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Abstract

We treat three topics in projections of multi-state life insurance contracts, and two

topics in utility theory using the equilibrium approach. We derive a system of forward

differential equations for the retrospective reserve of a with-profit insurance contract,

where the dynamics of the reserve are affine. To reduce the sheer size of the system

of differential equations required for a projection of an entire insurance business, we

reduce the state space of insurance contracts through a transformation of the transition

intensities and payment streams, resulting in a smaller, approximating system of

differential equations. We derive a system of infinite partial differential equations for

the moment-generating function of retrospective reserves with polynomial dynamics.

We truncate the infinite partial differential equations to produce numerically feasible

procedures, applicable for the projection of retrospective reserves. Using an equilibrium

approach, we study how to dynamically approximate utility functions by polynomials

so that there is a small difference in the corresponding optimal controls. Finally

we derive a fixed-point equation for the equilibrium control of an investor with a

prospect-theoretic utility function.
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Preface

This thesis is based on five manuscripts of papers as well as already published papers

and written as part of my fulfilment of the PhD degree at the Department of Math-

ematical Sciences, Faculty of Science, University of Copenhagen. Professor Mogens

Steffensen was my PhD supervisor. The research leading to these manuscripts received

funding from Innovation Fund Denmark under grant number 7076-00029, project title

”ProBaBLI - Projection of Balances and Benefits in Life Insurance”. The ProBaBLI

project has also received an investment from the Danish software company Edlund

A/S, in the form of man-hours. The man-hours provided by Edlund A/S transform the

theoretical research into software products aimed at (primarily Danish) life insurance

companies.

Apart from personal goals, I undertook the PhD studies with a professional goal to

contribute to research in personal finance in a way that I felt was meaningful. Life

insurance and optimal investment are the two topics of personal finance that I have

studied. Given that both topics have an enormous influence on the quality of life of

many people, even a small contribution is in my opinion worthwhile chasing.

The five manuscripts that constitute the bulk of the thesis are written as isolated

scientific contributions. They fall into the two categories that make up the title of the

thesis; projections in life insurance and the equilibrium approach to utility optimization.

Chapter 1 and Chapter 5 are not independent scientific manuscripts, but introductions

to the two categories of the thesis.

I hope that the results of the thesis will be used not only by me, but also by others

who share my interests.
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hopefully not evident in the thesis.
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Summary

The raison d’être of life insurance and pension companies is to carry a risk in exchange

for a premium. With the purpose of improving risk assessment, a statutory set of

rules from the European Parliament require that life insurance and pension companies

project their business into the future. The first part of this thesis deals with the

computational challenges with the task of projection, and the second part deals with

utility optimization problems.

To project an insurance contract, a decision has to be made about which path the

state-process of the contract should follow. Chapters 2, 3 and 4 take as a starting point,

the expected path of the state-process in the projection. The main result in Chapter 2

is a system of forward differential equations for the reserve of a with-profit insurance

contract with affine dynamics of the reserve. Chapter 3 improves the computational

viability of these differential equations, through a system of approximating ad hoc

differential equations.

Revisiting the affine dynamics requirement on the reserve from Chapter 2, a system of

infinite partial differential equations for the moment-generating function of reserves

with polynomial dynamics is derived in Chapter 4. The infinite partial differential

equations are truncated to produce a numerically feasible procedure.

In the last two chapters, two different utility optimization investment problems are

studied in the context of equilibrium theory. How to construct a polynomial approxi-

mation of a utility function so that the resulting optimal control approximates the true

control, is the topic of Chapter 6. This discussion is centered around a balance between

the divergence of the polynomial and the distribution of the stochastic control variable.

In Chapter 7 a fixed point equation for the equilibrium control of a utility function

from prospect theory is derived by imposing a certain structure on the control.
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Resumé

Eksistensberettigelsen for livsforsikrings- og pensionsselskaber er at p̊atage sig risiko

imod en præmie. Med form̊alet at forbedre risikovurdering, kræver et lovp̊alagt regelsæt

fra Europa-Parlamentet at livsforsikrings- og pensionsselskaber laver en fremregning

af deres forretning. Første del af denne afhandling omhandler de beregningsmæssige

udfordringer med fremregningsopgaven, og anden del omhandler investeringsproblemer

med endelig tids horisont.

For at fremregne en forsikringsaftale skal der træffes en beslutning om, hvilken sti

kontraktens tilstandsprocess skal følge. Kapitlerne 2, 3 og 4 bruger den forventede

sti for tilstandsprocessen i fremregningen. Hovedresultatet i kapitel 2 er et system af

fremadrettede differentialligninger for reserven af en forsikringskontrakt i et gennem-

snitsrentemiljø som har en affin dynamik. Kapitel 3 forbedrer den beregningsmæssige

anvendelighed af disse differentialligninger gennem et system af approksimerende ad

hoc differentialligninger.

Kapitel 4 genbesøger kravet om affin dynamik af reserven fra kapitel 2, og der udledes

et system af uendelige partielle differentialligninger for den moment-genererende funk-

tion af reserver med polynomial dynamik. De uendelige partielle differentialligninger

trunkeres for at frembringe en numerisk anvendelig procedure.

I de sidste to kapitler studeres to forskellige nytteoptimeringsproblemer inden for

investering, gennem ligevægtsteori. Hvordan man konstruerer en polynomiel approk-

simation af en nyttefunktion s̊a den resulterende optimale kontrol tilnærmer den

sande kontrol, er emnet i kapitel 6. Denne diskussion er centreret omkring en balance

mellem divergensen af polynomiet og fordelingen af den stokastiske kontrolvariabel. I

kapitel 7 udledes en fikspunktsligning for ligevægtskontrollen af en nyttefunktion fra

prospektteori ved at p̊alægge kontrollen en bestemt struktur.
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Chapter 1

Introduction to Life Insurance

In this introduction we provide a non-technical background for the three chapters on

life insurance topics, Chapters 2, 3 and 4, and give an overview of the underlying ideas

that drive the results in each chapter. By life insurance, we mean all kinds of contracts

that can be specified as payment streams that depend on the state of life of the

insured, including pensions. In Chapter 5 we introduce the chapters pertaining to the

equilibrium approach to utility optimization in the same manner. Since each chapter

is written as an independent manuscript, many of the concepts in this introduction are

repeated in the introduction of the individual chapters, but the non-technical manner

of writing here hopefully serves a broader audience and provides a gentle lead-in.

1.1 Background

Life insurance is a great idea. At its core, insurance is about sharing the risks that is

an inevitable part of life, and life insurance deals with the aspects pertaining to human

health. One of the oldest forms of life insurance, is the product provided by the ancient

roman burial clubs. For the entry cost of 100 sesterces and a jar of wine followed by

monthly premiums, the burial club would cover funeral expenses and provide financial

aid to bereaved1. While the premium currency has changed, and other coverages have

been added, the fundamental idea of modern life insurance remains the same; pay a

premium, avoid a risk.

Whenever there are multiple providers of life insurance that compete for customers

in a free market, there is an incentive to accurately price the provided coverages.

Underpricing leads to an unprofitable business and overpricing leads to a loss of

customers to cheaper companies. To a large degree, this incentive drives the forefront

of actuarial science. Ever more accurate but (often) more complicated models gives

and edge in this competitive market.

1thegreatcoursesdaily.com, 2020.

1



2 Chapter 1. Introduction to Life Insurance

Legislation is another component that drives actuarial research. Life insurance is an

integral part of the welfare system of most developed countries where the inhabitants

rely on its stability and resilience. For that reason, legislators have an interest to

ensure that life insurance businesses are driven in a sound and prudent way. Unlike

most other branches of mathematics, actuarial concepts are often embedded in the

financial laws of a country. It is perhaps due to legislative differences that there is a

considerable variation across otherwise similar countries in the actuarial practice and

research.

The life insurance research in this thesis is to a large (but indirect) extent driven by

legislation. The Solvency II Directive requires that life insurance companies in the

European Union develop new and advanced types of liability-assessment tools. The

purpose is to ”ensure coordinated crisis prevention and management, as well as to

preserve financial stability in crisis situations.”2. Chapter 2, 3 and 4 directly contribute

to specific aspects of this toolbox.

1.1.1 Multi State Life Insurance

In 1991 Tom Cochrane sang ”life is a highway” in his hit song of the same name. If

Cochrane had been an actuary, he might have sung ”life is a J-laned highway”, with a

reference to the multi-state life insurance models where J states are used to represent

different biometric and behavioural states of life such as ’alive’,’dead’ and ’unemployed’.

Marrying probability theory and life insurance, Markov chain models form the basis

for most modern life insurance theory.

For Markov chain models, a Markov chain that lives on a state space of J states, called

the state process, represents the state of life of an insured. The defining property of a

Markov chain is that its future depends on its past only through the present, which is a

property with considerable mathematical advantages. The state process is assumed to

have transition intensities that characterize the infinitesimal probability of transition

between states. These transition intensities are one of the most important ingredients

in the making of a life insurance contract, as they provide information about how we

can expect the state of life of the insured to develop.

On top of the foundation of randomness stemming from the Markovian state process,

an insurance contract is conceived by specifying a payment process. The payment

process is determined by two types of payments; payments during sojourns in states,

and payments on transitions between states. In the with-profit insurance contract of

consideration in this thesis, both types of payment are agreed upon at initialization of

the contract, with a possibility of additional bonus benefits.

2eiopa.europa.eu, 2021.
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Once payments and transition intensities have been settled, the insurance company

needs to know how much money they should have in their bank account (figuratively),

to be able to cover future liabilities. For this purpose, the prospective reserve is

calculated. The prospective reserve is the expected present value of accumulated future

net outflow (benefits less premiums), given some set of information available today.

The equivalence principle states that on the outset of the contract, premiums and

benefits should balance on average.

Similar to the prospective reserve, the retrospective reserve is defined as the expected

present value of accumulated past net inflow (premiums less benefits), given some set

of information available today. If all information about the past is included in the

retrospective reserve, it is simply equal to the value of the account in which premiums

have been deposited and benefits withdrawn. Even though it may seem like a weird

construction, the retrospective reserve has its merits when it comes to projecting the

insurance business.

1.1.2 With-profit Insurance

Apart from the randomness imparted by the state process, there are at least two more

sources of randomness that ought to be included in the life insurance model from

the insurers point of view, namely financial risk and systematic risk on transition

intensities. When selling insurance contracts, insurers make assumptions about the

future interest rate and transition intensities and commit to these assumptions by

guaranteeing the premiums and benefits that these assumptions entail. There is a

risk that these assumptions fall short, which could imply that the insurer has to

increase the liabilities, but they can not increase premiums correspondingly due to the

contractual obligation. Such a shortfall would have to be covered by the shareholders

of the insurance company, and is an undesirable scenario.

To mitigate the risk that follows from promising a certain interest rate and set of

transition intensities, insurers make conservative promises. Prudent assumptions on

interest and transition intensities constitute the conservative promises, and they form

the so-called technical basis or first-order basis. When the equivalence principle is

fulfilled on a set of prudent assumptions about the future, a surplus or profit is expected

to develop. This profit belongs in part to the insured for paying an ample premium,

and when an agreement is made to repay some of the profit to the insured, we call it a

with-profit insurance.

The surplus acts as a buffer to absorb risk in interest rate and transition intensities

– if interest levels and transition intensities develop exactly like predicted by the

prudent assumptions, no surplus is generated. In the more likely event that a surplus

is generated, it can absorb fluctuations in the difference between the predicted and
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realised interest rate and transition intensities. Most of what remains of the surplus can

be returned to the insured. We define the surplus as the accumulated (retrospective)

premiums less benefits, minus the prospective first-order reserve. A complication in the

with-profit insurance set-up, is that often the surplus is distributed via dividends to the

insured in the form of additional benefits. These additional benefits may themselves

give rise to a surplus, which again is spent on buying additional benefits.

Prior to the financial crisis of 2008, financial supervisory authorities were content with

regarding surplus as a bonus, and not particularly concerned with its development,

other than demanding that it be distributed fairly. In recent years the dynamics of

the surplus, and how it is distributed has gained more attention. Some of the surplus

is not returned to the insured, but instead given to the shareholders in the form of

a so-called shareholder fee to compensate for the risk covered by the equity of the

insurance company, in the event that the technical basis leads to premiums that do not

cover future liabilities. The question of what the shareholder fee should be to fairly

reflect the risk taken by the equity, is extremely difficult to answer. The first task

in the search for an answer, is the means to actually calculate the proportions of the

surplus that belong to the insured and equity respectively, as a function of the surplus

distribution strategy.

1.1.3 Simulating the Future

The ability to self-simulate is the ability to imagine yourself in a scenario constructed

by your thoughts. Some examples could be

”If I plant this seed, I will get grain this summer, which I can use for food

in winter.”

”If I do not have insurance and crash my car, I will be financially ruined.”

It is a critical human ability, and the essence of what planning is. By self-simulating a

scenario, adjusting your actions in the simulation, and then iterating, you form a plan

for the future.

The same methodology can be applied in an insurance context, where scenarios are

constructed in a mathematical framework instead of in the frontal lobes of the brain.

By simulating the development of the factors that influence insurance companies

financially, a possible path for the future is made. Projecting the insurance business

along this simulated path, gives a glimpse into the possible future. This thesis is part

of the project ’Projections of Benefits and Balances in Life Insurance’, which exactly

refers to the crystal ball exercise of projecting the insurance business into the future.

In order to project the insurance business, the management actions that influence it

need to be formalized and incorporated. We might say that the management actions

are a plan for the future course of action.
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By projecting the insurance business for thousands of simulated scenarios and averaging

the result, an expectation for the future is made. By adjusting the management actions,

the expected future of the insurance business is also adjusted, and in this way a plan

that produces a satisfactory expected future can be devised.

The dangers of relying on a plan devised from simulating, is that the world is not

predictable and simulations are therefore inaccurate – even if the simulations could

have generated the observed history. By their nature, hitherto unseen events cannot be

predicted, but that does not mean that they will not happen. The author, philosopher

and statistician Nassim Nicholas Taleb coined these events ’Black Swans’, referring to

the belief that all swans were white before black swans were discovered in Australia.

How the future is simulated is therefore one of the most important aspects of projections.

If we are not confident that the simulations reflect the real world, we should not be

confident that our plan is going to work.

For the three chapters under the life insurance topic, we do not explicitly deal with the

simulation of the financial market and transition intensities, which make up the most

important factors that influence insurance companies financially. Instead, we take the

financial market and transition intensities for given, and focus on the projection of the

insurance business. An advantage of this approach is that we allow for any simulation

input. A disadvantage is that we cannot exploit the structure that the simulation

input might have.

1.2 Overview of Chapters 2, 3 and 4

In the following subsections we outline the content of Chapters 2, 3 and 4 and the

ideas from which they are conceived. Calculations of future benefits and balances is

the primary focus. Chapter 2 concerns the modelling of with-profit insurance, and the

fundamental aspects of projecting benefits and balances. Chapter 3 is to a large degree

aimed at practitioners, and deals with the modification of the model from Chapter

2, in order to make computations viable. Chapter 4 revisits and relaxes a linearity

assumption of Chapter 2, in a general probability theoretic framework.

1.2.1 Discarding Information

The title of Chapter 2 is ”Retrospective Reserves and Bonus”. The latin word ’retro-

spectus’ translates to ”I look back at”, ’prospectus’ translates to ”I look forward at”

and ’projeter’ translates to ”to throw forth”. After this small lesson in etymology, one

might be inclined to consider the prospective reserve for projections given the similar

forward-oriented nature. However, surplus accumulation is retrospective in nature –

and so are the management actions that determine the redistribution of surplus.



6 Chapter 1. Introduction to Life Insurance

In Chapter 2, we are looking forward at backwards-looking reserves. The difficulty in

this exercise is to determine much information about the past we should include in

the backwards-looking reserves. If all information about the past is included in the

projected benefits and balances, the projection exercise is overwhelming as all possible

paths of the state process have to be accounted for. Instead we discard all information

about the policy at all points in time between initialization and the projected ’now’.

Knowing only the initial and current state of a policy, we derive a system of forward

differential equations for the retrospective reserves. For this minimal amount of in-

formation to be sufficient for accurate projections, the dynamics of the retrospective

reserves need to be linear. The dynamics are linear if and only if the redistribution of

surplus is a linear function of the reserve.

1.2.2 Discarding More Information

The title of Chapter 3 is ”Efficient Projections”, and is a direct practical extension of

the results from Chapter 2. Using a näıve implementation of the results from Chapter 2,

a typical Danish insurance company would have to solve in the order of 1010 differential

equations3.

A bunch of these computations can be carried out in parallel, reducing computation

time, but if the computations are performed in the cloud (which they often are), there

is still an ambition to reduce the number of computations to reduce costs of computing.

A simple way to reduce the number of differential equations, is to reduce the state

space of the insurance contract and the number of policies. This reduced state space

and insurance portfolio should represent the original state space and insurance portfolio

in a way that produces little or no error when projecting the insurance business.

We present a mapping that translates payments and transition intensities of a given

state space to a smaller state space, which produces no error when projecting an

insurance contract without bonus. We propose to use the same mapping for insurance

contracts with bonus, and study the approximation error in a numerical example.

To reduce the size of the insurance portfolio, we touch on the matter of combining

policies without introducing an error in the projection.

1.2.3 Handling Non-Linear Dividends

The title of Chapter 4 is ”Moment Closure for FV-processes using Moment-generating

Functions”. Moment closure pertains to the problem of approximating an infinite system

of differential equations for the moments of a process with non-linear dynamics, with

3For 7 states, 250.000 policies, 1 surplus and 10.000 financial scenarios. ((7·2·250.000)+1)·10.000 =
35.000.010.000
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a finite system. Instead of projecting the time-dependent moments of a process with

polynomial dynamics, we propose to project the time-dependent moment-generating

function of the process. To this end, we derive a system of partial differential equations

involving infinite partial derivatives for the moment generating function.

Given the numerically non-viable PDE, we truncate the infinite partial differential

equations to arrive at a numerically viable finite difference scheme. In the context of

with-profit insurance, non-linear dynamics emerge when the redistribution of surplus

is a non-linear function of the reserves, and such an example is studied numerically.





Chapter 2

Retrospective Reserves and Bonus

Abstract

Modern legislation has increased the amount of quantities that insurance

companies should report in order to prove solvent as well as prudent. More of

these quantities require not just simple bookkeeping but a mere projection of

the future. In this paper, we provide a solid base for this crystal ball exercise

as we derive differential equations for the retrospective reserves of a pension

company, in a setting where the surplus and the dividends are modelled.

The differential equations rely on dynamics of the stochastic reserve that

are affine functions of the stochastic reserve themselves. The retrospective

reserves are defined as conditional expected values, given limited information,

leading to computational tractable differential equations for the reserves.

We wrap up the theoretical part by suggestions for practical use in terms

of considering validation of guarantees and discretionary benefits at future

time points.

Keywords: Bonus, Retrospective Reserves, FMA, Dividends, With-profit Insurance.

9
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2.1 Introduction

With-profit insurance contracts are to this day one of the most popular life insurance

designs. They arose as a natural way to distribute the systematic surplus that emerges

due to the prudent assumptions on which the contract is made. The redistribution of

surplus is a frequent subject of discussion in the industry, and many questions have

been raised in that regard, to name a few; Is it distributed fairly? How should it be

invested? How is it affected by the financial market? To answer these questions we

need to understand the dynamics of the surplus in a model of practical relevance.

The study of surplus and the interplay it has with other elements of an insurance

contract, is not new. Norberg (1999) introduced the notion of individual surplus as well

as the mean portfolio surplus. In Steffensen (2006), partial differential equations are

used to describe the prospective second order reserve for various forms of bonus when

the surplus is invested in a Black-Scholes market. In this paper we pay little regard

to the prospective reserve, and instead we focus on the surplus and the retrospective

reserve including dividends, also called the savings account. The retrospective reserve

without bonus is studied by Norberg (1991), and his results form the foundation for

our studies. Furthermore we do not restrict ourselves to the Black-Scholes market, but

allow for an arbitrary specification of the financial market.

In the existing literature, little attention is paid to a significant retrospective element

of the with-profit insurance contract: the human element. Insurance companies are

governed by humans, and the decisions they make influence the portfolio of policies - in

particular concerning surplus and dividends. In a with-profit insurance contract many

quantities are fixed at initialisation of the policy, but the rate at which dividends are

paid out is not. The insurance company has a certain degree of freedom when it comes

to the distribution of surplus, and the actions that have an influence on the insurance

contracts are the so-called Management Actions. By including Future Management

Actions (FMAs) in the modelling of with-profit insurance contracts the human element

is taken into account, which arguably is useful in its own right, but it is also required

by the Solvency II Directive. As stated in Article 23 of the currently in force EU

Delegated Regulation (2014),

Assumptions about future management actions shall be realistic and include

[...] an assessment of the impact of changes in the assumptions on future

management actions on the value of the technical provisions.

From a mathematical point of view FMAs pose a problem as they are retrospective in

nature, and may depend on the entire history of the portfolio of policies in a possibly

non-linear fashion, making it difficult to calculate prospective reserves. If we want to

take a glance into the crystal ball of liabilities, taking FMAs into account, we need to
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embrace their retrospective nature. In this paper, we do not incorporate FMAs to their

full extent, but rather lay the retrospective groundwork on which models including

FMAs can be built.

The contribution of the paper is comprised of two parts. The first purely mathematical

contribution is the derivation of a system of differential equations that describe the

expected value of a process with dynamics that depend linearly on the process itself.

The second contribution is to describe a model of practical relevance where retrospective

reserves can be modelled including bonus for an arbitrary financial market. Together,

the two parts provide the means to project the retrospective reserves of a with-profit

insurance contract.

The structure of the paper is as follows: In Section 2.2 we present a standard model

for life insurance contracts, and introduce the retrospective reserve. The main math-

ematical result is presented in Section 2.3, where we derive a forward differential

equation for a multidimensional FV-process with affine dynamics. In Section 2.4 we

extend the set-up of Section 2.2 to allow for a model where surplus and dividends are

considered, and crucially, identify when the main mathematical result can be applied

to describe the retrospective reserves of an insurance contract. Section 5 contains a

simple numerical example.

2.2 Set-up

We consider the classic multi-state life insurance set-up, comprised of a state process Z

denoting the state of the policy in a finite state space J = {0, 1, ..., J}. The states in J
represent real-life states such as ”alive”, ”dead”, ”disabled” et cetera. By a permutation

argument, we can without loss of generality assume that Z(0) = 0. The filtration

generated by Z(t) is denoted by Ft, and it represents all the information generated by

Z up to time t. The counting process Nk defined by Nk(t) = #{s;Z(s−) ̸= k, Z(s) =

k, s ∈ (0, t]} describes the number of transitions into state k. The state process Z is

assumed to be a continuous time Markov chain, with transition probabilities denoted

by

pij(s, t) = P(Z(t) = j|Z(s) = i),

for s ≤ t. We assume that the corresponding transition intensities exist, and denote

them by

µij(t) = lim
h↘0

pij(t, t+ h)/h,

for i ̸= j. We assume that

lim
n→∞

nP(Nk(t+ 1/n)−Nk(t) ≥ 2) = 0, (2.2.1)
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for all t, stating that two jumps cannot occur simultaneously. The predictable process

1{Z(t−) ̸=k}µZ(t−)k(t) is the intensity process for Nk(t), i.e

Mk(t) := Nk(t)−
∫ t

0

1{Z(s−) ̸=k}µZ(s−)k(s)ds,

forms a martingale. The state process Z encapsulates the biometric risks involved

with the insurance contract. Apart from the biometric risk, there is a financial risk

connected to with-profit insurance contracts through the return on investment of the

surplus. We make assumptions regarding the financial risk, by specifying the return

on investment, r.

Remark 2.2.1 (Portfolio investment). In practice, the return on investment is measured

on the performance of some self-financing portfolio, G, governed by insurance company.

By substituting e
∫ t
s
r(τ)dτ with G(t)

G(s) , the results of the paper can be formulated directly

in terms of return on investment in G, instead of instantaneous return r.

Together, the transition intensities and return on investment form the third order

(realized) basis, which describes the actual development of the insurance portfolio.

We take this third order basis as exogenously given. In practice the non-measurable

elements of the third order basis are simulated. To allow for events that make it difficult

to meet the obligations to the insured, a much less risky set of assumptions are used

when guarantees are given. These prudent assumptions form the first order (technical)

basis. Using the standard notation, a ”∗” symbolises first-order basis elements. It is

precisely due to the difference between the first order basis and the realized third order

basis that a surplus emerges.

In order to define an insurance contract, we introduce the payment process B, which

depends on the dynamics of Z. The payment process is an Ft-adapted process with

dynamics given by

dB(t) = bZ(t)(t)dt+
∑

k:k ̸=Z(t−)

bZ(t−)k(t)dNk(t),

for sufficiently regular bi(t) and bjk(t). The deterministic payment functions bj(t) and

bjk(t) specify payments during sojourns in state j and on transition from state j to

state k, respectively. Even though lump sum payments during sojourn in a state pose

no mathematical difficulty, we assume that payments during sojourns in states are

continuous for notational simplicity. Given the payment process, B, we can define the

state wise prospective technical reserve as

V j∗(t) = E∗

[∫ n

t

e−
∫ s
t
r∗(τ)dτdB(s)|Z(t) = j

]
,

being the expected present value of all future payments, evaluated under the first

order basis. The dynamics of the technical reserve can be found using Itô’s lemma for



2.2. Set-up 13

FV-functions. This is done in e.g Asmussen and Steffensen (2020), providing us with

the following dynamics of the prospective technical reserve

dV Z(t)∗(t) = r∗(t)V Z(t)∗(t)dt− bZ(t)(t)dt−
∑

k:k ̸=Z(t−)

bZ(t−)k(t)dNk(t)

−
∑

k:k ̸=Z(t−)

ρZ(t−)k(t)dt+
∑

k:k ̸=Z(t−)

RZ(t−)k(t)(dNk(t)− µZ(t−)k(t)dt),

(2.2.2)

where ρjk is the surplus risk contribution rate for a transition from state j to state

k, and Rjk is the so-called sum-at-risk for a transition from j to k. The sum-at-risk

Rjk describes the required injection/withdrawal of capital on a transition from j to k,

in order to meet the future liabilities of the contract in state k, evaluated under the

first-order basis. The sum-at-risk is given by

Rjk(t) = bjk(t) + V k∗(t)− V j∗(t).

As the name suggests, the surplus risk contribution rate is the contribution from the

policyholder to the surplus. The surplus risk contribution rate is the premium that

covers the risk carried by the insurer that can not be diversified, such as medical

advancements. Naturally the surplus contribution rate is the sum-at-risk multiplied by

the difference in intensity for a transition from j to k between the first-order basis and

the third-order basis, i.e

ρjk(t) = Rjk(t)(µ∗
jk(t)− µjk(t)).

2.2.1 Retrospective Reserves

For insurance companies, reserves are key quantities of interest, as they answer the

question; how much should we set aside as insurers to meet the obligations to the

insured? A reserve may be either prospective or retrospective. A prospective reserve

considers future payments, whereas a retrospective reserve considers past payments.

One of the main contributions of Norberg (1991) is a definition of the retrospective

reserve as a conditional expected value of past net inflow, in much the same manner as

the prospective reserve is a conditional expected value of future net outflow. Formally

Norberg (1991) defines the retrospective first order reserve, as

U∗
E
(t) = E∗

[∫ t

0

e
∫ t
s
r∗(τ)dτd(−B(s))

∣∣∣∣ Et
]
,

for some family of σ-algrebras E = {Et}0≤t, where Et represents the information

available at time t. It is natural to assume that Et = Ft, implying that all information

about the past is accounted for. As noted by Norberg (1991), the family of σ-algebras

may be increasing, i.e Es ⊆ Et for s < t, but it is not required. With this very general

definition of the retrospective reserve, we may discard information, for instance by
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defining Et = σ{Z(0), Z(t)}. With this choice of σ-algebra we discard information

about the state process in between time 0 and time t. This removal of information is

useful because it is intractable to use Et = Ft, when we want to calculate the expected

value of U∗
E
(t) and {Z(s)}s≤t has not yet been realized. When t is a future point in

time, it is simply too computationally demanding to take the expectation over Ft - all

possible future paths and all possible future transition times have to be considered. We

therefore let Et = σ{Z(0), Z(t)}, implying that we only use the state at initialization

and time t to evaluate the retrospective reserve. Using this formulation of Et, the
retrospective reserve can be interpreted as the average reserve of a group of policies

that all start in Z(0) and end in Z(t). In the next section, we adopt the idea to discard

information in order to get a definition of the expected future retrospective reserve

including bonus that is computationally tractable.

2.3 The Mathematical Tool

In this section we present the main result, which generalizes the result from Norberg

(1991), and provides us with the tool to project retrospective reserves in a model with

bonus. The value of the result becomes evident in Section 2.4, when the retrospective

reserves of interest are seen to fall within the framework of Theorem 2.3.1. Let W (t)

be a multi-dimensional stochastic process, with dynamics given by

dW (t) = gZ(t)(t,W (t))dt+
∑

k:k ̸=Z(t−)

hZ(t−)k(t,W (t−))dNk(t),

for g and h functions that are affine functions of W . Without loss of generality we

assume that W (0) = w0 for some deterministic but arbitrary initial vector w0. To

illustrate the central idea of this section in a simple setting, consider the case where

W has dynamics

dW (s) = gZ(s)(s)W (s)ds,

and say we want to calculate

W̃ i(t) := E0[W (t)1{Z(t)=i}] = E0[W (t)|Z(t) = i]p0i(0, t),

where we by the subscript 0 on the expectation denote the conditional expectation

given Z(0) = 0 and W (0) = w0. With this definition of W̃ i we discard information

about where the policy has been in between time 0 and time t, in the same way that

Norberg (1991) discards information about where the policy has been. Similar reserves

where state-dependent indicator functions appear as multipliers on integrals over a

payment stream, are also used by Bladt et al. (2020) to arrive at matrix formulae for

higher-order moments of prospective reserves. By the tower property and Fubini’s
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theorem,

W̃ i(t) = p0i(0, t)w0 +

∫ t

0

E0[1{Z(t)=i}g
Z(s)(s)W (s)]ds

= p0i(0, t)w0 +

∫ t

0

E0


 ∑

j:j∈J

1{Z(s)=j}E0[1{Z(t)=i}g
Z(s)(s)W (s)|Z(s) = j]


 ds

= p0i(0, t)w0 +

∫ t

0

∑

j:j∈J

p0j(0, s)g
j(s)E0[1{Z(t)=i}W (s)|Z(s) = j]ds.

By the Markov property W (s) ⊥⊥ Z(t)|Z(s) for s < t, as W (s) is Fs-measurable, and

therefore

W̃ i(t) = p0i(0, t)w0 +

∫ t

0

∑

j:j∈J

gj(s)W̃ j(t)pji(s, t)ds.

The Kolmogorov forward differential equations state that

d

dt
p∗ji(s, t) =

∑

g:g ̸=i

p∗jg(s, t)µ
∗
gi(t)− µ∗

ig(t)p
∗
ji(s, t).

Differentiating W̃ i(t) with respect to t, and using Kolmogorov’s forward differential

equations yields the following system of differential equations

d

dt
W̃ i(t) = gi(t)W̃ i(t) +

∑

j:j ̸=i

(
µji(t)W̃

j(t)− µij(t)W̃
i(t)
)
,

W̃ i(0) = 1{i=0}w0.

It is crucial to note that this differential equation relies on the affine structure of the

dynamics of W , as it allows us to write W̃ i(t) as an integral over W̃ j(s) for 0 ≤ s ≤ t.

Using the tower property and the fact that W (s−) ⊥⊥ Z(t)|Z(s−), we get the following

theorem.

Theorem 2.3.1. Let Z(t) be a Markov process on the state space J , and let W (t) be

a q-dimensional, Ft-measurable process with dynamics

dW (s) = gZ(s)(s,W (s))ds+
∑

k:k ̸=Z(s−)

hZ(s−)k(s,W (s−))dNk(s),

for q-dimensional functions g and h of the form

gZ(s)(s,W (s)) = g
Z(s)
1 (s)W (s) + g

Z(s)
0 (s),

hZ(s−)k(s,W (s−)) = h
Z(s−)k
1 (s)W (s−) + h

Z(s−)k
0 (s),

where gj1 and hjk
1 are q × q-matrices, and gj0 and hjk

0 are vectors of length q. Then

W̃ i(t) = E0[1{Z(t)=i}W (t)]
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is described by the differential equation

d

dt
W̃ i(t) =

∑

j:j ̸=i

(
µji(t)W̃

j(t)− µij(t)W̃
i(t)
)

(2.3.1)

+ gi1(t)W̃
i(t) + p0i(0, t)g

i
0(t) (2.3.2)

+
∑

j:j ̸=i

µji(t)
(
hji
1 (t)W̃

j(t) + p0j(0, t)h
ji
0 (t)

)
, (2.3.3)

W̃ i(0) = 1{i=0}w0. (2.3.4)

Proof. See Appendix 2.B.

The proof of Theorem 2.3.1 solely relies on the affine dynamics of W , and even if the

dynamics directly depend on the past values of W in the following manner

dW (t) =

∫ t

0

gZ(s)
ρ (s, t)W (s)dsdt,

there are no significant changes in the proof. The resulting differential equations for

W̃ i(t) become a set of more involved integro-differential equations. This extension

is practically relevant for instance if the dividend depends on how the surplus and

savings have evolved over the last year.

The differential equation given by (2.3.1)-(2.3.4) generalizes the differential equation

for the retrospective reserve derived by Norberg (1991). In fact, for

g1 = h1 = 0, w0 = 0, g0(t, i) = bi(t), h0(t, j, i) = bji(t),

we arrive at the differential equation derived by Norberg (1991).

2.4 Set-Up Including Surplus and Dividends

In this section we extend our set-up, allowing us to accurately describe the benefits

and reserves in a model where surplus and dividends are included. The ideas and

notation are inspired by Asmussen and Steffensen (2020). The first order basis on which

insurance contracts are signed, are a set of prudent assumptions regarding interest

rates and transition intensities. Knowing that the assumptions are prudent, the insurer

and insured agree that when surplus has emerged as a consequence of the realized

interest and transitions, this surplus should be given back to the insured. The surplus

is returned to the insured through a dividend payment stream. What the insured

does with his dividend can vary, but a standard product design is to use the dividends

to buy more benefits. In a sense, the dividend payment stream becomes a premium

for a bonus benefit stream. We introduce the two payment streams B1 and B2 with

dynamics

dBi(t) = b
Z(t)
i (t)dt+

∑

k:k ̸=Z(t−)

b
Z(t−)k
i (t)dNk(t).
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The payments specified by B1 are the benefits and premiums which are fixed, and

part of the original contract. The payments of B2 specify the profile of the payment

stream that the dividend is converted into. The payment streams B1 and B2, have

corresponding technical reserves given by

V j∗
i (t) = E∗

[∫ n

t

e−
∫ s
t
r∗(τ)dτdBi(s)

∣∣∣∣Z(t) = j

]
.

When the contract is signed, both B1 and B2 are agreed upon, and while there is

practically no restriction on the design of B1, B2 should be constructed in such a way

that V j∗
2 (t) ̸= 0 for all t and all j. This should be required simply because it does

not make sense to use the dividend to buy a payment stream that has zero technical

value. In order to keep track of how much dividend has been materialized into the

B2 payment stream, we introduce the process Q(t) which denotes the quantity of

B2 payment stream purchased at time t. The dividends are instantaneously used to

increase benefits, by buying more of the B2 payment stream. These additional benefits

are, like the fixed benefits, priced under the first order basis, which means that one

unit of B2 has a technical value of V
Z(t)∗
2 (t) at time t. The total amount of accrued

dividends at time t are denoted by D(t), and as the dividends are used to buy B2, we

must have that

dD(t) = V
Z(t)∗
2 (t)dQ(t). (2.4.1)

The payment process experienced by the policyholder, B, consists of one unit B1

payment stream and Q units of B2 payment stream, thus having dynamics

dB(t) = dB1(t) +Q(t−)dB2(t),

where the left limit version of Q is used to ensure that it is predictable. We now define

the savings account as the technical value of future guaranteed payments, for a certain

quantity of B2 payment stream,

X(t) = V
Z(t)∗
1 (t) +Q(t)V

Z(t)∗
2 (t).

To fix ideas, we think of the savings account as the accumulated past benefits, premiums

and dividends compounded with the first order interest, and thus it behaves just like

a bank account. Norberg (1999) defines an individual surplus and derives a system

of differential equations for the mean surplus, which he studies in a Markov chain

environment. Our definition of the savings account resembles the individual surplus

defined by Norberg (1999), but in contrast, we do not restrict ourselves to a Markov

chain environment for the modelling of the realized interest, and most importantly, we

furthermore allow for payments that depend on the savings account. Noting that

Q(t) =
X(t)− V

Z(t)∗
1 (t)

V
Z(t)∗
2 (t)

,
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we see that the payment stream experienced by the policyholder has dynamics

dB(t) = bZ(t)(t,X(t))dt+
∑

k:k ̸=Z(t−)

bZ(t−)k(t,X(t−))dNk(t),

for deterministic functions bj and bjk. These payments depend linearly on the sav-

ings account, and in a setting without bonus, an expression for the corresponding

retrospective reserve is derived by Christiansen et al. (2014). By the principle of

equivalence

0 = X(0) = V 0∗
1 (0) +Q(0)V 0∗

2 (0)

⇔

Q(0) = −V 0∗
1 (0)

V 0∗
2 (0)

,

providing us with the initial condition for Q, which along with (2.4.1) fully specifies Q.

Note that the principle of equivalence puts no restrictions on the form of B1 and B2.

Using integration by parts for FV-functions, and plugging in the dynamics of V
Z(t)∗
1

and V
Z(t)∗
2 given by (2.2.2), we find the dynamics of X to be

dX(t) = dV
Z(t)∗
1 (t) +Q(t−)dV

Z(t)∗
2 (t) + V

Z(t)∗
2 (t)dQ(t)

= r∗(t)X(t)dt+ dD(t)− bZ(t)(t,X(t))dt−
∑

k:k ̸=Z(t−)

bZ(t−)k(t,X(t−))dNk(t)

−
∑

k:k ̸=Z(t−)

ρZ(t−)k(t,X(t−))dt

+
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−))dMk(t), (2.4.2)

where

ρjk(t,X(t−)) = ρjk1 (t) +Q(t−)ρjk2 (t) = ρjk1 (t) +
X(t−)− V j∗

1 (t−)

V j∗
2 (t−)

ρjk2 (t),

Rjk(t,X(t−)) = Rjk
1 (t) +Q(t−)Rjk

2 (t) = Rjk
1 (t) +

X(t−)− V j∗
1 (t−)

V j∗
2 (t−)

Rjk
2 (t),

respectively can be interpreted as the surplus risk contribution and sum-at-risk for

the savings account. The savings account plays a crucial role in the understanding

of the with-profit insurance contract. The dynamics of X are remarkably similar to

the dynamics of the prospective reserve as seen in (2.2.2). In fact, if no dividends are

ever allotted, i.e. dD(t) = V
Z(t)∗
2 (t)dQ(t) = 0, then the dynamics of X are identical to

the dynamics of the technical reserve found in (2.2.2) for an X-independent payment

process BG given by

dBG(t) = dB1(t)−
V 0∗
1 (0−)

V 0∗
2 (0−)

dB2(t).
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Note that the technical prospective reserve for the payment process BG automatically

fulfills the principle of equivalence, in the sense that

E∗

[∫ n

0

e−
∫ s
0
r∗dBG(s)|Z(t) = 0

]
= 0.

If no dividends are allotted, then the savings account could be seen as a prospective

first order reserve for a contract with reserve dependent payments, therefore falling

under the set-up of Christiansen et al. (2014). However, if dividends are allotted,

they are accumulated in the savings account, implying that the value of the savings

account depends on the total amount of allotted dividends, as well as how much of

these dividends that have been materialized into the B2 payment stream. In other

words, when dividends are allotted, the savings account is not only dependent on the

current state of the policy, but the entire history of the policy as well.

Remark 2.4.1 (Future Discretionary Benefits). The difference dB(t)−dBG(t) is precisely

the instantaneous value of the additional benefits bought using the allotted dividends.

Hence, the expected time-t value

FDBi(t) = E0

[∫ n

t

e−
∫ s
t
rd(B(s)−BG(s))|Z(t) = i

]

is the market value of Future Discretionary Benefits.

Given the savings account, we can readily define the surplus as

Y (t) = −
∫ t

0

e
∫ t
s
r(τ)dτdB(s)−X(t),

being the accumulated premiums less benefits excess over the savings account, com-

pounded with the realized interest, r. The dynamics of Y are then

dY (t) = r(t)

(
−
∫ t

0

e
∫ t
s
r(τ)dτdB(s)

)
− dB(t)− dX(t)

= r(t) (Y (t) +X(t)) dt− dB(t)− dX(t)

= r(t)Y (t)dt+ dC(t)− dD(t)−
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−))dMk(t), (2.4.3)

for

dC(t) = (r(t)− r∗(t))X(t)dt+
∑

k:k ̸=Z(t)

ρZ(t)k(t,X(t))dt,

which we call the surplus contribution process, as it represents the contributions from

the savings account to the surplus.

As stated in the introduction, management actions are one of the main motivators

of this paper. The influence of management actions is present in our set-up through
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mainly two terms; the third order interest rate and the specification of dividends, since

the management decides how to invest their assets, and how the surplus should be

returned to the customers. For this reason, the dynamics of the dividend process D is

a central element of a with-profit insurance contract. We assume that the dynamics of

the dividend process are given by

dD(t) = δZ(t)(t,X(t), Y (t))dt,

but do not yet impose any restrictions on the δj-functions. We can for suitable functions

g and h, write the dynamics of X and Y as

dX(t) = gZ(t)
x (t,X(t), Y (t))dt+

∑

k:k ̸=Z(t−)

hZ(t−)k
x (t,X(t−), Y (t−))dNk(t), (2.4.4)

dY (t) = gZ(t)
y (t,X(t), Y (t))dt+

∑

k:k ̸=Z(t−)

hZ(t−)k
y (t,X(t−), Y (t−))dNk(t). (2.4.5)

It is a crucial point that when these dynamics are affine, we can apply Theorem 2.3.1.

The dynamics of X and Y given by (2.4.2) and (2.4.3) are affine if and only if the

dividend process is affine in X and Y , that is, if the δj-functions can be written as

δj(t, x, y) = δj1(t) + δj2(t)x+ δj3(t)y. (2.4.6)

We refer to Section 2.C of the Appendix for the specification of g and h leading to

the dynamics given in (2.4.2) and (2.4.3) for dividend process determined by (2.4.6).

Assuming that (2.4.6) holds, is an assumption that is eligible for criticism, but also an

important assumption, as Theorem 2.3.1 relies on affine dynamics. In practice, the

dividend is based on more information than simply the actual value of the savings

and surplus. The specification of the dynamics of D is at the heart of what a future

management action is, and, as stated earlier, we do not fully incorporate these FMA’s

in all their generality and glory, but suffice with crude surrogates. Some of these crude

surrogates can actually perform a decent job at describing real world dividend strategies,

for instance by defining the dividend as some affine function of the contribution, since

this by construction leads to affine dynamics for X and Y .

Apart from notational ease, the use of affine g and h functions serve to generalise

the results of the paper to any FV-process with affine dynamics of the form given by

(2.4.4) and (2.4.5). We could for instance easily introduce expenses affine in X and

Y . Even though we work with the dynamics given by (2.4.4) and (2.4.5), we think

of the g and h functions as the ones required to achieve the dynamics of (2.4.2) and

(2.4.3). We are interested in the interconnected dynamics of X and Y , and therefore

we introduce the two-dimensional process

W (t) =

(
X(t)

Y (t)

)
,
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with dynamics given by

dW (t) = gZ(t)(t,W (t))dt+
∑

k:k ̸=Z(t−)

hZ(t−)k(t,W (t−))dNk(t),

for g and h functions that are affine functions of W , and determined by the dynamics

of X and Y . Steffensen (2006) derives a set of differential equations that can be used

to determine W̃ i, when investment returns are formed from assets that are traded in a

Black-Scholes market.

Applying Theorem 2.3.1, gives a system of differential equations for

W̃ j(t) =

(
E0[X(t)1{Z(t)=j}]

E0[Y (t)1{Z(t)=j}]

)
=

(
X̃j(t)

Ỹ j(t)

)
,

described by the terms (2.3.1)-(2.3.3),

d

dt
W̃ i(t) =

∑

j:j ̸=i

(
µji(t)W̃

j(t)− µij(t)W̃
i(t)
)

+ gi1(t)W̃
i(t) + p0i(0, t)g

i
0(t)

+
∑

j:j ̸=i

µji(t)
(
hji
1 (t)W̃

j(t) + p0j(0, t)h
ji
0 (t)

)
,

which has an intuitive interpretation. If the policy is in state i at time t, it develops

with the continuous dynamics for that state, given by gi1(t)W (t) + gi0(t). Due to the

uncertainty involved pertaining to the state of the policy and the value of W , we have

to weigh these dynamics with the probability of Z(t) = i, as well as the expected value

of W , thus arriving at (2.3.2) as

E0

[
1{Z(t)=i}

(
gi1(t)W (t) + gi0(t)

)]
= gi1(t)W̃

i(t) + p0i(0, t)g
i
0(t).

Similarly, we have to account for any transitions into the current state i, over the small

interval t+ dt. The infinitesimal probability of transition from j to i over an interval

from t to t+ dt is given by µji(t), and if such a transition was made, the savings and

surplus are bumped by hji
1 (t)W (t) + hji

0 (t). In order for a transition from j to i to be

possible over the interval t+ dt, the policy has to be in state j at time t, thus arriving

at (2.3.3) as

E0

[
1{Z(t)=j}

(
hji
1 (t)W (t) + hji

0 (t)
)]

= hji
1 (t)W̃

j(t) + p0j(0, t)h
ji
0 (t).

Furthermore, when a transition from j to i is made, the savings and surplus from state

j (after the bump) are transferred to the savings and surplus of state i, amounting to

the term given in (2.3.1).

For dynamics of X and Y given by (2.4.2) and (2.4.3) we emphasize that if the dividend

function δ is affine in X and Y , then the dynamics of X and Y are also affine in X

and Y as all other terms in the dynamics are affine by construction.
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Remark 2.4.2 (Non-linear dynamics). While the reach of models with affine dynamics

is extensive, there are limitations to consider. It is not uncommon to have dynamics

that include some non-linear term, for instance if the transition intensities are X or

Y dependent. However, if the dynamics of W are not affine, we can still produce

an approximation of W̃ i. We simply replace W (t) with W̃Z(t)(t) in the terms of the

dynamics that are not affine in W (t). This idea is motivated by producing a Taylor

approximation of the non-affine term.

While other quantities could be studied, the projection of expected savings and surplus

provides us with useful information. One practically important quantity that can be

calculated based on X̃ and Ỹ is the time 0 expected present value of future guaranteed

benefits, given state i at time t, which are

GBi(t) = E0

[∫ n

t

e−
∫ s
t
rd

(
B1(s) +

X(t)− V
Z(t)∗
1 (t)

V
Z(t)∗
2 (t)

B2(s)

)∣∣∣∣∣Z(t) = i

]

= E0

[∫ n

t

e−
∫ s
t
rdB1(s)

∣∣∣∣Z(t) = i

]

+
E0[X(t)|Z(t) = i]− V i∗

1 (t)

V i∗
2 (t)

E0

[∫ n

t

e−
∫ s
t
rdB2(s)

∣∣∣∣Z(t) = i

]

= V i
1 (t) +

X̃i(t)/p0i(0, t)− V i∗
1 (t)

V i∗
2 (t)

V i
2 (t).

The second equality follows from X(t) ⊥⊥ B2(s)|Z(t) for s > t. Note that GBi is affine

in X̃i, and therefore it can be used as an input to the dividend function δ - for instance

by letting the dividend be some percentage of the guaranteed future benefits.

Another practically important quantity that can be calculated is the present value

of expected future discretionary benefits as defined in Remark 2.4.1. For t = 0 the

quantity can be calculated as

FDB0(0) = E0

[∫ n

0

e−
∫ s
0
rd (B(s)−BG(s))

]

= E0

[∫ n

0

e−
∫ s
0
r (Q(s)−Q(0)) dB2(s)

]

=

∫ n

0

e−
∫ s
0
r
∑

j∈J

p0j(0, s)

(
X̃j(s)/p0j(0, s)− V j∗

1 (s)

V j∗
2 (s)

− V 0∗
1 (0)

V 0∗
2 (0)

)
dBj

2(s).

The value of FDB0(0) corresponds to the increase in benefits the policyholder ex-

periences, as a consequence of the bonus received. This quantity can then be used

for investigating contractual fairness at contract initiation as well as studying the

Future Profits (FP) of the contract. In this setup, we would then define the latter as

FP = X(0)+Y (0)−GB0(0)−FDB0(0), corresponding to all assets under management

subtracted the amount designated for the policyholders.
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Whereas more practically applications could easily be listed, we leave that for the

interested reader.

2.5 Numerical Example

To highlight the practical usefulness of the results in the paper, we produce a numerical

example and examine the effects of three different FMAs in the form of dividend

strategies. We consider a two-state contract J = {0, 1} with Z(0) = 0, where state

0 should be thought of as ”alive”, and state 1 should be thought of as ”dead”. We

assume that all benefits are scaled with dividends, and therefore dB1 = 0. A single

premium of V 0∗
2 (0) is paid by the policyholder just before time 0, such that at time

0, the policyholder can afford one unit of the B2 payment stream i.e. Q(0) = 1. The

payment process B2 consists of a benefit being continuously paid out from time of

death and until time n. Thereby the policyholder experiences the payment stream

dB(t) = 1{Z(t)=1}1{t≤n}b2(t)
X(t)

V 1∗
2 (t)

dt,

which can be thought of as an annuity for the bereaved children of the policyholder.

The technical- and market-reserves are found using Thieles differential equation. We

assume that Y (0) = 0. As dB1(t) = 0 the differential equations for X̃i and Ỹ i are

given by

d

dt
X̃i(t) = gi11(t)X̃

i(t) + gi12(t)Ỹ
i(t) +

∑

j ̸=i

µji(t)
{
X̃j(t) + X̃j(t)hji

11(t)
}

− µij(t)X̃
i(t),

X̃0(0) = V 0∗
2 (0), X̃1(0) = 0,

and

d

dt
Ỹ i(t) = gi21(t)X̃

i(t) + gi22(t)Ỹ
i(t) +

∑

j ̸=i

µji(t)Ỹ
j(t)− µij(t)Ỹ

i(t),

Ỹ 0(0) = 0, Ỹ 1(0) = 0,

where the gi and hji functions are specified in Appendix 2.C. We consider three different

FMAs in the form of dividend strategies:

1) dD(t) = 0, i.e. zero dividends.

2) dD(t) = 0.5dC(t), i.e. 50% of the contributions to the surplus are immediately

returned to the policyholders.

3) dD(t) = dC(t), i.e. all contributions to the surplus are immediately returned to

the policyholders.
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These dividend strategies represent three levels of safety set by the management of the

insurance company. Other components of the contract are seen in Table 2.1.

Component Value
Age of policyholder, a0 30
n 80
µ∗
01(t) 0.0005 + 105.6+0.04·(t+a0)−10

µ01(t) 0.9 · µ∗
01(t)

b2(t) 1
r∗(t) 0.015
r(t) 0.01 + r∗(t) t

n−a0

Table 2.1: Components of insurance contract.

With this, we can project the statewise expected savings and surplus, and use these to

calculate several quantities of interest. In Figure 2.1 we have plotted X̃i, Ỹ i and the

expected payment stream given death, X̃1(t)
p01(0,t)V 1∗

2 (t)
b2(t).

Figure 2.1: Savings, surplus and expected payment given death for different dividend strategies.

Dotted line: δj(t, x, y) = 0. Dashed line: δj(t, x, y) = 0.5cj(t, x, y). Solid line: δj(t, x, y) =
cj(t, x, y)

As a consequence of the third order interest being lower than the first order interest,

the surplus contribution is negative for the first approximately 12 years. Using X̃i

and Ỹ i we calculate, the future discretionary benefits, the guaranteed benefits and the

future profits, see Table 2.2.
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dD(t) FDB GB FP
0 · dC(t) 0.00 3.20 0.44
0.5 · dC(t) 0.21 3.20 0.23
1 · dC(t) 0.44 3.20 0.00

Table 2.2: FDB, GB and FP for three different dividend strategies.

The result that more dividends allotted leads to less profit for the insurance company

is no surprise with this toy-box example, as it is only meant as an illustration of the

model framework and the results are easily obtained within that.
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2.A Predictable Compensator of 1{Z(t)=i}N
jk(s)

In this section we consider the FV-process given by

Ñ jk
t,i (s) := 1{Z(t)=i}N

jk(s)

for s < t and fixed but arbitrary t > 0 and i ∈ J . The stochastic process Ñ is adapted

to the filtration given by F̃ t,i
s := σ{{Z(τ)}τ≤s, Z(t) = i}. Consider now the predictable

process

λ(s) := 1{Z(t)=i}1{Z(s−)=j}µjk(s)
pki(s, t)

pji(s, t)
,

and define

Yn(s) := nE
[
Ñ jk

t,i (s+ 1/n)− Ñ jk
t,i (s)|F̃ t,i

s

]
.

If a few mild conditions are satisfied and

lim
n→∞

Yn(s) = λ(s) a.s (2.A.1)

then, by theorem 1 of Aven (1985), λ(s) is the predictable compensator for

Ñ jk
t,i (s). In order to establish (2.A.1), note that

lim
n→∞

Yn(s) = lim
n→∞

∞∑

m=1

nmP
(
Ñ jk

t,i (s+ 1/n)− Ñ jk
t,i (s) = m

∣∣∣ F̃ t,i
s

)

=

∞∑

m=1

m lim
n→∞

nP
(
Ñ jk

t,i (s+ 1/n)− Ñ jk
t,i (s) = m

∣∣∣ F̃ t,i
s

)
,
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as we have assumed that limn→∞ Yn(s) exists. The relation (2.2.1) implies that

lim
n→∞

nP
(
Ñ jk

t,i (s+ 1/n)− Ñ jk
t,i (s) = m

∣∣∣ F̃ t,i
s

)
= 0 for m > 1.

and therefore

lim
n→∞

Yn(s) = lim
n→∞

nP
(
Ñ jk

t,i (s+ 1/n)− Ñ jk
t,i (s) = 1

∣∣∣ F̃ t,i
s

)

= 1{Z(t)=i} lim
n→∞

nP
(
N jk(s+ 1/n)−N jk(s) = 1

∣∣ F̃ t,i
s

)

= 1{Z(t)=i} lim
n→∞

nP (Z(s+ 1/n) = k, Z(s) = j| F̃ t,i
s

)

= 1{Z(t)=i}1{Z(s)=j} lim
n→∞

nP (Z(s+ 1/n) = k| F̃ t,i
s

)
.

By the Markov property,

lim
n→∞

Yn(s) = 1{Z(t)=i}1{Z(s)=j} lim
n→∞

nP (Z(s+ 1/n) = k|Z(s) = j, Z(t) = i) ,

= 1{Z(t)=i}1{Z(s)=j} lim
n→∞

n
pjk(s, s+ 1/n)pki(s+ 1/n, t)

pji(s, t)

= 1{Z(t)=i}1{Z(s)=j}µ
jk(s)

pki(s, t)

pji(s, t)

a.s
=1{Z(t)=i}1{Z(s−)=j}µ

jk(s)
pki(s, t)

pji(s, t)
.

2.B Proof of Theorem 2.3.1

Proof of theorem 2.3.1. The proof consists of two steps. First, we derive an integral

equation for W̃ i(t). Second, we differentiate this integral equation.

Assume that p0i(0, s) > 0 for all s > 0. The general case where some states cannot be

reached by time s is considered at the end of the proof. Writing out W̃ i(t),

W̃ i(t) := E0[W (t)1{Z(t)=i}]

= p0i(0, t)w0 + E0

[∫ t

0

1{Z(t)=i}dW (s)

]

= p0i(0, t)w0 + E0

[∫ t

0

1{Z(t)=i}g
Z(s)(s,W (s))ds

]

+ E0



∫ t

0

∑

k:k ̸=Z(s−)

1{Z(t)=i}h
Z(s−)k(s,W (s−))dNk(s)


 .

Based on the calculations in Section 2.A of the Appendix, note that

E0

[
N jk(s)−

∫ s

0

1{Z(τ−)=j}µjk(τ)
pki(τ, t)

pji(τ, t)
dτ

∣∣∣∣Z(t) = i

]

= E

[
1{Z(t)=i}N

jk(s)−
∫ s

0

1{Z(t)=i}1{Z(τ−)=j}µjk(τ)
pki(τ, t)

pji(τ, t)
dτ

∣∣∣∣ F̃
t,i
0

]

= 0.
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As hZ(s−)k(s,W (s−)) is predictable, we may replace the integrator dNk(s) with its

predictable compensator. Using Fubini’s theorem and the tower property,

W̃ i(t) (2.B.1)

= p0i(0, t)w0 +

∫ t

0

E0

[
E0

[
1{Z(t)=i}g

Z(s)(s,W (s))|Z(s)
]]

ds

+ E0


E0



∫ t

0

∑

k:k ̸=Z(s−)

1{Z(t)=i}h
Z(s−)k(s,W (s−))dNk(s)|Z(t)






= p0i(0, t)w0 +

∫ t

0

∑

j:j∈J

p0j(0, s)E0

[
1{Z(t)=i}g

j(s,W (s))|Z(s) = j
]
ds

+ E0



∫ t

0

∑

k:k ̸=Z(s−)

1{Z(t)=i}h
Z(s−)k(s,W (s−))1{Z(s−)=j}µ

jk(s)
pki(s, t)

pji(s, t)
ds




= p0i(0, t)w0 +

∫ t

0

∑

j:j∈J

p0j(0, s)E0

[
1{Z(t)=i}g

j(s,W (s))|Z(s) = j
]
ds

+

∫ t

0

E0


 ∑

k:k ̸=Z(s−)

1{Z(t)=i}h
Z(s−)k(s,W (s−))


µjk(s)

pki(s, t)

pji(s, t)
ds

= p0i(0, t)w0 +

∫ t

0

∑

j:j∈J

p0j(0, s)E0

[
1{Z(t)=i}g

j(s,W (s))|Z(s) = j
]
ds (2.B.2)

+

∫ t

0

∑

j:j∈J

∑

k:k ̸=j

p0j(0, s)E0

[
1{Z(t)=i}h

jk(s,W (s−))|Z(s−) = j
]
µjk(s)

pki(s, t)

pji(s, t)
ds

(2.B.3)

Since W (s) is Fs-measurable, the Markov property gives us

E0[1{Z(t)=i}W (s)|Z(s) = j] =
W̃ j(s)

p0j(0, s)
pji(s, t). (2.B.4)
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Using that g and h are affine in W , and plugging (2.B.4) into (2.B.2)-(2.B.3) gives

W̃ i(t) = p0i(0, t)w0 +

∫ t

0

∑

j:j∈J

p0j(0, s)

(
gj1(s)

W̃ j(s)

p0j(0, s)
+ gj0(s)

)
pji(s, t)ds

+

∫ t

0

∑

j:j∈J

p0j(0, s)


∑

k:k ̸=j

µjk(t)pki(s, t)

(
hjk
1 (s)

W̃ j(s)

p0j(0, s)
+ hjk

0 (s)

)
 ds

= p0i(0, t)w0 +

∫ t

0

∑

j:j∈J

pji(s, t)g
j
1(s)W̃

j(s)ds

+

∫ t

0

∑

j:j∈J

∑

k:k ̸=j

µjk(t)pki(s, t)W̃
j(s)hjk

1 (s)ds

+

∫ t

0

∑

j:j∈J

p0j(0, s)g
j
0(s)pji(s, t)ds

+

∫ t

0

∑

j:j∈J

p0j(0, s)
∑

k:k ̸=j

µjk(t)pki(s, t)h
jk
0 (s)ds.

Differentiating with respect to t gives

d

dt
W̃ i(t) = w0


∑

k:k ̸=i

p0k(0, t)µki(t)− µik(t)p0i(0, t)




+ gi1(t)W̃
i(t) + p0i(0, t)g

i
0(t)

+
∑

k:k ̸=i

µki(t)
(
hki
1 (t)W̃ k(t) + p0k(0, t)h

ki
0 (t)

)

+

∫ t

0

∂

∂t

∑

j:j∈J

pji(s, t)g
j
1(s)W̃

j(s)ds

+

∫ t

0

∂

∂t

∑

j:j∈J

∑

k:k ̸=j

µjk(t)pki(s, t)h
jk
1 (s)W̃ j(s)ds

+

∫ t

0

∂

∂t

∑

j:j∈J

p0j(0, s)g
j
0(s)pji(s, t)ds

+

∫ t

0

∂

∂t

∑

j:j∈J

p0j(0, s)
∑

k:k ̸=j

µjk(t)pki(s, t)h
jk
0 (s)ds.
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Using the Kolmogorov forward differential equations and recognizing W̃ k and W̃ i, we

arrive at

d

dt
W̃ i(t) = gi1(t)W̃

i(t) + p0i(0, t)g
i
0(t)

+
∑

k:k ̸=i

µki(t)
(
hki
1 (t)W̃ k(t) + p0k(0, t)h

ki
0 (t)

)

+
∑

k:k ̸=i

(
µki(t)W̃

k(t)− µik(t)W̃
i(t)
)
.

Combined with the initial condition

W̃ i(0) = E0[1{Z(0)=i}W (0)] = 1{i=0}w0,

we get the differential equations given by (2.3.1)-(2.3.4). For the case where some

state, q, cannot be reached before time s for s > 0, the product of intensities for all

paths from Z(0) into that state must be zero for all τ when τ ≤ s, whereby W̃ q(s) = 0

and therefore the differential equations still hold. Thus the proof is complete.

2.C Dynamics of X and Y

The dynamics of X are found in (2.4.2), and given by

dX(t) = r∗(t)X(t)dt+ δZ(t)(t,X(t), Y (t))dt− bZ(t)(t,X(t))dt

−
∑

k:k ̸=Z(t−)

bZ(t−)k(t,X(t−))dNk(t)

−
∑

k:k ̸=Z(t−)

ρZ(t−)k(t,X(t−))dt

+
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−))dMk(t),

and the dynamics of Y are found in (2.4.3), and given by

dY (t) =r(t)Y (t)dt+ dC(t)− δZ(t)(t,X(t), Y (t))dt

−
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−))dMk(t).

Assuming that the dividend functions δj are affine, such that Theorem 2.3.1 can be

applied, implies that

δj(t, x, y) = δj1(t) + δj2(t)x+ δj3(t)y.
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We are interested in the specification of g1, g0, h1 and h0 for which the differential

equation

d

dt
W̃ i(t) =

∑

j:j ̸=i

(
µji(t)W̃

j(t)− µij(t)W̃
i(t)
)

+ gi1(t)W̃
i(t) + p0i(0, t)g

i
0(t)

+
∑

j:j ̸=i

µji(t)
(
hji
1 (t)W̃

j(t) + p0j(0, t)h
ji
0 (t)

)

W̃ i(0) = 1{i=0}W (0),

determines

W̃ j(t) :=

(
X̃j(t)

Ỹ j(t)

)
=

(
E[X(t)1{Z(t)=j}]

E[Y (t)1{Z(t)=j}]

)
.

The functions g1, g0, h1 and h0 are in the form

gj1(t) =

(
gj11(t) gj12(t)

gj21(t) gj22(t)

)
,

hjk
1 (t) =

(
hjk
11(t) hjk

12(t)

hjk
21(t) hjk

22(t)

)
,

gj0(t) =

(
gjx0(t)

gjy0(t)

)
,

hjk
0 (t) =

(
hjk
x0(t)

hjk
y0(t)

)
.

We want to find the twelve g and h functions that describe the dynamics of X and Y .

We separate the dynamics of X into the terms that are linear in X, linear in Y and



2.C. Dynamics of X and Y 31

those that are neither,

dX(t) = X(t−)

{
r∗(t)dt+ δ

Z(t)
2 (t)dt

+
1

V
Z(t−)∗
2 (t−)

(
− b

Z(t)
2 (t)dt−

∑

k:k ̸=Z(t−)

b
Z(t−)k
2 (t)dNk(t)

−
∑

k:k ̸=Z(t−)

ρ
Z(t−)k
2 (t)dt+

∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)dNk(t)

−
∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)µZ(t−)k(t)dt

)}

+ Y (t)δ
Z(t)
3 (t)dt

+
V

Z(t−)∗
1 (t−)

V
Z(t−)∗
2 (t−)

(
b
Z(t)
2 (t)dt+

∑

k:k ̸=Z(t−)

b
Z(t−)k
2 (t)dNk(t)

+
∑

k:k ̸=Z(t−)

ρ
Z(t−)k
2 (t)dt−

∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)dNk(t)

+
∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)µZ(t−)k(t)dt

)

+ δ
Z(t)
1 (t)dt− b

Z(t)
1 (t)dt−

∑

k:k ̸=Z(t−)

b
Z(t−)k
1 (t)dNk(t)

−
∑

k:k ̸=Z(t−)

ρ
Z(t−)k
1 (t)dt+

∑

k:k ̸=Z(t−)

R
Z(t−)k
1 (t)dNk(t)

−
∑

k:k ̸=Z(t−)

R
Z(t−)k
1 (t)µZ(t−)k(t)dt.

These terms are then further separated into those that relate to the discrete and

continuous dynamics of X, providing us with gj11, g
j
12, g

j
x2, h

jk
11, h

jk
12 and hjk

x2.

gj11(t) = r∗(t) + δj2(t)

+
1

V j∗
2 (t)

(
− bj2(t)−

∑

k:k ̸=j

ρjk2 (t)−
∑

k:k ̸=j

Rjk
2 (t)µjk(t)

)
,

gj12(t) = δj3(t),

gjx0(t) = δj1(t)− bj1(t)−
∑

k:k ̸=j

ρjk1 (t)−
∑

k:k ̸=j

Rjk
1 (t)µjk(t)

+
V j∗
1 (t)

V j∗
2 (t)

(
bj2(t) +

∑

k:k ̸=j

ρjk2 (t) +
∑

k:k ̸=j

Rjk
2 (t)µjk(t)

)
,

hjk
11(t) =

1

V j∗
2 (t)

( ∑

k:k ̸=j

Rjk
2 (t)−

∑

k:k ̸=j

bjk2 (t)

)
,

hjk
12(t) = 0,
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hjk
x0(t) =

∑

k:k ̸=j

Rjk
1 (t)−

∑

k:k ̸=j

bjk1 (t) +
V j∗
1 (t)

V j∗
2 (t)

( ∑

k:k ̸=j

Rjk
2 (t)−

∑

k:k ̸=j

bjk2 (t)

)
.

We carry out the same procedure for the dynamics of Y

dY (t) = r(t)Y (t)dt+ (r(t)− r∗(t))X(t)dt+
∑

k:k ̸=Z(t−)

ρZ(t−)k(t,X(t))dt

− δ
Z(t)
1 (t)− δ

Z(t)
2 (t)X(t)− δ

Z(t)
3 (t)Y (t)

−
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−))dNk(t)

+
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−))µZ(t−)k(t)dt

= X(t)

{
r(t)dt− r∗(t)dt− δ

Z(t)
2 (t)dt

+
1

V
Z(t−)∗
2 (t)

( ∑

k:k ̸=Z(t−)

ρ
Z(t−)k
2 (t)dt−

∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)dNk(t)

+
∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)µZ(t−)k(t)dt

)}

+ Y (t)(r(t)dt− δ
Z(t)
3 (t)dt)

− V
Z(t−)∗
1 (t−)

V
Z(t−)∗
2 (t−)

( ∑

k:k ̸=Z(t−)

ρ
Z(t−)k
2 (t)dt−

∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)dNk(t)

+
∑

k:k ̸=Z(t−)

R
Z(t−)k
2 (t)µZ(t−)k(t)dt

)

− δ
Z(t)
1 (t) +

∑

k:k ̸=Z(t−)

ρ
Z(t−)k
1 (t)dt−

∑

k:k ̸=Z(t−)

R
Z(t−)k
1 (t)dNk(t)

+
∑

k:k ̸=Z(t−)

R
Z(t−)k
1 (t)µZ(t−)k(t)dt.

Once again, we separate into the terms that are continuous and discrete providing us

with gj21, g
j
22, g

j
y2, h

jk
21, h

jk
22 and hjk

y2

gj21(t) = r(t)− r∗(t)− δj2(t)

+
1

V j∗
2 (t)

( ∑

k:k ̸=j

ρjk2 (t) +
∑

k:k ̸=j

Rjk
2 (t)µjk(t)

)
,

gj22(t) = r(t)− δj3(t),

gjy0(t) = − V j∗
1 (t)

V j∗
2 (t)

( ∑

k:k ̸=j

ρjk2 (t) +
∑

k:k ̸=j

Rjk
2 (t)µjk(t)

)

− δj1(t) +
∑

k:k ̸=j)

ρjk1 (t) +
∑

k:k ̸=j

Rjk
1 (t)µjk(t),
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hjk
21(t) = − 1

V j∗
2 (t)

∑

k:k ̸=j

Rjk
2 (t),

hjk
22(t) = 0,

hjk
y0(t) =

V j∗
1 (t)

V j∗
2 (t)

∑

k:k ̸=j

Rjk
2 (t)−

∑

k:k ̸=j

Rjk
1 (t).

We have essentially partitioned the dynamics of X and Y into twelve elements, and each

of these elements have an interpretational value which is straightforward to deduce.
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Efficient Projections

Abstract

We consider projections of multi-state with-profit life insurance policies

where dividends are assumed to have a certain structure, giving access

to a system of differential equations that provide insurance quantities of

interest. These differential equations are computationally impractical in

situations where insurance risk and financial risk are not independent, which

are situations of particular interest due to the possibly severe combined

effect on the insurance portfolio. We propose to use a smaller system of

approximating differential equations, by reducing the state-space of the

insurance policy and the number of policies.
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3.1 Introduction

We define lumping in an insurance context, and propose to use lumping as a method to

reduce the state-space of a multi-state insurance policy, which also reduces the number

of calculations for a projection of a portfolio of with-profit insurance policies in a

simulated financial market. In line with the idea of lumping, we study how policies can

be combined into so-called modelpoints. We study the approximation error introduced

by lumping in a numerical example, where the calculations are performed on industry

applied software.

It is natural for insurance providers to incorporate a safety margin in their predictions

about elements that influence their liabilities. For that reason, insurance companies

charge an ample premium for their products with guaranteed benefits, but they make

an obligation to pay some of the hereby generated surplus back to the policyholder in

the form of dividends. An ordinary scheme is to use these dividends to buy additional

benefits. When such an agreement is made between the policyholder and the insurance

company, we call it an additional benefit with-profit life insurance policy. Along with

an interest for the principles of fairness governing the distribution of surplus, the

with-profit insurance policy and the dynamics of the surplus have been studied since

the first half of the twentieth century. This paper builds on the modern approaches as

seen in Møller and Steffensen (2007), where the influence of financial risk on with-profit

insurance policies is studied in a Black-Scholes market.

There are many valuable insights to gain by studying the with-profit insurance in

a Black-Scholes market where closed form solutions are available. However, the

complexity needed by the life insurance industry to satisfy high demands on the

solvency of their business speaks in favor of using a simulation approach for the

estimation of liabilities. By calculating and averaging insurance quantities of interest

for thousands of simulated risk factors such as the short rate and transition intensities,

Monte Carlo estimates for the expectation of the insurance quantities are formed.

A simulation approach allows for great model complexity which helps to make the

model realistic. Separately and together, the paths of a simulated financial market and

their influence on the assets and liabilities of the insurance company can be analysed

to provide valuable information about financial risks. This information can aide the

management of the insurance company to construct reasonable investment strategies.

Modern legislation demands that insurance companies project their business into the

future, in order to prove that they are solvent and prudent. By actually making

a forecast of the business, otherwise inaccessible awareness about the influence of

management actions is gained. In order to form these projections, realistic developments

of the financial markets and transition intensities are essential, advocating for a

simulation approach.
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In Jensen (2016) the with-profit life insurance policy is studied for an arbitrary

simulated financial market, conditional on the state of the policy staying in its initial

state. Also for a simulated financial market, Jensen and Schomacker (2015) study the

with-profit insurance policy in a framework that allows for portfolio wide projections,

for a dividend strategy that may depend on the financial markets only. In a setting

with financial risk, Bacinello et al. (2018) introduce systematic insurance risk via a

stochastic mortality intensity which is assumed to be independent of the financial

market.

The outset of this paper is provided by Bruhn and Lollike (2021), who derive a system

of differential equations that describe the projections of the surplus and savings of an

additional benefits with-profit life insurance policy where both financial markets and

transition intensities are simulated and possibly dependent. The differential equations

from Bruhn and Lollike (2021) demand a dividend strategy that is affine in the reserves

that are projected. An equivalent system of differential equations are provided by

Ahmad et al. (2021), who also present a class of dividend strategies that lead to

particularly simple projections in the likes of Jensen and Schomacker (2015).

Just as simulation of the financial market is important to understand financial risks,

simulation of transition intensities is important to understand biometric risks, and

possibly how the two interact. Even with the ever increasing amount of computational

power at disposal of actuaries, the differential equations provided by Bruhn and Lollike

(2021) are infeasible for projecting entire portfolios of insurance policies, in particular

when both investment returns and transition intensities are stochastic. In this paper

we improve the feasibility through three contributions;

a) We provide a method to translate payments and transitions for an insurance

policy to another but similar insurance policy that lives on a smaller state space.

We denote this operation lumping.

b) Via lumping, we provide a system of differential equations smaller than the one

suggested by Bruhn and Lollike (2021) for projecting a portfolio of with-profit

insurance policies where some intensities are stochastic.

c) In the spirit of reducing the number of differential equations needed for projecting

an insurance portfolio, we specify how policies can be combined into so-called

modelpoints to further reduce the system of differential equations.

Contribution a) is purely theoretical, but provides us with a tool that we need in

order to formalise our main contribution, namely contribution b). Both contribution

b) and c) yield linear improvements in the computational run-time of projections, and

are in that regard equally useful. By reducing the number of differential equations

while maintaining a projection that incorporates stochastic intensities, we are striking
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a balance between the speed and accuracy of the projection, resulting in efficient

projections.

The paper is structured as follows. In Section 3.2 we establish the involved framework

of the with-profit insurance policy with stochastic transition intensities. In Section

3.3 we define the cash flow preserving lumping, and present some of its properties.

Section 3.4 is the cornerstone of the paper, as it is here we present contribution b)

and establish when the smaller system of differential equations describe an aggregated

version of the original system of differential equations. Section 3.5 introduces a method

to combine policies and determines when this can be done without any loss of accuracy.

Finally, we conduct a numerical study in Section 3.6, investigating the approximation

error introduced by lumping for a simple insurance policy, with calculations performed

on industry applied software.

3.2 Set-up

3.2.1 State Process and Financial Market

Let the process Z(t), denote the time-t state of a policy on a finite state space

J = 0, ..., J . The initial state of the policy is assumed to be known. Let

Nk(t) := #{s ∈ (0, t] : Z(s−) ̸= k, Z(s) = k},

be the counting process expressing the number of jumps of Z into state k. The

information about Z available at time t is represented by the filtration FZ
t , generated

by Z.

The with-profit insurance policy is through the surplus influenced by a financial

market consisting of a short rate and a vector of tradable assets. We do not impose any

restrictions on the dynamics of the financial market, allowing for great model complexity

which is the significant strength of the simulation approach. The information about

the financial market available at time t is denoted FS
t .

As stated in the introduction, we want Z to be a stochastic Markov process with

stochastic intensities, often called a doubly stochastic Markov setting. The formal

arguments to construct such a Z process, start with the continuous sample path

stochastic intensities µij . Using stochastic intensities, we employ Kolmogorovs forward

differential equations,

d

dt
pji(s, t) =

∑

k ̸=i

pjk(s, t)µki(t)− pji(s, t)µik(t), pji(s, s) = 1{i=j},

to construct the functions pij(s, t), and one can show that these functions satisfy

pij(s, t) = P (Z(t) = j | Z(s) = i),
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where Z is a stochastic process with intensities µij . See Section 2.1 of Buchardt et al.

(2019) and their references to Jacobsen (2006) for the details of this construction. The

stochastic intensities form the best guess on the intensities of the state process and are

called the third-order intensities.

In relation to transitions, an insurance company faces two kinds of risk; unsystematic

and systematic. Unsystematic risk is the risk involved with transitions between states,

and with how closely the portfolio of policies behave like they are expected to, given

that the third-order intensities are the actual intensities of the state process. This type

of risk is not particularly worrisome, as a large portfolio of homogeneous policies will

behave like they are expected to, according to the law of large numbers. The systematic

risk is a more serious manner, as it concerns whether or not the transition intensities

actually describe the state process of the policies. If the wrong intensities are used

for the entire portfolio of insurance policies, it can have a disastrous impact on the

insurance company. It is therefore imperative that we understand the systematic risk,

and this insight can be gained by producing thousands of projections of the insurance

portfolio with simulated stochastic transition intensities.

There are multiple drivers of the systematic risk that influence the insurance provider

through stochastic transition intensities, for example medical advancements, pandemics

or political actions. Some of these transition intensities change due to biometric factors

purely, while others change due to differences in behaviour. Classically, a multi-state

policy has two options that can be exercised as long as the policy is premium paying.

The policyholder can choose to cease his premium, or to cancel his policy all together.

Ceasing premium payments is referred to as converting to free-policy. The free-policy

option has been studied in Buchardt and Møller (2015) and for a with-profit policy in

Falden and Nyegaard (2021) and Ahmad et al. (2021). Upon cancellation of the policy,

the reserve is paid out to the policyholder, and this option is known as the surrender

option.

It is not unrealistic that some behavioural intensities depend on the financial market,

such as for instance the free-policy transition intensity – due to unemployment during

times of recession, there may be a higher number of policies that choose to exercise

their free-policy option. This particular type of market dependent systematic insurance

risk is related to the behaviour of the policyholder. The behavioural intensities are

of particular interest due to possibly hazardous combinations of effects. Imagine for

instance, in times of recession when the insurance company is losing money on the

financial markets, that the policyholders also have a higher tendency to surrender their

policy or exercise their free-policy option. Is such a combined effect of a recession

better or worse for the insurance company than if there is no market dependence? And

how should the management incorporate this information in their actions? In order

to answer these types of questions, we need to be able to study projections for state
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processes that depend on the financial market.

We assume that the intensities are FS-adapted, because we want the stochastic element

of the intensities to be driven by the financial market. Even for stochastic intensities

that do not depend on the financial market, we can define FS as the σ-algebra generated

by an artificial market containing information about transition intensities as well as

the financial market.

In practice, the simulation of the financial market involves all sorts of assets, but for

the theoretical purposes of this paper, we use the short rate r(t) as a proxy for the

return of a self-financing portfolio of tradable assets to ease readability. We use the

notation

E0[ · ] = E[ · | FZ
0 ],

representing the expectation given the information about Z available at time zero,

which is the mean value of interest concerning projections.

3.2.2 With-profit Insurance

In this subsection we introduce the surplus and the savings account and specify how

the two parts combine to create a with-profit insurance policy.

The Savings Account

The ideas and notation of this subsection are inspired by Møller and Steffensen (2007)

and Asmussen and Steffensen (2020). The with-profit life insurance policy consists of

a combination of two payment streams B1 and B2, with dynamics

dBi(t) = b
Z(t)
i (t)dt+

∑

k:k ̸=Z(t−)

b
Z(t−)k
i (t)dNk(t), i = 1, 2.

The deterministic payment functions bji (t) and bjki (t) specify payments during sojourns

in state j and on transition from state j to state k, respectively. At initialisation

of the policy, the insured and insurance company agree on the B1 payment stream

that is determined to be fair under the principle of equivalence, for a set of prudent

assumptions regarding interest and transition intensities. These prudent assumptions

are called the first-order or technical basis and they are independent of the financial

market. The first-order basis consists of an interest rate r∗(t), and a set of deterministic

transition intensities µ∗
ij(t). An asterisk is used to indicate first-order elements such as

the prospective technical reserves

V
Z(t)∗
i = E∗

[∫ n

t

e−
∫ s
t
r∗(v)dvdBi(s) | Z(t)

]
.

The dynamics of V
Z(t)∗
i depend on the financial market through the state process Z,

but for any fixed j we can calculate V j∗
i without any information about the financial
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market using Thieles differential equation.

In contrast to the prudent first-order basis, the policy also has a best guess on the

interest rate r(t) and transition intensities µij(t) called the third-order basis or market

basis. It is exactly by simulating the third-order basis we can generate a realistic

evolution of the future, but we have to do this thousands of times to achieve the stable

averages that are our Monte Carlo estimators. Liabilities that are calculated for a

simulated third-order basis, is often referred to as stochastic liabilities, and Monte

Carlo estimates present a powerful tool to assess liabilities for models where analytical

solutions are unavailable.

If the first-order basis truly is prudent, a surplus is expected to develop. This surplus

belongs in part to the equity of the insurance company for taking a risk in guaranteeing

a payment stream, but mostly to the policyholder who financed the surplus. The surplus

is paid back to the policyholder in the form of dividends. The bonus scheme determines

how the dividends are turned into actual payments for the policyholder, and we are

fixed on the additional benefits bonus scheme. We denote by D(t) the accumulated

dividends at time t and assume that it consists purely of continuous payments that

instantaneously are spent on buying more of the B2 payment stream. The additional

payment streams are also priced under the first-order basis, and, introducing the

process Q(t) to denote the quantity of B2 payment streams held by the policyholder

at time t, we have that

dD(t) = dQ(t)V
Z(t)∗
2 (t),

with the convention Q(0) = 0. The policyholder experiences the combined payment

process

dB(t) = dB1(t) +Q(t−)dB2(t).

The payment stream B1 is fixed, and can be thought of as containing premiums only,

but can in general contain both premiums and benefits. The payment stream B2

consists of bonus benefits, and to avoid a scenario where additional benefits has no

value, we require for B2 that it does not contain any negative benefits (premiums), and

that V k∗
2 (t) ̸= 0 for all (t, k) ∈ (0, n]× J . We can now construct the savings account

of the policy as

X(t) = V
Z(t)∗
1 (t) +Q(t)V

Z(t)∗
2 (t),

which corresponds to the present value of all future benefits less premiums guaranteed

at time t, or equivalently, the present value of all past premiums and dividends less

benefits compounded with the first-order interest. Using integration by parts we find
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the dynamics of X

dX(t) =dV
Z(t)∗
1 (t) +Q(t−)dV

Z(t)∗
2 (t) + V

Z(t)∗
2 (t)dQ(t)

=r∗(t)X(t)dt+ dD(t)− bZ(t)(t,X(t))dt

−
∑

k ̸=Z(t−)

bZ(t−)k(t,X(t−))dNk(t)−
∑

k:k ̸=Z(t−)

ρZ(t)k(t,X(t))dt

+
∑

k:k ̸=Z(t−)

RZ(t−)k(t,X(t−))dMk(t),

where

Mk(t) =Nk(t)−
∫ t

0

1{Z(s−) ̸=k}µZ(s−)k(s)ds,

bj(t, x) =bj1(t) +
x− V j∗

1 (t)

V j∗
2 (t)

bj2(t),

bjk(t, x) =bjk1 (t) +
x− V j∗

1 (t)

V j∗
2 (t)

bjk2 (t),

ρjk(t, x) =ρjk1 (t) +
x− V j∗

1 (t)

V j∗
2 (t)

ρjk2 (t),

Rjk(t, x) =Rjk
1 (t) +

x− V j∗
1 (t)

V j∗
2 (t)

Rjk
2 (t),

for Rjk
i being the sum-at-risk on transition from j to k, given by

Rjk
i (t) = bjki (t) + V k∗

i (t)− V j∗
i (t),

and ρjk being the surplus risk contribution on transition from state j to k, given by

ρjki (t) = Rjk
i (t)(µ∗

jk(t)− µjk(t)).

Note that dX(t) is affine in X(t) if and only if dD(t) is affine in X(t). How the savings

account evolves, depends on the specification of the B1 and B2 payment stream, but

also on the amount of dividends received from the surplus.

The Surplus

The surplus is formed by the safety margin built into the first-order basis in the form

of prudent assumptions on interest and transition intensities. Dividends are financed

by the surplus, making it a major component of the with-profit insurance policy. The

surplus for a group of N policies, indexed by prescript l, is defined as

Y (t) = −
(

N∑

l=1

∫ t

0

e
∫ t
s
r(τ)dτd(lB1(s) + lQ(s) lBs(s)) + lX(t)

)
,
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corresponding to the sum over benefits less premiums compounded with the short

rate for all policies in the group. This definition of surplus for a group of policies, is

simply a sum over the individual surplus as defined by Bruhn and Lollike (2021) and

Asmussen and Steffensen (2020). The dynamics of Y are

dY (t) =r(t)Y (t)dt

+

N∑

l=1


d lC(t)− d lD(t)−

∑

k:k ̸=lZ(t)

lRlZ(t−)k(t, lX(t−))d lM
k(t)


 , (3.2.1)

where

d lC(t) = (r(t)− r∗(t)) lX(t)dt+
∑

k ̸=lZ(t)

lρlZ(t)k(t, lX(t))dt,

is the surplus contribution rate for policy l, characterizing the payment stream from

policy l to the surplus.

Projecting The Savings Account and Surplus

Our goal is to calculate expected future values of the savings account and surplus

which are retrospective reserves. Specifically, we want to calculate the probability

weighted state-wise savings account, often simply called the state-wise savings account,

defined as

lX̃
i(t) := E0[lX(t)1{lZ(t)=i}],

giving access to several quantities of interest such as the future discretionary benefits

lFDB := E0

[∫ n

0

e−
∫ s
0
r(ν)dν

lQ(s)dB2(s)

]
,

and the future guaranteed reserves

lGY i(t) := E0

[∫ n

t

e
∫ s
t
r(ν)dνd (lB1(s) + lQ(t) lB2(s))

∣∣∣∣ lZ(t) = i

]
.

Bruhn and Lollike (2021) consider a one-policy set-up and produce a system of forward

differential equations for the state-wise retrospective reserves, when the dividends

are affine in X and Y . Throughout this paper we assume that the dynamics of the

dividend process are affine in X and Y , as the linear relation is a necessity for the

projections to be described by the differential equations for the one-policy set-up from

Bruhn and Lollike (2021). A straightforward extension of the one-policy set-up is to

consider the projection of

W̃ ij(t) =



E0[1X(t)1{1Z(t)=i}1{2Z(t)=j}]

E0[2X(t)1{1Z(t)=i}1{2Z(t)=j}]

E0[Y (t)1{1Z(t)=i}1{2Z(t)=j}]


 ,
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which can be calculated using the same forward differential equations as in the one-

policy case. However, increasing the number of policies quickly renders the method

impractical, as a system of more than (#J )N differential equations has to be solved.

For a 7-state model, 8 policies already requires a system of more than 5 million

differential equations. The problem lies in the fact that the savings accounts are

dependent through the common surplus Y . Fortunately, there are tools at the disposal

of actuaries to mitigate the influence of unsystematic risk, simply by increasing the size

of the portfolio of homogeneous policies. Based on the law of large numbers, we can

average out the unsystematic risk carried by the surplus, if the portfolio of insurance

policies is sufficiently large. This method is also implemented by Ahmad et al. (2021),

using the same argumentation as Norberg (1991) and Møller and Steffensen (2007).

To simplify notation, we define lpi(t) = lpl0i(0, t), where l0 denotes the state of policy

l at time 0. By replacing the stochastic processes in the dynamics (3.2.1) with their

state-wise expected values, we get the risk-diversified surplus with dynamics

dỸ (t) =r(t)Ỹ (t)dt+ (r(t)− r∗(t))

N∑

l=1

∑

i∈J

lX̃
i(t)dt

+
∑

k:k ̸=i

lpi(t) lρ
ik
(
t, lX̃

i(t)/ lpi(t)
)
dt

−
N∑

l=1

∑

i∈J

lpi(t)(lδ
i
0(t) + lδ

i
2(t)Ỹ (t)) + lδ

i
1(t) lX̃

i(t)dt.

Using the risk-diversified surplus, the individual savings accounts are, conditional

on FS , independent of each other. We emphasize that it is only the unsystematic

insurance risk that is diversified – there is still a component of systematic insurance

risk influencing the surplus through the market-dependent transition intensities. By

using the risk-diversified surplus, we only need the dividends to be affine in X, but

for the sake of coherence with the non-risk-diversified surplus, we assume that the

dynamics of the dividend is given by

d lD(t) = (lδ
lZ(t)
0 (t) + lδ

lZ(t)
1 (t) lX(t) + lδ

lZ(t)
2 (t)Ỹ (t))dt. (3.2.2)

Projecting a portfolio of independent policies is computationally much less demanding

than projecting a portfolio of policies that depend on the states of all other policies,

but it is still not feasible. As it forms the benchmark for projecting a portfolio of

with-profit insurance policies, we state the main theorem of Bruhn and Lollike (2021)

in a setting with the risk-diversified surplus and N policies.

Theorem 3.2.1. For a portfolio of with-profit insurance policies indexed by l with

dividend processes affine in the savings and surplus, the state-wise savings accounts

lX̃
i(t) = E0[1{lZ(t)=i} lX(t)],
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and the risk-diversified surplus Ỹ , satisfy the system of differential equations

d

dt lX̃
j(t) =

∑

i:i ̸=j

(
lµij(t) lX̃

i(t)− lµji(t) lX̃
j(t)
)

+ lg
j
1(t) lX̃

j(t) + lpj(t) lg
j
0(t) + lpj(t) lδ

j
2(t)Ỹ (t)

+
∑

i:i ̸=j

lµij(t)
(
lh

ij
1 (t) lX̃

i(t) + lpi(t) lh
ij
0 (t)

)
,

d

dt
Ỹ (t) =r(t)Ỹ (t)−

N∑

l=1

∑

j∈J

lpj(t) lδ
j
0(t)

− Ỹ (t)

N∑

l=1

∑

j∈J

lpj(t) lδ
j
2(t)

+

N∑

l=1

∑

j∈J

lpj(t) lc
j
0(t) + lX̃

j(t) lc
j
1(t),

d

dt lpj(t) =
∑

i ̸=j

lµij(t) lpi(t)− lµji(t) lpj(t),

lX̃
i(0) =1{i=l0} lx0,

Ỹ (0) =y0,

lpj(0) =1{j=l0},

where

lg
j
0(t) = lδ

j
0(t)− lb

j
1(t)−

∑

k:k ̸=j

lR
jk
1 (t) lµ

∗
jk(t)

+ lV
j∗
1 (t)

lV
j∗
2 (t)




lb
j
2(t) +

∑

k:k ̸=j

lR
jk
2 (t) lµ

∗
jk(t)




lg
j
1(t) =r∗(t) + lδ

j
1(t)−

1

lV
j∗
2 (t)




lb
j
2(t) +

∑

k:k ̸=j

lR
jk
2 (t) lµ

∗
jk(t)




lh
jk
0 (t) = lV

k∗
1 (t)− lV

j∗
1 (t) lV

k∗
2 (t)

lV
j∗
2 (t)

lh
jk
1 (t) = lV

k∗
2 (t)

lV
j∗
2 (t)

− 1

lc
j
0(t) =

∑

k:k ̸=j

lρ
jk
1 (t)− lV

j∗
1 (t)

lV
j∗
2 (t)

∑

k:k ̸=j

lρ
jk
2 (t)

lc
j
1(t) =(r(t)− r∗(t))− lδ

j
1(t) +

1

lV
j∗
2 (t)

∑

k:k ̸=j

lρ
jk
2 (t).

See Bruhn and Lollike (2021) for the proof, where obvious small modifications
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are relevant when projecting the risk-diversified surplus. In practice this system of

2×N ×#J + 1 differential equations has to be solved for thousands of realisations

of the financial market in order to form a stable Monte Carlo estimator. Note that

the calculation of lpk(t) needs to be done only once if the transition intensities are

independent of the financial market. If however, at least one intensity depends on

FS
t , then lpk(t) has to be calculated for all k for each financial scenario. By means of

diversification we have greatly reduced the number of differential equations, but even

so, the computational task of projecting the portfolio of policies is still overwhelming

in practice due to the very large number of financial scenarios. To further reduce the

system, we can either reduce the number of states or the number of policies. In the

next section we propose a method for approximating reserves and benefits by reducing

the state space of the policy, revealing a gateway to reducing the number of differential

equations for the with-profit insurance policy.

To ease readability, we consider a single policy portfolio in the remainder of the paper,

except from Section 3.5.

3.3 Reducing the With-Profit Policy

In this section we look into the elements that make up a with-profit insurance policy,

and present a way to modify these elements such that they describe a different, but

similar insurance policy on a smaller state-space. The motivation for this reduction of

the state-space is to reduce the number of differential equations from Theorem 3.2.1.

Fundamentally, there are three parts of any multi-state insurance policy; a third-order

basis, a first-order basis and a payment process. The payment process accounts for

payments between the savings account and the policyholder as well as payments

between the savings account and the surplus. In addition, the initial distribution on

the state space of the state process is relevant, and assumed to be known. We want

to translate each of these parts to corresponding versions that describe a policy on a

smaller state space.

Reducing the number of states of a Markov process to produce another Markov process

is known within the statistical litterature as lumping. Originating in the work by

Kemeny and Snell (1976), the notion of lumping and lumpability has been studied

extensively in the statistical literature. However, the questions of statistical interest

are not of interest in regards to projections of insurance portfolios. Instead of asking

the statistically relevant question; how can we create a partition of the state space

that preserves Markovianity? We ask the question; which Markov process on a given

partition of the state space behaves most like the original process? Once the Markov

process has been found, we also have the further objective of defining a payment stream

on the lumped states that imitates the original payment stream. Due to the difference
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in interest, our definition of lumping is inherently embedded in the insurance domain

and vastly different to the one found in the statistical literature.

For convenience, we construct the smaller state space via a so-called reduction function.

Definition 3.3.1. A function R : J → J ′, is a Reduction Function if R is a surjection

of J on J ′ and

#J ′ < #J ,

i.e. there are fewer states in J ′ than in J .

A reduction function is basically a look-up table, specifying which states of the non-

reduced state space J that should be grouped. To increase readability, we generally

use capital letters for the states of J ′ and lower-case letters for the states of J . For

some G ∈ J ′ define the inverse of R as

R−1(G) := {i ∈ J | R(i) = G},

with the informal notation i ∈ A ⇔ i ∈ R−1(A).

We define lumping as the operation of translating an insurance policy on the state space

J to the state space J ′. There are many ways to perform the operation of lumping,

but for our purposes, a specific way of translating the elements of the insurance policy

is particularly useful. Given a group of states A, we propose to construct lumped

intensities and payments by creating a probability-weighted average of the intensities

and payments within the group.

Definition 3.3.2 (Cash Flow Preserving Lumping). Given a reduction function

R : J → J ′, a set of transition intensities µ̃ij, initial probabilities pi(0), intensities

µij(t), sojourn payments hi(t) and payments on transitions hij(t), we define the lumped

initial probabilities, intensities, sojourn payments and payments on transition by

pI(0) =
∑

i∈I

pi(0),

µIJ(t) =
1∑

k∈I p̃k(s)

∑

i∈I

∑

j∈J

p̃i(t)µij(t),

hI(s) =
1∑

k∈I p̃k(s)

∑

i∈I

p̃i(s)


hi(s) +

∑

j∈I
j ̸=i

hij(s)µ̃ij(s)


 ,

hIJ(s) =

∑

i∈I

p̃i(s)
∑

j∈J

µij(s)h
ij(s)

∑

i∈I

p̃i(s)
∑

j∈J

µij(s)
,
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respectively. The probability-weights p̃i solve the Kolmogorov differential equations

p̃i(0) =pi(0)

d

dt
p̃i(t) =

∑

k ̸=i

p̃k(t)µ̃ki(t)− p̃i(t)µ̃ik(t).

We say that the lumping is constructed with respect to µ̃ij.

The Cash Flow Preserving Lumping (CFPL) is basically a way to probability weigh

the benefits and transitions of the policy, where µ̃ij determine the weights. The initial

distribution and transition intensities between states of J ′, can be thought of as

characterizing a state-process Z̃(t) that we assume to exist. If the transition intensities

of the non-lumped policy are Borel functions on bounded intervals, then the lumped

transition intensities will be Borel functions on bounded intervals, therefore making

Z̃(t) a Markov process. Heuristically, the elements of the lumped policy represents

the expected transition intensities and expected payments, given only the information

R(Z(t)). Note that the payment processes B1, B2 and D all can be lumped using

Definition 3.3.2, which is the intended use of the definition. Importantly, we can

therefore construct lumped reserves, lumped savings accounts and lumped surpluses

simply by replacing the original insurance elements with their lumped counterparts.

Definition 3.3.2 may seem somewhat arbitrary, but there are certain appealing proper-

ties satisfied by this way of lumping the insurance policy. The relationship between

probabilities of the lumped policy and the non-lumped policy is simple and straightfor-

ward to interpret.

Lemma 3.3.3 (State-wise Probabilities). For the CFPL w.r.t µij, the state-wise

probabilities of the lumped policy, are related to the state-wise probabilities of the

non-lumped policy in the following way

pI(t) =
∑

i∈I

pi(t). (3.3.1)

See Appendix 3.A for the proof. This is a reasonable property to demand from a

lumping. Furthermore, the probability of transition between states of the lumped and

non-lumped model have a similar relation.

Lemma 3.3.4 (Transition Probabilities). For the CFPL w.r.t µij, the transition

probabilities of the lumped policy, are related to the transition probabilities of the

non-lumped policy in the following way

pIJ(t, s) =
∑

i∈I

∑

j∈J

pi(t)

pI(t)
pij(t, s). (3.3.2)
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See Appendix 3.B for the proof. Apart from relations between probabilities of the

lumped and non-lumped policy, the expected payments for all states are also preserved.

Theorem 3.3.5 (Preservation of State-wise Cash Flow Contributions). For any

G ⊆ J ′, the CFPL w.r.t µij preserves all state-wise contributions to the expected

accumulated payments

E

[∫ t

0

1{R(Z(s))∈G}dB(s)

∣∣∣∣ pi(0), i ∈ J
]
=E

[∫ t

0

1{Z̃(s)∈G}dB
R(s)

∣∣∣∣ pI(0), I ∈ J ′

]
,

where Z̃ is a Markov process with intensities µIJ and initial distribution given by pI(0)

and BR is the Z̃-dependent payment stream given by lumping the payments in the B

payment stream with the reduction function R.

See Appendix 3.C for the proof.

Remark 3.3.6. Applying Theorem 3.3.5 to the total reduction R : J → 1, implies that

the expected total accumulated payments are preserved. This also means that the cash

flow is equal to the sojourn payment of the total lumping

∑

j∈J

pj(t)


bj(t) +

∑

k:k ̸=j

µjk(t)b
jk(t)


 = bT (t).

Theorem 3.3.5 states that no matter how states are lumped, the group-wise contribution

to the aggregated payments are preserved. Apart from conservation of state-wise

accumulated payments it holds for the total lumping that the prospective reserve is

equal to the probability-weighted state-wise prospective reserves.

Lemma 3.3.7 (Total Reduction Reserve). For the CFPL w.r.t µij, and the total

reduction function, R : J → 1,

V T (t) =
∑

i∈J

pi(t)V
i(t).

Which is shown simply by noting that the initial conditions and differential equations

for the right- and left-hand side are identical – see Appendix 3.D for the derivation.

However, it does not in general hold that

V I(t) =
∑

i∈I

pi(t)

pI(t)
V i(t),

for any reduction function other than the total reduction, even though it may be a

close approximation. By using the cash flow preserving lumping, we get everything we

need to produce a with-profit insurance policy on the reduced state space, simply by

replacing the payments, intensities and reserves of Theorem 3.2.1, with their lumped
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counterpart. By replacing the insurance elements of Theorem 3.2.1 with their lumped

counterpart we get a system of differential equations for the lumped savings account X̃I

that we believe approximates the group-wise sum of the non-lumped savings accounts.

By projecting the lumped savings account we are losing accuracy, but we are also

reducing the computation time.

3.4 Lumping With-Profit Insurance

There is no way to exactly project the with-profit insurance portfolio of state-wise

savings accounts and surplus with market-dependent transition intensities, without

calculating the 2×N ×#J + 1 differential equations specified in Theorem 3.2.1. If

there are any market dependent intensities, all probabilities are market-dependent.

Our objective is to devise a smaller system of differential equations that describe

projections of quantities that carry much of the same information as the projections

of the full model. We believe that the approach suggested in this paper is a fairly

accurate approximation, but also note that there is no trade-off between accuracy and

speed that is optimal for all purposes. Faster, less accurate approaches than the one

proposed here definitely exist. Fundamentally we need to discard information in order

to reduce the system of differential equations, but there is some information that we

certainly do not want to discard.

The main contribution of this paper, is to provide the means to efficiently project a

with-profit insurance policy in a setting where the intensities between behavioural

groups of states are stochastic. Therefore, the advantage of lumping states, relies on

a partition of the state space satisfying the property that two states connected via a

stochastic intensity are in different groups. We call this a stochastically-separating

partition. With such a partition, we can reduce the number of differential equations

from Theorem 3.2.1 while maintaining a model with stochastic intensities. In order

to separate states that are connected via a stochastic intensity, the partition may

need to be the trivial partition, and even if there exists a non-trivial partition that

separates stochastically connected states, it may be hard to find. We do not dive into

the rabbit-hole of graph partitioning, but instead refer to the vast literature on the

subject, and assume that the stochastically-separating partition is given. See Buluc

et al. (2015) for a review of the recent literature on graph partitioning.

As stated in the last section, nothing stops us from using Theorem 3.2.1 with lumped

insurance elements to project a lumped savings account to produce an approximation of

the aggregated non-lumped savings accounts. In order to understand the gap between

the systems of differential equations generated by the original insurance elements,

and the ones generated by the lumped insurance elements, we provide an alternative

motivation in this section by presenting three assumptions for a with-profit insurance

policy that results in a smaller system of differential equations.
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3.4.1 Three Assumptions

Assumption One

The first assumption is the essential assumption, in the sense that it allows us to

translate individual state-wise savings accounts, to aggregated state-wise savings

accounts. We make this translation by equating the distribution of the value of the

savings accounts within groups of states, by their conditional probabilities,

pi(t)∑
j∈I pj(t)

∑

j∈I

X̃j = X̃i, for i ∈ I.

If it does not hold, this assumption gives an approximate answer to the question: What

are the state-wise savings accounts of a policy for which we only know the state-wise

probabilities and aggregated savings account?

The information we are discarding is information that distinguishes savings accounts for

states in between groups from one another. We are however not discarding information

that in a probabilistic sense distinguishes states in between groups.

Assumption Two

The second assumption deals with the influence stochastic intensities have on all state-

wise probabilities, and the means to reduce the influence to groups of policies. Instead

of using the true market-dependent intensities µij , we use some market-independent

intensities µ̃ij to calculate probabilities p̃i, and then project the reduced state space

insurance policy based on the assumption

p̃i(t)

p̃I(t)
=

pi(t)

pI(t)
⇔ pI(t)

p̃i(t)

p̃I(t)
= pi(t).

This idea is equivalent to the wrongful assumption that the state-wise group conditional

probabilities are invariant to the financial market. Only in the special case of stochastic

intensities that influences all states in the group equally, the assumption is actually

true. There are several nuances to the choice of µ̃ij , and what properties it should

have, but in this paper we do not digress into the subject.

Assumption Three

Strictly speaking, Assumption Three is not necessary to reduce the number of differential

equations, but it allows us to use lumping to formulate a with-profit insurance policy

that we can project. Assumption Three is that

∑

i∈I

pi(t)

pI(t)

hi(t)

V i∗
2 (t)

=
1

V I∗
2 (t)

∑

i∈I

pi(t)

pI(t)
hi(t),

for any set of deterministic functions hi. Here, V I∗
2 (t) is the prospective first-order

reserve of the lumped insurance policy. Assumption One and Three are similar in the
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sense that they both provide relationships between reserves for groups of states and

individual states. Using Assumption Three, we do not need to know the value of the

state-wise prospective reserves to project the lumped savings account, but can suffice

with the lumped prospective reserves.

3.4.2 The Reduced Differential Equations

We can now apply Assumption One, Two and Three to the differential equations from

Theorem 3.2.1, to produce a smaller system of differential equations. To exhibit how

the assumptions alter the differential equations, consider the retrospective probability

weighted third-order reserve

Ũ i(t) = E0

[
1{Z(t)=i}

∫ t

0

e
∫ t
s
r∗(v)dvd(−B(s)) | Z(0) = 0

]
.

This reserve is of interest because it is equal to the state-wise savings account of a

policy that does not receive dividends. The differential equation for Ũ i(t) reads

d

dt
Ũ i(t) =r∗(t)Ũ i(t)− pi(t)b

i(t)−
∑

j ̸=i

pj(t)µji(t)b
ji(t)

+
∑

g ̸=i

µgi(t)Ũ
g(t)− µig(t)Ũ

i(t),

involving the stochastic intensities µji. Let a stochastically separating reduction

function R : J → J ′ be given, and consider the differential equation for the group-wise

sum of probability weighted retrospective third-order reserves in J determined by

R. Since the partition of the state space is stochastically separating, all transition

intensities within groups of states are deterministic. We write the differential equation,

change the order of summation and apply Assumption Two to get

∑

i∈I

d

dt
Ũ i(t)

=r∗(t)
∑

i∈I

Ũ i(t)− pI(t)
∑

i∈I

p̃i(t)

p̃I(t)
bi(t)−

∑

i∈I

∑

j ̸=i

pj(t)µji(t)b
ji(t)

+
∑

i∈I

∑

g ̸=i

µgi(t)Ũ
g(t)− µig(t)Ũ

i(t)
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=r∗(t)
∑

i∈I

Ũ i(t)− pI(t)

=bI(t)︷ ︸︸ ︷

∑

i∈I

p̃i(t)

p̃I(t)


bi(t) +

∑

j∈I
j ̸=i

µij(t)b
ij(t)




−
∑

J ̸=I

pJ(t)
1

p̃J(t)


∑

j∈J

p̃j(t)
∑

i∈I

µji(t)




︸ ︷︷ ︸
=µJI(t)

∑

j∈J

p̃j(t)
∑

i∈I

µji(t)b
ji(t)


∑

j∈J

p̃j(t)
∑

i∈I

µji(t)




︸ ︷︷ ︸
bJI(t)

+
∑

i∈I

∑

g ̸=i

µgi(t)Ũ
g(t)− µig(t)Ũ

i(t)

=r∗(t)
∑

i∈I

Ũ i(t)− pI(t)b
I(t)−

∑

J ̸=I

pJ(t)µJI(t)b
JI(t)

+
∑

i∈I

∑

G ̸=I

∑

g∈G

µgi(t)Ũ
g(t)− µig(t)Ũ

i(t),

recognizing the lumped intensities and payments of the CFPL with respect to intensities

µ̃ij(t). This differential equation only differs in the Thiele term from the differential

equation for the corresponding lumped retrospective probability weighted third-order

reserve,

d

dt
Ũ I(t) =r∗(t)Ũ I(t)− pI(t)b

I(t)−
∑

J ̸=I

pJ(t)µJI(t)b
JI(t)

+
∑

G ̸=I

µGI(t)Ũ
G(t)− µIG(t)Ũ

I(t).

Applying Assumption One and Two we get

∑

i∈I

d

dt
Ũ i(t)

=r∗(t)
∑

i∈I

Ũ i(t)− pI(t)b
I(t)−

∑

J ̸=I

pJ(t)µJI(t)b
JI(t)

+
∑

i∈I

∑

G ̸=I

∑

g∈G

µgi(t)Ũ
g(t)

∑
k∈G Ũk(t)

∑
k∈G Ũk(t)

− µig(t)

∑
j∈I Ũ

j(t)
∑

j∈I Ũ
j(t)

Ũ i(t)
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=r∗(t)
∑

i∈I

Ũ i(t)− pI(t)b
I(t)−

∑

J ̸=I

pJ(t)µJI(t)b
JI(t)

+
∑

G ̸=I

∑

k∈G

Ũk(t)

µGI(t)︷ ︸︸ ︷
∑

g∈G

∑

i∈I

µgi(t)
p̃g(t)

p̃G(t)

−
∑

j∈I

Ũ j(t)
∑

G ̸=I

∑

i∈I

∑

g∈G

µig(t)
p̃i(t)

p̃I(t)
︸ ︷︷ ︸

µIG(t)

,

revealing that if the initial conditions are the same, then

Ũ I(t) =
∑

i∈I

Ũ i(t).

In other words, calculating
∑

i∈I Ũ
i by means of Assumption One and Two is equivalent

to directly calculating the lumped counterpart Ũ I . Including all three assumptions

gives us a lumped version of Theorem 3.2.1.

Theorem 3.4.1 (Lumped projection). Let a portfolio of with-profit insurance policies

indexed by l, and a reduction function R be given. Under Assumption One, Two and

Three, the aggregated state-wise savings accounts

lX̂
I(t) :=

∑

i∈I

lX̃
i(t),

and the risk-diversified surplus Ỹ , satisfy the system of differential equations

d

dt lX̂
J(t) =

∑

I:I ̸=J

(
lµIJ(t) lX̂

I(t)− lµJI(t) lX̂
J(t)

)

+ lg
J
1 (t) lX̂

J(t) + lpJ(t) lg
J
0 (t) + lpJ(t) lδ

J
2 (t)Ỹ (t)

+
∑

I:I ̸=J

lµIJ(t)
(
lh

IJ
1 (t) lX̂

I(t) + lpI(t) lh
IJ
0 (t)

)
,
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d

dt
Ỹ (t) =r(t)Ỹ (t)−

N∑

l=1

∑

J∈J ′

lpJ(t) lδ
J
0 (t)

− Ỹ (t)

N∑

l=1

∑

J∈J ′

lpJ(t) lδ
J
2 (t)

+

N∑

l=1

∑

J∈J ′

lpJ(t) lc
J
0 (t) + lX̂

J(t) lc
J
1 (t),

d

dt lpJ(t) =
∑

I ̸=J

lµIJ(t) lpI(t)− lµJI(t) lpJ(t),

lX̂
I(0) =1{l0∈I} lx0,

Ỹ (0) =y0,

lpJ(0) =1{l0∈J},

where

lg
J
0 (t) = lδ

J
0 (t)− lb

J
1 (t)−

∑

K:K ̸=J

lR
Jk
1 (t) lµ

∗
JK(t)

+ lV
J∗
1 (t)

lV
J∗
2 (t)




lb
J
2 (t) +

∑

K:K ̸=J

lR
JK
2 (t) lµ

∗
JK(t)


 ,

lg
J
1 (t) =r∗(t) + lδ

J
1 (t)−

1

lV
J∗
2 (t)




lb
J
2 (t) +

∑

K:K ̸=J

lR
JK
2 (t) lµ

∗
JK(t)


 ,

lh
JK
0 (t) = lV

K∗
1 (t)− lV

J∗
1 (t) lV

K∗
2 (t)

lV
J∗
2 (t)

,

lh
JK
1 (t) = lV

K∗
2 (t)

lV
J∗
2 (t)

− 1,

lc
J
0 (t) =

∑

K:K ̸=J

lρ
JK
1 (t)− lV

J∗
1 (t)

lV
J∗
2 (t)

∑

K:K ̸=J

lρ
JK
2 (t),

lc
J
1 (t) =(r(t)− r∗(t))− lδ

J
1 (t) +

1

lV
J∗
2 (t)

∑

K:K ̸=J

lρ
JK
2 (t),

are given by the lumped intensities and payments of Definition 3.3.2.

See Appendix 3.E for the proof. Denote by X̃I(t) the state-wise savings account of

the lumped insurance policy. Theorem 3.4.1 states that if Assumptions One, Two and

Three are satisfied, the lumped state-wise savings account is equal to the sum over the

non-lumped state-wise savings account i.e.

X̃I(t) = X̂I(t).

Assumption One, Two and Three are probably not satisfied for most practically relevant

insurance policies, but regardless of the assumptions being true or not, we can use the
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differential equations for the lumped savings account to produce an approximation of

X̂I(t).

Remark 3.4.2. Assumption One, Two and Three are sufficient conditions to ensure

X̃I(t) =
∑

i∈I

X̃i(t) (3.4.1)

but they are not necessary. For the total lumping, with deterministic intensities and

D(t) = 0, (3.4.1) is also satisfied. There are also other special cases where (3.4.1) holds,

as we show in Section 3.4.3.

Apart from the fulfillment of the three assumptions, there are other conditions under

which (3.4.1) is satisfied when X̃I(t) is calculated using Theorem 3.4.1, and in the

next section we examine these conditions.

3.4.3 Deterministic Intensities and The Single-State Projection

In the special case of deterministic intensities, all probabilities appearing in Theorem

3.2.1 can be calculated once and reused for each financial scenario. In that case, the

projection is only influenced by the financial market through the dividends and rate

of return on the surplus. Based on the suggestion to partition the state space such

that states that are connected via a stochastic intensity are in different groups, we

examine the lumping to one state, since a stochastically separating partition in this

case is given by R : J → 1.

As shown by Ahmad et al. (2021), a certain class of dividend strategies imply FS-

adapted Q processes, which leads to significant computational simplifications. We show

that the same class of dividend strategies implies that there is no error introduced by

lumping to one state. For the particular class of dividend strategies in the form

dD(t) = δ̃0(t)V
Z(t)∗
2 (t)− δ̃1(t)V

Z(t)∗
1 (t)︸ ︷︷ ︸

δ
Z(t)
0 (t)

+ δ̃1(t)︸︷︷︸
δ
Z(t)
1 (t)

X(t), (3.4.2)

we see that

dQ(t) = δ̃0(t) + δ̃1(t)Q(t),

in which case X̃i can be calculated directly by the relation

X̃i(t) = pi(t)(Q(t)V i∗
2 (t) + V i∗

1 (t)).

We now pose the question; given a dividend strategy in the form (3.4.2), how big an

error is introduced by lumping to one state? By lumping to one state, the dividend

according to Definition 3.3.2 becomes

δL0 (t) =
∑

i∈J

δ̃0(t)V
i∗
2 (t)pi(t)− δ̃1(t)pi(t)V

i∗
1 (t)

δL1 (t) =δ̃1(t).
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For

V ∗
j (t) =

∑

i∈J

pi(t)V
i∗
j (t),

the lumped Q process, which by Lemma 3.3.7 is given by QL(t) =
X̃(t)−V ∗

1 (t)
V ∗

2 (t) , has

dynamics

dQL(t) =

∑
i∈J δ̃0(t)V

i∗
2 (t)pi(t)− δ̃1(t)pi(t)V

i∗
1 (t) + X̃(t)δ̃1(t)∑

i∈J V i∗
2 (t)pi(t)

=δ̃0(t) +QL(t)δ̃1(t),

implying that QL(t) = Q(t). What we have shown, is that for dividends in the form

(3.4.2), the lumped savings account is equal to the sum of the individual savings

accounts, ∑

i∈J

X̃j = Q(t)
∑

i∈J

pi(t)V
i∗
2 (t) +

∑

i∈J

pi(t)V
i∗
1 (t) = X̃(t).

Futhermore, lumping does not introduce any error in the calculation of FDB

FDB

=

∫ n

0

e−
∫ t
0
r(ν)dν

∑

i∈J

X̃i(t)/pi(t)− V i∗
1 (t)

V i∗
2 (t)

pi(t)


bi(t) +

∑

j:j ̸=i

µij(t)b
ij(t)


 dt

=

∫ n

0

e−
∫ t
0
r(ν)dνQ(t)

∑

i∈J

pi(t)


bi(t) +

∑

j:j ̸=i

µij(t)b
ij(t)


 dt

=

∫ n

0

e−
∫ t
0
r(ν)dν X̃(t)− V ∗

1 (t)

V ∗
2 (t)

∑

i∈J

pi(t)


bi(t) +

∑

j:j ̸=i

µij(t)b
ij(t)


 dt.

The natural presumption to make, is that dividends that approximately are in the form

(3.4.2), lead to small errors on the calculation of FDB and the lumped savings account.

Given dividend functions δi0 and δi1, they are approximately in the form (3.4.2) if there

exists state-independent functions δ̃0 and δ̃1 such that

δ̃0(t) ≈
δ
Z(t)
0 (t)− V

Z(t)∗
1 (t)δ

Z(t)
1 (t)

V
Z(t)∗
2 (t)

, δ̃1(t) ≈ δ
Z(t)
1 (t).

Conversely, given dividend functions δi0 and δi1, we can construct δ̃0 and δ̃1 to satisfy

this approximation via e.g.

δ̃0(t) =

∑
i∈J pi(t)δ

i
0(t)− V T∗

1 (t)δ̃1(t)

V T∗
2 (t)

, δ̃1(t) =
∑

i∈J

pi(t)δ
i
1(t),

and thereby create a strategy satisfying (3.4.2) that approximates the strategy given

by δi0 and δi1.
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3.5 Model Points

The ultimate goal of lumping the with-profit life insurance policy, is to reduce the

computation time for a projection of a portfolio of policies. So, in the system of

2 × N × #J + 1 differential equations from Theorem 3.2.1, we have focused on

decreasing #J . The approach of this section is to decrease N by combining policies

into so-called model points. We present a method to reduce the number of calculations

for a particular class of insurance policies where dividends proportional to the savings

account are invariant to the policy. The central idea is to calculate the proportion

between savings accounts for different policies and realize that it is invariant to the

dividend strategy, implying that it can be reused for all financial scenarios.

Given lX̃i(0) for i ∈ J , representing a group of policies l = 1...N experiencing the same

intensities and X-proportional dividends, δi1, consider the system of linear differential

equations

d

dt kX̃i(t) = ka
i
0(t) + ka

i
1(t) kX̃i(t) + δi1(t, ωt) kX̃i(t)

+
∑

j ̸=i

µji(t, ωt) kX̃j(t)− µij(t, ωt) kX̃i(t),

representing the state-wise expected savings accounts for policy k, ignoring payments

on transition to simplify notation. We have used the parameter ωt to highlight which

elements of the differential equation that depend on the financial market at time t. The

parameter can be thought of as a vector of prices of financial assets at time t which

influence the insurance managements decisions in regards to allocation of dividends,

as well as the financial assets that influence the behaviour of the policyholders and

thereby also the transition intensities between behavioural groups of states. Define the

ratio

Rk
i (t) :=

kX̃i(t)∑N
l=1 lX̃i(t)

,

representing the policy-k-proportion of the total savings accounts for state i. Note that

d

dt
Rk

i (t) =

∑N
l=1 lX̃i(t)

d
dt kX̃i(t)(∑N

l=1 lX̃i(t)
)2 − kX̃i(t)

∑N
l=1

d
dt lX̃i(t)(∑N

l=1 lX̃i(t)
)2
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=

∑N
l=1 lX̃i(t)

(
ka

i
0(t) + ka

i
1(t) kX̃i(t)

)

(∑N
l=1 lX̃i(t)

)2

−
∑N

l=1 kX̃i(t)
(
la

i
0(t) + la

i
1(t) lX̃i(t)

)

(∑N
l=1 lX̃i(t)

)2

+

∑N
l=1

∑
j ̸=i µji(t, ωt) kX̃j(t) lX̃i(t)− µij(t, ωt) kX̃i(t) lX̃i(t)

(∑N
l=1 lX̃i(t)

)2

−
∑N

l=1

∑
j ̸=i µji(t, ωt) lX̃j(t) kX̃i(t)− µij(t, ωt) lX̃i(t) kX̃i(t)

(∑N
l=1 lX̃i(t)

)2

+

=0︷ ︸︸ ︷
N∑

l=1

lX̃i(t)δ
i
1(t, ωt) kX̃i(t)−

N∑

l=1

kX̃i(t)δ
i
1(t, ωt) lX̃i(t)

(∑N
l=1 lX̃i(t)

)2 ,

and that this does not depend on δi1. However, the ratios depend on the financial

market through the stochastic intensities. By substituting the stochastic intensities

µij with deterministic intensities µ∗
ij from the first-order basis, we can approximate

Rk
i with the deterministic Rk∗

i .

To put these ratios to use, we can calculate Rk∗
i (t) once, and then calculate the helpful

quantities

bi0(t) =

N∑

l=1

la
i
0(t),

bi1(t) =

N∑

l=1

la
i
1(t)R

l∗
i (t).

With bi0 and bi1 in hand, we can approximate
∑N

l=1 lX̃i(t) for different realisations of

the financial market using the system of differential equations

d

dt
X̃S

i (t) =bi0(t) + X̃S
i (t)b

i
1(t) + δ1(t, ωt)X̃

S
i (t)

+
∑

j ̸=i

µji(t, ωt)X̃
S
j (t)− µij(t, ωt)X̃

S
i (t), (3.5.1)

X̃S
i (0) =

N∑

l=1

lX̃i(0). (3.5.2)
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Note that for dD(t) = 0, the first-order state-wise savings accounts are equal to the

probability weighted retrospective reserves

E∗
0[lX(t)1{Z(t)=i}] = lp

∗
i (t) lU

i∗
1 (t),

which are equal to the probability weighted prospective reserves under the principle of

equivalence. This implies that

Rk∗
i (t) = kp

∗
i (t) kV

i∗
1 (t)

∑N
l=1 lp

∗
i (t) lV

i∗
1 (t)

,

providing the means to calculate Rk∗
i (t) from the probability weighted prospective

reserves which commonly are available to the insurance company. If the transition

intensities µij are deterministic, we do not have to rely on an approximation of the

ratios, and can calculate them as

Rk
i (t) =

kpi(t) kV
i
1 (t)∑N

l=1 lpi(t) lV
i
1(t)

,

where the probabilities and prospective reserves are determined on the third-order

basis.

The ratios are invariant to dividends linear in the savings account, they are however

not invariant to dividends that are not linear in the savings account. Recall the

form of the dividends from (3.2.2), where δi0 accounts for the dividends that are

not linear in the savings account. If δi0 does not depend on the financial market,

which for instance is the case for dD(t) = q(t)dC(t) where q is some deterministic

function, then it can be included as an additional premium to form the payment stream

dB̂1(t) = dB1(t)+δ
Z(t)
0 (t)dt with corresponding reserves V̂

Z(t)∗
1 (t). The ratios between

savings accounts of different policies in the same state can then be calculated as

Rk∗
i (t) = kp

∗
i (t) kV̂

i∗
1 (t)

∑N
l=1 lp

∗
i (t) lV̂

i∗
1 (t)

.

In this section we have presented a way to reduce the number of differential equations

from Theorem 3.2.1 and 3.4.1 by combining policies into so-called modelpoints. In a

setting where only the dividends that are proportional to the savings account depend

on the financial market, and the third-order transition intensities are deterministic, the

modelpoint differential equations (3.5.1)-(3.5.2) are equal to the accumulated state-wise

savings account for a group of policies.

3.6 Numerical Example

In this section we examine the loss in precision when projecting a lumped with-profit

insurance policy, in a setting where all transition intensities are deterministic. The
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calculations are performed on the industry implemented software product PROBABLI

provided by Edlund A/S. How well the approximation performs for stochastic intensities,

depends on the specific way in which the intensities depend on the financial market,

and the accuracy of the surrogate intensities µ̃ij , which is a study we do not pursue

here.

We showcase characteristics for four different dividends given by the combinations of

dD(t) = ±0.5dCr(t)± 0.5dCµ(t),

where

dCr(t) = (r(t)− r∗(t))X(t)dt,

dCµ(t) =
∑

j ̸=Z(t)

RZ(t)k(t,X(t))(µ∗
Z(t)k(t)− µZ(t)k(t))dt.

These dividends have an aspect for both insurance risk and interest risk. Realistically,

dividends cannot be taken from the policyholder, but the purpose of the different divi-

dends is not to mimic the real world, but rather to demonstrate how the approximation

performs for different kinds of dividends.

We consider a single with-profit insurance policy with a disability annuity of 80.000

per year while disabled until retirement at age 65, as well as a life annuity of 100.000

per year while active or disabled, commencing at retirement. The state space of the

policy is depicted in Figure 3.1.

0, Active 1, Disabled

2, Dead

µ01

µ02 µ12

Figure 3.1: State space of insurance policy

Both benefits are scaled with bonus. The policyholder is 50 years old and active at

time t = 0, and all premiums have been paid by t = 0. The technical basis consists of

the elements

r∗(t) =0.02,

µ∗
01(t) =

0.85

0.7
· (0.0006 + 104.71609−10+0.06·(50+t)),
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as well as a force of mortality, µ∗
02 = µ∗

12, equal to the 2016 mortality benchmark

published by the Danish FSA – see Finanstilsynet.dk, 2019. The third-order basis is

determined by

r(t) =0.03,

µ01(t) =µ∗
01(t) · 0.7,

and a force of mortality equal to the first-order mortality. We let Q(0) = 0 and let

all benefits be scaled by bonus, implying that V i∗
2 (t) = V i∗

1 (t). The four different

dividends in the three state model are given in Table 3.1

dD(t) Positive in transition risk Negative in transition risk

Positive in interest risk 0.5dCr(t)dt+ 0.5dCµ(t) 0.5dCr(t)dt− 0.5dCµ(t)

Negative in interest risk −0.5dCr(t)dt+ 0.5dCµ(t) −0.5dCr(t)dt− 0.5dCµ(t)

Table 3.1: Overview over the four different dividend strategies

The dividends correspond to the δ-functions

δ
Z(t)
0 (t) = 0, δ

Z(t)
2 (t) = 0

δ
Z(t)
1 (t) = ±(r(t)− r∗(t))± 1{Z(t)=0}

(
V 1∗
2 (t)

V 0∗
2 (t)

− 1

)
(µ∗

01(t)− µ01(t)).

A major motivator for projecting with-profit insurance policies, is the calculation of fu-

ture discretionary benefits, which is why we measure the accuracy of the approximation

in terms of differences in the FDB cash flow, defined by

C3
FDB(t) =

∑

i∈J

X̃i(t)/pi(t)− V i∗
1 (t)

V i∗
2

pi(t)


bi2(t) +

∑

j:j ̸=i

µij(t)b
ij
2 (t)


 ,

C1
FDB(t) =

X̃(t)− V ∗
1 (t)

V ∗
2

∑

i∈J

pi(t)


bi2(t) +

∑

j:j ̸=i

µij(t)b
ij
2 (t)


 ,

representing the expected amount of additional benefits received by the policyholder

at time t, for the three- and one state models respectively. Since we are considering a

single policy only, we do not pay attention to the diversified surplus, as the surplus

provides insignificant additional information. In Figure 3.2 we have plotted C1
FDB and

C3
FDB .
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Figure 3.2: CFDB(t) calculated in the three- and one state models.

The first thing to notice is that there is almost no visual difference between calculating

in the full three state model, and the lumped one state model. Furthermore, the interest

risk constitutes a much larger part of the surplus contribution than the transition

risk, this might be different for a different policy with e.g. a large life assurance. To

highlight the dissimilarity, we plot C1
FDB(t) − C3

FDB(t) in Figure 3.3, showing how

much the one state model overestimates the future discretionary benefits.

Figure 3.3: Difference in CFDB(t) between the three- and one state models.
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During the first 15 years there can only be benefits from the disabled state, and for

the two plots to the left CFDB is overestimated in the one-state model which implies

that
X̃1(t)/p1(t)

V 1∗
2 (t)

<
X̃(t)

p0(t)V 0∗
2 (t) + p1(t)V 1∗

2 (t)
.

It is not obvious why this is the case – the denominator is largest on the left hand side,

but so is the numerator. In order for the policy to receive benefits for t < 15 in the

three state model, it has to transition to the disabled state, whereas no transition is

required (or possible) in the one state model. Furthermore, once the transition to the

disabled state has been made in the three state model, dCµ(t) = 0 and therefore fewer

dividends are allotted in absolute value.

After 15 years, we see a jump in the difference because the life annuity benefit

commences and the disability pension terminates. The sign of the difference at t = 15

is dictated by which of X̃0(t)/p0(t) + X̃1(t)/p1(t) and X̃(t) is larger, since the benefits

and the prospective reserves in both the non-dead states are identical. This mechanism

compensates for the approximation error during the first 15 years, since larger benefits

imply smaller savings and vice versa. In all four cases, the error at t = 15 is small but

the absolute error increases, mostly due to the part of the dividend relating to the

interest risk.

For a simple policy, we have demonstrated that the approximation error introduced by

lumping a three state model to a one state model is small. The performance of the

approximation is highly dependent on the specific policy, and our numerical results

should be seen in that light. For a large group of policies, some approximation errors

will accumulate, while others will cancel each other out – again, this is highly dependent

on the specific portfolio and dividend strategy.
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3.A Proof of Lemma 3.3.3

Proof. By definition,

pI(0) =
∑

i∈I

pi(0),

and so it only remains to prove that the derivatives coincide. By the Kolmogorov

forward equations

d

dt
pI(t) = −pI(t)µI·(t) +

∑

K ̸=I

pK(t)µKI(t), (3.A.1)

and

d

dt

∑

i∈I

pi(t) =
∑

i∈I

∑

k ̸=i

(−pi(t)µik(t) + pk(t)µki(t)) .

Note that for k, k′ ∈ I and k ̸= k′ the contribution to the total sum only relates

transitions out of I, as

pk(t)µkk′(t)− pk′(t)µk′k(t) + pk′(t)µk′k(t)− pk(t)µkk′(t) = 0,

and so

d

dt

∑

i∈I

pi(t) =
∑

i∈I

∑

K ̸=I

∑

k∈K

pk(t)µki(t)− pi(t)µik(t).

Dividing and multiplying by
∑

i∈I pi(t) and
∑

k∈K pk(t) yields

d

dt

∑

i∈I

pi(t) =−
∑

i∈I

pi(t)
∑

K ̸=I

∑

i∈I

∑

k∈K

pi(t)∑
i∈I pi(t)

µik(t)

+
∑

K ̸=I

∑

k∈k

pk(t)
∑

k∈K

∑

i∈I

pk(t)∑
k∈K pk(t)

µki(t).

This differential equation is identical to (3.A.1).

3.B Proof of Lemma 3.3.4

Proof. Trivially,

pIJ(t, t) =
∑

i∈I

∑

j∈J

pi(t)

pI(t)
pij(t, t).

The Kolmogorov-Chapman equations state that

pJ(s) =
∑

M∈J ′

pM (t)pMJ(t, s), (3.B.1)
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which comprises a system of #J ′ equations with #J ′ unknowns, for any given t < s.

By the Kolmogorv forward equations, and the Kolmogorov-Chapman equations

d

ds
pJ(s) =

d

ds

∑

j∈j

pj(s)

=
∑

j∈J

∑

k ̸=j

(
− pj(s)µjk(s) + pk(s)µkj(s)

)

=
∑

l∈J

∑

j∈J

∑

k ̸=j

(
− pl(0)plj(0, s)µjk(s) + pl(0)plk(0, s)µkj(s)

)

=
∑

m∈J

∑

l∈J

∑

j∈J

∑

k ̸=j

(
pl(0)plm(0, t)pmk(t, s)µkj(s)

)

−
∑

m∈J

∑

l∈J

∑

j∈J

∑

k ̸=j

(
pl(0)plm(0, t)pmj(t, s)µjk(s)

)
, (3.B.2)

providing us with an expression for the LHS of (3.B.1). We now guess that

pIJ(t, s) =
∑

i∈I

∑

j∈J

pi(t)

pI(t)
pij(t, s),

and set out to verify that the resulting RHS of (3.B.1), equals (3.B.2). Note that,

using our guess,

d

ds
pJ(s) =

d

ds

∑

M∈J ′

pM (t)
∑

m∈M

∑

j∈J

pm(t)

pM (t)
pmj(t, s)

=
d

ds

∑

M∈J ′

∑

m∈M

∑

j∈J

pm(t)pmj(t, s)

=
d

ds

∑

m∈J

∑

j∈J

pm(t)pmj(t, s).

We see that indeed
∑

m∈J ′

∑

j∈J

pm(t)
d

ds
pmj(t, s)

=
∑

m∈J

∑

j∈J

pm(t)


∑

k ̸=j

−pmj(t, s)µjk(s) + pmk(t, s)µkj(s)




=
∑

m∈J

∑

j∈J

∑

k ̸=j

(
− pm(t)pmj(t, s)µjk(s) + pm(t)pmk(t, s)µkj(s)

)

=
∑

m∈J

∑

l∈J

∑

j∈J

∑

k ̸=j

(
− pl(0)plm(0, t)pmj(t, s)µjk(s) + pl(0)plm(0, t)pmk(t, s)µkj(s)

)
,

thus confirming that

pIJ(t, s) =
∑

i∈I

∑

j∈J

pi(t)

pI(t)
pij(t, s).
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3.C Proof of Theorem 3.3.5

Proof. Since

AG(0) :=E

[∫ 0

0

1{R(Z(s))∈G}dB(s)

∣∣∣∣ pi(0), i ∈ J
]

=E

[∫ 0

0

1{Z̃(s)∈G}dB
R(s)

∣∣∣∣ pI(0), I ∈ J ′

]
=: AR

G(0),

we simply have to prove that the derivatives coincide. Note that

d

dt
AG(t) =

∑

i∈J

1{R(i)∈G}pi(t)


bi(t) +

∑

j∈J
j ̸=i

bij(t)µij(t)


 ,

and

d

dt
AR

G(t) =
∑

I∈J ′

1{I∈G}pI(t)


bI(t) +

∑

J∈J ′

J ̸=I

bIJ(t)µIJ(t)


 .

By definition of bI , bJI , µJI and the fact that pI(t) =
∑

i∈I pi(t) we get

d

dt
AR

G(t) =
∑

I∈G
✟

✟✟pI(t)

∑

i∈I

pi(t)


bi(t) +

∑

j∈I
j ̸=i

bij(t)µij(t)




✟
✟✟pI(t)

+
∑

I∈G

∑

J ̸=I

✟
✟✟pI(t)
∑

i∈I

∑

j∈J

pi(t)

✟
✟✟pI(t)

µij(t)

∑

i∈I

pi(t)
∑

j∈J

µij(t)b
ij(t)

∑

i∈I

pi(t)
∑

j∈J

µij(t)

=
∑

I∈G

∑

i∈I

pi(t)


bi(t) +

∑

j∈I
j ̸=i

bij(t)µij(t)




+
∑

I∈G

∑

J ̸=I✘✘✘✘✘✘✘✘
∑

i∈I

∑

j∈J

pi(t)µij(t)

∑

i∈I

pi(t)
∑

j∈J

µij(t)b
ij(t)

✘✘✘✘✘✘✘✘✘
∑

i∈I

pi(t)
∑

j∈J

µij(t)

=
∑

I∈G

∑

i∈I

pi(t)b
i(t)
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+
∑

I∈G





∑

i∈I

∑

j∈I
j ̸=i

pi(t)b
ij(t)µij(t) +

∑

J ̸=I

∑

i∈I

pi(t)
∑

j∈J

µij(t)b
ij(t)





︸ ︷︷ ︸
=: ♣

.

Note that

♣ =
∑

i∈I

∑

j∈I
j ̸=i

pi(t)b
ij(t)µij(t)

︸ ︷︷ ︸
Expected transition
payments within I

+
∑

J ̸=I

∑

i∈I

∑

j∈J

pi(t)b
ij(t)µij(t)

︸ ︷︷ ︸
Expected transition
payments out of I

=
∑

i∈I

∑

j∈J
j ̸=i

pi(t)b
ij(t)µji(t).

Thus

d

dt
AR

G(t) =
∑

I∈G

∑

i∈I

pi(t)


bi(t) +

∑

j∈J
j ̸=i

bij(t)µji(t)




=
∑

i∈J

1{R(i)∈G}pi(t)


bi(t) +

∑

j∈J
j ̸=i

bij(t)µij(t)


 =

d

dt
AG(t)

3.D Proof of Lemma 3.3.7

By Thieles differential equation

∑

i∈J

d

dt
pi(t)V

i(t) = r
∑

i∈J

pi(t)V
i(t)−

∑

i∈J

pi(t)b
i(t)

−
∑

i∈J

pi(t)µik(t)b
ik(t)

−
∑

i∈J

pi(t)
∑

k ̸=i

µik(t)(V
k(t)− V i(t)),

+
∑

i∈J

V i


∑

k ̸=i

pk(t)µki(t)− pi(t)
∑

k ̸=i

µik(t)




= r
∑

i∈J

pi(t)V
i(t)−

∑

i∈J

pi(t)b
i(t)

−
∑

i∈J

pi(t)µik(t)b
ik(t)
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−
∑

i∈J

∑

k ̸=i

pi(t)µik(t)V
k(t) +

∑

i∈J

∑

k ̸=i

pk(t)µki(t)V
i(t)

︸ ︷︷ ︸
=0

= r
∑

i∈J

pi(t)V
i(t)−

(
∑

i∈J

pi(t)b
i(t) +

∑

i∈J

pi(t)µik(t)b
ik(t)

)

︸ ︷︷ ︸
=bT (t)

= r
∑

i∈J

pi(t)V
i(t)− bT (t).

The differential equation for the single-state reserve V T reads

d

dt
V T (t) = rV T (t)− bT (s).

As the terminal conditions are identical V T (n) = 0 =
∑

i∈J pi(n)V
i(n), we conclude

that

V T (t) =
∑

i∈J

pi(t)V
i(t).

3.E Proof of Theorem 3.4.1

Disregarding policy indices, the differential equation d
dtX̃

j(t) from Theorem 3.2.1 can

be composed into 11 terms:

pj(t)g
j
0(t), X̃j(t)gj1(t),

pj(t)

V j∗
2 (t)

gj2(t),
X̃j(t)

V j∗
2 (t)

gj3(t), (3.E.1)

µij(t)pi(t)h
ij
0 (t), µij(t)X̃

i(t)hij
1 (t), µij(t)

pi(t)

V i∗
2 (t)

hij
2 (t), (3.E.2)

µij(t)
X̃i(t)

V i∗
2 (t)

hij
3 (t), µij(t)X̃

i(t), −µji(t)X̃
j(t), pj(t)δ

j
2(t)Ỹ (t)

(3.E.3)

for i ∈ J , i ≠ j. We simply have to show that aggregating the terms (3.E.1)-(3.E.3)

amounts to the terms from Theorem 3.4.1. Writing
∑

j∈J
d
dtX̃

j(t) using the terms

(3.E.1)-(3.E.3) we have

∑

j∈J

d

dt
X̃j(t)

=
∑

j∈J

{
pj(t)g

j
0(t) + X̃j(t)gj1(t) +

pj(t)

V j∗
2 (t)

gj2(t) +
X̃j(t)

V j∗
2 (t)

gj3(t)

+
∑

i:i ̸=j

µij(t)pi(t)h
ij
0 (t) + µij(t)X̃

i(t)hij
1 (t)

+
∑

i:i ̸=j

µij(t)
pi(t)

V i∗
2 (t)

hij
2 (t) + µij(t)

X̃i(t)

V i∗
2 (t)

hij
3 (t)
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+
∑

i:i ̸=j

µij(t)X̃
i(t)− µji(t)X̃

j(t)

+ pj(t)δ
j
2(t)Ỹ (t)

}

=
∑

j∈J

{
pj(t)g

j
0(t) + pj(t)δ

j
2(t)Ỹ (t) + X̃j(t)gj1(t)

+
pj(t)

V j∗
2 (t)

gj2(t) +
X̃j(t)

V j∗
2 (t)

gj3(t)

}

+
∑

j∈J

∑

i:i ̸=j

µij(t)pi(t)h
ij
0 (t)

+
∑

j∈J

∑

i:i ̸=j

µij(t)X̃
i(t)hij

1 (t)

+
∑

j∈J

∑

i:i ̸=j

µij(t)X̃
i(t)− µji(t)X̃

j(t)

+
∑

j∈J

∑

i:i ̸=j

µij(t)
pi(t)

V i∗
2 (t)

hij
2 (t)

+
∑

j∈J

∑

i:i ̸=j

µij(t)
X̃i(t)

V i∗
2 (t)

hij
3 (t)

Noting that payments on transition between states can be split into two types; transi-

tions within J and transitions out of J we rewrite the sums

=
∑

j∈J

{
pj(t)g

j
0(t) + pj(t)δ

j
2(t)Ỹ (t) + X̃j(t)gj1(t)

+
pj(t)

V j∗
2 (t)

gj2(t) +
X̃j(t)

V j∗
2 (t)

gj3(t)

}

+
∑

j∈J

∑

i∈J
i ̸=j

µij(t)pi(t)h
ij
0 (t) +

∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)pi(t)h
ij
0 (t)

+
∑

j∈J

∑

i∈J
i ̸=j

µij(t)X̃
i(t)hij

1 (t) +
∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)X̃
i(t)hij

1 (t)

+
∑

j∈J

∑

i∈J
i ̸=j

µij(t)X̃
i(t)− µji(t)X̃

j(t)

+
∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)X̃
i(t)− µji(t)X̃

j(t)

+
∑

j∈J

∑

i∈J
i ̸=j

µij(t)
pi(t)

V i∗
2 (t)

hij
2 (t) +

∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)
pi(t)

V i∗
2 (t)

hij
2 (t)
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+
∑

j∈J

∑

i∈J
i ̸=j

µij(t)
X̃i(t)

V i∗
2 (t)

hij
3 (t) +

∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)
X̃i(t)

V i∗
2 (t)

hij
3 (t)

Applying Lemma 3.3.3 and Assumption Two gives

∑

j∈J

pj(t)(g
j
0(t) + δj2(t)Ỹ (t)) +

∑

i∈J
i ̸=j

µij(t)pi(t)h
ij
0 (t)

=pJ(t)
∑

j∈J

p̃j(t)∑
k∈J p̃k(t)


gj0(t) +

∑

i∈J
i ̸=j

µij(t)h
ij
0 (t)




+ pJ(t)Ỹ (t)
∑

j∈J

p̃j(t)∑
k∈J p̃k(t)

δj2(t)

=pJ(t)g
J(t) + pJ(t)Ỹ (t)δJ2 (t),

where Definition 3.3.2 has been applied for the sojourn payments gj0 and the payments

on transition hij
0 as well as the dividends δj2. Similarly, by changing the order of

summation, and using Assumption One and Two we get

∑

j∈J

X̃j(t)gj1(t) +
∑

j∈J

∑

i∈J
i ̸=j

µij(t)X̃
i(t)hij

1 (t)

=
∑

j∈J

X̃j(t)gj1(t) +
∑

j∈J

∑

i∈J
i ̸=j

µji(t)X̃
j(t)hji

1 (t)

=
∑

k∈J

X̃k(t)
∑

j∈J

p̃j(t)∑
k∈J p̃k(t)


gj1(t) +

∑

i∈J
i ̸=j

µji(t)h
ji
1 (t)


 ,

=gJ1 (t)
∑

k∈J

X̃k(t)

where Definition 3.3.2 has been applied for the sojourn payments gj1 and the payments

on transition hij
1 . The same principles are applied to the terms that are proportional

in 1
V i
2 ∗(t)

to achieve

∑

j∈J

pj(t)
gj2(t)

V j∗
2 (t)

+
∑

i∈J
i ̸=j

µij(t)pi(t)
hij
2 (t)

V j∗
2 (t)

=pJ(t)
∑

j∈J

p̃j(t)∑
k∈J p̃k(t)




gj2(t)

V j∗
2 (t)

+
∑

i∈J
i ̸=j

µij(t)
hij
2 (t)

V j∗
2 (t)



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and

∑

j∈J

X̃j(t)
gj3(t)

V j∗
2 (t)

+
∑

i∈J
i ̸=j

µij(t)X̃
i(t)

hij
3 (t)

V j∗
2 (t)

=
∑

k∈J

X̃k(t)
∑

j∈J

p̃j(t)∑
k∈J p̃k(t)




gj3(t)

V j∗
2 (t)

+
∑

i∈J
i ̸=j

µji(t)
hji
3 (t)

V j∗
2 (t)


 .

Applying Assumption Three gives

pJ(t)
∑

j∈J

p̃j(t)∑
k∈J p̃k(t)




gj2(t)

V j∗
2 (t)

+
∑

i∈J
i ̸=j

µij(t)
hij
2 (t)

V j∗
2 (t)




=
pJ(t)

V J∗
2 (t)

∑

j∈J

p̃j(t)∑
k∈J p̃k(t)


gj2(t) +

∑

i∈J
i ̸=j

µij(t)h
ij
2 (t)




=
pJ(t)

V J∗
2 (t)

gJ2 (t)

and

∑

k∈J

X̃k(t)
∑

j∈J

p̃j(t)∑
k∈J p̃k(t)




gj3(t)

V j∗
2 (t)

+
∑

i∈J
i ̸=j

µji(t)
hji
3 (t)

V j∗
2 (t)




=

∑
k∈J X̃k(t)

V J∗
2 (t)

∑

j∈J

p̃j(t)∑
k∈J p̃k(t)


gj3(t) +

∑

i∈J
i ̸=j

µji(t)h
ji
3 (t)




=
pJ(t)

V J∗
2 (t)

gJ3 (t)
∑

k∈J

X̃k(t).

Note that
∑

j∈J

∑

i∈J
i ̸=j

µij(t)X̃
i(t)−

∑

j∈J

∑

i∈J
i ̸=j

µji(t)X̃
j(t) = 0.

We now consider the aggregation of payments between groups of states that are not

proportional to X̃i or 1
V i∗
2 (t)

, multiply with
∑

j∈J

∑
i∈I p̃i(t)µij(t)∑

j∈J

∑
i∈I p̃i(t)µij(t)

and apply Assumption

two,
∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)pi(t)h
ij
0 (t)

=
∑

I ̸=J

pI(t)∑
k∈I p̃k(t)

∑

j∈J

∑

i∈I

µij(t)p̃i(t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)h
ij
0 (t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)
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=
∑

I ̸=J

pI(t)µIJ(t)h
IJ
0 (t).

We carry on with the remaining transitions between groups of states, and apply

Assumption one when the terms are proportional in X̃i and Assumption Three when

the terms are proportional in 1
V i∗
2 (t)

. We get

∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)X̃
i(t)hij

1 (t)

=
∑

I ̸=J

∑

k∈I

X̃k(t)
1∑

k∈I p̃k(t)

∑

j∈J

∑

i∈I

µij(t)p̃i(t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)h
ij
1 (t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)

=
∑

I ̸=J

µIJ(t)h
IJ
1 (t)

∑

k∈I

X̃k(t),

and

∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)pi(t)
hij
2 (t)

V i∗
2 (t)

=
∑

I ̸=J

pI(t)∑
k∈I p̃k(t)

∑

j∈J

∑

i∈I

µij(t)p̃i(t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)
hij
2 (t)

V i∗
2 (t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)

=
∑

I ̸=J

pI(t)µIJ(t)
hIJ
2 (t)

V I∗
2 (t)

,

and

∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)X̃
i(t)

hij
3 (t)

V i∗
2 (t)

=
∑

I ̸=J

∑

k∈I

X̃k(t)
1∑

k∈I p̃k(t)

∑

j∈J

∑

i∈I

µij(t)p̃i(t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)
hij
3 (t)

V i∗
2 (t)

∑

j∈J

∑

i∈I

p̃i(t)µij(t)

=
∑

I ̸=J

µIJ(t)
hIJ
3 (t)

V I∗
2 (t)

∑

k∈I

X̃k(t),

and
∑

I ̸=J

∑

j∈J

∑

i∈I

µij(t)X̃
i(t)− µji(t)X̃

j(t)

=
∑

I ̸=J

∑

j∈J

∑

i∈I

∑

k∈I

X̃k(t)µij(t)
p̃i(t)∑

k∈I p̃k(t)
X̃i(t)−

∑

k∈J

X̃k(t)µji(t)
p̃j(t)∑

k∈J p̃k(t)
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=
∑

I ̸=J

∑

k∈I

X̃k(t)
∑

j∈J

∑

i∈I

µij(t)
p̃i(t)∑

k∈I p̃k(t)

−
∑

k∈J

X̃k(t)
∑

I ̸=J

∑

j∈J

∑

i∈I

µji(t)
p̃j(t)∑

k∈J p̃k(t)

=
∑

I ̸=J

(
µIJ(t)

∑

k∈I

X̃k(t)−
∑

k∈I

X̃k(t)µJI(t)

)
.

Using analogous calculations for d
dt Ỹ (t) and applying Lemma 3.3.3 shows that the

differential equations in Theorem 3.4.1 indeed are the differential equations for the

aggregated state-wise savings account.
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Moment Closure for FV-processes using

Moment-generating Functions

Abstract

Understanding stochastic processes by calculating their moments, is a rel-

evant task for an unfathomable number of real-world applications. For finite

variation processes with non-linear dynamics, the calculation of moments

is notoriously difficult due to the infinite system of moment equations that

has to be solved approximately. Moment closure techniques that truncate

the infinite system of moment equations has been studied since the sixties,

and is to this day an active area of research. Instead of approximating the

moments directly through the moment equations, we propose to approximate

the moment-generating function, based on a derivation of the PDE for the

moment-generating function involving infinite partial derivatives. We con-

struct a finite difference scheme that approximates the moment-generating

function, and conduct a numerical study to verify its use.

Keywords: Projection, Infinite PDEs, Polynomial dynamics, Moment truncation.

2020 Mathematics Subject Classification: Primary: 60J27; 60-80

Secondary: 60E10

4.1 Introduction

Calculating the future expected value of a stochastic process is a fundamental discipline

in probability theory. A standard tool for this task is to employ a system of differential

equations that describes the development in the expected value as a function of the

expected value itself. For processes with polynomial dynamics, the differential equation

for the expected value is going to depend on higher order moments, and the differential

75
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equation for these higher order moments depend in turn on even higher order moments.

This vicious spiral goes on forever, resulting in an infinite system of ordinary differential

equations, called moment equations, that can not be solved numerically. For a class

of marked point processes, we use moment-generating functions to cast this infinite

system of ordinary differential equations as a partial differential equation involving

infinite partial derivatives, and then we truncate the infinite partial derivatives to give

PDEs that are numerically viable.

The problem of turning a countable infinite system of moment equations into a finite

system of moment equations is referred to as moment closure. Bellman and Richardson

(1968) propose a moment closure technique that preserves certain properties of moments.

Wilcox and Bellman (1970), Sancho (1970) and Bover (1978) study different ways of

truncating the infinite hierarchy of moment equations, for a class of stochastic systems

with Gaussian noise by approximating the Gaussian probability density function with

Hermite polynomials. Singh and Hespanha (2006) give a summary of the existing

moment closure techniques. In contrast to the Fokker-Plank type stochastic systems, we

consider processes that are governed by a discrete Markov process. To our knowledge,

the use of moment-generating functions for moment closure is new.

Hespanha (2005) shows that for so-called polynomial stochastic hybrid systems, the

infinite system of moment equations can be approximated arbitrarily close by a finite

system of non-linear ODEs. Continuing this work, Hespanha and Singh (2005) present

a certain type of moment closure for polynomial stochastic hybrid systems where the

effects of truncated moments are approximated using the non-truncated moments, they

also express chemically reacting systems using polynomial stochastic hybrid systems.

By assuming that the stochastic process resembles a binomial process, Barzel and

Biham (2012) suggest a moment closure technique, and Lakatos et al. (2015) use the

same approach for Gaussian, gamma, and lognormal distributions.

Apart from using differential equations to calculate expected values, Monte Carlo

simulations is another tool at our disposal for this task. By simulating a process

sufficiently many times and taking the average, we produce an unbiased estimator

of the expected value of the process. This method of calculating expected values is

versatile, but computationally heavy. For calculating high orders of moments, the

Monte Carlo approach is even less efficient. The Monte Carlo approach does not

utilise what we know about the dynamics of the processes, and using it is like using a

sledgehammer to crack a nut. Moment-generating functions carry information about

the distribution of the process, and by tapping into this information we can determine

the expected evolution of the process.

Instead of producing infinitely many equations for the moments of the process, we

produce a single equation involving infinitely many moments. Classical moment closure
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solves M equations to produce an approximation of the first M moments. In contrast,

we only solve a single equation for the moment-generating function. However, this

single equation involves infinite partial derivatives, and the finite difference method for

calculating the truncated partial derivatives may involve more than M equations. It

is definitely of interest to study the difference in efficiency between solving moment

equations, solving moment-generating functions and a Monte-Carlo method, as well as

finding use cases for each, but it is outside the scope of this paper.

The main contribution of this paper is to provide a novel system of ODEs that acts as

a tool to project processes with polynomial dynamics. Overall, the paper deals with

two topics

1) Constructing a system of PDEs that describe the state-wise moment-generating

functions.

2) Turning this system of PDEs into a system of ODEs that can be fed to a computer.

Topic 1) is purely theoretical, as the resulting system of PDEs cannot directly be

approximated by a computer, but it forms the foundation for producing a system of

differential equations that can. The problems of topic 2) concern the error introduced by

truncating the system of PDEs from topic 1), as well as the computational considerations

in constructing a suitable finite difference scheme. Using moment-generating functions,

we can easily put a bound on the error between the truncated and non-truncated PDEs.

Putting a bound on the difference between the truncated and non-truncated moment

equations is much more cumbersome, due to the interconnected relation between the

moment equations.

The paper is structured as follows: in Section 4.2 we present the family of stochastic

processes that we study. In Section 4.3 we derive the system of infinite partial derivatives

that are the foundation of the paper. In Section 4.4 we present the measures we take

to turn the system of infinite PDEs into a system of finite PDEs, and in Section 4.5 we

define the approximating state-wise moment-generating function. Finally, in Section

4.4, we conduct a numerical study.

4.2 Setup

In this section we present the family of processes that we study. Most of the literature

on moment closure deals with diffusion processes, as opposed to the finite variation

processes that we consider, but the concept of using moment-generating functions also

applies to diffusion processes.

Let Z(t) be a state process on a state space J = {0, ..., J}. We assume that Z is
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Markov with transition intensities µij(t) i, j ∈ J . By a permutation argument, we

assume Z(0) = 0 without loss of generality. We associate with Z the counting processes

Nk(t) = #{s ∈ (0, t] : Z(s−) ̸= k, Z(s) = k},

counting the number of jumps into state k. Analogously N jk(t) counts the number of

jumps into state k from state j.

We restrict ourselves to consider finite variation marked point processes that can be

represented as functionals of the state process Z in the form

X(t) = x0 +

∫ t

0

gZ(s)(s,X(s))ds+

∫ t

0

∑

k:k ̸=Z(s−)

hZ(s−)k(s,X(s−))dNk(s),

where gi(s, x) represents the continuous development of X while Z is in state i and

hjk(s, x) represents the jump in X on transition of Z from state j to state k. We

consider processes with polynomial dynamics, defined by the form of gi and hjk as

gi(t, x) =

p∑

l=0

gil(t)x
l, (4.2.1)

hjk(t, x) =

p∑

l=0

hjk
l (t)xl. (4.2.2)

Polynomial dynamics do not encompass all dynamics of practical interest, but they can

form approximations of non-polynomial dynamics. Indeed, a strand of literature on

stochastic chemical kinetics deals with the problem of formulating moment equations

for processes with non-polynomial dynamics – see e.g. Sotiropoulos and Kaznessis

(2011) and Ale et al. (2013). The simplest non-trivial case of concern, is a process X

determined by

dX(t) =

p∑

l=0

g
Z(t)
l (t)X(t)ldt, X(0) = x0.

Our ambition in this paper is to calculate E[1{Z(t)=i}X(t)], being the probability

weighted expected value of X(t), as well as higher-order moments E[1{Z(t)=i}X(t)j ].

Note that the 0th moment is the state-wise probabilities

p0i(0, t) := P (Z(t) = i|Z(0) = 0) = E[1{Z(t)=i}X(t)0],

which can be computed using the Kolmogorov forward differential equations. For

affine dynamics, i.e. for p = 1 in (4.2.1)-(4.2.2), a hierarchy of J ×N ordinary linear

differential equations describe moments of the first N moments, which can be derived

using linearity of expectations.

When the dynamics of X are polynomial, the pth moment in general depends on the

(p+ 1)th moment. Consider as an example the process with polynomial dynamics

dX(t) = (g
Z(t)
0 (t) + g

Z(t)
1 (t)X(t) + g

Z(t)
2 (t)X(t)2)dt,
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and note that

d(X(t)p) =pX(t)(p−1)
(
g
Z(t)
0 (t) + g

Z(t)
1 (t)X(t) + g

Z(t)
2 (t)X(t)2

)
dt

=p
(
g
Z(t)
0 (t)X(t)(p−1) + g

Z(t)
1 (t)X(t)p + g

Z(t)
2 (t)X(t)(p+1)

)
dt,

such that by induction, the differential equation for E[1{Z(t)=i}X(t)p] involves all lower

order moments as well as all higher order moments ad infinitum.

This dependence on all higher-order moments suggests the question; How much does

the high-order moments of X influence the low-order moments? If the answer is ”not

very much”, we can perhaps neglect the influence of all moments higher than some

order, which facilitates a numerical solution. This is the standard approach in moment

closure, but to further develop this idea, we present a way to handle and quantify the

influence that moments have on each other through the moment-generating function.

4.3 A PDE for the State-wise Moment-generating Function

In this section we present a system of PDEs that describes the state-wise moment-

generating functions of state-wise processes with polynomial dynamics. With access to

the state-wise moment-generating functions, we can evaluate the expected state-wise

processes, as well as higher order moments by differentiation.

We first consider a simple one-dimensional case without discrete dynamics. We later

deal with a two-dimensional process with discrete dynamics. The proof is inspired by

Bruhn and Lollike (2021), who derive a system of ODEs for a class of affine insurance

related processes, but do so without the moment-generating functions. Assume that

the dynamics of X are given by

dX(t) =

p∑

l=0

g
Z(t)
l (t)X(t)ldt, X(0) = x0,

where gil (t) are bounded functions. Then, by Itô’s Lemma for finite variation processes,

1{Z(t)=i}d
(
eλX(s)

)
=1{Z(t)=i}

p∑

l=0

λeλX(s)g
Z(s)
l (s)X(s)l

=1{Z(t)=i}

p∑

l=0

∞∑

k=0

λk+1

k!
g
Z(s)
l (s)X(s)l+k.

Since gil(t) are bounded functions, X(t) is bounded, and the moment-generating

function of X(t) exists. We define the state-wise moment-generating function as

mi(λ, t) := E[1{Z(t)=i}e
λX(t)].
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Applying Itô’s lemma, we can write eλX(t) as an integral of the dynamics of eλX(s)

over (0, t],

mi(λ, t) =E[1{Z(t)=i}e
λX(t)]

=E[1{Z(t)=i}e
λX(0)] +

∫ t

0

E

[
1{Z(t)=i}

p∑

l=0

∞∑

k=0

λk+1

k!
g
Z(s)
l (s)X(s)l+k

]
ds

=p0i(0, t)e
λx0

+

p∑

l=0

∫ t

0

∑

j∈J

p0j(0, s)g
j
l (s)

∞∑

k=0

λk+1

k!
E
[
1{Z(t)=i}X(s)l+k

∣∣Z(s) = j
]
ds.

We have applied Fubini’s theorem and interchanged expectation and infinite sum,

which is permissible because X(t) is bounded, and because the convergence of the

infinite sum towards the exponential function is uniform on any bounded interval. By

the Markov property

E
[
1{Z(t)=i}X(s)l+k

∣∣Z(s) = j
]
=

E[1{Z(s)=j}X(s)l+k]

p0j(0, s)
pji(s, t). (4.3.1)

It is due to (4.3.1) that we can separate the present and the future to get a forward

differential equation for mi(λ, t). We now use (4.3.1) to write

mi(λ, t) =p0i(0, t)e
λx0 +

p∑

l=0

∫ t

0

∑

j∈J

gjl (s)

∞∑

k=0

λk+1

k!
E[1{Z(s)=j}X(s)l+k]pji(s, t)ds.

Futhermore, since X(s) is bounded, the dominated convergence theorem implies that

E[1{Z(s)=j}X(s)l+k] =
∂l+k

∂λl+k
mj(λ, s)

∣∣
λ=0

.

This is another crucial step, and a novel one compared to Bruhn and Lollike (2021). It

allows us to deal with higher-order moments of X, and the relation is a consequence of

the unique property of the exponential function

di

dλi
eλx
∣∣
λ=0

= xi.

To ease readability we introduce the notation

∂l+k

∂λl+k
mj(0, s) =

∂l+k

∂λl+k
mj(λ, s)

∣∣
λ=0

.
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Differentiating mi with respect to t yields the following differential equation,

∂

∂t
mi(λ, t)

=eλx0
∂

∂t
p0i(0, t)

+

p∑

l=0

∑

j∈J

gjl (t)

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mj(0, t)pji(t, t)

+

p∑

l=0

∫ t

0

∑

j∈J

gjl (s)

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mj(0, s)

∂

∂t
pji(s, t)ds

=

p∑

l=0

∑

j∈J

gjl (t)

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mj(0, t)pji(t, t)

+
∑

g ̸=i

µgi(t)


p0g(0, t)e

λx0 +

p∑

l=0

∫ t

0

∑

j∈J

gjl (s)

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mj(0, s)pjg(s, t)ds




︸ ︷︷ ︸
mg(λ,t)

−
∑

g ̸=i

µig(t)


p0i(0, t)e

λx0 +

p∑

l=0

∫ t

0

∑

j∈J

gjl (s)

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mj(0, s)pji(s, t)ds




︸ ︷︷ ︸
mi(λ,t)

=

p∑

l=0

gil(t)

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mi(0, t) +

∑

g ̸=i

(µgi(t)mg(λ, t)− µig(t)mi(λ, t)) ,

where d
dtpji(s, t) is given by the Kolmogorov forward differential equations,

∂

∂t
pji(s, t) =

∑

k:k ̸=i

pjk(s, t)µki(t)− µik(t)pji(s, t),

pji(s, s) =1{j=i}.

The result is restated in Theorem 4.3.1.

Theorem 4.3.1 (PDE for state-wise moment-generating function, one dimension, no

jumps). Assume X(t) has dynamics

dX(t) =

p∑

l=0

g
Z(t)
l (t)X(t)l, X(0) = x0,
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for bounded functions gil(t). Then mi(λ, t) = E[1{Z(t)=i}e
λX(t)] satisfies the PDE

∂

∂t
mi(λ, t) =

∑

g ̸=i

(µgi(t)mg(λ, t)− µig(t)mg(λ, t)) (4.3.2)

+

p∑

l=0

gil(t)

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mi(0, t) (4.3.3)

mi(λ, 0) =1{i=Z(0)}e
λx0 . (4.3.4)

Solving the PDE of Theorem 4.3.1, yields an expression for mi(λ, t). By differentiating

mi(λ, t) with respect to λ and evaluating in λ = 0, we are given the quantity of interest;

the state-wise expected value

∂

∂λ
mi(0, t) = E[1{Z(t)=i}X(t)].

Due to the limit k → ∞, Theorem 4.3.1 is of little practical use, unless a closed form

solution to the PDE can be derived. In the PDE (4.3.2)-(4.3.4) we have quantified the

influence of all moments on the time-derivative of the moment-generating function,

which helps to give us an idea about how many moments we need to accurately solve

the moment-generating function. This influence decays like 1
k! , meaning that very

high moments have a very small influence on the changes over time in the state-wise

moment-generating function.

Before we discuss how Theorem 4.3.1 can be turned into a practically useful system of

differential equations, we extend the result to two-dimensional processes (X(t), Y (t))

with affine jump dynamics. The proof follows the steps already seen, with the addition

of step two, in order to account for the discrete dynamics.

1) Use the boundedness of (X,Y ) and uniform convergence of the exponential

function over an arbitrary bounded interval to interchange expectation and

infinite sum.

2) Use predictability of the integrand to exchange integrator 1{Z(t)=i}N
rj(s) with

its predictable compensator.

3) Use the tower property to condition on Z(s).

4) Use the Markov property to separate the future (1{Z(t)=i}) from the present (the

condition on Z(s)).

5) Use the dominated convergence theorem to replace the expectation of the moments

of X and Y with derivatives of the moment-generating function.

6) Differentiate the integral equation for the state-wise moment-generating functions

to achieve a system of differential equations.



4.3. A PDE for the State-wise Moment-generating Function 83

Following the steps yields the following theorem.

Theorem 4.3.2 (PDE for state-wise moment-generating function, two dimensions,

with jumps). Assume

dW (s) =

p∑

l=0

g
Z(s)
l (s)W (s)lds+

1∑

l=0

∑

j ̸=Z(s−)

h
Z(s−)k
l (s)W (s)ldN j(s), W (0) = w0

where W (s)l are the element-wise powers of W , and

grl (s) =


xxg

r
l (s) xyg

r
l (s)

yxg
r
l (s) yyg

r
l (s)




hrj
l (s) =


xxh

rj
l (s) xyh

rj
l (s)

yxh
rj
l (s) yyh

rj
l (s)


 .

then mi(λ, t) = E[1{Z(t)=i}e
λTW (t)] solves the PDE

∂

∂t
mi(λ, t) =

∑

r ̸=i

µri(t)mr(λ, t)− µir(t)mi(λ, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xyg
i
l(t)

∂k+l

∂λk−q
1 ∂λq+l

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2 yxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2 yyg
i
l(t)

∂k+l

∂λk−q
1 ∂λq+l

2

mi(0, t)

+

∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

∑

r ̸=i

∂q1+q2

∂λq1
1 ∂λq2

2

mr(0, s)

× (λ1(1 + xxh
ri
1 (t)) + λ2 yxh

ri
1 (t))q1

× (λ1 xyh
ri
1 (t) + λ2(1 + yyh

ri
1 (t)))q2

× (λ1(xxh
ri
0 (t) + xyh

ri
0 (t)) + λ2(yxh

ri
0 (t) + yyh

ri
0 (t)))q3

× µri(t)

−
∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 λq

2

∑

r ̸=i

∂k

∂λk−q
1 ∂λq

2

mr(0, s)µri(t)

mi(λ, 0) =1{i=0}e
λTw0
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See Appendix 4.C for the proof. The extension to non-affine jump dynamics and

higher dimensions is straightforward and follows an analogous proof, but for notational

convinience we only consider affine jump dynamics and two dimensions. Also for

notational convenience, we do not consider dynamics that involve the product of

powers of X and Y such as e.g.
∑p

l=0

∑p
j=0 X(t)lY (t)jg

Z(t)
l,j (t), even though such

terms in the dynamics of W could be included directly, noting that

E[1{Z(t)=i}X(t)lY (t)j ] =
∂j+l

∂λl
1∂λ

j
2

mi(0, t).

Theorem 4.3.1 is a special case of Theorem 4.3.2, for

hrj
l (s) = 0,

Y (0) = xyg
r
l (s) = yxg

r
l (s) = yyg

r
l (s) = 0.

Theorem 4.3.2 is a purely theoretical result and not applicable in practice due to the

infinite series. However, using the methods presented in the next section to translate

the infinitely large system of partial differential equations to a finite system of linear

ordinary differential equations, Theorem 4.3.2 allows for a wide range of processes with

non-linear dynamics to be projected.

4.4 Truncation and Discretisation

Ultimately we want a system of differential equations that is viable for numerical

procedures, and to that end we face two obstacles;

❼ Discretisation. Computers only do discrete calculations, and we want to

calculate the state-wise moment-generating function for all time-points within

some interval. To do this we need an algorithm that approximately solves the

PDE of Theorem 4.3.2.

❼ Infinite Series. The PDE of Theorem 4.3.2 involves the infinite series

∞∑

k=0

λk+1

k!

∂l+k

∂λl+k
mi(0, t).

If we can not find an analytical solution to infinite series, we need to approximate

the solution with a finite number of calculations.

To keep notation simple we consider the PDE from Theorem 4.3.1 to highlight central

mathematical concepts, but these concepts also apply to the more involved PDE from

Theorem 4.3.2. The results in this section naturally depend on the specific dynamics

of the process in question, but we refrain from discussing special cases that lead to

particularly simple or particularly complex relations.
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4.4.1 Infinite Series

A blunt idea to deal with the infinite series is to truncate the series and simply ignore

all terms where k is larger than some value M . This idea is in line with moment closure

as seen in e.g. Bover (1978) and Bellman and Richardson (1968), with the notable

difference that we truncate the infinite partial derivatives instead of the infinite system

of ODEs. We split the sum over k in the differential equation of Theorem 4.3.1 into

terms smaller than M and terms larger than M ,

∂

∂t
mi(λ, t) =

p∑

l=0

gil(t)

M∑

k=0

λk+1

k!

∂l+k

∂λl+k
mi(0, t)

+
∑

g ̸=i

(µgi(t)mg(λ, t)− µig(t)mi(λ, t))

+ εi(λ, t), (4.4.1)

where

εi(λ, t) =

p∑

l=0

gil(t)

∞∑

k=M+1

λk+1

k!

∂l+k

∂λl+k
mi(0, t),

and we call this value the cut-off. Even though the assumption εi(λ, t) = 0 seems

crude, it is not entirely unreasonable since k! rapidly diverges to infinity. As X(t) is

bounded, we have for k → ∞,

λk+1

k!
X(t)p+k → 0

⇒
λk+1

k!

∂p+k

∂λp+k
mi(0, t) → 0,

supporting the claim that the influence of high-order moments on the time-derivative

of the state-wise moment-generating function is minuscule.

It is well known that any moment of a process with polynomial dynamics of degree

larger than one, depend on infinitely many moments. We have also just argued that

the dependence on the high orders of moments is small for the partial derivative in

time of the state-wise moment-generating function, and that we therefore can ignore

the corresponding terms in the infinite PDE. This argument is however based only on

the direct influence of the higher order moments on the time derivative. Ultimately

we are interested in the state-wise moments of processes, corresponding to the partial

derivatives with respect to λ in the state-wise moment-generating function evaluated

in λ = 0. Note that

∂

∂λ
εi(λ, t) =

p∑

l=0

gil(t)

∞∑

k=M+1

(k + 1)
λk

k!

∂l+k

∂λl+k
mi(0, t),
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which means that the influence of the (l+ k)th moment on ∂
∂λεi(λ, t), is a factor (k+1)

larger than the influence of the same moment on εi(λ, t). Simply put, the cut-off is

sensitive to changes in λ. This means that the state-wise moment-generating function

is sensitive to changes in λ, and we should therefore be careful about ignoring the

cut-off, as it is precisely the sensitivity in λ for the state-wise moment-generating

function we are interested in. This does not nullify our argument to assume εi(λ, t) = 0,

but we realize that the error introduced by ignoring the cut-off, generally speaking is

larger for the partial derivative with respect to λ, and that this should be taken into

account when choosing a value for M .

A significant advantage of the use of state-wise moment-generating functions for moment

closure, is that we can put a bound on the size of the cut-off. For bounded g functions,

define

Gl(t) = sup
i∈J

{|gil(t)|},

and note that |X(t)| ≤ B̃(t) for

B̃(t) = x0 +

∫ t

0

p∑

l=0

Gl(s)B̃(s)lds.

Define B(t) := max(1, B̃(t)), then

|εi(λ, t)| =
∣∣∣∣∣

p∑

l=0

gil(t)

∞∑

k=M+1

λk+1

k!

∂l+k

∂λl+k
mi(0, t)

∣∣∣∣∣

≤
p∑

l=0

Gl(t)

∞∑

k=M+1

λk+1

k!
B(t)l+k

=

p∑

l=0

Gl(t)λB(t)l

(
eB(t)λ −

M∑

k=0

(B(t)λ)k

k!

)
.

For M → ∞ the sum in the parenthesis tends to eB(t)λ notoriously fast. For given

δ > 0 we can choose M such that

p∑

l=0

Gl(t)λB(t)l

(
eB(t)λ −

M∑

k=0

(B(t)λ)k

k!

)
≤ δ,

and thus ensure

|εi(λ, t)| ≤ δ,

making the cut-off arbitrarily small, thereby restricting the local truncation error.

Analogous calculations lead to bounds on the partial derivatives of λ in the cut-off. A

similar result is presented in Hespanha (2005) for the difference between the truncated

and non-truncated system of moment equations for polynomial stochastic hybrid sys-

tems, but due to the interconnected moment equations, the bounds are complicated to
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construct.

Compared to classical moment closure where a system of M equations provide ap-

proximations of M moments, it may seem unnatural to use moments up to order

M + p to propagate the differential equation for the state-wise moment-generating

function where moments of order higher than M are truncated. When we use state-

wise moment-generating functions for moment closure, there is indeed a blurry line

between the moments we use in the differential equations, and the moments we are

approximating. This is a consequence of the less restrictive form of the PDEs from

Theorem 4.3.2.

Alternatively, we could truncate the infinite PDEs of Thoerem 4.3.2 to more closely

resemble classical moment closure, where the moments of order higher than M have

no direct influence on moments of order lower than M , using

∂

∂t
mi(λ, t) =

p∑

l=0

gil(t)

M−l∑

k=0

λk+1

k!

∂l+k

∂λl+k
mi(0, t)

+
∑

g ̸=i

(µgi(t)mg(λ, t)− µig(t)mi(λ, t))

+ ε̂i(λ, t), (4.4.2)

where

ε̂i(λ, t) =

p∑

l=0

gil(t)

∞∑

k=M−l+1

λk+1

k!

∂l+k

∂λl+k
mi(0, t).

This would closer resemble classical moment closure techniques, but there is no reason

to conform to this practice when we have the ability to improve it.

4.4.2 Discretisation

In order to numerically solve the PDEs of Theorem 4.3.1 and 4.3.2, we need a finite

difference method that approximates the partial derivatives with respect to both λ

and t. There is a wide range of tools available for the numerical solution of systems of

one-dimensional ordinary differential equations such as the Runge-Kutta methods. Our

focus in regards to discretisation therefore lies on the translation of PDEs to ODEs,

leaving the additional discretisation of these ODEs to the preferences of the reader.

This method of solving PDEs numerically is often referred to as the method of lines.

The call for discretisation in the λ-dimension is a consequence of solving the moment-

generating function. No discretisation is required for the infinite system of moment

equations. One of the disadvantages of using moment-generating functions is that this

extra discretisation step introduces another layer of implementation considerations,

such as the discretisation mesh size, for which there is no a priori good choice.
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The unusual property of the PDEs for mi(λ, t) is that the derivative in t depends on

the derivative in λ only for λ = 0. This can be exploited to produce an estimate of

E[1{Z(t)=i}X(t)] and any higher order moment. We can approximate

E[1{Z(t)=0}X(t)] =
∂

∂λ
mi(0, t),

by a finite difference method if we have access to a set of values, mi(λ⃗, t) for some

vector λ⃗, with indices or nodes λ⃗[q] for q = 1, ...,K, that lie in the vicinity of zero.

In principle, the state-wise moment-generating functions could have state dependent

nodes, but for the sake of simplicity we assume that all states use the same vector of

nodes. Under the assumption that εM (λ⃗[q], t) = 0, we can approximate mi(λ⃗[q], t) by

m̂i(λ⃗[q], t) using the ODEs given by

∂

∂t
m̂i(λ⃗[q], t) =

p∑

l=0

gil(t)

M∑

k=0

λk+1

k!
m̃

(l+k)
i (0, t)

+
∑

g ̸=i

(
µgi(t)mg(λ⃗[q], t)− µig(t)mi(λ⃗[q], t)

)
,

m̂i(λ⃗[q], 0) =1{i=0}e
λ⃗[q]x0

where m̃
(k)
i (0, t) = BT

k · m̂i(λ⃗, t) for some vector Bk satisfying

m̃
(k)
i (0, t) ≈ ∂k

∂λk
mi(0, t). (4.4.3)

By replacing the partial derivatives in λ with a finite difference approximation, we are

turning PDEs into ODEs.

We return to the matter of constructing m̃
(n)
i (0, t) that satisfies (4.4.3) in Section 4.5.

Note that a by-product of this calculation method for m̃
(1)
i (0, t) ≈ E[1{Z(t)=i}X(t)],

are the approximated higher order moments up to degree M + p.

4.4.3 Infinite Series and Discretisation

The two obstacles also have a combined effect that deserves attention. When we choose

the cut-off point M , we have to keep the discretisation error in mind and vice verca.

We do not have access to the exact partial derivatives in λ, so they have to be estimated

by finite difference methods, but the accuracy of these methods depend on the cut-off

error.

Say that we choose M = 10. The direct influence of the higher-than-ten order moments

on the numerically approximated first moment is probably small since 1
k! , for k > 10,

is small, but the influence of the 11th moment on the numerically approximated 10th
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moment is larger since the 10th derivative in λ for the cut-off is

∂10

∂λ10
εi(λ, t) =

p∑

l=0

gil(t)

∞∑

k=10+1

(k + 1)λk−9

(k − 9)!

∂l+k

∂λl+k
mi(0, t),

and 1
(k−9)! >

1
k! . This cut-off is completely ignored in the approximating ODEs for

the state-wise moment-generating functions. Even if the finite-difference method is

accurate, the numerically approximated 10th moment is probably a poor approximation,

due to the cut-off. This poorly approximated 10th moment directly influences all the

lower order moments, but the higher the moment the higher the influence. In a sense,

the cut-off error creates a rippling effect downward through the moments, where the

error in the approximated 10th moment carries over to the error in the approximated

9th moment and so on. Our confidence in the approach to ignore the cut-off is based

on the fact that the ripples are dampened each time the cut-off error carries over to a

lower moment.

4.5 Approximating a PDE with an ODE

In the last section we presented two steps to transform the PDEs of Theorem 4.3.1

and 4.3.2 into ODEs,

1) Ignore cut-off to make a system of PDEs that require only finitely many moments.

2) Use finite difference methods to approximate partial derivatives in λ to turn

system of PDEs into system of ODEs.

There are several considerations that come into play when constructing the finite

difference scheme of step 2). These considerations are important, but mathematically

uninteresting – see Appendix 4.B for the details.

In the derivations of Appendix 4.B, we use standard methods from Numerical Analysis

to construct an approximation of ∂n

∂λnmi(0, t) with a small local truncation error. The

result is highlighted in Lemma 4.5.1.

Lemma 4.5.1. Let λ⃗ be a vector given by

λ⃗ =




α1

α2

...

αK−1

αK




· h.
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We call h the step size and αi the step repetitions. Assume that K is odd, and that the

step repetitions are symmetric around zero, i.e α⌊K/2⌋+1 = 0 and αi = −αK−i+1.

For the diagonal matrix

C = Diag

({
0!

h0
,
1!

h1
,
2!

h2
, ...,

(K − 1)!

hK−1

})
,

and the Vandermonde matrix

V =




1 1 · · · 1 1

α1 α2 · · · αK−1 αK

α2
1 α2

2 · · · α2
K−1 α2

K

...
... · · ·

...
...

αK−1
1 αK−1

2 · · · αK−1
K−1 αK−1

K




,

the partial derivatives in λ are given by

∂n

∂λn
mi(0, t) = (V −1Cn)

Tmi(λ⃗, t) +O(hK−n−1),

where Cn is the nth column of C.

Using Lemma 4.5.1, we can calculate high-order partial derivatives in λ with a

arbitrarily small local truncation error. The computationally demanding part of

calculating m̃i
(n)(0, t) is the inversion of the Vandermonde matrix. Fortunately, this

inversion can be done with an explicit formula

V −1
[i,j] =

(−1)K−jeK−j({α1, ..., αK} \ {αi})
n∏

m=1
m ̸=i

(αi − αm)

,

where

em({α1, ..., αK}) =
∑

1≤j1<j2<,...,<jm≤K

αj1αj2 · · ·αjm

are the symmetric elementary polynomials – see Turner (1966) for a derivation.

Remark 4.5.2 (Cumulant Function). Depending on the specific dynamics of the process,

the numerical values of the state-wise moment-generating functions can be so large

or small that it causes computational problems due to insufficient machine precision.

A way to mitigate this problem is to log-scale the moment-generating functions and

instead consider the state-wise cumulant functions defined as

κi(λ, t) = log (mi(λ, t)) ,
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with differential equation

∂

∂t
κi(λ, t) =

∂

∂t
mi(λ, t)

1

mi(λ, t)
.

Expressing the partial derivatives of mi(λ, t) in λ in terms of partial derivatives of

κi(λ, t) in λ is done via the relation

∂n

∂λn
mi(0, t) =mi(0, t)

n∑

k=0

Bn,k

(
∂

∂λ
κi(0, t),

∂2

∂λ2
κi(0, t), ...,

∂n−k+1

∂λn−k+1
κi(0, t)

)

=pi(t)

n∑

k=0

Bn,k

(
∂

∂λ
κi(0, t),

∂2

∂λ2
κi(0, t), ...,

∂n−k+1

∂λn−k+1
κi(0, t)

)

where Bn,k(x1, x2, ..., xn−k+1) are the incomplete Bell Polynomials. △

An important remark is that the cut-off is not invariant to transformations of the

moment-generating functions. The cut-off for the state-wise cumulant functions may

therefore be closer to zero than the corresponding cut-off for the moment-generating

functions. Wilcox and Bellman (1970) examine different ways of transforming the

system of moment equations, and the influence on the truncation error. They find that

for a stochastic nonlinear oscillator, using cumulants resulted in the smallest truncation

error. This speaks in favour of using the cumulant functions instead of moment-

generating functions. It is outside the scope of this paper to study the performance of

different transformations of the moment-generating functions, but it is an obvious area

of future research.

Based on the approximation of the partial derivatives in λ from Lemma 4.5.1, we can

approximate the differential equations of Theorem 4.3.2 by the system of ODEs given

in Definition 4.5.3.

Definition 4.5.3 (ODE Approximation of infinite PDE). Let M be given, and let the

dynamics of

W (t) =



X(t)

Y (t)




be polynomial of degree p. For odd values of K > M + p, let λ⃗ be a vector of length K

given by λ⃗ = (α1, α2, ..., αK−1, αK)
T · h, for α⌊K/2⌋+1=0 and αi = −αK−i+1 = i. We

define the approximating state-wise moment-generating function m̂i as the function
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that solves the ordinary differential equation

d

dt
m̂i(λ⃗[q1], λ⃗[q2], t)

=
∑

r ̸=i

µri(t)m̂r(λ⃗[q1], λ⃗[q2], t)− µir(t)m̂i(λ⃗[q1], λ⃗[q2], t)

+

M∑

k=0

k∑

j=0

p∑

l=0

1

(k − j)!j!
λ⃗k−j+1
[q1]

λ⃗j
[q2] xx

gil(t)D
i
[k−j+l+1,j+1](t)

+

∞∑

k=0

k∑

j=0

p∑

l=0

1

(k − j)!j!
λ⃗k−j+1
[q1]

λ⃗j
[q2] xy

gil(t)D
i
[k−j+1,j+l+1](t)

+

∞∑

k=0

k∑

j=0

p∑

l=0

1

(k − j)!j!
λ⃗k−j
[q1]

λ⃗j+1
[q2] yxg

i
l(t)D

i
[k−j+l+1,j+1](t)

+

∞∑

k=0

k∑

j=0

p∑

l=0

1

(k − j)!j!
λ⃗k−j
[q1]

λ⃗j+1
[q2] yyg

i
l(t)D

i
[k−j+1,j+l+1](t)

+

∞∑

k=0

∑

j1+j2+j3=k

1

j1!j2!j3!

∑

r ̸=i

Dr
[j1+1,j2+1](t)

× (λ⃗[q1](1 + xxh
ri
1 (t)) + λ⃗[q2] yxh

ri
1 (t))j1

× (λ⃗[q1] xyh
ri
1 (t) + λ⃗[q2](1 + yyh

ri
1 (t)))j2

× (λ⃗[q1](xxh
ri
0 (t) + xyh

ri
0 (t)) + λ⃗[q2](yxh

ri
0 (t) + yyh

ri
0 (t)))j3

× µri(t)

−
∞∑

k=0

k∑

j=0

1

(k − j)!j!
λ⃗k−j
[q1]

λ⃗j
[q2]

∑

r ̸=i

Dr
[k−j+1,j+1](t)µri(t)

m̂i(λ⃗[q1], λ⃗[q2], 0) =1{i=0}e
λ⃗[q1]X(0)+λ⃗[q2]Y (0),

where the ith column of Dr is given by

Dr
[,i](t) = (V −1C)T ·Br

[i,](t),

and the k′th column of Br is given by

Br
[,k](t) = (V −1C)T · m̂r(λ⃗, λ⃗[k], t),

with matrices V and C given in Lemma 4.5.1. This implies that the kth column of B

is the vector of approximate partial derivatives in λ1 for λ2 = λ⃗[k],

Br
[,k](t) ≈

(
mr((0, λ⃗[k])

T , t),
∂

∂λ1
mr

(
(0, λ⃗[k])T , t

)
, ...,

∂K

∂λK
1

mr

(
(0, λ⃗[k])T , t

))T

,

and the indices of D are the approximate partial derivatives in λ1 and λ2 evaluated in

zero,

Dr
[i,k](t) ≈

∂i+k−2

∂λi−1
1 ∂λk−1

2

mr(0, t).
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Definition 4.5.3 is our main contribution as it combines our derivation of the infinite

PDEs of Theorem 4.3.2, and the implementation-specific considerations of Section 4.4.

After discretisation over the time parameter, it provides us with a finite difference

scheme that approximates the moment-generating function in a three-dimensional grid

of λ1, λ2 and t values. Using the calculations of Appendix 4.B, one can easily show

that the scheme is consistent, assuming that the cut-off is zero. Showing that the

scheme is stable is a subject of further research.

The ODE of Definition 4.5.3 does not utilize the standard tricks that serve to improve

the performance of finite difference schemes, and there are several of these tricks that

readily could be applied. To list a few ideas;

❼ A Crank-Nicolson type of implementation could be used, where the calculation

of the forward differential equation relies on a solution that is consistent with a

backwards differential equation for each step in time.

❼ We know that the 0th moment corresponds to the state-wise probabilities, that

can be calculated using Kolmogorovs differential equations. For each calculation

of the forward differential equation of m̂i, a constraint could be enforced to

ensure that

Di
[0,0](t) ≈ mi(0, t) = p0i(0, t).

❼ Following the ideas of Bellman and Richardson (1968), there are also relations

between different moments that should be maintained, e.g.

E[1{Z(t)=i}X(t)2] ≥ E[1{Z(t)=i}X(t)]2.

❼ In general, there is a list of properties of the moment-generating function that

we should try to make sure m̂i preserves. To list a few;

– Chernoff bound

P (X(t) ≥ a(t)) ≤ e−λa(t)
∑

i∈J

mi(λ, t).

– Jensens inequality

mi(λ, t) ≥ eE[X(t)]λ.

– For non-negative processes we have that

1{Z(t)=i}X(t)k ≤
(

k

λe

)k

1{Z(t)=i}e
λX(t),

and therefore
∂k

∂λk
mi(0, t) ≤

(
k

λe

)k

mi(λ, t).
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4.6 Numerical Example

As discussed in Section 4.4, the system of differential equations where the cut-off is

omitted is probably a good approximation of the true system of differential equations

for the state-wise moment-generating functions, but it is still only an approximation of

the true system of infinite partial differential equations. We test the performance of

the approximation for two cases.

4.6.1 Set-up for Numerical Study

We use Definition 4.5.3 on a process that is relevant in the context of with-profit

life insurance. For a state-proces Z representing the state of life of an insured, we

consider a with-profit insurance contract with a savings account X and a surplus Y .

We investigate a life-death model of a with-profit insurance contract, with state 0

representing ’alive’ and state 1 representing ’dead’ depicted in Figure 4.1.

0 1µ01

Figure 4.1: Life-death model

The policyholder is assumed to be alive at time zero. At the death of the policyholder,

the remaining savings are transferred to the surplus, and no further payments are

made to the savings account, i.e for Z(s) = 1, {X(t)}s≤t = 0. The insurance related

functions and parameters that determine the dynamics of X and Y are not essential

to the numerical results, but serve an interesting example. It is only essential that the

dynamics of X and Y are polynomial. The parameters and functions that determine

the dynamics of X and Y are given in Appendix 4.A.

In order to determine the true probability weighted state-wise expected values in the

simple two state model, we condition on the time of the first jump and calculate the

deterministic state wise values of X(t) and Y (t) for all t ∈ (0, T ]. For jump-times that

occur after t, we can calculate

E[W (t)|Z(t) = 0], (4.6.1)

and then multiply by p00(0, t) to get the probability weighted expected value of W in

state 0. By aggregating and weighting the jump-time dependent values of X and Y

with the jump-time density given jump before time t, we can form the expected values

E[W (t)|Z(t) = 1], (4.6.2)
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and then multiply by p01(0, t) to get the probability weighted expected value of W in

state 1. To ease notation, we define

X̃0(t) :=E[1{Z(t)=0}X(t)], (4.6.3)

Ỹ 0(t) :=E[1{Z(t)=0}Y (t)], (4.6.4)

Ỹ 1(t) :=E[1{Z(t)=1}Y (t)]. (4.6.5)

We do not include E[1{Z(t)=1}X(t)] = 0 in our figures.

4.6.2 Affine Dynamics

To validate the use of state-wise moment-generating functions, we calculate the state-

wise expected retrospective reserves in a setting where the dynamics of X and Y are

affine. In Figure 4.2 we have plotted X̃0, Ỹ 0 and Ỹ 1, calculated using the approximating

state-wise moment-generating function of Definition 4.5.3.

Figure 4.2: Calculation of X̃0(t), Ỹ 0(t) and Ỹ 1(t) using approximation

of state-wise moment-generating function and true solution. The results

were produced using a cut-off at M = 8, and λ⃗ = (α1, ..., αK)t · h where

αi = −αk−i+1 = i for K = 15 and h = 0.05.

The biggest absolute relative difference between the two calculation methods is 1.2·10−12

and within the margin of numerical error.
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As the dynamics of X and Y are affine, there is no need to resort to the state-wise

moment-generating functions, but the example shows us that the the error introduced

by ignoring the cut-off is small.

4.6.3 Polynomial Dynamics

To create non-affine polynomial dynamics, we introduce a payment from the surplus

to the savings account which are the to so-called dividends. The dividend payment is

determined by a polynomial approximation of the dividend function

max(0, Y (t)) · 0.1,
corresponding to a continuous payout of 10% of the surplus, if the surplus is positive.

We perform a fifth-degree polynomial approximation of the max(0, x) · 0.1 function

on the interval (−14.85, 18.15), where the coefficients are determined using Remez

algorithm, resulting in the || · ||∞ norm closest polynomial approximation. See Figure

4.5 for a plot of the dividend function and the corresponding polynomial approximation.

The state-wise retrospective reserves calculated using the state-wise moment-generating

functions are seen in Figure 4.3.

Figure 4.3: Calculation of X̃0(t), Ỹ 0(t) and Ỹ 1(t) using approximation

of state-wise moment-generating function and true solution. The results

were produced using a cut-off at M = 8, and λ⃗ = (α1, ..., αK)t · h where

αi = −αk−i+1 = i for K = 15 and h = 0.05.
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Unlike the case with linear dynamics, there is a visible difference in all three state-wise

reserves after t = 64. This error can come from three sources; ignoring the cut-off,

discretisation and computing precision. Concerning computing precision, the absolute

value of the inverse Vandermonde matrix ranges from 1.5 · 10−6 to 1.5, and the C

matrix ranges from 1 to 1.7 · 1039, pushing the machine precision of standard software

and hardware to its limits. The same cut-off value, Vandermonde matrix and C matrix

were used in the previous example without any approximation error. This shows that

the approximation error is highly sensitive to the degree of the polynomial dynamics,

and that one should be careful about blindly accepting the ODE of Definition 4.5.3 as

an accurate approximation of the true moment-generating function.

Examining the marginal moment-generating functions for X and Y for t ∈ (0, 64] seen

in Figure 4.4, we see that there are values of (λ, t) for which m̂i is negative highlighting

a flaw in the approximation, as the true state-wise moment-generating function is

strictly positive.

Figure 4.4: Top: contour plot of m̂0(λ1, 0, t), bottom left: contour plot of

m̂0(0, λ2, t), bottom right: contour plot of m̂1(0, λ2, t)

We encourage the reader to replicate the example and to experiment with the parameters

of the approximating PDE to get rid of the large approximation error for t > 64.
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4.A Dynamics of Insurance Contract

The dynamics of the with-profit insurance contract savings account is

dX(t) =g
Z(t)
X (X(t), Y (t), t)dt+

∑

k ̸=Z(t−)

h
Z(t−)k
X (X(t−), Y (t−), t)dNk,

where

gjX(x, y, t) =r∗(t)x+ δj(x, y, t)− bj1(t)−
x− V j∗

1 (t)

V j∗
2 (t)

bj2(t)−
∑

k ̸=j

Rjk(x, t)µ∗
jk(t),

hjk
X (x, y, t) =V ∗k

1 (t)− x+
x− V ∗j

1 (t)

V ∗j
2 (t)

, V ∗k
2 (t) + δjk(x, y, t)

Rjk(x, t) =bjk1 (t) +
x− V ∗j

1 (t)

V ∗j
2 (t)

(bjk2 (t) + V ∗k
2 (t)) + V ∗k

1 (t)− x.

The functions bji and bjki respectively represent payments while Z is in state j and on

transition from state j to state k. The dividends that flow from the surplus to the

savings account are determined by the dividend functions δj . The reserves V ∗j
i are

given by

V ∗j
i (t) =

∫ n

t

e−
∫ s
t
r∗(ν)dν

∑

k∈J

pjk(t, s)


bki (s) +

∑

l:l ̸=k

µkl(s)b
kl
i (s)


 ds.

The dynamics of the surplus are

dY (t) =g
Z(t)
Y (X(t), Y (t), t)dt+

∑

k ̸=Z(t−)

h
Z(t−)k
Y (X(t−), Y (t−), t)dNk,

where

gjY (x, y, t) =r(t)y + (r(t)− r∗(t))x− δj(x, y, t) +
∑

k ̸=Z(t−)

RZ(t−)k(X(t), t)µ∗
jk(t),

hjk
Y (x, y, t) =−Rjk(x, t)− δjk(x, y, t).

Notice that the only terms that are not affine in x and y are the δ-functions which

represent the dividend. It is therefore solely through the specification of the dividend

that the dynamics of X and Y may become polynomial.

We construct a policy with a life assurance on death before retirement at age 65 which

is not scaled with bonus, and a life annuity commencing at retirement that is scaled

with bonus. Before retirement, an equivalence premium is paid by the policyholder.

All elements of the insurance contract are presented in Table 4.1.
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Quantity Value Description

T 110 Termination of contract

a0 30 Age at time zero

Tret 65 Age of retirement

bj1(t) 1{j=0}(1{t≥Tret} · 0.8− π1{t<Tret}) Unscaled sojourn payment in
state j

bj2(t) 1{j=0}(1{t≥Tret} · 0.8) Scaled sojourn payment in state
j

b011 (t) 1{t≤35} · 3 Unscaled payment on transition
from 0 to 1

b012 (t) 0 Scaled payment on transition
from 0 to 1

π 0.2379553 Equivalence premium

r∗(t) 0.015 Technical basis interest

r(t) 0.01 + t·0.015
110−30 Market basis interest

µ∗
01(t) 0.0005 + 105.6+0.04·(s+a0)−10 Technical basis force of mortal-

ity

µ01(t) 0.9 · (0.0005 + 105.6+0.04·(s+a0)−10) Market basis force of mortality

Table 4.1: Parameters used in numerical section.

4.B Small Local Truncation Error Finite Difference Scheme

In this section we construct a finite difference scheme that approximates the partial

derivatives ∂n

∂λnmi(0, t) via a linear combinations of mi(λ⃗[q], t) for some vector of nodes

λ⃗. The results in this section are not new – see Introduction to Numerical Methods in

Differential Equations (2007) for an introduction to numerical methods in differential

equations – but they serve an important role as they make our contributions relevant

for the practitioner. The basic principle behind the finite difference scheme is based on

the expression of a function through its Taylor expansion. Let

λ⃗ =




α1

α2

...

αK−1

αK




h,
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where we call h the step size and αi the step repetitions. For λ⃗ ∈ R
K , were K is an

odd number, we wish to approximate the nth order derivative using a weighted sum of

known values of mi(λ⃗, t)

m̃
(n)
i (0, t) =

a1mi(α1h, t) + a2m(α2h, t) + · · ·+ aKmi(αKh, t)

hn

=(⃗a)T
mi(λ⃗, t)

hn

=
∂n

∂λn
mi(0, t) +O(h?)

for some vector of weights a⃗ yet to be determined, and some order of convergence

rate in h that should be as high as possible. We use the set of nodes defined by

αi = −αK−i+1 = i, and α⌊K/2⌋+1 = 0, but the results of this section apply to any

set of αi that satisfy αi = −αK−i+1. By choosing the nodes most efficiently, we

can decrease the local truncation error by one order, making the finite difference

approximation better. However, the most efficient values of αi depend on the order of

the derivative that we wish to approximate, and as we need to calculate many orders

of derivatives, it is convenient to consider fixed values of αi. By a Taylor expansion we

see that

mi(αih, t) =mi(0, t) +m′
i(0, t)αih+

m′′
i (0, t)

2!
(αih)

2 +
m

(3)
i (0, t)

3!
(αih)

3 + · · ·

+
m

(K)
i (0, t)

K!
(αih)

K +O(hK).

Therefore we may write

m̃
(n)
i (0, t) =

a1

(
mi(0, t) +m′

i(0, t)α1h+ · · ·+ m
(K)
i (0, t)

K!
(α1h)

K +O(hK)

)

hn

+

a2

(
mi(0, t) +m′

i(0, t)α2h+ · · ·+ m
(K)
i (0, t)

K!
(α2h)

K +O(hK)

)

hn

...

+

aK

(
mi(0, t) +m′

i(0, t)αKh+ · · ·+ m
(K)
i (0, t)

K!
(αKh)K +O(hK)

)

hn

=
c1m(0, t) + c2m

′(0, t)h+ · · ·+ cK+1
m

(K)
i (0, t)

K!
hK

hn +O(hK−n),
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for ci and ai that solve




1 1 · · · 1 1

α1 α2 · · · αK−1 αK

α2
1 α2

2 · · · α2
K−1 α2

K

...
... · · ·

...
...

αK−1
1 αK−1

2 · · · αK−1
K−1 αK−1

K

αK
1 αK

2 · · · αK
K−1 αK

K







a1

a2
...

aK−1

aK




=




c1

c2
...

cK−1

cK

cK+1




. (4.B.1)

Choosing

ci =

{
n!, for i = n+ 1

0, otherwise
, (4.B.2)

we see that

m̃
(n)
i (0, t) =

n!
m

(n)
i (0, t)hn

n!
hn +O(hK−n)

=m
(n)
i (0, t) +O(hK−n).

Thus we have to find ai that solve (4.B.1) for ci given by (4.B.2) in order to get

the smallest possible error. However, (4.B.1) is an overdetermined system of K + 1

equations with K unknowns, which is not guaranteed to have a solution. At the cost

of accuracy, we discard the requirement for cK+1 and reduce the system to

m̃i
(n)(0, t) =

c1m(0, t) + c2m
′(0, t)h+ · · ·+ cK

m
(K−1)
i (0, t)

(K − 1)!
(h)K−1

hn +O(hK−n−1),

such that finding ai amounts to inverting the Vandermonde matrix

V :=




1 1 · · · 1 1

α1 α2 · · · αK−1 αK

α2
1 α2

2 · · · α2
K−1 α2

K

...
... · · ·

...
...

αK−1
1 αK−1

2 · · · αK−1
K−1 αK−1

K




,

which can be done using explicit formulas. Now m̃i
(n)(0, t) can be determined by

m̃i
(n)(0, t) = (V −1Cn)

Tmi(λ⃗, t)
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where Cn is the nth column of the diagonal matrix

C = Diag

({
0!

h0
,
1!

h1
,
2!

h2
, ...,

(K − 1)!

hK−1

})
.

Note that for A = V −1C,

(
ATmi(λ⃗, t)

)T
= (m̃i

(0)(0, t), m̃i
(1)(0, t), ..., m̃i

(K−2)(0, t), m̃i
(K−1)(0, t))

providing us with an approximation for all derivatives in a single matrix multiplication.

An attractive feature in terms of practical implementations is that A only has to be

calculated once for the given choice of step repetitions αi.

4.C Proof of Theorem 4.3.2

Proof. Consider a two-dimensional process W , with dynamics

dW (s) =

p∑

l=0

g
Z(s)
l (s)W (s)l +

pj∑

l=0

∑

j ̸=Z(s−)

h
Z(s−)k
l (s)W (s)ldN j(s),

where W (s)l are the element-wise powers of W , and

grl (s) =


xxg

r
l (s) xyg

r
l (s)

yxg
r
l (s) yyg

r
l (s)




hrj
l (s) =


xxh

rj
l (s) xyh

rj
l (s)

yxh
rj
l (s) yyh

rj
l (s)


 .

The dynamics of the moment-generating function are by Itô’s Lemma for FV-functions

d(exp(λTW (s))) =λ1

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−q+lλq

2Y (s)q xxg
Z(s)
l (s)

+ λ1

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−qλq

2Y (s)q+l
xyg

Z(s)
l (s)

+ λ2

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−q+lλq

2Y (s)q yxg
Z(s)
l (s)

+ λ2

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−qλq

2Y (s)q+l
yyg

Z(s)
l (s)

+
∑

j ̸=Z(s−)

(
eλ

TW (s) − eλ
TW (s−)

)
dN j(s),
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The last line accounts for the jump-dynamics, which we deal with separately;

∑

j ̸=Z(s−)

(
eλ

TW (s) − eλ
TW (s−)

)
dN j(s)

=
∑

j ̸=Z(s−)

(
∞∑

k=0

(λ1X(s) + λ2Y (s))k

k!
−

∞∑

k=0

(λ1X(s−) + λ2Y (s−))k

k!

)
dN j(s).

We now insert

∑

j ̸=Z(s−)

X(s)dN j(s) =
∑

j ̸=Z(s−)

X(s−) +

pj∑

l=0

(
xxh

Z(s−)j
l (s)X(s−)l

+ xyh
Z(s−)j
l (s)Y (s−)l

)
dN j(s),

∑

j ̸=Z(s−)

Y (s)dN j(s) =
∑

j ̸=Z(s−)

Y (s−) +

pj∑

l=0

(
yxh

Z(s−)j
l (s)X(s−)l

+ yyh
Z(s−)j
l (s)Y (s−)l

)
dN j(s),

to get

∑

j ̸=Z(s−)

(
∞∑

k=0

(λ1X(s) + λ2Y (s))k

k!
−

∞∑

k=0

(λ1X(s−) + λ2Y (s−))k

k!

)
dN j(s)

=
∑

j ̸=Z(s−)

∞∑

k=0

1

k!

[
λ1

(
X(s−) +

pj∑

l=0

xxh
Z(s−)j
l (s)X(s−)l + xyh

Z(s−)j
l (s)Y (s−)l

)

+ λ2

(
Y (s−) +

pj∑

l=0

yxh
Z(s−)j
l (s)X(s−)l + yyh

Z(s−)j
l (s)Y (s−)l

)]k
dN j(s)

−
∑

j ̸=Z(s−)

∞∑

k=0

(
(λ1X(s−) + λ2Y (s−))k

k!

)
dN j(s).

Raising the sum of the 4(pj + 1) + 2 terms within the square brackets to the power of

k, can be done with the multinomial theorem,




4(pj+1)+2∑

q=0

xq




k

=
∑

q1+q2+...+q4(pj+1)+2=k

(
k

q0, q1, ..., q4(pj+1)+2

) 4(pj+1)+2∏

l=0

xql
l .
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For pj = 1, corresponding to affine dynamics on transition between states we get

∑

j ̸=Z(s−)

∞∑

k=0

1

k!

[
λ1

(
X(s−) +

pj∑

l=0

xxh
Z(s−)j
l (s)X(s−)l + xyh

Z(s−)j
l (s)Y (s−)l

)

+ λ2

(
Y (s−) +

pj∑

l=0

yxh
Z(s−)j
l (s)X(s−)l + yyh

Z(s−)j
l (s)Y (s−)l

)]k
dN j(s)

−
∑

j ̸=Z(s−)

∞∑

k=0

(λ1X(s−) + λ2Y (s−))k

k!
dN j(s)

=
∑

j ̸=Z(s−)

∞∑

k=0

1

k!

[
λ1 xxh

Z(s−)j
0 (s) + λ1 xyh

Z(s−)j
0 (s)

+ λ2 yxh
Z(s−)j
0 (s) + λ2 yyh

Z(s−)j
0 (s)

+X(s−)
(
λ1(1 + xxh

Z(s−)j
1 (s)) + λ2 yxh

Z(s−)j
1 (s)

)

+ Y (s−)
(
λ1(xyh

Z(s−)j
1 (s)) + λ2(1 + yyh

Z(s−)j
1 (s)

)]k
dN j(s)

−
∑

j ̸=Z(s−)

∞∑

k=0

(λ1X(s−) + λ2Y (s−))k

k!
dN j(s),

we now use the trinomial and binomial theorems to write out the powers of k

(λ1X(s−) + λ2Y (s−))k

k!
=

k∑

q=0

1

(k − q)!q!
λk−q
1 λq

2X(s−)k−qY (s−)q

(A(s) +B(s) + C(s))k =
∑

q1+q2+q3=k

k!

q1!q2!q3!
A(s)q1B(s)q2C(s)q3

where

A(s) = X(s−)
(
λ1(1 + xxh

Z(s−)j
1 (s)) + λ2 yxh

Z(s−)j
1 (s)

)
,

B(s) = Y (s−)
(
λ1 xyh

Z(s−)j
1 (s) + λ2(1 + yyh

Z(s−)j
1 (s))

)
,

C(s) = λ1 xxh
Z(s−)j
0 (s) + λ1 xyh

Z(s−)j
0 (s) + λ2 yxh

Z(s−)j
0 (s) + λ2 yyh

Z(s−)j
0 (s).
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We now write out the dynamics of eλ
TW (s)

d(exp(λTW (s))) =λ1

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−q+lλq

2Y (s)q xxg
Z(s)
l (s)

+ λ1

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−qλq

2Y (s)q+l
xyg

Z(s)
l (s)

+ λ2

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−q+lλq

2Y (s)q yxg
Z(s)
l (s)

+ λ2

p∑

l=0

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 X(s)k−qλq

2Y (s)q+l
yyg

Z(s)
l (s)

∑

j ̸=Z(s−)

∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

×X(s−)q1
(
λ1(1 + xxh

Z(s−)j
1 (s)) + λ2 yxh

Z(s−)j
1 (s)

)q1

× Y (s−)q2
(
λ1 xyh

Z(s−)j
1 (s) + λ2(1 + yyh

Z(s−)j
1 (s)

)q2

×
(
λ1 xxh

Z(s−)j
0 (s) + λ1 xyh

Z(s−)j
0 (s)

+ λ2 yxh
Z(s−)j
0 (s) + λ2 yyh

Z(s−)j
0 (s)

)q3
dN j(s)

−
∑

j ̸=Z(s−)

∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 λq

2X(s−)k−qY (s−)qdN j(s).

Which we can use to get an integral expression for mi(λ, t)

mi(λ, t) =E[1{Z(t)=i}e
λTW (0)] + E

[
1{Z(t)=i}

∫ t

0

d(exp(λTW (s)))

]
.

As the integrand in the integrals accounting for the jump dynamics is predictable,

we may integrate wrt. the σ{{Z(τ)}τ≤s, Z(t) = i}-predictable compensator for the

FV-process 1{Z(t)=i}N
rj(s) given by

1{Z(t)=i}1{Z(s−)=r}µrj(s)
pji(s, t)

pri(s, t)
,

as derived in Appendix A of Bruhn and Lollike (2021). Using the Markov property,

and the dominated convergence theorem to replace the expectation of the moments

of X and Y with derivatives of the moment-generating function, we are left with the
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expression

mi(λ, t)

=p0i(0, t)e
λTw0

+

∞∑

k=0

k∑

q=0

p∑

l=0

λk−q+1
1 λq

2

(k − q)!q!

∫ t

0

∑

r∈J

pri(s, t) xxg
r
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

λk−q+1
1 λq

2

(k − q)!q!

∫ t

0

∑

r∈J

pri(s, t) xyg
r
l (s)

∂k+l

∂λk−q
1 ∂λq+l

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

λk−q
1 λq+1

2

(k − q)!q!

∫ t

0

∑

r∈J

pri(s, t) yxg
r
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

λk−q
1 λq+1

2

(k − q)!q!

∫ t

0

∑

r∈J

pri(s, t) yyg
r
l (s)

∂k+l

∂λk−q
1 ∂λq+l

2

mr(0, s)ds

+

∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

∫ t

0

∑

r∈J

∑

j ̸=r

∂q1+q2

∂λq1
1 ∂λq2

2

mr(0, s)

× (λ1(1 + xxh
rj
1 (s)) + λ2 yxh

rj
1 (s))q1

× (λ1 xyh
rj
1 (s) + λ2(1 + yyh

rj
l (s)))q2

× (λ1(xxh
rj
0 (s) + xyh

rj
0 (s)) + λ2(yxh

rj
0 (s) + yyh

rj
0 (s)))q3

× µrj(s)pji(s, t)ds

−
∞∑

k=0

k∑

q=0

λk−q
1 λq

2

(k − q)!q!

∫ t

0

∑

r∈J

∑

j ̸=r

∂k

∂λk−q
1 ∂λq

2

mr(0, s)µrj(s)pji(s, t)ds.

Which we can differentiate with respect to t. We split the differentiation into three

parts. First we consider only the probability weighted initial value

∂

∂t
p0i(0, t)e

λTw0 =
∑

q∈J
q ̸=i

µqi(t)p0q(0, t)e
λTw0 − µiq(t)p0i(0, t)e

λTw0 .
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Then we consider the derivative of the terms accounting for the continuous dynamics

∂

∂t

{
∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2

∫ t

0

∑

r∈J

pri(s, t) xxg
r
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2

∫ t

0

∑

r∈J

pri(s, t) xyg
r
l (s)

∂k+l

∂λk−q
1 ∂λq+l

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2

∫ t

0

∑

r∈J

pri(s, t) yxg
r
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2

∫ t

0

∑

r∈J

pri(s, t) yyg
r
l (s)

∂k+l

∂λk−q
1 ∂λq+l

2

mr(0, s)ds

}

=

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xyg
i
l(t)

∂k+l

∂λk−q
1 ∂λq+l

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2 yxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2 yyg
i
l(t)

∂k+l

∂λk−q
1 ∂λq+l

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2

∫ t

0

∑

r∈J

∂

∂t
pri(s, t) xxg

r
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2

∫ t

0

∑

r∈J

∂

∂t
pri(s, t) xyg

r
l (s)

∂k+l

∂λk−q
1 ∂λq+l

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2

∫ t

0

∑

r∈J

∂

∂t
pri(s, t) yxg

r
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2

∫ t

0

∑

r∈J

∂

∂t
pri(s, t) yyg

r
l (s)

∂k+l

∂λk−q
1 ∂λq+l

2

mr(0, s)ds.

For notational ease, consider a single pair of lines in the equation that both contain

♢♢g
m
l (s) for ♢ ∈ {x, y}, for instance ♢♢ = xx. By Kolmogorov’s forward differential
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equation,

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

∫ t

0

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2

∑

r∈J

∂

∂t
pri(s, t) xxg

m
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

=

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

−
∑

q∈J
q ̸=i

µiq(t)

∫ t

0

∞∑

k=0

k∑

q=0

p∑

l=0

λk−q+1
1 λq

2

(k − q)!q!

∑

r∈J

pri(s, t) xxg
m
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds

+
∑

q∈J
q ̸=i

µqi(t)

∫ t

0

∞∑

k=0

k∑

q=0

p∑

l=0

λk−q+1
1 λq

2

(k − q)!q!

∑

r∈J

prq(s, t) xxg
m
l (s)

∂k+l

∂λk−q+l
1 ∂λq

2

mr(0, s)ds.

The calculations for ♢♢ ∈ {xy, yy, yx} are analogous. Differentiating the terms

accounting for the jump-dynamics we get

∂

∂t

{
∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

∫ t

0

∑

r∈J

∑

j ̸=r

∂q1+q2

∂λq1
1 ∂λq2

2

mr(0, s)

× (λ1(1 + xxh
rj
1 (s)) + λ2 yxh

rj
1 (s))q1

× (λ1 xyh
rj
1 (s) + λ2(1 + yyh

rj
l (s)))q2

× (λ1(xxh
rj
0 (s) + xyh

rj
0 (s)) + λ2(yxh

rj
0 (s) + yyh

rj
0 (s)))q3

× µrj(s)pji(s, t)ds

−
∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 λq

2

∫ t

0

∑

r∈J

∑

j ̸=r

∂k

∂λk−q
1 ∂λq

2

mr(0, s)µrj(s)pji(s, t)ds.

}
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=

∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

∑

r ̸=i

∂q1+q2

∂λq1
1 ∂λq2

2

mi(0, s)

× (λ1(1 + xxh
ri
1 (t)) + λ2 yxh

ri
1 (t))q1

× (λ1 xyh
ri
1 (t) + λ2(1 + yyh

ri
l (t)))q2

× (λ1(xxh
ri
0 (t) + xyh

ri
0 (t)) + λ2(yxh

ri
0 (t) + yyh

ri
0 (t)))q3

× µri(s)

+
∑

n:n ̸=i

µni(t)

∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

∫ t

0

∑

r∈J

∑

j ̸=r

∂q1+q2

∂λq1
1 ∂λq2

2

mr(0, s)

× (λ1(1 + xxh
rj
1 (s)) + λ2 yxh

rj
1 (s))q1

× (λ1 xyh
rj
1 (s) + λ2(1 + yyh

rj
l (s)))q2

× (λ1(xxh
rj
0 (s) + xyh

rj
0 (s)) + λ2(yxh

rj
0 (s) + yyh

rj
0 (s)))q3

× µrj(s)
∂

∂t
pjn(s, t)ds

−
∑

n:n ̸=i

µin(t)

∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

∫ t

0

∑

r∈J

∑

j ̸=r

∂q1+q2

∂λq1
1 ∂λq2

2

mr(0, s)

× (λ1(1 + xxh
rj
1 (s)) + λ2 yxh

rj
1 (s))q1

× (λ1 xyh
rj
1 (s) + λ2(1 + yyh

rj
l (s)))q2

× (λ1(xxh
rj
0 (s) + xyh

rj
0 (s)) + λ2(yxh

rj
0 (s) + yyh

rj
0 (s)))q3

× µrj(s)
∂

∂t
pji(s, t)ds

−
∑

n:n ̸=i

µni(t)

∞∑

k=0

k∑

q=0

λk−q
1 λq

2

(k − q)!q!

∫ t

0

∑

r∈J

∑

j ̸=r

∂k

∂λk−q
1 ∂λq

2

mr(0, s)µrj(s)pjn(s, t)ds

+
∑

n:n ̸=i

µin(t)

∞∑

k=0

k∑

q=0

λk−q
1 λq

2

(k − q)!q!

∫ t

0

∑

r∈J

∑

j ̸=r

∂k

∂λk−q
1 ∂λq

2

mr(0, s)µrj(s)pni(s, t)ds.
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Combining all three differentiated parts of the state-wise moment-generating function,

we recognise mi(λ, t) and mr(λ, t) to arrive at the differential equation

∂

∂t
mi(λ, t) =

∑

r ̸=i

µri(t)mr(λ, t)− µir(t)mi(λ, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q+1
1 λq

2 xyg
i
l(t)

∂k+l

∂λk−q
1 ∂λq+l

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2 yxg
i
l(t)

∂k+l

∂λk−q+l
1 ∂λq

2

mi(0, t)

+

∞∑

k=0

k∑

q=0

p∑

l=0

1

(k − q)!q!
λk−q
1 λq+1

2 yyg
i
l(t)

∂k+l

∂λk−q
1 ∂λq+l

2

mi(0, t)

+

∞∑

k=0

∑

q1+q2+q3=k

1

q1!q2!q3!

∑

r ̸=i

∂q1+q2

∂λq1
1 ∂λq2

2

mr(0, s)

× (λ1(1 + xxh
ri
1 (t)) + λ2 yxh

ri
1 (t))q1

× (λ1 xyh
ri
1 (t) + λ2(1 + yyh

ri
l (t)))q2

× (λ1(xxh
ri
0 (t) + xyh

ri
0 (t)) + λ2(yxh

ri
0 (t) + yyh

ri
0 (t)))q3

× µri(t)

−
∞∑

k=0

k∑

q=0

1

(k − q)!q!
λk−q
1 λq

2

∑

r ̸=i

∂k

∂λk−q
1 ∂λq

2

mr(0, s)µri(t).
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4.D Figures

Figure 4.5: Polynomial approximation of max(0, x)·0.1, degree=5. Outside

the interval of convergence (−14.85, 18.15) the polynomial diverges.
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Chapter 5

Introduction to Utility Optimization

In this chapter we introduce utility optimization and equilibrium theory to provide

the background for Chapter 6 and Chapter 7. We also highlight the most important

concepts from the last two chapters in a non-technical fashion.

5.1 Background

On the topic of personal finance, the question of how wealth should be consumed and

invested has been of interest since the inception of modern finance. The consumption-

investment strategy is inevitably dependent on the preferences of the investor. Under-

standing in which way the preferences of the investor influence the optimal consumption-

investment strategy by studying utility theory is a practical problem in theoretical

disguise. The real-world portfolio managers are not investing according to some the-

oretically optimal strategy, but understanding how the features of the theoretically

optimal control are connected to the preferences of the investor, is a relevant real-world

problem.

A utility function is a mathematical object that represents the preferences of an

investor. Utility optimization is all about studying models of preferences and the

financial market. By finding the optimal strategy for a given utility function in a

given financial market, we get a better understanding of the factors that influence the

objectives of real-world investors, if the model is sensible. Utility functions cannot be

deduced from a brain scan or a questionnaire, and the real-world financial market is

too complex to model accurately.

A common phrase in statistic is,

”All models are wrong, but some are useful.”

The same can be said about utility theory. In his 100-page paper with 650 references

Schultz (2015), the Cambridge professor and Brain Prize winner Wolfram Schultz
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describes how neuron signals induce learning and thereby ultimately influence behaviour.

On the matter of utility he writes,

”Although all reward, reinforcement, and decision variables are theoretical

constructs, their neuronal signals constitute measurable physical implemen-

tations and as such confirm the validity of these concepts.”

5.1.1 Dynamic Programming

The Danish former elite soldier B.S. Christiansen advocates for what he calls a ’back-

wards schedule’. If you have to be at work by 9:00 it means that you have to leave at

8:37, which means that you have to get dressed by 8:26, which means that you have

to start breakfast at 7:56, which means that you have to get up at 7:43 if you want

a shower. B.S. Christiansen has simply applied what Richard E. Bellman called the

dynamic programming principle.

The dynamic programming principle is to take a complicated problem (as for instance

’what time should I get up?’), and break it into sub-problems that can be solved

recursively in time. This idea can be formulated mathematically and applied rigorously

via the so-called Hamilton-Jacobi-Bellman (HJB) equation, which is an indispensable

tool for the derivation of optimal consumption-investment strategies.

A value function represents the value of a certain control for a certain utility function.

Value functions allow us to compare and rank different controls, and define the optimal

control as the one that achieves the highest value function. The HJB equation describes

how a value function has to unfold backwards in time in order for the control to be

optimal.

5.1.2 Equilibrium Theory

Have you ever planned to go for a run, but end up eating popcorn and watching a

movie instead? or postponed the completion of your tax returns, even though you had

designated time for it? If you have ever changed your mind, you have experienced

time-inconsistent preferences. Having different objectives at different points in time

is completely natural, but one has to be careful about defining optimality when the

objective is not fixed.

A näıve treatment of time-inconsistent preferences is to solve the problem as if the

preferences were time-consistent. The näıve investor constantly re-evaluates his control,

and does not take into account that his preferences are changing over time. The value

function that emerges from adopting this strategy, is not going to correspond to the

value function that the näıve investor optimises over, which is why the label as ’näıve’

is fitting.
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A more sophisticated way to deal with time-inconsistent preferences, is to acknowledge

that the preferences are going to change, and incorporate this knowledge into the

definition of optimality. An optimal control defined as a Nash subgame equilibrium

does exactly this.

To explain the idea behind a Nash subgame equilibrium, imagine a group of people

who are playing a game of knocking over cans at a carnival together. They all share the

prize, and each player gets to throw one ball. The first player wants a stuffed unicorn,

and accordingly throws his ball at the pyramid of cans that will give him the unicorn.

The second player wants a candy cane, but since the first player already knocked over

one can in the unicorn pyramid, the second player also goes for the unicorn pyramid,

as it is an acceptable trade-off for him. The third player wants neither a unicorn or a

candy cane, and instead aims at the chocolate-bar pyramid. In this way, each player is

playing a subgame, and the optimal action for the n’th player is determined by the

actions of the first n− 1 players. An equilibrium is reached when every single player is

satisfied with their own subgame strategy given the strategy of the players that come

before.

The value function for the equilibrium control satisfies an extended HJB equation,

where suitable adjustments to the original HJB equations account for the change in

the objective over time.

Prospect theory is an experimentally attested descriptive theory of behavioural finance

that explains several anomalies stemming from the classical expected utility hypothesis,

where agents are assumed to be rational. An essential feature of prospect theory, is

the notion that utility is relative to a status quo, and not absolute. Furthermore, the

status quo is dynamic. Incorporating these properties in a utility function result in

time-inconsistent preferences.

5.2 Overview of Chapters 6 and 7

This thesis deals with time-inconsistent finite horizon investment problems, where

optimality is defined in terms of equilibria. In the following two subsections we outline

the central ideas of Chapters 6 and 7. Chapter 6 deals with an application of the

extended HJB equation, on polynomial approximations of utility functions. Chapter 7

deals with a single utility function of particular interest with ties to prospect theory.

5.2.1 Polynomial Approximations

Polynomials are relatively simple, and can be used to form approximations of non-

polynomial functions. It is natural to assume that if a polynomial closely approximates

a utility function, then the optimal control for the polynomial closely approximates



116 Chapter 5. Introduction to Utility Optimization

the optimal control for the utility function. It is exactly this idea we investigate in

Chapter 6.

The trouble with polynomial utility functions is that they diverge, which can induce

diverging optimal controls. To mitigate this problem, the polynomial utility function

has to be constructed, so that the approximation is accurate for the most likely

values of terminal wealth. Increasing the degree of the polynomial provides a closer

approximation over a fixed interval, but higher degrees of polynomials diverge faster,

which increases the influence on the optimal control. The polynomial utility function

has to satisfy two interconnected properties;

❼ A close approximation of the original utility function over the likely values of

terminal wealth.

❼ A degree of polynomial so low that the divergence outside the likely values of

terminal wealth does not influence the optimal control.

We produce two numerical examples to study the accuracy of the control induced by

polynomial utility functions. One of the examples has a known solution and serves to

prove that the method is sound. The other example provides an approximation of an

optimal control, for a utility function with an unknown solution.

5.2.2 Avoiding Dynamic Programming

One of the utility functions studied in the examples of Chapter 6, is the focal point of

Chapter 7. Motivated by (among other things) the numerical results of Chapter 6, we

assume that the equilibrium control is independent of wealth. This paves the way for

finding the equilibrium control through a direct use of the definition of the equilibrium

control, instead of solving the extended HJB equation.

An Authors Note on Chapter 7

Less than two months before submission of this thesis, Chapters 2, 3, 4 and 6 were

finished, and I had to choice between squeezing in an extra chapter and having a long

time to write an introduction. Apparently i chose the latter. Unfortunately I did not

have the time to bring Chapter 7 to a point where I would deem it ready for submission.

Please forgive the crudeness of Chapter 7.
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Polynomial Utility

Abstract

We approximate the utility function by polynomial series and solve the

related dynamic portfolio optimization problems. We study the quality of

the approximation for the Taylor and Bernstein series in response to the

center and the degree of the expansion. The issue of time-inconsistency,

arising from a dynamically adapted center of the expansion, is approached

by equilibrium theory. In the numerical study we focus on two specific

utility functions: For power utility, access to the optimal portfolio allows

for a more complete illustration of the approximations; for the S-shaped

utility function of prospect theory, the use of equilibrium theory allows for

approximating the solution to the (obviously interesting but yet unsolved)

case of current wealth as a dynamic reference point.
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6.1 Introduction

We approximate the portfolio utility maximization problem by series expansions of the

utility function of which the second order Taylor expansion is a special case leading

to mean-variance utility. Conforming with the modern approach to dynamic mean-

variance optimization we approach the problem by equilibrium theory. We study the

convergence of two expansions via Taylor and Bernstein polynomials, respectively,

discuss their weaknesses, and propose ways to circumvent them. We illustrate the

insight obtained in numerical studies covering both power utility and S-shaped utility

with an adapted reference point.

The starting point for this work is the mean-variance portfolio optimization problem

introduced by Markowitz (1952) in a one-period framework. Here, we think of the mean-

variance objective as an appreciation of expected wealth minus variance multiplied

by the absolute risk aversion. Levy and Markowitz (1979) formalize the objective

as an approximation based on a second order Taylor expansion around the expected

return. Thus, the mean-variance objective can be interpreted as an approximation

to an underlying regular utility maximization problem from which the absolute risk

aversion is derived and plugged in as weight on the variance. Levy and Markowitz

(1979) conclude that the approximation is good for a logarithmic utility, but others

find the approximation to be poor in general/other settings, see e.g. Loistl (1976) and

Jondeau and Rockinger (2006). From a mathematical point, there are other series

expansions available than the Taylor expansion and one can also vary over the point of

expansion. The discussion about the quality should be seen in that light.

The issue about the quality of the methods becomes even more delicate when formalizing

a dynamic problem. In the variance appears the point of expansion, expected wealth,

as the point to which the variance measures the expected quadratic distance. For a

one-period version of the problem this is unambiguously meaningful. When forming

a dynamic problem the question arises: What should be the point of expansion at a

given point in time? If the point is the initially expected wealth, then a time-consistent

dynamic problem arises, and it can be solved by standard dynamic programming as a

quadratic utility problem with a Lagrangian constraint, see e.g. Xia (2005). However,

the objective is only of mean-variance type seen from the initial time point and not

from later time points. If the point of expansion is conditionally expected wealth, the

objective is always a (conditional) mean- (conditional) variance problem. However,

since the objective now contains the conditional expectation squared, the problem

becomes time-inconsistent and other methods than standard dynamic programming

are needed. So, the point of expansion is crucial for both the interpretation and the

solvability of the problem.

The dynamic mean-variance problem has gained a lot attention since the solution
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proposed by Basak and Chabakauri (2010). They essentially formulate and solve

the problem by an equilibrium approach. That approach was formalized for time-

inconsistent problems in continuous time by Ekeland and Lazrak (2010) and Ekeland

and Pirvu (2008), mainly to cope with the source of time-inconsistency known as

non-exponential discounting. But the approach works generally for time-inconsistent

problems. This is studied intensively in Björk and Murgoci (2014) and Björk et al.

(2014) and followed up by many others in more recent works, see e.g. Kryger et al.

(2020) and the references therein. Here, we also take the equilibrium approach but, in

contrast to the extensive work on the mean-variance problem, we go beyond both the

second moment as the object of interest and the conditional expectation as the point

to which distance is measured.

The Taylor expansion around the conditional expectation for a general utility function

was first studied by Nordfang and Steffensen (2017), and they identify clear weaknesses.

We have three main objectives in continuation of their work:

a) We identify and discuss further the reason for these weaknesses. The key issue is

that, independently of the order, the Taylor expansion provides convergence within

a limited interval only, specified indirectly by the point of expansion. Since the

approximately optimal control takes the wealth process outside this interval with a

sufficiently high probability, it has the harmful impact on the optimal control that

it does not converge in general. We propose here to use a point of expansion that

depends on the order to cope with the problem. The weakness of the approximation is

also what drives Fahrenwaldt and Sun (2020) to study intensively of the remainder

term of the expansion.

b) We propose and study the Bernstein polynomium as an alternative to the Taylor

polynomium. As for the Taylor polynomium, the Bernstein polynomium converges

over an interval. But since this interval is specified directly, this gives a more direct

control over the area of convergence. However, again the relation between the interval

and the risk of the wealth ending there prevents convergence of the strategy. And

again, we propose to set the interval as a function of the order of expansion. We

discuss advantages and disadvantages among the two expansions and present supporting

numerical results for the power utility case where the solution to the underlying problem

is explicitly known and the quality of the approximation, therefore, can be illustrated

directly.

c) The equilibrium approach is mainly introduced to deal with the time-consistency

arising from higher order moments in the expansion. However, its presence allows us to

study series expansion methods even when even the original utility function contains

time-consistency issues, without really adding much difficulty. We therefore study

the feature of Prospect Theory known as S-shaped utility around a reference point
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(and disregard probability distortion). Similarly to the point from which the quadratic

distance is measured in the mean-variance case, also the reference point for S-shaped

utility can be elaborated on in a dynamic context. Almost everywhere in the literature,

this point is taken to be initial wealth. We study the version of the problem where

the reference point at every point in time and space is taken to be current wealth.

Then the solution to the underlying problem is not explicitly known but we present

numerical solutions based on the Taylor and Bernstein polynomials.

The outline of the paper is as follows: In Section 2, we provide the setup and present

results from the equilibrium theory. Sections 3 and 4 go through the solution, ideas,

advantages, and disadvantages of the Taylor and Bernstein polynomials, respectively.

Numerical studies for both power utility and S-shaped utility with adapted reference

point are presented in Section 5.

6.2 Setup and Useful Results

In this section we present the problem and present results about equilibrium strategies.

We assume that the investor trades at a Black-Scholes market equipped with a single

stock, S, and a bank account, B, with dynamics

dB(t) = rB(t)dt, B(0) = 1

dS(t) = αS(t)dt+ σS(t)dW (t), S(0) = s0,

where W is a standard Brownian motion. The wealth of the investor is invested in the

two assets according to the control π which denotes the proportion of wealth invested

in the stock. The wealth is assumed to be self-financing such that the dynamics are

given by

dXπ(t) = (r + π(t,Xπ(t))(α− r))Xπ(t)dt+ π(t,Xπ(t))σXπ(t)dW (t), (6.2.1)

Xπ(0) = x0 > 0. (6.2.2)

Controls that are independent of wealth, i.e. deterministic, are particularly appealing,

both from a computational and practical point of view.

Lemma 6.2.1. For wealth independent controls, π(t, x) = π(t), Xπ(t) is log-normally

distributed with

Xπ(t) ∼ LN

(
log(x0) +

∫ t

0

(
r + π(s)(α− r)− (σπ(s))2

2

)
ds,

∫ t

0

(σπ(s))2ds

)
,

and the expectation of the ith power of Xπ(T ), conditional on Xπ(t) = x, is given by

Et,x[(X
π(T ))i] = xi exp

(
i

∫ T

t

(
r + π(s)(α− r) + (i− 1)

(σπ(s))2

2

)
ds

)
. (6.2.3)
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Proof. Proof of Lemma 6.2.1. Since π(t) is deterministic,∫ t

0
σπ(s)dW (s) ∼ N (0,

∫ t

0
(σπ(s))2ds), applying Ito’s lemma gives

log(Xπ(T )) ∼ N
(
log(x0) +

∫ t

0

(
r + π(s)(α− r)− (σπ(s))2

2

)
ds,

∫ t

0

(σπ(s))2ds

)
.

Conditioning on Xπ(t) = x and integrating to T gives (6.2.3), which is the expression

for the ith moment of the log-normal random variable Xπ(T ) | Xπ(t) = x.

The goal of the investor is to optimize expected terminal utility. But unlike the

standard formulation, we allow terminal utility to not only depend on terminal wealth

but also current wealth. Thus, We introduce the function

Jπ(t, x) = Et,x[u(t,X
π(t), Xπ(T ))]. (6.2.4)

We are going to approximate the true problem above by an approximated problem by

simply by replacing u with a polynomial utility function in the form

ũn(t, x, z) :=

n∑

i=0

ai,n(t, x)z
i,

for a set of coefficients ai,n that are determined in such a way that ũn is an nth degree

polynomial approximation of u. The standard approach to optimization is to set a

supremum in front of (6.2.4). However, no matter whether the expectation be over u

or ũn, the presence of current wealth violates Bellman’s Principle of Optimality, as

formulated by Bellman:

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.

In other words, no matter what happens, we should not deviate from our initial objective.

If the property cited above is fulfilled, the policy is said to be time-consistent, and an

optimization problem that has a time-consistent policy as optimal solution is said to

be a time-consistent problem. But clearly, the introduction of current wealth in the

objective violates exactly that property.

It may seem odd to have preferences that change according to the current wealth and

to have time-inconsistent policies, but this is by no means unrealistic, in fact quite

the opposite - see Tversky and Kahneman (1986). Daniel Kahneman was awarded

the Nobel Memorial Prize in Economics in 2002 ”for having integrated insights from

psychological research into economic science, especially concerning human judgment

and decision-making under uncertainty”1. The work by Kahneman shows that utility

1Nobel Media AB, 2021.
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should be measured relative to a reference wealth level which could naturally be current

wealth. Thus, according to Kahneman, it is basic human psychology to have time-

inconsistent preferences. Interestingly, time-inconsistent preferences were introduced

in economic decision making long before Kahneman, see Strotz (1955) and Samuelson

(1937).

Note that even if the original function u is not wealth-dependent and time-inconsistent,

it may well be that we want to approximate it by a polynomial utility function ũ

which is. Actually, this is a core idea of the present paper to actually do that. As

discussed above we cannot put a supremum in front of (6.2.4) and solve by standard

Bellman theory. Instead we approach the problem by so-called equilibrium theory,

introducing an equilibrium value function (instead of an optimal value function) and

an equilibrium strategy (instead of an optimal strategy). This route starts by defining

the set of admissible strategies in the following way.

Definition 6.2.2 (Admissibility). For n real functions g1(x), ..., gn(x), a control π is

admissible w.r.t g1, ..., gn (or simply admissible) if for each gi, there exists a function

Gi,π(t, x) : [0, T ]× R → R from C1,2 such that

1) Gi,π
t = −(r + π(α− r))xGi,π

x − 1
2σ

2π2x2Gi,π
xx , Gi,π(T, x) = gi(x).

2) σπ(t,Xπ(t))Xπ(t)Gi,π
x (t,Xπ(t)) ∈ L2, for Xπ following the SDE given by (6.2.1)-

(6.2.2).

The set of admissible strategies is denoted by U .

The next step is to define an equilibrium strategy. This definition follows the

definition by Björk et al. (2014).

Definition 6.2.3 (Equilibrium control). Consider a control π̂. Choose a real number

h ∈ (0, T ) and a fixed initial point (t, x), such that t ∈ [0, T − h). Define for a control

π the control πh by

πh
(t,x)(s, y) =

{
π(s, y), for (s, y) ∈ [t, t+ h)× R,

π̂(s, y), for (s, y) ∈ [t+ h, T ]× R.

If

lim inf
h→0

J π̂(t, x)− Jπh

(t, x)

h
≥ 0,

for all controls π for which πh is admissible, then π̂ is an equilibrium control.

In other words, for all points in time there is no other strategy that yields a smaller

marginal change in the value function than the equilibrium control. Equivalently, the

equilibrium control yields the largest marginal change to the value function with going
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backwards in time. This makes it optimal in the equilibrium sense but not (always)

the control that mazimizes (6.2.4).

Having defined the objective of the investor, we are ready to address the problem for

the case of polynomial utility functions. We are interested in the equilibrium optimal

control π̂n for the value function J π̂n
n determined by

J π̂n
n (t, x) =

n∑

i=0

ai,n(t, x)Et,x[(X
π̂n(T ))i]. (6.2.5)

The fact that we can find the equilibrium control in Equation (6.2.5), and deal with

polynomial utility functions in a general framework, is made possible by the extended

HJB equation, first conceived by Kryger and Steffensen (2010), with a revised version

of the proof provided by Kryger et al. (2020).

Theorem 6.2.4 (Extended HJB equation). Let f : [0, T ]× R
n+2 → R be a function

that is once differentiable in the first argument, and twice differentiable in all other

arguments. Let g0, ..., gn be real functions. Consider the investor with value function

Jπ(t, x) = f(t, x, Et,x[g0(X
π(T ))], ..., Et,x[gn(X

π(T ))]),

with wealth dynamics described by the SDE

dXπ(t) = (r + π(t,Xπ(t))(α− r))Xπ(t)dt+ π(t,Xπ(t))σXπ(t)dW (t),

Xπ(0) =x0 > 0,

and equilibrium optimal control π∗. If

π̂ = arg inf
π

{
−(r + π(α− r))x

n∑

i=0

fGiGi,π∗

x − 1

2
σ2π2x2

n∑

i=0

fGiGi,π∗

xx

}
(6.2.6)

is an admissible strategy with respect to the functions g0, ..., gn, then π̂(t, x) = π∗(t, x),

and the optimal value function is determined by

J π̂(t, x) = f(t, x,G0,π∗

(t, x), ..., Gn,π∗

(t, x)).

For
∑n

i=0 fGiGi,π∗

xx < 0, the control π̂ in Equation (6.2.6) can be expressed as

π̂(t, x) = −α− r

σ2x

∑n
i=0 fGi(t, x,G0,π∗

(t, x), ..., Gn,π∗

(t, x))Gi,π∗

x (t, x)
∑n

i=0 fGi(t, x,G0,π∗(t, x), ..., Gn,π∗(t, x))Gi,π∗

xx (t, x)
,

which for polynomial utility functions with coefficients ai,n equates to

π̂n(t, x) = −α− r

σ2x
·
∑n

i=0 ai,n(t, x)m
π̂n
x (i, t, x)

∑n
i=0 ai,n(t, x)m

π̂n
xx(i, t, x)

, (6.2.7)
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where mπ̂n(i, t, x) denotes the ith moment of the stochastic variable describing the

wealth at termination using π̂n as a control, i.e. mπ̂n(i, t, x) = Et,x[(X
π̂n(T ))i].

By Theorem 6.2.4 we can find the optimal control for polynomial utility functions.

In terms of interpretation and implementation, simple optimal controls are preferred.

It turns out that a class of polynomial coefficients lead to optimal controls that are

independent of wealth, making the controls deterministic. This class is immediately

detected by looking for wealth-independent solutions to (6.2.7), recalling Lemma 6.2.1.

Lemma 6.2.5 (Deterministic Controls). For any function h(x), coefficients of the

form

ai,n(t, x) = h(x)x−ici,n(t)

lead to wealth independent optimal controls, and π(t) is the solution to

π̂(t) = −α− r

σ2
·

∑n
i=0 ci,n(t)i

(
i
∫ T

t

(
r + π̂(s)(α− r) + (i− 1) (σπ̂(s))

2

2

)
ds
)

∑n
i=0 ci,n(t)i(i− 1)

(
i
∫ T

t

(
r + π̂(s)(α− r) + (i− 1) (σπ̂(s))

2

2

)
ds
) .

Proof. Proof of Lemma 6.2.5. Assume we have coefficients of the form ai,n(t, x) =

h(x)x−ici,n(t). We now guess that the solution to (6.2.7) using these coefficients, is

independent of wealth. By Lemma 6.2.1,

mπ̂n(i, t, x) = xi exp

(
i

∫ T

t

(
r + π̂(s)(α− r) + (i− 1)

(σπ̂(s))2

2

)
ds

)
,

and so

− α− r

σ2x
·
∑n

i=0 ai,n(t, x)m
π̂n
x (i, t, x)

∑n
i=0 ai,n(t, x)m

π̂n
xx(i, t, x)

=− α− r

σ2
·

∑n
i=0 ci,n(t)i

(
i
∫ T

t

(
r + π̂(s)(α− r) + (i− 1) (σπ̂(s))

2

2

)
ds
)

∑n
i=0 ci,n(t)i(i− 1)

(
i
∫ T

t

(
r + π̂(s)(α− r) + (i− 1) (σπ̂(s))

2

2

)
ds
)

(6.2.8)

confirming that, for ai,n(t, x) = h(x)x−ici,n(t), π(t, x) = π(t) is a solution to equation

(6.2.7).

In the numerical section, all coefficients of the polynomial utility functions are on

the form of Lemma 6.2.5, and the calculations of optimal controls where performed by

finding a solution to (6.2.8).

6.3 The Taylor Optimal Control

The main focus of the paper is the way in which the polynomial utility function

is constructed from the original utility function. Note that different polynomial
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approximations lead to different controls. This section presents some results, that are

also available in Nordfang and Steffensen (2017) and Fahrenwaldt and Sun (2020), but

at the same time we highlight some of the general problems with polynomial utility

functions.

An nth order Taylor expansion in z around the point d(t, x) of the utility function

u(t, x, z) is given by

ũT
n (t, x, z) =

n∑

k=0

1

k!
u(k)(t, x, d(t, x))(z − d(t, x))k

=

n∑

k=0

1

k!
u(k)(t, x, d(t, x))

k∑

i=0

(
k

i

)
zid(t, x)k−i(−1)k−i

=

n∑

i=0

aTi,n(t, x)z
i,

where

aTi,n(t, x) =
1

i!

n−i∑

k=0

(−1)kd(t, x)k

k!
u(k+i)(t, x, d(t, x)), (6.3.1)

where u(k)(t, x, z) denotes ∂k

∂zk u(t, x, z), and where we have introduced aTi,n as the

coefficients of the polynomial. The topscript T refers to Taylor as we later introduce a

different expansion and need to disunguish between the two. The choice of d(t, x) may

have a large influence on the equilibrium control. If d(t, x) is too large or too small, the

Taylor approximation around the likely values of Xπ(T ) may be poor. Furthermore,

specific choices of d(t, x) may lead to particularly simple equilibrium controls which

we analyse in Example 6.3.1.

Example 6.3.1 (Power Utility Coefficients). The power utility function uP defined by

uP (t, x, z) =
1

1− γ
z1−γ ,

where γ > 0, γ ̸= 1 is the risk aversion parameter, has kth derivative given by

u
(k)
P (z) =

1

1− γ
z1−γ−k

k−1∏

l=0

(1− γ − l).

Expanding the Taylor polynomial around d(t, x) gives the coefficients

aTi,n(t, x) =
1

i!

n−i∑

k=0

(−1)kd(t, x)k

k!

1

1− γ
d(t, x)1−γ−k−i

k+i−1∏

l=0

(1− γ − l)

=
d(t, x)1−γ−i(−1)n+i

∏n
l=1(1− γ − l)

i!(n− i)!(1− γ − i)
.
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For any function f we can consider the point of expansion given by d(t, x) = xf(t).

Then the coefficients can be expressed as x1−γ−ici,n(t), and the Taylor optimal control

is independent of wealth by Lemma 6.2.5.

Nordfang and Steffensen (2017) choose d(t, x) = Et,x[X
π̂n(T )] as their point of expan-

sion. Making the ansatz that π̂n is independent of wealth for this point of expansion,

Lemma 6.2.1 states that

d(t, x) = x exp

(∫ T

t

r + π̂n(s)(α− r)ds

)
.

By the observation above this fits with π̂n becoming independent of wealth such that

we have detected such a case. △

Taylor polynomials are widely used to approximate differentiable functions, and it

is therefore meaningful to derive the Taylor optimal control. In the following section

we shed light on a fundamental problem with Taylor polynomials.

6.3.1 Problems with the Taylor Optimal Control

Fahrenwaldt and Sun (2020) perform a thorough analysis of the remainder term that

accounts for the difference between the original value function and the approximate

polynomial value function, for d(t, x) = Et,x[X
π̂n(T )] and the case of a power utility

function. A particularly interesting result of Fahrenwaldt and Sun (2020) is that the

remainder term increases in n for n sufficiently large. In other words, increasing the

degree of the Taylor polynomial produces at some point a worse approximation in that

particular sense. In this section we provide some intuition behind this behavior.

To an understanding of the trouble with the Taylor optimal control, we consider the

interval over which the Taylor expansion of the power utility function converges to the

power utility function. Performing a ratio test shows that

lim
n→∞

uT
2n(t, x, z) =

{
−∞, for z > 2d(t, x),

u(t, x, z), for z < 2d(t, x),

and

lim
n→∞

uT
2n+1(t, x, z) =

{
∞, for z > 2d(t, x),

u(t, x, z), for z < 2d(t, x).

Thus, if terminal wealth exceeds 2d(t, x), then for large n, the utility function actually

diverges in such a way that it goes to infinity for large even n and to minus infinity for

large odd n. The event that X π̂(T ) > 2d(t, x) (called the divergence event below) may

be unlikely, but even a small probability can in this case have a large influence due to

the special divergence of the utility function. In Figure 6.1 we have plotted two Taylor
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polynomial approximations of the power utility function, along with the density of the

terminal wealth achieved for the true optimal constant control π∗ = 0.25.

Figure 6.1: Point at z = 3.86 signifies the point of expansion, which is

the expected value of terminal wealth. Vertical lines indicate convergence

radius from ratio test

While the divergence event seems extremely unlikely, its influence cannot be un-

derstated. For fixed (t, x) and n, the probability that the terminal wealth is going to

exceed 2d(t, x) is fixed. But increasing the degree of the Taylor polynomial, increases

(or decreases depending on whether n is odd or even) the marginal utility of this

extreme event, as the Taylor polynomial diverges faster. Increasing the odd degree of

the polynomial eventually increases the incentive to reach the divergence event becomes

dominating such that the optimal control is π̂(t, x) = ∞. Conversely, increasing the

even degree, the strategy π̂(t, x) = 0 becomes optimal as the incentive to avoid the

divergence event becomes dominating.

As explained, the problem is that for increasing n, the probability of the divergence

event is unchanged, but the influence of it is increasing. For the case of power utility

this problem can perhaps be remedied by considering instead a point of evaluation that

increases as n increases, e.g. dn(t, x) = 0.5 · inf{q ∈ R | Pt,x(X
π̂(T ) ≤ q) = 1− n−η}

for some constant η > 0. There is no way, however, to generally control the interval

over which the Taylor polynomial converges to the true utility function. A ratio test

can identify how far away from d(t, x) the Taylor series converges to the true utility

function, but for a given utility function, it may not be possible to chose a point

d(t, x) that leads to a satisfactory interval of convergence. Furthermore, the Taylor

polynomial requires a smooth utility function such that e.g. a piecewise utility function

is not allowed. Another example is the S-shaped utility function, where either the
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utility in gains or utility in losses can be approximated but not both.

One may try to ignore the behaviour of the polynomial utility function for values larger

than some extremely large B. Why should we care about unrealistically high values of

wealth? However, unrealistically high values of wealth do not exist as the following

argument shows. If we consider the constant proportion π(s, x) = C for s ∈ [t, t+∆t],

then

P (Xπ(t+∆t) > B | Xπ(t) = x) (6.3.2)

=P

(
x exp

(
∆t

(
r + C(α− r)− σ2C2

2

)
+

∫ t+∆t

t

σCdW (s)

)
> B

)

=P

(∫ t+∆t

t

σCdW (s) > log(B)− log(x)−∆t

(
r + C(α− r)− σ2C2

2

))
.

With ∫ t+∆t

t

σCdW (s) ∼ N
(
0,∆tσ2C2

)
,

we get, for Y ∼ N (0, 1),

P (Xπ(t+∆t) > B | Xπ(t) = x)

=1− P


Y ≤

log(B)− log(x)−∆t

(
r + C(α− r)− σ2C2

2

)

σC
√
∆t


 . (6.3.3)

Thus, if the investor wants to reach B over the next small interval with probability

λ ∈ (0, 1), he can do so by solving (6.3.3) equal to λ with respect to C. This amounts

to solving the quadratic equation,

C2 ∆tσ

2
√
∆t

− C

(
Φ−1(1− λ) +

∆t(α− r)

σ
√
∆t

)
− log(B)− log(x)−∆tr

σ
√
∆t

= 0,

where Φ−1 is the quantile function of the standard normal distribution. If B or λ is

sufficiently large the investor must borrow to invest more than his wealth, though.

What is important to realize here is that the investor can achieve any fixed wealth with

any fixed probability over any fixed time interval. Divergence of the utility function

could give him the incentive to do so. Therefore divergence even for extreme values of

wealth cannot be ignored.

It poses a question – if all polynomial diverges, how come numerical studies such as

the ones provided in Nordfang and Steffensen (2017) show that we can get reasonable

polynomial controls at all? We don’t know, but apparently we can. We have merely

shown that the investor basically can achieve any wealth he desires over an arbitrarily

small time interval, but we do not know the exact conditions under which this is
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optimal. Part of the answer probably lies in the fact that the point at which the

polynomial starts to diverge, changes in time and wealth as well as in π∗. The fact

that we can get any reasonable results, indicates that if the required control to achieve

divergent utility is sufficiently extreme, the investor won’t do it. Perhaps there is some

combination of probability of the event, and degree of polynomial that results in a

divergent control. This hypothesis is corroborated by the very same numerical studies

in Nordfang and Steffensen (2017) where the optimal control is seen to diverge as

(T −t) increases, resulting in a wider distribution of terminal wealth. The exact relation

between probability and increase in utility that results in this dangerous cocktail, is a

matter for further research.

That problem exposed in the previous paragraph does not mean that the approximate

policy based on the approximate utility is always extreme. Obviously, we may have

meaningful strategies as long as n is not too large. But even for n going to infinity,

the policy seems to converge for some parameters and some time horizons. This is

well-documented by Nordfang and Steffensen (2017). This indicates that, in spite of

the ability to reach any level with any probability over any time interval, there is

always also the risk of not getting there perhaps followed by a risk of harmful outcomes.

Therefore, for some parameters and time horizons it is more valuable to the investor

to choose his policy according to what happens within the interval of convergence of

the utility function. So, there seems to be a balance between being dominated by

the utility gained inside and outside the interval of convergence. Obviously, the fact

that the point of expansion d(t, x) moves with time and wealth makes the balance

utterly involved and we do not pursue this question further here. Instead we now

turn to different method of expansion that allows is to explicitly control the area of

convergence.

6.4 The Bernstein Optimal Control

Bernstein polynomials were first used for a constructive proof for the Weierstrass

approximation theorem. While their convergence is slow, their coefficients are explicit

and simple. The Bernstein polynomial of degree n on the unit interval of the function

f is defined as

Bn(x) =

n∑

i=0

f

(
i

n

)
bn,i(x),

where bn,i are the Bernstein basis polynomials

bn,i(x) =

(
n

i

)
xi(1− x)n−i.

The Bernstein polynomial is essentially a weighted average of the points f(i/n), where

the Bernstein basis polynomials represent how much weight should be given to f(i/n)



130 Chapter 6. Lollike & Steffensen

for a given value of x. In Figure 6.2 we have plotted the Bernstein basis polynomials

for n = 4.

Figure 6.2: bi,4(x) for i = 0...4, and x ∈ [0, 1]

We do not want to restrict the wealth of the investor to the interval [0,1], so we

consider a shifted and scaled version of the Bernstein polynomials.

Definition 6.4.1 (Generalized Bernstein Polynomial). The nth degree generalized

Bernstein polynomial, ũB
n , of u for (t, x, z) ∈ [0, T ]× R

2 is defined as

ũB
n (t, x, z) :=

n∑

i=0

u(t, x, xn,i(t, x))bn,i(t, x, z),

where

bn,i(t, x, z) =

(
n

i

)(
z − xn,0(t, x)

xn,n(t, x)− xn,0(t, x)

)i(
1− z − xn,0(t, x)

xn,n(t, x)− xn,0(t, x)

)n−i

,

and

xn,i(t, x) = xn,0(t, x) +
(xn,n(t, x)− xn,0(t, x))i

n
,

for some upper and lower points xn,n and xn,0.

For notational reasons we often omit the dependence in t and x for xn,i(t, x). In

order to easily apply Theorem 6.2.4 and Equation (6.2.7) we need to rewrite the form

of the extended Bernstein Polynomial from definition 6.4.1, to a polynomial in the
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form

ũB
n (t, x, z) =

n∑

i=0

aBi,n(t, x)z
i.

From Definition 6.4.1 we can write

ũB
n (t, x, z)

=

n∑

i=0

u(t, x, xn,i)

(
n

i

)(
z − xn,0

xn,n − xn,0

)i(
1− z − xn,0

xn,n − xn,0

)n−i

=

n∑

j=0

zj
n∑

k=j

(
k

j

)
(−1)k−jxk−j

n,0 (xn,n − xn,0)
−k

k∑

i=0

u(t, x, xn,i)

(
n

i

)(
n− i

k − i

)
(−1)k−i

=

n∑

j=0

zjaBj,n(t, x),

where

aBj,n(t, x) =(xn,0)
−j

n∑

k=j

(
xn,0

xn,n − xn,0

)k k∑

i=0

u(t, x, xn,i)

(
n

i

)(
n− i

k − i

)(
k

j

)
(−1)−i−j .

Unlike the Taylor polynomial that needs a single point of expansion, the Bernstein

polynomial needs two, a lower and an upper point.

In between the lower and upper points, Theorem 6.4.2 below states that there is a

bound on the difference between u and ũn, that depends on the modulus of continuity

defined by

ωn(u(t, x, z), δ) := sup
z,y∈[xn,0,xn,n]

|z−y|<δ

| u(t, x, z)− u(t, x, y) | .

The upper bound is proportional to the modulus of continuity, and quadratic in the

distance between xn,0 and xn,n.

Theorem 6.4.2 (Bound on Generalized Bernstein Polynomial). For any (t, x) and

any function u(t, x, z) continuous in z,

| u(t, x, z)− ũB
n (t, x, z) |

≤ ωn(u(t, x, z), n
−1/2)

(
(xn,0 + xn,n)((xn,0 + xn,n)− 4) + 8

4

)
,

for z in [xn,0, xn,n]. Furthermore, for xn,0 = a > −∞ and xn,n = b < ∞ and z ∈ [a, b],

ũB
n (t, x, z) → u(t, x, z) uniformly.

Proof. Proof of Theorem 6.4.2. The proof is analogous to the constructive proof for

the Weierstrass’s Approximation theorem using Bernstein polynomials on (0, 1) (see

for instance Theorem 36.4 of Estep (2002)), with the obvious modifications required to

apply the theorem for Generalized Bernstein Polynomials.
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Using Theorem 6.4.2 we can control the interval over which the generalized Bernstein

power series converges uniformly to the true utility function. The last part of the

theorem is a version of the Weierstrass Approximation Theorem. Outside the interval

of convergence, however, the polynomial is going to diverge, and if the probability

of the wealth falling outside that interval of convergence is sufficiently high, it can

influence the optimal control. The higher the degree of the polynomial, the faster the

divergence, and the larger the influence on the optimal control. We wish to keep the

influence of the divergence under control. In order to do that, we need to increase the

length of the interval between the lower and upper points of evaluation, such that the

probability of ending outside is sufficiently low, without compromising the quality of

the polynomial approximation to the original utility function. For this purpose we

define a sequence of xn,0(t, x) and xn,n(t, x) that satisfies precisely this requirement.

Definition 6.4.3 (Maximally Increasing Sequence). For any (t, x), and any uniformly

continuous function u(t, x, z) for z ∈ (p1, p2) the Maximally Increasing Sequence (MIS)

of lower and upper points is defined as

xn,0 = y0(m(n)), xn,n = yn(m(n)),

where

y0(m) :=

{
−m, if −∞ = p1,

p1 + d/m, otherwise,

yn(m) :=

{
m, if ∞ = p2,

p2 − d/m, otherwise,
,

d :=

{
(p2 − p1)/3, if −∞ < p1 < p2 < ∞,

1, otherwise.
,

The increasing sequence m(n) is defined iteratively as m(1) := 1,

m(n) :=

{
m(n− 1) + 1, if (6.4.1) holds for (z, y) ∈ Ωn,

m(n− 1), otherwise,
,

where both

Ωn := {(z, y) ∈ [y0(m(n− 1) + 1), yn(m(n− 1) + 1)]2

such that | z − y |< n−1/2},

| u(t, x, z)− u(t, x, y) |<4ε

(
(y0(m(n− 1) + 1) + yn(m(n− 1) + 1))

× (y0(m(n− 1) + 1) + yn(m(n− 1) + 1)− 4) + 8

)−1

.

(6.4.1)
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The sequence is maximally increasing in the sense that the interval grows whenever it

can do so without compromising the absolute difference between u(t, x, z) and u(t, x, y).

The MIS is constructed to satisfy two needs. We want the lower and upper points

to converge to the support of Xπ(T ), but we also want the generalized Bernstein

polynomial to produce a close approximation of the original utility function. In essence

the interval (xn,0, xn,n) gets larger and larger, but it only gets larger when we can

be sure that we maintain the inequality given by (6.4.1). If we cannot increase the

interval under that condition, we decrease the maximum distance between z and y,

and we do this until we can, again, increase the interval. Using the MIS, we get the

following theorem.

Theorem 6.4.4 (Convergence of Generalized Bernstein Polynomials). For any (t, x)

and p1, p2 ∈ R
±∞ and a uniformly continuous function u(t, x, z) on (p1, p2), the MIS

satisfies

xn,0 → p+1 xn,n → p−2 ,

and

sup
z,y∈[xn,0,xn,n]

|z−y|<n−1/2

| u(z)− u(y) |
(
(xn,0 + xn,n)((xn,0 + xn,n)− 4) + 8

4

)
→ 0.

See Appendix 6.A.1 for the proof. Combining Theorems 6.4.2 and 6.4.4 we get the

following lemma.

Lemma 6.4.5. For arbitrary (t, x) and any uniformly continuous function in z,

u(t, x, z), for z ∈ (p1, p2) where p1, p2 ∈ R
±∞, the MIS ensures that ũB

n (t, x, z) con-

verges towards u(t, x, z). The convergence is uniform for z ∈ [a, b] for p1 < a < b < p2.

See Appendix 6.A.2 for the proof. This lemma states that for a uniformly continuous

utility function, the generalized Bernstein polynomial converges towards u,

u(t, x, z) = lim
n→∞

n∑

i=0

aBi,n(t, x)z
i, (6.4.2)

and the convergence is uniform for z in any closed subset contained in (p1, p2). This is

a vast generalization compared to the Taylor polynomial. However, there is still an

issue with the generalized Bernstein Polynomial. The support of Xπ(T ) is a subset of

[0,∞) for any control π, and therefore p1 = 0, p2 = ∞ is of particular interest. The

convergence is uniform for any bounded closed interval only, and the expectation of an

infinite sum is equal to the sum of an infinite series of expectations only if the series

converges uniformly in the whole range of the support of the random variable. As

b < ∞, we can never guarantee that the convergence is uniform on the support of

Xπ(T ). In fact, it is definitely not uniform due to the divergent nature of polynomials.,

and the limit of the original and polynomial value functions do not coincide. One may
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try to ignore the support of Xπ(T ) that falls outside [a, b] but as we discussed towards

the end of the last section, this may not be possible. If however, the support of Xπ(T )

is restricted to a subset of [a, b], we have that

Et,x[u(t,X
π(t), Xπ(T ))] = lim

n→∞

n∑

i=0

aBi,n(t, x)Et,x[(X
π(T ))i].

Then Theorem 6.2.4 provides us with the equilibrium control to the original problem

via the limit of the equilibrium control for the generalized Bernstein polynomial utility

function. Unfortunately, the support of Xπ(T ) is only restricted to a subset of [a, b]

for a particular set of controls, and only if the equilibrium control is contained within

that set, we get the desired convergence of the control,

π̂ = lim
n→∞

π̂B
n .

A seemingly different issue is that Lemma 6.4.5 applies to uniformly continuous utility

functions only. But this is actually related to the issue as above since the generalized

Bernstein polynomials converge to any continuous function on any bounded interval

[a, b]. So regardless of u being uniformly continuous or just continuous, the convergence

is uniform for a bounded interval only. For uniformly continuous u we also get

lim
n→∞

ũB
n (t, x, z) = u(t, x, z) for z ∈ (p1, p2),

but it does not help us produce the original equilibrium control as a limit of the

Bernstein optimal controls.

The fact that we can choose the interval of convergence for the generalized Bernstein

Polynomials is an improvement compared to Taylor polynomials, but it comes at a

cost of slower convergence. Basically, we want two things to be satisfied at all times,

namely

ũB
n ≈ u for z ∈ A, and Pt,x(X

π̂(T ) ∈ A) ≈ 1.

This trade-off between interval of convergence and approximation error is crucial, as

numerical problems with high values of n have to be dealt with. In fact, the MIS is

practically intractable, as the convergence (xn,0, xn,n) → (p1, p2) is slow. The MIS

only sees to how close ũB
n approximates u, and adjusts xn,0 and xn,n only when it

can be done without compromising the closeness of that approximation. The other

extreme is to choose xn,0 and xn,n as a small and large quantile of X π̂(T ), and then

not worry about how well ũB
n approximates u.

It is reasonable to ask what we have gained by using generalized Bernstein polynomials

in contrast to Taylor polynomials, and there is not a definitive answer. In general

Taylor polynomials converge faster than Bernstein polynomials, but this is only useful

if the interval of convergence captures the required contours of the utility function.
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6.5 Numerical Analysis

Polynomial utility functions give rise to controls that are difficult to interpret based on

analytical solutions, due to the intuitively challenging ratio of sums in (6.2.7). Plotting

the polynomial utility functions and the corresponding optimal controls is perhaps

the most accessible way of understanding how the former influence the latter. This

section is dedicated to examine the differences between a Taylor optimal control and a

Bernstein optimal control, as well as how the divergence and interval of convergence

for the polynomial utility function influence the optimal control. The coefficients of

all four polynomial utility functions in this section result, by Lemma 6.2.5, in wealth

independent optimal controls.

Numerically, the optimal controls are found through an iterative scheme, that locates

a fixed point of the mapping C given by

C({π(t)}t∈[0,T ]) =

{
−α− r

σ2x
·
∑n

i=0 ai(t, x)m
π
x(i, t, x)∑n

i=0 ai(t, x)m
π
xx(i, t, x)

}

t∈[0,T ]

for mπ∗

(i, t, x) = Et,x[(X
π(T ))i] and

∑n
i=0 ai(t, x)m

π
xx(i, t, x) < 0. Equation (6.2.7)

and Theorem 6.2.4 state that a fixed point of C is an optimal control for the polynomial

with coefficients ai. In all numerical calculations convergence of maxt | πi(t)−πi+1(t) |
was achieved with a precision of 10−5.

The control problems of the numerical section represent a lifetime investment problem

with a 30-year investment horizon, i.e. T = 30, and market parameters given by




α

r

σ




=




0.06

0.04

0.2




.

The first axis of all plots are in units of current wealth, as all controls are independent

of wealth.

6.5.1 Numerical Comparison for Power Utility

By examining the polynomial controls that arise by approximating a power utility

function, we can benchmark their performance to the true optimal control. The

constant relative risk aversion is γ = 2, leading to the optimal control

π∗ =
α− r

σ2γ
= 0.25.
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Taylor Polynomials

In Figure 6.3 we have plotted a 10’th order Taylor approximation of a power utility

function evaluated around the conditional mean of terminal wealth, for different time

points.

Figure 6.3: The vertical lines indicate the interval of convergence for the

Taylor series, found by performing a ratio test

Based on these plots alone, it is hard to say whether or not the polynomial control

is going to approximate the true optimal control well. The Taylor polynomial is a good

approximation within the interval of convergence, but the influence of the divergence

outside the interval is unknown. In Figure 6.4 we have plotted 6 polynomial controls

for 6 different degrees of Taylor polynomials that are formed by expanding around the

conditional mean of terminal wealth.
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Figure 6.4: The Taylor optimal control with expansion around E[X π̂n(T )].
True optimal control is π∗ = 0.25

This plot demonstrates the problem caused by divergence. When the degree is

even and the polynomial diverges towards −∞, the preferences of the investor become

wealth-fearing. He seeks to avoid large values of wealth, and his will to avoid this is

determined by the probability of the event. For that reason he has an incentive to

avoid uncertainty, and therefore decreases his holdings in the stock. As a consequence

of Lemma 6.2.1, the probability of the extreme event is increasing in (T − t), which

explains why the influence of the divergence is small when close to maturity. Conversely,

when the degree is odd, and the polynomial diverges towards ∞, the preferences of the

investor become risk-loving, and therefore he increases his holdings in the stock to the

point of infinite gearing.

We can remedy the problem of the Taylor optimal control, by evaluating the polynomial

around a quantile of Xπ(T ), thus ensuring that the probability of the extreme event is

kept at bay. In Figure 6.5 we have plotted the polynomial control of a Taylor expansion

around the 99.9% quantile of X π̂
n (T ).
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Figure 6.5: Left: Taylor optimal control with expansion around 99.9%

quantile of terminal wealth. Right: Taylor optimal control with expansion

around 1− n−2-quantile of terminal wealth

For degrees n = 2, 3, the Taylor expansion around the 99.9% quantile does a poorer

job than if the expansion had been done around the mean value, but for higher degrees

of polynomials the polynomial controls do a much better job at approximating the true

optimal control. A more refined alternative is to choose an n-dependent quantile such

as the 1−n−2-quantile, which produces the optimal controls seen to the right in Figure

6.5. So far we have achieved Taylor controls that are considerably closer to the true

optimal control, than the Taylor controls produced by Nordfang and Steffensen (2017).

In the next subsection we find the Bernstein controls for a power utility function.

Bernstein Polynomials

In order to construct the Bernstein polynomials, we need to decide upon a time and

wealth dependent lower and upper point of expansion. These lower and upper points

could for instance be the points defined by the MIS. The MIS is, however, a poor

choice as it favours the approximation of the utility function but completely disregards

the distribution of terminal wealth. Instead, we could use an n-dependent lower and

upper quantile of X π̂(T ) given via Lemma 6.2.1 by

xn,0(t, x) = xe

(
Φ(n−η)σ

√∫ T
t

π̂(s)2ds+(T−t)r+(α−r)
∫ T
t

π̂(s)ds−σ2

2

∫ T
t

π̂(s)2ds
)

,

xn,n(t, x) = xe

(
Φ(1−n−η)σ

√∫ T
t

π̂(s)2ds+(T−t)r+(α−r)
∫ T
t

π̂(s)ds−σ2

2

∫ T
t

π̂(s)2ds
)

,

corresponding to the n−η and 1− n−η quantiles of terminal wealth. We have settled

on η = 2 for the numerical studies. The trouble with this choice of points is that

they both converge to x for t → T , which results in polynomials with numerically
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challenging coefficients. Instead, we subtract and add an amount to the lower and

upper point respectively, to ensure that the lower and upper points do not converge.

x̃n,0(t, x) = xn,0(t, x)− xn,0(0, x)ξL

x̃n,n(t, x) = xn,n(t, x) + xn,0(0, x)ξU

For approximations of a power utility function, we found that ξU = ξL = 0.3 produces

polynomials with numerically practical coefficients. The resulting optimal controls are

plotted in Figure 6.6.

Figure 6.6: Bernstein induced optimal controls using x̃n,0 and x̃n,n

Note that the optimal controls all have a higher proportion invested in the stock than

the true optimal control. This is because the Bernstein polynomial utility function has

a higher marginal utility on the interval (xn,0, xn,n). For degrees of polynomials larger

than 3, the Bernstein controls are more stable and closer to the true optimal control,

than the corresponding Taylor controls. This is in line with how well the Bernstein- and

Taylor polynomials approximate the power utility function - the Bernstein polynomials

form a good approximation over an interval even larger than (xn,0, xn,n), whereas the

Taylor polynomials only form a good approximation over the interval (0, 2d(t, x)). See

Figure 10 and 11 in the Appendix for the Bernstein and Taylor polynomial utility

functions.

The comparison of Taylor and Bernstein polynomials for a Power utility function

does not provide any new insights concerning the optimal control, as the true optimal

solution is known. It does however show that the polynomial controls can be used to

approximate a non-polynomial control. In the next section we step into uncharted

territory and examine the polynomial control of a prospect theory, S-shaped utility
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function with wealth dependent reference point, where the true optimal control is

unknown.

6.5.2 Numerical Comparison for S-shaped utility

An optimal control for the S-shaped utility function proposed by Tversky and Kahneman

(1986) with a wealth dependent reference point has, to our knowledge, not yet been

found. Tversky and Kahneman (1986) proposed an asymmetric S-shaped utility

function that allowed for different relative risk aversions in losses and gains. We

consider the symmetric S-shaped utility function

us(t, x, z) =
sign{z − xh(t)}

1− γ
| z − xh(t) |1−γ h(t) = eρ(T−t),

where z should be thought of as the wealth at termination, and ρ is a minimum return

target. Note that we require γ < 1 for the utility function to be continuous. Following

Nordfang and Steffensen (2017) we choose γ = 0.5. Døskeland and Nordahl (2008) find

the optimal control of an investor with an S-shaped utility function, pre-committed to

a fixed reference point K. Kryger et al. (2020) find the optimal control that minimizes

the quadratic distance of a sophisticated investor who continuously reevaluates his

return target based on his current wealth, thereby having the value function

1

2
Et,x

[
(Xπ(T )− xh(t))

2
]
. (6.5.1)

Kryger et al. (2020) conduct a numerical study for h(t) = eρ(T−t). In this subsection we

contribute with an approximate solution, based on Taylor and Bernstein polynomials.

As an exact solution has not yet been found, we cannot benchmark the polynomial

controls to the true optimal control. However, the value function (6.5.1) in many ways

resembles the value function for the investor with an S-shaped utility function given

by,

J(t, x) = Et,x

[
sign{z − xh(t)}

1− γ
| z − xh(t) |1−γ

]
(6.5.2)

Unlike (6.5.1), (6.5.2) cannot be partitioned into elements of Et,x[X
π(T )] and

Et,x[X
π(T )2], which give access to the solution found by Kryger et al. (2020). We

believe that the financial incentives for the investors with value functions (6.5.1) and

(6.5.2) are similar; both investors compare their wealth at termination with their

current wealth compounded with some target rate of return. This leads us to believe

that the optimal control for the value function (6.5.2) will resemble that of (6.5.1),

in particular we expect the optimal control to be a decreasing function of time. We

have chosen ρ = 0.02 = r/2, in order to reflect the preferences of an investor who has

realistic market expectations.
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Taylor Polynomials

A ratio test shows that the Taylor polynomial around d(t, x) > xh(t) converges to us

for z ∈ (xh(t); 2d(t, x)−xh(t)), and so the risk willingness in losses cannot be captured

by a Taylor polynomial. Due to infinite marginal utility in z = xh(t), the investor

has a limitless incentive to ensure that the terminal wealth does not fall below the

reference point. Hence, risk willingness in losses is an irrelevant trait of the investor

with value function (6.5.2). That is not to say that risk willingness in losses never

is relevant. In any incomplete market, where such a downside constraint cannot be

hedged, risk-willingness in losses cannot be ignored.

In order to avoid an interval of convergence that vanishes as t → T , we expand the

Taylor polynomial around the 99% quantile plus a constant. The resulting controls are

seen in Figure 6.7

Figure 6.7: Taylor polynomial controls for S-shaped utilit with ρ = 0.02,
d(t, x) = F−1(0.99) + 1.75

As we expect, the optimal control is a decreasing function of time, but unlike the

optimal control for (6.5.1), the Taylor controls do not result in a risk-free position

at termination. This discrepancy is probably caused by the fact that the Taylor

polynomials do not have infinite marginal utility in x at termination, and therefore

the incentive to avoid wealth below the minimum return target is not uncompromising.

We also see that the divergence of the polynomials has an influence on the optimal

control for n = 30, 31, which can be corrected by enlarging the interval of convergence.

As a sanity check, we also find the optimal control for ρ = r, which ought to result in

a constant optimal control with all wealth in the risk free asset.
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Figure 6.8: Taylor controls, ρ = r

The Taylor control for ρ = r is close to constant but not equal to zero, probably due

to the Taylor polynomial not having infinite marginal utility in the reference point.

Interestingly, the optimal allocation in the stock at termination is close to identical for

both values of ρ, as seen in Table 6.1 Perhaps these terminal values indicate the size of

Degree ρ = 0.02 ρ = r

12 π̂(T ) =0.2414 π̂(T ) =0.2415

13 π̂(T ) =0.2211 π̂(T ) =0.2211

20 π̂(T ) =0.1391 π̂(T ) =0.1391

21 π̂(T ) =0.1321 π̂(T ) =0.1321

30 π̂(T ) =0.0909 π̂(T ) =0.0909

31 π̂(T ) =0.0879 π̂(T ) =0.0879

Table 6.1: Allocation in risky asset at termination

the error for the Taylor controls, and a corresponding downwards shift might provide

a closer approximation to the true optimal control.

The Taylor polynomial has to be constructed based on a single point of expansion,

and it cannot take risk willingness in losses into account. The Taylor approximation of

the S-shaped utility function is therefore equivalent to a shifted power utility function,

with a wealth- and time-dependent shift xeρ(T−t). If we want to include the ”S-shape”

we have to use another type of polynomial.
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Bernstein Polynomials

Unlike Taylor polynomials, Bernstein polynomials can incorporate the risk willingness

in losses that are characteristic for S-shaped utility functions. Due to the slow con-

vergence of Bernstein polynomials, a high degree of the polynomial is necessary for

the approximation to be close - but even so, the lack of infinite marginal utility in

the reference point affects the optimal control. The upper and lower points for the

Bernstein polynomials are chosen in the same way as in Section 6.5.1 with ξL = 0 and

ξU = 0.6, resulting in the optimal controls seen in Figure 6.9 for ρ = 0.02 and ρ = r.

Figure 6.9: Left: Bernstein controls for ρ = 0.02. Right: Bernstein

controls for ρ = r

For ρ = 0.02 there is a slight decrease in the holdings of the risky asset over time,

but it is not as pronounced as in the Taylor case. As can be seen in Figure 13 and

12, the Bernstein polynomials form a good approximation over a larger interval than

the corresponding Taylor polynomials. However, the behaviour of the polynomials

for large values of wealth, are not as important as the behaviour for values of wealth

close to the reference point, where the Taylor approximation is better. For ρ = r the

Bernstein controls are far from constant and confusing to interpret, but nonetheless

optimal for the corresponding polynomial utility function. Bernstein polynomials of

degree n are essentially a weighted average of n points on an interval. The position of

these points on the function that we are trying to approximate, has an influence on

the accuracy of the approximation. In the case of S-shaped utility functions, the ’bend’

around the reference point has a critical influence on the optimal control, which can

be seen if the points used by the Bernstein polynomial are placed poorly. When the

approximation is poor, the punishment for falling below the reference point is small,

resulting in large holdings of the risky asset - these are the humps seen in the optimal
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controls. As the placement of points depends on the degree of the polynomial as well

as the time to maturity, the humps are placed differently depending on time and n.

By their construction, Bernstein polynomials have a smoothing effect, which for the case

of an S-shaped utility function implies that the marginal utility in the reference point

is nowhere as large as for a corresponding Taylor polynomial. For the S-shaped utility

function and the complete Black-Scholes market of consideration in the present paper,

Bernstein polynomials are inferior to Taylor polynomials. In an incomplete market

where uncertainty is prevalent, the smoothing of the utility function is not destructive.

We may even motivate the smoothing of the utility function as the constructive feature

in an incomplete market.

6.5.3 Conclusion of Numerical results

There is no way to objectively compare the Bernstein and Taylor controls, as the

quality of their approximation depends on the subjectively chosen way of constructing

the polynomials. Nevertheless, we believe that Bernstein controls are superior to Taylor

controls for a class of utility functions where the marginal utility for all likely values of

terminal wealth is modest - power utility for instance. When the marginal utility is

high, the Bernstein polynomial will perform a poor approximation, and high marginal

utility tends to have a large influence on the optimal control. So in the case of for

instance S-shaped utility, a Taylor control is probably better suited, provided that the

interval of convergence contains most of the possible values of terminal wealth.
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6.A Proofs

6.A.1 Proof of Theorem 6.4.4.

Proof. Let ε > 0 be given. If p1 and p2 are finite we wish to show that there exists an

N such that for n > N ,

xn,0 − p1 < ε, p2 − xn,n < ε,

and

sup
z,y∈[xn,0,xn,n]

|z−y|<n−1/2

| u(z)− u(y) |
(
(xn,0 + xn,n)((xn,0 + xn,n)− 4) + 8

4

)
< ε.

If p1 = −∞ we need to show that xn,0 < −1/ε, and similarly that xn,n > 1/ε for

p2 = ∞.

Note by the uniform continuity of u, that for any integer M1 there exists an integer

M2 such that

∀z, y ∈ [y0(M1), yn(M1)]; | z − y |< M
−1/2
2

⇒

| u(z)− u(y) |< 4ε

(y0(M1) + yn(M1))((y0(M1) + yn(M1))− 4) + 8
.

This implies that no matter the value of m(n), it will increases by one eventually. Thus

we can conclude that m(n) → ∞. Let N be the smallest integer for which

m(N) > max

(
d

ε
, 1

)
.

By construction of the sequence m(n) we see that for all n > N

❼ if −∞ = p1 then xn,0 = y0(m(n)) = −m(n) ≤ −m(N) < −1/ε,

❼ if −∞ < p1 then xn,0 − p1 = y0(m(n))− p1 = d/m(n) ≤ d/m(N) < ε,

❼ if ∞ = p2 then xn,n = yn(m(n)) = m(n) ≥ m(N) > 1/ε,

❼ if ∞ > p2 then p2 − xn,n = p2 − yn(m(n)) = d/m(n) ≤ d/m(N) < ε.

Furthermore,

sup
z,y∈[xn,0,xn,n]

|z−y|<n−1/2

| u(z)− u(y) |
(
(xn,0 + xn,n)((xn,0 + xn,n)− 4) + 8

4

)

<ε

(
4

(y0(m(n)) + yn(m(n)))(y0(m(n)) + yn(m(n))− 4) + 8

)

×
(
(y0(m(n)) + yn(m(n)))(y0(m(n)) + yn(m(n))− 4) + 8

4

)

=ε.
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6.A.2 Proof of Lemma 6.4.5.

Proof. By Theorem 6.4.2

| u(t, x, z)− ũB
n (t, x, z) |

≤ωn(u(t, x, z), n
−1/2)

(
(xn,0 + xn,n)((xn,0 + xn,n)− 4) + 8

4

)
,

for z ∈ [xn,0, xn,n]. By Theorem 6.4.4 there exists a sequence {xn,0, xn,n}n such that

ωn(u(t, x, z), n
−1/2)

(
(xn,0 + xn,n)((xn,0 + xn,n)− 4) + 8

4

)
→ 0,

and {xn,0, xn,n} → (p1, p2). Note that

(
(xn,0 + xn,n)((xn,0 + xn,n)− 4) + 8

4

)
≥ 1,

and that there exists an M such that for m > M , [a, b] ⊂ [xm,0, xm,m] whereby

| u(t, x, z)− ũB
m(t, x, z) |< ε, for z ∈ [a, b],

proving that the convergence is uniform on [a, b].

6.B Figures

Figure 10: Taylor power polynomials for n = 10, with n-dependent

quantiles
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Figure 11: Bernstein power polynomials for n = 10, using x̃n,0 and x̃n,n

as lower and upper points

Figure 12: Taylor power polynomials for n = 20, ρ = 0.02, expanding
around the 99% conditional quantile of terminal wealth
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Figure 13: Bernstein power polynomials for n = 20, ρ = 0.02, using x̃n,0

and x̃n,n as lower and upper points. The ”bend” is included, even though it

is hard to confirm visually



Chapter 7

Power Utility with Dynamic Reference

Point

Abstract

We study a power utility function where utility of terminal wealth is

determined by the excess over current discounted wealth, motivated by

central concepts from prospect theory. The ever-changing target in the

utility function implies time-inconsistent preferences, and accordingly, the

control problem is approached by equilibrium theory. Due to the form of

the utility function, standard guesses on the solution of the HJB equation of

the problem are unfruitful. By assuming a wealth-independent control, the

definition of the equilibrium control as the minimizer of the time-derivative

in the value function, yields a fixed-point equation for the equilibrium control

that we study numerically.

Keywords: Stochastic control, Prospect theory, Time-inconsistent preferences, Equi-

librium theory.
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7.1 Introduction

We study the finite horizon investment problem of an investor who trades at a Black-

Scholes market and has a power utility function with a dynamic wealth- and time-

dependent reference point. The utility function is motivated by prospect theory, and the

dynamic time-inconsistent objective of the investor calls for a game-theoretic equilibrium

solution. We argue for and assume that the equilibrium control is independent of

wealth, and derive a fixed-point equation for the equilibrium control, and examine its

properties in a numerical study.

Delegating difficult decisions by relying on a mathematical recipe that tells you how to

invest your assets, is an appealing concept. Accordingly, portfolio selection problems

have been of interest since the inception of modern finance. Markowitz (1952) was

the first to formulate the portfolio selection problem as a problem of finding an

optimal trade-off between maximizing the expected return and minimizing the variance.

Merton (1969) formulated the balance of return and risk in continuous time through

utility functions, and derived the so-called Merton’s fraction representing the optimal

investment proportion in risky assets for a constant relative risk aversion utility function.

Utility functions with constant relative risk aversion are appealing from a mathematical

standpoint, but difficult to justify for real-world modelling.

Introduced by Tversky and Kahneman (1979), prospect theory presented a descriptive

model of decision making under risk, and is now one of the prevalent theories in

behavioural economics. Under prospect theory, decisions are made based on gains

and losses relative to a target/reference point as opposed to absolute values. The

ever-changing reference point makes mathematical treatment of portfolio selection

problems under prospect theory difficult. The typical approach to marry prospect

theory and portfolio selection, is to fix the reference point (Døskeland and Nordahl

(2008), Zhou and He (2011), Dong and Zheng (2020)) or to specify it as a stochastic

variable (Berkelaar et al. (2004), Jin and Yu Zhou (2008), Rasonyi and Rodrigues

(2012)), thus avoiding the time-inconsistent nature of the problem.

Perhaps because of the very human nature of having objectives that are inconsistent

accross time, the study of time-inconsistent problems has a long history dating back

to Strotz (1955). More recently, Björk and Murgoci (2010) define the solution to

time-inconsistent consumption-investment problems as a Nash equilibrium, where the

control problem conceptually is regarded as a game between a continuum of agents.

Adopting the equilibrium approach, Kryger et al. (2020) provide a verification theorem

for a general class of time-inconsistent problems.

Using the verification theorem of Kryger et al. (2020), Nordfang and Steffensen (2017)

and Lollike and Steffensen (2021) find the equilibrium control for a class of polynomial
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utility functions, including polynomial approximations of a power utility function with

dynamic wealth- and time-dependent reference point.

In this paper we directly solve the equilibrium control problem of an investor with a

power utility function with dynamic reference point. To our knowledge, this is the

first closed-form solution to a power utility function with a dynamic reference point.

To facilitate the solution we assume that the equilibrium control is deterministic, and

provide arguments to justify this assumption.

The paper is structured as follows. In Section 7.2 we provide the framework for the

problem by defining the Black-Scholes market, the equilibrium control, and the utility

function. In Section 7.3 we present the verification theorem of Björk et al. (2017),

which would have provided us with the equilibrium control, if we had been able to

guess a solution to the extended HJB equation. In Section 7.4 we argue that the

equilibrium control is independent of wealth, facilitating another way of finding the

equilibrium control as the minimizer of the time-derivative in the value function. In

Section 7.5 we present the fixed-point equation for the equilibrium control, and in

Section 7.6 we conduct a numerical study.

7.2 The Problem

7.2.1 Framework

We consider a Black-Scholes market consisting of a bank account B and a single stock

S, expressed by the SDEs

dB(t) =rB(t)dt, B(0) = 1

dS(t) =αS(t)dt+ σS(t)dW (t), S(0) = s0 > 0,

where W is a standard Brownian motion. We assume that r < α and σ > 0. The

investor with initial wealth x0, who invests in this market and allocates the proportion

π(t) in the stock at time t, has dynamics of wealth given by

Xπ(t) =(r + π(t)(α− r))Xπ(t)dt+ π(t)σXπ(t)dW (t), (7.2.1)

Xπ(0) =x0. (7.2.2)

We assume that the portfolio is self-financing – i.e. there is no withdrawal or deposit

of wealth for t > 0. The investment horizon is finite and terminates at a deterministic

point in time T . The central topic of this paper is to find the (in some sense) optimal

proportion of wealth to be invested in the stock, called the control law, given the utility

function of the investor. We misuse notation and let π represent both a stochastic

optimal control law as well as a feedback control law, which is a deterministic function

of the current time and wealth. If not stated otherwise, π is a feedback control law.
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Wealth-independent controls are a essential to this paper because they imply that the

distribution of terminal wealth follows a log-normal distribution.

Lemma 7.2.1. For wealth-independent controls π(t, x) = π(t), the distribution of

terminal wealth, Xπ(T ) given the current wealth Xπ(t) = x for the SDE with dynamics

given by (7.2.1) follows a log-normal distribution,

Xπ(T ) ∼ LN

(
log(x) +

∫ T

t

(
r + π(s)(α− r)− (σπ(s))2

2

)
ds,

∫ T

t

(σπ(s))2ds

)
.

(7.2.3)

Proof of Lemma 7.2.1. Define the process

dZπ(t) =r + π(t)(α− r)− σ2π(t)2

2
dt+ π(t)σdW (t), (7.2.4)

Zπ(t) = log(x), (7.2.5)

and note that the time-T value follows a normal distribution

Zπ(T ) ∼ N
(
log(x) +

∫ T

t

(
r + π(s)(α− r)− (σπ(s))2

2

)
ds,

∫ T

t

(σπ(s))2ds

)
.

Applying Itô’s lemma to find the dynamics of eZ
π(t) gives the relation

eZ
π(t) = Xπ(t).

Lemma 7.2.1 allows us to formulate the equilibrium problem in probabilistic terms,

which is the essential tool that provides us with a solution.

7.2.2 Defining Optimality

For time-consistent problems, the optimal control is elegantly defined as the control

that achieves the supremum over the expected utility of terminal wealth,

sup
π

Et,x[u(X
π(T ))].

Defining optimality for time-inconsistent problems is not as simple. As a way to

quantify the value of a control, we introduce the value function,

Jπ(t, x) = Et,x[u(t,X
π(t), Xπ(T ))].

For fixed (t1, x1) we can find the control π∗
t1,x1

(t, x) for (t, x) ∈ [t1, T ]×R that achieves

the supremum

π∗
t1,x1

(t, x) = arg sup
π

Jπ(t, x).
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At another point in time, with another value of wealth (t2, x2), the control that

achieves the supremum is not necessarily going to be the same for all values of (t, x),

i.e. π∗
t1,x1

(t, x) ̸= π∗
t2,x2

(t, x). Instead of accepting this inconsistent, näıve control as

a solution to the problem, we reformulate the objective of the investor to be more

sophisticated.

Following Björk and Murgoci (2010) and Björk et al. (2017) we define the optimal

control as a Nash subgame equilibrium control.

Definition 7.2.2 (Equilibrium control). Consider a control π̂. Choose a real number

h ∈ (0, T ) and a fixed initial point (t, x), such that t ∈ [0, T − h). Define for a control

π the control πh by

πh
(t,x)(s, y) =

{
π(s, y), for (s, y) ∈ [t, t+ h)× R,

π̂(s, y), for (s, y) ∈ [t+ h, T ]× R.

If

lim inf
h→0

J π̂(t, x)− Jπh

(t, x)

h
≥ 0,

for all controls π for which πh is admissible, then π̂ is an equilibrium control.

We return to the definition of admissibility, and for now assume that all controls

are admissible. Intuitively, the equilibrium control in the fixed point (t, x) corresponds

to the optimal control for the investor with (t, x)-dependent preferences, given that

the future control is fixed. Rewriting the differences in value functions

J π̂(t, x)− Jπh

(t, x)

h
=
J π̂(t, x)− Jπh

(t, x) +

=0︷ ︸︸ ︷
Jπh

(t+ h, x)− J π̂(t+ h, x)

h

=
∂

∂t
Jπh

(t, x)− ∂

∂t
J π̂(t, x) + o(h),

and taking the limit as h → 0, we see that the equilibrium control by definition

yields the smallest marginal change in the value function. By finding the control that

minimizes the derivative of the value function in t, we find the equilibrium control.

The definition of the equilibrium control is essential for time-inconsistent problems,

and the one provided above may not be suited for all time-inconsistent problems – see

He and Jiang (2021), Hernández and Possamäı (2021) and the references therein for a

discussion on the topic. For the relatively well-behaved utility function of consideration

in this paper, Definition 7.2.3 will suffice.
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7.2.3 Power Utility with Dynamic Reference Point

Following Nordfang and Steffensen (2017) where it was first presented, we define the

power utility function with dynamic wealth- and time dependent reference point as

u(t, x, z) =
1

1− γ

(
z − xeρ(T−t)

)1−γ

, γ > 0. (7.2.6)

The values of t, x and z represent the current time, wealth and terminal wealth

respectively. The investor with the dynamic-reference power utility function constantly

evaluates his utility of terminal wealth relative to his current wealth compounded

with a target rate of return, ρ. For ρ → −∞ the dynamic reference point disappears,

and we are left with the classical power utility function studied since Merton (1969).

We note that x < yeρ(T−t) can lead to complex-valued utility for certain values of γ.

However, we also note that there is infinite marginal utility in the reference point, and

therefore the investor hedges the risk of terminal wealth below the reference point. In

an incomplete market where this risk cannot be hedged, one would have to be more

careful about dealing with terminal wealth falling below the reference point.

The utility function is motivated by the S-shaped utility function suggested by prospect

theory as presented in Tversky and Kahneman (1979), where utility of an uncertain

outcome is relative to the status quo. The experimental evidence provided by Tversky

and Kahneman (1979, 1986) shows that the status quo is dynamic. Based on a series

of experiments they state;

”These observations show that the effective carriers of values are gains and

losses, or changes in wealth, rather than states of wealth as implied by the

rational model.”

–from Tversky and Kahneman (1986)

For the power utility function with dynamic reference point, the objective is not to

achieve a high value of terminal wealth – indeed any value of wealth has zero utility

at termination – but rather to achieve changes in wealth that are satisfactory. A

notable difference between the S-shaped utility function from prospect theory and

(7.2.6), is that we do not incorporate risk-seeking behaviour in losses. We do not have

to incorporate the lower part of the S-shape as the Black-Scholes market is complete

and, the risk of wealth below the reference point can be hedged.

In order for a control to be admissible, the value function has to be well-defined. The

value function changes as a function of (t, x), not only because of the (t, x)-conditional

expectation, but also because the preferences of the investor depend on (t, x). To

define admissibility we separate these effects by fixing the preferences of the investor.

Definition 7.2.3 (Admissibility). A control π is admissible with respect to (7.2.6) if

there exists a function Gπ(t, x, s, y) : [0, T ]×R× [0, T ]×R → R from C1,2,1,1 such that
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1)

∂

∂t
Gπ(t, x, s, y) =− (r + π(t, x)(α− r))x

∂

∂x
Gπ(t, x, s, y)

− 1

2
σ2π(t, x)2x2 ∂2

∂x2
Gπ(t, x, s, y),

Gπ(T, x, s, y) =
1

1− γ

(
x− yeρ(T−s)

)1−γ

.

2)

σπ(t,Xπ(t))Xπ(t)
∂

∂x
Gπ(t,Xπ(t), t,Xπ(t)) ∈ L2,

for Xπ following the SDE given by (7.2.1)-(7.2.2).

We denote the set of admissible strategies by U .

For an admissible control, G has the interpretation

Gπ(t, x, s, y) = Et,x[u(s, y,X
π(T ))],

by the Feynmann-Kac formula – in fact this ad hoc definition of admissibility is

constructed precisely to satisfy the conditions of the Feynman-Kac formula. This

means that

Jπ(t, x) = Gπ(t, x, t, x),

and implies the existence of the value function. An important detail is that the first two

arguments of G represent the variable time and wealth in the conditional expectation,

whereas the last two arguments of G represent the preferences of the investor. To

avoid misunderstandings about which arguments are variable and which are fixed, we

introduce the notation

G(t, x, t, x) = G(t, x, s, y)
∣∣
s=t,y=x

,

which is helpful in the next section.

7.3 Trying to Guess a Solution

The standard approach to stochastic control problems, is to guess a solution to the HJB-

equation that encodes the problem. The same approach is in principle also applicable

here for the extended HJB-equations that applies to time-inconsistent problems, but

the form of the utility function makes guessing a solution difficult. In this section we

present what we characterize as our closest, but still unsuccessful, guess.

Theorem 6.3 of Björk et al. (2017) is a verification theorem for equilibrium control

problems in the form

Jπ(t, x) = Et,x[u(t, x,X
π(T ))].

We state the Theorem here in a version tailored to the utility function (7.2.6).
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Theorem 7.3.1 (Verification of equilibrium control). Assume that the function Ĝ

satisfies the following three equations

∂

∂t
Ĝ(t, x, t, x) = inf

π

{
−(r + π(α− r))x

∂

∂x
Ĝ(t, x, t, x)− 1

2
σ2π2x2 ∂2

∂x2
Ĝ(t, x, t, x)

}
,

(7.3.1)

Ĝ(T, x, s, y) =
1

1− γ

(
x− yeρ(T−s)

)1−γ

, (7.3.2)

Ĝ(T, x, T, x) =0. (7.3.3)

Then

Ĝ(T, x, s, y) = Et,x[u(s, y,X
π̂(T ))],

and Ĝ(t, x, t, x) = V (t, x) where V is the value function for the equilibrium control.

Furthermore, the equilibrium control is given by

arg inf
π

{
−(r + π(α− r))x

∂

∂x
Ĝ(t, x, t, x)− 1

2
σ2π2x2 ∂2

∂x2
Ĝ(t, x, t, x)

}
. (7.3.4)

Note that the equilibrium control achieves the infimum in (7.3.4), which is a quadratic

equation in π, and therefore

π̂(t, x) = −α− r

xσ2

Ĝx(t, x, t, x)

Ĝxx(t, x, t, x)
, (7.3.5)

for Ĝxx(t, x, t, x) < 0.

We were unsuccessful in guessing a function that satisfies (7.3.1), (7.3.2) and (7.3.3).

We did however manage to produce a guess, Ḡ presented below, that satisfies (7.3.1)

and (7.3.3) but not (7.3.2). The proof of Theorem 6.3 from Björk et al. (2017) consists

of two steps;

1) Prove that Ĝ(T, x, s, y) = Et,x[u(s, y,X
π̂(T ))].

2) Prove that (7.3.4) is indeed an equilibrium control law.

The proof provided by Björk et al. (2017) relies on all three equations, and we cannot

use their proof technique to verify that the control given by

π̄(t, x) = −α− r

xσ2

Ḡx(t, x, t, x)

Ḡxx(t, x, t, x)
,

is an equilibrium control. Our guess perhaps forms a stepping-stone for more fruitful

guesses, and for that reason we state it here.
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Making the ansatz that the equilibrium control is independent of wealth, and rewriting

(7.3.5)

Ĝx(t, x, t, x) = Ĝxx(t, x, t, x)x
−π̂(t)σ2

α− r
,

implying that Ĝ is in the form

Ĝ(t, x, s, y) = 1H(t, s, y) + 2H(t, s, y)x
1− α− r

σ2π̂(t) .

Based on this, we make the guess

Ḡ(t, x, s, y) = eI(t,s,y)y

α− r
σ2π(s)

−γ

x
1− α− r

σ2π(t) g(s),

where

I(t, s, y) =
1

2σ2

∫ s

t

2 log(y)(α− r)π′(τ)

π(τ)2
+

((α− r)π(τ) + 2r)(σ2π(τ) + r − α)

π(τ)
dτ,

and g(t) is some unknown function that satisfies g(T ) = 0. Through straightforward

but tedious calculation of partial derivatives one can verify that

∂

∂t
Ḡ(t, x, t, x) = inf

π

{
− (r + π(α− r))x

∂

∂x
Ḡπ(t, x, t, x)

− 1

2
σ2π2x2 ∂2

∂x2
Ḡπ(t, x, t, x)

}
,

Ḡ(T, x, T, x) =0,

and

π̄(t) = −α− r

xσ2

Ḡx(t, x, t, x)

Ḡxx(t, x, t, x)
.

In order for (7.3.2) to hold, g would have to solve

eI(T,s,y)y

α− r
σ2π(s)

−γ

x
1− α− r

σ2π(t) g(s) =
1

1− γ
(x− yeρ(T−s))1−γ ,

which is absurd as g does not depend on x or y. Since Ḡ does not satisfy (7.3.2), it is

not the equilibrium value function.

We were not successful in guessing a solution to (7.3.1)-(7.3.3). This might just be

due to poor guesses, but in any case, we need another way of finding the equilibrium

control. The central idea in this paper, is to impose a structure on the equilibrium

control, which leads to a structure on the value function that facilitates a solution. In

the next section we motivate the structure we impose on the equilibrium control and

provide arguments to justify it.
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7.4 Wealth-independent Controls

For the set of controls that are independent of wealth, we know from Lemma 7.2.1

that the terminal wealth is log-normal distributed and therefore

1

1− γ
Et,x

[(
Xπ(T )−Xπ(t)eρ(T−t)

)1−γ
]

=
1

1− γ
x1−γeρ(T−t)(1−γ)E

[(
e
∫ T
t

r−ρ+π(s)(α−r)−
σ2π(s)2

2 ds+Z
√∫ T

t
σ2π(s)2ds − 1

)1−γ
]
,

(7.4.1)

for a standard normal random variable Z. This implies that the value function is given

by

Jπ(t, x) = x1−γg(t),

for a π-dependent function g. Recall that the equilibrium control achieves the smallest

marginal change in the value function over time. If the equilibrium control is indepen-

dent of wealth, we can find it as the control that minimizes the derivative of g, and in

Section 7.5 we find the control that does exactly this. In this section we argue, but do

not prove, that the equilibrium control is independent of wealth.

7.4.1 Special Choice of γ

We are not able to guess the form of G a solution for γ > 0, but the problem simplifies

when (1− γ) = 2. In this case the value function is in the form

Jπ(t, x) =
1

2
Et,x[X

π(T )2] +
1

2

(
xeρ(T−t)

)2
− xeρ(T−t)Et,x[X

π(T )], (7.4.2)

representing the value function of an investor who seeks to minimize the quadratic

distance to a target return, studied in Section 4.2.3 of Kryger et al. (2020). They show

that the equilibrium control in this case is wealth-independent, and decreasing to zero

for t → T . The utility function

u(t, x, z) =
1

1− γ
(z − xeρ(T−t))2,

is very similar to (7.2.6), differing only by the risk-aversion parameter. Heuristically

they also describe the same incentives; the investor has a target rate of return ρ he

seeks to uphold. The difference between γ = −1 and γ > 0, is that for γ = −1 there is

a disincentive to deviate from the target rate of return ρ, even when the rate of return

is higher than ρ. For γ > 0 a rate of return in excess of ρ is welcome, which seems to

be the more sensible behaviour. Based on the similarities in the objectives, the special

case for γ = −1 provides the first hint that the equilibrium optimal control for the

utility function (7.2.6) is independent of wealth.
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7.4.2 Polynomial Approximation

The second hint for a wealth-independent control, comes from Lollike and Steffensen

(2021) where approximations of the optimal control through polynomial expansions of

the utility function in (7.2.6) are considered. For two different forms of polynomial

expansions of the utility function in (7.2.6), the resulting equilibrium control is inde-

pendent of wealth. Furthermore, the approximating control is decreasing over time,

similar to the control for the investor with γ = −1, corroborating that the solutions

are similar.

Polynomial utility functions with (t, x)-dependent coefficients ci and wealth-independent

controls, have a value function in the form

Jπ
n (t, x) = Et,x

[
n∑

i=0

ci(t,X
π(t))Xπ(T )i

]

=

∫ ∞

−∞

n∑

i=0

ci(t, x)x
ie(za

π(t)+dπ(t))iφ(z)dz.

where φ is the density of a standard normal distribution. The functions aπ and dπ are

defined as

aπ(t) :=σ

√∫ T

t

π2(s)ds,

dπ(t) :=

∫ T

t

r + π(s)(α− r)− σ2π(s)2

2
ds,

which is notationally convenient for the representation of the (t, x)-dependent density

of the log-normal distribution of Xπ(T ). If the polynomial value function converges

to the true value function, and the polynomial value function has wealth-independent

equilibrium controls for all n, then we can conclude that the true value function also

has a wealth-independent control.

There are two conditions under which the polynomial value function converges to the

true value function,

1) Point-wise convergence of the polynomial to the original utility function

lim
n→∞

n∑

i=0

ci(t, x)x
ie(za

π(t)+dπ(t))i = u(t, x, z),

on the support of Xπ(T ).
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2) Existence of an integrable dominating function D,

∣∣∣∣∣

n∑

i=0

ci(t, x)x
ie(za

π(t)+dπ(t))iϕ(z)

∣∣∣∣∣ ≤ D(t, x, z),

∫ ∞

−∞

D(t, x, z)dz < ∞.

These two conditions allow us to apply the dominated convergence theorem and conclude

that the original equilibrium control is equal to the limit of the polynomial equilibrium

controls. If the coefficients imply wealth-independent polynomial equilibrium controls,

we can therefore conclude that the original equilibrium control is independent of

wealth.

The first condition is satisfied for a set of coefficients that are constructed as an

approximating polynomial on an n-dependent interval that grows to the support of

Xπ(T ). The second condition is much more difficult, and maybe even impossible, to

satisfy due to the unboundedness of enz−z2

– but perhaps the dominated convergence

theorem is the wrong tool. There is a balance between the divergence of the polynomial

and the density of Xπ(T ) that determines weather or not the polynomial value function

forms a good approximation of the original value function. Essentially we are looking

for a set of coefficients that lead to ever better approximations of the original value

function, and although it is hard to prove, we believe that these coefficients exist.

7.4.3 The Nature of the Utility Function

The perhaps most compelling argument for a wealth-independent equilibrium control,

comes from the nature of the utility function itself. The utility of terminal wealth

is measured by how much it exceeds the current discounted wealth. This means

that for every change in the wealth of the investor, there is a proportional change in

the reference point. Increasing the wealth of the investor, and keeping the reference

point fixed, creates an incentive to invest less in the stock. Conversely, increasing the

reference point of the investor, and keeping the wealth fixed, creates an incentive to

invest more in the stock. By simultaneously increasing wealth and reference point by a

proportional amount, these opposing incentives cancel each other out.

We have provided three arguments to support the claim that the equilibrium control

is independent of wealth, but even if the claim is wrong, the best control in the

subclass of wealth-independent controls still an interesting control to study, because it

is deterministic.
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7.5 Solution to the Problem

7.5.1 Other Solutions

Before we consider the solution to our time-inconsistent problem, we consider the

solution to a similar problem. An approximation of the utility function (7.2.6) is studied

by Nordfang and Steffensen (2017), using a Taylor polynomial expanded around the

dynamic expected terminal wealth. They argue that it makes sense to compare the

time-inconsistent problem to the solvable time-consistent problem given by

sup
π

1

1− γ
E
[
(Xπ(T )−K))

1−γ
]
.

This value function represents the pre-committed investor who has a fixed target return

K, which remains the target return until termination. The optimal control for this

problem is given by

π∗(t, x) =
α− r

σ2xγ

(
x−Ke−r(T−t)

)
,

as derived by Nordfang and Steffensen (2017). Døskeland and Nordahl (2008) study the

pre-committed investor for K = X(0)eρT , corresponding to the dynamic reference point

at time zero. If instead the investor näıvely updates his reference point continuously

corresponding to K = Xπ(t)eρ(T−t), but invests as if it is fixed, the control is given by

πN (t) =
α− r

σ2γ

(
1− e(ρ−r)(T−t)

)
,

notably being independent of wealth. Furthermore the näıve control has an intuitive

interpretation; the investor hedges his reference point by allocating a proportion equal

to e(ρ−r)(T−t) in the bank, and the rest is invested according to Merton’s fraction. The

intuitive reason is that once the investor has ensured that his wealth does not fall

below the reference point, he can invest his remaining wealth according to the optimal

control for classic power utility.

The näıve control can be seen as the ’standard behaviour’ of the investor – how he

would invest if he did not account for the control at future points in time. For this

reason the näıve control acts as a baseline result in the numerical study of Section 7.6.

7.5.2 The Wealth-independent Equilibrium Control

Based on the arguments in Section 7.4, we assume that there exists an equilibrium

control that is independent of wealth, and now set out to compute it. The wealth-

independent equilibrium control can be found as the control that minimizes the

derivative in time of the time and wealth separable value function from (7.4.1), given

by

Jπ(t, x) = x1−γg(t)
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where

g(t) =
1

1− γ
eρ(T−t)(1−γ)E

[(
eZaπ(t)+dπ(t)−ρ(T−t) − 1

)1−γ
]
, Z ∼ N (0, 1).

To shorten notation we define

bπ(t) := dπ(t)− ρ(T − t),

such that Xπ(t)eZaπ(t)+bπ(t) corresponds to the wealth at termination, discounted with

the target rate of return ρ. The wealth-independent equilibrium control at time t is

thus given by

arg inf
π(t)

d

dt



eρ(T−t)(1−γ)E

[(
eZaπ(t)+bπ(t) − 1

)1−γ
]

1− γ




=arg inf
π(t)

d

dt

∫ ∞

−∞

(
eza

π(t)+bπ(t) − 1
)1−γ

φ(z)dz, (7.5.1)

where we have used that the control at a single point in time has no influence on aπ(t)

and bπ(t) as it has Lebesgue measure zero. To avoid complex-valued utility, we restrict

Z to the values that ensure positive expected utility at termination given the time-t

preferences. We find the time-dependent lower limit of the integral,

l(t) := inf{z : 1 ≤ eza
π(t)+bπ(t)} ⇔ l(t) =

−bπ(t)

aπ(t)
.

Restricting the standard normal random variable is equivalent to redefining the utility

function as

u(t, x, z) =
1

1− γ
max

(
z − xeρ(T−t), 0

)1−γ

.

As argued in Section 7.2.3, the max-function is redundant for the equilibrium control

as there is infinite marginal utility in the reference point, and the investor therefore

hedges the risk of falling below the reference point. The restriction on the distribution

of terminal wealth helps us here because we are not only considering the equilibrium

control.

For notational convenience we define

λπ
i,k(t, z) =

(
eza

π(t)+bπ(t) − 1
)1−γ

φ(z)

(
eza

π(t)+bπ(t)

eza
π(t)+bπ(t) − 1

)k

zi,

where φ is the density of a standard normal distribution. This class of functions

appears to be essential for the study of the equilibrium control. We are particularly

interested in the integrals ∫ ∞

l(t)

λi,k(t, z)dz,
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which in general do not have closed form solutions, and therefore the equilibrium

control is given in terms of these integrals. The main result of the paper is given in

Theorem 7.5.1.

Theorem 7.5.1. An equilibrium control for the set of wealth-independent admissible

controls satisfies the following equation

π̂(t) =
(α− r)

σ2


1−

∫ ∞

l(t)

λπ̂
1,1(t, z)dz

aπ̂(t)

∫ ∞

l(t)

λπ̂
0,1(t, z)dz




.

See Appendix 7.A for the proof. Due to the complex integrals over z, not much can

be said about π̂ based solely on Theorem 7.5.1. Unsurprisingly, the proportion in the

stock is increasing in (α− r) and decreasing in σ. The form of the equilibrium control

does however resemble Merton’s fraction α−r
σ2γ where γ has been replaced with

1−

∫ ∞

l(t)

λπ̂
1,1(t, z)dz

aπ̂(t)

∫ ∞

l(t)

λπ̂
0,1(t, z)dz

.

This similarity suggests that the fraction
∫ ∞

l(t)

λπ̂
1,1(t, z)dz

aπ̂(t)

∫ ∞

l(t)

λπ̂
0,1(t, z)dz

,

represents the investors risk aversion at time t taking the future control into account,

in the same way as 1− γ does it in the classical power utility problem.

We note that

∂

∂t
λπ
i,k(t, z) =(1− γ − k)

(
aπ′(t)λπ

i+1,k+1(t) + bπ′(t)λπ
i,k+1(t)

)

+ k
(
aπ′(t)λπ

i+1,k(t) + bπ′(t)λπ
i,k(t)

)
,

which is useful if one wants to calculate derivatives of π̂, but we found the derivatives

to be even less informative than the fixed-point equation of Theorem 7.5.1.

7.5.3 Infinite Horizon

As T → ∞ the expected terminal wealth eZaπ̂(t)+dπ̂(t) tends to infinity, and the

influence of subtracting one from this value becomes negligible which means

J(t, x) ∼ 1

1− γ
x1−γE

[
(eZaπ(t)+dπ(t))1−γ

]
=

1

1− γ
Et,x

[
Xπ(T )1−γ

]
,
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corresponding to a classical power utility value function. For classical power utility the

optimal wealth allocation is determined by

π∗ =
α− r

σ2γ
,

implying that π̂(t) → α−r
σ2γ for T → ∞. This result is corroborated in the numerical

study.

By decreasing the target return we are making the reference point more easily attainable,

thereby removing some of the investors incentive to deviate from Merton’s fraction.

Indeed

lim
ρ→−∞

1

1− γ
(z − xeρ(T−t))1−γ =

1

1− γ
z1−γ ,

implying that π̂(t) = α−r
σγ for ρ → −∞. The same investment proportion is achieved

for T → ∞, and in that sense, decreasing the value of the target return has the same

effect on the control as increasing the investment horizon.

7.6 Numerical Study

In this section we conduct a numerical analysis of the equilibrium control from Theorem

7.5.1. To calculate the equilibrium control, we iterate the fixed-point equation for π̂

until convergence.

The parameters are chosen to represent a lifetime investment problem with a 30-year

horizon. The parameters are given by



T

α

r

σ

γ

ρ




=




30

0.09

0.04

0.5

1
2.75

0.02




,

resulting in a market price of risk of (α − r)/σ = 0.1 and Mertons fraction of

(α− r)/(σ2γ) = 0.55.

7.6.1 Basecase

In Figure 7.1 we have plotted the equilibrium control, together with the naive control

and Mertons fraction.
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Figure 7.1: Equilibrium and naive control for time-inconsistent problem

as well as Merton’s fraction

There is a significant difference between the näıve and equilibrium control, with a

higher investment in the risky asset in the equilibrium control for t < 15.

We know that both the näıve and equilibrium control tend to Merton’s fraction for

T → ∞ (or equivalently t → −∞), but from the looks of Figure 7.1, they seem to

converge at very different rates. By increasing T , we get a better view of the different

convergence rates.

Figure 7.2: The convergence towards Merton’s fraction is more evident

here, than in Figure 7.1.

The equilibrium control is almost constant until the hump at t = 40 whereafter the

control changes drastically. Apart from a change in the units of time, this control is
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similar to the implemented investment strategy for one of the largest Danish pension

providers seen in Figure 7.3.

Figure 7.3: Proportions allocated in high-risk funds versus low-risk funds

for different ’risk profiles’. The x-axis indicates years until retirement,

and the y-axis indicates percentage in high-risk fund. Picture grabbed

from https: // pfa. dk/ privat/ opsparing/ pfa-investerer/ January

6th 2022.

Even the concave descent of the control to its final resting point looks similar.

7.6.2 Smaller Target Return and Less Risk Averse

The difference between the näıve and equilibrium control, is more pronounced for some

parameter-values than others.

Figure 7.4: Naive and equilibrium controls that are similar and different.

https://pfa.dk/privat/opsparing/pfa-investerer/
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For a very low target return, the näıve and equilibrium control are close to each other.

The same effect can be achieved by adjusting other parameters e.g. γ = 2.

By decreasing γ to 0.33, the hump above Merton’s fraction has turned into a peak.

When γ is small the incentive to surpass the target return is strong, which might

be part of the explanation, but to fully understand why this peak appears a better

understanding of the λi,k functions is needed. It seems natural to ask why the

equilibrium control does not diverge – what makes the investor turn on a dime? We

believe that this rapid change in the growth of the equilibrium control is caused by the

aπ̂ and bπ̂ functions that increase with π̂. Increases in aπ̂ and bπ̂ in lead to expected

returns surpassing the target return, which removes some of the incentive to deviate

from Merton’s fraction, just as we saw for T → ∞.

7.7 Further Research

While the fixed-point equation of Theorem 7.5.1 paves the way for a calculation of the

equilibrium control, it has poor value in terms of economic interpretation. A better

understanding of the λi,k-functions and their economic interpretation, would improve

the value of Theorem 7.5.1.

A guess that solves (7.3.1)-(7.3.3) would not only determine whether or not the

equilibrium control is independent of wealth, it would also provide an economic

interpretation of the equilibrium control. Somehow applying the fixed-point equation

of Theorem 7.5.1 to produce a guess, may aide in forming the guess.

Finally, the same method can be applied on other, similar utility functions with a

prospect theoretic origin. A utility function with finite marginal utility in the reference

point that also includes risk willingness in losses, is an obvious candidate.
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7.A Proof of Theorem 7.5.1

Proof. Realizing that (eza
π(t)+bπ(t)−1)1−γφ(z) = λ0,0(t, z), we now differentiate under

the integral in (7.5.1),

∫ ∞

l(t)

∂

∂t
λ0,0(t, z)dz =(1− γ)

(
aπ′(t)

∫ ∞

l(t)

λ1,1(t, z)dz + bπ′(t)

∫ ∞

l(t)

λ0,1(t, z)dz

)
.

Plugging in

aπ′(t) =
−σ2π(t)2

2aπ(t)
,

bπ′(t) =ρ− r − π(t)(α− r) +
σ2π(t)2

2
,

we get

∫ ∞

l(t)

∂

∂t
λ0,0(t, z)dz =− σπ(t)2

2aπ(t)
(1− γ)

∫ ∞

l(t)

λ1,1(t, z)dz

+ (1− γ)

(
ρ− r − π(t)(α− r) +

σ2π(t)2

2

)∫ ∞

l(t)

λ0,1(t, z)dz

=π(t)2(1− γ)
σ2

2

(∫ ∞

l(t)

λ0,1(t, z)dz −
1

aπ(t)

∫ ∞

l(t)

λ1,1(t, z)dz

)

− π(t)(1− γ)(α− r)

∫ ∞

l(t)

λ0,1(t, z)dz

+ (1− γ) (ρ− r)

∫ ∞

l(t)

λ0,1(t, z)dz.

This quadratic equation in π(t) achieves its infimum in

π(t) =

(α− r)

∫ ∞

l(t)

λ0,1(t, z)dz

σ2

(∫ ∞

l(t)

λ0,1(t, z)dz −
1

aπ(t)

∫ ∞

l(t)

λ1,1(t, z)dz

)

for

σ2

(∫ ∞

l(t)

λ0,1(t, z)dz −
1

aπ(t)

∫ ∞

l(t)

λ1,1(t, z)dz

)
> 0,

and π(t) = ±∞ otherwise implying that it is not admissible. By definition, the

equilibrium control achieves this infimum for all values of t.
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