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Abstract

This thesis examines various notions of traces on C*-algebras with a focus on qua-
sitraces and tracial states, and on the connection between them as exemplified by Kaplan-
sky’s conjecture. Different already known characterisations of when unital C*-algebras
admit quasitraces and tracial states are studied, and these characterisations are used in
order to construct new numerical invariants, which informally measures the failure to
admit quasitraces resp. tracial states, and which have interesting asymptotic behaviour.
In particular, following a construction due to Rgrdam, it is shown that for any n € N
there exists a separable, unital, nuclear, simple C*-algebra A,, such that n is the small-
est integer satisfying that M, (A,) is properly infinite. By taking an ultraproduct of
this sequence of C*-algebras without quasitraces, one obtains an example of a unital
non-exact C*-algebra with a quasitrace. It is unresolved whether this quasitrace is a
tracial state. We discuss the possible implications for Kaplansky’s conjecture, and also
how the aforementioned numerical invariants may provide more information about the
conjecture. Inspired by work of Robert—Rgrdam, we also provide a way of viewing the
existence of C*-algebras with tracial states not approximable by limit tracial states by
introducing the notion of almost tracial states.

Moreover, this thesis presents the original as well as an alternative proof of the result
due to Haagerup that quasitraces on unital, exact C*-algebras are tracial states. We
emphasise the usages of the AW™-completion, which gives a link between Kaplansky’s
original conjecture and the modern formulation, and we also emphasise when exact-
ness is used. The alternative proof uses the result due to Haagerup—Thorbjgrnsen that
C?(F) is an MF-algebra, which allows for matrix approximations of certain self-adjoint
elements in C}(F). Using a characterisation of non-traciality of unital C*-algebras due
to Haagerup will then allow us to prove that A ® C*(F.,) is properly infinite, and by
invoking exactness and the aforementioned self-adjoint lifts, one obtains the existence
of n € N for which M,,(A) is properly infinite. We also show that the proof strategy
does not hold universally for non-exact C*-algebra by showing that, for any choice of
matrix approximation of the self-adjoint elements in C}(F ), there exists a non-exact
C*-algebra A for which the proof fails.

In the thesis, we also initiate the study of when C*-algebras have the property that
all quotients admit faithful tracial states. We provide a sufficient and necessary condi-
tion for when C*-algebras admit faithful tracial states in terms of the existence of stable
ideals by using regularity properties of Cuntz semigroups. By applying this result to the
quotients, we then obtain an an equivalent formulation for all quotients to admit faithful
tracial states, and we use this to determine when C*-algebras are strongly quasidiagonal.



Resumé

Denne afhandling undersgger forskellige versioner af spor pa C*-algebra med et fokus
pa kvasispor og sportilstande og pa sammenhzengen mellem disse ved at studere Kaplan-
skys formodning. Vi kigger pa allerede kendte karakteriseringer af, hvornar C*-algebraer
har kvasispor hhv. sportilstande, og vi benytter disse til at definere nogle nye numeriske
invarianter, der uformelt sagt maler fejlen til at have kvasispor hhv. sportilstande, og
som har interessante asymptotiske egenskaber. Ved at anvende Rgrdams eksempel pa
en simpel C*-algebra med en endelig og en uendelig projektion viser vi, at der for hvert
n € N findes en separabel, unital, nuklezer og simpel C*-algebra A,, saledes at n er det
mindste heltal for hvilket M, (A4,,) er egentlig uendelig. Ved at tage et ultraprodukt af
sadan en folge af C*-algebraer konstruerer vi et eksempel pa en unital, ikke-eksakt C*-
algebra med et kvasispor. Det er uafklaret hvorvidt dette kvasispor er en sportilstand.
Vi diskuterer implikationerne for Kaplanskys formodning, og hvordan de fgrnaevnte nu-
meriske invarianter ogsa kan give information om formodningen. Inspireret af arbejde af
Robert—Rgrdam om karakterer pa ultraprodukter, introducerer vi "naesten sportilstande”
og anvender disse til at forklare eksistensen af ultraproduct-C*-algebraer med sportil-
stande, som ikke er approksimable med graensesportilstande.

Derudover praesenterer afhandlingen udvalgte dele samt et alternativt bevis af Haagerups
teorem om, at kvasispor pa unitale, eksakte C*-algebraer er sportilstande. I gennem-
gangen af Haagerups oprindelige bevis leegger vi fokus pa AW™-fuldsteendigggrelsen af
unitale C*-algebraer med tro kvasispor, hvilket viser sammenhsengen mellem Kaplan-
skys oprindelige formodning og den moderne formulering, samt hvornar eksakthed preecis
dukker op i beviset. Det alternative bevis, som vi preesenterer, anvender resultatet af
Haagerup—Thorbjgrnsen om, at C(F,) er en MF-algebra for alle n € N til at finde ma-
trixapproksimationer af bestemte selv-adjungerede elementer i C*(F,). Ved at benytte
Haagerups karakterisering af ikke at have sportilstande vil sa benyttes til at bevise, at
A ® C!(Fs) er egentlig uendelig, og ved at anvende eksakthed af A og betragte de
fornesevnte matrixapproksimationer opnar man eksistensen af et n € N for hvilket M,,(A)
er egentlig uendelig. Vi viser ogsa, at metoden ikke virker universelt ved for enhver
matrixapproksimation af de selvadjungerede elementer i C*(F,) at konstruere en ikke-
eksakt C*-algebra, hvor beviset fejler.

I afhandlingen igangseetter vi undersggelsen af, hvornar C*-algebraer har den egenskab,
at alle kvotienter har tro sportilstande, som vi betegner QFTS-egenskaben. Vi under-
sgger allerede kendt viden om, hvornar C*-algebraer har separerende familier af sportil-
stande. Vi giver en ngdvendig og tilstraekkelig betingelse for, hvornar C*-algebraer har
tro sportilstande i termer af eksistensen af stabilie idealer under antagelse af regular-
itetsegenskaber af Cuntz semigruppen. Dette resultat bliver sa anvendt pa kvotienter til
at finde en aekvivalent formulering af, hvornar C*-algebaer har QFTS-egenskaben, og vi
bruger denne til at bestemme, hvornar C*-algebraer er steerkt kvasidiagonale.
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1 Introduction

One way of understanding the subject of operator algebras is to look at linear algebra from
afar: We are not studying the properties of single matrices or operators, but we are studying
the collections of operators as a whole. The main focus in this thesis is the study of traces,
and this nicely exemplifies the differences between the interests within single operator theory
and the study of operator algebras. Any first-year mathematics student knows about traces;
they probably know the formula of the trace of a square matrix, they might recognize that
the trace map is invariant under cyclic permutations (although they certainly would not
phrase it as such) and basis changes, and they might realise that the trace of a given matrix
is the sum of its eigenvalues. Similarly, a second-year mathematics student might realise that
“summing the diagonal” is often ill-defined whenever one is working with infinite-dimensional
matrices, and they might know of trace-class or Hilbert-Schmidt operators. While this last
part does have an operator algebraic flavour, restricting oneself to look at collections of op-
erators on a Hilbert space, the viewpoint of the student is presumably still fixated on the
single operator theoretic notion: Given a matrix, what is its trace, and what does this imply
for the matrix in question?

Operator algebraists deal with a different question. We look at collections of operators,
and we wonder about the structure these collections may have. To name an example of what
kind of questions an operator algebraist might ask, let us look at the fundamental question
permeating the entire thesis: When do algebras of operators admit traces? As it is written,
this question is obviously not defined rigorously: What is an operator? What is an algebra
of operators? What is a trace? But the question taken at face value still provides insight
into the viewpoint of operator algebraists, and the kind of questions we might be interested
in asking. We are concerned with properties of structures, not specific elements, and the
consequences of these properties.

Unsurprisingly, this thesis deals with traces from this point of view. That is, we shall
study when operator algebras, mostly C*-algebras, admit traces, and what the consequences
of (non-)existence of traces are, and even what constitutes a trace — a question that might
seem nonsensical to the aforementioned math students, but which is a surprisingly deep
question. The reader might notice how in the sequel we switch from talking about traces to
tracial states — this is a deliberate choice, which we shall return to later.

The study of traces on operator algebras is nothing new — as mentioned earlier in this
introduction, the trace is an important basis-invariant map for finite-dimensional square ma-
trices, which provides information about the eigenvalues. However old the subject might be,
it is still not resolved completely when C*-algebras admit tracial states; results of Haagerup
[28] and Pop [54] give an (almost) algebraic characterisation of failing to admit tracial states,
but before Haagerup proved his characterisation of traciality of unital, exact C*-algebras,
proving the existence of a tracial state often involved actually constructing a tracial state.
For example, one can easily show that group-C*-algebra of a discrete group admits tracial
states by constructing the specific vector state x — (xd,, d¢); here it is also worth mention-
ing that the question of when this tracial state is unique on reduced group-C*-algebras is a
surprisingly deep question. But if one is given a C*-algebra, how does one know whether it
admits a tracial state or not? And is it something which is humanly verifiable in some man-
ner? Haagerup’s aforementioned theorem provided a big, abstract class of C*-algebras which
admits a tracial state: Unital, exact C*-algebras admit tracial states if and only if they are



stably not properly inﬁniteﬂ The importance of this characterisation actually goes a bit fur-
ther, since it not only gives a complete classification of traciality of unital, exact C*-algebras
in a very natural, yet abstract manner. It is also a partial resolution to a conjecture known
as Kaplansky’s conjecture, which dates back to 1951 [37]: Are all so-called quasitraces, which
might be seen as a formally weakened tracial state, automatically tracial states? Haagerup’s
theorem remains the best known answer to this conjecture and the question of abstractly
classifying C*-algebras with tracial states, but it is important to notice that we with this
theorem are still not done — what happens for non-exact C*-algebras? Is traciality of unital
C*-algebras completely characterised by being stably not properly infinite, as it happens for
the exact case?

This thesis aims to give a mostly self-contained and historical treatment of the question
of traciality of C*-algebras as well as to extend the knowledge of the field by introducing
new ways of analysing the problem. Outside of this introduction, the thesis is divided into
four chapters.

o Chapter 2 is an expository chapter on several different elementary topics includ-
ing properly infinite projections, tracial states and quasitraces. The main point of
this chapter is to examine various characterisations of admitting tracial states due
to Haagerup and Pop, and for admitting quasitraces and due to Cuntz, Blackadar—
Handelman, and Blackadar-Rgrdam. We aim to provide proofs of all important results
for the sake of being self-contained, but the proofs rarely differ much from the original
sources, to which we will refer thoroughly.

e In Chapter 3, we reproduce and review Haagerup’s result that quasitraces on unital,
exact C*-algebras are tracial states. While the result itself is, obviously, interesting, the
proof is also delightfully illuminating to many interesting operator algebraic properties
and structures. One result of interest for us will be the AW*-completions of unital
C*-algebras with (faithful) quasitraces, which can be seen as an analogue of the W*-
completion of C*-algebras with tracial states.

e In Chapter 4, we begin introducing original work. This chapter contains a new way of
examining whether C*-algebras admit quasitraces and/or tracial states by introducing
certain numerical invariants with interesting asymptotic behaviour. Following a con-
struction due to Rgrdam [60], we shall explicitly construct a C*-algebra, which admits
a quasitrace, but which arises as an ultraproduct of C*-algebras without quasitraces.
It is still unresolved whether this quasitrace is a tracial state, and hence this might be
an interesting C*-algebra to study when trying to resolve Kaplansky’s conjecture. We
also provide an alternative proof of Haagerup’s theorem with newer methods by invok-
ing a deep result due to Haagerup—Thorbjornsen [30] that C)(F) is an MF-algebra.
This chapter is based on joint work with my advisor, Mikael Rgrdam.

e In Chapter 5, we introduce the study of when all quotients of a C*-algebra admit
faithful tracial states, which we denote QFTS inspired by Murphy’s QTS property
from [47]. We use regularity properties of the Cuntz semigroups in order to show
that certain C*-algebras have the QFTS property if and only if they have no stable
intermediate quotients. In particular, we also find a new equivalent characterisation of
when a certain class of C*-algebras admit faithful tracial states, and we apply it to the
question of determining strong quasidiagonality of C*-algebras. This chapter is mainly
a rewrite of the author’s preprint [45].

LThe reader has probably encountered the stably finite formulation, which is often accredited to Blackadar—
Handelman [7] and Haagerup [28]; however, this is a strictly weaker result than what is stated above.



e Last, but certainly not least, we discuss in Chapter 6 several open and interesting
questions within the field of this thesis. Most of these questions are raised previously
in the thesis, so the chapter should be seen as an itemisation of the open problems and
possible generalisations we have encountered throughout the entire thesis.

Notation and terminology

It is increasingly uncommon for two mathematical theses to agree on notation, and it is thus
customary to help the reader by mentioning some of the notation.

We denote by N = {1,2,...} the natural numbers, i.e., we do not view 0 as a natural
number. If we want to adjoin 0 to the collection of naturals, we shall denote this set by Nj.

The letters A, B usually denote C*-algebras. By 7ideal” we will, unless otherwise speci-
fied, mean "closed two-sided ideal”, and ideals are usually denoted by the letters I,J. By
“ideal”, we will always mean "closed two-sided ideal”, unless otherwise specified.

If A is a unital C*-algebra, we will most often write its unit as 14; however, occasion-
ally we do end up in situations where it is clear from context where the unit belongs, and
where it would be more unreadable to adjoin the subscript — in these cases, we may just
write 1 instead.

If H is a Hilbert space, we denote by B(H) the collection of bounded operators on H, and by
K(H) the collection of compact operators on H. We shall also work with the compacts as an
abstract C*-algebra, but we will use the notation K(H) consistently for this situation as well.

If (Ap)nen is a family of C*-algebras, we denote by ¢*°((Ay)nen) the product C*-algebra,
which in the literature is often called [, .y An. Similarly, we write co((An)nen) for the C*-
algebra consisting of sequences converging to 0 in norm; this is in the literature often denoted
by @,,cn An; if we work with a finite number of C*-algebras in the direct sum, and when
working with elements on Hilbert spaces, we will still use this notation. If A,, = A for all n,
we write £*°(A) and ¢o(A) for the bounded sequences in A, and those which tend to 0 in norm.

We shall by ® denote the minimal or spatial tensor product, and ®pnax the maximal tensor
product. Moreover, throughout the entire thesis, we will let w denote a fixed free ultrafilter
on N.
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2 The structure of finite and infinite C*-algebras

In this chapter, we study the main objects of interest in this thesis: quasitraces and tracial
states. However, in order to fully appreciate these objects, one needs to look in depth
at projections of C*-algebras and, in particular, properly infinite projections. Our goal is
to provide an almost self-contained review of the most important known results regarding
these objects including when C*-algebras admit quasitraces resp. tracial states. We also
aim to study one of the oldest open questions about the structures of C*-algebra, namely
if quasitraces are always tracial states. While the question remains unresolved in general,
Haagerup answered it in the affirmative for the class of unital, exact C*-algebra [28]; we
provide a proof of this result in the following chapter. In general, this chapter should be
viewed as an expository overview of a part of a vast field of operator algebraic theory, and
the arguments presented below are all coming from the original papers, to which we shall
cite thoroughly.

2.1 Projections in C*-algebras

In the following, let A be a C*-algebra. A projection on A is an element p € A satisfying
p = p? = p*. The collection of all projections on A is denoted P(A). We say that two
projections p,q € P(A) are Murray-von Neumann equivalent, denoted p ~ g, if there exists
x € A such that p = z*x and ¢ = xx*, i.e., if there exists a partial isometry = such that the
support projection is p and the range projection is ¢. It is easily verified that this defines an
equivalence relation on P(A).

Example 2.1. Two projections p,q € B(H) are Murray-von Neumann equivalent if and only
if dim(pH) = dim(¢H). In particular, two projections in M, (C) for some n € N will be
Murray-von Neumann equivalent if and only if their traces are equal.

Throughout this thesis, we shall compare projections belonging to different matrix al-
gebras over a given C*-algebra. Let P,(A) denote the collection of projections on M, (A),
and let P (A) = U,,cny Pn(A) be the collection of all projections on matrix algebras over A.
This admits an addition given by p @ ¢ = diag(p, q). Define on P (A) the order p 3 ¢ for
p € Pp(A) and ¢ € Pp,(A) if there exists v € M, ,(A) such that v*v = p and vv* < gq.

Intuitively, and as Example shows, projections may have different sizes, and it is im-
mediate that, at least for B(H), we can discuss finiteness of projections by looking at the
dimension of the spanned subspace. However, when working with abstract C*-algebras, this
is not a meaningful distinction, but there is another obvious way of defining finiteness of
arbitrary projections. We say that two projections p,q € A are orthogonal, denoted p 1 ¢, if

pqg = 0.
Definition 2.2. Let p be a projection in A. We say that p is:
(i) finite if p ~ g < p for some projection ¢ € A implies p = q.

(ii) 4nfinite if p is not finite. That is, there exists a proper subprojection ¢ < p for which
q~Dp.

(iii) properly infinite if there exist orthogonal projections ¢, g2 € P(A) satisfying p ~ q1 ~
q2 and g1 + g2 < p.

We say that a unital C*-algebra A is finite, infinite and properly infinite if the unit 14 is
resp. finite, infinite and properly infinite. We also say that A is stably finite or stably not
properly infinite if M, (A) is finite resp. not properly infinite for all n € N.



Note that with the above definition, the zero projection is a properly infinite and a finite
projection. The reader may find that this does not feel right — if so, the reader is welcome
to add the restraint that the above definition of properly infiniteness holds for non-zero pro-
jections.

The definition of a finite and an infinite projection should remind the reader of the sim-
ilar characterisations of a finite and an infinite set. For sets, obviously, the analogue notion
of properly infinite will just be that of being infinite, but for projections on C*-algebras,
these properties are vastly different; in the example below, we mention a few examples of
finite, infinite, and properly infinite C*-algebras.

Example 2.3. e Any commutative C*-algebra is stably finite.
e Any AF-algebra, and hence any (unital) AF-embeddable C*-algebra, is stably finite.

e If H is a Hilbert space, then B(H) is properly infinite if and only if H is infinite-
dimensional, and it is stably finite if and only if H is finite-dimensional.

e The Toeplitz algebra 7T generated by a non-unitary isometry is, by construction, infi-
nite. However, it is not properly infinite, as it admits a finite quotient 7 — C(T), see
Proposition later in the thesis. Note that T is not stably finite, yet is stably not
properly infinite.

e The Cuntz C*-algebras O,, generated by n isometries (s;)?; with Y7 | s;s7 = 1o, are
properly infinite for any 2 < n < co.

e The Cuntz-Toeplitz C*-algebras &, generated by n isometries with mutually orthogonal
range projections are properly infinite for n > 2.

Observe that all examples of finite C*-algebras above are also stably finite. While it is
not true that any finite C*-algebra is necessarily stably finite, it is not a trivial statement to
verify, and, in fact, this question is one of the focus points of this thesis.

For the remainder of this section, we shall focus on the class of properly infinite projec-
tions. First, we look at a few equivalent characterisations of properly infiniteness.
Proposition 2.4. Let p € A be a non-zero projection. The following are equivalent:
(i) p is properly infinite;
(ii) pop Zp;s
(iii) There exist partial isometries si,s2 € A with sis1 = sisa =p and s15] + s2s5 < p.
)

(iv) There ezists a sequence of partial isometries (sp)nen such that sk s, = p for eachn € N

and such that s,s;, L spysy, for any n # m.

(v) There ezists a unital embedding of the Cuntz-Toeplitz algebra & in the corner C*-
algebra pAp.

(vi) There exists a unital embedding of O in the corner C*-algebra pAp.

(vii) The image of p in any quotient of A is either zero or infinite.

Proof. (i)<(ii)<(iii) are immediate. Moreover, (iii) and (v) are just reformulations of one
another, and so are (iv) and (vi). It is immediate that (iv)=-(iii), and the converse is also
true: If 51,59 € A satisfies that sjs; = p for ¢ = 1,2 and s1s] + s255 < p, then the partial
isometries t,, = s5 sy for n € N satisfy the conditions of (iv). Observe that (ii)=(vii), and
for (vii)=-(ii) we refer to [41, Corollary 3.15]. O



The characterisation (vii) above is a generalisation of the following theorem due to Cuntz
[16], which we highlight for its historical interest. In particular, it implies that for simple,
unital C*-algebras, being stably finite is equivalent to being stably not properly infinite.

Theorem 2.5 (Cuntz). Let A be a simple C*-algebra, and let p € A be a non-zero projection.
Then p is properly infinite if and only if p is infinite.

It is not necessarily true that if p,q € A are projections on a C*-algebra with p properly
infinite and p = ¢, then ¢ is properly infinite. For instance, one may take any unital, properly
infinite C*-algebra A, and any unital, finite C*-algebra B and consider the direct sum A® B.
Then (14,0) 2 (14,1p), and the right-hand side is not properly infinite, while the left-hand
side is. However, we do have the following result:

Proposition 2.6. Let p,q € A be non-zero projections. Suppose that q belongs to the closed
two-sided ideal generated by p, and that p = q. If p is properly infinite, then so is q.

Proof. Since p lies in the ideal generated by the projection g, it is an easy exercise to verify
that there exists n € N such that ¢ X p® 1,,, see e.g. [63, Exercise 4.8]. Since p is properly
infinite, we find that p ® 1,, = p, such that ¢ = p, and using the subequivalence p =< ¢, we
obtain

q®q3IpBPIPI Y
proving that ¢ is properly infinite. O
For convenience later on, we mention a few corollaries to the above result.

Corollary 2.7. Let p,q € A be projections on a C*-algebra. If p 3 q 3 p and q is properly
infinite, then so is p.

We say that a projection p € A is full if p does not belong to any proper ideal of A.

Corollary 2.8. Let q,p € A be projections. If p = q and p is a properly infinite, full projection,
then q is properly infinite.

Proof. Since p is a full projection, ¢ trivially belongs to the ideal generated by p, and the
result now follows from Proposition [2.6 O

Corollary 2.9. Let A be a unital C*-algebra. If p € A is a full, properly infinite projection,
then A is a properly infinite C*-algebra.

Proof. This is just an application of Corollary on the unit 14. O
Let us look at a few permanence properties of being properly infinite.

Proposition 2.10. Any quotient of a unital, properly infinite C*-algebra is again properly
infinite.

Proof. This follows immediately from Proposition [2.4](ii). O

Proposition 2.11. If (A, )nen is a sequence of unital C*-algebras, then the product algebra
0 ((Ap)nen) is properly infinite if and only if each A, is properly infinite.

Proof. Suppose each A, is properly infinite, then so is the product ¢*°((Ap)nen) via any
unital embedding & — A, — £°((Ay)nen). Conversely, if £°°((A,)nen) is properly infinite,
let p = (Pn)nen, ¢ = (Gn)nen € €°((An)nen) be projections such that p L ¢ and p ~ g ~ 1.
Then, for eachn € N, p,, L g, and p,, ~ g, ~ 14,, and hence each A,, is properly infinite. [

10



Proposition 2.12. Let A be the inductive limit of a sequence of unital C*-algebras Ay — Ay —
- with unital connecting maps. Then A is properly infinite if and only if there exists N € N
such that A, is properly infinite for alln > N.

Proof. If any A,, is properly infinite, then so is A via the unital *-homomorphisms & —
A, — A. Conversely, suppose that A is properly infinite such that there exists an embedding
&y — A. Since & is semiprojective by [5, Corollary 2.24], we find that there exists N € N
such that ¢°((Ay)n>n) is properly infinite. But then, for any n > N, A, is properly infinite
by Proposition [2.11 O

The following proposition is a direct way of showing that if a C*-algebra admits elements
that approximately satisfy the Cuntz-Toeplitz relations sufficiently well, then it also contains
elements that satisfy them exactly. This is in essence Loring’s notion of stable relations, see
[44, Chapter 14], but the below result is an explicit way of actually constructing the Cuntz-
Toeplitz pair.

Proposition 2.13. Let A be a unital C*-algebra and suppose that s1,s2 € A satisfies that
[sts; —1al| < % fori=1,2 and ||s}s;j| < % fori+# j. Then there exists t1,t € A such that
tit; =14 fori=1,2 and t1t] L tot5. In particular, A is properly infinite.

Proof. Since ||sfs; — 14| < } < 1, we have that s}s; is invertible in A. Put u; = si(s¥s;) /2
for 7 = 1,2 and observe that these elements are isometries, that is, uju; = 14 for i = 1, 2.

Moreover, an easy calculation shows that Hu]u;‘uku,’QH < 1 whenever j # k, which implies

that there exists a unitary element v € A such that vuju;v* L uguy. Now put ¢ = ug and
to = vug, then tt; =14 for ¢ = 1,2 and

t1titaty = vujujv uguy = 0.

As A contains two isometries with orthogonal range projections, we conclude that A is
properly infinite. O

2.2 Tracial states on C*-algebras

In the following we let A denote a not necessarily unital C*-algebra. We say that a linear
functional p: A — C is a state if it is positive with ||p|| = 1. It is an easy calculation to show
that if A is unital and p: A — C is a positive linear functional, then ||p|| = 1 if and only if
p(14) = 1. The collection of states on A is called the state space of A, here denoted S(A),
and is a convex set, and compact whenever A is unital. States on C*-algebras are not rare in
the slightest — in fact, an application of the Gelfand-Neimark theorem tells us that for any
non-zero element a € A, there exists a state p on A with p(a) # 0. Tracial states, however,
are much rarer than states. As the name suggests, a tracial state on a C*-algebra A is a
state 7 on A satisfying the tracial condition 7(ab) = 7(ba) for all a,b € A. The collection
of tracial states on A is denoted T(A) and is easily seen to be a closed convex subset of
S(A). If A is unital, T(A) is hence a compact, convex set; in fact, it is a Choquet simplex
[6, Theorem II1.6.8.11]. We shall often say that a C*-algebra is tracial if it admits a tracial
state. The tracial condition may be rewritten in several equivalent manners, as the following
easy proposition shows.

Proposition 2.14. Let A be a unital C*-algebra, and let T be a state on A. The following are
equivalent:

(i) 7 is a tracial state, that is, for any a,b € A, we have 7(ab) = 7(ba).

(ii) For any a € A, we have T(a*a) = T(aa*).
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(iii) For any positive element a € A and unitary u € A, we have T(u*au) = 7(a).

Given a tracial state 7 on A, we define the trace-kernel ideal I, = {a € A | 7(a*a) = 0},
which, as the name suggests, is an ideal in A. We say that a tracial state 7 on A is faithful
if 7(a) # 0 for all positive non-zero a € A; this is equivalent to saying that the trace-
kernel ideal is trivial, that is, I = {0}. While S(A) is always non-empty, this could not be
further from the truth for T(A), and we shall see many examples of non-tracial C*-algebras.
Informally, the existence of a tracial state on a C*-algebra is often said to be a finite property;
however, one should be aware that this is only partially related to the notions of finiteness
of C*-algebras as defined in the previous section. For example, the Toeplitz algebra 7T as
defined previously is an infinite C*-algebra, but it admits a tracial state via the canonical
quotient 7 — C(T). The existence of an infinite projection is hence not an obstruction to
having a tracial state; however, the existence of a full, properly infinite projection will inhibit
admitting tracial states.

Proposition 2.15. If a unital C*-algebra A admits a properly infinite, full projection, then A
cannot admit tracial states.

Proof. If A admits a properly infinite, full projection, then it follows from Corollary [2.9] that
A is properly infinite. Suppose that 7 is a tracial state on A, and let p,q € A be non-zero
projections with p L ¢ and p ~ ¢ ~ 14. Then,

1=7(14) > 7(p+q) =7(p) +7(q) =7(1a) + 7(14) = 2,
which is an obvious contradiction. O

Without the assumption of fullness of the properly infinite projection, the result is false
in general: If A is a unital C*-algebra with a tracial state and B is a unital, properly infinite
C*-algebra, then the direct sum A@ B will contain the tracial state arising from the quotient
A@® B — A, however the projection (0,1p) is a properly infinite projection. If A is any
C*-algebra with a properly infinite projection p € A, then the proof of Proposition [2.15
implies that any tracial state will vanish on the properly infinite corner pAp of A. Therefore,
if a C*-algebra admits a faithful tracial state, then we clearly cannot have properly infinite
projections. However, the statement is even stronger, and the proof is just as easy.

Proposition 2.16. If A is a unital C*-algebra with a faithful tracial state, then A is stably
finite.

Proof. 1t is easily seen that the faithful tracial state 7 on A induces a faithful tracial state
on M, (A) for all n € N, so it suffices to be seen that admitting a faithful tracial state implies
finiteness. If s € A is an isometry, then 14 — ss* > 0 is a positive element with

T(lg —ss%) =7(1a) —7(ss") =7(14) — 7(s¥s) =0,
hence ss* = 14, and s is a unitary element. O

In Chapter 5, we look more closely at faithful tracial states (or, more generally, separating
families of tracial states), and characterisations of when C*-algebras admit faithful tracial
states, and even when all quotients have faithful tracial states. In this chapter and the next,
however, we are more interested in when C*-algebras admit tracial states of some kind. In
the following proposition, we look at some permanence properties of admitting tracial states.

Proposition 2.17 (Permanence properties). Let A be unital C*-algebras in the following.

(i) If I is an ideal in A, and I admits a tracial state, then so does A.
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(ii) If any quotient of A admits a tracial state, then so does A.

(iii) If A,B admit tracial states, then so does the minimal tensor product A® B, and hence
the full tensor product A @max B.

(iv) If Ay — Ay — -+ is an inductive sequence of unital C*-algebras with unital connecting
maps and limit A, then A admits a tracial state if and only if A, admits a tracial state
for each n € N.

The proofs are mostly obvious, but as the proof of (i) revolves around a construction
we shall return to later on in the thesis, we shall briefly comment on it. The result is a
generalisation of a similar well-known result for states [46, Theorem 3.3.9], and one may find
a proof of this version in [66, Lemma 3.1]. The construction of the extension tracial state is
fairly straightforward: Suppose that 7 is a tracial state on I, let (ey)xea be an approximate
unit for 7, and consider the function 7" on A defined by 7/(a) = lim) 7(eyaey) for a € A.
Then 7’ is clearly an extension of 7, and one can verify that 7’ is a tracial state. Indeed, it
is the unique tracial state on A, which agrees with 7/ on I — we say that 7’ is the canonical
extension of T to A.

From the tracial and linear properties of tracial states, it is immediate that 7([a,b]) = 0
for any a,b € A. Denote by [A, A] the norm-closure of the collection of all linear combina-
tions of commutators in A. Since tracial states are assumed to be normalised, we hence find
that if A is a unital C*-algebra with a tracial state, then 14 ¢ [A, A]. Using the Hahn-Banach
separation theorem, it is possible to prove the converse.

Proposition 2.18. A unital C*-algebra A admits a tracial state if and only if 14 & [A, A].

Proof. Suppose that 14 € [A, A], then we may by the Hahn-Banach separation theorem find
a self-adjoint, linear function 7: A — C such that 7([A, A]) = 0 and 7(14) # 0. Observe that
T is necessarily tracial, although it need not be a tracial state as it is not necessarily positive.
By a Jordan decomposition similar to [52, Section 3.2] on the quotient space Agsa/Ap with
Ap being the norm-closed space of sums of self-adjoint commutators [a*,a] for a € A, one
may find positive, linear and tracial functions 7,7 : A — C such that 7 = 7 — 7_, see [I7,
Proposition 2.8]. After a possible normalisation of one of these traces, we hence obtain that
A admits a tracial state. O

By following the proof of Proposition for some element in A\ [A, A], we get the
following extension, which Ozawa also remarks in [51].

Corollary 2.19. Let A be a unital C*-algebra, and assume that a € A satisfies that a & [A, A].
Then there ezists a tracial state T on A with 7(a) # 0.

It is natural to ask whether this result can be improved, e.g., can we for any non-tracial
C*-algebra express elements as finite sums of commutators? This is one part of the following
proposition, which is a fusion of [54, Theorem 1] and [28, Lemma 2.1].

Proposition 2.20 (Haagerup, Pop). Let A be a unital C*-algebra. The following are equivalent.
(i) A admits no tracial state.

(ii) For any 0 < < 1 there exist n > 2 and ay,...,a, € A satisfying

n n

* *
g a;a; =1 and E a;a;
i=1 i=1

<.
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(iii) There exists n > 2 such that any element in A can be written as a sum of m commu-
tators. Moreover, if a is positive, then these commutators will be self-adjoint, that is,
of the form [b*,b] for some b € A.

Proof. (i)=(ii): Suppose that A admits no tracial state and consider the double dual A**
of A. Note that A embeds unitally in A**, and that A** is a von Neumann algebra. In
particular, A** cannot admit a tracial state, and as a von Neumann algebra either admits
a tracial state or is properly infinite, we find that A** must be a properly infinite von Neu-
mann algebra, and hence Oy embeds in A** for any & > 2. We can thus find isometries
(s;)F_, € A** with mutually orthogonal range projections such that Zle sisy = 1.

Now find a net (a(.)‘)))\eA C @le A; converging to the n-tuple (s;)¥_; in the ultraweak

)

topology. In particular,

k k
Z(ag/\))*az(-/\) — Zsfsi =k,
i=1 i=1
k k
Z az(»)‘) (ag)‘))* — Zsisf =1
i=1 i=1

in the ultraweak topology. Consequently,

(hne{<§:wm§:mw)neth”wmeA}
=1 =1

Note that the pre-closed set on the right-hand side is purely expressed in terms of elements
from A, and as the ultraweak topology on A** restricted to A is just the weak topology, we
can take the weak closure instead. However, as the set is also convex, and the weak and
norm closures coincide on convex sets, we hence find that

(hUe{(E:@m}:@@yneNJh“wmeA}
=1 =1

in the norm topology. We can thus for any € > 0 find elements by, ...,b, € A such that

ﬁéw@—k 55@@—1
i=1 =1

In particular, we obtain the inequalities

< g, and <e.

n
k—e<) bibi<k+e,
i=1

n
L—e<y bbf <1+e.

i=1

By taking 0 < ¢ < 1, we may assume that y ., bfb; is invertible. Define the elements
a; = b;(3°5—, b;*-bj)_l/2 for i =1,...,n and observe that > ; afa; = 14, while on the other
hand,

-1

n —1 n
it = bZ <j:1 bjbj> bl S <j:1 bjbj) blbl S mbl o
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such that

1+¢

1
< .
k—e¢

—k—c¢

<

n n
i=1 =1

By taking k sufficiently large and ¢ sufficiently small, we hence have found ai,...,a, € A
such that > 7" afa; =14 and Y1 azal|| < 6.

(ii)=-(iii) Find a1,...,an, € A such that Y " jafa;, = 14 and ||} ;" ; a;a’|| < 1. Define the
function ¢: A — A by ¢(z) = Y1, a;za; for x € A. Observe that ||¢| = ||>i2; aiaf]| < 1,
and hence id4 — ¢ is an invertible element of the Banach algebra B(A) of bounded functions
on A. Denote by ¢ = (id4 — )~ ! the inverse, then, for any = € A,

= (ida — ) o ¥(2) = ¥(2) = Y _awp(w)a; =) [afaip(a) — aip(z)ai] = Y _laf, ap(x)].
i=1 i=1 i=1
(iii)=-(i): This was shown in Proposition [2.1§ O

Remark 2.21. The proof shows that the integer n in (ii) works in (iii); however, it is not clear
whether or not the converse holds. By following Pop’s proof of the implication (i)=-(ii) [54],
one obtains that if every element, or even if just the unit 14, can be expressed as the sum

of n elements, then one can find n + 1 elements a1, ..., an,4+1 satisfying Z?jll aja; =14 and

HZ;:? aal|| < 1.

While the proof gives a very nice characterisation of when C*-algebras admit tracial
states, it is non-constructive in the sense that it does not give a way of finding the elements
ai,...,ay in (ii), nor does it give any way of determining the needed number of elements. In
[54], Pop raised the question: Given a non-tracial C*-algebra, what is the smallest number
n such that every element can be written as a sum of n commutators? We shall, in Chapter
4, consider a related question; given a unital C*-algebra A and some 0 < § < 1, what is the
smallest integer n such that property of Proposition M(u) above holds for some elements
Alyeveyn € A?

2.3 Cuntz semigroups, dimension functions and quasitraces

In the previous section, we discussed tracial states in depth; in this section, we generalise a
bit further and ask whether or not one actually needs the full additivity assumption. While
the question may seem somewhat arbitrary, it is a very deep question with links to many
different areas of C*-algebraic theory. We shall take the approach of defining the notion
of quasitraces, and then show how they arise naturally by looking at the so-called Cuntz
semigroups of unital C*-algebras.

Definition 2.22. Let A be a C*-algebra. A 1-quasitrace on A is a function 7: Ag, — R
satisfying the following:

If moreover 7 extends to a function 7: M, (A)s, — R satisfying (i)—(iv) via T(a®e11) = 7(a),
then we call 7 an n-quasitrace.
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We shall always assume that quasitraces on unital C*-algebras are unital, that is, 7(14) =
1 for all 7 € QT(A). It is not true that 1-quasitraces automatically are n-quasitraces for any
n > 2 as shown by Kirchberg in the unpublished manuscript [40], but Blackadar-Handelman
[T, Proposition II1.4.1] showed that any 2-quasitrace is automatically an n-quasitrace for any
n > 2. It is therefore customary to use the term quasitrace to refer to 2-quasitraces. Similarly
to the case with tracial states, we shall occasionally say that a C*-algebra is quasitracial if it
admits a quasitrace. The definition of a quasitrace is formally weaker than that of a tracial
state, but it is unknown whether or not they are actually the same, that is, whether or
not additivity of non-commuting elements follows immediately from Definition Tracial
states and quasitraces have several similar properties, and the two properties below are
generalisations of results that we have already seen to be true for tracial states.

Proposition 2.23. Let A be a unital C*-algebra with a quasitrace 7.
(i) The trace-kernel ideal I, = {a € A| 7(a*a) = 0} is an ideal in A.
(ii) If 7 is faithful, then A is stably finite.

Depending on the reader’s philosophy of mathematics, they might be displeased with
the definition of a quasitrace, because it seems as if one just removes a part of the assump-
tion and asks what happens now? However, quasitraces actually appear in a quite natural
manner, which we shall briefly explore in the sequel. First, we define a pair of Abelian semi-
groups arising from C*-algebras, which are generalisations of the semigroup of Murray-von
Neumann equivalence classes of projections.

Let A be a separable, unital C*-algebra. Let My (A) be the *-algebra consisting of all finite-
dimensional square matrices over entries in A, i.e., put Moo (A4) = U, ey Mn(A). Consider the
order = on My (A) given by a < b if and only if there exists a sequence (vp)nen in Moo (A)
such that vibv, = aasn — co. Welet a ~bif a < b and b <X a, and we say that a is Cuntz
equivalent to B, and we denote the equivalence class of a by (a). Put W(A) = My (A)4/~
and equip it with the order (a) < (b) if a < b and addition (a)+ (b) = (a @ b) such that W(A)
is an ordered Abelian semigroup. We call W(A) the pre-complete Cuntz semigroup. If one
applies the same construction to the stabilisation A ® K(H) instead of the pre-completion
My (A), we obtain the so-called complete Cuntz semigroup, which explicitly arises as the
quotient Cu(A) = (A® K(H))/~. For more information about Cuntz semigroups, we refer
to e.g. [1], which also contains a lot of the results about regularity properties that we shall
need later.

In general, Cuntz semigroups have bad regularity properties, and the algebraic and the
order structure need not cooperate particularly well. However, whenever the C*-algebra is
suitably nice, we do obtain pleasant structures. In the following, we examine a few of these
properties, and when they occur; we phrase the definitions in terms of ordered Abelian semi-
groups for the sake of generality. If S is an ordered Abelian semigroup and z,y € S, we
write that « < y if there exists n € N such that (n + 1)z < ny.

Definition 2.24. Let S be an ordered Abelian semigroup, and let n € Nyg. We say that S has
n-comparison if, for any x,yo,...,y, € 5 satisfying x <y y; for all j = 0,...,n, we have
rT<yo+...+ Yn-

Clearly n-comparison implies m-comparison for n < m. Observe that 0-comparison is
equivalent to the property that (n + 1)z < ny for some n € N implies < y, which is also
known as almost unperforation. If A is a C*-algebra, then W(A) is almost unperforated if and
only if Cu(A) is almost unperforated [I], and it is easily seen that almost unperforation passes
to ideals and quotients. For our purposes, almost unperforation of the Cuntz semigroup is a
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desirable regularity property to have, because it gives a dichotomy of properly infiniteness:
A unital C*-algebra with an almost unperforated Cuntz semigroup is either properly infinite
or stably not properly infinite.

Proposition 2.25. Let A be a unital C*-algebra and suppose that Cu(A) is almost unperforated.
If My, (A) is properly infinite for some n € N, then A is properly infinite.

Proof. Suppose that M,,(A) is properly infinite for some n € N, then (n+1) (14) < 2n(14) <
n(l4). By induction, one obtains that (n + k) (14) < n(l4) for all £ € N, and putting
kE=mn+2gives us 2(n+ 1)(14) < n(ly). Almost unperforation of Cu(A) implies that
2(1a) <(la),ie.,14® 14 314, and hence A is properly infinite. O

Since Cu(A) is almost unperforated whenever A is Z-stable by [61, Theorem 4.5], we
obtain the following result

Proposition 2.26. A unital Z-stable C*-algebra is either properly infinite or stably not properly
infinite.

As we shall see later in the thesis, the existence of a quasitrace on a given unital C*-
algebra is equivalent to being stably not properly infinite, cf. Theorem [2.32] Hence, we
obtain that a unital Z-stable C*-algebra admits a quasitrace if and only if it is a properly
infinite C*-algebra.

A related, but weaker, regularity property of Cuntz semigroups is that of w-comparison;
here we use the relation < defined as follows: We say s < t if, whenever ¢t < sup,, ¢,, for an
increasing sequence (ty,)nen, there exists ng € N such that s < t,,.

Definition 2.27. A complete ordered Abelian semigroup S has w-comparison if, for any
z, 2 Y0, y1,... € S with z <, y; and 2’ < z, there exists n € N such that 2’ < yo+ ...+ yn.

It is clear that n-comparison for any n € N implies w-comparison. Many nice C*-algebras
have w-comparison, as the following result due to Robert [56] shows.

Proposition 2.28 (Robert, 2011). If A is a unital C*-algebra with nuclear dimension n, then
the Cuntz semigroup Cu(A) has n-comparison. More generally, if A has nuclear dimension
w, then Cu(A) has w-comparison.

We refrain from defining nuclear dimension n (or w) and instead refer to [56, Definition
1]. These comparison properties will be of use later on in the thesis, when we discuss under
what conditions C*-algebras have the property that all quotients admit faithful tracial states.

Having mentioned some regularity properties that Cuntz semigroups may possess, we now
return to how quasitraces arise naturally from certain states on Cuntz semigroups.

Definition 2.29. Let S be an ordered Abelian semigroup. A state on S is an order-preserving
map f: S — R. The collection of states on S is denoted %(S). If ¢ € S, then we denote by
Y (S, t) the collection of states f € X(S5) satisfying f(t) = 1.

Definition 2.30. Let A be a unital C*-algebra. By a dimension function on A, we mean a
state d on Cu(A) satisfying d((14)) = 1.

Dimension functions are hence states on Cuntz semigroups with the obvious normalisation
assumption. For each positive element a € My (A)+ and € > 0, we define the e-cutoff of a by
(a — )+ = fe(a), where the right-hand side is defined by applying the continuous functional
calculus to the function f.(t) = max{0,t — ¢}. A dimension function d on A is lower
semi-continuous if, for all a € My (A)+, d({((a —¢€)4+)) — d({a)) as ¢ — 0. We denote by
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DF(A) the dimension functions on A, and by LDF(A) the lower semi-continuous dimension
functions on A. A result due to Rgrdam [58, Proposition 4.1] states that for any dimension
function d on A, there exists a lower semi-continuous dimension function d’ on A such that
d({p)) = d'({p)) for all projections p € Ps(A); and, in fact, one might realise d’ by the formula
d'((a)) = lim.0d({(a — €)+)). Given a quasitrace on 7 on a C*-algebra A, one can define
a lower semi-continuous dimension function d, on A via d,({a)) = limn_moT(al/ ™). This
correspondence is actually an equivalence as shown by Blackadar-Handelman [7, Theorem
11.2.2].

Theorem 2.31 (Blackadar-Handelman, 1982). Let A be any C*-algebra. Then there exists an
affine bijection between QT(A) and LDF(A).

The way one can obtain a quasitrace from a lower semi-continuous dimension function
is not as straight-forward as the opposite direction, but it does give some insight in to why
quasitraces are, a priori, only additive on commuting elements. We sketch the construction
and refer to the original article [7] for a more rigorous treatment. Suppose that A is a uni-
tal C*-algebra with a lower semi-continuous dimension function d, and let Cp(X) be some
Abelian C*-subalgebra of A. Then the dimension function d defines a finitely additive mea-
sure pon X via pu(U) = d(f), where f € Cy(X) is any function for which the set-theoretical
support supp(f) is exactly U. The measure u can be extended to a countably additive Borel
measure on X, and the induced map 7: Co(X)4+ — R by 7(f) = [y fdp, which defines a
tracial state on Cy(X), provides a quasitrace on A.

The above sketch, while without many details, shows that quasitraces on Abelian C*-
subalgebras correspond to measures; this should remind the reader of the one-to-one corre-
spondence between Cy(X)* and the space of Radon measures on X. Moreover, it is obvious
from this construction that quasitraces are additive on commuting elements, however it is
not immediate that the extension preserves linearity of the integral.

Quasitraces are therefore not as mysterious as they might have seen when first introduced.
In fact, in some cases quasitraces might be of more interest in structure theory of C*-algebra,
as we shall see in the following theorem. Recall from Proposition that unital, properly
infinite C*-algebras cannot admit tracial states. The converse is still unresolved, but if one
looks at quasitraces, we do have an equivalence.

Theorem 2.32 (Cuntz, Blackadar-Handelman, Blackadar-Rgrdam). Let A be a unital C*-
algebra. The following are equivalent.

(i) A admits a quasitrace.

(ii) A has a stably finite quotient.
(iii) A is stably not properly infinite.
(iv) There exists a state on Ko(A).

Proof. (i)=(ii): If A admits a quasitrace 7, then the trace-kernel ideal I, = {a € A |
7(a*a) = 0} is an ideal in A, and there exists a unique faithful quasitrace 7 on the quotient
A/I; defined by 7 om = 7, where m: A — A/I, is the canonical quotient map. Since A/I,
admits a faithful quasitrace, it is a stably finite C*-algebra.

(ii)=-(iii): Suppose that M,,(A) is properly infinite for some n € N. Then all quotients of

M,,(A) will be properly infinite by Proposition and hence M,,(A/I) will be properly in-
finite for any ideal I in A by Proposition Consequently, A has no stably finite quotients.
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(iii)=(iv): Assume that Ko(A) admits no states. Let u = [l4]o be the equivalence class
of the unit 14 in Ko(A). First we prove the existence of k, ¢ € N with k£ > ¢ and ku < fu. In-
deed, suppose that ku < fu implies k < ¢. Using [26, Theorem 3.2], the function f: Zu — R
by f(nu) = n for n € Z extends to a state on Ky(A), which is a contradiction with our
assumption. Therefore, there exists some k,¢ € N with k > ¢ and ku < fu.

Let in the following e,, € M, (A) be the unit in M, (A). Since [e,]o = nu for any n € N, it is
immediate that the inequality [ex]o < [e¢]o holds. Find m € N such that e © e, 3 ep B em
and put n =¢+m and d =k — ¢ > 0. Then e, 4 = e,, and an iterative process will show
that e, is properly infinite. Indeed, for any r € N, we have

€ntrd ~ €ntd D €(r—1)d Sen® E(r—1)d ™~ €n+(r—1)d S Zen.

Choosing r € N such that rd > n then gives us

en D ep ~ €ndn ,-—j €n+4rd j €n,

which shows that M,,(A) is properly infinite.

(iv)=-(i): This result follows from the result due to Blackadar-Rgrdam [J9, Theorem 3.3]
that any state ¢ on Kg(A) arises from a quasitrace 7 on A such that ¢([plg) = 7(p) for all
projections p € P (A). We sketch the proof below.

Let V(A) denote the subsemigroup of the (pre-completed) Cuntz semigroup W(A) con-
sisting of all equivalence classes of projections in My, (A). Since the order arising from the
Cuntz subequivalences is a generalisation of the Murray-von Neumann subequivalences on
projections, we find that V(A) admits the same algebraic order as W(A), and that they
have the same order unit. Let ¢: Ko(A) — C be a state and observe it induces a state
@ on V(A) through the map (p) — [plo. By [9, Corollary 2.7], ¢ extends to a dimension
function d on W(A). Now we note that any dimension function on W(A) agrees with a lower
semi-continuous dimension function d on projections, and that any lower semi-continuous
dimension function comes from a quasitrace 7 € QT(A) by Theorem It thus follows
that ¢([plo) = 7(p) for all p € Ps(A), and this proves that all states on K(A) arises from
quasitraces. [

The equivalences of (i)« (ii)<(iii) can be seen as a generalisation of the following result
for simple C*-algebras from Theorem

Corollary 2.33 (Cuntz, 1978). A simple, unital C*-algebra A is stably finite if and only if it
admits a quasitrace.

As it is a curious result, we explicitly mention the following result from the proof of the
implication (iii)=>(iv) in Theorem [2.32]

Proposition 2.34. Let A be a unital C*-algebra, and let (14) denote the equivalence class
of the unit 14 in Cu(A). Then A is stably not properly infinite if and only if the function
f:No(1a) = [0,00) given by f(n(la)) =n is order-preserving.

One way of informally looking at the equivalence of (i)<>(iii) in Theorem is by view-
ing the size of matrix algebras necessary to achieve properly infiniteness as a measure of the
failure to admit a quasitrace. This way of thinking about the equivalence will be of use to
us in Chapter 4, when we shall define a numerical invariant measuring exactly the size of
matrix algebras needed in order to obtain properly infiniteness of the unit.
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We have several times throughout the thesis alluded to the question of when quasitraces
are tracial states. This is known as Kaplansky’s conjecture [37], and, as we have also men-
tioned prior in this thesis, it is a deep and still unresolved problem. In the following section,
we shall take a closer look at the original conjecture, and how it is equivalent to the more
modern version as expressed below.

Conjecture 2.35 (Kaplansky). All quasitraces are tracial states.

As of writing, the best known answer to Kaplansky’s conjecture is the following theorem
due to Haagerup [28]. We shall in the following chapter give an overview of the original
proof, with an emphasis on the usage of the AW*-completions of unital C*-algebras with
quasitraces, as well as provide an alternative proof using the fact that C)(F) is an MF-
algebra [30].

Theorem 2.36 (Haagerup). Any quasitrace on a unital, exact C*-algebra is a tracial state.

Combining this result with Theorem we hence obtain the result that whenever
A is a unital, exact and stably not properly infinite C*-algebra, then A admits a tracial
state. This fact, though often used in the stably finite formulation, provides an abstract
way of guaranteeing the existence of tracial states. Moreover, in [11], Kirchberg generalised
Haagerup’s result to the non-unital case.
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3 The original proof of Haagerup’s theorem

In this chapter, we shall look at Haagerup’s paper [28] in which he proves that Kaplansky’s
conjecture holds true for exact, unital C*-algebra. Our focus will, of course, be on the
specific result, but special interest will also be on the theory of AW*-algebras, which are
highly connected to the study of quasitraces. The chapter is essentially in two parts, both
firmly based around [28] — first, we look at how one can mimic certain W*-algebraic methods
in order to construct an AW*-algebraic completion of C*-algebras with (faithful) quasitraces.
This is also of great interest independently of the rest of the paper, since it will illuminate
how Kaplansky’s conjecture is really a conjecture about the structure of 1I;-AW*-algebraic
factors. Secondly, we shall use these AW*-completions in order to prove Haagerup’s theorem,
and here the goal is primarily to showcase how the proof works, and where precisely one
needs exactness in order to proceed. The reader should also be aware that we in Chapter 4
will provide an alternative proof of Haagerup’s theorem, which heavily uses the machinery
introduced in Section 3.1 below along with a deep result about C;(F,) being an MF-algebra
due to Haagerup—Thorbjgrnsen [30].

3.1 AW=*-algebras and their connections to quasitraces

The main objects of interest in Haagerup’s proof are the AW*-algebras. Historically, Kaplan-
sky introduced them in [37] as an attempt to abstractly axiomatise von Neumann algebras
intrinsically without a choice of a representation. The naming convention also reflects this —
von Neumann algebras are often referred to as W*-algebras, and the A in AW* suggestively
stands for "abstract”. The axiomatisation attempt failed, however, and there are many known
non-von Neumann algebraic AW*-algebras. However, the study of AW*-algebras, while not
as fashionable, is still an interesting area, and it is very tightly connected to the study of
tracial states and quasitraces, as we shall see in the following section.

Definition 3.1. A unital C*-algebra A is an AW™*-algebra if it satisfies the following two
conditions:

(i) Every maximal Abelian C*-subalgebra of A is generated by its projections.

(ii) Any family of mutually orthogonal projections in A has a least upper bound projection
in A.

The properties are very von Neumann algebraic, and it is clear that any von Neumann
algebra will be an AW*-algebra; however, the converse is not generally true. Any student
of von Neumann algebras should immediately recognize the following classification of AW*-
factors. As is the case for von Neumann algebras, we say that an AW™*-algebra is a factor if
its center is trivial.

Theorem 3.2. Any AW*-factor belongs to one (and only one) of the following types:
(i) L, if it contains a minimal projection and is of dimension n (i.e., if it is M,(C)).

(il) I if it contains a minimal projection and is infinite-dimensional (i.e., if it is B(H)
for H an infinite-dimensional Hilbert space).

(iii) IIy 4f it contains finite non-zero projections and the unit is finite.
(iv) Il if it contains finite non-zero projections and the unit is infinite.

(v) Il if it contains no non-zero finite projections.
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It is clear that I,, and I, AW™*-factors are von Neumann algebras, since they are just C*-
algebras of the form B(H) for some Hilbert space H. Moreover, it is known that there exist
AW*-factors of type Il and IIl,,, which are not von Neumann algebras, see for instance
[65]. The case for II; is unresolved and is actually the original conjecture due to Kaplansky
[37].

Conjecture 3.3 (Kaplansky). All II;-AW*-factors are von Neumann algebras.

The relation to the more well-known version of Kaplansky’s conjecture follows from the
following result.

Proposition 3.4. A unital 11;-AW*-factor M admits a unique quasitrace, which is a tracial
state if and only if M is a von Neumann algebra.

For the first statement, we refer to [7], and for the second statement we refer to [74]
Corollary 7]. It is immediate that if all quasitraces are tracial states, then the original version
of Kaplansky’s conjecture holds true. That the converse is true requires a bit more work,
but one can for instance show it by invoking AW™*-completions of C*-algebras in a suitable
manner, as we shall see later. The connection between quasitraces and AW*-algebras is
further exemplified by the following factorisation result [7, Theorem 1.4.1].

Proposition 3.5 (Blackadar-Handelman). For any quasitrace T on a unital C*-algebra A, there
exist a finite AW*-algebra M with a quasitrace T and a unital *~homomorphism ¢: A — M
such that T = o T.

If 7 is a tracial state (or, in general, a quasitrace) on a C*-algebra A, we define the
2-norm ||-||, . on A by |la|l,, = 7(a*a) for a € A. If 7 is a tracial state, then the 2-norm
is a seminofm, and it is a f)roper norm if and only if 7 is faithful. The 2-norm is not an
unknown structure to work with in W*-algebraic theory. For instance, suppose that A is a
unital C*-algebra with a tracial state 7 and define the tracial ultrapower A% of A by

A® = 2(A) /12

with I¥ = {(an)nen € £°(A) | limp— [|anlly, = 0} being the trace-kernel ideal of the
induced tracial state 7, ((an)nen) = limy, ., T(dn) on {*°(A). Then A“ will be a finite von
Neuman algebra with a tracial state 7 , and if 7 is an extremal tracial state, then A“ will be
a II;-von Neumann algebraic factor. In the following we shall construct an AW™*-analogue of
this phenomenon and use it to obtain a canonical way of taking AW*-completions of unital
C*-algebras with (faithful) quasitraces.

Note that if 7 is a quasitrace, then the induced 2-norm may not satisfy the triangle in-
equality; at least, it is not a priori the case. To combat this, one can take a sufficient power
of the 2-norm and obtain a (semi)metric instead.

Definition 3.6. Let 7 be a quasitrace on a unital C*-algebra A. We denote by d, the semi-
2/3

metric on A given by d-(z,y) = ||z — y/5

We skip the proof that this is a semimetric, and in fact a proper metric when 7 is a faithful
quasitrace, and refer to [28, Lemma 3.5]. The following results will show us that working
with faithful and extremal quasitraces are beneficial; however, as we shall see later, these
limitations will have no impact on our results in the end via the quotient of the trace-kernel
ideal and by using Krein-Milman’s theorem, [24, Theorem II.1.8].

Proposition 3.7 (Lemma 3.8-3.11 in [28]). Let 7 be a faithful quasitrace on a unital C*-algebra
A. Then:
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(i) The unit ball (A)1 is closed in d.

(ii) The unit ball (A)1 is complete in d. if and only if A is a finite AW™*-algebra and T is
a normal quasitrace.

(iii) If B C A is a unital C*-subalgebra, then B is dense in A in the d.-metric if and only
if the unit ball (B); is dense in (A)y in the d -metric.

We shall not prove the statements here, but refer to [28, Lemma 3.8-3.11]. Combining
the results, we obtain:

Proposition 3.8. Let M be a finite AW -algebra with a faithful normal quasitrace T, and let
A be a C*-subalgebra of M. Then the d,-closure of A in M is the smallest AW*-algebra in
M containing A.

Proof. Denote by A" the dr-closure of A, which is a unital C*-algebra, whose unit ball is the
d,-closure of the unit ball of A by the d.-version of Kaplansky’s density theorem, Proposition
M(iii). In particular, the unit ball of A% must be complete, since it is a closed subset of the
complete unit ball in M by Proposition (ii). This proves that A% s an AW*-algebra, and

a calculation shows that, whenever py € P(AdT) is a set of mutually orthogonal projections
on ZdT, then the supremum \/,_, p; as taken in M belongs to At again, and hence A" s
an AW*-subalgebra of M. To show that it is the smallest AW*-subalgebra of M containing
A, suppose that B is another AW*-subalgebra of M containing A. Then the unit ball of B
must be complete in the d.-metric, and hence B must be d,-closed by Proposition 3.7}, such
that A" C B. O

Note the dependence of having some unital embedding in a finite AW*-algebra to begin
with. We shall resolve this later on by finding a very concrete embedding into an AW*-
algebra, which gives rise to a definition of the AW*-algebraic completion of unital C*-algebras
with (faithful, extremal) quasitraces. First, let us mention this ultraproduct construction
of an embedding in an AW™*-factor, which mimics how, if A is a unital C*-algebra with a
tracial state 7 € T(A), that the tracial ultrapower A“ is a finite von Neumann algebra with
a tracial state 7¥. We only sketch the AW*-algebraic proof below.

Proposition 3.9. Let (Ap)nen be a sequence of unital C*-algebras with quasitraces 7, €
QT(A,,) for n € N and define

7. = { (@ € (o) | i mulan) = 0.

This is a closed two-sided ideal in £°°((An)nen), and the quotient £°((Ay)nen)/Zy is a finite
AW*-qalgebra with a faithful normal quasitrace 1, given by

Tw([(an)nEN]) = lingn(an)7 (an)nEN € eoo((An)nEN)

Proof. By taking the quotient A, — A,/I; , we may assume that each 7, is a faithful
quasitrace, and hence that d;, is a metric. It is clear by construction that ¢>°((A,)nen)/Zw
is a C*-algebra with a faithful quasitrace 7, as defined above. It thus follows from Proposition
that we only need to verify that the closed unit ball is closed with respect to the metric
dr,; however, the metric d,, arises as the ultralimit of the metrics d,,, and the proof now
only relies on the fact that the ultraproduct of uniformly bounded, complete metric spaces
is again a complete metric space, cf. [28, Lemma 4.1]. ]
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By taking A,, = A and 7,, = 7 for some unital C*-algebra A with a quasitrace 7, we hence
obtain a trace-preserving, unital embedding of A into a finite AW*-algebra. One might now
be tempted to use Proposition[3.8 on this embedding to define the AW*-completion, but note
that the construction is inherently dependent on the ultrafilter, whereas the AW*-algebraic
completion should be only dependent on the C*-algebra and the quasitrace. However, this
completion actually has a very concrete construction, which should remind the reader of
constructing R by taking the Cauchy completion of Q.

Proposition 3.10. Let (A, 7) be a unital C*-algebra with a faithful quasitrace T. Define

A= {(an)neN € (°(A) | (an)nen s dT—Cauchy},

P~ { (e € £22(4) [0, 45 0},

":([(an)nEN}f) = nlgrolo 7(an).

Then I is a closed two-sided ideal in A and 7 is a faithful, normal quasitrace on the finite
AW*-algebra A/I. In fact, if (A, T) embeds into a finite AW*-algebra (M, 7') with a faithful
normal quasitrace ' in a unital and trace-preserving way, then fl/f 18 isomorphic to the
smallest AW*-algebra of M contained in A (i.e., AJT = del). Moreover, if T is extremal,
then A/T is a 11;-AW*-factor-

Proof. By Proposition we may find a finite AW*-algebra M with a faithful normal
quasitrace 7’ such that A embeds unitally in M in a trace-preserving manner. Consider the

closure A% of A in M with respect to the metric d,» induced by the quasitrace 7/. This is
by Proposition the smallest AW*-subalgebra of M containing A. By the AW*-version of
Kaplansky’s density theorem, Proposition (iii), the unit ball (Zd”)t is complete in d, for
all t > 0. Thus, for any ¢t > 0, we can find a *homomorphism (A); — ((ZdT')t, which sends a
Cauchy sequence to its d/-limit. By extending this *-homomorphism to A— ZdT', we hence

obtain a surjective map with kernel I, and therefore At = fl/ I, which proves the first part
of the proposition. We now only need to verify that fl/ I is a II;-AW*-factor whenever 7 is
extremal. Indeed, if fl/ I is not a factor, it contains a non-trivial central projection p. Define
the maps 71, 72: (A/I)sa — R by

m(z) =7 (pz)  and  m(z)=7((1-p)z),

for x € Aga, where we have implicitly used the inclusion A — fl/ I. Then 7 = 7 + 79, and
after normalising we obtain that 7 is a non-trivial convex combination of quasitraces, and
thus 7 is not extremal. O

The above proposition gives us a way of defining the AW ™*-completion of a unital C*-
algebra with a faithful quasitrace in a manner which is only dependent on this information,
e.g., it is independent of the choice of free ultrafilter seen in Proposition [3.9

Definition 3.11. Let A be a unital C*-algebra with a faithful quasitrace 7 and define A and
I as in Proposition We call the AW *-algebra A/I the AW*-completion of A.

The AW*-completion is a useful tool for resolving Kaplansky’s conjecture, as the question
of when quasitraces are actually tracial states is true for all unital C*-algebras if and only if
it holds for II;-AW*-factors.

Proposition 3.12. Conjecture|2.59 is true for unital C*-algebras if and only if it holds for all
IT;-AW*-factors.
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Proof. Suppose that all quasitraces are tracial states on II;-AW™*-factors. Let A be a unital
C*-algebra and 7 € QT(A) be a quasitrace. Since QT(A) is a compact, convex set, we may
approximate 7 by convex combinations of extremal quasitraces by the Krein-Milman theorem
[24, Theorem II.1.8]. If we were to show that all extremal quasitraces are tracial states, we
would be done. So we may assume without loss of generality that 7 is an extreme point in
QT(A). Moreover, by taking the quotient of A with respect to the trace-kernel ideal I, we
may assume that 7 is faithful. Since 7 is a faithful, extremal quasitrace, the AW*-completion
M of A is a II;-AW*-factor with a unique quasitrace 7y by Proposition which hence
must be induced by 7. Since all quasitraces on II;-AW*-factors are tracial states, g is a
tracial state, hence so is 7. O

3.2 Proving Haagerup’s theorem

Having constructed the AW*-completion for unital C*-algebras with faithful quasitraces
above, we now proceed to proving Haagerup’s theorem. Our goal is to use Proposition [3.12
and verify that, whenever A is an exact, unital C*-algebra with a faithful and extremal
quasitrace 7, then the AW*-completion M will admit a tracial state, and since it admits a
unique quasitrace, which is furthermore an extension of 7, it will necessarily be the tracial
state, hence 7 is a tracial state. However, it is by no means trivial to show that the II;-AW*-
completion of (A, 7) has this property, so there is still some work to be done.

Our first goal is to show that if A admits no tracial state, then A ® C}(Fs) admits a
proper isometry; in fact, as we shall see in Corollary A ® Cf(Fy) will be properly
infinite.

Let H be an infinite-dimensional Hilbert space with an orthonormal basis (ep)nen. Consider
the Fock space F(H) = @, ey H®", where H®" = C for n = 0 for notational purposes. Con-
sider now, for any n € N, the creation operator s,, on F(H) via s,(z) = e, @z for x € F(H).
Then (s, )nen is a family of isometries with orthogonal range projections, and 1 =3 s,5),
is the projection onto H®® = C. Define for each n € N the element z, = (s, + s) and
consider the C*-algebra Vo, = C*(zy, | n € N). Using Voiculescu’s theory of semicircular
systems, see [71], we may realise Voo as a free product #,en(C([—1,1]),7), where 7 is the
tracial state on C'([—1,1]) arising from the semicircular distribution on [—1, 1], that is,

1
T(f)—/li\/l—ﬂf(t)dt
for any f € C([-1,1)).

It is immediate that V., embeds unitally in O. Interestingly, V also embeds unitally
in Cf(Fso):

Proposition 3.13. There exists a unital, injective *-homomorphism Voo — C}(Fso).

Proof. Let (up)nen be the canonical unitary generators of C(Fo). In a manner reminiscent
of constructing Vs, we define for each n € N the elements y, = 3(un+u};). Expressed within
Voiculescu’s theory of free systems, the unital C*-algebra C*(y, | n € N) is a free system
#nen(C([—1,1],7") with 7/ being the tracial state on C([—1,1]) arising from the uniform

circular distribution on [—1, 1], that is,

iy [ 1
T(f)—/lmf(t)dt

for f € C(]—1,1]). Observe that the distribution on [—1,1] is not the same as the one in
the free product representation of V., which needs to be remedied. Let f(t) = %\/1 — 2
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and g(t) = ﬁ be the probability density functions of the tracial state on V., and of
7/, respectively. Denote by F' and G their antiderivatives and consider the homeomorphism
® = F~1oG on [~1,1]. Then defining 2, = ®(y,,) obtains the correct measure, and we thus

find that Voo = C*(z, | n € N) unitally embeds in C(Fo). O

Having proved that Vo, embeds unitally in C}(F ), we now show that whenever a unital
C*-algebra A admits no tracial states, then A ® C}(F) is an infinite C*-algebra.

Proposition 3.14. If A is a unital C*-algebra with no tracial states, then A ® Vs, and hence
A® CH(Fy), contains a proper isometry.

Proof. Since A has no tracial state, we can find elements a1,...,a, € A satisfying the
Haagerup condition )" ; afa; =1 and [|>_"  a;af|| < 1. With (s;)5°; a sequence of isome-
tries with mutually orthogonal range projections, consider the element y = Y " | a; ®(s;+57)
in A® Voo. Decompose y as y =v+w withv =3 14, ® s; and w =) ;" | a; ® s} with
v,w € A® O. It is immediate that v is an isometry, and since

n
v <1 ® Zsisf,
i=1

and > " | s;s7 < 1, we obtain that v is a proper isometry in A ® Ou. In particular, we find

that y = (1 + wv*)v; we aim to prove that y*y is invertible, yet that y is non-invertible.

Firstly, since ||lwv*|| < 1, it is immediate that 1 4+ wov* is invertible, and since v is a non-
invertible isometry, we find that y is non-invertible. Moreover, by the Haagerup condition
on the family (a;);; and as s}s; = d;;, we find that

n
Z aa; ® lo.,
i=1

lw]* = lww*|| = <1

such that ||w|] < 1. Consider some faithful, unital *-representation of A ® O on B(H) for
a Hilbert space H, then for any £ € H, we have

1y€ll = [I(v +w)l| = vl = llwe] = (1 = [lwl]]) €] > 0.

which implies that y*y is an injective, self-adjoint operator, and hence y*y is invertible. This
implies that we may find an isometry v = y(y*y)~'/? € A® V4, which is the isometry arising
from the polar decomposition of y = w |y|, which is not unitary by non-invertibility of y. [

Remark 3.15. As mentioned in the introduction to this section, this result can be improved
to stating that A ® C*(F4) is properly infinite — in fact, A admits no tracial state if and
only if A® C}(F) is properly infinite, as we shall see in Corollary

Now suppose A is an exact, unital C*-algebra and consider once again the tensor product
A ® C¥(Fs). We aim to use the exactness assumption and some properties of C(Fo) to
embed A ® C}(Fs) in a finite AW™-algebra. We shall use the following fact about C;(Fo)
due to Wassermann [72].

Theorem 3.16 (Wassermann, 1976). There ezists an embedding C}(Foo) < M, where
M = L2((Mn(C))nen)/ S,

where J, is the trace-kernel ideal on £°°((M,(C))nen) coming from the ultraproduct tracial
state tr, = lim,, tr,,.
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Observe that M“ as defined above is a II;-von Neumann algebraic factor.

Proposition 3.17. Let A be a unital, exact C*-algebra with a faithful quasitrace T and let w
be a free ultrafilter. Then there exists a finite AW*-algebra (N',7") with a faithful normal
quasitrace 7' such that A @ M¥ embeds unitally in N and such that the quasitraces satisfy

(a®1) =71(a), for all a € A,
7'(14 @ x) = try(z), for all x € M¥.

In fact, N will be given by the (quasi)tracial ultraproduct ¢°((Mp(A))nen)/Irw with I,
being the trace-kernel ideal of the induced quasitrace " = (7)nen in £°((Mp(A))nen)-

Proof. As this proposition is the only instance in Haagerup’s paper where exactness of A is
required, we sketch the proof. Consider N' = ¢°°((M,,(A))nen)/Irw, which is a finite AW*-
algebra with a faithful quasitrace 7,,, see Proposition One can verify the constructions
of two trace-preserving, unital embeddings 7: A — N and p: M“ — N given by

7T(CL) = [(a & 1n)n€N]v a€A
p([(#n)nen]) = [(1 ® Tn)nen, (Zn)nen € £7°((Mn(C))nen)-

Since 7(A) and p(M¥) have commuting ranges by construction, we can define an embedding
TR p: A MY — N of the algebraic tensor product. Our goal is to extend this to an
embedding A ® M¥ — N of the spatial tensor product. In order to achieve this, we need to
show that the norm induced by the map 7 ® p is, in fact, the minimal tensor norm. Denote
this norm by 3, that is, let 8 be defined by

¢
ﬁ (Z a; ZZ‘) =
=1

It is immediate that this is a C*-seminorm, and one can verify that it is a proper C*-norm.
A calculation shows that there exists a *-homomorphism ¢: A ® £°((M,(C))pen) — N
satisfying

L

Zﬂ'(ai)p(zi)

i=1

, a; € A, z; € M.

14 V4
P(Larou)= S nenul o€ Ay e C(MC)en)
=1

=1

Observe that f(a®[z]) = ||¢(a ® 2)| for alla € A, z € £°((M,,(C))pen). Another calculation
shows that A ® J,, C ker ¢, and hence one obtains that the norm 3 is bounded by the norm
on A® MY coming from the quotient A ® M¥/A® J,. However, by exactness of A, we have
an isomorphism

A M®
A® J,
and the norm induced by the right-hand side on A ® M¥ is exactly the minimal norm.

Therefore, 5 is the minimal tensor norm, and hence m ® p extends to an embedding of
ARQMY = N. O

2 ARMY )y,

Since C} (Foo) embeds unitally in M®“, we thus obtain that A® C(F ) embeds in a finite
AW*-factor. However, this will just give us that A must admit a tracial state if it admits a
quasitrace, and not that a given quasitrace is necessarily a tracial state. Instead, we want
to use the fact that if 7 is an extremal, faithful quasitrace on A, then the AW*-completion
M is a TI;-AW*-algebra with a unique quasitrace, which is hence the one induced from 7.
In other words, we want to apply Proposition 3.14 not to A but to M. For this, we require
one last embedding, the proof of which we omit, although we will emphasise that the result
uses exactness and simplicity of C(F), see [14, Proposition 5.1.8] and [55, Theorem 2].
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Proposition 3.18. Let A be a unital, exact C*-algebra with o faithful quasitrace T and let
(M, T) be its AW*-completion. Then M, ® C}(Fs) embeds into a finite AW*-algebra.

We are now able to combine the results into the following theorem.

Theorem 3.19 (Haagerup, 1991). Any quasitrace on a unital, exact C*-algebra is a tracial
state.

Proof. Let A be a unital, exact C*-algebra, and let 7 be a quasitrace on A. As in the proof
of Proposition we may assume that 7 is faithful and extremal. Consider the AW*-
algebraic completion (M, 7") of (A, 7), which is a finite II;-AW>-factor due to faithfulness
and extremality of 7. Being a II;-AW*-factor, M, has a unique quasitrace, which hence
must be 7/. In particular, 7/ cannot be a tracial state, since then 7 would be a tracial
state. Consequently, using Proposition we obtain that M, ® C(F.) contains a non-
unitary isometry. But this is contradictory to the fact that M; ® C}(F ) embeds in a finite

AW*-algebra. We conclude that 7 must be a tracial state, and this completes the proof. []

Kirchberg later generalised this result to the non-unital case [39]. Let us also mention the
following corollary to Theorem which gives a larger class of II;-AW*-algebraic factors
which are von Neumann algebras, the proof of which boils down to proving that the unique
quasitrace is, in fact, a tracial state.

Corollary 3.20. Suppose that M is an I1;-AW*-algebraic factor, which arises as the AW*-
completion of some exact, unital C*-algebra. Then M is a von Neumann algebra.
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4 Measuring (quasi)traciality via numerical invariants

In this chapter, we shall introduce a few new numerical invariants that, informally stated,
measure the non-(quasi)traciality of unital C*-algebras. Our goal is to study these invariants
in depth, and to construct a unital C*-algebra, which admits a quasitrace, but which arises as
an ultraproduct of C*-algebras without quasitraces. At the end of the chapter, we provide a
new and, perhaps, more intuitive proof of Haagerup’s theorem of quasitraces on unital, exact
C*-algebras being tracial states; however, we also show that the method cannot extend to
non-exact C*-algebras. This chapter is based on joint work with my advisor, Mikael Rgrdam,
which is yet to be written up as a paper.

4.1 Introducing the numerical invariants and elementary results

The equivalences in Theorem and in Proposition give us some numerical data to
quantify the failure to admit quasitraces resp. tracial states — for quasitraces, how large
a matrix algebra is required to obtain a properly infinite unit, and for tracial states, how
large an n-tuple is required in Proposition [2.20fii)? While obviously these quantities do not
measure failure to admit quasitraces resp. tracial states in any rigorous manner, seeing as it
is a binary statement, it does give some intuition into how the following numerical invariants
should be understood.

Definition 4.1. Let A be a unital C*-algebra, and let 0 < § < 1. We define

e 1(A) to be the smallest integer n € N such that M, (A) is properly infinite. If no such
n exists, we put u(A) = .

e v5(A) to be the smallest integer n € N such that there exists aq,...,a, € A satisfying

n
E a;a;
i=1

n
ZafaZ-:lA and < 6.
i=1

If no such n exists, we put vs(A) = co.

e 7(A) to be the smallest integer n € N such that every element in A can be expressed
as a sum of n commutators. If no such n exists, we put y(A) = oco.

The following proposition is a reformulation of Proposition [2.20] and Theorem [2.32

Proposition 4.2. Let A be a unital C*-algebra. Then A admits a quasitrace if and only if
w(A) = oo, and A admits a tracial state if and only if vs(A) = oo for some (hence all)
0 < < 1, which occurs if and only if v(A) = co.

At this point it should be remarked that it is not obvious that pu(—) and vs(—) can attain
any non-trivial values, or indeed if they can attain infinitely many values. Later on in the
thesis, we will show that p(—) can attain all values n € N, but the question for vs(—) is more
difficult. Before that, however, let us note the following easy remarks about these numerical
quantities. For the next proposition, we remind the reader that we for any = € R denote by
[x] the ceiling-function applied to z, that is, [z] is the smallest integer n > .

Proposition 4.3. For any 0 < 6§ < 1 and any unital C*-algebra A, we have the inequality
vs(4) = [5].

Proof. The proposition is clearly true whenever A admits a tracial state, so suppose that
vs(A) = n and find ay,...,a, € A such that > " ;afa; = 14 and [|>_;"; a;af|| < 6. Then,
for any ¢ = 1,...,n, we have

n

E a;a;

i=1

lail* = llasa || < <.
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The triangle inequality then implies that

n n
<3 fataid = flag]* < né.
=1 =1

which implies that n % O

It turns out that the lower bound is attained for properly infinite C*-algebras.
Proposition 4.4. If A is properly infinite, then vs(A) = [%]

Proof. All we need to show is that v5(A) < [§]. Put n = [$] and since 4 is properly infinite,
we may find n isometries si,...,s, € A with mutually orthogonal range projections. Let
a; = ﬁSu then > " afa; = 14 and

In the case of § = %, we actually obtain an equivalence.

Proposition 4.5. A unital C*-algebra is properly infinite if and only if vy j5(A) = 2.
Proof. Suppose that vy/5(A) = 2 and let a1, as € A be elements satisfying
ajaj + asag = 2 and llaral + agasz]| < 1.

In particular, aja] + agaj < 1, hence both a; and ay are contractions, and thus the first
condition implies that they are isometries. Since ajaj+aza3 < 1, we obtain that aja] L agas.
We have hence shown that a1, as are isometries with orthogonal range projections, and A is
thus properly infinite. O

Proposition 4.6. For any unital C*-algebra, and any n € N and 0 < § < 1, we have vs(A) <
vs(Myn(A))n?. In particular, vs(A) < n(A)*[3].

Proof. Let ay, ..., a; be elements in the matrix algebra M, (A) satisfying ZZ 1aia; = lyg a)
and HZle a;a;
easily seen that, for b; = ﬁai,

sum of the diagonal elements of aja; and a;a}, it is

k n k n
DD belij)=1a  and > blig)| <6
{=11,5=1 {=11,5=1

proving the inequality v5(A) < vs(M,(A))n?. For the remaining claim, note that u(A4) = n
implies that vs(M,(A)) = [$] by Proposition O

The above proposition gives us the result that v5(A) = co implies that pu(A) = oo, which
is a sensible reality check, since it just states that whenever a unital C*-algebra admits a
tracial state, then it trivially also admits a quasitrace. The proposition also gives an upper
bound on v5(A) for any given C*-algebra A. Given a unital C*-algebra A, it is by Proposition
not possible to uniformly bound v5(A) from above for all 0 < 6 < 1, but a reading of
Pop’s separate proof of Proposition see [54, Theorem 1], gives us the following bound
for what could be called the minimal v-value.
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Proposition 4.7. Let A be a unital C*-algebra. For any 0 < 6 < 1, we have y(A) < vs(A).
Moreover, we have ming<s<1 vs(A) < vy(A) + 1.

In the following, we consider a few permanence properties of u(—) and vs(—).

Proposition 4.8 (Permanence properties). Let A and B be unital C*-algebras. Then:

() 1(A® B) = max{pu(A), u(B)}.

(ii) If ¢: A — B is a unital *-homomorphism, then u(p(A)) > w(B). In particular, if
A C B is a C*-subalgebra, then p(B) < u(A).

(iii) If I is a closed two-sided ideal in A, then u(A/I) < u(A).

(iv) If p € A is a non-zero full projection, then u(pAp) > u(A).
(v) Ifn €N, then u(Ma(A)) = [u(A)/n].
)

(vi) If Ay — A — -+ is a sequence of unital C*-algebras with unital connecting maps,
then p(lim_, Ay,) = limsup,,_, . 1(Ay).

(vii) If (Ap)nen is a sequence of unital C*-algebras, then (0> ((Ap)nen)) = sup,en 4(A4n).

(viii) If w is a free ultrafilter, then limsup,,_,, t(An) = w(lu((An)nen)) for any sequence
(Ap)nen of unital C*-algebras.

Proof. The statements (i) and (v) are obvious.

(ii): A *-homomorphism ¢: A — B canonically induces a *-homomorphism (™ : M, (A) —
M,,(B) on the matrix amplifications. Applying Proposition [2.10| gives the desired result.

(iii): This is an easy application of (ii).
(iv): This follows immediately from Corollary

(vi): Put A = lim_, A,, and suppose that u(A) = k. Since Mp(A1) — Mp(Az) — --- is
an inductive system with limit My (A), it follows from Proposition that since My(A) is
properly infinite, then there exists ng € N such that M} (A,,) is properly infinite for all n. > ny.
In particular, pu(A,) < p(A) for all n > ngy and, hence, limsup,,_, . u(A4,) < p(A4). Con-
versely, if lim sup,, , (An) = k, then there exists N € N such that p(A4,) < kforalln > N.
Once again realising My (A) as the limit of the inductive sequence My (A1) — My(A2) —
allows us to use Proposition yet again to obtain the desired inequality pu(A) < k.

(vii): If p(€°((An)nen)) = k, then 0°((My(Ap))nen) = Mg(0*°((An)nen)) is properly in-
finite, and Proposition implies that My (A,) is properly infinite for all n € N, i.e.,
sup,,en #(Ap) < k. For the other direction, note that if sup, cyu(A,) = k, then the C*-
algebra My (0°((Ap)nen)) = £°°((My(Ay))nen) is properly infinite, hence p(¢°°((Ap)nen)) <
k.

en)) = k, then M (4,((An)nen)) is properly infinite, and
hence so is the quotient My (¢°°((Ap)nen) / 1(co((An)nen)) by Proposition [2.4(vii), where
Cw((An)nen) = {(an)nen € €°((An)nen) | limy—y |lan|| = 0}. By properly infiniteness, we
can find isometries ¢; € M (£>°(( n)neN))/Mk(cw((An)neN)) for i« = 1,2 with orthogonal

(viii): Suppose that p(€,((An)n
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range projections. Let s;(n) € My(A,) be lifts of t; with ||s;(n)|| < ||| for ¢ = 1,2 and any
n € N. Then,

limsup |[s;(n)*si(n) — 1|| =0,

n—w
limsup ||s1(n)s1(n)*s2(n)sa(n)*|| = 0.
n—w
Consequently, we may for any § > 0 find Is € w for whic
[si(n)"si(n) — 1| <o,
[s1(n)s1(n)"s2(n)s2(n)*| <0,

for each n € Is. By taking 0 < § < %, we may invoke Proposition to see that My (A,)
is properly infinite. Therefore pu(A,) < k for all n € Is and

lim sup pu(An) = inf sup u(4;,) < sup p(An) <k = p(lo((An)nen))-

n—w JewpeJg nels

For the other inequality, suppose that limsup,,_,, u(A,) = k and find I € w such that
w(Ay) < kforalln € I. Fori = 1,2 and n € I, we let s;(n) € Mg(Ay,) be isome-
tries with orthogonal range projections witnessing the properly infiniteness of each A,
and let s;(n) = 0 for n € I. Let t; € Mp(4y((An)nen)) be the images of the sequences
(8i(n))nen € L°((An)nen), then t1,ty are also isometries with orthogonal ranges, and hence
My (4, ((Ap)nen)) is properly infinite, i.e., pu(€,,((An)nen)) < k. This completes the proof. [

Proposition 4.9 (Permanence properties). Let A and B be unital C*-algebras and let 0 < 6 <
1. Then:

(i) vs(A® B) = max{vs(A),vs(B)}.

(ii) If ¢: A — B is a unital *-homomorphism, then vs(p(A)) > vs(B). In particular, if
A C B is a C*-subalgebra, then vs(B) < vs(A).

(iii) If I is a closed two-sided ideal in A, then vs(A/I) < vs(A).

(iv) If Ay — Ay — -+ is a sequence of unital C*-algebras with unital and injective con-
necting maps, then vs({J,—; Ap) < infpenvs(An).

(v) For any sequence of unital C*-algebras (A, )nen, we have

V5(€OO((ATL)7LEN)) = 216111\)1 V5(An)'

(vi) For any sequence of unital C*-algebras (An)nen, we have

sup limsup vy (Ay) < v5(lw((An)nen)) < limsup vs(A4,).

§>5 n—ow n—w
Proof. (i)-(iii) are immediate.
(iv): Recall from (ii) that as we have the inclusions Ay C |J,, oy An, We have the inequality
vs(Ax) > vs(U,en An), and taking the infimum of the left-hand side implies the desired

inequality.

(v): First assume that v5(0*°((An)nen)) = k and let ag,...,ar € €°°((An)nen) be elements
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such that 2%  a*a; = 1 and HZiC:l a;al|| < 9. Write a; = (a;j(n))pey forall i = 1,... .k
with a;(n) € A, for n € N, then it is immediate that Zle a;(n)*a;(n) = 14, and

k k
; a;(n)a; Zaz ;aia;‘

such that v5(A4,) < k for all n € N. Conversely, suppose that vs(A4,) < k for all n € N
and find, for each n € N, elements (a;(n))f_, C A, with Ele a;j(n)*a;(n) = 1y, and

HZle ai(n)ai(n)*H < §. Since the elements a;(n) are necessarily contractions, the element

< sup
meN

a; = (a;(n))nen is a well-defined element in £°°(( A, )nen) for each i = 1,..., k, and it is easily
seen that these satisfy the desired property such that v5(¢*°((An)nen)) < k.

(vi): Suppose that vs(,((An)nen)) = k and find aq,...,ar € £,((An)nen) such that
S e = 1 and || SF ajaf]| < 6. Let ai(n) € A, be lifts of each a; for i = 1,...k
and n € N. Define the set

k
I= {n eN||1a, — Zai(n)*ai(n) < 1}.
i=1
Since I € w, we find that b, = Zle ai(n)*a;(n) is invertible with Hbr_LlH = m for all

n € I. Since lim,,_, |1 — b,|| = 0, we may for any € > 0 find J. € w such that Hbng <l+e¢
for all n € J..

Put ¢;(n) = a;(n)by, Y2 for all m € I and c¢i(n) = 0 elsewhere. Then, for all n € I,

k
> ailn)e Zb P2ai(n) ai(n)by = 1a,.
i=1

and

k

Z ci(n)ei(

=1

k

Z a;(n)a;(n)

=1

< b,

k
Z bal

We may, for any € > 0, find K. such that “Zle a;j(n)a;(n)*
foranyn € X CINnJ.N K, with X € w, we obtain

k
ch(n) Zb 1/2aZ a;( )6_1/2 =1y4,,
i=1

< (0+e¢) for all n € K. Thus,

and

ZCZ‘(TL)C@ Zaz )b, tai(n

In particular, we find that, for any ¢ > ¢, there exists J € w such that vy (A4,) < k for all
n € J, and thus

< ||on <(1+¢)(d+e).

sup lim sup Vé'(An) < (gw((An)nEN))

> n—w

as desired. For the other inequality, suppose that limsup,,_,,, vs(A,) < k. Then there exists
J € w such that vs(A,) < k for all n € J. Find for each n € J a k-tuple (a;(n))k_; in A,
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such that 327 a;(n)*ai(n) = 14, and HZiC:l aj(n)a;(n)*|| < 4. Put a;(n) =0 for n & J.

Let a; be the images of the sequences (a;(n))nen in €, ((An)nen), then Zle afa; =1 and

k
g a;a;
i=1

k

Z a;j(n)a;(n)*

=1

= lim sup <.

n—w

O]

A way of understanding u(—) and vs(—) for 0 < § < 1 is by looking at universal C*-
algebras encoding the information of the invariants. We shall briefly mention these universal
C*-algebras here, as they might provide some insight into how pu(—) and vs(—) behave.

Definition 4.10. Let n € Nand 0 < § < 1.

(i) We denote by A, the universal C*-algebra generated by elements z;; with 1 <i <n
and 1 < j <n+1 such that for the non-square matrix s = (2;;);; we have s*s = 1,41
and ss* < 1,.

(ii) We define Dy, 5 = C*(a1,...,an | >oiq afa; =1, |0 aaf|| < 6).
The following proposition is easy to verify.
Proposition 4.11. Let A be a unital C*-algebra.
(i) There exists a *-homomorphism A, — A if and only if u(A) < n.

(i1) There exists a *-homomorphism D, — A if and only if vs(A) < n.

Since the C*-algebra D, 5 are obviously without tracial states for any n € N and 0 <
0 < 1, an application of Proposition [2.20| implies that for any n € N, 0 < § < 1 and for each
0 < ¢" < 1 there exist m € N and a *-homomorphism D,, s+ — D,, 5. However, it is not clear
what the integer m is, except for the trivial case with § < ¢, where m = n would suffice.
In other words, it is unclear what vs (D), 5) is; it is even unclear what v5(D), 5) is. It seems
reasonable to believe that v5(D,, 5) = n, but it still remains unresolved.

4.2 Asymptotic behaviour of the invariants and exotic traces

In Proposition 4.8 and Proposition we examined how the invariants pu(—) and vs(—) be-
have when taking (ultra)products. In this section, we shall take a closer look at how this will
allow us to study (quasi)traciality of ultraproducts of C*-algebras. In particular, we shall
construct a C*-algebra with a quasitrace, but which arises as an ultraproduct of C*-algebras
without quasitraces.

The study of quasitraces or tracial states on ultraproducts is nothing new, and has been
studied in e.g. [4, 51], and we have already worked with them in Chapter 3. Suppose that
(An)nen is a sequence of C*-algebras with (quasi)traces 7, on each A,,. It is easy to see that
there exists a (quasi)trace 7, on the ultraproduct £, ((A,)nen) given by

(Mo ((an)ner)) = im Taan),  (an)nen € ((An)nen),

where 7, £°((An)nen) — Lw((An)nen) is the canonical quotient map. We call these qu-
asitraces limit traces and denote by QT ,(¢*°((Ap)nen)) (or, in the case of tracial states,
T (0> ((An)nen))) the collection of limit quasitraces of the sequence of C*-algebras (A, )nen-
Consider the inclusion T,,(¢*°((Apn)nen)) inside T(€y,((An)nen)). It follows from [4, Theorem
1.3] that the inclusion is proper whenever ¢, ((A,)nen) contains infinitely many extremal
tracial states. Even moreso, the collection of limit traces need not be weak*-dense in the
space of traces on the ultraproduct, as the following result due to Pedersen—Petersen [53]
shows.
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Proposition 4.12 (Pedersen-Petersen, 1970). For each n € N, there exists a homogeneous
C*-algebra A,, and an element z, € A, for which t,(x,) = 0 for all 7, € T(A,), yet
|z — >0y lai,bil|| > 1 for all a;,b; € A,. In particular, the ultraproduct C,((Ap)nen)
admits a tracial state, which is not in the weak*-closure of Ty,(£>°((An)nen))-

Proof. The fact that such homogeneous C*-algebras exist follows from [53, Lemma 3.5]. We
may assume that each x, has norm ||z, | < 1. Put A = ¢*°((Ay)nen). Consider the element
x = (Tp)nen € A, then the construction entails that 7(z) = 0 for any 7 in Ty, (£*°((An)nen))-
On the other hand, we must have that « & [A, A], and by Corollary there exists a tracial
state 7 € T(A) such that 7(x) # 0. This finishes the proof. O

In the literature, there is no clear consensus on what these traces that do not arise as
weak*-accumulation points of limit traces should be called; we shall call them exotic traces
in this thesisﬂ If each A, is both exact and Z-stable, then there are no such exotic traces,
as Ozawa showed in [51, Theorem 8|.

Theorem 4.13 (Ozawa, 2013). Let (Ap)nen be a sequence of exact and Z-stable C*-algebras.
Then T,,(¢>°((Ap)nen)) is weak*-dense in T (Ly,((An)nen))-

The proof of the theorem uses the Haagerup—Thorbjgrnsen MF-embeddability of Va, [30],
which we shall use later in the chapter, and then approximates the elements %(sj + 8;) in
the C*-algebra (>°((My, (C))ken)/co((My, (C))ren) by sequences of matrices, which requires
exactness. In Theorem [4.35] we shall use this machinery in order to provide a different proof
of Haagerup’s theorem of quasitraces being tracial states on unital, exact C*-algebras.

We now sketch a construction of a (non-simple) unital C*-algebra B with the property
that B is not properly infinite, yet My(B) is properly infinite; that is, u(B) = 2. The con-
struction follows the structure of [60], and in that paper Rgrdam provided an example of such
a C*-algebra within the class of separable, unital, simple, nuclear C*-algebras satisfying the
Universal Coeflicient Theorem of KK-theory. The construction of this C*-algebra is quite
technical, but the main ideas can easily be used in order to construct a non-simple example.

Let X be a compact Hausdorff space. It is well-known that any projection p € Puo(C(X))
corresponds to a vector bundle &, over X. Consider the sphere X = S? and let p € My(C(5?))
be the Bott projection, which corresponds to a vector bundle ¢ with Euler class e(¢) # 0.
Let Z = £°°((S?),en) be the infinite product of countably many copies of S?, and put
A=C(Z)®K(H) =2 C(Z,K(H)). For any n € N, we define (with a suitable identification
of M5(C) inside K(H)) the projection p,, € P(A) by pn(x) = p(zy) for z = (z1,22,...) € Z,
that is, p, is the Bott projection on the nth copy of S? in Z. Let ¢, be a vector bundle
corresponding to p,. Denote by 6 the trivial vector bundle, which corresponds to a constant
1-dimensional projection in A; one can easily verify, see [60, Lemma 3.1] that for any n € N
there exists a complex line bundle 7, over (S?)" such that ¢, ® (, = 6 @ 1, which, when
expressed in terms of projections, implies that g = p, @ pn.-

Consider the multiplier algebra M(A). Since A is a stable C*-algebra, the properly infi-
nite C*-algebra B(H) embeds unitally in M(A), and hence M(A) is properly infinite. We
can thus find a sequence of isometries (Sy)nen in M(A) such that 1,4y = Y72 SnS;, with
the sum being strictly convergent. With this, we define for a sequence of projections (gp )neN
in A (or M(A)) the projection €D,,cx n = Yoneyq SnnS}; observe that if (g,)2_; is a finite

family of projections in A, then g1 ®...Bqy = ZnN:1 SnanS;; belongs to A and is Murray-von

2The reader should be immensely careful when reading papers on this subject. For instance, in [4], what
we call limit traces, they call trivial traces, and any trace on ultraproducts arising as a weak*-accumulation
point of trivial traces is called locally trivial in that paper.
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Neumann equivalent to the usual definition of direct sums of projections.

With p, as defined previously arising from the Bott projection in My(C(S?)), we consider
the projection Q = @, cyPn in M(A). Our goal is to show that @ is not a properly infinite
projection, yet that @ @ @ is properly infinite, and hence that p(QM(A)Q) = 2.

Lemma 4.14. Let g and Q be projections on A as defined above. Then g Z Q, and Q is not
properly infinite.

Proof. We first show that if ¢ 5 Q = @, pn, then there exists some N € N such that
g3 @flvzl Pn. Suppose that ¢ 2 @ and let v € M(A) be a partial isometry with g = vv*
and @ < v*v. Observe that we by definition may write @ = Y o7 | pl, with (p],)nen being
a family of mutually orthogonal projections in A satisfying p, ~ pl,, and where the sum is

strictly convergent. Since gv = v, we find that v € A and, by strict convergence, there exists
N € N such that

1
5"

N

/

v—vg D,
n=1

Put z = oY pf, € A. Then zz* < g and z*z < Y. p/,. Moreover, we find that
|lxx* — g|| < 1, and hence that zz* is invertible in the unital C*-algebra gAg. Put u =
z*(z2*)~1/?, then v*u = g and

N N
wu* = o (zx*)x < Zp% ~ @pn.
n=1 n=1

In particular, we obtain that g = @1]1\7:1 Pr. Rewriting this in terms of vector bundles implies

that there exists a vector bundle n for which 8 & n = @7]:7:1 Cn; however, this is impossible
by multiplicity of the Euler class as e(f) = 0 and e((,,) # 0 for all n € N. We hence conclude

that ¢ 2 Q.

Finally, let us show that this implies that () is not properly infinite. Since ) can be shown
to be a full projection, g belongs to the ideal generated by ). Consequently, the proof of
Proposition [2.6| implies that if () were a properly infinite projection, then g =3 @, which we
just disproved. We conclude that @ is not a properly infinite projection. O

We now turn our attention to verifying that @ @ @ is properly infinite. The following
lemma was mentioned earlier in the construction and is effectively an exercise in understand-
ing the vector bundles over product of spheres — we refer to [60, Lemma 3.1]

Lemma 4.15. For any n € N, we have g X pn @ pn.

The next lemma provides a characterisation of properly infiniteness of projections in any
multiplier algebra of a stable C*-algebra.

Lemma 4.16. Let B be a stable algebra and P € M(B) be any non-zero projection. Then
Ly 2 P if and only if P is properly infinite and full in M(B).

Proof. Suppose first that 1 gy 3 P. Note that this implies that P is necessarily full, as the
ideal in M(B) generated by P contains 1 m(B)- To prove properly infiniteness of P, we use
that M(B) is properly infinite due to stableness of B and invoke the following inequalities:

P& P 21y @ Ivms) ~Imp X P
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With these two lemmas, we are able to prove that Q @ @ is properly infinite.
Proposition 4.17. The projection Q @ Q is properly infinite in M(A).

Proof. One can verify that we can write the unit in M(A) as 14y ~ @D, eng- With this
decomposition, Lemma and the definition of @) implies that

Ly ~ P9 3P wner) ~Qe Q.

n=1 n=1
It now follows from Lemma, that Q®Q is a properly infinite, full projection in M(B). O

We have now shown that the corner QM(A)Q of the multiplier algebra of A satisfies
that p(QM(A)Q) = 2. It is not immediate that @ is a finite projection, but since @ is
not properly infinite, we may by Proposition (Vii) find a quotient QM (A)Q/I on which
the image of @) is finite, and where the image of () & () will remain properly infinite, hence
constructing a finite C*-algebra whose matrix amplification is properly infinite. By taking
the limit of a suitable inductive sequence M(A) — M(A) — ---, one obtains an example of
a simple C*-algebra B with u(B) = 2. While this would suit our needs for showing that u(—)
attains all possible values, it is an explicitly non-exact C*-algebra, but a further refinement
of the construction does yield a separable, unital, nuclear C'*-algebra in the UCT-class, and
it has many projections in a specific manner: We say that a C*-algebra has small projections
or (SP) if any hereditary C*-subalgebra admits a non-zero projection.

Theorem 4.18 (Rgrdam, 2003). There exists a separable, unital, simple, nuclear C*-algebra
A in the UCT-class with u(A) > 2, and which satisfies (SP).

The construction may be found in [60], and the proof of the (SP) property may be found
in [62, Proposition 5.5]. By taking corners of this C*-algebra in a careful way, we shall
obtain a sequence of C*-algebras (Ay)neny with pu(Ay,) < oo for all n € N and pu(A,) — oo
as n — oo. The following lemma is an easy application of Glimm’s lemma [57, Proposition
3.10], and it shows that admitting (SP) gives a way of subdividing any non-zero projection.

Lemma 4.19. Let A be a unital, infinite-dimensional, simple C*-algebra with property (SP).
Then for each non-zero projection p € A and for each n € N, there exists a non-zero projec-
tion ¢ € A with q® 1, = p.

Proof. By replacing A with pAp, we may assume that p = 14 is the unit on A. By
Glimm’s lemma, see [57, Proposition 3.10], we may by infinite-dimensionality of A find a
*-homomorphism ¢: Co((0,1]) ® M,(C) — A. Denote by ¢ € Cy((0,1]) the identity func-
tion «(t) =t for t € (0,1], and let (e;5);;—; € My,(C) be the canonical matrix units. Put
a; = ¢(1 ® e;;). Since A has property (SP), we may find a non-zero projection ¢ in the
hereditary C*-subalgebra aAa; of A.

Let z; = (1 ® €;1) and observe that ]z,-\Q = ap for ¢ = 1,...,n. Consider the polar de-
compositions z; = v; |z;| with v; € A™ partial isometries. It follows from [0, Proposition
I11.5.2.16] that w; = v;q are partial isometries in A with wfw; = ¢ for alli=1,...,n. More-
over, we find that w;w} = v;qu} € a;Aa;. Put ¢; = wyw} for i = 1,...,n and observe that
qi,---,qn is a set of mutually orthogonal projections in A, and that they are all Murray-von
Neumann equivalent to q. Consequently, we obtain

qR 1, ~q1+ ...+ qn < 14g,

which finalises the proof. O
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Theorem 4.20. There exists a sequence of separable, unital, simple, nuclear C*-algebras
(Ap)nen with u(Ay) < oo for alln € N and u(A,) — 0o as n — oo.

Proof. Take A to be the separable, unital, simple, nuclear C*-algebra with (SP) and p(A) > 2
from Theorem Let n € N be arbitrary. By Lemma we may find a non-zero
projection p in A such that p®1,, 3 14. Define ¢ = p® 1,, and observe that ¢ is Murray-von
Neumann equivalent to a non-zero projection ¢’ € A. Since A is simple, ¢’ must be a full
projection, and using the permanence properties of p(—) from Proposition we obtain
the following inequality:

(M(IZAMW = 1(My(pAp)) = u(d'Aq') = u(A) = 2.

In particular, we obtain that u(pAp) > n. All that remains to be seen is that u(pAp) < co.
However, since p is a full projection, it follows from [63, Exercise 4.8] that there exists N € N
such that 1,, = p® 1n and, consequently, 1, ® 13 = p® 1y ® 12. But since the left-hand side
is a properly infinite, full projection, the right-hand side is properly infinite by Proposition
and, thus, u(pAp) < 2N < oco. This completes the proof. O

By taking the ultraproduct of such a sequence of C*-algebras, we obtain the following
theorem from Proposition 4.8 vii).

Theorem 4.21. There exists a sequence of separable, unital, simple, nuclear C*-algebras
(An)nen with p(Ay,) < oo for all n € N such that p(ly((An)nen)) = oo. In particular,
the ultraproduct £,((An)nen) admits a quasitrace, yet no A, admit quasitraces.

It is unknown whether or not the quasitrace on £, ((Ay)nen) is a tracial state or not. We
cannot use Haagerup’s theorem to establish this, as the ultraproduct is non-exact.

Proposition 4.22. The ultraproduct £,((An)nen) as constructed in Theorem is a non-
exact, unital C*-algebra.

Proof. By Glimm’s lemma, we may embed M, (C) in A,, (non-unitally) for all n € N, and
hence the C*-algebra £, ((M,(C)nen) embeds in £, ((An)nen). Since £, ((My(C)pen) is a
non-exact C*-algebra, this proves that the ultraproduct ¢, ((Ay)nen) is non-exact. O

It follows from the asymptotic behaviour of the p-invariant that the ultraproduct is stably
not properly infinite. In fact, it is easily seen to be a stably finite C'*-algebra.

Proposition 4.23. The ultraproduct €,,((Ap)nen) as constructed in Theorem is stably
finite.

Proof. By construction, we find that, for any k& € N, there exists N € N such that My(A4,,)
is finite for all n > N. It thus suffices to show that the ultraproduct is finite, as the
general case follows from taking matrix algebras. Hence the proposition effectively revolves
around showing that an ultraproduct of finite C*-algebras is once again finite. Suppose that
s € Ly, ((An)nen) is an isometry, that is, s*s = 1. Let (t,)nen € €°°((Ap)nen) be any lift with
|ltn]] < 1. Then

1 * — = *g — =
lim (5, — 1, = 5% — 1] = 0.

In particular, we may find I € w for which ||t}t, — 14, | < 1 for all n € I, such that the
element t't, € A, is invertible for all n € I. Let u, = tn(t’fltn)_l/ 2 then u, is an isometry
in A,, and finiteness of A,, implies that u,u = 1. Since |u, — t,]| — 0 as n — w, we hence
obtain that

lss* — 1] = lim [lunu, 1] =0,

proving that s is an isometry. O
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Remark 4.24. In [60, Corollary 7.4], Rgrdam remarks an interestingly related property of
the C*-algebra A from Theorem Both the product ¢*°(A) and the ultrapower A, has
some quasitrace defined on some algebraic ideal, yet no such quasitrace exists on A. Our
result is hence an improvement on this corollary.

By applying Proposition [4.8|iv) on the sequence (A, )nen of C*-algebras from Theorem
m we easily obtain the following corollary stating that u(—) attains all possible values.

Corollary 4.25. For all n € N, there exists a separable, unital, simple, nuclear C*-algebra
with pu(A) = n.

Proof. Tt suffices to show that, for any n € N and any N > n?, there exists k such that
(%1 = n. Indeed, if this holds, then we may find a unital C*-algebra Ay with pu(Ay) =
N > n? and find that

p(AN)

p(Mi(Ax) = [ = 1 =

Write N = n? + pn + g for some p € Ny and 0 < ¢ < n, then choosing k = n 4 p+ 1 gives us

qg+p+1

N n?+pn+q _
ko N n+p+1’

n—1)+
n+p+1 ( )

and hence [%] =n. O

While it is relatively easy with the right tools to show that the function p(—) attains
all possible values, it is unclear whether it holds for vs(—) for some 4. It is not difficult to
see that vs(—) attains infinitely many values for some 0 < 6 < 1 if and only if it does so
for all 0 < § < 1, but the proof becomes a bit more convoluted than expected due to the
inequalities in Proposition [4.9(v).

Proposition 4.26. If vs(—) attains infinitely many values for some 0 < § < 1, then vy (—)
attains infinitely many values for all 0 < §' < 1.

Proof. Observe that vs(—) admits infinitely many values if and only if there exists a sequence
of unital C*-algebras (A, )nen with limsup,,_,, vs(A,) = oo and v5(A,) < oo for all n € N.
Let (A,)nen be such a sequence and consider the ultraproduct A = £, ((An)nen). We claim
that v5(A) = co. Indeed, we may use Proposition [£.9(vi) to see that

vy (A) > sup limsup vy (Ay).

8> n—w
In particular, choosing some 0 < ¢ < § < 1 implies

vy (A) > sup limsup vy (A,) > limsup vs(4,) = co.
8> n—w n—w

Therefore, A admits a tracial state, and hence vg(A) = oo for any 0 < ¢’ < 1, and thus in
particular for ¢’ = §. Let 0 < ¢’ < 1 be arbitrary. Note that as vs(A,) < oo for any n € N,
we also obtain that vy (A,) < oo for all n € N. Moreover, using Proposition [£.9(v) once
more gives us

limsup vg (Ayn) > vs(A) = 0.

n—w

This completes the proof. ]
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Note that the proof does not entail that if v5(—) attains all possible values for some §,
then it is true for any . Moreover, it is not immediate whether or not vs(—) actually attains
infinitely many values or not. For the case of § = %, we know from Proposition that
v1/2(A) = 2 if and only if A is properly infinite, and we know that v; 5(A) = oc if and only if
A'is tracial. Proving that there exists some C*-algebra A with 2 < v /5(A) < oo requires the
fact that not being properly infinite is not equivalent to being stably not properly infinite.

Proposition 4.27. There exist 2 < n < 8 and a separable, unital, nuclear, simple, UCT
C*-algebra A with vy /5(A) = n.

Proof. Let A be the C*-algebra constructed by Rgrdam as in Theorem then A is not
properly infinite, hence v /5(A) > 2. On the other hand, from Proposition we know that
v1ja(A) < 2u(A)? = 5. 0

The interest in what values vs(—) can attain is due to the close relationship to Kaplan-
sky’s conjecture. If Kaplansky’s conjecture is true, then the ultraproduct C*-algebra A from
Theorem 3.19 will have a tracial state, hence v5(A) = oo for all 0 < § < 1, and an application
of Proposition implies that vs(—) will attain infinitely many values for some (hence all)
0 < § < 1. If one therefore were to show that v5(—) does not attain infinitely many values,
the quasitrace on the ultraproduct C*-algebra A would provide a concrete counterexample to
Kaplansky’s conjecture. Note, however, that Kaplansky’s conjecture is not formally equiva-
lent to the question of v5(—) attaining infinitely many values. It may for instance be the case
that the ultraproduct A from Theorem has v5(A) = oo, yet that it admits a quasitrace,
which is not a tracial state.

The possibility of exotic traces on ultraproducts may not be that mysterious — a rule of
thumb for ultraproducts, which is substantiated by applications of e.g. Kirchberg’s e-test
[42, Lemma 3.1], states that whenever C*-algebras have properties that almost hold in some
sense, then the ultraproduct will have that property. As we have seen above, not all tracial
states on ultraproducts need be approximable by limit tracial states; however, they do arise
as limits of certain ”almost tracial states” in a particular way. The following discussion is an
elaboration on how it might be possible for the C*-algebra constructed in Theorem to
admit an exotic trace, even though no C*-algebras in the product admits even quasitraces.
The following results are in essence variations of similar results for characters as seen in [57,
Section 8].

Definition 4.28. Let A be a unital C*-algebra, let n € N and let € > 0. We say that A has
(n, e)-almost tracial state if for any n-tuple of contractions 1, ..., x, € A there exists a state
p on A such that |p(z}z; — x;xf)| <eforalli=1,..., n.

Our main goal is to state that whenever an ultraproduct of unital C*-algebra admits
a tracial state, this tracial state exactly arises as the limit of almost tracial states. First,
however, we note the following lemma, which shall be of use later.

Lemma 4.29. A unital C*-algebra A admits a tracial state if and only if A has (n,e)-almost
tracial states for alln € N and € > 0.

Proof. Any tracial state is trivially an (n,e)-almost tracial state, so we focus on the other
direction. Suppose that A has (n,e)-almost tracial states for all n € N and € > 0. Then we
may, for any finite subset F' of the closed unit ball (A); of A and € > 0, find a state p(f) for
which |p(z*z — zz*)| < e for all z € F. Let p be an accumulation point in the state space
S(A) of the net (p(r,))(r,) With the order (F,e) < (F”,¢") whenever F' C F' and € > ¢'. Let
a € A be any contraction, and let € > 0 be arbitrary, and consider the set

{pFen | a € F C (A) finite set, ¢ > '},
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whose closure, by construction of p, must contain p. Since }p(Fﬁ/)(m*x — xm*)| < ¢ for any
finite subset F' C (A); with 2 € F and any £’ < e, we conclude that |p(z*x — zz*)| <e. As
x € A was an arbitrary contraction and £ > 0 was an arbitrary tolerance, we conclude that
p is a tracial state. 0

Before we prove the connection between tracial states on ultraproducts and the existence
of almost tracial states on the sequence, we prove a proposition showing that, while examples
of exotic tracial states exist, there are no such thing as exotic states, that is, the limit states
are weak*-dense in the state space on the ultraproduct.

Lemma 4.30. Let (Ap)nen be a sequence of unital C*-algebras. Then the set S, ((Ap)nen) of
limit states on y,((An)nen) is weak*-dense in the state space S(£y,(Ap)nen) on the ultraprod-
uct.

Proof. Since S, (£>°((An)nen)) is easily seen to be convex, the result follows by the Krein-
Milman theorem [24, Theorem II.1.8] if we show that all pure states on S(4,((Apn)nen))
belong to the weak*-closure of S,,(¢*°((An)nen))-

Let p € S(4y((An)nen)) be a pure state, let F' C £,((Ap)nen) be a finite subset, and let
e > 0 be an arbitrary tolerance. By excision of pure states [I1, Lemma 2.14], there exists a
positive element h € £,((An)nen) with ||h]| = 1 for which

th/Qsch1/2 — p(:c)hH <e

for all x € F. Let (hp)neny € £°((An)nen) be a lift of h, where each h, is a positive
contraction. Since ||h| = 1, we may assume that ||h,| > 0 for each n € N. Find for

each n € N a state o, € S(A,,) with o,(hy,) = ||hy|, and define the state p, € S(A,) by

tn(x) = i hl Han(hl/ 22hy! ?). Observe that this is a well-defined state, as it is clearly linear,

and as [[pn(14,)| = 1 by construction. Put o = lim, 0, and g = lim, pu,. Note that
o(h) =1, and hence

> ‘0(h1/2$h1/2 - p(x)h)‘
‘ (BM/2zh1/2) — (:U)J(h)‘
= () = p(x)]

for all x € F'. This completes the proof. O

Proposition 4.31. Let (Ap)nen be a sequence of unital C*-algebras, and let £,((Apn)nen) be
the ultraproduct of the sequence. Define for each n € N and € > 0 the set

In. ={k € N| Ay has (n,e)-almost tracial states}.
Then £,((An)nen) admits a tracial state if and only if I, . € w for alln € N and € > 0.

Proof. Suppose that the ultraproduct £, ((A4,)nen) admits a tracial state and let n € N and
€ > 0 be arbitrary. Consider the complement

N\ I, = {k € N | A; has no (n,e)-almost tracial states}.

We shall prove that N\ I,, - € w, and then it follows from maximality of the ultrafilter w that
the complement I,, . belongs to w.

Suppose that N\ I,,. € w. For each k € N\ I, find contractions z1(k),...,zn(k) € A
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such that there is no state p on Ay for which |p(x;(k)*z;(k) — z;(k)x;(k)*)| < e holds for all
i=1,...,n. For any k € I, ., we choose arbitrary contractions z;(k) € A for i =1,...,n.
Let, for each ¢ = 1,...,n, the element z; € £,((Ag)ren) be the image of the sequence
(xi(k))ken. Since £, ((Ag)ren) admits a tracial state 7, it follows from Lemma that we
may find a limit state p = lim,, p, € S, (¢*°((An)nen)) with p, € S(A,) for each n € N, such
that

p(zizi) —7(ejz)| < o, and p(@eg) — 7(zia7)] <

| ™
| ™

holds for all ¢ = 1,...,n. In particular, we may find I € w such that
i (@i(k) @i(k)) — pr(@i(k)zi(k)"| < e

holds for all k¥ € I. In particular, for any k € I, Ay has (N, e)-almost tracial states, which
implies that I, . € w, contradicting the assumption that N\ I, . € w.

Now we assume that I,. € w for all n € N and € > 0, and we aim to prove that the
ultraproduct £, ((Ax)ren) admits a tracial state. By Lemma it suffices to show that
ly((Ak)ken) has (n,e)-almost tracial states for all n € N and ¢ > 0.

Let n € N and € > 0 be arbitrary. Let z1,...,2, € £,((Ax)ken) be contractions, and
find for each k € I,. contractive lifts x(k),...,z,(k) € Ag; for any k ¢ I, ., find some
arbitrary lifts. For each k € I, ., we may find a state p; on Ay for which

i (i (k) @i(k) — wi(k)zi(k)")| < €

for all i = 1,...,n. Choose for any k ¢ I,, . some arbitrary state p;, and let p = lim,, p be
the induced state on the ultraproduct ¢,((Ag)ken). Then

p(aiz; — wiwy)| <€

foralli=1,...,n. This proves that ¢, ((Ax)ren) has (n, e)-almost tracial states for all n € N
and € > 0, and hence that £, ((A)ken) admits a tracial state by Lemma [£.29] O

Both the notion of (n, ¢)-almost tracial states and the v5(—) invariant informally measure
the failure to admitting tracial states. It should hence be the case that there is a connection
between the two, and the following proposition gives us a link.

Proposition 4.32. Let A be a unital C*-algebra, and let 0 < § < 1 be arbitrary.

(i) For each m € N, there exist n € N and € > 0 such that if A admits (n,e)-almost tracial
states, then vs(A) > m. In fact, one can take n =m and 0 < e < (1 —4)/n.

(ii) For each n € N and € > 0, there exists m € N such that whenever vs(A) > m, then A
has (n,)-almost tracial states.

Proof. (i): We prove the negation. Find by definition of v5(A) > m elements aq,...,a, € A
such that > 7" afa; = 14 and ||Y ;" a;af|| < 6. Then, for any state p on A, we have

m
> Iplaiz — miaf)| = 1- 6.
=1

In particular, we obtain that, for any p € S(A),
1-90

* *
m T, — s )| > —.
mas |p(aiz —wia)| > —
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Therefore, A does not have (n, )-almost tracial state whenever n = m and ¢ < 171;6

(ii): Let n € Nand € > 0 be arbitrary. Suppose that for all m € N there exists some unital C*-
algebra A, with no (n, e)-almost tracial states, yet which satisfies v5(A,,) > m. Let (Am)men
be a sequence of such unital C*-algebras and consider the ultraproduct A = £,((Am)men)-
Then A admits a tracial state by Proposition [4.9|(vi), hence it follows from Proposition [£.31]
that

{m € N| 4,, has (n,e)-almost tracial states} € w.

In particular, there exists m € N such that A,, has (n,e)-almost tracial states. However,
this is a contradiction with the assumption. We thus conclude that there exists some m € N
for which v5(A) > m implies the existence of (n,e)-almost tracial states on A. O

Interestingly, the proof of (i) above is constructive in the sense that it proves the existence
of (n,e)-almost tracial states for an explicit pair (n, ) in terms of m and §, whereas the proof
of (ii) gives no indication of the lower bound achieved on v5(—) when admitting (n, €)-almost
tracial states. In particular, note that it is not even implied that v5(—) need attain infinitely
many values — it might be the case that if a unital C*-algebra A has (n,e)-almost tracial
states for some specific n € N and € > 0, then A admits a tracial state.

Another way of looking at Kaplansky’s conjecture using the invariants p(—) and vs(—) is
by asking whether the inequalities of Proposition can be inverted in some way such that
p(—) is bounded by vs(—) for some 0 < § < 1. That is, does there for some 0 < § < 1 exist
a function Fy: N — [0, 00) with F5(n) — oo as n — oo such that p(A) < Fs(vs(A)) for all
unital C*-algebras A. A priori, this will only entail that any quasitracial C*-algebra will ad-
mit a tracial state, but by Proposition [3.12] it would actually provide a proof of Kaplansky’s
conjecture in the unital case.

Proposition 4.33. Kaplansky’s conjecture is true for unital C*-algebras if and only if there
exists a function Fg as described above.

Proof. The existence of Fs in particular shows that whenever 7 is a unique quasitrace on
a unital C*-algebra, then 7 is necessarily a tracial state. In particular, all quasitraces on
IT;-AW*-factors are tracial states, and thus Kaplansky’s conjecture is true by Proposition
Conversely, if Kaplansky’s conjecture is true, then all quasitraces are tracial states.
Define the function Fs: N — [0,00) by Fs(k) = sup{u(A) | vs(4) < k}. A priori, it is not
clear that this function is well-defined in the sense that Fs(k) < oo for all k& € N. Suppose
that F5(k) = oo for some k € N and find a sequence of C*-algebras (A, )nen for which
1(A,) — oo as n — oo, but where v5(A) < k. Then, by applying Proposition [4.8|viii)
and Proposition [4.9(vi), we obtain that (€, ((An)nen)) = 00 yet vs(loo((An)nen)) < k <
oo. But then the ultraproduct admits a quasitrace, which is not a tracial state, and this
contradicts Kaplansky’s conjecture. Hence Fs above is well-defined, and it is immediate from
its construction that pu(A) < Fs(vs(A)) for all unital C*-algebras A. O

We may summarise the above discussion in the following theorem. The reader should be
aware of the implication (iv)=-(iii), which is not necessarily an equivalence.

Theorem 4.34. The implications (1)< (1)< (1)< (iv)< (v) below hold:

(i) There exists a sequence of unital C*-algebras (A, )nen without tracial states such that
the ultraproduct oo ((An)nen) admits a tracial state.

(ii) The invariant vs(—) attains infinitely many values for some 0 < 6 < 1.
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(iii) The invariant vs(—) attains infinitely many values for all 0 < § < 1.

(iv) There exists a function F5: N — [0,00) with F5(n) — 0o as n — oo such that pu(A) <
Fs5(vs(A)) for all unital C*-algebras A.

(v) Kaplansky’s conjecture is true for the class of unital C*-algebras.

4.3 An alternative proof of Haagerup’s theorem

The following result is an alternative proof of Haagerup’s theorem that quasitraces on unital,
exact C*-algebras are tracial states. We have already covered Haagerup’s proof earlier in
this thesis, and we shall apply the AW*-completion in this proof as well, however the use
of exactness arguably appears in a much more intuitive fashion. Instead of proving an
embedding of A ® C}(Fy)) in a finite AW*-algebra and later extending it to M, @ C(Fx)
for M, the AW*-completion of A with respect to a faithful quasitrace 7, one uses the fact
that C(Fy) is an MF-algebra [30, Corollary 8.4] in order to approximate certain elements
almost satisfying the Cuntz relation by matrices over A. This alternative proof is inspired
by ideas from Haagerup—Thorbjgrnsen, see [29, Section 9] and [30, Corollary 9.3], but does
not (explicitly) use the theory of random matrices.

Theorem 4.35. If A is a unital, exact C*-algebra, then u(A) < oo if and only if v(A) < co.
In particular, all quasitraces on unital, exact C*-algebras are tracial states.

Proof. Suppose that A admits no tracial states. Let 0 < é < 1 be arbitrary and find by
Proposition elements ay,...,a, € A such that > " ,afa; = 14 and [|>_;; a;a}|| < 9.
Consider the Cuntz algebra O, on 2n generators si, ..., S2, and define the following four
elements:

n n
ulzg a; @ s;, v1:E a; ® s;,
i=1 i=1
n n
E
Uy = g a; Q Si+n, Vg = E Q; Q Siyn-
i=1 i=1

Using the properties of a1, ..., ay, it is immediate that ufu; = 1 and ||Jv;]| = \/[[v}vi]] = V&
for i =1,2. Put

n
w; = ul +v1 :Zai®(si+sf{),
i=1
n
we = ug + v = Zai ® (Si+n + Siyn)s

=1

and note that wi,ws € A ® Vs and, since Vo, embeds unitally in C}(F) by Proposition
we find that wy,wy € A® C}(Foo). We claim that these elements are almost isometries
with almost orthogonal range projections in such a way that we may apply Proposition |2.13
First of all, we see that

wiw; = wiug + uiv; +viu +viv; <1+ 8+ 2V,

hence Hw;‘wi -1 A®C;‘(Foo)H < § + 2v/5. Moreover, a similar calculation and an application
of the fact that sjs; = d;; gives us that

wiwy = wiuy + ubv 4+ viug + viv < 64 2V,
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and thus we find that

[wiwi = Tages (Fa)|| <6+ 2V6,
[wiws || < 8§+ 2V/3.

Since C(Fy) is an MF-algebra by [30, Corollary 8.4], we have an embedding
Cr (Foo) = £7°((Mp,, (C))ren) /co((Mn,, (C)) ken),

and hence si+s7 € £2°((Mp,, (C))ren)/co((Mn,, (C))ren)- Find (¢i(k))ren € £7°((Mn, (C))ren)
for i =1,...,2n such that 7((¢;(k))ken) = si + s, where

i L5 (M, (C))ken) = £2°(Miny (C))en) / co((Mny (C))ken)

is the canonical quotient map.

Define for each k € N the elements w; (k), w2(k) € A ® My, (C) = M,, (A) by

n

wy(k) =) a; @ ci(k),

=1

wy(k) = a;i ® cipn(k).
=1

Using exactness of A, we have an isomorphism

AR 02°((Mp,, (C))gen)
A® co((Mp, (C))gen)

I

A @ £7((Mn, (C))ren)/ co((Mp,, (C)) ken)

and hence (w;(k))gen € £°°((Mn, (A))ren) are lifts of the elements w; in the tensor product
A @ 0°°((Mp,, (C)ken)/co((My, (C))ken). We thus obtain for j = 1,2 that

limsup ||@; (k)*w;(k) — 1| = [[wjw; — 1|| <6+ 2V/5,

k—o0

lim sup [[ds (k)" (k)] = [[whwi]] < 6+ 2V5.

k—o00

By taking & > 0 such that § 4+ 2/ < %, we may find k£ € N such that

15 (k) @5 (k) — 1)) < 3
4o () 4y (k) | < %.

We may now invoke Proposition to find isometries t1,t2 € M, (A) such that t;tj =1
for j = 1,2 and tot3 L ¢1¢]. But this implies that M, (A) is properly infinite, which proves
that pu(A) < co. By (the proof of) Proposition we conclude that all quasitraces on
unital, exact C*-algebras are tracial states. O

In the proof above, before we invoke exactness of A in order to obtain matrix approxi-
mations for the elements wy, we, we actually obtain the following theorem.

Corollary 4.36 (Haagerup). Let A be a unital C*-algebra. Then A admits no tracial state if
and only if A® C*(Fs) is properly infinite.
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Proof. If A ® C}(Fy) is properly infinite, then A clearly cannot admit tracial states as A
embeds unitally in A ® C(Fy). Conversely, suppose that A admits no tracial state. The
proof of Theorem provides elements wy, w2 € A ® C}(Fs) for which

. 1
|wiw; — 0551 < "t

and hence A ® C}(Fo) will be properly infinite by Proposition [2.13] O

One might ask whether similar results hold for other C*-algebras than C}(F«), that is,
for what C*-algebras B is it true that non-traciality of A implies that A ® B is properly
infinite. This question remains open and is probably quite hard; for instance, if one considers
B = Z the Jiang-Su algebra, then A ® Z is either properly infinite or contains a quasitrace,
see Proposition [2.26] Therefore, if it were true that A non-tracial implies that A® Z is prop-
erly infinite, then Kaplansky’s conjecture would be answered in the affirmative for unital
C*-algebras.

The use of exactness in Theorem [4.35] is very explicit in that we take elements from A ®
0° (M, (C))gen)/co((My, (C))ren) and approximate them by elements in the C*-subalgebra
A®0>°((My, (C))ren) of £2°((M,, (A))ken). However, it raises the question of whether there
exists lifts ¢;(k) € My, (C) of s; + s} for which the argument holds without resorting to ex-
actness in A. The wish is unfortunately not granted as the following proposition, which is a
variation of [29, Proposition 4.9], shows. First, we provide a quick lemma, which is contained
in the proof of [29, Lemma 4.8].

Lemma 4.37. Let n € N and let x = (xi5),y = (vij) € Mn(C) be matrices. Then
lz @yl > tr(a"y).

Proof. Let (e;)!_; be an orthonormal basis for C", and let e = ﬁ Yo, e;®e; be a unit vector

in C"®C™. From the definition of the operator norm, we obtain that ||z ® y|| > [{((z @ y)e, €)|,
and a series of easy calculations gives us that

n

(w@)ee) = 3 (@@ y)eoe) e o)
ij=1

1 n
= > (weiseg) (yei, e5)

ij=1
1 n
= o Z TijYij
2,7=1
= tr(z'y)
as desired. O

Proposition 4.38. Let (cj(k))ren € €°((Mp,(C))ren) for j € N be some self-adjoint lifts of
the elements

55 € Vi € (Mo (€ ol (M ()

Ij:

for j € N and let 6 > 0. Then for all R > 0 there exist n € N, a unital C*-algebra A
and elements ai,...,an € A with > " afa; = 14 and ||>°7_ a;af|] < & with the following
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property: If one defines the elements
wi(k) = a; ®ci(k),
i=1
wy(k) = a; ® cipn(k),
i=1

for k € N, then we may find ko € N such that |w; (k)| > R.

Proof. Find an infinite-dimensional Hilbert space H such that (cj(k))reny € B(H) for each
j € N, and let (s;);en be a sequence of isometries with mutually orthogonal range projections
witnessing the properly infiniteness of B(H). Let N € N be arbitrary. Consider the polar
decomposition ¢;(k) = ui(k) |ci(k)| for each i,k € N. Find m € N, and A1, Ao > 0 for which
we obtain the following relations:

N +mXy =1 and N+ X <6

This can be done virtually explicitly: Let A\; = NLH and find Ao > 0 such that

5(1—)2 Ao and — N+l eN.

N+1 A2
From these quantities, define the elements ay,...,antm € B(H) by
a; = v/ Al(m(k))kGNa for 1 < l < N7
Gitm = V A2Si, for N+1<i< N +m.

Here w means the matrix constructed from u € My (C) with all its entries complex conjugated.

The constraints imposed on m, A1 and Ao are exactly those to guarantee that the family
(ai)f\i{m satisfies the properties of Proposition that is,

N+m N+m
Z aja; =1, and Z a;a; || <0,
i=1 =1
which follows from the fact that
N+m N+m
Z aja; = NA1 + mAg, and Z a;a; || < N+ Ao
i=1 i=1

Let A = C*((a;)F™) be the C*-algebra generated by this family. Then a series of calcula-
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tions and an application of Lemma give us the following inequalities:

N
Z VAL (0)en @ ci(k)

[wr(R)[| =

Z\Ful ® ci(k

= sup
leN

k) ® ci(k

> J»Ztrnk (ui (k) ci(k))
> fztrnk uz >|C7’( )|)
_ \/)\TZtrnkﬂCz(k))

=1

Since (c;(k))ken are lifts of the elements z; = 3(s; + s7) for all i € N, we find from the
embedding of C(F) in £2°((M,, (C))ken)/co((My, (C))ren) that

Jim try, (lei(k)]) = 7(|2il)

with 7 being the canonical tracial state on C*(F ). By considering the C*-subalgebra
generated by the unitary element u; € C(Fo ), we may realise that

(| /|f| dp

with f being the function for which f(u;) = x; for i € N, where (u;);ey are the canonical
unitary generators of C)(F ), and where p is the Haar measure on the spectrum o(u;) = T.
In particular, one may calculate that

e= [ 1l du>o
T
Combining everything together, we obtain that
limsup [l ()] > VAN

k—o0

with the right-hand side being a divergent sequence in N, since

NV§
VAN = ——=¢& —
W= T
as N — oo. In particular, we may find some N € N and k£ € N for which ||w;(k)|| > R. This
completes the proof. ]

Note that the argument deals with a universal choice of the lifts. It is hence not necessarily
true that there exists any unital non-exact C*-algebra A and elements a1, ...,a, € A with
S aja; = 1and |X0 aaf|| < 6 for which no lift of z; = 1(s; + s7) will satisfy the
arguments of Theorem What we have shown is that there exists no universal lifts of
the elements x; for which the arguments hold for any unital C*-algebra. Moreover, one
could have hoped that the C*-algebra A constructed might have some interesting properties
to analyse with regards to the Kaplansky conjecture. Unfortunately, since A admits Cuntz
isometries by construction, A is a properly infinite C*-algebra.

48



5 Faithful tracial states and the QFTS property

Up until this point, one of the main points of the thesis has been answering the question
of when C*-algebras admit tracial states. This chapter is, in principle, not different in that
regard, but we are now interested in having more structure to the tracial states. Earlier, we
mentioned how traciality of C*-algebras is often regarded as a finite property of C*-algebras,
and how this is somewhat a misnomer as the infinite yet tracial Toeplitz algebra 7 shows —
the existence of a tracial state does not inhibit infiniteness of the unit, nor the existence of
some properly infinite projection. However, Proposition shows that the existence of a
faithful tracial state implies stably finiteness, and would thus hinder these possible infinities
from appearing. In this chapter, we shall study the phenomenon of when C*-algebras has
the property that they admit faithful tracial states, and more specifically when they have
the deeply finite property of having faithful tracial states on all quotients.

The remainder of this chapter is essentially a rewrite of the author’s preprint [45] with a
few adjustments. We begin the chapter with a quick overview of (strong) quasidiagonality,
which is what introduced the author to study the notion of admitting faithful tracial states
on the quotients. The point of this chapter is to give a brief expository review of some
cherry-picked results, with an emphasis on the finiteness properties of (strong) quasidiag-
onality. Afterwards, we review known results regarding existence of separating families of
tracial states, which is a generalisation of admitting a faithful tracial state. Later on, and
inspired by the idea of irreducible *-representations not intersecting the compact operators
non-trivially, we examine when all quotients of a C*-algebras admit faithful tracial states,
which we coin the QFTS property. We prove that, under certain conditions, this property
is equivalent to having no stable intermediate quotients. This can be seen as a converse to
the well-known result that admitting stable ideals (or, in general, stable C*-subalgebras) is
an obstruction to admitting a faithful tracial state.

5.1 An overview of (strong) quasidiagonality

Originally, quasidiagonality was a property introduced by Halmos in [32] as a way of general-
ising block-diagonal operators, but it has been of huge importance within C*-algebraic theory
and especially within Elliott’s classification program. In this section, we shall take a look
at quasidiagonality, the related concept of strong quasidiagonality, and when C*-algebras
have these properties. The section is meant as an exposition to a rich field of operator al-
gebras, and it gives a concrete reason as to why one might be interested in studying when
C*-algebras admit faithful tracial states, which is the main focus of this chapter. We shall
only provide some proofs; many of the details may be found in [I4, Chapter 7].

Definition 5.1. Let A be a C*-algebra, and let 7: A — B(H) be a *-representation. We say
that 7 is a quasidiagonal representation, or that w(A) is a quasidiagonal set of operators, if
for each finite set F' C w(A), for each finite set V' C H, and for each € > 0 there exists a
finite-rank projection P € B(H) for which

IIPT]| <2  and  [Po—uv]<e
foral T € FandveV.

The notion of quasidiagonality of operators is dependent on the choice of concrete rep-
resentation, and it turns out that it is not a C*-algebraic property; in [31, Example 7],
Hadwin constructs two *-isomorphic, concretely represented C*-algebras, one of which is a
quasidiagonal set of operators, but the other set is not. This shows that the existence of
some faithful, quasidiagonal *-representation does not imply that all faithful, quasidiagonal
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*_representations need to be quasidiagonal. The representation theoretic definition of be-
ing quasidiagonal remedies this by assuming the existence of some faithful, quasidiagonal
*_representation.

Definition 5.2. We say that a C*-algebra is quasidiagonal if it admits a faithful, quasidiagonal
*_representation. Moreover, we say that a C*-algebra is strongly quasidiagonal if all its *-

representations are quasidiagonal.

As mentioned above, one might have non-quasidiagonal, faithful *-representations on qua-
sidiagonal C*-algebras. The following theorem shows that the obstruction is the possibility
of the *-representation intersecting the compact operators non-trivially. Terminologically,
we say that a *-representation m: A — B(H) is essential if 7(A) NK(H) = {0}. We also
mention a characterisation of quasidiagonality, which is used briefly later, and which shows
how quasidiagonality is inherently an approximation property of C*-algebras similar to e.g.
nuclearity, although the two are not logically related.

Theorem 5.3. Let A be a C*-algebra. The following are equivalent.
(i) A is a quasidiagonal C*-algebra.
(i1) All faithful and essential *-representations of A are quasidiagonal.

(iii) A has the following approximation property: There exists a net of c.c.p. maps px: A —
My, (C) for which

[pa(ab) — pa(a)or(d)]| — 0 and lea(a)l| = llall,
for all a,b € A.

For a proof, we refer to [14, Theorem 7.2.5].

One way that quasidiagonality fits well within the subject of this thesis is exemplified by
the following proposition, which shows that quasidiagonality implies stably finiteness, and
we even obtain a tracial state in the unital case.

Proposition 5.4. Let A be a quasidiagonal C*-algebra. Then M, (A) is finite for all n € N.
If moreover A is unital, then it admits a tracial state.

Proof. We first show that M, (A) is finite for all n € N. As A being quasidiagonal implies
that any matrix algebra over A as well as the unitisation of A is quasidiagonal, it suffices
to show that a unital, quasidiagonal C*-algebra A is always finite. Suppose that s € A is
a proper isometry, and let py: A — Mj, (C) be asymptotically multiplicative and asymp-
totically isometric u.c.p. maps from Theorem [5.3((iii). Then p)(s*s) — 1, yet @x(ss*) 4 1,
which is impossible.

Now suppose that A is a unital, quasidiagonal C*-algebra, and let py: A — My, (C) be
asymptotically multiplicative and asymptotically isometric u.c.p. maps witnessing quasidi-
agonality. Let try, be the (unique) tracial state on My, (C), and consider the family of states
(trg, o@a)aea on A. Since A is unital, the state space S(A) is compact, and any accumulation
point of this family will provide a tracial state on A. O

To get a feeling for (strong) quasidiagonality of C*-algebras, we shall take a closer look at
quasidiagonality of group-C*-algebras. The study was initiated by Rosenberg in an appendix
to Hadwin’s aforementioned paper [31], where he showed that quasidiagonality of the reduced
group-C*-algebra implies amenability of the group. A group G is said to be amenable if
there exists a left-G-invariant state on £°°(G); see also [14, Theorem 2.6.8] for a few of the
approximately 10%0™ different characterisations of amenability.
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Theorem 5.5 (Rosenberg). Let G be a discrete group. If C}(G) is quasidiagonal, then G is
amenable.

There are several proofs of this fact; the original may be found in the appendix to [31],
and a more modern version dealing with amenable tracial states, which are actually those
constructed in Proposition might be found in [14] Corollary 7.1.17]. Rosenberg’s theorem
implies specifically that quasidiagonality and stably finiteness are not equivalent properties
— for instance, the free group F,, on n generators for any 2 < n < oo are non-amenable,
so C}(F,,) are not quasidiagonal C*-algebras, however they are stably finite as they admit
faithful tracial states cf. Proposition A famous conjecture due to Blackadar—Kirchberg
[8] states that this is impossible in the nuclear case:

Conjecture 5.6 (Blackadar—Kirchberg). A separable, nuclear C*-algebra is stably finite if and
only if it is quasidiagonal.

In the appendix in which Rosenberg proved his theorem, Theorem he conjectured
that the converse should hold, and hence that amenability of a group G should be equivalent
with the reduced group-C*-algebra C(G) being quasidiagonal. In [69], Tikuisis, White, and
Winter proved this by showing that a large class of C*-algebras are in fact quasidiagonal,
which also improved the result of the Elliott classification program [23]. We mention the
following refinement due to Gabe [25]; see also [67] for an elegant proof of the result. Before
we mention the result, let us define two properties of tracial states related to both amenability
and quasidiagonality.

Definition 5.7. Let A be a unital, separable C*-algebra, and let 7 be a tracial state on A.
We say that:

e 7 is amenable if there exists a sequence ¢y, : A — My, (C) of u.c.p. maps satisfying

len(ab) = en(@)pn(®)lly =0 and  trg, (pnla)) = 7(a),
for all a,b € A, where |||, is the 2-norm induced on A by the tracial state 7.

e 7 is quasidiagonal if there exists a sequence ¢, : A — My, (C) of u.c.p. maps satisfying

len(ab) — on(a)en(®)| =0 and  try, (¢n(a)) = 7(a),
for all a,b € A.

It is immediate that all quasidiagonal tracial states are amenable, but it is unknown
whether the converse holds. The converse to Rosenberg’s theorem can be seen as a partial
answer to this question for faithful tracial states in the exact, unital, separable case.

Theorem 5.8 (Tikuisis-White-Winter, Gabe, Schafhauser). Suppose that A is a separable,
unital and exact C*-algebra satisfying the UCT. Then all faithful, amenable tracial states on
A are quasidiagonal.

The reader should be aware that the original theorem by Tikuisis-White-Winter was in
the nuclear case, and any tracial state on a nuclear C*-algebra is automatically amenable
by [14, Proposition 6.3.4], hence this assumption is vacuous in the original formulation.
The following proposition due to Gabe [25, Proposition 3.4], with a weaker formulation in
the original Tikuisis~-White-Winter paper [69, Proposition 1.4], provides the last piece of
machinery in using Theorem to obtain quasidiagonality.

Proposition 5.9. If A is a separable, unital, and exact C*-algebra with a faithful, quasidiagonal
tracial state, then A is quasidiagonal.
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Let us look at some implications, namely how the theorem proves the converse to Rosen-
berg’s theorem, and that it partially resolves Blackadar—Kirchberg’s conjecture by showing
it in the affirmative for simple C*-algebras satisfying the UCT [69, Corollary 6.1].

Corollary 5.10 (Tikuisis—-White-Winter). Conjecture holds for the class of simple C*-
algebras in the UCT class.

For the unital case, the proof is quite straightforward: If A is a separable, simple, nuclear
and stably finite C*-algebra, then A admits a tracial state by Theorem [3.19] and simplicity
implies that this is necessarily a faithful tracial state. This tracial state is hence quasidiag-
onal by Theorem which implies that A is quasidiagonal by Proposition

The converse to Rosenberg’s theorem is also quite straightforward, when one has the right
tools.

Corollary 5.11 (Tikuisis—-White-Winter). If G is a discrete, amenable group, then C}(QG) is
a quasidiagonal C*-algebra.

Proof. We prove the case for countable groups — the uncountable case follows by noting
that any group can be realised as an inductive limit of its countable subgroups. Since G
is amenable, C(G) is nuclear and UCT, cf. [14, Theorem 2.6.8] and [70]. Moreover, the
C}(QG) canonically admits a faithful tracial state, which is quasidiagonal by Theorem [5.8
hence C}(G) is quasidiagonal by Proposition O

It should be noted that quasidiagonality of the full group-C*-algebra C*(G) does not
imply that G is amenable; for example, C*(F,) is quasidiagonal for any 2 < n < oo, [14]
Theorem 7.4.1], yet I, is non-amenable for any n. If C*(G) is strongly quasidiagonal, then all
quotients will be quasidiagonal, so in particular the reduced group-C*-algebra C)(G), and
hence strong quasidiagonality implies amenability. The converse is false, as the following
example known as the Lamplighter group shows.

Proposition 5.12 (Carrién-Dadarlat-Eckhardt). Consider the group G = Q) Zo X Z with
the action « being the shift action. Then G is an amenable group such that C*(G) has an
infinite quotient. In particular, C*(G) is not strongly quasidiagonal.

Proof. Embed @, Zo @ Z in (*(Z) via @, Za 2 (t;)jez — diag(...,A_1, Ao, A1, ...), where

)\i _ 1 if t;=e :
-1 if ti 75 €
and with the action Z-being the shift S on B(¢2(Z)). Let (§,)nen be the canonical basis of

?*(Z). Consider the element T € C*(G) given by T = diag(¢;) with & = 1 for i > 0 and
& =—1forv <0, and let P = %(I +T). Then the element V = SP is defined by

V(Sn: 5n+1 1fn>0
0 ifn<0

It is now an easy calculation to verify that V*V —VV* > 0, and hence V*V is equivalent to a
proper subprojection of itself, that is, V*V is an infinite projection. We conclude that C*(G)
has an infinite quotient, and hence it cannot be a strongly quasidiagonal C*-algebra. O

A generalisation of the above result may be found in [15, Theorem 3.4]. In both the proof
of Proposition [5.12]and in the generalisations, the structure of the proof is similar: Construct
a representation of the group with an infinite projection. However, it is important to note
that if A is a C*-algebra for which all quotients are stably finite or even quasidiagonal, then
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A is not necessarily strongly quasidiagonal [13, Example 20], so the converse strategy does
not hold in general. Once again, the issue is that while a given quotient may be a quasidi-
agonal C*-algebra, not all faithful, quasidiagonal *-representations need be quasidiagonal.
To put it more mathematically: Suppose that A is a C*-algebra, and let 7: A — B(H) be
a *-representation for which m(A) is a quasidiagonal C*-algebra. Then 7(A) need not be
a quasidiagonal set of operators — it may be that there exists a faithful *-representation
p: w(A) — B(H') for which p(r(A)) is a quasidiagonal set of operator. Hence p o7 is a
quasidiagonal *-representation of A, but 7 need not be! The issue once again boils down to
the fact that m(A) might intersect non-trivially with the compact operators on H. Hence
if all *-representations are assumed to be essential, this obstruction would not be possible,
and the C*-algebra A would be strongly quasidiagonal by Theorem Since a C*-algebra
is strongly quasidiagonal if and only if all irreducible *-representations are quasidiagonal
by [31, Proposition 5], one only needs to verify that all irreducible *-representations are
essential, e.g. by showing that all images of irreducible *-representations, also known as the
primitive quotients, cannot intersect non-trivially with the compacts. We shall see later in
the thesis, c.f. Theorem how this might work in practice, although the way of guar-
anteeing quasidiagonality of the quotients is an issue due to the UCT assumption of the
Tikuisis—White-Winter theorem.

Let us lastly mention the known results about strong quasidiagonality of discrete groups.
First, we introduce some terminology. Let Z(G) be the center of G and recursively define
Z,(G) for n > 2 via Z,(G)/Z,-1(G) = 2(G/Z,-1(G)) with Z1(G) = Z(G). If there exists
n € N such that Z,(G) = G, then we say that G is nilpotent. We furthermore say that G
is virtually nilpotent if it contains a nilpotent subgroup of finite index. It turns out that
virtually nilpotent groups are always strongly quasidiagonal [22]. In fact, one may even take
inductive limits of such groups, since strong quasidiagonality is preserved under inductive
limits.

Theorem 5.13 (Eckhardt—Gillaspy—McKenney). If G is a inductive limit of virtually nilpo-
tent, discrete groups, then C*(Q) is strongly quasidiagonal.

The converse does not hold — prior to the above result, Eckhardt constructed a certain
semi-direct product Z3 x, Z?, which is strongly quasidiagonal, yet which is not virtually
nilpotent [20].

We end this section with a brief comment on the quasidiagonality of just-infinite C*-algebras.
In [27], Grigorchuk, Musat and Rgrdam introduced the notion of just-infiniteness for C*-
algebra analogously to the group theoretical property of the same name. We say that a
C*-algebra A is just-infinite if it is infinite-dimensional and all its proper quotients are
finite-dimensional. While these have a certain almost finite-dimensional flavour, they can
admit quite exotic behaviour; for example, any infinite-dimensional and simple C*-algebra is
trivially just-infinite, e.g., the Cuntz algebra Q. Li initiated in [43] the analysis of quasidi-
agonality of just-infinite C*-algebras and proved, among other things, that quasidiagonality
and inner quasidiagonality coincide among separable just-infinite C*-algebra. This proof
uses the classification of just-infinite C*-algebras of [27, Theorem 3.10], but there is an even
stronger and more elementary proof without resorting to this classification as seen below.

Theorem 5.14. A just-infinite C*-algebra is quasidiagonal if and only if it is strongly qua-
sitdiagonal.

Proof. 1t is clear that strongly quasidiagonal C*-algebras are quasidiagonal, so suppose that
A is a quasidiagonal C*-algebra. Observe that all non-faithful *-representations of A are
quasidiagonal since all the proper quotients of A are finite-dimensional. Hence we only
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need to prove quasidiagonality of faithful irreducible *-representations. So assume that
m: A — B(H) is a faithful, irreducible *-representation, then there are two possibilities:
Either 7 is essential, or K(H) is an ideal in w(A). If 7 is essential, then as A is quasidiagonal
and 7 is faithful, 7 is quasidiagonal. So suppose that K(H) is an ideal in 7(A). Then either
m(A) 2 K(H), or m(A) is an extension of the AF-algebra K(H ) and the finite-dimensional C*-
algebra m(A)/K(H). Consequently, m(A) is an AF-algebra and, thus, strongly quasidiagonal.
Hence A is strongly quasidiagonal (and, in fact, an AF-algebra). O

Corollary 5.15. Let G be a discrete group such that C*(G) is just-infinite. Then C*(G) is
strongly quasidiagonal.

Proof. Consider the canonical surjection C*(G) — C}(G). As C*(G) is just-infinite, we must
either have that this is an isomorphism or that C}(G) is finite-dimensional (in which case
the surjection is also an isomorphism). In particular, G is amenable and hence C}(G) is
quasidiagonal by Corollary Therefore, by Theorem C*(G) is strongly quasidiag-
onal. O

Following the terminology of [27, Theorem 3.10], any just-infinite C*-algebra of type
(7) is residually-finite dimensional and, hence, strongly quasidiagonal by Theorem
Since type («) consists of all simple and infinite-dimensional C*-algebras, there are plenty of
quasidiagonal and non-quasidiagonal examples in this type. It is unknown which just-infinite
C*-algebras of type () are quasidiagonal, but the following trivial observation, which is
contained in the proof of Theorem [5.14] provides a subclass of quasidiagonal just-infinite
C*-algebras.

Proposition 5.16. If A is a non-simple just-infinite C*-algebra which has a non-essential
irreducible *-representation, then A is of type (8) and (strongly) quasidiagonal.

It is worth noting that, since separable just-infinite C*-algebras are primitive [27, Lemma
3.2], the existence of a faithful irreducible *-representation is guaranteed. Hence one only
needs to examine this representation to determine strong quasidiagonality of just-infinite
C*-algebras: If it is non-essential or it is essential and quasidiagonal, the C*-algebra is
strongly quasidiagonal. We can summarise this in the following corollary, which gives the
quasidiagonality dichotomy of just-infinite C*-algebras.

Corollary 5.17. Let A be a separable just-infinite C*-algebra with a faithful irreducible *-
representation w: A — B(H). Then A is strongly quasidiagonal if and only if m is quasidi-
agonal.

5.2 Separating families of tracial states on C*-algebras

This section provides an overview of the mostly known results regarding separating families of
tracial states. We say that A has a separating family of tracial states if, for any positive non-
zero a € A, there exists 7 € T(A) such that 7(a) # 0 or, equivalently, if () cp(4) Ir = {0}. In
general, admitting a faithful tracial state clearly implies having a separating family of tracial
states, and the two properties are equivalent for separable, unital C*-algebras:

Proposition 5.18. Let A be a separable, unital C*-algebra. The following are equivalent.
(i) A admits a faithful tracial state,
(ii) A has a separating family of tracial states,

(iii) each non-zero ideal in A admits a non-zero bounded positive trace.
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Proof. The implications (i)=-(ii)=-(iii) are trivial. In order to prove (ii)=-(i), we first show
that, for any non-zero a € A, there exists a tracial state 7 € T(A) such that ||la + L] >
|lal| /2. We may, without loss of generality, assume that ||a|| = 1. Let g: [0,1] — [0, 1] be the
piecewise linear continuous function which is zero on [0, 1/2] with g(1) = 1. By the continuous
functional calculus, g(a) is a non-zero, positive element in A and, by assumption, there exists
a tracial state 7 € T(A) such that 7(g(a)) # 0. It then follows that g(a+I;) = g(a)+ I # 0,
and as ¢ is zero on [0,1/2], we hence conclude that |a+ I-|| > 1/2. We shall now use
this fact in showing that A admits a faithful tracial state. By separability, there exists a
countable norm-dense sequence (ay)nen of positive elements in A. By the above, we can, for
each n € N, find a tracial state 7, for which [|a, + I, || > |la,|| /2. Let 7= 7 /2" Tt
is easily verified that 7 is a tracial state, and that I, = [,y Ir,. By this construction, it
follows that, for any n € N,

llanll

2 Y
and hence by continuity ||a + I;|| > ||a|| /2 for all positive a € A. This implies that 7(a) # 0
for all positive non-zero a € A, i.e., 7 is faithful.

lan + Ir|| = llan + Ir, [| =

We now prove the remaining implication (iii)=-(ii). Consider the ideal Iy = () cp(a) I
and observe that this is non-zero if and only if (ii) is false. For the sake of reaching a contra-
diction, suppose that Iy is non-zero. By assumption, there exists a non-zero bounded positive
trace on Iy, which can be extended to all of A by Proposition [2.17](i). Upon normalising to
ensure unitality of this trace, we can assume that it is a tracial state; call it 79. But since 7
is non-zero on Ij, we reach the contradiction that I is not contained in I,. ]

There is a purely algebraic reformulation of admitting a separating family of tracial states
due to Cuntz—Pedersen [17, Theorem 3.4].

Proposition 5.19 (Cuntz—Pedersen, 1979). A C*-algebra A has a separating family of tracial
states if and only if, for any x1,...,x, € A with Y " |zl <> | wfx;, we have the equality

Do T =D

Despite the visual appeal of this characterisation, it is very difficult to verify it for some
given C*-algebras and, in general, proving the existence of separating families of tracial states
is not an easy task. We mention a few classes below, which are mostly trivial facts and easy
to verify, with the added comment that (v) is a combination of Theorem and Theorem
to prove the existence of a tracial state, and then simplicity will guarantee faithfulness
of this tracial state, as its trace-kernel ideal must be the zero C*-algebra.

Example 5.20. The following classes of C*-algebras all admit separating families of tracial
states.

(i
(ii) Abelian C*-algebras,

Finite-dimensional C*-algebras,

*(Q) for any discrete group G,

)
)
(iii) Residually finite dimensional C*-algebras,
(iv) C
)

(v

Simple, unital, stably not properly infinite, exact C*-algebras.

Note that while the reduced group C*-algebras of discrete groups always admit faith-
ful tracial states, the same does not hold for full group-C*-algebras. Bekka showed in [3]
Corollary 5] that the C*-algebras C*(SL,,(Z)) do not admit faithful tracial states for any
n > 3.
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Proposition 5.21. Let A and B be unital C*-algebras.
(i) If A has a separating family of tracial states, then so does any C*-subalgebra of A.

(ii) The minimal tensor product A® B has a separating family of tracial states if and only
if both A and B do.

(iii) A has a separating family of tracial states if and only if M, (A) does for some (hence
all) n € N.

(iv) If A= A1 ®...® A, is a finite direct sum of C*-algebras each with separating families
of tracial states, then A has a separating family of tracial states.

(v) If I is an ideal in A and I contains a separating family of tracial states, then their
canonical tracial extensions to A form a separating family of tracial states if and only
if I is an essential ideal in A. In particular, if any C*-algebra I has a separating family
of tracial states, then so does the multiplier algebra M(I).

(vi) IfI is anideal in A with a separating family of tracial states, and if A/I has a separating
family of tracial states, then so does A. In other words, admitting separating families
of tracial states is preserved by taking extensions.

Proof. (i): This is immediate.

(ii): Since A and B can be realised as C*-subalgebras of A ® B, one direction is imme-
diate by the use of (i). So assume that both A and B have a separating family of tracial
states. Suppose, for the sake of reaching a contradiction, that the ideal

I= (O L

TET(ARB)

is non-zero. By Kirchberg’s slice lemma, see [59, Lemma 4.1.9], we find a non-zero element
z € A® B with z*z € I such that zz* = a ® b for some positive a € A and b € B. Observe
that this implies z € I. As A and B both have separating family of tracial states, we may
find tracial states 74 and 75 on A and B, respectively, such that 74(a) # 0 and 75(b) # 0.
But then we clearly reach a contradiction, as

(TAa®7B)(2"2) = (TA®TB)(22") = (TA @ 7TB)(a ®b) = Ta(a)TB(b) # 0,

which would imply that z ¢ I, contradicting the construction of z.

(iii): This follows from (ii), since M, (A4) = M, (C) ® A and M,,(C) admits a faithful tracial
state for every n € N.

(iv): This is obvious.

(v): Suppose that I is an essential ideal in A. If 7 € T(I) is a tracial state, we denote by 7/
the canonically extended tracial state on A. Assume that a € A satisfies that 7/(a*a) = 0
for all 7/ € T(A). In particular, for any b € I, we find that

7((ba)*(ba)) < 67| 7' (a"a) = 0,

for all 7 € T(I). Since I has a separating family of tracial states, this means that ba = 0
for all b € I or, equivalently, that fa = 0. As [ is an essential ideal in A, we get that a =0
as desired. Conversely, suppose that the canonical extensions of tracial states of I on A are
separating. Let a € AT \ {0} be arbitrary and suppose that Ia = al = 0. By assumption,
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there exists a tracial state 7 on I for which the canonical extension 7/ on A satisfies that
7'(a) # 0. However, this contradicts the assumption that a is orthogonal to I, since

7(a) = lim7(aey) = 0,

where (e))aea is an approximate unit for I, see Proposition m

(vi): Let a € A* \ {0} be arbitrary and let 7: A — A/I denote the quotient map. If
a € I, then there exists a tracial state 7 on I such that 7(a) > 0, which extends canonically
to a tracial state on A. On the other hand, if a & I, then w(a) € (A/I)" \ {0} and, by
assumption, there exists a tracial state 7 on A/I for which 7/(m(a)) > 0. This proves that
A has a separating family of tracial states. O

The following proposition is an easy extension of the case with faithful tracial states, see
Proposition so we skip the proof.

Proposition 5.22. Let A be a C*-algebra with a separating family of tracial states. Then (the
unitisation of ) My(A) contains no proper isometries for any n € N, and A has no stable
C*-subalgebra.

We now give some counterexamples to other possible permanence properties.

Example 5.23. Admitting a separating family of tracial states does not pass to inductive
limits.

Proof. Consider the unitization K of the compact operators. This is a unital AF-algebra,
hence it is the inductive limit of finite-dimensional C*-algebras admitting faithful tracial
states, but it does not admit a faithful tracial state itself, since it contains K as an ideal. [

Example 5.24. Admitting a separating family of tracial states does not pass to quotients.

Proof. Any separable, unital C*-algebra can be realised as a quotient of the residually finite-
dimensional C*-algebra C*(F). O

It does not hold in general that admitting separating families of tracial states passes
to mazimal tensor products. By following the proof of [42, Proposition 3.13] in the case
D = A ®max B, one obtains the next proposition.

Proposition 5.25. Let A and B be unital C*-algebras. If AQ@max B admits a separating family
of tracial states, then A @max B=A® B.

We can use this proposition to show that Proposition (ii) fails for maximal tensor
products. It is well-known, see e.g. [68], that C}(F2) ®max C(F2) # C¥(F2) ® C(Fs). By
Proposition the maximal tensor product does not admit a separating family of tracial
states. On the other hand, C}(F2) admits a faithful tracial state being the reduced group-C*-
algebra of a discrete group. Hence the maximal tensor product of two C*-algebras admitting
separating families of tracial states need not admit a separating family of tracial states.

Another interesting usage of Proposition [5.25]is its relation to the Connes embedding prob-
lem, which is how it originally appears in [38]. One equivalent formulation of the Connes em-
bedding problem, see [14, Theorem 13.3.1], is that C*(Foo ) @maxC* (Foo) = C*(Foo ) @ C* (Fg ).
If the maximal tensor product admitted a faithful tracial state, this equality would be
true by Proposition see also [14] Exercise 13.3.1-4]. By the announced negative
answer to the Connes embedding problem [36], we would thus be able to conclude that
C*(Foo X Foo) = C*(Foo) @max C*(Foo) does not admit a faithful tracial state.

Lastly, we examine some equivalent notions of having separating families of tracial states
or admitting a faithful tracial state by using von Neumann terminology.
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Proposition 5.26. Let A be a unital C*-algebra.

(i) A admits a separating family of tracial states if and only if A unitally embeds into a
finite von Neumann algebra.

(ii) A admits a faithful tracial state if and only if A unitally embeds into a I1;-factor.

Proof. (i): Every finite von Neumann algebra has a separating family of tracial states by [6]
II1.2.5.8], so we only need to prove the "only if” direction. For any tracial state 7 € T(A),
we can consider the GNS-representation 7,: A — B(H;). Since ﬂTET(A) I, = {0}, it follows
that the product 7 := @B, cp(a) 771 A = B(H) is injective. Moreover,

Az=r(A)C P (A,

T€T(A)

and the right-hand side is a finite von Neumann algebra.

(ii): A II;-factor immediately admits a faithful tracial state so to prove the other direc-
tion, let us assume that A admits a faithful tracial state 7. Then A unitally embeds via the
GNS representation of 7 into a finite von Neumann algebra M with a normal faithful tracial
state. The claim now follows from the well-known fact that any von Neumann algebra with
a normal faithful tracial state embeds into a II;-factor, see e.g. the proof of [48, Theorem
A1] O

5.3 Faithful tracial states on quotients

In [47], Murphy initiated the study of C*-algebras whose quotients all admit tracial states.
He coined this notion QTS for quotient tracial states and examples of C*-algebras with
the QTS property include unital strongly quasidiagonal C*-algebras and group-C*-algebras
of amenable groups. In this section, we shall consider a stronger condition, namely that
all quotients of the C*-algebra admit faithful tracial states. Continuing the terminology
introduced by Murphy, we shall call this the QFTS property. Let us look at a few examples
of C*-algebras with the QFTS property.

Example 5.27. The following C*-algebras have the QFTS property:
(i) Unital C*-algebras with the QTS property and 77 primitive ideal space,
(ii) C*(G) for virtually nilpotent groups G,
(iii) Subhomogeneous C*-algebras.

Proof. (i): Suppose A is a unital C*-algebra with the QTS property, and suppose that the
primitive ideal space Prim(A) is 77 or, equivalently, that all primitive quotients are simple.
Since A has the QTS property as G is amenable, all primitive quotients will therefore admit
faithful tracial states. Now, if I is any ideal in A, then [ is equal to the intersection of all
primitive ideals containing it, and we get an embedding

AT [ A/

ICJePrim(A)

and we have just proved that the right-hand side admits faithful tracial states.

(ii): If G is virtually nilpotent, then C*(G) has a T} primitive ideal space by [19, Corol-
lary 3.2], and moreover C*(G) has the QTS property. The result now follows from (i).
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(iii): Any quotient of a subhomogeneous C*-algebra is again subhomogeneous, so it suf-
fices to show that unital subhomogeneous C*-algebras admit faithful tracial states, which
follows from Example O

It is immediate that having the QFTS property implies admitting a faithful tracial state,
and the converse fails in general as shown in Example One way of viewing the QFTS
property is by the fact that the ideals are completely characterised by the tracial states.

Proposition 5.28. Let A be a separable, unital C*-algebra. Then A has the QFTS property if
and only if all ideals of A can be realised as the trace-kernel of a tracial state on A.

Proof. Suppose that A has the QFTS property and let I be an ideal in A. Denote by
w: A — A/I the quotient mapping. By the QFTS property, A/I admits a faithful tracial
state 7, which, in turn, induces a tracial state 7 = 7 om on A. It is clear that I C I, so
suppose that a € I;. Then

0=7(a*a) = 7T(w(a*a)) = 7(w(a)*n(a)),
and by faithfulness of 7, we see that w(a) = 0 and, hence, that a € I.

Now suppose that, for any ideal I in A, there exists a tracial state 7 € T(A) such that I. = I.
We can hence induce a tracial state 7 on A/I via 7(w(a)) = 7(a), where 7: A — A/I; is
the quotient map. It is easily verified that 7 is a faithful tracial state, which completes the
proof. O

Using the equivalences of Proposition and the fact that stable C*-algebras cannot
admit bounded traces, we obtain the following.

Proposition 5.29. A separable, unital C*-algebra A has the QFTS property if and only if every
intermediate quotienﬂ admits a tracial state. In particular, if A has the QFTS property, then
A has no stable intermediate quotient and no properly infinite quotients.

One goal of this chapter is to provide a converse to the latter part of Proposition [5.29
and, consequently, give an equivalent reformulation of the QFTS property for some classes
of C*-algebras. We shall attack this problem in two different manners: One by using the
connections between dimension functions on Cuntz semigroups and quasitraces, or tracial
states in this case as we only deal with exact C*-algebras, and another by using a result on
stability of hereditary C*-subalgebras in [33].

We first use the connection between dimension functions and tracial states on exact, unital
C*-algebras as given in Theorem Our starting point is to note that separating families
of tracial states and lower semi-continuous dimension functions are equivalent conditions.

Proposition 5.30. Let A be a unital, exact C*-algebra. Then A has a separating family of
tracial states if and only if Cu(A) has a separating family of lower semi-continuous dimension
functions.

Proof. By a separating family of lower semi-continuous dimension functions we mean that, for
any a € (A®K(H))4, there exists a lower semi-continuous dimension function d € LDF(A)
for which d({a)) # 0. It follows from Theorem and Theorem that we have an affine
bijection between T(A) and LDF(A). The statement of the proposition is merely rewriting
the notion of separating family of tracial states via this association. O

3Recall that an intermediate quotient of A is a C*-algebra of the form I/.J, where J C I C A are ideals in
A. In other words, any intermediate quotient can be realised as the ideal of a quotient of A.
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Proposition entails that understanding the structure of LDF(A) will help in un-
derstanding when C*-algebras admit faithful tracial states. The following proposition due
to Goodear]l and Handelman [26], Proposition 4.2] gives a characterisation of when certain
states exist on ordered Abelian semigroups. For the statement, recall that an element ¢ on
an ordered Abelian semigroup is properly infinite if 2t < t.

Proposition 5.31 (Goodearl-Handelman, 1972). Let S be an ordered Abelian semigroup with
a distinguished order unit u and assume that no multiple of u is properly infinite. Let t € S
be arbitrary and set

a, =sup{k/l| k,{ € N and ku < (t},

o =inf{k/l |k, € N and ¢t < ku}.

Then 0 < o, < a* and there ezists d € X(S,u) with d(t) = « if and only if o, < a < a*.
From this we immediately get the following corollary.

Corollary 5.32. Let S be an ordered Abelian semigroup with a distinguished order unit, and
letteS. Then d(t) =0 for all d € 3(S,u) if and only if

o =inf{k/l| kL €N and lt < ku} = 0.

Observe that while this corollary seems almost directly applicable to Proposition [5.30
there is an important subtlety, namely that in that proposition we are interested in separating
families of lower semi-continuous dimension functions. To remedy this, we need to look at
some of the regularity properties of Cuntz semigroups that we examined earlier in Chapter
2. For example, assuming almost unperforation allows us to expand on Corollary

Lemma 5.33. Let S be an ordered Abelian semigroup with a distinguished order unit u, and
suppose that S is almost unperforated. Lett € S. The following are equivalent:

(i) d(t) =0 for all d € (S, u),

(ii) inf{k/l |k, € N and ¢t < ku} =0,
(iii) There exists k € N such that ¢t < ku for all £ € N,
(iv) £t <wu for all £ € N.

Proof. 1t is clear that (iv)=-(iii)=(ii) and (ii)<(i) is the content of Corollary so let
us prove (i)=(iv). Suppose d(t) = 0 for all d € X(S,u). Since d(¢t) = 0 for all £ € N and
d(u) = 1, whenever d € X(S,u), and as u is an order unit for S, we find, cf. [50], that there
exists n € N such that (n 4+ 1)t < nu, which implies /¢ < u by almost unperforation of
S. O

Note that this proposition needs almost unperforation to be true. Consider the ordered
Abelian semigroup S = {0, 1,00} equipped with 1+ 1 = oo and the usual ordering. Observe
that S has 1-comparison, but it is not almost unperforated. Note that u = 1 is an order
unit, and that ¢t < 2u = oo for all ¢t € S and ¢ € N, such that (i) above holds. However, (iv)
is false, since oo £ 1.

An interesting related property to the equivalent conditions of Lemma [5.33] is the notion
of f-comparison introduced by Bosa-Petzka in [12].

Definition 5.34. Let S be an ordered Abelian semigroup. Define for each x,y € S the
numerical quantity

B(xz,y) =inf{k/l| k,¢ € N and ¢z < ky}.

We say that S has S-comparison if, whenever x,y € S satisfies 5(z,y) = 0, then x < y.
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It holds in general that S-comparison implies w-comparison, but the above example
shows that they are not equivalent properties for ordered Abelian semigroups. For simple
C*-algebras, however, they are equivalent by the arguments in [I2, Section 5]. Note that
almost unperforation implies S-comparison; the easiest way of seeing this is to note that
B(z,y) < 1if and only if = <s y.

Lemma 5.35. Let S be an Abelian semigroup with a distinguished order unit u and let t € S
be arbitrary. Suppose that S has 3-comparison. Then (i)-(iv) in Lemma[5.33 are equivalent.

Proof. We only need to prove (ii)=(iv). It is easily seen that, if 5(z,y) = 0, then S(¢fz,y) =0
for all £ € N. Observe that (ii) is equivalent to 5(t,u) = 0, and that this implies 5(¢t,u) =0
for all £ € N. Since S has f-comparison, we conclude that ¢t < u for any ¢ € N. O

The next proposition follows immediately from [57, Lemma 2.4(ii)], and we extend the
result in the subsequent lemma assuming stable rank one.

Proposition 5.36. Let A be a unital C*-algebra and assume that £ {a) < (14) for some £ € N
and a € A. Then, for any € > 0, there exists mutually orthogonal, mutually equivalent
positive elements ey, ...,e; € A such that e; ~ (a —¢e)4 foralli=1,... 0.

Lemma 5.37. Let A be a unital C*-algebra with stable rank one and assume that there exists
a € A such that ¢ {a) < (14) for all £ € N. Then, for any ¢ > 0, there exists a sequence
of mutually orthogonal, mutually equivalent positive elements (eg)pen C A such that ey ~

(a —e)y forall £ € N.

Proof. Suppose that £(a) < (14) for all £ € N. Let n € N be arbitrary, then we can use
Proposition [5.36]to construct n pairwise orthogonal and pairwise equivalent positive elements
e1,...,en such that e; ~ (a —e)4 for some e > 0. Let b= 37" | e; and define for each § > 0
the function

5—t -

- fo<t<é
hs(t) =4 ° %0_ -

0 ift>4

Observe that (b —0)4+ L hs(b) and that b+ hs(b) is invertible. Let 6, > 0 be arbitrary, then
we obtain the following inequalities:

n{(a—e)y) + (hs, (b)) = (b) + (hs, (b)) = (u) = (n+1) (a) = n{a) + (a).

By the cancellation theorem of [64, Theorem 4.3], we find that (a) < (hs, (b)). Using [57,
Lemma 2.4], we construct ¢ € hg, (b)Ahs, (b) such that ¢ ~ (a — (¢ + 9,,))+. In particular, we
find that ¢ L (e; — dy,)4 for all i = 1,...,n, and that, for any i = 1,...,n,

¢~ (a—(e40n))t = ((a =€)y = dn)t ~ (€ = On)y-

We have hence shown that, if we can construct n pairwise orthogonal and pairwise equivalent
positive elements ey, . . . , e,, then we can, for any § > 0, construct a positive element e,,41 € A
such that e, 11 L (e;— )+ and e ~ (e;— )4 for any i = 1,...,n. Now we use this process
inductively. Start with any positive element e; € A and let ; > 0. Use the above method
to construct an element es € A with the properties that ea L (e; —d1)+ and e3 ~ (€1 — 1) 4.
Now let d2 > &1 and construct e3 € A such that ez ~ (ea — d2)+ ~ (e1 — (61 + d2))+ and that
these three elements are mutually orthogonal. Continuing this process, we can thus for any
increasing sequence 0 < §; < d2 < - -- construct a sequence of positive elements (e, )pen € A
with the property that, for any m > n,

m—1
€m ~ (en - Z 5k> )
k=n +
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and that these are orthogonal. Since we have no restrictions on the choice of the sequence
(0n)nen, we may take it to be any sequence such that the series 6 = Y7, d,, converges with
limit § < |le1||. Define e}, = (en, — Y e, Ok))+ for each n € N, then we see for any m > n
that

e’} m—1 00 e}
6;:<enz5k> N<en|:z5k+zék:|) N(emzfsk) :6;1'
k=n + k=n k=m + k=m +

The proof of mutual orthogonality goes in a similar fashion. We have thus proved the
existence of a sequence of pairwise orthogonal and pairwise equivalent elements in A. O

Theorem 5.38. Let A be a separable, unital, exact C*-algebra with stable rank one. Assume
that Cu(A) is almost unperforated. The following conditions are equivalent:

(i) A admits no faithful tracial states.
(ii) A contains a non-zero stable C*-subalgebra.
(iii) A contains a non-zero stable hereditary C*-subalgebra.

Proof. The equivalence (ii)<(iii) holds by [35]. We saw that (ii)=(i) in Proposition
so we only need to show (i)=(ii). By Proposition there exists some (a) € Cu(A) such
that d((a)) = 0 for all d € LDF(A). Since Cu(A) is assumed to be almost unperforated, the
set LDF(A) is dense in DF(A) in the topology of pointwise convergence [I8, Theorem 3.3],
and hence d((a)) = 0 for all d € DF(A). Combining Corollary and Lemma implies
that £ (a) < (14) for all £ € N. By Lemma this implies the existence of a sequence
of mutually orthogonal, mutually equivalent positive elements (e;)sen in A. It then follows

from [35] that the hereditary C*-algebra generated by {es}sen is a stable C*-subalgebra of
A. O

Note that Theorem [5.3§| provides a converse result to Proposition It is, hence, of
independent interest, but one can also use the theorem to give an equivalent formulation of
QFTS. We shall, however, use a different method, with which we can avoid the assumption
of stable rank one; do note, however, that this assumption would make the assumption of no
properly infinite unital quotients trivially true in the results to come.

We shall in the sequel use the following result due to Hirshberg—Rgrdam—Winter, [33, The-
orem 3.6], which is reformulated using Theorem

Theorem 5.39 (Hirshberg—Rgrdam—Winter, 2007). Let A be a separable, unital, exact C*-
algebra for which Cu(A) has w-comparison. Let B C A be a hereditary C*-subalgebra. Then
B is stable if and only if B admits no non-zero tracial states and no quotient of B is unital.

Proposition 5.40. Let A be a separable, unital, exact C*-algebra such that Cu(A) is almost
unperforated. If A has no faithful tracial state, then either A has a stable ideal or a unital,
properly infinite quotient (or both).

Proof. Suppose that A has no faithful tracial state. By Proposition there exists an ideal
I in A with no tracial state. Suppose that I is not stable, then Theorem implies that I
has a unital quotient I/J. Observe that if I/J had a tracial state, then so would I via the
quotient map I — I/J. Since I/J is an exact, unital C*-algebra without tracial states, hence
without quasitraces, there exists n € N such that M, (I/J) is properly infinite by Theorem
It follows from Proposition that I/J is properly infinite. Now observe that we,
from unitality of I/J, obtain an isomorphism A/J = A/I & I/J, and hence I/J is a unital
and properly infinite quotient of A. O
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We cannot immediately turn Proposition into an equivalent reformulation of ad-
mitting a faithful tracial state, since admitting a faithful tracial state does not inhibit the
existence of properly infinite quotients; for example, the full group-C*-algebra C*(Fs) ad-
mits a faithful tracial state as it is residually finite-dimensional, but any separable, unital
C*-algebra can be realised as a quotient of it. One way of salvaging this is to assume some
more properties on A, e.g., QTS or stable rank one, which would give a necessary condition
for having a faithful tracial state.

Corollary 5.41. Suppose A is a separable, unital, exact C*-algebra such that Cu(A) is almost
unperforated. Assume that A has no properly infinite quotients (e.g., A has the QTS property
or has stable rank one). Then A admits a faithful tracial state if and only if A has no stable
ideal.

Proof. Apply Proposition and note that A cannot have any properly infinite quotients,
since it either has QTS or stable rank one. 0

Since almost unperforation of Cuntz semigroups is easily seen to pass to quotients, we
can also apply Proposition to the quotients and obtain the following result.

Theorem 5.42. Let A be a separable, unital, exact C*-algebra satisfying that Cu(A) is almost
unperforated. Then A has the QFTS property if and only if A has no stable intermediate
quotients and mo unital, properly infinite quotients.

We now look at some ways of how one may apply the above theorem. Firstly, as men-
tioned previously, by assuming the QTS property one may disregard the possibility of unital,
properly infinite quotients; since we are interested in the existence of faithful tracial states
on the quotients, this is clearly not a big assumption. In general, unital, nuclear C*-algebras
have the QTS property if and only if they are hypertracial, cf. [2]. Assuming almost unper-
foration on the level of Cuntz semigroups might seem like a strong assumption, but we can
luckily invoke various results to weaken this to just w-comparison on all quotients which, by
Robert [56], is provided given finite nuclear dimension.

Corollary 5.43. Let A be a separable, unital C*-algebra with finite nuclear dimension and
QTS. Then A has the QFTS property if and only if A has no stable intermediate quotient.

Proof. One direction is immediate, so assume that A/I is a quotient of A without a faithful
tracial state. Since A/I is unital, it holds by Proposition that A/I ® Z has no faithful
tracial state. Since A/I® Z has QTS and an almost unperforated Cuntz semigroup, it follows
from Proposition that A/I ® Z has a stable ideal. We thus find an ideal J in A/I (i.e.,
an intermediate quotient of A) such that J ® Z is stable. Since the Cuntz semigroup of
J ® Z is almost unperforated, it follows from [33] that J ® Z has no bounded traces and
no unital quotients. In particular, neither does J, since any such would be easily extended
from J to J ® Z. Since A has finite nuclear dimension, which is preserved by taking ideals
and quotients, J has finite nuclear dimension and thus w-comparison by [56, Theorem 1].
A direct application of [49, Proposition 4.7] then proves that J is stable, which finalises the
proof. O

It is not immediate how one can use Corollary to prove that specific C*-algebras
have the QFTS property, since proving the lack of stable intermediate quotients is a difficult
task. However, we can use the result to prove a dichotomy for certain classes of C*-algebras.

Example 5.44. Let X be a compact Hausdorff space with finite covering dimension and
consider an action a of Z on C(X). Since C(X) is Abelian, it follows from [2, Proposition
3.7] that the crossed product C'(X) x4 Z has the QTS property. Moreover, by [34], C(X) x,Z
has finite nuclear dimension. It thus follows from Corollary that C(X) X4 Z has the
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QFTS property if and only if it has no stable intermediate quotients. In particular, this result
holds for groups G x4 Z whenever G is an Abelian group with finite-dimensional Pontryagin
dual.

Recall that if A is a unital C*-algebra with a non-unitary isometry v, then we can embed
the Toeplitz algebra 7 = C*(v) in A, and we can identify K as an ideal in 7. Therefore,
any infinite, unital C*-algebra contains a stable C*-subalgebra. By Corollary we may
extend this to prove the existence of stable ideals of certain C*-algebras and their quotients.

Example 5.45. Consider the Lamplighter group G = Z2!Z from Proposition [5.12] which is an
amenable group and whose C*-algebra has finite nuclear dimension by [34]. The C*-algebra
C*(G) admits an infinite quotient by Proposition such that it does not have the QFTS
property, and Corollary then implies the existence of a stable intermediate quotient of
C*(G).

By the exact same line of reasoning as in Corollary we obtain the following equivalent
reformulation of when certain C*-algebras have faithful tracial states.

Corollary 5.46. Let A be a separable and unital C*-algebra. Assume that Cu(A) has w-
comparison (e.g., A has finite nuclear dimension), and that A has no properly infinite quo-
tients (e.g., A has the QTS property or stable rank one). Then A admits a faithful tracial
state if and only if A has no stable ideals.

Blackadar showed in [I0] that an AF-algebra is stable if and only if no ideals admit a
bounded trace. Since being an AF-algebra is preserved by taking ideals, it thus follows from
Proposition that an AF-algebra admits a faithful tracial state if and only if it admits no
stable ideals. As AF-algebras have finite nuclear dimension (in fact, a C*-algebra has zero
nuclear dimension if and only if it is an AF-algebra [73]) and stable rank one, Corollary
can be seen as a generalisation of this result.

Another possible use of the QFTS property is to prove strong quasidiagonality of C*-algebras
under the assumption that the UCT problem is true. As mentioned earlier, the obstruction
to residually quasidiagonal being equivalent to strong quasidiagonality revolves around the
possibility of irreducible *-representations having non-trivial intersection with the compact
operators. By assuming the QF TS property, we can avoid this issue, and the difficulties now
revolve around when C*-algebras have quasidiagonal quotients. One way of achieving this is
by the following, which also uses the tracial states, but with the caveat that the C*-algebras
need to be residually UCT.

Theorem 5.47. Let A be a separable, nuclear, quasidiagonal C*-algebra. Suppose that A
has the QFTS property, and that all quotients of A satisfy the UCT. Then A is strongly
quasidiagonal.

Proof. Tt suffices to show that all irreducible *-representations of A are quasidiagonal Let
m: A — B(H) be an irreducible *-representation of A with kernel I, and let 7: A/I — B(H)
be the corresponding faithful *-representation on the quotient. Obviously, 7 and 7 have the
same image, and, by assumption, there exists a faithful tracial state on A/I, hence also on
7(A/I). Suppose that 7 is not essential, that is, suppose that K(H)N7(A/I) # {0}. As 7 is
an irreducible *-representation, this implies that K(H) is an ideal in 7(A/I). However, this
is impossible, as we would then obtain a bounded trace on K(H). Therefore, 7 is a faithful
and essential *-representation. Since A is assumed to have the QFTS property, there exists a
faithful tracial state 7 on A/I, which is quasidiagonal by [25, Theorem 4.1]. Therefore, 7 is a
faithful quasidiagonal tracial state on A/I, and A/I is therefore a quasidiagonal C*-algebra
by [69, Proposition 1.4]. Since 7 is a faithful, essential *-representation of a quasidiagonal
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C*-algebra, it is a quasidiagonal *-representation. Consequently, 7 is a quasidiagonal *-
representation, and as m was an arbitrary irreducible *-representation of A, we conclude that
A is strongly quasidiagonal, which completes the proof. O

The assumption of all quotients satisfying the UCT is a strong assumption in the sense
of being difficult to check, and even for relatively well-known classes of C*-algebras it is
unclear when this occurs. In [2I] it is proven that it holds true for (primitive) quotients
of C*(G), whenever G is finitely generated and nilpotent. However, it is seemingly very
difficult to extend these results, and the authors of [22] argue that resolving it for virtually
nilpotent groups might not be any easier than resolving the UCT-problem for nuclear C*-
algebras. If all nuclear C*-algebras were shown to be in the UCT-class, then the assumption
of all quotients satisfying the UCT would, of course, be vacuous in Theorem for nuclear
C*-algebras, but [25 Proposition 5.1] would also resolve this. In particular, we can for group-
C*-algebras achieve the following, which modulo the UCT assumption includes all previously
known examples of strongly quasidiagonal groups.

Corollary 5.48. Let G be a countable, amenable group for which C*(G) has the QFTS prop-
erty. If the UCT congecture holds true, then C*(QG) is strongly quasidiagonal.

If the UCT assumption were to be either vacuous or being true for quotients of group-C*-
algebras, then (inductive limits of) amenable groups with the QF TS property would include
the known examples of strongly quasidiagonal C*-algebras such as the virtually nilpotent
ones from Theorem and Eckhardt’s non-virtually nilpotent example [20].

Using the result on QFTS C*-algebra from Corollary we get the following result.

Corollary 5.49. Let A be a separable, unital, quasidiagonal, QTS C*-algebra with finite nu-
clear dimension, and assume all quotients of A satisfy the UCT. If A has no stable interme-
diate quotients, then A is strongly quasidiagonal.

Proving that a given C*-algebra is not strongly quasidiagonal often revolves around
constructing a quotient with an infinite projection, as exemplified in Proposition and,
more generally, [15, Section 3|. Since the existence of an infinite projection in the quotient
would imply the existence of a stable C*-subalgebra on the quotient, one can hence view
Corollary as a partial converse result to this method.
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6 Further research

As with any PhD-thesis, there are many unresolved questions scattered throughout this the-
sis, and, in earnest, we raise more questions than we actually succeed in answering. The
all-important questions permeating the entire thesis are, obviously, still unresolved, but we
also introduced new terminology and new results, which only lead to even more unknowns.
This chapter is in some sense an overview of some of the most important questions in the
field, as well as the new questions that this thesis has raised.

The absolute main question is whether or not Kaplansky’s conjecture, Conjecture holds
true or not. If Kaplansky’s conjecture were proven in the affirmative, it would have loads of
implications — the state space on Ky(A) for unital C*-algebras is completely determined by
the Choquet simplex T(A) of tracial states, and C*-algebras will have tracial states if and
only if they are stably not properly infinite, cf. Theorem [2.32] If it turns out to be false, then
it raises the question what separates when C*-algebras have quasitraces and tracial states,
i.e., what characterises when C*-algebras admit tracial states?

In the discussion succeeding Theorem [4.34] it is mentioned how the invariant vg(—) is still
poorly understood, and many of the famous questions regarding traciality of C*-algebras
such as Kaplansky’s conjecture potentially revolves around understanding the range of this
invariant better. One particularly immediate question is how vs(M,,(A)) and vs(A) are con-
nected for some unital C*-algebra A and some 0 < § < 1. It is immediate via the unital
embedding A — M, (A) that vs(M,(A)) < vs(A), and Proposition gives the inequality
vs(A) < vs(M,(A))n?. The two quantities are thus asymptotically closely related, but for the
p(—) invariant one obtains pu(My(A)) = [u(A)/n]. This relation, along with pu(pAp) > p(A)
for any full projection p € A, are the cornerstones of constructing the sequence of C*-algebras
(An)nen for which p(A,) — oo with p(A4,) < oo for all n; the matrix algebra relation in
particular entails that one obtains strictly larger p-values by taking the corners of the (SP)
C*-algebra. If one could obtain a similar way of strictly decreasing vs-values by taking ma-
trix algebras, one might be able to prove that the ultraproduct as constructed in Theorem
[4.21) admits a tracial state. One immediate observation in this regard is that if one considers
Rordam’s C*-algebra A with p(A) = n > 2, then vy /5(A) > 2 yet vy /5(My(A)) = 2, which
does provide evidence towards the vg-value decreasing in some sense when taking matrix
algebras. More concretely, it would be interesting if the ultraproduct A from Theorem
admits a tracial state or not.

Another unresolved problem regarding vs(—) is how v5(A) and vy (A) relates to one an-
other for 0 < 6,0’ < 1. Tt is immediate that vs(A) < vg(A) whenever 6 > ¢’ and that one
is finite if and only if the other is, but can we express v5(A) in terms of vs(A)? Using the
language of universal C*-algebras, what is vg (D, 5) for n € N and 0 < 6,8’ < 1?7 Or even
more elementary, what is v5(Dy, 5)7

Regarding QFTS, all known strongly quasidiagonal groups have the QFTS property, and
as stated in Corollary the converse is true modulo the UCT question. Is there a way
of proving this without assuming the UCT, that is, can one prove that amenable groups G
for which C*(G) satisfies the QFTS property are strongly quasidiagonal? It seems unreason-
able that QFTS should characterise strong quasidiagonality of groups, so is there a way of
constructing a strongly quasidiagonal group G such that C*(G) admits a quotient without
a faithful tracial state?
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