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Abstract

This thesis consists of two parts, each investigating variational approaches to study spectral
properties of quantum Hamiltonians in di�erent settings.

The �rst part is based on a paper with Lukas Schimmer and Jan Philip Solovej in which we
construct a distinguished self-adjoint extension of symmetric operators that satisfy a certain gap
condition. Additionally, we prove a corresponding variational principle which gives the eigenval-
ues of the self-adjoint extension in the gap. A prominent example of such a gapped operator is
the Coulomb–Dirac operator, describing non-interacting relativistic fermions in a Coulomb �eld.
Another example that falls into the class of gapped operators is the Dirac operator on a bounded
cylinder. For such an operator we relate the self-adjoint extension to the non-local Atiyah–Patodi–
Singer boundary conditions.

In prior work, Esteban and Loss [EL] constructed a self-adjoint extension of certain gapped
operators and Dolbeault, Esteban and Séré [DES00] presented a min-max principle for self-adjoint
operators with a gap in the essential spectrum.

Our construction of a self-adjoint extension of gapped operators is in many ways inspired by
the work of Esteban and Loss, but starts from a more general setting and shows some di�erence in
the concrete implementation of the basic ideas. The min–max principle for the eigenvalues in the
gap of such a self-adjoint extension has similarities to the one presented in [DES00]. The crucial
di�erence and novelty in our setting, however, is that we do not need to determine the domain of
the self-adjoint operator since our min–max principle can be formulated by specifying the domain
of the symmetric operator only.

This characteristic feature of our min–max principle has an analogue in the case of lower semi-
bounded symmetric operators, for which there is known to exist a distinguished self-adjoint ex-
tension, the Friedrichs extension. We call our self-adjoint extension a Friedrichs extension for
gapped operators. In fact, the Friedrichs extension appears as a special case in our construction of
a self-adjoint extension for a gapped operator.

The second part of the thesis is concerned with a variational approach to Bogoliubov’s approx-
imation theory of bosonic systems interacting via two-body potentials. This approach was intro-
duced and analysed by Napiórkowski, Reuvers and Solovej [NRS18a] as a variational reformulation
of Bogliubov’s approximation. We call it the Bogoliubov variational principle.

We test this approximation method by applying it to the Lieb–Liniger model of a Bose gas in
one dimension interacting via a delta-potential. The Lieb–Liniger model as introduced by [LL63]
is an exactly solvable model and therefore particularly suitable for testing approximation schemes,
as already pointed out by Lieb and Liniger themselves. The model has e�ectively one parameter,
ξ = c/%, where 2c is the coupling strength and % the particle density. The ground state energy in
the Lieb–Liniger gas is not known explicitly, but it can be expanded for small and large ξ.

We compute the ground state energy of the Lieb–Liniger gas by the Bogoliubov variational
method as expansions in ξ for ξ → ∞ and ξ → 0. For large values of ξ we �nd that the ground
state energy diverges as ξ1/2. Our results thus show that the Bogoliubov variational principle is
not suited to describe the model at large ξ where the ground state energy is expected to approach
an asymptotic value of π2

/3.
For ξ → 0 our result agrees with the �rst two terms of an expansion of the exact Lieb–Liniger

model. A third term for the exact model has been derived by Tracy and Widom [TW16]. Our third
term di�ers by a squared logarithmic factor from Tracy and Widom’s result.
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Resumé
Denne a�andling består af to dele, der begge undersøger variationelle tilgange til studiet af

spektrale egenskaber for kvantemekaniske Hamiltonoperatorer i to forskellige setups.
Den første del er baseret på en artikel med Lukas Schimmer og Jan Philip Solovej, hvor vi kon-

struerer en særlig selvadjungeret udvidelse af en symmetrisk operator, der opfylder en bestemt
‘gabbetingelse’. Vi viser yderligere et variationelt princip, der giver egenværdierne for den selvad-
jungerede udvidelse i gabet. Et vigtigt eksempel på en sådan operator med et gab er Coulomb–
Dirac operatoren, der beskriver ikke-interagerende relativistiske fermioner i et Coulumbfelt. Et
andet eksempel, der falder indenfor klassen af operatorer med gab, er Dirac operatoren på en
begrænset cylinder. For sådan en operator relaterer vi den selvadjungerede udvidelse til de ikke-
lokale Atiyah–Patodi–Singer grænsebetingelser.

Før vores projekt er en konstruktion af en selv-adjungeret udvidelse af særlig operator med gab
blevet præsenteret af Esteban og Loss i [EL] og et min–max princip for selvadjungerede operatorer
med et gab i det essentielle spectrum af Dolbeault, Esteban og Séré i [DES00].

Vores konstruktion af en selvadjungeret operator for operatorer med gab er på mange måder
inspireret af Esteban and Loss’ arbejde, men det tager et mere generelt udgangspunkt og adskiller
sig på �ere områder i den konkrete implementering af de grundlæggende idéer. Min-max princip-
pet for egenværdierne i gabet af sådanne selvadjungerede udvidelser har ligheder med det som
blev præsenteret i [DES00]. Den vigtigste forskel og nyskabelse i vores setup er, at vi ikke behøver
at bestemme domænet af den selvadjungerede operator, da vores min–max princip kan formuleres
ved blot at speci�cere domænet af den symmetriske operator.

Den karakteristiske egenskab ved min–max princippet �ndes tilsvarende også i tilfældet hvor
vi har en nedre halvbegrænset symmetrisk operator, hvor det er kendt at der �ndes en særlig
selvadjungeret udvidelse, Friedrichs udvidelsen. Vi kalder vores selvadjungerede udvidelse for
en Friedrichs udvidelse for operatorer med gab. Faktisk kan Friedrichs udvidelsen �ndes som et
specialtilfælde af vores konstruktion af en selvadjungeret udvidelse af en operator med gab.

A�andlingens anden del beskæftiger sig med en variationel tilgang til Bogoliubovs approx-
imationsteori for bosoniske systemer, der interagerer med to-legeme potentialer. Tilgangen blev
introduceret og analyseret af Napiórkowski, Reuvers og Solovej [NRS18a] som en variationel om-
formulering af Bogliubovs approximation. Vi kalder det for det variationelle Bogoliubov princip.

Vi tester approximationsmetoden ved at anvende den på Lieb–Liniger modellen for en Bose gas i
én dimension, der interagerer via et delta-potential. Lieb–Liniger modellen som blev introduceret i
[LL63] kan løses eksakt og er derfor særligt god til at teste approximationsmetoder, hvilket allerede
blev pointeret af Lieb og Liniger selv. Modellen har e�ektivt en parameter, ξ = c

% , hvor 2c er
koblingsstyrken og % er partikeltætheden. Grundtilstandsenergien i Lieb–Liniger gassen er ikke
kendt explicit, men kan ekspanderes i ξ.

Vi udregner grundtilstandsenergien af Lieb–Liniger gassen ved Bogoliubov variationelle met-
ode som udvidelse i ξ for ξ →∞ og ξ → 0. For store værdier af ξ �nder vi, at grundtilstandsener-
gien divergerer som ξ

1
2 . Vores resultater viser derfor, at Bogoliubov variationelle princip ikke er

passende til at beskrive modellem for store ξ, hvor grundtilstandsenergien forventes at nærme sig
værdien π2

3 asymptotisk.
For ξ → 0 stemmer vores resultat overens med de første to led i en ekspandering af den ek-

sakte Lieb–Liniger model. Et tredje led for den eksakte model er blevet udledt af Tracy og Wi-
dom [TW16]. Vores tredje led er forskelligt fra Tracy og Widoms resultat med en logaritmisk
faktor kvadreret.
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A note to the reader

The two parts of this thesis are completely independent, each with its own introduction
and list of references. They can be read separately and are put together in this thesis in the
order in which they were carried out.
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Part I

Variational methods for operators
with gaps

Friedrichs extension and min–max principle for operators
with a gap
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1 | Preliminaries

1.1 Introduction

An attempt to solve eigenvalue problems for linear di�erential operators inspired Friedrichs
to develop and present a spectral theory for semibounded linear operators in 1934 [Fri34].
In particular in his mind were those quantum mechanical energy operators known as
Schrödinger operators, that fall into this class of semibounded operators, and for which he
did not have the variational approaches for the calculation of normal eigenvalues available.

Using methods of abstract Hilbert space theory, he could show how to construct from a
lower bounded symmetric operatorA a distinguished self-adjoint operator extendingA. His
construction is today known as the Friedrichs extension of a lower semibounded symmetric
operator. For such an operator, if densely de�ned, one �nds a distinguished self-adjoint
extension, equally lower semibounded with the same bound and an operator domain that
is contained in the form domain of a corresponding lower semibounded sesquilinear form.
Whereas there is no reason to assume that the Friedrichs extension of a particular lower
semibounded operator is the only extension that preserves its lower bound, one can show
that it is the only one whose domain has the property to be a subset of the corresponding
form domain.

This is also the reason why it is particularly easy to formulate and make use of a
variational principle (or min–max principle) for the Friedrichs extension from which one
may calculate its eigenvalues below the lowest point of the essential spectrum. Compared
to other extensions one here only needs the operator domain of the original symmetric
operator for computations which can be of advantage in practical matters.

Lower semibounded operators play an important role in the theory of quantum mechanics.
In many cases that are interesting for us the Hamilton energy operator determining the
dynamics of a system via the Schrödinger equation is bounded from below - the energy is
bounded from below and the system is stable. Therefore the Friedrichs extension is also of
importance in mathematical physics.

Description of the project: In the article [SST20], which forms the main part of the
�rst part of this PhD thesis, we construct a self-adjoint extension and corresponding
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Chapter 1. Preliminaries

variational principle for an operator that is not lower semibounded but satis�es a certain
gap condition. By a gap condition we mean a property of a symmetric operator that may
translate to a spectral gap under the process of a self-adjoint extension. The question about
a generalisation from the lower semibounded to the gapped case appears naturally. At least
formally we can understand lower semiboundedness as a gap with a lower limit being −∞.

We understand our construction as a generalisation of the Friedrichs extension of a lower
semibounded operator. This has the following reason: A key element in the construction
of the Friedrichs extension is the close relation between closed sesquilinear forms and
self-adjoint operators. We make use of this fact in the same manner for our construction
of a gapped extension. In the way we formulate the gap condition, our type of gapped
operators can be written as a block matrix. The Friedrichs construction then really appears
as a special case of ours in the case of a vanishing block structure, which can be seen as
a transition of the lower gap limit to −∞. The fact that the self-adjoint extension can be
derived from the closure of a sesquilinear form is also the crucial feature that makes it
possible to formulate a min–max principle only relying on the knowledge of the domain of
the symmetric operator, both in the case of the Friedrichs extension and our generalisation.

Boundary conditions are closely related to self-adjoint extensions. For example, it is
well-known that the Laplace operator on C∞0 (Ω) ⊆ L2(Ω) for Ω ⊆ Rn being an open
set in Rn is lower semibounded and has a Friedrichs extension which coincides with the
Dirichlet–Laplacian, with domain contained in H1

0 (Ω). That is, it is de�ned on functions
satisfying the Dirichlet boundary condition.

In our paper we relate the generalised Friedrichs extension for the example of a �rst
order di�erential operator of Dirac-type to a non-local boundary condition, known as the
Atiyah–Patodi–Singer boundary condition.

Outline. In this introductory part, we aim to familiarise a possible reader in Section
1.2 with the Friedrichs extension of a lower semibounded operator, starting by brie�y
collecting some necessary mathematical notions and concepts, followed by a derivation of
the Friedrichs extension and a proof of its min–max principle. We hope this section can
also serve for highlighting the parallels between Friedrichs’ and our construction.

Section 1.3 is devoted to a glimpse on the topic of self-adjoint extensions from a physical
point of view. In Section 1.4, we give a short introduction to the theory of gapped operators
with special focus on the example of the Coulomb–Dirac operator. The paper “Friedrichs
extension and min–max principle for operators with a gap” [SST20] with a detailed deriva-
tion of the self-adjoint extension for gapped operators and its variational principle follows
these introductory chapters.

4



Chapter 1. Preliminaries

1.2 The Friedrichs extension

1.2.1 Hilbert space operators

We start by shortly collecting the basic de�nitions, notions and conventions that form the
basis for the following sections. This is only a very brief summary of a selection of the
most important de�nitions and relations with regard to our purposes. For a deeper-going
study of these concepts, there are a variety of books that discuss these in detail (e.g. [Sch12]
to name one of them). The subject of this �rst part are linear operators on Hilbert spaces.

A Hilbert space (H, 〈·, ·〉H) is a vector space equipped with an inner product 〈·, ·〉H
which at the same time is a complete metric space in the metric induced by its inner product.
We usually assume the Hilbert spaces occurring in this thesis to be complex vector spaces
and the inner product to be conjugate linear in the �rst argument and linear in the second
argument, such that for all u, v, w ∈ H, α, β ∈ C

〈αu+ βv,w〉H = α〈u,w〉H + β〈v, w〉H , and

〈u, αv + βw〉H = α〈u, v〉H + β〈u,w〉H .

Furthermore, all the Hilbert spaces occurring are understood to be separable Hilbert spaces,
thus admitting a countable orthonormal basis. A linear operator T from a Hilbert space
H1 to another Hilbert spaceH2 is a linear mapping T : D(T ) ⊆ H1 → H2 from a linear
subspace D(T ) of H1 into H2. The subspace D(T ) is the domain of T . If H1 = H2, we
call T a linear operator on H. Since we are exclusively considering linear operators, we
might occasionally refer to them only by the name of operators.

We write T ⊆ S for linear operators T and S from H1 to H2 if D(T ) ⊆ D(S) and
T = S on D(T ). The operator S is called an extension of T .

Corresponding to a linear operator, starting from the inner products onH1 andH2, one
constructs an inner product on D(T )

〈·, ·〉T = 〈·, ·〉H1 + 〈T ·, T ·〉H2 ,

which itself induces a norm

‖·‖′T =
(
‖·‖2H1

+ ‖T ·‖2H2

)1/2
.

A norm equivalent to ‖·‖T is

‖·‖T = ‖·‖H1
+ ‖T ·‖H2

.

Note that ‖·‖H1
≤ ‖·‖T (the same holds for ‖·‖′T ). Both of the norms are frequently referred

to as the graph norm of an operator T . We will most frequently use ‖·‖T . The graph of
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Chapter 1. Preliminaries

an operator T is the set

G(T ) = {(x, Tx) | x ∈ D(T )} ⊆ H1 ⊕H2 .

It is clear that any linear operator T sends 0 ∈ H1 to 0 ∈ H2, that is, (0, y) is an element
of the graph only if y = 0. Conversely, a linear subspace U ≤ H1 ⊕H2 is the graph of a
linear operator if (and by the preceding sentence only if) (0, y) ∈ U implies y = 0. These
notions of the graph and the graph norm of an operator allow for characterising a special
class of operators, namely closed and closable operators.

De�nition 1. A linear operator T : D(T ) ⊆ H1 → H2 is closed if its graph is a closed
subset ofH1 ⊕H2. Equivalently, by the above de�nitions, T is closed if and only if D(T )
is complete in the graph norm, that is, if (D(T ), 〈·, ·〉T ) forms a Hilbert space. An operator
is called closable if there exists a closed linear operator S such that T ⊆ S.

Closability of an operator can be characterised as in the following proposition.

Proposition 1. A linear operator T : D(T ) ⊆ H1 → H2 is closable if and only if the
closure of its graph G(T ) inH1 ⊕H2 is the graph of a linear operator.

Furthermore, this is equivalent to the following situation: if (xn)n∈N is a sequence of
vectors in D(T ) and we have

lim
n→∞xn = 0 inH1 and

lim
n→∞Txn = y inH2 ,

then y = 0.

If T is a closable operator, the smallest closed extension of T is called the closure of T
and is denoted by T . It is the operator corresponding to the closure of the graph of T , that
is G(T ) = G(T ). The domain of T is the closure of D(T ) in the graph norm ‖·‖T . One
also says in this context that D(T ) is a core for T .

A special type of closed operators are bounded or continuous operators. The criterion
for a linear operator to be continuous is stronger than the closedness condition from Proposi-
tion 1: an operator is continuous if for any sequence (xn)n∈N inD(T ) with limn→∞ xn = 0,
the sequence of Txn necessarily converges and we have limn→∞ Txn = 0.

In fact, a linear operator T is continuous if and only if it is bounded, that is, if and only
if there is a constant M > 0 such that

‖Tx‖H2
≤M‖x‖H1

,

or equivalently if

sup
x∈D(T )\{0}

‖Tx‖H2

‖x‖H1

<∞ .

6



Chapter 1. Preliminaries

It should be mentioned that bounded operators are a special class of linear operators. In
many cases, they are easier to treat and one has to deal with much fewer subtleties than in
the case of unbounded operators.

As an example of another class of closable operators, we can name the densely de�ned,
symmetric operators. Densely de�ned here means that the domainD(T ) is a dense subset
of the Hilbert spaceH1.

De�nition 2. A linear operator T : D(T ) ⊆ H → H is called symmetric if the following
property holds:

〈x, Ty〉 = 〈Tx, y〉 for all x, y ∈ D(T ) .

Clearly, if D(T ) is dense, we �nd that the criterion for closability given in Proposition 1
is satis�ed, hence densely de�ned symmetric operators are always closable.

Symmetric operators can be detected via the relation known as the polarisation identity1:
using this identity it is easy to show that an operator T is symmetric if and only if the
quantity 〈x, Tx〉 is a real number for all x ∈ D(T ).

We now introduce the (Hilbert-) adjoint operator of a densely de�ned linear operator.

De�nition 3. Let T be a densely de�ned operator from a Hilbert space H1 to a Hilbert
spaceH2. To every such T we can assign a corresponding linear operator fromH2 toH1
by the following prescription. De�ne

D(T ∗) := {y ∈ H2 | ∃v ∈ H1 : 〈y, Tx〉H2 = 〈v, x〉H1 for all x ∈ D(T )} . (1.1)

For any y ∈ D(T ∗) we set T ∗y = v. This de�nes a linear operator T ∗. It is called the
adjoint operator of T .

By Riesz’ representation theorem such a v ∈ H1 exists for a given y ∈ H2 exactly when
the linear functional x 7→ 〈Tx, y〉H2 is continuous, that is, if 〈Tx, y〉H2 ≤ C‖x‖H1

for
some C > 0 and all x ∈ D(T ).

Note that it is crucial in this context to assume D(T ) to be dense for T ∗ to be a well-
de�ned mapping. In this case, one can from the very de�nition directly conclude that T ∗ is
a closed operator.

Additionally, we can see that an operator T on a Hilbert space H is symmetric if and
only if T ⊆ T ∗. Thus, densely de�ned symmetric operators are closable.

De�nition 4. A densely de�ned linear operator on a Hilbert spaceH is called self-adjoint
if T = T ∗.

We say that an operator T is essentially self-adjoint if T = T ∗. As a matter of fact,
the closure of T is in this case the only self-adjoint operator extending T .

1The polarisation identity for an operator T denotes the identity 〈Tx, y〉 =
1
4 (〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉+ i〈T (x+ iy), x+ iy〉 − 〈T (x− iy), x− iy〉).
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Chapter 1. Preliminaries

1.2.2 Sesquilinear forms

We now introduce an additional notion that is closely connected to linear operators.

De�nition 5. A sesquilinear form or quadratic form2 (short: form) on a Hilbert space
H is a mapping s : D(s)×D(s) ⊆ H ×H → C that is linear in the �rst argument and
conjugate linear in the second argument. The linear subspace D(s) of H is called the
domain of s.

A sesquilinear form is said to be symmetric if s(x, y) = s(y, x) for all x, y ∈ D(s). In
the same way as for operators one �nds that s is symmetric if and only if s(x, x) ∈ R for
all x ∈ D(s).

One can easily see that, given a linear operator A on a Hilbert space, we can directly
construct a sesquilinear sA form based on the inner product on H such that for vectors
x, y ∈ D(A)

sA(x, y) = 〈Ax, y〉 .

A priori, we set the form domain D(s) equal to the operator domain D(A), although the
quantity (Ax, y) might be de�ned for a larger set. Turning things around, we can also
assign an operator to a given form s de�ned on a form domain D(s), if D(s) is densely
de�ned. Setting

D(As) = {x ∈ D(s) | ∃u ∈ H : s(x, y) = 〈u, y〉H for all y ∈ D(s)} , (1.2)

we see again by Riesz’ representation theorem, that such an u exists exactly when y 7→
s(x, y) is a bounded, in this case conjugate linear functional. We then de�ne Asx = u and
we have 〈Asx, y〉 = s(x, y). In general, D(As) is strictly smaller than D(s) and does not
even have to be dense (an example is found in [Sol14], Example 5.4). Hence, starting out
from a sesquilinear form, �nding the corresponding operator and from there the associated
form might not necessarily bring us back to the original domain we started from. This
also shows us that for a general operator and form there is no simple ‘correspondence
rule’ found without additional information. Such a correspondence is only found for what
we call closed forms and self-adjoint operators. We will introduce closed forms in the
remainder of this section.

De�nition 6. We call a sesquilinear form on a Hilbert space H lower semibounded if
there is a number m ∈ R such that s(x, x) ≥ −m‖x‖2 for all x ∈ D(s). Similarly, we call
a linear operator A on a Hilbert spaceH lower semibounded if there is a number m ∈ R
such that for all x ∈ D(A) it holds 〈Ax, x〉 ≥ −m‖x‖2. In this case we write s ≥ −m and
A ≥ −m, respectively.

2The term quadratic form is sometimes reserved for the mapping de�ned by q(v) = s(v, v). In fact, by the
polarisation identity for forms, one �nds that s is already completely determined by q.
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It is clear that a lower semibounded sesquilinear form or lower semibounded operator is
necessarily symmetric. If a form is lower semibounded with bound −m, we can form an
inner product on D(s) by setting

〈x, y〉s = s(x, y) + (m+ 1)〈x, y〉 for x, y ∈ D(s) ,

and a corresponding norm by

‖x‖s =
(
s(x, x) + (m+ 1)‖x‖2

)1/2
. (1.3)

One notices that ‖·‖ ≤ ‖·‖s. Furthermore, the form s is bounded on D(s) with norm ‖·‖s,
that is

|s(x, y)| ≤ ‖x‖s‖y‖s . (1.4)

The existence of the norm ‖·‖s allows us to de�ne a notion of ‘closedness’ for forms.
One can notice that this is really only possible for forms that are lower semibounded. In
contrast, such a condition is not needed for operators.

De�nition 7. A lower semibounded form s on a Hilbert space H is called closed if
D(s) ⊆ H is complete in the ‖·‖s-norm, that is if (D(s), 〈·, ·〉s) forms a Hilbert space. It is
said to be closable if there exists a closed form p on H that extends s, that is, for which
D(s) ⊆ D(p) ⊆ H and s(x, y) = p(x, y) for x, y ∈ D(s).

In general, completing (D(s), 〈·, ·〉s) always yields a Hilbert space that could serve as the
domain for a closed extension of s, we could denote it byHs. Furthermore, since ‖·‖H ≤
‖·‖s, the Hilbert space Hs can be embedded into H by continuation of the continuous
embedding i : D(s)→ H. A priori it is, however, not clear if this continuation î : Hs → H
is also injective, hence it is not immediately obvious that the completion of D(s) really is a
subset ofH. Similar considerations hold for the closability of an operator when we think of
closing the operator in terms of completing the operator domain in graph norm. Likewise
as in the case for operators, there is a handy criterion to check whether a form is closable.

Proposition 2. A lower semibounded form s de�ned on D(s) ⊆ H is closable if and only
if the following holds: if (xn)n∈N is a sequence of vectors in D(s) such that

lim
n→∞xn = 0 and

lim
n,m→∞s(xn − xm, xn − xm) = 0

where the latter relation means that (xn) is a Cauchy sequence also in the ‖·‖s-norm, then
we have limn→∞ s(xn, xn) = 0. This is equivalent to showing that the map î is injective.

If s is closable, then we can continue s from D(s) to a form on all ofHs by continuity
since s is bounded on (D(s), 〈·, ·〉s) by (1.4). The form we obtain is called the closure of s
and we denote it by s.

9
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Closed sesquilinear forms have a strong connection to self-adjoint operators (indeed,
there is a one-to-one relation between closed forms and lower semibounded self-adjoint
operators, cf. Corollary 10.8 in [Sch12] for an explanation). This fact is also exploited in
the construction of the Friedrichs extension, which is reviewed in the following section.

1.2.3 Construction of the Friedrichs extension

In this section we show a proof of

Theorem 1. Let A : D(A) ⊆ H → H be a densely de�ned symmetric operator on a
Hilbert space (H, 〈·, ·〉) that is lower semibounded such thatA ≥ −m for a constantm ∈ R.
Without loss of generality one may assume m > 0. There is a distinguished self-adjoint
extension AF of A, that preserves the lower bound of A, such that also AF ≥ −m. Its
domain is a subset of the form domain of the closure of the sesquilinear form corresponding
to A and it is the only self-adjoint extension of A with that property. The self-adjoint
operator AF is known as the Friedrichs extension of A.

The proof is due to Friedrichs [Fri34]. This presentation is a freely retold version of his
construction, with some inspiration from Theorem VIII.15 and X.23 in [RS80a] and [RS80b],
respectively. We �rst show

Lemma 1. Let sA be the sesquilinear form associated to a lower semibounded operator A
with domain D(A) and lower bound A ≥ −m, m ≥ 0. It holds for x, y ∈ D(A)

sA(x, y) = 〈Ax, y〉 .

Then the form sA is closable.

Proof. By assumption, sA is bounded from below by s ≥ −m. We construct an inner
product on D(A) as above given by

〈x, y〉s = s(x, y) + (m+ 1)〈x, y〉 for x, y ∈ D(A) ,

and a corresponding norm, de�ned by ‖x‖2s = 〈x, x〉s. The linear space D(A) can be
completed in the norm ‖·‖s derived from 〈·, ·〉s to a Hilbert space HsA . By the remarks
prior to Proposition 2, we need to show that the embedding map î : HsA → H is injective.
We use the criterion formulated in Proposition 2. Let (xn)n∈N be a sequence of vectors
in D(A), and limn→∞ xn = 0 inH. Assume furthermore that the sequence (xn)n is also
convergent inHsA , that is, we additionally assume that limn,m→∞ s(xn−xm, xn−xm) = 0.
Thus we have for any k ∈ N

|s(xn, xn)| ≤ |s(xn − xk, xn)|+ |s(xk, xn)|
≤ ‖xn − xk‖s‖xn‖s + |〈Axk, xn〉|
≤ ‖xn − xk‖s‖xn‖s + ‖Axk‖‖xn‖ .

(1.5)

10
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By assumption the sequence of numbers (‖xn‖s)n is clearly bounded. Let ε > 0. Choosing
now k and n large enough, k, n > N1(ε), we can achieve that the �rst term in (1.5)
is arbitrarily small, in particular smaller than ε/2. For the second term we have xk ∈
D(A) for any �xed k, hence, if additionally n is large enough, n > N2(ε), also this
term will be smaller than ε/2. Taking all together, when selecting k > N1(ε), and at the
same time n > max {N1, N2}, we are able to bound (1.5) by ε. Since ε was arbitrary,
limn→∞ s(xn, xn) = 0 and s is closable.

Proof of Theorem 1: Associated to the symmetric operatorA, there is the form sA de�ned
on D(A) with sA(x, y) = 〈Ax, y〉. By Lemma 1, this form is lower semibounded and
closable to a closed form sA, and HsA is the Hilbert space formed by the completion of
D(A) with the inner product 〈·, ·〉s.

We denote by H′sA the dual space of HsA , the space of bounded linear functionals on
HsA . By Riesz’ representation theoremHsA andH′sA are isometrically isomorphic via the
conjugate linear map P̂ : HsA → H′sA , de�ned by

[P̂ x](y) = 〈x, y〉s = sA(x, y) + (m+ 1)〈x, y〉 .

Likewise, there is an equivalent isomorphism between H and its dual space H′. At the
same time, every bounded linear functional onH is also a linear functional onHsA ⊆ H.
Hence, we can map any vector inH to a linear functional onHsA by a map j given by

[j(x)](y) = 〈x, y〉 .

Indeed, since ‖·‖H ≤ ‖·‖HsA , the element j(x) : y 7→ 〈x, y〉 ≤ ‖x‖‖y‖HsA is even a
bounded linear functional on HsA . Hence, j is a conjugate linear embedding of H into
H′sA . In total, we have the relations between the spaces as illustrated in the diagram. One
should note that the upper left corner is not commuting.

HsA H′sA

H H′

P̂

î

∼

j ∪

We now de�ne an operator AF = j−1P̂ − (m+ 1)1 on the domain

D(AF ) =
{
x ∈ HsA

∣∣∣ P̂ x ∈ Ran j
}
.3

We will show that AF is a densely de�ned, self-adjoint operator extending A. We will

3A comparison shows that this is exactly a reformulation of (1.2).
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prove these characteristics in the �rst place for the operator P = j−1P̂ , with domain
D(P ) = D(AF ), but the same results immediately follow for AF = P − (m+ 1)1 by its
relation to P .

First, we establish that P is a densely de�ned operator on H. Making use of the facts
that ‖·‖H ≤ ‖·‖HsA and thatHsA is a dense subspace ofH as well as that P̂ is an isometric
isomorphism, it is enough for us to prove that Ranj is dense in H′sA . Therefore, assume
g ∈ H′′sA and g[j(x)] = 0 for all x ∈ H. By de�nition of the double dual 0 = g[j(x)] =
[j(x)](yg) = 〈x, yg〉 for a unique yg ∈ HsA and for all x ∈ H. We conclude yg = 0 and
hence g = 0. Thus, Ranj is dense.

Next, since j(Px) = P̂ x on D(AF ), we have for x, y ∈ D(AF )

〈Px, y〉 = 〈x, y〉s = 〈y, x〉s = 〈Py, x〉 = 〈x, Py〉 .

Hence, P is symmetric.
Furthermore, we show the self-adjointness of P . First of all, we observe that P is injective

and that RanP = H. This, by de�nition of the adjoint operator (1.1), tells us that kerP ∗ =
{0}, because if y ∈ kerP ∗, then we have 〈Px, y〉 = 0 for all x ∈ D(P ) = D(AF ).
Consequently, y must be orthogonal on all ofH, and therefore y = 0. But if kerP ∗ = {0},
then we further conclude: for x ∈ D(P ∗), there is an x′ ∈ D(P ) such that P ∗x = Px′,
since RanP = H. Because P ⊆ P ∗, we also have P ∗x′ = Px′. Hence, x = x′ and
x ∈ D(P ). Thus P is self-adjoint and so is AF .

In a second-to-last step, we observe that for x ∈ D(AF ) and y ∈ D(A)

〈x,Ay〉 = 〈x, y〉s − (m+ 1)〈x, y〉 = 〈AFx, y〉 .

But since this holds for all x ∈ D(AF ), we conclude that y ∈ D(A∗F ) = D(AF ) and
Ax = A∗Fx = AFx, thus AF extends A.

Finally, suppose A0 was another self-adjoint operator extending A and with D(A0) ⊆
HsA . Then, similarly, for all x ∈ D(A) and y ∈ D(A0) we �nd

〈x,A0y〉 = 〈A0x, y〉 = 〈Ax, y〉 = 〈AFx, y〉 ,

from which we again conclude that y ∈ D(A∗F ) = D(AF ), thus AF extends A0, that is
A0 ⊆ AF . Using self-adjointness, we also have AF ⊆ A0, therefore A0 = AF . Lastly,
density arguments show that the closed form sA has the same lower bound as sA. Hence,
we also have 〈AFx, x〉 ≥ −m‖x‖2.

1.2.4 A min–max principle for the Friedrichs extension

The eigenvalues of an operator can be di�cult to compute. A min–max principle or
variational principle for an operator provides a variational formula for the computation of
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eigenvalues and can be useful for an estimation of eigenvalues even in situations when for
example the corresponding eigenfunctions are not known.

Min–max principles are known from linear algebra for symmetric or hermitian matrices
on �nite dimensional Hilbert spaces, and likewise for the closely related compact operators.
As a generalisation there are also min–max principles available for lower semibounded
operators as introduced in the previous section.

The formulation of the min–max principle is possible due to the close connection between
lower semibounded self-adjoint operators and closed forms.

For the eigenvalues of a self-adjoint extension of a lower semibounded symmetric
operator the min–max principle takes a particularly simple form for the Friedrichs extension
compared to all other lower semibounded extensions: it only requires knowledge about the
domain of the original symmetric operator, not that of the self-adjoint extending operator.
This is a useful feature in potential applications as for instance the numerical study of
eigenvalues. The reason is the close connection of the Friedrichs extension to the closure
of the sesquilinear form induced by the underlying symmetric operator as can be seen in
the proof of Proposition 3.

Here we present a derivation of the min–max principle for lower semibounded self-adoint
operators and elaborate in particular also on the special case of the Friedrichs extension.

The min–max principle provides information about the spectrum of a self-adjoint
operator. For a closed linear operator T on a Hilbert spaceH the spectrum is de�ned as
the set

σ(T ) := C \ ρ(T )

where ρ(T ) is the resolvent set of T :

ρ(T ) :=
{
λ ∈ C

∣∣∣ Rλ(T ) = (T − λ1)−1exists and is a bounded operator on all ofH
}
.

The operator Rλ(T ) = (T − λ1)−1 is called the resolvent of T . If λ ∈ σ(T ) is such that
T − λ1 fails to be injective, then λ is called an eigenvalue of T , and dim ker(T − λ1) is
the multiplicity of λ. One usually distinguishes two parts of the spectrum: eigenvalues of
�nite multiplicities that are isolated, also known as normal eigenvalues and the rest of
the spectrum.

Accordingly, for the for us relevant case of a self-adjoint operator4, we de�ne the discrete
spectrum to be

σd(T ) := {λ ∈ C | ker(T − λ1) 6= {0} , dim ker(T − λ1) <∞,
λ is no accumulation point of σ(T )} .

The essential spectrum of a self-adjoint operator is the complement of the discrete

4It is also possible to introduce versions of the notions of discrete and essential spectrum for closed operators,
but this is not necessary for our purposes.

13



Chapter 1. Preliminaries

spectrum,
σess(T ) = σ(T ) \ σd(T ) .

Additionally, we mention that for a general self-adjoint operator T it can be shown that
the spectrum is real, that is σ(T ) ⊆ R.

There is another characterisation of the discrete and essential spectrum in the language of
spectral projections which will prove to be useful in the derivation of the min–max principle
below. Let Ω ⊆ R be a measurable set. Let us denote the characteristic function of the set
Ω by 1Ω. For a self-adjoint operator, we call the operator

PΩ(T ) = 1Ω(T )

a spectral projection of T , where the right-hand side has a well-de�ned de�nition through
the functional calculus available through the spectral theorem. The operator PΩ(T ) is an
orthogonal projection for all Ω and the family {PΩ} forms a projection valued measure (cf.
e.g. [RS80a], Section VIII.3 ) which is the basis for the projection valued measure form of
the spectral theorem.

We can reformulate (here without giving a proof) some of the above mentioned notions
with the terminology of spectral projections which also will be used in the proof of the
min–max principle for a lower semibounded self-adjoint operator below. As a matter of
fact, it can be shown that λ ∈ σ(T ) is in the discrete spectrum σd(T ) of a self-adjoint
operator T if and only if

dim RanP(λ−ε,λ+ε)(T ) <∞ for some ε > 0 .

Accordingly, the essential spectrum is then given by all λ ∈ σ(T ) for which

dim RanP(λ−ε,λ+ε)(T ) =∞ for all ε > 0 .

If λ ∈ σ(T ) is an eigenvalue of T , one �nds that RanP{λ}(T ) = ker(T − λ1). We call
RanPλ(T ) the eigenspace of T corresponding to λ. Its dimension dim RanPλ(T ) is the
multiplicity of λ as de�ned above. In that sense, if we assume Ω ⊆ R and Ω∩σess = ∅ then
the number dim RanPΩ(T ) counts the number of eigenvalues of T in Ω with multiplicity.

Let T be a lower semibounded self-adjoint operator on a Hilbert spaceH with 〈Tx, x〉 ≥
−m‖x‖2. For simplicity, we assume m ≥ 0. The min–max principle for a general lower
semibounded self-adjoint operator T stated below in Theorem 2 gives a formula for the
eigenvalues of T below the in�mum of the essential spectrum. They are given by the
min–max values. The min–max values for such an operator T are de�ned by

µn(T ) = inf
V⊂D(T )
dimV=n

sup
x∈V
x 6=0

〈Tx, x〉
‖x‖2

. (1.6)
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In fact, since the supremum is taken over a �nite dimensional vector space it is really a
maximum. It can be seen quite immediately that the min–max values µn satisfy

−m ≤ µ1 ≤ µ2 ≤ . . . ≤ inf σess(T ) . (1.7)

The claim that the min–max values are bounded from below by −m follows directly from
the fact that the operator is lower semibounded.

To prove the chain of inequalities in (1.7), let now ε > 0 and n ∈ N. Assume that
dimH ≥ n+ 1, otherwise there are not more than n min–max values. Then, by de�nition
(1.6), there is an (n+ 1)-dimensional subspace V ⊆ H such that

µn+1 ≥ max
x∈V
x 6=0

〈Tx, x〉
‖x‖2

− ε .

If now V ′ ⊆ V with dimV ′ = n then

µn+1 ≥ max
x∈V
x 6=0

〈Tx, x〉
‖x‖2

− ε ≥ max
x∈V ′
x 6=0

〈Tx, x〉
‖x‖2

− ε ≥ µn − ε .

Since εwas arbitrary, we have µn+1 ≥ µn. Finally, assuming that inf σess <∞, then by the
above characterisation of the essential spectrum we know that RanP(inf σess−ε,inf σess+ε)(T )
is in�nite dimensional for all ε > 0. Hence, for n ∈ N arbitrarily large and any ε > 0
we can �nd a subspace Vn ⊆ P(inf σess−ε,inf σess+ε)(H) with dimVn = n such that for all
x ∈ Vn we have

〈Tx, x〉 ≤ inf σess + ε .

It follows that µn ≤ inf σess + ε and since ε was arbitrarily chosen also µn ≤ inf σess.

With this information in mind, we can now state the well-known min–max principle.

Theorem 2. Let T be a self-adjoint operator on a Hilbert spaceH, bounded from below,
that is T ≥ −m and σ(T ) ⊆ [−m,∞) for some m ∈ R. The eigenvalues of T below the
essential spectrum, that is, those λ ∈ σd(T ) for which λ < inf σess, are precisely given by
the min–max values µi(T ) in the interval [−m, inf σess).

Proof. To avoid confusion we assume m ≥ 0 without loss of generality as before. We show
the following: for a given n ∈ N we either have µn < inf σess or µn = inf σess.

In the �rst case, T has at least n eigenvalues below the essential spectrum which are
given by µ1 ≤ µ2 . . . ≤ µn. In the latter case, T has at most n− 1 eigenvalues below the
essential spectrum.

Let n ∈ N. Consider the case µn < inf σess. First, we can notice that by the de�nition of
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µn, for any ε > 0, there is a V ⊆ D(T ) with dimV = n such that

µn ≥ max
x∈V
x 6=0

〈Tx, x〉
‖x‖2

− ε . (1.8)

Suppose now that T has only k ≤ n− 1 eigenvalues below the in�mum of the essential
spectrum. This means, dim RanP(−∞,inf σess) = k. Let ε > 0 and V ⊆ D(T ) an n-
dimensional space such that (1.8) holds. Denoting the eigenvectors corresponding to these k
eigenvalues by x1, . . . , xk , we therefore can �nd a x ∈ V such that x ⊥ span {x1, . . . , xk},
hence x ⊥ RanP(−∞,inf σess). Then,

〈Tx, x〉
‖x‖2

≥ inf σess .

Combining this with (1.8), we �nd

µn ≥ inf σess − ε .

Since this holds for all ε > 0 it contradicts the assumption. Hence, there are at least n
eigenvalues below the essential spectrum. Let us denote these eigenvalues by λ1 ≤ λ2 ≤
. . . ≤ λn < inf σess, counted with multiplicities. We show that λi = µi for i = 1, . . . , n. By
an analogous argumentation as above, when replacing inf σess by λi for i = 1, . . . , n and
again making use of (1.8), we can show that from the fact that there are i− 1 eigenvalues
below λi it follows that µi ≥ λi.

It remains therefore to prove that λi ≥ µi for all i = 1, . . . , n. For any 1 ≤ i ≤ n we
know there are i eigenvalues below the essential spectrum. Once again, we denote the
eigenvectors corresponding to λj by xj ∈ D(T ) and we set V = span {x1, . . . , xi}. The
vector space V ⊆ D(T ) has dimension i. We then have for any x ∈ V

〈Tx, x〉
‖x‖2

=
i∑

j=1
λj
|〈xj , x〉|2
‖x‖2

,

which is maximised by λi for x = xi. Hence, it follows

µi ≤ max
x∈V,x6=0

〈Tx, x〉
‖x‖2

≤ λi ,

for all 1 ≤ i ≤ n. This concludes the proof for the case µn < inf σess.

Assume now µn = inf σess. We show that there are at most n − 1 eigenvalues below
inf σess. Suppose there were n such eigenvalues λi < inf σess. Then, as in the previous
paragraph, we are able to show that µn ≤ λn which contradicts µn = inf σess.

16



Chapter 1. Preliminaries

For the Friedrichs extension AF of a lower semibounded symmetric operator A, the
min–max principle simpli�es in the sense that we can replace the domain of AF by the
domain of D(A) in the de�nition of the min–max values. The following proposition uses
ideas from [FS11].

Proposition 3. Let A : D(A)→ H be a lower semibounded symmetric operator and AF
its Friedrichs extension as constructed in Theorem 1. Then Theorem 2 holds with min–max
values for AF as de�ned in (1.6) when replacing D(AF ) by D(A).

Proof. Let µn(AF ) be as de�ned in (1.6) and

µ′n = inf
V ′⊆D(A)
dimV ′=n

max
x∈V ′
x 6=0

〈Ax, x〉
‖x‖2

be the min–max values of AF when replacing D(AF ) by D(A). The strategy for proving
this proposition is to show that for any 0 < ε < 1

µ′n ≤ µn + Cε

for a positive constant C . Since by de�nition µn ≤ µ′n, it then follows µ′n = µn.
As a �rst step we notice as before that for a given 0 < ε < 1, there is an n-dimensional

space V ⊆ D(AF ) such that

µn ≥ max
x∈V
x6=0

〈AFx, x〉
‖x‖2

− ε (1.9)

holds (as in equation (1.8)). Let x1, . . . , xn be an orthonormal basis for V . Using the
notation of Theorem 1 we have D(A) ⊆ D(AF ) ⊆ HsA , whereHsA is the domain of the
closure of the sesquilinear form induced by A. The domain D(A) is by construction a
dense subset ofHsA with respect to the norm ‖·‖s onHsA de�ned as in (1.3) for the closed
form sA. Hence, there are x′1, . . . , x

′
n ∈ D(A) such that

∥∥∥xj − x′j
∥∥∥
s
≤ ε for 1 ≤ j ≤ n.

Moreover,

|〈x′i, x′j〉| ≤ δij + |〈x′i, x′j〉 − 〈xi, xj〉|
≤ δij + |〈x′i − xi, x′j〉|+ |〈xi, x′j − xj〉|
≤ δij +

∥∥x′i − xi
∥∥
∥∥∥x′j

∥∥∥+ ‖xi‖
∥∥∥x′j − xj

∥∥∥

≤ δij + ε(1 + ε) + ε ≤ δij + 3ε ,

(1.10)

where in the second to last step we used ‖·‖ ≤ ‖·‖s. This means that the vectors x′i form
an ‘almost orthonormal’ set and for ε small enough they are linearly independent. They
thus span an n-dimensional subspace of D(A), we denote it by V ′, and there are αj ∈ C
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such that x′0 = ∑n
j=1 αjx

′
j and

max
x∈V ′,x 6=0

〈Ax, x〉
‖x‖2

= 〈Ax
′
0, x
′
0〉

‖x′0‖2
.

If we are able to show that for x0 := ∑n
j=1 αjxj

∣∣∣∣∣
〈Ax′0, x′0〉
‖x′0‖2

− 〈AFx0, x0〉
‖x0‖2

∣∣∣∣∣ ≤ Cε (1.11)

for a number C > 0 (that might depend on µn), then it follows

µ′n ≤ max
x∈V ′,x 6=0

〈Ax, x〉
‖x‖2

≤ max
x∈V,x6=0

〈AFx, x〉
‖x‖2

+ Cε ≤ µn + (C + 1)ε

by (1.9). Since this holds for any 0 < ε < 1, we then have proven µ′n ≤ µn. In the
remainder of this proof we show (1.11). Without loss of generality we can assume that
‖x0‖2 = ∑n

i=1 |αj |2 = 1. Then we �nd
∣∣∣∣∣
〈Ax′0, x′0〉
‖x′0‖2

− 〈AFx0, x0〉
‖x0‖2

∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

j,k=1
αjαk

(
1
‖x′0‖2

〈Ax′j , x′k〉 − 〈AFxj , xk〉
)∣∣∣∣∣∣

≤
∣∣∣∣∣∣

n∑

j,k=1
αjαk

(
〈Ax′j , x′k〉 − 〈AFxj , xk〉

)
∣∣∣∣∣∣
+

∣∣∣∣∣∣

n∑

j,k=1
αjαk

(
1
‖x′0‖2

− 1
)
〈Ax′j , x′k〉

∣∣∣∣∣∣
.

First of all one can note that

‖xi‖s =
√
〈AFxi, xi〉+ (m+ 1)〈xi, xi〉 ≤

√
µn + ε+ (m+ 1)

by (1.9). Hence,
∥∥x′i
∥∥
s ≤

√
µn + ε+ (m+ 1) + ε

and thus using (1.4)
∣∣∣〈Ax′j , x′k〉 − 〈AFxj , xk〉

∣∣∣

≤
∣∣∣〈AF (x′j − xj), x′k〉

∣∣∣+
∣∣〈Axj , x′k − xk〉

∣∣

≤
∥∥∥x′j − xj

∥∥∥
s

∥∥x′k
∥∥
s + ‖xj‖s

∥∥x′k − xk
∥∥
s

≤2ε(
√
µn + ε+ (m+ 1) + ε) ≤ 2(

√
µn +m+ 2 + 1)ε .
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Moreover, we also �nd

∣∣∣
∥∥x′0

∥∥2 − 1
∣∣∣ ≤

n∑

j,k=1
|αjαk||〈x′j , x′k〉 − 〈xj , xk〉|

≤ 3ε
n∑

j,k=1
|αjαk| ≤ 3εn

n∑

j=1
|αj |2 = 3εn ,

using what we derived in (1.10) and the Cauchy-Schwarz inequality. Altogether it follows
∣∣∣∣∣
〈Ax′0, x′0〉
‖x′0‖2

− 〈AFx0, x0〉
‖x0‖2

∣∣∣∣∣

≤
n∑

j,k=1
|αjαk|

∣∣∣〈Ax′j , x′k〉 − 〈AFxj , xk〉
∣∣∣+

∣∣∣∣∣
1
‖x′0‖2

− 1
∣∣∣∣∣

n∑

j,k=1
|αjαk|

∣∣∣〈Ax′j , x′k〉
∣∣∣

≤ 2n(
√
µn +m+ 2 + 1)ε+ 3nε

1− 3nε

(√
µn + ε+ (m+ 1) + ε

)2
n

≤ Cε

with C = 2n(
√
µn +m+ 2 + 1) + 3n2

1−3n (µn +m+ 3 +
√
µn +m+ 2).

1.3 Supplementary remarks: Self-adjoint operators in phys-
ics

Quantum Hamiltonian operators played a special motivational role for Friedrichs in his
work on a self-adjoint extension of lower semibounded operators. This is connected to
stability: A system whose dynamics is determined by an energy operator that is lower
semibounded has a lowest possible energy5, and is thus stable. The Hamiltonians we come
across in the non-relativistic case, also known as Schrödinger operators, are usually lower
semibounded.

A more basic question one might ask from the physical point of view is: why is it actually
important to deal with the task of �nding and classifying self-adjoint extensions of an
operator?

Some thoughts that do at least partially answer this question are presented below, where
we �rst want to focus on why one cannot avoid to specify the domain of an operator and
later on looking speci�cally into the need for self-adjoint operators. Inspiration for this
section was found amongst others in [CM21].

5which we call the ground state energy even if there might not exist a ground state.
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1.3.1 The domain of an operator

The basic building blocks of a mathematical formulation of quantum mechanics are a
separable complex Hilbert space (H, 〈., .〉H) whose elements ψ, modulo their length, are
interpreted as physical states, as well as linear operators A on this Hilbert space corres-
ponding to observables, physical, measurable quantities. The expectation, or average value
〈ψ〉A for the result of a measurement of a system in state ψ of an observable A is given by

〈ψ〉A = 〈ψ,Aψ〉 .

In order to obtain a meaningful interpretation of this quantity, one demands the expectation
to be a real number, which is equivalent to assuming A to be a symmetric operator.

On a formal level it is not really necessary to think further about the properties of the
operator A and we can specify it only by its action on elements of the Hilbert space. At a
closer look things are slightly more involved.

One of the most prominent examples that indicates that the question of an operator
domain is non-trivial also in physics, is the momentum operator P̂ . In the position space
representation in one dimension, where we represent physical states by elements of the
Hilbert space L2(R), the momentum operator takes the form P̂ = −i d

dx (setting Planck’s
constant ~ = 1). This operator is easily seen to be ‘formally symmetric’. But neither is
every function in L2(R) di�erentiable6, nor is it generally true that P̂ f for f ∈ L2(R) is
again square-integrable. Thus, P̂ has no proper meaning on all of the Hilbert space L2(R),
but as is easily seen it is still a well-de�ned operator on the dense subset C∞0 (R) ⊆ L2(R),
on the smooth functions with compact support.

The fact that P̂ cannot be de�ned on the whole Hilbert space is a complication we �nd
for many operators in quantum mechanics, more precisely for all those operators that are
unbounded. As long as we only deal with bounded operators, i.e. operators for which

sup
ψ∈H
ψ 6=0

‖Aψ‖
‖ψ‖ <∞ ,

we do not need to care much about the domain of an operator. Any bounded linear operator,
de�ned on a dense subset of a Hilbert space H can be uniquely extended to a bounded
operator on all ofH (cf. e.g. the B.L.T theorem: Theorem I.7 in [RS80a]) and we can thus
assume that the bounded linear operator is de�ned on the whole space.

For the unbounded, symmetric operators which, as the example of the momentum
operator shows, are present in the established theory of quantum mechanics7, however,
it is not only uncertain if they are de�ned on all of the Hilbert space, but it is in fact

6Consider e.g. a simple function.
7Some thoughts on why unbounded operators might be necessary to formulate such a theory are found in

[CM21].
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impossible. By the Hellinger–Toeplitz theorem (see e.g. Theorem 2.10 in [Tes14]) an
unbounded, symmetric operator cannot be de�ned on all of the Hilbert space, but has a
domain which is a proper subset of the Hilbert space only. In fact, there can be several sets
which possibly can serve as a domain for an operator, and also from a physical point of
view there is in general no known canonical way to select a distinguished domain as the
physically relevant one.

It might in this context sound like a reasonable attempt to de�ne an operator on the
set of all Hilbert space elements on which it is well-de�ned, i.e. on its maximal domain.
However, this quickly leads to contradictions since the resulting operator is not necessarily
symmetric anymore (cf. Section 2.4. in [CM21]).

Instead, it is possible to demand the domain of a physical observable to be ‘maximally
symmetric’, i.e. to de�ne the operator on a subspace as large as possible such that it is still
symmetric on that space. This approach is for example taken by Teschl (see [Tes14], p. 65,
Axiom 2 and Corollary 2.12). Together with an additional assumption on how to represent
polynomials of observables this demand leads to the requirement that observables are self-
adjoint operators in quantum mechanics. It is important to notice though, that maximally
symmetric does not mean we can �nd one speci�c largest domain for the operator. In
general, the possible domains which allow the operator to be symmetric cannot be ordered
by inclusion and we can in many cases still �nd many di�erent (possibly in�nitely many)
self-adjoint operators represented by the same formal action.

The concerns about the domain of an operator are not only important from a technical
point of view. Di�erent domains can yield completely di�erent operators, with distinct
spectral properties. Since we interpret eigenvalues as possible measurement values of pure
quantum states, these considerations also have a practical physical relevance.

1.3.2 The demand for self-adjoint operators

The idea that observables in the theory of quantum mechanics should be represented by
self-adjoint operators can be supported by further arguments. At least for the Hamiltonian
operator there is a clear physical motivation for demanding it to be self-adjoint.

The reason is its special role as the generator of time-translations via the Schrödinger
equation

i
d
dtψ(t) = Hψ(t) . (1.12)

By H we denote the Hamiltonian of the system. Given any state of a quantum system ψ0,
its evolution in time ψ(t) is, as one usually assumes, bound to satisfy certain properties:

Assuming the time evolution ψ(t) is uniquely determined by the Schrödinger initial
value problem with ψ(0) = ψ0, we write ψ(t) = U(t)ψ0 for a time-dependent operator
U(t). The superposition principle then already tells us that U(t) should be a linear oper-
ator. Furthermore, we usually demand the state vector’s normalisation to be preserved
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throughout time, thus requiring

‖ψ0‖2 = ‖ψ(t)‖2 = ‖U(t)ψ0‖2 = 〈ψ0, U
∗(t)U(t)ψ0〉 , (1.13)

that is, U(t) is an isometry. Additionally assuming that U(t) is surjective, means U(t) is a
unitary operator.

For any two times t, s ∈ R we then also have that

U(t+ s) = U(t)U(s) (1.14)

as well as U(0) = 1. And �nally, one usually requires strong continuity, that is

lim
t→0
‖U(t)ψ0 − ψ0‖ → 0 . (1.15)

Summarising (1.13), (1.14), (1.15), we �nd that the time evolution of a state ψ0 should be
determined by a family of unitary operators {U(t) | t ∈ R} that forms a one-parameter
strongly continuous group.

The crucial observation is that such a one-parameter strongly continuous group always
has a generating operator H de�ned by

Hψ = −i lim
ε→0

U(ε)ψ − ψ
ε

(1.16)

on a set of all ψ ∈ H for which this limit exists. Furthermore, this generator is a self-adjoint
operator. This statement is Stone’s theorem (Theorem VIII.8 in [RS80a]). It then holds
U(t) = e−itH by the de�ning relation of H in (1.16) and H is the Hamiltonian operator of
a corresponding Schrödinger equation (1.12).

Conversely, any self-adjoint operator H generates a one-parameter strongly continuous
group

{
U(t)

∣∣∣ U(t) = e−itH , t ∈ R
}

(this is proved e.g. in [CM21], Theorem 3.1) such that
a state’s time evolution ψ(t) = U(t)ψ0 is a solution to the initial value problem posed by
the Schrödinger equation with ψ(0) = ψ0. A key point is that for a self-adjoint operator
H , in contrast to a merely symmetric H , we have the functional calculus at hand to make
sense of the operator e−itH which is a priori only a formal solution to the Schrödinger
equation.

In that sense, there is an equivalence between a self-adjoint Hamiltonian and a unique,
well-de�ned solution to the Schrödinger inital value problem with a time evolution of states
that we consider as meaningful seen from the physical point of view. For the Hamiltonian
operator at least there is thus good reasoning for demanding self-adjointness.

For general observables, there are further arguments which justify the demand for
self-adjointness. As an example, there are some listed in [CM21].
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1.3.3 The Friedrichs extension in physics

Even when one is clear about the demand for self-adjoint operators, it is in general not
obvious which of the self-adjoint realisations of an operator one wants to choose for the
physical theory.

For a symmetric and lower semibounded operator there is always a distinguished self-
adjoint extension available by an application of the Friedrichs’ construction.

It stands out by the universal applicability of this construction to a large class of operators.
Apart from that there are further properties that distinguish it from other extensions: by
the min–max principle its eigenvalues below the essential spectrum are always larger than
or equal to those of other self-adjoint extensions. If we assume that the Friedrichs extension
is the right operator to describe a physical system we are thus assuming that the energy
eigenvalues should be the highest possible. In some sense one could argue that this operator
is ‘furthest away from instability’.8

Another argument that speaks in favour of the distinction of the Friedrichs extension
in physics is e.g. given by Kalf, Schmincke, Walter, Wüst in [KSWW]. For a Schrödinger
operator H with a potential satisfying certain properties de�ned on the set of smooth
functions with compact support they make the following observation: the domain of the
Friedrichs extension D(HF ) consists of exactly those elements in D(H∗) for which the
energy expectation value is �nite. This can be directly seen by a comparison ofD(HF ) with
the domain of the adjoint D(H∗) (cf. (1.1)). It distinguishes the Friedrichs extension from
other extensions since it is by Theorem 1 the only extension whose domain is contained in
the closed form domain.

1.4 Operators with a gap

1.4.1 Self-adjoint extensions of gapped operators

As large as the class of symmetric operators is to which one can apply Friedrichs’ con-
struction of a self-adjoint extension, there are naturally very many other operators that
are not of this type. Friedrichs’ extension does not apply to operators that are not lower
semibounded and besides, the min–max principle only characterises the eigenvalues for a
self-adjoint lower semibounded operator below the essential spectrum. Any parts of the
discrete spectrum that might appear above some essential spectrum are not covered.

It is therefore natural to ask for generalisations of the Friedrichs extension, or at least for
the existence of a distinguished self-adjoint extension for a more general class of operators.

8By Krein’s theory of self-adjoint extension for lower semibounded operators the Friedrichs extension is
indeed the one extreme side of a class of self-adjoint extensions: All other self-adjoint extension lie in
between the Friedrichs extension and the extension known as Krein’s extension which is the one closest
to the symmetric operator, cf. Section 1.4.1.
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This can for example consist of operators satisfying a gap condition. There are di�erent
ways to formulate such a gap condition.

Krein [Kre47] developed a theory of self-adjoint extensions for lower semibounded
operators and formulated a generalisation to the gapped case at the same time. His results
are partly reviewed in [BN94] by Brasche and Neidhardt.

That a lower semibounded operator has at least one lower semibounded self-adjoint
extension was already known by Friedrichs’ work. Krein developed this theory further
and was able to show that there exists a whole family of lower semibounded extensions
that all fall in between two distinguished extreme extensions: the soft and hard extension,
nowadays also known as the Krein–von Neumann extension and the Friedrichs extension,
respectively. The Friedrichs extensions is by this theory the largest of all lowerbounded
self-adjoint extensions and the Krein–von Neumann the smallest.

Krein’s approach to a generalisation for operators with a gap is based on the following
de�nition of a gapped operator: He de�ned a symmetric operator A on a Hilbert space to
have a gap if there exist −∞ < a < b <∞ such that for all x ∈ D(A) it holds

∥∥∥∥
(
A− a+ b

2

)
x

∥∥∥∥ ≥
b− a

2 ‖x‖ . (1.17)

An elementary reformulation of (1.17),

‖Ax‖2 − (a+ b)〈Ax, x〉+ ab‖x‖2 ≥ 0 (1.18)

emphasises in which sense this gap condition can be thought of as a generalisation of
lower semiboundedness. Dividing (1.18) by a and then letting a→ −∞ we rediscover the
condition for lower semiboundedness with lower bound b.

Krein’s analysis showed that for a symmetric operator with a gap there is always at least
one self-adjoint condition that preserves the gap. Brasche and Neidhardt’s aim in [BN94]
was to parametrise the gap-preserving self-adjoint extensions based on Krein’s extension
theory for semibounded operators. In particular they explicitly mark two extensions in the
gap-theory that should correspond to Friedrichs and Krein-von Neumann extension in the
semibounded theory. They identify the distinguished self-adjoint extensions for the gapped
case as limits of the Friedrichs and Krein–von Neumann extension for the gap parameter
a→ −∞, respectively.

In the paper [SST20], we construct a self-adjoint extension for a densely de�ned, sym-
metric operator A on a Hilbert space H satisfying a certain gap condition. We see this
construction as an analogue to the Friedrichs extension in the lower semibounded case.
The gap condition we consider in [SST20] di�ers from the gap introduced by Krein. In
particular, it is based on an orthogonal decomposition of the underlying Hilbert space and
the resulting self-adjoint extension we construct is dependent on the additional structure
of the Hilbert space. In detail, the assumptions we make are the existence of orthogonal
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projections onH with Λ+ + Λ− = 1H such that

H = Λ+H⊕ Λ−H = H+ ⊕H−

as well as
F± := Λ±D(A) ⊂ D(A) ,

for D(A) being the domain of A. In particular, this means that the operator can be written
in a block structure

A =
(
A++ A+−
A−+ A−−

)
,

where A++ = Λ+A|H+ , A+− = Λ+A|H− et cetera. The gap condition we impose then
reads

sup
y−∈F−\{0}

〈y−, Ay−〉H
‖y−‖2H

=: λ0 < λ1 := inf
x+∈F+\{0}

sup
y−∈F−

〈x+ + y−, A(x+ + y−)〉H
‖x+ + y−‖2H

. (1.19)

This gap condition is not purely inherent in the symmetric operator as opposed to the more
general Krein condition since it presupposes the splitting of the Hilbert space. Krein’s gap
condition is a more general notion: it can be seen that our gap condition does imply Krein’s
condition as is shown in Remark 3 of the paper.

The lower semibounded case can in our model at least be formally rediscovered when
taking λ0 → −∞. In this case the block structure vanishes, leaving us with F+ being the
entire domain of A. The gap condition (1.19) then assures the lower semiboundedness of A.
Likewise, our construction of a self-adjoint extension is essentially Friedrichs’ construction
in the case of a vanishing block structure of A.

1.4.2 The Coulomb–Dirac operator

With the Dirac equation for relativistic quantum mechanics, the physical theory provides us
with an example of an operator that is not bounded from below but has a gap. Speci�cally
the Dirac operator for massive particles with Coulomb potential in three dimensions has
been in focus in the work of Esteban, Loss, Dolbeault and Séré ([EL07],[EL],[DES00]) that
has been inspiration for our construction for operators with a gap.

In three dimensions the Hamiltonian for a free relativistic fermion is the free Dirac
operator. Acting on the Hilbert spaceH0 = L2(R3;C4) (setting c = 1 and ~ = 1) it takes
the form

H0 = −iα · ∇+mβ

where m is the particle mass. We set m = 1 in our paper. Furthermore, β is a complex
4× 4 matrix and the symbol α denotes the 3-dimensional vector of complex 4× 4-matrices
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α1, α2, α3 that satisfy
{
αi, αj

}
= 2δij1 i, j = 1, 2, 3

{
αi, β

}
= 0 i = 1, 2, 3

β2 = 1 .

Multiplying the Schrödinger equation

i
d
dt
ψ(t) = H0ψ(t)

from the left by β we reproduce the Dirac equation in its common form

iγµ∂µψ −mψ = 0

with gamma matrices γµ, µ = 0, . . . , 3 with γ0 = β, γj = βαj , j = 1, 2, 3. By their
anticommutation relations {γµ, γν} = 2ηµν the gamma matrices generate a matrix repres-
entation of the Dirac algebra, that is, of the Cli�ord algebra Cl1,3(R).

There are di�erent representations for the matrices αi and β. In the standard representa-
tion known as the Dirac basis the matrices take the form

αi =
(

0 σi

σi 0

)
, i = 1, 2, 3 , β =

(
1 0
0 −1

)
,

with σi being the Pauli matrices. In this representation, the free Dirac operator then has
the block form

H0 =
(

m −iσ · ∇
−iσ · ∇ −m

)
,

with σ being the vector of Pauli matrices σ = (σ1, σ2, σ3). It is easily seen that H0 is
symmetric on the dense domain C∞0 (R3;C4) ⊆ H0. It is furthermore a well-known fact
(cf. e.g. Theorem 1.1 in [BT92]) that H0 is essentially self-adjoint on this domain9 and its
closure is an operator H0 de�ned on the Sobolev space H1(R3;C4), where it is self-adjoint.

The spectrum of the self-adjoint operator H0 has no discrete part and is given by

σ(H0) = (−∞,−m] ∪ [m,∞) .

We can see that in the case of the free Dirac operator, there is a spectral gap taking up the
full interval (−m,m), thereby separating positive from negative energy states. The fact
that the Dirac operator is not bounded from below is re�ected in the existence of negative
energy states with arbitrary negative energy. To make physical sense of this operator,

9This holds equally if we consider the operator on C∞0 (R3 \ {0};C4).
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Dirac used the idea to interpret the negative energy states as those that can be taken by
antiparticles.

Adding a Coulomb potential to H0 de�nes the Coulomb–Dirac operator

Hν = H0 −
ν

|x| ,

where the parameter ν in the atomic case represents the constant ν = Zα, with Z being
the atomic number and α the �ne structure constant whose value is approximately given
by α ≈ 1/137. The operator is symmetric on C∞0 (R3 \ {0};C4).

During the last decades extensive research has been done on the existence of self-adjoint
extensions of the Coulomb–Dirac operator, also raising the question about the existence of
a (physically) distinguished one.

We collect some known results, citing from [BT92], [Gal], [GM18],[BE11], [Nen76],
[EL07], [EL], [DES00], a list which is naturally not exhaustive. Some remarks on this topic
are also found on page 3 of our paper [SST20].

The existence and nature of self-adjoint extensions of Hν depends on the value of ν. But
for any self-adjoint realisation of Hν and value of ν it holds that the essential spectrum
remains stable under the perturbation of H0 by the Coulomb term. That is,

σess(Hν) = (−∞,−m] ∪ [m,∞)

and the discrete spectrum is entirely contained in the interval (−m,m),

σd(Hν) ⊆ (−1, 1) .

As is shown in [BT92] in Section 4.3.4., this follows from a theorem by Weyl about the
stability of the essential spectrum (cf. for example Theorem 8.12 in [Sch12]).

The interesting question about the spectrum of the Dirac–Coulomb operator is therefore
about the eigenvalues in the spectral gap between −m and m. We distinguish a number of
regimes, depending on the value for ν:

i) The sub-critical regime |ν| ≤
√

3/2 (corresponding to Z ≤ 118):

The operator Hν is essentially self-adjoint on the domain C∞0 (R3 \ {0};C4) and has
unique self-adjoint extension, cf. e.g. Example 4.17 in [BT92]. For ν < 1/2 this can be
directly proved by viewing the Coulomb potential as a perturbation of the free Dirac
operator via the Kato-Rellich theorem. For 1/2 ≤ ν ≤

√
3/2 generalisations or other

approaches are needed.

The Dirac equation can be solved explicitly by a partial wave decomposition from
which one �nds that the Dirac–Coulomb operator is unitarily equivalent to the direct
sum of radial symmetric operators. This solution includes an explicit formula for the
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discrete energy eigenvalues which takes the form

En,κ = m

(
1 + ν2

(n+
√
κ2 − ν2)2

)−1/2

, n ∈ N0 (1.20)

where κ takes values in N. These are exactly the eigenvalues of the (unique) self-adjoint
realisation of Hν in the gap of the essential spectrum (cf. Theorem 3.1.5 in [BE11]).

ii) The critical regime
√

3/2 < |ν| < 1 (118 ≤ Z ≤ 137):

The operator Hν has several self-adjoint extensions. There is a distinguished one
pointed out in the literature. It has been constructed independently in di�erent ways
([Wüs75], [Wüs77], [Nen76], [Sch72]) and has the property that its domain is contained
in D(|H0|1/2) as well as in D(H∗ν ) ∩D(|x|−1/2), that is, the elements in the domain
have individually �nite kinetic and potential energy.

Esteban and Loss [EL07] reconstructed this distinguished self-adjoint extension by a
di�erent approach, using a Hardy-like inequality.

The formula (1.20), which in the critical range of ν can be derived by implementing
certain boundary conditions for the radial wave functions at |x| = 0, gives also in this
regime the eigenvalues of the distinguished self-adjoint extension of Hν (Remark 3.1.6
in [BE11], a derivation is also found in [GM18]).

iii) The critical case |ν| = 1:

Esteban and Loss [EL07] showed that their construction can be extended up to and
including the case ν = 1, which by the earlier known approaches had not been
possible. Their self-adjoint extension for ν = 1 evolves as a norm-resolvent limit
from the distinguished extension for ν < 1, cf. [ELS19]. This gives us good reason
to interpret their extension for H1 as the distinguished one. The domain of this self-
adjoint extension consists of elements that have �nite total energy, even if kinetic and
potential energy are in general not �nite individually.

Since the discrete eigenvalues converge under a norm-resolvent limit, we �nd the
eigenvalues for the distinguished extension again by formula (1.20).

iv) |ν| > 1 (corresponding to Z > 137):

The eigenvalue formula (1.20) in this case yields complex values which indicates that
it is related to a non-self-adjoint extension. This appears to be corresponding to the
usual assumption that an atomic number Z = 137 is the highest number possible for a
single nucleus atom. One can �nd self-adjoint extensions by regularising the Coulomb
singularity (cf. [BT92], Section 7.4.5).

The construction we present in [SST20] is applicable to the Dirac–Coulomb operator, as
we elaborate in Section 3 of [SST20].
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1.4.3 Perspectives for future research

There are naturally many questions related to our work that remain unanswered our paper.
We state some of the potential topics for further investigation:

• In Section 1.4.1 we mentioned the study of Brasche and Neidhardt [BN94] who classi-
�ed the self-adjoint extensions in Krein’s gap theory and pointed out a distinguished
one corresponding to a generalisation of the Friedrichs extension. It could be an
interesting task to further investigate the exact relation of the extension that Brasche
and Neidhardt call the Friedrichs extension for gapped operators and our extension.

• As has been pointed out in Section 1.4.1, our gap condition relies on an orthogonal
decomposition of the underlying Hilbert space which is a rather strong premise.
The choice of the splitting might in�uence the nature of the extension signi�cantly.
Krein’s gap condition on the other hand is far more general. It might be worth to
make an attempt to weaken the assumption we make on the operator and �nd a gap
condition that is more general, even if possibly still more restrictive than Krein’s.

• In Section 4 of our paper [SST20], we relate our self-adjoint extension for a Dirac-
type operator to a special type of boundary conditions, known as the APS boundary
condition. By the assumptions we make our considerations are applicable to the
situation with an underlying geometry of cylindrical type. It could be interesting to
investigate the possibilities to extend these results to more general shapes.

Besides that we do not exclude that other boundary conditions may also play a role
in relation to the special self-adjoint extension we present. This is a question that
would need more and deeper-going research.
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FRIEDRICHS EXTENSION AND MIN–MAX PRINCIPLE
FOR OPERATORS WITH A GAP

LUKAS SCHIMMER1, JAN PHILIP SOLOVEJ, AND SABIHA TOKUS

Abstract. Semibounded symmetric operators have a distinguished self-
adjoint extension, the Friedrichs extension. The eigenvalues of the
Friedrichs extension are given by a variational principle that involves
only the domain of the symmetric operator. Although Dirac operators
describing relativistic particles are not semibounded, the Dirac opera-
tor with Coulomb potential is known to have a distinguished extension.
Similarly, for Dirac-type operators on manifolds with a boundary a dis-
tinguished self-adjoint extension is characterised by the Atiyah–Patodi–
Singer boundary condition. In this paper we relate these extensions to
a generalisation of the Friedrichs extension to the setting of operators
satisfying a gap condition. In addition we prove, in the general setting,
that the eigenvalues of this extension are also given by a variational
principle that involves only the domain of the symmetric operator. We
also clarify what we believe to be inaccuracies in the existing literature.

1. Introduction and Main Result

For a symmetric, semibounded operator A with dense domain D(A) on
a Hilbert space H there exists a distinguished self-adjoint extension, the
Friedrichs extension AF . This extension was introduced by Friedrichs [17]
in 1934. Its eigenvalues can be computed by a variational principle.

More precisely, if A is bounded from below by λ1, where

λ1 = inf
z∈D(A)

〈z,Az〉H
‖z‖2H

> −∞ , (1)

a variational principle (see e.g. [7, Theorem 4.5.2]) states that the values

λk = inf
V⊂D(A)
dimV=k

sup
z∈V

〈z,Az〉H
‖z‖2H

(2)

for k ≥ 1 are the discrete spectrum of AF in the interval (−∞, supk≥1 λk),
counted with multiplicities

dk := # {j ≥ 1 : λj = λk}
as long as dk < ∞. If dk = ∞ then λk is in the essential spectrum of AF .
While similar variational principles hold for all semibounded self-adjoint
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2 LUKAS SCHIMMER, JAN PHILIP SOLOVEJ, AND SABIHA TOKUS

extensions of A, we stress that for the calculation of the λk’s according to
(2) only the domain D(A) is needed, making the spectrum of the Friedrichs
extension especially accessible to numerical methods. This is a consequence
of D(A) being a form core for AF .

For symmetric operators A that are not semibounded, Friedrichs’ con-
struction is not applicable. Of particular interest is the case where the
self-adjoint extension of A is expected to have a gap in its spectrum. In a
similar way to the semibounded case, one would like to solve the following
problems.

(P1) Define a distinguished self-adjoint extension AF of A.
(P2) Provide a simple variational principle that allows to compute the eigen-

values of AF , ideally only from the symmetric operator A.

In this paper, we will generalise the construction of the Friedrichs exten-
sion AF to symmetric operators A where the lower semiboundedness (1)
is replaced by a gap condition. We will furthermore relate the extension
to a variational principle that only involves the domain of the symmetric
operator A hence providing solutions to both problems, (P1) and (P2). An
important example of an operator that our results apply to is the Dirac
operator Hν on L2(R3;C4) with Coulomb potential −ν/|x|. The operator
Hν is not semibounded and for ν >

√
3/2 it is not essentially self-adjoint on

the space of smooth, compactly supported functions C∞0 (R3;C4).
Our results also apply to Dirac-type operators on manifolds with a bound-

ary. For these operators, there exists a distinguished self-adjoint extension
which can be characterised by a non-local boundary condition, as first in-
troduced by Atiyah, Patodi and Singer in the proof of their index theorem
[1]. We will show that this boundary condition naturally arises from the
construction given in this paper.

The problem (P1) has been studied already by Krein [23] for a symmetric
operator A that is not semibounded but satisfies a gap condition of the form
(λ0 < λ1)

∥∥∥∥
(
A− λ0 + λ1

2

)
z

∥∥∥∥
H
≥ λ1 − λ0

2 ‖z‖H . (3)

In Krein’s work it is proved that such an operator has a self-adjoint extension
that preserves the gap, i.e. the interval (λ0, λ1) belongs to the resolvent set
of the extension. Subsequently Brasche and Neidhart [4] parametrised all
gap-preserving self-adjoint extensions of A by using a suitable representation
for their inverses. The authors’ parametrisation allowed them to identify one
of the extensions as the Friedrichs extension in the limit λ0 → −∞.

The type of operators we wish to consider here satisfy a gap condi-
tion which is seen to imply Krein’s gap condition (3), as will be proved
in Remark 3. In analogy to the Friedrichs extension preserving the lower-
semiboundedness, our extension AF preserves (3).
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More recently, different forms of gap conditions have been considered.
Esteban and Loss [14] considered a block-matrix operator

(
P Q

T −S

)
(4)

densely defined on a domain D0×D0 ⊂ H0×H0 where P = P ∗, S = S∗, Q =
T ∗ and S ≥ −λ0 > 0. Furthermore they assumed that P,Q, S, T, S−1T and
QS−1T map D0 into H0. Their gap condition was phrased in terms of the
assumption that for some λ1 > 0 and all z ∈ D0

qλ1(z, z) := 〈(S + λ1)−1Tz, Tz〉H + 〈(P − λ1)z, z〉H ≥ 0 .

In the case of Dirac operators Hν with Coulomb potentials this assump-
tion constitutes a Hardy inequality that was previously proved analytically
by Dolbeault, Esteban, Loss and Vega [9]. In this way Loss and Esteban
[13] were able to define a distinguished self-adjoint extension for Hν up to
and including the critical value ν = 1. For ν < 1 their extension coincides
with the previously known distinguished extension established separately
by Schmincke [30], Nenciu [27] and Wüst [34] (which were all proved to be
equal by Klaus and Wüst [21]). Recently, Gallone and Michelangeli classified
all self-adjoint extensions of the Dirac–Coulomb operator for ν < 1 [18] and
characterised their eigenvalues as roots of transcendental equations[19]. The
case of a two-body Dirac operator with Coulomb interaction was recently
addressed by Deckert and Oelker [8] who were able to establish a distin-
guished self-adjoint extension. This case differs from our problem setting in
that the two-body operator does not exhibit a gap but the methods used
are similar to those applied in [14].

Regarding the second problem (P2), variational principles have been stud-
ied by several authors for self-adjoint operators with gaps. For Dirac oper-
ators with negative potentials Talman [31] as well as Datta and Deviah [6]
suggested a way to compute the first eigenvalue. The idea was to split the
optimisation in the variational principle. Decomposing the Hilbert space
into a direct sum

L2(R3;C4) = (L2(R3;C2)× {0})⊕ ({0} × L2(R3;C2))

corresponding to the upper and lower spinors, the first eigenvalue would be
given by first maximising the quadratic form over one component and then
minimising over the other. More precisely, for suitably chosen spaces

F+ ⊂ L2(R3;C2)× {0} , F− ⊂ {0} × L2(R3;C2)

the authors suggested that

λ1 = inf
x+∈F+\{0}

sup
y−∈F−

〈x+ + y−, A(x+ + y−)〉H
‖x+ + y−‖2H

.

For Dirac operators Hν with Coulomb potential −ν/|x| such a variational
principle describing the discrete spectrum was proved by Dolbeault, Esteban
and Séré [10] in the case of essentially self-adjointness ν ∈ [0,

√
3/2] where
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they could choose F+ = C∞0 (R3;C2)×{0} and F− = {0}×C∞0 (R3;C2). Their
argument for ν ∈ (

√
3/2, 1) was not complete. For ν < 1 Morozov and Müller

[25, 26] showed that F+ = H1/2(R3;C2)×{0} and F− = {0}×H1/2(R3;C2)
are valid choices to obtain a variational principle for the distinguished ex-
tension.

In the general setting of a self-adjoint operator with spectral gap, varia-
tional principles that use an orthogonal decomposition of the Hilbert space
were investigated by Griesemer and Siedentop [20]. Abstract variational
principles were also proved in [10, 25] and with different assumptions by
Kraus, Langer and Tretter [22] (see also [33]). In all these results however,
the operator is a-priori assumed to be self-adjoint or essentially self-adjoint.

Only recently Esteban, Lewin and Séré [12] extended the variational prin-
ciple for Dirac operators with Coulomb potentials to all ν ∈ [0, 1] and dis-
cussed its connections to the distinguished self-adjoint extension. Building
upon the results of [10] they showed that for any ν ∈ [0, 1] it is sufficient
to choose F+ = C∞0 (R3;C2) × {0} and F− = {0} × C∞0 (R3;C2) to obtain
the eigenvalues of the distinguished extension, evoking similarities to the
Friedrichs extension in this special case.

Our main result, Theorem 1 clarifies the connection between a distin-
guished self-adjoint extension and a variational principle in the case of op-
erators satisfying a general gap condition. It applies, in particular, to the
Dirac–Coulomb operator, thus generalising the result of [12].

Theorem 1. Let A be a densely defined symmetric operator on a Hilbert
space H and let 〈x,Ay〉H be the corresponding real quadratic form with form
domain equal to the operator domain D(A). Furthermore the following as-
sumptions are made.

(i) Orthogonal decomposition: There are orthogonal projections Λ±
on H with Λ+ + Λ− = IH such that

H = Λ+H⊕ Λ−H = H+ ⊕H−
and

F± := Λ±D(A) ⊂ D(A) .

(ii) Gap condition:

sup
y−∈F−\{0}

〈y−, Ay−〉H
‖y−‖2H

=: λ0 < λ1 := inf
x+∈F+\{0}

sup
y−∈F−

〈x+ + y−, A(x+ + y−)〉H
‖x+ + y−‖2H

.

(iii) The operator Λ−A|F− : F− → H− is essentially self-adjoint.

Then there exists a self-adjoint extension AF of A such that for k ≥ 1 the
numbers

λk := inf
V⊂F+

dimV=k

sup
z∈(V⊕F−)\{0}

〈z,Az〉H
‖z‖2H

(5)
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are the eigenvalues of AF in the set (λ0, sup`≥1 λ`) counted with multiplicities

dk := # {j ≥ 1 : λj = λk}
as long as dk < ∞. If dk = ∞ then λk is in the essential spectrum of AF .
The operator AF is the unique self-adjoint extension with the property that
D(AF ) ⊂ F+ ⊕H−, for a subspace F+ ⊂ H+ defined in the proof.

Remark 2. Theorem 1 is very similar to [10, Theorem 1.1]. In [10], however,
the variational principle is given for an operator which is already self-adjoint
whereas the important aspect of our theorem is that we give the variational
principle in terms of a symmetric operator. We therefore do not need to
determine the domain of the self-adjoint extension in order to apply the
variational principle. This is analogous to the case of the Friedrichs extension
where the variational principle may be given in terms of the semibounded
symmetric operator. Thus, our Theorem 1 would be a generalisation of the
theorem in [10] except that our condition (iii) is not included in there. We
do, however, believe this assumption is needed, also in the case in [10].

Remark 3. Assumptions (i) and (ii) of Theorem 1 imply that A satisfies
Krein’s gap condition (3). To see this, we let x = x+ + x− ∈ D(A) and for
given ε > 0 choose yε− ∈ D(A) such that

〈x+ + yε−, A(x+ + yε−)〉H ≥ (λ1 − ε)
∥∥x+ + yε−

∥∥2
H . (6)

Then with λ := (λ0 + λ1)/2

‖(A− λ)x‖H ≥ sup
z∈D(A)

|<〈(A− λ)x, z〉H|
‖z‖H

= sup
z∈D(A)

|〈x+ z, (A− λ)(x+ z)〉H − 〈x− z, (A− λ)(x− z)〉H|
4‖z‖H

.

Choosing z := x+ − x− + 2yε− ∈ D(A) and using (6) together with the
definition of λ0 we obtain the lower bound

‖(A− λ)x‖H

≥

∣∣∣〈x+ + yε−, (A− λ)(x+ + yε−)〉H − 〈x− − yε−, (A− λ)(x− − yε−)〉H
∣∣∣

‖z‖H

≥
(
λ1 − λ0

2 − ε
) ‖x+ z‖2H + ‖x− z‖2H

4‖z‖H
.

Using the parallelogram law and the fact that a+ 1/a ≥ 2 for any a > 0 we
obtain

‖(A− λ)x‖H ≥
(
λ1 − λ0

2 − ε
) ‖x‖H

2

(
‖x‖H
‖z‖H

+ ‖z‖H‖x‖H

)

≥
(
λ1 − λ0

2 − ε
)
‖x‖H .

Since ε > 0 was arbitrary, Krein’s gap condition (3) holds.
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By an application of the spectral theorem the same holds true for the
extension AF .

Conversely, if a symmetric operator A satisfies Krein’s gap condition we
do not know whether there is a universally applicable strategy to find or-
thogonal projections Λ± such that the conditions of Theorem 1 are satisfied.
According to Krein there exist self-adjoint extensions that preserve the gap,
as mentioned above. In an attempt to apply our theorem to this problem a
natural choice (and in the very general setting also the only possible candi-
dates we could propose) for Λ± are the spectral projections onto (−∞, λ0]
and [λ1,∞), respectively, for one of these self-adjoint extensions. However,
for such a choice of projections the assumption (i) of Theorem 1 may not be
satisfied as Λ±D(A) is not necessarily contained in D(A). As an example
one can consider the Schrödinger–Coulomb operator, i.e. A = −∆ − ν

|x| ,
on C∞0 (R3) ⊂ L2(R3) with ν > 0. By Hardy’s inequality together with the
Kato–Rellich theorem A is essentially self-adjoint for all ν > 0. The spec-
trum of the unique self-adjoint extension A consists of discrete eigenvalues
(λk)k≥0 converging to the bottom of the essential spectrum [0,∞). The
lowest eigenvalue λ0 = −ν2/4 is non-degenerate with eigenfunction e−ν|x|/2.
Since the symmetric operator A is contained in A it satisfies Krein’s gap
condition with parameters λ0 and λ1. However, the spectral projection Λ−
of A onto (−∞, λ0] is simply the projection onto e−ν|x|/2, which does not
leave C∞0 (R3) invariant. Nevertheless, it is worth mentioning that in this
specific case of a lower semibounded operator we can still find suitable pro-
jections that would allow us to apply our result, since the choice Λ− = 0
satisfies all the assumptions of Theorem 1.

We construct AF as an analogue to the Friedrichs extension of a semi-
bounded operator (see e.g. [28, Theorem VIII.15] and [29, Theorem X.23]
as well as [3, pp. 224]). We closely follow [10], the main idea being the
following. If A is a bounded self-adjoint operator such that F± = H±, then
for any E /∈ σ(Λ−A|H−) the decomposition
(

Λ+A|H+ Λ+A|H−
Λ−A|H+ Λ−A|H−

)
− EI =

(
I −L∗E
0 I

)(
QE 0
0 −(B + E)

)(
I 0
−LE I

)

(7)
holds (see e.g. [33, Proposition 1.6.2]), where

B = −Λ−A|H− ,
LE = (B + E)−1Λ−A|H+ ,

QE = (Λ+A− E)|H+ + Λ+A|H−(B + E)−1Λ−A|H+ .

The operator QE is one of two Schur complements of A.
In Section 2, we will construct AF by defining these three operators. The

definition of B in Subsection 2.1 is straightforward and yields an operator
with form domain denoted by F− ⊂ H−. Complications arise from the
fact that the Schur complement is only defined in terms of a quadratic
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form qE which is not necessarily closable on H+. Thus a new Hilbert
space G+, which is obtained when considering the closure LE of the op-
erator (B + E)−1Λ−A|F+ , has to be introduced in Subsection 2.2. That
(B + E)−1Λ−A|F+ is closable is non-trivial and does not seem to hold true
without assumption (iii). For this reason we believe (iii) is necessary to
guarantee that G+ can be identified with a subspace of H+. On G+, we can
close qE and define the corresponding operator QE , as done in Subsection
2.3. Particular consideration has to be given to the fact that the construc-
tion does not depend on the explicit choice of E > λ0. In Subsection 2.4 the
definition of the self-adjoint extension AF is given in a form that resembles
the above decomposition (7). In Subsection 2.6 the variational principle
stated in Theorem 1 will be proved.

Table 1 summarises the Hilbert spaces that need to be defined while Table
2 lists all the additional spaces.

In Section 3 we will apply Theorem 1 to the Dirac–Coulomb operator.
In Section 4 we will introduce the APS-boundary condition for gener-

alised Dirac-operators and prove that the self-adjoint extension constructed
according to Theorem 1 is exactly characterised by these boundary condi-
tions.

Remark 4. Our construction of the distinguished self-adjoint extension dif-
fers from [14]. Phrasing our assumptions in terms of the block-matrix no-
tation (4), we do not require P and S to be self-adjoint nor that Q = T ∗.
In addition, we do not make any assumption about the domain of QS−1T .
With the setup as in [14] the quadratic form qE is closable on H+. In a gen-
eral setting this is not likely to be the case. Moreover in [14] it is important
that the closure of qE is independent of E. This independence is claimed
but not proved. In our construction the introduction of G+ is necessary to
guarantee both that qE is closable on G+ and that the domain of the clo-
sure and hence the self-adjoint extension do not depend on the choice of E.
Nevertheless our construction is inspired by the approach in [13] and [14].

Space (Equivalent) norms Inclusion Description Page
H ‖·‖H p.4
H+ ‖·‖H H+ ⊂ H Λ+H p.4
H− ‖·‖H H− ⊂ H Λ−H p.4
F− ‖·‖F− F− ⊂ H− Form domain of B p.8
G+ ‖·‖E , E > λ0 G+ ⊂ H+ Domain of LE p.9
F+ ‖·‖F+,E

, E > λ0 F+ ⊂ G+ Form domain of QE p.12
Table 1. The required Hilbert spaces
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Space Contained in Description Page
D(AF ) D(AF ) ⊂ F+ ⊕H− Domain of AF p.16
D(A) D(A) ⊂ D(AF ) Domain of A p.4
F+ F+ ⊂ F+ Λ+D(A) p.4
F− F− ⊂ F− Λ−D(A) p.4
Table 2. The additionally required vector spaces

2. The Proof of Theorem 1

2.1. The Definition of B. We start by setting

〈y−, z−〉F− := (λ0 + 1)〈y−, z−〉H − 〈y−, Az−〉H
which by definition of λ0 is an inner product on F− with corresponding norm

‖y−‖2F− = (λ0 + 1)‖y−‖2H − 〈y−, Ay−〉H .
Since the quadratic form 〈·, ·〉F− comes from a symmetric operator it is
closable, i.e. it extends to a closed quadratic form on the form domain
F− ⊂ H−, which is the closure of F− with respect to the norm ‖·‖F− . If
we denote the continuous extension of the quadratic form 〈·, ·〉F− to F− by
〈·, ·〉F− , then (F−, 〈·, ·〉F−) forms a Hilbert space.

By assumption Λ−A|F− is essentially self-adjoint, hence there exists a
unique self-adjoint extension given by its closure, which we will denote by
−B. It is then clear that B+λ0 + 1 coincides with the self-adjoint operator
associated with the closed quadratic form 〈·, ·〉F− such that

〈y−, z−〉F− = 〈y−, Bz−〉H + (λ0 + 1)〈y−, z−〉H.
The form domain of B is F− and its operator domain D(B) is a subset of
F−. For E > λ0 the self-adjoint operator B + E is strictly positive and its
inverse (B + E)−1 is well-defined and bounded on all of H−.
Remark 5. Since Λ−A|F− is essentially self-adjoint, the operator B coincides
with the Friedrichs extension of the semibounded operator −Λ−A|F− . For
the convenience of the reader and to evoke connections to our construction,
we recall the definition of this extension. Using Riesz’ theorem we first define
the operator P̂ as the isometric isomorphism between the Hilbert space F−
and its dual F ′−, i.e. for any z− ∈ F− we define P̂ z− ∈ F ′− to be the unique
continuous functional such that

[P̂ z−](y−) = 〈z−, y−〉F− .
With the embedding j− : H− → F ′− given by [j−(y−)](z−) = 〈y−, z−〉H
(identifying H− with its dual space H′−) we can show that on the domain

D(P ) =
{
z− ∈ F− ⊂ H− : P̂ z− ∈ j−(H−)

}
⊂ H−

the operator P = j−1
− ◦ P̂ is a self-adjoint extension of −Λ−A|F− + λ0 +

1. The Friedrichs extension B is then defined as B = P − λ0 − 1 with
domain D(B) = D(P ). In particular, the quadratic form 〈y−, Bz−〉H has a
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continuous extension to all x−, y− ∈ F− given by [B̂(y−)](z−) where B̂ =
P̂ − (λ0 + 1)j−. The form domain of B is consequently F−.

2.2. The Definition of LE. Let E > λ0. Then for x+ ∈ F+ the mapping
x+ 7→ (B + E)−1Λ−Ax+ defines a linear operator from F+ into H−. The
proof of the second part of the following lemma is adapted from [10, Lemma
2.1].

Lemma 6. The operator (B + E)−1Λ−A defined on F+ is closable. We
denote its closure by LE with graph norm

‖x+‖2E = ‖x+ + LEx+‖2H = ‖x+‖2H + ‖LEx+‖2H .
For λ0 < E ≤ E′ the norms ‖·‖E and ‖·‖E′ are equivalent on F+ with

‖x+‖H ≤ ‖x+‖E′ ≤ ‖x+‖E ≤ CE,E′‖x+‖E′ , (8)

where CE,E′ = (E′ − λ0)/(E − λ0) ≥ 1.

Proof. We first show that the operator is closable. Consider a sequence of
xn ∈ F+ with ‖xn‖H → 0 and y ∈ H− with

∥∥(B + E)−1Λ−Axn − y
∥∥
H → 0.

We have to show that y = 0. Let z ∈ (B + E)F− ⊂ H−. Then
|〈z, (B + E)−1Λ−Axn〉H|= |〈(B + E)−1z,Λ−Axn〉H|

= |〈A(B + E)−1z, xn〉H| ≤ ‖A(B + E)−1z‖H‖xn‖H
and the right-hand side converges to zero. Since Λ−A|F− is essentially self-
adjoint, we can conclude that (B + E)F− is dense in H− and thus y = 0.

Next, assume λ0 < E ≤ E′. The first inequality in (8) follows directly
from the definition of the norm ‖·‖E . For a bound on ‖·‖E in terms of ‖·‖E′
we note that by the spectral theorem for x ∈ D(B)

∥∥∥(B + E)−1(B + E′)x
∥∥∥

2

H
≤ sup

λ≥−λ0

|λ+ E′|2
|λ+ E|2 ‖x‖

2
H ≤

(E′ − λ0)2

(E − λ0)2 ‖x‖
2
H .

As a consequence we obtain with CE,E′ := (E′−λ0)/(E−λ0) for any x+ ∈ F+

‖LEx+‖H =
∥∥∥(B + E)−1Λ−Ax+

∥∥∥
H
≤ CE,E′

∥∥∥(B + E′)−1Λ−Ax+
∥∥∥
H

= CE,E′‖LE′x+‖H ,
which proves the last inequality in (8). A bound on ‖·‖E′ in terms of ‖·‖E
follows in the same way. �

We conclude that the domain of LE , meaning the closure of F+ with
respect to the norm ‖·‖E , can be identified for all values of E > λ0 and we
will denote this vector space by G+ . Together with the inner product

〈x+, z+〉E := 〈x+, z+〉H + 〈LEx+, LEz+〉H
it forms a Hilbert space (G+, 〈·, ·〉E) and we have the vector space inclusions

F+ ⊂ G+ ⊂ H+ ,

where the last equation also holds in the sense of Hilbert spaces.
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As an operator from (G+, ‖·‖E) to (H−, ‖·‖H), LE is then bounded. We
will later consider LE as an operator on an even smaller Hilbert space, where
it is consequently also bounded.

2.3. The Definition of QE. For E > λ0 we now define the quadratic form
qE on F+ × F+

qE(x+, z+) := 〈x+, (A− E)z+〉H + 〈Λ−Ax+, (B + E)−1Λ−Az+〉H .
It is the quadratic form related to one of the Schur complements of the
matrix representation of A. We will see that qE can be closed as a lower-
semibounded form on (G+, ‖·‖E) such that the closure is independent of E.
To this end we first derive the following result which can also be found in
[10, pp. 210].

Lemma 7. For E > λ0 and x+ ∈ F+ let ϕE,x+ : F− → R be the function
defined as

ϕE,x+(y−) := 〈x+ + y−, A(x+ + y−)〉H − E‖x+ + y−‖2H .
The quadratic form qE is then related to ϕE,x+ by

qE(x+, x+) = sup
y−∈F−

ϕE,x+(y−) .

In particular, ϕE,x+(·) can be extended to F− and the extension attains its
maximum at the unique point ymax = LEx+ = (B + E)−1Λ−Ax+.

Proof. For y− ∈ F− we write

ϕE,x+(y−) = 〈x+, (A− E)x+〉H + 2<〈y−, Ax+〉H − 〈y−, (B + E)y−〉H. (9)

It is then clear that the functional ϕE,x+(·) naturally extends to F−, see also
Remark 5. We denote the continuous extension by ϕE,x+ .

The quadratic polynomial f : R→ R which we can define for any y−, z− ∈
F− as

f(h) = ϕE,x+(y− + h(z− − y−)) , h ∈ R

is strictly concave and thus we have

f(1) < f(0) + f ′(0) . (10)

Now assume that y− ∈ F− satisfies the Euler equation, that is

ϕ′E,x+(y−; (z− − y−)) = 0

for all z− ∈ F−. Then we must have 〈w−,Λ−Ax+ − (B + E)y−〉H = 0 for
all w− ∈ F− or equivalently

y− = (B + E)−1Λ−Ax+ (11)

and by (10) for all z− ∈ F−, z− 6= y−

ϕE,x+(z−) < ϕE,x+(y−) .
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Consequently ϕE,x+(·) has a unique global maximum at the point ymax =
(B + E)−1Λ−Ax+ ∈ D(B). Inserting (11) into (9) we obtain

ϕE,x+(ymax) = 〈x+, (A− E)x+〉H + 〈Λ−Ax+, LEx+〉H .

�

The following lemma establishes important properties of the quadratic
form qE . The proof can also be found in [10, Lemma 2.1].

Lemma 8. Let λ0 < E ≤ E′.
(i) On F+ the quadratic forms qE and qE′ satisfy

qE′(x+, x+)+(E′−E)‖x+‖2E′ ≤ qE(x+, x+) ≤ qE′(x+, x+)+(E′−E)‖x+‖2E .
(ii) There is a constant κE ≥ 1 such that for any x+ ∈ F+

qE(x+, x+) + κE〈x+, x+〉E ≥ 〈x+, x+〉E .
Thus, the quadratic form qE is bounded from below on F+ ⊂ G+.

(iii) It holds that

qE(x+, x+) > 0 for all x+ ∈ F+ \ {0} if and only if E < λ1 ,

qE(x+, x+) ≥ 0 for all x+ ∈ F+ \ {0} if and only if E ≤ λ1 .

Proof. For (i) we use the resolvent identity to compute for any λ, λ′ > λ0,

qλ′(x+, x+)

= qλ(x+, x+)+(λ−λ′)
[
‖x+‖2H+〈Λ−Ax+, (B + λ)−1(B + λ′)−1Λ−Ax+〉H

]
.

The result then follows by setting λ = E, λ′ = E′ and λ = E′, λ′ = E,
respectively, and using (B + E′)−1 ≤ (B + E)−1 to bound the last term.

We continue to show (iii) and subsequently (ii). We start by proving
that the right-hand sides imply the left-hand sides. First, let λ0 < E < λ1
and x+ ∈ F+ \ {0} arbitrary. By the definition of λ1, for any ε > 0 there
exists a yε− ∈ F− such that

〈x+ + yε−, A(x+ + yε−)〉H∥∥x+ + yε−
∥∥2
H

≥ λ1 − ε

and consequently

qE(x+, x+) ≥ ϕE,x+(yε−) = 〈x+ + yε−, A(x+ + yε−)〉H − E
∥∥x+ + yε−

∥∥2
H

≥ (λ1 − ε− E)
∥∥x+ + yε−

∥∥2
H .

We can conclude that for all x+ ∈ F+ \ {0} and all λ0 < E < λ1

qE(x+, x+) ≥ (λ1 − E)‖x+‖2H > 0 .

We next prove that qλ1(x+, x+) ≥ 0. Setting E′ := λ1 and using (i) we have
that

qλ1(x+, x+) ≥ qE(x+, x+)− (λ1 − E)‖x+‖2E ,
which in the case E → λ1 shows qλ1 ≥ 0 since ‖x+‖E → ‖x+‖λ1

by (8).
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We now prove the reverse implications. If E > λ1 then again by definition
of λ1, for any ε > 0 with λ1 < E − ε there exists xε+ ∈ F+ \ {0} with

〈(xε+ + y−), A(xε+ + y−)〉H∥∥xε+ + y−
∥∥2
H

≤ (E − ε)

for all y− ∈ F− and consequently

qE(xε+, xε+) = sup
y−∈F−

ϕE,xε+(y−) ≤ − inf
y−∈F−

ε
∥∥xε+ + y−

∥∥2
H ≤ −ε

∥∥xε+
∥∥2
H

which finishes the proof of (iii).
The statement in (ii) is now clear for E ≤ λ1. If E > λ1 we use (8) to

compute that

qE(x+, x+) ≥ qλ1(x+, x+)− (E − λ1)‖x+‖2λ1

≥ qλ1(x+, x+)− (E − λ1)Cλ1,E‖x+‖2E .
Choosing κE = 1 + max(0, (E − λ1)Cλ1,E) then gives the result.

�

Remark 9. In the first part of the proof we needed bounds on terms of
the type ‖LEx+‖H. This was done by using the new norm ‖·‖E . Without
specifying further assumptions on the operator A it is not possible to esti-
mate the difference between quadratic forms qE for different values of E by
a ‖·‖H-norm only. Introducing the Hilbert space G+ thus turns out to be
essential.

An immediate consequence of Lemma 8 together with Lemma 6 is that
the completion F+ of F+ with respect to the norm ‖·‖F+,E

induced by the
inner product

〈x+, z+〉F+,E
= qE(x+, z+) + κE〈x+, z+〉E

is independent of E. In the remainder we fix E > λ0 and denote the ex-
tension of the inner product 〈·, ·〉F+,E

to F+ by 〈·, ·〉F+,E
. A priori, it is not

clear that F+ is a subspace of H+. However, the following holds.

Lemma 10. The semibounded quadratic form qE is closable on the Hilbert
space G+ for E > λ0. The closure qE has the form domain F+, independent
of E, and can be identified with a subspace of G+ and subsequently also
of H+.

Proof. We show that the positive form 〈·, ·〉F+,E
= qE(·, ·) +κE〈·, ·〉E is clos-

able. The argument used here can also be found in e.g. Lemma 6, Chapter
10.1 of [3]. Consider a sequence xn ∈ F+ which is a Cauchy sequence with
respect to ‖·‖F+,E

and which satisfies ‖xn‖E → 0. Then for any z ∈ F+

|〈z, xn〉F+,E
| ≤ κE |〈z, xn〉E |+ |〈z, (A− E)xn〉H|+ |〈Λ−Az,LExn〉H|
= κE |〈z, xn〉E |+ |〈(A− E)z, xn〉H|+ |〈Λ−Az,LExn〉H|
≤ κE (‖z‖E + ‖(A− E)z‖H + ‖Λ−Az‖H) ‖xn‖E
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and thus 〈z, xn〉F+,E
→ 0, where we again crucially need the assumption

that xn → 0 in the ‖·‖E-norm, which is stronger than the ‖·‖H-norm. Since
the sequence xn is Cauchy it converges to some element in F+. Using the
fact that F+ is dense in F+ with respect to ‖·‖F+,E

, we conclude from the
above calculation that this element must be zero. �

We thus have the Hilbert space inclusions

F+ ⊂ G+ ⊂ H+ ,

with their respective inner products implicit, and the corresponding inclu-
sions of the associated dual spaces

H′+ ⊂ G′+ ⊂ F ′+ .
By Riesz’ theorem there exists an isometric isomorphism iX→X′(x) = 〈x, ·〉X
between each Hilbert space X and its dual space X ′. In general we will not
explicitly write the isomorphisms iH±→H′± thus identifying H and its dual
space H′.

Furthermore for each of the Hilbert space inclusions X ⊂ Y there is a
corresponding embedding of dual spaces jY ′→X′ : Y ′ → X ′, in the sense

[jY ′→X′`](x) = `(x) = 〈i−1
Y→Y ′`, x〉Y , ` ∈ Y ′, x ∈ X .

All these embeddings are bounded in norm by one.
Associated to the closed quadratic form qE there is an operator defined

on all of the form domain F+, as well as a self-adjoint operator with domain
a subset of F+.

Lemma 11. Let E > λ0. There exists an operator Q̂E : F+ ⊂ G+ → F ′+
with the following properties.

(i) For all x+, z+ ∈ F+ the closure qE of qE on F+ is given by

qE(x+, z+) = [Q̂Ex+](z+).

(ii) The operator Q̂E is bounded and if additionally E < λ1 then its inverse
Q̂E
−1 is also bounded.

(iii) On the dense domain

D(QE) =
{
z+ ∈ F+ : Q̂Ez+ ∈ jG′+→F ′+(G′+)

}
⊂ G+

the operator

QE := i−1
G+→G′+

◦ j−1
G′+→F ′+

◦ Q̂E : D(QE)→ G+

is self-adjoint and QE + κE ≥ 1. If additionally E < λ1 then QE is
also positive.

Proof. We define Ŝ : F+ → F ′+ using Riesz’ theorem as the unique operator
such that

[Ŝz+](y+) = 〈z+, y+〉F+,E
.
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The operator Q̂E = Ŝ − κEjG′+→F ′+iG+→G′+ then has the claimed properties.
�

2.4. The Definition of AF . We consider once more the operator LE ,
viewed now as a mapping from (F+, ‖·‖F+,E

) into (H−, ‖·‖H). This operator
is bounded and we denote its adjoint by L′E : (H−, ‖·‖H) → (F ′+, ‖·‖F ′+,E),
which is related to the Hilbert adjoint L∗E by L∗E = i−1

F+→F ′+
L′EiH−→H′− .

This allows us to define the operator R̂E : D(R̂E) ⊂ F+×H− → F ′+×H−
for E > λ0 as

R̂E

(
x+
y−

)
=
(
I −L′E
0 I

)(
Q̂E 0
0 −(B + E)

)(
I 0
−LE I

)(
x+
y−

)

=
(
Q̂Ex+ + L′E(B + E)(y− − LEx+)

−(B + E)(y− − LEx+)

)

on the domain

D(R̂E) =
{(

x+
y−

)
∈ F+ ×H− : y− − LEx+ ∈ D(B)

}
⊂ H+ ×H−.

The construction of R̂E should be compared to the decomposition (7). By
the resolvent identity for any x+ ∈ F+

LEx+ − LE′x+ = (E′ − E)(B + E)−1LE′x+

and by Lemma 6 this identity extends to F+. Thus D(R̂E) is independent
of E > λ0 and the same holds for the corresponding subset F of H

F := {x+ + y− ∈ F+ ⊕H− : y− − LEx+ ∈ D(B)} ⊂ H+ ⊕H− .

If E < λ1 the operator Q̂E is invertible and in this case R̂E has an inverse
defined by

R̂E
−1
(
x+
y−

)
=
(

I 0
LE I

)(
Q̂E
−1 0

0 −(B + E)−1

)(
I L′E
0 I

)(
`+
k−

)

=
(

Q̂E
−1(`+ + L′Ek−)

LEQ̂E
−1(`+ + L′Ek−)− (B + E)−1k−

)

for all (`+, k−) ∈ F ′+ × H−. It is straightforward to see that this operator
maps into the domain of R̂E and vice versa.

Using the notation j+ for the embedding jH+→F ′+ we now define D(R) ⊂
F ⊂ F+ ⊕H− to be the set

D(R) =
{
x+ + y− ∈ F : Q̂Ex+ + L′E(B + E)(y− − LEx+) ∈ j+(H+)

}

which will be proved to be independent of E. On this domain we define for
E > λ0 the family of operators RE : D(R)→ H acting as

RE(x++y−)=j−1
+ (Q̂Ex++L′E(B+E)(y−−LEx+))−(B+E)(y−−LEx+) .
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In the following we prove that RE is an extension of A−E, that its domain
is indeed independent of E and that it is self-adjoint.

To see thatRE is an extension of A−E, we note that for x+ ∈ F+, y− ∈ F−
we have y− − LEx+ = y− − (B + E)−1Λ−Ax+ ∈ D(B). Furthermore, for
any u+ ∈ F+ we compute that

[Q̂Ex++L′E(B+E)(y−−LEx+)](u+)
=〈x+, (A−E)u+〉H+〈(B+E)y−, LEu+〉H=〈(A−E)x+, u+〉H+〈Ay−, u+〉H.
The linear functional 〈(A− E)x+, ·〉H + 〈Ay−, ·〉H is bounded on F+ and
extends continuously to F+. Hence Q̂Ex+ + L′E(B + E)(y− − LEx+) ∈
j+(H+) and F+ ⊕ F− ⊂ D(R). Since in addition for any v− ∈ F−
−〈(B + E)(y− − LEx+), v−〉H = −〈(B + E)y−, v−〉H + 〈Λ−Ax+, v−〉H

= 〈(A− E)y−, v−〉H + 〈Ax+, v−〉H
we obtain that for all x+, u+ ∈ F+, y−, v− ∈ F−

〈RE(x+ + y−), u+ + v−〉H = 〈(A− E)(x+ + y−), u+ + v−〉H
which allows us to conclude that RE is an extension of A− E.

To show that D(R) is independent of E, we first note that by the above
for any x+, u+ ∈ F+ and y− ∈ F−

qE(x+, u+) + 〈y− − LEx+, (B + E)LEu+〉H + (E − E′)〈x+, u+〉H
= qE′(x+, u+) + 〈y− − LE′x+, (B + E′)LE′u+〉H .

(12)

Let now x+ + y− ∈ D(R) ⊂ F+ ⊕H−, such that for some E > λ0

y− − LEx+ ∈ D(B) , [Q̂Ex+ + L′E(B + E)(y− − LEx+)] ∈ j+(H+) .

We have already seen that then also y− − LE′x+ ∈ D(B) for any E′ > λ0.
We can approximate x+ +y− by elements of x(n)

+ +y
(n)
− ∈ F+⊕F− such that

∥∥∥x+ − x(n)
+

∥∥∥
F+,E

→ 0 ,
∥∥∥y− − y(n)

−
∥∥∥
H
→ 0 .

By continuity (12) extends to x+ + y− and we obtain that for all u+ ∈ F+

[Q̂Ex+ + L′E(B + E)(y− − LEx+)](u+) + (E − E′)〈x+, u+〉H
= [Q̂E′x+ + L′E′(B + E′)(y− − LE′x+)](u+)

and thus also

y− − LE′x+ ∈ D(B) , [Q̂E′x+ + L′E′(B + E′)(y− − LE′x+)] ∈ j+(H+) .
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To prove that RE is symmetric, we compute that for given u+ + v−,
x+ + y− ∈ D(R)

〈RE(x++y−), u++v−〉H
=〈j−1

+ (Q̂Ex++L′E(B+E)(y−−LEx+))−(B+E)(y−−LEx+), u++v−〉H
=〈j−1

+ (Q̂Ex++L′E(B+E)(y−−LEx+), u+〉H−〈(B+E)(y−−LEx+), v−〉H
=[Q̂Ex+](u+)+〈(B+E)(y−−LEx+), LEu+〉H−〈(B+E)(y−−LEx+), v−〉H
= qE(x+, u+)−〈(B+E)(y−−LEx+), (v−−LEu+)〉H .
This last expression is symmetric in interchanging u+ +v− and x+ +y− and
hence RE is a symmetric operator.

For E < λ1, the operator R−1
E : H = H+ ⊕H− → H defined as

R−1
E (x+ + y−)

= Q̂E
−1(j+(x+) + L′Ey−) + LEQ̂E

−1(j+(x+) + L′Ey−)− (B + E)−1y−

is the inverse of RE . It is itself symmetric and since defined on all of H,
self-adjoint. By the Hellinger–Toeplitz theorem it is also a bounded opera-
tor, hence closed. But then RE itself as a bijective, symmetric and closed
operator is also self-adjoint. The self-adjointness then extends to RE for any
E > λ0.

Lastly, we define the self-adjoint extension AF of A as AF := RE +E on
D(AF ) := D(R).

2.5. The Uniqueness of AF . Let Ã be another self-adjoint extension of
A with D(Ã) ⊂ F+ ⊕H−. We first show that then necessarily D(Ã) ⊂ F .
For x+ + y− ∈ D(Ã) and v− ∈ F− we compute

〈(Ã−E)(x++y−), v−〉H = 〈x++y−, (A−E)v−〉H = 〈x++y−, (AF−E)v−〉H
= −〈y− − LEx+, (B + E)v−〉H
and we can conclude that v− 7→ 〈y− − LEx+, (B + E)v−〉H is a continuous
functional for all v− ∈ F−. This implies y− − LEx+ ∈ D(Λ−A|∗F−) = D(B)
and thus x+ + y− ∈ F . Taking u+ ∈ F+ we further compute

〈(Ã−E)(x++y−), u+〉H = 〈x++y−, (A−E)u+〉H = 〈x++y−, (AF−E)u+〉H
= 〈x+, j

−1
+ (Q̂Eu+ − L′E(B + E)LEu+)〉H + 〈y−, (B + E)LEu+〉H

= [Q̂Eu+](x+)− 〈(B + E)LEu+, LEx+〉H + 〈(B + E)LEu+, y−〉H
= [Q̂Ex+](u+) + 〈(B + E)(y− − LEx+), LEu+〉H
= [Q̂Ex+ + L′E(B + E)(y− − LEx+)](u+) .

From this we can conclude that x+ +y− ∈ D(AF ) = D(R) and thus D(Ã) ⊂
D(AF ). Conversely, by self-adjointness, D(AF ) = D(A∗F ) ⊂ D(Ã∗) = D(Ã),
which proves the desired Ã = AF .
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2.6. The Proof of the Variational Principle. It remains to prove that
the variational principle holds. The min–max levels of QE on (G+, 〈·, ·〉E)
are given by

µk(QE) = inf
V⊂F+

dimV=k

sup
x+∈V \{0}

qE(x+, x+)
‖x+‖2E

= inf
V⊂F+

dimV=k

sup
x+∈V \{0}

qE(x+, x+)
‖x+‖2E

where we used that F+ is a form core of qE . The numbers µk(QE) sat-
isfy µk(QE) ≤ inf σess(QE) and if µk(QE) < inf σess(QE) then µk is an
eigenvalue of QE with multiplicity

mk(QE) = # {j ≥ 1 : µj(QE) = µk(QE)} .
We need the following result, which can be found in [10, Lemma 2.2].

Lemma 12. Under the assumptions of Theorem 1, it holds that:
(i) For any x+ ∈ F+ \ {0} the real number

E(x+) := sup
z∈(span(x+)⊕F−)\{0}

〈z,Az〉H
‖z‖2H

is the unique solution in (λ0,+∞) of

qE(x+, x+) = 0 ,

which may also be written as

E‖x+‖2H = 〈x+, Ax+〉H + 〈Λ−Ax+, LEx+〉H .
(ii) The variational principle (5) is equivalent to

λk = inf
V⊂F+

dimV=k

sup
x+∈V \{0}

E(x+) .

(iii) For any k ≥ 1 the real number λk given by (5) is the unique solution
of

µk(Qλ) = 0 .

Proof. First note that for fixed x+ ∈ F+ \ {0}, qE(x+, x+) is by Lemma 8
a strictly decreasing, continuous function of E with qλ1(x+, x+) ≥ 0 and
limE→∞ qE(x+, x+) = −∞, as can be seen from the definition. We can
conclude that qE(x+, x+) = 0 has precisely one solution in [λ1,+∞). Denote
this solution by Ẽ(x+). We now prove that Ẽ(x+) = E(x+).

If E < Ẽ(x+) then necessarily qE(x+, x+) > 0 and thus there exists a
y− ∈ F− such that

〈x+ + y−, A(x+ + y−)〉H − E‖x+ + y−‖2H > 0 .

We obtain that

E(x+) = sup
z∈(span(x+)⊕F−)\{0}

〈z,Az〉H
‖z‖2H

≥ 〈x+ + y−, A(x+ + y−)〉H
‖x+ + y−‖2H

> E .
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If E > Ẽ(x+) then necessarily qE(x+, x+) ≤ −ε < 0 for some ε and thus for
all y− ∈ F−

〈x+ + y−, A(x+ + y−)〉H − E‖x+ + y−‖2H ≤ −ε .
Consequently,

E(x+) = sup
z∈(span(x+)⊕F−)\{0}

〈z,Az〉H
‖z‖2H

≤ −ε+ E < E .

This proves that Ẽ(x+) = E(x+).
The statement (ii) is an immediate consequence of the definitions of

E(x+) and λk as well as the observation that, since λ0 < λ1, for any k-
dimensional subspace V ⊂ F+

sup
z∈(V⊕F−)\{0}

〈z,Az〉H
‖z‖2H

= sup
z∈V⊕F−
Λ+z 6=0

〈z,Az〉H
‖z‖2H

.

Note that µk(Qλ) is a continuous function of λ with µk(Qλ1) ≥ 0 by
Lemma 8. Furthermore limλ→+∞ µk(Qλ) = −∞ and we can conclude that
µk(Qλ) = 0 has at least one solution in [λ1,+∞). Denote this solution by
λ̃k. We now prove that λ̃k = λk.

Assume λ < λ̃k. For all V ⊂ F+ with dimV = k there exists an xV+ ∈
V \ {0} such that

q
λ̃k

(xV+, xV+) ≥ − λ̃k − λ2
∥∥∥xV+

∥∥∥
2

λ̃k

and thus by Lemma 8

qλ(xV+, xV+) ≥ q
λ̃k

(xV+, xV+) + (λ̃k − λ)
∥∥∥xV+

∥∥∥
2

λ̃k
≥ λ̃k − λ

2
∥∥∥xV+

∥∥∥
2

λ̃k
> 0 .

This implies the existence of yV− ∈ F− such that

ϕλ,xV+
(yV−) = 〈xV+ + yV− , A(xV+ + yV−)〉H − λ

∥∥∥xV+ + yV−
∥∥∥

2

H
≥ 0 .

We obtain that

sup
z∈(V⊕F−)\{0}

〈z,Az〉H
‖z‖2H

≥ 〈x
V
+ + yV− , A(xV+ + yV−)〉H∥∥xV+ + yV−

∥∥2
H

≥ λ

and thus λ ≤ λk. Assume λ > λ̃k. There exists a vector space V0 such that

q
λ̃k

(x+, x+) ≤ λ− λ̃k
2C

λ̃k,λ

‖x+‖2λ̃k ≤
λ− λ̃k

2 ‖x+‖2λ

for all x+ ∈ V0 and thus by Lemma 8

qλ(x+, x+) ≤ q
λ̃k

(x+, x+)− (λ− λ̃k)‖x+‖2λ ≤ −
λ− λ̃k

2 ‖x+‖2λ < 0

for all x+ ∈ V0 \ {0}. This implies that

〈x+ + y−, A(x+ + y−)〉H − λ‖x+ + y−‖2H ≤ 0
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for all x+ ∈ V0 \ {0} and all y− ∈ F−. We can conclude that

λk ≤ sup
z∈(V0⊕F−)\{0}

〈z,Az〉H
‖z‖2H

≤ max
(

sup
x+∈V0\{0}

sup
y−∈F−

〈x+ + y−, A(x+ + y−)〉H
‖x+ + y−‖2H

, sup
y−∈F−\{0}

〈y−, Ay−〉H
‖y−‖2H

)

≤ max(λ, λ0) = λ

and together with the above λk = λ̃k.
�

To prove that the real numbers λk are in the spectrum of AF , we use an
argument presented in [10, Section 2] and construct a sequence of subspaces
Xn of dimension dk such that

lim
n→∞ sup

x∈Xn
‖x‖H=1

sup
y∈D(AF )\{0}

|〈x, (AF − λk)y〉H|√
‖y‖2H + ‖AF y‖2H

= 0 .

First note that

dk := # {j ≥ 1 : λj = λk} = # {j ≥ 1 : µj(Qλk)=µk(Qλk)= 0} = mk(Qλk)

and by the min–max principle for Qλk , there exists a sequence of spaces
X+
n ⊂ D(Qλk) of dimension dk such that

lim
n→∞ sup

x+∈X+
n

‖x+‖λk=1

‖Qλkx+‖λk = 0 ,

which also implies that

lim
n→∞ sup

x+∈X+
n

‖x+‖λk=1

∥∥∥Q̂λkx
∥∥∥
F ′+,λk

= lim
n→∞ sup

x+∈X+
n

‖x+‖λk=1

sup
y+∈F+

|[Q̂λkx+](y+)|
‖y+‖F+,λk

= 0 . (13)

Let Xn := (1 + Lλk)X+
n ⊂ F . We observe that for all x+ ∈ F+ and

y ∈ D(AF )

[Q̂λk(x+)](Λ+y) = 〈x+ + Lλkx+, (AF − λk)y〉H . (14)

Furthermore for all y ∈ D(AF )

[Q̂λk(Λ+y)](Λ+y) = 〈Λ+y + LλkΛ+y, (AF − λk)y〉H
≤ (‖y‖H+ ‖Λ−y − LλkΛ+y‖H)(1 + |λk|)(‖y‖H+ ‖AF y‖H)

and using

‖Λ−y − LλkΛ+y‖H =
∥∥∥(B + λk)−1Λ−(AF − λk)y

∥∥∥
H

≤ 1 + |λk|
λk − λ0

(‖y‖H + ‖AF y‖H)

we can see that there exists a constant Cλk > 0 such that for all y ∈ D(AF )

[Q̂λk(Λ+y)](Λ+y) ≤ Cλk(‖y‖2H + ‖AF y‖2H) .
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This allows us to bound

‖Λ+y‖2F+,λk
= κλk‖Λ+y+‖2H + κλk‖LλkΛ+y‖2H + [Q̂λk(Λ+y)](Λ+y)

≤ C ′λk(‖y‖2H + ‖AF y‖2H)

with some constant C ′λk > 0 for all y ∈ D(AF ). Together with (13), (14)
and the fact that ‖x+ + Lλkx+‖H = ‖x+‖λk we can conclude that

lim
n→∞ sup

x∈Xn
‖x‖H=1

sup
y∈D(AF )\{0}

|〈x, (AF − λk)y〉H|√
‖y‖2H + ‖AF y‖2H

= 0 . (15)

As 1 +Lλk : X+
n → Xn is a surjective isometry we obtain that dimXn = dk.

Consider the case dk <∞. Let P be the spectral measure of AF . Suppose
now for some ε > 0 we had that dim ranP ((λk − ε, λk + ε)) ≤ dk − 1. Then
there exists a sequence of xn ∈ Xn with ‖xn‖H = 1 and P ((λk − ε, λk +
ε))xn = 0. We write xn = wn + zn with wn ∈ ranP ((−∞, λk − ε]) and
zn ∈ ranP ([λk + ε,∞)). Unless λk is in the essential spectrum of AF ,
we also observe that for some ν ∈ (λk − ε, λk + ε) necessarily ν ∈ ρ(AF ).
Choosing yn = (AF −ν)−1xn ∈ D(AF ) we compute that, if λk−ε < ν ≤ λk,

〈xn, (A− λk)yn〉H =
∫ λk−ε

−∞

λ− λk
λ− ν dPwn,wn(λ) +

∫ ∞

λk+ε

λ− λk
λ− ν dPzn,zn(λ)

≥ ‖wn‖2H + ε

λk + ε− ν ‖zn‖
2
H

≥ min
(

1, ε

λk + ε− ν

)
‖xn‖2H

and similarly, if λk ≤ ν < λk + ε,

〈xn, (A− λk)yn〉H ≥ min
(

ε

ν − λk + ε
, 1
)
‖xn‖2H .

Since ‖xn‖H = 1 and

‖yn‖2H+‖AF yn‖2H =
∥∥∥(AF−ν)−1xn

∥∥∥
2

H
+
∥∥∥xn + ν(AF−ν)−1xn

∥∥∥
2

H
≤ C‖xn‖2H

we obtain that for some constant C ′ > 0

|〈xn, (AF − λk)yn〉H| ≥ C ′
√
‖yn‖2H + ‖AF yn‖2H ,

which contradicts (15). Thus necessarily dim ranP ((λk − ε, λk + ε)) ≥ dk
for any ε > 0.

In the case dk = ∞, we can use the above argument to conclude that
dim ranP (λk−ε, λk+ε) =∞ for all ε > 0. As a consequence λk ∈ σ(AF ) and
λk is larger or equal to the k-th eigenvalue µk(AF ) of AF in (λ0, sup`≥1 λ`).
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Before we prove that the λk are all the points in σ(AF ) ∩ (λ0, sup`≥1 λ`),
we first note that (see Remark 5)

λ0 = sup
y−∈F−\{0}

−〈y−, By−〉H
‖y−‖2H

= sup
y−∈F−\{0}

−[B̂y−](y−)
‖y−‖2H

= sup
y−∈F−∩D(AF )\{0}

〈y−, AF y−〉H
‖y−‖2H

(16)

as an immediate consequence of the continuity of B̂ with respect to ‖·‖F− .
Now assume that λ ∈ σ(AF ) ∩ (λ0, sup`≥1 λ`) with spectral multiplicity

d. We have to show that λ = λk for some k ∈ N, or equivalently that
µk(Qλ) = 0 for some k ∈ N. By assumption there exist spaces Xn ⊂ D(AF )
with dimXn = d such that

lim
n→∞ sup

x∈Xn
‖x‖H=1

‖(AF − λ)x‖H = 0 .

In particular we obtain that

lim
n→∞ sup

x∈Xn

‖(B + λ)(Λ−x− LλΛ+x)‖H
‖x‖H

= 0

and since (B + λ)−1 is a bounded operator

lim
n→∞ sup

x∈Xn

‖Λ−x− LλΛ+x‖H
‖x‖H

= 0 .

We can conclude that there exists an N ∈ N such that

‖Λ−x− LλΛ+x‖H ≤
‖x‖H

2
for all x ∈ Xn with n ≥ N . In the remainder we assume without loss of
generality that N = 1. Note that

0 = lim
n→∞ sup

x∈Xn
‖x‖H=1

‖(AF − λ)x‖H = lim
n→∞ sup

x∈Xn
‖x‖H=1

sup
y∈H
‖y‖H=1

|〈(AF − λ)x, y〉H|

= lim
n→∞ sup

x∈Xn,y∈F
‖x‖H=1,‖y‖H=1

|[Q̂λΛ+x](Λ+y)−〈(B+λ)(Λ−x−LλΛ+x), (Λ−y−LλΛ+y)〉H|

and in particular

0 = lim
n→∞ sup

x∈Xn
‖x‖H=1

sup
y∈(1+Lλ)F+
‖y‖H=1

|〈(AF − λ)x, y〉H|

= lim
n→∞ sup

x∈Xn
‖x‖H=1

sup
y+∈F+
‖y+‖λ=1

|[Q̂λ(Λ+x)](y+)| .

Now let X+
n := Λ+Xn ⊂ F+. If x ∈ Xn is an element of F−, then by (16)

〈(AF − λ)x, x〉H ≤ (λ0 − λ)‖x‖2H
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and thus

|〈(AF − λ)x, x〉H| ≥ (λ− λ0)‖x‖2H
which is a contradiction to the definition of Xn. Thus dimX+

n = d. Fur-
thermore for x ∈ Xn by an application of the lower triangle inequality

‖Λ+x‖λ = ‖Λ+x+ + LλΛ+x‖H = ‖x− (Λ−x− LλΛ+x)‖H ≥
‖x‖H

2 .

As a consequence

lim
n→∞ sup

x+∈X+
n

‖x+‖λ=1

sup
y+∈F+
‖y+‖λ=1

|[Q̂λ(x+)](y+)| = 0

and thus also

lim
n→∞ sup

x+∈X+
n

‖x+‖λ=1

∥∥∥Q̂λx+
∥∥∥
F ′+,λ

= 0 . (17)

This implies that zero is in the spectrum of Qλ by a generalised version
of Weyl’s criterion, which can for example be found in [24]. To prove this
taking into account the multiplicity d, we let ε > 0 and let P be the spectral
measure of Qλ. If dim ranP ((−ε, ε)) ≤ d − 1 then we can find a sequence
of xn ∈ X+

n with ‖xn‖λ = 1 and P ((−ε, ε))xn = 0. Using the embedding
j = jG′+→F ′+ ◦ iG+→G′+ we can compute that for any x ∈ F+
∥∥∥Q̂λx

∥∥∥
F ′+,λ

=
∥∥∥(Q̂λ + κλj)−1Q̂λx

∥∥∥
F+,λ

=
∥∥∥(Qλ + κλ)

1
2 (x− κλ(Q̂λ + κλj)−1j(x))

∥∥∥
λ

=
∥∥∥(Qλ + κλ)

1
2 (x− κλ(Qλ + κλ)−1x)

∥∥∥
λ

=
∥∥∥Qλ(Qλ + κλ)−

1
2x
∥∥∥
λ
.

Together with the spectral theorem we obtain that
∥∥∥Q̂λxn

∥∥∥
2

F ′+,λ
=
∫ −ε

−κλ+1

t2

t+κλ
dPxn,xn(t)+

∫ ∞

ε

t2

t+κλ
dPxn,xn(t)≥ ε2

ε+κλ
‖x‖2λ

which is a contradiction to (17). It remains to prove that 0 = µk(Qλ), for
some k ∈ N.

Since λ < sup`≥1 λ` there exists an ` ∈ N such that λ < λ`. By definition
µ`(Qλ`) = 0 and thus for any subspace V ⊂ F+ of dimension ` there exists
an xV+ ∈ V such that

qλ`(x+, x+) ≥ −ε‖x+‖2λ .
By Lemma 8 we obtain that

qλ(xV+, xV+) ≥ qλ`(xV+, xV+) ≥ −ε
∥∥∥xV+

∥∥∥
2

λ`
≥ −ε

∥∥∥xV+
∥∥∥

2

λ
.

This implies that µ`(Qλ) ≥ 0, and consequently 0 = µk(Qλ) for some k < `.
We can conclude that λ = λk, which completes the proof of Theorem 1.
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3. Application to the Dirac–Coulomb Operator

Let H0 = −iα·∇+β be the free Dirac operator where α1, α2, α3, β ∈ C4×4

with

αiαj + αjαi = 2δijIC4 , αiβ + βαi = 0 , β2 = IC4 .

We choose the representation

αi =
(

0 σi

σi 0

)
, β =

(
IC2 0
0 −IC2

)
.

The free Dirac operator is essentially self-adjoint on C∞0 (R3;C4). The Dirac–
Coulomb operator Hν = H0−ν/|x| is symmetric on D(Hν) = C∞0 (R3;C4) ⊂
L2(R3;C4) =: H. Let Λ± be the Talman projections,

Λ+

(
ϕ

ψ

)
=
(
ϕ

0

)
, Λ−

(
ϕ

ψ

)
=
(

0
ψ

)
.

Then clearly Λ±D(Hν) ⊂ D(Hν) and thus the first assumption of Theorem
1 is satisfied. We further compute that

λ0 = sup
ψ∈C∞0 (R3;C2)\{0}

∫
R3(−1− ν

|x|)|ψ(x)|2 dx
‖ψ‖2H

= sup
x∈R3

(−1− ν/|x|) = −1 .

Dolbeault, Esteban, Loss and Vega [9] proved the Hardy inequality
∫

R3

|σ · ∇ψ(x)|2
1 + 1

|x|
dx+

∫

R3

(
1− 1
|x|

)
|ψ(x)|2 dx ≥ 0 (18)

for all ψ ∈ H1(R3;C2) by analytic methods. Following similar computations
in [13, 12] we can use (18) to prove that q0(ψ,ψ) ≥ 0 for all ψ ∈ C∞0 (R3;C2)
and all ν ∈ [0, 1]. Here qE is the Schur complement

qE(ψ,ψ) =
∫

R3

(
1− ν

|x| − E
)
|ψ(x)|2 dx+

∫

R3

|σ · ∇ψ(x)|2
1 + ν

|x| + E
dx .

As a consequence of Lemma 8 (iii) we obtain λ1 ≥ 0 > λ0. Note that this
statement can also be proved by means of an abstract continuation principle
[10, Section 3] and can then in turn be used to establish the Hardy inequality
(18) [10, Section 4]. Since in addition −1−ν/|x| is essentially self-adjoint on
C∞0 (R3;C2), all the conditions of Theorem 1 are satisfied and thus for any
ν ∈ [0, 1] there exists a self-adjoint extension of Hν with eigenvalues given
by

λk = inf
V⊂C∞0 (R3;C2)

dimV=k

sup
ψ∈(V×C∞0 (R3;C2))\{0}

〈ψ,Hνψ〉H
‖ψ‖2H

.

The self-adjoint extension coincides with extension constructed in [13] and
thus for ν < 1 also with the extensions of Schmincke [30], Wüst [34, 35] and
Nenciu [27] (which were all proved to be equal by Klaus and Wüst [21]).
The variational principle for this distinguished extension is the same as the
one obtained in [12].
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To establish a second variational principle, we can choose Λ± to be spec-
tral projections of the free Dirac operator,

Λ+ = PH0 [0,∞) , Λ− = PH0(−∞, 0) .

Let Hν again denote the Dirac operator with Coulomb potential acting on
the domain D(Hν) = F+⊕F− ⊂ L2(R3;C4) =: H with F± = Λ±C∞0 (R3;C4).
The operator Hν is symmetric and the first assumption of Theorem 1 is
satisfied. Again we can compute λ0 to be

λ0 = sup
ψ∈F−\{0}

〈ψ, (−
√

1−∆− ν/|x|)ψ〉H
‖ψ‖2H

≤ sup
x∈R3

(−1− ν/|x|) = −1 .

Using an abstract continuation principle, it was proved in [10] that λ1 ≥
0 > λ0 for ν ∈ [0, 1). To extend this result to the endpoint ν = 1 we note
that by the above for any ν ∈ [0, 1) the Schur complement qE

qE(ψ,ψ) =
〈
ψ,
(√

1−∆− ν

|x| − E
)
ψ

〉

H

+
〈

Λ−
ψ

|x| ,
(
Λ−
(√

1−∆ + ν

|x| + E
)
Λ−
)−1

Λ−
ψ

|x|

〉

H

satisfies q0(ψ,ψ) ≥ 0 for all ψ ∈ Λ+H1/2(R3). Taking the limit ν → 1 one
obtains (see [12, Lemma 15]) the analogue of (18)
〈
ψ,
(√

1−∆− 1
|x|
)
ψ

〉

H
+
〈

Λ−
ψ

|x| ,
(
Λ−
(√

1−∆ + 1
|x|
)
Λ−
)−1

Λ−
ψ

|x|

〉

H
≥ 0 .

In contrast to the case of the Talman projections, we are not aware of an
analytic proof of this inequality. By Lemma 8 (iii) this inequality proves
that λ1 ≥ 0 > λ0 still holds in the endpoint case ν = 1. As discussed in the
appendix, the operator Λ−(

√
1−∆ + ν/|x|)|F− is essentially self-adjoint on

Λ−C∞0 (R3;C4) ⊂ Λ−L2(R3;C4). Thus all the conditions of Theorem 1 are
satisfied and for any ν ∈ [0, 1] we obtain a a self-adjoint extension of Hν

with eigenvalues given by

λk = inf
V⊂Λ+C∞0 (R3;C4)

dimV=k

sup
ψ∈(V⊕Λ−C∞0 (R3;C4))\{0}

〈ψ,Hνψ〉H
‖ψ‖H

.

This is the same result as in [12].

4. Self-adjoint Extensions and the APS Boundary Condition

We consider an operator of the form

A = σ(∂x +B) (19)

acting on functions in H = L2((0, 1);K) with K being a complex Hilbert
space. The operator B is densely defined on a domain D(B) ⊂ K and does
not depend on x. It is self-adjoint and has discrete spectrum. The map σ
is an automorphism on K, equally independent of x. Furthermore, we make
the following assumptions:
(i) σ2 = −I , σ∗ = −σ,
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(ii) {B, σ} = Bσ + σB = 0,
(iii) dim kerB <∞, kerB = N+ ⊕N−for some subspaces N± ⊂ D(B) and
(iv) σ(N−) = N+ .
On the domain D(A) = C1

0((0, 1);D(B)), A is a well-defined symmetric
operator. Continuity and differentiability on the set D(A) are defined with
respect to the graph norm of B on D(B).

Remark 13.
• As an example we could take K to be the Hilbert space of square
integrable functions on S1, parametrised by a variable y. If then
B is defined on the continuously differentiable periodic functions as
B = iσ3∂y and σ = iσ2, with the Pauli matrices σi, we may identify
A with the Dirac operator on the cylinder of height one.
• More generally, we may think of B being any first-order differential
operator on some closed manifold Σ such that A represents a differ-
ential operator (of first order) on a generalised cylinder. In fact, any
first-order elliptic operator on a compact manifoldM with boundary
Σ takes the form A = σ(∂x + B) on a collar neighbourhood of the
boundary [1], but B and σ are not necessarily independent of x.

These special cases are included in our considerations but we do not re-
strict ourselves to them.

From assumptions (i), (iii) and (iv) we conclude that the kernel of B is
of even dimension, hence dim kerB = 2N0 for some N0 ∈ N0. Furthermore,
the vanishing anticommutator {B, σ} implies that σ maps elements from
the positive spectral subspace of B to the negative spectral subspace and
vice versa.

It is well-known (cf. e.g. [11], [16]) that A|C1
0((0,1);D(B)) has a self-adjoint

extension characterised by a non-local boundary condition known as the
‘Atiyah–Patodi–Singer boundary condition’. Let us denote by P+

B>0 the
projection onto the sum of N+ and the positive spectral subspace of B.
Then the following holds.

Proposition 14 (APS). The operator A = σ(∂x + B) from (19) is self-
adjoint on the domain
D(AAPS) =

{
f ∈ L2((0, 1);D(B)) ∩H1((0, 1);K) : P+

B>0f |x=0 = 0
and P+

B>0f |x=1 = 0
}
.
(20)

Also here, D(B) and K are to be understood as Hilbert spaces with their
respective norms, in the sense that f ∈ D(AAPS) is a function such that
‖f‖, ‖Bf‖ and ‖∂xf‖ are all square-integrable. A proof of this proposition
follows by explicit calculation.

Starting from the symmetric operator A = σ(∂x+B) in (19) we can show
that it falls into the class of gapped operators for which our construction of
a self-adjoint extension applies. Indeed we find:
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Theorem 15. Theorem 1 applies to the operator A = σ(∂x + B) defined
on C1

0((0, 1);D(B)). The self-adjoint extension constructed in this way co-
incides with the Atiyah–Patodi–Singer extension AAPS from Proposition 14.

In this sense the extension from Theorem 1 is characterised by the global
boundary conditions from (20). We prove Theorem 15 in the remainder of
this section.

Let P−B<0 the orthogonal projection complementary to P+
B>0, i.e. the

projection onto the sum of N− and the negative spectral subspace of B. If
we write K± = P±B≷0K and H± = L2((0, 1);K±) then H = H+ ⊕H− is an
orthogonal decomposition of H with corresponding orthogonal projections
Λ± such that

F± = Λ±D(A) = C1
0((0, 1);K± ∩D(B)) ⊂ D(A) .

It is easy to see that σ(K+) = K− and σ(K−) = K+. We can conclude that
Λ−AΛ− = 0 and hence Λ−AΛ− is essentially self-adjoint on C1

0((0, 1);D(B))
and λ0 = 0.

Let `k, k ∈ Z\{0} be the eigenvalues of B such that `k ≥ `k′ if k > k′ and
`k = 0 for −N0 ≤ k ≤ N0. We denote the corresponding eigenvectors of B
by ϕk and assume they are chosen such that σϕk = −ϕ−k and σϕ−k = ϕk
for k > 0. Any function u ∈ F+ has then an expansion

u(x) =
∑

k>0
uk(x)ϕk

with functions uk ∈ C1
0((0, 1);C) and similarly for v ∈ F−.

We can then write for any u ∈ F+ and any v ∈ F−
〈u+ v, σ(∂x +B)(u+ v)〉
=
∑

k>0

∑

l<0
〈ukϕk, σ(∂x +B)vlϕl〉 + complex conjugate

=
∑

k>0

∑

l<0
〈ukϕk, (∂x −B)vlϕ−l〉 + c.c.

=
∑

k,l>0
〈ukϕk, (∂x − `l)v−lϕl〉 + c.c.

=
∑

k>0
〈uk, (∂x − `k)v−k〉 + c.c. .

Hence, we can rewrite the expectation value of A as
∑
k>0 〈uk, (∂x − `k)v−k〉 + c.c.

‖u‖2 + ‖v‖2

=
∑

k>0:uk 6=0 or v−k 6=0

‖uk‖2 + ‖v−k‖2

‖u‖2 + ‖v‖2
〈uk, (∂x − `k)v−k〉 + c.c.
‖uk‖2 + ‖v−k‖2

which we can identify with an arithmetic mean of expectation values for sin-
gle k’s weighted according to their norm. Clearly, this expression is bounded
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by
sup

k>0:uk 6=0 or v−k 6=0

〈uk, (∂x − `k)v−k〉 + c.c.
‖uk‖2 + ‖v−k‖2

.

Taking the supremum over v ∈ F− finally gives an upper bound

sup
v∈F−

〈u+ v,A(u+ v)〉
‖u‖2 + ‖v‖2

≤ sup
k>0

sup
v−k 6=0

〈uk, (∂x − `k)v−k〉 + c.c.
‖uk‖2 + ‖v−k‖2

and indeed, equality holds since we can always find a sequence of v approx-
imating the right-hand-side. Clearly, we find the supremum over v−k by
choosing v−k = λ(−∂x− `k)uk for some real number λ. Maximising over all
values of λ we find λ = ‖uk‖

‖(−∂x−`k)uk‖ and hence

sup
v∈F−

〈u+ v,A(u+ v)〉
‖u‖2 + ‖v‖2

= sup
k>0:
uk 6=0

‖(−∂x − `k)uk‖
‖uk‖

.

Note that the left-hand side is precisely E(u) as defined in Lemma 12. By
construction the supremum is achieved at v = LE(u)u which coincides with
the relation v−k = λ(−∂x − `k)uk above for λ = E(u)−1.

Taking the infimum over all u 6= 0 we then obtain

λ1 = inf
u∈C1

0((0,1);K+∩D(B))
u6=0

sup
k>0:
uk 6=0

[
`2k + ‖−∂xuk‖

2

‖uk‖2
] 1

2

= π > 0 (21)

if there is an `k = 0. We have used that by the variational principle for the
Friedrichs extension of the Laplace operator the last term gives the lowest
eigenvalue of the Dirichlet Laplacian on L2((0, 1)). If kerB = {0}, then
λ1 > π. In both cases, A is a gapped operator and all assumptions for
constructing a self-adjoint extension as in Theorem 1 are satisfied.

For comparison with the APS-extension we are interested in the domain
of AF , that is in particular in how the Hilbert space F+ appears in this
setting. Recall that F+ is the closure of F+ in the norm ‖·‖F+,E

constructed
from the quadratic form qE and the graph norm of the operator LE

‖u‖2F+,E
= qE(u, u) + κE‖LEu‖2H ,

where in our setting qE(u, u) = −E‖u‖2+ 1
E

(‖∂xu‖2+‖Bu‖2) and ‖LEu‖2 =
1
E2
(‖∂xu‖2 + ‖Bu‖2). Using that

λ2
1‖u‖2 ≤ ‖∂xu‖2 + ‖Bu‖2 ,

which follows from comparison with (21), it is directly seen that qE(u, u) ≥
(λ1−E)‖u‖2 +( 1

E − 1
λ1

)(‖∂xu‖2 +‖Bu‖2) and hence ‖·‖F+,E
is equivalent to

the sum of norms ‖·‖ + ‖∂x·‖ + ‖B·‖ as long as E < λ1. Closing F+ in this
norm gives the Hilbert space L2((0, 1);D(B)∩K+)∩H1

0 ((0, 1);K+), as can
be seen from the following argument. Given an f ∈ L2((0, 1);D(B)∩K+)∩
H1

0 ((0, 1);K+), we use the standard approximation by smooth, compactly
supported functions by mollification of a function in H1

0 ((0, 1);K+), which
allows to construct a sequence of fn ∈ C1

0((0, 1);D(B)∩K+) that converges
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to f in the norm ‖·‖ + ‖∂x·‖, see e.g. [15, Chapter 5.5]. Since Bf ∈
L2((0, 1);K+), it may be approximated in the same fashion such that the
sequence {fn} will also converge in ‖·‖ + ‖B·‖. These considerations show
that indeed D(AAPS) ⊂ F+⊕H− and thus AAPS coincides with AF by the
uniqueness property proved in Theorem 1.

Appendix A. Essential Self-Adjointness of the
Brown–Ravenhall Operator

Let H0 be the self-adjoint free Dirac operator with domain H1(R3;C4) ⊂
L2(R3;C4) and denote by Λ± the projections onto the positive/negative
spectral subspace of H0. For γ ∈ R the Brown–Ravenhall operator [5] is
defined as

Bγ = Λ+(H0 − γ/|x|)Λ+ = Λ+(
√

1−∆− γ/|x|)Λ+

on the Hilbert space Λ+L2(R3;C4). For a comprehensive review we refer to
the textbook of Balinsky and Evans [2]. While the physically relevant case
is γ > 0, we are interested in the case where γ = −ν ∈ [−1, 0]. For γ < 3/4
the operator Bγ was proved to be self-adjoint on Λ+H1(R3;C4) by Tix [32].
Since Λ+H1(R3;C4) ⊂ H1(R3;C4) we obtain from Hardy’s inequality
∥∥∥∥Λ+

γ

|x|Λ+ψ

∥∥∥∥
L2(R3;C4)

≤ 2γ
∥∥∥∥

1
2|x|Λ+ψ

∥∥∥∥
L2(R3;C4)

≤ 2γ‖∇Λ+ψ‖L2(R3;C4)

for any ψ ∈ H1(R3;C4). To prove that B−ν is essentially self-adjoint on
Λ+C∞0 (R3;C4), it thus suffices to prove the statement for B0. This is an im-
mediate consequence of the fact that the free Dirac operator H0 is essentially
self-adjoint on C∞0 (R3;C4).

We can also conclude that the operator Λ−(
√

1−∆ + ν/|x|)Λ− is es-
sentially self-adjoint on Λ−C∞0 (R3;C4) since it is unitarily equivalent to
the Brown–Ravenhall operator B−ν via the transform U : L2(R3;C4) →
L2(R3;C4)

[
U

(
ψ1
ψ2

)]
(x) =

(
ψ2(−x)
ψ1(−x)

)
.

References
[1] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian

Geometry. I, Math. Proc. Camb. Phil. Soc. (1975), 77, 43
[2] A. A. Balinsky and W. D. Evans, Spectral analysis of relativistic operators, Imperial

College Press, London, 2011
[3] M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert

space. Translated from the 1980 Russian original by S. Khrush and V. Peller. Math-
ematics and its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht,
1987.

[4] J. G. Brasche and H. Neidhardt, Some remarks on Krĕın’s extension theory, Math.
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3 | Preliminaries

3.1 Introduction

Exact solvability of a quantum mechanical many-body model is rather an exception than the
rule. This is one of the reasons for the importance of approximation models in mathematical
physics theory.

A large part of the mathematical analysis of Bose systems is based on Bogoliubov’s
famous approximation theory that dates back to the year 1947. In our project we are
concerned with a variational formulation of Bogoliubov’s approximation that was proposed
by Napiórkowski, Reuvers and Solovej in [NRS18a] and [NRS18b]. We study this approx-
imation scheme by application to the Lieb–Liniger model, a one-dimensional model for
bosonic particles, solved by Lieb and Liniger in [LL63]. We derive the ground state energy
for the limiting cases of weak and strong coupling and compare it to the exact solution.

In this introductory chapter we give a short overview, introducing the Lieb–Liniger
model as well as the Bogoliubov variational principle. In Chapter 4 we derive our results
for the ground state energy. The chapter is structured such that we �rst present some
derivations for general coupling and subsequently deal with �rst the case of strong and
then weak coupling.

Our main results are found in Theorem 3 and Theorem 4.

3.2 The Lieb–Liniger model

Lieb and Liniger [LL63] introduced in 1963 a model for a gas of Bose particles in one dimen-
sion interacting via a two-body delta-potential. The gas is modelled by the Schrödinger
equation for N particles in a one-dimensional box of length L with a Hamiltonian given by

H = −
N∑

i=1

∂2

∂x2
i

+ 2c
∑

1≤i<j≤N
δ(xi − xj) (3.1)

with coupling constant c ≥ 0. This model has been solved exactly in the sense that all
eigenfunctions can be calculated explicitly and corresponding energy eigenvalues are
uniquely determined by a transcendental equation [LL63, Lie63]. This is a rare property for
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a quantum many body problem to have, making it ideal for testing approximation schemes,
as was also pointed out in [LL63].

The density of the gas is denoted by % = N
L . Rescaling the system in length by a factor

of %, that is viewing wave functions as functions of a variable z = %x, we �nd that the
Hamiltonian transforms to H̃ with

H̃%−2 = −
N∑

i=1

∂2

∂z2
i

+ 2 c
%

∑

1≤i<j≤N
δ(zi − zj) .

The system is thus really dependent only on one parameter, the dimensionless quantity
c
% =: ξ.

Similar dimensional arguments show that the total energy of the system scales with N%2

and thus the ground state energy E0 of the system is of the form E0 = N%2e(ξ) where
e(ξ) is the dimensionless ground state energy per particle of the operator H̃%−2, depending
only on the parameter ξ (cf. also [LL63]).

For the thermodynamic limit, where N,L→∞ while % = N
L is �xed, Lieb and Liniger

present an equation that determines e(ξ) uniquely (equation (3.19) in [LL63]; the parameter
γ is exactly ξ). Moreover, they show that e(ξ) is an analytic function of ξ except at the
point ξ = 0. The expression determining e(ξ) does however only give an implicit formula
for e(ξ) which in the absence of an explicit solution has been studied numerically.

Figure 3.1: The ground state energy per particle e(ξ) as a function of ξ which here is called
γ. Curve 1 shows e(ξ) as calculated numerically. Curve 2 gives the zero-order
perturbation theory, e(ξ) = ξ and curve 3 is e(ξ) according to Bogoliubov’s
theory.1
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Figure 3.1 illustrates the numerical solution of e(ξ) in curve 2. It is compared to the
zeroth order perturbation, e(ξ) = ξ and an approximation by Bogoliubov’s theory.

The dashed horizontal line marks the asymptotic limit of e(ξ) at π
2

3 for ξ → ∞. This
limit coincides with the ground state energy of a general one-dimensional system with a
hard-core potential as computed by Girardeau in [Gir60]. For such systems of impenetrable
bosons in one dimension, Girardeau computed the ground state energy and showed that
the corresponding bosonic ground state is identical to that of a non-interacting fermionic
system.2 Clearly, the two-body potential of the Hamiltonian H of the Lieb–Liniger model
becomes hard-core in the limit ξ →∞.

3.3 A Bogoliubov variational principle

In his work on the theory of super�uidity, Bogoliubov [Bog47] introduced in 1947 an
approximation scheme for the low-excitation spectrum of a gas of interacting bosonic
particles, which since then has found many applications in the study of many-body systems
of Bosons.

The idea behind his method is the assumption that at zero temperature and for small
coupling constants most of the particles in the gas will occupy the lowest one-particle
energy state, thereby forming a condensate with macroscopic occupation number N0 � 1.
This may be used to approximate the theory: for weak interactions Bogoliubov argues
that one may apply an approximative Hamiltonian only containing quadratic terms in the
bosonic �eld operators to describe the system.

Bogoliubov’s approximation scheme is accomplished in two steps. We recall that a
generic translation-invariant Hamiltonian of a non-relativistic gas on a d-dimensional torus
with two-point interaction may in second quantisation be written as

H =
∑

p

(ε(p)− µ)a∗pap + 1
2Ld

∑

k,p,q

v(p)a∗k+pa
∗
q−pakaq (3.2)

with ε(p) = ~2

2mp
2 the free one-particle energy eigenvalues and v(p) being a two-body

potential function. We chose the grand canonical version including the chemical potential
µ. Furthermore, for brevity we write a(∗)

p = a(∗)(φp), where {φp}p is the orthonormal
basis φp = eipx√

Ld
of momentum eigenstates in the one-particle Hilbert spaceH, which has a

discrete index set as long as the system is of �nite size. As usual, a and a∗ are the operators
mapping elements fromH to the algebra of bosonic annihilation and creation operators on
the Fock space F(H), which satisfy the canonical commutation relations.

We now introduce the approximations Bogoliubov suggested. The �rst observation
he makes is that due to the large number N0 of particles in the ground state, here the

1Figure 3.1 was published by user Elieb at https://en.wikipedia.org/w/index.php?curid=24952249
under a CC BY-SA 3.0 license. It is also found in [LL63].

2In fact, Girardeau showed this not only for the ground state but for the whole spectrum.

69

https://en.wikipedia.org/w/index.php?curid=24952249


Chapter 3. Preliminaries

p = 0 state, we have N0 + 1 ≈ N0. Hence it is reasonable to neglect the commutator
a∗0a0−a0a∗0 = 1 and replace the operators a0 and a∗0 by a number, setting a0 = a∗0 =

√
N0.

Secondly, since we assume a weak interaction with only few excitations, it is valid to
ignore the contribution of terms in the Hamiltonians that are of power larger than two
in the operators ak or a∗k with k 6= 0. What one is left with after some calculations is a
Hamiltonian that is quadratic in the a(∗)

k operators for k 6= 0. We call this approximated
Hamiltonian the Bogoliubov Hamiltonian HBog.

In [NRS18a] and [NRS18b], Napiórkowski, Reuvers and Solovej introduced and analysed
a variational reformulation of Bogoliubov’s approximation theory in three dimensions. The
idea behind this approach is to exploit the fact that when determining the ground state of a
Bogoliubov Hamiltonian variationally it is su�cient to restrict the variation over all states
to a variation over a certain class of Bogoliubov variational states only. This means that if
E

Bog
0 is the ground state of a Bogoliubov Hamiltonain HBog then we have

E
Bog
0 := inf

{
〈ψ,HBogψ〉
‖ψ‖2

∣∣∣∣∣ ψ ∈ F(H)
}

= inf
{
〈ψ,HBogψ〉
‖ψ‖2

∣∣∣∣∣ ψ is a Bogoliubov variational state in F(H)
}
.

The approach the authors in [NRS18a] and [NRS18b] choose is to formulate a variational
principle for the ground state energy of a Bose gas by leaving the Hamiltonian of the system
unapproximated but vary over the Bogoliubov variational states only. The ground state en-
ergy may then be calculated by minimising an energy functional over the set of Bogoliubov
variational states. We call this approximation theory the Bogoliubov variational principle.

Before we formulate this variational principle we �rst give a basic description of the
class of Bogoliubov states. It is generally known that the ground state of a purely quadratic
Hamiltonian is a quasi-free state (see e.g. Theorem 11.5 in [Sol14]), where by a quasi-free
state we mean a state in the bosonic Fock state for which Wick’s theorem holds. This
means that we can �nd the ground state of a quadratic Hamiltonian by a variation over
quasi-free states. Quasi-free states are completely characterised by their corresponding
generalised one-particle density matrix. More speci�cally, if ψ ∈ F(H) is a quasi-free state
in the bosonic Fock space over the one-particle Hilbert space H then we call the linear
operator Γψ : H⊕H′ → H⊕H′, withH′ denoting the dual space ofH,

Γψ =
(
γψ αψ
α∗ψ 1 + JγψJ

∗

)

with γψ (γψ + 1) ≥ αψα∗ψ the generalised one-particle density matrix of ψ. Here J : H →
H′ is the operator de�ned by [J(g)](h) = 〈g, h〉H for all g, h ∈ H and γψ and αψ are the
one-particle density matrix and the pairing operator corresponding to ψ, respectively. The
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one-particle density matrix is the operator γψ : H → H which is de�ned by

〈h, γψ g〉H = 〈ψ, a∗(g)a(h)ψ〉H ∀g, h ∈ H .

Similarly, the pairing operator αψ : H′ → H is the operator for which

〈h, αψJg〉H = 〈ψ, a(g)a(h)ψ〉H ∀g, h ∈ H .

It holds α∗ψ = JαJ . Recalling our de�nition of quasi-free states, it is clear that the general-
ised one-particle density matrix of a state Γψ of a quasi-free state ψ ∈ F(H) completely
speci�es the state ψ. In fact, there is a one-to-one correspondence between generalised
one-particle density matrices and quasi-free states (cf. e.g. [Nam20], Chapter 6.5).

Quasi-free states are suitable variational states for quadratic Hamiltonians and thus for
the excitation part of the Bogoliubov Hamiltonian. However, they are not alone su�cient to
specify the ground state of a gas described by a Bogoliubov Hamiltonian. One additionally
needs to take into account the fraction of particles in the condensate at k 6= 0, and thereby
Bogoliubov’s c-number substitution.

This is done by exploiting the fact that for every g ∈ H one can �nd a unitary transform-
ation Ug : F(H)→ F(H) such that

U∗g a(f)Ug = a(f) + 〈f, g〉H ∀f ∈ H .

It becomes clear how this relates to the particle condensate when we now choose g ∈ H
to be the one-particle ground state wave function, g =

√
N0φ0. Then for ap = a(φp) we

have
U∗N0apUN0 = ap +

√
N0δp,0 .

This means that this transformation shifts a0 by
√
N0 but leaves all ap for p 6= 0 �xed. The

full class of Bogoliubov variational states is then de�ned to be the set
{
ψ = Ugωγ,α ∈ F(H)

∣∣∣ ωγ,α is a quasi-free state, g =
√
N0φ0

}
.

We can now formulate the Bogoliubov variational principle of [NRS18a] for a translation-
invariant system of bosonic particles in three dimensions de�ned on a cube with side-length
L with periodic boundary conditions. The one-particle spaceH is the space of symmetric
square-integrable wave-functions and we choose the plane wave-basis for H such that
ap = a(L−3/2eipx) with momenta p ∈ 2π

L Z3.

In this case, the one-particle ground state is the state with p = 0 and the correct
condensate function is the constant function g ≡ L−3/2

√
N0, where by N0 we denote the

number of particles in the condensate. Furthermore, the operators γ and α specifying a
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translation-invariant quasi-free state ψ are de�ned by the functions

γ(k) := 〈ψ, a∗kakψ〉 (3.3)

and
α(k) := 〈ψ, aka−kψ〉 . (3.4)

Hence, a Bogoliubov variational state is determined by a triple (γ, α, %0) with functions
γ and α as in (3.3) and (3.4) and %0 := N0

L3 , describing the momentum distribution of the
particles, pairing in the system and the condensate density, respectively. By evaluating the
expectation value of a Hamiltonian as in (3.2) in such a Bogoliubov state, we obtain in the
limit L→∞ the energy per unit volume.

The free energy per volume in a translation-invariant quasi-free state for general tem-
perature T ≥ 0 in the limit L→∞ is then given by the Bogoliubov free energy functional
which we cite from [NRS18a]

F(γ, α, %0) = 1
(2π)3

∫
p2γ(p)dp− µ%− TS(γ, α) + V̂ (0)

2 %2

+ 1
2(2π)6

∫ ∫
V̂ (p− q)(α(p)α(q) + γ(p)γ(q))dpdq

+ %0
1

(2π)3

∫
V̂ (p)(γ(p) + α(p))dp .

(3.5)

Here, S is the entropy which can be explicitly expressed in terms of the functions γ and
α, cf. [NRS18a, p. 3]. The function V̂ in momentum space is the Fourier transform of a
radial two-body potential V (x). Without loss of generality it was restricted to real-valued
functions γ and α. The functional F is de�ned on the domain

D =
{

(γ, α, %0)
∣∣∣ γ ∈ L1((1 + p2)dp), γ(p) ≥ 0, α(p)2 ≤ γ(p)(1 + γ(p)), 0 ≤ %0 ≤ %

}
.

(3.6)
The total density % of the system is given by % = %0 + 1

(2π)3
∫
γ(p)dp. For positive

temperatures T ≥ 0 the condition α2(p) ≤ γ(p)(1 + γ(p)) is strictly speaking not needed
to be speci�ed explicitly since it is in this case already ensured by the entropy-term.

3.4 Bogoliubov variational approach for the Lieb–Liniger
model

In our project we are aiming at transferring the Bogoliubov variational approach from
[NRS18a] to one dimension in general and the Lieb–Liniger gas in particular. More spe-
ci�cally, we calculate the ground state energy of the Lieb–Liniger model by the Bogoliubov
variational principle and compare it to the exact solution of the model.
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In order to achieve this, we need to minimise the one-dimensional equivalent of the
functional F in (3.5) for the special case of V being a δ-potential, more speci�cally
V (xi − xj) = 2cδ(xi − xj). In addition, we here consider a canonical ensemble at
temperature T = 0, where the density % is �xed and µ = 0.

In this situation, the functional F simpli�es in various ways. Without the entropy and
chemical potential terms we are left with a functional where due to the special form of the
potential, with V̂ ≡ 2c, the potential energy does not vary with the speci�c form of γ and
α but only depends on the values of the integrals of γ and α, respectively. Additionally,
since we keep the total density % �xed, a state (γ, α, %0) ∈ D is entirely speci�ed by a tuple
(γ, α) satisfying the conditions in D, and we can always derive %0 from γ by the relation
%0 = % − 1

2π
∫
γ. At this stage we keep %0 as a notational aid, although it might appear

like an ‘overspeci�cation’ of a state, and we may freely interchange %0 and %− 1
2π
∫
γ.

The Bogoliubov free energy functional (3.5) adapted to the one-dimensional Lieb–Liniger
model at zero temperature and �xed density then becomes

F(γ, α, %0) = 1
2π

∫

R
p2γ(p)dp+ c

(
%2 + 1

π
%0

∫

R
γ(p)dp+ 1

4π2

(∫

R
γ(p)dp

)2

+ 1
π
%0

∫

R
α(p)dp+ 1

4π2

(∫

R
α(p)dp

)2
)
.

(3.7)

According to the Bogoliubov variational principle, if the ground state energy per unit
volume E0L−1 exists, then it is given by the in�mum of (3.7) over all states in D with
%0 = %− 1

2π
∫
γ. That is, we vary (3.7) over all γ and α satisfying the conditions in D.

After replacing all 1
2π
∫
γ by %− %0, we obtain an expression for the ground state energy

per particle given in dimensionless units,

e(ξ) = E0
N%2 = inf

(γ,α,%0)∈D:∫
γ=2π(%−%0)

1
%3F(γ, α, %0) = inf

(γ,α,%0)∈D:∫
γ=2π(%−%0)

1
%3

1
2π

∫

R
p2γ(p)dp+

ξ

(
2−

(
%0
%

)2
+ 1
π

%0
%2

∫

R
α(p)dp+ 1

4π2%2

(∫

R
α(p)dp

)2
)
.

(3.8)

This is the starting point for an estimation of the ground state energy.
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4 | Estimation of the ground state
energy

A calculation of the ground state energy of the Lieb–Liniger model by the Boguliubov
variational approach means to compute the in�mum in (3.8). Eventually we will see that
an exact computation is not feasible in a straightforward way. We can, however, expand
the ground state energy for large and small values of ξ.

The proof of these expansions is the aim of this chapter. In the �rst section, we start
by substantially simplifying (3.8). This will be done in the �rst section of this chapter.
Subsequently we �nd the expansions for large ξ and then small ξ.

4.1 Observations for general ξ

4.1.1 Minimisation in α

We start from (3.8) and calculate. The minimisation of (3.8) in α can be carried out directly
as soon as we notice that the energy is only dependent on the integral of α and that the
strictly convex function x2 + 2%0x has a unique minimiser at x = −%0.

Hence, without any further restrictions, any α that has
∫
α = −2π%0 would be a

minimiser in (3.8). However, since α is subject to the condition α(p)2 ≤ γ(p)(γ(p) + 1)
∀p ∈ R, the lowest energy we can get is when �nding an α that satis�es

∫
α = −min

{
2π%0,

∫ √
γ(γ + 1)

}
. (4.1)

In fact, there is always a 0 ≤ r0 <∞ such that the function de�ned by

αr0(p) := −min
{

2πr0,
√
γ(p)(γ(p) + 1)

}

has an integral satisfying (4.1) and satis�es the condition α2(p) ≤ γ(p)(γ(p) + 1) by
de�nition. To show that the integral of αr0 satis�es (4.1), we notice that for r = 0, we have∫
αr=0 = 0, whereas

∫
αr = − ∫ min

{
2πr,

√
γ(γ + 1)

}
is a continuous and monotone
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function of r and tends to − ∫
√
γ(γ + 1) for r →∞. Hence, by the intermediate value

theorem, it exists a r0 such that for α = αr0 equation (4.1) holds.

This means that the ground state energy per particle may be calculated as

E0
N%2 = 1

%3 inf
(γ,α,%0)∈D:∫
γ=2π(%−%0)

F(γ, α, %0) = 1
%3 inf

(γ,%0):
(γ,αr0 ,%0)∈D,∫
γ=2π(%−%0)

F(γ, αr0 , ρ0)

= inf
(γ,%0):

(γ,αr0 ,%0)∈D,∫
γ=2π(%−%0)

1
%3

1
2π

∫

R
p2γ(p)dp+ ξ

(
2−

(
%0
%

)2
− 2%0

%2 min
{
%0,

1
2π

∫ √
γ(γ + 1)

}

+ 1
%2

(
min

{
%0,

1
4π2

∫ √
γ(γ + 1)

})2
)
.

(4.2)

Furthermore, introducing two abbreviations

κ :=
∫
γ∫ √

γ(γ + 1)
(4.3)

and
δ := %− %0 (4.4)

we may rewrite the expression in (4.2) as

E0
N%2 = inf

(γ,κ,δ)∈D′0
E(γ, κ, δ)

:= inf
(γ,κ,δ)∈D′0

1
2π

1
%3

∫

R
p2γ(p)dp + ξ

(
2−

(
%− δ
%

)2
− 2%− δ

%2 min
{
%− δ, δ

κ

}

+ 1
%2

(
min

{
%− δ, δ

κ

})2)
,

(4.5)

where we now minimise over (γ, κ, δ) in the domain

D′0 = {(γ, κ, δ) | γ ∈ L1((1 + p2)dp), γ(p) ≥ 0,
∫
γ = 2πδ,

∫ √
γ(γ + 1) = 2π δ

κ
, 0 ≤ κ < 1, 0 ≤ δ ≤ %

}
.

That is, we minimise over all γ satisfying two additional integral constraints for a δ and a
κ in the given range. We will occasionally refer to the conditions γ ∈ L1((1 + p2)dp) and
γ ≥ 0 as the integrability and positivity condition for γ, respectively.
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4.1.2 Parametrisation of the minimising γ

Starting from (4.5), we can show that there exists a minimising γ and calculate it by the
method of Lagrange multipliers. This allows us in the end to rewrite (4.5) as an in�mum
over two parameters ε and δ, where ε is the characterising parameter for the ‘shape’ of γ.

First of all, for �xed 0 ≤ δ ≤ % and 0 ≤ κ < 1 and any arbitrary paramaters µ and λ, it
trivially holds that

inf
γ∈L1((1+p2)dp),γ≥0:∫
γ=2πδ,

∫ √
γ(γ+1)=2πδ/κ

∫
p2γ

= inf
γ∈L1((1+p2)dp),γ≥0:∫
γ=2πδ,

∫ √
γ(γ+1)=2πδ/κ

∫
p2γ + µ

∫
γ − λ

∫ √
γ(γ + 1)− 2πµδ + 2πλ δ

κ
,

and consequently also

inf
γ∈L1((1+p2)dp),γ≥0:∫
γ=2πδ,

∫ √
γ(γ+1)=2πδ/κ

∫
p2γ

≥ inf
γ∈L1((1+p2)dp),γ≥0

∫
p2γ + µ

∫
γ − λ

∫ √
γ(γ + 1)− 2πµδ + 2πλ δ

κ
.

(4.6)

Equality holds if there is a minimising γmin for the right-hand side in (4.6) that additionally
satis�es

∫
γ = 2πδ and

∫ √
γ(γ + 1) = 2π δκ . We �nd this γmin, dependent on µ and λ, by

solving the Euler-Lagrange equation for γ, which reads

p2 + µ− λ γ + 1
2√

γ(γ + 1)
= 0 . (4.7)

For any given choice of parameters µ and λ, this equation uniquely determines γmin, while
only certain choices µ and λ give a solution γmin that also satis�es γmin ∈ L1((1 + p2)dp
and γmin ≥ 0. Since the functional γ 7→ ∫

p2γ+µ
∫
γ−λ ∫

√
γ(γ + 1) is convex, it is also

assured that the extremum derived from the Euler-Lagrange equation is indeed a minimum.

As will be seen, it is possible to pick a µ and a λ such that γmin satis�es the positivity
and integrability condition and we also have

∫
γmin = 2πδ and

∫ √
γ(γ + 1) = 2π δκ . For

such a choice of parameters, (4.6) is indeed an equality and γmin is a minimiser for (4.5).

In a �rst step, we determine the possible range of µ and λ for γ to be non-negative and
γ ∈ L1((1 + p2)dp. From (4.7) we derive that any λ of interest needs to be non-negative
because p2 + µ is necessarily positive for large values of p. Isolating γ in (4.7) gives

γmin(p) = γµ,λ(p) := 1
2

(
p2 + µ√

(p2 + µ)2 − λ2 − 1
)
, (4.8)
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where the non-negativity of λ assures that γµ,λ non-negative. Besides that we see that
for λ > 0 we necessarily have µ ≥ λ for a γ that is real-valued and positive. For a γµ,λ
satisfying the integrability conditions in D′0 we �nally need µ > λ. The case λ = 0
corresponds to vanishing γ. It is not di�cult to check that the condition µ > λ > 0 or
λ = 0 is also su�cient for the positivity and integrability condition on γ.

In a next step we would like to prove that for any given choice of δ ≥ 0 and κ ≥ 0, there is
a µ and a λwith µ > λ > 0 or λ = 0 such that γµ,λ matches the positivity and integrability

condition and it additionally holds that
∫
γµ,λ = 2πδ and

∫ √
γµ,λ(γµ,λ + 1) = 2πδ

κ .

Indeed, we will be able to show that for any δ > 0 and κ > 0 there exist such µ and
λ, and in this case µ > λ > 0. While the parameters µ and λ are by our arguments not
necessarily uniquely determined by δ and κ. We still believe, although without being in
the possession of any proof, that for any pair of κ and δ there is exactly one µ and exactly
one λ.

The cases where either κ, δ or both are equal to 0 are slightly more involved but it
is possible to show that they only occur as limiting cases of a strictly positive δ and κ.
Therefore they may be left out in the determination of the in�mum.

In the following, we will give the necessary arguments that support these claims. First,
we set ε = λ

µ and then rewrite γµ,λ in terms of ε and µ. For µ > λ ≥ 0 the parameter ε is
non-negative and strictly smaller than 1. We can express the relevant integrals as functions
dependent on ε:

∫

R

γµ,λ(p)dp = √µ
∞∫

0

(
k2 + 1√

(k2 + 1)2 − ε2 − 1
)

dk =: √µI1(ε) (4.9)

as well as

∫

R

√
γµ,λ(p)(γµ,λ(p) + 1)dp = √µ

∞∫

0

ε√
(k2 + 1)2 − ε2 dk =: √µI2(ε) (4.10)

and

∫

R

p2γµ,λ(p)dp = µ
3/2

∞∫

0

k2
(

k2 + 1√
(k2 + 1)2 − ε2 − 1

)
dk =: µ3/2I3(ε) . (4.11)

For 0 ≤ ε < 1 the integrals I1, I2 and I3 all have �nite values. They are also continuous
functions of ε and they are 0 if and only if ε = 0. The ratio of

∫
γ and

∫ √
γ(γ + 1) only

depends on ε. More precisely,

κ(ε) = I1(ε)
I2(ε) , (4.12)

and κ is a continuous function of ε on the open interval (0, 1). From the properties of the
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integrals I1 and I2, more speci�cally their expansions around 0, it is not di�cult to derive
that limε→0 κ = 0, and clearly κ < 1 for all ε. Furthermore, it also holds that limε→1 κ = 1.
More detailed calculations which support these claims are also provided in the appendix.

By the intermediate value theorem we conclude that κ can be continuously extended to a
surjective function that maps the interval [0, 1) onto [0, 1). Hence, for given δ > 0 and κ >
0, there is an ε > 0, not necessarily unique, such that κ(ε) = κ and the function γµ,λ with

µ =
(

2πδ
I1(ε)

)2
and λ = εµ then satis�es

∫
γµ,λ = 2πδ and

∫ √
γµ,λ(p)(γµ,λ(p) + 1) = 2πδ

κ .
The following proposition proves that the cases where δ = 0 or κ = 0 do not need to be

discussed separately.

Proposition 4. The variational problem (4.5) is equivalent to a variational problem where
we replace D′0 by the domain D′ with

D′ = {(γ, κ, δ) | γ ∈ L1((1 + p2)dp), γ(p) ≥ 0,
∫
γ = 2πδ,

∫ √
γ(γ + 1) = 2πδ

κ
, 0 < κ < 1, 0 < δ ≤ %

}
.

Proof. First consider the case where δ = 0 and κ > 0. Then we also have γ ≡ 0. We choose
sequences {δn} with δn > 0 and δn → 0 as well as {κn} with κn > 0 and κn → κ. By
(4.12) we know there is a sequence {εn} with εn > 0 such that κ(εn) = κn. The sequence
{εn} is not necessarily convergent if the relation κ(ε) is not one-to-one. However, since
κ(ε) is continuous and furthermore κ = 0 if and only if ε = 0 we know that there is an
N ∈ N such that εn > c for all n ≥ N for some c > 0. Furthermore, we de�ne a sequence

{γn}, where γn(p) = γµn,λn(p) as given in (4.8) with µn =
(

2πδn
I1(εn)

)2
, µn > 0 for all n,

and λn = εnµn. Both {µn} and {λn} are convergent sequences with limit 0. Hence, {γn}
converges pointwise to γ0,0 ≡ 0 and we can see that the energy E(γn, κn, δn) (cf. (4.5))
converges to E(0, 0, κ) = ξ.

The case δ = 0 and κ = 0 is addressed in a very similar way. Here, we �x µ > 0 and
�nd a sequence of κn > 0 with κn → 0, as well as a corresponding sequence {εn}, such
that κ(εn) = κn. The εn’s converge to 0 since κ(ε) = 0 if and only if ε = 0. Additionally,
we de�ne sequences {δn} and {λn} by δn = 1

2π
√
µI1(εn) and λn = µεn. Both sequences

converge to 0 and so does γn = γµ,λn pointwise. By the same reasoning as in the former
case we then also �nd the limiting energy E(0, 0, 0) = ξ.

If δ > 0 but κ = 0, then, for any γ satisfying the conditions in D′0, we set γn =
γ1{p≤n} and δn = 1

2π
∫
γn. By monotone (or dominated) convergence the δn’s converge

δ. Likewise,
∫ √

γn(γn + 1) converges to
∫ √

γ(γ + 1), and thus the sequence {κn} with

κn := 2πδn
(∫ √

γn(γn + 1)
)−1

converges to 0. The energy E(γn, κn, δn) then converges
to E(γ, 0, δ).

We have thus been able to prove that there are numbers µ and λ, not necessarily unique,
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such that the function γµ,λ is a minimiser for γ in (4.5), and we can �nally conclude that

E0
N%2 = inf

(γ,κ,δ)∈D′
1

2π
1
%3

∫

R
p2γ(p)dp +

ξ

(
2−

(
%− δ
%

)2
− 2%− δ

%2 min
{
%− δ, δ

κ

}
+ 1
%2

(
min

{
%− δ, δ

κ

})2)

= inf
0<ε<1,
0<δ/%≤1

4π2
(
δ

%

)3 I3(ε)
I1(ε)3 + ξ

(
2−

(
1− δ

%

)2
−

2
(

1− δ

%

)
min

{
1− δ

%
,

1
κ(ε)

δ

%

}
+
(

min
{

1− δ

%
,

1
κ(ε)

δ

%

})2)

=: inf
0<ε<1,
0<δ/%≤1

Ek(ε, δ/%) + Ep(ε, δ/%) =: inf
0<ε<1,
0<δ/%≤1

E(ε, δ/%) ,

(4.13)

where κ is given by the relation (4.12). The notation Ek for the kinetic energy, comprising
the �rst term in the above expression for the energy, and Ep for the potential energy,
collecting all the remaining terms, was introduced here.

We make the following observation, which´ simpli�es (4.13) additionally.

Proposition 5. For the variational problem stated in (4.13), it holds:

i) The in�mum over ε is found for ε such that κ(ε) lies in the sector κ ≥ δ
%

(
1− δ

%

)−1
.

ii) The in�mum over δ is in fact a minimum and achieved for a δ > 0.

For the ground state energy this means that (4.13) can be rewritten as follows:

E0
N%2 = inf

0<δ/ρ≤1, 0<ε<1:
κ(ε)≥ δ

%

(
1− δ

%

)−1

E(ε, δ/ρ) = min
0<δ/ρ≤1

inf
0<ε<1:

κ(ε)≥ δ
%

(
1− δ

%

)−1

4π2
(
δ

%

)3 I3(ε)
I1(ε)3

+ ξ

(
1− 2δ

%

( 1
κ(ε) − 1

)
+ δ2

%2

( 2
κ(ε) + 1

κ(ε)2 − 1
))

.

(4.14)

Proof. ad i): Clearly, we can exclude that the in�mum is found for a δ > 0 and ε→ 0. This
is because I1(ε)−3 diverges as ε−6 whereas I3(ε) behaves like ε2 for ε→ 0 as computed
in the appendix. Thus, the kinetic energy diverges to in�nity whereas the potential energy
stays �nite in this limiting case.

Assume now that the ground state energy is a minimum achieved by a (δ/%)min and an
εmin such that κ(εmin) < (δ/ρ)min (1− (δ/ρ)min)−1. Then, the kinetic energy in the ground
state is

Ek(εmin, (δ/%)min) = 4π2
(
δ

%

)3

min

I3(εmin)
I3

1 (εmin)
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and the potential energy is

Ep(εmin, (δ/%)min) = 2ξ
(
δ

%

)

min

(
2−

(
δ

%

)

min

)
.

However, by keeping εmin �xed but choosing a δ/ρ < (δ/ρ)min we can see that both the
kinetic as well as the potential energy decrease.

ad ii): Assume the in�mum was found for (γ, κ, δ) ∈ D′ with δ → 0, or equivalently
for a (γ, κ, δ) ∈ D′0 with δ = 0. Then the total energy for this state is E(γ, κ, δ) = ξ since
we necessarily have γ = 0. However, it is easy to see that by choosing any other state
with γ close to 0, we always can achieve a lower energy: let γ be any non-zero function
in L1((1 + p2)dp) for which

√
γ(γ + 1) is also integrable and σ > 0 be a positive real

number. We now de�ne γσ = σγ. We can calculate the corresponding δσ and κσ directly
from γσ , and �nd, for σ small enough,

%− δσ = %− σ

2π

∫
γ >

√
σ

2π

∫ √
γ(σγ + 1) = δσ

κσ
.

This allows us to compute the total energy according to (4.13) and we obtain

E(γσ, κσ, δσ) = 1
2π

1
%3σ

∫
p2γ + ξ

(
2− 1

%2

(
%− σ

2π

∫
γ

)2

−
√
σ

π%2

(
%− σ

2π

∫
γ

)∫ √
γ(1 + σγ) + 1

4π2%2σ

(∫ √
γ(1 + σγ)

)2
)
.

If we let σ → 0, we �nd

E(γσ, κσ, δσ) = ξ −√σ 1
π%

∫
γ +O(σ)

and thus, for σ small enough, E(γσ, κσ, δσ) < ξ.

The variational problem (4.14) is not trivial to solve, and some of the di�culty stems
from the fact that we are lacking an explicit expression of ε in terms of κ since we are not
able determine any explicit values for the integrals I1 and I2 for arbitrary ε.

It is, however, possible to consider the problem in some limiting cases. In the following
we �rst address the situation where ξ →∞ and subsequently consider the behaviour of
the ground state energy when ξ → 0.
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4.2 Ground state energy for large ξ

For large ξ, we �nd an expansion of the ground state energyE0 as in the following theorem.

Theorem 3. In the limit of strong coupling or low density when ξ →∞, the ground state
energy per particle for the Lieb–Liniger model calculated by the Bogoliubov variational
principle and de�ned by (3.8) diverges and it holds

E0
N%2 = 4ξ1/2 +O(1) .

We will start with deriving an a priori upper bound for the lowest energy. By means of
this bound it will be possible to �nd the expansion of the in�mum in (4.14).

4.2.1 Upper bound

Proposition 6. In the limit ξ → ∞ the Lieb–Liniger ground state energy as de�ned in
Theorem 3 can be estimated from above by:

E0
N%2 ≤ 4ξ1/2 +O(1) . (4.15)

Proof. We derive the upper bound by constructing a suitable trial state (γ, κ, δ) ∈ D′ for
the variational problem in (4.13). In this triple, we set

δ(ξ) = 1
2%ξ

−1/2 ,

and
κ(ξ) = δ

%
(ξ) = 1

2ξ
−1/2 .

Furthermore we choose γ = γµ,λ with µ =
(

2πδ
I1(ε)

)2
and λ = µε for some ε satisfying the

relation (4.12) for the given κ. While we cannot be sure this ε is unique, it is enough for us
to know that there exists at least one. If there are several, we can arbitrarily choose one of
them.

For su�ciently large ξ the value of κ will be close to zero and the same holds for the
corresponding ε. We can �nd an expansion of κ around ε = 0 by using the relation (4.12).
Both I1 and I2 may be expanded around ε = 0 and for ε < 1 we have (cf. the appendix)

I1(ε) = 1
2

∫ 1
(k2 + 1)2 ε

2 +O(ε3)

I2(ε) =
∫ 1
k2 + 1ε+O(ε2) .
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This holds since both integrals are su�ciently regular as functions of ε, in particular not
only continuous but also repeatedly continuously di�erentiable and the derivatives are
bounded on any interval [0, r] with r < 1. We can thus write

κ(ε) = 1
2

∫ 1
(k2 + 1)2
∫ 1
k2 + 1

ε+O(ε2) ,

which also implies that κ has a non-zero derivative at ε = 0. By the inverse function
theorem, we equally obtain an expansion of ε around κ = 0

ε(κ) = 2

∫ 1
k2 + 1∫ 1

(k2 + 1)2

κ+O(κ2) . (4.16)

This allows us now to calculate the total energy for the state (γµ,λ, κ(ξ), δ(ξ)) as an
expansion in ξ for ξ → 0. First, since δ

κ > %− δ, the potential energy is

Ep(ε, δ/%(ξ)) = 2ξ δ
%

(ξ)
(

2− δ

%
(ξ)
)

= ξ
1/2
(

2− 1
2ξ
−1/2

)
= 2ξ1/2 − 1

2 .

For the kinetic energy we expand I3(ε) in a similar way as I1(ε) and I2(ε) to obtain

Ek(ε, δ/%(ξ)) = 4π2
(
δ

%

)3 I3(ε)
I3

1 (ε) = 4π2
(
δ

%

)3 1
I3

1 (ε)

(
1
2

∫ ∞

0

k2

(k2 + 1)2 dk ε2 +O(ε3)
)
.

(4.17)
Using (4.16) for rewriting both I3(ε) and I1(ε) as an expansion in κ, we �nd

I1(ε(κ)) = 2

(∫ 1
k2+1

)2

∫ 1
(k2+1)2

κ2 +O(κ3) , (4.18)

and likewise

I3(ε(κ)) = 2
∫ ∞

0

k2

(k2 + 1)2 dk

(∫ 1
k2+1dk

)2

(∫ 1
(k2+1)2 dk

)2κ
2 +O(κ3) .
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Inserting these expansions into (4.17) we obtain

Ek(ε, δ/%(ξ)) = 4π2
(
δ

%

)3

2
∫ ∞

0

k2

(k2 + 1)2 dk

(∫ 1
k2+1dk

)2

(∫ 1
(k2+1)2 dk

)2κ
2 +O(κ3)




×


2

(∫ 1
k2+1

)2

∫ 1
(k2+1)2

κ2 +O(κ3)




−3

= π2
(
δ

%

)3 1
κ4

∫ ∞

0

k2

(k2 + 1)2 dk
∫ ∞

0

1
(k2 + 1)2 dk

(∫ ∞

0

1
k2 + 1dk

)−4
(1 +O(κ))

=
(
δ

%

)3 1
κ4 (1 +O(κ)) .

(4.19)

Finally, by our choices for δ
%(ξ) and κ(ξ), we �nd

Ek(ε, δ/%(ξ)) = 2ξ1/2 +O(1) .

This gives the claimed result.

4.2.2 Proof of Theorem 3

The upper bound from Proposition 6 can be used to give an estimate on δ and κ at the
ground state in the limiting case of large ξ. In a �rst step, we will show that there is a
minimising δ/% for the variational problem in (4.13) and prove that it isO(ξ−1/2) for ξ →∞.
Secondly, we derive an equivalent statement for κ. This information can be used to expand
the energy in ξ and compute its minimum to leading order.

From (4.13), we see that for any �xed δ/ρ and ε the potential energy Ep(ε, δ/ρ) is at

least 2ξ δ%
(
2− δ

%

)
, the minimal value the potential energy can take for any given δ/ρ. This

happens when ε is such that min{%− δ, δ
κ(ε)} = %− δ. Hence, in summary we have for

δ/ρ = (δ/ρ)min,

2ξ
(
δ

ρ

)

min

(
2−

(
δ

ρ

)

min

)
≤ Epot(ε, (δ/ρ)min) ≤ E0

N%2

for any ε. Using the upper bound (4.15) we may then estimate

(
δ

ρ

)

min
≤ ξ−1/2 +O(ξ−1) . (4.20)

Proposition 5 allows us now to also estimate κ. We know that the minimal energy has to be
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looked for in the sector κ ≥ δ
%

(
1− δ

%

)−1
. At the same time we may, by the upper bound

(4.15), exclude the possibility that the minimal energy will be found for ε→ 1 for which
also κ → 1 since the potential energy alone would exceed the upper bound in this case.
Therefore we know that there is an εmin for which the total energy takes a minimum, and
we choose the notation κmin = κ(εmin). Taking this a step further, we can also use the
upper bound (4.15) and the fact that the kinetic energy is always positive to �nd

ξ

(
2−

(
1−

(
δ

ρ

)

min

)2
− 2

(
1−

(
δ

ρ

)

min

)(
δ

ρ

)

min

1
κmin

+
(
δ

ρ

)2

min

1
κ2

min

)

≤ 2ξ1/2 +O(1) .

This allows us to conclude, omitting some positive terms on the left hand side,

ξ

(
1− 2

(
δ

%

)

min

1
κmin

)
≤ 2ξ1/2 +O(1) ,

and by using (4.20), we �nally �nd

κmin ≤ 2ξ−1/2 +O(ξ−1) . (4.21)

Hence, for ξ → ∞ we are sure that the minimising κ tends to 0 and we can therefore
expand the kinetic energy as previously in (4.19),

Ek(ε, δ/ρ) =
(
δ

%

)3 1
κ4

(
1 +O(ξ−1/2)

)
(4.22)

and additionally for the potential energy, derived from (4.14), taking (4.20) and (4.21) into
account,

Ep(ε, δ/ρ) = ξ

((
1− δ

%

1
κ

)2
+ 2δ

%

(
1 + δ

%

1
κ

)
− δ2

%2

)

= ξ

((
1− δ

ρ

1
κ

)2
+ 2δ

%

(
1 + δ

%

1
κ

)
+O(ξ−1)

)
,

(4.23)

where in both cases κ is always understood as κ(ε). Combining both to the total energy
E(ε, δ/ρ) = Ek(ε, δ/ρ) + Ep(ε, δ/ρ) we see that the kinetic energy is of smaller order than
the leading order term in the potential energy. Hence, when minimising in κ to leading
order, the kinetic energy does not in�uence the result and we immediately �nd

κmin =
(
δ

%

)

min
+O(ξ−1) .
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Inserting this into (4.22) and (4.23), we �nd

E =
(
%

δ
+ 4ξ δ

%

)(
1 +O(ξ−1/2)

)

from which we can extract
(
δ

%

)

min
= 1

2ξ
−1/2 +O(ξ−1) .

Finally, inserting δmin and κmin, we �nd the minimal energy to be

E0
N%2 = 4ξ1/2(1 +O(ξ−1/2)) .

This proves Theorem 3.
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4.3 Ground state energy for small ξ

As in the case for large ξ, we �nd an expansion of the ground state energy in the Lieb–Liniger
model for the limiting case of ξ → 0:

Theorem 4. In the limit of weak coupling or high density when ξ → 0, the ground state
energy per particle of the Lieb–Liniger model according the Bogoliubov approximation
scheme has an expansion

E0
N%2 = ξ − 4

3πξ
3/2 + 1

32π2 ξ
2(ln ξ)2 +O(ξ2 ln ξ ln(− ln ξ)) .

Similarly to the previous section, we �rst derive a priori bounds, a lower and an upper
bound, which allow us to then compute the expansion of the energy as stated in Theorem 4.

4.3.1 Lower bound

The lower bound on the ground state energy we present here is valid for all ξ but mainly
of use for the case of small ξ which we are considering in this section.

Proposition 7. For the ground state energy of the Lieb–Liniger model in the Bogoliubov
approximation scheme we �nd the lower bound

E0
N%2 ≥ ξ −

4
3πξ

3/2 . (4.24)

Proof. The ground state energy E0
N%2 in the Bogoliubov approximation scheme is computed

as an in�mum of (3.7) over all states in D, see (3.6). We �nd a lower bound on this energy
in two steps. Firstly, we omit all terms quadratic in γ and α in the energy functional %−3F
in (3.7). The resulting functional we denote by %−3F̃ . Secondly, we relax the integrability
condition on γ in D. This results in taking an in�mum

inf
(γ,α,%0)∈D̃

1
%3 F̃(γ, α, %0)

= inf
(γ,α,%0)∈D̃

1
%3

1
2π

∫

R
p2γ(p)dp+ ξ

(
1 + 1

π

%0
%2

(∫

R
γ(p)dp+

∫

R
α(p)dp

))
,

over a set D̃ =
{
(γ, α, %0)

∣∣ γ(p) ≥ 0, α(p)2 ≤ γ(p)(1 + γ(p)), 0 ≤ %0 ≤ %
}

. The in�mum
of F̃ over D̃ is a lower bound on E0

N%2 . We compute it in the following.

In a �rst step, the functional %−3F̃ can be minimised in α. The minimum is found for α
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being the function for which α(p) = −(γ(p)(γ(p) + 1))1/2 for all p ∈ R, thus we have

inf
(γ,α,%0)∈D̃

1
%3 F̃(γ, α, %0) =

inf
(γ,%0):

γ(p)≥0, 0≤%0≤%

1
%3

1
2π

∫

R
p2γ(p)dp+ ξ

(
1 + 1

π

%0
ρ2

(∫

R
γ(p)dp−

∫

R

√
γ(p)(γ(p) + 1)dp

))
.

Evaluating the Euler-Lagrange equations for γ reveals – by similar calculations as before –
a minimising γ given by

γ(p) = 1
2


 p2 + 2%0c√

(p2 + 2%0c)2 − 4%2
0c

2
− 1




which is just γµ,λ as in (4.8) with µ = λ = 2%0c. Note that the function γ2%0c,2%0c is still
integrable when multiplied with a factor of p2 and thus the kinetic energy corresponding
to this function is �nite. Taken alone, it is, however, not integrable, which is why the
integrability condition on γ was relaxed. Inserting the solution γ2%c,2%0c, one �nally �nds

inf
(γ,α,%)∈D̃

1
%3 F̃(γ, α, %0) = inf

0≤%0≤%
ξ − 4

3π

(
%0
%

)3/2

ξ
3/2 ,

where it was used that I3(1) =
√

2
3 and (I2− I1)(1) =

√
2. This is clearly minimised when

%0 = % and we thus obtain

inf
(γ,α,%)∈D̃

1
%3 F̃(γ, α, %0) = ξ − 4

3πξ
3/2 . (4.25)

4.3.2 Upper bound

As in the case of small ξ, we also derive an a priori upper bound and use it later together
with the lower bound from Proposition 7 to derive the minimal energy.

Proposition 8. In the limit ξ → 0 the ground state energy of the Lieb–Liniger model as
de�ned in Theorem 4 is bounded from above by

E0
N%2 ≤ ξ −

4
3πξ

3/2 + 1
32π2 ξ

2(ln ξ)2 +O(ξ2 ln ξ ln(− ln ξ)) . (4.26)

Proof. We can �nd an upper bound in the case ξ → 0 by choosing a suitable δ/ρ and ε
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dependent on the value of ξ in the expression (4.14). We start therefore by setting

δ

%
(ξ) = 1

2π

√
2
3ξ

1/2
( 1
κ(ε) − 1

)1/2
(
I3

1 (ε)
I3(ε)

)1/2

,

which is easily rewritten into

δ

%
(ξ) = 1

2π

√
2
3ξ

1/2
(
I2(ε)− I1(ε)

I3(ε)

)1/2

I1(ε) .

This choice of δ/ρ leads to an expression the total energy Ek(ε, δ/ρ) + Ep(ε, δ/ρ) which
depends on ε and ξ:

Ek(ε, δ/%(ξ)) + Ep(ε, δ/%(ξ)) = 1
π

√
2

3
√

3
ξ

3/2 (I2(ε)− I1(ε))3/2

I3(ε)1/2
+ ξ

(
1−

1
π

√
2
3ξ

1/2 (I2(ε)− I1(ε))3/2

I3(ε)1/2
+ 1

(2π)2
2
3ξ
(
I2(ε)− I1(ε)

I3(ε)

)
I2

1 (ε)
( 1
κ(ε)2 + 2

κ(ε) − 1
))

.

The expression can be sorted according to powers of ξ:

Ek(ε, δ/ρ(ξ)) + Ep(ε, δ/ρ(ξ)) = ξ − 2
3π

√
2
3

(I2(ε)− I1(ε))3/2

I3(ε)1/2
ξ

3/2

+ 1
6π2

( 1
κ(ε)2 + 2

κ(ε) − 1
)(

I2(ε)− I1(ε)
I3(ε)

)
I2

1 (ε)ξ2 ,

(4.27)

where it was assumed that the ε-dependent terms do not change the ordering for our choice
of ε(ξ). This will be con�rmed by computations in the next paragraphs.

To �nd an upper bound for this ground state energy, we choose ε dependent of ξ to be
ε(ξ) = 1− ν(ξ) with

ν(ξ) = − 1
4π

1
(3− 2

√
2)
ξ

1/2 ln ξ . (4.28)

For very small ξ this choice of ν(ξ) is close to 0 and in the limiting case we have limξ→0 ν(ξ) =
0. When inserting (4.28) into (4.27) we cannot give a precise expression of the energy as a
function of ξ, but we may expand the energy for small values of ξ around 0.

To this end, we �rst expand the expression (4.27) for ε close to 1. The detailed computa-
tions leading to this expansion can be found in the appendix, Section A.2. We �nd that for
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ε = 1− ν and ν → 0

Ek(ε, δ/ρ) + Ep(ε, δ/ρ) = ξ − 4
3πξ

3/2
(

1− 3
8ν(3− 2

√
2) +O(ν2 ln ν)

)
+

1
8π2 ξ

2
(
(ln ν)2 +O(1)

)
.

(4.29)

For our choice of ν(ξ) in (4.28), we then obtain for ξ → 0

Ek(ε, δ/ρ(ξ)) + Ep(ε, δ/ρ(ξ)) = ξ − 4
3πξ

3/2 + 1
32π2 ξ

2(ln ξ)2 +O(ξ2 ln ξ ln(− ln ξ)) ,

which is the claimed upper bound for the minimal energy for small ξ.

4.3.3 Proof of Theorem 4

In the following we show that in the limit ξ → 0, the minimal energy can be given as an
expansion in ξ, coinciding with the upper bound (4.26). As a starting point, we �nd in the
variational problem (4.14) the exact minimising δ/ρ as a function of ξ and ε and expand
it for small ξ. In a second step the minimising ε can be found by solving its minimising
equation to leading order in ξ.

From (4.14) we �nd that a minimising δ/ρ must necessarily satisfy

12π2
(
δ

%

)2 I3(ε)
I3

1 (ε) + 2δ
%

( 1
κ2 + 2

κ
− 1

)
ξ − 2

(1
κ
− 1

)
ξ = 0 .

Solving this for δ
% we obtain

(
δ

ρ

)

min
= − 1

12π2 ξ
I3

1 (ε)
I3(ε)

( 1
κ2 + 2

κ
− 1

)

+ 1
2π

[
2
3ξ
I3

1 (ε)
I3(ε)

(1
κ
− 1

)
+ 1

36π2 ξ
2 I

6
1 (ε)
I2

3 (ε)

( 1
κ2 + 2

κ
− 1

)2
]1/2

.

(4.30)

Since the energy is a strictly convex function of δ/ρ, we conclude that (δ/ρ)min is indeed a
minimiser. We can also see that for �nite ξ, letting ε tend to 1, we would obtain (δ/ρ)min = 0.
At the same time, from Proposition 5 we also conclude, that we will not �nd the energy
minimised by ε→ 0 unless also (δ/ρ)min = 0. Thus in both cases, for ε→ 0 or ε→ 1, this
would put the total energy to the value of ξ, which was excluded to be the ground state
energy by general arguments, cf. Proposition 5.2, and also contradicts the upper bound
(4.26) for a �nite but small enough ξ. We conclude that for ξ > 0 but small enough, if the
in�mum (4.14) exists, it is really a minimum with an 0 < εmin < 1.

The logical next step would be to calculate the energy for δ/ρ = (δ/ρ)min, leaving us
with an expression of the energy only dependent on ε, which we subsequently should
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minimise for ε. However, this procedure cannot be carried out in its most simple form
since the energy will depend on ε indirectly via the integrals I1, I2 and I3 which does not
allow us to solve for a minimising εmin immediately. Instead, we �rst need to draw some
conclusions about the properties of εmin. This will give us the possibility to expand the
relevant quantities in powers of ξ for small ξ.

We are able to prove the following lemma:

Lemma 2. Let εmin(ξ) be the minimising ε in (4.14) dependent on ξ. When ξ → 0 we �nd
that εmin(ξ)→ 1 and

| ln(1− εmin(ξ))| = O(| ln ξ|) .

Proof. The proof of this lemma relies heavily on repeatedly using knowledge about the
structure of the minimisers of the functional F̃ which was introduced earlier in the proof
of the lower bound on the ground state energy (4.24).

First of all, we note that

inf
(γ,α,%0)∈D̃

1
%3 F̃(γ, α, %0) = inf

µ,λ: µ≥λ≥0,
α:α2≤γµ,λ(γµ,λ+1),0≤%0≤%

1
%3 F̃(γµ,λ, α, %0)

since we have seen that F̃ has a unique minimiser of the form γµ,λ with µ = λ = 2%0c.
Using that the minimising α is α̃min = −(γµ,λ(γµ,λ + 1))1/2, and replacing λ = µε, we
thus �nd

inf
(γ,α,%0)∈D̃

1
%3 F̃(γ, α, %0) = inf

µ≥0,0≤ε≤1
0≤%0≤%

ξ + 1
2π

1
%3µ

3/2I3(ε)− 1
π
µ

1/2 %0
%2 ξ(I2(ε)− I1(ε))

= inf
0≤ε≤1
0≤%0≤%

ξ − 2
3π

√
2
3

(
%0
%

)3/2

ξ
3/2 (I2(ε)− I1(ε))3/2

I3(ε)1/2

= inf
0≤ε≤1

ξ − 2
3π

√
2
3ξ

3/2 (I2(ε)− I1(ε))3/2

I3(ε)1/2

(4.31)

where the expression on the right-hand side was �rst minimised in µ and subsequently
in %0, �nding that µ̃min = 2

3%0%ξI3(ε)−1(I2(ε) − I1(ε)) and (̃%0)min = %. Using our
knowledge that the expression (4.31) has a unique minimum with value ξ − 4

3π ξ
3/2, cf.

(4.25), we conclude that

max
0≤ε≤1

(I2(ε)− I1(ε))3/2

I3(ε)1/2
= (I2(ε)− I1(ε))3/2

I
1/2
3 (ε)

∣∣∣∣∣
ε=1

= (
√

2)3/2

(
√

2/3)1/2
=
√

6

and that this maximum is unique.
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We now derive properties of the minimising parameters forF . We denote by xmin, where
x could be any of the quantities or parameters F depends on, the value for x that minimises
F and likewise for x̃ and F̃ , respectively. All of the xmin depend on ξ. The following chain
of inequalities holds

F (γmin = γµmin,λmin , αmin, %0,min = %− δmin) ≥ F̃ (γmin, αmin, %0,min)

≥ F̃
(
γµ̃min,λmin

, α̃min, %0,min
)
.

Inserting α̃min and µ̃min, we thus �nd, according to the upper bound in (4.26)

1
%3 F̃

(
γµ̃min,λmin

, α̃min, %0,min
)

= ξ − 2
3π

√
2
3

(
%0,min
%

)3/2

ξ
3/2 (I2 − I1)3/2

I
1/2
3

(εmin)

≤ ξ − 4
3πξ

3/2 + 1
32π2 ξ

2(ln ξ)2 +O(ξ2 ln ξ ln(− ln ξ)) .
(4.32)

Assume now that there exists a σ% > 0 and a σε > 0 such that for ξ arbitrarily small, we
always have % − %0,min(ξ) > σ% and 1 − εmin(ξ) > σε. Since F̃ has a unique minimum
equal to ξ − 4

3π ξ
3/2 at ε = 1 and %0 = %, this implies in particular

1
%3 F̃

(
γµ̃min,λmin

, α̃min, %0,min
)
> ξ − 4

3πξ
3/2 .

This inequality contradicts (4.32) when ξ is very small. Hence, we conclude that for ξ → 0

εmin(ξ)→ 1

and
%0,min(ξ)→ %

by which the �rst part the statement in Lemma 2 is proven. In a similar manner we can
draw conclusions about µmin. Again using the upper bound (4.26), we start this time with
the following inequality

1
%3 F̃(γµmin,εmin , α̃min, %0,min)

= ξ + 1
2π

(√
µmin
%

)3
I3(εmin)− 1

π

√
µmin
%

%0,min
%

ξ(I2(ε)− I1(ε))

≤ ξ − 4
3πξ

3/2 + 1
32π2 ξ

2(ln ξ)2

(4.33)

which holds for all ξ. Again, we use our knowledge that F̃ is uniquely minimised in µ
by µ̃min = 2

3%0,min%ξI3(εmin)−1(I2(εmin) − I1(εmin)), which converges to µmin = 2%2ξ
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when ξ → 0. We claim that indeed also

lim
ξ→0

µ
1/2
min%

−1ξ−1/2 =
√

2 . (4.34)

Suppose this was not the case. Then similarly we would have

1
%3 F̃(γµmin,λmin , α̃min, %0,min) > ξ − 4

3πξ
3/2

for all ξ, which now contradicts (4.33) when ξ → 0.
With this knowledge we are able to prove the second part of the Lemma. By the upper

(4.26) and lower bound (4.24) for the ground state energy, we have

ξ − 4
3πξ

3/2 ≤ 1
%3F(γµmin,λmin , αmin, %0,min) ≤ ξ − 4

3πξ
3/2 + 1

32π2 ξ
2(ln ξ)2 .

Rewriting

1
%3F(γµmin,λmin , αmin, %0,min) =

1
%3 F̃(γµmin,λmin , αmin, %0,min) + 1

%2 ξ

((∫
γµmin,λmin

)2
+
(∫

αmin

)2
)

and using that F̃ has a unique minimum, corresponding to the lower bound (4.24), we can
conclude

ξ

((∫
γµmin,λmin

)2
+
(∫

αmin

)2
)
≤ 1

32π2 ξ
2%2(ln ξ)2

and thus

I1(εmin(ξ)) ≤ 1
4
√

2π
%ξ1/2

√
µmin

|lnξ| .

Hence, for all ξ ≤ ξ0, with ξ0 > 0 small enough, by applying (4.34), we �nd

I1(εmin(ξ)) ≤ 1
4
√

2π
| ln ξ| , (4.35)

and thus
| ln(1− εmin(ξ))| < | ln ξ| .

We can now sort and expand (δ/ρ)min (4.30) in powers of ξ for ξ close to 0. Here, we use
the knowledge that I3(ε) and I2(ε)− I1(ε) converge as functions of ε for ε→ 1, cf. the
appendix. Therefore, the only divergent parts in (δ/ρ)min are terms involving a free-standing
I1(ε) which according to Lemma 2, cf. (4.35), do not grow faster than logarithmically. Hence,
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we have for ξ → 0
(
δ

ρ

)

min
= 1

2π

√
2
3

(
I2(ε)− I1(ε)

I3(ε)

)1/2

I1(ε)ξ1/2− 1
12π2 ξ

I3
1 (ε)
I3(ε)

( 1
κ2 + 2

κ
− 1

)
+O(ξ2) .

Inserting this into the energy, we �nd

Ek(δmin, ε) + Ep(δmin, ε) = ξ − 2
3π

√
2
3

(I2(ε)− I1(ε))3/2

I
1/2
3

ξ
3/2

+ 1
6π2

( 1
κ2 + 2

κ
− 1

)
I2(ε)− I1(ε)

I3(ε) I2
1 (ε)ξ2 +O(ξ5/2) .

As before, cf. (4.29), we expand this expression of the energy also for ε → 1, writing
ε = 1− ν. Taking the derivative of this expansion and bearing in mind the statements of
Lemma 2, we �nd the minisming equation for ν to leading order:

1
2π (3− 2

√
2)ξ3/2 + 1

4π2 ξ
2 1
ν

ln ν = 0

or equivalently
ln ν = −2π(3− 2

√
2)ξ−1/2ν . (4.36)

This equation is di�cult to solve exactly, but it can be solved approximately. We substitute
ν by the variable η := νξ−1/2, and rewrite (4.36) by

ln η + 2π(3− 2
√

2)η = −1
2 ln ξ . (4.37)

As may directly be concluded from (4.36), η diverges for ξ → 0. This means, ln η << η

and hence we choose to ignore ln η in (4.37), which can then easily be solved and we �nd

ν = − 1
4π(3− 2

√
2)
ξ

1/2 ln ξ .

This is the same expression for ν which was used to derive the upper bound. Hence, we
obtain a minimal energy for ξ → 0, coinciding with (4.26), which proves Theorem 4.
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4.4 Conclusion and perspectives

In this project, we have analysed a one-parameter model of a Bose gas with delta-potential
in one dimension as presented by Lieb and Liniger in [LL63] by a Bogoliubov variational
principle. More precisely, the ground state energy of the Lieb–Liniger model was determined
as an expansion in the relevant parameter ξ for the cases ξ →∞ and ξ → 0 in Theorem 3
and Theorem 4, respectively.

We may compare our results to the literature. Lieb and Liniger were able to solve the
model completely, however their solution for the function e(ξ) = E0

N%2 is an implicit integral
equation, . To our knowledge, there is until today no explicit expression for the function
e(ξ) available.

For ξ →∞, Lieb and Liniger �nd by numerical computations that limξ→∞ e(ξ) = π2

3 ,
which coincides with Girardeau’s results [Gir60] for general one-dimensional Bose gases
with a hard-core potential. When applying the Bogoliubov variational principle we �nd
a diverging ground state energy for ξ →∞ according to Theorem 3. This shows clearly
that the Bogoliubov approximation scheme is not a suitable approach for large ξ. A closer
look at Girardeau’s solution explains why: when in the limit ξ →∞ the Lieb–Liniger gas
becomes a gas of ‘impenetrable bosons’ the ground state is e�ectively given by a fermionic
state. Since we determine the ground state energy by a variation over bosonic states, the
Bogoliubov variational approach cannot match the fermionic solution.

For ξ close to 0, we �nd an expansion as given in Theorem 4. The �rst two terms coincide
with the value one obtains by applying Bogoliubov’s approximation method as has been
explained in [LL63]. Since the 70’s there had been conjectures (see [TW16] for a short
review) that the �rst three terms in the expansion of the Lieb–Liniger ground state energy
should be

e(ξ) = ξ − 4
3πξ

3/2 +
[1

6 −
1
π2

]
ξ2 +O(ξ2) . (4.38)

This was veri�ed by Tracy and Widom [TW16] in 2016 by what they call the Leppington–
Levine method. Our expansion for small ξ agrees with equation (4.38) for the �rst terms
up to order ξ3/2. The order of the third term di�ers by a factor (ln(ξ))2.

Summing up, we �nd that the Bogoliubov variational approach is for large ξ not a good
approximation for the Lieb–Liniger model due to the fermionic nature of the ground state
in this case. The expansion for ξ → 0 is correct in the �rst two terms but deviates in the
third term by a logarithmic factor.

A question for further research could be to investigate models with more general po-
tentials by an application of the Bogoliubov variational principle, in particular to �nd
expansions for the ground state energy for a small coupling-density ratio.
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A | Computations of integrals

In this appendix, properties of the integrals I1, I2, I3 de�ned in (4.9) – (4.11) and correlated
quantities, which are used throughout the previous chapters, are derived.

A.1 Properties of I1, I2 and I3 for ε→ 0
Clearly, all integrals I1, I2 and I3 are 0 when ε = 0. Their �rst derivatives can easily
be calculated. Since all integrands are multiple times continuously di�erentiable, as well
as bounded by their own value for ε = 1

2 (or any other ε < 1), which furthermore is
integrable, we �nd that all Ii, i = 1, 2, 3, are continuously di�erentiable. Furthermore,
their derivatives can be bounded. More precisely, we have

•
d
dεI1(ε) =

∫ ∞

0

(
k2 + 1√

(k2 + 1)2 − ε2 − 1
)

dk = ε

∫ ∞

0

k2 + 1
((k2 + 1)2 − ε2)3/2

dk

≤ 1
2

∫ ∞

0

k2 + 1
((k2 + 1)2 − 1

4)3/2
dk ,

•
d2

dε2 I1(ε) =
∫ ∞

0

k2 + 1
((k2 + 1)2 − ε2)3/2

+ 3ε2 k2 + 1
((k2 + 1)2 − ε2)5/2

dk ,

•
d
dεI2(ε) =

∫ ∞

0

ε√
(k2 + 1)2 − ε2 dk

=
∫ ∞

0

1√
(k2 + 1)2 − ε2 + ε2

((k2 + 1)2 − ε2)3/2
dk ,

•
d2

dε2 I2(ε) =
∫ ∞

0

ε√
(k2 + 1)2 − ε2 dk

=
∫ ∞

0

3ε
((k2 + 1)2 − ε2)3/2

+ 3ε2

((k2 + 1)2 − ε2)5/2
dk ,

•
d
dεI3(ε) =

∫ ∞

0
k2
(

k2 + 1√
(k2 + 1)2 − ε2 − 1

)
dk = ε

∫ ∞

0
k2 k2 + 1

((k2 + 1)2 − ε2)3/2
dk ,

•
d2

dε2 I3(ε) =
∫ ∞

0
k2 k2 + 1

((k2 + 1)2 − ε2)3/2
+ 3ε2k2 k2 + 1

((k2 + 1)2 − ε2)5/2
dk .
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Bounds on the derivatives are found equivalently as for d
dεI1(ε) and higher derivatives are

computed analogously. By Taylor’s theorem, we therefore �nd the following expansions
for the integrals for ε→ 0:

• I1(ε) = 1
2

∫ ∞

0

1
(k2 + 1)2 dk ε2 +O(ε3) ,

• I2(ε) =
∫ ∞

0

1
k2 + 1dk ε+O(ε2) ,

• I3(ε) = 1
2

∫ ∞

0

k2

(k2 + 1)2 dk ε2 +O(ε3) .

From the above results, an expansion for κ can immediately be derived:

κ(ε) = I1(ε)
I2(ε) = 1

2

∫ 1
(k2+1)2
∫ 1
k2+1

ε+O(ε2) ,

and hence κ→ 0 for ε→ 0.

A.2 Properties of I1, I2 and I3 for ε→ 1
This section is relevant for a derivation of (4.29). We set ε = 1− ν.

A.2.1 The integral I1(1− ν) for ν → 0

Lemma 3. For ν → 0, we have

I1(1− ν) = − 1
2
√

2
ln ν + const +O(1) .

Proof. First, we have

I1(1− ν) =
∫ ∞

0

(
k2 + 1√

(k2 + 1)2 − (1− ν)2 − 1
)

dk

=
∫ 1

0

(
1√

k4 + 2k2 + ν(2− ν)

)
dk +

∫ 1

0

(
k2

√
k4 + 2k2 + ν(2− ν)

− 1
)

dk

+
∫ ∞

1

(
k2 + 1√

k4 + 2k2 + ν(2− ν)
− 1

)
dk

=
∫ 1

0

(
1√

2k2 + ν(2− ν)

)
dk

+
∫ 1

0

(
1√

k4 + 2k2 + ν(2− ν)
− 1√

2k2 + ν(2− ν)

)
dk
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+
∫ 1

0

(
k2

√
k4 + 2k2 + ν(2− ν)

− 1
)

dk +
∫ 2

1

(
k2 + 1√

k4 + 2k2 + ν(2− ν)
− 1

)
dk

+
∫ ∞

2

(
k2 + 1√

k4 + 2k2 + ν(2− ν)
− 1

)
dk .

The last four integrals on the right hand side can all be estimated, such that for any
0 ≤ ν ≤ 1:

∫ ∞

2

(
k2 + 1√

k4 + 2k2 + ν(2− ν)
− 1

)
dk =

∫ ∞

2

1 + 1
k2 −

√
1 + 2

k2 + ν(2−ν)
k4√

1 + 2
k2 + ν(2−ν)

k4

dk

≤
∫ ∞

2
1 + 1

k2 −
√

1 + 2
k2 dk ≤ C = C

24

∫ ∞

2

1
k4 dk

for some constant C > 1. Furthermore, we �nd

∫ 2

1

(
k2 + 1√

k4 + 2k2 + ν(2− ν)
− 1

)
dk ≤

∫ 2

1

(
k2 + 1√
k4 + 2k2 − 1

)
dk

=
√

3(
√

2− 1)− 1 + 1√
2

(ln
(
2 +
√

6
)
− ln

(
1 +
√

3
)
) .

For the third last integral we estimate

∫ 1

0

(
k2

√
k4 + 2k2 + ν(2− ν)

− 1
)

dk ≤
∫ 1

0

(
k2

√
k4 + 2k2 − 1

)
dk

=
∫ 1

0

(
k√

k2 + 2
− 1

)
dk =

(√
k2 + 2− k

) ∣∣∣∣
1

0
=
√

3−
√

2− 1 .

It remains the second integral, for which we �nd

∣∣∣∣∣

∫ 1

0

(
1√

2k2 + ν(2− ν)
− 1√

k4 + 2k2 + ν(2− ν)

)
dk
∣∣∣∣∣

=
∫ 1

0

(
1√

2k2 + ν(2− ν)
− 1√

k4 + 2k2 + ν(2− ν)

)
dk

=
∫ 1

0

1√
2k2 + ν(2− ν) ·

√
k4 + 2k2 + ν(2− ν)

×
(√

k4 + 2k2 + ν(2− ν)−
√

2k2 + ν(2− ν)
)

dk

=
∫ 1

0

1√
k4 + 2k2 + ν(2− ν)

(√
1 + k4

2k2 + ν(2− ν) − 1
)

dk
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≤1
2

∫ 1

0

1√
k4 + 2k2 + ν(2− ν)

(
k4

2k2 + ν(2− ν)

)
dk

≤1
4

∫ 1

0

k√
k2 + 2

= 1
4
(√

3−
√

2
)
.

The only divergent term comes from the �rst integral:

∫ 1

0

(
1√

2k2 + ν(2− ν)

)
dk =

∫ 1/
√
ν

0

(
1√

2k2 + (2− ν)

)
dk

= 1√
2

ln
(
k +

√
k2 + 1− ν

2

) ∣∣∣∣
1/
√
ν

0
= 1√

2

(
ln
(

1√
ν

+
√

1 + 1
ν
− ν

2

)
− ln

(√
1− ν

2

))

= 1
2
√

2


− ln(ν) + 2 ln


1 +

√

1 + ν − ν2

2


− ln

(
1− ν

2

)
 .

Here, the last two terms converge to a constant when ν → 0 and leave us with the leading
term − 1

2
√

2 ln ν, which was claimed.

A.2.2 The integral (I2 − I1)(1− ν) for ν → 0

Lemma 4. For ν → 0, we have

(I2 − I1)(1− ν) =
√

2 + 1
4
√

2
ν ln ν + ν

2
√

2

(
−7

2 + 2
√

2− 5
2 ln 2

)
+O(ν) .

Proof. By de�nition

(I2 − I1)(1− ν) =
∫ ∞

0
1− ν + k2

√
k4 + 2k2 + ν(2− ν)

dk .

For ν = 0 the integral is easily calculated:

(I2 − I1)(1) =
∫ ∞

0
1− k√

k2 + 2
dk =

√
2 .

We �nd the next terms in the expansion therefore by computing

(I2 − I1)(1− ν)− (I2 − I1)(1) =
∫ ∞

0
k2
(

1√
k4 + 2k2 −

1√
k4 + 2k2 + ν(2− ν)

)
dk

− ν
∫ ∞

0

1√
k4 + 2k2 + ν(2− ν)

dk .

We split this integral into two parts, from 0 to
√
ν and from

√
ν to∞, denoting them by
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Js21(ν) and J l21(ν), respectively. The former then becomes

Js21(ν) =
∫ √ν

0
k2
(

1√
k4 + 2k2 −

1√
k4 + 2k2 + ν(2− ν)

)
dk

− ν
∫ √ν

0

1√
k4 + 2k2 + ν(2− ν)

dk

= ν

∫ 1

0
k2
(

1√
νk4 + 2k2 −

1√
νk4 + 2k2 + (2− ν)

)
dk

− ν
∫ 1

0

1√
νk4 + 2k2 + (2− ν)

dk

= ν

∫ 1

0
k2
( 1√

2k2
− 1√

2k2 + 2

)
− 1√

2k2 + 2
dk +O(ν2)

= ν√
2

∫ 1

0

(
k −

√
k2 + 1

)
dk +O(ν2) = ν

2
√

2

(√
2− 1− ln

(√
2 + 1

))
+O(ν2) .

For the other part,we have

J l21(ν) =
∫ ∞
√
ν
k2
(

1√
k4 + 2k2 −

1√
k4 + 2k2 + ν(2− ν)

)
dk

− ν
∫ ∞
√
ν

1√
k4 + 2k2 + ν(2− ν)

dk

=
∫ ∞
√
ν

k2
√
k4 + 2k2


1− 1√

1 + ν(2−ν)
k4+2k2


dk − ν

∫ ∞
√
ν

1√
k4 + 2k2

1√
1 + ν(2−ν)

k4+2k2

dk .

(A.1)

We can expand these terms by using the power series expansion for (1 + x)−1/2, which
converges for |x| < 1:

1√
1 + x

= 1− 1
2x+

1
2

(
1
2 + 1

)

2! x2 + . . .+ (−1)n
1
2

(
1
2 + 1

)
. . .
(

1
2 + n− 1

)

n! xn

= 1− 1
2x+ 1 · 3

2 · 4x
2 − 1 · 3 · 5

2 · 4 · 6x
3 + . . .+ (−1)n 1 · 3 · . . . · (2n− 1)

2 · 4 · 6 · . . . · 2n xn .

(A.2)

Hence, we may continue to compute (A.1),

J l21(ν) =
∫ ∞
√
ν

k2
√
k4 + 2k2

(
1− 1 + ν

2
(2− ν)
k4 + 2k2 −

3
8

(
ν(2− ν)
k4 + 2k2

)2
+ . . .

)
dk

− ν
∫ ∞
√
ν

1√
k4 + 2k2

(
1− ν

2
(2− ν)
k4 + 2k2 + 3

8

(
ν(2− ν)
k4 + 2k2

)2
+ . . .

)
dk
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=ν
∫ ∞
√
ν

k2

(k4 + 2k2)3/2
− 1√

k4 + 2k2 dk +R21(ν)

=− ν
∫ ∞
√
ν

1
k

k2 + 1
(k2 + 2)3/2

dk +R21(ν)

=− ν

2
√

2

(
− ln
√
ν + ln

(√
ν + 2 +

√
2
)

+
√

2√
ν + 2

)
+R21(ν)

= 1
4
√

2
ν ln ν − ν

2
√

2

(
1 + 3

2 ln 2
)

+O(ν2) +R21(ν) ,

where we expand the terms in powers of ν and where

R21(ν) =
∫ ∞
√
ν
k2
(

1√
k4 + 2k2 −

1√
k4 + 2k2 + ν(2− ν)

)
dk

− ν
∫ ∞
√
ν

1√
k4 + 2k2 + ν(2− ν)

dk + ν

∫ ∞
√
ν

1
k

k2 + 1
(k2 + 2)3/2

dk

= ν

∫ ∞

1

(
k2

√
νk4 + 2k2 −

k2 + 1√
νk4 + 2k2 + (2− ν)

)
+ 1
k

νk2 + 1
(νk2 + 2)3/2

dk

=: νF21(ν) .

(A.3)

For ν = 0, we �nd

F21(0) = 1√
2

∫ ∞

1
dk
(
k + 1

2k −
√
k2 + 1

)

= 1
2
√

2

[
k2 −

√
k2 + 1k + ln k − ln

(
k +

√
k2 + 1

)] ∣∣∣∣
∞

1

= 1
2
√

2

(√
2− 3

2 + ln
(√

2 + 1
2

))
.

For a general ν, by Taylor’s theorem and the mean-value theorem, we �nd

1√
1 + x

≤ 1− 1
2x+ 3

8x
2 for |x| < 1, (A.4)

which may be used to estimate the integrand of (A.3) from below. The lower bound is then
derived by

k2
(

1√
νk4 + 2k2 −

1√
νk4 + 2k2 + (2− ν)

)

− 1√
νk4 + 2k2 + (2− ν)

+ 1
k

νk2 + 1
(νk2 + 2)3/2
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= 1√
νk4 + 2k2


k2 − k2 1√

1 + 2−ν
νk4+2k2

− 1√
1 + 2−ν

νk4+2k2

+ 1 + νk2

2 + νk2




≥ 1√
νk4 + 2k2

(
k2 − k2

(
1− 1

2
2− ν

νk4 + 2k2 + 3
8

(2− ν)2

(νk4 + 2k2)2

)

−
(

1− 1
2

2− ν
νk4 + 2k2 + 3

8
(2− ν)2

(νk4 + 2k2)2

)
+ 1 + νk2

2 + νk2

)

= 1√
νk4 + 2k2

(
−ν2

1
νk2 + 2 −

3
8
(
k2 + 1

) (2− ν)2

(νk4 + 2k2)2 + 1
2

2− ν
νk4 + 2k2

)

≥ 1√
νk4 + 2k2

(
−ν2

1
νk2 + 2 −

3
8

1
νk2 + 2

(2− ν)2

νk4 + 2k2 −
3
8

(2− ν)2

(νk4 + 2k2)2

)

≥ − 1
2
√

2
1
k3 −

3
32
√

2
(2− ν)2

( 1
k3 + 1

k4

)

≥ − 1
8
√

2

( 7
k3 + 3

k4

)
,

where the last line represents an integrable function. At the same time we can also establish
an upper bound, by analogously using

1√
1 + x

≥ 1− 1
2x , (A.5)

by which we can bound the integrand of (A.3) such that

k2
(

1√
νk4 + 2k2 −

1√
νk4 + 2k2 + (2− ν)

)

− 1√
νk4 + 2k2 + (2− ν)

+ 1
k

νk2 + 1
(νk2 + 2)3/2

≤ 1√
νk4 + 2k2

(
k2 + k2

(
−1 + 1

2
2− ν

νk4 + 2k2

)
− 1 + 1

2
2− ν

νk4 + 2k2 + νk2 + 1
νk2 + 2

)

= 1√
νk4 + 2k2

(
1

νk4 + 2k2 −
ν

2
k2 + 1

νk4 + 2k2

)

≤ 1
2
√

2

( 2
k3 + 1

k4

)
,

which likewise is integrable.

Hence, by dominated convergence, we can conclude that R21(ν) is continuous as a
function of ν and

R21(ν) = νF21(0) +O(ν) ,

which concludes the proof of Lemma 4.
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A.2.3 The integral I3(1− ν) for ν → 0

Lemma 5. For ν → 0, we have

I3(1− ν) =
√

2
3 + 1

4
√

2
ν ln ν + ν

2
√

2
(−1

2 −
5
2 ln 2) +O(ν).

Proof. From the de�nition of I3, (4.11), we �nd

I3(1) =
√

2
3

and

I3(1− ν)− I3(1) =
∫ ∞

0
k2(k2 + 1)

(
1√

k4 + 2k2 + ν(2− ν)
− 1√

k4 + 2k2

)
dk .

For a computation of I3(1− ν)− I3(1), we split this integral into two parts for small and
large k, Js3(ν) and J l3(ν), respectively. We begin with small k.

Js3(ν) =
∫ √ν

0
k2(k2 + 1)

(
1√

k4 + 2k2 + ν(2− ν)
− 1√

k4 + 2k2

)
dk

= ν

∫ 1

0
k2(1 + νk2)

( 1√
νk4 + 2k2 + 2− ν

− 1√
νk4 + 2k2

)
dk

= ν√
2

∫ 1

0
k2
( 1√

k2 + 1
− 1
k

)
dk +O(ν2)

= ν

2
√

2

(
k
√
k2 + 1− k2 − ln

(
k +

√
k2 + 1

)) ∣∣∣∣
1

0
+O(ν2)

= ν

2
√

2

(√
2− 1− ln

(
1 +
√

2
))

+O(ν2)

by Taylor’s theorem and dominated convergence. For large k we �nd

J l3(ν) =
∫ √ν

0
k2(k2 + 1)

(
1√

k4 + 2k2 + ν(2− ν)
− 1√

k4 + 2k2

)
dk

=
∫ ∞
√
ν

k2(k2 + 1)√
k4 + 2k2


 1√

1 + ν(2−ν)
k4+2k2

− 1


dk .
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By using the series expansion in (A.2), this can be written as

J l3(ν) =
∫ ∞

ν

k2(k2 + 1)√
k4 + 2k2

(
−1

2

(
ν(2− ν)
k4 + 2k2

)
+ 3

8

(
ν(2− ν)
k4 + 2k2

)2
+ . . .

)
dk

= −ν
∫ ∞
√
ν

1
k

k2 + 1
(k2 + 2)3/2

dk +R3(ν)

= ν

2

( 1√
k2 + 2

+ 1√
2

(
ln
(√

2
√
k2 + 1 + 2

)
− ln k

)) ∣∣∣∣
∞

√
ν

+R3(ν)

= 1
4
√

2
ν ln ν − ν

2
√

2
(1 + 3

2 ln 2) +R3(ν)

with

R3(ν) =
∫ ∞
√
ν

k2(k2 + 1)√
k4 + 2k2


 1√

1 + ν(2−ν)
k4+2k2

− 1 + ν
1

k4 + 2k2


 dk

= ν

∫ ∞

1

k2(νk2 + 1)√
νk4 + 2k2


 1√

1 + 2−ν
νk4+2k2

− 1 + 1
νk4 + 2k2


dk

=: νF3(ν) .

(A.6)

For ν = 0, we �nd

F3(0) = 1√
2

∫ ∞

1
k

(
k

k2 + 1 − 1 + 1
2k2

)
dk

= 1
2
√

2

(
−k2 +

√
k2 + 1k + ln k − ln

(√
k2 + 1 + k

)) ∣∣∣∣
∞

1

= 1
2
√

2

(
3
2 −
√

2 + ln
(√

2 + 1
2

))
.

Again, we can prove by dominated convergence that F3(ν) is a function continuous in ν.
First, we see that the integrand in (A.6) is positive for any 0 ≤ ν ≤ 1:

k2(νk2 + 1)√
νk4 + 2k2


 1√

1 + 2−ν
νk4+2k2

− 1 + 1
νk4 + 2k2




≥k
2(νk2 + 1)√
νk4 + 2k2

(
1− 1

2
2− ν

νk4 + 2k2 − 1 + 1
νk4 + 2k2

)

≥ν2
k2(1 + νk2

(νk4 + 2k2)3/2
≥ 0 ,

where once more (A.5) was used. At the same time, the integrand is bounded from above
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by an integrable function for any 0 ≤ ν ≤ 1 as the following computation shows:

k2(νk2 + 1)√
νk4 + 2k2


 1√

1 + 2−ν
νk4+2k2

− 1 + 1
νk4 + 2k2




≤ k2(νk2 + 1)√
νk4 + 2k2

(
1− 1

2
2− ν

νk4 + 2k2 + 3
8

(2− ν)2

(νk4 + 2k2)2 − 1 + 1
νk4 + 2k2

)

≤ k2(1 + νk2)
νk4 + 2k2

(
ν

2
1

(νk4 + 2k2)1/2
+ 3

8
(2− ν)2

(νk4 + 2k2)3/2

)

≤ ν1/2

2k2 + 3
8

(2− ν)2

(2k2)3/2

≤ 1
2k2 + 3

16
√

2k3 .

Hence, F3(ν) is indeed continuous and we have

R3(ν) = F3(0) +O(ν) ,

which �nishes the proof of Lemma 5.

A.2.4 Computation of the ratio (I2−I1)3/2

I
1/2
3

for ν → 0

By combining Lemma 4 and Lemma 5, we �nd for ν → 0

(I2 − I1)3/2(1− ν)
I

1/2
3 (1− ν)

= (I2 − I1)3/2(1)
I

1/2
3 (1)

[
1 + 3

2
1

(I2 − I1)(1)

( 1
4
√

2
ν ln ν + ν

2
√

2

(
−7

2 + 2
√

2− 5
2 ln 2

))

+O(ν)
]
×
[
1− 1

2
1

I3(1)

( 1
4
√

2
ν ln ν + ν

2
√

2

(
−1

2 −
5
2 ln 2

))
+O(ν)

]

= (I2 − I1)3/2(1)
I

1/2
3 (1)

[
1 + 1

8
√

2
ν ln ν

( 3
(I2 − I1)(1) −

1
I3(1)

)

+ ν

4
√

2

( 3
(I2 − I1)(1)

(
−7

2 + 2
√

2− 5
2 ln 2

)
− 1
I3(1)

(
−1

2 −
5
2 ln 2

))
+O(ν)

]
.

Using that I3(1) =
√

2/3 and (I2 − I1)(1) = 3I3(1) =
√

2, this now reads

(I2 − I1)3/2(1− ν)
I

1/2
3 (1− ν)

=
√

6
(

1 + 3
8ν
(
2
√

2− 3
))

.
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