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Abstract

This PhD thesis contains a number of contributions on drawing causal inference from
observational data, with a particular focus on shifts in distribution. These contributions
fall within three categories: 1) Testing hypotheses in shifted distributions, 2) learning
predictive models that are robust to distribution shift and 3) inferring causal structure
and causal effects using exogenous variables.
First, we present a general framework which formalizes statistical hypothesis testing

under distribution shifts. We propose methods and prove theoretical results for con-
ducting such tests. We describe a number of different applications of testing under
distribution shifts, which includes policy learning and conditional independence testing.
Second, we outline ways of using causal methodology to learn predictive models that

are robust to shifts in distribution. We propose an algorithm for learning invariant
policies in bandit problems, and we show that, if certain assumptions are satisfied, this
allows for worst-case optimal prediction in unseen environments. In a regression setting,
we propose an estimator for learning linear predictors that are worst-case optimal over
a class of mean-shifts in an unobserved confounder, assuming that we observe proxies of
this confounder. We also propose a framework for specifying plausible parametric shifts
in distribution, and develop theory for finding the shift that has the worst-case impact
on the performance of a predictive model.
Finally, we provide methods for inferring causal structure and causal effects from het-

erogeneous observational data. We propose a procedure for identifying causal ancestors
of a given target variable by using ‘minimal invariance’ of sets of predictors across mul-
tiple exogenous environments (or distribution shifts). We develop instrumental variable
methodology for inferring causal effects in linear time series data, where we highlight
that past states are helpful for obtaining ‘more exogeneity’ but also that past states
confound the instrument and outcome, and needs to be adjusted for.
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Sammenfatning

Denne Ph.D.-afhandling indeholder en række bidrag vedrørende kausal inferens draget
fra observationelle data, med et særligt fokus p̊a skift i fordeling. Bidragene falder
indenfor tre kategorier: 1) At teste hypoteser i skiftede fordelinger, 2) at lære prædiktive
modeller der er robuste overfor skift i fordelinger og 3) at inferere kausale strukturer og
kausale effekter ved brug af exogene variable.
Først præsenterer vi en generel formalisering af statistiske hypotesetest under skift i

fordeling. Vi foresl̊ar metoder og beviser teoretiske resultater, der muliggør s̊adanne test.
Vi beskriver en række forskellige anvendelser af test under skift i fordeling, hvilket inklud-
erer evaluering af strategier i beslutningsproblemer og test af betinget uafhængighed.
Dernæst beskriver vi hvordan kausale metoder kan bruges til at lære prædiktive mod-

eller, som er robuste overfor skift i fordeling. Vi foresl̊ar en algoritme, der kan lære invari-
ante strategier i ‘bandit’ problemer, og viser at denne, under visse antagelser, muliggør
worst-case optimale prædiktioner i nye miljøer. Vi foresl̊ar en regressionsestimator til
at lære lineære modeller som er worst-case optimale over en klasse af middelværdiskift
i en uobserveret confounder, under antagelse af, at vi observerer en proxy for denne
confounder. Og vi beskriver et system til at specificere plausible parametriske skift
i fordeling, og foresl̊ar en metode til at identificere hvilket skift, der har den værste
indvirkning p̊a en prædiktiv models præstation.
Endelig fremlægger vi metoder til at inferere kausal struktur og kausale effekter fra

heterogene observationelle data. Vi foresl̊ar en procedure til at inferere kausale forfædre
til en responsvariabel ved at bruge ‘minimal invarians’ p̊a tværs af adskillige miljøer
(eller skift i fordeling). Og vi udvikler metoder der infererer kausale effekter i lineære
tidsrækker ved brug af instrumental variable. Vi fremhæver, at tidligere tilstande kan
bruges til at øge ‘mængden af exogenitet’, men understreger ogs̊a vigtigheden af at
justere for tidligere tilstande som confoundere.
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Contributions and Structure

This thesis contains an introduction in Chapter 1, which briefly reviews causal infer-
ence. The introduction is not intended to be a representative review of the literature,
but rather a highly selective summary of methods which the later chapters build upon.
It is followed by 3 chapters, each of which contains a small motivation for the problems
studied as well as one or more papers. For reference within this thesis, we give each
paper an acronym, for example [ShiftTest]. All theorems, etc., are numbered relative
to the paper they appear in.

Chapter 2 (Shifts in Distribution: Testing) discusses hypothesis testing in an unob-
served target distribution P using data observed from a different distribution Q. The
chapter contains the following paper:

[ShiftTest] [Thams et al., 2021]. N. Thams, S. Saengkyongam, N. Pfister, and J. Peters.
Statistical testing under distributional shifts. arXiv preprint arXiv:2105.10821,
2021.

Paper status: Revision under review at JRSS-B.

Chapter 3 (Shifts in Distribution: Prediction) is concerned with prediction under dis-
tribution shift, where a model is trained in one distribution Q, but will also be applied in
one or more different distributions. The chapter contains the following three papers:

[ShiftEval] [Thams et al., 2022a]. N. Thams, M. Oberst, and D. Sontag. Evaluating robustness
to dataset shift via parametric robustness sets. In Neural Information Processing
Systems (NeurIPS), 2022a. NT and MO contributed equally, order determined by
coin flip.

Paper status: Under review at NeurIPS 2022.

[ProxyAR] [Oberst et al., 2021]. M. Oberst, N. Thams, J. Peters, and D. Sontag. Regularizing
towards causal invariance: Linear models with proxies. In International Conference
on Machine Learning, pages 8260–8270. PMLR, 2021.

[InvPolicy] [Saengkyongam et al., 2021]. S. Saengkyongam, N. Thams, J. Peters, and N. Pfis-
ter. Invariant policy learning: A causal perspective. arXiv preprint arXiv:2106.00808,
2021.

Paper status: Revision in progress for resubmission at IEEE TPAMI.
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Contributions and Structure

Chapter 4 (Shifts in Distribution: Causal Inference) considers estimation of causal
structure and causal effects from observational data with exogenous environments or
instruments. The chapter contains the following two papers:

[TimeIV] [Thams et al., 2022b]. N. Thams, R. Søndergaard, S. Weichwald, and J. Peters.
Identifying causal effects using instrumental time series: Nuisance IV and correcting
for the past. arXiv preprint arXiv:2203.06056, 2022b.

Paper status: Revision in progress for resubmission at JMLR.

[AncSearch] [Mogensen et al., 2022]. P. Mogensen, N. Thams, and J. Peters. Invariant an-
cestry search. In International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 15832–15857. PMLR, 2022.

During my PhD, I also worked on the following two papers, which however are not
included in this thesis.

1. N. Thams and N. R. Hansen. Local independence testing for point processes. arXiv
preprint arXiv:2110.12709, 2021.

2. S. Weichwald, M. E. Jakobsen, P. B. Mogensen, L. Petersen, N. Thams, and
G. Varando. Causal structure learning from time series: Large regression coeffi-
cients may predict causal links better in practice than small p-values. In NeurIPS
2019 Competition and Demonstration Track, pages 27–36. PMLR, 2020
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1. Introduction

In this PhD thesis, we develop theory for drawing causal inference from observational
data, and we analyse several aspects of distribution shift and their relations to causality.
In broad terms, causal inference aims to learn a mechanistic understanding of how data
is generated; such understanding exceeds a simple description of the observed joint
distribution of the data, in that it also explains why the data behave as they do.

For example, and perhaps most famously, causal inference has been applied to remove
confounding effects, which we define as statistical dependence between two variables due
to a common cause. A frequently studied example of such confounding is the association
between the dose of a drug given to a patient, and the outcome observed in the patient;
among others, this is confounded by the severity of the disease. If we plainly considered
the observed association between the dose and the outcome, we may underestimate
the effect of the drug, because the patients that receive the largest doses may also be
the patients that are most sick and thus, in spite of the increased dose, suffer from
worse outcomes. Causal inference provides methodology for adjusting for confounding,
to obtain estimates of the ‘causal effect’ of the drug, which is to be understood as the
effect of the drug, if confounding was not present.

Yet, causal inference applies to other tasks than estimating causal effects through
removal of confounding. In this thesis, we explore ways of using causal methods in the
presence of distribution shift. The term ‘distribution shift’ broadly refers to a setting,
where we do not just train models and predict outcomes in a single distribution Q,
but instead we may observe training data from several different distributions, or we
may observe training data from one distribution but want to predict in a different,
unobserved distribution. For example, in [InvPolicy], we observe data from a number
of different distributions (or ‘environments’), Q1, . . . , Qd, and aim to learn a model that
performs well, not only in Q1, . . . , Qd, but also in a number of unobserved environments
P1, . . . , Pm.

A motivation for considering distribution shift in the context of causality is to use
‘causality’s mechanistic understanding’ to learn models that generalize better to test
distributions. This motivation relies on the assumption that causal dependencies be-
tween a predictor and an outcome is stable, and likely to be the same in both training
and test environments, whereas confounding and spurious correlations are less stable. As
a result, a model which relies too much on non-causal features, may fail in deployment.
While this is only an assumption (until we encode it into a concrete data generating
mechanism, in which case it may become an over-simplification), it is appealing to be-
lieve that causal effects are, if not perfectly stable across time and environments, then at
least more stable than confounding. For example, while the causal effect of a drug may
be roughly the same in different populations (e.g. from different health care systems),

1



1. Introduction

confounding factors, such as treatment allocation, may differ substantially between those
populations.

The remainder of this introduction contains a selection of existing results that this
thesis builds upon, and it is structured as follows. In Section 1.1, we discuss structural
causal models (SCMs). Throughout the thesis, SCMs will be the statistical framework
that we assume generates data, and in some cases also the target of inference that we
aim to partially infer from data. In Section 1.2, we discuss causal methodology when a
causal graph, that is a hierarchy of cause and effect, is known. Of particular interest to
us is instrumental variables (IV) regression as a method of learning causal effects despite
unobserved confounding. In Section 1.3, we discuss causal methodology when no causal
graph is known, and in particular we discuss invariant causal prediction (ICP) and how
to use causal exogeneity to learn causal structure. Finally, in Section 1.4, we discuss
shifts in distribution, how they relate to causal interventions and how to use importance
sampling to estimate means in shifted distributions.

1.1. Structural Causal Models

To describe causal relationships, the papers included in this thesis all utilize the frame-
work of structural causal models or SCMs [Pearl, 2009, Peters et al., 2017], which we
now review. An SCM C over variables X1, . . . , Xd is given by the assignments

Xj := fj(PAj , εj) (1)

where for each j, fj is some function, PAj ⊆ {X1, . . . , Xd} is a collection of variables
(which we call the parents of j), and ε1, . . . , εd is a collection of jointly independent noise
variables each with distribution Pj .

The assignments in (1) induces a joint distribution P C over X1, . . . , Xd, which we refer
to as the observational distribution. However, assuming that variables X1, . . . , Xd are
generated according to an SCM C is stronger than assuming that data follows a joint
distribution P C, since the SCM also describes the mechanistic relationships generating
this data; for example, the SCM also induces interventional distributions.

Given an SCM C, we can form an intervened SCM, C̃ := Cdo(Xj :=f̃j(P̃Aj ,ε̃j)), by changing
the assignment of Xj in (1) into Xj := f̃j(P̃Aj , ε̃j) for some function f̃j , parent set P̃Aj
and noise variable ε̃j , and where we let the assignments of all other variables Xi, i ̸= j,

in (1) remain unchanged. We call the intervention a hard intervention if P̃Aj = ∅ and
f̃j(P̃Aj , ε̃j)

a.s.
= x and simply write do(Xj := x). The intervened SCM, C̃, induces a

distribution P C̃ over X1, . . . , Xd, which we call the interventional distribution.

2



1.1. Structural Causal Models

ε1, . . . , εd ∼ P1 ⊗ · · · ⊗ Pd
X1 := f1(PA1, εj)

...

Xd := fd(PAd, εd)

Structural Causal Model

X1

X2

X3

X4

Graph

Figure 1.: (Left) An SCM is a set independent error variables εj , parent sets PAj ⊆
{X1, . . . , Xd} that specify direct generative dependencies and functional as-
signments fj . (Right) An SCM induces a graph over the variables X1, . . . , Xd

(sometimes written 1, . . . , d), where an edgeXi → Xj indicates thatXi ∈ PAj .

Example 1. Consider the following SCM:

X2 := ε2,

X1 := 1{σ(X2)>ε1},

X3 := θ ·X1 +X2 + ε3,

X4 := X3 +X1 + ε4,

where ε1 ∼ Unif(0, 1), ε2, ε3, ε4 ∼ N (0, 1), ε1, . . . , ε4 are jointly independent, σ is the
logistic sigmoid function and θ ∈ R. Here X1 ∈ {0, 1} is a binary variable whose
probability of being 1 is σ(X2). In Fig. 1 (right) we draw a graph corresponding to these
assignments.
When conditioning on X1 = 1, we have that EP [X2|X1 = 1] = 2EP [X2σ(X2)] ≈ 0.4,1

so in the observational distribution,

EP [X3|X1 = 1] = θEP [X1|X1 = 1] + EP [X2|X1 = 1] + EP [ε3|X1 = 1] ≈ θ + 0.4,

where we use that EP [ε3|X1 = 1] = EP [ε3] = 0, since ε3 ⊥⊥ X1. Similarly EP [X3|X1 =
0] ≈ −0.4, and despite that X1 only enters the structural equation for X3 with a co-
efficient of θ, the difference of conditioning on X1 = 1 and X1 = 0 is approximately
θ+0.8, because the value of X1 carries additional confounded information, which change
the expected value of X3.
We can also consider the interventional distribution P̃ = P do(X1:=1). In this dis-

tribution the confounding between X1 and X3 is removed because X1 and X2 are now
independent, and

E[X3|do(X1 := 1)] = θEP̃ [X1] + EP̃ [X2] + EP̃ [ε3] = θ,

1This follows from Bayes rule p(x2|X1 = 1) = p(X1 = 1|x2) p(x2)
p(X1=1)

= 2σ(x2)p(x2), where p is the

density (with respect to the product of a Lebesgue and a discrete measure).

3



1. Introduction

where we use the notation E[X3|do(X1 := 1)] := EP̃ [X3] and that EP̃ [X2] + EP̃ [ε3] =
EP [X2] + EP [ε3] = 0 because the intervention neither changes X2 nor ε3. Similarly,
E[X3|do(X1 = 0)] = 0, and the difference of intervening do(X1 := 1) and do(X1 := 0), is
θ, which we call the causal effect of X1 on X2. This example highlights that conditioning
differs from intervening, for example in that the conditioning includes correlation due to
confounders, while the intervention breaks this confounding.

An intervention setup like this can, for example, be used to describe a patient’s re-
sponse, X3, to a treatment, X1, when a confounder X2 affects both the treatment and
the outcome. Here we may consider the intervention do(X1 := 1) to study what will
happen if everyone is given the drug, or the intervention do(X1 := Bern(0.5)), which
corresponds to the distribution one will get in a randomized control trial (RCT).

Graph Terminology

We visualize the causal hierarchy of an SCM by drawing a directed graph G = (V,E)
over nodes V = {1, . . . , d} (or interchangeably over nodes V = {X1, . . . , Xd}) and edges
E, where an edge (i, j) ∈ E if Xi ∈ PAj (we also denote this i → j). It is common to
assume that the graph of an SCM is a directed acyclic graph (DAG), which ensures that
a causal ordering from ‘first’ to ‘last’ exists although we can define causal models without
this assumption, see Bongers et al. [2021]. We now review some graph terminology and
some basic concepts of graphical models for a DAG G.
If i → j , we say that i is a parent of j and that j is a child of i. A path π between

v0 and vm is a sequence of vertices and edges π = (v0, e1, v1, . . . , em, vm) where either
ek = (vk−1, vk) or ek = (vk, vk−1); we sometimes simply write π = (e1, . . . , em). A
directed path from v0 to vm is a path π = (v0, e1, . . . , vm) where ek = (vk−1, vk), that is
all edges have the same orientation. A node i ∈ V is an ancestor of j ∈ V if a directed
path from i to j exists, and similarly j is then a descendant of i. We denote the parents,
children, ancestors and descendants of j by PAj ,CHj ,ANj and DEj respectively. For a
set C ⊆ V , we write ANC = ∪j∈C ANj (and similarly for PAC ,CHC and DEC).

If a path π = (v0, e1, . . . , vm) contains a segment vk−1
ek→ vk

ek+1← vk+1, we say that vk
is a collider on π, and otherwise we say that vk is a non-collider. A path π from i to j
is d-connected (or open) given a set C ⊆ V \ {i, j} if every non-collider on π is not in
C and every collider on π is in C ∪ ANC . Otherwise we say that π is blocked by C. If
all paths between i and j are blocked by a set C ⊆ V \ {i, j}, we say that i and j are
d-separated by C, in which case we write i ⊥ j|C.

For example, in Fig. 1, the path X1 → X4 ← X3 is d-connected given X4, but is
blocked by ∅. X1 and X3 are not d-separated given any conditioning set, since for any
set C, the path X1 → X3 is open given C. On the contrary, X2 and X4 are d-separated
by {X1, X3}, since all paths between X2 and X4 use either X1 or X3 as a non-collider.

The Global Markov Property and Causal Factorizations

Given a joint distribution P over variables X1, . . . , Xd, we write Xi ⊥⊥ Xj | XC if Xi and
Xj are conditionally independent givenXC . A joint distribution satisfy the global Markov

4



1.2. Causal Models when Graphs are Known: Effect Estimation and Instrumental Variables

property with respect to a graph G if for all i ̸= j and C ⊆ V \{i, j}, Xi ⊥ Xj |XC implies
that Xi ⊥⊥ Xj |XC . That is, d-separations in the graph imply conditional independences
in the distribution. The reverse property is called faithfulness: P is faithful with respect
to G if for all i ̸= j and C ⊆ V \ {i, j}, Xi ⊥⊥ Xj |XC implies that Xi ⊥ Xj |XC .

For example, in the graph in Fig. 1 (right), X2 ⊥ X4|{X1, X3}, and if the global
Markov property is satisfied for the distribution then we can conclude conditional inde-
pendence X2 ⊥⊥ X4|{X1, X3}. There exist several different conditions which ensure the
global Markov property, such as when data is sampled from an SCM where the observed
distribution has density with respect to a product measure [Peters et al., 2017], and
all the papers in this thesis uses the global Markov property, implicitly or explicitly.
On the contrary, faithfulness is in many cases not required to make causal statements,
though it often is required when learning causal structures – for example, we do assume
faithfulness in [AncSearch] to learn ancestral sets.

A consequence of the global Markov property is that the joint distribution P over
variables X1, . . . , Xd that are generated by an SCM C factorizes according to the parent
sets. If pP is the density of P , then

pP (x1, . . . , xd) =

d∏
j=1

pP (xj |xPAj ), (2)

which we call the causal factorization [Pearl, 2009]. When intervening on a variable Xj ,

C̃ = Cdo(Xj :=f̃j(P̃Aj ,ε̃j)), all factors in (2) remain the same, except the one relating to Xj

pP̃ (x1, . . . , xd) =

d∏
i=1

pP̃ (xi|xPAi) =

 d∏
i=1
i ̸=j

pP (xi|xPAi)

 pP̃ (xj |xP̃Aj ), (3)

where pP̃ is the density of the intervened distribution P̃ . There are several other ways we

can factorize the joint distribution, for example pP (x1, . . . , xd) =
∏d
i=1 pP (xi|{xj}j<i),

but in such a ‘non-causal’ factorization, an intervention in most cases will change several,
if not all, factors in the product. In Section 1.4 we discuss how this factorization is useful
in distribution shifts when various distributions are generated from the same SCM but
with different interventions.

1.2. Causal Models when Graphs are Known: Effect
Estimation and Instrumental Variables

The graph of an SCM contains less information about a distribution than the full SCM,
for example because the graph does not specify the functional connections fj . Yet,
we can make different causal statements and use different methodology depending on
whether or not we assume that the graph is known. For example, if the graph is known
and all variables are observed and we additionally assume additive mean-zero noise, we
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can in principle consistently recover the functions f1, . . . , fd, by non-linearly regressing
Xj onto XPAj for each j (and assuming that our model class is rich enough to capture
fj); effectively we have thereby learned the entire SCM.

This, however, does not mean that causal inference with known graphs is trivial,
and there are many questions to be studied, such as how to efficiently estimate causal
effects or how to do so in the presence of unobserved confounders. Many of these
questions can be addressed in the context of do-calculus [Pearl, 2009], which is a set of
rules for how to convert statements about interventional distributions into statements
about observational distributions. One classic application of do-calculus is computing
intervention effects using covariate adjustment.

Covariate Adjustment

Consider an SCM C over variables X,Y and C with the graph in Fig. 2 (left). Suppose
we want to compute the mean of Y in an intervention C̃ = Cdo(X:=x0) without observing
any data from P̃ . We can use covariate adjustment, by adjusting for C [Robins, 1986,
Pearl, 2009]. If we assume that all variables are discrete, we have

EP̃ [Y ] =
∑
y,c

y · PP̃ (Y = y, C = c,X = x0)

=
∑
y,c

y · PP̃ (Y = y|C = c,X = x0) · PP̃ (C = c,X = x0)

=
∑
y,c

y · PP (Y = y|C = c,X = x0) · PP (C = c)

In the last equation, we use that the conditional distribution of a non-intervened vari-
able given its parents does not change between P and P̃ . This calculation shows that
we can sometimes derive quantities about the interventional distribution P̃ from the
observational distribution P alone.

Many other works in the literature have studied similar questions of how to reason
about intervention effects, without observing any data from P̃ [e.g. Tian and Pearl,
2002, Pearl, 2009]. A related question is that of transportability, introduced by Pearl
and Bareinboim [2011]. Given a target distribution P that differs in some (known)
way from a training distribution Q, they infer effects of interventions in P from the
observational and the interventional distribution of Q.

Instrumental Variables

Sometimes, adjusting for covariates may not be possible, for example if C is not observed.
Instead, in some cases, we can rely on instrumental variable (IV) approaches to estimate
causal effects.

In Example 1, we considered a causal effect defined as E[X3|do(X1 := 1)]−E[X3|do(X1 :=
0)]. If we consider continuous variables, we may instead define the causal effect of X on
Y as ∂

∂xE
do(X:=x)[Y ]. While this is in general a function of x, it becomes constant if the
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X Y

C

Z X Y

C

Figure 2.: (Left) Graph where we can use covariate adjustment to reason about the
causal effect interventions on X have on Y . (Right) Graph where we can use
instrumental variables to reason about the causal effect interventions on X
have on Y . The dashed circle around C indicates that it is unobserved.

assignment of Y is additive and linear in X, because in that case Edo(X:=x)[Y ] = βx+K
for a constant K, and we call β the linear causal effect of X on Y . Instrumental vari-
ables, which we will discuss now, can be used for estimating such linear causal effects
(though non-linear functions can also be estimated [Christiansen et al., 2021]).
When inferring the causal effect of X on Y , an instrumental variable, Z, is a variable

which satisfies the following graphical conditions [Pearl, 2009].

1. Z is d-separated from Y in the graph GX ̸→Y where we remove any edge X → Y ,

2. Z is not d-separated from X and

3. Z is d-separated from C.

For example in Fig. 2 (right), Z is an instrumental variable for estimating the causal
effect of X on Y : Z and X are not d-separated due to the edge Z → X, Z and C are
d-separated due to the colliders C → X ← Z and C → Y ← X, and when removing the
edge X → Y , the only path from Z to Y contains the blocked collider Z → X ← C,
meaning that Z and Y are d-separated after removing X → Y .
Under some additional assumptions, IVs can ensure identifications of causal effects.

For example, assume that Y = βX+ g(C, εY ), that is Y is linear in X and the contribu-
tion from (C, εY ) is additive. It follows from IV assumption 3. and the global Markov
property that Y − βX = g(C, εY ) is independent of Z. We can use this independence
to identify the causal effect β, by finding vectors b which make Y − bX independent of
Z and we refer to such b as being invariant. It is common to use uncorrelatedness as
a proxy for independence, and solve the resulting estimating equations [Hall, 2005]. In
order to get a unique solution b that make Y − bX uncorrelated to Z, the dimension of
the instrument, Z, needs to be sufficiently high, typically higher than the dimension of
X, which is known as an ‘over-identified’ setting.

Example 2. A famous application of IV regression is that of Angrist and Krueger [1991],
who use instrumental variables to estimate the causal effect of the number of years of
schooling (X) on earnings (Y ) in adulthood. The variables X and Y are confounded by
numerous unobserved factors (C), including for example how resourceful the parents are.
This means that simply regressing Y onto X and adjusting for observed confounders, will
likely not result in a good estimate of the causal effect of forcing every school student to
spend another year in school.

7
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R X Y

C
×

Figure 3.: Graphical illustration of the dependencies in an idealized randomized control
trial, where a treatment X is made independent of confounders C through a
randiomization R. Though this is not a formal graphical model, we can see
similarities to the IV graph in Fig. 2.

Instead, Angrist and Krueger [1991] use the quarter of birth (Z) as an instrument.
The variable Z correlates with X because of rules in the US school system which mean
that the length of schooling before a student can drop out depends on a students birth
day. Further, it is plausible that birth date is independent of the confounding factors C,
and finally, one could argue that Z does not influence Y in other ways than through X
(though this assumption is untestable).
Thus the assumptions for being a valid instrument are satisfied; Angrist and Krueger

[1991] estimate the benefit of an additional year of schooling and find that this has a
positive impact on future earnings.

Example 2 shows that we can think of IV as a pseudo-randomization: No random-
ization is conducted by a practicioner, but an external source of randomness (here the
quarter of birth) still impacts the allocation of treatment; while we do not directly
observe unconfounded treatments, we can ‘deconfound’ the treatment by using the cor-
relation to the instrument. In Fig. 3, we visualize an idealized randomized control trial,
where the randomization R breaks the dependence on a confounder C.2 This structure
is similar to the IV graph in Fig. 2 (right), with the difference that in the idealized RCT,
the edge from C to X is fully broken, whereas in the IV graph this edge is present, but
can be filtered out using IV methods. It is helpful (though not perfectly accurate) to
think about this as that the more variance in X is explained by the instrument, the
easier it is to break the confounding link, and that the idealized RCT represents the
extreme of a perfectly correlated instrument.
If the instrument Z is not sufficiently high-dimensional to identify a unique parameter

vector, a subspace of solutions M = {b ∈ RdX | cov(Y − bX,Z) = 0} exists, which is
known as the ‘under-identified’ setting. To chose a single regression model from M , we
can search among all vectors b that (approximately) satisfy invariance, and select the
one which yields the smallest mean squared prediction error. Rothenhäusler et al. [2021]
do this by minimizing a convex combination of an invariance loss and a predictive error,
whereas Jakobsen and Peters [2021] select the most predictive model among all those
that are not significantly non-invariant.

2We only draw this graph to highlight the similarity to the IV graph, but we should be careful in
interpreting this as a graphical model arising from an SCM; for example, if R and X are both binary,
they may essentially be the same random variable, which can be problematic in a graphical model;
we also have not defined what the crossed out edge means. One can draw more formal graphs for
this setup using the framework in Richardson and Robins [2013].
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1.3. Causal Models when Graphs are Unknown: Invariance and
Exogeneity

In many applications, a causal graph may not be available, and instead we only observe
data from an observational distribution P C. Various methods can be used to estimate
causal graphs from data; for example, constraint based methods use conditional inde-
pendences to learn an estimate of a graph [Spirtes et al., 2000, Chickering, 2002]. In
general we cannot recover the graph of C from P C, but only the Markov equivalence class
of the graph. Two DAGs are Markov equivalent if they have the same skeleton (i.e. the
same edges, when orientations are removed) and the same v-structures [Verma and Pearl,
1991]. Three nodes x, y, z in a graph G form a v-structure if the path x → y ← z is in
G and neither x → z nor x ← z is in G. Constraint based methods do not assume any
model class (though in practice, they require that data follows a model class for which
powerful conditional independence tests are available), but if we are willing to make as-
sumptions, such as non-Gaussianity [Shimizu et al., 2006] or non-linearity [Hoyer et al.,
2009], we can learn not just the Markov equivalence class, but the graph of the SCM.
Yet, estimating entire graphs from data remains a difficult task, and for many applica-
tions, it may be sufficient to learn parts of a graph, such as, if we only seek to learn
causal parents of a target variable Y .

Invariant Causal Prediction

Instead of learning the full graph, we can in some cases use limited graphical information,
such as exogeneity of a variable E (we say that E is exogenous if PAE = ∅), to learn
causal structure.

Example 3. Suppose we observe variables E,X, Y from an SCM where the only non-
trivial (conditional) independence relation between them is E ⊥⊥ Y |X. From this we can
infer that the graph of the SCM must have the skeleton E −X − Y , and no v-structure,
but per the characterization of Markov equivalence classes above, we cannot distinguish
between the three graphs

E → X → Y

E ← X → Y

E ← X ← Y.

However, if we additionally know that E is exogenous, this not only tells us the direction
of the edge E → X, but also that X → Y .

Example 3 shows that we can leverage knowledge of exogeneity of one variable to
direct edges between other variables. A structured exploitation of this fact is used by
Invariant Causal Prediction (ICP) by Peters et al. [2016], who do not assume knowledge
of a causal graph, but only assumes the presence of exogenous environments, E. They
consider a target variable Y and predictors X1, . . . , Xd, and assume that the conditional
distribution of Y given its causal parents does not change across environments; if the
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environments correspond to different interventions, this assumption corresponds to as-
suming that Y is not the target of intervention (see (3)). They then define that a subset
of predictors S ⊆ {1, . . . , d} is invariant if Y − βXS is identically distributed across the
environments E, where β is the OLS regression coefficient from regressing Y on XS . The
output of ICP is

SICP :=
⋂

S:XS is invariant

S. (4)

They show that SICP ⊆ PAY (though the inclusion is in some cases strict), meaning
that SICP can be used to learn causal parents. If ŜICP is the empirical version of (4)
estimated from data, where we use an invariance test with level α instead of ground
truth invariance, then P(ŜICP ⊆ PAY ) ≥ 1− α.

We can understand how ICP exploits exogeneity in the context of Example 3. In
[AncSearch], we show that SICP = (PAY ∩CHE) ∪ (PAY ∩PA(ANY ∩CHE)). If
Xj ∈ PAY ∩CHE (in which case the parenthood to Y can be identified by ICP), then
the skeleton of the graph contains E −Xj − Y , and using exogeneity of E, one can also
use the reasoning in Example 3 to conclude that Xj is a parent of Y . Similarly, for
every Xj ∈ PAY ∩PA(ANY ∩CHE), we could use the skeleton-and-v-structures charac-
terization similar to that of Example 3 to show that the assumption that E is exogenous
implies that Xj → Y .

1.4. Causal Models in Distribution Shift

When dealing with a distribution shift, where data is generated from several different
distributions, we can use causal models to model those differences. In particular, we
may describe these distributions as originating from the same SCM, but subject to
different interventions. Though the intervened variable(s) can then change arbitrarily,
this encodes the assumption that all remaining parts of the SCM remain unchanged
[Haavelmo, 1944, Aldrich, 1989]. In particular, (3) states that the density factorizes into
a product of conditionals, where only the intervened conditional(s) change.

This invariance of non-intervened conditionals can be used in various ways. For exam-
ple, it can be used to draw inference about an intervened distribution using knowledge
of the original SCM. This is the case in [ShiftEval] and [ShiftTest], where we assume
that we know which conditional in an observed distribution Q is changing, and use this
to describe properties of the resulting intervened distribution P . Or, reversely, it can be
used to infer knowledge of the SCM, when we observe data from various interventions.
This is done in [AncSearch] and [InvPolicy], where we search for conditionals that
do not change across several observed distributions, and use this to infer parts of the
underlying causal structure.
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Importance Sampling

One way of estimating quantities under distribution shift is to use importance sampling
[Horvitz and Thompson, 1952, Shimodaira, 2000]. Importance sampling works by first
computing weights w(x) := p(x)/q(x), where p and q are the densities (with respect to
the same background measure) of a target distribution P and an observed distribution
Q respectively.

If X is a random variable with distribution Q and T (X) is any (reasonably well-
behaved) function, then

EQ[w(X) · T (X)] =

∫
(p(x)/q(x) · T (x)) q(x)dx =

∫
T (x)p(x)dx = EP [T (X)],

where EQ and EP are expectations in Q and P respectively. This means that if we
observe n i.i.d. samples X1, . . . , Xn from Q, we can use the law of large numbers to
estimate expectations in P by

EP [T (X)] ≈ 1

n

n∑
i=1

w(Xi)T (Xi). (5)

When we consider an observed distributionQ and a target distribution P = Qdo(Xj=f̃( ˜PAj ,ε̃j))

with densities q and p respectively, the factorizations in (2) and (3) imply that q and
p factorize in a way where only the conditional densities of Xj given its causal parents
differ,

w(x) =
p(x)

q(x)
=
p(xj |xP̃Aj )
q(xj |xPAj )

.

This means that in order to compute the importance weights w, we do not need to
know the entire distributions P and Q, but only the conditional of the variable that is
intervened upon.
In order for the importance sampling weights w(x) = p(x)/q(x) to be well-defined, we

require that the support of P is a subset of the support of Q, so the denominator q(x) is
non-zero. Even when this is in theory satisfied, importance sampling may face problems
in practice, if there are parts of the support of P where q(x) is close to zero, since this
can lead to the weights being enormous, and will make the variance of the estimate in
(5) be enormous, too.
Since importance sampling enables estimation of means in interventional distribu-

tions, we can use importance sampling as an alternative to the covariate adjustment,
discussed in Section 1.2. When estimating the effect of a hard intervention do(X := x0)
on Y in Fig. 2, covariate adjustment requires estimation of the conditional PP (Y =
y|C = c,X = x0); an importance sampling approach for the same intervention re-
quires estimation of the conditional PP (X = x0|C = c), in order to compute weights

w(x, y, c) =
1{X=x0}

PP (X=x0|C=c) . Thus, the mean in the intervention distribution can be com-

puted in two different ways; Robins et al. [1994], Robins and Rotnitzky [1995], Cher-
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nozhukov et al. [2018] discuss ways of combining these two approaches to create an esti-
mator which is statistically efficient and doubly robust. Here double robustness means
that if at least one of the two conditionals is estimated consistently, then the overall
procedure is consistent.
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2. Shifts in Distributions: Testing

This chapter contains the following paper:

[ShiftTest] [Thams et al., 2021]. N. Thams, S. Saengkyongam, N. Pfister, and J. Peters.
Statistical testing under distributional shifts. arXiv preprint arXiv:2105.10821,
2021.

The paper assumes that we have data from one distribution Q and that we want to
test a hypothesis in an unobserved target distribution P . The target distribution P
for example can be thought of as the result of ‘the world changing’ or the data being
sampled in environments different from the observed distribution Q; this is typically the
motivation in the distribution shift literature [e.g. Quionero-Candela et al., 2009] and
in all the papers in Chapter 3. But, as we discuss in this paper, P can also be thought
of as the result of some fictional change introduced by the modellers, such as the act of
removing confounding between two variables that are confounded in Q.
We formalize the problem of testing under shifts and provide a number of applications

of this framework. These include not only cases where the hypothesis of interest is in
an unobserved distribution P , but also cases where the hypothesis of interest is in the
observed distribution Q, but the hypothesis can more easily be tested by introducing an
auxiliary shifted distribution P , and testing the hypothesis there.
Unlike the importance sampling introduced in Section 1.4 in Chapter 1 and the papers

in Chapter 3, we do not estimate a mean in the shifted distribution, but instead conduct
tests. This implies that weighted-average approaches may not work. To to overcome
this, we propose a resampling methodology and provide a number of theoretical results
on resampling, which enable guarantees on finite and asymptotic level of tests applied
to resampled data.
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Statistical Testing under Distributional
Shifts

Nikolaj Thams, Sorawit Saengkyongam, Niklas Pfister and Jonas
Peters

Abstract

We introduce statistical testing under distributional shifts. We are interested
in the hypothesis P ∗ ∈ H0 for a target distribution P ∗, but observe data from a
different distribution Q∗. We assume that P ∗ is related to Q∗ through a known
shift τ and formally introduce hypothesis testing in this setting. We propose a
general testing procedure that first resamples from the observed data to construct
an auxiliary data set and then applies an existing test in the target domain. We
prove that if the size of the resample is of order o(

√
n) and the resampling weights

are well-behaved, this procedure inherits the pointwise asymptotic level and power
from the target test. If the map τ is estimated from data, we maintain the above
guarantees under mild conditions on the estimation. Our results extend to finite
sample level, uniform asymptotic level and a different resampling scheme, as well
as statistical inference different from testing. Testing under distributional shifts
allows us to tackle a diverse set of problems. We argue that it may prove useful in
contextual bandit problems and covariate shift, we show how it reduces conditional
to unconditional independence testing and we provide example applications in
causal inference.

1. Introduction

Testing scientific hypotheses about an observed data generating mechanism is an impor-
tant part of many areas of empirical research and is relevant for almost all types of data.
In statistics, the data generating mechanism is described by a distribution P ∗ and the
process of testing a hypothesis corresponds to testing whether P ∗ belongs to a subclass
of distributions H0. In practice, observations from P ∗, for which we want to test the
hypothesis P ∗ ∈ H0, may not always be available. For instance, sampling from P ∗ may
be unethical if it corresponds to assigning patients to a certain treatment. P ∗ may also
represent the response to a policy that a government is considering to introduce. Yet,
in many cases, one may still have data from a different, but related, distribution Q∗. In
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the examples above, this could be data from an observational study or under the policies
currently deployed by the government.

Although specialized solutions exist for many such problems, there is no general
method for tackling them. In this paper, we aim to analyze the above testing task
from a general point of view. We assume that a distributional shift τ : Q → P be-
tween domains Q and P is known and, using data from Q∗, aim to test the hypothesis
P ∗ = τ(Q∗) ∈ H0. We propose the following general framework. We resample from
Q∗ to construct an auxiliary data set mimicking a sample from P ∗ and then exploit the
existence of a test in the target domain. We assume that Q∗ and P ∗ are absolutely
continuous with respect to the same background product measure1 . Our method does
not assume full knowledge of Q∗ or P ∗, but only knowledge of the (potentially unnor-
malized) ratio p∗/q∗, where q∗ and p∗ are densities of Q∗ and P ∗ with respect to the
background measure, respectively. If, for example, the shift corresponds to a change in
the conditional distribution of a few of the observed variables, one only needs to know
these changing conditionals.

Our framework assumes the existence of a test φ in the target domain, i.e., a test
that could be applied if data from P ∗ were available. This test φ is then applied to
a resampled version of the observed data set. Here, we propose a sampling scheme
that is similar to sampling importance resampling (SIR), proposed by Rubin [1987]
and Smith and Gelfand [1992] but generates a distinct sample of size m, using weights
r(X) ∝ q∗(X)/p∗(X) where X is a random vector with distribution Q∗. We prove that
this procedure inherits the pointwise asymptotic properties of the test φ if the weights
r have finite second moment in Q∗, and m = o(

√
n). In particular, the procedure holds

pointwise asymptotic level if the test φ does. We show that the same can be obtained if
r is not known, but can be estimated from data sufficiently well. The proposed method
is easy-to-use and can be applied to any hypothesis test, even if the test is based on a
nonlinear test statistic.

Several problems can be cast as hypothesis tests under distributional shifts. This in-
cludes hypothesis tests in off-policy evaluation, tests of conditional independence, testing
the absence of causal edges through dormant independences [Verma and Pearl, 1991,
Shpitser and Pearl, 2008], that is, testing certain equality constraints in an observed dis-
tribution, and problems of covariate shift. Our proposed method can be applied to all of
these problems. For some of them, we are not aware of other methods with theoretical
guarantees – this includes dormant independence testing with continuous variables, off-
policy testing with complex hypotheses, conditional independence testing with censored
data and model selection under covariate shift with complex scoring functions. The
framework also inspired a novel method for causal discovery that exploits knowledge of
a single causal conditional. For some of the above problems, however, more specialized
solutions exist, and as such, the proposed testing procedure relates to a line of related
work.

Ratios of densities have been applied in the reinforcement learning literature [e.g.

1We believe that most of the statements still hold if Q∗ and P ∗ are absolutely continuous with respect
to the same non-product measure but make the assumption of product measures for simplicity.
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Sutton and Barto, 1998], where inference in P ∗ using data from Q∗ is known as off-
policy prediction [Precup et al., 2001]. One can estimate the expectation of X under
P ∗ using importance sampling, (IS), that is, as weighted averages using weights r(X),
possibly truncated to decrease the variance of the estimation [Precup et al., 2001, Mah-
mood et al., 2014]. An approach to estimate means in P ∗ based on resampling was
proposed by Schlegel et al. [2019]. However, they consider the size of the resample fixed
and do not consider statistical testing. Thomas et al. [2015] propose bootstrap confi-
dence intervals for off-policy prediction based on important weighted returns. Hao et al.
[2021] present a bootstrapping approach with Fitted Q-Evaluation (FQE) for off-policy
statistical inference and demonstrate its distributional consistency guarantee.
In the causal inference literature, inverse probability weighting (IPW) To estimate

the effect of a treatment X on a response Y , one can weight each observed response Yi
with 1/q∗(Xi|Zi), where Zi is an observed confounder. For continuous treatments, it
has been proposed to change the numerator to a marginal distribution p∗(x) to stabilize
the weights [Hernán and Robins, 2006, Naimi et al., 2014]. Both choices of weights
appear in our framework, too (e.g., the first one corresponds to a target distribution
with p∗(x|z) ∝ 1). In general, IS and IPW can only be applied if the population version
of the test statistic can be written as a mean of a function of a single observation, such
as E[Yi] or E[f(Xi, Zi)], whereas our approach also applies to test statistics that are
functions of the entire sample, which is the case for many tests that go beyond testing
moments, such as several independence tests, for example.
SIR sampling schemes were first studied by Rubin [1987] and are often used in the

context of Bayesian inference [Smith and Gelfand, 1992]. Skare et al. [2003] show that
when using weighted resampling with or without replacement, for n→∞ and fixed m,
the sample converges towards m i.i.d. draws from the target distribution, and provide
rates for the convergence. Our work is inspired by these types of results, even though
our proofs require different techniques.
Our paper adds to the literature on distributional shifts by considering hypothesis

tests in shifted distributions. In the context of prediction, distributional shifts, or dataset
shifts, have been studied in the machine learning literature both to handle the situations
where a marginal covariate distribution changes and when the conditional distribution
of label given covariate changes [Quionero-Candela et al., 2009]. If the shift represents
a changing marginal distribution and unlabelled samples are available from both train-
ing and test environments, Huang et al. [2006] propose kernel mean matching, which
non-parameterically reweights the training loss to resemble the loss on a target sample.
In settings where a generative model and causal graph is known, Pearl and Bareinboim
[2011], Subbaswamy et al. [2019] provide graphical criteria under which causal estimates
can be ‘transported’ from one distribution Q to a shifted distribution P , assuming knowl-
edge of both joint distributions Q and P . In contrast, we consider statistical testing,
and neither assume knowledge of the full causal graph nor availability of samples from
the target distribution, but instead knowledge of how the target data differ from the
observed data. Conformal prediction [Vovk et al., 2005] has been applied to covari-
ate shift [Tibshirani et al., 2019, Park et al., 2021] too, but its goal of constructing a
prediction interval for a new random observation is generally different than the one of
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Q

Distributions on observed domain X ;
X1, . . . , Xn

i.i.d.∼ Q∗.

Q∗

P

Distributions on target domain Z;

P ∗ = τ(Q∗)

H0

unobserved.

τ−1(H0)

τ

Figure 1.: Illustration of observed and target domains, Q and P, target hypothesis H0 ⊆
P and pullback hypothesis τ−1(H0).

the proposed testing framework (see, however, the extension of our theory to general
inference problems, Section 4.6).

This paper contains four main contributions: First, we formally define testing under
distributional shifts, and define notions such as pointwise and asymptotic level when
using observed data to test the hypothesis in the target domain. Second, we outline a
number of statistical problems, that can be solved by testing under a shift, including
conditional independence testing and testing dormant independences. Third, we propose
methods that enable testing under distributional shifts: both a simple method based on
rejection sampling and a resampling scheme that requires fewer assumptions than the
rejection sampler. Fourth, we provide finite sample and asymptotic guarantees for our
proposed resampling scheme; contrary to the existing literature, where typically m fixed
and n→∞ has been studied [e.g., Skare et al., 2003], we study the asymptotic behaviour
of our resampling test when both m and n approach infinity, and show that under any
resampling scheme, the requirement m = o(

√
n) is necessary.

2. Statistical Testing under Distributional Shifts

2.1. Testing hypotheses in a target distribution

Consider a set of distributions P on a target domain Z ⊆ Rd and a null hypothesis
H0 ⊆ P. In hypothesis testing, we are usually given data from a distribution P ∗ ∈ P
and want to test whether P ∗ ∈ H0. In this paper, we consider the problem of testing
the same hypothesis but instead of observing data from P ∗ directly, we assume the data
are generated by a different, but related, distribution Q∗ from a set of distributions Q
over a (potentially) different observational domain X ⊆ Re.

More formally, we assume that we have observed data Xn := (X1, . . . , Xn) ∈ X n
consisting of n i.i.d. random variables Xi with distribution Q∗ ∈ Q. We use superscripts
to denote the individual coordinates of X = (X1, . . . , Xd) ∈ X . We assume that Q∗ and
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P ∗ are related through a map τ : Q → P, called a (distributional) shift, which satisfies
P ∗ = τ(Q∗). We aim to construct a randomized hypothesis test ψn : X n × R → {0, 1}
that we can apply to the observed data Xn to test the null hypothesis

τ(Q∗) ∈ H0. (1)

We reject this null hypothesis if ψn = 1 and do not reject the null if ψn = 0. To allow for
random components, we let ψn take as input a uniformly distributed random variable U
(assumed to be independent of the other variables) that generates the randomness of ψn.
Whenever there is no ambiguity about the randomization, we omit U and write ψn(Xn);
unless stated otherwise, any expectation or probability includes the randomness of U .
For α ∈ (0, 1), we say that ψn holds level α at sample size n if it holds that

sup
Q∈τ−1(H0)

PQ(ψn(Xn, U) = 1) ≤ α. (2)

In practice, requiring level at sample size n is often too restrictive. We say that the test
has pointwise asymptotic level α if

sup
Q∈τ−1(H0)

lim sup
n→∞

PQ(ψn(Xn, U) = 1) ≤ α. (3)

We illustrate the setup in Fig. 1.

Remark 1. The map τ : Q → P above represents a view that starts with the distribution
Q∗ of the observed data and considers the distribution P ∗ of interest as the image under
τ . Alternatively, one may also start with a map η : P → Q and say that the test holds
level α at sample size n if

sup
P∈H0

Pη(P )(ψn(Xn, U) = 1) ≤ α. (4)

This corresponds to a level guarantee for a test of the hypothesis η−1(Q∗) ∩H0 ̸= ∅. If
τ is invertible, the two views trivially coincide with η := τ−1, but in general there are
subtle differences, see Appendix A.1.1 for details.

2.2. Distributional shifts

We consider two types of maps τ : Q → P, both of which can be written in product
form. First, assume that there is a subset A ⊆ {1, . . . , d} together with a known map
r : xA 7→ r(xA) ∈ [0,∞) such that for all q ∈ Q the target density2 τ(q) satisfies that

τ(q)(x1, . . . , xd) ∝ r(xA) · q(x1, . . . , xd) for all (x1, . . . , xd) ∈ Z. (5)

2In the remainder of this work, we assume that X and Z are both subsets of Rd, that is e = d, and that
all distributions in P and Q have densities with respect to the same dominating product measure µ.
We refer to a distribution Q and its density q interchangeably.
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Here, we assume that the factor r is known in the sense that it can be evaluated for
any given xA (or at least on all points in the observed sample XA

n ). This type of map
naturally arises in many examples, such as in off-policy evaluations with a known training
policy or when performing a conditional independence test with known conditional, see
Section 3.2.

Second, assume that there is a subset A ⊆ {1, . . . , d} together with a known map
r(·) : (q, x

A) 7→ rq(x
A) ∈ [0,∞) such that for all q ∈ Q, the target density τ(q) satisfies

that

τ(q)(x1, . . . , xd) ∝ rq(xA) · q(x1, . . . , xd) for all (x1, . . . , xd) ∈ Z. (6)

Here, we assume that the factor r(·) can be evaluated for any given (q, xA). This case
arises, for example, when the training policy or the conditional is unknown and needs
to be estimated from data. If, in any of the above two cases, the set A is not mentioned
explicitly, we implicitly assume A = {1, . . . , d}. In many applications τ represents a
local change in the system, so even though d may be large, |A| will be much smaller
than d. In particular we do not need to know the entire distribution to evaluate r(xA).

In principle, this approach applies to any full-support distribution Q, since for a given
target distribution P ∈ P, P = τ(Q) is satisfied as long as we define r(x) = p(x)/q(x),
and in the case that we consider a change in a single conditional, this simplifies to
r(x{a1,a2}) = p(xa1 |xa2)/q(xa1 |xa2). In practice, there may be regions of the support
where q(x) is much smaller than p(x), in which case the weights will be ill-behaved.
We address this issue in Assumption (A2) and analyze its impact in Theorem 4. For
some shifts and hypotheses, direct solutions are available that do not use the importance
weights (5): For example, when testing a hypothesis about X1 under a mean shift in
the marginal distribution of X1, one could directly add the anticipated shift in mean to
every observation before testing. However, in most cases involving shifts in conditional
distributions or in variables different from those entering the test, such approaches fail. If
τ is misspecified, in the sense that τ(Q∗) ̸= P ∗, then the guarantees for the methodology
below still hold, but for testing the distribution τ(Q∗) ∈ H0 instead of P ∗ ∈ H0.

2.3. Exploiting a test in the target domain

In this work, we assume that there is a test φ for the hypothesis H0 that can be applied
to data from the target domain Z. Formally, we consider a sequence φk : Zk×R→ R of
(potentially randomized) hypothesis tests for H0 that can be applied to k observations
Zk from the target domain Z and a uniformly distributed random variable V , generating
the randomness of φk. For simplicity, we omit V from the notation and write φk(Zk).
We say that φ := (φk)k has pointwise asymptotic level α for H0 in the target domain if

sup
P∈H0

lim sup
k→∞

PP (φk(Zk) = 1) ≤ α. (7)

To address the problem of testing under distributional shifts, we propose in Section 4 to
resample a data set of size m from the observed data Xn (using resampling weights that

20



3. Example Applications of Testing under Distributional Dhifts

depend on the shift) and apply the test φm to the resampled data. This procedure is
easy-to-use and can be combined with any testing procedure φ from the target domain.

2.4. Testing hypotheses in the observed domain

The framework of testing hypotheses in the target distribution can be helpful even if we
are interested in testing a hypothesis about the observed distribution Q∗, that is, testing
Q∗ ∈ HQ

0 for some HQ
0 ⊆ Q. If τ(HQ

0 ) ⊆ HP
0 := H0, any test ψn satisfying pointwise

asymptotic level (3) for HP
0 ⊆ P can be used as a test for Q∗ ∈ HQ

0 , and will still satisfy
asymptotic level, see Section 4.4.5.

Such an approach can be particularly interesting when it is more difficult to test
Q∗ ∈ HQ

0 in the observed domain than it is to test τ(Q∗) ∈ HP
0 in the target domain.

For example, testing conditional independence in the observed domain can be reduced to
(unconditional) independence testing in the target domain. Here, we may benefit from
transferring the test into the target domain if one of the conditionals is known or can
be estimated from data. Also testing a Verma equality [Verma and Pearl, 1991] in the
observed distribution can be turned into an independence test in the target distribution,
too; but here, testing directly in the observed domain may not even be possible. Often
there is a computational advantage of our approach: In many situations, the resampled
data set, where the hypothesis is easier to test, is much smaller than the original data
set, see for instance the experiment in Section 5.4. When the hypothesis of interest is in
the observed domain, usually different choices for the target distribution are possible. In
practice, it is helpful to choose a target distribution that yields well-behaved resampling
weights (see (10)), which can often be achieved by matching certain marginals, see, e.g.,
Section 5.6 [see also Robins et al., 2000, Hernán and Robins, 2006].

The following Section 3 discusses the above and other applications of testing under
distributional shifts in more detail. Corresponding simulation experiments are presented
in Section 5. Section 4 provides details of our method and its theoretical guarantees.

3. Example Applications of Testing under Distributional Dhifts

3.1. Conditional independence testing

Let us first consider a random vector (X,Y, Z) with joint probability density function
q∗ and assume that the conditional q∗(z|x) is known. We can then apply our framework
to test

HQ
0 = {Q : X ⊥⊥ Y | Z and q(z|x) = q∗(z|x)} (cond. ind. in observed domain)

by reducing the problem to an unconditional independence test. The key idea is to factor
a density q ∈ HQ

0 as q(x, y, z) = q(y|x, z)q∗(z|x)q(x), replace3 the conditional q∗(z|x)
3If the factorization happens to correspond to the factorization using a causal graph, this is similar to
performing an intervention on Z, see Appendix A.1.2. However, the proposed factorization is always
valid, so this procedure does not make any assumptions about causal structures.
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by, e.g., a standard normal density ϕ(z) to obtain the target density p, and then test
for unconditional independence of X and Y . When X is a randomized treatment, Y
the outcome, and Z is a mediator, this corresponds to testing (non-parametrically) the
existence of a direct causal effect [e.g., Pearl, 2009, Imbens and Rubin, 2015, Hernán
and Robins, 2020].

Formally, we define a corresponding hypothesis in the target domain:

HP
0 := {P : X ⊥⊥ Y and p(z|x) = ϕ(z)} (ind. in target domain)

with ϕ being the standard normal density. We can then define a map τ by

τ(q)(x, y, z) :=
ϕ(z)

q∗(z|x) · q(x, y, z) for all (x, y, z) ∈ Z.

Considering any q ∈ HQ
0 and writing p := τ(q), we have

p(x, y, z) =
ϕ(z)

q∗(z|x)q(y|x, z)q
∗(z|x)q(x) = q(y|x, z)q(x)ϕ(z).

This shows4 that conditional independence X ⊥⊥ Y |Z in Q implies independence X ⊥⊥ Y
in P and therefore τ(HQ

0 ) ⊆ HP
0 . Starting with an independence test φm for HP

0 , we
can thus test τ(Q∗) ∈ HP

0 , with level guarantee in (3). As we have argued in Section 2.4,
this corresponds to testing Q∗ ∈ HQ

0 , and thereby reduces the question of conditional
independence to independence.

If, instead of q∗(z|x), we know the reverse conditional q∗(x|z), we can use the same
reasoning as above using the factorization q(x, y, z) = q(z)q∗(x|z)q(y|x, z) and a marginal
target density ϕ(x) to again test X ⊥⊥ Y |Z. When X is a treatment, Y the outcome,
Z is the full set of covariates, and q∗(x|z) represents the randomization scheme, this
corresponds to testing (non-parametrically) the existence of a total causal effect [e.g.,
Peters et al., 2017] between X and Y .

If neither of the conditionals is known, we can still fit the test into our framework. To
do so, define the hypotheses HQ

0 := {Q : X ⊥⊥ Y |Z}, HP
0 := {P : X ⊥⊥ Y and p(z|x) =

ϕ(z)}, and the map τ via τ(q)(x, y, z) := ϕ(z)
q(z|x) · q(x, y, z), for all (x1, . . . , xd) ∈ Z;

estimate the conditional q(z|x) from data and may still maintain the level guarantee
of the overall procedure. There are other, more specialized conditional independence
tests but this viewpoint may be an interesting alternative if we can estimate one of
the conditionals well, e.g., because there are many more observations of (X,Z) than
there are of (X,Z, Y ). Furthermore, conditional independence tests may not even be
available in some complex settings, while marginal independence tests may exist. For
example, we illustrate in Section 5.5 that our method can be applied to conduct a non-
parametric test for conditional independence with right-censored data. To the best of our
knowledge, there are no other non-parametric conditional independence tests available

4The following statement holds because, clearly, p(z|x) = ϕ(z) and if X ⊥⊥ Y |Z in q, that is, q(y|x, z) =
q(y|z) for all x, y, z yielding this expression well-defined, it follows p(x, y) = p(x)p(y).
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in this setting.

The assumption of knowing one conditional is also exploited by the conditional ran-
domization (CRT) and the conditional permutation test (CPT) by Candès et al. [2018]
and Berrett et al. [2020], respectively. These methods, however, require knowledge of
q∗(x|z) and cannot exploit knowledge of q∗(z|x). They simulate (in case of CRT) or
permute (in case of CPT) X while keeping Z and Y fixed and construct p-values for
the hypothesis of conditional independence. The approaches are similar in that they use
the known conditional to create weights. Our method, however, explicitly constructs a
target distribution and, as argued above, cannot only exploit knowledge of q∗(x|z) but
also knowledge of q∗(z|x).
Our approach can be modified to obtain a double robustness property. Suppose we

consider a map τ(q)(x, y, z) = q(x, y, z) · ϕX(x)
q(x|z)

ϕY (y)
q(y|z) , for some density functions ϕX(x)

and ϕY (y) and model conditionals q(x|z) and q(y|z). Then

τ(q∗)(x, y, z) = q∗(z)q∗(x, y|z)ϕX(x)ϕY (y)
q(x|z)q(y|z) = q∗(z)ϕX(x)ϕY (y)

q∗(x, y|z)
q(x|z)q(y|z) .

Suppose, for example, that q(x|z) = q∗(x|z), but q(y|z) ̸= q∗(y|z). Then, it still holds

under the null hypothesis X ⊥⊥ Y |Z in Q∗ that τ(q∗)(x, y, z) = ϕX(x)q
∗(z)ϕY (y)

q∗(y|z)
q(y|z) ,

meaning that X ⊥⊥ Y in τ(Q∗). Similarly, if q(y|z) = q∗(y|z), but q(x|z) ̸= q∗(x|z),
conditional independence in Q∗ also implies independence in τ(Q∗). That is, as long as
one of the modelled conditionals q(x|z) and q(y|z) equals the corresponding one of q∗

(we do not need to know which one), the hypothesis of conditional independence in Q∗

can be tested as a hypothesis of marginal independence in P ∗. This is similar to the
doubly robustness guarantee in [Shi et al., 2021], where as long as one estimates at least
one conditional consistently, the overall test is consistent.

3.2. Off-policy testing

Consider a contextual bandit setup [e.g. Langford and Zhang, 2008, Agarwal et al.,
2014]. In each round, an agent observes a context Z := (Z1, . . . , Zd) and selects an
action A ∈ {a1, . . . , aL}, based on a known policy q∗(a|z). The agent then receives a
reward R depending on the chosen action A and the observed context Z. Suppose we
have access to a data set Xn of n rounds containing observations Xi := (Zi, Ai, Ri),
i = 1, . . . , n. We can then test statements about the distribution under another policy
p∗(a|z). For example, we can test whether the expected reward is smaller than zero. To
do so, we define

H0 := {P : EP [R] ≤ 0 and p(a|z) = p∗(a|z)}

and τ(q)(x) := r(x)q(x) with the shift factor r(z, a) := p∗(a|z)/q∗(a|z). Here, the func-
tion of interest can be written as an expectation of a single observation, so other, simpler
approaches such as IS or IPW can be used, too (see Section 1).

But it is also possible to test more involved hypotheses. This includes testing (condi-
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tional) independence under a new policy, for example. Suppose that one of the covariates
Zj is used for selecting actions by an observed policy q∗(a|z). This creates a dependence
between Zj and R, but it is unclear whether this dependence is only due to the action A
being based on Zj , or whether Zj also depends on R in other ways, for instance in that
Zj has a direct effect on R. To test the latter statement, we can create a new policy
p∗(a|z) that does not use Zj for selecting actions. Then, we can test whether, under
p∗(a|z), R is independent of Zj , given the other variables that the action is based on. If
not, we know that there must be a dependence between R and Zj under q∗(a|z) beyond
the action A being based on Zj . This may be relevant for learning sets of features that
are invariant across different environments, that is, features ZJ such that R | ZJ is
stable across environments. A policy that depends on such invariant features is guaran-
teed to generalize to unseen environments [Saengkyongam et al., 2021]. Another, more
involved hypothesis for off-policy evaluation compares the reward distributions under
two different policies. This can be written as a two-sample test, which we discuss in
Section 3.3.

This procedure extends to more general reinforcement learning settings, where for
example one repeatedly observes a Markov decision process [Sutton and Barto, 1998].
The weights then correspond to a product containing one factor for each decision. If the
decision process contains many decisions or the data generating policy is not sufficiently
close to the policy to be evaluated, off-policy evaluation becomes a difficult problem,
with weights not being well-behaved. This problem is well-known in the reinforcement
literature [Mahmood et al., 2014, Levine et al., 2020], where the ill-behaved weights
result in large variance of estimators; in the methodology we propose in Section 4, it
generally results in a loss of power.

3.3. Two-sample testing with one transformed sample

We can use the framework to perform a two-sample test, after transforming one of the
two samples. Consider the observed distribution q∗ over X = (X1, . . . , Xd) ∈ Rd and
K ∈ {1, 2}, where the latter indicates which of the two samples a data point belongs to.
We now keep the first sample as it is and change the second sample with a transformation
τ , q∗ 7→ τ(q∗). We can then test whether, after the transformation, the two samples
come from the same distribution, i.e., whether

q∗(x|k = 1) = τ(q∗)(x|k = 2)

for all x. For example, assume that we know the conditional q∗(x1|x2, k = 2) and
consider transforming this to p∗(x1|x2, k = 2). To formally apply our framework, we
then define

H0 := {P : (X1, . . . , Xd)|K=1
L
= (X1, . . . , Xd)|K=2, p(x1|x2, k = 2) = p∗(x1|x2, k = 2)}
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and the shift τ(q)(x1, . . . , xd, k) := r(x1, x2, k) · q(x1, . . . , xd, k), where

r(x1, x2, k) :=

{
1 if k = 1

p∗(x1|x2,k=2)
q∗(x1|x2,k=2)

if k = 2.

In particular this approach can be used for off-policy evaluation (the setting described
in the previous section) to test whether the reward under the training policy q∗(a|z)
has the same distribution as under a target policy p∗(a|z). We first randomly split the
training sample into two subsamples (K = 1 and K = 2) and then test whether the
distribution of the reward is different under the two policies,

H0 := {P : R|K=1
L
= R|K=2, p(a|z, k = 1) = q∗(a|z) and p(a|z, k = 2) = p∗(a|z)},

by using weights r(a, z, k) = p∗(a|z)/q∗(a|z) when k = 2 and r(a, z, k) = 1 otherwise.
This is not confined to testing identical distributions: For example, we can also test,
non-parametrically, whether the expected reward under the new policy p∗(a|z) is larger
than under the current policy q∗(a|z). To do so, we define

H0 := {P : EP [R|K=2] ≤ EP [R|K=1], p(a|z, k = 1) = q∗(a|z) and p(a|z, k = 2) = p∗(a|z)}.

Section 5.3 shows some empirical evaluations of such tests.

3.4. Dormant independences

Let us consider a random vector (X1, . . . , Xd) with a distribution Q that is Markovian
with respect to a directed acyclic graph and that has a density w.r.t. a product measure.
By the global Markov condition [e.g. Lauritzen, 1996], we then have for all disjoint
subsets A,B,C ⊂ {1, . . . , d} that XA ⊥⊥ XB |XC if A d-separates5 B given C. If
some of the components of the random vector are unobserved, the Markov assumption
still implies conditional independence statements in the observational distribution. In
addition, however, it may impose constraints on the observational distribution that are
different from conditional independence constraints. Figure 2 shows a famous example,
due to Verma and Pearl [1991], that gives rise to the Verma-constraint: If the random
vector (X1, X2, X3, X4, H) has a distribution Q that is Markovian w.r.t. the graph G
shown in Fig. 2 (left), there exists a function f such that, for all x1, x3, x4,∫ ∞

−∞
q(x2|x1)q(x4|x1, x2, x3) dx2 = f(x3, x4) (8)

(in particular, f does not depend on x1). This constraint cannot be written as a con-
ditional independence constraint in the observational distribution Q. In general, the
constraint (8) does not hold if Q is Markovian w.r.t. H (see Fig. 2, right). Assume
now that the conditional q(x3|x2) = q∗(x3|x2) is known (e.g., through a randomiza-

5Whether a d-separation statement holds is entirely determined from the graph; the precise definition
of d-separation can be found in [e.g., Spirtes et al., 2000] but is not important here.
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X1 X2 X3 X4

HG

X1 X2 X3 X4

HH

Figure 2.: If Q is Markovian w.r.t. graph G (left), then Q satisfies the Verma con-
straint (8). In general, this constraint does not hold if Q is Markovian w.r.t.
H (right). Such constraints can be tested for using the framework of statistical
testing under distributional shifts, see Section 3.4.

tion experiment). We can then hope to test for this constraint by considering the null
hypothesis

HQ
0 := {Q : Q satisfies (8) and q(x3|x2) = q∗(x3|x2)}

and hence distinguish between G andH. Constraints of the form (8) have been studied re-
cently, and in a few special cases, such as binary or Gaussian data, the constraints can be
exploited to construct score-based structure learning methodology [Shpitser et al., 2012,
Nowzohour et al., 2017]. Shpitser and Pearl [2008] show that some of such constraints,
called dormant independence constraints, can be written as a conditional independence
constraint in an interventional distribution [see also Robins, 1999, Shpitser et al., 2014,
Richardson et al., 2017], and Shpitser et al. [2009] propose an algorithm that detects
constraints that arise due to dormant independences using oracle knowledge. The Verma
constraint (8), too, is a dormant independence, that is, we have

X1 ⊥⊥ X4 in Qdo(X
3:=N), (9)

where N ∼ N (0, 1), for example. Here, Qdo(X
3:=N), denotes the distribution in which

q∗(x3|x2) is replaced by ϕ(x3) see Appendix A.1.2 for details. Using the described
framework, we can test (9) to distinguish between G and H.
In practice, we may need to estimate the corresponding conditional, such as q(x3|x2)

in the example above, from data; as before, this still fits into the framework using (6),
see Section 5.6 for a simulation study. In special cases, such as binary, applying resam-
pling methodology to this type of problem has been considered before [Bhattacharya,
2019], but we are not aware of any work proposing a general testing procedure with
theoretical guarantees.

The problem of testing (conditional) independences under an interventional distribu-
tion has been shown to be relevant in real-world applications. One application is testing
direct effects in dynamic treatment regimes [e.g., Robins and Wasserman, 1997]. Con-
sider a two-stage dynamic treatment regime consisting of a sequence of two treatment
variables A0, A1, an intermediate covariate vector Z1 (corresponding to X1, X3, and X2

in Fig. 2, respectively), and an outcome variable Y . To test whether there is a direct
causal effect of the first treatment A0 on the outcome Y , one needs to test whether A0 is
independent of Y in the interventional distribution in which the conditional q∗(z1|a1) is
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replaced by some marginal ϕ(z1). Here, one cannot disentangle the direct causal effect
of A0 on Y and the total causal effect based solely on the (conditional) independence
constraints in the observational distribution; the problem is related to the g-null paradox
[Robins and Wasserman, 1997, McGrath et al., 2022].

Another application is testing front-door assumptions in causal effect estimation,
which has been proposed by Bhattacharya and Nabi [2022]. The front-door adjustment
[Pearl, 2009] is an adjustment strategy for identifying the causal effect of a treatment
X on an outcome Y in the presence of hidden confounders U . The main assumption
is that we observe an intermediate variable M that mediates the effect of X on Y and
is not confounded by U . Bhattacharya and Nabi [2022] consider the setup in which we
additionally observe an anchor variable Z which causes both the treatment X and the
mediator M , but does not directly cause the outcome Y . The anchor variable allows for
testing of the front-door assumptions by testing independence constraints under the in-
terventional distribution in which the conditional q∗(m|x, z) is replaced by some marginal
ϕ(m). We follow Bhattacharya and Nabi [2022] and conduct a numerical experiment on
the Framingham heart study dataset [Dawber et al., 1951] in Section 5.7.

3.5. Uncovering heterogeneity for causal discovery

For a response variable Y , consider the problem of finding the causal predictors XPAY ,
with PAY ⊆ {1, . . . , d}, among a set of potential predictors X1, . . . , Xd. assumes that
data are observed in different environments and that the causal mechanism for Y , given
its causal predictors PAY is invariant over the observed environments [see also Haavelmo,
1944, Aldrich, 1989, Pearl, 2009]. This allows for the following procedure: For all sub-
sets S ⊆ {1, . . . , d} one tests whether the conditional Y |XS is invariant. The hypothesis
is true for the set of causal parents, so taking the intersection over all such invariant
sets yields, with large probability, a subset of PAY Environments can, for example,
correspond to different interventions on a node Xj . Using the concept of testing un-
der distributional shifts, we can apply a similar reasoning even if no environments are
available and one causal conditional is known instead.

Assume a causal model (e.g., a structural causal model, SCM, see Appendix A.1.2)
over the variables Y,X1, . . . , Xd and denote the causal predictors of Xj by PAj . Assume
further that there is a j for which the conditional q∗(xj |xPAj ) is known. To infer the
causal parents of Y , we now construct a new distribution, in which the conditional
q∗(xj |xPAj ) has been changed to another conditional p∗(xj |xPAj ) – this corresponds
to a distribution generated by an intervention on Xj . We then take the original and
the resampled data as two ‘environments’ and apply the ICP methodology by testing
whether the conditional Y | XS is invariant w.r.t. these two environments. That is, in
the absence of ‘true heterogeneity’, we use the known conditional to artificially sample
heterogeneity. Formally, for a candidate set S ⊆ {1, . . . , d} and an indicator variable K
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indexing the two environments, we define the hypothesis

H0,S := {P : Y | XS
|K=1

L
= Y | XS

|K=2, p(xj |xPAj , k = 1) = q∗(xPAj |xPAj ) and
p(xj |xPAj , k = 2) = p∗(xPAj |xPAj )}

and the shift factor r(xj , xPAj , k) similar to the one in Section 3.3. Naturally, the pro-
cedure extends to K > 2. The distributional shift corresponds to an intervention on Xj

and it follows by modularity6 that H0,PAY is true. Therefore, the intersection over all
sets for which H0,S holds trivially satisfies⋂

S:H0,S holds

S ⊆ PAY ,

where we define the intersection over an empty index set as the empty set. Our frame-
work allows for testing such hypotheses from finitely many data (that were generated
only using the conditional q∗(xj |xPAj )) and prove theoretical results that imply level
statements for testing H0,S . Such guarantees carry over to coverage statements for

Ŝ := ∩S:H0,S not rej.S, that is, Ŝ ⊆ PAY with large probability.

3.6. Model selection under covariate shift

Consider the problem of comparing models in a supervised learning task when the co-
variate distribution changes compared to the distribution that generated the training
data. Formally, let us consider an i.i.d. sample D := {(Xi, Yi)}ni=1 from a distribution
q∗, where Xi ∈ X are covariates with density q∗(x) and Yi ∈ Y is a label with conditional
density q∗(y|x). First, we randomly split the sample into two distinct sets, which we call
training set Dtrain and test set Dtest. Let f̂1 : X −→ Y and f̂2 : X −→ Y be outputs of two
supervised learning algorithms trained on Dtrain. In model selection under covariate
shift [e.g. Quionero-Candela et al., 2009], we are interested in comparing the perfor-
mance of the predictors f̂1 and f̂2 on a distribution p∗, where the covariate distribution
is changed from q∗(x) to p∗(x), but the conditional p∗(y|x) = q∗(y|x) remains the same.
If we had an i.i.d. data set Dsh

test from the shifted distribution p∗, we could compare the
performances using a scoring function S(Dsh

test, f̂) that for each of the predictors outputs
a real-valued evaluation score. However, we only have access to Dtest, which comes from
q∗. Let us for now assume that the shift from q∗(x) to p∗(x) is known. Existing methods
use IPW to correct for the distributional shift [Sugiyama et al., 2007], which requires that
the scoring function can be expressed in terms of an expectation of a single observation,
such as the mean squared error. However, such a decomposition is not immediate for
many scoring functions as for example the area under the curve (AUC). The framework
of testing under distributional shifts allows for an arbitrary scoring function (as long as
a corresponding test exists) while maintaining statistical guarantees. To this end, we

6Formally, given an SCM, the statement follows from the global Markov condition [Lauritzen, 1996] in
the augmented graph, including an intervention node with no parents that points into Xj .
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4. Testing by Resampling

define the hypothesis

H0,f̂1,f̂2
:= {P : EDshtest∼P

[
S(Dsh

test, f̂1)− S(Dsh
test, f̂2)

]
≤ 0, p(x) = p∗(x), p(y|x) = q∗(y|x)},

with the shift factor r(x) := p∗(x)/q∗(x). Using data Dtest from q∗, the methodology
developed below allows us to test this hypothesis H0,f̂1,f̂2

, that is, whether, in expecta-

tion, f̂1 outperforms f̂2 in the target distribution p∗, which includes the shifted covariate
distribution. In practice, the densities p∗(x) or q∗(x) may not be given but one can still
estimate these densities from data and apply our framework using (6).

4. Testing by Resampling

In Section 3, we listed various problems that can be solved by testing a hypothesis about
a shifted distribution. In this section, we outline several approaches to test a target
hypothesis τ(Q∗) ∈ H0, see (1), using a sample Xn from the observed distribution Q∗.
We initially consider the shift τ known, and later show that asymptotic level guarantees
also apply if τ can be estimated sufficiently well from data.

Our approach relies on the existence of a hypothesis test φm for the hypothesis H0

in the target domain and applies this test to a resampled version of the observed data,
which mimics a sample in the target domain. We show that – under suitable assumptions
– properties of the original test φm carry over to the overall testing procedure ψrn (of
combined resampling and testing, as defined in (11)).

This section is organised as follows. First, in Section 4.1, we propose a resampling
scheme, which we show in Section 4.2 has asymptotic guarantees. In Section 4.3, we
discuss how to sample from the scheme in practice and we describe a number of extensions
in Section 4.4. In Section 4.5 we show that a simpler rejection sampling scheme can be
used if stricter assumptions are satisfied.

4.1. Distinct replacement (DRPL) sampling

We consider the setting, where τ(q)(x) ∝ r(x)q(x) for a known shift factor r; see
(5). First, we draw a weighted resample of size m from Xn similar to the sampling
importance resampling (SIR) scheme proposed by Rubin [1987] but using a sampling
scheme DRPL (‘distinct replacement’) that is different from sampling with or with-
out replacement. More precisely, we draw a resample (Xi1 , . . . , Xim) from Xn, where
(i1, . . . , im) ∈ {1, . . . , n}m is a sequence of distinct7 values; the probability of drawing
the sequence (i1, . . . , im) is

w(i1,...,im) ∝
{ ∏m

ℓ=1 r(Xiℓ) ∝
∏m
ℓ=1

τ(q)(Xiℓ )

q(Xiℓ )
if (i1, . . . , im) is distinct and

0 otherwise.
(10)

7We use ‘distinct’ and ‘non-distinct’ only to refer to the potential repetitions that occur due to the
resampling (i1, . . . , im) and not due to potential repetitions in the values of the original sample Xn.
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Algorithm 1 Testing a target hypothesis with known distributional shift and resampling

Input: Data Xn, target sample size m, hypothesis test φm, shift factor r(x
A).

1: (i1, . . . , im)← sample from {1, . . . , n}m with weights (10) (see Appendix A.4)
2: Ψr,m

DRPL(Xn)← (Xi1 , . . . , Xim)
return ψrn(Xn) := φm(Ψ

r,m
DRPL(Xn))

We provide an efficient sampling algorithm and discuss different sampling schemes in Sec-
tion 4.3. We refer to (Xi1 , . . . , Xim) as the target sample and denote it by Ψr,m

DRPL(Xn, U),
where U is a random variable representing the randomness of the resample. If the ran-
domness is clear from context, we omit U and write Ψr,m

DRPL(Xn). When m is fixed and
n approaches infinity, the target sample Ψr,m

DRPL(Xn) converges in distribution to m i.i.d.
draws from the target distribution τ(Q∗); see Skare et al. [2003] for a proof for a slightly
different sampling scheme. Based on our proposed resampling scheme we construct a
test ψrn for the target hypothesis (1) using only the observed data Xn by defining

ψrn(Xn) := φm(Ψ
r,m
DRPL(Xn)), (11)

see also Algorithm 1.

We show in Section 4.2 that distinct sampling, ΨDRPL, allows us to show guarantees
without introducing regularity assumptions on the test φm. The motivation for resam-
pling without replacement comes from the fact that tests, as opposed to estimation of
means, may be sensitive to duplicates; an extreme but instructive example is a test of the
null hypothesis that no point mass is present in a distribution. A resampling test with
large replacement size and possible duplicates would not be able to obtain level in such
a hypothesis. Although we show in Appendix A.5 that under stricter assumptions, sam-
pling with replacement, that is using ΨREPL, becomes asymptotically equivalent to using
ΨDRPL, this example highlights, that in the non-asymptotic regime, sampling duplicates
may be harmful.

The resampling scheme ΨDRPL in (10) is similar, but not identical to what would
commonly be called ‘resampling without replacement’ (ΨNO-REPL), where one draws a
single observation Xi1 , removes Xi1 from the list of candidates for further draws and
normalizes the remaining weights to reflect the absence of Xi1 (see also Section 4.3).
ΨDRPL and ΨNO-REPL differ in the normalization constants, and the normalization constant
in ΨDRPL is easier to analyze theoretically. This enables Lemma A.1 in Appendix A.8,
which describes the asymptotic behaviour of the mean and variance of (10) as well as
of the normalization constant of (10). We consider ΨDRPL a tool that enables simpler
theoretical analysis of SIR methods; in practice it is plausible that using ΨNO-REPL instead
of ΨDRPL will yield similar results, though we are not aware of any theory justifying this.

4.2. Pointwise asymptotic level and power

We now prove that the hypothesis test ψrn inherits the pointwise asymptotic properties
of the test φ in the target domain. To do so, we require two assumptions: m and n have
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to approach infinity at a suitable rate, and we require the weights to be well-behaved.
More precisely, we will make the following assumptions.

(A1) m = m(n) satisfies 1 ≤ m ≤ n, m→∞ and m = o(
√
n) for n→∞.

(A2) EQ[r(Xi)
2] <∞.

Assumption (A1) states that m must approach infinity at a slower rate than
√
n. As-

sumption (A2) is a condition to ensure the weights are sufficiently well-behaved, and is
similar to conditions required for methods based on IPW, for example [Robins et al.,
2000]. If r(xA) only depends on a subset A of variables, and xA takes finitely many val-
ues, Assumption (A2) is trivially satisfied for all Q. In the case of an off-policy hypothesis
test, such as the one described in Section 3.2, a sufficient but not necessary condition
for Assumption (A2) to hold for Q∗ is that the policy q∗(a|z) is randomized, such that
there is a lower bound on the probability of each action. For a Gaussian setting, where r
represents a change of a conditional q(xj |xj′) to a Gaussian marginal p(xj), we provide
in Appendix A.9 sufficient and necessary conditions under which Assumption (A2) is
satisfied. If the hypothesis of interest is in the observed domain (see Section 2.4), we are
usually free to choose any target density, so we can ensure that the tails decay sufficiently
fast to satisfy Assumption (A2). In Section 5.1 below, we analyze the influence of As-
sumptions (A1) and (A2) on our test holding level in the context of synthetic data. We
now present the first main result which states that if αφ := lim supk→∞ PP ∗(φk(Zk) = 1)
is the asymptotic level of the test φ when applied to a sample Zk from P ∗, then this is
also the asymptotic level of the resampling test in Algorithm 1 when applied to a sample
Xn from Q∗. All proofs can be found in Appendix A.8.

Theorem 1 (Pointwise asymptotics – known weights). Consider a null hypothesis
H0 ⊆ P in the target domain. Let τ : Q → P be a distributional shift for which a
known map r : X → [0,∞) exists, satisfying τ(q)(x) = r(x)q(x), see (5). Consider
an arbitrary Q ∈ Q and P = τ(Q). Let φk be a sequence of tests for H0 and define
αφ := lim supk→∞ PP (φk(Zk) = 1). Let m = m(n) be a resampling size and let ψrn be
the DRPL-based resampling test defined by ψrn(Xn) := φm(Ψ

r,m
DRPL(Xn)), see Algorithm 1.

Then, if m and Q satisfy Assumptions (A1) and (A2), respectively, it holds that

lim sup
n→∞

PQ(ψrn(Xn) = 1) = αφ.

The same statement holds when replacing both lim sup’s with lim inf’s.

Theorem 1 shows that the rejection probabilities of ψr and φ converge towards the
same limit. In particular, the theorem states that if φ satisfies pointwise asymptotic
level in the sense of (7), and Assumption (A2) holds for all Q ∈ τ−1(H0), then also
ψr satisfies pointwise asymptotic level (3). Similarly, because the statement holds for
P /∈ H0, too, ψ

r has the same asymptotic power properties as φ.
We show in Theorem 1, that Assumption (A1) is sufficient to obtain asymptotic level

of the rejection procedure. In fact, as we show in the following theorem, it is also
necessary: If, m,n approach infinity with m ≥ nq for q > 1

2 , there exists a distribution
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Q, a shift r and a sequence of tests φk such that Assumption (A2) is satisfied and
αφ := lim supk→∞ PP (φk(Zk) = 1) < 1 but the probability of rejecting the hypothesis
on any resample of size m converges to 1. This applies for any resampling scheme,
including sampling with replacement.

Theorem 2 (In general, (A1) cannot be relaxed). Fix ℓ ∈ {2, 3, . . .} and let Ψm be any
resampling scheme that outputs a (not necessarily distinct) sample of size m = nq with
q > (ℓ− 1)/ℓ, and let αφ ∈ (0, 1). Then there exist a distribution Q ∈ Q, a distribution
shift τ : Q → P with a known map r : X → [0,∞), a null hypothesis H0 ⊆ P and a
sequence of hypothesis tests φk such that τ(Q) ∈ H0, lim supk→∞ Pτ(Q)(φk(Zk) = 1) ≤
αφ, EQ[r(X)ℓ] <∞ and

lim
n→∞

PQ(φm(Ψm(Xn)) = 1) = 1.

In particular, letting ℓ = 2 in Theorem 2 shows that Theorem 1 does not hold without
Assumption (A1). On the grounds of Theorem 2, it is tempting to think that if one
strengthens Assumption (A2) to EQ[r(Xi)

ℓ] <∞, then one can relax Assumption (A1)
to m = o(n1−1/ℓ), which would enable larger resample sizes. Yet, so far, we have not
succeeded in extending the current proofs of Theorem 1 to this set of assumptions.
Remark A.1 after the proof of Theorem 1 provides a few details on the difficulty of
extending the current proof.

So far, we have considered the case in which the known shift factor r does not depend
on q. Next, we consider the setting in which the shift factor is allowed to explicitly
depend on q. This is relevant, for example, if the shift τ represents a change of the
conditional of a variable Xj from q∗(xj |xB) to p∗(xj |xC), say, but the observational
conditional q∗(x|xB) is unknown, corresponding to the setting in (6). If q∗(xj |xB) is
unknown, we are not able to compute the weights p∗(Xj

i |XC
i )/q

∗(Xj
i |XB

i ). However, we
can still try to estimate q∗(xj |xB) (or even r) and obtain approximate weights r̂ ∝ p∗/q̂∗.
Assume we have two data sets Xn1 and Xn2 both containing samples from Q∗, with n1
and n2 observations respectively and the first one is used to estimate r and the second
one to perform the test, see Algorithm A.1. Then, if we make the following modifications
to Assumptions (A1) and (A2),

(A1’) m = m(n2) satisfies 1 ≤ m ≤ n2,m → ∞ and m = o(min(na1, n
1/2
2 )) for n1, n2 →

∞,

(A2’) EQ[rq(Xi)
2] <∞,

the following theorem states that even when estimating the weights, it is possible to
obtain pointwise asymptotic level for the target hypothesis (1) – if the weight estimation
works sufficiently well.

Theorem 3 (Pointwise asymptotics – estimated weights). Consider a null hypothesis
H0 ⊆ P in the target domain. Let τ : Q → P be a distributional shift, satisfying
τ(q)(x) ∝ rq(x)q(x), see (6). Consider an arbitrary Q ∈ Q and P = τ(Q). Let φk
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be a sequence of tests for H0 and let αφ := lim supk→∞ PP (φk(Zk) = 1). Let r̂n be an
estimator for rq such that there exists a ∈ (0, 1) satisfying

lim
n→∞

sup
x∈X

EQ

∣∣∣∣∣
(
r̂n(x)

rq(x)

)na
− 1

∣∣∣∣∣ = 0,

where the expectation is taken over the randomness of r̂n. Let m = m(n2) be a re-
sampling size and let ψr̂n1,n2

be the DRPL-based resampling test defined by ψr̂n1,n2
:=

φm(Ψ
r̂n1 ,m
DRPL (Xn2)) from Algorithm A.1 in Appendix A.3. Then, if m and Q satisfy As-

sumptions (A1’) and (A2’), respectively, it holds that

lim sup
n→∞

PQ(ψr̂n(Xn) = 1) = αφ.

The same statement holds when replacing both lim sup’s with lim inf’s.

Theorem 3 shows that ψr̂n converges to the same limit as φ. In particular, as for the
case of known weights, if φ satisfies pointwise asymptotic level and Assumption (A2’)
holds for all Q ∈ τ−1(H0), then also ψr̂ satisfies pointwise asymptotic level for the
hypothesis τ(Q∗) ∈ H0 and ψr̂ inherits asymptotic power properties, too.

4.3. Computationally efficient resampling with ΨDRPL

In Section 4.1 we propose a sampling scheme ΨDRPL, defined by (10), and in Section 4.2
we prove theoretical level guarantees when we resample the observed data using ΨDRPL.
In this section, we display a number of ways to sample from ΨDRPL in practice.

To do so, let ΨREPL and ΨNO-REPL denote weighted sampling with and without replace-
ment, respectively, both of which are implemented in most standard statistical software
packages. Though ΨDRPL and ΨNO-REPL both sample distinct sequences (i1, . . . , im), they
are not equal, i.e., they distribute the weights differently between the sequences (see
Appendix A.4). We can sample from ΨDRPL by sampling from ΨREPL and rejecting the
sample until the indices (i1, . . . , im) are distinct, see Appendix A.4.1. In Proposition A.1
we prove that under suitable assumptions, such asm = o(

√
n), the probability of drawing

a distinct sequence already in a single draw approaches 1, when n→∞.

In some cases (though these typically only occur when Assumption (A1) or Assump-
tion (A2) are violated, and our asymptotic guarantees do not apply), the above rejection
sampling from ΨREPL may take a long time to accept a sample. For these cases, we pro-
pose to use an (exact) rejection sampler based on ΨNO-REPL, which will typically be faster
(since it has the same support as ΨDRPL). We provide all details in Appendix A.4.2.

If neither of the two exact sampling schemes for ΨDRPL is computationally feasible, we
provide an approximate sampling method that applies a Gibbs sampler to a sample from
ΨNO-REPL; we refer to this scheme as ΨDRPL-GIBBS. Finally, one can simply approximate
ΨDRPL by a sample from ΨNO-REPL – this is computationally faster, and leads to similar
results in many cases. The details are provided in Appendix A.4.3. In practice, our
implementation first attempts to sample from ΨNO-REPL by (exact) rejection sampling,
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and if the number of rejections exceed some threshold, sampling without replacement is
used instead.

Proposition A.1 (mentioned above) has another implication. We prove that we can
obtain the same level guarantee, when using ΨREPL instead of ΨDRPL (see Corollary A.1 in
Appendix A.4). This result, however, requires an assumption that is stronger than As-
sumption (A2). Intuitively, stronger assumptions are required for ΨREPL because sampling
with replacement is much more prone to experience large variance due to observations
with huge weights.

4.4. Extensions

In this section, we discuss a number of extensions of the methodology and theory pre-
sented in the preceding sections.

4.4.1. Heuristic data driven choice of m

Resampling distinct sequences requires that we choose a resampling sizem that is smaller
than the original sample size n. If m is too large when sampling distinct sequences, it
can happen that eventually there are no more points left that are likely under the target
distribution. Consequently, the resampling procedure disproportionally often has to
sample points that are very unlikely in the target distribution. This leads to the target
sample being a poor approximation of the target distribution. Our theoretical results
show that choosing a resampling size of order o(

√
n) avoids this problem, see Theorem 1.

However, this result is asymptotic and does not immediately translate into finite sam-
ple statements. Furthermore, in many cases also the requirementm = o(

√
n) is too strict,

and asymptotic level can also be obtained by setting m = o(na) for some a ∈ (1/2, 1]
(with the most extreme case being P ∗ = Q∗, where a = 1 can be applied). Since a larger
m typically results in increased power of the hypothesis test, we want to choose m as
large as possible while maintaining that the target sample still approximates the target
distribution.

Consider the case where τ corresponds to changing q∗(xj |xC) to p∗(xj |xB). We can
then test the validity of the resampling by testing whether the target sample matches the
theoretical conditional. Specifically, for a fixed m, we can verify whether the conditional
Xj | XB in the resampled data Ψr,m

DRPL(Xn) is close to the target conditional p∗(xj |xB)
by a goodness-of-fit test κ(Ψr,m

DRPL(Xn)) ∈ {0, 1}. If m is chosen too large, the resampling
is likely to include many points with small weights, corresponding to small likelihoods
p∗(xj |XB), which will cause the goodness-of-fit test to reject the hypothesis that the
target sample has the conditional p∗(xj |XB).

We can use this to construct a data-driven approach to selecting m: For an increasing
sequence of m’s, perform the goodness-of-fit test for several resamples κ(Ψr,m

DRPL(Xn)1),
. . ., κ(Ψr,m

DRPL(Xn)K). If 1
K

∑K
k=1 κ(Ψ

r,m
DRPL(Xn)k) is smaller than some predefined cutoff

qt, we accept m as a valid target sample size8. We then use the largest accepted m

8Concretely, since under the null hypothesis, κ(Ψr,mDRPL(Xn)k) is uniform, we chose qt to be the αc-
quantile of the mean of K uniform distributions for some αc ∈ (0, 1), see Appendix A.6. Doing so,
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as the resampling size in the actual test for the hypothesis of interest. We summarize
the procedure for finding m in Algorithm A.2 in Appendix A.6 and call this the GOF-
heuristic for choosing m.

To avoid potential dependencies between the tuning of m and the hypothesis test, we
could use sample splitting. In practice, however, we use the entire sample, since the
dependence between the tuning step and the final test in our empirical analysis appears
to be sufficiently low such that the level properties of the final tests were preserved, see
e.g., the experiment in Section 5.1.
If the target conditional p∗(xj |XB) is a linear Gaussian conditional density (i.e., Xj |

XB ∼ N (β⊤XB, σ2) for some parameters β, σ under P ∗) the goodness-of-fit test can
be performed by using a linear regression and testing the hypothesis that the regression
slope in the resample is β. For more complex conditional densities, one should prefer a
test that has (pointwise asymptotic) power against a wide range of alternatives. Here,
we propose to use the kernel conditional-goodness-of-fit test by Jitkrittum et al. [2020]
to test that the resampled data Ψr,m

DRPL(Xn) has the desired conditional.

4.4.2. Combining different resamples

The proposed procedure draws a random resample and hence a different conclusion of
the test may be drawn if the procedure is repeated. To reduce this randomness, we may
wish to repeat the resampling and testing several times, and combine the tests into a
single test.
Repeating the procedure can also have a positive impact on sample efficiency: While

Theorem 1 shows that m = o(
√
n) suffices for any distribution shift satisfying Assump-

tion (A2), this choice ofm is in many cases too strict. An extreme case is when P ∗ = Q∗,
where one could as well test the hypothesis in the n observed points instead of the m
resampled points; here, using a single subsample of size less than

√
n is not optimal in

terms of power.
By repeated sampling, a larger part of the information contained in the data can be

exploited. A difficulty in combining tests from several resamples is that the test statistics
are dependent, since they are computed on random subsets of the same data set. Here,
the strength of the dependence needs to be taken into account. Considering the following
two corner cases may help for building intuition. If there are m weights that are much
larger than the remaining ones, the draws and the test statistics of different draws are
mostly identical. In this case, repeated draws do not contain additional information
about the null hypothesis. If all weights are equal, however, the test statistics are less
dependent and thereby the different draws contain partially complementary information.
Several procedures exist for combining dependent tests or statistics [e.g., Liu and

Xie, 2020, Vovk and Wang, 2020, Rüschendorf, 1982]. Here, we propose to use the
procedure proposed by Hartung [1999] that considers tests for a single hypothesis and
only requires access to p-values p1, . . . , pk that are uniformly distributed under the null
hypothesis. The procedure then transforms the p-values using the inverse Gaussian

ensures that for a fixed m, under the null hypothesis of the resample having the intended conditional,
the test has level αc.
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CDF ti = Φ−1(pi), estimates the (pairwise) covariance9 of t1, . . . , tk and, taking these
covariances into account, considers a weighted average of the probits ti. Under the null
hypothesis, this weighted average follows a standard normal distribution, which can be
used to construct a combined p-value for the null hypothesis.
Conducting repeated tests can be combined with the heuristic in Section 4.4.1: We

apply the heuristic to chose a resample size m which holds level, and repeatedly test the
hypothesis using this resample size, which we then combine into a single p-value. As
we demonstrate empirically in Section 5.2, this often increases power compared to only
testing the hypothesis once.

4.4.3. Finite-sample level guarantees

In addition to the asymptotic results presented in Section 4.2, we now prove that the
hypothesis test ψrn inherits finite-sample level if the test φ in the target domain satisfies
finite-sample guarantees.

Theorem 4 (Finite sample level – known weights). Consider a null hypothesis H0 ⊆ P
in the target domain. Let τ : Q → P be a distributional shift for which a known map
r : X → [0,∞) exists, satisfying τ(q)(x) = r(x)q(x), see (5). Consider an arbitrary
Q ∈ Q and P = τ(Q). Let m be a resampling size and let φm be a test for H0 and
define αφ := PP (φm(Zm) = 1). Also let ψrn be the DRPL-based resampling test defined
by ψrn(Xn) := φm(Ψ

r,m
DRPL(Xn)), see Algorithm 1. Then, if Q satisfies Assumption (A2),

it holds that

PQ(ψrn(Xn) = 1) ≤ infδ∈(0,1)

(
αφ

1− δ +
V (n,m)

V (n,m) + δ2

)
, (12)

where V (n,m) =
(
n
m

)−1∑m
ℓ=1

(
m
l

)(
n−m
m−ℓ

)
(EQ[r(X1)

2]ℓ − 1).

Thus, if EQ[r(X1)
2] is known, one can evaluate the finite-sample level of the DRPL-

based resampling test for any choice of m. We show in Appendix A.2 that the term
V (n,m) can be computed efficiently and such that numerical under- or overflows is
avoided, even if n and m are so large that evaluating the individual terms

(
n
m

)
and(

m
l

)(
n−m
m−ℓ

)
(EQ[r(X1)

2]ℓ − 1) may cause under- or overflows. Given V (n,m), the mini-
mization problem on the right hand side can easily be implemented in numerical opti-
mizers or solved explicitly for the minimal δ.10 Appendix A.2.1 contains plots of the
upper bound for various values of the parameters.

9This assumes that the pairwise covariance cov(ti, tj) is constant for all i ̸= j. This is satisfied in our
case, since each pi is a result of the same test.

10Taking the derivative with respect to δ and equating it to 0, the resulting equation can be rewritten
to a polynomial equation of degree 4. One can then evaluate the right hand side of (12) at the (at
most 4) roots and additionally the boundary point δ = 0, and use the one that yields the smallest
bound.

If τ is the identity mapping, i.e. Q∗ = P ∗, then EQ[r(X1)
2] = 1, and for all m, V (n,m) = 0. As

one would expect, in that case Theorem 4 states that for any m, PQ∗(ψrn(Xn) = 1) ≤ αφ, that is, the
probability of rejecting when applying φ to the resampled data is upper bounded by the probability
of rejecting when applying φ directly to target data.
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4.4.4. Uniform level

The asymptotic level guarantees implied by Theorem 1 are pointwise, meaning we are
not guaranteed the same convergence rate for all distributions Q ∈ τ−1(H0). How-
ever, as the following theorem shows, if a uniform bound on the weights exists, i.e.,
supQ∈τ−1(H0) EQ[r(Xi)

2] < ∞, and the test φ has uniform asymptotic level, the overall
procedure can be shown to hold uniform asymptotic level.

Theorem 5 (Uniform asymptotic level). Assume the same setup and assumptions as in
Theorem 1. If additionally supQ∈τ−1(H0) EQ[r(Xi)

2] <∞ and lim supk→∞ supP∈H0
PP (φk(Zk) =

1) ≤ αφ, then

lim sup
n→∞

sup
Q∈τ−1(H0)

PQ(ψrn(Xn) = 1) ≤ αφ,

i.e., ψrn satisfies uniform asymptotic level αφ for the hypothesis τ(Q∗) ∈ H0.

4.4.5. Hypothesis testing in the observed domain

In Section 2.4, we argue that one can use our framework for testing under distributional
shifts to test a hypothesis in the observed domain, too. Indeed, the results in Section 4.2
directly imply the following corollary (see Corollary A.2 in Appendix A.8.8 for a more
detailed version).

Corollary 1 (Pointwise level in the observed domain). Consider hypotheses HQ
0 ⊆ Q

and HP
0 ⊆ P and let τ : Q → P be a distributional shift such that τ(HQ

0 ) ⊆ HP
0 . Under

the same assumptions as in Theorem 1, if φ is a test that satisfies pointwise asymptotic
level in the target domain, ψrn satisfies pointwise asymptotic level for the hypothesis
Q∗ ∈ HQ

0 .

This corollary for example applies to the test in Section 3.1, where we test a hypoth-
esis of (marginal) dependence in a shifted distribution τ(P ) although the hypothesis of
interest is conditional independence in Q. While the requirement in Assumption (A1)
that m = o(

√
n) implies that we are testing the hypothesis in a smaller sample size, the

hypothesis of marginal independence is also statistically simpler to test than a hypoth-
esis of conditional independence. This also means that our approach may come with
computational benefits: We can resample the data into a smaller data set, where the
signal of interest is more concentrated. For example, applying a kernel conditional inde-
pendence test such as the one proposed by Zhang et al. [2011] can be computationally

If P ∗ ̸= Q∗ then V (n,m) > 0, and for any m the right hand side of (12) exceeds αφ. To control
the level of the resampling test, say at a rate αψ, one can set the resample size m small enough such
that the right hand side of (12) is smaller than αψ. We propose to use the largest m such that the
right hand side of (12) is bounded by αψ.

In practice, we find that in many settings, the inequality (12) is not strict: the largest m such
that the right hand side (12) is bounded by αψ is not close to being the largest m such that the left
hand side is bounded by αψ. Hence, for practical purposes, the scheme for choosing m proposed in
Section 4.4.1 often returns larger values m while retaining level αψ under the null hypothesis; we
explore this further in Section 5.
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Statistical Testing under Distributional Shifts

Algorithm 2 Testing a target hypothesis with known distributional shift and rejection
sampling

Input: Data Xn, hypothesis test φm, shift factor r(x
A) and bound M .

1: for i = 1, 2, . . . , n do
2: Sample Ui uniform on (0, 1)

3: if Ui >
r(Xi)
M then

4: Discard Xi
return ψrn(Xn) := φm(Xi1 , . . . , Xim)

expensive when n is large. On the contrary, using a (marginal) kernel independence test
such as the one by Gretton et al. [2008] is computationally simpler and for the proposed
procedure only needs to be applied to a resample of size o(

√
n). In our experiments in

Section 5.4, we employ both these tests and find that the procedure of resampling and
testing for marginal independence is indeed orders of magnitude faster.

4.5. An alternative for uniformly bounded weights

In Section 4.1, we propose the ‘distinct replacement’ resampling scheme and show in
Theorems 1 and 4 that this has finite and asymptotic level. The procedure requires
Assumption (A2), that is that the weights have finite second moment.

We now consider the stricter assumption that the weights are globally bounded. Al-
though this assumption is not met for most distributions that are not compactly sup-
ported, this is satisfied for example by distributions on finite state spaces. We show that,
under this assumption, one can use a rejection sampler with finite sample guarantees.

Suppose that τ(q)(x) ∝ r(x)q(x) and there exists a known M ∈ (0,∞) such that
supx r(x) ≤ M . Given a sample Xn = (X1, . . . , Xn) of size n from Q∗, we can use a
rejection sampler that retains observations Xi with probability r(Xi)/M (and otherwise
discards them) to obtain a sample from P ∗ = τ(Q∗), and apply a hypothesis test φm to
the rejection sampled data; see Algorithm 2.

If φm has level guarantees when applied to data Zk from P ∗, we can test the hy-
pothesis τ(Q∗) ∈ H0 with the same level guarantee, since the rejection sampled data
(Xi1 , . . . , Xim) are i.i.d. distributed with distribution P ∗. We state this as a proposition.

Proposition 1 (Finite level – bounded weights). Consider a null hypothesis H0 ⊆ P
in the target domain. Let τ : Q → P be a distributional shift for which a known map
r : X → [0,∞) exists, satisfying for all x: τ(q)(x) ∝ r(x)q(x) and r(x) ≤ M . Consider
an arbitrary Q ∈ Q and P = τ(Q). Let φk be a sequence of tests for H0 and assume
there exist αφ ∈ (0, 1) such that for each k ∈ N: αφ = supk PP (φk(Zk) = 1). Let ψrn(Xn)
be the rejection-sampling test defined in Algorithm 2. Then it holds that

PQ(ψrn(Xn) = 1) = αφ.
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4. Testing by Resampling

4.6. Statistical inference beyond testing

In this paper, we mainly focus on statistical testing in the target domain. However,
by choosing H0 as a singleton and properly defining ϕk (which is not required to be a
test), the result of Theorem 1 is strong enough to imply that other types of statistical
inference remain valid after resampling, too. We formulate this as a corollary.

Corollary 2 (Confidence intervals, consistency, asymptotic distribution). Let τ : Q →
P be a distributional shift for which a known map r : X → [0,∞) exists, satisfying
τ(q)(x) ∝ r(x)q(x), see (5). Consider an arbitrary Q ∈ Q and P = τ(Q). Let gk
be an estimator or a confidence region in the target domain for a parameter θ(P ). Let
m = m(n) be a resampling size and evaluate the estimator on the resampled data set, that
is, brn(Xn) := gm(Ψ

r,m
DRPL(Xn)). Then, if m and Q satisfy Assumptions (A1) and (A2),

respectively, b inherits properties like coverage, consistency or asymptotic normality from
g. More precisely, we have the following three statements.

(i) Coverage of confidence regions. Let α ∈ [0, 1] be arbitrary. Then,

lim inf
k→∞

PP (gk(Zk) ∋ θ(P )) ≥ 1− α ⇒ lim inf
n→∞

PQ(brn(Xn) ∋ θ(P )) ≥ 1− α.

(ii) Consistency of estimator. Let ε > 0. Then, for any suitable norm ∥.∥,

lim
k→∞

PP (∥gk(Zk)− θ(P )∥ > ε) = 0 ⇒ lim
n→∞

PQ(∥brn(Xn)− θ(P )∥ > ε) = 0.

(iii) Asymptotic distribution of estimator. Let F be a cumulative distribution function,
possibly depending on P , and let c ∈ R be such that F is continuous in x. Then,

lim
k→∞

PP (gk(Zk) ≤ x) = F (x) ⇒ lim
n→∞

PQ(brn(Xn) ≤ x) = F (x).

Here, part (i) follows from Theorem 1 by choosing φk(Zk) := 1{gk(Zk)∋θ(P )}, because
the proof of Theorem 1 works with any function φk that takes values in {0, 1}. Part
(ii) follows with φk(Zk) := 1{∥gk(Zk)−θ(P )∥>ε} and part(iii) when choosing φk(Zk) :=
1{gk(Zk)≤x}.

4.7. Choosing resampling parameters

We summarize the choices of parameters required to apply our framework in Table 1.
Given a data set of size n, we need to specify a resampling strategy and a resampling size
m. Additionally, in cases where the hypothesis of interest is in the observed distribution
(see Corollary A.2), we need to specify a target distribution.

If the weights are uniformly bounded, supx r(x) ≤ M with known M , we propose to
use the rejection sampler from Section 4.5, which does not require a choice of m and has
finite sample guarantees (see Proposition 1). If the weights are not uniformly bounded
or M is unknown, one can use the DRPL resampling scheme in Appendix A.4, which
has asymptotic level guarantees. One can also use the NO-REPL resampling scheme
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Target distribution Resampling scheme Resampling size m

Principle Select p∗ as close to
q∗ as possible in that
it ensures that weights
are well-behaved

We suggest to draw
distinct observations
to ensure valid infer-
ence.

Select m as large as pos-
sible s.t. resample re-
mains sufficiently close
to q∗.

Details • If target distribution
p∗ is not given by
application, sometimes
minimizing variance
of weights is possible;
in CI testing, often
replacing q∗(x|z) by
q∗(x) works well
• Optimize over
feasible target distri-
butions p∗ to minimize
VarQ∗(r(X))

• If there exists a known
M with supx r(x) ≤ M ,
use rejection sampling
(Section 4.5)
• In general, use DREPL
• If computationally in-
feasible or n very large,
use NO-REPL (assuming
Assumption (A2’))

• Asymptotic theory
requires m = o(

√
n)

• Asymptotic heuristic:
m = ⌊√n⌋
• GOF-heuristic: m as
large as possible until
GOF test rejects (Sec-
tion 4.4.1) (make GOF
as powerful as possible to
maintain overall level)
• Improve power and
reduce randomness by
drawing multiple resam-
ples and combining the
tests (Section 4.4.2)

Table 1.: Summary of how to select the user-specified parameters of the resampling pro-
cedure.

(Appendix A.5), which is computationally faster, though sampling with replacement
from a finite sample for many test statistics requires one to specify an effective sample
size.

To choose the resampling size, we propose to use the GOF-heuristic described in
Section 4.4.1, which increases m as long as a goodness-of-fit test is accepted. We propose
to use conservative test by setting the rejection level high (10%− 30%), to ensure that
the goodness of fit test has sufficient power to detect if the resampling did not work.
One can also use the asymptotic heuristic m = ⌊√n⌋, which ensures asymptotic level but
may not be appropriate for finite samples, or the m with finite sample level guarantees
from Theorem 4 which however may be too conservative in practice. We recommend to
repeat the resampling and testing procedure and use the combination test from Hartung
[1999] whenever possible, as described in Section 4.4.2.

In applications, where the target distributions is not given, one also needs to chose
the target distribution p. For example in the application of conditional independence
testing (Section 3.1) we are interested in converting a conditional distribution q∗(x|z)
into a marginal distribution p(z). In such cases, we can choose the marginal to ensure
that the weights are well-behaved, yielding a better performance of our methods. Often,
using the marginal distribution in the observed distribution p(z) = q∗(z) works well.
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5. Experiments

We present a series of simulation experiments that support the theoretical results devel-
oped in Section 4.2 and analyze the underlying assumptions. We also apply the proposed
methodology to the problems described in Section 3. A simulation experiment for model
selection under covariate shift (see Section 3.6) can be found in Appendix A.7.2. Un-
less noted otherwise, the experiments use the ΨDRPL resampling scheme. Code that
reproduces all the experiments is available at https://github.com/nikolajthams/

testing-under-shifts.

5.1. Exploring assumptions Assumptions (A1) and (A2)

We explore the impact of violating either Assumption (A1), stating that m = o(
√
n),

or Assumption (A2), stating that the weights must have finite second moment in the
observational distribution. To do so, we apply the procedure discussed in Section 3.1
that reduces a conditional independence test X ⊥⊥ Y |Z in the observational domain
to an unconditional independence test in the target domain. Specifically, we simulate
n = 10′000 i.i.d. observations from the linear Gaussian model with

X := εX Z := X + 2εZ Y := θX + Z + εY

for some θ ∈ R and εX , εZ , εY ∼ N (0, 1) inducing a distribution Q∗ over (X,Y, Z).
We assume that the conditional distribution q∗(z|x) is known and replace it with an
independent Gaussian distribution ϕσ(z) with mean zero and variance σ2, breaking the
dependence between X and Z in the target distribution.

We then perform a test for independence of X and Y in the target distribution using
a Pearson correlation test. We do this both for θ = 0.4 (where X ⊥̸⊥ Y |Z and ideally
we reject the hypothesis) and for θ = 0 (where X ⊥⊥ Y |Z and ideally we accept the
hypothesis). Fig. 3 shows the resulting rejection rates of the test, where we have repeated
the procedure of simulating, resampling and testing (at level α = 0.05) 500 (left) or
10′000 (right) times. In this experiment, the ΨNO-REPL sampler is used, since the rejection
samplers break as m gets very large.

First, we test the impact of changing the resampling size m. For each simulated data
set Xn and eachm, we resample 100 target data sets Ψr,m(Xn), and compute the rates of
rejecting the hypothesis. The shaded areas in Fig. 3 (left) indicate 95% of the resulting
trajectories, and the solid lines show one example simulation. Our theoretical results
assume m = o(

√
n) and, indeed, the hypothesis rejects around 5% of simulations when

X ̸→ Y (θ = 0) for small m. As discussed in Section 4.4.1, Assumption (A1) may in
some cases be too strict, and we observe that the 5% level is retained whenm moderately
exceeds

√
n; but as m grows larger, the level is eventually lost.

For the same example simulation Xn as in the left plot, we also apply the GOF-
heuristic for choosing m as described in Section 4.4.1, and plot the resulting p-values in
Fig. 3 (middle). Since the data are Gaussian, we can perform the goodness-of-fit test by
a simple linear regression analysis. For each m, we compute the average of the p-values
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Figure 3.: (All) Rejection rates from the experiments in Section 5.1. We replace the con-
ditional distribution q∗(z|x) with a marginal distribution ϕσ(z). We perform a
test for independence X ⊥⊥ Y in the target distribution, and plot the rejection
rates. (Left) Validation of Assumption (A1). We run the resampling with
σ = 1 and different sample sizes m. Shaded regions show 95% quantiles of the
rejection rates of the hypothesis test. The level seems to hold for m ≤ √n,
the latter corresponding to the asymptotic rate Assumption (A1) (left of the
dashed vertical line). Circles indicate the m suggested by the middle plot
and triangles the m suggested by the finite-sample method described in Sec-
tion 4.4.3 – as expected, this is a conservative choice. The GOF-heuristic
suggests an m that indeed yields larger power. (Middle) P -values (dots) and
average p-values (lines) when applying Algorithm A.2 to choose m. We se-
lect m (circled) from the first time, the goodness-of-fit test (horizontal dashed
line) is rejected. (Right) Validation of Assumption (A2). Our procedure is
run with different standard deviations σ in the Gaussian target distribution
pσ(z) ϕσ(z). The dashed vertical line indicates the theoretical threshold of√
6, see Section 5.1.

(solid lines), and increase m until the average p-value drops below the 5% quantile of
the distribution of mean(U1, . . . , Uℓ) where U1, . . . , Uℓ are i.i.d. uniform random variables.
The circles in the left and middle plot indicate the m that is chosen by Algorithm 1 for
this simulation. We observe in the left plot that the power of the test can be increased
using the m suggested by the middle plot, while the level approximately holds at 5%.

Second, we test the importance of Assumption (A2). For different σ (and fixed m =√
n), we compute the weights r = ϕσ(Zi)/q(Zi|Xi), and in Fig. 3 (right) we plot the

rejection rates of the test statistic when X → Y (θ = 0.4) and X ̸→ Y (θ = 0). We show
in Appendix A.9 that Assumption (A2) is satisfied if and only if σ2 < 2(σ2ε2εZ

− σ2X),
where σ2X is the variance of X and σ2ε2εZ

is the variance of the noise term in the structural

assignment for Z. In this experiment, it follows that Assumption (A2) holds if and only
if σ <

√
6. We observe that when σ exceeds the threshold of

√
6 (vertical dashed line),

the level eventually deviates from the 5% level. Furthermore, the power drops when σ
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Figure 4.: Plotting rejection rates for the experiment for both a single test as well as 3
different combination tests, see Section 4.4.2.

approaches the threshold.

5.2. Combining repeated tests

In Section 4.4.2, we discussed combining multiple resamples, in order to both reduce
the randomness of our resampling procedure, and to possibly get better finite sample
performance, from using a larger part of the data.

In this experiment, we explore the effect of employing various combination tests, which
allow for arbitrary dependencies between the tests. First, we consider the Cauchy com-
bination tests (CCT) of Liu and Xie [2020]. They assume that the test statistics are
normally distributed, though they find that the outcome is not sensitive to this as-
sumption in practice. We also consider the combination test of Hartung [1999], which
transforms the p-values (assuming they are uniform under the null hypothesis) into a
Gaussian distribution, and estimates the covariance between the tests in the transformed
space. Lastly, we consider the combination procedure in Meinshausen et al. [2009], which
combines p-values by taking quantiles of the empirical distribution [see also Rüger, 1978,
Vovk and Wang, 2020].

We consider the task in Section 3.1 of testing conditional independence. We simulate
data from both a linear and a nonlinear SCM, and test the hypothesis of conditional
independence X ⊥⊥ Y | Z both in a scenario where this null hypothesis is true and where
it is false. In Fig. 4, we plot the resulting rejection rates for various sample sizes n,
where for each n, we sample m points, where m is selected either with the asymptotic
heuristic m = ⌊√n⌋ or with the GOF-heuristic (see Section 4.4.1) which increases the
resample size until the resample is rejected in a goodness-of-fit test at a 10% level.
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In the linear SCM, where the weights are fitted using a (correctly specified) linear
model, we observe that all three combination tests hold level and gain additional power
over the single test. This is a well behaved scenario, where the asymptotic heuristic is
likely too conservative, and when used in conjunction with the asymptotic heuristic, the
combination tests gain additional power by utilizing more information from the sample.
The gain in power of using combination tests is less pronounced for the GOF-heuristic,
since more information is already used by the adaptive choice of m.

In the nonlinear SCM, most types of combination tests also retain level, though in the
case of the GOF-heuristic (which typically selects m more aggressively) the level is only
attained for larger sample sizes or even not at all, for the test from Liu and Xie [2020].
This could be because the goodness-of-fit test, used to decide how large the resample can
be, may not have sufficient power in small sample sizes to detect when a resample does
not follow the intended target distribution. This nonlinear SCM, where the weights are
fitted by a generalized additive model [Hastie, 2017], is less well-behaved than the linear
SCM, and the weights are more degenerate; as a result, the tests are more correlated
and the combination tests are not necessarily more powerful than the single test. This
shows that while better power can be obtained by combining tests, it can also be lost in
scenarios with degenerate weights, where the tests are strongly correlated.

5.3. Off-policy testing

We apply our method to perform statistical testing in an off-policy contextual bandit
setting as discussed in Section 3.2. We generate a data set Xn, (n = 30′000), consisting
of observations Xi = (Zi, Ai, Ri) with dimensions dZ = 3, dA = dR = 1, drawn according
to the following data generating process:

Z := εZ A | Z ∼ q∗(A|Z) R := β⊤AZ + εR,

where εZ ∼ N (0, I3) and εR ∼ N (0, 1), A takes values in the action space {a1, . . . , aL},
where L = 4, q∗(a|z) denotes an initial policy that was used to generate the data Xn

and βa1 , . . . , βaL are parameters of the reward function corresponding to each action. A
uniform random policy was used as the initial policy, i.e., for all a ∈ {a1, . . . aL} and
z ∈ R3, q∗(a|z) = 1/L.

The goal is to test hypotheses about the reward R if we were to deploy a target
policy p∗(a|z) instead of the policy q∗(a|z). Here, we consider three hypotheses, namely
one-sample test of means, two-sample test of difference in means and two-sample test
of difference in distributions. We set the false positive rate to 5% and use m =

√
n

without the GOF-heuristic in all three experiments. Rejection rates are computed from
500 repeated simulations.

In the first experiment, we construct different target policies p∗δ(a|z). For δ = 0, the
target policy reduces to a uniform random policy and with increasing δ, the policy puts
more mass on the optimal action (and thereby increasing the deviation from the initial
policy). As δ → ∞, the target policy converges to an optimal policy. More precisely,
p∗δ(a|z) is a linear softmax policy, i.e., p∗δ(a|z) ∝ exp(δβ⊤a z). We then apply our method
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to non-parametrically test whether EP ∗
δ
(R) ≤ 0 on the target distribution in which the

policy p∗δ(a|z) is used. For δ = 0, the expected reward is zero (here, the null hypothesis is
true) and for increasing δ the expected reward increases. To apply our methodology, we
employ the Wilcoxon signed-rank test [Wilcoxon, 1992] in the target domain. Figure 5
(left) shows that for δ = 0, our method indeed holds the correct level and eventually
starts to correctly reject for increasing δ. For comparison, we include an estimate of the
expected reward based on IPW.

In the second experiment, we use the same setup as in the first experiment, but
now apply the two-sample testing method discussed in Section 3.3 to test whether

R|K=1
L
= R|K=2, where K = 1 indicates a sample under the initial policy and K = 2 in-

dicates a sample under a target policy. We consider two non-parametric tests, namely a
kernel two-sample test based on the maximum mean discrepancy (MMD) [Gretton et al.,
2012] (using the Gaussian kernel with the bandwidth chosen by the median heuristic
[Sriperumbudur et al., 2009]) and the Mann-Whitney (M-W) U test [Mann and Whit-
ney, 1947]. Here, for δ = 0, the two policies coincide and for δ > 0, there is a difference
in the expected reward. As shown in Fig. 5 (middle), both tests are able to detect the
difference. The M-W U test has more power than the MMD test.

In a third experiment, we construct different target policies p∗δ′(a|z) by varying their
effect on the variance of the reward distribution, while keeping the mean unchanged.
More specifically, p∗δ′(a|z) is a weighted random policy, i.e., p∗δ′(a|z) ∝ δ′ if a = a1 and
∝ 1 otherwise. This target policy yields the same expected reward as the initial policy
(a uniform random policy), but yields a different variance of the reward. When δ′ = 1,
the target policy is the same as the initial policy, whereas the variance of the reward
becomes smaller when δ′ increases (in Fig. 5 (right), δ′ is rescaled to 0–1 range). We
then apply the same two-sample testing methods used in the second experiment to test

whether R|K=1
L
= R|K=2. This difference is not picked up by the M-W U test and this

time, the MMD test has more power, see Fig. 5 (right).

5.4. Testing a conditional independence with a complex conditional

In the setting of conditional independence testing, we now compare our method – when
turning the problem into a test for unconditional independence as discussed in Section 3.1
– to existing conditional independence tests. We sample n = 150 observations from the
following structural causal model

X := GaussianMixture(−2, 2) Z := −X ·X + εZ Y := sin(Z) + θXτ + εY ,

inducing a distribution Q∗, where GaussianMixture(-2, 2) is an even mixture (i.e.,
p = 0.5) of two Gaussian distributions with means µ1 = −2, µ2 = 2 and unit variances,
εZ , εY are independent N (0, 4)-variables and θ ∈ [0, 3/2], τ ∈ {1, 2}. Considering the
conditional q∗(z|x) to be known, we apply our methodology for testing conditional in-
dependence X ⊥⊥ Y |Z with a 5% level and using the GOF-heuristic in Algorithm A.2.
To do so, we replace q∗(z|x) by a marginal density ϕ(z), which is Gaussian with mean
and variance set to the empirical versions under Q∗. In the target distribution, we test
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Figure 5.: Off-policy statistical testing as described in Section 5.3. (Left) One-sample
test for testing whether the mean under p∗δ(a|z) is less than or equal to 0,
see Section 3.2. (Middle, Right) Two-sample tests for testing whether the
reward under p∗δ(a|z) and p∗δ′(a|z), respectively, has a different distribution
than the reward under the initial policy, see Section 3.3. In all cases, the null
hypothesis is true for δ = 0. The target policies affect the mean of the reward
in the left and middle plot, whereas they affect its variance in the right plot.
The framework can be combined with non-parametric tests and thereby allows
for detecting complex differences in the reward distribution when comparing
two policies.

for independence of X and Y using either a simple correlation test (CorTest) or a ker-
nel independence test (HSIC) [Gretton et al., 2008]. For comparison, we also conduct
conditional independence tests in the observable distribution, using the conditional per-
mutation test (CPT) by Berrett et al. [2020], the generalized covariance measure (GCM)
by Shah and Peters [2020] and a kernel conditional independence (KCI) by Zhang et al.
[2011] (both using standard versions, without hyperparameter tuning). Our resampling
methods use knowledge of the conditional q∗(z|x), which may be seen as an unfair ad-
vantage over the conditional independence tests. Therefore, we also apply our method
with estimated weights, called HSICfit, where the conditional q∗(z|x) is estimated using
a generalized additive model. Since CPT cannot exploit knowledge of q∗(z|x), we es-
timate the conditional q∗(x|z) to apply CPT. In this example, this is a more complex
conditional than q∗(z|x) [Hoyer et al., 2009, Peters et al., 2014].

We repeat the experiment 500 times and plot the rejection rates in Fig. 6 at various
strengths θ of the edge X → Y . All instances of our method have the correct level,
see rejection rates for θ = 0. When τ = 1, i.e., the direct effect X → Y is linear,
the power of our method approaches 100% as the causal effect increases, albeit the
conditional independence tests obtain power more quickly. When the direct effect is
quadratic, CorTest and GCM have little or no power, as expected since they are based
on correlations (we believe that the slight deviation from 5% level in the left plot is due to
very small sample sizes and the heuristic choice of m). KCI and HSIC have comparable
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Figure 6.: Rejection rates for conditional independence tests X ⊥⊥ Y | Z in the setting
from Section 5.4. The direct effect of X on Y is θXτ , where the exponent τ is
either 1 (green) or 2 (orange), and the θ is shown on the x-axis. The three left
panels show our method of resampling and testing marginal independence.
Here, we combine our approach with a Pearson correlation test or HSIC.
HSICfit indicates that we estimate the conditional q∗(z|x) from data. We
compare to three conditional independence tests, CPT, GCM and KCI. CPT
seems to have a slight level violation and, as expected, GCM cannot detect the
nonlinear dependence. The resampling approach can be combined with any
independence test (the same holds for CPT, which is run with a correlation
test, as proposed in the paper) and despite its simplicity, it is able to quickly
reject the alternatives.

power in the quadratic case, with our approach even obtaining slightly more power
than KCI. We observe a slight level deviation for CPT (rejecting in 8.2% of cases with a
confidence interval of (6.27%, 11.16%)), which may occur because the reverse conditional
q∗(x|z) is harder to fit than q∗(z|x). Our approach has the additional benefit of low
computational costs: conditional independence testing is usually a more complicated
procedure than marginal independence testing and, furthermore, the marginal test is
applied to a data set of size m, which by Assumption (A1) is chosen much smaller than
n.

In Appendix A.7.3 we test the same conditional independences as Berrett et al. [2020]
in the bikeshare dataset by Fanaee-T and Gama [2014], and find that, when accepting
hypotheses at at 5% level, our conclusions coincide with those of Berrett et al. [2020]
and Candès et al. [2018].

5.5. Conditional independence testing for right-censored data

We now apply our method for conditional independence testing to the setting of right-
censored data. Consider a random vector (X,Z, Y,C) with a joint density q∗, where
X is a vector of covariates, Z is a vector of control variables, Y is the time to an
event of interest, and C is the time to the censoring event. In the setting, we do not
directly observe Y and C but instead observe the right-censored time T = min(Y,C)
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and the censoring indicator δ = 1{T=Y }. The aim is to test the conditional independence
X ⊥⊥ Y | Z given an i.i.d. sample D of (X,Z, T, δ). To the best of our knowledge, there
are no non-parametric conditional independence tests available in this setting (with non-
empty conditioning set). Nonetheless, there exist non-parametric marginal independence
tests [e.g., Fernández et al., 2021] that we can use to test X ⊥⊥ Y given the sample D.
We can, therefore, apply our method for conditional independence testing introduced in
Section 3.1 to conduct a non-parametric test for X ⊥⊥ Y | Z by testing X ⊥⊥ Y in the
target distribution in which the conditional q∗(x|z) is replaced by some marginal ϕ(x).

To illustrate the use of our approach, we follow Fernández et al. [2021] and consider
the colon dataset as our test bed. The data are from the study of adjuvant chemotherapy
in patients with stage B/C colon cancer [Laurie et al., 1989, Moertel, 1995]. Here, we
consider the survival time (time to death) after the treatment as the event-time Y ,
which was observed for around 49% of all the patients in the study, and consider testing
whether the survival time Y is independent of the covariate X (the obstruction of colon
by tumour) conditioned on the set of control variables Z (age, sex and the extent of
local spread).

We first analyze the dependency between the pairs (X,Y ), (X,Z) and (Z, Y ). We
use the Hilbert-Schmidt independence criterion (HSIC) [Gretton et al., 2008] to test
for independence of the pair (X,Z) and the kernel log-rank test for right-censored data
[Fernández et al., 2021] to test for independence of the pairs (X,Y ) and (Z, Y ). Table 2a
reports the p-values of the (marginal) independence tests. At the confidence level of 95%,
the dependencies of all the pairs are significant. This motivates to investigate further
whether the dependency between the obstruction of colon X and the survival time Y
would still be significant when controlling for Z, i.e., to test for X ⊥⊥ Y | Z.
To apply our method, we estimate the conditional density q∗(x|z) by q̂(x|z) with

logistic regression and compute the weights r = q̂(x)/q̂(x|z), where q̂(x) is the empirical
distribution ofX. The weights are then used to obtain the resample that mimics a sample
from the target distribution in which the conditional q∗(x|z) is replaced by q̂(x). The
size of the resample is determined using our proposed GOF-heuristic with the threshold
αc = 0.05 (see Algorithm A.2 in Appendix A.6). The heuristic selects m = 675 from the
total size of n = 929, indicating that the two distributions are not far from each other.
Table 2b reports the p-values of the independence tests in the resample. The result
shows that the resampling successfully removes the dependency between X and Z in the
resample (the p-value of the hypothesis X ⊥⊥ Z is 0.386), while the dependency between
X and Y remains significant. We can hence conclude that the dependency between the
obstruction of colon X and the survival time Y is still significant when controlling for Z
(age, sex and the extent of local spread).

5.6. Testing dormant independences

We now employ our method to test a dormant independence from observational data,
as described in Section 3.4. We simulate data from a distribution Q∗ that factorizes
according to the graph H in Fig. 2 and test the existence of the edge X1 → X4. As
discussed by Shpitser and Pearl [2008], the presence of this edge cannot be tested by a
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Hypothesis P-value

X ⊥⊥ Y 0.007
X ⊥⊥ Z 0.028
Z ⊥⊥ Y 0.006

(a) Original sample

Hypothesis P-value

X ⊥⊥ Y 0.002
X ⊥⊥ Z 0.386
Z ⊥⊥ Y 0.016

(b) Resample

Table 2.: p-values of independence tests on censored data in (a) the original sample
and (b) in the resample that mimics a sample from the target distribution in
which the conditional q∗(x|z) is replaced by the marginal q̂(x) (corresponding
to testing X ⊥⊥ Y |Z).

conditional independence test, and instead we test marginal independence between X1

and X4 in the target distribution Qdo(X3:=N), which can be obtained by applying our
method using rq(x

3, x2) := qdo (X
3:=N)(x3)/q(x3|x2), where qdo(X3:=N)(x3) is the density

in the intervention distribution.

More precisely, we conduct three experiments. In the first experiment, we consider
binary random variables for the observables X1, X2, X3 and X4, while the hidden vari-
able H is a discrete random variable with 4 possible values. We estimate q(x3|x2) by the
empirical probabilities and use the empirical marginal distribution of X3 as a target dis-
tribution, i.e., p(x3) = q̂(x3). In general, choosing the marginal distribution as a target
distribution corresponds to a relatively small empirical variance of the weights rq(x

3, x2),
see Assumption (A2), even though it may not always correspond to the minimum.11 We
employ Fisher’s exact test to determine whether X1 and X4 in the interventional dis-
tribution are independent of each other. We compare our method to a more specialized
method based on binary nested Markov models [Shpitser et al., 2012] that is based on
a likelihood ratio test. Appendix A.7.4 contains simulation parameters from all three
experiments.

In the second experiment, we consider a linear Gaussian SCM. We estimate the condi-
tional q(x3|x2) by a linear regression and, as before, use the empirical marginal distribu-
tion of X3 as a target distribution. We then test for independence between X1 and X4

in the interventional distribution using a simple correlation test. Since the distribution is
jointly Gaussian (with linear functions) and satisfies the ‘bow-free’ condition [Brito and
Pearl, 2002b], there is a specialized, non-trivial likelihood procedure for model selection
that we can compare with: We perform maximum likelihood estimation as suggested
by Drton et al. [2009] and use the penalty from Nowzohour et al. [2017] to score the
graphs G and H.

In the third experiment, we consider a nonlinear SCM with non-Gaussian errors. We
estimate the conditional q(x3|x2) using generalized additive models. For simplicity, we
consider a distribution where X3 − E[X3 | X2] is Gaussian. Our procedure also applies

11In the special case of binary variables, when the density q(x3, x2) is known, one can
compute the marginal which minimizes the variance: it outputs one with probability

q(x2=1)2/q(x3=0,x2=1)+q(x2=0)2/q(x3=0,x2=0)

q(x2=1)2/q(x3=1,x2=1)+q(x2=0)2/q(x3=1,x2=0)+q(x2=1)2/q(x3=0,x2=1)+q(x2=0)2/q(x3=0,x2=0)
.
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Figure 7.: We test the dormant independence discussed in Section 3.4. The existence
of the edge X1 → X4 can be inferred by testing a Verma constraint in the
observational distribution, which translates to an independence statement in
the target distribution. The plots show rejection rates for the underlying
graphs G (first, third and fifth plot) and H (second, fourth and sixth plot),
see Fig. 2, as the number of observations increases. Tailored score-based
approaches exist in the binary and Gaussian cases (left and middle) but not
in the case of more complex distributions (right). We plot the rates both
when m =

√
n and when m is chosen according to the GOF-heuristic in

Algorithm A.2. The GOF-heuristic chooses an m that yields a good balance
between level (graph G) and power (graph H).

to more general settings by applying conditional density estimation to learn q(x3|x2),
for example. To the best of our knowledge, there exist no other methods for testing the
dormant independence in any of such cases.

In all experiments, we consider two strategies for choosing the resampling size m:
(1) m =

√
n and (2) the GOF-heuristic (see Algorithm A.2). The resulting rejection

rates over 500 repeated experiments, for several sample sizes, are shown in Fig. 7. Our
method identifies both the absence and presence of the causal edge X1 → X4 in both the
binary and the Gaussian setting. In both the binary and Gaussian settings, the tailored
score-based approaches have more power to detect the absence of the edge (though in
the binary case, the level of the test does not seem to hold exactly when the sample
sizes are small). For the general case (nonlinear and non-Gaussian), our method has the
correct level and increasing power as sample size increases. We are not aware of any
other existing test that can achieve this in general. Compared to m =

√
n, the choice of

m with the GOF-heuristic yields larger test power without sacrificing too much the level
of the test (although the level is violated for small sample sizes in the Gaussian setting).
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5.7. Testing front-door assumptions

We apply our method to testing conditional independence under interventions to test
the front-door assumptions as proposed by Bhattacharya and Nabi [2022] on the Fram-
ingham heart study dataset [Dawber et al., 1951]. We revisit this dataset and apply our
proposed procedure for choosing the resample size m (see Section 4.4.1) and the method
for combining different resamples (see Section 4.4.2). The Framingham heart study is a
longitudinal epidemiology study of the risk factors for cardiovascular disease. Here, we
consider a similar setup as Bhattacharya and Nabi [2022] and consider testing the front-
door assumptions for estimating the effect of smoking (treatment A) on the development
of coronary heart disease (outcome Y ). The hypertension condition is considered as a
mediator M and the past history of hypertension as an anchor Z. In addition, the set
of covariates C containing age, sex, and BMI are included as control variables. Fig. 8
(top left) illustrates the assumed underlying causal graph. To apply the front-door ad-
justment for estimating the causal effect of A on Y , one major assumption is that there
is no direct edge from A to Y . Under faithfulness [Pearl, 2009], this assumption can be
verified by testing Z ⊥⊥ Y | C in the interventional distribution in which M is replaced
by some marginal, see Fig. 8 (bottom right). We apply our resampling approach by
first estimating the conditional q̂(m|a, z, c) ≈ q∗(m|a, z, c) with logistic regression and
computing the weights r = q̂(m)/q̂(m|a, z, c), where q̂(m) is the empirical distribution
of M . The resample size m is chosen using the GOF-heuristic with αc = 0.05 (see Al-
gorithm A.2). In addition, we compute p-values from multiple resamples and combine
them as discussed in Section 4.4.2.

Figure 8 (right) presents p-values of the (conditional) independence tests in the original
sample (a) and in the resample (b). We use the kernel conditional independence (KCI)
test [Zhang et al., 2011] and the Hilbert Schmidt independence criterion (HSIC) test
[Gretton et al., 2008] for the hypotheses Z ⊥⊥ Y | C andM ⊥⊥ (A,C,Z), respectively. The
result suggests that the front-door assumption is plausible (the p-value of the hypothesis
Z ⊥⊥ Y | C is 0.263). (Instead of a conditional independence test under intervention,
Bhattacharya and Nabi [2022] use a slightly more involved testing procedure and come
to the same conclusion.) Moreover, our approach successfully eliminates the effect from
(Z,A,C) on M in the resample (the p-value of the hypothesis M ⊥⊥ (A,C,Z) is 0.295).

5.8. Comparison to IPW

Inverse probability weighting (IPW) allows us to test simple hypotheses such as EP [f(X)] =
c for some constant c ∈ R and a given function f . If data Zm sampled from the tar-
get distribution P ∗ are available, we could test the hypothesis using the test statistic
1
m

∑m
i=1 f(Zi). If, instead, data are available from a different observable distribution

Q∗, we can estimate the corresponding test statistic in the target domain using the test
statistic

T (Xn) :=
1

n

n∑
i=1

r̄(Xi)f(Xi),
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Z A M Y

HC Hypothesis P-value

Z ⊥⊥ Y | C 0.001
M ⊥⊥ (A,C,Z) 0.001

Z A M Y

HC Hypothesis P-value

Z ⊥⊥ Y | C 0.263
M ⊥⊥ (A,C,Z) 0.295

Figure 8.: (Top left) The assumed causal graph in the observational distribution. (Bot-
tom left) The assumed causal graph in the target distribution, where incoming
edges inM has been resampled away. (Top right) p-values of the (conditional)
independence tests in the observed distribution. (Bottom right) p-values of
the (conditional) independence tests in the target distribution.

where r̄(Xi) is the normalized versions of the shift factor r (elsewhere we do not require
r to be normalized). If r(Xi)f(Xi) has finite second moment in Q, then T (Xn) is
asymptotically normal with mean EP [f(X1)] and variance σ2 := VQ(r(X1)f(X1))/

√
n,

and one can construct a (1− α) confidence interval as

[T (Xn)− zα/2 · σ/
√
n, T (Xn) + zα/2 · σ/

√
n],

where zα/2 is the α/2 quantile from the standard normal distribution.

To compare our approach to the IPW approach, we simulate data (n = 100) from the
following structural equation model

X1 := 1 + εX1 X2 := X1 + εX2 X3 := X2 −X1 + εX3 ,

with εX1 ∼ N (0, 3), εX2 ∼ N (0, 4) and εX3 ∼ N (0, 1). In this model, the mean of X3

is EQ[X3] = 0. We consider the distributional shift corresponding to the intervention
do(X2 := µ+ ε̄X2) with ε̄X2 ∼ N (0, 1) , where X3 has mean EP [X3] = µ− 1, and test
the hypothesis EP [X3] = 0 for various µ using both our resampling approach (with m
chosen according to the GOF-heuristic in Algorithm A.2) and the IPW based confidence
intervals. Since IPW is sensitive to degenerate weights, we also use a ‘clipped IPW’,
where we truncate the 10 largest weights at the 10th largest value (see e.g. Cole and
Hernán [2008]).

Ideally, we accept the hypothesis for µ = 1 and reject the hypothesis for all other
µ. The larger µ becomes, the easier it should be to reject the hypothesis µ = 1, if
target data are available. At the same time, since the target distribution is a Gaussian
distribution centered at µ − 1, as µ increases, the weights get increasingly degenerate,
because the weights of the data points with the largest numerical values X2 dominate
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Figure 9.: Rejection rates for testing whether the mean of X3 equals zero, which is
the case if and only if µ = 1, see Section 5.8. As µ increases, the weights
become more and more ill-behaved and IPW loses some of its power. Neither
the clipped version of IPW nor the resampling framework suffer from this
problem.

the weights of all other data points.

We observe in Fig. 9 that all methods have the correct level at 5% (when µ = 1)
and approximately the same power for small µ. As µ grows, the plain IPW loses its
power, due to weight degeneracy. Both the clipped IPW and our resampling approach
do not suffer from this issue, with power approaching 1, even as weights get increasingly
degenerate. This experiment indicates that our method may share some of the robustness
to degenerate weights that is known from clipped IPW, and at the same time is able to
estimate more complex test statistics, that cannot be estimated using IPW.

5.9. Resampling for heterogeneity to identify causal predictors

In Section 3.5, we propose to use our resampling approach to create heterogeneous data
We therefore generate n = 1′000 i.i.d. observations of Y,X1, X2, X3, X4 according to
a linear Gaussian SCM with the graphical representation given in Fig. 10 (left). Fur-
thermore, we assume that the conditional distribution q∗(x2|x1, x3) is known (instead,
one could also assume that PA2 = {1, 3} is known and estimate the conditional). As
described in Section 3.5, we now generate two environments by considering the observa-
tional distribution and a modified distribution based on a distributional shift. Specifi-
cally, we take the entire sample to form environment K = 1 and then, to form environ-
ment K = 2, we resample from the same data m = 30 (approximately

√
n) observations

under the distributional shift generated by replacing the conditional q∗(x2|x1, x3) with
the target distribution p∗(x2|x1, x3) (which flips the sign of the dependence on x3). The
precise data generating process is described in Appendix A.7.4. This results in a data
set with n + m observations from two environments. We then apply ICP to the joint
data from both environments and output the following estimate of the causal predictors:

Ŝ :=
⋂

S:H0,S accepted

S,
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X1 X2 X3

Y X4

Set Frequency

∅ 15.4%(11.6%)
{1, 2, 3, 4} 0.2%(0.0%)

{2} 54.2%(40.6%)
{2, 3} 26.2%(42.0%)
{2, 3, 4} 0.0%(1.6%)
{2, 4} 0.2%(0.0%)
{3} 3.8%(4.2%)

Figure 10.: (Left) Graphical representation of the SCM used in the simulation of Sec-
tion 5.9. We assume that the conditional q∗(x2|x1, x3) is known and use this
to generate resamples that mimic a heterogeneity in the data that we can
then exploit for causal discovery. (Right) Frequencies of the estimated sets.
The theory guarantees that in at most 5% of the cases, the estimated set
is not a subset of {2, 3}, the correct set of causal predictors. The numbers
in parenthesis are oracle benchmarks that sample the data directly from the
actual target distribution instead of using resampling.

Here,H0,S is the hypothesis defined in Section 3.5. We use the InvariantCausalPrediction
R-package for this experiment, which tests H0,S using a Chow test [Chow, 1960]. We
repeat the experiment 500 times and report in Fig. 10 (right) how many times each set S
is output As an oracle benchmark, we also report the corresponding frequencies when we
sample the target distribution directly, instead of resampling it (in particular we use the
same total sample size m + n). Our method frequently returns the invariant set {2, 3}
and holds the predicted coverage guarantee: in only 4.2% of the cases, the estimated set
is not a subset of {2, 3}.

The output of the method is guaranteed to be (with large probability) a subset of the
set of true causal predictors, but depending on the type of heterogeneity, the method
may output the empty set. E.g., if the true (unknown) underlying graph equals X4 →
Y → X1 → X2 ← X3, then (for the same experiment), both ICP based on the resampled
data and ICP based on the true target distribution always output the empty set.

The difference between the oracle method and the resampling method (see Fig. 10)
indicates that the resampled distribution does not equal the target distribution. Indeed,
in some regions where the target density has substantial mass, there are no data points
that can be sampled. This, however, does not show any effect on the level of the overall
procedure. Thus, in the resampled data the conditional distribution of X2, given X1

and X3 differs from q∗(x2|x1, x3) (even though it does not equal the target conditional
q∗(x2|x1, x3)). We hypothesize that the result is therefore similar to choosing a different
target distribution in the first place. Indeed, when changing p∗(x1, x2, x3) to match
the data support, the set frequencies of the oracle version closely match the resampled
version.
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5.10. Comparing to double machine learning methods in treatment effect
estimation

We consider a treatment effect estimation setup, where for a binary treatment D, ob-
served confounders X and continuous outcome Y we have that

PQ∗(D = 1) = m0(X) Y = g0(D,X) + εY EQ∗ [εY |X,D] = 0

for some unknown functionsm0 and g0. We consider a setting, whereX is 20-dimensional,
m0 is a sigmoid function and g0 is either a linear function or a complex, nonlinear func-
tion.

We then consider the hypothesis (in the observed distribution) that the average treat-
ment effect (ATE) is zero, where the ATE is given by θ0 = EQ∗g0(1, X)]−EQ∗ [g0(0, X)].
Semi-parametrically efficient estimation of θ0, using doubly robust methods that model
both m0 and g0 is possible if estimators of these converge sufficiently fast [Robins et al.,
1994, Robins and Rotnitzky, 1995, Chernozhukov et al., 2018].

In this experiment, we compare our resampling methodology to a doubly robust
method, where for the latter we fit a logistic regression model to estimate m0 and either
a random forest (nonlinear case) or a linear regression (linear case) to estimate g0, using
the DoubleML package in Python [Bach et al., 2022]. We then test the hypothesis θ0 = 0
by checking whether a 95% confidence interval contains zero.

To apply our methodology to this problem, we also fit a logistic regression model
to estimate the conditional q∗(d|x) and replace this conditional with a marginal target
probability p(d), which matches the empirical marginal probability of treatment, q∗(d).
We then apply a t-test φm to the resample [Student, 1908], to test the hypothesis of
θ0 = 0 at a 5% level using the combination test from Hartung [1999], as discussed in
Section 4.4.2. We apply this method both with the asymptotic heuristic (m = ⌊√n⌋)
and with the GOF-heuristic, where we chose m as large as possible while still accepting
a goodness-of-fit test that the resample follows the target distribution (Section 4.4.1) at
a 20% level.

We repeat the experiment 300 times and in Fig. 11 we plot the rejection rates for
the hypothesis both in a scenario where θ0 = 0 (no effect present) and where the ATE
is non-zero (effect present). Our procedure, using either heuristic, and the double ML
procedure satisfy the desired 5% level for all sample sizes. When the true outcome model
g0 is a complex function, our procedure with the GOF-heuristic outperforms the power of
the double ML method; our resampling procedure does not model g0, and so is unaffected
by how difficult it is to estimate g0. On the contrary, when g0 and m0 are both simple
functions, the double ML approach (which we correctly specify by using a linear and
a logistic regression) attains more power than our procedure. The GOF-heuristic has
more power than the asymptotic heuristic in both the linear and the nonlinear setting,
as one would expect since the GOF-heuristic use larger resampling sizes m to test the
hypothesis.
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Figure 11.: Rejection rates for the hypothesis that the average treatment effect (ATE) is
0 in the experiment in Section 5.10. We consider two different data generating
mechanisms (rows) and both a situation where the treatment has no effect
and one where it does (columns).

6. Conclusion and Future Work

We formally introduce statistical testing under distributional shifts and illustrate that
it can be applied in a diverse set of areas such as contextual bandits, conditional inde-
pendence testing and causal inference. We provide a general testing procedure based
on weighted resampling and prove pointwise asymptotic level guarantees under mild as-
sumptions. Our simulation experiments underline the usefulness of our method: It is
able to test complicated hypotheses, such as dormant independences – for which to-date
no test with provable level guarantees exists – and can be applied to test complex hy-
potheses in off-policy testing or covariate shift. The framework is competitive even in
some of the problems, where more specialized solutions exist. Its key strength is that it
is very easy to apply and can be combined with any existing test making it an attractive
go-to method for complicated testing problems.

We believe that several directions would be worthwhile to investigate further. In many
of the empirical experiments, the requirement that m = o(

√
n) seems too strict and can

be relaxed, see also Section 4.4.1. As discussed in Section 4.2, we hypothesize that
under further restrictions on the weights or the test statistics, the assumption for the
theoretical results can be relaxed. Bickel et al. [2012] consider the ‘

(
n
m

)
’ bootstrap, which

resamples distinct sequences without weights, and show that under mild assumptions,
bootstrap estimates converge if m = o(n). Further work is required to extend this to
the case of weighted samples.

We show in Section 4.4.4 that the main convergence result, Theorem 1, can be ex-
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tended to uniform level, if we make uniform assumptions on the target test, φ, and that
the weights are uniformly bounded over τ−1(H0). In many model classes, the latter
assumption may be too strict, and a better understanding of necessary conditions would
help.
While Theorem 3 provides guarantees when r(xA) is unknown, the theorem requires

guarantees on the relative error r̂(xA)/r(xA). A more natural guarantee would be on
the absolute error |r̂(xA) − r(xA)|, and we hope further work can shed light on the
appropriate conditions (such as model classes p and q or properties of the estimator r̂)
to achieve such a guarantee.
Resampling distinct sequences is less prone to weight degeneracy than IPW or resam-

pling with replacement, but in setups with well-behaved weights this may come at a cost
of power when resampling only m≪ n points. Resampling non-distinct sequences share
many similarities with IPW (for fixed n, expectations of Ψr,m

REPL converge to the IPW esti-
mate when m→∞), but additionally benefits from the ability to test hypotheses where
the test statistic cannot be written as an average over the data points (see Section 5.8).
Further investigation of the differences between the sampling schemes and benefits and
disadvantages in comparison to IPW is needed.
Our methodology considers the setting where we only observe data Xn from the dis-

tribution Q∗. If additionally a sample Zn′ from the target distribution P ∗ is already
available, one can combine the two data sets, to get a larger approximate sample from
P ∗, a problem known as ‘domain adaptation’ in the literature [Finn et al., 2017]. In
particular, if Zn′ is also available, one could perform the testing on the combined data
set (Ψ(Xn),Zn′). We believe that similar theoretical guarantees can be proved.

When testing for a hypothesis in the observed domain, we often have the freedom to
choose a target distribution which could help us improve the performance of our test (as
discussed in Section 2.4). In the experiments, e.g., Section 5.3 and Section 5.4, we choose
the target distribution that matches certain marginals, which often helps to minimize
the variance of the weights. Another possibility is to choose a target distribution such
that the alternative becomes easier to detect which can be achieved by minimizing the
p-value of the test with respect to the choice of the target distribution.
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3. Shifts in Distributions: Prediction

This chapter contains the following three papers:

[ShiftEval] [Thams et al., 2022a]. N. Thams, M. Oberst, and D. Sontag. Evaluating robustness
to dataset shift via parametric robustness sets. In Neural Information Processing
Systems (NeurIPS), 2022a. NT and MO contributed equally, order determined by
coin flip.

[ProxyAR] [Oberst et al., 2021]. M. Oberst, N. Thams, J. Peters, and D. Sontag. Regularizing
towards causal invariance: Linear models with proxies. In International Conference
on Machine Learning, pages 8260–8270. PMLR, 2021.

[InvPolicy] [Saengkyongam et al., 2021]. S. Saengkyongam, N. Thams, J. Peters, and N. Pfis-
ter. Invariant policy learning: A causal perspective. arXiv preprint arXiv:2106.00808,
2021.

[ProxyAR] and [InvPolicy] are concerned with learning models for predicting a
target Y from covariates X, in such a way that one not only optimizes for model perfor-
mance in the training distribution Q, but also in a test distribution P . Tuning models
to out-of-distribution performance requires a trade-off between on one hand good pre-
dictive power in Q and on the other hand not depending on spurious correlations in Q
that are not present elsewhere.
In-distribution performance in Q can be optimized by minimizing the squared error on

the training data, to learn the conditional mean EQ[Y |X]. By definition, this predictor
would achieve the smallest possible squared error on the test data if that test data
were also generated from Q. However if P ̸= Q, the conditional mean EQ[Y |X] may
be utilizing dependencies in Q that do not transfer to other distributions. Assume for
example that the training data is generated by the SCM X1 → Y → X2 and that P
differs from Q by an intervention which shifts the mean of both X1 and X2. While X2

is predictive for Y in Q, the dependence between Y and X2 will not be the same in
P as it is in Q, and so EQ[Y |X1, X2] may not be a good predictor of Y in P . On the
contrary, because the conditional Y |X1 is the same in Q and P (see (3)), the conditional
mean EQ[Y |X1] remains unchanged even if the mean of X1 shifts between Q and P ; this
motivates the use of invariant models where the conditional mean E[Y |X] remain fixed
across environments [Peters et al., 2016, Magliacane et al., 2018].
In [InvPolicy], we consider a contextual bandit setting and use exogenous environ-

ment variables e to represent shifting environments. We explore ‘how different’ P and Q
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have to be, in order for an invariant model to outperform non-invariant models. On one
hand, P and Q cannot be too different: Assumption 3 requires that invariant condition-
ing sets in the training environments are also invariant in the test environments. This is
similar to the assumption that causal effects are stable across environments, discussed
in the beginning of Chapter 1. On the other hand, P and Q cannot be too identical
either: Assumption 2 ensures that there exist test environments where the dependence
between predictors and confounders has changed. We show that if assumptions are met,
then invariant models are minimax optimal over the test environments, i.e. the expected
reward in the worst-case environment is larger when using an optimal invariant policy
than when using an optimal non-invariant policy.
Instead of studying whether or not invariant models are minimax optimal, in [Prox-

yAR] we enforce some amount of invariance by minimizing a combination of the squared
error in Q and a measure of invariance, following the same approach as Rothenhäusler
et al. [2021]. One can show that the resulting predictor is minimax optimal over the class
of distributions that arise due to mean shifts in an exogenous variable A. We examine
the impact of not directly measuring A, but only measuring a proxy W of A: We show
in Theorem 1 that this implies that the estimator is minimax optimal over a smaller
collection of distributions than if A had been observed, where the reduction factor is the
signal-to-variance ratio in W . Further we show that if we measure not just one, but two
proxiesW and Z of A (and provided that they are conditionally independentW ⊥⊥ Z|A)
then we can recover the same minimax guarantee as if A had in fact been observed.
[ShiftEval] does not aim to learn a minimax optimal model at all. Instead, for

a given model, it estimates how a distribution shift impacts the performance of the
model. We propose a parameterization of distribution shifts by using exponential family
models. We aim at finding the worst-case shift within some bounded distance from the
observed distribution, and discuss how this in principle could be solved by importance
sampling (introduced in Section 1.4 in Chapter 1), although non-convexity may make this
optimization problem infeasible and potentially large variance of importance sampling
may make it imprecise. Instead of importance sampling, we use a second order Taylor
expansion to approximate the loss in the shifted distribution. Because of the assumption
of exponential families, the Taylor approximation can be computed as covariances in
the data. The resulting worst-case optimization problem is a quadratic program and
although this problem is also non-convex, it is generally computationally feasible.

60



Evaluating Robustness to Dataset Shift via
Parametric Robustness Sets

Nikolaj Thams*, Michael Oberst* and David Sontag

Abstract
We give a method for proactively identifying small, plausible shifts in distribu-

tion which lead to large differences in model performance. To ensure that these
shifts are plausible, we parameterize them in terms of interpretable changes in
causal mechanisms of observed variables. This defines a parametric robustness
set of plausible distributions and a corresponding worst-case loss. While the loss
under an individual parametric shift can be estimated via reweighting techniques
such as importance sampling, the resulting worst-case optimization problem is
non-convex, and the estimate may suffer from large variance. For small shifts,
however, we can construct a local second-order approximation to the loss under
shift and cast the problem of finding a worst-case shift as a particular non-convex
quadratic optimization problem, for which efficient algorithms are available. We
demonstrate that this second-order approximation can be estimated directly for
shifts in conditional exponential family models, and we bound the approximation
error. We apply our approach to a computer vision task (classifying gender from
images), revealing sensitivity to shifts in non-causal attributes.

1. Introduction

Predictive models may perform poorly outside of the training distribution, a problem
broadly known as dataset shift [Quionero-Candela et al., 2009]. In high-stakes applica-
tions, such as healthcare, it is important to understand the limitations of a model in
advance [Finlayson et al., 2021]: given a model trained on data from one hospital, how
will it perform under changes in the population of patients, in the incidence of disease,
or in the treatment policy?
In this paper, our goal is to proactively understand the sensitivity of a predictive

model to dataset shift, using only data from the training distribution. This requires
domain knowledge, to specify what type of distributional changes are plausible. Formally,
for a model f(X) trained on data from P(X,Y ), with loss function ℓ(f(X), Y ), we seek

*Equal contribution, order determined by coin flip
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Figure 1.: (Left) Causal graph for Example 1. Our approach allows for simultaneous
shifts in age and test ordering, parameterized by δage, δorder. (Right) We illus-
trate a shift only in testing rates, using s(Y ; δorder) = δ1 ·Y +δ0(1−Y ), where
δorder = (δ0, δ1). Here we plot the (non-concave) landscape of the expected
cross-entropy loss of a fixed model over distributions parameterized by (δ0, δ1),
with the training distribution given as the black star. Simulation details are
given in Appendix B.1.

to understand the loss of the model under a set of plausible future distributions P. We
seek to evaluate the worst-case loss over P,

sup
P∈P

EP [ℓ(f(X), Y )], (1)

and provide an interpretable description of a distribution P which maximizes this ob-
jective. If the value of the worst-case loss is low, this can build confidence prior to
deployment, and otherwise, examining the worst-case distribution P can help identify
weaknesses of the model. To illustrate, we use the following running example, inspired
by Subbaswamy et al. [2021].

Example 1 (Changes in laboratory testing). We seek to classify disease (Y ) based on
the age (A) of a patient, whether a lab test has been ordered (O), and test results (L) if
ordered. The performance of a predictive model may be sensitive to changes in testing
policies, as the fact that a test has been ordered itself is predictive of disease. Figure 1
(left) gives a plausible causal relationship between variables. Let P(O|A, Y ) = σ(η(A, Y )),
where σ is the sigmoid function and η(A, Y ) is the log-odds. In Fig. 1 (right), we show
the loss under a set of new distributions parameterized by δ = (δ0, δ1), where we modify
Pδ(O|A, Y ) = σ(η(A, Y ) + s(Y ; δ)) for a shift function s(Y ; δ) = δ1 · Y + δ0 · (1 − Y ),
which modifies the log-odds of testing for both sick and healthy patients.1 If δ0, δ1 are
unconstrained, the worst-case occurs when all healthy patients are tested, and no sick
patients are tested.

The first challenge is to define a set of possible distributions P such that each distri-
bution P ∈ P satisfies two desiderata: First, they should be causally interpretable and
simple to specify, without placing unnecessary restrictions on the data-generating pro-
cess. Second, they should be realistic, which often entails bounding the magnitude of the

1Code to reproduce figures and experiments in this paper can be found at https://github.com/

clinicalml/parametric-robustness-evaluation
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1. Introduction

shift. We construct causally interpretable shifts by defining perturbed distributions Pδ
using changes in causal mechanisms, parameterized by a finite-dimensional parameter δ.
Our main requirement is that the shifting mechanisms follow a conditional exponential
family distribution. For discrete variables, this places no restriction on P: In Example 1,
O is binary and the log-odds η(A, Y ) can be any function of A, Y . We also demonstrate
that constraining δ can ensure that shifts are realistic: The unconstrained worst-case
shift in Example 1 is implausible, where all healthy patients (and no sick patients) are
tested. (1) becomes

sup
δ∈∆

Eδ[ℓ(f(X), Y )], (2)

where Eδ is the expectation in the shifted distribution Pδ and ∆ is a bounded set of
shifts.

The second challenge is evaluation of the expected loss under shift, as well as finding
the worst-case shift. Under our definition of shifts, we show that the test distribution
can always be seen as a reweighting of the training distribution, allowing for reweighting
approaches, such as importance sampling, to estimate the expected loss under shifts.
While this is practical for some distribution shifts, for others, importance sampling can
lead to extreme variance in estimation. Further, finding the worst-case shift using a
reweighted objective involves maximization over a non-concave objective (see Fig. 1), a
problem that is generally NP-hard. We derive a second-order approximation to the ex-
pected loss under shift, and show how it can be estimated without the use of reweighting.
For quadratic constraints ∆, we can approximate the general non-convex optimization
problem in (2) with a non-convex, quadratically constrained quadratic program (QCQP)
for which efficient solvers exist [Conn et al., 2000, Section 7]. We bound the approxi-
mation error of this surrogate objective, and show in experiments that it tends to find
impactful adversarial shifts.

Our contributions are as follows:

1. We provide a novel formulation of robustness sets which are defined using parametric
shifts. This formulation only require that the shifting mechanisms can be modelled
as a conditional exponential family (see Section 2).

2. We derive a second-order approximation to the expected loss and provide a bound
on the approximation error. We show that this translates the general non-convex
problem into a particular non-convex quadratic program, for which efficient solvers
exist (see Section 3).

3. In a computer vision task, we find that this approach finds more impactful shifts than
a reweighting approach, while taking far less time to compute, and that the resulting
estimates of accuracy are substantially more reliable (see Section 4).

Related work: A recent line of work learns predictive models that minimize objec-
tives similar to (1), a task known as distributionally robust optimization [Duchi and
Namkoong, 2021, Duchi et al., 2020, Sagawa et al., 2020]. Beyond our difference in mo-
tivation (we consider evaluation of a fixed model, not optimization), prior work typically

63



Evaluating Robustness to Dataset Shift via Parametric Robustness Sets

defines the robustness set using a notion of distance between distributions. In con-
trast, we consider sets of distributions arising from explicit parametric perturbations.
Moreover, many of these approaches focus on changes in marginal distributions, while
one of our primary motivations is handling conditional shifts. Closer to our work is
Subbaswamy et al. [2021] who consider evaluating the loss under worst-case changes in
a conditional distribution, but while we consider parametric shifts, they estimates the
loss under worst-case (1 − α) conditional subpopulation shifts. In some settings, such
shifts may not represent plausible changes, as we demonstrate in Appendix B.4, where
(in a simplified lab-testing example) the worst-case subpopulation is one where healthy
patients are always tested, and sick patients never tested. Prior work on robustness
to parametric interventions has been restricted to linear causal models with additive
shift interventions [Rothenhäusler et al., 2021, Oberst et al., 2021, Kook et al., 2022].
Our work can be seen as extending those ideas to general non-linear causal models,
where our focus is on evaluation rather than learning robust models. A separate line
of work attempts to learn models with optimal worst-case performance under arbitrary
causal interventions of various forms [Magliacane et al., 2018, Rojas-Carulla et al., 2018,
Arjovsky et al., 2019, Subbaswamy et al., 2022] while we focus on explicitly bounded
interventions that have potentially restricted parameterizations.

2. Defining Parametric Robustness Sets

Notation: Let V denote all observed variables, where (X,Y ) ⊆ V for features X and
labels Y , and let P(V) denote the training distribution. E[·] and cov(·, ·) refer to the
mean and covariance in P, and for a shifted distribution Pδ (Definition 1) we use Eδ[·],
covδ(·, ·). For a random variable Z, we use Z to denote the space of realizations, and
dZ for dimension e.g., Z ∈ Z ⊆ RdZ . For a set of random variables V = {V1, . . . , Vd},
we use Vi to denote an individual element, and use PAG(Vi) to denote the set of parents
in a directed acyclic graph (DAG) G, omitting the subscript when otherwise clear.
We begin with a general definition of a parameterized robustness set of distributions
P.
Definition 1. A parameterized robustness set around P(V) is a family of distributions
P with elements Pδ(V) indexed by δ ∈ ∆ ⊆ Rdδ , with 0 ∈ ∆, where P0(V) = P(V).

We give examples shortly that satisfy this general definition. To construct such a
robustness set, we consider distributions Pδ that differ from P in one or more conditional
distributions (Assumption 1). We require that the relevant conditional distributions can
be described by an exponential family.

Definition 2 (Conditional exponential family (CEF) distribution). P(W |Z) is a condi-
tional exponential family distribution if there exists a function η(Z) : RdZ → RdT such
that the conditional probability density (for continuous W ) or probability mass function
(for discrete W ) is given by

P(W |Z) = g(W ) exp
(
η(Z)⊤T (W )− h(η(Z))

)
, (3)
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where T (W ) is a vector of sufficient statistics, T (W ) ∈ RdT , g(·) specifies the density of
a base measure and h(η(Z)) is a normalizing constant.

Definition 2 does not restrict P(W |Z) for binary/categorical W , and captures a wide
range of distributions, including the conditional Gaussian (see Appendix B.2.1 for other
examples). Definition 2 extends to marginal distributions where Z = ∅ and η(Z) is a
constant function.

Example 1 (Continued). Suppose the probability of ordering a test (O) depends on age
(A) and disease (Y ), such that P(O = 1|A, Y ) = σ(η(A, Y )), where σ is the sigmoid,
and η is an arbitrary function. Here, Definition 2 is satisfied with W = O, Z = (A, Y ),
and sufficient statistic T (O) = O.

We now state our main assumption, where we distinguish between the terms in the
joint distribution of P that shift, which we will need to model, and those that remain
fixed, which we do not.

Assumption 1 (Factorization into CEF distributions). Let W = {W1, . . . ,Wm} ⊆ V
be a “intervention set” of variables and let

P(V) =
∏

Wi∈W
P(Wi|Zi)︸ ︷︷ ︸

Conditionals that shift

∏
Vj∈V\W

P(Vj |Uj)︸ ︷︷ ︸
Conditionals we do not model

(4)

be a factorization, where Zi, Uj , Vj ⊆ V are possibly overlapping sets of variables. We
assume for each Wi that Zi is known and that P(Wi|Zi) satisfies Definition 2.

If P(V) factorizes according to a DAG G, the factorization in Assumption 1 is al-
ways satisfied by Zi = PAG(Wi). Here, we require limited knowledge of the underlying
graph, and only need to know the parents PA(Wi) for the variablesWi that shift. In Ap-
pendix B.2.2 we show that we can also consider shifts that extend Zi to include additional
variables, subject to an acyclicity constraint. We now define parametric perturbations
and give the general form of the robustness sets that we consider in this work, involving
simultaneous perturbations to multiple Wi.

Definition 3 (Parameterized shift functions and δ-perturbations). Let s(Z; δ) : RdZ →
RdT be a parameterized shift function with parameters δ ∈ ∆ ⊆ Rdδ which is twice-
differentiable with respect to δ and which satisfies s(Z; 0) = 0 for all Z. For P(W |Z)
satisfying (3), we refer to

Pδ(W |Z) = g(W ) exp
(
ηδ(Z)

⊤T (W )− h(ηδ(Z))
)

as a δ-perturbation of P(W |Z) with shift function s(Z; δ), where ηδ(Z) := η(Z)+s(Z; δ).

Example 1 (Continued). A model developer may be concerned about a uniform change
in testing rates across all types of patients. This can be modelled by choosing s(Z; δ) = δ,
for δ ∈ R, an additive intervention on the log-odds scale. A separate change in testing

65



Evaluating Robustness to Dataset Shift via Parametric Robustness Sets

rates for sick and healthy patients could instead be modeled using s(Z; δ) = δ0(1− Y ) +
δ1Y , using δ ∈ R2. This reasoning extends readily to more complex shifts (e.g., allowing
for age-specific changes in testing rates, with a non-linear dependence on age), as long
as s(Z; δ) remains a parametric function.

While the shift function s(Z; δ) is parametric, η(Z) is unconstrained in Definitions 2
and 3. Note that this formulation includes multiplicative shifts ηδ(Z) = (1 + δ)η(Z) by
letting s(Z; δ) = δ · η(Z).

Definition 4 (CEF parameterized robustness set). For a distribution P and intervention
set W = {W1, . . . ,Wm} ⊆ V satisfying Assumption 1, let each Pδi(Wi|Zi) be a δi-
perturbation (Definition 3) of P(Wi|Zi). Then

Pδ(V) =
( ∏
Wi∈W

Pδi(Wi|Zi)
)( ∏

Vj∈V\W

P(Vj |Uj)
)

is called a δ-perturbation of P(V), and the robustness set P consists of all Pδ for δ ∈
∆1 × · · ·∆m.

To estimate the expected loss under Pδ, we will typically2 need to estimate η(Zi)
for each Wi ∈ W. However, we make no distributional assumptions on the remaining
variables V \W. This is useful in applications such as computer vision, where we do
not need to restrict the generative model of images given attributes (e.g., background,
camera type, etc), but can still model the expected loss under changes in the joint
distribution of those attributes.

Remark 1 (Causal Interpretation of Shifts). If the DAG G represents a causal graph
[Pearl, 2009], then Pδ can interpreted as a change in causal mechanisms. We see this
as an important perspective for interpreting and specifying plausible shifts, but our
methods do not require a causal interpretation.

3. Evaluation of the Worst-Case Loss

For a fixed predictor and loss function, we can use data from P(V) to estimate the
expected loss Eδ[ℓ] := Eδ[ℓ(f(X), Y )] for a fixed δ, and estimate the worst-case loss over
all δ of bounded magnitude. In Section 3.1, we show that Pδ shares support with P,
suggesting the use of reweighting estimators. However, these can exhibit high variance
for shifts that produce large density ratios (see Appendix B.3.5 for an example), and
moreover, maximizing a reweighted objective over δ is generally a non-convex problem.
In Section 3.2 we derive an approximation to the expected loss under Pδ, yielding a
tractable surrogate optimization problem under quadratic constraints such as ∥δ∥2 ≤ λ.
2As a special case, in Appendix B.3.2, we show the second-order approximation (Theorem 1) can be
estimated in the case of variance-scaled mean-shifts in a conditional Gaussian without estimation of
all of η(Z).
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Remark 2. The methods here can be used with an arbitrary predictor f and loss function
ℓ := ℓ(f(X), Y ). We do not even require access to the original predictor f . Both methods
here simply treat ℓ as a random variable in P, for which we have samples from the training
distribution.

3.1. Modelling shifted losses using reweighting

The shifts defined in Section 2 share common support, with the following density ratio.

Proposition 1. For any Pδ(V),P(V) that satisfy Definition 4, supp(P) = supp(Pδ) and
the density ratio wδ := Pδ/P is given by

wδ(V) = exp

( m∑
i=1

si(Zi; δi)
⊤Ti(Wi)

)
exp

(
m∑
i=1

h(ηi(Zi))− h(η(Zi) + si(Zi; δi))

)
.

The proof can be found in Appendix B.6, along with all proofs for all other claims.

Example 1 (Continued). Suppose we perturb the probability of ordering a test O given
age A and disease Y with shift function s(Y ; δ) = δ0(1−Y )+δ1Y , independently changing
the conditional probability of testing for healthy and sick patients. Here, the density ratio
is given by

wδ(O,A, Y ) = exp(s(Y ; δ) ·O)
1 + exp(η(A, Y ))

1 + exp(η(A, Y ) + s(Y ; δ))
. (5)

To model the loss Eδ[ℓ] using data from P, we can consider an importance sampling
(IS) estimator [Horvitz and Thompson, 1952, Shimodaira, 2000], observing that Eδ[ℓ] =
E[wδ(V) · ℓ]. This requires estimation of the density ratio wδ(V), and (given a sample
{Vj}nj=1 from P) yields the estimator

Eδ[ℓ] ≈ Êδ,IS :=
1

n

n∑
j=1

ŵδ(V
j)ℓ(Vj). (6)

In practice, (6) can have high variance when density ratios are large, and maximizing
this equation with respect to δ is a general non-convex optimization problem, which is
generally NP-hard to solve.

3.2. Approximating the shifted loss for exponential family models

We now propose an alternative approach for approximating the loss Eδ[ℓ]. Recalling that
Pδ=0 = P, we use a second-order Taylor expansion around the training distribution

Eδ[ℓ] ≈ E[ℓ] + δ⊤ SG1+1
2δ

⊤ SG2 δ, (7)

where E[ℓ] denotes the loss in the training distribution and SG1,SG2 are defined as
follows.
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Definition 5 (Shift gradient and Hessian). For a parametric shift satisfying Definition 1
where δ 7→ Eδ[ℓ] is twice-differentiable, we denote the shift gradient SG1 and shift Hessian
SG2 as SG1 := ∇δEδ[ℓ]

∣∣
δ=0

and SG2 := ∇2
δEδ[ℓ]

∣∣
δ=0

.

(7) is a local approximation of the loss, whose approximation error we bound in The-
orem 2, with smaller approximation error for smaller shifts.3 For Pδ satisfying Defi-
nition 4, SG1 and SG2 can be computed as expectations in the training distribution,
without estimation of density ratios. Recall that the conditional covariance is given by
cov(A,B|C) := E[(A− E[A|C])(B − E[B|C])|C].

Theorem 1 (Shift gradients and Hessians as covariances). Assume that Pδ,P satisfy
Definition 4, with intervened variables W = {W1, . . . ,Wm} and shift functions si(Zi; δi),
where δ = (δ1, . . . , δm). Then the shift gradient is given by SG1 = (SG1

1, . . . ,SG
1
m) ∈ Rdδ

where

SG1
i = E

[
D⊤
i,1 cov

(
ℓ, Ti(Wi)

∣∣∣∣Zi)] ,
and the shift Hessian is a matrix of size (dδ×dδ), where the (i, j)th block of size dδi×dδj
equals

{SG2}i,j =

E
[
D⊤
i,1 cov

(
ℓ, εTi|Ziε

⊤
Ti|Zi |Zi

)
Di,1

]
− E

[
ℓ ·D⊤

i,2εT |Z

]
i = j

cov(ℓ, D⊤
i,1εTi|Ziε

⊤
Tj |ZjDj,1) i ̸= j,

where Di,k := ∇kδisi(Zi; δi)|δ=0, is the gradient of the shift function for k = 1, and the
Hessian for k = 2. Here, Ti(Wi) is the sufficient statistic of P(Wi|Zi) and εTi|Zi :=
Ti(Wi)− E[T (Wi)|Zi].

Theorem 1 handles arbitrary parametric shift functions in multiple variables, but for
simple shift functions in a single variable, the notation simplifies substantially, as we
show in Corollary 1.

Corollary 1 (Simple shift in a single variable). Assume the setup of Theorem 1, re-
stricted to a shift in a single variable W , and that s(Z; δ) = δ. Then D1 = 1, D2 = 0,
and

SG1 = E
[
cov

(
ℓ, T (W )

∣∣∣∣Z)] and SG2 = E
[
cov

(
ℓ, εT |Zε

⊤
T |Z

∣∣∣∣Z)] ,
where T (W ) is the sufficient statistic of W and εT |Z := T (W )− E[T (W )|Z].

Example 1 (Continued). Suppose that age (A), which has no causal parents, follows a
normal distribution with mean µ and variance σ2, and that we wish to consider a shift in
the mean. We can parameterize P(A) as an exponential family with parameter η = µ/σ
and sufficient statistic T (A) = A/σ. Here, s(δ) = δ implies a shift in the mean of δ

3In Appendix B.3.3, we give an example of a linear-Gaussian generative model where this second-order
expansion is exact, corresponding to the setting of anchor regression [Rothenhäusler et al., 2021].
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standard deviations ηδ = η+s(δ) = (µ+σδ)/σ, and we can write that SG1 = cov (ℓ, A) /σ
and SG2 = cov

(
ℓ, (A− E[A])2

)
/σ2.

To estimate the shift gradient and Hessian from a sample from P, for each i = 1, . . . ,m
we fit models µ̂ℓ(Zi) ≈ E[ℓ|Zi] and µ̂Wi(Zi) ≈ E[Ti(Wi)|Zi] and compute residuals on
these predictions, which permits estimation of the gradient/Hessian as a sample average
of residuals. A detailed treatment is given in Appendix B.3.1. Using these, we can
estimate the expected loss as

Eδ[ℓ] ≈ Êδ,Taylor := Ê[ℓ] + δ⊤ŜG
1
+

1

2
δ⊤ŜG

2
δ. (8)

Here, there are two sources of error: Finite-sample error, due to the estimates of
SG1,SG2, as well as approximation error. The latter is bounded by the norm of δ
and a term that depends on the covariance between the loss and the deviations of the
sufficient statistic from its shifted mean.

Theorem 2. Assume that Pδ,P satisfy the conditions of Theorem 1, with a shift in a
single variable W , where s(Z; δ) = δ. Let Eδ,Taylor be the population Taylor estimate
( (7)) and let σ(M) denote the largest absolute value of the eigenvalues of a matrix M .
Then∣∣∣∣Eδ[ℓ]− Eδ,Taylor∣∣∣∣ ≤ 1

2 sup
t∈[0,1]

σ

(
covt·δ(ℓ, εt·δ,T |Zε

⊤
t·δ,T |Z)− cov(ℓ, ε0,T |Zε

⊤
0,T |Z)

)
· ∥δ∥2,

where T (W ) is the sufficient statistic of W |Z and εt·δ,T |Z = T (W |Z)− Et·δ[T (W |Z)].

In exchange for considering a second-order approximation of the loss, we gain two
benefits: Variance reduction and tractable optimization. First, as SG1, SG2 are not
functions of δ, the variance of Êδ,Taylor is O(∥δ∥4), while the variance of Êδ,IS can be

much larger: We give a simple case in Appendix B.3.6 where var(Êδ,Taylor) = O(δ4)

while var(Êδ,IS) = O(δ2 exp(δ2)). Second, maximizing Êδ,Taylor over the set ∥δ∥ ≤ λ can
be solved in polynomial time by exploiting the quadratic structure, while maximizing
Êδ,IS over the constraints is generally hard, and may be infeasible in high dimensions.

3.3. Identifying worst-case parametric shifts

For λ > 0, we can locally approximate the worst-case loss over all distributions Pδ where
∥δ∥2 ≤ λ by finding the worst-case loss in the Taylor approximation

sup
∥δ∥2≤λ

E[ℓ] + δ⊤ SG1+1
2δ

⊤ SG2 δ. (9)

Since SG2 is generally not negative definite, the maximization objective is non-concave.
However, this particular problem is an instance of the ‘trust region problem’4 which
is well-studied in the optimization literature [Conn et al., 2000], and can be solved in

4Not to be confused with the ‘trust region method ’, which repeatedly solves the trust region problem.
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polynomial time by specialized algorithms (see Pólik and Terlaky [2007, Section 8.1] for
an example). This follows from the fact that strong duality holds, so that the optimal
solution δ∗ can be characterized in terms of the Karush-Kuhn-Tucker conditions [Boyd
and Vandenberghe, 2004, Section 5.2]. For this problem, we use the trsapp routine
from NEWUOA [Powell, 2006], as implemented in the python package trustregion.
Depending on the application and prior knowledge, one may choose constraint sets that
differ from ∥δ∥ ≤ λ. The strong duality of (9) holds for any quadratic constraint δ⊤Aδ+
δ⊤b ≤ λ, making it a general non-convex quadratically constrained quadratic program
(QCQP), allowing for e.g., larger shifts in some directions than in others.

4. Experiments

4.1. Illustrative example: Laboratory testing

Y O

L

Figure 2.

To build intuition, we illustrate our method in a simple case. Mo-
tivated by Example 1, we use a simple generative model where lab
tests are more likely to be ordered (O) for sick patients (Y ), and lab
values (L) are predictive of Y .

Y ∼ Ber(0.5) O|Y ∼ Ber(σ(α+ βY )) L|(Y,O = 1) ∼ N (µy, 1)

where µ1 = 0.5, µ0 = −0.5, and we initialize with α = −1, β = 2, so
that P(O = 1|Y = 0) ≈ 0.27 and P(O = 1|Y = 1) ≈ 0.73, and the
marginal probability of test ordering is P(O = 1) = 0.5. When O = 0, we set L to a
dummy value of L = 0. The underlying causal graph is given in Fig. 2. The predictive
model f(O,L) for this example is trained on data from P to predict Y using all available
features: If lab tests are not available (O = 0), this model predicts Y based on the
observed likelihood of Y given O = 0, and otherwise predicts using a logistic regression
model trained on the cases where O = 1 in the training data.

Defining a shift function: P(O|Y ) is a conditional exponential family with η(Y ) =
α + βY . We consider the shift function s(Y ; δ) = δ0 + δ1Y , where δ0 models an overall
change in testing rate, and δ1 models an additional change in the likelihood of testing
sick (Y = 1) patients.

Estimating the impact of shift using quadratic approximation: To start, we
keep δ1 = 0 fixed and vary only δ0, which uniformly increases or decreases testing.
In Fig. 3, we show the ground-truth cross-entropy loss of f(O,L) under perturbed
distributions Pδ0 . We observe that the direction of the shift matters: In Fig. 3, the
model performance slightly increases under a small increase in testing rates, but degrades
if testing increases too much; moreover, the loss under shift is generally asymmetric, as a
decrease hurts more than an increase in testing. In Fig. 3 (left), we demonstrate the use
of the quadratic approximation described in Section 3.2. For illustration, we consider a
robustness set of δ0 ∈ [−2, 2], and see that the predicted worst-case shift coincides with
the actual worst-case shift, and that the quadratic approximation is accurate for smaller
values of δ.
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Figure 3.: The blue line gives the (unobserved) cross-entropy loss under parametric
shifts, plotted with respect to the parameter δ0 (left) and the resulting change
in the marginal laboratory testing rate (right). We also provide the quadratic
approximation (orange line), estimated using validation data, and the pre-
dicted worst-case shift (red star) for |δ0| < 2 (region in grey).

In Appendix B.4, we consider the case where δ0 and δ1 can both vary, and compare our
approach to that of worst-case (1 − α) subpopulation shifts [Subbaswamy et al., 2021].
In the context of this example, we demonstrate that for any 1−α < 0.27, the worst-case
conditional subpopulation loss is achieved by having all healthy patients get tested, and
no sick patients get tested. We contrast this with an iterative approach to designing
constraints that is made possible by considering parametric shifts, where end-users can
restrict the degree to which the shift differs across sick and healthy populations.

4.2. Detecting sensitivity to non-causal correlations

Age Gender

Eyeglasses Bald Mustache SmilingWearing Lipstick

Mouth Slightly Open Narrow Eyes

Figure 4.: Causal graph over attributes,
where lightning bolts indicate
changes in mechanisms.

A predictive model may pick up on vari-
ous problematic dependencies in the data
that may not remain stable under dataset
shift. To understand the impact of these
dependencies, a model user may wish to
understand which changes in distribution
pose the greatest threats to model per-
formance, and to measure the impact of
these changes. To illustrate this use-case,
we make use of the CelebA dataset [Liu
et al., 2015], which contains images of faces and binary attributes (e.g., glasses, beard,
etc.) encoding several non-causal features whose correlations may be unstable (e.g., the
relation between gender and being bald). We consider the task of predicting gender
(Y ) from images of faces (X), and assess sensitivity to a shift in the distributions of
attributes (W).

Setup: To obtain ground-truth shifts in distribution, we generate synthetic datasets
of faces using CausalGAN [Kocaoglu et al., 2018], trained on the CelebA data. We
simulate attributes following the causal graph in Figure 4, and then simulate images
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from the GAN conditioned on those attributes. We draw a training sample from this
distribution P, and fit a gender classifier f(X) using the image data alone, by finetuning
a pretrained ResNet50 classifier [Hu et al., 2018]. Each attribute Wi is binary, so we
consider shifts in the log-odds ηi(Zi) of each attribute Wi given parents Zi. Here, we
use a maximally flexible shift function si(Zi; δi) =

∑
z∈Zi δi,z1 {Zi = z}, such that for

Zi ∈ {0, 1}k there are 2k parameters. Across all intervened variables, δ ∈ R31. Due to
the synthetic nature of our setup, we can simulate from Pδ(X,W, Y ) to evaluate the
ground-truth impact of this shift, simulating first from the shifted attribute distribution,
and then simulating images from the GAN conditional on those attributes. We use the
0/1 loss ℓ = 1 {f(X) ̸= Y } and constrain δ by ∥δ∥2 ≤ λ where λ = 2. We present results
in terms of the accuracy, rather than the 0/1 loss itself.

Comparing importance sampling and Taylor across multiple simulations:
We simulate K = 100 validation sets of size n = 1,000 from P, in each estimating
the worst-case shifts δTaylor (via the approach in Section 3.3) and δIS, where the latter

corresponds to maximizing Êδ,IS using a standard non-convex solver from the scipy

library [Virtanen et al., 2020]. We simulate ground truth data (n = 5,000) from PδIS
and PδTaylor

, to compare the two shifts. First, we demonstrate that the Taylor approach
finds more impactful shifts. In Table 1 (right), we compare the average drop in accu-
racy using the Taylor shifts (between the validation and shifted test sets) and the IS
shifts. For the former, the average drop is 3.8%, while for the latter, the average drop
is 2.2%, a difference of 1.6%. In Fig. 5 (right) we plot the differences in test accuracy
EδTaylor

[1 {f(X) = Y }] − EδIS [1 {f(X) = Y }], showing that in 96% of cases, the Taylor
method finds a more impactful shift. Second, when only used to evaluate the shift δTaylor,

IS yields estimates ÊδTaylor,IS of the test accuracy that are comparable to the Taylor-based

estimates ÊδTaylor,Taylor. However, while the optimal value of the Taylor objective tends
to a reasonably accurate estimate of the shifted accuracy, the optimal value of the IS
objective is a poor predictor. In Table 1 (right) we observe that the latter (ÊδIS,IS) is
strongly biased in predicting EδIS [1 {f(X) = Y }]. This bias leads to a large mean abso-
lute prediction error (MAPE) of 0.069 (not shown in the table). This can be contrasted
with a MAPE of 0.015 when using ÊδTaylor,Taylor to predict EδTaylor

[1 {f(X) = Y }]. Fi-
nally, we observe that the Taylor approach runs far faster, with an average run-time of
0.01s versus 2.14s for the IS approach.

Examining a single shift: To illustrate the type of shift found by our approach,
we consider the δTaylor (of all those chosen over K validation sets) which yields the
median test accuracy on the corresponding simulation from Pδ. We display the largest
components of that δ in Table 1 (left). Among others, this shift entails a 5% increase in
the probability of an older woman being bald, and a 5% decrease in the probability of a
young woman wearing lipstick. This suggests that the learned classifier f relies on these
associations in the images for prediction. We validate that this shift leads to a decrease
in accuracy of around 3.8%, using simulated data from Pδ. To validate that this drop
in accuracy is a non-trivial occurrence, we simulate K = 400 random shifts δk where
∥δk∥ = λ and evaluate the model accuracy in Pδk using samples of size n = 500 (Fig. 5,
left). As expected, our chosen shift δ yields a lower accuracy (red line) than all of the
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Table 1.: (Left) Largest components of example shift δ where P and Pδ denote
conditional probabilities. (Right) Taylor and IS estimates vs. true accuracy
at the shift δ found by Taylor approach, and IS estimate vs. true accuracy at

shift δ found by IS approach.

Conditional δi P Pδ
Bald — Female, Old 0.899 0.047 0.109
Bald — Male, Young -0.800 0.378 0.214
Bald — Male, Old -0.680 0.622 0.455

Wearing Lipstick — Female, Young -0.618 0.924 0.868
Wearing Lipstick — Female, Old -0.543 0.953 0.921

Example Avg.

Acc. pre-shift (E[1{f(X) = Y }]) 0.912

Acc. post-shift (EδTaylor
[1{f(X) = Y }]) 0.874 0.874

IS est. (ÊδTaylor,IS) 0.829 0.863

Taylor est. (ÊδTaylor,Taylor) 0.844 0.863

Acc. post-shift (EδIS [1{f(X) = Y }]) 0.882 0.889

IS est. (ÊδIS,IS) 0.796 0.821

88.0% 90.0% 92.0% 94.0%

Shift distribution acc.

Acc. at δTaylor
Training acc.

Random shift acc.
Higher than EδTaylor

−3.0% −2.0% −1.0% 0.0% 1.0%

Difference in Shifted acc. (EδTaylor − EδIS )

Lower Acc.
Taylor
IS

Figure 5.: (Left) Model accuracy at randomly drawn shifts. (Right) Difference in ac-
curacy in the worst-case shifts identified by Taylor and importance sampling
approaches. The Taylor method identifies a more adversarial shift than im-
portance sampling in 96% of simulations (green).

random shifts.

5. Discussion

We argue for considering parametric shifts in distribution, to evaluate model performance
under a set of changes that are interpretable and controllable. For parametric shifts in
conditional exponential family distributions, we derive a local second-order approxima-
tion to the loss under shift. This approximation enables the use of efficient optimization
algorithms (to find the worst-case shift), and empirically provides realistic estimates of
the resulting loss. In a computer vision task, this approach finds more impactful shifts
(in far less time) than optimizing a reweighted objective, and the estimates of shifted
accuracy under the chosen shift are substantially more reliable.

That said, our approach is not without limitations. Our definition of parametric shifts
and resulting approximation relies on the relevant mechanisms P(W |Z) being a condi-
tional exponential family, and that the relevant variables are observed. As illustrated in
our experiments, this can be used to model changes in the causal relationships between
attributes of an image, but does not immediately extend to modelling changes in the
distribution of images given a fixed set of attributes. As with any method that provides
worst-case evaluation, there is potential for misuse and false confidence: If the specified
shifts fail to capture important real-world changes, the resulting worst-case loss may
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be overly optimistic and misleading. Even if used correctly, our approach examines a
narrow measure of model performance, and a small worst-case error should not be used
to claim that a model is free of problematic behavior. For example, implicit dependence
on certain attributes (e.g., race in medical imaging [Banerjee et al., 2021]) may be prob-
lematic based on ethical grounds, even if it does not lead to major issues with predictive
performance under small shifts in distribution.

Acknowledgments

We thank Jonas Peters, Chandler Squires, and Stefan Hegselmann for helpful feedback
and discussion, and Irene Chen and Christina X Ji for providing comments on an ear-
lier draft. MO and DS were supported in part by Office of Naval Research Award
No. N00014-21- 1-2807. NT was supported by a research grant (18968) from VILLUM
FONDEN.

74



Regularizing towards Causal Invariance:
Linear Models with Proxies

Michael Oberst, Nikolaj Thams, Jonas Peters and David Sontag

Abstract

We propose a method for learning linear models whose predictive performance
is robust to causal interventions on unobserved variables, when noisy proxies of
those variables are available. Our approach takes the form of a regularization
term that trades off between in-distribution performance and robustness to inter-
ventions. Under the assumption of a linear structural causal model, we show that
a single proxy can be used to create estimators that are prediction optimal under
interventions of bounded strength. This strength depends on the magnitude of the
measurement noise in the proxy, which is, in general, not identifiable. In the case
of two proxy variables, we propose a modified estimator that is prediction opti-
mal under interventions up to a known strength. We further show how to extend
these estimators to scenarios where additional information about the “test time”
intervention is available during training. We evaluate our theoretical findings in
synthetic experiments and using real data of hourly pollution levels across several
cities in China.

1. Introduction

Ideally, predictive models would generalize beyond the distribution on which they are
trained, e.g., across geographic regions, across time, or across individual users. However,
models often learn to rely on signals in the training distribution that are not stable across
domains, causing a drop-off in predictive performance. This problem is broadly known
as dataset shift [Quionero-Candela et al., 2009].

Tackling this problem requires a formalization of how dataset shift arises, and how
that shift impacts the conditional distribution of our target Y given features X. One
way to formalize this shift is in terms of an underlying causal graph [Pearl, 2009], where
changes between distributions are seen as arising from causal interventions on variables.

Conceptual example: In the causal graph given in Fig. 1, the variable A serves as
a confounder. In a medical setting, A could represent smoking habits or socioeconomic
status, which have a causal effect on current health status (X) as well as longer-term
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A

YX

βx βy

α

Figure 1.: Conceptual Example: A represents an (unobserved) socioeconomic variable,X
represents current health status, and Y represents a long-term health outcome.
All relationships are assumed to be linear, and coefficients are given. We
consider a broader class of graphs in this work, see Fig. 2.

outcomes (Y ). Importantly, A may not be recorded in our training data, and the distri-
bution of A could vary across geography and time.

In the context of this causal graph, interventions which change the distribution of A
will also alter the conditional mean E(Y | X). Under the linear relationships in Fig. 1,
the optimal least-squares predictor Ŷ = γ∗X under the test distribution depends on the
test-time variance in A, in that

γ∗ =

{
α, if after intervention A = 0

α+ βY
βX
, if after intervention var(A)→∞.

The first predictor encodes the direct causal effect of X on Y , but is only optimal in the
setting where the correlations induced by A are removed by fixing it to a constant value
of zero (the same holds when including intercepts and allowing for non-zero means).
The second predictor, on the other hand, renders the distribution of the residual Y − Ŷ
independent of A, and is therefore robust to arbitrary interventions upon A. However,
this is only optimal under arbitrarily strong interventions on A.

Balancing performance and invariance: Instead of seeking an invariant predictor
that is robust to arbitrary interventions on A (like the second predictor above), we in-
stead seek to minimize a worst-case loss under bounded interventions of a given strength.
We contrast this with work that seeks to discover causal relationships as a route to in-
variance [Rojas-Carulla et al., 2018, Magliacane et al., 2018], optimize for invariance
directly across environments [Arjovsky et al., 2019], or use known causal structure to
select predictors with invariant performance [Subbaswamy et al., 2019].

Our proposed objective takes the form of a standard loss, plus a regularization term
that encourages invariance. This builds upon Rothenhäusler et al. [2021], who intro-
duce a similar objective, and prove that their objective optimizes a worst-case loss over
bounded interventions on A, under a large class of linear structural causal models.

In contrast to Rothenhäusler et al. [2021], we do not assume that A is observed.
Instead we assume that, during training, we have access to noisy proxies of A. For most
of the paper, we assume that neither A nor proxies are available during testing. With
this in mind, our contributions are as follows

• Distributional robustness to bounded shifts: In Section 3, we show that a single
proxy can be used to construct estimators with distributional robustness guaran-
tees under bounded interventions on A. However, these estimators are robust to
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a strictly smaller set of interventions, compared to when A is used directly, and
the size of this set depends on the (unidentifiable) noise in the proxy. When two
proxies are available, we propose a modified estimator that can be used to recover
the same guarantees as when A is observed.

• Targeted shifts: In Section 4, we show how to target our loss to interventions on
A contained in a specified robustness set. We show that this formulation includes
Anchor Regression as a special case, but also allows for sets that are not centered
around the mean of A. In this setting we give an estimator, using two proxies,
that identifies the target loss.

In Section 5, we evaluate our theoretical findings on synthetic experiments, and in Sec-
tion 6 we demonstrate our method on a real-world dataset consisting of hourly pollution
readings across five major cities in China.

2. Preliminaries

2.1. Notation

We use upper case letters X to denote (possibly vector-valued) random variables, and
lower-case letters x to denote values in the range of those random variables. Vectors are
assumed to be column vectors, so that X ∈ RdX indicates that X = (X1, . . . , XdX )

⊤, a
column vector of dX random variables. We use ΣX ∈ RdX×dX to denote the covariance
matrix of a variable X. We use bold upper-case letters X to denote a data matrix in
Rn×dX , consisting of n i.i.d. observations of X, and 1 {·} as an indicator random variable.
When dealing with matrices C,D, we use C ≺ D and C ⪯ D to indicate the positive
definite and positive semi-definite partial order, respectively. That is, C ≺ D if D − C
is positive definite (PD), and C ⪯ D if D − C is positive semi-definite (PSD). We use
Id to denote the identity matrix, whose dimension is given by context. All proofs are
provided in the supplementary material.

2.2. Linear structural causal model

We assume the general class of causal graphs represented in Fig. 2, where X ∈ RdX
denotes observed covariates that can be used in prediction, Y ∈ RdY is the target we
seek to predict, H ∈ RdH are unobserved variables, and A ∈ RdA represents anchor
variables, which are assumed to have no causal parents in the graph. We assume the
linear structural causal model (SCM) given in Assumption 1.

Assumption 1 (Linear SCM). We assume the SCMXY
H

 := B

XY
H

+MAA+ ε, (1)

where A, ε have zero mean, bounded covariance, and are independently distributed. We
assume that E[AA⊤] and Id−B are invertible, where Id is the identity matrix. See Fig. 2
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H
A

YXWZ

Figure 2.: In contrast to Rothenhäusler et al. [2021], we assume that anchor variables
(denoted A) are unobserved, but that we have access to either one or two
proxies W,Z. Observed variables are shown in dark grey and unobserved
variables in light grey. We do not assume knowledge of the causal structure
between A,X,H, Y (except that A has no causal parents). The relationship
between X,H, Y could be cyclic, but all relationships are linear.

for a graphical representation.

Note that we do not assume here (or anywhere in this paper) that either A or ε is
Gaussian. The invertibility of Id−B is satisfied if the causal graph is a directed acyclic
graph. The matrices B,MA encode the linear causal relationships. For instance, Fig. 1

can be represented in this form by B =

[
0 0
α 0

]
, M =

[
βX
βY

]
. In general, ε ∈ RD,

B ∈ RD×D, and M ∈ RD×dA , where D := dX + dY + dH . We assume that dY = 1 for
simplicity.

2.3. Distributional robustness of anchor regression

Our goal is to learn a predictor f∗(X) of Y that minimizes a worst-case risk of the
following form

f∗ = argmin
f∈F

sup
P∈P

EP[ℓ(Y, f(X))], (2)

where F denotes a hypothesis class of possible predictors, P denotes a set of possible
distributions, and ℓ represents our loss function. We take the class P to consist of
distributions that arise as the result of causal interventions on A, and seek to learn a
linear predictor to minimize mean-squared error.

We use P to refer to the observational distribution, and Pdo(A:=ν) to refer to the
distribution under interventions on A, where the variable A is replaced by the random
variable ν, and ν is assumed to be independent of the noise vector ε. We often write

R(γ) := Y − γ⊤X

as a random variable that represents the residual of a predictor γ ∈ RdX . Importantly,
Assumption 1 implies that for any γ, E[R(γ) | A] can be written as a linear function in
A.

In this setting, Rothenhäusler et al. [2021] propose the following objective, defined
here with respect to the observational distribution P (rather than a finite sample)
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3. Distributional Robustness to Bounded Shifts

Definition 1 (Anchor Regression).

ℓAR(A; γ, λ) := ℓLS(X,Y ; γ) + λℓPLS(X,Y,A; γ), (3)

where λ ≥ −1 is a hyperparameter and

ℓLS(X,Y ; γ) := E
[
R(γ)2

]
(4)

ℓPLS(X,Y,A; γ) := E
[
(E [R(γ) | A])2

]
. (5)

The first term ℓLS encodes the least-squares objective, while the second term ℓPLS
encodes the residual error which can be predicted from A, which we refer to as the
projected least-squares error. For λ > 0, the second term adds an additional penalty
(beyond that of ordinary least squares) when the bias varies across values of A. The
second term (5) can also be written in the linear setting of Assumption 1 as

ℓPLS(A; γ) = E[R(γ)A⊤]E[AA⊤]
−1E[AR(γ)⊤], (6)

where we drop the dependence on X,Y for notational simplicity. Under Assumption 1,
(3) corresponds to a worst-case loss under distributional shift caused by bounded inter-
vention on A [Rothenhäusler et al., 2021, Theorem 1]

ℓAR(A; γ, λ) = sup
ν∈CA(λ)

Edo(A:=ν)[(Y − γ⊤X)
2
], (7)

where the robustness set is given by

CA(λ) := {ν : E[νν⊤] ⪯ (1 + λ)E[AA⊤]}. (8)

Since minimizing ℓAR is equivalent to ordinary least squares (OLS) regression when
λ = 0, this also provides a natural robustness guarantee for the OLS estimator, where
COLS := {ν : E[νν⊤] ⪯ E[AA⊤]}. In an identifiable instrumental variable setting, the
minimizer converges against the causal parameter for λ→∞ [e.g. Jakobsen and Peters,
2021, eq. (71)]; the ℓPLS term has therefore been referred to as ‘causal regularization’
[e.g. Bühlmann and Ćevid, 2020], and has also been denoted by ℓIV [Rothenhäusler
et al., 2021], as cov(A,R(γ)) = 0 if and only if ℓPLS(γ) = 0.

3. Distributional Robustness to Bounded Shifts

We first assume the existence of a noisy proxyW , conditionally independent of (X,Y,H)
given A (see Fig. 2).

Assumption 2 (Single proxy with additive noise). In the context of Assumption 1, W
is generated as follows

W := β⊤WA+ εW ,
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where εW has mean zero, bounded covariance, and is independent of (A, ε). In addition,
we assume that the second moment matrix E[WW⊤] is invertible.

Under mild identifiability conditions (e.g., that βW is full rank) one can show (see
Appendix C.3.2) that

ℓPLS(A; γ) = 0 ⇐⇒ ℓPLS(W ; γ) = 0, (9)

Hence, a single proxy is enough (in the population case) to identify whether the sharp
constraint ℓPLS(γ) = 0 holds, representing invariance to interventions of arbitrary
strength. This corresponds to the fact that if A is a valid instrumental variable, then so
is W [Hernán and Robins, 2006].

However, we consider interventions on A that are not of arbitrarily large strength.
With that in mind, in Section 3.1, we demonstrate that (i) when a single proxyW is used
in place of A, a robustness guarantee holds, but the robustness set is reduced relative
to (8), (ii) the extent of this reduction depends on the signal-to-variance relationship
in W , and (iii) this relationship is not generally identifiable from the observational
distribution over (X,Y,W ) alone. In Section 3.2, we show that in the setting where two
proxies are available, the same guarantees as for an observed A can be obtained. We
do so constructively, giving a regularization term whose population version is equal to
ℓPLS(A; γ).

3.1. Robustness with a single proxy

First, we establish the robustness set of Anchor Regression when a single proxy is used
in place of A. We refer to this as Proxy Anchor Regression, to distinguish it from the
case when A is observed, but the only difference from Definition 1 is that W is used in
place of A.

Definition 2 (Proxy Anchor Regression). Let ℓLS , ℓPLS be defined as in (4) and (6).
We define

ℓPAR(W ; γ, λ) := ℓLS(γ) + λℓPLS(W ; γ), (10)

where λ ≥ −1 is a hyperparameter and we suppress the dependence on X,Y in the
notation.

Theorem 1. Under Assumptions 1 and 2, for all γ ∈ RdX and for all λ ≥ −1

ℓPAR(W ; γ, λ) = sup
ν∈CW (λ)

Edo(A:=ν)[(Y − γ⊤X)
2
],

where the robustness set is given by

CW (λ) := {ν : E[νν⊤] ⪯ E[AA⊤] + λΩW } (11)
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Figure 3.: Test performance under interventions do(A := (ν1, ν2)) which give rise to dif-
ferent test distributions over X and Y . Each dot corresponds to a different
intervention (i.e., test distribution on X,Y ), and the color gives the resulting
mean squared prediction error (MSPE). (Far Left) OLS performs well for
interventions in the set COLS (solid circle), corresponding to the training co-
variance of A. However, it performs poorly under interventions far from this
region (e.g., top left). (Middle Left) Anchor Regression (AR) minimizes the
worst-case loss over interventions on A within the region CA(λ1) (cf., (8)), a re-
scaling of COLS. There is a trade-off, with better performance than OLS under
large interventions, but worse performance under small interventions. Given
two proxies W,Z, we introduce Cross-Proxy Anchor Regression (xPAR, cf.,
(14)) and prove that it minimizes the same worst-case loss. (Middle Right)
When only a single proxy W is used in place of A, the result is a weaker
guarantee, in the form of a smaller robustness set CW (λ1) (cf., (11)) for the
same value of λ1. The shape of this set depends on the noise in the proxy
along different dimensions. (Far Right) As a result, there does not generally
exist a λ2 such that CW (λ2) = CA(λ1). If we choose some λ2 > λ1 such that
CA(λ1) ⊂ CW (λ2), we enforce a stronger constraint than intended, resulting
in an unwanted trade-off between performance and robustness.

and where ΩW is defined as

ΩW := E[AW⊤]
(
E[WW⊤]

)−1
E[WA⊤]. (12)

Intuitively, ΩW defines a signal-to-variance relationship inW , and this determines the
robustness guarantee. In the case where both A,W ∈ R are one-dimensional, and A has
unit variance, the robustness sets simplify to

COLS = {ν : E[ν2] ≤ 1}
CW (λ) = {ν : E[ν2] ≤ 1 + λ · ρW }
CA(λ) = {ν : E[ν2] ≤ 1 + λ},
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where ρW := β2W /(β
2
W + Eε2W ) < 1 is the signal-to-variance ratio of W , also referred

to as the reliability ratio in the measurement error literature [Fuller, 1987]. Thus, in
the one-dimensional case, the robustness set using W is strictly smaller than the one
obtained by using A when λ > 0, except in the case where εW = 0 a.s. This result
generalizes to higher dimensions.

Proposition 1. Assume Assumptions 1 and 2 and that E[εW ε⊤W ] ∈ RdW×dW is positive
definite. Then for λ > 0

COLS ⊆ CW (λ) ⊂ CA(λ),
and the set CW (λ) increases monotonically when E[εW ε⊤W ] decreases w.r.t. the partial
matrix ordering. If dW = dA, βW is full rank, and εW = 0 a.s., then CW (λ) = CA(λ).

If ΩW were known, we could choose a larger λ∗ such that CA(λ) ⊆ CW (λ∗). In contrast
to the one-dimensional case, where we could choose λ∗ = λ/ρW to obtain an equality
CA(λ) = CW (λ∗), we cannot generally achieve equality in higher dimensions (see Fig. 3).

However, ΩW is not generally identifiable from the observed distribution over (X,Y,W )
alone. Moreover, SCMs compatible with the observed distribution react differently under
interventions on A and yield different coefficients that are optimal w.r.t. interventions
in CA(λ). Consequently, in this setting, it is not possible to recover the guarantees of
Anchor Regression without further assumptions (e.g., on ΩW ). See Appendix C.2 for an
example.

Note that these results apply regardless of whether or not βW is full rank. However, if
βW is not full rank, then there will be directions of variation in A that are not reflected
in W , and we will not be able to achieve additional robustness (beyond that of OLS)
against interventions along these directions.

3.2. Robustness with two proxies

We now show that if we have two (sufficiently different) proxies for A, then it is possible
to recover the original robustness set using a different regularization term. We denote
these proxies by W,Z, as shown in Fig. 2. In this setting, the structural causal model
over (X,Y,H,A) can still be written in the form of Equation (1), where we make the
following additional assumptions.

Assumption 3 (Proxies with additive noise). In the context of Assumption 1, Z,W are
generated as follows

W := β⊤WA+ εW and Z := β⊤ZA+ εZ ,

where εW , εZ are mean-zero with bounded covariance, and εW , εZ , ε, A are jointly inde-
pendent.

Assumption 4. The dimensions of A,W,Z are equal, dA = dW = dZ , and βW , βZ are
full-rank.
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Note that Assumption 4 also implies that the second moment matrix E[ZW⊤] is
invertible.
To build intuition, note that this assumption is trivially satisfied in the setting where

W = A + εW and Z = A + εZ , i.e., where W and Z are two noisy observations of A.
More generally, Assumption 4 rules out directions of variation in A that are undetectable
in W or Z.

In this setting we introduce the following loss, and prove that it is equal to the worst-
case loss obtained when A is observed (c.f., (7))

Definition 3 (Cross-Proxy Anchor Regression).

ℓ×PAR(W,Z; γ, λ) := ℓLS(X,Y ; γ) + λℓ×(W,Z; γ),

where we refer to

ℓ×(W,Z; γ) := E[R(γ)W⊤]E[ZW⊤]
−1E[ZR(γ)⊤], (13)

as the cross-proxy regularization term.

Theorem 2. Under Assumptions 1, 3 and 4, for any γ ∈ RdX and any λ ≥ −1

ℓ×PAR(W,Z; γ, λ) = sup
ν∈CA(λ)

Edo(A:=ν)[(Y − γ⊤X)
2
], (14)

where CA(λ) = {ν : E[νν⊤] ⪯ (1 + λ)E[AA⊤]}.
ℓ×PAR is convex in γ and has a closed form solution for its minimizer based only on

the population moments of X,Y,W and Z (see Proposition C.4 in the supplement).
To build intuition for why Assumption 4 is required for this result, consider an exam-

ple where W,Z are both scalars (dW = dZ = 1) and A has two independent dimensions
(A1, A2). In this example, if both proxies measure the same dimension A1, then varia-
tion in A2 is not detectable in either proxy, and we cannot optimize for robustness to
interventions on A2. On the other hand, if W only measures A1 (e.g., W = A1 + εW ),
and Z only measures A2 (e.g., Z = A2 + εZ), then we cannot use Z to identify the
signal-to-variance ratio of W , and vice-versa. In this case, (W,Z) is effectively a single
two-dimensional proxy in the framework of Section 3.1, where we showed that recovering
the guarantees of Anchor Regression is not generally possible. Intuitively, we need all
directions of variation in A to have some influence on both proxies (i.e., βW , βZ full
rank), and hence require that W,Z have sufficiently large dimension.

4. Targeted Anchor Regression: Incorporating Additional Shift
Information

We now generalize Anchor Regression to an estimator that is targeted to be robust
against particular shifts, and demonstrate that we can similarly handle this setting
when only proxies of A are observed. In Section 2.3 we showed that Anchor Regression
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Figure 4.: Targeted Anchor Regression allows for minimizing the worst-case loss in re-
gions (dashed ellipse) that may differ in location, size, and shape from the
regions in Fig. 3 (OLS copied for reference). Every point ν represents a test
distribution do(A := ν), the color indicating the mean squared prediction er-
ror in this distribution. Cross marks the origin. The TAR estimator achieves
its minimal test loss at the center of the targeted region.

minimizes the worst-case loss over the set CA(λ) of all interventions do(A := ν) where
E[νν⊤] ⪯ (1+λ)E[AA⊤]. For deterministic ν, CA(λ) is an ellipsoid centered at 0, and its
width in each direction is proportional to the variation of A in that direction. However,
we may desire a different robustness set: For instance, if we anticipate a particular shift
µν in the mean of A, or if we want to add extra protection against particular directions
of variation in A. This can be formalized as a robustness set defined by an ellipsoid that
may not be centered at 0, nor be proportional to E[AA⊤]. The estimator developed in
this section can incorporate such prior beliefs.

More formally, instead of considering robustness against interventions do(A := ν) over
the set ν ∈ CA(λ), we now assume that we have additional information on the nature
of ν, which is specified in the form of a vector µν and a symmetric PSD matrix Σν . We
introduce a new method, Targeted Anchor Regression, minimizing what we refer to as
the targeted loss. We prove in Propositions 2 and 3 that minimizing this objective can
be interpreted in two ways: First, as minimizing an expected loss over interventions ν
with a known mean and covariance, or minimizing a worst-case loss over deterministic
interventions ν contained in an ellipsoid robustness set (as discussed above). This is
visualized in Fig. 4.

4.1. Targeting when A is observed

We first consider the case when A is observed during training, and the mean and covari-
ance of ν are known, given by µν ,Σν . Importantly, for a given γ we have E[R(γ) | A =
a] = b⊤γ a, where, writing ΣA := E[AA⊤],

b⊤γ := E[R(γ)A⊤]Σ−1
A . (15)

Definition 4 (Targeted Anchor Regression). Let µν ∈ RdA , and Σν ∈ RdA×dA , where
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Σν is a symmetric PSD matrix.

ℓTAR(A;µν ,Σν , γ, α)

:= ℓLS(γ) + b⊤γ (Σν − ΣA) bγ + (b⊤γ µν − α)
2
, (16)

where bγ is defined in (15), and ΣA is the covariance of A.

Proposition 2. Under Assumption 1, and the assumption that ν ⊥⊥ ε, we have, for all
γ ∈ RdX , α ∈ R,

ℓTAR(A;µν ,Σν ; γ, α) = Edo(A:=ν)[(Y − γ⊤X − α)
2
],

where µν = E[ν] and Σν is the covariance matrix of ν.

Importantly, the objective in (16) is convex in (γ, α), and has a closed-form solution
(see Proposition C.5 in the supplement). If ν is a known constant, then this corresponds
to performing OLS using both X and A as predictors during training, and using the
known value of ν for A for prediction (see Appendix C.3.3.2). However, if for example ν
exhibits more variance than A along certain directions, and less variance along others,
then the targeted regression parameter differs from standard solutions. Optimizing the
objective in (16) can also be interpreted as optimizing a worst-case loss over interventions
do(A := ν) in a certain set.

Proposition 3. Under Assumption 1, we have, for all µν ∈ RdA and Σν ∈ RdA×dA
being a symmetric positive definite matrix, that

argmin
γ,α

ℓTAR(A;µν ,Σν , γ, α)

= argmin
γ,α

sup
ν∈T (µµ,Σν)

Edo(A:=ν)[(Y − γ⊤X − α)
2
],

where the supremum is taken over (deterministic or random) shifts ν of the form ν =
µv+ δ, where δ satisfies the constraint that E[δδ⊤] ⪯ Σν . If δ is random, we require that
it is independent of all other random variables. In other words, we can write that ν lies
in the set

T (µν ,Σν) := {ν : E[(ν − µν)(ν − µν)⊤] ⪯ Σν}.

Note that the expectation in the constraint T is with respect to the random variable
ν. This covers the case in which ν (and hence δ) is deterministic, in which case it is
equal to a fixed value with probability one.

Proposition 3 shows that Targeted Anchor Regression generalizes Anchor Regression
to a broader class of robustness sets, that need not depend explicitly on E[AA⊤]. In
particular, Anchor Regression can be viewed as a special case, where Σν = (1 + λ)ΣA
and E[ν] = 0, in which case the objectives are equal for α = 0. In the following, we
adopt the interpretation of µν ,Σν as specifying a mean and covariance of ν (Proposition
2).
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4.2. Targeting with proxies

In the single-proxy setting, we define Proxy Targeted Anchor Regression as using W in
place of A in (16). We assume a known mean and covariance of W under Pdo(A:=ν), used
in place of µν ,Σν . By similar arguments to those in Section 3.1, this approach does not
generally yield the optimal predictor, in a way that depends on the (unidentified) signal-
to-variance relationship in W . Given the similarity, we defer details to Appendix C.4.

When two proxiesW,Z are available, we can recover the statement from Proposition 2
using a modified estimator, by similar arguments to those in Section 3.2. The core
observation is that we can construct a linear term

a⊤γ := E[R(γ)Z⊤](E[WZ⊤])
−1
, (17)

which, if βZ = βW = Id can be seen as a linear IV estimate of b⊤γ in (15), an estimator
used in the measurement error literature given repeated noisy measurements of a single
variable [Fuller, 1987]. In our case, (17) identifies b⊤γ only up to the linear transformation
βW , but this is sufficient to identify the targeted loss.

Definition 5 (Cross-Proxy Targeted Anchor Regression). Let µ̃ ∈ RdW , and Σ̃W ∈
RdW×dW , where Σ̃W is a symmetric positive semi-definite matrix. We define

ℓ×TAR(W,Z; µ̃, Σ̃W , γ, α)

:= ℓLS(γ) + a⊤γ

(
Σ̃W − ΣW

)
aγ +

(
a⊤γ µ̃− α

)2
,

where aγ is defined in (17).

In Theorem C.1 (Appendix C.4) we prove, analogous to Theorem 2, that this popu-
lation objective is equal to that of Targeted Anchor Regression (16).

5. Synthetic Experiments

In Section 5.1, we show that Cross-Proxy Anchor Regression (xPAR) outperforms Proxy
Anchor Regression (PAR) in settings with noisy proxies. As the noise increases, xPAR
continues to match Anchor Regression (AR) test performance under intervention, while
PAR approaches OLS. In Section 5.2, we demonstrate the risks of attempting to cor-
rect for this noise by assuming a certain signal-to-variance ratio. In Section 5.3 we
demonstrate another benefit of xPAR over PAR, giving an example where it places
more weight on causal predictors relative to PAR. Finally, in Section 5.4, we high-
light the trade-off between using Targeted Anchor Regression (TAR) vs. OLS and AR,
showing that TAR improves performance under the targeted shift, at the cost of incur-
ring additional error on the training distribution. Code for experiments is available at
https://github.com/clinicalml/proxy-anchor-regression.
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Figure 5.: Mean squared prediction error (MSPE) under interventions do(A := ν) for
estimators PAR and xPAR. We display population losses for the population
parameters as dashed lines, and median empirical MSPE when fit from data
as solid lines, with shaded regions covering the 25% to 75% quantiles.

5.1. Mean squared prediction error under intervention

We demonstrate on synthetic data that xPAR recovers similar test performance to AR,
while the performance of PAR degrades as the signal-to-variance ratio (SVR) of the
proxies decreases. We simulate training data (at different levels of signal-to-variance)
from an SCM with the structure given in Fig. 2, fix λ := 5 and fit PAR and xPAR.
We then choose a fixed intervention ν, and simulate test data under the intervened
distribution, evaluating our learned predictors.

In Fig. 5, we see that the test errors for xPAR and AR coincide (see Theorem 2)
while PAR interpolates between OLS and AR, depending on the signal-to-variance ratio
(see Proposition 1). Appendix C.5 gives additional implementation details on this and
remaining experiments.

5.2. Misspecified signal-to-variance ratio

In Section 3.1, we noted that if the (unidentified) signal-to-variance ratio (SVR) were
known, we could correct for it when using PAR with a single proxy. Here we demonstrate
the implications of incorrectly specifying this correction. We simulate data from the same
SCM as in Section 5.1, with varying (true) signal-to-variance ratio.

In Fig. 6, for the predictor chosen by PAR, we plot the estimated worst-case MSPE
(in orange), using a correction factor assuming that the signal-to-variance ratio is 0.4,
against the true worst-case MPSE (in green). We observe that if the true signal-to-
variance ratio is smaller than our assumption of 0.4, then our estimate is too conservative,
and vice versa if the true signal-to-variance ratio is larger.

5.3. Causal and anti-causal predictors

We demonstrate the ability of xPAR to select causal predictors, in a synthetic setting
where predictors X may contain both causal and anti-causal predictors. We simulate
data from an SCM (Fig. 7 [top]), where one anchor, A1, is a parent of the causal pre-
dictors, while the other, A2, is a parent of the anti-causal predictors. We consider two

87



Regularizing towards Causal Invariance: Linear Models with Proxies

0.4

0.5

0.6

0.7

0.8

25% 50% 75% 100%
True signal-to-variance ratio

M
S
P
E

Assumed SVR

PAR(W ) MSPE, true

PAR(W ) MSPE, est.

OLS MSPE

Figure 6.: Estimates of worst-case mean squared prediction error (MSPE) over a ro-
bustness set C. PAR is applied assuming that the signal-to-variance ratio is
0.4, which gives an estimate of the worst-case MSPE over C (orange). Green
line shows actual worst-case MSPE over C at different underlying signal-to-
variance ratios.

identically distributed noisy proxies W,Z of A := (A1, A2). The challenge is that A2 is
measured with significantly more noise than A1, across both proxies.

As seen in Fig. 7 [bottom] PAR places more weight on anti-causal features. In effect,
the noise in the measurement of A2 causes Xanti-causal to appear less sensitive to shifts
in A2. This is an ideal scenario for xPAR, as it is designed to deal with additional noise
by leveraging both proxies. Consequently, when two proxies W,Z are available, xPAR
places more weight on the causal predictors, relative to PAR.

5.4. Targeted shift

We demonstrate the trade-off made by Targeted Anchor Regression (TAR) versus Anchor
Regression (AR), considering the case when A is observed for simplicity. We simulate
training data and fit estimators γOLS, γAR and γTAR, where γTAR is targeted to a par-
ticular mean and covariance of a random intervention ν, and we select λ for γAR such
that this intervention is contained within CA(λ).

We then simulate test data from two distributions: Pdo(A:=ν) (i.e., the shift occurs),
and P (where it does not), and evaluate the mean squared prediction error (MSPE).
The results are shown in Fig. 8, and demonstrated that TAR performs better than AR
and OLS in the first scenario, but this comes at the cost of worse performance on the
training distribution.

6. Real-Data Experiment: Pollution

We test our approach on a real-world heterogeneous dataset of hourly pollution read-
ings in five cities in China, taken over several years [Liang et al., 2016], with most data
available from 2013-15. Our prediction target is PM2.5 concentration, a measure of pol-
lution, and covariates are primarily weather-related, including dew point, temperature,
humidity, pressure, wind direction / speed, and precipitation.
Real-World Proxy (Temperature): Pollution tends to be seasonal in this dataset,

and so we construct our training and test environments using seasons: For each of the
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Figure 7.: Top: SCM with A1, A2 (unobserved), target Y and predictor variables
Xcausal, Xanti-causal ∈ R3. Dotted lines indicate higher noise. Bottom: Ab-
solute value of regression coefficients. PAR places more weight on anti-causal
predictors, while xPAR places more weight on causal predictors.
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Figure 8.: Empirical mean squared prediction error of TAR, OLS and AR under the
shifted distribution and the training distribution.

four seasons, we train only on the other three seasons, and evaluate on the held-out
season. We do this for each city, treating each city and held-out season as a separate
evaluation. This leads to 20 separate scenarios.

With this variation in mind, we use temperature as a real-world proxy, and treat it
as unavailable at test time. We also construct two noisier copies of temperature, which
we refer to as W,Z, adding independent Gaussian noise while controlling the signal-to-
variance ratio (in the training distribution) at var(Temp)/ var(W ) = 0.9.

Estimators / Benchmarks: For Proxy and Cross-Proxy AR (PAR, xPAR, see
Section 3), we choose λ ∈ [0, 40] by leave-one-group-out cross-validation on the three
training seasons, using the first year (2013) of data. For instance, if “winter” is the test
season, then we choose the value of λ that performs best on average across combinations
of the other seasons e.g., training on the fall & summer data and evaluating on the spring
data.

When using temperature as a single proxy in PAR, we observe that in 9 out of 20
scenarios, λ = 40 is chosen, but in the remaining 11, λ = 0 is chosen, which is equivalent
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Table 1.: Mean: Average MSE (lower is better) over 9 scenarios where λ > 0. #
Win: Number of scenarios where the estimator has lower MSE than OLS.
Best (Worst): Smallest (Largest) difference to OLS across environments, where
lower is better.

Estimator Mean # Win Best Worst

OLS 0.537
OLS (TempC) 0.536 5 -0.028 0.026
OLS + Est. Bias 0.569 4 -0.072 0.150

PAR (TempC) 0.531 6 -0.041 0.006
PAR (W) 0.531 6 -0.037 0.006
xPAR (W, Z) 0.531 6 -0.039 0.007

PTAR (TempC) 0.525 8 -0.061 0.001
PTAR (W) 0.529 8 -0.038 0.001
xPTAR (W, Z) 0.526 7 -0.059 0.001

to OLS. For comparability, we use the same values of λ for PAR(W ) and xPAR(W,Z).
For Proxy Targeted AR and Cross-Proxy Targeted AR (PTAR, xPTAR, see Section 4),
we use the mean and variance of the relevant variables (e.g., temperature, W , Z) in the
held-out season to target our predictors.

Our primary benchmark is OLS (without temperature). We also compare to (a) OLS
that uses temperature during train and test [OLS (TempC)], and (b) OLS that includes
the temperature during training, and uses the mean test value for temperature during
prediction [OLS + Est. Bias]. We present the results for the 9 scenarios where λ > 0 in
Table 1, since PAR with λ = 0 is equivalent to OLS (aggregate results in Table C.1 in
the supplement).

Results: For both PAR and PTAR, we see improvement over OLS on average across
scenarios, with limited downside (e.g., in the worst scenario for PTAR relative to OLS,
the additional MSE incurred is 0.001). In Fig. C.4 (Supplement), we observe that PAR
and PTAR achieve gains in two different ways: PAR increases the coefficients of humidity
and dew point relative to OLS, while PTAR reduces them and incorporates a correction
into the intercept.

7. Discussion and Related Work

Learning a predictive model that performs well under arbitrarily strong causal interven-
tions is an ambitious goal. In this work, we have argued that even if causal invariance
is achievable, it may not be desirable: A model whose performance is invariant to arbi-
trarily strong interventions may have poor performance when the test distribution does
not differ too much from the training distribution.

There is a large body of work that seeks to learn causal models as a route to achieving
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invariance [Rojas-Carulla et al., 2018, Magliacane et al., 2018], or that uses knowledge
of the causal graph to select predictors with invariant performance under a set of known
interventions [Subbaswamy et al., 2019]. Similarly, invariant risk minimization (IRM)
seeks a predictor Φ such that E(Y | Φ(X)) is invariant across a set of discrete environ-
ments [Arjovsky et al., 2019, Xie et al., 2020, Krueger et al., 2020, Bellot and van der
Schaar, 2020]. Recent work has pointed to the theoretical and practical difficulty of
learning such a predictor for IRM [Rosenfeld and Risteski, 2020, Kamath et al., 2021,
Guo et al., 2021], in part due to the fact that recovering a truly invariant model, even
in linear settings, requires a large number of environments. Generalization in non-linear
settings requires sufficient overlap between environments and strong restrictions on the
model class [e.g., Christiansen et al., 2021]. In contrast to all of the above, we trade
off between in-distribution performance and invariance explicitly, instead of seeking in-
variance as a primary goal. Moreover, since we allow for A to influence Y directly
and through hidden variables, invariance may not even be achievable, but we can still
formulate a worst-case loss for bounded interventions.
We argue for incorporating prior knowledge about potential shifts by (1) identify-

ing proxies for relevant factors of variation (i.e., anchor variables), and (2) specifying
plausible sets of interventions on these factors of variation. We build upon the causal
framework of Anchor Regression [Rothenhäusler et al., 2021], extending it in two impor-
tant ways.
To start, we relax the assumption that the anchor variables are directly observed.

Instead, we only assume access to proxies, and prove that identification of the worst-
case loss is feasible with two proxies. The challenge of identifying the worst-case loss
is related to the problem of identifying causal effects with noisy proxies of unmeasured
confounders [Tchetgen Tchetgen et al., 2020, Miao and Tchetgen, 2018, Shi et al., 2018,
Kuroki and Pearl, 2014], and the challenge of learning under classical measurement
error [Fuller, 1987, Hyslop and Imbens, 2001, Bound et al., 2001]. Our observation
that a single proxy will underestimate the worst-case loss is related to the well-known
problem of regression dilution bias [Frost and Thompson, 2000], where performing linear
regression under measurement error leads to bias in parameter estimation. In contrast,
we are not concerned with causal / structural parameter estimation, which is generally
not possible in the models we consider, but rather estimating a worst-case loss under
a class of interventions. Srivastava et al. [2020] also consider distributional shift in
unmeasured variables for which proxies are available, and apply techniques for handling
worst-case sub-populations from DRO [Duchi et al., 2020]. In contrast, we consider
causal interventions on A that could lie outside the support of the training data, which
cannot be represented as a sub-population. Moreover, they consider the single-proxy
case, and give a generalization bound that incorporates the impact of noise, while under
our assumptions we are able to recover guarantees as if A were observed, using two
proxies.
We then introduce Targeted Anchor Regression, a method for incorporating additional

prior knowledge on the strength and direction of shifts in anchor variables. This method
can be interpreted as allowing for specification of a broader class of robustness sets,
beyond those considered in Rothenhäusler et al. [2021], or as specifying the mean and
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covariance of the anchors at test time. We prove analogous results with proxies in
this setting, and evaluate this strategy empirically in Section 6, targeting our loss to a
particular mean and variance over temperature in the held-out season.
Our work contributes to a growing body of literature that seeks to generalize Anchor

Regression to new settings, whether allowing for unobserved anchors and a broader class
of robustness sets (as in our work), or generalizing to discrete and censored outcomes,
as in Kook et al. [2022].
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Abstract

Contextual bandit and reinforcement learning algorithms have been success-
fully used in various interactive learning systems such as online advertising, rec-
ommender systems, and dynamic pricing. However, they have yet to be widely
adopted in high-stakes application domains, such as healthcare. One reason may
be that existing approaches assume that the underlying mechanisms are static in
the sense that they do not change over different environments. In many real-world
systems, however, the mechanisms are subject to shifts across environments which
may invalidate the static environment assumption. In this paper, we tackle the
problem of environmental shifts under the framework of offline contextual ban-
dits. We view the environmental shift problem through the lens of causality and
propose multi-environment contextual bandits that allow for changes in the under-
lying mechanisms. We adopt the concept of invariance from the causality literature
and introduce the notion of policy invariance. We argue that policy invariance is
only relevant if unobserved variables are present and show that, in that case, an
optimal invariant policy is guaranteed to generalize across environments under
suitable assumptions. Our results may be a first step towards solving the environ-
mental shift problem. They also establish concrete connections among causality,
invariance, and contextual bandits.

1. Introduction

The problem of learning decision-making policies lies at the heart of learning systems.
To adopt these learning systems in high-stakes application domains such as personalized
medicine or autonomous driving, it is crucial that the learned policies are reliable even
in environments that have never been encountered before. In this paper, we consider the
problem of learning policies that are robust with respect to shifts across environments.
We consider this question in the setup of offline contextual bandits, which provides a
mathematical framework for tackling the above learning problems.
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While recent studies in offline contextual bandits Dudik et al. [2011], Bottou et al.
[2013], Swaminathan and Joachims [2015a,b], Zhou et al. [2018], Kallus [2018], Athey and
Wager [2021] offer theoretical results and novel methodologies for policy learning from
offline data, they primarily focus on an independent and identically distributed (i.i.d.)
setting, in which the underlying mechanisms do not change over time or over different
environments. In practice, however, shifts between environments often occur, possibly
invalidating the i.i.d. assumption. In healthcare, for example, datasets from different
hospitals may not come from the same underlying distribution. As a result, a learning
agent that ignores environmental shifts may fail to generalize beyond the environments
it was trained on.
In the supervised learning context, the environmental shift problem has been stud-

ied under different names, such as domain generalization, covariate shift adaptation,
distributional robustness or out-of-distribution generalization Sugiyama and Kawanabe
[2012], Muandet et al. [2013], Volpi et al. [2018], Arjovsky et al. [2019], Christiansen
et al. [2021]. In domain generalization, the goal is to develop learning algorithms that
are robust to changes in the test distribution. Thus, a fundamental problem is how to
characterize such changes. A promising direction relies on a causal framework to describe
the changes through the concept of interventions Schölkopf et al. [2012], Rojas-Carulla
et al. [2018], Magliacane et al. [2018], Arjovsky et al. [2019], Christiansen et al. [2021].
A key insight is that while purely predictive methods perform best if test and training
distributions coincide, causal models generalize to arbitrarily strong interventions on the
covariates because of the modularity property of structural causal models (see e.g., Pearl
[2009]).
The environmental shift problem is related to the problem of transportability in causal

inference Pearl and Bareinboim [2011], Bareinboim and Pearl [2014, 2016], Subbaswamy
et al. [2019], Lee et al. [2020], Correa and Bareinboim [2020] which aims to generalize
causal findings from source environments to a target environment. Unlike our work,
transportability assumes knowledge of how the target environment differs from the source
environments as well as the underlying causal graph that is shared among them through
selection diagrams Pearl and Bareinboim [2011]. Using this causal knowledge, the task
of transportability is to derive whether and how one can identify a causal quantity (e.g.
an interventional distribution) in the target environment using data obtained from the
source environments.
In real-world applications, however, knowledge of the underlying causal graph and

structural discrepancies between environments may not be available. In recent years,
invariance-based methods have been exploited to learn the causal structure from data
Peters et al. [2016], Pfister et al. [2019b], Heinze-Deml et al. [2018]. In invariant causal
prediction Peters et al. [2016], for example, one assumes that the data are collected
from different environments, each of which describes different underlying data-generating
mechanisms, and uses this heterogeneity to learn the causal parents of an outcome
variable Y . The underpinning assumption is the invariance assumption, which posits
the existence of a set of covariates X in which the mechanism between X and Y remains
constant. A model based on such invariant covariates is guaranteed to generalize to all
unseen environments.
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1. Introduction

Although some recent studies have explored the use of causality and invariance for
tackling the environmental shift problem in contextual bandits and, more generally, re-
inforcement learning Zhang et al. [2020], Sonar et al. [2021], the actual roles and benefits
of causality and invariance remain unclear and under-explored. Graphical models have
also been used in reinforcement learning to represent the underlying Markov Decision
Processes (MDP) under the framework of factored MDPs. Such methods, however, fo-
cus mainly on providing efficient planning algorithms rather than generalizing to a new
environment Kearns and Koller [1999], Guestrin et al. [2003, 2002], Jonsson and Barto
[2006].
Our paper delineates an explicit connection among causality, invariance, and the en-

vironmental shift problem in the context of contextual bandits. We develop a causal
framework for characterizing the environmental shift problem in contextual bandits,
and provide a practical and theoretically sound solution based on the proposed frame-
work. Our framework differs from the framework of causal bandits Lee and Bareinboim
[2018], Lattimore et al. [2016], Yabe et al. [2018], de Kroon et al. [2020]. While causal
bandits exploit causal knowledge (either assumed to be known a priori or estimated
from data) for improving the finite sample performance in a single environment, our
framework focuses on modeling distributional shifts and the ability to generalize to new
environments. Another line of work has addressed the problem of policy evaluation and
learning under unobserved confounding between the action and the reward variables
Bareinboim et al. [2015], Sen et al. [2017], Tennenholtz et al. [2020], Kallus and Zhou
[2020], Tennenholtz et al. [2021]. In contrast, we consider the complementary problem of
unobserved confounding between the covariates and the reward variables (see Section 3).
Our contributions are fourfold. First, we propose a multi-environment contextual

bandit framework that represents mechanisms underlying a contextual bandit problem
by structural causal models (SCMs; Pearl [2009]). The framework allows for changes
in environments and thereby relaxes the i.i.d. assumption. We define environments as
different perturbations on the underlying SCM, and we evaluate the policy according
to its worst-case performance in all environments. Second, using the proposed frame-
work, we generalize the invariance assumption used in methods such as invariant causal
prediction and define invariance properties for policies that, under certain assumptions,
guarantee generalizability to unseen environments. Third, we develop an offline method
for testing invariance under distributional (policy) shifts, and provide an algorithm for
finding an optimal invariant policy. Fourth, we highlight a setting in which causality and
invariance are not necessary for solving the environmental shift problem. This insight
takes us closer to understanding what causality can offer in contextual bandits.
The remainder of our paper is organized as follows. The rest of this section briefly

reviews an offline contextual bandit problem. Section 2 formally defines a causal frame-
work for multi-environment contextual bandits and highlights the roles of causality and
invariance in this formulation. We show that in the absence of unobserved confounders,
causality does not improve the generalization ability in that they do not outperform
purely predictive approaches. Drawing on the proposed framework, Section 3 introduces
invariance properties for policies and provides the main theoretical contributions un-
derpinning our solution for the environmental shift problem. Section 4 discusses the
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assumptions required to learn invariant policies from offline data and presents an algo-
rithm for learning an optimal invariant policy. Section 5 provides simulation experiments
that empirically verify our theoretical results. In Section 6, we apply our framework to
a warfarin dosing study.

1.1. Offline contextual bandits

We briefly review the offline contextual bandit problem Beygelzimer and Langford [2009],
Strehl et al. [2010], considering a setup in which part of covariates (also known as
context variables) are unobserved. More precisely, we assume that the covariates can be
partitioned into observed and unobserved variables X ∈ X and U ∈ U . Here, X and
U are metric spaces; the reader may think of X ⊆ Rd and U ⊆ Rp. As in the standard
contextual bandit setup Langford and Zhang [2008], for each round, we assume that
the system generates a covariate vector (X,U) and reveals only the observable X to an
agent. From the observed covariates X, the agent selects an action A ∈ A according to
a policy π : X −→ ∆(A) that maps the observed covariates to the probability simplex
∆(A) over the set of actions A. Adapting commonly used notation, we write, for all
x ∈ X and a ∈ A, π(a|x) := π(x)(a). The agent then receives a reward R depending on
the chosen action A, and on both the observed and unobserved covariates (X,U).

In the classical setting, one assumes that the covariates are drawn i.i.d. from a joint
distribution PX,U (an assumption we will relax when introducing multi-environment
contextual bandits in Section 2) and that the rewards are drawn from a conditional
distribution PR|X,U,A. The agent is evaluated based on the performance of its policy π
which is measured by the policy value:

V (π) := E(X,U)∼PX,U EA∼π(X) ER∼PR|X,U,A

[
R
]
.

The agent is now given a fixed training dataset that is collected offline: it consists of
n rounds from one or more different policies, i.e., D := {(Xi, Ai, Ri, πi(Xi))}ni=1, where
Ai ∼ πi(Xi)

5 for all i ∈ {1, . . . , n}. The goal of the agent is then to find a policy π that
maximizes the policy value over a given policy class Π, i.e., π∗ ∈ argmaxπ∈Π V (π).

This setting assumes that the covariates in each round are sampled i.i.d. from some
fixed distribution; this implies that the environment in which we deploy the agent is
identical to the environment in which the training dataset was collected. Section 2
introduces a causal framework for multi-environment contextual bandits, a framework
that relaxes the i.i.d. assumption.

5We assume knowledge of the initial policy πi to ease our presentation and focus our contribution on
the environmental shifts problem. Our theoretical results and algorithms remain unchanged even if
the initial policy is unknown and needs to be estimated from the offline data (see Appendix D.5 for
more details).
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2. A Causal Framework for Multi-environment Contextual
Bandits

Instead of having a fixed distribution PX,U over the covariates, we introduce a collection E
of environments such that, in each round, the covariates are drawn from an environment-
specific distribution PeX,U that depends on the environment e ∈ E in that round.

In practice, the agent only observes part of the environments Eobs ⊆ E and is expected
to generalize well to all environments in E including the unseen environments E \ Eobs.
To formalize the problem, we first introduce a framework that puts assumptions on how
environments change the distributions of X,U and R. Specifically, an environment e
can only perturb the distribution of the reward R through altering the distribution of
the observed covariates X. This constraint makes it possible to generalize information
learned from one set of environments to another. In this formulation – even though
the full conditional distribution of the reward Pπ,eR|X,U,A is assumed to be fixed across

environments – the observable distribution Pπ,eR|X,A after marginalizing out the unobserved

U may change from one environment to another (see, e.g., Fig. 1b)

Formally, the assumptions are constructed via an underlying class of SCMs indexed
by the environment and policy.6

Setting 1 (Multi-environment Contextual Bandits). Let X = X 1 × . . .× X d and U =
U1 × . . . × Up be products of metric spaces, A = {a1, . . . , ak} a discrete action space,
Π := {X −→ ∆(A)} the set of all policies, and E a collection of environments. For all
π ∈ Π and all e ∈ E we consider the following SCMs,

S(π, e) :


U := s(X,U, εU )

X := he(X,U, εX)

A := gπ(X, εA)

R := f(X,U,A, εR),

(1)

where (X,U,A,R) ∈ X × U × A × R, s, (he)e∈E , and f are measurable functions,
ε = (εU , εX , εA, εR) is a random vector with independent components and a distribution
Qε = QεU ⊗ QεX ⊗ QεA ⊗ QεR , and gπ and QεA are such that for all x ∈ X it holds
that gπ(x, εA) is a random variable on A with distribution π(x). Fig. 1a visualizes the
coarse-grained structure of this setting. U,X, and A should be thought of as random
vectors. Accordingly, he, for example, is a function with a multivariate output; it is a
short-hand notation in the sense that a component of he does not need to depend on all
X, for example. In particular, we assume that the graph G (defined below) corresponding
to the SCMs is acyclic, see Fig. 1b and 1c for an example.

6Readers familiar with the standard notion of SCMs may think about an SCM with a source node E.
S(π, e) then corresponds to an intervention on the action variable (change of policy) and on some
of the observed covariates variables (change of environment). Here, we consider fixed environments,
so that we do not have to consider them as random draws from an underlying distribution; see also
Dawid [2002].
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We assume there exists a probability measure µ on X × U × A × R such that for all
π ∈ Π and all e ∈ E the SCM S(π, e) induces a unique distribution Pπ,e over (X,U,A,R)
(see Bongers et al. [2021] for details) which is dominated by µ and has full support on
X. We denote the corresponding density by pπ,e and the corresponding expectations by
Eπ,e. Whenever a probability, density, or expectation does not depend on π, we omit π
and write Ee[X] rather than Eπ,e[X], for example.

Some remarks regarding Setting 1 are in order: (1) We only use the SCMs as a flexible
way of modeling the changes in the joint distribution with respect to the environment
e and the policy π. In particular, we do not use it to model any further intervention
distributions that do not correspond to a change of policy or environment. (2) In practice,
the precise form of the SCMs is unknown. Indeed, we will neither assume knowledge
of the structural equations nor complete knowledge of the graph structure, except that
the constraints induced by (1) hold. (3) The assumption of a dominating measure for
all environments ensures that we can always assume the existence of densities while
also switching across environments. In particular, this avoids any measure-theoretic
difficulties regarding conditional distributions. (4) The assumption that the induced
distributions over X have full support in all environments ensures that the generalization
problem when moving from Eobs to E does not involve any extrapolation. Additionally, it
ensures that conditional expectations such as Eπ,e[R | X = x] can be uniquely defined for
all x ∈ X as integrals of the conditional densities. (5) The environments are modelled
fixed (and not random). However, we could also treat the environments as random
variables which can be considered a special case of the fixed-environment setting (see
Appendix D.4). (6) The assumption that U is not affected by the environments is
necessary for the existence of a d-invariant set (Definition 3). If the assumption is
violated, there is no d-invariant set.

We now introduce the graph G over the variables (X1, . . . , Xd, U1, . . . , Up, A,R) that
visualizes the structure of the SCMs S(π, e) (for all π ∈ Π and e ∈ E). More precisely, G
is constructed as follows: Each coordinate of the variables (X,U,A,R) corresponds to a
node. The nodes are connected according to the structural assignments, that is, we draw
a directed edge from a variable B to a variable C if, for at least one environment e ∈ E ,
the variable B appears on the right-hand side of the structural assignment of variable
C (see Fig. 1b for an example). Let I ⊆ {1, . . . , d} index the variables Xj for which
the structural assignment Xj := hje(X,U, εX) in (1) varies with e, i.e., where there exist
e, f ∈ E such that hje ̸= hjf . The environments E correspond to perturbations on variables

XI , which implies that for each e ∈ E the distribution Pπ,e(XI | U,X{1,...,d}\I) may vary.
We augment the graph with a square node e to represent the environments and draw
a directed edge from the node e to each of the perturbation targets XI . Furthermore,
we draw edges from all nodes in X to A and mark them with π (to represent their
dependence on the policy).

This graph G is assumed to be acyclic, that is, to not contain any directed cycles.
Some of the theoretical results require an additional assumption on the structure of the
graph G: there is no unobserved variable U that influences only the observed X but not
the reward R, see Assumption 1 below.
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Assumption 1. Let G be the graph of the SCMs in Setting 1. We assume that, for all
ℓ ∈ {1, . . . , p}, there must be an edge from U ℓ to R in G.

By the Markov condition, which holds in SCMs, the graph G defined above encodes
(conditional) independence statements, which we will see relate to invariance, through
the concept of d-separation. More precisely, the Markov condition states that any d-
separation statement in a graph implies conditional independence Pearl [2009], Lau-
ritzen et al. [1990], Peters et al. [2017]. Here, we refer to the standard definition of
d-separation when not distinguishing between the different types of nodes and denote
by ⊥⊥G a d-separation statement in a graph G. For completeness, we define d-separation
in Appendix D.1. In this work, however, the distribution and conditional dependencies
depend on the policy π, which motivates to consider graphs that change accordingly. For
any S ⊆ {1, . . . , d}, we therefore define GS to be the graph that is equal to G but only
has edges from XS to A (rather than from all X to A). For any π ∈ ΠS , the distribution
is then Markov with respect to GS , see Lemma D.1 in Appendix D.3.3.

We are now ready to define contextual bandits with multiple environments.

Definition 1 (Multi-environment Contextual Bandits). Assume Setting 1. In a multi-
environment contextual bandit setup, before the beginning of each round, the system
is in an environment e ∈ E Then, the system generates a covariate vector (X,U) and
reveals only the observable X and the environment label e to the agent. Based on the
observed covariates X, the agent selects an action A according to the policy π : X −→
∆(A). The agent then receives a reward R, depending on the chosen action A and on
both the observed and unobserved covariates (X,U). More precisely, we assume for
all i ∈ {1, . . . , n} that (Xi, Ui, Ai, Ri) are sampled independently according to Pπi,eiX,U,A,R

(see Setting 1). The training data contains data from environments in Eobs. When∣∣Eobs∣∣ = |E| = 1, the setup reduces to a standard contextual bandit setup.

In the multi-environment contextual bandit setup, the covariates on different rounds
are not identically distributed due to changes in the environments. We can thus use
this framework to model situations, where the test environments differ from training
environments. We illustrate this setting with the following example, which we will refer
back to several times throughout the paper.

Example 1 (Linear Confounded Multi-environment Contextual Bandits). Consider a
linear multi-environment contextual bandit with the following underlying SCMs

S(π, e) :



U := εU

X1 := γeU + εX1

X2 := αe + εX2

A := gπ(X
1, X2, εA)

R :=

{
β1X

2 + U + εR, if A = 0

β2X
2 − U + εR, if A = 1,
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where εR, εA, εX1 , εX2 are jointly independent noise variables with zero mean, γe, αe ∈ R
for all e ∈ E, β1, β2 ∈ R, and A = {0, 1}. Fig. 1b depicts the induced graph G. In
this example, the environments influence the observed covariates in two ways: (a) they
change the mean of X2 via αe and (b) they change the conditional mean of X1 given U via
γe, while the rest of the components remain fixed across different environments. Here,
the environment-specific coefficient γe modifies the correlation between the observable
X1 and the unobserved variable U , and consequently between X1 and the reward R.
Thus, an agent that uses information from X1 to predict the reward R in the training
environments may fail to generalize to other environments. To see this, consider a
training environment e = 1 and a test environment e = 2 and let γ1 = 1, γ2 = −1 be the
environment-specific coefficients in the training and test environment, respectively. In
the training environment, we have a large positive correlation between X1 and U , and
consequently the agent will learn that the action A = 0 yields a higher expected reward
when observing a positive value of X1 (and A = 1 otherwise). However, the correlation
between X1 and U becomes negative (and large in absolute value) in the test environment,
which means that the policy that the agent learned from the training environment will
now be harmful. We will see in Section 3 that a policy that depends on a d-invariant set
({X2} in this example) does not suffer from this generalization problem and is guaranteed
to generalize across different environments.

A similar structure appears in the medical example discussed in Section 6. There, A
is the dose of a drug, R is a response variable, X are observed patient features and U are
unobserved genetic factors. The environment e is (a proxy of) the continent on which
the data was collected.

100



2. A Causal Framework for Multi-environment Contextual Bandits

X

U

e

A

R

π

(a) A summary of the
causal structure of
Setting 1 (with dashed
edge) or Setting 2
(without dashed edge).
In both cases the causal
relations between X-
and U -covariates are
not shown explicitly.

π

π

X1

X2

U

e A R

(b) Graph G induced by
the data-generating
process in Example 1.
G{2} is the graph ob-
tained when removing
the edge X1 → A.
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(c) Graph G induced by
a more complicated
data-generating pro-
cess than in (b).

Figure 1.: Graphs summarizing different data-generating models. White and grey circles
represent observed and hidden variables, respectively. (a) A summary graph
depicting the causal structure. If the dashed edge from U to X is included
it corresponds to Setting 1 otherwise to Setting 2. (b) The graph induced by
the model in Example 1. Here, {X2} is d-invariant, because R ⊥⊥G{2} e | XS ,
see Definition 3. Any set S that contains X1 is not d-invariant because of the
open path e → X1 ← U → R. In this example, a policy depending on X1

and X2 may perform worse in a test environment than (a d-invariant) policy
depending only on X2. In practice, we do not assume that the structure is
known but test for invariances (11) from data. This requires testing under
distributional shifts: even though {X2} is d-invariant, (11) may not hold for a
policy π that depends on X1 and X2 because of the path e→ X1 → A→ R.
(c) A more complex model, where the environments do not act on all X
variables. Although U has an edge into X3, the subset {X2, X3} is still a d-
invariant set – there is no edge from e to X3. Again, every subset of variables
containing X1 is not d-invariant. (In fact, in examples (b) and (c), X1 is a
strongly non-d-invariant variable, see Definition 5, and cannot be part of a
d-invariant set.)
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2.1. Distributionally robust policies

To evaluate the performance of an agent across different environments, we define a policy
value that takes into account environments. In particular, we focus on the worst-case
performance of an agent across environments.

Definition 2 (Robust Policy Value). For a fixed policy π ∈ Π, and a set of environments
E , we define the robust policy value V E(π) ∈ R as the worst-case expected reward

V E(π) := inf
e∈E

Eπ,e
[
R
]
. (2)

Intuitively, an agent that maximizes the robust policy value is expected to perform well
(relative to other agents) in the most harmful environment. The idea of optimizing worst-
case performance has been suggested in the reinforcement learning literature Garcıa and
Fernández [2015], Amodei et al. [2016] to ensure safe behavior of an agent and prevent
catastrophic events and has also been used to formulate adversarial training Bai et al.
[2021] as well as out-of-distribution generalization Ye et al. [2021].
We now assume that, for several observed environments, we are given an i.i.d. sam-

ple from a multi-environment contextual bandit, see Definition 1. More precisely, we
assume to observe D := {(Xi, Ai, Ri, πi(Xi), ei)}ni=1, where ei ∈ Eobs, Ai ∼ πi(Xi),

(Xi, Ai, Ri)
ind.∼ Pπi,eiX,A,R for all i ∈ {1, . . . , n}. Using only D, we aim to solve the following

maximin problem7:
argmax
π∈Π

V E(π). (3)

If we do not observe all the environments, solving the maximin problem (3) is impossible
without further assumptions. A baseline approach to this problem is to pool the data
from all training environments and learn a policy that maximizes the policy value ignor-
ing the environment structure. We will see in Section 2.2 that this is indeed optimal if
all relevant covariates have been observed. If, however, hidden confounding is present,
the pooling approach does not necessarily yield an optimal policy and the learned pol-
icy may fail to generalize to unseen test environments. In Section 3, we introduce the
notion of policy d-invariance. We will show that under certain assumptions, solving the
maximin problem (3) amounts to finding an optimal d-invariant policy which is then
guaranteed to generalize across environments.

2.2. Policy learning without unobserved confounders

This section illustrates a setting in which it is not beneficial to explicitly take into account
the environment structure. Here, simply pooling the data from all training environments
and applying a standard value-based policy learning algorithm yields a solution to (3).
This result sheds light on the role of causality and invariance in contextual bandits and
reinforcement learning. The following setting is a modification of Setting 1 without any
unobserved confounders in the causal model.
7The maximum can always be attained when Π is an unrestricted policy class and takes a form similar
to (4).
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Setting 2 (Unconfounded Multi-environment Contextual Bandits). Assume the same
setup as in Setting 1 but assume that the SCMs are given by

S(π, e) :


U := s(X,U, εU )

X := he(X, εX)

A := gπ(X, εA)

R := f(X,U,A, εR).

Fig. 1a (with the dashed line from U to X excluded) summarizes the causal structure of
Setting 2.

The following theorem shows that in Setting 2 there is a population optimal policy
that does not depend on the environments. In particular, this optimal policy can be
learned from data obtained in any observed subset of the environments Eobs ⊆ E .

Theorem 1. Assume Setting 2, let Eobs ⊆ E be a non-empty subset of observed envi-
ronments. Let π∗ ∈ Π be a policy such that for all x ∈ X and all a ∈ A

π∗(a|x) > 0 =⇒ a ∈ argmax
a′∈A

QEobs
(x, a′), (4)

where QEobs
(x, a) := 1

|Eobs|
∑

e∈Eobs Eπa,e[R | X = x] and πa is the policy that always

selects a 8. Then,
π∗ ∈ argmax

π∈Π
V E(π),

i.e., π∗ is a solution to the maximin problem (3).

Proof. See Appendix D.3.1.

This type of generalization is well-established in the context of regression. In the
contextual bandit setting the value function Eπ,e[R] changes across environments, so
instead one needs to use that the Q-function Qe(x, a) = Eπa,e[R | X = x] does not change
across environments e ∈ E and then argue that this implies that the optimal policy
remains the same in each environment. Theorem 1 suggests that we can estimate an
optimal policy by pooling the data from training environments and applying a standard
value-based policy learning algorithm. This is indeed the case, see Appendix D.2 for the
consistency result.

Theorem 1 implies that on the population level without hidden confounders, we do
not benefit from taking into account the environment structure. However, the following
section shows that this is different when hidden confounders exist.

8The conditional expectation under πa can also be written in terms of do-notationPearl [2009], that is,
∀a ∈ A, x ∈ X : Eπa,e[R | X = x] = Ee[R | X = x, do(A = a)]. We use the πa notation to make our
presentation consistent.
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3. Invariant Policies for Distributional Robustness

We now consider the setting with hidden confounders (Setting 1). This section introduces
d-invariant sets and policies, and shows that, under Setting 1, the maximin problem (3)
can be reduced to finding an optimal d-invariant policy given certain assumptions, see
Proposition 1 and Theorem 2.

We first define d-invariant sets (d for d-separation)9.

Definition 3 (d-invariant Sets). A subset S ⊆ {1, . . . , d} is said to be d-invariant if the
following d-separation statement holds:

R ⊥⊥GS e | XS . (5)

Next, we define d-invariant policies. For all subsets S ⊆ {1, . . . , d}, let us denote the
set of all policies that depend only on XS by ΠS := {π ∈ Π | ∃πS : X S → ∆(A) s.t. ∀x ∈
X , π(·|x) = πS(·|xS)}.

Definition 4 (d-invariant Policies). A policy π is said to be d-invariant with respect to
a subset S ⊆ {1, . . . , d} if S is a d-invariant set and π ∈ ΠS .

We denote by Sinv := {S ⊆ {1, . . . , d} | S is d-invariant} the collection of all d-
invariant sets and Πinv := {π ∈ Π | ∃S s.t. π is d-invariant w.r.t. S} the collection of
d-invariant policies.

d-invariant sets and policies play a central role in solving the distributionally robust
objective (3) as illustrated in Proposition 1 and Theorem 2 below. We recall that only
part of the environments Eobs ⊆ E are observed. For now, we assume to have access to
the set of d-invariant policies Πinv. Section 4 discusses when and how we can learn Πinv

from the observed data.

Because of the hidden confounding, the conditional mean Eπ,e[R | X = x] is, unlike in
Section 2.2, not ensured to be stable over the environments. Nevertheless, a d-invariant
policy ensures that parts of the conditional mean are unchanged across environments,
as shown in the lemma below.

Lemma 1. Let Sinv be a d-invariant set and πinv ∈ ΠS
inv
. It holds for all e, f ∈ E and

x ∈ X Sinv
that

Eπ
inv,e

[
R | XSinv

= x
]
= Eπ

inv,f
[
R | XSinv

= x
]
. (6)

Proof. See Appendix D.3.3.

This implies the following proposition.

9We use the term ‘d-invariant’ to emphasize that the definition is based on the d-separation statement
(6) and involves the unseen environments. In related contexts, sometimes the term ‘generalizing’ is
used Pfister et al. [2019a]. Section 4 introduces the invariance hypothesis (11) that is testable from
the observed data and discusses the assumptions required to connect the two conditions.
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Proposition 1. Assume Setting 1 and Assumption 1, and that Πinv is non-empty. Con-
sider an optimal d-invariant policy π∗ that maximizes the pooled policy value under the
observed environments, that is, π∗ ∈ argmaxπ∈Πinv

∑
e∈Eobs Eπ,e[R]. It then holds that

∀π ∈ Πinv : V E(π) ≤ V E(π∗). (7)

Proof. See Appendix D.3.5.

The key argument in the proof of Proposition 1 is the identifiability of the optimal
d-invariant set. Assumption 1 is necessary for this identifiablity: if the assumption is
violated and there are multiple d-invariant sets, one can, in general, not say which of
those d-invariant sets is optimal with respect to all environments E (see Appendix D.11
for a more detailed discussion). While, without Assumption 1, the d-invariant set that is
most predictive on Eobs is no longer guaranteed to be worst-case optimal, it still satisfies
a weaker guarantee shown in Item 2(i) below.

Proposition 1 shows that a d-invariant policy that is optimal under the observed
environments outperforms all other d-invariant policies, even on the test environments.
But what about other policies that are not d-invariant? We will see in Theorem 2 that
under certain assumptions on the set E of environments, they cannot perform better
than the above π∗ either.
We now outline the assumptions on the set E of environments facilitating this result.

As seen in Example 1, the crucial difference between a d-invariant policy π{2} (a policy
that only depends on X2) and a non-d-invariant policy π{1,2} (a policy that depends
on both X1 and X2) is that π{1,2} can use information related to variables confounded
with the reward (X1 in this example) that may change across environments. In cases
where the environments do not change the system ‘too strongly’ it can therefore happen
that using such information is beneficial across all environments. In practice, however,
one might not know how strong the test environments can change the system in which
case such information can become useless or even harmful. Intuitively, this happens, for
example, if environments exist where the non-d-invariant confounded variables no longer
contain any information about the reward. Formally, we make the following definition.

Definition 5 (Confounding Removing Environments). For j ∈ {1, . . . , d}, we say that
the variable Xj is strongly non-d-invariant if for all S ⊆ {1, . . . , d}

R ̸⊥⊥GS e | XS∪{j}.

An environment e ∈ E is said to be a confounding removing environment if for all π ∈ Π
it holds that

Xj ⊥⊥Gπ,e U, (8)

for all strongly non-d-invariant variables Xj , where Gπ,e is the graph induced by the
SCM S(π, e).

The two d-separation statements in Definition 5 are in different graphs: Both graphs
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GS and Gπ,e are subgraphs of G. The distinction that is important for this definition is
that while GS contains all edges between the covariates (X,U) that appear in at least one
environment, the graph Gπ,e only contains the edges that are active in the environment
e ∈ E . Furthermore, to provide more understanding of the strongly non-d-invariant
variables, we characterize a graphical criterion for such variables in Appendix D.3.4.
There we show that the strongly non-d-invariant variables are the variables that are
directly affected by e and are confounded with R through U , and descendants of such
variables. These strongly non-d-invariant variables should not be included if one wants to
find d-invariant sets. For example in Fig. 1c, the variable X1 is strongly non-d-invariant
and the d-invariant sets {X2} and {X2, X3} are the sets that do not contain X1.

To give an example of a confounding removing environment, consider the graph GS
in Example 1 (see Fig. 1b). For any subset S where {1} ⊆ S the path e → X1 ←
U → R is open, and therefore X1 is strongly non-d-invariant. A confounding removing
environment is an environment that removes the incoming edge from U to X1. In such
an environment, the variable X1 does not contain any information about the reward R.
A similar notion of confounding removing environments is used in Christiansen et al.
[2021] in the setting of prediction.

The existence of confounding removing environments implies that at least in some of
the environments it is impossible to benefit from a non-d-invariant policy. To ensure that
one cannot benefit in the worst-case, we therefore introduce the following assumption.

Assumption 2 (Strong Environments). For all e ∈ E, there exists f ∈ E such that f is

a confounding removing environment and it holds that PeX = PfX .

To give an example, let I ⊆ {1, . . . , d} index the variables Xj for which there is an
edge from e to Xj in the graph G. If the set E of environments consists of arbitrary
interventions on XI , then Assumption 2 is satisfied.

Theorem 2. Assume Setting 1 and that Πinv is non-empty. Let π∗ be an optimal d-
invariant policy that maximizes the pooled policy value under the observed environments,
π∗ ∈ argmaxπ∈Πinv

∑
e∈Eobs Eπ,e[R]. We then have the following statements.

(i) We have for all e ∈ E that

max
a∈A

Eπa,e[R] ≤ Eπ
∗,e[R]. (9)

(ii) If Assumptions 1 and 2 hold, we have

∀π ∈ Π : V E(π) ≤ V E(π∗). (10)

Proof. See Appendix D.3.6.

The first statement of Theorem 2 implies that in all environments the expected reward
under an optimal d-invariant policy is larger than any optimal context-free policy. In
other words, the information gained from the d-invariant set of covariates (the set that

106



4. Learning an Optimal Invariant Policy

π∗ depends on) is generalizable across environments in the sense that it is not harmful in
any environment. The second statement states that if the environments E are sufficiently
strong (Assumption 2) then an optimal d-invariant policy π∗ maximizes the robust policy
value V E .

The above results motivate a procedure to solve the distributionally robust objec-
tive (3). Proposition 1 implies that if we consider a policy class containing only the
d-invariant policies, the maximin problem reduces to a standard policy optimization
problem. Theorem 2 shows that an optimal d-invariant policy, under the assumption
of strong environments, is a solution to the distributionally robust objective. In other
words, given a training dataset D, we seek to operationalize the following two steps: (a)
find the set Πinv of all d-invariant policies (Section 4.1 discusses under which assump-

tions this is possible), (b) use offline policy optimization to solve argmaxπ∈Πinv
V Eobs

(π)
on the data set D.

One of the key components of the proposed method is to test whether a policy π,
which may be different from the policy generating the data, is d-invariant using data
obtained from the observed environments Eobs. The following section proposes such a
test, discusses the assumptions required to learn the set of d-invariant policies, and gives
a detailed description of the whole procedure.

4. Learning an Optimal Invariant Policy

4.1. Learning invariant sets

Our theoretical results (Proposition 1 and Theorem 2) in the previous section assume
that the set of all d-invariant policies Πinv is given. We now turn to the task of learning
Πinv which boils down to searching for the collection of all d-invariant sets Sinv using
data obtained from the observed environments Eobs. To this end, we first define, for all
S ⊆ {1, . . . , d}, π ∈ Π and E ′ ⊆ E , the null hypothesis

H0(S, π, E ′) : Pπ,eR|XS is the same for all e ∈ E ′. (11)

In the case E ′ = Eobs, we refer to H0(S, π, Eobs) as Eobs-invariance (which does not
consider the unseen environments). Furthermore, we call a set S invariant if there
exists π ∈ ΠS such that H0(S, π, Eobs) holds and a policy π invariant with respect to S
if π ∈ ΠS and S is invariant. We now state our core assumptions that make learning
possible.

Assumption 3. For all S ⊆ {1, . . . , d}, the following holds:

(i) ∃π ∈ ΠS : H0(S, π, E) true =⇒ R ⊥⊥GS e | XS

(ii) ∀π ∈ ΠS : H0(S, π, Eobs) true =⇒ H0(S, π, E) true

Item 3(i) connects the conditional distribution invariance used in the null hypothe-
sis (11) to the d-invariance condition given in (5) (The reversed implication follows by
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Lemma D.1, Appendix D.3.3.) This assumption is a special case of the faithfulness as-
sumption Pearl [2009] which is a fundamental assumption in causal discovery methods
(e.g., Glymour et al. [2019]) that, in linear SCMs, holds with probability one if the linear
coefficients are drawn from a distribution that is absolutely continuous with respect to
Lebesgue measure Meek [1995], Spirtes et al. [2000]. Item 3(ii) ensures that any invari-
ance found in the observed environments Eobs can be generalized to all environments E .
Implicitly, it requires that the observed environments are sufficiently heterogeneous10.
This type of assumption is also at the core of other invariance-based methods Rojas-
Carulla et al. [2018], Magliacane et al. [2018], Arjovsky et al. [2019], Pfister et al. [2021].

At first glance, Item 3(i) suggests that we have to check the hypothesis H0(S, π, E)
for all π ∈ ΠS to conclude whether or not S is d-invariant. Fortunately, as shown in
Proposition 2, we actually only need to check the null hypothesis for a single π ∈ ΠS .

Proposition 2. Assume Setting 1 and Assumption 3. Then, for all subsets S ⊆
{1, . . . , d} and for all policies π, π̃ ∈ ΠS, it holds that

H0(S, π, E) true ⇐⇒ H0(S, π̃, E) true. (12)

Proof. See Appendix D.3.7.

Assumption 3 and Proposition 2 make the learning problem tractable. The task of
testing whether a set S is d-invariant boils down to testing the Eobs-invariance hypothesis
H0(S, π, Eobs) for a single π ∈ ΠS .

Testing H0(S, π, Eobs) for π ∈ ΠS by directly checking for a change in the conditional
distributions across environments in the observed data is, however, not in general pos-
sible. This is because the observed data may have been generated based on an initial
policy π0 that does not satisfy π0 ∈ ΠS . It can therefore happen that H0(S, π, Eobs) is
true but H0(S, π

0, Eobs) is not.
We illustrate this point using the example graph G given in Fig. 1b. For a policy

depending only on S = {2} the environment e is d-separated from R given X{2} in G{2},
which implies that {2} is d-invariant, and in particular that H0({2}, π{2}, Eobs) is true
by the Markov property (see Lemma D.1 in Appendix D.3.3). However, if the initial
policy π0 depends on both X1 and X2, then the path e → X1 → A → R in Fig. 1b is
open, which implies, by Assumption 3, that H0({2}, π{1,2}, Eobs) is not true. 11

Thus, in general, we cannot directly test the Eobs-invariance hypothesis of a set S by
using the observed data that were generated by the initial policy. Instead, we need to
test H0(S, π

S , Eobs) for a policy πS ∈ ΠS that is different from the data-generating policy
π0 (by Proposition 2 it suffices to test a single policy). As we detail in the following
section, we can do so by applying an off-policy test for invariance by resampling the data
to mimic the policy πS .

10If the observed environments are identical, we clearly would not be able to find any d-invariant set
and policy from the observed data. Item 3(ii) prevents such cases.

11In the same example, when conditioning on {1, 2}, the path e → X1 ← U → R is also open, which
shows that S = {1, 2} is not a d-invariant set.
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4.2. Testing invariance under distributional shifts

Consider a set S ⊆ {1, . . . , d} and a test policy πS ∈ ΠS . To test the hypothesis
H0(S, π

S , Eobs), we apply the off-policy test from Thams et al. [2021], which draws a
target sample from πS by resampling the offline data – drawn from π0 – and then
tests the invariance in this target sample. More formally, let Eobs := {e1, . . . , eL}
and suppose that for every ej ∈ Eobs a data set Dej consisting of ne observations

Dej = {(Xej
i , A

ej
i , R

ej
i , π

0(A
ej
i |X

ej
i ))}neji=1 is available. For each environment ej , we draw

a weighted resample Dej ,π
S
of Dej using the weighted resampling procedure introduced

in Thams et al. [2021].12 We then apply an invariance test φS(De1,πS , . . . , DeL,π
S
) to the

resampled data, to test the Eobs-invariance hypothesis H0(S, π
S , Eobs). In Appendix D.5,

we provide details on the resampling scheme, that is, a formal definition of Dej ,π
S
and

show that the theoretical guarantees on the asymptotic level proved in Thams et al.
[2021] also extend to our application. We detail a concrete test φS in Section 4.5 below.

4.3. Algorithm for invariant policy learning

The previous sections discuss finding invariant subsets S. We now discuss how to employ
this in an algorithm that learns an optimal invariant policy. We assume that we are
given an off-policy optimization algorithm off\_opt that takes as input a sample D :=
(De1 , . . . , DeL) and a policy space Π, and returns an optimal policy π∗ and its estimated

expected reward Êπ
∗
(R).

Here, we present one choice of off\_opt that we use in the experimental section; our
approach can also be applied with other off-policy optimization algorithms. Given a
policy space ΠS , we consider an optimal policy of the form

πS(a | x) := 1
[
a = argmax

a′∈A
QS(x, a′)

]
, (13)

where QS(x, a) := 1
L

∑L
ℓ=1 E

πa,eℓ [R | XS = x] denotes the pooled conditional mean under
the policy that always selects an action a.

Let π0 be an initial policy generating the sample D. By our assumption in Setting 1,
the policy π0 depends only on the observed covariates X. We, therefore, have that for
all S ⊆ {1, . . . , d} the pooled conditional mean QS(x, a) is identifiable for all a ∈ A and
x ∈ X S . We propose to estimate QS by a weighted least squares approach

Q̂S := argmin
f∈FS

L∑
ℓ=1

neℓ∑
i=1

1

π0(Aeℓi | Xeℓ
i )

(f(Aeℓi , X
eℓ
i
S)−Reℓi )2,

where FS ⊆ {f : X S × A −→ R} is a class of functions. We then plug the estimate Q̂S

into (13) to obtain our (estimated) optimal policy.

If a subset S is found to be invariant, we can use off\_opt to learn an optimal policy

12Importance weighting is not applicable here because the test statistics of an invariance test cannot be
expressed in terms of weighted averages. See also the discussion in Thams et al. [2021].
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that uses S. Between all invariant subsets, we then select the one that has the highest
estimated expected reward. We summarize the overall procedure for learning an optimal
invariant policy, see Algorithm 1: The algorithm iterates over all subsets S ⊆ {1, . . . , d}
and checks the invariance condition using Algorithm 2 if one wants to use a known
fixed test policy or Algorithm D.2 (see Appendix D.8) if one wants to use a test policy
that optimizes the power of the invariance test, as described in Section 4.5.2. For each
iteration, if the set S is invariant, we learn an optimal policy πS

∗
within the policy

space ΠS and compute its estimated expected reward Êπ
S∗

(R) using off\_opt. Then,
the algorithm returns an optimal policy πS

∗
such that the estimated expected reward

Êπ
S∗

(R) is maximized. Lastly, the algorithm returns null if no invariant sets are found.

Algorithm 1 requires us to iterate over all subset S ⊆ {1, . . . , d} which may be com-
putationally intractable when d is large. We suggest two approaches for reducing the
computational complexity of the algorithm. First, one can use a variable screening
method (e.g., Lasso regression Tibshirani [1996]) to filter out the variables that are not
predictive of the reward. If an optimal invariant set is a subset of the Markov blanket
MB(R) of the reward, applying a variable screening step prior to Algorithm 1 would not
change the algorithm’s output on the population level (see Peters et al. [2016], Rojas-
Carulla et al. [2018], Pfister et al. [2021]). This approach is particularly efficient when
the Markov blanket is sparse, that is, |MB(R)| ≪ d.

Second, one may apply a greedy search instead of the exhaustive search in Algorithm 1.
More specifically, we suggest to follow the greedy search introduced in Rojas-Carulla
et al. [2018]. The greedy algorithm starts with an empty set Ŝ = ∅. For each iteration,
we search over the neighboring sets of the candidate set Ŝ, which are obtained by adding
or removing one predictor to or from Ŝ. If any of the neighboring sets are accepted
by the invaraince test, we select the one with the highest expected reward. If the test
rejects all the neighbors, we select a neighbor that yields the largest p-value of the test.

4.4. Learning causal ancestors under distributional shifts

Sections 4.1 and 4.2 discuss an approach to learn invariant sets from off-policy data.
The learned invariant sets are then used to find an optimal invariant policy as discussed
in Section 4.3. Besides learning an optimal invariant policy, one can further use the
proposed off-policy invariance test to analyze the causal structure. More specifically, the
learned invariant sets allow us to look for potential observed causal ancestors AN(R)13

of R by taking the intersection of the accepted sets. This approach is similar to invariant
causal prediction Peters et al. [2016], except that here, we employ the off-policy invari-
ance test to account for the distributional shift between the initial and the test policies,
and allow for hidden variables.

Now we outline a method for finding AN(R) from the offline data obtained from
multiple environments De1 , . . . , DeL . For all ej ∈ Eobs and S ∈ {1, . . . , d}, let us denote
by Dej ,π

S
a weighted resample of Dej , and ψS an invariance test for the Eobs-invariance

13Formally, AN(R) ⊆ {1, . . . , d} is defined as the set of indicies j for which there is a directed path from
Xj to R in G.
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Algorithm 1 Learning an optimal invariant policy

Input: data D = (De1 , . . . , DeL), off-policy optimization function off\_opt,
test function pv, initial policy π0, resampling size m := (m1, . . . ,mL) =
(
√
|De1 |, . . . ,

√
|DeL |)

1: initialize maximum reward maxR ← −∞
2: initialize optimal invariant policy π∗inv ← null

3: for S ∈ P({1, . . . , d}) do ▷ loop over all subsets
4: if πS ̸= null then
5: is inv← test inv(D,πS , pv, S,m) ▷ see Algorithm 2
6: else
7: is inv← test inv opt π(D, pv, S,m) ▷ (see Algorithm D.2 in

Appendix D.8)

8: if is inv then ▷ update best invariant set

9: π∗S , Ê
π∗
S (R)← off opt(D,ΠS)

10: if maxR < Êπ
∗
S (R) then

11: maxR← Êπ
∗
S (R)

12: π∗inv ← π∗S
Output: optimal invariant policy π∗inv

Algorithm 2 Testing the invariance of a set S with given test policy πS

Function: test inv(data D = (De1 , . . . , DeL), test policy πS , function pv yield-
ing the p-value of an invariance test, target set S, resampling size (m1, . . . ,mL) =
(
√
|De1 |, . . . ,

√
|DeL |), significance level α ▷ resampling according to πS

1: for e = e1, . . . , eL do
2: for i = 1 to |De| do

3: compute weights: rei ←
πS(aei | xe,Si )

π0(aei | xei )
4: draw De,πS := (De

i1
, . . . , De

ime
) from De with prob. ∝∏me

ℓ=1 r
e
iℓ

5: DπS ← (De1,πS , . . . , DeL,π
S
) ▷ verifying invariance condition

6: is invariant← pv(DπS ) ≥ α
Return is invariant

hypothesis H0(S, π
S , Eobs) as discussed in Section 4.2 and Appendix D.5. For ease of

presentation, we assume that ne1 = · · · = neL =: n. Then, we propose to estimate the
causal ancestors of R by

ŜnAN :=
⋂

S:ψS(De1,π
S
,...,DeL,π

S
)=0

S. (14)

We detail the whole procedure in Algorithm D.1 in Appendix D.6. Proposition 3 shows
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that this method controls the probability of wrongly selecting an incorrect variable.

Proposition 3. Assume Setting 1, and that Sinv is non-empty. Let ŜnAN be the estimated
set of causal ancestors given in (14) and assume that the invariance tests ψS used in
(14) have pointwise asymptotic level α ∈ (0, 1). It then holds that

lim inf
n→∞

P(ŜnAN ⊆ AN(R)) ≥ 1− α. (15)

Proof. See Appendix D.3.8.

4.5. Specifications of the target test

The resampling procedure detailed in Algorithm 2 requires a test function for the Eobs-
invariance null hypothesis that has power against the alternatives. We discuss one such
test in Section 4.5.1 below. Moreover, in Sections 4.5.2 and 4.5.3, we discuss two choices
of the test policy that aim to improve the power of the resampling test.

4.5.1. Invariant residual distribution test

We now detail a test φS to test Eobs-invariance in the target sample. We first pool data
from all environments into one data set and estimate the conditional EπS [R | XS ] using
any prediction method (such as linear regression or a neural network). We then test

whether the residuals R − EπS [R | XS ] are equally distributed across the environments
e ∈ E , i.e., we split the sample back into L groups (corresponding to the environments)
and test whether the residuals in these groups are equally distributed (see also Peters
et al. [2016], for example). We then define φS to be the composition of these operations,
that is, φS returns 1 if the test for equal distribution of the residuals is rejected.

In the simulation and the warfarin case study (Section 5 and 6), we use the Kruskal-
Wallis test Kruskal and Wallis [1952] to test whether the residuals have the same mean
across environments; this test holds pointwise asymptotic level for all α ∈ (0, 1) (see
Proposition D.2 in Appendix D.5). To obtain power against more alternatives, one
could also use other tests, such as a two-sample kernel test with maximum mean dis-
crepancy Gretton et al. [2012] and then correct for the multiple testing using Bonferroni-
corrections (see also Rojas-Carulla et al. [2018], for example).

4.5.2. Optimizing the test policy for power

To check whether a subset S is invariant, we only need to test the Eobs-invariance for
a single policy π ∈ ΠS (see Proposition 2). This provides us with a degree of freedom
that we can leverage. Intuitively, the non-invariance may be more easily detectable in
some test policies compared to others. We can therefore try to find a policy that gives
us the strongest signal for detecting non-invariance. We maximize the power of the test
by minimizing the p-value of the test. In a population setting, this would return small
p-values for non-invariant sets, whereas for invariant sets one would not be able to make
the p-values arbitrarily small, since they are uniformly distributed. In a finite sample
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setting, this type of power optimization can lead to overfitting (which would break any
level guarantees); to avoid this we use sample splitting.

As presented in Section 4.2, for each environment e, we obtain a target sample De,πS

from a test policy πS by resampling the sample De that was generated under the policy
π0, and then test Eobs-invariance in the target sample. The probabilities for obtaining
the reweighted sample conditioned on the original sample are given by the importance
weights, see Appendix D.5. Here, we optimize the ability to detect non-invariance over
a parameterized subclass of ΠS ,

ΠΘ
S := {πSθ | θ ∈ Θ},

where Θ =×a∈AR|S| and πSθ is a linear softmax policy, i.e., for all xS ∈ R|S| and a ∈ A:

πSθ (a|xS) =
exp

(
θ⊤a x

S
)∑

a′ exp
(
θ⊤a′x

S
) .

This is the parameterization we chose in the experiments below, but other choices work,
too.

To check for the Eobs-invariance condition of a subset S, the idea is then to find a
policy πSθ ∈ ΠΘ

S such that, in expectation, the test power is maximized, i.e., we need to
solve the following optimization problem:

argmax
θ∈Θ

E
[
pw(DπSθ ) | D

]
,

where D := (De1 , . . . , DeL) is all the observed data and pw is a function that takes as

input the reweighted sample DπSθ and outputs the power of the test. Since we condition
onD, the expectation is only with respect to the resampling ofDπSθ . For many invariance
tests, the test power pw(DπSθ ) cannot be directly obtained, but one can minimize the
p-value of the test instead. This motivates the objective function

argmin
θ∈Θ

E
[
pv(DπSθ ) | D

]
, (16)

where pv is a function that takes as input the reweighted sample DπSθ and outputs the
p-value of the test. We then employ gradient-based optimization algorithms to solve the
above optimization problem, where the gradient is derived using the log-derivative. More
precisely, let J(θ) := E

[
pv(DπSθ ) | D

]
be our objective function which now depends on
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the parameters θ. The gradient of the objective function J(θ) can be derived as follows

∇J(θ) = ∇E
[
pv(DπSθ ) | D

]
= ∇

∑
d

P(DπSθ = d | D)pv(d)

=
∑
d

P(DπSθ = d | D)∇ logP(DπSθ = d | D)pv(d)

= E
[
∇ logP(DπSθ | D)pv(DπSθ ) | D

]
.

This expectation can be estimated by drawing repeated resamples DπSθ , where P(DπSθ |
D) is determined by the resampling weights. In practice, we apply stochastic gradient
descent Zhang [2004], i.e., at each iteration of the optimization we compute the gradient
only from a single resample. As we argue in Appendix D.7, we can further speed up the
optimization process substantially by a minor modification to the resampling weights,
corresponding to sampling with replacement instead of distinct weights.

The optimization procedure yields a policy π∗θ that approximately satisfies π∗θ ∈
argminπθ∈ΠS J(θ). We can then use π∗θ as a test policy for testing the invariance of
S. Lastly, to preserve the level of the statistical test, we split the original sample into
two halves, perform the power optimization procedure on one half, and verify the in-
variance condition on the other half. The algorithm is presented in Algorithm D.2 in
Appendix D.8. We only use the approximation of the resampling weights for the power
optimization and use the actual resampling weights for the final resampling, so the level
guarantee of Proposition D.2 in Appendix D.5 still holds.

4.5.3. Using a uniform target distribution

Since the procedure in Section 4.5.2 may be computationally challenging, especially
if the algorithm is repeated many times as in Section 5. A computationally simpler
approach is for each a ∈ A to test invariance under the test policy πa ∈ Π∅, which
always chooses the action a, and then combine the resulting p-values using Bonferroni
corrections Dunn [1961]. Beyond computational simplicity, this has an additional benefit:
Across environments there may be a cancelling effect of the difference in means due to
different dependencies on the action in each environment. By testing the invariance of
the conditional mean of the reward in each action, such cancelling effects are accounted
for.

5. Simulation Experiments

To verify our theoretical findings we perform two simulation experiments, where we
consider a linear multi-environment contextual bandit setting similar to Example 1 with
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the following SCM S(π, e) (which induces the graph shown in Fig. 1b):

U := εU , X1 := γeU + εX1 , X2 := αe + εX2 ,

A ∼ π(A | X1, X2), R := βA,1X
2 + βA,2U + εR,

where εU , εX1 , εX2 , εR ∼ N (0, 1), A takes values in the space {a1, . . . , aL}, γe and αe
are parameters that depend on the environment e, and βa1,1, . . . , βaL,1, βa1,2, . . . , βaL,2
are parameters that are fixed across environments. Appendix D.9.1 contains details on
how the parameters are chosen in the experiments. The code for all the experiments is
available at https://github.com/sorawitj/invariant-policy-learning.

5.1. Generalization and invariance

We first consider an oracle setting, where we know a priori which subsets are invariant.
From our data-generating process, it follows that {X2} is the only invariant set. We
then compare an invariant policy which depends only on X2 with a policy that uses both
X1 and X2. We train both policies on a data set of size 10′000 obtained from multiple
training environments under a fixed initial policy π0 (see Appendix D.9.2). In both
cases, we employ a weighted least squares to estimate the expected reward E[R | A,XS ],
where S is the subset that the policy uses. The policy then takes a greedy action w.r.t.
the estimated expected reward, i.e., argmaxa Ê[R | A = a,XS ] (see Section 4.3). Then
we evaluate both policies on multiple unseen environments and compute the regret with
respect to the policy that is optimal in each of the unseen environments. Fig. 2 shows the
results. Each data point represents the evaluation on an unseen environment. The y-axes
show the regret value and the x-axes display the distance from each unseen environment
to the training environments (the distance is computed as the ℓ2-distance between the
average value of the pairs (γetr , αetr) in the training environments and the pair (γe, αe)
in the unseen test environment). The plot shows that the worst-case behavior of the
invariant policy is smaller than the non-invariant one. In particular, for environments
different from the training environments the gain can be significant. This empirically
supports our result of Theorem 2.

5.2. Learning invariant policies

In practice, we do not know in advance which sets are invariant. We now aim to find
an invariant policy from a data set generated under an initial policy π0 which takes
both X1 and X2 as input. To do so, we employ the method proposed in Section 4.2
for testing invariance under distributional shifts. More precisely, we generate a data
set of size n from multiple training environments under the initial policy π0 and apply
the off-policy invariance test (see Section 4.5) to verify the invariance property of each
subset in {∅, {X1}, {X2}, {X1, X2}}. We repeat the experiment 500 times and plot the
acceptance rates at various sample sizes (n = 1′000, 3′000, 9′000, 27′000, 81′000) (these
numbers denote the total sample size, that is, number of observations, summed over all
environments). The resulting acceptance rates are shown in Fig. 3. Our method yields
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Figure 2.: The generalization performance (in terms of regret) of the policy based on
an invariant set {X2} and the policy based on a non-invariant set {X1, X2}.
The left and the right plot show the results when the training environments
consist of two and six different environments, respectively. In both cases, the
worst-case regret for the invariant policy is upper bounded while this is not
the case for the non-invariant policy.
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Figure 3.: Acceptance rates for the off-policy invariance test proposed in Section 4.2 for
varying sample sizes. With increasing sample size, only the invariant set {X2}
is accepted. Here, more environments (right) seems to yield higher test power
than fewer environments (left).

high acceptance rates for the set {X2}, which indeed is invariant, while the acceptance
rates for other sets gradually decrease as the sample size increases. Furthermore, we can
see that our test is more powerful when the number of training environments increases
(keeping the total number of observations fixed). Our test is conservative (the acceptance
rate is above the 95% level in the left plot) because the target test is not exact (the
true conditional expectation is not given). In Appendix D.9.3, we conduct the same
experiment with an exact test, using the true conditional expectation, which shows the
correct level.

6. Warfarin Dosing Case Study

We evaluate our proposed approach on the clinical task of warfarin dosing. Warfarin is
a blood thinner medicine prescribed to patients at risk of blood clots. The appropriate
dose of warfarin varies from patient to patient depending on various factors such as
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demographic and genetic information Consortium [2009]. Our case study is based on
the International Warfarin Pharmacogenetics Consortium (IWPC) dataset Consortium
[2009] which consists of 5′700 patients who were treated with warfarin, collected from 21
research groups on 4 continents. The IWPC dataset contains the optimal dose of war-
farin for each of the patients as well as their information on demographic characteristics,
clinical and genetic factors. The warfarin dosing problem has been used in a number of
previous works evaluating off-policy learning algorithms Kallus and Zhou [2018], Bertsi-
mas and McCord [2018], Zenati et al. [2020]. Similarly to these works, we formulate the
warfarin dosing problem as a multi-environment contextual bandit problem as follows.

• The covariates (X) are patient-level features including demographic, clinical and
genetic factors.

• The actions (A) are recommended warfarin doses output by a policy. We dis-
cretize the actions into three equal-sized buckets (low, medium, high) based on the
quantiles of the optimal warfarin dose.

• The reward (R) depends on the recommended dose and the optimal dose: For each
patient i, the reward Ri(a) for an action a ∈ {low,medium, high} is computed as

Ri(a) := |Yi −m(a)| , (17)

where Yi is the optimal warfarin dose for a patient i and m(a) is a median value of
the optimal warfarin doses within the bucket a. Here, we assume that neither the
reward function nor the optimal warfarin doses are known to the agent. Instead,
for each patient i, only the reward for the action Ai is observed, i.e., Ri := Ri(Ai).

• The environments (E) are proxies for continents. The continent information is
not directly contained in the dataset, but we create proxies for the continent by
clustering the 21 research groups into 4 clusters based on their proportion of the
patients’ race within each group. We believe that the resulting clusters roughly
correspond to 4 different continents.

To reduce the search space, we select the top 10 features that are most predictive for
the optimal warfarin dose using the permutation feature importance method Breiman
[2001]. The top 10 features include 4 demographic variables, 4 clinical factors, and 2
genetic factors.

We consider two experimental setups to illustrate the benefits of our invariant learning
approach. In the first setup, we directly apply our method to the IWPC dataset. Here,
including invariance does not seem necessary in that our method performs similarly to
other baselines (but not worse). It does, however, generate some causal insight into
the problem. The second setup is a semi-real setting, where we introduce an artificial,
non-invariant confounder.
We now outline our first experimental setup and the results. We first generate train-

ing data {(Xi, Ai, Ri, ei)}ni=1 by drawing actions Ai from a policy π0 ∈ ΠBMI that is
constructed from linear regression Yi ≈ f(XBMI

i ) of the optimal dose onto the BMI (see
Appendix D.10.1 for more details).
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Figure 4.: Empirical results on the original data set. Each point represents the expected
reward of a policy on the corresponding test environment. The square points
represent the mean value of the expected rewards. In this setup, all candidate
methods yield similar performances on all of the test environments. This
result indicates that here predictive models are also invariant.

6.1. Candidate methods

Using the generated training data, we empirically compare the performance of the fol-
lowing policy learning methods:

• Invariant Policy Learning (Inv): This is our proposed method. We first perform
the off-policy invariance test using the test described in Section 4.5.3 to search for
potential invariant sets. We then take the top 20 sets with the largest p-values S20

inv

as the candidate invariant sets. For each S in S20
inv, we fit the policy optimization

algorithm described in Section 4.3 with XS as the covariates (the same algorithm
is also used in other candidate methods below). Lastly, we select the top 3 sets
that yield the largest expected rewards (computed using 5-fold cross-validation).

• Predictive Policy Learning (Pred): This method serves as a baseline for policy
learning that solely maximizes the expected reward. For each subset S, we fit the
policy optimization algorithm with XS as the covariates. We then take the policies
corresponding to the top 3 sets with the largest expected rewards.

• All Set Policy Learning (All): This method serves as another baseline where we
take all of the patient’s features and fit the policy optimization algorithm.

6.2. Evaluation setup & results

We compare the policy learning methods using the following ‘leave-one-environment-out’
evaluation procedure.

1. Select e ∈ E = {1, . . . , 4} as a test environment. Split the training data into
Dtest := {(Xi, Ai, Ri, ei)}ntesti=1 , where ei = e and Dtr := {(Xi, Ai, Ri, ei)}ntri=1, where
ei ∈ {1, . . . , 4} \ {e}.
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2. Using Dtr, train the policies with candidate methods detailed in Section 6.1.

3. Evaluate the fitted policies by computing the expected reward on Dtest using the
true reward function (17).

We repeat the above procedure for each e ∈ E and display the evaluation result in Fig. 4.
The performances of all candidate methods are similar. Even though the proposed
invariant approach does not yield a higher reward compared with the baselines, it does
not worsen the performance, either. This suggests that we can gain the stability benefit
of an invariant policy without having to sacrifice predictiveness. Indeed, the stability
benefit could prevent the learned invariant policy from being suboptimal when a new
test environment is sufficiently different from the training environments as we show in
Section 6.4

6.3. Analyzing invariant sets

In addition to learning an optimal invariant policy, we can use the invariance-based ap-
proach to further analyze the dependence between the patient’s features and the reward
as discussed in Section 4.4. In particular, we apply the off-policy invariant causal predic-
tion algorithm (see Algorithm D.1 in Appendix D.6) to find potential causal ancestors
of the reward. On this dataset, with a confidence level of 5%, the algorithm returns the
empty set, which can happen if the covariates are highly correlated, for example Heinze-
Deml et al. [2018]. Nonetheless, we can still extract more information by obtaining the
defining sets (see Section 2.2 in Heinze-Deml et al. [2018]). The resulting defining set
of size 2 is {Race, VKORC1} (see Appendix D.10.2 for more details on the variables).
These variables are potential causal ancestors in the sense that at least one variable in
these sets is a causal ancestor.

6.4. Semi-real experiment

To further illustrate the benefits of the invariance-based learning approach, we consider
a semi-real setup where we introduce hidden variables and a non-invariant predictor.
We remove the two genetic factors from the patient’s features and create a non-invariant
predictor that depends on those two factors as follows.

We first fit a linear regression to estimate the optimal warfarin dose from the genetic
factors and denote the resulting coefficients by β. To mimic environmental perturba-
tions, we perturb β depending an environment e ∈ E resulting in βe := γeβ, where
γe is an environment-specific parameter. We define the non-invariant predictor in the

environment e ∈ E as Xn-inv := XG⊤
βe, where X

G are the two genetic features. We
then add Xn-inv as part of the patient’s features and remove XG. The training data are
generated in a similar fashion as in the first setup, except that the initial policy does
not only depend on the BMI score XBMI but also on the non-invariant predictor Xn-inv.

In addition to the candidate methods described in Section 6.1, we introduce an addi-
tional baseline for this setup.
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Figure 5.: Empirical results on policy learning with a non-invariant predictor (see Sec-
tion 6.4). Each point represents the expected reward of a policy on the corre-
sponding test environment. In this setup, our proposed method (Inv) outper-
forms the two baselines (Pred and All) that ignore the environment structure,
while approaching the performance of the invariant oracle (Oracle-Inv).

• Oracle invariant Policy (Oracle-Inv): By construction, we know that Xn-inv is a
strongly non-d-invariant variable (see Definition 5). This method serves as an
oracle version of the invariant policy learning method by searching for the top 3
sets that do not contain Xn-inv such that their corresponding policies yield the
largest expected reward (the procedure is similar to the Pred method with Xn-inv

being removed).

We evaluate the candidate methods using a similar procedure as described in Sec-
tion 6.2. Fig. 5 illustrates the evaluation result. Our proposed method (Inv) yields a
higher expected reward than the two baselines on most of the test environments. This
is because the two baselines ignore the environment structure and use information from
Xn-inv in their resulting policies, while the invariant method uses the invariance test to
remove this non-invariant proxy variable. Furthermore, the performance of our proposed
method is almost on par with the invariant oracle (Oracle-Inv), except for the test en-
vironment e = 3, in which our approach is unable to ignore the non-invariant predictor,
possibly because the non-invariance that would be implied by Assumption 3 may not be
strong enough (for our test) when Eobs = {1, 2, 4}.

7. Conclusion

This paper tackles the problem of environmental shifts in offline contextual bandits from
a causal perspective. We introduce a framework for multi-environment contextual ban-
dits that is based on structural causal models and frame the environmental shift problem
as a distributionally robust objective over environments that are induced by different
perturbations on the covariates. We prove that if there are no unobserved confounders,
taking into account causality and invariance is not necessary for obtaining the distribu-
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tionally robust policies. However, causality and invariance can become relevant when
not all variables are observed. To tackle settings with unobserved confounders, we adapt
invariance-based ideas from causal inference to the proposed framework and introduce
the notion of invariant policies. Our theoretical results show that under certain assump-
tions an invariant policy that is optimal on the training environments is also optimal
on all unseen environments, and therefore distributionally robust. We further provide
a method for finding invariant policies based on an off-policy invariance test. It can be
combined with any existing policy optimization algorithm to learn an optimal invariant
policy. We believe that our contributions shed some light on what causality can offer in
contextual bandit and, more generally, in reinforcement learning problems.
For future work, there are several directions that would be interesting to investigate.

One direction is to explore the use of invariance-based ideas in the adaptive setting, in
which the goal of an agent is to optimally adapt to a changing environment. Learning
agents may require fewer and safer explorations in a new environment if they carry
over invariance information from previous environments. It may further be possible to
extend invariance-based ideas from the contextual bandit setting to the full reinforcement
learning problem with long-term consequences and state dynamics. Although some
previous works have explored this direction Zhang et al. [2020], Sonar et al. [2021], we
believe that the connections with respect to causality and invariance are not yet fully
understood. In the i.i.d. setting, recent work has investigated trading off invariance
and predictability Rothenhäusler et al. [2021], Pfister et al. [2021], Jakobsen and Peters
[2021], Oberst et al. [2021], Saengkyongam et al. [2022]. We believe that a similar idea
can be applied to contextual bandit and reinforcement learning problems. Lastly, if
one can gain additional knowledge of the test environments, one may aim to optimize
objectives other than the worst-case performance which could lead to a different class of
generalization guarantees.
This paper considers invariance as a dichotomous property and could be a first step

towards using invariance-based ideas for building safer and more robust adaptive learning
systems.
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4. Shifts in Distributions: Causal Inference

This chapter contains the following two papers:

[TimeIV] [Thams et al., 2022b]. N. Thams, R. Søndergaard, S. Weichwald, and J. Peters.
Identifying causal effects using instrumental time series: Nuisance IV and correct-
ing for the past. arXiv preprint arXiv:2203.06056, 2022b.

[AncSearch] [Mogensen et al., 2022]. P. Mogensen, N. Thams, and J. Peters. Invariant an-
cestry search. In International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 15832–15857. PMLR, 2022.

In this chapter we develop methods for drawing causal inference, that is, for inferring
properties of the structural causal model which generated the data. Both papers draw
their identifiability results from the presence of exogenous information, either from dif-
ferent environments or from an instrumental variable.

In [AncSearch], we assume that we observe data in several environments, each of
which corresponds to a change in distribution of one or more of the observed covariates,
similar to the setup in ICP (see Section 1.3 in Chapter 1). A drawback of ICP, which for
a target variable Y uses invariance of conditionals to learn a subset of causal parents,
is that in many cases the learned subset is small or even empty. This occurs because
ICP outputs the intersection over all invariant sets of predictors, so if disjoint invariant
sets exist, the learned subset is empty. The solution we propose learns a larger set of
causal ancestors than ICP, by defining ‘minimal invariance’, and taking the union over
all minimally invariant sets of predictors. This comes at the cost that the learned set
not only contains parents but also other ancestors; additionally while ICP has finite-
sample level guarantees, our approach also relies on having power to reject a hypothesis
of invariance and therefore only has asymptotic guarantees.

In [TimeIV], we consider IV models in a linear time series, where we observe an
exogenous instrument processes, and want to estimate the causal effect Xt−1 on Yt,
where (Xs, Ys)s∈Z are time series that are confounded by an unobserved time series.
A difficulty is that the instruments and the response variable correlate not only be-
cause of direct dependencies, but also because of past states of the time series, which
can cause the IV assumptions (see Section 1.2 in Chapter 1) to fail. We show that by
using conditional IV [Pearl, 2009] we can adjust for this ‘confounding from the past’.
Even with a valid instrument, identification of the causal effect requires that the instru-
ments are sufficiently high-dimensional. We show that even if this instrument process
is low-dimensional (which in IV for i.i.d. data means that the causal effect may not be
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identifiable) we can use past states of the time series as additional instruments, and
thereby identify causal effects.

124



Invariant Ancestry Search

Phillip B. Mogensen, Nikolaj Thams and Jonas Peters

Abstract

Recently, methods have been proposed that exploit the invariance of predic-
tion models with respect to changing environments to infer subsets of the causal
parents of a response variable. If the environments influence only few of the un-
derlying mechanisms, the subset identified by invariant causal prediction (ICP),
for example, may be small, or even empty. We introduce the concept of minimal
invariance and propose invariant ancestry search (IAS). In its population version,
IAS outputs a set which contains only ancestors of the response and is a superset
of the output of ICP. When applied to data, corresponding guarantees hold asymp-
totically if the underlying test for invariance has asymptotic level and power. We
develop scalable algorithms and perform experiments on simulated and real data.

1. Introduction

Causal reasoning addresses the challenge of understanding why systems behave the way
they do and what happens if we actively intervene. Such mechanistic understanding
is inherent to human cognition, and developing statistical methodology that learns and
utilizes causal relations is a key step in improving both narrow and broad AI [Jordan,
2019, Pearl, 2018]. Several approaches exist for learning causal structures from obser-
vational data. Approaches such as the PC-algorithm [Spirtes et al., 2000] or greedy
equivalence search [Chickering, 2002] learn (Markov equivalent) graphical representa-
tions of the causal structure Lauritzen [1996]. Other approaches learn the graphical
structure under additional assumptions, such as non-Gaussianity Shimizu et al. [2006]
or non-linearity Hoyer et al. [2009], Peters et al. [2014]. Zheng et al. [2018] convert
the problem into a continuous optimization problem, at the expense of identifiability
guarantees.

Invariant causal prediction (ICP) [Peters et al., 2016, Heinze-Deml et al., 2018, Pfister
et al., 2019b, Gamella and Heinze-Deml, 2020, Martinet et al., 2022] assumes that data
are sampled from heterogeneous environments (which can be discrete, categorical or
continuous), and identifies direct causes of a target Y , also known as causal parents of
Y . Learning ancestors (or parents) of a response Y yields understanding of anticipated
changes when intervening in the system. It is a less ambitious task than learning the
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complete graph but may allow for methods that come with weaker assumptions and
stronger guarantees. More concretely, for predictorsX1, . . . , Xd, ICP searches for subsets
S ⊆ {1, . . . , d} that are invariant; a set XS of predictors is called invariant if it renders Y
independent of the environment, conditional on XS . ICP then outputs the intersection
of all invariant predictor sets SICP := ∩S invariantS. Peters et al. [2016] show that if
invariance is tested empirically from data at level α, the resulting intersection ŜICP is a
subset of direct causes of Y with probability at least 1− α.1

In many cases, however, the set learned by ICP forms a strict subset of all direct
causes or may even be empty. This is because disjoint sets of predictors can be invariant,
yielding an empty intersection, which may happen both for finite samples as well as in
the population setting. In this work, we introduce and characterize minimally invariant
sets of predictors, that is, invariant sets S for which no proper subset is invariant. We
propose to consider the union SIAS of all minimally invariant sets, where IAS stands
for invariant ancestry search. We prove that SIAS is a subset of causal ancestors of Y ,
invariant, non-empty and contains SICP. Learning causal ancestors of a response may be
desirable for several reasons: e.g., they are the variables that may have an influence on
the response variable when intervened on. In addition, because IAS yields an invariant
set, it can be used to construct predictions that are stable across environments [e.g.,
Rojas-Carulla et al., 2018, Christiansen et al., 2021].

In practice, we estimate minimally invariant sets using a test for invariance. If such
a test has asymptotic power against some of the non-invariant sets (specified in Sec-
tion 5.2), we show that, asymptotically, the probability of ŜIAS being a subset of the
ancestors is at least 1 − α. This puts stronger assumptions on the invariance test than
ICP (which does not require any power) in return for discovering a larger set of causal
ancestors. We prove that our approach retains the ancestral guarantee if we test min-
imal invariance only among subsets up to a certain size. This yields a computational
speed-up compared to testing minimal invariance in all subsets, but comes at the cost
of potentially finding fewer causal ancestors.

The remainder of this work is organized as follows. In Section 2 we review relevant
background material, and we introduce the concept of minimal invariance in Section 3.
Section 4 contains an oracle algorithm for finding minimally invariant sets (and a closed-
form expression of SICP) and Section 5 presents theoretical guarantees when testing
minimal invariance from data. In Section 6 we evaluate our method in several simulation
studies as well as a real-world data set on gene perturbations. Code is provided at
https://github.com/PhillipMogensen/InvariantAncestrySearch.

1Rojas-Carulla et al. [2018], Magliacane et al. [2018], Arjovsky et al. [2019], Christiansen et al. [2021]
propose techniques that consider similar invariance statements with a focus on distribution general-
ization instead of causal discovery.
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2. Preliminaries

2.1. Structural causal models and graphs

We consider a setting where data are sampled from a structural causal model (SCM)
Pearl [2009], Bongers et al. [2021]

Zj := fj(PAj , εj),

for some functions fj , parent sets PAj and noise distributions εj . Following Peters et al.
[2016], Heinze-Deml et al. [2018], we consider an SCM over variables Z := (E,X, Y )
where E is an exogenous environment variable (i.e., PAE = ∅), Y is a response variable
and X = (X1, . . . , Xd) is a collection of predictors of Y . We denote by P the family of
all possible distributions induced by an SCM over (E,X, Y ) of the above form.

For a collection of nodes j ∈ [d] := {1, . . . , d} and their parent sets PAj , we define
a directed graph G with nodes [d] and edges j′ → j for all j′ ∈ PAj . We denote by
CHj , ANj and DEj the children, ancestors and descendants of a variable j, respectively,
neither containing j. A graph G is called a directed acyclic graph (DAG) if it does
not contain any directed cycles. See Pearl [2009] for more details and the definition of
d-separation.

Throughout the remainder of this work, we make the following assumptions about
causal sufficiency and exogeneity of E (Section 7 describes how these assumptions can
be relaxed).

Assumption 1. Data are sampled from an SCM over nodes (E,X, Y ), such that the
corresponding graph is a DAG, the distribution is faithful with respect to this DAG, and
the environments are exogenous, i.e., PAE = ∅.

2.2. Invariant causal prediction

Invariant causal prediction (ICP), introduced by Peters et al. [2016], exploits the exis-
tence of heterogeneity in the data, here encoded by an environment variable E, to learn
a subset of causal parents of a response variable Y . A subset of predictors S ⊆ [d] is
invariant if Y ⊥⊥ E | S, and we define I := {S ⊆ [d] | S invariant} to be the set of all
invariant sets. We denote the corresponding hypothesis that S is invariant by

HI
0,S : S ∈ I.

Formally, HI
0,S corresponds to a subset of distributions in P, and we denote by HI

A,S :=

P \HI
0,S the alternative hypothesis to HI

0,S . Peters et al. [2016] define the oracle output

SICP :=
⋂

S:HI
0,S true

S (1)

(with SICP = ∅ if no sets are invariant) and prove SICP ⊆ PAY . If provided with a
test for the hypotheses HI

0,S , we can test all sets S ⊆ [d] for invariance and take the
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Figure 1.: Two structures where SICP ⊊ PAY . (left) SICP = ∅. (right) SICP = {1}. In
both, our method outputs SIAS = {1, 2, 3}.

intersection over all accepted sets: ŜICP :=
⋂
S:HI

0,S not rejected S; If the invariance test has

level α, ŜICP ⊆ PAY with probability at least 1− α.
However, even for the oracle output in (1), there are many graphs for which SICP is a

strict subset of PAY . For example, in Fig. 1 (left), since both {1, 2} and {3} are invariant,
SICP ⊆ {1, 2} ∩ {3} = ∅. This does not violate SICP ⊆ PAY , but is non-informative.
Similarly, in Fig. 1 (right), SICP = {1}, as all invariant sets contain {1}. Here, SICP

contains some information, but is not able to recover the full parental set. In neither of
these two cases, SICP is an invariant set. If the environments are such that each parent
of Y is either affected by the environment directly or is a parent of an affected node, then
SICP = PAY [Peters et al., 2016, proof of Theorem 3]. The shortcomings of ICP thus
relate to settings where the environments act on too few variables or on uninformative
ones.

For large d, it has been suggested to apply ICP to the variables in theMarkov boundary
Pearl [2014], MBY = PAY ∪CHY ∪PA(CHY ) (we denote the oracle output by SMB

ICP). As
PAY ⊆ MBY , it still holds that S

MB
ICP is a subset of the causal parents of the response.2

However, the procedure must still be applied to 2|MBY | sets, which is only feasible if
the Markov boundary is sufficiently small. In practice, the Markov boundary can, for
example, be estimated using Lasso regression or gradient boosting techniques [Tibshirani,
1996, Meinshausen and Bühlmann, 2006, Friedman, 2001].

3. Minimal Invariance and Ancestry

We now introduce the concept of minimally invariant sets, which are invariant sets that
do not have any invariant subsets. We propose to consider SIAS, the oracle outcome of
invariant ancestry search, defined as the union of all minimally invariant sets. We will
see that SIAS is an invariant set, it consists only of ancestors of Y , and it contains SICP

as a subset.

Definition 1. Let S ⊆ [d]. We say that S is minimally invariant if and only if

S ∈ I and ∀S′ ⊊ S : S′ ̸∈ I;

that is, S is invariant and no subset of S is invariant. We defineMI := {S | S minimally invariant}.
2In fact, SMB

ICP is always at least as informative as ICP. E.g., there exist graphs in which SICP = ∅ and
SMB
ICP ̸= ∅, see Fig. 1 (left). There are no possible structures for which SMB

ICP ⊊ SICP, as both search
for invariant sets over all sets of parents of Y .
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The concept of minimal invariance is closely related to the concept of minimal d-
separators [Tian et al., 1998]. This connection allows us to state several properties of
minimal invariance. For example, an invariant set is minimally invariant if and only if
it is non-invariant as soon as one of its elements is removed.

Proposition 1. Let S ⊆ [d]. Then S ∈ MI if and only if S ∈ I and for all j ∈ S, it
holds that S \ {j} ̸∈ I.

The proof follows directly from [Tian et al., 1998, Corollary 2]. We can therefore
decide whether a given invariant set S is minimally invariant using O(|S|) checks for
invariance, rather than O(2|S|) (as suggested by Definition 1). We use this insight in
Section 5.1, when we construct a statistical test for whether or not a set is minimally
invariant.
To formally define the oracle outcome of IAS, we denote the hypothesis that a set S

is minimally invariant by
HMI

0,S : S ∈MI
(and the alternative hypothesis, S /∈MI, by HMI

A,S ) and define the quantity of interest

SIAS :=
⋃

S:HMI
0,S true

S (2)

with the convention that a union over the empty set is the empty set.
The following proposition states that SIAS is a subset of the ancestors of the response

Y . Similarly to PAY , variables in ANY are causes of Y in that for each ancestor there
is a directed causal path to Y . Thus, generically, when intervened, these variables have
a causal effect on the response.

Proposition 2. It holds that SIAS ⊆ ANY .

The proof follows directly from [Tian et al., 1998, Theorem 2]; see also [Acid and
De Campos, 2013, Proposition 2]. The setup in these papers is more general than
what we consider here; we therefore provide direct proofs for Propositions 1 and 2 in
Appendix E.1, which may provide further intuition for the results.
Finally, we show that the oracle output of IAS contains that of ICP and, contrary to

ICP, it is always an invariant set.

Proposition 3. Assume that E ̸∈ PAY . It holds that

(i) SIAS ∈ I and

(ii) SICP ⊆ SIAS, with equality if and only if SICP ∈ I.

4. Oracle Algorithms

When provided with an oracle that tells us whether a set is invariant or not, how can
we efficiently compute SICP and SIAS? Here, we assume that the oracle is given by a
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DAG, see Assumption 1. A direct application of (1) and (2) would require checking a
number of sets that grows exponentially in the number of nodes. For SICP, we have the
following characterization.3

Proposition 4. If E ̸∈ PAY , then SICP = PAY ∩ (CHE ∪PA(ANY ∩CHE)).

This allows us to efficiently read off SICP from the DAG, (e.g., it can naively be
done in O((d + 2)2.373 log(d + 2)) time, where the exponent 2.373 comes from matrix
multiplication). For SIAS, to the best of our knowledge, there is no closed form expression
that has a similarly simple structure.

Instead, for IAS, we exploit the recent development of efficient algorithms for comput-
ing all minimal d-separators (for two given sets of nodes) in a given DAG [see, e.g., Tian
et al., 1998, van der Zander et al., 2019]. A set S is called a minimal d-separator of E
and Y if it d-separates E and Y given S and no strict subset of S satisfies this property.
These algorithms are often motivated by determining minimal adjustment sets [e.g.,
Pearl, 2009] that can be used to compute the total causal effect between two nodes, for
example. If the underlying distribution is Markov and faithful with respect to the DAG,
then a set S is minimally invariant if and only if it is a minimal d-separator for E and
Y . We can therefore use the same algorithms to find minimally invariant sets; van der
Zander et al. [2019] provide an algorithm (based on work by Takata [2010]) for finding
minimal d-separators with polynomial delay time. Applied to our case, this means that
while there may be exponentially many minimally invariant sets,4 when listing all such
sets it takes at most polynomial time until the next set or the message that there are
nor further sets is output. In practice, on random graphs, we found this to work well
(see Section 6.1). But since SIAS is the union of all minimally invariant sets, even faster
algorithms may be available; to the best of our knowledge, it is an open question whether
finding SIAS is an NP-hard problem (see Appendix E.2 for details).

We provide a function for listing all minimally invariant sets in our python code;
it uses an implementation of the above mentioned algorithm, provided in the R [R
Core Team, 2021] package dagitty [Textor et al., 2016]. In Section 6.1, we study the
properties of the oracle set SIAS. When applied to 500 randomly sampled, dense graphs
with d = 15 predictor nodes and five interventions, the dagitty implementation had a
median speedup of a factor of roughly 17, compared to a brute-force search (over the
ancestors of Y ). The highest speedup achieved was by a factor of more than 1,900.

The above mentioned literature can be used only for oracle algorithms, where the
graph is given. In the following sections, we discuss how to test the hypothesis of
minimal invariance from data.

3To the best of our knowledge, this characterization is novel.
4This is the case if there are d/2 (disjoint) directed paths between E and Y , with each path containing
two X-nodes, for example [e.g., van der Zander et al., 2019].
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5. Invariant Ancestry Search

5.1. Testing a single set for minimal invariance

Usually, we neither observe a full SCM nor its graphical structure. Instead, we observe
data from an SCM, which we want to use to decide whether a set is inMI, such that we
make the correct decision with high probability. We now show that a set S can be tested
for minimal invariance with asymptotic level and power if given a test for invariance
that has asymptotic level and power.

Assume that Dn = (Xi, Ei, Yi)
n
i=1 are observations (which may or may not be inde-

pendent) of (X,E, Y ) and let ϕMI
n : powerset([d]) × Dn × (0, 1) → {0, 1} be a decision

rule that transforms (S,Dn, α) into a decision ϕMI
n (S,Dn, α) about whether the hypoth-

esis HMI
0,S should be rejected (ϕMI

n = 1) at significance threshold α, or not (ϕMI
n = 0).

To ease notation, we suppress the dependence on Dn and α when the statements are
unambiguous.

A test ψn for the hypothesis H0 has pointwise asymptotic level if

∀α ∈ (0, 1) : sup
P∈H0

lim
n→∞

P(ψn = 1) ≤ α (3)

and pointwise asymptotic power if

∀α ∈ (0, 1) : inf
P∈HA

lim
n→∞

P(ψn = 1) = 1. (4)

If the limit and the supremum (resp. infimum) in (3) (resp. (4)) can be interchanged,
we say that ψn has uniform asymptotic level (resp. power).

Tests for invariance have been examined in the literature. Peters et al. [2016] propose
two simple methods for testing for invariance in linear Gaussian SCMs when the environ-
ments are discrete, although the methods proposed extend directly to other regression
scenarios. Pfister et al. [2019b] propose resampling-based tests for sequential data from
linear Gaussian SCMs. Furthermore, any valid test for conditional independence be-
tween Y and E given a set of predictors S can be used to test for invariance. Although
for continuous X, there exists no general conditional independence test that has both
level and non-trivial power [Shah and Peters, 2020], it is possible to impose restrictions
on the data-generating process that ensure the existence of non-trivial tests [e.g., Fuku-
mizu et al., 2008, Zhang et al., 2011, Berrett et al., 2020, Shah and Peters, 2020, Thams
et al., 2021]. Heinze-Deml et al. [2018] provide an overview and a comparison of several
conditional independence tests in the context of invariance.

To test whether a set S ⊆ [d] is minimally invariant, we define the decision rule

ϕMI
n (S) :=

1 if ϕn(S) = 1 or min
j∈S

ϕn(S \ {j}) = 0,

0 otherwise,
(5)

where ϕMI
n (∅) := ϕn(∅). Here, ϕn is a test for the hypothesis HI

0,S , e.g., one of the tests
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mentioned above. This decision rule rejects HMI
0,S either if HI

0,S is rejected by ϕn or if

there exists j ∈ S such that HI
0,S\{j} is not rejected. If ϕn has pointwise (resp. uniform)

asymptotic level and power, then ϕMI
n has pointwise (resp. uniform) asymptotic level

and pointwise (resp. uniform) asymptotic power of at least 1− α.
Theorem 1. Let ϕMI

n be defined as in (5) and let S ⊆ [d]. Assume that the decision
rule ϕn has pointwise asymptotic level and power for S and for all S \ {j}, j ∈ S. Then,
ϕMI
n has pointwise asymptotic level and pointwise asymptotic power of at least 1 − α,

i.e.,
inf

P∈HMI
A,S

lim
n→∞

P(ϕMI
n (S) = 1) ≥ 1− α.

If ϕn has uniform asymptotic level and power, then ϕMI
n has uniform asymptotic level

and uniform asymptotic power of at least 1− α.
Due to Proposition 2, a test for HMI

0,S is implicitly a test for S ⊆ ANY , and can thus be
used to infer whether intervening on S will have a potential causal effect on Y . However,
rejecting HMI

0,S is not evidence for S ̸⊆ AN; it is evidence for S ̸∈ MI.

5.2. Learning SIAS from data

We now consider the task of estimating the set SIAS from data. If we are given a test
for invariance that has asymptotic level and power and if we correct for multiple testing
appropriately, we can estimate SIAS by ŜIAS, which, asymptotically, is a subset of ANY
with large probability.

Theorem 2. Assume that the decision rule ϕn has pointwise asymptotic level for all min-
imally invariant sets and pointwise asymptotic power for all S ⊆ [d] such that S is not a
superset of a minimally invariant set. Define C := 2d and let Î :=

{
S ⊆ [d] | ϕn(S, αC−1) = 0)

}
be the set of all sets for which the hypothesis of invariance is not rejected and define

M̂I :=
{
S ∈ Î | ∀S′ ⊊ S : S′ ̸∈ Î

}
and ŜIAS :=

⋃
S∈M̂I S. It then holds that

lim
n→∞

P(ŜIAS ⊆ ANY ) ≥ lim
n→∞

P(ŜIAS = SIAS)

≥ 1− α.

A generic algorithm for implementing ŜIAS is given in Appendix E.4.

Remark 1. Consider a decision rule ϕn that just (correctly) rejects the empty set (e.g.,
because the p-value is just below the threshold α), indicating that the effect of the
environments is weak. It is likely that there are other sets S′ ̸∈ I, which the test may
not have sufficient power against and are (falsely) accepted as invariant. If one of such
sets contains non-ancestors of Y , this yields a violation of ŜIAS ⊆ ANY . To guard against
this, testing S = ∅ can be done at a lower significance level, α0 < α. This modified IAS
approach is conservative and may return ŜIAS = ∅ if the environments do not have a
strong impact on Y , but it retains the guarantee limn→∞ P(ŜIAS ⊆ ANY ) ≥ 1 − α of
Theorem 2.
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The multiple testing correction performed in Theorem 2 is strictly conservative because
we only need to correct for the number of minimally invariant sets, and there does not
exist 2d minimally invariant sets. Indeed, the statement of Theorem 2 remains valid for
C = C ′ if the underlying DAG has at most C ′ minimally invariant sets. We hypothesize
that a DAG can contain at most 3⌈d/3⌉ minimally invariant sets and therefore propose
using C = 3⌈d/3⌉ in practice. If this hypothesis is true, Theorem 2 remains valid (for any
DAG), using C = 3⌈d/3⌉ (see Appendix E.3 for a more detailed discussion).

Alternatively, as shown in the following section, we can restrict the search for mini-
mally invariant sets to a predetermined size. This requires milder correction factors and
comes with computational benefits.

5.3. Invariant ancestry search in large systems

We now develop a variation of Theorem 2, which allows us to search for ancestors of
Y in large graphs, at the cost of only identifying minimally invariant sets up to some a
priori determined size.

Similarly to ICP (see Section 2.2), one could restrict IAS to the variables in MBY
but the output may be smaller than SIAS; in particular, there are only non-parental
ancestors in MBY if these are parents to both a parent a child of Y (For instance, in the
graph E → X1 → . . .→ Xd → Y , SIAS = {1, . . . , d} but restricting IAS to MBY would
yield the set {d}.) Thus, we do not expect such an approach to be particularly fruitful
in learning ancestors.

Here, we propose an alternative approach and define

SmIAS :=
⋃

S:S∈MI and |S|≤m

S (6)

as the union of minimally invariant sets that are no larger than m ≤ d. For computing
SmIAS, one only needs to check invariance of the

∑m
i=0

(
d
i

)
sets that are no larger than m.

SmIAS itself, however, can be larger than m: in the graph above (6), S1
IAS = {1, . . . , d}.

The following proposition characterizes properties of SmIAS.

Proposition 5. Let m < d and let mmin and mmax be the size of a smallest and a largest
minimally invariant set, respectively. The following statements are true:

(i) SmIAS ⊆ ANY .

(ii) If m ≥ mmax, then S
m
IAS = SIAS.

(iii) If m ≥ mmin and E ̸∈ PAY , then S
m
IAS ∈ I.

(iv) If m ≥ mmin and E ̸∈ PAY , then SICP ⊆ SmIAS with equality if and only if SICP ∈ I.

If m < mmin and SICP ̸= ∅, then SICP ⊆ SmIAS does not hold. However, we show in
Section 6.1 using simulations that SmIAS is larger than SICP in many sparse graphs, even
for m = 1, when few nodes are intervened on.
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In addition to the computational speedup offered by considering SmIAS instead of SIAS,
the set SIAS can be estimated from data using a smaller correction factor than the one
employed in Theorem 2. This has the benefit that in practice, smaller sample sizes may
be needed to detect non-invariance.

Theorem 3. Let m ≤ d and define C(m) :=
∑m

i=0

(
d
i

)
. Assume that the decision rule

ϕn has pointwise asymptotic level for all minimally invariant sets of size at most m and
pointwise power for all sets of size at most m that are not supersets of a minimally
invariant set. Let Îm :=

{
S ⊆ [d] | ϕn(S, αC(m)−1) = 0 and |S| ≤ m

}
, be the set of all

sets of size at most m for which the hypothesis of invariance is not rejected and define

M̂Im :=
{
S ∈ Îm | ∀S′ ⊊ S : S′ ̸∈ Îm

}
and ŜmIAS :=

⋃
S∈M̂I

m S. It then holds that

lim
n→∞

P(ŜmIAS ⊆ ANY ) ≥ lim
n→∞

P(ŜmIAS = SmIAS)

≥ 1− α.

The method proposed in Theorem 3 outputs a non-empty set if there exists a non-
empty set of size at most m, for which the hypothesis of invariance cannot be rejected.
In a sparse graph, it is likely that many small sets are minimally invariant, whereas if the
graph is dense, it may be that all invariant sets are larger than m, such that SmIAS = ∅.
In dense graphs however, many other approaches may fail too; for example, it is also
likely that the size of the Markov boundary is so large that applying ICP on MBY is not
feasible.

6. Experiments

We apply the methods developed in this paper in a population-case experiment using
oracle knowledge (Section 6.1), a synthetic experiment using finite sample tests (Sec-
tion 6.2), and a real-world data set from a gene perturbation experiment (Section 6.3).
In Sections 6.1 and 6.2 we consider a setting with two environments: an observational
environment (E = 0) and an intervention environment (E = 1), and examine how the
strength and number of interventions affect the performance of IAS.

6.1. Oracle IAS in random graphs

For the oracle setting, we know that SIAS ⊆ ANY (Proposition 2) and SICP ⊆ SIAS

(Proposition 3). We first verify that the inclusion SICP ⊆ SIAS is often strict in low-
dimensional settings when there are few interventions. Second, we show that the set SmIAS

is often strictly larger than the set SMB
ICP in large, sparse graphs with few interventions.

In principle, for a given number of covariates, one can enumerate all DAGs and, for
each DAG, compare SICP and SIAS. However, because the space of DAGs grows super-
exponentially in the number of nodes [Chickering, 2002], this is infeasible. Instead, we
sample graphs from the space of all DAGs that satisfy Assumption 1 and Y ∈ DEE (see
Appendix E.5.1 for details).
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In the low-dimensional setting (d ≤ 20), we compute SICP and SIAS, whereas in the
larger graphs (d ≥ 100), we compute SMB

ICP and the reduced set SmIAS for m ∈ {1, 2}
when d = 100 and for m = 1 when d = 1,000. Because there is no guarantee that IAS
outputs a superset of ICP when searching only up to sets of some size lower than d, we
compare the size of the sets output by either method. For the low-dimensional setting,
we consider both sparse and dense graphs, but for larger dimensions, we only consider
sparse graphs. In the sparse setting, the DAGs are constructed such that there is an
expected number of d+1 edges between the d+1 nodes X and Y ; in the dense setting,
the expected number of edges equals 0.75 · d(d+ 1)/2.

The results of the simulations are displayed in Figs. 2 and 3. In the low-dimensional
setting, SIAS is a strict superset of SICP for many graphs. This effect is the more
pronounced, the larger the d and the fewer nodes are intervened on, see Fig. 2. In fact,
when there are interventions on all predictors, we know that SIAS = SICP = PAY [Peters
et al., 2016, Theorem 2], and thus the probability that SICP ⊊ SIAS is exactly zero. For
the larger graphs, we find that the set SmIAS is, on average, larger than SMB

ICP, in particular
when d = 1,000 or when m = 2, see Fig. 3. In the setting with d = 100 and m = 1,
the two sets are roughly the same size, when 10% of the predictors are intervened on.
The set SMB

ICP becomes larger than S1
IAS after roughly 15% of the predictors nodes are

intervened on (not shown). For both d = 100 and d = 1,000, the average size of the
Markov boundary of Y was found to be approximately 3.5.

6.2. Simulated linear Gaussian SCMs

In this experiment, we show through simulation that IAS finds more ancestors than
ICP in a finite sample setting when applied to linear Gaussian SCMs. To compare the
outputs of IAS and ICP, we use the Jaccard similarity between ŜIAS (Ŝ1

IAS when d is

large) and ANY , and between ŜICP (ŜM̂B
ICP when d is large5) and ANY .

6

We sample data from sparse linear Gaussian models with i.i.d. noise terms in two
scenarios, d = 6 and d = 100. In both cases, coefficients for the linear assignments are
drawn randomly. We consider two environments; one observational and one interven-
tional; in the interventional environment, we apply do-interventions of strength one to
children of E, i.e., we fix the value of a child of E to be one. We standardize the data
along the causal order, to prevent variance accumulation along the causal order [Reisach
et al., 2021]. Throughout the section, we consider a significance level of α = 5%. For a
detailed description of the simulations, see Appendix E.5.2.

To test for invariance, we employ the test used in Peters et al. [2016]: We calculate a p-
value for the hypothesis of invariance of S by first linearly regressing Y ontoXS (ignoring
E), and second testing whether the mean and variance of the prediction residuals is equal
across environments. For details, see Peters et al. [2016, Section 3.2.1]. Schultheiss
et al. [2021] also consider the task of estimating ancestors but since their method is

5M̂B is a Lasso regression estimate of MBY containing at most 10 variables
6The Jaccard similarity between two sets A and B is defined as J(A,B) := |A ∩ B|/|A ∪ B|, with
J(∅, ∅) = 0. The Jaccard similarity equals one if the two sets are equal, zero if they are disjoint and
takes a value in (0, 1) otherwise.
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Figure 2.: Low-dimensional oracle experiment, see Section 6.1. In all cases, as predicted
by theory, SICP is contained in SIAS. For many graphs, SIAS is strictly larger
than SICP. On average, this effect is more expressed when there are fewer
intervened nodes. Pn refers to the distribution used to sample graphs and
every point in the figure is based on 50,000 independently sampled graphs; d
denotes the number of covariates X. Empirical confidence bands are plotted
around each line, but are very narrow.

uninformative for Gaussian data and does not consider environments, it is not directly
applicable here.

In Theorem 2, we assume asymptotic power of our invariance test. When d = 6, we test
hypotheses with a correction factor C = 3⌈6/3⌉ = 9, as suggested in Appendix E.3, in an
attempt to reduce false positive findings. In Appendix E.5.3, we repeat the experiment
of this section with C = 26 and find almost identical results. We hypothesize, that the
effects of a reduced C is more pronounced at larger d. When d = 100, we test hypotheses
with the correction factor C(1) of Theorem 3. In both cases, we test the hypothesis of
invariance of the empty set at level α0 = 10−6 (cf. Remark 1). In Appendix E.5.4,
we investigate the effects on the quantities P(ŜIAS ⊆ ANY ) and P(Ŝ1

IAS ⊆ ANY ) when
varying α0, confirming that choosing α0 too high can lead to a reduced probability of
ŜIAS being a subset of ancestors.

In Fig. 4 the results of the simulations are displayed. In SCMs where the oracle versions
SIAS and SICP are not equal, ŜIAS achieved, on average, a higher Jaccard similarity to
ANY than ŜICP. This effect is less pronounced when d = 100. We believe that the
difference in Jaccard similarities is more pronounced when using larger values of m.
When SIAS = SICP, the two procedures achieve roughly the same Jaccard similarities
to ANY , as expected. When the number of observations is one hundred, IAS generally
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Figure 3.: High-dimensional oracle experiment with sparse graphs, see Section 6.1. The
average size of the set SmIAS is larger than the average size of the set SMB

ICP,
both when using IAS to search for sets up to sizes m = 1 and m = 2. Except
for the choice of d, the setup is the same as in Fig. 2.

fails to find any ancestors and outputs the empty set (see Fig. E.2), indicating that the
we do not have power to reject the empty set when there are few observations. This is
partly by design; we test the empty set for invariance at reduced level α0 in order to
protect against making false positive findings when the environment has a weak effect
on Y . However, even without testing the empty set at a reduced level, IAS has to
correct for making multiple comparisons, contrary to ICP, thus lowering the marginal
significance level each set is tested at. When computing the jaccard similarities with
either α0 = α or α0 = 10−12, the results were similar (not shown). We repeated the
experiments with d = 6 with a weaker influence of the environment (do-interventions of
strength 0.5 instead of 1) and found comparable results, with slightly less power in that
the empty set is found more often, see Appendix E.5.5.

We compare our method with a variant, called IASest. graph, where we first estimate
(e.g., using methods proposed by Mooij et al. 2020 or Squires et al. 2020) a member graph
of the Markov equivalence class (‘I-MEC’) and apply the oracle algorithm from Section 4
(by reading of d-separations in that graph) to estimateMI. In general, however, such
an approach comes with additional assumptions; furthermore, even in the linear setup
considered here, its empirical performance for large graphs is worse than the proposed
method IAS, see Appendix E.5.7.

6.3. IAS in high dimensional genetic data

We evaluate our approach in a data set on gene expression in yeast Kemmeren et al.
[2014]. The data contain full-genome mRNA expressions of d = 6,170 genes and consists
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Figure 4.: Comparison between the finite sample output of IAS and ICP and ANY on
simulated data, see Section 6.2. The plots show the Jaccard similarities be-

tween ANY and either ŜIAS (Ŝ1
IAS when d = 100) in red or ŜICP (ŜM̂B

ICP when

d = 100) in blue and ANY . When SICP ̸= SIAS (left column), ŜIAS is more
similar to ANY than ŜICP. The procedures are roughly equally similar to
ANY when SICP = SIAS (right column). Graphs represented in each boxplot:
42 (top left), 58 (top right), 40 (bottom left) and 60 (bottom right).

of nobs = 160 unperturbed observations (E = 0) and nint = 1,479 intervened-upon
observations (E = 1); each of the latter observations correspond to the deletion of a
single (known) gene. For each response gene geneY ∈ [d], we apply the procedure from
Section 5.3 with m = 1 to search for ancestors.

We first test for invariance of the empty set, i.e., whether the distribution of geneY
differs between the observational and interventional environment. We test this at a
conservative level α0 = 10−12 in order to protect against a high false positive rate (see
Remark 1). For 3,631 out of 6,170 response genes, the empty set is invariant, and we
disregard them as response genes.

For each response gene, for which the empty set is not invariant, we apply our pro-
cedure. More specifically, when testing whether geneX is an ancestor of geneY , we
exclude any observation in which either geneX or geneY was intervened on. We then
test whether the empty set is still rejected, at level α0 = 10−12, and whether geneX is
invariant at level α = 0.25. Since a set {geneX} is deemed minimally invariant if the p-
value exceeds α, setting α large is conservative for the task of finding ancestors. Indeed,
when estimating ŜmIAS, one can test the sets of size m at a higher level α1 > α. This is
conservative, because falsely rejecting a minimally invariant set of size m does not break
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Figure 5.: True positive rates and number of gene pairs found in the experiment in
Section 6.3. On the x-axis, we change α0, the threshold for invariance of the
empty set. When α0 is small, we only search for pairs if the environment has
a very significant effect on Y . For smaller α0, fewer pairs are found to be
invariant (blue line), but those found, are more likely to be true positives (red
line). This supports the claim that the lower α0 is, the more conservative our
approach is.

the inclusion ŜmIAS ⊆ ANY . However, if one has little power against the non-invariant
sets of size m, testing at level α1 can protect against false positives.7

We use the held-out data point, where geneX is intervened on, to determine as ground
truth, whether geneX is indeed an ancestor of geneY . We define geneX as a true ancestor
of geneY if the value of geneY when geneX is intervened on, lies in the qTP = 1% tails
of the observational distribution of geneY .

We find 23 invariant pairs (geneX , geneY ); of these, 7 are true positives. In compar-
ison, Peters et al. [2016] applies ICP to the same data, and with the same definition of
true positives. They predict 8 pairs, of which 6 are true positives. This difference is in
coherence with the motivation put forward in Section 5.2: Our approach predicts many
more ancestral pairs (8 for ICP compared to 23 for IAS). Since ICP does not depend on
power of the test, they have a lower false positive rate (25% for ICP compared to 69.6%
for IAS).

In Fig. 5, we explore how changing α0 and qTP impacts the true positive rate. Reducing
α0 increases the true positive rate, but lowers the number of gene pairs found (see Fig. 5).
This is because a lower α0 makes it more difficult to detect non-invariance of the empty
set, making the procedure more conservative (with respect to finding ancestors); see
Remark 1. For example, when α0 ≤ 10−15, the true positive rate is above 0.8; however,
5 or fewer pairs are found. When searching for ancestors, the effect of intervening may
be reduced by noise from intermediary variables, so qTB = 1% might be too strict; in
Appendix E.5.6, we analyze the impact of increasing qTB.

7Only sets of size exactlym can be tested at level α1; the remaining hypotheses should still be corrected
by C(m) (or by the hypothesized number of minimally invariant sets).
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7. Extensions

7.1. Latent variables

In Assumption 1, we assume that all variables X are observed and that there are no
hidden variables H. Let us write X = XO ∪̇XH , where only XO is observed and define
I := {S ⊆ XO | S invariant}. We can then define

SIAS,O :=
⋃

S⊆XO:HMI
0,S true

S

(again with the convention that a union over the empty set is the empty set), and have
the following modification of Proposition 2.

Proposition 6. It holds that SIAS,O ⊆ ANY .

All results in this paper remain correct in the presence of hidden variables, except for
Proposition 3 and Proposition 5 (iii-iv).8 Thus, the union of the observed minimally
invariant sets, SIAS,O is a subset of ANY and can be learned from data in the same way
as if no latent variables were present.

7.2. Non-exogenous environments

Throughout this paper, we have assumed that the environment variable is exogenous
(Assumption 1). However, all of the results stated in this paper, except for Proposition 4,
also hold under the alternative assumption that E is an ancestor of Y , but not necessarily
exogenous. From the remaining results, only the proof of Proposition 1 uses exogeneity
of E, but here the result follows from Tian et al. [1998]. In all other proofs, we account
for both options. This extension also remains valid in the presence of hidden variables,
using the same arguments as in Section 7.1.

8. Conclusion and Future Work

Invariant Ancestry Search (IAS) provides a framework for searching for causal ancestors
of a response variable Y through finding minimally invariant sets of predictors by exploit-
ing the existence of exogenous heterogeneity. The set SIAS is a subset of the ancestors
of Y , a superset of SICP and, contrary to SICP, invariant itself. Furthermore, the hier-
archical structure of minimally invariant sets allows IAS to search for causal ancestors
only among subsets up to a predetermined size. This avoids exponential runtime and
allows us to apply the algorithm to large systems. We have shown that, asymptotically,
SIAS can be identified from data with high probability if we are provided with a test

8These results do not hold in the presence of hidden variables, because it is not guaranteed that an
invariant set exists among XO (e.g., consider a graph where all observed variables share a common,
unobserved confounder with Y ). However, if at least one minimally invariant set exists among the
observed variables, then all results stated in this paper hold.
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for invariance that has asymptotic level and power. We have validated our procedure
both on simulated and real data. Our proposed framework would benefit from further
research in the maximal number of minimally invariant sets among graphs of a fixed size,
as this would provide larger finite sample power for identifying ancestors. Further it is
of interest to establish finite sample guarantees or convergence rates for IAS, possibly
by imposing additional assumptions on the class of SCMs. Finally, even though current
implementations are fast, it is an open theoretical question whether computing SIAS in
the oracle setting of Section 4 is NP-hard, see Appendix E.2.
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Abstract
Instrumental variable (IV) regression relies on instruments to infer causal effects

from observational data with unobserved confounding. We consider IV regression
in time series models, such as vector auto-regressive (VAR) processes. Direct
applications of i.i.d. techniques are generally inconsistent as they do not correctly
adjust for dependencies in the past. In this paper, we propose methodology for
constructing identifying equations that can be used for consistently estimating
causal effects. To do so, we develop nuisance IV, which can be of interest even
in the i.i.d. case, as it generalizes existing IV methods. We further propose a
graph marginalization framework that allows us to apply nuisance and other IV
methods in a principled way to time series. Our framework builds on the global
Markov property, which we prove holds for VAR processes. For VAR(1) processes,
we prove identifiability conditions that relate to Jordan forms and are different
from the well-known rank conditions in the i.i.d. case (they do not require as
many instruments as covariates, for example). We provide methods, prove their
consistency, and show how the inferred causal effect can be used for distribution
generalization. Simulation experiments corroborate our theoretical results. We
provide ready-to-use Python code.

1. Introduction

Predicting a response variable Y from observations of covariates X may be insufficient
to answer a scientific question at hand. Instead, we may wish to model how the response
variable Y reacts to an intervention on X. Such modeling requires causal knowledge. For
example, for i.i.d. data from a linear model Y := βX + g(H, εY ), it is well-known that
an ordinary least squares (OLS) regression of Y on X generally yields a biased estimator
of the linear causal effect β from X on Y when an unobserved effect H confounds X and
Y . Instead, we may obtain unbiased estimates of β by utilising instrumental variables
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(IVs) I that correlate with the covariates X, are independent of H, and affect Y only
indirectly through X. IV regression, pioneered by Wright [1928] and Reiersøl [1945], is
well-established in econometrics [Angrist et al., 1996, Staiger and Stock, 1997, Angrist
and Krueger, 2001], statistics [Bowden and Turkington, 1985] and epidemiology [Hernán
and Robins, 2006, Didelez et al., 2010]. One approach for IV estimation in the linear
i.i.d. model is the two-stage least squares (TSLS) estimator [Angrist and Imbens, 1995],
which first estimates the effect from I to X (stage 1) and then regresses Y on the fitted
values from the first regression (stage 2). Another formulation, used by Hansen [1982], is
the generalized method of moments (GMM), which uses the independence of the residual
Y −βX = g(H, εY ) from the instrument I: One can estimate β by selecting β̂ such that
the empirical correlation between Y − β̂X and I is minimized. If the dimension of I is
greater than or equal to the dimension of X, these estimators are consistent [e.g., Hall,
2005].
In more recent approaches, causality and directed acyclic graph (DAG) representa-

tions have proved fruitful for studying instrumental variables for i.i.d. data [Pearl, 2009,
Hernán and Robins, 2006, Didelez et al., 2010]. Brito and Pearl [2002a] proposed ‘gen-
eralized IV’, a graphical framework that enlarges the class of graphical models, in which
IV methods can be used to identify causal effects. Similarly, ‘conditional IV’ [Pearl,
2009] relaxes the assumptions of IV by considering a conditional moment equation [see
also Henckel, 2021].
In many real-world applications (see Weigend [2018] for examples from various fields),

the data are sampled not independently but rather as a time series that exhibits mem-
ory effects, with past values affecting present ones. However, using IV methods in time
series data poses a number of challenges. For example, memory effects in the observed
processes X, Y and I can obfuscate the assumption that I only affects present values of
Y through the present value of X, because I and Y are confounded by common ancestors
in the memory of the process. Additionally, memory effects, or serially correlated errors,
in the confounder process H can make identification of the dependence on past states
of the process difficult; for such settings, Fair [1970] proposes a search-based method for
a subclass of first order vector auto-regressive (VAR) processes. If one is provided with
identifying equations with serially correlated errors (such as the ones proposed in this
paper), Newey and West [1987] construct confidence intervals by using heteroskedastic-
ity and auto-correlation consistent (HAC) estimators to estimate long-run covariance
matrices.
Graphical models have been studied (also in the context of causal inference) when data

follow a time series structure [e.g., Wiener, 1956, Granger, 1969, 1980, Dahlhaus and
Eichler, 2003, Didelez, 2008, Danks and Plis, 2013, Hyttinen et al., 2016, Peters et al.,
2017, Mogensen and Hansen, 2020] but not in the context of instrumental variables
and hidden confounders. In this work, we establish a link between graphical models
and IV methods for time series, which we then exploit to construct estimators and prove
consistency. To help build this connection, we prove (Theorem 1) that the global Markov
property [Lauritzen, 1996] holds in VAR(p) processes. To the best of our knowledge this
result has not been proved before and requires, due to the graph containing infinitely
many nodes, technically involved arguments.
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Figure 1.: Full time graph (formally defined in Section 2.2) of a process S satisfying
the conditions studied in this paper, see Assumption (A2) below. We aim
to estimate the causal effect β (highlighted in green) of Xt−1 on Yt, where
X = [Xt]t∈Z and Y = [Yt]t∈Z are subprocesses of S, that are confounded by a
latent processH = [Ht]t∈Z. Motivated by instrumental variables, one may aim
to exploit the subprocess I = [It]t∈Z that is independent of H and only acts
on Y through X. However, simply using It−2 as an instrument is generally
inconsistent; the same holds when adding Xt−2 and Yt−1 as a conditioning set,
for example. This paper develops a graphical framework giving rise to several
consistent estimators.

Throughout this work we consider a joint process S :=
[
I⊤t , X

⊤
t , H

⊤
t , Y

⊤
t

]⊤
t∈Z where

H is latent. For simplicity, we let S be a linear VAR(1) process but we show later (see
Section 4.2.3) that the methodology applies to broader model classes, too. Fig. 1 shows
a graphical representation of the process. Our goal is to estimate the coefficient β with
which Xt−1 linearly enters into Yt . The coefficient β can also be understood as the
direct causal effect of Xt−1 on Yt (cf. Appendix F.1.3).

When S is fully observed, estimators that are consistent and asymptotically normal
for the standard form parameters of the VAR(1) process S exist; in particular, β can be
consistently estimated [Hamilton, 1994]. Yet in our setting H, the confounding between
X and Y is unobserved, and such estimators are not applicable. Furthermore, a direct
application of IV estimation for i.i.d. data could suggest using It−2 as an instrument
for estimating the effect of Xt−1 on Yt. We prove that in general, this does not yield a
consistent estimator (Proposition 2). The reason is that the instruments are correlated
to Y not only through the path It−2 → Xt−1 → Yt but also through an infinite number
of paths in the past, due to common ancestors It−j , j ≥ 3 in the instrument process I.
This correlation violates the assumption that the instrument It−2 only correlates with
Yt through Xt−1.
In this work, we establish a general graph marginalization technique that allows us

to find valid IV models for processes S, such as the one shown in Fig. 1. Based on
these results, we propose two solutions to identify causal effects in time series. The
first solution (‘conditional IV’ or ‘CIV’) identifies β using IV conditioned on one or
more past states It−j , j ≥ 3 of the instrument process. The second solution is based
on ‘nuisance IV’ (or ‘NIV’), a modification of IV that we develop; it can be used not
only for time series but also for i.i.d. data. It allows for stronger identifiability results
by adding nuisance treatment variables to the target causal effect. Applied to the time
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series setting, nuisance IV yields a consistent estimator for the target of inference β by
adding the effect of one or more nuisance regressors, e.g., Yt−1.

Similar to the i.i.d. case, these two approaches induce identifying moment equations
that are satisfied by the causal effect β. Rank conditions guarantee that their solution
is unique, allowing us to identify the causal effect. Unlike in the i.i.d. case, however, the
standard conditions are not easily interpretable in the time series setting. We therefore
develop sufficient and necessary conditions on the parameters of the data-generating
process that provide insight on when identifiability holds. Our results imply that iden-
tifiability with nuisance IV depends on geometric multiplicities of eigenvalues of the
parameter matrix in the VAR process, and we show that if parameters are drawn at
random from a continuous distribution, the causal effect β of Xt−1 on Yt is almost surely
identifiable. In particular, it is possible to identify the causal effect even if the instru-
ment I is univariate and the regressor X is multivariate. For both of the approaches
(conditional IV and nuisance IV), we propose estimators and prove that, in case of
identifiability, these estimators consistently estimate the direct causal effect.

Finally, we apply our findings to the task of distribution generalization [e.g., Mein-
shausen, 2018, Rothenhäusler et al., 2021, Jakobsen and Peters, 2021]. In many systems,
the causal effects are of value in themselves because they contribute to the understanding
of the system but it also serves a purpose when predicting Yt+1 under an intervention on
Xt. In a linear setting, the OLS estimator has the smallest expected mean squared error
(MSE) among all linear predictors when predicting new test data from the observational
distribution. However, as is known for the i.i.d. setting [e.g., Rojas-Carulla et al., 2018],
causal estimators have better worst-case predictive performance when the environments
are constructed by interventions on the covariates. Similarly, we show that in time series,
under arbitrary interventions on Xt, our IV estimators are worst-case prediction optimal
for Yt+1.

Our work is structured as follows. Section 2 introduces the model and the assumptions
considered in this paper; we review graphical representations of time series models and
prove that the global Markov property holds for VAR(p) processes. In Section 3, we
review theory on conditional instrumental variables, introduce the concept of nuisance
IV, and prove its correctness. Our main results for instrumental variable regression
for time series are presented in Section 4. We propose two approaches to overcome
confounding from past values yielding identifying equations for the causal effect: the
first one is based on CIV and the second one uses NIV. For the latter, we characterize
identifiability of the causal parameter in terms of parameters of the data-generating
process. We also discuss how to use the causal effect to perform optimal prediction
of Yt+1 under interventions on Xt. In Section 5 we empirically evaluate our method.
All proofs are provided in Appendix F.4. Code can be found at https://github.com/
nikolajthams/its-time.
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2. Causal Time Series Models with Confounding

2. Causal Time Series Models with Confounding

2.1. Definitions and notation

We consider multivariate time series X := [Xt]t∈Z and I := [It]t∈Z, a univariate process
Y := [Yt]t∈Z, and an unobserved multivariate process H := [Ht]t∈Z. Let dX be the
dimensionality of Xt, that is Xt ∈ RdX , and similarly for dI , dY and dH , with dY = 1.
Let S := [St]t∈Z = [I⊤t , H

⊤
t , X

⊤
t , Y

⊤
t ]⊤t∈Z, St ∈ Rd, with d := dX + dY + dI + dH .

Several of our results are presented for VAR(p) processes [e.g., Brockwell and Davis,
1991], which is done for presentation purposes. Many of the results hold more generally,
see Section 4.2.3. We say that S is a VAR(p) process if there exist p ∈ N such that the
following assumption holds:

(A1) There are coefficient matrices A1, . . . , Ap ∈ Rd×d such that for all t ∈ Z:

St = A1St−1 + . . .+ApSt−p + εt, (1)

where A1, . . . , Ap are such that det(Idλ
p−A1λ

p−1−A2λ
p−2− ...−Ap) = 0 implies

|λ| < 1, the εt constitute an i.i.d. process, and εt ∼ N (0,Γ), where Γ is a diagonal
matrix.

We use the notation α1
X,I to refer to the submatrix of A1 with rows corresponding to X

and columns corresponding to I (see Fig. 2a for an example), and similarly α2
I,I etc. We

use superscripts to denote individual components of ε, e.g., εY . We consider Yt as the
response variable, Xt−1 as covariates and our target of inference is β := α1

Y,X . We refer

to β as the causal effect from X to Y .9 Most of our results generalize to estimating total
causal effects (TCEs) instead of β; we state Theorem 3 below in this generality, but for
simplicity we state all other results with the causal effect β. For 1 ≤ i, j ≤ d and l ∈ N,
the TCE of Sit−l on S

j
t is defined as( ∑

1≤l1,...,lm≤p
l1+···+lm=l

Al1 · · ·Alm
)
j,i

.

In a process satisfying Assumption (A1), the TCE of Xt−1 on Yt coincides with β; see
Appendix F.1.4 for details.

Both H and the noise ε are assumed to be unobserved; while the sequence of inno-
vations εYt is assumed to be i.i.d. and independent of Xt, H can act as a confounder
between X and Y and can have an autoregressive structure. Similar to the i.i.d. case
[e.g., Hernán and Robins, 2006, Pearl, 2009, Peters et al., 2017], the existence of the
confounder H implies that we cannot identify β by simply regressing Yt on Xt−1. In

9The notions of causal effect and total causal effect are motivated by interpreting the VAR equations as
a structural causal model (SCM), which we explain in detail in Appendix F.1.3. The interventional
interpretation of an SCM is not required for any results of the paper, except for the ones presented
in Section 4.3, where we discuss optimal predictions under interventions.
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(a) Matrix block structure of A1 assumed in

Assumption (A2).
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(b) Summary time graph of a VAR(1) process
satisfying Assumption (A2).

Figure 2.: The sparsity structure on the parameter matrix A1 assumed in Assump-
tion (A2), and a representation of the graphical structure induced by A1.
Zeros in panel a) correspond to absent edges in panel b).

Appendix F.1.2, we provide an example of two VAR(1) processes with two different
parameter matrices that generate the same distribution over the observed time series.
We assume that the process has zero mean10, so for instance cov(Xt, Yt) = E{XtY

⊤
t } ∈

RdX×dY . We assume that the data are sampled as follows: We obtain a sample over time
points t = 1, . . . , T of S such that for t = 1, S1 follows the stationary distribution. We
denote the sample with boldface S = [St]

T
t=1 such that S ∈ Rd×T and each column

St represents the process observation at time t. We let ÊSt := 1
T

∑T
t=1 St denote the

empirical mean of the distribution (here, the index t in ÊSt does not refer to any specific
time point). From Assumption (A1) it follows [Hamilton, 1994, Chapter 10] that

ÊSt
P−→ ESt and ˆcov{St−jS⊤

t } :=
1

T − j
T∑

t=j+1

St−jS
⊤
t

P−→ cov{St−jS⊤
t }. (2)

Finally, in the case where S is a VAR(1) process, we will sometimes assume additional
structure on the coefficient matrix.

(A2) Assume that S satisfies Assumption (A1) for p = 1 and that A1 has the sparsity
structure displayed in Fig. 2a.

Under Assumption (A2), none of the other time series components enters the assignment
for I; in that case, we refer to I as an instrumental time series.

2.2. Graph representations of VAR processes

(1) can be represented graphically. This representation will prove helpful when estab-
lishing identifying equations for causal effects and constructing consistent estimators.
The full time graph [e.g., Peters et al., 2013] is defined as an infinite directed graph with
nodes It, Ht, Xt, Yt, for any t ∈ Z. For k ∈ N, it contains a directed edge from (j, t) to

10Since we can always subtract empirical means, the assumption of vanishing means does not come with
any loss of generality.
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(i, t + k), i, j ∈ {I,H,X, Y }, if αkij ̸= 0. For a process satisfying Assumption (A2) an
extract of this graph is shown in Fig. 1. We define the full time graph for higher order
VAR processes accordingly. The summary time graph only has a single node per time
series component. It contains a directed edge from i to j, for some i, j ∈ {I,H,X, Y } if
and only if the full time graph contains an edge from (j, t) to (i, t+ k) for some k ∈ N.
For a process satisfying Assumption (A2), such a graph is visualized in Fig. 2b.

We now introduce some standard graph terminology [e.g., Lauritzen, 1996, Koller and
Friedman, 2009, Pearl, 2009]. A path p, p = (v1, e1, v2, . . . , en−1, vn), is an alternating
sequence of distinct vertices vi and edges ei such that vi and vi+1 are connected by ei.
We say that p is a directed path from v1 to vn if for every i, ei points from vi to vi+1.
For two nodes v and u, we say that u is a descendant of v if there exists a directed
path from v to u and otherwise u is a non-descendant of v. We write ND(v) and DE v
for the sets of non-descendants and descendants of v, respectively, using the convention
that neither of them contain v itself. For a path p and any i ∈ {2, . . . , n − 1}, we say
that vi is a collider on p if (vi−1, ei−1, vi, ei, vi+1) is of the form vi−1 → vi ← vi+1 and
else vi is a non-collider on p. We say that the path p is unblocked, given the set B if for
every non-collider vi in p, vi /∈ B and for every collider vi on p, (vi ∪ DE vi) ∩ B ̸= ∅.
Otherwise, we say that p is blocked by B. If all paths between distinct vertices v and u
are blocked by a set B neither containing v nor u, we say that v and u are d-separated
by B. Similarly, we say that disjoint sets V and U are d-separated by B if all nodes
v ∈ V and u ∈ U are d-separated by B.

In section Section 4.2, we also consider marginalized graphs, which are acylic directed
mixed graphs (ADMGs), containing both directed (→) and bidirected (↔) edges. If we
define v to be a collider on a path whenever two surrounding edges have arrowheads
at v (e.g. u1 ↔ v ← u2), and define descendants only with respect to directed edges,
d-separation also extends to ADMGs. See Richardson [2003] for details.

2.2.1. Markov Properties of VAR processes

The representation described above satisfies several Markov properties, which enables
us to read off conditional independences from the full time graph. This will be an
important tool in our theory, because it enables the use of graphical models to develop
IV methodology in time series. These results do not formally follow from standard results
in for example Lauritzen [1996], as the full time graphs are infinite, but will be used in
many of the proofs.

Theorem 1. Consider a time series S generated according to Assumption (A1), and
finite disjoint collections A,B,C. If A and C are d-separated given B in Gfull then
A ⊥⊥ C|B.

The proof of Theorem 1 and all other proofs in this paper are provided in Ap-
pendix F.4.
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3. Nuisance Effects in Instrumental Variable Regression

In this work, we establish two identifying equations for causal effect estimation in time
series: The first one is based on conditional instrumental variables (CIV) and the second
one on a generalization that we term nuisance instrumental variables (NIV). We regard
the idea of NIV as interesting in its own right, as it can be applied in the i.i.d. setting,
too. In this section, we therefore first review CIV regression for i.i.d. data, and then
introduce NIV regression; instrumental variable (IV) regression is a special case of CIV
regression, where the conditioning set is empty. In Section 4, we extend the CIV and
NIV estimators to VAR processes via a reduction of the full time graph to a marginalized
graph.

3.1. Instrumental variables and conditional instrumental variables

Consider a linear SCM (see Appendix F.1.3) over variables V , and let I,X ,B, {Y } ⊆ V
be disjoint collections of variables11 from V , and let G be the corresponding DAG.
Assume that I,X and Y have zero mean and finite second moment and let β be the
causal coefficient with which X enters the structural equation for Y , that is,

Y = βX + γW + εY ,

for some variables W ⊆ V \X ; (some of the entries of β can be zero, so not all variables
in X have to be parents of Y ). We consider the following three requirements on I,X ,B
and Y :

(CIV1) I and Y are d-separated given B in the graph GX ̸→Y , that is the graph G where
all direct edges from X to Y are removed,

(CIV2) B is not a descendant of X ∪ Y in G, and

(CIV3) the matrix E[cov(X , I|B)] has rank dX , that is, full row rank.

If requirements (CIV1) and (CIV2) are met, Y −βX ⊥⊥ I|B, and in particular β satisfies
the CIV moment equation12

E[cov(Y − βX , I|B)] = 0. (3)

If, additionally, requirement (CIV3) is met, β is the unique solution to (3),

E[cov(Y − bX , I|B)] = 0 =⇒ b = β.

11Below, the different variables will take different roles (such as instruments or regressors). We use
the calligraphic notation I,X , and B to denote collections of observed variables, being used as
instruments, regressors, and conditioning sets, respectively. Individual variables are denoted by non-
calligraphic letters, such as I.

12Here we use the definition cov(A,C|B) := E[AC⊤|B]−E[A|B]E[C⊤|B] = cov(A−E[A|B], C−E[C|B]),
which even accommodates for nonlinear relationships between the variables and B.
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(Conditional IV with univariate X has been discussed in the literature [Pearl, 2009,
Henckel, 2021, Brito and Pearl, 2002a]. Since we allow dX > 1, we add a short proof
in Appendix F.4.1.) In this case, we say that β is identified by CIV or, more precisely,
identified by CIVX→Y (I|B). If requirements (CIV1) and (CIV3) are satisfied for B = ∅
(requirement (CIV2) is trivially satisfied for B = ∅), CIVX→Y (I|∅) reduces to instru-
mental variables (IV) regression [Reiersøl, 1945, Anderson and Rubin, 1949, Bowden
and Turkington, 1985, Angrist et al., 1996], which we refer to as IVX→Y (I). We use the
term proper CIV when B ̸= ∅.

For a finite sample X, Y, I, and B, we consider an empirical counterpart of (3) which,
however, may not have a solution in the overidentified setting, that is when dI > dX ; to
overcome this, for any positive definite weight matrix W , we define the estimator b̂(W )
as

b̂(W ) := argmin
b
∥ ˆcov(Y − bX, I|B)∥2W , (4)

where ∥x∥2W := x⊤Wx and ˆcov is the empirical covariance of the residuals after regressing
out B. We refer to this estimator as CIVX→Y(I|B). If I,X , Y and B are zero mean
random vectors, the minimizer of (4) is given by

b̂(W ) = Ê[rYr⊤I ] W Ê[rIr⊤X]

(
Ê[rXr⊤I ] W Ê[rIr⊤X]

)−1

, (5)

where rY := Y − Ê[Y|B] are the residuals after regressing Y on B, and similarly
rX := X− Ê[X|B] and rI := I− Ê[I|B].

Choosing the two-stage least squares (TSLS) weight matrix WTSLS := E[rIr⊤I ]−1 cor-
responds to the procedure where one regresses rX on rI and then returns the regression
coefficient of rY on the fitted values r̂X. In a linear Gaussian model, the IV estimator
b̂(WTSLS) has the lowest asymptotic variance among all positive definite weight matrices
W [Hall, 2005].

3.2. Nuisance instrumental variables

IV estimation is a special case of CIV with the empty set as conditioning set. The
example in Fig. 3 (left) shows a graph where an effect between X and Y cannot be
identified using the IV estimator: no variable is d-separated from H, and hence no
valid instruments for (unconditional) IV exist. Yet, the causal effect is identified by13

CIVX→Y (I|B) because B satisfies requirements (CIV1) to (CIV3).

In the case shown in Fig. 3 (middle), the effect from X to Y cannot be identified
by IVX→Y (I) because of the unblocked path I → Z → Y . We cannot use proper
CIV, either, because the path I → Z ← H → Y is unblocked given Z, violating
requirement (CIV1). Nevertheless, we can identify the effect from X to Y by adding
an additional regressor variable. If dI ≥ dX + dZ , then IV{X,Z}→Y (I) satisfies the

13In a slight abuse of notation, we sometimes omit parantheses indicating sets and write CIVX→Y (I|B)
instead of CIVX→Y (I|B) if I = {I}, for example.
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Figure 3.: CIV and (proper) NIV are complementary for identifying causal effects in that
they can be used in different settings. (Left) A graph where the effect X → Y
is identified by CIVX→Y (I|B) (provided that requirement (CIV3) holds) but
not by any IV or proper NIV method. (Middle) A graph where X → Y is
identified by NIVX→Y (I, Z), but not by any proper CIV method. (Right) A
graph where X → Y is identified by both CIVX→Y (I|B) and NIVX→Y (I, Z)
with I = {I,B}.

assumption for identifying the effect {X,Z} → Y . In particular, from this we can
extract the effect of interest, X → Y .
We refer to this approach as nuisance instrumental variables (NIV). More formally,

consider collections of variables I,X ,Z and a response variable Y . We say that β satisfies
the NIV moment equation if there exist α ∈ RdY ×dZ such that

cov(Y − βX − αZ, I) = 0. (6)

We say that β is identified by NIV or, more formally identified by NIVX→Y(I, Z) if
additionally β is the only solution to the moment equation; that is for all a ∈ RdY ×dZ

and b ∈ RdY ×dX

cov(Y − bX − aZ, I) = 0 =⇒ b = β. (7)

We refer to Z as a nuisance regressor. If we use both a nuisance regressor Z and
condition on a variable B, the conditions become

there exists α s.t. E[cov(Y−βX−αZ, I|B)] = 0 and E[cov(Y−bX−aZ, I|B)] = 0 =⇒ b = β,

and we write NIVX→Y (I,Z|B); this corresponds to extracting the entries relevant for X
from the output of CIVX∪Z→Y (I|B); by choosing Z = ∅, NIV extends CIV. When Z ̸= ∅,
we use the term proper NIV. The following theorem proves that requirements (CIV1)
to (CIV3) are sufficient to establish identifiability of NIV.

Theorem 2 (Nuisance IV). Consider a linear SCM (see Appendix F.1.3) over variables
V , and let I, X , Z, B, {Y } ⊆ V be disjoint collections of variables from V , and let G be
the corresponding DAG. Assume that I,X ,Z and Y have zero mean and finite second
moment and let β and α be the causal coefficients with which X and Z enter the structural
equation for Y , respectively (some of the entries of β and α can be zero, so not all
variables in X and Z have to be parents of Y ). Let X̃ := X ∪Z. If requirements (CIV1)
to (CIV3) are satisfied in G for I, X̃ ,B and Y , the causal effect β of X on Y is identified
by NIVX→Y (I,Z|B).
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4. Instrumental Time Series Regression

Even though this is a straight-forward extension of IV regression, we are not aware of
any work describing the idea of NIV. It will prove useful in the time series setting and
even in the i.i.d. setting it is a strict generalization of CIV: there are graphs, such as the
one in Fig. 3 (middle), where the causal effect X → Y is neither identified by IV nor by
CIV.

For some graphs the effect X → Y can be identified by (proper) NIV and (proper)
CIV. For example, in the graph in Fig. 3 (right) the effect X → Y can be identified both
by CIVX→Y (I|B) and by NIVX→Y ({I,B}, Z). When estimated from a finite sample, the
two resulting estimators are not identical, and, as the following proposition establishes,
the two approaches cannot in general be sorted in terms of asymptotic variance.14

Proposition 1. If an effect can be identified by CIV and by NIV, then the estimators
cannot be strictly sorted in terms of asymptotic variance. More specifically, there exist
data generating processes, for which CIV has strictly smaller asymptotic variance and
others, for which NIV has strictly smaller asymptotic variance.

The idea of NIV can be naturally applied in time series settings, too. In Section 4.2
we show that causal effects in VAR(1) processes as described in Section 2 can be esti-
mated both by CIV and NIV. To establish this result, we first develop a marginalization
technique of time series graphs, which allows us to apply the above results.

4. Instrumental Time Series Regression

4.1. Time series reduction

In Section 2.2, a VAR process is represented by its full time graph (see, e.g, Fig. 1). We
now show that instruments and conditioning sets for VAR processes can be found by
considering marginalized time graphs, which are obtained by marginalization of the full
time graph to a finite set of nodes; they resemble latent projections [e.g., Verma, 1991]
but are projections of graphs that are not finite.

Definition 1. Consider a process S = [St]t∈Z satisfying Assumption (A1) and let Gfull
be the full time graph of S as defined in Section 2.2. Let M = {Si1t1 , . . . , S

im
tm} be a finite

collection of nodes in Gfull. The marginalized time graph, GM , is the graph over nodes
M where for all i, j ∈M there is:

1. a directed edge i → j if and only if i → j in Gfull or there exists m1 ∈ N,
v1, . . . , vm1 /∈M and a directed path i→ v1 → · · · → vm1 → j in Gfull, and

2. a bidirected edge i↔ j if and only if there existsm1,m2 ∈ N, v1, . . . , vm1 , w1, . . . , wm2 , U /∈
M in Gfull such that there exists directed paths U → v1 → · · · vm1 → i and
U → w1 → · · ·wm2 → j.

14In the i.i.d. setting, the asymptotic variances of both NIV and CIV estimators can be described by
closed form expressions, see Appendix F.2.1.
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The following theorem establishes that the CIV conditions being satisfied in a marginal-
ized time graph implies a moment condition that can be used for identifying the causal
effect. In the previous section, we stated identifiability results in terms of the causal
effect β. The following theorem is stated in terms of the total causal effect (see Sec-
tion 2.1); this generalizes the causal effect and may for instance be interesting if some
predictors X are unobserved or are observed but cannot be intervened on. To do so, we
state a slight modification of requirement (CIV1).

(CIV1’) I and Y are d-separated given B in the graph where we remove an edge outgoing
from X if the edge lies on a directed path from X to Y .

Theorem 3 (Time series IV by marginalization). Consider a process S = [St]t∈Z sat-
isfying Assumption (A1) with full time graph Gfull. Let Y be some node in Gfull and let
X , I,Z, and B be disjoint collections of nodes from Gfull. Let X̃ := X ∪ Z and define
M := {Y }∪X ∪I ∪Z ∪B. Assume that requirements (CIV1’) and (CIV2) are satisfied
for I, X̃ ,B and Y in GM (see Definition 1). Then, the following three statements hold.
(i) The total causal effect [β, α] of [X⊤,Z⊤]⊤ on Y satisfies the NIV moment equation

E[cov(Y − bX − aZ, I|B)] = 0. (8)

(ii) Further, if requirement (CIV3) is satisfied for I, X̃ ,B, then [β, α] is the unique
solution to (8). (iii) If, additionally, X,Y, I,Z and B are observations of X , Y, I,Z
and B at T time points, W is a positive definite matrix, and

[b̂, â] := argmin
b,a

∥ ˆcov(Y − bX− aZ, I|B)∥2W , (9)

then b̂ is a consistent estimator for β.

We now apply the above result to VAR(1) processes satisfying Assumption (A2). In
this case, the total causal effect coincides with the β defined in Section 2.1 (and (CIV1’)
and (CIV1) become equivalent). The generality of Theorem 3, however, can be used
to develop similar results for VAR(p) processes with p ̸= 1 and for total causal effects
between arbitrary variables in the process.

4.2. Instrumental first-order VAR processes

We now consider estimating the causal effect β in VAR(1)-processes, such as the one
displayed in Fig. 4. A first attempt might be to estimate the effect β from Xt−1 to Yt by
directly adapting the i.i.d. case and using IVXt−1→Yt(It−2). In Proposition 2, we prove
that this estimator, in general, is not consistent. Instead, we will later make use of the
time series reduction introduced above, which motivates two different (and consistent)
estimators.

Proposition 2 (Failure of naive IV adaption). Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z

satisfying Assumption (A2) with dI = dX = dH = dY = 1. If cov(Xt−1, It−2) ̸= 0 and
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Figure 4.: Part of the full time graph of a process satisfying Assumption (A2) and three
different paths from It−2 to Yt. To use It−2 as an instrument to identify the
causal effect β of Xt−1 on Yt, it is required that the only open path between
It−2 and Yt be the yellow path, It−2 → Xt−1 → Yt. If we do not use any
blocking set, also the red path is unblocked. Adding Xt−2 and Yt−1 as a con-
ditioning set (blue circles) does not suffice, since the blue path is unblocked
given Xt−2 and Yt−1, for the reason that Xt−2 acts as a collider [Pearl, 2009].
By using time series reduction, we construct consistent estimators using con-
ditional and nuisance IV (Sections 4.2.1 and 4.2.2).

αI,IαY,Y ̸= 1, the IVXt−1→Yt(It−2) estimator β̂ converges in probability to

(1− αI,IαY,Y )−1β.

Consequently, β̂ is in general not consistent for the causal effect β of Xt−1 on Yt, unless
I or Y do not have any autoregressive structure, that is, αI,I = 0 or αY,Y = 0.

This naive IV approach fails due to the memory of the processes: The instrument, It−2,
correlates with the response, Yt, not only through the directed path It−2 → Xt−1 → Yt
(yellow path in Fig. 4), but also through paths reaching into the past, such as It−2 ←
It−3 → Xt−2 → Yt−1 → Yt (red path in Fig. 4). While additionally including the
variables Xt−2 and Yt−1 (circled blue) as conditioning sets would block the red path
it also unblocks the blue path (since marginally independent variables, such as It−3

and Ht−3, may become dependent when conditioning on a common descendant such as
Xt−2). Consequently, the estimation would still be inconsistent. Instead, the concepts of
NIV and time series reductions introduced above provide us with a principled approach
to selecting which variables to include into the regression and allow us to construct
estimators that adjust for the past.

4.2.1. Blocking the past using conditional IV

Consider a process S satisfying Assumption (A2). By Theorem 3, any set satisfying re-
quirements (CIV1) to (CIV3) in the corresponding marginalised time graph yields a con-
sistent estimator for the causal effect ofXt−1 on Yt. Thus, defineM := {It−3, It−2, Xt−2, Xt−1, Yt−1, Yt}
and consider the marginalization GM of the full time graph with respect toM , see Fig. 5
(left). In this graph, every path from It−2 to Yt either goes through Xt−1 or It−3. In-
deed, the assumptions for Theorem 3 are satisfied when choosing It := {It−2} and either
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It−2

Xt−1

Yt

It−3

Xt−2

Yt−1

It−2

Xt−1

YtYt−1

It−2

Xt−1

Yt

It−3It−m−1 · · ·

Yt−1

Figure 5.: Three different marginalizations of the full time graph Gfull of a process satis-
fying Assumption (A2) (see Fig. 1). Using Theorem 3, we use these marginal-
izations for identification using CIV (left) and NIV (middle and right). (Left)
Marginalization to nodes It−2, Xt−1 and Yt and their lagged values. (Mid-
dle) Marginalization to nodes It−2, Xt−1 and Yt and the lagged value of Yt.
(Right) Marginalization tom instrument nodes It−2, . . . , It−m−1, andXt−1, Yt,
and Yt−1.

Bt = {It−3} or Bt := {It−3, Xt−2, Yt−1}. Formally, we have the following theorem.

Theorem 4 (Identification with conditioning set). Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z

satisfying Assumption (A2). Let either Bt := {It−3} or Bt := {It−3, Xt−2, Yt−1}. Then,
the following three statements hold. (i) The causal effect β of Xt−1 on Yt satisfies the CIV
moment condition E[cov(Yt−βXt−1, It−2|Bt)] = 0. (ii) Furthermore, if E[cov(Xt−1, It−2|Bt)]
has rank dX , then β is identified by CIVXt−1→Yt(It−2|Bt). (iii) If, additionally, Xt,Yt, It,
and Bt are observations of X,Y, I and B at T time points, then β can be consistently
estimated as T →∞ by CIVXt−1→Yt(It−2|Bt), that is, the output of Algorithm 1.

Theorem 4 establishes that the bias due to confounding from the past (see beginning of
Section 4.2) can be overcome by choosing either Bt = {It−3} or Bt = {It−3, Xt−2, Yt−1} as
conditioning set. In Section 5, we compare these two choices empirically. The assumption
that αXI has full rank ensures the relevance condition, requirement (CIV3). Other
choices of the marginalization set M are possible, too, and yield alternative ways of
estimating the causal effect Xt−1 → Yt: We now illustrate an alternative strategy for
identification using nuisance IV.

4.2.2. Blocking the past using nuisance IV

The graph in Fig. 5 (middle) shows the marginalization of the full time graph in Fig. 4
to nodes M := {It−2, Xt−1, Yt−1, Yt}. The effect Xt−1 → Yt cannot be consistently
estimated using only these variables in a CIV; if we condition on Yt−1, for example,
the path It−2 ↔ Yt−1 ↔ Yt is unblocked, violating requirement (CIV1). Instead, we
can include Yt−1 as a nuisance regressor: We identify the effect of Xt−1 on Yt using the
instrument I ′t := {It−2} by NIVXt−1→Yt(I ′t, Yt−1), defined in Section 3.2. This model
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Algorithm 1 Estimating the causal effect β of Xt−1 on Yt under Assumption (A2).

Input: Sample X = [X1, . . . ,XT ] ∈ RdX×T , Y = [Y1, . . . ,YT ] ∈ RdY ×T , I =
[I1, . . . , IT ] ∈ RdI×T

1: Align observations, by setting Y = [Ys, . . . ,YT ] and either

(CIV) I := [Is−2, . . . , IT−2] X := [Xs−1, . . . ,XT−1] and B := [Is−3, . . . , IT−3]

(NIV) I :=

 Is−2
...

Is−m+1

. . .

IT−2
...

IT−m+1

 and X :=

[
Xs−1

Ys−1
. . .

XT−1

YT−1

]
,

where s is chosen such that all indices are positive.
2: Compute regression estimates Ê[X|B], Ê[Y|B], and Ê[I|B].
3: Compute residual processes rX := X − Ê[X|B], rY := Y − Ê[Y|B], and rI :=

I− Ê[I|B].

4: W :=
(

1
T−s+1rIr

⊤
I

)−1

5: β̂ := rYr
⊤
I WrIrX

(
rXr

⊤
I WrIr

⊤
X

)−1

6: If I and X are chosen according to NIV, set β̂ := β̂1:dX .

Output: Estimate of causal effect β̂

satisfies the (nuissance) IV requirement (CIV1), because the only open paths between
It−2 and Yt includes either the edge Xt−1 → Yt or the edge Yt−1 → Yt.

Because the resulting dX -dimensional estimate is extracted from the dX+dY -dimensional
solution IV{Xt−1,Yt−1}→Yt(I ′t), we require that rankE

{
[X⊤

t−1, Y
⊤
t−1]

⊤(I ′t)⊤
}
= dX + dY . If

dI < dX + dY , this rank condition is not met for I ′t := {It−2}. To overcome this, one
can increase the instrument set to It = {It−2, It−3, . . . , It−m−1}: Fig. 5 (right) shows
the marginalization of the full time graph to M := It ∪ {Xt−1, Yt−1, Yt}. Again, re-
quirements (CIV1) and (CIV2) are satisfied in GM , but the instrument set now has
dimension |I| = mdI and, provided the rank condition now holds, β is identified by
NIVXt−1→Yt(It, Yt−1). The following theorem formalizes this discussion.

Theorem 5 (Identification with nuisance regressor). Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z

satisfying Assumption (A2). Let It := {It−2, . . . , It−m−1} for an m ≥ 1 and Zt :=
{Yt−1}. Then, the following three statements hold. (i) There exists α ∈ R such that the
causal effect β of Xt−1 on Yt satisfies the NIV moment condition E[cov(Yt − βXt−1 −
αZt, It)] = 0. (ii) Further, if E[[X⊤

t−1,Z⊤
t ]

⊤I⊤t ] has rank dX + dY , β is identified
by NIVXt−1→Yt(It,Zt). (iii) If, additionally, Xt,Yt, It, and Zt are observations of
X,Y, I and Z at T time points, then β can be consistently estimated as T → ∞ by
NIVXt−1→Yt(It,Zt), that is, the output of Algorithm 1.

Theorem 5 shows that identification is possible if rankE
{
[X⊤

t−1, Y
⊤
t−1]

⊤I⊤t
}
= dX +dY
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is met, where we use the lagged instrument set It = {It−2, . . . , It−m−1} (it is easy to see
that for this choice of It, identifiability also holds for β = 0 and the rank being dX).
Satisfying this relevance criterion implies requirement (CIV3). For the CIV approach in
Section 4.2.1, this is directly related to the rank of the parameter αXI . For NIV, the
relevance criterion depends on the parameter matrix in an intricate way. We now provide
necessary and sufficient conditions for when this rank condition is satisfied. Moreover,
we show in Corollary 1 below that for almost all parameter matrices one can obtain
sufficiently high rank to identify the effect Xt−1 → Yt by increasing the number of lags
used.
Define the following submatrices of the parameter matrix A from Assumption (A2).

AI :=

(
αX,I
0

)
∈ RdX+1 and AXY :=

(
αX,X αX,Y
β αY,Y

)
∈ R(dX+1)×(dX+1). (10)

The following theorem outlines conditions for E[[X⊤
t−1, Y

⊤
t−1]

⊤I⊤] to have full rank when
dI = 1 and we use dX + dY = dX + 1 lags as instruments:

Theorem 6. Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z satisfying Assumption (A2).

Assume that dI = dY = 1 and let It := {It−2, . . . , It−m−1}, where m = dX + dY . Let
AXY and AI be defined as in (10). The following three statements are equivalent:

1. rankE[[X⊤
t−1, Y

⊤
t−1]

⊤I⊤t ] = dX + dY .

2. The matrix
[
A0
XYAI , A

1
XYAI , . . . , A

dX
XYAI

]
is invertible, where A0

XY is the identity

matrix of size (dX + dY )× (dX + dY ).

3. Different Jordan blocks of J have different eigenvalues and for all q ∈ {1, . . . , k},
the coefficient w∑q

i=1mi
is non-zero; here, J = Q−1AXYQ is the Jordan normal

form15 of AXY , with k Jordan blocks J = diag(Jm1(λ1), . . . , Jmk(λk)), each with
size mi and eigenvalue λi, and w are the coefficients of AI in the basis of the
generalized eigenvectors Q, that is, w = Q−1AI .

Intuitively, Theorem 6 states that identification of β is possible if the information is
passed on in a sufficiently diverse way from It−k to (Xt, Yt). For every k ∈ {0, . . . , dX},
AkXYAI corresponds to the path It−(k+1)

AI→ (Xt−k, Yt−k)
AXY→ . . .

AXY→ (Xt, Yt) in Fig. 1.
Theorem 6 2 requires these to be sufficiently different (that is, linearly independent),
for the matrix E[[X⊤

t−1, Y
⊤
t−1]

⊤I⊤t ] to have full rank. While there are parameter matrices
that do not satisfy Theorem 6 (see Appendix F.3.1 for examples), the following corollary
shows that, when chosen randomly, almost all parameter matrices A allow for using
multiple lags It−2−j as instruments.

Corollary 1. Consider a VAR(1) process S with dI = 1 and parameter matrix A, and
assume that sparsity pattern of A is given by Assumption (A2) and that the non-zero
entries of A are drawn from any distribution which has density with respect to Lebesgue
measure. Then β is identifiable with probability 1.

15See Appendix F.4.9 for the definition of Jordan normal forms and the notation that we use.
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4. Instrumental Time Series Regression

The following corollary provides a sufficient condition for identifiability of β, when
instruments are multivariate.

Corollary 2. Consider a process S satisfying Assumption (A2) with dI > 1 instrument
processes I(1), . . . , I(dI). Assume that there is at least one instrument process I(j) such
that both of the following conditions hold.

1. I
(j)
t is independent of I

(i)
s for all t, s and i ̸= j, and

2. the requirements of Theorem 6 are satisfied for the reduced process (I(j), X, Y ).

Then β is identifiable.

Using a single instrument at dX+1 lags allows for a simple condition for identifiability.
But in finite samples, using instruments with high time lags may come at a loss of
efficiency as the estimation procedure may suffer from weak dependencies between the
residual and the instrument due to the mixing of the time series, see Section 5 for an
empirical investigation.

4.2.3. Extension to non-VAR Processes

The results in Sections 4.2.1 and 4.2.2 assume that the entire process S is a VAR(1)
process, see Assumption (A2), which was done mostly for presentation purposes. The key
arguments and statements hold more generally. We have argued that similar arguments
hold for VAR(p) processes and we now consider a setting, where Yt satisfies a linear
structural equation (as in a VAR(1) process) but we do not assume any VAR structure
or linearity on the remaining subprocesses. We outline the assumptions needed to obtain
the same identification results as in Sections 4.2.1 and 4.2.2 (a similar relaxation can be
applied when Yt behaves like a VAR(p) process). Let [St]t∈Z = [I⊤t , X

⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z and

assume that for all t ∈ Z

Yt := βXt−1 + αY,Y Yt−1 + g(εYt , Ht−1), (11)

where εYt is a sequence of i.i.d. random variables that, for all t, are independent of [Ys]s<t
and [Xs, Is, Hs]s≤t and g is a measurable function. Without assuming a VAR process
we make the following assumptions on S.

(A1’) [St]t∈Z is covariance stationary.

(A2’) S satisfies (2), that is, empirical first and second moments converge to their pop-
ulation version.

(A3’) There exists a p ∈ N such that for all i ∈ {1, . . . , d}, there exists a function f i such
that for all t ∈ Z

Sit = f i(St−1, ..., St−p) + εit.
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This induces a full time graph Gfull [Peters et al., 2013]; we assume that for all finite
disjoint collections of nodes A,B,C from Gfull such that A and C are d-separated
given B in Gfull, we have A ⊥⊥ C|B. Furthermore, for all t ∈ Z, Ht−1 ∈ ND(It−2),
Yt−1 ∈ ND(It−2) and ε

t
Y is independent of any finite set A ⊆ ND(Yt).

(A4’) For all t ∈ Z and m ∈ N, we have (εYt , Ht−1) ⊥⊥ (It−2, ..., It−2−m).

Using these assumptions, we can restate Theorem 4 without the VAR(1) assumption.

Proposition 3 (Identification with conditioning set relaxing the VAR assumption).
Consider a process S = [I⊤t , X

⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z satisfying (11) and Assumptions (A1’)

to (A3’). Let Bt be a set of variables satisfying PA (It−2) ⊆ Bt ⊆ ND(Yt) ∩ND(It−2) in
Gfull. Then, (i), (ii) and (iii) from Theorem 4 hold.

Similarly, we can extend Theorem 5 to more general time series models, too.

Proposition 4 (Identification with nuisance regressor relaxing the VAR assumption).
Consider a process S = [I⊤t , X

⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z satisfying (11) and Assumptions (A1’),

(A2’) and (A4’). Let Zt := {Yt−1} and It := {It−2, . . . , It−m−1} for an m ≥ 1. Then,
(i), (ii), and (iii) from Theorem 5 hold.

So far, we have focused on estimating causal effects. Knowledge of such causal effects
can be of interest in itself. In the following section, we discuss that they can also be
used for prediction and forecasting under interventions.

4.3. Optimal prediction under interventions

Causal estimates may facilitate improved prediction under intervention. Suppose that
we have inferred the causal effect Xt−1 → Yt for instance using the methods presented in
Section 4.2 above. How do we best predict Yt+1 given that we perform the intervention
do(Xt := x) (see Appendix F.1.3 for an introduction to do-interventions) and that we
observe the past values of the time series (but the value of Xt had it not been intervened
on is not observed)?
Due to the hidden confounding, the conditional mean of Yt+1 given its past (which

could be consistently estimated by OLS regression, for example) is in general not optimal
in terms of mean square prediction error (MSPE). Intuitively, this is because the condi-
tional mean also encompasses the effects of the latent process H onto Yt+1. In the i.i.d.
setting, it has been observed that using the causal parameter yields a smaller MSPE
and can be worst-case optimal under arbitrarily large interventions [e.g., Rojas-Carulla
et al., 2018, Christiansen et al., 2021].
In VAR processes, the intervention do(Xt := x) partially breaks the confounding

of Xt and Yt+1 from the past, yet, due to the latent process H, the process (X,Y )
is not a Markov process such that the lagged observations {Xt−k, k = 1, . . . ,m} and
{Yt−j , j = 1, . . . , l} further improve prediction of Yt+1. Fixing the number of lags, the
following proposition shows that, under the intervention do(Xt := x), the optimal linear
prediction consist of a mix of (population) regression parameters for non-intervened
variables and causal parameters for the intervened variable Xt.
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5. Simulation Experiments

Proposition 5. Consider a process S = [St]t∈Z satisfying Assumption (A2). Let β be
the causal effect from Xt to Yt+1, and let for an arbitrary m, ℓ ∈ N (αY,X , αY,Y ) be the
population vector of coefficients when regressing Ys+1 − βXs on {Xs−k, k = 1, . . . ,m} ∪
{Ys−j , j = 0, . . . , l}. Then

(αY,Y , β, αY,X) = argmin
a,b,c

Edo(Xt:=x)

Yt+1 −
ℓ∑

j=0

ajYt−j − bXt −
m∑
k=1

ckXt−k


2

.

That is, under the intervention do(Xt := x), the causal coefficient can be used to
optimally predict Yt+1. We state the corresponding finite sample algorithm in Ap-
pendix F.3.2.

5. Simulation Experiments

We test the empirical performance of our proposed estimators in simulation experiments.

Data generating process. We generate data by first simulating a matrix A with the
sparsity structure of Fig. 2a and all non-zero entries being drawn independently uni-
formly at random from (−0.9,−0.1) ∪ (0.1, 0.9). By Corollary 1, the causal effect under
this sampling scheme is almost surely identifiable by the NIV. Unless specified differ-
ently, we use dI = 3, dX = 2 and dY = 1. Any such randomly generated matrix is used
to generate data only if it satisfies the eigenvalue condition in Assumption (A1) with
a margin of 0.1. Furthermore, all noise variables εit are independently randomly drawn
from a normal distribution with mean 0 and standard deviation 1.

Evaluation of the estimators. We simulate m = 1,000 random matrices and for each
we simulate s = 10 data sets. We fit estimators β̂j for each j ∈ {1, . . . , s}, and for a

given matrix, we compute the average error, error(β̂) := mean(∥β̂1−β∥22, . . . , ∥β̂s−β∥22).

5.1. Identification of the causal effect

Consistency The estimators CIV and NIV are consistent (Theorems 4 and 5) and
we perform an experiment to compare their finite sample properties for different sample
sizes. We simulate data from the scheme described above and fit two CIVXt−1→Yt(It−2|Bt)
estimators, where Bt = {It−3} (CIVI) or Bt = {It−3, Xt−2, Yt−1} (CIVI,X,Y ) and two
NIVXt−1→Yt(It, Yt−1), where It = {It−2} (NIV1 lag) or It = {It−2, It−3, It−4} (NIV3 lag).
All of these estimators are consistent (see Section 4.2). We plot the errors obtained for
different sample sizes T in Fig. 6 (left). For all estimators, the errors decrease with in-
creasing sample size supporting the consistency results in Theorem 3. In general, there
is no empirical support for either of the NIV or CIV estimators to be strictly better
than the others in terms of speed of convergence in terms of sample size. As discussed
in Section 4.2.1, both Bt = {It−3} and Bt = {It−3, Xt−2, Yt−1} block confounding from
past values. We observe that removing Xt−2 and Yt−1 from Bt increases the upper tail
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Figure 6.: (Left) Distributions of the average error (in log scale) of different consistent
CIV and NIV estimators for various sample sizes T , see Section 5.1 (‘Consis-
tency’). Each point corresponds to the average over repeated draws from the
same parameter matrix, and different points correspond to different param-
eter matrices. The NIV1 lag estimators have heavier tails, corresponding to
the fact that this is a just-identified case, where we use a 3-dimensional in-
strument to estimate a 3-dimensional causal effect. (Right) Histogram of log
error ratios for two different NIV estimators in a model with a 3-dimensional
instrument. I1 uses 6 lags from a 1-dimensional instrument process, while
I1:3 uses 2 lags of a 3-dimensional instrument process, see Section 5.1 (‘Using
more lags or additional instruments’). A value larger than zero indicates that
I1 yields a larger error than I1:3. This is the case for the majority of the
considered settings.

of the error distribution, supporting the intuition that while the conditioning variables
Xt−2 and Yt−1 are not necessary for identification, they reduce finite sample variance.
Similarly, for the NIV estimators, using 3 lags instead of a single lag shrinks the upper
tail of the error distribution.

Using more lags or additional instruments. We compare using multiple lags of a single
instrument to using multiple instrument processes. We consider the model described
above with dI = 3 independent instrument processes, and use either the first instrument
process (I1) or all three instrument processes (I1:3) for estimation in NIV. For I1:3 we
use 2 lags of each of the three processes (‘recent instruments’), while for I1 we use 6 lags
(‘distant instruments’), such that both models use in total 6 instruments. In this way,
we can inspect the benefit of using more recent instruments if available.

Figure 6 (right) shows a histogram of the log error ratio of the two different esti-
mators: A large value indicates that model I1, which uses many lags of only a single
instrument process, incurs a higher error. In the majority of parameter settings, using
recent instruments yields a lower error, in some cases several orders of magnitude, when
compared to the more distant instruments. Although adding lags of a univariate instru-
ment process can yield identifiability of the causal effect of a regressor process that is not
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Figure 7.: Median error (log scale) for the NIV estimator as we vary ∆, the difference
between the eigenvalues of αX,X , see Section 5.1 (‘Estimation close to non-
identifiability’). The causal effect is identifiable if and only if ∆ ̸= 0, see Theo-
rem 6. Indeed, the error does not decrease for ∆ = 0 and decreases the faster,
the further ∆ is away from 0.

univariate (see Theorem 6), this simulation experiment supports the notion that using
more instruments (if available) is preferred over using more distant lags.

Estimation close to non-identifiability. Example F.1 in Appendix F.3.1 shows a set-
ting, in which β is not identifiable by NIV (in the setting of Corollary 1, this happens with
probability zero). We examine the behaviour of the NIV estimator in scenarios that are
close to this non-identifiable setting. We consider dI = 1, αX,X = diag(−0.6,−0.6 + ∆)
and draw the remaining parameters uniformly from (−0.9,−0.1) ∪ (0.1, 0.9). As per
Corollary 1, the causal effect is identifiable, except for ∆ = 0, in which case αX,X has
two Jordan blocks with the same eigenvalue. In Fig. 7 we plot the median error for
changing ∆ and sample size T .16 The further ∆ is from 0, the faster (in terms of sample
size) the estimator converges to β. In the non-identified setting ∆ = 0, we do not ob-
serve the error to decrease with increasing sample size. This observation is in line with
Theorem 6.

5.2. Using the causal parameter for prediction under intervention on X

We support empirically that a linear prediction using OLS parameters for non-intervened
variables and causal parameters for the intervened variables achieves minimal square loss
for prediction under intervention (see Proposition 5). We consider the model with dX =
dI = 1 and, ensuring strong hidden confounding, draw the non-zero entries αi,H , i ∈
{X,H, Y } uniformly at random from (−0.9,−0.5) ∪ (0.5, 0.9) (instead of (−0.9,−0.1) ∪
(0.1, 0.9) as for the other non-zero entries of A). The prediction task follows Section 4.3:
Given observations X = [X1, . . . ,XT−1] ∈ RdX×T−1 and Y = [Y1, . . . ,YT ] ∈ RdY ×T ,
with T = 3,000, the goal is to predict YT+1 ∈ RdY ×1 under an intervention do(XT :=

16Here, we report the median, since the non-identifiability when ∆ = 0 implies that the mean is ill-
behaved; for those lines where ∆ ̸= 0, plotting the mean instead of the median yields a similar plot
(not shown).
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do(Xt := σ) do(Xt := 5σ)
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Figure 8.: The figure plots the loss MSPE(ŶT+1) under an intervention do(XT := x)
when YT+1 is predicted using OLS against the loss when YT+1 is predicted
using one of the IV methods we develop for time series. The OLS prediction
is based on the regression Yt+1 ∼ Xt +Xt−1 +Xt−2 + Yt + Yt−1 while the IV
predictions of YT+1 are based on the procedure discussed in Section 4.3 (see
Algorithm F.1 in Appendix F.3.2). We plot this both for do(XT := σ) and
do(XT := 5σ), where σ is the standard deviation of Xt in the unintervened
distribution. The results show that as the intervention strength increases, the
OLS prediction error increases at a faster rate than the IV prediction error.
17 outliers were removed from the right-hand side plot, of which 10 had a
larger OLS MSPE than IV MSPE.

n·σ) where σ is the standard deviation the process [Xt]
T−1
t=1 and n ∈ {1, 5}. In Section 4.3

we discuss that IV is prediction optimal under arbitrary interventions do(XT := x). In
particular, one would expect that OLS becomes increasingly inferior to IV methods when
one increases n and thereby the intervention strength do(XT := n · σ).

We compare prediction for YT+1 via Algorithm F.1 in Appendix F.3.2 (withm = 2 and
l = 1) with prediction based on the OLS regression Yt+1 ∼ Xt+Xt−1+Xt−2+Yt+Yt−1

(‘OLS’). For each repetition and matrix A, we obtain CIV and NIV estimates of β on
a separate sample first, and then obtain predictions for YT+1 following Algorithm F.1
using either β̂CIV (‘CIV’) or β̂NIV (‘NIV’). For each of the m = 100 random matrices
A we compute error(ŶT+1) as the mean of the squared prediction error (ŶT+1 − YT+1)

2

over the s = 100 repetitions.

In Fig. 8, we plot the error of the OLS estimate against the error of the IV estimate
(either CIV or NIV). When (XT := σ), the intervention is within the normal range
of Xt, and the errors of OLS and IV estimates are similar. As we perform a stronger
intervention (XT := 5σ), the OLS error exceeds the IV error in most simulations. This
robustness in prediction under intervention is in line with the result in Proposition 5.
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6. Conclusion and Future Work

In this work, we have developed IV methods for time series data that allow us to iden-
tify the causal effect of a process X on a response process Y , based on an instrument
process I that exhibits memory effects. Simple adaptations of ordinary IV estimators
generally fail to identify the causal effect due to confounding from the past, as we show
in Proposition 2. We have developed the concept of nuisance IV (NIV), see Theorem 2,
a marginalization framework for time series graphs, see Theorem 1, and a global Markov
property for VAR processes, see Theorem 3. Based on these principles, we propose two
classes of estimation methods that properly adjust for confounding from the past: one
based on choosing the correct conditioning set (CIV), see Theorem 4, and another one
based on nuisance regressors (NIV), see Theorem 5. The procedures find solutions to
moment conditions that, in their population version, are satisfied for the true causal
parameters. Unlike in the i.i.d. case, the identifiability conditions (which are usually
rank conditions) do not have a simple interpretation. Theorem 6 provides necessary and
sufficient conditions on the parameters of the underlying data-generating process for the
causal parameter being the unique solution to the corresponding moment equation.
The results of simulation experiments support the theoretical finding that the estima-

tors are consistent. In general, different choices of instruments, conditioning sets and
nuisance regressors allow us to consistently identify the causal effect but, as the exper-
iments show, they may come with different finite sample behaviour. For example, for
identifiability in the case of NIV, we only need the number of lags, m, used as instru-
ments large enough such that dI · m = dX + dY holds but using more lags may help
in finite samples in that this shrinks the upper tail of the error distribution, see Fig. 6
(left).
We have further argued that identifying the causal effect may be of interest not only

for causal inference, but also for prediction of Y under the intervention do(Xt := x),
where the minimal expected squared error can be obtained by a mix of causal parameters
and regression coefficients, see Proposition 5 and Section 5.2.
For future work, it may be fruitful to develop principled techniques for deciding which

estimator yields the best finite sample performance [see, e.g., Henckel, 2021, Chapter 4]
and to construct confidence statements, either based on Appendix F.2.2 or other tech-
niques [e.g., Newey and West, 1987, Shah and Peters, 2020]. Finally, as for the i.i.d.
case [Imbens and Newey, 2009, Chesher, 2003, Saengkyongam et al., 2022], consider-
ing (higher order) independence, rather than vanishing covariances may yield stronger
identifiability results but may come with computational and statistical challenges.
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A. Appendix to Statistical Testing under
Distributional Shifts

A.1. Further comments on the framework

A.1.1. Forward and backward shifts, τ and η

In this paper, as mentioned in Section 2.1, we take the starting point that Q∗ is observed,
and view P ∗ = τ(Q∗) as a shifted version of Q∗. One could instead suppose that we
started with a distribution of interest P ∗, from which no sample is available, and then
construct a map η such that Q∗ = η(P ∗) is a distribution which can be sampled from
in practice. If τ and η are invertible, the two views are mathematically equivalent, but
if not, there is a subtle difference; the corresponding level guarantees take a supremum
either over Q ∈ {Q′ | η−1(Q′) ∩ H0 ̸= ∅} (η view) or over Q ∈ {Q′|τ(Q′) ∈ H0} (τ
view). To see this, we first start with the (natural) level guarantee from the η view:
supP∈H0

Pη(P )(ψn(Xn, U) = 1) ≤ α. We then have

sup
P∈H0

Pη(P )(ψn(Xn, U) = 1) ≤ α

⇔ sup
Q∈η(H0)

PQ(ψn(Xn, U) = 1) ≤ α

⇔ sup
Q∈{Q′ | η−1(Q′)∩H0 ̸=∅}

PQ(ψn(Xn, U) = 1) ≤ α.

If, alternatively, we start with the level guarantee from the τ view, we find

sup
P∈H0

sup
Q∈τ−1(P )

PQ(ψrn(Xn, U) = 1) ≤ α

⇔ sup
Q∈τ−1(H0)

PQ(ψn(Xn, U) = 1) ≤ α

⇔ sup
Q∈{Q′ | τ(Q′)∈H0}

PQ(ψn(Xn, U) = 1) ≤ α.

Comparing the last two lines yields the claim.

A.1.2. Example: Interventions in causal models

One example of a distributional shift τ is the case where τ represents an intervention
in a structural causal model (SCM) over X1, . . . , Xd [Pearl, 2009]. An SCM C over
X1, . . . , Xd is a collection of structural assignments f1, . . . , fd and noise distributions
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QN1 , . . . , QNd such that for each j = 1, . . . , d, we have Xj := f j(PAj , N j). Here, the
noise variables N j are distributed according to N j ∼ QNj and are assumed to be jointly
independent. The sets PAj ⊆ {X1, . . . , Xd}\{Xj}1 denote the causal parents of Xj .
The induced graph over X1, . . . , Xd is the graph obtained by drawing directed edges
from each variable on the right-hand side of each assignment to the variables on the
left-hand side; see Bongers et al. [2021] for a more formal introduction to SCMs.

Let us assume that C induces a unique observational distribution Q over X1, . . . , Xd

(which is the case if the graph is acyclic, for example), and assume that Q admits a
joint density q with respect to a product measure. Then q satisfies the factorization
property (see Lauritzen et al. [1990] or Theorem 1.4.1 in Pearl [2009]): q(x1, . . . , xd) =∏d
j=1 qXj |PAj (x

j |xPAj ). In an SCM, an intervention on a variable Xk replaces the tuple

(fk,PAk, QNk) with (f̄k, P̄A
k
, Q̄Nj ) in the structural assignment for Xk, and we denote

the replacement by do(Xk := f̄k(P̄A
k
, N̄k)) [Pearl, 2009]. This new mechanism deter-

mines a conditional that we denote by p∗(xk|xP̄Ak). The interventional distribution is
the induced distribution with the new structural assignment, and we denote this by

P := Qdo(Xk:=f̄( ¯PAk,N̄k)). If P admits the density p, only the conditional density of Xk

changes [e.g., Haavelmo, 1944, Aldrich, 1989, Pearl, 2009, Peters et al., 2017], that is, for

j ̸= k, we have p(xj |xPAj ) = q(xj |xPAj ), for all xj and xPA
j
. Assume that for the true

but unknown distribution Q∗ we know the conditional q∗(xk|xPAk) (e.g., because this
was part of the design when generating the data). Due to the factorization property,

the intervention do(Xk := f̄k(P̄A
k
, N̄k)) can then be represented as a map τ that acts

on the density q:

τ(q)(x1, . . . , xd) :=
p∗(xk|xP̄Ak)
q∗(xk|xPAk)

· q(x1, . . . , xd).

Defining r(x{k}∪PA
k ∪P̄Ak) := p∗(xk|xP̄Ak)/q∗(xk|xPAk), this takes the form of (5). As

the conditional p∗(xk|xP̄Ak) is fully specified by the intervention, we therefore know the
function r. Our proposed framework allows us to test statements about the distribution

Qdo(Xk:=f̄( ¯PAk,N̄k)). We obtain similar expressions when intervening on several variables
at the same time.

Similar distributional shifts can be obtained, of course, if the factorization is non-
causal (see also Section 3.1), so while our framework contains intervention distributions
as a special case, it equally well applies to non-causal models.

1For notational convenience we sometimes refer to the parent sets by their indices, i.e., PAj ⊆
{1, . . . , d} \ {j}.
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A.2. Efficient computation of V (n,m) in Theorem 4

In this section, we show that for n,m ∈ N and K ≥ 1

V (n,m) =

(
n

m

)−1 m∑
ℓ=1

(
m

l

)(
n−m
m− ℓ

)
(Kℓ − 1)

can be evaluated efficiently. If mn/2, such that for some ℓ one has m−ℓ ≥ n−m, we use

the convention that if a > b then
(
b
a

)
= 0. If one evaluated the term

(
n
m

)−1
separately,

this could potentially cause numerical underflow, and similarly terms in the sum could
get very large, such as the summand including Km − 1.

Denote the summands by sℓ, that is

sℓ =

(
m
l

)(
n−m
m−ℓ

)
(Kℓ − 1)(
n
m

) .

We can compute s1 by:

s1 =

(
m
1

)(
n−m
m−1

)(
n
m

) (K − 1)

= m2(K − 1)
(n−m)!(n−m)!

n!(n− 2m+ 1)!

= (K − 1)
m2

n−m+ 1

m−2∏
j=0

n−m− j
n− j .

This can be evaluated in O(m) time. Further, if sℓ ̸= 0, the ratio of two consecutive
summands is

sℓ+1

sℓ
=

(
m
ℓ+1

)(
n−m
m−ℓ−1

)
(Kℓ+1 − 1)(

m
ℓ

)(
n−m
m−ℓ

)
(Kℓ − 1)

=
(m− ℓ)2

(ℓ+ 1)(n− 2m+ ℓ+ 1)

Kℓ+1 − 1

Kℓ − 1
,

which for a given ℓ, can be evaluated in O(1) time. Hence, we can compute
∑m

ℓ=1 sℓ, by
first computing s1, and for each ℓ, compute sℓ+1 =

sℓ+1

sℓ
sℓ, as long as sℓ ̸= 0 (after which

the remaining terms are 0). The overall computational cost of computing V (n,m) =∑m
ℓ=1 sℓ is thus O(m).

A.2.1. Plotting the level upper bound

To illustrate how the bound in Theorem 4 depends on K = EQ[r(X)2], αφ, m and n, we

plot the level bound infδ∈(0,1)

(
αφ
1−δ +

V (n,m)
V (n,m)+δ2

)
, for various values of αφ, n,m and K in

Fig. A.1. By choosing a very small resample size (such as m = n0.2) and a conservative
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Figure A.1.: The finite level upper bound in Theorem 4 plotted for various values of m,
n, αφ and K. Here K = EQ[r(X)2] is a measure of the difference between
the observed and the target domains and αφ is the level of the target test
applied.
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target test (such as αφ = 0.0001), the level bound grows very slowly in K. For larger
resample sizes m, the finite level is only guaranteed when K is close to 1, meaning that
P ∗ and Q∗ are similar. As we note in Section 4.4.1, the finite-level bound is in many
cases weak, will lead to choices of m which reduces power, and we therefore in practice
recommend to use the GOF-heuristic (Section 4.4.1) in combination with the procedure
for combining multiple resamples (Section 4.4.2) instead.

A.3. Algorithm for hypothesis testing with unknown
distributional shift

This section contains Algorithm A.1, which describes our method for testing under dis-
tributional shifts for the case where the shift factor rq is unknown, but can be estimated
by an estimator r̂. Algorithm A.1 is similar to Algorithm 1 but one additionally splits
the sample Xn into two disjoint samples Xn1 and Xn2 and uses Xn1 for estimating the
weights r̂n1 , which are then, together with Xn2 , used as an input to Algorithm 1.

We view the sample splitting as a theoretical device. In practice, we are using the full
sample both for estimating the weights and for applying the test.

Algorithm A.1 Testing a target hypothesis with unknown distributional shift and
resampling

Input: Data Xn, target sample size m, hypothesis test φm, estimator r̂ for rq, and
a.

1: Let n1, n2 be s.t. n1 + n2 = n and na1 =
√
n2

2: Xn1 ← X1, . . . , Xn1

3: Xn2 ← Xn1+1, . . . , Xn1+n2

4: r̂n1 ← estimate of rq based on on Xn1

5: Ψ
r̂n1 ,m
DRPL (Xn2 , U)← (Xn1+i1 , . . . , Xn1+im)

return ψr̂n(Xn, U) := φm(Ψ
r̂n1 ,m
DRPL (Xn2 , U))

A.4. Sampling from ΨDRPL

This section provides details on sampling from Ψr,m
DRPL, as defined by (10). We have defined

Ψr,m
REPL and Ψr,m

NO-REPL as weighted resampling with and without replacement, respectively.
Ψr,m

NO-REPL can be implemented as a sequential procedure that first draws i1 with weights
r(Xi)/

∑n
j=1 r(Xj), and then draws i2 with weights r(Xi)/

∑n
j=1,j ̸=i1 r(Xj), and so forth.

Although both Ψr,m
NO-REPL and Ψr,m

DRPL sample distinct sequences (i1, . . . , im), they are, in
general, not equivalent, as can be seen from the form of the weights wDRPL

(i1,...,im) and

wNO-REPL
(i1,...,im) below. When there is no ambiguity, we omit superscripts and write ΨDRPL,

for example. We also interchangeably consider a sample from ΨDRPL to be a sequence
(i1, . . . , im) and a subsample (Xi1 , . . . , Xim) of Xn.

The procedures ΨDRPL,ΨREPL and ΨNO-REPL sample a sequence (i1, . . . , im) with weights
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w(i1,...,im) that are, respectively, given by:

wDRPL
(i1,...,im) =

∏m
ℓ=1 r(Xiℓ)∑

(j1,...,jm)
distinct

∏m
ℓ=1 r(Xjℓ)

for distinct (i1, . . . , im)

wREPL
(i1,...,im) =

∏m
ℓ=1 r(Xiℓ)∑

(j1,...,jm)

∏m
ℓ=1 r(Xjℓ)

for all (i1, . . . , im)

wNO-REPL
(i1,...,im) =

∏m
ℓ=1 r(Xiℓ)

n∑
j1=1

r(Xj1)
n∑

j2=1
j2 ̸=i1

r(Xj2) · · ·
n∑

jm=1
jm /∈{i1,...,im−1}

r(Xjm)

for distinct (i1, . . . , im)

Here, the comment ‘for distinct (i1, . . . , im)’ implies that the weights are zero otherwise.
Most statistical software have standard implementations for sampling from ΨREPL and
ΨNO-REPL (known simply as sampling with or without replacement). We now detail a
number of ways to sample a sequence (i1, . . . , im) from ΨDRPL. The first two sampling
methods are exact, the third sampling method is approximate.

A.4.1. Acceptance-rejection sampling with ΨREPL as proposal

Given a sample Xn, one can sample from ΨDRPL by acceptance-rejection sampling from
ΨREPL, by drawing sequences (i1, . . . , im) from ΨREPL until one gets a draw that is distinct,
which is then used as the draw from ΨDRPL. This is a valid sampling method for ΨDRPL,
because for any distinct sequence (i1, . . . , im) we have

PQ(ΨREPL = (i1, . . . , im) | ΨREPL distinct,Xn) =
PQ(ΨREPL = (i1, . . . , im),ΨREPL distinct | Xn)

PQ(ΨREPL distinct | Xn)

=
PQ(ΨREPL = (i1, . . . , im) | Xn)

PQ(ΨREPL distinct | Xn)

=
wREPL
(i1,...,im)∑

(j1,...,jm)
distinct

wREPL
(j1,...,jm)

=

∏m
ℓ=1 r(Xiℓ)∑

(j1,...,jm)

∏m
ℓ=1 r(Xjℓ)

∑
(j1,...,jm)

∏m
ℓ=1 r(Xjℓ)∑

(j1,...,jm)
distinct

∏m
ℓ=1 r(Xjℓ)

= wDRPL
(i1,...,im)

= PQ(ΨDRPL = (i1, . . . , im) | Xn).

By integrating over Xn, this implies that PQ(ΨREPL = (i1, . . . , im) | ΨREPL distinct) =
PQ(ΨDRPL = (i1, . . . , im)). Proposition A.1 shows that under certain assumptions, the
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probability of sampling a distinct sample from ΨREPL converges to 1.

A.4.2. Acceptance-rejection sampling with ΨNO-REPL as proposal

If m is large compared to n, it may be that most of the samples drawn from ΨREPL are
not distinct, and so the acceptance rejection scheme in Appendix A.4.1 may take too
many attempts to produce a distinct sample. As an alternative, one can use ΨNO-REPL

as a proposal distribution for an acceptance-rejection sampler, which is typically faster,
since ΨNO-REPL has the same support as ΨDRPL. Given a sample Xn, we thus need to
identify an M such that

∀ distinct (i1, . . . , im) :
PQ(ΨDRPL = (i1, . . . , im) | Xn)

PQ(ΨNO-REPL = (i1, . . . , im) | Xn)
≤M.

We have

PQ(ΨDRPL = (i1, . . . , im) | Xn)

PQ(ΨNO-REPL = (i1, . . . , im) | Xn)
=
wDRPL
(i1,...,im)

wNO-REPL
(i1,...,im)

=

∑
j1

r(Xj1)
∑
j2 ̸=i1

r(Xj2) · · ·
∑

jm ̸=i1,...,im−1

r(Xjm)∑
(j1,...,jm)
distinct

∏m
ℓ=1 r(Xjℓ)

.

The denominator does not depend on i1, . . . , im, and the numerator can be upper
bounded by

(1− 0)(1− p(1))(1− p(1) − p(2)) · · · (1− p(1) − . . .− p(m−1)),

where p(1) = min{r(X1), . . . , r(Xn)} is the smallest of the weights, p(2) is the second
smallest, etc. Thus, we can choose

M :=
(1− 0)(1− p(1))(1− p(1) − p(2)) · · · (1− p(1) − . . .− p(m−1))∑

(j1,...,jm)
distinct

∏m
ℓ=1 r(Xjℓ)

.

We now proceed with an ordinary acceptance-rejection sampling scheme: We sample a
(distinct) sequence (i1, . . . , im) from ΨNO-REPL and an independent, uniform variable V
on the interval (0, 1). We accept (i1, . . . , im) if

V ≤ PQ(ΨDRPL = (i1, . . . , im) | Xn)

M · PQ(ΨNO-REPL = (i1, . . . , im) | Xn)

=
(1− 0)(1− pi1)(1− pi1 − pi2) · · · (1− pi1 − . . .− pim−1)

(1− 0)(1− p(1))(1− p(1) − p(2)) · · · (1− p(1) − . . .− p(m−1))
.

Here, we have used that the denominator of M cancels with the normalization constant
of PQ(ΨDRPL = (i1, . . . , im) | Xn). If the sample is not accepted, we draw another sample
from ΨNO-REPL until one sample is accepted.
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A.4.3. Approximate Gibbs sampling starting from ΨNO-REPL

There are cases, where the sampling schemes presented in Appendices A.4.1 and A.4.2
do not yield an accepted sample in a reasonable amount of time (this is typically due to
m being too large compared to n, see Assumption (A1)). In such cases, one can get an
approximate sample of ΨDRPL by sampling ΨNO-REPL and shifting it towards ΨDRPL using a
Gibbs sampler [Geman and Geman, 1984].

Let therefore (i1, . . . , im) be an initial (distinct) sample from ΨNO-REPL, and define i−ℓ to
be the sequence without the ℓ’th entry. The Gibbs sampler sequentially samples iℓ from
the conditional distribution j | i−ℓ in ΨDRPL. To compute this conditional probability let
Ψℓ

DRPL be the ℓ’th index of a sample. Then

PQ(Ψℓ
DRPL = j|Ψ−ℓ

DRPL = i−ℓ)

=
PQ(ΨDRPL = (i1, . . . , j, . . . , im))

PQ(Ψ−ℓ
DRPL = i−ℓ)

=
r(Xi1) · · · r(Xj) · · · r(Xim)∑

v/∈i−ℓ r(Xi1) · · · r(Xv) · · · r(Xim)
=

r(Xj)∑
v/∈i−ℓ r(Xv)

,

i.e., the conditional distribution of one index iℓ given i−ℓ is just a weighted draw among
{i1, . . . , im}\i−ℓ. This is simple to sample from and the Gibbs sampler now iterates
through the indices (i1, . . . , im), at each iteration replacing the index iℓ by a sample
from the conditional given i−ℓ. Iterating this a large number of times produces an
approximate sample from ΨDRPL.

A.5. Sampling with replacement

Instead of the sampling scheme ΨDRPL presented above, we can also use weighted sampling
with replacement, which we denote ΨREPL (see Appendix A.4 for details). Sampling
from ΨREPL is simpler than from ΨDRPL, and while sampling from ΨREPL is in some cases
disadvantageous for testing (e.g., if we test whether the target distribution has a point
mass), if the test is not prone to duplicate data points, testing based on ΨREPL may
be advantageous over ΨDRPL (further examination is needed to clarify this relationship).
When sampling without weights, Bickel et al. [2012] present regularity conditions on the
test statistic that guarantee consistency even with m = o(n).

Here we show that under additional assumptions, the probability of a non-distinct
sample from ΨREPL converges to 0. Consider the following strengthening of Assump-
tion (A2).

(A3) There exists L ∈ R such that for all v ≥ 1, EQ[r(Xi)
v+1] ≤ Lv.

This is for instance trivially satisfied if r(Xi) is Q-a.s. bounded by a constant L. The
following proposition shows that under Assumptions (A1) and (A3) the probability of
drawing a distinct sample from ΨREPL converges to 1.
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Proposition A.1 (Asymptotic equivalence of REPL and DREPL for bounded weights).
Let τ : Q → P be a distributional shift for which a known map r : X → [0,∞) exists,
satisfying τ(q)(x) ∝ r(x)q(x), see (5). Consider an arbitrary Q ∈ Q and P = τ(Q). Let
m = m(n) be a resampling size and let ΨREPL be the weighted resampling with replacement
defined in Section 4.1. Then, if m and Q satisfy Assumptions (A1) and (A3), it holds
that

lim
n→∞

PQ(Ψr,m
REPL(Xn, U) distinct) = 1.

As a corollary to Theorem 1, we also have pointwise asymptotic level of a test when
ΨREPL is used instead of ΨDRPL.

Corollary A.1 (Pointwise asymptotics – REPL). Assume the same setup and assump-
tions as in Theorem 1 and additionally assume Assumption (A3). Let ΨREPL be the
weighted resampling with replacement defined in Section 4.1 and let ψrn be the REPL-
based resampling test defined by ψrn(Xn, U) := φm(Ψ

r,m
REPL(Xn, U)). Then, it holds that

lim sup
n→∞

PQ(ψrn(Xn, U) = 1) = αφ.

The same statement holds when replacing both lim sup’s (including the one in αφ) with
lim inf’s.

A.6. Algorithm for the GOF-heuristic for choosing m

The GOF-heuristic is a data driven procedure to choose m in finite sample settings, see
Section 4.4.1. It is summarized in Algorithm A.2.

Algorithm A.2 GOF-heuristic: Choosing m by testing resampling validity

Input: Data Xn, shift factor r(x
A), threshold αc, initial target size m0, increment

size ∆, repetitions K, conditional goodness-of-fit test κ.
1: qt← αc-quantile of mean(U1, . . . , UK), where Ui ∼ Unif(0, 1)
2: m← m0

3: m valid← true

4: while m valid do
5: for k = 1, . . .K do
6: resk ← κ(Ψr,m(Xn))

7: if mean(res1, . . . , resK) > qt then
8: m← m+∆
9: else

10: m valid← false

11: m← m−∆

12: return m

175



A. Appendix to Statistical Testing under Distributional Shifts

A.7. Additional experiments

A.7.1. Assumption Assumption (A1) when sample size increases

As indicated by the results in Section 5.1, Assumption (A1) may sometimes be too strict
of an assumption, in the sense that level can be attained also when Assumption (A1) is
violated. We explored this for a continuous data example in Section 5.1, but here, we
investigate the effect of violating Assumption (A1) as the sample size n increases for a
binary setting.
We simulate data Xn from a binary distribution PQ(X = 0) = 0.9, PQ(X = 1) = 0.1,

and consider the target distribution P where the probabilities are flipped , i.e. PP (X =
0) = 0.1, PP (X = 1) = 0.9. We consider the hypothesis H0 : PP (X = 1) > 0.8,
which is clearly satisfied for P , but may not be detected by the resample if m = na

for a > 0.5 chosen too large. We repeat the experiment 200 times and compute the
resulting rejection rates for various sample sizes and rates m = na. The results are
shown in Fig. A.2. Under Assumption (A1), Theorem 1 guarantees asymptotic level.
Indeed, at all sample sizes n, the test has the correct level, when Assumption (A1) is
satisfied (that is, when a < 0.5). Yet, though this is not guaranteed by theory, we have
indications of asymptotic level also for a > 0.5.

A.7.2. Model selection under covariate shift

In this section, we apply our testing method to the problem of model selection under
covariate shift as discussed in Section 3.6. We generate a data set D := {(Xi, Yi)}ni=1 of
size n = 3′000. Each (Xi, Yi) is drawn i.i.d. according to the following data generating
process:

(X1, X2) ∼ GaussianMixture(
[
3 3

]
,
[
−3 −3

]
) Y :=

{
sin(X2 + εY ), if X1 ≥ 0

sin(3 +X1 + εY ), if X1 < 0,

where GaussianMixture(
[
3 3

]
,
[
−3 −3

]
) is an even mixture (i.e., p = 0.5) of two

2-dimensional Gaussian distributions with means µ1 = (3, 3)⊤, µ2 = (−3,−3)⊤ and unit
covariance matrix, and εY is a standard Gaussian N (0, 1)-variable. Fig. A.3 illustrates
a sample of size 1′000 from this data generating process.

We randomly split the data D into a training set Dtrain of size 2′000 and a test set
Dtest of size 1′000. Using Dtrain, we train two candidate classifiers, namely logistic re-
gression (LR) and random forest (RF) to predict Y from X. Both models are trained
using the Scikit-Learn Python package [Pedregosa et al., 2011] with default param-
eters. We consider the area under the curve (AUC) as the scoring function, where we
denote the AUC scores for the models LR and RF by AUC(LR) and AUC(RF), respec-
tively. Then, we apply our resampling approach on Dtest to test whether LR outperforms
RF when the distribution of (X1, X2) is changed to a single 2-dimensional Gaussian dis-
tribution with mean µ = (3, 3)⊤ and unit covariance matrix. In this experiment, we
choose the resampling size m by the GOF-heuristic (see Algorithm A.2) and assume
that the shift factor r(x) := p∗(x)/q∗(x) is known, where q∗(x) is a pdf of the mixture
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Figure A.2.: Rejection rates when m = na points are resampled for various exponents a
and sample sizes n. Each tile represents a combination of sample size n and
exponent a, and the color indicates the rate at which the hypothesis PP (X =
1) > 0.8 is rejected in the resampled data, when resampling m = na points;
ideally this should be low (blue) since we consider a target distribution
where PP (X = 1) = 0.9. Even though this is not provided by our theoretical
results, it seems that level is possible even for rates larger than 0.5.

of Gaussian GaussianMixture(
[
3 3

]
,
[
−3 −3

]
) and p∗(x) is a pdf of the Gaussian

N ((3, 3)⊤, I2). We employ DeLong’s test [DeLong et al., 1988] to test the hypothesis
AUC(LR) ≤ AUC(RF) using the R-package pROC [Robin et al., 2011].

We repeat the experiment 500 times and report in Table A.1 how many times our
resampling test (resampling) rejects and returns that AUC(LR) > AUC(RF). As a bench-
mark, we also report the corresponding rejection rate when we perform the test directly
on a sample from the target distribution (oracle) in which the covariate distribution is
changed to p∗(x). We also report the rejection rate when we perform the test on the
observed test set directly Dtest (observed), without resampling it first.

As shown in Table A.1, under the observed distribution we have AUC(LR) ≤ AUC(RF)
(the rejection rate is 0 in the observed sample). However, under the target distribution
AUC(LR) is higher than AUC(RF) (the rejection rate is 1 in the target sample). Our
resampling approach yields high power against the alternative hypothesis, even without
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Figure A.3.: Sample from the data generating process for the experiment described in
Appendix A.7.2.

resampling oracle observed

0.874± 0.029 1.0 0.0

Table A.1.: Rejection rates of the test with alternative AUC(LR) > AUC(RF) over 500
repetitions. The resampling test shows high power to detect the alternative.

having access to the oracle information but using resampling instead.

A.7.3. Conditional independence testing in the bikeshare dataset

Following Berrett et al. [2020], we consider the capital bikeshare dataset [Fanaee-T and
Gama, 2014]. Berrett et al. [2020] test conditional independence of the duration X
from three different outcomes Yj , j = 1, 2, 3 where Y1 is a binary ‘User type’ variable
indicating whether the user is a member, Y2 is the date and Y3 is the day of the week,
conditioning on a variable Z which encodes mean and variance for the particular ride
and at that time of the day. More specifically, they use their proposed permutation test
(CPT) and the randomization test (CRT) by Candès et al. [2018]. Here, we apply our
method for testing conditional independence from Section 3.1 to the same data, using
the GOF-heuristic (Section 4.4.1) to chose m. Since both our and their method rely on
knowing the conditional q(x|z), we can use their estimated conditionals q̂(x|z) such that
differences in outcome is not because of differences in estimation.

We display the resulting p-values for the hypothesis of conditional independence in
Table A.2. At a 5% significance level, our method rejects the same hypotheses as they
do, finding that the duration is not conditionally independent of the user type, but is so
of both the date and the day of the week.
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Variable CPT CRT Ours (combination test) Our (single test)

User type 0.0010 0.0010 1.447 · 10−16 4.595 · 10−5

Date 0.1146 0.1293 0.1320 0.0586
Day of week 0.1980 0.2063 0.4395 0.1246

Table A.2.: Comparison of p-values for the conditional independence hypothesis X ⊥⊥
Yj |Z for three different variables Yj . We compare to CPT [Berrett et al.,
2020] and CRT [Candès et al., 2018] to our method using a single test or the
combination test of Hartung [1999] as discussed in Section 4.4.2.

A.7.4. Additional simulation details

In this section, we state the models used for generating the data in Sections 5.2, 5.6, 5.9
and 5.10.

Section 5.2

The linear data in Section 5.2 was generated by the equations

Z := εZ X := Z + 2εX Y = Z + θX + 2εY

and the nonlinear data was generated by the equations

X := εX Z := |X − 1|+ 4εZ Y = Z + θX + 2εY

where εZ , εX , εY ∼ N (0, 1), and either θ = 0 (no effect present) or θ = 0.5 (effect
present).

Section 5.6

The binary data in Section 5.6 was generated by first sampling hyper-parameters:

pH ∼ Dirichlet1×4(3, 3, 3, 3) p1 ∼ B1×1(1, 1) p2 ∼ B2×4(1, 1)p3 ∼ B1×2(1, 1)

G : p4 ∼ B2,1(1, 1) H : p4 ∼ B2,2(1, 1),

where B(a, b) is a Beta distribution and the superscript indicates the dimension of the
sampled parameter matrix. The matrices p1, . . . , p4 correspond to conditional probability
tables given parent variables in the graphs G or H. The distributions are the same when
sampling from G and H, except for X4, which has an additional parent in H. In each
repetition, given hyper-parameters, a data set is sampled from the structural equation
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model

H ∼ choice({1, . . . , 4},weights = pH) X1 ∼ Bernoulli(p1)

X2 ∼ Bernoulli(p2X1,H
) X3 ∼ Bernoulli(p3X2 )

G : X4 ∼ Bernoulli(p4X3 ) H : X4 ∼ Bernoulli(p4X3,X1 )

where the subscript p2X1,U
indicate that for an outcome of (X1, U), the Bernoulli dis-

tribution uses the probability in the corresponding entry of p2 (and similar for p3 and
p4).

The Gaussian data in Section 5.6 was generated by the structural equation model

H := εH X1 := εX1 X2 := X1 +H + εX2

X3 := X2 + 2εX3 X4 := θ ·X1 +X3 +H + εX4

where εH , εXj ∼ N (0, 1), and θ ∈ {0, 0.3} indicates the absence or presence of the edge
X1 → X4.

The non-Gaussian data in Section 5.6 was generated by the structural equation model

H := 1
2 · εH · εH X1 := γX1 X2 := X1 ·H + εX2

X3 := X2 ·X2 + 3
2εX3 X4 := θ ·X1 +X3 +H + εX4 ,

where εH , εXj ∼ N (0, 1) and γX1 follows a Γ(2)-distribution, and θ ∈ {0, 0.3} indicates
the absence or presence of the edge X1 → X4.

Section 5.9

The data in Section 5.9 was generated by the structural equation model

X1 := εX1 X3 := εX3 X2 := X3 +X1 + 2εX2

Y := X2 +X3 + 0.3εY X4 := −Y +X2 +X3 + 0.7εX4

Section 5.10

The linear data in Section 5.10 was generated by the equations

X := εX P(D = 1) = σ

(
2√
20

20∑
i=1

Xi

)
Y := θD + (1 + θD)

(
1

5

20∑
i=1

Xi

)
+ 0.3εY
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and the non-linear data was generated by the equations

X := εX P(D = 1) = σ

(
2√
20

20∑
i=1

Xi

)

Y := θD + (1 + θD)

0.2
20∑
i=1

Xi + exp

−0.2( 20∑
i=1

Xi

)2

/2

 ∗ sin(0.2 20∑
i=1

Xi)

+ 0.3εY

where εX ∼ N (0, Id20) and εY ∼ N (0, 1), and either θ = 0 (no effect present) or θ = 0.3
(effect present).

A.8. Proofs

A.8.1. Proof of Theorem 1

Proof of Theorem 1. We show the statement only for lim sup, the corresponding state-
ment for lim inf follows by replacing lim sup with lim inf everywhere.

Let p and q denote the respective densities of P and Q with respect to the dominating
measure µ. By assumption p = τ(q), so p(x) ∝ r(x)q(x). Let r̄ be the normalized version
of r satisfying p(x) = r̄(x)q(x). Recall that we call a sequence (i1, . . . , im) distinct if
for all ℓ ̸= ℓ′ we have iℓ ̸= iℓ′ . The resampling scheme ΨDRPL, defined by (10), samples
from the space of distinct sequences (i1, . . . , im), where every sequence has probability
w(i1,...,im) ∝

∏m
ℓ=1 r(Xiℓ). The normalization constant here is the sum over the weights

in the entire space of distinct sequences, that is,

w(i1,...,im) =

∏m
ℓ=1 r(Xiℓ)∑

(j1,...,jm)
distinct

∏m
ℓ=1 r(Xjℓ)

=

∏m
ℓ=1 r̄(Xiℓ)∑

(j1,...,jm)
distinct

∏m
ℓ=1 r̄(Xjℓ)

.

Thus, taking an expectation involving φm(Ψ
r,m
DRPL(Xn, U)), amounts to evaluating φm in

all distinct sequences Xi1 , . . . , Xim and weighting with the probabilities w(i1,...,im).

PQ(φm(Ψr,m
DRPL(Xn, U)) = 1) = EQ


1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
1{φm(Xi1 ,...,Xim )=1}

1
n!

(n−m)!

∑
(j1,...,jm)
distinct

m∏
ℓ=1

r̄(Xjℓ)

 ,
(A.1)

where we divide by the number of distinct sequences n!
(n−m)! in both numerator and

denominator.
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Let c(n,m) and d(n,m) be the numerator and denominator terms of (A.1), i.e.,

c(n,m) :=
1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
1{φm(Xi1 ,...,Xim )=1},

d(n,m) :=
1
n!

(n−m)!

∑
(j1,...,jm)
distinct

m∏
ℓ=1

r̄(Xjℓ).

We want to show that lim supn→∞ EQ
[
c(n,m)
d(n,m)

]
= αφ. To see this, define for all δ > 0

the set Aδ := {|d(n,m)− 1| ≤ δ}. It holds for all δ ∈ (0, 1) that

EQ
[
c(n,m)

d(n,m)

]
= EQ

[
c(n,m)

d(n,m)
1Aδ

]
+ EQ

[
c(n,m)

d(n,m)
1Acδ

]
≤ EQ

[
c(n,m)

1− δ 1Aδ

]
+ EQ

[
c(n,m)

d(n,m)
1Acδ

]
≤ EQ

[
c(n,m)

1− δ

]
+ PQ (Acδ)

=
1

1− δPP (φm(X1, . . . , Xm) = 1) + PQ (Acδ) ,

where we used that c(n,m)
d(n,m) ≤ 1 and Lemma A.1 (a). Further combining Chebyshev’s

inequality with Lemma A.1 (b) and (d), it follows that

lim
n→∞

PQ (Acδ) ≤ lim
n→∞

EQ[(d(n,m)− 1)2]

δ2
= lim

n→∞

VQ(d(n,m))

δ2
= 0.

Hence, using that lim supk→∞ PP (φk(X1, . . . , Xk) = 1) = αφ we have shown for all
δ ∈ (0, 1) that

lim sup
n→∞

EQ
[
c(n,m)

d(n,m)

]
≤ 1

1− δαφ. (A.2)

Similarly, we also get for all δ ∈ (0, 1) the following lower bound

EQ
[
c(n,m)

d(n,m)

]
= EQ

[
c(n,m)

d(n,m)
1Aδ

]
+ EQ

[
c(n,m)

d(n,m)
1Acδ

]
≥ EQ

[
c(n,m)

1 + δ
1Aδ

]
≥ 1

1 + δ
EQ [c(n,m)] ,

where in the last inequality we used that c(n,m) ≥ 0. Again using Lemma A.1 (a) and
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that lim supk→∞ PP (φk(X1, . . . , Xk) = 1) = αφ, we get that for all δ ∈ (0, 1) that

lim sup
n→∞

EQ
[
c(n,m)

d(n,m)

]
≥ 1

1 + δ
αφ. (A.3)

using that δ ∈ (0, 1) is arbitrary, this proves that

lim sup
n→∞

EQ
[
c(n,m)

d(n,m)

]
= αφ,

which completes the proof of Theorem 1.

Remark A.1. After Theorem 2, we discussed the conjecture that for any ℓ ≥ 2 we can
relax Assumption (A1) tom = o(n1−1/ℓ) if one changes Assumption (A2) to EQ[r(Xi)

ℓ] <
∞. We now argue why the current structure of the proof of Theorem 1 does not allow
for proving this statement. In the proof, we use that VQ[d(n,m)] converges to 0, and
the expression for the variance for U-statistics that we use in (A.7) in Lemma A.1
only depends on the second moment of the weights. In particular, the vanishing of the
variances only depends on the relation between m and n, and not higher order moments
of E[r(X)ℓ], and even if those were finite, the counterexample in Theorem 2 shows that
the variance of c(n,m) and d(n,m) would still approach infinity if m ̸= o(

√
n) i.e., m

grows at least as fast as
√
n.

Thus, if one were to prove a result for the case EQ[r(Xi)
ℓ] <∞, it appears to us that

one needs to change the proof of Theorem 1 to treat EQ[c(n,m)/d(n,m)] jointly rather
than using Lemma A.1 to treat each of c(n,m) and d(n,m) separately.

Lemma A.1 (Distinct draws). Let P ∈ P and Q ∈ Q have densities p and q with
respect to a dominating measure µ. Let r̄ : X → [0,∞) satisfy for all x ∈ X that
p(x) = r̄(x)q(x). Let c(n,m) and d(n,m) be defined by

c(n,m) :=
1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
1{φm(Xi1 ,...,Xim )=1}, (A.4)

d(n,m) :=
1
n!

(n−m)!

∑
(j1,...,jm)
distinct

m∏
ℓ=1

r̄(Xjℓ). (A.5)

Then, if m and Q satisfy Assumption (A1) and Assumption (A2) it holds that

(a) EQ[c(n,m)] = PP (φm(X1, . . . , Xm) = 1),

(b) EQ[d(n,m)] = 1,

(c) limn→∞VQ[c(n,m)] = 0,

(d) limn→∞VQ[d(n,m)] = 0.
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Proof. (A) we first prove the statements for the means, i.e., (a) and (b), and (B) we
then prove the statements for the variances, i.e., (c) and (d).

Part A (means): Define δm := 1{φm(Xi1 ,...,Xim )=1} (for the case (A.4)) or δm := 1
(for the case (A.5)). Then, in both cases it holds that

EQ

 1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
δm


=

1
n!

(n−m)!

∑
(i1,...,im)
distinct

EQ

[(
m∏
ℓ=1

r̄(Xiℓ)

)
δm

]

=
1
n!

(n−m)!

∑
(i1,...,im)
distinct

∫ ( m∏
ℓ=1

r̄(xiℓ)q(xiℓ)

)
δmdµ

m(xi1 , . . . , xim)

=
1
n!

(n−m)!

∑
(i1,...,im)
distinct

∫ ( m∏
ℓ=1

p(xiℓ)

)
δmdµ

m(xi1 , . . . , xim)

=
1
n!

(n−m)!

∑
(i1,...,im)
distinct

EP [δm]

= EP [δm]

In the second and fourth equality, we use that i1, . . . , im are all distinct, and in the last
equality, we use that the number of distinct sequences (i1, . . . , im) is n!

(n−m)! . Conse-

quently the term in (A.4) has mean EP [1{φm(Xi1 ,...,Xim )=1}] = PP (φm(X1, . . . , Xm) = 1)
and the term in (A.5) has mean 1.

Part B (variances): We begin by expressing 1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
δm as a

U-statistic [Serfling, 1980]. A U-statistic has the form

1
n!

(n−m)!

∑
(i1,...,im)
distinct

hm(Zi1 , . . . , Zim) (A.6)

for some symmetric function hm(z1, . . . , zm) (called a kernel function). In our case, the
kernel function is hm(Xi1 , . . . , Xim) :=

∏m
ℓ=1 r̄(Xiℓ)δm. The variance of the correspond-
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ing U-statistic [see Serfling, 1980, Section 5.2] is given by

VQ

 1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
δm

 =

(
n

m

)−1 m∑
v=1

(
m

v

)(
n−m
m− v

)
ζv (A.7)

where for all v ∈ {1, . . . ,m}

ζv := VQ (EQ[hm(Xi1 , . . . , Xim) | Xi1 , . . . , Xiv ]) .

We now bound ζv from above by the second moment as follows

ζv ≤ EQ
[
EQ[hm(Xi1 , . . . , Xim) | Xi1 , . . . , Xiv ]

2
]
.

Moreover, using that δm is upper bounded by 1, we get for both cases (A.4) and (A.5)
that

ζv ≤ EQ
[
EQ[hm(Xi1 , . . . , Xim) | Xi1 , . . . , Xiv ]

2
]

≤ EQ

EQ [ m∏
ℓ=1

r̄(Xiℓ) | Xi1 , . . . , Xiv

]2 . (A.8)

Next, since (i1, . . . , im) are distinct, the variables Xi1 , . . . , Xim are independent. Hence
we have that

EQ

[
m∏
ℓ=1

r̄(Xiℓ) | Xi1 , . . . , Xiv

]

=

(
v∏
ℓ=1

r̄(Xiℓ)

)
m∏

ℓ=v+1

EQ [r̄(Xiℓ)]

=

(
v∏
ℓ=1

r̄(Xiℓ)

)
, (A.9)

where the last equality follows because

EQ[r̄(Xiℓ)] =

∫
r̄(x)q(x)dµ(x) =

∫
p(x)dµ(x) = 1.
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Next, combining (A.8) and (A.9) we get that

ζv ≤ EQ [(
v∏
ℓ=1

r̄(Xiℓ)
)
2
]

=
v∏
ℓ=1

EQ
[
r̄(Xiℓ)

2
]

= EQ
[
r̄(Xi1)

2
]v
.

Here, we again use the independence of the distinct terms. Plugging this into (A.7), we
get

VQ

 1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
δm


≤
(
n

m

)−1 m∑
ℓ=1

(
m

ℓ

)(
n−m
m− ℓ

)
EQ
[
r̄(Xi1)

2
]ℓ
.

By Assumption (A2), EQ
[
r̄(Xi1)

2
]
< ∞, so Lemma A.2 implies that this converges

to 0 for n → ∞. This shows that the variance converges to zero in both cases (A.4)
and (A.5), which completes the proof of Lemma A.1.

Lemma A.2. Let m = o(
√
n) as n goes to infinity. Then for any K ≥ 0, it holds that

lim
n→∞

1(
n
m

) m∑
ℓ=1

(
m

ℓ

)(
n−m
m− ℓ

)
Kℓ = 0. (A.10)

Remark A.2. The Chu-Vandermonde identity states that 1

(nm)

∑m
ℓ=0

(
m
ℓ

)(
n−m
m−ℓ

)
= 1. In

light of this identity, one may be surprised that when including the exponentially growing
term, Kℓ, the sum vanishes. The reason is that the summation in (A.10) starts at ℓ = 1,
not ℓ = 0, and since n grows at least quadratically in m,

(
n−m
m−ℓ

)
for ℓ = 0 dominates all

the other summands as n (and thereby also m) approaches ∞.

Proof. Denote by sℓ the ℓ’th summand, i.e.,

sℓ :=

(
m

ℓ

)(
n−m
m− ℓ

)
Kℓ.
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It then holds for all ℓ ∈ {1, . . . ,m− 1} that

sℓ+1

sℓ
=

(
m
ℓ+1

)(
n−m
m−ℓ−1

)
Kℓ+1(

m
ℓ

)(
n−m
m−ℓ

)
Kℓ

=

m!
(ℓ+1)!(m−ℓ−1)!

(n−m)!
(m−ℓ−1)!(n−2m+ℓ+1)!

m!
ℓ!(m−ℓ)!

(n−m)!
(m−ℓ)!(n−2m+ℓ)!

K

=
(m− ℓ)2

(ℓ+ 1)(n− 2m+ ℓ+ 1)
K

≤ m2

2(n− 2m+ 2)
K.

Since, by assumption, m = o(
√
n), this converges to 0 as n goes to infinity. In particular,

there exists a constant c ∈ (0, 1) such that for n sufficiently large it holds for all ℓ ∈
{1, . . . ,m− 1} that sℓ+1

sℓ
≤ c. This implies that sℓ ≤ s1cℓ−1, and hence also

m∑
ℓ=1

sℓ ≤ s1
m∑
ℓ=1

cℓ−1 ≤ s1
1

1− c ,

where for the last inequality we used the explicit solution of a geometric sum. We now
conclude the proof by explicitly bounding (A.10) as follows

1(
n
m

) m∑
ℓ=1

(
m

ℓ

)(
n−m
m− ℓ

)
Kℓ =

1(
n
m

) m∑
ℓ=1

sℓ

<
1

1− c
s1(
n
m

)
=

K

1− c
m
(
n−m
m−1

)(
n
m

)
=

K

1− c
m2

n

(
n−m
m−1

)(
n−1
m−1

) , (A.11)

A.8.2. Proof of Theorem 2

Proof. We explicitly construct an example hypothesis test for which the worst case rate
is achieved. We construct a target and observation density on [0,∞). First, for fixed
α ∈ (0, 1) and all v ∈ N \ {0} define

cv := (1− α) 1
v and pv := 1− (v + 1)−ε,
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Figure A.4.: Visualization of densities in the proof of Theorem 2 with ε = 1.9. The tail
of the target density eventually becomes larger than that of the observation
density.

and c0 := 0 and p0 := 0, with ε ∈ (0, ℓ
ℓ−1) to be chosen below. Then, for all v ∈ N define

fv := cv+1 − cv and gv := pv+1 − pv.

Using these sequences, we define the following two densities:

(1) Target density (cdf is denoted by F ): For all x ∈ R, we define

f(x) :=
∞∑
v=0

1{v≤x<v+1}fv,

(2) Observation density (cdf is denoted by G): For all x ∈ R, we define

g(x) :=
∞∑
v=0

1{v≤x<v+1}gv.

As limv→∞ cv = limv→∞ pv = 1, these functions are indeed densities. Moreover, one can
verify that for all m ∈ N, we have

F (m) = cm and G(m) = pm.

A visualization of the densities is given in Fig. A.4.
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Finally, if we define, for all x ≥ 0, r(x) := f(x)
g(x) then we get

Eg
[
r(X)ℓ

]
=

∫ ∞

0
r(x)ℓg(x)dx

=
∞∑
v=1

(
fv
gv

)ℓ
gv

=

∞∑
v=1

(cv+1 − cv)ℓ
(pv+1 − pv)ℓ−1

.

This series converges for all possible parameter choices ε ∈ (0, ℓ
ℓ−1) because

(a) (cv+1 − cv) ∼ − log(1− α)v−2 as v →∞ and

(b) (pv+1 − pv) ∼ εv−(ε+1) as v →∞.

(Indeed, both results follow from the mean value theorem as follows: First,
for (a) applying the mean value theorem to x 7→ (1 − α)1/x implies that for
all v ∈ N there exists ξv ∈ [v, v + 1] such that

cv+1 − cv
v + 1− v = − log(1− α)(1− α)

1/ξv

ξ2v
.

We therefore get

lim
v→∞

(cv+1 − cv)v2 = − log(1− α) lim
v→∞

v2(1− α)1/ξv
ξ2v

= − log(1− α).

Similarly, for (b), we apply the mean value theorem to x 7→ 1− (x+ 1)−ε to
get that for all v ∈ N there is a ξv ∈ [v, v + 1] such that

pv+1 − pv
v + 1− v = ε(ξv + 1)−(ε+1).

Again taking the limits we get

lim
v→∞

(pv+1 − pv)v(ε+1) = ε lim
v→∞

(ξv + 1)−(ε+1)v(ε+1) = ε.

This completes the proofs of (a) and (b).)

Now, consider the null hypothesis

H0 := {Pf}.

For all m ∈ N, we define the test ϕm : [0,∞)m → {0, 1} for all x1, . . . , xn ∈ [0,∞) by

ϕm(x1, . . . , xm) := 1{max(x1,...,xm)≤m}.
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Then, it holds that

Pf (ϕm(X1, . . . , Xm) = 0) = Pf (max(X1, . . . , Xm) > m)

= 1− Pf (Xi ≤ m)m

= 1− F (m)m

= 1− cmm
= 1− [(1− α)

1
m ]m

= α.

Hence, ϕm achieves valid level in the target distribution f . Our goal is now to show
that any resampling procedure for testing under distributional shifts with m = nq and
q > ℓ−1

ℓ cannot achieve asymptotic level. Let Ψm be the resampling scheme from the
theorem that outputs a (not necessarily distinct) sample of size m = nq. Then, it holds
that

Pg(ϕm(Ψm(X1, . . . , Xn)) = 1) = Pg(max(Ψm(X1, . . . , Xn)) ≤ m)

≥ Pg(max(X1, . . . , Xn) ≤ m)

= Pg(Xi ≤ m)n

= G(m)n

= pnm

= (1− (m+ 1)−ε)n

= exp(n log(1− (m+ 1)−ε)).

Taylor expanding x 7→ log(x) in x0 = 1 yields

log(x) = log(x0) +
1

x0
(x− x0) +

1

2

−1
ξ2x

(x− x0)2

for an ξx ∈ (x, 1). Plugging in x = 1− (m+ 1)−ε, we get

log(1− (m+ 1)−ε) = −(m+ 1)−ε − 1

2ξ2m
(m+ 1)−2ε, (A.12)

where ξx is lower bounded by (1 − (m + 1)−ε), and so ξm → 1 and thus ξ2m → 1 for
m→∞. Next, observe that

n(m+ 1)−ε ≤ nm−ε = n1−qε.

Now if we select ℓ−1
ℓ > ε > 1/q (this is always possible because q > 1/2), we have

that qε > 1, and it holds that limn→∞ n1−qε = 0. For the same reason, we have
n(m+ 1)−2ε ≤ nm−ε → 0 as n→∞. Combining this with the (A.12), we get

lim
n→∞

n log(1− (m+ 1)−ε) = 0
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and thus
lim
n→∞

Pg(ϕm(Ψm(X1, . . . , Xn)) = 1) ≥ 1.

This completes the proof of Theorem 2.

A.8.3. Proof of Theorem 3

Proof. The proof is similar to the proof of Theorem 1 but we will need to adjust for the
estimation of the distributional shift factor. In particular, we will reprove the results in
Lemma A.1 when using the estimator r̂n1 .

Fix any P ∈ H0 and let Q ∈ τ−1({P}). Denote by p and q their respective densities
with respect to the dominating measure µ. We begin by recalling the details for the
sample splitting procedure described in Algorithm A.1: Xn is split into two disjoint
data sets Xn1 and Xn2 of sizes n1, n2, where n1 + n2 = n. The assumptions na1 =

√
n2

andm = o(min(na,
√
n)), ensure thatm = o(na1) andm = o(

√
n2).

2 We use Xn1 to fit an
estimator r̂n1 of rq and then use Xn2 for the resampling. When taking expectations over
Xn1 we use the notation EQ1 . Similarly, EQ2 denotes an expectation over Xn2 . We write
EQ when taking expectations with respect to the entire sample Xn. Let I1 := {1, . . . , n1}
and I2 := {n1 + 1, . . . , n1 + n2} be the indices of Xn1 and Xn2 respectively.

Using the same argument as we used to derive (A.1) in the proof of Theorem 1, we
get that

PQ(φm(Ψr̂n1 (Xn2 , U) = 1)) = EQ


1
n2!

(n2−m)!

∑
(i1,...,im)

distinct from I2

(
m∏
ℓ=1

r̂n1(Xiv)

)
1{φm(Xi1 ,...,Xim )=1}

1
n2!

(n2−m)!

∑
(i1,...,im)

distinct from I2

m∏
ℓ=1

r̂n1(Xiℓ)

 ,
(A.13)

where Xiℓ are observations from Xn2 . As in the proof of Lemma A.1, we prove the con-
vergence in probability of the numerator and denominator in (A.13) separately. Again,
we do this in two steps: (A) We show that the means converge to the desired quan-
tity and (B) we show that the variances converge to zero. First we show the following
intermediate result.

Intermediate result: Let ε(n1) := supx∈X EQ1

∣∣∣∣( r̂n1 (x)rq(x)

)na1 − 1

∣∣∣∣ and consider a se-

quence i1, . . . , im from the indices of X2. Then, for n1 sufficiently large and using

2When na1 =
√
n2 and n1 + n2 = n, we have n = n2a

1 + n1 and n = n2 + n
1/(2a)
2 . If a > 1/2, we have

m = o(
√
n) = o(

√
n2a
1 ) = o(na1), and m = o(

√
n) = o(

√
n2). Similar arguments apply if a < 1/2.
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Jensen’s inequality, it holds Qn2-a.s. that∣∣∣∣∣EQ1

[
m∏
ℓ=1

r̂n1(Xiℓ)

rq(Xiℓ)

]
− 1

∣∣∣∣∣ ≤ EQ1

[∣∣∣∣∣
m∏
ℓ=1

r̂n1(Xiℓ)

rq(Xiℓ)
− 1

∣∣∣∣∣
]

≤ sup
xi1 ,...,xim∈X

EQ1

[∣∣∣∣∣
m∏
ℓ=1

r̂n1(xiℓ)

rq(xiℓ)
− 1

∣∣∣∣∣
]

≤ sup
x∈X

EQ1

[∣∣∣∣( r̂n1(x)

rq(x)

)m
− 1

∣∣∣∣]
≤ sup

x∈X
EQ1

[∣∣∣∣∣
(
r̂n1(x)

rq(x)

)na1
− 1

∣∣∣∣∣
]

= ε(n1). (A.14)

The last inequality holds because by assumption, m = o(na1) when n1 → ∞, so for n1
sufficiently large, na1 > m. For any m, k ∈ N we have cm+k ≥ cm ≥ 1 if c > 1 and
cm+k ≤ cm ≤ 1 if 0 ≤ c ≤ 1, and in either case it holds that |cm+k − 1| ≥ |cm − 1|.
Similarly, for i1, . . . , im and i′1, . . . , i

′
m from I2, we get Qn2-a.s. that∣∣∣∣∣EQ1

[(
m∏
ℓ=1

r̂n1(Xiℓ)

rq(Xiℓ)

)(
m∏
ℓ=1

r̂n1(Xi′ℓ
)

rq(Xi′ℓ
)

)]
− 1

∣∣∣∣∣
≤ EQ1

[∣∣∣∣∣
(

m∏
ℓ=1

r̂n1(Xiℓ)

rq(Xiℓ)

)(
m∏
ℓ=1

r̂n1(Xi′ℓ
)

rq(Xi′ℓ
)

)
− 1

∣∣∣∣∣
]

≤ sup
x∈X

EQ1

[∣∣∣∣∣
(
r̂n1(x)

rq(x)

)2m

− 1

∣∣∣∣∣
]

≤ sup
x∈X

EQ

[∣∣∣∣∣
(
r̂n1(x)

rq(x)

)na1
− 1

∣∣∣∣∣
]

= ε(n1), (A.15)

using that for n1 sufficiently large, na1 > 2m. This concludes the intermediate result.

Before showing parts A and B, we introduce some notation. Depending on whether we
consider the numerator or denominator case, we define either δm := 1{φm(Xi1 ,...,Xim )=1}
or δm := 1. Furthermore, we introduce for any function r : X → (0,∞) the following
random variable

M(r) :=
1
n2!

(n2−m)!

∑
(i1,...,im)

distinct from I2

(
m∏
ℓ=1

r(Xiℓ)

)
δm.

Part A (means): Since r̂n1(x) = rq(x)
r̂n1 (x)

rq(x)
, using the independence between Xn1
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and Xn2 we get that

EQ [M(r̂n1)] =
1
n2!

(n2−m)!

∑
(i1,...,im)

distinct from I2

EQ

[(
m∏
ℓ=1

rq(Xiℓ)

)(
m∏
ℓ=1

r̂n1(Xiℓ)

rq(Xiℓ)

)
δm

]

=
1
n2!

(n2−m)!

∑
(i1,...,im)

distinct from I2

EQ2

[(
m∏
ℓ=1

rq(Xiℓ)

)
EQ1

[
m∏
ℓ=1

r̂n1(Xiℓ)

rq(Xiℓ)

]
δm

]
.

(A.16)

We emphasize that the expectation EQ1 only averages over the randomness in estimating
r̂, and does take expectations over Xiℓ . which is drawn from Qn2 . Furthermore, using
the intermediate result (A.14), we get the following upper bound

EQ [M(r̂n1)] ≤ EQ2 [M(rq)] (1 + ε(n1))

and lower bound
EQ [M(r̂n1)] ≥ EQ2 [M(rq)] (1− ε(n1)).

Since m = o(
√
n2), we can apply Lemma A.1 (a) and (b) to get that the means

EQ[M(r̂n1)] of the denominator and numerator converge to the desired values.

Part B (variances): Next, we show that both for the numerator and denominator
the variance converges to zero. To this end, we expand the second moment as follows

EQ
[
M(r̂n1)

2
]
= EQ

 1
n2!

(n2−m)!
n2!

(n2−m)!

∑
(i1,...,im)

distinct from I2

∑
i′1,...,i

′
m

distinct from I2

(
m∏
ℓ=1

r̂n1(Xiℓ)

)(
m∏
ℓ=1

r̂n1(Xi′ℓ
)

)
δmδ

′
m


= EQ2

[
1

n2!
(n2−m)!

n2!
(n2−m)!

∑
(i1,...,im)

distinct from I2

∑
i′1,...,i

′
m

distinct from I2

(
m∏
ℓ=1

r(Xiℓ)

)(
m∏
ℓ=1

r(Xi′ℓ
)

)

EQ1

[(
m∏
ℓ=1

r̂n1(Xiℓ)

rq(Xiℓ)

)(
m∏
ℓ=1

r̂n1(Xi′ℓ
)

rq(Xi′ℓ
)

)]
δmδ

′
m

]
.

Here δ′m := 1{φm(Xi′1
,...,Xi′m

)=1}. Using the intermediate result (A.15) we get the following

upper bound
EQ
[
M(r̂n1)

2
]
≤ EQ2

[
M(rq)

2
]
(1 + ε(n1))

and lower bound
EQ
[
M(r̂n1)

2
]
≥ EQ2

[
M(rq)

2
]
(1− ε(n1)).

In Lemma A.1 (c) and (d) we have shown that limn→∞VQ(M(rq)) = 0. Hence, com-
bining these bounds on the second moment with the above bounds on the first moment
shows that also limn→∞VQ(M(r̂n1)) = 0. This completes the proof of Theorem 3.
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A.8.4. Proof of Theorem 4

Proof of Theorem 4. The first part of the proof follows that of Theorem 1. Let p and q
denote the respective densities of P and Q with respect to the dominating measure µ.
Recall that we call a sequence (i1, . . . , im) distinct if for all ℓ ̸= ℓ′ we have iℓ ̸= iℓ′ . The
resampling scheme ΨDRPL samples from the space of distinct sequences (i1, . . . , im), where
every sequence has probability w(i1,...,im) ∝

∏m
ℓ=1 r(Xiℓ). The normalization constant is

the sum over the weights in the entire space of distinct sequences, that is,

w(i1,...,im) =

∏m
ℓ=1 r(Xiℓ)∑

(j1,...,jm)
distinct

∏m
ℓ=1 r(Xjℓ)

.

Thus, taking an expectation involving φm(Ψ
r,m
DRPL(Xn, U)), amounts to evaluating φm in

all distinct sequences Xi1 , . . . , Xim and weighting with the probabilities w(i1,...,im).

PQ(φm(Ψr,m
DRPL(Xn, U)) = 1) = EQ


1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r(Xiℓ)

)
1{φm(Xi1 ,...,Xim )=1}

1
n!

(n−m)!

∑
(j1,...,jm)
distinct

m∏
ℓ=1

r(Xjℓ)

 ,
(A.17)

where we divide by the number of distinct sequences n!
(n−m)! in both numerator and

denominator.

Let c(n,m) and d(n,m) be the numerator and denominator terms of (A.17), i.e.,

c(n,m) :=
1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r(Xiℓ)

)
1{φm(Xi1 ,...,Xim )=1},

d(n,m) :=
1
n!

(n−m)!

∑
(j1,...,jm)
distinct

m∏
ℓ=1

r(Xjℓ).

Define for all δ > 0 the set Aδ := {d(n,m) ≥ 1− δ}. It holds for all δ ∈ (0, 1) that

EQ
[
c(n,m)

d(n,m)

]
= EQ

[
c(n,m)

d(n,m)
1Aδ

]
+ EQ

[
c(n,m)

d(n,m)
1Acδ

]
≤ EQ

[
c(n,m)

1− δ 1Aδ

]
+ EQ

[
c(n,m)

d(n,m)
1Acδ

]
≤ EQ

[
c(n,m)

1− δ

]
+ PQ (Acδ)

=
1

1− δPP (φm(X1, . . . , Xm) = 1) + PQ (Acδ) ,
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where we used that c(n,m)
d(n,m) ≤ 1 and Lemma A.1 (a). Further, by applying Cantelli’s

inequality to PQ(Acδ), it follows that

PQ (Acδ) ≤
VARQ(d(n,m))

VARQ(d(n,m)) + δ2
.

Finally, we can apply (A.7),

V (n,m) := VARQ(d(n,m)) =VAR

 1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r(Xiℓ)

)
=

(
n

m

)−1 m∑
ℓ=1

(
m

ℓ

)(
n−m
m− ℓ

)
(EQ

[
r(Xi1)

2
]ℓ − 1),

where we use that ζv (used in (A.7)) is given by

ζv = VQ

(
EQ

[
m∏
ℓ=1

r(Xiℓ) | Xi1 , . . . , Xiv

])

= VQ

((
v∏
ℓ=1

r(Xiℓ)

)
EQ

[
m∏

ℓ=v+1

r(Xiℓ)

])

= VQ

(
v∏
ℓ=1

r(Xiℓ)

)
= EQ[r(Xi1)

2]v − 1.

Plugging in this upper bound for PQ(Acδ) yields

PQ(φm(Ψr,m
DRPL(Xn, U)) = 1) =

1

1− δPP (φm(X1, . . . , Xm) = 1) +
V (n,m)

V (n,m) + δ2
.

Since δ ∈ (0, 1) was arbitrary, the theorem statement follows.
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A.8.5. Proof of Theorem 5

Proof. We adjust part of the proof of Theorem 1 to the uniform case. Again, let c(n,m)
and d(n,m) be the numerator and denominator terms of (A.1), i.e.,

c(n,m) :=
1
n!

(n−m)!

∑
(i1,...,im)
distinct

(
m∏
ℓ=1

r̄(Xiℓ)

)
1{φm(Xi1 ,...,Xim )=1},

d(n,m) :=
1
n!

(n−m)!

∑
(j1,...,jm)
distinct

m∏
ℓ=1

r̄(Xjℓ).

We want to show that lim supn→∞ supQ∈τ−1(H0) EQ
[
c(n,m)
d(n,m)

]
≤ αφ. To see this, define

for all δ > 0 the set Aδ := {|d(n,m)− 1| ≤ δ}, and take any P ∈ H0 and Q ∈ τ−1({P}).
It holds for all δ ∈ (0, 1) that

EQ
[
c(n,m)

d(n,m)

]
= EQ

[
c(n,m)

d(n,m)
1Aδ

]
+ EQ

[
c(n,m)

d(n,m)
1Acδ

]
≤ EQ

[
c(n,m)

1− δ 1Aδ

]
+ EQ

[
c(n,m)

d(n,m)
1Acδ

]
≤ EQ

[
c(n,m)

1− δ

]
+ PQ (Acδ)

=
1

1− δPP (φm(X1, . . . , Xm) = 1) + PQ (Acδ) ,

where we used that c(n,m)
d(n,m) ≤ 1 and that EQ [c(n,m)] = PP (φm(X1, . . . , Xm) = 1), as

shown in Lemma A.1 (a). Further, given the uniform bound on the weights, combining
Chebyshev’s inequality with Lemma A.1 (b) and (d) leads to limn→∞ supQ∈τ−1(H0) PQ (Acδ) =
0. Hence, using that φ has uniform asymptotic level αφ we have shown for all δ ∈ (0, 1)
that

lim sup
n→∞

sup
Q∈τ−1(H0)

EQ
[
c(n,m)

d(n,m)

]
≤ 1

1− δαφ.

Using that δ ∈ (0, 1) is arbitrary, completes the proof of Theorem 5.

A.8.6. Proof of Corollary A.1

Proof. We have

PQ(φm(Ψr,m
REPL(Xn, U)) = 1)

= PQ(φm(Ψr,m
REPL(Xn, U)) = 1 | Ψr,m

REPL(Xn, U) distinct)PQ(Ψr,m
REPL(Xn, U) distinct)

+ PQ(φm(Ψr,m
REPL(Xn, U)) = 1 | Ψr,m

REPL(Xn, U) not distinct)PQ(Ψr,m
REPL(Xn, U) not distinct).
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This converges to the same limit as PQ(φm(Ψr,m
REPL(Xn, U)) = 1 | Ψr,m

REPL(Xn, U) distinct)
(because PQ(Ψr,m

REPL(Xn, U) distinct) converges to 1, see Proposition A.1), which, as we
argue in Appendix A.4, equals PQ(φm(Ψr,m

DRPL(Xn, U)) = 1). The result then follows from
Theorem 1.

A.8.7. Proof of Proposition A.1

Proof. When sampling with replacement, Ψr,m
REPL(Xn, U) contains non-distinct draws with

positive probability (assuming, wlog, thatm is not 1). Yet, we show that PQ(Ψr,m
REPL(Xn, U) distinct)

approaches 1 as m → ∞. By assumption p = τ(q), so p(x) ∝ r(x)q(x). Let r̄ be the
normalized version of r satisfying, for all x, p(x) = r̄(x)q(x). The probability w(i1,...,im)

of drawing a sequence Xi1 , . . . , Xim is defined by (10) as the product of weights r:

w(i1,...,im) =

∏m
ℓ=1 r(Xiℓ)∑

(j1,...,jm)

∏m
ℓ=1 r(Xjℓ)

=

∏m
ℓ=1 r̄(Xiℓ)∑

(j1,...,jm)

∏m
ℓ=1 r̄(Xjℓ)

,

where the sum over (j1, . . . , jm) in the denominator is over all sequences of length m (in-
cluding distinct and non-distinct sequences). The probability of drawing a non-distinct
sequence equals the sum of the weights corresponding to all non-distinct sequences
w(i1,...,im). Therefore,

PQ(Ψr,m
REPL(Xn, U) not distinct)

= EQ

 ∑
(i1,...,im)
not distinct

w(i1,...,im)



= EQ

 ∑
(i1,...,im)
not distinct

∏m
ℓ=1 r̄(Xiℓ)∑

(j1,...,jm)

∏m
ℓ=1 r̄(Xjℓ)



= EQ


∑

(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)

∑
(i1,...,im)

m∏
ℓ=1

r̄(Xiℓ)



= EQ


1
nm

∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)

1
nm

∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ) +
1
nm

∑
(i1,...,im)
distinct

m∏
ℓ=1

r̄(Xiℓ)

 . (A.18)

Observe that this expectation is taken both over Xn and U . By Lemma A.3, the numer-
ator of (A.18) (which equals the first term in the denominator) converges to 0 in L1. The

197



A. Appendix to Statistical Testing under Distributional Shifts

second term in the denominator converges in probability to 1 by Lemma A.1 (this requires
Assumption (A2), which is implied by Assumption (A3)); thus, the entire denominator
converges to 1 in probability. By Slutsky’s lemma, the entire fraction (inside the mean)
converges to 0 in probability. Since the fraction is lower bounded by 0 and upper bounded
by 1, convergence in probability implies convergence of the mean (see the proof of The-
orem 1 for an argument for this), and it follows that PQ(Ψr,m

REPL(Xn, U) not distinct) →
0.

Lemma A.3 (Non-distinct draws). Let P ∈ P and Q ∈ Q be distributions with densities
p and q with respect to a dominating measure µ. Let r̄ : X → (0,∞) satisfy for all x ∈ X
that p(x) = r̄(x)q(x). Then, under Assumptions (A1) and (A3) it holds that

lim
n→∞

EQ

 1

nm

∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)

 = 0.

In particular, since the integrand is non-negative, this implies that

1

nm

∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)
L1

−→ 0 as n→∞.

Proof. We first rewrite the sum using the number k of distinct draws, i.e., we consider
cases, in which there are k distinct elements among i1, . . . , im. The number k is at least
1 and, since not all draws are distinct, at most m− 1. For fixed k, we then further sum
over the numbers r1, . . . , rk of occurrences of each index, i.e., jℓ appears rℓ times.

∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ) =
m−1∑
k=1

∑
(i1,...,im) with k distinct entries

(i.e. jℓ∈(i1,...,im) appears rℓ>0 times,
r1+···+rk=m)

k∏
ℓ=1

r̄(Xjℓ)
rℓ .

Using the independence across distinct observations, this implies that

EQ

 ∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)

 =
m−1∑
k=1

∑
(i1,...,im) with k distinct entries

(i.e. jℓ∈(i1,...,im) appears rℓ>0 times,
r1+···+rk=m)

k∏
ℓ=1

EQ [r̄(Xjℓ)
rℓ ] .

(A.19)
We now use the uniform bound on the weights given in Assumption (A3) and the fact
that EQ[r̄(Xi)

t] =
∫
r̄(xi)q(xi)r̄(xi)

t−1dµ(xi) =
∫
p(xi)r̄(xi)

t−1dµ(xi) = EP [r̄(Xi)
t−1] to

get for all i ∈ {1, . . . , n} and all t ∈ {1, . . . ,m− 1} that

EQ[r̄(Xi)
t] = EP [r̄(Xi)

t−1] ≤ Lt−1.
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E

 ∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)

 ≤ m−1∑
k=1

∑
(i1,...,im) with k distinct entries

(i.e. jℓ∈(i1,...,im) appears rℓ>0 times,
r1+···+rk=m)

Lm−k

=
m−1∑
k=1

(
n

k

)
π(m, k)Lm−k

≤
m−1∑
k=1

(
n

k

)
π̃(m, k)Lm−k, (A.20)

where π(m, k) is the number of words of length m using k letters such that each letter
is used at least once and

π̃(m, k) := km−k m!

(m− k)! .

The last inequality holds because we have π(m, k) ≤ π̃(m, k): Consider constructing a
word of length m by first distributing one of each of the k letters (ensuring that each
letter is used at least once) among the m positions, which can be done in m!/(m − k)!
ways. For the remaining m− k positions pick any combination of letters, which can be
done in km−k ways. In total, this two-step procedure has π̃(m, k) possible outcomes.
This enumeration contains all words of length m using k letters such that each is used at
least once, so π(m, k) ≤ π̃(m, k). We do not have equality, because π̃ counts some words
several times, but with different intermediate steps. For example if k = 2 and m = 3,
π̃ counts (a, , b) + ( , a, ) and ( , a, b) + (a, , ) as two distinct words, although they
both yield (a, a, b); indeed π(3, 2) = 6 and π̃(3, 2) = 12.

Then, with sk :=
(
n
k

)
π̃(m, k)Lm−k it holds that

sk+1

sk
=

(
n
k+1

)
π̃(m, k + 1)Lm−k−1(
n
k

)
π̃(m, k)Lm−k

=
1

L

n− k
k + 1

m− k
1

(k + 1)m−k−1

km−k

=
1

L

n− k
k + 1

m− k
k + 1

(
k + 1

k

)m−k

≥ 1

L

n−m+ 1

m2

=: c,

where the inequality follows by using k ≤ m−1 and (k+1)/k ≥ 1. By Assumption (A1)
(i.e., m = o(

√
n)) it holds for n sufficiently large that c > 1. Iterating this inequality,

we get (again for n sufficiently large) that sk ≤ c−(m−1−k)sm−1, which we can plug into
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(A.20) to get

E

 ∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)

 ≤ m−1∑
k=1

sk ≤ sm−1

m−1∑
k=1

c−(m−1−k) = sm−1

m−2∑
k=0

c−k ≤ sm−1
1

1− 1
c

.

(A.21)
In the last inequality, we use the trivial bound

∑m−2
k=0 c

−k <
∑∞

k=0 c
−k and 0 < c−1 < 1.

Finally, observe that

n−msm−1 = n−m
(

n

m− 1

)
π̃(m,m− 1)L

= n−m
n!

(n− (m− 1))!(m− 1)!
(m− 1)m−(m−1) m!

(m− (m− 1))!
L

= n−m
n!

(n−m)!

m(m− 1)

(n−m+ 1)
L

= g(n,m)︸ ︷︷ ︸
:=n−m n!

(n−m)!

m(m− 1)

(n−m+ 1)
L,

which by Lemma A.4 converges to zero (by the assumption m = o(
√
n)). Therefore, we

have that

E

n−m ∑
(i1,...,im)
not distinct

m∏
ℓ=1

r̄(Xiℓ)

 ≤ n−msm−1
1

1− 1
c

→ 0,

which completes the proof of Lemma A.3.

Lemma A.4. Define for all n,m ∈ N the function

g(n,m) :=
n!

(n−m)!
n−m.

Then, it holds that

lim
n→∞

g(n, nq) =


0 if q ∈ (12 , 1)

exp(−1
2) if q = 1

2

1 if q ∈ [0, 12).
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Proof. First, apply the Stirling approximation to get for n sufficiently large that

g(n,m) ∼ nn+ 1
2 · e−n · (n−m)m−n− 1

2 · en−m · n−m

= nn−m+ 1
2 · (n−m)m−n− 1

2 · e−m
= exp{(n−m+ 1

2) log(n) + (m− n− 1
2) log(n−m)−m}.

Next, we look at cases where m = nq for some q ∈ [0, 1). The above expression can then
be simplified further as

g(n, nq) ∼ exp{(n− nq + 1
2) log(n) + (nq − n− 1

2) log(n− nq)− nq}
= exp{(n− nq + 1

2) log(n) + (nq − n− 1
2)[log(n) + log(1− nq−1)]− nq}

= exp{(nq − n− 1
2) log(1− nq−1)− nq}.

Finally, since nq−1 → 0 as n goes to infinity we can use the following Taylor expansion

log(1− nq−1) = −nq−1 − 1
2n

2(q−1) +O(n3(q−1)),

which results in

g(n, nq) ∼ exp{(nq − n− 1
2) log(1− nq−1)− nq}

= exp{(nq − n− 1
2)(−nq−1 − 1

2n
2(q−1) +O(n3(q−1)))− nq}

= exp{−n2q−1 − 1
2n

3q−2 + nq + 1
2n

3q−2 + 1
2n

q−1 + 1
4n

2q−2 +O(n2q−1)− nq}
= exp{−1

2n
2q−1 +O(n3q−2)}.

From this we see that

lim
n→∞

g(n, nq) =


0 if q ∈ (12 , 1)

exp(−1
2) if q = 1

2

1 if q ∈ [0, 12).

This completes the proof of Lemma A.4.

A.8.8. Proof of Corollary 1

As discussed in Section 2.3, the proposed procedure in Section 4.1 can also be used
to construct a test for a hypothesis HQ

0 in the observed domain, satisfying the same
theoretical guarantees.

Corollary A.2 (Pointwise level in the observed domain - detailed version). Consider
hypotheses HQ

0 ⊆ Q and HP
0 ⊆ P in the observational and in the target domain, respec-

tively. Let τ : Q → P be a distributional shift for which there exist a known map r :
X → (0,∞) and a set A satisfying for all q ∈ Q and all x ∈ Z that τ(q)(x) ∝ r(xA)q(x),
see (5). Assume τ(HQ

0 ) ⊆ HP
0 . Let φk be a sequence of tests for HP

0 with pointwise
asymptotic level αφ. Let m = m(n) be a resampling size and let ψrn be the DRPL-based
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resampling test defined by ψrn(Xn, U) := φm(Ψ
r,m
DRPL(Xn, U)), see Algorithm 1. Then, if

m satisfies Assumption (A1) and all Q ∈ HQ
0 satisfy Assumption (A2), it holds that

sup
Q∈HQ

0

lim sup
n→∞

PQ(ψrn(Xn, U) = 1) ≤ αφ,

i.e., ψrn satisfies pointwise asymptotic level α for the hypothesis HQ
0 .

Clearly, the condition HQ
0 ⊆ τ(HP

0 ) is satisfied when HP
0 = τ(HQ

0 ). This is the case
for the conditional independence test described in Section 3.1, for example.

Proof. We have

τ(HQ
0 ) ⊆ HP

0 ⇒ HQ
0 ⊆ τ−1(HP

0 )

and therefore

sup
Q∈HQ

0

lim sup
n→∞

PQ(ψrn = 1) ≤ sup
Q∈τ−1(HP

0 )

lim sup
n→∞

PQ(ψrn = 1).

Since Assumption (A2) is satisfied for allQ ∈ HQ
0 , the statement follows from Theorem 1.

This completes the proof of Corollary 1.

A.8.9. Proof of Proposition 1

Proof. We analyze the output of Algorithm 2. For each i ∈ {1, . . . , n}, we discard Xi if

Ui >
r(Xi)
M , where Ui is uniform on (0, 1). The probability of the event Ei that Xi is not

discarded equals

q(Ei) =

∫
q(Ei|xi)q(xi)dxi =

∫
r(xi)
M q(xi)dxi =

∫
c
M

p(xi)
q(xi)

q(xi)dxi =
c
M ,

where c is a constant such that r(x)q(x) = cp(x). and the conditional density of Xi

given that the sample is not discarded, q(xi|Ei), is given by

q(xi|Ei) =
q(xi)

q(Ei)
q(Ei|xi) = q(xi)

M

c

c

M

p(xi)

q(xi)
= p(xi)

If Xi1 , . . . , Xim are the points that are not discarded, this means that (Xi1 , . . . , Xim) is
distributed as if it was m i.i.d. draws from P ∗ (where m is random). In particular, by
the assumption that the probability that for all k ∈ Z: PP (φk(Zk) = 1) = αφ for k
i.i.d. samples Zk from PP , it follows that PQ(ψrn(Xn, U) = 1) = PQ(φ(Xi1 , . . . , Xim)) =
αφ.
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A.9. Analyzing Assumption (A2) in a linear Gaussian model

In this section, we show conditions for assumption Assumption (A2) to be satisfied when
we consider the shift that changes a Gaussian conditional into a marginal, independent
Gaussian target distribution.

Proposition A.2. Consider a linear Gaussian setting where Y = X + ε with ε ∼
N (0, σ2ε) and X ∼ N (0, σ2X), with σε, σX known. Assume that we are interested in the
distributional shift that replaces the conditional q(y|x) (an N (x, σ2ε)-density, evaluated
at y) with an independent N (0, σ2) target distribution p(y). Formally, define the shift
factor r for all x, y ∈ R as

r(x, y) =
p(y)

q(y|x) .

Then Assumption (A2) is satisfied for Q if and only if

σ2 < 2(σ2ε − σ2X).

Proof. We begin by directly expanding the second moment of the factor r under the
observational distribution Q as follows,

EQ
[
r(X,Y )2

]
= EQ

[(
p(Y )

q(Y |X)

)2
]

=
σ2ε
σ2

EQ

[
exp

((
Y −X
σε

)2

−
(
Y

σ

)2
)]

=
σ2ε
σ2

EQ

[
exp

((
ε

σε

)2

−
(
X + ε

σ

)2
)]

=
σ2ε
σ2

EQ
[
exp

(
ε2
(

1

σ2ε
− 1

σ2

)
− X2

σ2
− 2Xε

σ2

)]
=
σ2ε
σ2

EQ
[
exp

(
−X

2

σ2
− 2ε

σ2
X − ε2

σ2
+
ε2

σ2

)
exp

(
ε2

σ2ε
− ε2

σ2

)]
=
σ2ε
σ2

EQ
[
exp

(
−σ

2
X

σ2
W +

ε2

σ2

)
exp

(
ε2

σ2ε
− ε2

σ2

)]
=
σ2ε
σ2

EQ
[
exp

(
−σ

2
X

σ2
W

)
exp

(
ε2

σ2ε

)]
, (A.22)

whereW := (X/σX+ε/σX)
2. Next, observe that, conditioned on ε,W has a non-central

χ2
(1)-distribution with non-centrality parameter ε2/σ2X . The moment generating function

of W is given by MW (t) = (1− 2t)−1/2 exp
(
ε2

σ2
X

t
1−2t

)
for all t < 1/2. Hence, continuing
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the computation in (A.22) and by conditioning on ε, we get

EQ
[
r(X,Y )2

]
=
σ2ε
σ2

EQ
[
EQ
[
exp

(
−σ

2
X

σ2
W

) ∣∣∣ε] exp( ε2
σ2ε

)]
=
σ2ε
σ2

EQ
[
MW

(
−σ

2
X

σ2

)
exp

(
ε2

σ2ε

)]

=
σ2ε
σ2

(
1 + 2

σ2X
σ2

)− 1
2

EQ

exp
 ε2

σ2X

−σ2X
σ2

1

1 + 2
σ2
X
σ2

 exp

(
ε2

σ2ε

)
=
σ2ε
σ2

(
1 + 2

σ2X
σ2

)− 1
2

EQ
[
exp

(
ε2

σ2ε

(
1− σ2ε

σ2 + 2σ2X

))]

=
σ2ε
σ2

(
1 + 2

σ2X
σ2

)− 1
2

MS

(
1− σ2ε

σ2 + 2σ2X

)
,

where S := (ε/σε)
2 and MS is the moment generating function of a (central) χ2

(1) distri-

bution. MS(t) is finite if and only if t < 1/2, corresponding to 1− σ2
ε

σ2+2σ2
X
< 1/2 which

is equivalent to σ2 < 2(σ2ε − σ2X).
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B. Appendix to Evaluating Robustness to
Dataset Shift via Parametric Robustness
Sets

Appendix

This appendix is structured as follows:

• In Appendix B.1, we provide details on the synthetic lab testing example, including
how we generate the loss landscape in Fig. 1 (right).

• In Appendix B.2, we provide a “user’s guide” to defining and interpreting paramet-
ric shifts, including worked examples for many common conditional distributions,
as well as guidance on how to define and interpret the shift functions s(Z; δ).

• In Appendix B.3, we provide additional details on the worst-case optimization
problem, as well as comparisons of the reweighting-based approach to the Taylor
approximation approach. We also demonstrate that the quadratic approximation
is exact, for particularly simple structural causal models.

• In Appendix B.4, we compare our approach to that of worst-case conditional sub-
population shifts, in the context of a simpler laboratory testing example where we
can explicitly compute the worst-case conditional subpopulations. Here, we demon-
strate that our approach can capture more realistic intuition regarding which shifts
are plausible in practice.

• In Appendix B.5, we give additional experimental details, as well as illustrative
samples from the generative model, for the CelebA experiment described in Sec-
tion 4.

• In Appendix B.6, we give proofs for all the results in the main paper.
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B.1. Details of Fig. 1

In Fig. 1 (right), we consider the following, artificial, generative model, which resembles
the setup in Section 4.1, but with the addition of age as a continuous variable.

Age ∼ N (0, 0.52)

P(Disease = 1|Age) = sigmoid(0.5 ·Age− 1)

P(Order = 1|Disease, Age) = sigmoid(2 ·Disease + 0.5 ·Age− 1)

Test Result|Order = 1,Disease ∼ N (−0.5 + Disease, 1)

where if Order = 0, the test result is a placeholder value of zero. In Fig. 1 (right),
we consider a simple predictive model: If lab tests are not available (Order = 0), this
model predicts disease based on an unregularized logistic regression model, which uses
age to predict disease. If a lab test is available, then it uses both age and the lab test
for prediction. This model is trained on 100,000 samples from the training distribution.
To construct the loss landscape shown in Fig. 1 (right), we first observe that

P(O = 1|Disease,Age) = sigmoid(η(Disease,Age)),

where that η(Disease,Age) = 2 · Disease + 0.5 · Age − 1. We construct shifts using the
shift function s(Disease,Age; δ) = δ0 · (1−Disease)+ δ1 ·Disease, and for a grid of values
for (δ0, δ1) ∈ [−5, 5]2 we consider perturbed distributions with a different conditional
distribution of testing,

Pδ(O = 1|Disease, Age) = sigmoid

(
η(Disease,Age) + δ0 · (1−Disease) + δ1 ·Disease

)
,

but where all other parts of the generative model are fixed. For each value of (δ0, δ1) ∈
[−5, 5]2, we draw 10,000 samples from the corresponding distribution, and compute the
negative log-likelihood of the original predictive model under this new distribution. The
resulting surface is plotted in Fig. 1 (right).

B.2. A user’s guide to defining parametric shifts

In this section, we discuss practical considerations in designing parametric shift functions
for different distributions.

• In Appendix B.2.1, we give examples of conditional exponential families, illustra-
tive shift functions, and how to interpret them.

• In Appendix B.2.2, we formalize the idea that one can choose shift functions which
depend on additional variables, other than the causal parents of a variable Wi.

• In Appendix B.2.3 we give guidance on how to define shift functions when the
parameters η(Z) are constrained to lie in a particular domain, which is relevant
for considering shifts such as changing the variance of a conditional Gaussian.
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Table B.1.: Examples of conditional exponential family distributions.

Distribution Parameter space Sufficient statistic Inverse parameter map

Binary(p) η(Z) ∈ R T (W ) =W p(W = 1|Z) = sigmoid(η(Z))
Categorical(p1, . . . , pk) η(Z) ∈ Rk [T (W )]i = 1 {W = i} P(W = i|Z) = [softmax(η(Z))]i
Poisson(λ) η(Z) ∈ R T (W ) =W λ = exp(η(Z))

Gaussian(µ, σ2) η(Z)1 ∈ R, η(Z)2 < 0 T (W ) = (W,W 2) µ(Z) = − η(Z)1
2η(Z)2

, σ2(Z) = − 1
2η(Z)2

Gamma(α, β) η(Z)1 > −1, η(Z)2 < 0 T (W ) = (logW,W ) α(Z) = η(Z)1 + 1, β(Z) = −η(Z)2

B.2.1. Conditional exponential family models and interpretations of shifts

In this section, we give examples of exponential families and their sufficient statistics, and
discuss design considerations in specifying the shift function s(Z; δ). Here, we restrict
attention to shifts in a single variable, for ease of notation. In Table B.1 we give examples
of conditional exponential families, along with their typical parameterizations. In the
examples below, we review how shift functions s(Z; δ) impact these parameters, and how
they can also be interpreted on the scale of more commonly considered parameters (e.g.,
conditional means and variances).

Example B.1 (Log-odds shift in a binary variable). Consider the distribution of a
binary variable W conditioned on variables Z. Without loss of generality, we can write
that

P(W = 1|Z) = σ(η(Z))

where σ is the sigmoid function, and η(Z) is an arbitrary measurable function of Z,
taking on values in the extended real line η(Z) ∈ R ∪ {−∞,+∞}. This can be written
in canonical form as

P(W |Z) = exp

{
η(Z) ·W − log(1 + expη(Z))

}
where η(Z) is the canonical parameter (the log-odds ratio), T (W ) = W is the sufficient
statistic, and h(θ) = log(1+expη(Z)) is the normalizing constant. We can consider shifts
ηδ(Z) := η(Z) + δ, yielding the new conditional distribution

Pδ(W = 1|Z) = σ(η(Z) + δ),

which is well-defined for any δ ∈ R.

Here, we note that these shifts occur on the “natural” parameter scale η(Z) (e.g., the
log-odds), which at first glance may seem difficult to interpret: Why should we care
about changes on the log-odds scale, instead of on the original probability scale? In
addition to mathematical convenience, we argue that in some settings, working with
natural parameters is advantageous for retaining a common scale across across multiple
variables.
For instance, consider shifts in the two independent variables W1 and W2, where

Vi ∼ Bernoulli(pi), with p1 = 10−4 and p2 = 0.6. Suppose we wished to consider an
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additive shift on the probability scale, e.g., p′1 = p1 + 0.1, p′2 = p2 + 0.1. Setting aside
the inconvenience that we need to ensure p′1, p

′
2 ∈ [0, 1], we argue that these shifts are

not truly of a comparable scale. In particular, this shift in p1 may seem implausible in
magnitude, while the same shift in p2 seems more reasonable. On the other hand, an
additive shift in the log-odds captures some aspect of this idea.
Of course, there is some flexibility to incorporate prior expectations of shifts in absolute

probabilities. For instance, in binary variable with no causal parents, we can always
construct a one-to-one map of δ to a change in the marginal probability. For conditional
shifts, we can similarly construct a one-to-one map between the value of δ in a shift
s(Z; δ) = δ and the resulting marginal probability of Wi, as formalized below.

Proposition B.1. Consider a binary random variable W with conditional distribution

Pδ(W = 1|Z) = σ(η(Z) + δ)

for an arbitrary measurable function η(Z) whose range is the extended real numbers
η(Z) ∈ R ∪ {+∞,−∞}. Let p+ := P(η(Z) = +∞), p− := P(η(Z) = −∞), and assume
that p+ + p− < 1. Then, the marginal probability

pδ = Pδ(W = 1)

is a strictly monotonically increasing function of δ ∈ R whose range is (p+, 1− p−),

Proposition B.1 states that, for any achievable marginal probability pδ = Pδ(W = 1),
there exists a unique value of δ that achieves this probability. Because this relationship is
strictly monotonic, we can hope to efficiently find such a value by e.g., binary search. In
the laboratory testing example of Example 1, this would allow us to specify a plausible
strength for the conditional shift δ in terms of an impact on the overall testing rate, e.g.,
modelling a scenario where the testing rate decreases from 20% to 15%.
Similar to the binary case, we can (if desired) directly parameterize shifts in terms of

the conditional mean of a Gaussian distribution, as illustrated in Example B.2, which
operates on the scale of µ(Z) alone.

Example B.2 (Mean shift in a conditional Gaussian). Consider the distribution of a
multi-variate Gaussian variable W conditioned on a binary variable Z, where we write

p(w|z) (d)
= N (w;µ(z),Σ(z))

where N (w;µ(z),Σ(z)) denotes the Gaussian density with mean µ(z) and covariance
Σ(z). This can be written as an exponential family model with natural parameters η(Z) =
[Σ(Z)−1µ(Z),−1

2Σ(Z)
−1] and sufficient statistic T (W ) = [W,WW⊤]. Here, a shift in

the mean can be parameterized by s(Z; δ) = [Σ(Z)−1δ, 0], such that

pδ(w|z)
(d)
= N (w;µ(z) + δ,Σ(z)).

However, shifts of the same magnitude in the conditional mean may not be comparable.
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Suppose that

P(W |Z = 0)
(d)
= N (0, 1) and P(W |Z = 1)

(d)
= N (0, 0.001),

such that δ = 1 in Example B.2 corresponds to

Pδ=1(W |Z = 0)
(d)
= N (1, 1) and Pδ=1(W |Z = 1)

(d)
= N (1, 0.001).

While it may seem plausible that the mean of W |Z = 0 can increase by 1, it may
seem unrealistic for W |Z = 1. Here, it may be more reasonable to consider a different
parameterization of s(Z; δ), where the impact of the shift in a direction is proportional
to the variance in that direction; we discuss this in the next example.

Example B.3 (Variance-scaled mean shift in a conditional Gaussian). Consider the
distribution of a multi-variate Gaussian variable W conditioned on variables Z, where
we write

p(w|z) (d)
= N (w;µ(z),Σ(z))

where N (w;µ(z),Σ(z)) denotes the Gaussian density with mean µ(z) and covariance
Σ(z). This can be written as an exponential family model with natural parameters η(Z) =
[Σ(Z)−1µ(Z),−1

2Σ(Z)
−1] and sufficient statistic T (W ) = [W,WW⊤]. Here, a shift in

the mean can be parameterized by s(Z; δ) = [δ, 0], such that

pδ(w|z)
(d)
= N (w;µ(z) + δ⊤Σ(Z),Σ(z)).

In Example B.3, the parameter δ has a different interpretation, as a variance-scaled
mean-shift. If W is one-dimensional, we can see that this becomes

pδ(w|z)
(d)
= N (w;µ(z) + δσ2(Z), σ2(z)).

As we demonstrate in Appendix B.3.2, this particular example of a parameterization
has other benefits: For instance, for estimation of shift gradients and Hessians at δ = 0
can be done without knowledge of Σ(Z).

B.2.2. Adding causal edges to the graph

In Section 2, we consider the case where the shift function s(Z; δ) alters a conditional
P(W |Z) by a shift function s(Z; δ). We now discuss shift functions that use a larger set
Z ′. In particular, we consider the setting where Z represents the parents in a graph
G (that is, Z := PAG(W )), and consider shift functions that correspond to adding
additional parents in that causal graph. Our definitions and results immediately extend
to measuring the impact of shifts that add edges to the graph, in the form of shift
functions that depend on non-descendants of W .

Building intuition with a simple example: To build intuition, consider the causal
graph given in Fig. B.1. We consider a shift in X2, with a shift function which depends
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X1 Y X2

s(X1, Y ; δ)

Figure B.1.: Illustrative example of an intervention s(X1, Y ; δ), and modified causal
graph, which creates a dependence between X1 and X2 that bypasses Y .

not only on the causal parent Y , but also on X1. Suppose that the distribution P(X2|Y )
is a conditional exponential family, given by

P(X2|Y ) = g(X2) exp(η(Y )⊤T (X2)− h(η(Y ))).

Using that X2 ⊥⊥ X1|Y , we have P(X2|Y ) = P(X2|Y,X2), and the joint probability
factorizes as

P(X1, X2, Y ) = P(X2|Y )P(Y |X1)P(X1) = P(X2|Y,X1)P(Y |X1)P(X1).

This enables us to consider Z = (Y,X1) as the conditioning set in the context of Assump-
tion 1. This is useful, because it allows us to consider shift functions that depend on Z,
which includes X1 in addition to Y . The δ-perturbation of this conditional distribution
under the shift function s(Y,X1; δ) is given by

Pδ(X2|Y,X1) = g(X2) exp

(
{η(Y ) + s(Y,X1; δ)}⊤T (X2)− h

(
η(Y ) + s(Y,X1; δ)

))
,

and we can observe that under both graphs, the distribution factorizes in the same
fashion, where

Pδ(X1, X2, Y ) = Pδ(X2|Y,X1)P(Y |X1)P(X1),

keeping the same convention that s(Y,X1; δ = 0) = 0, such that P0 = P. This is one
example of how our results can be applied with shift functions that effectively add edges
to the causal graph. Of course, not all edges are permitted, so we give a more general
treatment below.

General guidelines for adding edges: Allowing for the use of non-causal parents in
the shift functions is straightforward, and can be done safely as follows, without violating
Assumption 1: Given knowledge of the directed acyclic graph G which generates the
observed distribution P, we can add edges to the graph, as long as they do not create
cycles.

Formally, let G = (V, E) denote the causal DAG which generates the distribution P,
where V denotes variables and E denotes the set of edges, where we denote a directed
edge by e = (Vi, Vj), going from Vi to Vj . Let G′ = (V′, E′) denote another DAG (of
our creation) with the constraint that we can only add edges, and that the graph must
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remain acyclic, such that E′ ⊇ E, and V′ = V.

For any variable Wi ∈ V, this implies that PAG′(Wi) ⊇ PAG(Wi). Moreover, any
new causal parent Vi of Wi in G′ must have been a non-descendant of Wi in the original
graph, as otherwise the graph G′ would have a cycle from Wi → Vi → Wi. For ease of
notation, let N(Wi) := PAG′(Wi) \ PAG(Wi) denote the set of new causal parents of Wi

in G′. For any variable Wi such that N(Wi) ̸= ∅, we can write that

Wi ⊥⊥ GN(Wi)|PAG(Wi) (B.1)

by the rules of d-separation [Pearl, 2009]. As in Assumption 1, we useW = {W1, . . . ,Wm}
to denote the set of variables to be intervened upon, and accordingly will assume that
in the causal graph G′, we have not added new parents to any other variables, i.e.,
N(Vi) = ∅ for any Vi ⊊ W.

By (B.1), we can write that the distribution P factorizes as

P(V) =

 ∏
Wi∈W

P(Wi|PAG′(Wi))

 ∏
Vi∈V\W

P(Vi|PAG(Vi))

because P(Wi|PAG′(Wi)) = P(Wi|PAG(Wi), and if P(Wi|PAG(Wi)) is a conditional ex-
ponential family satisfying Definition 2, then P(Wi|PAG(Wi)) also satisfies this defini-
tion, where the function η(PAG(Wi), N(Wi)) is constant with respect to fluctuation in
the variables N(Wi). Thus, taking Zi := PAG′(Wi) as the conditioning set satisfies As-
sumption 1, and the rest of our results hold, where the corresponding δ-perturbations
in Definition 4 are given by

Pδ(V) = (
∏

Wi∈W
Pδi(Wi|PAG′(Wi)))

∏
Vi∈V\W

P(Vi|PAG(Vi))

with shift function si(PAG′(Wi); δi) that are parametric functions of causal parents in
the modified graph G′.

B.2.3. Domain-preserving parameterizations of shift

For both of the examples considered above, we did not need to restrict the magnitude
of the additive change to η(Z). However, in some cases, such as changing the variance
of a conditional Gaussian, we have the restriction that ηδ(Z) = η(Z) + s(Z; δ) must
lie in the proper domain, e.g., we cannot consider a shift which causes the conditional
variance to become negative. For a conditional Gaussian, we can consider unrestricted
shifts in η(Z)1, which controls the mean, because the mean has unrestricted domain. On
the other hand, η(Z)2 = (−2σ2(Z))−1 controls the variance, and must remain negative,
such that η(Z)2 + s(Z; δ)2 < 0 for the shifts we consider.

This can be resolved in one of two ways. First, one can consider parameterizations of
s(Z; δ) which are guaranteed to preserve the correct domain with an additional constraint
on the values of δ, such as the multiplicative shift below, which is sign-preserving for
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δ > −1

ηδ(Z)2 = η(Z)2 + δη(Z)2︸ ︷︷ ︸
s(Z;δ)

= (1 + δ)η(Z)2.

To handle the general case, at the expense of some additional complexity in the gradients
of s(Z; δ), one can define the shifts as follows for parameters η(Z) that have a lower bound
L, with an equivalent formulation for shifts where the parameters have an upper bound,
for any desired shift function s′(Z; δ)

η(Z) + s′(Z; δ) · sigmoid(γ · [(η(Z) + s′(Z; δ))− (L+ ε)])︸ ︷︷ ︸
s(Z;δ)

where sigmoid(γ·(x−(L+ε))) is a smooth relaxation of the indicator function 1 {x > L+ ε},
for a sufficiently large temperature parameter γ > 0 and a small ε > 0. This transfor-
mation preserves the twice-differentiable nature of s(Z; δ). In practice, however, we
typically evaluate the gradient of s(Z; δ) at δ = 0, where η(Z) does not lie at the bound-
ary of allowable parameter space, such that we can consider simpler parameterizations
like

η(Z) + s′(Z; δ) · 1
{
η(Z) + s′(Z; δ) > L+ ε

}︸ ︷︷ ︸
s(Z;δ)

as long as ε is taken sufficient small such that η(Z) > L+ ε almost everywhere in P.

B.3. Considerations and additional results for evaluation of the
worst-case loss

In this section, we present additional results on the Taylor approximation and compare
how the Taylor approximation compares to the reweighting approach in evaluation and
worst-case optimization of the shifted loss.

• In Appendix B.3.1 we give a full treatment of how shift gradients and Hessians are
estimated from samples, following Theorem 1.

• In Appendix B.3.2, we demonstrate in some cases, one does not need to estimate
all of η(Z), but only the parts of η(Z) that is shifting.

• In Appendix B.3.3, we demonstrate that the second-order Taylor expansion is exact
in a linear-Gaussian setting, which gives a conceptual connection between this
work and that of Anchor Regression [Rothenhäusler et al., 2021], which considered
a restricted type of additive shift intervention in a globally linear structural causal
model.

• In Appendix B.3.4, we work out the expression for the shift gradient and Hessian
when we condition on binary variables.
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• In Appendices B.3.5 to B.3.7, we provide experiments that compare the variance
of the importance sampling estimate Êδ,IS (see (6)) to the variance of the Taylor

estimate Êδ,Taylor (see (7)) of the loss in a shifted distribution.

B.3.1. Algorithm for Estimation of Shift Gradients and Hessians

Here, we recall the form of the shift gradients and Hessians in Theorem 1, and demon-
strate how to compute them in practice using a set of auxiliary regression functions fit
to the validation data.

Theorem 1 (Shift gradients and Hessians as covariances). Assume that Pδ,P satisfy
Definition 4, with intervened variables W = {W1, . . . ,Wm} and shift functions si(Zi; δi),
where δ = (δ1, . . . , δm). Then the shift gradient is given by SG1 = (SG1

1, . . . ,SG
1
m) ∈ Rdδ

where

SG1
i = E

[
D⊤
i,1 cov

(
ℓ, Ti(Wi)

∣∣∣∣Zi)] ,
and the shift Hessian is a matrix of size (dδ×dδ), where the (i, j)th block of size dδi×dδj
equals

{SG2}i,j =

E
[
D⊤
i,1 cov

(
ℓ, εTi|Ziε

⊤
Ti|Zi |Zi

)
Di,1

]
− E

[
ℓ ·D⊤

i,2εT |Z

]
i = j

cov(ℓ, D⊤
i,1εTi|Ziε

⊤
Tj |ZjDj,1) i ̸= j,

where Di,k := ∇kδisi(Zi; δi)|δ=0, is the gradient of the shift function for k = 1, and the
Hessian for k = 2. Here, Ti(Wi) is the sufficient statistic of P(Wi|Zi) and εTi|Zi :=
Ti(Wi)− E[T (Wi)|Zi].

Notation and Dimensions: Let W = {W1, . . . ,Wm} denote the set ofm intervened
variables, and let Z = {Z1, . . . , Zm} denote the conditioning sets. Note that for a single
Wi ∈ RdWi , we will generally have it that Zi ∈ RdZ , where dW is the dimension of W
(typically 1) and dZ is the number of conditioning variables, and when considering n
samples, Wi will be a matrix in Rn×dW , and Zi will be a matrix Rn×dZ . The sufficient
statistic Ti(Wi) maps from RdW to RdT , where dT is the dimension of the sufficient
statistic. For many common distributions, Ti(Wi) = Wi, the identity function. For
others, like the conditional multi-variate Gaussian, Ti(Wi) = [Wi,WiW

⊤
i ], where W ∈

RdW and WiW
⊤
i ∈ RdW×dW . In these cases, we squeeze Ti(Wi) to be a single vector, so

in this case dT = dW + d2W .

Auxiliary models: To estimate the shift gradients and Hessians, we first learn aux-
iliary predictive models, which are required for computing the relevant conditional co-
variances. For simplicity, we do not consider sample-splitting in the algorithm given
below, but one could employ sample-splitting to learn these predictive models on an
independent validation sample.

• For each Wi, we learn µ̂Wi(Zi) as a regression model for E[Ti(Wi)|Zi]. Because
Ti(Wi) may have multiple dimensions, this is a function from RdZ to RdT .
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• For each conditioning set Zi, we learn µ̂ℓ(Zi) as a regression model for E[ℓ|Zi].
Because the loss is one-dimensional, this is a function from RdZ to R.

We then construct the following, which are defined for each data point in the sample.

• For each Wi, we construct ε̂Ti|Zi := Ti(Wi) − µ̂Wi(Zi), which is a vector of length
dTi .

• For each conditioning set Zi, for the loss ℓ, we construct ε̂ℓ|Zi := ℓ− µ̂ℓ(Zi), which
is a real number.

• For each conditioning set Zi, we compute Di,1(Zi) as ∇δisi(Zi; δi)
∣∣
δ=0

, which is a
matrix of size dT × dδi , and a function of Zi that we can evaluate on each sample.

• For each conditioning set Zi, we compute Di,2(Zi) as ∇2
δi
si(Zi; δi)

∣∣
δ=0

, which is a
tensor of size dT × dδi × dδi , and a function of Zi that we can evaluate on each
sample.

Estimating shift gradients The shift gradient and Hessian in Theorem 1 are ex-
pressed as conditional covariance. Since E[cov(A,B|C)] = E[εA|CεB|C ] where εA|C :=
A − E[A|C] and εB|C := B − E[B|C], we can use the estimated conditional means
above, to compute the shift gradient and Hessian. Suppose that we observe N samples,
n ∈ {1, . . . , N}. For each index i ∈ [m] := {1, . . . ,m},

ŜG
1
i =

1

N

N∑
n=1

ε̂
(n)
ℓ|Zi ·Di,1(Z

(n)
i )

⊤
ε̂
(n)
Ti|Zi

which yields a vector of length dδi , and these are concatenated together for each i to
yield the entire shift gradient. The shift Hessian is constructed block-wise, for each index
i, j ∈ [m]× [m] as follows: If i = j, then we construct the corresponding dδi × dδi block
as

ŜG
2
i,i =

1

N

N∑
n=1

ε̂
(n)
ℓ|Zi ·

[(
Di,1(Z

(n)
i )

⊤
ε̂
(n)
Ti|Zi

)⊗2

−Di,2(Z
(n)
i )⊤ε̂Ti|Zi

]
where v⊗2 denotes the outer product so that v⊗2 = vv⊤, and the transpose of Di,2 refers
to a transpose which has dimension dδi × dδi × dT . On the other hand, if i ̸= j we have

ŜG
2
i,j =

1

N

N∑
n=1

(ℓ(n) − ℓ̄) ·
(
Di,1(Z

(n)
i )⊤ε̂

(n)
Ti|Zi

)(
Dj,1(Z

(n)
j )⊤ε̂

(n)
Tj |Zj

)⊤
where ℓ̄ is the average value of ℓ in the validation sample.

B.3.2. Shifts where estimating all of η(Z) is not necessary for estimating
shift gradient and Hessian

The following example shows that when a shift occurs in an exponential conditional
distribution with parameter η(Z), we do not necessarily need to model all of η(Z) in
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order to compute the shift gradient and Hessian. In particular, we only need to model
the parts of η(Z) that shift. This is different from estimating the shifted loss using
importance sampling, where η(Z) needs to be evaluated to evaluate (5).

Example B.4. Consider the distribution of W conditioned on variables Z that is a
multi-variate Gaussian variable,

W |Z = N (µ(Z),Σ(Z)),

for unknown functions µ,Σ. The sufficient statistic for the multivariate Gaussian distri-
bution is T (W ) = (W,WW⊤) and the canonical parameter is η(Z) = (Σ(Z)−1µ(Z),−1

2Σ(Z)
−1).1

The first component of η(Z) is a signal-to-variance ratio and the second is the inverse
covariance matrix. For a shift (δ, 0) that only affects the first component, we show that
we do not need to model Σ(Z), but only µ(Z). This is beneficial, since estimating a con-
ditional covariance from data can be challenging, especially if W is high-dimensional.

For δ ∈ RdW , let s(Z; δ) = (δ, 0)⊤, and suppose that we wish to estimate Eδ[ℓ] using
(7). The derivative of s is given by

D1 = ∇2
δs(Z; δ) =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1



0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ,

where the first block is a dW×dW diagonal matrix, and the second is a dW×d2W matrix of
zeros. The second derivative of s is D2 = 0. Hence, using Theorem 1, the shift gradient
is

SG1 = E[D1 cov(ℓ, (W,WW⊤)|Z)] = E[cov(ℓ,W |Z)],

and

SG2 = E
[
D1 cov(ℓ,

(
W − E[W |Z],WW⊤ − E[WW⊤|Z]⊗2

)
|Z)D⊤

1

]
= E

[
cov(ℓ,

(
W − E[W |Z]

)⊗2|Z)
]
.

Conditional covariances can be computed by only residualizing one of the variables:
E[cov(A,B|C)] = E[A(B − E[B|C])]. Thus, if we only residualize ℓ, we get

SG1 = E[(ℓ− E[ℓ|Z])W ] and SG2 = E[(ℓ− E[ℓ|Z]) · (W − µ(Z))⊗2].

Therefore, given data from P, we can estimate the shift gradients by plugging in estima-

1Or, more formally, T (W ) =
(
W, vec(WW⊤)

)
and η(Z) =

(
σ(Z)−1µ(Z),− 1

2
vec(µ(Z))

)
, where vec

denotes the vectorization operation. For a detailed walk through of the exponential family parame-
terization of multivariate Gaussian distributions, see https://maurocamaraescudero.netlify.app/

post/multivariate-normal-as-an-exponential-family-distribution/.
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Figure B.2.: (Left) Graphical model assumed by (B.2). The undirected edges represent
either any directed configuration of directed edges or the dependence struc-
tures arising due to an acyclic SCM [Bongers et al., 2021]. (Middle) Plotting
Eδ[(Y − γ⊤X)2] as a function of δ ∈ R2 for a fixed predictor γ. (Right)
Plotting Eδ[(Y − γ⊤X)2] as a function of δ ∈ R3, with the loss indicated
by the color. The loss only varies with changes in δ2 (corresponding in
Lemma B.1 to vγ ∝ (0, 1, 0)⊤).

tors µ̂(Z) of E[W |Z] and L̂(Z) of E[ℓ|Z]. It follows that we do not need to model Σ(Z)
in order to estimate the shift gradients and Hessian at δ = 0.

The story is different for a reweighting based estimator that seeks to estimate Eδ[ℓ]
using importance sampling (see Section 3.1), where the weights are given by

wη,δ(Z) = (W − µ(Z))⊤δ − 1
2δ

⊤Σ(Z)δ,

and hence estimating wη,δ(Z) requires estimation of Σ(Z).

B.3.3. The quadratic approximation is exact, for mean shifts in linear
models

We now consider data generated by a linear model, and show that the shifted loss is
a quadratic function of δ, meaning that the Taylor approximation Eδ,Taylor is globally
exact. Suppose that data is sampled from a linear structural causal model, and a shift
in mean occurs in an variable A that does not have any causal parents. In particular,
let A have a normal distribution with mean µ and finite variance and letXY

H

 = B

XY
H

+MA+ ε. (B.2)

This is the model assumed by Rothenhäusler et al. [2021], and the corresponding graphi-
cal model is shown in Fig. B.2 (left). We consider the linear predictor fγ(X) = γ⊤X and
the mean squared loss ℓ(fγ(X), Y ) = (Y − f(X))2. Due to the linearity of the model,
the loss under a mean shift in A is quadratic [Rothenhäusler et al., 2021].

Lemma B.1. Suppose A ∼ N (µ,Σ) and that (X,Y,H) are generated according to (B.2).
For γ ∈ RdX define ℓ := (Y − γ⊤X)2. Then there exist vγ , uµ,γ ∈ RdA such that for all
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shifts δ ∈ RdA:

Eδ[ℓ] = E[ℓ] + δ⊤uµ,γ +
1
2δ

⊤vγv
⊤
γ δ,

where Eδ corresponds to taking the mean in the distribution where A ∼ N (µ + δ,Σ).
Further uµ,γ = 0 if µ = 0.

Proposition B.2 elicits two properties of this linear model: First the loss is described
by a quadratic function globally, i.e. also for very large δ. In Fig. B.2 (middle), we plot
Eδ[ℓ] as a function of δ. We observe a ‘valley’ in the loss, in which the expected loss does
not at all change with δ. This is a consequence of Lemma B.1, and particularly that
if δ is orthogonal to both uµ,γ and vγ then Eδ[ℓ] = E[ℓ]. In higher dimensions dA > 2,
since vγv

⊤
γ has rank 1, the ‘valley’ persists in that the loss does not grow at all in dA− 2

dimensions (or dA − 1 if A has mean µ = 0), see Fig. B.2 (right).
We now show that coefficients in the quadratic form in Lemma B.1 is equal to the

shift gradient and Hessian. We use that the Gaussian distribution with known variance
Σ can be parameterized as an exponential family with sufficient statistic T (A) = Σ−1A
and parameter η = µ.2

Proposition B.2. Suppose A ∼ N (µ,Σ) and that (X,Y,H) are generated according to
(B.2). Then the shift gradient and Hessian are given by

SG1 = cov(ℓ,Σ−1A) and SG2 = cov(ℓ,Σ−1(A− µ)(A− µ)⊤Σ−⊤)

and the loss under a mean shift of δ in A is given by

Eδ[ℓ] = E[ℓ] + δ⊤ SG1+1
2δ

⊤ SG2 δ,

where ℓ := (Y − γ⊤X)2 and Eδ corresponds to taking the mean in the distribution where
A ∼ N (µ+ δ,Σ).

This elicits a connection to anchor regression [Rothenhäusler et al., 2021]: Under the
generative model (B.2) and using the quadratic loss ℓ = (Y − γ⊤X)2 for γ ∈ RdX , they
show that for any λ ≥ 0, the worst-case loss Eδ[ℓ] over a set ∆ = {δ|δδ⊤ ⪯ λE[AA⊤]}
equals the objective ℓAR = E[ℓ] + λE[E[Y − γ⊤X|A]2], which is computable from the
observed distribution.
Because of Proposition B.2, ℓAR also equals the solution of the optimization problem

(9) over the constraint set ∆. Therefore minimizing the anchor regression objective over
γ or minimizing (9) over γ will lead to the same estimator. Since our proposed Taylor
approximation in (9) does not assume linearity, one could use the approximation to
extend the rationale of anchor regression of minimizing the worst-case loss to non-linear
models. This however comes at the cost of not optimizing the exact worst-case loss,
but rather an approximation, whose quality is given by Theorem 2. Further, this would
involving a minimax problem, minimizing (9) over models f , and there are questions,
such as convexity and tractability, which would need to be solved.

2It can also be parameterized as T (A) = Σ−1/2A, η = Σ−1/2µ, which would yield the same result.
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B.3.4. Estimating the shift gradient and Hessian for conditional on binary
variables

To build intuition for the shift gradient and Hessian, we here give an example where
we condition on variables Z that take a finite number of values and write out explicit
expressions for the shift gradient and Hessian. However, we emphasize, that in most
practical scenarios, one will not have to work out the shift gradient and Hessian explicitly,
but can simply estimate them as covariances from the data (Theorem 1).

Example B.5 (Shift Function of Discrete Parents). Consider a conditional distribution
W |Z where Z takes values in a finite set Z. This is for instance the case if Z =
(Z1, . . . , Zd) where each Zi is binary, so |Z| = 2d. Instead of a shift η(Z) + δ, where
the parameter increases by the same amount for all values of Z, we may consider a shift
η(Z) + s(Z; δ) where s(Z; δ) =

∑
z∈Z δz1Z=z, meaning that the shift is different in each

category Z. Since η(Z) only takes a finite number of variables, this shift corresponds to
an arbitrary change in η(Z).

s(Z; δ) is a differentiable function in δ, and if dT = 1 the shift gradient is a (1× 2d)-
row vector, ∇δs(Z; δ) = (1Z=z)z∈Z , and the shift Hessian vanishes, ∇2

δs(Z; δ) = 0.
Enumerating Z = {1, . . . , 2d}, the i’th entry in the shift gradient becomes

(SG1)i = E
[
1Z=i cov

(
ℓ, T (W )

∣∣∣∣Z)] = P(Z = i) cov(ℓ, T (W )|Z = i),

and the i, j’th entry of the shift Hessian becomes 0 if j ̸= i and else

(SG2)i,i = E
[
1Z=i covδ

(
ℓ, ε⊗2

T |Z

∣∣∣∣Z)] = P(Z = i) cov(ℓ, ε⊗2
T |Z |Z = i).

Consider for example the case where both W and Z are binary. Then T (W ) = W
and s(Z; δ) = 1Z=0δ0 + 1Z=1δ1 and s(1) = (1Z=0, 1Z=1) and s(2) = 0. The conditional
covariance can be evaluated by residualizing only one of the variables, E[cov(A,B|C)] =
E[A(B−E[B|C])], so we can chose to residualize onlyW (for SG1) or (W−E[W |Z = i])2

(for SG2). Finally, if we let pi = P(W = 1|Z = i) and use that E[W |Z = i] = pi and
E[(W − pi)2|Z = i] = var(W |Z = i) = pi(1− pi), we get that

SG1 = E
[(
p0 · ℓ · (W − p0)
p1 · ℓ · (W − p1)

)]
,

and

SG2 = E
[(
ℓp0
{
(W − p0)2 − p0(1− p0)

}
0

0 ℓp1
{
(W − p1)2 − p1(1− p1)

})] .
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Figure B.3.: We plot the mean and confidence intervals of Êδ,Taylor and Êδ,IS when the
shifted loss as in the lab test ordering example Example 1. (Left) We
consider a shift in the logits of ordering lab tests from η(Z) to η(Z) + δ0.
(Right) We consider a shift in the mean of Age. In the observed distribution
η = µ/σ = 0 and we shift to a mean of η = δ.

B.3.5. Comparison of variance of reweighting and Taylor estimates in the
lab ordering example

To compare the bias and variance of the Taylor and the importance sampling estimates of
the shifted loss, we simulate data from the following, artificial, generative model (which
is the same generative model that was used to construct the loss landscape in Fig. 1
(right)).

Age ∼ N (0, 0.52)

P(Disease = 1|Age) = sigmoid(0.5 ·Age− 1)

P(Order = 1|Disease, Age) = sigmoid(2 ·Disease + 0.5 ·Age− 1)

Test Result|Order = 1,Disease ∼ N (−0.5 + Disease, 1)

where if Order = 0, the test result is a placeholder value of zero.

We consider either a shift in the logits of ordering lab tests ηδ(Z) = η(Z)+δ (Fig. B.3
left) or a mean shift in the Gaussian distribution of age ηδ = δ (Fig. B.3 right). For each
δ in a grid, we compute estimates Êδ,IS and Êδ,Taylor of the loss under a shift of size δ,
We repeat this n = 1,000 times, and plot the mean and point-wise prediction intervals
(the pointwise 0.05 and 0.95 quantiles) for Êδ,IS and Êδ,Taylor. We also simulate ground
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truth data from Pδ, to compute the actual loss under shift.

For shifts in the binary variable (Fig. B.3, left), both estimates capture the loss well
for small shifts, but as δ gets larger, the quadratic approximation increasingly deviates
from the true mean; the importance sampling estimate remains very close to the ground
truth shifted loss. On the contrary, for the Gaussian mean shift (Fig. B.3, right), the
importance sampling weights are ill-behaved, and the variance dramatically increases as
δ becomes larger. This supports the intuition, that while importance sampling tends
to work well for binary variables, the variance can be large in continuous distributions,
such as the Gaussian distribution.

B.3.6. Comparison of theoretical variance of reweighting and Taylor
estimates

Example B.6. To demonstrate the reduction in variance obtained from using the Taylor
approximation of the importance weights, we consider a simple example where P(X) ∼
N (0, 1) and Pδ(X) ∼ N (δ, 1) and we wish to estimate Eδ[ℓ(X)] for some loss function
ℓ(X).3 The importance sampling weights are given by wδ(X) = exp(−1

2δ
2 +X · δ), and

the shift gradient and Hessians are SG1 = E[ℓ(X)X] and SG2 = E[ℓ(X)X2].

Therefore samples X1, . . . , Xn from P consider the estimators, for any loss function
ℓ(X), two estimators of Eδ[ℓ] are

µ̂IS =
1

n

n∑
i=1

wδ(Xi)ℓ(Xi) and µ̂Taylor =
1

n

n∑
i=1

ℓ(Xi) + δ · ℓ(Xi)Xi +
1
2δ

2ℓ(Xi)X
2
i ,

and the variances of the estimators are

var(µ̂IS) =
E[{ℓ(X + 2δ)}2]

n
exp(δ2)

var(µ̂Taylor) =
var
(
ℓ(X) + δXℓ(X) + 1

2δ
2X2ℓ(X)

)
n

.

The variance of µ̂Taylor grows like δ4 and the variance of µ̂IS grows exponentially fast
(unless E[{ℓ(X + 2δ)}2] also diminishes exponentially fast, which is generally not the
case), and so except for small δ, the variance of the importance sampling estimator
will be orders of magnitude larger than the variance of the estimator using the Taylor
approximation. While, µ̂IS is an unbiased estimator of Eδ[ℓ(X)] and µ̂Taylor is a biased,
the overall mean squared error will be smaller for the Taylor approximation, unless the
bias of the Taylor approximation also grows exponentially.

For the sake of analysis, consider the simple example ℓ(X) = X. In this case, the
Taylor estimate is unbiased because Eδ[X] = δ is a linear function of δ, so the quadratic

3In practice one would not use importance sampling estimation for such a simple shift, but use other
approaches, such as analytically work out an estimate of Eδ[ℓ].
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Figure B.4.: Median and quantiles of the error in predicting Eδ[ℓ] under a shift δ.

approximation is adequate. Further, the variances are given by

var(µ̂IS) =
exp(δ2)(1 + 4δ2)− δ2

n
and var(µ̂Taylor) =

1 + 5δ2 + 15
4 δ

4

n
.

In particular, the variance of the importance sampling estimate grows like exp(δ2) while
that of the Taylor estimate grows like δ4.

B.3.7. Comparison of variance of reweighting and Taylor estimates in a
simple synthetic example

In this experiment, we compare the variance of importance sampling and Taylor esti-
mates in a simple synthetic example. We simulate data from P where X ∈ R3 and
Y ∈ R1 depend either linearly or quadratically on W ∈ R3,

W ∼ N (0, Id3) and

(
X
Y

)
= (Id4−B)−1M(W + α(W ⊙W ) + ε),

where ⊙ refers to entrywise multiplication, ε ∼ N (0, Id4), α is either 0 (linear) or 1
2

(nonlinear) and

B :=


2 1 0 1
2 2 0 3
3 3 0 2
4 2 4 0

 and M :=


2 1 0
2 1 1
2 2 0
4 1 1

 .

On the simulated data from P, we then fit a linear predictor f(X) of Y , and consider a
shift in the mean ofW from P(W ) ∼ N (0, Id3) to Pδ(W ) ∼ N (δ, Id3), where δ = [s, s, s]⊤

for some shift strength s > 0. We then compute the shift gradient SG1 = cov(ℓ,W ) and
Hessian SG2 = cov(ℓ,WW⊤), and approximate Eδ[ℓ] by Êδ,Taylor (see (7)). In the linear
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data, the Taylor approximation is exact (see Appendix B.3.3), such that any prediction
error can be attributed to finite-sample fluctuation, whereas both model misspecification
and finite-sample fluctuation contribute to the error in the nonlinear setting.

Similarly, we estimate Eδ[ℓ] by importance sampling, Eδ[ℓ] = E[wδ(W )ℓ] ≈ 1
n

∑
wδ(W )ℓ,

where wδ(W ) = Pδ(W )
P(W ) = δ⊤W − 1

2δ
⊤δ, and compare this to ground truth data sampled

from Pδ; we do the same for an importance sampling estimator with weights ‘clipped’
at the 99% quantile.

We compare the predicted loss Eδ[ℓ] by actually simulating data from Pδ and evaluating
Eδ[ℓ] (where ℓ is still the model trained on data from P). We then compute the prediction
error, as the difference Eδ[ℓ]− Êδ,Taylor or Eδ[ℓ]− Êδ,IS.

For a number of different shift strengths s, we repeat this procedureM = 1,000 times,
and in Fig. B.4 we plot the median and a confidence interval defined by the 2.5 and the
97.5% quantiles of the prediction error.

In the linear case, bot the importance sampling and the Taylor approximation retains a
median error close to 0, with the variance of Êδ,IS being larger than Êδ,Taylor. The clipped
importance sampling estimate has a smaller variance than that of ordinary importance
sampling, though the median deviates further from 0, and the variance is not smaller
than that of the Taylor estimate.

In the non-linear cases, all three models underestimate the shifted loss. For Êδ,Taylor,
this happens because as the mean of W shift, the mean shift is amplified by the non-
linearity, such that the quadratic approximation of the loss is an underestimate. While
the variance of the clipped importance sampling is smaller than the variance of the
ordinary importance sampling estimate and comparable to the variance of the Taylor
estimate, this prediction is further from 0 than the Taylor estimate.

Since importance sampling methods are known to produce very large outliers, the use
of the median and quantiles, as opposed to the mean an confidence intervals based on
the standard deviation, is favouring importance sampling; the Taylor method looks even
more favourable if we instead plot the mean and standard deviations.

B.4. Limitations of worst-case conditional subpopulation shift
for defining plausible robustness sets

For the example in Section 4.1, we can contrast the type of shift we consider with
the worst-case (1−α)-conditional subpopulation shift considered by Subbaswamy et al.
[2021].

In this section, we will make the following points: First, worst-case conditional (1−α)-
subpopulation shifts can be too pessimistic, with even moderate values of α leading to
implausible conditional distributions. Second, we will argue that parametric robustness
sets enable more fine-grained control over the set of plausible shifts, leading to more
informative estimates of worst-case risk. Overall, we argue that the two approaches are
complementary, with different strengths.

Before we proceed, we define a conditional (1 − α) subpopulation shift. A (1 − α)
subpopulation shift in the conditional distribution P(O|Y ) is defined by a weighting
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function h : O × Y 7→ [0, 1], which has the property that E[h(O, Y )|Y ] = 1 − α for all
values of Y . This can be used to construct a worst-case objective, which measures the
worst-case loss under such a shift:

sup
h:{0,1}2 7→[0,1]

1

(1− α)E[h(O, Y )µ(O, Y )] (B.3)

s.t. E[h(O, Y )|Y = y] = 1− α, for y ∈ {0, 1}

where µ(O, Y ) := E[ℓ(Y, f)|O, Y ], for a predictor f and loss ℓ. This has the effect of
leaving the distribution P(Y ) untouched, while changing the conditional distribution
P(O|Y ). Throughout this section, we will use the same predictor f(O,L) described in
Section 4.1. The rest of this section is structured as follows:

In Appendix B.4.1, we derive the feasible set of conditional distributions P(O|Y )
implicitly considered by this objective in the simple generative model of Section 4.1,
which only involves variables O,L and Y . We do so by showing that (for discrete
O, Y ), maximizing (B.3) over h is equivalent to solving a linear program, where we
can characterize the constraints on h exactly, and translate them into constraints on
P(O = 1|Y = 1),P(O = 1|Y = 0). Here, we show that the resulting feasible set is
quite large, even for moderately large subpopulations. In particular, whenever (1−α) <
min{P(O = 1|Y = 0),P(O = 0|Y = 1)}, all conditional distributions are possible.

In Appendix B.4.2, we derive the value of h that maximizes (B.3), and show that,
as we vary α, the worst-case shift is always in the same “direction” probability space:
Healthy patients (Y = 0) are tested more, and sick patients (Y = 1) are tested less,
and for α < 0.27, the worst-case subpopulation shift is the (unrealistic) scenario where
healthy patients are always tested, and sick patients are never tested.

In Appendix B.4.3, we illustrate how this type of behavior can be avoided with our
approach. We first give a parameterized shift function s(Z; δ0, δ1) such that we can reach
any conditional distribution of P(O|Y ), for sufficiently large values of δ0, δ1. We then
demonstrate how an iterative process might play out with domain experts, where we
consider different constraint sets until we find a constraint set that contains plausible
shifts.

B.4.1. Feasible conditional subpopulations in Section 4.1

For the simple example in Section 4.1, we give a self-contained derivation of the feasible
region for 1− α conditional subpopulations in the distribution P(O|Y ). The advantage
of working with this simple generative model is that the conditional distribution can be
described by only two numbers, P(O = 1|Y = 1) and P(O = 1|Y = 0), and so we can
visualize the resulting conditional distribution.

Because O, Y are discrete, the worst-case subpopulation in this simple example can
be solved via a linear program, for a fixed α. We have an optimization problem in
two variables, since h11P(O = 1|Y = 1) + h01P(O = 0|Y = 1) = 1 − α, and likewise
for h10, h00, where hij = h(O = i, Y = j). We also have the constraint that each
variable must live in [0, 1]. Meanwhile, the loss to maximize is a linear function, as an
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expectation of E[h(O, Y )µ(O, Y )], where µ(O, Y ) takes on four possible values, where
we write pij = P(O = i|Y = j), and µij similarly.

max
h∈R2×2

h00µ00 + h10µ10 + h01µ01 + h11µ11 (B.4)

s.t., h11p11 + h01(1− p11) = 1− α
h10p10 + h00(1− p10) = 1− α
0 ≤ hij ≤ 1, ∀i, j

This linear program is simple enough to solve by hand, and we will do here to build
intuition. In this section, we begin by characterizing the feasible region of h, and then
translating that into a feasible region for Ph(O|Y ), which we can plot in two dimensions.

Characterizing feasible values of h: Here, we focus on characterizing the feasible
set that h can lie in, as a way of characterizing the feasible set for P(O|Y ). From the
constraints, we can write that

h11p11 + h01(1− p11) = 1− α =⇒ h01 =
1− α− h11p11

1− p11
h10p10 + h00(1− p10) = 1− α =⇒ h00 =

1− α− h10p10
1− p10

There are only two constraints on h11: Those directly imposed by 0 ≤ h11 ≤ 1, and those
which are imposed by the equality constraint with h01 and the fact that 0 ≤ h01 ≤ 1.
For the latter, with some algebra we can write that

0 ≤ 1− α− h11p11
1− p11

≤ 1 =⇒ p11 − α
p11

≤ h11 ≤
1− α
p11

So that the constraints on h11 become

max

{
0,
p11 − α
p11

}
≤ h11 ≤ min

{
1,

1− α
p11

}
(B.5)

which recovers our intuition that if α = 0, it must be that h11 = 1 and h01 = 1.

Bounding feasible values of Ph(O|Y ) The parameters h can be understood as
importance weights whose expectation is 1 − α instead of 1, that reweight P to a new
distribution Ph when appropriately normalized. To compute conditional probabilities
Ph(O = i|Y = j) under the new distribution, we can compute the expectation of
1 {O = i, Y = j}, and normalize by P(Y = j).

Ph(O = i, Y = j) =
1

1− αE[h(O, Y )1 {O = i, Y = j}] = hij
1− αP(O = i, Y = j)

=⇒ Ph(O = i|Y = j) =
hij

1− αP(O = i|Y = j)

where the implication follows from the fact that Ph(Y ) = P(Y ). This allows us to
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translate bounds on hij directly into bounds on Ph(O = i|Y = j). Making use of (B.5),
we can write that

max

{
0,
p11 − α
p11

}
· p11
1− α ≤ Ph(O = 1|Y = 1) ≤ min

{
1,

1− α
p11

}
· p11
1− α

which yields

max

{
0,
p11 − α
1− α

}
≤ Ph(O = 1|Y = 1) ≤ min

{
p11

1− α, 1
}

We can apply a similar logic to h10, which is identical except for p11 being replaced
by p10, yielding

max

{
0,
p10 − α
1− α

}
≤ Ph(O = 1|Y = 0) ≤ min

{
p10

1− α, 1
}

Visualizing the constraint set: Figure B.5 gives feasible conditional distributions
under different values of α. We can observe that when α = 0.8, all conditional dis-
tributions are feasible, including the distribution where P(O = 1|Y = 0) = 1 and
P(O = 1|Y = 1) = 0, representing the case where every healthy patient gets tested,
and no sick patients receive a test. This is generally possible in this example whenever
1− α < min{P(O = 1|Y = 0),P(O = 0|Y = 1)}, as it permits the following subpopula-
tion function, which yields this result.

h(O = o, Y = y) =
1− α

P(O = o|Y = y)
1 {o ̸= y}

B.4.2. Worst-case conditional subpopulation shifts

Given the constraint set which describes the feasible set of conditional distributions
under the (1 − α)-conditional subpopulation objective, we can derive the worst-case
conditional distribution. Here, since Y,O are both binary, the expected loss under a new
distribution Ph is given by

Eh[ℓ] =
∑
y,o

µ(o, y)Ph(O = o|Y = y)P(Y = y)

which we can write in terms of the constrained probabilities Ph as follows, where q11 :=
Ph(O = 1|Y = 1) and q10 := Ph(O = 1|Y = 0)

P(Y = 1)[µ(1, 1)q11 + µ(0, 1)(1− q11)] + P(Y = 0)[µ(1, 0)q10 + µ(0, 0)(1− q10)]

which also gives us a direction in which the loss is maximized, since the loss is given by

Eh[ℓ] = q11 · P(Y = 1) · (µ(1, 1)− µ(0, 1)) + q10P(Y = 0) · (µ(1, 0)− µ(0, 0)) + C (B.6)
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Figure B.5.: Feasible sets, worst-case directions, and worst-case solutions for a (1 − α)
subpopulation shift in the conditional distribution P(O|Y ) for differing val-
ues of α. Worst-case directions are computed using (B.6), as unit-norm
vectors re-scaled to fit in the plot, and the colored dots give the worst-case
solutions, all of which lie in the lower-right corner of the constraint set. The
original conditional distribution is given by the black dot.

where C = P(Y = 1)µ(0, 1) + P(Y = 0)µ(0, 0). Since q11, q10 can be optimized in-
dependently, the worst-case solution is given by taking the maximum value of q11 if
µ(1, 1) > µ(0, 1) and the minimum value if µ(1, 1) < µ(0, 1), and likewise taking
the maximum value of q10 if µ(1, 0) > µ(0, 0), and the minimum value otherwise. If
µ(1, 1) = µ(0, 1) or µ(1, 0) = µ(0, 0), then the objective is unaffected by the choice of q11
or q10 respectively.
Visualizing the worst-case conditional distributions The worst-case directions

on the probability scale, and the resulting worst-case conditional distribution obtained by
solving (B.4), are given in Fig. B.5. The red line arrow visualizes the direction from (B.6),
and the worst-case distribution is the point which is furthest in this direction in the
constraint set. Here, we are finding the worst-case accuracy of the same predictive model
f(O,L) described in Section 4.1. We can observe that the worst-case loss is obtained
by seeking to reverse the correlation between Y and O, decreasing the probability that
a sick patient (Y = 1) gets a test ordered, and increasing the probability that a healthy
patient (Y = 0) gets a test ordered.

B.4.3. Iterating with domain experts to define realistic parametric
robustness sets

In the previous sections, we saw that (1 − α)-conditional subpopulation shift does not
always produce realistic worst-case conditional distributions. Moreover, given only the
parameter α, there is limited ability to control the nature of the resulting worst-case
conditional distribution P(O|Y ). In this section, we contrast this limitation with the
finer-grained control enabled by considering parametric robustness sets. In particular,
we argue that parametric shifts allow for end-users to customize robustness sets, ruling
out shifts that represent unrealistic changes.
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Figure B.6.: Each figure shows the set of conditional probability distributions (“CPDs”)
P(O|Y ) that can be represented by a shift of (δ0, δ1) ∈ ∆0×∆1, along with
the worst-case distribution (given by the red star) for the 0–1 loss. In this ex-
ample, the expected loss under Pδ is a linear function of the two conditional
probabilities (see Appendix B.4.2), where the loss increases along the red
arrow. (a) captures (nearly) all conditional probability distributions, with
∆0,∆1 unconstrained. (b) shows a set of CPDs with ∆0 unconstrained, and
∆1 = [−1, 1], with resulting worst-case accuracy of 50%. (c) shows a more
restrictive set of shifts, where ∆0 = [−1.05, 1.05],∆1 = {0}. The worst-case
accuracy in this case is 69%, comparable to the accuracy of 75% on the
original distribution.

In practice, we imagine that the following iterative process could be a useful tool in
model development: (i) Define a class of shifts with an appropriate s(Z; δ) and con-
straint set ∆, and search for a worst-case shift δ. (ii) Present to domain experts both
the worst-case shift δ (in terms of summary statistics of the resulting distribution Pδ)
alongside the associated estimate of the worst-case loss. For instance, report both the
worst-case loss, as well as corresponding rate of testing among sick and healthy patients.
(iii) If the shift itself is unrealistic, further the constrain parameter set or shift function,
and repeat the process.

In Fig. B.6, we give a concrete example. Each sub-figure shows the set of conditional
probability distributions P(O|Y ) that can be represented by a shift of (δ0, δ1) ∈ ∆0×∆1,
along with the worst-case conditional distribution (given by the red star) for the 0–1 loss.
Recall that we use the shift function s(Y ; δ) = δ0 + δ1Y , where δ0 controls a general
increase or decrease in testing, while δ1 controls a shift in the testing rate for only sick
patients, and allows for a different change in the testing rate of sick vs healthy patients.

Iteration 1: We might imagine starting with a relatively unconstrained robustness
set, where δ0 and δ1 are unconstrained. Figure B.6a shows the resulting robustness set
of conditional distributions, and finds a shift with with a worst-case accuracy of 16%,
compared to accuracy of 75% on the original distribution. However, the corresponding δ-
perturbation Pδ is unrealistic, where all healthy patients (and no sick patients) are tested.
Luckily, because we have parameterized the shift, we can constrain the robustness set

227



B. Appendix to Evaluating Robustness to Dataset Shift via Parametric Robustness Sets

to exclude these types of results.

Iteration 2: A benefit of our approach is that we can refine the robustness set, with
this type of feedback in mind. In Fig. B.6b, we restrict the support of δ1 to [−1, 1], to
avoid large changes in the relative probability of testing sick vs healthy patients. Here,
the resulting worst-case accuracy is much higher (50%), but the corresponding worst-
case conditional probability distribution is perhaps still unrealistic: No patients undergo
laboratory testing at all!

Iteration 3: Finally, we consider only shifts that affect all patients in a similar way,
generally raising or lowering the conditional probability of a lab test, represented by
shifts in δ0 alone. This may correspond to a more realistic scenario where (in a new
hospital) laboratory testing use is more or less constrained. Additionally, we can specify
that this shift should decrease testing rates by at most 20%, which translates directly into
a lower-bound on δ0.

4 Figure B.6c shows the resulting robustness set of distributions,
where the worst-case shift may seem more plausible: A reduction in testing rates for both
populations. The worst-case accuracy in this case is 69%, comparable to the accuracy
of 75% on the original distribution.

B.5. CelebA: Experiment details and additional results

In this section, we give details of the computer vision experiment in Section 4.2.

B.5.1. Details for the experiment

Creating the training distribution To construct the training distribution P, we use the
conditional GAN in Kocaoglu et al. [2018]. In particular, we use their CausalBEGAN,
which is an extends the boundary equillibrium GAN [Berthelot et al., 2017] to also take
attributes as inputs. We train the CausalBEGAN using the default hyper parameters
in the implementation provided by Kocaoglu et al. [2018], available under the MIT
license. The model is trained for 250,000 iterations on a single GPU, taking around
approximately 16 hours.

Similar to Kocaoglu et al. [2018], we use the CelebA dataset [Liu et al., 2015], which
contains approximately 200,000 images of faces, along 40 binary attributes. Of those,
we use the following attributes 9 attributes {Male, Young, Wearing Lipstick, Bald, Mus-
tache, Eyeglasses, Narrow Eyes, Smiling, Mouth Slightly Open}. The CelebA dataset
is licensed for non-commercial research purposes only, and consists of publicly available
images of celebrities, which were collected from the internet. Although the data set has
been widely used, Liu et al. [2015] do not make any mention of consent by the individ-
uals to have the images included in the data set, and it is therefore likely that those
celebrities did not provide consent.

4In Proposition B.1, we prove that for binary random variables with a shift η(Z) + δ, there is a one-
to-one mapping between a new marginal distribution (P(O = 1) in this case) and the value of the
parameter δ.
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Age Gender

Eyeglasses Bald Mustache SmilingWearing Lipstick

Mouth Slightly Open Narrow Eyes

Figure B.7.: Causal graph over attributes, where lightning bolts indicate changes in
mechanisms. Also displayed in Fig. 4.

Training distribution over attributes For the training distribution, we simulate binary
attributes according to the structural causal model in Fig. 4 (for convenience also copied
to Fig. B.7), where the model parameters are

P(Young = 1) = σ(0.0)

P(Male = 1) = σ(0.0)

P(Eyeglasses = 1|Young) = σ(0.0− 0.4 ·Young)
P(Bald = 1|Young, Male) = σ(−3.0 + 3.5 ·Male−Young)

P(Mustache = 1|Young, Male) = σ(−2.5 + 2.5 ·Male−Young)

P(Smiling = 1|Young, Male) = σ(0.25− 0.5 ·Male + 0.5 ·Young)
P(Wearing Lipstick = 1|Young, Male) = σ(3.0− 5.0 ·Male− 0.5 ·Young)

P(Mouth Slightly Open = 1|Young, Smiling) = σ(−1.0 + 0.5 ·Young + Smiling)

P(Narrow Eyes = 1|Male, Young, Smiling) = σ(−0.5 + 0.3 ·Male + 0.2 ·Young + Smiling),

where each variable either takes the value 0 or 1 and σ indicates the sigmoid. To generate
data, we first simulate attributes from this binary Bayesian network, which we then pass
as inputs to the GAN to simulate images (in addition to the random noise used by
the GANs to simulate different images). In Figs. B.8 and B.9, we plot examples of the
training images that were generated.

Predictive model We simulate a training set of 12,000 attribute-image pairs, and a
validation set of 2,000 pairs. The training set is used to fit a classifier f , and the
validation set is used for model selection. To build a classifier f , we use the ResNet-50
[He et al., 2016] model implemented in the python package torch. We add a final fully
connected layer to adapt the ResNet model to a binary classification task, and fine-tune
the model on the training data by (only) learning the weights and bias of the final layer.
The model is trained using the negative log-likelihood criterion and an ADAM optimizer.
The model is trained for 25 epochs and we select the model which after a full epoch had
the best validation set performance. Given the learned model f , we simulate a separate
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validation dataset of n = 1,000 samples, and make model predictions f(X). We then
compute the model accuracy as ℓ = 1 {f(X) = Y }, which is the input to computing the
shift gradient and Hessian.

Estimation of shifted loss We apply the methods in Section 3.2 to estimate the worst-
case shift to the distribution P (given by the binary probabilities above). For each condi-
tional P(Wi|PA(Wi)), we consider a shift ηδi(PA(Wi)) = η(PA(Wi))+

∑
z∈Z 1 {PA(Wi) = z} δi,

which corresponds to arbitrarily shifting the conditional distribution (see Appendix B.3.4).
For example, for Wi = Bald, where η(Young, Male) = −3.0 + 3.5 ·Male − 1.0 · Young,
the shift would be

ηδBald
(Young, Male) = η(Young, Male) +


δBald,0, Young = 0,Male = 0

δBald,1, Young = 0,Male = 1

δBald,2, Young = 1,Male = 0

δBald,3, Young = 1,Male = 1.

(B.7)

For each Wi, this means that δi is R2|PA(Wi)| , and in total δ = (δ1, . . . , δ8) ∈ R31 (we do
not consider shifts in the distribution of gender, since this is the label we are predicting).

We compute the shift gradient and Hessian using Theorem 1. In particular, since Wi

is binary, the sufficient statistic is T (Wi) =Wi, so the shift gradients and Hessians given
by Appendix B.3.4. See Appendix B.3.1 for a detailed walk through of computing the
shift gradient and Hessian from a sample.

For any given δ, the shifted distribution of Wi is given by Pδ(Wi = 1|PA(Wi)) =
σ(ηδi), where ηδi is computed similar to (B.7), and σ is the sigmoid function. Then the
importance sampling weights are given by

wδ =

8∏
i=1

σ(ηδi(PA(Wi)))

σ(η(PA(Wi))
.

Using these, for any δ, we can estimate Eδ[ℓ] by Êδ,IS and Êδ,Taylor using (6) and (8),
respectively.

B.5.2. Full table of worst-case shift in Section 4.2

In Section 4.2, we find the worst-case shift δ, and display the 5 largest components. In
Table B.2, we display the full vector δ ∈ R31, sorted by absolute value of the size of the
component.

B.5.3. Sample images from training distribution in Section 4.2

In Fig. B.8, for the 4 attributes {Bald, Smiling, Wearing Lipstick, Male}, we display
images generated from the training distribution P (i.e. by the GAN) with that particular
attribute. In Fig. B.9 we show 10 randomly drawn images from the training distribution
P as well as the test distribution Pδ corresponding to the worst-case δ found in Section 4.2.
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Conditional δi

Bald — Male= 0, Young= 0 0.899
Bald — Male= 1, Young= 1 -0.800
Bald — Male= 1, Young= 0 -0.680
Wearing Lipstick — Male= 0, Young= 1 -0.618
Wearing Lipstick — Male= 0, Young= 0 -0.543
Eyeglasses — Young= 1 0.507
Mustache — Male= 1, Young= 0 -0.476
Mustache — Male= 0, Young= 0 0.449
Mustache — Male= 1, Young= 1 -0.415
Eyeglasses — Young= 0 0.399
Smiling — Male= 0, Young= 0 -0.261
Wearing Lipstick — Male= 1, Young= 0 0.205
Narrow Eyes — Male= 0, Smiling= 0, Young= 0 0.192
Mouth Slightly Open — Smiling= 1, Young= 1 0.191
Smiling — Male= 1, Young= 0 0.183
Narrow Eyes — Male= 1, Smiling= 1, Young= 1 0.179
Mouth Slightly Open — Smiling= 0, Young= 1 -0.153
Mustache — Male= 0, Young= 1 0.133
Bald — Male= 0, Young= 1 0.128
Mouth Slightly Open — Smiling= 1, Young= 0 -0.127
Narrow Eyes — Male= 0, Smiling= 1, Young= 0 -0.125
Wearing Lipstick — Male= 1, Young= 1 0.123
Narrow Eyes — Male= 1, Smiling= 1, Young= 0 -0.117
Narrow Eyes — Male= 0, Smiling= 0, Young= 1 0.106
Young — No parents 0.092
Narrow Eyes — Male= 0, Smiling= 1, Young= 1 0.057
Narrow Eyes — Male= 1, Smiling= 0, Young= 1 -0.050
Narrow Eyes — Male= 1, Smiling= 0, Young= 0 -0.039
Mouth Slightly Open — Smiling= 0, Young= 0 0.028
Smiling — Male= 1, Young= 1 0.028
Smiling — Male= 0, Young= 1 0.017

Table B.2.: Worst case shift in the δ ∈ R31 identified by the Taylor approach in Sec-
tion 4.2. Each entry corresponds to a shift in a conditional distribution
given a particular outcome, and the squared sum of the entries equal λ2 = 4.
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Figure B.8.: Examples of images from the training distribution P. Each of the four
groups (Bald, Smiling, Wearing Lipstick, Male) show training images who
have that characteristic.

Figure B.9.: Examples of images from the training distribution P and the test distribu-
tion Pδ that is characterized by the worst-case shift δ, see Fig. 4.

B.6. Proofs

B.6.1. Proof of Proposition 1

Proposition 1. For any Pδ(V),P(V) that satisfy Definition 4, supp(P) = supp(Pδ) and
the density ratio wδ := Pδ/P is given by

wδ(V) = exp

( m∑
i=1

si(Zi; δi)
⊤Ti(Wi)

)
exp

(
m∑
i=1

h(ηi(Zi))− h(η(Zi) + si(Zi; δi))

)
.
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Proof. By Definition 4 and Assumption 1, we have that

Pδ(V) =
m∏
i=1

Pδi(Wi|Zi)
∏

Vj∈V\W

P(Vj |Uj)

P(V) =
m∏
i=1

P(Wi|Zi)
∏

Vj∈V\W

P(Vj |Uj).

It follows that the supports of Pδ and P are the same: Since the exponential family
density is given by the base measure gi(Wi) times a exponential term (which is always
strictly positive), and since the terms

∏
Vj∈V\W P(Vj |Uj) are shared between Pδ and P,

their supports agree.

To get the density ratio, we take the ratio of Pδ(V) and P(V), and the terms Vj ∈
V \W cancel:

wδ(V) =
Pδ(V)

P(V)

=

m∏
i=1

Pδi(Wi|Zi)
P(Wi|Zi)

.

By Definition 4 and Assumption 1, each Pδi(Wi|Zi) is a δi-perturbation around the CEF
distribuition P(Wi|Zi), so plugging in the exponential family densities, we get

wδ(V) =

m∏
i=1

g(Wi) exp

(
{ηi(Zi) + si(Zi; δi)}⊤Ti(Wi)− hi(ηi(Zi) + si(Zi; δi))

)
g(Wi) exp

(
ηi(Zi)⊤Ti(Wi)− hi(ηi(Zi))

)
=

m∏
i=1

exp

(
si(Zi; δi)Ti(Wi)− hi(ηi(Zi) + si(Zi; δi)) + hi(ηi(Zi))

)

= exp

( m∑
i=1

si(Zi; δi)Ti(Wi)

)
exp

( m∑
i=1

hi(ηi(Zi))− hi(ηi(Zi) + si(Zi; δi))

)
.

B.6.2. Proof of Theorem 1

Theorem 1 (Shift gradients and Hessians as covariances). Assume that Pδ,P satisfy
Definition 4, with intervened variables W = {W1, . . . ,Wm} and shift functions si(Zi; δi),
where δ = (δ1, . . . , δm). Then the shift gradient is given by SG1 = (SG1

1, . . . ,SG
1
m) ∈ Rdδ

where

SG1
i = E

[
D⊤
i,1 cov

(
ℓ, Ti(Wi)

∣∣∣∣Zi)] ,
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and the shift Hessian is a matrix of size (dδ×dδ), where the (i, j)th block of size dδi×dδj
equals

{SG2}i,j =

E
[
D⊤
i,1 cov

(
ℓ, εTi|Ziε

⊤
Ti|Zi |Zi

)
Di,1

]
− E

[
ℓ ·D⊤

i,2εT |Z

]
i = j

cov(ℓ, D⊤
i,1εTi|Ziε

⊤
Tj |ZjDj,1) i ̸= j,

where Di,k := ∇kδisi(Zi; δi)|δ=0, is the gradient of the shift function for k = 1, and the
Hessian for k = 2. Here, Ti(Wi) is the sufficient statistic of P(Wi|Zi) and εTi|Zi :=
Ti(Wi)− E[T (Wi)|Zi].

Proof. For simplicity throughout, we use h
(1)
i to denote the gradient of the log-partition

function ∇hi(·) with respect to the arguments, which is a column vector of length dTi ,

and we use h
(2)
i to denote the Hessian ∇2hi(·), which is a matrix of size dTi × dTi . We

also use ηδi(zi) as short-hand for ηi(zi) + si(zi; δi).

Shift Gradient: By Definition 4, the probability density / mass function Pδ factorizes
as follows, where δ = (δ1, . . . , δm)

Pδ(V) =

 ∏
Wi∈W

Pδi(Wi|Zi)

 ∏
Vi∈V\W

P(Vi|PA(Vi))

 , (B.8)

and the gradient with respect to shift parameters δi is given by

∇δipδ(v) = pδ(v)∇δi log pδ(v) = pδ(v)∇δi log pδi(wi|zi)

where the last equality follows from additivity of the log-likelihood in the conditionals,
the factorization above, and the fact that δi only enters into the given conditional dis-
tribution. Given the assumed form of log pδi(wi|zi) given in Definition 3, we can observe
that

∇δi log pδi(wi|zi) = ∇δi
[
(ηi(zi) + si(zi; δi))

⊤Ti(wi)− hi(η(zi) + si(zi; δi))
]

= (∇δisi(zi; δi))⊤Ti(wi)− (∇δisi(zi; δi))⊤∇hi(η(zi) + si(zi; δi))

= (∇δisi(zi; δi))⊤(Ti(wi)− h
(1)
i (ηδi(zi))) (B.9)

where ∇δisi(zi; δi) ∈ RdTi×dδi , and ∇hi(η(zi) + si(zi; δi)) is the gradient of the function
hi : RdTi → R, which is a column vector of length dTi . It follows from known proper-
ties of the log-partition function [Wainwright and Jordan, 2008, Proposition 3.1], that
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h
(1)
i (ηδi(zi)) = Eδ[Ti(Wi)|zi]. This gives us that

∇δiEδ[ℓ] = Eδ
[
ℓ · (∇δisi(Zi; δi))⊤(Ti(Wi)− Eδ[Ti(Wi)|Zi])

]
= Eδ

[
(∇δisi(Zi; δi))⊤Eδ[ℓ · (Ti(Wi)− Eδ[Ti(Wi)|Zi])|Zi]

]
= Eδ

[
(∇δisi(Zi; δi))⊤ covδ(ℓ, Ti(Wi)|Zi)

]
,

where the second equality follows from the tower property and Zi-measurability of
∇δisi(Zi; δi), and the final equality follows from the definition of the conditional co-
variance. This expression, evaluated at δ = 0, gives us the desired result, that

SG1
i := ∇δiEδ[ℓ]

∣∣
δ=0

= E
[
D⊤
i,1 cov(ℓ, Ti(Wi)|Zi)

]
,

where Di,1 = ∇δisi(Zi, δi)|δ=0. The result follows from the definition that gradients are
taken entry-wise, giving SG1 = (SG1

1, . . . ,SG
1
m) ∈ Rdδ1+···dδm .

Shift Hessian (Diagonal): For the shift Hessian, we first compute the diagonal
entries of ∇2

δEδ[ℓ]|δ=0, which are blocks of size Rdδi×dδi . We begin by computing the
Hessian of the likelihood.

∇2
δi
pδ(v)

= ∇δi
(
pδ(v)∇δi log pδi(wi|zi)

)
= pδ(v)

(
(∇δi log pδi(wi|zi))⊗2 +∇2

δi
log pδi(wi|zi)

)
= pδ(v)

(
{∇δisi(zi; δi)}⊤

(
Ti(wi)− h(1)i (ηδi(zi))

)⊗2{∇δisi(zi; δi)}

− {∇2
δi
si(zi; δi)}⊤(Ti(wi)− h(1)i (ηδi(zi)))

− {∇δisi(zi; δi)}⊤h
(2)
i (ηδi(zi)){∇δisi(zi; δi)}

)
,

= pδ(v)

(
{∇δisi(zi; δi)}⊤

((
Ti(wi)− h(1)i (ηδi(zi))

)⊗2 − h(2)i (ηδi(zi))

)
{∇δisi(zi; δi)}

− {∇2
δi
si(zi; δi)}⊤

(
Ti(wi)− h(1)i (ηδi(zi))

))
where we use the notation v⊗2 := vv⊤, and we note that ∇2

δi
s(zi; δi) is a tensor of size

dTi×dδi×dδi , and {∇2
δi
si(zi; δi)}⊤h(1)i (·) is a matrix of size dδi×dδi , where the (m,n)’th

entry is { ∂
∂δim

∂
∂δin

s(zi; δi)}⊤h(1)(·).

Now, using the fact that h(1)(ηδi(z)) = Eδ[Ti(Wi)|zi] and h(2)(ηδi(zi)) = varδ[Ti(Wi)|zi]
[Wainwright and Jordan, 2008, Proposition 3.1], and the definition εTi|Zi = Ti(Wi) −
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Eδ[Ti(Wi)|Zi], we obtain

∇2
δi
Eδ[ℓ]

= Eδ
[
ℓ · {∇δisi(Zi; δi)}⊤

(
ε⊗2
T |Zi − varδ(Ti(Wi)|Zi)

)
{∇δisi(Zi; δi)}

]
− Eδ

[
ℓ · {∇2

δi
si(Zi; δi)}⊤εTi|Zi

]
= Eδ

[
{∇δisi(Zi; δi)}⊤ covδ

(
ℓ, ε⊗2

Ti|Zi

∣∣∣∣Zi) {∇δisi(Zi; δi)}]
− Eδ

[
ℓ · {∇2

δi
si(Zi; δi)}⊤εTi|Zi

]
which gives the desired result when we evaluate at δ = 0.

Shift Hessian (Off-Diagonal) For i ̸= j, we have that

∇δi∇δjpδ(v)
= ∇δi(pδ(v)∇δj log pδj (wj |zj))
= ∇δi(pδ(v)∇δj log pδj (wj |zj))
= pδ(v)∇δi log pδi(wi|zi)

(
∇δj log pδj (wj |zj)

)⊤
= pδ(v)

(
{∇δisi(zi; δi)}⊤(Ti(wi)− h

(1)
i (ηδi(zi)))

)
(
{∇δjsj(zj ; δj)}⊤(Tj(wj)− h

(1)
j (ηδj (zj)))

)⊤

where the third line follows from the fact that ∇δi(∇δj log pδj (wj |zj)) = 0, and the
last line follows from the derivation of the gradient of the log-likelihood in (B.9). We

can again use the fact that h
(1)
i (ηδi(Zi)) = Eδ[Ti(Wi)|Zi] and the shorthand εTi|Zi :=

Ti(Wi)− Eδ[Ti(Wi)|Zi] to write that

∇δi∇δjEδ[ℓ]

= Eδ
[
ℓ · {∇δisi(zi; δi)}⊤

(
(Ti(wi)− h(1)i (ηδi(zi)))

)
(
(Tj(wj)− h(1)j (ηδj (zj)))

)⊤
{∇δjsj(zj ; δj)}

]
and when we evaluate this expression at δ = 0, we obtain

∇δi∇δjEδ[ℓ]
∣∣
δ=0

= E
[
ℓ ·D⊤

i,1εTi|Zi(εTj |Zj )
⊤Dj,1

]
= cov(ℓ,D⊤

i,1εTi|Ziε
⊤
Tj |ZjDj,1).

Where the last equality follows because E[D⊤
i,1εTi|Ziε

⊤
Tj |ZjDj,i] = 0. To see this, note that

one of Wi,Wj must be a non-descendant of the other, and we will assume without loss
of generality that Wj is a non-descendant of Wi in the causal graph consistent with the
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factorization given in (B.8), which implies that Zj (the parents of Wj in the underlying
graph) are also non-descendants of Wi.Thus, Wi ⊥⊥ (Wj , Zj)|Zi, because (Wj , Zj) are
both non-descendants of Wi. Then, observe that Di,1 is a function of Zi, and εTi|Zi
is a variable with zero-mean conditioned on Zi. Thus, E[D⊤

i,1εTi|Zi |Zi] = 0, for all Zi.

Moreover, given Zi, we have that D⊤
i,1εTi|Zi is independent of D

⊤
j,1εTj |Zj . As a result, we

can write that

E[D⊤
i,1εTi|Ziε

⊤
Tj |ZjDj,1] = E[E[D⊤

i,1εTi|Ziε
⊤
Tj |ZjDj,1|Zi]]

= E[E[D⊤
i,1εTi|Zi |Zi]E[ε⊤Tj |ZjDj,1|Zi]]

= E[0 · E[ε⊤Tj |ZjDj,1|Zi]]
= 0

B.6.3. Proof of Corollary 1

Corollary 1 (Simple shift in a single variable). Assume the setup of Theorem 1, re-
stricted to a shift in a single variable W , and that s(Z; δ) = δ. Then D1 = 1, D2 = 0,
and

SG1 = E
[
cov

(
ℓ, T (W )

∣∣∣∣Z)] and SG2 = E
[
cov

(
ℓ, εT |Zε

⊤
T |Z

∣∣∣∣Z)] ,
where T (W ) is the sufficient statistic of W and εT |Z := T (W )− E[T (W )|Z].

Proof. We have ∇δs(Z; δ) = ∇δδ = 1 and ∇2
δs(Z; δ) = ∇2

δδ = 0. The result now follows
from Theorem 1.

B.6.4. Proof of Theorem 2

Theorem 2. Assume that Pδ,P satisfy the conditions of Theorem 1, with a shift in a
single variable W , where s(Z; δ) = δ. Let Eδ,Taylor be the population Taylor estimate
( (7)) and let σ(M) denote the largest absolute value of the eigenvalues of a matrix M .
Then∣∣∣∣Eδ[ℓ]− Eδ,Taylor∣∣∣∣ ≤ 1

2 sup
t∈[0,1]

σ

(
covt·δ(ℓ, εt·δ,T |Zε

⊤
t·δ,T |Z)− cov(ℓ, ε0,T |Zε

⊤
0,T |Z)

)
· ∥δ∥2,

where T (W ) is the sufficient statistic of W |Z and εt·δ,T |Z = T (W |Z)− Et·δ[T (W |Z)].

Proof. The expectation is continuous and twice-differentiable with respect to δ, because
of the smoothness of the exponential family in the parameter, the fact that the shift
function s is twice-differentiable, and because the support does not change. Thus, ap-
plying Taylors remainder theorem to the function t 7→ Et·δ[ℓ], it follows that there exist
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a t0 ∈ [0, 1] such that

E1·δ[ℓ]− E0·δ[ℓ]−
(

d
dtEt·δ[ℓ]

)∣∣∣∣
t=0

=

(
1
2

d2

d2t
Et·δ[ℓ]

)∣∣∣∣
t=t0

. (B.10)

We have

(
d
dtEt·δ[ℓ]

)∣∣∣∣
t=0

= SG1 and by the same arguments (see the proof of Theo-

rem 1), it follows that

(
1
2

d2

d2t
Et·δ[ℓ]

)∣∣∣∣
t=t0

= δ⊤ covt0·δ(ℓ, ε
⊗2
t0·δ,T |Z)δ. Plugging this in, and

subtracting 1
2δ

⊤ SG2 δ on both sides of (B.10) yields∣∣∣∣Eδ[ℓ]− Eδ,Taylor∣∣∣∣ = 1
2

∣∣∣∣δ⊤( covt0·δ(ℓ, ε
⊗2
t0·δ,T |Z)− cov(ℓ, ε⊗2

0,T |Z)

)
δ

∣∣∣∣
≤ 1

2 sup
t∈[0,1]

∣∣∣∣δ⊤( covt·δ(ℓ, ε
⊗2
t·δ,T |Z)− cov(ℓ, ε⊗2

0,T |Z)

)
δ

∣∣∣∣.
Let K :=

(
covt·δ(ℓ, ε

⊗2
t·δ,T |Z) − cov(ℓ, ε⊗2

0,T |Z)

)
. Since K is symmetric and real valued,

it is diagonalizeable, K = U⊤ΛU for an orthonormal matrix U and diagonal matrix
Λ = diag(α1, . . . , αd). We then have

|δ⊤Kδ| = |δ⊤U⊤ΛUδ|
= |(Λ1/2Uδ)⊤(Λ1/2Uδ)|
= ∥Λ1/2Uδ∥22
≤ ∥Λ1/2∥22∥Uδ∥22
= σ(K)∥δ∥22,

where Λ1/2 = diag(
√
α1, . . . ,

√
αd), ∥ · ∥2 denotes the supremum-norm when applied to

matrices and the 2-norm when applied to vectors and ∥Uδ∥2 = ∥δ∥2 because ∥Uδ∥22 =
δ⊤U⊤Uδ = δ⊤δ = ∥δ∥22, using orthonormality of U . Plugging in this inequality, we get
that ∣∣∣∣Eδ[ℓ]− Eδ,Taylor∣∣∣∣ ≤ 1

2 sup
t∈[0,1]

σ

(
covt·δ(ℓ, ε

⊗2
t·δ,T |Z)− cov(ℓ, ε⊗2

0,T |Z)

)
∥δ∥22,

which concludes the proof.

B.6.5. Proof of Proposition B.1

Proposition B.1. Consider a binary random variable W with conditional distribution

Pδ(W = 1|Z) = σ(η(Z) + δ)

for an arbitrary measurable function η(Z) whose range is the extended real numbers
η(Z) ∈ R ∪ {+∞,−∞}. Let p+ := P(η(Z) = +∞), p− := P(η(Z) = −∞), and assume
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that p+ + p− < 1. Then, the marginal probability

pδ = Pδ(W = 1)

is a strictly monotonically increasing function of δ ∈ R whose range is (p+, 1− p−),

Proof. Let F denote the event that η(Z) is finite (i.e., η(Z) ̸∈ {−∞,+∞}). Under F ,
the conditional probability function σ(η(Z) + δ) is a strictly monotonically increasing
function of δ, and if η(Z) ∈ {−∞,+∞}, then the conditional probability is a constant
function of δ (zero or one, respectively). Hence, we can write that

Pδ(W = 1) = Pδ(W = 1|F )(1− p+ − p−) + p+

and by assumption, 1−p+−p− > 0. The marginal probability Pδ(W = 1|F ) is a strictly
monotonically increasing function of δ, with a limit of 1 as δ → ∞, and a limit of 0 as
δ → −∞. As a result, it is bounded in (p+, 1− p−).

B.6.6. Proof of Lemma B.1

Lemma B.1. Suppose A ∼ N (µ,Σ) and that (X,Y,H) are generated according to (B.2).
For γ ∈ RdX define ℓ := (Y − γ⊤X)2. Then there exist vγ , uµ,γ ∈ RdA such that for all
shifts δ ∈ RdA:

Eδ[ℓ] = E[ℓ] + δ⊤uµ,γ +
1
2δ

⊤vγv
⊤
γ δ,

where Eδ corresponds to taking the mean in the distribution where A ∼ N (µ + δ,Σ).
Further uµ,γ = 0 if µ = 0.

Proof. It follows from (B.2) that one can write (X⊤, Y ⊤, H⊤) = (1 − B)−1(MA + ε),
and for a given γ, there exist bγ , κγ such that Y − γ⊤X = b⊤γ A + κ⊤γ ε [Rothenhäusler
et al., 2021]. In Pδ, we can write A = µ+ δ + εA, where εA ∼ N (0,Σ), for all values of
µ and δ. Plugging this in yields

Eδ[(Y − γ⊤X)2] = Eδ[(b⊤γ A+ κ⊤γ ε)
2]

= Eδ[(b⊤γ (µ+ δ + εA) + κ⊤γ ε)
2]

= E[(b⊤γ (µ+ εA) + κ⊤ε)2] + (2b⊤γ µ)δ
⊤bγ + δ⊤bγb

⊤
γ δ

= E[(Y − γ⊤X)2] + (2b⊤γ µ)δ
⊤bγ + δ⊤bγb

⊤
γ δ.

where we do not put a subscript on the expectation in the third line because it is taking
expectations over εA and ε, both which do not depend on the choice of µ and δ. The
statement of the lemma follows by letting uµ,γ = 2b⊤γ µ and vγ =

√
2bγ .
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B.6.7. Proof of Proposition B.2

Proposition B.2. Suppose A ∼ N (µ,Σ) and that (X,Y,H) are generated according to
(B.2). Then the shift gradient and Hessian are given by

SG1 = cov(ℓ,Σ−1A) and SG2 = cov(ℓ,Σ−1(A− µ)(A− µ)⊤Σ−⊤)

and the loss under a mean shift of δ in A is given by

Eδ[ℓ] = E[ℓ] + δ⊤ SG1+1
2δ

⊤ SG2 δ,

where ℓ := (Y − γ⊤X)2 and Eδ corresponds to taking the mean in the distribution where
A ∼ N (µ+ δ,Σ).

Proof. Similar to Lemma B.1, we rewrite Y − γ⊤X = b⊤γ A + κ⊤ε, and by rewriting
A = µ+ δ + εA, where εA ∼ N (0,Σ), we obtain

Eδ[(Y − γ⊤X)2] = E(b⊤γ (µ+ εA) + κ⊤ε)2 (B.11)

+ (2b⊤γ µ)δ
⊤b (B.12)

+ δ⊤bb⊤δ. (B.13)

We recognize that (B.11) equals E(Y − γ⊤X)2. Similarly, we now show that (B.12)
and (B.13) match the shift gradients (multiplied appropriately with δ).

First, we assume that Σ = Id. Since A is a Gaussian with (known) mean Id, the
sufficient statistic is T (A) = A. Hence, according to Theorem 1, we can compute the
shift gradient as

SG1 = cov(A, ℓ) = cov(A, (Y − γ⊤X)2) = cov(A, (b⊤γ A)
2).

We can calculate the i’th entrance of this vector as:

SG1 = cov(Ai, (b
⊤
γ A)

2) = cov(Ai − µi, (b⊤γ A)2))
= cov(Ai − µi, b2γ,iA2

i + 2
∑
j ̸=i

bibjAiAj)

= b2γ,i cov(Ai − µi, A2
i ) + 2bγ,i

∑
j ̸=i

bj cov(Ai − µi, AiAj),

where in the first equality we use that subtracting a constant doesn’t change the covari-
ance, and we use independence of Ai from AjAj′ when i /∈ {j, j′}. Using the assumption
that Ai has unit variance, we now get that

cov(Ai − µi, A2
i ) = E[A3

i − µiA2
i ] = (µ3i + 3µi)− µi(µ2i + 1) = 2µi

cov(Ai − µi, AiAj) = E[A2
i −Aiµi]E[Aj ] = (µ2i + 1− µ2i )µj = µj .
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By plugging in, we obtain

SG1(µi) = 2b2γ,iµi + 2bγ,i
∑
j ̸=i

bjµj

= 2bγ,ib
⊤
γ µ.

Since this was element-wise, we obtain that the full vector is SG1 = 2bγb
⊤
γ µ, which, when

multiplied with δ yields (B.12).

We compute SG2 similarly. The diagonal entries are given by

SG2
i,i = cov((Ai − µi)2, (b⊤γ A)2)

= cov((Ai − µi)2, b2γ,iA2
i + bγ,i

∑
j ̸=i

bγ,jAiAj)

= b2γ,i cov((Ai − µi)2, A2
i ) + bγ,i

∑
j ̸=i

bγ,j cov((Ai − µi)2, AiAj).

Because Σ = Id, the second through fourth moments of Ai are given by E[A2
i ] = µ2i + 1,

E[A3
i ] = µ3i + 3µi and E[A4

i ] = µ4i + 6µ2i + 3. Using this, we get

cov((Ai − µi)2, A2
i ) = E[A4

i − 2µiA
3
i + µ2iA

2
i ]− E[(Ai − µi)2]E[A2

i ]

= (µ4i + 6µ2i + 3)− 2µi(µ
3
i + 3µi) + µ2i (µ

2
i + 1)− 1 · (µ2i + 1)

= 2,

and for j ̸= i:

cov((Ai − µi)2, AiAj) = cov((Ai − µi)2, (Ai − µi)Aj) + cov((Ai − µi)2, µiAj)
= cov((Ai − µi)2, (Ai − µi)Aj)
= E[(Ai − µi)3]E[Aj ]− E[(Ai − µi)2]E[(Ai − µi)]E[Aj ]
= 0− 0,

using linearity of the covariance, that Ai ⊥⊥ Aj and that the first and third moments are
zero for a centered Gaussian Ai − µi. Plugging this in, we get that the diagonal entries
are given by

SG2
i,i = 2b2γ,i.

We can compute the off-diagonal entries similarly. For i ̸= j, we have:

SG2
i,j = cov

(
(Ai − µi)(Aj − µj), (B.14)

b2γ,iA
2
i + b2γ,jA

2
j + 2bγ,ibγ,jAiAj + 2

∑
v/∈{i,j}

bγ,ibγ,vAiAv + bγ,jbγ,vAjAv

)
.
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Using the independence of Ai and Aj , we have

cov((Ai − µi)(Aj − µj), A2
i )

= E[A2
i (Ai − µi)]E[Aj − µj ]︸ ︷︷ ︸

=0

−E[Ai − µi]︸ ︷︷ ︸
=0

E[Aj − µj ]E[A2
i ]

= 0,

and similarly cov((Ai − µi)(Aj − µj), A2
j ) = 0. Using the same reasoning, for v /∈ {i, j}

cov((Ai − µi)(Aj − µj), AiAv)
= E[(Ai − µi)Ai]E[Aj − µj ]E[Av]− E[(Ai − µi)]E[Ai]E[Aj − µj ]E[Av]
= 0,

and the same for cov((Ai − µi)(Aj − µj), AjAv). Finally, we have

cov((Ai − µi)(Aj − µj), AiAj)
= E[(Ai − µi)Ai]E[(Aj − µj)Aj ]− E[(Ai − µi)]E[Ai]E[(Aj − µj)]E[Aj ]
= E[(Ai − µi)Ai]E[(Aj − µj)Aj ]
= E[A2

i − µiAi]E[A2
j − µjAj ]

= [(µ2i + 1)− µ2i ][[(µ2j + 1)− µ2j ]]
= 1.

Plugging into (B.14), we get that

SG2
i,j = 2bγ,ibγ,j ,

and hence for both diagonal and off-diagonal entries, SG2
i,j = 2bγ,ibγ,j , implying that

SG2 = 2bγb
⊤
γ .

In particular 1
2δ

⊤ SG2 δ matches (B.13).

Finally, we consider the case Σ ̸= Id. Let Σ−1/2 be the ‘square-root’ of Σ−1, such that
Σ−1/2Σ−⊤/2 (where the latter denotes (Σ−1/2)⊤.5

The sufficient statistics for the mean in a multivariate Gaussian distribution with
known variance is given by T (A) = Σ−1A. We then have

SG1 = cov(Σ−1A, (b⊤γ A)
2)

= Σ−1/2 cov(Σ−1/2A, ((Σ1/2bγ)
⊤Σ−1/2A)2)

= Σ−1/2 covµ̃(Ã, (b̃
⊤
γ Ã)

2),

where Ã = Σ−1/2A =∼ N (µ̃, Id), µ̃ = Σ−1/2µ and b̃γ = Σ1/2bγ . In particular, since Ã

5Formally, if Σ−1 = UΛU⊤ where Λ = diag(λ1, . . . , λdA), define Σ−1/2 := U diag(
√
λ1, . . . ,

√
λdA).
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has unit variance, we can use the above derivations to obtain

SG1 = 2Σ−1/2(b̃γ b̃
⊤
γ µ̃) = 2bγb

⊤
γ µ.

In particular, the first shift gradient is the when Σ ̸= Id as when Σ = Id. Similarly,

SG2 = cov(Σ−1(A− µ)(A− µ)⊤Σ−⊤, (b⊤γ A)
2)

= cov(Σ−1/2Σ−1/2(A− µ)(A− µ)⊤Σ−⊤/2Σ−⊤/2, (Σ1/2bγ)
⊤Σ−1/2A)2)

= Σ−1/2 covµ̃((Ã− µ̃)(Ã− µ̃)⊤, (b̃⊤γ Ã)2)Σ−⊤/2

= Σ−1/22b̃γ b̃
⊤
γ Σ

−⊤/2

= 2bγb
⊤
γ .

Hence, also when Σ ̸= Id, the terms of (B.12) and (B.13) matches the expression given
by SG1 and SG2. This concludes the proof.
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Invariance: Linear Models with Proxies

Supplementary Materials

The supplementary materials are organized as follows

• (Appendix C.1): First, we give a simple 1D example to build intuition for the
theoretical results.

• (Appendix C.2): In the context of Section 3.1, we give a concrete example to
demonstrate the non-identifiability of ΩW , defined in (12). We focus on the simple
case when W is one dimensional, and the matrix ΩW reduces to a single number
ρW := β2W /(β

2
W + σ2W ), indicating the signal-to-variance ratio of W . We give an

example of an observed distribution for which ρW is not identified, and moreover,
the optimal predictor with respect to the robustness set CA(λ) is not identified
(see Fig. C.2).

• (Appendix C.3): Proofs for results stated in the main paper.

• (Appendix C.4): Additional results (and proofs) for Proxy Targeted Anchor Re-
gression (PTAR) and Cross-Proxy TAR, deferred from the main paper.

• (Appendix C.5): Details for implementation of all experiments

• (Appendix C.6): Additional synthetic experimental results

C.1. An example for building intuition

To illustrate the problem, consider the following setup, where we observe A,X, Y at
training time, and wish to learn a predictor ŷ = α + γx that will generalize to a new
environment where Pte(A) ̸= Ptr(A).

A

YX

Figure C.1.: Simple example where X,Y,A ∈ R.
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Suppose that our data is generated under Ptr as follows

A = εA, εA ∼ N (0, 1)

X = A+ εX , εX ∼ N (0, σ2X)

Y = A+ εY , εY ∼ N (0, σ2Y ),

where εA, εX , εY are jointly independent. This simple example demonstrates a few con-
cepts:

• Assuming σ2X > 0, the conditional expectation E[Y | X] changes as the distribution
of A changes.

• We can write the residuals Y − Ŷ as a linear function in A and the noise variables.
This holds, even if the errors are non-Gaussian.

• The test population MSE is a convex function of α, γ.

In particular, we will see that the parameters α, γ trade off between the variance of A
and εX : There exists an invariant solution, where α = 0, γ∗ = 1, such that the MSE is
completely independent of A, but this is only optimal in the setting where var(A)→∞.

Conditional Expectation depends on A Starting with the assumption that A,X, Y
are multivariate Gaussian, we can write down the optimal predictor in the target envi-

ronment, supposing that at test time Pte(A)
(d)
= N (µA, σ

2
A).

Ete[Y | X = x] = Ete[Y ] +
covte(X,Y )

varte(X)
· (x− Ete[X])

= µA +
σ2A

σ2A + σ2X︸ ︷︷ ︸
γ

·(x− µA)

= µA(1− γ) + γx,

where if εX = 0, then γ = 1 and the optimal solution does not depend on the parameters
of A, and is given by

Ete[Y |X = x] = x. (C.1)

However, for any σ2x > 0, the optimal solution under Pte(A) depends on µA, σ2A.

Rewriting residuals Regardless of whether the Gaussian assumption holds, for a given
predictor Ŷ = α+γx, we can write the error Y − Ŷ as a function that is linear in A and
the noise variables

Y − Ŷ = (A+ εY )− γ(A+ εX)− α
= A(1− γ) + (εY − γεX − α).
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Optimizing for a known target distribution The mean squared error E[(Y − Ŷ )
2
] can

be written as a function of α, γ, and the mean and variance of A under Pte(A). Here,
all expectations are taken with respect to the test distribution.

Ete[(y − ŷ)2] = Ete[Ete[(y − ŷ)2 | A]]
= α2 − 2αEte[A](1− γ)
+ (1− γ)2Ete[A2] + γ2σ2x + σ2y . (C.2)

By first-order conditions, this expression is minimized by

α∗ = µA(1− γ∗) γ∗ =
σ2A

σ2A + σ2X
. (C.3)

When σ2A → ∞, then γ∗ → 1 from (C.3). This is intuitive, because in (C.2), γ = 1
renders the MSE functionally independent of the distribution of A.

Optimizing for a worst-case distribution (C.3) shows the optimal solution under a
known target distribution, if µA, σ

2
A were known in advance. However, a similar intuition

applies to the case where Pte(A) is unknown, but we expect it to lie in a particular class.
Consider interventions of the form do(A := ν), where we constrain ν to lie in the set of
random variables C(λ) := {ν : E[ν2] ≤ λ}. In this case, our worst-case loss is given by

sup
ν∈C(λ)

Eν [(Y − Ŷ )
2
]

= sup
ν∈C(λ)

(1− γ)
[
−2αE[ν] + (1− γ)E[ν2]

]
+ α2 + γ2σ2X + σ2Y ,

where the last line does not depend on ν. We observe that α∗ = 0, by analyzing two
cases. First, if γ = 1, then the first term is eliminated, and the only term that depends
on α is α2. Second, if γ ̸= 1, then (1− γ)2 > 0, the first term is partially maximized
when E[ν2] = λ, and if α ̸= 0, then the expression can be made even larger by choosing
a deterministic ν = ±

√
λ (instead of e.g., a random ν ∼ N (0, λ2)), depending on the

sign of α(1−γ). From this (and the presence of the α2 term in the second line) it follows
that α∗ = 0, in this case as well. When α = 0, the supremum is obtained by any random
or deterministic ν such that E[ν2] = λ.

With α∗ = 0 and taking E[ν2] = λ in the supremum, this expression simplifies to

sup
ν∈C(λ)

Eν [(Y − Ŷ )
2
]

= (1− γ)2λ+ γ2σ2X + σ2Y .
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Figure C.2.: (a) SCM parameters that all give rise to the same observational distribution,
and observe that (b) the parameter γAR(A) (as if A were observed) can
diverge substantially from the solution γPAR(W ), when a single proxy is
available. λ = 5 for this example.

Differentiating with respect to γ, we obtain

γ∗ =
λ

σ2X + λ
.

Here, λ trades off accuracy and stability; As λ → ∞, we recover the solution where
γ∗ = 1, but for situations where σ2X is large and λ is bounded, we are better off choosing
γ∗ < 1.

C.2. Example: Non-identifiability of ΩW

Overview In the context of Section 3.1, we give a concrete example to demonstrate
the non-identifiability of ΩW , defined in (12). We focus on the simple case when W
is one dimensional, and the matrix ΩW reduces to a single number ρW := β2W /(β

2
W +

σ2W ), indicating the signal-to-variance ratio of W . We give an example of an observed
distribution for which ρW is not identified, and moreover, the optimal predictor with
respect to the robustness set CA(λ) is not identified (see Fig. C.2).

Setup If (X,Y,W ) ∈ R3 is distributed multivariate normal with zero mean, then their
covariance matrix fully determines the observed distribution. Let that covariance matrix
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be denoted by Σ(X,Y,W ) ∈ R3×3, which gives us six observed moments of the distribution

Σ(X,Y,W ) :=

 E[X2] · ·
E[XY ] E[Y 2] ·
E[WX] E[WY ] E[W 2]

 ,

where we only show the lower triangular portion, since the matrix is symmetric. Suppose
that we knew that this observed distribution was generated by the following SCM, but
that we do not know the values for the parameters (βW , βX , βY , α, σ

2
W , σ

2
X , σ

2
Y )

A := εA εA ∼ N (0, 1)

W := βWA+ εW εW ∼ N (0, σ2W )

X := βXA+ εX εX ∼ N (0, σ2X)

Y := αX + βYA+ εY εY ∼ N (0, σ2Y ),

where εA, εW , εX , εY are jointly independent. We can attempt to identify the parameters
using the following relationships implied by the SCM, and matching these to the moments
that we observe

E[WX] = βWβX

E[XY ] = βY βX + αE[X2]

E[WY ] = βW (βY + αβX)

E[W 2] = β2W + σ2W

E[X2] = β2X + σ2X

E[Y 2] = α2E[X2] + 2αβY βX + β2Y + σ2Y

However, as we will see, this does not identify the parameters. In particular, there is a
set of parameterizations which all give rise to the same observed distribution, and which
imply different values of the signal-to-variance ratio ρW := β2W /(β

2
W + σ2W ).

A class of observationally equivalent SCMs Let θ := (βW , βX , βY , α, σ
2
W , σ

2
X , σ

2
Y ) ∈

R7 be the parameters of the SCM, and let Σ = f(θ) be the covariance matrix over
(X,Y,W ) implied by these parameters.

For any covariance matrix Σ, there exists a subset C ⊂ [0, 1] such that for any ρW ∈ C,
we can write the parameters as a function of ρW , such that f(θ(ρW )) = Σ. The set
C is constrained by the observed moments: In particular, as we show below, ρW ≥
corr(W,X)2 due to the constraint that σ2X ≥ 0, and the condition that σ2Y ≥ 0 also
imposes a lower bound. In particular, for the covariance matrix below, we demonstrate
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numerically that [0.06, 1] ⊂ C.

Σ(X,Y,W ) :=

9 3 1
3 9 2
1 2 9

 .

We now give a strategy for constructing θ(ρW ), given a desired ρW (including checking
the constraint that this ρW ∈ C). Suppose that W and X are positively correlated, as
in this example. Fixing some ρW ∈ [0, 1], we start by writing βW , σW as functions of
ρW , where

βW :=
√
E[W 2]ρW

σ2W := E[W 2](1− ρW ).

The first constraint, that σ2X ≥ 0, can be captured as follows. Let ρX := β2X/E[X2].
Observe that

√
ρXρW = corr(W,X). This implies a lower bound on ρW , given by

ρW ≥ corr(W,X)2, since ρX ≤ 1 due to σ2X ≥ 0. This also implies that ρX is determined
uniquely by ρW , and is given by ρX = corr(W,X)2/ρW . From this we can write

βX :=
√

E[X2]ρX

σ2X := E[X2](1− ρX).

These choices for (βW , σ
2
W , βX , σ

2
X) match the observed moments E[X2],E[W 2],E[WX].

Then the rest of the parameters can be found as follows, where βW , βX are fixed as above

βY :=
1

βW (1− ρX)

(
E[WY ]− E[XY ]E[WX]

E[X2]

)
α :=

E[XY ]− βY βX
E[X2]

σ2Y := E[Y 2]− β2Y − 2αβY βX − α2E[X2]

where all of these are functions of ρW , in that βW , βX are functions of ρW . It remains
to verify that for a given choice of ρW , we satisfy the constraint that σ2Y ≥ 0. For
simplicity, we check this constraint computationally in the context of Example 1, for a
range of values of ρW , and we give the set of observationally-equivalent parameters in
Fig. C.2a, where valid values of ρW range over [0.06, 1].

Next we show that the Proxy Anchor Regression estimator, γPAR(W ), differs from the
Anchor Regression estimator, γAR(A), and more so when ρW becomes small. This is
shown in Fig. C.2b, for λ = 5, and we give the relevant computations here.
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Solution to PAR(W ) If we have a single proxy, then we can write down the optimiza-
tion problem (10) as

min
γ

E[(Y − γX)2] + λE[(Y − γX)W ]2E[W 2]
−1

=min
γ

E[Y 2]− 2γE[Y X] + γ2E[X2]

+ λ(E[YW ]− γE[XW ])2E[W 2]
−1
,

from which we obtain the optimal solution

γPAR(W ) =
E[Y X]E[W 2] + λE[YW ]

E[X2]E[W 2] + λE[XW ]
.

Solution to AR(A) First, we can write the residual as

Y − Ŷ = Y − γX
= αX + βYA+ εY − γβXA− γεX
= α(βXA+ εX) + βYA+ εY − γβXA− γεX
= A((α− γ)βX + βY ) + (α− γ)εX + εY ,

such that the expected squared error is given by

Edo(A:=ν)(Y − Ŷ )
2

= ((α− γ)βX + βY )
2E[ν2] + (α− γ)2σ2X + σ2Y , (C.4)

and when ν ∈ {ν : E[ν2] ≤ (1 + λ)}, taking the supremum involves replacing E[ν2] with
(1 + λ). Optimizing (C.4) with respect to γ, we obtain

∂

∂γ

[
((α− γ)βX + βY )

2(1 + λ) + (α− γ)2σ2X + σ2Y

]
= −2βX(αβX − γβX + βY )(1 + λ)− 2(α− γ)σ2X ,

which implies that

0 = βX(αβX − γβX + βY )(1 + λ) + (α− γ)σ2X
= (αβ2X + βXβY )(1 + λ)− γβ2X(1 + λ) + ασ2X − γσ2X ,

so that the optimal choice of γ is given by

γAR(A) =
(αβ2X + βXβY )(1 + λ) + ασ2X

β2X(1 + λ) + σ2X
.

If λ = −1, this recovers the causal effect of X on Y , and if λ→∞, this recovers a set of
coefficients that are invariant to variation in A, as can be seen by plugging the resulting
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coefficient γ = α+ βY /βX into (C.4).

C.3. Proofs

C.3.1. Auxiliary results

First, we show that the proof of Theorem 1 of Rothenhäusler et al. [2021] can be decom-
posed into two parts, and use this observation to simplify the proof of our Theorem 1.
Proposition C.1 establishes that ℓPLS can be written as a quadratic form in the structural
parameters w⊤

γMA. Proposition C.2 is a straightforward generalization of the techniques
used in Rothenhäusler et al. [2021], and establishes that any regularization term that
can be written in this way naturally implies a robustness guarantee.

By Assumption 1, our SCM can be written in the following form, where ε ⊥⊥ A, and
all variables are mean-zero and have bounded covariance.XY

H

 = (Id−B)−1(MAA+ ε). (C.5)

In this context, we use the following notational shorthand,

wγ :=
(
(Id−B)−1

dX+1,· − γ⊤(Id−B)−1
1:dX ,·

)⊤
, (C.6)

such that we can write the residual as a function of both the exogenous noise ε and A
as

R(γ) := Y − γ⊤X = w⊤
γ (ε+MAA), (C.7)

under the training distribution. (This identity explains the valley in the loss landscape
displayed in Fig. 3: If dA ≥ 2, for any parameter γ, there exist an orthogonal intervention
direction ν ∈ (w⊤

γMA)
⊥, to which the loss is invariant.)

Proposition C.1. Under Assumption 1,

ℓPLS(X,Y,A; γ)

= w⊤
γMAE[AA⊤]M⊤

Awγ , (C.8)

where wγ is defined by (C.6). If additionally Assumption 2 holds then

ℓPLS(X,Y,W ; γ)

= w⊤
γMAE[AW⊤]E[WW⊤]

−1E[WA⊤]M⊤
Awγ . (C.9)
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Proof. The first statement follows from (6) and the observation that

E[R(γ)A⊤] = E[w⊤
γ (ε+MAA)A

⊤]

= w⊤
γ E[εA⊤] + w⊤

γMAE[AA⊤]

= w⊤
γMAE[AA⊤],

where we used ε ⊥⊥ A. Similarly

ℓPLS(X,Y,W ; γ)

= E[R(γ)W⊤]E[WW⊤]
−1E[WR(γ)⊤]

= E[w⊤
γ (ε+MAA)W

⊤]E[WW⊤]
−1E[WR(γ)⊤]

= w⊤
γMAE[AW⊤]E[WW⊤]

−1E[WA⊤]M⊤
Awγ ,

where the first equality follows from (6), and the final equality follows from the fact that
ε ⊥⊥W .

Proposition C.2. Under Assumption 1, for any λ and any real, symmetric Ω such that
0 ⪯ E[AA⊤] + λΩ, any loss function of the form

ℓ(γ, λ) := ℓLS(X,Y ; γ) + λw⊤
γMAΩM

⊤
Awγ , (C.10)

where wγ is defined by (C.6), is equal to the following worst-case loss under bounded
perturbations

ℓ(γ, λ) = sup
ν∈C(λ)

Edo(A:=ν)[(Y − γ⊤X)
2
],

where
C(λ) := {ν : E[νν⊤] ⪯ E[AA⊤] + λΩ}.

Proof. We have, making use of the fact that ε ⊥⊥ A, and E[ε] = 0

sup
ν∈C(λ)

Edo(A:=ν)
[
(Y − γ⊤X)

2
]

= sup
ν∈C(λ)

Edo(A:=ν)
[
(w⊤

γ (ε+MAν))
2
]

= E
[
(w⊤

γ ε)
2
]
+ sup
ν∈C(λ)

E[(w⊤
γMAν)

2
]

= E
[
(w⊤

γ ε)
2
]
+ sup
ν∈C(λ)

w⊤
γMAE[νν⊤]MA

⊤wγ

= E
[
(w⊤

γ ε)
2
]
+ w⊤

γMA(E[AA⊤] + λΩ)MA
⊤wγ

= E
[
(w⊤

γ ε)
2
]
+ w⊤

γMAE[AA⊤]MA
⊤wγ
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+ λw⊤
γMAΩMA

⊤wγ

= E
[
(w⊤

γ (ε+MAA))
2
]
+ λw⊤

γMAΩMA
⊤wγ

= ℓLS(X,Y ; γ) + λw⊤
γMAΩMA

⊤wγ

= ℓ(γ, λ),

where in the fifth line we used the definition of C(λ). The supremum is achievable even
if ν is a deterministic vector, since we can take ν := Sb√

b⊤Sb
where S := E[AA⊤] + λΩ

and b := MA
⊤wγ . Then the supremum value is achieved by ν, as νν⊤ = Sbb⊤S

b⊤Sb
and

b⊤νν⊤b = b⊤Sbb⊤Sb
b⊤Sb

= b⊤Sb. To show that νν⊤ ⪯ S, such that ν ∈ C(λ), we can take
any conformable vector x to see that

x⊤(S − νν⊤)x = x⊤Sx− x⊤Sbb⊤Sx

b⊤Sb

= ⟨x, x⟩ − ⟨x, b⟩
2

⟨b, b⟩
≥ 0,

where we use the fact that ⟨e, f⟩ := e⊤Sf defines an inner product, and we apply
Cauchy-Schwarz: ⟨x, x⟩⟨b, b⟩ ≥ ⟨x, b⟩2.

In the proofs for Section 3, we will occasionally make use of the following fact, which
we prove here to simplify exposition later on.

Proposition C.3. In the setting of a single proxy (i.e., under Assumptions 1 and 2)
let ΩW be defined as follows

ΩW := E[AW⊤]E[WW⊤]
−1E[WA⊤]. (C.11)

Then ΩW ⪯ E[AA⊤]. Furthermore, if E[εW ε⊤W ] is positive definite, then this inequality
is strict, that is, ΩW ≺ E[AA⊤].

Proof. Recall that E[AA⊤] and E[WW⊤] are invertible (and hence positive definite) by
assumption. The inequality ΩW ⪯ E[AA⊤] is equivalent to showing that S := E[AA⊤]−
E[AW⊤]E[WW⊤]

−1E[WA⊤] ⪰ 0. Observe that S is the Schur complement of the matrix

K := E

[(
A
W

)(
A
W

)⊤
]
. The matrix K is positive semi-definite (PSD) if and only

if E[AA⊤] is positive definite (true by assumption) and S is PSD (see Zhang [2006,
Theorem 1.12b]). Since K is PSD by construction, as the covariance matrix of A,W ,
this implies that S ⪰ 0.

Similarly, K is positive definite (PD) if and only if E[AA⊤] and S are both PD (see
Zhang [2006, Theorem 1.12a]). Under the condition that E[εW ε⊤W ] is full-rank, then K
is PD, and the second inequality follows.
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C.3.2. Proof of additional results

Proof of (9). It follows from Proposition C.1 that

ℓPLS(X,Y,A; γ) = w⊤
γMAΩAM

⊤
Awγ

ℓPLS(X,Y,W ; γ) = w⊤
γMAΩWM

⊤
Awγ ,

where ΩW := E[AW⊤]E[WW⊤]
−1E[WA⊤] and ΩA := E[AA⊤] are both full rank because

E[AW⊤] = E[AA⊤]βW and by assumptions that E[WW⊤],E[AA⊤] and βW are full rank.
Hence both ℓPLS(X,Y,A; γ) and ℓPLS(X,Y,W ; γ) are zero exactly when w⊤

γMA = 0.

C.3.3. Proof of main results

C.3.3.1. Section 3

Proof of Theorem 1. We use the fact that ε is mean-zero and independent of both A
and W . Recall that

ℓPAR(W ; γ, λ) = ℓLS(γ) + λℓPLS(W ; γ),

where we suppress the dependence on X,Y in the notation. Letting wγ be as defined in
(C.6), it follows from (C.9) that

ℓPLS(X,Y,W ; γ)

= w⊤
γMA E[AW⊤]E[WW⊤]

−1E[WA⊤]︸ ︷︷ ︸
ΩW

M⊤
Awγ .

The statement then follows from the application of Proposition C.2, and the fact that
ΩW ⪯ E[AA⊤] (by Proposition C.3), such that E[AA⊤] + λΩW ⪰ 0 for all λ ≥ −1.

Proof of Proposition 1. Recall that the guarantee regions are given by

CA(λ) = {ν : E[νν⊤] ⪯ E[AA⊤] + λE[AA⊤]}
CW (λ) = {ν : E[νν⊤] ⪯ E[AA⊤] + λΩW }
COLS = {ν : E[νν⊤] ⪯ E[AA⊤]},

where
ΩW = E[AW⊤]E[WW⊤]

−1E[WA⊤].

The fact that E[WW⊤]
−1 ≻ 0 implies ΩW ⪰ 0, and this implies that COLS ⊆ CW (λ) for

λ ≥ 0. Showing CW (λ) ⊂ CA(λ) amounts to showing that ΩW ≺ E[AA⊤], which holds
by Proposition C.3 when E[εW ε⊤W ] ≻ 0.

Next, we prove that CW is monotonically decreasing in the noise E[εW ε⊤W ], in the
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sense that if E[εW ε⊤W ] ⪯ E[ηW η⊤W ] then

Eη[AW⊤]Eη[WW⊤]
−1Eη[WA⊤]

⪯ Eε[AW⊤]Eε[WW⊤]
−1Eε[WA⊤],

where Eη is the expectation in the SCM where W := β⊤WA+ ηW (and similar for Eε).
Suppose that E[εW ε⊤W ] ⪯ E[ηW η⊤W ]. Then Eη[WW⊤]

−1 ⪯ Eε[WW⊤]
−1

, and since
Eη[AW⊤] = Eε[AW⊤], for any vector x ∈ RdA it holds that,

(Eη[WA⊤]x)
⊤Eη[WW⊤]

−1
(Eη[WA⊤]x)

≤ (Eε[WA⊤]x)
⊤Eε[WW⊤]

−1
(Eε[WA⊤]x).

This establishes the matrix inequality.
To conclude the proof, suppose that E[εW ε⊤W ] = 0, dA = dW and that βW has full

rank. It then follows that

ΩW = E[AW⊤]E[WW⊤]
−1E[WA⊤]

= E[AA⊤]βW (β⊤WE[AA⊤]βW )
−1
β⊤WE[AA⊤]

= E[AA⊤]βWβ
−1
W E[AA⊤]

−1
β⊤W

−1
β⊤WE[AA⊤]

= E[AA⊤],

such that CW (λ) = E[AA⊤] + λΩW = (1 + λ)E[AA⊤] = CA(λ).

Proof of Theorem 2. Let wγ be defined as in (C.6). We can write the population quantity
as follows, making use of the fact that ε, εZ , and εW are jointly independent, and that
all errors have zero mean.

ℓ×(W,Z; γ)

= E[(Y − γ⊤X)W⊤]E[ZW⊤]
−1E[Z(Y − γ⊤X)

⊤
]

= E[w⊤
γ (MAA+ ε)W⊤]E[ZW⊤]

−1

· E[Z(A⊤M⊤
A + ε⊤)wγ ]

= w⊤
γMAE[AW⊤]E[ZW⊤]

−1E[ZA⊤]M⊤
Awγ

= w⊤
γMAE[A(A⊤βW + ε⊤W )]

E[(β⊤ZA+ εZ)(A
⊤βW + ε⊤W )]

−1

E[(β⊤ZA+ εZ)A
⊤]M⊤

Awγ

= w⊤
γMAE[AA⊤]βW

(
β⊤ZE[AA⊤]βW

)−1

β⊤ZE[AA⊤]M⊤
Awγ

= w⊤
γMAE[AA⊤]βWβ

−1
W E[AA⊤]

−1
(β⊤Z )

−1
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β⊤ZE[AA⊤]M⊤
Awγ

= w⊤
γMAE[AA⊤]E[AA⊤]

−1E[AA⊤]M⊤
Awγ

= w⊤
γMAE[AA⊤]M⊤

Awγ

The result follows from Proposition C.1.

In the main text, we state that the xPAR(W,Z) objective is convex in γ and has a
closed form solution. We give the proof here:

Proposition C.4. Under Assumptions 1, 3 and 4, the loss in (14) is convex in γ, and
its minimizer is given by

γ∗×PAR :=
(
2E[XX⊤] + λ(L+ L⊤)

)−1

(
2E[XY ⊤] + λ(K1 +K2)

)
,

where we define

L := E[XW⊤]E[ZW⊤]−1E[ZX⊤],

K1 := E[XW⊤]E[ZW⊤]−1E[ZY ⊤]

K2 := E[XZ⊤]E[WZ⊤]−1E[WY ⊤].

Proof. By Theorem 2 and (7), ℓ×PAR(W,Z; γ, λ) = ℓAR(X,Y,A; γ, λ), and the latter is
convex in γ, since it is the sum ℓLS , which is convex, and λℓPLS(X,Y,A; γ), which is a
quadratic form by Proposition C.1 and hence convex.

Consequently optimal solution can be found by taking the gradient of ℓ×PAR(W,Z; γ, λ) =
ℓLS + λℓ× with respect to γ and equating it to 0. Letting D := E[ZW⊤]−1, we can dif-
ferentiate ℓ×PAR term wise, using (13) to rewrite ℓ×:

0 = 2γ⊤E[XX⊤]− 2E[Y X⊤]

− λE[YW⊤]DE[ZX⊤]

− λE[Y Z⊤]D⊤E[WX⊤]

+ λγ⊤(L+ L⊤),

where L := E[XW⊤]E[ZW⊤]−1E[ZX⊤]. Defining K1 := E[XW⊤]DE[ZY ⊤] and K2 :=
E[XZ⊤]D⊤E[WY ⊤], and rearranging, we obtain:

γ⊤(2E[XX⊤] + λ(L+ L⊤))

= 2E[Y X⊤] + λ(K⊤
1 +K⊤

2 ),

so by transposing and solving for γ, we get the expression from the statement.
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C.3.3.2. Section 4

Proof of Proposition 2. Let wγ be defined by (C.6) and for any γ let b⊤γ := w⊤
γMA. We

can write the loss as follows

Edo(A:=ν)[(Y − γ⊤X − α)
2
]

= E[(w⊤
γ (ε+MAν)− α)

2
]

= E[(w⊤
γ ε+ w⊤

γMAν − α)
2
]

ε⊥⊥ν
= E[(w⊤

γ ε)
2
] + E[(w⊤

γMAν − α)
2
]

= E[(w⊤
γ ε)

2
] + E[(w⊤

γMAA)
2
]

− E[(w⊤
γMAA)

2
] + E[(w⊤

γMAν − α)
2
]

= ℓLS(γ)− E[(b⊤γ A)
2
] + E[(b⊤γ ν − α)

2
]

= ℓLS(γ)− b⊤γ E[AA⊤]b⊤γ

+ b⊤γ E[νν⊤]bγ − 2E[b⊤γ ν]α+ α2

= ℓLS(γ) + b⊤γ

(
E[νν⊤]− E[AA⊤]

)
bγ

− 2E[b⊤γ ν]α+ α2

= ℓLS(γ)

+ b⊤γ

(
E[νν⊤]− E[AA⊤]

)
bγ − (b⊤γ E[ν])

2

+ (b⊤γ E[ν])
2 − 2E[b⊤γ ν]α+ α2

= ℓLS(γ) + b⊤γ (Σν − ΣA) bγ +
(
b⊤γ E[ν]− α

)2
,

where for any value of γ, that minimizing with respect to α yields α∗ = b⊤γ E[ν], where
b⊤γ = w⊤

γMA. Given that we can write the structural relationship Y −γ⊤X = b⊤γ A+w⊤
γ ε,

and knowing that E[ε] = 0 and that ε ⊥⊥ A, we know that b⊤γ A is the conditional
expectation of R(γ) given A.

In the main text, we note that (16) (the objective function ℓTAR) is convex in γ, α,
and has a closed form solution. We prove that result here.

Proposition C.5. Under Assumption 1, the minimizer γ∗TAR, α
∗
TAR of (16) is given by

γ∗ =
(
E[XX⊤] + E[XA⊤]ΩE[AX⊤]

)−1

(
E[XY ⊤] + E[XA⊤]ΩE[AY ⊤]

)
α∗ = b⊤γ∗µν ,

where Ω = E[AA⊤]
−1

(Σν − ΣA)E[AA⊤]
−1

, and b⊤γ is defined in (15).
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Proof of Proposition C.5. Let wγ be as defined in (C.6) and let b⊤γ := w⊤
γMA. Since

E[(Y − γ⊤X) | A] = E[w⊤
γ [MAA + ε] | A] = b⊤γ A, for any γ, b⊤γ is the linear regression

coefficient of (Y − γ⊤X) onto A, so we may write b⊤γ = E[(Y − γ⊤X)A⊤]E[AA⊤]−1.

Plugging in the optimal value α(γ) := b⊤γ µν , we obtain

ℓTAR(A;µν ,Σν , γ, α(γ))

= ℓLS(γ) + b⊤γ (Σν − ΣA) bγ

= ℓLS(γ) + E[(Y − γ⊤X)A⊤]ΩE[A(Y − γ⊤X)
⊤
]

This objective is convex in γ. The derivative of the loss with respect to γ is

−2(E[(Y − γ⊤X)X⊤] + E[(Y − γ⊤X)A⊤]ΩE[AX⊤]),

and equating to 0 and solving for γ yields

γ∗ =
(
E[XX⊤] + E[XA⊤]ΩE[AX⊤]

)−1

(
E[XY ⊤] + E[XA⊤]ΩE[AY ⊤]

)
.

We also claim in the main text that if ν is a constant, then the minimizer of (16) can
be found by performing OLS using both X,A as predictors, and then plugging in the
known value ν for A in prediction. We prove that result here.

Proof. If ν is a constant, then we can write the first two terms as follows, where wγ is
defined in (C.6).

ℓLS − b⊤γ ΣAbγ
= E[(w⊤

γ (MAA+ ε))
2
]− w⊤

γMAE[AA⊤]M⊤
A bγ

= E[(w⊤
γ (MAA+ ε))

2
]− E[(w⊤

γMAA)
2
]

= E[(w⊤
γ ε)

2
]

which is equivalent to the objective for the loss when Y,X are residualized with respect to
A (see Section 8.6 of Rothenhäusler et al. [2021]). By the Frish-Waugh-Lovell theorem
[Lovell, 1963, 2008], this yields the same coefficients γ for X as if we had performed
regression on X,A together. For this value of γ, b⊤γ is the coefficient that we would
obtain for A in the joint regression, because it equals the regression coefficients for
Y − γ⊤X on A.

Proof of Proposition 3. We use ν to denote the random shift. Let ν ∈ T (µν ,Σν), or
equivalently, let ν := µν+δ, where µν is fixed and δ satisfies the constraint that E[δδ⊤] ⪯
Σν , where Σν is a symmetric positive definite matrix. Let wγ be defined by (C.6) and
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for any γ let b⊤γ := w⊤
γMA. We can write the loss as follows

sup
ν∈T

Edo(A:=ν)[(Y − γ⊤X − α)
2
]

= sup
ν∈T

E[(w⊤
γ (ε+MAν)− α)

2
]

= sup
ν∈T

E[(w⊤
γ ε+ w⊤

γMAν − α)
2
]

= E[(w⊤
γ ε)

2
] + sup

ν∈T
E[(w⊤

γMAν − α)
2
]

= E[(w⊤
γ ε)

2
] + E[(w⊤

γMAA)
2
]

− E[(w⊤
γMAA)

2
] + sup

ν∈T
E[(w⊤

γMAν − α)
2
]

= ℓLS(γ)− E[(b⊤γ A)
2
] + sup

ν∈T
E[(b⊤γ ν − α)

2
],

where on the fourth line we used the fact that E[εν] = 0 by the fact that ν = µv + δ,
and δ is independent of ε. In the last line we replaced w⊤

γMA by b⊤γ . We can re-write
the last term as follows, where the supremum with respect to δ is constrained in the set
E[δδ⊤] ⪯ Σν

sup
ν∈T

E[(b⊤γ ν − α)
2
]

= sup
δ:E[δδ⊤]⪯Σν

E[(b⊤γ (δ + µν)− α)
2
]

= sup
δ

E[(b⊤γ δ + b⊤γ µν − α)
2
]

= sup
δ

E[(b⊤γ δ)
2
] + 2E[(b⊤γ δ)](b⊤γ µν − α) + E[(b⊤γ µν − α)

2
]

= b⊤γ Σνbγ + 2 ∥bγ∥Σν ·
∣∣∣b⊤γ µν − α∣∣∣+ (b⊤γ µν − α)

2
,

where ∥bγ∥Σν :=
√
b⊤γ Σνbγ is the norm induced by the inner product defined with respect

to Σν . In the last line, we have used the fact that the expression is maximized (subject

to the constraint) by the deterministic distribution δ∗ = ± Σνbγ√
b⊤γ Σνbγ

where the sign

depends on the sign of (b⊤γ µν − α): δ∗ satisfies b⊤γ δ∗δ
⊤
∗ bγ = b⊤γ Σνbγ , maximizing the

first term. Further, the second term is also maximized by δ∗, because if any other
random or deterministic δ satisfies |Eb⊤γ δ| > |b⊤γ δ∗|, it follows by Jensens inequality that

E[(b⊤γ δ)2] ≥ (E[(b⊤γ δ)])2 > (b⊤γ δ∗)
2 = b⊤γ Σνbγ , such that E[δδ⊤] ≻ Σν , so δ is not in the

set over which the supremum is taken. Consequently, the supremum is attained at δ∗,
because δ∗ maximizes both terms.
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Using this expression for the supremum, we can write the objective as

sup
ν∈T

Edo(A:=ν)[(Y − γ⊤X − α)
2
]

= ℓLS(γ) + b⊤γ (Σν − ΣA)bγ

+ 2 ∥bγ∥Σ ·
∣∣∣b⊤γ µν − α∣∣∣+ (b⊤γ µν − α)

2
,

for which the optimal choice of α∗ is given by b⊤γ µν , for any γ, and for this choice of α,

we can see that γ∗ = argminγ ℓLS(γ) + b⊤γ (Σν − ΣA) bγ .

C.4. Targeting with proxies

Definition C.1 (Proxy Targeted Anchor Regression). Let µ̃ := Edo(A:=ν)[W ] denote the

mean of W under intervention, and let Σ̃W := covdo(A:=ν)(W ) denote the covariance.
We define

ℓPTAR(W ; µ̃, Σ̃W , γ, α) (C.12)

= ℓLS(γ) + c⊤γ

(
Σ̃W − ΣW

)
cγ + (c⊤γ µ̃− α)

2
,

where c⊤γ := E[R(γ)W⊤]ΣW
−1.

As mentioned in the main text, (C.12) is not generally equal to (16), and does not
generally yield the optimal predictor under the targeted loss. A simple example is given
in Proposition C.6.

Proposition C.6. Assume Assumptions 1, 2, and that E[εW ε⊤W ] is full rank. Let ν
(d)
=

A + η for the deterministic vector ηT = E[R(γ∗OLS)A⊤], where
(d)
= indicates equality of

distribution, and assume η ̸= 0. Then, the minimizers of (16) and (C.12) differ, in that

α∗
PTAR < α∗

TAR

and if dW = dA = 1, and A has unit variance, then
α∗
PTAR
α∗
TAR

= ρW , where ρW :=

β2W /(β
2
W + E[ε2W ]).

Proof. The assumption that ν = A + η implies that Σν − ΣA = 0, and E[ν] = η. That
is, we have changed the mean of the distribution, but not the covariance. This implies

E[W̃ ] = β⊤WE[ν] = β⊤W η

ΣW̃ − ΣW = β⊤W (Σν − ΣA)βW = 0,

where in the second equation we use the fact that ΣW = β⊤WE[AA⊤]βW +E[εW ε⊤W ] (and
similarly for ΣW̃ ), and the εW terms cancel in the subtraction. We can then write both
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objectives as follows

ℓPTAR(W, W̃ ; γ, α)

= ℓLS(γ) +
(
c⊤γ β

⊤
W η − α

)2
= ℓLS(γ) +

(
E[R(γ)AT ]βWΣ−1

W β⊤W η − α
)2

ℓTAR(A, ν; γ, α)

= ℓLS(γ) +
(
b⊤γ η − α

)2
= ℓLS(γ) +

(
E[R(γ)AT ]Σ−1

A η − α
)2

This gives the optimal value of α in both cases as the value that minimizes the second
term

α∗
PTAR = E[R(γ∗PTAR)AT ](βWΣ−1

W β⊤W )η

α∗
TAR = E[R(γ∗TAR)AT ]Σ−1

A η,

and since the second term can be made equal to zero by these choices of α, the optimal
γ in both cases is identically γ∗PTAR = γ∗TAR = γ∗OLS , the value of γ that minimizes the
first term ℓLS(γ). Hence, we can write the difference between these terms as

α∗
TAR − α∗

PTAR

= E[R(γ∗OLS)AT ](Σ−1
A − βWΣ−1

W β⊤W )E[AR(γ∗OLS)],

where we have replaced η with the assumed value of E[AR(γ∗OLS)]. By assumption, ΣA
is full-rank, so that matrix Ω := (Σ−1

A − βWΣ−1
W β⊤W ) is positive definite if and only if

ΣAΩΣA is positive definite. Working with this representation, we can see that

ΣAΩΣA = ΣA − ΣAβWΣ−1
W βTWΣA

= E[AA⊤]− E[AW⊤]E[WW⊤]
−1E[WA⊤]

≻ 0,

where the last line follows from Proposition C.3. In the case where dW = dA = 1, and
A has unit variance, then let ρW = β2W /(β

2
W + E[ε2W ]), and observe that

α∗
PTAR = η2ρW α∗

TAR = η2.

Proposition C.6 describes a worst-case mean-shift in A, where η is taken in the di-
rection that maximizes the loss of the OLS solution γ∗OLS . This is also a particularly
simple case to analyze for building intuition, because the optimal solution to both (16)
and (C.12) is to take γ = γ∗OLS and to estimate an intercept term α equal to the bias
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incurred by the shift in the mean of A. However, the noise in W results in under-
estimating the impact of the shift, and the gap to the optimal solution depends on the
signal-to-variance relationship in W , which (as discussed in Section 3) is not generally
identified.

We also prove that the Cross-Proxy Targeted Anchor Regression objective is equal to
that of Targeted Anchor Regression.

Theorem C.1. Under Assumptions 1, 3, and 4, for all γ ∈ RdX , α ∈ R,

ℓ×TAR(W,Z; µ̃, Σ̃W , γ, α) = Edo(A:=ν)[(Y − γ⊤X − α)
2
]

where µ̃ := Edo(A:=ν)[W ] is the mean of W under intervention, and Σ̃W is the covariance

Σ̃W := covdo(A:=ν)(W ).

Proof of Theorem C.1. We have

a⊤γ = E[R(γ)Z⊤](E[WZ⊤])
−1

= E[R(γ)(A⊤βZ + ε⊤Z )]

E[(β⊤WA+ εW )(β⊤ZA+ εZ)
⊤
]
−1

= E[R(γ)A⊤]βZ(β
⊤
WE[AA⊤]βZ)

−1

= E[R(γ)A⊤](E[AA⊤])
−1

(β⊤W )
−1
,

while

µ̃ = β⊤WE[ν]
Σ̃W − ΣW = β⊤W (Σν − ΣA)βW .

With b⊤γ := w⊤
γMA and wγ defined by (C.6), we have that

a⊤γ µ̃ = b⊤γ E[ν]

a⊤γ (Σ̃W − ΣW )aγ = b⊤γ (Σν − ΣA)bγ ,

which is equivalent to ℓTAR(A;µν ,Σν , γ, α) (Definition 4, (16)). The proof is complete
by Proposition 2.

Note that the argument is symmetric for using an observed shift in either Z or W , so
it suffices to know the anticipated shift with respect to one proxy.

C.5. Details for experiments

C.5.1. Details of Section 5.1

We outline the details of the simulation experiment in Section 5.1.
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Summary We simulate a training data set Dtrain from a SCM that induces the structure
in Fig. 2, fix λ := 5 and fit estimators PAR(W ) and xPAR(W,Z). We consider the
intervention Pdo(A:=ν) with ν = (−2.83, 0.35, 0.71)⊤, and simulate a test data set Dtest

from that distribution. We then compute the intervention mean squared prediction
error (MSPE) Êdo(A:=ν)[(Y − γ⊤X)2] both for PAR(W ) and xPAR(W,Z). We repeat
this procedure m = 105 times for several signal-to-variance ratios x (not including 0),
and display the quantiles of the losses in Fig. 5. We also plot the population losses
Edo(A:=ν)[(Y − γ⊤X)2] for PAR(W ) and xPAR(W,Z), as well as AR(A) and OLS.

Technical details We let E[AA⊤] = β = Id and E[εW ε⊤W ] = s2 Id, such that W =
β⊤A+ s · εW . Then ΩW as defined in (11) simplifies to

ΩW = E[AA⊤]β(β⊤E[AA⊤]β + E[εW ε⊤W ])−1β⊤E[AA⊤]

=
1

1 + s2
Id .

We call x = (1+ s2)−1 the signal-to-variance ratio, and we can obtain a given signal-to-
variance ratio x, by setting s =

√
(1− x)/x.

For each n ∈ {150, 500} and signal-to-variance ratio x ∈ {1/20, 2/20, . . . , 20/20}, we
set s =

√
(1− x)/x and sample a data set Din,s for i = 1, . . . , 5000, each with sample

size n, from the structural equations:

A := εA (C.13)

W := A+ s · εW
Z := A+ s · εZ

(Y,X,H) := (Id−B)−1(MA+ ε),

where dA = dW = dZ = dX = 3, dY = dH = 1. M and B are given by

M =


1 0 −2
0 2 1
−1 3 0
2 2 −3
0 −2 2

 , B =


0 −2 2 0 1
0 0 0 0 0
0 0 0 0 0
3 0 0 0 1
0 0 0 0 0

 ,

and all noise variables are i.i.d., εA, εW , εZ , ε ∼ N (0, Id). For every combination (n, s)
we have 5000 data sets Din,s , i = 1, . . . , 5000. For each data set, we compute the proxy
estimators γin,s,W and γin,s,W ;Z , using one or two proxies respectively, and we simulate
5000 corresponding test data sets of size n from Pdo(A:=ν) (using the structural equations
above, except for changing the assignment for A to A := ν). The prediction MSE for
the i’th test data set is then 1

n

∑n
j=1(Yj − γ⊤Xj)

2, resulting in 5000 values of the MSE
for each combination of (n, s).

At each combination of (n, s) we plot the median by a line of the estimated worst case
losses, and by a shaded region indicate the interval between the 25% and 75% quantiles
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of the observed distribution. We plot the median instead of the mean since for small
x, s2 = 1−x

x is large, and especially for WCLin,s(W,Z) and n = 150, the mean will be
driven very much by outliers for small x.

The population versions of losses for any s is computed first by computing the popu-
lation estimators γ from the parameter matrices M,B, and then computing the loss at
ν by Edo(A:=ν)[(Y − γ⊤X)2] = w⊤

γMνν⊤M⊤wγ + w⊤
γ E[εε⊤]wγ .

C.5.2. Details of Section 5.2

We outline the details of the simulation experiment in Section 5.2.

Summary We analyze the effect of applying anchor regression with one proxy, PAR(W ),
when the signal-to-variance ratio is potentially misspecified. To do so, we simulate data
from the same SCM as in Section 5.1 (n = 104), and in particular from a range of
true (unknown) signal-to-variance ratios x ∈ (0, 1]. To each data set, we apply anchor
regression with one proxy, PAR(W ), and with λ := 5. We further assume the signal-to-
variance ratio to be 40% – independently of its true value. This means, by Theorem 1,
that we assume that PAR(W ) minimizes the worst case mean squared prediction error
(MSPE) over the region C := {νν⊤ ⪯ (1 + 0.4 · λ)E[AA⊤]}, with the worst case MSPE
for being equal to the optimal value of the PAR(W ) objective function. If x = 0.4,
then PAR(W ) indeed minimizes the worst case MSPE over C and the estimated worst
case MSPE over C is close to the actual worst case MSPE over C. But if x ̸= 0.4, the
estimator minimizes the worst case MSPE over a different set, and then expect that
the true worst case MSPE over C differs from its estimate. Fig. 6 shows that this is
indeed the case: We observe that if the true signal-to-variance ratio is larger than the
assumed 40%, our estimate of the MSPE is too conservative. On the contrary, if the
true signal-to-variance ratio is smaller than assumed, our estimates of the MSPE over C
are too small, meaning that we underestimate the worst case MSPE in the region C.

Technical details For a fixed signal-to-variance ratio x, we simulate a training data set
Dtrain (n = 104) from the same procedure as in Appendix C.5.1, i.e. using the structural
equations in (C.13), and with the same parameters M and B. We fit the PAR(W )
estimator to the data using λ := 5, and the estimated worst case mean squared predic-
tion error (MSPE) over C is then the value of the objective function in the estimated
parameter (by Theorem 1).

To find the actual worst case MSPE over C for a given estimator λ, we use the fact
from (C.7) that

Edo(A:=v)[(R− γ⊤X)2] = (b⊤γ v)
2 + w⊤

γ wγ , (C.14)

where we use that E[εε⊤] = Id, wγ is given by (C.6) and b⊤γ = w⊤
γMA. The second term

doesn’t depend on v, and since C is spherical, the worst case MSPE over C is attained
in the direction v ∝ bγ , with v normalized such that ∥v∥2 = (1 + 0.4 · λ) (that is v lies
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on the boundary of C). Using the known M and B, we compute wγ , bγ , and the actual
worst case MSPE over C is given by (C.14) plugging in v = bγ ·

√
(1 + 0.4 · λ)/∥bγ∥.

We compute also the worst case MSPE over C when using an OLS estimator for the
prediction. We fit γ̂OLS from Dtrain, and, as for the actual MSPE of PAR(W ), the worst
case MSPE over C using OLS can be computed, by computing vectors bγ̂OLS , wγ̂OLS .
Again the worst case MSPE over C using γ̂OLS is attained by setting v = bγ̂OLS ·√

(1 + 0.4 · λ)/∥bγ̂OLS∥ and plugging v, bγ̂OLS and wγ̂OLS into (C.14).

For every signal-to-variance ratio x ∈ {1/20, . . . , 20/20}, we repeat the procedure
m = 1000 times, for each computing the estimated and actual MSPEs. In Fig. 6 we plot
the median MSPE as well as the interval from the 25% quantile to the 75% quantile.

C.5.3. Details of Section 5.3

We outline the details of the simulation experiment in Section 5.3.

Summary We demonstrate the ability of Proxy Anchor Regression to select invariant
predictors, in a synthetic setting where predictors X may contain both causal and anti-
causal predictors. We simulate data sets (n = 105) from a SCM with the structure
shown in Fig. 7 (top), where one anchor, A1, is a parent of the causal predictors, while
the other A2 is a parent of the anti-causal predictors.

We consider two identically distributed noisy proxies W,Z of A := (A1, A2). The
challenge, in this scenario, is that A2 is measured with significantly more noise than A1,
across both proxies. As a consequence, proxy anchor regression with one proxy, PAR(W ),
puts more weight on anti-causal features: the noise in W is mistaken for fluctuations in
A2, resulting in Xanti-causal mistakenly appearing invariant to shifts in A2. In contrast,
when two proxies W,Z are available, the estimator xPAR(W,Z) asymptotically equals
that of anchor regression with observed anchors, and its regression coefficients puts more
weight on the causal predictors; see Fig. 7 (bottom).

Technical details With dA1 = dA2 = dW = dW = 6, dXcausal
= dXanti-causal

= 3 and
dY = 1, we simulate data from the SCM in Fig. 7 (top) which amounts to simulating
from the following structural equations:

A1 := εA1

A2 := εA2

W := (A1, A2)
⊤ + (εW,1, εW,2)

⊤

Z := (A1, A2)
⊤ + (εZ,1, εZ,2)

⊤

Xcausal :=M1A1 + εXcausal

Y := γ⊤causalXcausal + εY

X2 :=M2A2 + γanti-causalY + εXanti-causal
.
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Here M1 ∈ RdXcausal
×dA1 and M2 ∈ RdXanti-causal

×dA2 are matrices with 1 in every entry,
γcausal = (1/4, 1/4, 1/4)⊤ and γanti-causal = (4, 4, 4)⊤ (such that the regression coefficients
of Y onto Xcausal, Xanti-causal are of similar magnitudes). All noise terms are independent
and εA1 , εA2 , εXcausal

, εXanti-causal
, εY ∼ N (0, Id), and εW,1, εZ,1 ∼ N (0, Id), εW,2, εZ,2 ∼

N (0, 32 · Id).
We simulate a data set D (n = 105) from these structural equations, and fit the proxy

anchor regression estimators γ(W ) and γ(W,Z) from Section 3. We repeat this m = 104

times, and display the mean absolute value of the regression coefficients (that is the
entries of the vectors γ(W ) and γ(W,Z)) in Fig. 7 (bottom), as well as the standard
deviation of the absolute value of the regression coefficients as error bars.

C.5.4. Details of Section 5.4

Summary We demonstrate the trade-off made by Targeted Anchor Regression (TAR)
versus Anchor Regression (AR), considering the case when A is observed for simplicity.
We simulate training data and fit estimators γOLS, γAR and γTAR, where γTAR is targeted
to a particular mean and covariance of a random intervention do(A := ν), and we select
λ for γAR such that this intervention is contained within CA(λ). We then simulate test
data from two distributions: Pdo(A:=ν) (i.e., the shift occurs), and P (where it does not),
and evaluate the mean squared prediction error (MSPE). The results are shown in Fig. 8,
and demonstrated that TAR performs better than AR and OLS in the first scenario,
but this comes at the cost of worse performance on the training distribution.

Technical details The entire procedure below produces a prediction MSE for each of
three methods and two settings, and we repeat this m = 105 times, to produce the
histograms of MSEs shown in Fig. 8.
We simulate a training data set Dtrain (ntrain = 105) from the structural equations

A := εA

(Y,X,H) := (Id−B)−1(MA+ ε),

where dA = dX = 2 and dY = dH = 1, εA, ε ∼ N (0, Id) and M and B were selected by
a simulation resulting in:

M =


2 1
0 1
2 2
0 3

 , B =


0 −0.06 0.07 0.04

0.05 0 0.19 0.03
0.11 −0.11 0 0.1
−0.02 0.02 0.09 0

 .

We consider the target distribution do(A := κ⊤A+ η) where

κ =

(√
2 0
0 1

)
, η =

(
0
2

)
,

and so we fit the targeted AR estimator (γtargeted-AR, αtargeted-AR) from (16), where the
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covariance of the anticipated shift is given by Σν := κ⊤E[AA⊤]κ, and the mean shift
is simply η. We also fit OLS estimates γOLS(X,Y ) and γAR(X,Y,A) where for AR we
select λ such that (1 + λ) equals the largest eigenvalue of κ⊤E[AA⊤]κ+ ηη⊤, such that
E[(κ⊤A+ η)(κ⊤A+ η)⊤] ⪯ (1 + λ)E[AA⊤].

We then simulate a test data set (ntest = 105) both from 1) the training distribution
(i.e. same simulation procedure as for the training set) or 2) by changing the structural
equation for A to A := κ⊤εA + η, and keeping all other quantities as for the simulation
of training data (i.e. the test distribution is the anticipated distribution). We evaluate
the prediction MSE on each of the data sets by 1

ntest

∑
j(Yj−γ⊤Xj)

2 (including the term
αtargeted-AR for the targeted AR).

C.5.5. Details of Section 6

Features The dataset contains time-stamps as well as season indicators, which we do
not use anywhere as features. The remaining features are Dew Point (Celsius Degree),
Temperature (Celsius Degree), Humidity (%), Pressure (hPa), Combined wind direction
(NE, NW, SE, SW, or CV, indicating calm and variable), Cumulated wind speed (m/s),
Hourly precipitation (mm), and Cumulated precipitation (mm).

Data Processing Each city has PM2.5 readings from multiple sites, which we average to
get a single reading, and we take a log transformation. For Precipitation (Cumulative)
we subtract off the (current hour) precipitation to avoid co-linearity. We take a log
transformation of the variable for Wind Speed, Precipitation (Hourly) and Precipitation
(Cumulative), due to skewness. We drop all rows that contain any missing data.

Proxies (Temperature) We use temperature as our proxy variable, and treat it as
unavailable at test time. We construct two synthetic proxies of temperature to serve as
W,Z, adding independent Gaussian noise while controlling the signal-to-variance ratio
(in the training distribution) at var(A)/ var(W ) = 0.9. This results in different standard
deviations of the Gaussian noise across different environments, because of differences in
the training distributions across training seasons and cities. The standard error of the
noise varies between 2 and 5 degrees, to maintain the same signal-to-variance ratio.

Training Details (PAR, xPAR) For the distributional robustness approaches described
in Section 3, we choose λ ∈ [0, 40] by leave-one-group-out cross-validation on the three
training seasons, using the first year (2013) of data. For Proxy Anchor Regression using
Temperature directly, there is heterogeneity in the cross-validated choice of λ: In 9 out
of 20 scenarios, λ = 40 is chosen, but in the remaining 11, λ = 0 is chosen, which
is equivalent to OLS. We saw a similar result when the maximum value of λ was 20,
and increased the maximum limit to 40 without seeing much difference, so we did not
increase it further. Concretely, with λ in [0, 20], there are some scenarios where PAR
(TempC) has slightly worse or slightly better MSE (vs. λ in [0, 40]), but the differences
are all less than 0.001. The only observable difference in Table 1 when running with λ in
[0, 20] is that the “best” performance is -0.040 (λ = 20), as opposed to -0.041 (λ = 40)
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Table C.1.: MSE (lower is better) over 20 scenarios consisting of five cities and four held-
out seasons. Average difference to OLS estimator (lower is better) given
in the second column, and minimum / maximum difference in remaining
columns.

Estimator Mean Diff Min Max

OLS 0.457
OLS (TempC) 0.455 -0.002 -0.028 0.026
OLS + Est. Bias 0.474 0.018 -0.072 0.150

PAR (TempC) 0.454 -0.003 -0.041 0.006
PAR (W) 0.454 -0.002 -0.037 0.006
xPAR (W, Z) 0.454 -0.003 -0.039 0.007

PTAR 0.450 -0.007 -0.061 0.002
PTAR (W) 0.452 -0.005 -0.038 0.001
xPTAR (W, Z) 0.450 -0.007 -0.059 0.003

[where lower is better, rounded to nearest 0.001]. For Proxy Anchor Regression using W
and for Cross-Proxy Anchor Regression (xPAR) using W,Z together, we use the same
values of λ as above, for comparability.

Training Details (PTAR, xPTAR) For the targeted approaches described in Section 4,
we use the mean and variance of the temperature in the test distribution to target our
predictors, and similarly use the distribution of the proxies when using Proxy Targeted
Anchor Regression (PTAR) with W and Cross-Proxy TAR (xPTAR) with W,Z. Note
that xPTAR (unlike xPAR) is asymmetric in the proxies, but in this case the proxies
are distributed identically.

Benchmarks As described in the main text, our primary benchmark is OLS, trained
on the three training seasons, evaluated on the held-out season. We also include two
other baselines: First, OLS that has access to temperature during both train and test,
which we denote OLS (TempC), and OLS that includes temperature during training, and
attempts to estimate a bias term by plugging in the mean (test) value for temperature
during prediction.

In Table C.1 we give the full results over all 20 scenarios, which includes the 11
scenarios where λ = 0 is chosen by cross-validation, rendering the PAR and xPAR
solutions equivalent to OLS.

Regularization paths In Fig. C.4 we have shown how the solution in the “best” scenario
differs for Proxy Anchor Regression (PAR) with λ = 40 versus OLS (i.e., λ = 0). In
Fig. C.5, we show how the coefficients change in-between these two extremes: for every
integer value of λ in [0, 40] we show the difference in the PAR vs. OLS coefficients
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0.70 0.75 0.80 0.85
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OLS

PAR (TempC)

PTAR (TempC)

Figure C.3.: Best performance for Proxy Anchor Regression (PAR) and Proxy Targeted
AR (PTAR), corresponding to Summer in Beijing. Variance estimates gen-
erated by bootstrapping the test residuals of the fitted models.

for each feature. Increasing λ further does not make a significant difference for this
particular example.
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Figure C.4.: Comparison of learned coefficients. All variables were standardized to unit
variance. The intercept for OLS and AR is the same (by construction) at
α = 4.087 while the intercept for TAR is lower at α = 3.885.
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Figure C.5.: Coefficient path, showing the difference between the PAR and OLS coeffi-
cients in Fig. C.4 for different values of λ.
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C.6. Additional experiment: Signal-to-variance ratio

To examine the effect of the signal strengths βW and βZ , we scale the signals βW,s =
βZ,s = s Id for s ∈ {0,

√
2/3, 0.8}, which for the single proxy estimator γ̂PAR amounts to

optimizing over worst case loss in the robustness regions C(λ) = {vv⊤ ⪯ (1+λ s2

1+s2
) Id}.

For s ∈ {1, 3}, such that the signal-to-variance ratio s2

1+s2
equals either 10% or 50%,

we simulate a training data set Dtrain with two proxies W and Z from the structural
equations A := εA, (X

⊤, Y ⊤, H⊤)⊤ := (1 − B)−1(MaA + ε),W := β⊤W,sA + εW and

Z := β⊤Z,sA+εZ where all noise terms are i.i.d with unit covariance andMA, B are given
by:

M :=


2 1
0 1
2 2
0 3

 , B :=


0 −0.57 0.73 0.37

0.53 0 1.91 0.33
1.14 −1.13 0 0.96
−0.22 0.16 0.87 0

 .

Since for this experiment we are not interested in finite sample properties of the estima-
tors, we use sample size n = 107.
For each data set we fit estimators γ̂PAR(W ) (using only one proxy), γ̂xPAR(W, Z) (using

both proxies), γ̂AR(A), and γ̂OLS, and evaluate the estimators at data sampled from
interventional distributions Pdo(A:=v) for several interventions v of increasing strength
(i.e. increasing distance from E[A] = 0).

As the signal to variance ratio increases, the PAR(W ) loss approaches the AR(A).
Further we observe that xPAR(W,Z) coincides with the AR(A) estimator for both signal-
to-variance levels. This is illustrated in Fig. C.6.
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Figure C.6.: Anchor and proxy estimators for different levels of signal-to-variance ratio
β(E[WW⊤])−1β⊤. A training data set (n = 107) with two proxies W,Z
is simulated and the estimators γ̂PAR(A), γ̂xPAR(W,Z), γ̂AR(A), and γ̂OLS are
fitted using a fixed λ. Interventions v of increasing strength is sampled, and
for each a new data set (n = 105) is sampled from Pdo(A:=v), and for each
estimator γ̂, the prediction mean squared error Edo(A:=(v1,v2))[(Y − γ̂⊤X)2]
is computed. This procedure is repeated for signal-to-variance ratios 10%
and 50%.
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D.1. Pearl’s d-separation

Definition D.1 (Pearl’s d-separation Pearl [2009], Peters et al. [2017]). Let G be directed
acyclic graph (DAG) with nodes V. Let Vi, Vm ∈ V and S ⊆ V \ {Vi, Vm}. A path
between nodes Vi and Vm is said to be blocked by a set S if there exists a node Vk ∈ V
such that one of the following holds:

1. Vk ∈ S and

Vk−1 → Vk → Vk+1

or Vk−1 ← Vk ← Vk+1

or Vk−1 ← Vk → Vk+1,

2. neither Vk nor any of its descendants is in S and

Vk−1 → Vk ← Vk+1.

For any three disjoint subsets A,B,S ⊆ V of nodes in G, we say that A and B are
d-separated by S, denoted by A ⊥⊥G B | S if every path between nodes in A and B is
blocked by S.

(This formulation is taken from Peters et al. [2017].)

D.2. Consistency in the Unconfounded Setting

Let Q̂n be an estimator of the conditional mean Eπa [R | X] that is based on n inde-
pendent observations (Xi, Ai, Ri) from potentially different environments. The following
proposition shows that such an approach indeed yields a consistent estimate of an opti-
mal policy given that Q̂n is consistent.

Proposition D.1. Assume Setting 2 and let Q̂n be a uniformly consistent estimator of
QEobs

, that is, for all a ∈ A it holds that

lim
n→∞

ED
[
sup
x∈X

∣∣Q̂n(x, a)−QEobs
(x, a)

∣∣] = 0,
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where ED is an expectation over the n observations (Xi, Ai, Ri) used to estimate Q̂n. Let
π̂n be any policy that maximizes Q̂n, i.e., for all x ∈ X and all a ∈ A it holds that

π̂n(a|x) > 0 =⇒ a ∈ argmax
a′∈A

Q̂n(x, a
′).

Then, the robust policy value converges towards its optimal value, that is

lim
n→∞

ED
[∣∣V E(π̂n)−max

π∈Π
V E(π)

∣∣] = 0.

Proof. See Appendix D.3.2.

The same argument would work if instead of pooling, one considers only a single
environment. In practice, however, one would make use of all available data. Whether
it is possible to construct a uniformly consistent estimator Q̂n depends on the model
class that can be assumed in the structural assignment of R, and on the policy used in
generating the observations. For example, in the case of additive confounding and noise
such as f(X,U,A, εR) = f1(X,A)+f2(U, εR) with f1 and f2 in some function classes and
a policy π that has full support, (i.e., ∀a ∈ A, x ∈ X : π(a | x) > 0), one can consider a
least squares estimator of the form

Q̂Eobs

n := argmin
f1

1

n

n∑
i=1

(f1(Xi, Ai)−Ri)2.

The assumptions of Proposition D.1 are then satisfied under further constraints on the
function class and noise distributions, e.g., linear functions, Gaussian noise, and bounded
domains.

D.3. Proofs

D.3.1. Proof of Theorem 1

Proof. We begin by showing that the model class in Setting 2 satisfies an invariance
property. Let e ∈ E , a ∈ A and x ∈ X be arbitrary. By using the explicit SCM
structure from Setting 2, it holds that

Eπa,e
[
R | X = x

]
= Eπa,e

[
f(X, s(X, εU ), A, εR) | X = x

]
.

Since we assume there is no hidden confounding, it holds that εU ⊥⊥ X which implies
that

Eπa,e
[
f(X, s(X, εU ), A, εR) | X = x

]
= EεU ,εR

[
f(x, s(x, εU ), a, εR)

]
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and hence Eπa,e
[
R | X = x

]
does not depend on the environment. This, in particular,

implies that for all e ∈ E , all x ∈ X and all a ∈ A, it holds that

QEobs
(x, a) = 1

|Eobs|
∑

f∈Eobs

Eπa,f [R | X = x]

= Eπa,e[R | X = x]. (D.1)

We thus have for all policies π ∈ Π and for all x ∈ X that

max
a∈A

QEobs
(x, a)

= max
a∈A

Eπa,e[R | X = x]

≥
∑
a∈A

Eπa,e[R | X = x]π(a | x)

=
∑
a∈A

Eπ,e[R | X = x,A = a]π(a | x)

= Eπ,e[R | X = x]. (D.2)

Next, take the expectation over X on both sides to get

Ee
[
max
a∈A

QEobs
(X, a)] ≥ Ee

[
Eπ,e[R | X]

]
= Eπ,e

[
R
]
.

Finally, taking the infimum over e ∈ E leads to

inf
e∈E

Ee
[
max
a∈A

QEobs
(X, a)] ≥ inf

e∈E
Eπ,e

[
R
]
. (D.3)

Let π∗ be a policy such that for all x ∈ X and all a ∈ A

π∗(a|x) > 0 =⇒ a ∈ argmax
a′∈A

QEobs
(x, a′). (D.4)

Then π∗ satisfies, for all e ∈ E ,

Eπ
∗,e
[
R
]
= Ee

[
max
a∈A

QEobs
(X, a)].

Therefore (D.3) implies
π∗ ∈ argmax

π∈Π
inf
e∈E

Eπ,e
[
R
]
,

which completes the proof of Theorem 1.
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D.3.2. Proof of Proposition D.1

Proof. Define for all n ∈ N the term

c(n) := max
a∈A

sup
x∈X
|QEobs

(x, a)− Q̂n(x, a)|.

As A is assumed to be finite and because Q̂n is assumed to be uniformly consistent, it
holds that

lim
n→∞

ED[c(n)] = 0. (D.5)

Moreover, as shown in (D.1), in the proof of Theorem 1, we know that for all e ∈ E , all
a ∈ A and all x ∈ X it holds that

QEobs
(x, a) = Eπa,e[R | X = x].

This implies that for all x ∈ X and all e ∈ E it holds that

Eπ̂n,e[R | X = x]

=
∑
a∈A

Eπa,e[R | X = x]π̂n(a|x)

=
∑
a∈A

QEobs
(x, a)π̂n(a|x)

=
∑
a∈A

Q̂n(x, a)π̂n(a|x)

+
∑
a∈A

(QEobs
(x, a)− Q̂n(x, a))π̂n(a|x). (D.6)

Each of the sums only contains one terms, since π̂n puts all mass on a single action.
Next, observe that ∣∣∣∣∣∑

a∈A
(QEobs

(x, a)− Q̂n(x, a))π̂n(a|x)
∣∣∣∣∣

≤
∑
a∈A

∣∣∣QEobs
(x, a)− Q̂n(x, a)

∣∣∣ π̂n(a|x)
≤ c(n) (D.7)
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and ∑
a∈A

Q̂n(x, a)π̂n(a|x)

= max
a∈A

Q̂n(x, a)

= max
a∈A

QEobs
(x, a) (D.8)

+ (max
a∈A

Q̂n(x, a)−max
a∈A

QEobs
(x, a)).

Using (D.6) to (D.8) together with the triangle inequality yields∣∣∣∣Eπ̂n,e[R | X = x]−max
a∈A

QEobs
(x, a)

∣∣∣∣
=
∣∣∣max
a∈A

Q̂n(x, a)−max
a∈A

QEobs
(x, a)

+
∑
a∈A

(QEobs
(x, a)− Q̂n(x, a))π̂n(a|x)

∣∣∣
≤ 2c(n).

This in particular implies that for all e ∈ E and all x ∈ X it holds that

max
a∈A

QEobs
(x, a)− 2c(n) ≤ Eπ̂n,e[R | X = x]

and that
Eπ̂n,e[R | X = x] ≤ max

a∈A
QEobs

(x, a) + 2c(n).

Taking the expectation over X and the infimum over E in both inequalities leads to

V E(π∗)− 2c(n) ≤ V E(π̂n) ≤ V E(π∗) + 2c(n).

, where π∗ is the policy defined in (4). Finally, we use (D.5) and Theorem 1 to get that

lim
n→∞

ED
[
|V E(π̂n)−max

π∈Π
V E(π)|

]
≤ lim

n→∞
ED[4c(n)] = 0.

This completes the proof of Proposition D.1.

D.3.3. Proof of Lemma 1

The key argument in the proof of Lemma 1 is a Markov property that we formulate as
a lemma below.

Lemma D.1 (Extended Markov Property). Assume Setting 1. For all subsets S ⊆
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{1, . . . , d}, it holds for all Z ∈ {U1, . . . , Up, R} that

Z ⊥⊥GS e | XS

=⇒
∀π ∈ ΠS : Pπ,e

R|XS is the same for all e ∈ E ,

where the symbol ⊥⊥G denotes d-separation in the graph G.

Using Lemma D.1, the proof of Lemma 1 goes as follows.

Proof. Let Sinv be a d-invariant set and πinv ∈ ΠS
inv

be a d-invariant policy with respect
to Sinv. By Definition 3, we have R ⊥⊥GSinv e | XSinv

. It then holds by Lemma D.1 for

all x ∈ X Sinv
and all e, f ∈ E that

Eπ
inv,e

[
R | XSinv

= x
]
= Eπ

inv,f
[
R | XSinv

= x
]
.

D.3.3.1. Proof of Lemma D.1

Proof. Lemma D.1 corresponds to a global Markov property in the augmented graph
(including the non-random environment index). Such results are well-established and
used in settings in which E is finite, for example in influence diagrams Dawid [2002].
The result, however, also holds for more general, even uncountable E .
To prove this, we first fix S ⊆ {1, . . . , d}, π ∈ ΠS and Z ∈ {U,R}. Furthermore,

let e ∈ E , let Σ be the discrete σ-algebra on E and let νe : Σ → [0, 1] be a probability
measure that puts non-zero mass on {e}. We can then replace the environment indicator
in the SCM S(π, e) with a random variable E with distribution νe. This induces a joint
distribution over (E,X,U,A,R) that is globally Markov with respect to the graph GS ,
where e is now replaced by E (see Pearl [2009] Thm 1.4.1 or Lauritzen et al. [1990]).
Additionally, it satisfies that (X,U,A,R) | E = e has the same distribution as the
distribution induced by S(π, e). Therefore the d-separation Z ⊥⊥GS E | XS (which is
implied by Z ⊥⊥GS e | XS) implies that the joint distribution (E,X,U,A,R) satisfies the
following conditional independence

Z ⊥⊥ E | XS . (D.9)

Next, denote by pπ the density of (E,X,U,A,R) with respect to a product measure with
the discrete measure as the E-component and for all e ∈ E denote by pπ,e the induced
density of S(π, e). Then, by construction of the densities and using the conditional
independence in (D.9) it holds that for all x ∈ X S , all z ∈ supp(Z) and all f ∈ E with
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νe(f) > 0 that

pπ,f (z | XS = x) = pπ(z | XS = x,E = f)

= pπ(z | XS = x)

=: wz(x),

The function wz therefore no longer depends on the environment f nor on νe. Since
νe(e) > 0, this in particular implies that for all x ∈ X S and all z ∈ supp(Z) it holds
that

pπ,e(z | XS = x) = wz(x).

As this construction works for all e ∈ E , this completes the proof of Lemma D.1.

D.3.4. Stable Blanket and Invariance

In this section, if not explicitly stated otherwise, all causal relations such as parents,
descendants, ancestors etc. refer to the graph G. Moreover, we use the convention that
k ∈ DE(Xk), where DE(Xk) ⊆ {1, . . . , d} denotes only the X-variable descendants of
Xk. We first define the strongly non-d-invariant set:

SSNI := {j ∈ {1, . . . , d} | ∃k ∈ CI : j ∈ DE(Xk)},

where CI are confounded and directly intervened on nodes (i.e., for k ∈ CI there exists
ℓ ∈ {1, . . . , p} such that e → Xk ← U ℓ → R in G) and define SI := {1, . . . , d} \ SSNI.
Furthermore, we define SR ⊆ {1, . . . , d} to be the set of X-variables such that j ∈ SR
if and only if Xj → R in G or that there exists ℓ ∈ {1, . . . , p} such that Xj → U ℓ → R
in G. The following Lemma will serve as a basis for our proofs of Proposition 1 and
Theorem 2.

Lemma D.2 (properties of SI). Assume Setting 1 and Assumption 1. Then, for all
S ∈ Sinv, it holds that S ⊆ SI and if a d-invariant set exists, it holds that SR ⊆ SI, SI
is d-invariant and

j ∈ SSNI ⇐⇒ Xj is strongly non-d-invariant.

Proof. The proof is divided into four parts (S.1, S.2, S.3 and S.4):

S.1 We prove that if S ∈ Sinv then S ⊆ SI by contraposition. Let S ⊆ {1, . . . , d}
be a subset such that there exists j ∈ S but j ∈ SSNI. This implies that there
exist k ∈ {1, . . . , d} and ℓ ∈ {1, . . . , p} such that e → Xk ← U ℓ → R in G and
j ∈ DE(Xk). Since j ∈ DE(Xk), the path e → Xk ← U ℓ → R is open given XS ,
and therefore R ⊥̸⊥G e | XS . By Definition 3, this implies that S is not d-invariant,
leading to a contradiction.

S.2 In this step, we prove that if a d-invariant set exists, it holds that SR ⊆ SI.
We prove this by contraposition. Assume that there exists j ∈ SR such that
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j ∈ SSNI. This implies that there exist k ∈ {1, . . . , d} and ℓ ∈ {1, . . . , p} such that
e → Xk ← U ℓ → R in G and j ∈ DE(Xk). Now, we construct a contradiction by
showing that this would imply that no d-invariant set exists. Let S ⊆ {1, . . . , d}
be an arbitrary set. There are two possibilities,

(a) j ∈ S: Using the same argument as in Item S.1, we have that S is not a
d-invariant set.

(b) j /∈ S: Since j ∈ SR but j ∈ SSNI there exists a directed path (using that
j ∈ DE(Xk))

e→ Xk → · · ·︸︷︷︸
part 1

→ Xj → · · ·︸︷︷︸
part 2

→ R,

where part 2 either has length zero or consists only of U -variables (by defini-
tion of SR). The only way this path can be blocked by XS is if either k, j or
one of the variables in part 1 are contained in S. However, if this is the case
the path e → Xk ← U ℓ → R is open given XS . Since the edges from X to
A are not relevant in this case, this in particular means that R ⊥̸⊥GS e | XS ,
which by Definition 3 implies that S is not d-invariant.

As these are the only two possibilities, we have shown that no d-invariant set exists,
which is a contradiction. Therefore SR ⊆ SI.

S.3 Now we prove that if a d-invariant set exists, then SI is d-invariant. In this step,
all the graphical statements are understood to be taken in GSI . By Lemma D.1, it
suffices to show that any path ρ in GSI from e to R is blocked by XSI . Let ρ be
an arbitrary path from e to R in GSI . First, we consider the case that ρ enters R
through A, i.e., that it has the form

e→ · · ·Xj → A→ R.

By construction of GSI this path can only be in GSI if j ∈ SI which implies that it is
blocked by XSI . Next, assume that ρ enters R either through a U - or X-variable.
Let U ℓ be the U -variable on ρ that is closest to e and Xj be the X-variable on ρ
that is closest to U ℓ. We consider the two following cases:

(1) U ℓ does not exist: This implies that ρ does not contain any unobserved vari-
ables U and hence ρ can enter R only through an X-variable. By Item S.2,
we have SR ⊆ SI and hence it holds that ρ is blocked by XSI .

(2) U ℓ exists: ρ has the form

ρ : e→ Xr · · ·︸︷︷︸
part 1

U ℓ · · ·︸︷︷︸
part 2

→ R,

where part 1 could be of length zero or it could consist of further X-variables
and part 2 could be of length zero or it could consist of further X-or U -
variables. By Assumption 1, we have that there must be an edge from U ℓ to
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R and hence there exists another path

ρ̃ : e→ Xr · · ·︸︷︷︸
part 1

U ℓ → R,

where part 1 corresponds to the part 1 from path ρ. It suffices to show that
ρ̃ is blocked by XSI : whenever ρ̃ is blocked by XSI , ρ is blocked by XSI too
(as U ℓ /∈ XSI . We now consider the following three cases for ρ̃:

(i) ρ̃ : e→ · · ·Xj → U ℓ → R,

(ii) ρ̃ : e→ · · · → Xj ← U ℓ → R,

(iii) ρ̃ : e→ · · ·Xk ← Xj ← U ℓ → R,

in each case the · · · can also be of length zero.
Case (i): We show by contradiction that ρ̃ is blocked by XSI . Assume ρ̃ is
open given XSI . We then have that j ∈ SSNI adjust notation everywhere so
that variables are not included but the index, i.e., j ∈ SSNI. Let S ⊆ {1, . . . , p}
be an arbitrary subset. If j ∈ S, then by the definition of SSNI there exists
k ∈ {1, . . . , d} and c ∈ {1, . . . , p} such that e → Xk ← U c → R in G and
j ∈ DE(Xk) and hence R ⊥̸⊥ GSIe | XS . If j /∈ S, then the path ρ̃ is open
given XS and hence R ⊥̸⊥ GSIe | XS . Therefore, there is no d-invariant set
which contradicts to the fact that a d-invariant set exists.
Case (ii): In this case, Xj is a collider on ρ̃. Assume ρ̃ has the form e →
Xj ← U ℓ → R. This implies that DE(Xj) ⊆ SSNI and hence ρ̃ is blocked
by XSI . Thus, in order for ρ̃ to be open given XSI it must have the form
e → · · ·Xk → Xj ← U ℓ → R. Now, we consider the following two cases
separately:

(a) k ∈ SI: This directly implies that ρ̃ is blocked by XSI .

(b) k ̸∈ SI: By definition of SI it holds that DE(Xk) ∩ SI = ∅. Hence, also
DE(Xj)∩SI = ∅ which since Xj is a collider implies that ρ̃ is blocked by
XSI .

We have therefore shown that in Case (ii) the path ρ̃ is blocked by XSI .
Case (iii): In this case, let Xc be the collider closest to Xj on ρ̃. Again we
consider two cases:

(a) j ∈ SI: This directly implies that ρ̃ is blocked by XSI .

(b) j ̸∈ SI: Since DE(Xc) ⊆ DE(Xj), this implies that DE(Xc) ∩ SI = ∅.
Hence, the path ρ̃ is blocked by XSI .

We have therefore shown that in Case (iii) the path ρ̃ is blocked by XSI .
Combining all cases, we have shown that any path ρ̃ from e to R is blocked
by XSI in GSI .

S.4 It remains to show that

j ∈ SSNI ⇔ Xj is strongly non-d-invariant.
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We show each direction separately. First, let j ∈ SSNI. By the definition of SI
it holds that there exists k ∈ {1, . . . , d} and ℓ ∈ {1, . . . , p} such that e → Xk ←
· · · ← U ℓ → · · · → R in G and j ∈ DE(Xk). As this path does not involve A it
is contained in GS for all subsets S ⊆ {1, . . . , d}. Moreover, since Xk is a collider
and the only X-variable on this path, it holds that this path will be open given
XS∪{j} for all subsets S ⊆ {1, . . . , d}. Therefore, Xj is strongly non-d-invariant.
Next, to show the reverse direction let j ∈ SI. Then, by Item S.3 it holds that SI
is d-invariant. So in particular R ⊥⊥GSI e | XSI , which since j ∈ SI implies that j
is not strongly non-d-invariant.

This completes the proof of Lemma D.2.

As shown in Lemma D.2 the set SI is d-invariant and contains all d-invariant sets if
a d-invariant set exists. It will be used in the proofs of Proposition 1 and Theorem 2
to find the optimal d-invariant policy, as it encodes all invariant available information
about the reward. The set SI is strongly related to stable blankets as defined in Pfister
et al. [2021].

D.3.5. Proof of Proposition 1

Proof. As before, we define πa(a
′ | x) := 1

[
a′ = a

]
as the policy that always selects the

action a.

The proof is divided into three steps (S.1, S.2 and S.3)

S.1 In the first step, we use the set SI defined in Appendix D.3.4 to derive an upper
bound on the expected reward of arbitrary d-invariant policies. First by the same
arguments as in (D.2) we get that, for all S ∈ Sinv, all π

S ∈ ΠS , all x ∈ X S and
all e ∈ E , it holds that

max
a∈A

Eπa,e[R | XS = x] ≥ Eπ
S ,e[R | XS = x].

Taking the expectation over XS on both sides yields

Ee
[
max
a∈A

Eπa,e[R | XS ]
]
≥ Ee

[
Eπ

S ,e[R | XS ]
]

= Eπ
S ,e[R]. (D.10)

Next, we make use of the set SI defined in Appendix D.3.4. By Lemma D.2, it
holds that S ⊆ SI for all S ∈ Sinv. We then have, for all S ∈ Sinv, a ∈ A, and
e ∈ E , that

Eπa,e[R | XS , XSI\S ] = Eπa,e[R | XSI ], (D.11)

This is closely related to the predictiveness property of stable blankets (see Pfister
et al. [2021]).
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Now, we expand the conditional expectation and get for all e ∈ E that

Ee
[
max
a∈A

Eπa,e[R | XS ]
]

= Ee
[
max
a∈A

Ee
XSI\S

[
Eπa,e[R | XS , XSI\S ]

]]
,

and by Jensen’s inequality,

≤ Ee
[
Ee
XSI\S

[
max
a∈A

Eπa,e[R | XS , XSI\S ]
]]

= Ee
[
max
a∈A

Eπa,e[R | XS , XSI\S ]
]
,

and by (D.11),

= Ee
[
max
a∈A

Eπa,e[R | XSI ]
]
.

Combining this with (D.10), we have

Ee
[
max
a∈A

Eπa,e[R | XSI ]
]
≥ Eπ

S ,e[R]. (D.12)

S.2 In the second step, we use the upper bound (D.12) to show that, for different
environments, the same set of policies is optimal. For all π ∈ Πinv it holds by
Lemma D.2 that π ∈ ΠSI and by Lemma 1 that Eπ[R | XSI ] does not depend on
e (since SI is d-invariant). Let π̄ ∈ Πinv be a policy that satisfies for all a ∈ A and
for µ-a.e. x ∈ X SI

π̄(a|x) > 0 =⇒ a ∈ argmax
a′∈A

Eπa′
[
R | XSI = x

]
. (D.13)

Then, it holds for all e ∈ E that

Eπ̄,e[R] = Ee
[
Eπ̄[R | XSI ]

]
= Ee

[
max
a∈A

Eπa [R | XSI ]
]
.

Since (D.12) holds for all S ∈ Sinv, this directly implies that π̄ ∈ argmaxπ∈Πinv
Eπ,e[R].

We now show the reverse direction, i.e., if π∗ ∈ argmaxπ∈Πinv
Eπ,e[R], then π∗ sat-

isfies (D.13). Let π∗ ∈ argmaxπ∈Πinv
Eπ,e[R]. By (D.12), we have, for all e ∈ E ,

Eπ
∗,e[R] = Ee

[
max
a∈A

Eπa [R | XSI ]
]
. (D.14)

Since, for all e ∈ E , the distribution of X has full support (by the assumption in
Setting 1), π∗ satisfies for all a ∈ A and for µ-a.e. x ∈ X SI

π∗(a|x) > 0 =⇒ a ∈ argmax
a′∈A

Eπa′
[
R | XSI = x

]
. (D.15)
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Thus, π∗ satisfies (D.15) if and only if π∗ ∈ argmaxπ∈Πinv
Eπ,e[R]. Furthermore,

since (D.15) does not depend on e, it then holds for all e, f ∈ E that

argmax
π∈Πinv

Eπ,e[R] = argmax
π∈Πinv

Eπ,f [R]. (D.16)

S.3 In the third step, we are now ready to prove the main result of the proposition.
To this end, let

π∗ ∈ argmax
π∈Πinv

∑
e∈Eobs

Eπ,e[R].

Then, from (D.16) we have for all e, f ∈ E that

argmax
π∈Πinv

Eπ,e[R] = argmax
π∈Πinv

Eπ,f [R].

So in particular, for all e ∈ E , it holds that

π∗ ∈ argmax
π∈Πinv

Eπ,e[R].

Thus it holds for all e ∈ E , all S ∈ Sinv and all πS ∈ ΠS that

Eπ
∗,e[R] ≥ Eπ

S ,e[R].

Taking the infimum over e ∈ E on both sides yields

V E(π∗) = inf
e∈E

Eπ
∗,e[R] ≥ inf

e∈E
Eπ

S ,e[R] = V E(πS).

Because this inequality holds for all S ∈ Sinv and all πS ∈ ΠS , this implies

∀π ∈ Πinv : V E(π∗) ≥ V E(π). (D.17)

This completes the proof of Proposition 1.

D.3.6. Proof of Theorem 2

Proof. We first prove the first statement of Theorem 2. Fix a policy

π∗ ∈ argmax
π∈Πinv

∑
e∈Eobs

Eπ,e[R].

Using the same argument as we made in Appendix D.3.5(S.3), we get that for all e ∈ E
it holds that

Eπ
∗,e[R] = Ee

[
max
a∈A

Eπa [R | XSI ]
]
. (D.18)
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Hence by Jensen’s inequality it holds that

Eπ
∗,e[R] ≥ max

a∈A
Ee
[
Eπa [R | XSI ]

]
= max

a∈A
Eπa,e[R].

This completes the proof of the first statement.

Next, we prove the second statement of Theorem 2. To do so, we use the following
lemma, which is proved in Appendix D.3.6.1 below.

Lemma D.3 (Upper bound). Assume Setting 1, Assumptions 1, 3 and 2, and that
Sinv ̸= ∅. Let π ∈ Π \Πinv be an arbitrary non-d-invariant policy. Then it holds that

V E(π) ≤ inf
e∈E

Ee
XSI

[
max
a∈A

Eπa
[
R | XSI

]]
.

To finish the proof of Theorem 2, fix again a policy

π∗ ∈ argmax
π∈Πinv

∑
e∈Eobs

Eπ,e[R].

Then, by Proposition 1, it holds that

∀π ∈ Πinv : V E(π) ≤ V E(π∗). (D.19)

Furthermore, Lemma D.3 together with (D.18) implies that

∀π ∈ Π \Πinv : V E(π) ≤ V E(π∗). (D.20)

Combining (D.19) and (D.20) concludes the proof of Theorem 2.

D.3.6.1. Proof of Lemma D.3

Proof. Recall the terminology and notation from Appendix D.3.4. The proof can be
split into two parts:

1. We first prove that if e ∈ E is a confounding removing environment it holds for all
π ∈ Π that

∀j ∈ SSNI : R ⊥⊥Gπ,e X
j | XSI , A. (D.21)

2. We then prove the upper bound using step 1) as the main argument.

Step 1) Let e ∈ E be a confounding removing environment and fix j ∈ SSNI and π ∈ Π.
By Lemma D.2 it holds that Xj is strongly non-d-invariant. Therefore, since e is a
confounding removing environment, we get that

Xj ⊥⊥Gπ,e U. (D.22)
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Now, let ρ be an arbitrary path from Xj to R in Gπ,e. We consider the following
(separate) cases that can occur:

(a) ρ enters R through A: Then the path ρ is blocked by XSI and A because A is not
a collider and hence blocks ρ.

(b) ρ only contains A and X-variables and enter R through X-variables: Then there
exists k ∈ {1, . . . , d} such that ρ ends with Xk → R. This implies that k ∈ SR
since Gπ,e is a sub-graph of G. Furthermore, since by Lemma D.2 (recall that
Sinv ̸= ∅) SR ⊆ SI, this implies that k ∈ SI. Hence, ρ is blocked by XSI and A
because Xk is not a collider.

(c) ρ contains at least one U -variable: Let ℓ ∈ {1, . . . , p} such that U ℓ is the U -variable
closest to Xj on ρ, i.e., ρ has the form

Xj · · ·U ℓ︸ ︷︷ ︸
γ

· · · → R.

Now, by (D.22) it holds that γ is blocked (given the empty set) in Gπ,e and by
construction it only consists of X-variables (except U ℓ). Therefore, there must be
at least one collider on γ. Let Xk be the collider closest to U ℓ and let Xm (this
could be Xj) the variable that comes right before Xk on γ, i.e.,

Xj · · ·Xm → Xk ← · · ·U ℓ.

We consider two cases:

(i) First, assume that DE(Xk)∩SI ̸= ∅ (in Gπ,e), then it holds, by the definition
of SI and since Gπ,e is a subgraph of G, that m ∈ SI as well (otherwise none
of the descendants of Xk could be in SI as DE(Xk) ⊂ DE(Xm)). However,
Xm is not a collider and therefore ρ is blocked given XSI and A.

(ii) Second, assume DE(Xk) ∩ SI = ∅, then it in particular holds that k ∈ SSNI

which by Lemma D.2 implies that Xk is strongly non-d-invariant. Hence,
because e is a confounding removing environment, it holds that Xk ⊥⊥Gπ,e U .
However, Xk was selected to be the collider closest to U ℓ which means that
the part of γ from Xk to U ℓ is open in Gπ,e leading to a contradiction.

We have therefore shown that the path ρ is always blocked given XSI and A. Since ρ
was arbitrary this implies that R ⊥⊥Gπ,e X

j | XSI , A.

Step 2)

Now, we are ready to prove the main result. Let π ∈ Π \ Πinv be an arbitrary non-d-
invariant policy, and let S ⊆ {1, . . . , d} such that π ∈ ΠS . We have

V E(π)

= inf
e∈E

Eπ,e
[
R
]
,
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by the tower property of conditional expectation,

= inf
e∈E

Ee
XSI ,XS\SI

[
Eπ,e

[
R | XSI , XS\SI

]]
= inf

e∈E
Ee
XSI ,XS\SI

[ ∫
Eπa,e

[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
.

Now, we use Assumption 2. For each e ∈ E we choose a confounding removing environ-

ment f(e) such that Pπ,f(e)X = Pπ,eX . Because the confounding removing environments are
a subset of E , we have

V E(π)

= inf
e∈E

Ee
XSI ,XS\SI

[ ∫
Eπa,e

[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
≤ inf

e∈E
Ef(e)
XSI ,XS\SI

[ ∫
Eπa,f(e)

[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
.

Using that Pπ,f(e)X = Pπ,eX , we then have

V E(π)

≤ inf
e∈E

Ee
XSI ,XS\SI

[ ∫
Eπa,f(e)

[
R | XSI , XS\SI

]
π(a|XS)µ(da)

]
.

Next, we use (D.21) which states that for all j ∈ {1, . . . , d} it holds that R ⊥⊥Gπ,e X
j |

XSI , A. Then, by the Markov property, we get

V E(π)

≤ inf
e∈E

Ee
XSI ,XS\SI

[ ∫
Eπa,f(e)

[
R | XSI

]
π(a|XS)µ(da)

]
,
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we can then omit f(e) since SI is a d-invariant set (by Lemma D.2 since Sinv ̸= ∅),

= inf
e∈E

Ee
XSI ,XS\SI

[ ∫
Eπa

[
R | XSI

]
π(a|XS)µ(da)

]
= inf

e∈E
Ee
XSI

[ ∫
Eπa

[
R | XSI

]
Ee
XS\SI

[
π(a|XS)

]
µ(da)

]
,

letting π̃(a|XSI) := Ee
XS\SI [π(a|XS)],

= inf
e∈E

Ee
XSI

[ ∫
Eπa

[
R | XSI

]
π̃(a | XSI)µ(da)

]
≤ inf

e∈E
Ee
XSI

[
max
a∈A

Eπa
[
R | XSI

]]
.

D.3.7. Proof of Proposition 2

Proof. Fix a set S ⊆ {1, . . . , p}, and let π, π̃ ∈ ΠS . Assume H0(S, π, E) is true. By
Item 3(i), we have that R ⊥⊥GS e | XS . Furthermore, since π̃ ∈ ΠS this implies by

Lemma D.1 that Pπ̃,e
R|XSinv

is the same for all e ∈ E which implies that H0(S, π̃, E) is true.
This concludes the proof of Proposition 2.

D.3.8. Proof of Proposition 3

Proof. Let S∗ := AN(R) be the set of observed ancestors of R. In this proof, all the
graphical statements are understood to be taken in GS∗

. Assume that a d-invariant set
S exists. Then, by Theorem 2 of Tian et al. [1998], S ∩ S∗ is d-invariant, too (indeed, S
intersected with all ancestors of R is d-invariant but as S does not contain any hidden
variables, this set equals S ∩ S∗).

We are now ready to prove the statement of the proposition. From (14) we have,

lim inf
n→∞

P(ŜnAN ⊆ S∗)

= lim inf
n→∞

P(
⋂

S:ψS(De1,π
S
,...,DeL,π

S
)=1

S ⊆ S∗)

≥ lim inf
n→∞

P(ψS∩S
∗
(De1,πS∩S

∗
, . . . , DeL,π

S∩S∗
) = 1)

≥1− α,
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where the last inequality follows by Proposition D.2. This completes the proof of Propo-
sition 3.

D.4. Connection to Random Environments

It is possible to define multi-environment contextual bandits using random environments.

Setting D.1 (Random Environment Contextual Bandits). Let X = (X1, . . . , Xd) ∈
X = X 1 × . . . × X d, U = (U1, . . . , Up) ∈ U = U1 × . . . × Up, A ∈ A = {a1, . . . , ak},
R ∈ R, E ∈ E. For any π ∈ {π : X −→ ∆(A)}, let gπ denote the function that ensures,
for all x ∈ X , gπ(x, εA) equals π(x) in distribution for a uniformly distributed εA. Now,
consider functions s, h, and f , a factorizing distribution Pε = PεE×PεU×PεX×PεA×PεR
whose εA component is uniform, and a structural causal model S(π) given by

S(π) :



E := εE

U := s(X, εU )

X := h(X,U,E, εX)

A := gπ(X, εA)

R := f(X,U,A, εR).

Assume further that for all π, the SCM induces a unique distribution over (E,X,U,A,R),
which we denote by Pπ. The structure of the SCM S(π, e) can be also visualized by a
graph G which is constructed in a similar way to the graph in Setting 1, except that the
environment becomes one of the variable nodes in this graph.

Remark D.1. Setting D.1 is a special case of Setting 1 in the following sense: Assume,
starting from Setting D.1, for all i ∈ {1, . . . , n} that (Xi, Ui, Ai, Ri, Ei), are independent
and distributed according to PπiX,U,A,R,E . Then, defining he(·, ·) := h(·, e, ·), we have
that, for all i ∈ {1, . . . , n}, (Xi, Ui, Ai, Ri), are independent and distributed according
to Pπi,EiX,U,A,R, using Setting 1.

D.5. Details for Section 4.2

In Section 4.2, we propose to use the resampling procedure in Thams et al. [2021] to test
the hypothesis of invariance under a test policy πS ∈ ΠS .

For every e ∈ Eobs, we have a data set De consisting of ne observations De
i =

(Xe
i , A

e
i , R

e
i , π

0(Aei |Xe
i )) is available.1 For all e ∈ Eobs and all i ∈ {1, . . . , ne} define

the relative weights as

r(De
i ) :=

πS(Aei |Xe
i )

π0(Aei |Xe
i )
. (D.23)

1It is possible to allow for a different initial policy π0
i at each observation i. One then needs to define

the relative weights r(De
i ) := πS(Aei |Xe

i )/π
0
i (A

e
i |Xe

i ).
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Then, for all e ∈ Eobs, we draw a weighted resample De,πS := (De
i1
, . . . , De

ime
) of size me

from De with weights

wei1,...,ime :=


∏me
ℓ=1 r(D

e
iℓ
)∑

(j1,...,jme )
distinct

∏me
ℓ=1 r(D

e
jℓ
)

(i1, . . . , ime) distinct

0 otherwise.

(D.24)

We then apply an invariance test to the resampled data De1,πS , . . . , DeL,π
S
. A family

of invariance tests {φS}S⊆{1,...,d} is a collection of functions such that for each S, φS is
a function (into {0, 1}) that takes data from environments e1, . . . , eL, each of size mei ,
and tests whether S is invariant. Here, φS = 1 indicates that we reject the hypothesis
of invariance. We say the test has pointwise asymptotic level if for all invariant sets S
and all π ∈ ΠS it holds that

lim sup
min{me1 ,...,meL}→∞

Pπ(φS(De1,πS , . . . , DeL,π
S
) = 1) ≤ α.

We state that the overall procedure (resampling and then testing) has asymptotic level
as long as the test φS has asymptotic level. For simplicity, we assume that ne1 = · · · =
neL =: n and me1 = · · · = meL =: m. The following result follows directly from [Thams
et al., 2021, Theorem 1]

Proposition D.2. Let S ⊆ {1, . . . , d} and suppose that for each environment e1, . . . , eL,
we observe a data set De consisting of n observations De

i = (Xe
i , A

e
i , R

e
i , π

0(Aei | Xe
i )).

Consider πS ∈ ΠS and assume that for all e ∈ E, Eπ0
[r(De

i )
2] < ∞, where r is defined

in (D.23). Let m = o(
√
n) and for all e, let De,πS := (De

i1
, . . . , De

im
) be a resample of

De drawn with weights given by (D.24). Let φS be a hypothesis test for invariance of

the conditional expectation EπS ,e[R | XS ] that has pointwise asymptotic level α ∈ (0, 1)
when φS is applied to data sampled with πS. Applying φS to the resampled data yields
pointwise asymptotic level, that is,

lim sup
n→∞

Pπ
0
(φS(De1,πS , . . . , DeL,π

S
) = 1) ≤ α

if S is invariant.

Proof. We only show that this problem with environments can be cast in the setting of
Thams et al. [2021], which has no reference to environments. Here, we assume that we
have the same number of observations in each environment. The main idea is to create
a data set DE , such that each observation in DE consists of an observation from each of
the environments De.

First, we randomly permute the observations within each data set De to obtain a set
D̃e. Then, we construct an auxiliary data set DE , where the i’th observation DE

i of
DE is the concatenation of the i’th observation (after permutation) from each of the
environments, DE

i := (D̃e1
i , . . . , D̃

eL
i ).
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We can now apply the resampling methodology from Thams et al. [2021] to draw a
sequence (DE

i1
, . . . , DE

im
) with weights given by

wE
i1,...,im

:=


∏m
ℓ=1 r(D

E
iℓ
)∑

(j1,...,jm)
distinct

∏m
ℓ=1 r(D

E
jℓ
)

(i1, . . . , im) distinct

0 otherwise.

where

r(DE
i ) :=

πS(Ãe1i | X̃e1
i )

π0(Ãe1i | X̃e1
i )
· · · π

S(ÃeLi | X̃eL
i )

π0(ÃeLi | X̃eL
i )

,

and X̃e
i , Ã

e
i are the i’th observation of D̃e. Because the observations are independent,

both within and between environments, the probability of drawing the resampled data
set (DE

i1
, . . . , DE

im
) = ((De1

i1
, . . . , DeL

i1
), . . . , (De1

im
, . . . , DeL

im
)) is equal to the probability of

drawing first m observations from e1, (De1
i1
, . . . , De1

im
), and then m from e2 etc. The

result then follows directly from Thams et al. [2021].

In other words, we can test whether S is invariant by resampling the data and applying
an invariance test on the resampled data set. Proposition D.2 states that this procedure
holds level asymptotically. We assume knowledge of the initial policy π0 to ease our
presentation. We can, in fact, show the pointwise asymptotic validity even if the initial
policy π0 is unknown and has to be estimated from the offline data (see Thams et al.
[2021] Theorem 2).

D.6. Algorithm: Off-policy Invariant Causal Prediction

Below, we present an algorithm for finding the causal ancestors AN(R) of the reward R
under a change in policy.

Algorithm D.1 Off-policy Invariant Causal Prediction

Input data D = (De1 , . . . , DeL), test function pv, initial policy π0, resampling size
m := (m1, . . . ,mL) = (

√
|De1 |, . . . ,

√
|DeL |)

1: initialize the collection of invariant sets Sinv ← {} ▷ loop over all subsets
2: for S ∈ P({1, . . . , d}) do ▷ test for invariance
3: if πS ̸= null then
4: is inv← test inv(D,πS , pv, S,m) ▷ (see Algorithm 2)
5: elseis inv← test inv opt π(D, pv, S,m) ▷ (see Algorithm D.2 in

Appendix D.8)
▷ update the accepted invariant set

6: if is inv then add S to Sinv
▷ get the estimated causal ancestors

7: ŜAN ←
⋂
i Sinv[i]

Output: the estimated causal ancestors ŜAN

293



D. Appendix to Invariant Policy Learning: A Causal Perspective

D.7. Faster power optimization

In Section 4.5.2, we show that we can optimize the power to detect non-invarince by
gradient descent. In particular, the gradient is

∇J(θ) = E
[
∇ logP(DπSθ | D)pv(DπSθ )

]
,

where DπSθ is a resample of the data D and pv is a function returning a p-value of our
invariance test. P(DπSθ | D) is given by (D.24), but as discussed in Thams et al. [2021],
this may be infeasible to compute if n is very large.

As a computationally efficient alternative, Thams et al. [2021] proposes an approx-
imate resampling scheme, where a sequence (i1, . . . , ime) (distinct or non-distinct) is
sampled with replacement. That is, the weights are given by

wθ,(i1,...,ime ) :=

∏me
ℓ=1 rθ(D

e
iℓ
)∑

(j1,...,jm)

∏me
ℓ=1 rθ(D

e
jℓ
)

=

∏me
ℓ=1 rθ(D

e
iℓ
)(∑ne

j=1 rθ(D
e
j )
)me .

This expression is much easier to compute than (D.24), because the denominator is a
sum over ne terms (instead of ne!/(ne −me)!). In particular, we get

∇θ logP(DπSθ | D) = ∇θ logwθ,(i1,...,ime )

=

me∑
ℓ=1

∇θ log rθ(De
iℓ
)−me∇θ log

ne∑
j=1

rθ(D
e
j ).

Algorithm D.2 splits the data in two halves: we optimize power on the first half of the
data and test for invariance on the second half. We only use the above approximation for
the power optimization, where we need to explicitly compute the normalization constant
of the weights. In the second half of Algorithm D.2, we use (D.24) (i.e., we do not use the
approximate weights), because Proposition D.2 requires the weights to be those given
in (D.24). If n is so large that we cannot sample by explicitly computing the weights
(D.24), there are several options for sampling from the scheme without computing the
denominator – see Thams et al. [2021] for a variety of approaches.

D.8. Invariance test with optimized test policy

In this section we provide Algorithm D.2, which tests the invariance of a set by choos-
ing a test policy πS that optimizes the power of the invariance test, as discussed in
Section 4.5.2.
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Algorithm D.2 Testing the invariance of a set S with optimization over test policies
πS

test inv opt π(data D = (De1 , . . . , DeL), function pv yielding the p-
value of an invariance test, target set S, resampling size (m1, . . . ,mL) =
(
√
|De1 |/2, . . . ,

√
|DeL |/2), learning rate γ=1e-3, significance level α

▷ sample splitting
1: for e = e1, . . . , eL do
2: ne,sp ← ceil(|De| /2)
3: De,1 ← {(xei , aei , rei , π0(aei |xei ))}

ne,sp
i=1

4: De,2 ← {(xei , aei , rei , π0(aei |xei ))}
|De|
i=ne,sp+1

▷ optimizing power
5: Initialize policy parameters θ
6: while not converged do
7: for e = e1, . . . , eL do
8: for i = 1 to ne,sp do

9: compute weights: rei ←
πSθ (a

e
i | xe,Si )

π0(aei | xei )
10: draw De,πSθ := (De,1

i1
, . . . , De,1

ime
) with replacement from De,1 with probabilities

∝ rei
11: D1,πSθ ← (De1,πSθ , . . . , DeL,π

S
θ )

12: compute p-value: pv(D1,πSθ )

13: compute gradient: ∇ logP(D1,πSθ )

14: update policy parameters: θ ← θ − γpv(D1,πSθ )∇ logP(D1,πSθ )
▷ verifying invariance condition

15: for e = e1, . . . , eL do
16: for i = ne,sp + 1 to |De| do

17: compute weights: rei ←
πSθ (a

e
i | xe,Si )

π0(aei | xei )
18: draw De,πSθ := (De,2

i1
, . . . , De,2

ime
) with replacement from De,2 with probabilities

∝ rei
19: D2,πSθ ← (De1,πSθ , . . . , DeL,π

S
θ )

20: is invariant← pv(D2,πSθ ) ≥ α
Return: is invariant

D.9. Simulation Details

D.9.1. Data Generating Process

We generate data from the following SCM S(π, e):

U := εU , X1 := γeU + εX1 , X2 := αe + εX2 ,

A ∼ π(A | X1, X2), R := βA,1X
2 + βA,2U + εR,

295



D. Appendix to Invariant Policy Learning: A Causal Perspective

where εU , εX2 , εX1 , εR ∼ N (0, 1), A takes values in the space {a1, . . . , aL}. In our
experiments, we consider 3 possible actions (L = 3) and randomly draw the parameters
βa1,1, . . . , βa3,1, βa1,2, . . . , βa3,2 from N (0, 1), while the environment-specific parameters
γe, αe are drawn from N (0, 4). These parameters are then fixed across all experiment
runs.

D.9.2. Initial Policy

We construct an initial policy π0 in Section 5 as follows. First, we generate a training data
D := {(X1

i , X
2
i , Ai, Ri, ei)}ni=1 from the uniform random policy and partition the dataset

D according to the action values: Da1 , . . . , DaL . Then, for each action a ∈ {a1, a2, a3},
we fit a linear regression on Da to estimate the reward R from X1 and X2. Denote the
resulting regressor as fa. The initial policy is then constructed as

π0(A = a | X1, X2) ∝ exp
1

2
fa(X

1, X2).

D.9.3. Invariant Test with True Conditional Expectation
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Figure D.1.: Acceptance rates for the off-policy invariance test with true conditional
expectation.

D.10. Warfarin Case Study

D.10.1. Initial Policy

We generate the training data {(Xi, Ai, Ri, ei)}ni=1, where ei ∈ E = {1, . . . , 4} under the
following initial policy. We fit a linear regression to estimate the optimal warfarin dose
from BMI score. Let us denote the resulting regressor by fBMI. The initial policy π0

then selects actions according to the following (unnormalized) distribution:

π0(A = a | XBMI) ∝ exp
1

2

∣∣fBMI(XBMI)−m(a)
∣∣−1

,

where, as before, m(a) denotes a median value of the optimal warfarin doses within the
bucket a.
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Figure D.2.: Analysis on the generalization performance and the degree of invariance.
The y-axes represent the expected reward of policies with different subsets,
while the x-axes represent their corresponding p-values return from the
invariance test. The result shows that a policy that depends on a subset
with a higher degree of invariance is more likely to generalize better to a
new environment.

D.10.2. Defining Sets

The resulting defining set is {Race, VKORC1}. The following are the details of these
variables (see also Consortium [2009]):

• VKORC1: Genetic information – vitamin K epoxide reductase complex, subunit
1.

• Race: Racial categories as defined by the U.S. Office of Management and Budget.

D.10.3. P-value and Generalization Analysis

In the semi-real experiment (see Section 6.4), we further analyze the generalization per-
formance of each candidate set and its corresponding p-value returned by the invariance
test. To distinguish the effects of invariance and predictiveness on the generalization
performance (measured by the expected reward on a test environment), we partition the
subsets into four groups depending on their performance on the training environments
(1 is the least predictive and 4 is the most predictive).

Within each predictiveness group, the scatter plots in Fig. D.2 display a correlation
between the p-value returned by the invariance test and the expected reward under a test
environment. This result indicates that a policy that depends on a subset with a higher
degree of invariance (higher p-value) tends to generalizes better to a new environment.
The correlation is strongest in the test environment e = 4 in which we could also observe
the largest performance gap between invariant and non-invariant approaches, see Fig. 5.
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D.11. Example justifying Assumption 1

π

π

π

π

X1

X2

X3
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U4

e

X4

A R

Figure D.3.: Example setting illustrating that Assumption 1 is required to derive the
theoretical results in Proposition 1 and Item 2(ii).

We now discuss an example (presented in Fig. D.3) that justifies Assumption 1. In
this example, the variables U1 and U2 influence only the observed covariates X but not
the reward R. This example would lead to the following problems in Proposition 1 and
Theorem 2.
First, the subsets {X1, X4} and {X2, X3} are both d-invariant, but no set of size 3

or more is d-invariant. By symmetry, there is no guarantee that a d-invariant set that
is optimal in the training environments will also be optimal in a new test environment
because e.g. {X1, X4} might be optimal on the training data while {X2, X3} is optimal
on the test data. This then refutes the statement in Proposition 1. Assumption 1 fixes
this problem as it ensures the existence of a largest d-invariant set which is a superset
of all other d-invariant sets (see the proof of Lemma D.2), and rules out this example.
Second, there is no strongly non-d-invariant variable (see Definition 5) in this example

and hence Assumption 2 does not guarantee the existence of a confounding removing
environment. This implies that a set E of environments can be arbitrary, for instance,
it could be a singleton E = {e}. In that case, Item 2(ii) would no longer hold (but
Item 2(i) remains valid). We, therefore, require Assumption 1 for proving the results of
Proposition 1 and the second statement of Item 2(ii).
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E.1. Proofs

E.1.1. A direct Proof of Proposition 1

Proof. Assume that E is exogenous. If E ∈ PAY , then there are no minimally invariant
sets, and the statement holds trivially. If E ̸∈ PAY , then assume for contradiction, that
an invariant set S0 ⊊ S exists. By assumption, |S \S0| > 1, because otherwise S0 would
be non-invariant.

We can choose S1 ⊆ S and k0, k1, . . . , kl ∈ S with l ≥ 1 such that for all i = 1, . . . , l :
ki /∈ DEk0 and

S0 ∪ S1 ∪ {k0, . . . , kl} = S ∈ I
for 0 ≤ i < l : S0 ∪ S1 ∪ {k0, . . . , ki} /∈ I

S0 ∪ S1 ∈ I.

This can be done by iteratively removing elements from S\S0, removing first the earliest
elements in the causal order. The first invariant set reached in this process is then S0∪S1.
Since S0 ∪ S1 ∪ {k0} is non-invariant, there exists a path π between E and Y that is

open given S0 ∪ S1 ∪ {k0} but blocked given S0 ∪ S1. Since removing k0 blocks π, k0
must be a collider or a descendant of a collider c on π:

E · · · c · · · Y

...

k0

π

πE πY

Here, − represents an edge that either points left or right. Since π is open given
S0 ∪ S1, the two sub-paths πE and πY are open given S0 ∪ S1.

Additionally, since S0 ∪ S1 ∪ {k1, . . . , kl} = S \ {k0} is non-invariant, there exists a
path τ between E and Y that is unblocked given S0∪S1∪{k1, . . . , kl} and blocked given
S0 ∪ S1 ∪ {k1, . . . , kl} ∪ {k0}. It follows that k0 lies on τ (otherwise τ cannot be blocked
by adding k0) and k0 has at least one outgoing edge. Assume, without loss of generality
that there is an outgoing edge towards Y .

Since τ is open given S0∪S1∪{k1, . . . , kl}, so is τY . If there are no colliders on τY , then

τY is also open given S0 ∪ S1. But then the path the path E
πE· · ·→ c → · · · → k0

τY→ · · ·

299



E. Appendix to Invariant Ancestry Search

E · · · k0 · · · Y

τ

τY

is also open given S0 ∪ S1, contradicting invariance of S0 ∪ S1.

E · · · c

· · · Y

...

k0

πE
τY

If there are colliders on τY , let m be the collider closest to k0, meaning that m ∈ DEk0 .
Since τY is open given S0 ∪ S1 ∪ {k1, . . . , kl}, it means that either m or a descendant of
m is in S0 ∪ S1 ∪ {k1, . . . , kl}. Since {k1, . . . , kl} ∩DEk0 = ∅, there exist v ∈ (S0 ∪ S1) ∩
({m} ∪ DEm). But then v ∈ DEk0 ∩(S0 ∪ S1), meaning that π is open given S0 ∪ S1,
contradicting invariance of S0 ∪ S1.
We could assume that τY had an outgoing edge from k0 without loss of generality,

because if there was instead an outgoing edge from k0 on τE , the above argument would
work with πY and τE instead. This concludes the proof.

E.1.2. A direct proof of Proposition 2

Proof. If E is a parent of Y , we haveMI = ∅ and the statement follows trivially. Thus,
assume that E is not a parent of Y . We will show that if S ∈ I is not a subset of ANY ,
then S∗ := S ∩ANY ∈ I, meaning that S /∈MI.

Assume for contradiction that there is a path p between E and Y that is open given
S∗. Since S ∈ I, p is blocked given S. Then there exists a non-collider Z on p that is in
S \ANY . We now argue that all nodes on p are ancestors of Y , yielding a contradiction.

First, assume that there are no colliders on p. If E is exogenous, then p is directed
from E to Y . (If E is an ancestor of Y , any node on p is either an ancestor of Y or E,
and thus Y .) Second, assume that there are colliders on p. Since p is open given the
smaller set S∗ ⊊ S, all colliders on p are in S∗ or have a descendant in S∗; therefore all
colliders are ancestors of Y . If E is exogenous, any node on p is either an ancestor of Y
or of a collider on p. (If E is an ancestor of Y , any node on p is either an ancestor of Y ,
of a collider on p or of E, and thus also Y .) This completes the proof of Proposition 2.

E.1.3. Proof of Proposition 3

Proof. First, we show that SIAS ∈ I. If SIAS is the union of a single minimally invariant
set, it trivially holds that SIAS ∈ I. Now assume that SIAS is the union of at least two
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minimally invariant sets, SIAS = S1 ∪ . . . ∪ Sn, n ≥ 2, and assume for a contradiction
that there exists a path π between E and Y that is unblocked given SIAS.

Since π is blocked by a strict subset of SIAS, it follows that π has at least one collider;
further every collider of π is either in SIAS or has a descendant in SIAS, and hence every
collider of π is an ancestor of Y , by Proposition 2. If E is exogenous, π has the following
shape

E · · · c1 · · · c2 · · · ck · · · Y.

π1 π2 π3, . . . , πk πk+1

(If E is not exogenous but E ∈ ANY , then π takes either the form displayed above or
the shape displayed below. However, no matter which of the shapes π takes, the proof
proceeds the same.)

E · · · c1 · · · c2 · · · ck · · · Y .

π1 π2 π3, . . . , πk πk+1

The paths π1, . . . , πk+1, k ≥ 1, do not have any colliders and are unblocked given SIAS.
In particular, π1, . . . , πk+1 are unblocked given S1.

The path πk+1 must have a final edge pointing to Y , because otherwise it would be a
directed path from Y to ck, which contradicts acyclicity since ck is an ancestor of Y .

As c1 is an ancestor of Y , there exists a directed path, say ρ1, from c1 to Y . Since
π1 is open given S1 and since S1 is invariant, it follows that ρ1 must be blocked by
S1 (otherwise the path E

π1→ c1
ρ1→ Y would be open). For this reason, S1 contains a

descendant of the collider c1.

Similarly, if ρ2 is a directed path from c2 to Y , then S1 blocks ρ2, because otherwise

the path E
π1→ c1

π2← · · · → c2
ρ2→ Y would be open. Again, for this reason, S1 contains a

descendant of c2.

Iterating this argument, it follows that S1 contains a descendant of every collider on
π, and since π1, . . . , πk+1 are unblocked by S1, π is open given S1. This contradicts
invariance of S1 and proves that SIAS ∈ I.

We now show that SICP ⊆ SIAS with equality if and only if SICP ∈ I. First, SICP ⊆
SIAS because SIAS is a union of the minimally invariant sets, and SICP is the intersection
over all invariant sets. We now show the equivalence statement.

Assume first that SICP ∈ I. As SICP is the intersection of all invariant sets, SICP ∈ I
implies that there exists exactly one invariant set, that is contained in all other invariant
sets. By definition, this means that there is only one minimally invariant set, and that
this set is exactly SICP. Thus, SIAS = SICP.

Conversely assume that SICP /∈ I. By construction, SICP is contained in any invariant
set, in particular in the minimally invariant sets. However, since SICP is not invariant
itself, this containment is strict, and it follows that SICP ⊊ SIAS.
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E.1.4. Proof of Proposition 4

Proof. First we show PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆ SICP. If j ∈ PAY ∩CHE , any
invariant set contains j, because otherwise the path E → j → Y is open. Similarly, if
j ∈ PAY ∩PA(ANY ∩CHE), any invariant set contains j (there exists a node j′ such that
E → j′ → · · · → Y and E → j′ ← j → Y , and any invariant set S must contain j′ or one
of its descendants; thus, it must also contain j to ensure that the path E → j′ ← j → Y
is blocked by S.) It follows that for all invariant S,

PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆ S,

such that

PAY ∩ (CHE ∪PA(ANY ∩CHE)) ⊆
⋂

S invariant

S.

To show SICP ⊆ PAY ∩ (CHE ∪PA(ANY ∩CHE)), take any j /∈ PAY ∩ (CHE ∪PA(ANY ∩CHE)).
We argue, that an invariant set S̄ not containing j exists, such that j /∈ SICP =⋂
S invariant S. If j /∈ PAY , let S̄ = PAY , which is invariant. If j ∈ PAY , define

S̄ = (PAY \{j}) ∪ PAj ∪(CHj ∩ANY ) ∪ PA(CHj ∩ANY ).

Because j /∈ CHE and j /∈ PA(ANY ∩CHE), we have E /∈ S̄. Also observe that S̄ ⊆
ANY . We show that any path between E and Y is blocked by S̄, by considering all
possible paths:

· · · j′ → Y for j′ ̸= j: Blocked because j′ ∈ PAY \{j}.

· · ·v→ j→ Y: Blocked because v ∈ PAj ⊆ S̄ and E /∈ PAj .

· · ·v→ c← j→ Y and c ∈ ANY: Blocked because v ∈ PAj(CHj ∩ANY ).

· · ·v→ c← j→ Y and c /∈ ANY: Blocked because S̄ ⊆ ANY , and since c /∈ ANY ,
S̄ ∩DEc = ∅ and the path is blocked given S̄ because of the collider c.

· · · → c← · · · ← v← j→ Y and c ∈ ANY: Blocked because v ∈ ANc and c ∈ ANY , so
v ∈ CHj ∩ANY ⊆ S̄.

· · · → c← · · · ← v← j→ Y and c /∈ ANY: Same reason as for the case ‘· · ·v→ c← j→ Y
and c /∈ ANY’.

· · · → c← · · · ← Y Since S̄ ⊆ ANY , we must have S̄ ∩ DEc = ∅ (otherwise this would
create a directed cycle from Y → · · · → Y ). Hence the path is blocked given S̄
because of the collider c.

Since there are no open paths from E to Y given S̄, S̄ is invariant, and SICP ⊆ S̄. Since
j /∈ S̄, it follows that j /∈ SICP. This concludes the proof.
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E.1.5. Proof of Theorem 1

Proof. Consider first the case where all marginal tests have pointwise asymptotic power
and pointwise asymptotic level.

Pointwise asymptotic level: Let P0 ∈ HMI
0,S . By the assumption of pointwise

asymptotic level, there exists a non-negative sequence (εn)n∈N such that limn→∞ εn = 0
and P0(ϕn(S) = 1) ≤ α+ εn. Then

P0(ϕ
MI
n (S) = 1) = P0

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≤ P0(ϕn(S) = 1) +

∑
j∈S

P0(ϕn(S \ {j}) = 0)

≤ α+ εn +
∑
j∈S

P0(ϕn(S \ {j}) = 0)

→ α+ 0 as n→∞
= α.

The convergence step follows from

HMI
0,S = HI

0,S ∩
⋂
j∈S

HI
A,S\{j}

and from the assumption of pointwise asymptotic level and power. As P0 ∈ HMI
0,S was

arbitrary, this shows that ϕMI
n has pointwise asymptotic level.

Pointwise asymptotic power: To show that the decision rule has pointwise asymp-
totic power, consider any PA ∈ HMI

A,S . We have that

HMI
A,S = HI

A,S ∪

HI
0,S ∩

⋃
j∈S

HI
0,S\{j}

 . (E.1)

As the two sets HI
A,S and

HI
0,S ∩

⋃
j∈S

HI
0,S\{j}

are disjoint, we can consider them one at a time. Consider first the case PA ∈ HI
A,S .

This means that S is not invariant and thus

PA(ϕMI
n (S) = 1) = PA

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}, α) = 0)


≥ PA(ϕn(S) = 1)

→ 1 as n→∞
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by the assumption of pointwise asymptotic power.

Next, assume that there exists j′ ∈ S such that PA ∈ (HI
0,S ∩HI

0,S\{j′}). Then,

PA(ϕMI
n (S) = 1) = P0

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≥ PA(ϕn(S \ {j′}) = 0)

≥ 1− α− εn
→ 1− α as n→∞.

Thus, for arbitrary PA ∈ HMI
A,S we have shown that PA(ϕMI

n (S) = 1) ≥ 1 − α in the

limit. This shows that ϕMI
n has pointwise asymptotic power of at least 1 − α. This

concludes the argument for pointwise asymptotic power.

Next, consider the case that the marginal tests have uniform asymptotic power and
uniform asymptotic level. The calculations for showing that ϕMI

n has uniform asymptotic
level and uniform asymptotic power of at least 1−α are almost identical to the pointwise
calculations.

Uniform asymptotic level: By the assumption of uniform asymptotic level, there
exists a non-negative sequence εn such that limn→∞ εn = 0 and supP∈HI

0,S
P(ϕn(S) =

1) ≤ α+ εn. Then,

sup
P∈HMI

0,S

P(ϕMI
n (S) = 1) = sup

P∈HMI
0,S

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≤ sup

P∈HMI
0,S

P(ϕn(S) = 1) +
∑
j∈S

P(ϕn(S \ {j}) = 0)


≤ sup

P∈HMI
0,S

P(ϕn(S) = 1) +
∑
j∈S

sup
P∈HMI

0,S

P(ϕn(S \ {j}) = 0)

≤ α+ εn +
∑
j∈S

(
1− inf

P∈HMI
0,S

P(ϕn(S \ {j}) = 1)

)
→ α+ 0 +

∑
j∈S

(1− 1) as n→∞

= α.

Uniform asymptotic power: From (E.1), it follows that

inf
P∈HMI

A,S

P(ϕMI
n (S) = 1) = min

{
inf

P∈HI
A,S

P(ϕMI
n (S) = 1), inf

P∈HI
0,S∩

⋃
j∈S H

I
0,S\{j}

P(ϕMI
n (S) = 1)

}
.
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We consider the two inner terms in the above separately. First,

inf
P∈HI

A,S

P(ϕMI
n (S) = 1) = inf

P∈HI
A,S

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≥ inf

P∈HI
A,S

P(ϕn(S) = 1)

→ 1 as n→∞.

Next,

inf
P∈HI

0,S∩
⋃
j∈S H

I
0,S\{j}

P(ϕMI
n (S) = 1)

= inf
P∈HI

0,S∩
⋃
j∈S H

I
0,S\{j}

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


= min

j∈S

 inf
P∈HI

0,S∩H
I
0,S\{j}

P

(ϕn(S) = 1) ∪
⋃
j∈S

(ϕn(S \ {j}) = 0)


≥ min

j∈S

{
inf

P∈HI
0,S∩H

I
0,S\{j}

P(ϕn(S \ {j}) = 0)

}

= min
j∈S

1− sup
P∈HI

0,S∩H
I
0,S\{j}

P(ϕn(S \ {j}) = 1)


≥ 1− α− εn
→ 1− α as n→∞.

This shows that ϕMI
n has uniform asymptotic power of at least 1− α, which completes

the proof.

E.1.6. Proof of Theorem 2

Proof. We have that

lim
n→∞

P(ŜIAS ⊆ ANY ) ≥ lim
n→∞

P(ŜIAS = SIAS)

as SIAS ⊆ ANY by Proposition 3. Furthermore, we have

P(ŜIAS = SIAS) ≥ P(M̂I =MI).
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Let A := {S | S ̸∈ I} \ {S | ∃S′ ⊊ S s.t. S′ ∈ MI} be those non-invariant sets that do
not contain a minimally invariant set and observe that

(M̂I =MI) ⊇
⋂

S∈MI
(ϕn(S, αC

−1) = 0) ∩
⋂
S∈A

(ϕn(S, αC
−1) = 1). (E.2)

To see why this is true, note that to correctly recover MI, we need to 1) accept the
hypothesis of minimal invariance for all minimally invariant sets and 2) reject the hy-
pothesis of invariance for all non-invariant sets that are not supersets of a minimally
invariant set (any superset of a set for which the hypothesis of minimal invariance is not

rejected is removed in the computation of M̂I). Then,

P(M̂I =MI) ≥ P

( ⋂
S∈MI

(ϕn(S, αC
−1) = 0) ∩

⋂
S∈A

(ϕn(S, αC
−1) = 1)

)

≥ 1− P

( ⋃
S∈MI

(ϕn(S, αC
−1) = 1)

)
−
∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1−
∑
S∈MI

P(ϕn(S, αC−1) = 1)−
∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1−
∑
S∈MI

(αC−1 + εn,S)−
∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1− |MI|αC−1 +
∑
S∈MI

εn,S −
∑
S∈A

P(ϕn(S, αC−1) = 0)

≥ 1− α+
∑
S∈MI

εn,S −
∑
S∈A

P(ϕn(S, αC−1) = 0)

→ 1− α as n→∞,

where (εn,S)n∈N,S∈MI are non-negative sequences that converge to zero and the last step
follows from the assumption of asymptotic power. The sequences (εn,S)n∈N,S∈MI exist
by the assumption of asymptotic level.

E.1.7. Proof of Proposition 5

Proof. We prove the statements one by one.

(i) Since SmIAS is the union over some of the minimally invariant sets, SmIAS ⊆ SIAS.
Then the statement follows from Proposition 2.

(ii) If m ≥ mmax, all S ∈MI satisfy the requirement |S| ≤ m.

(iii) If m ≥ mmin, then SmIAS contains at least one minimally invariant set. The
statement then follows from the first part of the proof of Proposition 3 given in Ap-
pendix E.1.3.
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(iv) SmIAS contains at least one minimally invariant set and, by (iii), it is itself invariant.
Thus, if SICP ̸∈ I, then SICP ⊊ SmIAS. If SICP ∈ I, then there exists only one minimally
invariant set, which is SICP (see proof of Proposition 3), and we have SICP = SmIAS. This
concludes the proof.

E.1.8. Proof of Theorem 3

Proof. The proof is identical to the proof of Theorem 2, when changing the correction
factor 2−d to C(m)−1, adding superscript m’s to the quantities M̂I, ŜIAS and SIAS, and
adding the condition |S| ≤ m to all unions, intersections and sums.

E.1.9. Proof of Proposition 6

By Proposition 2, we have SIAS ⊆ ANY , and since SIAS,O ⊆ SIAS, the claim follows
immediately.

E.2. Oracle Algorithms for Learning SIAS

In this section, we review some of the existing literature on minimal d-separators, which
can be exploited to give an algorithmic approach for finding SIAS from a DAG. We first
introduce the concept of M -minimal separation with respect to a constraining set I.

Definition E.1 (van der Zander et al. [2019], Section 2.2). Let I ⊆ [d], K ⊆ [d],
and S ⊆ [d]. We say that S is a K-minimal separator of E and Y with respect to a
constraining set I if all of the following are true:

(i) I ⊆ S.

(ii) S ∈ I.

(iii) There does not exists S′ ∈ I such that K ⊆ S′ ⊊ S.

We denote byMK,I the set of all K-minimal separating sets with respect to constraining
set I.

(In this work, S ∈ I means E ⊥⊥ Y |S, but it can stand for other separation state-
ments, too.) The definition of a K-minimal separator coincides with the definition of a
minimally invariant set if both K and the constraining set I are equal to the empty set.
An ∅-minimal separator with respect to constraining set I is called a strongly-minimal
separator with respect to constraining set I.
We can now represent (2) using this notation. M∅,∅ contains the minimally invariant

sets and thus
SIAS :=

⋃
S∈M∅,∅

S.

Listing the setMI,I of all I-minimal separators with respect to the constraining set I (for
any I) can be done in polynomial delay time O(d3) [van der Zander et al., 2019, Takata,
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2010], where delay here means that finding the next element ofMI,I (or announcing that
there is no further element) has cubic complexity. This is the algorithm we exploit, as
described in the main part of the paper.

Furthermore, we have
i ∈ SIAS ⇔ M∅,{i} ̸= ∅.

This is because i ∈ SIAS if and only if there is a minimally invariant set that contains i,
which is the case if and only if there exist a strongly minimal separating set with respect
to constraining set {i}. Thus, we can construct SIAS by checking, for each i, whether
there is an element in M∅,{i}. Finding a strongly-minimal separator with respect to
constraining set I, i.e., finding an element in M∅,I , is NP-hard if the set I is allowed to
grow [van der Zander et al., 2019]. To the best of our knowledge, however, it is unknown
whether finding an element in M∅,{i}, for a singleton {i} is NP-hard.

E.3. The Maximum Number of Minimally Invariant Sets

If one does not have a priori knowledge about the graph of the system being analyzed,
one can still apply Theorem 2 with a correction factor 2d, as this ensures (with high
probability) that no minimally invariant sets are falsely rejected. However, we know
that the correction factor is strictly conservative, as there cannot exist 2d minimally
invariant sets in a graph. Thus, correcting for 2d tests, controls the familywise error rate
(FWER) among minimally invariant sets, but increases the risk of falsely accepting a
non-invariant set relatively more than what is necessary to control the FWER. Here, we
discuss the maximum number of minimally invariant sets that can exist in a graph with
d predictor nodes and how a priori knowledge about the sparsity of the graph and the
number of interventions can be leveraged to estimate a less strict correction that still
controls the FWER.

As minimally invariant sets only contain ancestors of Y (see Proposition 2), we only
need to consider graphs where Y comes last in a causal ordering. Since d-separation is
equivalent to undirected separation in the moralized ancestral graph [Lauritzen, 1996],
finding the largest number of minimally invariant sets is equivalent to finding the max-
imum number of minimal separators in an undirected graph with d + 2 nodes. It is an
open question how many minimal separators exists in a graph with d + 2 nodes, but
it is known that a lower bound for the maximum number of minimal separators is in
Ω(3d/3) [Gaspers and Mackenzie, 2015]. We therefore propose using a correction factor
of C = 3⌈d/3⌉ when estimating the set ŜIAS from Theorem 2 if one does not have a priori
knowledge of the number of minimally invariant sets in the DAG of the SCM being
analyzed. This is a heuristic choice and is not conservative for all graphs.

Theorem 2 assumes asymptotic power of the invariance test, but as we can only have
a finite amount of data, we will usually not have full power against all non-invariant
sets that are not supersets of a minimally invariant set. Therefore, choosing a correction
factor that is potentially too low represents a trade-off between error types: if we correct
too little, we stand the risk of falsely rejecting a minimally invariant set but not rejecting
a superset of it, whereas when correcting too harshly, there is a risk of failing to reject
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non-invariant sets due to a lack of power.
If one has a priori knowledge of the sparsity or the number of interventions, these

can be leveraged to estimate the maximum number of minimally invariant sets using
simulation, by the following procedure:

1. For b = 1, . . . , B:

a) Sample a DAG with d predictor nodes, Ninterventions ∼ PN interventions and
p ∼ Pp probability of an edge being present in the graph over (X,Y ), such
that Y is last in a causal ordering. The measures PN and Pp are distributions
representing a priori knowledge. For instance, in a controlled experiment, the
researcher may have chosen the number N0 of interventions. Then, PN is a
degenerate distribution with PN (N0) = 1.

b) Compute the set of all minimally invariant sets, e.g., using the adjustmentSets
algorithm from dagitty [Textor et al., 2016].

c) Return the number of minimally invariant sets.

2. Return the largest number of minimally sets found in the B repetitions above.

Instead of performing B steps, one can continually update the largest number of mini-
mally invariant sets found so far and end the procedure if the maximum has not updated
in a predetermined number of steps, for example.

E.4. A Finite Sample Algorithm for Computing ŜIAS

In this section, we provide an algorithm for computing the sets ŜIAS and ŜmIAS presented
in Theorems 2 and 3. The algorithm finds minimally invariant sets by searching for
invariant sets among sets of increasing size, starting from the empty set. This is done,
because the first (correctly) accepted invariant is a minimally invariant set. Further-
more, any set that is a superset of an accepted invariant set, does not need to be tested
(as this set cannot be minimal). Tests for invariance can be computationally expensive
if one has large amounts of data. Therefore, skipping unnecessary tests offers a signif-
icant speedup. In the extreme case, where all singletons are found to be invariant, the
algorithm completes in d + 1 steps, compared to

∑m
i=0

(
d
i

)
steps (2d if m = d). This is

implemented in lines 8-10 of Algorithm E.1.

E.5. Additional Experiment Details

E.5.1. Simulation Details for Section 6.1

We sample graphs that satisfy Assumption 1 with the additional requirement that Y ∈
DEY by the following procedure:

1. Sample a DAG G for the graph of (X,Y ) with d+1 nodes, for d ∈ {4, 6, . . . , 20} ∪
{100, 1,000}, and choose Y to be a node (chosen uniformly at random) that is not
a root node.
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Algorithm E.1 An algorithm for computing ŜIAS from data

Input: A decision rule ϕn for invariance, significance thresholds α0, α, max size of
sets to test m (potentially m = d) and data
Output: The set ŜIAS

1: Initialize M̂I as an empty list.
2: PS ← {S ⊆ [d] | |S| ≤ m}
3: if ϕn(∅, α0) = 0 then
4: End the procedure and return ŜIAS = ∅
5: Sort PS in increasing order according the set sizes
6: for S ∈ PS do
7: if S ⊋ S′ for any S′ ∈ M̂I then
8: Skip the test of S and go to next iteration of the loop
9: else

10: Add S to M̂I if ϕn(S, α) = 0, else continue

11: if The union of M̂I contains all nodes then
12: Break the loop

13: Return ŜIAS as the union of all sets in M̂I

2. Add a root node E to G with Ninterventions children that are not Y . When d ≤ 20,
Ninterventions ∈ {1, . . . , d} and when d ≥ 100, Ninterventions ∈ {1, . . . , 0.1 × d} (i.e.,
we consider interventions on up to ten percent of the predictor nodes).

3. Repeat the first two steps if Y ̸∈ DEE .

E.5.2. Simulation Details for Section 6.2

We simulate data for the experiment in Section 6.2 (and the additional plots in Ap-
pendix E.5.4) by the following procedure:

1. Sample data from a single graph by the following procedure:

a) Sample a random graph G of size d + 1 and sample Y (chosen uniformly at
random) as any node that is not a root node in this graph.

b) Sample coefficients, βi→j , for all edges (i→ j) in G from U((−2, 0.5)∪(0.5, 2))
independently.

c) Add a node E with no incoming edges and Ninterventions children, none of
which are Y . When d = 6, we set Ninterventions = 1 and when d = 100, we
sample Ninterventions uniformly from {1, . . . , 10}.

d) If Y is not a descendant of E, repeat steps (a), (b) and (c) until a graph
where Y ∈ DEE is obtained.

e) For n ∈ {102, 103, 104, 105}:
i. Draw 50 datasets of size n from an SCM with graph G and coefficients
βi→j and with i.i.d. N(0, 1) noise innovations. The environment variable,
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E, is sampled independently from a Bernoulli distribution with proba-
bility parameter p = 0.5, corresponding to (roughly) half the data being
observational and half the data interventional. The data are generated
by looping through a causal ordering of (X,Y ), starting at the bottom,
and standardizing a node by its own empirical standard deviation before
generating children of that node; that is, a node Xj is first generated
from PAj and then standardized before generating any node in CHj . If
Xj is intervened on, we standardize it prior to the intervention.

ii. For each sampled dataset, apply IAS and ICP. Record the Jaccard sim-
ilarities between IAS and ANY and between ICP and ANY , and record
whether or not is was a subset of ANY and whether it was empty.

iii. Estimate the quantity plotted (average Jaccard similarity in Fig. 4 or
probability of ŜIAS ⊆ ANY or ŜIAS = ∅ in Fig. E.2) from the 50 simulated
datasets.

f) Return the estimated quantities from the previous step.

2. Repeat the above 100 times and save the results in a data-frame.

E.5.3. Analysis of the Choice of C in Section 6.2

We have repeated the simulation with d = 6 from Section 6.2 but with a correction
factor of C = 26, as suggested by Theorem 2 instead of the heuristic correction factor of
C = 9 suggested in Appendix E.3. Fig. E.1 shows the results. We see that the results are
almost identical to those presented in Fig. 4. Thus, in the scenario considered here, there
is no change in the performance of ŜIAS (as measured by Jaccard similarity) between
using a correction factor of C = 26 and a correction factor of C = 3⌈6/3⌉ = 9. In larger
graphs, it is likely that there is a more pronounced difference. E.g., at d = 10, the
strictly conservative correction factor suggested by Theorem 2 is 210 = 1024, whereas
the correction factor suggested in Appendix E.3 is only 3⌈10/3⌉ = 34 = 81, and at d = 20
the two are 220 = 1,048,576 and 3⌈20/3⌉ = 37 = 2187.

E.5.4. Analysis of the Choice of α0 in Section 6.2

Here, we investigate the quantities P(ŜIAS ⊆ ANY ), P(Ŝ1
IAS ⊆ ANY ), P(ŜIAS = ∅) and

P(Ŝ1
IAS = ∅) using the same simulation setup as described in Section 6.2. Furthermore, we

also ran the simulations for values α0 = α (testing all hypotheses at the same level), α0 =
10−6 (conservative, see Remark 1) as in Section 6.2 and α0 = 10−12 (very conservative).
The results for α = 10−6 (shown in Fig. E.2) were recorded in the same simulations that
produced the output for Fig. 4. For α0 ∈ {α, 10−12} (shown in Fig. E.3 and Fig. E.4,
respectively) we only simulated up to 10,000 observations, to keep computation time
low.

Generally, we find that the probability of IAS being a subset of the ancestors seems
to generally hold well and even more so with large sample sizes. (see Figs. E.2 to E.4),
in line with Theorem 2. When given 100,000 observations, the probability of IAS being
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Figure E.1.: The same figure as in Fig. 4, but with a correction factor of C = 26 = 64
instead of C = 3⌈6/3⌉ = 9. Only d = 6 shown here, as the correction
factor for d = 100 is unchanged. Here, the guarantees of Theorem 2 are
not violated by a potentially too small correction factor, and the results are
near identical to those given in Fig. 4 using a milder correction factor.

a subset of ancestors is roughly equal to one for almost all SCMs, although there are a
few SCMs, where IAS is never a subset of the ancestors (see Fig. E.2). For α0 = 10−6,
the median probability of IAS containing only ancestors is one in all cases, except for
d = 100 with 1,000 observations – here, the median probability is 87%.

In general, varying α0 has the effect hypothesized in Remark 1: lowering α0 increases
the probability that IAS contains only ancestors, but at the cost of increasing the proba-
bility that it is empty (see Figs. E.2 to E.4). For instance, the median probability of IAS
being a subset of ancestors when α0 = 10−12 is one for all sample sizes, but the output is
always empty when there are 100 observations and empty roughly half the time even at
1,000 observations when d = 100 (see Fig. E.4). In contrast, not testing the empty set at
a reduced level, means that the output of IAS is rarely empty, but the probability of IAS
containing only ancestors decreases. Still, even with α0 = α, the median probability of
IAS containing only ancestors was never lower than 80% (see Fig. E.3). Thus, choosing
α0 means choosing a trade-off between finding more ancestor-candidates, versus more of
them being false positives.

E.5.5. Analysis of the strength of inverventions in Section 6.2

Here, we repeat the d = 6 simulations from Section 6.2 with a reduced strength of
the environment to investigate the performance of IAS under weaker interventions. We
sample from the same SCMs as sampled in Section 6.2, but reduce the strength of the
interventions to be 0.5 instead of 1. That is, the observational distributions are the same
as in Section 6.2, but interventions to a node Xj are here half as strong as in Section 6.2.

The Jaccard similarity between ŜIAS and ANY is generally lower than what we found in
Fig. 4 (see Fig. E.5). This is likely due to having lower power to detect non-invariance,
which has two implications. First, lower power means that we may fail to reject the
empty set, meaning that we output nothing. Then, the Jaccard similarity between ŜIAS

and ANY is zero. Second, it may be that we correctly reject the empty set, but fail to
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Figure E.2.: The empirical probabilities of recovering a subset of ANY (top row) and
recovering an empty set (bottom row), when testing the empty set for in-
variance at level α0 = 10−6. Generally, our methods seem to hold level
well, especially when sample sizes are large. When the sample size is small,
the output is often the empty set. When d = 6, we estimate ŜIAS (left col-
umn) and when d = 100, we estimate Ŝ1

IAS (right column). The results here
are from the simulations that also produced Fig. 4. Medians are displayed
as orange lines through each boxplot. Each point represents the probabil-
ity that the output set is ancestral (resp. empty) for a randomly selected
SCM, as estimated by repeatedly sampling data from the same SCM for
every n ∈ {102, 103, 104, 105}. Observations from the same SCM are con-
nected by a line. Each figure contains data from 100 randomly drawn SCMs.
Points have been perturbed slightly along the x-axis to improve readability.

reject another non-invariant set which is not an ancestor of Y which is then potentially
included in the output. Then, the ŜIAS and ANY is lower, because we increase the
number of false findings.
We find that the probability that ŜIAS is a subset of ancestors is generally unchanged

for the lower intervention strength, but the probability of ŜIAS generally increases for
small sample sizes (see Table E.1). This indicates that IAS does not make more mistakes
under the weaker interventions, but it is more often uninformative. We see also that in
both settings, ŜIAS is empty more often than ŜICP for low sample sizes, but less often
for larger samples (see Table E.1). This is likely because IAS tests the empty set at
a much lower level than ICP does (10−6 compared to 0.05). Thus, IAS requires more
power to find anything, but once it has sufficient power, it finds more than ICP (see also
Fig. E.5). The median probability of ICP returning a subset of the ancestors was always
at least 95% (not shown).
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Figure E.3.: The same figure as Fig. E.2, but with α0 = α = 0.05 and n ∈ {102, 103, 104}.
Testing the empty set at the non-conservative level α0 = α means that the
empty set is output less often for small sample sizes, but decreases the
probability that the output is a subset of ancestors. Thus, we find more
ancestor-candidates, but make more mistakes when α0 = α. However, the
median probability of the output being a subset of ancestors is at least 80%
in all configurations.
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Figure E.4.: The same figure as Fig. E.2, but with α0 = 10−12 and n ∈ {102, 103, 104}.
Testing the empty set at at very conservative level α0 = 10−12 means that
the empty set is output more often (for one hundred observations, we only
find the empty set), but increases the probability that the output is a sub-
set of ancestors. Thus, testing at a very conservative level α0 = 10−12

means that we do not make many mistakes, but the output is often non-
informative.

102 103 104 105

Number of observations

0.00

0.25

0.50

0.75

1.00

Ja
cc

ar
d

si
m

ila
ri

ty
to

A
N
Y

Oracle IAS and ICP different
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Figure E.5.: The same figure as the one presented in Fig. 4, but with weaker environ-
ments (do-interventions of strength 0.5 compared to 1 in Fig. 4). Generally,
IAS performs the same for weaker interventions as for strong interventions,
when there are more than 10,000 observations. Graphs represented in each
boxplot: 42 (left), 58 (right).
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Table E.1.: Summary of the quantities P(ŜIAS ⊆ ANY ), P(ŜIAS = ∅) and P(ŜICP = ∅)
for weak and strong do-interventions (strength 0.5 and 1, respectively) when
d = 6. Numbers not in parentheses are means, numbers in parentheses are
medians. The level is generally unchanged when the environments have a
weaker effect, but the power is lower, in the sense that the empty set is
output more often.

P(ŜIAS ⊆ ANY ) P(ŜIAS = ∅) P(ŜICP = ∅)

Strong interventions

n = 100 96.6% (100%) 89.6% (98%) 52.3% (52%)
n = 1,000 75.7% (100%) 10.0% (0%) 30.4% (14%)
n = 10,000 83.7% (100%) 1.0% (0%) 24.9% (10%)
n = 100,000 93.8% (100%) 0.2% (0%) 22.9% (10%)

Weak interventions

n = 100 99.3% (100%) 98.7% (100%) 72.0% (84%)
n = 1,000 81.1% (100%) 40.2% (26%) 36.9% (24%)
n = 10,000 80.8% (100%) 1.7% (0%) 27.5% (15%)
n = 100,000 92.6% (100%) 1.1% (0%) 24.8% (14%)
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E.5.6. Analysis of the Choice of qTB in Section 6.3

In this section, we analyze the effect of changing the cut-off qTB that determines when
a gene pair is considered a true positive in Section 6.3. For the results in the main
paper, we use qTB = 1%, meaning that the pair (geneX , geneY ) is considered a true
positive if the value of geneY when intervening on geneX is outside of the 0.01- and
0.99-quantiles of geneY in the observational distribution. In Fig. E.6, we plot the true
positive rates for several other choices of qTB. We compare to the true positive rate
of random guessing, which also increases if the criterion becomes easier to satisfy. We
observe that the choice of qTB does not substantially change the excess true positive
rate of our method compared to random guessing. This indicates that while the true
positives in this experiments are inferred from data, the conclusions drawn in Fig. 5 are
robust with respect to some modelling choices of qTB.
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Figure E.6.: True positive rates (TPRs) for the gene experiment in Section 6.3. qTB
specifies the quantile in the observed distribution that an intervention effect
has to exceed to be considered a true positive. While the TPR increases for
our method when qTB is increased, the TPR of random guessing increases
comparably. This validates that changing the definition of true positives in
this experiment by choosing a different qTB does not change the conclusion
of the experiment substantially.

E.5.7. Learning causal ancestors by estimating the I-MEC

In this section, we repeat the experiments performed in Section 6.2, this time including
a procedure (here denoted IASest. graph), where we perform the following steps.

1. Estimate a member graph of the I-MEC and the location of the intervention
sites using Unknown-Target Interventional Greedy Sparsest Permutation (UT-
IGSP) [Squires et al., 2020] using the implementation from the Python package
CausalDAG.1

1Available at https://github.com/uhlerlab/causaldag.
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2. Apply the oracle algorithm described in Section 4 to the estimated graph to obtain
an estimate ofMI.

3. Output the union of all sets in the estimate ofMI.

The results for the low-dimensional experiment are displayed in Fig. E.7 and the results
for the high-dimensional experiment are displayed in Table E.2. Here, we see that
IASest. graph generally performs well (as measured by Jaccard similarity) in the low-
dimensional setting (d = 6), and even better than IAS for sample sizes N ≤ 103, but is
slightly outperformed by IAS for larger sample sizes. However, in the high-dimensional
setting (d = 100), we observe that IASest. graph fails to hold level and identifies only very
few ancestors (see Table E.2). We hypothesize that the poor performance of IASest. graph
in the high-dimensional setting is due to IASest. graph attempting to solve a more difficult
task than IAS. IASest. graph first estimates a full graph (here using UT-IGSP), even
though only a subgraph of the full graph is of relevance in this scenario. In addition,
UT-IGSP aims to estimate the site of the unknown interventions. In contrast, IAS only
needs to identify nodes that are capable of blocking all paths between two variables, and
does not need to know the site of the interventions.
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Figure E.7.: Comparison between the finite sample output of IAS and the procedure
described in Appendix E.5.7, in the low-dimensional case. Generally, these
procedures have similar performance, although IAS performs worse for small
sample sizes but slightly better for high sample sizes.
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d = 100, N = 103 d = 100, N = 104 d = 100, N = 105

IAS IASest. graph IAS IASest. graph IAS IASest. graph
P(S· ⊆ ANY ) 84.64% 15.30% 94.04% 14.92% 94.72% 14.74%
P(S· = ∅) 51.96% 12.32% 12.72% 11.84% 6.98% 11.42%
J(S·,ANY ) 0.19 0.10 0.33 0.10 0.35 0.11

Table E.2.: Identifying ancestors by first estimating the I-MEC of the underlying DAG
and then applying the oracle algorithm of Section 4 fails to hold level and
identifies fewer ancestors than applying IAS, when in a high-dimensional
setting.
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F. Appendix to Identifying Causal Effects
using Instrumental Time Series:
Nuisance IV and Correcting for the Past

F.1. Additional details for Section 2

F.1.1. Relation to VARMA Processes

In this section, we discuss that the partially observed VAR(1) process can also be viewed
as a VARMA(p, q) process. In this perspective, the difficulty of identifying β when
H is unobserved is linked to the non-uniqueness of vector autoregressive moving av-
erage (VARMA) process representations. The observed process [I⊤, X⊤, Y ⊤]⊤t∈Z can
be obtained as a linear transformation of the VAR(1) process S and as such it has a
VARMA(p, q) process representation where p ≤ d and q ≤ (d − 1) [Lütkepohl, 2005,
Corollary 11.1.1]. Intuitively, the dependences between I,X, Y induced by the unob-
served H process can instead be modelled by serially correlated errors and higher-order
memory. In contrast to a VAR process, however, the parameters of a VARMA process in
standard form are not identified and different parameter settings may induce the same
distribution over [I⊤, X⊤, Y ⊤]⊤t∈Z [Lütkepohl, 2005, Chapter 12.1]. As such, it is not
straight-forward to obtain β from a VARMA representation of the observed process,
even when choosing a canonical representation such as the echelon form or the final
equations form. In this work, we propose another approach and describe how to exploit
the instrumental variables idea to identify β when H is unobserved, without needing to
estimate all of A.

F.1.2. Observational Equivalence

Without an instrument, the causal effect β is, due to the hidden confounding, not iden-
tifiable in general. In a fully observed Gaussian VAR(1) process, the parameter matrix
(which contains the causal effect) and the covariance matrix of the noises are uniquely
determined by the distribution, and can be identified by least squares regression on the
previous time step, for example [Hamilton, 1994, Chapter 11]. This is not the case if parts
of the system are unobserved. We consider a VAR(1) process over H = [H1, H2]⊤, X,
and Y , where H is latent, and provide two different sets of parameters which entail
the same observational distribution, that is, the same joint distribution of the observed
process [SXY,t]t∈Z = [X⊤

t , Y
⊤
t ]⊤t∈Z. Nevertheless, the causal effects in the two cases are

different (one is 0, the other is b ̸= 0), and so are the induced intervention distributions
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Figure F.1.: Illustration of two different causal mechanisms (S(1), left, and ˜S(2), right)
which are observationally equivalent for any b, c ∈ R and a ∈ [−1, 1] and
Gaussian noise distribution N (0, Id).

when intervening on X, see Appendix F.1.3 below. Consider the two coefficient matrices

A1 :=

H
1

H
2

X

Y


a 0 0 0
c 0 0 0
c 0 0 0
0 b 0 0

 and A2 :=

H
1

H
2

X

Y


a 0 0 0
0 a 0 0
0 c 0 0
0 0 b 0

 , (F.1)

with coefficients a ∈ (−1, 1) and b, c ∈ R \ {0}. Consider the processes S(1) and S(2)

satisfying

S
(i)
t+1 = AiS

(i)
t + εit+1, (F.2)

with εit ∼ N (0, Id). Figure F.1 depicts parts of the corresponding full time graphs. Let

S
(1)
XY and S

(2)
XY denote the subprocesses where only X and Y are observed. The following

result shows, that S
(1)
XY and S

(2)
XY are identically distributed, that is the two models

arising from A1 and A2 are observationally equivalent [e.g., Rothenberg, 1971].

Proposition F.1. Let S(1), S(2) be the processes defined from (F.2) with respective pa-
rameter matrices A1 and A2 from (F.1) and N (0, Id) distributed noise. Then the ob-

served subprocesses S
(1)
XY and S

(2)
XY are identically distributed.

Proof. Since each of the processes are jointly Gaussian with zero mean, their distri-
butions are uniquely determined by the autocovariance matrices. This means that

the observed processes are identically distributed if and only if E(S(1)
XY,tS

(1)⊤

XY,t−s) =

E(S(2)
XY,tS

(2)⊤

XY,t−s) for all s ≥ 0. For i ∈ {1, 2}, the s-th autocovariance of S(i) is given by:

E(S(i)
t S

(i)⊤

t−s ) =
∞∑
k=0

Ak+si IdAk
⊤
i .
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Observe that

Ak1 =


ak 0 0 0

ak−1c 0 0 0
ak−1c 0 0 0
ak−2bc 0 0 0

 Ak2 =


ak 0 0 0
0 ak 0 0
0 ak−1c 0 0
0 ak−2bc 0 0


for k ≥ 2. Consequently,

Ak+s1 Ak
⊤

1 =


a2k+s a2k+s−1c a2k+s−1c a2k+s−2bc
∗ a2k+s−2c2 a2k+s−2c2 a2k+s−3bc2

∗ ∗ a2k+s−2c2 a2k+s−3bc2

∗ ∗ ∗ a2k+s−4b2c2

 and

Ak+s2 Ak
⊤

2 =


a2k+s 0 0 0
∗ a2k+s a2k+s−1c a2k+s−2bc
∗ ∗ a2k+s−2c2 a2k+s−3bc2

∗ ∗ ∗ a2k+s−4b2c2


for k ≥ 2 and s ≥ 0, where the asterisks are given by symmetry of the matrices. For the
case k = 1, s = 0, we have:

A1A
⊤
1 =


a2 a2c a2c 0
∗ c2 c2 0
∗ ∗ c2 0
∗ ∗ ∗ b2

 and A2A
⊤
2 =


a2 0 0 0
∗ a2 ac 0
∗ ∗ c2 0
∗ ∗ ∗ b2

 ,

and if k = 1, s ≥ 1:

A1+s
1 A⊤

1 =


a2+s a1+sc a1+sc 0
a1+sc asc2 asc2 0
a1+sc asc2 asc2 0
asbc as−1c2b as−1c2b 0

 and A1+s
2 A⊤

2 =


a2+s 0 0 0
0 a2+s a1+sc 0
0 a1+sc asc2 0
0 asbc as−1c2b 0

 .

For any of the above matrices M , let MXY denote the 2 × 2 submatrix in the bottom
right corner, relating to the X,Y subprocess. In all of the above cases, these coefficients
relating to the X,Y subprocess coincide, that is for any k, s ≥ 0, (Ak+s1 Ak

⊤
1 )XY =

(Ak+s2 Ak
⊤

2 )XY , and since therefore (
∑∞

k=0A
k+s
1 Ak

⊤
1 )XY =

∑∞
k=0(A

k+s
2 Ak

⊤
2 )XY , it follows

that E(S(1)
XY,tS

(1)⊤

XY,t−s) = E(S(2)
XY,tS

(2)⊤

XY,t−s) for all s ≥ 0.

F.1.3. Structural Causal Models and Interventions

We provide a formal introduction to structural causal models (SCMs) and interventions,
which motivates the notion of a causal effect. For a more detailed introduction, see Pearl
[2009].

An SCM consists of a tuple Π = (S, Pε) where S is a set of structural assignments and
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Pε describes the joint distribution of the error terms. For a finite collection of variables
S1, . . . , Sd, with structural assignments S := {f1, . . . , fd} and noise distribution Pε =
P 1 ⊗ · · · ⊗ P d, for each j = 1, . . . , d, the structural equation of Sj is

Sj := f j(PAj , ε
j),

where εj is distributed according to P j and the parents PAj is a subset of {S1, . . . , Sd}\
{Sj}. The SCM induces a corresponding graph G over nodes {1, . . . , j}, where we draw
an edge from j′ to j if Sj

′ ∈ PAj . We assume that the parent sets are such that G is
acyclic.

Similarly, we interpret the VAR process described in (1) as a structural causal model
over an infinite number of nodes [St]t∈Z. In this case, the structural assignments are
St := ASt−1 + εt, t ∈ Z. Here, the error terms εt are assumed to be i.i.d. over time,
distributed according to Pε. Furthermore, Pε is a product distribution, and thus the
error terms are jointly independent. The SCM entails an observational distribution on
the variables [St]t∈Z which we denote by PΠ

S .

Formally, an intervention on an SCM is a replacement of one or more of the structural
assignments at one or more time points. Such a replacement induces a new SCM that
we denote by Π̃ = (S̃, P̃ε). An example of an intervention on the above VAR process
is to fix the value of X for some specific time point t0 – we write this intervention as
do(Xt0 := x). Under this intervention, for t ̸= t0, the process still satisfies the original
SCM, including assumptions on the noise variables.

The interventional distribution of Π under this intervention is defined as P
Π;do(Xt0 :=x)

S :=

P Π̃
S . In general, the interventional distribution of Π under an intervention is the distri-

bution that is induced by the SCM Π̃ obtained by replacing some of the structural
assignments. We require that this distribution exists and is unique. Depending on the
application at hand, several interventions on the process are useful, including, for ex-
ample, changing the dynamics of one component for all time points [Peters et al., 2022].
In this work, we focus on an intervention at a particular time point. When performing
such an intervention do(Xt0 := x) on Xt0 , we have that ∂

∂xEPΠ;do(Xt0
:=x)

Y

[Yt0+1] = αY,X .

This motivates calling β = αY,X the causal effect from X to Y . In several applications,
the causal effect β is of interest by itself because it yields insight into understanding the
causal structure of the problem. The causal effect, however, also comes with another
benefit: it is optimal for prediction under intervention. We discuss this point of view in
Section 4.3.

F.1.4. Defining Multivariate Total Causal Effects

In some cases, the effect we want to estimate may be more general than a single entry
in one of the coefficient matrices Ak. In Section 2.1 we define the total causal effect of
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a single variable Sit−l on S
j
t as ∑

1≤l1,...,lm≤p
l1+···+lm=l

Al1 · · ·Alm


j,i

,

where Al are the parameter matrices of the VAR(p) process. Using the method of path
coefficients [Wright, 1934], we now provide a more general definition, where X may
contain multiple variables.

Definition F.1 (Path coefficients). Let S be a VAR(p) process and let Yt := Si0t be

some subprocess. Also, let Xt = [Si1t−l1
⊤
, . . . , Simt−lm

⊤
]⊤ be a collection of subprocesses of

S. For j = 1, . . . ,m, we define a S
ij
t−lj -causal path to be a directed path from S

ij
t−lj to

Yt in the full time graph of S that does not intersect any other S
ij′
t−lj′

, for j′ ̸= j. For a

S
ij
t−lj -causal path π : S

ij
t−lj

e1→ · · · ed→ Si0t , we define the path coefficient to be the product

of linear coefficients along π, cπ :=
∏d
k=1 ak, where ak denotes the entry in the coefficient

matrix Av, for the lag v corresponding to the edge ek.

We can now define the total causal effect.

Definition F.2 (Total Causal Effect). Let S be a VAR(p) process, let Yt = Si0t be a

subprocess of S and let X = [Si1t−l1
⊤
, . . . , Simt−lm

⊤
]⊤ be a collection of subprocesses of S.

For j = 1, . . . ,m, the total causal effect, βj , of S
ij
t−lj on Yt is the sum of path coefficients

cπ over all S
ij
t−lj -causal paths π from S

ij
t−lj to Yt, β

i :=
∑

Sit−l1 -causal paths p
cp. Similarly

the total causal effect, β, of Xt on Yt is the bundling of these, β := [β1
⊤
, . . . , βm⊤]⊤.

F.2. Additional details for Section 3

F.2.1. Asymptotic variances for i.i.d. estimators

Drawing on existing results [Hall, 2005], we now provide formulas for the asymptotic
variances of the NIV and CIV estimators. If a unique solution (β, α) exist to (6),
the asymptotic distribution of the β̂NIV,T estimator in the i.i.d. setting, discussed in
Section 3.2, with the weight matrix W := E[II⊤]−1 (which asymptotically is optimal,
see Section 3.1) is given by

√
T (β̂NIV,T − β) d−→ N (0,Σ1),

for T →∞, where the asymptotic variance Σ1 is given by

Σ1 :=
(
E(X̃ I⊤)K−1E(X̃ I⊤)⊤

)−1
,
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where X̃ := [X⊤,Z⊤]⊤, K = E((Y −βX −αZ)2)E(II⊤). Σ1 is a (dX + dZ)× (dX + dZ)
matrix, with the top-left dX × dX sub-matrix describing the asymptotic variance of X .

Similarly, the asymptotic distribution of β̂CIV,T in the i.i.d. setting, discussed in Sec-
tion 3.1, with weight matrix W := E[var(I|B)]−1 is

√
T (β̂CIV,T − β) d−→ N (0,Σ2),

where

Σ2 :=
(
E[cov(X , I|B)]K−1E[cov(X , I|B)⊤]

)−1
,

and K = E[var((Y − βX )2|B)]E[var(I|B)].

F.2.2. Asymptotic variances for estimators in time series

Closed-form expressions for the asymptotic variances of the NIV and CIV estimators can
also be found for the VAR process presented in Section 4, but these are slightly more
involved than for the i.i.d. setting presented in Appendix F.2.1. Assume the setting as
described in Theorem 5 and consider the NIV estimator β̂NIV,T . We then have

√
T (β̂NIV,T − β) d−→ N (0,Σ1),

where the asymptotic variance Σ1 is given by

Σ1 :=
(
E(X̃ I⊤)K−1E(X̃ I⊤)⊤

)−1
,

where X̃ := [X⊤
t−1, Y ⊤

t−1]
⊤, I := {It−2, ..., It−m−1} andK := limT→∞ V ar

(
1√
(T )

∑T
t=1(Yt−

βX − αZ)I⊤
)

using the optimal choice of weight matrix, W = K−1, see Hall [2005,

Chapter 3].

Now for the CIV estimator, see Theorem 4, the asymptotic distribution of β̂CIV,T is

√
T (β̂CIV,T − β) d−→ N (0,Σ2),

where

Σ2 :=
(
E[cov(Xt−1, It−2|Bt)]K−1E[cov(Xt−1, It−2|Bt)⊤]

)−1
,

and K := limT→∞ V ar

(
1√
(T )

∑T
t=1(rYt − βrXt−1)r

⊤
I

)
with ri := i − E[i|Bt] using the

optimal choice of weight matrix, W = K−1, see Hall [2005, Chapter 3].
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X
(1)
t−1

X
(2)
t−1

Yt−1 Yt

c1
c2
αY,Y

Figure F.2.: Subgraph of the full-time graph of the structure discussed in Example F.1
when dX = 2. For simplicity, we don’t draw nodes corresponding to the
instrument, I, and the confounder, H.

F.3. Additional details for Section 4

F.3.1. Example of a distribution that does not satisfy the rank requirement
in Theorem 6

In Section 4.2.2, we have developed a criterion for identifiability that depends on the pa-
rameter matrix of a process satisfying Assumption (A2). We have showed in Corollary 1
that if parameter matrices are drawn from a distribution with density with respect to
Lebesgue measure, then the identifiability criterion holds almost surely. In this section,
we provide an example of a parameter matrix that does not satisfy the criterion.

Example F.1. Consider the case where dX > 1, dI = 1, and αX,X = diag(c, . . . , c) for a
c ∈ R. By Theorem 6, β is not identifiable by NIV: this follows because AXY is a lower
triangular matrix with c, . . . , c (dX times) and αY,Y on the diagonal, and the Jordan
form J is a diagonal matrix with the same diagonal entries. Hence there are dX Jordan
blocks with the same eigenvalue c so the causal effect β is not identified by NIV. On the
contrary, when αX,X = diag(c1, . . . , cdX ) (see Fig. F.2) where ci ̸= cj for all i ̸= j, β is
identified by NIV if also αY,Y ̸= ci for all i.

Example F.2. In the case of dX = 1, dI = 1, and αX,I ̸= 0, β is identifiable. If, for
example, αY,Y = αX,X =: α, we have,

AXY =

(
α 0
β α

)
=

(
0 1
β 0

)
︸ ︷︷ ︸

=:P

(
α 1
0 α

)(
0 1

β

1 0

)
︸ ︷︷ ︸

=P−1

.

This has only one Jordan block with algebraic multiplicity m = 2 and(
P−1

(
αX,I
0

))
m

= [1, 0]

(
αX,I
0

)
= αX,I ̸= 0,

where (·)m refers to the m-th entrance, so by Theorem 6, β is identifiable (and by similar
arguments the same holds if αX,X ̸= αY,Y .
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Algorithm F.1 Linear prediction under the intervention do(Xt := x)

Input: Causal parameter β, sample X = [X1, . . . ,Xt−1] ∈ RdX×(t−1), Y =
[Y1, . . . ,Yt] ∈ R1×t, interventional value x, lag parameters m and l

1: Compute the residual process rs := Ys+1 − βXs for s = 1, . . . , t− 1.
2: For s > max(k,m), linearly regress rs on {Xs−k, k = 1, . . . ,m} and {Ys−j , j =

0, . . . , l} to obtain coefficients α̂kY,X and α̂jY,Y .

Output:
3: Prediction Ŷt+1 = βx+

∑m
k=1 α̂

k
Y,XXt−k +

∑l
j=0 α̂

j
Y,YYt−j .

F.3.2. Algorithm for Prediction under Interventions

This section contains Algorithm F.1, the procedure for using a causal effect to predict
under interventions, as discussed in Section 4.3.

F.4. Proofs

F.4.1. Proof of Conditional IV

For completeness, we now prove our statement about CIV from Section 3.1.

Proposition F.2. Consider a linear SCM (see Appendix F.1.3) over variables V , and
let I,X ,B, {Y } ⊆ V be disjoint collections of variables from V , and let G be the corre-
sponding DAG. Assume that I,X and Y have zero mean and finite second moment and
let β be the causal coefficient with which X enters the structural equation for Y (some
of the entries of β can be zero, so not all variables in X have to be parents of Y ). We
consider the following three requirements on I,X ,B and Y

(CIV1) I and Y are d-separated given B in the graph GX ̸→Y , that is the graph G where all
direct edges from X to Y are removed,

(CIV2) B is not a descendant of X ∪ Y in G, and

(CIV3) the matrix E[cov(X , I|B)] has rank dX , that is, full row rank.

If requirements (CIV1) and (CIV2) are met, Y −βX ⊥⊥ I|B, and in particular β satisfies
the CIV moment equation

E[cov(Y − βX , I|B)] = 0. (F.3)

If, additionally, requirement (CIV3) is met, β is the unique solution to this equation,

E[cov(Y − bX , I|B)] = 0 =⇒ b = β.
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Proof. Due to the additive, linear structure of the SCM, we can write Y as a

Y = βX + πB + γR+ εY ,

where R are those parents of Y that are not in X ∪ B and π ∈ RdY ×dB , γ ∈ RdY ×dR are
some coefficients.

We claim (1) that any path from I to R is blocked by B and (2) that E[cov(εY , I|B)] =
0. It then follows from the global Markov property [Lauritzen, 1996], that E[cov(R, I|B)] =
0, and trivially also E[cov(B, I|B)] = 0. Hence, since Y −βX = πB+γR+ εY , it follows
that E[cov(Y − βX , I|B)] = E[cov(πB + γR+ εY , I|B)] = 0.

For (1), suppose for a contradiction that a path π between I and R that is unblocked
given B exists. Case 1: π does not contain any edge from X to Y . Then, the path
that concatenates π with the corresponding edge from R to Y is an unblocked path
(given B) in the graph, where the edges from X to Y are removed. This contradicts
requirement (CIV1). Case 2: π contains an edge from X ∈ X to Y . Then, π contains
either the structure X → Y ← or the structure X → Y →. The first case implies
B ∩ DEY ̸= ∅, violating requirement (CIV2). In the second case, we either have that
there is a directed path from Y to I that is unblocked by B, violating requirement (CIV1)
or, again that B ∩DEY ̸= ∅, violating requirement (CIV2).

For (2), we have that neither B nor I are descendants of Y : B cannot be a descendant
of Y due to requirement (CIV2), and by requirement (CIV1), I can only be a descendant
if B is also a descendant, which is not possible. Every variable in the linear SCM can
be rewritten as a function only of noise terms corresponding to ancestors. Applying this
to B and I, we have (since Y is not an ancestor of neither I nor B and because εY is
independent of all other noise terms in the SCM) that εY is independent of (B, I) and
it follows that E[cov(εY , I|B)] = 0.

When we additionally assume requirement (CIV3), the solution to (F.3) is unique
because the equation can be rewritten to

bE[cov(X , I|B)] = E[cov(Y, I|B)],

and by the assumption of full row rank of E[cov(X , I|B)], this can have at most one
solution.

F.4.2. Proof of Theorem 1

Theorem 1. Consider a time series S generated according to Assumption (A1), and
finite disjoint collections A,B,C. If A and C are d-separated given B in Gfull then
A ⊥⊥ C|B.

Proof. Our proof is inspired by Lauritzen et al. [1990, Sec. 6]. Let us write G[s,t] for the
subgraph of a time series (sub)graph G, where only vertices V[s,t] := {Siv|i = 1, . . . , d, s ≤
v ≤ t} are included. Let further s0, t0 be the largest and smallest time points respectively
such that A ∪ C ∪ B ⊆ V[s0,t0]. Let q ∈ N>p such that if two nodes in V[s0,t0] are d-
connected (with empty conditioning set) in Gfull, then there is a d-connecting path in
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G[s0−q,t0]. Define the set

A := {n ∈N | for all G∗ that are graphs over nodes with time indices between s0 − q and t0 s.t.

all edges in G∗ point ‘forward in time’, i.e., ∀k ∈ N, there is no edge Sit → Sjt−k and

|V +| = n, where V + := V[s0,t0] and

for all VAR processes whose structure is specified by G0 := G∗[s0−q,s0−1] and

for all A∗, B,C∗ ⊆ G∗ such that

ANG+(A+ ∪B ∪ C+) = V +(where A+ := A∗
[s0,t0]

, C+ := C∗
[s0,t0]

,G+ := G∗[s0,t0]), and
A∗ = A+ ∪ (PAG∗(A+) ∩ V 0) and C∗ = C+ ∪ (PAG∗(C+) ∩ V 0)

where V 0 are the nodes of G0
we have

A∗ ⊥G∗ C∗|B ⇒ A∗ ⊥⊥ C∗|B},

where ⊥G indicates d-separation in G.
We show below, by induction, that A = N. This suffices to prove the statement of the

theorem because of the following line of arguments. Let V 0 := V[s0−q,s0−1] and V
+ :=

ANGfull
(A∪C∪B)[s0,t0]. Let G∗ be the graph Gfull restricted to the nodes in V ∗ := V 0∪V +.

Then, A ⊥G∗ C|B (as G∗ is a subgraph of Gfull). If V + ̸= (A∪C ∪B), we enlarge A and
C to the disjoint sets A+ and C+ such that A+ ⊥G∗ C+|B and V + = A+ ∪B ∪C+. Let
us define A∗ := A+ ∪ (PAG∗(A+)∩ V 0) and C∗ := C+ ∪ (PAG∗(C+)∩ V 0). Importantly,
these two sets are disjoint (otherwise, A+ and C+ would have a joint parent not in B,
violating A+ ⊥G∗ C+|B). We then have that A∗ ⊥G∗ C∗|B (Indeed, if there is an open
path from a node in a ∈ A∗ to a node in c ∈ C∗, given B, then there is an open path
between a node in A+ (either a itself or its child in A+) to a node in C+ (either c itself
or its child in C+), violating A+ ⊥G∗ C+|B). But then A = N implies A∗ ⊥⊥ C∗|B. And
this implies that A ⊥⊥ C|B, as A and B are subsets of A∗ and B∗, respectively.

Let us now prove that A = N by, (1), proving 1 ∈ A and 2 ∈ A and, (2), proving
n ∈ A implies n+ 1 ∈ A.

(1) We now prove that 1 ∈ A and 2 ∈ A.
The only non-trivial statement occurs when A∗ = {a} ≠ ∅ and C∗ = {c} ≠ ∅ and B = ∅.
Because A∗ ⊥G∗ C∗, we have ANG∗(A∗) ∩ ANG∗(C∗) = ∅. This implies ANGfull

(A∗) ∩
ANGfull

(C∗) = ∅ because of the repetitive structure in a full time graph and the choice
of q.

(2) We now prove that n ∈ A implies n+ 1 ∈ A.
Assume n ∈ A and consider G∗, G0, G+, V +, A∗, A+, B, C∗, C+ as described in set A
with |V +| = n+ 1. Consider a node λ ∈ V + that is a sink node in G∗.

First, assume that λ ∈ A+. Then PAG∗(λ) ⊆ (A∗ \ {λ}) ∪ B (because d-separation
would be violated if C∗ ∩ PA(λ) ̸= ∅). Thus, it follows that

λ ⊥⊥ C∗|B ∪ (A∗ \ {λ}). (F.4)
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(Indeed, PAGfull
(λ) = PAG∗(λ) and thus there exist a coefficient vector γ ∈ R|PAG∗ (λ)|

such that λ = γ⊤ PAG∗(λ) + ελ; it then follows from the MA(∞) representation of
S [Hamilton, 1994], that λ ⊥⊥ C∗ ∪ (B ∪ (A∗ \ {λ}) \ PAG∗(λ)) | PAG∗(λ); the claimed
independence then follows with the weak union property.) Further, A∗\{λ} ⊥G∗m C∗|B,
where Gm denotes moralization of graph G [Lauritzen, 1996], as d-separation is equivalent
to separation in the moralized graph. But then, A∗\{λ} ⊥(G∗m)V ∗\{λ} C

∗|B, as this graph

contains no more edges. And therefore, (A∗ \{λ}) ⊥(G∗
V ∗\{λ})

m C∗|B as, again, the graph

contains no more edges. By the induction hypothesis n ∈ A and thus

A∗ \ {λ} ⊥⊥ C∗|B. (F.5)

Combining (F.4) and (F.5) by the contraction property, it follows that

A∗ ⊥⊥ C∗|B.

Second, assume that λ ∈ C+. The argument follows in the same way as in the case
λ ∈ A+.
Third, assume that λ ∈ B (these are all cases since A+ ∪ B ∪ C+ = V +). Since B

separates A∗ and C∗ in (G∗)m, then B \ {λ} also separates A∗ and C∗ in (G∗m)V ∗\{λ}
(as it has no more edges), and therefore B \{λ} also separates A∗ and C∗ in (G∗V ∗\{λ})

m,
since this graph, again, has no more edges. By the induction hypothesis n ∈ A, so

A∗ ⊥⊥ C∗|(B \ {λ}). (F.6)

We now prove a second independence statement. We now make a case distinction (a)
Assume that

PAG+(λ) ∩A∗ ̸= ∅ or ANG∗(PAG∗(λ)[s0−q,s0−1]) ∩ANG∗(PAG∗(A∗)[s0−q,s0−1]) ̸= ∅.

Then, it follows that

PAG+(λ) ∩ C∗ = ∅ and ANG∗(PAG∗(λ)[s0−q,s0−1]) ∩ANG∗(PAG∗(C∗)[s0−q,s0−1]) = ∅.
(F.7)

(Indeed, if the statement on the left-hand side would be false, then there is a
d-connecting path between A∗ and C∗, given B: this goes from the element
in PAG+ ∩C∗ to λ (which is in B) and then either to the element in PAG+ ∩A∗

or to the common ancestor of PAG∗(λ)[s0−q,s0−1] and PAG∗(A∗)[s0−q,s0−1] and
then to the corresponding element in A∗. If the statement on the right-hand
side would be false, then we can use the same path but this time going via
the common ancestor of PAG∗(λ)[s0−q,s0−1] and PAG∗(C∗)[s0−q,s0−1].)

But then it follows that
λ ⊥⊥ C∗|A∗ ∪ (B \ {λ}). (F.8)

(Indeed, noting that PAG+(λ) ⊆ A∗∪B\{λ}, we can replace the left-hand side
by the MA(∞) representation of PAG∗(λ)[s0−q,s0−1]. For C∗, we repeatedly
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use the structural equations except for variables in B \ {λ} or variables in
PAG∗(C∗)[s0−q,s0−1] (other variables will not occur: If there was a variable in
A∗, for example, there would be a directed path from A∗ to C∗). We then
use the MA(∞) representation of PAG∗(C∗)[s0−q,s0−1]. The statement then
follows from the fact that PAG∗(λ)[s0−q,s0−1] and PAG∗(C∗)[s0−q,s0−1] do not
have common ancestors, see (F.7).

Combining (F.6) and (F.8) using the contraction property, it follows that C∗ ⊥⊥ ({λ} ∪
A∗)|(B \ {λ}), and by the weak union property that

C∗ ⊥⊥ A∗|B.

(b) Now assume that

PAG+(λ) ∩A∗ = ∅ and ANG∗(PAG∗(λ)[s0−q,s0−1]) ∩ANG∗(PAG∗(A∗)[s0−q,s0−1]) = ∅.

Similarly as in case (a) it follows that

λ ⊥⊥ A∗|C∗ ∪ (B \ {λ}). (F.9)

Combining (F.6) and (F.9) using the contraction property, it follows that ({λ} ∪C∗) ⊥⊥
A∗|(B \ {λ}), and by the weak union property that

C∗ ⊥⊥ A∗|B.

This concludes the proof.

F.4.3. Proof of Theorem 2

Theorem 2 (Nuisance IV). Consider a linear SCM (see Appendix F.1.3) over variables
V , and let I, X , Z, B, {Y } ⊆ V be disjoint collections of variables from V , and let G be
the corresponding DAG. Assume that I,X ,Z and Y have zero mean and finite second
moment and let β and α be the causal coefficients with which X and Z enter the structural
equation for Y , respectively (some of the entries of β and α can be zero, so not all
variables in X and Z have to be parents of Y ). Let X̃ := X ∪Z. If requirements (CIV1)
to (CIV3) are satisfied in G for I, X̃ ,B and Y , the causal effect β of X on Y is identified
by NIVX→Y (I,Z|B).

Proof. By satisfaction of requirements (CIV1) to (CIV3), the causal effect β̃ = [β, α]
of X̃ = X ∪ Z on Y is identified by the instrument I and the conditioning set B by
Proposition F.2 in Appendix F.4.1. In particular, also the sub-vector of the IV estimate
corresponding to X is identified.

F.4.4. Proof of Proposition 1

Proposition 1. If an effect can be identified by CIV and by NIV, then the estimators
cannot be strictly sorted in terms of asymptotic variance. More specifically, there exist
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data generating processes, for which CIV has strictly smaller asymptotic variance and
others, for which NIV has strictly smaller asymptotic variance.

Proof. We show this by considering two SCMs over 6 variables S = [H, I,X, Y, Z,B]
given by S := AS + ε where A is such that the resulting graph is acyclic and admits
the graphical model in Fig. 3 (right) and ε ∼ N (0,Γ); we provide two concrete choices
for A and Γ below. We consider both the CIVX→Y (I|B) and the NIVX→Y ([I,B], Z)
estimates of β, the causal effect of X on Y , and provide two sets of parameters (AI ,ΓI)
and (AII ,ΓII) such that if X is generated according to (AI ,ΓI), the CIV estimator has
a lower asymptotic variance than the NIV estimator, and if S is generated according to
(AII ,ΓII), the CIV estimator has a higher asymptotic variance than the NIV estimator.

AI :=

H

I

X

Y

Z

B



0 0 0 0 0 0
0 0 0 0 0 1.185

21.095 6.885 0 0 0 −5.969
−7.244 0 16.499 0 −1.892 0
1.921 0 0 0 0 2.62
0 0 0 0 0 0



ΓI :=

H

I

X

Y

Z

B



0.2 0 0 0 0 0
0 1.2 0 0 0 0
0 0 2.2 0 0 0
0 0 0 1.2 0 0
0 0 0 0 2.2 0
0 0 0 0 0 0.2

 ,

and

AII :=

H

I

X

Y

Z

B



0 0 0 0 0 0
0 0 0 0 0 −2.918

−22.439 3.519 0 0 0 4.282
19.964 0 4.737 0 4.011 0
0.884 0 0 0 0 −7.97
0 0 0 0 0 0



ΓII :=

H

I

X

Y

Z

B



3.2 0 0 0 0 0
0 1.2 0 0 0 0
0 0 3.2 0 0 0
0 0 0 2.2 0 0
0 0 0 0 1.2 0
0 0 0 0 0 2.2

 .

We can now use the formulas from Appendix F.2.1 to get the asymptotic variances,
using that E[S] = 0 and E[SS⊤] = (1 − A)−1Γ(1 − A)−⊤. When the data generating
mechanism is (AI ,ΓI), the asymptotic distributions are specified by

√
T (β̂CIV − β) ∼

N (0, 524.4) and
√
T (β̂NIV − β) ∼ N (0, 522.7). Furthermore, when the data generating

mechanism is (AII ,ΓII), the asymptotic distributions are
√
T (β̂CIV − β) ∼ N (0, 320.0)
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and
√
T (β̂NIV − β) ∼ N (0, 575.4), respectively.

F.4.5. Proof of Theorem 3

Theorem 3 (Time series IV by marginalization). Consider a process S = [St]t∈Z sat-
isfying Assumption (A1) with full time graph Gfull. Let Y be some node in Gfull and let
X , I,Z, and B be disjoint collections of nodes from Gfull. Let X̃ := X ∪ Z and define
M := {Y }∪X ∪I ∪Z ∪B. Assume that requirements (CIV1’) and (CIV2) are satisfied
for I, X̃ ,B and Y in GM (see Definition 1). Then, the following three statements hold.
(i) The total causal effect [β, α] of [X⊤,Z⊤]⊤ on Y satisfies the NIV moment equation

E[cov(Y − bX − aZ, I|B)] = 0. (8)

(ii) Further, if requirement (CIV3) is satisfied for I, X̃ ,B, then [β, α] is the unique
solution to (8). (iii) If, additionally, X,Y, I,Z and B are observations of X , Y, I,Z
and B at T time points, W is a positive definite matrix, and

[b̂, â] := argmin
b,a

∥ ˆcov(Y − bX− aZ, I|B)∥2W , (9)

then b̂ is a consistent estimator for β.

Proof. We first show part (i). Due to the additive, linear structure in Assumption (A1),
we can rewrite Y as a linear combination of the parents of Y in Gfull plus some additive
noise, Y = a1p1 + . . .+ ampm + εY , where a1, . . . , am are coefficients and p1, . . . , pm are
nodes from Gfull. Similarly, we can recursively decompose the parents into their parents
(in Gfull) and noise without replacing variables in X ∪Z ∪ND(X ∪Z)∪B, until the first
time we have a decomposition

Y = βX + αZ + πB + γR+ ε,

where R are dR variables from Gfull that are not in B or on any path from X ∪ Z to Y
in Gfull,

R ∩ (B ∪ X ∪ Z ∪DEX ∪ Z) = ∅,
(R may include descendants of B) and ε are all the weighted noise variables accumulated
when doing the decomposition in parents, β and α are the total causal effects of X and
Z on Y , respectively, for some coefficients π ∈ R1×dB , γ ∈ R1×dR . The coefficients in
front of X and Z are indeed β and α, because the total causal effect is the product
along all paths from X ∪ Z to Y (see Appendix F.1.4), and by the assumption that
B ⊆ ND(X ∪ Z), no direct path from X ∪ Z to Y is blocked by B.

We claim (1) that any path in Gfull from I to R is blocked by B and (2) that
E[cov(ε, I|B)] = 0. It then follows from Theorem 1, that E[cov(R, I|B)] = 0, and
trivially also E[cov(B, I|B)] = 0. Hence, since Y − βX − αZ = πB + γR + ε, it follows
that E[cov(Y − βX − αZ, I|B)] = E[cov(πB + γR+ ε, I|B)] = 0.

For (1), suppose for a contradiction that there exist i ∈ I and m ∈ R and a path
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p : i − v1 − · · · − vn − m in Gfull that is unblocked given B, where v1 − v2 indicates a
directed edge that can have any orientation. Since p is unblocked given B, this indicates
that the non-colliders of p are disjoint from B and for every collider vk on p, there is a
node bk ∈ B such that bk ∈ DE vk in Gfull.
First, observe, that the end node m is not in M : It is not in {Y } (since it was found

among the ancestors of Y ), and by construction of R, it is not in B∪X ∪Z. Also m /∈ I:
By the construction of R through recursive rewriting as parents, there exists a directed
path from m to Y that does not intersect X ∪ Z ∪ B; if m ∈ I this path would violate
requirement (CIV1’).

Let w1, . . . , wL be those vertices among v1, . . . , vn that appear in the marginalized
graph GM and let w0 := i and wL+1 := Y . We show that a path including the nodes
w0, . . . , wL+1 (and possibly some additional colliders, see below) from I to Y exists in
GM ; this path is still unblocked, given B, if we remove any outgoing edges from X ∪ Z
that lie on a directed path to Y , creating a contradiction to requirement (CIV1’).

For 0 ≤ k ≤ L consider the segment of p (as a path in Gfull) from wk − · · · − wk+1,
where · · · represent edges vi from p that are not in M . If there are no colliders on this
segment, by Definition 1 at least one of the edges wk → wk+1, wk ← wk+1 or wk ↔ wk+1

are present in GM . If there is exactly one collider on wk − · · · − wk+1 (as part of p in
Gfull), the segment must be one of the following four options:

wk → · · · →vi ← · · · ← wk+1,

wk ← · · · ← vj1 → · · · →vi ← · · · ← wk+1,

wk → · · · →vi ← · · · ← vj2 → · · · → wk+1,

wk ← · · · ← vj1 → · · · →vi ← · · · ← vj2 → · · · → wk+1,

where vj1 , vj2 also are nodes on p. But since DE viGfull
∩B ≠ ∅, this implies that at least

one of the following paths are present in GM :

wk → bk,1 ← wk+1

wk ↔ bk,1 ← wk+1

wk → bk,1 ↔ wk+1

wk ↔ bk,1 ↔ wk+1,

where bk,1 ∈ B (there is no node a from M on the path from vi to bk,1, because if a ∈
X ∪Z ∪{Y }, requirement (CIV2) would be violated, and if a ∈ I, this would constitute
another path in Gfull from Y to I that is unblocked given B, using the same argument
as for the original path). Similarly, if there are several colliders on wk − · · · − wk+1, a
path wk → bk,1 ↔ · · · ↔ bk,L ← wk+1 (or one of the configurations → · · · ↔, ↔ · · · ←
or ↔ · · · ↔ as first and last edge) is present in GM , where bk,1, . . . , bk,L ∈ B.

We now construct a path pM in GM that is d-connecting I and Y , given B: For
k = 0, . . . , L− 1, paste together the segments (in GM ) from wk to wk+1 including those
possible colliders bk,j discussed above. Further, add the edge wL → y or wL ↔ y,
depending on the orientation of the edge wL −m in p. If wk was a collider on p, it is
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also a collider on pM . Since p was unblocked in Gfull, given B, pM is unblocked in GM ,
given B.

We now argue that the path is still unblocked in GM , given B, if we remove the outgoing
edges from X ∪Z that are on a directed path to Y . Because m /∈ X ∪Z ∪DEX ∪ Z, pM
does not contain any edge outgoing of X ∪Z on a directed path to Y : Indeed, if for some
wk ∈ X∪Z, pM contained the segment wk to wk+1, there would be some k+2 ≤ k′ ≤ L+1
such that wk′ /∈ DEX ∪ ZGfull

(because otherwise m would be a descendant of X ∪ Z).
But this would imply that pM has a collider, which is a descendant of X ∪ Z and an
ancestor of B (in GM ), which is not possible by requirement (CIV2). Thus, the path
pM is unblocked given B in the graph where we remove outgoing edges from X ∪ Z on
direct paths to Y from GM . This contradicts the assumption that requirement (CIV1’)
is satisfied in GM .

A similar argument proves (2), that is, E[cov(ε, I|B)] = 0: Each εi was accumulated
as a noise variable of an ancestor (in Gfull) of Y , Ai /∈ X ∪ Z ∪ B; by construction, a
directed path from Z∪X through Ai to Y exists in Gfull that does not intersect X ∪Z∪B,
except at the first node of this path. Hence, B does not contain a descendant of Ai in
Gfull (because that would imply B containing a descendant of X ∪ Z in GM , violating
requirement (CIV2)). Also, Ai is not an ancestor of any node in I in Gfull, because that
would imply an unblocked path from I via Ai to Y in Gfull that does not contain any
node in B and therefore this corresponds to an unblocked path in GM , too. Using the
MA(∞)-representation of B and I, see Hamilton [1994], εi is independent of (B, I), and
so E[cov(εi, I|B)] = 0. This concludes the proof of the first part.

Part (ii) follows because if the (dX +dZ)×dI matrix E[cov(X̃ , I|B)] has rank dX +dZ ,
then if a solution to the moment equation E[cov(Y, I|B)] = βE[cov(X̃ , I|B)] exists, it is
unique.

For part (iii), let X̄ := [X⊤ Z⊤]⊤. By (5), we have to show that

Ê[rYr⊤I ] W Ê[rIr⊤X̄]

(
Ê[rX̄r

⊤
I ] W Ê[rIr⊤X̄]

)−1
P−→ γ

with γ := [β⊤, α⊤]⊤. From (2) we have that empirical moments converge in probability
to the population moment, and thus, using Slutsky’s Theorem, we get that

Ê[rYr⊤I ] W Ê[rIr⊤X̄]

(
Ê[rX̄r

⊤
I ] W Ê[rIr⊤X̄]

)−1
P−→ E[rYtr⊤It ] W E[rItr⊤X̄t ]

(
E[rX̄tr

⊤
It ] W E[rItr⊤X̄t ]

)−1

,

where rX̄ = X̄ −E[X̄ |B] and similarly for rY and rI . We can rewrite E[rYtr⊤It ] by adding
and subtracting γrX̄t :

E[rYtr⊤It ] = E[(rYt − γrX̄t)r⊤It ] + γE[rX̄tr
⊤
It ]

= 0 + γE[rX̄tr
⊤
It ].

The first term is zero due to the conditional uncorrelation established in (i) and we can
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thus conclude that

E[rYtr⊤It ] W E[rItr⊤X̄t ]
(
E[rX̄tr

⊤
It ] W E[rItr⊤X̄t ]

)−1

= γE[rX̄tr
⊤
It ] W E[rItr⊤X̄t ]

(
E[rX̄tr

⊤
It ] W E[rItr⊤X̄t ]

)−1

= γ.

F.4.6. Proof of Proposition 2

Proposition 2 (Failure of naive IV adaption). Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z

satisfying Assumption (A2) with dI = dX = dH = dY = 1. If cov(Xt−1, It−2) ̸= 0 and
αI,IαY,Y ̸= 1, the IVXt−1→Yt(It−2) estimator β̂ converges in probability to

(1− αI,IαY,Y )−1β.

Consequently, β̂ is in general not consistent for the causal effect β of Xt−1 on Yt, unless
I or Y do not have any autoregressive structure, that is, αI,I = 0 or αY,Y = 0.

Proof. Since εYt and Ht−1 are both independent of It−2 (for Ht−1, this follows from
Assumption (A2) and Theorem 1), it follows that

E[YtIt−2] = αY,Y αI,IE[Yt−1It−3] + βE[Xt−1It−2]

=⇒ E[YtIt−2] = (1− αY,Y αI,I)−1βE[Xt−1It−2],

where in the last step we use that by covariance stationarity E[Yt−1It−3] = E[YtIt−2]
(covariance stationarity follows from Assumption (A1), see Hamilton [1994]). The
IVXt−1→Yt(It−2) moment equation is E[(Yt − bXt−1)It−2] = 0, which has the solution
(because dI = dX = dY = 1)

b =
E[It−2Yt]

E[It−2Xt−1]
.

By plugging in the expression for E[YtIt−2] above, we get b = (1− αY,Y αI,I)−1β.

F.4.7. Proof of Theorem 4

Theorem 4 (Identification with conditioning set). Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z

satisfying Assumption (A2). Let either Bt := {It−3} or Bt := {It−3, Xt−2, Yt−1}. Then,
the following three statements hold. (i) The causal effect β of Xt−1 on Yt satisfies the CIV
moment condition E[cov(Yt−βXt−1, It−2|Bt)] = 0. (ii) Furthermore, if E[cov(Xt−1, It−2|Bt)]
has rank dX , then β is identified by CIVXt−1→Yt(It−2|Bt). (iii) If, additionally, Xt,Yt, It,
and Bt are observations of X,Y, I and B at T time points, then β can be consistently
estimated as T →∞ by CIVXt−1→Yt(It−2|Bt), that is, the output of Algorithm 1.
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It−2

Xt−1

Yt

It−3
It−2

Xt−1

Yt

It−3

Xt−2

Yt−1

It−2

Xt−1

Yt

It−3It−m−1 · · ·

Yt−1

Figure F.3.: (left) Marginalization of the full time graph to nodes It−2, It−3, Xt−1 and
Yt. (middle) Marginalization of the full time graph to nodes It−2, Xt−1 and
Yt and their lagged values. (right) Marginalization to m instrument nodes
It−2, . . . , It−m−1, and Xt−1, Yt, and Yt−1.

Proof. By Theorem 3, it suffices for part (i) to show that requirements (CIV1’) and (CIV2)
are satisfied for Xt := {Xt−1}, It := {It−2}, Bt, and Yt in the marginalized graph GMt

with Mt := Xt ∪ It ∪ Bt ∪ {Yt} (with Bt being either of the two sets from the theo-
rem), see Fig. F.3 left and middle. For either choice of Bt, Bt is not a descendant of
Xt−1 and Yt, so requirement (CIV2) is satisfied (see Fig. F.3 left and middle). To show
that requirement (CIV1’) holds, we argue that every path from It−2 to Yt is blocked by
It−3 in GMt(Xt−1 ̸→Yt), the graph obtained from GMt by removing the directed edge from
Xt−1 to Yt. For either graph, we have that any path from It−2 to Yt either contains
the non-collider It−3 or the collider Xt−1. Since It−3 is in the conditioning set Bt (for
either definition of Bt) and ({Xt−1} ∪ DEXt−1) ∩ Bt = ∅, any path from It−2 to Yt in
GMt(Xt−1 ̸→Yt) is blocked by Bt.

Parts (ii) and (iii) follow directly from Theorem 3.

F.4.8. Proof of Theorem 5

Theorem 5 (Identification with nuisance regressor). Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z

satisfying Assumption (A2). Let It := {It−2, . . . , It−m−1} for an m ≥ 1 and Zt :=
{Yt−1}. Then, the following three statements hold. (i) There exists α ∈ R such that the
causal effect β of Xt−1 on Yt satisfies the NIV moment condition E[cov(Yt − βXt−1 −
αZt, It)] = 0. (ii) Further, if E[[X⊤

t−1,Z⊤
t ]

⊤I⊤t ] has rank dX + dY , β is identified
by NIVXt−1→Yt(It,Zt). (iii) If, additionally, Xt,Yt, It, and Zt are observations of
X,Y, I and Z at T time points, then β can be consistently estimated as T → ∞ by
NIVXt−1→Yt(It,Zt), that is, the output of Algorithm 1.

Proof. By Theorem 3, it suffices for part (i) to show that requirements (CIV1’) and (CIV2)
are satisfied for Xt := {Xt−1},Zt, It, and Yt in the marginalized graph GMt with Mt :=
Xt∪It∪Zt∪{Yt} (see Fig. F.3 right). Since B = ∅, requirement (CIV2) is trivially satis-
fied. It remains to argue that requirement (CIV1) requirement (CIV1’) is satisfied, that
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is, that It is d-separated from Yt in the marginalized graph GMt(Xt−1,Yt−1 ̸→Yt) obtained
from GMt by removing the edges Yt−1 → Yt and Xt−1 → Yt. Let s ∈ {t−m−1, ..., t−2}.
Every path from Is to Yt must go through either the collider → Xt−1 ← or the collider
→ Yt−1 ← and since the conditioning set is empty, those paths are blocked.

Parts (ii) and (iii) follow directly from Theorem 3.

F.4.9. Proof of Theorem 6

A brief review of Jordan canonical forms

IfM is an arbitrary square matrix of size d×d, there exists a unique (up to row or column
permutations) square invertible matrix Q of the same dimension such that M = QJQ−1

where J is a d× d block diagonal matrix

J = Jm1(λ1)⊕ . . .⊕ Jmk(λk) := diag(Jm1(λ1), . . . , Jmk(λk)) (F.10)

with each Jordan block Jmi(λi) being an mi × mi matrix having one value λi on the
diagonal and ones on the superdiagonal (and zeros elsewhere): that is, for all m ∈ N>0,

Jm(λ) :=


λ 1

λ
. . .
. . . 1

λ

 .

We sometimes write Jm instead of Jm(λ) and call (F.10) the Jordan canonical form. Jor-
dan forms and the involved matrices satisfy the following properties [Horn and Johnson,
1985].

• Let Nm (we simply write N if the dimension is obvious) be the canonical nilpotent
matrix of degree m, that is the m × m-matrix with ones in the superdiagonal
and zeroes elsewhere. Then Jm(λ) = λ1 + N and by the binomial formula Jnm =∑n

i=0

(
n
i

)
λn−iN i.

• Every diagonal value of a Jordan block is an eigenvalue of M and for every eigen-
value λ of M , there is at least one Jordan block with diagonal λ. There may
however be more than one Jordan block for the same eigenvalue.

• The geometric multiplicity of an eigenvalue λ is the number of corresponding Jor-
dan blocks

• The algebraic multiplicity of an eigenvalue λ is the sum of the sizes mi of the
corresponding Jordan blocks.

• If M is diagonalizable, all Jordan blocks are of size one, which is equivalent to the
algebraic and geometric multiplicities being equal.
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Some Lemmata for the proof of Theorem 6

We say that a vector v in a d-dimensional vector space is cyclic of the d× d matrix J if
v, Jv, . . . , Jd−1v constitute a basis for the vector space.

Lemma F.1. Let J = Jm1(λ1) ⊕ . . . ⊕ Jmk(λk) be a block Jordan form over C for a

square matrix J . If two or more blocks have the same eigenvalue, no vector v ∈ R
∑k
i=1mi

is cyclic of J .

Proof. It suffices to consider the case J = Jm1(λ)⊕ Jm2(λ) where without loss of gener-
ality m1 ≥ m2. For Jm1(λ) = λ1+Nm1 and Jm2(λ) = λ1+Nm2 the degree m1 minimal
polynomial p(x) = (x − λ)m1 annihilates J such that p(J) = 0. Consequently Jm1 can
be written as a linear combination of J0, . . . , Jm1−1. In particular J0v, . . . , Jm1+m2−1v
cannot be linearly independent.

Lemma F.2. Let J = Jm1(λ1)⊕. . .⊕Jmk(λk) be a block Jordan form over C for a square

matrix J , with each block corresponding to a distinct eigenvalue λi. Then v ∈ C
∑k
i=1mi

is a cyclic vector for J if and only if for each d = 1, . . . , k the entry v∑d
i=1mi

is non-zero.

Proof. We first show by contraposition that if v is cyclic for J , the corresponding entries
will be non-zero. If it does not hold that for each d = 1, . . . , k the entry v∑d

i=1mi
is non-

zero, we may, without loss of generality, assume that the last entry of v is zero, such that

v = [u, 0]⊤ for suitable u ∈ C−1+
∑k
i=1mi . Denote λ = λk the eigenvalue corresponding

to the last Jordan block Jmk(λk); observe that the bottom row of Jn is [0, . . . , 0, λn] for
any power n, and so the last entry of Jnv is 0 for every n and consequently the matrix

[J0v, J1v, . . . , J (
∑k
i=1mi)−1v] has a 0-row. Consequently, v is not cyclic of J . This shows

that if v is cyclic, the entries v∑d
i=1mi

are non-zero.

Now we show the other implication by induction over k. Assume first that k = 1, i.e.,
J = Jm(λ) consists of a single Jordan block. A vector v = [v1, . . . , vm]

⊤ is cyclic of J if
vm ̸= 0. Indeed, consider coefficients a0, . . . , am−1 such that 0 =

∑m−1
n=0 anJ

nv. Recall

that Jn =
∑n

i=0

(
n
i

)
λn−iN i, which implies

0 =
m−1∑
n=0

anJ
nv =

m−1∑
n=0

an

(
n∑
i=0

(
n
i

)
λn−iN i

)
v =

m−1∑
i=0

(
m−1∑
n=i

an

(
n
i

)
λn−i

)
N iv,

where in the final equality, we swap the order of summation, using that the pairs (n, i)
where n ∈ {0, . . . ,m − 1} and i ∈ {0, . . . , n}, are the same as the pairs (n, i) where
i ∈ {0, . . . ,m− 1} and n ∈ {i, . . . ,m− 1}. Since vm ̸= 0 the collection N0v, . . . , Nm−1v
are linearly independent: they form an upper-triangular matrix with vm on the diagonal.
This implies that, in particular, the coefficient on Nm−1v must be 0. But this coefficient

equals
∑m−1

n=m−1 an

(
n

m− 1

)
λn−(m−1) = am−1, and so am−1 = 0. Substituting this into

the coefficient on Nm−2v, one obtains am−2 = 0 and so forth. Therefore, an = 0 for all
n and thus J0v, . . . , Jm−1v are linearly independent, so v is cyclic of J if vm ̸= 0.
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Next assume that the induction hypothesis holds for any matrix with k Jordan blocks
J = Jm1(λ1)⊕ . . .⊕ Jmk(λk) with distinct eigenvalues for each block and for any vector
v = [v1, . . . , v∑k

i=1mi
]⊤ where for every d = 1, . . . , k: v∑d

i=1mi
̸= 0. Now consider the

additional Jordan block D = Jmk+1
(λk+1) where λk+1 ̸= λ1, . . . λk and the vector u

whose last entry umk+1
is non-zero, and let J̃ = J ⊕D, ṽ = [v⊤, u⊤]⊤.

Define the polynomial p of degree
∑k

i=1mi by p(x) = (x − λ1)m1(x − λ2)m2 · · · (x −
λk)

mk . Observe that p(λk+1) ̸= 0 and so p(D) is an upper triangular matrix with p(λk+1)
on the diagonal. Hence the last entry of the vector p(D)u is p(λk+1)umk+1

which is non-
zero, and so p(D)u is cyclic of D (by the initial step of the induction proof). Further
observe that p annihilates each of the previous blocks because Jmi(λi) = λi1 + N so
(Jmi(λi)− λi1)mi = Nmi = 0. Consequently,

p(J̃) = p(Jm1(λ1))⊕ . . .⊕ p(Jmk(λk))⊕ p(D)

= 0⊕ . . .⊕ 0⊕ p(D),

so that

p(J̃)ṽ = [0⊤, . . . , 0⊤, (p(D)u)⊤]⊤. (F.11)

Now to show ṽ is cyclic of J̃ , we take any vector x ∈ C
∑k
i=1mi and y ∈ Cmk+1 . Our

aim is to show that [x⊤, y⊤]⊤ is in the span of J̃0ṽ, . . . , J̃ (
∑k+1
i=1 mi)−1ṽ. Since v is cyclic

of J , x can be expressed as a linear combination of J0v, . . . , J
∑k
i=1mi−1v. Taking the

same linear combination of J̃0ṽ, . . . , J̃
∑k
i=1mi−1ṽ yields the vector [x⊤, z⊤]⊤ for some

z ∈ Cmk+1 . Since p(D)u is cyclic of D, we can write y − z as a linear combination of
D0p(D)u,D1p(D)u, . . . ,Dmk+1−1p(D)u. It follows from (F.11) that by taking the same
linear combination of J̃0p(J̃)ṽ, . . . , J̃mk+1−1p(J̃)ṽ one obtains [0⊤, (y− z)⊤]⊤. Since p is
a polynomial of degree

∑k
i=1mi, it follows that both [x⊤, z⊤]⊤ and [0⊤, (y− z)⊤]⊤ lie in

the span of J̃0ṽ, . . . , J̃
∑k+1
i=1 mi−1ṽ, and so does [x⊤, y⊤]⊤. Since x and y were arbitrary,

the entire space is spanned, completing the induction step.

Proof of Theorem 6

Theorem 6. Consider a process S = [I⊤t , X
⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z satisfying Assumption (A2).

Assume that dI = dY = 1 and let It := {It−2, . . . , It−m−1}, where m = dX + dY . Let
AXY and AI be defined as in (10). The following three statements are equivalent:

1. rankE[[X⊤
t−1, Y

⊤
t−1]

⊤I⊤t ] = dX + dY .

2. The matrix
[
A0
XYAI , A

1
XYAI , . . . , A

dX
XYAI

]
is invertible, where A0

XY is the identity

matrix of size (dX + dY )× (dX + dY ).

3. Different Jordan blocks of J have different eigenvalues and for all q ∈ {1, . . . , k},
the coefficient w∑q

i=1mi
is non-zero; here, J = Q−1AXYQ is the Jordan normal
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form1 of AXY , with k Jordan blocks J = diag(Jm1(λ1), . . . , Jmk(λk)), each with
size mi and eigenvalue λi, and w are the coefficients of AI in the basis of the
generalized eigenvectors Q, that is, w = Q−1AI .

Proof. First observe that(
Xt

Yt

)
= AIIt−1 +AXY

(
Xt−1

Yt−1

)
+

(
νX
νY

)
Ht−1 + εX,Yt︸ ︷︷ ︸

uncorrelated to I

and consequently:

E
[(
Xt

Yt

)
It

]
= E

[(
AIIt−1 +AXY

(
Xt−1

Yt−1

))
αI,IIt−1

]
.

From this, we obtain

E
[(
Xt

Yt

)
It

]
= E[I2t ]︸ ︷︷ ︸

=:vI

αI,I (1− αI,IAXY )−1︸ ︷︷ ︸
=:B−1

AI .

This expression is justified as B is invertible. (Indeed, if αI,I = 0, this is trivial. If αI,I ̸=
0, since e⊤1 A1 = αI,Ie

⊤
1 , where A1 is coefficient matrix assumed in Assumption (A2) and

e1 = [1, 0, . . . , 0]⊤ is the first unit vector, αI,I is an eigenvalue of AT1 and thus of A1

and in particular, by Assumption (A1), it has absolute value strictly smaller than 1.
B is degenerate if and only if AXY − 1

αI,I
is, but this would imply that 1

αI,I
would be

an eigenvalue of AXY , but since the eigenvalues of AXY are also eigenvalues of A1 (if
AXY v = λv, then A1[0, v

⊤]⊤ = λ[0, v⊤]⊤) and belong to the interior of the unit circle,
1

αI,I
cannot be an eigenvalue of AXY .)

By performing the same expansion for E[[X⊤
t , Y

⊤
t ]⊤It−j ] for j ≥ 1 and plugging in the

above, we obtain:

E
((

Xt

Yt

)
It−1

)
= AIvI +AXY E

((
Xt−1

Yt−1

)
It−1

)
= vIB

−1AI

E
((

Xt

Yt

)
It−2

)
= vI

[
AXYB

−1 + αI,I1
]
AI

E
((

Xt

Yt

)
It−3

)
= vI

[
A2
XYB

−1 + αI,IAXY + α2
I,I1
]
AI

and in general:

E
((

Xt

Yt

)
It−1−j

)
= vI

[
AjXYB

−1 +

j−1∑
k=0

αj−kI,I A
k
XY

]
AI . (F.12)

1See Appendix F.4.9 for the definition of Jordan normal forms and the notation that we use.
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The columns (denote the j’th column by colj) of Σ := E[[Xt−1, Yt−1]I⊤t ] are exactly
those given by (F.12). If we deduct αI,Icolj−1 from colj we obtain:

vI

[(
j−1∑
k=0

αj−kI,I A
k
XY +AjXYB

−1

)
− αI,I

(
j−2∑
k=0

αj−1−k
I,I AkXY +Aj−1

XY B
−1

)]
AI

= vI

[
αI,IA

j−1
XY +AjXYB

−1 − αI,IAj−1
XY B

−1
]
AI

= vI(1− α2
I,I)A

j
XYB

−1AI .

Since deducting columns from each other does not change the determinant, we can
create a simpler matrix, Σequiv, with the same determinant: for j ∈ {2, . . . , k} we deduct
αI,Icolj−1 from colj (starting with the largest j, that is first deducting αI,Icolk−1 from
colk, etc.), and obtain

Σequiv = vI

[
A0
XYB

−1AI , (1− α2
I,I)A

1
XYB

−1AI , . . . , (1− α2
I,I)A

dX
XYB

−1AI

]
.

By the Laplace expansion, removing (1−α2
I,I) terms appearing in all but the first column

scales the determinant by a factor 1
(1−α2

I,I)
dX

, but it will not change its invertibility (from

the requirement on the eigenvalues in Assumption (A1), it follows that 1 − α2
I,I > 0).

The same applies to vI = E[I2t ]. Hence, Σ is invertible if and only if

Σequiv,2 :=
[
A0
XYB

−1AI , A1
XYB

−1AI , . . . , AdXXYB
−1AI

]
is invertible. Now observe that B−1 commutes with AjXY . This follows because BAXY =
(1− αI,IAXY )AXY = AXY (1− αI,IAXY ) = AXYB. This implies B−1AXY = AXYB

−1,
because for any matrix M where MB = BM , it follows that

M =MBB−1 = BMB−1 =⇒ B−1M = B−1BMB−1 =MB−1.

This implies that

Σequiv,2 = B−1
[
A0
XYAI , . . . , AdXXYAI

]
︸ ︷︷ ︸

=:Σequiv,3

.

Since B−1 is invertible, it has non-zero determinant, and again invertibility of Σ is
equivalent to invertibility of Σequiv,3.

Let AXY = QJQ−1 be the Jordan block factorization. Observe that{
A0
XYAI , . . . , A

dX
XYAI

}
= Q

{
J0Q−1AI , . . . , J

dXQ−1AI

}
.

And finally, since Q is invertible, invertibility of Σ is equivalent to Q−1AI being cyclic
of J . According to Lemma F.1 if two or more Jordan blocks have the same eigenvalue,
no vector can be cyclic, so in particular not Q−1AI . If on the contrary no eigenvalue is
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shared across Jordan blocks (equivalently, the geometric multiplicity of every eigenvalue
is 1), it follow from Lemma F.2 that Q−1AI is a cyclic vector of J if and only if the
vector Q−1AI is non-zero in the entries indexed by

∑d
i=1mi for all d = 1, . . . , k. Writing

AI = Qa in the basis of the columns of Q for some coefficient vector a ∈ CdX+1, this
means Q−1AI is a cyclic vector for J exactly when the coefficients a∑d

i=1mi
are non-zero

for all d = 1, . . . , k. This concludes the proof.

F.4.10. Proof of Corollary 1

Corollary 1. Consider a VAR(1) process S with dI = 1 and parameter matrix A, and
assume that sparsity pattern of A is given by Assumption (A2) and that the non-zero
entries of A are drawn from any distribution which has density with respect to Lebesgue
measure. Then β is identifiable with probability 1.

Proof. We check the conditions of Theorem 6. Since the entries are drawn from a
density with respect to Lebesgues measure, the eigenvalues are almost surely distinct.
Thus, taking into account the sparsity pattern, AXY can almost surely be diagonalized
and the corresponding Jordan form has blocks of size one, all with distinct eigenvalues.

Also with probability one, w = Q−1

(
αX,I
0

)
does not have any zeroes: Q is deter-

mined from AXY (so Q depends only on αX,X , αY,Y and β), and so the probability that
[α⊤
X,I , 0]

⊤ is orthogonal to any of the rows of Q−1 is 0.

F.4.11. Proof of Corollary 2

Corollary 2. Consider a process S satisfying Assumption (A2) with dI > 1 instrument
processes I(1), . . . , I(dI). Assume that there is at least one instrument process I(j) such
that both of the following conditions hold.

1. I
(j)
t is independent of I

(i)
s for all t, s and i ̸= j, and

2. the requirements of Theorem 6 are satisfied for the reduced process (I(j), X, Y ).

Then β is identifiable.

Proof. Although the instruments I(i), j ̸= i are observed, we may treat them as latent,

being part of the latent process H̃t := (Ht, I
(i,i ̸=j)
t ). By i), I(j) is independent of H̃. By

ii), Theorem 5, and Theorem 6, β is identifiable in the reduced process (I(j), X, Y ), and
the solution is therefore also unique in the full system (I,X, Y ).

F.4.12. Proof of Proposition 3

Proposition 3 (Identification with conditioning set relaxing the VAR assumption).
Consider a process S = [I⊤t , X

⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z satisfying (11) and Assumptions (A1’)

to (A3’). Let Bt be a set of variables satisfying PA (It−2) ⊆ Bt ⊆ ND(Yt) ∩ND(It−2) in
Gfull. Then, (i), (ii) and (iii) from Theorem 4 hold.
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Proof. To obtain E[cov((Yt − βXt−1)I
⊤
t−2|Bt)] = 0, we show that

Yt − βXt−1 ⊥⊥ It−2 | Bt.

Using that Yt − βXt−1 = αY,Y Yt−1 + g(εYt , Ht−1) it suffices to show that Yt−1 ⊥⊥ It−2|Bt
and (εYt , Ht−1) ⊥⊥ It−2|Bt since g is measurable. For the first conditional independence
we use that Yt−1,Bt ⊆ ND(It−2) and PA (It−2) ⊆ Bt to conclude Yt−1 ⊥d It−2|Bt in
Gfull (Indeed, any path from It−2 to Yt−1 leaves It−2 either through a parent of It−2 or
must contain a collider that is a descendant of It−2.) By the global Markov property,
contained in Assumption (A3’), this implies Yt−1 ⊥⊥ It−2|Bt. For the second conditional
independence, we show εYt ⊥⊥ It−2|(Bt, Ht−1) and Ht−1 ⊥⊥ It−2|Bt and use the contraction
property of conditional independence to obtain (εYt , Ht−1) ⊥⊥ It−2|Bt. Now, Ht−1 ⊥⊥
It−2|Bt holds by the global Markov property since Ht−1 ∈ ND(It−2) and PA (It−2) ⊆ Bt.
To show εYt ⊥⊥ It−2|(Bt, Ht−1), we use that by Assumption (A3’) εYt is independent of
any finite subset of ND(Yt) in Gfull. We have that Bt ∪ {Ht−1} ∪ {It−2} ⊆ ND(Yt) and
thus by weak union we get εYt ⊥⊥ It−2|(Bt, Ht−1) as desired. This proves part (i).

Part (ii) follows because the moment equation E[cov((Yt − βXt−1)I
⊤
t−2|Bt)] = 0 is the

same as in Theorem 4, and so the rank requirement for identifiability is also the same.

To show part (iii), we have to show that

Ê[rYtr
⊤
It−2

] W Ê[rIt−2r
⊤
Xt−1

]

(
Ê[rXt−1r

⊤
It−2

] W Ê[rIt−2r
⊤
Xt−1

]

)−1
P−→ β.

This is analogous to the argument in the proof of Theorem 3, except for that the con-
vergence of empirical moments is now guaranteed by Assumption (A2’) (instead of As-
sumption (A1)). Hence, using Slutsky’s Theorem and rewriting Yt as in Theorem 3,
gives the desired convergence.

F.4.13. Proof of Proposition 4

Proposition 4 (Identification with nuisance regressor relaxing the VAR assumption).
Consider a process S = [I⊤t , X

⊤
t , H

⊤
t , Y

⊤
t ]⊤t∈Z satisfying (11) and Assumptions (A1’),

(A2’) and (A4’). Let Zt := {Yt−1} and It := {It−2, . . . , It−m−1} for an m ≥ 1. Then,
(i), (ii), and (iii) from Theorem 5 hold.

Proof. By (11), we have that Yt − βXt−1 − αY,Y Yt−1 = g(εYt , Ht−1). Furthermore, by
Assumption (A4’) (εYt , Ht−1) ⊥⊥ It. Combining this (and using measureability of g) we
obtain

Yt − βXt−1 − αY,Y Yt−1 ⊥⊥ It.

Thus E[(Yt − βXt−1 − αY,Y Yt−1)I⊤t ] = 0 for α = αY,Y , and part (i) follows.

Part (ii) follows because the moment equation E[(Yt − βXt−1 − αY,Y Yt−1)I⊤t ] = 0 is
the same as in Theorem 5, and so the rank requirement for identifiability is also the
same.
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To show part (iii), let X̄t−1 := [Xt−1
⊤, Yt−1

⊤]⊤. We have to show that

Ê[YtI⊤
t ] W Ê[ItX̄⊤

t−1]

(
Ê[X̄t−1I⊤

t ] W Ê[ItX̄⊤
t−1]

)−1
P−→ γ

with γ := [β, αY,Y ]. Assumption (A2’) ensures convergence of the empirical moments
to population moments, and using Slutsky’s Theorem in combination with the expression
for Yt, the statement follows as in the proof of Theorem 3.

F.4.14. Proof of Proposition 5

Proposition 5. Consider a process S = [St]t∈Z satisfying Assumption (A2). Let β be
the causal effect from Xt to Yt+1, and let for an arbitrary m, ℓ ∈ N (αY,X , αY,Y ) be the
population vector of coefficients when regressing Ys+1 − βXs on {Xs−k, k = 1, . . . ,m} ∪
{Ys−j , j = 0, . . . , l}. Then

(αY,Y , β, αY,X) = argmin
a,b,c

Edo(Xt:=x)

Yt+1 −
ℓ∑

j=0

ajYt−j − bXt −
m∑
k=1

ckXt−k


2

.

Proof. Recall that β and αY,Y , αY,H denote the causal effects from Xt, Yt and Ht, re-
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spectively, to Yt+1. We have

min
a,b,c

Edo(Xt:=x)

Yt+1 −
ℓ∑

j=0

ajYt−j − bXt −
m∑
k=1

ckXt−k

2

= min
a,b,c

Edo(Xt:=x)

{βXt + αY,Y Yt + αY,HHt + εYt+1} −
ℓ∑

j=0

ajYt−j − bXt −
m∑
k=1

ckXt−k

2

= min
a,b,c

Edo(Xt:=x)(βXt − bXt)
2

+ Edo(Xt:=x)(βXt − bXt)

αY,Y Yt + αY,HHt + εYt+1 −
ℓ∑

j=0

ajYt−j −
m∑
k=1

ckXt−k


+ Edo(Xt:=x)

αY,Y Yt + αY,HHt + εYt+1 −
ℓ∑

j=0

ajYt−j −
m∑
k=1

ckXt−k

2

= min
a,b,c

Edo(Xt:=x)(βXt − bXt)
2

+ Edo(Xt:=x)(βXt − bXt)

αY,Y Yt + αY,HHt + εYt+1 −
ℓ∑

j=0

ajYt−j −
m∑
k=1

ckXt−k


+ E

αY,Y Yt + αY,HHt + εYt+1 −
ℓ∑

j=0

ajYt−j −
m∑
k=1

ckXt−k

2

= min
a,b,c

Edo(Xt:=x)(βXt − bXt)
2 + (βx− bx)E

αY,Y Yt + αY,HHt + εYt+1 −
ℓ∑

j=0

ajYt−j −
m∑
k=1

ckXt−k


+ E

αY,Y Yt + αY,HHt + εYt+1 −
ℓ∑

j=0

ajYt−j −
m∑
k=1

ckXt−k

2

= min
a,c

E

Yt+1 − βXt −
ℓ∑

j=0

ajYt−j −
m∑
k=1

ckXt−k

2

.

Here, the third and fourth equality signs hold because the joint distribution of the vari-
ables Ht, ε

Y
t+1, Yt, . . . , Yt−ℓ, and Xt−1, . . . , Xt−m is the same under the observational and

the intervention distribution – as the variables are all non-descendants of Xt. Further,
the minimum is obtained for b = β and a and c being the coefficients after (linearly)
projecting Yt+1 − βXt on the space spanned by Yt, . . . , Yt−ℓ and Xt−1, . . . , Xt−m.
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S. Bongers, P. Forré, J. Peters, and J. M. Mooij. Foundations of structural causal models
with cycles and latent variables. The Annals of Statistics, 49(5):2885–2915, 2021.

L. Bottou, J. Peters, J. Quinonero-Candela, D. X. Charles, D. M. Chickering, E. Por-
tugaly, D. Ray, P. Simard, and E. Snelson. Counterfactual reasoning and learning
systems: The example of computational advertising. Journal of Machine Learning
Research, 14(65):3207–3260, 2013.

J. Bound, C. Brown, and N. Mathiowetz. Chapter 59: Measurement Error In Survey
Data. Handbook of Econometrics, 5:3705–3843, 2001.

R. J. Bowden and D. A. Turkington. Instrumental Variables, volume 8 of Econometric
Society Monographs. Cambridge University Press, 1985.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

C. Brito and J. Pearl. Generalized instrumental variables. In Proceedings of the 18th
Conference on Uncertainty in Artificial Intelligence (UAI), pages 85–93, 2002a.

C. Brito and J. Pearl. A new identification condition for recursive models with correlated
errors. Structural Equation Modeling, 9(4):459–474, 2002b.

P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer, 2nd
edition, 1991.
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L. Kook, B. Sick, and P. Bühlmann. Distributional anchor regression. Statistics and
Computing, 32(3):1–19, 2022.

D. Krueger, E. Caballero, J.-H. Jacobsen, A. Zhang, J. Binas, D. Zhang, R. Le Priol,
and A. Courville. Out-of-Distribution Generalization via Risk Extrapolation (REx).
arXiv (2003.00688), March 2020.

W. H. Kruskal and W. A. Wallis. Use of ranks in one-criterion variance analysis. Journal
of the American statistical Association, 47(260):583–621, 1952.

M. Kuroki and J. Pearl. Measurement bias and effect restoration in causal inference.
Biometrika, 101(2):423–437, 2014.

J. Langford and T. Zhang. The epoch-greedy algorithm for multi-armed bandits with
side information. In Advances in Neural Information Processing Systems, volume 20.
Curran Associates, Inc., 2008.

F. Lattimore, T. Lattimore, and M. D. Reid. Causal bandits: Learning good interven-
tions via causal inference. In Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016.

J. A. Laurie, C. G. Moertel, T. R. Fleming, H. S. Wieand, J. E. Leigh, J. Rubin,
G. W. McCormack, J. B. Gerstner, J. E. Krook, and J. Malliard. Surgical adjuvant
therapy of large-bowel carcinoma: An evaluation of levamisole and the combination
of levamisole and fluorouracil. the north central cancer treatment group and the mayo
clinic. Journal of Clinical Oncology, 7(10):1447–1456, 1989.

S. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer. Independence properties of
directed Markov fields. Networks, 20(5):491–505, 1990.

S. L. Lauritzen. Graphical models, volume 17. Oxford University Press, 1996.

S. Lee and E. Bareinboim. Structural causal bandits: Where to intervene? In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

S. Lee, J. D. Correa, and E. Bareinboim. Generalized transportability: Synthesis of
experiments from heterogeneous domains. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence, 2020.

S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv e-prints (2005.01643), 2020.

X. Liang, S. Li, S. Zhang, H. Huang, and S. X. Chen. PM2.5 data reliability, consistency,
and air quality assessment in five Chinese cities. Journal of Geophysical Research:
Atmospheres, 121, 2016.

357



Bibliography

Y. Liu and J. Xie. Cauchy combination test: A powerful test with analytic p-value
calculation under arbitrary dependency structures. Journal of the American Statistical
Association, 115(529):393–402, 2020.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

M. C. Lovell. Seasonal adjustment of economic time series and multiple regression
analysis. Journal of the American Statistical Association, 58(304):993–1010, 1963.

M. C. Lovell. A simple proof of the FWL theorem. Journal of Economic Education, 39
(1):88–91, 2008.

H. Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer Berlin
Heidelberg, 2005.

S. Magliacane, T. van Ommen, T. Claassen, S. Bongers, P. Versteeg, and J. M. Mooij.
Domain adaptation by using causal inference to predict invariant conditional distri-
butions. In Advances in Neural Information Processing Systems, volume 31, 2018.

A. R. Mahmood, H. P. van Hasselt, and R. S. Sutton. Weighted importance sampling
for off-policy learning with linear function approximation. In Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics, pages
50–60, 1947.

G. G. Martinet, A. Strzalkowski, and B. Engelhardt. Variance minimization in the
wasserstein space for invariant causal prediction. In International Conference on Ar-
tificial Intelligence and Statistics, pages 8803–8851. PMLR, 2022.

S. McGrath, J. G. Young, and M. A. Hernán. Revisiting the g-null paradox. Epidemi-
ology, 33(1):114–120, 2022.

C. Meek. Strong completeness and faithfulness in bayesian networks. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI’95, 1995.

N. Meinshausen. Causality from a distributional robustness point of view. In 2018 IEEE
Data Science Workshop (DSW), pages 6–10. IEEE, 2018.
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