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Abstract

This PhD thesis deals with two different subjects: multiple hypoth-
esis testing and causal discovery.

In the first part of the thesis, we propose a new family of combination
tests – called the ‘Too Many, Too Improbable’ (TMTI) test – for com-
bining evidence from multiple hypothesis tests into a single test of a joint
hypothesis. We then prove that the proposed family of tests fits within a
larger family of tests, for which we prove a quadratic shortcut for carry-
ing out Closed Testing Procedures. Finally, we show empirically that a
subfamily of the proposed family can be easily approximated, facilitating
the use of these tests in large-scale studies.

In the second part of this thesis, we consider the task of learning
causal graphs from data. First, we attempt to learn finite summary
graphs of infinite-dimensional graphs of discrete-time stochastic pro-
cesses. We develop simple algorithms that score the existence of causal
links by aggregating local linear effects and validate these algorithms on
data from a case competition. However, we argue that the observed high
performance of these algorithms may be inflated by the presence of an
artifact in simulated data. Next, we propose a novel method – called the
Invariant Ancestry Search – for learning causal ancestors of a response
variable using data sampled from heterogeneous environments. We prove
that the proposed method recovers subsets of ancestors of the response
with high probability, if given infinite amounts of data, and we show em-
pirically that the guarantees hold approximately when applied to finite
samples.
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Resumé

Denne PhD afhandling berører to forskellige emner: multipel hy-
potese testing og kausal læring.

I første del af afhandlingen foresl̊ar vi en ny familie af kombination-
stests – kaldet ‘Too Many, Too Improbable‘ – til at kombinere evidens
fra flere hypotese tests i et enkelt test af en simultan hypotese. Vi be-
viser at den foresl̊aede familie af tests ligger i en større familie af tests,
for hvilken vi beviser, at en lukket testprocedure kan udføres med en
kvadratisk genvej. Vi viser empirisk at en delfamilie af den foresl̊aede
familie kan approksimeres nemt, hvilket muliggør brugen af disse tests i
store studier.

I anden del af afhandlingen berører vi hvordan kausale grafer kan
læres fra data. Først diskuterer vi, hvordan endelige resumégrafer af
uendeligt store grafer for diskret-tids stokastiske processer kan læres fra
data. Vi udvikler simple algoritmer, der scorer eksistensen af kausale
sammenhænge ved at aggregere tilstedeværelsen af lokale lineære effek-
ter, og vi validerer disse algoritmer p̊a data fra en case competition. Vi
argumenterer dog for, at den observerede høje ydeevne af disse er kun-
stigt hævet af en artefakt i simuleret data. Dernæst foresl̊ar vi en ny
metode – kaldet Invariant Ancestry Search – til at lære kausale forfædre
til en responsvariabel fra data observeret p̊a tværs af heterogene miljøer.
Vi beviser at den foresl̊aede metode kan finde en delmængde af forfædre
med høj sandsynlighed, hvis vi bliver givet uendelige mængder data, og
vi viser empirisk at garantierne holder approksimativt n̊ar anvendt p̊a
endelige mængder data.
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Resumé vii

1 Introduction 1
1.1 Contributions and structure . . . . . . . . . . . . . . . . . . . . 1
1.2 Multiple testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Causal discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Multiple testing 19
2.1 Paper A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3 Shortcuts for non-exchangeable distributions . . . . . . . . . . 52
2.4 Examples of tests satisfying the conditions of Paper A, Lemma 2 53
2.5 Approximating the CDF of TMTI statistics . . . . . . . . . . . 55
2.6 On consonance and closed testing . . . . . . . . . . . . . . . . . 63
2.7 Applications of TMTI to real data . . . . . . . . . . . . . . . . 65
2.8 An overview of the R package TMTI . . . . . . . . . . . . . . . . 73
2.9 Future outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Causal discovery in time series 91
3.1 Paper B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.2 A discussion of performance metrics for causal discovery methods103
3.3 Simulation artifacts of Additive Noise Models . . . . . . . . . . 106

4 Causal discovery in heterogeneous data 107
4.1 Paper C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Separating parents from non-parental ancestors . . . . . . . . . 134

Bibliography 139

viii



Chapter 1

Introduction

Causal discovery and multiple testing are two branches of mathematical statis-
tics that are not directly related but not disjoint either. Causal discovery deals
with the task of learning causal relations from data. These causal relations
are often represented by Directed Acyclic Graphs (DAGs) (see, e.g., Lauritzen,
1996; Pearl, 2009; Peters et al., 2017). Multiple testing deals with how differ-
ent types of errors, often the family-wise error rate (FWER) or false discovery
rate (FDR) (see, e.g., Tukey, 1953; Benjamini and Hochberg, 1995), can be
controlled when using data to make decisions about multiple hypotheses simul-
taneously. In learning causal structures, one often needs to test a hypothesis
to determine the existence and direction of cause-effect relationships. If one
intends to learn more than a single cause-effect relationship, i.e., if one wishes
to learn (parts of) a DAG, one needs to test multiple hypotheses.1 Thus,
multiple testing deals with a general problem, which occurs in, among other
places, causal discovery.

This thesis deals with these two subjects; multiple testing and causal dis-
covery. In the present chapter, we briefly introduce both subjects before diving
into them more deeply in Chapters 2 to 4.

1.1 Contributions and structure

We reference papers that are a part of this thesis in boldface capital letters,
and we refer to the contents of a paper using the format ‘paper reference,
internal reference’. For example, we refer to Section 5 of Paper A by ‘Paper
A, Section 5’. The papers included in this thesis are:

Paper A Phillip B. Mogensen and Bo Markussen. ‘Too Many, Too Im-
probable: testing joint hypotheses and closed testing short-
cuts’ arXiv preprint arXiv:2108.04731 (2021).

1There are exceptions to this. For example, Zheng et al. (2018) frame the problem of
structure learning as a continuous optimization problem. However, some objections have
been made towards this approach (Reisach et al., 2021; Seng et al., 2022).
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2 Chapter 1. Introduction

Paper B Sebastian Weichwald, Martin E. Jakobsen, Phillip B. Mo-
gensen, Lasse Petersen, Nikolaj Thams, Gherardo Varando.
‘Causal structure learning from time series: Large regression
coefficients may predict causal links better in practice than
small p-values’ Proceedings of the NeurIPS 2019 Competi-
tion and Demonstration Track, PMLR 123:27-36, 2020.

Paper C Phillip B. Mogensen, Nikolaj Thams, Jonas Peters. ‘Invari-
ant Ancestry Search’ Proceedings of the 39th International
Conference on Machine Learning, PMLR 162:15832-15857,
2022.

Each paper is contained within its own chapter. In each chapter, we also
discuss additional aspects that we either developed after submission or aspects
that did not fit within the papers themselves. We include Paper A in the
format in which it is available online, and we include Paper B and Paper
C in the formats of the journals in which they have been accepted. Each
chapter can be read independently of one another. Each paper contains a
list of references made within that paper. A bibliography of references made
outside each paper is available at the back of the thesis.

In Chapter 2, we present Paper A, in which we propose a new family of
combination tests for testing joint hypotheses and prove that this family satis-
fies a shortcut for closed testing. Paper A has been submitted to the Journal
of Statistical Planning and Inference and is, at the time of writing, still under
review. In Chapter 3, we present Paper B. In this paper, we discuss how
to learn summary graphs of time-homogeneous discrete-time stochastic pro-
cesses. In addition, we discuss the effects of a particular simulation artifact
of additive noise models when learning causal graphs. Paper B was an in-
vited paper at the thirty-third Conference on Neural Information Processing
Systems (NeurIPS) as the result of the team of authors winning a case com-
petition at said conference. Lastly, in Chapter 4, we present Paper C. Here,
we develop a novel method – called Invariant Ancestry Search – for learning
causal ancestors of a response variable from data sampled from heterogeneous
environments. This work was accepted into the thirty-ninth International
Conference on Machine Learning (ICML).

1.2 Multiple testing

1.2.1 A motivating example

The following example is a simplified and slightly modified telling of a series
of studies conducted by Anna L. Colliander while she was a PhD student at
the Technical University of Denmark, Department of Health Technologies.

A researcher is developing novel compounds for cancer immunotherapy.
The starting point for these novel compounds is the drug resiquimod, which
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has been shown to be an effective anti-cancer drug due to its immunostimu-
lating properties (Wu et al., 2004). However, resiquimod has never reached
the clinic due to its severe systemic toxicity (Pockros et al., 2007). In an at-
tempt to reduce the toxicity of resiquimod but retain its anti-cancer effect, the
researcher develops six different resiquimod analogs (i.e., chemically modified
versions of resiquimod). First, the researcher performs a study to investigate
the anti-cancer properties of the drugs. This study shows, for each drug, non-
inferiority with respect to resiquimod. Thus, informally, each drug works at
least as well as resiquimod with respect to its anti-cancer properties. Next,
the researcher wants to investigate whether the systemic toxicity is reduced.

To do so, the researcher sets up a mouse study: each analog is administered
to eight tumor-bearing mice, and a blood sample is taken from each mouse
two hours later. To measure the degree of systemic toxicity, the serum level
of Interleukin-6 (IL-6) in each blood sample is recorded. For each group of
mice, the researcher then compares the serum level of IL-6 to the levels in
a positive control group of mice treated with resiquimod, using a one-sided
T -test. The null hypothesis here is that the systemic toxicity of the respective
drug is at least as high as the toxicity of resiquimod. This is tested against
the alternative hypothesis that the analog is better. The p-values for these
tests are shown in Table 1.1.

Drug A B C D E F

p-value 2.5% 4.9% 5.9% 6.7% 8.1% 42.5%

Table 1.1: Unadjusted p-values for the tests described in Section 1.2.1.

Upon seeing that none of the p-values are significant at the usual 5%
level after Bonferroni correcting, the researcher concludes that none of the
drugs worked as intended and decides not to move forward with the developed
analogs. However, that conclusion is incorrect; the researcher was simply
asking the wrong question – or rather, not enough questions. Instead, the
researcher should have asked:

1. Did any of the drugs work?

2. How many of the drugs worked?

3. Which of the drugs worked?

In the first part of this thesis, we deal with methods of answering this ‘ladder
of questions’ by using the framework of closed testing, introduced by Marcus
et al. (1976), and the work on dissonant closed testing of Goeman and Solari
(2011). In many cases, it turns out, these questions get more and more difficult
to answer as we move down the ladder. That is, the more specific the question,
the more stringent our demands for quality data must be.
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Looking back at the p-values in Table 1.1, it seems unlikely that not a
single drug had the intended effect. Even though we failed to reject anything
after Bonferroni correcting, it seems unlikely that not a single drug had lower
toxicity: there are simply too many of the p-values that are too small for
all hypotheses to be true. Indeed, applying the framework of closed testing
along with the test we develop in Paper A, we find that a p-value for the first
question is 0.01%. Thus, there is compelling evidence that at least one of the
drugs had lower systemic toxicity – but we do not know which one. Moving
a step down the ladder, we can say (with 95% confidence) that at least four
of the six drugs are significantly less toxic – but again, we can not say which
ones. We can further refine this answer and say (with 95% confidence) that
at least four of the drugs A through E are less toxic than resiquimod. Thus,
we can eliminate drug F and conclude that most of the remaining drugs had
the intended effect of reducing the systemic toxicity.

In this case, answering just the third question (with a Bonferroni correc-
tion) meant that potentially valuable research was thrown out. The lack of
a significant finding was likely due to the study being underpowered, rather
than none of the drugs having reduced systemic toxicity.

1.2.2 Hypotheses, tests and p-values

Throughout this section, let (Ω,F) be a measurable space and let P be a
family of probability measures on (Ω,F). Suppose there exists a random
variable X, which has distribution PX ∈ P. The theory of hypothesis testing
deals with the following problem: given an observation x of X, how do we
determine whether to reject or accept a hypothesis about PX , and how do we
quantify the certainty in our decision? In this section, we review some basic
theory of hypothesis testing and introduce the problem of multiple testing.

We begin with the formal definition of a hypothesis.

Definition 1.1. A hypothesis H0 ⊆ P is a non-empty subset of distributions
in P. The interpretation of the hypothesis is that the true, data-generating
distribution PX lies in H0. The alternative hypothesis HA to H0 is the com-
plement of H0 in P, i.e., HA = P \H0.

For every hypothesis, we desire a means to test it. That is, we wish to use
data to determine whether or not the hypothesis H0 should be rejected.

Definition 1.2. A test of the hypothesis H0 is a subset R ⊆ Ω of possible
observations for which the hypothesis H0 is rejected. The set R is called the
rejection region. The complementary set R∁ is the set of observations for
which we fail to reject the hypothesis.
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We can equivalently define a test by a decision rule ϕ : Ω→ {0, 1} for H0,
given by

ϕ(x) =

{
0, x ∈ R∁

1, x ∈ R
.

When constructing a test of H0, we are particularly interested in the size and
power of the test.

Definition 1.3. Let ϕ : Ω→ {0, 1} be a test of H0. The size of the ϕ is

α(ϕ) := sup
P∈H0

EPϕ = sup
P∈H0

P(H0 is rejected).

That is, the size of ϕ is the largest possible probability of falsely rejecting H0

when it is true.
The power of ϕ under a given alternative measure PA ∈ HA is

βϕ(PA) := EPA
ϕ = PA(H0 is rejected).

That is, the power of a test is the probability of correctly rejecting H0 when it
is false.

Usually, a test of H0 is constructed not only for a fixed size α but for all
possible sizes α ∈ (0, 1). In this case, we can define the p-value for the test of
H0.

Definition 1.4. Let ϕα : Ω→ {0, 1} be a family of decision rules for the test
of H0, each at size α, and let x ∈ Ω be a fixed observation. The p-value (if it
exists) for the test of H0 is given by

p := inf{α ∈ (0, 1) | ϕα(x) = 1}.

That is, the p-value for the test of H0 is the smallest possible size α such that
we reject the hypothesis H0.

Lastly, we define an admissible test, following the definition of Lehmann
(1947).

Definition 1.5. We say that ϕα is an admissible test if, for a fixed α ∈ (0, 1),
there exists no other test with the same size that has power uniformly greater
than (or equal to) that of ϕα, but not identically equal to.

In Example 1.1, we go through an example of how to construct the well-
known two-tailed test for a population mean in the case with known variance.

Example 1.1 (Z-test with known variance). Let X ∼ N(β, σ2) be a random
variable with unknown mean β and known variance σ2, and let (Xi)

n
i=1 be

independent and identically distributed (i.i.d.) copies of X. Denote by x =
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(xi)
n
i=1 an observation of (Xi)

n
i=1. The hypothesis of interest is that the mean

of X is equal to some value µ0 ∈ R. Here, the family of probability measures
is P := {N(µ, σ2) | µ ∈ R}, and the hypothesis H0 = {N(µ0, σ

2)}. The
alternative hypothesis is HA = {N(µ, σ2) | µ ∈ R \ {µ0}}. We call H0 a
simple hypothesis because it consists only of a single measure.

Now, fix α ∈ (0, 1) and denote by x̄ the empirical mean of x1, . . . , xn. To
construct a test with size α, we define the rejection region

Rα =

{
x ∈ Rn |

∣∣∣∣
x̄− µ0
σ/
√
n

∣∣∣∣ ≥ z1−α/2

}
,

where z1−α/2 is the 1 − α/2 quantile of a N(0, 1) distribution. Noting that
the empirical mean of (Xi)

n
i=1 has distribution N(µ0, σ

2/n) under the null
(meaning that (x̄− µ0)/(σ/

√
n) has distribution N(0, 1)), it is trivial that the

test with rejection region Rα has size α.
To get the p-value for this test, we find the rejection region with the smallest

size p such that the observation x lies in Rp. We can find this p-value by setting

∣∣∣∣
x̄− µ0
σ/
√
n

∣∣∣∣ = z1−p/2.

Solving for p and letting Φ denote the CDF of a standard Gaussian distribu-
tion, we find that

p = 2×
(
1− Φ

(∣∣∣∣
x̄− µ0
σ/
√
n

∣∣∣∣
))

is a p-value for the test of H0.

1.2.3 Error types and error control for a single test

Usually, when reporting the results of a hypothesis test, we report the p-
value. We choose, a priori, a significance level α (often α = 0.05), and we
then compute a p-value for the hypothesis of interest. If the p-value falls
below α, we reject H0, and if the p-value is above α, we fail to reject H0.
Doing so has the benefit of controlling the probability of making a Type I
error.

Definition 1.6. Let H0 be a hypothesis and HA be its alternative. A Type I
error is made if we reject H0 when it is true. A Type II error is made if we
fail to reject H0 when it is false.

We say that a p-value (or test) is valid at level α if it controls the Type
I error at level α. If a p-value controls the Type I error at any α, we simply
say that it is valid. That is, a valid p-value can equivalently be defined as a
random variable P satisfying

H0 true =⇒ ∀α ∈ (0, 1) : P(P ≤ α) ≤ α. (1.1)
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Trivially, a valid p-value can be constructed by choosing P ∼ U(0, 1). How-
ever, this is not a good choice of p-value because we have a high probability
of making a Type II error when using it. Thus, a good p-value is one that
is both valid and has high power – i.e., a low probability of making a Type
II error. Informally speaking, maximizing power while controlling the Type I
error simply means that we make the right choice as often as possible.

1.2.4 Error types and error control for multiple tests

So far, we have only discussed the testing of a single hypothesis. In this thesis,
we are mainly concerned with scenarios where there are multiple hypotheses
for which we must make decisions simultaneously.

Going forward, let H1, . . . ,Hm be m ∈ N hypotheses and let P1, . . . , Pm

be random variables such that each Pi satisfies Type I error control for the
hypothesis Hi.

The basic problem of multiple testing is that even though the Type I
error is controlled for each marginal hypothesis, there will be an excess of
Type I errors when testing multiple hypotheses.2 For example, if P1, . . . , Pm

are mutually independent and all m hypotheses are true, the probability of
making at least one Type I error is

P




m⋃

i=1

(Pi ≤ α)


 = 1− P




m⋂

i=1

(Pi > α)


 ≥ 1− (1− α)m > α.

Thus, the probability of making at least one Type I error is larger than α
and even goes to one in the limit of m. Hence, one cannot approach multiple
testing in the same manner as when testing a single hypothesis. Instead, one
typically adjusts the marginal p-values in some way to control a different error
type. We define below some of the most common targets that one attempts
to control.

Definition 1.7. Let H1, . . . ,Hm be hypotheses. Let T ⊆ {1, . . . ,m} =: [m]
and F := [m] \ T be the indices of the hypotheses that are true and false,
respectively. Let R ⊆ [m] be the indices of the hypotheses that are rejected by
some procedure.

The Familywise Error Rate (FWER) (Tukey, 1953) is the probability of
falsely rejecting at least one true hypothesis:

FWER := P(|T ∩R| ≥ 1).

We say that the FWER is strongly controlled at level α ∈ (0, 1) if FWER ≤ α
for all possible constellations of T and F , and weakly controlled at level α if
FWER ≤ α only when T = [m] (i.e., all marginal hypotheses are true).

2Except in the (somewhat artificial) case where all hypotheses are perfectly dependent.
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The k-FWER (Hommel and Hoffmann, 1988; Korn et al., 2004; Lehmann
and Romano, 2005), or generalized FWER, is the probability of falsely reject-
ing at least k true hypotheses:

k-FWER := P(|T ∩R| ≥ k).

The False Discovery Proportion (FDP) is the ratio of falsely rejected true
hypotheses to the number of rejected hypotheses (set to zero when no rejections
are made),

FDP :=





|T∩R|
|R| , |R| > 0

0, |R| = 0
.

The False Discovery Rate (FDR) (Benjamini and Hochberg, 1995) is the ex-
pected FDP,

FDR := E(FDP).

Above, the expectations and probabilities are with respect to the data-generating
process of the underlying data.

The literature on methods to control the targets in Definition 1.7 is vast
and still expanding. For instance, the FWER can be controlled by employ-
ing a Bonferroni correction (Dunn, 1961), which is equivalent to testing each
marginal hypothesis at level α/m. Hommel and Hoffmann (1988); Korn et al.
(2004); Lehmann and Romano (2005) develop methods for controlling the
k-FWER, and Benjamini and Hochberg (1995) develop a simple method for
controlling the FDR. Lehmann and Romano (2005) also develop methods that
control the tail probability of the FDP, i.e., they develop methods such that
P(FDP ≥ γ) ≤ α for any choice of γ, α ∈ (0, 1). Note that controlling the
k-FWER for k ∈ N for a rejection set R is equivalent to controlling the tail-
probability of the FDP at γ = k/|R|. Thus, to control one is to control the
other. In this thesis, we generally discuss the k-FWER, but the reader should
note that any statement we give on k-FWER control can be equivalently for-
mulated as a statement on controlling the tail-probability of the FDP.

1.2.5 Closed Testing Procedures

Closed Testing Procedures (CTPs), introduced by Marcus et al. (1976), have
garnered much attention since their introduction in 1976. We formally de-
fine CTPs in Paper A, Section 5. Briefly, a CTP rejects a hypothesis HJ :=⋂

j∈J Hj if and only if every joint hypothesis that contains HJ is rejected.
Such procedures are generally accepted to be more powerful than their non-
closed counterparts. This was formalized by Sonnemann and Finner (1988),
who showed that every admissible test that controls the FWER is a closed
procedure. Indeed, most well-known procedures controlling the FWER can
be shown to be closed (e.g., Bonferroni corrections, Holm step-down correc-
tions, Šidák corrections, etc.). Romano et al. (2011) further showed that only
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consonant procedures (see Definition 2.1) are admissible for FWER control.
However, Goeman and Solari (2011) argue that the FWER is, in many cases,
too strict a target to control. The authors instead use dissonant3 procedures
(formally defined in Definition 2.1) to control the k-FWER and compute 1−α
confidence sets for the number of false hypotheses in any given rejection set.
Later, Goeman et al. (2021) showed that only CTPs are admissible for con-
trolling the tail FDP (and thereby k-FWER). That is, any procedure that is
not closed but controls the k-FWER is either equivalent to a closed proce-
dure or dominated by a closed procedure. Thus, in many cases, the optimal
choice of multiple testing procedure is a closed one. A particularly attractive
property of CTPs, as shown in Goeman and Solari (2011), is that they allow
for valid post hoc inference. That is, the k at which one wishes to control the
k-FWER can be chosen after reviewing the data without compromising the
level at which the k-FWER is controlled.

Despite the many attractive properties of CTPs, these can be difficult to
compute due to their exponential complexity in the number of marginal tests.
For m marginal tests, one must perform 2m − 1 tests to complete a CTP.
This is not unreasonable for small m, but even at m = 30, the number of
hypotheses to test exceeds a billion. Therefore, researchers looking to perform
a CTP attempt to find shortcuts in their procedures – that is, a way to reduce
the number of tests to something more manageable. As it turns out, this is
often possible (Romano et al., 2011). Many of these shortcuts are identical
in construction: when testing all joint hypotheses of size m′ that contain a
hypothesisHJ , it suffices to consider only the p-values in J combined with the
largest of the remaining p-values. For instance, Zaykin et al. (2002) provide
this shortcut for their test, the Truncated Product Method (TPM). Dobriban
(2020) provides the same shortcut for a family of tests that are monotone and
symmetric, and Tian et al. (2021) give a similar shortcut for test statistics
that are sums of marginal tests. Goeman et al. (2019) provide a shortcut for
determining lower bounds on the proportion of true discoveries in a rejection
set S in O(m logm) time for Simes type local tests. Additionally, the authors
show that bounds for all subsequent rejection sets S′ can be found in O(|S′|)
time. Goeman et al. (2021) extends this shortcut to the Higher Criticism test
of Donoho and Jin (2004).

In Paper A, we give CTP shortcuts for a family of combination tests
that are monotone, but not necessarily symmetric. This shortcut allows, for
example, the user to compute adjusted p-values for all marginal hypotheses
in quadratic time. Additionally, it can be used to compute 1 − α confidence
sets for the number of false hypotheses in a rejection set S in O(m|S|) time
when |S| < m and O(m) time when |S| = m. In Section 2.8.2, we argue
that by using a binary search, the number of marginal hypotheses that can be
rejected with FWER control can be identified in O(m logm) time. Similarly,

3Also called non-consonant procedures in the literature.
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when employing a binary search, 1 − α confidence sets for the number of
false hypotheses in S can be identified in O(m log |S|) time when |S| < m
and O(logm) time when |S| = m. Lastly, using a binary search allows us to
identify the largest possible rejection set that controls the k-FWER at a fixed
k in O(m(logm)2) time.

1.2.6 Joint hypothesis testing and combination testing

In closed testing, it is necessary to test joint hypotheses, i.e., the hypothesis
HJ that all marginal hypotheses in J are simultaneously true. Constructing a
test of HJ is no different than constructing a test for any marginal hypothesis:
we must construct a rule which takes data and rejects HJ with probability
at most α, given that HJ is true. In addition, we aim to construct this rule
such that HJ is rejected as often as possible when HJ is not true.

The construction of a joint test can be done in many ways. For instance,
in multiple linear regression, hypotheses about multiple coefficients can be
tested directly using an F -test or a Likelihood Ratio test. In this thesis, we
consider a different approach to testing joint hypotheses: taking the p-values
(Pj)j∈J for the marginal hypotheses (Hj)j∈J , we aim to construct a function
f : (0, 1)|J | → (0, 1) which combines these p-values, forming a test of HJ .
This approach is referred to as combination testing. Methods for combining
p-values date back to Fisher, and since then, many combination tests have
been proposed. These combination tests can be of great interest in closed
testing, but the testing of a joint hypothesis can also be useful in and of itself.
For example, there may be multiple, seemingly conflicting, studies about the
effect of a drug. With combination testing, we can combine these studies and
ask the question: ‘was there any effect in at least one of the studies?’.

In Paper A, we propose a new family of combination tests based on the
order statistics of independent p-values, and we argue that this family of com-
bination tests has high power in many scenarios.

1.3 Causal discovery

Statistical learning deals with the problem of learning properties of distribu-
tions of random variables – say (Xi, Yi)

n
i=1 – from observed outcomes of these

variables, (xi, yi)
n
i=1. We may, for instance, be interested in predicting the

value of Y from a new observation of X, i.e., the conditional mean of Y given
X. This can be done by imposing additional assumptions on the joint distri-
bution of (Xi, Yi) – that is, by assuming a statistical model.4 For instance,
we may assume that each pair (Xi, Yi) is sampled independently from one

4Formally, a statistical model for (X,Y ) consists of a measurable space and a family of
probability measures on this measurable space.
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another, and that Xi and Yi are linearly related with Gaussian errors,

Yi = βXi +Ni, N1, . . . , Nn
i.i.d.∼ N(0, σ2).

In the above statistical model, the coefficient β can be consistently estimated
(e.g., by Ordinary Least Squares estimation) and used to generate predictions
E[Y | X = x] = βx. The statistical model, however, cannot be used to draw
inference about the causal relationship between X and Y . For instance, this
model cannot be used to determine what happens to Y if X is intervened upon
– that is, if we actively set the value of X, what happens to Y ? To answer
this question, we need a causal model.

Causal models are enhanced statistical models. Like a statistical model,
a causal model specifies a family of possible joint distributions of a set of
random variables. In addition, a causal model also specifies how the system
acts under external manipulation. Thus, a causal model contains a statistical
model.

In this thesis, we use the framework of Structural Causal Models5 (SCMs)
(Pearl, 2009; Peters et al., 2017). We formally define SCMs in Definition 1.10.
Briefly, an SCM consists of a set of structural assignments and a noise distri-
bution. Furthermore, an SCM has an accompanying graph, which we use to
visualize the causal structure of a system. In this thesis, we are primarily con-
cerned with the task of learning the graphs of these models from data. In Paper
B, we consider the task of learning summary graphs (see Section 1.3.6) from
time series data, and in Paper C we attempt to learn particular subgraphs
of interest. To facilitate the discussion of these tasks, we briefly introduce
graphs, SCMs, and key concepts in causality in the following sections.

1.3.1 Graphs

A directed graph G := (V,E) consists of a set of vertices V and directed edges
E ⊆ {(a→ b) | a, b ∈ V }. A walk ϵ is a sequence of edges. If ϵ has no repeated
edges, we say that ϵ is a path. A cycle is a path that starts and ends in the
same vertex. If all edges on a path point in the same direction, we call it a
directed path. We say that G is a Directed Acyclic Graph (DAG) if G has no
directed cycles.

The parents of a vertex Y , denoted PAY , is the set of vertices from which
there exists an edge with endpoint in Y . The ancestors of Y , denoted ANY ,
are the vertices from which a directed path to Y exists. Similarly, the children
CHY and descendants DEY of Y are the vertices to which a directed edge or
path exists from Y , respectively. The non-descendants NDY of Y are the
vertices in V that are not in DEY (not including Y itself).

An important tool in analyzing graphs – and thereby causal relationships
in an SCM – is that of d-separation (Pearl, 2009).

5Also known as Structural Equation Models.



12 Chapter 1. Introduction

Definition 1.8 (Pearl, 2009). Let G = (V,E) be a DAG and let ϵ be a path
in G. Let A,B,C ⊆ V be distinct subsets of vertices. The path ϵ is blocked by
C if and only if at least one of the following two points holds:

• The path ϵ contains a directed path a → c → b or fork a ← c → b such
that c ∈ C.

• The path ϵ contains an inverted fork a → c ← b (with c being called a
collider) such that c ̸∈ C and DEc ∩C = ∅.

If all paths between A and B are blocked by C, we say that A and B are
d-separated by C and write this as A ⊥d B | C.

1.3.2 Conditional independence and Markov properties

Graphs serve two overall purposes in this thesis: 1) through d-separation,
they provide a tool for proving statements about conditional independence,
and 2) they are useful for visualizing potential causal relationships in a sys-
tem. For graphs to serve these two purposes, they need to act as graphical
representations of the random variables of interest. That is, there needs to
be a correspondence between d-separation in some graph G = (V,E) and con-
ditional independence statements between a collection of random variables
(Xv)v∈V .

Definition 1.9 (see, e.g., Peters et al., 2017). Let G = (V,E) be a graph, let
(Xv)v∈V be random variables and let PX be the joint distribution of (Xv)v∈V .
We say that PX obeys the Directed Global Markov (DGM) property relative to
G if every d-separation in G implies a conditional independence in (Xv)v∈V ,
i.e., if for all disjoint sets A,B,C ⊆ V it holds that

A ⊥d B | C =⇒ XA ⊥⊥ XB | XC .

If the above implication is a bi-implication, we say that PX is faithful to G.

It is trivial to construct a graph G such that PX obeys DGM relative to
G. For instance, any fully connected graph with vertex set V will satisfy this
trivially, as there are no d-separations. Thus, for a graphical representation
of (Xv)v∈V to be useful, it has to be sufficiently sparse.

1.3.3 Structural Causal Models

We introduce here the concept of Structural Causal Models (SCMs).

Definition 1.10 (see, e.g., Peters et al., 2017). A structural causal model
C = (S,Q) consists of a noise distribution Q on Rd with mutually independent
marginals and a set S of d structural assignments,

∀v ∈ [d] : Xv := fv(XPAv , Nv), (1.2)
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where (N1, . . . , Nd) ∼ Q.
The causal graph of C is obtained by letting G = (V,E) with V = [d] and

E = {(a→ b) | Xa enters the structural assignment of Xb}.

The causal order of C, if it exists, is a permutation π : [d]→ [d] such that
a ∈ PAb implies π(a) < π(b). If a causal ordering of C exists, we say that C
is acyclic. If not, we say that C is cyclic.

Whether a solution to an SCM C exists (i.e., whether there exists X =
(Xv)v∈V with N = (Nv)v∈V ∼ Q such that X

a.s.
= (fv(XPAv , Nv))v∈V ) depends

on whether C is acyclic or not. If C is acyclic, a solution exists and C implies
a unique joint distribution such that (Xv)v∈V ∼ PX (Peters et al., 2017). If C
is cyclic, there does not necessarily exist a solution (for more information on
solutions to cyclic SCMs, see Bongers et al., 2021). In this thesis, we consider
only acyclic SCMs.

An attractive property of SCMs is that their implied distributions obey a
Markov property relative to their causal graphs.

Theorem 1.1 (Pearl, 2009, Theorem 1.4.1). Let C be an acyclic SCM. The
implied distribution of C satisfies the Directed Local Markov (DLM) property
relative to the causal graph of C, i.e.,

∀v ∈ V : Xv ⊥⊥ XNDv \PAv
| XPAv .

Combined with the following theorem, we see that if the implied distri-
bution of an SCM is dominated by a product measure, then it obeys DGM
relative to its causal graph.

Theorem 1.2 (Lauritzen, 1996, Theorem 3.27). Let G be a DAG and PX

be a distribution that has density with respect to a product measure µ. The
following statements are equivalent.

• PX factorizes with respect to G.

• PX obeys DLM relative to G.

• PX obeys DGM relative to G.

Throughout this thesis, we implicitly assume that the implied distribution
of any considered SCM is dominated by a product measure (i.e., it has density).
The factorization property in the above theorem is useful, as it decomposes the
problem of making inference about the joint distribution PX into a series of
(potentially) less complicated sub-problems, namely making inference about
the conditionals of the marginals. However, we shall not make explicit use of
the factorization property in this thesis, and therefore we do not elaborate on
it further.
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1.3.4 Interventions and causal effects

Thus far, we have not gone beyond the properties of usual statistical models
in our discussion of SCMs. The key property of causal models is that we can
make statements about what happens when we intervene in the system.

Definition 1.11 (see, e.g., Peters et al., 2017). Let G be the graph of an SCM
C = (S,Q) with implied distribution PX . An intervention to C consists of
replacing some (or all) of the structural equations S with new:

∀v that are intervened on : Xv := f̃v(XP̃Av
, Ñv).

We write the intervened upon model C̃ := (S̃, Q̃). We call the implied distribu-

tion of C̃ the interventional distribution and denote it by Pdo(S̃)
X . We denote the

marginal distribution of an intervened upon variable Xv by P
do(Xv :=f̃v(XP̃Av

,Ñv))

Xv
.

An atomic intervention consists of setting a variable Xv to a fixed value
c ∈ R. Thus, an atomic intervention consists of removing all edges going
into v in the graph G, but leaving all outgoing edges, and setting Xv := c.
Interventions do not need to be atomic. In fact, they do not even need to
remove any incoming edges, but can simply consist of modifications to the
causal function fv. When we talk of interventions in Paper C, we do not
make any assumptions about whether these are atomic or not.

Definition 1.12 (Peters et al., 2017). Let G be the graph of an SCM C =
(S,Q) with implied distribution PX . Fix two distinct labels a, b in the graph
G. We say that there is a total causal effect from a to b (or that a causes b)
if and only if

∃c ∈ R : Pdo(Xa:=c)
Xb

̸= PXb
.

That is, there is a total causal effect from a to b if there exists an atomic
intervention on Xa that renders the interventional distribution of Xb different
from its observational distribution.

It is important to note that the existence of a directed path from a to b
does not guarantee that a causes b. However, it is necessary that a directed
path from a to b exists, for there to be a total causal effect from a to b (Peters
et al., 2017). Thus, when we discuss the learning of graphs in Chapters 3
and 4, we cannot use the learned graphs to say anything about the causal
relations in the investigated systems without further assumptions. However,
we can use them to say something about the potential causal effects.

1.3.5 Invariance and Invariant Causal Prediction

Recently, Peters et al. (2016) introduced Invariant Causal Prediction (ICP),
which exploits the invariance of causal models with respect to changing envi-
ronments in order to learn the parents of a response variable. This paper is
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a cornerstone of Paper C, and we therefore briefly introduce the concepts of
invariance and ICP here.

Suppose that we observe a response variable Y and d predictor variables
X = (X1, . . . , Xd), and that we observe these variables across different envi-
ronments E. This can, for example, be data collected from an observational
setting and an interventional setting. The key observation of ICP is that any
causal model will be invariant to changes in the environment. That is, a model
XS = (Xs)s∈S is invariant if it renders the response independent of the envi-
ronment in the conditional distribution of XS , i.e., Y ⊥⊥ E | XS . Since any
causal model must be invariant, ICP tests all possible subsets of predictors
for invariance and outputs the intersection of all sets where the hypothesis of
invariance was not rejected. Peters et al. (2016) show that the oracle output
of ICP contains only parents of the response and that it can be learned from
data with high probability.

The notion of invariance has (at least) a two-fold importance. First, learn-
ing the parents of a response variable gives us valuable insight into the causal
structure of an observed system, and we can use this insight to identify pos-
sible intervention targets. Second, models that are invariant to changes in
the environment produce invariant predictions. That is, the prediction of Y ,
based on a new set of observed predictor variables, will have the same error
distribution no matter the environment it is predicted in.

Still, ICP can fail in both of the above regards: if multiple, disjoint models
are invariant, ICP fails to output anything. In addition, even when ICP out-
puts a non-empty set, there is no guarantee that this set is invariant. These
two observations were the motivation for Paper C, where we use the concept
of minimal invariance (see Paper C, Definition 3.1), to modify the ICP pro-
cedure, such that the output is (under mild assumptions) always non-empty
and invariant. This improvement does come at a cost: the statistical guaran-
tees of ICP hold for any finite sample, while the corresponding guarantees we
make in Paper C are asymptotic. In addition, ICP outputs only parents of
the response, while the method we propose in Paper C outputs ancestors of
the response. In Section 4.2, we sketch a method to post hoc filter the parents
from the non-parental ancestors output by the proposed method.

1.3.6 Summary graphs of infinite-dimensional causal graphs

In our above description of SCMs and causal notions, we have implicitly as-
sumed that all systems are time-independent. When causal systems are time-
dependent, there are several different approaches to causal learning. Peters
et al. (2022) propose an extension of SCMs – called Causal Kinetic Models – in
which the structural assignments of an SCM are replaced with a set of stochas-
tic differential equations. Schweder (1970) proposes the concept of Conditional
Local Independence (CLI), which formalizes the notion of whether the past of
one continuous-time stochastic process influences another. Building on CLI,
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Didelez (2007, 2008, 2015) has proposed the use of local independence graphs,
and several methods for learning these have been proposed (see, e.g., Mogensen
et al., 2018; Mogensen, 2020; Mogensen and Hansen, 2020).

In Paper B, we take a different and more simplistic approach to learning
the causal relations of a time-dependent system. Here, we consider discrete-
time stochastic processes that are time-homogeneous. These processes have
infinite-dimensional causal graphs and we attempt to learn finite-dimensional
summary graphs of these.

Formally, We consider a discrete-time stochastic process (X(t))t∈N0 where
each X(t) is a d-valued random variable on a probability space (X d,F ,P).
Furthermore, we let (N(t))t∈N0 denote an infinite sequence of mutually inde-
pendent noise innovations. We assume a time-homogeneous causal structure
of this process, i.e., that every X(t) is structurally generated by its past values
and that there are no instantaneous effects. In other words, we assume the
existence of a causal function F such that X(t) is structurally assigned as

X(t) := F (X(t− l), . . . , X(t− 1)) +N(t),

where l is the (unknown) number of lags in the time series. The causal graph
G∞ of this system is infinitely large. For such infinite-dimensional systems,
the causal graph is difficult, or impossible even, to comprehend. Thus, we
define instead the summary graph of a discrete-time stochastic process as a
directed graph G = (V,E) with d nodes V = [d] and edges

E = {(i→ j) | ∃t1 < t2 s.t. Xi(t1) is in the structural assignment of Xj(t2)}.

That is, the summary graph contains only d nodes and has an edge from Xi

to Xj if and only if the past of Xi enters the structural assignment of Xj at
some point in time. Thus, the summary graph encodes the Granger-causes
(Granger, 1969) of each marginal process Xi(t). Note that the summary graph
does not constitute a graphical model in the classical sense, because it cannot
be used to read off conditional independencies using Markov properties. See
Figure 1.1a for an example of a causal graph of a time series and Figure 1.1b
for its corresponding summary graph.

In Paper B, we take the following approach to learning summary graphs.
For each marginal processXj(t), we consider the expected absolute value of the
partial derivative of its causal function Fj (assuming that it is differentiable)
with respect to another marginal process Xi evaluated at time t′:

θtij = E|∂iFj(X(t′))|.

The intuition is, that this parameter captures the expected effect of Xi(t
′) on

Xj(t). If Xj(t) does not functionally depend on Xi(t
′), the partial derivative is

zero and thus θtij = 0. On the other hand, if there is a functional dependence
between the two variables, the partial derivative will be non-zero somewhere
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(a) The graph of an infinite discrete-time stochastic process.
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(b) The corresponding summary graph. A self-cycle represents a lagged time effect
of a node onto itself.

Figure 1.1: An example of an infinite-dimensional graph and its corresponding
summary graph.

and θtij > 0. In Paper B, we approximate θtij by employing subsampling and
linear regression methods to detect non-constant regions of Fj . However, we
do not assume linearity of Fj itself. The intuition behind this approach is,
that even if F is non-linear, it may appear locally linear in some regions,
which can be detected by linear regression methods. In addition, we discuss
a simulation artifact in Additive Noise Models that can render the causal
ordering identified by marginal variances. Lastly, we discuss how the presence
of this artifact affects structure learning algorithms.





Chapter 2

Multiple testing

In this chapter, we present the paper ‘Too Many, Too Improbable: testing joint
hypotheses and closed testing shortcuts’. This paper has been submitted to
the Journal of Statistical Planning and Inference and is still under review at
the time of writing. In Paper A, we propose a new family of combination tests
and show that these are contained in a larger family that allow for shortcuts
in CTPs. In Section 2.2 we elaborate on the intuition and motivation for
the proposed test statistics, and in Section 2.4 we give examples of how one
shows that a test procedure satisfies the shortcuts of Paper A. In Section 2.5,
we argue that p-values for the proposed combination tests can be easily ap-
proximated, yielding considerable computational speedups. In Sections 2.7.1
and 2.7.2, we apply our methods to real data, and finally, in Section 2.8 we de-
scribe the R package TMTI (Mogensen, 2021), which was created to accompany
Paper A.

2.1 Paper A

Phillip B. Mogensen and Bo Markussen. ‘Too Many, Too Improbable: testing
joint hypotheses and closed testing shortcuts’ arXiv preprint arXiv:2108.04731
(2021).
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Too Many, Too Improbable: testing joint hypotheses and
closed testing shortcuts

Phillip B. Mogensen and Bo Markussen1

1Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,
Copenhagen, Denmark

Abstract

Hypothesis testing is a key part of empirical science and multiple testing as well as the combination
of evidence from several tests are continued areas of research. In this article we consider the problem
of combining the results of multiple hypothesis tests to i) test global hypotheses and ii) make marginal
inference while controlling the k-FWER. We propose a new family of combination tests for joint hypothe-
ses, called the ‘Too Many, Too Improbable’ (TMTI) statistics, which we show through simulation to have
higher power than other combination tests against many alternatives. Furthermore, we prove that a large
family of combination tests – which includes the one we propose but also other combination tests – ad-
mits a quadratic shortcut when used in a Closed Testing Procedure, which controls the FWER strongly.
We develop an algorithm that is linear in the number of hypotheses for obtaining confidence sets for the
number of false hypotheses among a collection of hypotheses and an algorithm that is cubic in the number
of hypotheses for controlling the k-FWER for any k greater than one.

1 Introduction
The problem of combining p-values from tests of a family of hypotheses {Hi}i∈I indexed by a finite set
I has long been a field of study and remains an active area of research today. In 1925, Fisher proposed
a method of combining independent p-values by observing that minus two times the sum of (log pi)i∈I
follows a χ2

2|I|-distribution (Fisher, 1992). Fisher’s combination test is asymptotically Bahadur-optimal
among the class of all combination tests (Littell and Folks, 1973). Still, the Fisher Combination Test can
potentially be outperformed by other combination tests for any given finite sample. In 1973, Brown devised
an extension of the Fisher Combination Test or when the underlying test statistics are jointly Gaussian with
a known covariance matrix and the hypotheses are one-tailed (Brown, 1975). Kost and McDermott (2002)
further relaxed the assumptions on the dependence structure by deriving an approximation of the distribution
of the Fisher Combination Test when the underlying tests statistics are jointly T -distributed with a common
denominator. In recent years the Cauchy Combination Test (Liu and Xie, 2020) and the Harmonic Mean
p-value (Wilson, 2019) have been proposed and Vovk and Wang (2020) derive a large family of combination
tests by using the Kolmogorov generalized f -mean.

These combination-based methods for testing the global null hypothesis H0 :=
⋂
i∈I Hi follow the

overall recipe of finding a mapping f : [0, 1]|I| → [0, 1] of p := (pi)i∈I such that f(p) is again a p-value
under H0. That is, such that for any choice of α ∈ [0, 1] it holds that P(f(p) ≤ α) ≤ α when H0 is true.

1
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One particular way of obtaining this property is to choose any function, say f1, that maps the hypercube
[0, 1]|I| to any subset of the real line and then subsequently transform the resulting random variable by its
cumulative distribution function (CDF), say f2. The composite mapping f2 ◦ f1 is then a valid combination
test. The Fisher Combination Test is an example of this; first, we map p onto the positive real line by the
mapping p 7→ −2

∑
i∈I log pi, which is then transformed back onto the unit interval using the CDF of a

χ2
2|I|-distribution. Another simple way of constructing valid combination tests is to use the minimal p-value

from any procedure that controls the family-wise error rate (FWER). For example, we may use the minimal
p-value of the Bonferroni corrected p-values, corresponding to the mapping p 7→ min (|I| ·min(p), 1).

In this paper, we introduce a family of combination tests – the ‘Too Many, Too Improbable’ (TMTI) tests
– that strongly controls the Type I error at level α, for any choice of α ∈ (0, 1). In brief, these statistics
are obtained by ordering the observed p-values, transforming them by the CDFs of beta distributions and
returning a local minimum. The p-value is then the local minimum transformed by its CDF. We derive
analytical expressions for the null CDFs of the TMTI test statistics under an assumption of independence
and show through simulation that the TMTI tests can have higher power than other common combination
tests under many alternatives. Additionally, we give an O(m2) shortcut for carrying out a full Closed
Testing Procedure for all elementary hypotheses for a large family of test statistics, obtained by considering
test statistics of the form Z = h(F(1)(p(1)), . . . , F(m)(p(m))) under mild assumptions on the functions
F(1), . . . , F(m) and h. Using prior work by Goeman and Solari (2011), we show how these shortcuts can
be used to obtain k-FWER control for elementary hypotheses as well as construct confidence sets for the
number of false hypotheses in a rejection set. Finally, we discuss how mixing different local tests across a
Closed Testing Procedure can be used to increase power.

2 The ‘Too Many, Too Improbable’ family of test statistics

2.1 Notation and setup
Let I := {1, . . . ,m} be an index set with cardinality m and let {Hi}i∈I be hypotheses. Let (Pi)i∈I be
random variables on probability spaces (Ωi,Bi,Pi)i∈I with Ωi ⊆ [0, 1]. In most situations we will have
Ωi = [0, 1] and have Bi be the Borel sigma-algebra, although this need not be the case. We denote by pi an
outcome of Pi and call pi the p-value for the test of Hi. For a given subset of indices, J ⊆ I, we consider
the task of testing the joint hypothesis HJ :=

⋂
j∈J Hj by using the marginal p-values, PJ := (Pj)j∈J .

The set J can be chosen freely according to what kind of hypothesis one wishes to test. If we choose J
with |J | = 1, no adjustment needs to be made, as we are simply testing a marginal hypothesis, for which we
already have a p-value. If we choose J = I, we are considering the global null hypothesis of I. Anything
in between those two extremes corresponds to testing a particular joint hypothesis. E.g., if (pi)i∈I are the p-
values output from a genome-wide association study, then J could correspond to a particular region, which
is of special interest, e.g., a gene or chromosome.

In order to test HJ , we construct a test statistic, denoted by Z, with corresponding p-value P that
satisfies

HJ true =⇒ ∀α ∈ [0, 1] : P(P ≤ α) ≤ α. (1)

The above statement is called Type I error control and means that whenever the joint hypothesis HJ is true,
the probability that we reject HJ at level α is at most α.

2
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2.2 Definition of the TMTI statistics
Let PJ(1) ≤ . . . , PJ(|J |) denote an ordering of PJ . This ordering is possibly not unique. Let β(a, b)(x)

denote the CDF of the β(a, b)-distribution.When the shape and scale parameters are integers, we can write

∀i,m ∈ N : β(i,m+ 1− i)(x) =

m∑

k=i

(
m

k

)
xk(1− x)m−k. (2)

We construct the collection Y J := (Y Jk )
|J |+1
k=0 of random variables by Y J0 := 2, Y J|J |+1

:= 2, and

∀k ∈ {1, . . . , |J |} : Y Jk := β(k, |J |+ 1− k)(PJ(k)).

If all variables in PJ are independent and exactly uniform, then each Y Jk is uniformly distributed on [0, 1]
for k = 1, . . . , |J |, as it is well known that the order statistics of i.i.d. U(0, 1) variables are β-distributed.

Let c ≤ |J | be an integer. We then consider the first Y Jk among the first c variables that is strictly
smaller than the following n ∈ N ∪ {∞}, i.e.,

Ln,c := min{l ∈ {1, . . . , c} : Y Jl < Y Jk for all k = l + 1, . . . ,min(l + n, |J |+ 1)}.

If Y J1 ≥ · · · ≥ Y Jc we set Ln,c = c. We think of Ln,c as the index of a kind of local minimum of
Y J1 , . . . , Y Jc , in the sense that Y JLn,c

is always a local minimum, but it further needs to satisfy that it is
smaller than the following n terms. In particular, Y JL1,c

is the first local minimum of Y J1 , . . . , Y Jc and Y JL∞,c

is the global minimum of Y J1 , . . . , Y Jc . The construction of Y J0 and Y J|J |+1 is a technical one, meant only
to ensure the existence of LJn,c. To ease the notational burden, we omit the subscripted n and c and the
superscripted J when the particular choices of n, c and J are not of importance or unambiguous from
context.

Definition 1. Let n ∈ N∪{∞} and let c ≤ |J | be an integer. The ‘Too Many, Too Improbable’ test statistic
is then defined as

ZJn,c := Y JLn,c
.

Small values of ZJn,c are critical and the p-value for the test of HJ is obtained by evaluating the test statistic
in its CDF under HJ . We denote by γJn,c(x) the CDF of ZJn,c under HJ .

Generally, we will only consider cases in which n = 1 or n = ∞, as these are the most natural choices
of n. However, the setup allows for other choices of n. Choosing 1 < n < ∞ can potentially increase
the power of the procedure in cases where signals are fairly sparse, but sufficiently weak that the first local
minimum falls ‘too early’ by chance. However, we do not investigate this further, but simply remark that it
is possible to choose n different from what we consider in the remainder of this paper.

Remark 1. Testing the joint hypothesis HJ using any TMTI test satisfies the statement in (1) by the proba-
bility integral transform. That is, the TMTI test controls the Type I error.

Remark 2. Whenever |J | = 1, say J = {j}, the TMTI transform is simply the identity transform, i.e.,
γ(Z) = Pj .

Remark 3. If the variables in P I are exchangeable, i.e., if any two subsets of equal size have the same
joint distribution, it follows, that for any two sets J1,J2 ⊂ I with |J1| = |J2|, we have γJ1 = γJ2 .
Thus, for exchangeable p-values, the CDF of the TMTI statistic depends only on the choice of J through its
cardinality.
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2.3 Truncation procedures and the TMTI
The Truncated Product Method of Zaykin et al. (2002) and the Rank Truncated Product Method of Dudbridge
and Koeleman (2003) are two notable variants of the Fisher Combination Test, that also test the global null
hypothesis but against different alternatives.

The Truncated Product Method is a combination test that uses only the p-values that are smaller than
some predefined threshold τ ∈ (0, 1). The alternative hypothesis is therefore, that there is at least one false
hypothesis among those hypotheses that gave rise to p-values below τ . The Rank Truncated Product Method
is also a combination test, but this uses only the smallest K p-values, for some predefined K < |J |. Thus,
the alternative hypothesis is, that there is at least one false hypothesis among those, that gave rise to the K
smallest p-values.

The TMTI family of test statistics includes similar procedures. For any c < |J |, the alternative hy-
pothesis is that there is at least one false hypothesis among those that gave rise to the c smallest p-values.
Thus, setting c = K for some integer K < |J |, the TMTI procedure uses only the first K p-values in the
construction of the test statistic and therefore tests the joint hypothesis HJ against the same alternative as
the Rank Truncated Product Method. We call this procedure the rank truncated TMTI.

By setting c = max({j ∈ {1, . . . , |J |} : p(j) ≤ τ} ∪ {1}) =: τ̄ , for some value τ ∈ (0, 1), the TMTI
procedure uses only the p-values that are marginally significant at level τ , and thus tests against the same
alternative as the Truncated Product Method. We call this procedure the truncated TMTI. In the event that
no p-values are smaller than τ , c becomes 1 and uses instead the smallest of the available p-values.

We write TMTIn to denote the TMTI statistic ZJn,c with c = |J |, tTMTIn to denote the truncated TMTI
statistic and rtTMTIn to denote the rank truncated TMTI statistic.

There are two potential advantages to using a truncated procedure (i.e., c < |J |) over a non-truncated
procedure. First, for large m (say, m ≥ 106), it is non-trivial to compute the TMTI∞-statistic, because its
computation involves sorting m different p-values and computing m different β-transformations. Using a
truncation procedure instead reduces the computational cost, because fewer p-values need to be considered.
Thus, only a partial sorting is required and fewer β-transformations need to be computed. Second, as we
outline below, using a truncation procedure can potentially have higher power than its non-truncated version.

Lemma 1. Let n ∈ N ∪ {∞} and x ∈ (0, 1). Let I be an index set with cardinality m. It follows that

∀c < m : γn,c(x) < γn,m(x)

When using n = 1, i.e., considering the first local minimum, and when using moderate values of τ and
K, it is likely that γ1,τ , γ1,K and γ1 are going to be nearly identical, as the first local minimum is likely to
lie early in the sequence Y . This implies that the p-values of the tTMTI1, the rtTMTI1 and TMTI1 tests are
nearly identical. Thus, the TMTI1 by itself can be thought of as a truncation method. However, if using the
global minimum, we expect that there can be a large difference between the methods, as the global minimum
is likely to lie further along the sequence Y . Thus, applying either the tTMTI∞ with a low τ or rtTMTI∞
with a low K is going to be roughly equivalent to applying the TMTI1. These properties are demonstrated
in Figure 1 for the case of independent and exactly uniform p-values.

From Figure 1 we conclude, that if the global null hypothesis is indeed false, and if the global minimum
of the sequence Y happens to fall within the first K or τ̄ indices of Y , there is a potential for a large power
gain by applying either the tTMTI∞ or rtTMTI∞ over the standard TMTI∞. This is because the procedures
will all be considering the same test statistic, Z, but they will evaluate it under different γ functions, thereby
yielding different p-values. By Lemma 1, the γ functions from the tTMTI∞ and rtTMTI∞ procedures are
dominated by the γ function from the TMTI∞, implying that p-value resulting from applying the truncation
procedures will be lower than those of the standard procedure, giving rise to higher power.
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Figure 1: Comparison of γIn , γIn,τ and γIn,K for m = 105, τ = 0.01 and K = 5 in the case of independent
and exactly uniform p-values. The solid red lines are TMTI, the dotted green and blue lines are tTMTI and
rtTMTI, respectively.

3 Computation of γ

3.1 An analytical expression of the CDF of TMTI∞ in the i.i.d. case
In the case where the p-values are independent under the null hypothesis, we can derive an analytical ex-
pression of γ∞,c.

Theorem 1. Let P1, . . . , Pm be i.i.d. uniformly distributed on [0, 1]. For every i ∈ {1, . . . ,m}, let xi be the
x-quantile of the β(i,m+ 1− i) distribution and define the polynomial

Qi(x;a) :=

i∑

j=1

aj
(i+ 1− j)!x

i+1−j .

Define Q̄1 := x1 and define recursively

∀i ∈ {2, . . . ,m} : Q̄i,c := Qi(xmin(i,c); (1,−Q̄1,c, . . . ,−Q̄i−1,c)).
If c ≤ m is a fixed integer, then

γ∞,c(x) = xmc +
m−1∑

i=1

m!

(m− i)! Q̄i,c(1− x
m−i
c ). (3)

Furthermore, let τ ∈ (0, 1) and define Q̃1 := τ and

∀i ∈ {2, . . . ,m} : Q̃i := Qi(τ ; (1,−Q̄1,m, . . . , Q̄i−1,m)).

If c is a random variable given by c = max({i ∈ {1, . . . ,m} : P(i) < τ} ∪ {1}), then

γ∞,c(x) = (1− τ)m
x− β(1,m)(τ)

1− β(1,m)(τ)
I(x1 > τ)

+
m∑

i=1

[(
m

i

)
τ i(1− τ)m−i

{
1− i!

τ i

(
Q̃i − Q̄i,m

)
I(xi ≤ τ)

}] (4)
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The above can be readily implemented by recursively computing the Q̄i,c and Q̃i terms, e.g.,in a for-loop.
In the special case of c = 1, we have γn,1(x) = x by construction, regardless of m and n. In this setting,

the TMTI procedure is then a minimum-p method. This has the advantage, that the procedure can be applied
directly in high-dimensional settings, if the assumption of independence holds. In particular, it is easy to
show, that when c = 1 the critical value of the TMTI test is 1− (1−α)1/m, and it is thus equivalent to using
the Šidák correction (Šidák, 1967) for testing the global null hypothesis.

3.2 A bootstrap scheme for the CDF of TMTIn in the i.i.d. case
Although it is easy to implement Equations (3) and (4), numerical difficulties may arise whenm is large, say
m > 100, due to the presence of the factorials 1!, . . . ,m! in the computations. Essentially, the Q̄i,c terms are
all very small, because they include the reciprocals of factorials, but they are scaled up by another factorial.
Although this is well-defined, numerical instabilities will occur in implementations in standard double-
precision arithmetic. For larger m, one can perform the calculations in arbitrary precision, but the added
computational cost of doing so can be enormous. Instead, a simple bootstrapping scheme can be employed
by; i) drawing m values independently from a U(0, 1) distribution; ii) transforming the values from step i
as described in Equation 2.2 and saving the desired TMTI statistic as Zb, where b indexes the iteration; iii)
repeating steps i and ii sufficiently many times, say B, and; iv) using γ̂(x) := 1

B

∑B
b=1 I(Zb ≤ x) as an

approximation of γ. This bootstrap scheme can be applied regardless of the choice of n and c.

3.3 The non-independent case
The derivation of the CDF, γ, in Section 3.1 relied on the assumption that all p-values are independent. Chen
et al. (2020) argue that combining methods that are Valid under Arbitrary Dependence (VAD) structures have
lower power than combining methods that are Valid under Independent (VI) p-values, if the underlying, p-
values are in fact independent. However, if the underlying p-values are not independent, VI methods may
fail to hold level, whereas their VAD counterparts will hold level for any dependence structure. Thus, the
choice of combining method should depend on the scientific question of interest. For instance, in genome-
wide association studies (GWAS), it is unreasonable to assume independence, as base-pairs are likely to be
locally dependent (Dudbridge and Koeleman, 2003).1

In some cases, however, it is possible to apply the methods described in Sections 3.1 and 3.2, even if
the p-values are not independent. For instance, if the underlying tests, Z, are jointly Gaussian with a known
covariance matrix, Σ, these can be decorrelated by performing an eigendecomposition, Σ = QΛQT , and
then constructing Z̃ := (QΛ−1/2QT )TZ. Then, the components of Z̃ are jointly independent (see, e.g.,
Kessy et al. (2018)) and the methods described in Sections 3.1 and 3.2 can be directly applied to the p-values
obtained from the test statistics Z̃. This remains true for any rotation, Z̄ := R(QΛ−1/2QT )TZ, where R is
an orthogonal matrix.

If the p-values are not independent, and if the decorrelation procedure described above is not appropri-
ate, one can still try to apply the TMTI directly. However, level of the test (i.e., Equation (1)) is no longer
guaranteed, and thus there is a chance that the Type I error is increased. How much the Type I error in-
creases depends entirely on the dependence structure of the p-values. In B.1, we investigate the level of the
TMTI tests under three different types of dependencies: autoregressive p-values (i.e., cor(Pi, Pj) = ρ|i−j|),
equicorrelated p-values (i.e., cor(Pi, Pj) = ρ, for all i, j), and block-diagonally correlated p-values (i.e.,
cor(P ) has a block-diagonal structure, where all off-diagonal entries are ρ if in the same block and 0 else).

1It is often possible to filter the p-values in a manner such that the remaining p-values are likely to be independent, e.g., using a
distance-based filtering.
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We note, however, that rtTMTIn seems to either have the correct level or be conservative, no matter the de-
pendence structure. Overall, the TMTI tests hold level only under weak autoregressive and block-diagonal
dependency structures, and fails to hold level for stronger dependency structures and equicorrelated p-values
(see B.1 and Figures 5 and 6 for a full account of the results). Thus, the TMTI tests can potentially still be
applied in settings with weak dependence, but it is not appropriate in settings with strong dependencies.

Finally, one can apply any VI combination method under arbitrary dependence, if one is able to sample
from the joint distribution of P under the global null. This can, for instance, be done if one assumes an
underlying parametric model or by employing a resampling bootstrap procedure. In B.2, we give an example
of how this can be done in a case where the marginal hypotheses of interest are T -tests for the parameters in
a linear model being zero.

4 Power of the TMTI – a simulation study
In this section, we show by means of simulation, that many of the TMTI tests have high power against a
wide range of alternative hypotheses. In particular, we find that the TMTI∞ and tTMTI∞ tests have high
power both in cases where signals are sparse but strong and in cases where signals are dense but weak.

We consider m = 105 independent tests, of which Nfalse ∈ {100, · · · , 104} are false. In order to
investigate situations in which the p-values from true hypotheses are conservative, we generate these as
ptrue := U δ , where U ∼ U(0, 1) and δ ∈ [0, 1]. When δ = 1, this corresponds to the true p-values being
exactly uniform, and when δ ∈ (0, 1), it corresponds to the true p-values being strictly conservative. The
degree of conservatism increases as δ decreases and the extreme case in which δ = 0 corresponds to the
degenerate case where all true p-values are equal to one, meaning that no hypothesis can ever be rejected,
no matter the significance level. Situations in which the p-values are strictly conservative occur in many
places. For instance, in a GWAS with dichotomous traits, the p-values will be conservative (Wu et al.,
2011). Conservative p-values also occur in Invariant Causal Prediction, where a p-value for invariance is
obtained as the minimum of Bonferroni-corrected p-values from multiple environments (Peters et al., 2016).
We generate p-values for the false hypotheses by independently sampling Z-scores, Z1, . . . , Znfalse

i.i.d.∼
N(µfalse, 1), for different values of µfalse and then letting pi,false := 2× (1−Φ(|Zi|)), where Φ is the CDF
of aN(0, 1)-distribution. The values of µfalse are chosen equidistantly between the two values, which satisfy
that a Bonferroni test has either 5% or 99% power to reject the global null hypothesis in a setting with no
conservatism.

For comparison, we include the Fisher Combination Test (which is known to lose power in the presence
of conservative p-values (Zaykin et al., 2002)) and its truncated versions, and the Cauchy Combination Test
and Harmonic Mean p-value (which are known to have high power in settings with sparse, strong signals
(Liu and Xie, 2020; Wilson, 2019)). In all settings, we employ a significance level of α = 0.05, and for the
truncation procedures, we use τ = 0.05 and K = 10. We include TMTI∞ and both truncation variants, as
well as TMTI1. For TMTI1, we do not include any truncation variants, as we expect these to be roughly
equal to the non-truncated version (per Figure 1). The results of the simulations are displayed in Figure 2.
Overall, there are three things to notice.

First, the TMTI∞ and tTMTI∞ generally work well no matter how many false hypotheses there are.
When there is only a single false hypothesis, these methods have less power than, e.g., a Bonferroni correc-
tion, which has the highest power in this scenario, but both methods have considerably higher power than
both the Fisher Combination Test and Truncated Product Method. When there are more false hypotheses,
TMTI∞ and tTMTI∞ perform on par with the Fisher Combination Test and Truncated Product Method,
having considerably higher power than the remaining methods. No other methods exhibit this property; the
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Figure 2: Power curves for different TMTI tests and competing methods. Generally, the TMTI∞ and
tTMTI∞ work well in all settings. The values of µfalse are chosen equidistantly between the two values,
which satisfy that a Bonferroni test has either 5% or 99% power to reject the global null hypothesis in a
setting with no conservatism.

Cauchy Combination Test, Harmonic Mean p-value, Compound Bonferroni Arithmetic Mean and Bonfer-
roni test all work well when signals are sparse, but have low power when there are many weak signals. In
contrast, the Fisher Combination Test and Truncated Product Method work well when signals are dense and
weak, but have almost no power when signals are sparse and strong. Thus, the TMTI∞ and tTMTI∞ appear
to have high power against all alternative hypotheses, mimicking the properties of, e.g., the ACAT-O, a test
which is shown to have high power against both sparse and dense alternatives (Liu et al., 2019). The ACAT-
O, however, is designed specifically for sequencing studies and works by leveraging information about the
minor-allele counts of a sequencing study, and thus cannot be directly applied in other settings. In contrast,
TMTI∞ and tTMTI∞ work as regular combination tests and can be applied to any type of data, given that
the assumption of independence is satisfied.

Second, TMTI1 and rtTMTI∞ work well when signals are sparse, although not better than a Bonferroni
correction. When signals are dense, these methods have less power than the TMTI∞, tTMTI∞, Fisher
Combination Test and Truncated Product Method, but higher power than the Cauchy Combination Test and
the Harmonic Mean p-value. The TMTI1 and Rank Truncated Product Method have almost identical power

8

2.1. Paper A 27



in all settings.
Third, all methods are, in some degree, affected by conservatism, in the sense that all methods generally

have less power when the p-values from true hypotheses are conservative. When there are few false hypothe-
ses (Nfalse ≤ 102), the Fisher Combination Test and Truncated Product Method have almost no power even
under mild conservatism. When there are sufficiently many false hypotheses (Nfalse = 104), the effect of
conservatism is less pronounced. Overall, it appears that the TMTI tests are less affected by conservatism
than the Fisher tests.

It is in line with the intuition behind the TMTI tests that TMTI∞ and tTMTI∞ do not perform as well as
its competitors in situations where signals are sparse but strong, because these achieve their power from ‘too
many’ of the marginal hypotheses being false. In contrast, minimum-p based tests, such as the Bonferroni
procedure, need only a single, very strong signal to detect that the global null is false. Similarly, Liu and Xie
(2020) argue that the Cauchy Combination Test only makes use of the first few small p-values to represent
the overall significance. The same holds true for the Harmonic Mean p-value (Wilson, 2019). The reason
that TMTI1 and rtTMTI∞ still perform similarly to these three methods is that the first local minimum of
the sorted and transformed p-values is likely to lie early on when there are only a few, very small p-values,
and likely to coincide with the global minimum of the K smallest p-values, if K is sufficiently small. Thus,
TMTI1 and rtTMTI∞ share the property, that they are influenced the most by a few of the smallest p-values.
The global minimum, however, need not lie early on, when there are only a few false hypotheses, meaning
that the few signals that we do observe can potentially be missed when assessing the overall significance
using TMTI∞ or tTMTI∞.

In B.3 we repeated the experiment of this section in a setting with non-constant µ values (i.e., when
Nfalse > 1, the values of µfalse were allowed to differ for each false marginal hypothesis), finding results
similar to those shown in Figure 2.

5 Multiple testing and strong FWER control
In this section, we consider a common task in statistics. Given p-values for a collection of hypotheses,
which hypotheses can safely be rejected? As each p-value gives marginal Type I error control by definition,
a naive approach would be to set a level, α, and reject any hypothesis if its corresponding p-value falls
below α. However, as the number of tests conducted increases, more Type I errors will be made, which
makes it necessary to employ methods that control for multiple testing. Popular targets one may wish to
control for include the False Discovery Rate (Benjamini and Hochberg, 1995) and the Family-Wise Error
Rate (FWER). To control the FWER the Bonferroni correction is often used, as it is easy to implement and
guarantees strong FWER control. However, the Bonferroni correction has received criticism for, among
other things, heavily increasing the risk of making Type II errors, i.e., failing to reject false hypotheses
(Perneger, 1998). A general approach for turning global testing procedures into a procedure that controls
the FWER for elementary hypotheses is the Closed Testing Procedure of Marcus et al. (1976). We briefly
review the theory on Closed Testing Procedures.

Definition 2. Let I be a set of indices and let {Hi}i∈I denote a collection of hypotheses. For any subset
J ⊆ I , let HJ :=

⋂
j∈J Hj be the joint hypothesis. Let φJ be a random variable on [0, 1] satisfying

HJ true =⇒ ∀α ∈ [0, 1] : P(φJ ≤ α) ≤ α.

That is, φJ is a valid p-value for the test of the joint hypothesis HJ . Furthermore, for any subset J ⊆ I
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we define the closure of J in I to be

J ∗I :=
⋃

K:K⊆I, J⊆K
{K}.

That is, J ∗I is the set of all supersets of J that are contained in I. A Closed Testing Procedure for the test
of the joint hypothesis HJ is one that rejects HJ at level α if and only if every superset of J in I is also
rejected at level α, i.e.,

(HJ is rejected at level α) =
⋂

K∈J ∗I

(
φK ≤ α

)
.

That is, the event that we reject HJ occurs if and only if we reject all supersets of J in I marginally.

From the above, we see that a Closed Testing Procedure is more strict than marginal testing. That is,
it becomes more difficult to reject any hypothesis, as we now need to reject all hypotheses that include the
hypothesis of interest – not only the hypothesis itself. The upside is that we obtain strong control of the
FWER.

Theorem 2 (Marcus et al. (1976)). Let J1, . . . ,Jm be distinct subsets of a larger set of indices I. Testing
HJ1

through HJm
each at level α by means of a closed testing procedure controls the FWER at level α in

the strong sense.

Given any general method to construct tests of joint hypotheses from marginal tests, we can employ
these in a Closed Testing Procedure to obtain strict control of the FWER. It is generally accepted that
Closed Testing Procedures are more powerful than other methods that control the FWER (Grechanovsky and
Hochberg, 1999), although this power increase comes at the cost of a heavy computational burden. Given m
marginal hypotheses which we want to test, we need to perform

∑m
i=1

(
m
i

)
= 2m − 1 tests. This is because

we need to test all possible intersection hypotheses, which corresponds to the powerset of all hypotheses,
minus the empty set. Thus, in many cases, it is not feasible to perform a Closed Testing Procedure when m
is even slightly large. Indeed, even with just m = 300 marginal tests, the number of tests to be performed in
a full Closed Testing Procedure is 2300 − 1 ≈ 2 · 1090 – roughly 10 billion times the number of atoms in the
observable universe. Thus, with many procedures, one seeks to find a shortcut so that only a subset of the
powerset of hypotheses needs to be tested. This is often possible (Grechanovsky and Hochberg, 1999) and
considerably reduces the computational complexity of carrying out a Closed Testing Procedure.

Zaykin et al. (2002) introduce a shortcut for the Truncated Product Method, reducing the computational
complexity of the Closed Testing Procedure from O(2m) to O(m2). In a recent result, Tian et al. (2021)
give the same shortcut for a family of combination tests that are sums of marginal tests. Dobriban (2020)
gives a shortcut for test statistics that are monotone and symmetric. Here, we provide a shortcut for class of
combination tests, which are monotone but not necessarily symmetric, and not necessarily sums of marginal
tests. Furthermore, we show that TMTI∞, tTMTI∞ and rtTMTI∞ all admit this shortcut.

Lemma 2. Let pI be a set of observed p-values with I := {1, . . . ,m} and m ≥ 2. Let J k be the set of
all subsets of I with |J | = k. Let X ⊆ R be a set and let F(1) : [0, 1] → X , . . . , F(k) : [0, 1] → X be a
sequence of functions that satisfy

∀j ∈ I ∀x ∈ X ∀ε ≥ 0 : F(j)(x) ≤ F(j)(x+ ε) (C1)
and

∀j ∈ {1, . . . ,m− 1} ∀x ∈ X : F(j)(x) ≥ F(j+1)(x). (C2)
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Define for all J ∈ J k the random variable Y J := (F(1)(p(1)), . . . , F(k)(p(k))) and let h : X k → [0, 1] be
a function satisfying

∀x ∈ X k ∀ε ∈ Rk+ : h(x) ≤ h(x+ ε), (C3)

Let η : I → I be a bijection ordering pI , i.e., pη(1) ≤ · · · ≤ pη(m). It then follows that for any two sets,
J1,J2 ∈ J k

η(J1) ≤ η(J2) =⇒ h(Y J1) ≤ h(Y J2).

In the above, the operation ≤ applied to the sets η(J1) and η(J2) is taken to mean element-wise less than
or equal to.

Lemma 2 states that whenever we consider k p-values, we will obtain a smaller test statistic if we
substitute one or more of them with smaller p-values. In the context of closed testing, this implies that when
considering the closure of an atom, say {j}, then among all subsets of size k in {j}∗I we do not need to test
allm!/((m−k)!k!) intersection hypotheses. This is because we know that the largest (smallest) test statistic
is obtained by considering the p-value pj combined with the k − 1 largest (smallest) remaining p-values.
Assuming that the underlying distribution of the p-values is exchangeable, this implies that the p-values for
the combination tests obey the same inequalities as the test statistics, and thus we need only consider the
intersection hypothesis which we know will yield the largest p-value.

Remark 4. The same result as in Lemma 2 can be obtained by reversing the inequalities in Equations (C1),
(C2) and (C3). In contrast, we can obtain a version which gives

η(J1) ≤ η(J2) =⇒ h(Y J1) ≥ h(Y J2)

if we reverse the inequalities in Equations (C1) and (C2) and keep Equation (C3), or if we reverse the
inequality in Equation (C3) and keep Equations (C1) and C2. The choice of which version to use depends
on whether small or large values of the test statistic are critical.

Theorem 3. TMTI∞, tTMTI∞ and rtTMTI∞ all satisfy the conditions of Lemma 2.

Remark 5. Even though the TMTI∞ variants all satisfy the conditions in Lemma 2, not all TMTIn variants
do. To see this, consider two sets of p-values, p1 = (0.25, 0.50, 0.75) and p2 = (0.2, 0.5, 0.75). Then
Y1 = (0.58, 0.5, 0.42), making 0.42 the first local minimum of Y1, and Y2 = (0.49, 0.5, 0.42), making 0.49
the first local minimum of Y2. Thus, we have Y2 ≤ Y1 but hTMTI1(Y2) > hTMTI1(Y1).

Theorem 4. Let pI , F(1), . . . , F|I|, X , h and Y J be defined as in Lemma 2. Assume that the underlying
distribution of pI is exchangeable. If Equations (C1), (C2) and (C3) are satisfied, then a Closed Testing Pro-
cedure using h(Y J ) as test statistic can be used to obtain control of the FWER for all marginal hypotheses
in at most 1

2m(m− 1) steps.

Remark 6. The result in Lemma 2 and its converse in Remark 4 does not only apply to TMTI statistics. For
example, letting F(1), . . . , F(m) be the identity mappings and h(x) := −2

∑m
i=1 log xi we obtain the Fisher

Combination Test, which then gives us the well-knownO(m2) shortcut described e.g.,in Zaykin et al. (2002).
Similarly, letting h(x) = 1

m

∑m
i=1 tan((0.5− xi)π), we obtain the unweighted Cauchy Combination Test.

In Algorithm 1, we give an example of how this shortcut procedure can be implemented to return adjusted
p-values for the tests of all marginal hypotheses.

If the practitioner is content with having only a lower bound on the adjusted p-value, whenever the
test is not rejected at a chosen level, Theorem 4 provides an upper bound on the number of steps required
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Algorithm 1: Shortcut Closed Testing Procedure for statistics satisfying Conditions (C1), (C2) and
(C3)

Input: Sorted p-values p1 ≤ · · · ≤ pm for tests of hypotheses H1, . . . ,Hm, a significance level α
Output: Adjusted p-values for the tests of H1, . . . ,Hm

Construct an empty m×m matrix Q.
for i = 1, . . . ,m− 1 do

c← m.
Qi,c ← pi.
for j = m, . . . , i+ 1 do

c← c− 1.
Test the hypothesis

(⋂j
k=mHk

)
∩Hi and save the p-value as pi,m:j .

Qi,c ← pi,m:j .

for i = 1, . . . ,m− 1 do
Qi,(i+1):m ← Qi,i
p̃i ← maxQ1:m,i

p̃m ← maxQ1:m,m

Return p̃1, . . . , p̃m as adjusted p-values for H1, . . . ,Hm.

to complete the Closed Testing Procedure. For instance, if the global hypothesis cannot be rejected, no
marginal hypothesis can be rejected, and the procedure can therefore be stopped and the p-value for the test
of the global hypothesis can be used as a lower bound for all adjusted p-values. Stopping the procedure
early can speed up computations considerably, especially when m is large but very few hypotheses can be
rejected. Furthermore, Lemma 2 also implies that an adjusted p-value for a single elementary hypothesis can
be obtained in only m steps. In practice, one is often only interested in obtaining adjusted p-values for the
hypotheses, for which the marginal p-value is significant (as the remaining hypotheses cannot be rejected in
a Closed Testing Procedure). Thus, if there are, say, n elementary hypotheses for which the marginal p-value
is significant, these can be adjusted in O(nm) complexity.

We have exemplified in Figure 3 how the reduced test-tree looks for the Closed Testing Procedure when
applying any test that satisfies the conditions of Lemma 2 in the case of m = 4 total tests, where the
hypotheses are labeled such that Hi corresponds to the ith lowest p-value. To obtain an adjusted p-value for
any marginal hypothesis, say Hi, one takes the maximal p-value from the test of all ancestral hypotheses in
the graph. For example, the adjusted p-value for the test of H2 would be the largest of the p-values from the
tests of H2, H2,4, H2,3,4 and H1,2,3,4.

5.1 A remark on mixture strategies in Closed Testing Procedures
Definition 2 of a Closed Testing Procedure and the subsequent Theorem 2 on FWER control make no as-
sumptions on the choice of local tests, φJ , and these can in principle vary across all intersection hypotheses
to be tested. We only require that every local test, φJ , is a valid α-level test. The natural choice is to use
the same kind of test at every intersection hypothesis, e.g., TMTI∞. However, we can in principle employ
any choice of local test. In some cases, we argue, it is reasonable to use different local tests for different
kinds of intersection hypotheses. When we go through a Closed Testing Procedure, we are going to consider
tests of many different kinds of hypotheses, and in particular different kinds of alternative hypotheses. As
previously discussed, TMTI∞ has slightly lower power than other methods in situations where signals are
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H1,2,3,4

H1,3,4 H2,3,4

H1,4 H2,4 H3,4

H1 H2 H3 H4

Figure 3: Test procedure with m = 4

extremely sparse. According to the shortcut strategy outlined in Algorithm 1, we need only consider the
|J | − 1 largest p-values alongside the jth p-value, when testing all supersets of {j} of size |J |. When |J |
is small or when false hypotheses are sparse, it is likely that these intersection hypotheses will consist of a
single false hypothesis (if any) with all the remaining hypotheses being true. It makes sense, then, to employ
a different test in these situations, which has power against alternatives of sparse signals. However, this
alternative test needs to satisfy the same shortcut as TMTI∞ in order to be employed across all supersets of
equal size. One such choice is rtTMTI∞ with a low choice of K – e.g., K = 1 – as this method satisfies the
same shortcut as TMTI∞, but has higher power against sparse alternatives, as discussed in Section 4. Given
a number of hypotheses, say m, of which we expect F < m to be false, we could for example conduct the
Closed Testing Procedure by employing rtTMTI∞ with a small K whenever we consider supersets of size
at most m − F and TMTI∞ whenever we consider supersets of size greater than m − F . We call such a
strategy a mixture Closed Testing Procedure. We return to mixture Closed Testing Procedures in Section 8,
where we analyse a real dataset. The reasoning is that once we start considering supersets of size greater than
m − F , the intersections hypotheses considered in the shortcut procedure will potentially include multiple
false hypotheses, while they will include at most one false hypothesis when considering supersets of size
less than m− F .

We stress that when employing a mixture Closed Testing Procedure, the choice of local tests should be
made a priori and not be data-driven, so as not to incur new multiplicity problems.

6 The number of false hypotheses in a rejection set and k-FWER con-
trol

Given a set of hypotheses, indexed by J , such that we can safely reject the joint hypothesis HJ – i.e., we
conclude that at least one of the hypotheses in J is false – the natural question is then how many of the
hypotheses in J are false. To answer this, Goeman and Solari (2011) provide a simple way of generating
a 1 − α confidence set for the number of false hypotheses contained in J when using Closed Testing
Procedures. LetR ⊆ powerset(J )\{∅} be the set of all intersection hypotheses that can be rejected by any
Closed Testing Procedure. Define τ to be the number of true hypotheses in J and tα := max{|K| : K ⊆
J ,K 6∈ R} to be the size of the largest intersection hypothesis in J that can not be rejected by the Closed
Testing Procedure.
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Theorem 5 (Goeman and Solari (2011)). The sets {0, . . . , tα} and {|J |−tα, . . . , |J |} are 1−α confidence
sets for the number of true hypotheses, τ , and the number of false hypotheses, |J | − τ , respectively.

This remarkably simple theorem has the implication, that we can generate confidence sets for the number
of false hypotheses among all those tested in only tα steps when using any test procedure satisfying the
conditions of Lemma 2, assuming that the p-values are realized from an exchangeable distribution. We
describe in Algorithm 2 how to do this.

The quantity tα depends on the choice of test used on each intersection. Different tests have power
against different alternatives, and a test that has low power for a particular intersection hypothesis will be
more likely to not reject that hypothesis. Thus, if the chosen test has low power for the particular data, the
resulting confidence set for the number of false hypotheses will be conservative. In contrast, if the chosen
test has high power against the particular alternative, the confidence set tightens.

As noted in Goeman and Solari (2011), we can also apply Theorem 5 as a way of controlling the k-
FWER, i.e., the probability of making at least k false rejections. To control the k-FWER, we find the largest
i such that tα < k when calculated for the set of hypotheses yielding the i smallest p-values. That is, if we
find that F hypotheses in a set, say J , are false with 1− α confidence, then we can reject every hypothesis
in that set while controlling the k-FWER at k = |J | − F + 1. This can be done in O(m3) time. This is
because determining tα from a set J is done in O(|J |2) time, as described in Algorithm 2, and we now
need to do this for subsets of increasing (or decreasing, depending on the search direction) size. It is worth
noting, that the k at which the practitioner wishes to control the k-FWER need not be chosen a priori, as
the confidence sets are simultaneous for all choices of J , simply because the closure of each J is contained
within the full closure.

7 Additional computational considerations
The computational time of a carrying out a Closed Testing Procedure when using the above shortcuts is
manageable for reasonable values of m. For example, computing adjusted p-values for a set of m = 100
p-values take roughly two seconds on a standard laptop using single-threaded computations. Still, there is a
considerable amount of computational effort involved in carrying out a Closed Testing Procedure when m is
sufficiently large, in part because the CDFs of the TMTI statistics will have to be bootstrapped. To further
reduce the computational burden, we offer the following result.

Lemma 3. Let J1 and J2 be sets such that J1 ( J2. Then

∀x ∈ (0, 1) : γJ1(x) < γJ2(x).

That is, a conservative p-value for the test of HJ1
can be obtained by using γJ2 instead of γJ1 when

computing the p-value.

The purpose of Lemma 3 is that the user can choose to skip the bootstrap at several layers of the Closed
Testing Procedure and instead simply use the CDF of a higher layer. This improves the running time of the
algorithm at the cost of using conservative p-values at the layers where the bootstrap was skipped. Exactly
how costly this trade-off is, depends on how many layers are skipped each time. We conjecture that the
p-value will only be slightly conservative if the number of layers skipped is small relative to the size of the
subsets considered.
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Algorithm 2: Confidence set for the number of false hypotheses among J ⊆ I
Input: Hypotheses (Hi)i∈I , an ordered set J ⊆ I, ordered p-values p1 ≤ · · · ≤ p|I | .
Output: A 1− α confidence set for the number of false hypotheses in J .
Initialization

tα ← 0
m← |J |
p̃← (pj)j∈J

if m = |I| then
for i = m, . . . , 1 do
J̃ ← {m− i+ 1, . . . ,m}
Let pJ̃ be the p-value for the test of

⋂
j∈J̃ Hj .

if pJ̃ ≥ α then
Set tα ← i
Break the loop and return {|J | − tα, . . . , |J |}.

else
for i = m, . . . , 1 do
J̃ ← {m− i+ 1, . . . ,m}
p̂← (pi)i∈I\J̃
Let pJ̃ be the p-value for the test of

⋂
j∈J̃ Hj

for j = 1, . . . , |I\J̃ | do
Define J̃2 as J̃ appended with the j largest values of Î.
Update pJ̃ as the p-value from the test of

⋂
j∈J̃2

Hj .
if pJ̃ ≥ α then

Set tα ← i
Break the loop and return {|J | − tα, . . . , |J |}.

Return {|J | − tα, . . . , |J |}.
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8 An example using real data
In this section, we give an example of how TMTI∞ performs against other methods when applied to real
data. For this purpose, we consider data from the National Assessment of Educational Progress on the
state-wise changes in eighth-grade mathematics achievements from 1990 to 1992. This data is, among other
places, presented in Williams et al. (1999), where the authors compute two-sided T -tests for the mean change
in mathematical achievements over the two-year period, to quantify whether or not any particular state has
progressed or worsened during that time period. The original data includes one p-value of exactly 0. We
have rounded this to be 0.00001 here to ensure Type I error control. The same data is used in Benjamini and
Hochberg (2000), where the authors find that mathematics achievements have changed significantly in 24
of the 34 states. However, the authors control the more lenient False Discovery Rate, and thus their results
are not directly comparable to the ones presented here. Williams et al. (1999) apply a significance level
of 0.025 instead of the usual 0.05. In Benjamini and Hochberg (2000), the authors apply the usual 0.05
significance level but have doubled all p-values such that the results are comparable. We have done the same
here. The data, adapted from Williams et al. (1999), is presented in Table 1. Given that we only have access
to summary statistics, we assume that all p-values are independent. Whether this is a reasonable assumption
can be debated.

There are several questions regarding this data that may be of interest to the practitioner:

1. Did mathematics achievements change significantly in any state from 1990 to 1992?

2. In how many states did mathematics achievements change significantly?

3. In what states did mathematics achievements change significantly?

To answer the first question, we can, for example, apply TMTI∞ to obtain a p-value. Doing so results in a
p-value of 1.58× 10−13. Thus, we find evidence that mathematics education has changed significantly in at
least one of the 34 states.

To answer the remaining two questions, we apply TMTI∞ in a Closed Testing Procedure as well as
a mixture Closed Testing Procedure, using rtTMTI∞ with K = 1 whenever we consider fewer than 15
hypotheses and TMTI∞ when considering more. For comparison, we also apply the standard Bonferroni
correction as well as the Fisher Combination Test in a Closed Testing Procedure and a Rank Truncated
Product Method/Fisher Combination Test (denoted rTPM/FCT) mixture, using the Rank Truncated Product
Method with K = 1 for intersection hypotheses of size at most 15. The choice of K = 1 for intersection
hypotheses smaller than 15 corresponds to a belief that at most 15 hypotheses are true. Here, we have chosen
15 at random, but a practitioner with subject matter knowledge can choose this based on prior knowledge.

By applying Algorithm 2 with TMTI∞ we find that {23, . . . , 34} is a 95% confidence set for the number
of states in which mathematics achievements have changed. In contrast, using the Fisher Combination Test,
the confidence set is {19, . . . , 34}. The same confidence set is found when applying the mixture strategies.
That is, we can say with 95% confidence, that mathematics achievements have changed significantly in at
least 23 states when using TMTI∞. The improved performance of TMTI∞ over the Fisher Combination Test
here is likely due to TMTI∞ generally having high power across a wide range of settings (see Section 4),
whereas the Fisher Combination Test lacks power in settings with sparse, strong signals. When carrying out
a Closed Testing Procedure, we test many different kinds of joint hypotheses (i.e., some containing more
false hypotheses than others), and it is thus beneficial that the employed test has high power in many different
settings.

To determine which of the hypotheses we can say with certainty are false while controlling the FWER,
we applied Algorithm 1. Here, TMTI∞, the Fisher Combination Test and the Bonferroni correction perform
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identically and are capable of rejecting the bottom four hypotheses. In contrast, when we apply the two
mixture strategies, we can reject the bottom seven hypotheses. Thus, by incorporating prior knowledge, we
can increase the size of the rejection set for which we have FWER control.

To find which of the hypotheses can be rejected while controlling the more general k-FWER, we consider
sets of increasing size of the smallest p-values, each time calculating tα. For any chosen set, say J , we can
reject the entire set while controlling the k-FWER at tα + 1. Doing so, we find that the 11 hypotheses
giving rise to the smallest p-values can be rejected by the TMTI∞ while controlling the k-FWER at k = 2.
In contrast, the mixture Closed Testing Procedure is only capable of rejecting the bottom eight hypotheses
while controlling the k-FWER at k = 2. If we are willing to accept a more lenient k-FWER control
of k = 5, we are capable of rejecting the bottom 22 hypotheses using the TMTI∞ and the bottom 11
hypotheses using the rtTMTI∞/TMTI∞ mixture. In Figure 4, we have summarized the associated k at which
we control the k-FWER at, when rejecting the bottom t hypotheses, for t = 1, . . . , 34, when using TMTI∞,
the rtTMTI∞/TMTI∞ mixture, the Fisher Combination Test and the rTPM/FCT mixture, respectively. Here,
we note that TMTI∞ is weakly better than the Fisher Combination Test except for at a single rejection set,
{1, . . . , 13}.

State GA AR AL NJ NE ND DE MI
p-value (%) 85.628 60.282 44.008 41.998 38.640 36.890 31.162 23.522

LA IN WI VA WV MD CA OH
20.964 19.388 15.872 14.374 10.026 8.226 7.912 6.590
NY PA FL WY NM CT OK KY
5.802 5.572 5.490 4.678 4.650 4.104 2.036 0.964
AZ ID TX CO IA NH NC HI
0.904 0.748 0.404 0.282 0.200 0.180 0.002 0.002
MN RI
0.002 0.001

Table 1: States and their p-values for T -tests of changes in mathematics achievements from 1990 to 1992.
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Figure 4: Overview of the different Closed Testing Procedure methods employed and the k at which they
control the k-FWER, when rejecting the bottom t hypotheses, for t = 1, . . . , 34. The two mixture strategies,
rtTMTI∞/TMTI∞ and rTPM/FCT, are colored the same, as their results are identical.

That the two mixture strategies have higher power to detect differences when controlling the FWER
than TMTI∞ and the Fisher Combination Test, but lower power to detect differences when using the more
lenient k-FWER control, may seem counter-intuitive and requires some exposition. The difference lies in
what intersection hypotheses need to be considered in the full Closed Testing Procedure test tree. When
controlling the FWER, we are in principle looking through all intersection hypotheses, and then we use
the maximal p-values along the closure of each atom as the adjusted p-values. As outlined in Lemma 2,
however, we need only consider the part of the closure that contains subsets containing only the atom and
the largest p-values. When we apply Algorithm 2 iteratively to obtain k-FWER control, we are considering
the closures, not of atoms, but of intersections. Put differently, consider the index set J := {1, . . . , t}, for
some t, of the t smallest p-values. We are then going to consider the closure of {t} in J , i.e., {t}∗J at
first. For all sets in this closure, say J̃ ∈ {t}∗J , we are then going to calculate the adjusted p-value as the
maximal p-value along the closure of J̃ in I, i.e., J̃ ∗I . These sets are not, as they were in the ordinary Closed
Testing Procedure, sets consisting of an atom unioned with the largest p-values, but rather several, possibly
neighboring, atoms unioned with the largest p-values. We constructed the mixture strategies to have higher
power in situations in which we considered intersection hypotheses with only a single false hypothesis in
them. Using this method, we are now considering sets that possibly have multiple false hypotheses in them,
even when the total number of hypotheses included in the set is low – which is when TMTI∞ gains its power.
In contrast, rtTMTI∞ with a small K loses power, when there are more than K false hypotheses present in
the intersection hypothesis.

A detailed table with adjusted p-values for all of the tests employed here can be found in C.
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9 Conclusion
We have introduced the ‘Too Many, Too Improbable’ (TMTI) family of combination test statistics for testing
joint hypotheses among m marginal hypotheses. The TMTI family includes truncation-based tests, similar
to those of Zaykin et al. (2002) and Dudbridge and Koeleman (2003), for testing global hypotheses against
sparse alternatives. We have shown in Section 4 that the TMTI tests outperforms other combination tests
in many situations. In particular, we found that TMTI∞ and tTMTI∞ were the only tests that were able to
achieve high power both when signals are dense but weak and when signals are sparse but strong. Although
we found in all scenarios that there was at least one other test that performed equally as well as TMTI∞
tTMTI∞, no other combination tests had similar performance across all scenarios. This property is useful,
e.g., if one has no a priori knowledge about the sparsity and strength of signals and for generating 1 − α
confidence sets for the number of false hypotheses in a rejection set.

In Section 5, we have given anO(m2) shortcut for controlling the Family-Wise Error Rate using Closed
Testing Procedures (Marcus et al., 1976) for a large class of test statistics, which includes the TMTI family
of test statistics, but also the Cauchy Combination Test among others. Using this shortcut, we use the work
of Goeman and Solari (2011) in Section 6 to develop an O(m3) algorithm for controlling the generalized
FWER as well as anO(m) algorithm for obtaining 1−α confidence sets for the number of false hypotheses
among all hypotheses.

In Section 8, we applied a TMTI test in a Closed Testing Procedure, as well as a mixture – i.e., varying
local tests across the Closed Testing Procedure – of two TMTI tests, to a real dataset and compared it to
the Fisher Combination Test applied in a Closed Testing Procedure. Here we found that all TMTI tests
were able to reject the same hypotheses as the Fisher Combination Test, but that the TMTI test generated a
narrower confidence set for the number of false hypotheses among the collection of considered hypotheses.
Additionally, we found that by employing mixture strategies, we were able to reject more hypotheses than
with standard methods. However, the mixture strategies performed worse when controlling the k-FWER
with k ≥ 2.

Supplementary material
Proofs of all lemmas and theorems are supplied in the appendix. Furthermore, the appendix includes fur-
ther simulations to support those of Section 4 and a detailed table containing the adjusted p-values of the
procedures applied in Section 8.

The TMTI family of test statistics and the shortcuts for k-FWER and confidence sets is implemented in
the R package TMTI available on CRAN.
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A Proofs

A.1 Proof of Lemma 1
This holds trivially, as the first Y smaller than the following n must necessarily be larger when we only
consider the first c < |I| values of Y I than if we consider the full sequence.

A.2 Proof of Theorem 1
Assume first that c = m. The order statistics (P(1), . . . , P(m)) have a constant joint density m! on the
simplex {p ∈ [0, 1]m : p1 ≤ · · · ≤ pm}. Thus

γI(x) :=P(min(β(1,m)(P(1)), . . . , β(m, 1)(P(m))) ≤ x)

=1− P(β(1,m)(P(1)) > x, . . . , β(m, 1)(P(m)) > x)

=1− P(P(1) > β−1(1,m)(x), . . . , P(m) > β−1(m, 1)(x))

=1− P(P(1) > x1, . . . , P(m) > xm)

=1−m!

∫ 1

xm

∫ qm

xm−1

. . .

∫ q3

x2

∫ q2

x1

dq1 dq2 . . . dqm−1 dqm. (5)

The integral in Equation (5) can be expressed as
∫ 1

xm

∫ qm

xm−1

· · ·
∫ q3

x2

∫ q2

x1

dq1 dq2 . . . dqm−1 dqm = Qm(1; (1,−Q̄1,c, . . . ,−Q̄i−1,c))− Q̄m,c,

which in turn implies that

γI(x) = 1−m!(Qm(1; (1,−Q̄1,c, . . . ,−Q̄i−1,c))− Q̄m,c)

= 1−m!

(
1

m!
(1− xmm)−

m−1∑

i=1

Q̄i,c
1

(m− i)! (1− x
m−i
m )

)

= xmm +
m−1∑

i=1

Q̄i,c
m!

(m− i)! (1− x
m−i
m ).

Now, assume that c < m. Then the expression is identical to the one given in Equation (5), with the
exception that the lower bound on all integrals after the c’th from the inside out will be xc. The CDF is
therefore

γ∞,c(x) = xmc +
m−1∑

i=1

Q̄i,c
m!

(m− i)! (1− x
m−i
c ).

Now, let c be a random variable given by c = max{i ∈ {1, . . . ,m} : p(i) < τ}. Assume without loss of
generality that p1 ≤ · · · ≤ pm. For any fixed integer i ≤ m we note that p1, . . . , pi | c = i ∼ U(0, τ)
and that the joint distribution of (p(1), . . . , p(i)) conditional on c = i has density i!/τ i on the simplex
{p ∈ [0, 1]i : p1 ≤ · · · ≤ pi < τ}. By the Law of Total Probability, we can write

γ∞,c(x) =
m∑

i=0

P(Z∞,c < x | c = i)P(c = i).
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The distribution of c is binomial with probability parameter τ and size m, i.e.,

P(c = i) =

(
m

i

)
τ i(1− τ)m−i.

Consider first the case of i ≥ 1. We see that

P(Z∞,i ≤ x | c = i) = 1− P(P1 > x1, . . . , Pi > xi | c = i)

= 1− i!

τ i

∫ τ

xi

∫ qi

xi−1

. . .

∫ q3

x2

∫ q2

x1

dq1 dq2 . . . dqi−1 dqiI(xi < τ)

= 1− i!

τ i

(
Q̃i − Q̄i,m

)
I(xi < τ).

In the case of i = 0, we see that P(Z∞,c < x | c = 0) = P(β(1,m)(P1) < x | c = 0). The distri-
bution of P1 conditionally on no p-values falling below τ is uniform on the interval (τ, 1). Thus, we have
β(1,m)(P1) | c = 0 ∼ U(β(1,m)(τ), 1) and therefore

P(Z∞,c < x | c = 0) =
x− β(1,m)(τ)

1− β(1,m)(τ)
I(x1 > x).

Combining all of the above, we obtain

γ∞,c(x) = (1− τ)m
x− β(1,m)(τ)

1− β(1,m)(τ)
I(x1 > x)

+
m∑

i=1

[(
m

i

)
τ i(1− τ)m−i

{
1− i!

τ i

(
Q̃i − Q̄i,m

)
I(xi ≤ τ)

}]

which proves the claim.

A.3 Proof of Lemma 2
Assume without loss of generality that the p-values pI are already sorted, i.e., that p1 ≤ · · · ≤ pm. Then
η is the identity function and can therefore be omitted entirely. Fix a set J := {j1, . . . , jk} ∈ J k and
assume without loss of generality that j1 < · · · < jk. Fix j ∈ J and l ∈ I\J such that l < j and let
J−jl := (J \{j}) ∪ {l}, i.e., J−jl is the set obtained by substituting j for l in J . It suffices to show that

h(Y J
−j
l ) ≤ h(Y J ).

There are two cases to consider:
Case 1; j = minJ : If j is the smallest element in J then substituting it for l does not change the

ordering of J . By Condition (C1), it holds that

F(1)(p(l)) =: Y
J−j

l
1 ≤ Y J1 := F(1)(p(j)).

As all other values for Y J
−j
l and Y J are unchanged, it follows from Condition C3 that h(Y J

−j
l ) ≤

h(Y J ).
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Case 2; j > minJ : Define by j̃ the largest index in J smaller than j, i.e.

j̃ := max{i ∈ J : i < j}.

Suppose first that j̃ < l < j. In this case, the ordering of J is unchanged when substituting j for l, making
this case isomorphic to case 1. If, on the other hand, l < j̃ the ordering of J changes when substituting j
for l. Let ĵ be the smallest index in J larger than l, i.e.,

ĵ := min{i ∈ J : i > l}.

Then we must show two things

1. Y J
−j
l

l ≤ Y J
ĵ

.

2. For all i > ĵ it holds that Y J
−j
l

i ≤ Y Ji .

Let ηA : A → A be a function sorting the elements of a set A. That is, ηA(a) = b if and only if a is the
b’th lowest element in A. We then see that ηJ−j

l
(l) = ηJ (ĵ) and thus that the first point above is satisfied

as we have p(l) ≤ p(ĵ) and therefore Y J
−j
l

l ≤ Y J
ĵ

by Condition (C1). The second point above is satisfied

by Condition (C2), as ηJ−j
l

(h) = ηJ (h) + 1 for any h > ĵ. This proves Lemma 2.

A.4 Proof of Theorem 3
We start by reminding the reader that all three TMTI statistics have F(i)(x) = β(i,m + 1 − i)(x), for
i = 1, . . . ,m, regardless of the choice of n. These functions are weakly increasing, as they are CDFs, thus
satisfying Condition (C1). Next, fix x ∈ (0, 1) and i ∈ I with i < m. We then see that

F(i+1)(x) =
k∑

h=i+1

(
k

h

)
xh(1− x)k−h

= β(i+ 1, k + 1− (i+ 1))(x)

<

(
k

i

)
xi(1− x)k−i +

k∑

h=i+1

(
k

h

)
xh(1− x)k−h

=
k∑

h=i

(
k

h

)
xh(1− x)k−h

= β(i, k + 1− i)(x)

= F(i)(x),

by using Equation (2). Thus, Condition (C2) is satisfied.
Let µ > 1 and note that

hTMTI∞(Y ) := minY

htTMTI∞(Y ) := min(Y1 + µI(β−1(1,m)(Y1) > α), . . . , Ym + µI(β−1(m, 1)(Ym) ≥ α))

hrtTMTI∞(Y ) := min(Y1, . . . , YK).
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It is immediate that both hTMTI∞ and hrtTMTI∞ satisfy Condition (C3), as the mapping x 7→ minx
is weakly increasing in every coordinate. To see that htTMTI∞ satisfies Condition (C3), note that for fixed
i ∈ I it holds that β−1(i,m+1−i) is strictly increasing, thus making x 7→ x+µI(β−1(i,m+1−i)(x) > α)
a weakly increasing mapping and therefore also making htTMTI∞ a weakly increasing mapping.

A.5 Proof of Theorem 4
Assume without loss of generality that I = {1, . . . ,m} and p1 ≤ · · · ≤ pm and denote by Ph(Y J ) the
CDF of h(Y J ). The adjusted p-value for the test of some Hi is the maximal p-value across all intersection
hypotheses in the closure of {i} in I, i.e.

p?i := max
J∈{i}∗I

Ph(Y J ) ◦ h(Y J ).

Let J k{i}∗I denote the set of all sets in {i}∗I of size k. Then

argmax
J∈J k

{i}∗I

Ph(Y J ) ◦ h(Y J ) =

{
{m− k, . . . ,m}, if i ≥ m− k
{i,m− k + 1, . . . ,m}, else

by Lemma 2. Let {i}∗I := {{i,m}, {i,m−1,m}, . . . , {i, . . . ,m}, {i−1, . . . ,m}, . . . , {1, . . . ,m}}. Then,
by Lemma 2

p?i = max
J∈{i}∗I

Ph(Y J ) ◦ h(Y J ).

Thus, the adjusted p-value for any hypothesis Hi can be obtained in |{i}∗I | = m− 1 steps2. However, note
for any i that |{1}∗I ∩ {i}∗I | = i− 1. Therefore, the number of steps required to obtain an adjusted p-value
for all hypotheses is

∑m
i=1(m− i) = 1

2m(m− 1), as claimed.

A.6 Proof of Lemma 3
Assume without loss of generality that J1 = {1, . . . ,m1} and J2 = {1, . . . ,m2}. Then m1 < m2. Let
L := argminj∈J1

Y J1
j . Then

ZJ1 = β(L,m1 + 1− L)(P(L)) < β(L,m2 + 1− L)(P(L)),

which implies that minY J2 < minY J1 and therefore P(minY J1 < x) < P(minY J2 < x), which is the
claimed result.

2Disregarding the first step, as a marginal p-value for the test of Hi is already supplied.
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B Further simulation studies

B.1 An investigation of the robustness of the TMTI CDFs against different depen-
dency structures

In this section we investigate how well the analytical expression of the TMTI CDFs under the null distribu-
tion derived in Section 3.1 under an i.i.d. assumption approximates the actual CDF of the TMTI statistics
under different dependency structures.

In the following, we let X ∼ N (0,Σ) be an m-dimensional random vector with coordinate means of
zero, where diag(Σ) = (1 . . . 1). We then calculate p-values P as

∀i ∈ {1, . . . ,m} : Pi := 2(1− Φ(|Xi|)),

where x 7→ Φ(x) is the CDF of aN(0, 1) distribution. This ensures that each Pi is uniform on (0, 1) and that
the dependency structure of P is fully determined by the covariance matrix Σ. We consider three structures
of Σ:

1. Equicorrelated tests, where Σi,j = ρI(i 6= j) + I(i = j), for all i, j and some ρ ∈ (0, 1).

2. Block-diagonal tests, where

Σ =




Σ1 . . . 0
...

. . .
...

0 . . . Σg




for some g < m and Σ1, . . . ,Σg are themselves equicorrelated with parameter ρ.

3. Autoregressive tests, where Σi,j = ρ|i−j|.

The first point above can happen in a scenario like the simulation study performed in B.2 where we combine
T -tests performed on independent variables but where the standard error is estimated on the basis of a
number of covariates. It is unlikely to that the correlation between the tests is high, but it is none-zero.
Nevertheless, we try this scenario even for large values of ρ in order to investigate what happens under
extreme dependencies.

The second point in the above represents a scenario in which we have performed multiple tests within
g groups or individuals that are independent from one another, but where tests performed within the same
group are not independent. The last point represents, for example, a design where the tests are spatially
correlated, where dependence is highest for neighboring plots.

We perform the experiments with m = 200 tests and different values of ρ. For the block-diagonal
experiment we set g = 40, corresponding to 40 groups of five tests each. In each experiment we bootstrap the
CDFs of TMTI∞, tTMTI∞ with τ = 0.05 and rtTMTI∞ with K = 5 and K = 1 both under an assumption
of i.i.d. tests and under the actual dependency structure. For comparison, we have also included the Cauchy
Combination Test and Harmonic Mean p-value tests. We then plot calibration curves, i.e., the curve x 7→
(actual CDF(x), i.i.d. CDF(x)). If the i.i.d. CDF is robust against departures from independence then
this curve will lie exactly on the diagonal of the unit square. If the i.i.d. CDF is conservative it will lie
above the diagonal of the unit square and if it is anti-conservative it will lie below the diagonal of the unit
square. The results are presented in Figure 5 and again in Figure 6 where we have zoomed in on the square
(0, 0.1) × (0, 0.1). From the figures, we see that weak dependencies generally do not affect the CDFs of
the TMTI statistics by much but stronger dependencies have a large effect on the CDFs. This is similar
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to what we see for the Cauchy Combination Test and Harmonic Mean p-value statistics. Although both of
these are claimed to be robust against dependence (Liu and Xie, 2020; Wilson, 2019), we see that both of
these also become anti-conservative in their lower tails when there is sufficiently strong dependence. The
Harmonic Mean p-value appears to generally be more anti-conservative than the TMTI statistics, while the
Cauchy Combination Test performs slightly better than rtTMTI∞ with K = 5, but worse than rtTMTI∞
with K = 1. In particular, we see that when dependencies are strong, TMTI∞ is very anti-conservative
in its lower tail implying a loss of Type I error control. However, its truncated variants, tTMTI∞ and
rtTMTI∞, are less affected by the dependencies and are only slightly anti-conservative in many cases with
strong dependencies. In particular, rtTMTI∞ with K = 1, corresponding to only using the smallest p-
value, is very robust against most dependencies and, in contrast to the other CDFs presented, never anti-
conservative. Only in the equicorrelated experiment when correlations are strong does it deviate from the
unit square diagonal and here it is conservative. We also note that the CDFs of all statistics are conservative
at their upper tails. However, it is generally only interesting to see how conservative or anti-conservative
the i.i.d. approximations are in the regions around typical significance level as conservativeness or anti-
conservativeness here can be the difference between making a Type I or II error and making no error.

These experiments suggest that rtTMTI∞ with K = 1 is robust against departures from independence
and is thus reasonable to use when making no assumptions on the dependency structure of the p-values in
question. In contrast, the other TMTI statistics can be used under some dependency structures if we believe
that the dependencies are not too strong, and the truncated TMTI∞ variants are generally more robust against
dependency than TMTI∞.
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Figure 5: Calibration curves for the CDFs of different TMTI statistics under an i.i.d. assumption versus
different dependency structures. CCT = Cauchy Combination Test, HMP = Harmonic Mean p-value.
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Figure 6: Calibration curves for the CDFs of different TMTI statistics under an i.i.d. assumption versus
different dependency structures, zoomed to only show the region (0, 0.1)× (0, 0.1). CCT = Cauchy Combi-
nation Test, HMP = Harmonic Mean p-value.

B.2 An example of applying the TMTI to non-independent data
In this section, we give an example of how the TMTI can be applied to non-independent data in a particular
setting. We consider a variation of the simulation study conducted in Section 4, where the marginal p-values
now come from dependent T -scores instead of independentZ-scores. Furthermore, we investigate the power
of this procedure under different alternatives by means of simulation. Throughout this section, we consider
a significance level of α = 0.05.

We consider the following setup: let X be an n × g-dimensional binary matrix of full rank satisfying
that every row-sum of X equals one and every column-sum of X equals k, for some k ∈ N. Fix a vector
µ ∈ Rg and let ε ∼ Nn(0, In) be a random variable, where In is the n× n identity matrix . We then define

W := Xµ+ ε.

The interpretation of this experiment is that we have recorded k observations of some random variable, W ,
in m different groups to obtain a total of N = mk samples. By altering the number of non-zero elements
in µ we control the number of groups that affect the outcome, W . As the power of any test in this scenario
is directly associated with the magnitude of the coefficients, µ, we will only consider constant values of µ.
That is, the elements in µ which we allow to be non-zero, will all be equal. We then consider the global
hypothesis H0 :

⋂m
i=1(µi = 0), which is the hypothesis that the outcome W is not affected by any of the

m groups. The goal is now to estimate the power of the TMTI, i.e., the quantity PHA
(reject H0), under

different alternative hypotheses HA, i.e., different µ vectors. For every alternative hypothesis considered
here, we will compute the p-value under four tests from the TMTI family; TMTI∞ and its truncated and
rank truncated versions (with τ = 0.05 and K = 5), and TMTI1. For TMTI1, we do not consider any
truncated variants, as we expect these to be roughly equal (per Figure 1).
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Figure 7: Estimated sizes of the included tests in B.2, i.e., the probability of rejecting the global null hypoth-
esis when it is true. The Truncated Product Methodand Rank Truncated Product Methodare denoted as the
truncated FCT and rank truncated FCT, respectively.

For comparison, we consider a number of combination-based test procedures. For this, we will compute
the marginal T -tests of the hypotheses Hi : µi = 0 for i = 1, . . . ,m under the joint model. Then, we will
apply the following procedures; the Cauchy Combination Test (Liu and Xie, 2020); the Harmonic Mean
p-value (Wilson, 2019); the Compound Bonferroni Arithmetic Mean (Vovk and Wang, 2020); a Bonferroni
correction; and the Rank Truncated Product Method. Additionally, we include the F -test, as this would often
be the natural choice of test in this particular setup. However, the F -test offers less flexibility compared to a
combination test, e.g., when used in a Closed Testing Procedure (see Section 5), as this would require fitting
2m linear models.

In order to calculate p-values for the TMTI statistics, we estimate the γ functions underH0 by employing
a bootstrapping scheme: For i = 1, . . . , 105 we first define W̃ := W −(XTX)−1XTWXT . That is, W̃ is
W with the group means subtracted. This ensures that each group of W̃ has mean zero. We then construct
Wi by resampling W uniformly with replacement in order to introduce variation. We then compute the
relevant marginal T -test statistics, compute p-values and finally output the TMTI statistic. We then use the
empirical CDFs of the bootstrapped TMTI statistics. In Figure 7 we show the simulated sizes of all included
tests. From this we conclude that all tests have approximately the correct size or lower, except for the Fisher
Combination Test and the Truncated Product Method (both of which assume independence of the p-values),
and these are therefore left out from further simulations. One can apply the same bootstrapping scheme as
described above to obtain valid p-values for both of these tests. However, we do refrain from doing that
here. We note also that the Rank Truncated Product Method has a slightly increased Type I error, but it is
sufficiently little that this may be attributed to chance. The increased variance in the estimates of the Type I
errors for the TMTI statistics is due to the critical values of these being estimated by bootstrapping.

Figure 8 contains the results of a simulation with Nfalse ∈ {100, . . . , 103}. Generally, the results are
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Figure 8: Power curves for different TMTI tests and competing methods. Generally, TMTI∞ and tTMTI∞
work well in all settings, while TMTI1 and rtTMTI∞ performs best when signals are sparse.

similar to those displayed in Figure 2: TMTI∞ and tTMTI∞ both perform well in all settings, although
not as well as some methods when Nfalse = 1, but still better than the F -test. When Nfalse > 1, we
generally find that TMTI∞ and tTMTI∞ perform either as good or better than the best of the competing
methods. TMTI1 and rtTMTI∞ have similar performance: when there are less than ten false hypotheses,
these perform on par or better than with the best of the competing methods, but when there are multiple false
hypotheses, they slightly outperform the Cauchy Combination Test and Harmonic Mean p-value, although
they are both outperformed by the F -test, TMTI∞ and tTMTI∞.

As in Section 4, the results of these simulations indicate that TMTI∞ and tTMTI∞ offer an alternative
to current tests that is powerful against a wide range of alternative hypotheses. This is useful if one has no
a priori knowledge of the sparsity and strength of signals, as well as when employing the tests in a Closed
Testing Procedure. If one has a priori knowledge, that the signals are sparse and strong, one should rather
employ a test such as TMTI1, rtTMTI∞, Harmonic Mean p-value, Cauchy Combination Test or a Bonferroni
test.

Remark 7. The above example generalizes to a situation in which we have two sets of covariates, X and
X̃ , such that W := Xµ + X̃µ̃ + ε, where X̃ are covariates we would simply like to adjust for when
computing our test, but not variables that are of interest. In this setting, we could also compute the p-values
corresponding to the tests of Hi : µ̃i = 0, although we would not care whether they are true or not. Thus,
we would select a subset of the p-values, say J , corresponding to those related to µ, and compute our test
only for those.
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Figure 9: Power curves for different TMTI tests and competing methods, in a scenario where the signal
strength is allowed to differ between each false marginal hypothesis. The values of µfalse are chosen equidis-
tantly between the two values, which satisfy that a Bonferroni test has either 5% or 99% power to reject the
global null hypothesis in a setting with no conservatism.

B.3 The effects of mixed µ values
In this section, we repeat the experiment performed in Section 4, with the change that the µ values are
allowed to differ between the false marginal hypotheses. Thus, for Nfalse false hypotheses, we generate
p-values by sampling Xfalse,i ∼ N(µ/i, 1) (i.e., the signal with the largest effect has mean µ and the signal
with the weakest effect has mean µ/Nfalse), where µ is chosen equidistantly between the values that satisfy
that a Bonferroni test has either 5% or 99% power to reject the global null hypothesis in a setting with
no conservatism. The results are displayed in Figure 9. The comments to this figure are the same as the
comments to Figure 2.

C Table of adjusted p-values for all tests employed in Section 8
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State (change) p-value Bonferroni TMTI∞ rtTMTI∞/
TMTI∞

FCT rTPM/
FCT

GA (-0.323) 0.85628 1.00000 0.87219 0.93682 0.85753 0.93775
AR (-0.777) 0.60282 1.00000 0.87219 0.93682 0.85753 0.93775
AL (-1.568) 0.44008 1.00000 0.85873 0.93682 0.81333 0.93775
NJ (1.565) 0.41998 1.00000 0.85873 0.93682 0.80157 0.93775
NE (1.334) 0.38640 1.00000 0.85873 0.93682 0.78021 0.93775
ND (1.526) 0.36890 1.00000 0.85873 0.93682 0.76813 0.93775
DE (1.374) 0.31162 1.00000 0.85873 0.92675 0.72551 0.92768
MI (2.215) 0.23522 1.00000 0.80175 0.88412 0.66845 0.88500
LA (2.637) 0.20964 1.00000 0.78923 0.88412 0.64602 0.88500
IN (2.149) 0.19388 1.00000 0.78923 0.88412 0.63076 0.88500
WI (2.801) 0.15872 1.00000 0.78923 0.85060 0.59172 0.85144
VA (2.858) 0.14374 1.00000 0.77357 0.84467 0.57388 0.84550
WV (2.331) 0.10026 1.00000 0.68933‡ 0.74677 0.51177‡ 0.74750
MD (3.339) 0.08226 1.00000 0.68933‡ 0.69934 0.48059‡ 0.71026
CA (3.777) 0.07912 1.00000 0.68454‡ 0.70957 0.47464‡ 0.71026
OH (3.466) 0.06590 1.00000 0.62312‡ 0.64033 0.44713‡ 0.64096
NY (4.893) 0.05802 1.00000 0.58342‡ 0.59203 0.42838‡ 0.59262
PA (4.303) 0.05572 1.00000 0.58342‡ 0.57683 0.42250‡ 0.57739
FL (3.784) 0.05490 1.00000 0.58342‡ 0.57129 0.42036‡ 0.57185
WY (2.226) 0.04678* 1.00000 0.58342‡ 0.51259 0.39755‡ 0.51308
NM (2.334) 0.04650* 1.00000 0.58342‡ 0.51043 0.39671‡ 0.51092
CT (3.204) 0.04104* 1.00000 0.55925‡ 0.46666 0.37939‡ 0.46711
OK (4.181) 0.02036* 0.69224 0.42037‡ 0.26549 0.29050‡ 0.26573
KY (4.326) 0.00964* 0.32776 0.28899† 0.13524‡ 0.21234† 0.13535‡

AZ (4.993) 0.00904* 0.30736 0.27561† 0.12735‡ 0.20643† 0.12747‡

ID (2.956) 0.00748* 0.25432 0.23899† 0.10651‡ 0.18974† 0.10659‡

TX (5.645) 0.00404* 0.13736 0.17114† 0.05892† 0.14480† 0.05897†

CO (4.326) 0.00282* 0.09588 0.12797† 0.04148* 0.12286† 0.04150*
IA (4.811) 0.00200* 0.06800 0.11058† 0.02958* 0.10453† 0.02961*
NH (4.422) 0.00180* 0.06120 0.10121† 0.02666* 0.09939† 0.02667*
NC (7.265) 0.00002* 0.00068* 0.00346* 0.00346* 0.00843* 0.00064*
HI (5.550) 0.00002* 0.00068* 0.00346* 0.00346* 0.00843* 0.00064*
MN (6.421) 0.00002* 0.00068* 0.00346* 0.00346* 0.00843* 0.00064*
RI (5.094) 0.00001* 0.00034* 0.00198* 0.00198* 0.00551* 0.00044*

Table 2: State-wise changes in mathematics achievements from 1990 to 1992 and the p-values for the corre-
sponding T -tests. Values that are significant at α = 0.05 are marked with an asterisk. Hypotheses that can
be rejected while controlling the k-FWER at k = 2 are marked with a †.
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2.2 Intuition

Generally speaking, different tests have different levels of power depending on
the alternative hypotheses the null is tested against. Absent a uniformly most
powerful test, one therefore chooses a test based on a pre-conceived notion of
what the alternative hypothesis is – e.g., how strong the expected effect is.
In joint hypothesis testing, the problem of selecting a test is magnified: ‘the
alternative hypothesis’ is not a single alternative hypothesis but a combination
of many alternative hypotheses. Thus, selecting a test for a particular joint
hypothesis must be done based on how many marginal hypotheses are false
but also how these are false (i.e., the alternative distribution of each marginal
p-value). Some tests have high power against alternatives where there are
many (potentially weak) signals, while others work well against alternatives
where signals are sparse and strong.

Selecting a joint hypothesis test can be difficult without prior knowledge of
the composition of true and false hypotheses. Minimum-p based methods (e.g.,
Bonferroni) and other methods which are heavily affected by only the smallest
p-values (e.g., CCT) work well against sparse alternatives with strong effects
but not against dense alternatives with weak effects. In contrast, methods
that aggregate the existence of many effects (e.g., FCT) fail when signals are
sparse.

With TMTI, we set out to construct a joint hypothesis test capable of
adapting to any alternative hypothesis without prior knowledge of it. TMTI
accomplishes this (to some degree; see Paper A, Section 4) by transforming
each p-value separately by different sigmoid functions (i.e., β transformations).
Consider for example p-values P1, . . . , Pm. Each order statistic P(i) is trans-
formed by a function, which has a steep slope in a small neighborhood around
the expected value EP(i) = i/(m + 1) under the joint null. If some of the
p-values are from false hypotheses, these will be smaller than expected, mean-
ing that the transformed p-values become very small. If only the smallest
p-value is from a false hypothesis, we expect that the minimum (whether local
or global) is the first of the transformed p-values. However, if more p-values
are from false hypotheses, we expect that the minimum lies further along the
sequence of transformed p-values. In this sense, we may (informally) think of
choosing the minimum of the transformed sequence of p-values, rather than
from the p-values themselves, as a way of letting the test statistic adapt to
the number of false hypotheses.

2.3 Shortcuts for non-exchangeable distributions

In Paper A, Theorem 4 we assumed that the underlying distribution of p-
values was exchangeable; this assumption can be further relaxed. We assumed
exchangeability to ensure that the CDFs of the TMTI test statistics depend
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only on the set J through its cardinality |J |. In other words, exchange-
ability ensures that the critical value depends only on |J | and α. That is,
for any test statistic constructed as Z = h(F(1)(P(1)), . . . , F(m)(P(m))), where
F(1), . . . , F(m) and h satisfy Conditions (C1) through (C3) of Paper A, Lemma
2, it suffices that the critical value of Z depends only on the level, α, and the
size of the index set J .

Some test statistics satisfy the property that the critical value of a rejection
set depends only on the size of the set and the significance level without
assuming exchangeability. For example, the tail of the CCT statistic is robust
against departures from independence when the underlying test statistics are
jointly Gaussian (Liu and Xie, 2020). Similarly, the methods proposed in Vovk
and Wang (2020) are valid under any dependence structure.

2.4 Examples of tests satisfying the conditions of
Paper A, Lemma 2

Below, we give examples of test statistics that satisfy the shortcuts of Paper
A, Lemma 2 when constructed as Z = h(F(1)(P(1)), . . . , F(m)(P(m))). This
list is by no means exhaustive, and some of these are shown to satisfy CTP
shortcuts elsewhere. Thus, we go through these simply as an exercise in how
one can show that a test statistic satisfies the shortcuts of Paper A, Lemma
2.

Proposition 1. Let i ∈ [m]. The following tests can be constructed as
h(F(1)(P(1)), . . . , F(m)(P(m))) and satisfy the conditions of Paper A, Lemma
2.

1. The Fisher Combination Test (Fisher, 1992):

F(i)(x) = −2 log(x) and h(x) =
m∑

i=1

xi.

2. The Kolmogorov generalized f -mean tests (Vovk and Wang, 2020): For
r ̸= 0

F(i)(x) = xr and h(x) =




m∑

i=1

xi




1/r

,

and for r = 0

F(i)(x) = x and h(x) =

m∏

i=1

x
1/m
i .

3. The Cauchy Combination Test (Liu and Xie, 2020):

F(i)(x) = tan(π(0.5− xi)) and h(x) =

m∑

i=1

ωixi,
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4. The Higher Criticism test (Donoho and Jin, 2004):1

F(i)(x) =

√
m(i/m− x)√
x(1− x)

and h(x) = max
1≤i≤α0m

xi,

for any α0 ∈ (0, 1).

5. The (unweighted) Lévy combination test (Wilson, 2021):

F(i)(x) = Φ−1((1 + x)/2) and h(x) = m−2
m∑

i=1

x−2
i ,

where Φ−1 is the quantile function of the N (0, 1) distribution.

Proof. We prove one by one that the above-listed test statistics satisfy the
monotonicity conditions stated in Paper A, Lemma 2. For the convenience of
the reader, we restate the monotonicity conditions here:

∀j ∈ [m] ∀x ∈ X ∀ϵ ≥ 0 : F(j)(x) ≤ F(j)(x+ ϵ) (C1)

∀j ∈ [m− 1] ∀x ∈ X : F(j)(x) ≥ F(j+1)(x) (C2)

∀x ∈ Xm ∀ϵ ∈ Rm
+ : h(x) ≤ h(x+ ϵ) (C3)

∀j ∈ [m] ∀x ∈ X ∀ϵ ≥ 0 : F(j)(x) ≥ F(j)(x+ ϵ) (C1’)

∀j ∈ [m− 1] ∀x ∈ X : F(j)(x) ≤ F(j+1)(x) (C2’)

∀x ∈ Xm ∀ϵ ∈ Rm
+ : h(x) ≥ h(x+ ϵ) (C3’)

Furthermore, we recall that Conditions (C1), (C2) and (C3) or (C1’), (C2’)
and (C3’) together ensures that Paper A, Lemma 2 holds if small values are
critical for the test statistic. Conversely, Conditions (C1), (C2) and (C3’)
together, or (C1’), (C2’) and (C3) together, ensures that Paper A, Lemma 2
holds if large values are critical for the test statistic. If the chosen F functions
are identical for all i ∈ [m], we note that conditions (C2) and (C2’) are trivially
satisfied, and can therefore be disregarded. In that case, we refer to any F(i)

as F .

1. The Fisher Combination Test: F satisfies Conditions (C1’) by mono-
tonicity of the logarithm. Furthermore, h trivially satisfies Condition (C3).
As large values are critical for FCT, this concludes the proof.

1It is generally difficult to compute critical values for this test without resorting to
bootstrap methods. It is therefore often suggested that one exchanges h(x) with h̃(x) =

max
i:i≤α0m, xi>1/m

xi (see, e.g., Donoho and Jin, 2015). Furthermore, this test is ill-suited to

be used by itself in a CTP, as the critical values are only asymptotically valid. However, it
can be used as the local test on higher layers of a CTP.
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2. The Kolmogorov generalized f-mean tests: For r ̸= 0, the mappings

x 7→ xr and x 7→
(∑m

i=1 xi
)1/r

are strictly increasing on (0, 1). Thus, (C1)

and (C3) are satisfied when r ̸= 0. Similarly, x 7→ x and x 7→ ∏m
i=1 x

1/m
i are

strictly increasing. Thus, (C1) and (C3) are also satisfied when r = 0. As
small values are critical for these tests, the proof is complete.

3. The Cauchy Combination Test: The mapping x 7→ tan(π(0.5 − x))
is strictly decreasing on (0, 1), as the tangent function is strictly increasing on
(−π/2, π/2). Thus, Condition (C1’) is satisfied. Condition (C3) is trivially
satisfied. As large values are critical for CCT, the proof is complete.

4. The Higher Criticism of Donoho and Jin: Let α0 ∈ (0, 1). We note
that for any i ∈ [m]

d

dx
F(i)(x) = −

(m− 2i)x+ i

2
√
m(x(1− x))3/2 .

The numerator and denominator are strictly positive for x ∈ (0, 1). Thus,
Condition (C1’) is satisfied. It is furthermore easy to see that Condition
(C2’) is satisfied. Condition (C3) is satisfied, as the max operator is weakly
increasing. As large values are critical for the Higher Criticism test, this
completes the proof.

5. The unweighted Lévy combination test As Φ−1 is a quantile func-
tion it is weakly increasing. Additionally, since x 7→ (1 + x)/2 is strictly
increasing, Condition (C1) is satisfied. Furthermore, the mapping x 7→ x−2

is strictly decreasing for x ∈ (0, 1) and thus Condition (C3’) holds. As large
values are critical for the Lévy combination test, the proof is complete.

2.5 Approximating the CDF of TMTI statistics

In general, it is not trivial to compute p-values for the TMTI tests. For the
case when n = ∞, we provide in Paper A analytic methods for computing
these p-values, but these fail when the number of tests is sufficiently large
(say, m ≥ 100). Instead, we primarily use a bootstrapping scheme to compute
p-values, but although it is simple, it is computationally expensive. In this
section, we argue that it is possible to approximate the p-values for the TMTI
tests with n = ∞ in a simple manner that does not inflate the Type I error
for a pre-specified significance level α.

2.5.1 TMTI and truncated TMTI

First, we argue that the lower α-tail of the CDF of TMTI∞ and tTMTI∞
can be approximated by the CDF of a β(1,m′)-distribution for an m′ that is
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logarithmically polynomial in m. In other words, the lower tail of a TMTI
statistic with n = ∞ behaves approximately as the minimum of m′ < m
independent, uniform random variables.

The intuition for this approximation is as follows: it is well known that the
minimum of m i.i.d. U(0, 1) random variables follows a β(1,m)-distribution.
We also know that transformed p-values Y1, . . . , Ym all follow a U(0, 1) distri-
bution under the global null. However, the transformed p-values are not inde-
pendent. Although we do not know the dependence structure of (Y1, . . . , Ym),
we can imagine that dependence has the effect of lumping together some of
the Y variables. Thus, we hypothesize that drawing the variables Y1, . . . , Ym
is (somewhat) equivalent to drawing only m′ independent U(0, 1) variables
and then repeating some of them, with some level of noise added. If that
is the case, the minimum of Y1, . . . , Ym is roughly β(1,m′)-distributed. This
intuition applies only to TMTI∞ and not directly to its truncated versions.
However, we show empirically below that the tail of tTMTI∞ also behaves
approximately as a β(1,m′) variable.

Throughout this section, let us generically denote by γ : [0, 1]→ [0, 1] the
CDF of any TMTI statistic (whether truncated or not) when n = ∞. When
testing at a predetermined level α by using an approximation of γ, say γ̂, some
consideration must go into the choice of γ̂. A good approximation of γ – i.e.,
one that rejects and fails to reject the same hypotheses as γ – should satisfy
the following:

(i) For all x ∈ [0, γ−1(α)], it holds that γ̂(x) ≤ α.

(ii) For all x ∈ (γ−1(α), 1], it holds γ̂(x) > α.

These two points are illustrated in Figure 2.1: If γ̂ only satisfies point (ii),
the curve x 7→ (γ(x), γ̂(x)) will enter the yellow-shaded region. Here, any
hypothesis not rejected by γ will not be rejected by γ̂ either. However, there
exist hypotheses that are rejected by γ but not by γ̂. Thus, γ̂ gives valid
p-values at level α but has lower power than γ. If γ̂ satisfies points (i) and
(ii), the curve moves only through the green-shaded areas, meaning that γ̂
and γ reject and fail to reject the exact same set of hypotheses. If point (ii)
is not satisfied, the curve moves through the red-shaded region, implying that
there exist hypotheses that are rejected by γ̂ but not γ. In this case, γ̂ does
not yield valid p-values at level α.

We can construct an approximation of γ that satisfies point (ii) by setting
γ̂(x) := β(1,m′)(x) where

m′ := min
{
m′′ > 1 | β(1,m′′)(γ−1(α)) ≥ α

}
. (2.1)

In principle, we should consider integer-valued m′′, to be in line with the
intuition outlined above, but as the mapping m 7→ β(1,m)(x), for fixed x ∈
(0, 1), is smooth and strictly increasing, we allow m to be a non-integer for
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γ̂(
x)
=
γ(
x)

≤ α α ≥ α

≤ α

α

≥ α

γ(x)

γ̂
(x
)

Power loss Type I error inflation Optimal approximation

Figure 2.1: Illustration of valid approximations of γ. Any approximation γ̂
such that the curve x 7→ (γ(x), γ̂(x)) moves only through the green-shaded
areas will reject and fail to reject the exact same hypotheses as γ. Any curve
that does not enter the red-shaded area is valid at level α (i.e., controls the
Type I error) but has less power to reject a false hypothesis than γ if it moves
through the yellow-shaded area.

the added flexibility. The approximation in Equation (2.1) is valid at level
α because the regularized incomplete beta function is strictly increasing on
(0, 1). Thus, Equation (2.1) implies that γ̂(x) > α for all x ∈ (γ−1(α), 1]. The
solution to Equation (2.1) can be expressed as

m′ =
log(1− α)

log(1− γ−1(α))
.

This does not immediately yield an easy-to-use approximation of γ because
γ−1(α) is computationally expensive to calculate. However, as we shall see
in the following simulation studies, the solution to Equation (2.1) is approx-
imately polynomial in the logarithm of m. That is, there exists α-dependent
constants c0,α, c1,α, c2,α such that m′ ≈ c0,α + c1,α logm + c2,α(logm)2 for
m large enough (say, m ≥ 100). To estimate these coefficients, we bootstrap
γ−1(α) 50 times for TMTI∞ and tTMTI∞ (τ = α), with α ∈ {0.01, 0.05, 0.10}
and m ∈ {27, . . . , 220}, with 104 samples per bootstrap. We then compute m′

using the bootstrapped estimates of γ−1(α). Although the quantiles γ−1(α)
are not stochastic themselves, there is some stochasticity in m′ due to γ−1(α)
being estimated by bootstrap. The results are displayed in Figure 2.2, where
we have fitted quadratic polynomials m′ ≈ c0,α + c1,α logm + c2,α(logm)2,
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Figure 2.2: Estimates of m′ (see Equation (2.1)) based on bootstrap estimates
of γ−1(α). Each point is based on B = 104 bootstrap samples. The overlaid
lines are quadratic polynomials, m′ ≈ c0,α + c1,α logm + c2,α(logm)2. The
estimates of c0,α, c1,α, c2,α are displayed in Tables 2.1a and 2.1b. Left: TMTI∞.
Right: tTMTI∞ with τ = α. Note the different scales on the y-axis for left and
right. Points have been jittered slightly along to x-axis to increase readability.

(a) TMTI∞

c0,α c1,α c2,α
α = 0.01 −20.3067 8.6029 0.3322
α = 0.05 −17.3381 7.0808 0.2284
α = 0.10 −14.5814 6.0949 0.1965

(b) tTMTI∞ (τ = α)

c0,α c1,α c2,α
α = 0.01 0.4305 −0.7003 0.2917
α = 0.05 −2.6523 0.8844 0.1777
α = 0.10 −3.2488 1.3951 0.1267

Table 2.1: Estimated coefficients for the β(1, c0,α + c1,α logm + c2,α(logm)2)
approximations of TMTI∞ (a) and tTMTI∞ (b). The estimates are based on
the data displayed in Figure 2.2.

which we see fit the data well. The estimated values of c0,α, c1,α and c2,α are
displayed in Tables 2.1a and 2.1b.

We evaluate the performance of the approximations γ̂ in two ways. First,
we bootstrap γ functions to high precision (B = 106 bootstrap samples) for
m ∈ {102, . . . , 106} and consider the curves (γ(x), γ̂(x)) for x ∈ [0, γ−1(2α)];
the results are displayed in Figure 2.3. Here, we see that the approximations
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Figure 2.3: Estimated curves (γ(x), γ̂(x)) for x ∈ [0, γ−1(2α)], where γ̂(x) :=
β(1, c0,α + c1,α logm+ c2,α(logm)2)(x) and c0,α, c1,α, c2,α are, for each config-
uration, as displayed in Table 2.1. Each estimate of γ is based on B = 106

bootstrap samples. Generally, every γ̂ is almost equal to γ for x ∈ [0, γ−1(α)]
(except for tTMTI∞, α = 0.01) but becomes larger than γ for x > γ−1(α).
The dashed line is the identity line x 7→ x.

are almost equal to the respective γ functions for x ∈ [0, γ−1(α)], in all cases
except for tTMTI∞ with m = 100 and α = 0.01 = τ . Additionally, we
generally see that γ̂(x) ≥ γ(x) for x > γ−1(α). This implies that using γ̂
instead of γ leads to the same rejections and non-rejections as when using γ.
Furthermore, we see that p-values obtained by γ̂ have the same interpretation
as those obtained by γ, provided that the p-values are below α.

Second, we estimate the Type I error when rejecting at level α using γ̂
instead of γ, i.e., the quantity γ(γ̂−1(α)). We do this for small m (here,
m ∈ {15, . . . , 500} with each point repeated five times) and large m (here,
m ∈ {29, ⌊29.5⌋, . . . , 220} with each point repeated 50 times) separately. The
results are displayed in Figures 2.4a and 2.4b, respectively. These figures show
that the approximations generally do not increase the Type I error, except
when m is sufficiently low (m < 100 for TMTI∞ and m < 200 for tTMTI∞).

Overall, we find that it is possible to approximate the lower α-tail of the
TMTI∞ and tTMTI∞ CDFs well by using the CDF of a β(1, c0,α+c1,α logm+
c2,α(logm)2)-distribution, with values of c0,α, c1,α, c2,α listed in Table 2.1. We
have tested these approximations for a wide range of m values and found the
approximations to work well for all tried m ≥ 100 or m ≥ 200 for TMTI∞ and
tTMTI∞, respectively. Thus, it is reasonable to assume that these approxima-
tions also work well for anym between those tested. This yields a considerable
speedup, as one no longer needs to bootstrap γ prior to computing the TMTI
test.
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(a) Small m.
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(b) Large m.
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Figure 2.4: Estimates of the Type I error when rejecting at significance level
γ̂−1(α) instead of α, as described in Section 2.5.1. If γ̂ is a good approximation
of γ in a neighborhood around α, then γ(γ̂−1(α)) ≈ α, meaning that the
Type I error is still controlled when using γ̂ instead of γ. This is generally
the case when m ≥ 100 for TMTI∞ and m ≥ 200 for tTMTI∞. (a): m ∈
{15, . . . , 500}. (b): m ∈ {29, ⌊29.5⌋, . . . , 220}. In (b), the x-axis is shown on
log2-scale. Overlaid lines are loess smoothers.

2.5.2 Rank truncated TMTI

In this section, we argue that the CDF of rtTMTI∞ is approximately invariant
to the number of independent tests for sufficiently small K. That is, for
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K,m1,m2 ∈ N with K < m1 < m2, we argue that for K ≤ m1/4

∀x ∈ [0, 1] : γm1
∞,K(x) ≈ γm2

∞,K(x),

where γm1
∞,K and γm2

∞,K denote the CDFs of rtTMTI for m1 and m2, respec-
tively. This implies that one can apply rtTMTI∞ in a CTP without having
to bootstrap the CDF at all layers. Instead, one simply bootstraps the CDF
at a single layer, which can then be reused at all other layers, provided that
K is sufficiently small relative to the smallest layer it is used at.

Letting Pm1

(i) and Pm2

(i) denote the ith order statistic of m1 and m2 i.i.d.

U(0, 1) variables, respectively, the intuition behind this approximation is as
follows. For i ≤ K the transformed p-values β(i,m1+1−i)(Pm1

(i) ) and β(i,m2+

1 − i)(Pm2

(i) ) have the same marginal distributions. Thus, the distribution of
the minima

Zmj := min
i≤K

β(i,mj + 1− i)(Pmj

(i) ), j ∈ {1, 2},

differ only by the dependency structures of

(β(1,m1)(P
m1

(1) ), . . . , β(K,m1 + 1−K)(Pm1

(K)))

and
(β(1,m2)(P

m2

(1) ), . . . , β(K,m2 + 1−K)(Pm2

(K))).

Informally, if K is sufficiently small relative to m1, then differences in de-
pendency structure have little opportunity to affect the distribution of the
minimum.

We verify this empirically by simulating Zm1 and Zm2 for

(m1,m2) ∈ {(10i, 10j) | i ∈ {2, 3, 4}, j ∈ {i+ 1, . . . , 5}}

and
K ∈ {⌈0.05m1⌉, ⌈0.10m1⌉, ⌈0.25m1⌉}.

The results are displayed in Figure 2.5. From this figure, we see that no matter
the choices ofm1 andm2, the distributions of Z

m1 and Zm2 are approximately
equal for K ≤ ⌈0.1m1⌉. For K = ⌈0.25m1⌉, there appears to be a slight
difference between the two distributions.

Next, we consider the curves (γm2
∞,K(x), γm1

∞,K(x)) for

m1 ∈ {102, 103}, m2 = 106

and
K ∈ {⌈0.05m1⌉, ⌈0.10m1⌉, ⌈0.25m1⌉, ⌈0.5m1⌉}.

Figure 2.6 contains plots of these curves, zoomed to a typical region of interest,
(0, 0.1)2. For bothm1 = 102 andm1 = 103, we see that there is little to no dif-
ference between γm1

∞,K and γm2
∞,K when K ≤ ⌈0.10m1⌉. When K = ⌈0.25m1⌉,
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Figure 2.5: Dodged histograms of Zm1 and Zm2 for different choices of
K ∈ {⌈0.05m1⌉, ⌈0.10m1⌉, ⌈0.25m1⌉}. The overlaid lines are Gaussian ker-
nel density estimates. Solid line: m1. Dashed line: m2. Note that the dashed
line is barely visible, indicating that the density estimates are equal for m1

and m2. Generally, the distributions of Zm1 and Zm2 are approximately equal
for K ≤ ⌈0.1m1⌉, with slight differences appearing at K = ⌈0.25m1⌉. Each
histogram contains B = 104 samples.
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there is a slight tendency that γm1
∞,K(x) > γm2

∞,K(x) for γm2
∞,K(x) ≤ 0.05. How-

ever, this difference is sufficiently small that it may simply be by chance. For
K = ⌈0.5m1⌉, the tendency that γm1

∞,K > γm2
∞,K is more pronounced.

In summary, we find that the CDFs γm1
∞,K and γm2

∞,K are approximately
equal when K ≤ ⌈0.1m1⌉ (and possibly K ≤ ⌈0.25m1⌉), no matter the choice
of m1 < m2. This implies that using either of the two CDFs will yield the
same p-values. For larger K, we find that using γm1

∞,K will yield slightly larger
p-values than using γm2

∞,K . Thus, if applying rtTMTI∞ with a large K, one
can use γm1

∞,K in place of γm2
∞,K , which will then be conservative.

2.6 On consonance and closed testing

It is commonly accepted that CTPs are better than other multiple testing
procedures. However, we have thus far not discussed the question of what
they are better at. Generally, CTPs have higher power to detect false hy-
potheses while controlling the FWER (Grechanovsky and Hochberg, 1999) –
but that does not mean, that all CTPs have equal power (as seen in Paper A,
Section 8). For example, consider testing the hypothesis H(1) corresponding
to the smallest observed p-value in the closure of m hypotheses. If using, e.g.,
TMTI∞ as local test, we can compute the adjusted p-value of H(1) by testing
the hypotheses H(1,m), H(1,m−1,m), . . . ,H(1,...,m). Now, suppose that H(1) is
the only false hypothesis. In that case, it is likely that the TMTI∞ statistic
for the hypothesis H(1,m−i,...,m) will be the first of the transformed p-values.
By Paper A, Lemma 1, the procedure will then have lower power to detect
false hypotheses compared to rtTMTI with K = 1 – i.e., a Šidák correction
(which has slightly higher power than a Bonferroni correction). In such a case,
applying TMTI∞ in a CTP will likely not reject anything, whereas a Bonfer-
roni correction might. This may seem to conflict with the notion, that CTPs
have higher power than non-closed procedures. However, the Bonferroni cor-
rection itself is closed: rejecting H(1,...,m) using a Bonferroni test implies that
any hypothesis H(1,m−i,...,m) is also rejected by a Bonferroni test.2

Not only can we outline examples in which TMTI will not perform as
well as other procedures when used in closed testing, we know that there
cannot exist any scenario in which it performs strongly better than all other
CTPs, with respect to FWER control. The reason behind this is that TMTI
is dissonant :

Definition 2.1. Let HJ be a joint hypothesis. A CTP is said to be consonant
if

HJ rejected =⇒ ∃J ′ ⊊ J : HJ ′
rejected.

A CTP that is not consonant is dissonant.

2In fact, using p 7→ |p|minp (i.e., the Bonferroni test) as the local test in a CTP is
equivalent to Holm-correcting the marginal p-values.
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Figure 2.6: Estimated curves (γm2
∞,K(x), γm1

∞,K(x)), zoomed to the re-

gion (0, 0.1)2, for m1 ∈ {102, 103}, m2 = 106 and K ∈
{⌈0.05m1⌉, ⌈0.10m1⌉, ⌈0.25m1⌉, ⌈0.5m1⌉}. Each curve is based on B = 106

bootstrap samples. When K ≤ ⌈0.1m1⌉, there is no discernible difference be-
tween γm1

∞,K and γm2
∞,K , and when K = ⌈0.25m1⌉ there is a slight difference.

When K = ⌈0.5m1⌉, we see that using γm1
∞,K in place of γm2

∞,K will be conser-
vative.
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Romano et al. (2011) show that any dissonant CTP can be replaced by a
consonant CTP which has at least as high power to reject marginal hypotheses
as the dissonant CTP. Thus, in any scenario, a direct application of TMTI
in a CTP cannot be more powerful than all other CTPs. The reader may
then question why we develop such a test. First, while it can not be more
powerful than the best consonant CTP, it is possible that it is as powerful as
the best consonant CTP. Second, as described in Goeman and Solari (2011)
and showcased in Paper A, Section 8, dissonant procedures provide benefits
in other areas than the rejection of marginal hypotheses. For example, we
find in Sections 2.7.1 and 2.7.2 that TMTI∞ performs well with respect to
generating confidence sets for the number of false hypotheses in various rejec-
tion sets. Thus, the choice of procedure should depend on what one wishes
to accomplish. For instance, if the goal is to reject as many false marginal
hypotheses as possible with FWER control, and false hypotheses are sparse,
then TMTI∞ is not a good choice, even if signals are strong. Instead, one
can employ methods that are invariant to the proportion of false hypotheses
– e.g., a Bonferroni correction or, to some extent, CCT. However, if the num-
ber of false hypotheses is high relative to the total number of hypotheses, a
mixed CTP may be able to identify more false hypotheses (see Paper A, Sec-
tion 8) than the Bonferroni correction. If the goal is not to identify as many
false hypotheses as possible, but rather to identify sets in which the relative
occurrence of false hypotheses is high, TMTI∞ is well suited.

2.7 Applications of TMTI to real data

Here, we consider two specific applications of TMTI and closed testing to
real datasets. We analyze these datasets, not to draw inference about the
subject matter of the data, but to compare the findings when applying different
local tests in a CTP. Thus, reported significance levels are invalid if selecting
the procedure which yields the best results. The results of each procedure
should therefore be interpreted as what we would have concluded, had we
only analyzed the data using that procedure.

First, we consider a data set studied in Rasmussen et al. (2022). This
data has kindly been supplied by Jacob Agerbo Rasmussen, PhD student at
the Section for Hologenomics, University of Copenhagen. Second, we consider
an unpublished dataset, supplied by Jaelle Brealey (postdoctoral researcher,
Department of Natural History, Norwegian University of Science and Technol-
ogy) and Morten Tønsberg Limborg (Associate Professor, Section for Hologe-
nomics, University of Copenhagen). This data set was generated as part of
the EU Horizon 2020 project HoloFish. In the first data set, from Rasmussen
et al. (2022), the number of hypotheses (m = 569) is sufficiently low that we
can quickly bootstrap the CDFs required to analyze the data using TMTI.
For the second data set, we use the approximations proposed in Section 2.5.
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Figure 2.7: Histograms of the p-values from the F -tests described in Sec-
tion 2.7.1 with (yellow) and without (blue) stepwise model selection. If no
variables are selected in the stepwise model selection, we set the p-value to
one. The stepwise model selection introduces a downward bias of the p-values,
meaning that the marginal Type I error is no longer controlled.

2.7.1 Bacterial Associated Metabolites – data from
Rasmussen et al. (2022)

Rasmussen et al. (2022) investigate the association between bacterial Am-
plicon Sequence Variants (ASVs) and metabolites in commercially available
rainbow trout. The data set consists of samples from n = 26 rainbow
trout, assumed to be independently sampled. Each sample consists of ob-
servations of m = 569 metabolites (Y1,i, . . . , Ym,i)

n
i=1 and six bacterial ASVs

(X1,i, . . . , X6,i)
n
i=1. To identify Bacterial Associated Metabolites (BAMs) –

metabolites which are associated with at least one of the six bacterial ASVs –
the authors consider, for each j ∈ [m], the linear regression of the metabolite
Yj onto the six ASVs X1, . . . , X6, i.e.,

∀i ∈ [n] : Yj,i = βj,0 +
6∑

k=1

βj,kXk,i +Nj,i, where (Nj,i)
n
i=1

i.i.d.∼ N(0, σ2).

The authors then perform model selection by stepwise minimization of the
Akaike Information Criterion (AIC) and perform an F -test for the hypothesis
that all remaining coefficients are zero. However, we note that this introduces
a downward bias of the computed p-values (see Figure 2.7). We therefore
deviate from the procedure of Rasmussen et al. (2022) and instead compute
an F -test for the hypothesis Hj,0 : βj,1 = · · · = βj,6 = 0, i.e., we omit the
model selection step. Rasmussen et al. (2022) find four BAMs after Bonferroni
correcting. No BAMs are found after Bonferroni correcting when omitting the
model selection step.

It is reasonable to assume that the metabolites Y1,·, . . . , Ym,· are mutually
independent (J. Rasmussen, personal communication). Hence, under any joint
null HJ

0 :=
⋂

j∈J Hj,0, the F -tests of the marginal hypotheses (Hj,0)j∈J are
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independent. Thus, we can thus apply TMTI∞ to this data. To do this,
we bootstrap the relevant CDFs (with B = 105 bootstrap samples) for joint
hypotheses of size m > 50 and use their closed-form expressions (see Paper
A, Section 3.1) when m ≤ 50.

We first test the global null hypothesis H
[m]
0 and find that this is rejected

at level α = 0.05 (p < 10−5). Thus, we find evidence that at least one
metabolite is associated with at least one ASV. Next, we compute adjusted p-
values for all marginal hypotheses and find that none of them can be rejected
at level α = 0.05. We then compute confidence sets (CSs) for the number of
false hypotheses and find that: {232, . . . , 569} is a 95% CS for the number
of false hypotheses among all 569 hypotheses; {52, . . . , 100} is a 95% CS for
the bottom 100 hypotheses3; {11, . . . , 25} is a 95% CS for the bottom 25
hypotheses; and {3, . . . , 10} is 95% CS for the bottom 10 hypotheses. Thus,
we conclude, for example, that more than every other hypothesis among the
bottom 100 is false. This information can, for example, be used to guide a new
study in which only those 100 SNPs are investigated, possibly with a larger
sample size.

For comparison, we go through the same analysis as above for different
choices of local tests and different significance levels, α ∈ {0.01, 0.05, 0.10}.
Here, we compare to tTMTI∞ (with τ = α), a Fisher Combination Test (FCT)
and a Cauchy Combination Test (CCT). In all cases, we find that no marginal
hypotheses can be rejected while controlling the FWER at level α. The results
are displayed in Table 2.2. From this table, we see a stark contrast in the
results depending on the choice of local test. For example, when α = 0.05,
TMTI∞ finds at least 232 false hypotheses among all tested, while CCT is
unable to find any. Surprisingly, tTMTI∞ finds far fewer false hypotheses
than TMTI∞ in any rejection set, despite having power similar to TMTI∞ in
the simulation study in Paper A, Section 4. However, in Paper A, Section 4
we considered only cases where up to 10 percent of the hypotheses are false –
here, more than 40 percent of the hypotheses are false, judging by TMTI∞.
Furthermore, when computing CSs for the number of false hypotheses among
all hypotheses, we gradually remove more and more of the smallest p-values
as we move along in the procedure. A possible explanation is that tTMTI∞
does not include p-values that are close to significant and may therefore lose
power faster than TMTI∞ when removing the smallest p-values. Based on
this observation, it is natural to ask what the results would have been had
we chosen a larger τ . We have therefore repeated the tTMTI∞ analyses for
τ ∈ {2α, 5α}, and the results are displayed in Table 2.3. Interestingly, the
performance generally increases when using a larger τ , except in the case
where we consider only the bottom ten hypotheses. However, in all cases
tTMTI∞ continues to be outperformed by TMTI∞. Returning to the results
in Table 2.2, we see that FCT also finds far fewer false hypotheses compared to

3‘Bottom 100’ here meaning the hypotheses which gave rise to the smallest 100 p-values.
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(a) α = 0.01

Method
CS for number of false hypotheses among:

All p-values Bottom 100 Bottom 25 Bottom 10
TMTI∞ {203, . . . , 569} {45, . . . , 100} {8, . . . , 25} {2, . . . , 10}
tTMTI∞ {2, . . . , 569} {2, . . . , 100} {2, . . . , 25} {0, . . . , 10}
FCT {74, . . . , 569} {19, . . . , 100} {0, . . . , 25} {0, . . . , 10}
CCT {0, . . . , 569} {0, . . . , 100} {0, . . . , 25} {0, . . . , 10}

(b) α = 0.05

Method
CS for number of false hypotheses among:

All p-values Bottom 100 Bottom 25 Bottom 10
TMTI∞ {232, . . . , 569} {52, . . . , 100} {11, . . . , 25} {3, . . . , 10}
tTMTI∞ {17, . . . , 569} {17, . . . , 100} {6, . . . , 25} {2, . . . , 10}
FCT {84, . . . , 569} {24, . . . , 100} {0, . . . , 25} {0, . . . , 10}
CCT {0, . . . , 569} {0, . . . , 100} {0, . . . , 25} {0, . . . , 10}

(c) α = 0.10

Method
CS for number of false hypotheses among:

All p-values Bottom 100 Bottom 25 Bottom 10
TMTI∞ {247, . . . , 569} {56, . . . , 100} {12, . . . , 25} {4, . . . , 10}
tTMTI∞ {42, . . . , 569} {35, . . . , 100} {8, . . . , 25} {3, . . . , 10}
FCT {89, . . . , 569} {26, . . . , 100} {0, . . . , 25} {0, . . . , 10}
CCT {2, . . . , 569} {2, . . . , 100} {0, . . . , 25} {0, . . . , 10}

Table 2.2: Summary of the analyses of the data described in Section 2.7.1
as performed using different local tests at different significance levels; (a):
α = 0.01; (b): α = 0.05; (c): α = 0.10. For tTMTI∞, we set τ = α. ‘Bottom
100’ refers to the hypotheses that generated the smallest 100 p-values, and
similarly for 25 and 10. In all cases, no marginal hypothesis could be rejected
while controlling the FWER. No matter the significance level, we see that
TMTI∞ finds the largest number of false hypotheses among any rejection set.

TMTI∞, but generally more than when using tTMTI∞. Lastly, using CCT,
we do not find any false hypotheses, except when α = 0.10, in which case
we find at least two false hypotheses among the bottom 100. This is because
CCT does not have the power to reject the global hypothesis (p = 0.08),
except when α = 0.10. This is in accordance with Paper A, Section 4, where
we saw that CCT has low power in scenarios where signals are dense but weak.

To further compare the results, we can also apply methods that aim at
estimating the proportion of true hypotheses π0, and use these to estimate
the number of false hypotheses as (1 − π̂0)m. Many methods for estimating
π0 have been suggested (see, e.g., Benjamini and Hochberg, 2000; Storey and
Tibshirani, 2003; Langaas et al., 2005; Meinshausen and Rice, 2006; Nettle-
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Method
CS for number of false hypotheses among:

All p-values Bottom 100 Bottom 25 Bottom 10
α = 0.01, τ = 2α {5, . . . , 569} {5, . . . , 100} {4, . . . , 25} {0, . . . , 10}
α = 0.01, τ = 5α {13, . . . , 569} {13, . . . , 100} {4, . . . , 25} {0, . . . , 10}
α = 0.05, τ = 2α {39, . . . , 569} {33, . . . , 100} {6, . . . , 25} {2, . . . , 10}
α = 0.05, τ = 5α {99, . . . , 569} {39, . . . , 100} {8, . . . , 25} {1, . . . , 10}
α = 0.10, τ = 2α {95, . . . , 569} {41, . . . , 100} {9, . . . , 25} {2, . . . , 10}
α = 0.10, τ = 5α {173, . . . , 569} {48, . . . , 100} {10, . . . , 25} {2, . . . , 10}

Table 2.3: Summary of the analysis of the data described in Section 2.7.1 when
using tTMTI∞ as local test with either τ = 2α or τ = 5α, for significance
levels α{0.01, 0.05, 0.10}. ‘Bottom 100’ refers to the hypotheses that generated
the smallest 100 p-values, and similarly for 25 and 10.

ton et al., 2006; Pounds and Cheng, 2006; Jiang and Doerge, 2008; Wang
et al., 2011). While many of these estimators are constructed to be used in
plugin-estimators of the FDR, they can, nevertheless, be applied directly. The
methods can only be directly used to estimate the number of false hypotheses
among the full set of hypotheses and not among subsets of hypotheses (as
one can do with CTPs).4 Thus, we mainly apply these methods to serve as
a sanity check for the results displayed in Table 2.2. As noted in Goeman
and Solari (2011), the methods for estimating π0 that we apply here are best
compared to the 1− α confidence sets generated above when α = 0.5. These
confidence sets are listed in Table 2.4a.

The R package cp4p (Gianetto et al., 2019) implements a variety of meth-
ods to estimate π0, which we apply to the 569 observed p-values. For methods
that require tuning parameters, we use the default settings of the cp4p pack-
age. The results are displayed in Table 2.4b. Generally, most methods for
estimating π0 agree that a large proportion of the hypotheses are false. Five
methods estimate between 50% and 60% of the hypotheses being false, and one
method estimates 25% percent of the hypotheses being false. Two methods
estimate a very low proportion of false hypotheses (1% and 6%, respectively).
The authors in Benjamini and Hochberg (2000) argue that the estimator is
conservatively biased, i.e., π̂0 > π0, meaning that the corresponding estimator
of the number of false hypotheses is biased to be lower than the actual number
of false hypotheses. This potentially explains the large difference. The esti-
mator proposed in Wang et al. (2011) depends on three tuning parameters,
for which we have used the default settings. However, the default parameters
may not be appropriate for this particular data. Indeed, by modifying the
tuning parameters slightly, we were able to obtain estimates of π0 ranging
from 0.3 to 0.97, with most estimates falling in the range 0.8 to 0.95 (not

4The reason for this is that confidence sets generated by CTPs hold simultaneously for
all choices of rejection sets. In contrast, applying the same estimator π̂0 to multiple subsets
and selecting the one which gives the best results induces a selection bias.
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(a)

Method 50% confidence set

TMTI∞ {299, . . . , 569}
tTMTI∞ {202, . . . , 569}
FCT {110, . . . , 569}
CCT {26, . . . , 569}

(b)

Method π̂0 1− π̂0 (1− π̂0)m
Storey and Tibshirani (2003) 0.39 0.61 347.91
Storey et al. (2004) 0.43 0.57 322.77
Langaas et al. (2005) 0.45 0.55 315.18
Jiang and Doerge (2008) 0.46 0.54 307.40
Nettleton et al. (2006) 0.50 0.50 285.50
Pounds and Cheng (2006) 0.74 0.26 150.05
Wang et al. (2011) 0.94 0.06 34.99
Benjamini and Hochberg (2000) 0.99 0.01 7.99

Table 2.4: (a): 50% confidence sets for the number of false hypotheses among
all 569 tested hypotheses. For tTMTI∞ we have used τ = 0.05. (b): The esti-
mated proportion of true null hypotheses π̂0 and the corresponding estimates
of the proportion and number of false hypotheses, respectively, when applying
different methods for estimating π0. The estimates were generated using the
R package cp4p (Gianetto et al., 2019). Most methods find that somewhere
between 40% and 50% of the hypotheses are false, one finds 26% to be false,
and two methods estimate considerably lower proportions.

shown). From this, we conclude two things. First, the performance of each
estimator varies considerably, just as the performance of each method in Ta-
bles 2.2 and 2.4a varied considerably by the choice of local test. Second, most
estimators find more false hypotheses than the best performing method in
Table 2.4a, TMTI∞. However, many estimators in Table 2.4b do not provide
true confidence bounds, contrary to the confidence sets generated by CTPs.

2.7.2 Single Nucleotide Polymorphism associated gut
bacteria – data from HoloFish

In this section, we analyze an unublished data set from the EU Horizon 2020
project HoloFish. As part of this study, nine data sets were generated, each
investigating possible associations between Single Nucleotide Polymorphisms
(SNPs) and the abundance or presence of nine different bacteria found in
the gut microbiome of 463 harvest-aged farmed Atlantic Salmon. Here, we
consider just one of these data sets: presence/absence of the bacteria Photo-
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bacterium iliopiscarium. This data set was selected by Jaelle Braelly (post-
doctoral researcher, Department of Natural History, Norwegian University of
Science and Technology) as the ‘biologically most interesting data set’. The
data set consists of 998,475 p-values – one for each SNP tested.

These p-values are unlikely to be independent due to linkage disequilib-
rium (LD) (see, e.g., Slatkin, 2008), and thus it is unreasonable to apply a
TMTI test directly. Since LD is a local phenomenon (Dudbridge and Koele-
man, 2003), it is possible to filter the p-values such that the remaining are
approximately independent. This filtering is done by only keeping p-values
for SNPs that are sufficiently many base pairs apart. Here, it is reasonable to
assume independence of p-values corresponding to SNPs that are at least 1,000
base-pairs apart within each chromosome (Shyam Gopalakrishnan, personal
communication).5 Thus, we keep only p-values for SNPs that lie at least 1,000
base-pairs apart, starting with the first observation in each chromosome. This
approach has the advantage that we can apply methods, such as TMTI, that
rely on independence. However, we may also remove potential findings if the
p-values we remove are from false hypotheses. On the other hand, filtering
might also increase power if – by chance – the p-values removed are from true
hypotheses. In this case, it may be easier to detect the false hypotheses among
the reduced set of hypotheses. An alternative approach is to use the full set of
p-values and apply a method like CCT, which satisfies the same CTP short-
cut as TMTI and does not require independence. However, CCT cannot be
applied to this particular data, as there are p-values that are exactly one, and
the CCT test statistic is therefore undefined.

After filtering, the data contains 523,196 p-values. An overview of these p-
values is provided in Figure 2.8. In non-human GWAS studies, such as this, it
is common that signals are sparse and weak, and the histogram in Figure 2.8a
is in line with this. Here, there is a slight over-representation of p-values in
the left-most half of the histogram, but this appears to consist mostly of near-
significant (at level α = 0.05) p-values. In the Manhattan plot in Figure 2.8b,
we see that there are many signal spikes, but only three of these are strong
enough to be rejected by a Bonferroni correction.

As discussed in Section 2.6, CTPs with local tests lacking power in sparse
scenarios are unlikely to produce any significant findings with FWER con-
trol. Indeed, when applying a Bonferroni (or Šidák) correction, three of the
m = 523,196 adjusted p-values are below the significance level α = 0.05. In
contrast, no adjusted p-values are below α when using a CTP with either
TMTI∞, tTMTI∞ (τ = 0.05) or FCT. When applying rtTMTI∞ (K = 5),
we can reject two marginal hypotheses. Thus, when the number of false hy-
potheses is low relative to the total number, the value of such tests is found
in their dissonant rejections.

5In case this filtering is insufficient to ensure independence, we compare only to other
methods that assume independence, so that no method has an unfair advantage over another.
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(a) Histogram of the filtered p-values.
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(b) Manhattan plot of the filtered p-values.

Figure 2.8: An overview of the p-values analyzed in Section 2.7.2. (a): We
see that there is an overweight of small p-values, but most of these are larger
than the typical 5% significance level. (b): The dotted line represents the
Bonferroni significance level on − log10 scale. Points marked by ‘×’ can be
rejected with FWER control when Bonferroni (or Šidák) correcting. Points
marked by either ‘×’ or ‘+’ can be rejected by TMTI∞ and tTMTI∞ (τ =
0.05) while controlling the k-FWER at k = 5. Points marked by either ‘×’,
‘+’ or ‘∗’ can be rejected by rtTMTI∞ (K = 5) with k-FWER control at
k = 5. The labels represent the SNP positions relative to their chromosomes.



2.8. An overview of the R package TMTI 73

Method
No. of rejections at k-FWER control:
k = 1 k = 2 k = 3 k = 4 k = 5

TMTI∞ 0 3 8 12 14
tTMTI∞ 0 3 10 12 14
rtTMTI∞ 2 9 13 16 19
FCT 0 0 0 0 0

Table 2.5: Attempted methods and the number of hypotheses in Section 2.7.2
that can be rejected by each, when controlling the k-FWER at level α = 0.05
for different k. For tTMTI∞, we used τ = 0.05. For rtTMTI∞, we used
K = 5. For comparison, a Bonferroni correction rejects three hypotheses.

First, we find the largest sets that can be rejected with k-FWER for dif-
ferent k. Due to the computational complexity of finding these sets, we do
this only up to k = 5. The findings are displayed in Table 2.5. From this
table, we see that truncated methods fare better than non-truncated methods
for controlling the k-FWER for small k.

Changing tack, we compute confidence sets for the number of false hy-
potheses for pre-specified rejection sets instead. The results are displayed in
Table 2.6. Here, we see that TMTI∞ is generally best at generating narrow
confidence sets for the number of false hypotheses in rejection sets. That is,
TMTI∞ finds more false hypotheses than the other methods, when consider-
ing at least the 25 smallest p-values. The truncated procedures, tTMTI∞ and
rtTMTI∞, find very few false hypotheses among the full set of hypotheses.
However, when considering smaller subsets, the relative drop in findings is
lower for tTMTI∞ and rtTMTI∞ compared to TMTI∞ and FCT.

In summary, Tables 2.5 and 2.6 indicate that TMTI∞ is generally well
suited for finding as many as possible false hypotheses among rejection sets.
However, TMTI∞ is outperformed by rtTMTI∞ when the considered sets of
hypotheses are sufficiently small. Though none of the applied methods can
reject as many marginal hypotheses with FWER control as a Bonferroni/Šidák
correction, they are useful for finding large rejection sets with many false
hypotheses.

2.8 An overview of the R package TMTI

This section contains a discussion of some of the practical considerations that
went into the implementation of the TMTI family of tests. In addition, we
give a brief description of the R package TMTI (Mogensen, 2021) (available
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Method
CS for number of false hypotheses among:

All p-values Bottom 1,000 Bottom 100 Bottom 25
TMTI∞ {17,762, . . . ,m} {156, . . . , 103} {45, . . . , 102} {16, . . . , 25}
tTMTI∞ {145, . . . ,m} {145, . . . , 103} {46, . . . , 102} {17, . . . , 25}
rtTMTI∞ {15, . . . ,m} {15, . . . , 103} {15, . . . , 102} {15, . . . , 25}
FCT {947, . . . ,m} {0, . . . , 103} {0, . . . , 102} {0, . . . , 25}

Table 2.6: Attempted methods and 95% confidence sets for the number of
false hypotheses in different subsets. For tTMTI∞, we used τ = 0.05. For
rtTMTI∞, we used K = 5. Here, m = 523,196. ‘Bottom 1,000’ refers to the
hypotheses that generated the smallest 1,000 p-values, and similarly for 100
and 25.

on CRAN and https://github.com/PhillipMogensen/TMTI).6,7 This package
was developed to accompany Paper A. The core of the package consists of
nine functions: TMTI, adjust *, TestSet *, TopDown * and kFWER *, where *
means either TMTI or LocalTest. The * TMTI functions are simply wrappers
around the * LocalTest functions, where the local test of choice is a TMTI
test. In the * LocalTest functions, the user can supply their own local test.
The function TMTI computes a single TMTI test given input p-values. The
functionalities of the remaining functions are summarized in Table 2.7.

Throughout this section, we compare the computation times of different
implementations. All computations were performed using an Apple M1 Pro
3.2GHz CPU. A table summarizing all the comparisons can be found in Ta-
ble 2.8.

2.8.1 Optimizing the computation of TMTI statistics

In general, computing the TMTI statistic is not problematic when computing
a single test. For instance, given a vector of p-values p, the test statistic for
TMTI (truncated or not) can for n < m be implemented in R as:

1 Z_R_loop = function (

2 p, # A pre-sorted, pre-truncated vector of p-values

3 n, # type of minimum to consider

4 m # total number of p-values prior to truncation

5 ) {

6 PreviousY = 1

7 m_p = length(p)

6At the time of submission of this thesis, an updated version of TMTI has been submitted
to CRAN, but not yet published. See the GitHub repository of the package for the most
recent version.

7A frozen copy of the GitHub repository TMTI is available at
https://github.com/PhillipMogensen/TMTI FrozenCopy. This frozen instance reflects
the status of the TMTI package at the time this thesis was submitted.

https://github.com/PhillipMogensen/TMTI
https://github.com/PhillipMogensen/TMTI_FrozenCopy
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Function Purpose

adjust * Computes adjusted p-values for all marginal
hypotheses, or optionally only for the marginal
hypotheses that can be rejected with FWER
control. If direction = ’binary’ is speci-
fied, the function only identifies the number of
hypotheses that can be rejected with FWER
control, and not the actual p-values.

TestSet * Tests a user-specified joint or marginal hypoth-
esis in a CTP, i.e., it computes an adjusted p-
value for a user-specified set.

TopDown * Uses a binary search to compute a confidence
set for the number of false hypotheses in a user-
specified rejection set. This function is named
TopDown * purely for historical reasons. When
we first implemented it, we did not use a binary
search, but instead started from the largest
set and iteratively checked smaller and smaller
sets. Hence, the name TopDown *

kFWER * Computes the largest set of marginal hypothe-
ses that can be rejected with k-FWER control
for a user-supplied k.

Table 2.7: Purposes of the main functions of the R package TMTI. All functions
are efficiently implemented in C++.

8 out = -1

9

10 # This keeps track of the leading n Y_i

11 LeadingY = pbeta(p[2:(n + 1)],

12 2:(n + 1),

13 m + 1 - 2:(n + 1))

14

15 for (i in 1:(m_p - n)) {

16 Y = pbeta(p[i], i, m + 1 - i)

17 LeadingMin = min(LeadingY)

18 # If Y is smaller than the previous Y and

19 # smaller than the following n, return Y

20 if ((Y < PreviousY) &

21 (Y < LeadingMin)) {

22 out = Y

23 break

24 }

25 # If not, update the leading n Y_i
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26 PreviousY = Y

27 LeadingY = c(LeadingY[-1], pbeta(p[i + n + 1],

28 i + n + 1,

29 m + 1 - (i + n + 1)))

30 }

31

32 # If no minimum is found, select the minimum

33 # of the last n Y_i

34 if (out == -1)

35 out = LeadingMin

36

37 return(out)

38 }

In the above, p is pre-sorted and pre-truncated (if applicable) and m is the
number of p-values prior to truncation (m = m p if no truncation is performed).
The general case is handled in the package TMTI. If n is sufficiently large,
Z R loop is slower than using a version where Y is computed up-front, because
the function stats::pbeta is a vectorized C++ function, and therefore faster
than iteratively computing each element in R:

1 Z_R_vectorized = function (p, n, m) {

2 Y = pbeta(p, 1:m, m:1)

3 PreviousY = 1

4 m_p = length(p)

5 out = -1

6

7 for (i in 1:(m_p - n)) {

8 if ((Y[i] < PreviousY) &

9 (Y[i] < min(Y[(i + 1):(i + n)]))) {

10 out = Y[i]

11 break

12 }

13 PreviousY = Y[i]

14 }

15

16 if (out == -1)

17 out = min(Y[(m_p - n + 1):m_p])

18

19 return(out)

20 }

Note that if n = m − 1, these functions return minY , and therefore finds
the (rt/t)TMTI∞ statistic. In the case n = ∞ (or equivalently n ≥ m − 1),
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it easier and more efficient (because we avoid any explicit R loops and only
compute a single minimum) to implement this as:

1 Z_R_infty = function (p, m) {

2 m_p = length(p)

3 Z = min(stats::pbeta(p, 1:m, m:1))

4 return(Z)

5 }

These implementations are decently fast (see Table 2.8a). For example, when
applied to m = 106 random and pre-sorted p-values, it takes on average 59×
10−6 seconds to compute the TMTI statistic when n = 1 using Z R loop.
When n = 104, the computation time increases to 0.04 seconds, and at n = 105

it takes just under half a second. Going up to n = ∞, it takes on average
0.15 seconds to compute the TMTI statistic using Z R infty. While 0.15
seconds is not slow, per se, it is slow when viewed in the context of closed
testing, where the computation must be performed possibly billions of times
(although some of these computations will be for smallm and therefore faster).
However, for the case of n =∞, there is little optimization to be done, because
Z R infty relies only on the functions min and stats::pbeta, both of which
are already heavily optimized. However, we can slightly improve the runtime
if we implement it in C++ instead, using the Rcpp framework (Eddelbuettel
and François, 2011; Eddelbuettel, 2013; Eddelbuettel and Balamuta, 2018).
This reduction in runtime is possible because the minimum can be computed
in an online fashion, meaning that we can avoid a term that has linear time
complexity:8

1 double Z_C_infty(NumericVector p, int m) {

2 int m_p = p.size();

3 double currentMin = 1;

4 double currentY = 0;

5 for(int i = 0; i < m_p; i++) {

6 currentY = R::pbeta(p[i],

7 i + 1,

8 m + 1 - (i + 1),

9 true,

10 false);

11 if(currentY < currentMin){

12 currentMin = currentY;

13 }

14 }

15 return currentMin;

16 }

8The reader may also note that this implementation is more memory efficient than
Z R infty.
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The above implementation is on average around 7% faster than Z R infty for
m = 106 (see Table 2.8a). For smaller m, the reduction in computation speed
is smaller, but still positive (not shown). In the case of n < m − 1, there is
a considerable gain in computation speed by rewriting Z R loop in C++, as
shown below.9

1 double Z_C(NumericVector p, int n, int m) {

2 int m_p = p.size();

3 double Z = -1;

4 double PreviousY = 1;

5 double Y;

6 std::vector<double> LeadingY;

7 double LeadingMin;

8

9 // Initialize the minimum of the leading n Y_i

10 for (int i = 1; i <= n; i++) {

11 LeadingY.push_back(R::pbeta(p[i],

12 i + 1,

13 m - i,

14 true,

15 false));

16 }

17

18 // Iteratively compute Y_i and check if

19 // it is smaller than the leading n Y_i

20 for (int i = 0; i < m_p - n; i++) {

21 Y = R::pbeta(p[i], i + 1, m - i, true, false);

22 LeadingMin = *std::min_element(LeadingY.begin(),

23 LeadingY.end());

24 if ((Y < LeadingMin) & (Y < PreviousY)) {

25 Z = Y;

26 break;

27 }

28 LeadingY.erase(LeadingY.begin());

29 LeadingY.push_back(R::pbeta(p[i + 1 + n],

30 (i + 1 + n) + 1,

31 m - (i + 1 + n),

32 true,

33 false));

9For large n and m, the computation time can potentially be slightly reduced by re-
placing the vector LeadingY with a deque (double-ended queue) type and line 28 with
LeadingY.pop front();, as front-deletion has constant complexity for deque types but lin-
ear complexity for vector types. However, deque types have slightly worse performance on
some other operations, potentially negating the difference.



2.8. An overview of the R package TMTI 79

34 PreviousY = Y;

35 }

36

37 // If no minimum is found, select the

38 // minimum of the last n Y_i

39 if (Z == -1) {

40 Z = LeadingMin;

41 }

42

43 return Z;

44 }

The above implementation is almost six times faster than Z R loop for
m = 106 when n = 1, and ten times faster when n = 104 (see Table 2.8a). In
practice, one will rarely use n different from one or infinity, but these imple-
mentations allow for it. In addition, TMTI with n = 1 does not immediately
allow for shortcuts in CTPs (see Paper A, Remark 5), although there are
situations in which n = 1 satisfies a shortcut at some layers (see Section 2.9).
Overall, the gain in computational speed from these optimized implementa-
tions is therefore small (but not negligible).

2.8.2 Early stopping, search strategies and parallelization

Early stopping: Paper A, Lemma 2 implies that for some combination
tests, adjusted p-values formmarginal hypotheses can be obtained in quadrat-
ically many steps. However, in many cases, practitioners are only interested in
presenting adjusted p-values for the marginal hypotheses that can be rejected
while controlling the FWER. We can obtain adjusted p-values for only the
rejectable hypotheses by employing early stopping. Suppose we are given p-
values for m hypotheses and that R of these can be rejected while controlling
the FWER using some procedure satisfying the shortcut of Paper A. Paper
A, Lemma 2 implies that adjusted p-values for these R hypotheses can be
obtained in at most m(R + 1) steps, and that the R hypotheses that can be
rejected will be those corresponding to the R smallest marginal p-values. This
is because the adjusted p-value for H(R+1) will be: 1) larger than α, and 2)
smaller than the adjusted p-value of any hypothesis H(i), i > R + 1. Thus, if
starting from the smallest p-value, we can stop the adjustment procedure as
soon as we reach an adjusted p-value that is above α, knowing that we have
found all hypotheses that can be rejected with FWER control. This can be
specified in the TMTI package by supplying the argument EarlyStop = TRUE.

Search strategies: The method outlined above presumes that we always
start by adjusting the smallest p-value first. This does not need to be the case.
In particular, there are two other search strategies we can employ. However,
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using these strategies, we only identify the number of hypotheses that can be
rejected with FWER control.

First, if we reverse the search direction and instead start from the largest
p-value, we can stop the procedure the first time we encounter an adjusted
p-value that is below α. Once we encounter an adjusted p-value below α, we
know that all smaller marginal p-values have adjusted p-values below α as well.
This does not alter the computational complexity of the procedure. However,
it can be considerably faster than searching from the smallest p-value, if used
in combination with early stopping, and if sufficiently many hypotheses can be
rejected. This reversed search strategy can be specified in the TMTI package
by supplying the argument direction = ’decreasing’.

Second, we can employ a binary search to identify the smallest unadjusted
p-value that is above α. By the same argument as before, this allows us to
identify the number of hypotheses that can be rejected with FWER control.
In contrast to the decreasing strategy, a binary search does alter the com-
putational complexity. In particular, employing a binary search allows us to
identify the number of hypotheses that can be rejected with FWER control in
O(m logm) time.10 A binary search strategy can be specified by supplying the
argument direction = ’binary’. A simple example of how a binary search
can be implemented is given below. The function TestSet C, that is called in
line 16, is defined in Section 2.8.3.

1 int FWER_set_C (Function LocalTest,

2 std::vector<double> pvals,

3 double alpha,

4 int low,

5 int high) {

6 int mid;

7 mid = (low + high) / 2;

8

9 // Extract the p-value at index mid

10 std::vector<double> p_mid;

11 p_mid.insert(p_i.end(), pvals[mid]);

12 // Copy pvals and remove index mid

13 std::vector<double> p_copy = pvals;

14 p_copy.erase(b.begin() + mid);

15

16 double p = TestSet_C(LocalTest,

17 p_mid,

18 p_copy,

19 alpha,

10The adjustment of each p-value has complexity O(m). The worst-case number of ad-
justed p-values that need to be calculated in order to identify the smallest adjusted p-value
above α is logm when using a binary search.
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20 TRUE);

21

22 if ((low >= high) & (p < alpha)) {

23 return low + 1;

24 } else if ((low >= high) & (p >= alpha)) {

25 return low;

26 } else if (p < alpha) { // Target is left of mid

27 return FWER_set_C(LocalTest,

28 pvals,

29 alpha,

30 mid + 1,

31 high);

32 } else { // Target is right of mid

33 return FWER_set_C(LocalTest,

34 pvals,

35 alpha,

36 low,

37 mid);

38 }

39

40 return -1;

41 }

Search strategies and confidence sets: Similar to identifying the number
of hypotheses that can be rejected with FWER control, we can employ a
binary search to improve the computational complexity of computing 1 −
α confidence sets for the number of false hypotheses in a rejection set S.
Searching iteratively for the largest subset of S that cannot be rejected has
complexity O(m|S|) when |S| < m. By employing a binary search instead,
the complexity is reduced to O(m log |S|).11

We can also improve the computational complexity in the case when S =
[m], if the local test we employ satisfies a mild form of coherence (see, e.g.,
Romano et al., 2011). In particular, if the non-rejection of H(i,...,m) at level
α implies the non-rejection of H(j,...,m), i < m, at level α, the computational
complexity becomes O(logm) instead of O(m).12 Note that it is only in the
case of S = [m], that the local test needs to satisfy this property in order
to gain a computational speedup. For |S| < m, the closure principle ensures
that the property is satisfied. However, we conjecture that this property is
satisfied for most combination tests at reasonable levels of α.

Binary search methods are implemented as default in the functions
TopDown *.

11S contains |S| hypotheses to test, each of which can be tested in linear time.
12S contains m hypotheses to test, each of which can be tested in constant time.
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Search strategies and k-FWER control: In Paper A, we stated that
the largest possible rejection set which controls the k-FWER can be found in
cubic time when k > 1. However, this result can be improved to O(m(logm)2)
time by employing a double binary search. That is, we can employ two binary
searches simultaneously: one to look for the largest set S with at least |S|+1−k
false hypotheses, and another that determines the number of false hypotheses
in each set S (as described above). This is implemented in the functions
kFWER * in the TMTI package.

Depth-wise parallelization: We generally consider two parallelization
schemes: ‘depth-wise’ and ‘breadth-wise’. Suppose we have nw available
workers to parallelize onto. A depth-wise parallelization distributes the work
of adjusting the p-value of a single hypothesis – say H(1) – onto nw work-
ers. That is, to adjust the p-value of H(1), we must test the hypotheses
H(1), H(1,m), . . . ,H(1,3,...,m), H(1,...,m). When distributing the task of testing
these hypotheses, we generally do so in chunks to allow for early stopping.
That is, we split the set

{(1,m), (1,m− 1,m), . . . , (1, . . . ,m)}

into nc chunks of size c ≥ nw,

c1,α ={(1,m), . . . , (1,m− c, . . . ,m)},
c2,α ={(1,m− c− 1, . . . ,m), . . . (1,m− 2c, . . . ,m)},

and so forth. We then loop over all chunks, parallelizing the test of the
hypotheses {Hi}i∈cj onto nw workers. Upon collection of the results of one
chunk, we evaluate whether any of the hypotheses in that chunk failed to be
rejected, and break the computation if that is the case. Parallelizing in chunks
adds overhead to the computation because the distribution of work has to
happen up to nc times instead of once, as would be the case without early
stopping. Thus, there is a trade-off to consider: using larger chunks means less
overhead, but if it is possible to stop the execution early, the amount of wasted
computation power increases. A drawback of the depth-wise parallelization
scheme is that we generally cannot perform this type of work distribution using
Rcpp. A framework for parallelization in Rcpp – called RcppParallel (Allaire
et al., 2022) – does exist. However, RcppParallel cannot be directly applied
for the tasks we consider here, as we always input a user-defined R function,
LocalTest. Thus, we make calls to the R API from within C++, which is
discouraged in threaded code, per the ‘Writing R Extensions’ manual.13

Breadth-wise parallelization: An alternative to depth-wise paralleliza-
tion is to employ a breadth-wise parallelization. Here, we instead distribute

13See https://cran.r-project.org/doc/manuals/r-release/R-exts.html

https://cran.r-project.org/doc/manuals/r-release/R-exts.html
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the task of adjusting the p-values for every hypothesis of interest H(i) onto
its own worker. This approach has the benefit, that the task of adjusting the
p-value of any one hypothesis can be done entirely within C++. However, a
drawback of breadth-wise parallelization, is that we cannot employ binary
searches with this parallelization strategy. Both depth-wise and breadth-
wise parallel schemes are implemented in the package TMTI, using the option
parallel.direction. We compare the different parallelization strategies in
Section 2.8.3 when we have discussed different implementations of TestSet *.

2.8.3 Optimizing the TestSet * function

The function TestSet *, which tests a single hypothesis in the closure of
all hypotheses, is a workhorse of the TMTI package. As TestSet * is called in
both adjust * and TopDown *, it is relevant to optimize it, as this is where the
majority of the computation time will be spent. A simple R implementation
of this function looks as follows:

1 TestSet_LocalTest = function (

2 LocalTest, # a function defining a local test

3 p_subset, # p-values for the set to test

4 p_rest, # the remaining p-values

5 alpha, # significance level

6 EarlyStop # FALSE/TRUE

7 ) {

8 m = length(p_rest)

9 CurrentMax = 0

10

11 p_first = LocalTest(p_subset)

12 if ((p_first >= alpha) & EarlyStop)

13 return (p_first)

14

15 for (i in m:1) {

16 p = LocalTest(c(p_subset, p_rest[i:m]))

17 if (p > CurrentMax)

18 CurrentMax = p

19 if (EarlyStop & (CurrentMax > alpha))

20 break

21 }

22

23 return(CurrentMax)

24 }

The above assumes that the vectors p subset and p rest14 are sorted and
that the subset consists of the smallest |subset| p-values. We handle the

14The p-values of the subset to be tested and the remaining p-values, respectively
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general case in the package TMTI. This implementation of TestSet R takes
on average around half a second to adjust the p-value of H(1) without early
stopping when m = 104 and around 49 seconds when m = 105 (see Ta-
ble 2.8b).15 Profiling TestSet R reveals that the majority of the time is spent
allocating and deallocating memory in the step p = LocalTest(c(p subset,

p rest[i:m])). For example, when m = 105, around 40 Gb of memory is
allocated and deallocated again during the process.16 The reason for this is
that R needs to allocate a new vector c(p subset, p rest[i:m]) at every
step and then delete it again. To circumvent this issue, we implement the
procedure in C++:

1 double TestSet_C (

2 Function LocalTest, // a function defining a local test

3 std::vector<double> p_subset, // p-values for the set to

4 // test

5 std::vector<double> p_rest, // the remaining p-values

6 double alpha, // significance level

7 bool EarlyStop // FALSE/TRUE

8 ) {

9 int n = p_rest.size();

10 int n2 = p_subset.size();

11 double p;

12 double CurrentMax = 0;

13

14 // test H_subset and break if not rejected

15 double p_first = *REAL(LocalTest(p_subset));

16 if ((p_first >= alpha) & (EarlyStop)) {

17 return p_first;

18 }

19

20 for (int i = 0; i < n; i++) {

21 // Insert the largest remaining p-value immediately

22 // after the largest of the p-values in p_subset

23 auto it = p_subset.begin() + n2;

24 p_subset.insert(it, p_rest.back());

25 // Delete the largest p-value in p_rest

26 p_rest.pop_back();

27 // Compute the test of the current subset

28 p = *REAL(LocalTest(p_subset));

29 // Update the current max p-value

15Here, we have used a Bonferroni correction as local test. We use the Bonferroni correc-
tion for these comparisons to minimize the time spent on computing the local tests.

16At layer m′ a vector of m′ doubles, which each take up 8 byte, has to be allocated and

deallocated. Thus, the total allocation is 8 bytes×∑105

i=1 i ≈ 40Gb.
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30 if (p > CurrentMax) {

31 CurrentMax = p;

32 }

33 // End the process if we failed to reject and early

34 // stopping is specified

35 if ((p > alpha) & (EarlyStop)) {

36 break;

37 }

38 }

39

40 return CurrentMax;

41 }

This implementation of TestSet C is twice as fast as TestSet R whenm = 105

and roughly 50% faster when m = 104 (see Table 2.8b). The main difference
between TestSet R and TestSet C, is that we convert the R vectors p subset

and p rest to C++ vectors. These vectors in C++ can be appended and short-
ened without copying the entire vector at each iteration.

As noted in Section 2.8.2, a drawback of this C++ implementation is that
it is generally more difficult to parallelize than its R counterpart, in which the
loop can be directly parallelized. However, it is, easy to call TestSet C in
parallel processes. That is, given a sorted vector my pvalues, we can adjust
the p-values of the marginal hypotheses H(1) through H(i) in a breadth-wise
parallel scheme, e.g., by:

1 p_adjusted = parallel::mclapply (

2 1:i,

3 function (j) {

4 # Compute the test of H_j

5 TestSet_C (

6 LocalTest = <a function defining a test>,

7 p_subset = my_pvalues[j],

8 p_rest = my_pvalues[-seq(j)],

9 alpha = <significance level>,

10 EarlyStop = <FALSE/TRUE>

11

12 )

13 },

14 # Set the number of workers

15 mc.cores = min(i, parallel::detectCores())

16 )

However, the drawback of the above breadth-wise parallelization is that the
overall computation is not broken if a worker fails to reject the marginal hy-
pothesis. For instance, if H(1) cannot be rejected, the above will still test H(2)
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through H(i), even though these are not necessary to compute.17 However,
parallelization can still be performed in chunks, which allows the process to
end, when a chunk has been computed in which a hypothesis could not be
rejected.

In Table 2.8c, we have benchmarked TestSet C against a depth-wise par-
allel implementation of TestSet R and a breadth-wise parallel implementa-
tion of TestSet C. For comparison, we also include a binary search based on
TestSet C for the number of hypotheses that can be rejected with FWER con-
trol. Here, we simulated m ∈ {103, 104} p-values, constructed such that H(1)

through H(10) can be rejected by a Bonferroni correction while H(11) cannot.
18

When m = 104, we see from Table 2.8c that TestSet C takes on average 3.3
seconds to adjust the p-values of H(1) through H(10) when single-threaded. In
contrast, it takes on average 2.4 seconds to adjust the same p-values when
using a depth-wise parallel implementation of TestSet R (six cores, chunksize
104/2). When using a breadth-wise parallel implementation of TestSet C (six
cores, chunksize six), the computation time reduces to just 0.8 seconds. The
binary search implementation is in this case faster even than the breadth-wise
parallelization of TestSet C, taking just 0.4 seconds on average to complete.
However, the binary search only tells us how many hypotheses can be rejected,
whereas the other methods also compute adjusted p-values.

The implementation of TestSet LocalTest in TMTI is based on TestSet R

when depth-wise parallelization is specified. In all other cases, the implemen-
tation is based on TestSet C.

2.8.4 Bookkeeping

There is some overlap in the tests performed when carrying out a CTP using
the implementations we discussed above. Thus, there is some wasted com-
putational power. For sparse data – i.e., data where few hypotheses can be
rejected – this waste is negligible. Similarly, for both sparse and dense data,
the waste is negligible if we are only interested in identifying the number of
hypotheses that can be rejected with FWER control. Thus, there is only a
non-negligible waste if many hypotheses can be rejected and the goal is to
obtain adjusted p-values for these hypotheses.

However, it is not difficult to construct a function that adjusts all p-values
while maintaining the bookkeeping. The bookkeeping should preferably be
done entirely within C++, as the overhead of maintaining the bookkeeping in
R is likely so high that performance deteriorates with bookkeeping compared
to without bookkeeping. Below is a simple example of how bookkeeping can
be handled entirely within C++:

17In practice, however, these will take up very little computation time, as they will likely
fail to be rejected early in the procedure and therefore broken early internally.

18Here, we have again used a Bonferroni correction as the local test.
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1 std::vector<double> FullCTP_C (

2 Function LocalTest, // a function defining a local test

3 Function f, // a call to TestSet_C

4 std::deque<double> p // a deque of p-values

5 ) {

6 std::vector<double> BottomTrees;

7 std::vector<double> TopTree;

8 std::vector<double> out;

9 double max;

10 int m = p.size();

11

12 for (int i = 0; i < m - 1; i++) {

13 // Test all hypotheses that lie in an overlap:

14 TopTree.push_back(*REAL(LocalTest(p)));

15

16 double p_current = p.front();

17 p.pop_front();

18 // Get the largest p-value for H_{(i + 1)} among

19 // hypotheses that do not lie in an overlap:

20 BottomTrees.push_back(*REAL(f(p_current, p)));

21 }

22 TopTree.push_back(p[0]);

23

24 // Combine the overlapping hypotheses with non-overlapping:

25 for (int i = 0; i < m; i++) {

26 max = *std::max_element(TopTree.begin(),

27 TopTree.begin() + i + 1);

28 if (BottomTrees[i] > max) {

29 out.push_back(BottomTrees[i]);

30 } else {

31 out.push_back(max);

32 }

33 }

34

35 return out;

36 }

In the code above, the function f will be a call to TestSet C (as defined in Sec-
tion 2.8.3) with p subset = p current and p rest = p. In the TMTI package,
FullCTP C has been wrapped in a convenience function CTP LocalTest and
slightly modified to allow for early stopping. Visually, lines 12-22 of FullCTP C

correspond to computing all hypotheses connected by a south-east facing ar-
row in Paper A, Figure 3 and all hypotheses connected by a south-west facing
arrow separately. In lines 25-33 of FullCTP C, the south-west facing branches
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of the test tree are combined with the south-east facing branch to obtain the
adjusted p-values.

In Table 2.8d, we have compared the median time required to adjust
m = 102 and m = 103 p-values, when using either FullCTP C versus itera-
tively calling TestSet C (without early stopping), both single-threaded and
in parallel. For both m = 102 and m = 103, we see that FullCTP C is roughly
twice as fast as iteratively calling TestSet C. When m = 102, FullCTP C is
even faster than calling TestSet C in parallel, but this difference disappears
when m = 103. Thus, FullCTP C is useful for smaller m, if one has no inten-
tion of parallelizing. For larger m, however, employing a parallel version of
TestSet C is still preferable.

2.9 Future outlook

We list here some topics for further research related to what we have presented
in this chapter.

Analytical TMTI tests for dependent p-values: In many cases, it is of
interest to apply combination tests to dependent data. While some methods
exist for this (e.g., CCT), it may also be interesting to derive analytical CDFs
of the TMTI statistics in the case of dependent p-values. An approach to
solve this, is to consider dependent Z-scores (Z1, . . . , Zm) ∼ N(0,Σ) with
corresponding p-values Pi := 2 × (1 − Φ(|Zi|)). However, to calculate the
CDF of, e.g., TMTI∞, we need to derive the joint distribution of the order
statistics of the absolute Z-scores, i.e., the distribution of (|Z|(1), . . . , |Z|(m)).
To the best of our knowledge, this distribution is not known. Under the
additional assumption that the inverse covariance matrix Σ−1 is an M -matrix
(every off-diagonal element is weakly negative)19, it is easy to show that the
(non-ordered) distribution of (|Z1|, . . . , |Zm|) is Multivariate Totally Positive
of order two (MTP2).

20 Using this fact, along with already existing bounds on
order statistics of MTP2 variables (see, e.g., Sarkar, 1998; Sarkar and Smith,
1986), it may be possible to derive conservative bounds on the TMTI CDFs.

Approximate CTP shortcuts for n = 1 TMTI tests: We showed in
Paper A, Remark 5, that the quadratic shortcuts do not generally apply to
TMTI statistics when n = 1. However, there are cases in which we can skip
some tests. To illustrate this, consider the testing of, e.g., H(i) at the layer
where we test all joint hypotheses of size m′ that contain H(i). Suppose the

19This is, for example, the case for most forms of positive dependence (Colangelo et al.,
2005).

20If Σ−1 is an M -matrix, Z is MTP2 (Fallat et al., 2017, Section 4.1); MTP2 is preserved
under strictly increasing coordinate-wise transformations (Fallat et al., 2017, Proposition
3.1).
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minimum of the transformed p-values is at the first position in the test of
H(i,m−m′+2,...,m), i.e., that

Y1 := β(1,m′)(P(i)) < β(2,m′ − 1)(P(m−m′+2)) =: Y2.

Then, the largest p-value among all tests of size m′ is obtained when consider-
ing the ith p-value combined with the m′−1 largest remaining p-values. Thus,
at some layers, it is only necessary to perform a single test. In cases where
this shortcut does not apply, it is still possible to use Y1 as a conservative test
statistic. However, it is unclear how conservative this bound is and how often
the shortcut applies.
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(a) Median time to compute TMTI test statistics.

Function
Setting: m = 106

n = 1 n = 104 n = 5× 104 n =∞
Z R loop 0.059× 10−3s 0.039s 0.497s –
Z R vectorized 150.9× 10−3s 0.178s 0.251s –
Z C 0.011× 10−3s 0.004s 0.184s –

Z R infty – – – 0.152s
Z C infty – – – 0.141s

(b) Median time to adjust a single p-value

Function
Setting

m = 104 m = 105

TestSet R 0.477s 48.89s
TestSet C 0.314s 25.65s

(c) Median time to adjust 10 p-values

Function
Setting

m = 103 m = 104

Single-threaded TestSet C 0.100s 3.315s
Depth-wise parallel TestSet R 0.193s 2.394s
Breadth-wise parallel TestSet C 0.059s 0.803s
Binary search TestSet C 0.023s 0.354s

(d) Median time to adjust all p-values

Function
Setting

m = 102 m = 103

Single-threaded TestSet C 0.067s 8.786s
Breadth-wise parallel TestSet C 0.063s 2.107s
FullCTP C 0.035s 3.980s

Table 2.8: Computation times for the comparisons performed in Sections 2.8.1
and 2.8.3. (a): Median time required to compute the TMTI statistic for
different n. (b): Median time required to adjust a single p-value without early
stopping. (c): Median time required to adjust 10 p-values and detect that the
11th adjusted p-value is not significant using early stopping. (d): Median time
required to adjust all p-values. All units are in seconds. The local test is a
Bonferroni correction in (b)-(d). In (c), the depth-wise parallelization uses six
cores and chunksize 5,000 and the breadth-wise parallelization uses six cores
and chunksize six. In (d), the parallelization uses six cores and chunksize
⌈m/6⌉. All computations were performed on an Apple M1 Pro 3.2 GHz CPU.
All times are based on 100 replicate calls.



Chapter 3

Causal discovery in time
series

In this chapter, we present the paper ‘Causal structure learning from time
series: Large regression coefficients may predict causal links better in practice
than small p-values’. This paper arose from the Causality 4 Climate (C4C)
competition (Runge et al., 2019) at the 2019 Conference on Neural Information
Processing Systems (NeurIPS). The task of this competition was to learn sum-
mary graphs using various weather and climate-related time series datasets.
The competition consisted of 34 different datasets. For each data set, the
participants had to upload a score matrix for the (unknown) summary graph
of the underlying time series. The team from the University of Copenhagen,
consisting of the paper’s authors, finished first on 18 of 34 datasets and second
on the remaining 16 datasets. Our work in this competition invited a paper,
presented in Paper B, which was accepted at NeurIPS 2019 and accompanied
by a talk.1

In Section 3.2 of this thesis, we discuss the scoring metric used in the C4C
competition, and in Section 3.3 we discuss related work published after Paper
B.

1Accessible at https://slideslive.com/38922875, at the time of writing
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3.1 Paper B

Sebastian Weichwald, Martin E. Jakobsen, Phillip B. Mogensen, Lasse Pe-
tersen, Nikolaj Thams, Gherardo Varando. ‘Causal structure learning from
time series: Large regression coefficients may predict causal links better in
practice than small p-values’ Proceedings of the NeurIPS 2019 Competition
and Demonstration Track, PMLR 123:27-36, 2020.

(Preprint: Weichwald, Sebastian, et al. ”Causal structure learning from
time series: Large regression coefficients may predict causal links better
in practice than small p-values.” arXiv preprint arXiv:2002.09573 (2020).)
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Abstract

In this article, we describe the algorithms for causal structure learning from time series
data that won the Causality 4 Climate competition at the Conference on Neural Informa-
tion Processing Systems 2019 (NeurIPS). We examine how our combination of established
ideas achieves competitive performance on semi-realistic and realistic time series data ex-
hibiting common challenges in real-world Earth sciences data. In particular, we discuss a)
a rationale for leveraging linear methods to identify causal links in non-linear systems, b)
a simulation-backed explanation as to why large regression coefficients may predict causal
links better in practice than small p-values and thus why normalising the data may some-
times hinder causal structure learning. For benchmark usage, we detail the algorithms
here and provide implementations at github.com/sweichwald/tidybench. We propose the
presented competition-proven methods for baseline benchmark comparisons to guide the
development of novel algorithms for structure learning from time series.

Keywords: Causal discovery, structure learning, time series, scaling.

1. Introduction

Inferring causal relationships from large-scale observational studies is an essential aspect of
modern climate science (Runge et al., 2019a,b). However, randomised studies and controlled
interventions cannot be carried out, due to both ethical and practical reasons. Instead, sim-
ulation studies based on climate models are state-of-the-art to study the complex patterns
present in Earth climate systems (IPCC, 2013).

Causal inference methodology can integrate and validate current climate models and
can be used to probe cause-effect relationships between observed variables. The Causality 4
Climate (C4C) NeurIPS competition (Runge et al., 2020) aimed to further the understand-
ing and development of methods for structure learning from time series data exhibiting
common challenges in and properties of realistic weather and climate data.

© 2020 S. Weichwald, M.E. Jakobsen, P.B. Mogensen, L. Petersen, N. Thams & G. Varando.
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Structure of this work Section 2 introduces the structure learning task considered. In
Section 3, we describe our winning algorithms. With a combination of established ideas, our
algorithms achieved competitive performance on semi-realistic data across all 34 challenges
in the C4C competition track. Furthermore, at the time of writing, our algorithms lead
the rankings for all hybrid and realistic data set categories available on the CauseMe.net
benchmark platform which also offers additional synthetic data categories (Runge et al.,
2019a). These algorithms—which can be implemented in a few lines of code—are built
on simple methods, are computationally efficient, and exhibit solid performance across
a variety of different data sets. We therefore encourage the use of these algorithms as
baseline benchmarks and guidance of future algorithmic and methodological developments
for structure learning from time series.

Beyond the description of our algorithms, we aim at providing intuition that can explain
the phenomena we have observed throughout solving the competition task. First, if we only
ask whether a causal link exists in some non-linear time series system, then we may sidestep
the extra complexity of explicit non-linear model extensions (cf. Section 4). Second, when
data has a meaningful natural scale, it may—somewhat unexpectedly—be advisable to
forego data normalisation and to use raw (vector auto)-regression coefficients instead of
p-values to assess whether a causal link exists or not (cf. Section 5).

2. Causal structure learning from time-discrete observations

The task of inferring the causal structure from observational data is often referred to as
‘causal discovery’ and was pioneered by Pearl (2009) and Spirtes et al. (2001). Much
of the causal inference literature is concerned with structure learning from independent
and identically distributed (iid) observations. Here, we briefly review some aspects and
common assumptions for causally modelling time-evolving systems. More detailed and
comprehensive information can be found in the provided references.

Time-discrete observations We may view the discrete-time observations as arising from
an underlying continuous-time causal system (Peters et al., 2020). While difficult to con-
ceptualise, the correspondence between structural causal models and differential equation
models can be made formally precise (Mooij et al., 2013; Rubenstein et al., 2018; Bongers
and Mooij, 2018). Taken together, this yields some justification for modelling dynamical
systems by discrete-time causal models.

Summary graph as inferential target It is common to assume a time-homogeneous
causal structure such that the dynamics of the observation vector X are governed by
Xt := F (Xpast(t), N t) where the function F determines the next observation based on
past values Xpast(t) and the noise innovation N t. Here, structure learning amounts to iden-
tifying the summary graph with adjacency matrix A that summarises the causal structure

in the following sense: the (i, j)th entry of the matrix A is 1 if X
past(t)
i enters the struc-

tural equation of Xt
i via the ith component of F and 0 otherwise. If Aij = 1, we say that

“Xi causes Xj”. While summary graphs can capture the existence and non-existence of
cause-effect relationships, they do in general not correspond to a time-agnostic structural
causal model that admits a causal semantics consistent with the underlying time-resolved
structural causal model (Rubenstein et al., 2017; Janzing et al., 2018).
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Time structure may be helpful for discovery In contrast to the iid setting, the
Markov equivalence class of the summary graph induced by the structural equations of a
dynamical system is a singleton when assuming causal sufficiency and no instantaneous ef-
fects (Peters et al., 2017; Mogensen and Hansen, 2020). This essentially yields a justification
and a constraint-based causal inference perspective on Wiener-Granger-causality (Wiener,
1956; Granger, 1969; Peters et al., 2017).

Challenges for causal structure learning from time series data Structure learning
from time series is a challenging task hurdled by further problems such as time-aggregation,
time-delays, and time-subsampling. All these challenges were considered in the C4C com-
petition and are topics of active research (Danks and Plis, 2013; Hyttinen et al., 2016).

3. The time series discovery benchmark (tidybench): Winning algorithms

We developed four simple algorithms,

SLARAC Subsampled Linear Auto-Regression Absolute Coefficients (cf. Alg. 1)

QRBS Quantiles of Ridge regressed Bootstrap Samples (cf. Alg. 2)

LASAR LASso Auto-Regression

SELVAR Selective auto-regressive model

which came in first in 18 and close second in 13 out of the 34 C4C competition categories and
won the overall competition (Runge et al., 2020). Here, we provide detailed descriptions of
the SLARAC and QRBS algorithms. Analogous descriptions for the latter two algorithms and
implementations of all four algorithms are available at github.com/sweichwald/tidybench.

All of our algorithms output an edge score matrix that contains for each variable pair
(Xi, Xj) a score that reflects how likely it is that the edge Xi → Xj exists. Higher scores
correspond to edges that are inferred to be more likely to exist than edges with lower
scores, based on the observed data. That is, we rank edges relative to one another but do
not perform hypothesis tests for the existence of individual edges. A binary decision can be
obtained by choosing a cut-off value for the obtained edge scores. In the C4C competition,
submissions were compared to the ground-truth cause-effect adjacency matrix and assessed
based on the achieved ROC-AUC when predicting which causal links exist.

The idea behind our algorithms is the following: regress present on past values and
inspect the regression coefficients to decide whether one variable is a Granger-cause of
another. SLARAC fits a VAR model on bootstrap samples of the data each time choosing a
random number of lags to include; QRBS considers bootstrap samples of the data and Ridge-
regresses time-deltas X(t) − X(t − 1) on the preceding values X(t − 1); LASAR considers
bootstrap samples of the data and iteratively—up to a maximum lag—LASSO-regresses
the residuals of the preceding step onto values one step further in the past and keeps
track of the variable selection at each lag to fit an OLS regression in the end with only
the selected variables at selected lags included; and SELVAR selects edges employing a hill-
climbing procedure based on the leave-one-out residual sum of squares and finally scores
the selected edges with the absolute values of the regression coefficients. In the absence of
instantaneous effects and hidden confounders, Granger-causes are equivalent to a variable’s
causal parents (Peters et al., 2017, Theorem 10.3). In Section 5, we argue that the size of
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the regression coefficients may in certain scenarios be more informative about the existence
of a causal link than standard test statistics for the hypothesis of a coefficient being zero.
It is argued that for additive noise models, information about the causal ordering may be
contained in the raw marginal variances. In test statistics such as the F- and T-statistics,
this information is lost when normalising by the marginal variances.

4. Capturing non-linear cause-effect links by linear methods

We explain the rationale behind our graph reconstruction algorithms and how they may
capture non-linear dynamics despite being based on linearly regressing present on past
values. For simplicity we will outline the idea in a multivariate regression setting with
additive noise, but it extends to the time series setting by assuming time homogeneity.

Let N,X(t1), X(t2) ∈ Rd be random variables such that X(t2) := F (X(t1)) + N for
some differentiable function F = (F1, . . . , Fd) : Rd → Rd. Assume that N has mean zero,
that it is independent from X(t1), and that it has mutually independent components. For
each i, j = 1, . . . , d we define the quantity of interest

θij = E |∂iFj (X(t1))| ,

such that θij measures the expected effect from Xi(t1) to Xj(t2). We take the matrix
Θ =

(
1θij>0

)
as the adjacency matrix of the summary graph between X(t1) and X(t2).

In order to detect regions with non-zero gradients of F we create bootstrap samples
D1, . . . ,DB. On each bootstrap sample Db we obtain the regression coefficients Âb as es-
timate of the directional derivatives by a (possibly penalised) linear regression technique.
Intuitively, if θij were zero, then on any bootstrap sample we would obtain a small non-zero
contribution. Conversely, if θij were non-zero, then we may for some bootstrap samples
obtain a linear fit of Xj(t2) with large absolute regression coefficient for Xi(t1). The values
obtained on each bootstrap sample are then aggregated by, for example, taking the average

of the absolute regression coefficients θ̂ij = 1
B

∑B
b=1

∣∣∣(Âb)ij
∣∣∣.

This amounts to searching the predictor space for an effect from Xi(t1) to Xj(t2), which
is approximated linearly. It is important to aggregate the absolute values of the coefficients
to avoid cancellation of positive and negative coefficients. The score θ̂ij as such contains
no information about whether the effect from Xi(t1) to Xj(t2) is positive or negative and
it cannot be used to predict Xj(t2) from Xi(t1). It serves as a score for the existence
of a link between the two variables. This rationale explains how linear methods may be
employed for edge detection in non-linear settings without requiring extensions of Granger-
type methods that explicitly model the non-linear dynamics and hence come with additional
sample complexity (Marinazzo et al., 2008, 2011; Stramaglia et al., 2012, 2014).

5. Large regression coefficients may predict causal links better in
practice than small p-values

This section aims at providing intuition behind two phenomena: We observed a consider-
able drop in the accuracy of our edge predictions whenever 1) we normalised the data or
2) used the T-statistics corresponding to testing the hypothesis of regression coefficients
being zero to score edges instead of the coefficients’ absolute magnitude. While one could
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Algorithm 1: Subsampled Linear Auto-Regression Absolute Coefficients (SLARAC)

Input : Data X with T time samples X(1), . . . ,X(T ) over d variables.
Parameters : Max number of lags, L ∈ N.

Number of bootstrap samples, B ∈ N.
Individual bootstrap sample sizes, {v1, . . . , vB}.

Output : A d× d real-valued score matrix, Â.

Initialise Afull as a d× dL matrix of zeros and Â as an empty d× d matrix;
for b = 1, . . . , B do

lags← random integer in {1, . . . , L};
Draw a bootstrap sample {t1, . . . , tvb} from {lags +1, . . . , T} with replacement;

Y (b) ← (X(t1), . . .X(tvb));

X
(b)
past ←




X(t1 − 1) · · · X(t1 − lags)
...

. . .
...

X(tvb − 1) · · · X(tvb − lags)


;

Fit OLS estimate β of regressing Y (b) onto X
(b)
past;

Zero-pad β such that dimβ = d× dL;
Afull ← Afull + |β|;

end

Aggregate (Â)i,j ← max((Afull)i,j+0·d, . . . , (Afull)i,j+L·d) for every i, j;

Return: Score matrix Â.

Algorithm 2: Quantiles of Ridge regressed Bootstrap Samples (QRBS)

Input : Data X with T time samples X(1), . . . ,X(T ) over d variables.
Parameters : Number of bootstrap samples, B ∈ N.

Size of bootstrap samples, v ∈ N.
Ridge regression penalty, κ ≥ 0.
Quantile for aggregating scores, q ∈ [0, 1].

Output : A d× d real-valued score matrix, Â.

for b = 1, . . . , B do
Draw a bootstrap sample {t1, . . . , tv} from {2, . . . , T} with replacement;

Y (b) ← (X(t1)−X(t1 − 1), . . . ,X(tv)−X(tv − 1));

X(b) ← (X(t1 − 1), . . . ,X(tv − 1));

Fit a ridge regression of Y (b) onto X(b): Âb = arg minA ‖Y (b) −AX(b)‖+ κ‖A‖;
end

Aggregate Â← qth element-wise quantile of {|Â1|, . . . , |ÂB|};
Return Score matrix Â.
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try to attribute these phenomena to some undesired artefact in the competition setup, it is
instructive to instead try to understand when exactly one would expect such behaviour.

We illustrate a possible explanation behind these phenomena and do so in an iid set-
ting in favour of a clear exposition, while the intuition extends to settings of time series
observations and our proposed algorithms. The key remark is, that under comparable noise
variances, the variables’ marginal variances tend to increase along the causal ordering. If
data are observed at comparable scales—say sea level pressure in different locations mea-
sured in the same units—or at scales that are in some sense naturally relative to the true
data generating mechanism, then absolute regression coefficients may be preferable to T-test
statistics. Effect variables tend to have larger marginal variance than their causal ancestors.
This helpful signal in the data is diminished by normalising the data or the rescaling when
computing the T-statistics corresponding to testing the regression coefficients for being zero.
This rationale is closely linked to the identifiability of Gaussian structural equation models
under equal error variances Peters and Bühlmann (2014). Without any prior knowledge
about what physical quantities the variables correspond to and their natural scales, nor-
malisation remains a reasonable first step. We are not advocating that one should use the
raw coefficients and not normalise data, but these are two possible alterations of existing
structure learning procedures that may or may not, depending on the concrete application
at hand, be worthwhile exploring. Our algorithms do not perform data normalisation, so
the choice is up to the user whether to feed normalised or raw data, and one could easily
change to using p-values or T-statistics instead of raw coefficients for edge scoring.

5.1. Instructive iid case simulation illustrates scaling effects

We consider data simulated from a standard acyclic linear Gaussian model. Let N ∼
N
(
0,diag(σ21, . . . , σ

2
d)
)

be a d-dimensional random variable and let B be a d × d strictly
lower-triangular matrix. Further, letX be a d-valued random variable constructed according
to the structural equation X = BX + N , which induces a distribution over X via X =
(I −B)−1N . We have assumed, without loss of generality, that the causal order is aligned
such thatXi is further up in the causal order thanXj whenever i < j. We ran 100 repetitions
of the experiment, each time sampling a random lower triangular 50× 50-matrix B where
each entry in the lower triangle is drawn from a standard Gaussian with probability 1/4
and set to zero otherwise. For each such obtained B we sample n = 200 observations from
X = BX + N which we arrange in a data matrix X ∈ R200×50 of zero-centred columns
denoted by Xj .

We regress each Xj onto all remaining variables X¬j and compare scoring edges Xi → Xj

by the absolute values of a) the regression coefficients |̂bi→j |, versus b) the T-statistics |t̂i→j |
corresponding to testing the hypothesis that the regression coefficient b̂i→j is zero. That is,
we consider

|̂bi→j | =
∣∣∣(X>¬jX¬j)−1X>¬jXj

∣∣∣
i

versus

|t̂i→j | = |̂bi→j |
√

v̂ar(Xi|X¬i)
v̂ar(Xj |X¬j)

√√√√ (n− d)(
1− ĉorr2(Xi, Xj |X¬{i,j})

) (1)
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where v̂ar(Xj |X¬j) is the residual variance after regressing Xj onto the other variables X¬j ,
and ĉorr(Xi, Xj |X¬{i,j}) is the residual correlation between Xi and Xj after regressing both
onto the remaining variables.

We now compare, across three settings, the AUC obtained by either using the absolute
value of the regression coefficients |̂bi→j | or the absolute value of the corresponding T-
statistics |t̂i→j | for edge scoring. Results are shown in the left, middle, and right panel of
Figure 1, respectively.

Equal error variance

Compare edge scoring by absolute values of

Regression coefficients T-statistics

Equal marginal variance

0.4

0.6

0.8

A
U

C
fo

r
ca

us
al

lin
k

pr
ed

ic
ti

on

Decreasing marginal variance

0 10 20 30 40 50

X variables (causal ordering)
0 10 20 30 40 50

X variables (causal ordering)
0 10 20 30 40 50

X variables (causal ordering)

101

103

105

M
ar

gi
na

l
va

ri
an

ce

Figure 1: Results of the simulation experiment described in Section 5.1. Data is generated
from an acyclic linear Gaussian model, in turn each variable is regressed onto all
remaining variables and either the raw regression coefficient |̂bi→j | or the corre-
sponding T-statistics |t̂i→j | is used to score the existence of an edge i → j. The
top row shows the obtained AUC for causal link prediction and the bottom row
the marginal variance of the variables along the causal ordering. The left panel
shows naturally increasing marginal variance for equal error variances, for the
middle and right panel the model parameters and error variances are rescaled to
enforce equal and decreasing marginal variance, respectively.

In the setting with equal error variances σ2i = σ2j ∀i, j, we observe that i) the
absolute regression coefficients beat the T-statistics for edge predictions in terms of AUC,
and ii) the marginal variances naturally turn out to increase along the causal ordering.
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When moving from |̂bi→j | to |t̂i→j | for scoring edges, we multiply by a term that compares
the relative residual variance of Xi and Xj . If Xi is before Xj in the causal ordering it
tends to have both smaller marginal and—in our simulation set-up—residual variance than
Xj as it becomes increasingly more difficult to predict variables further down the causal
ordering. In this case, the fraction of residual variances will tend to be smaller than one
and consequently the raw regression coefficients |̂bi→j | will be shrunk when moving to |t̂i→j |.
This can explain the worse performance of the T-statistics compared to the raw regression
coefficients for edge scoring as scores will tend to be shrunk when in fact Xi → Xj .

Enforcing equal marginal variances by rescaling the rows of B and the σ2i ’s, we
indeed observe that regression coefficients and T-statistics achieve comparable performance
in edge prediction in this somewhat artificial scenario. Here, neither the marginal variances
nor the residual variances appear to contain information about the causal ordering any more
and the relative ordering between regression coefficients and T-statistics is preserved when
multiplying by the factor highlighted in Equation 1.

Enforcing decreasing marginal variances by rescaling the rows of B and the σ2i ’s,
we can, in line with our above reasoning, indeed obtain an artificial scenario in which the
T-statistics will outperform the regression coefficients in edge prediction, as now, the factors
we multiply by will work in favour of the T-statistics.

6. Conclusion and Future Work

We believe competitions like the Causality 4 Climate competition (Runge et al., 2020) and
causal discovery benchmark platforms like CauseMe.net (Runge et al., 2019a) are important
for bundling and informing the community’s joint research efforts into methodology that is
readily applicable to tackle real-world data. In practice, there are fundamental limitations to
causal structure learning that ultimately require us to employ untestable causal assumptions
to proceed towards applications at all. Yet, both these limitations and assumptions are
increasingly well understood and characterised by methodological research and time and
again need to be challenged and examined through the application to real-world data.

Beyond the algorithms presented here and proposed for baseline benchmarks, different
methodology as well as different benchmarks may be of interest. For example, our methods
detect causal links and are viable benchmarks for the structure learning task but they do
not per se enable predictions about the interventional distributions.
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3.2 A discussion of performance metrics for causal
discovery methods

In this section, we discuss the performance metric used in the Causality 4
Climate competition (Runge et al., 2019).

The task of the C4C competition was to estimate the d × d adjacency
matrix A of the summary graphs (defined in Section 1.3.6) of different time
series X(t). These time series consisted of a mixture of simulated and real-
world data. In all cases, the ground truth summary graph was known to the
competition organizers but not the participants. Note that in the context of
the C4C competition, we enforce diag(A) = 1 (and similarly for any estimate),
meaning that all marginal variables are affected by their pasts.

In the competition, participants had to estimate A by supplying a normal-
ized score matrix to an online platform.2 A score matrix is a matrix where
each element (i, j) represents our confidence in the existence of a causal link
(i → j). Thus, a score matrix is a natural estimate to present. However,
many real-world applications require that one makes binary decisions about
the existence of causal links. The score matrix can be converted to a binary
estimate Â(τ) of A by thresholding the elements by some parameter τ , i.e.,

Âi,j(τ) =

{
1, score for edge (i→ j) ≥ τ
0, else

.

If we had specified a threshold τ0 a priori, the performance of the algorithms
we developed could be evaluated, e.g., by the Structural Hamming Distance
(SHD) or Structural Intervention Distance (SID) (Peters and Bühlmann,
2015).3 However, there is no immediate, systematic way of choosing the
threshold. Thus, the output of our algorithms depends directly on a user-
specific threshold. This critique applies to many structure-learning algo-
rithms, however. For example, in many constraint-based structure learning
algorithms, one determines the existence of a causal link by a conditional inde-
pendence test, which is thresholded at a user-chosen significance level. While
each marginal conditional independence test has the interpretation of control-
ling the Type I error, this interpretation disappears when we perform many
sequential tests. Thus, the significance level is also a user-specific thresholding
parameter.

Still, estimating a non-binary score matrix may be useful for exploratory
purposes. To evaluate the performance of our algorithms, we let FPR(τ) and
TPR(τ) denote the False Positive Rate and True Positive Rate of the score
matrix, respectively. That is,

FPR(τ) =
#non-edges in G with score ≥ τ

#non-edges in G
and

TPR(τ) =
#edges in G with score ≥ τ

#edges in G ,

2https://causeme.uv.es
3The SHD (resp. SID) counts the number of incorrectly inferred edges (resp. interven-

tional distributions) in our estimate Â(τ0) of A.

https://causeme.uv.es
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for τ ∈ (0, 1). In the C4C competition, the performance of our algorithms was
assessed using the Area under the Receiver Operating Characteristic curve
(ROC-AUC), defined as the area under the curve τ 7→ (FPR(τ),TPR(τ))
(Fawcett, 2006). In practice, we do not observe a curve, but rather a finite set
of points that we connect and integrate using the trapezoidal rule, while forcing
the connected line to pass through the points (0, 0) and (1, 1). It is common in
machine learning to employ ROC-AUC as a performance metric. An upside
of this metric is that one does not need to perform any thresholding, and we
may instead keep the non-binary score matrix. Then, if the score matrix has
a high ROC-AUC, the interpretation is that edges (resp. non-edges) in G have
a high (resp. low) associated edge score, on average.

Below, we give an – admittedly very artificial – example to illustrate that
it is possible to obtain a ROC-AUC close to one while inferring a diverging
number of incorrect interventional distributions. This example is not meant
to showcase that the ROC-AUC is an inherently poor performance metric,
but rather that causal discovery is a difficult task and that performing well
by one single metric does not necessarily mean that one has fully learned the
causal system under investigation.

Example 3.1. Consider the two DAGs, G1 and G2, shown in Figure 3.1. Sup-

(a) G1

DA DB

Y1 Y2 . . . Yd−1 Yd

(b) G2

DA DB

Y1 Y2 . . . Yd−1 Yd

Figure 3.1: (a): The true, data-generating graph G1. (b): The estimated
graph G2.

pose that we observe data generated by the distribution implied by G1. Using
the observed data, we have estimated a score matrix, and find that we:

1. Correctly estimate the score for all edges DA → Yi and DB → Yi to be
exactly one.

2. Incorrectly estimate the scores for the edges DB → DA and DA → DB

to be exactly one and zero, respectively.
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0 1
2d+1

1

FPR

0

3d+2
3d+3

1

T
P

R

Figure 3.2: Observed ROC curve in Example 3.1. The observed ROC-AUC,
indicated in yellow, is (12d2 + 13d+ 2)/(12d2 + 18d+ 6).

3. Correctly estimate the scores of the remaining non-edges to be exactly 0.

In other words, no matter the choice of τ ∈ (0, 1), we have estimated G2. In
this case, we have for all τ ∈ (0, 1)

TPR(τ) =
3d+ 2

3d+ 3
, 4 and FPR(τ) =

1

2d+ 1
.

Thus, we observe FPR = (0, (2d + 1)−1, 1) and TPR = (0, (3d + 2)/(3d +
3), 1). The observed Receiver Operating Characteristic (ROC) curve is shown
in Figure 3.2. Integrating the ROC curve using the trapezoidal rule we find,
with a small rewrite, that

ROC-AUCd =
12d2 + 13d+ 2

12d2 + 18d+ 6
.

Clearly, we have limd→∞ROC-AUCd = 1. Thus, as the size of the system
grows, the ROC-AUC goes to one.

In this case, where we do not perform any thresholding, we can measure the
closeness between G1 and G2 by the SHD or SID directly. The SHD between the
estimated and true graphs is constant at one.5 However, the SID between G1
and G2 is 2d+2. In particular, we incorrectly infer the following interventional
distributions for any i ∈ [d]:

Pdo(DB=c)
DA

, Pdo(DA=c)
DB

, Pdo(DB=c)
Yi

, and Pdo(DA=c)
Yi

.

Not only does the number of incorrectly inferred distributions diverge, but the
estimated distributions can also be arbitrarily wrong under hard interventions.
For instance, if all assignments are linear with coefficient one and all noise

innovations are i.i.d. N(0, 1)-distributed, then Pdo(DB)=c
Yi

= N(c, 2) in G1, but
Pdo(DB)=c
Yi

= N(2c, 2) in G2.
4Recall that we enforce diag(A) = (1, . . . , 1), meaning that the 2d edges from DA, DB

to all Yi’s are correctly inferred, as well as the d+ 2 self-cycles in G.
5Or two, depending on whether we count the misdirection of an edge as one or two

mistakes.
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3.3 Simulation artifacts of Additive Noise Models

In Paper B, we argued that – in some scenarios – structure learning algorithms
may perform better when using the magnitude of regression coefficients as
evidence of causal links rather than p-values. This fact may appear counter-
intuitive, as the magnitude of a regression coefficient depends on the scale of
the input predictor. The rationale behind using regression coefficients as scores
for the existence of causal links in the competition was that the algorithms
were, to some degree, tailored to the problem at hand. Here, we observed
that the performance of our algorithms dropped when using p-values instead
of regression coefficients or when normalizing data prior to regression. We
argued in Paper B, Section 5 that this drop in performance was likely because
the ordering of marginal variances approximately equaled the causal order of
the input variables. However, we do not generally have evidence that real-
world data exhibits this tendency of increasing marginal variances. Thus,
we do not advocate using regression coefficient magnitudes over p-values in
general, but rather that this approach can serve as a benchmark.

After the publication of Paper B, the phenomenon of increasing marginal
variances has been further studied by Reisach et al. (2021), who coin the
term ‘varsortability’. In this paper, the authors show that varsortability is
a common phenomenon of simulated Additive Noise Models (ANMs),6 and
that the causal ordering of an ANM is partially identifiable from its marginal
variances. Furthermore, the authors show that continuous structure-learning
algorithms (such as GOLEM (Ng et al., 2020) and NOTEARS (Zheng et al.,
2018)) and some combinatorial structure-learning algorithms7 depend on the
scale of data. Furthermore, the authors show that the performance of these
structure learning algorithms drops when standardizing data prior to analysis.
Moreover, the authors show that standardization may not be sufficient by
itself; a high degree of varsortability leaves a distinct covariance pattern that
cannot be removed by standardization alone. Seng et al. (2022) further shows
that the output graph of NOTEARS can be controlled by rescaling individual
variables in data before analysis.

Taken together, these papers indicate a need for caution when evaluating
the performance of structure learning algorithms on simulated data, as high
performance may simply be due to simulation artifacts that may not exist
in real-world data. However, if we analyze data in which all variables are
measured on the same scale, or in some way have a meaningful natural scale,
we can exploit these marginal variance patterns to learn the underlying causal
structure.

6An ANM is an SCM where each structural assignment takes the form Xv := Nv +∑
k∈PAv

fk(Xk).
7In particular, combinatorial structure-learning algorithms that are not score equivalent.

A score function is score equivalent if all DAGs in the same Markov equivalence class are
assigned equal scores.



Chapter 4

Causal discovery in
heterogeneous data

This chapter contains Paper C: ‘Invariant Ancestry Search’. In this paper, we
propose a novel method – called Invariant Ancestry Search (IAS) – for causal
structure learning. We show that IAS can be used to learn invariant subsets
of ancestors of a given response variable when applied to data sampled from
heterogeneous environments. Paper C was accepted into, and presented at,
the thirty-ninth International Conference on Machine Learning (ICML) 2022.1

In Section 4.2 of this thesis, we show how the output of IAS can be post hoc
separated into parents and non-parental ancestors of Y with high probability.

4.1 Paper C

Phillip B. Mogensen, Nikolaj Thams, Jonas Peters. ‘Invariant Ancestry
Search’ Proceedings of the 39th International Conference on Machine Learn-
ing, PMLR 162:15832-15857, 2022.

(Preprint: Mogensen, Phillip B., Nikolaj Thams, and Jonas Peters. ‘Invariant
Ancestry Search’. arXiv preprint arXiv:2202.00913 (2022).)

1At the time of writing, the talk and accompanying poster are available on-
line at https://icml.cc/virtual/2022/spotlight/16248 and https://icml.cc/media/

PosterPDFs/ICML%202022/569ff987c643b4bedf504efda8f786c2.png, respectively.
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Invariant Ancestry Search

Phillip B. Mogensen 1 Nikolaj Thams 1 Jonas Peters 1

Abstract
Recently, methods have been proposed that ex-
ploit the invariance of prediction models with re-
spect to changing environments to infer subsets
of the causal parents of a response variable. If
the environments influence only few of the un-
derlying mechanisms, the subset identified by in-
variant causal prediction (ICP), for example, may
be small, or even empty. We introduce the con-
cept of minimal invariance and propose invariant
ancestry search (IAS). In its population version,
IAS outputs a set which contains only ancestors
of the response and is a superset of the output of
ICP. When applied to data, corresponding guaran-
tees hold asymptotically if the underlying test for
invariance has asymptotic level and power. We
develop scalable algorithms and perform experi-
ments on simulated and real data.

1. Introduction
Causal reasoning addresses the challenge of understanding
why systems behave the way they do and what happens
if we actively intervene. Such mechanistic understanding
is inherent to human cognition, and developing statistical
methodology that learns and utilizes causal relations is a
key step in improving both narrow and broad AI (Jordan,
2019; Pearl, 2018). Several approaches exist for learning
causal structures from observational data. Approaches such
as the PC-algorithm (Spirtes et al., 2000) or greedy equiva-
lence search (Chickering, 2002) learn (Markov equivalent)
graphical representations of the causal structure (Lauritzen,
1996). Other approaches learn the graphical structure under
additional assumptions, such as non-Gaussianity (Shimizu
et al., 2006) or non-linearity (Hoyer et al., 2009; Peters et al.,
2014). Zheng et al. (2018) convert the problem into a contin-
uous optimization problem, at the expense of identifiability
guarantees.

1Department of Mathematical Sciences, University of Copen-
hagen, Denmark. Correspondence to: Phillip B. Mogensen
<pbm@math.ku.dk>, Jonas Peters <jonas.peters@math.ku.dk>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Invariant causal prediction (ICP) (Peters et al., 2016; Heinze-
Deml et al., 2018; Pfister et al., 2019; Gamella & Heinze-
Deml, 2020; Martinet et al., 2021) assumes that data are sam-
pled from heterogeneous environments (which can be dis-
crete, categorical or continuous), and identifies direct causes
of a target Y , also known as causal parents of Y . Learning
ancestors (or parents) of a response Y yields understanding
of anticipated changes when intervening in the system. It is
a less ambitious task than learning the complete graph but
may allow for methods that come with weaker assumptions
and stronger guarantees. More concretely, for predictors
X1, . . . , Xd, ICP searches for subsets S ⊆ {1, . . . , d} that
are invariant; a set XS of predictors is called invariant if it
renders Y independent of the environment, conditional on
XS . ICP then outputs the intersection of all invariant pre-
dictor sets SICP := ∩S invariantS. Peters et al. (2016) show
that if invariance is tested empirically from data at level α,
the resulting intersection ŜICP is a subset of direct causes
of Y with probability at least 1− α.1

In many cases, however, the set learned by ICP forms a strict
subset of all direct causes or may even be empty. This is
because disjoint sets of predictors can be invariant, yielding
an empty intersection, which may happen both for finite
samples as well as in the population setting. In this work,
we introduce and characterize minimally invariant sets of
predictors, that is, invariant sets S for which no proper
subset is invariant. We propose to consider the union SIAS of
all minimally invariant sets, where IAS stands for invariant
ancestry search. We prove that SIAS is a subset of causal
ancestors of Y , invariant, non-empty and contains SICP.
Learning causal ancestors of a response may be desirable
for several reasons: e.g., they are the variables that may have
an influence on the response variable when intervened on. In
addition, because IAS yields an invariant set, it can be used
to construct predictions that are stable across environments
(e.g., Rojas-Carulla et al., 2018; Christiansen et al., 2022).

In practice, we estimate minimally invariant sets using a test
for invariance. If such a test has asymptotic power against
some of the non-invariant sets (specified in Section 5.2), we
show that, asymptotically, the probability of ŜIAS being a

1Rojas-Carulla et al. (2018); Magliacane et al. (2018); Arjovsky
et al. (2019); Christiansen et al. (2022) propose techniques that
consider similar invariance statements with a focus on distribution
generalization instead of causal discovery.
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subset of the ancestors is at least 1− α. This puts stronger
assumptions on the invariance test than ICP (which does
not require any power) in return for discovering a larger
set of causal ancestors. We prove that our approach retains
the ancestral guarantee if we test minimal invariance only
among subsets up to a certain size. This yields a compu-
tational speed-up compared to testing minimal invariance
in all subsets, but comes at the cost of potentially finding
fewer causal ancestors.

The remainder of this work is organized as follows. In
Section 2 we review relevant background material, and we
introduce the concept of minimal invariance in Section 3.
Section 4 contains an oracle algorithm for finding minimally
invariant sets (and a closed-form expression of SICP) and
Section 5 presents theoretical guarantees when testing
minimal invariance from data. In Section 6 we evaluate
our method in several simulation studies as well as a
real-world data set on gene perturbations. Code is provided
at https://github.com/PhillipMogensen/
InvariantAncestrySearch.

2. Preliminaries
2.1. Structural Causal Models and Graphs

We consider a setting where data are sampled from a struc-
tural causal model (SCM) (Pearl, 2009; Bongers et al., 2021)

Zj := fj(PAj , ϵj),

for some functions fj , parent sets PAj and noise distribu-
tions ϵj . Following (Peters et al., 2016; Heinze-Deml et al.,
2018), we consider an SCM over variables Z := (E,X, Y )
whereE is an exogenous environment variable (i.e., PAE =
∅), Y is a response variable and X = (X1, . . . , Xd) is a col-
lection of predictors of Y . We denote by P the family of all
possible distributions induced by an SCM over (E,X, Y )
of the above form.

For a collection of nodes j ∈ [d] := {1, . . . , d} and their
parent sets PAj , we define a directed graph G with nodes
[d] and edges j′ → j for all j′ ∈ PAj . We denote by CHj ,
ANj and DEj the children, ancestors and descendants of a
variable j, respectively, neither containing j. A graph G is
called a directed acyclic graph (DAG) if it does not contain
any directed cycles. See Pearl (2009) for more details and
the definition of d-separation.

Throughout the remainder of this work, we make the fol-
lowing assumptions about causal sufficiency and exogeneity
of E (Section 7 describes how these assumptions can be
relaxed).
Assumption 2.1. Data are sampled from an SCM over
nodes (E,X, Y ), such that the corresponding graph is a
DAG, the distribution is faithful with respect to this DAG,
and the environments are exogenous, i.e., PAE = ∅.

E
X1

X2 X3

Y

X4

E
X1

X2 X3

Y

X4

Figure 1. Two structures where SICP ⊊ PAY . (left) SICP =
∅. (right) SICP = {1}. In both, our method outputs SIAS =
{1, 2, 3}.

2.2. Invariant Causal Prediction

Invariant causal prediction (ICP), introduced by Peters et al.
(2016), exploits the existence of heterogeneity in the data,
here encoded by an environment variableE, to learn a subset
of causal parents of a response variable Y . A subset of
predictors S ⊆ [d] is invariant if Y ⊥⊥ E | S, and we define
I := {S ⊆ [d] | S invariant} to be the set of all invariant
sets. We denote the corresponding hypothesis that S is
invariant by

HI
0,S : S ∈ I.

Formally, HI
0,S corresponds to a subset of distributions in

P , and we denote by HI
A,S := P \ HI

0,S the alternative
hypothesis to HI

0,S . Peters et al. (2016) define the oracle
output

SICP :=
⋂

S:HI
0,S true

S (1)

(with SICP = ∅ if no sets are invariant) and prove SICP ⊆
PAY . If provided with a test for the hypotheses HI

0,S , we
can test all sets S ⊆ [d] for invariance and take the intersec-
tion over all accepted sets: ŜICP :=

⋂
S:HI

0,S not rejected S; If

the invariance test has level α, ŜICP ⊆ PAY with probabil-
ity at least 1− α.

However, even for the oracle output in Equation (1), there
are many graphs for which SICP is a strict subset of PAY .
For example, in Figure 1 (left), since both {1, 2} and {3} are
invariant, SICP ⊆ {1, 2} ∩ {3} = ∅. This does not violate
SICP ⊆ PAY , but is non-informative. Similarly, in Figure 1
(right), SICP = {1}, as all invariant sets contain {1}. Here,
SICP contains some information, but is not able to recover
the full parental set. In neither of these two cases, SICP

is an invariant set. If the environments are such that each
parent of Y is either affected by the environment directly or
is a parent of an affected node, then SICP = PAY (Peters
et al., 2016, proof of Theorem 3). The shortcomings of ICP
thus relate to settings where the environments act on too few
variables or on uninformative ones.

For large d, it has been suggested to apply ICP to the
variables in the Markov boundary (Pearl, 2014), MBY =
PAY ∪CHY ∪PA(CHY ) (we denote the oracle output by
SMB
ICP). As PAY ⊆ MBY , it still holds that SMB

ICP is a sub-
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set of the causal parents of the response.2 However, the
procedure must still be applied to 2|MBY | sets, which is
only feasible if the Markov boundary is sufficiently small.
In practice, the Markov boundary can, for example, be es-
timated using Lasso regression or gradient boosting tech-
niques (Tibshirani, 1996; Meinshausen & Bühlmann, 2006;
Friedman, 2001).

3. Minimal Invariance and Ancestry
We now introduce the concept of minimally invariant sets,
which are invariant sets that do not have any invariant sub-
sets. We propose to consider SIAS, the oracle outcome of
invariant ancestry search, defined as the union of all mini-
mally invariant sets. We will see that SIAS is an invariant
set, it consists only of ancestors of Y , and it contains SICP

as a subset.

Definition 3.1. Let S ⊆ [d]. We say that S is minimally
invariant if and only if

S ∈ I and ∀S′ ⊊ S : S′ ̸∈ I;

that is, S is invariant and no subset of S is invariant. We
defineMI := {S | S minimally invariant}.

The concept of minimal invariance is closely related to the
concept of minimal d-separators (Tian et al., 1998). This
connection allows us to state several properties of minimal
invariance. For example, an invariant set is minimally in-
variant if and only if it is non-invariant as soon as one of its
elements is removed.

Proposition 3.2. Let S ⊆ [d]. Then S ∈MI if and only if
S ∈ I and for all j ∈ S, it holds that S \ {j} ̸∈ I.

The proof follows directly from (Tian et al., 1998, Corollary
2). We can therefore decide whether a given invariant set S
is minimally invariant using O(|S|) checks for invariance,
rather thanO(2|S|) (as suggested by Definition 3.1). We use
this insight in Section 5.1, when we construct a statistical
test for whether or not a set is minimally invariant.

To formally define the oracle outcome of IAS, we denote
the hypothesis that a set S is minimally invariant by

HMI
0,S : S ∈MI

(and the alternative hypothesis, S /∈ MI, by HMI
A,S ) and

define the quantity of interest

SIAS :=
⋃

S:HMI
0,S true

S (2)

2In fact, SMB
ICP is always at least as informative as ICP. E.g.,

there exist graphs in which SICP = ∅ and SMB
ICP ̸= ∅, see Figure 1

(left). There are no possible structures for which SMB
ICP ⊊ SICP, as

both search for invariant sets over all sets of parents of Y .

with the convention that a union over the empty set is the
empty set.

The following proposition states that SIAS is a subset of the
ancestors of the response Y . Similarly to PAY , variables in
ANY are causes of Y in that for each ancestor there is a di-
rected causal path to Y . Thus, generically, when intervened,
these variables have a causal effect on the response.

Proposition 3.3. It holds that SIAS ⊆ ANY .

The proof follows directly from (Tian et al., 1998, Theo-
rem 2); see also (Acid & De Campos, 2013, Proposition 2).
The setup in these papers is more general than what we con-
sider here; we therefore provide direct proofs for Proposi-
tions 3.2 and 3.3 in Appendix A, which may provide further
intuition for the results.

Finally, we show that the oracle output of IAS contains that
of ICP and, contrary to ICP, it is always an invariant set.

Proposition 3.4. Assume that E ̸∈ PAY . It holds that

(i) SIAS ∈ I and
(ii) SICP ⊆ SIAS, with equality if and only if SICP ∈ I.

4. Oracle Algorithms
When provided with an oracle that tells us whether a set is
invariant or not, how can we efficiently compute SICP and
SIAS? Here, we assume that the oracle is given by a DAG,
see Assumption 2.1. A direct application of Equations (1)
and (2) would require checking a number of sets that grows
exponentially in the number of nodes. For SICP, we have
the following characterization.3

Proposition 4.1. If E ̸∈ PAY , then SICP =
PAY ∩ (CHE ∪PA(ANY ∩CHE)).

This allows us to efficiently read off SICP from the DAG,
(e.g., it can naively be done in O((d+ 2)2.373 log(d+ 2))
time, where the exponent 2.373 comes from matrix multipli-
cation). For SIAS, to the best of our knowledge, there is no
closed form expression that has a similarly simple structure.

Instead, for IAS, we exploit the recent development of ef-
ficient algorithms for computing all minimal d-separators
(for two given sets of nodes) in a given DAG (see, e.g., Tian
et al., 1998; van der Zander et al., 2019). A set S is called
a minimal d-separator of E and Y if it d-separates E and
Y given S and no strict subset of S satisfies this property.
These algorithms are often motivated by determining mini-
mal adjustment sets (e.g., Pearl, 2009) that can be used to
compute the total causal effect between two nodes, for ex-
ample. If the underlying distribution is Markov and faithful
with respect to the DAG, then a set S is minimally invariant
if and only if it is a minimal d-separator for E and Y . We

3To the best of our knowledge, this characterization is novel.
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can therefore use the same algorithms to find minimally
invariant sets; van der Zander et al. (2019) provide an algo-
rithm (based on work by Takata (2010)) for finding minimal
d-separators with polynomial delay time. Applied to our
case, this means that while there may be exponentially many
minimally invariant sets,4 when listing all such sets it takes
at most polynomial time until the next set or the message
that there are nor further sets is output. In practice, on ran-
dom graphs, we found this to work well (see Section 6.1).
But since SIAS is the union of all minimally invariant sets,
even faster algorithms may be available; to the best of our
knowledge, it is an open question whether finding SIAS is
an NP-hard problem (see Appendix B for details).

We provide a function for listing all minimally invariant
sets in our python code; it uses an implementation of the
above mentioned algorithm, provided in the R (R Core
Team, 2021) package dagitty (Textor et al., 2016). In
Section 6.1, we study the properties of the oracle set SIAS.
When applied to 500 randomly sampled, dense graphs
with d = 15 predictor nodes and five interventions, the
dagitty implementation had a median speedup of a fac-
tor of roughly 17, compared to a brute-force search (over
the ancestors of Y ). The highest speedup achieved was by a
factor of more than 1,900.

The above mentioned literature can be used only for ora-
cle algorithms, where the graph is given. In the following
sections, we discuss how to test the hypothesis of minimal
invariance from data.

5. Invariant Ancestry Search
5.1. Testing a Single Set for Minimal Invariance

Usually, we neither observe a full SCM nor its graphical
structure. Instead, we observe data from an SCM, which we
want to use to decide whether a set is inMI, such that we
make the correct decision with high probability. We now
show that a set S can be tested for minimal invariance with
asymptotic level and power if given a test for invariance that
has asymptotic level and power.

Assume that Dn = (Xi, Ei, Yi)
n
i=1 are observations (which

may or may not be independent) of (X,E, Y ) and let ϕMI
n :

powerset([d])×Dn×(0, 1)→ {0, 1} be a decision rule that
transforms (S,Dn, α) into a decision ϕMI

n (S,Dn, α) about
whether the hypothesisHMI

0,S should be rejected (ϕMI
n = 1)

at significance threshold α, or not (ϕMI
n = 0). To ease

notation, we suppress the dependence on Dn and α when
the statements are unambiguous.

A test ψn for the hypothesis H0 has pointwise asymptotic

4This is the case if there are d/2 (disjoint) directed paths be-
tween E and Y , with each path containing two X-nodes, for
example (e.g., van der Zander et al., 2019).

level if

∀α ∈ (0, 1) : sup
P∈H0

lim
n→∞

P(ψn = 1) ≤ α (3)

and pointwise asymptotic power if

∀α ∈ (0, 1) : inf
P∈HA

lim
n→∞

P(ψn = 1) = 1. (4)

If the limit and the supremum (resp. infimum) in Equa-
tion (3) (resp. Equation (4)) can be interchanged, we say
that ψn has uniform asymptotic level (resp. power).

Tests for invariance have been examined in the literature. Pe-
ters et al. (2016) propose two simple methods for testing for
invariance in linear Gaussian SCMs when the environments
are discrete, although the methods proposed extend directly
to other regression scenarios. Pfister et al. (2019) propose
resampling-based tests for sequential data from linear Gaus-
sian SCMs. Furthermore, any valid test for conditional
independence between Y and E given a set of predictors S
can be used to test for invariance. Although for continuous
X , there exists no general conditional independence test that
has both level and non-trivial power (Shah & Peters, 2020),
it is possible to impose restrictions on the data-generating
process that ensure the existence of non-trivial tests (e.g.,
Fukumizu et al., 2008; Zhang et al., 2011; Berrett et al.,
2020; Shah & Peters, 2020; Thams et al., 2021). Heinze-
Deml et al. (2018) provide an overview and a comparison
of several conditional independence tests in the context of
invariance.

To test whether a set S ⊆ [d] is minimally invariant, we
define the decision rule

ϕMI
n (S) :=

{
1 if ϕn(S) = 1 or min

j∈S
ϕn(S \ {j}) = 0,

0 otherwise,
(5)

where ϕMI
n (∅) := ϕn(∅). Here, ϕn is a test for the hy-

pothesis HI
0,S , e.g., one of the tests mentioned above. This

decision rule rejects HMI
0,S either if HI

0,S is rejected by ϕn
or if there exists j ∈ S such that HI

0,S\{j} is not rejected.
If ϕn has pointwise (resp. uniform) asymptotic level and
power, then ϕMI

n has pointwise (resp. uniform) asymptotic
level and pointwise (resp. uniform) asymptotic power of at
least 1− α.
Theorem 5.1. Let ϕMI

n be defined as in Equation (5) and
let S ⊆ [d]. Assume that the decision rule ϕn has pointwise
asymptotic level and power for S and for all S \ {j}, j ∈ S.
Then, ϕMI

n has pointwise asymptotic level and pointwise
asymptotic power of at least 1− α, i.e.,

inf
P∈HMI

A,S

lim
n→∞

P(ϕMI
n (S) = 1) ≥ 1− α.

If ϕn has uniform asymptotic level and power, then ϕMI
n

has uniform asymptotic level and uniform asymptotic power
of at least 1− α.
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Due to Proposition 3.3, a test for HMI
0,S is implicitly a test

for S ⊆ ANY , and can thus be used to infer whether in-
tervening on S will have a potential causal effect on Y .
However, rejecting HMI

0,S is not evidence for S ̸⊆ AN; it is
evidence for S ̸∈ MI.

5.2. Learning SIAS from Data

We now consider the task of estimating the set SIAS from
data. If we are given a test for invariance that has asymp-
totic level and power and if we correct for multiple testing
appropriately, we can estimate SIAS by ŜIAS, which, asymp-
totically, is a subset of ANY with large probability.
Theorem 5.2. Assume that the decision rule ϕn has point-
wise asymptotic level for all minimally invariant sets and
pointwise asymptotic power for all S ⊆ [d] such that S is
not a superset of a minimally invariant set. Define C := 2d

and let Î :=
{
S ⊆ [d] | ϕn(S, αC−1) = 0)

}
be the set

of all sets for which the hypothesis of invariance is not
rejected and define M̂I :=

{
S ∈ Î | ∀S′ ⊊ S : S′ ̸∈ Î

}

and ŜIAS :=
⋃

S∈M̂I S. It then holds that

lim
n→∞

P(ŜIAS ⊆ ANY ) ≥ lim
n→∞

P(ŜIAS = SIAS)

≥ 1− α.

A generic algorithm for implementing ŜIAS is given in Ap-
pendix D.
Remark 5.3. Consider a decision rule ϕn that just (correctly)
rejects the empty set (e.g., because the p-value is just below
the threshold α), indicating that the effect of the environ-
ments is weak. It is likely that there are other sets S′ ̸∈ I,
which the test may not have sufficient power against and are
(falsely) accepted as invariant. If one of such sets contains
non-ancestors of Y , this yields a violation of ŜIAS ⊆ ANY .
To guard against this, testing S = ∅ can be done at a lower
significance level, α0 < α. This modified IAS approach is
conservative and may return ŜIAS = ∅ if the environments
do not have a strong impact on Y , but it retains the guarantee
limn→∞ P(ŜIAS ⊆ ANY ) ≥ 1− α of Theorem 5.2.

The multiple testing correction performed in Theorem 5.2 is
strictly conservative because we only need to correct for the
number of minimally invariant sets, and there does not exist
2d minimally invariant sets. Indeed, the statement of The-
orem 5.2 remains valid for C = C ′ if the underlying DAG
has at most C ′ minimally invariant sets. We hypothesize
that a DAG can contain at most 3⌈d/3⌉ minimally invariant
sets and therefore propose using C = 3⌈d/3⌉ in practice.
If this hypothesis is true, Theorem 5.2 remains valid (for
any DAG), using C = 3⌈d/3⌉ (see Appendix C for a more
detailed discussion).

Alternatively, as shown in the following section, we can
restrict the search for minimally invariant sets to a prede-

termined size. This requires milder correction factors and
comes with computational benefits.

5.3. Invariant Ancestry Search in Large Systems

We now develop a variation of Theorem 5.2, which allows
us to search for ancestors of Y in large graphs, at the cost
of only identifying minimally invariant sets up to some a
priori determined size.

Similarly to ICP (see Section 2.2), one could restrict IAS to
the variables in MBY but the output may be smaller than
SIAS; in particular, there are only non-parental ancestors
in MBY if these are parents to both a parent a child of Y
(For instance, in the graph E → X1 → . . . → Xd → Y ,
SIAS = {1, . . . , d} but restricting IAS to MBY would yield
the set {d}.) Thus, we do not expect such an approach to be
particularly fruitful in learning ancestors.

Here, we propose an alternative approach and define

Sm
IAS :=

⋃

S:S∈MI and |S|≤m

S (6)

as the union of minimally invariant sets that are no larger
than m ≤ d. For computing Sm

IAS, one only needs to check
invariance of the

∑m
i=0

(
d
i

)
sets that are no larger than m.

Sm
IAS itself, however, can be larger than m: in the graph

above Equation (6), S1
IAS = {1, . . . , d}. The following

proposition characterizes properties of Sm
IAS.

Proposition 5.4. Let m < d and let mmin and mmax be
the size of a smallest and a largest minimally invariant set,
respectively. The following statements are true:

(i) Sm
IAS ⊆ ANY .

(ii) If m ≥ mmax, then Sm
IAS = SIAS.

(iii) If m ≥ mmin and E ̸∈ PAY , then Sm
IAS ∈ I.

(iv) If m ≥ mmin and E ̸∈ PAY , then SICP ⊆ Sm
IAS with

equality if and only if SICP ∈ I.

If m < mmin and SICP ̸= ∅, then SICP ⊆ Sm
IAS does not

hold. However, we show in Section 6.1 using simulations
that Sm

IAS is larger than SICP in many sparse graphs, even
for m = 1, when few nodes are intervened on.

In addition to the computational speedup offered by consid-
ering Sm

IAS instead of SIAS, the set SIAS can be estimated
from data using a smaller correction factor than the one
employed in Theorem 5.2. This has the benefit that in
practice, smaller sample sizes may be needed to detect non-
invariance.

Theorem 5.5. Let m ≤ d and define C(m) :=
∑m

i=0

(
d
i

)
.

Assume that the decision rule ϕn has pointwise asymp-
totic level for all minimally invariant sets of size at most
m and pointwise power for all sets of size at most m
that are not supersets of a minimally invariant set. Let
Îm :=

{
S ⊆ [d] | ϕn(S, αC(m)−1) = 0 and |S| ≤ m

}
,
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be the set of all sets of size at most m for which
the hypothesis of invariance is not rejected and define
M̂Im :=

{
S ∈ Îm | ∀S′ ⊊ S : S′ ̸∈ Îm

}
and Ŝm

IAS :=⋃
S∈M̂Im S. It then holds that

lim
n→∞

P(Ŝm
IAS ⊆ ANY ) ≥ lim

n→∞
P(Ŝm

IAS = Sm
IAS)

≥ 1− α.

The method proposed in Theorem 5.5 outputs a non-empty
set if there exists a non-empty set of size at most m, for
which the hypothesis of invariance cannot be rejected. In a
sparse graph, it is likely that many small sets are minimally
invariant, whereas if the graph is dense, it may be that all
invariant sets are larger than m, such that Sm

IAS = ∅. In
dense graphs however, many other approaches may fail too;
for example, it is also likely that the size of the Markov
boundary is so large that applying ICP on MBY is not
feasible.

6. Experiments
We apply the methods developed in this paper in a
population-case experiment using oracle knowledge (Sec-
tion 6.1), a synthetic experiment using finite sample tests
(Section 6.2), and a real-world data set from a gene pertur-
bation experiment (Section 6.3). In Sections 6.1 and 6.2
we consider a setting with two environments: an observa-
tional environment (E = 0) and an intervention environ-
ment (E = 1), and examine how the strength and number
of interventions affect the performance of IAS.

6.1. Oracle IAS in Random Graphs

For the oracle setting, we know that SIAS ⊆ ANY (Propo-
sition 3.3) and SICP ⊆ SIAS (Proposition 3.4). We first
verify that the inclusion SICP ⊆ SIAS is often strict in
low-dimensional settings when there are few interventions.
Second, we show that the set Sm

IAS is often strictly larger
than the set SMB

ICP in large, sparse graphs with few interven-
tions.

In principle, for a given number of covariates, one can enu-
merate all DAGs and, for each DAG, compare SICP and
SIAS. However, because the space of DAGs grows super-
exponentially in the number of nodes (Chickering, 2002),
this is infeasible. Instead, we sample graphs from the space
of all DAGs that satisfy Assumption 2.1 and Y ∈ DEE (see
Appendix E.1 for details).

In the low-dimensional setting (d ≤ 20), we compute SICP

and SIAS, whereas in the larger graphs (d ≥ 100), we com-
pute SMB

ICP and the reduced set Sm
IAS for m ∈ {1, 2} when

d = 100 and for m = 1 when d = 1,000. Because there
is no guarantee that IAS outputs a superset of ICP when
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Figure 2. Low-dimensional oracle experiment, see Section 6.1. In
all cases, as predicted by theory, SICP is contained in SIAS. For
many graphs, SIAS is strictly larger than SICP. On average, this
effect is more expressed when there are fewer intervened nodes.
Pn refers to the distribution used to sample graphs and every point
in the figure is based on 50,000 independently sampled graphs; d
denotes the number of covariates X . Empirical confidence bands
are plotted around each line, but are very narrow.

searching only up to sets of some size lower than d, we com-
pare the size of the sets output by either method. For the
low-dimensional setting, we consider both sparse and dense
graphs, but for larger dimensions, we only consider sparse
graphs. In the sparse setting, the DAGs are constructed such
that there is an expected number of d + 1 edges between
the d+ 1 nodes X and Y ; in the dense setting, the expected
number of edges equals 0.75 · d(d+ 1)/2.

The results of the simulations are displayed in Figures 2
and 3. In the low-dimensional setting, SIAS is a strict su-
perset of SICP for many graphs. This effect is the more
pronounced, the larger the d and the fewer nodes are inter-
vened on, see Figure 2. In fact, when there are interventions
on all predictors, we know that SIAS = SICP = PAY (Pe-
ters et al., 2016, Theorem 2), and thus the probability that
SICP ⊊ SIAS is exactly zero. For the larger graphs, we find
that the set Sm

IAS is, on average, larger than SMB
ICP, in partic-

ular when d = 1,000 or when m = 2, see Figure 3. In the
setting with d = 100 and m = 1, the two sets are roughly
the same size, when 10% of the predictors are intervened
on. The set SMB

ICP becomes larger than S1
IAS after roughly

15% of the predictors nodes are intervened on (not shown).
For both d = 100 and d = 1,000, the average size of the
Markov boundary of Y was found to be approximately 3.5.

6.2. Simulated Linear Gaussian SCMs

In this experiment, we show through simulation that IAS
finds more ancestors than ICP in a finite sample setting when
applied to linear Gaussian SCMs. To compare the outputs
of IAS and ICP, we use the Jaccard similarity between ŜIAS

(Ŝ1
IAS when d is large) and ANY , and between ŜICP (ŜM̂B

ICP
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Figure 3. High-dimensional oracle experiment with sparse graphs,
see Section 6.1. The average size of the set Sm

IAS is larger than the
average size of the set SMB

ICP, both when using IAS to search for
sets up to sizes m = 1 and m = 2. Except for the choice of d, the
setup is the same as in Figure 2.

when d is large5) and ANY .6

We sample data from sparse linear Gaussian models with
i.i.d. noise terms in two scenarios, d = 6 and d = 100. In
both cases, coefficients for the linear assignments are drawn
randomly. We consider two environments; one observa-
tional and one interventional; in the interventional environ-
ment, we apply do-interventions of strength one to children
ofE, i.e., we fix the value of a child ofE to be one. We stan-
dardize the data along the causal order, to prevent variance
accumulation along the causal order (Reisach et al., 2021).
Throughout the section, we consider a significance level of
α = 5%. For a detailed description of the simulations, see
Appendix E.2.

To test for invariance, we employ the test used in Peters et al.
(2016): We calculate a p-value for the hypothesis of invari-
ance of S by first linearly regressing Y onto XS (ignoring
E), and second testing whether the mean and variance of the
prediction residuals is equal across environments. For de-
tails, see Peters et al. (2016, Section 3.2.1). Schultheiss et al.
(2021) also consider the task of estimating ancestors but
since their method is uninformative for Gaussian data and
does not consider environments, it is not directly applicable
here.

In Theorem 5.2, we assume asymptotic power of our invari-
ance test. When d = 6, we test hypotheses with a correction
factor C = 3⌈6/3⌉ = 9, as suggested in Appendix C, in an
attempt to reduce false positive findings. In Appendix E.3,
we repeat the experiment of this section with C = 26 and
find almost identical results. We hypothesize, that the ef-
fects of a reduced C is more pronounced at larger d. When

5M̂B is a Lasso regression estimate of MBY containing at
most 10 variables

6The Jaccard similarity between two sets A and B is defined
as J(A,B) := |A ∩B|/|A ∪B|, with J(∅, ∅) = 0. The Jaccard
similarity equals one if the two sets are equal, zero if they are
disjoint and takes a value in (0, 1) otherwise.

d = 100, we test hypotheses with the correction factor C(1)
of Theorem 5.5. In both cases, we test the hypothesis of
invariance of the empty set at level α0 = 10−6 (cf. Re-
mark 5.3). In Appendix E.4, we investigate the effects on
the quantities P(ŜIAS ⊆ ANY ) and P(Ŝ1

IAS ⊆ ANY ) when
varying α0, confirming that choosing α0 too high can lead
to a reduced probability of ŜIAS being a subset of ancestors.

In Figure 4 the results of the simulations are displayed.
In SCMs where the oracle versions SIAS and SICP are not
equal, ŜIAS achieved, on average, a higher Jaccard similarity
to ANY than ŜICP. This effect is less pronounced when d =
100. We believe that the difference in Jaccard similarities
is more pronounced when using larger values of m. When
SIAS = SICP, the two procedures achieve roughly the same
Jaccard similarities to ANY , as expected. When the number
of observations is one hundred, IAS generally fails to find
any ancestors and outputs the empty set (see Figure 7),
indicating that the we do not have power to reject the empty
set when there are few observations. This is partly by design;
we test the empty set for invariance at reduced level α0 in
order to protect against making false positive findings when
the environment has a weak effect on Y . However, even
without testing the empty set at a reduced level, IAS has
to correct for making multiple comparisons, contrary to
ICP, thus lowering the marginal significance level each set
is tested at. When computing the jaccard similarities with
either α0 = α or α0 = 10−12, the results were similar (not
shown). We repeated the experiments with d = 6 with a
weaker influence of the environment (do-interventions of
strength 0.5 instead of 1) and found comparable results,
with slightly less power in that the empty set is found more
often, see Appendix E.5.

We compare our method with a variant, called IASest. graph,
where we first estimate (e.g., using methods proposed by
Mooij et al. 2020 or Squires et al. 2020) a member graph
of the Markov equivalence class (‘I-MEC’) and apply the
oracle algorithm from Section 4 (by reading of d-separations
in that graph) to estimateMI . In general, however, such an
approach comes with additional assumptions; furthermore,
even in the linear setup considered here, its empirical perfor-
mance for large graphs is worse than the proposed method
IAS, see Appendix E.7.

6.3. IAS in High Dimensional Genetic Data

We evaluate our approach in a data set on gene expression
in yeast (Kemmeren et al., 2014). The data contain full-
genome mRNA expressions of d = 6,170 genes and consists
of nobs = 160 unperturbed observations (E = 0) and nint =
1,479 intervened-upon observations (E = 1); each of the
latter observations correspond to the deletion of a single
(known) gene. For each response gene geneY ∈ [d], we
apply the procedure from Section 5.3 with m = 1 to search
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Figure 4. Comparison between the finite sample output of IAS
and ICP and ANY on simulated data, see Section 6.2. The plots
show the Jaccard similarities between ANY and either ŜIAS (Ŝ1

IAS

when d = 100) in red or ŜICP (ŜM̂B
ICP when d = 100) in blue and

ANY . When SICP ̸= SIAS (left column), ŜIAS is more similar to
ANY than ŜICP. The procedures are roughly equally similar to
ANY when SICP = SIAS (right column). Graphs represented in
each boxplot: 42 (top left), 58 (top right), 40 (bottom left) and 60
(bottom right).

for ancestors.

We first test for invariance of the empty set, i.e., whether the
distribution of geneY differs between the observational and
interventional environment. We test this at a conservative
level α0 = 10−12 in order to protect against a high false
positive rate (see Remark 5.3). For 3,631 out of 6,170
response genes, the empty set is invariant, and we disregard
them as response genes.

For each response gene, for which the empty set is not in-
variant, we apply our procedure. More specifically, when
testing whether geneX is an ancestor of geneY , we ex-
clude any observation in which either geneX or geneY

was intervened on. We then test whether the empty set is
still rejected, at level α0 = 10−12, and whether geneX

is invariant at level α = 0.25. Since a set {geneX} is
deemed minimally invariant if the p-value exceeds α, set-
ting α large is conservative for the task of finding ancestors.
Indeed, when estimating Ŝm

IAS, one can test the sets of size
m at a higher level α1 > α. This is conservative, because
falsely rejecting a minimally invariant set of size m does
not break the inclusion Ŝm

IAS ⊆ ANY . However, if one has
little power against the non-invariant sets of size m, testing
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Figure 5. True positive rates and number of gene pairs found in
the experiment in Section 6.3. On the x-axis, we change α0, the
threshold for invariance of the empty set. When α0 is small, we
only search for pairs if the environment has a very significant effect
on Y . For smaller α0, fewer pairs are found to be invariant (blue
line), but those found, are more likely to be true positives (red line).
This supports the claim that the lower α0 is, the more conservative
our approach is.

at level α1 can protect against false positives.7

We use the held-out data point, where geneX is intervened
on, to determine as ground truth, whether geneX is indeed
an ancestor of geneY . We define geneX as a true ancestor
of geneY if the value of geneY when geneX is inter-
vened on, lies in the qTP = 1% tails of the observational
distribution of geneY .

We find 23 invariant pairs (geneX ,geneY ); of these, 7 are
true positives. In comparison, Peters et al. (2016) applies
ICP to the same data, and with the same definition of true
positives. They predict 8 pairs, of which 6 are true posi-
tives. This difference is in coherence with the motivation
put forward in Section 5.2: Our approach predicts many
more ancestral pairs (8 for ICP compared to 23 for IAS).
Since ICP does not depend on power of the test, they have a
lower false positive rate (25% for ICP compared to 69.6%
for IAS).

In Figure 5, we explore how changing α0 and qTP impacts
the true positive rate. Reducing α0 increases the true pos-
itive rate, but lowers the number of gene pairs found (see
Figure 5). This is because a lower α0 makes it more difficult
to detect non-invariance of the empty set, making the proce-
dure more conservative (with respect to finding ancestors);
see Remark 5.3. For example, when α0 ≤ 10−15, the true
positive rate is above 0.8; however, 5 or fewer pairs are
found. When searching for ancestors, the effect of interven-
ing may be reduced by noise from intermediary variables, so
qTB = 1% might be too strict; in Appendix E.6, we analyze
the impact of increasing qTB .

7Only sets of size exactly m can be tested at level α1; the
remaining hypotheses should still be corrected by C(m) (or by the
hypothesized number of minimally invariant sets).
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7. Extensions
7.1. Latent variables

In Assumption 2.1, we assume that all variables X are
observed and that there are no hidden variables H . Let
us write X = XO ∪̇XH , where only XO is observed and
define I := {S ⊆ XO | S invariant}. We can then define

SIAS,O :=
⋃

S⊆XO:HMI
0,S true

S

(again with the convention that a union over the empty set
is the empty set), and have the following modification of
Proposition 3.3.

Proposition 7.1. It holds that SIAS,O ⊆ ANY .

All results in this paper remain correct in the presence of hid-
den variables, except for Proposition 3.4 and Proposition 5.4
(iii-iv).8 Thus, the union of the observed minimally invari-
ant sets, SIAS,O is a subset of ANY and can be learned from
data in the same way as if no latent variables were present.

7.2. Non-exogenous environments

Throughout this paper, we have assumed that the environ-
ment variable is exogenous (Assumption 2.1). However,
all of the results stated in this paper, except for Proposi-
tion 4.1, also hold under the alternative assumption that E
is an ancestor of Y , but not necessarily exogenous. From
the remaining results, only the proof of Proposition 3.2 uses
exogeneity of E, but here the result follows from Tian et al.
(1998). In all other proofs, we account for both options.
This extension also remains valid in the presence of hidden
variables, using the same arguments as in Section 7.1.

8. Conclusion and Future Work
Invariant Ancestry Search (IAS) provides a framework for
searching for causal ancestors of a response variable Y
through finding minimally invariant sets of predictors by
exploiting the existence of exogenous heterogeneity. The
set SIAS is a subset of the ancestors of Y , a superset of
SICP and, contrary to SICP, invariant itself. Furthermore,
the hierarchical structure of minimally invariant sets allows
IAS to search for causal ancestors only among subsets up
to a predetermined size. This avoids exponential runtime
and allows us to apply the algorithm to large systems. We
have shown that, asymptotically, SIAS can be identified
from data with high probability if we are provided with a

8These results do not hold in the presence of hidden variables,
because it is not guaranteed that an invariant set exists among
XO (e.g., consider a graph where all observed variables share a
common, unobserved confounder with Y ). However, if at least
one minimally invariant set exists among the observed variables,
then all results stated in this paper hold.

test for invariance that has asymptotic level and power. We
have validated our procedure both on simulated and real
data. Our proposed framework would benefit from further
research in the maximal number of minimally invariant sets
among graphs of a fixed size, as this would provide larger
finite sample power for identifying ancestors. Further it
is of interest to establish finite sample guarantees or con-
vergence rates for IAS, possibly by imposing additional
assumptions on the class of SCMs. Finally, even though
current implementations are fast, it is an open theoretical
question whether computing SIAS in the oracle setting of
Section 4 is NP-hard, see Appendix B.
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A. Proofs
A.1. A direct Proof of Proposition 3.2

Proof. Assume that E is exogenous. If E ∈ PAY , then there are no minimally invariant sets, and the statement holds
trivially. If E ̸∈ PAY , then assume for contradiction, that an invariant set S0 ⊊ S exists. By assumption, |S \ S0| > 1,
because otherwise S0 would be non-invariant.

We can choose S1 ⊆ S and k0, k1, . . . , kl ∈ S with l ≥ 1 such that for all i = 1, . . . , l : ki /∈ DEk0 and

S0 ∪ S1 ∪ {k0, . . . , kl} = S ∈ I
for 0 ≤ i < l : S0 ∪ S1 ∪ {k0, . . . , ki} /∈ I

S0 ∪ S1 ∈ I.

This can be done by iteratively removing elements from S \ S0, removing first the earliest elements in the causal order. The
first invariant set reached in this process is then S0 ∪ S1.

Since S0 ∪S1 ∪ {k0} is non-invariant, there exists a path π between E and Y that is open given S0 ∪S1 ∪ {k0} but blocked
given S0 ∪ S1. Since removing k0 blocks π, k0 must be a collider or a descendant of a collider c on π:

E · · · c · · · Y

...

k0

π

πE πY

Here, − represents an edge that either points left or right. Since π is open given S0 ∪ S1, the two sub-paths πE and πY are
open given S0 ∪ S1.

Additionally, since S0 ∪ S1 ∪ {k1, . . . , kl} = S \ {k0} is non-invariant, there exists a path τ between E and Y that is
unblocked given S0 ∪ S1 ∪ {k1, . . . , kl} and blocked given S0 ∪ S1 ∪ {k1, . . . , kl} ∪ {k0}. It follows that k0 lies on τ
(otherwise τ cannot be blocked by adding k0) and k0 has at least one outgoing edge. Assume, without loss of generality that
there is an outgoing edge towards Y . Since τ is open given S0 ∪ S1 ∪ {k1, . . . , kl}, so is τY .

E · · · k0 · · · Y

τ

τY

If there are no colliders on τY , then τY is also open given S0 ∪ S1. But then the path the path E
πE· · ·→ c→ · · · → k0

τY→ · · ·
is also open given S0 ∪ S1, contradicting invariance of S0 ∪ S1.

E · · · c

· · · Y

...

k0

πE
τY

If there are colliders on τY , let m be the collider closest to k0, meaning that m ∈ DEk0
. Since τY is open given

S0∪S1∪{k1, . . . , kl}, it means that eitherm or a descendant ofm is in S0∪S1∪{k1, . . . , kl}. Since {k1, . . . , kl}∩DEk0
=

∅, there exist v ∈ (S0 ∪ S1) ∩ ({m} ∪ DEm). But then v ∈ DEk0 ∩(S0 ∪ S1), meaning that π is open given S0 ∪ S1,
contradicting invariance of S0 ∪ S1.
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We could assume that τY had an outgoing edge from k0 without loss of generality, because if there was instead an outgoing
edge from k0 on τE , the above argument would work with πY and τE instead. This concludes the proof.

A.2. A direct proof of Proposition 3.3

Proof. If E is a parent of Y , we haveMI = ∅ and the statement follows trivially. Thus, assume that E is not a parent of Y .
We will show that if S ∈ I is not a subset of ANY , then S∗ := S ∩ANY ∈ I, meaning that S /∈MI.

Assume for contradiction that there is a path p between E and Y that is open given S∗. Since S ∈ I, p is blocked given S.
Then there exists a non-collider Z on p that is in S \ANY . We now argue that all nodes on p are ancestors of Y , yielding a
contradiction.

First, assume that there are no colliders on p. If E is exogenous, then p is directed from E to Y . (If E is an ancestor of Y ,
any node on p is either an ancestor of Y or E, and thus Y .) Second, assume that there are colliders on p. Since p is open
given the smaller set S∗ ⊊ S, all colliders on p are in S∗ or have a descendant in S∗; therefore all colliders are ancestors of
Y . If E is exogenous, any node on p is either an ancestor of Y or of a collider on p. (If E is an ancestor of Y , any node on p
is either an ancestor of Y , of a collider on p or of E, and thus also Y .) This completes the proof of Proposition 3.3.

A.3. Proof of Proposition 3.4

Proof. First, we show that SIAS ∈ I . If SIAS is the union of a single minimally invariant set, it trivially holds that SIAS ∈ I .
Now assume that SIAS is the union of at least two minimally invariant sets, SIAS = S1 ∪ . . . ∪ Sn, n ≥ 2, and assume for a
contradiction that there exists a path π between E and Y that is unblocked given SIAS.

Since π is blocked by a strict subset of SIAS, it follows that π has at least one collider; further every collider of π is either in
SIAS or has a descendant in SIAS, and hence every collider of π is an ancestor of Y , by Proposition 3.3. If E is exogenous,
π has the following shape

E · · · c1 · · · c2 · · · ck · · · Y.

π1 π2 π3, . . . , πk πk+1

(If E is not exogenous but E ∈ ANY , then π takes either the form displayed above or the shape displayed below. However,

E · · · c1 · · · c2 · · · ck · · · Y .

π1 π2 π3, . . . , πk πk+1

no matter which of the shapes π takes, the proof proceeds the same.) The paths π1, . . . , πk+1, k ≥ 1, do not have any
colliders and are unblocked given SIAS. In particular, π1, . . . , πk+1 are unblocked given S1.

The path πk+1 must have a final edge pointing to Y , because otherwise it would be a directed path from Y to ck, which
contradicts acyclicity since ck is an ancestor of Y .

As c1 is an ancestor of Y , there exists a directed path, say ρ1, from c1 to Y . Since π1 is open given S1 and since S1 is
invariant, it follows that ρ1 must be blocked by S1 (otherwise the path E π1→ c1

ρ1→ Y would be open). For this reason, S1

contains a descendant of the collider c1.

Similarly, if ρ2 is a directed path from c2 to Y , then S1 blocks ρ2, because otherwise the path E π1→ c1
π2← · · · → c2

ρ2→ Y
would be open. Again, for this reason, S1 contains a descendant of c2.

Iterating this argument, it follows that S1 contains a descendant of every collider on π, and since π1, . . . , πk+1 are unblocked
by S1, π is open given S1. This contradicts invariance of S1 and proves that SIAS ∈ I.

We now show that SICP ⊆ SIAS with equality if and only if SICP ∈ I. First, SICP ⊆ SIAS because SIAS is a union of the
minimally invariant sets, and SICP is the intersection over all invariant sets. We now show the equivalence statement.

Assume first that SICP ∈ I. As SICP is the intersection of all invariant sets, SICP ∈ I implies that there exists exactly one

120



Invariant Ancestry Search

invariant set, that is contained in all other invariant sets. By definition, this means that there is only one minimally invariant
set, and that this set is exactly SICP. Thus, SIAS = SICP.

Conversely assume that SICP /∈ I. By construction, SICP is contained in any invariant set, in particular in the minimally
invariant sets. However, since SICP is not invariant itself, this containment is strict, and it follows that SICP ⊊ SIAS.

A.4. Proof of Proposition 4.1

Proof. First we show PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆ SICP. If j ∈ PAY ∩CHE , any invariant set contains j,
because otherwise the path E → j → Y is open. Similarly, if j ∈ PAY ∩PA(ANY ∩CHE), any invariant set contains j
(there exists a node j′ such that E → j′ → · · · → Y and E → j′ ← j → Y , and any invariant set S must contain j′ or one
of its descendants; thus, it must also contain j to ensure that the path E → j′ ← j → Y is blocked by S.) It follows that for
all invariant S,

PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆ S,

such that

PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆
⋂

S invariant

S.

To show SICP ⊆ PAY ∩ (CHE ∪PA(ANY ∩CHE)), take any j /∈ PAY ∩ (CHE ∪PA(ANY ∩CHE)). We argue, that an
invariant set S̄ not containing j exists, such that j /∈ SICP =

⋂
S invariant S. If j /∈ PAY , let S̄ = PAY , which is invariant. If

j ∈ PAY , define

S̄ = (PAY \{j}) ∪ PAj ∪(CHj ∩ANY ) ∪ PA(CHj ∩ANY ).

Because j /∈ CHE and j /∈ PA(ANY ∩CHE), we have E /∈ S̄. Also observe that S̄ ⊆ ANY . We show that any path
between E and Y is blocked by S̄, by considering all possible paths:

· · · j′ → Y for j′ ̸= j: Blocked because j′ ∈ PAY \{j}.

· · ·v→ j→ Y: Blocked because v ∈ PAj ⊆ S̄ and E /∈ PAj .

· · ·v→ c← j→ Y and c ∈ ANY: Blocked because v ∈ PAj(CHj ∩ANY ).

· · ·v→ c← j→ Y and c /∈ ANY: Blocked because S̄ ⊆ ANY , and since c /∈ ANY , S̄ ∩ DEc = ∅ and the path is
blocked given S̄ because of the collider c.

· · · → c← · · · ← v← j→ Y and c ∈ ANY: Blocked because v ∈ ANc and c ∈ ANY , so v ∈ CHj ∩ANY ⊆ S̄.

· · · → c← · · · ← v← j→ Y and c /∈ ANY: Same reason as for the case ‘· · ·v→ c← j→ Y and c /∈ ANY’.

· · · → c← · · · ← Y Since S̄ ⊆ ANY , we must have S̄ ∩ DEc = ∅ (otherwise this would create a directed cycle from
Y → · · · → Y ). Hence the path is blocked given S̄ because of the collider c.

Since there are no open paths from E to Y given S̄, S̄ is invariant, and SICP ⊆ S̄. Since j /∈ S̄, it follows that j /∈ SICP.
This concludes the proof.

A.5. Proof of Theorem 5.1

Proof. Consider first the case where all marginal tests have pointwise asymptotic power and pointwise asymptotic level.

Pointwise asymptotic level: Let P0 ∈ HMI
0,S . By the assumption of pointwise asymptotic level, there exists a non-negative
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sequence (ϵn)n∈N such that limn→∞ ϵn = 0 and P0(ϕn(S) = 1) ≤ α+ ϵn. Then

P0(ϕ
MI
n (S) = 1) = P0


(ϕn(S) = 1) ∪

⋃

j∈S

(ϕn(S \ {j}) = 0)




≤ P0(ϕn(S) = 1) +
∑

j∈S

P0(ϕn(S \ {j}) = 0)

≤ α+ ϵn +
∑

j∈S

P0(ϕn(S \ {j}) = 0)

→ α+ 0 as n→∞
= α.

The convergence step follows from
HMI

0,S = HI
0,S ∩

⋂

j∈S

HI
A,S\{j}

and from the assumption of pointwise asymptotic level and power. As P0 ∈ HMI
0,S was arbitrary, this shows that ϕMI

n has
pointwise asymptotic level.

Pointwise asymptotic power: To show that the decision rule has pointwise asymptotic power, consider any PA ∈ HMI
A,S .

We have that

HMI
A,S = HI

A,S ∪


HI

0,S ∩
⋃

j∈S

HI
0,S\{j}


 . (7)

As the two sets HI
A,S and

HI
0,S ∩

⋃

j∈S

HI
0,S\{j}

are disjoint, we can consider them one at a time. Consider first the case PA ∈ HI
A,S . This means that S is not invariant and

thus

PA(ϕ
MI
n (S) = 1) = PA


(ϕn(S) = 1) ∪

⋃

j∈S

(ϕn(S \ {j}, α) = 0)




≥ PA(ϕn(S) = 1)

→ 1 as n→∞

by the assumption of pointwise asymptotic power.

Next, assume that there exists j′ ∈ S such that PA ∈ (HI
0,S ∩HI

0,S\{j′}). Then,

PA(ϕ
MI
n (S) = 1) = P0


(ϕn(S) = 1) ∪

⋃

j∈S

(ϕn(S \ {j}) = 0)




≥ PA(ϕn(S \ {j′}) = 0)

≥ 1− α− ϵn
→ 1− α as n→∞.

Thus, for arbitrary PA ∈ HMI
A,S we have shown that PA(ϕ

MI
n (S) = 1) ≥ 1 − α in the limit. This shows that ϕMI

n has
pointwise asymptotic power of at least 1− α. This concludes the argument for pointwise asymptotic power.

Next, consider the case that the marginal tests have uniform asymptotic power and uniform asymptotic level. The calculations
for showing that ϕMI

n has uniform asymptotic level and uniform asymptotic power of at least 1− α are almost identical to
the pointwise calculations.
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Uniform asymptotic level: By the assumption of uniform asymptotic level, there exists a non-negative sequence ϵn such
that limn→∞ ϵn = 0 and supP∈HI

0,S
P(ϕn(S) = 1) ≤ α+ ϵn. Then,

sup
P∈HMI

0,S

P(ϕMI
n (S) = 1) = sup

P∈HMI
0,S

P


(ϕn(S) = 1) ∪

⋃

j∈S

(ϕn(S \ {j}) = 0)




≤ sup
P∈HMI

0,S


P(ϕn(S) = 1) +

∑

j∈S

P(ϕn(S \ {j}) = 0)




≤ sup
P∈HMI

0,S

P(ϕn(S) = 1) +
∑

j∈S

sup
P∈HMI

0,S

P(ϕn(S \ {j}) = 0)

≤ α+ ϵn +
∑

j∈S

(
1− inf

P∈HMI
0,S

P(ϕn(S \ {j}) = 1)

)

→ α+ 0 +
∑

j∈S

(1− 1) as n→∞

= α.

Uniform asymptotic power: From (7), it follows that

inf
P∈HMI

A,S

P(ϕMI
n (S) = 1) = min

{
inf

P∈HI
A,S

P(ϕMI
n (S) = 1), inf

P∈HI
0,S∩⋃

j∈S HI
0,S\{j}

P(ϕMI
n (S) = 1)

}
.

We consider the two inner terms in the above separately. First,

inf
P∈HI

A,S

P(ϕMI
n (S) = 1) = inf

P∈HI
A,S

P


(ϕn(S) = 1) ∪

⋃

j∈S

(ϕn(S \ {j}) = 0)




≥ inf
P∈HI

A,S

P(ϕn(S) = 1)

→ 1 as n→∞.

Next,

inf
P∈HI

0,S∩⋃
j∈S HI

0,S\{j}

P(ϕMI
n (S) = 1) = inf

P∈HI
0,S∩⋃

j∈S HI
0,S\{j}

P


(ϕn(S) = 1) ∪

⋃

j∈S

(ϕn(S \ {j}) = 0)




= min
j∈S



 inf

P∈HI
0,S∩HI

0,S\{j}

P


(ϕn(S) = 1) ∪

⋃

j∈S

(ϕn(S \ {j}) = 0)







≥ min
j∈S

{
inf

P∈HI
0,S∩HI

0,S\{j}

P(ϕn(S \ {j}) = 0)

}

= min
j∈S



1− sup

P∈HI
0,S∩HI

0,S\{j}

P(ϕn(S \ {j}) = 1)





≥ 1− α− ϵn
→ 1− α as n→∞.

This shows that ϕMI
n has uniform asymptotic power of at least 1− α, which completes the proof.
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A.6. Proof of Theorem 5.2

Proof. We have that
lim
n→∞

P(ŜIAS ⊆ ANY ) ≥ lim
n→∞

P(ŜIAS = SIAS)

as SIAS ⊆ ANY by Proposition 3.4. Furthermore, we have

P(ŜIAS = SIAS) ≥ P(M̂I =MI).

Let A := {S | S ̸∈ I} \ {S | ∃S′ ⊊ S s.t. S′ ∈MI} be those non-invariant sets that do not contain a minimally invariant
set and observe that

(M̂I =MI) ⊇
⋂

S∈MI
(ϕn(S, αC

−1) = 0) ∩
⋂

S∈A

(ϕn(S, αC
−1) = 1). (8)

To see why this is true, note that to correctly recoverMI, we need to 1) accept the hypothesis of minimal invariance for
all minimally invariant sets and 2) reject the hypothesis of invariance for all non-invariant sets that are not supersets of a
minimally invariant set (any superset of a set for which the hypothesis of minimal invariance is not rejected is removed in
the computation of M̂I). Then,

P(M̂I =MI) ≥ P

( ⋂

S∈MI
(ϕn(S, αC

−1) = 0) ∩
⋂

S∈A

(ϕn(S, αC
−1) = 1)

)

≥ 1− P

( ⋃

S∈MI
(ϕn(S, αC

−1) = 1)

)
−
∑

S∈A

P(ϕn(S, αC−1) = 0)

≥ 1−
∑

S∈MI
P(ϕn(S, αC−1) = 1)−

∑

S∈A

P(ϕn(S, αC−1) = 0)

≥ 1−
∑

S∈MI
(αC−1 + ϵn,S)−

∑

S∈A

P(ϕn(S, αC−1) = 0)

≥ 1− |MI|αC−1 +
∑

S∈MI
ϵn,S −

∑

S∈A

P(ϕn(S, αC−1) = 0)

≥ 1− α+
∑

S∈MI
ϵn,S −

∑

S∈A

P(ϕn(S, αC−1) = 0)

→ 1− α as n→∞,

where (ϵn,S)n∈N,S∈MI are non-negative sequences that converge to zero and the last step follows from the assumption of
asymptotic power. The sequences (ϵn,S)n∈N,S∈MI exist by the assumption of asymptotic level.

A.7. Proof of Proposition 5.4

Proof. We prove the statements one by one.

(i) Since Sm
IAS is the union over some of the minimally invariant sets, Sm

IAS ⊆ SIAS. Then the statement follows from
Proposition 3.3.

(ii) If m ≥ mmax, all S ∈MI satisfy the requirement |S| ≤ m.

(iii) If m ≥ mmin, then Sm
IAS contains at least one minimally invariant set. The statement then follows from the first part

of the proof of Proposition 3.4 given in Appendix A.3.

(iv) Sm
IAS contains at least one minimally invariant set and, by (iii), it is itself invariant. Thus, if SICP ̸∈ I, then

SICP ⊊ Sm
IAS. If SICP ∈ I, then there exists only one minimally invariant set, which is SICP (see proof of Proposition 3.4),

and we have SICP = Sm
IAS. This concludes the proof.
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A.8. Proof of Theorem 5.5

Proof. The proof is identical to the proof of Theorem 5.2, when changing the correction factor 2−d to C(m)−1, adding
superscript m’s to the quantities M̂I, ŜIAS and SIAS, and adding the condition |S| ≤ m to all unions, intersections and
sums.

A.9. Proof of Proposition 7.1

By Proposition 3.3, we have SIAS ⊆ ANY , and since SIAS,O ⊆ SIAS, the claim follows immediately.

B. Oracle Algorithms for Learning SIAS

In this section, we review some of the existing literature on minimal d-separators, which can be exploited to give an
algorithmic approach for finding SIAS from a DAG. We first introduce the concept of M -minimal separation with respect to
a constraining set I .

Definition B.1 (van der Zander et al. (2019), Section 2.2). Let I ⊆ [d], K ⊆ [d], and S ⊆ [d]. We say that S is a K-minimal
separator of E and Y with respect to a constraining set I if all of the following are true:

(i) I ⊆ S.
(ii) S ∈ I.

(iii) There does not exists S′ ∈ I such that K ⊆ S′ ⊊ S.

We denote by MK,I the set of all K-minimal separating sets with respect to constraining set I .

(In this work, S ∈ I means E ⊥⊥ Y |S, but it can stand for other separation statements, too.) The definition of a K-minimal
separator coincides with the definition of a minimally invariant set if both K and the constraining set I are equal to the
empty set. An ∅-minimal separator with respect to constraining set I is called a strongly-minimal separator with respect to
constraining set I .

We can now represent (2) using this notation. M∅,∅ contains the minimally invariant sets and thus

SIAS :=
⋃

S∈M∅,∅

S.

Listing the set MI,I of all I-minimal separators with respect to the constraining set I (for any I) can be done in polynomial
delay time O(d3) (van der Zander et al., 2019; Takata, 2010), where delay here means that finding the next element of MI,I

(or announcing that there is no further element) has cubic complexity. This is the algorithm we exploit, as described in the
main part of the paper.

Furthermore, we have
i ∈ SIAS ⇔ M∅,{i} ̸= ∅.

This is because i ∈ SIAS if and only if there is a minimally invariant set that contains i, which is the case if and only if
there exist a strongly minimal separating set with respect to constraining set {i}. Thus, we can construct SIAS by checking,
for each i, whether there is an element in M∅,{i}. Finding a strongly-minimal separator with respect to constraining set I ,
i.e., finding an element in M∅,I , is NP-hard if the set I is allowed to grow (van der Zander et al., 2019). To the best of our
knowledge, however, it is unknown whether finding an element in M∅,{i}, for a singleton {i} is NP-hard.

C. The Maximum Number of Minimally Invariant Sets
If one does not have a priori knowledge about the graph of the system being analyzed, one can still apply Theorem 5.2 with
a correction factor 2d, as this ensures (with high probability) that no minimally invariant sets are falsely rejected. However,
we know that the correction factor is strictly conservative, as there cannot exist 2d minimally invariant sets in a graph. Thus,
correcting for 2d tests, controls the familywise error rate (FWER) among minimally invariant sets, but increases the risk
of falsely accepting a non-invariant set relatively more than what is necessary to control the FWER. Here, we discuss the
maximum number of minimally invariant sets that can exist in a graph with d predictor nodes and how a priori knowledge
about the sparsity of the graph and the number of interventions can be leveraged to estimate a less strict correction that still
controls the FWER.
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As minimally invariant sets only contain ancestors of Y (see Proposition 3.3), we only need to consider graphs where Y
comes last in a causal ordering. Since d-separation is equivalent to undirected separation in the moralized ancestral graph
(Lauritzen, 1996), finding the largest number of minimally invariant sets is equivalent to finding the maximum number of
minimal separators in an undirected graph with d+ 2 nodes. It is an open question how many minimal separators exists in a
graph with d+ 2 nodes, but it is known that a lower bound for the maximum number of minimal separators is in Ω(3d/3)
(Gaspers & Mackenzie, 2015). We therefore propose using a correction factor of C = 3⌈d/3⌉ when estimating the set ŜIAS

from Theorem 5.2 if one does not have a priori knowledge of the number of minimally invariant sets in the DAG of the SCM
being analyzed. This is a heuristic choice and is not conservative for all graphs.

Theorem 5.2 assumes asymptotic power of the invariance test, but as we can only have a finite amount of data, we will
usually not have full power against all non-invariant sets that are not supersets of a minimally invariant set. Therefore,
choosing a correction factor that is potentially too low represents a trade-off between error types: if we correct too little, we
stand the risk of falsely rejecting a minimally invariant set but not rejecting a superset of it, whereas when correcting too
harshly, there is a risk of failing to reject non-invariant sets due to a lack of power.

If one has a priori knowledge of the sparsity or the number of interventions, these can be leveraged to estimate the maximum
number of minimally invariant sets using simulation, by the following procedure:

1. For b = 1, . . . , B:

(a) Sample a DAG with d predictor nodes, Ninterventions ∼ PN interventions and p ∼ Pp probability of an edge
being present in the graph over (X,Y ), such that Y is last in a causal ordering. The measures PN and Pp are
distributions representing a priori knowledge. For instance, in a controlled experiment, the researcher may have
chosen the number N0 of interventions. Then, PN is a degenerate distribution with PN (N0) = 1.

(b) Compute the set of all minimally invariant sets, e.g., using the adjustmentSets algorithm from dagitty
(Textor et al., 2016).

(c) Return the number of minimally invariant sets.

2. Return the largest number of minimally sets found in the B repetitions above.

Instead of performing B steps, one can continually update the largest number of minimally invariant sets found so far and
end the procedure if the maximum has not updated in a predetermined number of steps, for example.

D. A Finite Sample Algorithm for Computing ŜIAS

In this section, we provide an algorithm for computing the sets ŜIAS and Ŝm
IAS presented in Theorems 5.2 and 5.5. The

algorithm finds minimally invariant sets by searching for invariant sets among sets of increasing size, starting from the
empty set. This is done, because the first (correctly) accepted invariant is a minimally invariant set. Furthermore, any
set that is a superset of an accepted invariant set, does not need to be tested (as this set cannot be minimal). Tests for
invariance can be computationally expensive if one has large amounts of data. Therefore, skipping unnecessary tests offers a
significant speedup. In the extreme case, where all singletons are found to be invariant, the algorithm completes in d+ 1
steps, compared to

∑m
i=0

(
d
i

)
steps (2d if m = d). This is implemented in lines 8-10 of Algorithm 1.

E. Additional Experiment Details
E.1. Simulation Details for Section 6.1

We sample graphs that satisfy Assumption 2.1 with the additional requirement that Y ∈ DEY by the following procedure:

1. Sample a DAG G for the graph of (X,Y ) with d+1 nodes, for d ∈ {4, 6, . . . , 20} ∪ {100, 1,000}, and choose Y to be
a node (chosen uniformly at random) that is not a root node.

2. Add a root node E to G with Ninterventions children that are not Y . When d ≤ 20, Ninterventions ∈ {1, . . . , d} and when
d ≥ 100, Ninterventions ∈ {1, . . . , 0.1× d} (i.e., we consider interventions on up to ten percent of the predictor nodes).

3. Repeat the first two steps if Y ̸∈ DEE .
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Algorithm 1 An algorithm for computing ŜIAS from data
input A decision rule ϕn for invariance, significance thresholds α0, α, max size of sets to test m (potentially m = d) and

data
output The set ŜIAS

1: Initialize M̂I as an empty list.
2: PS ← {S ⊆ [d] | |S| ≤ m}
3: if ϕn(∅, α0) = 0 then
4: End the procedure and return ŜIAS = ∅
5: end if
6: Sort PS in increasing order according the set sizes
7: for S ∈ PS do
8: if S ⊋ S′ for any S′ ∈ M̂I then
9: Skip the test of S and go to next iteration of the loop

10: else
11: Add S to M̂I if ϕn(S, α) = 0, else continue
12: end if
13: if The union of M̂I contains all nodes then
14: Break the loop
15: end if
16: end for
17: Return ŜIAS as the union of all sets in M̂I

E.2. Simulation Details for Section 6.2

We simulate data for the experiment in Section 6.2 (and the additional plots in Appendix E.4) by the following procedure:

1. Sample data from a single graph by the following procedure:

(a) Sample a random graph G of size d+ 1 and sample Y (chosen uniformly at random) as any node that is not a root
node in this graph.

(b) Sample coefficients, βi→j , for all edges (i→ j) in G from U((−2, 0.5) ∪ (0.5, 2)) independently.
(c) Add a node E with no incoming edges and Ninterventions children, none of which are Y . When d = 6, we set

Ninterventions = 1 and when d = 100, we sample Ninterventions uniformly from {1, . . . , 10}.
(d) If Y is not a descendant of E, repeat steps (a), (b) and (c) until a graph where Y ∈ DEE is obtained.
(e) For n ∈ {102, 103, 104, 105}:

i. Draw 50 datasets of size n from an SCM with graph G and coefficients βi→j and with i.i.d. N(0, 1) noise
innovations. The environment variable, E, is sampled independently from a Bernoulli distribution with
probability parameter p = 0.5, corresponding to (roughly) half the data being observational and half the data
interventional. The data are generated by looping through a causal ordering of (X,Y ), starting at the bottom,
and standardizing a node by its own empirical standard deviation before generating children of that node; that
is, a node Xj is first generated from PAj and then standardized before generating any node in CHj . If Xj is
intervened on, we standardize it prior to the intervention.

ii. For each sampled dataset, apply IAS and ICP. Record the Jaccard similarities between IAS and ANY and
between ICP and ANY , and record whether or not is was a subset of ANY and whether it was empty.

iii. Estimate the quantity plotted (average Jaccard similarity in Figure 4 or probability of ŜIAS ⊆ ANY or
ŜIAS = ∅ in Figure 7) from the 50 simulated datasets.

(f) Return the estimated quantities from the previous step.

2. Repeat the above 100 times and save the results in a data-frame.

E.3. Analysis of the Choice of C in Section 6.2

We have repeated the simulation with d = 6 from Section 6.2 but with a correction factor of C = 26, as suggested by
Theorem 5.2 instead of the heuristic correction factor of C = 9 suggested in Appendix C. Figure 6 shows the results. We
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see that the results are almost identical to those presented in Figure 4. Thus, in the scenario considered here, there is no
change in the performance of ŜIAS (as measured by Jaccard similarity) between using a correction factor of C = 26 and a
correction factor of C = 3⌈6/3⌉ = 9. In larger graphs, it is likely that there is a more pronounced difference. E.g., at d = 10,
the strictly conservative correction factor suggested by Theorem 5.2 is 210 = 1024, whereas the correction factor suggested
in Appendix C is only 3⌈10/3⌉ = 34 = 81, and at d = 20 the two are 220 = 1,048,576 and 3⌈20/3⌉ = 37 = 2187.
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ŜICP

102 103 104 105

Number of observations

Oracle IAS and ICP equal

Figure 6. The same figure as in Figure 4, but with a correction factor of C = 26 = 64 instead of C = 3⌈6/3⌉ = 9. Only d = 6 shown
here, as the correction factor for d = 100 is unchanged. Here, the guarantees of Theorem 5.2 are not violated by a potentially too small
correction factor, and the results are near identical to those given in Figure 4 using a milder correction factor.

E.4. Analysis of the Choice of α0 in Section 6.2

Here, we investigate the quantities P(ŜIAS ⊆ ANY ), P(Ŝ1
IAS ⊆ ANY ), P(ŜIAS = ∅) and P(Ŝ1

IAS = ∅) using the same
simulation setup as described in Section 6.2. Furthermore, we also ran the simulations for values α0 = α (testing all
hypotheses at the same level), α0 = 10−6 (conservative, see Remark 5.3) as in Section 6.2 and α0 = 10−12 (very
conservative). The results for α = 10−6 (shown in Figure 7) were recorded in the same simulations that produced the
output for Figure 4. For α0 ∈ {α, 10−12} (shown in Figure 8 and Figure 9, respectively) we only simulated up to 10,000
observations, to keep computation time low.

Generally, we find that the probability of IAS being a subset of the ancestors seems to generally hold well and even more so
with large sample sizes. (see Figures 7 to 9), in line with Theorem 5.2. When given 100,000 observations, the probability of
IAS being a subset of ancestors is roughly equal to one for almost all SCMs, although there are a few SCMs, where IAS is
never a subset of the ancestors (see Figure 7). For α0 = 10−6, the median probability of IAS containing only ancestors is
one in all cases, except for d = 100 with 1,000 observations – here, the median probability is 87%.

In general, varying α0 has the effect hypothesized in Remark 5.3: lowering α0 increases the probability that IAS contains
only ancestors, but at the cost of increasing the probability that it is empty (see Figures 7 to 9). For instance, the median
probability of IAS being a subset of ancestors when α0 = 10−12 is one for all sample sizes, but the output is always
empty when there are 100 observations and empty roughly half the time even at 1,000 observations when d = 100 (see
Figure 9). In contrast, not testing the empty set at a reduced level, means that the output of IAS is rarely empty, but the
probability of IAS containing only ancestors decreases. Still, even with α0 = α, the median probability of IAS containing
only ancestors was never lower than 80% (see Figure 8). Thus, choosing α0 means choosing a trade-off between finding
more ancestor-candidates, versus more of them being false positives.

E.5. Analysis of the strength of inverventions in Section 6.2

Here, we repeat the d = 6 simulations from Section 6.2 with a reduced strength of the environment to investigate the
performance of IAS under weaker interventions. We sample from the same SCMs as sampled in Section 6.2, but reduce the
strength of the interventions to be 0.5 instead of 1. That is, the observational distributions are the same as in Section 6.2, but
interventions to a node Xj are here half as strong as in Section 6.2.

The Jaccard similarity between ŜIAS and ANY is generally lower than what we found in Figure 4 (see Figure 10). This is
likely due to having lower power to detect non-invariance, which has two implications. First, lower power means that we
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Figure 7. The empirical probabilities of recovering a subset of ANY (top row) and recovering an empty set (bottom row), when testing
the empty set for invariance at level α0 = 10−6. Generally, our methods seem to hold level well, especially when sample sizes are large.
When the sample size is small, the output is often the empty set. When d = 6, we estimate ŜIAS (left column) and when d = 100, we
estimate Ŝ1

IAS (right column). The results here are from the simulations that also produced Figure 4. Medians are displayed as orange
lines through each boxplot. Each point represents the probability that the output set is ancestral (resp. empty) for a randomly selected
SCM, as estimated by repeatedly sampling data from the same SCM for every n ∈ {102, 103, 104, 105}. Observations from the same
SCM are connected by a line. Each figure contains data from 100 randomly drawn SCMs. Points have been perturbed slightly along the
x-axis to improve readability.

may fail to reject the empty set, meaning that we output nothing. Then, the Jaccard similarity between ŜIAS and ANY is
zero. Second, it may be that we correctly reject the empty set, but fail to reject another non-invariant set which is not an
ancestor of Y which is then potentially included in the output. Then, the ŜIAS and ANY is lower, because we increase the
number of false findings.

We find that the probability that ŜIAS is a subset of ancestors is generally unchanged for the lower intervention strength,
but the probability of ŜIAS generally increases for small sample sizes (see Table 1). This indicates that IAS does not make
more mistakes under the weaker interventions, but it is more often uninformative. We see also that in both settings, ŜIAS is
empty more often than ŜICP for low sample sizes, but less often for larger samples (see Table 1). This is likely because
IAS tests the empty set at a much lower level than ICP does (10−6 compared to 0.05). Thus, IAS requires more power to
find anything, but once it has sufficient power, it finds more than ICP (see also Figure 10). The median probability of ICP
returning a subset of the ancestors was always at least 95% (not shown).
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Figure 8. The same figure as Figure 7, but with α0 = α = 0.05 and n ∈ {102, 103, 104}. Testing the empty set at the non-conservative
level α0 = α means that the empty set is output less often for small sample sizes, but decreases the probability that the output is a subset
of ancestors. Thus, we find more ancestor-candidates, but make more mistakes when α0 = α. However, the median probability of the
output being a subset of ancestors is at least 80% in all configurations.

Table 1. Summary of the quantities P(ŜIAS ⊆ ANY ), P(ŜIAS = ∅) and P(ŜICP = ∅) for weak and strong do-interventions (strength 0.5
and 1, respectively) when d = 6. Numbers not in parentheses are means, numbers in parentheses are medians. The level is generally
unchanged when the environments have a weaker effect, but the power is lower, in the sense that the empty set is output more often.

P(ŜIAS ⊆ ANY ) P(ŜIAS = ∅) P(ŜICP = ∅)

Strong interventions

n = 100 96.6% (100%) 89.6% (98%) 52.3% (52%)
n = 1,000 75.7% (100%) 10.0% (0%) 30.4% (14%)
n = 10,000 83.7% (100%) 1.0% (0%) 24.9% (10%)
n = 100,000 93.8% (100%) 0.2% (0%) 22.9% (10%)

Weak interventions

n = 100 99.3% (100%) 98.7% (100%) 72.0% (84%)
n = 1,000 81.1% (100%) 40.2% (26%) 36.9% (24%)
n = 10,000 80.8% (100%) 1.7% (0%) 27.5% (15%)
n = 100,000 92.6% (100%) 1.1% (0%) 24.8% (14%)
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(Ŝ

IA
S
⊆

A
N
Y

)

d = 6

P n
(Ŝ
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Figure 9. The same figure as Figure 7, but with α0 = 10−12 and n ∈ {102, 103, 104}. Testing the empty set at at very conservative level
α0 = 10−12 means that the empty set is output more often (for one hundred observations, we only find the empty set), but increases the
probability that the output is a subset of ancestors. Thus, testing at a very conservative level α0 = 10−12 means that we do not make
many mistakes, but the output is often non-informative.
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Figure 10. The same figure as the one presented in Figure 4, but with weaker environments (do-interventions of strength 0.5 compared to
1 in Figure 4). Generally, IAS performs the same for weaker interventions as for strong interventions, when there are more than 10,000
observations. Graphs represented in each boxplot: 42 (left), 58 (right).

E.6. Analysis of the Choice of qTB in Section 6.3

In this section, we analyze the effect of changing the cut-off qTB that determines when a gene pair is considered a true
positive in Section 6.3. For the results in the main paper, we use qTB = 1%, meaning that the pair (geneX ,geneY ) is
considered a true positive if the value of geneY when intervening on geneX is outside of the 0.01- and 0.99-quantiles
of geneY in the observational distribution. In Figure 11, we plot the true positive rates for several other choices of qTB .
We compare to the true positive rate of random guessing, which also increases if the criterion becomes easier to satisfy.
We observe that the choice of qTB does not substantially change the excess true positive rate of our method compared to
random guessing. This indicates that while the true positives in this experiments are inferred from data, the conclusions
drawn in Figure 5 are robust with respect to some modelling choices of qTB .

E.7. Learning causal ancestors by estimating the I-MEC

In this section, we repeat the experiments performed in Section 6.2, this time including a procedure (here denoted IASest. graph),
where we perform the following steps.

1. Estimate a member graph of the I-MEC and the location of the intervention sites using Unknown-Target Interventional
Greedy Sparsest Permutation (UT-IGSP) (Squires et al., 2020) using the implemention from the Python package
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Figure 11. True positive rates (TPRs) for the gene experiment in Section 6.3. qTB specifies the quantile in the observed distribution that
an intervention effect has to exceed to be considered a true positive. While the TPR increases for our method when qTB is increased, the
TPR of random guessing increases comparably. This validates that changing the definition of true positives in this experiment by choosing
a different qTB does not change the conclusion of the experiment substantially.

CausalDAG.9

2. Apply the oracle algorithm described in Section 4 to the estimated graph to obtain an estimate ofMI.

3. Output the union of all sets in the estimate ofMI.

The results for the low-dimensional experiment are displayed in Figure 12 and the results for the high-dimensional experiment
are displayed in Table 2. Here, we see that IASest. graph generally performs well (as measured by Jaccard similarity) in the
low-dimensional setting (d = 6), and even better than IAS for sample sizes N ≤ 103, but is slightly outperformed by
IAS for larger sample sizes. However, in the high-dimensional setting (d = 100), we observe that IASest. graph fails to hold
level and identifies only very few ancestors (see Table 2). We hypothesize that the poor performance of IASest. graph in the
high-dimensional setting is due to IASest. graph attempting to solve a more difficult task than IAS. IASest. graph first estimates a
full graph (here using UT-IGSP), even though only a subgraph of the full graph is of relevance in this scenario. In addition,
UT-IGSP aims to estimate the site of the unknown interventions. In contrast, IAS only needs to identify nodes that are
capable of blocking all paths between two variables, and does not need to know the site of the interventions.

d = 100, N = 103 d = 100, N = 104 d = 100, N = 105

IAS IASest. graph IAS IASest. graph IAS IASest. graph
P(S· ⊆ ANY ) 84.64% 15.30% 94.04% 14.92% 94.72% 14.74%
P(S· = ∅) 51.96% 12.32% 12.72% 11.84% 6.98% 11.42%
J(S·,ANY ) 0.19 0.10 0.33 0.10 0.35 0.11

Table 2. Identifying ancestors by first estimating the I-MEC of the underlying DAG and then applying the oracle algorithm of Section 4
fails to hold level and identifies fewer ancestors than applying IAS, when in a high-dimensional setting.

9Available at https://github.com/uhlerlab/causaldag.
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Figure 12. Comparison between the finite sample output of IAS and the procedure described in Appendix E.7, in the low-dimensional
case. Generally, these procedures have similar performance, although IAS performs worse for small sample sizes but slightly better for
high sample sizes.
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4.2 Separating parents from non-parental
ancestors

We showed in Paper C that IAS outputs non-empty, invariant subsets of
ancestors of Y with high probability. The output SIAS of IAS is desirable
because 1) it can be used to generate invariant predictions of Y , and 2) it
yields information about the potential causes of Y . However, the lack of
information about which elements of SIAS are parents and which are non-
parental ancestors of Y can lead to some redundancy. For example, in the
graph E → X1 → X2 → Y , IAS outputs {X1, X2}. Without knowing the
ground truth DAG behind this learned set of ancestors, we may – for example
– decide to make interventions on both X1 and X2. However, under atomic
interventions, intervening on X1 and X2 is equivalent to intervening only on
X1. While intervening on both predictors is not worse than intervening on
only one, it may be expensive, time-consuming, or difficult to make multiple
interventions. It is therefore valuable to further separate SIAS into parents
and non-parental ancestors of Y .

We describe in this section a data-driven way to separate SIAS into par-
ents and non-parental ancestors and prove in Theorem 4.1 that this procedure
succeeds with high probability in the limit. Additionally, we perform simu-
lation experiments to show that the separation into parents and non-parents
succeeds with high probability in finite samples as well.

To prove Theorem 4.1, we first show that the non-parental ancestors in
SIAS are independent of Y given the parents in SIAS.

Lemma 4.1. Let S0 := SIAS \ PAY and S := SIAS ∩ PAY and assume that
S0 ̸= ∅. It holds that

S0 ⊥d Y | S.

Proof. Let i ∈ S0 and denote by G the graph under consideration. We show
that i ⊥d Y | S, which implies the desired result. Assume for contradiction
that there exists a path ϵ between i and Y that is open conditionally on S.

Case 1 – ϵ does not contain a collider: If ϵ is a directed path from Y
to i, there is a cycle in G, which contradicts the assumption of acyclicity. If ϵ
is either directed from i to Y or has the form Y ← · · · → i, there is a parent
of Y that: 1) lies on ϵ, 2) is not in S, and 3) is contained in a minimally
invariant set. Thus, we have reached a contradiction, as SIAS is the union of
all minimally invariant sets.

Case 2 – ϵ contains a collider c: In order for ϵ to be open given S, either
the collider itself or a descendant of it must be in S. If c is a descendant of
Y , this implies the existence of a cycle (because SIAS ⊆ ANY ), contradicting
acyclicity of G. If c is a non-descendant of Y , there is a parent of Y between
Y and c which is contained in a minimally invariant set but is not in S,
contradicting that SIAS is the union of all minimally invariant sets.

Having reached a contradiction in all possible cases, we conclude that
i ⊥d Y | S, and therefore S0 ⊥d Y | S.
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Below, we consider the case where Y is linear in all its causes and has
additive Gaussian noise.2 That is, we assume that Y is structurally generated
as

Y :=
∑

i∈PAY

βiXi +NY , NY ∼ N(0, σ2).

Let D = (Xi, Ei, Yi)
N
i=1 be i.i.d. observations of (X,E, Y ).3 The procedure is

as follows:

1. Use D to learn an estimate of SIAS.

2. Regress Y onto XŜIAS
and test the hypotheses H0,i : β̂i = 0 for all

i ∈ ŜIAS. Denote by ϕi a decision rule for H0,i being rejected (ϕi = 1)
using any method that controls the FWER (e.g., Bonferroni corrected
p-values from T -tests).

3. Split ŜIAS according to the rejected and non-rejected hypotheses:

ŜPA
IAS :=

⋃

i∈ŜIAS: ϕi=1

{i}

and

Ŝ¬PA
IAS :=

⋃

i∈ŜIAS: ϕi=0

{i}.

Below, we show that ŜPA
IAS (resp. Ŝ¬PA

IAS ) is a subset of parents of Y (resp. non-
parental ancestors of Y ) with high probability if the individual hypotheses
H0,i can be tested with asymptotic power.

Theorem 4.1. Assume for all i ∈ SIAS ∩PAY that ϕi has (uniform or point-
wise) asymptotic power to reject Hi. Then

lim
n→∞

P(ŜPA
IAS ⊆ PAY ) ≥ (1− α)2

and

lim
n→∞

P(Ŝ¬PA
IAS ⊆ ANY \PAY ) ≥ (1− α)2.

2Similar arguments apply to the general case of additive noise models if the regression
functions are consistent minimizers of the L2 loss.

3This is a slight abuse of notation: recall that X = (X1, . . . , Xd). Here, the subscripts
refer to coordinate projections of the d-valued random variable. In D = (Xi, Ei, Yi)

N
i=1, the

subscript i refers to an observation of all d marginals – not a coordinate of X.
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Proof. Let Ω := ŜIAS \ PAY and Θ := ŜIAS ∩ PAY . Then:

P(ŜPA
IAS ⊆ PAY ) ≥P


(ŜIAS = SIAS) ∩

⋂

i∈Ω
(ϕi = 0) ∩

⋂

i∈Θ
(ϕi = 1)




=P


⋂

i∈Ω
(ϕi = 0) ∩

⋂

i∈Θ
(ϕi = 1) | ŜIAS = SIAS




× P(ŜIAS = SIAS)

From PaperC, Theorem 5.2, we know that the quantity P(ŜIAS = SIAS) can be
asymptotically controlled at level 1−α. We then consider the remaining term.
Given that ŜIAS = SIAS, Lemma 4.1 implies that every hypothesis in Ω is true
and every hypothesis in Θ is false. Thus, conditionally on ŜIAS = SIAS, the
term simply states that we reject all false hypotheses and fail to reject all true
hypotheses. By the assumption of asymptotic power, all false hypotheses are
rejected with probability one in the limit. Furthermore, we have constructed
the tests ϕi, such that the FWER is controlled at level α. Thus, the remaining
term is asymptotically controlled at level 1−α. In summary, we conclude that

lim
n→∞

P(ŜPA
IAS ⊆ PAY ) ≥ (1− α)2.

One can apply the same argument to show that limn→∞ P(Ŝ¬PA
IAS ⊆

ANY \PAY ) ≥ (1− α)2.

We verify Theorem 4.1 by simulation. We consider the same simulation
setup as in Paper C, Section 6.2. This time, we follow up the estimation
of ŜIAS by splitting it into ŜPA

IAS and Ŝ¬PA
IAS as described above. We sample

100 graphs and corresponding coefficients, and for each N ∈ {102, . . . , 105},
we sample 50 data sets of N observations. For each obtained data set, we
estimate SIAS and:

1. Linearly regress Y onto the learned set ŜIAS.

2. Test each hypothesis H0,i : βi = 0, i ∈ ŜIAS, using a two-sided T -test.

3. Reject H0,i if the p-value from the T -test is below 0.05/|ŜIAS|.

4. Construct ŜPA
IAS and Ŝ¬PA

IAS .

5. Record:

• Whether ŜPA
IAS ⊆ PAY and Ŝ¬PA

IAS ⊆ ANY \PAY .

• The Jaccard similarity of ŜPA
IAS to the set of discoverable parents

SIAS ∩ PAY , and the Jaccard similarity of ŜICP to SIAS ∩ PAY .

• The size of the sets ŜPA
IAS and ŜICP.
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Figure 4.1: Results of the simulation described in Section 4.2. Top left: The
empirical probabilities that the output sets ŜPA

IAS and Ŝ¬PA
IAS contain only par-

ents of Y and non-parental ancestors of Y , respectively. Top right: The Jac-
card similarity between the set of discoverable parents SIAS ∩ PAY and ŜICP

and ŜPA
IAS, respectively. Bottom: The average size of ŜICP versus the average

size of ŜICP. The black line is the identity line. Each point represents the
average of 50 estimates on the same graph with the same number of obser-
vations. Points are colored by the empirical probability that ŜPA

IAS ⊆ PA. In
the top graphs, points have been jittered slightly along the x-axis to increase
readability.

The results are summarized in Figure 4.1. From this, we see three things.
First, the output sets ŜPA

IAS and Ŝ¬PA
IAS generally hold level even for relatively

small sample sizes. Second, ŜPA
IAS generally has a higher Jaccard similarity to

the set of discoverable parents SIAS ∩ PAY than ŜICP does. Third, in cases
where ICP finds no candidate parents, ŜPA

IAS appears sometimes to be overly

volatile. That is, ŜPA
IAS will output a large set of predictors, but this set also

contains non-parents. This is likely to happen in the cases where we do not
have sufficient power to reject non-invariant sets, in which case ŜIAS potentially
contains descendants of Y . In other words: when everything looks invariant
(but is not invariant), IAS outputs everything and ICP outputs nothing.

As shown in Paper C, Proposition 3.4, the oracle output of ICP equals
that of IAS if and only if the oracle output of ICP is invariant. In Figure 4.2,
we have repeated a modified version of the experiment from Figure 4.1. This
time, we sample 100 graphs in which the oracle output of ICP is not invariant
(i.e., SICP ⊊ SIAS). As expected, we find that ŜPA

IAS still has a high Jaccard

similarity to the set of discoverable parents, but that ŜICP generally has low
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Figure 4.2: Same experiment and figure as in Figure 4.1, with the additional
requirement that SICP ⊊ SIAS in all graphs.

similarity to the discoverable parents. The levels of ŜPA
IAS and Ŝ¬PA

IAS are largely
unchanged.

In summary, the results of this section demonstrate that the output of IAS
can be post hoc separated into parents and non-parental ancestors of Y while
retaining asymptotic guarantees. This yields additional information about the
causal structure of the subgraph induced by Y and SIAS, and facilitates the
discovery of more parents than by applying ICP. Like in Paper C, this comes
at the cost of all guarantees being asymptotic and dependent on several tests
having asymptotic power.



Bibliography

JJ Allaire, Romain Francois, Kevin Ushey, Gregory Vandenbrouck, Marcus
Geelnard, and Intel. RcppParallel: Parallel Programming Tools for ’Rcpp’,
2022. URL https://CRAN.R-project.org/package=RcppParallel. R
package version 5.1.5.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the Royal
statistical society: series B (Methodological), 57(1):289–300, 1995.

Yoav Benjamini and Yosef Hochberg. On the adaptive control of the false
discovery rate in multiple testing with independent statistics. Journal of
educational and Behavioral Statistics, 25(1):60–83, 2000.
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