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Abstract

This Ph.D thesis consists of some works contributing to the field of ecology modelling for
Arctic whales. Arctic cetaceans are facing challenges due to human activities, like changes
of habitats, scarcity of prey due to fisheries and warmer water, pollution, anthropogenic
noise, etc. Therefore, understanding their behaviour is very important for conservation
management plans. Using several long-term datasets collected by tagging of individual
animals, we apply different statistical and machine learning methods to understand the
behaviour of two endemic Arctic whales, bowhead whales and narwhals. We present new
hidden Markov models, taking into account the correlation between maximum depth
and dive duration, to understand the diving behaviour of a narwhal using dive data of
83 days. Our models relax the contemporaneous conditional independence assumption,
which is often used in ecological modelling, leading to improvement of the model fit. We
also establish machine learning models using deep learning, predicting the prey capture
attempts from accelerometer data, without the need to use resource-heavy acoustic data.
Our models outperform the classical machine learning method random forest, and the
statistical method logistic regression. Our results show that narwhals do not make instant
change in acceleration which is often used as a proxy for prey captures in several other
cetacean species. Finally, we propose Tweedie generalized linear models to understand
the distribution of bowhead whales under warming water in the Arctic area. We exploit
GPU computing to boost up the model performance, thus, allowing to fit to a higher
resolution of environmental data and daily whale positions.

Resumé

Denne Ph.d.-afhandling best̊ar af nogle arbejder, der bidrager til omr̊adet økologisk mod-
ellering af arktiske hvaler. Arktiske hvaler st̊ar over for nogle udfordringer udsprunget
af menneskelige aktiviteter, s̊asom ændringer i deres habitat, mangel p̊a føde p̊a grund
af fiskeri og varmere vand, forurening, menneskeskabt støj osv. Derfor er forst̊aelsen af
deres adfærd meget vigtig for forvaltning og planer for arternes bevarelse. Ved at bruge
flere datasæt indsamlet over lang tid ved tagging af enkeltindivider, anvender vi forskel-
lige statistiske og maskinlæringsmetoder til at forst̊a adfærden hos to endemiske arktiske
hvaler, grønlandshvaler og narhvaler. Vi præsenterer nye Hidden Markov-modeller, der
tager højde for sammenhængen mellem maksimal dybde af et dyk og dykkets varighed,
for at forst̊a narhvalers dykkeadfærd ved hjælp af dykkedata indsamlet over 83 dage.
Vores modeller kræver ikke at der er samtidig betinget uafhængighed, som ellers ofte
bruges i økologisk modellering. Dette fører til en forbedring af modelfittet. Vi etablerer
ogs̊a maskinlæringsmodeller ved hjælp af deep learning, der forudsiger hvalernes forsøg
p̊a at fange byttedyr fra accelerometerdata uden at skulle bruge ressourcetunge akustiske
data. Vores modeller udkonkurrerer den klassiske maskinlæringsmetode random forest
og den statistiske metode logistisk regression. Vores resultater viser, at narhvaler ikke
foretager en øjeblikkelig ændring i accelerationen, som ellers ofte bruges som proxy for
byttefangst hos flere andre hvalarter. Til sidst foresl̊ar vi Tweedie generaliserede lineære
modeller for at forst̊a den spatio-temporale fordeling af grønlandshvaler som funktion af
overfladetemperaturen i det arktiske omr̊ade. Vi udnytter GPU-databehandling til at
øge modellens ydeevne, s̊a de kan passe til den højeste opløsning af miljødata og daglige
hvalpositioner.
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Chapter 1

Introduction

1.1 Summary of Contributions

This thesis consists of five introductory chapters and three main papers. The main
papers aim to contribute to the domain of ecological modelling using new theoretical and
practical tools from statistics and machine learning. Chapter 3 introduces the background
of general linear models (GLMs) and the uncommon Tweedie GLMs, chapter 4 presents
hidden Markov models with correlation, and chapter 5 introduces deep learning and U-
Net. The main papers consist of two published articles, and one work-in-progress paper.
The three main papers are:

Paper I Manh Cuong Ngo, Mads Peter Heide-Jørgensen and Susanne Ditlevsen: Under-
standing narwhal diving behaviour using Hidden Markov Models with dependent
state distributions and long range dependence. PLoS Computational Biology, 15(3):
e1006425, 2019.

Paper II Manh Cuong Ngo, Raghavendra Selvan, Outi Tervo, Mads Peter Heide-Jørgensen,
Susanne Ditlevsen: Detection of foraging behavior from accelerometer data using
U-Net type convolutional networks. Ecological Informatics., 62, 101275, 2021.

Paper III Manh Cuong Ngo, Susanne Ditlevsen and Mads Peter Heide-Jørgensen: Sea surface
temperatures drive the movements of bowhead whales (work in progress).

In Paper I, we propose the new correlated Hidden Markov Models (HMMs) for a nar-
whal dive data set consisting of time series of 83 days, which takes into account the
correlation between two variables. HMMs have been used recently for animal movement
modelling, due to their ability of taking into account the autocorrelation of time series
data. Usually, contemporaneous conditional independence is assumed since it is simple
to implement. However, in many cases, there exists from-medium-to-strong dependence
between state dependent processes. Thus, it is unrealistic to ignore such dependence. In
our case, the maximum depth and dive duration are correlated with medium dependence.
We exploit the continuity of the response variables and propose correlated HMMs with
correlation between maximum depth and dive duration, based on the log-normal distri-
bution and the gamma distribution. We compare these models with independent HMMs
with both a log-normal distribution and a gamma distribution. We clearly see a better
fit of correlated models in both distributions. It indicates that one should consider the
correlation between variables wherever possible.

In Paper II, we investigate the possibility of prey capture detection using accelerometer
data for narwhals, without using the heavy resource demanding acoustic data. It is based
on an assumption that prey capture events are closely related to buzzes, a high-rate series
of echolocation clicks. We find that the sudden changes in acceleration, called jerks, which
are often used as proxies for several different whale species, is not useful to detect capture
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Chapter 1 Introduction

events in narwhals. It may be due to the narwhals using suction feeding when they are
close enough to potential preys, or due to the tags being placed on the back too far
away from the head of the narwhals. We then propose different models based on logistic
regression, and two machine learning methods, random forest and U-Net deep learning,
to capture more complex signals in the data. The results show, surprisingly, that random
forest, which is often very good for tabular data, is worse than logistic regression. Our
deep learning models show good potential by outperforming the two other methods and
they give decent buzz detection rates. It encourages more applications of deep learning
in the ecological field.

In Paper III, we study the relationship between sea surface temperature and the spatio-
temporal distribution of Arctic bowhead whales. It has recently been shown that warmer
water in the Arctic has a negative impact on bowhead whales, forcing them to move
further north, and hence limit their habitat. We propose regression models based on
the uncommon Tweedie generalized linear models, with the duration at different sites as
the response variable, allowing for true zeros in the data. The GPU computing allow
us to fit our models with daily SST with the finest possible resolution of 0.083 × 0.083◦,
approximately 10 × 10 km. There are around 9.6 million data points, hence we avoid
losing information by downsampling data. Our results confirm that the bowhead whales
prefer staying in the colder water, hence the warming Arctic is a tough challenge for their
future.

Four additional contributions to the applied sciences, which are not included in this
thesis, are cited below.

� Olsen, M.T., Nielsen, N.H., Biard, V., Teilmann, J., Ngô, M.C., Vı́kingsson, G.,
Gunnlaugsson, T., Stenson, G., Lawson, J., Lah, L. and Tiedemann, R., 2022.
Genetic and behavioural data confirm the existence of a distinct harbour porpoise
ecotype in West Greenland. Ecological Genetics and Genomics, 22, p.100108.

� Heide-Jørgensen, M.P., Blackwell, S.B., Tervo, O.M., Samson, A.L., Garde, E.,
Hansen, R.G., Ngô, M.C., Conrad, A.S., Trinhammer, P., Schmidt, H.C., Sinding,
M.H.S. and Williams, T.M., 2021. Behavioral response study on seismic airgun and
vessel exposures in narwhals. Frontiers in Marine Science, p.665.

� Tervo, O.M., Ditlevsen, S., Ngô, M.C., Nielsen, N.H., Blackwell, S.B., Williams,
T.M. and Heide-Jørgensen, M.P., 2021. Hunting by the stroke: How foraging drives
diving behavior and locomotion of East-Greenland narwhals (Monodon monoceros).
Frontiers in Marine Science, 7, p.1244.

� Heide-Jørgensen, M.P., Blackwell, S.B., Williams, T.M., Sinding, M.H.S., Skovrind,
M., Tervo, O.M., Garde, E., Hansen, R.G., Nielsen, N.H., Ngô, M.C. and Ditlevsen,
S., 2020. Some like it cold: Temperature-dependent habitat selection by narwhals.
Ecology and evolution, 10(15), pp.8073-8090.
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Chapter 2

Arctic whales

In this chapter, we include basic knowledge of narwhals and bowhead whales.

2.1 Narwhals

Narwhal (Monodon monoceros, meaning “one tooth and one horn”) is a mysterious
species, in the past and even in the present. It is the original version of the legendary
unicorn: a white horse with a spiralled tusk from its head, but sometime depicted as
a fish-liked monster with a horn [Heide-Jørgensen and Laidre, 2006](Figure 2.1). The
tusk is a grown version of the upper left canine that is protruding through the upper lip.
[Garde and Heide-Jørgensen, 2022] estimates there are 97% males with tusk, while it is
only 1,5% in females. They also found that 0,9% of narwhal have two tusks. Male tusk
can reach the length of 267 cm, while usually its length is approximately 190 cm [Heide-
Jørgensen, 2018]. Female tusk is shorter, around 150 cm [Garde and Heide-Jørgensen,
2022]. The tusk is not for feeding purpose but rather for male sexual selection, even
though aggressive behaviours have not been observed [Graham et al., 2020] (Figure 2.2).

While the scientific name comes from their tusk, the common name narwhal, i.e. corps-
whale in Old Norse language, comes from their dark brown skin with mottled patterns
and white patches [Heide-Jørgensen and Laidre, 2006]. The male is often significantly
bigger than the female when fully grown: 400 cm and 900 kg for females, 450 cm and
1600 kg for males on average [Heide-Jørgensen, 2018]. Using eye lens ageing methods,
their age has been estimated to a maximum of 115 years [Garde et al., 2007]. Mating
happens in April and May with estimated gestation between 13 and 16 months, and the
female is believed to give birth every three years [Heide-Jørgensen, 2009, 2018].

This paragraph summarises the content in [Heide-Jørgensen, 2009, 2018]. As a winter
cetacean like bowhead whale and its relative the beluga whale (Delphinapterus leucas),
using ARGOS and GPS-based tagging systems, we only can find narwhals in Arctic
Ocean and North Atlantic Ocean. In Greenland, there are two big narwhal populations
with significant genetic difference between the East and the West, due to the geographical
separation [Louis et al., 2020]. They often migrate in small groups (5-10 whales) of adult
males, or of females and their calves and sometimes joined with immature males. Narwhal
is a deep diver, with a record of 1864m, only less than Cuvier’s beaked whales (Ziphius
cavirostris) and sperm whales (Physeter macrocephalus). The exact reason is unknown,
but an assumption is that they prefer some specific preys that only found at the bottom
layer. Stomach samples show that their food include fish and squid, including Greenland
halibut (Reinhardtius hippoglossoides), Arctic cods (Arctogadus glacialis and Boreogadus
saida), squids (Gonatus sp.), etc. The dive depth varies between seasons, < 500 m in
summer and increases slowly during autumn and winter to reach depth > 800 m. At
such depth > 100 m, there is almost no light, hence narwhals use biosonar for locating
and capturing prey and various acoustics for communication with contubernals. The low
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Chapter 2 Arctic whales

Figure 2.1: A group of narwhals in Hjørnedal, Scoreby Sound, East Greenland. Credit:
Greenland Institute of Natural Resource.

Figure 2.2: Narwhal tagging and measurement in Hjørnedal, Scoreby Sound, East Green-
land. Credit: Greenland Institute of Natural Resource.
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Chapter 2 Arctic whales

rates between 300 Hz and 18 kHz are believed to be used for communication [Ford and
Fisher, 1978, Miller et al., 1995], whereas faster click rates of 110-115 clicks per second
are for feeding [Heide-Jørgensen, 2018]. The highest rate is around 48 kHz of 3-10 clicks
per second [Stafford et al., 2012].

Narwhals have two natural predators [Heide-Jørgensen, 2018]. Killer whales attack
narwhals in open-water seasons, while polar bears pull them out of water from sea ices
in fjords [Lefort et al., 2020]. Inuits have been hunting narwhals for thousand years
for meat, tusks, and skin (mattak) [Heide-Jørgensen and Laidre, 2006]. From arial sur-
veys, the narwhal’s population has been estimated to around 75,000 [Innes et al., 2002,
Heide-Jørgensen, 2004] but more recent survey surveys suggest an even larger world
abundance [Doniol-Valcroze et al., 2019]. Most of the world population is in uninhabited
areas of the Canadian Arctic Archipelago [Heide-Jørgensen, 2018]. Between 2000-2004,
the quotas for hunting were 535, 100, and 433 whales in West Greenland, East Green-
land, and Canada, respectively [Heide-Jørgensen, 2009]. Hunting has in some areas
caused a substantial decrease in the abundance of narwhals in several sub-populations.
This is especially pronounced for the populations in Southeast Greenland. Hence, the
quotas have been reduced (50 whales in Southeast Greenland in 2022) [Naalakkersuisut,
2021]. However, since 2019 the biologists at North Atlantic Marine Mammal Commis-
sion (NAMMCO) have recommended a zero quota for Southeast Greenland [NAMMCO,
2019]. Many biologists are concerned that with the current hunting, the narwhal popu-
lation in Southeast Greenland will go extinct in 2028 [NAMMCO, 2021].

The loss of sea ice is another risk for narwhals. It may help them to be less likely
to be captured by polar bear, but the longer open-water season increases the chance
of being attacked by killer whales [Siegstad and Heide-Jørgensen, 1994, Williams et al.,
2011]. The activities of humans are another threat to narwhals. Unlike the relatively
human-friendly beluga whales, the narwhal is a shy and skittish species, hence they try
to avoid humans as much as possible. They are very sensitive to noise, and much recent
research have shown that anthropogenic factors are threating their existence [Williams
et al., 2017, Heide-Jørgensen et al., 2021, Tervo et al., 2021].

2.2 Bowhead whales

The bowhead whale (Balaena mysticetus) is an Arctic baleen whale. It is also called the
Greenland right whale, because it is the only existing species of the genus Balaena, closely
related to the right whales (Eubalaena)(Figure 2.3). It is described by Darwin as “one of
the most wonderful animal in the world” [Darwin, 2004]. It is the heaviest baleen whale
species, only smaller than blue whale among the world of cetaceans [George et al., 2021].
Inuit hunters and Yankee whaling documented individuals of lengths exceeding 24.5 m
and mass exceeding 172 tons, however modern scientific studies show that bowhead
whales have maximum length of 17-19m, with an estimated body mass of up to 100
tons [George et al., 2021]. They are believed to be able to live longer than any other
mammal species (> 200 years using eye lens aging method) [George et al., 1999, Wetzel
et al., 2017].

The bowhead whale is one of only three cetacean species endemic to Arctic and sub-
Arctic waters. Three main known stocks of bowhead whales are Bering-Chukchi-Beaufort
Seas, East Canada-West Greenland (ECWG), and the East Greenland-Svalbard-Barents
Sea (EGSB) stock, as well as a smaller stock in Okhotsk Sea [Givens and Heide-Jørgensen,
2021]. A hypothesis from Corkeron & Connor is that the warm water is a more ideal
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Chapter 2 Arctic whales

Figure 2.3: Tagging bowhead whale in West Greenland. Credit: Greenland Institute of
Natural Resource.

habitat for the killer whale than cold water, hence staying in the cold Arctic helps the
bowhead whale to stay away from such predator [Corkeron and Connor, 1999].

To adapt to the cold environment throughout the year, the dorsal blubber thickness
of bowhead whales can reach 38.5 cm, and the skin thickness range is from 1 mm (eye-
lid) to 25 mm (lower jaw) [Haldiman et al., 1985]. Another characteristic is the low
body temperature: the mean core temperature is 33.8◦C (range 32.4◦C - 35.3◦C), sev-
eral degrees lower than the other whales, which allows them to have exceptionally low
metabolism rates [George, 2009, Lefebvre et al., 2016]. The large amount of blubber in
bowhead whales exceeds what is necessary to maintain thermal homeostasis and could
even lead to overheating [Hokkanen, 1990]. It is therefore likely that it, together with
the low metabolic rate, blubber also functions as an energy depository that allow the
whales to survive for long periods without feeding [Burns et al., 1993, George et al.,
2020]. This may be particularly useful in the Arctic where production and zooplankton
concentrations show large annual spatial variations [Pomerleau et al., 2017].

Bowhead whales mostly feed on small zooplankton species, including copepods, eu-
phausiids, mysids, and amphipods [George, 2009]. While most feeding happens in the wa-
ter column, sometimes bowhead whales feed on the seafloor as well as the surface [Lowry,
1993, Lowry et al., 2004]. It leads to an abundant list of species [Lowry, 1993, Sheffield
and George, 2021]. The stomach contents and fecal samples show that their main prey are
copepods (12 species, especially three species of calanoid copepods Calanus hyperboreus,
C. finmarchicus and C. glacialis) and euphausiids (2 species) [George, 2009, Lefebvre
et al., 2016]. Besides that, they may also occasionally feed on fish (e.g. Arctic cod and
sculpins), benthic and epibenthic invertebrate species [George, 2009, Lefebvre et al., 2016,
Sheffield and George, 2021].
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Chapter 2 Arctic whales

It is believed that due to their main distribution in Arctic and sub-Arctic regions,
bowhead whales are sensitive to the ongoing warming that is amplified in the Arctic
with rapid reduction in sea ice and increasing sea temperatures [Alexander et al., 2018].
Beside sea temperature, sea ice is another important factor for filter feeding like bowhead
whales because it affects the prey distribution seriously [Heide-Jørgensen et al., 2013].
It has been observed that currently the bowhead whales from the ECWG stock depart
1.5 to 3 weeks earlier to the period 1780-1837 because the warm water has been coming
earlier [Laidre and Heide-Jørgensen, 2012, Eschricht and Reinhardt, 2018]. Therefore, a
warming Arctic will likely reduce the suitable habitat for bowhead whales and force them
to move into more northern and currently ice-covered areas [Chambault et al., 2018]. The
first signs that bowhead whales today are found further north than in previous centuries
comes from the Svalbard where they apparently have abandoned their historical range
where they amount during the whaling period in the 16th and 17th centuries: today
the bowhead whales from the EGSB stock are primarily found north of Svalbard, at the
northeast corner of Greenland and around Frantz Josef Land, in areas that were not
possible to navigate in the whaling days [Kovacs et al., 2020].
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Chapter 3

Generalized linear models

In statistics, the linear model is one of the simplest models for the relationship between
the outcome and the predictors: the outcome y ∈ Rp is simply the weighted sum of the
predictors x ∈ Rp×n for some positive integer p and number of datapoints n. Hence,
it is the standard model in many fields of science, e.g., medicine, sociology, psychology
and biology [Molnar, 2020]. However, in many cases the linear model is “too simple
to be useful”, due to the violation of assumptions. For instance, the outcome might
not be a linear combination of predictors (the assumption of linearity), the outcome
does not follow the normal distribution (the assumption of normality), or the variance
of error terms is not constant (the assumption of homoscedasticity). Count data, data
of proportions, or positive continuous data are among such examples. Necessarily, the
model needs some generalization to overcome these limitations. One such generalization
was introduced by Nelder and Wedderburn, the generalized linear model (GLM) [Nelder
and Wedderburn, 1972]. In the next sections, we introduce GLMs and a specific example,
the Tweedie GLMs. The following presentation in this chapter summarise the contents
of [Dunn and Smyth, 2018a,b].

3.1 Introduction

As a regression model, two components of a GLM need to be determined:

� the random component is determined by choosing an appropriate probability dis-
tribution for the outcome.

� the systematic component is determined by choosing the link function g between
the linear predictor η = β0 +

∑p
k=1 βkxk and the mean µ = E[y]: η = g(µ). A

commonly used link function is the log-link, i.e. η = log(µ), which leads to the
class of log-linear models.

GLMs assume that the response variable follows a distribution from the family of dis-
tributions called the exponential dispersion model family (EDMs). The normal distribu-
tion (in linear regression model) and the gamma distribution are examples of continuous
EDMs, while the Poisson distribution and (negative) binomial distribution (in logistic
regression) belong to discrete EDMs.

Definition 3.1.1. [Dunn and Smyth, 2018a] The probability function of the EDMs has
the form

P(y; θ, ϕ) = a(y, ϕ) exp

(
yθ − κ(θ)

ϕ

)
(3.1.1)

� θ is the canonical parameter,

� ϕ is the dispersion parameter,
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Chapter 3 Generalized linear models

� κ(·) is the cumulant function,

� a(·, ·) is the normalizing function ensuring that
∫
P(y; θ, ϕ)dy = 1 if y is continuous,

and
∑

y P(y; θ, ϕ) = 1 if y is discrete.

3.2 Mean and variance

The moment generating function (MGF) M(y) is defined for all t ∈ R such that M(t)
exists:

M(t) = E[ety] =





∫

S

P(y)ety dy for y continuous

∑
y∈S P(y)ety for y discrete,

(3.2.1)

where P(y) is the probability density/mass function of y, and S is the support of y.
We then define the cumulant generating function (CFG) K(t) = log(M(t)). The i−th
cumulant is defined as

κi =
diK(t)

(dt)i

∣∣∣∣
t=0

(3.2.2)

The mean and variance are the first and second cumulants, respectively.
Now we derive the mean and variance of EDMs. Define θt = θ + tϕ. From (3.1.1) and

(3.2.1), the MGF of an EDM is

M(t) = E[exp(ty)]

=

∫

S

exp(ty)a(y, ϕ) exp
(

yθ−κ(θ)
ϕ

)
dy

= exp
(

κ(θt)−κ(θ)
ϕ

)∫

S

a(y, ϕ) exp
(

yθt−κ(θt)
ϕ

)
dy

= exp
(

κ(θt)−κ(θ)
ϕ

) ∫
S
P(y; θt, ϕ)dy = exp

(
κ(θt)−κ(θ)

ϕ

)
.

Thus, K(t) = log(M(t)) = κ(θt)−κ(θ)
ϕ

. Because the Taylor series of κ(t) is

κ(θt) = κ(θ) +
κ′(θ)

1!
(ϕt) +

κ′′(θ)

2!
(ϕt)2 +

κ′′′(θ)

3!
(ϕt)3 + · · · ,

then

K(t) =
κ′(θ)

1!
t + ϕ

κ′′(θ)

2!
t2 + ϕ2κ

′′′(θ)

3!
t3 + · · · (3.2.3)

The mean and variance of an EDM are thus

E[y] =
dK(t)

dt

∣∣∣∣
t=0

= κ′(θ) = µ

Var[y] =
d2K(t)

(dt)2

∣∣∣∣
t=0

= ϕκ′′(θ) = ϕV (µ)

(3.2.4)

where V (µ) = dµ/dθ is the variance function. Since variance Var[y] and ϕ are both
positive, V (µ) > 0. For example:

� Normal distribution: E[y] = θ and Var[y] = σ2.

� Poisson distribution: E[y] = Var[y] = µ since ϕ = 1.

10



Chapter 3 Generalized linear models

3.3 Deviance and dispersion model form

As mentioned above, V (µ) = dµ/dθ > 0, therefore µ is a monotonely increasing function
of θ. Thus, there exists an injective map between µ and θ. So we can replace the canonical
parameter θ by the mean of the probability function µ in the representation of P(y;ϕ, µ).
It allows for an easier interpresentation of the EDMs.

To do that, define T (y, µ) = yθ − κ(θ). Hence

∂T (y, µ)

∂θ
= y − dκ(θ)

dθ
= y − µ

∂2T (y, µ)

∂θ2
= −dµ

dθ
= −V (µ) < 0.

(3.3.1)

The second derivative of T is always negative, thus T is concave. The maximum of T is
for µ = y. The unit deviance, or the distance between µ and y, is then defined as

d(y, µ) = 2 (T (y, y) − T (y, µ)) ≥ 0. (3.3.2)

Finally, we can use the unit deviance to represent the probability function in the disper-
sion model form:

P(y;µ, ϕ) = b(y, ϕ) exp

(
− 1

2ϕ
d(y, µ)

)
(3.3.3)

where b(y, ϕ) = a(y, ϕ) exp (T (y, y)/ϕ).
The unit deviance is also used in fitting GLMs in R, under the function glm.fit [R

Core Team, 2021]. The residual deviance (or the deviance function), defined as the
(weighted) sum of the unit deviances,

D(y, µ) =
n∑

i=1

wid(yi, µi), (3.3.4)

where wi is the i−th weight. It is used to find the maximum log-likelihood of GLMs in
R [R Core Team, 2021].

3.4 Tweedie distribution

In this chaater, we introduce the Tweedie distributions, used in the paper III. The
Tweedie distribution was first introduced by Maurice Tweedie [Tweedie, 1946]. It is
identical to Taylor’s law in empirical ecology, based on a power-law relationship [Taylor,
1961], which has been used in many practical applications in ecology, e.g. in [Taylor,
1961, Anderson et al., 1982, Kendal, 2002, 2004b].

The Tweedie EDMs’ variance function has the form V (µ) = µp, where p is the power
parameter. It is a generalisation of many well-known distributions:

� p = 0: the normal distribution has V (µ) = 1,

� p = 1: the Poisson distribution has V (µ) = µ,

� p = 2: the Gamma distribution has V (µ) = µ2.

11



Chapter 3 Generalized linear models

Now we compute the cumulant function κ from both the canonical parameter θ and
µ. Given V (µ) = dµ/dθ = µp, hence dθ/dµ = µ−p, so

θ =





µ1−p

1−p
for p ̸= 1

log(µ) for p = 1.

(3.4.1)

Equation (3.4.1) is indeed the canonical link for Tweedie EDMs. Therefore,

µ =





((1 − p)θ)
1

1−p for p ̸= 1

exp(θ) for p = 1.

(3.4.2)

From (3.2.4) where κ′(θ) = µ, given α = p−2
p−1

, we then obtain

κ(θ) =





α−1
α

(
θ

α−1

)α
for p ̸= 1, 2

− log(−θ) for p = 2

exp(θ) for p = 1.

(3.4.3)

Now we calculate κ based on µ. We have

dκ

dµ
=

dκ

dθ
· dθ
dµ

= µ · µ−p = µ1−p,

then

κ(µ) =





µ2−p

2−p
for p ̸= 2

log(µ) for p = 2.

(3.4.4)

We are interested in computing the unit deviance from y and µ, as it is used to fit
GLMs in glm.fit in R. Given T (y, µ) = yθ − κ(µ), (3.4.1), and (3.4.4), we have

T (y, µ) =





y µ1−p

1−p
− µ2−p

2−p
for p ̸= 1, 2

y log(µ) − µ for p = 1

−y/µ− log(µ) for p = 2

(3.4.5)

Then the unit deviance is

d(y, µ) =





2
(

y2−p

(1−p)(2−p)
− yµ1−p

1−p
+ µ2−p

2−p

)
for p ̸= 1, 2

2 (y log(y/µ) − y + µ) for p = 1

2 (y/µ− log(y/µ) − 1) for p = 2

(3.4.6)

There does not exist EDMs where 0 < p < 1, see Theorem 2 [Jørgensen, 1987]. The
case of 1 < p < 2 corresponds to the compound Poisson Gamma distribution [Delong
et al., 2021]. The random variable Y following this distribution if Y =

∑N
i=1Xi where

12



Chapter 3 Generalized linear models

the random variables Xi following Gamma distributions, and N ∼ Poisson(λ) for some
positive λ [Ross, 2014]. When N = 0 is Y = 0, therefore the compound Poisson Gamma
distribution allows for exact zero observations, as well as for positive continuous data
when N > 0. It is suitable for our model of bowhead whale distributions in Paper III. It
has been used in several applications, for example in biology [Kendal, 2004a, 2007], fish-
eries research [Foster and Bravington, 2013, Shono, 2008], insurance modelling [Jørgensen
and Paes De Souza, 1994, Smyth and Jørgensen, 2002], and meteorology [Revfeim, 1984,
Thompson, 1984].
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Chapter 4

Hidden Markov Models

In a dynamical system, a state is a set of variables describing the system at some spe-
cific time [Morrissey, 2021]. An ecological system is an example of a dynamical system.
The set of all possible states is denoted the state space [Terman and Izhikevich, 2008].
Hidden Markov Models (HMMs), also called state space models, are a class of models
of dynamical systems that are often natural for describing ecological systems at all lev-
els, from the smallest scale such as individuals, to the largest scale such as the entire
ecosystem [McClintock et al., 2020]. It is a Markovian model that takes into account
the temporal dependence in the system: the current state depends on the state at the
previous time point. It is not as simple as the (generalized) linear model, where observa-
tions are assumed independent. By including temporal dependencies characterising the
dynamics of the system, HMMs are often more suitable in many applications. Especially
in ecology, [McClintock et al., 2020] list many studies involving HMMs at different levels:
individual, population, community, and ecosystem. In the next sections, we introduce
HMMs and its application to a narwhal dive dataset [Ngô et al., 2019].

4.1 Introduction

First, we introduce the definition of a simple discrete-time HMM (Figure 4.1).

Definition 4.1.1. [Zucchini et al., 2016] Let (Ct)t≥0, (Xt)t≥0 be stochastic processes,
t ∈ N, and m ∈ N. (Ct, Xt)t≥0 is a hidden Markov model if:

� Pr
(
Xt|C(t), X(t−1)

)
= Pr(Xt|Ct)

� Pr
(
Ct|C(t−1)

)
= Pr(Ct|Ct−1)

� Ct ∈ {1, . . . ,m} for all t ≥ 0

where X(t) = {X1, X2, . . . , Xt} and C(t) = {C1, C2, . . . , Ct} for t ≥ 1. (Ct)t≥0 is called
the (unobserved) parameter process, while (Xt)t≥0 is called the state-dependent process.

Let ωji(t) = Pr(Ct+1 = j|Ct = i), then we define the transition probability matrix
Ω(t):

Ω(t) =



ω11(t) . . . ω1m(t)

...
. . .

...
ωm1(t) . . . ωmm(t)


 (4.1.1)

where ωij ≥ 0 and
∑m

j=1 ωij = 1 for i ∈ {1, . . . ,m}.
There are many ways to extend the simple HMMs in Figure 4.1. One way is imple-

mented in our work [Ngô et al., 2019]. In order to include a longer memory, we let the
past state-dependent processes influence the hidden process (Figure 4.2).
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C1 C2 C3 C4

X1 X2 X3 X4

. . .

. . .

hidden

observable

Figure 4.1: Hidden Markov Model.

Ct−1 Ct Ct+1 Ct+2

Xt−1 Xt Xt+1 Xt+2

. . .. . .

. . .

Figure 4.2: Hidden Markov Model with feedback processes, adapted from [Ngô et al.,
2019].

4.2 Contemporaneous conditional independence
relaxation

Another assumption that is often used is the contemporaneous conditional indepen-
dence [Zucchini et al., 2016, Ngô et al., 2019]. If (Xt)t≥0 is a multivariate process of
dimension p: Xt = (X1,t, . . . , Xp,t), it states that

Pr(Xt|Ct = i) =

p∏

k=1

Pr(Xk,t|Ct = i). (4.2.1)

for some i ∈ {1, . . . ,m}. This assumption is often assumed in multidimensional time
series, because it is often not easy to model the correlation between state variables at the
same time point. In [Ngô et al., 2019], we relax this assumption, to take into account the
correlations between the three variables maximum depth (MD), dive duration (DT), and
post-dive surface time (PD) in the narwhal dive data. It leads to significant improvements
of the model fit. We will explain the model in details in the following sections, assuming
the variables follow the Log-normal distribution and the Gamma distribution.

4.2.1 Correlated log-normal distribution

The random variable X follows a log-normal distribution if its logarithm log(X) follows
a normal distribution. For a bivariate log-normal distribution [Aitchison and Brown,
1957], denote Y = (Y1,t, Yt,2) = (log(X1,t), log(X2,t)). Its probability density function f
of the observation (x1, x2) is

f(x1, x2) =

(
2πx1x2σY1,tσY2,t

√
1 − ρ2 exp

(
a2 + b2 − 2ρab

2 (1 − ρ2)

))−1

,

15



Chapter 4 Hidden Markov Models

where x1, x2 > 0, the product-moment correlation of Y1,t and Y2,t satisfies −1 < ρ < 1,
while µYi,t

and σYi,t
(i = 1, 2) are the mean and standard deviation of Yi,t, and a =

log x1−µY1,t

σY1,t
, b =

log x2−µY2,t

σY2,t
. Then

σYi,t
= log

(
1 +

σ2
Xi,t

µ2
Xi,t

)1/2

, µYi,t
= log

(
µXi,t

)
− σYi,t

2
.

We will now explain the trivariate log-normal distribution used in [Ngô et al., 2019].
Given Xt = (X1,t, X2,t, X3,t) and Ct = i for some i ∈ {1, . . . ,m}, let the mean and
variance of log(Xk,t) be µk

i and (σk
i )2, respectively. Thus, the mean and variance of

Xk,t are exp(µk
i + (σk

i )2/2) and (exp((σk
i )2) − 1) exp(2µk

i + (σk
i )2), respectively. Denote

ρk1,k2i the correlation between log(Xk1,t) and log(Xk2,t), where k1, k2 ∈ {1, 2, 3}, then the
correlation between Xk1,t and Xk2,t is

exp(ρk1,k2i σk1
i σk2

i ) − 1√
(exp((σk1

i )2) − 1)(exp((σk2
i )2) − 1)

.

For some small x ∈ R, exp(x) − 1 ≈ x. Hence, if σk1
i , σk2

i are small, the correlation
between Xk1,t and Xk2,t is aproximately

exp(ρk1,k2i σk1
i σk2

i ) − 1√
(exp((σk1

i )2) − 1)(exp((σk2
i )2) − 1)

≈ ρk1,k2i σk1
i σk2

i√(
σk1
i

)2 (
σk2
i

)2 = ρk1,k2i .

Then, the state dependent probability density functions are:

fi(Xt) ≈
1

(2π)3/2
√

|Σi|
∏3

k=1 log(Xk,t)
exp

(
−1

2
(logXt − µi)

⊤Σ−1
i (logXt − µi)

)
,

(4.2.2)
where the covariance matrix Σi is

Σi =




(σ1
i )2 ρ12i σ1

i σ
2
i ρ13i σ1

i σ
3
i

ρ12i σ1
i σ

2
i (σ2

i )2 ρ23i σ2
i σ

3
i

ρ13i σ1
i σ

3
i ρ23i σ2

i σ
3
i (σ3

i )2


 , (4.2.3)

|·| denotes the determinant of a matrix, µi = (µ1
i , µ

2
i , µ

3
i )

⊤, and ρ12i , ρ13i , ρ23i are the corre-
lation coefficients between the three components for Ct = i, respectively. Hence

|Σi| =
(
σ1
i σ

2
i σ

3
i

)2 (
1 + 2ρ12i ρ13ρ

23
i − ρ212 − (2−(ρ23i )2

)

=
(
σ1
i σ

2
i σ

3
i

)2 (
(1 − (ρ12i )2)(1 − (ρ13i )2) − (ρ12i ρ13i − ρ23i )2

)
.

To ensure that the covariance matrix Σi is positive definite (so the density exists), all
of its principal components need to be positive following Sylvester’s condition [Horn and
Johnson, 1985], i.e. (σ1

i )2 > 0, (1 − (ρ12i )2)(σ1
i )2(σ2

i )2 > 0, and

1 + 2ρ12i ρ13i ρ23i − (ρ12i )2 − (ρ13i )2 − (ρ23i )2 > 0

⇐⇒ ρ12i ρ13i −
√

∆ < ρ23i < ρ12i ρ13i +
√

∆,
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where ∆ = (1 − (ρ12i )2)(1 − (ρ13i )2). It is equivalent to σ1
i , σ

2
i > 0, −1 < ρ12i < 1, and

ρ23i = ρ12i ρ13i + α
√

∆ for some α ∈ R such that −1 < α < 1.
One can determine Σ−1

i by using cofactors following Cramer’s rule. Denote A = 1 +
2ρ12i ρ13i ρ23i − (ρ12i )2 − (ρ13i )2 − (ρ23i )2, the cofactors of Σi are

C11 =
(
σ2
i σ

3
i

)2 (
1 − (ρ23i )2

)
/|Σi| =

1 − (ρ23i )2

(σ1
i )

2 · 1

A

C22 =
(
σ1
i σ

3
i

)2 (
1 − (ρ13i )2

)
/|Σi| =

1 − (ρ13i )2

(σ2
i )

2 · 1

A

C33 =
(
σ1
i σ

2
i

)2 (
1 − (ρ12i )2

)
/|Σi| =

1 − (ρ12i )2

(σ3
i )

2 · 1

A

C12 = C21 = σ1
i σ

2
i

(
σ3
i

)2 (
ρ13i ρ23i − ρ12i

)
/|Σi| =

ρ13i ρ23i − ρ12i
σ1
i σ

2
i

· 1

A

C13 = C31 = σ1
i

(
σ2
i

)2
σ3
i

(
ρ12i ρ23i − ρ13i

)
/|Σi| =

ρ12i ρ23i − ρ13i
σ1
i σ

3
i

· 1

A

C23 = C32 =
(
σ1
i

)2
σ2
i σ

3
i

(
ρ12i ρ13i − ρ23i

)
/|Σi| =

ρ12i ρ13i − ρ23i
σ2
i σ

3
i

· 1

A

hence

Σ−1
i =



C11 C12 C13

C21 C22 C23

C31 C32 C33


 .

4.2.2 Correlated gamma distribution

For the correlated gamma models in [Ngô et al., 2019], we only take into account the
correlation between Maximum Depth and Dive Duration, and assume that there is no
correlation between these two variables and the Post-dive duration. So we only discuss
here the case of a bivariate gamma distribution. [Moran, 1969] introduces a numerical
method to calculate the bivariate gamma distribution based on the normal distribution,
that is used in our work [Ngô et al., 2019]. We follow the notions of [Yue et al., 2001].
Given X1 ∼ Gamma(α1, λ1), X2 ∼ Gamma(α2, λ2) where αi, λi are scale and shape pa-
rameters of the Gamma distributions for i ∈ {1, 2}, denote gi, Gi the probability density
and cumulative distribution functions of Xi, respectively. Given Φ(·) the cumulative dis-
tribution function of the standard normal distribution, we define the normalized random
variables X ′

1 and X ′
2 of X1 and X2, using the normal quantile transform (NQT), as

X ′
1 = Φ(G1(·;α1, λ1))

X ′
2 = Φ(G2(·;α2, λ2))

Denote ρ12 the correlation coefficient between X ′
1 and X ′

2. The bivariate gamma joint
density distribution between X1 and X2 is then

g12(x1, x2) =
g1(x1)g2(x2)√

1 − ρ212
exp

(
−(ρ12x

′
1)

2 + (ρ12x
′
2)

2 − 2ρ12x
′
1x

′
2

1 − ρ212

)
.

The Moran model above is one of several different methods to compute the bivariate
gamma density distribution. Compared to other methods, it has several advantages: it
allows the correlation coefficient to vary completely between −1 and 1, rather than to be
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limited between −1/3 and 1/3 like in the Farlie-Gumbel-Morgensen (FGM) model [Farlie,
1960, Gumbel, 1958, Morgenstern, 1956]. The density function can be calculated by
numerical methods based on the standard normal distribution which is available in several
languages (e.g. function pnorm in R), while the Izawa bigamma model [Izawa, 1953] and
the Smith-Adelfang-Tubbs (SAT) models [Smith et al., 1982] require the computation of
infinite series. For the other models, see [Yue et al., 2001] for details. Its generalized form,
the bivariate meta-Gaussian model, allows arbitrary continuous marginal distributions
that make its applications much broader [Kelly and Krzysztofowicz, 1997].
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Deep learning

In the last decade, the terminologies “Artificial intelligence” (AI) and “Deep learning”
(DL) are mentioned everywhere, from media to academia. Designing a machine that can
act like humans, or even more intelligent than humans, has been a dream for thousands
of years, and many people feel that it is coming closer. Besides hypes which always exist
in “hot technologies”, we cannot deny that there are many breakthroughs in research and
automation applications due to deep learning. There are several applications in which
AI performs better than all or most humans, mainly in fields having clear rules, such as
chess (Deep Blue) [Krauthammer, Charles, 1997], Go (AlphaGo/AlphaZero) [Silver et al.,
2017], computer games [Vinyals et al., 2019], poker [Brown and Sandholm, 2018, Blair
and Saffidine, 2019], and other applications [Wani et al., 2020]. It is also very strong in
image recognition, on-par with humans in image classification, character recognition, etc.
In many other fields, it approaches human performance, e.g. the GPT-3 language model
can write code, poetry, and text in a similar way to humans [Brown et al., 2020]. In
biology, AI models can predict the protein fold structures of humans and many animals
which is helpful for drug designs [Jumper et al., 2021]. Even in the most abstract field
like mathematics, recently some mathematicians discovered new patterns with the help
of AI techniques [Davies et al., 2021].

Most of these recent breakthroughs of AI are based on DL. With the huge number of
parameters, DL models can fit to many kinds of data. They outperform many past state-
of-the-art methods like support vector machines, random forests, gradient boosting, and
hidden Markov models in many practical applications. However, we have poor under-
standing of how DL works. DL models can easily overfit to data, but their performance
are very impressive, contradicting classical statistical theories. In the next sections, we
introduce the background of DL and how it is applied in our work in [Ngô et al., 2021].

5.1 Some concepts of machine learning

We review briefly some concepts of machine learning (ML), of which DL is a member.
Similar to the concept of learning in humans, we are interested in letting ML algorithms
learn to do some tasks by themselves. Given a task, in order to learn, we humans need
some inputs, for ML algorithms it is training data of that task. If ML algorithms learn
from labelled data, often labelled by humans, then it is denoted supervised learning,
while letting the algorithms explore the dataset to find patterns or structures is called
unsupervised learning [Goodfellow et al., 2016]. If the algorithm “collects” data by itself
by interacting with environment, it is called reinforcement learning [Sutton and Barto,
2018].

When learning, we need to practice with exercises and examinations, for ML algo-
rithms this corresponds to validation data and testing data, respectively. Specifically,
ML algorithms, with some given structure with basic components, often have some fixed
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Lo
ss

Train
Validation

Figure 5.1: The training and validation losses. The vertical dashed line indicates when
overfitting happens, i.e. the validation loss starts increasing.

hyper-parameters, which need to be specified, normally by humans. The number of
hyper-parameters are often much smaller than the number of parameters of the model
that needs to be trained. Validation set helps us to choose such hyper-parameters, called
hyper-parameter tuning. It is especially important for DL to obtain good performance,
because since the model has a huge number of parameters, it is easy to overfit. Test set
evaluates the performance of the ML algorithm after tuning, by measuring the difference
between the output of the model and the data. For different tasks, we need different mea-
sures, called loss functions. For example, in regression we use mean square error, or L1

loss, etc.; while in classification, we can use for example cross entropy or Kullback–Leibler
divergence [Kullback and Leibler, 1951].

When training DL, with huge amounts of data needed for good performance, we need
to let the algorithm go though the data many times. We want to reduce the loss as much
as possible. DL models often fit very well to the training data, but unfortunately, also to
the noise if let it run for too long. We therefor need the validation data set to measure
the loss on a different data set. Once the loss on the validation data stops decreasing
and start increasing, we stop the algorithm. It is called early stopping to avoid model
overfitting (Figure 5.1) [Prechelt, 1998].

5.2 Introduction to deep learning

The following exposition is summarised from [Calin, 2020]. The DL unit element is an
artificial neuron, which is based on biological neurons. A biological neuron has three
basic components: dendrites, an axon, and a body cell. A neuron cell collects signals
xi’s from the other neurons through its dendrites. These signals are scaled by weights
wi’s at the synapses of the dendrites, hence the total signal is

∑
i wixi inside the body

cell. The cell transmits this total signal if it is greater than a threshold b, called bias.
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Figure 5.2: An abstract neuron with the activation function ϕ, input x, output y and

weights w, such that y = ϕ
∑3

i=0wixi. x0 denotes the bias.

Mathematically, the output signal is

y(x,w) =

{
0, if

∑
i=1wixi ≤ b

1, if
∑

i=1wixi > b,

given x = (x1, . . . , xn) and w = (w1, . . . , wn). It can be written in a more formal way,
using activation function ϕ. In the case above, ϕ is the Heaviside function

y(x,w) = ϕ

(∑

i=0

wixi

)
=

{
0, if

∑
i=0wixi ≤ 0

1, if
∑

i=0wixi > 0,

if we define w0 = −b and x0 = −1.

Definition 5.2.1. [Calin, 2020] An abstract neuron is a quadruple (x,w, ϕ, y), where
x⊤ = (x0, x1, . . . , xn) is the input vector, w⊤ = (w0, w1, . . . , wn) is the weight vector, with
x0 = −1 and w0 = b, the bias, and ϕ is an activation function that defines the outcome
function y = ϕ(x⊤w) = ϕ(

∑n
i wixi). The goal of the step function ϕ is to introduce the

capacity of modelling non-linearities.

One of the most well-known examples of this model is the perceptron [Rosenblatt,
1957], where the inputs are binary: xi ∈ {0, 1} for all i, and ϕ is the Heaviside function.
It is the origin of multilayer neural network, or deep learning. As a simple model, it can
only model simple data, e.g. a linear separable classification problem, i.e. there exists a
hyperplane to separate the patterns in the data. To learn these patterns, the perceptron
tunes the weights wi according to the inputs xi to determine the hyperplane that separates
the patterns. However, if such hyperplane does not exist, it takes at least a two-layer
perceptron neural network, published in 1969 in the book “Perceptrons: an introduction
to computational geometry” [Minsky and Papert, 2017]. For example, one perceptron
can learn (or model) the AND and OR logical function, but not the XOR function, i.e.
produce the outputs from its inputs. This limitation is one of the reasons leading to the
first AI crisis in 1970s, due to the misunderstanding that similar to a single perceptron,
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Figure 5.3: A 2-layer neural network, with input x, output y and hidden layers h(1) and

h(2). x0 denotes the bias.

the multilayer network is not able to learn non-linear separable patterns [Crevier, 1993]
either. In a few cases, the neural network can learn the exact outputs, why in most of
the cases when the data are too complex, using neural networks as an approximator is
often good enough.

Now we explain why a single perceptron cannot learn the XOR function by an algebraic
method [Calin, 2020]. Recall the definition of the XOR function

y := x1 ⊕ x2 =

{
0, if x1 = x2

1, if x1 ̸= x2,
(5.2.1)

where x1, x2 ∈ {0, 1}. Assume that there exists w1, w2, b such that

y(x,w) = ϕ (w1x1 + w2x2 − b) =

{
0, if w1x1 + w2x2 ≤ b
1, if w1x1 + w2x2 > b,

where x1, x2, y satisfy 5.2.1. Since y = 1 if x1 ̸= x2, hence w1, w2 > b. And y = 0 if
x1 = x2, then 0 ≤ b and w1 + w2 ≤ b. Therefore, 2b < w1 + w2 ≤ b ⇒ b < 0, which
contradicts that 0 ≤ b.

To boost the power of perceptrons or more general abstract neurons, one way is to make
a network by stacking many layers, where each layer have several neurons, see Figure 5.3
for a 2-layer neural network. The layers h(1) and h(2) between input and output are called
hidden layers. No feedbacks and information traverses back tothe input layer from the
output layer, it is also called feed-forward neural network.

Now we show that the network of a 2-layer perceptron can learn the XOR function [Calin,
2020]. The first layer has two perceptrons p11 : (w1

11, w
1
12, b

11) = (1, 1, 0.5) and p12 :
(w1

21, w
1
22, b

12) = (1, 1, 1.5). The second layer has one perceptron: p2 : (w2
21, w

2
22, b

2) =
(1,−1, 0.5). It can be verified easily that 5.2.1 is satisfied. It shows the potential of
multilayer neural networks to overcome the limitations of a single perceptron.
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Beside the perceptron using the Heaviside step function, choosing other activation
functions create different types of artificial neurons. For example, an approximator of
a perceptron is a sigmoid neutron where the activation function is a sigmoidal func-
tion [Calin, 2020].

Definition 5.2.2. [Calin, 2020] A function ϕ : R → [0, 1] is sigmoidal if

� limx→−∞ ϕ(x) = 0,

� limx→∞ ϕ(x) = 1.

One well-known example is the logistic function ϕ : ϕ(x) = (1 + exp(−x))−1, which
leads to logistic regression. Other functions in this class is arctangent function 2

π
arctan(x),

softside function x
1+|x| , or hyperbolic tangent exp(x)−exp(−x)

exp(x)+exp(−x)
[Calin, 2020]. These activation

functions allow a continuous output between (0, 1), rather than just discrete output as
step functions. It is used in classification problems, allowing the probability of predicted
classes to vary between 0 and 1.

Another important class of activation functions, when the output is continuous and
not double-bounded, is the hockey-stick function, having the L-shape [Calin, 2020]. The
simplest and most well-known is the Rectified Linear Unit (ReLU) function

y := max(x, 0) =

{
0, if x < 0
x, if x ≥ 0.

(5.2.2)

Recently, it has become the de-facto activation function due to its simplicity [Ra-
machandran et al., 2017], especially in image recognition [Krizhevsky et al., 2017]. An-
other advantage is that it does not saturate, i.e. the output could come too close to
the bounds like in sigmoidal functions. Other variants include Parametric ReLU and
Exponential linear unit (ELU), but ReLU is used the most because it is fastest, several
times faster than neural network using sigmoidal activation functions, while still having
good performance [Krizhevsky et al., 2017]. When ϕ is the identity function ϕ(x) = x,
we have linear regression. For other classes of activation functions, see [Calin, 2020].

The above example of a 2-layer neural network which can learn the XOR function show
the potential ability of multilayer neural network to learn complex functions. In fact, it
has been shown that a multilayer neural network, also called feed-forward network, can
approximate any continuous function [Cybenko, 1989]. A “multilayer” neural network can
even have only one layer. However, if a network is shallow, i.e. do not have many layers, it
needs to have a very large number of neurons, i.e. be arbitrary wide, to approximate well
a complex function. The feed-forward neural network is thus a universal approximator.

In fact, the proof of [Cybenko, 1989] is for the sigmoidal activation function. [Hornik,
1991] shows that the multilayer structure is the main reason behind the approximation
capacity, not the activation function, which is later expanded to a much larger class of
any activation function which are not polynomial [Leshno et al., 1993, Pinkus, 1999]. The
feed-forward network is not the only one having the universal approximation property.
It has been shown that it is also the case for convolutional neural networks [Zhou, 2020]
(which is used in our work [Ngô et al., 2021] and introduced later), recurrent neural
networks [Schäfer and Zimmermann, 2006], and graph neural networks [Gabrielsson,
2020]. However, note that these works say nothing about the form of the approximated
solution, or how to train the data to get that function. Hence, the classical ways are to
use numerical methods. Gradient descent algorithm is one of the most canonical ways,
which is discussed in the next section [Cauchy et al., 1847, Hadamard, 1908].
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5.3 Deep learning optimization

Given a differentiable loss function f and parameters θ, the gradient descent algorithm
is a first-order iterative method. It is preferable to (quasi) Newton methods, because one
of its advantages is that it does not require to calculate the Hessian, which is infeasible
due the huge number of models in DL. The gradient descent algorithm tries to reduce
the value of f at each step, hopefully making f reaching some (local) optimum. Its big
disadvantage is that it is much slower than Newton methods. For DL, however, it is not
necessary to reach some optimum, as it is only expected to decrease the loss function as
much as possible, so improve the learning ability [Goodfellow et al., 2016]. The de-facto
gradient descent algorithm for DL, Adam Kingma and Ba [2014], does not converge to
an optimum in many cases [Bae et al., 2019].

Formally, denote θ0 the initial values of a parameter θ, and the time step t ∈ N. The
value of θ at time t + 1 is

θt+1 = θt − ηt
df

dθ
,

where ηt is the learning rate (or step size) at time t. For DL, the dataset is often very big,
hence it does not fit into the memory. A common way is to divide the training data into
many small sets, denoted batches. The gradient descent algorithm using such batches
is called stochastic gradient descent (SGD). The point of view of SGD is to address the
gradient as an expectation that can be estimated from some small samples. Given a
batch Bt = {xt

1, . . . , x
t
m} of size m, then the estimated g is the average of the gradient at

each data point

g̃t =
1

m
× d

dθ

m∑

i=1

f(xt
i, θ),

hence

θt+1 = θt − g̃t
df

dθ
.

m is often not more than several hundreds, and does not grow with training set size.
How ηt varies over time step t is an ongoing study with numerous different approaches.

The simplest way is to choose some small constant learning rate. However, it could get
stuck at saddle points, and also oscillate in the area close to local optimum because the
gradients of the parameters are different orders of magnitudes [Jin et al., 2017, Sutton,
1986]. To resolve these issues, adaptive optimization methods have been developed. A
well-known way is to take into account the past gradients, which is called momentum
methods [Qian, 1999, Nesterov, 1983]. Another approach is to adapt the different learning
to different parameters due to their sparseness in the data. It includes Adagrad [Duchi
et al., 2011], AdaDelta [Zeiler, 2012], and RMSProp [Hinton et al., 2012]. The next gener-
ation optimizer are often the combination of different approaches and/or their enhanced
versions: Adam Kingma and Ba [2014] is the combination of Momentum and RMSProp;
Nadam is combined of Adam and Nesterov accelerated gradient [Nesterov, 1983], and so
on (for more details, see [Ruder, 2016]). Even Adam is a default choice for DL, it is not
one-size-fits-all for every problem, as stated by the no free-lunch theorem [Wolpert and
Macready, 1997]. As DL is still an experimental field, one may need to test different
optimisers to compare and select the most suitable one for each problem and dataset.

Besides optimizers, several other tricks are helpful for improving DL performance [Ruder,
2016]. It includes training data shuffling to reduce bias, batch normalisation to re-
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establish normalisation after each batch learning for SGD acceleration [Ioffe and Szegedy,
2015], and early stopping to reduce overfitting.

Last but not least, fast calculation of gradients in DL network is not less important than
the above techniques, due to the huge number of parameters of the model. The common
way is to use the backpropagation algorithm, which is a form of dynamic programming
based on the chain rule. It has a rich history [Schmidhuber, 2014], and it has been re-
discovered many times since 1960s (e.g. [Kelley, 1960, Bryson, 1961, Dreyfus, 1962]). The
modern version used in well-known DL frameworks is arguably based on the Master thesis
of [Linnainmaa, 1970]. [Rumelhart et al., 1986] apply the method for neural networks,
hence names it backpropagation. It have became the standard method to calculate
gradients since 2010s with the popular use of GPU in DL [Schmidhuber, 2015].

5.4 Convolutional neural networks & U-Net

Convolutional neural networks (CNNs) are one type of feed-forward neural networks hav-
ing less parameters than the same size networks, thanks to the convolution instead of full
matrix multiplication in fully connected neural networks [Goodfellow et al., 2016]. Hence
it saves time when training significantly while retain the on-par performance [Goodfellow
et al., 2016]. CNN thus attracts many different applications, especially become the de
facto DL model for image-related tasks due to their huge amount of data [Valueva et al.,
2020].

It is inspired by signal processing, where data are signal and kernel is filter. Formally,
for a one-dimensional signal s = (. . . , s−1, s0, s1, . . . ) and the filter w of length N =
n1+n2+1: w = (w−n1 , . . . , w−1, w0, w1, . . . , wn2) ∈ RN , the convolution product between
s and w is

zj =

n2∑

k=−n1

sj+kwk

where z = (. . . , z−1, z0, z1, . . . ) is the convoluted signal [Calin, 2020]. For example, when
w−k = · · · = w0 = w1 = · · · = wk, we have a (2k + 1)-moving average, as

zk =
1

2k + 1

k∑

i=−k

si.

Hence we can say that the convolution is a form of weighted sum.
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Figure 5.4: A neural network with CNN layers connected with fully connected hidden
layers.1

In Figure 5.4, there are less connections between convolutional layers in the CNN than
in fully connected neural network, it hence help boosting the training speed significantly.
Similar to weight matrices in fully connected neural network, the kernels of CNN are
automatically learned by the training. Another important component of CNN which
is often used is Pooling layer, including Max Pooling and Average Pooling [Yamaguchi
et al., 1990, Goodfellow et al., 2016]. Pooling layer decreases the dimension of the input
data, allowing the CNN to “look” at scarcer versions of signals at different layers. Using
Pooling, CNN can learn hierarchical structures in the data, from highest resolution with
every detail to lower resolutions with more abstraction and less noise. For example, given
s = (1, 2, 3, 4) and the 2-size pooling layer P goes through s:

� if P is a Max pooling layer, then P (s) = (max(1, 2),max(3, 4)) = (2, 4),

� if P is an Average pooling layer, then P (s) = (1+2
2
, 3+4

2
) = (1.5, 3.5).

1Image source from https://tikz.net/neural networks/
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Input
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Figure 5.5: An example of a U-Net for buzz detection in our work [Ngô et al., 2021].
The encoder encodes data at different resolutions to feature maps, making
the contracting path. The decoder decodes the corresponding messages from
the encoder. The skip connections allow the feature maps skip lower layers
to feed on the corresponding CNN decoder on the other side.2

We now focus on U-Net [Ronneberger et al., 2015], a specific kind of CNN used in our
work [Ngô et al., 2021] for the time series data, inspired by the work for time series data
by [Perslev et al., 2019]. It is based on an Encoder-Decoder structure (Figure 5.5). At
the encoder side, CNN layers encode different resolutions of feature maps, outputted by
CNN layers and downsampled by (Max or Average) pooling layers. These sequences of
steps are called contracting paths. On the decoder side, CNN layers here act as translators
to decode the encoded data, after upsampling to the same resolutions as in the encoder
side. However, note that the input of the decoder loses information due to pooling layers
at the encoder. Hence, U-Net introduces skip connections to allow the raw feature maps
to go directly to the corresponding CNN layers in the decoder side, so they can learn the
original version and the upsampling one together [Drozdzal et al., 2016]. It is one of the
key ideas that make U-Net very successful in biomedical data, which require very high
precision in pattern detection and low error rates [Siddique et al., 2021]. In our dataset,
we let U-Net models explore the original data since we do not know what frequencies in
the accelerometer data are useful for prey attempt detection.

2Image source from the Arxiv version of our paper: https://arxiv.org/abs/2101.01992
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Abstract

Diving behaviour of narwhals is still largely unknown. We use Hidden Markov models

(HMMs) to describe the diving behaviour of a narwhal and fit the models to a three-dimen-

sional response vector of maximum dive depth, duration of dives and post-dive surface time

of 8,609 dives measured in East Greenland over 83 days, an extraordinarily long and rich

data set. Narwhal diving patterns have not been analysed like this before, but in studies of

other whale species, response variables have been assumed independent. We extend the

existing models to allow for dependence between state distributions, and show that the

dependence has an impact on the conclusions drawn about the diving behaviour. We try

several HMMs with 2, 3 or 4 states, and with independent and dependent log-normal and

gamma distributions, respectively, and different covariates to characterize dive patterns. In

particular, diurnal patterns in diving behaviour is inferred, by using periodic B-splines with

boundary knots in 0 and 24 hours.

Author summary

Narwhals live in pristine environments. However, the increase in average temperatures in

the Arctic and the concomitant loss of summer sea ice, as well as increased human activi-

ties, such as ship traffic and mineral exploration leading to increased noise pollution, are

changing the environment, and therefore probably also the behavior and well-being of

the narwhal. Here, we use probabilistic models to unravel the diving and feeding behavior

of a male narwhal, tagged in East Greenland in 2013, and followed for more than two

months. The goal is to gain knowledge of the whales’ normal behavior, to be able to later

detect possible changes in behavior due to climatic changes and human influences. We

find that the narwhal uses around two thirds of its time searching for food, it typically

feeds during deep dives (more than 350m), and it can have extended periods, up to 3 days,

without feeding activity.
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Introduction

The narwhal (Monodon monoceros) primarily inhabit cold waters of the Atlantic sector of the

Arctic, with the largest abundances found in East and West Greenland and in the Canadian

High Arctic [1]. The narwhal is one of the deepest diving cetaceans with the maximum exceed-

ing 1800m [2], and it comes third only to Cuvier’s beaked whale (Ziphius cavirostris) (2992m)

[3] and sperm whale (Physeter macrocephalus) (2035m) [4]. Narwhals dive to forage, and their

diet consists of few prey species including Greenland halibut (Reinhardtius hippoglossoides),
polar cod (Boreogadus saida), capelin (Ammodytes villosus) and squids (Gonatus sp.) [5, 6].

Narwhals depend on acoustics for sensing their environment, navigating and capturing prey at

depth [7]. Anthropogenic factors like underwater noise are a concern for a species that, with

decreasing sea ice coverage, is increasingly exposed to underwater noise from shipping and

seismic exploration [8]. It is therefore important to understand and quantitatively describe the

diving activities of narwhals, by robust statistical methods, to ensure the long-term conserva-

tion of one of the most specialized species in the North Atlantic.

The first step is to understand the diving patterns of narwhals under natural conditions,

which we address in this study. Diving behaviour is however cryptic since it includes both

physiological constraints, energetic demands and habitat and environmental regimes. Model-

ling of the observed diving behaviour is one way of gaining insight to the overall diving pat-

terns, and changes in model parameters is a way to compare and estimate quantitatively

changes in diving behavior or differences between individuals.

We apply multivariate Hidden Markov Models (HMMs) with covariates [9], to describe the

diving dynamics in the vertical dimension of an individual narwhal. These types of models for

similar diving data of Blainville’s beaked whales (Mesoplodon densirostris) were first intro-

duced in [10]. A HMM assumes an underlying unobserved process, which governs the dynam-

ics of the observed variables. The assumption is that the observed behaviour in a dive will

depend on the present state, and introduces autocorrelation in the model [9]. These HMMs

have been used for modelling animal movement by taking into account the correlation over

time between different movement patterns, mainly in two horizontal dimensions (see, e.g.,

[11–13]), and recently, in one vertical dimension [10, 14], possibly including further informa-

tion on vertical movements. In this study, we use vertical depth data, and the three response

variables are the maximum depth reached in a dive, the duration of a dive, and the post-dive

surface time before initiating a new dive.

In all previous studies, contemporaneous conditional independence was assumed, meaning

that the state dependent processes are independent given the underlying state. This is a

strong and often also an unrealistic assumption, since deeper dives will typically take longer.

Even when conditioning the dive to be either shallow, medium or deep, a positive correlation

is still expected, beyond the correlation implied by the hidden states. DeRuiter et al. [14]

argued for the assumption of conditional independence because unless a multivariate normal

distribution can be assumed, there is usually no simple candidate multivariate distribution to

specify the correlation structure. This is partly due to some of their response variables being

discrete. In this study, we will relax the assumption of conditional independence, taking

advantage of the continuity of the response variables. They are all restricted to be positive

and with right skewed distributions. Previous studies have therefore used conditionally inde-

pendent gamma distributions for these variables. Here, we will assume dependent log-nor-

mal distributions, such that their log-transforms follow a multivariate normal distribution.

We also do the analysis with the standard choice of the gamma distributions with both

dependence and independence, as well as the independent log-normal distributions, and

compare the results.
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Covariates were included in [10, 13, 14], appearing in the transition probabilities between

hidden states, whereas no covariates were included in [15]. Here we include covariates in all

elements of the transition matrix, trying out different covariate process models and select the

optimal model by the Akaike Information Criterion (AIC). We consider two covariates related

to the recent deep dives performed by the narwhal. Dives can reach> 1800m, and deeper

dives are assumed to be related to feeding [2]. We define a deep dive as a dive to a depth of at

least 350m. One covariate is the time passed since the last deep dive, which was also used in

[10]. The hypothesis is that the longer the time passed since last deep dive, the higher the nar-

whal’s propensity for initiating a deep dive will be. Another covariate counts the number of

consecutive deep dives that the narwhal has performed. The hypothesis is that the more dives

in a row and more time spent at great depths, the higher the narwhal’s propensity for changing

diving pattern to shallower depth or near-surface travelling. By introducing such history

dependent covariates, the model allows a longer dependence structure than the one implied by

the Markov property. These models with dependencies between observables caused by the

underlying state, as well as including feedback from the observed process, were introduced in

[10] to model Blainville’s beaked whale. The last covariate is time of day at initiation of the

dive, modelled by a periodic B-spline with boundary knots in 0 and 24 hours. Diurnal effects

on marine mammal diving patterns are difficult to estimate in this type of models because the

time series are typically too short. Here, we analyse a data set of a tagged narwhal that is

extraordinarily long, nearly three months, making this inference possible. Normally, such time

series are on the order of hours or days. However, we only have data from a single whale, and

results might not generalize.

Materials and methods

Ethics statement

Permission for capturing, handling, and tagging of narwhals was provided by the Government

of Greenland (Case ID 2010–035453, document number 429 926).

Data

We analyse the time series of depth measurements of a mature male narwhal (420 cm, esti-

mated mass 950 kg) tagged in East Greenland from August 13th until November 6th 2013. The

tag (a satellite linked time depth recorder, the Mk10 time-depth recorder from Wildlife Com-

puters, Redmond, WA, USA) was attached to the whale and retrieved one year later with

1994.83 hours of dive data (approximately 83 days and 2 hours), see [16]. In this time interval

the narwhal performed 8,609 dives to depths of at least 20m. Depth was measured every second

at a resolution of 0.5m, and preprocessed before analysis by summarizing in three variables

within each dive to describe the behaviour: maximum depth (MD), dive duration (DT), and

post-dive surface time (PD), as also used in [14]. A dive was scored every time the depth record

went deeper than 20m (i.e., about four to six body lengths) to exclude brief shallow submer-

sions between respirations, otherwise it is considered time spent at the surface, summarized in

the variable PD. This threshold was chosen in order to avoid creating too many shallow dives

near the surface, see [17]. We use a custom-written procedure in C++ combining with R [18]

via Rcpp [19]. The dives are found by locating all zero depth measurements. If there is at least

one depth measurement of at least 20m between two consecutive measurements of 0m, this is

classified as a dive. Otherwise an interval between two 0m measurements is classified as part of

the post-dive time after the last dive. For each identified dive, the largest depth measurement is

defined as the maximum depth of the dive, and the dive duration is the time difference

Understanding narwhal diving behaviour using Hidden Markov Models
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between the two 0m measurements. The surface and dive durations also enter in the model as

part of the covariate counting the time since last deep dive.

In this study, the observed response variable, denoted by Xt, is three-dimensional, describ-

ing the diving behaviour related to each dive, where t indicates the dive number, t = 1, 2, . . ., T.

The first response variable, X1,t, is MD reached in dive number t. The second response

variable, X2,t, is DT of dive number t. The third response variable, X3,t, is PD after dive t. We

assume that the diving behaviour depends on an underlying unobserved process, which we

denote by Ct, t = 1, 2, . . ., with a number m of unobserved behavioural states, Ct 2 {1, . . .,m},

which govern the dynamics of the observed variables. The assumption is that the distributions

of the observed MD, DT and PD of dive number t depend on the state.

Hidden Markov Model

Anm-dimensional hidden Markov model assumes that the distribution of the p-dimensional

response vector Xt depends on a hidden state Ct, where {Ct: t = 1, 2, . . .} is an unobserved

underlying process satisfying the Markov property:

PðCt ¼ j j Ct� 1 ¼ i; . . . ;C1 ¼ lÞ ¼ PðCt ¼ j j Ct� 1 ¼ iÞ;

where Ct 2 {1, . . ., m} for t = 2, 3, . . .. Denote the state transition probabilities at time t by

ωij(t), i, j = 1, . . .,m, where ωij(t) = P(Ct+1 = jjCt = i). The transition probability matrix O(t) is

then

OðtÞ ¼

o11ðtÞ � � � o1mðtÞ

..

. . .
. ..

.

om1ðtÞ � � � ommðtÞ

2

6
6
6
6
4

3

7
7
7
7
5

ð1Þ

where ωij(t)� 0 and
Pm

j¼1
oijðtÞ ¼ 1. Here, we let ωij(t) depend on t to allow time varying

covariates to affect the transition probabilities, see Section Covariates. The distribution of Xt is

conditionally independent of everything else given Ct:

f ðXtjXt� 1; . . . ;X1;Ct;Ct� 1; . . . ;C1Þ ¼ f ðXtjCtÞ; t ¼ 1; 2; . . . ð2Þ

where f denotes a probability density function, i.e., the distribution of Xt depends only on the

current state Ct and not on previous states or observations. The model is illustrated in Fig 1.

Fig 1. Hidden Markov Model. The hidden states Ct represent behavioural states that influence the distribution of the observed variables Xt.

https://doi.org/10.1371/journal.pcbi.1006425.g001
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State dependent distributions

The state-dependent distributions are the probability density functions of Xt associated with

state i. Under the contemporaneous conditional independence assumption, the p different com-

ponents of the response vector Xt are assumed independent given the hidden state, and the

probability density can be decomposed as

f ðXt j Ct ¼ iÞ ¼ fiðXtÞ ¼
Yp

k¼1

fi;kðXk;tÞ; ð3Þ

where Xk,t is the kth observed component of Xt. Here we have p = 3, the components being

MD, DT and PD. Thus, Xt = (XMD,t, XDT,t, XPD,t)
T, where T denotes transposition. Contempora-

neous conditional independence implies that the state dependent processes XMD,t, XDT,t and

XPD,t are independent given the underlying state Ct. This assumption has been used in [14]

and [15] because in general, there is no simple way to address the correlation between variables

within states, and the dependence induced by the Markov chain is often sufficient to fit the

data. However, in this paper, we will relax this assumption, and let fi be a joint distribution

function, allowing for dependent coordinates, which for our data turn out to improve the fit

considerably.

All three response variables are positive right-skewed variables, so natural candidates for fi,k
are gamma distributions, as used in [14] and [15], or log-normal distributions, i.e., the loga-

rithm of the response variables follow a 3-dimensional normal distribution. Here, we will try

four different distributions. The first candidate is independent gamma distributions, to com-

pare with the usual approach. The gamma distribution is parametrized by shape parameter μ
and scale parameter σ, with mean μσ and variance μσ2, and the state dependent probability

density functions are given by

fiðXtÞ ¼
Y

k2fMD;DT;PTg

fi;k Xk;t

� �
¼

Y

k2fMD;DT;PTg

Gðmki Þ
� 1
ðski Þ

� mki Xmki � 1

k;t e
�
Xk;t
ski ; ð4Þ

for i = 1, . . .,m.

We will also assume dependent gamma distributions [20] and both independent and corre-

lated log-normal distributions, such that log Xt is multivariate normal, where log Xt = (log XMD,t,

log XDT,t, log XPT,t)
T, taking advantage of the computational convenience of the normal distribu-

tion. The log-normal distribution is parametrized by log-mean μ and log-variance σ2. Thus,

given Ct = i and k, the mean and variance of log Xk,t is mki and ðski Þ
2
, and the mean and variance

of Xk,t is expðmki þ ðs
k
i Þ

2
=2Þ and ðexpððski Þ

2
Þ � 1Þexpð2mki þ ðs

k
i Þ

2
Þ. The log-correlation between

responses k1 and k2, for k1, k2 2 {MD,DT, PT} is denoted by r
k1 ;k2
i . The correlation between

components k1 and k2 is ðexpðris
k1
i s

k2
i Þ � 1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðexpððsk1
i Þ

2
Þ � 1Þðexpððsk2

i Þ
2
Þ � 1Þ

q

, where

ðs
k1
i Þ

2
and ðs

k2
i Þ

2
are the log-variances of k1 and k2, respectively. The correlation is approxi-

mately equal to the log-correlation r
k1 ;k2
i when ðs

k1
i Þ

2
and ðs

k2
i Þ

2
are small. Thus, the state depen-

dent probability density functions are given by

fiðXtÞ ¼
1

ð2pÞ
3=2

ffiffiffiffiffiffiffi
jSij

p
�
Q

k2fMD;DT;PTg logXk;t

exp �
1

2
ðlogXt � miÞ

>
S� 1

i ðlogXt � miÞ

� �

; ð5Þ

Understanding narwhal diving behaviour using Hidden Markov Models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006425 March 14, 2019 5 / 21

Chapter 6 Paper I

42



where |�| denotes the determinant of a matrix, mi ¼ ðm
MD
i ; mDTi ; m

PD
i Þ

T
,

Si ¼

ðsMDi Þ
2

r
MD;DT
i sMDi sDTi r

MD;PD
i sMDi sPDi

r
MD;DT
i sMDi sDTi ðsDTi Þ

2
r
DT;PD
i sDTi s

PD
i

r
MD;PD
i sMDi sPDi r

DT;PD
i sDTi s

PD
i ðsPDi Þ

2

2

6
6
6
6
4

3

7
7
7
7
5

and r
k1 ;k2
i ¼ 0 in the independent case.

Covariates

To allow for a longer memory in the model beyond the autocorrelation induced by the hidden

process, we incorporate feedback mechanisms by letting the state transition probabilities

depend on the history. We consider two covariates related to the recent deep dives performed

by the narwhal. One covariate is the continuous variable τt, defined as time passed since the

last deep dive before dive number t, where a deep dive is defined as a dive to a depth of at

least 350m. Maximum depths are bimodal, and the value is chosen as a lower threshold of the

deeper dives. Note that this definition is only used to define the covariates, and is not related to

the decoding of states. The other covariate is the discrete variable dt taking non-negative inte-

ger values, counting the number of consecutive deep dives that the narwhal has performed

before dive number t. Thus, covariate τt measures physical time since last deep dive, whereas

covariate dt counts number of deep dives in a row, independently of time passed. Finally, we

consider the covariate of the hour of the day at which the dive is initiated. More specifically,

we define the covariate processes Tt, the time since the last deep dive, Dt, the number of conse-

cutive deep dives up to dive number t, and Ht, the hour of initiation of dive t, and denote the

measured covariates by τt, dt and ht. Thus, the short term memory is modelled by the hidden

states, and the long term memory is modelled by modulation of the transition probabilities as

a function of past dynamics. The model is illustrated in Fig 2. Fig 3 illustrates the response var-

iables and the three covariates for 60 consecutive dives.

The covariates enter the transition probabilities ωij(t) = ωij(ηij(t)) in Eq (1) through a predic-
tor, ηij(t), see Eq (7) below. We consider several models. If there are no covariates for a given

predictor, then ηij(t) = ηij does not depend on t. In S1 Table in the Supporting Information,

all the covariate models that were fitted are listed, where αij, βij, γij, δij, θij and zij are real param-

eters. Covariates dt and τt were incorporated as natural cubic splines with three degrees of

freedom. The effect of time of day is modelled by a periodic B-spline with three degrees of free-

dom, with boundary knots in 0 and 24 hours.

The likelihood function and optimization

The likelihood LT of x1, x2, . . ., xT, where xt is the observation of Xt, assumed to be generated

by an m-state HMM, can in general be computed recursively in only O(Tm2) operations by the

forward algorithm [9]. The likelihood is expressed as

LT ¼ dPðx1ÞOðt1; d1; h1ÞPðx2Þ � � �OðtT� 1; dT� 1; hT� 1ÞPðxTÞ1; ð6Þ

where PðxtÞ ¼ diagðf1ðxtÞ; . . . ; fmðxtÞÞ is a diagonal matrix with diagonal elements fi(xt) given

in Eq (4) when the gamma distribution is used, or Eq (5) when the log-normal distribution is

used, O is given by Eq (1) and 1 2 Rm is a column vector of ones. The initial state distribution

is denoted by δ, which is anm-dimensional row vector; δi = P(C1 = i). For δ, we choose the uni-

form distribution, δi = 1/m. Alternatively, it can be estimated, but there is no need for this

extra computational effort, since our dataset is large and the influence of δ will be negligible.
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To test this hypothesis, we repeated the optimization with the optimized parameters as initial

condition, only changing the distribution of δ to the decoded distribution at time 1. This did

not change the estimates. Furthermore, δ has no particular biological relevance.

The transition parameters in Eq (1) are constrained to be between 0 and 1 with row sums

equal to 1, and thus, even if there arem2 entries, there are only m � (m − 1) free parameters. To

obtain an unconstrained optimization problem, we reparametrise to working parameters, as

also done in [13–15], see also [9], by defining

oijðtÞ ¼
expðZijðtÞÞ

Pm
j¼1

expðZijðtÞÞ
ð7Þ

where ηij(t) is the predictor for dive t for 1� i, j� 3, i 6¼ j, and ηii = 0 for i = 1, 2, 3. This assures

positive entries and that rows sum to 1.

We used the direct numerical Newton-Raphson algorithm nlm (optim in case nlm
failed) in R [18] to estimate the parameters of the model by maximizing the log-likelihood,

LT ≔ logLT , where LT is given in Eq (6). The procedure ns from the package splines (ver-

sion 3.5.0) was used to calculate the natural cubic splines. The procedure pbs from the pack-

age pbs (version 1.1) was used to calculate the periodic splines.

Using a combination of R and Rcpp [19] for calculating the log-likelihood function LT

improved the runtime considerably. To mitigate the problem of local maxima, we ran the opti-

mization algorithm up to a thousand times with different starting values for the parameters.

Fig 2. Hidden Markov Model with feedback processes. The transition probabilities between hidden states Ct depends on the observed covariate

processes T t , Dt andHt.

https://doi.org/10.1371/journal.pcbi.1006425.g002
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Fig 3. Response variables and covariate processes. Time series plot of maximum depth (MD), duration of dive (DT),

and post-dive duration (PD) from dive number 3890 to 3950 and the covariate processes counting the time since last

deep dive (τt), number of deep dives in a row (dt), and the hour at initiation of dive (ht). The symbols indicate the

decoded hidden states from a model fitted to a dependent log-normal distribution (Model 1).

https://doi.org/10.1371/journal.pcbi.1006425.g003
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The starting values were chosen as follows. For the parameters of the state-dependent distribu-

tions, an independent mixture model was fitted to the response distributions, and the esti-

mated parameters were used as initial conditions. In the correlated models, the correlation

parameter between MD and DT was initiated at the empirical correlation in the data set. The

parameters of the covariates were varied in a regular grid together with the jittering procedure

used in [14], such that they looped through 0 to ±5 in steps of 1 for αij, βij and γij. The final

result was chosen as the one giving the maximum log-likelihood.

The best model fit was evaluated by AIC. Once the optimal model was selected and parame-

ters of the model were estimated, it was of interest to decode the most likely state sequence

c�
1
; . . . ; c�T . The Viterbi algorithm [9, 21] was used to estimate the hidden states given the

observed depths and durations:

ðc�
1
; . . . ; c�TÞ ¼ argmax

ðc1 ;...;cT Þ2f1;...;mg
PrðC1 ¼ c1; . . . ;CT ¼ cT j x0; . . . ; xTÞ:

Results

The data set covers 1,995 hours (� 83 days) with T = 8, 609 dives, and is extraordinarily long,

and thus provides a unique opportunity to obtain detailed information on diving behaviour.

An example of the data is shown in Fig 4. Such data are usually only on the order of a couple

of days or less, for example, the time series of short-finned pilot whales (Globicephala macro-
rhynchus) analysed in [15] cover up to 18 hours and 64 dives, whereas the time series of blue

whales (Balaenoptera musculus) analysed in [14] cover up to 6 hours and 67 dives, and Lan-

grock et al. [12] analyses 79 hours of a single Blainville’s beaked whale. Detailed diving data of

narwhals are available for up to 33 hours [6] or up to one week [7]. However, here we only

have data from a single narwhal limiting the generalizability of the analysis.

The first week of tagging, the narwhal also had the temperature of the stomach measured,

see [22]. A temperature drop indicates that a prey has entered the stomach. The red parts in

Fig 4 indicate temperature drops. These typically happen during deep dives, and support the

assumption that deep dives are related to foraging. This is also supported by the findings in

[7], where buzzes, related to foraging, are typically produced when the whales are at 200–

600m.

The variable MD takes values between 20 and 910.5m, DT takes values between 33 seconds

and 28 minutes, and PD takes values between 1 second and 209.7 minutes. Fig 5 shows

Fig 4. Diving data. Representative part of the narwhal diving data, covering 24 hours of dives on August 15th 2013. The red parts

are where a lower temperature in the stomach has been registered, indicating that the narwhal has swallowed a prey. The blue line

indicates a depth of 350m, the threshold for a deep dive used in the definition of the covariates.

https://doi.org/10.1371/journal.pcbi.1006425.g004
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histograms of the three response variables. Maximum depths are bimodal and typically either

less than 200m or between 400 and 600m. This was used to select the threshold of 350m to

define a deep dive. The value is chosen as a lower threshold of the deeper dives. We further-

more tried different values between 250 and 450m in steps of 50m. The results only changed

very little within this range, and thus, the analysis is robust to the choice of threshold.

To choose the number of statesm, we optimized models with each of the four state distribu-

tions for m = 2, 3 and 4 states, including all covariates. Since the gamma model is computa-

tionally very expensive, and furthermore does not provide a better fit, we only ran the gamma

models for m = 2 and 3. Typical runtimes are given in Table 1. The runtimes vary over many

orders of magnitudes. For all state distributions, the 4-state model takes on the order of hours

to run, which makes it infeasible, since for each covariate model, many repetitions from differ-

ent starting conditions have to be run, and the number of needed repetitions explode as the

number of parameters increase. Moreover, the 4-state model did not improve qq-plots, as

shown later. The 3-state correlated gamma model is also very slow and not feasible to use if

many covariate models should be explored. In general, the log-normal model is much faster

than the gamma model, and the computational cost of including dependence is small. It is

not obvious if a 2 or a 3-state model should be chosen. However, the runtimes for the 3-state

model are acceptable, and based on both qq-plots and AIC values presented below, the 3-state

HMM is preferred. Thus, similar to the blue whales data analysed in [14], our narwhal data

suggest three distinct states. Pohle et al. [23] recommended against using more than four

states in biological modelling like this, in order to avoid the complexity of the correspondence

Fig 5. Model fit. Histograms of response variables MD, DT and PD. The fit of Model 1 is indicated with black curves, for dependent lognormal (DL),

independent lognormal (IL), dependent gamma (DG) and independent gamma (IG). The distribution of the fitted states are indicated with colours as

given in the legend. State 1 corresponds to near surface, state 2 medium depths, and state 3 large depths.

https://doi.org/10.1371/journal.pcbi.1006425.g005
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between states of the model and the biological phenomenon. DeRuiter et al. [14] suggested

three states for their data, even if a formal model selection procedure would point to a more

complex model, because models with more underlying states might obscure patterns in the

data and provide less insight in the underlying biological process, even if they might perform

better in terms of forecasting. Biological knowledge should guide the choice of number of

states. They also argue that model misspecifications, such as too inflexible state dependent dis-

tributions, variations over time, missing covariate information or outliers might cause model

selection criteria to favour models with more complex structures than warranted. Therefore,

we choose the 3-state HMM. The algorithm allocates labels arbitrarily, so to compare across

models we relabelled the states, such that state 1 represents the shortest and shallowest dives,

which we interpret as near-surface travelling, social activities and resting, state 2 represents

medium long and deep dives, which we identify with a feeding state for prey located at

medium depths, and state 3 represents the deepest and longest dives, which we identify with a

feeding state for prey located at deep depths.

The empirical correlations between response variables in the full data set are small for MD

and PD (0.046), and for DT and PD (0.042), only the correlation between MD and DT is sig-

nificant (0.86). If the data set is split into three subsets according to MD, namely for MD

between 20 and 50 m, for MD between 50 and 350 m, and for MD above 350 m, these results

still hold. All correlations involving PD in all groups are less than 0.11 in absolute values,

whereas the correlations between MD and DT are 0.27, 0.58 and 0.41, respectively. We there-

fore only assumed dependence between MD and DT. This improved convergence and run-

time. To check that this assumption is reasonable, covariate model 1 with 3 states was fitted to

the fully correlated log-normal model, and all estimated correlations with PD were smaller

than 0.14, except for state 2, where it was around 0.5. The other estimates did not change com-

pared to a model with only correlation between MD and DT.

We tried a total of 14 covariate models, listed in S1 Table in the Supporting Information.

Here, we only include the best model based on the AIC criteria (model 1), and 3 more models

for illustration (Table 2).

Model 1 has diurnal effects on all transition probabilities, and nonlinear effects of τt and dt
on some of the transition probabilities. The covariate dt counts number of deep dives in a row,

Table 1. Complexity of models. Runtimes and number of variables for different state distributions and for 2, 3 and 4

states for covariate model 1. Runtimes are on Intel Xeon E5-2697v2 @ 2.7 GHz.

No. of variables Range of runtime Average of runtime

Correlated log-normal

2-state 28 0.9–3 (min) 1.9 (min)

3-state 63 2.25–15 (min) 7.3 (min)

4-state 112 1–2.4 (hrs) 1.6 (hrs)

Correlated gamma

2-state 28 1.14–9.30 (min) 5.65 (min)

3-state 63 17.25–86.81 (min) 54.88 (min)

Independent log-normal

2-state 26 0.11–3.66 (min) 1.28 (min)

3-state 60 3–12.56 (min) 5.7 (min)

4-state 108 1–3 (hrs) 1.88 (hrs)

Independent Gamma

2-state 26 1.58–3.57 (min) 2.43 (min)

3-state 60 11.81–26.35 (min) 15.53 (min)

https://doi.org/10.1371/journal.pcbi.1006425.t001
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and is therefore around 0 when not in state 3. This covariate therefore carries no information

unless in state 3, and only enters in η31 and η32. Likewise, τt is expected to be around 0 when in

state 3, and therefore only enters ηij for i = 1 or 2. Model 2 only has diurnal effects. Model 3

has effects of the dive covariates, but only diurnal effects in state 3. Finally, model 4 has only

dive effects and no diurnal effects.

Table 3 lists the model selection results from the optimization. We use AIC to select the

best model, which is highlighted in bold. The correlated log-normal model is clearly preferred

above the other models, with huge AIC differences. The dependent models are clearly pre-

ferred above the independent models, and the log-normal distribution is clearly preferred

above the gamma distribution. Models with ΔAIC larger than 10 have essentially no support in

the data compared to the best model [24]. Model 1 is the best among the tested models for all

state distribution models, which balance accuracy and complexity of the model. The marginal

fit of covariate model 1 is illustrated in Fig 5 for the four state distributions, where the black

curves provide the overall distributions of the three response variables, as well as the distribu-

tions within each state. The fits look convincing for MD and DT, whereas the models capture

the bimodality of PD less well. Note that the splitting into states 1 and 2 depends on the state

distributions, whereas the distributions of state 3 are approximately the same for all state distri-

butions. Thus, the classification of behavioral states will depend on the chosen state distribu-

tion mainly for small and medium dives.

To check the fit of the model beyond what is presented in Fig 5, we calculated the pseudo-

residuals [9] and made qq-plots (Fig 6) for the correlated log-normal model with m = 2, 3 and

4 states. The other state distributions give similar qq-plots, and are therefore omitted. A slight

improvement is observed when passing from 2 to 3 states, in particular for PD. The fit does

not improve when passing from 3 to 4 states. The fit is acceptable for MD and DT, maybe

except for a too small lower tail for the MD. This is probably due to the threshold of a depth of

Table 2. Different models for covariate effects on the transition probabilities between behavioural states. The predictors ηij relate to the transition probabilities as

given in Eq (7). The spline effects of hour are denoted byHt
ij ¼

P
kd
ðkÞ
ij htk, of τt by Tt

ij ¼
P

ky
ðkÞ
ij stk, and of dt by Dt

ij ¼
P

kz
ðkÞ
ij dtk for k = 1, 2, 3 and i, j = 1, 2, 3; i 6¼ j. A list of all

explored models can be found in S1 Table in the Supporting Information.

Predictors in the transition probabilities

Model η12(t) η13(t) η21(t) η23(t) η31(t) η32(t)
1 a00 þ Tt

12
þHt

12
a01 þ Tt

13
þHt

13
b00 þ Tt

21
þHt

21 b01 þ Tt
23
þHt

23
g00 þ Dt

31
þHt

31
g01 þ Dt

32
þHt

32

2 a00 þHt
12

a01 þHt
13

b00 þHt
21

b01 þHt
23

g00 þHt
31

g01 þHt
32

3 a00 þ Tt
12

a01 þ Tt
13

b00 þ Tt
21 b01 þ Tt

23
g00 þ Dt

31
þHt

31
g01 þ Dt

32
þHt

32

4 a00 þ Tt
12

a01 þ Tt
13

b00 þ Tt
21 b01 þ Tt

23
g00 þ Dt

31
g01 þ Dt

32

https://doi.org/10.1371/journal.pcbi.1006425.t002

Table 3. Model selection results. Differences in AIC values, ΔAIC = AIC—AICmin, between the different models with

3 hidden states, where AICmin is the value of the model with the lowest AIC. The best fit is given by the minimum AIC.

For all the tested state distributions, covariate model 1 was preferred, and for all covariate models, the dependent log-

normal state distribution was preferred. Because the runtimes for the correlated gamma model are high, only Model 1

was fitted. The best model is highlighted in bold. np: number of parameters.

Independent Gamma

distribution

Independent Log-

normal distribution

Correlated Gamma

distribution

Correlated Log-

normal distribution

Model np ΔAIC np ΔAIC np ΔAIC np ΔAIC

1 60 5050.5 60 2309.1 63 1901.9 63 0

2 42 5386.9 42 2652.4 45 - 45 256.0

3 48 5096.5 48 2353.2 51 - 51 34.3

4 42 5194.4 42 2451.9 45 - 45 166.9

https://doi.org/10.1371/journal.pcbi.1006425.t003
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20m in the definition of a dive. The PD is less well fitted, especially in the lower tail, which

could also be partly due to the cut-off threshold of 20m in the definition of PD. It is acceptable

for 3 and 4 states.

Fig 7 illustrates the estimated covariate effects for the optimal model, the correlated log-nor-

mal state distributions with covariate model 1. Parameter estimates and confidence intervals

can be found in S2 and S3 Tables in the Supporting Information.

The covariate τt indicates the time passed since last deep dive. We expect that τt has impacts

on states 1 and 2, but not on state 3 (which is the case for the selected model). In the left panel

of Fig 7A the effect of τt is illustrated. The transition probabilities do not seem to depend much

on τt, except for the probability of changing from state 1 to state 3. The probability is higher

for small values of τt, and decreasing fast towards 0 for larger values. This is not what was

expected, but might reflect the following. When short time has passed since last deep dive, it

was probably also a short time since the whale was in state 3. Thus, it reflects that the whale is

still in an overall behavioral state 3, but just had a short break in state 1. This phenomenon can

be seen in Fig 8 where the state decoding is shown for 12 representative hours. It is seen that

after (at least) six dives in state 3, the whale changes to a few shallow dives for a short time, and

then continues with another three dives in state 3. When a little longer time passes, the whale

has effectively stopped diving deep, and the probability of a change to state 3 becomes smaller.

Fig 6. Quantile-quantile residual plots. QQ-plots of forecast pseudo-residuals from covariate model 1 with correlated log-normal state

distribution.

https://doi.org/10.1371/journal.pcbi.1006425.g006
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Fig 7. Covariate effects. A: Transition probabilities between behavioural states depending on covariates related to deep dives of correlated log-normal

model 1, at approximately 12 pm. B: Transition probabilities depending on diurnal effects in model 1 with correlated log-normal state distributions,

calculated for τt = 0.58 and dt = 0 (the medians).

https://doi.org/10.1371/journal.pcbi.1006425.g007

Fig 8. State decoding close-up. The estimated hidden state per dive for 12 hours of the data, starting on 22 September 2013 at 14:18:39.

https://doi.org/10.1371/journal.pcbi.1006425.g008
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Then, when long time has passed, we expect the transition probability to increase, which is not

what is estimated. However, there are few large observations of τt: 75% of the values are below

2.8 hours, and 90% are below 7.8 hours. Therefore, the estimates of covariate effects for large

values are unreliable. The effect of dt is illustrated in the right panel of Fig 7A. As expected, for

values above 20 dives in a row, the probabilities to exit state 3 increase with increasing dt. How-

ever, the data is sparse for large values of dt and estimates might not be trusted: more than half

are 0, 75% are 2 or smaller, and 90% are 8 or lower. The probability of changing to state 1 is

much higher than the probability of changing to state 2 after a period in state 3.

Fig 7B shows the diurnal effects on the transition probabilities. Changing from state 3 to 2

has highest probability around midnight, whereas changing from state 2 to 3 has highest prob-

ability around 6 am. Changing to state 1 has highest probability around noon. The transition

probabilities from state 1 do not depend much on diurnal effects.

Table 4 lists the estimated means and standard deviations of the four state distributions.

Means and standard deviations of maximum depth are estimated larger for both state 1 and

state 2 with the correlated models compared to the independent models, whereas all models

estimate mean and variances approximately the same for state 3. Thus, taking into account the

dependence between the two state variables reveals more variable diving patterns (i.e., larger

variance within states), unless the narwhal is doing deep dives in state 3, where the need for

regular breathing do not allow the whale to make detours. In general, the distributions of the

response variables within states change depending on the assumed state distributions, and

whether correlation is accounted for or not. To understand the classification of behavioural

states provided by the HMM, we also added the empirical measures from the data decomposed

into three subsets according to maximum depth: state 1 defined as dives between 20 and 50m,

state 2 defined as dives between 50 and 350m, and state 3 for dives of more than 350m. This

shows that none of the HMMs classifies the dives only according to depth, since these empiri-

cal measures differ from all the estimated distributions. Thus, the HMMs might reveal more

complex behavioural states than given by the diving depths.

The Viterbi algorithm classifies each dive to one of the three hidden states. The classifica-

tion depends on the model, but all models roughly group dives according to maximum depth.

One goal of comparing models is to access if conclusions on diving behaviour expressed

through the decoded classes of the dives differ between models. If they all classify the same, it

does not matter which model we use, maybe except for the estimation of covariate effects. If

the classification differ from model to model, it is important to choose the statistically best

model, measured from AIC, qq-plots, runtimes and biological interpretability.

Fig 9 shows the decoded hidden states for Model 1 with dependent log-normal state distri-

bution. The correlated log-normal model estimates that the narwhal spends around 43.7% of

its dives, corresponding to 28.8% of the time in State 1, which encompasses dives down to

793m of durations up to 28 minutes. This is a large value for the surface state, but it is only the

extreme tail of the distribution, and is represented by a single dive. It reflects that the log-nor-

mal distribution has heavier tails than the gamma distribution, and that the behavioural states

are more complex than what can be explained only by maximum depth. Of the time spent in

state 1, only 15.9% of the time is spent diving, the rest of the time the whale is at the surface.

The narwhal spends around 22.4% of its dives, corresponding to 19.2% of the time, in medium

depths of between 22.5m and 836m and durations between 0.8 and 21.3 minutes. Also here, a

few deep dives are decoded as belonging to state 2. Of the time spent in state 2, 10.6% of the

time is spent diving, the rest of the time the whale is at the surface. Finally, 33.9% of dives,

corresponding to 52.1% of the time, are spent in state 3 at depths between 243m and 910.5m
and durations between 7.2 and 19.5 minutes. Of the time spent in state 3, 28.9% of the time is

spent diving, the rest of the time the whale is at the surface. Fig 8 illustrates a close-up of the
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Table 4. Summary measures of Model 1 with 3 states. Means and standard deviations based on correlated Log-nor-

mal, correlated Gamma, independent Log-normal and independent Gamma distribution. MD: Maximum Depth; DT:

Diving Time; PD: Post-Dive duration. E: mean; SD: standard deviation; Corr1: Correlation between MD and and DT.

Corr2: Correlation between MD and and PD. Corr3: Correlation between DT and and PD. The empirical distribution

is the empirical measures in three subgroups of the data classified according to MD, state 1: MD between 20 and 50 m,

state 2: MD between 50 and 350 m, state 3: MD above 350 m.

State 1 State 2 State 3

Correlated Log-normal distribution

EMD 51.04 174.19 479.29

SDMD 57.54 109.09 81.36

EDT 5.05 6.54 11.79

SDDT 2.61 2.52 1.65

EPD 7.56 2.58 6.93

SDPD 14.85 1.23 7.45

Corr1 0.56 0.81 0.46

Correlated Gamma distribution

EMD 88.46 112.37 471.81

SDMD 78.60 153.96 83.03

EDT 5.50 5.95 11.60

SDDT 2.49 3.48 1.72

EPD 2.19 16.03 5.36

SDPD 0.87 20.43 2.29

Corr1 0.59 0.80 0.53

Independent Log-normal distribution

EMD 42.68 150.29 477.37

SDMD 34.53 89.87 83.50

EDT 4.37 7.00 11.81

SDDT 2.11 2.07 1.70

EPD 7.64 2.66 7.18

SDPD 14.77 1.25 8.99

Independent Gamma distribution

EMD 39.47 133.14 474.87

SDMD 25.86 87.27 85.80

EDT 4.10 6.85 11.77

SDDT 1.81 2.23 1.72

EPD 8.15 2.55 7.34

SDPD 15.13 1.12 9.65

Empirical distribution

EMD 30.87 143.52 484.67

SDMD 8.45 86.16 77.14

EDT 4.25 6.73 11.83

SDDT 2.04 2.43 1.72

EPD 7.07 4.43 7.18

SDPD 13.99 8.45 9.44

Corr1 0.27 0.58 0.41

Corr2 -0.11 0.07 0.05

Corr3 -0.01 0.08 0.06

https://doi.org/10.1371/journal.pcbi.1006425.t004
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decoding of dives for an example period of 12 hours. The correlated model thus decodes a few

of the deep dives as pertaining to states 1 and 2, probably because of these dives taking longer

time than the deep dives decoded as state 3.

Apparently the whale could stay in state 1 and 2 for long periods (> 24 hours) without tran-

siting to state 3, and it even showed a pause of almost 3 days without deep dives, see Fig 9 for

dives 1345-1894. This indicates that feeding occurs infrequently and that narwhals at least dur-

ing summer and fall may have extended periods without feeding activity (see also [6]). How-

ever, the median of these pauses without state 3 dives was 44 minutes and the mean was 2

hours.

Discussion

In this study, we investigate different multivariate HMMs with covariate effects for modelling

the diving activity of a narwhal in the vertical dimension in the water column. Although nar-

whals show relatively little behavioural plasticity [6, 7, 16], the present analysis is based on a

sample of only one individual and there is therefore obvious limits to how far reaching conclu-

sions that can be drawn from the diving behaviour of this individual. However, the value in

Fig 9. State decoding. The estimated hidden state per dive for each of the three observed variables under covariate model 1 and state distribution the

correlated log-normal. The longest pause of no deep dives starts from the 1345th dive until the 1894th dive, and it lasts approximately 2 days and 17.5

hours.

https://doi.org/10.1371/journal.pcbi.1006425.g009
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the present analysis is the extraordinarily long data set and it is therefore also useful for exam-

ining the application of HMM methods as a tool for analyzing ontogenetic diving activity. The

value of the sample includes the option for describing diurnal patterns in diving behaviour,

during the fall migration.

We extend the existing HMMs for diving behaviour of marine mammals to allow for

dependence between state distributions, and show that the dependence has some impact on

the conclusions drawn about the diving behaviour. We find that statistically the correlated

model outperforms the independent model, that the log-normal model outperforms the

gamma model, and more importantly, conclusions on the diving behaviour differ between the

models. The main differences are that the correlated models estimate more variable state dis-

tributions of MD and DT compared to the uncorrelated models. Thus, a major biological

insight from the analysis of the correlated model is that variability is larger in behavioural

states 1 and 2, but not in state 3. In the dependent log-normal model 56.3% of the dives are for

feeding, compared to 60.5% in the independent log-normal model, under the assumption that

states 2 and 3 in fact are representing feeding states in both models. Even if it is only a propor-

tion of the dives that are not for feeding, it can be assumed that it is approximately the same

proportion for the correlated and the independent models, and it is still a relatively large pro-

portion of the diving effort that is allocated to feeding activities. This provides an important

ecological insight that is useful when comparing feeding activities for whales inhabiting differ-

ent ocean parts with different prey availability. Finally, ignoring the dependence between

response variables leads to wrongly estimated standard deviations on parameter estimates, and

thus confidence intervals are no longer valid.

The correlations between the post-dive duration and diving depth and duration are found

to be vanishing. However, the post-dive response variable probably covers different behaviours

that can not be distinguished from this data, such as recovering from a deep dive, resting

between bouts of dives, social activities, travelling, etc.

Direct observations of feeding events were limited to the first week of the diving data but

the depths where feeding events were detected served as a valid proxy for the depth threshold

between behavioural state 2 and state 3. The observation that feeding events involve deep dives

(� 350m) is also supported by studies of the buzzing activity during dives to different depths

for narwhals travelling in the same area and time of the year as the whale included in this study

[7].

Transition from state 1 to presumed feeding activity is more likely to be to state 3 with deep

dives, and rarely goes to state 2 from state 1. Diving activity in state 3 usually last for a series of

dives (5-10) perhaps indicating that specific layers of prey is being detected and explored for a

series of dives before the whale needs to spend an extended period at the surface. The post dive

time is typically around 6.9 minutes after a state 3 dive, whereas it is typically only 2.6 minutes

after a state 2 dive. The whale probably needs to spend more time at the surface to recover

from nitrogen tissue tension following a longer breath-hold diving activity. Williams et al.

(2011) [25] calculated that the oxygen stores in tissues from narwhals of similar size as the one

in this study would support dives of less than 20 min and that energy saving during gliding on

descent might increase this calculated aerobic dive limit to up to 24 min. The deep dives in

state 3 in this study seem to be in good agreement with these physiological limitations.

Even though detailed dive information supplemented by data on feeding events have been

available for this analysis it may still not be adequate for describing the important drivers of

diving behaviour. Both physiological constrains and reproductive state as well as environmen-

tal conditions may influence the diving activity to an extent that cannot be fully discerned in

HMM analysis of dive series. For logistical reasons it is very difficult if not impossible to obtain

information on all factors that affect the diving behaviour. However, the analysis of dive series
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provides a minimal insight into the integrated effect of the various factors driving the diving

behaviour and the major advantage of the HMM analysis probably relies in the objective inter-

and intra-specific comparison of diving activity. This study demonstrated the usefulness of

HMMs for gaining insight to the hidden structures of dive patterns, something that is difficult

to achieve with traditional statistics. It will be important to apply HMM techniques to larger

data sets of diving activity from several whales to estimate how effective HMMs are for provid-

ing broader ecological insight to energetics and multispecies effects of whale predation.
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Writing – original draft: Manh Cuong Ngô, Mads Peter Heide-Jørgensen, Susanne Ditlevsen.

Writing – review & editing: Manh Cuong Ngô, Mads Peter Heide-Jørgensen, Susanne
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Table S1. Different models for covariate effects on the transition probabilities between behavioural states. The
predictors ηij relate to the transition probabilities.

Model η
(t)
12 η

(t)
13 η

(t)
21 η

(t)
23 η

(t)
31 η

(t)
32

1
α00 + α10τt + α20τ

2
t

+
∑

i δi0hi

α01 + α11τt + α21τ
2
t

+
∑

i δi1hi

β00 + β10τt + β20τ
2
t

+
∑

i θi0hi

β01 + β11τt + β21τ
2
t

+
∑

i θi1hi

γ00 + γ10dt + γ20d
2
t

+
∑

i ζi0hi

γ01 + γ11dt + γ21d
2
t

+
∑

i ζi1hi

2 α00 +
∑

i δi0hi α01 +
∑

i δi1hi β00 +
∑

i θi0hi β01 +
∑

i θi1hi γ00 +
∑

i ζi0hi γ01 +
∑

i ζi1hi

3 α00 + α10τt + α20τ
2
t α01 + α11τt + α21τ

2
t β00 + β10τt + β20τ

2
t β01 + β11τt + β21τ

2
t

γ00 + γ10dt + γ20d
2
t+∑

i ζi0hi

γ01 + γ11dt + γ21d
2
t+∑

i ζi1hi

4 α00 + α10τt + α20τ
2
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2
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2
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2
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2
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2
t

5 α00 α01 β00 β01 γ00 γ01
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Table S2. Estimates of the model parameters of the state distributions and their 95% confidence
intervals in model 1 for correlated Log-normal distribution. In state i, µi and σi are the log-mean and
log-standard deviation of the correlated log-normal distribution. Index MD stands for Maximum Depth, DT stands for
Dive Duration and PD stands for Post-Dive time. The depth is measured in meters, and time in seconds. The confidence
intervals were computed from the Hessian of the negative log-likelihood function, i.e., based on the inverse of the observed
Fisher information.

Correlated log-normal distribution

Estimate 95% CI

µMD
1 2.61 [2.56, 2.66]

µMD
2 4.78 [4.73, 4.84]

µMD
3 6.11 [6.11, 6.12]

σMD
1 1.36 [1.33, 1.39]

σMD
2 0.77 [0.72, 0.81]

σMD
3 0.18 [0.17, 0.19]

µDT
1 1.50 [1.48, 1.52]

µDT
2 1.80 [1.77, 1.82]

µDT
3 2.46 [2.45, 2.46]

σDT
1 0.50 [0.49, 0.51]

σDT
2 0.43 [0.41, 0.46]

σDT
3 0.14 [0.14, 0.14]

µPD
1 1.26 [1.22, 1.3]

µPD
2 0.86 [0.83, 0.88]

µPD
3 1.73 [1.71, 1.75]

σPD
1 1.13 [1.10, 1.15]

σPD
2 0.43 [0.41, 0.45]

σPD
3 0.53 [0.52, 0.55]

ρ1 0.56 [0.53, 0.58]

ρ2 0.81 [0.78, 0.83]

ρ3 0.46 [0.43, 0.50]
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Table S3. Estimates of the model parameters of covariate effects and their 95% confidence intervals in

model 1 for correlated Log-normal distribution. The spline effects of hour are denoted by Ht
ij =

∑
k δ

(k)
ij h

t
k, of τt

by T tij =
∑
k θ

(k)
ij s

t
k, and of dt by D

t
ij =

∑
k ζ

(k)
ij d

t
k for k = 1, 2, 3 and i, j = 1, 2, 3; i 6= j.

Correlated log-normal distribution

Estimate 95% CI

α00 −3.82 [−5.30,−2.34]

α01 −0.97 [−1.57,−0.37]

β00 0.08 [−1.18, 1.33]

β01 −1.74 [−3.22,−0.263]

γ00 1.88 [1.10, 2.66]

γ01 −3.08 [−5.15,−1.02]

θ
(1)
12 1.95 [0.11, 3.80]

θ
(2)
12 −1.71 [−3.77, 0.36]

θ
(3)
12 −2.48 [−5.48, 0.52]

θ
(1)
13 −3.11 [−4.39,−1.82]

θ
(2)
13 −6.60 [−8.28,−4.92]

θ
(3)
13 −7.08 [−10.5,−3.61]

θ
(1)
21 0.19 [−1.58, 1.97]

θ
(2)
21 −0.57 [−2.39, 1.25]

θ
(3)
21 −0.51 [−4.10, 3.08]

θ
(1)
23 −5.04 [−8.82,−1.26]

θ
(2)
23 −5.39 [−7.13,−3.66]

θ
(3)
23 −0.48 [−1.93, 0.98]

ζ
(1)
31 −2.83 [−3.75,−1.92]

ζ
(2)
31 −5.35 [−6.61,−4.1]

ζ
(3)
31 −0.84 [−2.51, 0.83]

ζ
(1)
32 −4.83 [−6.38,−3.28]

ζ
(2)
32 −8.80 [−10.30,−7.28]

ζ
(3)
32 −0.38 [−2.76, 2.00]

δ
(1)
12 0.41 [−1.78, 2.60]

δ
(2)
12 2.53 [1.33, 3.73]

δ
(3)
12 −0.06 [−2.34, 2.22]

δ
(1)
13 0.21 [−0.82, 1.23]

δ
(2)
13 0.08 [−0.42, 0.58]

δ
(3)
13 0.02 [−1.06, 1.10]

δ
(1)
21 −2.77 [−4.88,−0.66]

δ
(2)
21 −2.29 [−3.34,−1.25]

δ
(3)
21 −3.46 [−5.37,−1.55]

δ
(1)
23 −1.24 [−3.48, 1.01]

δ
(2)
23 0.63 [−0.93, 2.19]

δ
(3)
23 1.54 [−0.37, 3.45]

δ
(1)
31 −2.32 [−3.41,−1.23]

δ
(2)
31 −0.60 [−1.14,−0.06]

δ
(3)
31 −2.49 [−3.59,−1.39]

δ
(1)
32 4.45 [0.99, 7.90]

δ
(2)
32 6.28 [4.05, 8.51]

δ
(3)
32 4.94 [1.47, 8.41]
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A B S T R A C T   

Narwhal (Monodon monoceros) is one of the most elusive marine mammals, due to its isolated habitat in the 
Arctic region. Tagging is a technology that has the potential to explore the activities of this species, where 
behavioral information can be collected from instrumented individuals. This includes accelerometer data, diving 
and acoustic data as well as GPS positioning. An essential element in understanding the ecological role of toothed 
whales is to characterize their feeding behavior and estimate the amount of food consumption. Buzzes are sounds 
emitted by toothed whales that are related directly to the foraging behaviors. It is therefore of interest to measure 
or estimate the rate of buzzing to estimate prey intake. The main goal of this paper is to find a way to detect prey 
capture attempts directly from accelerometer data, and thus be able to estimate food consumption without the 
need for the more demanding acoustic data. We develop three automated buzz detection methods based on 
accelerometer and depth data solely. We use a dataset from five narwhals instrumented in East Greenland in 
2018 to train, validate and test a logistic regression model and the state-of-the art machine learning algorithms 
random forest and deep learning, using the buzzes detected from acoustic data as the ground truth. The deep 
learning algorithm performed best among the tested methods. We conclude that reliable buzz detectors can be 
derived from high-frequency-sampling, back-mounted accelerometer tags, thus providing an alternative tool for 
studies of foraging ecology of marine mammals in their natural environments. We also compare buzz detection 
with certain movement patterns, such as sudden changes in acceleration (jerks), found in other marine mammal 
species for estimating prey capture. We find that narwhals do not seem to make big jerks when foraging and 
conclude that their hunting patterns in that respect might differ from other marine mammals.   

1. Introduction 

The narwhal (Monodon monoceros) is a high-Arctic cetacean known 
for its characteristic tusk (Graham et al., 2020). It is among the deepest 
diving cetaceans and can dive to depths of more than 1800 m (Heide- 
Jørgensen, 2009). Narwhals dive to forage, and their main prey includes 
Greenland halibut (Reinhardtius hippoglossoides), polar cod (Boreogadus 
saida), capelin (Ammodytes villosus) and squids (Gonatus sp.) (Heide- 
Jørgensen et al., 1994; Laidre and Heide-Jørgensen, 2005). In disphotic 
and aphotic zones, they need to use acoustics to explore their environ-
ment and locate prey, i.e., echolocation, by producing short-duration 
sounds (clicks) and listening for echoes reflected from surrounding 

objects (Berta et al., 2015); and buzzes, a series of clicks with short inter- 
click-interval (below 50 milliseconds) (Blackwell et al., 2018). The 
clicks are used for orientation, and buzzes mark the final phase of a 
potential prey capture event for several cetacean species, including 
sperm whales, porpoises, and beaked whales (DeRuiter et al., 2009; 
Johnson et al., 2004; Miller et al., 2004), so we hypothesize the same for 
narwhals. How frequently they forage and successfully catch a prey is 
largely unknown due to difficult environmental and logistical conditions 
in the Arctic that complicate direct studies of prey intake. We have 
therefore used tagging technologies to collect behavioral data to eluci-
date the feeding behavior. The movements of five whales were studied 
during summer in Scoresby Sound of East Greenland in 2018. Facing 
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strong climate changes in the Arctic, many species in this region are 
under threat. Understanding foraging behavior of narwhals helps us to 
understand the conflicts between their food intake, changes in their 
habitat and the increasing level of anthropogenic activities, e.g., fish-
eries and shipping, in the effort to conserve this unique cetacean. 

Accelerometer data and acoustic data are widely used in marine 
mammal science to understand behavior of whales (Nowacek et al., 
2016). Accelerometer data are collected by tri-axial accelerometers that 
combine two components: the static acceleration due to gravity and the 
dynamic acceleration due to the motion of the whale, along three axes: 
surge (longitudinal X-axis); sway (Y-axis); and heave (vertical Z-axis) 
orientations (Shepard et al., 2008; Wilson et al., 2008). Acoustic data are 
recordings of vibration of the medium around the recording devices 
caused by acoustic radiation (Swanson, 2008). Currently, acoustic data 
is the best way to estimate potential successful prey capture due to the 
assumption that a buzz is the sound narwhals make just before 
attempting to catch their targets. Hence, we assume that the whales have 
specific movement pattern around the time a buzz occurs. Such a pattern 
was discovered in harbor seals (Phoca vitulina) (Ydesen et al., 2014), and 
harbor porpoises (Phocoena phocoena) (Wisniewska et al., 2016), where 
they made big jerks, i.e., sudden movements, before catching prey. If 
jerks or other specific movement patterns around prey capture can be 
identified accelerometer data can be used to quantify prey capture 
events. 

One of the crucial differences between acceleration and acoustic 
signals in biotelemetry is that acceleration is an easier parameter to 
collect. Due to the relatively low sampling frequencies of <500 Hz, 
accelerometer data collection can be achieved by less memory and less 
battery power enabling longer deployments. Accelerometers are there-
fore also small-in-size enabling their use in various applications for a 
wide range of species. Furthermore, the small size of instruments de-
creases drag and other negative effects on the individual carrying the 
tag. Due to the general high sampling rate of acoustic data, acoustics are 
currently used only in animal-borne archival applications, where the 
data are stored onboard the instrument. Retrieval of archival in-
struments can, however, be challenging in habitats such as the polar 
regions, where ice and extreme seasonal variation of light constrain 
research to the summer months. While accelerometer data are currently 
stored onboard, detecting behaviors from preprocessed accelerometer 
data would be an important step for developing satellite-linked biote-
lemetry applications, because accelerometer data can be compressed to 
what is suitable for satellite transmission. That would allow data upload 
directly from instruments mounted on animals and would extent the 
temporal and spatial range of behavioral and ecological research. 

Analyzing accelerometer and acoustic data to detect behavioral 
patterns of whales is of considerable interest, e.g., for sperm whale (Fais 
et al., 2016) and whale/dolphin (Hillman et al., 2003). The bulk of these 
analyses are performed by engineering features obtained by trans-
forming the acquired data into more intuitive features of the underlying 
dynamics, then processing them with a suitable prediction algorithm 
such as logistic regression, support vector machines or random forest. 
However, feature engineering is a difficult art that requires lots of expert 
knowledge and is time consuming (Ng, 2015), especially when the data 
is noisy, vast and not already well understood. Since the 2000s, the deep 
learning era has had many breakthroughs from computer vision to 
natural language understanding, using huge amount of input data 
without (much) feature engineering like in traditional machine learning 
approaches (Alsheikh et al., 2015; Goodfellow et al., 2016). Convolu-
tional Neural Networks (CNN) are among the most widely used deep 
learning architectures (Farabet et al., 2013; Krizhevsky et al., 2012; 
Szegedy et al., 2015; Tompson et al., 2015). Unlike in the classical 
machine learning methods, where one needs to design filters by tradi-
tional engineering, CNN can “learn” features directly from the data by its 
huge number of parameters. 

Given the huge amount of data acquired from animal-borne in-
struments sampling at high frequency, we have chosen to explore CNN- 

based methods for developing robust techniques for detecting buzzes 
from accelerometer data. Analyzing time series data at multiple reso-
lutions allows capturing useful temporal correlations and renders it 
suitable for modelling behavior of narwhals. Our baseline machine 
learning approach is random forest, which has been used extensively in 
human accelerometer datasets (e.g., see Bayat et al., 2014; Kwapisz 
et al., 2010) as well as in animal studies (Shepard et al., 2008; Wang, 
2019; Wilson et al., 2008). Furthermore, we compare our CNN model 
with logistic regression. We hypothesize that there exists some hidden 
movement pattern during or around the buzzes. Therefore, the main 
goal in this work is to develop feeding-behavior detection models based 
on narwhal’s accelerometer data using machine learning algorithms, 
including traditional ones like random forest, advanced ones like deep 
learning, or logistic regression. Furthermore, we will also investigate if 
jerks are correlated with buzz events. 

2. Material and methods 

2.1. Ethics statement 

Permission for capturing, handling, and tagging of narwhals was 
provided by the Government of Greenland (Case ID 2010 ± 035453, 
document number 429926). The project was reviewed and approved by 
the IACUC of the University of Copenhagen (June 17th, 2015). Access 
and permits to use land facilities in Scoresby Sound were provided by 
the Government of Greenland. No protected species were sampled. 

2.2. Data 

Five male narwhals were instrumented with Acousonde™recorders 
model 3B (length of 22.8 cm and weight of 360 g, at www.acousonde. 
com), sampling acoustic data (25,811 Hz), 3-axis acceleration (100 
Hz), 3-axis orientation/ magnetometer (10 Hz), pressure/depth (10 Hz), 
light (10 Hz), and temperature (10 Hz), and backpack satellite trans-
mitters (www.wildlifecomputers.org) for FastLoc GPS data. The nar-
whales were captured and tagged in Scoresby Sound, East Greenland in 
2018 (Fig. 1), for details of the tagging methods see (Heide-Jørgensen 
et al., 2015). In brief, the Acousonde‘s were attached to the dorsal ridge 
with suction cups, two 1-mm nylon lines and magnesium links. After at 
most eight days, they were detached from the whales by the corrosion 
between magnesium links and sea water. Then they were picked up by 
local hunters localizing them thanks to their position’s signals from 
Argos transmitter and VHS transmitter (ATS Telemetry) attached to the 
Acousonde. The tags were designed to assure that their weights and their 
shapes were less than 3% of the whales’ weights and frontal area. 

Narwhal acoustic signals can reliably be detected using a relatively 
low sampling rate (Blackwell et al., 2018) and the deployments in this 
work used continuous sampling at 25,811 Hz (16 bit-resolution). In 
addition, a tri-axial accelerometer sampled the movements of the whales 
at 100 Hz and a pressure transducer sampled the depth of the whale at 
10 Hz. The data were initially collected to analyze the effects of noise 
from seismic exploration on the natural lives of narwhals in East 
Greenland. To avoid interference with altered behavior it was decided to 
only include data collected before the seismic exposure. In addition, we 
removed the first 24 h in all five data sets to eliminate a possible in-
fluence from the capturing and tagging (Tervo et al., 2021). The data set 
of the five narwhals is large with a total length of 121.8 h of 100 Hz 
accelerometer data, and of acoustic data of 10 Hz, with a total of 2615 
buzzes whose total length is 1 h 31 min 56.8 s (Table 1). 

Most of the sound files from the Acousondes have a fixed length of 
30 min, except the last file of each whale. They were examined manually 
by two analysts in MTViewer (a custom-written program for analysis of 
Acousonde data, W.C. Burgess, personal communication) for continuous 
click trains produced by the whale. A custom-written buzz detector 
(Matlab, The MathWorks, Inc., Natick, MA, USA) was used to identify 
buzzes made by the whales, then the positive detections were verified 
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manually by experienced manual analysts. Each file’s acoustic signal 
was reviewed visually, then the analyst listened to the first five seconds 
of each buzz to estimate the background noise. The data set was too big 
to listen to in its entirety, hence only the positive buzz detections periods 
were examined. The lengths of buzzes varied from 0.4 s to 6.7 s. The 
positive rates of buzz labels, i.e., the sum of the lengths of buzzes over 
the total length of the data, of each whale were: 1.37% for narwhal 
21,791, 0.73% for narwhal 20,158, 1.77% for narwhal 168,437, 1.12% 
for narwhal 20,160, and 1.40% for narwhal 168,433. Note that these 
lengths were estimated by an automatic detector, and not as accurate if 
manually recorded. The buzz resolution was 10 Hz; hence it was 
expanded to 100 Hz to fit the resolution of the accelerometer data. The 
true dynamic component of accelerometer data is difficult to extract 
without gyroscopes or speedometers and is unknown for narwhals, so we 
used the raw data to let the algorithms explore it directly. We included 
depth as a feature since the buzz distribution strongly depends on depth 
(Blackwell et al., 2018). 

We tested whether there was an association between buzzes and 
jerks. A jerk is defined by the norm of the differences of the acceleration 
of each axis. We define an RMS jerk to be the root-mean-square (RMS) of 
the three jerk values over a window of 200 milliseconds, i.e., over a total 
of 3 × 20 = 60 data points (Ydesen et al., 2014). The calculation of RMS 
over a window was used for smoothing the accelerometer data and 
attenuate the impact of clipping, i.e., when the signal is larger than the 

detection threshold (Ydesen et al., 2014). In each window, we defined a 
buzz to happen if the whale was buzzing at least half of the duration of 
the window. We defined a big RMS jerk to happen if the jerk’s RMS was 
above pre-defined thresholds defined below. We defined a window to be 
a positive if there was a big RMS jerk (negative if no big RMS jerk), and a 
true positive if there was both a big RMS jerk and a buzz, and likewise for 
false positives and true/false negatives. We calculated the precision and 
the recall for different thresholds for each whale, where the precision is 
defined as the ratio of the number of true positives over the sum of true 
positives and false positives, and the recall is defined as the ratio of the 
number of true positives over the sum of true positives and false nega-
tives. The thresholds were chosen between 0 and 166,000 mG/s, slightly 
larger than the maximum value of RMS jerks measured in the data. The 
thresholds were evaluated in steps of 2000 mG/s, where 1 G = 9.81 m/ 
s2. We calculated precision and recall for instantaneous big RMS jerks (at 
the same time as the buzz), as well as for delays of 0.2, 0.4, 0.6, 0.8 and 
1 s, respectively, to check if the big RMS jerks happen at a fixed time 
after the buzz. 

We defined a dive as a continuous period during which the maximum 
depth is at least 20 m, while 10 m was chosen as the onset and the end of 
a dive (Fig. 2). We chose 10 m due to possible wrong zero-offsets of the 
dive (Luque and Fried, 2011). A dive was separated into three phases: 
the descending phase, the bottom phase, and the ascending phase, apart 
from the surface phase. The bottom phase was defined as the period at 
which the whale spent at or below 75% of the maximum depth of the 
dive (Tervo et al., 2021). The descent phase was defined as the period 
between the onset of the dive and the onset of the bottom phase, and the 
ascent phase was defined as the period between the end of the bottom 
phase and the end of the dive. 

The phase of a dive is important for the buzzing activity, since the 
whales typically forage and buzz at the bottom of the dive, and buzz less 

Fig. 1. Diagram of the placement of GPS saddle-back tag (light blue) and Acousonde TM behavioral tag (orange) on a narwhal (A), map of Greenland showing the 
Scoresby Sound fjord (red box) in East Greenland (B) and a zoomed in map of the study area with the location of the field site, Hjørnedal (marked with a red star), 
where tagging of narwhals took place (C). The tracks of the five male narwhals used in this study are shown as hourly mean GPS positions. Illustration of a narwhal by 
Uko Gortner. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Data lengths and number of buzzes of five narwhals.  

Whale ID 20,158 20,160 21,791 168,433 168,437 
Data length (hours) 38.66 9.53 31.89 9.15 32.56 
No. of Buzz 494 197 836 208 880  
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during descend and ascend. The categorical feature describing the four 
dive phases was included by one-hot encoding where each phase is 
transformed into a binary vector: surface as (1,0,0,0), descending as 
(0,1,0,0), bottom as (0,0,1,0), and ascending as (0,0,0,1). Thus, we have 

five features: the three accelerometer axes AX, AY, AZ, the depth, and the 
diving phase. An example of a subsample of the record of narwhal 
21,791 shows the features during the bottom phase of a dive together 
with the response variable of buzzing, where one encodes that a buzz is 

Fig. 2. Example of a dive from narwhal 168,433. The dashed line “Bottom Level” is the depth threshold (75% of the Maximum Depth) for the bottom phase. Red 
curves, green curve, cyan curve, and violet curve indicate surface, descending, bottom, and ascending phases, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Example of the record of narwhal 21,791 showing the time evolution of the four features and the response variable Buzz, during the bottom phase of a dive. 
The panels show the tri-axial accelerometer data, the depth, and the buzzes (1 is presence, and 0 is absence). Note the increased variability in the accelerometer data 
during some of the buzzes. 
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happening (Fig. 3). 

2.3. Supervised U-Net 

Recently, Perslev et al. (2019) used a U-Net encoder-decoder archi-
tecture, a specific design using CNN as the base (Ronneberger et al., 
2015), for multidimensional time series, called U-Time. The U-Net 
originally was designed for image segmentation tasks (Ronneberger 
et al., 2015). It uses an encoder-decoder type architecture as shown in 
Fig. 4. U-Net encodes input data to feature maps at multiple resolutions, 
by applying convolution layers followed by downsampling layers (using 
max-pooling) in the encoder. The sequence of steps in the encoder, also 
called the contracting path, allow the convolution layers to learn useful 
features at different resolutions of the data. Then the decoder up- 
samples such encoded features through an up-sampling layer, then 
concatenates with the corresponding feature maps from the encoder 
through skip connections (Drozdzal et al., 2016). It helps the decoder to 
have detailed information in the earlier stages from the contracting 
path, which is lost due to pooling layers in the encoder. Moreover, skip 
connections make the model easier to optimize in practice (He et al., 
2016). The output of the decoder in a U-Net makes predictions at full 
resolution in the output data. Perslev et al. (2019) have shown that their 
U-Net model, the U-Time, has obtained similar performance as Recur-
rent Neural Networks (RNN) (Williams et al., 1986), the default choice 
for time series data, while RNN is harder to train. Therefore, following 
their work, we used U-Time architecture as the deep learning model for 
detecting buzzes from the input data. 

2.4. U-Net implementation 

We implemented the U-Time/U-Net model (Perslev et al., 2019; 
Ronneberger et al., 2015) in Python 3.6.9 using PyTorch 1.6.0 (Paszke 
et al., 2017) on Google Collaboratory with NVIDIA P100 of 16 GB of 
RAM (Google, 2020). We used the same architecture as (Perslev et al., 
2019), except that we replaced the last activation function softmax 
with sigmoid, since the classification problem is binary. 

2.5. Optimization objective 

The dataset is very imbalanced (buzzes occur only rarely in the 
dataset). This makes the standard machine learning algorithms, 
including deep learning, perform poorly. Accuracy is the default loss 
used by most algorithms, where wrongly predicted zeros and ones are 
penalized the same. However, when most labels are the same (in the 
dataset, more than 98% of the responses are zeros), the prediction of all 

being zero (i.e., concentrating on the majority) will lead to a high ac-
curacy, but be uninformative for the problem (Visa and Ralescu, 2005). 

We therefore used the Dice loss (DL) (Smith et al., 2020), which is a 
loss designed for highly imbalanced data, where wrongly predicted ones 
are penalized more than wrongly predicted zeros, defined by 

DL = 1 −
2
∑N

i=1
pigi

∑N

i=1
pi +

∑N

i=1
gi  

where pi is the predicted probability of a buzz at time i, and gi is the 
ground truth (the observed buzz or not) at time i and takes values 0 or 1 
for i = 1, …, N. 

Let α = 1
N ×

∑N
i=1gi be the proportion of ones in the data set, where 0 

< α ≪ 1 since the dataset is imbalanced. If the model predicts all 0’s, i.e. 
pi = 0 for all =1, …, N, then DL = 1 because pigi = 0 for all i = 1, …, N. If 
the model predicts all 1’s, i.e. pi = 1 for all i = 1, …, N, then DL > 1 − 2α 
≈ 1 since α ≪ 1. On the other hand, if the model predicts all correctly, 
then DL = 0. Therefore, Dice loss penalizes effectively if the model 
predicts all 0’s or all 1’s. 

2.6. Model selection 

We divided the data set into training, validation and test sets 
following a ratio of 60:20:20 chronologically for each of the five whales, 
then combined the training, validation, and test sets from each whale. 
We also performed cross validation on each of the whales, i.e., trained on 
three whales, validated on one, and used the last one for testing, to 
evaluate how well the trained model generalized to a new dataset. The 
Dice loss was computed between the model predictions and the ground 
truth of the training data. The validation data is used to avoid over- 
fitting. The difference between the model’s prediction and the ground 
truth was measured by the Dice loss. Stochastic gradient-based optimi-
zation algorithms were used on the training data to update the model 
parameters gradually by iterations, denoted epochs. The validation set 
was used to select the epoch at which the validation loss, the loss 
measured on the validation set, was minimal, before the models over-
fitted. The trained models were then evaluated independently on the test 
sets to avoid data leakage, a phenomenon where there is some infor-
mation leakage from validation sets or test sets into training sets 
(Kaufman et al., 2011). 

Fig. 4. Structure of a U-Time network. The dashed lines are skip connections. The continuous lines connect the encoder and the decoder. The inputs are time series 
(accelerometer and depth data), while the yellow interval indicates the duration when buzz happens. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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2.7. Optimization 

We did hyper-parameter search for batch size and the number of 
convolution filters at the first convolutional layer of the U-Net. Batch 
size, related to mini-batch gradient descent, is primarily used to smooth 
the gradients, and can be parallelized. Convolution filters, or filter banks 
(whose parameters need to be learnt), are used to transform the input to 
feature maps. The number of hidden units varied between two, four, 
eight, and sixteen, while batch sizes varied between two, four, eight, and 
sixteen during our preliminary experiments. We used Adam (Kingma 
and Ba, 2015) with different learning rates between 0.01, 5 × 10− 3, 
10− 3, and 5 × 10− 4. Smaller learning rates did not help to make the 
model converge after trial and error. We ran up to 301 epochs but did 
early stopping if there were no improvements after 150 epochs since the 
best epoch, i.e., the epoch at which the loss function is minimum. We 
decided to tune the best hyperparameters on only one whale, the data 
from narwhal 168,433, since it was computationally expensive. 

2.8. Random forest and logistic regression implementation 

There are no hyper parameters in logistic regression, and therefore 
no need for a validation set. We therefore divided the data set into 
training and test sets following a ratio of 80:20 for each of the five 
whales. We implemented logistic regression (Harrell, 2015) and random 
forest (Boehmke and Greenwell, 2019; Breiman, 2001; Ho, 1995) as our 
baseline methods to compare with U-Net. We used the default hyper-
parameter setting of random forest in Scikit-learn (Pedregosa et al., 
2011), which works well in most cases (Probst et al., 2019). We 
implemented random forest with balanced subsample, i.e., for each tree 
we assigned greater weights to the minority class (here the positive 
class) based on its bootstrap sample (Chen et al., 2004). To improve the 
learning of these models, manual feature extraction should be done. 
Selecting the right features is a difficult and intricate task, however, 
these two traditional methods are more robust and easier to interpret 
(Warmerdam, 2018). 

Feature extraction was done for both logistic regression and random 
forest, following Bayat et al. (2014). The data were divided into suc-
cessive windows consisting of 100 consecutive data points, i.e., one 
second, to compress information into features. Each window shared an 
overlap of 50 data points with the next window, to assure that no spe-
cific pattern was broken due to the edges of these windows (Fig. 5). We 

used twenty-seven features: 

• Mean, standard deviation (STD), root mean square (RMS) and Min-
Max (the difference between maximum and minimum within a 
window) of accelerometer components AX, AY, AZ along three axes X, 
Y, Z, as well as the mean depth (13 features).  

• STD, RMS and MinMax of the magnitude of the acceleration Am =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
X + A2

Y + A2
Z

√

(three features).  
• Number of peaks, elapsed time between consecutive local peaks of 

accelerometer components AX, AY, AZ along three axes X, Y, Z, as well 
as the variance of the number of peaks of AX, AY, AZ (seven features).  

• Correlations between AX and AY, AY and AZ, AZ and AX (three 
features).  

• Dive phase, encoded by one-hot encoding. 

A window was marked as positive if more than 50% of its corre-
sponding output values belonged to a buzz, and negative otherwise 
(Fig. 5). We had 6348 positive windows out of 526,086 windows against 
27 features, enough for robust maximum likelihood estimation of the 
logistic regression model following the one in ten rule (Harrell, 2015; 
Peduzzi et al., 2006). We also tried to test whether logistic regression 
worked better when detecting only the start of buzzes instead of the 
whole length of the buzzes, however, the performance was worse (re-
sults not shown). 

3. Results 

3.1. Machine learning models 

Model hyperparameters of the U-Net models were tuned using a 
smaller dataset from a single narwhal 168,433. The best U-Net models 
were those with four hidden units. The features of the data for the U-Net 
model were accelerometer components AX, AY, AZ, the depth data and 
the diving phase. The model for all five whales having the best valida-
tion loss is presented in Fig. 6. Dice loss was smallest at the 224th epoch 
of the validation set, at which the parameters were chosen for U-Net 
models. 

We evaluated the U-Net models on the five test sets from each whale 
as well as the entire test set in Fig. 7. It shows the proportion of correct 
predictions of buzzes of the models, where we define a correct prediction 
with some slack: the percentage overlap between predicted and true 
buzzes. An example for the cases of 50% percentage overlap and 1 s 

Fig. 5. Illustration of feature extraction from the accelerometer of the X-axis. 
The dark shaded area indicates where two windows of size of 1-s have 50% 
overlap. Orange part of the curve indicates the duration of a buzz. Dashed lines 
are the means of each window, while shaded violet areas indicate +/− one 
standard deviation. Dot-dashed lines indicate RMS’s of each window. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 6. The training and validation loss when the number of hidden units at 
first convolution layer are four of the best models with respect to hyper- 
parameters tuning. 
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distance between predicted and true buzzes is shown in Fig. 8. The 
proportion of correct predictions of buzzes with a maximum distance to 
its nearest true buzz smaller than 0.1 s and 0.5 s (only for U-Net, since 
the other two models, random forest and logistic regression, only have a 
resolution of one second), and 1 s, 2 s, 3 s, 4 s, 5 s were calculated for all 
the models (Fig. 7). 

The U-Net with cross validation performed similarly on each whale 
compared to the U-Net trained and validated on data from all whales, 
except for narwhal 20,158, probably because it had a lower buzzing rate 
than the other whales. This is reassuring since the algorithm then could 
possibly generalize well to the narwhal population. There were almost 
no differences between 500, 1000, and 2000 trees for random forest 
(results not shown), so we chose the one with 2000 trees. This random 
forest model predicted poorly on the raw data and even worse with 
lowpass filtered data of 0.25 Hz (results not shown). Finally, logistic 
regression models predicted better than random forest, but not as good 
as the U-Net. 

If the focus of the analysis is to identify foraging dives, i.e., those 
dives where buzzes occur, and in that case, how many buzzes the whale 
emits during that dive, the results improved the classification of dives 
with feeding activities. We evaluated whether the methods could 
distinguish between foraging dives with buzzes and exploring dives 

without buzzes, as well as whether the number of buzzes in each dive 
could be predicted, even if the exact timing of the buzzes were wrong. 
Technically, we evaluated the models by counting the number of 
consecutive series of ones (i.e., buzzing events). There were 456 dives in 
total, among them 152 were foraging dives, i.e., having buzzes (33.3%). 
The number of predicted buzzes against the number of true buzzes 
within each dive is plotted in Fig. 9, for U-Net, random forest and logistic 
regression. Only the U-Net model distinguished well between dives with 
buzzes and those without buzzes. For the U-Net model, the number of 
true negatives were 39, false positives were 3, false negatives were 0, 
and true positives were 23, thus, for identifying foraging/non-foraging 
dives, the precision was 88% and the recall was 100%. Furthermore, it 
captured the trend of the number of buzzes within dives well, even if 
slightly overestimated. The random forest model correctly classified the 
non-foraging dives, however, for foraging dives it always under-
estimated the number of buzzes, often as zero. Logistic regression pre-
dicted slightly better, but it also underestimated the number of buzzes in 
each dive and estimated too many non-foraging dives. 

In Fig. 10, we compared the differences of the number of buzzes with 
the time spent buzzing per dive for foraging dives. The U-Net model 
tended to predict more buzzes than the ground truth, while random 
forest and logistic regression models predicted less than the ground 
truth, as also shown in Fig. 11. The same pattern emerged for the buzz 
lengths. All in all, the U-Net performed best on both predictions of 
number of buzzes as well as on the time spent buzzing per dive (length of 
buzzing period). 

An example of the predictions compared to the ground truth from the 
three models is shown in Fig. 11. It illustrates the dive with most buzzes, 
which is a dive from narwhal 20,158, showing clearly, that the U-Net 
model predicted best with many overlaps between predictions and 
ground truth, while logistic regression came second. 

3.2. Jerk analysis 

Fig. 12 shows the precision and recall of RMS jerks at different 

Fig. 7. The proportion of correct predictions of buzzes of the four models: U-Net, U-Net (cross validation), random forest, and logistic regression. On X-axis is shown: 
the first four indices of the overlap between predicted and true buzzes; the next indices show the proportion of predicted buzzes with a maximum distance to its 
nearest true buzz smaller than 0.1 s, 0.5 s (only for U-Net), and 1 s, 2 s, 3 s, 4 s and 5 s for all the models. The colored lines are the values for each whale, the black line 
is for all five whales together. 

Fig. 8. Examples of the definition of partial correct prediction: a) 50% overlap, 
and b) distance of one second between ground truth (orange) and prediction 
(blue). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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thresholds. The precision of prediction of buzzes from big RMS jerks is 
low, less than 0.25, for thresholds less than 12,500 mG/s. It increases for 
larger thresholds; the precision for narwhals 168,437 and 168,433 even 
reach 1 for some thresholds, but the true positives and the recalls 
decrease extremely fast to close to zero. Note that for a threshold of zero, 
the precision equals the proportion of ones in the data, and the recall 
equals one. Additional attempts with a delayed jerk within 1 s (0.2, 0.4, 
0.6, 0.8, and 1 s) after the buzzes can be found in Supplementary Ma-
terial. Fig. 13 shows an example trace, with several high RMS peaks 

without any buzz activity, while there are a few high RMS peaks close to 
the buzzes. We therefore conclude that jerks are not a suitable criterion 
for detecting buzzes and prey capture events. 

4. Conclusions 

In this study, we investigated if some special movement patterns 
present around the times of buzzes from free ranging narwhals can be 
detected by machine learning methods. Our results show that the U-Net 

Fig. 9. Scatter plot of the number of predicted buzzes against the number of true buzzes per dive for U-Net, random forest, and logistic regression. Size of the dots 
indicate the number of points. The dashed line is the identity line. The red points indicate the dive illustrated in Fig. 11. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Histograms of A) the difference between the number of buzzes from the predictions and the ground truth, and B) the difference between the sum of the 
lengths of the buzzes per dive for U-Net, random forest, and logistic regression. 
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can be used to detect buzzes from accelerometer data. We also examined 
whether the narwhals make big jerks around buzzes, which have been 
found in a previous study of captive harbor seals (Ydesen et al., 2014). 
They used a triaxial accelerometer to collect head- and jaw mounted 
accelerometer data in prey capturing attempts. It worked well also in a 
wild environment for harbor porpoises (Wisniewska et al., 2016), as well 
as sperm whales (Fais et al., 2016). In our study, the tags are positioned 
on the back of narwhals, so they may not detect more subtle head- and 
jaw-jerks, but major body movements towards targeted prey during 
buzzing events should be detectable. We frequently identified acceler-
ation peaks in the narwhal data that did not follow a buzzing event, and 
analysis showed that both the precision and recall were poor. Moreover, 
we tested on free ranging narwhals rather than captive specimens, so the 
variances are larger. The narwhals may engage in many different 
movement activities that imply quick movements, so false positives 
might be high if only big RMS jerks are used as a criterion. We therefore 
conclude that big RMS jerks are not trustworthy indicators for detection 
of buzz events in narwhals. From an anatomical perspective the absence 
of teeth in narwhal jaws also makes raptorial feeding less likely and 

suggests that narwhals ingest prey by buccal suction feeding. The nar-
whals that were instrumented for this study feed on squids in the water 
column that presumably are slow moving and easy to capture and ingest. 
Other narwhal populations feed on halibut that may require a more 
raptorial capturing approach and rapid movements during the buzz 
phase of the prey strike. 

With the improvement of tagging technologies, more data especially 
from accelerometer instruments can be collected and tools like machine 
learning for big data analysis might contribute enormously to the un-
derstanding of marine predators. We have demonstrated an application 
of deep learning, with U-Net, to accelerometer and depth data for 
detection of buzzes in narwhals. The performance of U-Net was superior 
to random forest, the baseline method of tabular dataset, which failed to 
detect the buzzes. We used the Dice loss function, which is suitable for 
an imbalanced dataset. The trained model can be used to make pre-
dictions or facilitate the training process on new datasets, called transfer 
learning (Pratt, 1993). It distinguished well between foraging dives with 
buzzes and exploring dives without buzzes, much better than random 
forest and logistic regression. Its buzz predictions were much closer to 

Fig. 11. Example of a dive of the record of narwhal 20,158 
with ground truth buzz (orange) and prediction buzz (blue). 
The dark grey shadings on the depth lines indicate the overlaps 
between predictions and ground truths. The first panel illus-
trates the U-Net model, the second illustrates the random for-
est, and the third illustrates logistic regression. The smaller 
panel within each panel show a zoomed-in section of the time- 
depth series marked with a dashed line. (For interpretation of 
the references to colour in this figure legend, the reader is 
referred to the web version of this article.)   
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the ground truth than the predictions from the two other models. 
Finding the right features for random forest or logistic regression is 

particularly hard in new applications. Thus, we cannot definitively 
conclude that U-Net, or more general deep learning, is superior without 
further research. A simple method like logistic regression performed 
better than random forest, although worse than U-Net. Furthermore, the 
determination of the right hyper-parameters for the U-Net is 

computationally expensive. The performance of logistic regression 
might be improved by more careful feature selection such as including 
correlation of buzzes. Logistic regressions have an advantage of being 
much simpler and much more transparent than the U-Net or deep 
learning in general. 

Although our study shows positive results on the use of U-Net 
models, there are several limitations that require more analysis. For 

Fig. 12. Precision and recall of RMS jerks for different thresholds for predicting buzzes.  

Fig. 13. Example of two dives from narwhal 21,791. The upper two panels show the time-depth series and RMS jerk of a buzzing dive; the lower two panels show the 
time-depth series and RMS jerks of a non-buzzing dive. The orange lines indicate presence of buzzes, in the upper right panel the RMS jerks are colored orange 
when buzzing. 

M.C. Ngô et al.                                                                                                                                                                                                                                  

Chapter 7 Paper II

73



Ecological Informatics 62 (2021) 101275

11

example, deep learning methods, in general, are not transparent because 
of the huge number of parameters. The general way of learning is by 
trial-and-error, i.e., to test different hyper-parameters and/or loss 
functions. It creates an enormous training time, as well as a high carbon 
footprint (Anthony et al., 2020), and makes it vulnerable to spurious 
findings due to the lack of transparency. Combining signal processing 
techniques and more transparent statistical/machine learning methods, 
may help to understand when and why the methods work (Forde and 
Paganini, 2019; Succi and Coveney, 2019). However, our results provide 
some evidence that deep learning provides a valuable tool compared to 
other machine learning or statistical methods. The supervised machine 
learning approaches in this study could be extended to any other marine 
mammals’ datasets. 
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Sea surface temperatures drive the movements
of bowhead whales

Abstract

Arctic cetaceans are under threats of global warming due to rapid warming water. Spe-
cially, for bowhead whale, endemic species of this area, it is very challenging because they
only stay in Arctic year around. 84 bowhead whales in Baffin Bay – East Greenland are
tagged during 11-year period between 2001 and 2011 to help us understand the effects
of global warming on this species. With this long dataset, the main goal of this paper is
to investigate the effect of sea surface temperature (SST) on their distribution. We use
high resolution of daily positions and daily SST. We develop seasonal models based on
Tweedie generalize linear models to model the duration that bowhead whales spend in
each season during the period of 2001-2011. Our study confirms the previous research
that bowhead whales prefer spending time in colder water, hence more warming water
coming will force them to move further north, hence reduce their habitats.

8.1 Introduction

The bowhead whale (Balaena mysticetus), also called the Greenland right whale, is a
baleen whale endemic to Arctic and sub-Arctic waters. It has several features that
makes it well adapted to a life in cold and ice-covered waters, e.g. extremely thick
blubber layer exceeding 40 cm in adult whales, a thick epidermis or skin, and a low body
core temperature of 33.8◦C (George et al., 1994; Haldiman and Tarpley, 1993). It reaches
body lengths of up to 17-19 m, with an estimated body mass of up to 100 tons (George et
al., 2021). Sexual maturity is reached late in life (> 18 years for females and > 25 years
for males, Tarpley et al., 2021), with three-year intervals between pregnancies and it is
believed to reach the oldest age (> 200yrs) of any mammals (George et al., 2021). It is
mainly distributed in the high Arctic with three stocks known as Bering-Chukchi-Beaufort
Seas, East Canada-West Greenland (ECWG), and the East Greenland-Svalbard-Barents
Sea stock. A small relict stock persists in the Okhotsk Sea (Givens & Heide-Jørgensen,
2021). Due to its distribution in the Arctic, it is believed to be sensitive to the ongoing
warming that is amplified in the Arctic with rapid reduction in sea ice and increasing sea
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surface temperatures (Alexander et al., 2018; IPCC, 2013). Recent climate changes have
impacted the movements and habitats of many species’ endemic to the Arctic, especially
11 species of marine mammal, including the bowhead whale (Perrin et al., 2009; Kovacs
et al., 2011; Laidre et al., 2015; Citta et al., 2021). Cetaceans are, unlike seals and
walrus, not directly dependent on sea ice and sometimes sea ice appears as an obstacle
for the movements of the whales, but sea ice may still be important for governing the
trophic cascade that eventually creates the concentrations of prey items that whales, and
especially filter feeders like bowhead whales, are so heavily dependent on.

Bowhead whales feed on zooplankton and especially Calanus species seem to be impor-
tant prey items for bowhead whales in the ECWG stock (Heide-Jørgensen et al., 2012;
Pomerleau et al., 2017; Fortune et al., 2019). Climate change with loss of sea ice and
warming of Arctic waters may change the availability of prey that bowhead whales can
target. Some prey species may move north in response to ocean warming or competition
from more southern species entering the Arctic (Michel et al., 2012). Also, the density of
prey items and the timing of the pelagic phase of zooplankton may change with reduction
of sea ice that dictates the onset of primary production that the zooplankton depends
on (Hansen et al., 2003).

Bowhead whales are physiologically adapted to year-round presence in cold water and
the blubber insulation and lack of dorsal fin prevents heat dump during excessive exercise
activities (Hokkanen, 1990). The restrictive options for heat dump are also the reason
why bowhead whales are among the slowest of the baleen whales (Geogre et al., 2020).
They have limited capacity to make rapid movements over short or long distances in
response to increased water temperatures or new predators and anthropogenic activities
invading pristine Arctic waters.

We summarise the water circulation in Baffin Bay as described in (Hansen et al.,
2020). The seasonal movements of bowhead whales in Baffin Bay and the Canadian
Arctic Archipelago are impacted by two currents: the West Greenland current (WGC)
and the Baffin current (BC). The WGC is a mixed current of the two waters: the medium
deep (200 – 1000 m) and warm water of Irminger Current, and the shallow and cold East
Greenland current (ECG). At the Davis Strait, WGC divides into two branches. The
first branch turns west to join the Labrador Outer Current that flows to the south. The
second branch continues flowing to the north until ∼ 75◦ North where it turns west.
Here, it joins the current from the polar basin that is flowing south through Nares Strait
and the other channels in the Canadian Arctic Archipelago, to create the south-going
Baffin Bay current.

It is notoriously difficult to study the trophic cascade in the remote Arctic waters
where bowhead whales roam and the whales are in many cases a better indicator of
the underlying processes although a full mechanistic understanding behind the processes
require more targeted studies. Here we analyse the reaction of bowhead whales to changes
in sea temperatures, and use the whales as a proxy for the underlying changes in the
trophic cascade. We use a large time series of satellite tracking of bowhead whales
in West Greenland and Canada, collected between 2001 to 2011, using Tweedie GLMs
(Jørgensen, 1987; Dunn & Smith, 2018). We exploit the power of Graphical Processing
Unit (GPU) computing, allowing us to fit the model on a much finer temporal and spatial
dataset than in previous studies (Chambault et al., 2018), using the classical second-order
Newton method iteratively reweighted least squares (IRLS).
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8.2 Material & Methods

8.2.1 Whale distributions and tagging area

We analyse a data set collected from 84 bowhead whales in Disko Bay, Greenland that
were tagged with ARGOS satellite transmitters during 2001-2011. All the tags were
made by Wildlife Computers (https://wildlifecomputers.com). Details of the tagging
methods are provided in Heide-Jørgensen et al. (2003, 2006). Briefly, to tag the whales,
small boats with a length of 6 m were deployed on days with good weather (calm sea
and good visibility). Once the whales were spotted, the boats approached them close
enough to tag them using an 8-m long fiberglass or a pneumatic gun (Heide-Jørgensen et
al., 2001). If the tagging failed because the whales started diving, the boats spread out
and searched for the whales again, then the procedure was repeated until the whales were
tagged. Skin samples were also collected for genetic studies and sex identification (Heide-
Jørgensen et al., 2013). By comparing the length of the whales to the size of the boats,
the length of the whales was estimated. The duration of the tracking of the individual
whales varied between years, from a couple of months to a couple of years: May-June
2001, May-November 2002, May-December 2003, April-October 2005, April-September
2006, April-November 2008, April 2009 - July 2011 (Figure 8.1).

8.2.2 Environmental data

Our study focused on the impact of temperature on the distribution of bowhead whales,
so the main predictor was the sea surface temperature (SST). These remote sensing
environmental data were measured by the satellite system of Copernicus Climate Change
Service (https://climate.copernicus.eu/). All the temperatures lower than −1.7◦C
were replaced uniform randomly by values between −1.7◦C and −1.8◦C, because the
freezing temperature of sea water is within this range (Overland et al., 1986; Overland,
1990). The data was distributed through the geographic grid system made of meridians
and lines of latitude to create a grid of squares, denoted cells, of size 0.083◦ × 0.083◦, or
roughly 10 × 10 km.

8.2.3 Location filtering

Whale position data were collected through the ARGOS system. However, non-Gaussian
errors always exist in these data sets together with the influence of other environmental
factors (Jonsen et al., 2005; Patterson et al., 2008). The method of Albertsen et al.
(2015) was applied to correct these errors. Positions of the whale were allocated to
the same cells as in the environmental data of size 10 × 10 km. The whale positions
were often scarce (approximately 131 minutes between each position on average), so we
interpolated positions at 5 min intervals from the linear trajectory between corrected
positions to estimate the duration the whales spent in each cell. Interpolated on-land
positions were removed based on the General Bathymetric Chart of the Oceans (GEBCO)
database (http://www.gebco.net/).

8.2.4 Habitat modelling

We modelled the duration of the time spent by the whales at each cell per day. Our
hypothesis was that the longer the time whales spent in a given cell, the larger the prob-
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ability that the whale had encountered suitable environmental conditions (i.e. SST). We
only included cells where at least one whale appeared at some time interval during the
10 years of observations, and we considered a global spatio-temporal model to capture
the preferable environmental conditions for a 10-year period. We fitted four different
seasonal models for four seasons spring (January-March), summer (April-June), autumn
(July-September), and winter (October-December) to avoid the effect of whale seasonal
migration. We used a compound Poisson-gamma distribution, which is a special case
of a Tweedie distribution, to model the continuous positive duration of bowhead whales
at each cell when they appeared there, and with zero observations at the days they did
not. The compound Poisson-gamma distribution allows for exact zeros but is otherwise
continuous. Let Y be a response variable following a compound Poisson-gamma distri-
bution. Assume that the mean E(Y ) = µ > 0, and the variance Var(Y ) = ϕµp, then
Y ∼ Tweediep(µ, ϕ) where p and ϕ > 0 are variance power and dispersion parameters,
respectively. The compound Poisson-gamma distribution has 1 < p < 2.

The response variable is the duration the whales spent at each cell at each time point,
regressed on SST within each cell, and an offset with the total number of observed
whales at the given time point. The interaction term between SST and cell corrects for
all time-invariant unmeasured confounders at each cell, such as depth, distance to coast,
or bowhead whale specific site-fidelities. We included an offset with the number of tagged
whales nt at day t, because the number of tagged whales was not constant over time.

The regression provided estimates of cell-specific intercepts and temperature effects
(the slopes). The averages of the slopes and intercepts reveal the overall effect of tem-
perature on the choice of locations of the whales. In the generalized linear regression,
the log-link was used. The model can be written in R as

glm(formula = duration ∼ cell-1 + cell:SST,

family = tweedie(link.power = 0), offset = n)

using the package statmod (Giner & Smith, 2016) and tweedie (Dunn, 2017). However,
we did not use R but our own Python code in the models.

The common way to fit the model is with maximum likelihood estimation (MLE) for a
series of fixed values of the variance power parameter p, and the AICs are extracted. Then
the (interpolated) value of p that minimizes the AIC is chosen (Dunn & Smith, 2018). Due
to the interaction of more than 14,500 cells in the spring model, we have more than 29,000
parameters. With such large number of parameters, the loss function is highly complex
with numerous local minima, so comparing different model AICs may not give an accurate
assessment. A simpler way is to estimate p based on the assumption Var(Y ) = ϕµp: hence
p was found by the linear regression log(Var(Yc)) = log(ϕ) + p log(µc) within each cell
for every cell c (Dunn & Smith, 2018), separately for each season. The values of p of our
spring, summer, autumn, and winter models were estimated to 1.69, 1.74, 1.80, and 1.80,
respectively (Table 8.1). All of these values satisfy the assumption of Poisson-gamma
model, 1 < p < 2.

8.2.5 Implementation

The dataset was too big to use glm.fit in R. Therefore, we implemented the GLM
model in Python 3.8 using CuPy with NVIDIA Quadro P4000 of 8 GB of RAM. The
sparsity of the design matrix due to the interaction of SST with each cell was exploited
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for GPU computing based on CUDA (Nickolls et al., 2007). The matrix-matrix/matrix-
vector multiplication was sped up at least 300 times to CPU computing using SciPy
(Fatahalian et al., 2004).

8.2.6 Optimization

The classical IRLS algorithm for GLM fitting was used (Green, 1984). The CUDA
platform design prefers single-precision arithmetic (32 bits) to double-precision arithmetic
(64 bits), hence it was much faster to use float format to double format as well as it costs
only 50% of constrained GPU memory. However, the GLM model used the log-link,
therefore a gradient explosion can easily happen if the gradient becomes too big at some
step, similar to the same phenomenon in deep learning (Pascanu et al., 2013). Therefore,
we used double-precision arithmetic. Nevertheless, gradient explosion still happened
sometimes. To solve this issue, we used the step-halving method of glm2 (Marschner,
2011). The idea is to halve the IRLS step size whenever it leads to gradient explosion. It
is also used to assure that the deviance decreases after each step, similar to the Armijo
condition (Armijo, 1966).

8.3 Results

There were 29 to 5466 locations per whale, with tracking durations ranging from 4.25
to 489.29 days (Figure 8.1). The total travelling distance estimated linearly from the
corrected Argos’s data ranged from 179 to 16,581 km. In 2001, only 2 months of data
were collected but more data were collected in the subsequent years, including the whole
period between April 2009 and July 2011.

The average sea surface temperature of June in our study area showed a general spatial
pattern during 2001-2011 (Figure 8.2). Warm water was found in Davis Strait, along West
Greenland up to Disko Bay, and in the North Water. Cold water was found throughout
the Canadian Arctic Archipelago and Baffin Bay was dominated by a large pool of cold
water. Compared to 2001, the warm water from the south was found increasingly further
north between 2002 and 2010.

To assess the temperature trend in the bowhead whale habitat, we estimated the slope
of each cell using linear regression (Figure 8.3). Positive slopes, i.e. increasing trends,
were detected in most cells (more than 95% of slopes > 0.01), except some small areas
outside Disko Bay and north of Baffin Bay. The largest increases were observed in Disko
Bay, the north and the south of Baffin Bay and along its east coast. The water in
the central part of Baffin Bay had the lowest temperature increases, partly because of
the mixing of warm water from Southwest Greenland and the cold polar water from the
north. The average slope was 0.04 (Figure 8.3B). This corresponds to an average increase
of 0.44 degrees over the 11 year’s study period, and an increase of more than one degree
in the most affected areas. We also randomly selected 10 cells where the whales appeared
and noticed a slow increasing trend in all 10 cells (Figure 8.3C).

We ran the Poisson-gamma model for all the cells where the bowhead whales appeared
at some point. The average coefficients were negative in all four seasonal models, implying
that the whales prefer colder waters (Figure 8.4A and Table 8.1). The intercepts indicate
the log of the average durations per day in each cell at 0◦C. Some slopes had estimated
large negative values in all seasons, from −75.11 to −56.24, probably due to a few outliers
within these cells. There were many zeros in the data (> 91% of zeros in each cell), thus,
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Figure 8.1: Positions of tagged bowhead whales over the years: 2001— 2003, 2005, 2006,
2008— 2011.

the model might need to be extended to zero-inflated Tweedie models to deal with the
imbalanced data (Zhou et al., 2020). The estimated values of p were similar in all seasonal
models (between 1.69 and 1.80), stating that the relationships between mean and variance
were stable between seasons. The average slopes were large, suggesting that the whales
spent from 2.7 (in autumn) to 66.7 times (in summer) longer at a cell if it is 0.5◦C colder
(Table 8.1).
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Figure 8.2: Average sea surface temperature of June during 2001-2011 in Baffin Bay and
the Canadian Arctic Archipelago.
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Figure 8.3: Changes in sea surface temperature in the study area after 2000. A) Spatial
distribution of slopes, B) Boxplot of slopes: centerline indicates 50th quantile;
the bottom and the top of box indicate 25th and 75th quantiles respectively;
and dots represent outliers, and C) Yearly average temperature of 10 ran-
domly selected cells where the whales appeared.
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Intercept Slope p
Spring -56.24 -4.51 1.69

Summer -75.11 -8.40 1.74
Autumn -62.72 -2.03 1.80
Winter -66.03 -3.91 1.80

Table 8.1: Slopes, intercepts, and values of the power parameter p of the four seasonal
models. The slopes are the average SST effects. The intercepts indicate the
log of the average durations per day in each cell at 0◦C. Negative slopes imply
that the whales prefer colder waters.

We also calculated the weighted mean of slopes and intercepts of each seasonal model,
with weights the inverse of the variances of the slope estimates and intercept estimates.
It had weighted average slopes between −1 and 1 and average intercepts between −7.7
and −5.6 (results not shown).

The slope estimates in the 95% central part of the distribution (between the 2.5th and
the 97.5th percentiles) were between −23.8 and 7.8. In general, there is a small trend
toward negative slopes in all seasons (Table 8.2 and Figure 8.5).

Season Number of slopes Negative slopes Positive slopes Average slope
Spring 13838 7576 6193 -0.75

Summer 10486 5030 5419 -0.25
Autumn 4157 2162 1980 -0.57
Winter 1766 931 806 -0.74

Table 8.2: Statistics of slope estimates inside the 2.5th-97.5th percentiles in the four
seasonal models.
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Figure 8.4: A) Regression lines for each cell (in blue). The black lines show the average
regression lines (average SST effect) with negative average SST coefficients in
all four seasonal models (Table 8.1). Negative slopes imply that the whales
prefer colder waters. B) The average curves on the original scales are shown
with predicted density of the fraction of time spent at different temperatures
summed over all cells.

85



Chapter 8 Paper III

Figure 8.5: A) Boxplot of slope estimates without outliers (only datapoints in the range
of 1th and 99th percentiles): centerline indicates median; the bottom and the
top of box indicate 3th and 97th percentiles, respectively; lower and upper
extremes indicate 1th and 99th percentiles, respectively; B) boxplot including
outliers (all estimates).

There were more extreme values of negative slope estimates than for the positive
estimates (Figure 8.6). Most slope estimates are around 0 in all models. In winter
and spring, there were more cells with low average temperature (< 0◦C in spring and
< −1◦C in summer). In summer and autumn, more cells had higher average temperature,
1.5 − 3◦C in summer and 0 − 1◦C in autumn. However, in autumn there were also cells
having average temperature of around −1.5◦C, possibly because the temperature is lower
at the end of autumn.
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Figure 8.6: Estimated slopes inside the 2.5th-97.5th percentiles against the seasonal av-
erage temperature of cells where whales appeared, illustrated by a hexagon
plot. The darker the color of a hexagon, the more data points inside it.
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8.4 Discussion & Conclusions

In this study, we investigated the relationship between sea surface temperature and move-
ments of bowhead whales. The study was based on a large dataset with up to 9.6 million
datapoints. We showed that a GLM can be suitable for such large data sets without the
need to switch to more complex models. To deal with a high number of zeros, Poisson-
gamma models were used, which are special cases of Tweedie GLM models, that are not
as well-known models as Poisson GLM or Gamma GLM. GPU computing allowed us to
fit the model with a high number of parameters using Newton method IRLS.

The averages of estimated slopes were negative in all four seasons, indicating that
the bowhead whales preferred colder areas. The medians were extremely close to 0. The
average slope was much smaller in summer than other seasons, suggesting that the whales
are more driven to search for colder water in summer when they are in habitats more
influenced by warm Atlantic water, than in the other seasons.

The tagging data showed that at the end of spring, the whale started migrating along
West Greenland to northern Baffin Bay, the east coast of Baffin Island and inside the
Canadian Arctic Archipelago. What triggers the departure from Disko Bay remains
unknown, but the spring influx of warm water to Disko Bay could be involved because
during cold conditions in winter and spring bowhead whales are feeding actively in Disko
Bay (Laidre et al. 2007, Heide-Jørgensen et al. 2012). This influx of warm water in
spring occurs at 3-400m depth (Madsen et al., 2001). It is however not possible to assess
the temperature at these depths at the seasonal resolution of cells applied to this study.
For this study, only remote sensing of the surface temperature provided the necessary
resolution.

The study confirmed the overall observation that the temperature is negatively corre-
lated with bowhead whale distribution. This agrees with the findings in Chambault et
al. (2018) that found that bowhead whales targeted a narrow range of SSTs from –0.5 to
2◦C. A main difference is that Chambault et al. used a much larger grid, 0.5×0.5 decimal
degree (approximately 60×60 km) and monthly data instead of daily data for predicting
habitat suitability. The larger dataset allowed to capture more of the variance, and our
model also included the interaction term between SST and cell, allowing the correction for
all time-invariant unmeasured confounders at each cell, such as depth, distance to coast,
or bowhead whale specific site-fidelities. The SST data showed that the temperature of
sea water has increased slowly in most of the area in our study between 2001-2011 (more
than 95% of the cell temperature increases exceeded 0.01 degrees/year). It confirmed the
finding of Alexander et al. (2018) based on simulations that strong warming has been
happening in the Arctic. This could also be observed from the changes of the temporal
migration patterns of bowhead whales. Based on reports from the whaling stations it was
calculated that the mean departure date for bowhead whales in Disko Bay was around
5 June (interquartile range 20 May to 14 June) for the period 1780–1837 (Eschricht and
Reinhardt, 1861). The whales tracked in the present study departed 1.5–3 weeks earlier
(Laidre and Heide-Jørgensen, 2012) and it is likely due to the warmer waters compared
to the earlier period that coincided with the little ice age (Mann, 2003).

Our work can be extended to overcome some limitations. Note that our model is not
sophisticated enough to include movements, so we can only conclude about selection of
cells. A high negative slope means that the whales preferred to stay in colder areas,
but it does not inform us about how they moved. The correlation coefficients with
the neighbouring cells in the past could show us the whale’s movement, e.g., by using
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Generalized Linear Autoregressive Moving Average Models (Dunsmuir, 2015).
Chambault et al. (2018) showed that GAMs provide more flexible ways to interpret the

data than GLMs. Our analysis can be extended easily to a GAM using smooth functions
on SST. Other important sea ice related predictors such as sea ice concentration could
also be included. However, sea ice and SST are highly correlated and Chambault et
al. (2018) found SST to be a more important predictor of bowhead whale distribution,
partly because of lack of sea ice during the summer months. Another limitation is the
linear interpolation method we have used to estimate the duration of bowhead whales
at each cell. Finally, the huge number of zeros in the data are not well captured by the
standard Tweedie model. One way to improve the model is to extend to zero-inflated
Tweedie models (Zhou et al., 2020).
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