of Definition 3.2.1 is used, that η is Lipschitz continuous, and that
ξ0 is locally Hölder continuous of order γ̃/2. Furthermore let there exist a β > 1 so
||K||L2β([0,T+∆vix]) <∞ and limm→∞ ||K−Km||L2β([0,T+∆vix]) = 0. Let p ≥ 2β

β−1 , m ∈ N.
There then exist positive constants Cp and Cp,m, the first of which depends on p only,
the latter on both p and m,44 so for all n ∈ N with κ∆n ≤ ∆vix:

sup
t∈[0,T ]

E
[
|VIX2

t − V̂IX
2
mn,t|p

]
≤ Cp||K −Kmn||pL2β([0,T+∆vix]) + Cp,mn

− p2 (γ̃∧1).

Furthermore, for any p ≥ 1:

lim
m→∞

lim
n→∞

sup
t∈[0,T ]

E
[
|VIX2

t − V̂IX
2
mn,t|p

]
= 0.

Proof. We refer to the appendix.

3.7 Numerical experiments
In this section, we examine the scheme numerically. We look first at the strong error
under the Gaussian process

Xt =
∫ t

0
K(t− s)dWs, t ≥ 0, (3.127)

for the kernels K(t) = tα, α ∈ (− 1
2 , 0], and K(t) = (1 + t)β , β ≤ 0. Thereafter, we

consider option pricing under models of the form (3.2) with standard Monte Carlo.

44 As for Theorem 3.4.3 the constants generally also depend on the fixed setup listed in Remark 3.4.2.
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We will cover four models for V , including rough Bergomi and a two-factor mixed rough
Bergomi model defined by

Vt = ξ0(t)
(
θ exp

(
η
√

2α+ 1
∫ t

0
(t− s)αdW2,s −

η2

2 t
2α+1

)
(3.128)

+ (1− θ) exp
(
ν
√

2β + 1
∫ t

0
(t− s)βdW3,s −

ν2

2 t
2β+1

))
, t ≥ 0, (3.129)

where ξ0 : R+ → R+ is left- or right-continuous, supt≤T |ξ0(t)| < ∞ for all T > 0,
θ ∈ [0, 1], η, ν ≥ 0, α, β ∈ (− 1

2 , 0], and (W1,t,W2,t,W3,t)t≥0 is Brownian motion with
dW1,tdW2,t = ρ12dt, dW1,tdW3,t = ρ13dt, dW2,tdW3,t = ρ23dt, and ρ12, ρ13, ρ23 ∈ [−1, 1]
so the associated correlation matrix is positive semi-definite. The market filtration is
assumed to be that generated by (W1,t,W2,t,W3,t)t≥0 and augmented. We consider
also a rough Heston model defined by (3.121) with K(t) = Γ(1 + α)−1tα, α ∈

(
− 1

2 , 0
]
,

and η(x) = ν
√
x, x ≥ 0, for ν ∈ R+.45 Lastly, we examine a quadratic rough Heston

model defined by (3.103)-(3.104) with K(t) = Γ(1 + α)−1tα, α ∈ (− 1
2 , 0]. For all mod-

els, we simplify by assuming ξ0 and g0 flat. This is more than enough to ensure that
the equations have solutions including a non-negative one for the rough Heston equation.

In terms of numerics, we assume the following unless otherwise stated: To fit the sum-
of-exponentials approximation we use BM2005 with ε = 10−3 and generally fit to the
interval [κ∆n, T

∗]. However, when κ = 0 and K is singular, we fit to the interval [∆n, T
∗]

as we cannot sample the singularity. We choose N so the sampling points, up to round-
ing, coincide with the extended simulation grid 0, 1

n ,
2
n , .... We always choose T ∗ as small

as possible but yet so the relevant computations are valid. We use the explicit-implicit
equation (3.34) and simulate S with a log-Euler scheme. To simulate V under rough
Heston, we additionally truncate values in zero to ensure non-negativity; this also avoids
problems when we compute the diffusion coefficient which has a square root. We always
report option prices in Black-Scholes implied volatility. For a VIX option with expiry
T , we use the corresponding VIX futures as the underlying when inverting the Black-
Scholes equation. We will likewise estimate the futures price E(VIXT ) with Monte Carlo.

Our test models cover three important cases: Rough Bergomi covers the Gaussian case
where there is no discretisation error from the diffusion coefficient. Rough Heston covers
the case of state dependent diffusion coefficient and truncation in zero. Quadratic rough
Heston covers the case of a state dependent diffusion coefficient and no truncation. On
the latter, note that Z’s diffusion coefficient is bounded below by a strictly positive num-
ber when c, η > 0 (as we will assume). Then, under that assumption, Theorem 3.B.2
does not apply and we can generally expect that it lives on the entire real line. The
reason we have included the mixed two-factor rough Bergomi model (3.128)-(3.129) in
our experiments is to test the pricing of VIX options in a two-factor model with skew.

45 Throughout we have justified our approximations for strong solutions. For the rough Heston equation
we cannot appeal to Theorem 3.B.1 for such as the square-root diffusion is non-Lipschitz. This however
does not mean that the equation does not have a strong solution, we just do not know. Either way
it will not stop us from simulating it with the hybrid multifactor scheme. Fortunately the evidence
to be presented suggests that we have convergence for option prices: our Monte Carlo estimates for
options on S converge to numbers produced by an applicable Fourier pricing method.
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We consider the following parameters:

Rough Bergomi : (α, η, ρ, ξ0) = (−0.45, 3.06,−1, 0.162) (3.130)
Mixed rough Bergomi : (α, β, θ, η, ν, ρ23, ξ0) = (−0.45,−0.35, 0.3, 3, 1, 0.75, 0.152) (3.131)

Rough Heston (case A) : (α, ν, ρ, ξ0) = (−0.38, 0.29,−0.67, 0.152) (3.132)
Rough Heston (case B) : (α, ν, ρ, ξ0) = (−0.45, 0.41,−0.67, 0.152) (3.133)

Quadratic rough Heston : (α, η, ρ, a, b, c, g0) = (−0.45, 0.93, 1, 0.36, 0.12, 0.0023, 0.037). (3.134)

The parameter sets (3.132)-(3.133) are, up to rounding and disregarding ξ0, taken from
[16] where they are found by calibration to SPX options. They therefore represent
realistic test cases, though, of varying difficulty; the case A equation with α = −0.38
and ν = 0.29 is less rough and has a smaller volatility-of-volatility than the case B
equation where α = −0.45 and ν = 0.41. To simplify our analysis, we consider only
a single parameter set for each of the other models. The sets (3.130) and (3.134) are
chosen by fixing α = −0.45 and calibrating to the expiry T = 0.1 volatility smile for
calls and puts on ST as generated by the case B rough Heston model (the difficult case).
When we compare the convergence behaviour between the models defined by (3.130),
(3.133), and (3.134), it is then more likely that any differences reflect difficulties of the
various types of SVE’s, less so the specific parameters. The set (3.131) is not calibrated,
but hand-picked to ensure a skew for VIX options.

3.7.1 Strong error in the Gaussian case
We consider simulation of (3.127) and the forward values gt(τ) =

∫ t
0 K(t + τ − s)dWs,

t, τ ≥ 0. We start with the influence of κ on the approximation of X: In Figure 3.8, we
show, for a fixed Brownian path (Wt)t∈[0,1], paths of (Xt)t∈[0,1] using exact simulation
and the hybrid multifactor scheme with κ = 0 and κ = 1. We have used 250 steps for
the scheme. Trajectories are shown for the rough fractional kernel K(t) = t−0.4 and
the shifted power-law kernel K(t) = (1 + t)−20. For the former, κ = 0 produces a poor
approximation with too little variability whereas κ = 1 gives an almost perfect match.
As noted, the same observation was made in [9] for their hybrid scheme. The choice
κ = 0 on the other hand seems sufficient for the (non-singular) shifted power-law kernel.

In what follows, we examine more systematically how the strong error depends on κ. For
simplicity, we will only consider the error at the terminal time point T . We will look at
the root-mean-squared-error (RMSE), which to avoid ambiguity, we define for XT by:(

E
[
|XT − X̂mn

T |2
]) 1

2
. (3.135)

In Figure 3.9, we show Monte Carlo estimates of the RMSE for XT with T = 1 nor-
malised by the standard deviation of XT . For the rough fractional kernel we show
values under the hybrid multifactor scheme (lines with crosses) and the hybrid scheme of
[9] (lines with circles). For the shifted power-law kernel, we only show values under the
hybrid multifactor scheme as the α = 0 case is excluded in [9] for the T BSS process (3.4).

The results are much the same. For the rough fractional kernel, we again observe a
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Figure 3.8: Trajectories of (Xt)t∈[0,1] defined by (3.127) for different kernels and simulation
methods. The Brownian path (Wt)t∈[0,1] is held fixed. Blue: exact simulation. Yellow and red:
hybrid multifactor scheme with κ = 0 and κ = 1. We use 250 simulation steps in all cases.
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large improvement going from κ = 0 to κ = 1, but only small improvements with higher
κ’s. For the shifted power-law kernel, we likewise again observe no worthwhile benefit in
choosing κ > 0 instead of κ = 0 (except for small values of n).

There are more observations to make from Figure 3.9. The first relates to the con-
vergence rate. Note that we technically cannot appeal to the rate 1

2 (γ̃∧1) that Theorem
3.4.3 suggests. There are three reasons for this: (1) the convergence rate is for the dis-
cretisation error and does not cover that of the kernel approximation whereas (3.135)
includes both, (2) the way we use the scheme m = m(n, ε) depends on n whereas the
rate for the discretisation error of Theorem 3.4.3 is meaningful for a fixed m only, (3)
we are using the explicit-implicit equation (3.34). Despite this, numerical evidence (to
be presented) suggests that we yet obtain a convergence rate of 1

2 (γ̃ ∧ 1) (i.e. α + 1
2 )

for X when K is the rough fractional kernel; in other cases evidence suggests that the
convergence rate can be strengthened. Figure 3.9 reflects qualitatively the idea that the
convergence rate for X is related positively with the regularity of the process as it is
much faster under the shifted power-law kernel than under the rough fractional kernel.

Another worthwhile observation is that the convergence rate looks to be independent
of κ. This is not too surprising given Theorem 3.4.3 when we consider the rough frac-
tional kernel and compare κ’s strictly greater than zero, and when we consider the shifted
power-law kernel; recall though the mentioned caveats for interpreting Theorem 3.4.3 in
our context. What is surprising, is that the convergence rate also looks to be indepen-
dent of κ when we compare κ = 0 with κ > 0 for the rough fractional kernel; c.f. our
discussion in Section 3.4 in that we for κ = 0 can strengthen the rate to 1

2 for the discreti-
sation error if g0, like here, is locally Hölder continuous of at least order 1

2 . This shows
that there is no benefit in choosing κ = 0 over κ > 0 also in terms of the convergence rate.

Lastly, note that the hybrid multifactor scheme and the hybrid scheme of [9] behave
comparably for the same (n, κ). We believe this is meaningful as the schemes handle the
singularity similarly and both employ Euler approximations for the remainder, though,
in different ways. As discussed, they instead, generally, differ in terms of running time.
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Figure 3.9: Strong error for XT defined by (3.127) with T = 1. Estimates are based on
1 million samples. Lines with crosses: hybrid multifactor scheme. Lines with circles: hybrid
scheme of [9] (only for the left plot). Standard errors are less than 2% of the shown values.
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We briefly examine the influence of κ on the error across values of α, respectively, β,
for the kernels K(t) = tα and K(t) = (1 + t)β . We refer to Figure 3.10, where we keep
bnT c = 250 fixed. For the former kernel, the error, as expected, worsens as α→ − 1

2 and
the benefit of choosing κ > 0 becomes larger. However, even with α = −0.05 there is yet
a very noticeable improvement using κ = 1 instead of κ = 0. For the shifted power-law
kernel, we find no worthwhile improvements in setting κ > 0 even for β’s near −50. We
conclude that our recommendations for κ are robust across a wide range of parameters.
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Figure 3.10: Strong error for XT defined by (3.127) with T = 1 under the hybrid multifactor
scheme with bnT c = 250. Estimates are based on 1 million samples. Standard errors are less
than 4% (left plot) and 0.1% (right plot) of the shown values.

In what follows, we examine the convergence rate in more detail. We will look at that of
X̂mn
T and ĝmnT (τ) towards respectively XT and gT (τ) for T = 1, τ = 0.1, with K(t) = tα.

We keep κ = 1 as recommended. Disregarding the many caveats, Theorem 3.4.3 hints
at the below convergence behaviour in n for the RMSE of X̂mn

T against XT :

(
E
[
|XT − X̂mn

T |2
]) 1

2 ≈ O(n−(α+ 1
2 )). (3.136)

The theorem alludes to the same convergence behaviour for gT (τ). However, as will
become clear momentarily, numerical evidence suggest that the RMSE of ĝmnT (τ) against
gT (τ), for the given example, is better described by:(

E
[
|gT (τ)− ĝmnT (τ)|2

]) 1
2 ≈ O(n−1). (3.137)

In Figure 3.11, we show the log(RMSE) computed with Monte Carlo against log(n) for
X̂mn
T and ĝmnT (τ). We sample the pathwise errors XT − X̂mn

T and gT (τ) − ĝmnT (τ) by
sampling jointly XT and gT (τ) together with the Gaussian terms that are needed to con-
struct X̂mn

T and ĝmnT (τ) under the scheme. Slope estimates are added by linear regression.

The slope estimates for convergence of X̂mn
T towards XT are largely in line with (3.136)

despite the many caveats when interpreting Theorem 3.4.3 in our context. For the for-
ward values, we observe, regardless of α, slopes around −0.9, close to −1. This suggests
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that (3.137) roughly holds. While a rate close to 1 goes against that suggested by The-
orem 3.4.3, there are theoretical reasons why it makes sense: Recall that we for n large
enough, for this example, have ĝmnT (τ) =

∑m
i=1 c

m
i e
−γmi τ Ûmni,T and similarly for gmnT (τ).

As Umn solves a multivariate SDE with constant diffusion coefficients, the Euler and
Milstein schemes for it coincide; compare pages 340 and 345 of [45]. Thus it is at least
meaningful that we should attain the Milstein rate for SDE’s which is 1;46 c.f. [45, The-
orem 10.3.5] for the absolute (p = 1) error. The same logic does not apply to X̂mn

T when
κ > 0 as it then, regardless of n, is expressed in terms of other variables than Ûmn only;
consequently there is no conflict in not observing the Milstein rate for the spot value
XT in Figure 3.11. Based on our logic, one might though claim that we, in fact, should
attain the Milstein rate for XT when κ = 0 where X̂mn

T =
∑m
i=1 c

m
i Û

mn
i,T and similarly

for Xmn
T . This, however, is disproved by Figure 3.9 (left) where the convergence rate for

XT is the same for κ = 0 and κ > 0. A likely reason is this: For XT we use K near
the singularity and thus, although the convergence rate of the discretisation error may
be that of the Milstein scheme when κ = 0, the kernel error is much worse. We do not
expect to lose the Milstein rate of convergence for gT (τ) even when κ = 0 as we only use
K away from the singularity for that variable (recall for our example that τ > 0). Figure
3.9 (right plot) shows that we for the spot process under the shifted power-law kernel
also obtain a rate close to 1 which likewise is meaningful as the kernel is non-singular.
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Figure 3.11: Convergence of X̂mn
T and ĝmnT (τ) towards XT (defined by (3.127)) and gT (τ)

where T = 1, τ = 0.1, K(t) = tα, κ = 1. Estimates are based on 100 000 samples. Points show
observed errors. Standard errors of the RMSE are within 1%. Lines show regressions of the
form log(RMSE) = a+ b log(n) for constants a and b. Slope estimates in the legend refer to b.

We return to the claims that we made about the complexity of the scheme when com-
bined with BM2005. More precisely, we will back up the only remaining point to finish
our argument that the complexity of the hybrid multifactor scheme is O(n) when K is
(CM and) non-singular, O(n log2 n) when it is (CM and) power-law singular. That is,
we will argue that it practically suffices to keep ε fixed and only consider the convergence
in n. We therefore now explore the joint influence of n and ε on the approximations.
In Table 3.3 we show the strong error for XT with T = 1 for different combinations of
(n, ε) for the kernel K(t) = t−0.4 where κ = 1. We see that the approximations conver-
gence rapidly in ε which confirms our claim. Even the choice ε = 10−3 seems sufficient.

46 We can expect the discretisation error (here that between ÛmnT and UmnT ) to dominate for the total
error when Kmn approximates K well on the domain where it is used such as for this example.
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Although unreported, we observe the same, i.e. that convergence quickly saturates in ε,
for other α’s and for the kernel K(t) = (1+t)β across different β’s where we keep κ = 0.

Table 3.3: Strong error for XT defined by (3.127) where K(t) = t−0.4 as computed under
the hybrid multifactor scheme with κ = 1 and T = 1. The RMSE is that defined by (3.135).
Estimates are based on 100 000 samples. Standard errors are less than 0.0002.

RMSE√
Var(XT )

n
16 32 64 128 256 512

ε

10−1 0.0334 0.0313 0.0360 0.0506 0.0270 0.0340
10−2 0.0348 0.0320 0.0291 0.0278 0.0254 0.0241
10−3 0.0348 0.0326 0.0303 0.0283 0.0266 0.0246
10−4 0.0350 0.0327 0.0305 0.0284 0.0267 0.0248
10−5 0.0351 0.0327 0.0305 0.0285 0.0267 0.0249

We examine now the computational times. We will compare against the hybrid scheme of
[9]. In Table 3.4, we show running times for the simulation of 10 000 paths of (Xt)t∈[0,T ]
for different bnT c where K(t) = t−0.4, T = 1, κ = 1. We exclude the time used to
sample the underlying standard normals {Zi}bnTc−1

i=0 defined on page 37. There is a
practical justification for this: when calibrating an option pricing model to market data
with Monte Carlo, the simulations are often rerun with a fixed set of random numbers.

Columns 2–3 show running times for the hybrid multifactor scheme and the hybrid
scheme of [9] implemented with the FFT. Running times for the hybrid multifactor
scheme scale about linearly in n. Although the theoretical running time is O(n log2 n)
recall that the constant in front of m(n, ε) = O(log2 n) is small which could explain it.
Running times under the FFT based hybrid scheme of [9] increase faster than linearly
but less than quadratically (at least for large bnT c’s). This is in line with its theoretical
running time which also is O(n log2 n). The ratio between the two (column 5) increases
from a factor 1.10 in favour of the hybrid multifactor scheme with 32 steps to a factor
3.46 with 2048 steps. Since the schemes are comparably accurate for the same bnT c, c.f.
Figure 3.9 (left), we conclude that the hybrid multifactor scheme is more efficient.

As noted, we cannot, for the hybrid scheme of [9], use the FFT to achieve costsO(n log2 n)
for the T BSS process (3.4) when we are unable to pre-simulate (σt)t∈[0,T ]. Consequently,
if we generalise the scheme of [9] to a state-dependent SVE, we can only expect costs
O(n2). For a more fair comparison in the general case, we therefore also implemented
the scheme of [9] with the convolution of (3.39) computed using a loop in the time di-
mension. We show the running times for this loop based implementation in column 4
and the ratio to the hybrid multifactor scheme in column 6. We see that the scaling
indeed is close to quadratic. The ratio of running times increases from 1.54 in favour of
the hybrid multifactor scheme (with 32 steps) to a substantial ratio of 192.80 (with 2048
steps). We conclude that the idea behind [9] is very costly for a state-dependent SVE.

85



CHAPTER 3. HYBRID MULTIFACTOR SCHEME FOR STOCHASTIC
VOLTERRA EQUATIONS WITH COMPLETELY MONOTONE KERNELS

Table 3.4: Running times (in milliseconds) for the simulation of 10 000 paths of (Xt)t∈[0,T ]
defined by (3.127) with K(t) = t−0.4 for different bnT c where T = 1, κ = 1. Time spent
sampling the underlying standard normals is excluded. Column 2: hybrid multifactor scheme.
Column 3: hybrid scheme of [9] where the convolution in (3.39) is computed with the FFT.
Column 4: hybrid scheme of [9] where the convolution is computed with a loop in the time-
dimension. Columns 5 and 6: ratios between columns 3 and 2, respectively, columns 4 and 2.
Running times are averaged over 1000 runs. Standard errors are within 3% of the averages.

bnT c
Hybrid
multi

-factor

Hybrid
TBSS

Hybrid
TBSS
(loop)

Ratio vs.
Hybrid
TBSS

Ratio vs.
Hybrid
TBSS
(loop)

32 32 19 27 1.10 1.54
64 24 38 92 1.60 3.86
128 40 75 353 1.88 8.83
256 65 139 1332 2.14 20.53
512 120 282 5346 2.36 44.63
1024 242 767 21194 3.17 87.65
2048 468 1616 90172 3.46 192.80

3.7.2 Rough Bergomi
We consider now the rough Bergomi model with parameters (3.130). In Figure 3.12, we
show Monte Carlo estimates of European calls and puts on ST for the expiries T = 0.1
and T = 1 under various simulation methods (exact simulation of V included) and κ’s.
We have used bnT c = 500 steps. The first axes show the log-moneyness defined by
log(K̄/S0) where K̄ is the strike. From the plots, we confirm that κ = 1 is sufficient for
the rough fractional kernel also in terms of pricing. As we will only deal with the rough
fractional kernel from here on, we simplify by fixing κ = 1 for the rest of Section 3.7.

In Figure 3.13, we examine the convergence in the number of steps for the expiry T = 0.1.
The left plot shows the volatility smiles under the hybrid multifactor scheme; the red line
highlights a benchmark solution computed with bnT c = 10 000 steps. We note that the
smiles converge reasonably fast; only a few hundred steps seems to suffice. In the right
plot, we show the convergence of the absolute error (i.e. bias) in implied volatility versus
the benchmark solution for different fixed moneyness values; dashed lines show the hy-
brid multifactor scheme, solid lines the hybrid scheme of [9]. We note that the schemes
converge about equally fast in line with the conclusion from the previous subsection.

3.7.3 Mixed two-factor rough Bergomi
We consider the pricing of VIX options under the two-factor mixed rough Bergomi model
(3.128)-(3.129). In Table 3.5, we present the results of an experiment where we have used
Monte Carlo to price the VIX option with strike 25 and expiry T = 0.1 always using the
trapezoidal rule (3.91) to compute the VIX index. Values are shown for different nv’s
and methods for sampling the forward variances. In the left part of the table, we show
implied volatilities, in the right part computational times, though, the latter excludes
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Figure 3.12: Volatility smiles for options on ST under rough Bergomi with parameters (3.130).
Prices are computed with Monte Carlo using bnT c = 500 steps. Lines differ by method used
to simulate the Gaussian Volterra integral of (3.3). Grey: Exact simulation. Magenta: Hybrid
scheme of [9] with κ = 1. Blue and yellow: Hybrid multifactor scheme with κ = 0 and κ = 1.
Estimates are based on 100 000 samples. Standard errors are within 2% of the shown values.
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Figure 3.13: Monte Carlo estimation of European calls and puts on ST with expiry T =
0.1 under rough Bergomi. Left: Convergence under the hybrid multifactor scheme. Right:
Convergence at selected moneyness values. Dashed lines: Hybrid multifactor scheme. Solid
lines: Hybrid scheme of [9]. Model parameters are those of (3.130) and we keep κ = 1 for both
schemes. Estimates are based on 100 000 samples. Standard errors are within 1% of the values.
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the time spent sampling the underlying standard normal variables. Covariances, except
those of the form (3.102), are computed with numerical integration.

By linearity of conditional expectations and (3.95)-(3.97) we for t, τ ≥ 0 deduce

ξ̃t(τ) = ξ0(t+ τ)
{
θ exp

(
ηg1,t(τ)− η2

2
[
(t+ τ)2α+1 − τ2α+1]) (3.138)

+ (1− θ) exp
(
νg2,t(τ)− ν2

2
[
(t+ τ)2β+1 − τ2β+1])} (3.139)

where

g1,t(τ) :=
√

2α+ 1
∫ t

0
(t+ τ − s)αdW2,s,

g2,t(τ) :=
√

2β + 1
∫ t

0
(t+ τ − s)βdW3,s, t, τ ≥ 0.

Let us explain Table 3.5 in more detail: For all methods, we first sample, possibly with
error, the values g1,T (τi), g2,T (τi), i = 0, 1, ..., nv. Thereafter, we plug them into (3.138)-
(3.139) to obtain the forward variances ξ̃T (τi), i = 0, 1, ..., nv, or, at least, approximations
thereof. Next, we plug the forward variances into (3.91) to obtain the corresponding
samples of the VIX index. Computing the payoffs of the VIX option and averaging we
obtain price estimates. We then invert the Black-Scholes equation to get the implied
volatility. Columns 2 and 5 show values where g1,T (τi), g2,T (τi), i = 0, 1, ..., nv, are
sampled exactly from their joint 2(nv + 1) dimensional normal distribution. Columns
3 and 6 show values under an implementation of the hybrid multifactor approach with
direct sampling. More precisely: For a given nv we set ∆n = ∆vix

nv
. We then use

BM2005 to find for i = 1, 2, integers mi ∈ N and coefficients (cij , γij)mij=1 ∈ R2mi so
tα ≈

∑m1
j=1 c1je

−γ1jt and tβ ≈
∑m2
j=1 c2je

−γ2jt for t ∈ [∆n, T +∆vix]. For this application
of BM2005, we always sample 501 points on [∆n, T + ∆vix] and keep ε = 10−3. Defining

Uij,T :=
∫ T

0
e−γij(T−s)dWi+1,s, i = 1, 2, j = 1, ...,mi,

we sample g1,T (0), g2,T (0), (U1j)m1
j=1, (U2j)m2

j=1, from their dimension 2 + m1 + m2 joint
normal distribution. Thereafter, we compute the forward values using (3.100)-(3.101).
Column 4 shows prices where (g1,t(0))t∈[0,T ] and (g2,t(0))t∈[0,T ] are simulated with the
hybrid multifactor scheme using bnT c = 50 steps and the forward values afterwards are
computed with Definition 3.3.1. Column 7 shows the running times under this approach
except the time spent simulating (g1,t(0))t∈[0,T ] and (g2,t(0))t∈[0,T ] is excluded. The
shown numbers are averages over 1000 runs each of which is based on 10 000 samples.
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Figure 3.14: VIX option smiles for the expiry T = 0.1 as estimated with Monte Carlo under the
two-factor mixed rough Bergomi model with parameters (3.131). The model is simulated with
the hybrid multifactor scheme where κ = 1. The VIX index is computed with the trapezoidal
rule (3.91). Estimates are based on 1 million paths. Standard errors are below 1% of the shown
values. Left: Convergence in bnT c where nv = 32. Right: Convergence in nv where bnT c = 50.

Table 3.5: Implied volatilities and computational times (in milliseconds) for pricing the strike
25 and expiry 0.1 VIX option under the two-factor mixed rough Bergomi model with parameters
(3.131) for different numbers of integration steps nv. Numbers are averaged over 1000 runs each
of which contains 10 000 samples. Standard errors are less than 0.1% of the reported volatilities
and less than 1% of the reported running times. See the main text for more details.

Implied volatility Computational time

nv
Exact
sim.

Hybrid
multi

-factor
(direct
sim.)

Hybrid
multi

-factor

Exact
sim.

Hybrid
multi

-factor
(direct
sim.)

Hybrid
multi

-factor
(excl.
sim.)

2 1.09 1.09 1.09 70 55 9
4 1.01 1.01 1.01 67 49 5
8 0.97 0.97 0.97 73 53 7
16 0.96 0.96 0.96 96 58 12
32 0.95 0.95 0.95 120 70 20
256 0.95 0.95 0.95 2278 247 131

From the table, we note that the methods converge equally fast in nv and that nv = 16 or
nv = 32 about suffices; see also Figure 3.14 (right plot) where we show the convergence
in nv of the full volatility smiles under the hybrid multifactor scheme. We refer to the
left plot of Figure 3.14 for why bnT c = 50 is a reasonable choice for running the scheme
for this example.47 To rank the methods in terms of performance it therefore suffices to
compare their computational times. To this end, we note that exact sampling and direct
sampling under the hybrid multifactor approach are about equally fast for recommended
47 The plot suggests that bnT c = 25 also works. However, for a practical implementation it is recom-

mended to error on side of caution. Thus we have chosen bnT c = 50.
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values of nv (i.e. 16 or 32) with running times in the (very) rough neighbourhood of 100
milliseconds, though, the latter is slightly faster (by just shy of a factor two). From the
table’s last column, we also see that if the hybrid multifactor scheme has already been
run for other purposes, the extra costs of evaluating the VIX index is much lower at
around 20 milliseconds. It took 410 milliseconds (average over 1000 runs, standard error
is 2 milliseconds) to simulate (g1,t(0))t∈[0,T ] and (g2,t(0))t∈[0,T ]. Therefore, to the extent
that we can keep bnT c = 50 for expiries in [0, T ], we can expect to need to price options
on (very) roughly 410

100−20 ≈ 5 expiries in the interval before it is worthwhile to run the
scheme from scratch. Although the calculation is very approximate and depends on the
specific example, it shows that it is not entirely unrealistic that it could be worthwhile
to run the scheme from start, also if not additionally for other purposes.

3.7.4 Quadratic and non-quadratic rough Heston
We consider the Monte Carlo pricing of options on ST and VIXT under the rough Hes-
ton models for the expiry T = 0.1. We simulate V with the hybrid multifactor scheme,
directly or via Z; for rough Heston we truncate values of V in zero. For computation
of VIXT we use (3.124)–(3.126) for rough Heston and (3.117) for quadratic rough Heston.

We start with the quadratic rough Heston model. In Figure 3.15, we show the con-
vergence for options on ST in the number of simulation steps bnT c. We note that
convergence is reasonably fast in that a few hundred steps about suffices. In Figure
3.16, we show the convergence for options on VIXT in values of bnT c (left) keeping
nv = 64, and nv (right) keeping bnT c = 64. Convergence likewise appears reasonable
and is roughly comparable to that observed for the two-factor mixed rough Bergomi
model though slightly worse.

Lastly, we consider pricing under the rough Heston model. We refer to Figure 3.17.
The plots in the top row show prices for options on ST and include benchmark solutions
(red lines) that are computed with Fourier pricing along the lines of [16]. We note that
while convergence is reasonably fast in case A, it is impractically slow in case B, both for
options on ST and VIXT . For example, in case B, using even 10 000 steps we obtain a
bias of several percentage points of implied volatility when looking at options on ST . It
is as expected that convergence is slower when the solution is more erratic, i.e. when α is
low, and when the volatility-of-volatility parameter, ν, is high. Because we use a locally
Gaussian approximation and truncate V in zero, it too is meaningful that prices are
biased in the positive direction. We can expect the positivity bias to vanish slower under
(very) rough volatility since Var(W̃n

i−1,1) ∝ ∆2α+1
n which means that the probability of

negative values decays slower as n→∞ when α is low.
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Figure 3.15: Volatility smiles for options on ST estimated with Monte Carlo for the expiry
T = 0.1 under quadratic rough Heston with parameters (3.134). We use 200 000 paths. The
model is simulated with the hybrid multifactor scheme using κ = 1. Standard errors are less
than 2% of the shown values.
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Figure 3.16: Volatility smiles for options on VIXT using Monte Carlo for the expiry T = 0.1
under quadratic rough Heston. We use 200 000 paths. The model is simulated with the hybrid
multifactor scheme using κ = 1. Standard errors are less than 2%. Left: Convergence in bnT c
where nv = 64. Right: Convergence in nv where bnT c = 64.
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Figure 3.17: Volatility smiles for options on ST (top row) and VIXT (bottom row) for the
expiry T = 0.1 under rough Heston with parameters (3.132)-(3.133). Values are estimated with
Monte Carlo except for the red lines in the top row which are computed with Fourier pricing
along the lines of [16]. For the Monte Carlo estimates simulation is performed using the hybrid
multifactor scheme with κ = 1. Standard errors of the Monte Carlo estimates are within 1%.

3.8 Conclusion and future research
We have in this paper merged the ideas of [2, 4] with those of [9] to produce the hy-
brid multifactor scheme for the simulation of SVE’s with completely monotone kernels.
The scheme combines exact treatment of the kernel function near the origin with a
sum-of-exponentials approximation for the remainder. In relation to the latter, we have
specialised the method of [10] to completely monotone functions and demonstrated, by
example on the rough fractional kernel, that it results in many fewer exponential terms
than the techniques of [2, 4]. We have introduced a forward process akin to [3] and
shown how it can be computed efficiently under the scheme. We have also shown how
the forward values can be used for efficient computation of the VIX index for several in-
stantaneous variance models: multifactor Volterra Bergomi, quadratic Volterra Heston,
generalised CEV Volterra. Numerical experiments showed good convergence for equa-
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tions such as those of the rough Bergomi and quadratic rough Heston models. For rough
Bergomi in particular, we have shown that our scheme is faster than the hybrid scheme of
[9] and more accurate than a pure multifactor approximation. Experiments on rough He-
ston, however, resulted in a large positive bias in the case of a high volatility-of-volatility
and a high level of roughness. We hypothesized that the problem arises as the combined
effect of the volatility process being very volatile, approximating the coefficient processes
piecewise constant, and having to truncate values in zero. Lastly, we have proved strong
convergence under the assumption that the coefficient functions are Lipschitz continuous.

A number of ideas for future research come to mind. Firstly, to improve the slow con-
vergence for rough Heston we could look at higher order methods. The paper [46] e.g.
contains a Milstein scheme for SVE’s, though, they do not approximate the kernel func-
tion as we have done in this paper and which we believe is more efficient. One could
also try Richardson extrapolation; results on the weak convergence rate under rough
volatility are limited but see [6]. The recent scheme of [21] for rough affine forward vari-
ance models also shows promising results for the rough Heston equation. Secondly, we
believe our scheme could be adapted to other Volterra equations such as the fractional
Riccati equations associated with rough Heston and other affine Volterra models, c.f. [5].
Thirdly, recall that our scheme, in many cases, outputs an approximate Markov state
via the forward curve summarised in a small number of state variables. The variables
are provided at no extra cost besides running the scheme. Consequently, we believe our
scheme is well-suited for (e.g.) the least squares Monte Carlo method of [38]—there one
is required to perform cross-path regressions on precisely the Markov state.
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Appendix

3.A Convolutions and resolvents
We recite some theory of convolutions and resolvents.

Let F be a measurable function on R+ and ν a measure on R+ of locally bounded varia-
tion. When valid we define F ∗ν and ν ∗F by (F ∗ν)(t) = (ν ∗F )(t) =

∫
[0,t] F (t−s)ν(ds)

for t > 0 and extend to t = 0 by right continuity. For an additional measurable func-
tion G on R+, we write F ∗ G = F ∗ (Gdt) when well-defined. By [27, Theorem 3.6.1,
Corollary 3.6.2] we have the following: Given F ∈ Lploc(R+) for p ≥ 1, it holds that
ν ∗ F is well-defined and lies in Lploc(R+). Furthermore, given F,G ∈ L1

loc(R+), we have
(F ∗G) ∗ ν = F ∗ (G ∗ ν) almost everywhere.

Let K ∈ L1
loc(R+). The resolvent of first kind of K is defined as the measure L on

R+ of locally bounded variation that satisfies K ∗ L = L ∗ K = 1. The resolvent of
first kind need not exist but is unique if it does [27, Theorem 5.5.2]. Its existence is
guaranteed if K is non-negative and non-increasing on (0,∞) and is not identically zero
[27, Theorem 5.5.5]. The resolvent of second kind is defined as the element R ∈ L1

loc(R+)
that solves K ∗R = R ∗K = K−R. It always exists and is unique [27, Theorem 2.3.1].

Remark 3.A.1. Let K ∈ Lploc(R+) for some p ≥ 1 and R ∈ L1
loc(R+) be its resolvent of

second kind. By [27, Corollary 2.2.3 part (i)] we have K ∗ R ∈ Lploc(R+). Consequently
R = K −K ∗R ∈ Lploc(R+).
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Examples of resolvents can be found in Table 1 of [5], though, they are given without
explicit proof. As we use it in the main text, we provide below an explicit proof for the
resolvent of second kind of the gamma kernel:

Proposition 3.A.1. Let K(t) = ce−λt t
α−1

Γ(α) , t > 0, c ∈ R, λ ≥ 0, α ∈ (0, 1]. For
1 ≤ β < 1

1−α with the interpretation 1/0 = ∞ we have K,R ∈ Lβloc(R+) where R is the
resolvent of second kind of K. Also

R(t) = ce−λttα−1Eα,α(−ctα), t > 0, (3.140)

where Eα,α(·) is defined by (3.51).

Proof. Let 1 ≤ β < 1
1−α . Then K ∈ Lβloc(R+) since

∫ t
0 s

(α−1)βds = 1
(α−1)β+1 t

(α−1)β+1 <

∞ when (α − 1)β > −1 (i.e. when β < 1
1−α ) and t 7→ |e−λt| is bounded on closed

subintervals of R+. By Remark 3.A.1 also R ∈ Lβloc(R+). It remains to check that
K ∗ R = R ∗K = K − R with R given by (3.140). Let t > 0. The result follows by the
below where we change variables and use [42, Equation (2.2.14), Theorem 2.2.1 part (i)]:

(R ∗K)(t) = (K ∗R)(t)

= c2e−λt
1

Γ(α)

∫ t

0
(t− s)α−1sα−1Eα,α(−csα)ds

= c2e−λt
t2α−1

Γ(α)

∫ 1

0
(1− z)α−1zα−1Eα,α(−ctαzα)dz

= c2e−λtt2α−1Eα,2α(−ctα)
= c2e−λtt2α−1 (−ctα)−1 (

Eα,α(−ctα)− Γ(α)−1)
= ce−λt

tα−1

Γ(α) − ce
−λttα−1Eα,α(−ctα)

= K(t)−R(t).

Let Z =
∫ .

0 bsds +
∫ .

0 asdWs be a continuous semimartingale with a, b locally bounded
and progressively measurable (e.g. continuous and adapted). For K ∈ L2

loc(R+) we will
write (K ∗ dZ)t =

∫ t
0 K(t− s)dZs, t ≥ 0, which is well-defined. Using stochastic Fubini

[5, Lemma 2.1] we have also (ν ∗ (K ∗ dZ))t = ((ν ∗ K) ∗ dZ)t almost surely for every
t ≥ 0. Lastly, following the remarks of [4, Section A.1] there exists a continuous version
of (K ∗ dZ)t≥0. Throughout the paper we work only with such continuous versions.

3.B Existence results for stochastic Volterra equa-
tions

We recite some existence results of [3] for the SVE (3.1). Their results generalise those
of [5] to the case of a non-constant g0. We start with two hypotheses for K (which we
have also introduced in the main text):
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Hypothesis (H0): K ∈ L2
loc(R+) and there exists a γ̃ ∈ (0, 2] so

∫ h
0 K(t)2dt = O(hγ̃)

and
∫ T

0 (K(t+ h)−K(t))2dt = O(hγ̃) for every T ∈ [0,∞).

Hypothesis (H1): K is non-negative, not identically zero, non-increasing and con-
tinuous on (0,∞), and its resolvent of first kind L is non-negative and non-increasing in
the sense that s 7→ L([s, s+ t]) is non-increasing for all t ≥ 0.

We then have the following:

Theorem 3.B.1. (one-dimensional version of [3, Theorem A.1]) Assume that (H0)
holds and that g0 is locally Hölder continuous of all orders less than γ̃/2. Then:

(i) If b and σ are Lipschitz continuous (3.1) admits a unique continuous strong solu-
tion X.

(ii) If b and σ are continuous with linear growth and K admits a resolvent of first kind
L then (3.1) admits a continuous weak solution X.

In both cases, X is locally Hölder continuous of all orders strictly less than γ̃/2 and

sup
t≤T

E [|Xt|p] <∞, p > 0, T > 0. (3.141)

Theorem 3.B.2. (Theorem A.2 of [3]) Assume that K satisfies (H0)− (H1) and that b
and σ are continuous of linear growth so b(0) ≥ 0 and σ(0) = 0. Assume also that g0 is
locally Hölder continuous of all orders less than γ̃/2 with g0(0) ≥ 0 and

∆hg0 − (∆hK ∗ L) (0)g0 − d(∆hK ∗ L) ∗ g0 ≥ 0, h ≥ 0.

Then (3.1) admits a non-negative continuous weak solution.

3.C Proof of Theorem 3.3.2
Proof. We reiterate that the proof mostly is only a slight extension of that from [3]. For
the sake of completeness we nevertheless go through all the details.

Let t0, t, τ ≥ 0. Then

gt0t (τ) = g0(t0 + t+ τ) +
∫ t0+t

0
K(t0 + t+ τ − s)(b(Xs)ds+ σ(Xs)dWs)

= g0(t0 + t+ τ) +
∫ t0

0
K(t0 + t+ τ − s)(b(Xs)ds+ σ(Xs)dWs)

+
∫ t0+t

t0

K(t0 + t+ τ − s)(b(Xs)ds+ σ(Xs)dWs)

= gt0(t+ τ) +
∫ t

0
K(t+ τ − s)(b(Xt0

s )ds+ σ(Xt0
s )dW t0

s ).
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In the last line, we have used the change-of-variables Lemma 2.3 of [35]; use the time
change Ts = t0 + s, s ≥ 0, in their notation. It is straightforward to show that (Ft)t≥0
satisfies the usual hypothesis if (F t0t )t≥0 does. It likewise follows with ease that (W t0

t )t≥0
is Brownian motion and that (gt0t )t≥0 is adapted with respect to the shifted filtration.

Equation (3.43) follows by setting τ = 0 in the above.

We argue that gt0 ∈ Hγ̃/2: Fix p ≥ 2 and ε ∈ (0, γ̃2 ). Let also T > 0 and t, h ≥ 0
so t, t + h ≤ T . In what follows C1, C2, C3, denote positive constants that may change
from line to line, though, they can and will be chosen independent of t, h. Note that

gt0(t+ h)− gt0(t) = g0(t0 + t+ h)− g0(t0 + t)

+
∫ t0

0
(K(t0 + t+ h− s)−K(t0 + t− s)) (b(Xs)ds+ σ(Xs)dWs).

Since g0 ∈ Hγ̃/2:

|g0(t0 + t+ h)− g0(t0 + t)|p ≤ C1h
( γ̃2−ε)p.

By Jensen’s inequality (repeated use), Minkowski’s integral inequality [48, Theorem
13.14], linear growth, the moment bound (3.141), (H0):

E

[∣∣∣∣∫ t0

0
(K(t0 + t+ h− s)−K(t0 + t− s)) b(Xs)ds

∣∣∣∣p
]

≤ C2E

[∣∣∣∣∫ t0

0
(K(t0 + t+ h− s)−K(t0 + t− s))2b(Xs)2ds

∣∣∣∣
p
2
]

≤ C2

[∫ t0

0
(E [|K(t0 + t+ h− s)−K(t0 + t− s)|p|b(Xs)|p])

2
p ds

] p
2

≤ C2

[∫ t0

0
|K(t0 + t+ h− s)−K(t0 + t− s)|2(1 + E (|Xs|p))

2
p ds

] p
2

≤ C2

(∫ t0

0
(K(t0 + t+ h− s)−K(t0 + t− s))2ds

) p
2

= C2

(∫ t+t0

t

(K(s+ h)−K(s))2ds

) p
2

≤ C2

(∫ T+t0

0
(K(s+ h)−K(s))2ds

) p
2

≤ C2h
γ̃
2 p.
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Similarly, though using also the BDG inequality:

E

[∣∣∣∣∫ t0

0
(K(t0 + t+ h− s)−K(t0 + t− s))σ(Xs)dWs

∣∣∣∣p
]

≤ C3E

[∣∣∣∣∫ t0

0
(K(t0 + t+ h− s)−K(t0 + t− s))2σ(Xs)2ds

∣∣∣∣
p
2
]

≤ C3h
γ̃
2 p.

By the above and Jensen’s inequality, it follows that

E (|gt0(t+ h)− gt0(t)|p) ≤ Ch( γ̃2−ε)p,

where C is a positive constant that is independent of t, h.

By Kolmogorov’s lemma [37, Theorem 2.9] applied to (gt0(s))s≤T there exists a modifi-
cation that is Hölder continuous on [0, T ] of all orders less than γ̃/2− ε− p−1. Because ε
and p−1 can be chosen arbitrarily small and T > 0 was arbitrary too, we conclude that
gt0 is locally Hölder continuous of all orders less than γ̃/2 when viewed with domain R+.

We show that g0 ∈ Hγ̃/2+ under the extra assumptions: We will use [35, Lemma 2.3]
without explicit mentioning. Let t0, t, h ≥ 0. Define Z =

∫ .
0(b(Xs)ds + σ(Xs)dWs). By

Lemma B.2 and Remark B.3 of [3]:

∆hK = (∆hK ∗ L)(0)K + d(∆hK ∗ L) ∗K. (3.142)

Therefore:

(∆hK ∗ dZ) = (∆hK ∗ L)(0)K ∗ dZ︸ ︷︷ ︸
=X−g0

+d(∆hK ∗ L) ∗K ∗ dZ︸ ︷︷ ︸
=X−g0

.

Note then

Xt0
t+h = g0(t0 + t+ h) + (∆hK ∗ dZ)t0+t +

∫ h

0
K(h− s)dZt0+t+s (3.143)

= g0(t0 + t+ h) + (∆hK ∗ L)(0)(Xt0
t − g0(t0 + t)) (3.144)

+ (d(∆hK ∗ L) ∗ (X − g0))t0+t +
∫ h

0
K(h− s)dZt0+t+s (3.145)

= g0(t0 + t+ h)− (∆hK ∗ L)(0)g0(t0 + t)− (d(∆hK ∗ L) ∗ g0)t0+t (3.146)

+ (∆hK ∗ L)(0)Xt0
t + (d(∆hK ∗ L) ∗X)t0+t +

∫ h

0
K(h− s)dZt0+t+s (3.147)

≥ (∆hK ∗ L)(0)Xt0
t + (d(∆hK ∗ L) ∗X)t0+t (3.148)

+
∫ h

0
K(h− s)b(Xt0

t+s)ds+
∫ h

0
K(h− s)σ(Xt0

t+s)dW t0
t+s, (3.149)
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where the inequality follows by (3.42).

Let τ ≥ 0. For the next part, see that

Et0(Xt0
τ ) = Et0

(
g0(t0 + τ) +

∫ t0+τ

0
K(t0 + τ − s)(b(Xs)ds+ σ(Xs)dWs)

)
= g0(t0 + τ) +

∫ t0

0
K(t0 + τ − s)(b(Xs)ds+ σ(Xs))dWs

+ Et0

(∫ t0+τ

t0

K(t0 + τ − s)b(Xs)ds
)
,

so

gt0(τ) = Et0

[
Xt0
τ −

∫ τ

0
K(τ − s)b(Xt0

s )ds
]
, τ ≥ 0. (3.150)

We have here used that (3.46) is a true martingale, also under the present assumptions.

Define Gt0h = ∆hgt0−(∆hK ∗L)(0)gt0−d(∆hK ∗L)∗gt0 . We must show it non-negative.
By (3.143)-(3.150), and that

(∆hK ∗ b(Xt0))t = (∆hK ∗ L)(0)(K ∗ b(Xt0))t + (d(∆hK ∗ L) ∗K ∗ b(Xt0))t,

as follows from (3.142), we obtain

Gt0h (t) = Et0
[
Xt0
t+h − (K ∗ b(Xt0))t+h − (∆hK ∗ L)(0)(Xt0

t − (K ∗ b(Xt0))t)
−
(
d(∆hK ∗ L) ∗ (Xt0 −K ∗ b(Xt0))

)
t

]
≥ Et0

[
(d(∆hK ∗ L) ∗X)t0+t +

∫ h

0
K(h− s)b(Xt0

t+s)ds

+
∫ h

0
K(h− s)σ(Xt0

t+s)dW t0
t+s + (∆hK ∗ L)(0)(K ∗ b(Xt0))t

− (K ∗ b(Xt0))t+h − (d(∆hK ∗ L) ∗ (Xt0 −K ∗ b(Xt0)))t
]

= Et0

[ ∫ t0+t

t

Xt0+t−s(d(∆hK ∗ L))(ds) +
∫ h

0
K(h− s)b(Xt0

t+s)ds

−
∫ t+h

t

K(t+ h− s)b(Xt0
s )ds

]
= Et0

[∫ t0+t

t

Xt0+t−s(d(∆hK ∗ L))(ds)
]
≥ 0.

Positivity holds because X and d(∆hK ∗ L) are non-negative. See [3, Remark B.3] for
the latter. Note also that gt0(0) = Xt0 ≥ 0. This completes the proof.

3.D Proof of Theorem 3.3.4
Proof. That g0 = X0 + λK ∗ θ ∈ Hγ̃/2 can be proved as in part (ii) of [3, Example 2.2].
The existence results (i) and (ii) of the theorem then follow from Theorem 3.B.1.
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Say that (i) or (ii) of Theorem 3.3.4 additionally holds and let X be continuous and
solve (3.47). To ease what follows, we change notation to that of [5, Lemma 2.5]. Define
F := X0 + λK ∗ θ, B := −λ, Z :=

∫ .
0 σ(Xs)dWs. We then have

X = F + (KB) ∗X +K ∗ dZ,

and using the lemma

X = F −RB ∗ F + EB ∗ dZ,

where RB is the resolvent of second kind of −KB and EB = K −RB ∗K. By definition

−KB ∗RB = −KB −RB =⇒ 1
B
RB = K ∗RB −K = −EB .

Abusing notation by writing also Rλ for the resolvent of second kind of λK (= −KB):

X = X0 + λK ∗ θ −Rλ ∗ (X0 + λK ∗ θ) + 1
λ
Rλ ∗ (σ(X)dW )

= X0 + λK ∗ θ −Rλ ∗X0 −Rλ ∗ (λK)︸ ︷︷ ︸
=λK−Rλ

∗ θ + 1
λ
Rλ ∗ (σ(X)dW )

= X0 +Rλ ∗ (θ −X0) + 1
λ
Rλ ∗ (σ(X)dW ).

Since λK ∈ L2
loc(R+) we have Rλ ∈ L2

loc(R+) by Remark 3.A.1. This combined with

Rλ = λ(K −Rλ ∗K),

by [5, Example 2.3 (iii)-(v)] implies that Rλ satisfies (H0) with the same γ̃ as K. That
g̃0 = X0 +Rλ∗(θ−X0) ∈ Hγ̃/2 follows by the proof strategy of [3, Example 2.2 part (ii)].

We consider the second half of the theorem. Assume first additionally that K is CM
and not identically zero. By [27, Theorem 5.5.4] this implies that K has a resolvent
of first kind L and that it satisfies (H1). Say furthermore that λθ(t)dt + X0L(dt) is a
non-negative measure and X0 ≥ 0. By [3, Example 2.2 part(ii)] then g0 ∈ Hγ/2+ . Assum-
ing lastly (in addition) that σ(0) = 0, we conclude by Theorem 3.B.2 that (3.47) has a
continuous non-negative weak solution X.

That Rλ is CM follows by [27, Theorem 5.3.1] using that K is CM and local inte-
grability. Note also that Rλ is not identically zero because if it were then by the relation
(λK) ∗Rλ = λK −Rλ we must have K = 0 which contradicts the assumption that K is
not identically zero. Using [27, Theorem 5.5.4] we conclude that Rλ has a resolvent of
first kind for which it satisfies (H1). Let now L̃ be the measure on R+ of locally bounded
variation defined by L̃(dt) = λ−1L(dt) + dt. Then by definition of Rλ and L:

Rλ ∗ L̃ = (λK −Rλ ∗ (λK)) ∗
(
λ−1L

)
+Rλ ∗ 1 = 1−Rλ ∗ 1 +Rλ ∗ 1 = 1.

It follows that L̃ is the resolvent of first kind of Rλ. That (θ(t)−X0)dt+X0L̃(dt) is a
non-negative measure follows by λθ(t)dt + X0L(dt) being non-negative. From this and
[3, Example 2.2 part (ii)], we conclude lastly that g̃0 = X0 +Rλ ∗ (θ −X0) ∈ Hγ̃/2+ .

103



REFERENCES

3.E Proof of Theorem 3.3.5
Proof. The dynamics of (Ut(γ))t≥0 follow by Ito’s lemma as applied for (3.12)-(3.13).
The processes are well-defined by continuity of b, σ,X, and adaptedness of the latter.

By stochastic Fubini [50] it for t, τ ≥ 0 holds that

gt(τ) = g0(t+ τ) +
∫ t

0
K(t+ τ − s)b(Xs)ds+

∫ t

0
K(t+ τ − s)σ(Xs)dWs

= g0(t+ τ) +
∫ t

0

∫
[0,∞)

e−γ(t+τ−s)µ(dγ) (b(Xs)ds+ σ(Xs)dWs)

= g0(t+ τ) +
∫

[0,∞)
e−γτ

(∫ t

0
e−γ(t−s) (b(Xs)ds+ σ(Xs)dWs)

)
µ(dγ)

= g0(t+ τ) +
∫

[0,∞)
e−γτUt(γ)µ(dγ).

The stochastic Fubini theorem applies because µ is σ-finite and for any t, τ ≥ 0:∫
[0,∞)

(∫ t

0
e−2γ(t+τ−s)σ(Xs)2ds

) 1
2

µ(dγ) <∞, (3.151)∫
[0,∞)

(∫ t

0
e−γ(t+τ−s)|b(Xs)|ds

)
µ(dγ) <∞. (3.152)

We prove these claims in the following.

For σ-finiteness we argue as follows: Define An = [0, n] for n ∈ N and note that
R+ = ∪n≥1An. Take any t > 0 and n ≥ 1. Then

e−ntµ(An) =
∫
An

e−ntµ(dγ) ≤
∫
An

e−γtµ(dγ) ≤
∫

[0,∞)
e−γtµ(dγ) = K(t) <∞.

Consequently µ(An) <∞ and the claim follows.

We turn our attention to (3.151). Let t, τ ≥ 0. In what follows C denotes a posi-
tive constant that may change from line to line. By linear growth of σ and continuity of
X: ∫

[0,∞)

(∫ t

0
e−2γ(t+τ−s)σ(Xs)2ds

) 1
2

µ(dγ)

≤ C(1 + sup
s≤t

X2
s ) 1

2

∫
[0,∞)

{[
1

2γ e
−2γ(t+τ−s)

]t
0

} 1
2

µ(dγ)

≤ C
∫

[0,∞)
γ−

1
2 e−γτ

(
1− e−2γt) 1

2 µ(dγ)

≤ C
∫

[0,∞)
γ−

1
2
(
1− e−2γt) 1

2︸ ︷︷ ︸
=:F (γ)

µ(dγ).
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An application of L’Hôpital’s rule gives F (0) := limγ→0+ F (γ) =
√

2t < ∞. It follows
that F is well-defined as a continuous function on [0, 1] and thus is uniformly bounded
on it. On [1,∞) it is bounded by 1. Since also F (γ) ≤ γ− 1

2 for all γ > 0, we deduce

F (γ) ≤
(

sup
λ≤1

F (λ) ∨ 1
)
∧ γ− 1

2 , γ ≥ 0.

We conclude ∫
[0,∞)

F (γ)µ(dγ) ≤ C
∫

[0,∞)
(1 ∧ γ− 1

2 )µ(dγ) <∞,

which shows the claim. A similar argument gives (3.152); it should here be noted that
γ−1 ≤ γ− 1

2 for γ ≥ 1 which allows us to apply the integrability bound of (H∗2 ) again.

3.F Properties of Kmn

Proposition 3.F.2 further down states some useful properties of Kmn. We need the lemma
below for its proof.

Lemma 3.F.1. Let there be f, g : R+ → R+ and α, β, Cf , Cg, h̄f , h̄g > 0 so

f(h) ≤ Cfhα ∀ h ∈ [0, h̄f ],
g(h) ≤ Cghβ ∀ h ∈ [0, h̄g].

Then

f(h) + g(h) ≤ Cf+gh
α∧β ∀ h ∈ [0, h̄f+g],

where Cf+g = 2(Cf ∨ Cg) and h̄f+g = h̄f ∧ h̄g ∧ 1.

Proof. The result follows by

f(h) + g(h) ≤ Cfhα + Cgh
β ≤ (Cf ∨ Cg)(hα + hβ) ≤ 2(Cf ∨ Cg)hα∧β , h ∈ [0, h̄f+g],

since h̄f+g ≤ h̄f , h̄g and hα + hβ ≤ 2hα∧β for h ≤ h̄f+g ≤ 1.

Proposition 3.F.2. Say that K is CM and satisfies (H0) for some γ̃ ∈ (0, 2]. Then
Kmn ∈ L2

loc(R+) for any m,n ∈ N. Moreover, for any m ∈ N there exist constants
Cm, hm > 0, so ∫ h

0
Kmn(t)2dt ≤ Cmhγ̃∧1, ∀ n ∈ N, h ∈ [0, hm]. (3.153)

For also a given T ∈ [0,∞) there are constants Cm,T , hm,T > 0, so∫ T

0
(Kmn(t+ h)−Kmn(t))2dt ≤ Cm,Thγ̃∧1, ∀ n ∈ N, h ∈ [0, hm,T ]. (3.154)

105



REFERENCES

Proof. Because Km is continuous on [0,∞), it follows that not only K but also Km is
locally square integrable. Then clearly Kmn ∈ L2

loc(R+) where measurability follows
since K and Km are both measurable. As Km is locally Lipschitz it satisfies (H0) with
rate 1; c.f. [5, Example 2.3 part (i)]. There are then constants C̃m, h̃m > 0 that are
independent of n so

∫ h
0 Km(t)2dt ≤ C̃mh for all h ∈ [0, h̃m]. Since K satisfies (H0) with

rate γ̃ there also exist constants C̃, h̃ > 0 that are independent of n so
∫ h

0 K(t)2dt ≤ C̃hγ̃

for all h ∈ [0, h̃]. Define Cm = 2(C̃m ∨ C̃) and hm = h̃m ∧ h̃ ∧ 1. Then by Kmn being a
concatenation of K and Km, Lemma 3.F.1, that Cm and hm are independent of n too:∫ h

0
Kmn(t)2dt ≤ ||K||2L2([0,h]) + ||Km||2L2([0,h]) ≤ Cmh

γ̃∧1 ∀ n ∈ N, h ∈ [0, hm].

This completes part one of the proposition.

We prove the second part. Let T ∈ [κ,∞) as suffices. Note that T ≥ κ∆n for any
n. We will use this implicitly later. Because K satisfies (H0) with rate γ̃ there ex-
ist constants C̃T , h̃T > 0 independent of n so

∫ T
0 (K(t + h) − K(t))2dt ≤ C̃Th

γ̃ for all
h ∈ [0, h̃T ]. As Km satisfies (H0) with rate 1 there analogously exist constants C̃m,T ,
h̃m,T > 0 independent of n so

∫ T
0 (Km(t+ h)−Km(t))2dt ≤ C̃m,Th for all h ∈ [0, h̃m,T ].

When κ = 0, we obtain
∫ T

0 (Kmn(t + h) −Kmn(t))2dt =
∫ T

0 (Km(t + h) −Km(t))2dt ≤
C̃m,Th for all h ∈ [0, h̃m,T ] so (3.154) is satisfied with Cm,T = C̃m,T and hm,T = h̃m,T ∧1.
Say then κ > 0. This case requires more care. We will here assume that h̃ = h̃T = h̃m,T ≥
κ which is possible—also so h̃, h̃T , h̃m,T , C̃, C̃T , C̃m,T , yet are independent of n as we will
assume.48 Note that it now especially holds that h̃ = h̃T = h̃m,T ≥ κ∆n for any n which
will be used in the following. Let h ∈ [κ∆n, h̃] and see that∫ T

0
(Kmn(t+ h)−Kmn(t))2dt =

∫ T

κ∆n

(Km(t+ h)−Km(t))2dt

+
∫ κ∆n

0
(Km(t+ h)−K(t))2dt

=: I1(m,n, h) + I2(m,n, h).

Note that I1(m,n, h) ≤
∫ T

0 (Km(t + h) − Km(t))2dt ≤ C̃m,Th. From the triangle and
Jensen’s inequalities, that κ∆n ≤ h ≤ h̃T = h̃, the definition

C∗m,T := sup
t∈[0,2h̃T ]

Km(t)2 <∞,

48 Say f : R+ → R+ is bounded on closed intervals and for α,Cf , h̄f > 0 satisfies f(h) ≤ Cfh
α for

all h ∈ [0, h̄f ]. Take an arbitrary h∗f > 0. Set C∗f = suph∈(0,h∗
f

] f(h)/(hα) < ∞; finiteness holds
by the boundedness assumption on f and since f(h) ≤ Cfh

α for h near zero. Then f(h) ≤ C∗fh
α

for all h ∈ [0, h∗f ]. For the claim of the main text use this on
∫ h

0 K(t)2dt,
∫ T

0 (K(t + h) −K(t))2dt,∫ T
0 (Km(t+h)−Km(t))2dt, viewed as mappings in h; boundedness on closed intervals holds because
K,Km ∈ L2

loc(R+).
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which is independent of n, we obtain

I2(m,n, h) ≤ 2||∆hKm||2L2([0,h]) + 2||K||2L2([0,h]) ≤ 2C∗m,Th+ 2C̃hγ̃ .

It follows that∫ T

0
(Kmn(t+ h)−Kmn(t))2dt ≤ (C̃m,T + 2C∗m,T )h+ 2C̃hγ̃ , h ∈ [κ∆n, h̃]. (3.155)

Consider now the case h ∈ [0, κ∆n). Write first∫ T

0
(Kmn(t+ h)−Kmn(t))2dt =

∫ T

κ∆n

(Km(t+ h)−Km(t))2dt

+
∫ κ∆n

κ∆n−h
(Km(t+ h)−K(t))2dt

+
∫ κ∆n−h

0
(K(t+ h)−K(t))2dt

=: J1(m,n, h) + J2(m,n, h) + J3(n, h).

Note that J1(m,n, h) ≤ ||∆hKm − Km||2L2([0,T ]) ≤ C̃m,Th. In similar spirit J3(n, h) ≤
||∆hK −K||2L2([0,T ]) ≤ C̃Th

γ̃ .

For the center term, we obtain, by use of the triangle and Jensen’s inequalities, that
C∗m,T uniformly bounds K2

m on [0, 2h̃T ], that K is non-increasing as follows by complete
monotonicity:

J2(m,n, h) ≤ 2
(
||∆hKm||2L2([κ∆n−h,κ∆n]) + ||K||2L2([κ∆n−h,κ∆n])

)
≤ 2

(
C∗m,Th+ ||K||2L2([0,h])

)
≤ 2

(
C∗m,Th+ C̃hγ̃

)
.

For h ∈ [0, κ∆n] then:∫ T

0
(Kmn(t+ h)−Kmn(t))2dt ≤ (C̃m,T + 2C∗m,T )h+ (C̃T + 2C̃)hγ̃ . (3.156)

Combining (3.155) and (3.156), we conclude∫ T

0
(Kmn(t+ h)−Kmn(t))2dt ≤ (C̃m,T + 2C∗m,T )h+ (C̃T + 2C̃)hγ̃ , h ∈ [0, h̃].

An application of Lemma 3.F.1 yields the desired conclusion.

3.G Proof of Theorem 3.4.3
We prove Theorem 3.4.3. As noted in Section 3.4, it holds under Assumption 3.4.1 that
the equations for X and Xmn have unique continuous solutions on the same probability

107



REFERENCES

space. We will use this without further comment in the derivations. Note also that

Umnt =
∫ t

0
(bmns − γm · Umns )ds+

∫ t

0
σmns dWs, 0 ≤ t ≤ T, (3.157)

and, under Equation (3.33) of Definition 3.2.1, recalling here (3.36), that

Ûmnt =
∫ t−n

0
(b̂mns − γm · Ûmns )ds+

∫ t−n

0
σ̂mns dWs, 0 ≤ t ≤ T. (3.158)

In the above, we interpret bmns , b̂mns , σmns , σ̂mns , as repeated row-by-row m times. We
use the same interpretation in the proofs when necessary. The Jensen’s, Hölder’s, and
Minkowski’s integral inequalities will be used repeatedly. A good reference for these are
[48]. We will additionally use the BDG49 and Gronwall’s inequalities. We refer to [37,
Theorem 5.16] and [19, Theorem 5.1 (appendix)]. Note moreover that for β∗ := β

β−1
we have β−1 + (β∗)−1 = 1; this will be used whenever we apply Hölder’s inequality.
Throughout we keep g0,K, b, σ, T, T

∗, κ, {(cm, γm)}∞m=1, β, γ̃, fixed. Our results, any
bounding constants especially, therefore implicitly depend on them. Also, we will in mul-
tiple places for given p ≥ 2β

β−1 and m ∈ N work with positive constants Cp and Cp,m. To
simplify, we will allow these to change from line to line. A careful reading of our proofs
reveal that the Cp’s can be chosen to depend on p only whereas the Cp,m’s will depend
on both p and m, that is, besides the fixed setup listed previously. Reading the proof,
the reader may come to realise that the rate estimates for many of the drift terms can be
improved if viewed in isolation. This however has no influence on the final convergence
rates as we do not worsen them more than the comparable diffusion terms that appear.
We have done it so we can argue by analogy between the drift and diffusion terms. This
has shortened the proofs slightly. Our derivations are partly inspired by those of [46, 52].

We start with a result that bounds the moments of X̂mn and Ûmn.

Lemma 3.G.1. Invoke Assumption 3.4.1 and assume that Equation (3.33) of Definition
3.2.1 is used. Let p ≥ 2β

β−1 and m ∈ N. There then exists a positive constant Cp,m so for

all n ∈ N and t ∈ [0, T ]: E
[
|X̂mn

t |p
]
∨ E

[
||Ûmnt ||p

]
≤ Cp,m.

Proof. Let p ≥ 2β
β−1 , m,n ∈ N, t ∈ [0, T ]. Note that p ≥ 2 and p

2β∗ ≥ 1. We will use
this when we apply Jensen’s inequality in a number of places. To validly use Gronwall’s
inequality at the end of the proof, we use a localisation argument. Thus for N ∈ N define
τN := inf{s ∈ [0, T ] : |X̂mn

s |∨||Ûmns || ≥ N}, X̂mn
N,t := X̂mn

t 1(t<τN ), ÛmnN,i,t := Ûmni,t 1(t<τN ),
i = 1, ...,m, ÛmnN,t := (ÛmnN,1,t, ..., Û

mn
N,m,t)>.

49 Note that while {
∫ t

0 K̃(t + τ − s)YsdWs; t ≥ 0} for τ ∈ R+, K̃ ∈ L2
loc(R+), (Yt)t≥0 progressive and

locally bounded, is not generally a local martingale, the process {
∫ t

0 K̃(u− s)YsdWs; t ∈ [0, u]} for a
fixed u ≥ 0 is. This is what allows us to apply the BDG inequality in our context.
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As we will argue:

|X̂mn
N,t |p ≤

∣∣∣g0(t−n ) +
m∑
i=1

cmi e
−γmi κ∆nÛmn

N,i,(t−n−κ∆n)+ (3.159)

+
∫ t−n

(t−n−κ∆n)+
K(t−n − s)b(X̂mn

N,s)ds (3.160)

+
∫ t−n

(t−n−κ∆n)+
K(t−n − s)σ(X̂mn

N,s)dWs

∣∣∣p. (3.161)

Indeed, when t < τN both sides equal |X̂mn
t |p = |X̂mn

t−n
|p (consult (3.24)-(3.25) for the

right-hand side), and when t ≥ τN the left-hand side is zero, the right-hand-side, of
course, non-negative. Note that

max
i=1,...,m

|cmi e−γ
m
i κ∆n | ≤ max

i=1,...,m

{
|cmi |(1 ∨ e−γ

m
i κ)

}
︸ ︷︷ ︸

independent of n

<∞. (3.162)

Let i ∈ {1, ...,m}. The above then holds because if γmi ≥ 0 we have e−γmi κ∆n ≤ 1 and
if γmi ≤ 0 then e−γ

m
i κ∆n ≤ e−γ

m
i κ since ∆n ≤ 1 regardless of n ∈ N. By the triangle

inequality, (3.162), the definition of the l1-norm, equivalence of norms on Rm:

∣∣∣ m∑
i=1

cmi e
−γmi κ∆nÛmn

N,i,(t−n−κ∆n)+

∣∣∣p ≤ Cp,m( m∑
i=1

∣∣Ûmn
N,i,(t−n−κ∆n)+

∣∣)p (3.163)

≤ Cp,m||ÛmnN,(t−n−κ∆n)+ ||p. (3.164)

Applying Jensen’s inequality to (3.159)-(3.161) and using (3.163)-(3.164), we deduce:50

E
[
|X̂mn

N,t |p
]
≤ Cp,m

(
|g0(t−n )|p + E

[
||ÛmnN,(t−κ∆n)+ ||p

]
(3.165)

+ E

[∣∣∣ ∫ t−n

(t−n−κ∆n)+
K(t−n − s)b(X̂mn

N,s)ds
∣∣∣p] (3.166)

+ E

[∣∣∣ ∫ t−n

(t−n−κ∆n)+
K(t−n − s)σ(X̂mn

N,s)dWs

∣∣∣p]). (3.167)

By Jensen’s inequality, Hölder’s inequality, linear growth, ||K||L2β([0,T∗]) <∞:

E

[∣∣∣ ∫ t−n

(t−n−κ∆n)+
K(t−n − s)b(X̂mn

N,s)ds
∣∣∣p]

≤ CpE

[∣∣∣ ∫ t−n

(t−n−κ∆n)+
K(t−n − s)2b(X̂mn

N,s)2ds
∣∣∣ p2 ]

50 Note also that Ûmn
N,(t−n−κ∆n)+ = Ûmn

N,(t−κ∆n)+ .
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≤ Cp

(∫ t−n

(t−n−κ∆n)+
|K(t−n − s)|2βds

) p
2β

E

[∫ t−n

(t−n−κ∆n)+

(
1 + |X̂mn

N,s|
)2β∗

ds

] p
2β∗


≤ Cp

(∫ T∗

0
|K(s)|2βds

) p
2β

E

(∫ t−n

(t−n−κ∆n)+

(
1 + |X̂mn

N,s|
)p
ds

)

≤ Cp
(

1 +
∫ t

0
E
[
|X̂mn

N,s|p
]
ds

)
.

Likewise but using also the BDG inequality:

E

[∣∣∣ ∫ t−n

(t−n−κ∆n)+
K(t−n − s)σ(X̂mn

N,s)dWs

∣∣∣p] ≤ CpE
[∫ t−n

(t−n−κ∆n)+
K(t−n − s)2σ(X̂mn

N,s)2ds

] p
2


≤ Cp
(

1 +
∫ t

0
E
[
|X̂mn

N,s|p
]
ds

)
.

By (local Hölder) continuity g0 is uniformly bounded on [0, T ]. Using this and the bounds
that we derived for the terms of (3.166)-(3.167):

E
[
|X̂mn

N,t |p
]
≤ Cp,m

(
1 + E

[
||ÛmnN,(t−κ∆n)+ ||p

]
+
∫ t

0
E
[
|X̂mn

N,s|p
]
ds

)
. (3.168)

Analogous to (3.159)-(3.161) using also the triangle and Jensen’s inequalities:

||ÛmnN,t ||p ≤

∣∣∣∣∣
∣∣∣∣∣
∫ t−n

0
b(X̂mn

N,s)ds−
∫ t−n

0
γm · ÛmnN,sds+

∫ t−n

0
σ(X̂mn

N,s)dWs

∣∣∣∣∣
∣∣∣∣∣
p

(3.169)

≤ Cp

[ ∣∣∣∣∣
∣∣∣∣∣
∫ t−n

0
b(X̂mn

N,s)ds
∣∣∣∣∣
∣∣∣∣∣
p

+
∣∣∣∣∣
∣∣∣∣∣
∫ t−n

0
γm · ÛmnN,sds

∣∣∣∣∣
∣∣∣∣∣
p

+
∣∣∣∣∣
∣∣∣∣∣
∫ t−n

0
σ(X̂mn

N,s)dWs

∣∣∣∣∣
∣∣∣∣∣
p ]
.

(3.170)

By the definition of the l1-norm, Jensen’s inequality, equivalence of norms on Rm:

E

[∣∣∣∣∣
∣∣∣∣∣
∫ t−n

0
γm · ÛmnN,sds

∣∣∣∣∣
∣∣∣∣∣
p]
≤ Cp,mE

[∣∣∣∣∣
m∑
i=1

∫ t−n

0
|ÛmnN,i,s|ds

∣∣∣∣∣
p]
≤ Cp,m

∫ t−n

0
E
[
||ÛmnN,s||p

]
ds.

Bounding the expectation of the remaining two terms of (3.170) as we did to arrive at
(3.168) (except there is no need for Hölder’s inequality in this case), we obtain in total

E
[∣∣∣∣ÛmnN,t

∣∣∣∣p] ≤ Cp,m(1 +
∫ t

0
E
[
||ÛmnN,s||p

]
ds+

∫ t

0
E
[
|X̂mn

N,s|p
]
ds

)
. (3.171)

Combining (3.168) and (3.171):

E
[
|X̂mn

N,t |p
]
≤ Cp,m

(
1 +

∫ t

0
E
[
||ÛmnN,s||p

]
ds+

∫ t

0
E
[
|X̂mn

N,s|p
]
ds

)
. (3.172)
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Define
hN (t) := sup

s≤t

(
E
[
|X̂mn

N,s|p
]
∨ E

[
||ÛmnN,s||p

])
.

By (3.171) and (3.172):

hN (t) ≤ Cp,m
(

1 +
∫ t

0
hN (s)ds

)
.

From Gronwall’s inequality51 we then deduce hN (t) ≤ Cp,m. A careful reading of the
derivations till this point shows that Cp,m can be chosen independent of n, t, and N .
Using this, Fatou’s lemma, and some other tricks, we have52,53,54

Cp,m ≥ lim inf
N→∞

hN (t)

= lim inf
N→∞

sup
s≤t

(
E
[
|X̂mn

N,s|p
]
∨ E

[
||ÛmnN,s||p

])
≥ sup

s≤t

(
lim inf
N→∞

{
E
[
|X̂mn

N,s|p
]
∨ E

[
||ÛmnN,s||p

]})
≥ sup

s≤t

({
lim inf
N→∞

E
[
|X̂mn

N,s|p
]}
∨
{

lim inf
N→∞

E
[
||ÛmnN,s||p

]})
≥ sup

s≤t

({
E
[
| lim inf
N→∞

X̂mn
N,s|p

]}
∨
{
E
[∣∣∣lim inf
N→∞

||ÛmnN,s||
∣∣∣p]}) .

By footnote 53, that τN =∞ (a.s.) for N large enough, we get using the maximum-norm:

Cp,m≥ sup
s≤t

({
E
[
| lim inf
N→∞

X̂mn
N,s|p

]}
∨
{
E
[
|| lim inf
N→∞

ÛmnN,s||p∞
]})

≥sup
s≤t

(
E
[
|X̂mn

s |p
]
∨E

[
||Ûmns ||p∞

])
.

Then by equivalence of norms

sup
s≤t

(
E
[
|X̂mn

s |p
]
∨ E

[
||Ûmns ||p

])
≤ Cp,m,

where || · || is an arbitrary norm on Rm. Since Cp,m can be chosen independent of n and
t (and N), the proof is completed.

In what follows, we bound the error between g and gmn.

51 The inequality applies because hN by localisation is bounded on bounded intervals.
52 For the third line note this: Let fn : R→ R, n ∈ N, A ⊂ R. For n ∈ N clearly supy∈A fn(y) ≥ fn(x) for

any x ∈ A. Consequently, lim infn→∞ supy∈A fn(y) ≥ lim infn→∞ fn(x) for any x ∈ A. We conclude
that lim infn→∞ supx∈A fn(x) ≥ supx∈A lim infn→∞ fn(x) which is what use for the inequality.

53 For the fourth line note this: For d ∈ N, let xn = (xn1 , ..., xnd ) ∈ Rd be a sequence in n ∈ N. As a
special case of footnote 52, then lim infn→∞maxi=1,...,d |xni | ≥ maxi=1,...,d

(
lim infn→∞ |xni |

)
.

54 In the last line, we use Fatou’s lemma [48, Theorem 9.11].
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Lemma 3.G.2. Invoke Assumption 3.4.1 and assume that Equation (3.33) of Definition
3.2.1 is used. For every p ≥ 2β

β−1 there then exists a positive constant Cp so for all
m,n ∈ N:

sup
(t,τ)∈A

E [|gt(τ)− gmnt (τ)|p] ≤ Cp||K −Kmn||pL2β([0,T∗]).

Proof. Let p ≥ 2β
β−1 , m,n ∈ N, (t, τ) ∈ A. Decompose first

gt(τ)− gmnt (τ)

=
∫ t

0
[K(t+ τ − s)−Kmn(t+ τ − s)]bsds+

∫ t

0
Kmn(t+ τ − s)[bs − bmns ]ds

+
∫ t

0
[K(t+ τ − s)−Kmn(t+ τ − s)]σsdWs +

∫ t

0
Kmn(t+ τ − s)[σs − σmns ]dWs

=: Ib1 + Ib2 + Iσ1 + Iσ2 .

By Jensen’s and Hölder’s inequality, linear growth, the moment bound (3.141):

E
[
|Ib1|p

]
= E

[∣∣∣ ∫ t

0
[K(t+ τ − s)−Kmn(t+ τ − s)]bsds

∣∣∣p]
≤ Cp

(∫ t

0
|K(t+ τ − s)−Kmn(t+ τ − s)|2βds

) p
2β

E

[(∫ t

0
|bs|2β

∗
ds

) p
2β∗
]

≤ Cp

(∫ T∗

0
|K(s)−Kmn(s)|2βds

) p
2β (∫ t

0
(1 + E [|Xs|p])ds

)
≤ Cp||K −Kmn||pL2β([0,T∗]).

Additionally by Jensen’s and Hölder’s inequality, Lipschitz continuity of b, the fact that
||Kmn||L2β([0,T∗]) is bounded by a constant that is independent of m and n:55

E
[
|Ib2|p

]
= E

[∣∣∣ ∫ t

0
Kmn(t+ τ − s)[bs − bmns ]ds

∣∣∣p]
≤ Cp

(∫ t

0
|Kmn(t+ τ − s)|2βds

) p
2β

E

[(∫ t

0
|bs − bmns |2β

∗
ds

) p
2β∗
]

≤ Cp
∫ t

0
E [|Xs −Xmn

s |p] ds.

55 By the triangle inequality and that Kmn is a concatenation of K and Km: ||Kmn||L2β([0,T∗]) ≤
||K||L2β([0,T∗]) + ||Km||L2β([0,T∗]). From the triangle inequality again: ||Km||L2β([0,T∗]) ≤ ||Km −
K||L2β([0,T∗]) + ||K||L2β([0,T∗]). Then ||Kmn||L2β([0,T∗]) ≤ 2||K||L2β([0,T∗]) + ||K−Km||L2β([0,T∗]).
The claim now follows because ||K||L2β([0,T∗]) <∞ and limm→∞ ||K −Km||L2β([0,T∗]) = 0.
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By analogous argumentation, though, using also the BDG inequality, we obtain

E [|Iσ1 |p]≤ CpE
([∫ t

0
[K(t+τ−s)−Kmn(t+τ−s)]2σ2

sds

] p
2
)

≤Cp||K −Kmn||pL2β([0,T∗]),

and

E [|Iσ2 |p] ≤ CpE
([∫ t

0
Kmn(t+ τ − s)2[σs − σmns ]2ds

] p
2
)
≤ Cp

∫ t

0
E [|Xs −Xmn

s |p] ds.

Combining all estimates, we have for arbitrary (t, τ) ∈ A:

E [|gt(τ)− gmnt (τ)|p] ≤ Cp
(
||K −Kmn||pL2β([0,T∗]) +

∫ t

0
E [|Xs −Xmn

s |p] ds
)
. (3.173)

Define now

h(t) := sup
(s,τ)∈A
s≤t

E [|gs(τ)− gmns (τ)|p] , 0 ≤ t ≤ T. (3.174)

Because the right-hand-side of (3.173) is non-decreasing in t, we have

h(t) ≤ Cp
(
||K −Kmn||pL2β([0,T∗]) +

∫ t

0
E [|Xs −Xmn

s |p] ds
)
, (3.175)

and therefore

h(t) ≤ Cp
(
||K −Kmn||pL2β([0,T∗]) +

∫ t

0
h(s)ds

)
, 0 ≤ t ≤ T.

We wish to apply Gronwall’s inequality to the above. To do so validly, we first need
to argue that h is bounded on bounded intervals. Because it is non-decreasing, it
suffices to argue that h(t) < ∞ for any t. This follows from (3.175) using (1) the
fact that ||K − Kmn||L2β([0,T∗]) ≤ 2||K||L2β([0,T∗]) + ||Km||L2β([0,T∗]) < ∞ which fol-
lows by the triangle inequality and the first inequality of footnote 55, and (2) that
sups≤tE[|Xs − Xmn

s |p] ≤ 2p−1 sups≤t (E[|Xs|p] + E[|Xmn
s |p]) < ∞ for which we have

used Jensen’s inequality and the moment bound (3.141) for both X and Xmn.

Then by Gronwall’s inequality we finally obtain

sup
(t,τ)∈A

E [|gt(τ)− gmnt (τ)|p] ≤ Cp||K −Kmn||pL2β([0,T∗]),

which completes the proof.

Next, we bound the error between X̂mn and Xmn, respectively, Ûmn and Umn.

Lemma 3.G.3. Invoke Assumption 3.4.1 and assume that Equation (3.33) of Definition
3.2.1 is used. For any p ≥ 2β

β−1 and m ∈ N there then exists a constant Cp,m so

sup
t∈[0,T ]

(
E
[
|Xmn

t − X̂mn
t |p

]
∨ E

[
||Umnt − Ûmnt ||p

])
≤ Cp,mn−

p
2 (γ̃∧1), n ∈ N.
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Proof. Let p ≥ 2β
β−1 , m,n ∈ N, t ∈ [0, T ]. Define

ZmnU,t := Umnt − Ûmnt , ZmnX,t := Xmn
t − X̂mn

t . (3.176)

By (3.157)-(3.158), we may write

ZmnU,t =
∫ t−n

0
[bmns − b̂mns ]ds+

∫ t

t−n

bmns ds+
∫ t−n

0
−γm · [Umns − Ûmns ]ds (3.177)

+
∫ t

t−n

−γm · Umns ds+
∫ t−n

0
[σmns − σ̂mns ]dWs +

∫ t

t−n

σmns dWs (3.178)

=: IbU,1 + IbU,2 + IγU,1 + IγU,2 + IσU,1 + IσU,2. (3.179)

By Jensen’s inequality and Lipschitz continuity:

E
[
||IbU,1||p

]
≤ Cp,m

∫ t−n

0
E
[
|bmns − b̂mns |p

]
ds ≤ Cp,m

∫ t

0
E
[
|ZmnX,s|p

]
ds.

Furthermore, using Jensen’s inequality, Minkowski’s integral inequality, linear growth,
that sups≤T E [|Xmn

s |p] ≤ Cp,m:56

E
[
||IbU,2||p

]
≤Cp,mE

([∫ t

t−n

|bmns |2ds
] p

2
)
≤Cp,m

(∫ t

t−n

(1 +E [|Xmn
s |p])

2
p ds

) p
2

≤ Cp,mn−
p
2 .

By definition of the l1-norm, Jensen’s inequality, equivalence of norms on Rm:

E
[
||IγU,1||

p
]

= E

[∣∣∣∣∣
∣∣∣∣∣
∫ t−n

0
−γm · [Umns − Ûmns ]ds

∣∣∣∣∣
∣∣∣∣∣
p]
≤ Cp,m

∫ t

0
E
[
||ZmnU,s ||p

]
ds.

Using additionally Minkowski’s integral inequality and sups≤T E [||Umns ||p] ≤ Cp,m:57

E
[
||IγU,2||

p
]
≤Cp,mE

([∫ t

t−n

||Umns ||2ds
] p

2
)
≤Cp,m

(∫ t

t−n

[E [||Umns ||p]]
2
p ds

) p
2

≤Cp,mn−
p
2 .

By the BDG and Jensen’s inequalities, Lipschitz continuity:

E
[
||IσU,1||p

]
≤ Cp,mE

[∫ t−n

0
|σmns − σ̂mns |2ds

] p
2
 ≤ Cp,m ∫ t

0
E
[
|ZmnX,s|p

]
ds.

56 By Jensen’s inequality: |Xmn
s |p ≤ 2p−1 (|Xs|p + |Xmn

s −Xs|p). Lemma 3.G.2 and the inequality
||K −Kmn||L2β([0,T∗]) ≤ ||K −Km||L2β([0,T∗]) then yields sups≤T E [|Xs −Xmn

s |p] ≤ Cp,m. From
(3.141) we also have sups≤T E [|Xs|p] ≤ Cp. The claim follows.

57 By equivalence of norms on Rm, the definition of the l1-norm, Jensen’s inequality: E[||Umns ||p] ≤
Cp,m

∑m

i=1 E
[
|Umni,s |

p
]
. Let i ∈ {1, ...,m}. By Jensen’s and the BDG inequality, linear growth:

E[|Umni,s |
p] ≤ 2p−1

(
E
[∣∣∫ s

0 e
−γmi (s−z)b(Xmn

z )dz
∣∣p]+ E

[∣∣∫ s
0 e
−γmi (s−z)σ(Xmn

z )dWz

∣∣p]) ≤
Cp,m

(
1 +
∫ s

0 E[|Xmn
z |p]dz

)
. From this, equivalence of norms on Rm, and footnote 56, we obtain:

sups≤T E [||Umns ||p] ≤ Cp,m
(

1 +
∫ T

0 E[|Xmn
s |p]ds

)
≤ Cp,m.
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Moreover, by the BDG inequality, Minkowski’s integral inequality, linear growth, Jensen’s
inequality, sups≤T E [|Xmn

s |p] ≤ Cp,m:

E
[
||IσU,2||p

]
≤ Cp,mE

([∫ t

t−n

|σmns |2ds
] p

2
)
≤ Cp,m

(∫ t

t−n

(E [|σmns |p])
2
p ds

) p
2

≤ Cp,mn−
p
2 .

Combining all estimates:

E
[
||ZmnU,t ||p

]
≤ Cp,m

(
n−

p
2 +

∫ t

0
E
[
|ZmnX,s|p

]
ds+

∫ t

0
E
[
||ZmnU,s ||p

]
ds

)
. (3.180)

We turn our attention to ZmnX,t . Assume first κ > 0. Note the ordering (t−n − κ∆n)+ ≤
(t− κ∆n)+ ≤ t−n ≤ t which we will use in the following. Decompose and rewrite:58

ZmnX,t = Xmn
t − X̂mn

t−n

= g0(t)− g0(t−n ) +
m∑
i=1

cmi e
−γmi κ∆n

(
Umni,(t−κ∆n)+ − Ûmni,(t−n−κ∆n)+

)
+
∫ t

t−n

K(t− s)bmns ds+
∫ t−n

(t−κ∆n)+

[
K(t− s)bmns −K(t−n − s)b̂mns

]
ds

−
∫ (t−κ∆n)+

(t−n−κ∆n)+
K(t−n − s)b̂mns ds+

∫ t

t−n

K(t− s)σmns dWs

+
∫ t−n

(t−κ∆n)+

[
K(t− s)σmns −K(t−n − s)σ̂mns

]
dWs

−
∫ (t−κ∆n)+

(t−n−κ∆n)+
K(t−n − s)σ̂mns dWs

= g0(t)− g0(t−n ) +
m∑
i=1

cmi e
−γmi κ∆n

(
Umni,(t−κ∆n)+ − Ûmni,(t−κ∆n)+

)
+
∫ t

t−n

K(t− s)bmns ds+
∫ t−n

(t−κ∆n)+

[
K(t− s)−K(t−n − s)

]
bmns ds

+
∫ t−n

(t−κ∆n)+
K(t−n − s)

[
bmns − b̂mns

]
ds−

∫ (t−κ∆n)+

(t−n−κ∆n)+
K(t−n − s)b̂mns ds

+
∫ t

t−n

K(t− s)σmns dWs +
∫ t−n

(t−κ∆n)+

[
K(t− s)−K(t−n − s)

]
σmns dWs

+
∫ t−n

(t−κ∆n)+
K(t−n − s) [σmns − σ̂mns ] dWs −

∫ (t−κ∆n)+

(t−n−κ∆n)+
K(t−n − s)σ̂mns dWs

=: Ig0
X + IUX + IbX,1 + IbX,2 + IbX,3 + IbX,4 + IσX,1 + IσX,2 + IσX,3 + IσX,4.

58 For the third equality note that Ûmn
i,(t−κ∆n)+ = Ûmn

i,{(t−κ∆n)+}−
n

= Ûmn
i,(t−n−κ∆n)+ for i = 1, ...,m.
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For κ = 0 we have ZmnX,t = Ig0
X + IUX . Let κ ≥ 0 be arbitrary. Since g0 is locally Hölder

continuous of order γ̃/2, there exists a positive constant C that depends on only T ∗ so

|g0(t1)− g0(t2)| ≤ C|t1 − t2|
γ̃
2 , ∀ t1, t2 ∈ [0, T ∗].

Consequently,

|Ig0
X |

p ≤ Cp|t− t−n |
γ̃
2 p ≤ Cpn−

p
2 γ̃ .

Furthermore:

E
[
|IUX |p

]
≤ Cp,mE

[
||Umn(t−κ∆n)+ − Ûmn(t−κ∆n)+ ||p

]
= Cp,mE

[
||ZmnU,(t−κ∆n)+ ||p

]
.

We assume κ > 0 again. By Jensen’s and the Minkowski’s integral inequality, linear
growth, sups≤T E [|Xmn

s |p] ≤ Cp,m, (H0):

E
[
|IbX,1|p

]
≤ CpE

[[∫ t

t−n

K(t− s)2(bmns )2ds

] p
2
]

(3.181)

≤ Cp
(∫ t

t−n

(E [|K(t− s)bmns |p])
2
p ds

) p
2

(3.182)

≤ Cp
(∫ t

t−n

K(t− s)2(E [|bmns |p])
2
p ds

) p
2

(3.183)

≤ Cp
(∫ t

t−n

K(t− s)2(1 + E [|Xmn
s |p])

2
p ds

) p
2

(3.184)

≤ Cp,m

(∫ n−1

0
K(s)2ds

) p
2

(3.185)

≤ Cp,mn−
p
2 γ̃ . (3.186)

Analogous argumentation yields

E
[
|IbX,2|p

]
≤ Cp,m

(∫ t−n

(t−κ∆n)+
[K(t− s)−K(t−n − s)]2ds

) p
2

≤ Cp,m

(∫ T∗

0
[K(s+ (t− t−n ))−K(s)]2ds

) p
2

≤ Cp,mn−
p
2 γ̃ .

By the Jensen’s and Hölder’s inequalities, Lipschitz continuity, ||K||L2β([0,T∗]) <∞:

E
[
|IbX,3|p

]
= E

[∣∣∣∣∣
∫ t−n

(t−κ∆n)+
K(t−n − s)[bmns − b̂mns ]ds

∣∣∣∣∣
p]

≤ Cp,m

(∫ t−n

(t−κ∆n)+
|K(t−n − s)|2βds

) p
2β

E

(∫ t−n

(t−κ∆n)+
|bmns − b̂mns |2β

∗
ds

) p
2β∗

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≤ Cp,m
∫ t

0
E
[
|ZmnX,s|p

]
ds.

Analogous to (3.181)-(3.186) using Lemma 3.G.1 instead of the moment bound applied
for those equations and that K is non-increasing:

E
[
|IbX,4|p

]
≤Cp,m

(∫ (t−κ∆n)+

(t−n−κ∆n)+
K(t−n − s)2ds

) p
2

≤Cp,m

(∫ ∆n

0
K(s)2ds

) p
2

≤Cp,mn−
p
2 γ̃ .

The terms E
[
|IσX,i|p

]
can be bounded similarly to E

[
|IbX,i|p

]
for i = 1, 2, 3, 4, except we

must also to use the BDG inequality. Combining the estimates, we, for arbitrary κ ≥ 0,
conclude

E
[
|ZmnX,t |p

]
≤ Cp,m

(
n−

p
2 γ̃ + E

[
||ZmnU,(t−κ∆n)+ ||p

]
+
∫ t

0
E
[
|ZmnX,s|p

]
ds

)
. (3.187)

Equations (3.180) and (3.187) imply

h(t) ≤ Cp,m
(
n−

p
2 (γ̃∧1) +

∫ t

0
h(s)ds

)
, h(t) := sup

s≤t

(
E
[
|ZmnX,s|p

]
∨ E

[
||ZmnU,s ||p

])
.

Then proof is then completed by an application of Gronwall’s inequality.59

Theorem 3.G.4. (Theorem 3.4.3 of page 50 restated) Invoke Assumption 3.4.1 and
assume that Equation (3.33) of Definition 3.2.1 is used. For p ≥ 2β

β−1 and m ∈ N there
then exist positive constants Cp and Cp,m, the first of which depends on p only, the latter
on both p and m, so

sup
(t,τ)∈A

E [|gt(τ)− ĝmnt (τ)|p] ≤ Cp||K −Kmn||pL2β([0,T∗]) + Cp,mn
− p2 (γ̃∧1), n ∈ N.

(3.188)

Proof. Let p ≥ 2β
β−1 , m,n ∈ N. By Jensen’s inequality:

sup
(t,τ)∈A

E [|gt(τ)− ĝmnt (τ)|p] ≤ 2p−1 sup
(t,τ)∈A

E [|gt(τ)− gmnt (τ)|p] (3.189)

+ 2p−1 sup
(t,τ)∈A

E [|gmnt (τ)− ĝmnt (τ)|p] . (3.190)

From Lemma 3.G.2 we have already

sup
(t,τ)∈A

E [|gt(τ)− gmnt (τ)|p] ≤ Cp||K −Kmn||pL2β([0,T∗]). (3.191)

It remains to bound the term in (3.190). Define Zmng,t (τ) := gmnt (τ)− ĝmnt (τ), (t, τ) ∈ A.
In what follows, we bound E

[
|Zmng,t (τ)|p

]
separately for each case of Definition 3.3.1:

59 That h is bounded on bounded intervals follows in this context by use of the triangle inequality and
that sups≤T

(
E [|Xmn

s |p] ∨ E
[
|X̂mn
s |p

]
∨ E [||Umns ||p] ∨ E

[
||Ûmns ||p

])
< ∞. The latter follows by

Lemma 3.G.1 and that sups≤T E [|Xmn
s |p] <∞ and sups≤T E [||Umns ||p] <∞ as shown already.
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Say (t, τ) ∈ A with τ ≥ κ∆n. Then

Zmng,t (τ) = gmnt (τ)− ĝmn
t−n

(τ) = g0(t+ τ)− g0(t−n + τ) +
m∑
i=1

cmi e
−γmi τ

(
Umni,t − Ûmni,t−n

)
.

By Ûmn
t−n

= Ûmnt , that g0 is locally Hölder continuous of order γ̃/2, Lemma 3.G.3:

E
[
|Zmng,t (τ)|p

]
≤ Cp,m

(
n−

p
2 γ̃ + E

[
||Umnt − Ûmnt ||p

])
≤ Cp,mn−

p
2 (γ̃∧1).

Let (t, τ) ∈ A and say that κ > 0, τ = l∆n, l ∈ {0, 1, ..., κ − 1}. Note the ordering
(t−n − (κ − l)∆n)+ ≤ (t − (κ − l)∆n)+ ≤ t−n ≤ t. Then by (3.61)-(3.64) and Definition
3.3.1:

Zmng,t (τ) = gmnt (τ)− ĝmn
t−n

(τ)

= g0(t+ τ)− g0(t−n + τ) +
m∑
i=1

cmi e
−γmi κ∆n

(
Umni,(t−(κ−l)∆n)+ − Ûmni,(t−n−(κ−l)∆n)+

)
+
∫ t

(t−(κ−l)∆n)+
K(t+ τ − s)(bmns ds+ σmns dWs)

−
∫ t−n

(t−n−(κ−l)∆n)+
K(t−n + τ − s)(b̂mns ds+ σ̂mns dWs)

= g0(t+ τ)− g0(t−n + τ) +
m∑
i=1

cmi e
−γmi κ∆n

(
Umni,(t−(κ−l)∆n)+ − Ûmni,(t−(κ−l)∆n)+

)
+
∫ t

t−n

K(t+ τ − s)bmns ds+
∫ t−n

(t−(κ−l)∆n)+
K(t+ τ − s)[bmns − b̂mns ]ds

+
∫ t−n

(t−(κ−l)∆n)+
[K(t+ τ − s)−K(t−n + τ − s)]b̂mns ds

−
∫ (t−(κ−l)∆n)+

(t−n−(κ−l)∆n)+
K(t−n + τ − s)b̂mns ds+

∫ t

t−n

K(t+ τ − s)σmns dWs

+
∫ t−n

(t−(κ−l)∆n)+
K(t+ τ − s)[σmns − σ̂mns ]dWs

+
∫ t−n

(t−(κ−l)∆n)+
[K(t+ τ − s)−K(t−n + τ − s)]σ̂mns dWs

−
∫ (t−(κ−l)∆n)+

(t−n−(κ−l)∆n)+
K(t−n + τ − s)σ̂mns dWs

=: Ig0 + IU + Ib1 + Ib2 + Ib3 + Ib4 + Iσ1 + Iσ2 + Iσ3 + Iσ4 .

Because g0 is locally Hölder continuous of order γ̃/2:

|Ig0 |p ≤ Cpn−
p
2 γ̃ . (3.192)
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The definition of the l1-norm, the triangle inequality, equivalence of norms on Rm,
Lemma 3.G.3, yields

E [|IU |p] ≤ Cp,mE
[
||Umn(t−(κ−l)∆n)+ − Ûmn(t−(κ−l)∆n)+ ||p

]
≤ Cp,mn−

p
2 (γ̃∧1). (3.193)

By Jensen’s inequality, Minkowski’s integral inequality, linear growth, sups≤T E[|Xmn
s |p] ≤

Cp,m, that K is non-increasing, (H0):

E
[
|Ib1|p

]
≤Cp,m

(∫ t

t−n

K(t+ τ − s)2ds

) p
2

≤Cp,m

(∫ n−1

0
K(s)2ds

) p
2

≤Cp,mn−
p
2 γ̃ .

(3.194)

Using Jensen’s and Hölder’s inequalities, Lipschitz continuity, ||K||L2β([0,T∗]) < ∞,
Lemma 3.G.3:

E
[
|Ib2|p

]
≤ Cp,m

∫ t−n

(t−(κ−l)∆n)+
E
[
|Xmn

s − X̂mn
s |p

]
ds ≤ Cp,mn−

p
2 (γ̃∧1).

By Jensen’s and Minkowski’s integral inequalities, linear growth, Lemma 3.G.1, (H0):

E
[
|Ib3|p

]
≤ Cp,m

(∫ t−n

(t−(κ−l)∆n)+
(K(t+ τ − s)−K(t−n + τ − s))2ds

) p
2

≤ Cp,m

(∫ T∗

0
(K(s+ (t− t−n ))−K(s))2ds

) p
2

≤ Cp,mn−
p
2 γ̃ .

As we derived (3.194) but using Lemma 3.G.1 to bound the moment:

E
[
|Ib4|p

]
≤ Cp,m

(∫ (t−(κ−l)∆n)+

(t−n−(κ−l)∆n)+
K(t−n +τ − s)2ds

) p
2

≤ Cp,m

(∫ n−1

0
K(s)2ds

) p
2

≤ Cp,mn−
p
2 γ̃ .

We may bound E [|Iσi |p] similarly to E
[
|Ibi |p

]
for i = 1, 2, 3, 4, except we should also use

the BDG inequality. Combining the estimates, we conclude again

E
[
|Zmng,t (τ)|p

]
≤ Cp,mn−

p
2 (γ̃∧1). (3.195)

Let now (t, τ) ∈ A and τ ∈ [0, κ∆n] be more general. We still assume κ > 0. Then

Zmng,t (τ) = ∆n − (τ − τ−n )
∆n

(
gmnt (τ)− ĝmnt (τ−n )

)
+ τ − τ−n

∆n

(
gmnt (τ)− ĝmnt (τ+

n )
)
.

Consequently, using the triangle and Jensen’s inequalities, (3.195):

E
[
|Zmng,t (τ)|p

]
≤ 4p−1(E

[
|gmnt (τ)− gmnt (τ−n )|p

]
+ E

[
|gmnt (τ−n )− ĝmnt (τ−n )|p

]
(3.196)

+ E
[
|gmnt (τ)− gmnt (τ+

n )|p
]

+ E
[
|gmnt (τ+

n )− ĝmnt (τ+
n )|p

]
) (3.197)
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≤ Cp,m
(
n−

p
2 (γ̃∧1) + E

[
|gmnt (τ)− gmnt (τ−n )|p

]
(3.198)

+ E
[
|gmnt (τ)− gmnt (τ+

n )|p
])

. (3.199)

Note that
gmnt (τ)− gmnt (τ−n ) = g0(t+ τ)− g0(t+ τ−n )

+
∫ t

0
(K(t+ τ − s)−K(t+ τ−n − s))bmns ds

+
∫ t

0
(K(t+ τ − s)−K(t+ τ−n − s))σmns dWs.

By Jensen’s and the BDG inequality, local γ̃2 -Hölder continuity of g0, Minkowski’s integral
inequality, linear growth, sups≤T E [|Xmn

s |p] ≤ Cp,m, (H0):

E
[
|gmnt (τ)− gmnt (τ−n )|p

]
(3.200)

≤ Cp,m

(
n−

p
2 γ̃ +

[∫ t

0
(K(t+ τ − s)−K(t+ τ−n − s))2ds

] p
2
)

(3.201)

≤ Cp,m

n− p2 γ̃ +
[∫ T∗

0
(K(s+ (τ − τ−n ))−K(s))2ds

] p
2
 (3.202)

≤ Cp,mn−
p
2 γ̃ . (3.203)

By the same argumentation:
E
[
|gmnt (τ)− gmnt (τ+

n )|p
]
≤ Cp,mn−

p
2 γ̃ . (3.204)

Combining (3.200)-(3.204) in (3.196)-(3.199), we conclude again

E
[
|Zmng,t (τ)|p

]
≤ Cp,mn−

p
2 (γ̃∧1). (3.205)

Because we have established (3.205) for all (t, τ) ∈ A, the proof is done.

3.H Proof of Proposition 3.5.3 (continued)
Proof. We argue that H is positive semi-definite. Recall from (3.79) that

f(x) =
∫

[0,∞)
e−γ(b−a)xµ̂(dγ), x ∈ [0, 1].

Define for γ ≥ 0 and k ∈ N0 the terms h̃k(γ) := e−γ(b−a) k
2N and

H̃(γ) :=



h̃0(γ) h̃1(γ) ... h̃N−1(γ) h̃N (γ)

h̃1(γ) . . . . . . . . . h̃N+1(γ)
... . . . . . . . . . ...

h̃N−1(γ) . . . . . . . . . h̃2N−1(γ)
h̃N (γ) h̃N+1(γ) ... h̃2N−1(γ) h̃2N (γ)


.
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By

hk
def.= f

(
k

2N

)
=
∫

[0,∞)
e−γ(b−a) k

2N µ̂(dγ) =
∫

[0,∞)
h̃k(γ)µ̂(dγ), k = 0, 1, ..., 2N,

and H being the Hankel matrix constructed from {h0, ..., h2N}, we deduce that

H =
∫

[0,∞)
H̃(γ)µ̂(dγ). (3.206)

Since µ̂ is non-negative it by (3.206) suffices to show that H̃(γ) is positive semi-definite
for any γ ≥ 0. We to this end consider the so-called ’Hamburger moment problem’:
Let {sk}∞k=0 be a sequence of real numbers. By Theorem 3.8 of [49, pp. 63] the Hankel
matrices Sk := {si+j−2}k+1

i,j=1, k ∈ N0, are positive semi-definite if and only if

sk =
∫
R
ykλ(dy), k ∈ N0,

for a positive Radon measure λ on R where the integrals must exist and be finite. To
prove H̃(γ) positive semi-definite, we therefore only need to argue the representation

h̃k(γ) =
∫
R
ykλ(dy), k ∈ N0. (3.207)

Equation (3.207) holds if we let λ be the Dirac measure with point mass in e−γ(b−a) 1
2N .

We conclude that H̃(γ), γ ≥ 0, are positive semi-definite. Then so is H.

3.I Proof of Theorem 3.6.3
Proof. Let p ≥ 2β

β−1 , m,n ∈ N, and assume that κ∆n ≤ ∆vix. Throughout Cp and Cp,m
will denote positive constants that may change from line to line. A careful reading of
the proof shows that Cp,m can be chosen independent of n, Cp of both m and n.

By Jensen’s inequality:

sup
t∈[0,T ]

E
[
|VIX2

t − V̂IX
2
mn,t|p

]
≤ 2p−1 sup

t∈[0,T ]
E
[
|VIX2

t −VIX2
mn,t|p

]
(3.208)

+ 2p−1 sup
t∈[0,T ]

E
[
|VIX2

mn,t − V̂IX
2
mn,t|p

]
. (3.209)

For the term of (3.208), we get with Jensen’s inequality and Lemma 3.G.2:

sup
t∈[0,T ]

E
[
|VIX2

t −VIX2
mn,t|p

]
≤ Cp

∫ ∆vix

0
sup
t∈[0,T ]

E
[
|ξ̃t(τ)− ξ̃mnt (τ)|p

]
dτ

≤ Cp sup
(t,τ)∈A

E
[
|ξ̃t(τ)− ξ̃mnt (τ)|p

]
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≤ Cp||K −Kmn||pL2β([0,T+∆vix]).

For the term of (3.209), note first that

∆vix

1002

[
VIX2

mn,t − V̂IX
2
mn,t

]
=
∫ κ∆n

0

[
ξ̃mnt (τ)− 1

2(ξ̂mnt (τ−n ) + ξ̂mnt (τ+
n ))
]
dτ

+
∫ ∆vix

κ∆n

[
ξ0(t+ τ)− ξ0(t−n + τ)

]
dτ

+
∑

i=1,...,m
γmi 6=0

cmi
γmi

(e−γ
m
i κ∆n − e−γ

m
i ∆vix)[Umni,t − Ûmni,t ]

+
∑

i=1,...,m
γmi =0

cmi (∆vix − κ∆n)[Umni,t − Ûmni,t ]

=: I1 + I2 + I3 + I4.

For the above, the reader should recall that

V̂IX
2
mn,t = V̂IX

2
mn,t−n

, Ûmnt = Ûmn
t−n

, ξ̂mnt = ξ̂mn
t−n
, t ∈ [0, T ].

By Jensen’s inequality:

E [|I1|p] ≤ Cp
∫ κ∆n

0

(
E
[
|ξ̃mnt (τ)− ξ̃mnt (τ−n )|p

]
+ E

[
|ξ̃mnt (τ−n )− ξ̂mnt (τ−n )|p

]
+ E

[
|ξ̃mnt (τ)− ξ̃mnt (τ+

n )|p
]

+ E
[
|ξ̃mnt (τ+

n )− ξ̂mnt (τ+
n )|p

] )
dτ.

Because (3.200)-(3.204) from the proof of Theorem 3.G.4 generalises to arbitrary (t, τ) ∈
A:

sup
(t,τ)∈A

(
E
[
|ξ̃mnt (τ)− ξ̃mnt (τ−n )|p

]
+ E

[
|ξ̃mnt (τ)− ξ̃mnt (τ+

n )|p
])
≤ Cp,mn−

p
2 γ̃ .

In the proof of Theorem 3.G.4, the bound (3.205) was shown for arbitrary (t, τ) ∈ A. It
follows that

sup
(t,τ)∈A

(
E
[
|ξ̃mnt (τ−n )− ξ̂mnt (τ−n )|p

]
+ E

[
|ξ̃mnt (τ+

n )− ξ̂mnt (τ+
n )|p

])
≤ Cp,mn−

p
2 (γ̃∧1).

Combining the above, we deduce: E [|I1|p] ≤ Cp,mn−
p
2 (γ̃∧1).

By local γ̃
2 -Hölder continuity of ξ0, Jensen’s inequality, we have also

|I2|p ≤ Cp sup
(t,τ)∈A

|ξ0(t+ τ)− ξ0(t−n + τ)|p ≤ Cpn−
p
2 γ̃ .

122



3.I. PROOF OF THEOREM 3.6.3

An application of Jensen’s inequality and Lemma 3.G.3 then yields

sup
t∈[0,T ]

E
[
|VIX2

mn,t − V̂IX
2
mn,t|p

]
≤ Cp (E [|I1|p] + E [|I2|p] + E [|I3|p] + E [|I4|p])

≤ Cp,m
(
n−

p
2 (γ̃∧1) + E

[
||Umnt − Ûmnt ||p

])
≤ Cp,mn−

p
2 (γ̃∧1).

Combining the estimates in (3.208)-(3.209), we obtain the desired result:

sup
t∈[0,T ]

E
[
|VIX2

t − V̂IX
2
mn,t|p

]
≤ Cp||K −Kmn||pL2β([0,T+∆vix]) + Cp,mn

− p2 (γ̃∧1).

The last part of the theorem can be proved as in the proof of Theorem 3.4.4.

123



Chapter 4

Empirical analysis of rough and
classical stochastic volatility models
to the SPX and VIX markets

Sigurd Emil Rømer

Abstract

We conduct an empirical analysis of rough and classical stochastic volatility
models to the SPX and VIX options markets. Our analysis focusses primarily
on calibration quality and is split in two parts. In the first part, we perform
a historical calibration to SPX options over the years 2004-2019 of a selection
of models that include the one-factor rough Bergomi model. In the second
part, we consider three calibration dates with low, typical, and high volatility,
but examine a wide selection of models and calibrate to both SPX options
and jointly to SPX and VIX options. The key results are as follows: The
rough Bergomi model fails to create a term structure of smile effect that is
sufficiently pronounced for SPX options. Moreover, we discover that short-
expiry SPX smiles generally are more symmetric than long-expiry smiles, a
feature we neither find that the rough Bergomi model can reproduce. We
propose an alternative volatility model driven by two Ornstein-Uhlenbeck
processes that uses a non-standard transformation function. Calibrating it
to SPX options we obtain almost perfect fits and calibrating it jointly to SPX
and VIX options we obtain very decent fits. This suggests—contrary to what
one might be led to believe based on much of the existing literature—that
the joint SPX-VIX calibration problem is largely solvable with classical two-
factor volatility, all without roughness and jumps.

Keywords: Rough volatility; Multifactor volatility; Calibration; SPX options;
VIX options.
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4.1. INTRODUCTION

4.1 Introduction
In the influential paper [33], it is argued that volatility on a large number of financial
assets is rough. A stochastic process is considered rough if the trajectories are less Hölder
continuous than those of Brownian motion. Modelling volatility rough in practice im-
plies explosive volatility paths and an at-the-money implied volatility skew that for many
one-factor models is of the form ∼ cTH− 1

2 where T is the expiry, H ∈
(
0, 1

2
)

the so-called
Hurst exponent, and c is an anonymous constant. The power-law term structure of skew
is remarkably consistent with typical SPX volatility surfaces where often H ≈ 0.1. Sev-
eral papers have by now also demonstrated that even simple one-factor rough volatility
models can obtain excellent fits to the entire surface, all without jumps; see [7] for the
rough Bergomi model or [22] for a rough Heston model. Theoretical works on rough
volatility are [6, 8, 20, 23, 24, 25, 26, 27, 28, 29].

The modelling and numerical treatment of volatility derivatives have also received at-
tention in the rough volatility literature [5, 32, 42, 44, 49, 58]. An important example
is the VIX option (a European call or put on the VIX index). Since the VIX index
is defined in terms of quoted SPX options1, the markets for SPX and VIX options are
deeply connected. The analysis of [17] however also shows that each market contains
some amount of distinct risk-neutral information and that predictive performance can
be improved by taking advantage of the information contained in both. It is therefore
highly worthwhile to look for models that can calibrate jointly to SPX and VIX options.

Numerous papers have been written on the joint calibration problem since VIX options
first started trading in 2006. An often encountered challenge when calibrating jointly
is to reconcile the typically very steep short-term SPX skews—which in a continuous-
path setting imply a very high volatility-of-volatility—with the level of the VIX implied
volatility which comparatively is often much lower. The problem has been described
with more rigour in [36] where Julien Guyon shows that a certain inversion-of-convex-
ordering property must be satisfied to fit both markets. For a continuous-path model it,
in essence, boils down to a volatility process with a high volatility-of-volatility, very fast
mean-reversion, and a sizeable negative correlation to the S&P 500 index.

Previous attempts with continuous-path models have had some success, although, the
fits are not always perfect; the double CEV model introduced and calibrated in [31]
is one example. Most (more or less) successful attempts have instead involved jumps;
see e.g. [18, 48, 54]. However, the inclusion of jumps may be undesirable as it leads to
indeterminacy in the construction of hedge portfolios. Continuous-path models are there-
fore preferable in general. The rough volatility finding is promising in this regard since
rough volatility models naturally produce very fast mean-reversion and high volatility-
of-volatility, which suggests that they would do better than classical models in solving
the joint problem without jumps. An important related work is [32] where the authors
calibrate their quadratic rough Heston model and obtain a decent fit to both markets,
although they only consider short-term options as they use a simplified parameterisation.

1 We refer to the VIX whitepaper downloadable via https://www.cboe.com/education/research (ac-
cessed July 27, 2021).
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Despite the promising results, we believe the empirical literature is lacking when it comes
to the testing of rough volatility pricing models. For example, while several calibrations
to SPX options have been published, no systematic validation of the fits exist and we
therefore believe it is still an open question if simple models such as rough Bergomi truly
are consistent with the SPX volatility surface—also across market scenarios. Moreover,
only a small selection of rough volatility models have been tested for the joint calibra-
tion problem. The present author is in fact only aware of the calibration in [32] of the
quadratic rough Heston model (but only to short-term options) and the skewed rough
Bergomi model calibrated in [37]; the latter though fails to reconcile the two markets.

The purpose of our paper is to help fill the gap of empirical work. Our analysis is
divided in two parts and focuses primarily on calibration quality. However, a severely
limiting factor when calibrating rough models is the slow computational speeds (relative
to classical models) that result from the inherent path dependence. Fortunately, a series
of recent papers [9, 43, 53] have shown how a pricing model can be significantly sped up
with a neural network representation. In part one of our analysis, we therefore employ
neural network techniques to calibrate a selection of models to SPX options over the years
2004-2019.2 We include the rough Bergomi model, an extended rough Bergomi model,
and add the original Heston model of [40] as a benchmark. The reader will see that
these models are incapable of perfect fits across all market scenarios. In search of better
results, and to explore the joint problem, we provide a second analysis where we test
more advanced models, including several two-factor volatility models, and a quadratic
rough Heston model.3 We calibrate the models with Monte Carlo to SPX options and
jointly to SPX and VIX options, albeit on a smaller set of dates, and analyse the results.

The paper is structured as follows: Sections 4.2-4.4 cover the first part of our analy-
sis. We define the relevant models in Section 4.2, and, in Section 4.3, outline our neural
network methodology and validate the approximations. In Section 4.4, we present and
discuss the historical SPX calibrations. The second part of our analysis is provided in
Section 4.5. We conclude in Section 4.6.

4.2 Setup and models
We consider a filtered probability space (Ω,F , (Ft)t≥0 ,Q) where Q is a risk-neutral pric-
ing measure. The filtration (Ft)t≥0 is assumed to be generated by two possibly correlated
Brownian motions W1,t and W2,t and if not already adapted also by a stochastic process
Vt which we call the instantaneous variance. We always let the filtration be augmented
so the usual hypothesis holds. For notation, we write Et(·) := E(·|Ft) for conditional
expectations. The underlying asset is assumed to have risk-neutral dynamics of the form

dSt = St(r(t)− q(t))dt+ St
√
VtdW1,t (4.1)

where r(t) is the deterministic risk free interest rate and q(t) is the continuous determin-
istic dividend yield. Define ξt(u) = Et (Vu), 0 ≤ t ≤ u, which are the forward variances.
2 The trained neural networks, including interfaces for Matlab, R, and Python, and other codes related

to their construction, are made public at https://github.com/sigurdroemer/rough_volatility.
3 Unless otherwise stated, we by the number of ’factors’ refer to the number of Brownian motions that

drive volatility.
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4.2.1. HESTON

We denote the forward price of the underlying asset by Ft,T = St exp(
∫ T
t

(r(s)−q(s))ds),
0 ≤ t ≤ T . Given a European call or put option with strike K and expiry T as observed
at time t, we define its log-moneyness by k = log (K/Ft,T ) and write σBS(k, T − t) for
the Black-Scholes implied volatility. The arbitrage free price at time zero is

e
−
∫ T

0
r(s)ds

E (max {β · (ST −K) , 0}) (4.2)

where β = 1 for a call option, β = −1 for a put. Applying Ito’s lemma to the log of the
forward price and performing some simple rewritings, we may also write (4.2) as

F0,T e
−
∫ T

0
r(s)ds

E
(
max

{
β ·
(
S̃T − K̃

)
, 0
})

(4.3)

where K̃ = K
F0,T

and dS̃t = S̃t
√
VtdW1,t, S̃0 = 1. From (4.3) we see that it suffices to

train our neural networks under the assumption of an initial asset price of 1 and zero
interest rates and dividends. The general case is recovered by adjusting the strike and
rescaling the price.

In what follows, we outline the models that we test in part one of our analysis.

4.2.1 Heston
In the Heston model of [40], we have

dVt = κ(v∞ − Vt)dt+ η
√
VtdW2,t (4.4)

where V0, κ, v∞, η > 0, dW1,tdW2,t = ρdt, ρ ∈ [−1, 1]. The model has been popularised
mostly due to the fact that the characteristic function of log(St) is known analytically
which in turn enables fast pricing with Fourier methods. For option pricing we use a
Fourier based pricing formula from [50] as it appears in [51] though rewritten as an
integral over R+ and with an optimal dampening parameter.

4.2.2 Rough Bergomi
The rough Bergomi model of [7] is defined by

Vt = ξ0(t)E
(
η
√

2H
∫ t

0
(t− s)H− 1

2 dW2,s

)
, t ≥ 0,

where η > 0, H ∈ (0, 1
2 ), dW1,tdW2,t = ρdt, ρ ∈ [−1, 1], and we have defined E(X) :=

eX−
1
2E(X2) for a general mean-zero Gaussian variable X. We price options with Monte

Carlo and to that end simulate Vt with the hybrid scheme of [12] and use the conditional
estimator of [52] as a base estimate. We use a log-Euler scheme to simulate the part of
St that is not integrated out by the conditioning and add the expectation of that as a
control variable to our price estimator. We use 50 000 paths, half of which are antithetic.
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4.2.3 Extended rough Bergomi
The rough Bergomi model can be extended so the volatility process is driven by two
factors with different roughness levels: We define the extended rough (or fractional)
Bergomi model by4

Vt = ξ0(t)V1,tV2,t, t ≥ 0, (4.5)

where

V1,t = E
(
ζ
√

2α+ 1
∫ t

0
(t− s)αdW1,s

)
, V2,t = E

(
λ
√

2β + 1
∫ t

0
(t− s)βdW2,s

)
, t ≥ 0,

and α, β ∈ (− 1
2 ,

1
2 ), ζ, λ ∈ R. For this model, it is assumed that W1,t and W2,t are

independent. When α = β the model reduces to the ordinary rough (or fractional)
Bergomi model with H = α+ 1

2 and

ρ = ζ√
ζ2 + λ2

, η =
√
ζ2 + λ2. (4.6)

We shall use the reparameterisation (4.6) also when α 6= β. We may then translate back
to the original formulation as ζ = ηρ and λ = η

√
1− ρ2. We likewise use Monte Carlo

to price options under (4.5). To this end, we simulate V1,t and V2,t as for rough Bergomi
and use similar variance reduction techniques, except for the conditional Monte Carlo
method which we could not carry over. We use anywhere between 25 000 and 100 000
paths depending on the shape of the initial forward variance curve—more paths when
volatility is low as we found estimation difficult in those scenarios.

The extended model differs from the original in that the separation of the Hurst ex-
ponents α + 1

2 and β + 1
2 between, respectively, the correlated and uncorrelated factor,

allows for a corresponding separation of the explosion rates for the skew and curvature
of the option smiles. To see why, note that

Var (log V1,t) = ζ2t2α+1, Var (log V2,t) = λ2t2β+1, t ≥ 0,

so when α > β, the correlated factor V1,t dominates at long time horizons, the uncor-
related factor V2,t at short horizons (vice-versa if α < β). As we illustrate in Figure
4.2.1 in the case of α > β, the effect on option prices is as claimed. Compared to what
the original model would produce, the option smiles are now more symmetric at short
expiries and get increasingly skewed at longer horizons. The opposite would be observed
if α < β. The reader will see that the SPX volatility surface often have decoupled term
structures for skew and curvature which is why we include the model.

4.3 Neural network approximations
We build neural network representations of our pricing models. We start by introducing
neural networks, then review existing approaches on applying them to option pricing,
and explain our own adaptation. Lastly, we train and validate our networks.
4 The model is not our own invention as we were inspired by a no longer existing GitHub page by Ryan

McCrickerd.
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Figure 4.2.1: Volatility smiles under the extended rough Bergomi model with α = 0.4, β =
−0.4, ρ = −0.9, η = 2.1, ξ0(t) = 0.202.

4.3.1 Neural networks
While neural networks are helpful for many purposes, we will introduce and motivate
them in the context of approximating some multivariate function F : RN → RM . We
imagine that F is slow to evaluate and that we seek to replace it with a neural network
that ideally will be faster but still sufficiently accurate. To this end, we consider a fully
connected feed-forward neural network (henceforth just a ’neural network’). This is a
mapping Fnet : RN → RM defined by its general architecture and a set of weights de-
noted w; a network architecture is shown in Figure 4.3.1. To evaluate Fnet, one traverses
from left to right in the graph, and at each node, the input layer excluded, performs a
computation of the form x 7→ σ

(
a>x+ b

)
where x is the output from the last layer (a

column vector), a a coefficient column vector, b a scalar, and σ an (activation) function.
The weights w are the collection of all coefficients a and b. The problem of finding a
neural network approximation to F consists of finding an architecture and weights w so
the error between Fnet and F is small.

The weights are typically chosen as follows for a fixed architecture: First we generate a
synthetic dataset of input-output pairs by evaluating F at various inputs x and storing
the results y = F (x). The inputs are often sampled from some distribution covering the
relevant domain of F . For a random input sample X, we define the generalisation error
by the number

E [L (Fnet(X;w), F (X))] (4.7)

where L : RM × RM → R is a loss function and Fnet(X;w) denotes the neural network
evaluated in X with weights w. An empirical version of (4.7) can be constructed on the
training data by averaging errors across the samples. To train the network, one can min-
imise the empirical version with respect to w. This is usually performed with stochastic
gradient descent which is a gradient-based optimisation method. For the method one
iterates in epochs, i.e. cycles, across the training data, first shuffling all samples, then
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Figure 4.3.1: Our neural network design for implied volatilities on expiry slice in the interval
[0,0.008] for a model with n inputs parameters. Parameters are denoted θi for i = 1, ..., n and
implied volatilities σi for i = 1, ..., 175.

looping over smaller batches, covering all of them, each time updating the weights with
a gradient estimate. We refer to [15, 35] for the finer details in the training of neural
networks.

The literature contains many results that justify neural networks for function approxima-
tion: The Universal Approximation Theorem of [41] states (in essence) that a continuous
function can be approximated to any desired precision on a compact domain using net-
works of a bounded number of layers (depth) but arbitrarily many neurons per layer
(width). The paper [46] contains a dual result for networks of bounded width but ar-
bitrary depth. A common observation in an option pricing context is nevertheless that
only a few hidden layers are worthwhile. The authors of [9] e.g. report that their ap-
proximations did not consistently improve when going beyond four hidden layers. This
is likely because the mapping from parameters to prices tends to be smooth so there is
little benefit in introducing complex non-linearities beyond that achievable with a few
layers.

4.3.2 Neural networks for options pricing
In the following, we formulate the approximation problem in relation to options pricing,
calibration in particular, and review some existing approaches. We will frame the situa-
tion very abstractly. We therefore consider a general pricing model with some parameter
space Θ ⊂ Rd1 , d1 ∈ N, and let Λ ⊂ Rd2 , d2 ∈ N, denote a space of contract parameters
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such as strike-expiry pairs for a number Nc ∈ N of financial contracts. We consider a
pricing function P : Θ × Λ → RNc that maps from model and contract parameters to
a vector of prices which could be expressed in currency units or implied volatility. It is
precisely such a function P that we wish to approximate with a neural network.

Example: Under Heston we may set Θ = R4
+ × [−1, 1] and for a vector θ ∈ Θ write

θ = (V0, κ, v∞, η, ρ) in our previous notation. If we consider European calls and puts we
could set Λ = R2

+ and let λ = (K,T ) ∈ Λ denote the strike and expiry of a given option.
Then P (θ, λ) = P (V0, κ, v∞, η, ρ,K, T ) would be its price. Alternatively, we could con-
sider a fixed set of (say) Nc = 10 options specified as strike-expiry pairs (Ki, Ti) ∈ R2

+,
i = 1, ..., 10, set Λ = ∅, and let P : Θ→ R10 return a vector with their prices.

The setup and formulation of P can have important implications for the approxima-
tions and whether interpolation or extrapolation is needed on top. In the following we
therefore discuss advantages and disadvantages of different neural network setups and
definitions of P . All cases reviewed concern the pricing of European call and put op-
tions and P always returns prices in implied volatility; the same is true in our own setup.

We comment first on [9] where a pointwise learning approach is used. In the paper,
the authors set Λ = R2

+ with an element of the space referring to the strike and expiry
of a single European call or put option. Their pricing function P : Θ × Λ → R returns
the implied volatility of such a single option. They use a network with 4 hidden layers,
4096 neurons in each, which gives roughly 67 million weights. To focus the accuracy of
the network on the relevant parts of the contract space, they sample strikes and expiries
for the training data using a joint distribution constructed from observed SPX contracts.

In [43] an image-based implicit learning approach is suggested. For their numerical
examples, the authors set Λ = ∅ and let P : Θ → R88 be the pricing function that
returns implied volatilities for options on the 11 by 8 strike-expiry grid defined by the
Cartesian product below (it is here assumed that S0 = 1):

{0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5} × {0.1, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.0}. (4.8)

They use a network with 4 hidden layers, 30 neurons in each, resulting in about 7000
network weights. To price contracts that are not in the grid, appropriate interpolation
and extrapolation can be used. The approach, of course, generalises to other contract
grids. The method is called image-based as the network learns the mapping from model
parameters to several points on the volatility surface (Nc > 1). The word implicit refers
to the fact that the pricing function implicitly depends on the chosen contracts (Λ = ∅).

The authors of [43] argue that their method has a number of advantages. Let us point
out a few as we see it: (1) The complexity is reduced as we only need to learn the volatil-
ity surface on a fixed set of points. This should facilitate the use of smaller networks. (2)
While training, information on nearby contracts are considered jointly which allows the
weights to adjust to the entire surface at once. This can speed up the training process.
(3) The reduction in the input dimension and the increased information contained in an
image, implies fewer training samples are needed. This is advantageous when combined
with Monte Carlo as one can reuse simulated paths for multiple contracts in the grid.
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A downside (compared to the pointwise method) is the need for interpolation which
adds more errors and computational costs. However, in a calibration setting, the con-
tracts to evaluate remain fixed as points in R2

+ while the calibration runs. Consequently,
we have found it possible to perform a number of pre-computations to speed up re-
peated evaluation of the interpolation scheme.5 Because of this, and since we neither
had problems controlling the interpolation error, we decided to use the image-based ap-
proach ourselves, although with a few adjustments due to a problem that we now explain.

More precisely, we find that it can be problematic to use a Cartesian product of contracts
in the strike-expiry space such as (4.8). To explain the problem, say for example that
we estimate P with Monte Carlo. We then argue that one should only include contracts
in the grid that, with an acceptable amount of paths, can be accurately estimated. In-
deed, if samples with significant errors enter into the training dataset this will likely
have a negative influence on the accuracy and reliability of the trained network. One
should therefore avoid options that are too far out-of-the-money. However, what is ’far
out-of-the-money’ is highly dependent on the strike, expiry, and model parameters. Con-
sequently, with a grid in the form of a Cartesian product, one is forced to use relatively
narrow strike bounds to control the Monte Carlo error across expiries and parameters.

One solution is to use a dynamic strike range. That is, we could look for functions
K̄min, K̄max : Θ × R+ → R that satisfy K̄min(θ, T ) < K̄max(θ, T ) for (θ, T ) ∈ Θ × R+
and which should specify reasonable strike bounds where θ is a parameter vector, T
an expiry. Such a technique is used in [53] where neural networks are trained for the
SABR model of [39]. We though foresee several challenges: (1) The strike bounds of
[53] use intricate properties of the SABR model and it is not obvious how to gener-
alise them to other models. (2) The calibration task requires us to price all observed
contracts, possibly after filtering, for any model parameter in the domain of optimisa-
tion. This is not in general possible with a dynamic moneyness range. That is, unless a
robust extrapolation technique can be used, but we do not believe this is a trivial matter.

To balance the advantages and disadvantages, we choose a middle-of-the-road solution
by using the image-based method, and that with dynamic moneyness bounds, but only
allowing the bounds to depend on the expiry as K̄min(T ) and K̄max(T ). In this way we
can pre-filter the market data to the support of our networks, and yet, to some degree,
accommodate how the probability distribution of ST changes across the expiries T .

We show our choice of bounds in Figure 4.3.2. To specify the contracts for the image-
based method, we fix the below 64 expiries

T := {0.002, 0.003, ..., 0.01, 0.015, ...0.05, 0.06, ..., 0.20, 0.225, 0.25, 0.30, ..., 0.5, 0.6, ..., 3}

and use 25 uniformly spaced points in the log-moneyness dimension between the bounds.
This results in 1600 contracts.

In [53] it was suggested to partition the volatility surface into expiry groups and to
5 We were at least able to do so with our choice of interpolation method which we explain in a moment.
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Figure 4.3.2: Moneyness region supported by our neural networks.

train separate networks for each. We ourselves find that this can help improve the ap-
proximations and keep the networks of a manageable size. A likely reason is that short-
and long-term volatility smiles behave differently, especially under rough volatility, which
suggests that they should be handled separately. We train six networks per model, each
of which covers expiries in [0,0.008], (0.008,0.03], (0.03,0.12], (0.12,0.4], (0.4,1] and (1,3].

Lastly, we outline our interpolation method: Say that we wish to interpolate the im-
plied volatility of a contract with log-moneyness k and expiry T assumed within the
bounds of Figure 4.3.2. We then interpolate as follows:

• Find the closest expiries T1, T2 ∈ T so T1 ≤ T ≤ T2

• Interpolate with a natural cubic spline the volatility smiles for the expiries T1 and
T2 to obtain σBS(k, T1) and σBS(k, T2)

• Apply linear interpolation between σ2
BS(k, T1)T1 and σ2

BS(k, T2)T2 in the time di-
mension to obtain σ2

BS(k, T )T and thereby σBS(k, T )

The natural cubic spline interpolation does not rule out static arbitrage. However,
as follows by the work of [56], a necessary condition for no static arbitrage is that
T 7→ σ2

BS(k, T )T is non-decreasing. Thus if implied volatilities are arbitrage free at the
points (k, T1) and (k, T2) our choice of time-interpolation ensures that this is not violated.

An unreported numerical test showed that our interpolation method mostly ensures
an absolute relative error in implied volatility below 10−3.

4.3.3 The forward variance curve
To handle the forward variance curve numerically, we assume it piecewise constant be-
tween the below 28 time points:

{0, 0.0025, 0.005, ..., 0.02, 0.04, ..., 0.16, 0.28, ...1, 1.25, 1.5, 1.75, 2, 3}. (4.9)

The grid roughly corresponds to daily sections for the first week, then weekly sections
till the first two months, monthly sections for the remainder of the first year, quarterly
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sections for the second year, and one section for the third year. We will sometimes abuse
notation and denote the values by (ξ1, ..., ξ27).

A few comments are in order on how to sample realistic curves for the training (and
test) datasets: In [43], the curve ξ0 was assumed piecewise constant with 8 flat sections
and each were sampled i.i.d. uniformly distributed. However, with the fine grid that
we use this approach need not adequately cover the space of possible curves. Consider
e.g. a time horizon T > 0 and let ξ0(·) be piecewise constant between the time points
ti = T

n i, i = 0, 1, ..., n where n ∈ N. If we sample each section i.i.d., the non-annualised
variance swap quote with maturity T , here denoted VS(T ), converges to a fixed number
by the law of large numbers, that is:

VS(T ) :=
∫ T

0
ξ0(s)ds = T

n

n∑
i=1

ξ0(ti)→ TE (ξ0(t1)) , n→∞.

Indeed, the variability in the sampled variance swap has disappeared. To fix this problem
we need to break the independence assumption when we sample adjacent sections.

Consider the Heston model where

VS(T ) = v∞T + (V0 − v∞)1− e−κT
κ

, T ≥ 0. (4.10)

A possible solution is then to sample the Heston parameters κ, v∞, V0 and compute the
piecewise constant forward variances as finite-difference derivatives on VS(T ) in (4.10).
To help the networks generalise to curves that are not based on the parametric form
(4.10) one can add some smaller i.i.d. noise on top. We use this idea to sample most
of our curves, although the technical details of our implementation are somewhat more
involved. To add more variety, we also sample other types of curves, including i.i.d. ones
as in [43]. The reader can consult the publicly available code for the details. We denote
the distribution from which we sample (ξ1, ..., ξ27) by Gξ.

4.3.4 Sampling the training (and test) data
In what follows, we explain how we sample and compute the underlying datasets. All
prices are computed under the assumption of S0 = 1 and r(t) = q(t) = 0, t ≥ 0,
which, as noted, suffices. For each model, we generated 136 000 samples for the training
dataset and an additional 24 000 samples for a test dataset that we use to validate
the final approximation error. This is double the amounts used in [43] for the rough
Bergomi model. To ensure high-quality datasets, we discarded samples where option
prices were not convex across strikes, where Merton’s tunnel was violated, or where
numerical integration for the Heston model failed to converge. For each discarded sample
we generated a replacement. In Table 4.3.1 we show our choice of sampling distributions
(distr.) for all models and parameters (par.). By U we denote the uniform distribution.
Columns a and b signify the sampling bounds.6 For the rough Bergomi models we found
6 The lower volatility bound is set to 7.5% for the extended rough Bergomi model and to 5% for the

others. The reason is that despite using 100 000 paths in the case of low volatility, we for the extended
model found it particularly difficult to estimate prices with sufficient accuracy for volatilities below
7.5%. If we did not adjust the sampling bound we would have discarded too many samples to finish
the datasets in a reasonable amount of time.
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that we could sample H, respectively, β, from an approximately uniform distribution
and thereby roughly halve the total computation time. We write U∗ for this sampling
method, though, the reader will again have to consult the publicly available code for the
details. We sampled all parameters, except for the forward variances, with the Sobol
sequence. As quasi-random numbers are more regularly spaced than pseudo-random
numbers, the generalisation error (4.7) should then be better estimated by its empirical
version. We expect this to lower the tendency of overfitting to the training data.

Table 4.3.1: Parameter distributions.

Heston Rough Bergomi Extended rough Bergomi
Par. Distr. a b Par. Distr. a b Par. Distr. a b
κ U 0 25 H U∗ 0 0.5 α U -0.5 0.5
η U 0 10 η U 0.75 3.5 β U∗ -0.5 0.5
ρ U -1 0 ρ U -1 0 η U 0.75 3.5√
v0 U 0.05 1

√
ξ Gξ 0.05 1 ρ U -1 0√

v∞ U 0.05 1
√
ξ Gξ 0.075 1

4.3.5 Hardware and software
The training and test datasets were computed on a server running Intel Xeon Platinum
8175 3.1 GHz CPUs with 384 GB RAM and 48 physical cores (96 logical). It took around
one week to finish them all. The neural networks were thereafter trained in Python 3.7.1
with the Keras 2.2.4 library; we used TensorFlow 1.13.1 as the backend. Computational
times reported in the remainder of the paper are recorded in Matlab 2019a on a laptop
running a 1.6-3.4 GHz Intel Core i5 8250U CPU with 4 cores (8 logical processors) and
8 GB RAM.

4.3.6 Hyperparameters
By hyperparameter optimisation, we refer to the act of minimising the generalisation
error by tuning all other aspects of a neural network and its training than the weights
themselves. Examples are the number of layers, the number of neurons per layer, the
choice of optimiser and its settings, the batch size, and the choice of activation and loss
function. Hyperparameter optimisation is very costly as it requires one to retrain the
network across many different configurations. We therefore fixed most hyperparameters
based on common choices found in the literature that generally appear to work well:
We choose 3 hidden layers as used in a preprint version of [43], the Adam algorithm of
[47] as our optimiser, Elu as our activation function except for a linear output layer,
and root-mean-squared-error as the loss function. We scale the inputs and outputs as
in [43] and use 200 neurons per layer which we found to be sufficient. For the training,
we first let the optimiser run for 500 epochs with a batch size of 32 at which point both
the training and test losses stabilised. However, by increasing the batch size to 5000
and continuing for another 200 epochs, we found that we could reduce the error by an
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additional moderate amount.7 The final errors on the test datasets turned out similar
to those on the training datasets, which indicates that overfitting was not a problem.

4.3.7 Accuracy and speed
We examine the accuracy and speed of our networks. We shall here measure accuracy
in terms of implied volatility. In Table 4.3.2 we show percentiles of the absolute relative
errors between the trained networks and the test datasets. We note that the errors,
generally, are below a few percent and mostly within a single percent. In Table 4.3.3,
we, for the rough Bergomi models, show the relative standard errors; by this we refer
to the standard errors of implied volatility divided by the estimated implied volatility.
We see that also these errors are comfortably low. The errors versus the test datasets
are generally larger than the standard errors which is unsurprising. On our filtered
SPX dataset, the 25th and 75th percentiles of the relative bid-ask spreads are 1.36%
and 4.25%; we here refer to the size of the implied volatility bid-ask spread divided
by the implied volatility of the mid quote. The approximations are mostly within the
bid-ask spreads and we are therefore confident in using our networks for the calibrations.

Table 4.3.2: Distribution of the absolute relative errors between the trained networks and the
test datasets measured in implied volatility. Numbers in the header represent percentiles.

Model 50th 75th 95th 99th 99.9th 99.99th Max.
Heston 0.09% 0.16% 0.51% 1.40% 4.97% 15.63% 219.82%
Rough Bergomi 0.18% 0.37% 1.03% 2.44% 7.52% 18.19% 165.17%
Extended rough Bergomi 0.40% 0.70% 1.38% 2.47% 5.69% 11.17% 51.18%

Table 4.3.3: Distribution of the relative standard errors on the training datasets measured in
implied volatility. Numbers in the header represent percentiles.

Model 50th 75th 95th 99th 99.9th 99.99th Max.
Rough Bergomi 0.13% 0.23% 0.44% 0.85% 2.06% 3.98% 278.51%
Extended rough Bergomi 0.51% 0.60% 0.72% 1.14% 2.47% 4.63% 256.49%

In terms of speed, we find that we can evaluate all networks once in about 7.1 · 10−4

seconds (average of 10 000 runs under the rough Bergomi model). When we calibrate, we
however need to compute prices many times on a scattered set of points anywhere in the
contract domain. This will cost us more time as we will need to interpolate. As noted,
the points are though fixed and we therefore find it possible to perform a number of pre-
computations to speed up repeated evaluation of the interpolation scheme. If we fix the

7 We hypothesise that a batch size of 32 may allow for fast convergence initially but as one nears a
minimum the gradient estimates may be too noisy for full convergence.
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4166 contracts we have available on May 15, 2019, perform the pre-computations, and
evaluate the neural networks and the interpolation scheme 10 000 times, we obtain an
average running time of 1.8 ·10−3 seconds per evaluation (also based on rough Bergomi).
The cost of interpolation is therefore small when spread across many evaluations.

4.4 Historical calibration to SPX options
In what follows, we present the historical calibrations to SPX options. We use a dataset
obtained from https://datashop.cboe.com which consists of bid and ask quotes on
SPX European call and put options on trading days between May 3, 2004, and May 15,
2019. The quotes are recorded at 15:45 Eastern time and we apply a number of filters
to remove unreasonable and low liquidity quotes and to ensure a minimum number of
strikes and expiries on each date. Interest rates and dividends are implied from the avail-
able put-call parities. In-the-money contracts and those outside the domain of Figure
4.3.2 are removed. After filtering, the dataset consists of 4 643 880 bid-ask pairs spread
across 3775 trading days which corresponds to an average of 1230 observations per day.

Consider a given trading day and let σbidi , σaski and σmidi denote the implied volatil-
ity of the bid, ask and mid quote for the i’th observed option. Similarly, let σmodeli (θ)
denote the implied volatility of the contract under a given model with parameter vector
θ. We define the weighted root-mean-square-error (wRMSE) by

wRMSE(θ) :=
√∑

i

wi
(
σmidi − σmodeli (θ)

)2 (4.11)

where the sum is over all contracts from the given date and wi are weights that are
normalised so

∑
i wi = 1. We use the weights to make the error measure more robust.

There is e.g. a considerable amount of time variation in the dataset in that the number of
quoted expiries and their location changes a lot from 2004 to 2019. We therefore allocate
15 percent of the weight to expiries within 1 month, 35 percent to expiries between 1
and 6 months, and the rest to longer expiries. Additionally, we normalise so all expiries
within the same expiry group carry the same total weight. To account for differences in
liquidity, we further, up to normalisation, weigh each contract by

1
0.01 + σaski − σbidi

.

To calibrate the Heston model, we minimise precisely the wRMSE. However, for the
rough volatility models, we find that ξ = (ξ1, ..., ξ27) often is overparameterised which
can result in calibrated curves that look unrealistic. The main culprit is that there may
be multiple grid points for the curve between the observed expiries. As a solution, we
use the below algorithm to merge sections before we calibrate:

Merging forward variance curve sections: Let 0 = t0 < t1 < ... < tn be the
grid points between which the initial forward variance curve is assumed flat. We loop as
i = n− 1, ..., 1 and if there are no observed expiries in (ti, ti+1] merge ξi = ξi+1.
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Unfortunately, even merging sections as above, we still find that the calibrated curves
can look unrealistic. A possible explanation is noise coming from the bid-ask spread.
We therefore additionally use penalisation when we calibrate. More precisely, we min-
imise for these models wRMSE(θ)2 + λC(ξ) with respect to θ where λ ∈ R+ and
C(ξ) :=

∑27
i=2(
√
ξi−

√
ξi−1)2 measures the non-smoothness of ξ. We find that λ = 0.002

works well without worsening the fits much. Calibrating the models across the en-
tire dataset gives average differences of only 4-5 bps (basis points) in wRMSE between
λ = 0.002 and λ = 0 and we are therefore comfortable using λ = 0.002 for our analysis.8

4.4.1 Calibration results
We show the calibration errors and model parameters in Figures 4.4.1-3. For brevity, we
have left out most of the Heston parameters. Daily closing values for the VIX index are
provided for reference in the bottom of Figure 4.4.1.9 The reader should note that for a
model of the form (4.1), the VIX index squared is essentially10 defined by

VIX2
t = 1002

[
1
∆

∫ t+∆

t

ξt(u)du
]
, t ≥ 0, ∆ = 1

12 , (4.12)

and thus, up to scale, represents the risk-neutral expected average spot variance over the
next month.

We start with the calibration errors which are shown in Figure 4.4.1 as centralised 20-day
moving averages. We note first that the rough volatility models perform much better
than classical Heston. While the average error is around 80 bps for Heston, it is close
to 50 bps for the rough Bergomi models. The error for Heston also deteriorates rapidly
around the financial crisis of 2008-2009, remains elevated for several years thereafter,
and occasionally reaches values as high as 160 bps. In contrast, errors for the rough
models mostly stay below 80 bps and appear less sensitive to the volatility level. In
terms of the latter, note that we for these models observe average errors in the ranges
60-61, 53-55 and 48-50 bps when the VIX index, respectively, is in the ranges 0-15, 15-25
and above 25. Under Heston the average errors are 69, 80 and 100 bps for the same
VIX levels. It follows also that the relative errors for, at minimum, the rough models
generally are larger when volatility is low. Evidence from sections 4.4.3 and 4.5 suggest
that the volatility surface displays an increasingly complex structure at lower volatility
levels. We believe this, at least partly, explains it. Another possible explanation is that
we, due to our fixed moneyness bounds, can expect fewer contracts to be filtered when
volatility is low.

While rough volatility clearly pays off looking at the calibration error, there are no
notable differences overall between rough Bergomi and its extended version. The aver-
age difference of their calibration errors is only 1 bps. The standard deviation of the
8 All optimisations are performed with Matlab’s lsqnonlin function and the trust-region-reflective al-

gorithm.
9 A single observation is missing from our VIX index dataset and is therefore excluded from any figures

and calculations; the dataset is downloaded from https://www.cboe.com/tradable_products/vix/
vix_historical_data on May 30, 2021.

10 See e.g. [34].
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daily differences is 5 bps. This is also reflected in the η and ρ parameters that are almost
equal between the models on most dates; as we will discuss, the models are effectively
the same as calibrated. It therefore appears that there are no worthwhile gains to be
made in separating the Hurst exponents between the two independent Brownian motions
that drive volatility. This, however, does not mean that the fits are perfect or that one
cannot construct better models. Additional results presented later will make this clear.
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Figure 4.4.1: Calibration errors shown as 20-day centralised moving averages and VIX closing
values.

We see some preliminary evidence of problems with the rough Bergomi models in Fig-
ure 4.4.2 (top) where we show the correlation parameters. Indeed, while ρ for Heston
fluctuate mostly in the rather narrow range from −0.8 to −0.6 and stay a good distance
away from the lower bound of −1, the parameter for the rough Bergomi models is more
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Figure 4.4.2: Calibrated correlation and volatility-of-volatility parameters. Solid lines show
centralised 20-day moving averages. Dots show individual observations.

unstable and sometimes calibrates at or near −1. In terms of the instability, we can
report that the standard deviation of daily changes in ρ is 0.0218 for Heston while it is
0.045 for both rough Bergomi models. In relation to the level, we believe extreme values
such as ρ ≈ −1 suggest unrealistic dynamics for the S&P 500 index as it implies that
the entire volatility surface is driven by essentially a single factor. That ρ sometimes is
forced near its lower boundary could precisely indicate that the models lack flexibility.

We turn our attention to the Hurst exponent H under rough Bergomi; see Figure 4.4.3
(top). With values below 0.25 across the entire time series and an average of 0.09,
it is clear that option prices, as viewed through the model, consistently suggest that
volatility is very rough. Interestingly enough, the Hurst parameter correlates positively
with the level of volatility; the correlation between H and VIX is 0.49. That volatility
generally is less rough in periods of high volatility is a finding that also appears in [10]
under the realized measure. Because H controls the speed at which volatility’s depen-
dence on the history of W2,t dissipates, lower H implying a faster dissipation, it suggests
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Figure 4.4.3: Calibrated Hurst exponents. Solid lines show centralised 20-day moving aver-
ages. Dots show individual observations; a few are left out to improve visibility.

that quoted SPX options imply a volatility process with weaker mean reversion when
volatility is high. We believe this is meaningful from an economic point of view: typi-
cal high volatility events, think e.g. of the financial crisis of 2008-2009, arguably tend
to influence markets for longer than events that correspond to smaller volatility increases.

The calibrated H-values could also be interpreted as a reflection of the volatility smooth-
ness implied by the market. Note by [4, Example 2.3, Lemma 2.4] that the volatility
sample paths under rough Bergomi are piecewise Hölder continuous of all orders less than
H; we say piecewise continuous because we have assumed ξ0 piecewise constant. This
is a consequence of the rate of singular decay of the kernel function, or, in other words
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the speed of ’mean-reversion’ across very small time-scales.11 It is therefore possible
that a deeper explanation for the level dependence could be found by examining mar-
ket microstructure models. We for example note that [21] shows a connection between
certain features of high frequency trading and roughness. A critique of interpreting the
calibrated Hurst exponents as representing the implied smoothness of volatility is that
H for the fractional kernel is responsible for ’mean-reversion’ at both short and long
time scales. Therefore, unless prices are truly generated by a model with exactly the
fractional kernel, the calibrated values are bound to reflect an imperfect trade-off be-
tween the mean-reversion implied at short and long time horizons. In fact, in [10] it is
suggested to decouple the short and long time behaviour of the volatility autocorrelations.

We consider now the Hurst exponents under the extended rough Bergomi model: Note
that the time series of α+ 1/2 closely resembles that of H for rough Bergomi while that
of β + 1

2 is somewhat different. The first observation is consistent with the fact that
our calibrated rough Bergomi models are very similar. More precisely, for ρ near −1,
as we observe, λ = η

√
1− ρ2 is small in absolute value compared to ζ = ηρ and thus,

as calibrated, the extended model is very similar to the ordinary one but with Hurst
exponent α+ 1

2 . It follows, that we should also be careful in drawing conclusions based
on the time series of β + 1

2 as the effect of β on the extended model is small for such
ρ’s. However, that we with relative consistency observe α > β at least indicates that
the short-term smiles, generally, are more symmetric than the long-term ones. This will
be backed up by more robust evidence in Section 4.4.3. Also, as the reader will see in
Section 4.5, there are better ways to decouple the term structures of skew and curvature.

Let us briefly comment on the volatility-of-volatility parameter η for the rough Bergomi
models; see Figure 4.4.2 (bottom). Although the time evolutions looks somewhat stable—
at least in comparison with the ρ-values—there is a systematic (negative) level-dependence
with volatility: the correlation between η and VIX is respectively −0.47 and −0.49. The
same correlation is 0.27 for Heston. That the level-dependence should be somewhere
between that of a square root and log-normal model is consistent with the conclusion of
[57], though, the cited reference suggests that the truth is closer to the log-normal case.12

Lastly, we consider the calibration speed which we provide statistics on in Table 4.4.1.
As can be observed, we may generally calibrate in less than a second on what can be
considered a standard laptop as of the publication date. This shows that we, with neural
networks, can implement rough volatility models in a realistic setting and obtain speeds
that are feasible also in a real production environment.

4.4.2 Predictive quality
We examine now the predictive quality of our models. We perform the following experi-
ment: On each trading day and for each model we fix the calibrated parameters that are
11 We will use the expression ’mean-reversion’ liberally as e.g. rough Bergomi is not stationary. We

shall use the word ’autocorrelation’ with similar carelessness.
12 That the correlation versus the VIX index is less (in absolute value) for Heston compared with the

rough Bergomi models is likely because the η parameter is much more volatile under Heston. Indeed,
the standard deviation of the daily percentage changes in η is 0.23 for Heston while it is 0.05 and
0.06 for the rough Bergomi models.
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Table 4.4.1: Statistics on per day calibration times shown in seconds. Numbers in the header
represent percentiles.

Model Min. 5th 50th 95th Max.
Heston 0.03 0.05 0.07 0.11 0.19
Rough Bergomi 0.08 0.16 0.37 1.01 3.24
Extended rough Bergomi 0.10 0.17 0.38 1.15 1.97

not state variables. We then recalibrate up to 20 trading days into the future allowing
only the state variables to change. For Heston it means that we only recalibrate the
instantaneous variance and for the rough volatility models it means that we only recal-
ibrate the forward variance curve. Market variables such as the index price and yields
are updated as observed on the given future day.

In Figure 4.4.4 (left), we show the mean errors at different horizons; standard errors
are at or below 1 bps. The rough Bergomi models perform effectively the same which is
hardly surprising given the in-sample calibrations. Compared to Heston their predictions
are also more robust. For the rough Bergomi models, the error increases from about 55
bps in-sample to around 70 bps at the 20-day horizon. The Heston mean error grows
from about 80 bps to almost 120 bps. The right part of Figure 4.4.4 shows the evolu-
tion of the 5-day horizon errors (as moving averages). The time series overall resembles
the evolution of the in-sample errors, though, perhaps a bit more unstable, at least for
the Heston model. The reason why the errors deteriorate at a faster rate for Heston
in the left plot could possibly be due to the volatility-of-volatility level dependence be-
ing largely misspecified for that model whereas the log-normal case is more in line with
reality; we again refer to [57]. One could also argue that it results from the volatility
autocorrelation structure being better captured by rough volatility than classical (one-
factor) volatility. However, we believe this is a less likely explanation since we allow the
instantaneous variance, respectively the forward variance curve, to be freely recalibrated
in our experiment. Of course, the differences in the overall error levels, the in-sample
errors in particular, are likely for the most part precisely a consequence of this modelling
difference.

4.4.3 Decoupled term structures of skew and curvature
In what follows, we analyse the in-sample calibrations in more detail. In Figure 4.4.5,
we show the fits for a subset of the expiries on September 4, 2012, and January 13, 2017.
The calibration errors on the first date are 64, 50, and 49 bps for, respectively, Heston,
rough Bergomi and the extended rough Bergomi model, and, listed in the same order,
are 70, 79, and 88 bps on the second date.13 If we compare with the top of Figure 4.4.1,
we see that, in terms of the errors, and for the rough volatility models, September 4,
2012, represents a typical example, whereas January 13, 2017, represents one of the more
13 For the latter date, the ordinary rough Bergomi model performs slightly better than the extended

version. Section 4.5 contains similar examples where nested models perform marginally better. We
believe it can be explained by any combination of the following: smaller differences in the neural
network approximations, Monte Carlo error, different initial guesses.
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Figure 4.4.4: Left: Mean prediction errors at different horizons. Right: Prediction errors at
the 5-day horizon (shown as 20-day centralised moving averages).

problematic dates. In Figure 4.4.6, we show the at-the-money skews on the market data.
Power-law fits are added for comparison and we have used the definition:

Skew(T ) := ∂σBS(k, T )
∂k

∣∣∣
k=0

, T > 0.

We consider first the fits on September 4, 2012, where the term structure of at-the-
money skew is reasonably well represented by a power-law consistent with what typical
one-factor rough volatility models display. The volatility smiles that we show in Figure
4.4.5 are also fitted relatively well by the rough Bergomi models on this date, though,
improvements can still be made. The Heston model, however, cannot reproduce the
power-law term structure of skew—see e.g. the functional form derived in [34, pp. 35]—
and we believe this is why it results in a worse fit, in particular to the very short expiry.

In contrast, on January 13, 2017, even the rough models calibrate poorly. The main
reason is that there on this date is a pronounced term structure of (a)symmetry as the
short-term smiles are much more symmetric than the long-term ones. Unsurprisingly
this feature is not reproduced by the one-factor rough Bergomi model, though, less ob-
viously neither by its extended version. Figure 4.4.6 shows that the term structure of
at-the-money skew also far from resembles a power-law. The short-term skews even flat-
ten as the smiles become increasingly symmetric.14 On a side-note, we shall remark that
the very short-term smile on September 4, 2012, also is slightly more symmetric than
what the rough Bergomi model(s) could produce. This hints at the possibility that the
term structure of smile (a)symmetry is a structural feature of the volatility surface.

The calibration fits on January 13, 2017, especially, and the associated non-power-law
term structure of observed skews demonstrate that typical one-factor rough volatility
models are not always consistent with the SPX volatility surface. A likely explanation
is that two volatility factors with different temporal properties and correlations to the
index price are needed. This view is precisely the reason why we included the extended
14 The non-exploding skew on January 13, 2017, though, need not imply that volatility is not rough

(recall Figure 4.2.1).
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Figure 4.4.5: Example calibrations from the historical SPX analysis. Only a subset of the
expiries are shown for each date.
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Figure 4.4.6: At-the-money skews. Market skews are extracted by fitting the SVI parame-
terisation of [30] to each volatility smile. Power-laws are fitted by log-linear regressions on the
market skews.

rough Bergomi model in our analysis, though, as can be observed, it apparently is insuf-
ficient only to separate the Hurst exponents for each of the two independent underlying
Brownian motions. The results of Section 4.5 will show that better fits can be achieved
with proper two-factor volatility, i.e. using three Brownian motions to model (St, Vt).

In the following, we provide a systematic investigation of the rough Bergomi fits across
the entire dataset; we exclude the extended version from our analysis as it calibrates
effectively the same. We do as follows on each trading day: First we fix the Hurst expo-
nent H as already calibrated. Separately for each expiry we then recalibrate ρ, η, and
ξ0 which will be assumed flat. In this way we achieve almost perfect fits to each expiry
slice. We can then use the recalibrated correlation and volatility-of-volatility parameters
to study in closer detail how the model should be adjusted for a better fit.

We present the results in Figure 4.4.7, where we for various quantities (to be intro-
duced) show percentiles, means, and means split by the level of the VIX index. The
expiries are placed into groups for the computations and the first axes are log-scaled.
The plot in the top-left shows the wRMSE before recalibration minus that after.15 We
note that the recalibrations have generally lowered the errors by a good amount. The
improvement is largest for short and long expiries which is unsurprising as a full cali-
bration will seek to balance both ends. In the top-right, we show values for the relative
wRMSE before recalibration minus that after. We have defined the relative wRMSE by:

relative wRMSE(θ) =

√√√√∑
i

wi

(
σmidi − σmodeli (θ)

σmidi

)2

.

We note that the fits are improved by a good amount in relative terms also and we
therefore believe that the recalibrations can meaningfully be used for our analysis.

15 For a proper comparison, we always rescale the weights, wi, so they sum to one for a given expiry.
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Figure 4.4.7: Expiry-by-expiry recalibrations. Shaded areas cover percentiles 5 to 95, solid
lines show mean values, dashed lines mean values categorised by the level of the VIX index.

Let ρ be the correlation parameter from the full calibration on a given day and let
ρ̃(T ) denote the recalibrated version for an expiry T . Likewise let η denote the cali-
brated volatility-of-volatility parameter and let η̃(T ) denote the recalibrated version. To
structure our analysis, we will look at the ratios ρ̃(T )/ρ and η̃(T )/η to see in which
direction we should shift the distribution of ST for different time horizons T . The reader
can find the results for the ratios in the bottom row of Figure 4.4.7. As can be observed,
we, on average, need less correlation (more symmetry) and more volatility-of-volatility
(more smile effect) for short expiries, vice versa at long expiries, and all relative to what
the model could produce in the full calibration experiment. The observations are statis-
tically significant as the standard errors of the means are all at or below 0.01.

The first observation shows that it is a structural feature that short expiry smiles are
more symmetric. On the second observation, note that a faster decaying volatility au-
tocorrelation function tends to increase the smile effect at short expiries relative to long
expiries; see e.g. the expansion formula of [14].16 A natural conclusion is then that

16 That Skew(T ) ≈ cTH−
1
2 for many one-factor rough models is an example of how ’mean-reversion’

and thus, presumably, a stronger separation of short and long lag ’autocorrelations’, here controlled
by H, creates a more pronounced term structure of smile effect. As the January 13, 2017, smiles
exemplify, we should though be careful to interpret the term structure of skew directly as a measure
of the term structure of smile effect when there is also a significant term structure of (a)symmetry.
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the autocorrelations implied by the calibrated rough Bergomi model fail to sufficiently
separate the short and long time-scale properties. We can think of two possible reasons
for this: Either the fractional kernel does not have enough flexibility to capture the im-
plied autocorrelation structure, or it does but fails in our calibration experiment as a
side-effect of the model’s inability to reproduce the term structure of smile (a)symmetry.
We believe the first explanation is most likely, though, both could hold simultaneously.
The reason is that we in Section 4.5 calibrate a comparable one-factor rough Bergomi
type model jointly to SPX and VIX options on a date where there is a negligent term
structure of (a)symmetry and still conclude that the short and long time-scale properties
are not adequately separated. At a glance, it is surprising that the fractional kernel, at
least for the rough Bergomi model, supposedly lacks flexibility as it already has an ap-
parently rich structure in that it induces mean-reversion at multiple time scales; we refer
to the multifactor approximations of [1, 3] for the latter.17 The results of Section 4.5
suggest that the volatility autocorrelation structure is better captured by a two-factor
volatility model (even non-rough) or a quadratic rough Heston model.

The term structure of residual smile effect could also be a result of the log-normal distri-
bution not being heavy-tailed enough to reproduce the short-term behaviour of volatility.
The authors of [11] e.g. show that log-volatility is better described by a normal inverse
Gaussian (NIG) distribution with heavier tails than a normal distribution. The results of
Section 4.5 though show that, while there indeed does appear to be a distributional prob-
lem in some market scenarios in fitting to SPX options for the log-normal distribution,
most of the residual calibration error can be eliminated by using a two-factor but yet
log-normal model. We therefore believe that the poor SPX fits are mainly explainable
by a combination of an inflexible volatility autocorrelation structure and the lack of a
term structure for the smile (a)symmetry. The distributional problem is more apparent
when we look at VIX options where log-normal models tend to produce almost flat smiles
in contrast with the upward sloping ones typically observed in the market; see e.g. [42].18

Although the patterns of Figure 4.4.7 are robust across values of the VIX index, there
is also some level-dependence. More precisely, when volatility is low, the term structure
of η̃(T )/η becomes more pronounced and the improvement of recalibrating larger in rel-
ative terms, generally. It suggests that the calibration problem is more difficult when
volatility is low. This is also reflected in Figure 4.4.5 where the VIX index is at 17.98
on September 4, 2012, and at 11.23 on January 13, 2017, where the fits are notably worse.

In conclusion, we have found evidence that the rough fractional kernel, as used in the
rough Bergomi model, lacks flexibility in separating the short and long time scale prop-

17 One may check that tH−1/2 =
∫∞

0 e−γtµ(dγ) where µ(dγ) = γ−H−1/2(Γ(H+ 1/2)Γ(1/2−H))−1dγ.
As in the cited works, we may then express rough volatility as a superposition of an infinite set of
semimartingales mean-reverting at both slow and fast exponential rates with weights set by µ. Typical
one-factor classical models correspond to a single exponential term. The Heston equation (4.4) can
e.g. be rewritten as Vt = ξ0(t)+

∫ t
0 e
−κ(t−s)η

√
VsdW2,s; use Ito’s lemma on Xt := eκtVt and rewrite.

However, even if the rough fractional kernel generates mean-reversion at multiple time-scales in the
sense just described, µ is controlled by the single parameter H which limits the flexibility.

18 To solve this, the authors of [42] introduce a class of modulated Volterra processes for volatility and
show that the VIX smiles can be captured using such a model with stochastic volatility-of-volatility.
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erties of volatility implied by SPX options. Furthermore, we have found evidence that
the short term smiles mostly are more symmetric than the long term ones. The latter
suggests that we should model volatility two-factor where one factor should be less neg-
atively correlated with the S&P 500 index and have more influence on short expiries. It
would then likely also have to be be noisier and mean-revert faster than the other factor.

4.5 Calibration of more advanced models
In search of a solution to the skew-curvature term structure problem and to examine
the ability of rough volatility models for the joint SPX-VIX calibration problem, we
in this section calibrate a series of (mostly) more advanced models, including two-factor
volatility models, to SPX options and jointly to SPX and VIX options. However, with the
increased model complexity, we find it is considerably more challenging to find reasonable
fixed moneyness bounds to train neural networks. Because of this, we perform the
calibrations directly with Monte Carlo and only calibrate to three dates, though, they
will reflect different market scenarios. We leave it for future work to find a better neural
network methodology.

4.5.1 Model selection
We maintain our assumption that the S&P 500 index has risk-neutral dynamics of the
form (4.1). For the volatility models of the present section, we introduce a third Brow-
nian motion (W3,t)t≥0 and now assume dW1,tdW2,t = ρ12dt, dW1,tdW3,t = ρ13dt, and
dW2,tdW3,t = ρ23dt where ρ12, ρ13, ρ23 ∈ [−1, 1] are so the associated correlation ma-
trix is positive semi-definite. We assume that the filtration (Ft)t≥0 is generated by
(W1,t,W2,t,W3,t)t≥0 and augmented. We will not always use all three Brownian motions.

All volatility models except one will be driven by Gaussian processes of the form

Yt =
∫ t

0
K(t− s)dWs, t ≥ 0, (4.13)

where Wt is either W2,t or W3,t and K is a locally square integrable deterministic func-
tion. In the most flexible case, we consider the gamma kernel defined by

K(t) = e−λttα, t > 0, λ ≥ 0, α ∈ (−1/2, 0], (4.14)

and which nests the rough fractional (λ = 0) and exponential (α = 0) kernels. The lat-
ter results in an Ornstein-Uhlenbeck process if used in (4.13). We consider the gamma
kernel for two reasons. Firstly, with λ > 0, we get bounded asymptotic variance in that
Var (Yt) =

∫ t
0 e
−2λss2αds → c∗ < ∞ in the limit t → ∞ for a constant c∗.19 If λ = 0,

we have instead Var (Yt) =
∫ t

0 s
2αds = 1

2α+1 t
2α+1 → ∞ in the same limit. Asymptotic

bounded variance is desirable for volatility which reasonably can be assumed stationary.
Secondly, the gamma kernel allows some degree of separate control over the singular part
(via α) and the long term behaviour (via λ).
19 The singular part is integrable and the non-singular part is, up to scale, bounded by

∫ t
0 e
−2λsds =

1
2λ

(
1− e−2λt

)
≤ 1

2λ <∞ for all t ≥ 0. The claim follows by the monotone convergence theorem.
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Table 4.5.1: Model specifications.

Model identifier Equations Specification
S-RB-F (4.15)-(4.17) µ = 1, θ1 = 1, η := η1, ρ := ρ12, λ1 = 0, α := α1
S-RB (4.15)-(4.17) µ = 1, θ1 = 1, η := η1, ρ := ρ12, λ := λ1, α := α1
S-2F-B (4.15)-(4.17) µ = 1, θ := θ1, η := η1, α1 = α2 = 0
S-2F-RB (4.15)-(4.17) µ = 1, θ := θ1, η := η1
S-M-1F-RB (4.15)-(4.17) θ1 = θ2 = 1, ρ := ρ12, λ := λ1, α := α1
S-M-2F-RB (4.15)-(4.17) No parameter restrictions or simplified notation
S-M-2F-RHyp (4.22)-(4.24) ζ2,0(t) = ζ1,0(t) + ε where ε ∈ R
QRH (4.37)-(4.38) η = 1, ρ := ρ12
S-M-2F-QHyp (4.39)-(4.42) ζ2,0(t) = ζ1,0(t) + ε where ε ∈ R, α1 = 0, α2 = 0
S-M-2F-QRHyp (4.39)-(4.42) ζ2,0(t) = ζ1,0(t) + ε where ε ∈ R

* With the S-prefix removed we refer to the same model with c = 0.

We will outline four general volatility models and will then consider several ones nested
therein. For some models we will restrict the parameters when we calibrate to SPX op-
tions and some will not be calibrated to the joint problem. Overall, however, we believe
our selection of models for both calibration problems is more than rich enough for a de-
tailed and meaningful analysis. We provide an overview of the models that we calibrate
in Table 4.5.1. For each we show an identifier (i.e. label) and specify its definition from
a general model. Simplified parameter notation is introduced where meaningful.

We consider first a shifted mixture two-factor rough Bergomi like model defined by

Vt = ζ0(t) (µX1,t + (1− µ)X2,t) + c (4.15)
Xi,t = E (ηiδi (θiY1,t + (1− θi)Y2,t)) (4.16)

Yi,t =
∫ t

0
Ki(t− s)dWi+1,s, i = 1, 2, t ≥ 0, (4.17)

where ζ0 : R+ → R+, Ki(t) = e−λittαi , t > 0, λi ≥ 0, αi ∈
(
− 1

2 , 0
]
, i = 1, 2, η1, η2, c ≥ 0,

µ, θ1, θ2 ∈ [0, 1]. Note that ξ0(t) = ζ0(t) + c for t ≥ 0. We choose the constants δ1 and
δ2 so η1 and η2 represent normalised volatility-of-volatility parameters for X1,t and X2,t.
To explain how exactly we set (δ1, δ2), define first

g(t; θ, α1, α2, λ1, λ2, ρ23) := θ2
∫ t

0
K1(s)2ds+ (1− θ)2

∫ t

0
K2(s)2ds (4.18)

+ 2ρ23θ(1− θ)
∫ t

0
K1(s)K2(s)ds, t ≥ 0, θ ∈ [0, 1]. (4.19)

Let i ∈ {1, 2}. For the next part, recall that

Var(Z1 + Z2) = Var(Z1) + Var(Z2) + 2Cov(Z1, Z2) (4.20)
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for sufficiently integrable random variables Z1 and Z2. By the Ito isometry and the
definition of g:

Var (log(Xi,t)) = (ηiδi)2g(t; θi, α1, α2, λ1, λ2, ρ23).

We then set

δi := g(1; θi, α1, α2, λ1, λ2, ρ23)− 1
2 (4.21)

so Var (log(Xi,1)) = η2
i always. It is worth noting that the function g can be written on

semi-explicit form: Let i, j ∈ {1, 2} and assume that λi 6= 0 or λj 6= 0. Then∫ t

0
Ki(s)Kj(s) =

∫ t

0
e−(λi+λj)ssαi+αjds = (λi + λj)−αi−αj−1

γ(αi + αj + 1, (λi + λj) t)

where γ(s, x) =
∫ x

0 u
s−1e−udu denotes the lower incomplete gamma function. If λi =

λj = 0 we get
∫ t

0 Ki(s)Kj(s)ds = (αi + αj + 1)−1tαi+αj+1. Plugging the formulas into
(4.18)-(4.19) we obtain, at minimum, a semi-explicit expression for g.

We use Monte Carlo to price options under the model (4.15)-(4.17); we likewise do
for the other models that will be presented in this subsection. To this end, we simulate
Y1,t and Y2,t with the hybrid multifactor scheme of [58]. Plugging into (4.15)-(4.16), we
obtain values of Vt. We compute the VIX index as part of the simulations as described
in [58] and simulate St with a log-Euler scheme. For options on St we add its expected
value as a control variate. For the other models of this section, we likewise use a log-Euler
scheme for St and add its expected value as a control variate when we price options on it.

We justify the generality of the model (4.15)-(4.17) as follows: We have included two
stochastic factors as the Section 4.4 results suggest. Furthermore, to create a skew for
VIX options we allow µ ∈ (0, 1) (i.e. a mixture distribution); the papers [13, 19, 37] also
use this idea. As illustrated in Figure 4.5.1, a simple shift (c > 0) can also generate a
skew and we therefore include both features for the most flexibility.20 The Heston++
model of [54, 55], with success, also uses a volatility shift, though time-dependent.

We will test six models nested in (4.15)-(4.17), that is, up to restricting c = 0 or not; we
refer to rows 1-6 of Table 4.5.1. The idea behind our labelling is as follows: We write
’S’ for a shifted model (c ≥ 0 is unrestricted), ’M’ for a mixture model (µ ∈ [0, 1] is
unrestricted), ’RB’ for a rough Bergomi type model, ’B’ for a non-rough Bergomi type
model. Also, by ’1F’ and ’2F’, we refer to, respectively, one- and two-factor volatility.
For the rough models, our labelling implicitly assumes that the (rough) gamma kernel
(4.14) is used. That is, unless the letter ’F’ is used, in which case we refer to the pure
fractional kernel (λ = 0). A careful inspection of the labels of Table 4.5.1 show that
we do not always use all relevant letters. This is to limit the length of the names. We
encourage the reader to become familiar with the model definitions, labels, and the sim-
plified parameter notation as it will greatly enhance the reading of the rest of the paper.

20 Large shifts relative to the volatility level can though flatten the smiles for options on S; c.f. the top
right plot.
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Figure 4.5.1: Option smiles at the expiry 0.1 under the shifted rough Bergomi model (S-RB-F)
defined in Table 4.5.1 with parameters α = −0.4, η = 2.1, ρ = −0.9, as shown for different
values of ξ0, which is assumed flat, and c; recall that ξ0(t) = ζ0(t) + c for this model.

To avoid overfitting the shift parameter, we fix c = 0 when we calibrate to SPX op-
tions only. We then drop the S-prefix in the labels. Also, to simplify our analysis, we
do not calibrate to the joint problem the one-factor models S-RB-F and S-RB or the
shifted two-factor Bergomi model S-2F-B. These models, however, are nested in the re-
maining ones, which include a shifted two-factor rough Bergomi type model (S-2F-RB)
and shifted one- and two-factor mixture rough Bergomi type models (S-M-1F-RB and
S-M-2F-RB).

When it comes to the models with mixture terms, i.e. S-M-1F-RB, S-M-2F-RB, and
their c = 0 restrictions, some of our calibrations result in distributions of Vt that are
too heavy tailed for accurate price estimation. To get around this problem, we borrow
an idea from [45] and consider the hyperbolic transformation fhyp(x) := x +

√
x2 + 1

as an alternative to the exponential transformation fexp(x) := ex used in (4.15)-(4.17).
The two functions are very similar in that they both are monotone mappings from R
onto R+ and behave alike near the origin; see their Equations (41), (42), and Figure 1.
Importantly, however, the hyperbolic transformation grows much slower at large posi-
tive values and also decays slower at very negative values. Because of this, the authors’
hyperbolic model for σt :=

√
Vt, and which is defined as σt = σ0fhyp(Yt) where Yt is an

Ornstein-Uhlenbeck process, has thinner tails than the otherwise comparable log-normal
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model σt = σ0fexp(Yt) that was proposed in [59]; see e.g. their Figure 2.

In our context a natural model based on the hyperbolic transformation is

Vt = µfhyp(X1,t) + (1− µ)fhyp(X2,t) + c (4.22)
Xi,t = ηiδi (θiY1,t + (1− θi)Y2,t) (4.23)

Yi,t = ζi,0(t) +
∫ t

0
Ki(t− s)dWi+1,s, i = 1, 2, t ≥ 0, (4.24)

where µ, c, η1, η2, θ1, θ2,K1,K2 are as for the model (4.15)-(4.17), the constants (δ1, δ2)
yet defined by (4.21), and ζi,0 : R+ → R, i = 1, 2. There are no moment problems
because fhyp(x) grows linearly in the limit x→∞ so those of Vt are bounded by appro-
priate moments of the Gaussians X1,t and X2,t; the same logic applies for the quadratic
hyperbolic model that will be defined on page 156. Define now

ζi,t(u) := ζi,0(u) +
∫ t

0
Ki(u− s)dWi+1,s, i = 1, 2, 0 ≤ t ≤ u, (4.25)

and note that

Yi,u = ζi,t(u) +
∫ u

t

Ki(u− s)dWi+1,s, i = 1, 2, 0 ≤ t ≤ u, (4.26)

where the first term is measurable with respect to Ft, the second term independent.

We briefly justify the time-dependence in ζ1,0 and ζ2,0: Let i ∈ {1, 2} and define for
t, t0 ≥ 0: Y t0i,t := Yi,t0+t, W t0

i+1,t := Wi+1,t0+t −Wi+1,t0 , F t0t := Ft0+t. Fix t0 ≥ 0. By
(4.26) then

Y t0i,t = ζi,t0(t0 + t) +
∫ t0+t

t0

Ki(t+ t0 − s)dWi+1,s

= ζi,t0(t0 + t) +
∫ t

0
Ki(t− s)dW t0

i+1,s, t ≥ 0.

Because (W t0
i+1,t)t≥0 is Brownian motion with respect to (F t0t )t≥0 and ζi,t0 is Ft0-

measurable, the distribution of (Y t0i,t )t≥0 conditional on Ft0 is equivalent to that at time
zero but with an updated initial term structure t 7→ ζi,t0(t0 + t). In particular, even if
ζi,t0(t0 + ·) is flat for t0 = 0 it generally is not for t0 > 0; recall (4.25). Heuristically,
we can therefore think of any time-dependence in the initial curve ζi,0 as an expres-
sion of the historical path-dependence that has occurred before time zero. It also means
that movements in the curves ζ1,t0(t0 +·) and ζ2,t0(t0 +·) can be hedged under the model.

Remark: The same logic for (4.15)-(4.17) justifies both a time-dependent ξ0 curve, equiv-
alently ζ0, and a time-dependent mixing parameter µ. That we keep µ constant is a
simplification to avoid overfitting to the time-dependency when we calibrate. Similar
arguments will justify time-dependencies in the remaining models that will be defined.
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CHAPTER 4. EMPIRICAL ANALYSIS OF ROUGH AND CLASSICAL
STOCHASTIC VOLATILITY MODELS TO THE SPX AND VIX MARKETS

We consider a single but very general model nested in (4.22)-(4.24) for our calibra-
tions, that is, up to setting c = 0 or not; we refer to the label S-M-2F-RHyp in Table
4.5.1. To avoid overfitting to the time-dependency, we have restricted ζ2,0(t) = ζ1,0(t)+ε
for a number ε ∈ R. We again fix c = 0 when we calibrate to SPX options only.

For (4.22)-(4.24), we also simulate (Y1,t, Y2,t) with the hybrid multifactor scheme. Plug-
ging into (4.22)-(4.23), we then obtain Vt and may thereafter simulate St with a log-Euler
scheme. Computing the VIX index as part of the simulations is however less trivial and
not covered by the discussions in [58]. We therefore explain our approach in the following.

We start with a trapezoidal rule applied to (4.12) as

VIX2
t ≈

1002

nv

nv∑
i=0

aiξt(t+ τi), t ≥ 0, (4.27)

where nv ≥ 2 is an integer and a0 = anv = 1
2 , ai = 1, i = 1, ..., nv − 1, τi = i

nv
∆,

i = 0, ..., nv. To compute VIXt as part of the simulations it then suffices to compute
ξt(u) for specific u’s. Note that

ξt(u) = µEt (fhyp(X1,u)) + (1− µ)Et (fhyp(X2,u)) + c, 0 ≤ t ≤ u. (4.28)

Define

χi,t(u) := ηiδi (θiζ1,t(u) + (1− θi)ζ2,t(u)) (4.29)

νi(u− t) := ηiδi
√
g(u− t; θi, α1, α2, λ1, λ2, ρ23), i = 1, 2, 0 ≤ t ≤ u. (4.30)

By (4.23) and (4.26), we for i ∈ {1, 2} and (t, u) such that 0 ≤ t ≤ u have

Et (fhyp(Xi,u)) = Et (fhyp(ηiδi{θiY1,u + (1− θi)Y2,u})) (4.31)

= Et

(
fhyp

(
ηiδi {θiζ1,t(u) + (1− θi)ζ2,t(u)} (4.32)

+ ηiδi

{
θi

∫ u

t

K1(u− s)dW2,s (4.33)

+ (1− θi)
∫ u

t

K2(u− s)dW3,s

}))
. (4.34)

Recall that ζ1,t(u) and ζ2,t(u) are Ft-measurable and that the stochastic integrals of
(4.33)-(4.34) are independent of Ft and therefore are conditionally normally distributed
as they are unconditionally. By this, (4.20), the Ito isometry, (4.29)-(4.30), we conclude
that

Et (fhyp(Xi,u)) = E (fhyp(x+ νi(u− t)Z))
∣∣
x=χi,t(u), i = 1, 2, 0 ≤ t ≤ u, (4.35)

where Z ∼ N (0, 1). Given knowledge of the terms in (4.29)-(4.30), the problem then
reduces to that of computing unconditional expectations of a transformed standard nor-
mal variable. Note that values of νi(u − t) are readily computable via (4.30) and the
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4.5.1. MODEL SELECTION

expression for g given on page 150. As the variables are deterministic, the cost of eval-
uating them is small when spread across many paths. Even better as νi(u − t) only
depends on the time-to-maturity u− t, we can reuse them when computing VIXt at mul-
tiple time points t. In contrast, values of χi,t(u) require knowledge of ζ1,t(u) and ζ2,t(u)
which depend on Ft. Fortunately, however, these terms are relatively easy to compute
under the hybrid multifactor scheme as part of the simulations; we refer to [58] for details.

Let us then discuss how to evaluate (4.35) given knowledge of (4.29)-(4.30). Define

h(x, y) :=
∫
R
fhyp(x+ yz)φ(z)dz, (x, y) ∈ R2, (4.36)

where φ(z) := (2π)− 1
2 e−z

2/2, z ∈ R. Then Et (fhyp(Xi,u)) = h(χi,t(u), νi(u − t))) for
i = 1, 2, and 0 ≤ t ≤ u, which reduces the problem to that of evaluating the function h.
To our knowledge, no analytical expression exists. We therefore use numerical integra-
tion with Matlab’s integral function. However, evaluating h(χi,t(u), νi(u− t))), i = 1, 2,
with numerical integration across multiple time points t, forward variance maturities u,
and across multiple sample paths, quickly becomes very time-consuming. We thus sug-
gest a slightly different approach to evaluate the required terms that we shall now explain.

Let T ⊂ R+ be a set of expiries on which to price VIX options and say that we al-
ready have values of νi(τj), χi,t(t + τj) available for t ∈ T , i = 1, 2, j = 0, 1, ..., nv,
across the simulated paths. To compute the forward variances relevant to (4.27) at
all desired dates t ∈ T and across all paths, we must evaluate h(χi,t(t + τj), νi(τj))
for t ∈ T , i = 1, 2, j = 0, 1, ..., nv, likewise over all paths. Define the functions
h̄ij(x) := h(x, νi(τj)), x ∈ R, i = 1, 2, j = 0, 1, ..., nv. To reduce the computational
costs, we first pre-compute each function h̄ij on a smaller set of points on the relevant
part of its domain. Next, we use linear interpolation between the computed values to
obtain h̄ij(χi,t(t + τj)) = h(χi,t(t + τj), νi(τj)) for i = 1, 2, j = 0, 1, ..., nv, t ∈ T , for
all paths. In our experience, nv need not be very large; we have found nv ≈ 32 to suf-
fice. It is then only a smaller number of functions that we have to pre-compute points on.

We briefly elaborate on how precisely we pre-compute points on the functions h̄ij , i = 1, 2,
j = 0, 1, ..., nv: Let i ∈ {1, 2} and j ∈ {0, 1, ..., nv}. To evaluate h̄ij(χi,t(t + τj)) for all
t ∈ T across all paths, we first locate the minimum and maximum values of χi,t(t+ τj)
for all time points t ∈ T and paths. Denote them by χmin

ij and χmax
ij . For a step size

∆x > 0, we set nij := d(χmax
ij − χmin

ij )/∆xe, define xijk := χmin
ij + k∆x, k = 0, 1, ..., nij ,

and evaluate yijk := h̄ij(xijk), k = 0, 1, ..., nij , with numerical integration. Next, we
compute h̄ij(χi,t(t + τj)) for any t ∈ T and path by linear interpolation between the
points (xijk, yijk)nijk=0. For reasonable values of ∆x (we use ∆x = 0.01) and realistic
parameters, we find that (4.36) needs to be evaluated many fewer times than otherwise.

One concern with our approach is that χmin
ij , χmax

ij , i = 1, 2, j = 0, 1, ..., nv, which
determine the number of numerical integrations, are unbounded and only known at run-
time. Fortunately, we have not found this to be a practical problem when reasonable
model parameters are used. To bound the number of integrations one could nevertheless
use fixed limits and look for an extrapolation formula.
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STOCHASTIC VOLATILITY MODELS TO THE SPX AND VIX MARKETS

Next, we consider a quadratic rough Heston model defined by

Vt = a(Zt − b)2 + c (4.37)

Zt = ζ0(t) +
∫ t

0
K(t− s)η

√
VsdW2,s, t ≥ 0, (4.38)

where a, c, η ≥ 0, b ∈ R, K(t) = e−λttα, λ ≥ 0, α ∈
(
− 1

2 , 0
]
, and ζ0 : R+ → R is

locally Hölder continuous of all orders strictly less than α + 1
2 . A unique continuous

strong solution exists by [2, Theorem A.1].21 Define fα,λ(t) := λtα−1Eα,α(−λtα), t > 0,
α ∈ ( 1

2 , 1), λ > 0, where

Eα,β(z) =
∑
n≥0

zn

Γ(αn+ β) , z, α, β ∈ C, Re(α),Re(β) > 0,

is the so-called Mittag-Leffler function. The original quadratic rough Heston model of
[32] then fits into the formulation (4.37)-(4.38) with K(t) = fα,λ(t), ζ0(t) =

∫ t
0 f

α,λ(t−
s)θ0(s)ds, t > 0, where θ0 is a deterministic function. We believe our version has compa-
rable generality as ζ0 in both cases control the term structure of (Zt)t≥0 (directly or via
θ0) and since the α’s (which are equivalent up to a shift) both control the singular part of
K while the λ’s control the decay at larger values. We use the hybrid multifactor scheme
of [58] to simulate the model. Computation of the VIX index is also described in that
paper. For normalisation we set η = 1 as suggested in [32] for the original model. The
version we calibrate is stated in Table 4.5.1 with the label QRH. In keeping somewhat
with the original formulation, we allow c ≥ 0 also when we calibrate to SPX options only.

Inspired by (4.22)-(4.24) and (4.37)-(4.38), we consider lastly a two-factor model that
uses both the quadratic and hyperbolic transformations. Specifically,

Vt = µX1,t + (1− µ)X2,t + c (4.39)
Xi,t = fhyp

(
Z2
i,t − di

)
− fhyp(−di), (4.40)

Zi,t = ηiδi(θiY1,t + (1− θi)Y2,t), (4.41)

Yi,t = ζi,0(t) +
∫ t

0
Ki(t− s)dWi+1,s, i = 1, 2, t ≥ 0, (4.42)

where µ, θ1, θ2 ∈ [0, 1], η1, η2, c ≥ 0, d1, d2 ∈ R, (δ1, δ2) is defined by (4.21), ζi,0 : R+ → R,
Ki(t) = e−λittαi , t > 0, λi ≥ 0, αi ∈ (− 1

2 , 0], i = 1, 2. The parameters d1 and d2 are
introduced to allow control over the minima of the terms Z2

i,t−di, i = 1, 2. The processes
X1,t and X2,t are shifted so the minimum value they can attain is zero. We simulate the
model akin to (4.22)-(4.24) and likewise use the approach outlined on pages 154-155 to
compute the VIX index—it carries over with only trivial changes. We calibrate a version
with gamma kernels and one with pure exponential kernels; they are defined with labels
S-M-2F-QRHyp and S-M-2F-QHyp in Table 4.5.1. We again restrict ζ2,0(t) = ζ1,0(t) + ε
for a number ε ∈ R and also fix c = 0 when we calibrate to SPX options only.
21 To use the theorem we must check: (1) That K satisfies hypothesis (H0) of the paper with their
γ = 2α+1. This follows from parts (ii) and (iv) of [4, Example 2.3]. (2) That the diffusion coefficient
of (4.38) is Lipschitz continuous in the value of Zs. We here refer to [58].

156



4.5.2. CALIBRATION RESULTS

4.5.2 Calibration results
We calibrate to the dates October 14, 2011, September 4, 2012, and January 13, 2017;
the last two were also considered in Figure 4.4.5. The VIX index is respectively at 28.24,
17.98 and 11.23. We therefore cover the case of high, typical, and low volatility. Our VIX
options dataset is, like our SPX dataset, obtained from https://datashop.cboe.com.
We filter both datasets as we filtered the SPX dataset in Section 4.4 (in-the-money op-
tions are e.g. removed) except we do not filter the range of moneyness but instead the
set of expiries. To select expiries, we consider the intervals defined by the time points
{0, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.5, 2, 2.5, 3} and in each select the ex-
piry (if any) closest to the midpoint. This gives 10, 12 and 13 SPX expiries and 6, 5
and 7 VIX expiries for each of the dates (listed in the same order). To compute Black-
Scholes implied volatility for VIX options, we use the same expiry VIX futures as the
underlying. We extract the futures prices from the observed VIX option put-call parities.

For the joint calibration problem, we find that it works better to measure the error
in terms of deviations from the bid-ask bounds. We therefore change to such an error
measure: Consider a given date and let Ns and Nv denote the number of observed SPX
options, respectively, VIX options. Let σbid

s,i , σask
s,i and σmodel

s,i , respectively, σbid
v,i , σask

v,i

and σmodel
v,i , denote the bid, ask and model implied volatility for the i’th observed SPX

option, respectively, VIX option. We then measure the calibration error by the number√√√√θ

Ns∑
i=1

ws,iF
(
σbid
s,i , σ

ask
s,i , σ

model
s,i

)2 + (1− θ)
Nv∑
i=1

wv,iF
(
σbid
v,i , σ

ask
v,i , σ

model
v,i

)2 (4.43)

where θ ∈ [0, 1] and we for a set of numbers x, y and z so x < y have defined

F (x, y, z) :=


x− z z < x

z − y z > y

0 otherwise
.

The terms {ws,i}Nsi=1, {wv,i}Nvi=1 represent weights which we choose so each expiry carries
the same total amount but are otherwise normalised so

∑Ns
i=1 ws,i =

∑Nv
i=1 wv,i = 1.

Stated in words, we measure the calibration error as the square root of a weighted aver-
age of squared deviations of the model implied volatilities from the bid-ask bounds. The
parameter θ allows us to control the relative weight of each market.

When we calibrate to SPX options we set θ = 1. We then choose three initial guesses and
minimise (4.43) under each; we here assume that the curves ζ0, ζ1,0, and ζ2,0, whichever
are relevant, are flat. We use that of the three solutions with the lowest error as an
initial guess for a final calibration whose results we present and for which we assume
the relevant curves piecewise constant between the observed SPX expiries.22 For the
joint problem we set θ = 0.9 which we find leads to a reasonable balance between the
22 Although we need ζ0 locally Hölder continuous of all orders less than α+ 1

2 for a solution to (4.38),
we find no meaningful price differences when we replace the calibrated ζ0 curves with approximating
C1 curves.
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two markets. We then run a single optimisation with the solution from the final SPX
calibration as an initial guess. The final calibrations are run with 50 000 paths.

We present the calibration results in tables 4.5.2, 4.5.3, and 4.5.5. Fits are shown in
figures 4.5.2–6. For brevity and visibility only a small selection of the expiries and mod-
els are included in the plots. However, since the chosen expiries include the shortest
and longest ones on each date, and because the models that are included more or less
represent the different error levels that can be found in the tables, it will suffice for
our discussion. The reader may note that we do not report calibration errors for some
of the (shifted) log-normal mixture models. The reason is, as alluded to earlier, that
it sometimes is difficult to estimate prices with sufficient accuracy under these models.
We discuss the issue in detail below. Only thereafter do we analyse the calibration results.

To illustrate the estimation problem, we examine, under the calibrated models, Monte
Carlo estimation of the fair strike of a 1-year variance swap, i.e. the value of Kvs :=
E( 1

T

∫ T
0 Vtdt) where T = 1. We focus on variance swaps as Kvs can be computed with

other deterministic methods to compare with. If we cannot estimate a variance swap
with sufficient accuracy, we can expect similar problems when we price other types of
derivatives with Monte Carlo. The results of our experiment are presented in Table
4.5.4 where we show Kvs computed with deterministic methods (denoted K̂det

vs ) along-
side statistics on a Monte Carlo estimator (denoted K̂mc

vs ).

We compute K̂det
vs as follows: For the models nested in (4.15)-(4.17), we use the for-

mula Kvs = 1
T

∫ T
0 ζ0(t)dt + c =: K̂det

vs , which we can (and will) evaluate without error
as ζ0 is assumed piecewise constant. For the models nested in (4.22)-(4.24) and (4.39)-
(4.42), we discretise 1

T

∫ T
0 E(Vt)dt with a trapezoidal rule and compute values of E(Vt)

with numerical integration along the lines of pages 154-155. We use the same trapezoidal
rule for the quadratic rough Heston model but compute values of E(Vt) by solving Equa-
tion (105) of [58] with the hybrid multifactor scheme. To construct a single Monte Carlo
sample K̂mc

vs , we simulate (Vt)t∈[0,T ], compute 1
T

∫ T
0 Vtdt with a trapezoidal rule, and

average values over 50 000 paths (as for the calibrations). The statistics in Table 4.5.4
are based on 100 samples of K̂mc

vs . We use a fine discretisation with 2500 equidistant
steps for the trapezoidal rules and to simulate (Vt)t∈[0,T ]. We can then, in particular, ex-
pect K̂det

vs computed with all the deterministic methods to closely approximate the true
values Kvs; for the models nested in (4.15)-(4.17) we of course have equality regardless.
Moreover, we can for the Monte Carlo estimates K̂mc

vs expect a small distributional error
and therefore that the Monte Carlo sampling error should dominate.

In terms of the results, note that the median estimates are all lower than the values
computed with the deterministic methods. We believe this is a consequence of Vt being
right-skewed which is natural given that it lies close to but is bounded below by zero.
However, for some of the models with log-normal mixture terms, the differences are sub-
stantial. For example, S-M-2F-RB calibrated to the joint problem on September 4, 2012,
has K̂det

vs , which equals Kvs for this example, at 0.1385 whereas the median of K̂mc
vs is

0.0950. The 5–95 percentile interval is 0.0833–0.1506 which shows that K̂mc
vs also has a

very wide distribution. We believe the problems are much worse under the models with
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log-normal mixture terms because the tails are heavier which should amplify the effects.

Table 4.5.4: Estimation of the 1-year fair variance swap strike Kvs with the Monte Carlo
estimator K̂mc

vs . In the columns with numbers, we show first values of Kvs computed with
deterministic methods (denoted K̂det

vs ), then differences between the medians of K̂mc
vs and the

values of K̂det
vs , lastly the percentiles 5 and 95 of K̂mc

vs . Statistics for K̂mc
vs are based on 100

samples. The cases where we have deemed estimation to difficult are highlighted in grey.

Calibration to SPX options Joint SPX-VIX calibration

Date and model K̂det
vs

Median
minus K̂det

vs

5th
perc.

95th
perc. K̂det

vs
Median

minus K̂det
vs

5th
perc.

95th
perc.

Oct. 14, 2011:
RB-F 0.1086 -0.0011 0.1064 0.1085
RB 0.1120 -0.0008 0.1099 0.1125
2F-B 0.1167 -0.0018 0.1137 0.1162
(S-)2F-RB 0.1152 -0.0018 0.1122 0.1150 0.1235 -0.0035 0.1186 0.1216
(S-)M-1F-RB 0.1345 -0.0209 0.1113 0.1263 0.1087 -0.0004 0.1071 0.1101
(S-)M-2F-RB 0.1164 -0.0026 0.1124 0.1150 0.1241 -0.0035 0.1188 0.1244
QRH 0.1219 -0.0010 0.1181 0.1241 0.1173 -0.0008 0.1149 0.1186
(S-)M-2F-RHyp 0.1121 -0.0008 0.1099 0.1124 0.1115 -0.0006 0.1095 0.1123
(S-)M-2F-QHyp 0.1170 -0.0021 0.1140 0.1158 0.1188 -0.0029 0.1147 0.1168
(S-)M-2F-QRHyp 0.1164 -0.0031 0.1124 0.1142 0.1214 -0.0032 0.1169 0.1195

Sept. 4, 2012:
RB-F 0.0739 -0.0007 0.0723 0.0739
RB 0.0764 -0.0004 0.0750 0.0770
2F-B 0.0781 -0.0016 0.0758 0.0774
(S-)2F-RB 0.0746 -0.0011 0.0726 0.0742 0.0842 -0.0012 0.0813 0.0841
(S-)M-1F-RB 0.1172 -0.0400 0.0762 0.0805 0.0846 -0.0082 0.0755 0.0773
(S-)M-2F-RB 0.0965 -0.0091 0.0821 0.1062 0.1385 -0.0435 0.0833 0.1506
QRH 0.0775 -0.0006 0.0757 0.0785 0.0741 -0.0007 0.0724 0.0749
(S-)M-2F-RHyp 0.0739 -0.0008 0.0722 0.0738 0.0713 -0.0009 0.0697 0.0711
(S-)M-2F-QHyp 0.0815 -0.0031 0.0776 0.0792 0.0773 -0.0022 0.0746 0.0758
(S-)M-2F-QRHyp 0.0765 -0.0013 0.0746 0.0758 0.0766 -0.0011 0.0748 0.0763

Jan. 13, 2017:
RB-F 0.0398 -0.0006 0.0386 0.0398
RB 0.0386 -0.0004 0.0378 0.0387
2F-B 0.0417 -0.0010 0.0399 0.0411
(S-)2F-RB 0.0423 -0.0013 0.0404 0.0417 0.0456 -0.0015 0.0430 0.0459
(S-)M-1F-RB 0.1703 -0.1246 0.0403 0.0863 0.0954 -0.0542 0.0390 0.0627
(S-)M-2F-RB 0.2083 -0.1664 0.0386 0.1199 0.1693 -0.1195 0.0487 0.0734
QRH 0.0470 -0.0035 0.0414 0.0594 0.0436 -0.0016 0.0409 0.0446
(S-)M-2F-RHyp 0.0376 -0.0006 0.0365 0.0377 0.0390 -0.0005 0.0374 0.0397
(S-)M-2F-QHyp 0.0412 -0.0013 0.0396 0.0403 0.0408 -0.0010 0.0394 0.0401
(S-)M-2F-QRHyp 0.0411 -0.0013 0.0394 0.0402 0.0417 -0.0015 0.0399 0.0405
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For evidence of the last point, we refer to Table 4.5.2 and 4.5.5, where we note that the
values of either η1 or η2 typically are relatively large whenever we observe an estimation
problem in Table 4.5.4. For example, for the problematic model S-M-2F-RB calibrated
to the joint problem on September 4, 2012, we have η1 = 2.00 and η2 = 5.84 whereas
the maximum value of η for any of the non-mixture log-normal models, and for which no
such estimation problems are observed, is η = 3.03.23 We believe the reason that we do
not observe the same estimation problems for the hyperbolic models (despite also being
mixtures) is that the tails decay faster under the hyperbolic transformation. This, of
course, was precisely our motivation for introducing the hyperbolic transformation.

We turn our attention to the SPX calibrations. We start with a discussion of the one-
factor models. Note first that there is a very limited improvement, if any, when we extend
the rough Bergomi model (RB-F) to that with the more general gamma kernel (RB); the
calibration errors change from 35, 41 and 86 bps to 32, 36 and 87 bps. Results are only
slightly better under the quadratic rough Heston model (QRH) which has errors of 29, 30
and 70 bps. We show the fits for RB-F and QRH in figures 4.5.2 and 4.5.3. In line with
the results of Section 4.4.3 both fail to capture the term structure of smile (a)symmetry.
The problem is barely noticeable on October 14, 2011, where volatility is high, but be-
comes increasingly visible on the other dates. We can report that the smiles for RB
are almost indistinguishable from those of RB-F on October 14, 2011, and September
4, 2012, and that RB too fails to reproduce the term structure of smile (a)symmetry on
January 13, 2017. That RB-F, RB, and QRH, calibrate comparably suggests that the
main issue with typical one-factor rough volatility models in calibrating to SPX options
is to recreate the term structure of smile (a)symmetry. It is then meaningful that the
fits only change little when we add more flexibility to the kernel (fractional vs. gamma)
or compare different distributions (log-normal vs. quadratic rough Heston).

Much better results are obtained with the two-factor Bergomi model (2F-B) which has
errors of 7, 11 and 39 bps.24 As we can observe in figures 4.5.2-3, the improvement is
especially noticeable on the low volatility date. For the first volatility factor, we calibrate
ρ12 in the range from -0.50 to -0.29 and λ1 in the range from 71.73 to 92.81. For the
second factor, we calibrate ρ13 in the range from -0.97 to -0.93 and λ2 in the range from
1.17 to 2.89. Since θ ≈ 0.90 on all dates, the first factor is much more volatile. The
parameters are then in line with the hypothesis that we gave in Section 4.4.3 where we
suggested the need for two volatility factors, one of which should mean-revert faster, be
more volatile, and less negatively correlated with the index price. The version with the
(rough) gamma kernel (2F-RB) results in essentially the same errors (7, 11 and 38 bps).

For the log-normal mixtures, we report only a single error in Table 4.5.2 and that for
23 We find that it generally is for values η > 3 that it becomes difficult to estimate the mean of
Y := exp(ηX − 1

2η
2) where X ∼ N (0, 1). To illustrate the problem for the example of the main text

note this: Let η = 5.84 and N ∈ N, µ̂ := 1
N

∑N

i=1 Yi, where Yi, i = 1, ..., N , are i.i.d. and distributed
as Y . Sampling 10 000 values of µ̂ where N = 50 000, we get a median of 0.0812 and a 5–95 percentile
interval of 0.0257–1.0627. This should be compared to the true mean which is 1. Convergence is also
very slow in N : Sampling 10 000 values of µ̂ where N = 106, we get a median of 0.2202 and a 5–95
percentile interval of 0.0985–1.4136.

24 In [38] there is also an example of the (market) at-the-money term structure of skew that is more
consistent with a two-factor Bergomi model than with a power-law.
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M-2F-RB calibrated on October 14, 2011. As it nests the model 2F-B, the error is un-
surprisingly low at 3 bps. The models M-2F-QHyp and M-2F-QRHyp perform well on
all three dates with errors of 4, 12 and 20 bps, respectively, 9, 5 and 22 bps. The model
M-2F-RHyp calibrates worst among the two-factor models; its errors are 27, 15 and 65
bps. Given that M-2F-QRHyp attains much lower errors than M-2F-RHyp but uses the
same kernel parameterisation, the poorer results for the latter model likely reflects a
distributional problem and not a lack of flexibility for the volatility autocorrelations.

Our results show that substantial gains can be made with an additional factor—especially
when volatility is low. If we compare 2F-B and M-2F-QHyp in Figure 4.5.2, we see that
they both achieve essentially perfect fits on October 14, 2011, and September 4, 2012.
We can report that 2F-RB and M-2F-QRHyp also do, although, we, as noted, leave out
the fits to improve visibility. However, on January 13, 2017, differences emerge. Even if
2F-B reproduces some of the decoupled term structures of skew and curvature on this
date, there is yet a very visible residual error; see Figure 4.5.3 in particular. In contrast,
M-2F-QHyp attains an almost perfect fit on this date also. While not shown, we can
report that also on January 13, 2017, are the volatility smiles for M-2F-QRHyp, respec-
tively, 2F-RB, almost indistinguishable from those of M-2F-QHyp, respectively, 2F-B.

Since the model M-2F-QHyp, respectively, M-2F-QRHyp, uses the same kernel param-
eterisation as the model 2F-B, respectively, 2F-RB, but calibrates almost perfectly on
the low volatility date, we believe it is unlikely that the poorer fits for the models 2F-B
and 2F-RB result from a lack of flexibility for the volatility autocorrelations. Rather
we believe the problem is distributional, and, possibly is related to the observation that
the log-normal distribution is too light-tailed; c.f. the commentary on page 148. An-
other potential explanation is that the poorer fits result from a misspecified elasticity of
variance-of-variance which part one of our analysis suggested for the one-factor rough
Bergomi model. We can expect this to be more problematic when the term structure
of volatility is more pronounced as it then, presumably, will be more difficult to get the
effective volatility-of-volatility right at both short and long time horizons. Indeed, we
find that the term structure of volatility is more marked on January 13, 2017: the values
of 1

T

∫ T
0 ξ0(t)dt with T = 1 (1 year) divided by those with T = 5

252 (1 week) are 2.14, 2.49
and 5.82 on respectively October 14, 2011, September 4, 2012, and January 13, 2017;
these numbers are based on ξ0 as calibrated for the two-factor Bergomi model (2F-B).

It is worth highlighting again that 2F-RB and M-2F-QRHyp that both use the gamma
kernel, calibrate about equally well to each of their non-rough counterparts 2F-B and
M-2F-QHyp. Since M-2F-QHyp calibrates almost perfectly on all three dates, the con-
clusion then appears to be that while we do need two volatility factors to calibrate to
SPX options, their autocorrelation structure need not be very complicated as even expo-
nential kernels seemingly suffice. We believe this is a non-trivial observation given all the
evidence for roughness, mostly notably in [33], and also the generally optimistic view of
rough volatility that one is inclined to take on based on existing literature. The apparent
success and popularity of one-factor rough volatility is likely a consequence of the fact
that the rough fractional kernel generates mean-reversion at multiple time-scales even
if driven by a single Brownian motion and which is in contrast to classical one-factor
models whose autocorrelation structure likely is much too simple. It is then somewhat
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meaningful that the differences disappear, or at least significantly diminish, when we
consider two-factor models where even non-rough ones allow mean-reversion at both
short and long time-scales. However, as two factors are needed in any case to capture
the decoupled nature of the volatility surface, and because computational costs are worse
under rough volatility, we find it hard to justify modelling volatility rough based on our
results so far. As the reader will see, the remaining results are in line with this conclusion.

Let us stress that we cannot from our results conclude whether or not volatility truly is
rough as that can only be finally answered in the asymptotic limit of very small time-
scales. Rather the point to be made is that, when viewed in a two-factor framework,
roughness does not appear to matter at the time-scales relevant to the pricing of SPX
options and, as the reader will see, VIX options. The debate of roughness in many
ways resembles that of long-memory in volatility which deals with the other asymptotic
limit and for which the authors of [33] make a comparable observation noting that while
their Rough Fractional Stochastic Volatility (RFSV) model does not truly display long-
memory as is found in many works (see e.g. [10]) common statistical tests applied to
sample paths under the model may result in a false positive detections of long memory.

In what follows, we discuss the joint calibrations. We focus on the models with log-
normal terms first and start with October 14, 2011, where errors are reported for them
all. With S-M-1F-RB we get an error of 197 bps which is significantly worst. As is evi-
dent from Figure 4.5.4, although the VIX smiles are captured reasonably well, too little
skew is produced for short term SPX options. We take it as evidence that the model does
not sufficiently decouple the variability of the spot variance from that the remainder of
the forward variance curve on which the VIX index depends. We note that the model
struggles to reconcile both markets despite that it calibrates a correlation parameter of25

ρ = −1 and uses the gamma kernel which nests the rough fractional kernel and allows
mean-reversion at multiple time-scales. We find it unlikely that the problem should arise
from the inability of the model to create a term structure of (a)symmetry of which there
is little on this date or that the problem is distributional as the VIX smiles are fitted
fairly well. In line with the results of Section 4.4.3, a more plausible explanation is
that the gamma kernel, the fractional kernel in particular, as used in this model, lacks
flexibility in decoupling the volatility autocorrelations at short and long lags. The same
problem is reflected in [37] where a similar ’skewed’ rough Bergomi model is calibrated.

The models S-2F-RB and S-M-2F-RB perform much better with roughly half the er-
rors at 84 and 88 bps. In Figure 4.5.4, we see that the fit for S-2F-RB also visually is
very decent. We do not show S-M-2F-RB in the plot but can report that the fit is com-
parable to that of S-2F-RB. For September 4, 2012, we only report errors for S-2F-RB
among the log-normal type models. It nevertheless again performs well with an error
of 70 bps and a very decent fit (Figure 4.5.5). It is worth noting that S-2F-RB cali-
brated to both of these dates, and S-M-2F-RB calibrated to October 14, 2011, all have
α1 = α2 = 0 so they in fact are two-factor classical models. This is more evidence that
only two exponential terms are needed to capture the relevant volatility autocorrelations.

25 Note that ρ allows us to influence the SPX skews independent of the VIX smiles.
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Figure 4.5.3: Calibration to SPX options (zoomed examples).

On January 13, 2017, we, among the log-normal type models, again only report an
error for S-2F-RB. However, on this date, it calibrates much worse with an error of 118
bps and a notably poor fit (Figure 4.5.6). While the VIX smiles are fitted fairly well, the
short term SPX smiles are too flat. We believe the problem is distributional because S-M-
2F-QRHyp, which is driven by the same two Gaussian processes, attains an error of only
46 bps; we discuss the hyperbolic models more momentarily. The problem is reflected in
the shift parameter that is calibrated to c = 0.0083 (9.11% in volatility terms) and which
is high relative to the volatility level (the VIX index is at 11.23). This indicates that
S-2F-RB overrelies on the volatility shift to skew the VIX smiles. As shown in Figure
4.5.1, that can precisely flatten the SPX skews. Since S-2F-RB calibrates poorly on the
low volatility date and the log-normal mixture type models have estimation problems,
we conclude that the log-normal distribution, all in all, is ill-suited for the joint problem.

Next, we consider the quadratic rough Heston model which, with errors of 54, 81, and 89
bps, performs better overall compared to S-2F-RB and S-M-2F-RB. Figures 4.5.4-6 show
that it captures both the SPX skews and the VIX smiles; that is, besides the very short
term SPX skew on January 13, 2017. This is impressive given that the model only has
six parameters besides the curve ζ0 and only one Brownian motion driving volatility. It
is somewhat surprising that it performs so much better than S-M-1F-RB on October 14,
2011, (the only date we can compare on) which is also one-factor with a gamma kernel.
We suspect that QRH calibrates fairly well to the joint problem because of the squaring
operation. More precisely, we believe it might increase mean-reversion by amplifying
relative differences between small and large values thereby helping to decouple the SPX
skews from the level of the VIX implied volatilities. Nevertheless, being one-factor, the
model is yet unable to reproduce the term structure of smile (a)symmetry that is very
visible on January 13, 2017. We conclude that the model, perhaps, is a bit too simple.

We turn our attention to the hyperbolic models: We note that S-M-2F-RHyp, over-
all, calibrates poorly with errors of 157, 78 and 120 bps. This is unsurprising given the
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also somewhat unsatisfactory calibrations of M-2F-RHyp to SPX options. Much better
results are achieved with S-M-2F-QHyp which has errors of 73, 75 and 40 bps. Figures
4.5.4-6 show that the fits themselves visually are also very decent on all three dates.
Compared to quadratic rough Heston, we note that the fit is just slightly worse on the
high volatility date, though still fairly decent, but notably better on the low volatility
date. The rough version S-M-2F-QRHyp performs similarly with errors 79, 61 and 46 bps.

The very decent and robust calibrations of S-M-2F-QHyp suggests that the joint cal-
ibration problem is largely solvable with classical two-factor volatility. The observation
goes against the idea that jumps or roughness is needed to calibrate jointly. As the anal-
ysis is based on a small sample size, the conclusion should though be taken with some
moderation. We leave a more extensive historical calibration of the model for future work.

We end with a simulation example of S-M-2F-QHyp as calibrated jointly to SPX and
VIX options on January 13, 2017; we refer to Figure 4.5.7 where we show a trajectory of
St and VIXt across 15 years. Despite that volatility is driven by two ordinary Ornstein-
Uhlenbeck processes, the model is able to generate jump-like behaviour for the S&P 500
index characteristic of rough volatility. The trajectory of the VIX index also qualitatively
resembles the historical trajectory shown in Figure 4.4.1.

4.6 Conclusion
We have in this paper shown that the (one-factor) rough Bergomi model fails to create
a pronounced enough term structure of smile effect for SPX options. Moreover, we have
discovered that short expiry SPX smiles, generally, are more symmetric than long expiry
smiles, a feature we found the rough Bergomi model neither could recreate. To calibrate
to SPX options with a continuous-path stochastic volatility model our results suggests
that two factors are needed for volatility, three for the S&P 500 index. One volatility
factor should be less negatively correlated with the index price, more noisy, and mean-
revert faster. Once extended to a two-factor volatility framework, we found no meaning-
ful differences between comparable rough and non-rough models and obtained decent fits
with even a (log-normal, non-rough) two-factor Bergomi model. The two-factor Bergomi
model was though still not fully aligned with market prices on an example date with low
volatility. Furthermore, we were unable to calibrate (across volatility levels) jointly to
SPX and VIX options with models based on the log-normal distribution. We considered
several alternative models, including a certain two-factor volatility model based on the
quadratic and hyperbolic transformations and which is driven by two ordinary Ornstein-
Uhlenbeck processes. We demonstrated that this model can calibrate almost perfectly to
SPX options and very decently to the joint problem—also across volatility levels. From
this we conclude that the SPX and VIX options markets can largely be reconciled with
classical two-factor volatility, all without roughness and jumps.
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Figure 4.5.4: Joint calibration to SPX and VIX options (selected models and expiries). Date:
2011-10-14.
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Figure 4.5.5: Joint calibration to SPX and VIX options (selected models and expiries). Date:
2012-09-04.
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Figure 4.5.6: Joint calibration to SPX and VIX options (selected models and expiries). Date:
2017-01-13.
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Figure 4.5.7: Simulation of S-M-2F-QHyp as calibrated to SPX and VIX options on January
13, 2017. The curves ζ1,0 and ζ2,0 are extended flat and St is simulated without drift.
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